-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_hand.py
598 lines (504 loc) · 24.9 KB
/
train_hand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import logging
import os
import IPython
import yaml
import time
import shutil
import torch
import random
import numpy as np
import torch.nn as nn
from torch.nn.modules.batchnorm import _BatchNorm
from torch.utils import data
from tqdm import tqdm
from ptsemseg.models import get_model
from ptsemseg.loss import get_loss_function
from ptsemseg.loader import get_loader
from ptsemseg.utils import get_logger
from ptsemseg.metrics import runningScore, averageMeter
from ptsemseg.augmentations import get_composed_augmentations
from ptsemseg.schedulers import get_scheduler
from ptsemseg.optimizers import get_optimizer
from tensorboardX import SummaryWriter
from ptsemseg.models.utils import MergeParametric
from utils import train_parser, validate_parser, RNG_SEED
from validate import validate, wrap_str
from ptsemseg.models.sync_batchnorm.replicate import patch_replication_callback
def best_model_path(cfg):
return "{}_{}_best_model.pkl".format(
cfg['model']['arch'],
cfg['data']['dataset'])
def overwrite(cfg, args):
if args.scale_weight > 0.:
cfg['training']['loss']['scale_weight'] = args.scale_weight
if args.model != "":
cfg['model']['arch'] = args.model
# update the model parameters in this config.
cfg['model']['initial'] = args.initial
cfg['model']['steps'] = args.steps
cfg['model']['gate'] = args.gate
cfg['model']['hidden_size'] = args.hidden_size
cfg['model']['feature_scale'] = args.feature_scale
if args.batch_size != 0:
cfg['training']['batch_size'] = args.batch_size
if args.lr_n != 0:
cfg['training']['optimizer']['lr'] = args.lr_n*1.0/(10**args.lr_exponent)
# These two only operates on R-UNet.
if cfg['model']['arch'] == "runet":
cfg['model']['unet_level'] = args.unet_level
cfg['model']['recurrent_level'] = args.recurrent_level
cfg['training']['prefix'] = args.prefix
""" Change the valid steps, if baseline model """
if args.prefix == 'baseline':
cfg['training']['val_interval'] = 6000
cfg['training']['print_interval'] = 500
if args.prefix == 'benchmark':
cfg['training']['val_internal'] = 10
cfg['training']['train_internal'] = 11
cfg['training']['print_interval'] = 10
cfg['training']['loss']['name'] = args.loss
if args.loss == 'cross_entropy':
del cfg['training']['loss']['scale_weight']
# manipulate learning rate
args.lr = float(args.lr)
cfg['training']['optimizer']['lr'] = float(cfg['training']['optimizer']['lr'])
print("args.lr is {}".format(args.lr))
if 1 > float(args.lr) > 0:
# Only override if lr is given positive value from (0,1)
cfg['training']['optimizer']['lr'] = args.lr
# Over write the void class
if not cfg['data'].get('void_class'):
cfg['data']['void_class'] = -1
return cfg
def load_cfg_with_overwrite(args):
# Overwrite the figure.
with open(args.config) as fp:
cfg = yaml.load(fp)
cfg = overwrite(cfg, args)
cfg['run_id'] = run_id = random.randint(1, 100000)
config_name = os.path.basename(args.config)[:-4]
config_name = args.model + '_' + config_name if len(args.model) > 0 else config_name
if use_grad_clip(cfg['model']['arch']) and cfg['model']['arch'] != 'unet':
logdir = os.path.join('runs', cfg['data']['dataset'], cfg['training']['prefix'],
'{}-h{}-{}-r{}-w-{}-gate{}-bs-{}-fscale-{}'.format(
config_name,
args.hidden_size,
args.initial,
args.steps,
cfg['training']['loss']['scale_weight'],
args.gate,
args.batch_size,
args.feature_scale,
),
str(run_id))
if cfg['model']['arch'] in ['vanillarnnunet', 'unethidden', 'vanillarnnunetr']:
logdir = os.path.join('runs', cfg['data']['dataset'], cfg['training']['prefix'],
'{}-h{}-w-{}-bs-{}-fscale-{}'.format(
config_name,
args.initial,
cfg['training']['loss']['scale_weight'],
args.batch_size,
args.feature_scale,
),
str(run_id))
elif cfg['model']['arch'] in ['unet', 'unet_expand', 'unet_expand_all', 'unetbnslim', 'unetgnslim',
'unet_deep_as_dru', 'deeplabv3', 'icnet']:
logdir = os.path.join('runs', cfg['data']['dataset'], cfg['training']['prefix'],
'{}-bs-{}-fscale-{}'.format(
config_name,
args.batch_size,
args.feature_scale,
),
str(run_id))
elif cfg['model']['arch'] in ['unetvgg11', 'unetvgg16', 'unetvgg16gn', 'unetresnet50', 'unetresnet50bn']:
logdir = os.path.join('runs', cfg['data']['dataset'], cfg['training']['prefix'],
'{}-bs-{}'.format(
config_name,
args.batch_size,
),
str(run_id))
else:
logdir = os.path.join('runs', cfg['data']['dataset'], cfg['training']['prefix'],
'{}-h{}-{}-r{}-gate{}-bs-{}-fscale-{}'.format(
config_name,
args.hidden_size,
args.initial,
args.steps,
args.gate,
args.batch_size,
args.feature_scale,
),
str(run_id))
cfg['config'] = config_name
cfg['logdir'] = logdir
# update the resume accordingly
cfg['training']['resume'] = best_model_path(cfg)
# with open(os.path.join(logdir, 'config.yaml'), 'w') as fp:
# yaml.dump(cfg, fp, default_flow_style=False)
return cfg
def use_grad_clip(name):
if 'rcnn' in name:
return True
if 'runet' in name:
return True
# if "gruunetnew" == name:
# return True
if "gruunet" in name:
return True
if "NoParamShare" in name:
return True
if "rnnunet" in name:
return True
if "rec" in name:
return True
if "dru" in name:
return True
if "sru" in name:
return True
return False
def weights_init(m):
if isinstance(m, MergeParametric):
logger.info('initializing merge layer ...')
pass
elif isinstance(m, nn.Conv2d):
logger.warning(f'initializing {m}')
nn.init.kaiming_normal_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.ConvTranspose2d):
logger.warning(f'initializing {m}')
nn.init.kaiming_normal_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias)
def init_model(model):
for m in model.paramGroup2.modules():
if isinstance(m, nn.GroupNorm) or isinstance(m, _BatchNorm):
logger.warning(f'initializing {m}')
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
else:
weights_init(m)
# for name, param in model.named_parameters():
# if 'encoder' in name:
# print('ignoring pre-trained layer ', name)
# pass
# else:
# print('initializing layer ', name)
# if 'weight' in name:
# nn.init.kaiming_normal_(param.data)
# elif 'bias' in name:
# nn.init.zeros_(param.data)
# else:
# print('error in init ... find this layer ', name)
def train(cfg, writer, logger, args):
# Setup seeds
torch.manual_seed(cfg.get('seed', RNG_SEED))
torch.cuda.manual_seed(cfg.get('seed', RNG_SEED))
np.random.seed(cfg.get('seed', RNG_SEED))
random.seed(cfg.get('seed', RNG_SEED))
# Setup device
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device(args.device)
# Setup Augmentations
# augmentations = cfg['training'].get('augmentations', None)
if cfg['data']['dataset'] in ['cityscapes']:
augmentations = cfg['training'].get('augmentations',
{'brightness': 63. / 255.,
'saturation': 0.5,
'contrast': 0.8,
'hflip': 0.5,
'rotate': 10,
'rscalecropsquare': 704, # 640, # 672, # 704,
})
elif cfg['data']['dataset'] in ['drive']:
augmentations = cfg['training'].get('augmentations',
{'brightness': 63. / 255.,
'saturation': 0.5,
'contrast': 0.8,
'hflip': 0.5,
'rotate': 180,
'rscalecropsquare': 576,
})
# augmentations = cfg['training'].get('augmentations',
# {'rotate': 10, 'hflip': 0.5, 'rscalecrop': 512, 'gaussian': 0.5})
else:
augmentations = cfg['training'].get('augmentations', {'rotate': 10, 'hflip': 0.5})
data_aug = get_composed_augmentations(augmentations)
# Setup Dataloader
data_loader = get_loader(cfg['data']['dataset'])
data_path = cfg['data']['path']
t_loader = data_loader(
data_path,
is_transform=True,
split=cfg['data']['train_split'],
img_size=(cfg['data']['img_rows'], cfg['data']['img_cols']),
augmentations=data_aug)
v_loader = data_loader(
data_path,
is_transform=True,
split=cfg['data']['val_split'],
img_size=(cfg['data']['img_rows'], cfg['data']['img_cols']),)
n_classes = t_loader.n_classes
trainloader = data.DataLoader(t_loader,
batch_size=cfg['training']['batch_size'],
num_workers=cfg['training']['n_workers'],
shuffle=True)
valloader = data.DataLoader(v_loader,
batch_size=cfg['training']['batch_size'],
num_workers=cfg['training']['n_workers'])
# Setup Metrics
running_metrics_val = runningScore(n_classes, cfg['data']['void_class'] > 0)
# Setup Model
print('trying device {}'.format(device))
model = get_model(cfg['model'], n_classes, args) # .to(device)
if cfg['model']['arch'] not in ['unetvgg16', 'unetvgg16gn', 'druvgg16', 'unetresnet50', 'unetresnet50bn',
'druresnet50', 'druresnet50bn', 'druresnet50syncedbn']:
model.apply(weights_init)
else:
init_model(model)
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
# if cfg['model']['arch'] in ['druresnet50syncedbn']:
# print('using synchronized batch normalization')
# time.sleep(5)
# patch_replication_callback(model)
model = model.cuda()
# model = torch.nn.DataParallel(model, device_ids=(3, 2))
# Setup optimizer, lr_scheduler and loss function
optimizer_cls = get_optimizer(cfg)
optimizer_params = {k:v for k, v in cfg['training']['optimizer'].items()
if k != 'name'}
if cfg['model']['arch'] in ['unetvgg16', 'unetvgg16gn', 'druvgg16', 'druresnet50', 'druresnet50bn', 'druresnet50syncedbn']:
optimizer = optimizer_cls([
{'params': model.module.paramGroup1.parameters(), 'lr': optimizer_params['lr'] / 10},
{'params': model.module.paramGroup2.parameters()}
], **optimizer_params)
else:
optimizer = optimizer_cls(model.parameters(), **optimizer_params)
logger.warning(f"Model parameters in total: {sum([p.numel() for p in model.parameters()])}")
logger.warning(f"Trainable parameters in total: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
logger.info("Using optimizer {}".format(optimizer))
scheduler = get_scheduler(optimizer, cfg['training']['lr_schedule'])
loss_fn = get_loss_function(cfg)
logger.info("Using loss {}".format(loss_fn))
start_iter = 0
if cfg['training']['resume'] is not None:
if os.path.isfile(cfg['training']['resume']):
logger.info(
"Loading model and optimizer from checkpoint '{}'".format(cfg['training']['resume'])
)
checkpoint = torch.load(cfg['training']['resume'])
model.load_state_dict(checkpoint["model_state"])
optimizer.load_state_dict(checkpoint["optimizer_state"])
scheduler.load_state_dict(checkpoint["scheduler_state"])
start_iter = checkpoint["epoch"]
logger.info(
"Loaded checkpoint '{}' (iter {})".format(
cfg['training']['resume'], checkpoint["epoch"]
)
)
else:
logger.info("No checkpoint found at '{}'".format(cfg['training']['resume']))
val_loss_meter = averageMeter()
time_meter = averageMeter()
best_iou = -100.0
i = start_iter
flag = True
weight = torch.ones(n_classes)
if cfg['data'].get('void_class'):
if cfg['data'].get('void_class') >= 0:
weight[cfg['data'].get('void_class')] = 0.
weight = weight.to(device)
logger.info("Set the prediction weights as {}".format(weight))
while i <= cfg['training']['train_iters'] and flag:
for (images, labels) in trainloader:
i += 1
start_ts = time.time()
scheduler.step()
model.train()
# for param_group in optimizer.param_groups:
# print(param_group['lr'])
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
if cfg['model']['arch'] in ['reclast']:
h0 = torch.ones([images.shape[0], args.hidden_size, images.shape[2], images.shape[3]],
dtype=torch.float32)
h0.to(device)
outputs = model(images, h0)
elif cfg['model']['arch'] in ['recmid']:
W, H = images.shape[2], images.shape[3]
w = int(np.floor(np.floor(np.floor(W/2)/2)/2)/2)
h = int(np.floor(np.floor(np.floor(H/2)/2)/2)/2)
h0 = torch.ones([images.shape[0], args.hidden_size, w, h],
dtype=torch.float32)
h0.to(device)
outputs = model(images, h0)
elif cfg['model']['arch'] in ['dru', 'sru']:
W, H = images.shape[2], images.shape[3]
w = int(np.floor(np.floor(np.floor(W/2)/2)/2)/2)
h = int(np.floor(np.floor(np.floor(H/2)/2)/2)/2)
h0 = torch.ones([images.shape[0], args.hidden_size, w, h],
dtype=torch.float32)
h0.to(device)
s0 = torch.ones([images.shape[0], n_classes, W, H],
dtype=torch.float32)
s0.to(device)
outputs = model(images, h0, s0)
elif cfg['model']['arch'] in ['druvgg16', 'druresnet50', 'druresnet50bn', 'druresnet50syncedbn']:
W, H = images.shape[2], images.shape[3]
w, h = int(W / 2 ** 4), int(H / 2 ** 4)
if cfg['model']['arch'] in ['druresnet50', 'druresnet50bn', 'druresnet50syncedbn']:
w, h = int(W / 2 ** 5), int(H / 2 ** 5)
h0 = torch.ones([images.shape[0], args.hidden_size, w, h],
dtype=torch.float32, device=device)
s0 = torch.zeros([images.shape[0], n_classes, W, H],
dtype=torch.float32, device=device)
outputs = model(images, h0, s0)
else:
outputs = model(images)
loss = loss_fn(input=outputs, target=labels, weight=weight, bkargs=args)
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
# if use_grad_clip(cfg['model']['arch']): #
# if cfg['model']['arch'] in ['rcnn', 'rcnn2', 'rcnn3']: #
if use_grad_clip(cfg['model']['arch']):
nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
time_meter.update(time.time() - start_ts)
if (i + 1) % cfg['training']['print_interval'] == 0:
fmt_str = "Iter [{:d}/{:d}] Loss: {:.4f} Time/Image: {:.4f}"
print_str = fmt_str.format(i + 1,
cfg['training']['train_iters'],
loss.item(),
time_meter.avg / cfg['training']['batch_size'])
# print(print_str)
logger.info(print_str)
writer.add_scalar('loss/train_loss', loss.item(), i+1)
time_meter.reset()
if (i + 1) % cfg['training']['val_interval'] == 0 or \
(i + 1) == cfg['training']['train_iters']:
torch.backends.cudnn.benchmark = False
model.eval()
with torch.no_grad():
for i_val, (images_val, labels_val) in tqdm(enumerate(valloader)):
if args.benchmark:
if i_val > 10:
break
images_val = images_val.to(device)
labels_val = labels_val.to(device)
if cfg['model']['arch'] in ['reclast']:
h0 = torch.ones([images_val.shape[0], args.hidden_size, images_val.shape[2], images_val.shape[3]],
dtype=torch.float32)
h0.to(device)
outputs = model(images_val, h0)
elif cfg['model']['arch'] in ['recmid']:
W, H = images_val.shape[2], images_val.shape[3]
w = int(np.floor(np.floor(np.floor(W / 2) / 2) / 2) / 2)
h = int(np.floor(np.floor(np.floor(H / 2) / 2) / 2) / 2)
h0 = torch.ones([images_val.shape[0], args.hidden_size, w, h],
dtype=torch.float32)
h0.to(device)
outputs = model(images_val, h0)
elif cfg['model']['arch'] in ['dru', 'sru']:
W, H = images_val.shape[2], images_val.shape[3]
w = int(np.floor(np.floor(np.floor(W / 2) / 2) / 2) / 2)
h = int(np.floor(np.floor(np.floor(H / 2) / 2) / 2) / 2)
h0 = torch.ones([images_val.shape[0], args.hidden_size, w, h],
dtype=torch.float32)
h0.to(device)
s0 = torch.ones([images_val.shape[0], n_classes, W, H],
dtype=torch.float32)
s0.to(device)
outputs = model(images_val, h0, s0)
elif cfg['model']['arch'] in ['druvgg16', 'druresnet50', 'druresnet50bn', 'druresnet50syncedbn']:
W, H = images_val.shape[2], images_val.shape[3]
w, h = int(W / 2**4), int(H / 2**4)
if cfg['model']['arch'] in ['druresnet50', 'druresnet50bn', 'druresnet50syncedbn']:
w, h = int(W / 2 ** 5), int(H / 2 ** 5)
h0 = torch.ones([images_val.shape[0], args.hidden_size, w, h],
dtype=torch.float32)
h0.to(device)
s0 = torch.zeros([images_val.shape[0], n_classes, W, H],
dtype=torch.float32)
s0.to(device)
outputs = model(images_val, h0, s0)
else:
outputs = model(images_val)
val_loss = loss_fn(input=outputs, target=labels_val, bkargs=args)
if cfg['training']['loss']['name'] in ['multi_step_cross_entropy']:
pred = outputs[-1].data.max(1)[1].cpu().numpy()
else:
pred = outputs.data.max(1)[1].cpu().numpy()
gt = labels_val.data.cpu().numpy()
logger.debug('pred shape: ', pred.shape, '\t ground-truth shape:',gt.shape)
# IPython.embed()
running_metrics_val.update(gt, pred)
val_loss_meter.update(val_loss.item())
# assert i_val > 0, "Validation dataset is empty for no reason."
torch.backends.cudnn.benchmark = True
writer.add_scalar('loss/val_loss', val_loss_meter.avg, i+1)
logger.info("Iter %d Loss: %.4f" % (i + 1, val_loss_meter.avg))
# IPython.embed()
score, class_iou, _ = running_metrics_val.get_scores()
for k, v in score.items():
# print(k, v)
logger.info('{}: {}'.format(k, v))
writer.add_scalar('val_metrics/{}'.format(k), v, i+1)
for k, v in class_iou.items():
logger.info('{}: {}'.format(k, v))
writer.add_scalar('val_metrics/cls_{}'.format(k), v, i+1)
val_loss_meter.reset()
running_metrics_val.reset()
if score["Mean IoU : \t"] >= best_iou:
best_iou = score["Mean IoU : \t"]
state = {
"epoch": i + 1,
"model_state": model.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict(),
"best_iou": best_iou,
}
save_path = os.path.join(writer.file_writer.get_logdir(),
best_model_path(cfg))
torch.save(state, save_path)
if (i + 1) == cfg['training']['train_iters']:
flag = False
save_path = os.path.join(writer.file_writer.get_logdir(),
"{}_{}_final_model.pkl".format(
cfg['model']['arch'],
cfg['data']['dataset']))
torch.save(state, save_path)
break
if __name__ == "__main__":
parser = train_parser()
args = parser.parse_args()
cfg = load_cfg_with_overwrite(args)
run_id = cfg['run_id']
logdir = cfg['logdir']
writer = SummaryWriter(log_dir=logdir)
with open(os.path.join(logdir, 'config.yaml'), 'w') as fp:
yaml.dump(cfg, fp, default_flow_style=False)
print('RUNDIR: {}'.format(logdir))
# Write the config file to logdir
# shutil.copy(args.config, logdir)
logger = get_logger(logdir, level=logging.WARN if args.prefix == 'benchmark' else logging.INFO)
logger.info('Let the games begin')
try:
train(cfg, writer, logger, args)
# except (RuntimeError, KeyboardInterrupt) as e:
except (KeyboardInterrupt) as e:
logger.error(e)
logger.info("\nValidate the training result...")
valid_parser = validate_parser(parser)
valid_args = valid_parser.parse_args()
# set the model path.
# valid_args.steps = 3
if args.prefix == 'benchmark':
valid_args.benchmark = True
valid_args.model_path = os.path.join(cfg['logdir'], best_model_path(cfg))
validate(cfg, valid_args)
# --config=configs/dataset/eythhand.yml --model=unetvgg16 --lr=1e-8 /
# --batch_size=8 --structure=unetvgg16 --loss=cross_entropy --prefix=iccvablation
# python train_hand.py --config=configs/dataset/eythhand.yml --model=unetvgg16gn --lr=1e-8 /
# --batch_size=8 --structure=unetvgg16gn --loss=cross_entropy --prefix=iccvablation
# --config=configs/dataset/eythhand.yml --model=unetresnet50 --lr=1e-8 --batch_size=8 --structure=unetresnet50 --loss=cross_entropy --prefix=iccvablation