-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpose_estimation.py
151 lines (124 loc) · 5.39 KB
/
pose_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python
import rospy
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import numpy as np
import yaml
import sys
from matplotlib import pyplot as plt
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
stream = open("/home/chentao/kinect_calibration/rgb_1504270110.yaml", "r")
doc = yaml.load(stream)
rgb_mtx = np.array(doc['camera_matrix']['data']).reshape(3,3)
rgb_dist = np.array(doc['distortion_coefficients']['data'])
stream = open("/home/chentao/kinect_calibration/depth_1504270110.yaml", "r")
doc = yaml.load(stream)
depth_mtx = np.array(doc['camera_matrix']['data']).reshape(3,3)
depth_dist = np.array(doc['distortion_coefficients']['data'])
width = 0.0348
delta_x = 0 #0.0824
delta_y = 0 #0.064
x_num = 8
y_num = 6
objpoints = np.zeros((x_num * y_num, 3), np.float32)
axis = np.float32([[delta_x,delta_y,0],[delta_x + width,delta_y,0], [delta_x,delta_y + width,0], [delta_x,delta_y,delta_y + width]]).reshape(-1,3)
axis[:,0] += width * 5
axis[:,1] += width * 2
class image_converter:
def __init__(self):
self.br = CvBridge()
# self.image_sub = rospy.Subscriber("/camera/rgb/image_raw",Image,self.rgb_callback)
self.image_sub = rospy.Subscriber("/camera/ir/image_raw",Image,self.ir_callback)
def rgb_callback(self,data):
try:
img = self.br.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# ret, corners = cv2.findChessboardCorners(gray, (x_num,y_num),None)
ret, corners = cv2.findChessboardCorners(img, (x_num,y_num))
cv2.imshow('img',img)
cv2.waitKey(5)
if ret == True:
cv2.cornerSubPix(gray,corners,(5,5),(-1,-1),criteria)
tempimg = img.copy()
cv2.drawChessboardCorners(tempimg, (x_num,y_num), corners,ret)
# ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP)
rvec, tvec, inliers = cv2.solvePnPRansac(objpoints, corners, rgb_mtx, rgb_dist)
print("rvecs:")
print(rvec)
print("tvecs:")
print(tvec)
# project 3D points to image plane
imgpts, jac = cv2.projectPoints(axis, rvec, tvec, rgb_mtx, rgb_dist)
imgpts = np.int32(imgpts).reshape(-1,2)
cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[1]),[255,0,0],4) #BGR
cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[2]),[0,255,0],4)
cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[3]),[0,0,255],4)
cv2.imshow('img',tempimg)
cv2.waitKey(5)
def ir_callback(self,data):
try:
gray = self.mkgray(data)
except CvBridgeError as e:
print(e)
# ret, corners = cv2.findChessboardCorners(gray, (x_num,y_num),None)
ret, corners = cv2.findChessboardCorners(gray, (x_num,y_num))
cv2.imshow('img',gray)
cv2.waitKey(5)
if ret == True:
cv2.cornerSubPix(gray,corners,(5,5),(-1,-1),criteria)
tempimg = gray.copy()
cv2.drawChessboardCorners(tempimg, (x_num,y_num), corners,ret)
# ret, rvec, tvec = cv2.solvePnP(objpoints, corners, mtx, dist, flags = cv2.CV_EPNP)
rvec, tvec, inliers = cv2.solvePnPRansac(objpoints, corners, depth_mtx, depth_dist)
print("rvecs:")
print(rvec)
print("tvecs:")
print(tvec)
# project 3D points to image plane
imgpts, jac = cv2.projectPoints(axis, rvec, tvec, depth_mtx, depth_dist)
imgpts = np.int32(imgpts).reshape(-1,2)
cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[1]),[255,0,0],4) #BGR
cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[2]),[0,255,0],4)
cv2.line(tempimg, tuple(imgpts[0]), tuple(imgpts[3]),[0,0,255],4)
cv2.imshow('img',tempimg)
cv2.waitKey(5)
def mkgray(self, msg):
"""
Convert a message into a 8-bit 1 channel monochrome OpenCV image
"""
# as cv_bridge automatically scales, we need to remove that behavior
# TODO: get a Python API in cv_bridge to check for the image depth.
if self.br.encoding_to_dtype_with_channels(msg.encoding)[0] in ['uint16', 'int16']:
mono16 = self.br.imgmsg_to_cv2(msg, '16UC1')
mono8 = np.array(np.clip(mono16, 0, 255), dtype=np.uint8)
return mono8
elif 'FC1' in msg.encoding:
# floating point image handling
img = self.br.imgmsg_to_cv2(msg, "passthrough")
_, max_val, _, _ = cv2.minMaxLoc(img)
if max_val > 0:
scale = 255.0 / max_val
mono_img = (img * scale).astype(np.uint8)
else:
mono_img = img.astype(np.uint8)
return mono_img
else:
return self.br.imgmsg_to_cv2(msg, "mono8")
if __name__ == "__main__":
ic = image_converter()
for i in range(y_num):
for j in range(x_num):
index = i * x_num + j
objpoints[index,0] = delta_x + j * width
objpoints[index,1] = delta_y + (y_num - 1 - i) * width
objpoints[index,2] = 0
print objpoints
rospy.init_node('pose_estimation')
try:
rospy.spin()
except KeyboardInterrupt:
print("Shutting down")
cv2.destroyAllWindows()