-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
84 lines (64 loc) · 2.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import datetime as dt
import os
from keras.callbacks import CSVLogger, ModelCheckpoint
import modelfactory
import datagen
# save_root_dir = '/tmp'
save_root_dir = '/data/keisuke.nakata/rwa'
def seq_length(rwa):
units = 250
batch_size = 1
model = modelfactory.build_seq_length_model(units=units, batch_size=batch_size, rwa=rwa)
model.summary()
train_sequence_length_datagen = datagen.generate_sequence_length_data(batch_size=batch_size, max_length=1000, random_generator=0)
valid_sequence_length_datagen = datagen.generate_sequence_length_data(batch_size=batch_size, max_length=1000, random_generator=0)
now = dt.datetime.now().strftime('%Y%m%d_%H%M%S')
dirname = 'seq_length/{}'.format(now)
if not rwa:
dirname = 'lstm_' + dirname
save_dir = os.path.join(save_root_dir, dirname)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
csv_logger = CSVLogger(os.path.join(save_dir, 'log.csv'))
checkpoint_path = os.path.join(save_dir, 'weights.{epoch:02d}-{val_loss:.4f}-{val_acc:.4f}.hdf5')
model_checkpoint = ModelCheckpoint(filepath=checkpoint_path, verbose=1, save_best_only=True)
callbacks = [csv_logger, model_checkpoint]
model.fit_generator(
generator=train_sequence_length_datagen,
steps_per_epoch=10 * 100,
epochs=99,
callbacks=callbacks,
validation_data=valid_sequence_length_datagen,
validation_steps=100)
def addition(length, rwa):
units = 250
batch_size = 100
model = modelfactory.build_addition_model(units=units, batch_size=batch_size, rwa=rwa)
model.summary()
train_addition_datagen = datagen.generate_adding_data(batch_size=batch_size, length=length, random_generator=0)
valid_addition_datagen = datagen.generate_adding_data(batch_size=batch_size, length=length, random_generator=0)
now = dt.datetime.now().strftime('%Y%m%d_%H%M%S')
dirname = 'addition_length{}/{}'.format(length, now)
if not rwa:
dirname = 'lstm_' + dirname
save_dir = os.path.join(save_root_dir, dirname)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
csv_logger = CSVLogger(os.path.join(save_dir, 'log.csv'))
checkpoint_path = os.path.join(save_dir, 'weights.{epoch:02d}-{val_loss:.4f}.hdf5')
model_checkpoint = ModelCheckpoint(filepath=checkpoint_path, verbose=1, save_best_only=True)
callbacks = [csv_logger, model_checkpoint]
model.fit_generator(
generator=train_addition_datagen,
steps_per_epoch=100,
epochs=99,
callbacks=callbacks,
validation_data=valid_addition_datagen,
validation_steps=1)
if __name__ == '__main__':
# seq_length()
# addition(length=100)
# addition(length=1000)
seq_length(rwa=False)
# addition(length=100, rwa=False)
# addition(length=1000, rwa=False)