-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRandom Forest
60 lines (46 loc) · 1.96 KB
/
Random Forest
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score
# 1. Load Data
data = pd.read_csv('mpp.csv')
data = data[data['Measurement'] != -999]
bins = [0, 0.0005, 0.001, 0.008, 0.01, 1, 100000]
labels = [0, 1, 2, 3, 4, 5]
data['classification'] = pd.cut(data['Measurement'], bins=bins, labels=labels, right=False)
data['classification'] = pd.to_numeric(data['classification']).astype('int64')
data = data.sort_values(by='Year')
X = data.drop(columns=['Measurement','classification', 'Date', 'Country', 'sea_ice_fraction'])
y = data['classification'] # target variaable
X_scaled = scaler.fit_transform(X)
# 3. Divide the training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 4. Create a Random Forest Classifier
model = RandomForestClassifier(
n_estimators=230,
max_depth=20,
min_samples_leaf=1,
min_samples_split=2,
bootstrap=True,
class_weight='balanced', #{0:1, 1:1, 2:1, 3:1, 4:1, 5:2},
random_state=42
)
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
print(f"cross validation: {scores}")
print(f"cross validation accuracy: {scores.mean():.2f}")
# 5. Train the model
model.fit(X_train, y_train)
# 6. Make predictions
y_pred = model.predict(X_test)
# 7. Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f'accuracy: {accuracy * 100:.2f}%')
print('report:')
print(classification_report(y_test, y_pred, zero_division=0))
y_pred_proba = model.predict_proba(X_test) # Predict probabilities for all classes
auc_score = roc_auc_score(y_test, y_pred_proba, multi_class='ovr', average='macro')
print(f"AUC Score: {auc_score}")
print(data['classification'].value_counts())
model.fit(X_train, y_train)
feature_importances = model.feature_importances_
print(f"feature importance: {feature_importances}")