diff --git a/.gitignore b/.gitignore index 99efc91d..57a17123 100644 --- a/.gitignore +++ b/.gitignore @@ -128,3 +128,27 @@ dmypy.json # Pyre type checker .pyre/ .DS_Store + +# Checkpoints (too heavy to upload them all) +checkpoints/agnostic_all_modes/seed_13/ +checkpoints/agnostic_all_modes/seed_23/ +checkpoints/agnostic_all_modes/seed_398/ +checkpoints/agnostic_all_modes/seed_447/ +checkpoints/contact_maps/seed_13/ +checkpoints/contact_maps/seed_23/ +checkpoints/contact_maps/seed_398/ +checkpoints/contact_maps/seed_447/ +checkpoints/contact_maps/seed_917/ +checkpoints/full_ags_all_modes/seed_13/ +checkpoints/full_ags_all_modes/seed_23/ +checkpoints/full_ags_all_modes/seed_398/ +checkpoints/full_ags_all_modes/seed_447/ +checkpoints/full_ags_all_modes/seed_917/ + +# Data not used +data/contact_maps_explorer/ +data/contact_maps_with_antigen_explorer/ +notebooks/biological_properties/ + +# Raw notebooks +notebooks/explainability_raw.ipynb \ No newline at end of file diff --git a/AUTHORS.md b/AUTHORS.md index e52cd86d..b9ff0912 100644 --- a/AUTHORS.md +++ b/AUTHORS.md @@ -8,5 +8,5 @@ Core developer: Supervisors: -- Barbara Bravi [[Website](https://www.imperial.ac.uk/people/b.bravi21)|[Github](https://github.com/bravib)|[Email](mailto:b.bravi21@imperial.ac.uk?subject=[GitHub]%20ANTIPASTI)] -- Mauricio Barahona [[Website](https://www.imperial.ac.uk/people/m.barahona/)|[Github](https://github.com/mauriciobarahona)|[Email](mailto:m.barahona@imperial.ac.uk?subject=[GitHub]%20ANTIPASTI)] \ No newline at end of file +- Mauricio Barahona [[Website](https://www.imperial.ac.uk/people/m.barahona/)|[Github](https://github.com/mauriciobarahona)|[Email](mailto:m.barahona@imperial.ac.uk?subject=[GitHub]%20ANTIPASTI)] +- Barbara Bravi [[Website](https://www.imperial.ac.uk/people/b.bravi21)|[Github](https://github.com/bravib)|[Email](mailto:b.bravi21@imperial.ac.uk?subject=[GitHub]%20ANTIPASTI)] \ No newline at end of file diff --git a/README.md b/README.md index f426cfbe..a80f1b36 100644 --- a/README.md +++ b/README.md @@ -43,9 +43,11 @@ python setup.py install --user ANTIPASTI requires the following Python packages: * `adabelief-pytorch` +* `biopython` * `matplotlib` * `numpy` * `opencv-python` +* `optuna` * `pandas` * `scikit-learn` * `torch` diff --git a/antipasti-env.yml b/antipasti-env.yml index 23778ae0..980f5026 100644 --- a/antipasti-env.yml +++ b/antipasti-env.yml @@ -16,5 +16,7 @@ dependencies: - pip: - adabelief-pytorch>=0.2.1 - beautifulsoup4>=4.12.2 + - biopython>=1.79 - opencv-python>=4.7.0.68 + - optuna>=3.1.1 - torch>=1.13.1 \ No newline at end of file diff --git a/antipasti/model/model.py b/antipasti/model/model.py index e39516ce..ab808ad2 100644 --- a/antipasti/model/model.py +++ b/antipasti/model/model.py @@ -22,6 +22,10 @@ class ANTIPASTI(Module): Size of the max pooling operation. input_shape: int Shape of the normal mode correlation maps. + l1_lambda: float + Weight of L1 regularisation. + mode: str + To use the full model, provide ``full``. Otherwise, ANTIPASTI corresponds to a linear classifier. """ def __init__( @@ -31,27 +35,27 @@ def __init__( pooling_size=1, input_shape=281, l1_lambda=0.002, + mode='full', ): super(ANTIPASTI, self).__init__() self.n_filters = n_filters self.filter_size = filter_size self.pooling_size = pooling_size self.input_shape = input_shape - self.fully_connected_input = n_filters * ((input_shape-filter_size+1)//pooling_size) ** 2 - self.conv1 = Conv2d(1, n_filters, filter_size) - #self.conv1_bn = torch.nn.BatchNorm2d(n_filters) - #torch.nn.init.normal_(self.conv1.weight, mean=0.0, std=1/input_shape) - #torch.nn.init.constant_(self.conv1.bias, 0) - self.pool = MaxPool2d(pooling_size, pooling_size) - self.dropit = Dropout(p=0.05) - self.relu = ReLU() + self.mode = mode + if self.mode == 'full': + self.fully_connected_input = n_filters * ((input_shape-filter_size+1)//pooling_size) ** 2 + self.conv1 = Conv2d(1, n_filters, filter_size) + self.pool = MaxPool2d(pooling_size, pooling_size) + #self.dropit = Dropout(p=0.05) + self.relu = ReLU() + else: + self.fully_connected_input = self.input_shape ** 2 self.fc1 = Linear(self.fully_connected_input, 1, bias=False) - #self.fc1_bn = torch.nn.BatchNorm1d(self.fully_connected_input) - #torch.nn.init.normal_(self.fc1.weight, mean=0.0, std=1/np.sqrt(self.fully_connected_input)) - #self.fc2 = Linear(self.fully_connected_input, 1, bias=False) + #self.fc2 = Linear(4, 1, bias=False) self.l1_lambda = l1_lambda - def forward(self, input): + def forward(self, x): r"""Model's forward pass. Returns @@ -62,24 +66,16 @@ def forward(self, input): Filters before the fully-connected layer. """ - #if torch.numel(torch.nonzero(input[0,0,-80:,-80:])) == 0: - # x = self.conv2(input) + torch.transpose(self.conv2(input), 2, 3) - #else: - # x = self.conv1(input) + torch.transpose(self.conv1(input), 2, 3) - x = self.conv1(input) + torch.transpose(self.conv1(input), 2, 3) - #x = self.conv1_bn(x) - x = self.relu(x) - x = self.pool(x) - inter = x + inter = x + if self.mode == 'full': + x = self.conv1(x) + torch.transpose(self.conv1(x), 2, 3) + x = self.relu(x) + inter = x = self.pool(x) x = x.view(x.size(0), -1) - x = self.dropit(x) - #if torch.numel(torch.nonzero(input[0,0,-80:,-80:])) == 0: - # x = self.fc2(x) - # print('nano') - #else: - # x = self.fc1(x) - # print('paired') + #if self.mode == 'full': + # x = self.dropit(x) x = self.fc1(x) + #x = self.fc2(x) return x.float(), inter diff --git a/antipasti/preprocessing/preprocessing.py b/antipasti/preprocessing/preprocessing.py index bdaea934..69610396 100644 --- a/antipasti/preprocessing/preprocessing.py +++ b/antipasti/preprocessing/preprocessing.py @@ -40,8 +40,6 @@ class Preprocessing(object): Filename extension of input structures. selection: str Considered portion of antibody chains. - regions: str - Choose between ``paired_hl`` (heavy chain, light chain and their interactions) and ``heavy`` (heavy chain only). pathological: list PDB identifiers of antibodies that need to be excluded. renew_maps: bool @@ -82,11 +80,14 @@ def __init__( dccm_map_path='dccm_maps/', residues_path='lists_of_residues/', file_type_input='.pdb', - selection='_CDR1_to_CDR3', - regions='paired_hl', + selection='_fv', pathological=None, renew_maps=False, renew_residues=False, + cmaps=False, + cmaps_thr=8.0, + ag_agnostic=False, + affinity_entries_only=True, mode='fully-extended', stage='training', test_data_path=None, @@ -97,22 +98,29 @@ def __init__( alphafold=False, h_offset=0, l_offset=0, + ag_residues=0, ): self.data_path = data_path self.scripts_path = scripts_path self.structures_path = structures_path - self.regions = regions - self.chain_lengths_path = data_path + self.regions + '/' + chain_lengths_path - self.dccm_map_path = data_path + self.regions + '/' + dccm_map_path - self.residues_path = data_path + self.regions + '/' + residues_path + self.chain_lengths_path = data_path + chain_lengths_path + self.dccm_map_path = data_path + dccm_map_path + self.residues_path = data_path + residues_path self.modes = modes self.file_type_input = file_type_input self.selection = selection self.pathological = pathological + self.cmaps = cmaps + self.cmaps_thr = cmaps_thr + self.ag_agnostic = ag_agnostic + self.affinity_entries_only = affinity_entries_only self.mode = mode self.stage = 'training' self.file_residues_paths = sorted(glob.glob(os.path.join(self.residues_path, '*.npy'))) self.alphafold = alphafold + self.h_offset = h_offset + self.l_offset = l_offset + self.ag_residues = ag_residues self.df_path = data_path + df self.entries, self.affinity, self.df = self.clean_df() @@ -123,10 +131,8 @@ def __init__( if self.stage != 'training': self.test_data_path = test_data_path - self.h_offset = h_offset - self.l_offset = l_offset - self.test_dccm_map_path = self.test_data_path + self.regions + '/' + test_dccm_map_path - self.test_residues_path = self.test_data_path + self.regions + '/' + test_residues_path + self.test_dccm_map_path = self.test_data_path + test_dccm_map_path + self.test_residues_path = self.test_data_path + test_residues_path self.test_structure_path = self.test_data_path + test_structure_path self.test_pdb_id = test_pdb_id self.test_x = self.load_test_image() @@ -148,13 +154,15 @@ def clean_df(self): df = pd.read_csv(self.df_path, sep='\t', header=0)[['pdb', 'antigen_type', 'affinity']] df.drop_duplicates(keep='first', subset='pdb', inplace=True) + df['pdb'] = df['pdb'].str.lower().str.replace('+', '') # lowercase and remove '+' signs of scientific notation df = df[(df.antigen_type.notna()) & (df.antigen_type != 'NA')][['pdb', 'affinity']] - df = df[(df.affinity.notna()) & (df.affinity != 'None')] + if self.affinity_entries_only: + df = df[(df.affinity.notna()) & (df.affinity != 'None')] df = df[~df['pdb'].isin(self.pathological)] # Removing pathological cases return list(df['pdb']), list(df['affinity']), df - def generate_cdr1_to_cdr3_pdb(self, path, keepABC=True, lresidues=False, hupsymchain=None, lupsymchain=None): + def generate_fv_pdb(self, path, keepABC=True, lresidues=False, hupsymchain=None, lupsymchain=None): r"""Generates a new PDB file going from the beginning of the CDR1 until the end of the CDR3. Parameters @@ -181,8 +189,8 @@ def generate_cdr1_to_cdr3_pdb(self, path, keepABC=True, lresidues=False, hupsymc content = f.readlines() header_lines_important = range(4) header_lines = [content[i][0]=='R' for i in range(len(content))].count(True) - h_range = range(3, 113) - l_range = range(3, 107) + h_range = range(1, 114) + l_range = range(1, 108) start_chain = 21 chain_range = slice(start_chain, start_chain+1) res_range = slice(23, 26) @@ -193,32 +201,30 @@ def generate_cdr1_to_cdr3_pdb(self, path, keepABC=True, lresidues=False, hupsymc idx_list = list(header_lines_important) idx_list_l = [] idx_list_antigen = [] + antigen_chains = [] new_path = path[:-4] + self.selection + path[-4:] - # Getting the names of the heavy and antigen chains line = content[header_lines_important[-1]] if line.find(h_chain_key) != -1: h_pos = line.find(h_chain_key) + len(h_chain_key) + 1 h_chain = line[h_pos:h_pos+1] antigen_pos = line.find(antigen_chain_key) + len(antigen_chain_key) + 1 - antigen_chain = line[antigen_pos:antigen_pos+1] - if line[antigen_pos+1] == ',': - second_antigen_chain = line[antigen_pos+2] # If two interacting antigen chains present - else: - second_antigen_chain = None + antigen_chains.append(line[antigen_pos:antigen_pos+1]) + for i in range(3): + if line[antigen_pos+2*i+1] in [',', ';']: + antigen_chains.append(line[antigen_pos+2*i+2]) # If two (or more) interacting antigen chains present else: # useful when using AlphaFold h_chain = 'A' l_chain = 'B' - antigen_chain = 'C' - second_antigen_chain = 'D' + antigen_chains = ['C', 'D', 'E'] idx_list = [0] - h_range = range(3-self.h_offset, hupsymchain-self.h_offset) - l_range = range(3-self.l_offset, lupsymchain-self.l_offset) + h_range = range(2-self.h_offset, hupsymchain-self.h_offset) + l_range = range(2-self.l_offset, lupsymchain-self.l_offset) h_pos = start_chain l_pos = start_chain - - if line.find(l_chain_key) != -1 and self.regions == 'paired_hl': + + if line.find(l_chain_key) != -1: l_pos = line.find(l_chain_key) + len(l_chain_key) + 1 l_chain = line[l_pos:l_pos+1] elif self.alphafold is False: @@ -229,10 +235,29 @@ def generate_cdr1_to_cdr3_pdb(self, path, keepABC=True, lresidues=False, hupsymc pathologic = True h_chain = h_chain.upper() l_chain = h_chain.lower() + elif antigen_chains is not None and self.affinity_entries_only is False and (h_chain.upper() in antigen_chains or (l_chain is not None and l_chain.upper() in antigen_chains)): + pathologic = True + h_chain = h_chain.lower() + if l_chain is not None: + l_chain = l_chain.lower() else: pathologic = False - - # Obtaining the CDR1 to CDR3 lines for the heavy chain first + + # Checks for matching identifiers + if pathologic: + if 'X' not in antigen_chains: + new_hchain = 'X' + else: + new_hchain = 'W' + if 'Y' not in antigen_chains: + new_lchain = 'Y' + else: + new_lchain = 'Z' + else: + new_hchain = h_chain + new_lchain = l_chain + + # Obtaining lines for the heavy chain variable region first for i, line in enumerate(content[header_lines:]): if line[chain_range].find(h_chain) != -1 and int(line[res_range]) in h_range: if (line[res_extra_letter] == ' ' or keepABC == True) and line.find('HETATM') == -1: @@ -240,7 +265,7 @@ def generate_cdr1_to_cdr3_pdb(self, path, keepABC=True, lresidues=False, hupsymc if lresidues == True: full_res = line[res_range] + line[res_extra_letter] if pathologic: - full_res = 'A' + full_res + full_res = new_hchain + full_res else: full_res = line[chain_range] + full_res if full_res != list_residues[-1]: @@ -255,49 +280,26 @@ def generate_cdr1_to_cdr3_pdb(self, path, keepABC=True, lresidues=False, hupsymc if lresidues == True: full_res = line[res_range] + line[res_extra_letter] if pathologic: - full_res = 'B' + full_res + full_res = new_lchain + full_res else: full_res = line[chain_range] + full_res if full_res != list_residues[-1]: list_residues.append(full_res) - # Obtaining antigen + # Obtaining antigen(s) for i, line in enumerate(content[header_lines:]): - if line[chain_range].find(antigen_chain) != -1 and antigen_chain != h_chain and antigen_chain != l_chain: - idx_list_antigen.append(i+header_lines) - elif line[chain_range].find(antigen_chain) != -1 and line.find('HETATM') != -1: + if any(line[chain_range] in agc for agc in antigen_chains) and h_chain not in antigen_chains and l_chain not in antigen_chains: idx_list_antigen.append(i+header_lines) - # If second antigen chain present - if second_antigen_chain is not None: - for i, line in enumerate(content[header_lines:]): - if line[chain_range].find(second_antigen_chain) != -1: - idx_list_antigen.append(i+header_lines) - # List with name of every residue is saved if selected if lresidues == True: list_residues.append('END') saving_path = rpath + path[-8:-4] + '.npy' #if not os.path.exists(saving_path): np.save(saving_path, list_residues) - + # Creating new file with open(new_path, 'w') as f_new: - if pathologic: - #if antigen_chain != 'A': - # new_hchain = 'A' - #else: - # new_hchain = 'W' - #if antigen_chain != 'B': - # new_lchain = 'B' - #else: - # new_lchain = 'X' - new_hchain = 'A' - new_lchain = 'B' - else: - new_hchain = h_chain - new_lchain = l_chain - f_new.writelines([content[l] for l in idx_list[:header_lines_important[-1]]]) if l_chain is not None and self.alphafold is False: f_new.writelines([content[l][:h_pos]+new_hchain+content[l][h_pos+1:l_pos]+new_lchain+content[l][l_pos+1:] for l in idx_list[header_lines_important[-1]:header_lines_important[-1]+1]]) @@ -306,8 +308,11 @@ def generate_cdr1_to_cdr3_pdb(self, path, keepABC=True, lresidues=False, hupsymc f_new.writelines([content[l][:start_chain-5]+' '+content[l][start_chain-4:start_chain]+new_hchain+content[l][start_chain+1:] for l in idx_list[header_lines_important[-1]+1:]]) if l_chain is not None: f_new.writelines([content[l][:start_chain-5]+' '+content[l][start_chain-4:start_chain]+new_lchain+content[l][start_chain+1:] for l in idx_list_l]) - #f_new.writelines([content[l][:start_chain]+antigen_chain+content[l][start_chain+1:] for l in idx_list_antigen]) - + if not self.ag_agnostic: + f_new.writelines([content[l] for l in idx_list_antigen]) + if not self.cmaps: + f_new.writelines([content[l] for l in range(len(content)) if content[l][0:6] == 'HETATM' and content[l][chain_range] in [h_chain, l_chain] and l not in idx_list+idx_list_l+idx_list_antigen]) + def generate_maps(self): r"""Generates the normal mode correlation maps. @@ -316,9 +321,11 @@ def generate_maps(self): file_name = entry + self.selection path = self.structures_path + file_name + self.file_type_input new_path = self.dccm_map_path + entry - self.generate_cdr1_to_cdr3_pdb(self.structures_path+entry+self.file_type_input, lresidues=True) - subprocess.call(['/usr/local/bin/RScript '+str(self.scripts_path)+'pdb_to_dccm.r '+str(path)+' '+str(new_path)+' '+str(self.modes)], shell=True, stdout=open(os.devnull, 'wb')) - + self.generate_fv_pdb(self.structures_path+entry+self.file_type_input, lresidues=True) + if not self.cmaps: + subprocess.call(['/usr/local/bin/RScript', str(self.scripts_path)+'pdb_to_dccm.r', str(path), str(new_path), str(self.modes)], stdout=open(os.devnull, 'wb')) + else: + subprocess.call(['python', str(self.scripts_path)+'generate_contact_maps.py', str(path), str(new_path), str(self.cmaps_thr)], stdout=open(os.devnull, 'wb')) if os.path.exists(path): os.remove(path) @@ -442,10 +449,7 @@ def initialisation(self, renew_maps, renew_residues): assert list(np.load(self.chain_lengths_path+'selected_entries.npy')) == selected_entries for entry in selected_entries: - if self.regions == 'paired_hl': - assert len(np.load(self.residues_path+entry+'.npy'))-2 == heavy[selected_entries.index(entry)] + light[selected_entries.index(entry)] - else: - assert len(np.load(self.residues_path+entry+'.npy'))-2 == heavy[selected_entries.index(entry)] + assert len(np.load(self.residues_path+entry+'.npy'))-2 == heavy[selected_entries.index(entry)] + light[selected_entries.index(entry)] return heavy, light, selected_entries @@ -477,13 +481,13 @@ def generate_masked_image(self, img, idx, test_h=None, test_l=None): f = sorted(glob.glob(os.path.join(self.test_residues_path, '*'+self.test_pdb_id+'.npy')))[0] else: f = sorted(glob.glob(os.path.join(self.test_residues_path, '*'+self.test_pdb_id[:-3]+'.npy')))[0] # removing '_af' suffix - + antigen_max_pixels = self.ag_residues f_res = np.load(f) max_res_h = len(self.max_res_list_h) max_res_l = len(self.max_res_list_l) max_res = max_res_h + max_res_l - masked = np.zeros((max_res, max_res)) - mask = np.zeros((max_res, max_res)) + masked = np.zeros((max_res+antigen_max_pixels, max_res+antigen_max_pixels)) + mask = np.zeros((max_res+antigen_max_pixels, max_res+antigen_max_pixels)) if self.stage != 'training': h = test_h @@ -492,7 +496,6 @@ def generate_masked_image(self, img, idx, test_h=None, test_l=None): current_idx = self.selected_entries.index(f[-8:-4]) h = self.heavy[current_idx] l = self.light[current_idx] - current_list_h = f_res[1:h+1] current_list_h = [x[1:].strip() for x in current_list_h] @@ -504,11 +507,11 @@ def generate_masked_image(self, img, idx, test_h=None, test_l=None): idx_list += [i+len(current_list_h) for i in range(len(current_list_l)) if current_list_l[i] in self.min_res_list_l] masked = img[idx_list,:][:,idx_list] - - + elif self.mode == 'fully-extended': idx_list = [i for i in range(max_res_h) if self.max_res_list_h[i] in current_list_h] idx_list += [i+max_res_h for i in range(max_res_l) if self.max_res_list_l[i] in current_list_l] + #idx_list += [i+max_res_h+max_res_l for i in range(min(antigen_max_pixels, img.shape[-1]-(h+l)))] for k, i in enumerate(idx_list): for l, j in enumerate(idx_list): masked[i, j] = img[k, l] @@ -539,12 +542,13 @@ def load_training_images(self): labels.append(pdb_id) raw_imgs.append(raw_sample) imgs.append(self.generate_masked_image(raw_sample, idx_new)[0]) - kds.append(np.log10(np.float32(self.affinity[idx]))) + if self.affinity_entries_only: + kds.append(np.log10(np.float32(self.affinity[idx]))) assert labels == [item for item in self.selected_entries if item not in self.pathological] for pdb in self.selected_entries: - if pdb not in self.pathological: + if pdb not in self.pathological and self.affinity_entries_only: assert np.float16(10**kds[[item for item in self.selected_entries if item not in self.pathological].index(pdb)] == np.float16(self.df[self.df['pdb']==pdb]['affinity'])).all() return np.array(imgs), np.array(kds), labels, raw_imgs @@ -559,8 +563,8 @@ def load_test_image(self): h, l, _ = self.get_lists_of_lengths(selected_entries=str(pdb_id[:-3]).split()) h = h[0] l = l[0] - hupsymchain = 3 + h - lupsymchain = 3 + l + hupsymchain = 2 + h + lupsymchain = 2 + l lresidues = False else: hupsymchain = None @@ -572,7 +576,7 @@ def load_test_image(self): path = self.test_structure_path + file_name + self.file_type_input new_path = self.test_dccm_map_path + pdb_id - self.generate_cdr1_to_cdr3_pdb(self.test_structure_path+pdb_id+self.file_type_input, lresidues=lresidues, hupsymchain=hupsymchain, lupsymchain=lupsymchain) + self.generate_fv_pdb(self.test_structure_path+pdb_id+self.file_type_input, lresidues=lresidues, hupsymchain=hupsymchain, lupsymchain=lupsymchain) subprocess.call(['/usr/local/bin/RScript '+str(self.scripts_path)+'pdb_to_dccm.r '+str(path)+' '+str(new_path)+' '+str(self.modes)], shell=True, stdout=open(os.devnull, 'wb')) if os.path.exists(path): os.remove(path) diff --git a/antipasti/utils/biology_utils.py b/antipasti/utils/biology_utils.py index 45219f0c..4ccc4c19 100644 --- a/antipasti/utils/biology_utils.py +++ b/antipasti/utils/biology_utils.py @@ -2,6 +2,8 @@ import requests from bs4 import BeautifulSoup +from config import DATA_DIR + def get_types_of_residues(pdb_codes): r"""Returns lists of aromaticity, hydrophobicity, charge and polarity scores between 0 and 1. @@ -21,6 +23,7 @@ def get_types_of_residues(pdb_codes): polar_residues = ['N', 'Q', 'S', 'T'] for pdb_code in pdb_codes: + print(pdb_code) paratope = extract_paratope_epitope(pdb_code, 'Paratope') if paratope == '' or paratope[1] == '': aromaticity.append('unknown') @@ -30,10 +33,10 @@ def get_types_of_residues(pdb_codes): else: epitope = extract_paratope_epitope(pdb_code, 'Epitope') paratope_list = paratope[1].split() - aromaticity.append(len([residue for residue in paratope_list if residue in aromatic_residues])/len(paratope_list)) - hydrophobicity.append(len([residue for residue in paratope_list if residue in aliphatic_hydrophobic_residues])/len(paratope_list)) - charge.append(len([residue for residue in paratope_list if residue in charged_residues])/len(paratope_list)) - polarity.append(len([residue for residue in paratope_list if residue in polar_residues])/len(paratope_list)) + aromaticity.append(float(len([residue for residue in paratope_list if residue in aromatic_residues])/len(paratope_list))) + hydrophobicity.append(float(len([residue for residue in paratope_list if residue in aliphatic_hydrophobic_residues])/len(paratope_list))) + charge.append(float(len([residue for residue in paratope_list if residue in charged_residues])/len(paratope_list))) + polarity.append(float(len([residue for residue in paratope_list if residue in polar_residues])/len(paratope_list))) return aromaticity, hydrophobicity, charge, polarity @@ -66,84 +69,108 @@ def extract_paratope_epitope(pdb_code, region='Paratope'): return type_text, residues_text, res_chain_text else: return '' - -def get_cdr_lengths(pdb_codes): - r"""Returns lists with the lengths of the CDR-H1s, CDR-H2s, CDR-H3s, CDR-L1s, CDR-L2s and CDR-L3s. + +def extract_mean_region_lengths(pdb_codes, data_path=DATA_DIR): + r"""Retrieves the FR and CDR lengths of an antibody. Parameters ---------- - pdb_codes: list - The PDB codes of the antibodies. + pdb_code: str + The antibody PDB code. + data_path: str + Path to the data folder. """ - cdrl1_l = [] - cdrl2_l = [] - cdrl3_l = [] - cdrh1_l = [] - cdrh2_l = [] - cdrh3_l = [] + region_lengths = np.zeros((14)) for pdb_code in pdb_codes: - cdrl_parts, cdrh_parts = extract_cdr_lengths(pdb_code) + res_l = list(np.load(data_path+f'lists_of_residues/{pdb_code}.npy')) + h = res_l[1][0] + l = res_l[-2][0] - cdrl1_l.append(cdrl_parts[0]) - cdrl2_l.append(cdrl_parts[1]) - cdrl3_l.append(cdrl_parts[2]) - cdrh1_l.append(cdrh_parts[0]) - cdrh2_l.append(cdrh_parts[1]) - cdrh3_l.append(cdrh_parts[2]) + # Problems beginning CDR-H1 + if h+' 26 ' in res_l: + cdrh1_b = res_l.index(h+' 26 ') + elif h+' 27 ' in res_l: + cdrh1_b = res_l.index(h+' 27 ') + elif h+' 28 ' in res_l: + cdrh1_b = res_l.index(h+' 28 ') + elif h+' 29 ' in res_l: + cdrh1_b = res_l.index(h+' 29 ') + else: + cdrh1_b = res_l.index(h+' 30 ') + + # Problems beginning CDR-H2 + if h+' 52 ' in res_l: + cdrh2_b = res_l.index(h+' 52 ') + else: + cdrh2_b = res_l.index(h+' 53 ') + + # Beginning of FR1 (light chain) + cfr1l_b = res_l.index(next((item for item in res_l if item.startswith(l)), None)) + + # Problems beginning CDR-L2 + if l+' 50 ' in res_l: + cdrl2_b = res_l.index(l+' 50 ') + elif l+' 51 ' in res_l: + cdrl2_b = res_l.index(l+' 51 ') + elif pdb_code in ['4hkx', '5d70', '5d71']: + cdrl2_b = 0 + cdrl2_e = 0 + else: + cdrl2_b = res_l.index(l+' 52 ') + + # Problems end CDR-L2 + if l+' 57 ' in res_l: + cdrl2_e = res_l.index(l+' 57 ') + + frh_parts = [len(res_l[1:cdrh1_b]), len(res_l[res_l.index(h+' 33 '):cdrh2_b]), len(res_l[res_l.index(h+' 57 '):res_l.index(h+' 95 ')]), len(res_l[res_l.index(h+'103 '):cfr1l_b])] + cdrh_parts = [len(res_l[cdrh1_b:res_l.index(h+' 33 ')]), len(res_l[cdrh2_b:res_l.index(h+' 57 ')]), len(res_l[res_l.index(h+' 95 '):res_l.index(h+'103 ')])] + if l != h: + cdrl_parts = [len(res_l[res_l.index(l+' 24 '):res_l.index(l+ ' 35 ')]), len(res_l[cdrl2_b:cdrl2_e]), len(res_l[res_l.index(l+' 89 '):res_l.index(l+ ' 98 ')])] + frl_parts = [len(res_l[cfr1l_b:res_l.index(l+' 24 ')]), len(res_l[res_l.index(l+ ' 35 '):cdrl2_b]), len(res_l[cdrl2_e:res_l.index(l+' 89 ')]), len(res_l[res_l.index(l+ ' 98 '):-1])] + else: + cdrl_parts = [0, 0, 0] + frl_parts = [0, 0, 0, 0] + + for i in range(4): + region_lengths[2*i] += frh_parts[i] / len(pdb_codes) + region_lengths[2*i+7] += frl_parts[i] / len(pdb_codes) + + if i != 3: + region_lengths[2*i+1] += cdrh_parts[i] / len(pdb_codes) + region_lengths[2*i+8] += cdrl_parts[i] / len(pdb_codes) -def extract_cdr_lengths(pdb_code): - r"""Retrieves the CDR lengths of an antibody. + return region_lengths + +def remove_nanobodies(pdb_codes, representations, embedding=None, labels=[], numerical_values=None): + r"""Returns PDB codes and embeddings without the presence of nanobodies. Parameters ---------- - pdb_code: str - The antibody PDB code. + pdb_codes: list + The PDB codes of the antibodies. + representations: numpy.ndarray + Normal mode correlation maps (or transformed maps) from which it can be inferred whether a given antibody is a nanobody. + embedding: numpy.ndarray + Low-dimensional version of ``representations``. + labels: list + Data point labels. """ - res_l = list(np.load(f'data/paired_hl/lists_of_residues/{pdb_code}.npy')) - h = res_l[1][0] - l = res_l[-2][0] - - # Problems beginning CDR-H1 - if h+' 26 ' in res_l: - cdrh1_b = res_l.index(h+' 26 ') - elif h+' 27 ' in res_l: - cdrh1_b = res_l.index(h+' 27 ') - elif h+' 28 ' in res_l: - cdrh1_b = res_l.index(h+' 28 ') - elif h+' 29 ' in res_l: - cdrh1_b = res_l.index(h+' 29 ') - else: - cdrh1_b = res_l.index(h+' 30 ') + input_shape = representations.shape[-1] + deleted_items = 0 + + for i in range(len(pdb_codes)): + if np.count_nonzero(representations[i-deleted_items].reshape(input_shape, input_shape)[-40:,-40:]) == 0: + pdb_codes = np.delete(pdb_codes, i-deleted_items, axis=0) + representations = np.delete(representations, i-deleted_items, axis=0) + if embedding is not None: + embedding = np.delete(embedding, i-deleted_items, axis=0) + if len(labels): + labels = np.delete(labels, i-deleted_items, axis=0) + if numerical_values is not None: + numerical_values = np.delete(numerical_values, i-deleted_items, axis=0) + deleted_items += 1 + return pdb_codes, representations, embedding, labels, numerical_values - # Problems beginning CDR-H2 - if h+' 52 ' in res_l: - cdrh2_b = res_l.index(h+' 52 ') - else: - cdrh2_b = res_l.index(h+' 53 ') - - # Problems beginning CDR-L2 - if l+' 50 ' in res_l: - cdrl2_b = res_l.index(l+' 50 ') - elif l+' 51 ' in res_l: - cdrl2_b = res_l.index(l+' 51 ') - elif pdb_code in ['4hkx', '5d70', '5d71']: - cdrl2_b = 0 - cdrl2_e = 0 - else: - cdrl2_b = res_l.index(l+' 52 ') - - # Problems end CDR-L2 - if l+' 57 ' in res_l: - cdrl2_e = res_l.index(l+' 57 ') - - cdrh_parts = [len(res_l[cdrh1_b:res_l.index(h+' 33 ')]), len(res_l[cdrh2_b:res_l.index(h+' 57 ')]), len(res_l[res_l.index(h+' 95 '):res_l.index(h+'103 ')])] - if l != h: - cdrl_parts = [len(res_l[res_l.index(l+' 24 '):res_l.index(l+ ' 35 ')]), len(res_l[cdrl2_b:cdrl2_e]), len(res_l[res_l.index(l+' 89 '):res_l.index(l+ ' 98 ')])] - else: - cdrl_parts = [0, 0, 0] - - - return cdrl_parts, cdrh_parts diff --git a/antipasti/utils/explaining_utils.py b/antipasti/utils/explaining_utils.py index 325669bd..e98f9f45 100644 --- a/antipasti/utils/explaining_utils.py +++ b/antipasti/utils/explaining_utils.py @@ -14,6 +14,8 @@ from scipy.stats import chi2 from sklearn.preprocessing import StandardScaler +from antipasti.utils.biology_utils import remove_nanobodies, extract_mean_region_lengths + def get_maps_of_interest(preprocessed_data, learnt_filter, affinity_thr=-8): r"""Post-processes both raw data and results to obtain maps of interest. @@ -49,58 +51,32 @@ def get_maps_of_interest(preprocessed_data, learnt_filter, affinity_thr=-8): low_aff.append(train_x[i]) # Obtaining the maps - mean_learnt = cv2.resize(learnt_filter, dsize=(input_shape, input_shape)) + mean_learnt = cv2.resize(-learnt_filter, dsize=(input_shape, input_shape)) mean_image = np.mean(train_x, axis=0).reshape(input_shape, input_shape) mean_diff_image = np.mean(high_aff, axis=0) - np.mean(low_aff, axis=0) return mean_learnt, mean_image, mean_diff_image -def get_epsilon(preprocessed_data, model, mode='general'): - r"""Returns a map ``epsilon`` (ϵ) such that the predicted affinity of x + ϵ is always greater than that of x. - - Parameters - ---------- - preprocessed_data: antipasti.preprocessing.preprocessing.Preprocessing - The ``Preprocessing`` class. - model: antipasti.model.model.ANTIPASTI - The model class, i.e., ``ANTIPASTI``. - mode: str - Choose between ``general`` and ``extreme``. - - """ - high_aff = [] - low_aff = [] - train_x = preprocessed_data.train_x - input_shape = preprocessed_data.train_x.shape[-1] - n_filters = model.n_filters - - each_img_enl = np.zeros((train_x.shape[0], input_shape, input_shape)) - size_le = int(np.sqrt(model.fc1.weight.data.numpy().shape[-1] / n_filters)) +def get_output_representations(preprocessed_data, model): + input_shape = preprocessed_data.test_x.shape[-1] + each_img_enl = np.zeros((preprocessed_data.train_x.shape[0], input_shape**2)) + size_le = int(np.sqrt(model.fc1.weight.data.numpy().shape[-1] / model.n_filters)) + offset = np.zeros((input_shape**2)) - for j in range(train_x.shape[0]): - inter_filter_item = model(torch.from_numpy(train_x[j].reshape(1, 1, input_shape, input_shape).astype(np.float32)))[1].detach().numpy() - for i in range(n_filters): - each_img_enl[j] += cv2.resize(np.multiply(inter_filter_item[0,i], model.fc1.weight.data.numpy().reshape(n_filters, size_le**2)[i].reshape(size_le, size_le)), dsize=(input_shape, input_shape)) - new_h = np.multiply(-np.clip(each_img_enl[j], a_min=-np.inf, a_max=0), np.sign(train_x[j])) - new_l = np.multiply(np.clip(each_img_enl[j], a_min=0, a_max=np.inf), np.sign(train_x[j])) - if j == 0 or mode == 'general': - current_h = new_h - current_l = new_l - else: - current_h = np.where(np.abs(current_h)>np.abs(new_h), current_h, new_h) - current_l = np.where(np.abs(current_l)>np.abs(new_l), current_l, new_l) - high_aff.append(current_h) - low_aff.append(current_l) + inter_filter_off = model(torch.from_numpy(np.zeros((input_shape, input_shape)).reshape(1, 1, input_shape, input_shape).astype(np.float32)))[1].detach().numpy() + for i in range(model.n_filters): + offset += cv2.resize(np.multiply(inter_filter_off[0,i], model.fc1.weight.data.numpy().reshape(model.n_filters, size_le**2)[i].reshape(size_le, size_le)), dsize=(input_shape, input_shape)).reshape((input_shape**2)) - if mode == 'general': - epsilon = deepcopy(np.mean(high_aff, axis=0) - np.mean(low_aff, axis=0)) - else: - epsilon = high_aff[-1] - low_aff[-1] + for j in range(preprocessed_data.train_x.shape[0]): + inter_filter_item = model(torch.from_numpy(preprocessed_data.train_x[j].reshape(1, 1, input_shape, input_shape).astype(np.float32)))[1].detach().numpy() + for i in range(model.n_filters): + each_img_enl[j] += (size_le**2/input_shape**2) * cv2.resize(np.multiply(inter_filter_item[0,i], model.fc1.weight.data.numpy().reshape(model.n_filters, size_le**2)[i].reshape(size_le, size_le)), dsize=(input_shape, input_shape)).reshape((input_shape**2)) + each_img_enl[j] -= offset - return epsilon + return each_img_enl def get_test_contribution(preprocessed_data, model): - r"""Returns a map that reveals how to mutate a given test antibody in order to increase its affinity. + r"""Returns a map that reveals the important residue interactions for the binding affinity. Parameters ---------- @@ -118,10 +94,9 @@ def get_test_contribution(preprocessed_data, model): inter_filter_item = model(torch.from_numpy(test_x.reshape(1, 1, input_shape, input_shape).astype(np.float32)))[1].detach().numpy() for i in range(n_filters): - each_img_enl += cv2.resize(np.multiply(inter_filter_item[0,i], model.fc1.weight.data.numpy().reshape(n_filters, size_le**2)[i].reshape(size_le, size_le)), dsize=(input_shape, input_shape)) - contribution = np.multiply(-np.clip(each_img_enl, a_min=-np.inf, a_max=0), np.sign(test_x)) - np.multiply(np.clip(each_img_enl, a_min=0, a_max=np.inf), np.sign(test_x)) + each_img_enl -= cv2.resize(np.multiply(inter_filter_item[0,i], model.fc1.weight.data.numpy().reshape(n_filters, size_le**2)[i].reshape(size_le, size_le)), dsize=(input_shape, input_shape)) - return contribution + return each_img_enl def plot_map_with_regions(preprocessed_data, map, title='Normal mode correlation map', interactive=False): r"""Maps the residues to the antibody regions and plots the normal mode correlation map. @@ -139,25 +114,18 @@ def plot_map_with_regions(preprocessed_data, map, title='Normal mode correlation """ # Font sizes - title_size = 48 + title_size = 42 font_size = 32 # Defining the region boundaries mrlh = preprocessed_data.max_res_list_h mrll = preprocessed_data.max_res_list_l - subgroup_boundaries_h = [mrlh.index('3'), mrlh.index('26'), mrlh.index('33'), mrlh.index('39'), mrlh.index('45'), mrlh.index('51'), - mrlh.index('52'), mrlh.index('57'), mrlh.index('61'), mrlh.index('67'), mrlh.index('72'), - mrlh.index('75'), mrlh.index('82'), mrlh.index('84'), mrlh.index('87'), mrlh.index('89'), - mrlh.index('95'), mrlh.index('103'), mrlh.index('112')+1] - subgroup_boundaries_l = [mrll.index('3'), mrll.index('24'), mrll.index('35'), mrll.index('38'), mrll.index('44'), mrll.index('48'), - mrll.index('50'), mrll.index('57'), mrll.index('62'), mrll.index('65'), mrll.index('71'), - mrll.index('75'), mrll.index('85'), mrll.index('89'), mrll.index('98'), mrll.index('106')+1] - labels_h = ['F-START', 'CDR1', '\u03B211', '', '\u03B212', '', 'CDR2', '\u03B213', '', '\u03B221', '', '\u03B222', - '', '\u03B1', '', '\u03B214', 'CDR3', 'F-END', ''] - labels_l = ['F-START', 'CDR1', '\u03B211', '', '\u03B212', '', 'CDR2', '', '\u03B221', '', '\u03B222', - '', '\u03B213', 'CDR3', 'F-END'] - subgroup_boundaries = subgroup_boundaries_h + [x+mrlh.index('112')+1 for x in subgroup_boundaries_l] + subgroup_boundaries_h = [mrlh.index('1'), mrlh.index('26'), mrlh.index('33'), mrlh.index('52'), mrlh.index('57'), mrlh.index('95'), mrlh.index('103'), mrlh.index('113')+1] + subgroup_boundaries_l = [mrll.index('1'), mrll.index('24'), mrll.index('35'), mrll.index('50'), mrll.index('57'), mrll.index('89'), mrll.index('98'), mrll.index('107')+1] + labels_h = ['FR-H1', 'CDR-H1', 'FR-H2', 'CDR-H2', 'FR-H3', 'CDR-H3', 'FR-H4'] + labels_l = ['FR-L1', 'CDR-L1', 'FR-L2', 'CDR-L2', 'FR-L3', 'CDR-L3', 'FR-L4'] + subgroup_boundaries = subgroup_boundaries_h[:-1] + [x+mrlh.index('113')+1 for x in subgroup_boundaries_l] labels = labels_h + labels_l fig = plt.figure(figsize=(20, 20)) @@ -167,7 +135,6 @@ def plot_map_with_regions(preprocessed_data, map, title='Normal mode correlation # Set the font size of the colorbar cbar.ax.tick_params(labelsize=18) - for i in range(len(subgroup_boundaries) - 1): start_index = subgroup_boundaries[i] end_index = subgroup_boundaries[i+1] @@ -175,28 +142,21 @@ def plot_map_with_regions(preprocessed_data, map, title='Normal mode correlation # Choosing the colours if labels[i].startswith('CDR'): - c = 'orange' - elif labels[i].startswith('\u03B2'): # Beta - c = 'green' - elif labels[i].startswith('\u03B1'): # Alpha - c = 'red' + c = 'deeppink' else: - c = 'white' - + c = 'orange' # Adding rectangles for the regions - rect = plt.Rectangle((start_index - 0.5, -6.5), end_index - start_index, 6, - edgecolor='black', facecolor=c, alpha=0.6) + rect = plt.Rectangle((start_index - 0.5, -6.5), end_index - start_index, 6, edgecolor='black', facecolor=c, alpha=0.7) plt.gca().add_patch(rect) - rect = plt.Rectangle((-12.5, start_index - 0.5), 12, end_index - start_index, - edgecolor='black', facecolor=c, alpha=0.6) + rect = plt.Rectangle((-12.5, start_index - 0.5), 12, end_index - start_index, edgecolor='black', facecolor=c, alpha=0.7) plt.gca().add_patch(rect) # Add labels for the regions on the y-axis plt.text(-6, label_position-0.25, labels[i], ha='center', va='center', color='black', size=10) # Add labels for the regions on the x-axis - plt.text(label_position, -3.5, labels[i], ha='center', va='center', color='black', size=8) + plt.text(label_position, -3.7, labels[i], ha='center', va='center', color='black', size=9) # Adding rectangles for the chains rect = plt.Rectangle((-0.5, -10.5), subgroup_boundaries_h[-1], 4, edgecolor='black', facecolor='white') @@ -209,15 +169,16 @@ def plot_map_with_regions(preprocessed_data, map, title='Normal mode correlation plt.gca().add_patch(rect) # Adding labels for the chains on the y-axis - plt.text(-14, subgroup_boundaries_h[-1]/2, 'Heavy chain', ha='center', va='center', color='black', rotation='vertical', size=16) - plt.text(-14, subgroup_boundaries_h[-1]+subgroup_boundaries_l[-1]/2, 'Light chain', ha='center', va='center', color='black', rotation='vertical', size=16) + plt.text(-14, subgroup_boundaries_h[-1]/2, 'Heavy chain', ha='center', va='center', color='black', rotation='vertical', size=14) + plt.text(-14, subgroup_boundaries_h[-1]+subgroup_boundaries_l[-1]/2, 'Light chain', ha='center', va='center', color='black', rotation='vertical', size=14) + # Adding labels for the chains on the x-axis - plt.text(subgroup_boundaries_h[-1]/2, -8.75, 'Heavy chain', ha='center', va='center', color='black', size=16) - plt.text(subgroup_boundaries_h[-1]+subgroup_boundaries_l[-1]/2, -8.75, 'Light chain', ha='center', va='center', color='black', size=16) + plt.text(subgroup_boundaries_h[-1]/2, -9, 'Heavy chain', ha='center', va='center', color='black', size=12) + plt.text(subgroup_boundaries_h[-1]+subgroup_boundaries_l[-1]/2, -9, 'Light chain', ha='center', va='center', color='black', size=12) # Adjusting the axis limits and labels - plt.xlim(-16.5, 278.5) - plt.ylim(-10.5, 278.5) + plt.xlim(-16.5, 290.5) + plt.ylim(-10.5, 290.5) plt.xticks([]) plt.yticks([]) @@ -231,88 +192,7 @@ def plot_map_with_regions(preprocessed_data, map, title='Normal mode correlation plt.pause(3) plt.close('all') -def compute_change_in_kd(preprocessed_data, model, weights, coord, maps): - r"""Prints the percentage change in Kd when adding epsilon. - - Parameters - ---------- - preprocessed_data: antipasti.preprocessing.preprocessing.Preprocessing - The ``Preprocessing`` class. - model: antipasti.model.model.ANTIPASTI - The model class, i.e., ``ANTIPASTI``. - weights: numpy.ndarray - The weights given to each antibody region. - coord: numpy.ndarray - The coordinates of the antibody regions. - maps: list - The maps of the antibody regions coming from ``epsilon``. - - """ - input_shape = preprocessed_data.train_x.shape[-1] - - # Adding epsilon - ideal = deepcopy(preprocessed_data.test_x) - for i in range(len(weights)): - temp = deepcopy(np.pad(maps[i], ((0, 0), (coord[i][0], ideal.shape[-1]-coord[i][-1]-1)))) - ideal += weights[i] * (temp + np.transpose(temp)) / 2 - - # Comparing the new Kd w.r.t the original one - prediction = 10**model(torch.from_numpy(preprocessed_data.test_x.reshape(1, 1, input_shape, input_shape).astype(np.float32)))[0].detach().numpy() - new_prediction = 10**model(torch.from_numpy(ideal.reshape(1, 1, input_shape, input_shape).astype(np.float32)))[0].detach().numpy() - per_change = ((prediction - new_prediction) / prediction * 100)[0][0] - - print('Without adding epsilon, Kd = ' + str(prediction[0,0])) - print('After adding epsilon, Kd = ' + str(new_prediction[0,0])) - print('Thus, Kd is smaller by', per_change, '%') - - -def map_residues_to_regions(preprocessed_data, epsilon): - r"""Maps the residues to the antibody regions. - - Parameters - ---------- - preprocessed_data: antipasti.model.model.Preprocessing - The ``Preprocessing`` class. - epsilon: numpy.ndarray - A map ``epsilon`` (ϵ) such that the predicted affinity of x + ϵ is always greater than that of x. - - Returns - ------- - coord: numpy.ndarray - The coordinates of the antibody regions. - maps: list - The maps of the antibody regions coming from ``epsilon``. - labels: list - The antibody regions in order. - - """ - mrlh = preprocessed_data.max_res_list_h - mrll = preprocessed_data.max_res_list_l - - maps = [] - subgroup_boundaries_h = [mrlh.index('3'), mrlh.index('26'), mrlh.index('33'), mrlh.index('39'), mrlh.index('45'), mrlh.index('51'), - mrlh.index('52'), mrlh.index('57'), mrlh.index('61'), mrlh.index('67'), mrlh.index('72'), - mrlh.index('75'), mrlh.index('82'), mrlh.index('84'), mrlh.index('87'), mrlh.index('89'), - mrlh.index('95'), mrlh.index('103'), mrlh.index('112')+1] - subgroup_boundaries_l = [mrll.index('3'), mrll.index('24'), mrll.index('35'), mrll.index('38'), mrll.index('44'), mrll.index('48'), - mrll.index('50'), mrll.index('57'), mrll.index('62'), mrll.index('65'), mrll.index('71'), - mrll.index('75'), mrll.index('85'), mrll.index('89'), mrll.index('98'), mrll.index('106')+1] - labels_h = ['F-START', 'CDR-H1', '\u03B211', '', '\u03B212', '', 'CDR-H2', '\u03B213', '', '\u03B221', '', '\u03B222', - '', '\u03B1', '', '\u03B214', 'CDR-H3', 'F-END'] - labels_l = ['F-START', 'CDR-L1', '\u03B211', '', '\u03B212', '', 'CDR-L2', '', '\u03B221', '', '\u03B222', - '', '\u03B213', 'CDR-L3', 'F-END'] - - coord_h = [range(subgroup_boundaries_h[i], subgroup_boundaries_h[i+1]) for i in range(len(subgroup_boundaries_h)-1)] - coord_l = [range(subgroup_boundaries_l[i], subgroup_boundaries_l[i+1]) for i in range(len(subgroup_boundaries_l)-1)] - coord = coord_h + [range(cl[0]+mrlh.index('112')+1, cl[-1]+mrlh.index('112')+1) for cl in coord_l] - labels = labels_h + labels_l - - for i in range(len(coord)): - maps.append(epsilon[:, coord[i]]) - - return np.array(coord, dtype=object), maps, labels - -def compute_umap(preprocessed_data, model, scheme='heavy_species', regions='paired_hl', categorical=True, include_ellipses=False, numerical_values=None, external_cdict=None, interactive=False): +def compute_umap(preprocessed_data, model, scheme='heavy_species', categorical=True, include_ellipses=False, numerical_values=None, external_cdict=None, interactive=False, exclude_nanobodies=False): r"""Performs UMAP dimensionality reduction calculations. Parameters @@ -323,8 +203,6 @@ def compute_umap(preprocessed_data, model, scheme='heavy_species', regions='pair The model class, i.e., ``ANTIPASTI``. scheme: str Category of the labels or values appearing in the UMAP representation. - regions: str - Choose between ``paired_hl`` (heavy chain, light chain and their interactions) and ``heavy`` (heavy chain only). categorical: bool ``True`` if ``scheme`` is categorical. include_ellipses: bool @@ -335,40 +213,38 @@ def compute_umap(preprocessed_data, model, scheme='heavy_species', regions='pair Option to provide an external dictionary of the UMAP labels. interactive: bool Set to ``True`` when running a script or Pytest. + remove_nanobodies: bool + Set to ``True`` to exclude nanobodies from the UMAP plot. """ train_x = preprocessed_data.train_x input_shape = preprocessed_data.test_x.shape[-1] - if regions == 'paired_hl': - reducer = umap.UMAP(random_state=32, min_dist=0.1, n_neighbors=90) # Paired-HL - umap_shape = input_shape - else: - reducer = umap.UMAP(random_state=32, min_dist=0.15, n_neighbors=16) # Heavy - umap_shape = len(preprocessed_data.max_res_list_h) + reducer = umap.UMAP(random_state=32, min_dist=0.1, n_neighbors=90) # Paired-HL labels = [] colours = [] - each_img_enl = np.zeros((train_x.shape[0], umap_shape**2)) - n_filters = model.n_filters - size_le = int(np.sqrt(model.fc1.weight.data.numpy().shape[-1] / n_filters)) pdb_codes = preprocessed_data.labels - db = pd.read_csv('data/sabdab_summary_all.tsv', sep='\t') + db = pd.read_csv(preprocessed_data.data_path+'sabdab_summary_all.tsv', sep='\t') if scheme in db.columns: db = db.loc[:,['pdb', scheme]] # Obtaining the labels and the output layer representations for j in range(train_x.shape[0]): if scheme in db.columns: - labels.append(str(db[db['pdb'] == pdb_codes[j]].iloc[0][scheme])) - inter_filter_item = model(torch.from_numpy(train_x[j].reshape(1, 1, input_shape, input_shape).astype(np.float32)))[1].detach().numpy() - for i in range(n_filters): - each_img_enl[j] += cv2.resize(np.multiply(inter_filter_item[0,i], model.fc1.weight.data.numpy().reshape(n_filters, size_le**2)[i].reshape(size_le, size_le)), dsize=(input_shape, input_shape))[:umap_shape, :umap_shape].reshape((umap_shape**2)) - + labels.append(str(db[db['pdb'] == pdb_codes[j]].iloc[-1][scheme])) + each_img_enl = get_output_representations(preprocessed_data, model) + # UMAP fitting scaled_each_img = StandardScaler().fit_transform(each_img_enl) embedding = reducer.fit_transform(scaled_each_img) + if exclude_nanobodies: + if scheme == 'similarity': + pdb_codes, _, embedding, labels, _ = remove_nanobodies(pdb_codes, train_x, embedding, labels, None) + else: + pdb_codes, _, embedding, labels, numerical_values = remove_nanobodies(pdb_codes, train_x, embedding, labels, numerical_values) + if categorical: if scheme == 'light_subclass': cdict = {'IGKV1': 0, @@ -432,14 +308,21 @@ def compute_umap(preprocessed_data, model, scheme='heavy_species', regions='pair labels[i] = 'Other' else: cdict = None + deleted_items = 0 for i, item in enumerate(numerical_values): - if isinstance(item, (int, float)): + if isinstance(item, (int, float, np.int64, np.float32)): colours.append(item) + elif item.replace('.', '').isnumeric(): + colours.append(float(item)) else: - np.delete(each_img_enl, i, axis=0) - + embedding = np.delete(embedding, i-deleted_items, axis=0) + pdb_codes = np.delete(pdb_codes, i-deleted_items, axis=0) + deleted_items += 1 plot_umap(embedding=embedding, colours=colours, scheme=scheme, pdb_codes=pdb_codes, categorical=categorical, include_ellipses=include_ellipses, cdict=cdict, interactive=interactive) + return colours, pdb_codes + + def plot_umap(embedding, colours, scheme, pdb_codes, categorical=True, include_ellipses=False, cdict=None, interactive=False): r"""Plots UMAP maps. @@ -474,7 +357,7 @@ def plot_umap(embedding, colours, scheme, pdb_codes, categorical=True, include_e im = ax.scatter(embedding[:, 0], embedding[:, 1] , s=50, c=colours, cmap=cmap) for i in range(len(pdb_codes)): - if i % 10 == 0: + if i % 1 == 0: ax.annotate(pdb_codes[i], (embedding[i, 0], embedding[i, 1]), size=8) if include_ellipses: @@ -487,33 +370,25 @@ def plot_umap(embedding, colours, scheme, pdb_codes, categorical=True, include_e label_points = embedding[np.array(colours) == label] # Subset of UMAP points for a specific label n_points = len(label_points) - # Calculate the centroid using all the points of a class + # Centroid and then sort center = np.mean(label_points, axis=0) covariance = np.cov(label_points.T) - # Calculate the distance of each point dist = np.sum(np.square(label_points - center), axis=1) - - # Sort the points based on the distance sorted_indices = np.argsort(dist) # Calculate the number of points to include within the ellipse n_inside = int(np.ceil(n_points * conf_level)) - - # Select the points that fall within the ellipse inside_points = label_points[sorted_indices[:n_inside]] # Recalculate the mean and covariance using only the inside points center = np.mean(inside_points, axis=0) covariance = np.cov(inside_points.T) - # Calculate the eigenvalues and eigenvectors of the covariance matrix again + # Calculate the eigenvalues and eigenvectors of the cov matrix (again) eigenvalues, eigenvectors = np.linalg.eig(covariance) angle = np.degrees(np.arctan2(*eigenvectors[:, 0][::-1])) - # Calculate the scaling factor for the ellipse based on the eigenvalues again scale_factor = np.sqrt(inv_chi2) - - # Calculate the radius of the ellipse based on the eigenvalues and the scaling factor radius = np.sqrt(eigenvalues) * scale_factor ellipse = patches.Ellipse(xy=center, width=2 * radius[0], height=2 * radius[1], @@ -525,9 +400,9 @@ def plot_umap(embedding, colours, scheme, pdb_codes, categorical=True, include_e ax.add_patch(ellipse) if categorical: - legend1 = ax.legend(legend_patches, cdict.keys(), loc='lower right') + legend1 = ax.legend(legend_patches, cdict.keys(), loc='best') else: - legend1 = ax.legend(legend_patches[:10], set(colours), loc='lower right') + legend1 = ax.legend(legend_patches[:10], set(colours), loc='best') ax.add_artist(legend1) ax.set_title(scheme, size=18) @@ -536,4 +411,203 @@ def plot_umap(embedding, colours, scheme, pdb_codes, categorical=True, include_e plt.show(block=False) if interactive: plt.pause(3) - plt.close('all') \ No newline at end of file + plt.close('all') + +def plot_region_importance(importance_factor, importance_factor_ob, antigen_type, mode='region', interactive=False): + + labels = ['FR-H1', 'CDR-H1', 'FR-H2', 'CDR-H2', 'FR-H3', 'CDR-H3', 'FR-H4', 'FR-L1', 'CDR-L1', 'FR-L2', 'CDR-L2', 'FR-L3', 'CDR-L3', 'FR-L4'] + mapping_dict = {0: 0, 1: 2, 2: 1, 3: 5} + + sorted_indices = np.argsort(importance_factor)[::-1] # Reverse order + cmap = matplotlib.colormaps.get_cmap('tab10') + + # Create bars for each class + fig, ax = plt.subplots() + y_pos = np.arange(len(labels)) + + bar1 = ax.barh(y_pos, np.array(importance_factor_ob)[sorted_indices], align='center', color=cmap(mapping_dict[antigen_type]), label=f'Inter-{mode}') + bar2 = ax.barh(y_pos, np.array([importance_factor[i]-importance_factor_ob[i] for i in range(len(labels))])[sorted_indices], align='center', alpha=0.6, left=np.array(importance_factor_ob)[sorted_indices], color=cmap(mapping_dict[antigen_type]), label=f'Intra-{mode}') + + ax.set_xlabel('Importance (%)') + ax.set_yticks(y_pos) + ax.set_yticklabels([labels[np.argsort(importance_factor)[::-1][i]] for i in range(len(labels))]) + plt.tick_params(axis='y', which='both', left=False, right=False) + plt.tick_params(axis='x', which='major', bottom=True, right=True, size=3.5) + + for i, label in enumerate(ax.get_yticklabels()): + if np.argsort(importance_factor)[::-1][i] < 7: + color = 'green' + else: + color = '#333333' + label.set_color(color) + + plt.tight_layout() + ax.legend() + plt.show() + if interactive: + plt.pause(3) + plt.close('all') + +def add_region_based_on_range(list_residues): + + output_list_residues = [] + + new_coord = np.array([range(0, 26), range(26, 38), range(38, 57), range(57, 67), range(67, 116), range(116, 142), + range(142, 153), range(153, 176), range(176, 195), range(195, 210), range(210, 225), + range(225, 265), range(265, 279), range(279, 292)], dtype=object) + + regions = ['FR-H1', 'CDR-H1', 'FR-H2', 'CDR-H2', 'FR-H3', 'CDR-H3', 'FR-H4', 'FR-L1', 'CDR-L1', 'FR-L2', 'CDR-L2', 'FR-L3', 'CDR-L3', 'FR-L4'] + + for index, element in enumerate(list_residues): + for i, r in enumerate(new_coord): + if index in r: + output_list_residues.append(element+' (' + regions[i] + ')') + + return output_list_residues + +def plot_residue_importance(preprocessed_data, importance_factor, antigen_type, interactive=False): + + res_labels = add_region_based_on_range(preprocessed_data.max_res_list_h+preprocessed_data.max_res_list_l) + mapping_dict = {0: 0, 1: 2, 2: 1, 3: 5} + cmap = matplotlib.colormaps.get_cmap('tab10') + + fig, ax = plt.subplots() + y_pos = np.arange(len(res_labels[:30])) + bar1 = ax.barh(y_pos, sorted(importance_factor, reverse=True)[:30], align='center', alpha=0.9, color=cmap(mapping_dict[antigen_type])) + + # Show top 30 + ax.set_xlabel('Importance (%)') + ax.set_yticks(y_pos) + ax.set_yticklabels([res_labels[np.argsort(importance_factor)[::-1][i]][:30] for i in range(len(res_labels[:30]))], fontsize=9.5) + plt.tick_params(axis='y', which='both', left=False, right=False) + plt.tick_params(axis='x', which='major', bottom=True, right=True, size=3.5) + + for i, label in enumerate(ax.get_yticklabels()): + if np.argsort(importance_factor)[::-1][i] < len(preprocessed_data.max_res_list_h): + color = 'green' + else: + color = '#333333' + label.set_color(color) + + plt.tight_layout() + plt.show() + + if interactive: + plt.pause(3) + plt.close('all') + + +def get_colours_ag_type(preprocessed_data): + + cluster_according_to = 'antigen_type' + db = pd.read_csv(preprocessed_data.data_path+'sabdab_summary_all.tsv', sep='\t') + + clusters = [] + for i in range(len(preprocessed_data.labels)): + clusters.append(str(db[db['pdb'] == preprocessed_data.labels[i]].iloc[0][cluster_according_to])) + + cdict = {'protein': 0, + 'Hapten': 1, + 'peptide': 2, + 'carbohydrate': 3, + 'nucleic-acid': 4, + 'protein | protein': 5, + 'Other': 6} + + colours = [] + for i in range(len(clusters)): + if clusters[i] in cdict: + colours.append(cdict[clusters[i]]) + else: + colours.append(cdict['Other']) + clusters[i] = 'Other' + + return colours + +def compute_region_importance(preprocessed_data, model, type_of_antigen, nanobodies, mode='region'): + + colours = get_colours_ag_type(preprocessed_data) + each_img_enl = get_output_representations(preprocessed_data, model) + + train_x = preprocessed_data.train_x + input_shape = preprocessed_data.test_x.shape[-1] + + colours = [0 if c == 5 else c for c in colours] + all_mse_without_region = [] + all_mse_without_region_intra = [] + all_mse_without_region_ob = [] + + new_coord = np.array([range(0, 26), range(26, 38), range(38, 57), range(57, 67), range(67, 116), range(116, 142), range(142, 153), + range(153, 176), range(176, 195), range(195, 210), range(210, 225), range(225, 265), range(265, 279), range(279, 292)], dtype=object) + + for j in range(len(new_coord)+1): + train_y_ = np.array([preprocessed_data.train_y[i] for i in range(train_x.shape[0]) if colours[i] == type_of_antigen and preprocessed_data.labels[i] not in nanobodies]) + if j != len(new_coord): + + sums_without_region = np.array([ + each_img_enl[i].reshape((input_shape, input_shape)).sum()-(each_img_enl[i].reshape((input_shape, input_shape))[new_coord[j][0]:new_coord[j][-1] + 1, :]).sum() + for i in range(train_x.shape[0]) if colours[i] == type_of_antigen and preprocessed_data.labels[i] not in nanobodies]) + + if mode == 'region': + sums_without_region_divided = np.array([ + each_img_enl[i].reshape((input_shape, input_shape)).sum()-np.array([(each_img_enl[i].reshape((input_shape, input_shape))[new_coord[j][0]:new_coord[j][-1] + 1, new_coord[0][0]:new_coord[j][0]]).sum() + +(each_img_enl[i].reshape((input_shape, input_shape))[new_coord[j][0]:new_coord[j][-1] + 1, new_coord[j][-1] + 1:new_coord[-1][-1] + 1]).sum(), + (each_img_enl[i].reshape((input_shape, input_shape))[new_coord[j][0]:new_coord[j][-1] + 1, new_coord[j][0]:new_coord[j][-1] + 1]).sum()]) + for i in range(train_x.shape[0]) if colours[i] == type_of_antigen and preprocessed_data.labels[i] not in nanobodies]) + + all_mse_without_region_intra.append(np.mean((sums_without_region_divided[:,1] - train_y_)**2)) + all_mse_without_region_ob.append(np.mean((sums_without_region_divided[:,0] - train_y_)**2)) + + else: + sums_without_region_divided = np.array([ + each_img_enl[i].reshape((input_shape, input_shape)).sum()-np.array([(each_img_enl[i].reshape((input_shape, input_shape))[new_coord[j][0]:new_coord[j][-1] + 1, :len(preprocessed_data.max_res_list_h)]).sum(), + (each_img_enl[i].reshape((input_shape, input_shape))[new_coord[j][0]:new_coord[j][-1] + 1, len(preprocessed_data.max_res_list_h):]).sum()]) + for i in range(train_x.shape[0]) if colours[i] == type_of_antigen and preprocessed_data.labels[i] not in nanobodies]) + + index = 0 if j < 7 else 1 + all_mse_without_region_intra.append(np.mean((sums_without_region_divided[:, index] - train_y_)**2)) + all_mse_without_region_ob.append(np.mean((sums_without_region_divided[:, 1 - index] - train_y_)**2)) + else: + sums_without_region = np.array([ + each_img_enl[i].reshape((input_shape, input_shape)).sum() + for i in range(train_x.shape[0]) if colours[i] == type_of_antigen and preprocessed_data.labels[i] not in nanobodies]) + + all_mse_without_region.append(np.mean((sums_without_region - train_y_)**2)) + total_mse = all_mse_without_region[-1] + all_mse_without_region.pop(-1) + + region_mean_lengths = np.array([24, 7.1, 19, 6, 41, 11.3, 10, 21.7, 12.7, 14.9, 7, 32.9, 9.2, 9.1]) + idx_best_normalised_mean_length = np.argmax(abs(all_mse_without_region-total_mse)/region_mean_lengths) + + tot = 100*region_mean_lengths[idx_best_normalised_mean_length] * abs(all_mse_without_region-total_mse) / abs(all_mse_without_region[idx_best_normalised_mean_length]-total_mse)/region_mean_lengths + ob = tot - tot * abs(all_mse_without_region_intra-total_mse) / (abs(all_mse_without_region_intra-total_mse)+abs(all_mse_without_region_ob-total_mse)) + plot_region_importance(tot, ob, type_of_antigen, mode) + +def compute_residue_importance(preprocessed_data, model, type_of_antigen, nanobodies): + + colours = get_colours_ag_type(preprocessed_data) + each_img_enl = get_output_representations(preprocessed_data, model) + + train_x = preprocessed_data.train_x + input_shape = preprocessed_data.test_x.shape[-1] + + colours = [0 if c == 5 else c for c in colours] + all_mse_without_region = [] + + for j in range(train_x.shape[-1]+1): + if j != train_x.shape[-1]: + sums_without_region = np.array([ + each_img_enl[i].reshape((input_shape, input_shape)).sum()-(each_img_enl[i].reshape((input_shape, input_shape))[j:j+1, :]).sum() + for i in range(train_x.shape[0]) if colours[i] == type_of_antigen and preprocessed_data.labels[i] not in nanobodies]) + else: + sums_without_region = np.array([ + each_img_enl[i].reshape((input_shape, input_shape)).sum() + for i in range(train_x.shape[0]) if colours[i] == type_of_antigen and preprocessed_data.labels[i] not in nanobodies]) + train_y_ = np.array([preprocessed_data.train_y[i] for i in range(train_x.shape[0]) if colours[i] == type_of_antigen and preprocessed_data.labels[i] not in nanobodies]) + + mse_without_region = np.mean((sums_without_region - train_y_)**2) + all_mse_without_region.append(mse_without_region) + total_mse = all_mse_without_region[-1] + all_mse_without_region.pop(-1) + + plot_residue_importance(preprocessed_data, 100*abs(all_mse_without_region-total_mse)/abs(max(all_mse_without_region)-total_mse), type_of_antigen) \ No newline at end of file diff --git a/antipasti/utils/generic_utils.py b/antipasti/utils/generic_utils.py index d8f86905..0aac28b9 100644 --- a/antipasti/utils/generic_utils.py +++ b/antipasti/utils/generic_utils.py @@ -3,4 +3,6 @@ def remove_abc(residue): Returns the residue names without the final letter that indicates extension positions. """ - return residue[:-1] \ No newline at end of file + if residue[-1] != ' ': + residue = str(residue[:-1]) + '.' + '{0:0=2d}'.format(ord(residue[-1])-64) + return float(residue) \ No newline at end of file diff --git a/antipasti/utils/torch_utils.py b/antipasti/utils/torch_utils.py index c88b6af0..68ad166f 100644 --- a/antipasti/utils/torch_utils.py +++ b/antipasti/utils/torch_utils.py @@ -7,7 +7,7 @@ from antipasti.model.model import ANTIPASTI -def create_test_set(train_x, train_y, test_size=None): +def create_test_set(train_x, train_y, test_size=None, random_state=0): r"""Creates the test set given a set of input images and their corresponding labels. Parameters @@ -34,20 +34,7 @@ def create_test_set(train_x, train_y, test_size=None): # Splitting indices = np.arange(len(train_x)) - if test_size == None: - #indices_test = [44, 63, 94, 119, 144, 149, 254, 290, 328, 357, 402, 426, 464, 489, 604, 634] - #indices_test = [44, 62, 91, 116, 141, 146, 250, 284, 322, 349, 389, 410, 447, 471, 574, 604] - indices_test = [44, 62, 91, 116, 141, 146, 216, 250, 284, 388, 409, 470, 501, 573, 603, 648] - np.random.shuffle(indices_test) - indices_train = np.delete(indices, indices_test, axis=0) - - test_x = train_x[indices_test] - test_y = train_y[indices_test] - - train_x = np.delete(train_x, indices_test, axis=0) - train_y = np.delete(train_y, indices_test, axis=0) - else: - train_x, test_x, train_y, test_y, indices_train, indices_test = train_test_split(train_x, train_y, indices, test_size=test_size, random_state=9) + train_x, test_x, train_y, test_y, indices_train, indices_test = train_test_split(train_x, train_y, indices, test_size=test_size, random_state=random_state) # Converting to tensors train_x = train_x.reshape(train_x.shape[0], 1, train_x.shape[1], train_x.shape[1]) @@ -116,7 +103,8 @@ def training_step(model, criterion, optimiser, train_x, test_x, train_y, test_y, # Filters before the fully-connected layer size_inter = int(np.sqrt(model.fully_connected_input/model.n_filters)) inter_filter = np.zeros((x_train.size()[0], model.n_filters, size_inter, size_inter)) - + if model.mode != 'full': + inter_filter = np.zeros((x_train.size()[0], 1, model.input_shape, model.input_shape)) #perm_paired = [] #perm_nano = [] permutation = torch.randperm(x_train.size()[0]) @@ -131,7 +119,6 @@ def training_step(model, criterion, optimiser, train_x, test_x, train_y, test_y, #permutation = perm_nano + perm_paired for i in range(0, x_train.size()[0], batch_size): - indices = permutation[i:i+batch_size] batch_x, batch_y = x_train[indices], y_train[indices] @@ -158,7 +145,8 @@ def training_step(model, criterion, optimiser, train_x, test_x, train_y, test_y, l1_loss = model.l1_regularization_loss() mse_loss = criterion(output_train[:, 0], batch_y[:, 0]) loss_train = mse_loss + l1_loss - print(l1_loss) + if verbose: + print(l1_loss) loss_train.backward() optimiser.step() # Adding batch contribution to training loss @@ -168,20 +156,24 @@ def training_step(model, criterion, optimiser, train_x, test_x, train_y, test_y, train_losses.append(tr_loss) loss_test = 0 output_test = [] - for i in range(x_test.size()[0]): - output_t, _ = model(x_test[i].reshape(1, 1, model.input_shape, model.input_shape)) - l1_loss = model.l1_regularization_loss() - loss_t = criterion(output_t[:, 0], y_test[i][:, 0]) - loss_test += loss_t.item() / x_test.size()[0] - if verbose: - print(output_t) - print(y_test[i]) - print('------------------------') - output_test.append(output_t[:,0].detach().numpy()) + + with torch.no_grad(): + for i in range(x_test.size()[0]): + optimiser.zero_grad() + output_t, _ = model(x_test[i].reshape(1, 1, model.input_shape, model.input_shape)) + l1_loss = model.l1_regularization_loss() + loss_t = criterion(output_t[:, 0], y_test[i][:, 0]) + loss_test += loss_t.item() / x_test.size()[0] + if verbose: + print(output_t) + print(y_test[i]) + print('------------------------') + output_test.append(output_t[:,0].detach().numpy()) test_losses.append(loss_test) # Training and test losses - print('Epoch : ', epoch+1, '\t', 'train loss: ', tr_loss, 'train MSE: ', tr_mse, 'test MSE: ', loss_test) + if verbose: + print('Epoch : ', epoch+1, '\t', 'train loss: ', tr_loss, 'train MSE: ', tr_mse, 'test MSE: ', loss_test) return train_losses, test_losses, inter_filter, y_test, output_test @@ -289,7 +281,7 @@ def load_checkpoint(path, input_shape, n_filters=None, pooling_size=None, filter checkpoint = torch.load(path) model.load_state_dict(checkpoint['model_state_dict']) - optimiser = AdaBelief(model.parameters(), eps=1e-8, print_change_log=False) + optimiser = AdaBelief(model.parameters()) optimiser.load_state_dict(checkpoint['optimiser_state_dict']) n_epochs = checkpoint['epoch'] train_losses = checkpoint['tr_loss'] diff --git a/docs/citing.rst b/docs/citing.rst index c5586523..b83a0f8c 100644 --- a/docs/citing.rst +++ b/docs/citing.rst @@ -4,6 +4,3 @@ Citing ANTIPASTI in a publication If you want to acknowledge ANTIPASTI in a publication, we suggest you to cite: * Michalewicz et al. 2023 - - - Predicting and explaining antibody binding affinity with Deep Learning and Normal Mode Analysis - - This paper describes the functionality of the method diff --git a/docs/conf.py b/docs/conf.py index a3e952f6..339ccb13 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -20,7 +20,7 @@ project = u'ANTIPASTI' copyright = u'2023, Kevin Michalewicz et al' -author = u'Kevin Michalewicz, Barbara Bravi, Mauricio Barahona' +author = u'Kevin Michalewicz, Mauricio Barahona, Barbara Bravi' # The full version, including alpha/beta/rc tags release = u'1.0' @@ -118,7 +118,7 @@ # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'ANTIPASTI.tex', u'ANTIPASTI Documentation', - u'Kevin Michalewicz, Barbara Bravi, Mauricio Barahona', 'manual'), + u'Kevin Michalewicz, Mauricio Barahona, Barbara Bravi', 'manual'), ] diff --git a/docs/installation.rst b/docs/installation.rst index d8688196..22338d15 100644 --- a/docs/installation.rst +++ b/docs/installation.rst @@ -7,7 +7,7 @@ Requirements ANTIPASTI is developed using Python 3.8, 3.9, 3.10 and 3.11 and might be fine with older versions. -It requires ``adabelief-pytorch``, ``matplotlib``, ``numpy``, ``opencv-python``, ``pandas``, ``scikit-learn``, ``scipy``, ``torch``, and ``torchmetrics`` to work properly. +It requires ``adabelief-pytorch``, ``biopython``, ``matplotlib``, ``numpy``, ``opencv-python``, ``optuna``, ``pandas``, ``scikit-learn``, ``scipy``, ``torch``, and ``torchmetrics`` to work properly. Through Anaconda ---------------- diff --git a/notebooks/[Analysis] AlphaFold can be useful if only sequences are available.ipynb b/notebooks/[Analysis] AlphaFold can be useful if only sequences are available.ipynb index cf059b07..c27d8535 100644 --- a/notebooks/[Analysis] AlphaFold can be useful if only sequences are available.ipynb +++ b/notebooks/[Analysis] AlphaFold can be useful if only sequences are available.ipynb @@ -47,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "4862b206", "metadata": { "scrolled": false @@ -57,46 +57,39 @@ "name": "stdout", "output_type": "stream", "text": [ - "2nz9\n", - "5vpg\n", - "6a0z\n", - "4ffz\n", - "5dd0\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Erreur dans nma.pdb(pdb) : nma: insufficient number of atoms\n", - "Appels : suppressMessages -> withCallingHandlers\n", - "Exécution arrêtée\n" - ] - }, - { - "ename": "IndexError", - "evalue": "index 166 is out of bounds for axis 1 with size 166", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[3], line 28\u001b[0m\n\u001b[1;32m 25\u001b[0m preprocessed_data \u001b[38;5;241m=\u001b[39m Preprocessing(modes\u001b[38;5;241m=\u001b[39mmodes, pathological\u001b[38;5;241m=\u001b[39mpathological, mode\u001b[38;5;241m=\u001b[39mmode, stage\u001b[38;5;241m=\u001b[39mstage, regions\u001b[38;5;241m=\u001b[39mregions, test_data_path\u001b[38;5;241m=\u001b[39mtest_data_path, test_dccm_map_path\u001b[38;5;241m=\u001b[39mtest_dccm_map_path, test_residues_path\u001b[38;5;241m=\u001b[39mtest_residues_path, test_structure_path\u001b[38;5;241m=\u001b[39mtest_structure_path, test_pdb_id\u001b[38;5;241m=\u001b[39mtest_pdb, alphafold\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 26\u001b[0m original_structures\u001b[38;5;241m.\u001b[39mappend(preprocessed_data\u001b[38;5;241m.\u001b[39mtest_x)\n\u001b[0;32m---> 28\u001b[0m preprocessed_data \u001b[38;5;241m=\u001b[39m Preprocessing(modes\u001b[38;5;241m=\u001b[39mmodes, pathological\u001b[38;5;241m=\u001b[39mpathological, mode\u001b[38;5;241m=\u001b[39mmode, stage\u001b[38;5;241m=\u001b[39mstage, regions\u001b[38;5;241m=\u001b[39mregions, test_data_path\u001b[38;5;241m=\u001b[39mtest_data_path, test_dccm_map_path\u001b[38;5;241m=\u001b[39mtest_dccm_map_path, test_residues_path\u001b[38;5;241m=\u001b[39mtest_residues_path, test_structure_path\u001b[38;5;241m=\u001b[39mtest_structure_path, test_pdb_id\u001b[38;5;241m=\u001b[39mtest_pdb\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_af\u001b[39m\u001b[38;5;124m'\u001b[39m, alphafold\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, h_offset\u001b[38;5;241m=\u001b[39mh_offset, l_offset\u001b[38;5;241m=\u001b[39ml_offset)\n\u001b[1;32m 29\u001b[0m af_pred_structures\u001b[38;5;241m.\u001b[39mappend(preprocessed_data\u001b[38;5;241m.\u001b[39mtest_x)\n\u001b[1;32m 31\u001b[0m input_shape \u001b[38;5;241m=\u001b[39m preprocessed_data\u001b[38;5;241m.\u001b[39mtest_x\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n", - "File \u001b[0;32m~/Documents/PhD/ANTIPASTI/antipasti/preprocessing/preprocessing.py:132\u001b[0m, in \u001b[0;36mPreprocessing.__init__\u001b[0;34m(self, data_path, scripts_path, structures_path, df, modes, chain_lengths_path, dccm_map_path, residues_path, file_type_input, selection, regions, pathological, renew_maps, renew_residues, mode, stage, test_data_path, test_dccm_map_path, test_residues_path, test_structure_path, test_pdb_id, alphafold, h_offset, l_offset)\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtest_structure_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtest_data_path \u001b[38;5;241m+\u001b[39m test_structure_path\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtest_pdb_id \u001b[38;5;241m=\u001b[39m test_pdb_id\n\u001b[0;32m--> 132\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtest_x \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mload_test_image()\n", - "File \u001b[0;32m~/Documents/PhD/ANTIPASTI/antipasti/preprocessing/preprocessing.py:587\u001b[0m, in \u001b[0;36mPreprocessing.load_test_image\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 584\u001b[0m h \u001b[38;5;241m=\u001b[39m h[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 585\u001b[0m l \u001b[38;5;241m=\u001b[39m l[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m--> 587\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgenerate_masked_image(raw_sample, \u001b[38;5;241m0\u001b[39m, test_h\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mint\u001b[39m(h), test_l\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mint\u001b[39m(l))[\u001b[38;5;241m0\u001b[39m]\n", - "File \u001b[0;32m~/Documents/PhD/ANTIPASTI/antipasti/preprocessing/preprocessing.py:512\u001b[0m, in \u001b[0;36mPreprocessing.generate_masked_image\u001b[0;34m(self, img, idx, test_h, test_l)\u001b[0m\n\u001b[1;32m 510\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(idx_list):\n\u001b[1;32m 511\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m l, j \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(idx_list):\n\u001b[0;32m--> 512\u001b[0m masked[i, j] \u001b[38;5;241m=\u001b[39m img[k, l]\n\u001b[1;32m 513\u001b[0m mask[i, j] \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 515\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n", - "\u001b[0;31mIndexError\u001b[0m: index 166 is out of bounds for axis 1 with size 166" + "5w1m\n", + "4f3f\n", + "2r56\n", + "3vw3\n", + "6axk\n", + "3eoa\n", + "3bpc\n", + "1yej\n", + "5vzy\n", + "4r8w\n", + "4kht\n", + "2p45\n", + "4rgo\n", + "5cjq\n", + "1tzi\n", + "1a4k\n", + "1m7i\n", + "4u6v\n", + "2i5y\n", + "5w0k\n", + "3o6l\n" ] } ], "source": [ - "modes = 30\n", - "n_filters = 2\n", + "modes = 'all'\n", + "n_filters = 4\n", "filter_size = 4\n", "pooling_size = 1\n", - "n_max_epochs = 552\n", + "n_max_epochs = 935\n", "\n", "mode = 'fully-extended' # Choose between 'fully-extended' and 'fully-cropped'\n", - "pathological = ['5omm', '1mj7', '1qfw', '1qyg', '4ffz', '3ifl', '3lrh', '3pp4', '3ru8', '3t0w', '3t0x', '4fqr', '4gxu', '4jfx', '4k3h', '4jfz', '4jg0', '4jg1', '4jn2', '4o4y', '4qxt', '4r3s', '4w6y', '4w6y', '5ies', '5ivn', '5j57', '5kvd', '5kzp', '5mes', '5nmv', '5sy8', '5t29', '5t5b', '5vag', '3etb', '3gkz', '3uze', '3uzq', '4f9l', '4gqp', '4r2g', '5c6t']\n", + "pathological = ['5omm', '5i5k', '1uwx', '1mj7', '1qfw', '1qyg', '4ffz', '3ifl', '3lrh', '3pp4', '3ru8', '3t0w', '3t0x', '4fqr', '4gxu', '4jfx', '4k3h', '4jfz', '4jg0', '4jg1', '4jn2', '4o4y', '4qxt', '4r3s', '4w6y', '4w6y', '5ies', '5ivn', '5j57', '5kvd', '5kzp', '5mes', '5nmv', '5sy8', '5t29', '5t5b', '5vag', '3etb', '3gkz', '3uze', '3uzq', '4f9l', '4gqp', '4r2g', '5c6t', '3fku', '1oau', '1oay'] + ['4gqp', '3etb', '3gkz', '3uze', '3uzq', '3gm0', '4f9l', '6ejg', '6ejm', '1h8s', '5dfw', '6cbp', '4f9p', '5kov', '1dzb', '5j74', '5aaw', '3uzv', '5aam', '3ux9', '5a2j', '5a2k', '5a2i', '3fku', '5yy4', '3uyp', '5jyl', '1y0l', '1p4b', '3kdm', '4lar', '4ffy', '2ybr', '1mfa', '5xj3', '5xj4', '4kv5', '5vyf'] \n", "stage = 'predicting'\n", "regions = 'paired_hl'\n", "\n", @@ -105,13 +98,13 @@ "test_residues_path = 'list_of_residues/'\n", "test_structure_path = 'structure/'\n", "\n", - "test_pdbs = ['2nz9', '5vpg', '6a0z', '4ffz', '5dd0', '3u0t', '1zv5', '4w6w', '3l95', '1oay', '1m7d', '2hkf', '5alb', '2p44', '4jan', '4odx']\n", - "h_offset_list = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0]\n", - "l_offset_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0]\n", + "test_pdbs = ['5w1m', '4f3f', '2r56', '3vw3', '6axk', '3eoa', '3bpc', '1yej', '5vzy', '4r8w', '4kht', '2p45', '4rgo', '5cjq', '1tzi', '1a4k', '1m7i', '4u6v', '2i5y', '5w0k', '3o6l']\n", + "h_offset_list = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n", + "l_offset_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]\n", "original_structures = []\n", - "af_pred_structures = []\n", - "\n", - "for test_pdb, h_offset, l_offset in zip(test_pdbs, h_offset_list, l_offset_list):\n", + "af_pred_structures = [] \n", + " \n", + "for test_pdb, h_offset, l_offset, in zip(test_pdbs, h_offset_list, l_offset_list):\n", " print(test_pdb)\n", " preprocessed_data = Preprocessing(modes=modes, pathological=pathological, mode=mode, stage=stage, regions=regions, test_data_path=test_data_path, test_dccm_map_path=test_dccm_map_path, test_residues_path=test_residues_path, test_structure_path=test_structure_path, test_pdb_id=test_pdb, alphafold=False)\n", " original_structures.append(preprocessed_data.test_x)\n", @@ -124,10 +117,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "681d8819", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPsAAAQ5CAYAAAC0xAqIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydeZhdRZn/v3XT6XQ6nU4ndMhCgBACBAwQIIRVCQ6KCzqCMoprxgX3EfeNGeMI4zKjI4ojivMTFUFFhGEQUXAIiMgSJEKAsDcQICEh6SSdTtPpdP3+OLf7vPXeU9V1T9/bt3P7+3mefrrOOVV16tR+zq3vW8ZaC0IIIYQQQgghhBBCyO5PodYJIIQQQgghhBBCCCGEVAZ+7COEEEIIIYQQQgghpE7gxz5CCCGEEEIIIYQQQuoEfuwjhBBCCCGEEEIIIaRO4Mc+QgghhBBCCCGEEELqBH7sI4QQQgghhBBCCCGkTuDHPlI1jDHLjTFW/C2tdZpINiwrUiuMMStk3at1eipFvT4XIbXEGLPQGPMdY8w9xpgXjDG71Ng1t9ZpJPkwxlwyGsvSGLNUpWt5rdM01jHGzFVlckkV78XyJ4TstjTUOgGEEEIIIYT4MMYYAP8G4LMATI2TQwghhBAy6ilrZZ8xpkP9umGNMc8YYyaWe2NjzI1cSUQIIYQQQobgMwA+B37oGxUYY76Z8T7w1Vqni8SRoebI+ze31s9CCCHETyVkvLMBfKQC8RBCCCE1xxizTL3QLKt1mggZqxhjpgJYrk5fBuDtAE4F8Arxt25EEzcGMcY0AHhbxqV3GmPGjXR6CCHZ0ERPZaF5FrI7UikZ72eNMT+w1m6tUHyEEEIIIYT8A4AmcXy+tfbcWiWG4DUAZmScn43kg+v1I5scQgghhGRRqY99ewD4JIAvVSg+QgghZLfFWru01mkgpE44Th1/vyapIAMsC1z7R/Bj3+7IHwD8e45wXElLCCGjmEpu0PFxY8x3rbUbKxgnIYQQQggZuxwk3J3W2mdqlpIxjjGmHcBp4tTjACYA2Kt4/PfGmKnW2s0jnjgyHJ6z1t5Y60QQQgipLMO12XebcE8G8PlhxkcIIYQQQsgAbcJNczG15W0AxovjnyOxnzjABABvGdEUEUIIISST4X7s+xcAu8Txh4wxc4YZJyGEEEIIIYBrr49G0WvLP6rjSwH8bAg/hBBCCKkBw5XxPgTgJwDeXTxuQvIB8OxhxhuNMeYQAIcB2BPAJAAbATwL4M/W2s4q3G8GgKMBzAIwHUAXgOuttQ9Hhi8AOBbAPCTGjPsAPAJghbV22xBhJwA4HsBLAEwB0CnC9uZ5nmK8DUhkMocAmAmgFcAOAJsAPAxg5XDiryXGmPEATgAwF8mz9QB4AMDN1toXhwjbAuBEJHnTAuCFYtg/W2t3hcJGpm0WEltEMwBMBbAFwHoAd1lrnxxu/MV7TAfwMiQSm4FnuA/AHZV4hoz7tSN5ppkA2gF0A3gewF+ttQ9V+n5lpq0BwGIkbW86kvzoQtJf3A/gQWttrhdJY8x+xbj3RNI2NyGxZfMXa+364ae+5H5tSPJ5FpL604OkTv+1jDgWIGnzs4tp3gjgF9baLUOEm1i8995IntcC2IBkPLirGvVqiPTMRdIn7ouk7+pHkv9PA7h9qOcZzYg+f18keb0LSXt6FMCdlc5rY4xBUo8XIWkjO5DU41uttU9X8l55McYciaRP3guAQSIjvHkoEyLFXUKPQTJfmIak7T8B4P+stduHkR4D4AAkbWkOkjrYi6QOPoGkr+3OG3/gvs1Ix6dWJH37U0jmAxW/XxnpmoZkzJ2FxJ5zF5L+YZW1dk3eaCuUvPJvXKP5kTGmCUn5Hly8ZyeSPu3mWvVpxphFAA4Xp+4YmPsaY/4mrh1tjDnEWvvACCfRoTjGHY1kjOtHMtbfU410GWMWFu81E0n7fx4if4YR7wQkdeBgJGPAwLxlE5J5y99GeszNQ7H/PRbA/kjGlgKSfqEDwG21eMcotrGTkLwftAPYhqRN/2k4Y0IlKL5rHgFgPyTzs3EAtiPp558AcP9okcoP9714pCiW9zEA9kFS3s1IyvxJJPn5aA2TN+IUv0csQVLHZiFZlf2ktfayYECM7nc9koG1NvoPSadsxd8cJI2mR5zbCWB+RFw3qriWlpGOZgDnZqTHqnTcBODvynxGGccKcf5UAL9H8nFO3+sc4W+ZuraseH4CgC8i6VSy0rsNwHkAGjPS1ALgq0gme1lhO5FskDKujOdsB/ABAL9FIovx5aNFMrG9DMChZebl8rxlPNx7IJkcfwNJ55P1TC8AOAeAyYhzOhID4N2esM8BeFfO9BoAZwG4G8nk05fn9yP5aB5dpuo+BwC4ptgOsuJfB+DTABqGW1bimW5H8jHC90yPA/hoVh2v5h+AIwFcEVHP1wP4EYCjI+NtAPAhAA8G4uwHcBeAN5WZ5g4RR4c4vwTAb+D2uQN/3xb+lqpry4vnxwH4IIBVnvQuCqTpWAD/G2gXA+3qPwG0l/GsK2QcEf6bAJyBZEXJs0OU6S4AtwB4bUS8c4eIK/RX0l7KfS4VdgGAXyKZNIfy+iIAs8qId5mKY5low2cjPKbeCuDYKrdVX70tINzWXkTSZ7dmxDkeSV+3zhN2B5LxdWIZ6ZwM4B0AriyWQ6hu9AK4FsAJZebF8qw6huRD5ffgb4ddAC4GsEc1yyojvacW21rWHGng73EAnwXQVOazx/7NrdCzjMT86JKstBfr1jcC992JpO+bM5LlW0zbBSotHxHXPqWu/XuO+DPzJOBf+l0hzr8e/jHOIvnB8w1lpGupCr9cXHsTkvla6F6vLjMf5iCZ0/+xWL9C9W8rkr5vvzLvodvYJVWqM3OQ9EebA8+wrdiGDigj3rl504/k/eA7gTa2o5inewxV/lXIrzMA/Anh9wNbvP4AgK8B2HuI+jqsPlRdl+0s6r246LdDXOsoM0+WqbiXlRn+ZAC/i2hLTwL4NoCDh2grsX8lz5kR19IynyWzLCLb+NLi+bZivVmbkebOQHyj+l2Pf4G6UGYl61AFOqd4Xk8ALouIK9fHPiRf5bMqaOjvV4icyOuGVKzc/zlE/OeI8MvUtWVIPh7dFZnWPwKYIOKbh2TFTEzYyxDxcQjJKjLfR6DQXx+AT5VRX5bnKeMy62TJPQDMR7LyJeaZLoX44IdkVctQHxAG/r5RZlr3BPDnMvP8PpQ/iXsHhh7UBv5uQfKrYa6yKtbPu8t8pgfKfaacdWNSsXzLreedEXEfgPBHvqy/FYh8AUfGxAjAJxAeYL8twi9V15YjGeBXDJHGRRlpaUZil6msPARwauSzOmmK8L8yR5laAJcjMA5glHzsK5ZVOf1zFyJ/fED2+DQZye6ZMffaCeDtVWyzWfW2GcB1kem7F8A0Ed8eAP4SGXYFgObIdG7MWU++hcgfcJA9tr0EyequmHs9jzI/MOYss0kAri4zH54EcGQZzx77N7cCzzNS86NLdNqRfOR/LPJ+6wEcXu3yFekdj2Ql1sD9eyF+1EGyek6OT8/F1vVQngzh32m/xXPfKqPMforiD55D3GepCre8mB86vaG/z0XmwWEY+kNP1l83gLeWkdfLVfhLqlBnzkb4x0H91wvg85Fxz82TfiSrT2PfIZ8BsDCr/KuQVxOQ/Cidp9977xD1tZy/kjanrq9Ame/FxTg6xLWOMvNmmYp7WWS46Uh2mS43D1YN0VZi/0qeMyOupWXmhVMWZbbxpQAORaIA8KW50xPXqH3X49/Qf8O12TfA+UiWFw/wFmPMYRWKexBjzCkA/g/prl8D7EQiZ12J5EON5kwANxRlmeVyHpIVYAO8iOTj20okA4EdIvwEJL8OLxbnni6GfxCuzUMAeDmSThTGmD2RrE48UFzvQPLh8JGMe5+FZAXDUIxDqYS7H8kE/G8A7kDSSHdkhPt3Y8xnI+5RK9qRdO77F48tkiXvdyH5AKh5G4p5VpR83IhkOTOQ5MmjxbAdGWE/bYyJMkRtjNkbyYY2x2dcfrJ4j8eL95QsBPDnolw95j5vRjIBbVKXugCsRlK+UgL0UiQTjLJlUsaYxUhepI9UlyySZ7mreM8udf1gAH8xxswv955lpG0mkpVIb8u43I1EqnEnkjYYlM9nxH04ko+2C9SlfqTPnSXDPgnArUX5dlkYY94H4JtI7az2Ia2bT6G0H9GMA/A/xTQMsAVJ+axCsjop677tSCZ3b824/Fwx7F+RvARKpgC41hhzxhDpyoOu20Cyaut+JL843otE4qR5C4BfF2WXoxJjzA8AfAml/fNmJHmd1Z4mAbjEGPOJHLccj2S15qni3MbivVahdDOEBgA/NsYcleNeeTBIPtK+Wpxbj2TSuRrJy6HkUCQf+AdkrjcgWZE6wDNIxt4HUNpmTkLyoSAGXQctkhfI+5DUwdXI7lc+DuDCyHtoZiBZRSHtIj+H5HkeQTIPkkwH8DtjzJKc9xsSY8wUJHOUv8+4/GwgbfsAWGGMeVm10jYMajU/2hfJ/HaeOPcUkjy8H6V1fU8A1xhjJue8X7m8Dsn8aoDfWyGdt9Y+i+TH6gFmAnjVCKUNAGCM+SKSNjZAD4A1SMaoLJn/OwD8NOeYcAmAd4njTiTt/25kj6dfNcZktRNNI0rnYzuRzC3uQTJveQil9WEigJ8X54A1xxjzBQA/QJIuyTak845OdW08gH8zxlxQpTQdjGSOn/UO+TCStvacOD8byQ9hM6qRHsXFSFaJajYgyauBcaXiZmFyMNz34qpTfJ+7E8ArMi5vRTL3H2hLPSOYtFoyB8mcaG9xbh2S/vFBuN9xBhnN73okkjK/KHfA/Wo7R1w7X127Zoi4ylrZh+QDjP41fSuAjwFoU34PRfYvJP8v4hml//VIf6l8HMnHtGblfx6EfAOlv0A8Ufzfj0Rytb8K345kubgMswuJfZiBXyR6APwbgL1U2L2RSPpk2O0YQkJXvKdFMin5IpIPkSWyGiST1xOQrIyU99gJ4IiIvFxeThnn+cu4x0B+v1jMs9nK/z5IpFcyTFexfq0uHm9BIknZQ4U9GMlKOBn2GQDjh0hjAcmyfF3G34X6Fa2YjvOQTOSk//sxxOpUJL90atnfEwDeCLGculiur4IrPXkCZZQVkhcNvQLyYSSGuXV7HA/gNSiV1dyNKizzRvKidqu6l0Xyovx3+p7F8jkEwGeQfCjqDMQ9qficMt4Xi/VwRkbf8H2U/kp/IzLk4ypsh/C/BUm7HuiTPpCRxzMBLBHHS9U9nxPum5F82Bin4jgOwHSVLzeoeDoB/DOUbKTo/wiU9kdbAMwb4llXyDAR5bsayUvwN4vl2ebxdyASqYKWPH/E478JwCnFv2+oMN8Q17L+plbgud6fUWdXIvkBqCD8NSKR+jyu/O7C0O12mQojVxH9AmplJ5K29CZVfywSW5QVbbeeeiv7pSsAHKb8T0bS9nQbOxXAD0W++MbeizLycGFEOruQfEQ4D8kY2ZLhxyCxffgDlK7IPS3iHssDeXEVlGwUibz300j7ioG/xxG5YjFHeV2WUWcvB3CI8jcVycpkPT6tg+hzhP95cNvXOhXG1w6D8uDIZxqp+dElKtxAW9yBZD6tpXmTAXwOpasOv1qNss1I7zXqvv+Q4ecdys+vy7yHzpO5Q/iXfteKvNkI4L0AJin/x6F0LmYBfHCI+yz1lJVFMkaeCLePNsX6qOcKT2OIlYTF+maRjNMfR/I+UzLHRDKvOhWlY/QWqHmv5z7LVbhLKlhXTkVpn/wogDfIZ0EyxzgF2ZLrdw5xj7nlpB/JWKbv04VELj1V+T1c1fcnVLjlFW5bR6v4dyKZu2SuikKyYv11SMavTpSu7JuKtE/8qYr7kwjPZbL6Ohm+7Pfi4rkOEUdHmfmzTKVh2RD+W1Ha9vqRzHGOQ+nctwHJh6wvI2nbqzKeZyB//qbiDeVlycp61HZl38A8bhcSk0ULlP/xUCYHMIrf9fhXRr0ps5J1qAKUH/vakKymkNePC8RV7se+q5T/53VFzQjzBRXGAnjVEGG0f4vkF5W2yDzSndJAwwourwfw/1SYB4r/t4fyBsmE848q7D8Nca+JobLxhPlHdY8YqfawOrXIdOl7WCQrt14eCJP1EWMgv9cj8LKHRFL2gAr7+iHS+LGM+lAyUVZhXo7SjxTBST0Su1DS/6pQvS3WgxWeOj9Ue/yt8v9LDPFCieRjyv+ocB+rQp34V3WPPgAfKCN8qO78p4p7O4CXDhHf21E68X3/EGE6MsrkEWR8ZPOEX+op1+9jiA+NIo5Pq7D3A9gnItznVbirhvDv1MGI+F+G8uyTHgl3bHoKQ79wLVPPsCxHPYx+LiQrCPSHkN+E0olkQqslzU8iMKnKeK6Bv2D7QLKKVcuxDguFyfMXqLdBCRySjcGk/weLbW4XgDcPEfYSFfZbkemMakdF/6ci+VFg4B63RYRZ7smL84YIdxRKbVGVZXIi8pn+PiNtnxwizEKU2ji8POJeHcJ/R6WfRd1rpOZHut5ZJCt4g3YxAbxThVmHIX5wrECezID7kXELsj8KTILbj72IMmxHZuTJ3CH8Z7WPtaFwSOZ/P1NhtkL9WKfCLPXca6g52QyU/lAy1HxxTwAvKbN8dF/xbznC/B7hDxf675hA+9EfB25Dxg8iIsx4lM5ftyDjhwARZq7yf8kQz6ttSnYiYKO4GObrnnJfXuH2pX9cfHcZYVsQmBdmlPPSHOnLyoPo9+JiHB0ibEeZ91+m7r1sCP/6A2f3UO1OhB0XyiMMwxZzJcpDhV1R5r0skjnR28q436h91+NfGfWmLM+Bj33F659T128KxBX9sQ+JDTb9snxKZJr1Cr8bh/CvG8YWqBV1Q4TXnZJFhKFilNo7Gfgb8iMFkl8qZJjrq1JZXPtnvQAmD+F/WJ1aZJqyOrMPR4Q7JiOcxRAfg4thz1JhLgr4LaD0V8GvRD7bh1W4TqhfqoXfA5XfbkTYL0KyGiTL/lSoPS5Rfm9DhN2bYtgWuJvUPIGcm5B44m9D6YvupysU9xQkEhQZ93siw/67CvcwAh8LUNrXRq0WEeGXZpTpHbF5jeSjtqwXnSivH5SrZ3chYHgbw5w8RabnveW0c4z8x76vqPs9gohVSkhWAm9RYb029TKeywL4buTz6BeSz1ahnLLq7RUR4ZqQbQD+axFh94I79q6pUh08T6VtqB8rl2c8zx8i7/U2FW4LPGPHMJ5Hr5D6WWS416pwfQD2HSJMh/DfUY3yqUB+lDs/uiSjfN8Yea87VLjMDy8VfLZPqvv9d8Cv/pD20TLuo/Nk7hD+df71I8JOJZKPS3pTjX8O+M/ql/438pk+pMJ9v0plJNvjugj/Wf1LOX+rPPG+R/nbhMBHOxGuGaXznnMD/ucqv5cE/BZQaqcs+IO7CKsXU1hU/mPf1SLubajsnFiX89IccejnL+u9uBiHLNuOMsMuU/dfFvB7AErfpc+sYH6ukHGPdHmosCvKvJcF8B9l3GvUvuvxr7y/StnsG+A7SH5lHGCpMSZLL18u74Vrw+Jaa+2NkWE/Cdc2z98ZY/b3ec7ge9baZ8rwr+lGIicNYhN7JyvV6aeQ2HEYKuxfkKx0HOCIchJYBj8T7vFIOoLRxloksqkg1to7UGr74jZr7fUR9/hfuLb1Qvn9SiSTkgGeR0R9KPJ9JFKxAaYA8Nljebc6/i9rbcdQN7DWbkIiGSqHj+tja21fTEBrbRdcu1hzkaxEqRTvQSJ3GmAVErlnJTgLyQA2wL1IVuTG8GUkHyMGOADJDmGxXGGtvacM/1n8s7V2KNt+A7wDiVRkgK+W2Q/+q3AXAJxeRthqcDncceCEWiVEU7QX9V51+nPW2iHtyFhrn0Oy+kBydhm334GkbsbwC3U8Enb7LBLZeNhTkld/UKe3I5FCDRX2GSQykwEOMMZMKieRkfxMHeepg5+K8WSt/TkS+14DtAL4hxz3y6RoD+lEcWon4uwFw1r7WyQr6wcYh6Tf3t0Z7vxopbX2yki/v1TH1W6Ly9SxrsuhazpsNbnaWvvnoTxZa3ciUf5IdB88FJ+P9DdSZXWpcM8o8z2nkrxPHZ9vrdU2fUuw1najtEzKGctCvBKunbKV1tpfRYaN6nOHibRr2I9S292jjeG+F1eTfwKcbxvXWGuvqFViRhk7kPzoGMtoftcjZVDRj33Fzlp/OCj3Q0IWS9Xxf8cGtNY+hdKXgJPKuPdlZfjN4kZr7eahvQFIbFFJrirj5VyG3dMYMyEyXDk8oY6r9VFxOPwmtjNC8suuJGpAKHZiHeLUPgHvS9Xx5dZabdjbd59+AD8eIr4B9Iejn8Tco8ilSFZXDIkxpgDX6PajxQ+n5aDb40vLDB/iVHX8nWI+VoKl6vjH1iY/YQ1Fsc7ojyU6vhDD7Yc2IFlNHctr1fGlmb48WGv/BvdjeiXLuGystdsxMj+I5OEgJDYXB9iIxF5QLD+G+yHzGGNM1iYmWfzRCiP7Q7Aabj+xt89jBbnPWrtmaG8ASsfPG621nbH3Ee4C3E0wKsVwx897rLX3luFfjwHl/LgwFEvV8XXW2nVZHj38aIj4dkeGW756fAihf/ipWlssGmdfKE49jcSenI8/wt3k4EhjzKHVSFsGl5Th97dwN5baxxgzz+dZsdpaq/ubTKy1LyD54X6AapVVzefnxR9JFotTfUgklbFcCXfTjr3LKJMQuu+LTlPxR9a/VSANIeTGkq1I7PGNZoY7H60m+h3g27VIxCjlutg50W7wrkfKoNIr+4DEKHaHOD7aGJN7VUfxo5UctCySHcvK4Y/q+LjIcNuQ2GcbDnq1Xgi9g9fdmb7iwk6JCWSMaTDGvNoYc4Ex5iZjzFPGmC3GmF3GGCv/kOxaJGnPirPG1CK/Q3l9rDrWdXEohqy7xphGJAaFB9hkrb1P+/NR/NVVf/j0cSgSqewAd8XeR6B3qj04RxwlGGMaULrb8XWViLtI1csyQLmDrOau2I+exZVmctXRczl/xZUvOBUpY40x5khjzFeMMdcaYx4zxrxgjNmp+65i/yV3QR5NfZeuV7cUV55EUVzd96A41Yj4X1Cj26+1thfui1jUGDNMRvv4aYwxLzXGfMMY8wdjTIcxZrMxpi+j/r2ogpdbB1cM038lV+JXui9cXOy/RxUjPD8qZyx9Xh1Xsy3+ozr+eehHruIP1PpjgI6jWoQ+QjoUfxTWqwBj20i58x5ZXtFlZYxpMsa8yRjzfWPMn40xzxhjthpj+jPq3+9V8HLr30+staaMv0UZcRyNZKXuAPfGrOobwFr7IpLN1STlzJN86HJdUWb4cv2Xyw3q+OfGmE8ZY6ZW+b55qMR7cVUwxsxEopoZYDuSTRVJQjnvEaP2XY+UT8U/9hVfCLQs6CvFr8R5mInk5WWADmvt1jLj0L/KhFZiSZ6swKqg6IEOieS3UmH1dvclGGPeieSF/DokS5+XIvnVsRVxdWM0DkS1yO9QXu+rjsv9hXA13CX9WXV3LwByJWfUL86K2BUjurM+K+vDSugPpdu7T8uR3ixmIDEQPsDT1lot1c5F8QOY/EV+J9wPLDHk7Ye6ypkwe3i8DL8z4JbJrHLLuFjOR4s4KlXGAABjzLHGmJVIPuici2Ql4rzifWI+Goymvmu4fURWmNi6pT8aDIVsu0OOMRVgNI+fr0Vie/MWJBLWVyApyza4L7w+yq2D0T/gFHkA7orPSqyQGWBYdba42kn+gDARwPThJqqS1GB+VE5b1GNoVdpi8cf2t6jTIQnvAHol+NtG4GPuU9baLWWG0W0qto1Utd8sfmT+OJIVklcA+ACSHzJnIzFTYgLBB6jFGFfLsSyELNddcM3jxFDOiuo8XAH3A1oLEjvP640xNxpjvmCMOckY01zldMRQiffiaqGl638tQx03FijnPWA0v+uRMqnGyj4gmQzIF+GXINmRMg96wIqVHEn0pD92ECz3o2IWQ9pdqlJY72TAGFMwxvw3EpnPLJ+/CKohFR4utcpvH8Oqv8VfOmU9bMwY8NuGc48iemWLjz2G9lI2bRWKR6et3Al5iClw+8vOMuTiA9SyHyonjtFcxjDGvBvJiozh2P8YTX1XLce4qowxFWTUjZ8AYIz5EpLdI+cP4x7l1sFyx46dSFZhDDC+gi+LtayzVaWG86PR2Bb/Hu4L2j3W2iFX9VhrV0GZlgHwmsomrYRKzHvaIsNVY64IIFnNh8Qu9LfKSE8WtRjjRmu/0CbcW8pZOV8kdn6ci2J6XofSj5DjAfwdEnNYKwB0GmP+ZIz5rDFmJMxoZFGJ+Wi1qOY7QD1QN+8BpDyq8kubtXaXMeafAfxanF5ujLk8Ryfboo71l+IYdJjJmb5KKTetuwtfQOmGDtuQSCDuRmKTZROSCY3Mgxko03YXceqvLdq1LJftcDvJyXBXomhj8nnvEUPbkD7Kp1I/Ouh23VWheIHdvx8qJ462CtxPU5GXUWPMy5DY+5Lx7ULy8e8OJCYk1iPpu7Rs8lIkfdhoo5Z1i5SJMebtSHa5k/Qg2Q3zLiSrwTYUz/Uqf1quVQ7VGDvyUs91lvOjlGXq+F5jzCmRYVfBtfX3jyjPFmm5VGLeMxrq4IVwbWUBycemFUjy9Gkku6HugLty93AA/1H95AUZrf2CnCNXc36cG2vt48aYowB8FMCHkW3bcTySjZFOBHC+MeZnAD5TAeVHOYzm9+JqvgPUA7V+D6jWAjMyBFVbVm+tvdIYczfS1Rf7Idml6b/KjEo31jy75Okw2zJ9jQGMMXuidMerryPZMSuYL8aYg6qWsPqlC6mNFmOMac7xwW+o+qsnInlWb8S2K532SwD8PMf9JLEb2AyF/tVKTzyHw1jqh3QZ3wPgM7VISAbfgvuh73cAPlDciClIUVYwGhlLdWu3xhgzHom8SnIJgE8PtdGJGf6mWZXo1ytVL+qyznJ+lGKMmYVkF1PJu4p/eXitMWZ6FT9MjKb2kQtjzGFwPzT3Afgskt1P9Y9XOmyM6YBqM1r7he1I5PdAdefHw6L4bvB1Y8y/I7GL+nIkG0oei9L57DgkH+NfaYxZaq19ZCTSOMqp5jvAWGM0v+uRMqm2DY0vArheHJ9rjPlx7G6kRXTlyGNYXduCGcsV7vVwbYZcbK39XGRY6u3LZzNcg8ztcDcuCGKSzTdaxanejI+Fneo4TxuJXbKtX2hftNaWs8trNdmkjvesYNxbkNhOHPhlqs0Y01CmlHd36Yd0GTePhjI2xsyHK929H8AbinZiYxgVMsEMOMbtPpwEd+fkG6y1sZsPDHf8LKteFD9MypUOO3OuLM+iXuss50cp70Sc7clYxgN4G6q3O2Yl5j2dFUjHcPgHuD9mfcla+63IsKOh/o3WfqET6Tx6ijFmfJkqs2pIGr0UbeLdVvw7r/gh9wgkO83+A4DDhPfZAH5tjDliFNvSA5LNNfMS+4G2mu8AlSJ3PoywzcbR/K5HyqSqSyqttb+HuzvWLCRLlMvhObhSmLnGmFafZw+Hq2O9Q8xYQu9W+r0ywi4c2gtRdKhjXReH4lC47TSr7j4DV7KYp5wOG9oLAOAJdTwcu2mVZh3cX5b3NsZURLZZ3H1QfqQdj/J3ltpd+qF1SCRCA+xvjBmJnVeHQvddF8d+6DPGHIDRZadP0qGOy+0jssKM1rq1u1PL8fPQMv2/BO7HmnKMcw9Fhzouq84aY/ZAsrHUADtQ3oYq1YLzo5Rlu0mcA+yTY5zS855KtpE8yPrXD+CiMsKOhvrXoY5Hy1gmy3Ucyp+7xc6Pq4K1dpe1dqW19nxr7eEA3gR3jnYYSlfhjjaknctyNxSK3bzpUXV8xChZ8SrR9j7LyYuR3MRqNL/rkTIZCf30F9XxZ8sZkIsvc38VpwyAk8tMw9+p47+UGb6e0B8/Hioj7MsrmZAxwu3quNw8HLLuFtuI3MFsWlEOEoUxZjqSF8MY7oS7vPsoY8xePs8jSXHXrT+r05U0Cl71shwNFH/xlvnYgOobV49hJPsu/Qt5NTej0PXqpeXsXFmU28mXFz1mkspRy/Gz3HnPSer4zmHeX1LpvvCuHBseVQPOj5Dsdg5ggTi1AcB4a60p5w/J2LFexHO4MWZRFZO+NNZjsY/VH3cr2UbyIOvfBmutXqkUYjTUv5Vw7QgeZoyJXt1XNHVwgjpdiXmSLtelZYYvt++tKtbaKwF8U50+0eN9JOcyIaTEdmpx5XksR8d4stauh9tntwB4WRn3icHJT2NMufmppcblLEiIyocKMWrf9Uj5VP1jn7X2zwCuE6emAfhUmdGsUMfaeLKX4o5F+hePW8q8fz2hO6bGqEDGzARwRuWTU/esUMdvLe62NiTGmAJKfwm/OcNr1n3eGXOPIm9HpKS/+GHxj+KUAfDJMu5Vba5Xxx/NMRj7WKGO/zE2bmPMJABvUad9ZTka+J06/lQF8zEvefsuA+BDZd6rEnYwo7DWPoRkBfsA05HszBfLMrgruO6w1lZtt8gxTt462IQy5i0eFpXzIw5Kx46bhnl/yQp1/JoyV1G/Rx2Plr6Q86MELU2/Is/H2OIPcL8aIu5KUo49wdfCXSnzlLW21iv7ZP2LqnsAYIw5Eoldt5pird2OZJOiARoAvKOMKM6Aa27jKWutXmGUhxXqOHp+bIw5AjVe2edB/7DtW/U1YnOZIZArNMcjciVqcTGC/nEohH4H+FgZYWMYbn7qlapHlBH2rDLvlZvd4F2PlMFI7YzyRbg69XNQ3nLUH6nwrzfGLI0M++9wX4RutNY+Vsa964116vilkeEuRBmTDzLIDXClDXsCiLUBdDbcFTudAH7p8fv/1PGHjDFzh7qBMWYaSg2SD8U31PGHjTH6F/Ja8f+Q2Ncb4AhUboC6HK5M+HDEv1z8M9xJ7MOo7Mt3pfkRXFs5R6L2A33evusjKH+yrldUzCszfLn8SB1/LWZDh+IHls+q0z+oWKqIJm8dPB+VsR8UtdumMeZtABaJU9tQ+tElN8UP1H8SpxqRbGQRk7ZXwf0BdhdK63+tGPPzo+KH6Ter05cPI0od9q1lruophzcYY/TKsBKK9/+qOj0a6qCsf1ONMUMqLoorFL9fvSSVzcXq+ItF2X4QY8xEJP2k5IcVStMfAKwVx0cZY3Qd91HrHY596BWTPtuGIz2X8XG3Oo7N/+UAohZIFPkO3NWlf2+MObOM8EMx3PzU+XBGjJLDGHMMgDeUea/hMprf9UgZjMjHPmvtKrgTzRaU8fJV/Dh3tTr9i6IdJi/GmM+gtEMZrR33SKF/DTpvKKOfxpivA3hj9ZJUvxQN5v6nOn2uMeb0ULjix2wd7vvFX06z7vMQ3NVYEwFcFZLMFyf1v0GZRpSttbeqezUC+J8yPsAP3P9kY0ylJnMAAGvtVpTKG75mjDm7jHRl/opYjFtPZC80xhw3RHxnAfi0Ov3Noh3AUUnxWb+mTn/dGPNP5cRjjDnAGPODCi3/133XB4wxBw5x/zcgX59/nzp+fXGznGrxfbi/GB8I4GchezPGmMkAroG7AdCTAK6oSgoJUFoHP1fcwdWLMebDAD5eofu/whhz3hD3OxLAf6nTP/CNHcNAt6t3DdU/GGMOAXCpOv2rmN20RwjOj5LVVbJPeRql+RKNtfYvcO0/taO8lcvlYAD80hizr9dDstL7v+H+kNqF0rG9Fuh8/veiwiOT4keCnwBYUtVUlcdlAJ4Vx3sAuDrUjoofX38BYD9xeisq9LGvuML0u+r0D4wxQZuCxbZddXm0MeYyY0y0VLj4Q6BesaY/Ig2wWh2/qZy0VZDr1PFHjTELMn0WMcZ8EGWqMoqrc3+iTv/EGBPV5xhjxg3xLqPzs6wPiUWpsTSzMgdDLLgoznN/hZFboAVgdL/rkfIYyYrzL0i2kc/LhwG8II5nALjLGPNR/UHDGPMSY8wvUPpL84+Lm4aMZa6Cu5X9IgA366/1xpiCMeZlxpibAHymePrBkUli3XEhgFvF8Tgku2d9W09KjTEzjTFfBvB7uL9mPQDgX4e4z0fg2lhYBOAeY8wZ8pf04mB2KhL7KgN2nTriHwdAIoOQy9HbAdxojPmZMeb4rF/ujTEtxpgTjTFfMcY8COD/UB2jwv8GV6o/DsnE7npjzMt12kzCwcaYzxpj7gNwZSDufwbwiDieBOAmY8y/6Jd+Y8x+xpgLkWxXL/vaP2J0vFgMxb8D+F9xXABwgTHmFmPMG4ofmxyMMeONMYcbYz5mjLkFwBokK1SHvZKj+KPPbeJUC4BbjDFvySjTBcXJxZVIJijPwx0/hrrXRgD3iFPzAdxhjPm4MeZ1xphT1N+wdvq11j4H4BPq9JkA/mKMWSpf+Ip5fDqAVXBf8voBLCtjd2JSPrfA7SvnAPizMebV+qXcGHOkMeZKJP2/wfDHz4H7ftEY8xtjjCODMsZMNcZ8CsmKO7mJ2ZNIVkdUFGvtNShdtXWBMeZSY4xjAN8Y02aMOQfAHXB3tlyPysushgPnR6Xy719U4IepXwxxj0rwDJJ3jL0A3G2MeY9JzGcMUvxh7maUSks/Z63VqzprwaVwbYK9GsB1xhhnc57iGPAaJJLZtxZPj4r6VzQh8W64aqwTkcxFX6/mogWT/Lh6B5KdsCUftdZWctOe/4T7I94UJH33J4wxbdKjMeYwY8z/IG3bHRVMRxavAfB/xpg1xpjzi/PkSdqTMaaxWO63AVgsLj0H4FpP3KuQzH8GeJkx5mZjzIeMMa/NmMuUs4ouGmvtfXBtvTYjmTu/0aiVbcaYI4rv8AM/WpWrxvsYXNt9E5F8pLrcGHNsxljdULznl5HM778diFt/Q/iiMeanxph3GWNepfLSt8pYf/j6sjHmP4xaAWuMmW6M+TSS9rEPys+HSjCa3/VyY4z5vDHmCmPM48YYa4zpyBnPa4wxtxljthtjNhXj3M/jd4ox5rvGmGeMMT3GmPuNMR80ZgRMJFlro/+QdHhW/M0pM/yPVHj5tzQi/CuQrH7QYV9E8lJ5J5Kl2lnx/xlAS8Q9ZJgV5TxfMfwyFceyMsIuLzdPRNhLVNi5Ab+f9OTR80gmD6uQLAmX155DImmR5y6p1vOMtjzLCLtCho3wvw+SnaJ0nvcj+dX7zuL1XRl+ngNwSGS63uqJYyuAe5F8wNBl+3sAXy43HwEcUkx7Vl3ajqRN3o5k85CnPOnqqHSdKKZtBpJfz7LS1oVkYnw7gPuLeSOvdw4R9+HFtqLj7UMyUbgzkC8PApgVkf6O4eQREgPU8r7Lc+ZjK4AbPc/SV6yzdyL5VfkxJDuNZfn1ti2U0ZaQ2CXq9dS3e5B8wH4mI52vKjdPkdhYzHqWrL+S9lLOc4kwP/DE/0KxPt+bUV8H/j4REf8yFWZZmfVhWPWymvV2OM+GMsYRJKu4svK/s9gO7kZp/7ANyYcjeW5FmWn6BySrrOS5tUjG7Ic87WIbgGMrXU4ijVOQtP+s/Hi6mLY1nrRtBXDSaKh36l4jNT+6RPmfW0Ya55ZzrzLi3Rul4/QRFYh3oYpzJ4AZw80T3Z6QrJCR57qRjPErM9rkwN8vAZgh7rNUhVle5vOvkOGH8PtdTzqfQfLSf1+xXctr9yP5WBadRpT2LxWpQyJ+XRay3Q/MRTd5/FxQjTaAZCO6jRn3G3iHvAul84e1SBRiucs/Il2dGWnaheQjyz1INil5ANnzq50AXj1E/J/z5HPWX0mbU9dXDOM5j0IyH9P37EQyv/krks2A5LWbALxPnVsWca8D4Z+HdxbbzO1I5uTd6vqqIeK+PjIvOzzhxxXrmvbfV0zPHUjm1v3i2jYkZomiywIVegfHKH7XG0ZdtEjm1Tcg6YfKTh+SVfD9SNrohwB8HskPmM8CmK38NiKZK+0E8K1inf4NqtCfZP2N6JJQJB8UXswb2Fp7AxJDnc+oS40ADkKyU02WXOzXAE6x1nZlXBtzWGu/CeB7GZemI/m16HAAbeL8kwBOQTJ5JzmwiUzpBJTuLGaQTFqOBrA/SlfbrgZwvLX2gcj7XIbE+LluZ5MBHIrkhbNNnL8FyUukjYlf3esBJPXltxmXm5G0yWOQSPb3RvZK4qrIt2yyVP6lyLZxOAnJToPHIBnESlaoDRH335CU5Rp1aRySFWBHIylTzc0ATrTJKq7dApvIeU9FYrtjp7o8DkmdPRqJTb95ALLszG0EsKNC6bkdiYF3vXqtGUndPgrAbHF+B4CzrLXaaHPMvX6BZDWt3s2ualhr349knNSr4KchmegditL6uh3J5Pdb1U8hsclOiAMvT5IpSNrBkXBtEm8C8FqbmDMZDs8jaYvS9tReSPrgA1G6enYjgNcU20xVsNZuQSJzuybj8pxi2g7KSNtTSF48RsvGHIOM8fnRO+GO0w9Za+8ZbqTW2tVw5W8NSDYGqyjW2n9D8iI1wEQkY/xRyLYTfhmAt9ni29go4RMA/ifj/GwkK7kXIlnVPsDfkKya0bt81pRiWbwfpWO/nIvqFfE7AXzBWvuxKqXpfiSLRp5VlwbeIRfDnT88g6TPXY+Rp4BkkcAiJD9yHozS+dUmAKdba/WGappvoNSu94hjrb0byY9yen4zBcn85gi4ZoX+gOQjtp57xtzrYSRz/P/LuDwFSb9wDJJ3gYllRv8uJB/kcmETWfkb4aqEgGROvQBJO98f6YY9G5F80B12X5yH0fyuNwz2t9buYa3N6g+GpLii8btIxv2XWmv/y1r7VST9xQyUqinei+Rd6RPW2k9Yay+21p6B5IPfF0zA9EQlGGn999MYpiHZ4sT1QCRyulDl2YXk5foUa+2Z1tqKvGzWC9bajyBZBaY7G8kWJFK+w4qDJBkGxQ9QJwB4G5JfAkITzAcAfADAIlvmbmTW2kuQdLq/hWuoVvI8EsP+f1d8YcuFtfYFa+1pAI5HIoGK+aD+IJJl8sdba1+W994RadturX0LgOOQyFGH6gPWInnJG9Iou7X2ESQT1o+g9KOf4xXJqoJ/sNYutdZGS0lHC9baXdbazwI4AImsIuZj5XMAfgbgdCS/cFVssmyt/TkSWdBNAW99SGycHGatzW3Dzlr7JSTl/HUkH8bXoUIfLgP3XI6k/V4BV5av2YxkJeAB1lpto4ZUEWvt15GsFvXZSQKSenIxgJdYa28J+Cvnvg8g+dj0fSSrPLLoRvJid7C19k8ePxXDWttlrf17JJLDW+Efc4BkdcDnARxkrf1rwF9NGcPzo2XqWMtvh8NlQ9yrIlhrPwng75GsHvNxP4A3WWvfZnPsMlxNrLU7kYybH0X4JXQdks0Pj7HW6gUQowJr7Q+RvK/9N5LVVD66kJgEeEnxhbmaaboHyYee78GV7Et6kIyth49Q2z4aiV3nGxE3h16LxKbygdZan3x3EGttv7X2PUg+yHwHySqsDfCPIVXDWnspkvlbaGx6Bsnc+tXWWl8ZxdzreWvt3yGRSd+EoT8aPopkrhfcWV28y50O4KdI+prNEfHLOJ5C8hH3AvjLYSeS1c6H2sR+Xs0Yze96ebDD33n9JCQ/DPxILiQr/qi7AsCblcT5rUjmZtqE07eR/Bgau2FNLszo+kGrfExi8PlwJDvdNSNZlvksgFuttZ01TNpuQVErfiiSwWY6kg/AG5F8bLqjOPEgVcAYMwvJh6iZSFYKbEXyC+Kd1lq9PXvee+wJ4GVIVllMQtI+7gNwe/HXpYpStL2xGMmvUu1IfsXtRjIQPgbgAZvYQxtxirZIjkfya2k7kl9ztyH5Zeb+4ge8vHHvh+S5ZyCRvm5GMhm/rZIfukYLRZtcC5H0GVORrLTbimSVy4OVqr8R6dgHyaRrNpJfZ7cgeUG/rbgqcbfGJIa4TwCwL5K87kfyof4RJP1ExdswKQ+TGM8+FknbH4/kpXYNgL8M50dGY8xyAF8Sp0621q4Q1ycheWk6CEk/uxlJ+1thK78ZRzQm2eF9oE3ugeSlYAOAe6y1oR9GRh2cH41ujDHyBeZma+1Sdf1gJGU3G0nf+RySeqiN7I9KTLJB08Bq0j2Q/Hj4PJI53N022QBut6A4NzwGifphoC1tQPIDwG22BrZmi3PCk5EoMaYh6aseBvCnWinBimW+AEk+zUEynzRI5qrrkKzkfGSUrUbNhTFmDpIf12cifX9fhWRuU/G6bRI70wNj00Ad3IrETMS9xQVJI45JdqJ+GZL3pqlIfih8BMAtw1mMUU1G87teuRhjViMx8za3jDCfR2If/hXW2hvVtfORmDFYaK29v2gjsgvAX621Jyq/E5Dk22+stZXcNdpNbx30F4QQQgghdcNQH/sIGesM9bGPEEJIHPONsSEpye7Cc8nKbbla8ofFVcaZ5PzY910kq08PsdY+qK59CMnK4VOttX8obryyEcCvrLUlK/iMMc8DeNRae7y+VikahvZCCCGEEEIIIYQQQuqJbiRGNnd3lgM91trFQ3ocHs3F/1n7UPQoPyG/A/6bPdcqwkhv0EEIIYQQQgghhBBCyO7EwCLIrE0Jm5SfkN8B/1VdVMmPfYQQQgghhBBCCCGE+BnYPGmvjGsD5wY2TtqMxA5jid+izb49hN+qQBkvIYQQQgghhBBCyBjDgCvAyuCu4v/jkOyiLTkWycYvDwPJbtjGmL8COMIYM8FaK+W8S5Bk+8pqJpblSgghhBBCCCGEEEIIAGPMLGPMAmOMtKt3M5Ld3d9rjGkRfg8HsBTAFdbancL/5Ujs8p2toj8HQB+AX1Uh6YNwZR8hhBBCCCGEEEIIqVuMMe8AsG/xcDqARmPMucXjJ621PxPevwrgXQBOBrACAKy1O40xHwPwSwB/MsZcDKAVwMcBbADwJXXLiwH8I4BvGWPmAngQwGsAnA7gPGvtExV9QAU/9o0Qxhh71FFHlRXm7rvvRrlhRpInn3wS++6779AeCSGEEBLNrFmz8Nxzzw0eH3jggTctXlztDeYI2T1paWk5afHixbbW6SCE1CcdHR3YuHGjqXU6SEV4D4CT1LmvFP/fDOBnGAJr7RXGmB0AzgXwH0h22/0jgM9aa59RfnuNMacAOA/AWUjs9D0G4KMAvjeM54jCWMuxcSQwxthy89oYg9FcPu8/+2z84KKLap0MQgghhBBCCCGk4ixesgQrV66s2499exljP1TrRFSAc4G7rbX8ZVRAm32EEEIIIYQQQgghhNQJ/NhHCCGEEEIIIYQQQkidwI99hBBCCCGEEEIIIYTUCdyggxBCCCGEEEIIIWSMYcAVYPUKy5UQQgghhBBCCCGEkDqBK/tIRXhqrfvduKcndff1pe7OTn8cxx/bP+i+5Vb/d2gZt3Tv2JG6p093wzSImt7Skrrb27PTCQBNTdnXJkxw/W3fPnSYBtXSZBqkv507XX+TJ6fu5obe7EAbN8LLnDn+azF0dbnH4r79bdO83mSSNmxI3bt2+aOWeTRpUuqeOjXz9gDcfJR1S57X4eS1mTNTd6FP5C8ArF2bHbksZABYsABls3Jl+WFkwtvass8D6G9pHXQXkLapTZ1pm9KP0Ny3NT2QjUreR+NrzLpgJboAJfPn+69VElmuMu90puhG6znf21fIvBSqMr7mK7NeN2tfUXR0ZJ/Xcci+Tsflq1o6C+SxfAZfn6zDSPeB8/sxVnj4Uf/4KFm3zu9Hjm+SLVvcY1nOsg7KctX18TWvyi6Lxzv847Avbl1n9mkTfcuaNalbPuDtt7uBRBvd+t3vDrqbVRpkqhtlP3z00alb90dLl6ZumfATT3T9zZ076Hx2XZoPsoz0eC0ZP95/TbZL35xBt1FZrr5+Rsdx2MK4Nnbd9dljQ2goGDcudYuswoypahyVCXz00dQtBt/eOfOcIPIZZHctx2sdtUyrLHKdP/KabFNyrgW4efzKU8rvq2Seyv71ZSfm6/fuuCuNT85vfeUFuHVGPrfOR3lN1u/Nm1P3iy+6YeS9YvPnttvTZ5D3DIWX7wL6+eSz+8YwWTcBoPDow9k3kn3Q6tXe9DgVcrHa8FO+HHzwg/44JB/5SOp+yUtS9wEHuP6OPXbQuakvneOFxn/ZP02c6Pcn80vWGZnf09qGP17LcVC2L91Fy7KUrzCNDYE0yMTKceZ3v3P93XzzoPP5G24YdP+X8LJcvqgQUgdwZR8hhBBCCCGEEEIIIXUCV/YRQgghhBBCCCGEjEG4Aqw+4cc+UhG0tNWn1pPSj9iV0joueSzdUmYQUhL6JFQhCW0oPTI+n/JPPnfInz7vyK16PJkakkYOFx23SKCvHPSxlDPJMtdSMokME/In6530p/MxRnLY3BTI/FDkeYitADHpURnk1u9sCUyJHGamkP6KNGztafQmr1lqP0J10FdRqllv8xDQ8feLfNTeZF/jk9eF6mMembtEyzulXMcnodX4/IX6I5+EMdBlVKTp7I7EKsRj+7AQslx80sZYpDkFjUxfSCKMtUKzKhuFlMNJ2RXgaAnly0eDkLIBcG08SDMAixalbt1ADj44dctM0QkX15qa0v7RZ4JD45O861vFDgXVbDsxQ502jSH9OWZTOta6HqVmWZa5iLxRmRtpaErHHXnf1hYt40trh0/mrse60TbsxCLnRLF1QT5rSNrsM7vji6ucNPiIDa/fLXxx+OLT/V6r7KykO/alIXTTJ5/0x+HDZ9JFvyAJ7fU0YbKgqz1tK3neTULXKt3nyD7DN3cH3Dbf2Pl8eiA1xhqpZ37wwdT9xz+63m66adB9iTj/IX/MhOz28CMuIYQQQgghhBBCCCF1Aj/2EUIIIYQQQgghhBBSJ4xRUQ2pNHrnOd8Oc1Ia65PTAu4S71g5i5QvhXa/9IXJS4yUQOdPRZfHV1PvE9DQhnYRjokuFMa33F8j65PeLS4G+QxyV1UAaKymjDc2Pp+OSkpMG1ypbY9HjRKSL7ly5jTuvk5/HM1tObQfoS2q64BYCVQlpWShvsUnldFtKrYoZJuVKqPY56nDIo8i9rllE9f9oy+P9TgqZdy+biY2PaG6Ja858kqtEZTHUionJZ16S0mxG2aL3Fn3pS91/e27b+qWWlK5BWdoC3efzhFwMrZtbiuyCGxW7+RVaIdqaeIj1jRG6Pxw+xaZHunWUwGpqCt0iR2X9Tbi0k6BTyqpEi1H4iYh6dV1q6Vt2qBb5qnsm0LzTEnIXEgefDvF5kXG4as/oWcIXYuNQ5Jnw1J5n7x9kETO/3y78ZbkfZ/nxrJC6y18fZVIb1E93MYn+0R9zz32yLxve/s+g+5t2/xR57G0UmlkmYd2B25tEjt6d4jtoUMyXrnT95//POh8XMh2AeCnwr1MuPd8xSv8cY8huAKsPmG5EkIIIYQQQgghhBBSJ4zR39nHJuPGjcOhhx46eHz11Vdjrv4FixBCCCGEEEIIIYTstvBj3xhi4sSJWLVqVVXintbm7pImJZF5loXLpfvbt7vXfDurvvBC6taSTp96RK/C912T0ga9Q6FvlzTpT0sJGvu6U7e8ULLVp3R7HkIv95fHYgevXGhJlsiIprZmbxJkPvgk3TpPfNfkhouNDWo3Pim1EumJ3cFZ7uCnZSWNPt1bpXUOsdufikzpb0qfVReRrCa+3Ti1RFD6a2pK2+5zz7n+pPRi587U3+TJaS1u1gXr2+ovz/aglSB2d2BHA5k+n062VK3JR5XnQ/VRl5/vPj6JoPYns9+3M6/eaVw+quz3Yi0EyOfWu2LG7qxdz+huOEY2pfvUWGliaNfNAWJlhXpcdyKUCV8tpFZaxiklutL9i18MOrsfecQJ0iwlVWLnSSxe7MYtd3EVmdw7Z96gW48ZcmftQkhrKSR1BXFtmgjTNseV9/rKMrar27w5dYd2cA5ZQ8gjlZdzFTneyjRoBV1zn5DuSgmdKks880x2hDJTAtuITpMd0mp3p9+C8NfsdGKpvDc0Nwnl43CHpzxmTkL4yjXUL8hnEBtcl1R1Gbfsv+X4oWW7efpyGV9IniuR9S60I7DP9I9UkSf3TevGWrEJeFtbKofdZ7Gq7DJjQwNknvn2aael7hUrUvf//q/rT2a4yMjmRWmmNKtdrbvFvEw+gq6PIzVGy7Js7BH9h25sq0R/ct99qXvhQn/k11476Nx48cWD7p8qb+8U7rknn5wenHSSP25CdnP4sY8QQgghhBBCCCFkjGFA2271Cj/2jSF27NiBRYsWAQD2228/XHXVVbVNECGEEEIIIYQQQgipKPzYN4aopoyXEEIIIYQQQgghhNQefuwjlUEZ05D2zhoa0oXB0maDtLGhkf60DQmfzTXHxJaq2dIWjrQ9IsPo+0i7JtKt/fns+Um7WKW25iL3ug/Zc/MlKI/RHh+Bhw0l21cWssyl/RbALUtpQ6QRvelBp7LtIWxItQp7Kf0tzY43aa/EZ+9Kn29qS+0xFUIe8+AzCBmw2dcrrDv2eOzyAX6blhJtfyfPI0m7mI7NlzbHCiUKDSJBPgOOI0msURrHoFP6TCEbWT5blaH89SVn3Dj32GdnTdvSkmaDfHYw9T199o5iuxLpT9tiClXvsUKhr9c5bvDUJ1lGenz02RoLjY++Ohhtl0kb/ZP2+HzuNcIQFuAaCxO2mXqFbbdmsXEYANc237HHZrsB9LbtmZmEp+9J3RMnusIk+ewHyg3KpD1BwLHZ59iUEhEUlI2sRk9lbxM25DQ+k6Z52l5e5FxlypTs881I7QwD8JZryeAiOySfW1fI2Ezx2IBtFuNre7tb/j47vZW22Sf75VgbmSG0regYfONOrJ1X+QzavnVo/u4jZCPbh6wmuowKEPNq56FSjz3j3bmgr9uS1blnrhumoSE9nrt4iTethZ5u7zUvp5ySumVBaOO3q1en7r32St2BgmgWmdcg5sS6/H19SKXHa2mr3Ml82dcCgFyUcuutqfuDH/TG3SPs9F0ozn9E+WuXcZxwQuo++GBv3ITs7ozRqTchhBBCCCGEEELI2IY2++oTlishhBBCCCGEEEIIIXUCV/aNIbqGq0sIofUCYv13wZH0pvIlLeP0BC/BJ0GKVQh6lB8l29H70hPyF61S9GmyYqWNPr1gOXHkwVMwAfWpN6nOkn4ArVM9mpp1Ht0F4MrMxHMXpPYDQJuQ5MogWnEkkVW6WcorKqFtEHqW/qZmrzef/DhGlgz4q4I+L9uBVI9s2eL6k9LdmPsAQIuQjzS2jQJNZ6SmSpaLzB/djfquyXqmy0j2IbIOSumulsP6sks/jpb1ZsUd6ntlG3VkUhpR6I0ibc1tAamdI8mL1ZLWAUoOW/DUwba2tM7pNiXLTCu8JLIOynon61y0jFfLq6TWTcpe5U11mIULU7eoxI0yT6QfAFi6NHXPnz/o3Nq0p+NtnUiCNNXxzDOpO2R2o6UlnY/MFvcB4D6TMx6JPNDjkedGBVWY00Qj7e2L+81dy/ozbgMgX7e6xx6pe8ZUITn3aR4Bt/zlNV1xfbZSfHMgfezrVLU/z1ygVWlHWyem9504sRU+hjuNqrSMd/r01O1TOWtk1oWmmVIJKvuJkEmQPPUsNG314c4TAzcVmdwv1rFsVN2RrKobNqRun3kfwM0fKafW42iTmDM0hsZOiTQFICvNrFmuP1kYv/996paTMj2hFRWgUcQ9TeupfW1RmhuqRCWWY4Mw44D773f93XjjoLP/hhsG3YVf/MIb9deE+3PC3fS+97keX/Wq1C37fGnSgZA6gyv7CCGEEEIIIYQQQgipE7iyjxBCCCGEEEIIIWSMYcAVYPWKsdbWOg1jAmOMLTevjTEYzeXz/rPPxg8uuqjWySCEEEIIIYQQQirO4iVLsHLlSlPrdFSLfYyxn6x1IirAOcDd1trFtU7HaIIfcQkhhBBCCCGEEEIIqRP4sY8QQgghhBBCCCGEkDqBNvsIIYQQQgghhBBCxiBcAVafsFwJIYQQQgghhBBCCKkT+LGPEEIIIYQQQgghhJA6gR/7CCGEEEIIIYQQQgipE2izj1SGdevc44aGbHdTU7Zb0d2Tfofu7PTftqsrdW/cmH1eX/PF19LiP25v9/traxvaXeja6gbq6cl29/W5/mQeyWsNgaYr45s71+8vBplxgPNQ/Q2NmbfUyEco9PWmB7rOyIyVgaQ/HWbt2tQtn1U9d3/7noPuDRvS87t2pe5x49yoJ07MTk5jX7frMVCPvYgM621oHnTr4o+pJjrv5TVZfLLK6Dbga64yrwBg8uTULeu3bB9Tprhhpk5N3Y0Q5a8bqYywmvg6AJ35Ij3dfWld18F9fYvPDfjbi68cADePQ93owoXZ12R8BfQ7YfrF737ONZ0nEnkt1Df54tAdaT2j+1FfwQi37F8Bt+/sRXpNNyNfdynbsuzbAOD1p7n1YZDf/c497uhI3Y89lrplBdeV+4QTUvesWan79ttT9+GHu2GOPjp1z5kz6Hy2s9nx5mt7zz2XuvWzyqyXw8TMma6/1q5n0wOZkY8+mh2ZRg4oe+/tXpONWfQzW/v8Y4Fk587ULccwfdsZ0z3lqtjalbb/Voi5SuykaseO1D1+vOtP1m9Rlt4BBPD3LbL+AW4fIiuAvE9grtTd0Oq9Jm91yIK4fJQ8/GiapzKZs2eWHxfgzolllsisf/FFN4wsIunWdUumT2aXbhMSWXzT2uKeaVNn+gzO/BiB8HKOp8tSHosIZf8omyvg7x9lnujnlvkjr02a5PqTVT82T5x2tWpV6l650vUnC3r9+uzE6fn+ggWpW7Yx3d58bUT25aHKEMutt6buNWtS94oVjreuyy8fdP+HOL9cd3aCftHxFc48M71w0kmux5e+NHWLZ+ptS98RGhvytdF6wNQ6AaQqcGUfIYQQQgghhBBCCCF1Aj/2EUIIIYQQQgghhBBSJ1DGSypDSFYauhYRRMsrtUpkgJCU1CeBlG6tKpMKnQkTstOWdZyJ9uST/4RkvL74YmVzeVDSSimP6Auoj0OSwUH0s/m0JFpy4ItDJkJJjgriOSZOzJbAaYWAvCYVFFOnulKyxpAExUM30jh6xH2kPAsAtm/PDh8qYl/VkO1IZ70vvpAiyxdeS4lkPra0pHnfWCsZZ6TsWsoo+wJ9iy9P5HnZf8Siw/juo/vHPM3fVeEKSW+oc/PdSJ+PNT8wlohoSCW/xIprDU1p3QyNR1Jm5rbDyHRKuRgA3H9/6pYS3+nTU7eW48uOVV6TevNDD3XDzJ8/6Hx2XZoT2oqDT2Uq+03drweGCT/yRlJ+pjNSDhTyWbWW2JOgViE/ldJa5a3kmSS++VGI1hYxhnWIZ5VaVvlsgF9KGNJAemwR9Kva7l2FEJrryEleyPaLCNMsk6ri3mMPd5wvF5kNeSx9aJqb0jLq7Ytbp+GzoKPrvc+flqlK8ljdkFXBMW0T6pB0o/dFKB6i0Umcvx1JZPXZvNm9JsPI8TY01k5r81+TbEUqJW+VMtxt21yP0mzCQw+l7j/9KXVL8wca0acGBw1ZAWS/VwkZr9RUC5lyj5DtAq5091ORURde8Yr04MQTU7ceW4S0eWtPOo5uFGrxeXMjb0rIbgJn3oQQQgghhBBCCCFjDANg3JC+yO4IZbyEEEIIIYQQQgghhNQJXNlHKkNIpxCSnObAt+JcrugP7TYmkcqUWHmuVrPIuKUUQEolmpqU9FNIMpyH0Fpkz66NUsYRCpJHYiqRsl3AfaZQUTrVwbdTo96hUuLL1JBEUG43GdAVS6nUjh1pPmppVOi2khnT/dd8yEcPyc999w01KSm9iVVQSultbBifgiq0o7CsPxMmuHUrdufI4SJ3vAyxQ1QnmT+6vGLricTXh3k2FwTg78O0v2ktgR2Ps26EMiTVPhsIvm2jtT95n7G0G2+o34oNI/K1IKWfauzdMSVb4iv7t9xZv9deqVtKxqRETJtdWLw4dUuZmvQnwwNYvyHtl+XwoatzqO8cQGejNJUgw5dsDj9/9qDb+VVcRiC3Jwfcjl3q8HWeREwadLnKsTjU/+eSjPp2G/ZtV6pvLAcdnQBfBycI7sY6XLMkutL45iOqI50+Z59h3ba1qddzJeccWKS1QcwnZZZqCbfPFI3OUilN9fUZOozMxljJqiyKtrZUvhosf9ln6LolEuuYRhFpi+kjVFTR5ksqgXyfaJV1UO5cDriTECnxlQ949dVuGJ8JnJC5IHlNFrI0u5AXsdtw/8UXD7q/prx9TibtrLPi4j7llNS9aFHqVmOLlO7K+hht0oGQ3RB+7BvlnHjcUbVOgpcJEypgiIQQQgghhBBCCCGEVAx+7Bvl3HrB4qE91Yj3X9BR6yQQQgghhBBCCCEkJ7TtVp+wXAkhhBBCCCGEEEIIqRO4so+MLCH7KxU0jBFrf0/a5giFifXns30SfLTh2qQZQXzPpJ+v0NOdHkibIrFGyaS/kDFGXyJCdnqEfZLJk/f0Ri2JtfsSSx4zlj47byETSdu3Z5+PfZ5Y80u+tOlroxmdTtnmpe2ikI0sXz7ouuWzFZqnLgQvSrfP3l7WsY88tuZ2o/6tasQWbCivhpmP4/Jss7dmjf/a4Yen7oMPTt3CJmrJsezzA53G+J7sS3rIkHbIpEmrCDNxWbd1cGySSdtX8llD9iml/T49Hvk6B58dTAANLdk2+zRB+2flIsfe0HgdKqSYQSNEaM7gi0/60wYqfYWuzsvsb85hsUbbOx4grx3lfmGnL49t2IkT/f60jboBQvZoR2xc980F4dqu3rY5PS/7Ak2oqmb5AVyTlFOnepOTq4t28l4+q8/eHuB2fNJu6MyZrj/ZB8mH0HH7jHF3dPjTkIfvfnfQ+a/i9L8ob4X3vS89kDZfQ7zkJalbjjkBA7VyTBxLJoTJ2GM3eQ0jhBBCCCGEEEIIIZXCgHLPeoXlSgghhBBCCCGEEEJIncCVfaQy6HXvcj27b71/pA5ASwx8wUKyOd8S7R6PXEjfJxS3RMr9AoocNDSk39kbhDxDS3D6xfd4GYfPre87rc2f1hhCccv8aWxQ0pQuTwJDuikfsRrRUJ2TmixB84K2QXdvgyu7kcoGGXVIIhKLL+5Qk/CpWXTdLnRuGnS3t0/LDB8rydHnY6SAsSrOkvPTh467EmhFXQyxsudYlVqMsi2khpNIdQ4AvywwVqceaqMxksNQp0FJbymx+RNZrhMnZssHc3XDCxa4x1I+Jivo3nunbi0RE9Ky7p50PGtuTxOxtcv93dnXP4YIDRMx6PvI/NoqxoZWKZUrHdhTd6iTlv5kHIHOqSAeqrkp0LnIOGK1aVLut2FD6pYSQR2XLGeZ4aFn9RVMnkIOxRdbAQI61Tx1SCLnRFJuOpL4xpbQnHqY0/XKI+qT7D8At8h8c+8Qvnl9yKRHpdm5M3X3tqTvAo26H/VNGmTidKV99NHU/ec/p27ZrgF3fixMN/Rffvmgu3DOORguyz1ufPSjrsdFi1L3/PlxkR9wQOoWfXRvQ7PjrUt0dZyakLECV/YRQgghhBBCCCGEEFIncGUfIYQQQgghhBBCyBiEK8DqE2OtrXUaxgTGGFtuXhtjYO84u0opGj7vv6ADP/jZ72qdDEIIIYQQQgghpOIsXrIEK1euNLVOR7WYa4z951onogK8F7jbWhu5jfPYgB9xCSGEEEIIIYQQQgipE/ixjxBCCCGEEEIIIYSQOoE2+wghhBBCCCGEEELGIFwBVp+wXAkhhBBCCCGEEEIIqRP4sY8QQgghhBBCCCGEkDqBH/sIIYQQQgghhBBCCKkTaLOPEEIIIYQQQgghZIxhwBVg9QrLlRBCCCGEEEIIIYSQOoEf+wghhBBCCCGEEEIIqRMo493NWfdCN8751m2468ENmDB+HObOmoxvf+I4HP72K7Fg3zb09O7C5Obx+PCbXoJ3vfZAAMAl1z6ET3/3Duw1fRJ6evvw/tMPxsfPOgwAcNFvHsD3fn0/xhUKaJnYgB9+/mU4ZN7UWj4iIYQQQgghhBBCCImEH/t2Y6y1OP0zf8C7XnsgfnH+KQCAVQ9vxPoXdmD/vVpxz8/eCAB4/JmtOOOzN6C/3+IfX3cQAODNp8zDhZ8+ES9s6cFBZ/4Sb3r5POw9owVvfeV8fOCMQwAA19zSgU9c8Bdcf8FravOAhBBCCCGEEEIIqRqUe9YnLNfdmJvufhbjGwqDH+cAYNGB7dh7Rovjb95erfjWOcfiO79aXRLHHlOaMH/OFDy3sRsA0NrSOHht+44+GGOqlHpCCCGEEEIIIYQQUmm4sm83ZvVjm3HUgvYov0ce1I41T3aWnH9qXRd6enfhsPnTBs9974r78a3L70Xvzn783/dOq1RyCSGEEEIIIYQQQkiV4cq+MYK17vEvb3wcL3nLFZh3xuX42JsXomlC+t33w2e+BI/95ix8/SPH4Lwf/3WEU0oIIYQQQgghhBBC8sKPfbsxL5k3FXev2Rjl956HN+LguW2Dx28+ZR7u/8WZ+NMPXo9Pfud2rHuhuyTMW16xP66+uaNCqSWEEEIIIYQQQshowdTJHymFH/t2Y16+eDZe3LkLF1/94OC5ux54Hk+u2+b463h2Gz71ndvx0TMXlsRx3KEz8I5XHYALfpHY83vkqS2D137756dwwN5TqpR6QgghhBBCCCGEEFJpaLNvN8YYg6u+/kqc859/wdd+ugpNjQ2YO6sF3/748Xjsma044h1Xoqd3FyY3j8dHz1w4uBOv5rPvPBxHvvM3+MKyRbjwivtx413PYHxDAVMnN+InX1oal5i+Pv+1huxq1q++NRfQP+ju7kmv9fT4o5O3lf50GN+1nTtT98SJ/vu0iD1P9KNOmoRMZHw6C+SxdMs8ANw88j1rKOuntfX7L0awtcv/e0BTU+pubFD38WW4DKQS3t/SOuiW+SDzoNCjVqDKzOvq8saNzs7sNLS1ZZ8H0N2Xblazzf1+7jBjevl5/Oy67HwdN84fZvr01F3o2poebFSre+XxggWpW+RVb0OzE0RmXSgbfW3P08TL8rfPnOHV1VjWbyj/N65du+L8ybyT6P4o1GYHUNWx5Nh3fubM1F3o680OFCrY2MKUhDpfGSbQ3uqa2EEspmIATt71NzQ6l2RXJ2/r6wIBYN5cT9v73e/c48mTU/ecOam7PbUdLPtxnQZfX6Afe8eO7OTodujLrtgsDVV1eW3ChNQts0Dno7df1jeS7UB2GqGJhrgmy1x7KxmLY5CVY+3a7PRId9bxALGZKomt96H4RBy9aMz0Aqg5hKic/W3THH+y3jY3lZ+nvX3Zc7c8cen4fOhs9HXL2l+e7Jf5Gjt2y7FXtqNQnsjn3rzZH/eLL6bu2Pbv6490nZFz/NC8XsbX2hKXJ/JdR/Yn+l3AW5iy7Uo34PZBjzySumX/AwAPPZS6r7560Ln8vvtSd+wkKEC/mOAWvvnN9MLcua7H+fNTtxhbnMmNRvSjcgwKtQmJ9Dfc9yZCRhv82LebM3v6JPzq304pOb/jlvd4wyw77SAsOy398Dd7+iSs+907AAAXfPL4yieSEEIIIYQQQgghhIwI/NhHCCGEEEIIIYQQMgYJiIvIbgw/9pGRxVk33+j1FlB7etVfedRnsYTCy9XtIRmmL75Qun1hfJLectJQ7j0BV/YsrzU1uRKTBiETbWzJ0c2IyAuxsqBQpZGyBSE/knLWkPJX5nFseYXwyT1j4548OZUpNM11ZXMF8azdDek1GbeWw2xJTXUG5T4+6V0eRWYl8jEPedQoPukH4OaDLFf5fFqWGNNn6Dz19RnB9h6pU9JSUB+FkPZyqPNjmdg+LIf+TIv7GkRZyjrkcweRWrsk8tQtZZwiwpAJDV9UIcaP91/LM9blqZ6yvfqsUpQQekDZUciBJjSwi/gKYkxtaFA1YLiTC3nfkOw+T6cfm/k5nsGRNgfGsGZPukNyv+Ycj+obR/PEpeMYrho6JOON6eKBfMUvJbCxcmYpSx8/3q3rvjzOYxkhJOOVfVCsxYtYQmZ8HGSGx95YynhlJ/bYY66/iy8edC5fty51H3po3H0iKZx1VnogpbraJICU7sZWNJEnlShzQuoJbtBBCCGEEEIIIYQQQkidwI99hBBCCCGEEEIIIYTUCVy4SipD7JZXUn6kV2dLmYrYRbKlxZWYOUvdRXwNLXFSNJ9kQa8WD12TxMiKQ0vEfc+TBBz6mSqxs5qP0MaaITmks1NvU/rwzs66oRs3eMKozHauhTLcoznt6kxPS4ky4Jfx+jYhLIeYHSr1tVjVZKuQXm3bkJ6XEprQrpZ56k8e2cRoICQDlHkUK23yVcGQFNF3rZpmCUIE5WIx25/rHQElubSkdUBoN948Mt6AXYGmpuwxI1p+Knn6afdYdiJSaiXS0NDi7moq+1XfmKGzx2fmIHask+d1vy6Rj6OReeRRLLu77wKAkMB55bmA+8DPPZe6pWw21EkLfyXjqIxb73LpY/XqbPeiRalb74Qpy19mkDYRIFMo5jPheU/5277LOaNsAyU7kq8T0kYhc2yUu0sDaFO785aL3I01ZifdofC12dhuIrRhusQ379VZn2ce1NokyqJD7PocqqeiTU1TdXBrV/aOxyFTJNKkhs+chu4XfPM/XSaO9DuwcaxEmlSZPDl9Hp3fjtzXZztE9j+AuwPvrbem7htucLwtF33VcpnHb3iDJ9U5WbAgdYfadZ7BSsQRKn+fqRXpbx+3KxgzGHAFWL3CciWEEEIIIYQQQgghpE7gxz5CCCGEEEIIIYQQQuqEUSaqIrstIf1hrAYuFp8sWHjRUibfzqG+Jd2xtwf8MqHY+ORuenrn2RgZRkiSUWl8xReSSsnnyyNnDu4AKmXOIX+i0KWkxicXA/x5XAkpaoyURF/z5fH27fpMIfOalIvqOrNtW/Y9Q8RumCifKSRnHSliyzK0MabPnyxX+ay67GQeD3enPy058srjAnIYX7sukcD55LqyIT3xhD+BUgMlJYv1jq5AMTsrhqSNgbgbPfo6uWN6tARv+nT32Fdm4nl0smVd98lrQzv4+vrKrHtlhQ9NOeTj6L43Skmq4/Z1Lnqg8clmpYQuMIYFOyfZLmNlvFLiJ92ShQvdY19npSqX7I/6Y9cX5NlWVuSDYyJGmxXo6Ejda9fCRyHwTFGI+zYMUxIM+PMxpPz3zWHkeA/4xyBZ5XT7kDLlaKTM9MEHU3ekjFeXQ0ND65C31E0vZu6sh8pJk1K3zGNdLfK83rz4YuqWQ6Xu7p1xXSY8JOP9298GnRuvuGLQfaFKw3LZEX7wg6l7//2zE50X3/gRsheUoy/o60vfC/Tcy1fm8vxYlfGS+oUf+wghhBBCCCGEEELGIJR71icsV0IIIYQQQgghhBBC6gR+7COEEEIIIYQQQgghpE6gjJdUB2Fwol/YVSu0pOel7TQAaBQ2KXqRhulRNjekPb4G4ZamHeR29oBrF8NnDyhkdlCSx0ZerK0yaVcpL7E71ceg7bT4bLjo58tjeywPjk2xSMNqjW3pQ0h7ghqf7ZpKPI+vPoTqic+ei06PL9150hNrvy8WaT+lVvb7fO06ZBom9povv0K2xny2GEMm23x2AgGgpcVvAzQGJ0iPSoS0DyTdGzem7hde8Efe3p6654whwzjacJSvXEKNN7JT7e7J7tNC3eO0Nv81B1nxpC00Ybyqud1NW19LOkbLuir7M90+YsdYn2mnUPjYJiGzf8KE1N0IMeaEOgYZgbZVJW2UyYFU2kjUHcP8+albGgurtNFeaffr0UdTt34GmYZQpjp1ujkuDb7OLvSsso3JMLJv0seyDmvbfjK+PDb7pA3Bnu70fN4Jmnx2kY+VnmvFzh/k/L2xIdJ+n6xDBxwQF0bYsexvcW30yeTF2hqUxM4FfHZHtb/hmiSXz1CSp7J+yjos26h0A+i6+OJBt7TT9xF941e8InXLMtJtYrhcf33qPuGE1K1tw/rav5w/aERaW9rT9hGyy03IWIEf+wghhBBCCCGEEELGIJR71icsV0IIIYQQQgghhBBC6gSu7CNVx9kyXizJbhDyXk2sTFESK7XzKUFCsjlJSF0lJQM+2WUoPiev4MpMY9UfIdlCuWippZQzVFri2Y8c8sOQpkIiZeXiPnlkF5WQSfviiH1sR9Gj4tq2LXX7JAy6DfikpBpf3QrJnH1tuZry7hBTpsT5k/XbpyoB3LzM0/Z8bSq23wtJhBsjM9nXDhp15fLJ2WILU0sBxwo633wNJk+jKLE/IZyecS+6nuoOxCeVdO7vnm915Npp3yuzJCS1kvVb91vyOCRtl8hxOXR+0qTUPWO6GJc71qZunfCnn86OMDRoSH/yplraJiVsMj6dhjySUyGVxKJFqXv16tStZfeyLYfqrfCn5zfe8LH6Snnsq5s6f+QAKQc+LfeVeZIHX+XMi4jDzcfhr9nwdUGhquTI2WNfJfPkiZBnljypaAdtbdMG3aE50Pbt2bcJvSP45vi6WecpZhnGaQY64VJSu1b0QVK6e6EU6wL/IdyfEu6W973Pjfvww1N3rLw6DwsXpu4nn0zdvkIB4sdE0X4bRZ/TpEwHyOh8Jp0IqTe4so8QQgghhBBCCCGEkDqBK/sIIYQQQgghhBBCxhgGXAFWr/BjH6kMgaXWUjaJhuzdcwGg0bO8Wi+p9y17l0v35e67WfeKIY+SxHe+mpJFLcmq5i6nPvlXaDder3RHFazcqdmR9Hpk4AD8u4PqDPfIB+Uui7rODFdqGyJWxSezKFYOK8siZtNPwC9t09IGGXfs7sCSSu9qnAdf+9BSZlnXYzebjN3V2BdfSF6Zx3xBf8BUQgz9aupX8BWgPK8bTkhzTlxk/uQwSwC4u9f7VHO6r/OipZtSSrZmTeoOyUpFWlulNFLEJSV4Oq3DVUOGxqbQhrmOdFfK5h58MHVrqe3UqalbaiB15J58cPwpDaXcidSR6ldCGr94ceqWmdLRkbq1zFVKlmPxZH5JP+MLH9odVKYvViMuJYtaszrcfPXpBfPIrAH3OUTeSXM4unv1dSe6TcTMR0qkrU3pfb1zPEV/+55pmNh8CMmpRaKaW1JZcdP0NG1aIdoV0T+GTGiE5ld55jQy7x1ptK7rsi1K6e7nPjfoXK4mMcv33js9+IjYg1fu7A24eezrmyqBvK80EfCjH7n+3vCG7PAnnuiPW+aP3B1ejWGTJmXPiSq9qTkhowl+7BvlHPXuK2udBC8TJ08f2hMhhBBCCCGEEEIIGTH4sW+Us/irb6x1Erw8eWlHrZNACCGEEEIIIYQQQgT82EcIIYQQQgghhBAyBqHNvvqEH/vqkNXXrsb9196PwrgC9l2yL5a8awkev/Vx3H353di8djNO/4/TMf2ARIL7/MPP40/f+xMAwFqLo846Cvsdt1/Z99Q2VyQ+OzvaRkKjMOEhw2hbWr64pR0ifU95LxmftKWlw0j7G3lsBcXi2gqJ62pjbaQNFx23ryz0eXksn0nG16hstvT2ZT97Y+zzycgD9o6kzRZtS80XnUTa+cvLpEmpW9bbSpSlzw5NyA6mJMYGnfbns4Olr0mbdNW0LRki1hajzLvYejLcPkPeR9tLjCVkutKHz15RaVkKO02xkYciHCvovPLYK3PLwbUtJK/1BdqyzyZVyHSZF21XyxeJtJe2bp0/DpkPwl/zfLdeTJjQnHmb2HFd2ukK2dWS7hITbdJOn7SRdf/9qXvBAjeMjCRkx1LiMRzY2+DmgbTFKPOhqckdN5vz2Jrz2emS5arL/n/+J3WfdFLq1hUywmZnQZ/3DVzahpj098QTqVvmwQsvZN4TQLzB3Dz4Btz29nzxyfwXzyf74dK5UnbfovFV1ULX1kF3sy6jrvLtEDq2/WLHj1An5sljWZ8mTZrtBPHZxY2dE1Vi/idxslW2t/vucz2uWjXo7D/33EH3vwovy/Wk6pxzUre0l6dt9snyy2tTMoa5c1O3zPClS11/d92VumPby8qVqTtg/HjyzHmD7mjbtYTs5vBjX52xa+cu3H353XjzRW9GY3MjLnvPZTj8jYdj6r5T8YrPvwJ/+q8/Of6n7TsNp3/rdBTGFdC9qRu//tivse+SfVEYx+/7hBBCCCGEEEIIIbsb/NhXZ+zo3IHmtmY0TW7Cpqc2AQAamxsxoSX756iGCWkV6Ovtg4EZkXQSQgghhBBCCCGEkMrDj311hu23gAHuueIerPz5Six45QKYQvgD3vMPPY+bv3Mztm3YhpM/fnKuVX3O8nz4Zb2OFCkgK/BJkQC/VK7LI3PRccTKigMrwb3IJfmulNXvT17T+eiTwIbyrpKy3ljVnU6PfHafRFAH0rK1QUIyDi3rGUAl3FfvZBnr8pZyDamOqIQScfLk7Lh12ck0haSkPvIoLfPUn1B4n3S3VopOXzsKyXhD+OpWrPkBX9piyzvU9qQ7VM98StvouhCSLObRFdcbgQHJlUN7+kD4x7CQsi00jkahJaHyxlKSJctc98nymkyQlMaq/Jkh5LHj56ZyVqlyA/zmEHzDgk5OdF2fMyd1S339AQe4/nymJFQ+9ks5vBjzu3vS8b5HlauP0nJN42hu6tcXM+mfmUodnZmbfAYtz5aZJ6XNoQTK/JF5qqV6Pgnsc8+5/mSnJiuAHGCnT/enTaZBmxVpSk1/NCIuH71xV8IOjEcOHzKhIwmNTb6+oak9zQNdH+V8rTUyfzZ1yrSm4ae1BcJLiXloYu8Z2HepdPvMh8jqrKujzHqZHK14zTO8TWtIpdJYsyZ133236/G88wadUrr7L9LPhRe6YaRcN9Tecg36OZCZJyvhtm3+9MTan1ixInXLybvS6jYvTp9vH5Gelhb/2DtWMKDNvnqF5VqnHHHmEXjHz96Brue78ODvHwz63fOgPXHm987E6d88Hat+vQp9vVU0UEcIIYQQQgghhBBCqgY/9tUxTZObsP/L9sfGxzYO7RnA1L2noqGpAZuf3FzllBFCCCGEEEIIIYSQajBGNTX1TdfGLnQ+04m2vdrw/MPPo22vNq/freu2omV6CwrjCtj2/DZseWYLJs+Y7PXvQ8pPAL9qQSpg9E5I00Qy5cptvYo7RsYbu7FaSBor5Yexcj+fPx23P0z5kgytmtNS4EoSKyX27Soq3ZMnq90mPWXU2hTQiPo0WUo25ZOzhXaHHba0MYCUV+ndFCXyvr46E5JxyvA+xYv257unxrfJZmg33pHaRTqE776hZ/X1BTo+6ZbloCXi8ti3I1ys8ksrYHxtNKS0lekJtXE37yJ3ehQ7YVezbxrV6Az3aNi7Ov1epDQ1ZNnAtyttLiVhaGdXX8XXck+JfIiOjtQdqGjThFy4YWarz1twjJbIui7VbM0Nva5HmbHS46GHpm4pS1NIqa4uI3ks+/+QYi2235J1o9mfPIcNG1L3DN8z6QTIcpYJv/Za199LXzp0fCHpv0RWaB1ODkghTaa8Jp5Vz2GlbFXOTWORuyk3Rsqpg+SYhPj69YkTXX++dhS7m3dr5AausvnL+4Tyd/2GbOkv4M4hnV2Ee7ozzwN+db1Mj64y0p9sHvI+AFTDjtxFdvXq1H3jjYPOdV/9quPtIuF2dt390pdSt95lV5pakA+hzQqIsdwZoytta8UnydaTICnD1xMcH/KZfv/71P3MM64/+RIi+nI5zgBV3JF4lEOr/fUJP/bVIYVxBfzh/D/AjDOYMmsKjnnXMXjiL0/gth/ehh1bduD6f70ee8zbA6/58muw7sF1+NtX/oZCQwEwwIkfOBFNrTUypkUIIYQQQgghhBBChgU/9tUhzVObceaFZzrn9jtuP+x33H4lfg88+UAcePKBI5U0QgghhBBCCCGEEFJF+LGPVIRYaatUYWhZwD5isyi5615IxitlBjKM3IwJcFeJh9Qjvvv4JIshfyF8ioyQOqPQl8qMGprEbn5aSiAzJSTDiqARrrSpUUhqpewlJFP2yUe1lETilEtI0y1vJDK/V8k9fLsD+2QuKjo3j3v6/B5jEXqWQqASNopEyTIP7cYp8bXD2B2utYLCt5tuqN766reuWyM1HMl2JGVBoWeQsvSQbM4nFw9JKCM2FAymT+88KstIxh2qprFqnRj1WKgvaByrM45I2Z1vJ2XArVuyXb7wgj8+vXvtANFdVkgD5xuIdeSyAsjKKmWgUtKrEWFaxS69ANA6N5XK+XYl1X2dT+7b3eeOGc1y7JS6PhGBDuPuNp99T8DfZ8u0hqT2klB7i0XOy7onp/nYJHfpDdlGkZV17VrX3/XXp265A7OsC7rOyGtS+qczTpaLb8tULUsWz/HsOrH7saonMgnTFqFsZDa0taX3Ce48G0LUx96+7Lquy17Oe0NqSFm00l9o6iXrp5y7h5BxxNbTkCkCec01U+HfwduXHlmV5qjnaYXYMfd2IbvVCZKZ9+pX+28sufTS1P397w86L1LePiAPzj03dS9alLq1jFf2YXJ+7Kk/gBqjKy3jlW1Ua6Ul8gXuoYfi4vbZUBF5CsBt6HLwlGPLKafE3ZOQ3YSxOvXebbju89eVHWbS5Em5wpVLe2ukTQpCCCGEEEIIIYSMOjy/KZHdHH7sG+U8vfrpWifBy/vPPrvWSSCEEEIIIYQQQgghgritPwkhhBBCCCGEEEIIIaMeruwjFWHzZvdY2grxmezRNlIksfaufNek3Sp9LM1QSBMSIRtZ0u2znaMJPUNsHNKuXZO02Sbibta2dCppZyPS1pTGZyvOVxc0slymyQP9bCLC3obUTouuW9Lmms9uoI7ase3mM6yWF58BvUBll7b9GoW7rc21GyWjk88n7dPoZ5WmXWIfz2e+K9YOZs2GH5GIvkDWa5tpGcEB+G0Xhvo36U+2g1B4X18VMqUl3SH7lL7wsfjMdwG6701/X2xuymm7ajdE9k0A0CPaoiyLLVv8cch6Emt/UyLNIMW2cWmXFQAamlrTNDSk7iZh0aOgbaTJxEoDWieemH0ecBuVz86fulYQHdyBwuhWb9ueThCZX60taR1cv8F9VmmvTtpfa2hI+9tQ3ofsb8bY7NNlpO0QVxKZHpndss+YPt3NRye3ZASPPeZGLiLsu+qqQXeDHHRkXdDIuqBtEPvmBsIemLarKNuez8ZqJZBl7htLysFnZy1k89lnFi3U/mPmbkDYVrCPHTtSt3xHCBGyGyjrp5zrhExVS3t8jt3BmWK+t2aNG0geP/KIP/Inn0zdsTb7fvSjQedycXq59vf5z6du2V6krTlV4NJ2dWiu49hSFm5pB7WA4Y/XchxslGnVBSavTZ4cF/kb3pC65XiijYPLa7JcZWWizT5SZ/BjHyGEEEIIIYQQQsgYw4Byz3qF5UoIIYQQQgghhBBCSJ3AlX2kIsgdzAG/rGv79vLjDskCfQoPLV+QK7TlqnAZJiTJCUmJffKPkATCF7f2J9PnS0OTknFCyIyGu/S+RMblkRlqmUpIZuY778sTKZvqU5IcR+0lVudrmbRP9uiTYAIAujy6h0rLeGMyKxCmoBpIszwW/mQ+aprRnZmGfea0Of4cWYeUOYf0p05+jd4hR0qMNLI+6f5IyuukYkTGp5UkEp+cXUuWfDJend3ymowjVroVOh+TBh3G13/Pm+tPT72h1ac+uab2J/HJ5nTfK8tIjh8hawg+QqYWfGYBdD8jzQw0ywRJ+VlHhxu5zCCZKbpyyWPpT2j1GufPd4I48jHxDJPbZjv+fHL4WPmipxsOxhGS8frKrBLy05hn0rLLNiGPbl20KL2gK+TChYPOBinx/ru/S916wiYeXsqwG+V9dDiRQVK6qxXi8lm3bYMXbQqmXGSZSzMieZHlLOuCM8dTlaFZPOw+7S1ef7JzGDcuzbv161Mvuj6G5sQxxIYPSa1j+jEp2wWA5o1PDbr3kZ3iipWpW0t1H3ooda9a5U3AphtuGHRPu+iioRMHYLloL8tlpXvve12Pp52WukWb2tSXmlPoUXU91vqMa+IhnePJMmqugHUgae5p/PhU0qu7jIlt6TO1LmqLi3zp0tQt7S7ozu3aa1N3aMAlpI7gyj5CCCGEEEIIIYQQQuqE0bvMghBCCCGEEEIIIYRUDa4Aq0+MtbbWaRgTGGNsuXltjMFoLp/3n302fhC5VJ0QQgghhBBCCNmdWLxkCVauXGlqnY5qcaAx9nu1TkQFeCVwt7V2ca3TMZrgR1xCCCGEEEIIIYQQQuoEfuwjhBBCCCGEEEIIIaROoM0+QgghhBBCCCGEkDGGAVeA1SssV0IIIYQQQgghhBBC6gR+7COEEEIIIYQQQgghpE7gxz5CCCGEEEIIIYQQUrcYYwrGmI8bY9YYY3qMMU8bY75pjJkUEXapMcYO8XdCpP9rq/ukCbTZRwghhBBCCCGEEDIGGUMrwP4TwD8BuArANwEcXDw+whhzirW2PxD2QQDvyDg/AcAPAWwEcGfG9R8C+JM6t7bMdOeCH/sIIYQQQgghhBBCSF1ijHkJgI8C+I219o3i/BMAvgPgLQAu84W31q4HcGlGvGch+V76U2vtzoygf7HWloQbCcbQR1xCCCGEEEIIIYQQMsY4C8nmw99W5y8G0A3g7TnjfW/x/498Howxk4wxTTnjzw1X9pGKcMdd7nfj7dtTd19ftrtB1b5XnpKumr3l1oLX37hx2WkYPz51t7e71yZMSN1Tp6buRvQOunvRmB0xgK6u1L1Tfa+Xz9rTk7q3bUvdu3a5YeQz6GuStrbUrfNhgClT3GMZ3+yZoZXIQ/PUWrdcZT6++KI/bTK/ZJ5IZF0AgJaW1N3UlH1exyX9yXvq9Mh7+eqCprFB5J2IoL/BrScF5Mhj+SA+t0Y+VFNgrPBliqxMOvM7O7PTIDNfxy3jCKRH5pcMoh+1tWV4dTWW7p60Tss2umWL609mt3TrLPFdk88q+xkAzsP3t7RmplMWCeDP+nXrXH+yyDduzA4f6lMnTsy+D+B/vlC19VWNQxaMTHmPBh5Y4/ajst7JcUuWpS4jmce+ugAAe+yRnYbp0/1x7zMnuyweftRNt7yX7xl03DKtcqyS9ay1b1Pm/QEAa4XKRVe0jo7UvWJFdiJOPNENIycH0r1woeNt/Yb02V94IT0fGtcloS5atlHdn/jO+/yF2t68uXFt7K+rsudbsrzl8AEAk4RloxmTu9ODNWtcj/JhV65M3ccem7oXL/ambVNXOn5Ma9jqXvR0ar196fNs3uwGkfO10JxB5revfYSQ9Ue2vVzzBQD9Ym2GE4ccKPSgoY9952U7mD9/0PlsZ/OgW+YV4Na7wxbGPdO9q9NnkPEdf6w/vHy3kHNOwD+Xk48zredZN9Dtt6duWeg33pi6dR2+667UPXPmoPNx5e+nwr081DkINonBd9r73pde+Pu/dz0effSgs7tlz0G3Hv8lsox88xnAbUa+aWIl5mf6fWKAUB/mlGWbPw2yzTf2if5I9jn6WGbevvum7g9+0J8gUg8cDaAfSmprre0xxqwqXi8LY8x+AE4GcKu19iGPtwsA/Ljo/xEA3wPwHWutLfd+5cKPfYQQQgghhBBCCCFjkDqRe7YbY+RX3h9aa38ojmcD2GitVT8fAACeAXC8MabRWtubcd3Hu5GsFsxa1bcTwDUArgPwbPH+70GysnARgH8s4z654Mc+QgghhBBCCCGEELK7stFa618uDjQDyPrQBwA9wk/Uxz5jzDgAywBsBXCFvm6t/TOAv1dhLkby8W+ZMea/rbW3xtwrL/zYRyqCXrHuk+76pEiakD+fjDeEV2bUI3XFfhmvJPZZpb+Q/NQXPus463woH0cDPvlxSErgkxzoso/1J/HVBV9ea7S/xjy9qC/hIf2xxKfP0Nd8jU/H67sWWyElKj2+qHfscIO1emRqlUamR8qCdBv1qaa1jD+qfvf489GRZInzLS1ufyTjC/WPsdIdH3naRCjuPPGR/Hkl+zdJnroQQo5v0h3qe2VdlWFaZ7a5Hn0DnM4UqQWU0sQ5c1K31JsCrk5NuKW8H/D3DVpKKJH5KvsJX5noMKHzseN8nnqTp24486CQiQmZeVJ36fNTkrbAvGyYFbkS7cBHqMzz4Bsngvjs5ugy8thQGe5UoBLIeqbv6RsTZbcwrU1NLHy2ceR5nT+ib1kt3L9WaX0nymfaK16RHkgp6eTJrkdRRnnG5VgZbzXbRJ649XzLhzPvaUnl5wVt/0CODTJBoY6d1BvdAPb0XGsSfmI5FcAcAD+w1kaFs9b2G2O+Wgz7GgBV/dhXJys2CSGEEEIIIYQQQggp4VkkUt+sX5/2QrIysBwJ73uK/70bc3joKP5vD3mqBPzYRwghhBBCCCGEEDLGMEg+Cu3ufxHcVfS6xHn+ZJfcRQBWZoTJxBizJ4DXAbjXWhsdrsgBxf/rywxXNvzYRwghhBBCCCGEEELqlV8CsADOUeffh8RW388HThhjZhljFhhjmpHNOwGMR2BVnzFmj4xzEwAsLx7+b2zC80KbfaTqSPsS0v5CyH5DyFaID2lyQZtp8NmNavT4Cd031kaW7/5AvN3BkJmVAaSpkUqjTexoMyIx+Mzx6PMxdgh1GGnPRdpp0eF9cUs7OCW296QNKBFBY0nlymE0cePG1B2ypRdjc0dXLpm+2MbjS0MFGmmzYw8oja+lpTa/NeniGyBkD0i2A90GpL9CX2/2hVBl90TW1ele8pku61T+ZDvYsCF1T52anbRQ3CF7OSH7izFhxhK6+OVYJfuwbdv8cfhsV+m4fc1flnGs/TcdtyxnWc9C9qBke/G1Pac/BNxKffvt2ecBYMWK1H2rMHkzd64/QQsWpO758wedzTNnOt58tuIC5uVUeH8S9GMMFT50X1kOQL42JtPj67Z0vLIOtbWledUcmpDsvXfqbhfKJVUxevvSsaFznfA2p9XxJ5/d12+98IKbBNnGZDustK0yXaUHmNaWL76tXWmeNDWl+d0oC0I3MF8jDVTAfrEGRAbX9U/Xuxh8/UeIUBqiTHvqiiufXSZo1apsN4AHhFva6XuTSus82bfE4mvYqkL2N6XfGrpEm5BjvLYTKdvBxIneqL1Ty0qP174y37zZH8ZJ63S/P1mUTjMIlf86kZEdHf7ISV1hrb3PGPM9AB8xxvwGyUYZBwP4JwA3A7hMeP8qgHcBOBnAiozo3o1kU49LA7e83hjzLIC7ke7G+3YkK/u+a629c1gPFAE/9hFCCCGEEEIIIYSQeuYcJDbzzgbwWgAbAXwXwL9Ya/v9wVKMMccj+Uh4mbU28MkavwbwBgAfBdAGYDuAewB8yVp7ea7Ulwk/9hFCCCGEEEIIIYSMQUytEzBCWGt3Afhm8S/kbxmAZZ5rtyEiy6y1Xwfw9bITWUH4sY9UBL08Wx7LpeRSihRCLiWfNMnvTy5bl8u9pUIEcKWuha6t6YHQWhSU/ESKeNrapnnT4FuFL6W6eiW5lI+EJFlaRpuFjlvG0eqTTUWyfbv/WkgC45PU+GS3gF/aHFKfyOX6eWQl/QGzpQWfridWAxfCF3cldBM+ea1068ySlSak3ZIZLv2FpFu+/PLI5EYjsp/RjyOl4NjYmbplGWtNV4SMN9TnhCTvsmh90s886m6Nry3rqu1Lw1giJLWW+SX721CfKstc95tyzJDNdY8SqzFDE+ompPQq1D5keuQ1mSctC/d0wjTKh5cP8fTTbuRr1w46Nwk9W5NwN4ekjRIl4x03ad6g22cGRBNjdUH788UXq/wPWX6IxTcHCQ0ZclyXarh5c9189A7S4ryU7WpvPrMEgH8eFRqifXNQ3Y68kvNI8sjmY3H6hp7ABFIWjLymJYtCA1kQiZ05c/agO0Z6PhRSShqaW/rQ+ehTMDvz/1Wr3UDSLICsXP+bms1SIRzp7j8I9yE6gTK/Y1m0KHUfcEDqXrjQG7V0b9mSukP9jKz3uq77+irZxof7LgH43wvlMwD+dM+b649bVmlZt+YJUw0A/BV5rE5OyJiAG3QQQgghhBBCCCGEEFIn8GMfIYQQQgghhBBCCCF1AmW8pCrE7GwW8iOXkuvdL32734Z2v4tCSyBEJM4umwq5M5pcHi+XrOtdsny31SvJfTLlmF16K4HOR5ken4RGH/v8hWS3PumfXoEvpQCxO+vF7qbo1VrpCPIUgG+LuTxSgtDWqjGNRRPSmMXmicRT0AWtk6pmRRY09nUPutva0h3u9M6zvt3rSvoCX6UObWsXIeMNZWko631VKxSfT6aokxkjC46VH44lQrvayj41VmodaxrD5y92N/gc1Ta4G680ySHzpBGqTfl2SXzoIa+/bnH6eeGef9NNbloffDA7EUrnPP3VqYxX5p1U5MfmT6gsY3er93XllZDx+oag0Mbsvvs0NblrCMaNS3fQnSF3KxX9v955XI7zcvfc2GeVViVid5HVJlNiTKiMJLLPkGXRHDvZlRVXy3hlhzBr1qCzbVEq49XjY/Q8SpBnjh7y55PutjaI3uDRR91Acgdv0X/cJrz8Qd1H7rp7iNxRWkpwgXyZctBBqVu0j61wd56WbcInc4+druk8lXMdb3yBnXBj8cUdMhEQW0+87yMh7fcIzTl3FwyAyKkB2c3gyj5CCCGEEEIIIYQQQuoEfuwjhBBCCCGEEEIIIaRO4Mc+QgghhBBCCCGEEELqBNrsIxUh1paKtE8UMpcgbXFI+yuA33aNDOPY7ACAdZ2pWxq/kHZMdIJChnEEbTNTuyYybXI7+ZDNppCdJmm7ItYekLR/Ma0tO0wsATOGQRsgPqQ/bQPGh/QXm56Q3aJYe1XeG+UyCBmIb7jh89jV00ZSfEZgQgbYYivAKLaLUkC/cyTx2sXsVHkn80j2LTIC2c8A/goqOrHmmQFbjIK2NjfdviSETAj6kqb9+Wx7yfO6XUd2o3WNbkbSvlDI5p5E5qO0saSZOjU7zMyZcfeRhOzGyWeQ6K7ANyauXZu629pSu7cAMFsmdu7c1K2Ntoprc4T9rdtFJZT2+wCgSfibJhP3wguOP2mbs6UlTZ9sR7obHan6Xc37yLhD8w9ZzrJcdd2U4cbPFXbIOlNnyK7e9u3Zbp2GWJvGPn/aNvT0Ydook/PW5gZpkzLf2C/T19wkxi05t9XjjGxk0nbdypWuP1lIwmZfYc6cQfeM6e0yBHbtKn+tiCyLWJuIsox0GO97wqPiubV9wjVrBp33CoOQ0k7fK1UaFsoDaadP2+zT/VMMBxyQuoXNvkdXu95km5DFHGsm0PfeBLjvIzJPK93P+OYPOtt8Nr9DyKou79PU1Oz420eOJ9puNOEKsDqF5UoIIYQQQgghhBBCSJ3Aj32EEEIIIYQQQgghhNQJlPGSiqBXQ/tUfXIZv5bnStqFYkDLj+Rydnkfr7RBB4rRounItV5HUOhJJcPNIsyUKdnSHx21lDZr5LWQNGWkiFVuxqhetdxH+ouV2vpkBvqeMRJo7adZZrKIsL/BlZy5UtBIYjWVvswLyQ/kNVfP4I+3mtqNWP35SOFp85Mnu3IPmV1S0heUTfvyO49uNjJ/dFXwSZt81QLwV42QdC9PXzBW0f21z4SBLCPdB8qxoN1V1DlMmZIdRo5TQyYwfBqAv25NmuT6k2mNlpVLj0LaVjIOyxsLSd2xv/hFel5l9qNCMzZNar+03E8ct4pJyJw5qRRVy8+kvK7SVg6q2d58aZDnQ/2MzwpE1nFW3DrNvjC635Jp8M0tdbp9ssc99nCPCxuFADzU4Dy0NokxQ1aMPHp6qPmtzCBZCZ97zg0k7yvr+qpV/hvJzJNpVRk3W0h8Y5HZGDv8y+TodwaZvELH4+nB7ben7uuvd8L8VUh3rxHnzxDuw/be273Raael7hNOSN3aXx4Z7+LFg86n1qVzS63I9tX1UP8Rm8fSlESsLDgPvvlDJd5n5Hgp76OLZJ8FotLICkRJL6ljOA0nhBBCCCGEEEIIGYNQ7lmfsFwJIYQQQgghhBBCCKkTuLJvlHPUMUfVOgleJgbWXsdISUJLzH0bXOprcul2X1/67bpVr/f36VFCWhJJQH/QL3Z78u0iFbucXifBl6Q8ys9KE6tMHC6hHZzzLP+X5RKULLRUUSsdq2fz1c/Ag/eKdtAYo3PKum/WPUNpDcmAfddqpe/0aMz7AhsPNwjpdkHLPWSexMqmJbJvEWH6W1odb766Guofc6iCHfLID0NVuJoSodGMzquYctHmHWJ2ZgfcHUvd3eqbSz0XafSYIgjtmOkbUkNSO4msCyV+NgqZonxYHbmcAMgESdmdqnTzf/e79ODBB1O33llTyh7FA7a1pe1Sl4Pc1TK0y3KMmQst4/b5q0Q3qqXXA4RkvCGpbIy/kLkAn5w9dloXGo5kHPKa3MUaANDRmbpzyHi9HXFefNupykzQtlF8Y5DOyLvuSt0Lxd6zYufqkk4stgJ4khM7dwtNWxr7hGkCqXsVOw8/L58NrnT39cJ9mNzuWHdI8vlkHodMesQiJNnt7dMG3XLTWI3MEzku6D4ndrz1mc2p9BTNHY/i7hObBqmols21pOl2ecYWQuoYfuwb5Sw+d/HQnmrEk5d21DoJhBBCCCGEEEIIIUTAj32EEEIIIYQQQgghYwwD2narV/ixj1SEWJVD7DJ+uYq+uaHXudbbkkrq5BJvZ1fUzqAmLzsRsVtPKn9yl8NGEaa9vdEXxCv30bvQyeRJSVVI2irjHi6hMoqV+PmyXueJfD6tRvGlJ2YXwax7ZZ3XO2Q2NcUNe415elFfwkOyWUEvGjPPA0q6ISTmEM/aGJLdxBasT1YUYri60krgSXdLi9pl2dmBV1wISXd8+rzQdtwef7EKoZC6yudP13VfewvtCCuRbVdLiWLVzPVMSH7oK1ctoZX5GhpvfeWfJ+9LpI0Cn7yutUHt+rtWSAFFvzNz5p7+tMkTUs8WakcyI/ffP3W/8IIbRiZWDrg33eT6k3GIuFsXCPdcd0fSSZPSMSPWjEfsZtzVlPHKcpZ9QUiePa0tnW+t35A+t5SRA253K5WWPgsTgPtMUl0ZyhPfXLCxx51USRm2vG9j5/OOP0fGPX8+ykbaV6hEIfnmDKHOwNdItUZ0zZpst4w7NLHUEngPjV2bBt1z5kwL+EyRSS0pI7mDtpDr9nzlK4Pu/1LxfUi49zz66PTgVa/Kvinglr+UOcduIx2gu32fQbeschpZFD6Zu257MjkhEwO+8b/S+KadIcsosfiku3qu0z89rXcyf1rmp+NRwWPWgpDdlTE69a5vVl+7Gvdfez8K4wrYd8m+WPKuJbj9x7fjyTufxLiGcWid1YqT/ukkTGiZgLX3rMWdP70Tu/p2YVzDOByz7BjsdfhetX4EQgghhBBCCCGEEJIDfuyrM3bt3IW7L78bb77ozWhsbsRl77kMh7/xcMxZNAdL3rkEhXEF3HHJHVj161U4ZtkxaGptwqnnnopJe0zCpic34bovXYe3X/L2Wj8GIYQQQgghhBBCqgxlvPUJy7XO2NG5A81tzWia3ITOZzoBAI3NjZhzxBwUxiXFvedBe2L7C8l67/b92zFpj2Qrtqn7TMWunbuwa2dgGzlCCCGEEEIIIYQQMmrhyr46w/ZbwAD3XHEPVv58JRa8cgFMwTh+HrrxIex/4v4lYZ+47Qm0z2vHuPGefdgD+OwEaWLtNzk2GwJ2Wry2FWKNzcUYT9JhIo3p+OzJaGR02kaWRNrLCiWnkuh057mXr8x1nQmZOPOlx1d8Ory0GyT9hUys+K7pNDQGzN/56Be29AqButrdk/4eI9MdMp8j7bFIf279cX/naWpK7Rg1zoxsOz6bfbHtqFYG3Dz3DdppGab9vRKjNB5/vX1puej6J7M71E/4bhtrntQXlw7nC6Pj9pl5HEvovs7XH4WqmfSXx+RmqFn67I6GbClNaxE2LdcJu3za8JQ01CaM8TbPde7kvfHWvrSvbJrb6njbvDl1y35v5qsPHHQXOjfBQdrfkmmVhoIB4MorU7e00yWfVdkqmyHi7p6cplvXe1+bkPaltP2tWJt9ob7BxxxhelCmxyljaYMOAFan+TBD2DjrnuyW0bZtqXvLltQdmgvKeqdtV0qkPT/HtvM6UedkeQGYJh92o3jYRx91I1+5MnUvXepPhA8Zn6xbup7FIvPf17GHjIPKTJZ5ALiVRob57ndT9+mnu2GkUcpIm30yTwrSsJq2kSdo3PhsenD77e7FBx8cdHaee+6g+9vCy+dUfE3//M/pgewLjj02dav8kX2Q7M5K621a96dF2n2T8YWmDNOahC3UhuxJbP/c2U6YDRtSt+xPQuNwNadosnrKuEueVdgDlXOiELIopR31bmm3Gu68Sua9dM+bG3VLQnYbuLKvTjnizCPwjp+9A13Pd+HB36cD4l9/9VcUxhUwf6lrcHjTU5twx0/uwEs/9NKRTiohhBBCCCGEEEIIqRBc2VfHNE1uwv4v2x/r16wHADz8x4fx1F1P4bTzToMx6Wq/ro1duOHfbsDJ55yM1lmtvugIIYQQQgghhBBSJxhwBVi9wo99dUjXxi50PtOJtr3a8PzDz6NtrzY8fffTWPWbVXjdv70ODRPSYn+x60Vc/6/X4+h3Ho2Zh+SUFyAsyZQ0ojf7QhJq0OVIb9Sa80JIwzRASKcm18pLd0jTKePTccv0CXejTKd6BueaSFu/6mp9SsmQlLkvctl7DFoS5JOchaR7MdI/jS/uWOm39pdHmiAlVVIiFlP9ykGWuc5HKYGSSAWNxpdf8hlC5drS0pgZXuOVH4f0grJCh6T21cSnoQylO6SBjXmOgP7cJ92V9S+UPF2WvnYQa4kgtvhiZYUx8vx6JyRTlPk9aVLqlrJ7TayM11eWsX3g7HY1XssKukZIYJ9+OnWvX++GkYmQ0j1ZmeR5RZdQYeohWh77nrWtbZpz3LxggbyYurVMVUa+YkV25PqmIkyziLtZT5DWpfdqlpLBlrSBbBrfCInuDwbQ9SSP9E5KYBtE/+/kgY5YPpOokJ2uatYpZt8UK3ZMDY57E9N0t4aksrFzvoC0NApZp7VsNgf9oh57h60mVdeFHDJYMWQByOeWkWuZs2TZMv81SUdH6pby6lBeSzm1lvH++78POr8tTp8j3E0XXuiGOfro1C3KqH/uvEG37gqkxDPUJBwJfBui0Pfyxd3fJky/CJmqvGmhz+2vJ09O24Sc/8WaFaq0jFc2PZ9yHICTKc67UuCThfMeJB5imzJ5I/uQmPGDkHqAH/vqkMK4Av5w/h9gxhlMmTUFx7zrGFz5sSuxq28XrvuX6wAkm3S89EMvxf2/vR9bn9uKe355D+755T0AgNd8+TWY2Daxlo9ACCGEEEIIIYQQQnLAj311SPPUZpx54ZnOubf88C2Zfo9885E48s1HjkSyCCGEEEIIIYQQQkiV4cc+UhGam9TOU77tnkKyCSl7CK2vzqNT8sjmgHSZe2No+8PQeZ8/j7w3M31FCup8k9pJatCfWLKupb/VJM8Sf9/S/dBOv3IHvlj5YWgXQl9aQ7uS+aQy+j6tOWS9vuqtpVpy90Jf2mIJyZzlTm0yDSEpodzR15VqunXWJ68YFbvx5snISJ1qr+hb0OBK8no83WBsfZTobsu3a3eIUB30Edv2ZHrG6m68WqYo81jm49SpqbuxwR1TZT/vyLhKSCNs9JiICO48LVE7mTp6Ninrk/50RZXbJHqkn3LXccCtJ/KWGimBk7eV57WCds6cVOrYOl8UjJ6b+KT7q1Zlnwfc7c/33tufCF9+iXtOU9LG7r60DwntzOxK+SI7ACGvbJRplbJLLbUWNw7NQWKmaKH+Y6IQmUgpIuAfn+Qcr1FflJVDloOuaJW0OVCBsc43H/Ht5gwA27al+TB16p6Z4QGgeb4nfbL8dfu49tpAaj2sXp265STvtNP8YYSMd52Q7QLARcK9XF4477zULWW7gLOzdm9DOlfpEN1ZyFyAzG/d9nYoyWgMMm7ZDvRYKY+bZQH6tpcF0CzqcNPMtN/Tcfuiy7OzdwjfJtKNfWo8k+1S9jsBcw++TvHFTtebfD7KeEuhzb76hB/7RjnXff66ssNMmjwpV7hyaW8NdLyEEEIIIYQQQgghZMThx75RztOrnx7aU414/9ln1zoJhBBCCCGEEEIIIUTAj32kMoTWvUukhEJLG+QSbd8WVSEit2P1JW1aW0DGG6uv80UeWjcvUekutA19T70ralNTiXAlNyEZZ2jZe6xEJ4ZKLK/3KTdDcfv8TZky/PT4ZJN6t0FftYvNExleK8l8/kJKW58ke2JoPx9fOwpFXk1820NGSu2D6RRh+gIqft+OfqHu0beRsVRDAW6bjc3S2PoU2g3TR6wseCwh24vMe2e3+i61C708CI1Hnq1Ne/rkLtuuWEdLhge57z73+IUXUveaNalbVly9s2Zw28WEwKa2jjROyzh9MqzYjbXRHtjBVUYu5yayI/3xj90wJ5+cumV8ukzuuit1nynsK8u4VRk3y3yV8ek5R+Quxw5SNifTIDMrIOOVxa+T4xvr5PmwuYjsMECctZiZM2c71xyZc6jShAbMGER5be1L5aKtsRJ6xebN2edlm9B5L/NOtx0HsdOvszv0okWpW7Z9wN0lNxa5m+4jj6Tuz3/eG6TvK18ZdF+krn1AHnz606n74INTt+qPZFl0CtWrzF9p1gSIn8LkUWv7xnVdHbdtS93NU4XHJo9bRy5o7tvqnhBtuU9I4Cs9dsv8ccacnsAAkKMdSrMCoXyMfcUjZHeHH/sIIYQQQgghhBBCxiCm1gkgVYG2GAkhhBBCCCGEEEIIqRP4sY8QQgghhBBCCCGEkDqBMl5SGUI26XzuWAMXeQxhqDD9DaltHp+NtKYm99u3tH1XCNm+yvNMvvDlXPPcU9oKaxxmCw89TuhatD03gXxUaXokZM8nNj15bHP4qm3Q9k0kPht5Om3SXpXMB1mHY/NHErJ9JPMxtjqH8kS2o0aPPbERxWcYJ/SwAbs4vX3Z9mGkbRidP778ztOV6PKXWezYgAtGmD5DyM6fr97F2gYcq3ZxdP54iyJkQ1ISa5Quz3gkWb/ePZbG2WT6pH06bbNv1qzULSunSGdf4FFD/Zt8VF+fGrIHKMO3SltlGhlo0qTUvWGD6+/BB7MTpMth1arULe2LSbt42hinRNqxCtk3jrXZ97TYCM4XJtDvSWLtmHmqQslxyD6pRPaxssx19rS1iXmdTIQu/9i889Dd0JqmQdiGa805BMq5aqwN4phpOOBW1TlzUhuHjUcIT9qQXR4buyJPt95ww6C7NctvkfOE+1x1reGf/zk9WLw4093btqcTZl1H6pbPHWuPNmQiL499ahmHrI7BrlteDM2pROV3Wqu00Qk4/fc04fa18bw0N4j5SKfH4Kom1qCw8NcHaZ/W9ZZnvkzI7g4/9hFCCCGEEEIIIYSMMQyAYe6nSEYplPESQgghhBBCCCGEEFInGGttrdMwJjDG2HLz2hiD0Vw+7z/7bPzgootqnQxCCCGEEEIIIaTiLF6yBCtXrqzbDWsXGmOvqHUiKsAhwN3W2sVD+xw7cGUfIYQQQgghhBBCCCF1Am32EUIIIYQQQgghhIxBuAKsPmG5EkIIIYQQQgghhBBSJ/BjHyGEEEIIIYQQQgghdQI/9hFCCCGEEEIIIYQQUifQZh8hhBBCCCGEEELIGMOAK8DqFX7sI5Whq8t/3NeXujs7U3eDqn4LFqTuVauywwNAS0vq7unJjk/60cft7YPO3r60a2vs2Qov8j46PRLfNRkeANrassPoPBH++hsaB90F9A+6u3vc7llm8eyZ/RgOT61145bF2tSUunWyJ0xI3ePH+/1JZDbIuLdtS927dvnD+O6pkUUh80oXnTyWYUT1AQAcOL/8PH740ewhVadBpm/cuOy49LPKPJbxyXSH7iObiiwHHbdEpk2nR8bR3JTmVb+aVsg6XVVkYcoKHaqcuj8RyHYpkXms89vXbfnaF+CWkbym66OMr9Al+rRAg5X9YKirk9dkmU+c6E+3rx1Naxuh8h4FbO1y67qvqjX3bEoP9JjqqygaX10N1GHvtd/9zj1+8cXUvXFj6paVcO5cN8ycOYPO/vY9B93yEdatc4P4+miNr66GpgJy6JXumTNdf4VOURZr1qTuJ55I3X/+sxtIJlbmiXqIrT/72aC79eijkckpp/iPZWJlOQBupug4fHz1q6n7uONSt8wgOT8DsLWvedAtyzK2vGT26D5MlqUsv7VrXX++sU6i425u6E0POjpSt25T8tl1nY5BJGhTVzpG5O331m9I+xA5xso81dNMieyXQ1PqaU3d6YGs97ovuP/+1H3ppf4bSyZNGnQuF4ldrid2gq1ioGnV5fDe96buQw9N3QsXDjr7585zgsg6JPNr8+bULbs5wD+Wh7rU44+NK+f/W5GWa45XGExrEfVZF6ys3zLyRx5x/R18cOoWeSzfLeTcLS96zudDzlv6W1rT84E54qbONG7ZlHX36Hs1le5XnjJ25iZkbMCPuIQQQgghhBBCCCGE1An82EcIIYQQQgghhBBCSJ1AGS+pDHrNuU+nFJLK+eLTS9O1TiwLHcYj12uMlUaF8D2TTKdOs2/9v/In5XV9jvRPnA/ITyuNfFSfO0Q10xaLlB+GpC2SPM8aIqYKh9IQUn770heSnPiqamw686RH53fjSI1GMkGhh/U9lEp4oS9bRtPo9DNu1M1t2Q/b1JQt6Sn1l7obG1zJiSOVEYUuz4fkufLazp2uP3nNJysP9Uc6vrFCrOWHZikdDFUAeU1r93x1NaTx83UOUhqn45P6KFkhI+cCoT5DRhcyzyCvSaSsPGAZw3EXerpdj775gAy0aJF7zZcPStvaKh/+2GNTt7RZoeOWEkZ5n1C5xiKfydfpq/s0taQy3h070vM6v0PlnOUndE2Hl32Qz6xAM1S5dno0x1p/LJ83j4xXaNOnCSl7XqZOTd2+PAmN16FrjrR5rdDUS83rli1uoNWr/RF6cKS7kZOL1rPOSg+0JlPqbWV5CX8FWbcBzJw5LTNIqEuV+S3ruqxneRHKZofYeZS8oE2KFKTeNzTXEWYBpMkJ+azNOeasmpDEX9IipLtdIsy0Nn8YXzcYMjFUibl8vcEVYPUJy5UQQgghhBBCCCGEkDqBH/sIIYQQQgghhBBCCKkTjLW21mkYExhjbLl5bYzBaC6f9599Nn5w0UW1TgYhhBBCCCGEEFJxFi9ZgpUrV5pap6NaHGqMvbrWiagA84G7rbWLa52O0QQV64QQQgghhBBCCCFjEMo96xOWKyGEEEIIIYQQQgghdQI/9hFCCCGEEEIIIYQQUifwYx8hhBBCCCGEEEIIIXUCbfYRQgghhBBCCCGEjDEMuAKsXmG5EkIIIYQQQgghhBBSJ/BjHyGEEEIIIYQQQgghdQI/9hFCCCGEEEIIIYQQUifQZh8hhBBCCCGEEELIGIQrwOoTfuyrEd3d3Vi1ahWef/559Pf3O9fOOOOMGqUqP719bhfR2CCeqa8vdXd1ZZ8HgPb21N3Rkbp7elx/TU3+az4aRFVva8v2I9Omw0h0umV6fOd1GE8a+hsanWP5eDIKmTQddWdn6t5njlu3yuWptW65yixqaclOj2bcuOzzu3b5w/iKOFTcMoy+p+9evvwN+dNFlyePn12X5qtMq06nzG9fmYfyXl4LldeOHal78uTU7avamtj0FHq6y4+80vgqlE6PfKhQW/bFHWqkEX1GP/xtT0ato4pJgk6OPN65M3Xr+uiLe8IEeBk/PnXLZxhu37Q7sX6Dfwot81gOgY3odT3KDJedfKg+xjZMeWOJHhNlBVi7Nvu8DjNnTqa7u6F10L1unT9p8pqu6/pWA8g+WoeZOTN1yz6x0PG4/8arV6fuDRtS98SJbpi5c1O3fG6d0FtvTd0nnpi6ZUd88MFuGJlw+VCyLgBuWcgwIW6/PXXLdMu4dR0RmbcVaVlu3Oh6k48u3TK6KVPcMLJNyDLSjyr7HdnPTGsTfcuaNfDy6KOpW1dC2RF+8IP+OHz87nep+9BDU7fM33LwjFV67u2jsa/bf1G2ZZlfV1+dum+80Qmy/OmnU3doMidZtCh1L1yYui+91B/m3HP9/mSenHZa6pZtSt4TAObPT92icsk5WahJ+ebAgNvFHrYwbny75dbs8tNxy/Yi+7dWbB1097ek7RAACn3pGNKL9N3CeT8DsLUrTYPvFa0S47XMY4nuo+XzybJw2nUgbjmnfuYZ159v+ief9ZWnjJ25CRkb8GNfDbjxxhtx1lln4YUXXii5ZozBrtiBkxBCCCGEEEIIIYQQAVds1oCPfexjeO1rX4u1a9eiv7/f+eOHPkIIIYQQQgghhBCSF67sqwEdHR245pprMHv27FonpWJs3uwejx+ffkduENLUVrk+O1aTqWVKcq28dMdqMiXSn05PSCvnwxdGSai6+9I8kUmQKh7ALz/1SWOBeGVzDD6ZFJAvi33Fpa9JBU1sEfkkhhpf9QkR6y8WWX5SfiTdQFweh6qmvOZz62NHPtgZkLYLd2OO9hqU/lcTTxvtb2p2vEkJTLDiSnzXQhXXk56CqnRNTalER15y0gkAQq7j6xLzPIKOw0eorcT2GfXGiy+6x76ykP3CxImuSQdJq9R46QKLrYMRSHkmADQImVjzfNHm5UChdZweQsO1zyRDqK+T9U5K3nSY1iZP/6bTLY9lYmfNSt0zZrhh9tsvOxGhii9lhdKfknvKOQNEcppDWsJYQrrnwXv6+7CmtlaUi3xUPc/xmRzQ2Sgf3ckGWXZPPOEGktJraS5GSln1tTwy3rvvTt1Tp6buvDJe+UyibjWIcatkLJBlJmXKOiOldFdI1rf++MeD7m+p5Czfe+8hk1zCq16VurV224eU4eo6KMtISrIlIRsTIh9ni3IZN86dm2zfnh1cN5U8Tc9naiN6HG5JE1HaRNM+Q3bRO3e6zyfbn89cSCXw9fm6Osr5v8z7aW3+uGW6Q5aefO9OtbIqM9owtU4AqQr82FcDTjjhBDz00EPYf//9h/R71DFHjUCK8jGRvSMhhBBCCCGEEELIqIIf+2rABz7wAXzqU5/Cs88+i0MPPRTj1XKeI488ctC9+NzFZce/+trVuP/a+1EYV8C+S/bFknctwe0/vh1P3vkkxjWMQ+usVpz0TydhQssE9GztwQ1fvwEbHtmAA19+IE78wIlD36DIk5d2lJ02QgghhBBCCCGEEFI9+LGvBrzpTW8CAJx99tkl14a7Qceunbtw9+V3480XvRmNzY247D2X4fA3Ho45i+ZgyTuXoDCugDsuuQOrfr0Kxyw7BuMax+Hotx2NTU9uwqYnN+W+LyGEEEIIIYQQQgipPfzYVwOe0DZEKsiOzh1obmtG0+QmbHoq+XjX2NyIOUek9ij2PGhPPHFbkobxTeMx85CZ2PLclmHd12fTAtA2KVJbEU3KRlYzhM0uae9GG47wGWTw7RmfdTxUQvVxSLIsjcVIm2QN6fNpuxG+pMaaVQrZnRsNdrF89jhCps8CJg4rmh5f3oVMzVVasS4X84ae1WduRoYJ2W/05WkBrn28RpmGroAxrZiCUX76xT5Q0g5dnyr/xhEajfqFHRt4bNoAQFOT8CeyoVFXBl+DizVeF1nZfd6c5wHQI57DZ38n1h5QqC/xpUfXR22HkvhtF20Rw3DIjllDe1rmDU1u+Tf6OrWQAVYP0swXoO3ipXbaWmam7oKuNPK+4sGbhP0/3aRkvydNrIXM00m39FfSd3d2Zrs3bPD7kzbtpM21BQucIP0zUzvMTnSqTUw+NvUn0yf75a1drl0tX5fRr8q/0JBjAuCZwwTrj8gf2Se2Bez35ej2HCZNco9lshu7xI/V0v7eY4+5gWbOzE6Qfr7bby8/gRLZeOSc/9hjhx+ftO0q/cg6C7jP98gjqVt3yqtWpe6vfW3QKe30fUKn55RTvEn1cqJQDsXaLpRhdAWQ6X7oodR91VX++8gORXbEIk+nT9/TCSKzSwaphLlMGUeofXj7NKdPdfsC3/gdGltGijy2s0P45rqVKKOxgkHJUEXqBFb7GrDvvvtWLW7bbwED3HPFPVj585VY8MoFMAXX5OZDNz6E/U8c2l4gIYQQQgghhBBCCNm94Me+EWTnzp0YP348fvOb3wT9nXHGGcO+1xFnHoGDX3UwbvrmTXjw9w/i4FMPBgD89Vd/RWFcAfOXzh8iBkIIIYQQQgghhBCyu8GPfSPI5s2bseeeew7a7MtiuDb7JE2Tm7D/y/bH+jXrAQAP//FhPHXXUzjtvNNgTGU32NbqAR+hJfDNQl3R3ZcuR2/WHn2aypAkw6eVle6QXDiER++5Wch4XnzRDeJLwo4drj+pOIi4JYDKLsnPo+KMjS+UTp+/kPRX+tNVRiJlhlKeEZIfxsqrY5Hp9sm4kmupSMcnwwyVSSN6sy90qQeKlcPHaCVUggqedlQrubmvboVUjvKRSuTGMTr8UH/kqwyqEhd8uheV3zt3pnUmj4zXl0wdhy+/Qt1oDiVpXaCfe9u21C2He+lPh/EVuW5e09o8Zi5yoIP7qrpMQ3v7Pk6Y1jlpn9bdk9bNRx9N/eg6I2W8shlI6x46Pa0tou/s6IAXKfGUCdeDtJToSn9z5w46uxtcyepGEbWv7elbuWWZ5o/Oe5+5htJ6kpoPaVbjiY/emWmZyfu2LmpLDwLy7N6mNB96NrreYkxoaGL7ZXltmm8M2l+pWA44IHUvXJi6tXmd0CQiBinXrbQtA1lIcvItpboAsH596l65MnVvdAvpqSuuGHT/P3F+uUz3uee6cS9aFJVUB5nfUk4doLc9lbw3HqEuTp+eukW7dMr/1lvdMPLZZYcinqcg4wIwTaS1bUGaHj1fcxtt3PvDjBmpWxaXfheQxexOvUTbU2YXfHOd0LheTZmrz3xF7OvavLn+uJ97LnXL9yadj7LKSCjvTSgM7YXshrBcR5A990zsQPT393v/KvGhr2tjFzqf6QQAPP/w82jbqw1P3/00Vv1mFU4991Q0TGCvRgghhBBCCCGEEFKP8KtPHVIYV8Afzv8DzDiDKbOm4Jh3HYMrP3YldvXtwnX/ch2AZJOOl37opQCAy957GXZ278Suvl148o4n8ZovvwZT95lay0cghBBCCCGEEEIIITngx74a0dfXhzvvvBNPPfUUentdqd073/nOYcXdPLUZZ154pnPuLT98i9f/W3/01mHdDwgvw/Yt19YqidliVb9cad/W5u7aCxFHk5CPNIa2c/XsCOiV0+njQNzOrrviNnJnRS3JkUvLpaQnVnUV2s11pGS8ofv4sliil9cPd/fbkEwhZsPUnTvj0qP95cG7M66qAO7OmjI9qcxdS0nk7reOXDdUeD5deYjIitbvWUBeKxlvrJRE4nQFbWr3S1lX82hBfGEi45LSSMDdGV1Kf3ybmAN+iaBWNvp2hw4h81i3+bGCzm9fnx/ajTG2mjQ0ZO9439hUvqRXl5cv3aEdwXfsyG7/Mu7Jk91rcnyTSrtmdLse5YC7Vkwa1qxJ3brSPvNM6pa7e8odd/WxkPFtRTrnWCdku4B/mhHKHyk5C4178lqsAESaRgkhN3p1LDq0pGXXpvq9EvMqRUJmRUJTNB8yvN6M1bmXL/O1bk/KR31zPMDtSPMgd4GVGsO8yOfz7Sh9//1uGNkOrr120LlO7Twtpbvvlhc+97nULSW4QMlO1FGIPNnUldanaU1+ublU3c8Uu10DQLOvwUgZv+58f/zj1H300alb5uNBB7lhhKy3cHCgH5VlpPPLw4yp6fvfrl1pnoRMI/mmaPp8zDwc8LfLSktbfXN0PaeW/VueeaIMo00hyT4kYDWFkLqCH/tqwJo1a/C6170OTzzxBKy1GDduHPr6+jB+/HhMmDDB+dh33eevKyvuvt4+bFu/rexweWhvbR/aEyGEEEIIIYQQQkYdBrTtVq/wY18NOOecc3DUUUdh1apVmDlzJlatWoUtW7bggx/8IM477zzH79Orn65RKofm/WefXeskEEIIIYQQQgghhBABP/bVgLvuugs333wzJk2ahEKhgL6+Phx55JH4xje+gY9+9KO49957a53EsgnJJmN3YA3FN+wE+XYbjd0eMpCgmKXuOrhPhhPy55MCxcq9KkHkhqBexehw0xaS2oaQ/qRELFY2VWnJqZPuHBLaQiBxzq6tsn6HtkXN0yYitwf27cYr5YYjSawU3Rem0Kd2OI4pv5CdA9+NQpVbXGtqafT7qyJ5pDYV2mh+tyNWXuXb4VYT26c613J0Yrq8fGkNpcHnT5q50JuVyn7eK9UEXK2b1PvJrX71Fr4yzF57pe5Zs1x/QnIoTXX4dtzNOvYh89G363semWtefArYUNc2aVLa72i5vy/uWBlv7PxR1s+G9mmD7kYpoVUNSe6gLFXg02QYYPhbh0fuNhuNb7dZafNGaz8ffDD1JqS7F6moPyDcM88UJoBOPDF16/zRxxF096V1xtlJuc0fxrfxMACgLS3zZpk/xx2XunUnJmXdq1Zl31RXThlHSHefZ/dzp56lzyN3bAf85jBCGz3HmpyphYxXpk0r5vNkoxxPQvJcmV/STRkvqWe4YrMGWGvR3JxMHqdPn45nijZk5syZg0flJJUQQgghhBBCCCGEkDLgyr4asHDhQvztb3/DvHnzsGTJEnz961/HuHHjcPHFF2P+/Pm1Th4hhBBCCCGEEELGAFwBVp/wY18N+OIXv4jtxXXL5513Hk477TScfPLJaG9vx69+9asap44QQgghhBBCCCGE7K7wY18NOPXUUwfd8+bNwwMPPIBNmzZh6tSpMMbUMGXVIdbOm0TaXAjZLmqEsJ8lDXqEjOnEGEzSCQwYSSqg3znKQtvOiLVj6PMnTYhoOyZ57F340HH5ykKfl1kkbWGEyrytLXVL+4TyWSdPzpee2GsS+ezSRoq2TxSyN+NDVseWltQeVKGaRlJ89V4Ta9TO15i1jaSetE3I6HS9bR0hmynyvjI9usuQjyTrY4uykVeAx9BWqCHGGD8L2YwS/nSP09aW2qTydVuxJgS1uSOffSCfPVHAbbOV7Jt2J3SfE2OyMbZP1baGWlvEeCQLWlZ83c9ou3aeNEhiyzLGjKVOjryvtMU0d+6ejr9GOWj4bqqfbfPm1L333qlbxyUS0ed5Bp3uCRNSd8jerjyOnev4+qNQ24tFPrqvO9L1TKZVmjGTY2Us+hl8+SDzV9+3sa87PZB27FRkzTPTh2puCdixLTEQVyZPPJG6168fXlwA0NGRumWByWe9/XYnyOPi+Kfi/EdU1O3Sjp1sL3LiWuG5SR57y9HXZGWVtvwA4JRTUrfsiKUNQq2wknkibTHGTpBDyH4mbsh36n3onSrWnmdsHzRcYm12xk6jfGEksa+C0j27wuY2Cak1/Ng3Spg2bdrQngghhBBCCCGEEEIICcCPfTWgp6cHF1xwAf74xz/i+eefR39/v3N9d9yNlxBCCCGEEEIIIbsPBrTZV6/wY18N+NCHPoSrrroKZ555Jo4//vi6kO7G7kAfK18NKdjcJeeppK5ZLrXXCWryyDVkQkM6FSmbUHFv7Uq7R1/UWg7nW3IekgX5CMm9hovOEt/29FqGE5OG2HT6JE9Zx770xKDTU2lFba64Y3QY2k+kvNZLSMbr02SHdCCR6uFaECuhl+1X923NMk9CZgEkoX5ngFBll24VfueG7OSEiDW1MEyVUlUlQqMZn9oUcJVyseUVkp/L8ailJZV0F9rLb3x5yt8n9dbxyeE6NPRG1xnpUUrtQpHLRKhCkuYHfNL/UHnJMUjniU8dGWp7ofgqSaxpjOYGYUKlKU1sS4v7uhiay5XL1KnusWPGpWNt6l63LnXLugA4hdbfkM4fC7qR6nDlIrWWlRj4fDJemcE33eQEkdLddwp3+7HHunEffHDqXrw4dR96aPY9AfQ2pOZHGuEuWPDhk02GCA2pUpE/Y7poy6FGKhuzT+4vJb2hBIXmXrGI8mtvb/Z685kICBGbxyM1RvumSqH3x9im47FEURK3zwRGNef7hNQaVu8acPXVV+OKK67AKdJ2BCGEEEIIIYQQQgghw4QrNmtAc3Mz9paGoQkhhBBCCCGEEEIIqQBc2VcDPvOZz+Bb3/oWvv/976NQqI/vrSEZp28Ztt6hVuLbES5EQ0Oal40hCZxvi8qQ3Edck/IewN19Tioq5PlK7ELpW7qv4w7l63AJbEocRUhVGrtTl8QnZwrtSuarj/q8PA7txpuHbduy76N3eoWUGfmkMqGE+zIypNUI6SaklEfELSU9PTl2PxtJfOmJlZvpvq6vL+0PWn3bWmp8HVyo7CIbhWwTw90JPbTZoG93UE2l1Wy7Iz6JEeA396CbqK9fD5WlzO/GHB22HhJlWn31JFaSJWVp+tl8mwiX1se0f2yfuc+g29mlN/AQst/SddPXR4faka8px+6sHLsbb2xbjsVXPxsbxJgjd30FXKms3B1c5Xerpyz6kb1LO+DPh8aNz7onZEVZtSp1r1iRuhctcsOInVYLcqdWXU/k8+rdWWP4y19S99/+lrrf+97y4wKASy5J3UJi3HfFFYPu81SQ5fLg5JNTt5bxyjKaMSN15zEDUkVC44eclzf7JP0AsHBh6pYTu1mzUneow/aZBMqLqHc+CwP6mkTOC3v73HeTGHNKQLxZoeHis1iikeNB7HxbVtvt2/3+YuagrZHprEfq44sE0fBj3wjy+te/ftB9yy234Prrr8chhxyC8eqLxTXXXDPSSSOEEEIIIYQQQgghdQA/9o0ge+yxx6D79NNPr2FKCCGEEEIIIYQQQkg9wo99I8iPf/zjWieBEEIIIYQQQgghhNQx/NhXA+6//37s2rULhx12mHP+3nvvRUNDAw455JDBcyced9RIJy+aCRNSIxKTJ7vXYuw0hUyAhOzY+LaJd+xL6HvGGLwJ3SiAVGHLIDJPfLblNNp2kYzDZ3cuZA9ouISyRNrpkuUNxNvSC90rJnysubM8tgZlGPk8PtuJlSBkS0XaOPLa7wsRMqQZawSqgsaiKm0PJs99Y012Sn+6bvvLyBNZpVFlKe0++uy86eT4bKnpMpJ5FGvnJ8Z+a72j83vSpOxreZqhLC8dn2NzLQcynaE05ekWYu3ThcJ4bUUKj9qOlbTn2+exJxhKz3Bt1Wpi2lToWiX60ag4tCdp502So6/L/Qwy4Jw5qXvx4tQt7fIBrjE032QS8D9fLAcfnLr1BDkP0m7gtdcOOqWdvnN1mP/+79QtK5o2CCfzUdq4E3nQ36DsCefoy/OYAAy1D++8OrZRSaNtsrx12cca7cyDJyMq0c/48jjWZl+liS3zPOnR7yAD6Pm6HDNGgRnKUYUBbfbVK/zYVwPOPvtsfPjDHy752PfAAw/gwgsvxK233jp47tYLFuvgo4b3X9BR6yQQQgghhBBCCCGEEAE/4taAe++9F0uWLCk5f/TRR+O+++6rQYoIIYQQQgghhBBCSD3AlX01YNy4cdiyZUvJ+c2bN8NaW4MUDZ/YZdd5ZEpaquNTXhT6etMDvad6j0evE9KYjTLNmUyOT55XzXvqY6+ESuFbKq/LX0rO+nP8DiHvk6fodJgdO1L3iy8OL26NjC9WFuy2nTR/Giuh/cqhtZSyHimHk/mmo/M1w5HElwbdpnxZEvIXdyGS2P5I9XWNLel9J07Mbke6jGRbDpkc8MmwQo8qJeeNY3TG0Yhe53jiRNF2POYZYk0e6P7Vke7KuqHHRInWsBeJNT8RSrfvOWLbv0x2KO7Nm1O3L3+TMIXMa7pd+0w3yLYS241qqbXE145i8yeXSQcdh5w7+Trsri43UKhgKojzfLH3kR3cc8+513wNTktb161L3QsWxN1XsnZt6l69uvzwmksvHXQuF5V1+fTpqZ+lS90wUo4q5cz6WTs7U7eskKLM9UjSOEy5dh5JZ+hdwFs1dN/ma2TCX3eP+7RNIgoZRI614UT40WYGfDjtwFOHC+r+cm4o59ShZFZzXhY7Hc2Thtisl325rysgpN7gyr4acNJJJ+H888/HLtHr9PX14fzzz8fLXvayGqaMEEIIIYQQQgghY4VCHfyRUsbo7+y15Rvf+AZOPPFEzJ8/HyeeeCIA4NZbb0VXVxduueWWGqeOEEIIIYQQQgghhOyu8GNfDTjooINw77334sILL8SqVatgrcXb3vY2fOhDH8Ls2bNrnbxcaIWHlMTIZdMh+ZEkVgLjENIIxqzXjlzHrb3JZ/WppnT+xC4Zl3kXo0SuNNu2xfnTci+fzDiU1hiJX95dxGKKXEsbpdRWll8llvvL+ELP4JNXOmGa1G6TeXaLy7GFpswHWU9kvgGuQsgnjR5JZFpl+5LpBFwFVGj3a4nMxuamSK1MrHYvTxhPcC0d90Wh/fmqllcGGIrcIx2tS9QA0NA0bdAt20TsjuKyfw3K4XzjXmSdCVnDkPf1nQfcR/eNC7ovkM8uw4eqjGyvvrRlpc+H3InYZ74iFHdINe3rbqVUT8qNdXxOeF2W0mNsG5Odn8xw6X76aX8YmfmzZrn+PLvfasmhg09KvHGj608e33576r788tQtZa4AsHBh6pbyXL1r76pVqVvLY2O4+upB57M33TTonn3RReXHBSXdlZOB005L3Y8+6gaSZeQrL8DNR1/Flbv0Av5djQPIIo81RRMyHeOd6nSKehvaVdkj3dXzXl93qWW8UiobK6/39Z0lO6nL8vO9XOj2Lo4LAQ21THc13y28/V5Pt3Ps7JjeELdWSz6SLD9dneXz+cameXOjbknIbgM/9tWIWbNm4fzzz691MgghhBBCCCGEEEJIHcGPfYQQQgghhBBCCCFjENq8q0/M7rr76+6GMcaWm9fGGNg7zq5SiobP+y/owA9+9rtaJ4MQQgghhBBCCKk4i5cswcqVK02t01EtjjTG/rnWiagAzcDd1trFtU7HaIIfcQkhhBBCCCGEEEIIqRP4sY8QQgghhBBCCCGEkDqBH/tqwLvf/W5sy9jmdPv27Xj3u99dgxQRQgghhBBCCCFkLGGQfBTa3f9IKcyXGvCTn/wEO3bsKDm/Y8cO/PSnP61BigghhBBCCCGEEEJIPcDdeEeQTZs2wVoLay02b96MhoY0+3ft2oXf/va3mDFjRg1TSAghhBBCCCGEEEJ2Z/ixbwRpb2+HMQbGGBxyyCEl140x+PKXv1yDlBFCCCGEEEIIIYSQeoAf+0aQm266CdZavPzlL8eVV16JadOmDV5rbGzEvvvui9mzZ9cwhYQQQgghhBBCCBkr0LZbfcKPfSPISSedBAB44oknsPfee6NQYLMihBBCCCGEEEIIIZWDH/tqwL777ovu7m6sWrUKzz//PPr7+53rZ5xxRo1SRgghhBBCCCGEEEJ2Z/ixrwbceOONOOuss/DCCy+UXDPGYNeuXTVIFSGEEEIIIYQQQgjZ3aGOtAZ87GMfw2tf+1qsXbsW/f39zh8/9BFCCCGEEEIIIaTaGCQfhXb3P1IKV/bVgI6ODlxzzTUV2Yxj3QvdOOdbt+GuBzdgwvhxmDtrMr79ieNw+NuvxIJ929DTuwuTm8fjw296Cd712gMBAJdc+xA+/d07sNf0Sejp7cP7Tz8YHz/rMADAty67Fz/6nzVoaChgelsT/t+5J2HfWZOHnU5CCCGEEEIIIYQQUn34sa8GnHDCCXjooYew//77Dyseay1O/8wf8K7XHohfnH8KAGDVwxux/oUd2H+vVtzzszcCAB5/ZivO+OwN6O+3+MfXHQQAePMp83Dhp0/EC1t6cNCZv8SbXj4Pe89owREHtmPlT85Ac1MDvn/lA/jMhXfgl8W4CSGEEEIIIYQQQnY3jDEFAB8D8H4AcwFsAPArAP9ird0eEX4FgJM8l4+21q5U/qcAOA/AGQD2APAYgAsBXGSttfmeIh5+7BtB/vrXvwIAPvCBD+BTn/oUnn32WRx66KEYP3684+/II4+Miu+mu5/F+IYCPnDGIYPnFh3Yjo5ntzn+5u3Vim+dcyw+ecHtgx/7BthjShPmz5mC5zZ2Y+8ZLTh5cbra8NiFe+LS6x+JSssdd7mLZ31q5Kam1N3S4l47cH66Ucn6DWl8k9XCQhlHoac7PejsTN09PW4gea2vb+jEAUBbW7ZbJby7J02rvM3Gjam7q8uNWifPlzSZJF+YUByveVW/32MEt9zqlqt8dJ9bp2HChNStqro3bl9cOg8aGrLdGhlO+gvFLY9l+ekyOnJR+Xn8wJo0X2UZ6yookdfkM+gwjQ0iPaGE+5D+dBhPoW/tSp9nxw43yJYtqduXpwBw/LHDq6ux/HVV9kJ/2V4BYMqU1C37oD32cP3Ja80NvemBfEDZMQBxHYCu0DLvAxWlv33PzNvu3Jm6X3zRf9vQeV8S5Hmn/qlIuvsaB93NTSNT3qOBfiUuWbcudfuaaKgvCAxHaOzzjIm6DkoWLMg8/dRaN92y2sr0yah1uuXzyfA+t45DXpPPDQDjxqXuqVNTt2y7uq7L/JJtYuJEeJF9mhzDdJ8hm6x8bl1G8vlmzkzdhb60/+hvaITEN4Y1ohdej75BVbN2bXZ4WbDSj74m68+cOa4/UWjdDa2Ztw+N3U5/ojNcNqT77kvdV16Zum+6yQ3z6len7lC6V6xI3Zdc4k+gh05ROb8tzi/PaarnWRHf7Pe9L72wcGHqvvVWN9Ap4od6mclz57r+nnsudcsKLhvIfvu5YWR+6byLYFNn2rdMa/OPBbIP0u2/tUH0dbLzlHVVB/KNse3tg045TmlC/ZGkgLjx7dl16fPJ/kzPlZ08kp2LbAM6QZ5JY39Ts+NNZomMWgavxHjd25c999J9WC/S/JdNfvZMfxpkfZJhNm92/cl81XPQAV524tiZm4xh/hPAPwG4CsA3ARxcPD7CGHOKtTamEmwE8PGM84/LA2NMI4AbABwB4LsAHgTwagD/BWAGgOX5HiEefuwbQY4++mjID7hnn312iZ9yNuhY/dhmHLWgfWiPAI48qB1rnuwsOf/Uui709O7CYfOnlVz772vW4NXH7R0VPyGEEEIIIYQQQnYvxoLNO2PMSwB8FMBvrLVvFOefAPAdAG8BcFlEVNuttZdG+HsvgKMB/JO19rvFcxcbY64E8AVjzI+ttU+W9RBlwo99I8jjjz8+tKcqoReJ/vLGx3HT3c/hoac6cfHnX4amCW5VuPR3j2Dlgxtx80WvG8FUEkIIIYQQQgghhFSUs5DsR/Jtdf5iAF8D8HbEfewbkAO3ANgWkOO+FUB3MX7Jt5HIet8M4Bsx98sLP/aNIPvuu29F43vJvKn49f/FfUC85+GNOHhu2+DxgM2+v9y3Hq/9xPV49fF7Y+YeydLuG+9ci/MvuQc3f/91mNA4zhOji15y7pNrhqSfEq80DgC6PFpAuXZb689867VDyDABnUlTSypN8UkydXJiFZUx6Lhi5b7DjTv0fHnwyWslUlWij6UMKyQL8oXX+SaLP0/1CbFNKO1DqllJSOHp0JT+NtcYk6mAXzcXCCOlidKbXpgcKxGtNTpPQ5JzbzhfYcZ2ALES6oA/KQVsaUnlMLJYY8solDyJkwchuWhT6QrysYDuW2IsSWhFluyrHNm0lO0Cfvl4BTqxmGqr25Gvr4q1MCD7yth+PbZPlSYmSswhiHxtmZ7K3qQ8r6fHvw4iJMkWikEUOjelB6K8Cu2uakPOM2QbL2lv8nj+fG/6HB59NHXLhIdk4D4tuaq4/SLdnUJxGGu+olGWuZ40ynvNmpW6pbR1pWM6yZX1rl6dulVedV911aC7OYeM99vCfU7ZoUuZffLJ6YF8PimhPfxwN5B8JqlFl9pxjZTA3n576n7sMdffUUdlpyGEiHuakwZ/w5bNoLlvq3vx0Y7sQPJdIFRnRMXb2pOOlaEhLDS/ln30jOl+fxJ5r5BZmpYWz7wulDiPJrfQ5PprFHnS0FAQ7uzb5EVK8n2SXiBs7sWHb74uzcgA7jNV8l2J7FYcDaAfwJ3ypLW2xxizqng9hr0AdAGYCKDbGPN7AF+w1q4Z8FD8GHgkgL9aa3WNu7OYjtj75YYf+2rAT3/608zzxhg0NTVh/vz5OOKII4aM5+WLZ+ML378TF1/9IN73hoMBAHc98Dy6e9zZbcez2/Cp79yOj565sCSO4w6dgXe86gBc8IvV+OqHl+Cehzbi/V/7E67/9muw57SAERtCCCGEEEIIIYSQ0c9sAButtS9mXHsGwPHGmEZrbW/G9QGeAPBnAPcC2AXgGAAfAfB3xpgTrbUDRmSnIvkY+IyOwFr7ojHmBSQfDasKP/bVgA9/+MPo7e3Fzp07USgkv2709/cPbtSxc+fOqI99xhhc9fVX4pz//Au+9tNVaGpswNxZLfj2x4/HY89sxRHvuBI9vbswuXk8PnrmwpLNOQb47DsPx5Hv/A2+sGwRPv3dO9DV3Yczv3AjAGCfmZNwzX+8qkJPTgghhBBCCCGEkNGCMabWSRg+1rYbY+SS7h9aa38ojpsBZH3oA/D/2Xv3OL2q+t7/s59Mnjx5MhkmNxJCwAABg2IFDQgWLVa80wtVqvZ4wXO81FZ7vNS2nuPvFHvssT3e6qU9rXqO9mjFu55KlYotqFRRQkENEiRAkAiBhCQkw2QYhtm/P+ayPus7z3dlzZ5nLnmez/v14sXaz15r7bXXdc/O/nwWhiiO+7KvLMtXmZ++WBTFPwK4BsD7ATyL8sERrtd0zrWNYg52/BUAiqKYlHN/4xvfwDvf+U584AMfwNlnj329ef311+Otb30r3vGOd+D444/Hq171Ktx4440ofzB1E4+Fwus+uBN/96lvzHcxhBBCCCGEEEKItrPlnHOwdevWDngb1potRVFu7YCXfUVZ3lCW5Rb3fFH8BMCxZVmubXHu8wAuAbDkCF/2eXlfDeBpAJaXZXm4KIpVGNu19/NlWb64Rfz7Aewoy/Kp073WdOiGjVcWHG95y1vwwQ9+EOeddx56enrQ09OD8847D+9///vx1re+FU984hPxvve9b76LKYQQQgghhBBCCHG0cw+A1UVRLGlx7niMSXyn/aJvnJ0AFmFMvgsA+wEcRgup7vj1V6GFxLfdSMY7D+zcuRPN5tSvNpvNJnbu3AkAOOmkk+a4VEIIIYQQQgghhOgaiqL9u7LMB3Ynx6lcD+DZAM4B8N2JH4uiaAA4E8B3ZnD1UwGMANgHAGVZjhZF8e8AziqKYonxCTwHYx/dbZ2aTXvRl33zwDnnnIO3vOUt2L07bE22e/du/OEf/iGe8pSnAABuu+22+SqeEEIIIYQQQgghRKfwOQAlpm6U/hqM+ef9w8QPRVEcVxTF5qIomvTbMUVRLLKZFkXxAgC/DOAqs/Pu5eP5Wl+2N2HsxeDnK99JJh3wCvfo4+Mf/zh+8zd/EyeeeCLWr1+Poijwi1/8Aqeddhq++tWvAgAeeuih+S2kEEIIIYQQQgghxFFOWZY/KYrirwG8oSiKLwP4OoDTAfwBgG8D+AxFfzeAVwJ4BsY238B4+P1FUXwNwB0Ye2F3DoCXYcyf703mkh8D8KrxNBsB3ALg+QAuBvCusizvbO8dTkUv++aBU089Fdu2bcM3v/lN3HrrrSjLEqeffjqe9axnTe6E85u/+ZvzW0ghhBBCCCGEEEKIzuBNGPPXey2AF2DsJd2HAfy3sixHj5D2VgA3ALgIwFoAiwHsAvC3AP5HWZaRB19ZlsNFUVwI4F0AXooxn77bAbwRwF+353bS6GXfPFEUBZ7znOfgOc95znwXRQghhBBCCCGEEN1Id3j2oSzLRwG8b/y/VLxLAVxqfrsFYzv2ZlOW5QEAbxj/b87pgFY9ehgaGkKj0cD73//+ZLy3vOUtc1QiIYQQQgghhBBCCNFJ6GXfHPLQQw+h0Wjgwx/+sBunKAq97BNCCCGEEEIIIYQQldDLvjlk1apVAIA775x1L0YhhBBCCCGEEEII0YXoZd8C4q677sLb3vY2fP7zs74LsxBCCCGEEEIIIbqZougMzz4xhdp8F0AEDhw4gC996UvzXQwhhBBCCCGEEEIIcZSil31CCCGEEEIIIYQQQnQI+l5TtIWfbvffG/NXwcccE8JLl8bx+npHw8HISAgPDMQRvXMHDrSOAwBDQ60L5BUUABqNEO7v9+PRudFGczK8Z0+I8vDDcRIuKnP4cHy8eHEI8y0sWhTCjz4ap+EqefaFo5gJ37k2btclS0J4+fIQ7u2N03H1czWmym3zmIDr5KGH4nPcFFw2rjcg3ondq9NUN+P24nsAgKecPf06/vG2UK9cPxy25bPnJuD7BuJx5Y4pOz64IlOVwo1E4cGhcD82a5vFBHYMPG7zzPpqLj/fFcrKt713bxzPG/KrV8fx6j1Ubr6p3M7FpCQUfGGvvQCMrj625anc4uR2E+4K3lQJADWE+rlvT6j7tWvmpr0XAnzfQDyPeWPc1iPD52pDg/FJb000/STijDNa/nzP7rjcnAWXgS9px4c3j+7a1To9ED8nPPBACI/bHk/CawjXnS0Dw+c4TW33PXFELhRHpEEwum59lITrh+/VtmUTg60jJipytH9lKOvIcOv09njTJmTxjW+EMC+Q27eH8Lp1cRouH/Wf4f5jo2j794cwt6WzlACI1+sVK0LYzkdRPXKHuv76EP5//y9OxBfbsWMyOPrd70bR/ozCl9mHlQwG6UGh+fKXhxOf/OS08wIAvPe9IbxlSwhzu9i+wG20e3cI2w7J7bx1awh/9rMhfO65cZpf+ZUQfv3rW5V4KtddF8Jc7o0b/TQ8JnbujM/xMQ8+/p3rCgA2bAhhfnandZOf3YH4+Z2L4z2zAsCJG/LWt3+/Ke+bG64ivm5998/DgX1I5P6QGHCjvX0tk3B2zcbM1+tR+r4o9WzL9c9zRuoZ8Wc7WufN3d5ey1sSZ/p3kxALDb3sE0IIIYQQQgghhOg25NnXsahV55Bf//VfT54/ePDgHJVECCGEEEIIIYQQQnQietk3h6yyGpQW50866aQ5Kk17saoAK3WcgCUZyX9A8GRuFk9XlsKR5Ey5phfPFty5EZa5Wsmyd++2CHzsfXJu03h1X4VUlabaj89xeVghZKW2Xn627jw4XqqJcurUxmNsuWdKqjx8zPFy//FtZCRIG3p765RBPYoXq9zDuca6viheVFaSs7DU2iqevHLP1z8g8nVTskkrj57AttFID0myPamdzTxHxmvisNSGqSUq0pN+W1g2l1Ks8Vjm+a3ZQ/e62+ihqRArVqxEN8LrHuBbCaSkjdwdor5lO2SO1jqT9etiOdMwzSf1ofCPk/0bQt9k2TYQS/yZlEyZ+yDf94MPxvE8KRhL7ezw8GR464wkt95L//jKieiitb33R2maHF7d3zo94GuYOWzGf827QatTYz+CXBnvTTe1/v2f/zmErRzy/PNblqdu5MdLl7a2rOD51XZNPmabhJ4e05cGnHl0zZoQtnVA97qXpLsfMVn8t9Y5Z9O8+OJwcMEFM8wNwJlnhjDfEw8kq1/nYw7byYWPly0L4ZRmtcqDkGcxkIL7s03DE4B3r8aigGXmkcSclMyHDvnFqaDoTsJrLz/D2uqOxgTNvdH4t88VfI7rxEy+NZI29/aGNbrdz2hsldCMPFTiNWwtlXX58iZyYFU4d5nUOpr7Z6YQRzt62TeHfOITn5jvIgghhBBCCCGEEEKIDkYv+4QQQgghhBBCCCG6DXn2dSx52wAJIYQQQgghhBBCCCEWPHqFu8A5/3Vfn+8iuCxZFnwVcr0PYm+w+FyTfVtyzb08wzNrAuMZNeQaz3F+Jm/2MRpy7HdSXmwpuKjW9sf7vZ0+FLacVfwA2drFs0EEYm8ehus3RSrvKt6Hnr1MBeurKbCnCJfV+sQ9/HDrc+yXZsvNHiXeMEp5Q6Z+57rjOuHfp3jaUR7sT8P3BgCnZdpLzRS2seE6sePIq0frAcPtwvfKHonJHux1TlORNa8xTcGja1G8RiOUx7Yrt4vnsTmWRwg3MRgOdlGl7twZJyJ/oPqmCh6rHUB9ZDA6bjSCDxHXPTdr5MsHoM4nhxITWqpTT5C7SJh4IyOhD9WpM8RWWnFv5/HGXlg8/r1i2rzt/Mj+Wewbyt5XqTmMratsvHXsV9ofwtzvRxuxn1RtIHhpjZL3aS1VCPbv45u1ixh7bnE869nH4y/XK+7mm0N4x47W5bSNxGXwwgB6ycfUa6PkmsoeibYe+Vq8qHIdmPno/m98YzL8N/T7G8xla097WqJQGXA9chtXhe+D+0I0L8Rzwejq4E9Xo/l230Ds2buSPNuiPNgb0PZHNknLhQdc7vzP8bictkxcHvp9sPdYMLt2hrBnl2mn1Nxnvpk+eyf+zECzQc/Hu/N8PnHvvSHM4yNhmFrfxN6gzmRZFS4D36CtcL5WhbcUKV8+zweb5yYhOg297FvgXHvj3fNdBJfXvfa1810EIYQQQgghhBBCCEHoZZ8QQgghhBBCCCFEtyHPvo5FrSraQkoWmKugbdJX+CwzYPkZADToq/4afwrOn7PbzD39cOr7fJIPjJI0yapZ+PNvT5qUK5u05My7Nk4752pbPZ5UNiWb9X63aUYdsWPqOnzMMmCbV04fTN0rqwqqSJkty5a1/p2lTfbYq4dUnXh9oaKKr5LUgWWKLLtbCPD9pO6V5aypvu7dn53D6g1HU51qGK9hrRyKOq5nMWDbkcvN/TspJdrr6J7sPbB0h+VnXSTjtdLGxrog//SU2z29cZ/h9mMZcH1dwrLC0+5nTgAsRR1Ll5XMhceRnesYb7m2snLut3zOsw6weafsB1hyzHk3+0N9T5X+B7kvN3n/6lhKWPMWHs6Qx8pY5iGc8mSo8gDwy78cwiyHZCnqF77gX8crG4AaVeyadetbXr6G1hYeAOL747nEHt94YwjfcMNkcN/ll0dJWLr7exRe/bznxXlXkakye/aE8PbtM8vL5rFxYwhzfZv6qUVyyNaWDgD8AceyWdsfq9QPlztTFhpJkW0aLiufo/tJuRwwuUtvan2sAluycBWv7DdjguX6LAvnsH045TrxLmSP23FTHl7eZn3ke21G3cx/ZuhDsFA4fEyYh1PKfyG6BW3QIYQQQgghhBBCCCFEh6CXfUIIIYQQQgghhBBCdAiS8Yq2kNqB0/s99bV47m61LGeqpaQtHildKZ0bgZE9TJPU7pe58Bf6LF+aza/uq+JtMMr3YOsk5z7Su6SFf7tI7cDl7X5pSSiTZgwrKnJV5YwnK7F4+dn7qXKvnrTVXtMblvO1+5knRbcS3Cr35+U9ZafpnAkucaFIpm52BOWsWYrI95c7PXL6McJ1m96OkKmd0K18qFswdZIjJbVrhLcz99Kl8b/ZskSv7kjbcjtASvLU6G+9JqbsELzf7VzgbTCaO/Y4bG/V2xD0mGPieDxHR/BzwUhcB1xf6d09ww61Kzc6N2ski8Pgds2zH8nm7LND+IQTQpilmjbfbdtCePPmEE7Ij1muy3OYtd1wZb1WN81S2dtvD+FPf3oy+CGTxR9QeOVLXxoOWGIKxBLmKvACQjsAV4br+8lPDmEeBLbMjjyzudoMCk7HdcrSUc97ZDpQXxiksdO06yMRyeHNnBM983PfoHKv3BSPld4NQeLJQ4xvNXc33jZXSXyd1EOsx3HH+Zlz2I5RqojBoTAWo7+vUlL7XHg+SXkoVHngpvpK7fTtTY+yqhtHFdGRqFUXOE9+ypOPHGmeWLoQ3zIJIYQQQgghhBBCdDF62bfA2fKOLfNdBJe7Pr1zvosghBBCCCGEEEIIIQh59gkhhBBCCCGEEEII0SHoy74OZNsV23DzFTejtqiGx5zzGJzzynNwx7V34IbLb8D+Xftx8XsvxppT1wAAdt24Cz/8vz/EoyOPYlHPIjzl0qfg+CceP+1rpmT+bD3heblZ0n43rcM9PfWWYQBo9DveE1SgUZPGsziy/kLspZTrNch2Lik8DzBmNi0WjG1Q5FGSew8pTznGs5FK1UEVJTmXO3UP7ItVxQYpxapVrX9nr5FcbJ1U6Q+cxvNVSqXJ9Q1MWWTOFVwez08SiMs3QwsZDI/E9VinQnAdp3xxRh1PypS1D89NufeT8m9sNlrPnVGlsi8PEE/mHO4mG4hdu6LD5maqZPKh2rs3/Gw9JL35kdsY8P382H+px1R9FT8mLk+uDyqfS/ldcTdJzRnchfi+eV633ode+Ww98lwcrfnLQ3ul1vuULSLfX++64CHW0xvCKR/kkR7yzrSLdJVxxX51ns+Xvc7WrSG8fbt/fa5w9u/j/GyjeH5ed98dx7v11sng4Ac+MBn+nxTlMrvIv+xlIXzuuSFsPfse/3jMiEsvDWH226sKe+mxkR133JtuitPwPXl+aRb2bGQPuA0b4ngV/FcPjoQ5iG/hxA1T406Q+ltg9er1k+EpvrgTmIc37mlO10z6jvJzwooVrS85HbgamxgMB7v3xhF5ceCK4IfJhBefO65h/vZxni3q7Xhe8+am1AN2rsEwdai+jf2T4Z6emhctKo61A+1KikKefR2KvuzrMB595FHccPkN+I33/AZe+KEX4mdX/wwPDzyMFY9ZgWe9/Vk47vGxgWujr4HnvOM5uOTDl+CCN12Aqz9w9TyVXAghhBBCCCGEEELMFL3C7TAOHziMZn8TjeUN7Pv5PgBAvVnHkt4lLeOvPiX8S9CKE1fg0UcexaOPPIpFizM/xxJCCCGEEEIIIYQQCwa97OswytESKIAbv3Ajtv7DVmx+9mYUtSIr7Z3fuxOrT15d6UWf/XqcpTMsR/KksSlSn1fnymZjCRvL4eoUjtN45cstt3d9wJempiSZngS6HdJWj5RCyCubxZNx5paT5Rl1+7W/0wHqJvNG48gSyNTX6ylZWDvJ7Vtc1pTM3cvv0CE/78WLQ13ZvHPGW+oeUv12rvDKlytLT8nrmNT9cX9klizxP7Z3ZYUGvg9P2piaZ5o9w+HA3uxeR17HMhxbIayb4TQVZGBHLVZ+SIOUZZjr1h07GbZt5FWjrW5W9Vlp6gRLzL/9rV3TOp6d/yO5LxVizRqyyRgZ5iQ4vCyssfwssHZNyOvg0rjf8z1xWe39ePPRgw/6cbheWQFnLRQ8ZRlL2Ud643J7a6JtI0/2XOXZwloE9DQcy5IUfLP8wJWr/f/GN0I4d2FniantaCxZ5PC3vx3H+/CHJ4Ms3f0jjvOGN8RpTjklhM84I4TtfGRlvdPlggtC+LGPnVleAPDSl4bwWWe1jmM7Ld8DyXCHe5pRtOh5yekLw70rozQDB0J4ZX9eP0utWx6pbhepvUmo1kdtec9uf27xlLG2C3P35LArHZ4G0Xq7fUfrwtljHqM8QVpdceYfGrXIGinM1/Fc3oYHNs/Sw96rl8bOEwxbZdD9Ne2Y6A/9ONdiSIijHb3s61DOuuQsnP7c03H1+67GLf98C05/zunJ+Pt+vg8/+Psf4AXvfMEclVAIIYQQQgghhBDzhjz7OhZ59nUwjeUNnPL0U7D39sS/mgAY2DuAq/7HVXjGm56BvuP6knGFEEIIIYQQQgghxMJFr3A7kIG9AzjwiwPoP74f9//sfvQf3+/GfXjgYVz5Z1fi7FecjXWPW+fGOxKpDdg8yWFKDpnaEZJ38WNZUBUJTIrc3W9z4tmyeWlyPytPKWXa+Wl66l45bOUMLFOMpACcX0J/Gu8Olrn1aKID8E6UTK7ktN14suDcnSxnujuslazm9scchVYVKfJc4u3Ga9UeVXa/num950ptU7s2e20UjdFU5z7gyPjscWJ3PzcNa1G7iePijbE8TW490blWkoRpcMiX2nvrKq+VuZJ1S7RzNHW02A4h3tWeieYTSsTSMSCtCvdgNVs7dv32rEi47lPkXje1vM00v+wdNHnSYKlcqiK9Bzuz83SUnyeNtTfOsj7a6Xfve94TRfsIhS/je/jzPw9hK6FdQ5p13qHWSgRnukBt2hTC7bAs4J2D7Y7n3nWovg8OhTHGElwA6Cdp4xDvFE3SXWunM1M7k9zq5TkjtUN5/BxF92rKzWlyd2DNfvaqMvF4O09bvDHKYdv+3hbDiT/YIul/ux/SvIeT1PjILYMn8TV12qBo3Fye5YUQnYBe9nUgtUU1fPPPv4liUYFjjjsGT3nlU3Dn9+/E9z76PRx+8DCu/LMrserkVXj+O5+Pm//pZhy89yBu/NyNuPFzNwIAnv/O52Npf+KvSSGEEEIIIYQQQgixINHLvg6kuaKJSz5ySfTbSeedhJPOO2lK3Ce9+El40oufNFdFE0IIIYQQQgghxEJAnn0di1pVtIWUvI9lnI1+//N6j9Ruet4X8Knd7zwJpZUIMKn78xRsxxwz/TR2nvUkPqmv/atKtHLKw0Sf+5sKj4ROXmGtpI8+w+fdwZIyh0wJRI1uZDQhM/Not0Tc63ftuE5qp94j/W7LkBqjM5USLwSq3ENqN16vXq3kyRujKfsCVqnkWiBEEvohKqgde16nSWmbvXA7tIidhq1HHli7d4cw1w//DkQ7hzZWh117bZ9jOZI3Pdr1bGV/izLjCLu5UjuzbM6m4d29o+anOqib+untDfnlzhksbU9Jsrz8UtfJTZMr/ffW9SoqwFS5c2W8vKNvPUfSC8R9mmV4dmfNL36x9UU9KSIAXHVVCP/9308GPxLHQrTP7hvfGMIs3T3hhDgRl5uuO9ob+1XzeGnm7mrMcJ3k7lCcm1+mzn0YYRzxTrh2XWepLI8dXmceeihOU2Uqn+mzThUXl9R6zfXgbVwLxBYB0VSVekBKWVswPF5YAm/XaM6PGyzX+yVFTmO0Y+32GqwdfjreLuL2bxNq6L5o3tEWBqJz6dIn76OHr7/969NOs2z5skrppsvqvjb4kAghhBBCCCGEEEKItqGXfQucu7fdPd9FcHnda18730UQQgghhBBCCCGEEIRe9gkhhBBCCCGEEEJ0G/Ls61jUqqIt1AYOxj+wTwJ5T7B3Wt8UT4v+ydD61cFrqr8/9lhr9oRz7EnC1g7WSiPXz8MjZbni7fje1xt8XkaNH0TkpZWYXDldFf+1OSNlpsKNkWs8yJXqeYMB+V44dK1aD3lNNZpZyVMeaVXwvGtyr5OqktS5CWy1edfNrd6UZZt3biE8U/D9sQ2OxfP5BOK29GxjUr6jXAb2Blq+3C8r12Mdw3HE3eQBxAVKTZCrHUsG20i5PkSMV/BuwtYb+zFxW9x5Zwjfemuchtqiti6kX2nyXrkutKW3PmaT6b8Y2y/Fax2PFw43VqycDNvuyMdcVbY43thLzTN8zOPaznWctzdXpSwtU36HzR6nXts+J+ZlOGUOmYArZd06kzXlvWFDCNtG2r49hDduDGFvjQeAG26YDF52220hfOqpcbx3vCOEN29ufZ3UIsZjyrRXT88MPbz4uu3w7OM6po7Hz4i26vfvD2H24rPx2I/PGx/2ObfK+s3LTG76NWtCOOW/x56EjL0Ox/Oaxeb1wAMhzPXY3x/7PHJ5Vmb6PA5vOHkyHHmXpiZs7wEit5/Nl6+uVz77e5Uy8PhPmB/vO0B/U5EtLq8ffZumf3khFjJypBRCCCGEEEIIIYQQokPQyz4hhBBCCCGEEEIIITqEBSCkEp3AcMP/nL2xMch1vJ3XAaCPPnu/b3+QH7HEAIhlvZxfKm/Gkzmm0qR2iWeZEXP4cHiXzpIgAOjtDfeQK2305J5WfjhX8shhkmtNkcPScY31H3wTVrvlFdxrZCD+XJ/DCTmDlVR7cHGspHKmeGrIKrJZC8uRGo3WEp+UtK0K3Adz85ovGa835lPj35NdV7kmkNfOKelvVG4YmwOW2+X6F3hS28wOyWOqlupcC0G7PR9YDZwnj+TfrWSRNXCU3+BQPJ8NOcrt1Pjv89TZJqInGUyNI5YCel0hJYdNyeG9e+KlxZP3AenuzXMaS/cOHQphvjebH8tAbX3zmPWGxBQZ8Cx6IIz2hPJEvSlXgs/xdu6Mz3G6v/qrECbZ3cB73hMleS+FL7v44nDw5CfHebN0j8dHhWcB27e4ndeuwbThccnNVe/Jk3dOge4j9xnGI/c50z6ieXm484fBU6am0nMabhOg2rq8dGnr9N6jJBBP33yuPmTsi3q5r2VK6PfeEw527fIjeutEPOlkXXPevFa8/Np9ncQfg2x7Mer8LdnVdOszWoejL/uEEEIIIYQQQgghhOgQ9LJPCCGEEEIIIYQQQogOQd9rilkhRyqXK5uz5OxYmvoS2TuX+rK9Sn5MSmpbJW/+5LzdkkwmJXPKbUv+N4V66sa9nXpz9dWJnUJTO9Z5VJF75+Kpo9rRdjlSu1xSO9QyLGez0jaGx24q3mzCdZ8qT5UdmGc6rtteJ3ShSGrb68sza04awN9hNLXzqFeeriJzR9CkJIu0ZMMj0/932ipVP1O5YC65Mnc7H/FzgqdsS0l/eclIyY/5Op4seU6ZI6ldUp7P2sbc/r1nTwjfd99kkGW7APCHfPBeOmsbydveNSF5zZ2r5mt9cqnQzixZnWFWU8h9NvCoUoYqbZLaQJ67bUr5HUl3q8qwPbyxbAvu6Yxz1+vcOWOuJrXEdaJ5J/fZwls7EwsA11ZPT2yHIkQn0aVP3kIIIYQQQgghhBBdTFF07z/IdjiS8QohhBBCCCGEEEII0SHoZZ8QQgghhBBCCCGEEB2CvtcUbcFaqXjbmA8M+HFW9ofw3r0hfPiwnwefe/jhEE59icxeI+wBkvLoYu8Te6+eVUTKv8vzHsn13/NsnoBpeFxkkM7L98Hzt7EPaXp7+6IzfE+1ocFwcOCAXwS6cMqXzytPqo2i8owMT4brbfjMvQ7Kr5EwBORjxxfJ+rR43nz8ux1TnrcPjynLkiUhnPK+86orZfM0m+Re1/MNTTWR189S/dFrYptm1aoQ5nax1+ztbT0O4jkj7jOpc3G8mf37YDvnpqMap6EHR4JvUE/vyijJfrI7e+ihEOb10OKds2Ng/To/j+mSGl+R3xUv8qYT18mTqk4Z9q5pRvE4WbMR8j44UGsZx8LPAjae59PKc519Zsj18+P515t7p47R1p5SqfmI6yQF9xNv/Nft/XCF8Rq9Y0ccj44H3/GOyfD/pCiXvfGNcRpvIrTPAl5nix7K4nrj9dJ7lgTiOZafTXPh6uHiTKnHNpLqcykfbMZbm1Ke1mvX5OXtPcqduCEvjZ3PvDGa8uz0fDo5zcp+M252725dCJ7DLOee659jvvvdEP6XfwnhM8+M451/fgivowmbvDNrud6ZKebIDzTVuaIZiOubPTotu3a1zo/bDnBNHOuc98aN/nU6Gcl4OxZ92SeEEEIIIYQQQgghRIegl31CCCGEEEIIIYQQQnQI+l5TtAX7eb4nneF4Kdksx7N5eRI2TzZhcb7iniJZ5K+ZWeJh5RDefXjyHMCXWtovqFkqyRIhvld7PyzDiWRTFRgciv89ICWPYFLnWuUFWElFkGvVehM6SaqwWCKYJ22t8sW6lc1WkiZ6F05pstybiGVKnlKiSnHs77n5MVYe5dGcI1kvdyFWiKSqPoXXRKn0OWoWm57nJz6XknHmzok5ZbN5VLlXnpu6WdLLc0iNKujQ/hDHrh8PPhjC3OZ27eX65nhV5rpcaWtK+cXnIgljapF3MrAytUhySvn1NIIEOiWh57XTFsGT56f6OhePJcL2mYHbhc9x3rz2A8Dy5a3j2fLw80junMpN4Snl6iOmglget21bCF9xRRTt4Mc+Nhl+P/3+Rxxp7do47x/8IIRZnnfttXE8lkpy5VO4Zm6Ixx6vTSyNB/KeYVJUmXuT8DjIHsytLR1SklxvTUzVx2mb8krD/YzzzpXxHjoUn/PscBi7PmY9w9pE3Ae53999dxyPF+lcGe8///NkcORTn5oM91x8cRyP5LrZUlu6Wfvc6jFnXwClOqQn3U/JeLlduGG3b4/j8aTvabq7VcYrOha97BNCCCGEEEIIIYToNuTZ17FIxiuEEEIIIYQQQgghRIegV7gLnCc/5cnzXQSXpfSJOH9hDvhSF/6EPiU/4/xSn+HnXNPCX3hXkTxaWErgKEmm/GOJJyXO/UeVudrJNCXJylQPuPnZnQJdmUHqc39Hh1E3HZJ3Ec2VH8ay4nrL34Fqu+sNj7QuD8uXU+WJfs+UU7O8y0qWWErG8rPMjZCjdrWSNU/OliPBmW1YKpfq67mKk5Tcn+G28OJZewBPcWLL7c07/LudrxkelynJOvd77s+WyEqg7dq2owQzkKLaojpZy7ssmrltZHWYG1JzL/eb3LnOY8pO79Gu5HSCw4mddd0dXO0NcQel9PftifsZz2PLlgXp7n2kurMbZlZZwzzlV+6u5qk5g+fHFLmy0irzKs+D0bqc2nmUpbvXXTcZvJ9kuwDwNxR+C4Wbf/d34eCMM+K819D2rjt3hvAXvwgXHjvMhlgjylLwNevWT4Zt2+XaT+QUpzZwkM44D39HgmWKqQk8oq/lr6kdar31I/W8ngvn145nXS+/ZctC2N5rzma6jxwf19vazZvDAVeWlZVWmWQvuGAy2MNtbHe15vHmXdP09WinXu9hAGad9/4oascXX56Him0Ib53YlNCL8zzh5QUAp5wSwjzPSLorOhi97FvgbHnHlvkugstdn94530UQQgghhBBCCCGEEIRe9nUg267YhpuvuBm1RTU85pzH4JxXnoM7rr0DN1x+A/bv2o+L33sx1pw69i8aQweHcNVfXoU9t+3Bab96Gs7/3fPnufRCCCGEEEIIIYSYdeTZ17GoVTuMRx95FDdcfgNe/LcvRr1Zx2f+02fwxBc+ESseswLPevuz8N2/+W4Uf1F9Ec7+D2dj3137sO+ufZWva7+UTu20O0FqTkl8cZ4lEU1JY1jmkivjzS1r7jzp1Y/93ZPkcH2n7rVeUTHS6jpAfn3l3B9La21+kdzX05jYAlIiKz/kvHP6piUloaoi43UluZmy4tw0XI9x3cfxuA9xn7Nyc6+NcsceU6UdZpPcesydC6rsxpua93J3TGY8GWdqXI86OziOxatg8ztTLWknkKmbYzl03XSAoQOts7bt70nqeVymdorPxpNkmzaO5mLeZZ0LamWJVD8HB0J63uzSXsqTw6d2fU+Na29O8+T0VeH5NiX998h9ZkgR9QdPQsc7kgLRLpdD7373ZPhv4lj4PQr3veY14YAleVZ+6DXSmWfG8Vja6HlO2EYi6SVLevtMH4x2eq5AJN3lsnkeLkeCpY7eQ7CZZ3o3BDlqSpbMRUqtQTNlprY5uXY4vHO1tSzh63r3PWUccsSUhLrKFs68EzXL2e11vkt/ux1zTAh73kGWRLnZnmNW8R5CrEY8d/tzLw3Xw/HHx/FYussy7GxpvBBHH3rZ12EcPnAYzf4mGssb2PfzsZd39WYdS3qXtIy/uLEY6x63Dg/e++BcFlMIIYQQQgghhBBCzAJ62ddhlKMlUAA3fuFGbP2Hrdj87M0oasV8F0sIIYQQQgghhBBCzAF62dehnHXJWTj9uafj6vddjVv++Rac/pzT57tIQgghhBBCCCGEWEjIs68jUat2MI3lDZzy9FNw3/b7Zv9amf5SufYLnpeGPebrpuwycq6bmuMSlkSu70/KPsPz1bFl8Mqd8kVrpy1Wuz2JUh5JnrXXaKM+Ga5lVlBtZDg67umpt4zHfke5HnK27ZoVfG24r/J1bd5VfO04Dy99ql3ZrybXgsazWLIkfXHmmdyxN1+2c951U/Mjz6M8Z6TSsH/PFD9KZ5DWUxMk+1V5hkmdjucnBkQLRdQuph57e8Mcljv/ex5ZuV5cdh51/dwSC3GNvJAi/z72SGLvJMQ+fWxVZquRrZ74Xvn3lD8ln7PdkeOtWBHCtQPB23hlwueJ7zU1j3rPOrnzjPVfrPK3Wl8veXbt3E3hnSF8yy1xone8YzL4F/Tzn5i8G29/ezg499wQ3rw5hFN+WbupPKafRJ3jK18J4ec9L4Rt5a9bF8JcyaYMdW4Ye90cuO64Q1p/wlzuvTeEuaxex0c8ly9d6ntf8q1yuD4UfAfZ/w+oZk/HVnO563+qa/C5yHeO6mHZsrjcD5JjETc/dzPrbzg0FOpu3br1k+Gm7RdVHg7OPjuE+eHtttvieLffHsI339w6r6omi5wux1C4Ktw/eTLfsyeOx0aLy5bl5c3l27gxhO3ETl6ho72hb3AR1q6ZIw9DIeaImTnQigXJwN4BHPjFAQDA/T+7H/3H989reYQQQgghhBBCCCHE3KAv+zqQ2qIavvnn30SxqMAxxx2Dp7zyKbjz+3fiex/9Hg4/eBhX/tmVWHXyKjz/nc8HAHzm1Z/BI4OP4NGRR3HXD+7C89/5fKw4ccURriKEEEIIIYQQQgghFhp62bfA+foffWla8UeGH8WjD4+gt3dM5zNy4BCu+tN/BACsWNPAijXjn2sfPjyZd//KJcDKsFvv9z/yr1nXWt0XtjC3X6/zsSdTTEmRltDmwfbrcU7nSRZTEoG5kuGlrsMSCL6flGyT7ymVN0s0Vvb78XJISTVS7Zcj0chthzhe/DGyJx8cdWS7QFzHVs6SUz7bH6vUsVHbTGLrbaZ9lfNLyTg9tUa7pa3zJYFlvD5dRZZkSdWdF6+KBDr1O7ezNw6tTIkZGQljzObdYEk9n+AObTs3H1eRw3UCVotG9cBzFffBZiOufO4nvO5ZlVPOOsHra5LUwu5NYok0Iwj3Wqc6GeyJpXZ7SVLH8jo7RnOKMLUPtz5nm6g2NBjKyhmydDQxYGskH+vpidctTyrJ65ldw/je+bL1HiM5iyopU9bHktNt20J4+/YQ/uM/jpJcxmHukO96V5w3y3XPOCOEucKt/JAriOOdf34cjzuAZyXwxS/GabgMnN52AD6+4AJMG647vg5LmaeDZ4eQ0n7TMVuZ2PFfB8n1uazUL+pGfhw9eyHPkoHl8LnrbTRWbF/nsehYDKzl9gbw8MNhLHLeXHWsIrXwZfr74zG6aFE4XtvIk4IebBw7Ge4788xwwspPeYzxuW9/mwvkX8jzybHpUnnMFK48Dj/wQByPy5f7zMDxWKrPYQD7RsJas3dH+H3//hBeuwbdSVHIs69DUasucO7++xdOK/7Oew7hordeiW3TTFeF131w56xfQwghhBBCCCGEEELkI8++DmPj+uXYdvkl810MIYQQQgghhBBCCDEP6Ms+MSvkSs48eIc5+8W5J8NhciW0VXZCXWi7iC4EaWQKu1vgBKkdQbNxEkU7swFoNMK/a3B95cp4q+xkmYL7YEpyliOvTdWbJ3lPyYVT/clTDC30PshUKWuVTelyJbleOFcmb/uj1z9T9+3dX9NKkbxtTr1d9uxxSjfZySQq36v7UfjSzxSe3LPSxopWa+fdR6JwgyNB2nboUPh9xYqVk2GW7QJ+N0upivmeUnYYnB+XZ8o4WtecDDd5t9rUAuBU/hRTCR4TrFOmNDUjX2t6u8juPRDFi/KmnSeT3HRTCG/dGi7z7ndPho04N5Lx4gMfCOEnPCGOyPJPvodUPXr9iSXBgC9tTcnNL7+8dTx7zapy21Zla4d9gSd75nKbOuWxx13TylQHl4d4TW97aFuPFXZWrw+EnaxjGbDfF2KJcULH79TPvgPxPMrN4s0zdn7k50R+jkpKkTOloFye3g1B0jvlSxyuLx5HXIi77orTcEPzheyO0HzsbVfejgdfll1z5duJfe3aEM4dO7wDL93PIJpRNF5r+PYW2t91QrQTvewTQgghhBBCCCGE6Dbk2dexSMYrhBBCCCGEEEIIIUSHoJd9QgghhBBCCCGEEEJ0CPpeU7SFXDuHek/wvrGeRExfb2LbevZ3cEwz6sZDhK/FydnbJ9djq4rnV64Xm4XjeZ4SKR+jmZKybMrxTrRUiZe6n+GR0K71RKKenjqFW0ez1/H8XHK9s1Jw3rm+kXyO78GOvZy6s7+n/Go8kn41RwlVFAvtSOON/5Q3pFffKc8+9q7ksZLr32fn6Bp3/lyPLM9fqpuw9x01egjy+mgbPDW/RfF6Wy/G8VyZWF8Z9liycDtzONHGvIbt3986eSrr1LzF5PqycnmS9oTeMwf77QF+PdjMd+4MYa5jbmPrt+e1vy3Dvff6eXhceeVk8MDHPjYZ/iuK8g6b5i//MoRPPz2E2TsLiLzU2D+rJ/EMVPOMTK1/l1dfXD/WQ5Tb6LrrWpYTwNT7mC6cn/VIq8IJJ4Qw962E9+kB6hqpKZqrqLnO6WepQcoecim43zNnnumn2b7dP8fjiuuBwgd2xUm8uYX9O+1zmLfUpdb1XLjulywJ4TVrjo3i1bxCcN3bNqJxjTPOaH1RwH+g5Ou0w3dyt9MhbUWy0XfuMwOVj+cZu4TxusNrg606IToJvewTQgghhBBCCCGE6Dbk2dexSMYrhBBCCCGEEEIIIUSHoFe4YmGS+618ppaQZSGNRrNlnHbIeFl2mfqd5UMpCTSn41tNqSvaSUoinCtF9hQ5U6Q7JDnkzFmCe6TyeZlHeWf+GwfXN4cXLcpKnsSTptm+4Mm4U8oGr3ysjPAk4faaqaHnyeEXOlz3qXHtncv9h8/UuOY8WLqTmz4VrzYyHA54HDnznomWhgcCS4FYnmOlWqtWhTBXfjtkQUcLSa+Feuvfc/0ZUmsgnYusLQZMmlypFMfjjkcyxcGheH5lGZVnF5CS0KbWDI/c+YivwzI+IC734WWhjdayvNMWnMcB149dpDlzlil6izwQyxQ53i23xPFuvz2En/c85DDkSHffROGet789TrR5cwhzndhxzfXgdNV4fYbfAVJyeK9DcTmBuI04/JznxPFsuuniyEor44w9z6LGkmtZcnAg5NfH7ZqroU/hPVSlSMm4ieHelZNhT6qbuqxnk2KPq9jX5JKyFWh6UmmWQO8ymmWWj19zTQinpNF8g7kPIbnwJLtmTQjbcZ2aTzwo3iGS6qa6WcoOR4hOQl/2CSGEEEIIIYQQQgjRIejLPiGEEEIIIYQQQohuQ559HYtaVcwK7nxB39RP+ayUP+VO7QLoaVhTekgqUJ0kFbG0KbGLJNHs9b/xz5VU5CoYPDlSaj5u5y6pNq/Dh1uXIVcCmaKnJ9Qdy65Tqu24yUP63B2Oc/Pmc+3+3D+3rLm7CLMUxKv71A6+HF62zM87tUumR0q6N1fwkGcJrd210zvnyW6BWApURYbL9VjHsInYWs5eGzgY/+BUci0qkP9Rf9oiIEiBI4lXandIPs7dtbHDGF0d76zozS11biI7QLzBkztxpSSinow3tdWzM4BzpYS5t1BFQm9302Q8GR7bHNh40TkukH1OsTvjTmCl7d/6Vghv2zYZHP3JTybDtZe/PE7DkjyW611xRRRt9CtfCXm8Y8oeui35Cwr/CYUbr3lNONiyJU7Eu3vSXMAyUAA4vCeEeR7laaGn18xHZN3BZ4YRz4H1fkdymNJxnnJKCHvtBczcm6LdGkEeoxX+IE+pM91zuxP1yDYOubsN33hj6/QXXJCXhnckBqL1hJ/rG7RW2nu1zzQ55D57VdmN17PhsXPismVhJKxZt34yHI0cu/ZyJqmduZ2x3PYXP094Qgin5LnUrpGs3Mr9ifv2hzZ/4IHwu7VneOih1unn63lUiLlAMl4hhBBCCCGEEEIIIToEvewTQgghhBBCCCGEEKJDKMqynO8ydAVFUZTTreuiKFD+4LWzVKKZ87oP7sTffeob810MIYQQQgghhBCi7Ww55xxs3bq1mO9yzBZbVq0qt9pdyY9Cissvv6Esyy1Hjtk96Ms+IYQQQgghhBBCCCE6BL3sE0IIIYQQQgghhBCiQ9DLPiGEEEIIIYQQQgghOoQ276sthBBCCCGEEEIIIY4KevRaqBPRl31CCCGEEEIIIYQQQnQIetknhBBCCCGEEEIIIUSHoJd9QgghhBBCCCGEEEJ0CBJnCyGEEEIIIYQQQnQbRSHPvg5FX/YJIYQQQgghhBBCCNEh6BWuaAsHB+L3xt4/DjR7hv1MONGBAyE8MhLH4+OBgRAeGgrhRsO/Tm9v63ic3p7jstm86dwovT/n7OwtHD4cwosXh/Ajj8TxHn20dfG8KrDxnnruKGbCj7fF7crX9aoRAJYsCeGlS1vHs32kNtK6b4z21CfDtom4PLn/IMV5eN3HnuMw3xsAPOXs6dfxD65v/e8sXFeAf3+pely2LIS5b3F72f7Iw23RorzycH3ZuvPSMDbNL50xs76ayx07Q93nDn++B9v+XMechsM1mHvjDHMriBuQ4cazF+a8+/sng8Mjcf9LzVUeXJz6yGA42Ls3jsjXbfSFND1z094LgcEh/99Vub77eqlO7MTOeJMYEE8IHI9/t428adORCwdgcCTMxZxdah7N6VupeZ3XRB5r9lwVli8PYTuPenMs9/uovYCpfX+CXbvi4507Q5jH77XX+mle9KIQ/sAHQrTt26NoH6fwZfwAkWCUJv3aO98ZTjz5ySF86qlxog0bJoODaE6GU2sBtxfXfbORmAuoM3D/A+J24XBtKDEf7djROmzHAN2fOz5ScN7r1oWwN48fCR5klAc/c9rxxUm47h9+OI7HdUfTNZqgekxlzveXgvs3d5QLL/TTbNvmX4cKe3Ao9A1+vn7ooTiJNx+l1j2vn9mm5DxO3pi3vv1sR+vnkVQZojbisWOfBXbvDmFuLxuP+zf3+3Z/5ZXRh4G4eNxv167x6/Se3SEPvoxtV29JZObqWVSIuUJf9gkhhBBCCCGEEEII0SHoy76jnN0PDOJN7/8err9lD5YsXoSNxy3HX73lPDzxZV/C5sf0Y2j4USxvLsbvv+jxeOULTgMAfPKKW/G2D/8Ax69ZhqHhEbzu4tPx5pf+EgDgOzfeizd94Hv48Y59+Ox/fyZe9MyT5/P2hBBCCCGEEEIIMRvIs69jUasexZRliYv/6Jt45QtOw2f/fOwz+Jt+thf3PXAYpxzfhxs/9UIAwB2/OIjf+uOrMDpa4lW/9lgAwIsvPBkfedv5eODBITz2ks/hRb96Mk5Y24sT1/bik//fBXjvP/x4WmWx84P32TuGEt/NezrDlMYnJ2zJTePlkYhXo+/we3pqFPazSM2tngonlYZlmEctUQW1lo7ZaFUkvfMFt+tM28t2x0zlVhap+vbi2TjeuflqI74u170tj9cuVkro3ccU6a5H7jyTmz5jfuvpieVwHilbAb7vei/pj1hjBGC0N0h3R2gqry/wMdpOUmPCjVhlDbPkaJZSTJkAWkfjfpLbbVOXqRIvNQdVIWdYWvlZzYto4Wcd1hwyLMEDgD/908ngz+jcZ0yyV/tXdaldfHE4OOWUED7uuBA245o1hyOOXBSI50sOt3v+5+qusx7Sai1ZCsqJVq+O49n7nS6cPqXPzKUdeWQQ9e/eIM+eYrNSZZBVlTBPYOqALV64OFWegXLnFvdvG7Rn3vHw/yQKs04z1WdTthBUr16dtsV2g9o/ZW2RsgLwyK37VPsJ0alIxnsUc/UN92BxTw2/+1uPm/ztzNNW44S18YJ68vF9eP+bzsWHPr/NZoFVxzSwacMxuHfvmDfHxvXL8UunrkKtVsxu4YUQQgghhBBCCCFE29HLvqOYbbfvx5M3rz5yRABPeuxqbL/rwJTff757AEPDj+KXNq1sc+mEEEIIIYQQQgghxFyjj1i7hLKMjz/3rTtw9Q334tafH8DH3v50NJaoKwghhBBCCCGEEF2DPPs6FrXqUczjT16BL/7rHVlxb/zZXpy+sX/yeMKz7/s/uQ8veMuVeN5TT8C6VU0/gxkQ+z5UMOexXiU55gwpfxM+x2FbNi+PRN7DI+Fj2Xb4d3ieYnPlfdYOLyWPXE8zjsc+iKnrpureegp5eXneHtazrQrcrrk+RjNt5yr2lNY7xfPmyrUXW2ikvH34HN+D139sPNtXGfbMq3nTSa7Rm52PZnFCSHkcimpE9Vhlwk2tW9yHvN8TWE+63DHPVPFImumcUaVsued4TrTzYzPXk4zjbdjQOs63vhUd/pR8+j5Pv/+OSbZh8+a8MjAXXRTCp58ewuxvZ/zAvGed1Pro9oVsU8sY31cx08eMr2PjtdGzbxhhvq/nerkaOA/PO7Md/Z7zYJs36/OarFcP7k8HDuSl4euY8cXly/UNzZmPcp8F22GjyLeU8m/2nlViW9Z4vq57PuiJgqeet2eLVHvlelpXaRc9w4huQTLeo5hf3bIeDz/yKD721Vsmf7v+p/fjrt2Hong77zmEP/zQdXjjJWdMyeO8J6zFy597Kj742al+fkIIIYQQQgghhBDi6ELvtY9iiqLAV/7y2XjTB76Pv/i/N6FR78HG43rxV29+Km7/xUGc9fIvYWj4USxvLsYbLzljcideyx+/4ol40iu+jP9y6ZnYftcBXPxHV2H/oYfxte/ehT/92A24+bOXzPGdCSGEEEIIIYQQYlaRjLdjUase5axfswyf/x8XTvn98Hf+k5vm0osei0svCi/+1q9Zht3feDkA4OzHHYtdV/yHaZfDfjZdGxluHTFz+/e264X4mD9t52taTU6FSY+3p0/L+PLy87ag9yS9qTRVsOWcK/lwu8mR+7ZDApOLJ3XKlcPmluHhh0N46dIQPnw4jhdLQfLynsv6aiee3MPKc7mN+FyujDt3HDYa9Za/141kiWVzUbxcTRZhJfS5ch1PKsVyz1o7tE0dRmo5iuBO0w5tvNfZM9PXhgaj477ekAe3eaoLpqTy0yxOW6gyj3rV2Owxzzl7D7S+kJUs7t3bOvxv/zYZvP/uu6MkLN39bQqfxtJIAHjzmzFtWErsWZuYyhqp8JyRvRZU6BBeEjtv1vn+EhLRUbZaqCC95fRcV/WK62FOv7V1wPO1Z0thybU5ieaq3Dmf05AsHSnpOY8dIx3u6enLu66DV6cVVeXzQlKWPED1zX97cd3bhDQOaimboypQxfJzT66tTIpcua8v/Z/+NYU4WpCMVwghhBBCCCGEEEKIDkEv+4QQQgghhBBCCCGE6BAW8MfJ4mhiiswhZ3vP1GfhKQ0c5+3JnlKyArouSzymyOFS3/VnkJZ+5EmgGE+GYavKSjRnQirvVLm96k/tVlpzMmS5WEqyXEVlkFLNsXokpT6vgrcRna037/6WLAlhlufaeJ5MmeW99jopUv3OY6FJYLyhbOWGLNfl+sqRJQJpiXAOPb2xvHfI6YNT5q0Z6lFyk/P9RbYNpnPXSBbU0zM7O74vdLKXltwBlorXThk1S0yBWOJFN9HT8OV03hyUuoXc3a+9sZi7G2dKpcbnPOePKRM5y+M8ySIAXHddCG/fPhnc+7WvTYb/Jk6B36PwsSecEA7srqhf/GIIv/rVyOLTnw7hCy4IYZZXmkptrFs/GeZbTbUXn+P6rmJFYPGyqMNIrXftah02cuhaYifiHGoDByfDjd6ZyU2BPJcbW1U8PlK7SHtSUH62mCJZ30V9euPGlmWewi1hM0GWrEd9zvKTn7inmtQ/hxaH9fKhh0Ic++zGz7BV1nIvDFRbenkKqaKajdbhvffHJ3fuDOHbbgvhm2+O4517busLr14dwjPdnRqI5sEa5Vc3Fck7P+fWKbclt3nu3wwc70Rng/SuYKE9sIu2oC/7hBBCCCGEEEIIIYToEPSyTwghhBBCCCGEEEKIDkEv+4QQQgghhBBCCCGE6BAkzhbtIWWM4P1e1bPPu27KvCTHhyBlDpHKOweTps4mQIn82LvC8wBrp0XT1OvPXt5Tb7u1f2LKV8/zAFro5JY19jg8chx7nOt9lXMde86Ll/Inm6ENZlvgocfhVLmrkErvtUVqmmGvIfYTRKONnSl9qpL3oJgGuWtYKl7OwMrt3Nazjw2mKI86eTutWXNslGTPniMXzfrMskdm6lEg9zGB4fVy0aIQtlXCcwNbV9UH9oUD8tsDEHtkHToUwr/4RRzvYx+bDN5Bdfp/Kcob4hRY/frXh4Nf/uUQ/pd/wUwZ/dSnJsPspRVVClcIgBpVCj+nVLGa7On1vzvgM6kh4a5New/EibhP79iRl3kVvzK6Tq2KGZuBPaDZ7zj3sTX1u+dj2ddLvtM7yd8QiP33cj37brophL/1rRB+17v8ND/6UQhbs2Eq7EoqwyOP+P0x18fQuUyyW8zUs8/1BoXvFVgfGQwH1qCQJ19+aLB9kCfCNvTVLBKmrX294boHB6b/TRJnzdMwMLULtUrTtRTF0fWHlMhGX/YJIYQQQgghhBBCCNEh6GWfEEIIIYQQQgghhBAdgr7XFO3BfgM/02+iU3pB7xx/fm4kJ3x8357wjps/6e7vb8aXoXCjUYcHyytczWlK5pzQDzRJJ5Ar3WinrNdWo3edlCogl1hl2PrfIex1UsqEVLqcOEuWtI6XqpNcOI+UNHKmigruWtzXrdqD41Vpu9y65zr16ne2iSQwPSSNSkjJcodyrmyK03B5+HfbzzwHBDs38XFthtLd7DE1lJiQqOD1/ln0HFjAcD+zRHNdrp4+NTE4ksPR3r7JcLRmpdi1yz/HEwVNKHYUsayX5+vUvGfnpwlylc25cHlSsrlIKscy0LvvjhPxMU+4LO8FcI8j3X0FhVf/2q/FeV9wQQifcQZcPJ1agtoTnhAO+MYzJz6ec1JWGzOlikVE3TYsT6w8VhLPjJWgvEdJ5pw99gzDI63Xp4QacsaPo6M0mmu28pcuTRW3NcuXTz8NjzfWvAJuwRcvDvW90FWJnjzXdj8+12xQH9p9IIRt/dx3XwizV8Lu3XE8TseTb0LGX4mc6wDRzfaxhwL854coGmGz3r8/hFnSLUQns8CnQSGEEEIIIYQQQgjRduTZ17FIxiuEEEIIIYQQQgghRIegV7iiPdjPxz0dDsez8ooNG0KYP91P6Ws87Y5Jw3KE3J3+mEh6kdJA8H17vwPxJ/GZ+iOWo7Bwr2dFLD/2qr4KVmqZu5kyU2XnWe/3qv/oxHnwp/spaYsXrx0yaS8PK3nKqW/7O+fx0EOt49ndL7nPcNmszMErt6emB+I+tGJF6/RzSbNnOBzQTo1T/uWLbqqPJFmenArwZVN2nuEd4jiebRcv79QU6NoKJDSPsdQt3F/2eEt1ADqOZGEV5WxHI6Omd9VGQh+MznjrhyW1Zjgy3pRNgtsWW7fGx57OfNUqt2x8pZWkteJxZJWn3q2nll6e93jeSs3XKZVaVI3bd1KYduD99rfjRLy767Ztk8EB3hUTwEcp/FoKr+eLbt4c5806NS74mjVxvCoPACwL5uvyNdeti5IMN4IsnC+ZurxnF5FqI37WSQ0Jbn/uT70kXweAlfyc6U2qQLUdeInh3pWT4b2kmly/rkXkDPiRmOuO79U+hnvriR1vvEZ761aT+zYAXHttCLPEPMV1100GD15//WS4r1XcCS6/PITPPDM+x21JY6Kx8XGtfgbg31/urt/t/vCpynB15dW2z3raVvtgd9xxrfNoh3SX8f7usZXq7Ppu5yCGrTIajVA/tn695/oqO7sLcbSgL/uEEEIIIYQQQgghRMdSFEWtKIo3F0WxvSiKoaIo7i6K4n1FUSzLSLuiKIr/XBTFN8fTHS6K4taiKD5aFMUJLeJfUBRF6fx3xezcYYy+7BNCCCGEEEIIIYToNrrLs+8DAP4AwFcAvA/A6ePHZxVFcWFZlinpyVPG0/wLgI8A2AvgDACvA/DbRVE8tSzLn7ZI91EA3zW/JXZBax9d06pijvEmDP6MO6Xd4Hj2U/KMvEeNdINVNJ5Sykogosv0s7Qt3v2yzreRux1nLt535lS4eiOek/r72/fBrt08jT+BT+3ayhu15cpPc+LZLpOzG5/F2/0sFY/za/duvO3cUdLmx+3Fv6fS5OLVfWrTPj43bzLOme4UbmD5WK5EyNswk9srV1ZiZSosYZmyE+UEiTqY6a7WyUHapUzp656EKTXZedj65XWQ1qr9tAba8b+y38nbSvdYRpW71bfjEcCr6OrV8XrtVcPUvt66OCnbBW/+t+tZ1GbeluK27qmAe+mh4yNxLPwhhXtf+tJwsHFjCG/ZEidiigs0rQABAABJREFUSR4vIFaq50n3Ujz3uSHMkt6URJCo0lVznhHGz7rX8aaxlFXL6Logr61xfZtCDCLYozQrrFUsu22HRJDv1Xv2svXo7X6dqm8uK9tNNK2svAoXXjgZ7MtdF572tBC2ZeD5iPpnqr5zptjcXZ/b8SzIwyqloI2encgGwo0ExHNB7la/3NH4j6J23Kz3B5fNmwcPk5Dxcpr+1cf68QjJeLuToigeD+CNAL5cluUL6fc7AXwIwEsAfCaRxXYAjy3L8naT7z8BuArAnwF4UYt03y/L8tMzLH4lJOMVQgghhBBCCCGEEJ3KSwEUAP7K/P4xAIMAXpZKXJblTvuib/z3bwHYh7Gv/FpSFMWyoija4Pw+PfSyTwghhBBCCCGEEEJ0KmcDGAXwQ/6xLMshADeNn582RVEcA2A5gPucKB8EMADgcFEUPxv3/SuqXGu6SF8jhBBCCCGEEEII0W10jmff6qIottLxR8uy/CgdrwewtyzLVoY6vwDw1KIo6mVZOnp5l3cAWAzg783vjwD4RwBfB3DP+PX/E8a+LDwTwKumeZ1p0xGtKhYA1vDAM0Cosoe9jcf+EnSOffqs/94DD4Tw7t0hnLLv8uwFrc9HveGYrvG95poNWXLMcMxN1HJN6TJoGj/AoQZ7F7pFqOSlx+dybdU8D7ienvij5So2bbPp0+LlkeoKnv+Ohe+Vux37/FjPuCrD0hmGU/yEOF5taLB1QYH2VGwOXCkcTpUnqqAmPLy6t8Of5yeuO75MyrPHq3ubrp47EOm4lugAdly5hRAxsznxmTl+mNzwBg6E3++jf2u2y0K2Z98XvxjC558fwuyllFqvHZob4jhDDbqHARs74FVdlfmMPeSmXHgXeWjfemsIb+W/J4Bd118/Gf44/f4Gk3XvmjXhYNOmEF67NoStP5Vn7mWpMhbZu459vhILUr2n9Xqb6sKe11wqTb2Ch2gqP5572dvL+qAdINuwZsIqzMPzhq6Kl0fKd4yfE9gPNnc6ikgtNLnk9mGvQKmFlMKNjesnw6nhkDv1eh6g9jnMeqHmkPucGd3H3gMhzHWQ+jssVfft9hr38ObUZWYD1J07Q5jnJvYTtZBnHz/D9PaujKK1e1yKBcnesiy3JM43ATjO2RiiONkv+4qieBGAtwL4ZwCf4HNlWf4bgN8w8T+GsZd/lxZF8b/Lsrw291pVkIxXCCGEEEIIIYQQQnQqgwCWOOcaFCeLoiieD+AfANwA4LfLsiyPlGZ8t993jx8+P/daVdHLPiGEEEIIIYQQQgjRqdyDMalvqxd+x2Psy8Csr/qKongugC8DuBnAs8uyPDiNcuwc///qVKR2IO2NaA+5ctGcfe+nkx/LzxIyTv4knr8YZzljajd671P7KXj3Z+8npcPz4uVcJ5WmAsMjcT3yZ++eJKcqOZKKlFx4FL6UyJO6VFEptEPZkJLhzjQvlpJw/fDvVsbrdSd7r9zmuWoxzqO+EOSe3mC2Zcse9Ee+zBLzSMFzjXeZ1DDOHnuZmY/2BNkkt5e9bR47nEXdGYeWuC+40TqPVN9iuGNUkfQmTlVyd2CpLhDLv0iyirPOCmGSUwGIZWYsEa0wpuxc583rHC9Vjcnxtpf0XnxP27dPBlm2C8TS3VdTePXZxu+b25knh+XL/QJ59dXuOdWzH7ESSn72ih6e/PHvSUnTbZT3TUJuX+cuXBugv8uMpq+//1jMBG+Or4r3yJiar3kc8Jph65vz5nKz2hzbzbhmGeaWlGKOGHDGVIo77wxh25h33x3CNLc06aOcJUti2w3vGSZ3uuV43J9bHeeQ+zwaycy5HtmXyHaAw4dbZ56SZOfKq6vAefNaYH2X+Di3UjMr0pt32vlMflSzEJ7RZ5/rATwbwDkAvjvx4/guuWcC+E5OJkVRPAfAVwBsB3BhWZb7p1mOU8f/723o0Tb0ZZ8QQgghhBBCCCGE6FQ+B6AE8Cbz+2sw5tX3DxM/FEVxXFEUm4uiiP7VoCiKZwP4KoCfAXhmWZb7vIsVRbGqxW9LAFw2fvi1ad/BNOmKV7hCCCGEEEIIIYQQovsoy/InRVH8NYA3FEXxZYxtlHE6gD8A8G0An6Ho7wbwSgDPAHANABRFsQXA/wNQYGwzjucVRWGv8Wk6vLIoinsw5uk3sRvvyzD2Zd+Hy7L8YZtvcQp62SfaQ65MqR0aSCfvlHzMgxU0uSo+3oUOgP9deEqnUmUHxippZijptXXCEgiWhc7mbnP8eb3dMTG3m+WqGXLybodKmtVanuwWqDZcPDkC/57aMJPHhJWfcv170ni+NwBo9pD8hOUZ9ubs7pOzhSdNS3UG6pz13jje0qWt551U21kZ9XTTezv4AvaWgjyXS82/t8rDK4MnmxxKSOi9aq3P0ebLCwFrh+BRr2BfYSckPuXNe9nzCu+ECMSNvmdPCPOutFYGxnItnjQ4bCSivIMiTxl2/udx5M3r1p7D25SyfuD+OCLJdXHTTZPB+z/2sckwy3aBWLq7gaW7VubIheU6PuEEymBDnIYKOzgSxm9jdSxTZDuTbPha3F4sEczsm7Zv8brj2YCk1r3UXFdFccZdrbe3bzJcM5m30Q2lLY+9noVCihxLDyAeI9z8td33hAOW0wLxjqm5eLvDpuDngquvjs/x2HEeTtaaHVwfeijMxZykyg7FuWtdLqk5OrK94JM8QdpnKG8+SRR0lMYEU2lesXDnSj2IT9kafZpQP8v901R0HW/CmGfeawG8AMBeAB8G8N/GN89IcQbCRh4fcOLwy74vAvhNAG8E0A/gIQA3AvjTsiwvn3bJK6Buv8A5/3Vfn+8iuCxZNuuekkIIIYQQQgghhJgNiqJr3oaWZfkogPeN/5eKdymAS81vnwTwyWlc6y8B/OU0i9hWuqNVj2KuvfHuI0eaJ1732tfOdxGEEEIIIYQQQgghBKENOoQQQgghhBBCCCGE6BD0ZZ9oD9YYxzMVyTVM4/xSBmNO1ik8O4iUPx1jvQFrnJDLlmsIl6oTzi/3Btv4GXbqkqmt6h99tHXYq1N7LS/vqh4pXIZcPM/GdlRvrudOTrxUG3F69umxnj1c3+y5Z/Pm/Ly8p5TZK99CkAukxmuFRk/WA2Gny+mSO47YIil1C14fsmlSY96L40113USuH1QPe4gZjyRed/ic9QMcIk+yKvNehPWa447LXlHMV74SH7NXFPt0raIN6lbHliDsXdhoBE+6XG9Y7nPWd5RvYWU/1fHWnXFE8ukbfPe7J8N/Q1F+z1z32Ne8Jhxs3hzCj31sHJHNBtlTjOphsLESDLdryr+tpyf0h77eTJ8t9vryJgrb3lwIKnd/f1xu9sh76KHWWad8/hL2lBHNRrhXroPIM3bsZAjzPRjfyBpfuIKf7Pp1oTz7Dsz8u4pjjmn9e+68norHw685cjAcsG/lfffFidgQNJfjjw9hNvpNcdFFIbxmTXxu27YQ9tZr4w24evWJLaMNOOMLyF+3UutyDty/p/Rb9s+87bYQ5jayBTj99BCmiW8YsWdv9MxwwClPOzwsvQfIQ4fieKnG8Ni7t2Wamml/9unkrO0zsRCdxAL4a0sIIYQQQgghhBBCzCld5NnXbUjGK4QQQgghhBBCCCFEh6BXuKI9WH1Fzl71uTLXhLyOpU0jCckaS3m8L8nN196uwq82NOgUGvm6uVyNqKeB88I2zQz1grY4LIHmy1q5WKp43u85aSysBEnJhb1mSak4PSV5HUZeUWEarQ0EqUyTMm/2x+OI5UhcJ6xysHXl3WtuN/PqFIjri+un3kNyMSOHigrEUjBbCCPlmzW4PLkSei8NgD5njHltl8qaSUlmPSsCm58n98u1LLBlYPUhh73rp+Kt7G/9eydiVUqevDbujjX3XKMRztn65jbLXY5cWIJr4Qw3bgzhU0+N411/fQivXRvC3Ok8STCA9ZR3f39cJ7xm87TDfd1OK7FMcVcIk2wXAIbf+tbJ8P+k3/+I83r72+PMzzyz9YVtPXJj0rnhniBZPrAXLt5aAMTN0pe5/B8cCdc9TH11Lber7UB04eFGkMbt3xNH477O5eZ5IfX84KW3RTq0yPl2YXksWRyK+km472buM2wm/GyaY39wJLi+vLGcWsJ4rNh49SEaEzt3hvAuGh+2o1lJbQ4rVrQOp3jCE0LY6sBZunnNNa3TGwl23xnh5vv6wwDp7w992N4qXybXNiUXfnyI8k41Js+x/DCwaVOchuaW+/aE/mjXZK8/cb9th4yX55k+nhNtxbGmNve5kNvZkfQCQP/qPrRiptYqQixk9GWfEEIIIYQQQgghhBAdgr7sE0IIIYQQQgghhOg25NnXsahVRVuwuzuhp946YqLH1WmHwVGzoxtjP7GfgDcHS+2sxF+M2536PPjz+rqZDEfpXqNPZXN1k17hcgtkdVyzOFl7WVsZYI4kt8rOijavlMTHKw/D1W3vgc9FMtWhilsCewVKFLyvNxTC7ro5QRWJUErmzuqaVNeK6iRXg93ubY2r4JVh6raWRw7D3yV1preakud5G0ra41wlWu4m4lXo1h14mVybg9w5jNvL9pMciXhuGw+vOzE6rnvSVJZ78u6QALBjRwjzwszys3vvjdM4st6m0Vo11h07GeZ64PtrDu2LM2GZIu3mOfK610XR/geF/wuF6+97Xzhg2S4Q78DLZTXl5jmDbzWxOaz7aNCO8eVtfnlwaXi2sX2G7Sf4nFVnev02ta7zmsZjJ/W8xl0r1b8576hOrY6Pdz+tANu9LF3aTMTMg++d75Xvxz7DLF8ewrxb8ZSJge/VmzR4jAPVbDd4zsjVTfIYs2lYZsyNzrv02p2wOR6Vp29j6Ay9vfHfL1yvqWfO3L8nGFfNavsfTxRcDyzdNXYBLN1lBXTquY7L0O61O7afCXXcv259FK+S5JALy3XF8z2AGhViJffhddLxis5FMl4hhBBCCCGEEEIIIToEvewTQgghhBBCCCGEEKJDkIxXtAUrOWFpgSepnbIjmLMrVSQXhL/LJV/H7qzrSaWaPcOtTwDAgLOVpbnZmredVkrHR/mxpCcpm8zRZ7WZKtJYe84rqlVq5UjLWKoNxDIVTy6UOpeSL0a77g45HagqnhbdVhb1LZaP9/YGWVCqOJ7cx+7m2tfbejddK1mP2Ovcg3dvQBu2B20Due2X04kB1JytMZs8CZn0vPMjt6UnRbTFSUltUjt1enl753LHOIftGPV28O4m7Fzn1V2qXTgeLzm2a3pzWpXdBvfvj48XLw59tZckvnXO3Mr7eJdELhz/bjsGy/NYhpVYe6NdsVkCZ2Rckaz4Yx+bDL4rjoV3ULjn7/4uHLCs0Egbh/uDrJjb5XBih1pPQmvx+kZq/OfCm1fy+PV28waA/n7aOTihePXuKbX25i6PXp3w1GullQ88EMIsbdywId6ls96bWMcy4J2V0YZ5j8u6bFkI8/w6RWqNICXGLmpkbnAgltHzVq2rVoWw3X23ioyX0ozSTshsfzGF1I7g3kTIv3/843GaZzwjhLmj0Fiu8X0DWHv66S3LMzgSy30jqXQF9tA8sbw/lrY2qe74upF6dRcieN2x6zKT6kPthMvD17HdcZ2R9U7Ql+onntzbLnw8uXCYC2El692CPPs6Fn3ZJ4QQQgghhBBCCCFEh6CXfUIIIYQQQgghhBBCdAh62SeEEEIIIYQQQgghRIcgcbZoC9ZjxfMkYqw1QB9ZK7BX0NKl8TvpePv2vLxd+7yUwY2XyJjXeN4jg0Oh3D09sbfHCNmL5Ppd9fSG/Grz4N8H5Ns5pO5pgpT/zqJFIcy+c+x1ZPNgT7qU35l3zSn3xpmn6riKGdaQ0wEyjdrY37Ju+uPISOgnXjex/kuuj0lqIHl1Yivb6zTz5Q2SOa7dNFU8/2waqrse8r7K9dLzLgPEzWe94qZ7nVRTerdnx2jKK6hbOHQoPrZ1NEFqmuE65rmOvbwAf4gm5zqHBx/0z7Et3qpVKyfDKzatjOLV2ReLOyf/vm1bnDn7J910U+v0QDxmOT9Of+21UZJd3/3uZJjdvC6z4599+rZsCeHNmyeD+w7EzybsmZWaJrzpP8fr2NJuC1lvLPOaDPj3kJpGuYk4P2882Otw/bQ6blUGO6Z4Tkz5Bm7YEHzDkp5yDtbvcoK+Co8LFu4byXG990AI842zR589d+qpIcwNZjz6RvvDOM+tn0G09nlcv65F5HHu2R3GWG//idG5Pvb95OcwLjdPVABw+eUh7HjxTenEbPS4adNksGn9BLkezzgDOTQP3BPCdD8HB+K5Zd9Q+BuCpzdvHNpzCwGvPPZ3no+4Wfs2wYX7yXr23LOerXzMF+a261bPPkCefR2KvuwTQgghhBBCCCGEEKJD0Ms+IYQQQgghhBBCCCE6BH2vKdqClYvlSEtScg+WdeRKzlgW0tdrZAX8ufYAhe2e7x4sCzDfnEeS2ujGg2TBfqbO0raHH3azduUtjUZ4T1+3FZSq2GmSktoytpyeFIh/tzKXSLJM1+H6sf3MU9DmSqBSMh7szZTaVoHzy9XueWUwg623t28yXBsaDEl6SW4+cDC+DktdcmW8HM8dA4myLjS5QEpCzWErJWR4PuE5w3ZculaN8u6jDj1C8l7Al/il5l6viVKk5HXeuWh6NdXDY7QdksOjESuHzVXAM55NQSqNp3LNxc7R3ObczixTZsUbAGzaFOSQ9XVhXWYJ7EqSxgKIF0iWHO7YEce7884QpkExeP31k+GfxynwWQq/mk+85jVxRJbhkVzv57tCuW1f92TzltQUMoFd2zxJtu1LnrQ1BZfb65t2/mD5OKdJlTtX7sv9icdO7vMIP0vY8eHJeG15+FrNCo9U/NxSxekjBd93s0HPuraCeF3ncXTzzXE87/mWfzc3wX04V5rMdc/hlIzXk6wCAFYHaWsk6eXMEx1yx9VXT4bZfGDlOlMgr7Pa33MnAAeW7tqpjse1NyZSjzCpxy1e19v458MUuHpSfwvw8w0332kJGe/27SE8sCH0i02bTovi1bjCuHNZua8QHcQC+2tLCCGEEEIIIYQQQsw6RbHw/hFetAXJeIUQQgghhBBCCCGE6BD0Cle0hXbvAsUSAbsLnCeB4X+QGF4Rv8euezLD1FZmufGcc0MHWpfTktq0M0v2lko0w3+lSSmE+TK2jars2slUuYVciaDXlLWR4TiitxtvO3QOnu4xV0qa2EW2xroHuo4vN0e1e/XKlrsb70LQdOZuUboQyuqQ25TtuIXUztgeC7jqFhy5iv7URuHe7qVVZLyp3c+9ddimYYnWClqXk3JTzuSGG0J469Yo2q67754M80z1Ywp/x2T9EgpveNrTwsEmoxGjHRkHe4I1AqshWaoJ+FO5nVpSU/4EduqdzQ8uvD5j74/J2eHeHidtMzLInaJZBW53q2aJcGqpY4XfiWbT1Rw8RefK/unnBfhz+fAIWbrYm+DjFStC2Oysi7VrQ5gk68P9x06G7Xjn+kntksp4Mt7cNLYMXCcbNwYhbpNtAc49181w0ze+MRm+h34fMTv49vBu4fx8tWpVnLftbDlQRTZWB8sD29e9OT+lWOax7NnkWHItItqJnWdybZwYr36m7BTNneiWW0L4mmtC+A1vyLuoEEcJetknhBBCCCGEEEII0W1IxtuxSMYrhBBCCCGEEEIIIUSHoJd9QgghhBBCCCGEEEJ0CPpeU7QF67+R4xVl/SUY9vlJ2Zhl4xkesX9Dyp8sYcDDnil8Ga4T66vk+cukPHKYJUtCeO2a/ujc4FAoT7PH+FVME/a3sXC5rU9TThulfP44zPea8gPK+d1ed4qfh0fCI68Snn9eyn/R68MW7tOeOZQ1v+Hj1ODlQZtr2uTVVxUTsXbA16WyDaIZRWvQrU7xc2S4vjzDm9z2Inr7my1/t+R6e6XGpOddVcVDLkW3+vfZ++a5k30QPR88S8qzj+G8q0xbNm8uH69v7A1l03jr/H33hfDazcZDbN26ECYPscgwD0AvefbdRL+zT9/TzXVP5IPzzw9h8ugDgMFG8ABjf7IHHgjh3Ha1dc91lHoOWkikPBb5Huz98DE3Jded7ffsL8Y2aLYeveWR697Oh965ds9N3jNMVTy/wzpobRpIDFjuxBwG3LU41xs0l1Sbe+T4WwLxfNRYF8ZuzfrqcUVSZ/g5RTlo8j7x6qsnw00uUMow90Uv8gvL7NgxGazTvNdoHBtF8+qLi5D0QSVyx8RskvvYa/9O8OCq53mY/z4DgDrfIE80R8tELEQF9LJPCCGEEEIIIYQQotuQZ1/HIhmvEEIIIYQQQgghhBAdgl7hiraQkgh5cq+UbILlrCmJcG55envrk+H+1eHz+FocKU5EBRzt7QtpTLwBKh9/Rp+6v1xJFcfjy0b/+GIqpNkOmek4y5f75cmVcXhSGZYO2HgMx0tJhFJyjxlLdDydYzvyq0JCVu5Kjr3OZI9TkmXv3lPy3iq60tnEuW7yHzRTdeJ1cHfAGliySHnv3R1H48vyPGOl9p48hsOpLsOymanzaAizVIaxXbuN09FRS5X5PiVtSsnreL3kNJ4MEABW9h+5PBZuf14nbN7cZ9asCWFWULGUDQCwa1cIb9sWwjffHEX7GYWvofAFFD4jzhnNs88OB6tJPszjEHky9ZQcLlXfOdK0qpYVuVI+D74HtueI2svAbcxVCsT32hzaFw5IOjpipHbeum6XLc8CJSUr99Lbvs5K1xM3YNrwvMxttHbN1Lg5eDLFRqNOBxRGLAv17CsAxPpqkrPv3Rl+tjJS+1yeA5e7yvJv25Lr1SvP+lNPjX8488wQpg517t/+7WR4lxlEfNnmzp3hgOcpoJo1CedB4U1nHtsi8hieDVBqjHqPgkD7Jec5ZeBrpqrNzicexx8fwiecEML1XXfEEbn9brophK+/Pu9CQhyF6Ms+IYQQQgghhBBCCCE6BH3ZJ4QQQgghhBBCCNFtyLOvY1GrirZgP8P2pBP8e0rKwnIN+8k5f2HPMpMqu0Ou5IIntJ+cdx2x/qCnJ0gncuVaLJXJ3fyUixrtDrrb7KzGhcj9Bt6h2WN2IR0KBeztDbuFWolHlV1yPaVsrjQ6d42yOwe7mXtaOasXMfKvLLy8qyy0mbvfDiP003pKxpv6na/lddzU1tMpLWmVeqyCo3Os92bqinJlyvx7oh6He8I4GnJ2OwX8uYV3q2xVvFbFsXmxdIclmTavlDTRQ8+O+Ru989CxckyWKabsFLyhyLJCa6HgYcvNazbnnVII8rCu7b5nMtzHkayMl6W73//+ZPCn5ma/TuHnU/g0Ck/ZxJIrlgeZWcS8HWZTmzZ67gqzuSPsXLkhpKa91C6rHG90Y9glNSVF9+7JWgfwmMh55mxHvFwefHBm6S3cVbkP7t8fwvbZZn3umkoD+OBAEHyldkydKbnrQmqu88ZY9LeFvRDvzssZnnvuZHADSz0Bf3fwCy+M41XZ0ZXzpvQ1jEbRenpCu/B6nbuT7kJYh7ldOJx6hM1VRq9YEcLRnz1bjR/Knj0hTOvO8Pbtk+FYDC/E0Y9kvEIIIYQQQgghhBBCdAgL4F2/mCsWLVqEJzzhCZPHX/3qV7GRzHiFEEIIIYQQQgghxNGNXvZ1EUuXLsVNvPtQG6ki402R+hrekyClJAcsLYmVhP4H27zLWSTjbfjDhj9H552xUjKu1A6MfK42NNg64kz1JilSeWdKBjy5dmq3QQ57OxzmXsfCVTdMuwDWcwvUblLaSE8KmtCV8T31NEhqfYCTmF37PDl7SkORq+vx4i2E3XiT/Tuz/XPaKKFT2U+qEpalpXbZzZX+eTvw2XGUO1d5102VIVcy2snY9cybq3i42a7pzYOpOZHhvuVaGRgSG9RH8C67tjzRDqy7SVLFN5iQ8e6keJ831/1tCj+O9eePf/xksP8Xv4gTnXRS6zIY/Wlt7/0hj/6wMyZLxGx9sMw01e895wbOL3c9a8fSlGM/knJ0SNmusOSQpYmNRlin7L3mbCifImVZwHXMiu6UZH2m5I63XLy1wM4Zw44gsW7XdWpA7k6pZ9MqpJ7lPJYt89N4yy1LOvGgKTjPEyyhveCCELYy3sc+tnV63tkXqFZJXgPydtAAVq8OcxBfhm08Ek5E2et6zu9V8XYLTnTHbCcibsr6gTB3T9kx+a67Qpg08JI5Qp59HYz6txBCCCGEEEIIIYQQHYJe4XYRhw8fxpnj/xJ10kkn4Stf+cr8FkgIIYQQQgghhBBCtBW97OsiZlPGK4QQQgghhBBCCCHmH73sE23B+rmwPwT7ojApe4uUH5Rns0P2C1PS5HqcMJ5d2UhvrH5nnx7PX6aOYbdAkVec9QPkAh44cOTfgfgGN2zAjLB5003V2eelJ88RwGuH3HjWd6SKp0wl75l2+yJ6+VUxJTIVaaynWv5uL79+XX/L/IYbfe5la5xJygfPOzdfnn2egactt2dEleqEVEH7DvCYaIIZOhDCno0Z/w7E8xG3g7H2ibymvHk0157SxuO8c/375sr6ciGT66uX8vbyhovttjxlc9/gbp87zaS8Bvlc5Jdk17rrgv8etm9vXdBvfStKcv9VV02GP0m/X2rKt5FvZMuWED7jjBA+7rg40ZOfHMJc4fZmqcKaZBzV3x/Gta373Hr15ugqU6JN4z1v5eaROxfwvfLcZJ+b+nqDTx93yBrV99Kl8fzIzeJ5A6Zgf0rbRlWWrSqknkerwH3GW8Jsv+I24nMbNhwbxeM8vDmDn3OBaj6EVfpmFc9Xbss6T072pNe5bCfmjQy5UmyHrPKcyBXO5THP3n1nhsYcWR2ey7y5xBYn5UHpeWS3G8+e2s4tXP3r+8mrHP4E2zdwTzjYujWEr702jnjddZPBgeuvnwzTLIX4qbfL6NaHtA5Hnn1CCCGEEEIIIYQQQnQIetknhBBCCCGEEEIIIUSHoO81u4iB1PfeM8R+ze7JFnjrdSsLYPgz7tSX8Z5kzcppPNnDoUOty2avm/qymT97j2SO/GH4QEJLkvvZtFeps/nZdUrvl5mM69WrKyC+PW7/lHRn2bIjXx/w+1DUDL316BzLjNouP+W8c3XKnIbCgyNxub2i8hiw9cOS097eIGJgKRIQt2WfN0hz9fnzRZvHyyj9m9kIQlvkymtY2lRFBWS7DHcTbq/UmOLjJUtapwfi5vPkPikZb67MsdPIlR960mhgqqOCF4/r2JNx5Q6BlD1HtNbtvT8cWF35jh0hzPKqnTtDFJLtAsCnKfx7FD72kkvivFmuy2G2r7B6eK6I++4LYTtgqXzMepIFDvfE8lNvzNtxzWPRmxJz5XTtmM685SgloeVjUjnHsl3A94+gzBu9cT0y3nNBqqypxyvP+sPmnZI95rB8eetrVsVzlWBSzz3ecy8Q9zV+puIwS6NtfrmsWNG6bCm4b1m4Tlb2U7+LvH7MhThDz4vAzhl8juc3lvcC6UXfw8qMvTLQfLRy06bJ8CPHh7Fj26iKXUAVqXUu3uOsvebaNdSWO3aFMN33FHidIaluZB0BRPXY+7zn5eUtxFGOXvYJIYQQQgghhBBCdBtFIc++DkUyXiGEEEIIIYQQQgghOgS9whVtoTZwMDquO/qKkZ5YcuiR2mHM25WMv663MoWHHmqdt6OMBODL3nJlak2WWqS2hGNSmXs6rlmUZyfzjsrqt6v3D0VWisKf8nMalpJYaZMnj7M7xXm7hXo7KQOJO2qHFNXTnKdk0xRvlMbRUGJ8cDfje03tpJfaETaq73WhDH29iS2uvS0P273DcS5e+6X0kAk92549Icwymnvvbf07ELcRz1Uczw53Hh8sr01smO2S6mYp+VkVJwGWw83mTn8LGStFy5lCUju9plTz3prorXsp+hpmZ11vR3iWvNpJg3dD/P73J4M7SF7Fsl0AeBmFj33Ws8LBuefGEVl65YWtrJhhiZfVcfIAdtbeukmz0qnYwUa8mnhTorcGtjo+0u/Twdts3JPdAXGfbo7Q899OU99cd05he/pXuuXh69r+2KB65Xjc5NYuxtuh1vLgg/65HNq9vKV2PJ/A3ivH84Yu4K8ZnpMJUK3fVbF08CTmuWUYXe3vPMxTFee1flPc2YfpabCe2ta+ClwRu0iyetNNfhoqw9rNmyfDg8tjObxXvFT7W+uOdsLTZST3twXaRpLcn/wkhFNS22uuCeErrpgMDnJ6AM1nPCMcsISarR+E6DD0ZZ8QQgghhBBCCCGEEB2CvuwTQgghhBBCCCGE6Dbk2dex6Ms+IYQQQgghhBBCCCE6BL3CFe3Beto4nn1NMuDoWRH7SzApjzyPJUtC2HpDpTwAPdjHgvNO2epF/yjCPhT2op7pks3cq4h2+MblkHkd+49Bqfry0nAV8W2zh4j1DaoNDU6GV1B/stXteSSxd521DamnDGtmimcWaW+Qjkcb4f54uNmhx0Xlc7ndx0sPxJ5SsaVd+Hejpr0Hz59wvjz7PDL7+qj5NzLuQ9zv2Cc013c01UZ8HfZmsuPI8zhivxxrT8ZpuIlqI7FHVt3z3OrN+3fDXJ+mTqMOW490QHXaszrUY8ojK9ezj9vVs3xNYv3u2OSKPe3Ys++uu+I05Nm367bbJsPs08cefQCwiX36LrwwhK1n38aNk8GDvetDcciKb+3a9WD42WDlGVSp1muQDTRvuSWEefCsWROn4XP83GNMG9et65sM79+PLLj9U7ZhVT7M8JYg9stdsSJOUx/YFw5SC5JnFpmYDFyLVDOR8hpdJ9/Yw4f9+ch7/rNz4kyp4k+Xgp+pcuF79Z4FAOCYY0KYn7e42+b6/KVwhkeSlY3wjDfVD5jCe+lmqXBDiP/O4GHOFnnRc8+G2GOTz23cGDwAh6Z4GgfvyT6MIguaw6IL2Qrmwnp/Xxnfuca6UB7uC+yjC8Rz4mx+2BX59PHaYude9ivcti2EX/pSP3OKN0w+fc1TT43jXXBBCHN9pfwAhTjK0Zd9QgghhBBCCCGEEEJ0CPqyTwghhBBCCCGEEKLbkGdfx6JWFe3BSvcyqPf4n7mnPvfnr9v5svxpupXxcn7el/IsWQFi2UpKacnlq48kJAcMXzhXk5Orh23nZJ3S+9F1RiooMqcoMhwJI8sPWL4IAMuXB4nGEMVjuamFq8fKGdyIXntVJdbATjt5SiLkqaZSeP07JRFliU+zQWP5gGlYT3M4Xw8V3nXt7472m6XjANDfH/qgV3e2y7CkylP7T+3rIZxSQ3t2Bqnq9mTuPT2xnMkb5ymbBB5jHG9lv1+eTmNwpO6ey6lTC7d/aopmeLxmS/BSiy93LtaYWxknSbQ+Tj+/msIbNm+O07C0jW8wUXC+77VrQ3iK/JSfO3ZQWa2UbMeOEOYF5YQTQpg1j7YQiQHHZVi8OAhsFsKUyP2Om9XKjVesCBLBnv6V8IjmS6f9UtYqPA8uXRpf5zCVybNTsOOIj3muTDhoVMIot9uK1172udezQLH3xjJeXmeaA/eH8JQHDT7Iq6xKUmnP8wLwPUdY2roxTrJhQ5Dh8i1x1lwfQGzJwdi+xX21L7f/rFsXwt4fN4Dvw8HxTAV7zxPsUADEY4dp93w0OOTYvdjBwvLa3IH43OdOButcD1y/AHDGGa3z7laPEdEV6GVfBkVRrALwOwA2AzgM4DsAvlaWZTmvBRNCCCGEEEIIIYQQgujql31FURwL4CPjh18qy/JzLeL8MoB/BNBPP78ZwPeKorioLMsHZ72gQgghhBBCCCGEEEJk0NUv+wA8G8CLAJQA/syeLIqiF8AXAKyw5wA8FcA/ALhoNgt41JArbcyUtrL0o7fX37WXJWK5qlkvnpVAeHLPpGp2yNGipuondc7b6rfd2/HlXB+IKnJ4JHySn3sLqd9zulCqjVK3bWULE3g7nAJAb2+Q3tWqbA+dgjtkQrrBO/B6ck/bn/mYw9yHPdkGkJafenk3GqEv1FLSPy74QvAGafOu1l52KSnZTDfZttXIY8TrZin5empqmatNwLuV1JDw1EypMcppKg09uxsv7wi5nba83bo1hD/72SjJZSSBvYw1giyvOu+8+Dq86y7vksjyXgCDjSDr3L0z/J6Sha5YEeaq5I7rfO/f/W4In312CFvJMl84pVmka/WvDrJCVgt7a5alHdOo17dStxDvMB0KYXcr54mHZXw5DiWWVDzvGS1VPzwnWiXhTOe6dj8y2GefHHLXIyay5Ni514/IWBm+Q+0A7eDMhUhpnnnO4R3AgfhBhmX4PLfYvPvDePPsJ2z9HDoUwqmd0Lk/rTUbdXsM9oSduZurqbPauZc7MheW45kC9UUS1jD27POf9zzQ7ke0qG/tPhDCvJs7EO/Am/TaITz/GrNmuBYRs6m7P1qQZ1/H0u278T5r/P93lmW5rcX51wJYh7GXgXcA+JPx/+4BUAB4XlEUF8x+MYUQQgghhBBCCCGEODLd/gr3cRh7kfcD5/zvjP//EIDzyrLcAwBFUVwB4McYe+H3UgDXzG4xhRBCCCGEEEIIIYQ4Mt3+sm/iQ+vb7YmiKFYCOAtjLwM/O/GiDwDKsvxpURRXA3gmgKfMRUGPOjwtWAXNWg3xrr09PeGDVG+3yZRszvsM327G5MmerJyC09U9/UjVT6Or5NfOz7BNpYzS7py8i2Rq99vc3UG9HWY5HMkAgKiR6iwxRrz7pVe+eOfR+BwrtBokp232t85rWji7qbE0GgD27wnhKrsNejtPp3ZCZqwcjtvS62b9/X3RcXRHXuHmklx9lSOvZmk1AByiNmLpHe9eaSV5XvulxpE3ddp5y9u8NHcD6Nzpw4tny9OOafBoJ7XRH7cl79Jq5ZC5UkCet3i8VpLx3nlnfHzTTSH87W9PBu+56qrJ8EdNFpfxpP+Sl4Qwd9QtW+JEvGMiyXjv2RvP6yzdZTWbZ3lgL7tp0/rJcJ3lwkAsC2SZ2Yc/HMIXX+yXm2Vhdq6j+YRbec2aIDHcQ/OKpd0uHlwnnL45tG9K3Emc3U9rVhNM53oa8drQ6pqW1PrPY6Q2EmTFB5eGfmLz9pYdmzdLjqvQbhmv10apvIecZzS7znAdH1wa7ruPbyKxy3aujDfKg8MpCSXvim3lnlwRniTT7MbKqmAeYw880DpbIK5jXst5fq0KV0Mk401F5Lrn3+1kRwVnSW9PTzyPev2p7RvUcrm5Ia67Lo535ZUhzG35+tf7ebP0l3fzTch4h3vJBoKKdmKv+TtDiKOcLn30nmTiZd+hFufOw9iXeyWAr7c4/yOMvew7cXaKJoQQQgghhBBCCDGLdOu/yHY43e7ZV4z/f2mLcxOO0SWA77Y4P/HvyI61sRBCCCGEEEIIIYQQc0u3v+yb+HD7lBbnnjn+/1vKstzf4vzEC8LhFueEEEIIIYQQQgghhJhzuv17zR8DOB7Ac4uiaJRlOQQARVFsAnAOxr7q+46TdkK+e9+sl/JoIOEV4WK9Xfg4YTDUaMR+E62iWV8WPvY8W6w/Be/4zkVL+Z24F7X1kyqsF8+r09n87Npc0yuC9TFkcr29Dh+eRrlaZU6F6zF9ZCl9u8ved6lu6vmnNXvbUN/sL0g+fbabPPRQCOf4TgJxub2ulepynF/K78oborZdm55Z3EKTC1Q0VvK8FNnbx9ajtT+aIOUhyWMs1/qU561UG3keYNYvFY1ay3hMykOsHd5VRyPsJ2aJfF6po9RMRUYzGp3r7Y3nOu5r3ryc3Q433BAfX3PNZHDn1VdPhj9JUV5r82CfPva04wXW+GqxTxP7r6bWdb4nXkvs2OPLsq/mWlsG9iFjr7Azzwzhb30rTsMDm/OzFe6Yn/K/vq9YcSyY3DZLrcUefZ5H1V6qvIQXn+dvavHmt1wP0ZSPJfuQcfvn1ofNmz0gT9yAaeNYGlbG899N2eDmPPem6N0YXIrsfDRlYOXAabwxZdm+PYTZWA2Ix+jatSFMnm0HR2KPXW4Xfr46RGZOS43Wy/OxS3n75cJp2BO7Zn0MeVx5f1vYNuH6osI2+UEOAAZCfvXo7zC6TmJcZ8ODij37+HcgbqQNmYOPvfnYf9XWI937UML7WohOYoH9tTXn/COA5wFYDeBzRVFchrEv9j6E4Nf3ZSftlvHzO5zzQgghhBBCCCGEEAuTolh4/wgv2kK3y3j/HsBd4+GLAGzFmD/fxC68/16W5b/YREVRbATw+PHDH85+MYUQQgghhBBCCCGEODJd/Qq3LMuhoiguAvANAPZb4V0AfsdJ+nIK/+tslO2oI/U9e5t1XCwt6+kJ76uXLfMvw5/ec5glj/YWPLkn/z7lWr3Ohap+Au9phFMamHb+y4wptycFsZJXlkF4t1DviaVDy5e3lghGt5PSqRBWcsLSb5b4pOSQXle1MvJmjyOBSnBwKOQxkJASeEqZ1DBi2ZKntLLpPTlcKp4n453S/frDvTZZUlFFV9QOvDLYm6W+P9rbNxm2beJJpXKltiwr5LqzU4Y3h1lFDh9zHpEk1xSIJXC5ePlNyWmIzrmeBx1O7rqXOyaoo9RNR1myJLQAn+Iwq0iT7IiFCwcc6e6lFF7/rGfFeWzZEsIsu+NFgyVYAEZXBwnrblJ77dkTZ81qL5bhsTwvJeN84IEQXrFpZXSuzmXyJL2WG28M4bPOCmErU+NxwDdFjWTHSg/NQZ6ssDIs9+PM+ffcZxjbh6mAVVwcoucEM44iCTxdd8WKIN2013El9QNxuXupvqtg1YMzhed1XjPYLiK1XjM2Hj/Temt8X2pByoUzt2PCgwe5XexYKn/CCS1/P2CUv57qlesxRRXrlxTe80PT1i8XNlfG63WAlATb83Fph4z37rtD+JZbQtisM9GcaNvcg8vHg8/YM+w70No2x7NWEaIT6OqXfQBQluXNRVGcDuC3MfZF3yIAPwLwmbIsvRnxcQC+jbHNOTxPPyGEEEIIIYQQQggh5pSuf9kHAGVZPgTgE+P/5cR/6eyWSAghhBBCCCGEEGIWkWdfx6JWFe0h9W17FeluQu9hd02boMouq7lpmFndtSlXS8q0Y0uwTLx1wO5eliXXmVLO6UsJXW2qlfs0QiGWLg39h6Ubc1iNESzJsdfM3fHUO8cyBa4qq+6osrOqJz+1RPfUyOkYc0huRbY56yppquQ3ZTfdCUxHm7LTohMvks154y23MyyE9p8vvLrLnXQq1B1nnSvj3fupT0XHH6Hwmyjc/4xnhINf+ZU4E5bA8s6K3vai8Mu6fLlfVs6C16OU+tCbKwFgJUvBeHfHCy8MYSsxW7MmhGnn4im7jXq+IIm+EI/lmhctop7bTbzFge/P3qu3yCfknZU2Y0/MGfwsWKPrDhzws7M2HJNZm98PkHx8Zf8RSzkFz+aiKtwsbFmTwmsKu/57O/qy0rZnXSxrbubuksrwmMrVOfN1bBoelxRv34C/gzfj2WHYeuP247pPzUe58PwU9RNbCC4gWwxwBikfGD5nNau8M663i7ixWqgEX/fBB0P4iU+M43E7n3JKXt5cPk5vBh8f8tqSqxYW4mik2zfoEEIIIYQQQgghhBCiY+jif1qfSlEUJwJ4AYAtANYAWAbgb8uy/IKJN+Hk/PC4BFgIIYQQQgghhBBCiHlHL/sAFEXRB+BDGNt9d0KcVgAoAfxTiyRXATgTwM8AnD4HRVz42E/O+dt5T/qVq21ISM5YptLb60tbclRTxxwTp/F2lM3e/DZT2pLcrdi7cG7eM2TU7NI5Mv3NIn0pYSJNVp1aMqXkvPNolS5oZSHNCtXPOwKndtPzSJXb2wSaw3bXuFwZL+ft7XKZGnuDQ2GMNhrNKF5uP5kxnuwlMfZS0bx+yxIRKyX00nDeNg3nx3Vv5SfRdJAzD9vjKpqzXClqN0t3Z4pXx2ZCWrq0tUwxoZp1+Yg5fgOF+1/+8nDAcjorWfVkeHwPphNzWVnlarsPjwPvnuzvbD/A2DlxuDfMT3VPsmi1v3wxlqzxrrZAXF+MtxOmybuXyjZl3ozGX+Z483b6ZFKLAZ2zzwxR0ZzpyFJlLfDsXSxc7GhnXlOgRmNmwqd2bF7KzHTtTY15z5IjOa1Xee70FsgUPDesWhWf4/mEKnwosdFvzmVTMl7+u6DdyxnXsd1lPeshzc4ZqZ16GX4g5ULwFuftwNvy+Ljj/OO1a/PyZvkx9wuztowcyMuuK5FnX8fS9TLeoijWAbgBwMsx9mRUjP+X4gPjcU4rimLL7JZQCCGEEEIIIYQQQog8uv5lH4AvAzgFYy/vfgjgPwA44whpvgpg4p8onjdrJRNCCCGEEEIIIYQQYhp09feaRVG8EMC5GJPrXg7gFWVZjo6fc9OVZTlQFMUPAZwP4Lw5KKoQQgghhBBCCCFE+5CMt2MpyrKc7zLMG0VRfB7AiwDsAbCxLMvDdG4UYy8B31aW5ftbpP0wgN8HsLMsy5OPdK1FixaVo6PT8yFpNBo46aSTppVmLmk2m9j6wx/OdzGEEEIIIYQQQoi2s+Wcc7B169Yj2XwdtWw544xy6+c/P9/FmDHF4x9/Q1mWslgjuv0V7jkYe6H3j/yiL5M94/9fkxN5dHQU032xWhQFfvrTn06zWHPH61772vkughBCCCGEEEIIIYQgut2z79jx/99RIe3ENl7+1mNCCCGEEEIIIYQQQswh3f5l3yMAlqBaPUy8KDzQttIIIYQQQgghhBBCzBXy7OtIuv3LvvvG/39qhbRPHf//3W0qixBCCCGEEEIIIYQQM6LbX/Z9D0AB4LlFUWTLcYuiOAvB7+87s1Q2IYQQQgghhBBCCCGmRbd/r/llAK8AsArAnwL4r0dKUBRFP4D/Sz99dlZKdpRxx874vfHISAjv3x/CK1aEcKMR53HiBtqtmDPYuTOOyMfXXBPCn/iEW74du3dPhlfT7/1nn+0X6KKLQvj880N48+Yo2mBj5WR4167wO10yuh0g/lK6t7f177ZIAwMhPDTUOmzzePr509sB2vLvN8Xtaq81Ad+DLcO6dSG8EvvCga2UAwdCuL9/Mjjcf+xk2F6f64TLcNhst/Poo60vy5e0aR56CC2x3eSp506/jr9zbahXvqdjjvHT8D2k+gxVXRRuYjAcmLofbvRNhuuTdqSIOzEAbNgwGfz5rnAP994bojz8cJzE66u23M9/7sz6ai5e3Vts95xg1ar4mOe0jRtDuL6LrGBvuSVOdNNNIXzDDSG8bdtkcPC226IkzYsvDgc8B113XZz3pZeGMLUXzjxzMrgPYc4C4nmL28W2kTeuo75lODjSnAzzeF2/bm7aeyFwcCCeR3mu4XnGq197rrbr5+Hgu9+NI/7oRyH8nvdMBrdSlCtM+S7jyYX42Y643LyWM949APE4Si3rDN87p7F1wnMxz4mraZG3Y9xbU225U3ODB+fB6bk8QDwv10DjYO/eEPYmIJt56gFg0yY/D4YnAC4cVergUNwXDh0K4Qcf9IvDdcxwO9h2Zbhd7XLE9frIIyG8hrbNqw0c9AvEDwD2IYbPnXGGX0CPrTTiOG/z/JgNtxFXnn0gYbyHndQDm9fxbX/k69oO7sH92xu8huER/5uUek8YO6P07QoXNTUf1UfCujXaCOvUnj1w4bnOVj3nHf09k+B714Vyp4Y/jxGv6mx5liwJ4cWLW6cB8v62OHnjzNdr/jvRmxeAuB443q9f5Jfh61e2fq7jvAB/beG6m6tnUSHmiq5+2VeW5T8WRfHvAJ4E4E+KolgM4J1lWbb8M78oil8D8H4Ap2Dsq76ryrL84ZwVWAghhBBCCCGEEKIdFIU8+zqUbpfxAsBLADyAMTnvWwHcVxTFt+j8C4ui+GpRFPcB+CqAk8d/vw/Aq+ayoEIIIYQQQgghhBBCpOj6l31lWe4A8EwAt2HshV8TwDMw9uUeAJwL4Ncwpv4sxv/bAeBXy7K8d0qGQgghhBBCCCGEEELME/peE0BZlj8e33Tj9wG8HsBGJ+puAB8B8KGyLBOOA92H9ZfgY88vLQmbLlhzBzbUIEOGETJ0sa4jbGUxzCfups2U2ejF5O2aSABo9Mf+V63Itd9ZtCgvnuexAbT3K2ybt2fnYr1CXN+vAcog5dnn+NCk7i33vr141rYq17qmCp4vivVSqXIt7kPNBnmPHPB9nupcKZ6nkSlgb2/o9+wHYz37+B7Yq4zTzCVe3afqOtW3uKuyB1DksXT77XGim28OYfLpGyWfPmM1gxPZ94/nI+vZ98xnhjB3BvKK6snsZymv0ehcwzf6Gzlw5Ot0Orkeoim/xNoIrVw8Rn/xizgieYX9lH5mnz5yo01i50DPmy/X347vNeXZxPWVen5gn7YqfSvl7eX5i+bOE5yeyzn1uuHf3KN/fa+62FV5AOA0NKGxX5q9b57n+V5tX0+1s4dXx6nnEc8bsp4yHj2aJGszLetROvmmx5vfP2eCfRbkZTTlO1ylDN7Ysc9RMx1HKWtH75moim9pCu9ebX3zvdr5xIM9RDk/W298fJQOCSGmzVG00s0uZVkOAngPgPcURXESgCdibOOOHozJfLeXZbktkYUQQgghhBBCCCHE0YE8+zoWtWoLyrK8E8Cd810OIYQQQgghhBBCCCGmg172ibZwzDH+OZYmrl4dwk0Mmpj0nfn27SF8001xtB07Wp5j2du6U0+Ny8AHq1aF8DOeEcL2XzSe8pQQZs2h+R6+tvf+cN11x7bMLvUJfurz+pkqcmaKLZsnM+7vj4+XLQvhPhwMByxttJXCklG6iTp1GivJ6VldD+dIQtmzohnF48/1WUrA95eSLOb83g5yZQWpeCxhODgQZC59PBCNXnjfQKjHnkaou75NcbxBhHN7qSmtTI3h+lq6tPXvc4mjWMtWxvE9WLh+mhs3hhM88QHAhg0hTPFqO3dOhk+8+uo4zXnnhTCNlUFT+U2WCD/wQAiTTUHfmfHNbtwY5q2UdMeVBSW0TQ3qT6l+0sksX+6f43pc2U+ye54rAYBsKqL18coro2h3UL/5PP3+2xR+nF+ciLVr42NvreKp3LYxy9E4Hq8ZdinwZFjWVYB58MEQTklouS1SFgoMd2mOZ9dDnht4rNj1sXZgX+vMc7V6nma11XEOjkdInQo+0uNbfPMtWEleFbm3N0ennke8Nb7eaxJ5hbALQOrBLAfuKLYDzDS/DNm1jVajg9HeviheJHtuDLY+YfvmTHXznF9i8DV7ht1z8Z+w4d5T9hzxZcPadICmV3YKAuLHf56DbLPyXHPyxlblnQqXx0p3GW9MJB7r3C4T2bsg7jcpi6CZwn96pYYXj2u2jkixYkUIp6bRKjYuQhztdP0GHUIIIYQQQgghhBBCdAr6sk8IIYQQQgghhBCi25BnX8fS1a1aFMUdbcimLMvylDbkM+ssWrQIT3jCEyaPv/rVr2IjS81mgJW28XzBspnmEMlXrEzpjDNCmORskWwXAL761RCmb8HXsST33HPjNCyj42/bN22CC8fjb/dZTgVE33/3bQw33rsx7FZq5UdVdi/0pES58tMqpDay48/wWbYLAGvXsBztQAhzReRqPxlzs3XeBfQAyY+MnIHlvz29QbLKRbCX5HMsr2hH/XrSpCVL/DQsJfHkGTY/ZrQn3HdqV0tmuBHLoUHpuAx8TSuhSG2sPR/YvjqB3R3Yk8rYNuJNvGtDJIHihrEyXp7rOHPWD9m5iY9pDmraeZQbl8+x9NOUZ+XmUIZBanM7T3m7n9ZTGkjKY752YF5ocNeIpGC8y7JtV8faYoeRe3+awq+g8Mm8Pm7ZklXOlGSdSdkh5EhlbT/z5pbUbuXevJzqcymJKMNjPuHo4ZYh2kk5RZWdYlOLdC4ZFZF6zvCeTYBYkufFS9V9HcMUr+5HJHgHz0YjFjDVvYendtQj4z1zVsXJgyWYqedKtvFIrcOR7Dm19WwVcre1ZjLL0NOT1zf4srm7eaeeE2cK931eC+x1+LnFGzu581EK7xm/HeSuJ9wWKQsMhodbw+nCQFx3PE/o2UR0Ml39sg/ARgDlNOIXFC7Hj6eTfl5ZunQpbrL+d0IIIYQQQgghhBCiY+j2l31A/AIvh4mXe9NNJ4QQQgghhBBCCCHErNLVL/vKsszaoKQoiqUATgTwXABvAbABwH8vy/JPZ7F4befw4cM488wzAQAnnXQSvvKVr7Qt776Gkal4W+ixNMnKc1nadtttIWy/r+fv2Y87LoRZ5vb4x8dpOB5/781p7Pfe/D07S6isnIIlx3SvNQqvXLcuSjLaH6RyKfmAJ8vgNPwpOtDez9FT6hNuBpYyAojbmeuHw1ZL4m3PmNoejL/X52ta2STv7kvXWbo0tIPdRZDrkc95OxJXJUeKNh1YcuLJdWyfue++1vFS7e9tpmf7MzcRl83W91zB7ZqSn+VK/JiDI7ST8bqQaN8Bs0si7drd5/V7q1/hPs3zibUVoDE2SnN8LfOGeBfhpqmUYdDu1z0k1U9sa9ekazX686RWncaUHSW9+Y3XGQ4DwDXXTAaHqF0/HcfCyygcSXef+9wQPv74ZHkniHZSB9C3onW/4X6R2mSduwZ3LTut8zGnT8VjUl3ds0CwS0bOjpe8AzwAYMAZB7agfFOcIVderj9DO7aRzPBaaBhLB15DUusWz7fezprJ+ZWk7b29691obLXBYVv19V5HSmpvYqbSW0o/3BPqro7RVrGPyOBQ6z9XDh0KYVu/0ea3vSF9alfrdetCPN6ttt5I6PNz8bZCTcGFTQzmEWcOst2Zl0tucnZQsGn4mY+fW9qxyfL+/SHsPZvYc97cNGXXb7YP4M6wN77BOmXI4dFMaXQufT1hvuxb4U8aS5f6ljMeqfWESfWNrkeefR2LWjWDsiwPA7gVwK1FUXwCwD8BeEdRFM2yLN82v6XLRzJeIYQQQgghhBBCiM4m68s2ESjL8iCA3wZwGMBbiqJ42jwXSQghhBBCCCGEEEIIAHrZV4myLO8FcAXGfPt+d56LI4QQQgghhBBCCCEEAMl4Z8LN4/9/6ryWYqFgTUA8nz4Ob9vm53frrSFs/O5wwgkhfNFFreONexO2OndwKPhB7KbisD/J2HEI923YEA6s0QMfsycdm9qYNDUyCKp7JkIAenqP7O3XDsseD/bls7BPX+3AvvgkG6CwqQyzdm18zL6K3JaJ+ongcyn/RWqLvtXkJ9aI/+3DszFqh6WFZweUytvzobJpli4NYfYu4n7Cv9tz7Ktn+5bXFNxPrK2O5y8zm/02BXtzLVkSwtYir9kgbyXuAPYGh/hGwnhlnz6e9oD43teRf1+jP4RXXuD7Tkbl4QYDormzdu+94Xeem+ycymY/fH8mXjRX8eND5qCIPIS6yRvGzkfcftw52KvWetqST99f0M9/Yi7VeOMbw8GWLa3DuX5kttzOoOV+0dvr+zxxk6fmMC9NqngcTnn25c5bXEV8LvKqHDD143lXpia73Erxztm8q4yrCgal7CGWek7wSC3rcR2HsdJvpi2v/VOexrzOs3+vLQT7ldUq+OyxTx8P95X9U+PmwI9RXPcpf0ImZX3sPTpF/d72iyoLOOdRxfNvjrC+zFzfKV+9KvBzB48Jfjax57y5aUo/9drIFtyZq6In4nbcLLd5Ij9eQ3K72THHHPmSNj/PT7qr6abnsi5CX/bNnHVHjrIwGJAbqRBCCCGEEEIIIURHo5d91Tl3/P/O/mJCCCGEEEIIIYQQQswt+l6zAkVR/AaA5wEoAfx4nouzMGDZJhDvb89yXY7HsjLLpk0hfMop8TmWlnE8ktoOrzsxSsJKKVYYczHttvX8qfzmzesnw/V15lN5/mKSvxFnCZ3VCHK8hJSE5b79/a0lvfYzdStBmAkrVsTHdZAMbxdVHlck4Lc5F9ZWOB97EqjUN/ncsPZTdE7naEmtTGX16pVoRTu+cs/Nw1N4sRQ1JYE6fLjWMl7q+iwLsnJfTz326KMhnOqP8yXd9WBJzhT1mqcLs5VHx3t3tk5ip0fvI+tITbexLzoXyYoZ1tMDwO23hzDfII+PT34yTsPnWM9y0klxPLYz8LREqTHK5zivTsd2AJbobt8ewldcEcLXXRclucwJ4+KL47zZwmLz5hCmtZIlikBCppjS+3mTQY8v42VSytFcNawnTUyp7lkex/nxUAFS0sYwp9ZSE2mudJdJSWi9uk/MR9l4183Mi60jeC2wWXOVsPQ3ku0C7kNazTwzNGkhHKJ2sa4yDLdlvTcUbngk/vZhgPKoIr3dvz+EH6JPAqrKeHkt5jrmOrWOKbYtJrDrj9fM8WNqPK777PNbDp6nRwrvIQjAaIOk0gfC73x/durlx3JveUwp43PtB6rA+dk/GbzrRmWwBa/i/eNJbXPbK4Xnh2P/7qHjenTOr3Ceg3i82alNAjfRjXT1y76iKE48cqyxqAB6AZwG4LcAvITOfbrd5RJCCCGEEEIIIYSYVYpCnn0dSre36k6MfZ03XYrx//8rgE+0rTRCCCGEEEIIIYQQQsyAbn/ZB4QXd9PhUQAfB/DWsiyrvCzsPFLfyrNclz8RP/dcuLAUaePG+BzvxstSMJIVpNRHnpIgJX9lScbixbHcYyWXj7UAe/aEsP1s3tMMJCQ5tf7wM3/a3mjE8op2/sPMFHnNkPP5v/3En+uE24glglanwPJskueM9gY5Y81eJ3dHN/5239vWzFTciKNmaLeMt4q0NZ0m9E+W8fCuhKlqS5XN7mw4gadkB2asEGs7XltGO8VaGgm510DrcIqc3ZhtPfJ1e0i+VLM767J08zd/s3Xh7PbAPEa506R2HvcaMCXj7VYNjdUVOrvSD1x11WT4vSaLy3i+vPTSEGYrCyBuf+obLN21favujcUKgzSlKvWmW1seb5dV27W8ncNTS6q3m2aq3NE8UWFn1mxSBZ9NvOvS7z3mOWNl/2jLeH29voVGz7owb0Xrgh0f/Dy5dWvrcgLRc2J/f7Dd4H5in+ui6/L9ZcrPc7Gy8JmS0x3sNa0NxwSp54fsLjjTvtoGT494LLa2LEntrOvNHxYvv3Yo6HlOZHsWu7ssT/+u2j9VpSk/hLmaa7K0yPFx7q7YnDVbBHCdAn77deujiegOuv1l33eQ92VfCWAAwH0A/h3A/yvL8p7ZLJgQQgghhBBCCCGEENOlq1/2lWV5wXyXQQghhBBCCCGEEGLOkWdfx1I7chQhhBBCCCGEEEIIIcTRgF7hivbAvnxA5EOEyy8P4VNPDWFrpuBh/6WBPaooPIjgB7PbWFKx5x5vy85WMdZHi62r+BxZA06FM7z9dj8em8ocf3wI8/7xQJa5W/+GeFPp2HtshkPcejFyuXfs8MvG/YENNLjybLuy6YZnSmKv4xmtpEygMtNEXoyOH0xV+PZyrVQ8q8GUj8miRXn/nuPdky3PkiUhzN43rocM4rLmNPFsw+Xpa9BYsT52Tj+pGw9R9szkekx5jXldMOWlyB4+XPcrrWcfm8/wfHTbbSG8e3ec5ic/CeGzzgph9n8DfJ+dVGNyeex80i3YvsVz58c+Nhlkn74/tHmwx+1jHxvCvKYCsYcfrbG2CMyJG/xzWVCHtvNRT0/rOSg1F/D4SHUtHi8z9UFNwfmN0low5c68iTR3rcs1EfQWkFQZUngPNZTX1KU33D3PgVP8IKmsh8nGmItZtw9fnAn3dTvXOUk4bOfUeN2icpt4PHWu7Hcv68Lpc62FU+T09dQ6k4rH3YnP8dQ91fsw1F0918eS2zl3kCYmCvaxZf89vgfrW8jx+Bk/BReVn4FS8dqN1/5MPddEMDWpLoQvu6L1hEiUjU+lnk09z9b5eh4VYi7Ql31CCCGEEEIIIYQQQnQIC+AVvhBCCCGEEEIIIYSYU+TZ17F0RasWRfF/ZjH7sizL/zSL+R8drFoVH7P865JLQpglcGee6efH5zb4GqODA+Hj1JRsgj/X96SRqTmO8+PrAEDvhpWT4fqmzM/mPf2wLTjLa3ILy9qLpOY4A3uzfHzvvX4675v65ctD2Ep3nHuKZGFVdRJefXFdcRiI2mylp0Udy3zaxfGahSUmQFxdzQbVA7dDQrqxfHmQtqeqzlOPpeQ+HI+lLVY241WxrcYZSwkz4aob6AlSpHUbT47iRf2OKmJwpB7Fy5FopVRqOYo+C/eTYcTliSRxPN+mtE0sK7322hC2HdWbj+wNMnxdlveff76fptPg+gUw8u53T4bfRb9fxpFe85o4jzPOCGGWWpv1cXT1sZNhb03Mfp5PtavTWVlaB/jzTr0njK/+fl9kwukPHYrPeTKs3HtNqWE92WM8h/VFaeremEgUYrTHl8B6sOR0xMxHTF9vnrzy4FDII5qXE+XheLUD+ybDU0pDlbeWZbgpXak3VyWsFurrQni1MwYs3J+spHOm0lu+vXb8/cxuKJ4U0fYfvj+uxlzld8r9hOtrva+ujth3gKXf4bm5mZABD/eGePYRzbPKSI0jrjsm9YjHx7wEtkP6ydM3D4/oec9CN8jzxxRSE1wO7dYlp2wKcsqQSFMbGpwM9/eH595UG3Fb2r4lRCfRFS/7AFwKoJzF/PWyTwghhBBCCCGEEGIBUhRFDcB/BvA6ABsB7AHweQD/rSzLhxJJOY/nA3gHgCcCeBjAvwD4o7Is72wR9xiM/dvubwFYBeB2AB8B8LdlWc7m+ykA3eXZV2T8lxPPxhFCCCGEEEIIIYQQC5cPAHg/gJ8CeCOALwD4AwBfG38RmKQoit8CcAWApQDeBuA9AJ4O4N+Kolhv4tYBXAXgdwF8bvx6twL4GwB/2qb7SdItX/Y94wjnLwLwFoy9vLsdwJcB/AjA3vHfVmHsze3FADYBGMVYR7lilso7yfnnPXm2L1GZJUvo++gHHohP8jfxF1wQwvzNekKey7sIDg7F4877EpylhFZ95El8Dh8OYe/zfnsdC+/0u2JFkPXYXTvdAnm7ZwK+bI6YshtrOz+9T+XFOwdbuZ+nR0zdT47sKdUQFSRnybyrbJmbiZe1lfEy0S6QVI+jiX+zGXGkCald6KooLapIhBaCNUhKScb/FtZoBFnI0IE4lif38uYme8zDKLVDKcdLKls4Ie94zru0WtuFtWtDmLVEW7fG8Xj8enODLRBLWK+7LoRf9rLW6TuRv/3b6JClu+/gE29/ewhzewH+2mnmPU8iztHszpqVcNq/x8jK3HEepU9I0aZfhGgezZ1ncjeyrDRvJSZFXr+9nYtbZTGj8hi4n9RBO5SnNKJ8yJNg4uErWsNSCw3nwX3dxnP8VZo8T/XHfct7FkxZVlQh15IhF7b04KbgsWzL7KmhU486nF9qt9Iqc8hM68Gm98qau6k1zxOp5zBvGKSe13JJPVrmJIrGUUp7nvI2yK28mVIlvxn+PbMQnjOPGrrEs68oisdj7IXbl8uyfCH9fieADwF4CYDPJNIvBvBhAHcDeFpZlgPjv38DwA0Yc2R5LSV5NYCzAfxBWZYfHv/tY0VRfAnAfymK4hNlWd7VpttrSee3KoCyLL/tnSuK4vcx9qJvCGMN8b+dqJ8B8MdFUbwKY59evgXAnWVZ/k27y8tc+8Ets5n9jHjdB3fOdxGEEEIIIYQQQgghUrwUYx9y/ZX5/WMA/gLAy5B42QfgVwCsx5jkd/KTirIsbyqK4hoALy6K4vfLspz454DfATA4nj/zVxiT9b4YwP+sciO5dJOMdwpFUTwBY59xAsBvJ170TVKW5ScA/DbGOsoHiqJ44iwWUQghhBBCCCGEEEJU52yMKTR/yD+WZTkE4Kbx80dKDwDfb3HuOgB9AE4DJr0BnwTgxvH8mR+Ol+NI15sxXfFlX4LfA7AYwLfLsvyn3ERlWf7T+NvbXwHweozpsLsb3n0X8CWVLK9giZlhuIdkc/4mqdEX3izDtZKDnN0vU6Q2tWJJZLwRbthFzKapezvwWjksx3O2cLW7H9bbsUXYBKmKTEjJXA1LStvifT6e+xl/rnYj9zN1rx7b8Jm7J91IScnjasj7dxqvqCm5T7vlR55Uar7UAp7SJbVroyf9AnxJbZXumDs3pdR1dZ4nvMztXMIa4eOO8wuxe3cIb98ewuyHsGZNnIaku7v+1/+aDG/4yEfQLVx2223x8amnhoPfpccHlu5am4tImkhh00bedMmSN27uJHM0SFOX4XO23Ck7gpy8PRmgPa4ke05MAJGclWS8qaUuV+5XpcmiNHsPtD5ht6vkc5mT5xTLkRZxpsDjwJaBj3mM0STdtOPoAJ2jcdTT24yizVSiyY+37Xgkaw6FHY/5eavRCDLl3HGdkvF60v92MNMNYW16fl5imXJqHfXcYlJ/P3h10o52dcuaetCosg0xj5Xc5/V2byntPXzler+kOiTdH0ubc20l2vlnk1jwrAewtyzLh1uc+wWApxZFUS/LcrjF+Yn0E3FbpQeA4wHcDGAFxnz9psQty/LhoigeGI87q3T7y75fxdguvd+tkPZaABeM5yGEEEIIIYQQQghxVJHyAD+KWF0UBRtOf7Qsy4/ScRNju+e2YojieC/7Jv5lqFUeQyZOKu5E/KZzrm10+8u+ibepXoOmmEizPhlLCCGEEEIIIYQQQswWe8uyTG14MAjgWOdcg+Kk0gPAkhbnbPpU3In4qWu1hY54hTsDJt60VvHd+yWThxBCCCGEEEIIIYRYWNyDsa//Wr2AOx5jLwtTH4HdQ3FbpQeCbHc/gMOt4o5ffxVay4HbSlGW5WxfY8FSFMX3AJyLsRd2TyzL8meZ6U4D8CMAdQA/LMvyvIw05XTruigKlD947ZEjzhOv++BO/N2nvjHfxRBCCCGEEEIIIdrOlnPOwdatW4v5LsdssWXLlvKHP9x65IgLnEWLihtSX/YVRfEuAP8VwNPLsvwu/d4A8ACA75Rl+bxE+gsBXIWx3Xj/uzn3LwC2AFg9sRtvURTXAjgLwEr2CSyK4mkAvgPgT8qy/Mvp32k+3f5l3xfG/18H8I2iKB53pARFUWwG8E8In2R+fpbKJoQQQgghhBBCCDErlOXYXilH+38ZfA5j+zW8yfz+Goz55/3DxA9FURxXFMXmoijYV+/bAO4F8OqiKHop7hMxtpfDFyZe9I1z+Xi+9uutNwEYwRy8R+p2z76/wdhuuqcAOAnAjUVRfAbAVzG2/fID4/FWYUzqezGAl2JsB18A2AHgr+euuEIIIYQQQgghhBAil7Isf1IUxV8DeENRFF8G8HUApwP4A4y9yPsMRX83gFcCeAaAa8bTP1IUxX/G2EvD7xZF8TEAfQDeDGAPgD81l/wYgFcBeH9RFBsB3ALg+Rh7p/SusizvnIXbjOjql33j2x6/AMDVGNtoYzGAV4z/5zHxCe+9AC46gq5bCCGEEEIIIYQQQswvbwKwE2Nf270AwF4AH8aYNHf0SInLsvxCURSHAbwDwHsxZgf3LwD+uCzLX5i4w+PS33dh7IOxVQBuB/BGzNEHY139sg8AyrK8rSiKJ2Oswn8L4WVeiq8A+P2yLHfPauGEEEIIIYQQQgghZoEJGW83UJblowDeN/5fKt6lAC51zl0B4IrM6x0A8Ibx/+acrn/ZBwBlWd4H4EVFUZwO4GUAfhnAaQBWjEfZD+BnAL4H4FNlWd4yLwUVQgghhBBCCCGEECKBXvYR4y/x/ut8l0MIIYQQQgghhBBCiCp0+268QgghhBBCCCGEEEJ0DPqyTwghhBBCCCGEEKLL6CbPvm5DX/YJIYQQQgghhBBCCNEhdMWXfUVRPJ2Py7L8TqvfqzKRnxBCCCGEEEIIIYQQ80lXvOwDcA2AcjxcItw3/14Vzk8IIYQQQgghhBBCiHmjm15SFdP8XQghhBBCCCGEEKIjkWdf59ItL/v+fpq/CyGEEEIIIYQQQghx1NEVL/vKsnzVdH4XQgghhBBCCCGEEOJoRLvxCiGEEEIIIYQQQgjRIXTFl31CCCGEEEIIIYQQIkaefZ2JvuwTQgghhBBCCCGEEKJD0Jd9GRRFcTqAVwPYDOAwgG8D+N9lWQ7Oa8GEEEIIIYQQQgghhCC6+mVfURQnAvji+OHflmX5f1rE+U0AnwWwmH6+GMAbiqJ4ZlmWu2a9oEIIIYQQQgghhBBCZNDVL/sAPBvAFgAlgH+1J4uiWA3g7wHUW6Q9FcAXAJw3mwUUQgghhBBCCCGEaDdlKc++TqXbPfueNf7/W8qy3Nni/O8DWI6xl4E/APCS8f+2jZ8/pyiKX5vtQgohhBBCCCGEEEIIkUO3f9m3CWMv8rY65188/v89AJ454dFXFMW/AbgDY/V3CYCvzXI5hRBCCCGEEEIIIYQ4It3+Zd+x4//faU8URXEcxjbkKAF8hjfjKMvyFwCuBFAAePLsF1MIIYQQQgghhBBCiCPT7V/2rR7//0Mtzp1L4StbnN8O4NcAbGh3oYQQQgghhBBCCCFmE3n2dS7d/mXfo+P/X9bi3FMpzvdanN83/v9muwslhBBCCCGEEEIIIUQVuv1l3/3j/9/c4tzE5h0/LstyoMX55eP/H2xxTgghhBBCCCGEEEKIOafbX/bdiDHfvecWRdE/8WNRFE8C8EsY8+v7tpP2pPH/3zebBRRCCCGEEEIIIYQQIpdu9+z7MoCLMfaV3j8XRfEXAJYCeBfF+byT9hyMvQy8dVZLKIQQQgghhBBCCNFm5NnXuXT7y77LAfwhgCcC2ALgi3SuBPCtsix/YBMVRfE4AKeMx7luDsophBBCCCGEEEIIIcQR6WoZb1mWowBeAOAGjMl5+b+bALzcSfoqCv/LLBZRCCGEEEIIIYQQQohsuv3LPpRleU9RFOcAuADAWQAWAfgRgKvKsiydZD0A/h7AcFmW+rJPCCGEEEIIIYQQQiwIuv5lHwCMv9S7evy/nPhvnt0SCSGEEEIIIYQQQswe8uzrXPSy7yhn9wODeNP7v4frb9mDJYsXYeNxy/FXbzkPT3zZl7D5Mf0YGn4Uy5uL8fsvejxe+YLTAACfvOJWvO3DP8Dxa5ZhaHgEr7v4dLz5pb8EAPjbL/8Uf/3Fm7GoVkPv0h589O1Px+NOXjGftyiEEEIIIYQQQgghMtHLvqOYsixx8R99E698wWn47J9fCAC46Wd7cd8Dh3HK8X248VMvBADc8YuD+K0/vgqjoyVe9WuPBQC8+MKT8ZG3nY8HHhzCYy/5HF70qyfjhLW9+J1nb8Lv/tbjAAD/+J2deMsHv48rP/j8+blBIYQQQgghhBBCCDEtunqDDktRFL9cFMVfFkXxL0VR/LgoituLovhPLeKdVRTFk4qiOGk+yjnB1Tfcg8U9tcmXcwBw5mmrccLa3ijeycf34f1vOhcf+vy2KXmsOqaBTRuOwb17BwEAfb31yXMPHR5BURSzVHohhBBCCCGEEEII0W70ZR+AoihOBPApAOfzzwBKAMe0SPI+AL8CYBeAx8x6AR223b4fT968Oivukx67GtvvOjDl95/vHsDQ8KP4pU0rJ3/76y/cjPdf/mMMPzKKf/3ri9pVXCGEEEIIIYQQQiwg5NnXmXT9l31FUTwWwA0Ye9FX0H8pPjQeZ0NRFL8yuyVsD3Zf4c996w48/iVfwMm/dTn+84vPQGNJeO/7+5c8Hrd/+aX4yzc8Be/6xL/PcUmFEEIIIYQQQgghRFW6+mVfURSLAHwVwCqMvbz7MoBfBtCbSAYA3wAwMB5+zmyV70g8/uQVuGH73qy4N/5sL07f2D95/OILT8bNn70E3/27X8dbP3Qddj8wOCXNS551Cr767Z1tKq0QQgghhBBCCCGEmG26+mUfgFcAeCzG5LrvLcvyRWVZfr8sy6lvvoiyLB8G8AOMvSA8Z/aL2Zpf3bIeDz/yKD721Vsmf7v+p/fjrt2Hong77zmEP/zQdXjjJWdMyeO8J6zFy597Kj742TE/v9t+/uDkuX/6t5/j1BNaqZiFEEIIIYQQQgghxEKk2z37Lh7//90A3j7NtNsAPBPAaW0t0TQoigJf+ctn400f+D7+4v/ehEa9BxuP68VfvfmpuP0XB3HWy7+EoeFHsby5GG+85IzJnXgtf/yKJ+JJr/gy/sulZ+IjX7gZ37r+F1jcU8OK5XX8/Z9eMLc3JYQQQgghhBBCiFmnLOXZ16l0+8u+J2Hsq75/Ksvy0WmmfWD8/yuTsWaZ9WuW4fP/48Ipvx/+zpRNhCe59KLH4tKLwou/9WuWYfc3Xg4A+OBbn9r+QgohhBBCCCGEEEKIOaHbZbwTW9n+vELa0fH/d/sLUyGEEEIIIYQQQgixQOj2l30T3nyNCmmPG///vjaVRQghhBBCCCGEEEKIGdHtX6XdC+AYAI+rkPbpGJMA39nWEgkhhBBCCCGEEELMMvLs61y6/cu+72BsR93nFkWxPDdRURTPBPCE8cNvz0bBhBBCCCGEEEIIIYSYLt3+su9z4//vBfDBnARFUWwE8InxwxLAp9pfLCGEEEIIIYQQQgghpk9Xv+wry/IaAN/C2Nd9ryyK4vNFUZzcKm5RFMcURfFGANcD2ICxF32fK8vylrkqrxBCCCGEEEIIIYQQKbrdsw8A/gOAHwJ4DIAXAnhhURTsw/fqoihegTFfv0UYezEIALcB+N25LKgQQgghhBBCCCFEO5BnX+fS1V/2AUBZlnsA/DKAazH2Iq8AcBLGvtwDgMdizJ+vB+FF3/cAPL0sy0NzW1ohhBBCCCGEEEIIIXy6/mUfAJRleQ+AXwHwYgDXAHgE4cXfxH+PAvgBgJcBeFpZlvfPS2GFEEIIIYQQQgghhHCQjHecsixLAF8A8IWiKBoANgNYhbE6egDAbWVZPmjTFUVxYlmWP5/TwgohhBBCCCGEEEII0QK97GtBWZZDAG5KxSmKYj2AdwD4jwAac1AsIYQQQgghhBBCiLYgz77ORS/7pklRFGsBvB3AawEsmefiCCGEEEIIIYQQQggxSde+7CuKYhGAUwCsBPAQgFvLshxOxF8F4E8AvB7AUoTNOkovjRBCCCGEEEIIIYQQc0nXvewbl9/+dwAvBLCcTg0VRfFZAH8yvkPvRPweAG/B2Nd8fQgv+QDgOgDvnPVCCyGEEEIIIYQQQrQZyXg7k6562VcUxeMAfAvAWsQv7YCxr/UuBfCUoiieUZblnqIoNgL4PIAnT2Qx/v/vAXhnWZZXzXqhhRBCCCGEEEIIIYTIpDbfBZgrxmW7nwGwLhUNwOkAPjj+BeC3Mfairxj/71oAzyrL8ny96BNCCCGEEEIIIYQQC41u+rLvIgC/hDGPvUcBfBDAVwDcj7Ev/V4E4A0YewH6IgBrAJwwnvYnAN5aluW35rjMQgghhBBCCCGEEEJk000v+36Lwq8oy/KzdLwDwL8VRfHvAP4ewCIAv4qxF4MfwdiLPinZU2zbFh/39oYwmwCsXh3C/f1udoND4aPTQ4fic4sXt04zNNQ6bIvAYY7XkxgNjYZ/jm+V4/HtWR+E+shg68wOHIiPuVCcOWdoC75zZwifcUbr6+Ry7bXx8d13hzA3BLerPeYK4kqx5eb78xojZSjhNfKR0k2wd298zOUeGAhh2xk2bDhy3hbqeKONZqufp1yqhtGWWQ2PxB9oc9VxsRn7uzcmUtXG1/GGOwAsoT3LH3wwhI85Jo63dk3r+2s3P98V6ovLmpiOonaw89FDD4WwV3e59cjXsd1sibP3+9Kl8XFfg/aZ8iZFO8/cdlsI8/zxb/8Wx7viihC+8MIQPvfcEN61K07z2bDUXrZnTwg/+ii6hV2LFkXHG17/+nDAdbdxYwjbOZUH2bogUBjtqUfRuGkfeSSEH344hO30un6dM/YyOy7PQTaJndMm8KZXe8xhm5c33jhNal3nOcg+V3hLFZe7yhJm4XndzuVMrpcSX7fekzmncuY8flONxBXEDcFpTIF4rfPWsynl4Q6derDj8tH4mFIeXufpHoYbfVG0/ftDuMraxM+wTLNRcZ3j+6N74uvY6uGqS1UjT0+8ntiqY7ifnbgh757u2xPKyuNtZb+fft8B//6Y3KWOq9Fbo+3ay8fe877lcZvz6uSOneH+uNsm+4k38aUmSK4I+7CTc1Opm81l9+4QrvIHV6pD0r0O94R5xs6bPPy99j9t09w8iy40ylKefZ1K18h4AZw1/v8fmRd9k5Rl+SkAP0bw5vt6WZb/WS/6hBBCCCGEEEIIIcTRQDe97DseY1/qXXOEeP9K4ffPWmmEEEIIIYQQQgghhGgz3STjnfhGf3cyFnAfhbe5sUSMlRx5n2izpMO8a2ZZBye38hpPKsO/26/Zc+RMtsjeZ/2pz5z5OinJQY8nZ7Gf13N9GbmWd53mpk3+haeLzStH22SPc7VNfM6TKedqozKvw32wZu5hGKG+exLb+iTlSA77hkL7D+z14/FtLFrUWgJjyVV7M1U+3fcUVCkZX2pMrF0z/TJUwSuDValxfXnzB+BLQXK7uhe2sl1ucy7PlOt4Gab0h8waaojcjkZy/4Nf+1oUjf/F7LI1c9TIC4wNb35z/ANLd3mO9fRi9hxRGxk20eoUDr9zU+ZOo1MGizNH9ySsCLivelnbOLlWAh65Yy83TZW8s2WqNPHUE1I5ruMUtYGD4SAle2NYXnfLLSG8YkUI24Zl+wp+LrD3QJXCWTQatPbauqoyb3kdxdoKsE0BPbfWWUIPYO2afv9aGTSH9oWDqB3a+2dX6vHIez62482T7nKz2jSppcGDr5M73lLl5jJ4z+u2O6ZUrx4567XNuwqxrZBvz1LzHr7sQwyPa+731nqG9cOen8m6xENwLqyhTf1dMMNn/lxlMyP5quhkuull3yKMfdl3pCE9eb4syz2piEIIIYQQQgghhBBHI/Ls61y6ScYrhBBCCCGEEEIIIURH001f9onZxMp4Gecz7Ck71Dq9MbUzFkuY6vTRZqPfl7zkygo9+VEK3mCSd+20G0/y7meLF4d37g0r1aE6OkS7w3F+9sv9Y44JeaytuvPbOKPr1kfHNW+L4YR0J5LKslwnd9vGFM7n/lYizniS057ErpYpTqywGS8riw4fDmG7s6qnZkjJyj3pTa4CquqGx62uaUntCHpaG9XnKbj9uay5dV9lV8zUrp0s12VZklXTxBK4EJ6ya5+ngUxJRJncbYmvu24yuJuku39rkryFD17yEj/vToZlu0As3c2VR3md0HTIZi/Fo77Q7E/4XCBzp8WMtdyOj5xNl20cLz87t3hyrdylhLszz8P2HF+H42VLGVNrnSfJM9R6WrfrFHjhypXxcpoHHgjh5ctDOLWDJ+9qC2M3krm2uKTsQqLrjLSOl6jT1Ba17nNLFbJ183l5cNm8vgnEt8TPo9aKwrlMNN7asXl6FXVmCi5f7lzg7e6d+yxgNlaPqNK/vTLYvPi4yf079+GNsR3Fox2N5OWXqz+vIOMdcp7xAL+K9EWb6GS68WXfKUVRPD11fiJQFMXTEHbmdSnL8jvtKJgQQgghhBBCCCGEEDOhG1/2/e74fynK8f9fk5Ffie6sRyGEEEIIIYQQQhylyLOvc+nGl1RH/FIP4WVfTlwhhBBCCCGEEEIIIRYE3fSy7+cIL/FEuzG+Cp6nCGO9NOq9rc/Z9HypuuPnkPJYaTRmti9Nyu+Ey8reHvYe+FzKV42PrY9Iq7wAYMUKv3zTpbb3/vgH9rjhm7J+PmR4VPN8dlKmJJ4/la0gp3PVEj4fXvvXe+I+09NTo/ARLzkt2OIyZb/kWZdwm7PnWyqN5/lnqeLZl6ofPmaPq3bbweTiXTc19lIeiYxnkZfy7PPisR8pADQbjiel7UA5pjSpcZTyENu+PYQ/8YnJIPv02c/m+37t18LBhgoGl53Anj3x8caNreOlBmaqQ3lU8XPKzY/KkJpbvKLm2sl5HlspUnayTO4YZVJzWLa3m3fhRLuOkqdsrTfR/lUmVvaN5L7Jv9t8uQGjBWD6l7dEfnm5ZrNePPtswnMQt4PxneZHnZUmixxG+1dOhrmY9jkjm0zv65nC+aWedVPedTl5R3WSORfkkvLYyxlumY+ZbYGvlZpb3DKkJjjPD9Z6rPNxKr+ZwnNG7nVyK5/iNRphrkzN67k2qEIc7XTNy76yLDfOdxmEEEIIIYQQQgghhJhNuuZlnxBCCCGEEEIIIYQYQ559nYte9on2sHdvdFijb6XrfII+4x7p8eW0POGkZY6cR7hSamf5Rx/NyztXpujJAviTfIsnta2PDPqJGq0L0bfCDONdu0LYk4vlsm1bfMztzN/DW7kAS2dytY25moocElrSuhePdTsAmlxW6ihTpOOeVCIBJ+E+aPtjjnIvV1bKsHQ8lSZ34U81kSeBzZXxtRunWZPlsVJpxrMcsApYxpM98nWWLo16qjsH9fY2o3i1IWcOSRVu9+4Q5jF+5ZVRtIH3vGcy/F76/TK+iVe9Ks6bK+i661qXrdO54Yb42PNk4Hkz1SE5nhl8g0NkP9DomwxzM/T0xH2r6clPU1KrCvNyJFOna1prBW/eyV0ycuNkKmizGR5pbf0AU99xIcK51Hw7REOWn3tsmkYjzAf1XFkxy/hY5uqt42MXosKFztXTMPMRlSH1zOelST6k8Tme03jsWBmvswgNjsRtNFNZn3mcmKSKJBiIZdxeP+Fn2xRVXADagfdc3peY6rgdcu+Psc/hOerRlBUBT91V5qPUtao4NSRviMcBj3G7tniFaDee9N8yw8k4Na/z7VWRogtxNDIz8zIhhBBCCCGEEEIIIcSCQS/7hBBCCCGEEEIIIYToECTjFe3ByHhdzRl9St60O0JlJAdiCaIngbQqNc6D06dkAfyJ9/Llfnk85dXK/iBFGTXv1WsH9rW+aEr7x8SarPgcS2/bLePdujWE+cbPPDOO512X01i5wEzlAyn9aY7WkuXPtjz794ewleBVkPHWdv18MtykTtO0kiNv92OWySc0Jyzpq7LLru2O3NW4r3PYSoQ9xWJi+M8qnpLENiPXQ7MRxvK+A/6/kXnNlZKE8TzDdWWblcud6uor+ykhNyCHrcaMd9m97bbJ4EGS7QLA+yn8h3zizW8O4c2b47xZCvytb6ErseOa10uue5ZQ2g7pDLjh2JgAhw6FMO+myc1v+9bJG6cWGUBSTsWSVabd0j8eH7m71fO6bu+V56cqMt6UBQKP89QO3l4dpexHPOwzDOedKxk9OBDaso/7XcOZS2B2B867TDV1Xm6HcjSQvAYC8XMnn+NxA+Q/inlw+nZIxL1HmFzbjZStTM4123EPPB9VGW9VnmFSeGPUlo3noHarXKvUq/17YoIpO1d7VhApGW/qj6+Z4k24qYm9ipdMIgm3JY+JKhLxTkSefZ2JvuwTQgghhBBCCCGEEKJD0Ms+IYQQQgghhBBCCCE6BMl4RXuwMl7G0x9YSF7R1xtkc4cPx++kvU+vq6g4UzKF3B24eAfN6Ot42uFyyuf1Xn1Z7Yi3S5anFwLau8WUzYu1lzfdFMJr18bxPG0Clzul48yVFXiNaeN5W+N5MkcLd7p26DhmusNwShcalS+xC2SF4lTZMJmLw+NjNjd9S+GVwe6EHe26PBDqu0E7nAK+rC9XfsRUUaxMqXtPrstzjpWs8y65H//4ZPD9cSy8hcK9b3tbOLjwQjphJEIz3dayE7CdneXMW7aEsKcDB1wZb93U9+LFYcznro8uiYhTdiWfoJH5b8iUt90dmLNOTeuedUdul0tJ9/jYk9qndnrkHWV7ErvQelWcaiOeW9q9o+So2U13gprpZ1zHzUaoCFtuvnfvscXWT7Qbb0p/ztC5lDyXv3FI7fQ6Uzlbu6c9nhq4zT2pPpD/eMTwo07urqa58LNyrqyYLXRsGm/t5Xu1cXIk0FP7cOvrVJFGW3K7t1eeeA6L59Fab55sdtTZLXzK3y0zxbvBdl+HsG3J49xbH4XoNPSyb4Hz5P/4pfkugsvS5WvmuwhCCCGEEEIIIYSoQFnqpWenopd9C5wt737hfBfB5a5P75zvIgghhBBCCCGEEEIIQp59QgghhBBCCCGEEEJ0CPqyT7QH69PEBiM7d4YwG2hYgxH2cCO/uzXr1kfR+DNjz7PDUsWviP1FPN8xAFi7hvxl2Atr+/YQXrfOLxDft/W04It5Rh02TTvNYp7whPi4v791ee67Ly8/TmPLPVMTN75vWwfcH7141tyH2yzVAarg1OPwSPzvL3W+Lrd5yqCKytfoX9kyuSXXu4Zv3fOqTPndeF5cANCcIw8/16fL+sZwHZPfXXNDHK+xJnhcsX8SZ5frB5Xr85f06eKK5X7vzU0A8L/+12TwMkp/GRsmAcAf/3EIn3deCG/eHMIp/53cCbvTYF8+IG6jK64I4fPPD2GeI4C40fmcWVsajTDmvaUgW6qTaMtR59+KU7aq0VzQCD5RtpyHD/v5ecXj6uFpMzVWkt6XDimfPz5XT+RX5XlkFm2t3KUlvn7c3l65bTlzvAsjjz7AN2O0F3XW5ZGEF99UD7/WzLS+291e3I89r7iUpyVXVWoazh0TVbwiPT/A2YQ9NoGp/WGCdvh3V5FAttO+eeojdBhvPeTFOaWciTltPuC1Jdc3kNOk5tcqHqlCHO0sgGEthBBCCCGEEEIIIeYSefZ1LpLxCiGEEEIIIYQQQgjRIejLvg5k2xXbcPMVN6O2qIbHnPMYnPPKc3DHtXfghstvwP5d+3Hxey/GmlPjnXQH9gzg87//eTz5pU/GEy9+4vQvmpLxcpj1A7feGqc599wQ3rFjMlgz/9RQp2stXx4kSw891PoygK8EYbmQ/dzfkzNYdVUkj6Ny46abQphlbkAs3WVsPWbIeId7mmDqmza1zrsKGzbEx1yGX/wihEl2DQD43OdC+IILQjj1fb1X4SmNqCdZtFokLl+uzJk1ESyVm9IBpg+3WdSspmiRjJfLnVuPmfB48S6TojY0OBmuJ2TljZSUZI7wuhYGTOWTdHdK/yZq1B96e4+dDKdU5Z70xpMLpZiiKt9JZf3JT0L4hhsmg4Mf+ECU5H9S+DIu0KtfHed96qkhzHNYSvvF42XjRnQlds445ZQQ5r51440hbK0feJ1hPZzpXM3Nof2GZjreMueWXNmUF7bTtXfO5s3rN0voUy4XOWWzx7mSxah6KAMrRYslvq3/zX0u5XQ517JzGK8ZLM+d2mXCOV6io0eb3rgOXOlewuZkcCTIwlN9huF2tW28EOSMDPdv73fbRjNdY1OuK56UuGp+M03jyXMtOTLO3EeqKlJmiyebt/fK1+JngyqWABa3r6c8C6qQ1hw7lyVJr5X7E1yPvC7w34W2CO2oOyGOBvRlX4fx6COP4obLb8BvvOc38MIPvRA/u/pneHjgYax4zAo86+3PwnGPP65luu99/Hs44UknzHFphRBCCCGEEEIIIUQ7WWD/diVmyuEDh9Hsb6KxvIF9P98HAKg361jSu8RNs/O6nehb14eeJeoOQgghhBBCCCFENyDPvs5Fb3c6jHK0BArgxi/ciK3/sBWbn70ZRa1w4z8y9Ahu+tJNeMGfvQA/+sqPql/YaslY4uVJtxLSuKQGLtoZM8xMJ28M17S7vvFn7/yJ94MPhnBqI9zsjWJZesVyWiut5Qy9HW5NvMEhvqcgWTm0P06yfHmQbjUTn71nYWW83k60ti35m3re+ZPvjxvCnvO0jawDAuK+wWWwefMWfNwZvB13gajfDjf6Wl4SAPp6p1/HrBBNMdQIbd5PO+smP8mm1Tp34fYkcLmSvEHqc0MH4jQ9JFk+QPdt8z55Y15ZZwp3Ie4my5f3RfGaG50dmO0YoP7J955StnrD31OO23iRnIV3Owfi8fZv/zYZHKYdd1m2CwB/xAfvfGcIW/sBnsd4jm+DtL2jsY3JHY93Mud5k2W7APDVr4Yw17edE4mVNH/3bAoS8+wHejvZUUdmqWVPTx0eLPf0pHb2FnJlvKnHBO/3Kmo0T15vl4zayPCRC2QyZNuD1A6+jLcTMlDtjzXv+SaVl7dzeK4EkuMld+PlxdJ7/mhxXY8cOSQwc9Ui12k7/oD2ypNbTo6X62RSpTwpuE7qPXnPTXG8uN87zjauVQ+QN0+kNn3O+X06cPlSdepdKyVzTsleI3K0ze2W8SbyrifGeQ4paTv/KeBJ44XoNCTj7VDOuuQsvPxTL8fA/QO45Z9vcePd8Jkb8ITfeAIWL61gwCGEEEIIIYQQQgghFhT6sq+DaSxv4JSnn4L7tt/nxrn/Z/fjju/dgR988gcYfmgYRVFg0eJFOOOiM+awpEIIIYQQQgghhBCiHehlXwcysHcAB35xAP3H9+P+n92P/uP73bi//he/Phne+pmtWLx0sV70CSGEEEIIIYQQHY48+zoXvezrQGqLavjmn38TxaICxxx3DJ7yyqfgzu/fie999Hs4/OBhXPlnV2LVyavw/Hc+v30XtZ5Nnr9DrllIyqeNPaocc58TjU9gf39QrLNHxgMPtL6kPWZ7qileI3xPHPEMemlqfQsp8+ERX00/RH5FnncR/w7EPhQnGsu96TI4EnsxNfn+Um35mMeEMBfwiitC+Pzz4zSeGRI3hPUG5HP33hvCi40snY85DXuDmD7MPn1sG2QXw74K9iKezZbtg56tSR+XO9EOuT4/S2j/Hs4uYU8XwWlsf+R74Ptmzydg7jz7uC35fh56KI63bFno+ytWr3fzqyP4dHG3ZW8oHjZAXCee9V1zaF+caLdjUHbTTXG8K6+cDP78E5+YDP8fivJf4hSov/nN4YB9+qxnp2cwmPL28QwKuwl73ytWhDD7IPJAtAZ37Pt33XUhbOdE7hvUln28Hk0xgDLl8+I5E0DK78rzT/LmBQufs5fPtIBySXnNefFSv9c9A63czDNvIuW/U6/grcXPNJ4fYOoW+JnK+mCl1gbvmjWuu8QazXU8cqB13rY6+DEjcxmtBOdtfeOq4D0Scd52uHrdKdWWnIcXtvnlEqVpsx+c55FrHwW9eDOdC450zsPzjctto3ZY6bnMauaEuVlvDkp5EPI48Cw/7aVS65YQnYRe9nUgzRVNXPKRS6LfTjrvJJx03knJdFt+Z8tsFksIIYQQQgghhBBCzDLaoEMIIYQQQgghhBBCiA5BX/Z1GMvXLp/yVd+ckCvdYk3OsmV5eVt9xa5drc8ltmtn2WPf4lDWxetWToatrJA/r+fbOzgQvyOPJJWsyaM6GEYsh8X0lTtxcudT9OnkkcNUaUu49ybLyixnn936d27/a6+Nz7HGx9O9WMka9y1usDVr4nhcKZyGZYqm//Dn/578qCpcr9zvWGIEJBRe60J/6mnEfYtlpXydlKqMJay5ciauEw4fOhTHYxlNu+uxCnacT2Dvm+vIk9oAQG9vqH/unqtWtc4LiLvg+tWhvbBjRwjfeKN/UW4wlsYDGPja1ybDLN39jxSuv/71cX5PfnIIs+WAlc3xGMnVQHnSxm7C3jfPnV798DoHxG1BnXj0U5+KotW4I7PlxZ49IXzccXHeF1wwpcgAkm3JUqvUesRjns+lpFaMJ7tvdS0vHuMpRHNJdfW6t7DbiN7EXMXmJDXecmXztC6zhLbOMtme+LnHqswnSD2PeLedkuelNItsgcLzOlcJK+OnXHeELRjMM9oMyVVx55LzXGev41031c1y3RmqPGdG7Zz57B7fhN9G3hxk79WzBeDfbb159hwp25Vc+LpcDXZ88bW4ryfbwZuDUnNGzu9VydFQTz2cpJ4oDtcXrznWIsKzHJCMV559nYy+7BNCCCGEEEIIIYQQokPQyz4hhBBCCCGEEEIIIToEyXgXOF9/+9fnuwguq/uCZNXKVHtI2obesKtpjWWudotKhncOtN8VW53gBN533PaYwit5J8Q1cXkGh1rLlGzWvevCTp0s42vQbq5DRqbEUgBvo1h7Xe/3dsgrcuHrDveENq7btmR5LMvRWCJoC8o7THI8DnPFWRwJ9ZRjjke6CduH5+Nz9ty2TJWNpQ7NBslmKJGVLLHay1Na2Ovm1s9Md8ycTTxJr4XvIVVuPseSbLup7crGYDjYTtLd7dtD+NZb/QvxRHPNNdGp91L4Dync+6pXhQMr2+QdeFliasdRzvaVKUuHbtWIWJmaNxBSO486sqealeQy3E9Y0utpMA2DaEbHQwdax0vtputZFuSuYez2YW0OvDQplaunCs3dedyTJQPACD/30Hpih1GdLsZy6FrulqkpqkysTqV4u2IC8VLM3Sml1M/eRdRpmNEe3w6Fn6M4PKXue1hKyp0wznumjgNsp9HfP3OJcF9va6lzoxHayO48y+Mt9ZzJ8HjLfTZNySuZqD/x3wUJGTc/l6VsQLyxnCvp5+nWjmtPZZya1nPxnr1ydz9OP5O1tnux9Z0a516aSuTYgCBuZ45Wz7RdyK3H1HoiRCexAP7cEinu3nb3fBfB5XWvfe18F0EIIYQQQgghhBAV6dZ/j+10JOMVQgghhBBCCCGEEKJD0Jd9oi3s3++f4x2PenuDLKh3dSwRqvNn4vy5d2qrvttvD+GbbgrhU06J4/HulSxt8nahBNA89dRwQN/a9/cfG8XjT/7583Mudu4GlSk5kycfstIG3m3q5I2YEbbq+T643MuWxW25ZvPjJsORNIk1CzZzllRv2RLCJ50UwlY3wYXgikhJ4CiPfQfCv3fYeuTieXKYqnjS1lTeXp+xMoVmP0Xkvk4XqpuOtpLqZOU6f3fIUZLe/P/svXucXVV99//ZJ4eTk5PJMBkmEiBAgABRQUHCzWKVijfUFqo8VCtenlrx6aOtl1Zrf1SxRautWkWfXrxU+6DYVqw3itRLoY+IIKGkNZQAAQIECCSEIZkkwzCZ8/sjyazP+s75rqzZcyZncubzfr14sfbZa6+99rrtnT378/myOptlfDZyrRclr1My3qlGYLNBxD2FeO/Qw2HD6hxXrw5pXrdIyj523XXRIZUFC8bT68nK4IumfpdSvkiu+6pXhfRJJ0XHjC09ejydkkqNDoZ0X1+Y85VhkiWbARnbIQQpkSdL60Ym2FwMhHtIJIcj6d+EtY7XNI6sa6P2UpTz7bfcMp5u8OJy1lnxMW94Q8t62+DnnlzXi3AJ+Gtd6v7Il5qSiHpyX54CqeiwKSlxbnRPxps7tit7esKc4PM2Uouip9dLXWBuuGEqb6we5nXqunkd9frYbnvrLa8RlgYtqjzsgViGx/do7v8Jclzn4WlCDbgzU5YzHjR5Kt5NYjI4k4wjJvf3JcYPXU/f0t5oFzcJW39EEnOKXAy0kFRnwFJQjqSckgFzN1jbDV7SWFaeej7ypLupCK5ewGz7mJkbTJvxnvFtHQ46KKS9dcuuP7yP22fevHi0878ZGF57D13cOs9kePSJMGb4n2Q2yjLPc67D88/wy15Lbijev8OAeEnk8SRJr+hm9GWfEEIIIYQQQgghhBBdgr7sE0IIIYQQQgghhJhlNJvy7OtW9GWfEEIIIYQQQgghhBBdgr7sm+GcxZ5yM4y5ZGSR8unK9Zo7YklIP7o1+MbM6zsiytd7JpkusJ+b9elj2NuP/bJuvTWkrWEaby9fPp6sG8sV9tbg62YfDPadAGIPkKn+JWXu3Hh7Or0nPL8jC/dt72Iy++ABsNiYgHCjsH8ie9ykDFhSRi0OnhcLEHt7tPuvXez1wmWnLJY860P22AGQNixpdVJbeMIEpkInPoL6aO7c4Llim96b/53C82yxc9SD/aCAuC/6Rx8LG2vWhPQdd8QH/fSnLfeNsH+fYTX59H2Xfn+rzfgbvxHS7H3JPn3Gn9R6Ye3BtonnFcRerLaPqdoRvZl2Yt2AbRNux9gPNMyjviXxfa/C6yBPKnvfonW1sYRuqrwWnJEwPyKsb5Tn2Zfy4vSWFr5vWe8ru70Ha3cW+8aG9MKFIZ3yoMzdl3tf9/bZ5ZbbMfYQC/1fNZ5onK9WpTW/DTen7dXg4TZMdctdr70+Bvw1I9ez1fpdTrY+E3BMkq0HXWWq7TqdprQpz0aPhD9hI3ogpR3UJrZ9Yp+/vCqwNyPPgZQfXMqy2/O7jv3p4mO8Z6f+Ps4Tt5D3nJga67nwYzC3ie1Wvo4cH0y7j+sa++WlvUvbyZNPhnTK59PWb7KkLDK9e0uuvakQ+yN62TfDuYH/sTbDuHjduk5XQQghhBBCCCGEEEIQetknhBBCCCGEEEIIMcuQZ1/3opd9s4jL/uM/8I/33INqpYLP/tIv4eOrVuF7L395W8q2C4Qne0kdw/Bn3FYq09vnyDVZzsTaKCDWkm3YENK5ElH6xttKf3ibT5P7KXrqs/np/KQ+h1yZQkruh3qmdoe1F55OoeydiOU6JGIpU9y+7JMpn6uMPiOltaI5wbIelvFb+QlPxX0lF8klJbXzxoa9Pp7//QOkBeH1w2qJelrn205Z1przXk3pX6X0EqsrZl0Qaxu574yQK1fC7A2NClhKHpedWpZnK9x23CbeXAGAmmdNYPVH3P+sWWIpOUvME9j+8pbiXBkvw2POPiN4kqrUem3VzHtIjbnUrcV7huG1LuWGkKu09MbCTFgfGb49A35f5D7PsIw79xjbx7yPl1h/bYLf6UamOuV/9bbjuYVJTbLJ1iH3ZkdtkntICr6EXPVx7txpJ7lWBHZJLmNTUkbaXoYyQ2ZfKdFT+9o5DYWYrShAxyzhpkcfxTfvuw+3veY1eP9zn4vX/vCHeNURR+z9QCGEEEIIIYQQQgix3zDD/nYopoufPfooXnnEEahWKnj54YfjsX/7N7zqyCM7XS0hhBBCCCGEEEJ0AMl4uxe97JtFzN2tw5g7Zw4Omz8fh7HEa4rYz9d5myMwsXQnFTCVPx+3QVuxdn1Ic2Tda68Naau1ve668eQmkvEOPPhg60oDccRC0hX1nhBrjIZI6sDX50XzA/xovPazeZYzeVFNbdk2MvJUsNEXPUlUSs7UszRE6qw50mgAwKJFIc3yM06bQbNlKHyc3NsTTspR33ZVsHVd+frskPEiT1o5Uxm8CM65RHKxnvhae7ldue1Sg8YbkLYRSPbuRdxOtWMZJVK78eqTkh+zfMyuW1FT8sYTT4T0WiPK/cUvQvqmm8aTLK6k1QwA8CpKn0DpMRPu1v1cnypuu5UjHubKiqLpS9ddr8dyOK5eO9em/Qk73bxxx/ms8nu0Gnq2wRltuEoea9///njyAb7vGRlvA62x/eVFr+XfbXR4D3bTsOPMk+TaRxY+jtuRx6ZXlqUdkTVzj/cCx3MUYVufyuhI2BhMPFx4YdsTNKpUdr119NuUpDslX+T570ltU33E7ZO4HUVS694eku6mHk4pXekx7cjzKrMd3eNTD7u5eDfP1CLt3aRT0DEckdiOimpPLyZLmWZMNR3v4+ey1P06ai5uk2iHtyKmn2HKRCjmKvCQsd3l/Tsh93k0V57bbvU5w+2TGo786JT7zMBtx2sV//sT8K9dL7lENyMZ7yxhxaJF+Onup+vv3n8/Ht6+HRs9Mz0hhBBCCCGEEEIIsV+il32zhBcccgievXAhzv3+9/FX//3f+L8vehF+/Yc/xHb9OUMIIYQQQgghhBCia5CMdxbxyTPPjLZ/89hjO1QTIYQQQgghhBBCdBJ59nUvetk3wznrmms6XQWXuWSYYm1RPA8vXkhSXhzszWKt3fqXLGld+AnkZLVunVv2Zt5gH6Pbbosz8omXL295DADMmRuiGrN/Bl+r9buJPNcyQ9Dn/N5ubL3Zk5DrYD13+PrYS+NQ7js7aByvobF68E+xh8TedxU3H8N9lPIu4fHpeRWWheuQqo9Xv5T1YZZPjzU/8swL2dPSlF2jyh100KHj6VSb5toGTSe5fpmeLZL1HWLfqMhD9M47Q5o8QwFgOMOn7+XxabAMramcfXb8A6+DlN5e7x9Pb1gXH8Ldz55rqXnNLhDs0zdEZQHAtm0hPVsfJHPvj6l1i9tu8eLgl9XP/Q3EJmk0NpZ8/evj6UrmH/rsfPX8BTltPft4DPH4Sa1hnk3rIYf4+SKfNrrp9E9YIKk+A+HeYsemt4yyh1TuMbYK3v3EtRBDPMdqXGDqPprJCDmyeR6bZT1Wvf5Plcftw+lUe2fjPXhOp4nsdC58KZM1b0DmNmSiTSoYc/d55Po8Mrk+vzzOeHrURrfHGYeoQMesthHd1AEMhor386Jj2q2vr7XfZQquKw/N3GnNz+TWmcl7Xk/5k3pexe3Ae8xM+Y7nTh2v3ql7S87vQnQDetk3w7nB/mN7BnHx297W6SoIIYQQQgghhBBCCEKefUIIIYQQQgghhBBCOBRF8caiKG4rimJHURSPFkXxxaIoFmUeWy+K4reLovhOURTrdpdxb1EUXy+K4pkt8i8tiqLp/Le61Tks+rJPtIWUzNGTbqQ+yedPr/v7jFxg0NES8XfvRmrLNCjNuRpr1sT5+FtwlvGaih/8oiBN3batQunWVZsMXrumZMDtVIywDGAyZXvqkc11ljnEkof+ZUGoOFYN+7gr7flZFpBqY08+1ik8eURqTnj7JshpvEnGjWf1HqybeOSRkL7nHr9CpHs4eMXi8fTOnfHfkLx+6ZSkk2XTqbHATTd/fkhbuUdvlWRCa9eGNEl1RykNAP9B6R9Q+jxKn2QrdMYZIc2Nyr8D8VpFc2qQFEu2TzyJj53/3Hae1MauWWWkW92GvW7e9tIpyXtUntUpLaLnzaVLx5ORdNdKfx3smpNjPzBvXnwMzzFvabLSX55vvFbafNH8zW08oich452q5QCXx20FxG3ktc++JOe8qeeM1FruzXk+Z2o9Ymyf8NDnY8boO4YJXzTk3B9Tlcgl92E3lzIPLl4n5XZmasHmfZl1q1XDs0pPT963Jp7MNbWPz4NBM2i8h1Puo4T0P6LNEza3i7wq2Ps1024rmjLkDkfvmBR87Sn5sV2L9zAT/l0wE5itViuToSiKdwP4FIB/B/B7AJYAeA+AM4uiOK3ZbG5LHQ9gKYDPA7gBwJcAPAzgaAD/C8CvF0Xx8mazeV2L474F4J/Nb4M5ddbLPiGEEEIIIYQQQgghDEVRDAC4DMAtAF7cbDZ37v79FgDfxa6Xfx/dSzEbAZzcbDZXmbK/BuA2AH8BYEWL4/6r2Wx+tUy9JeMVQgghhBBCCCGEEGIi52GXQPCze170AUCz2fwegHsBvGFvBTSbzcfti77dv/83gNUAXOnFbglww9vvoS/7RFtIyT2tYjAHT5IBABX+xH5xkA+yZC2KsgUAhx8+nuwnXei9lOVQxDQ2bgwbfBG2bJIzzJ8f5mBKxZEbZdfKllox0z8/95QSViHy9EFBusuf4XsyN1t26vNzHjL8GT+fx7ajV9d2fObu9VmqDlzvSGViI+tyIbyPf99mvjLnsX7//SFtpO1RhWhO8ZwYGHhGdEinI0pbrMzQgy91wYKQtoH6sIHWA14baJ25yxzC0t2XUno5Z7Ly3BNPDGke+CedFOejdfCBDWFO8VCwQyY34qF3DKdZ3gvky3W6GXvdfDvJVZ96+3qWxfOtl6S7WEF/HOYI9c9+tn8iwtY7JRPbw8Qosq338RrG8wsAFi5sne/gRdbSY7B1mr0fEpK8ClWoZhbfnp7Wz9OpPvLGup0TjBfhOkW1J8zrShvu/978LROt3JJrm5BTt1ySkWJzZbwzjVRntMoD+KG+c6+1zI0hkzKWMKljIulualHlbfss7+Fdu/m9UkIKzLYgnLbjnv8tkFpPGK/tUvYcuXLYMnj/Lsy5r+wN7/nYrjl8b+HumvBcJ0RrTt39/5+12HcTgNcVRdHTbDYnbQRSFEUFwCEAHnWyvBfAB3dlLdYD+DKAjzSbzb2uCHrZJ4QQQgghhBBCCDHLaDZn/t88MhkoimIlbX++2Wx+vk1l7/ku6KEW+x4CUOzOY//Gn8P/wq6XfX9qfh8D8G8Avg3gfgCLAPwPAH+MXT6BL+evDFuhl31CCCGEEEIIIYQQYn9lU7PZbOV5N05RFH0A3jWJMi9vNpubEWJ8tvqabs/3uJOW2RZF8XwAnwTwXzCef81m8wEALzaHfKkois8D+G0AvwHga6ny9bJPtAUb4Yg/nfYkOSlJB6tzKxse9gvn77D5IE4DwFlnjScbVImzrgsBbypGS7SZpED9d97pV5bkUQeThO7JxUFqk1ISpJQkOVFbcyXC7cBTM+RKYDltpYReedxWVubE5XnyXFsf3sfjMRURsN1tWiZCtSs/LRNZzzY+y3p5H0eXteWx7mFJiEhdM/KVvr7Jy+GmE2/5sGOGL4MvtTa0Oc74i1+E9A03jCfX/uQn4+l/MnX4H5Q+jtJVlu6efXZ8ENsU8EQwkVU3D4f25q5MjTOvTXKj5KWk9l3yl+IpkWqDMhHqk33EWjCOzMxj65hj/BMRqeiXTEq9xtXx8tlj+LxuxF0gb3CVGcQA6vXW61ZK2cjTMtUm3vXxGpSKnsnVrk1jCN/cYLWpJmaJntd2ufde2yaeMnVkNFi/WHl2tC/VdlNt13aHWc6NEOvVITf0vIft5BLReLmMer2WyBhI/ZvBXRvKPLylFmJvX+rBtwRlqlomn/33Ws6/M9qBF7XdPtd7EXNT8DXkTut2B8wW+xV9AD40ifxfBbAZwPbd23MBWOONPQvCdkyCoihOAfAv2BWV99xms5lrXvER7HrZ90roZZ8QQgghhBBCCCGEmK00m8112CW5nSx7vj46DID5GgKHAWhSnr1SFMXzAPwQwJMAzm42m63kwR4PAtgJYK+Ok3rZJ4QQQgghhBBCCDHL6CLPvunkFgBvA3AmJr7sOx3AnbnBOYqiOBm7XvRtxa4Xfffv5RDL0QDmwA/oMU5lbxmEEEIIIYQQQgghhJiFfAe75LvvKIpiXHBeFMWrARwDI6ctimKgKIrlRVEcaH4/GcCPAGzDrhd993knLIrioBa/VQBctnvze3urtL7sE23B9RNDbGvhhZm39I6SL5b1DWM/Ps8Y5/jj42OWLg1p8jGqsKeR+ZNG/y23hI1Vq1qfEwBWrw5putilS48eT5P9n83mhqNvdapWWL8N638zFVLeHnwNB5mliMeD581WxlfD2Cq6/nu2bG/cVYa30++xR5NnAdOO9uW2mzs3pFNeg3x9FYy1rpzdzvX54QqxQR3PGwDgOcEecuRbaSd2L/n5oS/Pp2c68eyF7O/cDL1VsuBYsy7O+NOfjicf/ta3xtNfpSxvMOda9oIXhA1ez9hXza5hbH7Kg9C0N4+Zgw9GS+y1ehZHW7fG+Txvn1xPutmKbQNeH3PXMG+K9veNxRk3OPP/pJNCmudkgvnz423Pw41/5/UM8OcbV80e45IauDmVS5WXyJey6fLw+jVVRjvmyhj9DT+6T5RgX/n/5j4L5N57o3t3Nf6mIRoaPeF+NOHLhzIeeYxnVtmO8rwFO3dwphYX7/nBDoYpXlPu4fwMmrw8b0ClJp+3Tth/nDj/iBmDP7ZqmXPPPvO3qo4l5U/NeL6f9hhvGcwdTrmUWfdS/7b0yuZ0as3wnusbbb5u0T00m82NRVH8MYBPAPhRURRfxy757nsBrAHwaXPIO7DLG/AtAL4CAEVRHIldX/QtBHA5gOfvDtDBfKvZbO4xU/9CURS9AG7ELunuAIDXADgFu14+XrW3eusxXAghhBBCCCGEEEKIFjSbzU8WRfE4gHdj18u6LdgVh+8PMyW8RwHY84nMpYk8e172/QuAi7BLPtyPXZGAbwfwvwH8TbPZ3OtfFvSyTwghhBBCCCGEEGKWIc++fJrN5lew+0u9veS7FOaFXrPZvB6TCA7SbDa/BOBLk6jeBPSyb4ZzyumndLoKLvPoW+lUBHpOs/yoMSE6NRWyfn1Is0QQiD+xZzkSy+FSFWJdKVfI6k153+BgSF9lvph1zsuCxSOMHPLRjeHz/23bwu/2c3ZPmZRSmLRTNmc/oedmPZAcCBYtivNVhraEjZ7e8SQ3o21ulhzweVM3Hz6GP8NPyQ8iaRPpqxvcj4g/5a8OBIkvX0NZuP9YhmdlIUxl02OtC7Adzvt4DHNDHnZYfMxTT4W01W57kGQ1CXVML7VxfXF/3vFthpvEm18A0BgmK4FVJNVfuTLKt+nP/mw8/Xn6/W2UPvT88+PCzzqrdYVYGn3CCfExzhq2ufqMuD5kGcDXlFoeeZvnZe6DH8+9lGxGkt5d5EgYU6o5Tm8ZiteMXro/bkdYtxo0zkaqsWWBJzmz678nGePxY+9N3lKVup/xWK1hJGwMmpuG5xHheTBYEjeKxuLW+0ZHQ3tb+bHXl7n39ZRdhDdH63X/npErR/Pmb2p9ZHIlh7ljvcw/OL12tGV561NPT2wxUZmqhjF1jy7B9uHQz/U61bXKUmQzjz1tY24Dp/JNsZOq9TxLD7ZuadTN9eX4q9jfvWNS2k/XIqDmZsuF11ivu2y+HPcCy86d/r7cMtpJSi5cph09qx57PZ66fqqqfSFmMnr0nuGsuGRFp6vgcv9X13W6CkIIIYQQQgghhBCCUDReIYQQQgghhBBCCCG6BH3ZJ9pCSrrTW2cZzmBIW3nuCvqK8cEHQ9qGsnX0TFtGgzSpvvS46JAnngjpA/pCup+j8Vp9Ju9jWbH9Lvymm1rvS2jbDia53pZ5QQqQKxHNjl44RWy/8ifw/T3Ur+vWxxk3bRpP9pKEub44SA7tp/osTSoTWJEjR1r5WRRNdcMgpR3No4GvoR0RZaMImlSHSkpLQG2a1CnxtqdZSGmb+JjDD4/zeSFBv0qxZ20kOz4XdXLNRvrl8qaRyD6AZIETenXNmpD+yU/GkyOXXBJl+xyl30HpgQ98IGz80i/FZZ94ImUM181rGHc3YCUnvqzck1RG87Vu+p/6pW9JmKN2nWG1tyf3S0kWZ6uMNyVTyo0iGK0ZtHOsHktyx0i6uylalsPvtuzjlqElqanMcL2tC4CnhuSy7THxOCmh98rVpSXWWy+qbTvGM8uhpxrdPbX858p4vaidueRG08wZ90C+TNE7b6pNeV9KYtywg3+SsFQ+6pNquQjJHBndbx9f0p8dlTpXx11m8Jc4JnmIN6By6+0dk4jGO0JtPJyw4u/NlIVyNN6pBhFOXWrqOTonYno78KZUyrIgV1bMdc093nuMrs3S5xR59nUv+rJPCCGEEEIIIYQQQoguQS/7hBBCCCGEEEIIIYToEmbpx6qi3ZhApnE01nUklWRtmpXnsoyXQ0cl5H4jdYr0aopjPHnsEEky+/riqJa9yx3Joi2Mv03nSJ2paG70rTRHKO1d3BdlGyFxIX96Xxm2kYwDCxY03H2TxSore3tYfkp9ab/D52/qKc1SXXuIFxgtJePgfTxk7KfoIyR1qw3QQZ5kJVHZ3gndWmIZ5THE6ZS+gts0Ic/hMQNHxtHgqK9AfK0p+RJPdJa5c91Y/mpJhW3lCLXTCdsHcNvb+txxx3iSpbsfNcX9EaVrn/xk2HjRi0LarGEjPSESMS+J3rAA/GicLO8C4uiFDEebrI2aa6WTsZTcriVeNNbcgKf7yn5gppGa1pxuVIPUutqTsAugAu04YUkm72O5WC5WxuWtxSm5l3evqi8OY2tCFFEvym7uQPMmS6o8U3bF0cD1Ji42FRm3naRkt1OV5DLTqdTMzZcTzdfuy5XusS2Btf5guWathPSWrWOYXGm1hevK8Jps+75apQi+PeFZuTI6EuUb44i+Xv3arO+L6pDo2KjtU/psrl/qATJHxmuOYUk/n8auqd79MQUfk1ttj5SkP/Wou6/sNbx/Etnzl5EP879V+HjbJl7ZZea4EPsLetknhBBCCCGEEEIIMQuRZ193opd9Xcjqq1fj9qtvR2VOBUeediROe9NpuOnLN+H+n9+POdU56D2kFy/83Rdibs9crL9tPX7+f3+OnaM7Mac6B6e/+XQc9tzDOn0JQgghhBBCCCGEEKIEetnXZex8eidu/fqtuPBvLkStUcOVv3Ulnvua52LJSUtw2htPQ2VOBTd/5WasumoVTn/z6aj31vGyS16G+QfNx+b7N+OaD12DN3zlDZ2+DCGEEEIIIYQQQghRAr3s6zJ2DO5Ao6+B+oI6Nj+wGQBQa9Sw5OQl43mecfwzcN+N9wEABo4JRgcLj1iInU/vxM6nd2LOAXMwGSqbHot/YD8+9vBiE6GNG+NjzjsvpPlbYmsISMYP7EPBRdtPkdkXi49hezLrT7d4cfA46V9MU4W9yizr14f0P/xDSJ9xRpyPr/3EE91K1HibvYf4gozhRYOPWbIEU6F3dHP8w3qqA3ufWTOOhKfcZMn16UkRjQfyp6mxgYf1duKBkmjvUm3M84MHbsrn0fGUYb8dABii4jy7Kvby2XXaMNZ7aNzbedTw+pXH/dq18UF//dch/epXhzR72gH7zrOP2549NvkaAAx99rPj6U/Q73+EmNpll4UN9h2ldWLzcOx9t4GaiD33Hn88pK09ETc9DxObz3pPtcQODOufupuGWXsbfWG+PP10a38yOz3Yp8/zE+x2Ustj5Gm3LozBml1XhjzTpXj+s7dXrjWoR65nX+TRa3EWoUo9038rVYEc/60UKaM3z8+PJ5w5psZ18DzEJlShtR+YrQ77sXEfs1dtq+Ny4PK8OthyExZnbj4ug3+fk3jcZE8zex6vfjzkcrvV+olyGYeaR9AceC1nDl40+bKA+BGE52VqCPPY4DaeNy9eM+Kh2tonutaTaPxcco0VmZTPb47nnpl7kT+h8xw1wU+axgLPw23b4nx82v4+ZMHlpeYU95+d81OlTLdMFW+pBPzxncKxCc/HW5yE6AI0oruM5lgTKIDbvnEbVn5tJZa/dDmKShHlufNHd+KYs46ZcOx9N96HgaMHJv2iTwghhBBCCCGEEPsXzaY8+7qVfRM6TOxzTr7gZFx0xUUYemwId/xriCr5H//0H6jMqWDZi+JonJsf2Iyb//5mvOB3XrCvqyqEEEIIIYQQQggh2oS+7Oti6gvqOOaXj8Gjax4FANz147vwwC0P4FWXvQpFEb72G9o0hB9+9Ic4+11no/eQXq+4NCzpBGJZmN23h0UJPUNCXztCksMhkjbs2BHSLEsBfOUNSzXsl9uRQmAgyPB6l8UvSiP4Wlk39b3v+RXifIccEudburR12Y88EtLcVgBw7LEhPUUZb6QdsediiZ+tA21vGQ7yiJS8hsmVCHnSBpZG2G3O19f3jPF0w+q4PemubZMycP/zQLNyL1un3WwZCn+n4XEPxGN/2FH+TZCp0LYnFwOAvr4w93p5bLJM3Y4F7vTrr4fLm9/s72snN9wQ0t///nhy6Kabomws3f19Stc+97m4PJbhn3DCeHLLaFgz7JDhKe+tTXYM5+IpDp94IqQPtuOK+4j3mfG4fTiMO2+cpaRknK+RUKx3G6n51khJ9xlnnRg2CmxvjS2jUqphxBSecSO12Ivf2++AX0HbVizD479dO1I9APk6VU8+mBrsJWS8PX39LYtO4ckzy8ISVu+eUZYyEsEy66BXdkoOnbq+qX7h4t1T21Ge93yUO6VSMlD32Ss1P3J1k948ss8MTMqfxyPRsfE62Fq6a0/jLW8pVXEZeC6zfN3i7bPjLEdCb7dz5fVl8B51bb15OFVG+R7k92t0DFtjpC5WiFmCvuzrQoY2DWHwoUEAwGN3PYa+w/rw4K0PYtU/r8LLLnkZqnPDYvfU0FO49k+uxalvPBWLn1XCmEQIIYQQQgghhBBCzBj0irsLqcyp4Acf+QGKOQUOPORAnP6m0/HN3/smdo7uxDUfvAbAriAdL/idF+D2f7kdWx7Zgtv+8Tbc9o+3AQDO/fC5mNeX4/IuhBBCCCGEEEKI/RF59nUvetnXhTQWNnDB5y6IfvuNz/9Gy7zPu/B5eN6Fz5v6SW1kXf70nmHpZ0piyvtMREj+pJ4/o2dpQmrB8mQc9pN8Pg9/ct6z+BlRvgofeNJJIc3aGNbQAX4kW6ubZI3mT38a0ncEH0Ycfnh8zJ13hvQ552BKGGmjJ9ccG4jbhLs/V7rrBVZLfe7PkUdTSrIcyWFfX/yhcy9LS1iHaWXpKVm3B8uwWbptdCAjo6FO3ri349aTcXp5AF/ukSq7viTIz2ocodoexFF27757PDl0xRVRtp6vfKV1ZdsNyXAfpnXr8yYbS3d73vnOsPHMZ8YZ6dq310ObbCJ5pR2bKfXgHqxUp4z6hMvmyIHbF8TRGKOou4kweVUT+blVtlT0SzERlp9WEv4FXrTIlETYI3sspW6K3LGpUL+eV0ZKV+bp4TLleZxulNVqegthKhQ2U0IPm1p7WVLX7vnmRePNJSXVzQyS6tYnhdcOnm2HzRdbesT5eEgfUcINpYz6NLc8T+6ZegZiykQrrfbEa3+lOsWBUoYSMt4xI2AbdpajrVsnf9p23+v4edbOj5w62OdjT4a7LyP9eqSCp0cyXM9ixBBFhE+tyzn3Fkl9RZchGa8QQgghhBBCCCGEEF2CXvZ1GQsOXjDhqz4hhBBCCCGEEEIIMTvQt6pCCCGEEEIIIYQQswx59nUvetkn2sNRR8XbCxeGNBuEsDFKwn8hymcMRobJC8vzX7OwBQP7YnDR1srBs22w56lxIXxNS5eG9Iknxgfx9bE/ofUx5LLZtIV/txU94QS0DVsWXxNhvWI8a6ccP6lOwfaIANBDHjUV7i9r7lOGeZMPgMPdzB4rKXsRz54k5auUGlpcXq061rpA25DMPfeE81ivyX3EWvLp+yr9/jaTr4f9KXleJsymcv2prLdOK1J95HnxpMrm8qw/UX1R73g6nruxT1OOF6c9v2cB2N/Xup7dSMqzkfv1UBpnW4bjtvfa2JbN+1K2eFnYg7xCyhRexksvcQOpUXlRy1n/4NyyPSO6HMNNe3yCCsI6Wq8HsU2qaPbVsmtBma5ge+Fcq0FvPUqtTV55qfUw10OM15mE7Wh0e/KeBYGp23a14zHBK4/rnbIa8+7lKc8+rx0jHzXA97FMkfvAzqTmm7ce0KJo5Wu9zuBoLAq/W58/65+7B9vePI9yWbAgL1+O3amtp+dPPhPIfqnU7ornmB/mjmch9hMk4xVCCCGEEEIIIYQQokvQyz4hhBBCCCGEEEIIIbqEGfZhr7Bc84FrOl0Fl4FekqxazYIXV30gcUxUeMi3ZSh+J+19uV8mcjpXMyU/SUlRa54kl7US27b5hedKRPkbfa74hg1xvnXr/DImi9WIsSQqUddcpRPj9V+Zr/it9MerQ0oCEclWuI1te5fhkUda/24kZ5FEvB7Eae321ciVCKfmiMv8+S3T95pxenSJosvA0t03UPrQRYvijK94RUivWBHSdtxTH+WMM8BXcXM+u854ypLU/PDkcU89FW97ktyUjLuMPH+mSYlmAtyOLN1NSX9zfgd8KXm2Sikl481dpHP9MDxSA9Lbl5pIZfDKtnpI3ua6JTSi24fD8w1X1fZ/jqq41XYOvB6UuXd7MsdUvtQY5Pt3qvu9bk51P9chtYbNNO8q776ckix7bWx/z5L7p24GuXj/LkiR6yuSu0B6A5wGgP0Kpqensfd6olyTNOpjrXeYeo9VaznZXNrgOLD/kJrYORfbbg3+foI8+7qXbpviXceDqx/sdBVcLn6bdbkSQgghhBBCCCGEEJ1EMl4hhBBCCCGEEEIIIbqEotlsdroOs4KiKJqTbeuiKDCT++fit70Nf/s3f9PpagghhBBCCCGEEG1nxWmnYeXKlUWn6zFdHHTQiuYrX7my09WYMldcUdzabDZX7D3n7EEyXiGEEEIIIYQQQohZiDz7uhPJeIUQQgghhBBCCCGE6BL0sk8IIYQQQgghhBBCiC5BMl4hhBBCCCGEEEKIWUazKRlvt6Iv+4QQQgghhBBCCCGE6BL0sk8IIYQQQgghhBBCiC5BMt4OcfPNN+PHP/4xHnvsMYyNjUX7Lr/88g7VSgghhBBCCCGEEELsz+hlXwf4xCc+gfe9731YtmwZDj30UBRFMb6P00IIIYQQQgghhBDTgTz7uhe97OsAn/nMZ3D55ZfjHe94R6erIoQQQgghhBBCCCG6CHn2dYAtW7bg3HPP7XQ1hBBCCCGEEEIIIUSXoZd9HeB1r3sdrr322k5XQwghhBBCCCGEEEJ0GZLxdoDDDz8cH/rQh/DTn/4Uz3nOc3DAAQdE+9/znvd0qGZCCCGEEEIIIYSYDcizr3vRy74O8MUvfhE9PT248cYbceONN0b7iqLQyz4hhBBCCCGEEEIIUQq97OsA9913X6erIIQQQgghhBBCCCG6EHn2CSGEEEIIIYQQQgjRJejLvn3Itm3bMH/+fPzu7/5uMt/ll1++j2okhBBCCCGEEEKI2Yg8+7oXvezbhzz99NMAgF/84hdunqIo9lV1hBBCCCGEEEIIIUSXoZd9+5C+vj4AwHXXXdfZigghhBBCCCGEEEKIrkSefUIIIYQQQgghhBBCdAn6sq9D3HXXXbjqqqvwwAMPYGRkJNr3d3/3dx2qlRBCCCGEEEIIIWYD8uzrXvSyrwP8y7/8C17zmtfg5JNPxq233opTTz0V99xzD5566im84AUv6HT1hBBCCCGEEEIIIcR+imS8HeCDH/wgPvShD+FnP/sZ5s6diyuuuALr1q3DOeecgxe96EWdrp4QQgghhBBCCCGE2E/Ry74OcOedd+LCCy8EABxwwAHYvn076vU6PvjBD+LTn/50ZysnhBBCCCGEEEIIIfZbJOPtAAsWLMDw8DAA4JBDDsHatWtxwgknYHR0FE888USHayeEEEIIIYQQQojZgDz7uhO97OsAp59+Om644QY861nPwitf+Uq8973vxX/+53/iW9/6Fs4888xOV08IIYQQQgghhBBC7KfoZV8H+NSnPoWhoSEAwKWXXoqtW7fim9/8Jo477jh86lOf6nDtSrJuXbzNfx7YtCmkBwZCuq8vPob30fFbhmtRtg0bQnr3B5ITTmPZ3dwT6OkJ6Xrd38dV5WoCQKNK0ZTXrm1doZUr44O4fbhAWzjnu+GGkOb2Xr06PmbZspC++mpMia9+Nd4+4YSQXrJkPDk28IwoG/cRtz33Vwpub07bvzpVaQUbHGz9uz2v1/R2OFbW3Rs2Uu39jndg0lx2WUhTO2L58jgf76PKbkdjPL11a3zIU0+FtPdXulQ7zp/fuiwgnhP99e1hg8f9TTfFB9H2A1/+8njaxhy/dOfO1pVtM/fOmTOePvrww8fTQw8+GOXrueiisMFeqjy/gKjPRvrCPPDmABCPR29+2LlilwavbLuO7WHu3JBetCjet3hx62NsWVwn7/psfbjeBx4Y0gcvGmt90i7k3nWxYwq3q7ce2fuZN5e5H2w+b2zZfj335a37Ysw4vVSGac5793hbUa4E7/PSQLwg8T5egGw+bjz+3TYk7/POA/idxHWwx3g3K1PvkdHQrizm2LYtpO38T1WV4X3POSFvjv3X6lCfHTvC7wsWtD6/3eamouUVAHDAAa3PycfYa/Xu16k28Z4tUvdHxq6BfN5nLZ/8WvX/bghtyvV8/hnl1j0uj4eZN0yBidOl1fH2OG962P6vVSd/HTzuubwKEmWlborexacmi7fPXiAxVm+0/H3jxnh73ryQ7u2Z4v3N1HsEtZa7Us3D2/x8bPHGCTfvEUumfr/m+yA/Z1oOXkj/puL7hx24DOfji80dM5y2z3hC7OfoZV8HOProo8fTjUYDf/3Xf93B2gghhBBCCCGEEEKIbkEv+zrM4OAgxsbiv5j09/d3qDZCCCGEEEIIIYSYDTSb8uzrVvSyrwPcf//9ePvb347rrrsOTz/99PjvzWYTRVFg5z6SswkhhBBCCCGEEEKI7kIv+zrAW97yFgwODuLv/u7vcOihh6Ioik5XaepYwxPPP4H/bGBNJNhzh47vNT4Ng/Xg+5DrAeeRsOmIrB3Y7yry6ANi06T160OaDT3stbIXm5e2sJkOt7c13DjpJL+MybJiRbzteGZYz5V6Rh/ZvyDRe++o7fmy7Xtw9gfK/YsUl81NVxk1/cp9xgd5BmeTgduR54qNxu2Y89QHgodM6rpz7Wl4fLNPk/Vbirp/PXlhsWcfpwEMOz59/7Nljaefo5cuDRtkktVzxhlxxuuvb12AbTzql9qysK+vz/9CO8cqyPZrriWRl4/7MuW/lfL58bz5UvZr3vw/eFHr37sR62PozVnPq8zC/WU90ry+4PU1dd/z6gMADc/vKGUcxoV4JmD2RLmLuWdelTJ6YzyDS1uGV5/URCKs96FHql9y+yw3H+Pdb8tg79G8bcfqHnhsAvnWjt4xfD3so5aqj+dbVpaUvVgZ+B6d66vH18T7rJ8cj0/XP2/CvHYaPEEZn79kHbx5zvWxi6+37iQasuLsmzfP92ItA/fDKGKvcu9See6kmofz2ee6ffU1l9fcFvYnrOVOTM9L1Z4o90FKiC5CL/s6wM9//nPcdNNNOIGDHQghhBBCCCGEEEIIMUX0sq8DHHXUUXjKCwkmhBBCCCGEEEIIMc3Is6970cu+DvCZz3wGH/jAB/BXf/VXWLaXEN+nnH7KPqrV5JlH36zb0PTRx+0sz82NBW8/vSdYHscLU+IQF/7y236Cf+CBIb1wIe3YtCnOyNt8TSQRxPHHx8ccdVRIs3TXaj/4M3Pex9LhZz87PmZRG/Vx9hP6TO1efyR1bS1hSqmr+LJzLSxTchaWwLCspza6PWxwmwLAunUhnaO7LAuPmccfj/dZDdJuWFbSk5CLepIsO9Z5m2Xq9b5YSlIZ3Bw2WLK+enVIf+Mb0TEfo/Qf8jnf8pbWlZtuLrsspHmOWm64IaS/972QtlJ7Rxfeu4zmjmnHHOxDF49hluGk+pLTvHzYZYbnQbXHl4h7Q5+XBSvJ4zrwmjqbsMuoJ/fi9rV5WHLI/c+ye7svU6XmMlFdG9byajWM6YZ3j7cn86R29hjeztV+eeR6dVg8+VhCn7l9NLQJt8+weTbhdZn/7lvmH1oplVouU/0HHh/P61SKVLd49/yEg4Kbzx7jzaPctS6XMvMtBT8KePJcSztlpRVzojEa36701zBC6we3d6PuHz9SDfejWl9CNu81xFQbAXAnCM/xVBVyy2bpbq4kl+dKrhuCvUd7zTidL35S8nx+nujpIUlvYpzx2Kpxn9tO8ewe2v1cL8QMQqN7H9Lb2zueHh4exvHHH4+5c+eiahaZLVu2jKdXXGI802YQ9391XaerIIQQQgghhBBCCCEIvezbh3z2s5/tdBWEEEIIIYQQQgghRBejl337kDe96U2drsK0wYFnAWDevPDpfS/L3vizaSuHZRKR+qp9rbN58jVbhKeMtfITVsNWhknuaevthcY67LDWhQGxFJAkr1uGjOSVmqtncWjTCus4rKyIJVVTxUaeZcmpJ7UCojbq6XtG1iGM94m//dKeJQwpCRw3V204fDmLm1aGtNW8clRZlttzNNeycBl8Hisd44tfs6bl7xXTkL3U/yyB4KIi+TLghlmdIMBmqTNJd8c+9KHx9J+YQy7la73ggpDei4XBtOHpWa1kmgcU9wv3g8UZhL1mHtVpLqfGLcPVSwUbZJmaF4F1gjynp95yny3bi/yXUsBwPlnV7sK7H/Hyatveu7/ZvkzdBydLKpBlBMnU6z1G+s8bXuWyT2TwbiipsMa5IcodbRvLF+09bOvW1tW0stScYMG50Zgns68T8LWnxq1HGSlhSsWXG1h5qtF5+dbiRSEuW55nS2KJ5LGRhU486CrOQlFJdVh1atYUXJ1GYp2K1soe/5xuvOuUttXz/rHt4YR6bthn7zKy0OgYf21heE7lRqjOtcNhpnMtSa2Bni3IwQmHIj6mr4/+rTQ6EmeUKZ2LPPu6F3d9FNPHN77xDXznO9+Z8Pt3vvMdXHXVVR2okRBCCCGEEEIIIYToBmbY3wBnB5deeik+9alPTfh9/vz5eNe73oXXvva1Uyp/9dWrcfvVt6Myp4IjTzsSp73pNNz05Ztw/8/vx5zqHPQe0osX/u4LMbdnLoa3DOOHH/8hNt69Ecf9ynE46+1nTencQgghhBBCCCGEEKJz6GVfB7j33ntxvI3OCmDZsmW49957p1T2zqd34tav34oL/+ZC1Bo1XPlbV+K5r3kulpy0BKe98TRU5lRw81duxqqrVuH0N5+OObU5OPU3T8Xm+zdj8/2b934CIYQQQgghhBBCCDFj0cu+DrBw4ULcfffdWGq8v+666y4sWLBgSmXvGNyBRl8D9QV1bH5g18u7WqOGJScHj7hnHP8M3HfjfQCAA+oHYPGzFuPJR56c0nm3bYu3I28m9vOpUxj1lKEQmzisXx/tapzR2pMsDtceF+f5YrGVVq1qwrqzPxmbKVnPLq4rF75wYUibvh4hH7tNdJqUdRFXoacnRHbuWRLStoz+RKj6HLYMxx4pvdywkQfMYJSPt2t0EX19/ePpXE+iXBuUlFdV5NPH42nVqpC2/iu8zR6L7fDsO+GEkPYGJBB3Jo/HDYlBQ7C3YzTfzJyK+o8NOK3RC7XXKPn0XUZZPmgr8Za3hDRfd6c8+049tfXvdnBxe3H72IH7uc+F9Bve0LpsM2ZqNJ4OXRzWs0c3BmcNexqeeuzZZP1uvDnCx09YeqmQar21n6DF23fAAX6+meYntq9IXTf3Jd83U8ORPcBS9zr2kON+YR+kFGV8VW19+vrC/alC96Ptw2GsNwbMgOQ1LeHfG+E1csqLL3XT4AuhY3gpsO1on4P2YOdyO32Rcj3pylCmrFR9vHFn1wwe3ymvUW9tSXnkeY+d9piprlUp38Ay8DrB/0xIlp3rY5nT0eZEkQdwCXu63DUo8XgTVanh+QvuK+O5slC9h+laU0ud15XTuc60A6+utp5DTjukPPvsP0H2wP/mBIAGr+szrYE6jDz7uhd59nWAX/u1X8O73/1u3HXXXeO/3XnnnXjPe96D8847b0plN8eaQAHc9o3b8M3f/SaOPO1IFJUiynPnj+7E4c87fErnEUIIIYQQQgghhBAzD73s6wB//ud/jgMPPBDPetazcPjhh+Pwww/Hs5/9bPT29uIv/uIv2nKOky84GRddcRGGHhvCHf96x/jv//FP/4HKnAqWvahDX9UIIYQQQgghhBBCiGljlopqOsuCBQvw05/+FD/84Q+xatUqNJtNPO95z8OLX/xiFEWx9wIyqS+o45hfPgaPrnkUAHDXj+/CA7c8gFdd9qq2ngfI/+Scv6jvIykrYCSnCankWLXW8ndWXVo1JFMZIknnmnWtKwfEUkn+9JtljgBw4omtK0Eyxe0I0jgAGNwU0t4n64AvOfFC0wOxFKy/D1NigoSiJ1xHz5IjxtMVq90iRnqCdNe7bsAfJ6n6ePIx2yaNRT2tM7KU1A4argTJLsdIigzE0rRs+FyerAyIL5gvlseZ1S/wMWvXhjQ38A03+HXj8vh4AI99//vj6b+i3y+hdOVv/zYuj6W7LIceGEBHcM47Mhr/7au2fHnY4H7hawDi9v7Wt1qf065nXDaNhYOp7IXLDo0O4WFSGR0ZTz/1VLweeusJ/26HzPz5tD6R9NOTJQL5cg/Ol5JkdTMpeZXXR3YN432eYg2Ihzc7SfDvuf1g83GdWOGfkmQx9XqYY5voXtDXF8+9Xr7AXC2x15ApGW8Kysdrg6eMtKdNKQm9fSWqVvryvGOspHay50mNdZaiMnase2Mrl3nz8urjHQMAjfrULFD4Fl3qGcHAc9m7F0y4OF7oUzJeT3OcGExs95ALF2cdQjy42lZqbftsHG9dsNue9tM+z/Ix3LGpyZZ4Jo6guo6Ohnt5yp7DWxJtt6a63DuO0ymnpTLs2BHSqTnuXd9xiW9UvCV/4r8F9NpDzD406jvIS17yErzkJS9pe7lDm4Yw+NAg+g7rw2N3PYa+w/rw4K0PYtU/r8KrP/pqVOeq24UQQgghhBBCiNmOPPu6E7316UIqcyr4wUd+gGJOgQMPORCnv+l0fPP3vomdoztxzQevAbArSMcLfucFAIAr33olnt7+NHaO7sT9N9+Pcz98LhYesTB1CiGEEEIIIYQQQggxA9HLvi6ksbCBCz53QfTbb3z+N9z8r//i66d8zlypREohwJJTls3YqL0siejpCfki2cSGh+PC+btwludyZF372T1HLGXpno3ayseRJG/LaJA5sGQJ8OU+uRHKUp/a874jjOJwsliVAzcjf5K/cGEsbY0iGzt1TUkEUhH4co6ZIEXy9Azcr1aeSf3KMuzBDXG2QxOScQ8eG5Ec2sp9eKx50rYHH4yP4YbgfazvXrnSr9wjj4wnN3C0YgB/Q+nf4VN++MNhg2W7QCRZZQm0HVv9U5RN5cIRb1lKYqUjAwOhrr3LEgOSJbk80b/+9ZC2EYA535FHhjRHsV6eGPhU2SXLjot28bKVK+mLoqe3Pg0Af93JlSLqr8a78Nohtf57bWzXUV4yON0Y3jye7l9COxKkFHCe9IvvC3Yf15WWmYmyrcVBztYzEOw+KvZic7RtKf1pIkQ1Rwv2FML2lJ5MLVcOl5Jne9GYPdntZPACVKbmde5czrHn8OS9ljLPAvacPMdYBjqhj7ijcyWZRGQXw5QoCzDPVLk6zpSc1SNXk98BrPSXqzdGFvSV1INmTqTe1DpTJkR9ArYlSllt5DobMKmo1ExuIPN2kjs0c4egp8i2HHBAGCccqbdh/10nRBehAB1CCCGEEEIIIYQQQnQJ+rKvy1hw8IIJX/UJIYQQQgghhBBCMM3mjPuYV7QJvezrAOeddx7e+ta34txzz0Wl0h0fV1rpjiePS8kzWXLKUrSlS+OolFwef9peGQwypQm6WZbucuGrV4f0QQfFx7C27fjjQ3rBgjgfSXfHSHK0gQKZpiLPMrZNWKLjRUK05EqBc8iNkmXhT+W5PtykZVQlllRkRGasL8hmo8jBnDZRWj0ZVztuhna+7IGjVQJAlSQeFS8Crw1Jx5PsoYdCmjvCRNnlfevWrRtPf8XU7+2UfsYrXhE2TjoppE1UY0+6a+fEVCNH58JjMBUpNlLuDPSOpxs2ajNfuzcIqU0nFJ7jeQDEmkw6xsrFqtVQV686yWvNUEZaykQUnc14SjmOfmzbkcctL1tWfcTH1Ua3hw2+79kBYC0MdpMbbdYLVmn3eddqpai8PvI9Po47nahErgQzsZh7RXtWFkB8Tbn3Ca96qXnE7ZVSKebCcr8yEYFzlJGpY8rC9c61CPHqM6HeU5TxuiGvS8p43cmX0kPyMbkhuL0bQJsX9jIycIvbz7nReL3FKSX9zx3gmYMwtm5p/dycW1wqqnUKry/a/eLH+3dhyi4k998zqXXZI7o+PbeILkbDuwPMnz8fF154IQ488EC8+c1vxlve8hYce+yxLfNe84Fr9nHt8hnoHdh7JiGEEEIIIYQQQgixz9DLvg7wta99DVu2bMHXvvY1fPnLX8bHPvYxnHXWWXjrW9+KCy64APPoS50HVz+YKKmzXPy2t3W6CkIIIYQQQgghhBCC6A4N6X5Ib28v/tf/+l/4+c9/jl/84hc45ZRTcPHFF2Px4sW4+OKLcccdd3S6ikIIIYQQQgghhOhS9nj27e//iYnoy74O8/DDD+M73/kOrr76alSrVbz2ta/Fgw8+iOc85zmdrtqksLZhnudOLikvLS5769aQXrAgeIM1rAURV8IzjjGebdGJFi0Kaeu54lxgyubDa5OUTwenudpl2jeX1KWyX461MWQ8i5OUF4tnfZKyUvHqBsTtVfM8acxAa1CB1Z4JblFTgtsr8p0cHYkzDlPF2YeSze+sH9zSpa3zLVsW0itWxMd861vjya/Qz2+Oc2Ex+9NxebbBCb6mej20Yzu9JSfD3LkhnfKQ8vJNgCfJYYe1zsN9AsTGZkceGdKHHx7S1hvQq6xZAEYHvYq6h2TPN++YFPLwS6//uWu552Nk74+8Xa0Gr9JeHk/WWM8h977F+ew9g7e967a33oULQ7o2TJ6UvJ4B8cV6/lv2RuNVwiwAnI0fBcp40qX+AZLrL+WRWkd7M+3hPK/B1DOM1w52jPA6yve9Mv8os+fk504uj33Qxsw3DV6/2LIbZb319uCNs32J14Gp+ng3A9OxPK0amc+guR7LTGoe8diPnvFyC/R+t5XjNvG8E22+zDWW17SBgX43W04V7Bj21paUl990+u96HpvtOM+BB4Y03z/setTfRx6J3M+D1Kj2hiTEfo6+7OsATz/9NK666iqce+65OPLII/Htb38b73vf+/DII4/gS1/6Eq655hp87Wtf63Q1hRBCCCGEEEIIIcR+hv7m3gEOOeQQNJtNvP71r8fHPvaxll/xveQlL+lAzYQQQgghhBBCCDEb2CPjFd2HXvZ1gL/8y7/EBRdcgHpCs7OQv0PeDznggJD2PhlPyU+ir6sH88751FMhvWRJ/Dl8xZMw8HfuhxziV4I/67b9Rp/rc13LhIJvB+389N5eqifJqo1ujzM62oL6wgY8eJx4qtCUrIzrZhU4lQ0Ph421a0OaO8nKJqnPa9TH9bp/DbnwdUTSXSsfYb3Ghg0hvWpVSF99dXwMSUZHPvvZ8XTtFa8YT6///vejQ75I6Uu5UW2b8BxhmUpC5r59NIhqWHbP0rFdZWCf4EnWUsodXs/6rTyH1wZuHx7Q9pj581sfw21nB7unezK/95DknK+PT8lrJRBL7fhabRVSkiHv9+mUBe0v5Mphc6WfKdz7Ko2tESN0q5HsMUWOBNLKip0qRPlse/B2fx8dZBslR5KX8qJI3DSe2BjSvGbwGmbnkackTlXbezRJzb12/4Mspxlzr8GOv5RkMIeEQ0QEn5elu7lDZgJT9Ufh43M1qym8xTM1aDxJrsV7sOM1YzQWgvE8KCPjTa0TTK5qlu9bfA+s2XuvNwD4RCkJdxl/nhR0TO7zSJm1gNsnUYWkJcNUSdn9MGWmC68zqeO3D4dxzM/yFb3lEl2MZLwdYPPmzdjKd0ohhBBCCCGEEEIIIdqAXvZ1gE9+8pM47LDD8IpXvAJXXnkltm/fvveDhBBCCCGEEEIIIYTYC7NUVNNZ7r//flx//fW48sor8Y53vAMXX3wxzjvvPLzhDW/AS17yElQq+9872JQ8y/uyPfXFeypSk7cvimo6bF6gevoaG0bYO1EiKhlLRlhK4kkMLLlRSb1P90vLVCZ5zkmV7bR3bSA0ysKFsZTM+/SeP8+3Y4aP6e0hKZrViKxfH9Ish03Js0nDMEaf+w8PxtlyJSxMdK0UobbWk5hILKnltI2sS9F5aySv3UzSXZbtAsBbeeP880N65Uq/PgxLZYz2g6+VZW+dUk2UmUdRfy1OyAJZD5tYM6L24mOYMjonAD0DveNpT3GUWvYYK6HzJHWp9U2k1y1u05RsygvuaYdPFMkWZBGwaTD83mMGu3NiW3bO3LHzyFvXc4f3MMmubLTKmqcLTknyaCKM1MNcGTb18daqlEWJ90xjq8D3fJa2pfqf+4Lnbzuk8Xwb9B6VysqKeZ8naEmtR6n2zpEfW7KjgOZ4FqRoh3SX8S6qjE+CzZeyj3B+zr2HMNz2ucFqU1Xz5OPc9LVcSW7KByZlC8CUkPFuR3i2ZBsguz7mBHe2p89VcfO+3PtRGbi83DWjTNRmbjtroeTN/76+cC9oZNpadBvy7Ote9r+3Sl1AURQ4++yz8YUvfAEbNmzA3//932PHjh04//zzsWTJkk5XTwghhBBCCCGEEELsp+hlX4ep1Wo488wzceaZZ+LII4/EBv7qSAghhBBCCCGEEEKISaCXfR1iy5Yt+PKXv4xzzjkHRxxxBL7whS/gda97HdZypFAhhBBCCCGEEEIIISaBPPs6wGtf+1pcc801WLBgAS688EJ89KMfxWmnndbpak2JlMWFl861t7CeDewp4YWjr5LHGgBUvIxc8ZSJCPu3VWOvOfaHYJ+flJVKGS8NJmUn0w4Pnz1YzybX7ybl8+AYcNSsv0hP3K6tSHmSuJ5NNuP8+SHNfZ4sfK8/T4pSZXiGN6ecEudbtWo8+d8bN46n/4my/K4puv8Vrwgb55wT0s9+dpzxkENCmi0Hli4dT44gz4uxneN0MnjnTc0jHsLbh+O/kTW4HfggbivbCDnGUSmTrMTv7NPmzal2+LLkVltkLy1J2CMre/3nfs42Kwuw/x8Q+6fxkOa0vVbP55GrYPN4zwx2We/pYb9Tx9zLPJywxy779FlvpxxPOltvvnb2EEv1P1eP77fWB9N7nmj3/Yjrw21i68PX59mO2n2ez1vu2pv7HJVqE2/fhD7eXxYyr7GAfMNsp/FGRsNcabc3dFl7Qa8OXjPwNQCJdSK1iOX6N05xzCSWrayiy/xbwpbN+Wqj5H1eLWFObWBvUD5nyr8199+JU/UX5O4v48PdLcizrzvZT+5m3UWtVsNVV12Fl73sZZjjPQkLIYQQQgghhBBCCDFJ9LKvA1x55ZWdroIQQgghhBBCCCGE6EL0sq9DbN68Gddeey0eeOABjIyMRPs++MEPdqhW5Ul94u+FUU99Lpz6rJvZtq11eQceGOdbsCDIfRr8XThXKPMT/HZf61SZThlvSkpUGaVxa2WK3sUnGqKtbZRqFNZab9qUVUalJ1SuXu+dau0iaULUjkOmHQcHQ5rrum5dSK9eHR0y/K1vjadZuvs/KN2/aFF0zMj3vz+erp10Uthhpe2syXLmkZWOeh8vz3S5gKfcmTC/hjMkPvZieX5wG6d8DngsZHoEpJRJziFZvwN+/1k5JK8h+4sybl/itcnOnfE2tysvYWnCXOylcTZBio6xlkfb+zBv597feNx5Y8HKO1mSlXLaqAyTzCyzchWqUJ3sPlLX4N3XPYsCe4ztS696KSkq70vJZrmN+/v8fIy3tKTahK+J13jbl2WsW3LrkJuPyX006e+b4mLFF9vum13mM1XWwyng3k9Sh/B0KzPOOH3EEpuzdT4Lrwd8CSwxnwBfiLdm2IvNfRjw7usJGtXw/DdKz062Wz3FcaqPvKFh87GzDZ+n1uZxm/vvI15bylQhZZPE9xPe16i3vgcK0Q3o0bsD3HTTTTj33HNRr9exceNGHHbYYXjkkUcwd+5cLF26dL982SeEEEIIIYQQQoj9h2Zz5v8RXpRD0Xg7wB/8wR/gDW94Ax566CHU63X827/9Gx544AGsWLEC73//+ztdPSGEEEIIIYQQQgixn6Iv+zrAf/3Xf+FLX/oSiqLAnDlz8NRTT+Hoo4/Gxz/+cbz+9a/Hb/7mb47nPeX0UxIldZZ5kRzGz8cSDy9arYU/tU59zp76hJ1huW9fX384z5KQTgVwHaV9ViLAshluB04ny86UQDF8jJX0WOntVLARrmrDW8KGp8mw21xZjlxqOqxGobo44nEUHQyx5L3WQw25PlGftWtDeuXKkObwYEuMloTrvXhxOOdi2ymTX0Yj6a7XVoAv3V2zZjw59hd/ER3yMUr/IaXr558fNozEJIpQx9F4U2G2ue1ogFfMoJ03L/QlSxFnWjTeVIDCZKQ3LpDGCbyof3bbk3vZYzxvg0QfNbiIwXD8BHmOo7VrJEICshSUD7frj7cmziZSkkyWojYWhR0TokhWg8xoy1DYl4oiy0vsjh3hGCsrbSxGS3iKA/FQG3LuiSnrB0+mmhut2A7bWk600cxovCnpn1dXa1Hg3Xvt9fBx3tqSWjJs/02VVGRkD86Xeubw+jy11FVIVl6v+xFhPXKfCzmf7X+eY709k5f4jVSDRLzWDomg91Dchk9xxhw5+9atIW3H3L6Kxpt7z/DG04T+p2utDTgP6Sl5bqriZW5wVB4XnZLq5wZZ5jG9YEFI276Lxjc/j/Jz84oVfoUy6R3dPJ6uLg7/9uJxBpST53uq6dxxxveFimNrIcT+il72dYBaLfzj9+CDD8b999+PZz7zmejp6cHDDz8c5V1xydQX2Oni/q+u63QVhBBCCCGEEEIIIQShl30d4HnPex5uueUWHHfccXjRi16ESy65BI8++ii++tWv4jnPeU6nqyeEEEIIIYQQQoguR5593Yte9nWAj3zkI9i6+7vlyy67DG984xvxzne+E8cddxy+/OUvT7n81Vevxu1X347KnAqOPO1InPam03DvDffi1q/fiifWP4HzP3E+Fh27KxrnY3c9hp/8n58AAJrNJk553Sk46syjplyH6cQLmpWK4Ot91s/KCCvj8D7/ttHmGE/akgp+xuQutKlIhu2UR04oixuZP/ffsCHOxxfMWrCEvGqEIkeOOtKbar3WegeASkpr6e370Y9C+pd+yZzMibpm9QJJjaeD144W3rd+fUh//evjyT8xh3B4n8of/EHYeOELQ/rWW+ODWNrMcuGlS+N8rBlM6bCInsWHuvs6QUoe4+XjLo8k2EAstc6V5Dq6QJav2/Ws1xlnmwdjuWed5kgUWS+1MHhS8pT+FK3l2WyZAPgRE2t6+tiFs+hP/Dn0sxdE0pJSpjGHOjLe3OiOnpWF3fYknXZJjaIkUrTKCRUgaXpu5FG2GeA5Va3mWVin7tGenNkew3Ym3nOL7a8yzwZY5GaL8KLxMmUi6ZbNx5K6lGLVe67julqZO7d95i0MvSVu8dGwIykyy/EnA8v6k2u5V4mENjKWLU6flXub1ccRnhTdjtvICmbI+QdE7uSzhXv/uEhBx3B08NS67kWrtWsJ7/PG/S5Cn/eQzVHF+jhMkTEqe3gw/G6fGZgy/55JWYe4z3JDJfpOiP0EPW53gBXkfbBo0SJ8//vfb1vZO5/eiVu/fisu/JsLUWvUcOVvXYnnvua5WHjkQrzkAy/BT/7qJ1H+/iP7cf6nzkdlTgXbN2/HVb93FY487UhU5ih2ixBCCCGEEEIIIcT+hl72dZCVK1finnvuwate9SrMnz8f27Ztw9y5c1GdwqdZOwZ3oNHXQH1BHZsf2GWGWmvUMLen9ecs1bnhXKMjoyhQlD63EEIIIYQQQgghhOgsetnXAR599FH86q/+Km655RYURYG7774bRx99NN7znvegXq/jM5/5TOmym2NNoABu+8ZtWPm1lVj+0uUoKukXeI/d+Rj+/fJ/x9aNW3H2u8/WV31CCCGEEEIIIUSXI8++7kUv+zrAu9/9bixevBiPP/44jjjiiPHfL7jgArzzne9syzlOvuBkPPPlz8R1n7wOd/zrHXjmy57p5n3G8c/ABf/nAjzx4BO4/tPX4/BTDkd1ioZKvGCwf0auR0ruguPls7+nfC32YD0y2BeDSXkSsU+PZ/lmt3PbxPPMmU57icrQlvgH9ubjhty4Mc53+OEhzSYZXFlzQTl9HnvLxN4+yYZYsiSkly8Pae70f//3+Bg2OWHjn3Z49rHP2913+/luv308OfL+94+nP0pZLrW+eq97XUjztS5YENInnRQfs5hMu8hmANazxTPJ5HHB14bYI4v9YNrpLTkZeI4ytj7shRl5u6SMo5zxzX5LlqHB1r9P9PlsXUauH2iN51vK4DThdxadx/HPTPVrWb+qbiNax6i9Pa8yS6731b56cE/d6zybVv7dLqmxl5Ljy2f3MakLd4zeqtVGlC3nXp7r35eqnpfP/p7rmVemzz1rNyb1DJObL+pX2jGW8Ikr41XIx9jnOL7W3GevMnhDs1byec33AExUPDUxCW/d4bbL9e9MkTPuLZ4P5rSSMsxjUs8CJc5VoeN7empetmQVvGM8O2EgfrzlS2i02bPP85pNXUPuuufdZ+zjeWV4e+tKlPFbFGI/QS/7OsCPf/xj/PjHP8bChQuj34855hg88MADbTtPfUEdx/zyMXh0zaNZ+RcevhDVehVP3P/EeAAPIYQQQgghhBBCCLH/IL1mB9ixYwdqtYlfRWzcuBH13D9jJBjaNITBhwYB7Iq223dYn5t3y4YtGNu56yuDrY9txZMPPYkFBy9w8wshhBBCCCGEEEKImYu+7OsAv/zLv4yvfOUr+OhHd4nxiqLAzp078fGPfxwvfvGLp1x+ZU4FP/jID1DMKXDgIQfi9Dedjvt+dh9u/PyN2PHkDlz7J9fioKMPwrkfPhcb7tiA//zT/0SlWgEK4Ky3n4V67+RfONrPsD1ZSK78KKU+8D5n599ZOgz4klwm9UX+XIpvYr/wZmlaneQVKWmMrZ+H92l6JI3Z8HB8EF8Iy1fLsH59vL12bevKWR0Wb5NEdKQnyDhtP/In/lw0X6uVQ8Z9Fl6gN2x9uBBPFmYr9IUvhPSrXx3Stmwro81hzZqQvummkDYDZfhP/3Q8/TH6/Y8407vfHZfNfc5149/ttbIMl6/PXuvgYEjz2PDk3UB0TRVq78YEqcTU/9CRA582JSXp7SGp5YZNfka+Xpam1YMs0DY3y2a2bWtddK5siruk1XF7GBgI84Pl1ID5q19qkY50Qb3jyZTca27r2FCzGpbNVWiOcV+mlNbcxk88Ee9jqZtXRq7aLPce7d2ngHgJ8f6WOcEugi/QDnAm1UitygLii6LKWnllT08s6211eC4pySLPnVxJXq6UOBdvzUhJ/6bThsFbB3OtX1Ltw9tbt4b0gjb/jTv3WXeq5bG9g7U5cTEdzvLROtkz8HNqO/q7TBmenN5u832GLThqIOk4EK8ZXtriVdwuaGWkoM4ArxoZb07b5doX8fNHivqicI/PHlsJeClPzQ/v+T8FH8PpSLYL+H3O/cC2NrMIefZ1L3rZ1wH+/M//HC984Qtxyy234KmnnsJ73/te3H777XjyySfx05/+dMrlNxY2cMHnLoh+O+rMo3DUmUdNyHvc2cfhuLOPm/I5hRBCCCGEEEIIIUTnkYy3AzzrWc/CL37xCzz/+c/HS1/6UgwPD+OCCy7AbbfdhmOOOabT1RNCCCGEEEIIIYQQ+yn6sq9DLF68GB/+8If3mu+a931z0mXPb1RKHTdZBnrzgnh4AY9SZAaEjCgjEciVzTATZVPhnblXh7KfqXO+SI4wRJVjCaU92VRlvCayanSuE04IaSv3pPOydJe/mk9JmzyJmG0rTwqwfTj+O0a9h+QI3CapMM1nnhnS118f0s99rlPrSbByZUj/6Efjye233BJl+3NK/yGlax//eNjgfgDivuBoap7OAYgblo5nKSoAVAZaR7J0ZdLAxPHZ6nhg6mM1k2geORFlJ+BF3AXi9qJxlqsQmmpUw5R0h9OehAYA+nnMZC7Y3nls2SxTjOSrbZAF7S+k+oj/5srLbW6U3RyLCkuujUQuPD1s2UlJ1R6sVNcbuPYG4Ejo3crZbe9GA6BWH6NseX8Xz40w6s2XMpLVdst4+bx8PWWi4k7YHnJOVG8tmbZ1aAd8HU89FdIs/QTynzs9cvsyF24Hrzwb1bjM1xy5/TzV+1buupVz3ZZkPq/iU72gsjgDpWLWo2q1tbw6VR0v+rFt+5xl9OA2xGwsM6fKROON/61kHr5yZLxCdBl62bcPyY20e8QRR4ynH/z710xXdabMxZ9Z1+kqCCGEEEIIIYQQoiTy7OtO9LJvH7J06VIUReHubzab48E6hBBCCCGEEEIIIYSYLHrZtw+5hSR6zWYTL3zhC3HllVdiyT6Sr00nNuIi/3XAi+iWClaV+nTb+9o69el+GdmSp/bh6GBAWh3p1S330/QGSYkw6Hx+bqW27QyTZyvKY5UjVhkZ7xhF+xwaDL/nBE8EyiktOMKYleTweXtZ2prSi3OoPm4HW3gZKJLtIK0LnzbZ3kfp+h//cdh49rND2q4fPLG8dAoaP7a9a56cldNWtuuFgVu4MM63r9ZBavualZ8zuf4DzmTOlWFO9ZhUvlyJIMveq9Ugqav1+QvV8ODez5mqQ2PfBF+eEdjh40kT2y3PZMrcFlJqfya1zETSXe8GkIqYO9WGSEWUTtkP0L7entAQoxQR3lY718bDoy0yxRJ4zyO5kVDtM5GL91DVIfi51bZB7jPavsL7BsCLQtz6BwcqpFYPx8ybF8a67eMy3Zf7CMLwY4LtE+4/zler0nPzkJmkPGnLrC2pMdzORduUVSXLEX4ETX0b0u51p52kzjl/fkiXkfFGfZ66twhRkqIo3gjg3QCWA9gC4HsAPtBsNjdmHv8VAG9ydl/QbDavMvnnAvj/AFwE4FAA6wF8GcDHm83mXs0uOn+3nUWccsop0XalUsGJJ56Io48+ukM1EkIIIYQQQgghhBAeRVG8G8CnAPw7gN8DsATAewCcWRTFac1mc9skiruoxW8/b/HbPwL4NQB/B+BnAM4E8KcAlgF4895Oopd9QgghhBBCCCGEELOMZlMfPu6NoigGAFwG4BYAL242mzt3/34LgO9i18u/j+aW12w2v5pxznOx60Xfp5rN5nt3//zFoigGAbynKIrPN5vNG1NllAnWJIQQQgghhBBCCCFEt3MegAaAz+550QcAzWbzewDuBfCGyRRW7KK3KIrU+7jX7/7/p83ve7b3ek592ddhUgE79idSNmbevpQXA/s5pDyg2GZncLD18fYYz3bM4u1L+RhF/kR00oat0FDY19fX27Keu/I53nycXrMmPoYLedGLMCXuvjvevueekGbDlKOOirJVIi+0BlqR6lcuuu1/afIG0Lp1cb6f/jSkf/azkLYeiW9+86Sr8NiXvzye/iv6/V0mX+PUU8NGGQMWGqwjo/69pEb5xqrBG2bY2lj1hDIq7IXCPn22Hb1JaifYGWe49WsrXL+UZx/D12qPoe0KXdPTT/veXp4dIHu5PfVUXtWs1ZjnB5fyyOE1rTI6EjYGhyZmHj+mv+XvbMsIxM0103ywOgXfE717U65/Y8o3jqcbk9sPdszwusxeUTyVI78sIB5Dnl9WyleJ99mKe+bATMpvM+UN6BxXr7e+n7UqwiuK/c94vqaq43kfe/N9MnjnZa/j1P3auwa73XD6KNX9vA5afzLPi5nrY8vm9YnLzuz+bFIeqWXI9TtmenpqLX+vJAwKxzK/ASnjg83ktglX1XqDpzwlx7Ed6y2yuTfI1O9lHla5jMxG8eZr7hy188gro92xInObO6tfc0/UDiNkIQJ7/lH2sxb7bgLwuqIoeprNZu6K/SSABQBGiqL4fwAuaTabN7c450PNZvNB/rHZbD5YFMXDVCcXvezbh/zqr/5qtD08PIzf/u3fRqMRPzx+97vf3ZfVEkIIIYQQQgghhBATOXT3/x9qse8hAMXuPHftpZwNAP4SwK0AtgF4LnZ97/GToijObTabPzLn/G+nnIewyzMwiV727UMOOuigaPsNb5jU155CCCGEEEIIIYQQbaPZHNt7ppnPQFEUK2n7881m8/OcoSiKPkwUU6W4vNlsbkaQqrXS3uz5ntv//H83zWbzD81P3y6K4koAqwD8NYBjaV/DOd+ec+71fHrZtw/5Mkn3uo3enniBqFb3LgXIVdekJB4sJeDPvXO/yM+VInjKTyD+PH7hwjDnalWSw9mLIH1VhQqv2c/KWYe1fn3r9KpVfmWnyp13+vXhb+2NnGGkGtrBk/jYPuJt7zP+lDw7BecbIRlWbWAg7DjhhPggvta1a0P6hz/MO2kClu7+DqX73vKWOOMS+oPNihUhfSzdB/gagEhTx5LcUUdBBwCot85nJZlML5932bKQtmPdynr3wGN4X/LII61/txd7yCEhzVrUxYvjfLRv82BY91ISsRxS8yP1O8+dXLh+tczFt94XZLw8/a1tA0s8I5uDWaTpTfWltybmrnXtUJ95WNmcZ8lRA93rhjI165y2N9UyGj/HvmBCWSVkc9G4T1h/8L0uNQ+9vsyV7qckee2UV+bK6VLXmiOvrFZr3q7oeHttnhzaKyu1LyWBLAPfTtoh4/XqmrpHe+tMT0/8b8McWaht33ZLPD288Wj3MSxFniBZ9gpIeSjwTSxlHTDVQZO49/J11Ovh+lIS+rJ2DdOFt0Sn6l0bpWeGqn9B0bOFd58Rs4VNzWZzxV7y9AH40CTK/CqAzQD2DLS5AOzqu2eAbkcJms3m3UVR/BOANxdFcVyz2dzzdeD23edrRT3nfHrZJ4QQQgghhBBCCCG6lmazuQ67JLeT5eHd/z8MwFqz7zAATcpThnW7/z+AIAV+eHfZrTgMrSXFEYrGK4QQQgghhBBCCCHERG7Z/f8zW+w7HcCdkwjO0Yo9sq1HzTkPK4ricM64e/tQACxZbknRbDanUCeRS1EUzcm2dVEUaN78tmSeDY9vx7s+dSNuuWMj5h4wB0sPWYBPv+dMPPcN38TyI/swPLITCxoH4H+/9tl40yuPAwB85eo78QefvRmHLZqP4ZFRXHz+M/Hu1z0HAPCpK/8LX/zOGlSrFSzqq+PvLnkhjjxkQctzX/yZdfjbK74/qWsSQgghhBBCCCH2B1acdhpWrlxZ5muw/YKiOKW5K6Ds/k7t1gwZbymKolgE4H4AvwDw/GazuXP3768G8F0Af9xsNi+j/APY9ZXeI81m88ndv80HsLPZbA6bsk/Grg64p9lsPot+fyWAqwF8qtlsvpd+/ySA9wB4QbPZvCFVb8l492OazSbOf98P8KZXHod/+Mg5AIBVd23Co4/vwDGH9eK2K14DALj3oS349ff/EGNjTbzl1ccDAC4852h87g/OwuNPDuP4C/4Rr/2Vo3H4wT04+bgBrPz7X0ejXsVff/O/8b7P3Yx/3F22EEIIIYQQQgghxGyh2WxuLIrijwF8AsCPiqL4OnZJad8LYA2AT5tD3oFd3oBvAfCV3b8dC+D7RVF8G8DdCNF4/yeAnQCir7yazea/FEVxNYD3FEVxIICfYdeXhb8F4Kt7e9EHSMa7X3PdrQ/jgGoFb//18RfAOOm4ARx+cOwgffRhvfjUu87A5f+0ekIZBx1Yx7IlB+KRTbv8Hc9ecSga9V3vgM844RlY/9i2abwCIYQQQgghhBBCiJlLs9n8JHa9vOsHcDmA/wXgnwC8MFPCuwHAjwCcDeBSAJ8D8CoA/wjgec7LuwsAfATAOdgV4/FXAHwQu14Q7hV92bcfs/qeJ3DK8oG9ZwTwvOMHsOb+wQm/P7BhCMMjO/GcZf0T9n3pu2vwijMPn/C7EEIIIYQQQgghxGyh2Wx+BeFLvVS+S7HrhR7/tgHARZM83zCAS3b/N2n0sm+WYO0C//FH9+K6Wx/BnQ8M4gsf+GXU58ZD4avfvxsr79iEf/+bV+/DWgohhBBCCCGEEGLfsbPTFRDTgGS8+zHPPnohbl2zKSvvbXdtwjOX9o1vX3jO0bj9Hy7AT/72V/Hey2/Chse3j+/70c/X4yNfuQ3f/cTLMLc2p93VFkIIIYQQQgghhBDThF727cf8yopD8dTTO/GFb98x/tst//0Y7t+wNcq37uGt+P3Lb8I7LzhhQhlnnngwLnr5sfjMP+zy87vtzk24+GM/wXf/4mV4Rv+86b0AIYQQQgghhBBCCNFWJOPdjymKAt/6+Evxrr/8GT72f1ehXqti6SE9+PS7n497HtqCky/6JoZHdmJB4wC884ITxiPxWt7/xufieW/8Z/zRm0/CH3z2ZgxtH8UFf/QjAMARi+fju594+b68LCGEEEIIIYQQQghRkqJpzdzEtFAURXOybV0UBZo3v23vGTvExZ9Zh7+94vudroYQQgghhBBCCNF2Vpx2GlauXFl0uh7TRVE8rwn8pNPVaAM9tzabzRWdrsVMQjJeIYQQQgghhBBCCCG6BL3sE0IIIYQQQgghhBCiS5BnnxBCCCGEEEIIIcSsZKzTFRDTgL7sE0IIIYQQQgghhBCiS9CXfaI9DA3F2z0948kxeqc8OBiyDA/Hhxy6OPxF4a614RhbNPP00yG9bVtWTSPq9ZAeHY33zZ0b0vPmtT7Gbvf1hTQ1ASrD2+ODNmxoXYC9WG6kBx8M6TvvDOnrr4+P2bgxpH/6U0yJc86Jt7l+b31rSK8wXqjLlo0nt1d7x9N8Odx3lgULQtq2twdXrWpWNt6uYSRscD+sWRMfRO06/Gd/Np7+mDnvpTt35lWQmTMnpF/ykpD+jd+I8+3YEdJLl4b0M58Z0gMD8THUYCOojae57e1Y5zbmfHY4cjsuXhzSlcHNYWPduvgg3uYTc9sDwDvegX3C1VeHNF8EL05A3N7cQHwMgC3DoY25CG472968nZoHzMKFrY+36yivO4y3TgFAb53mxPr1IW37iE+2fPl4cnvfoePpTZviQ5YsCenK+gda7+h2UgOAJhWPJTv3+BDet3VrnI+XI2/O2zHy/DNa/zV/82D892BvLW5UafzYa/Vu+l4aiBca3ucNbiAe1N7xgH8R9ncug9K8ptpL5VPx4bYveTu13jJ86bnrx+mn5n2lceNNoZ/51sTPPbbp+fp4X2YzokJfkIyMxuOMr4/H9wEHTKj6ONwOPAfsesS3VH5mtGsil5fbjgy3KbfJ804q9+XMf60O5XntnXqGfeqpkLZ96bWdLc/jiCV513TvunANXPZxy/zjH97QemxaeKwyqfHIVEYTa5jzgDRSbbhlV3K/kEpNemKsp/VzNM8P7mPAf05IXR6nefwcvGjqX3w9sD70JZdt4Wed2ij92yn1jwFvIU09xHqNQs82QnQD+rJPCCGEEEIIIYQQQoguQV/2CSGEEEIIIYQQQsw6mgBKKJXEjEdf9gkhhBBCCCGEEEII0SXoyz7RFkbqvdH20GDrfNYWyyPX2409Kjy/HCC2Y8j1gGM83xm77XtkxN4eveT7NVYP+yLfECBtcrgHa0qT6QGShfEnw1VXhfTatSFtDW+okRvk3zdarcEjx7vM+qCwHyT3g+3jqF3Zk+yOO0L65pujYx4jn76/ot//cO/V3DvHHhvSt9wS0tZ/b+XKkH7Ri0KaxwX795kyatQv1Z54jjLsKVntabj5uF0rmx4LG+zLx+0LxJOCfdrste4rTjghpFOefXyxiXnYy2Otr7Wflzd1AX/cWytIzz8p1/MvNT9cs0G7lvDJqEKeD9IEUg3RzWSau42O+n5wvM3p1Djx0rndYKeEd6/ro3Ffr8drfKOPNlLGqjmkGoUrmzIy827mtj5UxvbhPN9h7xnE5uNbdsrbL4dcX7UUXtPx2Eo0T7QspDzSJjzfjOeJx0zuNXlDKGWj63laTufSVGaop8rw1nJ7L8j1sWM8zz7bPrzviEz7Ve/WctyyiXn3wLaxqTHI9U5dX/QM6RmhptZr2lfrs//QoHRup3uLhrkIry/Yd9JW21tPUn3JVUj56pXBs8hLzfeFC8PzaC3lg+it+amLLXNTFGI/RF/2CSGEEEIIIYQQQgjRJejLPiGEEEIIIYQQQohZhzz7uhW97JvhnHXxNZ2ugsvc+UGGl/oCuqcnpFlmcMAB/jGsCuXjU+fKlfF62GNYAsF1sIpV3ufJVLYjlqmwdDeWSsX5+gaeEcrmE/FBHKceaK+M97zz4m2uA2uRWMYJxJ/UU7qXZJwj5lqfeCKkva/r6/X4Y2RPns2yVABxe3Fd77wzpP/0T6NDWLr7O5Suf+ADmDJvf3tI/+hHIf3sZ8f5+OK/972QZvmp1eo4moyKp8EDojFTGwj5JkjyQO3Kct1Vq0Laav9Ixh11kpWI7ys8Cf2AWQD4OlLaPWpXHt+jfaFsOyU9OQtjpWieKsiuo9zEfAyrpmvDW+KDWCuVWkh5/tOJUusr76vZxVxEg6N/MbdPvNZ5/W/bnu+xU1Um5SrRUlLyOs0Ddw1K6e5S+3LKSPlueJMFwMhoaP9cyZlHSn44Z05eGd7UaYeMl8vObB6XlALS3k+8YxhPipqC29QOi1h+HtK2facqveXy2rHscRksr8xUokfkTonU9Coz7lLqeo9cC53ceRThVSJ1opzfJ4PzrDxmpO3D9AxRxrrDO2WiCliwIO88uXjzwN6nPKl9LTGP2GqhTpY1E+SL3j8uJOMVXYxe9s1wbrjtwU5XweXit72t01UQQgghhBBCCCGEEIQ8+4QQQgghhBBCCCGE6BL0Zd8M55TTT+l0FVzm0ffeKflADUHaunChH42VSSkOPSlAKgKbd3wqklmubCpWTYbr8yS9rcrwYPlfnSSH1cUkjbLfxrdTxssSTCCW+7Ec9uqr/To4WpKa0UMvWtQ/nvbax7ZpzQtlaKWkHDn42mtD+tOfHk9eas4Vbf/xH4f0WWe1rtxk4DK4HZYujfOxjoJlrzfdFNI2ZJoXWi0VeYy3aTw1eswk2ORErOPzWCkyRwsmmauVqdhIy9PF5uEwd57eGn6fNy+uTy/rXlNRRB35Bw/7hPLXlVrZ3z0JjM3Hw4TX3mju2gjeHJWaSel46KIaA6Hv+vrivyFGdWjn2rQ/Ya87QyLeb2XutK++JKyVtv95rLHEm3/PlbylVGpc3lNPtU4D8X01nmMUwbcvjgAeRXC1vhmMtwYl4HUnktObObpjR0h7srJcUs9HnE5JVj1JbTtkvNzEuetRGXLr6p0rdbzXL6nowCnHgqniOB6Uhm/zPE5SY8FrL9tWPNZzjm8Hue2dysf189agiRGKw/2pWg3rjl2DPPg5haX+llo173lmjCSn0SOauWXkKI5T60xqnPDY4lt+o8rP21OfIPxIlbuO8tjsTch4t9KzXGwd0Bvlq/K/TfucyMyzGnn2dSN62TfDWXHJik5XweX+r67rdBWEEEIIIYQQQgghBCEZrxBCCCGEEEIIIYQQXYJe9gkhhBBCCCGEEEII0SVIxivaQsruoFYPw2w08lLwj0ntY78hPm+qDp5Hjuf/B/ieK9ZCiH3kxtDakzDlT5Hax9fK3hXsxWQ9KRqLE8YWk4U81gAAK0hWnjL6WbMmpNmog41DTNkV9oAkf8KoX1KmNClPslWrQvrb3x5PXkqGLpdyowLAxz4W0scfH9LLl2PKsDcfDzRrzMbt6g3In/40PoYNfTy/K+tpyO2YMlZZvz6kub25POs7SN5jIzQ/hkwV+p2qtpvIp8vx/AGAajX8LazBbW/913is0fhu0HVXB2I/IC7Cm/+p9cjznQISHnmONxyAeEHhMcNjwVaC8rF3ka03e6RVbHmzBc9wEcjz2ASiPmOvoZ6e+G+23v2xHZ5k3j02de/l83o+eNYzjJewet33+eVnC48x8zdt75nBXgPXr912Tl5fpPrI8+ZqR7963l5lKNNW0zk2U2WXfQbNYf78kLaPFmWI50TeMWXGCbdj6vm4DO0etzmk2n6qdbDHl2kjz0rZ81FM1cF6sdpnGg9uo+iaHC/nsvCzySg9F9h689qb68Xu5Zvo2RjSo/SMx/eZfeUfPfNoQp593Ym+7BNCCCGEEEIIIYQQokvQyz4hhBBCCCGEEEIIIboEyXi7kNVXr8btV9+OypwKjjztSJz2ptNw7w334tav34on1j+B8z9xPhYduwgAsP629fj5//05do7uxJzqHJz+5tNx2HMPm3Idok/B6Tv16FPpUQ7rHh+U+jSdP8P2zplSe+Z+uu/J6zZujLcXLgzXNEyquZ6e8Lv9lLyMrIM/U+fP8209R0nW1dszxc/RrQyUpbd8YttJLPe8/vrWZdtOIs0Iy/1Y0oshc7FcBz7n6tVRtu3vfe94+s/p90uPPTZsnHdeXPZJJ4U0S1NJnlmWkb5njKdrnj7Tbntpq+lhWSnLOHkQbtsWH8PXlNLueBLPZctC2sizt4yG/hukqtlxu69kvFaF68Gq1+oA9ZedE9xe1I4sH7SSZbse7IGnkVXN8DbLTBpW0rXekbPz/Mj1PEhVwllI7c+zVxKTCfeFldczLJunRu41fVRfGOYb32c8+XoKO9T5OE+Sm1Afu2VZ7PK0h4nLY5hj9hbUqm57O6+XL7XcevVL5UvdOidLOySintMGY9uN1zCug7e22TJyJZ2V4e0hX73h5vOe/2z7epLldku1vefUsuQ8t+Zeg52TqT7zzl9GAsvS5lwpMq9BZeZu6n4/d27r3+2aEdfV/0aG2/HgRf55Ges4swd7rd7awuMspbTl+zDbbgBArUr3aB4cfD9qg4yX7X3Y5qSxKLb32DIU6pcrZ2b4/mHb0bu3cJseOvVHfCFmFHrZ12XsfHonbv36rbjwby5ErVHDlb91JZ77mudi4ZEL8ZIPvAQ/+aufRPnrvXW87JKXYf5B87H5/s245kPX4A1feUOHai+EEEIIIYQQQoh9h/44243oZV+XsWNwBxp9DdQX1LH5gc0AgFqjhrk9rf+ENXBM+IvKwiMWYufTO7Hz6Z2Yc8AU/9wshBBCCCGEEEIIIfY5etnXZTTHmkAB3PaN27Dyayux/KXLUVSKrGPvu/E+DBw9UOpFn/3CO5Lo0mfhlWoi/B0Vwp+s20/qeZ8nYUnJeL10KmpTigULWpfHn80vWOB/+p+SM+TUNTdaVSmsVoM7OhVZk6PXXnVVSJ9xRkizrNCWTeet1ElWwFI2INZArFwZ0pddFmVj6e77eMfb3x7SLNsF4qi7dK0jJuJyrcRfwlhaUq2SNMlOicWHjqcrXtReKyvmwllemwo9SdLbkZ5+qlucreJFBKZzjpjo0DueaH3afRWNz5IrH/OimqJq+p90RpsHW8/zVPBjT56TlMN6IfyAeI54YX/tYseLWK5OkWAZUNVEh227Pm5/JHVD8n63+jPe5rQpqzYQ+ohtM7j7c+deo2qsNupcdujnqUaRtEO4jOTYIzdScK5MkaeHlYjyNMqNAltGStrudZSXdZ7LbEWQK8+25Fxf7lpnrV840rd3HvuM6LW9vZ4y8kGm3cteTnk2jye1n2D9kjGe2iHj5b7IlZ9zf6Xq7aVTa4uHvTZvzNhb5VSj8XLZVmLM7eW5aVSGtmSdqGYrPuQsuLmTPBfPpsKcp5eeadkOKQXLvfk0qTHD5Nq7CLE/ogAdXcrJF5yMi664CEOPDeGOf71jr/k3P7AZN//9zXjB77xgH9ROCCGEEEIIIYQQQkwH+rKvi6kvqOOYXz4Gj655NJlvaNMQfvjRH+Lsd52N3kN6k3mFEEIIIYQQQgjRDTQBTKdUTHQKvezrQoY2DWHwoUH0HdaHx+56DH2H9bl5nxp6Ctf+ybU49Y2nYvGz2hiCKDcs3RSLzvkd8D+VT8lhWQKRKttTx9mIVx65cghPcpSK2tV2uC/5u3l70hNPDGkOf7VuXUjb7+ZZFszRb73oYADwi1+EbO9//3j6Y3EuXMr6Kpb4rlgR0iaKLF8fy4VGjSygVqK9y0SEbnjSXauh5zbifDxQzDFjPeEl/xMUbXpiVLogOX56a/h9wYJw/LDpVi4jV0I7naRkeB4pNQvLsFlVzteXCrKaHeQuR/oJ5GkgbZjVRRQ6kOehrVxKZ5xDpzq906R0Yd4ASB2TkuTTdpXWrVJRXxNl16h+VZJaTVCIOQHBWZZmL5WHcBklWa6cLrUecbdw26XsPXLv0UyqKzsNy2ZrpoFYrs/5xozNQSoKaKs8E0gMBraVaNDA4yjNtk29x1Hb/1ONctzmx96s8uw15ETZtcflLtFTjSKdC9fHnpO3vflm14/caNNl6lMGluvy2mL7uwaSsPMDBVfIPlN7et/UYscNZp8TpoqntbX1Zul+pnVQYzRImOuLw/Ooffby5Lozbe0Vop3M0ifv7qYyp4IffOQHKOYUOPCQA3H6m07HfT+7Dzd+/kbseHIHrv2Ta3HQ0Qfh3A+fi9v/5XZseWQLbvvH23DbP94GADj3w+diXl+mYZ0QQgghhBBCCCGEmDHoZV8X0ljYwAWfuyD67agzj8JRZx41Ie/zLnwennfh8/ZV1YQQQgghhBBCCCHENKKXfUIIIYQQQgghhBCzDnn2dSt62ddlLDh4wYSv+mYUmUY2Kcu/WnWM9rX2gEn5L3DZ7MtnsX5lOWXzMSkvHq8Zcn0HOW19Wdppi2U9dmq5nn3srbHY8YK84op4m8s46aSQXr8+pH/0o+iQ0Q99aDzNPn1/aM91ySUhfcIJretp/EnGyJ8uxwZtMqTGHcMeLtuHQ180co3ePKMfczz7mPAYTvllcTuwv5E9ZiZ7UnlzfDL52LeHr52b3s5Rzw+Kj2nUjY/VkNMZ1pSGt9lE0DMHAuLxkPLlyzA8qqQWoNnq2Zd7Q8otgweaNSGi/qtRty5YENaz7HmYykh1qPA5rbeb8XDbAw85Oz+8S7X5cu63qXvv/PkhbadErrebt4996NhDrlWdcsj1GiszxbiMyIM28bxWcRq5Av8GUGMfXCQ8jT2fvkwDxyrduy2eh6Btx1y/O4/c57pcvDJSzybevdzzLbPnSfkElrmmqbZpitzlMWc4pSztUvnKzGvuI27v2uj2OCNfCN/jPS/XFKmKT6exsudV+8gjcT4+Lz/DJDz7sGHDeLKyhPxkq/5aMFVvWCH2F/IiCAghhBBCCCGEEEIIIWY8etknhBBCCCGEEEIIIUSXMEs1NfsP13zgmk5XwWWgN3xSzdIIyxjJeKKvxY3UgsvwvlgHYkkMyyG3bQtp++k+52MJ3VNPhXSmYmmCFIHP5UkJUmo4T/oDGEkNYeW10TEY4TO5+XKIywLAbcQVNxJYLF3aOh99ao+1a+NjbroppE85JaQvu2w8uZnzALic0iTURfVzn4vLPvHEkF62LKS53kazwn2ZkrOUYeHC1ufJhecU+vqjfRW6pi1DrcfJ0IZ4u4RCMCKl9mD1aEpJuq/IVUDzmuHJBYG4vfgYzsdrE+ArZbm9rfSvN1OSHY1pL506pt3ardkq3WVybwCpYxjuPzsgSerE94nBTXDp9eaEHQs5mnyjh6rXW9//Waa2cKEvtUoU7VYhJVNk+Fkg1UUs1c+FZaqpNYPhZwsr9S+j9s4lflZpfc+w8mz3pLYCTmdUUjrXNmpJJ7ZHuD5v7QbiZ8MycHntuNd5/TqdEuHcZ+JcyrQp1yFlpzFV2TQfw88pQLzcemlbh1z41lsb3hI2NpkF27uo1PxwHjQmSOjpebIynTJez/on5UXA/05YscIvm/9tQcf3Ghuh6kC412zdGn5v9zP+/os8+7oRPYXPcB5c/WCnq+By8dve1ukqCCGEEEIIIYQQQghCMl4hhBBCCCGEEEIIIboEfdkn2oL9LDwnMp79QrzhRK9MKTxY6sKR9SyeKiQ3Mm+ZT7xZ5pCSAcVfzee9f09KFvaVbC43LKEX6dM2KjfYhz88nnz4llvG0583p/ldPiUdg5NPjjPmyBSNlICjSLK8OhlFMJPcaMxevmR9KCNL6JwsAPwosu2I9FgmqvV0kopkzeRG1mZ4PeJ2tGvTggUhzdODg81NiMY7GGl8Q9rqqVibwhfhzUO7PdX1ox2DptvIbYOUhConHKfZZullX19rOW1pUms5MTQY0jzf6osaLfMAviVH4lJdOXzqWlMRs71LSkl/c4Na5tgh2Dy5UsupRvr17jkTrUPCeKr1JNYjL1ys5x1hK5EaZ86+VP/nPsu18/7UjrK8sZW6n3nRRu2zbk50eEsnHB1S7Zg7tHIisNrzeHPePtenZMYeXIdGPbFoePfvlC+J0+CV0RE/X26I4jJ489raAHG+JUvyyvYsS8wg3roxpFlWnmv9IMT+iJ7ChRBCCCGEEEIIIWYdTcizrzuRjFcIIYQQQgghhBBCiC5BL/uEEEIIIYQQQgghhOgSJOMVM55ca7jU757tS64XV7uj0Xvl2bLZm83ucUka+k0RKi/lXVdh8zFu8MWLQ9qaZLz3vePJB9atG0//HWWx8Z/7zzgjbJxzTkgvXRpnpDqM9fWPp5MeMJGPXXv/LpLr4eN5z4wmvB3Za9CzX7G/584DD887y26zx02nrNxyz5vrv5PTXvPmxdueRV5kL1PGoMzC8429b6zPz1SNrHLXHPn37cJZ9JNrKveZZ9ploX28LuR2w1jVeH7a7d1460xqHw/blHdmyseO1xP21Zo7N6TZl8mSsqrM8UWz9S7RLVN+FrA+v2WmWBlPYobHbSX18JW7buU8sNnynMNTnn3T6RvLvqztIKeP7H3GOz63v9u9lKe8q8uQM3dStzpv3bEehp4FnG3vqfplJivO23yiqU5emPnLz8r8u/tvkUng+Q7mmpqm4H9z0Hkmeo22Ro8mopvR8BZCCCGEEEIIIYSYlbThpa6YcUjGK4QQQgghhBBCCCFEl6Av+8Q+JSXJYVgCYT+Nb2A7FeLJOFrLjex5Bwdb182eNyX9YMmQ9xm/lQSytCn9xXp4H+9JLe05e3rCtdem+FeaCTIuhwmf+PMFbtoU0hs2hPQdd0SHbHKku/+T0oeeemp8nksuCWmWKVqoPpXhMH6q9cZ42rajJ6G1NEooDjwJm5WPeLKwXHlNSinB7NjR+vfU2PTGum0r7xqsvK7XqFamC277XKldGYm/p7oBYlkQpysbHg4bvDjZbT4RzRsAwMqVIX3kkRPqC2DiXPHkNSlyJL0WaWV24Qyu6K+vdiLxOsrtyGsq4A68mmetAMQSqAS5cz5nH5dlFZ28L/ce7cl1U8pPXntTZXvY9do7T+6wj+6jqRtSdMzUT1yrtj4vS7/t6b1+rZpnhjrZZjCR3Neudd5Nw4zbMad+KVsJhq/bWmOkJLE5zLSlLldC6w0fe3xq7HuUkTbnyG6BfAm9VwY/o9vn9TLPDP19fj6Gl/XRvjCee3riecNjmp/xU8+FyfWE8zmNN0GS305ytda5dSDLks2DYS7bewtvc5umxpYQ+zv6sk8IIYQQQgghhBBCiC5hhv3tSQghhBBCCCGEEEJMP00AmZHpxH6FXvaJaSEnSi7LKQFEn27zV9wT5CIs+XD0tfWBZ0SH8BfsldGR8fTTT/syFU/GZ+vDn/yXicZVJjIryy5T0QZzpQQ557RE0h/bKCwtW706pG+6aTw5+Gd/Fh3yOUq/g9IDHFmXo4sCwP/5PyHNkXlPOinOxzI1kjBy1GCW9AK+tNUyVRlvStLtzaOUyoHHN5Anw+YxHEX9TfS/V++UpI+lElYmdURChd1OPEmObcfUdTB87TxmUtJ/boeov3htW78+PmjjxpDmDlu1Ks531VUhzXOCG9xeHMt6WVecGyUv1ZBltOjdRurm4g1I20d33x3S3JdWxs39553T5nFkvJlK0mg8pywrvO7fujU+hu9pqaCtOVYbqTWM1WOp6NuetLHMMbZOcb4gtqntw/nhRdNt9/NMfM8I99tKPbHY8ppoxm0lWo7y7nX7ilxZaS5+NNTWVi+APz5T9zZvHtnhmButPue8qWcoPib1rOutM/Y5btu21sen+siTQNvbYe4zg3cMr3Vlpr8dI8ko2U4+L+J6W6Lxeo1sF3mua67nEZXN/66zRfO9hsfTdEbmFqLTSMYrhBBCCCGEEEIIIUSXoJd9QgghhBBCCCGEEEJ0CbNIRyOmk9Qn3rVR+gx72AmzB8TySpL4Nuyn29731pTPfrrNn/IfcED4xPvxx6lq5hN8L1Kf/RqelSX8uT9HHktFKE3hyRFS0uHpjCoVSXe5/2xfOtLdIZLuftqU/S5K9112Wdh45jND+tvfjg/ihv3yl0P6oovifCwF5sFBv1eMlG3hwhANzYue2w5SY4HHEyv3GlWSftrBRZWNInBGkrdYqpErWfZUFDaY2kwmV66RGxCO83mSQzs9GF6P+llOOzHMdusCbP+zhJ0lvny87XA+F9ch1bHeopjSLMYhBf2yuw3bR1608lTYx3vuCemDDgppO7gOPjikedFgC4TMiMs1jMTb3LXUzyw/tZfqdX9K+u9JBHPV0ClZMa+pKak9w0N67tyQthFJeUin1oycNWjM/C3ek+HZfNExmdK7WK6Z9w2AN+XttcV1aC05nSBZToVqZvjhq97akiUVjZnrk5qiZSLFe2t+WWuV7cOhrp7K0TaVJ221snnGk+7mWozkknt8majWqSjd3nCK/43gl83rSVnrDyb3eSSyQCLrj2jumIurZK7z0Yz3Jk877td8r2NSD0jcqJ5FBRDVdd68sBaUGTOzG3n2dSP6sk8IIYQQQgghhBBCiC5BL/uEEEIIIYQQQgghhOgSJOMVQgghhBBCCCGEmHU0IRlvd6KXfTOcU04/pdNVcJmX8oNIGYns7Xd7fMrPxcEewh4cng9JytuB7SrsZTfqrT1pIl+1eutw9jOdCW3ieU1ZL461a0P6E58IScry+6bong98IGycfXZIL19OmYxvCNdn2TK/Pnwcj7uEIUyNjqlW29t/ni+OhcdtNO74GlJGPc4Ar5kxvHBh6+uzfjfcjJ6VSsrHZib7oth683bKrob3ef1qr9tdOnmHPalXoPGahOf7d8MNIW29b9jbjc9j83mLZ2ohTRlozRbsdfOcZb+ilJkW50uNE140PBO5MoZZiP3hPC++XO+71BroXV47hpbnv8dTwNah3b5POfkmes1NXohTm2K9U+3r9d9EO9BQbx723L79fWYMc+Gc0a5HtI/HYMpXN/VoybC340wgZ8yk5lFu2d64t2V1on1S5/SuNXULY1Jj3bvVWabqY8hj09rY8VpV5ec19r4094KUn6fHtMr9vHuQfYZJefM5jFQb4+kddBu1Pop8e2T/xdlkISxmH3rZN8NZccmKTlfB5f6vrut0FYQQQgghhBBCCCEEIc8+IYQQQgghhBBCCCG6BH3ZJ9qD/e7d+x6dv4HP1PuMGQllhT75HuvpbXmaQaPiLKMkzpUz8HU06pRxQ6hEY/Fi9zwjo/47d24i/vycsdIBK0eaCpXRkfgHbuR161qnAYy8973j6Y/S75fyRfy+EfKecUZIc3vxBbJEEYg7MNHG+PrXQ/qoo1rnSYzHXjrv9tGpS3rnzw9pr1+BWFpQG9ocNjZsCGmr9/B0SinJMskm5s1rwIPr49WtOtAfHePNsU4pOjObJFKS9NZpHtiKD4YL7Ot7xniar3vCIYOt9w0Ph7E1sOTo6Jja6PbWB9kFiQs/7LCQ5gtavTo+xtPk2fnmSerodysdqnDZXLcSUp39Fqsl4nbgucz6w0WL4mO47blfFyyI8y1dGtLUxlsQ7pV2PPZjDO0iJaH0SMnfWL6WW0aulLgMLP1Krd259Wmn9NdSy5Sm5ch4Lbn9nFNv+wxUKyE597LtNBZUnlzTXo89brKUmQcpciwicsdZmTFnj5mqjLcd93/uI6+uZc5jx1InJMu23rwOeo94ZWX7taqz/nuWMGXxyrNl87//6HmikrhPcdFsP5OyfuDTtnu+7p/Is69b0Zd9QgghhBBCCCGEEEJ0CXrZJ4QQQgghhBBCCCFElyAZbxey+urVuP3q21GZU8GRpx2J0950Gu694V7c+vVb8cT6J3D+J87HomN3SYSGtwzjhx//ITbevRHH/cpxOOvtZ5U7aSpUm6dns9ImhvZV7CfepB9kNRQHYLXSwZRcdw+paJxcBRs4ytXksTzLXkOkEfZlk540hQ+3UqLenvZJsrB+fbzN8r9f/CKkP/OZKBtLd/+Id3zsYyHN0XMB4IQTQpoluanGZyngCgpmY6Pxsm72zjtDmiOU2mN4fFK6YaWNmHwYr4ULQ5rlmWP1eCxUBkm6y30RadYpDfihcVMyDBq3fIgdW5Hcw5F015bEa0F/1Gfh70up6T+deAoxG40tku6yTD0RWbV3OYcR7W2VZcI2p1NBzAcGwtiI6r2sN8oXyWbt/N3D/ffH29dfH9IHH9z6mBRUoYqV5+ZEZu92ytwfDzkkPobnEe9LRGN+dGOYb48/7levv6/171ZeWUYqx/IzT5KbUmqmoiTm1CEl40qpRXPUo2WlrDZi7R5S0tEyUsLezFvTTJuWkXSPB4C5h7HFyzBdA7ejvc9Mp2yasZHsp0o7ZYb2USAVGdujjMy5zDXwXElJsnPv616+XOl/qn3KWAR4dkG2LL52b/0YTazXqWut1yuUL8ypWjuku4xn/WGee71nw0beI2zysdfro6naOwgxk9GXfV3Gzqd34tav34pf+4tfw2sufw3uuu4uPDX0FBYeuRAv+cBLcMiz439AzMZnLgsAAGq8SURBVKnNwam/eSrOeMsZTolCCCGEEEIIIYToTsa64D9h0bvsLmPH4A40+hqoL6hj8wO7vgqqNWqY29P6T+oH1A/A4mctxpOPPLkvqymEEEIIIYQQQgghpgG97OsymmNNoABu+8ZtWPm1lVj+0uUoKsW+r4j3HT1/xp2KxkjSpC1D/qfpngRuOiOhWclLP18H7+TrTmiJqvSZuY02FUXXcjRLjar5Jn8NSfeWL8eUsDLABx8MaZLuXrpxY5TtUo4kedllIe1Jde22E91zgkSQ28SJQgkg7gvOd/vtIc1SRnuMI+kFAJx0EiZLbf29LcubcH0sBX/kkZBmCa2N2sllJCRQOdh5xLI+NyaxnSDUR/3UxzZq675iggx/NxPkgpsGQ5rb22Z0ooPvoCnRjuiHPOxY0mclPQfz+PbCJ/O4svsefTSvgl7ZCZnzBKn8bMGuGbzN2la2CLDro7OGjfXF0a95Kd62rfUpcyVLKak9j7tUVFre58nUciPI50aHZcmblb+m9nl4ksVcKaNdRz2JZ+r6vOW7HVFNc2ScqbZK9V9u9HOXxH2Ln5dYipjLdEZtbndZ3jxiUpGrUzLOMjLeMnjRc9t9TOpRp8wY5Hw8D6YasRkADjwwpFPrqAevLbZ9vH8Hpf59xG03nTJefpYcHmqRdzdl+igV6JevPWdOCdENSMbbpZx8wcm46IqLMPTYEO741zs6XR0hhBBCCCGEEEIIsQ/Qu+wupr6gjmN++Rg8uibxpYYQQgghhBBCCCFmIU0AbfhcVcw49GVfFzK0aQiDDw0CAB676zH0HdbX0foIIYQQQgghhBBCiH2DvuzrQipzKvjBR36AYk6BAw85EKe/6XTc97P7cOPnb8SOJ3fg2j+5FgcdfRDO/fC5AIAr33olnt7+NHaO7sT9N9+Pcz98LhYesXByJ2VPK4tntDHBJCuwfTi8h05YgEX7uAopvyuPhK1e8vd6PbiXNdggggu0F8E+bVy5lCkJ50td7Lp1IT1Vz76f/CTa3H7JJePpP6ffL7W+cb/3eyHNHmJsmGb96RyfvmxSvmGeURubrthBsmZNSLPXmB3rJTz7sHZtSLOJyFFHxfn4XFzXww8PaduOjmffWDWM09Qw2/pESLPnl2XRouAVVhlImK7wNdCcmNDDXh+1md76SOsd7NEHxPXmscG+akBUb/ZLe/zx1kUBed5D1lfH85Sxv48sbIyna9b3zYPz8Vj/8Y/jfOy5yf3l+fcB8uwDJq7/3v3S87o12+zTZ+xS8STF2nrCmctlrZg8nz3PL8nuq1XJkzYyCkuciGCfJ4tt4lb1tKdN4XmceZ5Pdh8fn/LI4rJznlPsMe3A83P0vMraQcoji68v5RvGzwleeak2TbXjVNuYx2M7/MC4PM+bz/OCBNKene0eTx4pT9oyeO1apuyUbyHv43nQjmvgNSS1Lnvn4rXFrjOep6AdJ16+apU8mqtTj3LK/65LkbqfeHj5bF/mrHVCdBsa3l1IY2EDF3zugui3o848CkedeVTL/K//4uv3RbWEEEIIIYQQQgghxDSjl31CCCGEEEIIIYQQsxJ59nUjetnXZSw4eMGEr/o6AkuQWJ5J8iMru+lF+Ew8pZpkynxGX+ZzbU86DAAbNoR0X1+Q0PWzfNVWlA/iffZi+WQsz/X0ggBw/fUh/drXYkp8+MPRJkt338c7PvSh+DiWmbL0jyWm5rt7lmhxH1WQkA943/vbTubx6NXBtv3q1SH96U+HtJXtvvWtfv08rr46pFkOafUV69eHNEst+Xqs/JX2jYCkuyRfsNImbq6UsplheVwv1yEhWY/GOs8BYJ/JeKN+5rFg+98bJ0Yau3kwjFuWUOZK8pgya5M9T9TcJN1usPw4pY257z4qwKxbvDDn6mE8DeRswra3lYLvgceWnQ/Urrz8W6l9mXE3VVLdXxkl2fwQVc7T3QJxe9H4mSDppJPxvZfbwB7iDdvcZ4lc2RyXZ2Vy3pK4dat/3lxbkTKw3HvBgpAuI3Oz+bxbNN/XrW0HX1NKuu0dw/2Smg/c3ilJdhn4dlJWNs940yU1hnPHd7vltR65jjXeMZaU9NbDy8d9ZPuLxwLPj3bAj3IpqSxLYMv0kbc2Wby5U/Ndl7LJXXujdYLvH4lOroHyRf9giwdQZLU07Ax8a40jxH6OAnQIIYQQQgghhBBCCNEl6GWfEEIIIYQQQgghhBBdgmS8M5xr3vfNTlfBZaCXIrBaCRx/r03fqfMn2VWSmFlSn+R7+zhCWRk5XEp+wthPzrNUalayyPJMbisbrZILvPPOkF650q3o4HXXjaf7nOrkcqm5oEtZ68LS3RNPjA9kmRrJ0XIjwkZkZmS5zwS5F287EvMJ2g2W1LGGxvZlGVgmcMwxIZ2I9BqlKd9YT290iCc55660amEeQimpzbCnwusJErrevkT4M14nWCYNlItqXAaOssxjwdbnjDNCmtp+y1D8NzIvaG9KBuatLRzpz8rKPNlLSjUb91+od8PKVHisp2wFMiJrj9XDWACACudjef9swkbW9fSRifUoV87IeJEec2WFttqxpIp2pEKPeguKE6V7AnxMQsbLp8mVw6Zkqjlyv9TcY0mejULJ89yLoJqStrVbaulFVs59jkrVx7u3NEpEHk3l4zRL21MyUJY22vU2Fdk2hzKS1RTemPba18JTNDX/c/vfrg05lJEz8+3DtqN3j01JVnNsDlLP+MxUx4gtu1Z1diD+91Luv014THNbpfrBzoN2khtlN5Lk8n0iZfXi6dxth3sLqcLxAmhCnn3diUb3DOfBv39Np6vgcvFn1nW6CkIIIYQQQgghhBCCkIxXCCGEEEIIIYQQQoguQS/7hBBCCCGEEEIIIYToEopms9npOswKiqJoTrati6JA8+a3TVONps7Fn1mHv73i+52uhhBCCCGEEEII0XZWnHYaVq5cWXS6HtNFURzfBP6q09VoA+fc2mw2V3S6FjMJfdknhBBCCCGEEEIIIUSXoJd9QgghhBBCCCGEEEJ0CXrZJ4QQQgghhBBCCCFEl1DtdAWEEEIIIYQQQgghxL6mCWCs05UQ04C+7BNCCCGEEEIIIYQQokvQyz4hhBBCCCGEEEIIIboEvewTQgghhBBCCCGEEKJLkGefEEIIIYQQQgghxKxkZ6crIKYBfdknhBBCCCGEEEIIIUSXoJd9QgghhBBCCCGEEEJ0CXrZJ4QQQgghhBBCCCFElyDPPiGEEEIIIYQQQohZRxPy7OtO9LJvP2fD49vxrk/diFvu2Ii5B8zB0kMW4NPvORPPfcM3sfzIPgyP7MSCxgH43699Nt70yuMAAF+5+k78wWdvxmGL5mN4ZBQXn/9MvPt1zwEA/L/bHsG7/vJG/NfazfiHP30xXvviozt5eUIIIYQQQgghhBBiEuhl335Ms9nE+e/7Ad70yuPwDx85BwCw6q5NePTxHTjmsF7cdsVrAAD3PrQFv/7+H2JsrIm3vPp4AMCF5xyNz/3BWXj8yWEcf8E/4rW/cjQOP7gHRxzcg6/88Yvwia/9V8euSwghhBBCCCGEEEKUQ559+zHX3fowDqhW8PZff9b4bycdN4DDD+6J8h19WC8+9a4zcPk/rZ5QxkEH1rFsyYF4ZNN2AMDSQxfgOccehEqlmN7KCyGEEEIIIYQQQoi2oy/79mNW3/METlk+kJX3eccPYM39gxN+f2DDEIZHduI5y/qnVpnrr4+3+/pCemCgZXrLaCM6pLdnbDz98IbwHnrDBv+0Tz8d0tu2+fmGh1v/Xk3MgHo9pOfODekDDvDzLV4c0v09I2Fj1ar4oDVrQnrr1pAeHIzzPfVUSF9xRct6PrBuXbT9d5S+dOfU/BcG58yJtvvOPjtsvP3tIX3CCfGBy5ePJ7cMhb7cscM/F7drD72vroHa0XbY6Gg4z3AtJ1sEj7kJA201vRy/+uqQvuWWON9Pf9q68BRvfnNIn3RS6zQQNwQNrrElR4yn7djmbU5zGwwNxcfwGOZ8TzwR55s3L6R5inM1+6tb4oN4rN9wQ0j/6EdxPm7j6eSSS0J66dKQXm3+GPKqV4U0jeftA0dE2davD2lub25jb/zZfan1iNubsXNq0aLWZXMfD5jbRgPbw8batSH94INxRl5PaM6PLAl2D3bMHLzAKduuGd2MnXA8ULjTaSLxegbE/fzkk3lFe+me+O+B+OWzxtASO3D5ZFxve9/yjuHyUsfYCu7BDlxnUG8fDvecRnUEEVxv78HA4k0k2z68j8oeq8fPOnzp3Dz8u53XvPbyafkZCIin6PPPcPrVcONNob34Erw04A7bCWuYPW4PtWqo28ho/N2Bd9+y8LXzdXM72mHmzYmDDorz8Rx76Tl57cj887dbt+m5L598WQDwb9eH8vhewO2dGjM8zuz08u5BXhqIr+mIJXnX9MD6cA1c3qGL/eN5Lts6eNM39ZzJ48QbW7Z9vLXTjq3ca2LG6JubyjDdK+3FUafzMannDJ4f/E8JW3TOv3X6+8qNW2bzYKi3t8QDQG2YniE3bQppfl6z8PO79yAGxPcQ7z68ZIl/nq5Gnn3dil72zRKazXj7H390L6679RHc+cAgvvCBX0Z9roaCEEIIIYQQQgghxP6OZLz7Mc8+eiFuXbNp7xkB3HbXJjxzad/49oXnHI3b/+EC/ORvfxXvvfwmbHh8u3+wEEIIIYQQQgghhNgv0Odc+zG/suJQ/NFf/xxf+PYd+O3zngkAuOW/H8P24fhb7nUPb8XvX34T3nnBRNnUmScejItefiw+8w+r8Wf/+7TylbHfzWdoAXoXO/oOxJ94W/ma/Sq7FfZz9pQUpEXVJmyzHMLmY/lHJN3lz8qN1Db6NJ3hb+0T3EXlXWn2/c+sEvLoe/Wr4x9WrAhp/qTefPbOn+vnyhk9CWNPD8nZJhwf9vEQtFJrX8ZNci+rK+BtTrNOsize/LANlNLROIewdIP35UpJGduOXAWWe0RNt96M7Y0bQ5rl7Czp3JfweVmHw3pcALj77pAm6UfDSAkPPDCW6O2B29SOP69fUn3kSZPskuHNN05z3wFAdWG4hhrP65R2j+Y8S3dZ/gYACxaEshspGU4XM1LvjbZrNGHGnL+52rHgOTJYGWfO2Mq5H+6VMotLmROnJhJD+xo8bgfNA4O33rb7Gqg+FTOPenpCn3P/eZJXuy/VDHbNzsE7b8pWgOFrsOPRo0ptYJuU17qUE8lUh5b3jLe38+bAbZrbjmXgslP3a65PGRmvvWfY9srBkx+naNRJPmo6uUrPhhWEfPxclyv9jcot2V/G9WbyeB2G+D7hjfWUpD/XsYCPKbOWpPBUs5Zaoh1cvIFrj2/LzU+I/Qu97NuPKYoC3/r4S/Guv/wZPvZ/V6Feq2LpIT349Lufj3se2oKTL/omhkd2YkHjALzzghPGI/Fa3v/G5+J5b/xn/NGbT8Ka+wdx/vt+iCe2PoXv/eR+fOgLt+L2f7hgH1+ZEEIIIYQQQgghpp+pezOKmYde9u3nHLpoPv7po+dM+H3H//st95g3v+p4vPlV4cXfoYvmY8P3LwIAnPqsZ2D91b/Z/ooKIYQQQgghhBBCiGlHnn1CCCGEEEIIIYQQQnQJ+rJPtIdHH4232Qtr69aQThlHLF48nuytB++70b5alI3tGLg4L8y8xbNsSHlIpCwgIl8LNsxiXz7277PbfBHWy4/ybXJ8+l5v6npEO32xbGOxQWHCT65Om9wvqTZmvxMvX8rSjvvBHs9l89jgpq/3xb5aFW7HX/qlkDaebaV40YtCetmykDbeh2xyM9YT6sfTK+UH5003+7vX3qnpyu3Iw77fts8hh4T0CeQbmmO+OR3QOhNd4IMPxvm4kUv4vHjeiXbbsxCzfeL559jfPa8oTi9YEB9TG6UATdwmdgBw4VTZefPCGm29rqL1cnB2+uXUqkYaQ2M/+osrjbl+HqcARsifKuUHxtPKm2K5NkgT+t8zXUoN3Bx/Ulshayq2B7u20HFbhsm/lWxCFy7sb10WTL+0YyFluPFNm7AnFXtaMim7zNR9tIwlFXuppbolBzv/vWZMWdUyuV6Fuf59uf6EU/Vfa7dPH1+T54to24fzcb/wrc3C7cPpCT6vJa6Py5uwJnoknhMqPaESnqedbRO+du/fEimfP74GWzXed3CmtTPXp16vtUzvrX57sM8CuZ57U/XszMUbWxMYnqIBZ+oGaU3ghZgF6GWfEEIIIYQQQgghxKyjCWCKkYnEjEQyXiGEEEIIIYQQQgghugR92Sfaw5o18TbL9fhb8szvuMeq4RN2T7IAxF9oz5vX+pQ2nycFsdXxqmclIlF5i/tCmiVHVpbEhbOkd/36+Fw/+cl4+nP0+zsoPdBO2a5lxYp4exFpE/hzePOp/Ci1Sa6UgPuPi4vlHvHfJ3hftVqhdFw214HlLCmpZY2vb1GmJiMXlutmjpNceVaO3CultGOslMmTXrGcpW+JkUOzHPGww0J6OsdtCm57HgBWk8PyY+qjsXosu3uKlPfcJqlxP1UJVApPAZnEGzSpRTEaDCGZlL+1Wxe0v5IzmU2eqpF1jf+emMveWMiWZ6b057nkyn29YxILGj8ncNGeVcOE0/SEe0bFNkqObs7itU/Cf8KzorByWM/mImVtUYZcuTDD9U49e+VYDAD5UmJPXsm/2/XItqtHbr59Ra5liUeODNiWx8ek5Nm5xNOf5l5uBFA7/x3pbupavXxTXdraAZdXGR0x+2ot85WZr5ZOyHiTMu4yHVOmAxk9m4guRqNbCCGEEEIIIYQQYlYyw/7KIdqCZLxCCCGEEEIIIYQQQnQJ+rJPtAcr4/WkiRx6KhHVtDIcokPaaHUsYciNSsawrIOlCanod6ngTpFMxPuU3IYy4za59trx5H9v3Bhl+ydKX8J1O/vssHHWWa3P2Q6OPz7eZullolFy5aPevjJf1OeW7ckMJ0So7QnjruJdd1lYSsoyV6O72z4c/h6TCpI6WcrIsyzeULdq2F6WQ598ckizbntfwtJ0vggbpY37nPolpRaZ6hhOybNypTaptWoPjbqR0Aw7spnMaLwsMbKRfiM5EpdXSm+8n2LDX3LUdW5TL1QkgEpfSPf1NbxsEd5YLS3j9UhJv70yUsfw2KB9I9X4WWBoMKRTEcq90zL1urGIyPHxKCvvpQrW+sJ5uA65RbdDfTZ/fuvfc561JkNuGd7QsM3o3cs9ySvg33ZybVxyacdjgleeV3ZuBOGURDyXqT6jRfeFNgxiT7rLkn4gXhu8Y+yY8cbtVJWjtj7R80OPsW3IWEZTpMZju8dq1nnK3Fty8yWOsTYse+B+aORGihZiP0Ff9gkhhBBCCCGEEEII4VAUxRuLoritKIodRVE8WhTFF4uiyDJ3L4piaVEUzb3895uZ+VfnnFNf9gkhhBBCCCGEEELMOpqQZ9/eKYri3QA+BeDfAfwegCUA3gPgzKIoTms2m9v2UsRGABc5+z4HYB6Af22x71sA/tn8NphTZ73sE21h+/e+F2031q0LG+edF9Is3bXfjrOckWRODf4dwGhGpN5UxFwrM/SOYSVRKjpcJFvjyLrcBv/5n/FBa9eOJ1eRdPfbpk7/g9LVF7wgbJg2ibCS4alg9QyZ0jvvi/oysoexzA+Qc7/296Ls2bqxLKyfJZ5WklcGKm+kHqLXsiwNiMdqbqBHxpOIbN269yoCEyUw3tBKykByZHydghv40Ufjfaz3ovlWs3JftI4IumNHSNt29JSAnC8VZTVXsu72i9U5cjtwOlMvnlQ2TjXkYTdgbzp8b+DxxNHYE5FwK3QfrRtZkhd5nsdjNrbevO2dKHWP4GO8siw0iIcT1WEHDDvfvCp4EW4BoMbbnoeCvRd415d532xQvjETfdmbRrmSwxS81HlzOTeCqx1n3vqWG+yYI7VyBFeL5z6QqnfK8mCqsuV2L3t8Td79+8kn8+pj8aXtIW2lvmWkn1EE1k2DIZ2w9Mm1NuB1kNsndavjNkktR16kb9umZdqEL4/bOLVkeHMiFdU4ma+MNUEJovOmni3KeNZkPmd6Mm5etxr7SNYs9j+KohgAcBmAWwC8uNls7tz9+y0AvotdL/8+mipj98vAr7Yo+0wABwK4qtlsbppwIPBfzWZzwnE5SMYrhBBCCCGEEEIIIcREzgPQAPDZPS/6AKDZbH4PwL0A3jCFst+6+/9f9DIURVEviqK18WQCvewTQgghhBBCCCGEEGIip+7+/89a7LsJwPKiKCYdfW73Mf8DwAMAfuhkey+A7QC2FUXxYFEUf1IURZaUbwboqIQQQgghhBBCCCHEvqcrPPsGiqJYSdufbzabn29T2Yfu/v9DLfY9BKDYneeuSZZ7IYAeAJ9oNptWjz8G4N+wy+nrfgCLsOvF4B9jl0/gy/krw1boZd8M56yLr+l0FVzmzg8+G42zz453rqYAMeS/F/knsMmOxfOQAlCt94+nrV/NHhJ2R1m/W1I+WI3qSNjga2VfJvLoA4Chb31rPP1t+v08c95nLaLgPkuXhjT7PFkPsXZ69lkvFT4XNUqurx5TxsfGHsM+JNNpOzJGPpGVTP+lJFTBqdY15S9TBp5T1t+Q9/E84Cbp7TH3qfWDlCZPsk2tLCn2AXxez2MTiOcRH2PmRF/fM8bTnk+Tbccyfk5l8rlzImVqyhntWKftkWpQEuwgjyS7Jjf6aKBM8DucJdjr9jxX2TgodROLOjavCjwGs9eIlHFkLjleSqly6fhqNfax48PYd46x92vvmAl+W5650wzwnZwJdqdMqkm8pkvdr3Of10qNaQdbB288lS2vnXjPvanpmvt85M0J2x6VUXruzb1Yb06lyBxc7Ad3wAHhudDewjzPbsZeTq6/ZBm88lLLv//c6z+H8zXU63G+SsazfMoPMBcuu5Ja/8s0uJcv83hvTon9kk3NZnNFKkNRFH0A3jWJMi9vNpubsUvCCwCtnIH3DNxJy2yxS8I7BuDLdkez2XwAwIvNz18qiuLzAH4bwG8A+Fqq8Bn2yCAsN9z2YKer4HLx297W6SoIIYQQQgghhBBC7I0+AB+aRP6vAtiMXTJaAJgLwIY92/Pnke2YBEVRPAvAGQD+dfeLvVw+gl0v+14JvewTQgghhBBCCCGEELOVZrO5Drskt5Pl4d3/PwzAWrPvMABNypPLb+3+vxuYw+FB7NJdJ8KZ70Iv+0R7ePnL422Wul13XUiffHJI2+/rX/GKkGZ5ndHXNJb2jaeHh1t/zv7003HR/Om+F8l9goyHSCnbIokfy3VvuGE8uY5kuwDwFUr/PqV7zj8/LvuMM0I65yIAYMECf99ksY3CjUx1qJh8NUf3PDrqyww8iQ8X3Q55ttfPtl/5EirD9IeaVNvnQn3Jcoa+vl73EB7TU5UvWcmCnS8e3jyIlK08d4FYustS2cHBvJO2Gz4v123Nmjgf93NCNt+7PGzvmB9khinFkjeEUlIrz0rA5uO+5D6qVUmGYyXU3nqbWhQd7FiKpDuTLq1LsO3IHcNt/xDZwBxySHyMMwCqPf6aweOsjIJuwuDKGQ8p2VQJ6W5KxpszVOfPz6tOtkwtdQ25k5Rx8uVKYy25a7lHLPcLaWtFwLRbAudbDtRs1tbZBIB8ZeOcOSHtDdu2y5KnKs+0OOsEXxvgrxM8b+x45rFly2NS+zxyZbzevlyHgdRja44dTq0N/c9l11L3khLPHcl/KBAzzQJhZtEE2iDX7nJuAfA2AGdi4su+0wHc2Ww2M8wCdlEUxQEALgKwEcB3JlmXowHMAfDo3jLO2mdvIYQQQgghhBBCCCESfAe75LvvKIpi/PV+URSvBnAMjJy2KIqBoiiWF0VxoFPer2FXwI0rms1myz/VFUVxUIvfKgAu2735vb1VWu+4hRBCCCGEEEIIIYQwNJvNjUVR/DGATwD4UVEUX8cu+e57AawB8GlzyDuwyxvwLYhFfXvIkfB+oSiKXgA3Ypd0dwDAawCcgl0vH6/aW731sk+0Bxu1laMNsnSPpK1JOJqvDZ9FEqgeioSZqwr0Pte3n3ez0oqVe7XBx+KMt90W0nR9j33hC+Ppr5g6vJnPw9LdZcvijIcdFtJPUfAfbhMb2ZGj9k6VJUvibT5XKpqqpwUicqWNZWRJqU/1vf5PB78MwZV6vUiak8GJamzbgLvZi6yXG7Qzl1Tk6aw5wdJYALjvvtb7ZkJkVl40rAbnhz8MaW4IjpANRA128PLl4+mnngofztt+9SSVHIzVSoly7QdcuZ0jwQcQz2VeP8y6PtYXIqE/QcHUeWlKB9YL86g2i+QiI0Z+WOOxn7FWAogXA+qviplH9XrrQHDTKnMsU3hKg5spgeW13JOf2XnkShPtnEjNF+93LjAVUTJDX10zvhIsh081TxmXCS6P16BcpXVKIu49tnDZ9h7Pa1hPT5g79lEwp4tS/e9FlLdll4HLa4fzx1TlhxxcvkybNKoUfReI7532+d+DOzD3+FT4XOehqN7T3yLz7n3O3Ml9buLxbPOVUZ/y5XF59j6+z+TVRCS7bbOM15MO7zpX4iHUw8k3YqyDuL09a5xea9UkBNFsNj9ZFMXjAN4N4HIAWwD8E4A/nKSEdwmAlwK4sdls3pHI+i/YJfV9G4B+7IoEfDuA/w3gb5rN5l4fpvWyTwghhBBCCCGEEGLW0cSueA9ibzSbza+g9Zd6Nt+lAC519q3HLs+9vZXxJQBfmkz9LPLsE0IIIYQQQgghhBCiS9DLPiGEEEIIIYQQQgghugTJeEV7OOmkeJsNQjZsCGk2L7nKeEp+9ashzZ591vCEfOQ4fPv8+b3uIdu2tS6OrSG4ygBwIMXO6a1uDxtr1sQZV60aTw599rPj6b+iLL8TH4Fn/PZvh42zzgpp67fn+e+xx1bKL3GqWM8+hhvS+qo4noINrms99rHyfG1cDzLEXh8pH6NadYzyhb9xVEaND43DdvLcGjOeWJUy3mNcWbrwuvEKcaz9kv4ynn8SnzLl85fKx93XAM2JtRSB/okn4oN48h1/fEgffjg6wooVIT1/fkgfeWScb+HCkL7pppBOeWJS4y1ecvR4OuXF6PlOpbx42F7Q5uP+qw1vCRu8Dts1jPuPCzBrC4/1Aw6Y/N8Kp9NfaCaTvG5v4WPzNCD2uNq6NaSN2Vjf0jDu+JAyflITjMy8QlL+e56ZXuoYgj2XUt5nuT5W3jpaswfxtm2HnMJTXoxeZdswQdo5x8r41uUew/nssxevb7zmzJnjrzllmjH1zGDrNFl4yLSjT7g8b7rw7QwA5s3b+zEWvu7oGNuxZS6qjBcbX3jKJM8pLzWtvWu16wzn4+dRW7a1/Z0sOR6U9jzWf5HxfDFzvTjbTa7PZ7Wnte9s6ll7y1BYG/j6+FYJxP03rT62QswgZumjtxBCCCGEEEIIIcRsR5593YhkvEIIIYQQQgghhBBCdAn6sk+0h5Tck2PVn3BCSLNU18KyMpasAsCznx3S9In/wUvDd/gLFsQSUVYCsLSJZZJWDdsY3kx1pfr85CdRvu2XXDKe/gT9/vt8/ne+My6cpbvLlvmVYEmuJysyEqPNQ+Ha+/tKSEyJRzfGfw9gyUA/181qDrhOlG/7cCjPfl7P0sZchYinlLJyCpYcxs0YjxOGJb4pyUFvpsKLGSFZcK2apyXg6+MxzPKM1DF83Vbuw/3Kc8JS2fRY2GBZ6Pr1foW4wNSE21dwHVhKzJonIF63+JgbbojzOYOQR9ZxS+P18cADw15WOW/cGNJWvs5jesGCkLZzJZqKi2lw8jUsXx4fxPtoPRoZODTKNjRIaaPc9+rD85zr1t+HWQPPVwDo6ekfT9eWOYudnYh8H/QaH0BlMNy3BgbCeUpJlnLlqynNmSPjHakGqdaoOTxHLWyKi+D50aibe6B30xgylfD0vinpYBl5bubNjiVs1Wq4n7FFhd2Xy1Rlpqn7I2+zMp2bzq51fAzL8558Ms7njZNctWhKGltK9k7w7S01PXLJkfHafkw8Jrr09tB4Slm1lFlQ2tEQXh2ofrW+0BA10yaLF9OzF8IzHv+bwT6bejZA7VY2O5eTPCZlc8PPDPw4Y+HnP+95ssxzroWvieuWmv9M6pnBK5v7DsifO0J0E/qyTwghhBBCCCGEEEKILkHvsoUQQgghhBBCCCFmHU3Is6870cs+0Ra29zwj2m4sd+Rj69aFdEonwREvbdTeU05pfQx9+90wEsEjloTtgYHwQStXobLh4bg8lhJTxN0tJNsFgE9R+n2Ublx2Wdiw0YpPPjmkqa7bR2NZ6VYKbMqfutfrQZ71tAl++vjjIT1VqZyVzUTymMVBhtXoMUuJEy62Ued88YfFfH258gMmNZw8OStLdUcQt321GrbbLePlgLULF/pyNj4Xy7g4orCVH+REKLaSnijKGWsOreyGpbusm+B8LEu3leB52c6o0ZOB1xZem6xuhuvH0WttJNuVK0Pai8Zp2vFgrsMijige+jUlbcmWn3n9ZQcA9xlZMjyxMc7Gc9EbZxa+jpTkqJux04ilUgsXhijytVSkZ56X3Jd8TwWiMd27JHRSz7Jwj85V07HtAuDLq6rV1tETAaDqRPfetGFi3j3w8OS2skp7hqVoSUkW7Ryje1DFHMRR16NWyJXxMim9XyoMqEMk3TXHVEroT6caZTs3Orx3TLvhJkhF1Y2e/+hZAED+AufAt5Z2qFcPPDCkvQis9lp5vrA8dwyJee097LSjw8poJVPReHOk8uaYap2e84bDvnq99fPern1ZRU9ZCsoyd3uv9C51qnJzi/cc3g684ZSS/nM69e8ZL/L8RAuN1mW3ux2FmElIxiuEEEIIIYQQQgghRJegl31CCCGEEEIIIYQQQnQJkvGKtmCjV43OCxKYnqVHj6crueHBzjgjpK28btGikGY9A+e77774GArP1+DvtVkCtcHoimjf6F/+5Xj6U3EuvIfSkXT3BS8IaRP9cqQvSKo8NSQQf2buqQLtMe0MeGabnuUD3Fx9fSb6MV0fB5Hk67Gf13uf1Kc+9/ckXlZOweVxJNpFi0K9OdKoLSMl4y0DyyFTUdf4+kZGw99muD72WmOJYOt8HLFzQoHcMTYS9oMPts7Hc9LOa5buJiTrjerUIkfnwtEd6xQVtdrXH+XLlsNxO3zxiyH9qleF9N13x8cce2xIU5sczHJaI3PeMhzai5s4pbTu6QnRdHsXh/a18kxmkI4vM0ct7VaC7Y+k1mSOFthnxiDTf1Jf2OABYBcAZ0GprH9gPN2wc7Teh1ak+p9Py3IvKzH0xklqDfMka1Gk0FSFvJuO2a4ktJZW1ruHlPSX1+i4avFaV6M2icprecZJ4rVJ7jHwI9TnHJ4r4009w3jPCannEYblrCnpdySHttGY+WQlLCcqQ1vG0xPmWwlSzzd7sLesRpWkyZsGQ93McTUu0HsgsZ1URrNa5gbghau12156wrym66PBxf826Tc2QGP0fJtyOSkje+U+439H5V5qCu8Z1sLSXTffIuf3SWDvJ3tg+TIQj/Xca7X/Bt2DjS7s3Vv43wWzm1nqtdLl6Ms+IYQQQgghhBBCCCG6BL3sE0IIIYQQQgghhBCiS9DLPiGEEEIIIYQQQgghugR59om2wB5kdpt9GgYGgpdb44SEj8lJJ4W0NZFgk4v160OafbGsOQR787AhBB+/enV8zDe+MZ4kJz5cYqpa/cxnwgZ7DZ5wwnhyy2gDDPtipbw4PLuSXB+7dsPnYmsXa9/i+fFw11l/Gc9LI9cvL9dChv1JUn5ATLs9+7zybJvwvieeCGm+BnsMe2bVQJ49XO+U0SM3hDVC4cJPPTWk2ZNo6dLokJFqGPt8DXbNOGIJ9gnc56kx09MT1qrek+j6rH8Try1c4A03hHRq0PAaxPmMX2Ivt+v60EcNMwCqtMZyddhPzC6P3nhMrUec5u5PrT+z1bMvtT56/mTWQ4j7r8YNzuPHFsIGjnxS40kV3beIXP81b1wA8XjgdYvXAuvz55VXrVZMvuClxaetpAwlvQXX+u+Rd121HtJxG8T18eaOXaNr9YybVa4RZspLLdcrjsqr07XyaawfmWcNmKo2l5EaM2XgMvgRL/WckbyxT3Wx8h4oSvr3TfCrzKqD8yDW7gafzuNzvXO9AZkyBJ0iuVXLhdfH1HD0LiF1aYmlzqWNTTWhvJSHIHv42edED893kD1xgci+3a3b7KUJYN94Z4t9i77sE0IIIYQQQgghhBCiS9DLPiGEEEIIIYQQQgghugR9uCraglUs8Cfn/Ek2f17d0xNLWw9dTJ8Ps2TNas48ic7KlSF9883xMY6caeQXvwiniY/AX1H6Ut7x7nfHGVlyvGzZePLRreH6nnwyPiQlGWU8eUzqE/h2SuXsecqUzcewgoVlXED8eT1fN7eVlQjyJ/o8LFKSI4/cMdwOUv3n1YHJlkB5MiWeDzbfffeF9J13xvlYsspSwCVBgztWj+f1ExtDmueBbYN9JeP15l5KsjjaF66p30og6dqj9qFBuPmKK6JD+lkKvGhRSDs2AADiinPljGx6lOTH3M2eXNQWPXduSFsJDe/Llb14kv7ZhL1urysZq/Z79NGQXrr00PF073KTcc2akN5Ik49l5Zky3tQ4YXi9ZQklEF8Hj0FeC6wczlPG2zEX2RSwZJEHvj3I09faBYCeT3gXOxuwdMzmi5914nzoa/139kbqYr2bQZu18SkZv0cZNSzfU237eHXIXT+46aIxsmtv6wJtRXnwLylxc+LjvYegyeBNvpQ2ko9hWwg7tngeeHJf2z5T1bBmHj9GUv2KPcQbEJ7fjN3HbZLwpanQdk9Pf6q6k8ZrYltttnXIterJldcz03mP5imRu2bk1ofL5ilWZs0QotvQ8BZCCCGEEEIIIYSYlezcexax3yEZrxBCCCGEEEIIIYQQXYK+7BNtIRXckz+vZtmL/Uz9UFK2jVFEyYqVUPA33iTDxbXXhjRLlgCsd757J8ETbjD7foc3LrggpI1sjqW72+vhE/91FBzYyuFyImsB/ufo7Y4O65EbjTFXlszXkxuBsQxWXsWSIVaPpALPpiKjTRWuD58ndd1c15RkOWrX3HbkAlmHx7pNIJYzsRSV0qwcBIDHHw9pKwvsBJ4ML1dqWV3SG+WLouQuXx7SJBHqv+ee6JjNJDOsU7rB65SdVKxt5AqZta1B69HcueHveV7AZcCXwFi8OZpSZEkek8Zby+289u6dvXWzOPFOtrPg+yOPJQD4/d9vWTdrX+Ap3bjeKWkrD1VW0Nkx5w11m6/Wk3HTSMlhEzcd717H9/KU/Mxbr1sdR3u8Hb62LRWNNxcqo2psGDxyo2R618rjux33V3c9Gkro+FIPLlPVM3LZfIFlJMG2PG/cph7EUwPSOyY3qvU0wtVp2CjWOTrV3KjWmWHoy0hjU+RWgeebV4fcpS63Du3GW8Jy19EU9vl9D/aZ08vX7sjKQswk9GWfEEIIIYQQQgghhBBdgv7mLoQQQgghhBBCCDHraEKefd2JvuwTQgghhBBCCCGEEKJL0Jd9oi2k/K7YMyHXQ2LdupA+mjyoAMRmP4sWhTTne+SR6JDqmuDO99/0O/v0nWXq0McbJ5wQ0uxVBmBs8aGhauvD748+GtIpHwz2irBt4tmxpOxk2umRVcbuJFWflM/XgQeGNPvOeT4fQOxjYj2uGC7Pax/rIZjrpbev8Npu4cLEQes3tf7dGpmwORfPLzbcA4BDDglp6piR0fB3I+vl5Hmz7CPLnwl4Pn3WG8art/UN613c13onddiYMYpZTel+Si+mdWrA9pFnKnPKKfE29d8BBwTv09Q88jwt28FM6POZBnvX5fq88b5orPYlOowLZzPNzE5+8sl4m5cGXm9T3peeB2TKi4nH44IFiQp6jReZbGYu3ibfDpqyvKbxtLSehpwvdY/2bNHqi32/vFrdMeqyfVnmZkWdNEp1s9eXQ+oZhi1g+X6b8jRM+Vh6l1oZHWldgD0o18isDFP1/EuV59U713g298Eu1VYpc1cPOmakHrxvaxhzD4m9PePvU3p6wnyJ/DtTbeW1Q+oBm7YrNFhrtrLRufLmYer538OrduoZ2DveUmbO5+I1sbVU37atdb4UvPbaZ3mPnH8XCNEN6Ms+IYQQQgghhBBCCCG6BL3LFkIIIYQQQgghhJh1yLOvW9HLPtEWUvIK3peScTLRPvvNOUsT7r47pFetGk+OkRwOAO6i9P+j9C9T+jhTh9qJJ4aNJUtCeunSKB9/Zu5Jlu1n6rmfj+d8lj/TpXGs9hgYCGlb7/6eIL0ZqwaBREqR4ckrU5/+exKhhHKj7Xhyr3ZIKLmM/r6+1ifijgDihp03r/XvALB8eUjTPNiwIfxs1ae8nZLu7Ss86a6Vr3hScnt9PT1hrPazlQDpjypnnx0ds+K668bTm+l3TkeNCmBgNYl/2Urg1lvjCp18cqjP8tB/Tx8UBMNGVezOMdv9vB5F8sPMtXymr1XThW0fnmK8FnB72ynK61vkJLF2bZyRt2mcPUbjqWbGVl+LOtv6AHH/8/xgGa/tY28dTa0FLB9mSdcEuWdfmHt9A0GyHklWEhrRkWqj1c8A8iW5DMtUU0pb3uZjahiBy3Cm5LCMHo06o97T3zJLqn1S+XKtWzy4raw8zy0vdSKv7Wa6js9bPFMLtrdI2wHpPTy1u03oGmpVX7rL8PxI4v3jwsqNeZ/38GUXX4LXjNTzaEqazHjPR3Zae/PIW5Mtqe7nc+VKYMvgNb1tR29tycX7Nxkw0ZqiFUcs2XseIfYnJOMVQgghhBBCCCGEEKJL0Ms+IYQQQgghhBBCCCG6hBn+3bpoJ3PmzMGJJE399re/jaVGkloWliVZ+PNzjriaOubQxfQJ/Jp18c71FPL2zjvDeW65ZTy9ypT3b5T+FUqzdHeCSIK/OWeNn/m+vlEPde3rq1DaPcQ9jf2c3YtY16kIl1M9V0raPEKxzUYdpY1tRy+qZSoAX4kAbBHtkNp6AeFsm+zMsM+w1xpHdwySrAbJpJNyH6+xgEg/ONYToukNkypwf5JqeuplS6rPoz7zNOsnnRQd0yC9TuPBB9OV3MOv/VpIc4hSI8mM6kCdwddnr9VTgqXWI5YPVUiyVK/Hf0NkGdZ0SuP3J7zpxm2VUp/11mkuc7hKINaCUTRtFohuMfXpc+qZUvszKSsCL6K8E7h6AimrBU8KHNkXJKJxpiSm3Bec5uvj01i4bgcdFO9btCikee5ggxM93dJuGS9p3Wp0gVWKdpp7f7T3MC9gsrNMTdjmy0mVzYzRdwwTvmjwBlRKkzlV2iGH9RaNlE8C5/MaP1VGavIxCdlrhOdzkzg+miujRuYe1S9TL+5JfCnNzzaWTXS7tWsdj8+DFyELttTIDZjsPbek1l5O2+73rE3a/SznBXDOvdYUuXJvb3jPBIuZmYE8+7oRveybRcybNw+ryNdOCCGEEEIIIYQQQnQXkvEKIYQQQgghhBBCCNEl6Mu+WcSOHTtw0m452VFHHYVvfetbbSs7pQpg6RfLXlISmEiqe9998b5HH22Zbx1ludoU9ypKP4/SFY4ues898UEc8pDlBzaUJcmoBigiIH8Wbg9hUpF5vU/Y2/HZew65klX7CT1fE4+NlGTZU4+mIjinIh56eO2TOr7dcobcPioTjZm3edzVFwWZdMVM2LF6kGtVBhLSHaeRUkqidsie20mZccLNZdethQtp40m6eJ4UHM0bAF70opDmtY7XHCvPNVLgcVKLCy1CvSSVYrsBIHYpSEXjK7O25EYe72ZSa523PtpxFo1bHhuPPBJntLLePeVRuicK5+tj6+DJwnIDeHoBwa08MzeyurePI2Rbfw6WqY7SPdquC56FRkruH9chpG07VgYp7naZhmw3jrYtkhgnvg2Yzqpy2am1yVOcNlILfq7cswypATDV8lIPRYwn97YP7CnrDo8yD0WebjIh460MkelArt47N0Kx00dW0ulVux3PhZ5Vi32m9qLppuwQPGlrqvuZdttueHVNWtFkTsPoOYywkX298+5P9jPTRxOS8XYns/TRe3YiGa8QQgghhBBCCCFEdyMZrxBCCCGEEEIIIYQQXYJe9gkhhBBCCCGEEEII0SVIxivawvz5/j72aWCroMiLY1fOkPzFL0L61lvjbKtXjydHyXfwq5TlDabkpZSunHpq2GAfrEMOiQ8666yQ5gtctCjORx5JDfL9OOig4BuU8prL9bvhY9iLYzq9JqxnnFdX62PkeU81Rm2fE5uCQQi3I/svWW8nhs+T8lzJxfPzaIc/kVe29W/x8pWxE1qwIKSr1Ua0bwPZxg0M9I+nG8Zqbqwv7GPbMG7vdvu8TCcpax8e+7k+ZDX25uMd1lCGG2/t2pDmjrWDmA2reCJYr9F160LaGfhHLF0abY+OVijd8hAAcTtEc559vkwBdfKDnGn+jfsKe93e2GLrqsYw+boBwDry4luzJqRvvjnOR/fHDXffHcrOrSyR8uzzriFlq8XDltPWV8mzyE3Nw1zru/nzw1jn89p6c/08DylbNnvcjdHf0ic86/AFcoH8e8przDOoa3VcDp63Gxdb7422PT/ZdtzDPE/LMs9KqFf9nXyttkJTvdHn+upNsbyxang+smO41kPH5Bpme+3T7gef3AcFex/08CapafstQ2Fe9i4O+zYPht+tXS5Xm6eo9b5jjlji72PYYjV1qTn2hNajL37mC+kaRqJ8VfY4nUZy53JulzPe+m/LeuKJkOb1n32LZzdje88i9jv0Zd8sYqjMCiqEEEIIIYQQQggh9hv0sk8IIYQQQgghhBBCiC5BMl7RFvhzccD/zLyy6bGwsZ60g0AsqX3oIT/ft789nryMfr6Ez3/++fExLK87/viQPvbYkN64MT6GZb0sjePv+O1xdLEHk2Z5ZGEsgfE+skzJVBlWJrC6bzJl5GDluXwuroOVM/B2pBgZzNQI7v1nALG6Olcpw+2TkueyTIk/97dSiTIceGBIs+zJtmOO/NjW25OWeHIqC8vm6ov6o32eDIvl+SkJ9Uz4uNhTMNnx441vm682TBK9YbpYPoj1mUC8HnGaO3OJ0QEtW0bnIZ0Kr5tAPHB5rWK9kBkkixc/YzzN/W8leS6JScp7ZquMN6XI5DW2ge1hw95n+D7oycCBqJ8Xe5YVdjw69PbEkp56vfXfh/n+b9V5nhyWx5ZdF3h9TMnUvPGZWt+8Y2wfeSrMyihJ4IbMxbKcnQuwF+hJGFO+Aql9Xr5cShzjPQvYOc5LDV8292VqXUiV7cnHOc0yVwCocIVSusKpylZ5jqVks5mM9fS2/D2lwOb5ytYoI/BlmzWvTVL6/DLkHp+S+2bcUMbMNy0s16xWwz6eormX2o5nbc/yJvVc56VTzzARw/EFcQvV674sfKqk6sqk5rwHTzfu44lzIqR5DWuHSl2ImYqGtxBCCCGEEEIIIcSsowkg9y+8Yn9CMl4hhBBCCCGEEEIIIboEfdkn2oL9BDqK9rRpMKRZDktRAwHEMqMbbgjpb3wjynYpfTt/KX+Hfd55If3yl8dlsySOI1Hyd+UscwP8yHh8DcBE+e8eSBdQM5K8fvrmfPtweOdu2zEnAtd0Rj9NfdruSQkAoL+P5F+sj0hFG3R0U1WS4aQOadTH6Pf47xg50XRzVTxWNl0GLoNlfLnqrNx8fN0sbci9Bju2uI37+ijaJEnbWAZi67Cvxm2KzKB90ZiOpLqDpuK8bng651ThnrbFTirWSnPjHXMMXLhuvG6ZAdRYGrarC4N026oPPQn8yCivYab/96PozNNF7rqFtY5UFwBWrQrp668P6UceifPx2OD74HOfG9I2onwmkSUH/PXWOyZlWcDwmsjHpNatbMm5U7fUvbdSJkJhblhrL8puSvudooxWPkPamopWXOb03Mc2si/3Mz9L2nuLFxE4LW0N0cErrJucRs3iGJ+zZLRL736ZEUgZQBxxNZWv5k1M27Fl2qvdPg7OgxBLd201eZ3wpN+5Y70deEtBGRV/qkt4Xy1VeMazcllyyyszTLxj7HD28knGK7oZfdknhBBCCCGEEEIIIUSXoHfZQgghhBBCCCGEELMSefZ1I3rZJ9pCbXR7/APLxziK4MqVIc1SXQB485vHk5uvuGI8fbk516X8HfZFF4U0S2UPPjg+KCf6pY1+yFoH3mfrfe21IX3OOSF9xhkhvXx5fMwJJ4wnOUqa/eZ8+2iQXrCUgGUu9tN9exlTIVeJNOETeDqQo8hVEjoFljN7EVxTUdJGSUqYkqmw9Ccl/eKqcoTSdpAbbYyvnfOlro+P8fKlzsnyqgn5SFpY4cJpjjc4aqwppHdJ33h6y1BnPiznqG1RtFGrWWVJJa9nVl7J8liW2np2AQDG+oJUlqVkmwdDm/QtOy46hk/b0xNkYb0nnhjXh+cVh0lNSYTp2qtUNytf4qjU3tyxY4aHyXTKoWYyqYiANV4GeUGzETz5nsb3EzvfuP953zOfGdIpDS1jFtyK4xHAM7lRj9d1Gw1zD6k1rIySkMvjfByxHYinBB8fyalh6u3dhHK9COyNy6ssU9bTYarReJ36DJvl0ZND2ibxZKZsK7Ftm181lu6WifSe6qLGdGr3qB25Do2SSlbvGYT7ocycmoDXYbbwMjJeLsPrsNQxmTpVfs60cYd5PHGbeM9agG9fYZnqcMqV4XI6dU/1mo4l3bnHtIPpfBbIsTyy2ynZtBDdhGS8QgghhBBCCCGEEEJ0CXrZJ4QQQgghhBBCCCFEl6APV4UQQgghhBBCCCFmHU3Is6870cs+0R6sjxVvr14d0mvXjidHv/GN6JDqP/zDeJp9+n7XnuuCC0J6xYqQPuywkLY+VuTT9/CG1t5uS5c/KzqkwuZe7J9kDT3Y+IP9u+hak8ewz5cxVmlQHeqLgk9XZXRkPF2txv4bZcLWe3ATAL6llPU7wqbB8WTk08cFmIrW6+H6uF/YY4/TQNxcnE61ged9ksqX9LErgecVYuuT2tcqT4qUv5FnzWPLXrLk0PF0rWr63MPx5umdYCK0b25HkU8fe/FZs0tew3ifHQDPfnZIH354SNOas6XaD2YDLQ3ValiPuKlS/lQ8D3rtJPX8xfh3e610TezLdjCvTYh9FnM9crib2+0BtL9gh3rkcbuexiDfMyz33BPSPDaPPz7Od+yxIc2+kezfl7uIpXy1vM40F1uJdoU13hs/djvlQ+ZZgKU8ttjjjOdRvR4LXaI6eTeN3Mql9uVOCm+S2b5sp3EYlWWLjduu9eH2uNx7KpfdqIZnnb4+32usTBc1ejIrXgL2W2a/vbKefexr6LVp6p7B2DaJhtZAmKONvsQDSK5fpXuiEg8uqfJoEI3RM7GtJt/6eB8/CpR9Pprqs2HKy9l7vuV5lKoPNyP/+8HS0+O33VTJ9o0kcpdH/vdIyvqW7w3y6ROzBcl4hRBCCCGEEEIIIYToEvSyTwghhBBCCCGEEEKILqFoNpudrsOsoCiK5mTbuigKzOT+ufhtb8Pf/s3fdLoaQgghhBBCCCFE21lx2mlYuXJl0el6TBdFcUgTeFOnq9EGPn5rs9lcsfd8swd92SeEEEIIIYQQQgghRJegl31CCCGEEEIIIYQQQnQJikUj2sOqVfH2HXeE9I9/PJ4c/PKXx9OfNkVcSmHyRikcW5Wj7wLAy18e0iedFNIUbXDzaG90yPr1Ic1RtzjalAk8GW0f2kfREzm6MABcf31Ir1wZ0t/+dki/9rXxMRxFmKMpLloU56OInlForUTFOWJmFHm0BNuH478HcJSrXmwJGzZ8GTe4F3rWhuaiqKJjTmReCxddGd7uZ3SiAHPUNhv1ywteaqOkHbp48m3MEaG9brV18JoxBY91bm57Ho4WeMABfnkc+JXL6x99zC+cI4dyaDQbJs1GlZ0uuDO9hQGII6Nu3BjSz3xmnI/n6AknjCc3D4cxzEG67am8iHm2eTifF8wbAGqbHg4bt90W0hzO0UZP5xOfcUZIcwRXIOojXhsSQbajsVrB1Naj/Ra7uPAAWLMmpPleYtfHm24KaY6yS2MOQHxvof57YFMDHkcscfrFzomc0Ii23k7EzJHRMH6eeMIv7skn/dPzusX5+JSpecRpu/zwvih6Mq9vNqo1kwrbyQu7t+6lJlIq/G2ZGwXVZ6ynt2UWe6kc1ZIjHNvln6vH/bxwYUjbJuBq945uHk/bqOY7doS0N05sM/I2jw2bj7uozHMU3+O5rOOWlVsD/3tNKM+LxsvzAYjv5d4xFr6fcPs0YJ6vcsawxYtwv3y5f0wqQrnzPLFlODzX2UdTrgK3iffvAsBvr1QU8Zeek9fP/3Z962dBu4zypfK+3MDcfA01+NF4+ZmYafu9OxWOvQT87x5eFx5/PM7nRVZmnn/GLH1OEV2LXvYJIYQQQgghhBBCzDqaAHbuNZfY/5CMVwghhBBCCCGEEEKILkEv+4QQQgghhBBCCCGE6BIk4xXt4f9v787DrKju/I+/vzTdNEtjswmI7CIIBnVABMW4Rh0CSkBlUQNGEfcx4jgmo8b5jeOYuI7juCWOJOOKxiWgEMWoAUURVBZRFGWTBhRkR5aG8/ujbnefW3Tdvn37dt/u25/X89yHqltVp04tt05x+nzPmT07ft7rX2jVM8+UTv+vt8p1CZJreM01ZTPhfqP8Poq8/rL8vmY2r4jfxO/Dwe+nwe82IlF/aTsLy/o7auL3lwTxfST5ifh9MYXPT9SOwh0M+X0S+ssSdGTXPC6N/KjVktKkYXzfHvvzvf48NiTok8jvVMSfjuowieh++hL1LxPXD0mifoz8/Xh9kiTqVsnvk8gX7helqvw8hPuXibrMfl4TdXcSdX+H0/X7XPKnw6cxqg+YZoceXDod178VxB+Uv1G4E6hM9Nnnd9Tj998XXs/vSzPcSZ73PNhJ2T3sbx4+31HXNdHzyD/3ie6Zlv7vv2PHincK8X0S+h1rhfv28zTxrpff/1pew1B/N1HXP/ysy2bhvu/8e83v79bvsy/cF58/75eJ4fLIKxP9+9G/DEl3kRS+uZLpsy9RR1Yev2eogoL4/gT93fhdTYZ3n6ivuBKJntfJ9mMWtzDRj9QX1eFqeLuoHSd6+Kahj6soUX1zNWwY3TYgUT+vvmT7oI2b31y2UbND4/vsi+r2K1FZF3XNw6fbf2dsHuo/LRn+sYZ/RqnwjyOqn1//txKW6F73l0VdoyaFCe7hVCTzLAnvJ8n7Ptn3ep9fXoff/fznjNed+AH3fVXfDRP12deoUfnrJXosNCgue3/Pi7vI0deugX8M6X7OJPrBRa3nS3CCo87J7t3Ru4nqd1Qk26iyT0RERERERESk3lGffdlKYbwiIiIiIiIiIiJZQi37JD1WrIibLY4I3f2FN1148cXR6fkhS+FwJi9saX/rsvBBP+IsHCG4ZUvZ9LZtZdN+0+1wi3W/ub7fRPxQL2QRoIEfRuWfh169yv8e4OOPy6b9cLZw83U//MuPR/Dbn4ebtvtpeCFdKQmdyAb+SfLzFj55UaEXCWJ3olruJ4okiFuWZFiAH9rQJD86tqVFi7JAMz9cIx3Rh4kuuS/q1Pn3ZiKJQqWSEc5bMtFsefmhHfmZ8O+ZcOLhcP3q4ufBv78ThKzGXbBwuLG3bEPEMygcOuSHiPn8UxLeJuqah9cr9LocaODnO/xQ9PnxX2vWlE2H45Sibsj85kTybw4/D/UpjDd87v0wXr9s+PLLsmm/ewiIv+/853roGb8zvyzUMepWT/b5ccBDIypuMtmQrIjw1SaF8fvZ43W10LRpdNJRvUJUNcLwAFGxconK3gRdVsSl4cfrJUrbW7bHC4Ju6HetQfyxNwmH1Efwu0BJNqrYfwVp3LhsOnxv+cv8n3xU7x4QXa77ZXewXZ43XfZ9VM8BEN0FQviZ7L8ztm1Dpflpp+N+TCGaNXL7VMJ4w2HczcNxpslI9sXHl+hG8Zb5v4lEYdzJRJImCkv37+ckeyxIyH+++acnXDymFMXvrbjfa9vTINFzqxq7CIiU7ItmgjDePMqeDf4zMVHvMEl34yBSx6lln4iIiIiIiIiISJZQyz4RERERERERkXpJffZlI1X2SVp8e999cfMPedM3e9MNx4wpmznttOgEI0bcBeLat/tNr/3wkXCEgR9yEjmiaGgbv7m+Lxw219wfndMfPdcfPuuDD+I38kMGX3ihbDo80qefKX+Zf7AFBfHbpDOMN3ywfpt4P84g3LzeXxYZ+he/TSoPo7iRAxOFH3j78sM9iuNCY+LDoaJGbYsarTBVUSNFQ3RYZ7LhuVGhH+Ft/PQSRYhH5S0uSrEw/jzG/T78+zlRWGl18u/hRHGz/j3sh+qHfqNbd3n3U0Q0TPjZkkxITnibqGg//zFzgES/UV9UrEuScUpJh9NnIkSoNvLPkV9m+NfoqKPit2nfvmzaf64nCIf2742oR3JCqYyYmChGMGq9A7YpvwuFRFIJc/PXixp9vbarqfCzmvzpxoUiezfu/lAZ7Zff/itRsiPPJlLbwvqijs+XKOo+0Xqp/ESrfEOk8iOtIUm+SlZquyj+8y3ZZ1jUsgPeTf0Q+IjvD5BKfzrJSnY03lTi3v1j9fIaDj+voUHNRWoVhfGKiIiIiIiIiIhkCVX2iYiIiIiIiIiIZAk1YpW0eCg0f6U33fCXvyyb8cPhjjgiOkE/VC4UYhYXhplki/OokFx/NN6EI8J5wqO2NSwoG/2ySVTY7O7d8fP+MIne9M633opbrcns2WUz/ui+/rQ/vDCkN/4k3Jw+KrY12diGJNvNp9K8fn+iv1144T+7Ig4hUR7iDi98DlIYla5Jflm4RXFxdL7Dt015eUsk2TDeqG0OuNeTCPcJb9OsjTc6rL8g6l6qbv7F9GMbW7WKX6+NNwSj9zzyR64E2O5F5Ef99MIjVEaNrOyH9CR6HiW6fn4e8qLivcNhu1FDWYavUcTIqg0S/QYShUrXF+Hj9p+rbduWTfvXqGPH+G2iulAInfviiAiolMKXwjdh1JCgqYzmmCCkq2HEbRvOTqIBb6O+jzoPCcOFUxmNN1EmopYl6J/BL9+irnGiLCSSyjbJnscke/GI3CbR/RS139oWqpv06NcJJHN84S4d/PUSRUYmc77CYe57vPeWvCRHfY676Mm+NyW6abz5RL8JX9R9m+wjLFG2U7nO/iH51y/Ro8UP10343hsl2XjvdEtl+NtU1vOm80LHmp9fdr786xX1rl2/ONRnX3ZSyz4REREREREREZEsoco+ERERERERERGRLKHKPhERERERERERkSxhzrlM56FeMDNX2XNtZtTm6zPxsst49JFHMp0NERERERERkbTrP2AA8+bNs0zno7qYHezg3ExnIw0enu+c65/pXNQmatknIiIiIiIiIiKSJVTZJyIiIiIiIiIikiWSHKBeqiovLw+zyrX+bdWqFRMnTqymHFXdsq++YuIVV2Q6G1ll2ZK5HNa5baazUa65y1bRtnOntKW3ff12+vTsk7b05i6eS9tD03PuwnnL9HVJ5dzXxvOb7jxVVTrvmbCqHuuyuXM5rG3FeVu2fTuH9TlwP+k+tu2rVtGne/p+/wLLvtnOYbXo9xA2f/58+vXrl+ls1AmZLiMyJdmyqTaUR4nykA3Xr6rPk2TPaTaU47XtGBJJ6fjqaHldm8vE+fPnz890HkRSoT77akj//v3dvHnzMp2NtJo4cSKPPvpoprORVQYf05HZjw7JdDbK1XHcnxnyu5FpS2/e7fOY/0H6ys6OR3ZkyH+m59yF85bp65LKua+N5zfdeaqqdN4zYVU91sEdOzJ7SMV5GzxvHrPLeQdN97HN+9Wfmf+/6fv9Cwz+p3nMnlN7fg9hvXv3ZsmSJZnORp2Q6TIiU5Itm2pDeZQoD9lw/ar6PEn2nGZDOV7bjiGRlI6vjpbXtblMNLOs7gvOrI2DEZnORho8ltXXKRUK4xUREREREREREckSquwTERERERERERHJEqrsExERERERERERyRIaoENEREREREREpF7al+kMSDVQyz4REREREREREZEsoco+ERERERERERGRLKEwXslqkydPZsqUKXTq1ImzzjqL4cOHZzpLabFn7z4m/df7OOfYW7yfL1ZtoWfnQvJyG+Ac3H3tQJ55fRkv/G05rQ5qRO+uLfiXnx/Na++u4sHnP2XICR25+rwjq5SHreu28t4f3qN52+Y0b9ecnZt3svzd5Yy4bwS5jXP59otvWfjyQpq1bsbAXwxM05GnJ2+fv/45337xLTs37aT/Bf1p3a11yvtK9Vrc+cdP+GrNVtZt3MnDNw7m0LbNqnRMaz9dy7J3lrHj+x30Or1XysdTET8fjQoasW3dNvbv30/jgxoz6JJBGb3u6VDR8aXz3qlJFd0/ADu/38kr//IKZ958Ji07t8xwjg+U6m/t5XdWMGPOalav384tv/gHBv6obaYPJe2ytazz1YdjDKsNZX2U5UVb2fDNVt77/XsVvgM0TPN/N4r3FDPj9hk1UsZXpKbeAarT8uXL2bBqA+/9/r0Ky/V0X8t0qGy5XZdUdK+H3/26DOyS8r6yrYytj2VG6hwK481Ote+JLZJmV155JUOHDs10NtLq9y9/zpDjO/KPx3cCYOwtb3L3tQNp1iSX19//hkdeXMJBzfK4fMQRDB3cmdH/OhOAISd0okl+QxZ//X2V87Dus3W069WOlR+upH2f9hw57Eh2btxZuvzgww/muHHH8emrn1Z5X+nOW68zetHrjF5s+GoDq+auqtJ/BFK9FjeNOxqAl95ezlvzi7hoyOFVOqb2fdrTvk97dm/fzfxn55NHXsrHlGw++p7Tl36j+wHwxp1v4Pa7jF73dKjo+NJ57yRryaZNPLxkCVv27CGvQQP+Z/BgGuXkVCqNiu4fgAUvLaDbCd3SmfW0SvW3NvykLgw/qQsfL93A3z9eW2v+I5Ju2VjWhdWHY/TVhrI+yuxP1pHXOJfvln1X4+8Au3fuptOgTjVSxlekpt4BqtPs2bPJa5zHd8u+q5PlemXL7bqkons9/O5Xlcq+bCxj61uZIRKmMF7Jeg899BCXX345CxYsyHRW0ubT5Zs4tvfBpfN5uWX/8T+2dxuWrtoCBAX38Ze+wtDBndOeB7ff0aJzC4bePpQv3/4y7elXRTJ5279vP4unLebw06r2gl2Va7F9516mzPya4Sd1qXA/yRzT0plLefWWV+kyoOL0UlVePtZ+upbCQwuxBlZt+60pyRxfuu6dZP3+s8+4qk8fJvTqxY7i4kpX9EHF98/SmUvpOqgrOXmVT7umVOW3dtf/LeDS//g7px3boeYyXMOysawLqw/H6KsNZX2UffsduY1yMvMO4KixMr4iNfUOUJ327dtHbn5unS3Xa2O5nTZJ3OvpevfLxjK2vpUZImGq7JOsd+WVV/LII49w1FFHZToradOnawvmf/5d6fyevWVNr+cu+ZZenQsBmDC8FzMf/Cl/fX91teSjeHcxObk5tfJlMFHe9hfvZ/bDs/nR2T+iWZuqhc6kei22bt/DFb+dxe+uOY6Cpsm1wqvofPc8vSfD7xrOoqmLUjya5Pj5KFpUxIr3V9S50JhEEh1fOu+dymieG4TaHlFYmHIaie6fb7/4lq/f/ZpvPvqGz2Z8lvI+qlNVnnv/fNFRTL//H7nnqYU1lt+alo1lXVh9OEZfbSnro7j9LmPvADVVxlekJt8BqpN/LetiuV4by+10qal3v2wsY+tbmSESpjBekTpowvBeXH//HKbOWsm+/Y61G3ZywwPvk9swqL8v6VcDoEl+Qwb0OZips1bSujCfe59ZyKate2jfqgkjT61ayN6CFxdQtLCIDn07sPDlhaxfup73/vAe/cf2Z++uvXz07EdsWrWJz2Z8xhFnHVHl405X3ha+vJAtRVtYMn0JHfp2oNvg1M9DqtfiiWlL2Vu8n/944mPOP70bp/av+K+hiY7p26XfUrSoiOLdxfQ4uQffv1V94Vsl+WjZuSUzfzeTLgO7MPvh2Qy6ZBDbN2zP6HVPh0TH9+GTH6bt3knWxT17csfHH/PDvn3kmLF6+3Y6Nqv8f1gS3T8nXnkiAPOenldrQ3lT/a2t//4HFny5kS3b9zDhnOrrz1Ik3WpLWR9l2/c/MOuhWRW+AzR1TdO+75oq4ytSk+8A1Wnbhm3MemhWheV6dVzLdKhMuV3XVObdrypUxtZn6rMvW6myT7La+PHjM52FapGXm8OD/zw44Trjh/Ysnb7m/LIOuv9y91lpy0e/Mf3ofGxZM/6+w/vGLT910qlp21dlJcrboEsGpW0/qV6LYSdWPtwq0TF1Pb4rXY/vWjpfnZV9fj76jekXt6ywQ2FGr3s6JDq+dN47yerbqhUPDk58jyWjot8rQP+xtbclR1Wee9kuW8s6X304xrDaUtZHad66SekfCiD6HWDe7fPSvu+aKuMrUpPvANWp+cHNS69lonK9Oq5lOlSm3P7+7ep7P6oOlXn3q4psK2PrY5khEqbKPhFJSc/Tela8UobU5rylqrYcU23JR3XJ1uPL1uMSkcwYP7Qntzy/OCP7btqiaVzlh1TN+PHjueXuWzKdjZRlc/mme11EqkJ99omIiIiIiIiIiGQJtewTEREREREREamX1GdfNlLLPhERERERERERkSyhyj4REREREREREZEsoco+ERERERERERGRLGHOuUznoV7o37+/mzevdg5Xn6rWrVuzcePGTGdDRERE0iw/P59du3ZlOhsiIiKZNt851z/TmaguZi0dnJnpbKTBs1l9nVKhATokZRs3bkSVxSIiItnHzFTGi4hIvWdmmc6CSEoUxisiItVi8uTJDB48OKVtZ82aRc+ePdOcIxERkfSqTHn19ttvc+ihh1ZLPm677TYuvPDClLZ96qmnOOOMM9KcIxERySRV9omI1FJdunRh5syZcd9VpQKtLjnxxBNZunRpprMhIiIClF8mQ3rLq/Hjx3PzzTenJa3KuOCCC3j99ddrfL8iIlJ9FMYrIiIiIiIiIlIv7ct0BqQaqGWfiEgdVlRUxMiRI2nTpg1du3blgQceKF02d+5cBg0aRGFhIe3bt+fqq69mz549AFx++eXccMMNcWmdc8453Hvvvdx1112MHDkybtk111zDddddV24eVq9ezYgRI2jTpg2tWrXi6quvjlt+ww030KJFC7p27cr06dNLv3/iiSc44ogjKCgooFu3bjz66KOly8KhTl26dOHuu++mb9++HHTQQYwaNUqDB4iISMaFy6uPPvqIY445hoKCAs477zxGjRp1QGu9e+65h4MPPpj27dvzxBNPAPDYY4/x1FNP8bvf/Y5mzZoxbNiwcvf36aef8pOf/ISWLVvStm1b7rjjjtJle/bs4ec//zkFBQX06dMHf3DAO++8k+7du1NQUEDv3r156aWXSpeFowbMjEceeYQePXrQokULrrrqKvXhKSJSx6iyT0Skjtq/fz/Dhg3jqKOOYs2aNbz55pvcf//9/PWvfwUgJyeH++67jw0bNjBnzhzefPNNHnroIQDGjh3Lc889V/ryvmnTJl5//XVGjx7NhRdeyIwZM9i8eTMAxcXFPPfcc1x00UUH5GHfvn0MHTqUzp07s2LFCtasWcPo0aNLl3/wwQf07NmTDRs2cOONN3LJJZeU7vPggw9m2rRpbN26lSeeeIJf/vKXfPTRR5HHO2XKFGbMmMHy5ctZuHAhkydPTsdpFBERSYs9e/bws5/9jPHjx/P9998zZsyYuEo1gHXr1rFlyxbWrFnD448/zlVXXcWmTZu47LLLuOCCC7jxxhvZvn07U6dOPSD9bdu2cfrpp3PWWWdRVFTEsmXLOO2000qX/+Uvf2H06NFs3ryZs88+O+6Pb927d2fWrFls2bKF3/zmN1x44YWsXbs28limTZvGhx9+yIIFC5gyZUrpu4WIiNQNquwTEanFhg8fTmFhYennyiuvLF324Ycf8t1333HrrbeSl5dHt27dmDBhAs8++ywA/fr1Y+DAgTRs2JAuXbowceJE3nnnHSDoY8jMmDVrFgAvvPACgwYN4pBDDqF9+/b8+Mc/5vnnnwdgxowZtG7dmn79+h2Qv7lz51JUVMRdd91F06ZNyc/Pj2sd0LlzZyZMmEBOTg7jxo1j7dq1rF+/HoCf/vSndO/eHTPjpJNO4owzzijNT3muvfZaDjnkEFq2bMmwYcP45JNPqnZyRURE0uj999+nuLiYa6+9ltzcXEaMGMGAAQPi1snNzeXWW28lNzeXIUOG0KxZs6T7/Js2bRrt2rVj0qRJ5OfnU1BQwHHHHVe6fPDgwQwZMoScnBwuuugiFixYULrsvPPO45BDDqFBgwaMGjWKHj16MHfu3Mh93XTTTRQWFtKpUydOOeUUlbkiInWMKvtERGqxl19+mc2bN5d+SlrmAaxcuZKioqK4ysA77rijtDLtiy++YOjQobRr147mzZvz61//mg0bNgBBiM7o0aN55plnAHj66ae54IILStMeN24cTz75JABPPvlkua36IAjh7dy5Mw0blt8FbLt27UqnmzRpAsD27dsBmD59OgMHDqRly5YUFhby2muvleYvmbRK0hEREakNioqK6NChA2ZW+l3Hjh3j1mnVqlVcmVmZ8mz16tV07949cnm4nNy1axfFxcUA/OlPf+Loo48ufV9YvHixylwRARxBn311/SNhquwTEamjOnbsSNeuXeMqA7dt28Zrr70GwBVXXEGvXr348ssv2bp1K3fccUdcnztjxozhhRdeYOXKlXzwwQdx/fQNHz6chQsXsnjxYqZNmxZXERjOw6pVq0r/M5Gs3bt3M3LkSG644QbWr1/P5s2bGTJkiPoEEhGROqt9+/asWbMmrixbvXp10tv7lYTl6dixI1999VWl87Vy5UomTJjAgw8+yMaNG9m8eTNHHnmkylwRkSymyj4RkTpqwIABNG/enN/+9rf88MMP7Nu3j8WLF/Phhx8CQd8+zZs3p1mzZnz++ec8/PDDcdsfc8wxtGnThksvvZQzzzyTwsLC0mX5+fmce+65jB07lgEDBtCpU6fIPLRv356bbrqJHTt2sGvXLt59990K875nzx52795NmzZtaNiwIdOnT+f1119P/WSIiIhUs71797Jr167ST/gPXYMGDSInJ4cHH3yQ4uJiXnnllYShsmFt27bl66+/jlw+dOhQ1q1bx/3338/u3bvZtm0bH3zwQYXp7tixAzOjTZs2QDBA1uLFi5POl4iI1D2q7BMRqaNycnKYOnUqn3zyCV27dqV169ZceumlbNmyBYC7776bp59+moKCAiZMmMCoUaMOSGPMmDHMnDmTsWPHHrBs3LhxLFq0KDKE18/DsmXL6NSpE4ceeijPPfdchXkvKCjggQce4Pzzz6dFixY8/fTTnH322ZU4ehERkZo1ZMgQGjduXPq57bbb4pbn5eXx4osv8vjjj1NYWMiTTz7J0KFDadSoUVLpX3LJJSxZsoTCwkKGDx9+wPKCggLeeOMNpk6dSrt27ejRowdvvfVWhen27t2bSZMmMWjQINq2bcuiRYs44YQTksqTiIjUTabm2zWjf//+bt68eZnORlqZmZr/i2SxVatW0atXL9atW0fz5s0znR0RqUEq40XS47jjjuPyyy/n4osvznRWRCQFZjbfOdc/0/moLmaFDk7OdDbS4JWsvk6pUGVfDTGz74CVmc6HiEgldARygBUZzoeIiEhd0QzYBRQDrYDOwCJgbyYzJSIp6+yca5PpTFQXVfZlr/KHT5S0y+YHhIhkFzNrCqwn+APFWc655HsXFxERqcfM7DLg3wkq/b4ChjnnXs1srkREpL5Rn30iIhLHObfDOdfMOddHFX0iIiLJc8495pxr65xr6pzrq4o+EZG6z8wmmtlTZva5me0zs5RCZM3sODObaWbbzGyrmc0ws6Mj1m1kZv/PzJab2W4z+8rMbjaz3GT2pZZ9IiIiIiIiIiL10v5MZ6Au+BVB1wwfA02BQyubgJkNBN4G1gC3xr6+GphlZsc75xaFNnkOOAf4X2AOMIig5fhhwPiK9qfKPhERERERERERkfKdDKxyzu03s2mkUNkHPADsAX7snFsDYGZTgM+Ae4AzSlY0syEEFX33Oucmxb7+g5ltBq43s8ecc+8l2pnCeEVEREQ8ZjbZzFzsc3Ia0jvZS29ylTMoIiIiIjXGObfCOZdyE0gzOww4Fni+pKIvlu4a4HngdDNr520yNvbv/aGkSuYvrGifquwTERGRSjGzFV7lVfhTbGbfm9kiM/uTmQ03M0USiIiIiEh9dWzs3znlLHsfMKBfaP014f7TY/NFXnqR9PItIiIi6ZQDtIh9jgQuAhaa2Vjn3KcZzZmIiIiIeLb8Faa2znQu0iDfzOZ584855x7LWG4OdEjs3zXlLCv5rkNo/SURaa0hiTBiVfaJiIhIVTwCfOXNNwTaEfRtclTsu77Am2bW3zn3Tc1mT0RERETK45w7K9N5qClmVghcV4lNHnDOfZ+m3TeJ/bu7nGW7QuuUTJe3bsn6TSKWlVJln4iIiFTFc865t8tbYGZjgT8SvG+0JRhB7OKay1pqnHPjSWKUMxERERGpMwqB31Ri/SeBdFX27Yz926icZfmhdUqmy1u3ZP2dEctKqc8+ERERqRbOuaeB//K+GmlmuZnKj4iIiIjUT7FBNqwSn2Vp3H1R7N8O5Swr+c4P8S2KWLdk/fLCgeOosk9ERESq00vedAHQPdHKZnaKmT1iZkvMbJOZ7TazNWY21cx+kcxgH2aWY2YXmNmLZrbczHaY2S4z+8bMPjKzKWY2wcw6R2yf9Gi8ZpZvZr80szmxgUl2mNkXsWPoW1FevXTe9vbZJYn1S9ZdkcS6ZmbnmNkfzexLM9tqZj+Y2Uoze97MzjUzSyKdxmY20cxei53LH8xsZyydebEBWS4ys7bJHbWIiIhIvfBh7N9B5SwbCDhgfmj9DmbW0V8xNn8I4PdPWC6F8YqIiEh1+jY037K8lczsYIJwiZ+Us/iQ2GcocKOZDXfOfR6RTgdgGnB0OYs7xD7HAOcRvFT1r/gQymdmPYBXgR6hRT1in1+Y2fXA4lT3UVVmdhjwLPEjvJXoFPucC7xvZiOcc2sj0ulDcF67JEinH8GALH+OpSkiIiJSr5hZa6A1sNY5twXAObcsNoDIeWZ2i3OuKLbuIQTvpH9zzq3zknkGuICgj8FJ3vfXxf59qqJ8qLJPREREqlO4ldeO8AqxCrrZlFUkbQdmEIxCtougIumnQEegJ/CumfVzzq0IpdMAeJmyir5tsXQ+j+23aWwf/YEjqnBMmFk74C3KQiz2EFSGLQDygBOBHwP/DdxTlX1VIY99gb8BrWJfbSQ4H18CxUA34GyCF9KBwOzYed0cSqcZMJ3g/ANsiKXzFfADZS02jwO6Vt8RiYiIiNQ8MxtG2cBzh8W+uzk2v9k596C3+tUEfQNeDEz2vv8ngnfHWWb237HvriGIuPUr9HDOvWpm04DrzewgYA5Bq8BLgCedc7MryrMq+0RERKQ6jfSmdwFL/YWxCrpnKKvo+xNwbclfQr31coH/JHgZagn8H0GFmu9kylrqzQPOcs5tLC9TZtYNOLVyhxLnQcoq+lYAQ5xzn4X2MQyYAlxfhf2kxMyaAs9TVtH3W+A259yuctb7PTCGoPLvAeDnoeTOp6yi71XgfOdcuR1DxyoY+6TjGERERERqiZHAuNB3/x77dyXBe2FCzrn3Yt3D3B77OOA94Dzn3IJyNjkPuBm4kCByYg1wK3BnMhlWn30iIiJSLczsIoK/WJZ4LlzZRPDyVFJp96Jzbly4og/AObfXOXcD8GLsq8FmFq7sO8abvjOqoi+W3tfOuT8kdSAhZtabskrMYuDscEVfbB9TCY6/wv7wqsGVwOGx6XudczeVc+5xzu0geIGcG/tqbDl9Bvrn9TdRFX2x9BY6555JPdsiIiIitYtzbnyCgTy6hNa9Lfb95HLSmeOcO80518w5V+CcO9M591HEPnc55252znVxzjVyznVzzv27c25vMnlWyz4RERGpilFm5vd715AgdPdUwB+g4nPgX8rZ/kpv+qYk9ncPMCI2fTYwy1uW4003TiKtVF3oTT/jnFuUYN3HCY4r4cAk1aDkvP4A/FuiFZ1z+8zsvwj6f8khCJn+H2+VmjqvIiIiIpIGquwTERGRqri8guX7CAZsuNY5t95fYGaNgeNjs8udc18msb9PvOnw4Bp+CMTtZvaZc24+6XeCN/1S5FqAc86Z2YvAP1dDPsoVC1HuEpt93zm3NYnNPvGmE53XB8xsVJLXSkREREQyQGG8IiIiUp3eASaFK/piehEMZgHQ1cxcRR/iB/hoE0rvDeDj2HRnYJ6ZLTCzu81sRGzEs3Q43Jv+JIn1y+uHpTod5U2fkuR5/dTbJnxenwa+iU0fAyw1s/fN7D/MbKiZtUJEREREag1V9omIiEhVnFLSZwnBe0U74HTgtdjyU4H3Yq3NwqpaSdTUn3HO7QeGADO9r/sSDOrxZ2CNmX1mZreZWbhCqzJaeNOR/QJ6NlRhX6lI93ndRnBNS/qUMYKRd38NTAW+M7P5ZjbJzAqquG8RERERqSKF8YqIiEhaOOccsD72edPMHiAYoKIjMMXMjnfO7fE28d9DlgKVHTCjvIE81gE/MbNBBKPInkRQ4VfS71wv4DfA9WY2zjmXMAw3TWp6gA7/vL5PUNFZGavDXzjnlsb6ZjydoM/EHwNHEBybAf8Q+9xgZuc552anknERERERqTpV9omIiEh1mQScDPwI6AdcD9zpLfdbxe1xzt2drh075+YAcwDMrDlB34BnAWMJwlQLgOfM7Bjn3KeRCZVvE0ELRgha0VXUJ14yLe2cN52wctDMmlSQln9ev0vXeY1V5r4R+xAL3z2RoDXlaIJz2g6YamaHO+e+S8d+RURERKRyFMYrIiIi1cI5t5egwq/Er0Lhs18SDOAB0NvM/PDYdOZjq3NuhnPuOqAb8EFsUS5waQpJfuFNHxW5VuXW2e5NN6tg3U4VLP/cmx5kZtXyvuec2+ice9k5dxnQA/g6tqiQoFJVRERERDJAlX0iIiJSbZxzbwAlIZ3NgZu8ZZuBebHZHODnNZCf7cB93le9UkjmPW/6Z4lWNDOraJ0YfwCTwyPXCpxZwfLFwLrYdGtgWBL7r5LYACyPeV+lcl5FREREJA1U2SciIiLV7d+86SvMrL03/9/e9K0RA3mUK1aRVlU/pLDN/3nTY8ysd4J1xwOHJZHmR970iKiVzOwg4ltLHiAWbvug99W9ZtYyiTyU7CNT51VERERE0kCVfSIiIlKtnHMzKWsN1xj4lbf4GW9ZS+AdMzs9Ki0zyzez4Wb2FsGAEP6y+83sbjPrk2D7DsDN3ld/T/5IAs65JUDJwB65BH3U9SxnXz8F/of4/viivEJZSPNoMxteTnrtgWkEA55U5AFgWWy6G/B3M/uHqJXNrMDMLjSzjwj1MWhmz5rZrWbWNcH2vYFrva8qfV5FREREJD0s+OOviIiISHLMbAXQOTZ7inPu7SS2OQP4a2x2N3CYc+6b2LK2wCyCft9KLCKoMFpL8MfJVsCRwHGU9Wl3rHOuJAwYM5sMjIvNfgXMBZYD2wgqEnsRDNKR661zdCy0l4h0yj2+WMXbfKCkleJuYCqwEMgDBhMMTgJwL8HgJAB/dM6ND6cXS/MRYKL31XSC0XQB+gBDgSbA7ZRVWK50znWJSO8I4C2grff1XILK1W9j+WxDMFrxAKBRbJ02zrkNXjpvE4xqDPApQej1KoLWe60J+iQ8hbI/Is8BTnTOlVReioiIiEgN0mi8IiIiUu2cc6+b2fvAQIJKpX8FrogtW29mxwKPAKMIRqP9UewTZQ3BqLi+Pd5099gnyofAueGKvmQ559aa2SkELe0OIzimc2OfEsUElXyLKKvsS2QSQYXnqbH5f4x9fPcBtxLfOjEqj5+ZWT/gCeAnsa8HxD5RviSouPT557VP7BNlBjBWFX0iIiIimaOWfSIiIlIpqbTsi213FkFrNYC9wOHOuRWhdfoAFxG0JOtK0CKvGPieYBTcuQQtBN9xzu0PbduAoDLxtNi/PQlatTUBdgLfELTGex74i4t4CUqmZZ+3bj5wFXA+wcAajYAighZ1DznnPjazk2PzkKBlXyy9HOBi4EKCFndNCQbbmAM87Jx7J7ZeSd4jW/aF0h0IjAZ+TBAGXEhQifcdwei9c4Dpzrm55WybG9vuVIKKwsMIzmsewSjCqwhGOH7GOfe3ivIiIiIiItVLlX0iIiIiIiIiIiJZQgN0iIiIiIiIiIiIZAlV9omIiIiIiIiIiGQJVfaJiIiIiIiIiIhkCVX2iYiIiIiIiIiIZAlV9omIiIiIiIiIiGQJVfaJiIiIiIiIiIhkCVX2iYiIiIiIiIiIZAlV9omIiIiIiIiIiGQJVfaJiIiIiIiIiIhkCVX2iYiIiIiIiIiIZAlV9omIiIiIiIiIiGQJVfaJiIiIiIiIiIhkif8PdTGiPZ/IbI0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plot_map_with_regions(preprocessed_data, preprocessed_data.test_x, title='Normal mode correlation map of an AlphaFold structure')" ] @@ -142,12 +148,49 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "023de2d6", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31mPlease check your arguments if you have upgraded adabelief-pytorch from version 0.0.5.\n", + "\u001b[31mModifications to default arguments:\n", + "\u001b[31m eps weight_decouple rectify\n", + "----------------------- ----- ----------------- ---------\n", + "adabelief-pytorch=0.0.5 1e-08 False False\n", + ">=0.1.0 (Current 0.2.0) 1e-16 True True\n", + "\u001b[34mSGD better than Adam (e.g. CNN for Image Classification) Adam better than SGD (e.g. Transformer, GAN)\n", + "---------------------------------------------------------- ----------------------------------------------\n", + "Recommended eps = 1e-8 Recommended eps = 1e-16\n", + "\u001b[34mFor a complete table of recommended hyperparameters, see\n", + "\u001b[34mhttps://github.com/juntang-zhuang/Adabelief-Optimizer\n", + "\u001b[32mYou can disable the log message by setting \"print_change_log = False\", though it is recommended to keep as a reminder.\n", + "\u001b[0m\n", + "Weight decoupling enabled in AdaBelief\n", + "Rectification enabled in AdaBelief\n" + ] + }, + { + "data": { + "text/plain": [ + "ANTIPASTI(\n", + " (conv1): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1))\n", + " (pool): MaxPool2d(kernel_size=1, stride=1, padding=0, dilation=1, ceil_mode=False)\n", + " (relu): ReLU()\n", + " (fc1): Linear(in_features=334084, out_features=1, bias=False)\n", + ")" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "path = '../checkpoints/model_' + regions + '_epochs_' + str(n_max_epochs) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt'\n", + "path = '../checkpoints/full_ags_all_modes/seed_13/model_' + regions + '_epochs_' + str(n_max_epochs) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt'\n", "model = load_checkpoint(path, input_shape)[0]\n", "model.eval()" ] @@ -162,7 +205,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "a4f0e496", "metadata": {}, "outputs": [], @@ -175,10 +218,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "d6cacfee", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAAI4CAYAAACCx5TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABU0klEQVR4nO3deZhcVZ3/8fdHFsMqAlFRDEFnQASSAB1cWGQzICIwyAiKIoJkxt0ZEUUdRRz9OcqMjuKGirggiyCgDCK4hEUQ7EAIYVFAgyDOEEA22cP390fdjkXoLUl3V9L1fj1PPX3vueee871dBfn2qXPPTVUhSZIkdbOndToASZIkqdNMiiVJktT1TIolSZLU9UyKJUmS1PVMiiVJktT1TIolSZLU9UyKJUmS1PVMiiVJktT1Vu50AJKWTpIhn7xTVRmLWCRJWtE5UiwtpSS3Jpk2xn3+vyTvhVbCO9RrkHauSLL5KMV4bZKdRqPt0YpjJGNOMj/JbiPR1hD9nJjk35fy3GHHOFbXsyR9Lsu1S9JATIqlpZDkmcBzgOvHsM+JwMHA19rjSFJJNmr2k+SYJqmYOkhzxwLHjEacVbV5Vc0ajbZHK47lJeaRlmRWkr8keXqH+p+f5KEkD7S9ntvBWEYtue/EHw/Dtdj78L/NHxVrjkI/6yY5M8lfk9yS5A2D1N0syS+S3JvkpiT/sNjxBxZ7LUzyxZGOWWpnUiwtnS2B31XVI2PY5yHAuVX1UFvZNOAvVXVLkjWA04FdgG2r6upB2voRsHOSDUYr2E5J4rQwIMlkYAeggL07GMprqmrNttftHYxlQJ3+3IxB/6+pqjVp/T9jK+CoUejjS8CjwLOBg4Cv9PeNVHOtZwPnAOsCM4HvJdmkr077Z6Zp7yHgB6MQs7SISbG0dKYA18Ci0dkPNCMj9yQ5LckzmmNPS/LRZqrF7Ulek+TRZqR5Sb0KuHCxsmnAnCSTgEuAe4FdquqOwRqqqoeB2cCMgeo0I9B/17a/6Cvr5nr/lOT+JL9NsmtbvUUjZs32EUnmNiNCpyaZ0FZ36yRXNe38oDne79fizcjSrOZ3fG2SvRfr8wNJ5gJ/TbLy4iN3g/XVT90B407ywSQ3N+1ct/gI12AGO3cYv6utklzZnHsqMKHfTv7mYODXwInAm4eIa36So5qY/pLkW+19A9MGiWupfh+DvZ/91B32tff32UzyXWAS8OO0Rh2PbLvuxT83A37um/3nJ/lhkgVJ7kpy3CDtD9VWf/0/N8kZTft/SPLuwa5tOL/rdlX1v8BPaf2/Y8Sk9Uf5a4F/q6oHquoSWn98v6mf6i8Cngt8rqoWVtUvgF8NUBdgf+AO4OKRjFlanEmxtHSmAHOb7U/QSlhfSmtKxdOBjzbHjgZ2a469GPgQ8H9V9Zel6HNL4LeLlW0FrEIr+fluVR1aVY8Os73rgcGmWPQryabAO4HpVbUWsDswf5BTXgfsAWxM6/d2SNPOqsCZtJK2dYGTgX4TqiSrAD8GzgeeBbwLOKmJpc/rgVcD61TV44udP+y+hoobuJnWCOwzgI/TGuEa7oj7UOcO9rs6C/huE/8PaCUggzkYOKl57Z7k2UPUP4jWe/lCYBPgI0PFNcxreophvp99dYd97QN9NqvqTcAf+duo9WfaThvwc9NP+yvRGt28BZgMPA84ZYj2h7Kof+AJWr+Xq5u2dwXem2T3pfjvbqBr2JDW/69uGqTOOc0fK/29zhngtE2AhVX1u7ayq4H+7l3o736HAFsM0Pabge9U1ZA3F0vLwqRYWjpbAnObRONdwBuq6s/NCOzpQE9ac4D/BTi0qv5UVffQSgKuWco+1wHuX6xsGq1/dOZW1X8tYXv3N20uqYW0Ev8XJ1mlquZX1c2D1P9CVd1eVXfT+gd/WlP+Ulor4Hyhqh6rqh8CVwzQxkuBNYFPV9WjzcjSObQSivZ+bl1sekn7+cPta9C4q+oHTfkTVXUqcCOw7RBtMcxzB/tdrQJ8von/dOA3A/WTZHtgI+C0qppNK3EdcH5n47jm93c38Eme+rvtL67hXNNZbQnVWW3XM9T7SVvd4V77kn42+65toM/N4ralNcL5/qr6a1U93IyILov2/qcDE6vqmOb38nvg68CBLN21tTsryf3ArbRGXT82UMWq2quq1hngtdcAp61J65uqdvcCa/VT94YmhvcnWSXJDOAVwOqLV0zrW7BXAN8e6gKlZWVSLC2hJH0jGtfQGiG7ZrF5kusDf6Y1ynNTVbWPyKzL36ZdPCOtVSAeSLJohCTJJ5NcnOT0JO3/SPyFtn9g0rp5ajNao2abpVmVYrFYf5DkV83X1D9N8uK2w2sB9yzp9TfX815ao+B3JDklg9889b9t2w/S+scTWsnFnxYb/bl1gDaeC9xaVU+0ld1CazRtqHOXtK8+/cad5OAkc/oSPVqfhfWHaIthnrskv6tbBunqzcD5VXVns/99hphCwZN/H7c0fQ4V13Cuad+2hGrftusZ6v2kre6wrn0pPpsw9Oeg3fOBW4YaUV5C7f1vBDy3fWSW1rdLz17Ka2u3bzPCvBOt6QvD+swugQeAtRcrW5un/iFPVT0G7EtrhPx/gfcBpwG39dPuwcAlVfWHkQxW6o9JsbTkNgaeqKpbgIk8dXRkH1rze9cHFiXLzVevr+Jv0y4epPWPwultdbYAXlhVOwA/Aw5ta3cura8o+2xBa/ToYlpTAT6RZJfFYvk7YMeq2onWP67faju2Ga2vNwfyIE8euXlO30ZVfb+q+kYjC/iPQdoZyJ+B5zV/ZPR5/gB1bween6T9/1mTgD+17Q/21eqS9DWgtFb5+Dqtr7HXq6p1gHn0/3XwiJ1L//FPGqCf1WhNd3hFWisN/C+tbyymZvAVSdp/H5No++wOZBmuaTjvZ59hXzsM+tkc6POxePmAn3taCeyk9H9TXH/tD9ZWf+fdCvxhsZHZtapqTxiZ/+6q6kJa04iOHahOkp/kqas/9L1+MsBpvwNWTvL3bWVTgWsHiGNuVb2iqtarqt2BF9D/tzcH4yixxohJsbTkFt1kR+tr3JcleWGSNZMcQ+tO6RNozdl9eZK/S7I28AVa8zWvgdZoSVUtWKztHYC+f3R+AmzfduxcWl8j9tkKmFdVj1fVlcA7gNOSbAyL5mIurKqFTX+zgXWSrNqMMm8DXDDIdc4B3pBkpSR79PWdZNMkuzRtPEzrrvCFQ/zO+nNZc94707rBaB8GnoZwOfBX4Mjm69adgNcAp4xCX4NZg1YysgAgyVsYeB7kSJ57GfA48O4m/v0YOP59aV3ri2lNc5hG6w+gi2klGAN5R5INk6xL6w+oU4cR19Je05K8n8O+9iE+m/9HK/Eayhz6+dw3rqCVpH86yRpJJiTZbpD2B2urP1cA96V1Q91qzXlbJJk+2LWldQPficO4tj6fB16ZAdZZr6pX1ZNXDGl/vWqAc/4K/BA4pvndbEdrgOC7/dVPMqX5/a2e5AhgA1rJenudl9P69sBVJzQmTIqlJbclzWhvVfXSmn95Ca2v/jajtfrDg1X1c1o3dF0F9NL6B/JBWvPpBvJM/jbyfC+t6RZ9vgPs2YwEQrPyRN/BqvoOra/Jz0rrTvDNeOqNeavTSjD2BmbV4MtjvYdWonIPrZuwzmrKnw58GriT1lefz6KVRC2Rat0QuB9wWNPHG2nNK33KMndN3b1pjbTfCXwZOLiqBvtdLlVfQ7RzHfCftBK1/6P1WfjVGJzbF/8htKbRHEArAenPm4FvVdUfq+p/+17AccBBA4xyQuuzcz7w++Y15MMxlvaaluT9XMJrH+yz+f+AjzTTEo4YJLyBPvc0f2C+htY3MH+k9d/8AYO0P2Bb/Wlrfxrwh+Y6vkHrJsbBru35DPOz1PSzgNb/T/5tuOcM09uB1WjNFz4ZeFtVXQuLRp/b/z/xJlp/YNxBa6rZK+upS1y+GfhhVT1lCoY0GlLezCmNiST/DLy6ql6zWPmJwLFVNS/J24AHq+rbzVfT/1FVB7bV/RRwR1V9fhj9HQRsVFWfavY3o3Uz1a5JLgcOq6p5I3V9I6GJ66tV9a0hK69AfS3vkswH3lpVP+t0LFoyzTdCVwNTmrm6kpaSi9xLoyTJS2mNhNxKayTkGIZ+iMIltBbV/zatJZeeNPpTVUsyIrsFraXaSGsljK82MVBVL1mCdkZNklfQGs2+k9ZI2hTgvBW9L2msNCPpm3U6Dmk8MCmWRs9WwP/QWk7qd8AhVfXr9gpJzqX1VemmSb5WVSem9RCQi2l9rTjYHNChbA7MaL7KfQL4bDOlY3myKa27ztektWzY/lX153HQlyRpBeP0CUmSJHU9b7STJElS1zMpliRJUtfrqjnF66+/fk2ePLnTYUiSJKkDZs+efWdVTezvWFclxZMnT6a3t7fTYUiSJKkDkvT7mHhw+oQkSZJkUixJkiSZFEuSJKnrddWc4v489thj3HbbbTz88MOdDkXj0IQJE9hwww1ZZZVVOh2KJEkaRNcnxbfddhtrrbUWkydPJkmnw9E4UlXcdddd3HbbbWy88cadDkeSJA2i66dPPPzww6y33nomxBpxSVhvvfX8FkKSpBVA1yfFgAmxRo2fLUmSVgwmxZIkSep6XT+neHF7HDl3RNs77zNThqxz22238Y53vIPrrruOJ554gr322ovPfvazrLrqqk+pe/vtt/Pud7+b008/fdA299xzT77//e+zzjrrLHHMRx99NGuuuSZHHHHEkHXnzJnD7bffzp577rnE/fRn1qxZrLrqqrz85S8fkfYkSZKGw5HiDqsq9ttvP/bdd19uvPFGfve73/HAAw/w4Q9/+Cl1H3/8cZ773OcOmRADnHvuuUuVEC+pOXPmcO655/Z77PHHH1/i9mbNmsWll166ROcsXLhwifuRJElqZ1LcYb/4xS+YMGECb3nLWwBYaaWV+NznPscJJ5zAgw8+yIknnsg//uM/8prXvIYZM2Ywf/58tthiCwAefPBBXve61zFlyhQOOOAAXvKSlyx6jPXkyZO58847mT9/PpttthmHH344m2++OTNmzOChhx4C4Otf/zrTp09n6tSpvPa1r+XBBx8cNNYf/OAHbLHFFkydOpUdd9yRRx99lI9+9KOceuqpTJs2jVNPPZWjjz6amTNnMmPGDA4++GBOPPFE3vnOdy5qY6+99mLWrFkAnHfeeWy99dZMnTqVXXfdlfnz5/PVr36Vz33uc0ybNo2LL76YQw455El/BKy55ppAK3neeeedecMb3sCWW27JwoULef/738/06dOZMmUKX/va1wD485//zI477si0adPYYostuPjii0fgXZMkSeON0yc67Nprr2WbbbZ5Utnaa6/NpEmTuOmmmwC47LLLmDt3Luuuuy7z589fVO/LX/4yz3zmM5k7dy7z5s1j2rRp/fZx4403cvLJJ/P1r3+d173udZxxxhm88Y1vZL/99uPwww8H4CMf+Qjf/OY3ede73jVgrMcccww//elPed7znsc999zDqquuyjHHHENvby/HHXcc0Jp6MXv2bC655BJWW201TjzxxH7bWrBgAYcffjgXXXQRG2+8MXfffTfrrrsu//zP//ykqRvf/OY3B4zniiuuYN68eWy88cYcf/zxPOMZz+A3v/kNjzzyCNtttx0zZszghz/8Ibvvvjsf/vCHWbhw4ZCJvyRJ6k4mxR1WVf2uUNBe/spXvpJ11133KXUuueQS3vOe9wCwxRZbMGVK//OXN95440UJ8zbbbLMosZ43bx4f+chHuOeee3jggQfYfffdB411u+2245BDDuF1r3sd++2334D19t57b1ZbbbVB2/r1r3/NjjvuuGj93v6ubyjbbrvtovPPP/985s6du2hU+d577+XGG29k+vTpHHrooTz22GPsu+++A/7hIEmSupvTJzps8803XzTloc99993Hrbfeygtf+EIA1lhjjX7Praph9fH0pz990fZKK620aK7vIYccwnHHHcc111zDxz72sSHX0/3qV7/Kv//7v3Prrbcybdo07rrrrn7rtce78sor88QTTyza7+tjoD8GFtd+flXx6KOP9ttPVfHFL36ROXPmMGfOHP7whz8wY8YMdtxxRy666CKe97zn8aY3vYnvfOc7Q/YpSZK6j0lxh+266648+OCDi5K1hQsX8r73vY9DDjmE1VdffdBzt99+e0477TQArrvuOq655pol6vv+++9ngw024LHHHuOkk04asv7NN9/MS17yEo455hjWX399br31VtZaay3uv//+Ac+ZPHkyc+bM4YknnuDWW2/liiuuAOBlL3sZF154IX/4wx8AuPvuuwGe0t7kyZOZPXs2AGeffTaPPfZYv/3svvvufOUrX1l0/He/+x1//etfueWWW3jWs57F4YcfzmGHHcaVV145jN+MJEnqNk6fWMxwllAbSUk488wzefvb384nPvEJnnjiCfbcc08+9alPDXnu29/+dt785jczZcoUttpqK6ZMmcIznvGMYff9iU98gpe85CVstNFGbLnlloMmtwDvf//7ufHGG6kqdt11V6ZOncqkSZP49Kc/zbRp0zjqqKOecs52223HxhtvzJZbbskWW2zB1ltvDcDEiRM5/vjj2W+//XjiiSd41rOexQUXXMBrXvMa9t9/f84++2y++MUvcvjhh7PPPvuw7bbbsuuuuw44av7Wt76V+fPns/XWW1NVTJw4kbPOOotZs2bx2c9+llVWWYU111zTkWJJktSvDPcr+PGgp6enFp+qcP3117PZZpt1KKJls3DhQh577DEmTJjAzTffzK677srvfve7ftc3VuesyJ8xSZLGkySzq6qnv2OOFK/AHnzwQXbeeWcee+wxqoqvfOUrJsSSJElLwaR4BbbWWms95SY9SZIkLTlvtJMkSVLXMymWJElS13P6hKSusseRc0eknYnb3zAi7UiSlg+OFEuSJKnrOVK8mONuOm9E23vn3+0xrHpnnnkm++23H9dffz0vetGLAJg/fz6bbbYZm2666aJ6V1xxxaiuMHH00Uez5pprcsQRR/DRj36UHXfckd12263funPmzOH2229nzz33XKI+dtppJ4499lh6evpdEeVJzjrrLDbZZBNe/OIXL1EfAznxxBOZMWMGz33uc0ekPUmSND44UrycOPnkk9l+++055ZRTnlT+whe+cNGji+fMmbNUCXFVPelRy8N1zDHHDJgQQyspPvfcc5e43SVx1llncd111/V7rO9x1UvixBNP5Pbbb1+ic5amH0mStGIxKV4OPPDAA/zqV7/im9/85lOS4qGceOKJ7LPPPuyxxx5suummfPzjHwf+Nsr89re/na233ppbb72Vz372s0yfPp0pU6bwsY99bFEbn/zkJ9l0003Zbbfd+O1vf7uo/JBDDuH0008H4De/+Q0vf/nLmTp1Kttuuy333nsvH/3oRzn11FOZNm0ap556Kn/961859NBDmT59OltttRVnn302AA899BAHHnggU6ZM4YADDuChhx7q91o++MEP8uIXv5gpU6ZwxBFHcOmll/KjH/2I97///UybNo2bb76ZnXbaiQ996EO84hWv4L//+7+fFCPAmmuuuWj7M5/5DFtuuSVTp07lgx/8IKeffjq9vb0cdNBBTJs2jYceeojJkydz5513AtDb28tOO+0EtEbMZ86cyYwZMzj44INZsGABr33ta5k+fTrTp0/nV7/6FQAXXngh06ZNY9q0aWy11VZDPhVQkiQtnzo6fSLJBOAi4OlNLKdX1ceGOOddwDuBx4H/qaojk+wEHFFVe41uxKPjrLPOYo899mCTTTZh3XXX5corr1z0OOSbb76ZadOmAa1HJn/pS196yvlXXHEF8+bNY/XVV2f69Om8+tWvZv311+e3v/0t3/rWt/jyl7/M+eefz4033sgVV1xBVbH33ntz0UUXscYaa3DKKadw1VVX8fjjj7P11luzzTbbPKn9Rx99lAMOOIBTTz2V6dOnc99997H66qtzzDHH0Nvby3HHHQfAhz70IXbZZRdOOOEE7rnnHrbddlt22203vva1r7H66qszd+5c5s6du+ja2t19992ceeaZ3HDDDSThnnvuYZ111mHvvfdmr732Yv/9919U95577uHCCy8EWol7f37yk59w1llncfnll7P66qtz9913s+6663LccccNe+rG7NmzueSSS1httdV4wxvewL/8y7+w/fbb88c//pHdd9+d66+/nmOPPZYvfelLbLfddjzwwANMmDBhyHYlSdLyp9Nzih8BdqmqB5KsAlyS5CdV9ev+KifZGdgHmFJVjyR51lgGO1pOPvlk3vve9wJw4IEHcvLJJy9KHPumTwzmla98Jeuttx4A++23H5dccgn77rsvG220ES996UsBOP/88zn//PPZaqutgNbo9I033sj999/PP/zDP7D66qsDsPfeez+l/d/+9rdssMEGTJ8+HYC111673zjOP/98fvSjH3HssccC8PDDD/PHP/6Riy66iHe/+90ATJkyhSlTpjzl3LXXXpsJEybw1re+lVe/+tXstdfAf98ccMABg/4+AH72s5/xlre8ZdF1rbvuukOes7i9996b1VZbbVF77dM47rvvPu6//3622247/vVf/5WDDjqI/fbbjw033HCJ+5EkSZ3X0aS4qgp4oNldpXlVkmnAV4HVgZuBQ6vqL8DbgE9X1SPN+XeMedAj7K677uIXv/gF8+bNIwkLFy4kCZ/5zGeG3UaSfvfXWGONRWVVxVFHHcU//dM/Panu5z//+aecv7iqGrJOX70zzjjjSTcGDhTj4lZeeWWuuOIKfv7zn3PKKadw3HHH8Ytf/KLfuu3XtfLKKy+aL11VPProo0sUc/v5Dz/88ID9PPHEE1x22WWLkuQ+H/zgB3n1q1/Nueeey0tf+lJ+9rOfLbpRUpIkrTg6Pqc4yUpJ5gB3ABdU1eXAd4APVNUU4Bqgb0rFJsAOSS5PcmGS6R0JegSdfvrpHHzwwdxyyy3Mnz+fW2+9lY033phLLrlk2G1ccMEF3H333Tz00EOcddZZbLfddk+ps/vuu3PCCSfwwAOtv0H+9Kc/cccdd7Djjjty5pln8tBDD3H//ffz4x//+CnnvuhFL+L222/nN7/5DQD3338/jz/+OGuttdaT5tDuvvvufPGLX6T1tw5cddVVAOy4446cdNJJAMybN4+5c5+6TuwDDzzAvffey5577snnP//5RaPji/exuMmTJzN79mwAzj77bB577DEAZsyYwQknnMCDDz4ItKZn9Nde+/lnnHHGgP3MmDFj0TQRYFF8N998M1tuuSUf+MAH6Onp4YYbXLtWkqQVUaenT1BVC4FpSdYBzkwyFVinqi5sqnwb+EGzvTLwTOClwHTgtCQvGKz9JDOBmQCTJk0aMp7hLqE2Uk4++WQ++MEPPqnsta99Ld///vf5wAc+MKw2tt9+e970pjdx00038YY3vIGenh7mz5//pDozZszg+uuv52UvexnQuiHte9/7HltvvTUHHHAA06ZNY6ONNmKHHXZ4Svurrroqp556Ku9617t46KGHWG211fjZz37GzjvvzKc//WmmTZvGUUcdxb/927/x3ve+lylTplBVTJ48mXPOOYe3ve1tvOUtb2HKlClMmzaNbbfd9il93H///eyzzz48/PDDVBWf+9zngNZ0ksMPP5wvfOELT7qhrs/hhx/OPvvsw7bbbsuuu+66aHR3jz32YM6cOfT09LDqqquy55578qlPfYpDDjmEf/7nf2a11Vbjsssu42Mf+xiHHXYYn/rUp3jJS14y4O/4C1/4Au94xzuYMmUKjz/+ODvuuCNf/epX+fznP88vf/lLVlppJV784hfzqle9aljvmSRJWr6kb1RveZCkb0T4sKqa1JS9EPhBVW2d5Dxa0ydmNcduppUgb84wbrTr6emp3t7eJ5Vdf/31bLbZZiN7IWPoxBNPfNLNblr+rOifsfHGJ9pJUvf63j4HzK6qfu+27+j0iSQTmxFikqwG7AbMBv6SpG/I8k1A36jxWcAuTf1NgFWBO8cwZEmSJI1DnZ4+sQHw7SQr0UrQT6uqc5LcBnw1yerA74G3NPVPAE5IMg94FHhzVdVwbqgarw455JABlyWTJEnS8HR69Ym5wFb9lM+hNS1i8fJHgTf2Uz4LmLUMcQxrpQJpSS1P05MkSdLAOr76RKdNmDCBu+66y+RFI66quOuuu3yghyRJK4BOT5/ouA033JDbbruNBQsWdDoUjUMTJkzwgR6SJK0Auj4pXmWVVdh44407HYYkSZI6aLlakm209bckmyRJkrpDkuVzSTZJkiRpeWBSLEmSpK5nUixJkqSuZ1IsSZKkrtf1q09IUp/jbjpvic+5/Lr7RiESSdJYc6RYkiRJXc+kWJIkSV3PpFiSJEldz6RYkiRJXW9Mk+Ik85Nck2ROkmE9Wi7J05OcmuSmJJcnmdyU75TknFENWJIkSV2hE6tP7FxVdy5B/cOAv1TV3yU5EPgP4IDRCU2SJEndqKPTJ5I8K8nsZntqkkoyqdm/OcnqwD7At5tTTgd2TZLF2pme5KokLxjL+CVJkjQ+jHVSXMD5SWYnmVlVdwATkqwN7AD0Ajsk2Qi4o6oeBJ4H3ApQVY8D9wLr9TWY5OXAV4F9qur3i3eYZGaS3iS9CxYsGO3rkyRJ0gporKdPbFdVtyd5FnBBkhuAS4HtgB2BTwF7AAEubs5JP+1U83Mz4HhgRlXd3l+HVXV8U4eenp7qr44kSZK625iOFPclrs0I8ZnAtrSS3x2AjYCzganA9sBFzWm3Ac8HSLIy8Azg7ubYn4GHga3G5gokSZI0Ho1ZUpxkjSRr9W0DM4B5tJLfNwI3VtUTtBLePYFfNaf+CHhzs70/8Iuq6hvxvQd4NfCpJDuN/lVIkiRpPBrL6RPPBs5s7pFbGfh+VZ0H0JT1jQxfAmxYVX9p9r8JfDfJTbQS5gPbG62q/0vyGuAnSQ6tqstH/UokSZI0roxZUtzcBDd1gGOT2rY/RWtucd/+w8A/9nPOLGBWs/1HYPMRDViSJEldwyfaSZIkqeuZFEuSJKnrmRRLkiSp6+VvCzmMfz09PdXb29vpMCRJktQBSWZXVU9/xxwpliRJUtczKZYkSVLXMymWJElS1xvLh3dIkpZzexw5d4nqT9z+hlGKRJLGliPFkiRJ6nomxZIkSep6JsWSJEnqeibFkiRJ6nomxZIkSep6HU2Kkzw/yS+TXJ/k2iTvacqPSbJbs31ikj8kmdO8pnUyZkmSJI0/nV6S7XHgfVV1ZZK1gNlJLqiqjy5W7/1VdXoH4pMkSVIX6OhIcVX9uaqubLbvB64HnteMDu8/0HlJnpbkxiQT2/ZvSrL+2EQuSZKk8WS5mVOcZDKwFXB5P4c/mWRuks8leXpVPQF8DzioOb4bcHVV3dlPuzOT9CbpXbBgwWiFL0mSpBXYcpEUJ1kTOAN4b1Xdt9jho4AXAdOBdYEPNOUnAAc324cC3+qv7ao6vqp6qqpn4sSJIx67JEmSVnwdT4qTrEIrIT6pqn64+PFmikVV1SO0Et9tm/Jbgf9LsgvwEuAnYxi2JEmSxpFOrz4R4JvA9VX1XwPU2aCt7r7AvLbD36A1jeK0qlo4utFKkiRpvOr06hPbAW8Crkkypyn70GJ1TmpuqAswB/jntmM/ojV63O/UCUmSJGk4OpoUV9UltJLdxZ3bVmeXQZqYSusGuxtGOjZJkiR1j06PFC+1JB8E3sbfVqCQJEmSlkrHb7RbWlX16araqBltliRJkpbaCpsUS5IkSSMlVdXpGMZMT09P9fb2djoMSZIkdUCS2VXV098xR4olSZLU9UyKJUmS1PVMiiVJktT1Vtgl2ZbGjbc9xB5Hzh2Vtidu71LJkiRJKypHiiVJktT1TIolSZLU9UyKJUmS1PVMiiVJktT1TIolSZLU9TqSFCdZKclVSc4ZRt0pSS5Lcm2Sa5JMGIsYJUmS1D06tSTbe4DrgbUHq5RkZeB7wJuq6uok6wGPjUF8kiRJ6iJjPlKcZEPg1cA32spmJelpttdPMr85NAOYW1VXA1TVXVW1MMnbknym7fxDknxxzC5CkiRJ40onpk98HjgSeGIYdTcBKslPk1yZ5Mim/HRgv7Z6BwCn9tdAkplJepP0PvrQX5YhbEmSJI1XY5oUJ9kLuKOqZg/zlJWB7YGDmp//kGTXqloA/D7JS5spFZsCv+qvgao6vqp6qqpn1dWeOQJXIUmSpPFmrOcUbwfsnWRPYAKwdpLvAY/ztwS9/Ua624ALq+pOgCTnAlsDP6c1Mvw64AbgzKqqsbkESZIkjTdjOlJcVUdV1YZVNRk4EPhFVb0RmA9s01Tbv+2UnwJTkqze3HT3CuC65tgPgX2B1zPA1AlJkiRpOJaXdYqPBd6W5FJg/b7CqvoL8F/Ab4A5wJVV9T9tx64DNqqqK8Y8YkmSJI0bnVqSjaqaBcxqtm8AprQd/khbve/RWpatvzb2Gr0IJUmS1C2Wl5FiSZIkqWNMiiVJktT10k2LNvT09FRvb2+nw5AkSVIHJJldVT39HXOkWJIkSV3PpFiSJEldz6RYkiRJXc+kWJIkSV2vY+sUS5Kk0XPcTecNevzy6+4bo0ikFYMjxZIkSep6JsWSJEnqeibFkiRJ6nomxZIkSep6Y54UJzkhyR1J5i3heZsmmdP2ui/Je5tjxyTZbVQCliRJ0rjXidUnTgSOA76zJCdV1W+BaQBJVgL+BJzZHPvoiEYoSZKkrjLmI8VVdRFwd3tZkllJPpfkoiTXJ5me5IdJbkzy7/00sytwc1Xd0px/YpL9xyB8SZIkjUPL0zrFj1bVjkneA5wNbEMreb45yeeq6q62ugcCJ3ciSEmSJI0/y9ONdj9qfl4DXFtVf66qR4DfA8/vq5RkVWBv4AfDaTTJzCS9SXoXLFgw0jFLkiRpHFiekuJHmp9PtG337bePaL8KuLKq/m84jVbV8VXVU1U9EydOHJlIJUmSNK4sT0nxcL0ep05IkiRpBHViSbaTgcuATZPcluSwJTh3deCVwA9HKz5JkiR1nzG/0a6qXt9P8Tfbjs8CZrXt79S2/SCwXj9tHjKCIUqSJKnLrIjTJyRJkqQRZVIsSZKkrmdSLEmSpK6Xqup0DGOmp6enent7Ox2GJEmSOiDJ7Krq6e+YI8WSJEnqeibFkiRJ6nomxZIkSep6JsWSJEnqemP+8A5JWlEcd9N5Tym7/Lr7OhCJJGm0OVIsSZKkrmdSLEmSpK5nUixJkqSuZ1IsSZKkrjfmSXGSE5LckWTeEpyzf5JK0tPs75TknNGLUpIkSd2kEyPFJwJ7DLdykrWAdwOXj1ZAkiRJ6m5jnhRX1UXA3e1lSQ5P8pskVyc5I8nqbYc/AXwGeLi/9pJMT3JVkheMXtSSJEkaz5aXOcU/rKrpVTUVuB44DCDJVsDzq6rfqRJJXg58Fdinqn4/QJ2ZSXqT9C5YsGCUwpckSdKKbHlJirdIcnGSa4CDgM2TPA34HPC+Ac7ZDDgeeE1V/XGghqvq+KrqqaqeiRMnjnjgkiRJWvEtL0+0OxHYt6quTnIIsBOwFrAFMCsJwHOAHyXZuznnz8AEYCvg9jGOV5IkSePI8jJSvBbw5ySr0Boppqrurar1q2pyVU0Gfg3sXVW9zTn3AK8GPpVkpzGPWJIkSeNGJ5ZkOxm4DNg0yW1JDgP+jdbqEhcANwy3rar6P+A1wJeSvGQ04pUkSdL4N+bTJ6rq9QMc+soQ5+3Utj0LmNVs/xHYfGSikyRJUjdaXqZPSJIkSR1jUixJkqSuZ1IsSZKkrpeq6nQMY6anp6d6e3uHrihJkqRxJ8nsqurp75gjxZIkSep6JsWSJEnqeibFkiRJ6nrLy2OeJWlUHHfTeZ0Ogcuvu6/TIUiShuBIsSRJkrqeSbEkSZK6nkmxJEmSup5JsSRJkrqeSbEkSZK63nKVFCc5IckdSea1lR2S5LlDnHdMkt1GP0JJkiSNR8tVUgycCOyxWNkhwKBJcVV9tKp+NkoxSZIkaZxbrpLiqroIuLtvP8n+QA9wUpI5SXZofs5Jck2Sauqd2NSVJEmSlthy/fCOqjo9yTuBI6qqtymeBpDks8CQq/InmQnMBJg0adIoRSpJkqQV2XI1UjxcSV4HbA18cKi6VXV8VfVUVc/EiRNHPzhJkiStcJbrkeL+JNkc+DiwY1Ut7HQ8kiRJWvGtCCPF9wNrASR5BnAKcHBVLehoVJIkSRo3lquR4iQnAzsB6ye5DfgYrRUpvprkIeBzwEbA15MAUFXTOhGrJEmSxo/lKimuqtcPcOiMtu1v93PeIaMSkCRJkrrCijB9QpIkSRpVJsWSJEnqeibFkiRJ6nqpqk7HMGZ6enqqt7d36IqSJEkad5LMrqqe/o45UixJkqSuZ1IsSZKkrmdSLEmSpK63XK1TLEnLiz2OnNuRfiduf0NH+pWkbudIsSRJkrqeSbEkSZK6nkmxJEmSup5JsSRJkrpex5PiJPOTXJNkTpIBn6yR5LlJTh/L2CRJktQdlpfVJ3auqjsHq1BVtwP7j1E8kiRJ6iIdHynuT5K/S/KzJFcnuTLJC5NMTjKvOb5aklOSzE1yapLLk/T7yD5JkiRpKMvDSHEB5ycp4GtVdTxwEvDpqjozyQRayfuz2s55G/BgVU1JMgW4csyjliRJ0rixPCTF21XV7UmeBVyQ5LfA86rqTICqehggSfs5OwJfaI7PTTLgKvtJZgIzASZNmjQ6VyBJkqQVWsenTzRzhamqO4AzgVcM99Rhtn98VfVUVc/EiROXMkpJkiSNZx1NipOskWStvm1gBnAFcFuSfZvypydZfbFTLwIOao5vAUwZs6AlSZI07gyZFCfZeDhlS+nZwCVJrqaVDP9PVZ0HvAl4dzMt4lLgOU39vtHhrwBrNsePbM6VJEmSlspw5hSfAWy9WNnpwDbL2nlV/R6Y2k/5jcAu7WVJtgHubo4/BBzYdmzWssYiSZKk7jVgUpzkRcDmwDOS7Nd2aG1gwmgHtlgsPcD3gQ+OZb+SJEnqDoONFG8K7AWsA7ymrfx+4PBRjOkpqqoX2GSQ4zuNXTSSJEkabwZMiqvqbODsJC+rqsvGMCZJkiRpTA1nTvFdSX4OPLuqtmgelrF3Vf37KMcmSR1z3mc6taiNi+lI0mj5HgcMeGw4S7J9HTgKeAxaD8ug7SY3SZIkaUU3nKR49apafMmzx0cjGEmSJKkThpMU35nkhTRrBCfZH/jzqEYlSZIkjaHhzCl+B3A88KIkfwL+ALxxVKOSJEmSxtCQSXHzgI3dmscwP62q7h/9sCSp84676bwx7e/y6+4b0/4kSX8znMc8vyfJ2sCDwOeSXJlkxuiHJkmSJI2N4cwpPrSq7gNmAM8C3gJ8elSjkiRJksbQcJLiND/3BL5VVVe3lUmSJEkrvOEkxbOTnE8rKf5pkrWAJ0Y3LEmSJGnsDGf1icOAacDvq+rBJOvRmkKxzJKsBPQCf6qqvUaiTUmSJGlJDWf1iSeAK9v27wLuGqH+3wNcD6y9+IEkK1eVDwmRJEnSqBvO9IlRkWRD4NXAN9rKZiX5VJILgfckmZ5kbpLLknw2ybym3oQk30pyTZKrkuzcocuQJEnSODCc6ROj5fPAkcBai5WvU1WvAGiS4JlVdWmS9hUv3gFQVVsmeRFwfpJNqurhxTtJMhOYCTBp0qSRvwpJkiSt8IazTvF3h1O2JJLsBdxRVbP7OXxqU2cdYK2qurQp/35bne2B7wJU1Q3ALcAm/fVVVcdXVU9V9UycOHFZwpYkSdI4NZyR4s3bd5qb47ZZxn63A/ZOsicwAVg7yfeaY3/t62qQ810STpIkSSNmwJHiJEcluR+YkuS+5nU/cAdw9rJ0WlVHVdWGVTUZOBD4RVW9cbE6fwHuT/LSpujAtsMXAQc1cW4CTAJ+uywxSZIkqXsNmBRX1f+rqrWAz1bV2s1rrapar6qOGqP4DgOOT3IZrdHhe5vyLwMrJbmG1nSLQ6rqkTGKSZIkSePMcKZPnJNkjar6a5I3AlsD/11Vt4xEAFU1C5jVbO+02OFrq2oKQJIP0lrTmOaGukNGon9JkiRpOEuyfQV4MMlUWqtF3AJ8Z1Sj+ptXJ5nTrEKxA/DvY9SvJEmSushwRoofr6pKsg+tEeJvJnnzaAcGUFWn0qxGIUmSJI2W4STF9yc5CngTsEOz+sQqoxuWJEmSNHZSVYNXSJ4DvAH4TVVdnGQSsFNVjdUUihHT09NTvb29nQ5DkiRJHZBkdlX19HdsyDnFVfW/wBnA05uiO4EzRy48SZIkqbOG80S7w4HTga81Rc8DzhrFmCRJkqQxNZzVJ95B6wl09wFU1Y3As0YzKEmSJGksDedGu0eq6tGk9WTlJCsDg09EliStEI676bxOhzDmLr/uvk6HIGk5NJyR4guTfAhYLckrgR8APx7dsCRJkqSxM5yk+IPAAuAa4J+Ac6vqw6MalSRJkjSGhjN94l1V9d/A1/sKkrynKZMkSZJWeMMZKe7v6XWHjHAckiRJUscMOFKc5PW0HtqxcZIftR1aC7hrtAOTJEmSxspg0ycuBf4MrA/8Z1v5/cDcpeksyfOB7wDPAZ4Ajh/ONIwk04FfAwdU1elN2fwmloXA4wM9nUSSJEkayoBJcVXdAtwCvGwE+3sceF9VXZlkLWB2kguq6rqBTkiyEvAfwE/7ObxzVd05gvFJkiSpCw1nTvGIqao/V9WVzfb9wPXA85LMSvL5JJcmmZdk27bT3kXrMdN3jGWskiRJ6h5jmhS3SzIZ2Aq4vClao6peDrwdOKGp8zzgH4Cv9tNEAecnmZ1k5iD9zEzSm6R3wYIFI3kJkiRJGieGlRQnWS3JpiPVaZI1aY3+vreq+h4tdDJAVV0ErJ1kHeDzwAeqamE/zWxXVVsDrwLekWTH/vqqquOrqqeqeiZOnDhSlyBJkqRxZMikOMlrgDnAec3+tMVWo1giSVahlRCfVFU/bDu0+KOjC+gBTmluqtsf+HKSfQGq6vbm5x3AmcC2SJIkSUthOCPFR9NKOO8BqKo5wOSl6SxJgG8C11fVfy12+ICmzvbAvVV1b1VtXFWTq2oycDrw9qo6K8kazY16JFkDmAHMW5qYJEmSpOE80e7xqrq3lc8us+2ANwHXJJnTlH2o+fmXJJcCawOHDtHOs4Ezm5hWBr5fVeeNRICSJEnqPsNJiucleQOwUpK/B95Naw3jJVZVlwBPya6THAmcUVVHDXLuIW3bvwemLk0MkiRJ0uKGM33iXcDmwCO0boa7D3jvKMYkSZIkjakhR4qr6kHgw81rVFTVTqPVtiRJkjSUIZPiJJsAR9C6uW5R/araZfTCkiRJksZOqhZfCW2xCsnVtB6eMRtYtF5wVc0e3dBGXk9PT/X29nY6DEmSJHVAktlV1dPfseGuPvGVEY5JkiRJWm4MmBQnWbfZ/HGSt9N6QMYjfcer6u5Rjk2SJEkaE4ONFM+m9VS5viXU3t92rIAXjFZQkiRJ0lgaMCmuqo0BkkyoqofbjyWZMNqBSeoOexw5d8z6mrj9DWPWlyRpxTKcdYr7e1DHUj28Q5IkSVoeDTan+DnA84DVkmzF36ZRrA2sPgaxSZIkSWNisDnFuwOHABsC/8nfkuL7gA+NbliSJEnS2BlsTvG3gW8neW1VnTGGMUmSJEljasg5xSbEkiRJGu+Gc6PdqEqyUpKrkpzT7M9K8pQnjSR5YIDz903y4tGOU5IkSeNXx5Ni4D3A9ctw/r6ASbEkSZKW2rCS4iQvT/KGJAf3vUai8yQbAq8GvtHPsacl+XaSf28r+2SSq5P8Osmzk7wc2Bv4bJI5SV44EnFJkiSpuwyZFCf5LnAssD0wvXk9ZXrDUvo8cCTwxGLlKwMnAb+rqo80ZWsAv66qqcBFwOFVdSnwI+D9VTWtqm7uJ/6ZSXqT9C5YsGCEwpYkSdJ4MtiSbH16gBdXVY1kx0n2Au6oqtlJdlrs8NeA06rqk21ljwLnNNuzgVcOp5+qOh44HqCnp2dEr0GSJEnjw3CmT8wDnjMKfW8H7J1kPnAKsEuS7zXHLgV2Xuxx0o+1JeYLGV5CL0mSJA1pOEnx+sB1SX6a5Ed9r2XtuKqOqqoNq2oycCDwi6p6Y3P4m8C5wA+SDJX83g+stazxSJIkqXsNZ7T16NEOoj9V9V9JngF8N8lBg1Q9Bfh6kncD+/c3r1iSJEkazJBJcVVdONpBVNUsYFazvVNb+cfaqq3ZVn46cHqz/Stckk2SJEnLYMCkOMklVbV9kvuB9hvUAlRVrT3q0UmSJEljYMCkuKq2b346X1eSJEnj2vLwRDtJkiSpozLCyw8v13p6eqq3t7fTYUiSJKkDksyuqn4fQudIsSRJkrrecB7zvEaSpzXbmyTZO8kqox+aJEmSNDaGM1J8ETAhyfOAnwNvAU4czaAkSZKksTSch3ekqh5Mchjwxar6TJKrRjswaTza48i5nQ5huTBx+xs6HYIkSU8ynJHiJHkZcBDwP03ZcJJpSZIkaYUwnKT4vcBRwJlVdW2SFwC/HNWoJEmSpDE03Mc8X5hkjWb/98C7RzswSZIkaawMZ/WJlyW5Dri+2Z+a5MujHpkkSZI0RoYzfeLzwO7AXQBVdTWw47J0mmSlJFclOWeA45OS/LKpMzfJnsvSnyRJkjSYYT28o6puXaxo4TL2+x6akefFJVkZ+AhwWlVtBRwIODItSZKkUTOcpPjWJC8HKsmqSY5ggIR2OJJsCLwa+EZb2awkn0pyIa2EuYC1m8PPAG5v6n05yd7N9plJTmi2D0vy70sbkyRJkrrbcJZW+2fgv4HnAbcB5wPvWIY+Pw8cCay1WPk6VfUKgCQbAOcneRewBrBbU+ciYAfgR008GzTl2wOnLENMkiRJ6mJDjhRX1Z1VdVBVPbuqnlVVb6yqu5amsyR7AXdU1ex+Dp/atv164MSq2hDYE/hu86jpi4EdkrwYuA74vyaBfhlw6QB9zkzSm6R3wYIFSxO2JEmSxrkBR4qTHNk8ve6LtKYzPElVLc2ybNsBezc3zk0A1k7yvebYX9vqHQbs0fRzWZIJwPpV9ackz2yOXQSsC7wOeKCq7u+vw6o6HjgeoKen5ynXIUmSJA02faJv3nDvSHVWVUfRehAISXYCjqiqNyaZtVjVPwK7Aicm2YxWAt03zHsZrQeK7AKsB5zevCRJkqSlMmBSXFU/bn5+e+zCWeR9wNeT/AutUepDqqpvlPdiYEZV3ZTkFlqjxRd3IEZJkiSNE4NNn/gx/Uyb6FNVey9Lx1U1C5jVbO+02LHraE216O+8bwLfbLYfo3UjniRJkrTUBps+cWzzcz/gOUDf3N/XA/NHMSZJkiRpTA02feJCgCSfqKr2J9j9OMlFox6ZJEmSNEaG8/COiUle0LeTZGNg4uiFJEmSJI2t4Ty841+AWUl+3+xPBmaOWkTSOHbeZ6Z0OoTlhL8HSdLY+x4HDHhsyKS4qs5L8vfAi5qiG6rqkRGKTZIkSeq4IZPiJKsA/wT0zSueleRrzcoPkiRJ0gpvONMnvgKsAny52X9TU/bW0QpKkiRJGkvDSYqnV9XUtv1fJLl6tAKSJEmSxtpwkuKFSV5YVTcDNCtRLBzdsCSpO+1x5Nxh1524/Q2jGIkkdZfhJMXvB37ZrD4RYCPgLaMalSRJkjSGhrP6xM+b1Sc2pZUUu/qEJEmSxpXhrD4xAXg7sD1QwMVJvlpVD492cJIkSdJYGM70ie8A9wNfbPZfD3wX+MfRCkqSJEkaS8NJijddbPWJX47E6hNJ5tNKthcCj1dVz7K2KUmSJC2N4STFVyV5aVX9GiDJS4BfjVD/O1fVnSPUliRJkrRUnjbQgSTXJJkLvAS4NMn8JH8ALuNvT7cbMUk2S3JF2/7kJHOT9CSZ07yuSVJJXpjkyra6f59k9kjHJEmSpO4w2EjxXqPcdwHnJynga1V1fJJVk7ygqn4PHACcVlW9wDSAJJ8Fzquqm5Pcm2RaVc2htUTcif11kmQmMBNg0qRJo3xJkiRJWhENOFIM/KWqbqE177e/17Larqq2Bl4FvCPJjsBpwOua4wcAp/ZVTvI6YGvgg03RN4C3JFmpqfv9/jqpquOrqqeqeiZOnDgCYUuSJGm8GWyk+Pu0Rotn0xrVTduxAl6wLB1X1e3NzzuSnAlsSysJ/kGSH7YO1Y0ASTYHPg7sWFV9T9M7A/gY8AtgdlXdtSzxSJIkqXsNmBRX1V7Nz41HutMkawBPq6r7m+0ZwDHNtIiFwL/RjBIneQZwCnBwVS1oi+/hJD8FvgIcNtIxSpIkqXsMNn0CgCQ/H07ZEno2cEmztNsVwP9U1XnNsVOBN9KaSgGwL61HS3+974a7tnZOopmbvIzxSJIkqYsNOFLcPMludWD9JM/kb9Mn1gaeuyydNjfSTR3g2LHAsW373wa+PUBT2wMntE2pkCRJkpbYYHOK/wl4L60EeDZ/S4rvA740umENrZmH/EJgl07HIkmSpBXbYHOK/xv47yTvqqovDlSvU6rqHzodgyRJksaHIZ9oV1VfTPJyYHJ7/ar6zijGJUmSJI2ZVNXgFZLv0pqmMAfom7tbVfXu0Q1t5PX09FRvb2+nw5AkSVIHJJldVT39HRtypBjoAV5cQ2XPkiRJ0gpqyCXZgHnAc0Y7EEmSJKlThjNSvD5wXZIrgEf6Cqtq71GLSpIkSRpDw0mKjx7tICRJo++4m84bulI/Lr/uvhGORJKWP8NZfeLC9v0k2wFvAC7s/wxJkiRpxTKckWKSTKOVCL8O+ANwxijGJEmSJI2pwR7zvAlwIPB64C7gVFpLuO08RrFJkiRJY2KwkeIbgIuB11TVTQBJ/mVMopIkSZLG0GBLsr0W+F/gl0m+nmRXIGMTliRJkjR2BkyKq+rMqjoAeBEwC/gX4NlJvpJkxkgFkOSEJHckmbcMbRyTZLeRikmSJEndZciHd1TVX6vqpKraC9iQ1uOePziCMZwI7LEsDVTVR6vqZyMTjiRJkrrNcJ5ot0hV3V1VX6uqXUYqgKq6CLi7bz/JC5Nc2bb/90lmN9vbJLkwyewkP02yQVN+YpL9RyomSZIkdZclSorHQlXdDNzbLAMH8BbgxCSrAF8E9q+qbYATgE8O1V6SmUl6k/QuWLBgtMKWJEnSCmxY6xR3wDeAtyT5V+AAYFtgU2AL4IIkACsBfx6qoao6HjgeoKenp0YrYEmSJK24ltek+AzgY8AvgNlVdVeS5wLXVtXLOhuaJEmSxpvlbvoEQFU9DPwU+Arwrab4t8DEJC8DSLJKks07FKIkSZLGkY4nxUlOBi4DNk1yW5LDmkMnAQWcD1BVjwL7A/+R5Gpaq2C8vK0pp0ZIkiRpqXR8+kRVvX6AQ9sDJ1TVwra6c4Ad+6m7Hm0rWEiSJElLouNJcX+SnAm8EBhy6bckJwCrA5eMdlySJEkan5bLpLiq/mEJ6h46mrFIkiRp/Ov4nGJJkiSp01LVPfen9fT0VG9vb6fDkCRJUgckmV1VPf0dc6RYkiRJXc+kWJIkSV3PpFiSJEldb7lcfUKSJKlbHXfTeSPSzuXX3Tci7XQLR4olSZLU9UyKJUmS1PVMiiVJktT1TIolSZLU9UyKJUmS1PXGPClOMiHJFUmuTnJtko835bOS9PuEEUmSJGk0dWJJtkeAXarqgSSrAJck+UkH4pAkSZKADowUV8sDze4qzaua/TcmuTTJvCTbAiQ5Osl3k/wiyY1JDu9rK8mRSa5pRp0/PbZXIkmSpPGiIw/vSLISMBv4O+BLVXV5EoA1qurlSXYETgC2aE6ZArwUWAO4Ksn/AFOBfYGXVNWDSdYdoK+ZwEyASZMmjd5FSZIkaYXVkRvtqmphVU0DNgS2TdKX/J7cHL8IWDvJOk352VX1UFXdCfwS2BbYDfhWVT3YnHP3AH0dX1U9VdUzceLEUbsmSZIkrbg6uvpEVd0DzAL26CtavMog5emnXJIkSVpinVh9YmLfCHCS1WiN+N7QHD6gKd8euLeq7m3K92lWrVgP2An4DXA+cGiS1Ztz+p0+IUmSJA2lE3OKNwC+3cwrfhpwWlWdk+QI4C9JLgXWBg5tO+cK4H+AScAnqup24PYk04DeJI8C5wIfGsPrkCRJ0jgx5klxVc0FtuqnfKdBTvtdVc3s55xPA646IUmSpGXiE+0kSZLU9TqyJNuSqKqjOx2DJEmSxrdUdc8CDj09PdXb29vpMCRJktQBSWZXVU9/x5w+IUmSpK5nUixJkqSuZ1IsSZKkrmdSLEmSpK633K8+IWlk7XHk3E6HsMwmbn/D0JUkSVoCjhRLkiSp65kUS5IkqeuZFEuSJKnrmRRLkiSp6415UpxkQpIrklyd5NokHx/rGCRJkqR2nVh94hFgl6p6IMkqwCVJflJVv+5ALJIkSdLYjxRXywPN7irNq5K8MMl5SWYnuTjJiwCSbJTk50nmNj8nNeWvSXJ5kquS/CzJs8f6WiRJkjQ+dGROcZKVkswB7gAuqKrLgeOBd1XVNsARwJeb6scB36mqKcBJwBea8kuAl1bVVsApwJED9DUzSW+S3gULFozaNUmSJGnF1ZGHd1TVQmBaknWAM5NsAbwc+EGSvmpPb36+DNiv2f4u8Jlme0Pg1CQbAKsCfxigr+NpJdz09PTUyF6JJEmSxoOOPtGuqu5JMotW0ntPVU0bzmnNzy8C/1VVP0qyE3D0KIQoSZKkLtCJ1ScmNiPEJFkN2A24EvhDkn9sypNkanPKpcCBzfZBtKZNADwD+FOz/eYxCF2SJEnjVCfmFG8A/DLJXOA3tOYUn0Mr4T0sydXAtcA+Tf13A29p6r8JeE9TfjSt6RYXA3eOYfySJEkaZ8Z8+kRVzQW26qf8D8Ae/ZTPB3bpp/xs4OxRCFGSJEldxifaSZIkqeuZFEuSJKnrmRRLkiSp66Wqe5bu7enpqd7e3k6HIUmSpA5IMruqevo75kixJEmSup5JsSRJkrqeSbEkSZK6Xkcf8yxJ49lxN533pP3Lr7uvQ5FIkobiSLEkSZK6nkmxJEmSup5JsSRJkrqeSbEkSZK6nkmxJEmSul5HkuIk6yQ5PckNSa5P8rKlaGNWkn6fSCJJkiQtiU4tyfbfwHlVtX+SVYHVOxSHJEmSNPYjxUnWBnYEvglQVY9W1T1JDk/ymyRXJzkjyepN/bOTHNxs/1OSkxZr72lJvp3k38f6WiRJkjQ+dGL6xAuABcC3klyV5BtJ1gB+WFXTq2oqcD1wWFN/JvDRJDsA7wPe1dbWysBJwO+q6iP9dZZkZpLeJL0LFiwYrWuSJEnSCqwTSfHKwNbAV6pqK+CvwAeBLZJcnOQa4CBgc4Cq+j/go8AvgfdV1d1tbX0NmFdVnxyos6o6vqp6qqpn4sSJo3NFkiRJWqF1Iim+Dbitqi5v9k+nlSSfCLyzqrYEPg5MaDtnS+Au4LmLtXUpsHOSCUiSJElLacyT4qr6X+DWJJs2RbsC1wFrAX9OsgqtkWIAkmwLvArYCjgiycZtzX0TOBf4QZJO3TQoSZKkFVynEsl3ASc1K0/8HnhL8/Ny4BbgGmCtJE8Hvg68papuT/I+4IQku/Q1VFX/leQZwHeTHFRVT4z1xUiSJGnF1pGkuKrmAIuvMfyV5rW4qW3n/Qj4UbO7U1v5x0Y2QkmSJHUTn2gnSZKkrmdSLEmSpK5nUixJkqSul6rqdAxjpqenp3p7ezsdhiRJkjogyeyqWvy+NsCRYkmSJMmkWJIkSTIpliRJUtfzKXCSpOXGHkfOfUrZxO1v6EAkkrqNI8WSJEnqeibFkiRJ6nomxZIkSep6JsWSJEnqeibFkiRJ6npjlhQnmZDkiiRXJ7k2yceXsb1PJJmbZE6S85M8d6RilSRJUncZy5HiR4BdqmoqMA3YI8lLl6G9z1bVlKqaBpwDfHTZQ5QkSVI3GrOkuFoeaHZXaV5PT3JFX50kk5vR322T/LAp2yfJQ0lWbUabf9+0d19b82sANUaXIkmSpHFmTB/ekWQlYDbwd8CXqurCJtl9QVX9HjgAOA24EtiqOW0HYB4wvYn38rb2PgkcDNwL7DxAnzOBmQCTJk0ajcuSJEnSCm5Mb7SrqoXNdIcNgW2TbEErCX5dU+UA4NSqehy4KclmwLbAfwE70kqQL25r78NV9XzgJOCdA/R5fFX1VFXPxIkTR+nKJEmStCLryOoTVXUPMAvYAzgVeF2STVqH6sam2sXAq4DHgJ8B2zevi/pp8vvAa0c3akmSJI1XY7n6xMQk6zTbqwG7ATdU1c3AQuDfaCXIfS4C3gtcVlULgPWAFwHXNm38fVvdvYEbRvkSJEmSNE6N5ZziDYBvN/OKnwacVlXnNMdOBT4LbNxW/3Lg2fxtZHgucEdV9d1Q9+kkmwJPALcA/zzK8UuSJGmcGrOkuKrm8reb5xY/dixw7GJlDwFPb9ufudhxp0tIkiRpRPhEO0mSJHU9k2JJkiR1PZNiSZIkdb387b618a+np6d6e3s7HYYkSZI6IMnsqurp75gjxZIkSep6JsWSJEnqeibFkiRJ6npj+fAOScuBPY6cC8DE7X0IpCRJfRwpliRJUtczKZYkSVLXMymWJElS1zMpliRJUtfrSFKc5PlJfpnk+iTXJnnPAPUOSbIgyZzm9da2Y5OSnN+0cV2SyWN2AZIkSRpXOrX6xOPA+6rqyiRrAbOTXFBV1/VVSNIX26lV9c5+2vgO8MmquiDJmsATox+2JEmSxqOOJMVV9Wfgz832/UmuB56X5MvApcB2wI+Au/o7P8mLgZWr6oKmjQfGJHBJkiSNSx2fU9xMe9gKuLwpWqeqXlFV/9nsvzbJ3CSnJ3l+U7YJcE+SHya5Kslnk6w0xqFLkiRpnOhoUtxMezgDeG9V3dcUn9pW5cfA5KqaAvwM+HZTvjKwA3AEMB14AXDIAH3MTNKbpHfBggUjfxGSJEla4XUsKU6yCq2E+KSq+mHbob/2bVTVXVX1SLP7dWCbZvs24Kqq+n1VPQ6cBWzdXz9VdXxV9VRVz8SJE0f6MiRJkjQOdGr1iQDfBK6vqv8apN4Gbbt7A9c3278BnpmkL8vdBbgOSZIkaSl0avWJ7YA3AdckmdOUfaifeu9Osjet1SruppkiUVULkxwB/LxJsGfTGkmWJEmSllinVp+4BEg/h85drN5RwFEDtHEBMGXko5MkSVK36fjqE5IkSVKnmRRLkiSp65kUS5Ikqeulqjodw5jp6emp3t7eTochSZKkDkgyu6p6+jvmSLEkSZK6nkmxJEmSup5JsSRJkrqeSbEkSZK6XqeeaCdpCMfddN5Tyi6/7r4ORCJJ0vjnSLEkSZK6nkmxJEmSup5JsSRJkrqeSbEkSZK63nKTFCdZKclVSc5p9l+UZE5TtnmSK5JcneTaJB9vO6+93gs7dwWSJElaUS03STHwHuD6tv19gbOraivgOmCXqpoKTAP2SPLSxetV1c1jF64kSZLGi+UiKU6yIfBq4BvN/p7Ae4G3JvlltTzQVF+ledXi9cY8cEmSJI0Ly8s6xZ8HjgTWAqiqc5N8FXigqo6F1vQKYDbwd8CXqurypvxJ9RaXZCYwE2DSpEmjfBmSJElaEXV8pDjJXsAdVTV7sHpVtbCqpgEbAtsm2WI47VfV8VXVU1U9EydOXPaAJUmSNO4sDyPF2wF7N1MhJgBrJ/kecFN/lavqniSzgD2AeWMWpSRJksatjo8UV9VRVbVhVU0GDgR+UVVvbK+TZGKSdZrt1YDdgBvGOlZJkiSNT8vDSPFwbAB8u5lX/DTgtKo6p8MxSZIkaZxYrpLiqpoFzGq2j24rnwtsNcA5R/dXLkmSJA1Xx6dPSJIkSZ1mUixJkqSuZ1IsSZKkrpeq6nQMY6anp6d6e3s7HYYkSZI6IMnsqurp75gjxZIkSep6JsWSJEnqeibFkiRJ6nrL1TrFkpbccTed12/55dfdN8aRSJK04nKkWJIkSV3PpFiSJEldz6RYkiRJXc+kWJIkSV3PpFiSJEldb1ST4iTzk1yTZE6SYT1KLsmOSa5M8niS/UczPkmSJAnGZkm2navqziWo/0fgEOCI0QlHkiRJerIxnT6R5FlJZjfbU5NUkknN/s1JVq+q+VU1F3hisXN3SnJhktOS/C7Jp5MclOSKZjT6hWN5LZIkSRo/RjspLuD8JLOTzKyqO4AJSdYGdgB6gR2SbATcUVUPDtHeVOA9wJbAm4BNqmpb4BvAu/o7IcnMJL1JehcsWDBClyVJkqTxZLSnT2xXVbcneRZwQZIbgEuB7YAdgU8BewABLh5Ge7+pqj9Da2QZOL8pvwbYub8Tqup44HiAnp6eWoZrkSRJ0jg1qiPFVXV78/MO4ExgW1rJ7w7ARsDZtEZ/twcuGkaTj7RtP9G2/wQ+slqSJElLadSS4iRrJFmrbxuYAcyjlfy+Ebixqp4A7gb2BH41WrFIkiRJgxnNkeJnA5ckuRq4AvifqjqvquY3x/tGhi8B7qmqvwAkmZ7kNuAfga8luXYUY5QkSZJGb8pBVf2e1tSI/o5Natv+FK25xX37vwE27OecWcCstv2dBjomSZIkLQmfaCdJkqSuZ1IsSZKkrmdSLEmSpK6Xqu5Zurenp6d6e3s7HYYkSZI6IMnsqurp75gjxZIkSep6JsWSJEnqeibFkiRJ6nomxZIkSep6JsWSJEnqeibFkiRJ6nomxZIkSep6JsWSJEnqeibFkiRJ6nomxZIkSep6JsWSJEnqeibFkiRJ6nomxZIkSep6JsWSJEnqeibFkiRJ6nomxZIkSep6JsWSJEnqeibFkiRJ6nomxZIkSep6JsWSJEnqeibFkiRJ6nqpqk7HMGaSLABuGcUu1gfuHMX2Nfp8D1dsvn8rPt/DFZ/v4YptvL9/G1XVxP4OdFVSPNqS9FZVT6fj0NLzPVyx+f6t+HwPV3y+hyu2bn7/nD4hSZKkrmdSLEmSpK5nUjyyju90AFpmvocrNt+/FZ/v4YrP93DF1rXvn3OKJUmS1PUcKZYkSVLXMymWJElS1zMpHgFJ/jHJtUmeSNKz2LGjktyU5LdJdu9UjBqeJFOTXJbkmiQ/TrJ2p2PSkkkyLcmvk8xJ0ptk207HpCWT5NTm/ZuTZH6SOZ2OSUsmybuaf/euTfKZTsejJZPk6CR/avvvcM9OxzQWVu50AOPEPGA/4GvthUleDBwIbA48F/hZkk2qauHYh6hh+gZwRFVdmORQ4P3Av3U4Ji2ZzwAfr6qfNP8j/wywU2dD0pKoqgP6tpP8J3BvB8PREkqyM7APMKWqHknyrE7HpKXyuao6ttNBjCVHikdAVV1fVb/t59A+wClV9UhV/QG4CXDUavm2KXBRs30B8NoOxqKlU0DfCP8zgNs7GIuWQZIArwNO7nQsWiJvAz5dVY8AVNUdHY5HGhaT4tH1PODWtv3bmjItv+YBezfb/wg8v4OxaOm8F/hskluBY4GjOhuOlsEOwP9V1Y2dDkRLZBNghySXJ7kwyfROB6Sl8s4kc5OckOSZnQ5mLDh9YpiS/Ax4Tj+HPlxVZw90Wj9lroHXYYO9l8ChwBeSfBT4EfDoWMam4RniPdwV+JeqOiPJ64BvAruNZXwa2jD/n/p6HCVeLg3x3+DKwDOBlwLTgdOSvKBcA3a5MsR7+BXgE7Rylk8A/0nr38dxzXWKR1CSWbTmo/Y2+0cBVNX/a/Z/ChxdVZd1LEgNW5JNgO9VlVNeViBJ7gXWqapqvn6/t6q8YXIFk2Rl4E/ANlV1W6fj0fAlOY/W9IlZzf7NwEurakFHA9NSSTIZOKeqtuh0LKPN6ROj60fAgUmenmRj4O+BKzockwbRd0NIkqcBHwG+2tmItBRuB17RbO8C+NX7imk34AYT4hXSWbT+2+sbXFgVuLOTAWnJJNmgbfcfaE0tHPecPjECkvwD8EVgIvA/SeZU1e5VdW2S04DrgMeBd7jyxHLv9Une0Wz/EPhWJ4PRUjkc+O9mpPFhYGaH49HSORCnTqyoTgBOSDKP1hS0Nzt1YoXzmSTTaE2fmA/8U0ejGSNOn5AkSVLXc/qEJEmSup5JsSRJkrqeSbEkSZK6nkmxJEmSup5JsSRJkrqeSbEkSZK6nkmxJEmSup4P75AkkWTQReurKmMViyR1gg/vkCRJUtdz+oQkLaeS7Jbku6PY/mpJLkyyUrP/T0m+2myvkuS7Sb6dZJV+zl01yUXN47QlaYVnUixJy6+pwNWj2P6hwA+ramGzPwWYm2Rt4CfAH6vqzVX12OInVtWjwM+BA0YxPkkaMybFkrT8mgrMSfKiZlT22iQ/S7I+QJLNmvK5Sd6f5KYlbP8g4Oy2/S2Bu4FZwA+q6sNDnH9W04YkrfCcUyxJy6kkVwMzgF8Ab6yqq5J8AFgb+BhwBXBYU/4VYIOq2neYba9KayT4OW1lfwEeBw6tqh8Po42VgP+tqolLeGmStNxxpFiSlkPNPN61gZ2AS6rqqubQdcCzgP2AqxcrX5KpFusD97T193zgAeAaYIPhNNBMu3g0yVpL0K8kLZe8QUKSlk8vBq5vfl7TVr4lrQR4CjCnrXwL4DyAJC8APgw8o6r2T7IG8GXgUWBWVZ0EPARMaDt/Cq2k+nDg10l+05Zwk+Q3wOW0EvVfVtW3mkNPBx4eiQuWpE5ypFiSlk9TaSW9f6KVGPclu28CvgPcBWzSlE8D3kgzUlxVv6+qw9ra2g84vaoOB/Zu6vwFWClJX2K8JXBNVf0ZeCtwapJnNO0/H7i8qt5ZVQcDb0qyUpL1gAX93YgnSSsak2JJWj71rTzxXeC5Sa4BTqE13/euprynGcE9FJhfVb8foK0NgVub7YVt5ecD2zfbW9KMSFfVBcBpwAnNsW2A2W3nPQg8AewMnLu0FyhJyxOnT0jScqiq3te2u28/VR6uqpcAJHk/cOYgzd1GKzGew5MHQ44D/hX4WVU9aRWJqvpI2+42wA+avqbSukGvkrwBOGo41yNJyzuTYklaMf1LkgOBx4Bf0UpuAWimNXwS2CrJUcAXgOOSvBpYtKpEs2rFL5Os1LZWcX+2AdZL8gitkeYPNKtXnFVVvx3xK5OkDnBJNkmSJHU95xRLkiSp65kUS5IkqeuZFEuSJKnrmRRLkiSp65kUS5IkqeuZFEuSJKnrmRRLkiSp65kUS5Ikqev9f+JxUhmq1uApAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# Horizontal bar chart\n", "fig = plt.figure(figsize=(10, 8))\n", @@ -187,9 +243,9 @@ "plt.barh(y_pos, kds_af_pred, align='center', alpha=0.7, label='AF predicted structures', color='#66cc99')\n", "\n", "# Add labels, title, and legend\n", - "plt.xlabel('$log_{10}(\\overline{K}_D)$', size=font_size)\n", - "plt.ylabel('Antibodies in the test set', size=font_size)\n", - "plt.title('$log_{10}(\\overline{K}_D)$ using original and AlphaFold structures, R = '+str(round(corr_coeff, 2)), size=title_size)\n", + "plt.xlabel('$log_{10}(\\overline{K}_D)$')\n", + "plt.ylabel('Antibodies in the test set')\n", + "plt.title('$log_{10}(\\overline{K}_D)$ using original and AlphaFold structures, R = '+str(round(corr_coeff, 2)))\n", "plt.yticks(y_pos, test_pdbs)\n", "plt.legend()\n", "plt.tight_layout()\n", @@ -203,7 +259,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "7c565fad", "metadata": {}, "outputs": [], @@ -211,38 +267,565 @@ "# Difference of log10(Kd) from original structures and AlphaFold predictions\n", "kds_difference = np.array([kds_original[i] - kds_af_pred[i] for i in range(len(kds_original))])\n", "\n", - "# pTM score - Values displayed here but not plotted\n", - "af_ptm = np.array([0.95, 0.94, 0.93, 0.94, 0.94, 0.92, 0.88, 0.90, 0.94, 0.94, 0.94, 0.94, 0.92, 0.90, 0.92, 0.94])\n", + "# Max predicted alignment error (PAE)\n", + "af_max_pae = np.array([29.1875, 30.546875, 28.109375, 23.484375, 28.671875, 31.34375, 20.875, 23.78125, 29.984375, 31.578125, 31.234375, 26.9375, 31.5625, 30.84375, 31.546875, 21.25, 20.671875, 31.53125, 31.640625, 31.40625, 26.0625])\n", + "af_mean_pae = np.array([4.426376923076923, 3.502604340178686, 4.718328665351742, 3.2568023462828655, 3.203643481882549, 12.740540766733819, 2.3592412827644647, 3.445910004526935, 4.191917333380018, 16.474883693152975, 10.818458259120941, 7.3740316783122815, 12.608831911143566, 10.795276123642791, 11.565669478293808, 2.535208673000881, 2.6607237495549185, 10.322043611687258, 5.822245917355372, 8.242629830611952, 2.774010850577801])\n", + "af_max_pae_ab = np.array([29.19, 18.91, 28.11, 23.48, 24.03, 30.34, 20.88, 23.78, 28.31, 30.88, 31.48, 20.62, 31.56, 27.73, 31.55, 21.25, 20.67, 25.83, 31.64, 30.27, 25.11])\n", + "af_mean_pae_ab = np.array([3.067827594054726, 2.296170864197531, 3.205357067943021, 3.2568023462828655, 2.5909717656512528, 3.196612192749947, 2.3592412827644647, 3.445910004526935, 2.9207198024691365, 5.824465368945225, 4.164882057931771, 2.9419944444444446, 3.476865842535272, 3.358474541331684, 3.6586974838411823, 2.535208673000881, 2.6607237495549185, 3.358852043248603, 2.853489336911234, 3.5956022799744902, 2.4794398865784504])\n", + "af_max_pae_off_blocks = np.array([28.47, 30.55, 23.91, float('nan'), 28.67, 31.34, float('nan'), float('nan'), 29.98, 31.58, 31.41, 26.94, 31.5, 30.84, 31.52, float('nan'), float('nan'), 31.53, 31.56, 31.41, 26.06])\n", + "af_mean_pae_off_blocks = np.array([5.915545179971737, 5.387693790849674, 6.445597385337276, float('nan'), 9.67198717948718, 21.95208830664726, float('nan'), float('nan'), 14.260933333333334, 27.663577036688217, 22.3793922852984, 11.96730813172043, 20.846261284032643, 17.655406292894096, 21.80017543859649, float('nan'), float('nan'), 13.606600092719987, 6.933185197155784, 12.468638799317148, 5.190018633540372])\n", + "af_max_pae_ab_off_blocks = np.array([29.19, 30.55, 28.11, 23.48, 28.67, 31.34, 20.88, 23.78, 29.98, 31.58, 31.48, 26.94, 31.56, 30.84, 31.55, 21.25, 20.67, 31.53, 31.64, 31.41, 26.06])\n", + "af_mean_pae_ab_off_blocks = np.array([4.491686387013232, 3.841932327523603, 4.825477226640149, 3.2568023462828655, 6.131479472569216, 12.574350249698602, 2.3592412827644647, 3.445910004526935, 8.590826567901235, 16.74402120281672, 13.272137171615086, 7.454651288082437, 12.161563563283957, 10.50694041711289, 12.729436461218835,4.386712686638317, 2.9419944444444446, 8.482726067984295, 4.893337267033509, 8.032120539645819, 3.8347292600594116])\n", "\n", - "# Maximum alignment error (MAE)\n", - "af_max_mae = np.array([20.19, 21.88, 26.08, 21.25, 23.58, 24.98, 19.16, 23.5, 24.47, 22.92, 20.52, 22.94, 29.88, 17.33, 25.84, 23.22])\n", "\n", "# Predicted local distance difference test (pLDDT), i.e., per-residue confidence\n", - "# Average of the 10 lowest elements\n", - "af_plddt = np.array([92.89, 89.57, 63.06, 89.22, 83.10, 72.56, 83.63, 86.99, 76.23, 83.27, 86.21, 78.74, 54.22, 88.66, 78.93, 76.462])" + "# Average of pLDDT\n", + "af_plddt = np.array([95.37, 96.12, 94.37, 95.57, 95.40, 87.40, 97.96, 94.14, 91.44, 86.37, 84.57, 92.17, 88.59, 89.35, 88.19, 97.72, 97.48, 87.67, 93.95, 92.90, 97.08])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "id": "142911a4", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "SignificanceResult(statistic=-0.7037593984962407, pvalue=0.000534935286301242)" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAH6CAYAAADWRELjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABbvUlEQVR4nO3deXxU1f3/8deHgBBACauFoCJoAdkSEgFRFlHAKkVAFFdEqtbqt3WpWFyq1i6i2P7E2tZqVdwqKMWIokgVEVCRLWyCuIIQVEAJa4AkfH5/zCQNYTKZQOZm4f18PObBzF0/5+Rm+OScc881d0dERERE4q9GRQcgIiIicqRQ4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISkJoVHYCIiEhlZ2YxzTbu7hbvWKRqU4uXSByZWVszyzSzHWb2q0PYf62ZnV3e25aX0s5pZhPN7A+HeY6Y6zBaPMVjMbOPzazv4cQWpOL1EC3+8qj38na49W1m680spdwCiu2c95vZTRBKqGJ5lXCcBWbWIcjYpfJS4iWVSkUkD9GUQzy3AbPd/Wh3fyTKeWab2VYzq30Y5zpk4XLmmNnOIq8WcThHq0PYNaY6LCt37+Dus8vreAE4oB6qWvyHE6+ZNQR+BKwu16Cin7MpMBL4Z9E4zMzN7ITwZzOz+8LXdpcoh3sIuC++EUtVocRLJL5OAD6OtkE4GekFODA4gJhK8lN3r1/ktbECYymq1Do8QhzJ9dAJ+NTd9wZ4zlHAG+6eU2RZCrDV3deZWT1gCtAP6Obuy6Icaxpwppk1j1ewUnUo8ZJKK/xX5BgzW25mu8zsSTM71szeDHe3vB3+S7hg29vNbFW45ehpM6tT5FhjzeyL8H6rzGxokXXHmdlUM9tsZt+b2aPh5c8BxwOvhVuAbosQY/twa1V2uCtlcJF1s4AzgUfD+/+4hKKOBOYDE4ErS6mPEssYlhKur21mNjnWOogmWhkjbJtqZkvC55gMFI+vYLvfmFlWeLs1ZnZWCdsdVIexxlNaLEVbM8Pvb41Sd13tf918L4fXR+zKK+l6Kq0uo8VQQj0Ujb+0srYws/+EY/rKinTZxlD2aOUp8bgR6iXm+o6gM7AivK+Fr5914Xp8ycwahNfVMLO7LdQtudHMfmpm+yz8PVFGPwHeK7YsBVhqZscD84BtQD933xTtQO6+B1gMDDiEOKS6cXe99Ko0L2AtcHaR9/OBY4FkYBOwBEgFagOzgHuKbLsSOA5oBLwP/KHIcS8EWhD6Y2MEsAtoDiQAy4D/B9Qj9B/WGZHiiRBrLeBz4A7gKEJ/+e4A2hbZZjZwdSll/hy4HkgDcoFjo9RHtDKuBRaEy9mIULfMdaXVQbRyllbGYvEdBawDbg7vNzxcnj8UO2ZbYD3QIvy5FdAmSv0U1mGs8cQSS4S6jVh3RY51Y/hYw4B9xcsV3rbE6ynG2KP9/ArroSxlDf+8FwN3h7dtDXwJDIyh7NHKE/W4Mfxul1jWCPs+DtwRfv+HcF00D8fzKvDn8Lr7gDmEvi+SgA+B9Yf4XbQZOLXYsmeBucBG4JYyHu8R4C/x+u7Uq+q81OIlld1f3f07d88i9IX3kbtneqjL4RVCSViBR919vbv/APwRuKRghbu/7O4b3X2/u08GPgO6hV8tgDHuvsvd97j7vBhj6wHUB8a5+z53nwW8XvS8pTGzMwh1Ib3k7ouBL4BLo+xSYhnDHgmX8wfgNUJ/oQNR66BARrgFIdvMMg6hjD0I/cf/sLvnuvsUYGGE7fIJJc6nmFktd1/r7l9EKXPxc8QST6yxFFVS3fUgdAf4I+FjTSWUNEQS7XqKJfYSf35RlFbWU4Gm7n5f+LxfAk8AF8dw3mjlieW40ZSlrJ2A5WZ2LPBL4FJ3/8ZDLUlTgHQLjcm6GRjt7lnung3MJNxSdgiSCCXGRaUAHYDl7v6XMh5vR/iYcoRT4iWV3XdF3udE+Fy/yOf1Rd6vI/QfBgBmNtLMlhYkFkBHoAmh1qN17p53CLG1IPTX9P5i500uwzGuBGa6+5bw538TpbuRKGUM+7bI+90UqZ8odVBgiLsnhV9DwsvKUsYWQJa7e7FtD+DunwM3AfcCm8xsksU+kD/WeGKKpZiS6i7SsYr+HIqKdj3FEnuJP78oSivrCUCLIkl1NqFWt2NjOG+08sRy3GhiKquZGaFrdQWhsZAr/MDxh02Ab4CzgM/D11eBRvyvi7KBhe4u3GlmHYsc/49mNtfMpphZ3SL7bgWOLrJdbaA9cAHQ3sJ3OxaL9WUzez/cnfyWmZ1SZPXRQHYJdSFHECVeUp0cV+T98YS6A7DQHUhPAP8HNHb3JEJddkboP9DjzaykOe2izd2zETjOzIr+Hh0PZMUSrJklAhcBfczsWzP7ltBf7F2s5DukIpYxhnNFq4NoylLGb4Dk8H+URbc9iLv/290LWvsceCCWcpQhnphjiUGkYx1XwrbRrqfDul7KGF/Rsq4HviqSVCd56M7Ic2M4drTyHM5xy+JEYL+7rwOaEhpXVdT5hMZbNaHI74OZJRAap7U8vGg3cB6hFrKCbToS6ubuBbwNjC5y3OVA0XGZHQm11s4FhgK/N7N+xWI5Cejt7n0JJaFPF1nXnlC3rRzhlHhJdXKDmbU0s0aEvvQmh5fXI/Sf+2YAM7uK0JcohLqMvgHGmVk9M6tjZqcXOeZ3hMauRPIRoXFSt5lZLQvNUfRTYFKM8Q4h9EV+CqEujBRCX85zCQ24L0sZSxOtDqIpSxk/BPKAX5lZTTMbxoFdmYTP3dbM+oVbEPYQarnMj7EcscYTUywx+jAc3/+Fj3V+lGNFu54O93qJFl+0si4AtocHpCeaWYKZdTSzU2M4drTyHM5xy6JwYD2hLtTTzKyNmdU3s/sItbA9RWicWE8zO8nMjiE0pqpNwb7hbtjNxY7dC3gz/P5N4Iwi694A+hT5nAqsdPc8d18C3AC8ZGYnApjZUUC+u+eHz7cYSDKzo8LXehrw38OtDKn6lHhJdfJvQmM6vgy//gDg7quAPxP6D+o7QuNF3g+vyyf0n99JwNfABkIDzwvcD9wV7kq5tejJ3H0foekffgJsAf4OjHT3T2KM90rgaXf/2t2/LXgBjwKXldDKELGMpYlWB6XsF3MZw9sOI3Qb/lZC9Tg1wmFrA+PCx/sWaEYoiYylHDHFU4ZYYj3nMOBnhLqKLic0NuugqQ2iXU/lcL2UFt8oIpS1SEwpwFfhc/8LaBDDsaOV55CPW0adCLdaufsiQmMb54VjaU/orsLd7v4O8CKQCSwClhJq5YpWvw35XwvaNkJdkwWeBc4Nt0xD+I7GgpXu/iyh38cMC00t0R5YU+z4dQklxYMJzcFWWaZokQpkBw4LEKmazGwtoTu+3q7oWOLlSChjVWFmHwGPufvTpW4sFcLMrgPOc/efFls+EXjI3Vea2S+A3e7+TLg7/gF3v7jItn8CNrn7wzGc7zLgBHf/U/hze0I3w5wVvl5+5u4ry6t8UnXpWY0iIqUwsz6EWjO2AJcR6v6aUaFByQHMrAehbtH1hAba30fpExLPA24HngEGUqwV2N1jaokN60ho+puCWe8fC8eAu3cvw3GkmlPiJSJSurbAS4TuvPsCGO7u31RsSFJMKjCd0NQanwKj3H1+0Q3M7A1CXYZtzeyf7j7RQhOxziU0T2BJYytj0QEYEB6SsB8YH+7+FDmAuhpFREREAqLB9SIiIiIBUeIlIiIiEpAqMcarSZMm3qpVq4oOQ0RERKRUixcv3uLuTSOtqxKJV6tWrVi0aFFFhyEiIiJSKjMr8RFl6moUERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLzki7dmzh27dutGlSxc6dOjAPffcA0Dfvn31XFAREYmbKvGQbJHyVrt2bWbNmkX9+vXJzc3ljDPO4Cc/+UlFhyUiItWcWrzkiGRm1K9fH4Dc3Fxyc3MxMwCef/55evbsSceOHVmwYAEA9957L1dccQX9+vXj5JNP5oknnig81oMPPkinTp3o0qULY8eODb4wIiJSZcS1xcvMbgSuAQx4wt0fNrMU4DGgDpAHXO/uC+IZh0gk+fn5pKWl8fnnn3PDDTfQvXt3AHbt2sUHH3zAnDlzGD16NCtXrgRg+fLlzJ8/n127dpGamsp5553HsmXLyMjI4KOPPqJu3br88MMPFVkkERGp5OKWeJlZR0JJVzdgHzDDzKYDDwK/c/c3zezc8Oe+8YpDpKiMzCzGv7WGjdk5tEhK5N6np9P3xHoMHTq0MMG65JJLAOjduzfbt28nOzsbgPPPP5/ExEQSExM588wzWbBgAXPnzuWqq66ibt26ADRq1KhCyiUiIlVDPLsa2wPz3X23u+cB7wFDAQeOCW/TANgYxxhECmVkZnH71BVkZefgQFZ2DrdPXcHsr3bRt29fZsyYAVDY5Vig4HOk5e5+0HIREZGSxDPxWgn0NrPGZlYXOBc4DrgJGG9m64GHgNsj7Wxm15rZIjNbtHnz5jiGKUeK8W+tISc3H4D83dvYv2cnObn5jHt9OW+//Tbt2rUDYPLkyQDMmzePBg0a0KBBAwBeffVV9uzZw/fff8/s2bM59dRTGTBgAE899RS7d+8GUFejiIhEFbfEy91XAw8A/wVmAMsIjen6BXCzux8H3Aw8WcL+j7t7urunN23aNF5hxsXo0aNp1qwZHTt2jHmfKVOmYGaFUxnMnj2bQYMGxSvEI9LG7JzC9/k7f+DbF+9g41P/x5JHrqN///6F9d2wYUN69uzJddddx5NP/u/y7NatG+eddx49evTgt7/9LS1atOCcc85h8ODBpKenk5KSwkMPPRR4uUREpOowdw/mRGZ/AjYA9wNJ7u4W6qPZ5u7HRNs3PT3dq9LcSnPmzKF+/fqMHDmycNxQNDt27OC8885j3759PProo6SnpzN79mweeughXn/99QAiPjKcPm4WWUWSrwLJSYm8P7Zf1H3vvfde6tevz6233hqv8EREpJows8Xunh5pXVynkzCzZuF/jweGAS8SGtPVJ7xJP+CzeMZQEXr37n3QIOsnnniCU089lS5dunDBBRcUdk0B/Pa3v+W2226jTp06EY+3cOFCUlNT+fLLL+Mad3U3ZmBbEmslHLAssVYCYwa2raCIRETkSBPvebz+Y2argNeAG9x9K6E7Hf9sZsuAPwHXxjmGSmHYsGEsXLiQZcuW0b59+8IurMzMTNavX19it+IHH3zAddddx6uvvkrr1q2DDLnaGZKazP3DOpGclIgRaum6f1gnhqQml7rvvffeq9YuERE5bHGdx8vde0VYNg9Ii+d5K0LxaQqu7FT3gPUrV67krrvuIjs7m507dzJw4ED279/PzTffzMSJEyMec/Xq1Vx77bXMnDmTFi1aBFCK6m9IanJMiZaIiEg86JFB5aBgmoKCO+aysnN4YMZ6cvfkFW4zatQoMjIy6NKlCxMnTmT27Nns2LGDlStX0rdvXwC+/fZbBg8ezLRp0wBo3rw5e/bsITMzU4mXiIhINaBHBpWDotMUFNibl8+WnXsLP+/YsYPmzZuTm5vLCy+8AECDBg3YsmULa9euZe3atfTo0YNp06aRnh4aj5eUlMT06dO54447mD17dmDlERERkfhQ4lUONha7U27ztAf59rlbydm8npYtW/Lkk0/y+9//nu7du9O/f//C+aJiceyxx/Laa69xww038NFHHx20/lCmrgBYs2YNKSkpha9jjjmGhx9+GIC7776bt99+u0zHExERkdIFNp3E4ajs00kczjQFh6usU1dEkp+fT3JyMh999BEnnHBCOUcoIiJyZKmw6SSOFBU5TUGkqSv69u3LzTffTO/evWnfvj0LFy5k2LBhnHzyydx1110HHeOdd96hTZs2hUnXqFGjmDJlStxjFxEROdJocH05KLhLruhdjWMGtq3Qu+eOOuoo5syZw4QJEzj//PNZvHgxjRo1ok2bNtx88800bty4cNtJkyYVPhhaRERE4keJVzkJcpqC0qauABg8eDAAnTp1okOHDjRv3hyA1q1bs379+sLEa9++fUybNo37778/kNhFRESOZEq8qphYpq4AqF27NgA1atQofF/wOS/vf9u++eabdO3alWOPPTaA6EVERI5sSryqmJKmrvihyNQVZfHiiy+qm1FERCQgSryqmEhTV+z9egX5Odtp2bIlv/vd72I+1u7du/nvf//LP//5z/IOU0RERCLQdBJVTEVOXSEiIiKl03QS1UhFTl0hIiIih0ddjVVMZZy6QkRERGKjxKsKCnLqChERESk/6moUCduzZw/dunWjS5cudOjQgXvuuafUff7617/Stm1bOnTowG233QbA7NmzGTRoULzDFRGRKkgtXiJhtWvXZtasWdSvX5/c3FzOOOMMfvKTn9CjR4+I27/77ru8+uqrLF++nNq1a7Np06aAIxYRkapGLV4iYWZG/fr1AcjNzSU3NxczY+nSpfTo0YPOnTszdOhQtm7dCsA//vEPxo4dWzhBbbNmzSosdhERqRqUeIkUkZ+fT0pKCs2aNaN///50796dkSNH8sADD7B8+XI6depUOFfap59+yty5c+nevTt9+vRh4cKFFRy9iIhUdupqlCNa8edejhnYlqVLl5Kdnc3QoUNZtmwZ2dnZ9OnTB4Arr7ySCy+8EIC8vDy2bt3K/PnzWbhwIRdddBFffvllRRZHREQqOSVecsSK9NzL26euAEJ3jvbt25eMjIwS92/ZsiXDhg3DzOjWrRs1atRgy5YtQYQuIiJVlLoa5YhV/LmX+bu3sWvHttDynBzefvtt0tLSaNiwIXPnzgXgueeeK2z9GjJkCLNmzQJC3Y779u2jSZMmwRdERESqDLV4yRGr+HMv83f+wJbp/49vfT+nPl+Piy66iEGDBtGyZUuuu+46du/eTevWrXn66acBGD16NKNHj6Zjx44cddRRPPPMM5hZRRRFRESqCD2rUY5Yeu6liIjEg57VKBKBnnspIiJBU1ejHLH03EsREQmaEi85oum5lyIiEiR1NYqIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISECUeMVRfn4+qampDBo0CIBPPvmElJQUUlNT+fjjj+nWrRtdunShQ4cO3HPPPYX7Fd3uiy++qKjwRUREpJwp8YqjCRMm0L59+8LPGRkZnH/++WRmZnLKKacwa9Ysli1bxtKlS5kxYwbz588/aLs2bdpUVPgiIiJSzpR4xcmGDRuYPn06V199NQBvvPEGDz/8MP/6178488wzMTPq168PQG5uLrm5uZjZQduJiIhI9VGzogOorm666SYefPBBduzYAcC5557LddddR/369bn11luBUFdkWloan3/+OTfccAPdu3cHOGg7ERERqR7U4hUHr7/+Os2aNSMtLS3qdgkJCSxdupQNGzawYMECVq5cGVCEIiIiUhHU4lVOMjKzGP/WGjZm55A7/9/sWf0ub7zxBnv27GH79u1cfvnlnHTSSRH3TUpKom/fvsyYMYOOHTsGHLmIiIgERS1e5SAjM4vbp64gKzsHB2r2uIym1z7Nw6+8z6RJk+jXrx/PP//8Afts3ryZ7OxsAHJycnj77bdp165d8MGLiIhIYJR4lYPxb60hJzf/gGU5ufmMf2tNift88803nHnmmXTu3JlTTz2V/v37F047ISIiItWTuXv8Dm52I3ANYMAT7v5wePkvgf8D8oDp7n5btOOkp6f7okWL4hbn4Tpx7HQi1aIBX407L+hwREREpAKZ2WJ3T4+0Lm5jvMysI6GkqxuwD5hhZtOBlsD5QGd332tmzeIVQ1BaJCWSlZ0TcbmIiIhIgXh2NbYH5rv7bnfPA94DhgK/AMa5+14Ad98UxxgCMWZgWxJrJRywLLFWAmMGtq2giERERKQyimfitRLobWaNzawucC5wHPBjoJeZfWRm75nZqZF2NrNrzWyRmS3avHlzHMM8fENSk7l/WCeSkxIxIDkpkfuHdWJIanJFhyYiIiKVSLzHeP0MuAHYCawCcoD+wCzgRuBUYDLQ2qMEUtnHeImIiIgUiDbGK653Nbr7k+7e1d17Az8AnwEbgKkesgDYDzSJZxwiIiIilUFcJ1A1s2buvsnMjgeGAacRSrT6AbPN7MfAUcCWeMYhIiIiUhnEe+b6/5hZYyAXuMHdt5rZU8BTZraS0N2OV0brZhQRERGpLuKaeLl7rwjL9gGXx/O8IiIiIpWRZq6Pgz179tCtWze6dOlChw4duOeeew7reL/97W/p3LkzKSkpDBgwgI0bN5ZTpCIiIhKkuN7VWF6q2l2N7s6uXbuoX78+ubm5nHHGGUyYMIEePXoc0vG2b9/OMcccA8AjjzzCqlWreOyxx8ozZBERESknFXZX45HKzKhfvz4Aubm55ObmsnfvXrp161a4zdq1a+ncuTMLFixg2LBhALz66qskJiayb98+9uzZQ+vWrQEKky6AXbt2YWYBlkZERETKS7wH1x+x8vPzSUtL4/PPP+eGG26gT58+7Nu3jy+//JLWrVszefJkLrroIrp27UpmZiYAc+fOpWPHjixcuJC8vDy6d+9eeLw777yTZ599lgYNGvDuu+9WVLFERETkMKjFqxxlZGZx+rhZnDh2Or3Hv8e9T09nw4YNLFiwgJUrV3LRRRfx0ksvATB58mRGjBhBzZo1Oemkk1i9ejULFizglltuYc6cOcydO5devf53b8If//hH1q9fz2WXXcajjz5aUUUUERGRw6DE6xBkZ2czfPhw2rVrR/v27fnwww/JyMzi9qkryMrOwYGs7Bxun7qC2V/tom/fvvTq1YuJEydy33330bFjRz777DO2bdsGQK9evXjzzTepVasWZ599NvPmzWPevHnUrVuXrl27UrNmTaZMmQLApZdeyn/+858KLL2IiIgcKnU1HoIbb7yRc845hylTprBv3z52797NrY8tISc3H4D83duwGgnkUJ9xry+n1ttvU6tWLT744AN+8pOf0K5dO3JycgqP17t3b0aOHMnIkSNp2rQp33//Pd9++y19+vSha9eu3H333YXbTps2jXbt2gVeZhERETl8SrzKaPv27cyZM4eJEycCcNRRR3HUUUexZvYr7Fj2Fp6fS0LdBuTt3oYBX2/7jiHnncP69et55plnyM/P5/nnn6dr165cfvnlrFq1ivHjx7N+/frChGrVqlX06tWLE088EYDMzEyWLFnCfffdxwknnMDIkSPp06cPxx57LEuXLmXYsGF06tSJCRMmkJOTQ0ZGBm3atKmgGhIREZGSKPEqoy+//JKmTZty1VVXsWzZMtLS0pgwYQKtT+3HppRzANg65zkS6yVxTNpPaZqQw/LJY9m7dy933nknbdu25Z///Cf//ve/+eGHH7jooouoUaMG6enpmBnr1q2jQ4cOTJ8+vfCcZ555JoMGDWL48OEAzJ49m2XLlrF69WoaNWpE69atufrqq1mwYAETJkzgr3/9Kw8//HBFVI+IiIhEoTFeMSoYOH/u/5vNwsWLOaXfBWRmZlKvXj3GjRvH4BPy2fTv37DxyRvYtWo2uVvWkVgrgTuHn8Z9993H5s2befnll/nvf//L3/72N7Zt28b27dupV68eiYmJ3HHHHREH1Zfk1FNPpXnz5tSuXZs2bdowYMAAADp16sTatWvjXBsiIiJyKJR4xaDowPmEo5uQUL8JT39Wi4zMLIYPH86SJUt48o9j+OP4/8epv36KpNMvoRb51K5Zg5snL+W2x1+nfoOGbNy4kWbNmjF06FC2b99Oly5dmDNnDl999RXnn38+y5YtY968efTu3bvUmGrXrl34vkaNGoWfa9SoQV5eXtzqQkRERA6dEq8YjH9rTeHA+YT6Dal5TBO2f7uO8W+t4Z133uGUU05hx44dXHZmF2b/uhctv19M/n4nOyeXPRvXsGnVhzQacT+/++M4Pv74Y2bOnEm9evW46aabyM7O5ptvvmH//v00atSIN954g9NPP72CSywiIiLxoDFeMdiYnXPA50ZnX8eW1x9ic34eTXt24emnn6Z169Z0796dE044ge9qNCZ//w48L5fvZ/yVBr2uYMOUP2K5OXTr1o3bb7+dt99+mxYtWnD00UfTuXNnrrjiCnr27MmGDRto2LAhAAsXLmTo0KFs3bqV1157jXvuuYePP/64IqpAREREyoGe1RiD08fNIqtY8gWQnJTI+2P7HbT8xLHTiVSrBnw17rzyD1BEREQqDT2r8TCNGdiWxFoJByxLrJXAmIFtI27fIimxTMtFRETkyKDEKwZDUpO5f1gnkpMSMUItXfcP68SQ1OSI25c1URMREZEjg8Z4xWhIanKJiVakbSE0KH9jdg4tkhIZM7BtzPuLiIhI9aTEK07KkqiJiIjIkUFdjSIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeJVxPr16znzzDNp3749HTp0YMKECRG3mzhxIk2bNiUlJYWUlBT+9a9/Fa77+uuvGTBgAO3bt+eUU05h7dq1AUUvIiIilV3Nig6gMqlZsyZ//vOf6dq1Kzt27CAtLY3+/ftzyimnFG6Tl5cHwIgRI3j00UcPOsbIkSO588476d+/Pzt37qRGDeW2IiIiEqLEq4jmzZvTvHlzAI4++mjat29PVlYW119/PT179uT9999n8ODBNG7cOOL+q1atIi8vj/79+wNQv379wGIXERGRyk/NMSVYu3YtmZmZdO/eHYDs7Gzee+89fv3rXwPwn//8h86dOzN8+HDWr18PwKeffkpSUhLDhg0jNTWVMWPGkJ+fX2FlEBERkcrliE+8MjKzOH3cLE4cO53Tx80iIzOLnTt3csEFF/Dwww9zzDHHAKGuxQI//elPWbt2LcuXL+fss8/myiuvBELdkHPnzuWhhx5i4cKFfPnll0ycOLEiiiUiIiKV0BGdeGVkZnH71BVkZefgQFZ2DmNfzqRX/0FcdtllDBs2rHDbevXqFb5v3LgxtWvXBuCaa65h8eLFALRs2ZLU1FRat25NzZo1GTJkCEuWLAm0TCIiIlJ5HdGJ1/i31pCT+7+uQHdnw7S/8F2Nxtxyyy0l7vfNN98Uvp82bRrt27cH4NRTT2Xr1q1s3rwZgFmzZh0wMF9ERESObEd04rUxO+eAz3uzVrHr43fZ8tmSwqki3njjjYP2e+SRR+jQoQNdunThkUceKexOTEhI4KGHHuKss86iU6dOuDvXXHNNEEWpUkaPHk2zZs3o2LHjIR/j7rvv5u233y7HqEREROLP3L2iYyhVenq6L1q0qNyPe/q4WWQVS74AkpMSeX9sv3I/n4TMmTOH+vXrM3LkSFauXFnR4YiIiJQrM1vs7umR1h3RLV5jBrYlsVbCAcsSayUwZmDbCoroyNC7d28aNWpU+PmLL76ga9euhZ8/++wz0tLSAFi8eDF9+vQhLS2NgQMHFnbzjho1iilTpgQbuIiIyGE6ohOvIanJ3D+sE8lJiRihlq77h3ViSGpyRYd2RGnTpg0NGjRg6dKlADz99NOMGjWK3NxcfvnLXzJlyhQWL17M6NGjufPOOys2WBERkcNwxE+gOiQ1WYlWADIysxj/1ho2ZufQIimRKzvVPWD91VdfzdNPP81f/vIXJk+ezIIFC1izZg0rV64snJA2Pz+/cIJbERGRquiIT7zk8K1fv56RI0fy7bffUqNGDa699lpuvPFG7r77bnr37s3Oxu25ctQodq1bQY3adckC1p05ihp78gqPccEFF/C73/2Ofv36kZaWRuPGjdm4cSMdOnTgww8/rLjCiYiIlCMlXnLYSnrG5X333QeEbmLI3+807HsV9dqdAUDetu/YsnNv4THq1KnDwIED+cUvfsGTTz4JQNu2bdm8eTMffvghp512Grm5uXz66ad06NAh+EKKiIiUgyN6jJeUj+bNmxcOji/6jMuCAfDFp+3YPO1Bvn3uVnI2fU3NmjV5+OGHAbjkkkvYtGlT4bGOOuoopkyZwm9+8xu6dOlCSkoKH3zwQeFxzCyYAoqIiJSTuLZ4mdmNwDWAAU+4+8NF1t0KjAeauvuWeMYhwSn6jMsXXngBgBZJiWwGsuc+x7YPJlHnhC4kX/cULZscw4C9cwv3ffrppzn55JM59thjC5elpKQwZ86cg87z/fffH3BnpIiISFUQt8TLzDoSSrq6AfuAGWY23d0/M7PjgP7A1/E6vwQv0jMuITRtx5hvR7Ov9jGQn8f3b/2V3Qv/w5iHx5HW5GTOP/983nvvPd59913+/ve/l3qe0aNHs3v3bs4444x4FkdERKTcxbPFqz0w3913A5jZe8BQ4EHg/wG3Aa/G8fwSR8XvUry5X2ue+O3PD3rGJRC+a7RP4fatTjuPOqvfKLyb9Nhjj+WXv/wlS5cuPeBh5CV56qmn4lEkERGRuIvnGK+VQG8za2xmdYFzgePMbDCQ5e7Lou1sZtea2SIzW1Tw7EOpHIo/XHzD1t387OqrOarxcSU+47L7j2rw/th+fHn/uZxd92vOPv1/E/peffXVXH755Vx00UUkJCRE3F9ERKQ6iFuLl7uvNrMHgP8CO4FlQB5wJzAghv0fBx6H0COD4hWnlF3xh4vvzVrF9hXvMGvziaSkpADwpz/96YB9LrvsMjZv3oy7k5KSwmOPPVa4bvDgwVx11VVcddVVgcQvIiJSUQJ7VqOZ/Qn4jlDitTu8uCWwEejm7t+WtG+8ntUoh+bEsdOJdNUY8NW488p8vEWLFnHzzTczd+7c0jcWERGp5CrsWY1m1iz87/HAMOBZd2/m7q3cvRWwAegaLemSyqdFUmKZlkczbtw4LrjgAu6///7DDUtERKTSi/c8Xv8xs1XAa8AN7r41zueTAJTnw8XHjh3LunXrdIeiiIgcEeI6j5e79yplfat4nl/io+BuxKJ3NY4Z2FbPvBQRESmFHhkkh0QPFxcRESk7PTJIREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLKkSrVq3o1KkTKSkppKenx7TP3r17GTFiBCeddBLdu3dn7dq1AMyePZtBgwbFMVoREZHyUbOiA5Aj17vvvkuTJk1i3v7JJ5+kYcOGfP7550yaNInf/OY3TJ48OY4RioiIlC+1eEmlsGnTJtLS0gBYtmwZZsbXX38NQJs2bdi9ezevvvoqV155JQDDhw/nnXfewd0POM7ChQtJTU3lyy+/DLYAIiIiMVDiJRXCzBgwYABpaWk8/vjjNGvWjD179rB9+3bmzp1Leno6c+fOZd26dTRr1oy6deuSlZXFcccdB0DNmjVp0KAB33//feExP/jgA6677jpeffVVWrduXVFFExERKZG6GqVCvP/++7Ro0YJNmzbRv39/2rVrR8+ePXn//feZM2cOd9xxBzNmzMDd6dWrF8BBrVsQSuAAVq9ezbXXXsvMmTNp0aJFoGURERGJlVq8JDAZmVmcPm4WJ46dzoXPfkJGZhbNmjVj6NChLFiwgF69ehW2cp1//vksW7aMefPm0bt3bwBatmzJ+vXrAcjLy2Pbtm00atQIgObNm1OnTh0yMzMrrHwiIiKlUeIlgcjIzOL2qSvIys4hf98e1n/3PbdPXcGkDz5j5syZdOzYkd69e/P8889z8sknU6NGDRo1asQbb7zB6aefDsDgwYN55plnAJgyZQr9+vUrbPFKSkpi+vTp3HHHHcyePbuiiikiIhKVuholEOPfWkNObj4A+buz2Tz1DwCMfty581fXcM455xRuW9DCdcYZZ7BhwwYaNmwIwM9+9jOuuOIKTjrpJBo1asSkSZMOOMexxx7La6+9xk9+8hOeeuopunfvHkTRREREYmaRxs1UNunp6b5o0aKKDkMOw4ljpxPpSjPgq3HnBR2OiIhI3JjZYnePOEmluholEC2SEsu0XEREpDpS4iWBGDOwLYm1Eg5YllgrgTED21ZQRCIiIsHTGC8JxJDUZCA01mtjdg4tkhIZM7Bt4XIREZEjgRIvCcyQ1GQlWiIickRTV6OIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAQkpsTLzE4ws7PD7xPN7Oj4hiUiIiJS/ZSaeJnZNcAU4J/hRS2BjDjGJCIiIlItxdLidQNwOrAdwN0/A5rFMygRERGR6iiWxGuvu+8r+GBmNSHiY/dEREREJIpYEq/3zOwOINHM+gMvA6/FNywRERGR6ieWxGsssBlYAfwceAO4K55BiYiISPWwfv16zjzzTNq3b0+HDh2YMGFCTPstXLiQhIQEpkyZUrisVatWdOrUiZSUFNLT0+MVclyV+sggd98PPBF+iYiIiMSsZs2a/PnPf6Zr167s2LGDtLQ0+vfvzymnnFLiPvn5+fzmN79h4MCBB6179913adKkSTxDjqtSEy8zW8HBY7q2AYuAP7j79/EITERERKq+5s2b07x5cwCOPvpo2rdvT1ZWFtdffz0pKSksWLCA7du389RTT9GtWzcA/vrXv3LBBRewcOHCigw9LmLpanwTmA5cFn69BswBvgUmxi0yERERqVbWrl1LZmYm3bt3B2DXrl188MEH/P3vf2f06NEAZGVl8corr3DdddcdtL+ZMWDAANLS0nj88ccDjb28lNriBZzu7qcX+bzCzN5399PN7PJ4BSYiIiJVU0ZmFuPfWsPG7BxaJCUyZmBbzj65ARdccAEPP/wwxxxzDACXXHIJAL1792b79u1kZ2dz00038cADD5CQkHDQcd9//31atGjBpk2b6N+/P+3ataN3796Blu1wxZJ41Tez7u7+EYCZdQPqh9flxS0yERERqXIyMrO4feoKcnLzAcjKzmHsy5kkvvsQV1x2GcOGDSvc1swO2NfMWLRoERdffDEAW7Zs4Y033qBmzZoMGTKEFi1aANCsWTOGDh3KggULqlziFUtX49XAv8zsKzNbC/wLuMbM6gH3xzM4ERERqVrGv7WmMOkCcHc2TPsL39VozC233HLAtpMnTwZg3rx5NGjQgAYNGvDVV1+xdu1a1q5dy/Dhw/n73//OkCFD2LVrFzt27ABCXZQzZ86kY8eOwRWsnMRyV+NCoJOZNQDM3bOLrH4pXoGJiIhI1bMxO+eAz3uzVrHr43fZ17QVKSkpAPzpT38CoGHDhvTs2bNwcH003333HUOHDgUgLy+PSy+9lHPOOaf8CxBn5l76JPRmdh7QAahTsMzd74tjXAdIT0/3RYsWBXU6EREROUSnj5tFVrHkCyA5KZH3x/Yr/Ny3b18eeuihKjsfVzRmttjdIxYslodkPwaMAH4JGHAhcEKMJ77RzFaa2cdmdlN42Xgz+8TMlpvZK2aWFGM5REREpJIbM7AtibUOHBifWCuBMQPbVlBElUssY7x6uvtIYKu7/w44DTiutJ3MrCNwDdAN6AIMMrOTgf8CHd29M/ApcPuhBi8iIiKVy5DUZO4f1onkpESMUEvX/cM6MSQ1+YDtZs+eXS1bu0oTy12Ne8L/7jazFsD3wIkx7NcemO/uuwHM7D1gqLs/WGSb+cDwMsQrIiIildyQ1OSDEi0JiaXF67Vwd+B4YAmwFngxhv1WAr3NrLGZ1QXO5eCWstGEJmg9iJlda2aLzGzR5s2bYzidiIiISOUWtcXLzGoA74TvZPyPmb0O1HH3baUd2N1Xm9kDhLoWdwLLKDLvl5ndGf78Qgn7Pw48DqHB9TGVRkRERKQSi9riFX5A9p+LfN4bS9JVZPsn3b2ru/cGfgA+AzCzK4FBwGUey22VIiIiItVALF2NM83sAis+vWwMzKxZ+N/jgWHAi2Z2DvAbYHDB+C8RERGRI0Esg+tvAeoB+WaWQ2hKCXf3Y2LY9z9m1hjIBW5w961m9ihQG/hvOJeb7+4HPwlTREREpJqJZeb6ow/14O7eK8Kykw71eCIiIiJVWSwTqJqZXW5mvw1/Pi78oGwRERERKYNYxnj9ndCkqZeGP+8E/ha3iERERESqqVjGeHV3965mlgkQHqd1VJzjEhEREal2Ykm8cs0sAXAAM2sK7I9rVFIptWrViqOPPpqEhARq1qyJHlwuIiJSNrEkXo8ArwDNzOyPhB7xc1dco5JK691336VJkyYVHYaIiEiVVOoYL3d/AbgNuB/4Bhji7i/HOzCp/FavXk23bv+7z2Lt2rV07tyZRYsWkZKSQkpKCp06dcLM+OKLL+jatWvhtp999hlpaWkVEbaIiEiFieWuxglAI3f/m7s/6u6rA4hLKiEzY8CAAaSlpfH444/Tvn179u3bx5dffgnA5MmTueiii0hPT2fp0qUsXbqUc845h1tvvZU2bdrQoEEDli5dCsDTTz/NqFGjKq4wIiIiFSCWuxqXAHeZ2edmNt7M0uMdlFRO77//PkuWLOHNN9/kb3/7G3PmzOGiiy7ipZdeAkKJ14gRIwq3f+mll1iyZAnjxo0D4Oqrr+bpp58mPz+fyZMnc+mll0Y8j4iISHUVS1fjM+5+LtAN+BR4wMw+i3tkUuEyMrM4fdwsThw7ndPHzWLBd6HHajZr1oyhQ4eyYMECRowYwUsvvcSnn36KmXHyyScD8PHHH3PPPfcwadIkEhISALjgggt48803ef3110lLS6Nx48YVVjYREZGKEEuLV4GTgHZAK+CTuEQjlUZGZha3T11BVnYODqzftJXbXvyIjMwsdu3axcyZM+nYsSNt2rQhISGB3//+94WtXdu2bePiiy/m2WefpWnTpoXHrFOnDgMHDuQXv/gFV111VQWVTEREpOKUelejmT1A6AHXXwAvAb939+w4xyUVbPxba8jJzS/8nL87m7VT/8Blz9WgVaM6XHrppZxzzjkAjBgxgjFjxvDVV18BkJGRwbp167jmmmsK9y8Y23XZZZcxdepUBgwYEFxhREREKglz9+gbmF0HTHH3LcGEdLD09HTXnFHBOnHsdCJdGQZ8Ne68Qz7uQw89xLZt2/j9739/yMcQERGpzMxssbtHHBMfy0OyHzOzhuHnM9YpsnxOOcYolUyLpESysnMiLj9UQ4cO5YsvvmDWrFmHE5qIiEiVFUtX49XAjUBLYCnQA/gQ6BfXyKRCjRnYltunrjiguzGxVgJjBrY95GO+8sor5RGaiIhIlRXL4PobgVOBde5+JpAKbI5rVFLhhqQmc/+wTiQnJWJAclIi9w/rxJDU5IoOTUREpMqK5ZFBe9x9j5lhZrXd/RMzO/RmD6kyhqQmK9ESEREpR7EkXhvMLAnIAP5rZluBjfEMSkRERKQ6imVw/dDw23vN7F2gATAjrlGJiIiIVEOxtHgVcvf34hWIiIiISHVXlpnrRUREROQwKPESERERCUiJiZeZzQwyEBEREZHqLlqLV9Mo60RERESkjKINrm9gZsNKWunuU+MQj4iIiEi1FTXxAgYRei5ycQ4o8RIREREpg2iJ1zp3Hx1YJCIiIiLVXLQxXpFaukRERETkEEVr8boCIPy4oJPDyz51923xDkpERESkOoqWeH1qZhOBIcBXhFrATjCzV4Dr3H1f/MMTERERqT6idTXeBdQCjnP3VHdPAY4nlKz9NoDYRERERKqVaInXMOAad99RsCD8/npgaIl7iYiIiEhE0RKv/e6+u/hCd99JaDoJERERESmDaGO83MwaEvnuxv1xikdERESk2iptAtXFlDyBqoiIiIiUQYmJl7u3CjAOERERkWovWosXZlYT+AnQLrxoFfCWu+fFOzARERGR6qbEwfVm1gL4GPg10AJIBm4DPg6vExEREZEyiNbi9SfgH+7+cNGFZvYr4H7gyjjGJSIiIlLtREu8erj7qOIL3f0RM1sTv5BEREREqqdo83jlRFl30PxeIiIiIhJd1OkkzGxYhOUGHBOneERERESqrWiJ13vAT0tYNycOsYiIiIhUa9ESr9fcfWpgkYiIiIhUc9HGeN0VWBQiIiIiR4BoiZeIiIiIlKNoXY3tzGx5hOUGuLt3jlNMIiIiItVStMTrK0oeXC8iIiIiZRQt8drn7usirTCzycCI+IQkIiIiUj1FG+P1fpR1p5V3ICIiIiLVXYmJl7v/X5CBiIiIiFR3JXY1mlnXklYBtWI5uJndCFwT3ucJd3/YzBoBk4FWwFrgInffWoaYRURERKqkaGO8/hxl3SelHdjMOhJKuroB+4AZZjY9vOwddx9nZmOBscBvYg9ZREREpGoqMfFy9zMP89jtgfnuvhvAzN4DhgLnA33D2zwDzEaJl4iIiBwBSp1A1czqmNktZjbVzP5jZjeZWZ0Yjr0S6G1mjc2sLnAucBxwrLt/AxD+t1kJ573WzBaZ2aLNmzfHXiIRERGRSiqWmeufBToAfwUeBU4BnittJ3dfDTwA/BeYASwD8mINzN0fd/d0d09v2rRprLuJiIiIVFrRxngVaOvuXYp8ftfMlsVycHd/EngSwMz+BGwAvjOz5u7+jZk1BzaVNWgRERGRqiiWFq9MM+tR8MHMuhN9jq9CZtYs/O/xwDDgRWAacGV4kyuBV8sSsIiIiEhVFUuLV3dgpJl9Hf58PLDazFZQ+jMb/2NmjYFc4AZ332pm44CXzOxnwNfAhYcRv4iIiEiVEUvidc6hHtzde0VY9j1w1qEeU0RERKSqKjXxKul5jSIiIiJSNrGM8RIRERGRcqDES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0QC16pVKzp16kRKSgrp6eklbrdx40aGDx8eYGQiIvEVyzxeIiLl7t1336VJkyZRt2nRogVTpkwJKCIRkfhTi5eIVAqff/45Z599Nl26dKFr16588cUXrF27lo4dOwKQk5PDxRdfTOfOnRkxYgTdu3dn0aJFFRy1iEjZqMVLRAJnZgwYMAAz4+c//znXXnstl112GWPHjmXo0KHs2bOH/fv3s2nTpsJ9/vGPf1C3bl2WL1/O8uXL6dq1awWWQETk0CjxEpG4y8jMYvxba9iYnUOLpER++88pjB6QxqZNm+jfvz9t27YlKyuLoUOHAlCnTp2DjjFnzhx+9atfAdC5c2c6d472mFgRkcpJiZeIxFVGZha3T11BTm4+AFnZOYyfu49GTbMYkprM0KFDee+992I6lpnFM1QRkbjTGC8Riavxb60pTLoA9u/bw66dOxj/1hp27drFzJkz6datGy1btiQjIwOAvXv3snv37gOO07t3b1544QUAVq5cyfLlywMrg4hIeVGLl4jE1cbsnAM+5+/OZvPUP/At0O25ulx66aWcc845tGnThp///Ofcfffd1KpVi5dffpkaNWoUtnL94he/4KqrrqJz586kpKTQrVu3CiiNiMjhUeIlInHVIimRrCLJV62kH9Fi9KMkJyXy/th+hctPPvlkZs2adcC+ixcvplGjRgAkJiYyadKkwnV9+/aNb+AiInGgrkYRiasxA9uSWCvhgGWJtRIYM7Bt1P0WLVrEJZdcwo033hjP8EREAmXuXtExlCo9Pd01X49I1VX8rsYxA9syJDW5osMSEYkLM1vs7hEfy6GuRhGJuyGpyUq0RERQV6OIiIhIYJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iUi5yM/PJzU1lUGDBlV0KCIilZYSLxEpFxMmTKB9+/YR1+Xl5QUcjYhI5aTES0QO24YNG5g+fTpXX3114bK+fftyxx130KdPHyZMmMDChQvp3Lkzp512GmPGjKFjx44A7Nmzh6uuuopOnTqRmprKu+++W1HFEBGJu5oVHYCIVH033XQTDz74IDt27DhgeXZ2Nu+99x4AHTt25PHHH6dnz56MHTu2cJu//e1vAKxYsYJPPvmEAQMG8Omnn1KnTp3gCiAiEhC1eInIIcnIzOL0cbM4dvg9zNuQy/oaPzpomxEjRgChBGzHjh307NkTgEsvvbRwm3nz5nHFFVcA0K5dO0444QQ+/fTTAEogIhI8tXiJSJllZGZx+9QV5OTmsydrFbs+fp8Lz+xK/ZrO3t07ufzyywGoV68eAO5e4rGirRMRqW7U4iUiZTb+rTXk5OYD0LDPKFre8AzJ1z1F8rCx9OvXj+eff/6A7Rs2bMjRRx/N/PnzAZg0aVLhut69e/PCCy8A8Omnn/L111/Ttm3bgEoiIhIsJV4iUmYbs3MiLt+yc2+J+zz55JNce+21nHbaabg7DRo0AOD6668nPz+fTp06MWLECCZOnEjt2rXjEreISEVTV6OIlFmLpESyIiRfbTp35/WxtwMwe/bsA9Z16NCB5cuXAzBu3DjS09MBqFOnDhMnToxrvCIilYVavESkzMYMbEtirYQDliXWSmDMwJK7CKdPn05KSgodO3Zk7ty53HXXXfEOU0Sk0rGqMLA1PT3dFy1aVNFhiEgRGZlZjH9rDRuzc2iRlMiYgW0Zkppc0WGJiFQ4M1vs7umR1qmrUUQOyZDU5CqTaI0ePZrXX3+dZs2asXLlSgAmTpzIgAEDaNGiRYn73X333fTu3Zuzzz47qFBFpJpTV6OIVHujRo1ixowZByybOHEiGzdujLrffffdp6RLRMqVEi8RqfZ69+5No0aNCj9PmTKFRYsWcdlll5GSksLcuXNJSUkhJSWFTp06YWZAKGGbMmVKRYUtItWQuhpF5IgzfPhwHn30UR566KHCuyuXLl0KwJgxYzjnnHMqMDoRqc6UeImIhL300kssWbKEmTNnVnQoIlJNKfESkWqp+F2XV3aqG3X7jz/+mHvuuYc5c+aQkJAQdVsRkUOlxEtEqp2iz5IEyMrO4YEZ68ndk1e4zdFHH82OHTsA2LZtGxdffDHPPvssTZs2rZCYReTIoMRLRKqdos+SBNg87UH2fr2C/TnbadmyJb/73e8YNWoU1113HYmJidx8882sW7eOa665pnCfgjFfIiLlSROoiki1c+LY6UT6ZjPgq3HnBR2OiBxhok2gqukkRKTaaZGUWKblIiJBiWviZWY3m9nHZrbSzF40szpmlmJm881sqZktMrNu8YxBRI48h/IsSRGRIMQt8TKzZOBXQLq7dwQSgIuBB4HfuXsKcHf4s4hIuRmSmsz9wzqRnJSIAclJidw/rFOVecSRiFRf8R5cXxNINLNcoC6wEXDgmPD6BuFlIiLlqio9S1JEjhxxS7zcPcvMHgK+BnKAme4+08zWA2+F19UAekba38yuBa4FOP744+MVpoiIiEhg4tnV2BA4HzgRaAHUM7PLgV8AN7v7ccDNwJOR9nf3x9093d3TNa+OiIiIVAfxHFx/NvCVu29291xgKqHWrSvD7wFeBjS4XkRERI4I8Uy8vgZ6mFldMzPgLGA1oTFdfcLb9AM+i2MMIlVafn4+qampDBo0qNRtly9fzmmnnUaHDh3o1KkTe/bsCSBCEREpi3iO8frIzKYAS4A8IBN4PPzvBDOrCewhPI5LRA42YcIE2rdvz/bt26Nul5eXx+WXX85zzz1Hly5d+P7776lVq1ZAUYqISKziOo+Xu9/j7u3cvaO7X+Hue919nrunuXsXd+/u7ovjGYNIVbVhwwamT5/O1VdfXbisb9++FDzFYcuWLbRq1QqAmTNn0rlzZ7p06QJA48aNSUhI4B//+Ae33XZb4f4TJ07kl7/8ZXCFEBGRA2jmepFK6qabbuLBBx+kRo3Sf00//fRTzIyBAwfStWtXHnwwND3e8OHDmTp1auF2kydPZsSIEXGLWUREotNDskUqkYzMLMa/tYbPF72HbchlfY0fkcSOUvfLy8tj3rx5LFy4kLp163LWWWeRlpbGWWedRevWrZk/fz4nn3wya9as4fTTTw+gJCIiEokSL5FKIiMzi9unriAnN589WavY9fH7XHhmV+rXdPbu3snll19OzZo12b9/P8ABg+dbtmxJnz59aNKkCQDnnnsuS5Ys4ayzzmLEiBG89NJLtGvXjqFDhxK610VERCqCuhpFKonxb60hJzcfgIZ9RtHyhmdIvu4pkoeNpV+/fjz//PO0atWKxYtDwyKnTJlSuO/AgQNZvnw5u3fvJi8vj/fee49TTjkFgGHDhpGRkcGLL76obkYRkQqmxEukktiYnRNx+Zadewvf33rrrfzjH/+gZ8+ebNmypXB5w4YNueWWWzj11FNJSUmha9eunHfeeYXrTjnlFNatW0e3bpo2T0SkIpm7V3QMpUpPT/eCO7lEqqvTx80iK0LylZyUyPtj+1VARCJV3549e+jduzd79+4lLy+P4cOH87vf/a6iw5JqzswWu3t6pHVq8RKpJMYMbEtirYQDliXWSmDMwLYVFJFI1Ve7dm1mzZrFsmXLWLp0KTNmzGD+/PkVHZYcwZR4iVQSQ1KTuX9YJ5KTEjFCLV33D+vEkNTkig5NpMoyM+rXrw9Abm4uubm5mBlffPEF55xzDmlpafTq1YtPPvkEgHXr1nHWWWfRuXNnzjrrLL7++msAXnvtNbp3705qaipnn3023333XYWVSao2dTWKiEi1lp+fT1paGp9//jk33HADDzzwAGeddRaPPfYYJ598Mh999BG33347s2bN4qc//SnDhw/nyiuv5KmnnmLatGlkZGSwdetWkpKSMDP+9a9/sXr1av785z9XdNGkkorW1ajpJEREpFopmA9vY3YOLZISGTOwLUuXLiU7O5uhQ4eycuVKPvjgAy688MLCffbuDd3E8uGHHxZOOnzFFVcUPvlhw4YNjBgxgm+++YZ9+/Zx4oknBl8wqRaUeImISLVRdD48gKzsHG6fugIIdef37duXqVOnkpSUxNKlS0s9XsG8d7/85S+55ZZbGDx4MLNnz+bee++NVxGkmtMYLxERqTaKzocHkL97G7t2bAstz8nh7bffpmvXrpx44om8/PLLALg7y5YtA6Bnz55MmjQJgBdeeIEzzjgDgG3btpGcHBpv+cwzzwRZJKlmlHiJiEi1UXw+vPydP/Dti3ew8C8/49RTT6V///4MGjSIF154gSeffJIuXbrQoUMHXn31VQAeeeQRnn76aTp37sxzzz3HhAkTALj33nu58MIL6dWrV+ETIkQOhQbXi4hItaH58KQy0DxeIiJyRNB8eFLZaXC9iIhUGwXz3hW/q1Hz4UllocRLRESqlSGpyUq0pNJSV6OIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIgccfLz80lNTWXQoEER13/99deceeaZpKam0rlzZ954441yOa8SLxERETniTJgwgfbt20dcl5eXxx/+8AcuuugiMjMzmTRpEtdff325nFeJl4iIiBxRNmzYwPTp07n66qsLl/Xt25c77riDPn36MGHCBMyM7du3A7Bt2zZatGgBwPXXX8+0adMAGDp0KKNHjwbgySef5K677ir13DXLuzAiIiIildlNN93Egw8+yI4dOw5Ynp2dzXvvvQfAN998w4ABA/jrX//Krl27ePvttwHo3bs3c+fOZfDgwWRlZfHNN98AMG/ePC6++OJSz60WLxEREan2MjKzOH3cLI4dfg/zNuSyvsaPDtpmxIgRhe9ffPFFRo0axYYNG3jjjTe44oor2L9/P7169WLu3LmsWrWKU045hWOPPZZvvvmGDz/8kJ49e5Yah1q8REREpFrLyMzi9qkryMnNZ0/WKnZ9/D4XntmV+jWdvbt3cvnllwNQr169wn2efPJJZsyYAcBpp53Gnj172LJlC8nJyWzdupUZM2bQu3dvfvjhB1566SXq16/P0UcfXWosSrxERESkWhv/1hpycvMBaNhnFA37jAKg/g9raLVxFs8//zx9+/Y9YJ/jjz+ed955h1GjRrF69Wr27NlD06ZNgVAi9vDDDzNr1iy+//57hg8fzvDhw2OKRV2NIiIiUq1tzM6JuHzLzr0l7vPnP/+ZJ554gi5dunDJJZcwceJEzAyAXr16kZeXx0knnUTXrl354Ycf6NWrV0yxmLuXvQQBS09P90WLFlV0GCIiIlIFnT5uFlkRkq/kpETeH9uv3M9nZovdPT3SOrV4iYiISLU2ZmBbEmslHLAssVYCYwa2DTwWjfESERGRam1IajIQGuu1MTuHFkmJjBnYtnB5kJR4iYiISLU3JDW5QhKt4tTVKCIiIhIQJV4iIiIiAVHiJSIiIhKQuCZeZnazmX1sZivN7EUzqxNe/kszWxNe92A8YxARERGpLOI2uN7MkoFfAae4e46ZvQRcbGbrgPOBzu6+18yaxSsGERERkcok3l2NNYFEM6sJ1AU2Ar8Axrn7XgB33xTnGEREREQqhbglXu6eBTwEfA18A2xz95nAj4FeZvaRmb1nZqdG2t/MrjWzRWa2aPPmzfEKU0RERCQwcUu8zKwhoS7FE4EWQD0zu5xQK1hDoAcwBnjJCh5+VIS7P+7u6e6eXvBQShEREZGqLJ5djWcDX7n7ZnfPBaYCPYENwFQPWQDsB5rEMQ4RERGRSiGeidfXQA8zqxtu0ToLWA1kAP0AzOzHwFHAljjGISIiIlIpxO2uRnf/yMymAEuAPCATeBxw4CkzWwnsA650d49XHCIiIiKVRVyf1eju9wD3RFh1eTzPKyIiIlIZaeZ6ERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RKRmOTn55OamsqgQYMA6Nu3L4sWLTpou/r160fcPyMjg1WrVsU1RhGRyk6Jl4jEZMKECbRv3/6Q91fiJSKixEtEYrBhwwamT5/O1VdffdC6/fv3c+WVV3LXXXcVLrvzzjvp0qULPXr04LvvvuODDz5g2rRpjBkzhpSUFL744osgwxcRqTSUeIlIqW666SYefPBBatQ48CsjLy+Pyy67jB//+Mf84Q9/AGDXrl306NGDZcuW0bt3b5544gl69uzJ4MGDGT9+PEuXLqVNmzYVUQwRkQqnxEtEonr99ddp1qwZaWlpB637+c9/TseOHbnzzjsLlx111FGF48DS0tJYu3ZtUKGKiFR6NSs6ABGpnDIysxj/1ho+fvUZclbNZkrGa9TYn8v27du5/PLLAejZsyfvvvsuv/71r6lTpw4AtWrVwswASEhIIC8vr8LKICJS2SjxEpGDZGRmcfvUFeTk5pPUZxRJfUaRWCuBy47fwfxXn+H555+nb9++/OxnP2POnDlceOGFvPLKK9SsWfJXytFHH82OHTsCLIWISOWjrkYROcj4t9aQk5t/wLKc3HwmLVx/0La33HILXbt25YorrmD//v0lHvPiiy9m/PjxpKamanC9iByxzN0rOoZSpaene6T5gkQkPk4cO51I3wwGfDXuvKDDERGpUsxssbunR1qnFi8ROUiLpMQyLRcRkdgo8RKRg4wZ2JbEWgkHLEuslcCYgW0rKCIRkepBg+tF5CBDUpOB0Fivjdk5tEhKZMzAtoXLRUTk0CjxEpGIhqQmK9ESESln6moUERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAxDXxMrObzexjM1tpZi+aWZ0i6241MzezJvGMQURERKSyiFviZWbJwK+AdHfvCCQAF4fXHQf0B76O1/lFREREKpt4dzXWBBLNrCZQF9gYXv7/gNsAj/P5RURERCqNuCVe7p4FPESoVesbYJu7zzSzwUCWuy+Ltr+ZXWtmi8xs0ebNm+MVpoiIiEhg4tnV2BA4HzgRaAHUM7ORwJ3A3aXt7+6Pu3u6u6c3bdo0XmGKiIiIBCaeXY1nA1+5+2Z3zwWmAlcRSsSWmdlaoCWwxMx+FMc4RERERCqFmnE89tdADzOrC+QAZwFT3f3Mgg3CyVe6u2+JdqDFixdvMbN1RRY1AaLuI+VC9Rwc1XVwVNfBUD0HR3UdjLLU8wklrYhb4uXuH5nZFGAJkAdkAo8f4rEO6Gs0s0Xunn74UUo0qufgqK6Do7oOhuo5OKrrYJRXPcezxQt3vwe4J8r6VvE8v4iIiEhlopnrRURERAJSVROvQ+qylDJTPQdHdR0c1XUwVM/BUV0Ho1zq2dw1h6mIiIhIEKpqi5eIiIhIlaPES0RERCQglTbxMrNzzGyNmX1uZmMjrDczeyS8frmZda2IOKuDGOq6nZl9aGZ7zezWioixuoihri8LX8/LzewDM+tSEXFWdTHU8/nhOl4afjTZGRURZ3VQWl0X2e5UM8s3s+FBxlddxHBN9zWzbeFreqmZlfqEGIkslms6XN9LzexjM3uvTCdw90r3AhKAL4DWwFHAMuCUYtucC7wJGNAD+Kii466KrxjruhlwKvBH4NaKjrmqvmKs655Aw/D7n+i6jls91+d/Y1w7A59UdNxV8RVLXRfZbhbwBjC8ouOuaq8Yr+m+wOsVHWtVf8VY10nAKuD48OdmZTlHZW3x6gZ87u5fuvs+YBKh5z4WdT7wrIfMB5LMrHnQgVYDpda1u29y94VAbkUEWI3EUtcfuPvW8Mf5hB6rJWUTSz3v9PA3JlAP0F1GhyaW72qAXwL/ATYFGVw1Ems9y+GLpa4vJfQknq8h9H9kWU5QWROvZGB9kc8bwsvKuo2UTvUYnLLW9c8ItepK2cRUz2Y21Mw+AaYDowOKrbopta7NLBkYCjwWYFzVTazfHaeZ2TIze9PMOgQTWrUTS13/GGhoZrPNbLGZjSzLCeI6c/1hsAjLiv9FGss2UjrVY3BirmszO5NQ4qWxR2UXUz27+yvAK2bWG/g9cHa8A6uGYqnrh4HfuHu+WaTNJQax1PMS4AR332lm5wIZwMnxDqwaiqWuawJphJ5BnQh8aGbz3f3TWE5QWROvDcBxRT63BDYewjZSOtVjcGKqazPrDPwL+Im7fx9QbNVJma5pd59jZm3MrIm760HDZRNLXacDk8JJVxPgXDPLc/eMQCKsHkqtZ3ffXuT9G2b2d13ThyTW/GOLu+8CdpnZHKALEFPiVVm7GhcCJ5vZiWZ2FHAxMK3YNtOAkeG7G3sA29z9m6ADrQZiqWspH6XWtZkdD0wFroj1ryc5SCz1fJKFM4HwHdFHAUpyy67Uunb3E929lYeezTsFuF5JV5nFck3/qMg13Y3Q/++6pssulv8TXwV6mVlNM6sLdAdWx3qCStni5e55ZvZ/wFuE7jB4yt0/NrPrwusfI3R3zLnA58Bu4KqKircqi6WuzexHwCLgGGC/md1E6C6P7SUdVw4W43V9N9AY+Hv4OzTP3dMrKuaqKMZ6voDQH265QA4woshge4lRjHUthynGeh4O/MLM8ghd0xfrmi67WOra3Veb2QxgObAf+Je7r4z1HHpkkIiIiEhAKmtXo4iIiEi1o8RLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCUiknUBWpDsws6iR57q4H14mIHGE0gaqIiIhIQNTVWM2ZWb6ZLTWzj81smZndYmY1wus+KLLdr8xstZm9UPR9xUV+6EqK38zONrPn4nzuRDN7z8wSwp9/bmaPhd/XMrPnzOwZM6sVYd+jzGyOmUVsia6MP5ei19DhbBNl351l2DbJzK4/1HPF+3hBMLN7zezWCMsDvXbMbKiZuZm1K7Y86s/TzFqZWcyPXimyX8H3XMGrVZRtI8ZQvO7MbG1Z4ygPEeIo8fcn0jV6OL9vEgwlXtVfjrunuHsHoD+h51veA+DuPYtsdz1wrrtfVux9qcIPKq9M11JJ8XcBlsX53KOBqe6eH/7cGVhuZscAbwJfu/uV7p5bfEd33we8A4wo4dgRy1UR9V9wzmLXUESxbFNOkgjV0UEOsY5KPF5JKuHvQoGgr51LgHmEHjAchILvuYLX2oDOG5PDqedSfn+SKHaNBvj7JoeoMn5BSJy4+ybgWuD/wl8EOwHCLTKtgWlmtrfI+5vD6y83swXhvyT/aWYJ4b9MV5vZ34ElwHGlbPdEuNVtppklFsRkZiPNbLmFWuOeK+l8kcpjoda7leHXTRHKcnOxXboAS8PbtQu3Ln1sZm+bWZPw8vbh5cvNbIyZfV7Gar6M0JPrC3QCfgBmAy+7+52l7J8RPkbxsh5QrhLqP1J9tDKzT8zsX+HlL1io5e99M/vMzLpFCiLKsYqfc2eRfX4bPtd/zezFgr/ai1xnJV4LZpZhZovDy6+NVkFmVs/MpoevmZVmVpCojgPahK+b8RHi7WVFWlPM7FYzuzf8/qDrsNjxXo6yb6y/CyXFXbRsEeuhlLq708zWmNnbQNsIxwz62qkPnA78jBISryLHfiZc71PMrG54dcLhXiPh7Q8qU4RtotXd5hh/ZhHLEut1UVocRX5/SrtGxxfdvqQ6KOlaiqWsUk7cXa9q/AJ2Rli2FTi26DpgLdAkwvv2wGtArfDnvwMjgVaEnsreI4bt8oCU8PKXgMvD7zsAa4qcq1FJx4lQhjRgBVAPqA98DKQWj7/YPsuApkDtYtv/BvgjoZtNlhRZ/g8gowx1fRTwbYS63gz8NMZjJACbS1hX9OdSvP4j1keR+u9E6A+txcBTgAHnRypfKccqPGfR6wtIJ5TUJgJHA58BtxbbJtq10Cj8byKwEmgc5fq9AHiiyOcGRY6/ssjy4nVUfP2twL1EuA6Lb1/SviWcp6TfhYhxFytbSfUQse6K/KzqAscAnxfUe0VcO+HjXQ48GX7/AdA1wvXSCnDg9PDnp8J1GrGc0eomvCyf0PW3FHilpDIVi6HUuovxZxatLLFcF1HjAHYSwzUaoY5L+7kWv5ZKLate5fNSi9eRqSx3051F6Bd4oZktDX9uHV63zt3nx7DdV+6+NPx+MaFffIB+wBR33wLg7j+UcpyizgBecfdd7r4TmAr0KqkQFhpTdYy7bwaGAPPcPTO8ehXQDBgGLCu2vCxdk02A7CLnPI7Ql+YKoHksB/BQF+U+Mzs6hs2L1n+0+vjK3Ve4+35CX77veOibdQX/+1kUFe1YRc9ZfJ9X3T3H3XcQ+g8mkpKuhV+Z2TJgPnAccHKUcq8AzjazB8ysl7tvi7JtSfEWFek6LKtYfhdiiTtaPUSqu16Efla73X07MO0Q4i3PawdC3YyTwu8nhT9Hst7d3w+/fz4cR0nlhOh1U7SrcWgpZSoQS93Feq2VVJZYrotY4jiUa7S0n+vS8PuCOi7L75UcBk0ncYQxs9aE/jrcFOsuwDPufnux47QCdsW43d4ii/IJ/cVasE/x22ojHqeEuMriFGB1kfcriqzrRCjJ6ky4KzKsIzADCuvtTkJ/BQ43s3qE/mLdB8x29xeAHKBOkf07E0rcrgHmm9nCgqTOzBYCHxH6C/ddd3+6yH61gT0xlKl4/ZekaP3vL/J5P5G/A6Ida1cJy2P9eRx0LZhZX+Bs4DR3321mszmwHg/g7p+aWRqh8Yr3m9lMd78vhnjzOHB4RcE5Il2HxZW0b6TzlHgNR4s7hnoo6ffoUG5Nj8u1Y2aNCSUJHS00nUoC4GZ2WzhhK6qkz4d9jRD79VjalC+xXmsllSWW78ibSouD2K7RSPuU5KA6LuPvlRwGtXgdQcysKfAY8GiEL8GSvAMMN7Nm4WM0MrMTDmO74vtcFP6yxswaleE4c4Ah4bEU9YChwNwo5yoc3wVkEUq+ChKqK4Bnge+BH4eXpxBqfl8G4O5fuvvPihxvGKG/QK8BBoe32UpofErBfwidgBXu/g1wNTDZzBqEW8I+cvf/c/eRwBVFxno0JtTVeNDg+1KUtT7K+1jzgJ+aWR0LjfE5rwznawBsDf+H2g7oEW1jM2sB7Hb354GHgK7hVTsIdXOW5DugmZk1NrPawKDw8kjXYfHjlbRvJBGv4ShxFyhTPYTNAYaGx+gcDfw0hn0iHaO8rp3hwLPufoK7t3L344Cv+F8LUFHHm9lp4fcFg/FLUta6iaVMpdZdDD+zspSlpO+2WH6GsVyjxZXp51qGssphUotX9ZcYbtauReiv9ueAv8S6s7uvMrO7gJkWuisnF7gB+PZQtiu2z8dm9kfgPTPLBzLdfVQJx1lXbN8lZjYRWBBe9K8iXYSRdCmy7XPAuWa2glAr1Wh3/95CA1anh1ujPgTWuvuXJRyvJf9rNcsvsnwmof9k3iaUeE0Px/tfM3uJ0PiP5wg17xfYTagFAeBM4I0o5YiopPqwKLfVl+ex3H2hmU0jlKiuAxYBsXZVzACuM7PlhMaxlNY12AkYb2b7CV0fvwjH8L2FBn6vJHQH6d+KxZhrZvcRamn8CvgkvPyg6xAYFeF4B+1bQl2U9LvQIFLch1EPBT+ryYT+qFjHISRM5XntEEo6xhVb9h/g0gixrQauNLN/EhoT+A9CXf6RlKluYvl+iLHuIl5rEZRalpKuC3efX1ocsV6j7j6mtDqI8nONtaxymDSBqkiYmdUPj4XAzMYQ6la8q9g2U8JdjVcQ+gv8dTOb5O4Xh9enAre4+xVRzvN7Qnc4LjezLsDP3f368LqpwO3uviY+pYyfgvqz0N1pc4Br3X1JRccllU/4P//X3b1jRcdyuKpTWSQYavES+Z+bzexiQn/tvQ/cUrAi3MT/RyDVzG4HHgEeNbPzKDKQPPwX5btmluD/m8uruDSgsYWm7sgndFclZnYUoTvFqlzSFfa4mZ1CaOzNM0q6REQOphYvERERkYBocL2IiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiATk/wO6qTUTzrTrogAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(10, 8))\n", + "plt.scatter(np.abs(kds_difference), af_plddt)\n", + "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$')\n", + "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions')\n", + "plt.ylabel('pLTDDT average')\n", + "\n", + "for i, txt in enumerate(test_pdbs):\n", + " plt.annotate(txt, (np.abs(kds_difference[i]), af_plddt[i]))\n", + "scipy.stats.spearmanr(np.delete(np.abs(kds_difference),11), np.delete(af_plddt,11))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "de3966c3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAH6CAYAAADWRELjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABX5UlEQVR4nO3dd3xUVf7/8deHgBgMEqpfioqgUgMJCUWEiKwUlaULKirFuuu6q64olrWtu6KgX1G/u64ugoWfgoiRFUVEQIqFYqgi2EAIKqCGmkASzu+PmcxOwmQygcxN4f18PObBzC3nfs7JzfDJOefea845RERERCT6qpR1ACIiIiInCiVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh6pWtYBiIiIlHdmFtHdxp1zFu1YpGJTj5dIFJlZCzNLN7N9ZvbHY9h/i5ldVNrblpbijmlmU83skeM8RsRtGC6ewrGY2QYz63E8sXmpcDuEi7802r20HW97m9k2M0sstYAiO+ajZnYr+BKqSF5FlLPczNp4GbuUX0q8pFwpi+QhnFKI505gkXOupnPu6TDHWWRmv5pZ9eM41jHz1zPLzPYHvRpF4RhNj2HXiNqwpJxzbZxzi0qrPA8UaIeKFv/xxGtmtYH/ATaWalDhj1kfuAb4V3AcZubM7Ez/ZzOzh/3ndvswxU0EHo5uxFJRKPESia4zgQ3hNvAnI90BB/T3IKai/NY5Fxf02lGGsQQrtg1PECdyOyQAm51zhzw85ijgXedcVtCyROBX59xWMzsFmAn0BDo559aEKWs2cKGZNYxWsFJxKPGScsv/V+RYM1trZgfMbLKZnWZm7/mHW+b7/xLO3/ZuM/vC33M0xcxODiprnJl949/vCzMbFLTudDObZWa7zOxnM3vWv/wV4AzgP/4eoDtDxNjK31uV6R9K6R+0bgFwIfCsf/9zi6jqNcCnwFRgZDHtUWQd/RL97bXHzKZH2gbhhKtjiG2TzOxz/zGmA4Xjy9/uLjPL8G+3ycx+U8R2R7VhpPEUF0twb6b//R1h2q6D/XeY7w3/+pBDeUWdT8W1ZbgYimiH4PiLq2sjM3vTH9N3FjRkG0Hdw9WnyHJDtEvE7R1CO2Cdf1/znz9b/e04w8xq+ddVMbP7zTcsucPMfmtmh83/PVFCFwMfFVqWCKw2szOApcAeoKdzbme4gpxz2cAqoPcxxCGVjXNOL73KzQvYAlwU9P5T4DSgMbAT+BxIAqoDC4AHgrZdD5wO1AGWAY8ElXsZ0AjfHxvDgQNAQyAGWAP8L3AKvv+wuoWKJ0Ss1YCvgXuAk/D95bsPaBG0zSLgumLq/DXweyAZyAFOC9Me4eq4BVjur2cdfMMyNxXXBuHqWVwdC8V3ErAVuM2/31B/fR4pVGYLYBvQyP+5KdA8TPsE2jDSeCKJJUTbhmy7oLL+5C9rMHC4cL382xZ5PkUYe7ifX6AdSlJX/897FXC/f9tmwLdAnwjqHq4+YcuN4He7yLqG2Pd54B7/+0f8bdHQH8/bwBP+dQ8Di/F9X8QDnwDbjvG7aBfQsdCyl4ElwA7g9hKW9zTwZLS+O/WqOC/1eEl594xz7ifnXAa+L7zPnHPpzjfk8Ba+JCzfs865bc65X4C/AVfkr3DOveGc2+GcO+Kcmw58BXTyvxoBY51zB5xz2c65pRHG1gWIA8Y75w475xYA7wQftzhm1g3fENIM59wq4BvgyjC7FFlHv6f99fwF+A++v9CBsG2QL83fg5BpZmnHUMcu+P7jf8o5l+OcmwmsCLFdHr7EubWZVXPObXHOfROmzoWPEUk8kcYSrKi264LvCvCn/WXNwpc0hBLufIok9iJ/fmEUV9eOQH3n3MP+434LvABcHsFxw9UnknLDKUldE4C1ZnYacAtwpXPuB+frSZoJpJhvTtZtwBjnXIZzLhOYh7+n7BjE40uMgyUCbYC1zrknS1jePn+ZcoJT4iXl3U9B77NCfI4L+rwt6P1WfP9hAGBm15jZ6vzEAmgL1MPXe7TVOZd7DLE1wvfX9JFCx21cgjJGAvOcc7v9n/8fYYYbCVNHvx+D3h8kqH3CtEG+gc65eP9roH9ZSerYCMhwzrlC2xbgnPsauBV4ENhpZq9b5BP5I40nolgKKartQpUV/HMIFu58iiT2In9+YRRX1zOBRkFJdSa+XrfTIjhuuPpEUm44EdXVzAzfuboO31zIda7g/MN6wA/Ab4Cv/edXvjr8d4iylvmuLtxvZm2Dyv+bmS0xs5lmViNo31+BmkHbVQdaAUOAVua/2rFQrG+Y2TL/cPL7ZtY6aHVNILOItpATiBIvqUxOD3p/Br7hAMx3BdILwB+Aus65eHxDdobvP9AzzKyoe9qFu3fPDuB0Mwv+PToDyIgkWDOLBYYBF5jZj2b2I76/2Ntb0VdIhaxjBMcK1wbhlKSOPwCN/f9RBm97FOfc/3PO5ff2OeCxSOpRgngijiUCoco6vYhtw51Px3W+lDC+4LpuA74LSqrjne/KyEsiKDtcfY6n3JI4CzjinNsK1Mc3ryrYAHzzreoR9PtgZjH45mmt9S86CFyKr4csf5u2+Ia5uwPzgTFB5a4FgudltsXXW7sEGAT81cx6ForlbCDVOdcDXxI6JWhdK3zDtnKCU+IllcnNZtbEzOrg+9Kb7l9+Cr7/3HcBmNlofF+i4Bsy+gEYb2anmNnJZnZ+UJk/4Zu7Espn+OZJ3Wlm1cx3j6LfAq9HGO9AfF/krfENYSTi+3Jegm/CfUnqWJxwbRBOSer4CZAL/NHMqprZYAoOZeI/dgsz6+nvQcjG13OZF2E9Io0nolgi9Ik/vj/4yxoQpqxw59Pxni/h4gtX1+XAXv+E9FgzizGztmbWMYKyw9XneMoticDEenxDqOeZWXMzizOzh/H1sL2Ib55YVzM728xOxTenqnn+vv5h2F2Fyu4OvOd//x7QLWjdu8AFQZ+TgPXOuVzn3OfAzcAMMzsLwMxOAvKcc3n+460C4s3sJP+5ngx8cLyNIRWfEi+pTP4fvjkd3/pfjwA4574AnsD3H9RP+OaLLPOvy8P3n9/ZwPfAdnwTz/M9CtznH0q5I/hgzrnD+G7/cDGwG/gHcI1z7ssI4x0JTHHOfe+c+zH/BTwLjCiilyFkHYsTrg2K2S/iOvq3HYzvMvxf8bXjrBDFVgfG+8v7EWiAL4mMpB4RxVOCWCI95mDgWnxDRVfhm5t11K0Nwp1PpXC+FBffKELUNSimROA7/7H/DdSKoOxw9TnmcksoAX+vlXNuJb65jUv9sbTCd1XhQefch8BrQDqwEliNr5crXPvW5r89aHvwDU3mexm4xN8zDf4rGvNXOudexvf7mGa+W0u0AjYVKr8GvqS4P757sJWXW7RIGbKC0wJEKiYz24Lviq/5ZR1LtJwIdawozOwz4Dnn3JRiN5YyYWY3AZc6535baPlUYKJzbr2Z/Q446Jx7yT8c/5hz7vKgbf8O7HTOPRXB8UYAZzrn/u7/3ArfxTC/8Z8v1zrn1pdW/aTi0rMaRUSKYWYX4OvN2A2MwDf8NbdMg5ICzKwLvmHRbfgm2j9M8TckXgrcDbwE9KFQL7BzLqKeWL+2+G5/k3/X++f8MeCc61yCcqSSU+IlIlK8FsAMfFfefQMMdc79ULYhSSFJwBx8t9bYDIxyzn0avIGZvYtvyLCFmf3LOTfVfDdiXYLvPoFFza2MRBugt39KwhFggn/4U6QADTWKiIiIeEST60VEREQ8osRLRERExCMVYo5XvXr1XNOmTcs6DBEREZFirVq1ardzrn6odRUi8WratCkrV64s6zBEREREimVmRT6iTEONIiIiIh5R4iUiIiLikaglXv5nei03szVmtsHMHvIvn2BmX5rZWjN7y8zioxWDiIiISHkSzR6vQ/ieodUe3w3r+vrvLPwB0NY51w7fTe7ujmIMIiIiIuVG1BIv57Pf/7Ga/+Wcc/Occ7n+5Z8CTaIVg4iIiEh5EtU5XmYWY2ar8T2K4QPn3GeFNhkDvFfEvjeY2UozW7lr165ohikiIiLiiagmXs65POdcIr5erU5m1jZ/nZndC+QC04rY93nnXIpzLqV+/ZC3whARERGpUDy5qtE5lwksAvoCmNlIoB8wwulhkSIiInKCiOZVjfXzr1g0s1jgIuBLM+sL3AX0d84djNbxRURERMqbaN65viHwkpnF4EvwZjjn3jGzr4HqwAdmBvCpc+6mKMYhIiIiUi5ELfFyzq0FkkIsPztaxxQREREpz3Tnejlu27Zt48ILL6RVq1a0adOGSZMmAXD//fczf/58AEaNGsVZZ51FYmIiiYmJrF69ugwjFhERKRsV4iHZUr5VrVqVJ554gg4dOrBv3z6Sk5Pp1asXDz/8cIHtJkyYwNChQ8soShERkbKnHi85bg0bNqRDhw4A1KxZk1atWpGRkcGoUaOYOXNmkfsdOXKEc845h/z7tB05coSzzz6b3bt3exK3iIicuPLy8khKSqJfv34h13///fdceOGFJCUl0a5dO959991SOa4SLylVW7ZsIT09nc6dOx+17t5776Vdu3bcdtttHDp0iCpVqnDVVVcxbZrvVm7z58+nffv21KtXz+uwpRQU9yVWlsaMGUODBg1o2zZwK0GmTp3Kjh07wu4XPFwuIpXLpEmTaNWqVch1ubm5PPLIIwwbNoz09HRef/11fv/735fKcZV4yTFJS8/g/PELOGvcHM4fv4C09Az279/PkCFDeOqppzj11FMLbP/oo4/y5ZdfsmLFCn755Rcee+wxwPcf4ssvvwzAiy++yOjRoz2vS3lWkmRm7dq1nHfeebRp04aEhASys7M9iPC/ivsSK0ujRo1i7ty5BZZFkng9/PDDXHTRRdEMTUTKwPbt25kzZw7XXXddYFmPHj245557uOCCC5g0aRJmxt69ewHYs2cPjRo1AuD3v/89s2fPBmDQoEGMGTMGgMmTJ3PfffcVe2wlXlJiaekZ3D1rHRmZWTggIzOLcW+k071XP0aMGMHgwYOP2qdhw4aYGdWrV2f06NEsX74cgNNPP53TTjuNBQsW8Nlnn3HxxRd7XJvyLVwyEyw3N5errrqK5557jg0bNrBo0SKqVavmQYQ+kXyJrVixgnbt2nHeeecxduzYQO9TdnY2o0ePJiEhgaSkJBYuXFjq8aWmplKnTp3A55kzZ7Jy5UpGjBhBYmIiS5YsCVz4kZCQgP9WN8UOl4tIxXTrrbfy+OOPU6VKwTQoMzOTjz76iD//+c88+OCDvPrqqzRp0oRLLrmEZ555BvB9nyxZsgSAjIwMvvjiCwCWLl1K9+7diz22Ei8psQnvbyIrJy/w2TnH9tlP8lOVutx+++0h9/nhhx8C26alpRUY8rnuuuu46qqrGDZsGDExMdENvgIpKplZuXIlALt376Zp06YAzJs3j3bt2tG+fXsA6tatS0xMDP/85z+58847A/tPnTqVW265pdRjjeRLbPTo0Tz33HN88sknBX7O//d//wfAunXreO211xg5cmTUe+uGDh1KSkoK06ZNY/Xq1XTv3p3Vq1ezevVq+vbtyx133BHV44uI9/JHak4b+gBLt+ewrcr/HLXN8OHDA+9fe+01Ro0axfbt23n33Xe5+uqrOXLkCN27d2fJkiV88cUXtG7dmtNOO40ffviBTz75hK5duxYbhxIvKbEdmVkFPh/K+IIDGxay+6vPA70GhSchjhgxgoSEBBISEti9e3eB7tj+/fuzf/9+DTMWUlQyE8rmzZsxM/r06UOHDh14/PHHAV+CMWvWrMB206dPL/DFcjxK8iWWmZnJvn37Al9KV155ZWCbpUuXcvXVVwPQsmVLzjzzTDZv3lwqMZbUjBkz+Pzzzxk/fnyZHF9EoiN4pCY74wt2b1jGZRd2YNDQYSxYsICrrroKgFNOOSWwz+TJkxk2bBgA5513HtnZ2ezevZvGjRvz66+/MnfuXFJTU+nevTszZswgLi6OmjVrFhuLbichJdYoPpaMoOTr5CZtOPOud2gcH8uycT0Dyy+55JLA+wULFhQoo2nTptSsWZOYmBgOHz5M+/btadmyZdjjHjp0iGuuuYZVq1ZRt25dpk+fTtOmTVm0aBETJ07knXfeKaUalp209AwmvL+Jr1d+hPmTmXj2Fbtfbm4uS5cuZcWKFdSoUYPf/OY3JCcn85vf/IZmzZrx6aefcs4557Bp0ybOP//8Uonz7lnryMrJIzvjCw74v8TiqjoOHdx/1JdYuEeyRutxrfltuSMzi0bxsYxMqBF2+w0bNvDAAw+wePFi9byKVDLBIzW1LxhF7QtGARD3yyaa7ljAq6++So8ePQrsc8YZZ/Dhhx8yatQoNm7cSHZ2NvXr1wd8idhTTz3FggUL+Pnnnxk6dGjEt0tSj5eU2Ng+LYitVvA/pthqMYzt06JE5SxcuJDLL7+cAwcO8Oijjxa7/eTJk6lduzZff/01t912G3fddVeJjlfeRfIXWdWqVTly5AhAgeG4Jk2acMEFF1CvXj1q1KjBJZdcwueffw74ep1mzJjBm2++yaBBgwLzl45H4S+xJje/ROObXqTx4HH07NmTV199tcD2tWvXpmbNmnz66acAvP7664F1qampgStbN2/ezPfff0+LFiU7lwoLNQ/xsbmb2Jv930n+NWvWZN8+X1K7Z88eLr/8cl5++eXAF6uIVB6FR2ry7d5/qMh9nnjiCV544QXat2/PFVdcwdSpUwPfn927dyc3N5ezzz6bDh068Msvv0Q0vwuUeMkxGJjUmEcHJ9A4PhYDGsfH8ujgBAYmNS5xWePGjWPr1q2ce+65JCcnA7BmzRrMjO+//x6A5s2bc/DgQd5++21GjhwJ+IbQPvzww6N6S1asWEFSUhLffvvt8VWyDESSzDRt2pRVq1YBFJj03adPH9auXcvBgwfJzc3lo48+onXr1gAMHjyYtLQ0XnvttVIbZjyWL7HJkydzww03cN555+Gco1atWoDvCqG8vDwSEhIYPnw4U6dOpXr16scVX+F5iLtmP87WKbex/buvadKkCZMnT2bUqFHcdNNNJCYmkpaWxtatW7n++usDw+UiUnk0io8Nubx5u86B0ZJFixaRkpISWNe6dWuWLVvGmjVrWL16Nb179w6su/baawNXRVerVo0DBw6EvLAsFA01yjEZmNT4mBKtfGZG7969MTNuvPFGbrjhBrKzs9m7dy9LliwhJSWFJUuW0K1bNxo0aECNGjXIyMjg9NNPB3x3y69VqxY///xzoMyPP/6YW265hbfffpszzjjjuOvotXDJTFP/+zvuuINhw4bxyiuv0LPnf4d1a9euze23307Hjh0xMy655BIuvfTSwLrWrVvzxRdf0KlTp1KJtfBwc77m7Trzzri7Ad+XWLA2bdqwdu1aAMaPHx/4gjv55JOZOnVqqcSVr3Bb1u/vu8DAgO/GXxpYPmTIkMD7/KQ+WGnHJd7Lzs4mNTWVQ4cOkZuby9ChQ3nooYfKOizx2Ng+LQLTI/Idy0hNaVDiJWVi2bJlNGrUiJ07d9KrVy9atmxJ165dWbZsGYsXL+aee+5h7ty5OOcC3beh5gLld/tu3LiRG264gXnz5gXutVLRRJLMtGzZMpC8ADzyyCOB91dddVVgblVhpT3/7Vi+xObMmcOjjz5Kbm4uZ555ZlSTmqLasqi/eqXyql69OgsWLCAuLo6cnBy6devGxRdfTJcuXco6NPFQfkdB8LzPsX1aHFcHwrFS4iWeKTzZeWwfx8CkxgwaNIjly5cHLtHdunUrAwYM4LHHHsPMAjcPbdKkCdu2baNJkybk5uayZ8+ewL2ZGjZsSHZ2Nunp6RU28SpPf5EV51i+xIYPH15qQ53FqUhtKdFlZsTFxQGQk5NDTk4OZsY333zDzTffzK5du6hRowYvvPACLVu2ZOvWrYwZM4Zdu3ZRv359pkyZwhlnnMF//vMfHnnkEQ4fPkzdunWZNm0ap512WhnXTkrieEdqSovmeIkngic75x3OZttPP3P3rHW8/vFXzJs3j7Zt25Kamsqrr77KOeecQ5UqVahTpw7vvvtu4Cq8/v3789JLLwG++U09e/YM9HjFx8czZ84c7rnnnqOGuCqK0pw754WBSY1ZNq4n342/lGXjeparOCtaW0p05eXlkZiYSIMGDejVqxedO3fmhhtu4JlnnmHVqlVMnDgx8DiYP/zhD1xzzTWsXbuWESNG8Mc//hGAbt268emnn5Kens7ll18euGWLSEmpx0s8ETzZOe9gJrtm+YbIxjzvuPeP19O3b9/AtqmpqYDvi2779u3Url0b8E1mvPrqqzn77LOpU6dOgSvjAE477TT+85//cPHFF/Piiy+GfF5keVde/iILJS8vj5SUFBo3bsw777xDjx49mDhxYoHJqABxcXHs37//qP3T0tI499xzA5P+o608t6VE19G96y1YvXo1mZmZDBo0iPXr1/Pxxx9z2WWXBfY5dMh3Ycgnn3wSuPfd1VdfHbgB8fbt2xk+fDg//PADhw8f5qyzzvK+YlIpKPESTwRPdq4W/z80GvMs4JvsfO+9/53snH8lI8A999zDPffcE/h88skn88YbbxxVdo8ePQL3XznjjDPYsGFDKUcv8N/HF+U/u6yk0tLS6Nevn2eJl5yYgu8xB75bidw9ax3gS8Z79OjBrFmziI+PZ/Xq1cWWl9+rfsstt3D77bfTv39/Fi1axIMPPhitKkglp6FG8URRk5o12bliCPX4onxHjhxh5MiRBZ5GcO+999K+fXu6dOnCTz/9xMcff8zs2bMZO3YsiYmJfPPNN16GLyeQwrcSyTu4hwP79viWZ2Uxf/58OnTowFlnnRX4Q845x5o1awDo2rVroDd92rRpdOvWDfDd661xY18Pav6UB5FjocRLPFFaN12VslHU44tyc3MZMWIE5557buAKywMHDtClSxfWrFlDamoqL7zwAl27dqV///5MmDCB1atX07x587KohpwACt9KJG//L/z42j2sePJaOnbsSK9evejXrx/Tpk1j8uTJtG/fnjZt2vD2228D8PTTTzNlyhTatWvHK6+8wqRJkwB48MEHueyyy+jevTv16tXzvF5SeWioUTxRni7llchE8viiG2+8kWHDhnHvvfcGlp100kmBK1GTk5P54IMPPI1bTmyFbyVyUoOzaDT66aMeaXbWWWcxd+7co/Zv2rTpUY84AxgwYAADBgyITtByQlHiJZ7RZOeKI9JnMXbt2pWFCxfy5z//mZNPPhnw3cU5f15MTEwMubm5RR5HpLTpViJS3inxEpGjRPpA2WuvvZbFixdz2WWX8dZbb1G1atFfKcHPRhSJFvWuS3mnxEtEjhLJ44vy3X777ezZs4err7468LDrUC6//HKuv/56nn76aWbOnKl5XhI16l2X8sxCPYalvElJSXErV64s6zBEThjnj18Q8pE7hefJiIjI0cxslXMuJdQ6XdUoIkfRVagiItGhoUYROYrmyYiIRIcSLxEJSfNkRERKn4YaRURERDyixEtERETEI0q8RMRzTZs2JSEhgcTERFJSQl74A8COHTsYOnSoh5GJiESX5niJSJlYuHBhsc+8a9SoETNnzvQoIhGR6FOPl4iUC19//TUXXXQR7du3p0OHDnzzzTds2bKFtm3bApCVlcXll19Ou3btGD58OJ07d0b39xORikY9XiLiOTOjd+/emBk33ngjN9xwAyNGjGDcuHEMGjSI7Oxsjhw5ws6dOwP7/POf/6RGjRqsXbuWtWvX0qFDhzKsgYjIsVHiJSJRl5aeUeCeYH/510zG9E5m586d9OrVixYtWpCRkcGgQYMAAg/cDrZ48WL++Mc/AtCuXTvatWvnaR1EREqDEi8Riaq09AzunrUu8NDtjMwsJiw5TJ36GQxMasygQYP46KOPIirLzKIZqohI1GmOl4hE1YT3NwWSLoAjh7M5sH8fE97fxIEDB5g3bx6dOnWiSZMmpKWlAXDo0CEOHjxYoJzU1NTAQ7jXr1/P2rVrPauDiEhpUY+XiETVjkIP2847mMmuWY/wI9DplRpceeWV9O3bl+bNm3PjjTdy//33U61aNd544w2qVKkS6OX63e9+x+jRo2nXrh2JiYl06tSpDGojInJ8lHiJSFQ1io8lIyj5qhb/PzQa8yyN42NZNq5nYPk555zDggULCuy7atUq6tSpA0BsbCyvv/56YF2PHj2iG7iISBRoqFFEompsnxbEVospsCy2Wgxj+7QIu9/KlSu54oor+NOf/hTN8EREPKXEK4ry8vJISkqiX79+AHz55ZckJiaSlJTEhg0b6NSpE+3bt6dNmzY88MADgf2Ct/vmm2/KKnyRUjEwqTGPDk6gcXwsBjSOj+XRwQnFPoA7JSWFzZs3M3jw4JDrFy1aFPau9yIi5ZGGGqNo0qRJtGrVir179wKQlpbGgAEDeOihh3DOsWDBAuLi4sjJyaFbt25cfPHFdOnSpcB2IpXBwKTGxSZaIiInAvV4Rcn27duZM2cO1113HQDvvvsuTz31FP/+97+58MILMTPi4uIAyMnJIScnBzM7ajsRERGpPNTjFSW33norjz/+OPv27QPgkksu4aabbiIuLo477rgD8A1FJicn8/XXX3PzzTfTuXNngKO2ExERkcpBPV5R8M4779CgQQOSk5PDbhcTE8Pq1avZvn07y5cvZ/369R5FKCIiImVBPV6lJPiRKDmf/j+yNy7k3XffJTs7m71793LVVVdx9tlnh9w3Pj6eHj16MHfu3MADgUVERKTyUY9XKch/JEpGZhYOqNplBPVvmMJTby3j9ddfp2fPnrz66qsF9tm1axeZmZkAZGVlMX/+fFq2bOl98CIiIuIZJV6loPAjUQCycvKY8P6mIvf54YcfuPDCC2nXrh0dO3akV69egdtOiIiISOVkzrmyjqFYKSkpbuXKlWUdRpHOGjeHUK1owHfjL/U6HBERESlDZrbKORfyRoPq8SoFjeJjS7RcRERETkxKvErBsT4SRURERE4suqqxFOTfkTv/qsZG8bGM7dNCd+oWERGRApR4lRI9EkVERESKo6FGEREREY8o8RIRERHxiBIvEREREY8o8RIRERHxiBIvEREREY8o8RIRERHxiBIvEREREY8o8RIRERHxiG6gKhFr2rQpNWvWJCYmhqpVq1KeH1wuIiJSHinxkhJZuHAh9erVK+swREREKiQNNcox27hxI506dQp83rJlC+3atWPlypUkJiaSmJhIQkICZsY333xDhw4dAtt+9dVXJCcnl0XYIiIiZSZqiZeZnWxmy81sjZltMLOH/MvrmNkHZvaV/9/a0YpBSpeZ0bt3b5KTk3n++edp1aoVhw8f5ttvvwVg+vTpDBs2jJSUFFavXs3q1avp27cvd9xxB82bN6dWrVqsXr0agClTpjBq1Kiyq4yIiEgZMOdcdAo2M+AU59x+M6sGLAX+BAwGfnHOjTezcUBt59xd4cpKSUlxmk/kvbT0DCa8v4kdmVk0io/l2g61GNM7mZ07d9KrVy+eeeYZli5dSpUqVRg3bhwdOnRg+vTpnHPOOQDMmDGDf/3rX8ybN4+YmBimTZvG8uXLefLJJzn33HNZvnw5devWLeNaioiIlC4zW+WcSwm1Lmo9Xs5nv/9jNf/LAQOAl/zLXwIGRisGOXZp6RncPWsdGZlZOCAjM4sJS3aRlp5BgwYNGDRoEMuXL2f48OHMmDGDzZs3Y2aBpGvDhg088MADvP7668TExAAwZMgQ3nvvPd555x2Sk5OVdImIyAknqnO8zCzGzFYDO4EPnHOfAac5534A8P/boIh9bzCzlWa2cteuXdEMU0KY8P4msnLyAp+PHM7mwP59THh/EwcOHGDevHm0bduW5s2bExMTw1//+leGDx8OwJ49e7j88st5+eWXqV+/fqCMk08+mT59+vC73/2O0aNHe14nERGRshbVqxqdc3lAopnFA2+ZWdsS7Ps88Dz4hhqjE6EUZUdmVoHPeQcz2TXrEX4EOr1SgyuvvJK+ffsCMHz4cMaOHct3330HQFpaGlu3buX6668P7J8/t2vEiBHMmjWL3r17e1IPERGR8iRqc7yOOpDZA8AB4Hqgh3PuBzNrCCxyzrUIt6/meHnv/PELyCiUfAE0jo9l2biex1zuxIkT2bNnD3/961+PJzwREZFyq0zmeJlZfX9PF2YWC1wEfAnMBkb6NxsJvB2tGOTYje3TgthqMQWWxVaLYWyfsDlyWIMGDeLll1/mT3/60/GGJyIiUiFFc6ixIfCSmcXgS/BmOOfeMbNPgBlmdi3wPXBZFGOQYzQwqTFAgasax/ZpEVh+LN56663SCk9ERKRC8myo8XhoqFFEREQqijIZahQRERGRgpR4iYiIiHhEiZeIiIiIR5R4iYiIiHhEiZeIiIiIR5R4iYiIiHhEiZeIiIiIR5R4iYiIiHhEiZeIiIiIR5R4iYiIiHhEiZeIiIiIR5R4iYiIiHhEiZeIiIiIR5R4iYiIiHhEiZeIiIiIR5R4iYiIiHhEiZdHmjZtSkJCAomJiaSkpES0z+LFi+nQoQNVq1Zl5syZUY5QREREoq1qWQdwIlm4cCH16tWLePszzjiDqVOnMnHixChGJSIiIl5Rj1cZ2blzJ8nJyQCsWbMGM+P7778HoHnz5hw8eJCmTZvSrl07qlQp+GNatGgRF1xwAcOGDePcc89l3LhxTJs2jU6dOpGQkMA333zjeX1ERESkeEq8PGJm9O7dm+TkZJ5//nkaNGhAdnY2e/fuZcmSJaSkpLBkyRK2bt1KgwYNqFGjRtjy1qxZw6RJk1i3bh2vvPIKmzdvZvny5Vx33XU888wzHtVKRERESkJDjR5ZtmwZjRo1YufOnfTq1YuWLVvStWtXli1bxuLFi7nnnnuYO3cuzjm6d+9ebHkdO3akYcOGgK+HrHfv3gAkJCSwcOHCqNZFREREjo0SryhJS89gwvub2JGZRaP4WMb2acHARtCgQQMGDRrE8uXL6d69e6CXa8CAATz22GOYGf369Su2/OrVqwfeV6lSJfC5SpUq5ObmRq1eIiIicuw01BgFaekZ3D1rHRmZWThg285fufO1z0hLz+DAgQPMmzePtm3bkpqayquvvso555xDlSpVqFOnDu+++y7nn39+WVdBREREokCJVxRMeH8TWTl5gc95BzPZMvXPjLgklU6dOnHppZfSt29fmjZtCkBqaioA3bp1Iz4+ntq1awOwYsUKmjRpwhtvvMGNN95ImzZtPK+LiIiIlB5zzpV1DMVKSUlxK1euLOswInbWuDmEalUDvht/qdfhiIiIiIfMbJVzLuRNO9XjFQWN4mNLtFxERERODEq8omBsnxbEVospsCy2Wgxj+7Qoo4hERESkPNBVjVEwMKkxwNFXNfqXi4iIyIlJiVeUDExqrERLRERECtBQo4iIiIhHlHiJiIiIeESJl4iIiIhHlHiJiIiIeESJl4iIiIhHlHiJiIiIeESJ1zHIzMxk6NChtGzZklatWvHJJ5+UuIwePXpQkR6DJCIiIsdP9/E6Bn/605/o27cvM2fO5PDhwxw8eLCsQxIREZEKQD1eJbR3714WL17MtddeC8BJJ51EfHw8L7zwAh07dqR9+/YMGTIkkIwNGDCAl19+GYB//etfjBgxokB5R44cYeTIkdx3333eVkREREQ8p8SrhL799lvq16/P6NGjSUpK4rrrruPAgQMMHjyYFStWsGbNGlq1asXkyZMBeP7553n44YdZsmQJTzzxBM8880ygrNzcXEaMGMG5557LI488UlZVEhEREY8o8YpQWnoG549fwCX/u4gVq1bRuucQ0tPTOeWUUxg/fjzr16+ne/fuJCQkMG3aNDZs2ADAaaedxsMPP8yFF17IE088QZ06dQJl3njjjbRt25Z77723rKolIiIiHlLiFYG09AzunrWOjMwsYmrWIyauHlO+qkZaegZDhw7l888/Z9SoUTz77LOsW7eOBx54gOzs7MD+69ato27duuzYsaNAuV27dmXhwoUFthUREZHKS4lXBCa8v4msnDwAYuJqU/XUeuz9cSsT3t/Ehx9+SOvWrdm3bx8NGzYkJyeHadOmBfZdvnw57733Hunp6UycOJHvvvsusO7aa6/lkksu4bLLLiM3N9fzeomIiIi3dFVjBHZkZhX4XOeim9j9zkR25eVSv2t7pkyZQrNmzejcuTNnnnkmCQkJ7Nu3j0OHDnH99dczZcoUGjVqxBNPPMGYMWNYsGBBoKzbb7+dPXv2cPXVVzNt2jSqVFEuLCIiUlmZc66sYyhWSkqKK8t7Xp0/fgEZhZIvgMbxsSwb17MMIhIREZHyysxWOedSQq1T90oExvZpQWy1mALLYqvFMLZPizKKSERERCoiDTVGYGBSY8A312tHZhaN4mMZ26dFYLmIiIhIJJR4RWhgUmMlWiIiInJcNNQoIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIVZNu2bVx44YW0atWKNm3aMGnSpJDbTZ06lfr165OYmEhiYiL//ve/A+u+//57evfuTatWrWjdujVbtmzxKHoREREp73Tn+iBVq1bliSeeoEOHDuzbt4/k5GR69epF69atA9vk5uYCMHz4cJ599tmjyrjmmmu499576dWrF/v376dKFeW2IiIi4qPEK0jDhg1p2LAhADVr1qRVq1ZkZGTw+9//nq5du7Js2TL69+9P3bp1Q+7/xRdfkJubS69evQCIi4vzLHYREREp/9QdU4QtW7aQnp5O586dAcjMzOSjjz7iz3/+MwBvvvkm7dq1Y+jQoWzbtg2AzZs3Ex8fz+DBg0lKSmLs2LHk5eWVWR1ERESkfDnhE6+09AzOH7+As8bN4fzxC0hLz2D//v0MGTKEp556ilNPPRXwDS3m++1vf8uWLVtYu3YtF110ESNHjgR8w5BLlixh4sSJrFixgm+//ZapU6eWRbVERESkHDqhE6+09AzunrWOjMwsHJCRmcW4N9Lp3qsfI0aMYPDgwYFtTznllMD7unXrUr16dQCuv/56Vq1aBUCTJk1ISkqiWbNmVK1alYEDB/L55597WicREREpv07oxGvC+5vIyvnvUKBzju2zn+SnKnW5/fbbi9zvhx9+CLyfPXs2rVq1AqBjx478+uuv7Nq1C4AFCxYUmJgvIiIiJ7YTenL9jsysAp8PZXzBgQ0LOVy/KYmJiQD8/e9/P2q/p59+mtmzZ1O1alXq1KkTGE6MiYlh4sSJ/OY3v8E5R3JyMtdff320qyEiIiIVhDnnolOw2enAy8D/AEeA551zk8wsEXgOOBnIBX7vnFserqyUlBS3cuXKUo/x/PELyCiUfAE0jo9l2biepX48ERERqfzMbJVzLiXUumgONeYCf3bOtQK6ADebWWvgceAh51wicL//c5kY26cFsdViCiyLrRbD2D4tyigiERERqcyiNtTonPsB+MH/fp+ZbQQaAw441b9ZLWBHtGIozsCkxoBvrteOzCwaxccytk+LwHIRERGR0hS1ocYCBzFrCiwG2uJLvt4HDF+PW1fn3NYQ+9wA3ABwxhlnJG/detQmIiIiIuVOWQ015h88DngTuNU5txf4HXCbc+504DZgcqj9nHPPO+dSnHMp9evXj3aYIiIiIlEX1cTLzKrhS7qmOedm+RePBPLfvwF0imYMIiIiIuVF1BIvMzN8vVkbnXNPBq3aAVzgf98T+CpaMYiIiIiUJ9G8j9f5wNXAOjNb7V92D3A9MMnMqgLZ+OdxiYiIiFR20byqcSm+CfShJEfruCIiIiLl1Qn9yCARERERLynxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhERkajZtm0bF154Ia1ataJNmzZMmjQpov1WrFhBTEwMM2fODCxr2rQpCQkJJCYmkpKSEq2Qo6pqWQcgIiIilVfVqlV54okn6NChA/v27SM5OZlevXrRunXrIvfJy8vjrrvuok+fPketW7hwIfXq1YtmyFGlHi8RERGJmoYNG9KhQwcAatasSatWrcjIyKBHjx7ceuutdO3albZt27J8+fLAPs888wxDhgyhQYMGZRV21CjxEhEREU9s2bKF9PR0OnfuDMCBAwf4+OOP+cc//sGYMWMAyMjI4K233uKmm246an8zo3fv3iQnJ/P88897Gntp0VCjiIiIRN3+/fsZMmQITz31FKeeeioAV1xxBQCpqans3buXzMxMbr31Vh577DFiYmKOKmPZsmU0atSInTt30qtXL1q2bElqaqqn9TheSrxERESkVKWlZzDh/U3syMyiUXwst/Vsxgt/uZERI0YwePDgwHZmVmA/M2PlypVcfvnlAOzevZt3332XqlWrMnDgQBo1agRAgwYNGDRoEMuXL69wiZeGGkVERKTUpKVncPesdWRkZuGA7b8e5NrrruOkuqdz++23F9h2+vTpACxdupRatWpRq1YtvvvuO7Zs2cKWLVsYOnQo//jHPxg4cCAHDhxg3759gG+Ict68ebRt29br6h039XiJiIhIqZnw/iaycvICnw9lfMHedR+yYNdZJCYmAvD3v/8dgNq1a9O1a1f27t3Liy++GLbcn376iUGDBgGQm5vLlVdeSd++faNTiSgy51xZx1CslJQUt3LlyrIOQ0RERIpx1rg5hMosDPhu/KWBzz169GDixIkV9n5c4ZjZKudcyIppqFFERERKTaP42BItP9Eo8RIREZFSM7ZPC2KrFbwiMbZaDGP7tCiwbNGiRZWyt6s4muMlIiIipWZgUmOAAlc1ju3TIrD8RKfES0RERErVwKTGSrSKoKFGEREREY8o8RIRERHxiBIvEREREY8o8RIRERHxSJGJl5ndGfT+skLr/h7NoEREREQqo3A9XpcHvb+70LqKd49+ERERkTIWLvGyIt6H+iwiIiIixQiXeLki3of6LCIiIiLFCHcD1fZmthdf71as/z3+zydHPTIRERGRSqbIxMs5F1PUOhEREREpuRLdTsLMTjGzEWY2J1oBiYiIiFRWxSZeZnaSmQ00sxnAD8BFwHNRj0xERESkkilyqNHMegFXAH2AhcArQCfn3GiPYhMRERGpVMJNrn8fWAJ0c859B2BmkzyJSkRERKQSCpd4JeO7iep8M/sWeB3QhHsRERGRY1TkHC/nXLpz7i7nXHPgQSAJOMnM3jOzG7wKUERERKSyCDu53sySzGwo8Itz7g9AY+Ap4DwPYhMRERGpVMI9JPt+YDowBJhjZtc75444597XBHsRERGRkgs3x2s4kOicO2hmdYG5wAvehCUiIiJS+YQbasx2zh0EcM79XMy2IhVednY2nTp1on379rRp04YHHnig2H2eeeYZWrRoQZs2bbjzzjsBWLRoEf369Yt2uCIiUgGF6/Fqbmaz/e+t0Gecc/2jGpmIx6pXr86CBQuIi4sjJyeHbt26cfHFF9OlS5eQ2y9cuJC3336btWvXUr16dXbu3OlxxCIiUtGES7wGFPo8MZqBiJQ1MyMuLg6AnJwccnJyMDNWr17NTTfdxMGDB2nevDkvvvgitWvX5p///Cfjxo2jevXqADRo0KAswxcRkQog3O0kPgr38jJIEa/k5eWRmJhIgwYN6NWrF507d+aaa67hscceY+3atSQkJPDQQw8BsHnzZpYsWULnzp254IILWLFiRRlHLyIi5V24Hi+RSi8tPYMJ729iR2YWjeJjGdunBatXryYzM5NBgwaxZs0aMjMzueCCCwAYOXIkl112GQC5ubn8+uuvfPrpp6xYsYJhw4bx7bfflmV1RESknFPiJSestPQM7p61jqycPAAyMrO4e9Y6AAYmNaZHjx6kpaUVuX+TJk0YPHgwZkanTp2oUqUKu3fv9iJ0ERGpoIq9UtHMTg6xrF4E+51uZgvNbKOZbTCzPwWtu8XMNvmXP17ysEWO34T3NwWSLoC8g3s4sG+Pb3lWFvPnzyc5OZnatWuzZMkSAF555ZVA79fAgQNZsGAB4Bt2PHz4MPXqFfurISIiJ7BIerxW+G+e+imAmQ0BHgXOLWa/XODPzrnPzawmsMrMPgBOwzdxv51z7pCZaUaylIkdmVkFPuft/4Xdc/6XH90ROr56CsOGDaNfv340adIkMLm+WbNmTJkyBYAxY8YwZswY2rZty0knncRLL72EmZVFVUREpIIw51z4DcwSgBeBRUAjoC5wnXNue4kOZPY28CxwPfC8c25+pPumpKS4lStXluRwIsU6f/wCMgolXwCN42NZNq5nGUQkIiKVgZmtcs6lhFpX7FCjc24d8DfgJuBC4A/HkHQ1xfeQ7c/w9ZR1N7PPzOwjM+tYkrJESsvYPi2IrRZTYFlstRjG9mlRRhGJiEhlV+xQo5lNBpoD7fAlTf8xs2edc/8XyQHMLA54E7jVObfXzKoCtYEuQEdghpk1c4W63szsBuAGgDPOOKMEVRKJzMCkxgBHXdWYv1xERKS0RTLHaz2+oUUHfGdmXYAnIynczKrhS7qmOedm+RdvB2b5y1tuZkeAesCu4H2dc88Dz4NvqDGS44mU1MCkxkq0RETEM5EMNf5vcG+Uc26Pc+7a4vYz3yzjycBG51xwopYG9PRvcy5wEqBr8EVERKTSi2So8Rx8VzG2BgK3lnDONStm1/OBq4F1Zrbav+wefBP1XzSz9cBhYGThYUYRERGRyiiSocYpwAPA/+KbXD8a30Ozw3LOLQ2z3VWRBigiIiJSWRQ71AjEOuc+xHfria3OuQfxDxWKiIiISOQi6fHKNrMqwFdm9gcgA9BNT0VERERKKJIer1uBGsAfgWR887ZGRjEmERERkUqp2B4v59wK/9v9+OZ3iYiIiMgxKDLxMrPZ4XZ0zvUv/XBEREREKq9wPV7nAduA1/A96kdP/xURERE5DuESr/8BegFXAFcCc4DXnHMbvAhMREREpLIpcnK9cy7POTfXOTcS33MVvwYWmdktnkUnIiIiUomEnVxvZtWBS/H1ejUFngZmhdtHREREREILN7n+JaAt8B7wkHNuvWdRiYiIiFRC4Xq8rgYOAOcCf/Q98xrwTbJ3zrlToxybiIiISKVSZOLlnIvk5qoiIiIiEiElVyIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeiVriZWanm9lCM9toZhvM7E+F1t9hZs7M6kUrBhEREZHypGoUy84F/uyc+9zMagKrzOwD59wXZnY60Av4PorHFxERESlXotbj5Zz7wTn3uf/9PmAj0Ni/+n+BOwEXreOLiIiIlDeezPEys6ZAEvCZmfUHMpxza7w4toiIiEh5EfXEy8zigDeBW/ENP94L3B/BfjeY2UozW7lr167oBimeGjNmDA0aNKBt27bHXMb999/P/PnzSzEqERGR6DPnojfaZ2bVgHeA951zT5pZAvAhcNC/SRNgB9DJOfdjUeWkpKS4lStXRi1O8dbixYuJi4vjmmuuYf369WUdjoiISKkys1XOuZRQ66J5VaMBk4GNzrknAZxz65xzDZxzTZ1zTYHtQIdwSZdUPqmpqdSpUyfw+ZtvvqFDhw6Bz1999RXJyckArFq1igsuuIDk5GT69OnDDz/8AMCoUaOYOXOmt4GLiIgcp2gONZ4PXA30NLPV/tclUTyeVFDNmzenVq1arF69GoApU6YwatQocnJyuOWWW5g5cyarVq1izJgx3HvvvWUbrIiIyHGI2u0knHNLAStmm6bROr6UL2npGUx4fxM7MrNoFB/LyIQaBdZfd911TJkyhSeffJLp06ezfPlyNm3axPr16+nVqxcAeXl5NGzYsCzCFxERKRXRvI+XCOBLuu6etY6snDwAMjKzeGzuNnKycwPbDBkyhIceeoiePXuSnJxM3bp12bFjB23atOGTTz4pq9BFRERKlR4ZJFE34f1NgaQr36HcPHbvPxT4fPLJJ9OnTx9+97vfMXr0aABatGjBrl27AolXTk4OGzZs8C5wERGRUqbES6JuR2ZWgc+7Zj/Oj6/cQdaubTRp0oTJkycDMGLECMyM3r17A3DSSScxc+ZM7rrrLtq3b09iYiIff/xxoBzf9RsiIiIVh4YaJeoaxceSEZR81e9/JwCN42NZNq5nYPnSpUsZM2YMMTExgWWJiYksXrz4qDJ//vnnAldGioiIVARKvCTqxvZpUWCOF0BstRjG9mkR+Dxo0CC++eYbFixYUGx5Y8aM4eDBg3Tr1i0q8YqIiERLVG+gWlp0A9WKr/BVjWP7tGBgUuPidxQREalgwt1AVT1eUZCdnU1qaiqHDh0iNzeXoUOH8tBDDx1zeX/5y194++23qVKlCg0aNGDq1Kk0atSoFCOOvoFJjZVoiYjICU89XlHgnOPAgQPExcWRk5NDt27dmDRpEl26dDmm8vbu3cupp54KwNNPP80XX3zBc889V5ohi4iISCkpk0cGncjMjLi4OMB3C4ScnBwOHTpEp06dAtts2bKFdu3asXz5cgYPHgzA22+/TWxsLIcPHyY7O5tmzZoBBJIugAMHDuhqPhERkQpKQ41RkpeXR3JyMl9//TU333wzF1xwAYcPH+bbb7+lWbNmTJ8+nWHDhtGhQwfS09MBWLJkCW3btmXFihXk5ubSuXPnQHn33nsvL7/8MrVq1WLhwoVlVS0RERE5DurxKkVp6RmcP34BZ42bQ+qEj3hwyhy2b9/O8uXLWb9+PcOGDWPGjBkATJ8+neHDh1O1alXOPvtsNm7cyPLly7n99ttZvHgxS5YsoXv37oGy//a3v7Ft2zZGjBjBs88+W1ZVFBERkeOgxKuU5D8WJyMzC4fvsTh3z1rHou8O0KNHD+bOncvw4cOZMWMGmzdvxsw455xzAOjevTvvvfce1apV46KLLmLp0qUsXbqU1NTUo45z5ZVX8uabb3pcOxERESkNSrxKSfBjcfIO7uFI9n6ycvIY/85a5s+fT8uWLWnevDkxMTH89a9/Zfjw4YF9U1NTeeqppzjvvPOoX78+P//8M19++SVt2rQB4KuvvgpsO3v2bFq2bOlt5URERKRUaI5XKQl+LE7e/l/YPed/wR1hhzvCfbdcS79+/QAYPnw4Y8eO5bvvvgts37lzZ3766adAD1e7du1o0KBBYBL9uHHj2LRpE1WqVOHMM8/UFY0iIiIVlG4nUUrOH7+gwGNx8hV+LI6IiIhUbrqdhAfG9mlBbLWYAssKPxZHRERETmwaaiwl+Xdl12NxREREpChKvEqRHosjIiIi4WioUURERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjSrxEREREPKLES0RERMQjUUu8zOx0M1toZhvNbIOZ/cm/fIKZfWlma83sLTOLj1YMIiIiIuVJNHu8coE/O+daAV2Am82sNfAB0NY51w7YDNwdxRhEREREyo2oJV7OuR+cc5/73+8DNgKNnXPznHO5/s0+BZpEKwYRERGR8sSTOV5m1hRIAj4rtGoM8J4XMYiIiIiUtagnXmYWB7wJ3Oqc2xu0/F58w5HTitjvBjNbaWYrd+3aFe0wRURERKIuqomXmVXDl3RNc87NClo+EugHjHDOuVD7Oueed86lOOdS6tevH80wRURERDxRNVoFm5kBk4GNzrkng5b3Be4CLnDOHYzW8UVERETKm6glXsD5wNXAOjNb7V92D/A0UB34wJeb8alz7qYoxiEiIiJSLkQt8XLOLQUsxKp3o3VMERERkfJMd64XERER8YgSLxERERGPKPESERER8YgSLxERERGPKPESERER8YgSLxERERGPKPESERER8YgSLxERERGPKPESERER8YgSLxERERGPKPESERER8YgSLxERERGPKPESERER8YgSLxERERGPKPGKgjFjxtCgQQPatm0b8T4zZ87EzFi5ciUAixYtol+/ftEKUURERMqAEq8oGDVqFHPnzo14+3379vH000/TuXPnKEYlIiIiZU2JVxSkpqZSp06dAsteeOEFOnbsSPv27RkyZAgHDx4MrPvLX/7CnXfeycknnxyyvBUrVpCUlMS3334b1bhFREQkupR4eWTw4MGsWLGCNWvW0KpVKyZPngxAeno627ZtK3JY8eOPP+amm27i7bffplmzZl6GLCIiIqWsalkHcKJYv3499913H5mZmezfv58+ffpw5MgRbrvtNqZOnRpyn40bN3LDDTcwb948GjVq5G3AIiIiUuqUeJWStPQMJry/iR2ZWTSKj2VkQo0C60eNGkVaWhrt27dn6tSpLFq0iH379rF+/Xp69OgBwI8//kj//v2ZPXs2AA0bNiQ7O5v09HQlXiIiIpWAhhpLQVp6BnfPWkdGZhYOyMjM4rG5m9ibnRvYZt++fTRs2JCcnBymTZsGQK1atdi9ezdbtmxhy5YtdOnShdmzZ5OSkgJAfHw8c+bM4Z577mHRokVlUDMREREpTerxKgUT3t9EVk5e4POu2Y9z6Pt1HMnaS5MmTXjooYf461//SufOnTnzzDNJSEhg3759EZV92mmn8Z///IeLL76YF198UVc+ioiIVGDmnCvrGIqVkpLi8u9vVR6dNW4OoVrRgO/GX+p1OCIiIlKGzGyVcy4l1DoNNZaCRvGxJVouIiIiJyYlXqVgbJ8WxFaLKbAstloMY/u0KKOIREREpDzSHK9SMDCpMUCBqxrH9mkRWC4iIiICSrxKzcCkxkq0REREJCwNNYqIiIh4RImXnJCys7Pp1KkT7du3p02bNjzwwAMA9OjRg/J8Ba2IiFRsGmqUE1L16tVZsGABcXFx5OTk0K1bNy6++OKyDktERCo59XjJCcnMiIuLAyAnJ4ecnBzMDIBXX32Vrl270rZtW5YvXw7Agw8+yNVXX03Pnj0555xzeOGFFwJlPf744yQkJNC+fXvGjRvnfWVERKTCUI+XnLDy8vJITk7m66+/5uabbw48FeDAgQN8/PHHLF68mDFjxrB+/XoA1q5dy6effsqBAwdISkri0ksvZc2aNaSlpfHZZ59Ro0YNfvnll7KskoiIlHNKvOSEUvhh5g9OmUOPs05h0KBBgQTriiuuACA1NZW9e/eSmZkJwIABA4iNjSU2NpYLL7yQ5cuXs2TJEkaPHk2NGr6HotepU6dM6iUiIhWDhhrlhBHqYeZ3z1rHou8O0KNHD+bOnQsQGHLMl/851HLn3FHLRUREiqLES04YwQ8zzzu4hyPZ+8nKyWP8O2uZP38+LVu2BGD69OkALF26lFq1alGrVi0A3n77bbKzs/n5559ZtGgRHTt2pHfv3rz44oscPHgQQEONIiISlhKvCm7MmDE0aNCAtm3blmi/TZs2kZiYGHideuqpPPXUUwDcf//9zJ8/PwrRlq0dmVmB93n7f+HH1+5hx4t/4POnb6JXr17069cPgNq1a9O1a1duuukmJk+eHNinU6dOXHrppXTp0oW//OUvNGrUiL59+9K/f39SUlJITExk4sSJntdLREQqDnPOlXUMxUpJSXG6t1JoixcvJi4ujmuuuSYwR6mk8vLyaNy4MZ999hlnnnlmKUdYfpw/fgEZQclXvsbxsSwb1zPsvg8++CBxcXHccccd0QpPREQqCTNb5ZxLCbVOPV4VXGpq6lETunv06MFtt91GamoqrVq1YsWKFQwePJhzzjmH++6776gyPvzwQ5o3bx5IukaNGsXMmTM9id9Lepi5iIiUNV3VWEmddNJJLF68mEmTJjFgwABWrVpFnTp1aN68Obfddht169YNbPv6668HruSrzI7nYeYPPvhglKMTEZETgRKvSqp///4AJCQk0KZNGxo2bAhAs2bN2LZtWyDxOnz4MLNnz+bRRx8ts1i9pIeZi4hIWVLiVQEVvhfVyIQaR21TvXp1AKpUqRJ4n/85Nzc38Pm9996jQ4cOnHbaadEPXERE5ASnxKuCyb8XVf5tETIys3hs7jZysnOL2TO011577YQYZhQRESkPlHhVMMH3ogLYNftxDn2/jiNZe2nSpAkPPfRQxGUdPHiQDz74gH/961/RCFVEREQK0e0kKpizxs0h1E/MgO/GX+p1OCIiIlKIbidRiTSKjy3RchERESk/lHhVMLoXlYiISMWlOV4VzPHci0pERETKlhKvCkj3ohIREamYNNQoIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeMedcWcdQLDPbBWwNWlQP2F1G4ZxI1M7eUVt7R23tDbWzd9TW3ihJO5/pnKsfakWFSLwKM7OVzrmUso6jslM7e0dt7R21tTfUzt5RW3ujtNpZQ40iIiIiHlHiJSIiIuKRipp4PV/WAZwg1M7eUVt7R23tDbWzd9TW3iiVdq6Qc7xEREREKqKK2uMlIiIiUuEo8RIRERHxSLlNvMysr5ltMrOvzWxciPVmZk/71681sw5lEWdlEEFbtzSzT8zskJndURYxVhYRtPUI//m81sw+NrP2ZRFnRRdBOw/wt/FqM1tpZt3KIs7KoLi2Dtquo5nlmdlQL+OrLCI4p3uY2R7/Ob3azO4vizgrg0jOaX97rzazDWb2UYkO4Jwrdy8gBvgGaAacBKwBWhfa5hLgPcCALsBnZR13RXxF2NYNgI7A34A7yjrmivqKsK27ArX97y/WeR21do7jv3Nc2wFflnXcFfEVSVsHbbcAeBcYWtZxV7RXhOd0D+Cdso61or8ibOt44AvgDP/nBiU5Rnnt8eoEfO2c+9Y5dxh4HRhQaJsBwMvO51Mg3swaeh1oJVBsWzvndjrnVgA5ZRFgJRJJW3/snPvV//FToInHMVYGkbTzfuf/xgROAXSV0bGJ5Lsa4BbgTWCnl8FVIpG2sxy/SNr6SmCWc+578P0fWZIDlNfEqzGwLejzdv+ykm4jxVM7eqekbX0tvl5dKZmI2tnMBpnZl8AcYIxHsVU2xba1mTUGBgHPeRhXZRPpd8d5ZrbGzN4zszbehFbpRNLW5wK1zWyRma0ys2tKcoCqxxlgtFiIZYX/Io1kGyme2tE7Ebe1mV2IL/HS3KOSi6idnXNvAW+ZWSrwV+CiaAdWCUXS1k8Bdznn8sxCbS4RiKSdP8f3fMD9ZnYJkAacE+3AKqFI2roqkAz8BogFPjGzT51zmyM5QHlNvLYDpwd9bgLsOIZtpHhqR+9E1NZm1g74N3Cxc+5nj2KrTEp0TjvnFptZczOr55zTg4ZLJpK2TgFe9ydd9YBLzCzXOZfmSYSVQ7Ht7JzbG/T+XTP7h87pYxJp/rHbOXcAOGBmi4H2QESJV3kdalwBnGNmZ5nZScDlwOxC28wGrvFf3dgF2OOc+8HrQCuBSNpaSkexbW1mZwCzgKsj/etJjhJJO59t/kzAf0X0SYCS3JIrtq2dc2c555o655oCM4HfK+kqsUjO6f8JOqc74fv/Xed0yUXyf+LbQHczq2pmNYDOwMZID1Aue7ycc7lm9gfgfXxXGLzonNtgZjf51z+H7+qYS4CvgYPA6LKKtyKLpK3N7H+AlcCpwBEzuxXfVR57iypXjhbheX0/UBf4h/87NNc5l1JWMVdEEbbzEHx/uOUAWcDwoMn2EqEI21qOU4TtPBT4nZnl4junL9c5XXKRtLVzbqOZzQXWAkeAfzvn1kd6DD0ySERERMQj5XWoUURERKTSUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeKZc3UBWpDMws7E3ynHN6cJ2IyAlGN1AVERER8YiGGis5M8szs9VmtsHM1pjZ7WZWxb/u46Dt/mhmG81sWvD7sov82BUVv5ldZGavRPnYsWb2kZnF+D/faGbP+d9XM7NXzOwlM6sWYt+TzGyxmYXsiS6PP5fgc+h4tgmz7/4SbBtvZr8/1mNFuzwvmNmDZnZHiOWenjtmNsjMnJm1LLQ87M/TzJqaWcSPXgnaL/97Lv/VNMy2IWMo3HZmtqWkcZSGEHEU+fsT6hw9nt838YYSr8ovyzmX6JxrA/TC93zLBwCcc12Dtvs9cIlzbkSh98XyP6i8PJ1LRcXfHlgT5WOPAWY55/L8n9sBa83sVOA94Hvn3EjnXE7hHZ1zh4EPgeFFlB2yXmXR/vnHLHQOhRTJNqUkHl8bHeUY26jI8opSDn8X8nl97lwBLMX3gGEv5H/P5b+2eHTciBxPOxfz+xNPoXPUw983OUbl8QtCosQ5txO4AfiD/4tgP4C/R6YZMNvMDgW9v82//iozW+7/S/JfZhbj/8t0o5n9A/gcOL2Y7V7w97rNM7PY/JjM7BozW2u+3rhXijpeqPqYr/duvf91a4i63FZol/bAav92Lf29SxvMbL6Z1fMvb+VfvtbMxprZ1yVs5hH4nlyfLwH4BVgEvOGcu7eY/dP8ZRSua4F6FdH+odqjqZl9aWb/9i+fZr6ev2Vm9pWZdQoVRJiyCh9zf9A+f/Ef6wMzey3/r/ag86zIc8HM0sxslX/5DeEayMxOMbM5/nNmvZnlJ6rjgeb+82ZCiHi7W1BvipndYWYP+t8fdR4WKu+NMPtG+rtQVNzBdQvZDsW03b1mtsnM5gMtQpTp9bkTB5wPXEsRiVdQ2S/5232mmdXwr4453nPEv/1RdQqxTbi22xXhzyxkXSI9L4qLI+j3p7hzdELw9kW1QVHnUiR1lVLinNOrEr+A/SGW/QqcFrwO2ALUC/G+FfAfoJr/8z+Aa4Cm+J7K3iWC7XKBRP/yGcBV/vdtgE1Bx6pTVDkh6pAMrANOAeKADUBS4fgL7bMGqA9UL7T9XcDf8F1s8nnQ8n8CaSVo65OAH0O09S7gtxGWEQPsKmJd8M+lcPuHbI+g9k/A94fWKuBFwIABoepXTFmBYwafX0AKvqQ2FqgJfAXcUWibcOdCHf+/scB6oG6Y83cI8ELQ51pB5a8PWl64jQqvvwN4kBDnYeHti9q3iOMU9bsQMu5CdSuqHUK2XdDPqgZwKvB1fruXxbnjL+8qYLL//cdAhxDnS1PAAef7P7/ob9OQ9QzXNv5lefjOv9XAW0XVqVAMxbZdhD+zcHWJ5LwIGwewnwjO0RBtXNzPtfC5VGxd9Sqdl3q8TkwluZruN/h+gVeY2Wr/52b+dVudc59GsN13zrnV/ver8P3iA/QEZjrndgM4534pppxg3YC3nHMHnHP7gVlA96IqYb45Vac653YBA4Glzrl0/+ovgAbAYGBNoeUlGZqsB2QGHfN0fF+a64CGkRTgfEOUh82sZgSbB7d/uPb4zjm3zjl3BN+X74fO9826jv/+LIKFKyv4mIX3eds5l+Wc24fvP5hQijoX/mhma4BPgdOBc8LUex1wkZk9ZmbdnXN7wmxbVLzBQp2HJRXJ70IkcYdrh1Bt1x3fz+qgc24vMPsY4i3Ncwd8w4yv+9+/7v8cyjbn3DL/+1f9cRRVTwjfNsFDjYOKqVO+SNou0nOtqLpEcl5EEsexnKPF/VxX+9/nt3FJfq/kOOh2EicYM2uG76/DnZHuArzknLu7UDlNgQMRbncoaFEevr9Y8/cpfFltyHKKiKskWgMbg96vC1qXgC/Jaod/KNKvLTAXAu12L76/Aoea2Sn4/mI9DCxyzk0DsoCTg/Zvhy9xux741MxW5Cd1ZrYC+AzfX7gLnXNTgvarDmRHUKfC7V+U4PY/EvT5CKG/A8KVdaCI5ZH+PI46F8ysB3ARcJ5z7qCZLaJgOxbgnNtsZsn45is+ambznHMPRxBvLgWnV+QfI9R5WFhR+4Y6TpHncLi4I2iHon6PjuXS9KicO2ZWF1+S0NZ8t1OJAZyZ3elP2IIV9fm4zxEiPx+Lu+VLpOdaUXWJ5Dvy1uLiILJzNNQ+RTmqjUv4eyXHQT1eJxAzqw88Bzwb4kuwKB8CQ82sgb+MOmZ25nFsV3ifYf4va8ysTgnKWQwM9M+lOAUYBCwJc6zA/C4gA1/ylZ9QXQ28DPwMnOtfnoiv+30NgHPuW+fctUHlDcb3F+j1QH//Nr/im5+S/x9CArDOOfcDcB0w3cxq+XvCPnPO/cE5dw1wddBcj7r4hhqPmnxfjJK2R2mXtRT4rZmdbL45PpeW4Hi1gF/9/6G2BLqE29jMGgEHnXOvAhOBDv5V+/ANcxblJ6CBmdU1s+pAP//yUOdh4fKK2jeUkOdwmLjzlagd/BYDg/xzdGoCv41gn1BllNa5MxR42Tl3pnOuqXPudOA7/tsDFOwMMzvP/z5/Mn5RSto2kdSp2LaL4GdWkroU9d0Wyc8wknO0sBL9XEtQVzlO6vGq/GL93drV8P3V/grwZKQ7O+e+MLP7gHnmuyonB7gZ+PFYtiu0zwYz+xvwkZnlAenOuVFFlLO10L6fm9lUYLl/0b+DhghDaR+07SvAJWa2Dl8v1Rjn3M/mm7A6x98b9QmwxTn3bRHlNeG/vWZ5Qcvn4ftPZj6+xGuOP94PzGwGvvkfr+Dr3s93EF8PAsCFwLth6hFSUe1hYS6rL82ynHMrzGw2vkR1K7ASiHSoYi5wk5mtxTePpbihwQRggpkdwXd+/M4fw8/mm/i9Ht8VpP9XKMYcM3sYX0/jd8CX/uVHnYfAqBDlHbVvEW1R1O9CrVBxH0c75P+spuP7o2Irx5Awlea5gy/pGF9o2ZvAlSFi2wiMNLN/4ZsT+E98Q/6hlKhtIvl+iLDtQp5rIRRbl6LOC+fcp8XFEek56pwbW1wbhPm5RlpXOU66gaqIn5nF+edCYGZj8Q0r3ldom5n+ocar8f0F/o6Zve6cu9y/Pgm43Tl3dZjj/BXfFY5rzaw9cKNz7vf+dbOAu51zm6JTy+jJbz/zXZ22GLjBOfd5Wccl5Y//P/93nHNtyzqW41WZ6iLeUI+XyH/dZmaX4/trbxlwe/4Kfxf/34AkM7sbeBp41swuJWgiuf8vyoVmFuP+ey+vwpKBuua7dUcevqsqMbOT8F0pVuGSLr/nzaw1vrk3LynpEhE5mnq8RERERDyiyfUiIiIiHlHiJSIiIuIRJV4iIiIiHlHiJSIiIuIRJV4iIiIiHlHiJSIiIuIRJV4iIiIiHlHiJSIiIuKR/w+BjnLFaHx8DAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(10, 8))\n", + "plt.scatter(np.abs(kds_difference), af_max_pae)\n", + "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$')\n", + "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions')\n", + "plt.ylabel('Max PAE')\n", + "\n", + "for i, txt in enumerate(test_pdbs):\n", + " plt.annotate(txt, (np.abs(kds_difference[i]), af_max_pae[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "4164bbec", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SignificanceResult(statistic=0.7037593984962407, pvalue=0.000534935286301242)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAH6CAYAAADWRELjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABYEElEQVR4nO3deXxU1f3/8deHsBhECQixBFTEBcKakAjIEhAFXFABUVQUASm1LhWtKIp1r6Jgv6LWWq2ICj/BUgxYLFIEZFFkMWETcWULKKCGNUASzu+PmaSTMEkmkLmThPfz8ZgHM3f9nJOb4ZNzzj3XnHOIiIiISPhViXQAIiIiIicKJV4iIiIiHlHiJSIiIuIRJV4iIiIiHlHiJSIiIuIRJV4iIiIiHlHiJSIiIuIRJV4iIiIiHqka6QBERETKOzMLabZx55yFOxap2NTiJRJGZtbUzNLMbK+Z/eEY9t9oZpeU9bZlpaRzmtlEM3vqOM8Rch0WF0/hWMxsnZl1O57YvFS4HoqLvyzqvawdb32b2RYzSyizgEI75zNmNgJ8CVUoryKOs8zMWngZu5RfSrykXIlE8lCcMojnfmCBc+4U59yLxZxngZn9amY1juNcx8xfziwz2xfwigvDORofw64h1WFpOedaOOcWlNXxPFCgHipa/McTr5nVAX4DrC/ToIo/Z31gEPD3wDjMzJnZWf7PZmZP+K/tNsUcbhzwRHgjlopCiZdIeJ0FrCtuA38y0gVwwFUexFSUK51ztQJe2yIYS6AS6/AEcSLXQyvga+fcIQ/PORj40DmXFbAsAfjVObfJzE4GpgHdgXbOuVXFHGsmcJGZNQhXsFJxKPGScsv/V+RIM1ttZvvN7A0zO93M/uPvbpnr/0s4b9sHzexLf8vRm2Z2UsCxRpnZd/79vjSzvgHrzjCz6Wa208x+NrOX/cvfAc4EPvC3AN0fJMZ4f2tVpr8r5aqAdfOAi4CX/fufX0RRBwFLgYnALSXUR5Fl9Evw19duM5saah0Up7gyBtk20cy+8J9jKlA4vrztHjCzDP92G8zs4iK2O6oOQ42npFgCWzP97+8rpu7a2v+6+f7pXx+0K6+o66mkuiwuhiLqITD+ksoaZ2b/8sf0gwV02YZQ9uLKU+Rxg9RLyPUdRGtgjX9f818/m/z1+J6Z1favq2Jmj5ivW3KbmV1pZofN/z1RSpcBnxRalgCkm9mZwGJgN9DdObejuAM55w4CK4GexxCHVDbOOb30KjcvYCNwScD7pcDpQENgB/AFkAjUAOYBjwZsuxY4A6gLLAGeCjjutUAcvj82BgD7gQZAFLAK+D/gZHz/YXUOFk+QWKsB3wIPAdXx/eW7F2gasM0CYFgJZf4WuB1IArKB04upj+LKuBFY5i9nXXzdMreVVAfFlbOkMhaKrzqwCbjHv19/f3meKnTMpsAWIM7/uTFwTjH1k1+HocYTSixB6jZo3QUc627/sfoBhwuXy79tkddTiLEX9/PLr4fSlNX/814JPOLftgnwPdArhLIXV55ijxvC73aRZQ2y72vAQ/73T/nrooE/nhnA8/51TwAL8X1fxACfAVuO8btoJ3BBoWVvA4uAbcC9pTzei8BfwvXdqVfFeanFS8q7l5xzPznnMvB94X3unEtzvi6H9/ElYXleds5tcc79AvwZuCFvhXPun865bc65I865qcA3QDv/Kw4Y6Zzb75w76JxbHGJsHYBawBjn3GHn3Dzg34HnLYmZdcbXhfSec24l8B1wYzG7FFlGvxf95fwF+ADfX+hAsXWQJ9XfgpBpZqnHUMYO+P7jf8E5l+2cmwYsD7JdLr7EubmZVXPObXTOfVdMmQufI5R4Qo0lUFF11wHfHeAv+o81HV/SEExx11MosRf58ytGSWW9AKjvnHvCf97vgdeB60M4b3HlCeW4xSlNWVsBq83sdOAu4Ebn3Hbna0maBiSbb0zWPcBQ51yGcy4TmIO/pewYxOBLjAMlAC2A1c65v5TyeHv9x5QTnBIvKe9+CnifFeRzrYDPWwLeb8L3HwYAZjbIzNLzEgugJVAPX+vRJudczjHEFofvr+kjhc7bsBTHuAWY45zb5f/8/yimu5Fiyuj3Y8D7AwTUTzF1kKePcy7G/+rjX1aaMsYBGc45V2jbApxz3wIjgMeAHWY2xUIfyB9qPCHFUkhRdRfsWIE/h0DFXU+hxF7kz68YJZX1LCAuIKnOxNfqdnoI5y2uPKEctzghldXMDN+1ugbfWMg1ruD4w3rAduBi4Fv/9ZWnLv/roqxtvrsL95lZy4Dj/9nMFpnZNDOrGbDvr8ApAdvVAOKBa4B489/tWCjWf5rZEn938kdm1jxg9SlAZhF1IScQJV5SmZwR8P5MfN0BmO8OpNeBO4HTnHMx+LrsDN9/oGeaWVFz2hU3d8824AwzC/w9OhPICCVYM4sGrgO6mtmPZvYjvr/Y21jRd0gFLWMI5yquDopTmjJuBxr6/6MM3PYozrn/55zLa+1zwLOhlKMU8YQcSwiCHeuMIrYt7no6ruullPEFlnUL8ENAUh3jfHdGXh7CsYsrz/EctzTOBo445zYB9fGNqwp0Nb7xVvUI+H0wsyh847RW+xcdAK7A10KWt01LfN3cXYC5wNCA464GAsdltsTXWrsI6As8aWbdC8VyLpDinOuGLwl9M2BdPL5uWznBKfGSyuQOM2tkZnXxfelN9S8/Gd9/7jsBzGwIvi9R8HUZbQfGmNnJZnaSmXUKOOZP+MauBPM5vnFS95tZNfPNUXQlMCXEePvg+yJvjq8LIwHfl/MifAPuS1PGkhRXB8UpTRk/A3KAP5hZVTPrR8GuTPznbmpm3f0tCAfxtVzmhliOUOMJKZYQfeaP707/sa4u5ljFXU/He70UF19xZV0G7PEPSI82sygza2lmF4Rw7OLKczzHLY38gfX4ulAvNLNzzKyWmT2Br4VtAr5xYh3N7FwzOxXfmKpz8vb1d8PuLHTsLsB//O//A3QOWPch0DXgcyKw1jmX45z7ArgDeM/MzgYws+pArnMu13++lUCMmVX3X+tJwH+PtzKk4lPiJZXJ/8M3puN7/+spAOfcl8Dz+P6D+gnfeJEl/nW5+P7zOxfYDGzFN/A8zzPAw/6ulPsCT+acO4xv+ofLgF3AK8Ag59xXIcZ7C/Cmc26zc+7HvBfwMjCwiFaGoGUsSXF1UMJ+IZfRv20/fLfh/4qvHqcHOWwNYIz/eD8CsfiSyFDKEVI8pYgl1HP2A27F11V0E76xWUdNbVDc9VQG10tJ8Q0mSFkDYkoAfvCf+x9A7RCOXVx5jvm4pdQKf6uVc24FvrGNi/2xxOO7q/CAc+5j4F0gDVgBpONr5Squfuvwvxa03fi6JvO8DVzub5kG/x2NeSudc2/j+31MNd/UEvHAhkLHr4kvKb4K3xxs5WWKFokgKzgsQKRiMrON+O74mhvpWMLlRChjRWFmnwOvOufeLHFjiQgzuw24wjl3ZaHlE4Fxzrm1ZvZ74IBz7i1/d/yzzrnrA7Z9GtjhnHshhPMNBM5yzj3t/xyP72aYi/3Xy63OubVlVT6puPSsRhGREphZV3ytGbuAgfi6v2ZHNCgpwMw64OsW3YJvoP0TlDwh8WLgQeAtoBeFWoGdcyG1xPq1xDf9Td6s96/6Y8A5174Ux5FKTomXiEjJmgLv4bvz7jugv3Nue2RDkkISgVn4ptb4GhjsnFsauIGZfYivy7Cpmf3dOTfRfBOxLsI3T2BRYytD0QLo6R+ScAQY6+/+FClAXY0iIiIiHtHgehERERGPKPESERER8UiFGONVr14917hx40iHISIiIlKilStX7nLO1Q+2rkIkXo0bN2bFihWRDkNERESkRGZW5CPK1NUoIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiIiIeUeIlIiIi4hElXiIiInLCyc3NJTExkd69ewddv3nzZi666CISExNp3bo1H374YZmcV4mXiIiInHDGjx9PfHx80HU5OTk89dRTXHfddaSlpTFlyhRuv/32MjmvEi8RERE5oWzdupVZs2YxbNiw/GXdunXjoYceomvXrowfPx4zY8+ePQDs3r2buLg4AG6//XZmzpwJQN++fRk6dCgAb7zxBg8//HCJ565a1oURERERKc9GjBjBc889x969ewssz8zM5JNPPgFg+/bt9OzZk5deeon9+/czd+5cAFJSUli0aBFXXXUVGRkZbN++HYDFixdz/fXXl3hutXiJiIhIpZealkGnMfM4vf+jLN6azZYqvzlqmwEDBuS/f/fddxk8eDBbt27lww8/5Oabb+bIkSN06dKFRYsW8eWXX9K8eXNOP/10tm/fzmeffUbHjh1LjEMtXiIiIlKppaZl8OD0NWRl53Iw40v2r1vCtRe1pVZVx6ED+7jpppsAOPnkk/P3eeONN5g9ezYAF154IQcPHmTXrl00bNiQX3/9ldmzZ5OSksIvv/zCe++9R61atTjllFNKjEWJl4iIiFRqYz/aQFZ2LgB1ug6mTtfBANT6ZQONt81j0qRJdOvWrcA+Z555Jh9//DGDBw9m/fr1HDx4kPr16wO+ROyFF15g3rx5/Pzzz/Tv35/+/fuHFIu6GkVERKRS25aZFXT5rn2Hitzn+eef5/XXX6dNmzbccMMNTJw4ETMDoEuXLuTk5HDuuefStm1bfvnlF7p06RJSLOacK30JPJacnOxWrFgR6TBERESkAuo0Zh4ZQZKvhjHRLBnVvczPZ2YrnXPJwdapxUtEREQqtZG9mhJdLarAsuhqUYzs1dTzWDTGS0RERCq1PokNAd9Yr22ZWcTFRDOyV9P85V5S4iUiIiKVXp/EhhFJtApTV6OIiIiIR5R4iYiIiHhEiZeIiIiIR5R4iYiIiHhEiZeIiIiIR8KWeJnZBDPbYWZrCy2/y8w2mNk6M3suXOcXERERKW/C2eI1Ebg0cIGZXQRcDbR2zrUAxoXx/CIiIiLlStgSL+fcQuCXQot/D4xxzh3yb7MjXOcXERERKW+8HuN1PtDFzD43s0/M7AKPzy8iIiISMV7PXF8VqAN0AC4A3jOzJi7Ik7rNbDgwHODMM8/0NEgRERGRcPC6xWsrMN35LAOOAPWCbeice805l+ycS65fv76nQYqIiIiEg9eJVyrQHcDMzgeqA7s8jkFEREQkIsLW1Whm7wLdgHpmthV4FJgATPBPMXEYuCVYN6OIiIhIZRS2xMs5d0MRq24K1zlFREREyjPNXC8iIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLikbAlXmY2wcx2mNnaIOvuMzNnZvXCdX4RERGR8iacLV4TgUsLLzSzM4AewOYwnltERESk3Alb4uWcWwj8EmTV/wH3Ay5c5xYREREpjzwd42VmVwEZzrlVXp5XREREpDyo6tWJzKwmMBroGeL2w4HhAGeeeWYYIxMRERHxhpctXucAZwOrzGwj0Aj4wsx+E2xj59xrzrlk51xy/fr1PQxTREREJDw8a/Fyzq0BYvM++5OvZOfcLq9iEBEREYmkcE4n8S7wGdDUzLaa2a3hOpeIiIhIRRC2Fi/n3A0lrG8crnOLiIiIlEeauV5ERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RERERDyixEtERETEI0q8RESk0jp48CDt2rWjTZs2tGjRgkcffTTSIckJrmqkAxAREQmXGjVqMG/ePGrVqkV2djadO3fmsssuo0OHDpEOTU5QavESEZFKy8yoVasWANnZ2WRnZ2NmfPfdd1x66aUkJSXRpUsXvvrqKwA2bdrExRdfTOvWrbn44ovZvHkzAB988AHt27cnMTGRSy65hJ9++iliZZKKTYmXiJSJ3NxcEhMT6d27d6RDESkgNzeXhIQEYmNj6dGjB+3bt2f48OG89NJLrFy5knHjxnH77bcDcOeddzJo0CBWr17NwIED+cMf/gBA586dWbp0KWlpaVx//fU899xzkSySVGDqahSRMjF+/Hji4+PZs2fPUetycnKoWlVfN+KN1LQMxn60gW2ZWcTFRDOyV1PS09PJzMykb9++rF27lk8//ZRrr702f59Dhw4B8NlnnzF9+nQAbr75Zu6//34Atm7dyoABA9i+fTuHDx/m7LPP9r5gUimoxUtEjtvWrVuZNWsWw4YNy1/WrVs3HnroIbp27cr48eNZvnw5rVu35sILL2TkyJG0bNkS8A1+HjJkCK1atSIxMZH58+dHqhhSCaSmZfDg9DVkZGbhgIzMLB6cvobUtAxiYmLo1q0b06dPJyYmhvT09PzX+vXrgx7PzAC46667uPPOO1mzZg1///vfOXjwoIelkspEiZeIHLcRI0bw3HPPUaVKwa+UzMxMPvnkE/74xz8yZMgQXn31VT777DOioqLyt/nrX/8KwJo1a3j33Xe55ZZb9J+aHLOxH20gKzs3/3Pugd3s37vbtzwri7lz59K2bVvOPvts/vnPfwLgnGPVqlUAdOzYkSlTpgAwefJkOnfuDMDu3btp2LAhAG+99ZaXRZJKRomXiByT1LQMOo2Zx+n9H2Xx1my2VPnNUdsMGDAA8CVge/fupWPHjgDceOON+dssXryYm2++GYBmzZpx1lln8fXXX3tQAqmMtmVmFficu+8Xfnz3IZb/5VYuuOACevToQe/evZk8eTJvvPFG/jQTM2bMAODFF1/kzTffpHXr1rzzzjuMHz8egMcee4xrr72WLl26UK9ePc/LJZWHBl2ISKnldedkZedyMONL9q9bwrUXtaVWVcehA/u46aabADj55JMBX4tCUYpbJ1JacTHRZAQkX9VjzyZuyIs0jIlmyaju+cvPPvtsZs+efdT+jRs3Zt68eUctv/rqq7n66qvDE7ScUNTiJSKlFtidU6frYBrd8RYNb5tAw36j6N69O5MmTSqwfZ06dTjllFNYunQpQH5XDkBKSgqTJ08G4Ouvv2bz5s00bdrUo5JIZTOyV1Oiq0UVWBZdLYqRvXRNSfmgxEtESq1wd06eXfsOFbnPG2+8wfDhw7nwwgtxzlG7dm0Abr/9dnJzc2nVqhUDBgxg4sSJ1KhRIyxxS+XXJ7Ehz/RrRcOYaAxoGBPNM/1a0SexYaRDEwHAKkIzf3JysluxYkWkwxARv05j5hXozslTuDsn0L59+/InshwzZgzbt2/PHz8jIlKZmNlK51xysHVq8RKRUjuW7pxZs2aRkJBAy5YtWbRoEQ8//HC4wxQRKXfU4iUixyTYJJXqzhERKb7FS3c1isgx6ZPYUImWiEgpqatRRERExCNKvEREREQ8osRLRERExCNKvEREREQ8osRLRERExCNKvEREREQ8osRLRERExCNKvEREREQ8osRLRERExCNhS7zMbIKZ7TCztQHLxprZV2a22szeN7OYcJ1fREREpLwJZ4vXRODSQsv+C7R0zrUGvgYeDOP5RURERMqVsCVezrmFwC+Fls1xzuX4Py4FGoXr/CIiIiLlTSTHeA0F/hPB84uIiIh4KiKJl5mNBnKAycVsM9zMVpjZip07d3oXnIiIiEiYeJ54mdktQG9goHPOFbWdc+4151yycy65fv363gUoIiIiEiZVvTyZmV0KPAB0dc4d8PLcIiIiIpEWzukk3gU+A5qa2VYzuxV4GTgF+K+ZpZvZq+E6v4iIiEh5E867Gm9wzjVwzlVzzjVyzr3hnDvXOXeGcy7B/7otXOcXEckzdOhQYmNjadmyZf6yiRMnsm3btmL3e+SRR5g7d264wxORE4hmrheRSm/w4MHMnj27wLJQEq8nnniCSy65JJyhicgJRomXiFR6KSkp1K1bN//ztGnTWLFiBQMHDiQhIYFFixaRkJBAQkICrVq1wswAX8I2bdq0SIUtIpWQp4PrRUTKg/79+/Pyyy8zbtw4kpOTAUhPTwdg5MiRXHpp4YduiIiUDSVeIiJ+7733Hl988QVz5syJdCgiUkkp8RKRSik1LYOxH21gW2YWcTHR3NKqZrHbr1u3jkcffZSFCxcSFRXlUZQicqJR4iUilU5qWgYPTl9DVnYuABmZWTw7ewvZB3PytznllFPYu3cvALt37+b666/n7bffRhM2i0g4KfESkUpn7Ecb8pMugJ0zn+PQ5jUcydpDo0aNePzxxxk8eDC33XYb0dHR3HPPPWzatInf/va3+fvkjfkSESlLVsxTe8qN5ORkt2LFikiHISIVxNmjZhHsm82AH8Zc4XU4InKCMbOVzrnkYOs0nYSIVDpxMdGlWi4i4hUlXiJS6Yzs1ZToagUHyEdXi2Jkr6YRikhExEdjvESk0umT2BCgwF2NI3s1zV8uIhIpSrxEpFLqk9hQiZaIlDvqahQRERHxiBIvEREREY8o8RIRERHxiBIvEREREY8o8RIRERHxiBIvEREREY8o8RIRERHxiBIvEREREY8o8RKRkOTm5pKYmEjv3r0B6NatG8EeXl+rVq2g+6empvLll1+GNUYRkfJOiZeIhGT8+PHEx8cf8/6BiVfjxo1p1aoVCQkJJCcnF7nPtm3b6N+//zGfU0SkvFHiJSIl2rp1K7NmzWLYsGFHrTty5Ai33HILDz/8cP6y0aNH06ZNGzp06MBPP/3Ep59+ysyZMxk5ciQJCQnk5OQwf/580tPTg7aa5YmLi2PatGlhKZOISCQo8RKREo0YMYLnnnuOKlUKfmXk5OQwcOBAzj//fJ566ikA9u/fT4cOHVi1ahUpKSm8/vrrdOzYkauuuoqxY8eSnp5O1apHPyb222+/5ZJLLqFNmza0bduW7777jo0bN9KyZUsAsrKyuP7662ndujUDBgygffv2xSZtIiLlkRIvESnWv//9b2JjY0lKSjpq3e9+9ztatmzJ6NGj85dVr149fxxYUlISGzduPGo/M6Nnz54kJSXx2muvATBw4EDuuOMOVq1axaeffkqDBg0K7PO3v/2NmjVrsnr1akaPHs3KlSvLsJQiIt44+s9OEREgNS2DsR9tYN2Mt8j6cgHTUj+gypFs9uzZw0033QRAx44dmT9/Pn/84x856aSTAKhWrRpmBkBUVBQ5OTmkpmXw4ZrtfJi5kv/7ti5/+vs0hvZMYseOHfTo0YOmTZuSkZFB3759AfKPFWjhwoX84Q9/AKB169a0bt3ai2oQESlTSrxE5CipaRk8OH0NWdm5xHQdTEzXwURXi2LgmXtZOuMtJk2aRLdu3bj11ltZuHAh1157Le+//37QLsTNvxzgwelrOEh1qh/OIiMzi7GLDlO3fgZ9EhvSt29fPvnkk5DiykvoREQqKnU1ishRxn60gazs3ALLsrJzmbJ8y1Hb3nvvvbRt25abb76ZI0eOHLV+bcZusrJzqRmfwp5l08mYcCeZW79l7Ecb2L9/P3PmzKFdu3Y0atSI1NRUAA4dOsSBAwcKHCclJYXJkyf7jrl2LatXry6j0oqIeMecc5GOoUTJyclOg2hFvHP2qFkE+2Yw4IcxVxzXsbIzf2TndN9A/PPq1+TGG29k9OjRfPPNN/zud79j165dVKtWjX/+859UqVKFK6+8kjVr1pCVlcWQIUP48ssvSUhI4Ntvv+XFF18sdjoKEZFIMLOVzrmgX07qahSRo8TFRJORmRV0+fEeq1rMb4gb+jINY6JZMqp7/vLzzjuPefPmFdh35cqV1K1bF4Do6GimTJmSv65bt26ljkVEJNLU1SgiRxnZqynR1aIKLIuuFsXIXk09O9aKFSu44YYbuPvuu0t9ThGR8kpdjSISVN5djdsys4iLiWZkr6b0SWwY8WOJiJR3xXU1KvESERERKUPFJV7qahQRERHxiBIvkXIsNzeXxMTE/Jngi7N69WouvPBCWrRoQatWrTh48KAHEYqISGnorkaRcmz8+PHEx8ezZ8+eYrfLycnhpptu4p133qFNmzb8/PPPVKtWzaMoRUQkVGrxEimntm7dyqxZsxg2bFj+sm7duuU/GHrXrl00btwYgDlz5tC6dWvatGkDwGmnnUZUVBR/+9vfuP/++/P3nzhxInfddZd3hRARkQKUeImUUyNGjOC5556jSpWSf02//vprzIxevXrRtm1bnnvuOQD69+/P9OnT87ebOnUqAwYMCFvMIiJSPCVeIuXQv//9b2JjY0lKSgpp+5ycHBYvXszkyZNZvHgx77//Ph9//DH169enSZMmLF26lJ9//pkNGzbQqVOnMEcvIiJF0RgvkXIkb76rdTPeIuvLBUxL/YAqR7LZs2cPN910E1WrVs1/HmLg4PlGjRrRtWtX6tWrB8Dll1/OF198wcUXX8yAAQN47733aNasGX379tWDpkVEIkgtXiLlRGpaBg9OX0NGZhYxXQfT4PcTOe3W17nzyZfo3r07kyZNonHjxqxcuRKAadOm5e/bq1cvVq9ezYEDB8jJyeGTTz6hefPmAPTr14/U1FTeffdddTOKiESYEi+RcmLsRxvIys4tsCwrO5cpy7fkf77vvvv429/+RseOHdm1a1f+8jp16nDvvfdywQUXkJCQQNu2bbniiivy1zVv3pxNmzbRrl07bwojIiJBaeZ6kXLi7FGzCPbbaMAPY67wOhwRETlGmrlepAKIi4ku1XIREal4iky8zKxZwPsahdZ1CGdQIieikb2aEl0tqsCy6GpRjOzVNEIRiYhIWSuuxev/Bbz/rNC6V8IQi8gJrU9iQ57p14qGMdEY0DAmmmf6taJPYsNIhyYiImWkuOkkrIj3wT6LSBnok9hQiZaISCVWXIuXK+J9sM9HMbMJZrbDzNYGLKtrZv81s2/8/9YpZbwiIiIiFVZxiVcjM3vRzF4KeJ/3OZQ/yScClxZaNgr42Dl3HvCx/7OIiIjICaG4rsaRAe8Lz+VQ4twOzrmFZta40OKrgW7+928BC4AHSjqWiIiISGVQZOLlnHsr2HIzOwm48hjPd7pzbrv/+NvNLPYYjyMiIiJS4YQ0j5eZRZnZZWb2NrAJCPtzR8xsuJmtMLMVO3fuDPfpRERERMKu2MTLzFLM7FVgIzAM6Amc7Zzrf4zn+8nMGviP3QDYUdSGzrnXnHPJzrnk+vXrH+PpRERERMqP4iZQ3QqMAZYAzZ1z1wBZzrkDx3G+mcAt/ve3ADOO41giIiIiFUpxLV7/wnf34gDgSjM7mRCmkchjZu/im3i1qZltNbNb8SVyPczsG6CH/7OIiIjICaG4wfV3m9kI4CLgBmAscKqZXQd86JzbV9yBnXM3FLHq4mOMVURERKRCK3aMl/OZ55z7LdAYuBHog2/Ml4iIiIiUQnFjvDqY2Soz22dmnwHnOuc+cM7dCJzhXYgiIiIilUNxLV4vA/cBpwF/AV7IW+GcywpvWCIiIiKVT3GJVxXn3H+dc4ecc/8ENKeDiIiIyHEo7pFBMWbWr6jPzrnp4QtLREREpPIpLvH6hIKPBgr87AAlXiIiIiKlUNx0EkO8DERERESksgvpWY0iIiIicvyUeImIiIh4RImXiIiIiEeKG1yfz8w64pu5Pn9759zbYYpJREREpFIqMfEys3eAc4B0INe/2AFKvERERERKIZQWr2SguXPOhTsYERERkcoslDFea4HfhDsQERERkcoulBavesCXZrYMOJS30Dl3VdiiEhEREamEQkm8Hgt3ECIiIiInghITL+fcJ14EIiIiIlLZlTjGy8w6mNlyM9tnZofNLNfM9ngRnIiIiEhlEsrg+peBG4BvgGhgmH+ZiIiIiJRCSBOoOue+NbMo51wu8KaZfRrmuEREREQqnVASrwNmVh1IN7PngO3AyeENS0RERKTyCaWr8Wb/dncC+4EzgGvCGZSIiIhIZRTKXY2bzCwaaOCce9yDmEREREQqpVDuarwS33MaZ/s/J5jZzDDHJSIiIlLphNLV+BjQDsgEcM6lA43DFZCIiIhIZRVK4pXjnNsd9khEREREKrlQ7mpca2Y3AlFmdh7wB0DTSYiIiIiUUigtXncBLfA9IPtdYA8wIowxiYiIiFRKodzVeAAY7X+JiIiIyDEqMvEq6c5F59xVZR+OiIiISOVVXIvXhcAWfN2LnwPmSUQiIiIilVRxiddvgB74HpB9IzALeNc5t86LwEREREQqmyIH1zvncp1zs51ztwAdgG+BBWZ2l2fRiYiIiFQixQ6uN7MawBX4Wr0aAy8C08MfloiIiEjlU9zg+reAlsB/gMedc2s9i0pERESkEiquxetmYD9wPvAHs/yx9QY459ypYY5NREREpFIpMvFyzoUyuaqIiIiIhEjJlURE48aNadWqFQkJCSQnJ4e0z6FDhxgwYADnnnsu7du3Z+PGjQAsWLCA3r17hzFaERGRshHKsxpFwmL+/PnUq1cv5O3feOMN6tSpw7fffsuUKVN44IEHmDp1ahgjFBERKVtq8ZJyYceOHSQlJQGwatUqzIzNmzcDcM4553DgwAFmzJjBLbfcAkD//v35+OOPcc4VOM7y5ctJTEzk+++/97YAIiIiIVDiJRFhZvTs2ZOkpCRee+01YmNjOXjwIHv27GHRokUkJyezaNEiNm3aRGxsLDVr1iQjI4MzzjgDgKpVq1K7dm1+/vnn/GN++umn3HbbbcyYMYMmTZpEqmgiIiJFUlejeCY1LYOxH21gW2YW9W54ltHXdqJjw2r06NGDZs2a0bFjR5YsWcLChQt56KGHmD17Ns45unTpAnBU6xb4EjiA9evXM3z4cObMmUNcXJyn5RIREQmVWrzEE6lpGTw4fQ0ZmVk4YOeRk3lw+ho+zcimb9++LFu2jC5duuS3cl199dWsWrWKxYsXk5KSAkCjRo3YsmULADk5OezevZu6desC0KBBA0466STS0tIiVUQREZESKfEST4z9aANZ2bkAHDl8kCOHDpCVncuYD9KZM2cOLVu2JCUlhUmTJnHeeedRpUoV6taty4cffkinTp0AuOqqq3jrrbcAmDZtGt27d89v8YqJiWHWrFk89NBDLFiwICJlFBERKYm6GsUT2zKz8t/nHshk5/SnfMuPHOHRe4Zz6aWX5q/Pa+Hq3LkzW7dupU6dOgDceuut3HzzzZx77rnUrVuXKVOmFDjH6aefzgcffMBll13GhAkTaN++fbiLJSIiUioWbNxMeZOcnOxWrFgR6TDkOHQaM4+MgOQrT8OYaJaM6h6BiERERMLDzFY654JOUqmuRvHEyF5Nia4WVWBZdLUoRvZqGqGIREREvBeRxMvM7jGzdWa21szeNbOTIhGHeKdPYkOe6deKhjHRGL6Wrmf6taJPYsNIhyYiIuIZz8d4mVlD4A9Ac+dclpm9B1wPTPQ6FvFWn8SGSrREROSEFqmuxqpAtJlVBWoC2yIUh4iIiIhnPE+8nHMZwDhgM7Ad2O2cm+N1HCIiIiJe8zzxMrM6wNXA2UAccLKZ3RRku+FmtsLMVuzcudPrMEVERETKXCS6Gi8BfnDO7XTOZQPTgY6FN3LOveacS3bOJdevX9/zIEVERETKWiQSr81ABzOrab5pxy8G1kcgDhERERFPRWKM1+fANOALYI0/hte8jkNERETEaxF5ZJBz7lHg0UicW0RERCRSNHO9iIiIiEeUeImIiIh4RImXiIiIiEeUeImIiIh4RImXiIiIiEeUeImIiEjYbNmyhYsuuoj4+HhatGjB+PHjQ9pv+fLlREVFMW3atPxljRs3plWrViQkJJCcnByukMMqItNJiIiIyImhatWqPP/887Rt25a9e/eSlJREjx49aN68eZH75Obm8sADD9CrV6+j1s2fP5969eqFM+SwUouXiIiIhE2DBg1o27YtAKeccgrx8fFkZGTQrVs3RowYQceOHWnZsiXLli3L3+ell17immuuITY2NlJhh40SLxEREfHExo0bSUtLo3379gDs37+fTz/9lFdeeYWhQ4cCkJGRwfvvv89tt9121P5mRs+ePUlKSuK11yrmQ2/U1SgiIiJlKjUtg7EfbWBbZhZxMdGM7NWUS86rzTXXXMMLL7zAqaeeCsANN9wAQEpKCnv27CEzM5MRI0bw7LPPEhUVddRxlyxZQlxcHDt27KBHjx40a9aMlJQUT8t2vJR4iYiISJlJTcvgwelryMrOBSAjM4tR/0wjev44bh44kH79+uVva2YF9jUzVqxYwfXXXw/Arl27+PDDD6latSp9+vQhLi4OgNjYWPr27cuyZcsqXOKlrkYREREpM2M/2pCfdAE459g68y/8VOU07r333gLbTp06FYDFixdTu3ZtateuzQ8//MDGjRvZuHEj/fv355VXXqFPnz7s37+fvXv3Ar4uyjlz5tCyZUvvClZG1OIlIiIiZWZbZlaBz4cyvmT/uvkcrt+YhIQEAJ5++mkA6tSpQ8eOHdmzZw8TJkwo9rg//fQTffv2BSAnJ4cbb7yRSy+9tOwLEGbmnIt0DCVKTk52K1asiHQYIiIiUoJOY+aRUSj5AmgYE82SUd3zP3fr1o1x48ZV2Pm4imNmK51zQQumrkYREREpMyN7NSW6WsGB8dHVohjZq2mEIipf1NUoIiIiZaZPYkOAo+5qzFueZ8GCBRGILvKUeImIiEiZ6pPY8KhES3zU1SgiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh6JSOJlZjFmNs3MvjKz9WZ2YSTiEBEREfFSpFq8xgOznXPNgDbA+gjFIWVgy5YtXHTRRcTHx9OiRQvGjx8PwCOPPMLcuXMBGDx4MGeffTYJCQkkJCSQnp4ewYhFREQio6rXJzSzU4EUYDCAc+4wcNjrOKTsVK1aleeff562bduyd+9ekpKS6NGjB0888USB7caOHUv//v0jFKWIiEjkRaLFqwmwE3jTzNLM7B9mdnIE4pAy0qBBA9q2bQvAKaecQnx8PBkZGQwePJhp06YVud+RI0c477zz2LlzZ/7nc889l127dnkSt4iIiNcikXhVBdoCf3POJQL7gVGFNzKz4Wa2wsxW5P3HLOXfxo0bSUtLo3379ketGz16NK1bt+aee+7h0KFDVKlShZtuuonJkycDMHfuXNq0aUO9evW8DltERMQTkUi8tgJbnXOf+z9Pw5eIFeCce805l+ycS65fv76nAcqx2bdvH9dccw0vvPACp556aoF1zzzzDF999RXLly/nl19+4dlnnwVg6NChvP322wBMmDCBIUOGeB63iIiIVzxPvJxzPwJbzKypf9HFwJdexyHHJzUtg05j5nH2qFl0GjOPacs2cs011zBw4ED69et31PYNGjTAzKhRowZDhgxh2bJlAJxxxhmcfvrpzJs3j88//5zLLrvM66KIiIh4JlJ3Nd4FTDaz1UAC8HSE4pBjkJqWwYPT15CRmYUDtv56gFuHDaP6aWdw7733Bt1n+/btADjnSE1NpWXLlvnrhg0bxk033cR1111HVFSUF0UQERGJCM/vagRwzqUDyZE4txy/sR9tICs7N//zoYwv2bPmY+bt9E0XAfD00wVz6YEDB7Jz506ccyQkJPDqq6/mr7vqqqsYMmSIuhlFRKTSi0jiJRXbtsysAp9PatSCsx74Nwakj7kif/nll1+e/37evHlFHm/VqlW0adOGZs2alXmsIiIi5YkeGSSlFhcTXarlxRkzZgzXXHMNzzzzzPGGJSIiUu4p8ZJSG9mrKdHVCo7Fiq4WxcheTYvYo2ijRo1i06ZNdO7cuazCExERKbfU1Sil1iexIeAb67UtM4u4mGhG9mqav1xERESCU+Ilx6RPYkMlWiIiIqWkrkYRERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEq8AW7Zs4aKLLiI+Pp4WLVowfvz4oNtNnDiR+vXrk5CQQEJCAv/4xz/y123evJmePXsSHx9P8+bN2bhxo0fRi4iISHlXNdIBlCdVq1bl+eefp23btuzdu5ekpCR69OhB8+bN87fJyckBYMCAAbz88stHHWPQoEGMHj2aHj16sG/fPqpUUW4rIiIiPkq8AjRo0IAGDRoAcMoppxAfH09GRga33347HTt2ZMmSJVx11VWcdtppQff/8ssvycnJoUePHgDUqlXLs9hFRESk/FNzTBE2btxIWloa7du3ByAzM5NPPvmEP/7xjwD861//onXr1vTv358tW7YA8PXXXxMTE0O/fv1ITExk5MiR5ObmRqwMIiIiUr6c8IlXaloGncbM4+xRs+g0Zh6paRns27ePa665hhdeeIFTTz0V8HUt5rnyyivZuHEjq1ev5pJLLuGWW24BfN2QixYtYty4cSxfvpzvv/+eiRMnRqJYIiIiUg6d0IlXaloGD05fQ0ZmFg7IyMxi1D/T6NKjNwMHDqRfv37525588sn570877TRq1KgBwG9/+1tWrlwJQKNGjUhMTKRJkyZUrVqVPn368MUXX3haJhERESm/TujEa+xHG8jK/l9XoHOOrTP/wk9VTuPee+8tcr/t27fnv585cybx8fEAXHDBBfz666/s3LkTgHnz5hUYmC8iIiInthN6cP22zKwCnw9lfMn+dfM5XL8xCQkJADz99NNH7ffiiy8yc+ZMqlatSt26dfO7E6Oiohg3bhwXX3wxzjmSkpL47W9/G+5iiIiISAVhzrlIx1Ci5ORkt2LFijI/bqcx88golHwBNIyJZsmo7mV6rsaNG3PKKacQFRVF1apVCaU8CxcuZMSIEaxevZopU6bQv3//Mo1JREREyp6ZrXTOJQdbd0J3NY7s1ZToalEFlkVXi2Jkr6ZhOd/8+fNJT08PKekCOPPMM5k4cSI33nhjWOIRERERb53QiVefxIY8068VDWOiMXwtXc/0a0WfxIZhP/eOHTtISkoCYNWqVZgZmzdvBuCcc87hwIEDNG7cmNatWx81CeuCBQvo2rUr1113Heeffz6jRo1i8uTJtGvXjlatWvHdd9+FPX4REREpvRN6jBf4ki8vEi0zo2fPnpgZv/vd7xg+fDgHDx5kz549LFq0iOTkZBYtWkTnzp2JjY2lZs2axR5v1apVrF+/nrp169KkSROGDRvGsmXLGD9+PC+99BIvvPBC2MskIiIipXPCJ15eWbJkCXFxcezYsYMePXrQrFmz/NnwFy5cyEMPPcTs2bNxztGlS5cSj3fBBRfkz7J/zjnn0LNnTwBatWrF/Pnzw1oWEREROTZKvMIkNS2DsR9tYFtmFnEx0Yzs1ZQ+cRAbG0vfvn1ZtmwZXbp0YdGiRWzatImrr76aZ599FjOjd+/eJR4/bx4xgCpVquR/rlKlSv7zJEVERKR8OaHHeIVL4YlZt+z4lfvf/ZzUtAz279/PnDlzaNmyJSkpKUyaNInzzjuPKlWqULduXT788EM6deoU6SKIiIhIGKjFKwwKT8yaeyCTjdOfYuA7VWhc9yRuvPFGLr300vz1KSkpAHTu3JmtW7dSp04dAJYvX07fvn359ddf+eCDD3j00UdZt26dt4UJcCxTYoiIiMj/nNDzeIXL2aNmEaxWDfhhzBVeh1NmGjduzIoVK6hXr16kQxERESm3NI+Xx+Jioku1vKJav3497dq1y/+8ceNGWrduzYoVK0hISCAhIYFWrVphZnz33Xe0bds2f9tvvvkmfzoNERGRE4USrzDwemJWr+RNiZGUlMRrr71GfHw8hw8f5vvvvwdg6tSpXHfddSQnJ5Oenk56ejqXXnop9913H+eccw61a9cmPT0dgDfffJPBgwdHrjAiIiIRoDFeYZA3L9hRdzV6MF9YWSp8Z+af/j6NoT2TCkyJcd111/Hee+8xatQopk6dytSpU/P3f++99/jiiy+YM2cOAMOGDePNN9/kL3/5C1OnTmXZsmWRKpqIiEhEKPEKE68mZg2XvDsz824SyMjMYuyiw9Stn0GfxIb5U2IMGDCAa6+9ln79+mFmnHfeeQCsW7eORx99lIULFxIV5Wv9u+aaa3j88cfp3r07SUlJnHbaaRErn4iISCSoq1GCKnxn5pHDB9m/by9jP9pQYEqMc845h6ioKJ588kkGDBgAwO7du7n++ut5++23qV+/fv4xTjrpJHr16sXvf/97hgwZ4nmZREREIk0tXhLUtsysAp9zD2Syc/pT/Ai0e6dmgSkxBgwYwMiRI/nhhx8ASE1NZdOmTfz2t7/N3z9vbNfAgQOZPn16/kz7IiIiJxJNJyFBdRozj4xCyRf4HiS+ZFT3Yz7uuHHj2L17N08++eTxhCciIlJuFTedRMRavMwsClgBZDjnSn5GjnhqZK+mBcZ4wfHfmdm3b1++++475s2bVxYhioiIVDiR7Gq8G1gPnBrBGKQI4bgz8/333y+r8ERERCqkiCReZtYIuAL4M3BvJGKQklX0OzNFRETKm0jd1fgCcD9wJELnFxEREfGc54mXmfUGdjjnVpaw3XAzW2FmK3bu3OlRdCIiIiLhE4kWr07AVWa2EZgCdDezSYU3cs695pxLds4lB84FJSIiIlJReZ54OecedM41cs41Bq4H5jnnbvI6DhERERGvaeZ6EREREY9EdOZ659wCYEEkYxARERHxilq8RERERDyixCuMcnNzSUxMpHdv38T8X331FQkJCSQmJrJu3TratWtHmzZtaNGiBY8++mj+foHbfffdd5EKX0RERMqYEq8wGj9+PPHx8fmfU1NTufrqq0lLS6N58+bMmzePVatWkZ6ezuzZs1m6dOlR251zzjmRCl9ERETKmBKvMNm6dSuzZs1i2LBhAHz44Ye88MIL/OMf/+Ciiy7CzKhVqxYA2dnZZGdnY2ZHbVcZDR06lNjYWFq2bHnMx3jkkUeYO3duGUYlIiISfhEdXF+ZjRgxgueee469e/cCcPnll3PbbbdRq1Yt7rvvPsDXFZmUlMS3337LHXfcQfv27QGO2q6yGTx4MHfeeSeDBg065mM88cQTZRiRiIiIN9TiFQb//ve/iY2NJSkpqdjtoqKiSE9PZ+vWrSxbtoy1a9d6FGFkpaSkULdu3fzP3333HW3bts3//M033+TX3cqVK+natStJSUn06tWL7du3A77kbdq0ad4GLiIicpzU4lVGUtMyGPvRBrZlZpG99P9xcP18PvzwQw4ePMiePXu46aabOPfcc4PuGxMTQ7du3Zg9e/Zxdb9VVOeccw61a9cmPT2dhIQE3nzzTQYPHkx2djZ33XUXM2bMoH79+kydOpXRo0czYcKESIcsIiJyTJR4lYHUtAwenL6GrOxcAKp2GEj9LoN4pl8rYnZ/w7hx45g0aRKPPfZY/j47d+6kWrVqxMTEkJWVxdy5c3nggQciVILwC0xM42KiuaVVzQLrhw0bxptvvslf/vIXpk6dyrJly9iwYQNr166lR48egK9rtkGDBpEIX0REpEwo8SoDYz/akJ90Abicw3z/9gMM/Ecu9WvkUr169aP22b59O7fccgu5ubkcOXKE6667Ln/aicL+9Kc/MWPGDKpUqUJsbCwTJ04kLi4ubOUpa4UT04zMLJ6dvYXsgzn521xzzTU8/vjjdO/enaSkJE477TS2bdtGixYt+OyzzyIVuoiISJlS4lUGtmVmFVwQVY3Tr3+aqOrRfP1kTzp37szSpUsLtHi1bt2atLS0oMcL3A5g5MiRPPnkkwC8+OKLPPHEE7z66qtlWYSwKpyYAhzKyeWXfYfyP5900kn06tWL3//+97zxxhsANG3alJ07d/LZZ59x4YUXkp2dzddff02LFi08jV9ERKSsaHD9McjMzKR///40a9aM+Ph4Ttn9fYH1ZkaV6tHExUTnTxVx6NAh2rVrl79Nhw4dOPfcc1m2bBn9+vUDYMaMGURHR3P48GEOHjxIkyZNADj11FPz99u/fz9m5kEpy07hxHTnzOf48Z37yNq5hUaNGuUnWgMHDsTM6NmzJwDVq1dn2rRpPPDAA7Rp04aEhAQ+/fTT/ONUtHoQERFRi9cxuPvuu7n00kuZNm0ahw8f5p9Lv+Wp/24u0KpzUhRse/MuYp/axB133EHXrl05fPgw33//PU2aNGHHjh306tWLtm3b5rd8LVq0iJYtW7J8+XJycnLyp5cAGD16NG+//Ta1a9dm/vz5npf5eMTFRJMRkHzVv+p+ABrGRLNkVPf85YsXL2bo0KFERUXlL0tISGDhwoVHHfPnn38ucGekiIhIRaAWr1Las2cPCxcu5NZbbwV8rTIDU5pzEavZ8c69bJtwJzvff5oalsv/TZlDSkoKM2fOZO3atTRu3Di/dWvnzp306NGDKlWqcOjQIW677TaWLVvGvffey8KFC1m0aBFdunTJP++f//xntmzZwsCBA3n55ZcjUvZjNbJXU6KrRRVYFl0tipG9muZ/7tu3L2+//TZ33313iccbOnQoBw4coHPnzmUeq4iISDgp8Sql77//nvr16zNkyBASExMZNmwY+/fvp0P3yzlr6Hjihr5M1dPOYMvnH/Lg9DVcd+/T/PTTT7zyyiusWrWKI0eO8PXXXwMQFxfHwIEDiY+P5/zzz6datWpccsklLF68mMWLF5OSknLU+W+88Ub+9a9/eV3s49InsSHP9GtFw5hoDF9L1zP9WtEnsWH+Nu+//z6rV6+mXr16JR5vwoQJfPzxx1SrVi2MUYuIiJQ9dTWGKG86hB/Wr2b7ypX0v/NPTJw4kbvvvpsxY8bw/k91+eE//+DIwf0cOXyAk85sQ1Z2Lq9+tp369evz97//ndTUVJ544gmefPJJYmNj+d3vfsd1111Hp06dGDRoEIMGDaJ+/fr8/PPP/Pjjj/mDyL/55hvOO+88AGbOnEmzZs0iWRXHpE9iwwKJloiIyIlIiVcIAqdDiDqlHlG16vHmN9U4Py2D/v37M2bMGDYsWUn9fqOpHtuEzCXvsmfFDLZNuJNt7gjtm51JZmYm27ZtY8CAAYwcOZL27duTmJjI/Pnzuf322/npp5/yW7hat25NbGxs/uDxUaNGsWHDBqpUqcJZZ51Voe5oFBERkf9R4hWCwOkQomrVoeqp9djz4ybGflSdHgcX0rx5c+YsWEzUyXVxuTkc2rKOmue2p94V93Dq3k3sXfIaaWlpdO3alTlz5nDffffRrVs3br31VhYuXMigQYPYv38/Vav6fhyvvfZagfNXtK5FERERCU6JVwgKT4dQ95Lb2PXvcezMzaF+xza8+eab7K1Wlwmv/JEqp9anev3GHDmcRQ3LZe9/X+ZfUyYRFxfH888/z9ChQ5k3b17+se699152797NzTffzOTJk6lSRcPuREREKitzzkU6hhIlJye7FStWROz8ncbMKzAdQp7C0yEUfizOyF5NNa5JRETkBGNmK51zycHWqcUrBCN7NS3wyBs4ejoE0AByERERKZ4SrxDkJVNqzRIREZHjocQrRGrNEhERkeOlkdwifgcPHqRdu3a0adOGFi1a8Oijj5a4z0svvUTTpk1p0aIF99/vexTSggUL6N27d7jDFRGRCkgtXiJ+NWrUYN68edSqVYvs7Gw6d+7MZZddRocOHYJuP3/+fGbMmMHq1aupUaMGO3bs8DhiERGpaNTiJeJnZtSqVQuA7OxssrOzMTPS09Pp0KEDrVu3pm/fvvz6668A/O1vf2PUqFHUqFEDgNjY2IjFLiIiFYMSrwpu6NChxMbG0rJly1Ltt2HDBhISEvJfp556Ki+88AIAjzzyCHPnzg1DtOVfbm4uCQkJxMbG0qNHD9q3b8+gQYN49tlnWb16Na1ateLxxx8H4Ouvv2bRokW0b9+erl27snz58ghHLyIi5Z26Giu4wYMHc+eddzJo0KBS7de0aVPS09MBX7LRsGFD+vbtC8ATTzxR1mGWW8HmXktPTyczM5O+ffuyatUqMjMz6dq1KwC33HIL1157LQA5OTn8+uuvLF26lOXLl3Pdddfx/fffR7I4IiJSzqnFq4JLSUmhbt26BZZ169aNe+65h5SUFOLj41m+fDn9+vXjvPPO4+GHHz7qGB9//DHnnHMOZ511FuBL5qZNm+ZJ/JGU9wzOjMwsHJCRmcWD09eQmpZBTEwM3bp1IzU1tcj9GzVqRL9+/TAz2rVrR5UqVdi1a5dn8YuISMWjxCsMjqX7b9q0aZgZeTP0H++dcdWrV2fhwoXcdtttXH311fz1r39l7dq1TJw4kZ9//rnAtlOmTOGGG2445nNVVIHP4ATIPbCb/Xt3+5ZnZTF37lySkpKoU6cOixYtAuCdd97Jb/3q06dP/uOfvv76aw4fPky9evW8L4iIiFQY6moMg9J2/+3du5cXX3yR9u3bh7R94e6xW1rVPGqbq666CoBWrVrRokULGjRoAECTJk3YsmULp512GgCHDx9m5syZPPPMMyGduzIp/AzO3H2/sGvW//GjO8IFk07muuuuo3fv3jRq1IjbbruNAwcO0KRJE958803Al2APHTqUli1bUr16dd566y3MLBJFERGRCkKJVxikpKSwcePGAstef/11XnvtNQ4fPsy5557LO++8Q82avoTpT3/6E/fffz/jxo0Lerzly5czfPhw/vWvf7F6d40Cjy/KyMzi2dlbyD6YU2CfvDvtqlSpkv8+73NOzv+2/c9//kPbtm05/fTTj7vcFU1cTHSBZ3BWjz2buCEvHvUMzoSEBJYuXXrU/tWrV2fSpElHLe/WrRvdunULS8wiIlKxqavRI/369WP58uWsWrWK+Ph43njjDQDS0tLYsmVLkd2Kn376KbfddhszZsygSZMmR3WPARzKyWXXvkPHFNe77757QnYzgu8ZnNHVogosC/YMThERkbKiFi+PrF27locffpjMzEz27dtHr169OHLkCPfccw8TJ04Mus/69esZPnw4c+bMIS4uDji6e2znzOc4tHkNuVl7aNSoUf5UB6E4cOAA//3vf/n73/9+zOWqyPQMThER8ZoSrzJS0rirwYMHk5qaSps2bZg4cSILFixg7969rF27Nr9b6scff+Sqq65i5syZADRo0ICDBw+SlpaWn3gV7h6rf5XvMTWB3WO33npr/vrC3V4LFizIf1+zZs2jBtoDRSaClcnBgwdJSUnh0KFD5OTkMKh/fx4f9TjdunWj0bhxJCcnRzpEERGphNTVWAaCTUvw7OwN7AkYd7V3714aNGhAdnY2kydPBqB27drs2rWLjRs3snHjRjp06MDMmTPz/9OPiYlh1qxZPPTQQ/kJk7rHykbe44FWrVpFeno6s2fPDjqOS0REpCwp8SoDhcdd7Zz5HJvevIetP3xLo0aNeOONN3jyySdp3749PXr0oFmzZiEf+/TTT+eDDz7gjjvu4PPPP6dPYkOe6deKhjHRGL6Wrmf6tVL3WCkV9XgggEmTJtGxY0datmzJsmXLAHjssce4+eab6d69O+eddx6vv/56/rGee+45WrVqRZs2bRg1apT3hRERkQpDXY1loPC4q7zuPwN+GHNF/vLf//73xR4nsBswsIvwzDPPZN26dfnr+iQ2VKJVBnJzc0lKSuLbb7/ljjvuyJ/OY//+/Xz66acsXLiQoUOHsnbtWgBWr17N0qVL2b9/P4mJiVxxxRWsWrWK1NRUPv/8c2rWrMkvv/wSySKJiEg5pxavMhAXE12q5VI+REVFkZ6eztatW1m2bFl+gpV3l2dKSgp79uwhMzMTgKuvvpro6Gjq1avHRRddxLJly5g7dy5DhgzJnxqk8FMEREREAinxKgMad1VxpKZl0GnMPM4eNYtOY+YVeDzQ7NmzAY6aBDXvc7DlzjlNmioiIiFT4lUGNO6qYgi8CSLnwG62/LiTB6evYepn3zJ37tz8sXdTp04FYPHixdSuXZvatWsDMGPGDA4ePMjPP//MggULuOCCC+jZsycTJkzgwIEDAOpqFBGRYmmMVxnRuKvyL/AmiLzHA+GOMOR1GHX7EHr37s24ceOoU6cOHTt2ZM+ePUyYMCF//3bt2nHFFVewefNm/vSnPxEXF0dcXBzp6ekkJydTvXp1Lr/8cp5++ulIFVFERMo5c85FOoYSJScnu7yHR4scq7NHzSLY1V74JohgHnvsMWrVqsV9990XlthERKTyMLOVzrmgE0Kqq1FOGLoJQkREIk1djXLCGNmraYEHjEPoN0E89thjYYxMREROFEq85IShZzOKiEikKfGSE4pughARkUjSGC8RERERj3ieeJnZGWY238zWm9k6M7vb6xhEREREIiESXY05wB+dc1+Y2SnASjP7r3PuywjEIiIiIuIZz1u8nHPbnXNf+N/vBdYDGnQjIiIilV5Ex3iZWWMgEfg8knGIiIiIeCFiiZeZ1QL+BYxwzu0Jsn64ma0wsxU7d+70PkARERGRMhaRxMvMquFLuiY756YH28Y595pzLtk5l1y/fn1vAxQREREJg0jc1WjAG8B659xfvD6/iIiISKREosWrE3Az0N3M0v2vyyMQh4iIiIinPJ9Owjm3GDCvzysiIiISaZq5XkRERMQjSrxEREREPKLES0RERMQjSrxEREREPGLOuUjHUCIz2wlsClhUD9gVoXBOJKpn76iuvaO69obq2Tuqa2+Upp7Pcs4FnYS0QiRehZnZCudccqTjqOxUz95RXXtHde0N1bN3VNfeKKt6VlejiIiIiEeUeImIiIh4pKImXq9FOoAThOrZO6pr76iuvaF69o7q2htlUs8VcoyXiIiISEVUUVu8RERERCocJV4iIiIiHim3iZeZXWpmG8zsWzMbFWS9mdmL/vWrzaxtJOKsDEKo62Zm9pmZHTKz+yIRY2URQl0P9F/Pq83sUzNrE4k4K7oQ6vlqfx2nm9kKM+sciTgrg5LqOmC7C8ws18z6exlfZRHCNd3NzHb7r+l0M3skEnFWBqFc0/76TjezdWb2SalO4Jwrdy8gCvgOaAJUB1YBzQttcznwH8CADsDnkY67Ir5CrOtY4ALgz8B9kY65or5CrOuOQB3/+8t0XYetnmvxvzGurYGvIh13RXyFUtcB280DPgT6RzruivYK8ZruBvw70rFW9FeIdR0DfAmc6f8cW5pzlNcWr3bAt865751zh4EpwNWFtrkaeNv5LAVizKyB14FWAiXWtXNuh3NuOZAdiQArkVDq+lPn3K/+j0uBRh7HWBmEUs/7nP8bEzgZ0F1GxyaU72qAu4B/ATu8DK4SCbWe5fiFUtc3AtOdc5vB939kaU5QXhOvhsCWgM9b/ctKu42UTPXondLW9a34WnWldEKqZzPra2ZfAbOAoR7FVtmUWNdm1hDoC7zqYVyVTajfHRea2Soz+4+ZtfAmtEonlLo+H6hjZgvMbKWZDSrNCaoeZ4DhYkGWFf6LNJRtpGSqR++EXNdmdhG+xEtjj0ovpHp2zr0PvG9mKcCTwCXhDqwSCqWuXwAecM7lmgXbXEIQSj1/ge/5gPvM7HIgFTgv3IFVQqHUdVUgCbgYiAY+M7OlzrmvQzlBeU28tgJnBHxuBGw7hm2kZKpH74RU12bWGvgHcJlz7mePYqtMSnVNO+cWmtk5ZlbPOacHDZdOKHWdDEzxJ131gMvNLMc5l+pJhJVDifXsnNsT8P5DM3tF1/QxCTX/2OWc2w/sN7OFQBsgpMSrvHY1LgfOM7Ozzaw6cD0ws9A2M4FB/rsbOwC7nXPbvQ60EgilrqVslFjXZnYmMB24OdS/nuQoodTzuebPBPx3RFcHlOSWXol17Zw72znX2DnXGJgG3K6kq9RCuaZ/E3BNt8P3/7uu6dIL5f/EGUAXM6tqZjWB9sD6UE9QLlu8nHM5ZnYn8BG+OwwmOOfWmdlt/vWv4rs75nLgW+AAMCRS8VZkodS1mf0GWAGcChwxsxH47vLYU9Rx5WghXtePAKcBr/i/Q3Occ8mRirkiCrGer8H3h1s2kAUMCBhsLyEKsa7lOIVYz/2B35tZDr5r+npd06UXSl0759ab2WxgNXAE+Idzbm2o59Ajg0REREQ8Ul67GkVEREQqHSVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLiESVeIiIiIh5R4iUiIiLikXI5gapIZWBmxU6S55zTg+tERE4wmkBVRERExCPqaqzkzCzXzNLNbJ2ZrTKze82sin/dpwHb/cHM1pvZ5MD3kYv82BUVv5ldYmbvhPnc0Wb2iZlF+T//zsxe9b+vZmbvmNlbZlYtyL7VzWyhmQVtiS6PP5fAa+h4tilm332l2DbGzG4/1nOF+3heMLPHzOy+IMs9vXbMrK+ZOTNrVmh5sT9PM2tsZiE/eiVgv7zvubxX42K2DRpD4bozs42ljaMsBImjyN+fYNfo8fy+iTeUeFV+Wc65BOdcC6AHvudbPgrgnOsYsN3twOXOuYGF3pfI/6Dy8nQtFRV/G2BVmM89FJjunMv1f24NrDazU4H/AJudc7c457IL7+icOwx8DAwo4thByxWJ+s87Z6FrKKhQtikjMfjq6CjHWEdFHq8o5fB3IY/X184NwGJ8Dxj2Qt73XN5ro0fnDcnx1HMJvz8xFLpGPfx9k2NUHr8gJEycczuA4cCd/i+CfQD+FpkmwEwzOxTw/h7/+pvMbJn/L8m/m1mU/y/T9Wb2CvAFcEYJ273ub3WbY2bReTGZ2SAzW22+1rh3ijpfsPKYr/Vurf81IkhZ7im0Sxsg3b9dM3/r0jozm2tm9fzL4/3LV5vZSDP7tpTVPBDfk+vztAJ+ARYA/3TOjS5h/1T/MQqXtUC5iqj/YPXR2My+MrN/+JdPNl/L3xIz+8bM2gULophjFT7nvoB9/uQ/13/N7N28v9oDrrMirwUzSzWzlf7lw4urIDM72cxm+a+ZtWaWl6iOAc7xXzdjg8TbxQJaU8zsPjN7zP/+qOuw0PH+Wcy+of4uFBV3YNmC1kMJdTfazDaY2VygaZBjen3t1AI6AbdSROIVcOy3/PU+zcxq+ldHHe814t/+qDIF2aa4utsZ4s8saFlCvS5KiiPg96eka3Rs4PZF1UFR11IoZZUy4pzTqxK/gH1Blv0KnB64DtgI1AvyPh74AKjm//wKMAhojO+p7B1C2C4HSPAvfw+4yf++BbAh4Fx1izpOkDIkAWuAk4FawDogsXD8hfZZBdQHahTa/gHgz/huNvkiYPnfgNRS1HV14Mcgdb0TuDLEY0QBO4tYF/hzKVz/QesjoP5b4ftDayUwATDg6mDlK+FY+ecMvL6AZHxJbTRwCvANcF+hbYq7Fur6/40G1gKnFXP9XgO8HvC5dsDx1wYsL1xHhdffBzxGkOuw8PZF7VvEeYr6XQgad6GyFVUPQesu4GdVEzgV+Dav3iNx7fiPdxPwhv/9p0DbINdLY8ABnfyfJ/jrNGg5i6sb/7JcfNdfOvB+UWUqFEOJdRfiz6y4soRyXRQbB7CPEK7RIHVc0s+18LVUYln1KpuXWrxOTKW5m+5ifL/Ay80s3f+5iX/dJufc0hC2+8E5l+5/vxLfLz5Ad2Cac24XgHPulxKOE6gz8L5zbr9zbh8wHehSVCHMN6bqVOfcTqAPsNg5l+Zf/SUQC/QDVhVaXpquyXpAZsA5z8D3pbkGaBDKAZyvi/KwmZ0SwuaB9V9cffzgnFvjnDuC78v3Y+f7Zl3D/34WgYo7VuA5C+8zwzmX5Zzbi+8/mGCKuhb+YGargKXAGcB5xZR7DXCJmT1rZl2cc7uL2baoeAMFuw5LK5TfhVDiLq4egtVdF3w/qwPOuT3AzGOItyyvHfB1M07xv5/i/xzMFufcEv/7Sf44iionFF83gV2NfUsoU55Q6i7Ua62osoRyXYQSx7FcoyX9XNP97/PquDS/V3IcNJ3ECcbMmuD763BHqLsAbznnHix0nMbA/hC3OxSwKBffX6x5+xS+rTbocYqIqzSaA+sD3q8JWNcKX5LVGn9XpF9LYDbk19tofH8F9jezk/H9xXoYWOCcmwxkAScF7N8aX+L2W2CpmS3PS+rMbDnwOb6/cOc7594M2K8GcDCEMhWu/6IE1v+RgM9HCP4dUNyx9hexPNSfx1HXgpl1Ay4BLnTOHTCzBRSsxwKcc1+bWRK+8YrPmNkc59wTIcSbQ8HhFXnnCHYdFlbUvsHOU+Q1XFzcIdRDUb9Hx3JreliuHTM7DV+S0NJ806lEAc7M7vcnbIGK+nzc1wihX48lTfkS6rVWVFlC+Y4cUVIchHaNBtunKEfVcSl/r+Q4qMXrBGJm9YFXgZeDfAkW5WOgv5nF+o9R18zOOo7tCu9znf/LGjOrW4rjLAT6+MdSnAz0BRYVc6788V1ABr7kKy+huhl4G/gZON+/PAFf8/sqAOfc9865WwOO1w/fX6C/Ba7yb/MrvvEpef8htALWOOe2A8OAqWZW298S9rlz7k7n3CDg5oCxHqfh62o8avB9CUpbH2V9rMXAlWZ2kvnG+FxRivPVBn71/4faDOhQ3MZmFgcccM5NAsYBbf2r9uLr5izKT0CsmZ1mZjWA3v7lwa7Dwscrat9ggl7DxcSdp1T14LcQ6Osfo3MKcGUI+wQ7RlldO/2Bt51zZznnGjvnzgB+4H8tQIHONLML/e/zBuMXpbR1E0qZSqy7EH5mpSlLUd9tofwMQ7lGCyvVz7UUZZXjpBavyi/a36xdDd9f7e8Afwl1Z+fcl2b2MDDHfHflZAN3AD8ey3aF9llnZn8GPjGzXCDNOTe4iONsKrTvF2Y2EVjmX/SPgC7CYNoEbPsOcLmZrcHXSjXUOfez+QaszvK3Rn0GbHTOfV/E8Rrxv1az3IDlc/D9JzMXX+I1yx/vf83sPXzjP97B17yf5wC+FgSAi4APiylHUEXVhxVzW31ZHss5t9zMZuJLVDcBK4BQuypmA7eZ2Wp841hK6hpsBYw1syP4ro/f+2P42XwDv9fiu4P0r4VizDazJ/C1NP4AfOVfftR1CAwOcryj9i2iLor6XagdLO7jqIe8n9VUfH9UbOIYEqayvHbwJR1jCi37F3BjkNjWA7eY2d/xjQn8G74u/2BKVTehfD+EWHdBr7UgSixLUdeFc25pSXGEeo0650aWVAfF/FxDLascJ02gKuJnZrX8YyEws5H4uhUfLrTNNH9X4834/gL/t5lNcc5d71+fCNzrnLu5mPM8ie8Ox9Vm1gb4nXPudv+66cCDzrkN4Sll+OTVn/nuTlsIDHfOfRHpuKT88f/n/2/nXMtIx3K8KlNZxBtq8RL5n3vM7Hp8f+0tAe7NW+Fv4v8zkGhmDwIvAi+b2RUEDCT3/0U538yi3P/m8iosCTjNfFN35OK7qxIzq47vTrEKl3T5vWZmzfGNvXlLSZeIyNHU4iUiIiLiEQ2uFxEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERjyjxEhEREfGIEi8RERERj/x/42PX2uvGp4cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(10, 8))\n", + "plt.scatter(np.abs(kds_difference), af_mean_pae)\n", + "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$')\n", + "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions')\n", + "plt.ylabel('Mean PAE')\n", + "\n", + "for i, txt in enumerate(test_pdbs):\n", + " plt.annotate(txt, (np.abs(kds_difference[i]), af_mean_pae[i]))\n", + "scipy.stats.spearmanr(np.delete(np.abs(kds_difference),11), np.delete(af_mean_pae,11))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "77aa90c7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAH6CAYAAADWRELjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABdMElEQVR4nO3deXxU1f3/8deHgBhliShYFhVFC8iWkAiogIiyuFTZBCsuiIpWa10qikur1bbi+hO1mxbFhW+VUowoilYBWRQhkLCJWBcUAgqokS3BJHx+f8wkhjCZTCBzs/B+Ph7zYOaun3NyEz5zzrnnmrsjIiIiIvFXp6oDEBERETlQKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCUjdqg5ARESkujOzmGYbd3eLdyxSs6nFSySOzKytmWWa2TYz+80+7L/WzM6s7G0rS3nnNLNJZvbH/TxHzHUYLZ7SsZjZKjPrsz+xBal0PUSLvzLqvbLtb32b2TozS660gGI75/1mdiOEEqpYXmUcZ5GZdQgydqm+lHhJtVIVyUM0lRDPrcAcd2/o7o9HOc8cM/vezOrvx7n2WbicuWa2vcSrRRzO0Xofdo2pDivK3Tu4+5zKOl4A9qiHmhb//sRrZocBPwNWV2pQ0c/ZFLgU+EfJOMzMzeyY8Gczs3vD13aXKId7GLg3vhFLTaHESyS+jgFWRdsgnIz0Ahw4L4CYyvILd29Q4rWhCmMpqdw6PEAcyPXQCfjE3XcFeM5RwBvunltiWTLwvbt/aWaHAlOBvkA3d18W5VjTgdPNrHm8gpWaQ4mXVFvhb5FjzWy5me0ws4lmdqSZvRnubnkn/E24aNvbzeyjcMvRs2Z2cIljjTOzz8L7fWRmg0usO8rMppnZZjP71syeDC9/ATgaeC3cAnRrhBjbh1urcsJdKeeVWDcLOB14Mrz/z8so6qXAQmAScFk59VFmGcOSw/X1g5m9HGsdRBOtjBG2TTGzpeFzvAyUjq9ou9vMLDu83RozO6OM7faqw1jjKS+Wkq2Z4fe3RKm7rvZTN9+/w+sjduWVdT2VV5fRYiijHkrGX15ZW5jZf8IxfWElumxjKHu08pR53Aj1EnN9R9AZWBHe18LXz5fhepxiZo3D6+qY2e8t1C25wcx+YWY/WvjvRAWdBbxXalkykGVmRwPzgR+Avu6+KdqB3D0PWAL034c4pLZxd730qjYvYC1wZon3C4EjgZbAJmApkALUB2YBd5fYdiVwFNAEWAD8scRxLwBaEPqyMQLYATQHEoBlwP8DDiX0H1bPSPFEiLUe8ClwB3AQoW++24C2JbaZA1xZTpk/Ba4FUoF84Mgo9RGtjGuBReFyNiHULXNNeXUQrZzllbFUfAcBXwI3hfcbFi7PH0sdsy2wDmgR/twaaBOlforrMNZ4YoklQt1GrLsSx7ohfKwhwI+lyxXetszrKcbYo/38iuuhImUN/7yXAL8Pb3sc8DkwIIayRytP1OPG8LtdZlkj7PsUcEf4/R/DddE8HM+rwCPhdfcCcwn9vUgCPgDW7ePfos3ASaWWPQ/MAzYAN1fweI8Dj8brb6deNeelFi+p7p5w92/cPZvQH7wP3T3TQ10OrxBKwoo86e7r3P074E/AL4tWuPu/3X2Du+9295eB/wHdwq8WwFh33+Huee4+P8bYegANgPHu/qO7zwJeL3ne8phZT0JdSFPcfQnwGXBRlF3KLGPY4+Fyfge8RugbOhC1Doqkh1sQcswsfR/K2IPQf/yPuXu+u08FFkfYrpBQ4nyimdVz97Xu/lmUMpc+RyzxxBpLSWXVXQ9Cd4A/Hj7WNEJJQyTRrqdYYi/z5xdFeWU9CWjq7veGz/s58DRwYQznjVaeWI4bTUXK2glYbmZHAtcDF7n7Rg+1JE0F0iw0JusmYLS7Z7t7DvA24ZayfZBEKDEuKRnoACx390creLxt4WPKAU6Jl1R335R4nxvhc4MSn9eVeP8lof8wADCzS80sqyixADoCRxBqPfrS3Qv2IbYWhL5N7y513pYVOMZlwNvuviX8+f+I0t1IlDKGfV3i/U5K1E+UOigyyN2Twq9B4WUVKWMLINvdvdS2e3D3T4EbgXuATWb2ksU+kD/WeGKKpZSy6i7SsUr+HEqKdj3FEnuZP78oyivrMUCLEkl1DqFWtyNjOG+08sRy3GhiKquZGaFrdQWhsZArfM/xh0cAG4EzgE/D11eRJvzURdnYQncXbjezjiWO/yczm2dmU83skBL7fg80LLFdfaA9MBRob+G7HUvF+m8zWxDuTn7LzE4ssbohkFNGXcgBRImX1CZHlXh/NKHuACx0B9LTwK+Bw909iVCXnRH6D/RoMytrTrtoc/dsAI4ys5K/R0cD2bEEa2aJwHDgNDP72sy+JvSNvYuVfYdUxDLGcK5odRBNRcq4EWgZ/o+y5LZ7cff/c/ei1j4HHoilHBWIJ+ZYYhDpWEeVsW2062m/rpcKxleyrOuAL0ok1UkeujPy7BiOHa08+3PcijgW2O3uXwJNCY2rKul8QuOtjqDE74OZJRAap7U8vGgncA6hFrKibToS6ubuBbwDjC5x3OVAyXGZHQm11s4DBgP3mVnfUrEcD/R29z6EktBnS6xrT6jbVg5wSrykNrnOzFqZWRNCf/ReDi8/lNB/7psBzOxyQn9EIdRltBEYb2aHmtnBZnZqiWN+Q2jsSiQfEhondauZ1bPQHEW/AF6KMd5BhP6Qn0ioCyOZ0B/neYQG3FekjOWJVgfRVKSMHwAFwG/MrK6ZDWHPrkzC525rZn3DLQh5hFouC2MsR6zxxBRLjD4Ix/fr8LHOj3KsaNfT/l4v0eKLVtZFwNbwgPREM0sws45mdlIMx45Wnv05bkUUD6wn1IV6spm1MbMGZnYvoRa2ZwiNEzvFzI43s0aExlS1Kdo33A27udSxewFvht+/CfQsse4N4LQSn1OAle5e4O5LgeuAKWZ2LICZHQQUunth+HxLgCQzOyh8racC/93fypCaT4mX1Cb/R2hMx+fh1x8B3P0j4BFC/0F9Q2i8yILwukJC//kdD3wFrCc08LzI/cBd4a6UW0qezN1/JDT9w1nAFuCvwKXu/nGM8V4GPOvuX7n710Uv4ElgZBmtDBHLWJ5odVDOfjGXMbztEEK34X9PqB6nRThsfWB8+HhfA80IJZGxlCOmeCoQS6znHAJcQair6GJCY7P2mtog2vVUCddLefGNIkJZS8SUDHwRPvc/gcYxHDtaefb5uBXUiXCrlbtnEBrbOD8cS3tCdxXudPd3gX8BmUAGkEWolSta/R7GTy1oPxDqmizyPHB2uGUawnc0Fq109+cJ/T6mW2hqifbAmlLHP4RQUnweoTnYqssULVKFbM9hASI1k5mtJXTH1ztVHUu8HAhlrCnM7EPg7+7+bLkbS5Uws2uAc9z9F6WWTwIedveVZvYrYKe7Pxfujn/A3S8sse2fgU3u/lgM5xsJHOPufw5/bk/oZpgzwtfLFe6+srLKJzWXntUoIlIOMzuNUGvGFmAkoe6vmVUalOzBzHoQ6hZdR2ig/b2UPyHxfOB24DlgAKVagd09ppbYsI6Epr8pmvX+7+EYcPfuFTiO1HJKvEREytcWmELozrvPgGHuvrFqQ5JSUoAZhKbW+AQY5e4LS25gZm8Q6jJsa2b/cPdJFpqIdR6heQLLGlsZiw5A//CQhN3AQ+HuT5E9qKtRREREJCAaXC8iIiISECVeIiIiIgGpEWO8jjjiCG/dunVVhyEiIiJSriVLlmxx96aR1tWIxKt169ZkZGRUdRgiIiIi5TKzMh9Rpq5GERERkYAo8RIREREJiBIvERERkYAo8RIREREJSNwSr/BT7BeZ2TIzW2Vmfwgvf8jMPjaz5Wb2ipklxSsGERERkeokni1euwg9Nb4LoUc0DAw/S+u/QEd370zosQ63xzEGERERkWojbomXh2wPf6wXfrm7v+3uBeHlC4FW8YpBREREpDqJ6xgvM0swsyxCDx/9r7t/WGqT0cCbZew7xswyzCxj8+bN8QxTREREJBBxTbzcvdDdkwm1anUzs45F68zsTqAAmFzGvk+5e5q7pzVtGnHyVxEREZEaJZC7Gt09B5gDDAQws8uAc4GR7u5BxCAiIiJS1eJ5V2PTojsWzSwROBP42MwGArcB57n7znidX0RERKS6iWeLV3NgtpktBxYTGuP1OvAk0BD4r5llmdnf4xiDBGDdunWcfvrptG/fng4dOjBhwgQAfv/73/POO+8AMGrUKI499liSk5NJTk4mKyurCiMWERGpGnF7SLa7LwdSIiw/Pl7nlKpRt25dHnnkEbp27cq2bdtITU2lX79+3HvvvXts99BDDzFs2LAqilJERKTqaeZ62W/Nmzena9euADRs2JD27duTnZ3NqFGjmDp1apn77d69mxNOOIGiu1Z3797N8ccfz5YtWwKJWypXYWEhKSkpnHvuuVUdiohItaXESyrV2rVryczMpHv37nutu/POO+ncuTM33XQTu3btok6dOlx88cVMnhy6sfWdd96hS5cuHHHEEUGHLZVgwoQJtG/fPuK6goKCiMuDMnr0aJo1a0bHjsU3VjNp0iQ2bNgQdb+S3eUiIpVBiZfsk/TMbE4dP4tjx83g1PGzSM/MZvv27QwdOpTHHnuMRo0a7bH9/fffz8cff8zixYv57rvveOCBB4DQf4jPP/88AM888wyXX3554GWR/bd+/XpmzJjBlVdeWbysT58+3HHHHZx22mlMmDCBxYsX07lzZ04++WTGjh1bnATl5eVx+eWX06lTJ1JSUpg9e3alxzdq1Chmzpy5x7JYEq97772XM888s9LjEZEDlxIvqbD0zGxun7aC7JxcHMjOyWXcvzPp1e9cRo4cyZAhQ/bap3nz5pgZ9evX5/LLL2fRokUAHHXUURx55JHMmjWLDz/8kLPOOivg0kisSncl9unTh4yMDABuvPFGHnzwQerUqbNHgpOTk8N7773Hb3/7W4YOHcptt93GBx98QEJCQvE2f/nLXwBYsWIF//rXv7jsssvIy8ur1Nh79+5NkyZNij9PnTqVjIwMRo4cSXJyMvPmzSu+8aNTp06YGUC53eUiIhWlxEsq7KG31pCbX1j82d1ZP/1RvqlzODfffHPEfTZu3Fi8bXp6+h5dPldeeSUXX3wxw4cP3+M/ZKleyupKfP3112nWrBmpqal7rRsxYgQQSsC+++476tevD8BFF11UvM38+fO55JJLAGjXrh3HHHMMn3zySTyKUGzYsGGkpaUxefJksrKy6NWrF1lZWWRlZTFw4EBuueWWuJ5fRA5cSrykwjbk5O7xeVf2R+xYNZst/1ta3Grwxhtv7LHNyJEj6dSpE506dWLLli3cddddxevOO+88tm/frm7GaixSV+KW7bu4YtJiRv5xEv/45zMc2rARF154IYWFhXTs2JGMjAyuu+46vvnmGxYuXEhubi5jx44lOTmZdevWFR8nXnMol+4Of3vV1+XuM2XKFJYuXcr48ePjEpOISNymk5Daq0VSItklkq+DW3XgmNtep2VSIgvG9S1efvbZZxe/nzVrVpnHW7ZsGV26dKFdu3bxCVj2W1FX4rZt24BQUvP55h00/mEnBVs306jHcH522kWMPHobvxsznPvvv59HHnmEo48+mqeffpq77rqLRo0acdVVV3HHHXdwxx13FB+7d+/eTJ48mb59+/LJJ5/w1Vdf0bZt2/2Kt6g7vKhlNjsnlwdmriM/r+xB/qtWreLuu+9m7ty5ankVkbhRi5dU2NgBbUmst+d/TIn1Ehg7oOL/WY4fP56hQ4dy//33V1Z4UkmKWoyOHHY389fns67Oz4rXPfTWGna78+1bT3LQEcfQ+JQR5OYX8tLidZhZ8Tiwdu3asXbtWgBOOeUU/vGPf3DyySfj7jRu3BiAa6+9lsLCQjp16sSIESOYNGlScZfkvirdHQ6wq6CQLdt3FX9u2LBhcSL5ww8/cOGFF/L888+jZ8OKSDypxUsqbFBKSyD0n9uGnFxaJCUydkDb4uUVMW7cOMaNG1fZIcp+KtlilJf9ETtWLeCC07vSoK6za+d26nyxA4D6LduT99VyGnUbjNU9iB1N2nLIIYdgZsyZM4epU6cWj9dKSkrikUceYdiwYYwfP560tDQADj74YCZNmlSp8ZfuDt88/UF2fbWCwtyttGrVij/84Q+MGjWKa665hsTERG666Sa+/PJLrrrqquJ99HQFEYkHqwnPqE5LS/Oiu6dEJP5OHT9rj+7kIg2+W0PrDbP4vufNLPnrDRx2+hXsWreSvK+W03TIXbRq0oBlfwyN2YPQ3YOvv/46kyZNYuDAgXz00Uc0atSIY445hkmTJsWtdams+Et3h4uIxIOZLXH3tEjr1NUoInsp3WJUpKirbuyAttQJT7nQqNtgDjryeL6f8Si/7XdCmcf83e9+R4MGDahXrx6PP/54XLv0KrM7XESkMqnFS0T2EkuLUXpmdqV0N8dLdY9PRGqvaC1eSrxEZC+l7wqEUIvR/UM6KXkRESlHtMRLg+tFZC+VeQOFiIj8RImXiEQ0KKWlEi0RkUqmwfUiIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIgecwsJCUlJSOPfccyOu/+qrrzj99NNJSUmhc+fOvPHGG5VyXiVeIiIicsCZMGEC7du3j7iuoKCAP/7xjwwfPpzMzExeeuklrr322ko5rxIvEREROaCsX7+eGTNmcOWVVxYv69OnD3fccQennXYaEyZMwMzYunUrAD/88AMtWrQA4Nprr2X69OkADB48mNGjRwMwceJE7rrrrnLPrUcGiYiIyAHlxhtv5MEHH2Tbtm17LM/JyeG9994DYOPGjfTv358nnniCHTt28M477wDQu3dv5s2bx3nnnUd2djYbN24EYP78+Vx44YXlnlstXiIiIlLrpWdmc+r4WRw57G7mr89nXZ2f7bXNiBEjit//61//YtSoUaxfv5433niDSy65hN27d9OrVy/mzZvHRx99xIknnsiRRx7Jxo0b+eCDDzjllFPKjUMtXiIiIlKrpWdmc/u0FeTmF5KX/RE7Vi3ggtO70qCus2vndi6++GIADj300OJ9Jk6cyMyZMwE4+eSTycvLY8uWLbRs2ZLvv/+emTNn0rt3b7777jumTJlCgwYNaNiwYbmxKPESERGRWu2ht9aQm18IwGGnjeKw00YB0OC7NbTeMIsXX3yRPn367LHP0UcfzbvvvsuoUaNYvXo1eXl5NG3aFAglYo899hizZs3i22+/ZdiwYQwbNiymWNTVKCIiIrXahpzciMu3bN9V5j6PPPIITz/9NF26dOGXv/wlkyZNwswA6NWrFwUFBRx//PF07dqV7777jl69esUUi7l7xUsQsLS0NM/IyKjqMERERKQGOnX8LLIjJF8tkxJZMK5vpZ/PzJa4e1qkdWrxEhERkVpt7IC2JNZL2GNZYr0Exg5oG3gsGuMlIiIitdqglJZAaKzXhpxcWiQlMnZA2+LlQVLiJSIiIrXeoJSWVZJolaauRhEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxERqbXy8vLo1q0bXbp0oUOHDtx9991VHZIc4HRXo4iI1Fr169dn1qxZNGjQgPz8fHr27MlZZ51Fjx49qjo0OUCpxUuqROvWrenUqRPJycmkpUWc3Hcvu3btYsSIERx//PF0796dtWvXAjBnzhzOPffcOEYrIjWVmdGgQQMA8vPzyc/Px8z47LPPGDhwIKmpqfTq1YuPP/4YgC+//JIzzjiDzp07c8YZZ/DVV18B8Nprr9G9e3dSUlI488wz+eabb6qsTFKzKfGSKjN79myysrKI9XFQEydO5LDDDuPTTz/lpptu4rbbbotzhCJSGxQWFpKcnEyzZs3o168f3bt3Z8yYMTzxxBMsWbKEhx9+mGuvvRaAX//611x66aUsX76ckSNH8pvf/AaAnj17snDhQjIzM7nwwgt58MEHq7JIUoMp8ZJqYdOmTaSmpgKwbNkyzKz4m2abNm3YuXMnr776KpdddhkAw4YN491336X0s0YXL15MSkoKn3/+ebAFEJFqKyEhgaysLNavX8+iRYtYuXIl77//PhdccAHJyclcffXVbNy4EYAPPviAiy66CIBLLrmE+fPnA7B+/XoGDBhAp06deOihh1i1alWVlUdqNo3xkiphZvTv3x8z4+qrr2bMmDHk5eWxdetW5s2bR1paGvPmzaNnz540a9aMQw45hOzsbI466igA6tatS+PGjfn222+Lj/n+++9z/fXX8+qrr3L00UdXVdFEpIqlZ2ZHfDRMUlISffr0Ydq0aSQlJZGVlVXuscwMgOuvv56bb76Z8847jzlz5nDPPffEtxBSa6nFS6rEggULWLp0KW+++SZ/+ctfmDt3LqeccgoLFixg7ty53HHHHcydO5d58+bRq1cvgL1at+CnP4qrV69mzJgxvPbaa0q6RA5g6ZnZ3D5tBdk5uTjw1YavufX/PiA9M5vc3FzeeecdunbtyrHHHsu///1vIPS3ZdmyZQCccsopvPTSSwBMnjyZnj17AvDDDz/QsmXocTPPPfdc8AWTWkOJlwQmPTObU8fP4thxM7jg+Y9Jz8ymWbNmDB48mEWLFtGrVy/mzZvHl19+yfnnn8+yZcuYP38+vXv3BqBVq1asW7cOgIKCAn744QeaNGkCQPPmzTn44IPJzMyssvKJSNV76K015OYXFn8u3P4da5+/jZFn9+Kkk06iX79+nHvuuUyePJmJEycWTzPx6quvAvD444/z7LPP0rlzZ1544QUmTJgAwD333MMFF1xAr169OOKII6qkbFI7qKtRAlH0LTQ3v5DdP+ax7pud3D5tBXm5O3n77bf5/e9/T7t27bjrrrvo3bs3derUoUmTJrzxxhvcf//9AJx33nk899xznHzyyUydOpW+ffsWt3glJSUxceJE+vfvz6GHHkqfPn2qsLQiUlU25OTu8fmgZsfS4vLHMWDl+HOKlx977LHMnDlzr/1bt27NrFmz9lp+/vnnc/7551d6vHLgUeIlgSj5LbRwZw6bp/0RgNFPOXf+5ioGDhxYvG1RC1fPnj1Zv349hx12GABXXHEFl1xyCccffzxNmjQp7g4ocuSRR/Laa69x1lln8cwzz9C9e/cgiiYi1UiLpESySyVfRctFqgOLNG6muklLS/NYpxyQ6unYcTOIdKUZ8EWJb6EiIvujZOt6kcR6Cdw/pBODUlpWYWRyIDGzJe4ecZJKjfGSQJT1bVPfQkWkMg1Kacn9QzrRMikRA1omJSrpkmpFXY0SiLED2kb8Fjp2QNsqjEpEaqNBKS2VaEm1pcRLAlH0RzDS3DoiIiIHCiVeEhh9CxURkQNd3MZ4mdnBZrbIzJaZ2Soz+0N4eRMz+6+Z/S/872HxikFERESkOonn4PpdQF937wIkAwPNrAcwDnjX3U8A3g1/FhEREan14pZ4ecj28Md64ZcD5wNFz1t4DhgUrxhEREREqpO4TidhZglmlgVsAv7r7h8CR7r7RoDwv83K2HeMmWWYWcbmzZvjGaaIiIhIIOKaeLl7obsnA62AbmbWsQL7PuXuae6e1rRp07jFKCIiIhKUQCZQdfccYA4wEPjGzJoDhP/dFEQMIiIiIlUtnnc1NjWzpPD7ROBM4GNgOnBZeLPLgFfjFYOIiIhIdRLPebyaA8+ZWQKhBG+Ku79uZh8AU8zsCuAr4II4xiAiIiJSbcQt8XL35UBKhOXfAmfE67wiIiIi1ZUeki0iIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4hWQ1q1b06lTJ5KTk0lLS4tpn7lz59K1a1fq1q3L1KlT4xyhiIiIxFvdqg7gQDJ79myOOOKImLc/+uijmTRpEg8//HAcoxIREZGgqMWrimzatInU1FQAli1bhpnx1VdfAdCmTRt27txJ69at6dy5M3Xq7PljmjNnDqeddhrDhw/n5z//OePGjWPy5Ml069aNTp068dlnnwVeHhERESmfEq+AmBn9+/cnNTWVp556imbNmpGXl8fWrVuZN28eaWlpzJs3jy+//JJmzZpxyCGHRD3esmXLmDBhAitWrOCFF17gk08+YdGiRVx55ZU88cQTAZVKREREKkJdjXGSnpnNQ2+tYUNOLi2SEvndP6Yyun8qmzZtol+/frRr145TTjmFBQsWMHfuXO644w5mzpyJu9OrV69yj3/SSSfRvHlzINRC1r9/fwA6derE7Nmz41o2ERER2Tdq8YqD9Mxsbp+2guycXBzIzsnloXmbSc/MplmzZgwePJhFixbRq1ev4lau888/n2XLljF//nx69+5d7jnq169f/L5OnTrFn+vUqUNBQUG8iiYiIiL7QYlXHDz01hpy8wuLP+/+MY8d27fx0Ftr2LFjB2+//TYdO3akd+/evPjii5xwwgnUqVOHJk2a8MYbb3DqqadWYfQiIiISL+pqjIMNObl7fC7cmcPmaX/ka6DbC4dw0UUXMXDgwOL1RS1cPXv2ZP369Rx22GEALF68mMGDB/P999/z2muvcffdd7Nq1arAyiEiIiKVy9y9qmMoV1pammdkZFR1GDE7dfwsskslXwAtkxJZMK5vFUQkIiIiQTGzJe4ecdJOdTXGwdgBbUmsl7DHssR6CYwd0LaKIhIREZHqQF2NcTAopSXAHnc1jh3Qtni5iIiIHJiUeMXJoJSWSrRERERkD+pqFBEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQlI3aoOQGqO1q1b07BhQxISEqhbty4ZGRlVHZKIiEiNosRLKmT27NkcccQRVR2GiIhIjaSuRtlnq1evplu3bsWf165dS+fOncnIyCA5OZnk5GQ6deqEmfHZZ5/RtWvX4m3/97//kZqaWhVhi4iIVBklXhIzM6N///6kpqby1FNP0b59e3788Uc+//xzAF5++WWGDx9OWloaWVlZZGVlMXDgQG655RbatGlD48aNycrKAuDZZ59l1KhRVVcYERGRKqDES2K2YMECli5dyptvvslf/vIX5s6dy/Dhw5kyZQoQSrxGjBhRvP2UKVNYunQp48ePB+DKK6/k2WefpbCwkJdffpmLLrqoSsohIiJSVZR4SZnSM7M5dfwsjh03g1PHz2LRNw5As2bNGDx4MIsWLWLEiBFMmTKFTz75BDPjhBNOAGDVqlXcfffdvPTSSyQkJAAwdOhQ3nzzTV5//XVSU1M5/PDDq6xsIiIiVUGJl0SUnpnN7dNWkJ2TiwPrNn3Prf/6kPTMbHbs2MHbb79Nx44dadOmDQkJCdx3333FrV0//PADF154Ic8//zxNmzYtPubBBx/MgAED+NWvfsXll19eRSUTERGpOkq8Sli3bh2nn3467du3p0OHDkyYMCHidpMmTaJp06bFA8j/+c9/Fq/76quv6N+/P+3bt+fEE09k7dq1AUVfuR56aw25+YXFnwt35rB20m8ZeXZvunXrxjnnnMPAgQMBGDFiBC+++CLDhw8HID09nS+//JKrrrqquI6KjBw5snismIiIyIHG3L2qYyhXWlqaBzFn1MaNG9m4cSNdu3Zl27ZtpKamkp6ezoknnli8TUFBAS+++CIZGRk8+eSTex2jT58+3HnnnfTr14/t27dTp04dDjnkkLjHXtmOHTeDSFeGAV+MP2efj/vwww/zww8/cN999+3zMURERKozM1vi7mmR1mkerxKaN29O8+bNAWjYsCHt27cnOzuba6+9llNOOYUFCxZw3nnnlTk26aOPPqKgoIB+/foB0KBBg8Bir2wtkhLJzsmNuHxfDR48mM8++4xZs2btT2giIiI1lroay7B27VoyMzPp3r07ADk5Obz33nv89re/BeA///kPnTt3ZtiwYaxbtw6ATz75hKSkJIYMGUJKSgpjx46lsLCwzHNUZ2MHtCWxXsIeyxLrJTB2QNt9PuYrr7zC8uXLNQGriIgcsA74xKv0nXvpmdls376doUOH8thjj9GoUSOAPaZJ+MUvfsHatWtZvnw5Z555JpdddhkQ6oacN28eDz/8MIsXL+bzzz9n0qRJVVGs/TYopSX3D+lEy6REDGiZlMj9QzoxKKVlVYcmIiJSYx3QXY1Fd+4VDSLPzsll3L8zSZz9MJeMHMmQIUOKtz300EOL35fsarzqqqu47bbbAGjVqhUpKSkcd9xxAAwaNIiFCxdyxRVXBFGcSjcopaUSLRERkUp0QLd4lb5zz91ZP/1RvqlzODfffHOZ+23cuLH4/fTp02nfvj0AJ510Et9//z2bN28GYNasWXsMzBcREZEDW9xavMzsKOB54GfAbuApd59gZsnA34GDgQLgWndfFK84otlQavD4ruyP2LFqNj82bV08BcKf//znvfZ7/PHHmT59OnXr1qVJkybF3YkJCQk8/PDDnHHGGbg7qampXHXVVfEuhoiIiNQQcZtOwsyaA83dfamZNQSWAIOAx4D/5+5vmtnZwK3u3ifaseI1ncSp42dFvHOvZVIiC8b1rfTziYiISO0XbTqJuHU1uvtGd18afr8NWA20BBxoFN6sMbAhXjGUJx537omIiIiUJZDB9WbWGkgBPgRuBN4ys4cJJX6nlLHPGGAMwNFHHx2XuIoGjj/01ho25OTSIimRsQPaakC5iIiIxEXcZ643swbAe8Cf3H2amT0OvOfu/zGz4cAYdz8z2jGCmrleRILRunVrGjZsSEJCAnXr1qWs3+8NGzbwm9/8hqlTpwYcoYjIvovW1RjXxMvM6gGvA2+5+6PhZT8ASe7uZmbAD+7eKNpxlHiJ1C6tW7cmIyNDk+mKSK1UJWO8wknVRGB1UdIVtgE4Lfy+L/C/eMUgIjXHp59+yplnnkmXLl3o2rUrn332GWvXrqVjx44A5ObmcuGFF9K5c2dGjBhB9+7dy2wpExGpruI5xutU4BJghZllhZfdAVwFTDCzukAe4XFcInLgMDP69++PmXH11VczZswYRo4cybhx4xg8eDB5eXns3r2bTZs2Fe/zt7/9jUMOOYTly5ezfPlyunbtWoUlEBHZN3FLvNx9PmBlrE6N13lFpPpbsGABLVq0YNOmTfTr14+2bduSnZ3N4MGDATj44IP32mfu3Ln85je/AaBz58507tw50JhFRCrDAf3IIBEJRnpm9t53D7eAZs2aMXjwYN57772YjhMawSAiUnMd0I8MEpH4K3omanZOLg6s2/Q9t/7rQ9Izs9mxYwdvv/023bp1o1WrVqSnpwOwa9cudu7cucdxevfuzeTJkwFYuXIly5cvD7gkIiL7T4mXiMRV6WeiFu7MYe2k3zLy7N5069aNc845h4EDB/LCCy/w+OOP07lzZ0455RS+/vpr4KdWrl/96lds376dzp078+CDD9KtW7cqKY+IyP5QV6OIxFXpZ6LWS/oZLUY/iQGrxp9TvPyEE05g1qxZe2y7ZMkSmjRpAkBiYiIvvfRS8bo+ffrELWYRkXhRi5eIxFWLpMQKLS+SkZHBL3/5S2644YZ4hCUiUiXU4iUicTV2QFtun7Zij+7GWJ6JmpaWxieffFLm+jlz5lRWiCIigVHiJSJxpWeiioj8RImXiMTdoJSWSrRERNAYLxEREZHAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCUjdWDYys8OAFkAusNbdd8c1KhEREZFaqMzEy8waA9cBvwQOAjYDBwNHmtlC4K/uPjuQKEVERERqgWgtXlOB54Fe7p5TcoWZpQKXmNlx7j4xjvGJiIiI1BplJl7u3i/KuiXAkrhEJCIiIlJLlTu43sz+Y2bnmJkG4ouIiIjsh1iSqb8BFwH/M7PxZtYuzjGJiIiI1ErlJl7u/o67jwS6AmuB/5rZ+2Z2uZnVi3eAIiIiIrVFTN2HZnY4MAq4EsgEJhBKxP4bt8hEREREaply5/Eys2lAO+AF4BfuvjG86mUzy4hncCIiIiK1SSwTqD7p7rMirXD3tEqOR0RERKTWijaB6pBI74u4+7R4BSUiIiJSG0Vr8fpFlHUOKPESERERqYBoE6heHmQgIiIiIrVdLIPr6wNDgdYlt3f3e+MXloiIiEjtE8vg+leBHwg9ImhXfMMRERERqb1iSbxaufvAuEciIiIiUsvFMoHq+2bWKe6RiIiIiNRysbR49QRGmdkXhLoaDXB37xzXyERERERqmVgSr7PiHoWIiIjIASCWh2R/CSQRmtfrF0BSeJmIiIiIVEC5iZeZ3QBMBpqFXy+a2fXxDkxERESktomlq/EKoLu77wAwsweAD4An4hmYiIiISG0Ty12NBhSW+FwYXiYiIiIiFRBLi9ezwIdm9kr48yBgYtwiEhEREamlyk283P1RM5tDaFoJAy5398x4ByYiIiJS28TS4oW7LwWWxjkWERERkVotljFeIiIiIlIJlHiJiIiIBCSWebweiGWZiIiIiEQXS4tXvwjLyn2MkJkdZWazzWy1ma0KT8RatO56M1sTXv5gRQIWERERqanKHFxvZr8CrgXamNnyEqsaAgtiOHYB8Ft3X2pmDYElZvZf4EjgfKCzu+8ys2b7Hr5I7VZYWEhaWhotW7bk9ddfj7rt8uXLufrqq9m6dSt16tRh8eLFHHzwwQFFKiIisYh2V+P/AW8C9wPjSizf5u7flXdgd98IbAy/32Zmq4GWwFXAeHffFV63aR9jF6n1JkyYQPv27dm6dWvU7QoKCrj44ot54YUX6NKlC99++y316tULKEoREYlVmV2N7v4D8BXQyd2/LPEqN+kqzcxaAynAh8DPgV5m9qGZvWdmJ5WxzxgzyzCzjM2bN1f0lCI13vr165kxYwZXXnll8bI+ffqQkZEBwJYtW2jdujUAb7/9Np07d6ZLly4AHH744SQkJPC3v/2NW2+9tXj/SZMmcf31etSqiEhViTrGy913A8vM7Oh9PYGZNQD+A9zo7lsJtbIdBvQAxgJTzGyvRxC5+1PunubuaU2bNt3X04vUWDfeeCMPPvggdeqUPxTzk08+wcwYMGAAXbt25cEHQ0Mnhw0bxrRp04q3e/nllxkxYkTcYhYRkehimUC1ObDKzBYBO4oWuvt55e1oZvUIJV2T3b3or/96YJq7O7DIzHYDRwBq1hIJe/3112nWrBmpqanMmTOn3O0LCgqYP38+ixcv5pBDDuGMM84gNTWVM844g+OOO46FCxdywgknsGbNGk499dT4F0BERCKKJfH6w74cONyKNRFY7e6PlliVDvQF5pjZz4GDgC37cg6R2iY9M5uH3lrDqlefI/ejOUxNf406u/PZunUrF198MXXr1mX37t0A5OXlFe/XqlUrTjvtNI444ggAzj77bJYuXcoZZ5zBiBEjmDJlCu3atWPw4MFEaGAWEZGAlNuH4e7vRXrFcOxTgUuAvmaWFX6dDTwDHGdmK4GXgMvCrV8iB7T0zGxun7aC7Jxckk4bRfNfTeLwK57m1/c9Qd++fXnxxRdp3bo1S5YsAWDq1KnF+w4YMIDly5ezc+dOCgoKeO+99zjxxBMBGDJkCOnp6fzrX/9SN6OISBUrt8XLzHoATwDtCbVOJQA73L1RtP3cfT6hh2pHcnEF4xSp9R56aw25+YV7LMvNL+SlxetoHf58yy23MHz4cF544QX69u1bvN1hhx3GzTffzEknnYSZcfbZZ3POOecUrzvxxBP56KOP6NatW0ClERGRSKy8xiYzywAuBP4NpAGXAie4+x3xDy8kLS3Ni+7kEqmtjh03g0i/jQZ8Mf6coMMREZF9ZGZL3D0t0rqYntXo7p8CCe5e6O7PAn0qMT4RAVokJVZouYiI1DyxJF47zewgIMvMHjSzm4BD4xyXyAFn7IC2JNZL2GNZYr0Exg5oW0URiYhIZYsl8bokvN2vCU0ncRQwNJ5BiRyIBqW05P4hnWiZlIgBLZMSuX9IJwaltKzq0EREpJKUO7je3b8Mt3i1BqYBa9z9x3gHJnIgGpTSUomWiEgtFstdjecAfwc+IzTO91gzu9rd34x3cCIiIiK1SSwTqD4CnB4eYI+ZtQFmEHqAtoiIiIjEKJYxXpuKkq6wz4FNcYpHREREpNaKpcVrlZm9AUwBHLgAWGxmQwBKPINRRERERKKIJfE6GPgGOC38eTPQBPgFoURMiZeIiIhIDGK5q/HyIAIRERERqe1imrleRERERPafEi8RERGRgCjxEhEREQlIuYmXmR1uZk+Y2VIzW2JmE8zs8CCCExEREalNYmnxeonQvF1DgWGE7mp8OZ5BiVSFvLw8unXrRpcuXejQoQN33313ufs88cQTtG3blg4dOnDrrbcCMGfOHM4999x4hysiIjVQLNNJNHH3+0p8/qOZDYpTPCJVpn79+syaNYsGDRqQn59Pz549Oeuss+jRo0fE7WfPns2rr77K8uXLqV+/Pps2aV5hERGJLpYWr9lmdqGZ1Qm/hhN6ZJBIrWJmNGjQAID8/Hzy8/MxM7KysujRowedO3dm8ODBfP/99wD87W9/Y9y4cdSvXx+AZs2aVVnsIiJSM5SZeJnZNjPbClwN/B+wK/x6CbgpmPBEglVYWEhycjLNmjWjX79+dO/enUsvvZQHHniA5cuX06lTJ/7whz8A8MknnzBv3jy6d+/OaaedxuLFi6s4ehERqe7K7Gp094ZBBiJSFdIzs3norTVsyMmlRVIiYwe0JSsri5ycHAYPHsyyZcvIycnhtNNCD2647LLLuOCCCwAoKCjg+++/Z+HChSxevJjhw4fz+eefV2VxRESkmotljFcxM2sDXAj80t07xickkWCkZ2Zz+7QV5OYXApCdk8vt01YAMCilJX369CE9Pb3M/Vu1asWQIUMwM7p160adOnXYsmVLEKGLiEgNFct0Es3N7CYzWwSsIpSs/TLukYnE2UNvrSlOugAKd/7Ajm0/hJbn5vLOO++QmprKYYcdxrx58wB44YUXilu/Bg0axKxZs4BQt+OPP/7IEUccEXxBRESkxiizxcvMriKUYLUCpgBXAq+6+x8Cik0krjbk5O7xuXD7d2yZ8f/42ndz0ouHMnz4cM4991xatWrFNddcw86dOznuuON49tlnARg9ejSjR4+mY8eOHHTQQTz33HOYWVUURUREaghz98grzH4EPgB+6+4Z4WWfu/txAcYHQFpammdkZAR9WqnlTh0/i+xSyRdAy6REFozrWwURiYhIbWBmS9w9LdK6aF2NLQjdwfioma0xs/uAevEIUKQqjB3QlsR6CXssS6yXwNgBbasoIhERqe3KTLzcfYu7/83dewNnAD8Am8xstZn9ObAIReJkUEpL7h/SiZZJiRihlq77h3RiUErLqg5NRERqqTK7GsvcwawtcGGQY73U1SgiIiI1xT51NZpZz0jL3X2Nu//BzBqZmaaUEBEREYlRtHm8hprZg8BMYAmhh2MfDBwPnA4cA/w27hGKiIiI1BLRZq6/ycwOA4YBFwDNgVxgNfAPd58fTIgiIiIitUPUmevd/Xvg6fBLRERERPZDuTPXi4iIiEjlUOIlIiIiEhAlXiIiIiIBiTadxK0l3l9Qap0mUBURERGpoGgtXheWeH97qXUD4xCLiIiISK0WLfGyMt5H+iwiIiIi5YiWeHkZ7yN9FhEREZFyRJvHq4uZbSXUupUYfk/488Fxj0xERESklok2c31CkIGIiIiI1HYVmk7CzA41s5FmNiNeAYmIiIjUVuUmXmZ2kJkNMrMpwEbgTODvcY9MREREpJYps6vRzPoBvwQGALOBF4Bu7n55QLGJiIiI1CrRBte/BcwDerr7FwBmNiGQqERERERqoWiJVyqhSVTfMbPPgZcADbgXERER2UdljvFy90x3v83d2wD3ACnAQWb2ppmNCSpAERERkdoi6uB6M0sxs2HAd+7+a6Al8BhwcgCxiYiIiNQq0R6S/XvgZWAoMMPMrnL33e7+lgbYi4iIiFRctBavEUCyu/8SOAlQ92JYTk4Ow4YNo127drRv354PPvigwsfo06cPGRkZcYhOREREqqtog+vz3H0ngLt/a2YVmmy1NrvhhhsYOHAgU6dO5ccff2Tnzp1VHZKIiIjUANGSqTZmNj38eq3U5+lBBVjdbN26lblz53LFFVcAcNBBB5GUlMTTTz/NSSedRJcuXRg6dGhxMnb++efz/PPPA/CPf/yDkSNH7nG83bt3c9lll3HXXXcFWxAREREJXLQWr/NLfX44noHUFJ9//jlNmzbl8ssvZ9myZaSmpjJhwgSGDBnCVVddBcBdd93FxIkTuf7663nqqac49dRTOfbYY3nkkUdYuHBh8bEKCgoYOXIkHTt25M4776yqIomIiEhAoj0k+70gA6kpCgoKWLp0KU888QTdu3fnhhtuYPz48Zx55pncdddd5OTksH37dgYMGADAkUceyb333svpp5/OK6+8QpMmTYqPdfXVVzN8+HAlXSIiIgeIuI3bMrOjzGy2ma02s1VmdkOp9beYmZvZEfGKoTKlZ2Zz6vhZDJ70MXUbHsHGg1oBMGzYMJYuXcqoUaN48sknWbFiBXfffTd5eXnF+65YsYLDDz+cDRs27HHMU045hdmzZ++xrYiIiNRe8RwwXwD81t3bAz2A68zsRAglZUA/4Ks4nr/SpGdmc/u0FWTn5JLQ4DBocDg3P/0m6ZnZvPvuu5x44ols27aN5s2bk5+fz+TJk4v3XbRoEW+++SaZmZk8/PDDfPHFF8XrrrjiCs4++2wuuOACCgoKqqJoIiIiEqByEy8zOzjCsnJbqdx9o7svDb/fBqwmNAErwP8DbgW8QtFWkYfeWkNufmHx5yZnXkP2Kw8w8uxeZGVlcccdd3DffffRvXt3+vXrR7t27QDYtWsXV111Fc888wwtWrTgkUceYfTo0bj/VOybb76Zrl27cskll7B79+7AyyYiIiLBsZJJQMQNzFYAV7n7wvDnocD97v7zmE9i1hqYC3QE+gBnuPsNZrYWSHP3LRH2GUN47rCjjz469csvv4z1dJXu2HEzImaIBnwx/pygw6nxRo8ezeuvv06zZs1YuXLlPh3j97//Pb179+bMM8+s5OhERET2j5ktcfe0SOti6Wq8CHjCzB4ys8nAVUDfCpy8AfAf4EZC3Y93Ar8vbz93f8rd09w9rWnTprGeLi5aJCVWaLlEN2rUKGbOnLlfx7j33nuVdImISI1TbuLl7iuAPwHXAKcDv3b39bEc3MzqEUq6Jrv7NKANcCywLNza1QpYamY/27fwgzF2QFsS6yXssSyxXgJjB7Stoohqtt69e+9xd+dnn31G165diz//73//IzU1FYAlS5Zw2mmnkZqayoABA9i4cSMQSt6mTp0abOAiIiL7KZYxXhMJtVZ1Bi4HXjOz62LYz4CJwGp3fxRCSZy7N3P31u7eGlgPdHX3r/e9CPE3KKUl9w/pRMukRAxomZTI/UM6MSilZbn7SvnatGlD48aNycrKAuDZZ59l1KhR5Ofnc/311zN16lSWLFnC6NGjNfWGiIjUaNEmUC2yErjSQ4PBvjCzHsCjMex3KnAJsMLMssLL7nD3N/Yp0io2KKWlEq39kJ6ZzUNvrWFDTi4tkhK5rNMhe6y/8sorefbZZ3n00Ud5+eWXWbRoEWvWrGHlypX069cPgMLCQpo3b14V4YuIiFSKchMvd/9/pT7/AFwRw37zCY0/j7ZN6/KOIzVf0XQcRXeGZufk8sDMdeTn/TSFxtChQ/nDH/5A3759SU1NLZ73rEOHDvv0EHIREZHqKJauxhPMbKqZfWRmnxe9gghOaofS03EA7CooZMv2XcWfDz74YAYMGMCvfvUrLr/8cgDatm3L5s2bixOv/Px8Vq1aFVzgIiIilSyWuxqfBf5G6I7E04HngRfiGZTULhtycvf4vHn6g3z9wi3kbl5Hq1atmDhxIgAjR47EzOjfvz8QegD51KlTue222+jSpQvJycm8//77xccJDSMUERGpOWIZ45Xo7u+ambn7l8A9ZjYPuDvOsUkt0SIpkewSyVfT824FQjcpLBj308wk8+fPZ/To0SQk/HQHaXJyMnPnzt3rmN9+++0ed0aKiIjUBLG0eOWZWR3gf2b2azMbDDSLc1w1Wl5eHt26daNLly506NCBu+/evxz1d7/7HZ07dyY5OZn+/fvv9czH6i6W6TgGDx7M888/zw033FB6972MHj2anTt30rNnz0qPVUREJJ5imbn+JEKP+0kC7gMaAw8WzWQfhLS0NM/IyAjqdPvN3dmxYwcNGjQgPz+fnj17MmHCBHr06LFPx9u6dSuNGjUC4PHHH+ejjz7i73//e2WGHHel72ocO6Ct7hIVEZFaab9mrnf3xe6+3d3Xu/vl7j4kyKSrJjIzGjRoAIQGhOfn57Nr1y66detWvM3atWvp3LkzixYtYsiQIQC8+uqrJCYm8uOPP5KXl8dxxx0HUJx0AezYsaNGjm0alNKSBeP68sX4c1gwrq+SLhEROSCVOcbLzKZH29Hdz6v8cGqPwsJCUlNT+fTTT7nuuus47bTT+PHHH/n888857rjjePnllxk+fDhdu3YlMzMTgHnz5tGxY0cWL15MQUEB3bt3Lz7enXfeyfPPP0/jxo2ZPXt2VRVLRERE9kO0Fq+TCT3SZx7wMPBIqZdEkZCQQFZWFuvXr2fRokWsXLmS4cOHM2XKFABefvllRowYQd26dTn++ONZvXo1ixYt4uabb2bu3LnMmzePXr16FR/vT3/6E+vWrWPkyJE8+eSTVVUsERER2Q/REq+fAXcAHYEJQD9gi7u/5+7vBRFcTZOemc2p42dx7LgZnDp+FumZ2SQlJdGnTx9mzpzJiBEjmDJlCp988glmxgknnABAr169ePPNN6lXrx5nnnkm8+fPZ/78+fTu3Xuvc1x00UX85z//CbpoIiIiUgnKTLzcvdDdZ7r7ZUAP4FNgjpldH1h0NUjR7OzZObkU7PyBdV9v5vZpK3j5g0955513aNeuHW3atCEhIYH77ruPESNGFO/bu3dvHnvsMU4++WSaNm3Kt99+y8cff0yHDh2A0EOji0yfPp127doFXj4RERHZf1Hn8TKz+sA5wC+B1sDjwLT4h1XzlJydvXD7d2yZ8f/Ad3P50zDu2ss599xzARgxYgRjx47liy++KN63e/fufPPNN8UtXJ07d6ZZs2bFg+jHjRvHmjVrqFOnDsccc0yNu6NRREREQsqcTsLMniPUzfgm8JK7rwwysJJqwnQSx46bQaSaNOCL8ecEHY6IiIhUkWjTSURr8boE2AH8HPhNiSkMDHB3b1TWjgei0rOzl1wuIiIiAtHHeNVx94bhV6MSr4ZKuvYWy+zsIiIicmCL5VmNEoOiCUE1O7uIiIiURYlXJRqU0lKJloiIiJQplodki4iIiEglUOIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBiVviZWZHmdlsM1ttZqvM7Ibw8ofM7GMzW25mr5hZUrxiEBEREalO4tniVQD81t3bAz2A68zsROC/QEd37wx8AtwexxhEREREqo24JV7uvtHdl4bfbwNWAy3d/W13LwhvthBoFa8YRERERKqTQMZ4mVlrIAX4sNSq0cCbQcQgIiIiUtXinniZWQPgP8CN7r61xPI7CXVHTi5jvzFmlmFmGZs3b453mCIiIiJxF9fEy8zqEUq6Jrv7tBLLLwPOBUa6u0fa192fcvc0d09r2rRpPMMUERERCUTdeB3YzAyYCKx290dLLB8I3Aac5u4743V+ERERkeombokXcCpwCbDCzLLCy+4AHgfqA/8N5WYsdPdr4hiHiIiISLUQt8TL3ecDFmHVG/E6p4iIiEh1ppnrRURERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixCsORo8eTbNmzejYsWPM+0ydOhUzIyMjA4A5c+Zw7rnnxitEERERqQJKvOJg1KhRzJw5M+btt23bxuOPP0737t3jGJWIiIhUNSVecdC7d2+aNGmyx7Knn36ak046iS5dujB06FB27txZvO53v/sdt956KwcffHDE4y1evJiUlBQ+//zzuMYtIiIi8aXEKyBDhgxh8eLFLFu2jPbt2zNx4kQAMjMzWbduXZndiu+//z7XXHMNr776Kscdd1yQIYuIiEglq1vVAdQW6ZnZPPTWGjbk5NIiKZHLOh2yx/qVK1dy1113kZOTw/bt2xkwYAC7d+/mpptuYtKkSRGPuXr1asaMGcPbb79NixYtAiiFiIiIxJMSr0qQnpnN7dNWkJtfCEB2Ti4PzFxHfl5B8TajRo0iPT2dLl26MGnSJObMmcO2bdtYuXIlffr0AeDrr7/mvPPOY/r06QA0b96cvLw8MjMzlXiJiIjUAupqrAQPvbWmOOkqsqugkC3bdxV/3rZtG82bNyc/P5/JkycD0LhxY7Zs2cLatWtZu3YtPXr0YPr06aSlpQGQlJTEjBkzuOOOO5gzZ05g5REREZH4UOJVCTbk5O7xefP0B/n6hVvI3byOVq1aMXHiRO677z66d+9Ov379aNeuXczHPvLII3nttde47rrr+PDDDys7dBEREQmQuXtVx1CutLQ0L5rfqjo6dfwsskslXwAtkxJZMK5vFUQkIiIiVcXMlrh7WqR1avGqBGMHtCWxXsIeyxLrJTB2QNsqikhERESqIw2urwSDUloC7HFX49gBbYuXi4iIiIASr0ozKKWlEq0aJC8vj969e7Nr1y4KCgoYNmwYf/jDH+jTpw8PP/xw8Q0OIiIilUmJlxyQ6tevz6xZs2jQoAH5+fn07NmTs846q6rDEhGRWk5jvOSAZGY0aNAAgPz8fPLz8zEzAF588UVOOeUUOnbsyKJFiwC45557uOSSS+jbty8nnHACTz/9dPGxHnzwQTp16kSXLl0YN25c8IUREZEaQy1ecsAqLCwkNTWVTz/9lOuuu674IeU7duzg/fffZ+7cuYwePZqVK1cCsHz5chYuXMiOHTtISUnhnHPOYdmyZaSnp/Phhx9yyCGH8N1331VlkUREpJpT4iUHlNKPdrrn2Rn0OfZQBg8eXJxg/fKXvwRCDzvfunUrOTk5AJx//vkkJiaSmJjI6aefzqJFi5g3bx6XX345hxwSekRU6Yeji4iIlKSuRjlgFD3aKTsnFyf0aKfbp61gzhc76NOnDzNnzgQo7nIsUvQ50nJ332u5iIhIWZR4yQGj5KOdCnf+wO687eTmFzL+9eW88847xU8UePnllwGYP38+jRs3pnHjxgC8+uqr5OXl8e233zJnzhxOOukk+vfvzzPPPMPOnTsB1NUoIiJRKfGq4UaPHk2zZs3o2LFjhfZbs2YNycnJxa9GjRrx2GOPAfD73/+ed955Jw7RVq2Sj3Yq3P4dX//rDjY882uWPn4N/fr149xzzwXgsMMO45RTTuGaa65h4sSJxft069aNc845hx49evC73/2OFi1aMHDgQM477zzS0tJITk7m4YcfDrxcIiJSc+iRQTXc3LlzadCgAZdeemnxGKWKKiwspGXLlnz44Yccc8wxlRxh9bE/j3a65557aNCgAbfccku8whMRqZXWrVvHpZdeytdff02dOnUYM2YMN9xwQ7n7LV68mB49evDyyy8zbNgwAFq3bk3Dhg1JSEigbt26VNfcQI8MqsV69+6914DuPn36cNNNN9G7d2/at2/P4sWLGTJkCCeccAJ33XXXXsd49913adOmTXHSNWrUKKZOnRpI/EHSo51ERIJXt25dHnnkEVavXs3ChQv5y1/+wkcffRR1n8LCQm677TYGDBiw17rZs2eTlZVVbZOu8uiuxlrqoIMOYu7cuUyYMIHzzz+fJUuW0KRJE9q0acNNN93E4YcfXrztSy+9VHwnX222P492uueee+IcnYhI7dS8eXOaN28OQMOGDWnfvj3Z2dlce+21JCcns2jRIrZu3cozzzxDt27dAHjiiScYOnQoixcvrsrQ40KJVw1UekqEyzodstc25513HgCdOnWiQ4cOxRf9cccdx7p164oTrx9//JHp06dz//33B1eAKqRHO4mIVJ21a9eSmZkZdd7E7OxsXnnlFWbNmrVX4mVm9O/fHzPj6quvZsyYMVVRjP2ixKuGKZoSoejuvOycXB6YuY78vII9tqtfvz4AderUKX5f9Lmg4Kdt33zzTbp27cqRRx4ZQPQiInIgKN1AMHZAW848oTFDhw7lscceo1GjRkDkeRNvvPFGHnjgARISEvY67oIFC2jRogWbNm2iX79+tGvXjt69ewdatv2lxKuGKTklQpFdBYV8t33XPh3vX//61wHRzSgiIsGI1EAw7t+ZJM5+mEtGjmTIkCHF20aaHzEjI4MLL7wQgC1btvDGG29Qt25dBg0aRIsWLQBo1qwZgwcPZtGiRTUu8dLg+hpmQ6m78jZPf5CvX7iF3M3raNWq1R7TH5Rn586d/Pe//93jl0BERGR/lG4gcHfWT3+Ub+oczs0337zHtpHmTfziiy9Yu3Yta9euZdiwYfz1r39l0KBB7Nixg23btgGhLsq33367wlMpVQdq8aphWiQl7jElQtPzbgX2nBLhiiuuKF7fp08f+vTpU/x5zpw5xe8POeQQvv32273OMWnSpMoNWkREDhilGwh2ZX/EjlWz+bFpa5KTkwH485//DPw0b2LR4PpovvnmGwYPHgxAQUEBF110EQMHDqz8AsSZ5vGqYUo34UJoSoT7h3TSoHEREalysc6Z2KdPHx5++GHS0iJOd1WjaR6vWmRQSkvuH9KJlkmJGKELWUmXiIhUF5ozMTq1eImIiEilinRX44HUQBCtxUtjvERERKRSac7EsqmrUURERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgcUu8zOwoM5ttZqvNbJWZ3RBe3sTM/mtm/wv/e1i8YhARERGpTuLZ4lUA/Nbd2wM9gOvM7ERgHPCuu58AvBv+LCIiIlLrxS3xcveN7r40/H4bsBpoCZwPPBfe7DlgULxiEBEREalOAhnjZWatgRTgQ+BId98IoeQMaBZEDCIiIiJVLe6Jl5k1AP4D3OjuWyuw3xgzyzCzjM2bN8cvQBEREZGAxDXxMrN6hJKuye4+Lbz4GzNrHl7fHNgUaV93f8rd09w9rWnTpvEMU0RERCQQ8byr0YCJwGp3f7TEqunAZeH3lwGvxisGERERkeqkbhyPfSpwCbDCzLLCy+4AxgNTzOwK4CvggjjGICIiIlJtxC3xcvf5gJWx+ox4nVdERESkutLM9SIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIVR4WFhaSkpHDuuecC8PHHH5OcnExKSgqrVq2iW7dudOnShQ4dOnD33XcX71dyu88++6yqwhcREZFKpsQrjiZMmED79u2LP6enp3P++eeTmZnJiSeeyKxZs1i2bBlZWVnMnDmThQsX7rVdmzZtqip8ERERqWRKvOJk/fr1zJgxgyuvvBKAN954g8cee4x//vOfnH766ZgZDRo0ACA/P5/8/HzMbK/tREREpPaoW9UB1FY33ngjDz74INu2bQPg7LPP5pprrqFBgwbccsstQKgrMjU1lU8//ZTrrruO7t27A+y1nYiIiNQOavGKg9dff51mzZqRmpoadbuEhASysrJYv349ixYtYuXKlQFFKCIiIlVBLV6VJD0zm4feWsOGnFzyF/4featn88Ybb5CXl8fWrVu5+OKLOf744yPum5SURJ8+fZg5cyYdO3YMOHIREREJilq8KkF6Zja3T1tBdk4uDtTtMZKmY57lsVcW8NJLL9G3b19efPHFPfbZvHkzOTk5AOTm5vLOO+/Qrl274IMXERGRwCjxqgQPvbWG3PzCPZbl5hfy0Ftrytxn48aNnH766XTu3JmTTjqJfv36FU87ISIiIrWTuXtVx1CutLQ0z8jIqOowynTsuBlEqkUDvhh/TtDhiIiISBUysyXunhZpnVq8KkGLpMQKLRcREZEDkxKvSjB2QFsS6yXssSyxXgJjB7StoohERESkOtJdjZVgUEpLgOK7GlskJTJ2QNvi5SIiIiKgxKvSDEppqURLREREolJXo4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBMTcvapjKJeZbQa+LLHoCGBLFYVzIFE9B0d1HRzVdTBUz8FRXQejIvV8jLs3jbSiRiRepZlZhrunVXUctZ3qOTiq6+CoroOheg6O6joYlVXP6moUERERCYgSLxEREZGA1NTE66mqDuAAoXoOjuo6OKrrYKieg6O6Dkal1HONHOMlIiIiUhPV1BYvERERkRpHiZeIiIhIQKpt4mVmA81sjZl9ambjIqw3M3s8vH65mXWtijhrgxjqup2ZfWBmu8zslqqIsbaIoa5Hhq/n5Wb2vpl1qYo4a7oY6vn8cB1nmVmGmfWsijhrg/LqusR2J5lZoZkNCzK+2iKGa7qPmf0QvqazzOz3VRFnbRDLNR2u7ywzW2Vm71XoBO5e7V5AAvAZcBxwELAMOLHUNmcDbwIG9AA+rOq4a+IrxrpuBpwE/Am4papjrqmvGOv6FOCw8PuzdF3HrZ4b8NMY187Ax1Udd018xVLXJbabBbwBDKvquGvaK8Zrug/welXHWtNfMdZ1EvARcHT4c7OKnKO6tnh1Az5198/d/UfgJeD8UtucDzzvIQuBJDNrHnSgtUC5de3um9x9MZBfFQHWIrHU9fvu/n3440KgVcAx1gax1PN2D//FBA4FdJfRvonlbzXA9cB/gE1BBleLxFrPsv9iqeuLgGnu/hWE/o+syAmqa+LVElhX4vP68LKKbiPlUz0Gp6J1fQWhVl2pmJjq2cwGm9nHwAxgdECx1Tbl1rWZtQQGA38PMK7aJta/HSeb2TIze9PMOgQTWq0TS13/HDjMzOaY2RIzu7QiJ6i7nwHGi0VYVvobaSzbSPlUj8GJua7N7HRCiZfGHlVcTPXs7q8Ar5hZb+A+4Mx4B1YLxVLXjwG3uXuhWaTNJQax1PNSQs8H3G5mZwPpwAnxDqwWiqWu6wKpwBlAIvCBmS10909iOUF1TbzWA0eV+NwK2LAP20j5VI/Biamuzawz8E/gLHf/NqDYapMKXdPuPtfM2pjZEe6uBw1XTCx1nQa8FE66jgDONrMCd08PJMLaodx6dvetJd6/YWZ/1TW9T2LNP7a4+w5gh5nNBboAMSVe1bWrcTFwgpkda2YHARcC00ttMx24NHx3Yw/gB3ffGHSgtUAsdS2Vo9y6NrOjgWnAJbF+e5K9xFLPx1s4EwjfEX0QoCS34sqta3c/1t1bu3trYCpwrZKuCovlmv5ZiWu6G6H/33VNV1ws/ye+CvQys7pmdgjQHVgd6wmqZYuXuxeY2a+BtwjdYfCMu68ys2vC6/9O6O6Ys4FPgZ3A5VUVb00WS12b2c+ADKARsNvMbiR0l8fWso4re4vxuv49cDjw1/Df0AJ3T6uqmGuiGOt5KKEvbvlALjCixGB7iVGMdS37KcZ6Hgb8yswKCF3TF+qarrhY6trdV5vZTGA5sBv4p7uvjPUcemSQiIiISECqa1ejiIiISK2jxEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAJSLSdQFakNzCzqJHnurgfXiYgcYDSBqoiIiEhA1NVYy5lZoZllmdkqM1tmZjebWZ3wuvdLbPcbM1ttZpNLvq+6yPddWfGb2Zlm9kKcz51oZu+ZWUL489Vm9vfw+3pm9oKZPWdm9SLse5CZzTWziC3R1fHnUvIa2p9touy7vQLbJpnZtft6rngfLwhmdo+Z3RJheaDXjpkNNjM3s3allkf9eZpZazOL+dErJfYr+jtX9GodZduIMZSuOzNbW9E4KkOEOMr8/Yl0je7P75sEQ4lX7Zfr7snu3gHoR+j5lncDuPspJba7Fjjb3UeWel+u8IPKq9O1VFb8XYBlcT73aGCauxeGP3cGlptZI+BN4Ct3v8zd80vv6O4/Au8CI8o4dsRyVUX9F52z1DUUUSzbVJIkQnW0l32sozKPV5Zq+LtQJOhr55fAfEIPGA5C0d+5otfagM4bk/2p53J+f5IodY0G+Psm+6g6/oGQOHH3TcAY4NfhPwTbAcItMscB081sV4n3N4XXX2xmi8LfJP9hZgnhb6arzeyvwFLgqHK2ezrc6va2mSUWxWRml5rZcgu1xr1Q1vkilcdCrXcrw68bI5TlplK7dAGywtu1C7curTKzd8zsiPDy9uHly81srJl9WsFqHknoyfVFOgHfAXOAf7v7neXsnx4+Rumy7lGuMuo/Un20NrOPzeyf4eWTLdTyt8DM/mdm3SIFEeVYpc+5vcQ+vwuf679m9q+ib+0lrrMyrwUzSzezJeHlY6JVkJkdamYzwtfMSjMrSlTHA23C181DEeLtZSVaU8zsFjO7J/x+r+uw1PH+HWXfWH8Xyoq7ZNki1kM5dXenma0xs3eAthGOGfS10wA4FbiCMhKvEsd+LlzvU83skPDqhP29RsLb71WmCNtEq7vNMf7MIpYl1uuivDhK/P6Ud40+VHL7suqgrGsplrJKJXF3vWrxC9geYdn3wJEl1wFrgSMivG8PvAbUC3/+K3Ap0JrQU9l7xLBdAZAcXj4FuDj8vgOwpsS5mpR1nAhlSAVWAIcCDYBVQErp+EvtswxoCtQvtf1twJ8I3WyytMTyvwHpFajrg4CvI9T1ZuAXMR4jAdhcxrqSP5fS9R+xPkrUfydCX7SWAM8ABpwfqXzlHKv4nCWvLyCNUFKbCDQE/gfcUmqbaNdCk/C/icBK4PAo1+9Q4OkSnxuXOP7KEstL11Hp9bcA9xDhOiy9fVn7lnGesn4XIsZdqmxl1UPEuivxszoEaAR8WlTvVXHthI93MTAx/P59oGuE66U14MCp4c/PhOs0Yjmj1U14WSGh6y8LeKWsMpWKody6i/FnFq0ssVwXUeMAthPDNRqhjsv7uZa+lsotq16V81KL14GpInfTnUHoF3ixmWWFPx8XXveluy+MYbsv3D0r/H4JoV98gL7AVHffAuDu35VznJJ6Aq+4+w533w5MA3qVVQgLjalq5O6bgUHAfHfPDK/+CGgGDAGWlVpeka7JI4CcEuc8itAfzRVA81gO4KEuyh/NrGEMm5es/2j18YW7r3D33YT++L7rob+sK/jpZ1FStGOVPGfpfV5191x330boP5hIyroWfmNmy4CFwFHACVHKvQI408weMLNe7v5DlG3LirekSNdhRcXyuxBL3NHqIVLd9SL0s9rp7luB6fsQb2VeOxDqZnwp/P6l8OdI1rn7gvD7F8NxlFVOiF43JbsaB5dTpiKx1F2s11pZZYnluogljn25Rsv7uWaF3xfVcUV+r2Q/aDqJA4yZHUfo2+GmWHcBnnP320sdpzWwI8btdpVYVEjoG2vRPqVvq414nDLiqogTgdUl3q8osa4ToSSrM+GuyLCOwEworrc7CX0LHGZmhxL6xvojMMfdJwO5wMEl9u9MKHG7ClhoZouLkjozWwx8SOgb7mx3f7bEfvWBvBjKVLr+y1Ky/neX+LybyH8Doh1rRxnLY/157HUtmFkf4EzgZHffaWZz2LMe9+Dun5hZKqHxiveb2dvufm8M8Raw5/CKonNEug5LK2vfSOcp8xqOFncM9VDW79G+3Joel2vHzA4nlCR0tNB0KgmAm9mt4YStpLI+7/c1QuzXY3lTvsR6rZVVllj+Rt5YXhzEdo1G2qcse9VxBX+vZD+oxesAYmZNgb8DT0b4I1iWd4FhZtYsfIwmZnbMfmxXep/h4T/WmFmTChxnLjAoPJbiUGAwMC/KuYrHdwHZhJKvooTqEuB54Fvg5+HlyYSa35cBuPvn7n5FieMNIfQN9CrgvPA23xMan1L0H0InYIW7bwSuBF42s8bhlrAP3f3X7n4pcEmJsR6HE+pq3GvwfTkqWh+Vfaz5wC/M7GALjfE5pwLnawx8H/4PtR3QI9rGZtYC2OnuLwIPA13Dq7YR6uYsyzdAMzM73MzqA+eGl0e6Dksfr6x9I4l4DUeJu0iF6iFsLjA4PEanIfCLGPaJdIzKunaGAc+7+zHu3trdjwK+4KcWoJKONrOTw++LBuOXpaJ1E0uZyq27GH5mFSlLWX/bYvkZxnKNllahn2sFyir7SS1etV9iuFm7HqFv7S8Aj8a6s7t/ZGZ3AW9b6K6cfOA64Ot92a7UPqvM7E/Ae2ZWCGS6+6gyjvNlqX2XmtkkYFF40T9LdBFG0qXEti8AZ5vZCkKtVKPd/VsLDVidEW6N+gBY6+6fl3G8VvzUalZYYvnbhP6TeYdQ4jUjHO9/zWwKofEfLxBq3i+yk1ALAsDpwBtRyhFRWfVhUW6rr8xjuftiM5tOKFH9EsgAYu2qmAlcY2bLCY1jKa9rsBPwkJntJnR9/Cocw7cWGvi9ktAdpH8pFWO+md1LqKXxC+Dj8PK9rkNgVITj7bVvGXVR1u9C40hx70c9FP2sXib0peJL9iFhqsxrh1DSMb7Usv8AF0WIbTVwmZn9g9CYwL8R6vKPpEJ1E8vfhxjrLuK1FkG5ZSnrunD3heXFEes16u5jy6uDKD/XWMsq+0kTqIqEmVmD8FgIzGwsoW7Fu0ptMzXc1XgJoW/gr5vZS+5+YXh9CnCzu18S5Tz3EbrDcbmZdQGudvdrw+umAbe7+5r4lDJ+iurPQnenzQXGuPvSqo5Lqp/wf/6vu3vHqo5lf9Wmskgw1OIl8pObzOxCQt/2FgA3F60IN/H/CUgxs9uBx4EnzewcSgwkD3+jnG1mCf7TXF6lpQKHW2jqjkJCd1ViZgcRulOsxiVdYU+Z2YmExt48p6RLRGRvavESERERCYgG14uIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISED+P63hYg6UU96wAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(10, 8))\n", + "plt.scatter(np.abs(kds_difference), af_max_pae_ab)\n", + "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$')\n", + "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions')\n", + "plt.ylabel('Max PAE (Ab part only)')\n", + "\n", + "for i, txt in enumerate(test_pdbs):\n", + " plt.annotate(txt, (np.abs(kds_difference[i]), af_max_pae_ab[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "65908d18", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SignificanceResult(statistic=0.5819548872180451, pvalue=0.00710443754510044)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAH6CAYAAABPvJtWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABck0lEQVR4nO3deXxU1fnH8c/DIoZFggjKIiKIiBAIEAFREFHErQiIgKKCqBS1tmpFcalWa3/i1or6q4pVcfspliKiILUWEHBjX7VQFxACCqiRfUl4fn/MJJ2EyWQCmblZvu/Xa16Zuz/n5GbyzLn3nmPujoiIiIgkV6WgAxARERGpiJSEiYiIiARASZiIiIhIAJSEiYiIiARASZiIiIhIAJSEiYiIiARASZiIiIhIAJSEiYiIiASgStABiIiIlCVmFlcv5+5uiY5Fyja1hIkkiZm1NLPFZrbNzH59ENuvMbOzS3rdklLUMc1svJk9cIjHiLsOY8VTMBYzW2lmPQ4ltmQqWA+x4i+Jei9ph1rfZrbOzNJLLKD4jvmgmd0EoeQqnlch+5lnZq2TGbuUXkrCpNQKIpGIpQTiuQ2Y5e613P2JGMeZZWY/mVm1QzjWQQuXc5eZbY94NUzAMZoexKZx1WFxuXtrd59VUvtLgnz1UNbiP5R4zawOcAzwRYkGFfuY9YArgWcj4zAzN7PjwtNmZveHz+12MXb3KHB/YiOWskJJmEjyHAesjLVCODHpBjjQJwkxFeYX7l4z4rUhwFgiFVmHFURFroc0YLW770niMYcB09x9V8S8dOAnd19rZjWAiUBPoJO7L42xrynAmWbWIFHBStmhJEzKhPC3y1FmtszMdpjZ82Z2tJm9F74k80H4G3LuuneY2efhFqUXzezwiH2NNrOvwtt9bmb9IpYda2aTzGyzmf1gZk+F578CNAHeCbcM3RYlxlbhVqys8OWWPhHLZgBnAk+Ftz+xkKJeCXwKjAeGFlEfhZYxLD1cXz+b2YR46yCWWGWMsm57M1sUPsYEoGB8uevdbmaZ4fVWmdlZhax3QB3GG09RsUS2cobf3xqj7jrYfy8F/i28POrlvsLOp6LqMlYMhdRDZPxFlbWhmf09HNM3FnFZN46yxypPofuNUi9x13cUbYHl4W0tfP6sDdfjm2ZWO7yskpndY6FLlxvM7BdmttfCnxPFdB7wYYF56cASM2sCzAV+Bnq6+6ZYO3L33cBC4JyDiEPKG3fXS69S+QLWAGdHvP8UOBpoBGwCFgHtgWrADODeiHVXAMcCRwIfAQ9E7PcSoCGhLyGDgB1AA6AysBT4M1CD0D+v06PFEyXWqsCXwJ3AYYS+EW8DWkasMwu4pogyfwlcD3QE9gFHx6iPWGVcA8wLl/NIQpduRhZVB7HKWVQZC8R3GLAWuDm83YBweR4osM+WwDqgYXi6KdA8Rv3k1WG88cQTS5S6jVp3Efv6TXhf/YG9BcsVXrfQ8ynO2GP9/vLqoThlDf++FwL3hNdtBnwN9I6j7LHKE3O/cfxtF1rWKNuOA+4Mv38gXBcNwvG8DTwWXnY/MJvQ50Uq8Amw7iA/izYDpxSY9zIwB9gA3FLM/T0B/ClRn516lZ2XWsKkLHnS3b9390xCH36fuftiD12WeItQQpbrKXdf5+4/An8ELs1d4O5/c/cN7r7f3ScA/wE6hV8NgVHuvsPdd7v73Dhj6wLUBMa4+153nwG8G3ncopjZ6YQuM73p7guBr4DLYmxSaBnDngiX80fgHULf3IGYdZBrcrhlIcvMJh9EGbsQSgIed/d97j4RmB9lvRxCSfTJZlbV3de4+1cxylzwGPHEE28skQqruy6Enip/IryvSYQSiGhinU/xxF7o7y+Gosp6ClDP3e8PH/dr4DlgcBzHjVWeePYbS3HKmgYsM7OjgRuBy9x9o4damCYCGRa6h+tmYLi7Z7p7FvA+4Ra0g5BKKEmOlA60Bpa5+5+Kub9t4X1KBackTMqS7yPe74oyXTNiel3E+7WE/nkAYGZXmtmS3CQDaAMcRahVaa27Zx9EbA0JfcveX+C4jYqxj6HA++6+JTz9f8S4JEmMMoZ9F/F+JxH1E6MOcvV199Twq294XnHK2BDIdHcvsG4+7v4lcBPwe2CTmb1h8T8EEG88ccVSQGF1F21fkb+HSLHOp3hiL/T3F0NRZT0OaBiRYGcRao07Oo7jxipPPPuNJa6ympkROleXE7p3crnnv1/xKGAjcBbwZfj8ynUk/72MWdtCTyluN7M2Efv/o5nNMbOJZlY9YtufgFoR61UDWgEXA60s/NRkgVj/ZmYfhS85/8PMTo5YXAvIKqQupAJREibl1bER75sQumSAhZ5keg74FVDX3VMJXdYzQv9Mm5hZYf3nxeobaANwrJlF/k01ATLjCdbMUoCBwBlm9p2ZfUfom3w7K/xJq6hljONYseogluKUcSPQKPxPM3LdA7j7/7l7biugAw/FU45ixBN3LHGItq9jC1k31vl0SOdLMeOLLOs64JuIBDvVQ09Ynh/HvmOV51D2WxzHA/vdfS1Qj9B9WJEuInR/1lFE/D2YWWVC93UtC8/aCVxAqOUsd502hC6FdwM+AIZH7HcZEHkfZxtCrbhzgH7AH8ysZ4FYTgC6u3sPQgnpixHLWhG6tCsVnJIwKa9uMLPGZnYkoQ/ACeH5NQj9o98MYGZXEfpAhdBlpY3AGDOrYWaHm9lpEfv8ntC9LtF8Rui+qtvMrKqF+kD6BfBGnPH2JfShfjKhyxzphD6o5xC6Wb84ZSxKrDqIpThl/ATIBn5tZlXMrD/5L3cSPnZLM+sZblnYTahFMyfOcsQbT1yxxOmTcHy/Cu/rohj7inU+Her5Eiu+WGWdB2wN38yeYmaVzayNmZ0Sx75jledQ9lsceTflE7rMeqqZNTezmmZ2P6GWtxcI3VfW1cxOMLMjCN2D1Tx32/Cl2s0F9t0NeC/8/j3g9Ihl04AzIqbbAyvcPdvdFwE3AG+a2fEAZnYYkOPuOeHjLQRSzeyw8LneEfjnoVaGlH1KwqS8+j9C94B8HX49AODunwOPEfpn9T2h+0s+Ci/LIfSP8ATgW2A9oZvWcz0I3B2+3HJr5MHcfS+hLiXOA7YAfwGudPd/xxnvUOBFd//W3b/LfQFPAUMKaX2IWsaixKqDIraLu4zhdfsTerT/J0L1OCnKbqsBY8L7+w6oTyihjKccccVTjFjiPWZ/4GpCl5MuJ3Qv1wHdJcQ6n0rgfCkqvmFEKWtETOnAN+Fj/xWoHce+Y5XnoPdbTGmEW7PcfQGheyHnhmNpRejpxJ3u/i/gdWAxsABYQqj1K1b91uG/LWs/E7p8metl4PxwizWEn4zMXejuLxP6e5xsoe4qWgGrCuy/OqEEuQ+hPt5KS7cvEiDLf+uASNlnZmsIPTn2QdCxJEpFKGNZYWafAc+4+4tFriyBMLORwAXu/osC88cDj7r7CjO7Dtjp7i+FL9k/5O6DI9b9H2CTuz8ex/GGAMe5+/+Ep1sRepDmrPD5crW7ryip8knZpbEjRUSKwczOINTKsQUYQugS2fRAg5J8zKwLoUun6wjdpH8/RXd+PBe4A3gJ6E2B1mF3j6uFNqwNoS51cnvbfyYcA+7euRj7kXJOSZiISPG0BN4k9ATfV8AAd98YbEhSQHtgKqHuOlYDw9z908gVzGwaocuKLc3sWXcfb6FOX+cQ6oewsHsx49EaOCd828J+4JHwJVKRfBJ6OdLMUgndF9CG0I3Aw939k4jlBowFzid0vX5Y+CZHERERkXIt0S1hY4Hp7j4g/LRI9QLLzwNahF+dgafDP0VERETKtYQ9HRl+LLg78DyEntoJ91oc6SLgZQ/5lNAjvBrUVERERMq9RLaENSPUD9GL4c4mFwK/cfcdEes0In9v0+vD8wq9v+Koo47ypk2blny0IiIiIiVs4cKFW9y9XrRliUzCqgAdgBvd/TMzGwuMBn4XsU60HroPuEnNzEYAIwCaNGnCggULEhCuiIiISMkys0KHSUtkZ63rgfXu/ll4eiKhpKzgOpFDfjQmytAr7j7O3TPcPaNevajJpIiIiEiZkrAkLNzb9zozaxmedRbweYHVpgBXWkgX4Gc96i0iIiIVQaKfjrwReC38ZOTXwFXhnotx92cIjcd1PvAloS4qrkpwPCIiIiKlQkKTMHdfAmQUmP1MxHInNPCpiIiISIWiAbxFREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCq0nJwc2rdvz4UXXhh1+bfffsuZZ55J+/btadu2LdOmTSuR4yoJExERkQpt7NixtGrVKuqy7OxsHnjgAQYOHMjixYt54403uP7660vkuErCREREpMJav349U6dO5Zprrsmb16NHD+68807OOOMMxo4di5mxdetWAH7++WcaNmwIwPXXX8+UKVMA6NevH8OHDwfg+eef5+677y7y2IkeO1JERESk1Lrpppt4+OGH2bZtW775WVlZfPjhhwBs3LiRc845hyeffJIdO3bwwQcfANC9e3fmzJlDnz59yMzMZOPGjQDMnTuXwYMHF3lstYSJiIhIhTJ5cSanjZnB0QPuZe76fayrdMwB6wwaNCjv/euvv86wYcNYv34906ZN44orrmD//v1069aNOXPm8Pnnn3PyySdz9NFHs3HjRj755BO6du1aZBxqCRMREZEKY/LiTO6YtJxd+3LYnfk5O1Z+xCVndqBmFWfPzu1cfvnlANSoUSNvm+eff57p06cDcOqpp7J79262bNlCo0aN+Omnn5g+fTrdu3fnxx9/5M0336RmzZrUqlWryFiUhImIiEiF8cg/VrFrXw4Adc4YRp0zhgFQ88dVNN0wg1dffZUePXrk26ZJkyb861//YtiwYXzxxRfs3r2bevXqAaGk7PHHH2fGjBn88MMPDBgwgAEDBsQViy5HioiISIWxIWtX1Plbtu8pdJvHHnuM5557jnbt2nHppZcyfvx4zAyAbt26kZ2dzQknnECHDh348ccf6datW1yxmLsXvwQBysjI8AULFgQdhoiIiJRBp42ZQWaURKxRagofje5Z4sczs4XunhFtmVrCREREpMIY1bslKVUr55uXUrUyo3q3THosuidMREREKoy+7RsBoXvDNmTtomFqCqN6t8ybn0xKwkRERKRC6du+USBJV0G6HCkiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgGoksidm9kaYBuQA2S7e0aB5T2At4FvwrMmufv9iYxJREREpDRIaBIWdqa7b4mxfI67X5iEOERERERKDV2OFBEREQlAopMwB943s4VmNqKQdU41s6Vm9p6ZtU5wPCIiIiKlQqIvR57m7hvMrD7wTzP7t7vPjli+CDjO3beb2fnAZKBFwZ2EE7gRAE2aNElwyCIiIiKJl9CWMHffEP65CXgL6FRg+VZ33x5+Pw2oamZHRdnPOHfPcPeMevXqJTJkERERkaRIWBJmZjXMrFbue+AcYEWBdY4xMwu/7xSO54dExSQiIiJSWiTycuTRwFvhHKsK8H/uPt3MRgK4+zPAAOA6M8sGdgGD3d0TGJOIiIhIqZCwJMzdvwbaRZn/TMT7p4CnEhWDiIiISGmlLipEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREAqAkTERERCQASsJEREREApDQJMzM1pjZcjNbYmYLoiw3M3vCzL40s2Vm1iGR8YiIiIiUFlWScIwz3X1LIcvOA1qEX52Bp8M/RURERMq1oC9HXgS87CGfAqlm1iDgmEREREQSLtFJmAPvm9lCMxsRZXkjYF3E9PrwPBEREZFyLdGXI09z9w1mVh/4p5n9291nRyy3KNt4wRnhBG4EQJMmTRITqYiIiEgSJbQlzN03hH9uAt4COhVYZT1wbMR0Y2BDlP2Mc/cMd8+oV69eosIVERERSZqEJWFmVsPMauW+B84BVhRYbQpwZfgpyS7Az+6+MVExiYiIiJQWibwceTTwlpnlHuf/3H26mY0EcPdngGnA+cCXwE7gqgTGIyIiIlJqJCwJc/evgXZR5j8T8d6BGxIVg4iIiEhpFXQXFSIiIiIVkpIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQAoCRMREREJgJIwERERkQBUibXQzBoDg4FuQENgF7ACmAq85+77Ex6hiIiISDlUaBJmZi8CjYB3gYeATcDhwInAucBdZjba3WcnI1ARERGR8iRWS9hj7r4iyvwVwCQzOwxokpiwRERERMq3Qu8Jy03AzOxCMztgPXff6+5fJjI4ERERkfIqnhvzBwP/MbOHzaxVogMSERERqQiKTMLc/XKgPfAV8KKZfWJmI8ysVjwHMLPKZrbYzN6NsqyHmf1sZkvCr3uKXQIRERGRMiiuLircfSvwd+ANoAHQD1hkZjfGsflvgC9iLJ/j7unh1/3xxCMiIiJS1hWZhJnZL8zsLWAGUBXo5O7nAe2AW4vYtjFwAfDXEohVREREpNyI2U9Y2CXAnwt2ReHuO81seBHbPg7cBsS6dHmqmS0FNgC3uvvKOGISERERKdOKTMLc/coYy/5V2DIzuxDY5O4LzaxHIastAo5z9+1mdj4wGWgRZV8jgBEATZqoVwwREREp+wq9HGlm28xsa8RrW+TPOPZ9GtDHzNYQupesp5m9GrmCu2919+3h99OAqmZ2VMEdufs4d89w94x69eoVp3wiIiIipVKhLWHuHtfTjzG2vwO4A0JPQRK61Hh55Dpmdgzwvbu7mXUilBT+cCjHFRERESkL4rknDDOrDBwdub67f3swBzSzkeHtnwEGANeZWTahcSkHu7sfzH5FREREyhIrKucJd0NxL/A9kDtgt7t72wTHFlVGRoYvWLAgiEOLiIiIFIuZLXT3jGjL4mkJ+w3Q0t11mVBERESkhMTTWes64OdEByIiIiJSkcTTEvY1MMvMpgJ7cme6+58SFpWIiIhIORdPEvZt+HVY+CUiIiIihyiezlrvAwgP2O25/XqJiIiIyMGLZ+zINma2GFgBrDSzhWbWOvGhiYiIiJRf8dyYPw64xd2Pc/fjgN8CzyU2LBEREZHyLZ4krIa7z8ydcPdZQI2ERSQiIiJSAcT1dKSZ/Q54JTx9OfBN4kISERERKf/iaQkbDtQDJoVfRwFXJTIoERERkfIunqcjfwJ+nYRYRERERCqMeFrCRERERKSEKQkTERERCUA8/YSdFs88EREREYlfPC1hT8Y5T0RERETiVOiN+WZ2KtAVqGdmt0QsOgKonOjARERERMqzWE9HHgbUDK9TK2L+VmBAIoMSERERKe8KTcLc/UMzmwuk5Q7iLSIiIiIlI+Y9Ye6eAxyZpFhEREREKox4hi1abGZTgL8BO3JnuvukhEUlIiIiUs7Fk4QdCfwA9IyY54SGMBIRERGRgxDPsEUaJ1JERESkhBWZhJnZ4cDVQGvg8Nz57j48gXGJiIiIlGvxdNb6CnAM0Bv4EGgMbEtkUCIiIiLlXTxJ2Anu/jtgh7u/BFwApCU2LBEREZHyLZ4kbF/4Z5aZtQFqA00TFpGIlAk5OTm0b9+eCy+8EIAePXqwYMGCA9arWbNm1O0nT57M559/ntAYRURKs3iSsHFmVgf4HTAF+Bx4KKFRiUipN3bsWFq1anXQ2ysJE5GKrsgkzN3/6u4/ufuH7t7M3eu7+7PJCE5ESqf169czdepUrrnmmgOW7d+/n6FDh3L33Xfnzbvrrrto164dXbp04fvvv+fjjz9mypQpjBo1ivT0dL766qtkhi8iUioUmYSZWV0ze9LMFpnZQjN73MzqJiM4ESmdbrrpJh5++GEqVcr/EZKdnc2QIUM48cQTeeCBBwDYsWMHXbp0YenSpXTv3p3nnnuOrl270qdPHx555BGWLFlC8+bNgyiGiEig4rkc+QawCbiY0MDdW4AJiQxKREqXyYszOW3MDI4fPZVWQ//Ijko16Nix4wHr/fKXv6RNmzbcddddefMOO+ywvPvGOnbsyJo1a5IVtohIqRZXj/nu/oeI6QfMrG+C4hGRUmby4kzumLScXftyANiweglfrpxJ/YbHUmn/PrZu3crll18OQNeuXZk5cya//e1vOfzwULeCVatWxcwAqFy5MtnZ2cEURESklImnJWymmQ02s0rh10BgaqIDE5HS4ZF/rMpLwADqnDGMRte/RItfv8Qbb7xBz549efXVVwG4+uqrOf/887nkkkuKTLZq1arFtm3qclBEKq54krBfAv8H7Am/3gBuMbNtZrY1kcGJSPA2ZO0q1vxbbrmFDh06cMUVV7B///5C9zt48GAeeeQR2rdvrxvzRaRCMncPOoZiycjI8Gh9EYlIYpw2ZgaZURKuRqkpfDS6ZwARiYiUHWa20N0zoi2LpyVMRCqwUb1bklK1cr55KVUrM6p3y4AiEhEpH+K5MV9EKrC+7RsBoXvDNmTtomFqCqN6t8ybLyIiB0dJmIgUqW/7Rkq6RERKWFxJmJl1AE4HHPjI3RclNCoRERGRci6eHvPvAV4C6gJHAS+a2d2xtxIRERGRWOJpCbsUaO/uuwHMbAywCHggkYGJiIiIlGfxPB25Bjg8YroaoE59RERERA5BoS1hZvYkoXvA9gArzeyf4elewNzkhCciIiJSPsW6HJnbI+pC4K2I+bMIJWMiIiIicpAKTcLc/aVo883sWGBwwiISERERqQDi6jHfzI4ys+vMbDahlrCjExqViIiISDkX656wWkA/4DLgREKXJJu5e+MkxSYiIiJSbsW6J2wTMA+4G5jr7m5m/ZITloiIiEj5Futy5J2EuqZ4GrjDzJofzAHMrLKZLTazd6MsMzN7wsy+NLNl4Z75RURERMq9QpMwd/+zu3cG+gAGTAYamtntZnZiMY7xG+CLQpadB7QIv0YQSvhEREREyr0ib8x396/d/Y/ungacAtQG3otn52bWGLgA+Gshq1wEvOwhnwKpZtYgvtBFREREyq5CkzAzs4Lz3H25u9/p7s0LW6eAx4HbgP2FLG8ErIuYXh+eJyIiIlKuxWoJm2lmN5pZk8iZZnaYmfU0s5eAoYVtbGYXApvcfWGMY0RL4g7oCNbMRpjZAjNbsHnz5hi7ExERESkbYiVh5wI5wOtmtsHMPjezr4H/EBrU+8/uPj7G9qcBfcxsDfAG0NPMXi2wznrg2IjpxsCGgjty93HunuHuGfXq1SuqTCIiIiKlXqwe83cDfwH+YmZVgaOAXe6eFc+O3f0O4A4AM+sB3OrulxdYbQrwKzN7A+gM/OzuG4tZBhEREZEyJ1Y/YXncfR9QIsmRmY0M7/MZYBpwPvAlsBO4qiSOISIiIlLaxZWEHSp3n0VouKPc5Ct3vgM3JCMGERERkdIkrrEjRURERKRkxeqi4qSI99UKLOuSyKBEREREyrtYLWH/F/H+kwLL/pKAWEREREQqjFhJmBXyPtq0iIiIiBRDrCTMC3kfbVpEREREiiHW05GNzewJQq1eue8JT2toIREREZFDECsJGxXxfkGBZQWnRURERKQYYvWY/1K0+WZ2OPCLhEUkIiIiUgHE1U+YmVU2s/PM7GVgLTAosWGJiIiIlG8xe8w3s+7AZcAFwDxCg3If7+47kxCbiIiISLlVaBJmZuuBb4GngVHuvs3MvlECJiIiInLoYl2O/DuhpyAHAb8wsxqoawoRERGRElFoEubuvwGaAn8CzgRWA/XMbKCZ1UxOeCIiIiLlU8wb8z1khrtfSyghuwzoC6xJeGQiIiIi5VisAby7mNlSM9tuZp8AJ7j7O+5+GXBs8kIUERERKX9itYQ9BdwK1CV0SfLx3AXuviuxYYmIiIiUb7GSsEru/k933+PufwPqJSsoERERkfIuVj9hqWbWv7Bpd5+UuLBEREREyrdYSdiH5B+eKHLaASVhIiIiIgcp1tiRVyUzEBEREZGKJK6xI0VERESkZCkJExEREQmAkjARERGRAMS6MT+PmXUl1GN+3vru/nKCYhIREREp94pMwszsFaA5sATICc92QEmYiIiIyEGKpyUsAzjZ3T3RwYiIiIhUFPHcE7YCOCbRgYiIJMPw4cOpX78+bdq0yZs3fvx4NmzYEHO7e+65hw8++CDR4YlIBRJPEnYU8LmZ/cPMpuS+Eh2YiEgiDBs2jOnTp+ebF08Sdv/993P22WcnMjQRqWDiuRz5+0QHISKSLN27d2fNmjV50xMnTmTBggUMGTKElJQUnnzySW688UYAcnJyWLFiBe7OsGHDuPDCCxkwYEBAkYtIeVNkEubuHyYjEBGRIAwYMICnnnqKRx99lIyMDACWLFkCwKhRozj33HMDjE5EyrN4no7sAjwJtAIOAyoDO9z9iATHJiJSIiYvzuSRf6xiQ9YuGqamMDStepHbvPnmmyxatIj3338/CRGKSEUUz+XIp4DBwN8IPSl5JdAikUGJiJSUyYszuWPScnbtC/Wwk5m1i4emr2Pf7uxCt1m5ciX33nsvs2fPpnLlyskKVUQqmLg6a3X3L82ssrvnAC+a2ccJjktEpEQ88o9VeQlYrj3ZOfy4fU/edK1atdi2bRsAP//8M4MHD+bll1+mXr16SY1VRCqWeJKwnWZ2GLDEzB4GNgI1EhuWVDRNmzalVq1aVK5cmSpVqrBgwYIit9mzZw9XXnklCxcupG7dukyYMIGmTZsya9YsHn30Ud59990kRC6l3YasXfmmN095mD3fLidn11YaN27Mfffdx7Bhwxg5ciQpKSncfPPNrF27lmuvvTZvm9x7xERESlI8SdgVhLqy+BVwM3AscHEig5KKaebMmRx11FFxr//8889Tp04dvvzyS9544w1uv/12JkyYkMAIpSxqmJpCZkQiVq/PbQA0Sk3ho9E98+ZffPF/P9aGDh16wH7Gjx+fuCBFpEIqsp8wd18LGNDA3e9z91vc/cvEhyYV2aZNm+jYsSMAS5cuxcz49ttvAWjevDk7d+7k7bffzvtnOWDAAP71r39RcGCH+fPn0759e77++uvkFkBKjVG9W5JSNf99XSlVKzOqd8uAIhIRCSkyCTOzXxAaN3J6eDpdnbVKSTMzzjnnHDp27Mi4ceOoX78+u3fvZuvWrcyZM4eMjAzmzJnD2rVrqV+/PtWrVyczM5Njjz0WgCpVqlC7dm1++OGHvH1+/PHHjBw5krfffptmzZoFVTQJWN/2jXiwfxqNUlMwQi1gD/ZPo2/7RkGHJiIVXLydtXYCZgG4+xIza5q4kKQiKNhlwO+encjwczqyadMmevXqxUknnUTXrl356KOPmD17NnfeeSfTp0/H3enWrRvAAa1eEErmAL744gtGjBjB+++/T8OGDZNaNil9+rZvpKRLREqdeIYtynb3nxMeiVQYuV0GZGbtwgl1GfDInM1MXpxJ/fr16devH/PmzaNbt255rV8XXXQRS5cuZe7cuXTv3h2Axo0bs27dOgCys7P5+eefOfLIIwFo0KABhx9+OIsXLw6qmCIiIjHFNYC3mV0GVDazFmb2JKAuKuSgFewyYP/e3ezYvo1H/rGKHTt28P7779OmTRu6d+/Oq6++SosWLahUqRJHHnkk06ZN47TTTgOgT58+vPTSS0Bo6JmePXvmtYSlpqYydepU7rzzTmbNmpX0MoqIiBQlnsuRNwJ3AXuA14F/AH9IZFBSvhXsMiBnZxabJz3Ad0CnV6pz2WWX5RsqJrfl6/TTT2f9+vXUqVMHgKuvvporrriCE044gSOPPJI33ngj336PPvpo3nnnHc477zxeeOEFOnfunNiCiYiIFINFu6+mNMvIyPB4+pCS0uu0MTPydRmQq2CXASIiImWdmS1094xoywptCSvqCUh373OogUnFNKp3y3zDyIC6DBARkYon1uXIU4F1hC5BfkaorzCRQ5b7lFrk05GjerfU02siIlKhxErCjgF6AZcClwFTgdfdfWUyApPyTV0GiIhIRVfo05HunuPu0919KNAF+BKYZWY3Ji06ERERkXIqZhcVZlbNzPoDrwI3AE8Ak5IRmIiUbTk5ObRv354LL7ww6FBEREqlWDfmvwS0Ad4D7nP3FcXZsZkdDswGqoWPM9Hd7y2wTg/gbeCb8KxJ7n5/cY4jIqXT2LFjadWqFVu3bj1gWXZ2NlWqxNNDjohI+RWrJewK4ETgN8DHZrY1/NpmZgd+qh5oD9DT3dsB6cC5ZtYlynpz3D09/FICJlIOrF+/nqlTp3LNNdfkzevRowd33nknZ5xxBmPHjmX+/Pm0bduWU089lVGjRtGmTRsAdu/ezVVXXUVaWhrt27dn5syZQRVDRCShYt0TVsnda4VfR0S8arn7EUXt2EO2hyerhl9lq1MySbjhw4dTv379vH/AB+Oee+7hgw8+KMGo5FDddNNNPPzww1SqlP8jJisriw8//JDf/va3XHXVVTzzzDN88sknVK5cOW+d//3f/wVg+fLlvP766wwdOpTdu3cnNX4RkWSIZ9iig2Zmlc1sCbAJ+Ke7fxZltVPNbKmZvWdmrRMZj5Q+w4YNY/r06Ye0j/vvv5+zzz67hCKSgzF5cSanjZnB8aOn0mroH9lRqQYdO3Y8YL1BgwYBoWRs27ZtdO3aFYDLLrssb525c+dyxRVXAHDSSSdx3HHHsXr16iSUQkQkuRKahIWfsEwHGgOdzKxgc8ci4LjwJcsngcnR9mNmI8xsgZkt2Lx5cyJDliTr3r173qDbAF999RUdOnTIm/7Pf/6T98984cKFnHHGGXTs2JHevXuzceNGIJTITZw4MbmBS56CA7JvWL2ED6ZPpX7DYxk8eDAzZszg8ssvB6BGjRoAxBqpo6yN4iEicrASmoTlcvcsYBZwboH5W3MvWbr7NKCqmR0VZftx7p7h7hn16tVLQsQSlObNm1O7dm2WLFkCwIsvvsiwYcPYt28fN954IxMnTmThwoUMHz6cu+66K9hgBThwQPY6Zwyj0fUv0eLXL/HGG2/Qs2dPXn311Xzb1KlTh1q1avHpp58C5Bv3s3v37rz22msArF69mm+//ZaWLTWagoiUPwl7PMnM6gH73D3LzFKAs4GHCqxzDPC9u7uZdSKUFP6QqJikbLjmmmt48cUX+dOf/sSECROYN28eq1atYsWKFfTq1QsIdX/QoEGDgCMVOHBA9vzzaxS63fPPP8+1115LjRo16NGjB7Vr1wbg+uuvZ+TIkaSlpVGlShXGjx9PtWrVEhG6iEigEvmMeAPgJTOrTCi5etPd3zWzkQDu/gwwALjOzLKBXcBg17WIcm/y4sx8QxYNTaueb/nFF1/MfffdR8+ePenYsSN169Zlw4YNtG7dmk8++SSgqKUwDVNTog7I3jA1hR49etCjRw8AZs2alW9569atWbZsGQBjxowhIyM0vu3hhx/O+PHjExmyiEipkLAkzN2XAe2jzH8m4v1TwFOJikFKn9z7h3IvX2Vm7eKh6evYtzs7b53DDz+c3r17c9111/H8888D0LJlSzZv3swnn3zCqaeeyr59+1i9ejWtW+tZjqAd7IDsU6dO5cEHHyQ7O5vjjjtOiZeIVDhJuSdMJFfB+4c2T3mYtS/ezPpvvqRx48Z5SdeQIUMwM8455xwADjvsMCZOnMjtt99Ou3btSE9P5+OPP87bj5nGlw9K3/aNeLB/Go1SUzCgUWoKD/ZPK3Js0EGDBrFkyRJWrFjB1KlT0f2eIlLRqMtqSaqC9w/V63MbAAZ8M+aCvPlz585l+PDh+fqPSk9PZ/bs2Qfs84cffsj3hKUknwZkFxEpPiVhklSx7h/K1a9fP7766itmzJhR5P6GDx/Ozp07Of3000s0ThERkUTT5UhJqlG9W5JStXK+eQXvH3rrrbdYtmwZRx11QG8lB3jhhRf417/+RdWqVUs81tKoOINiL1u2jFNPPZXWrVuTlpZWanudb9q0KWlpaaSnp+fdnB/Nhg0bGDBgQBIjExFJLLWESVLlXrKKfDpyVO+WupQVp1iDYkfKzs7m8ssv55VXXqFdu3b88MMPpTpRnTlzZpFJd8OGDdUpr4iUK2oJk6Tr274RH43uyTdjLuCj0T2VgMWpsEGxFyxYAMCWLVto2rQpAO+//z5t27alXbt2ANStW5fKlSvz9NNPc9ttt+VtP378eG688cbkFSJOX375JWeffTbt2rWjQ4cOfPXVV6xZsyZvjNFdu3YxePBg2rZty6BBg+jcuXNePYiIlBVKwkTKiMIGxY5m9erVmBm9e/emQ4cOPPzwwwAMGDCASZMm5a03YcKEvPEcg5L7FGzHjh0ZN24cEHo69oYbbmDp0qV8/PHHB3TM+/TTT1O9enWWLVvGXXfdxcKFC4MIXUTkkOhypEgpFdmp7eEbl9A0PCh2wU5Po8nOzmbu3LnMnz+f6tWrc9ZZZ9GxY0fOOussmjVrxqeffkqLFi1YtWoVp512WuILE8NHH31Ew4YN2bRpE7169aJly5ZkZmbSr18/INRvXEGzZ8/m17/+NQBt27albdu2SY1ZRKQkKAkTKYUKdmq7YfUSvlw5k/oNj6XS/n1s3bqVyy+/nCpVqrB//36AfDfeN27cmDPOOCPvPqvzzz+fRYsWcdZZZzFo0CDefPNNTjrpJPr165f0PtYKjpgwqndL+jaE+vXr069fPz788MO49qO+4USkrNPlSJFSKN5BsZs2bZp3KS7ypvXevXuzbNkydu7cSXZ2Nh9++CEnn3wyAP3792fy5Mm8/vrrSb8UmZtcZmbtwoF1m37ittc/Y/LiTHbs2MH7779Pp06daNy4MZMnTwZgz5497Ny5M99+Igf5XrFiRd7wRyIiZYmSMJFSKPag2P9166238vTTT9O1a1e2bNmSN79OnTrccsstnHLKKaSnp9OhQwcuuOCCvGUnn3wya9eupVOnTokrRBQFk8ucnVmsGf9bhpzfnU6dOnHBBRdw7rnn8sorr/DEE0/Qtm1bunbtynfffQf8t/XruuuuY/v27bRt25aHH3446eUQESkJVtbGy87IyHA9BSXl3WljZkTt1LZRagofje4ZQEQl4/jRU4n2iVNwxIRoFi5cyC233BL1cmWPHj149NFHY/YzJiISBDNb6O5RP5zUEiZSCsXTqW1ZFDkyQjzzcy1YsIBLL72U3/zmN4kIS0QkELoxX6QUKq+d2o7q3TLfAwcQX3KZkZHB6tWrC10ezxOjIiKljZIwkVKqPA6KXV6TSxGRg6EkLAl2795N9+7d2bNnD9nZ2QwYMID77rvvoPf3u9/9jrfffptKlSpRv359xo8fT8OGDUswYpHEKY/JpYjIwdCN+Ung7uzYsYOaNWuyb98+Tj/9dMaOHUuXLl0Oan9bt27liCOOAOCJJ57g888/55lnninJkEVERKQE6Mb8gJkZNWvWBGDfvn3s27ePPXv25Husfs2aNbRt25Z58+bRv39/AN5++21SUlLYu3cvu3fvplmzZgB5CRjAjh071GmliIhIGaTLkUmSk5NDx44d+fLLL7nhhhs444wz2Lt3L19//TXNmjVjwoQJDBw4kA4dOrB48WIA5syZQ5s2bZg/fz7Z2dl07tw5b3933XUXL7/8MrVr12bmzJlBFUtEREQOklrCEmTy4kxOGzOD40dP5bQxM3hn2XcsWbKE9evXM2/ePFasWMHAgQN58803gf8OpFylShVOOOEEvvjiC+bNm8ctt9zC7NmzmTNnDt26dcvb/x//+EfWrVvHkCFDeOqpp4IqpoiIiBwkJWGFWLduHWeeeSatWrWidevWjB07Nup648ePp169eqSnp5Oens5f//rXvKFZ1n67lu8m/I55jwxl0DmnMm7qp6SmptKjRw+mT5+eN4bf6tWrMTNatGgBQLdu3XjvvfeoWrUqZ599NnPnzmXu3Ll07979gONfdtll/P3vf09oXYiIiEjJ0+XIQlSpUoXHHnuMDh06sG3bNjp27EivXr3yxt8DyM7OBmDQoEH5WqNOGzODXfty2PLun6h96iAOO7oZnr2PFxb+yBU9d/HBBx9w++2307x5cypXrswf/vCHfGP4de/enSuvvJIrr7ySevXq8cMPP/Ddd9/RunVrAP7zn//kJWxTpkzhpJNOSkaViIiUaSX9pLrIoVISVogGDRrQoEEDAGrVqkWrVq3IzMzk+uuvp2vXrnz00Uf06dOHunXrHrDthqxd7N3yLezfT8rx7dm76Ru2TP0zm3w/p7xZg4EDB3LhhRcCoQRu1KhRfPPNN3nbd+7cme+//z6v5att27bUr18/7wb80aNHs2rVKipVqsRxxx2nJyNFROJQrVo1ZsyYke9J9fPOO++gn1QXOVRKwuKwZs0aFi9enHdjfFZWVt74dePHj+fvf/87s2fP5sQTT+TPf/4zDVNT+M/qTCodXoNNb/2R7KzvSWmaTuuLRvLxnb3y7fvWW2/l1ltvzTcvJSWFPXv25E2PGzcu33JdfhQRKb5oT6qbGV999RU33HADmzdvpnr16jz33HOcdNJJrF27luHDh7N582bq1avHiy++SJMmTXjnnXd44IEH2Lt3L3Xr1uW1117j6KOPDrh0UhbpnrAibN++nYsvvpjHH388r2uIyEuHv/jFL1izZg3Lli3j7LPPZujQoYzq3ZKqlZzd61ZS58yraTD0z+zf+j0d9iwNqhgiIkLoSfX09HTq169Pr1696Ny5MyNGjODJJ59k4cKFPProo1x//fUA/OpXv+LKK69k2bJlDBkyhF//+tcAnH766Xz66acsXryYwYMH8/DDDwdZJCnD1BJWwOTFmXlDqhxTqyq73/0frhgyJK/vLoAaNWrkvY+8HHnttddy++2307d9I1b9ojP/s6gFh6UeQ8PUFPpddgn7vit87DsREUm8ypUrs2TJErKysujXrx8rVqzg448/5pJLLslbJ/dKxCeffMKkSZMAuOKKK7jtttsAWL9+PYMGDWLjxo3s3buX448/PvkFkXJBLWERcp9qzMzaxX53lr8+hrX7U2l25qBCt9m4cWPe+ylTptCqVSsAbr38AprWcub9thMfje7Jz18vyXdTv4iIJF7B7oImL84EyHtSfdKkSaSmprJkyZK81xdffBF1X7n35d5444386le/Yvny5Tz77LPs3r07aeWR8kVJWIRH/rGKXftyANiT+Tk7Vs5k+zdLGXLBGaSnpzNt2rQDtnniiSdo3bo17dq144knnmD8+PFA6NvWo48+yllnnUVaWhruzrXXXpvM4oiIVGiRX6wd+HbDd9z2f58weXEmu3aFnlTv0KEDxx9/PH/729+A0DBzS5eGbh3p2rUrb7zxBgCvvfYap59+OgA///wzjRqFxj996aWXkl8wKTc0dmSE40dPJVptGPDNmAsSckwREUmM08bMIDNrV9507pPqVSs5x9etzsCBA7nnnnv45ptvuO6669i4cSP79u1j8ODB3HPPPaxZs4bhw4ezZcuWfDfmv/3229x88800atSILl26MH/+fGbNmhVcQaVUizV2pJKwCAX/YHM1Sk3ho9E9E3JMERFJDH2xltJAA3jHaVTvlqRUrZxvXkrVyozq3TKgiERE5GA1TE0p1nyRZFMSFqFv+0Y82D+NRqkpGKEWsAf7p9G3faOgQxMRkWLSF2sp7dRFRQF92zdS0iUiUg7kfpbndjvUMDWFUb1b6jNeSg0lYSIiUm7pi7WUZrocKSIiIhIAJWEiIiIiAVASFoCmTZuSlpZGeno6GRlRn1o9wOzZs+nQoQNVqlRh4sSJCY5QREREEk33hAVk5syZHHXUUXGv36RJE8aPH8+jjz6awKhEREQkWdQSVgps2rSJjh07ArB06VLMjG+//RaA5s2bs3PnTpo2bUrbtm2pVCn/r2zWrFmcccYZDBw4kBNPPJHRo0fz2muv0alTJ9LS0vjqq6+SXh4REREpmpKwAJgZ55xzDh07dmTcuHHUr1+f3bt3s3XrVubMmUNGRgZz5sxh7dq11K9fn+rVq8fc39KlSxk7dizLly/nlVdeYfXq1cybN49rrrmGJ598MkmlEhERkeLQ5cgkmLw4M18/Nb97diLDz+nIpk2b6NWrFyeddBJdu3blo48+Yvbs2dx5551Mnz4dd6dbt25F7v+UU06hQYMGQKjl7JxzzgEgLS2NmTNnJrRsIiIicnDUEpZgkxdncsek5WRm7cKBzKxdPDJnM5MXZ1K/fn369evHvHnz6NatW17r10UXXcTSpUuZO3cu3bt3L/IY1apVy3tfqVKlvOlKlSqRnZ2dqKKJiIjIIVASlmCP/GMVu/bl5E3v37ubHdu38cg/VrFjxw7ef/992rRpQ/fu3Xn11Vdp0aIFlSpV4sgjj2TatGmcdtppAUYvIiIiiaLLkQm2IWtXvumcnVlsnvQA3wGdXqnOZZddxrnnnpu3PLfl6/TTT2f9+vXUqVMHgPnz59OvXz9++ukn3nnnHe69915WrlyZtHKIiIhIyTJ3DzqGYsnIyPAFCxYEHUbcThszg8wCiRiEBgf/aHTPACISERGRZDGzhe4etVNQXY5MsFG9W5JStXK+eSlVKzOqd8uAIhIREZHSQJcjEyx34NjIpyNH9W6pAWVFREQquIQlYWZ2ODAbqBY+zkR3v7fAOgaMBc4HdgLD3H1RomIKSt/2jZR0iYiISD6JbAnbA/R09+1mVhWYa2bvufunEeucB7QIvzoDT4d/ioiIiJRrCbsnzEO2hyerhl8FnwK4CHg5vO6nQKqZNUhUTCIiIiKlRUJvzDezyma2BNgE/NPdPyuwSiNgXcT0+vA8ERERKWfWrVvHmWeeSatWrWjdujVjx46Na7v58+dTuXJlJk6cmDevadOmpKWlkZ6eTkZG1IcPS72E3pjv7jlAupmlAm+ZWRt3XxGxikXbrOAMMxsBjABo0qRJIkIVERGRBKtSpQqPPfYYHTp0YNu2bXTs2JFevXpx8sknF7pNTk4Ot99+O7179z5g2cyZMznqqKMSGXJCJaWLCnfPAmYB5xZYtB44NmK6MbAhyvbj3D3D3TPq1auXqDClGMrDNxAREUmuBg0a0KFDBwBq1apFq1atyMzMpEePHtx000107dqVNm3aMG/evLxtnnzySS6++GLq168fVNgJk7AkzMzqhVvAMLMU4Gzg3wVWmwJcaSFdgJ/dfWOiYpKSNXPmTJYsWUJZ6jxXRERKhzVr1rB48WI6dw49j7djxw4+/vhj/vKXvzB8+HAAMjMzeeuttxg5cuQB25sZ55xzDh07dmTcuHFJjb2kJLIlrAEw08yWAfMJ3RP2rpmNNLPc2pwGfA18CTwHXJ/AeCSBvvjiCzp16pQ3vWbNGtq2bcuCBQtIT08nPT2dtLQ0zIyvvvoq75sQwH/+8x86duwYRNgiIpJgkxdnctqYGRw/eiqnjZnB5MWZbN++nYsvvpjHH3+cI444AoBLL70UCA3ft3XrVrKysrjpppt46KGHqFy58gH7/eijj1i0aBHvvfce//u//8vs2bOTWq6SkLB7wtx9GdA+yvxnIt47cEOiYpDEyf0GYmb88pe/ZMSIEezdu5evv/6aZs2aMWHCBAYOHEhGRgZLliwBYNSoUZx77rk0b96c2rVrs2TJEtLT03nxxRcZNmxYoOUREZGSN3lxJndMWs6ufTkAZGbtYvTfFpMy81GuGDKE/v37560b6jqUfNMLFixg8ODBAGzZsoVp06ZRpUoV+vbtS8OGDQGoX78+/fr1Y968eXnjL5cVGrZIDkq0byADBw7kzTffBGDChAkMGjQob/0333yTRYsWMWbMGACuueYaXnzxRXJycpgwYQKXXXZZIOUQEZHEeeQfq/ISMAB3Z/2UP/F9pbrccsst+dadMGECAHPnzqV27drUrl2bb775hjVr1rBmzRoGDBjAX/7yF/r27cuOHTvYtm0bELqM+f7779OmTZvkFayEaNgiidvkxZkFhl9y+rZvlPcNZNCgQVxyySX0798fM6NFixYArFy5knvvvZfZs2fnNSlffPHF3HffffTs2ZOOHTtSt27dIIsmIiIJsCFrV77pPZmfs2PlTPbWa0p6ejoA//M//wNAnTp16Nq1K1u3buWFF16Iud/vv/+efv36AZCdnc1ll13GuecWfPav9FMSJnGJbFLev3c3677fyR2TlrN7107ef/997rnnHpo3b07lypX5wx/+kNcK9vPPPzN48GBefvllIp9sPfzww+nduzfXXXcdzz//fFDFEhGRBGqYmkJmRCJ2eOPWHHf7uzRKTeGj0T3z5j/88MNcfPHFPPjgg4Xua/z48XnvmzVrxtKlSxMSczLpcqTEJbJJOWdnFt+9dhtfPXsdw/v14oILLsj7BjJo0CBeffVVBg4cCMDkyZNZu3Yt1157bd4N+rmGDBmSd2+ZiIiUP6N6tySlav6b6lOqVmZU75YBRVS6qCVM4hLZpFw19RgaDn8KCPW2e9ddF+QtGzRoEFOnTuW8886jUqVKjBgxgq1bt3LPPffQvXt3zj77bIYNG8aHH37Inj172L9/P8uXL8+XnImISPnQt31oEJz8t7K0zJufa9asWQFEFzwlYRKXgk3KkfMjFdYb8v33359vvXr16rF7925mzJhRpns7FhGR2Pq2b3RA0iUhuhwpcYm3Sbmw3pCHDRuWb8yv2267jWXLluUlYPv376dFixZs3rw5b/qEE05gy5YtiSyWiIhIYJSESVz6tm/Eg/3TaJSaggGNUlN4sH9azG83BXtDjnTXXXfRtm1bbr75Zvbs2UOlSpW4/PLLee211wD44IMPaNeunVrJRESk3NLlSIlbYU3KB3Zd0ZKzW9Q+oDfkXA8++CDHHHMMe/fuZcSIETz00EPcc889DB8+nIsuuoibbrqJF154gauuuipZRRMREUk6tYTJIcntuiIzaxfOf3tD7tbrQoYU6A05V4MGDTAzqlWrxlVXXZU3UOuxxx7L0UcfzYwZM/jss88477zzklwaERGR5FESJoekOL0h59q4cWPeupMnT87Xy/E111zD5ZdfzsCBA6OOFSYiIlJeKAmTQ1JYb8hb/rMor1+wadOm5VtnyJAhpKWlkZaWxpYtW7j77rvzlvXp04ft27frUqSIiJR7uidMDkm8vSGff/75ee9nzJhR6P6WLl1Ku3btOOmkkxITsIiISCmhljA5JCXZG/KYMWOKHLZCRESkvDB3DzqGYsnIyPAFCxYEHYZEiPZ0pDrmExERATNb6O4Z0ZbpcqQcMvWGLCIiUny6HCkiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVhIiIiIgFQEiYiIiISACVh5cjw4cOpX78+bdq0KdZ2q1atIj09Pe91xBFH8PjjjwNwzz338MEHHyQgWhERkYpNY0eWI7Nnz6ZmzZpceeWVrFix4qD2kZOTQ6NGjfjss8847rjjSjhCERGRiiXW2JFqCStHunfvzpFHHplvXo8ePbj55pvp3r07rVq1Yv78+fTv358WLVpw9913H7CPf/3rXzRv3jwvARs2bBgTJ05MSvwiIiIViQbwrgAOO+wwZs+ezdixY7noootYuHAhRx55JM2bN+fmm2+mbt26eeu+8cYbXHrppQFGKyIiUjGoJawC6NOnDwBpaWm0bt2aBg0aUK1aNZo1a8a6devy1tu7dy9TpkzhkksuCSpUERGRCkMtYWXc5MWZPPKPVWzI2kXD1BSGplU/YJ1q1aoBUKlSpbz3udPZ2dl50++99x4dOnTg6KOPTnzgIiIiFZySsDJs8uJM7pi0nF37cgDIzNrFQ9PXsW93dhFbRvf666/rUqSIiEiSKAkrwx75x6q8BAxg85SH2fPtcvbv2krjxo2577774t7Xzp07+ec//8mzzz6biFBFRESkAHVRUQKysrK45pprWLFiBWbGCy+8wKmnnlqsffTo0YNHH32UjIyoT7FGdfzoqUT77RnwzZgLinV8ERERKXmxuqhQS1gJ+M1vfsO5557LxIkT2bt3Lzt37kzKcRumppCZtSvqfBERESnd9HTkIdq6dSuzZ8/m6quvBkLdQaSmpvLcc89xyimn0K5dOy6++OK8xOyiiy7i5ZdfBuDZZ59lyJAh+fa3f/9+hg4dGrUPr4JG9W5JStXK+ealVK3MqN4tS6JoIiIikkBKwg7R119/Tb169bjqqqto374911xzDTt27KB///7Mnz+fpUuX0qpVK55//nkAxo0bx/3338+cOXN47LHHePLJJ/P2lZ2dzZAhQzjxxBN54IEHijx23/aNeLB/Go1SUzCgUWoKD/ZPo2/7RokqroiIiJQQXY48RNnZ2SxatIgnn3ySzp0785vf/IYxY8Zw9tlnc/fdd5OVlcX27dvp3bs3AEcffTT3338/Z555Jm+99Va+Hu5/+ctfMnDgQO666664j9+3fSMlXSIiImWQWsIOwuTFmZw2ZgbHj57KdW+t4cj6DejcuTMAAwYMYNGiRQwbNoynnnqK5cuXc++997J79+687ZcvX07dunXZsGFDvv127dqVmTNn5ltXREREyiclYcWU2zdXZtYuHNick8L2KrX537dmA6GxF08++WS2bdtGgwYN2LdvH3feeScTJkygTZs2zJs3j/fee4/Fixfz6KOP8s033+Tt++qrr+b888/nkksuYcKECZgZuU+Czpo1iwsvvDCIIouIiEgC6HJkMRXsmwsg9axfcvuN1/LsvaGhgF588UWaNWtG586dOe644+jSpQv79u3j66+/5tprr+XFF1+kYcOGPPbYYwwfPpwZM2bk7euWW25h06ZN3HjjjXmtayIiIlL+KAkrpg1RuoQ47Ohm1Lv8TyyL6Jvruuuu47rrrsubXrNmDRdeeCFLly4F4LnnnmPcuHHs3buXAQMGMG3aNKpXDw05tHv3bl544QUeffTRqDHMnz+fESNG8Pe//51mzZqVZPFEREQkSXQ5spgK64OruH1zFfb05OLFi1m3bl2hlx4//vhjRo4cydtvv60ETEREpAxTElZMJdU314oVK+jWrRtpaWm89tprrFy5kv3793PzzTfz2GOPRd3miy++YMSIEbzzzjs0adLkoMsgIiIiwdPlyGLK7Q7ikX+sYkPWLhqmpjCqd8t83URMXpx5wPL0Ovn3M2zYMCZPnky7du0YP348s2bNYtu2baxYsYIePXoA8N1339GnTx+mTJkCQIMGDdi9ezeLFy+mYcOGSSmviIiIJIaSsIMQq2+u3Kcnc2/ez8zaxR2TlnNzl9R860U+Pfnaa6/RqFEjateuzZYtW/LWiRxPctasWaSmpvL8889zzjnnUKNGjbxkTURERMoeXY4sYdGenvz27w/yq0svYNWqVTRu3Jjnn3+eP/zhD3Tu3JlevXpx0kknxb3/o48+mnfeeYcbbriBzz77rKTDl7Ddu3fTqVMn2rVrR+vWrbn33nuL3ObJJ5+kZcuWtG7dmttuuw1Q1yIiIlK4hLWEmdmxwMvAMcB+YJy7jy2wTg/gbSC3s6xJ7n5/omJKhmhPT9brcxsGfBPx9CSQ7+nJaGbNmpX3vkePHnktX02aNGHlypWHGqrEUK1aNWbMmEHNmjXZt28fp59+Oueddx5dunSJuv7MmTN5++23WbZsGdWqVWPTpk1JjlhERMqaRLaEZQO/dfdWQBfgBjM7Ocp6c9w9Pfwq0wkYlNzTkxIsM6NmzZoA7Nu3j3379mFmLFmyhC5dutC2bVv69evHTz/9BMDTTz/N6NGjqVatGgD169cPLHYRESkbEpaEuftGd18Ufr8N+AIo94McltTTkxK8nJwc0tPTqV+/Pr169aJz585ceeWVPPTQQyxbtoy0tDTuu+8+AFavXs2cOXPo3LkzZ5xxBvPnzw84ehERKe2ScmO+mTUF2gPRbmI61cyWAhuAW929TF9ni+fpSSm9Cj7Z+vsXp9Lj+Br069ePpUuXkpWVxRlnnAHA0KFDueSSS4DQQO4//fQTn376KfPnz2fgwIF8/fXXQRZFRERKuYQnYWZWE/g7cJO7by2weBFwnLtvN7PzgclAiyj7GAGMAMpE/1ixnp6U0quwJ1sf7J9Gjx49mDx5cqHbNm7cmP79+2NmdOrUiUqVKuV70lVERKSghD4daWZVCSVgr7n7pILL3X2ru28Pv58GVDWzo6KsN87dM9w9o169eokMWSqwyCdbc3b+zP7d29m1L4cx7y7jgw8+oGPHjtSpU4c5c+YA8Morr+S1ivXt2zdvDNDVq1ezd+9ejjrqgFNZREQkTyKfjjTgeeALd/9TIescA3zv7m5mnQglhT8kKiaRWCKfbM3Z/iNbpv4ZfD8bfD9333g1F154IY0bN2bkyJHs3Lkzb7B2gOHDhzN8+HDatGnDYYcdxksvvUToT0BERCQ6c/fE7NjsdGAOsJxQFxUAdwJNANz9GTP7FXAdoScpdwG3uPvHsfabkZHhCxYsSEjMUrGdNmYGmVG6GGmUmsJHo3sGEJGIiJR1ZrbQ3TOiLUtYS5i7zwViNgW4+1PAU4mKQaQ4RvVume+eMNCTrSIikjgatkgkTE+2iohIMikJE4mgJ1tFRCRZNHakiIiISACUhIlQ+IDdPXr0QA+CiIhIIuhypAiFD9gtIiKSKGoJE6HwAbsBXn31Vbp27UqbNm2YN28eAL///e+54oor6NmzJy1atOC5557L29fDDz9MWloa7dq1Y/To0ckvjIiIlAlqCRMJy8nJoWPHjnz55ZfccMMNdO7cGYAdO3bw8ccfM3v2bIYPH86KFSsAWLZsGZ9++ik7duygffv2XHDBBSxdupTJkyfz2WefUb16dX788ccgiyQiIqWYkjCpsAoO1j2qd0uWLFlCVlYW/fr1y0u2Lr30UgC6d+/O1q1bycrKAuCiiy4iJSWFlJQUzjzzTObNm8ecOXO46qqrqF69OgBHHnlkIGUTEZHST0mYVEiFDdYNoW4qevTowfTp0wEOGH4odzrafHfXcEUiIhIX3RMmFVLkYN0QGrB7x7afQ/N37eKDDz7gpJNOAmDChAkAzJ07l9q1a1O7dm0A3n77bXbv3s0PP/zArFmzOOWUUzjnnHN44YUX2LlzJ4AuR4qISKGUhCVJTk4O7du358ILLwTg3//+N+np6bRv356VK1dG7R6h4HpfffVVUOGXOxsKjBGZs/1Hvnv9Tub/6WpOOeUUevXqlfe7qlOnDl27dmXkyJE8//zzedt06tSJCy64gC5duvC73/2Ohg0bcu6559KnTx8yMjJIT0/n0UcfTWq5RESk7EjYAN6JUlYH8P7Tn/7EggUL2Lp1K++++y5jxoxh165d3Hfffbg7O3bsyNc9wtixY+nSpUu+9aTkHOpg3b///e+pWbMmt956ayLCExGRciLWAN5qCUuC9evXM3XqVK655hoApk2bxuOPP85f//pXzjzzzEK7Ryi4npScUb1bklK1cr55GqxbRESSSTfmJ8FNN93Eww8/zLZt2wA4//zzGTlyZL6WlMK6Ryi4npSMQx2s+/e//30CoxMRkYpASViCvfvuu9SvX5+OHTsya9asQterXLnyAd0jtGnTJnmBVkAarFtERIKkJCxBcvugWvn2S+z6fBYTJ79Dpf372Lp1K5dffjknnHBC1O1SU1PzukdQEiYiIlJ+6Z6wBMjtgyozaxepZwyjwXXjqXv1c/zqD0/Ss2dPXn311Xzrb968Oa8D0ILdI4iIiEj5pJawBCjYBxXArn05vDF/HU2jrL9x40aGDh1KTk4O+/fvZ+DAgXndI4iIiEj5pC4qEuD40VOJVqsGfDPmgmSHIyIiIgFRFxVJ1jA1pVjzRUREpOJREpYA6oNKREREiqJ7whLgUPugEhERkfJPSViCqA8qERERiUWXI0VEREQCoCRMREREJABKwkREREQCoCRMREREJABKwkREREQCoCRMREREJABKwkREREQCoCRMREREJABKwkREREQCoCRMREREJABKwkREREQCoCRMREREJABKwkREREQCoCRMREREJADm7kHHUCxmthlYGzHrKGBLQOFUNKrr5FA9J4/qOjlUz8mjuk6eeOv6OHevF21BmUvCCjKzBe6eEXQcFYHqOjlUz8mjuk4O1XPyqK6TpyTqWpcjRURERAKgJExEREQkAOUhCRsXdAAViOo6OVTPyaO6Tg7Vc/KorpPnkOu6zN8TJiIiIlIWlYeWMBEREZEyR0mYiIiISADKTBJmZuea2Soz+9LMRkdZbmb2RHj5MjPrEEScZV0c9XySmX1iZnvM7NYgYiwv4qjrIeFzeZmZfWxm7YKIs6yLo54vCtfxEjNbYGanBxFneVBUXUesd4qZ5ZjZgGTGV57EcV73MLOfw+f1EjO7J4g4y7p4zulwXS8xs5Vm9mGxDuDupf4FVAa+ApoBhwFLgZMLrHM+8B5gQBfgs6DjLmuvOOu5PnAK8Efg1qBjLquvOOu6K1An/P48ndMJq+ea/Pf+2LbAv4OOuyy+4qnriPVmANOAAUHHXRZfcZ7XPYB3g461LL/irOdU4HOgSXi6fnGOUVZawjoBX7r71+6+F3gDuKjAOhcBL3vIp0CqmTVIdqBlXJH17O6b3H0+sC+IAMuReOr6Y3f/KTz5KdA4yTGWB/HU83YPf3oCNQA9rXRw4vmcBrgR+DuwKZnBlTPx1rUcmnjq+TJgkrt/C6H/kcU5QFlJwhoB6yKm14fnFXcdiU11mDzFreurCbX0SvHEVc9m1s/M/g1MBYYnKbbypsi6NrNGQD/gmSTGVR7F+/lxqpktNbP3zKx1ckIrV+Kp5xOBOmY2y8wWmtmVxTlAlUMMMFksyryC31bjWUdiUx0mT9x1bWZnEkrCdK9S8cVVz+7+FvCWmXUH/gCcnejAyqF46vpx4HZ3zzGLtrrEKZ66XkRozMLtZnY+MBlokejAypl46rkK0BE4C0gBPjGzT919dTwHKCtJ2Hrg2IjpxsCGg1hHYlMdJk9cdW1mbYG/Aue5+w9Jiq08KdY57e6zzay5mR3l7hoEuXjiqesM4I1wAnYUcL6ZZbv75KREWH4UWdfuvjXi/TQz+4vO62KLN/fY4u47gB1mNhtoB8SVhJWVy5HzgRZmdryZHQYMBqYUWGcKcGX4KckuwM/uvjHZgZZx8dSzlIwi69rMmgCTgCvi/VYlB4innk+wcFYQfqr6MEAJb/EVWdfufry7N3X3psBE4HolYAclnvP6mIjzuhOh//c6r4snnv+JbwPdzKyKmVUHOgNfxHuAMtES5u7ZZvYr4B+EnlZ4wd1XmtnI8PJnCD1pcz7wJbATuCqoeMuqeOrZzI4BFgBHAPvN7CZCT4tsLWy/cqA4z+l7gLrAX8KfpdnunhFUzGVRnPV8MaEvcPuAXcCgiBv1JU5x1rWUgDjregBwnZllEzqvB+u8Lp546tndvzCz6cAyYD/wV3dfEe8xNGyRiIiISADKyuVIERERkXJFSZiIiIhIAJSEiYiIiARASZiIiIhIAJSEiYiIiARASZiIiIhIAJSEiYiIiASgTHTWKlIemFnMTvncXYPpiYhUIOqsVURERCQAuhxZwZhZjpktMbOVZrbUzG4xs0rhZR9HrPdrM/vCzF6LfB9c5AevsPjN7GwzeyXBx04xsw/NrHJ4+pdm9kz4fVUze8XMXjKzqlG2PczMZptZ1Bbr0vh7iTyHDmWdGNtuL8a6qWZ2/cEeK9H7SwYz+72Z3RplflLPHTPrZ2ZuZicVmB/z92lmTc0s7iFgIrbL/ZzLfTWNsW7UGArWnZmtKW4cJSFKHIX+/UQ7Rw/l700ST0lYxbPL3dPdvTXQi9B4m/cCuHvXiPWuB8539yEF3hcpPIh6aTq3Cou/HbA0wcceDkxy95zwdFtgmZkdAbwHfOvuQ919X8EN3X0v8C9gUCH7jlquIOo/95gFzqGo4lmnhKQSqqMDHGQdFbq/wpTCv4VcyT53LgXmEhoAORlyP+dyX2uSdNy4HEo9F/H3k0qBczSJf29yEErjh4MkibtvAkYAvwp/KGwHCLfUNAOmmNmeiPc3h5dfbmbzwt8wnzWzyuFvrF+Y2V+ARcCxRaz3XLg17n0zS8mNycyuNLNlFmqle6Ww40Urj4Va9VaEXzdFKcvNBTZpBywJr3dSuNVppZl9YGZHhee3Cs9fZmajzOzLYlbzEODtiOk04EdgFvA3d7+riO0nh/dRsKz5ylVI/Uerj6Zm9m8z+2t4/msWahH8yMz+Y2adogURY18Fj7k9YpvfhY/1TzN7PffbfMR5Vui5YGaTzWxheP6IWBVkZjXMbGr4nFlhZrlJ6xigefi8eSRKvN0sopXFzG41s9+H3x9wHhbY399ibBvv30JhcUeWLWo9FFF3d5nZKjP7AGgZZZ/JPndqAqcBV1NIEhax75fC9T7RzKqHF1c+1HMkvP4BZYqyTqy62xzn7yxqWeI9L4qKI+Lvp6hz9JHI9Qurg8LOpXjKKiXA3fWqQC9ge5R5PwFHRy4D1gBHRXnfCngHqBqe/gtwJdCU0AjyXeJYLxtID89/E7g8/L41sCriWEcWtp8oZegILAdqADWBlUD7gvEX2GYpUA+oVmD924E/EnpwZVHE/KeBycWo68OA76LU9WbgF3HuozKwuZBlkb+XgvUftT4i6j+N0JewhcALgAEXRStfEfvKO2bk+QVkEEpwU4BawH+AWwusE+tcODL8MwVYAdSNcf5eDDwXMV07Yv8rIuYXrKOCy28Ffk+U87Dg+oVtW8hxCvtbiBp3gbIVVg9R6y7id1UdOAL4Mrfegzh3wvu7HHg+/P5joEOU86Up4MBp4ekXwnUatZyx6iY8L4fQ+bcEeKuwMhWIoci6i/N3Fqss8ZwXMeMAthPHORqljov6vRY8l4osq16H/lJLmEDoQzReZxH6Y55vZkvC083Cy9a6+6dxrPeNuy8Jv19I6EMAoCcw0d23ALj7j0XsJ9LpwFvuvsPdtwOTgG6FFcJC92Ad4e6bgb7AXHdfHF78OVAf6A8sLTC/OJcvjwKyIo55LKEP0OVAg3h24KHLmHvNrFYcq0fWf6z6+Mbdl7v7fkIfxP/y0Kfscv77u4gUa1+Rxyy4zdvuvsvdtxH6ZxNNYefCr81sKfApcCzQIka5lwNnm9lDZtbN3X+OsW5h8UaKdh4WVzx/C/HEHaseotVdN0K/q53uvhWYchDxluS5A6FLkW+E378Rno5mnbt/FH7/ajiOwsoJsesm8nJkvyLKlCueuov3XCusLPGcF/HEcTDnaFG/1yXh97l1XJy/KzlI6qKigjOzZoS+NW6KdxPgJXe/o8B+mgI74lxvT8SsHELfZHO3Kfi4btT9FBJXcZwMfBHxfnnEsjRCCVdbwpcrw9oA0yGv3u4i9O1wgJnVIPRNdi8wy91fA3YBh0ds35ZQEnct8KmZzc9N8MxsPvAZoW++M939xYjtqgG74yhTwfovTGT974+Y3k/0z4RY+9pRyPx4fx8HnAtm1gM4GzjV3Xea2Szy12M+7r7azDoSur/xQTN7393vjyPebPLfkpF7jGjnYUGFbRvtOIWew7HijqMeCvs7OphH3hNy7phZXUIJQxsLddFSGXAzuy2cvEUqbPqQzxHiPx+L6kYm3nOtsLLE8xl5U1FxEN85Gm2bwhxQx8X8u5KDpJawCszM6gHPAE9F+UAszL+AAWZWP7yPI83suENYr+A2A8Mf3JjZkcXYz2ygb/jeixpAP2BOjGPl3Q8GZBJKxHKTqyuAl4EfgBPD89MJNdEvBXD3r9396oj99Sf0zfRaoE94nZ8I3c+S+88hDVju7huBa4AJZlY73EL2mbv/yt2vBK6IuDekLqHLkQfcuF+E4tZHSe9rLvALMzvcQvcEXVCM49UGfgr/cz0J6BJrZTNrCOx091eBR4EO4UXbCF0KLcz3QH0zq2tm1YALw/OjnYcF91fYttFEPYdjxJ2rWPUQNhvoF76npxbwizi2ibaPkjp3BgAvu/tx7t7U3Y8FvuG/LUORmpjZqeH3uTfyF6a4dRNPmYqsuzh+Z8UpS2GfbfH8DuM5Rwsq1u+1GGWVQ6CWsIonJdz0XZXQt/lXgD/Fu7G7f25mdwPvW+jpnn3ADcB3B7NegW1WmtkfgQ/NLAdY7O7DCtnP2gLbLjKz8cC88Ky/RlxGjKZdxLqvAOeb2XJCrVfD3f0HC93sOjXcSvUJsMbdvy5kf435b2taTsT89wn9w/mAUBI2NRzvP83sTUL3i7xC6BJArp2EWhYAzgSmxShHVIXVh8V4VL8k9+Xu881sCqGkdS2wAIj3csZ0YKSZLSN030tRlw/TgEfMbD+h8+O6cAw/WOim8RWEnkT93wIx7jOz+wm1QH4D/Ds8/4DzEBgWZX8HbFtIXRT2t1A7WtyHUA+5v6sJhL5grOUgkqeSPHcIJSBjCsz7O3BZlNi+AIaa2bOE7iF8mtBtAdEUq27i+XyIs+6inmtRFFmWws4Ld/+0qDjiPUfdfVRRdRDj9xpvWeUQqLNWkUKYWc3wvROY2ShClx7vLrDOxPDlyCsIfTN/18zecPfB4eXtgVvc/YoYx/kDoScll5lZO+CX7n59eNkk4A53X5WYUiZObv1Z6Cm32cAId18UdFxS+oQTgXfdvU3QsRyq8lQWSTy1hIkU7mYzG0zoW+BHwC25C8KXAf4ItDezO4AngKfM7AIibkIPf9OcaWaV/b99hRXUEahroe5Acgg9nYmZHUboibMyl4CFjTOzkwndq/OSEjARkfzUEiYiIiISAN2YLyIiIhIAJWEiIiIiAVASJiIiIhIAJWEiIiIiAVASJiIiIhIAJWEiIiIiAVASJiIiIhIAJWEiIiIiAfh/NyjuJgkNdPoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(10, 8))\n", + "plt.scatter(np.abs(kds_difference), af_mean_pae_ab)\n", + "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$')\n", + "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions')\n", + "plt.ylabel('Mean PAE (Ab part only)')\n", + "\n", + "for i, txt in enumerate(test_pdbs):\n", + " plt.annotate(txt, (np.abs(kds_difference[i]), af_mean_pae_ab[i]))\n", + "\n", + "import scipy\n", + "scipy.stats.spearmanr(np.delete(np.abs(kds_difference),11), np.delete(af_mean_pae_ab,11))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "85674efc", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAH6CAYAAADWRELjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABTPklEQVR4nO3deXxU1f3/8deHgIiCslsWNYiWHQKJoCAIKovUKiAKirhrrbbWDUXtT621FRWtaPvVahVcaNUiUnepAoJUhUACiKh1ASVgwWrY1/D5/XFv0iFMJhPI3Cy8n4/HPDJ3/5yTm8lnzj33XHN3RERERCT1alR0ACIiIiL7CyVeIiIiIhFR4iUiIiISESVeIiIiIhFR4iUiIiISESVeIiIiIhFR4iUiIiISESVeIiIiIhGpWdEBiIiIVHZmltRo4+5uqY5Fqja1eImkkJm1MbMcM9tgZlfvxfbLzeyU8l63vJR2TDObZGZ37eMxkq7DRPEUj8XMlppZ332JLUrF6yFR/OVR7+VtX+vbzL4xs4xyCyi5Y95tZtdAkFAl8yphP/PMrEOUsUvlpcRLKpWKSB4SKYd4bgRmuXs9d38owXFmmdkPZlZ7H46118JybjGzjTGv5ik4RvpebJpUHZaVu3dw91nltb8I7FYPVS3+fYnXzBoAPwKWlWtQiY/ZBDgf+HNsHGbmZnZkOG1mdmd4bndJsLvxwJ2pjViqCiVeIql1JLA00QphMtIbcOD0CGIqyU/dvW7Ma1UFxhKr1DrcT+zP9dAJ+Mzdt0V4zAuB1919S8y8DOAHd19hZgcDU4CTgO7uvijBvl4G+plZs1QFK1WHEi+ptMJvkWPMbLGZbTKzJ8zsMDN7I7zc8nb4Tbhw3ZvN7OOw5WiimR0Ys6+xZvZFuN3HZjY0ZtnhZjbVzNaa2X/N7I/h/GeAI4BXwhagG+PE2C5srcoPL6WcHrNsBtAP+GO4/Y9LKOr5wAfAJOCCUuqjxDKGMsL6WmdmzydbB4kkKmOcdbua2cLwGM8DxeMrXO8mM8sL1/vUzE4uYb096jDZeEqLJbY1M3x/Q4K662b/u8z393B53Et5JZ1PpdVlohhKqIfY+Esra3MzezGM6SuLuWSbRNkTlafE/capl6TrO47OwJJwWwvPnxVhPb5gZoeGy2qY2W0WXJZcZWY/NbPtFn5OlNGpwLvF5mUAuWZ2BPAesA44yd3XJNqRu28FFgAD9iIOqW7cXS+9Ks0LWA6cEvP+A+AwoAWwBlgIdAVqAzOA22PW/Qg4HGgIzAXuitnvWUBzgi8bI4BNQDMgDVgE/AE4mOAf1gnx4okTay3gc+AW4ACCb74bgDYx68wCLi2lzJ8DVwKZwA7gsAT1kaiMy4F5YTkbElyWuaK0OkhUztLKWCy+A4AVwLXhdsPD8txVbJ9tgG+A5uF0OtA6Qf0U1WGy8SQTS5y6jVt3Mfv6VbivYcD24uUK1y3xfEoy9kS/v6J6KEtZw9/3AuC2cN2jgC+BgUmUPVF5Eu43ib/tEssaZ9vHgFvC93eFddEsjOcfwP3hsjuB2QSfF/WB94Fv9vKzaC1wbLF5TwNzgFXAdWXc30PAA6n67NSr6rzU4iWV3cPu/h93zyP4wPvQ3XM8uOTwEkESVuiP7v6Nu38P/A44p3CBu//d3Ve5+y53fx74N9A9fDUHxrj7Jnff6u7vJRnbcUBdYJy7b3f3GcCrscctjZmdQHAJ6QV3XwB8AZybYJMSyxh6KCzn98ArBN/QgYR1UGha2IKQb2bT9qKMxxH843/Q3Xe4+xRgfpz1CggS5/ZmVsvdl7v7FwnKXPwYycSTbCyxSqq74wjuAH8o3NdUgqQhnkTnUzKxl/j7S6C0sh4LNHH3O8Pjfgk8DoxM4riJypPMfhMpS1k7AYvN7DDgl8C57r7ag5akKUCWBX2yrgUudvc8d88HphO2lO2F+gSJcawMoAOw2N0fKOP+NoT7lP2cEi+p7P4T835LnOm6MdPfxLxfQfAPAwAzO9/McgsTC6Aj0Jig9WiFu+/ci9iaE3yb3lXsuC3KsI8LgOnu/l04/VcSXG4kQRlD38a830xM/SSog0JD3L1++BoSzitLGZsDee7uxdbdjbt/DlwD3AGsMbPnLPmO/MnGk1QsxZRUd/H2Fft7iJXofEom9hJ/fwmUVtYjgeYxSXU+QavbYUkcN1F5ktlvIkmV1cyM4FxdQtAXconv3v+wMbAaOBn4PDy/CjXkf5coD7Xg7sKNZtYxZv+/M7M5ZjbFzA6K2fYHoF7MerWBdsCZQDsL73YsFuvfzWxueDn5LTNrH7O4HpBfQl3IfkSJl1Qnh8e8P4LgcgAW3IH0OPALoJG71ye4ZGcE/0CPMLOSxrRLNHbPKuBwM4v9OzoCyEsmWDOrA5wNnGhm35rZtwTf2LtYyXdIxS1jEsdKVAeJlKWMq4EW4T/K2HX34O5/dffC1j4H7kmmHGWIJ+lYkhBvX4eXsG6i82mfzpcyxhdb1m+Ar2KS6voe3Bk5OIl9JyrPvuy3LFoBu9x9BdCEoF9VrDMI+ls1JubvwczSCPppLQ5nbQZ+QtBCVrhOR4LL3L2Bt4GLY/a7GIjtl9mRoLV2DjAU+K2ZnVQslqOBPu7elyAJnRizrB3BZVvZzynxkurkKjNraWYNCT70ng/nH0zwz30tgJldRPAhCsElo9XAODM72MwONLNeMfv8D0HflXg+JOgndaOZ1bJgjKKfAs8lGe8Qgg/y9gSXMDIIPpznEHS4L0sZS5OoDhIpSxnfB3YCV5tZTTMbxu6XMgmP3cbMTgpbELYStFwWJFmOZONJKpYkvR/G94twX2ck2Fei82lfz5dE8SUq6zxgfdghvY6ZpZlZRzM7Nol9JyrPvuy3LIo61hNcQj3ezFqbWV0zu5Oghe1Jgn5iPc3saDM7hKBPVevCbcPLsGuL7bs38Eb4/g3ghJhlrwMnxkx3BT5y953uvhC4CnjBzFoBmNkBQIG7F4THWwDUN7MDwnM9E/jnvlaGVH1KvKQ6+StBn44vw9ddAO7+MXA/wT+o/xD0F5kbLisg+Od3NPA1sJKg43mhu4Ffh5dSbog9mLtvJxj+4VTgO+D/gPPd/ZMk470AmOjuX7v7t4Uv4I/AqBJaGeKWsTSJ6qCU7ZIuY7juMILb8H8gqMepcXZbGxgX7u9boClBEplMOZKKpwyxJHvMYcAlBJeKziPom7XH0AaJzqdyOF9Ki+9C4pQ1JqYM4Kvw2H8BDk1i34nKs9f7LaNOhK1W7p5N0LfxvTCWdgR3FW5293eAvwE5QDaQS9DKlah+G/C/FrR1BJcmCz0NDA5bpiG8o7Fwobs/TfD3OM2CoSXaAZ8W2/9BBEnx6QRjsFWWIVqkAtnu3QJEqiYzW05wx9fbFR1LquwPZawqzOxD4FF3n1jqylIhzOwK4Cfu/tNi8ycB4939IzP7ObDZ3Z8KL8ff4+4jY9b9PbDG3R9M4nijgCPd/ffhdDuCm2FODs+XS9z9o/Iqn1RdelajiEgpzOxEgtaM74BRBJe/3qzQoGQ3ZnYcwWXRbwg62t9J6QMSvwfcDDwFDKRYK7C7J9USG+pIMPxN4aj3j4Yx4O49yrAfqeaUeImIlK4N8ALBnXdfAMPdfXXFhiTFdAVeIxha4zPgQnf/IHYFM3ud4JJhGzP7s7tPsmAg1jkE4wSW1LcyGR2AAWGXhF3AfeHlT5Hd6FKjiIiISETUuV5EREQkIkq8RERERCJSJfp4NW7c2NPT0ys6DBEREZFSLViw4Dt3bxJvWZVIvNLT08nOzq7oMERERERKZWYlPqJMlxpFREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERPY7BQUFdO3aldNOOy3u8q+//pp+/frRtWtXOnfuzOuvv14ux1XiJfvsm2++oV+/frRr144OHTowYcIEAG677TbefvttAC688EJatWpFRkYGGRkZ5ObmVmDEIiKyv5swYQLt2rWLu2znzp3cddddnH322eTk5PDcc89x5ZVXlstxa5bLXmS/VrNmTe6//366devGhg0byMzMpH///tx55527rXffffcxfPjwCopSREQksHLlSl577TVuvfVWHnjgAQD69u1Lz549mTt3Lqeffjpmxvr16wFYt24dzZs3B+DKK69k0KBBnH766QwdOpQGDRrw5JNP8sQTT/DVV19x1113JTy2WrxknzVr1oxu3boBUK9ePdq1a0deXh4XXnghU6ZMKXG7Xbt2ccwxx7B27dqi6aOPPprvvvsukrirgtKawmMtXryY448/ng4dOtCpUye2bt0aQYRVw8UXX0zTpk3p2LFj0bxJkyaxatWqhNvFttqKSPVxzTXXcO+991Kjxu5pUH5+Pu+++y7XX389d9xxB88++ywtW7Zk8ODBPPzwwwD06dOHOXPmAJCXl8fHH38MwHvvvUfv3r1LPbYSLylXy5cvJycnhx49euyx7NZbb6Vz585ce+21bNu2jRo1anDeeecxefJkAN5++226dOlC48aNow670krUFB5r586dnHfeeTz66KMsXbqUWbNmUatWrQgi/J+yJIlRu/DCC3nzzTd3m5dM4nXnnXdyyimnpDI0EYnItJw8eo2bwWHDb+e9lTv4psaP9lhnxIgRRe//9re/ceGFF7Jy5Upef/11Ro8eza5du+jduzdz5szh448/pn379hx22GGsXr2a999/n549e5YahxIv2SuFJ3Crsa/Ra9wMpuXksXHjRs4880wefPBBDjnkkN3Wv/vuu/nkk0+YP38+33//Pffccw8QtEQ8/fTTADz55JNcdNFFkZelsipsCr/00kuL5vXt25fs7GwAvvvuO9LT0wGYPn06nTt3pkuXLgA0atSItLQ0HnnkEW688cai7SdNmsQvf/nLlMRbWn+JitSnTx8aNmxYND1lyhSys7MZNWoUGRkZzJkzp6j/YadOnTAzgFJbbUWkapiWk8fNU5eQl7+FrXkf893SuZzVrxtDh5/NjBkzOO+88wA4+OCDi7Z54oknOPvsswE4/vjj2bp1K9999x0tWrTghx9+4M0336RPnz707t2bF154gbp161KvXr1SY1HiJWUWewI7kJe/hbF/z6F3/9MYNWoUw4YN22ObZs2aYWbUrl2biy66iHnz5gFw+OGHc9hhhzFjxgw+/PBDTj311IhLU3mV1BQez2effYaZMXDgQLp168a9994LwPDhw5k6dWrRes8///xu3+jKS0lJ4i233MKJJ57IhAkTmD9/Pp07d+b4449nzJgxRZf9tm7dykUXXUSnTp3o2rUrM2fOLPf4ihs+fDhZWVlMnjyZ3NxcevfuTW5uLrm5uQwaNIgbbrgh5TGISHTue+tTtuwoAKDBiRfS8qqnaHHFk7QYNpaTTjqJZ599do9tjjjiCN555x0Ali1bxtatW2nSpAkQJGIPPvhgUeI1fvz4pC4zgjrXy16IPYEB3J2VLz/AIYc24rrrrou7zerVq2nWrBnuzrRp03bra3PppZdy3nnnMXr0aNLS0lIef2U2LSeP+976lM+z38XCpvD6bCh1u507d/Lee+8xf/58DjroIE4++WQyMzM5+eSTOeqoo/jggw845phj+PTTT+nVq1e5x12YJG7YsHushf0lADp27Mhjjz1Gz549GTt2bNE6f/rTnwBYsmQJn3zyCQMGDOCzzz7jwAMP3KeYCutyVf4WmtevwwWdDip1mxdeeIGFCxcyffr0fTq2iFQuq/K3xJ3/3cZtpJewzf33389ll13GH/7wB8yMSZMmFbWG9+7dm+nTp3P00Udz5JFH8v333yvxktQpfgJvy/uYTUtnsr1JOhkZGQD8/ve/322dUaNGsXbtWtydjIwMHn300aJlp59+OhdddNF+f5mxsCVxy44CtuZ9zKawKbxuTWfb5o2cd9551KxZk127dgHs1nm+ZcuWnHjiiUX94wYPHszChQs5+eSTGTFiBC+88AJt27Zl6NChRR8c5RFvaUliYetafn4+GzZsKOr/cO655/Lqq68CQYfUwsufbdu25cgjj+Szzz6jc+fO+xRbYV1C0Cp7z5vfsGNryZc8ly5dyu23387s2bP3+y8AItVN8/p1yIuTfLXu3INXx94MwKxZs3Zb1r59e+bOnRt3f5dccgmXXHIJALVq1WLTpk1Jx6LES8qs+Al8YMsOHHnTq7SoX4e5Y08qmj948OCi9zNmzNhtH+np6dSrV4+0tDS2b99Oly5daNu2bcLjbtu2jfPPP58FCxbQqFEjnn/+edLT05k1axbjx48v+kdeVRVvCm9w4oUA1P3+U9JXzeDZZ5/l0ksvZcGCBXTv3n23vkcDBw7k3nvvZfPmzRxwwAG8++67XHvttQAMGzaM3/3udxx55JFFfev2RkFBAVlZWbRo0YJLf/tnzh1yKof2vXiPJDH/v2v36C/h7mzZsqWoM2osd9/rmEpSvFUWYNvOAr7fuK1oul69ekUtdOvWrWPkyJE8/fTTRZcSRKT6GDOwzW5fxgDq1EpjzMA2kceiPl5SZmMGtqFOrd1bBPbmBJ45cyYjR45k06ZN3H333aWu/8QTT9CgQQM+//xzrr32Wm666aYyHa+yS9QUXuiGG27gkUceoWfPnrsNu9GgQQOuu+46jj32WDIyMujWrRs/+clPipa1b9+eFStW0L17972OL7bz/H1vfcquMGEq3l8iLS1tj/4SDRo0YMeOHUybNg2A5557rmhZnz59iu5s/eyzz/j6669p02bfPgyL1+Xal+/l22duYMvab2jZsiVPPPEEF154IVdccQUZGRlMmzaNFStWcNlllxV1sheR6mNI1xbcPawTLerXwYAW9etw97BODOnaIvJYLBXfNstbVlaWF97JJZVD8f4zYwa2KdMJnJ6eTnZ2dtGlsTVr1nDqqaeyYMECFi1aREZGBitWrOCII46gdevWLFmyhKFDh3LHHXdw/PHHs3PnTn70ox+xdu1a3n333aIWr/nz53P55Zfz4osvctRRR6Wq+CnRa9yMuE3hxVsSK8LKlSu54IILigYbXNrx56z+61ga9LuEA37Umv++/iBp9ZpQJ70L373w/7jpppuYMGEC6enpvPPOO3zxxRcMGjSIrVu3UqtWLUaPHs2SJUuYO3cuW7du5YorrmDBggXUrFmTBx54gH79+u1TvJW5LkWk+jOzBe6eFW+ZWrxkrwzp2oK5Y0/iq3E/Ye7Yk8r8rcHMGDBgAJmZmTz22GM0bdqUrVu3sn79eubMmUNWVhZz5sxhxYoVNG3alIMOOoi8vDwOP/xwIBgt/9BDD+W///1v0T7/9a9/ccUVV/CPf/yjyiVdUH4tialQ/A7L5vXrBAt2FfDdK+Op1aAFDfqMpnXnHhQUFHDcccexceNGBg8ezOOPP07Pnj356U9/yl//+lc2bdpEeno6WVnBZ9KBBx7IpEmTWLJkCTk5OfucdEHlrkuJ1tatW+nevTtdunShQ4cO3H777RUdkuzn1MdLIhPbStb4nHu49axe9GxRi/79+9O2bduiRzXMnj2bW265hTfffBN3L7pTJF7rbGFH8WXLlnH55Zczffr0osc6VDWFyeu+tCSWp0Sd58cMbMO5jxj/feuPHNy2N4f2HFGU2Iy4/YCiQVQzMzP55z//CQStZjfccAN33HEHRx55JJMmTUpZ7JWtLqXi1K5dmxkzZlC3bl127NjBCSecwKmnnspxxx1X0aHJfkqJl0Si+F1ma3cdzM1Tl3D3sE4MHTqUefPmFY0GvGLFCs444wzuuecezKzon3jLli355pugj87OnTtZt25d0aCYzZo1Y+vWreTk5FTZxAuChKEyJAel3WFZv/5NHNXkYL6rmc66rxfTtv+53HRa0F+iVq1aRQlxWlpa0eCprVq14pe//GVkz+usLHUpFcvMqFu3LgA7duxgx44dmBlffPEFV111FWvXruWggw7i8ccfp23btqxYsYKLL76YtWvX0qRJEyZOnMgRRxzBK6+8wl133cX27dtp1KgRkydP5rDDDqvg0klVpEuNEonYu8x2bd/Krm2b2bKjgHGv5DJ9+nQ6duxInz59ePbZZznmmGOoUaMGDRs25PXXXy8ad+r000/nqaeeAoKRx0866aSif/D169fntdde45ZbbtnjlmApu2QGG2xctzav/vE2fnf1+TSe9ydO65T4n1DsXYQiUSooKCAjI4OmTZvSv39/evToweWXX87DDz/MggULGD9+PFdeeSUAv/jFLzj//PNZvHgxo0aN4uqrrwbghBNO4IMPPiAnJ4eRI0cWDVIsUlZq8ZJIxN5lVrA5n7VTg6e3r9q1i9uvvZxBgwYVLe/Tpw8QfNCtXLmSBg0aAMG4KaNHj+boo4+mYcOGu90ZB3DYYYfxyiuvcOqpp/Lkk0/GfV6kJKcsgw1ed911rFu3jtGjRxfdnRjPyJEjueyyy3jooYeYMmUKrVu3Lr+ARRJIS0sjNzeX/Px8hg4dykcffcS//vUvzjrrrKJ1tm0L7h5+//33i572MHr06KJHbq1cuZIRI0awevVqtm/fTqtWraIviFQLuqtRIqG7zKoW/b6kKkt01/VvfvMbzIxHHnmE1atX77Ft48aNWb16NbVq1WLHjh00b96ctWvX0rdvX6677jpOP/10Zs2axR133KHWdSmR7mqUCqe7zKoW/b6kqir+LNmvV33LjX99n2k5eWzZsoW3336bbt260apVK/7+978DwY07ixYtAqBnz55FremTJ0/mhBNOAIJBdlu0CJK3wi4PIntDiZdEojINXiel0+9LqqriTy0o2Pg9y5++iVGDe3PsscfSv39/TjvtNCZPnswTTzxRNMzEP/7xDwAeeughJk6cSOfOnXnmmWeYMGECAHfccQdnnXUWvXv3Lhp/UGRv6FKjiIhUG63Gvka8/2oGfDXuJ1GHI/spXWoUEZH9QtHgvknOF4maEi8REak21D9RKjsNJyEiItWGnloglZ0SLxERqVb01AKpzHSpUURERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiKUu8zOxAM5tnZovMbKmZ/Sacf1Y4vcvM4j65W0RERKQ6SuUjg7YBJ7n7RjOrBbxnZm8AHwHDgD+n8NgiIiIilU7KEi93d2BjOFkrfLm7LwMws1QdWkRERKRSSmkfLzNLM7NcYA3wT3f/sAzbXm5m2WaWvXbt2pTFKCIiIhKVlCZe7l7g7hlAS6C7mXUsw7aPuXuWu2c1adIkZTGKSPTS09Pp1KkTGRkZZGWV3NVz1apVDB8+PMLIRERSK5V9vIq4e76ZzQIGEfTxEpH93MyZM2ncuHHCdZo3b86UKVMiikhEJPVSeVdjEzOrH76vA5wCfJKq44lI1fb5559zyimn0KVLF7p168YXX3zB8uXL6dgxaCjfsmULI0eOpHPnzowYMYIePXqQnZ1dwVGLiJRNKlu8mgFPmVkaQYL3gru/amZDgYeBJsBrZpbr7gNTGIeIVDJmxoABAzAzfvazn3H55ZczatQoxo4dy9ChQ9m6dSu7du1izZo1Rds88sgjHHTQQSxevJjFixfTrVu3CiyBiMjeSeVdjYuBrnHmvwS8lKrjikjlMy0nj/ve+pRV+VtoXr8O/+/PU7h4QCZr1qyhf//+tGnThry8PIYOHQrAgQceuMc+Zs+ezdVXXw1A586d6dy5c6RlEBEpD5H08RKR/de0nDxunrqELTsKAMjL38J9c7bTsEkeQ7q2YOjQobz77rtJ7UvD0IhIVadHBolISt331qdFSRfAru1b2bRxA/e99SmbNm1i+vTpdO/enZYtWzJt2jQAtm3bxubNm3fbT58+fZg8eTIAH330EYsXL46sDCIi5UUtXiKSUqvyt+w2XbA5n7VT7+JboPszB3HuuecyaNAgWrduzc9+9jNuu+02atWqxd///ndq1KhR1Mr185//nIsuuojOnTuTkZFB9+7dK6A0IiL7RomXiKRU8/p1yItJvmrV/xHNL/4jLerXYe7Yk4rmH3PMMcyYMWO3bRcsWEDDhg0BqFOnDs8991zRsr59+6Y2cBGRFNClRhFJqTED21CnVtpu8+rUSmPMwDYJt8vOzuacc87hV7/6VSrDExGJlAWPVKzcsrKyXOP1iFRdxe9qHDOwDUO6tqjosEREUsLMFrh73Mdy6FKjiKTckK4tlGiJiKBLjSIiIiKRUeIlIiIiEhElXiIiIiIRUeKVQgUFBXTt2pXTTjsNgE8++YSMjAy6du3K0qVL6d69O126dKFDhw7cfvvtRdvFrvfFF19UVPgiIiJSzpR4pdCECRNo165d0fS0adM444wzyMnJoX379syYMYNFixaRm5vLm2++yQcffLDHeq1bt66o8EVERKScKfFKkZUrV/Laa69x6aWXAvD666/z4IMP8pe//IV+/fphZtStWxeAHTt2sGPHDsxsj/VERESk+tBwEilyzTXXcO+997JhwwYABg8ezBVXXEHdunW54YYbgOBSZGZmJp9//jlXXXUVPXr0ANhjPREREake1OJVTqbl5NFr3AxajX2Ndhf8jk01DiYzMzPhNmlpaeTm5rJy5UrmzZvHRx99FFG0IiIiUhHU4lUOpuXkcfPUJWzZUQDAqs9y+XzpTJo2P5wau3awfv16zjvvPI4++ui429evX5++ffvy5ptv0rFjxyhDFxERkQipxasc3PfWp0VJF0CDEy+kxZVPcczVT/Hcc89x0kkn8eyzz+62zdq1a8nPzwdgy5YtvP3227Rt2zbKsEVERCRiavEqB6vytySYf3DcZatXr+aCCy6goKCAXbt2cfbZZxcNOyEiIiLVkx6SXQ56jZtBXpzkq0X9Oswde1IFRCQiIiIVJdFDsnWpsRyMGdiGOrXSdptXp1YaYwa2qaCIREREpDLSpcZyMKRrCyDo67UqfwvN69dhzMA2RfNFREREQIlXuRnStYUSLREREUlIlxpFREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIlKzogOQqiM9PZ169eqRlpZGzZo1yc7OruiQREREqhQlXlImM2fOpHHjxhUdhoiISJWkS42y15YtW0b37t2LppcvX07nzp3Jzs4mIyODjIwMOnXqhJnxxRdf0K1bt6J1//3vf5OZmVkRYYuIiFSYlCVeZnagmc0zs0VmttTMfhPOb2hm/zSzf4c/G6QqBilfZsaAAQPIzMzkscceo127dmzfvp0vv/wSgOeff56zzz6brKwscnNzyc3NZdCgQdxwww20bt2aQw89lNzcXAAmTpzIhRdeWHGFERERqQCpbPHaBpzk7l2ADGCQmR0HjAXecfdjgHfCaakC5s6dy8KFC3njjTf405/+xOzZszn77LN54YUXgCDxGjFiRNH6L7zwAgsXLmTcuHEAXHrppUycOJGCggKef/55zj333Aoph4iISEVJWeLlgY3hZK3w5cAZwFPh/KeAIamKQfbNtJw8eo2bQauxr9Fr3Azm/ccBaNq0KUOHDmXevHmMGDGCF154gc8++wwz45hjjgFg6dKl3H777Tz33HOkpaUBcOaZZ/LGG2/w6quvkpmZSaNGjSqsbCIiIhUhpX28zCzNzHKBNcA/3f1D4DB3Xw0Q/myayhhk70zLyePmqUvIy9+CA9+s+YEb//Yh03Ly2LRpE9OnT6djx460bt2atLQ0fvvb3xa1dq1bt46RI0fy9NNP06RJk6J9HnjggQwcOJCf//znXHTRRRVUMhERkYqT0rsa3b0AyDCz+sBLZtYx2W3N7HLgcoAjjjgiNQFKie5761O27Cgomi7YnM/yqXcx6pkapDc8kHPPPZdBgwYBMGLECMaMGcNXX30FwLRp01ixYgWXXXZZ0faFfbtGjRrF1KlTGTBgQHSFERERqSTM3aM5kNntwCbgMqCvu682s2bALHdvk2jbrKws15hR0Wo19jXinRkGfDXuJ3u93/Hjx7Nu3Tp++9vf7vU+REREKjMzW+DuWfGWpazFy8yaADvcPd/M6gCnAPcALwMXAOPCn/9IVQyy95rXr0Ne/pa48/fW0KFD+eKLL5gxY8a+hCYiIlJlpfJSYzPgKTNLI+hL9oK7v2pm7wMvmNklwNfAWSmMQfbSmIFtuHnqkt0uN9aplcaYgQkbJxN66aWXyiM0ERGRKitliZe7Lwa6xpn/X+DkVB1XyseQri2AoK/XqvwtNK9fhzED2xTNFxERkbLTI4OkREO6tlCiJSIiUo70yCARERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYlIyhIvMzvczGaa2TIzW2pmvwrndzGz981siZm9YmaHpCoGERERkcoklS1eO4Hr3b0dcBxwlZm1B/4CjHX3TsBLwJgUxiAiIiJSaaQs8XL31e6+MHy/AVgGtADaALPD1f4JnJmqGEREREQqk0j6eJlZOtAV+BD4CDg9XHQWcHgJ21xuZtlmlr127doowhQRERFJqZQnXmZWF3gRuMbd1wMXE1x2XADUA7bH287dH3P3LHfPatKkSarDFBEREUm5mqncuZnVIki6Jrv7VAB3/wQYEC7/MfCTVMYgIiIiUlmUmniZWQ2gC9Ac2AIsdff/JLGdAU8Ay9z9gZj5Td19TbjfXwOP7m3wIiIiIlVJiYmXmbUGbgJOAf4NrAUOBH5sZpuBPwNPufuuEnbRCxgNLDGz3HDeLcAxZnZVOD0VmLivhRARERGpChK1eN0FPAL8zN09doGZNQXOJUisnoq3sbu/B1gJ+55Q9lBFREREqrYSEy93PyfBsjXAg6kISERERKS6KvWuxnBIh6vMrEEUAYmIiIhUV8kMJzGSoGP9fDN7zswGhh3nRURERKQMSk283P1zd78V+DHwV+BJ4Gsz+42ZNUx1gCIiIiLVRVIDqJpZZ+B+4D6CcbmGA+uBGakLrfLKz89n+PDhtG3blnbt2vH++++XeR99+/YlOzs7BdGJiIhIZZXMOF4LgHyCMbnGuvu2cNGHZtYrhbFVWr/61a8YNGgQU6ZMYfv27WzevLmiQxIREZEqIJkWr7Pc/WR3/2tM0gWAuw9LUVyV1vr165k9ezaXXHIJAAcccAD169fn8ccf59hjj6VLly6ceeaZRcnYGWecwdNPPw3An//8Z0aNGrXb/nbt2sUFF1zAr3/962gLIiIiIpFLNIDqdTHv91geOxr9/uTLL7+kSZMmXHTRRSxatIjMzEwmTJjAsGHDuOyyywD49a9/zRNPPMEvf/lLHnvsMXr16kWrVq24//77+eCDD4r2tXPnTkaNGkXHjh259dZbK6pIIiIiEpFELV71SnntV6bl5NFr3AwG/2EW8xcsoP1JZ5KTk8PBBx/MuHHj+Oijj+jduzedOnVi8uTJLF26FIDDDjuMO++8k379+nH//ffTsOH/7kf42c9+pqRLRERkP5JoANXfRBlIZTYtJ4+bpy5hy44C0uo1Jq1uYyb+uxY/zslj+PDhjBs3jmeffZZp06bRpUsXJk2axKxZs4q2X7JkCY0aNWLVqlW77bdnz57MnDmT66+/ngMPPDDiUomIiEjUkhlAtYmZ3WJmj5nZk4WvKIKrLO5761O27CgAIK1uA2oe0pj1367gvrc+5Z133qF9+/Zs2LCBZs2asWPHDiZPnly07bx583jjjTfIyclh/PjxfPXVV0XLLrnkEgYPHsxZZ53Fzp07Iy+XiIiIRKvUuxqBfwBzgLeBgtSGUzmtyt+y23TDU67gu1fHs7ZgJ016dmHixIkcddRR9OjRgyOPPJJOnTqxYcMGtm3bxmWXXcbEiRNp3rw5999/PxdffDEzZvxvFI7rrruOdevWMXr0aCZPnkyNGkmN8CEiIiJVkBV7/vWeK5jluntGNOHEl5WV5RU55lWvcTPIK5Z8AbSoX4e5Y0+qgIhERESksjKzBe6eFW9ZMs0rr5rZ4HKOqUoZM7ANdWql7TavTq00xgxsU0ERiYiISFWUTOL1K4Lka6uZbQhf61MdWGUypGsL7h7WiRb162AELV13D+vEkK4tkt5Heno6nTp1IiMjg6ysuEnwHmbPnk23bt2oWbMmU6ZM2cvoRUREpLIotY+Xu+93Q0fEM6RrizIlWvHMnDmTxo0bJ73+EUccwaRJkxg/fvw+HVdEREQqh2Sf1Xi6mY0PX6elOqj9wZo1a8jMzARg0aJFmBlff/01AK1bt2bz5s2kp6fTuXPnPTrcz5o1ixNPPJGzzz6bH//4x4wdO5bJkyfTvXt3OnXqxBdffBF5eURERKR0yQwnMY7gcuPH4etX4TwpAzNjwIABZGZm8thjj9G0aVO2bt3K+vXrmTNnDllZWcyZM4cVK1bQtGlTDjrooIT7W7RoERMmTGDJkiU888wzfPbZZ8ybN49LL72Uhx9+OKJSiYiISFkkM5zEYCDD3XcBmNlTQA4wNpWBVTdz586lefPmrFmzhv79+9O2bVt69uzJ3LlzmT17Nrfccgtvvvkm7k7v3r1L3d+xxx5Ls2bNgKCFbMCAAQB06tSJmTNnprQsIiIisneSSbwA6gPfh+8PTU0o1cu0nDzue+tTVuVvoXn9OowZ2IYhzaFp06YMHTqUefPm0bt376JWrjPOOIN77rkHM+O000q/mlu7du2i9zVq1CiarlGjhgZjFRERqaSS6eN1N5BjZpPC1q4FwO9TG1bVVviIobz8LTjwzZofuPFvHzItJ49NmzYxffp0OnbsSJ8+fXj22Wc55phjqFGjBg0bNuT111+nV69eFV0EERERSYFk7mr8m5nNAo4FDLjJ3b9NdWBVWewjhgAKNuezfOpdjHqmBukND+Tcc89l0KBBRcv79OkDwAknnMDKlStp0KABAPPnz2fo0KH88MMPvPLKK9x+++1FD98WERGRqqfUkesrg4oeub6sWo19jXi1asBX434SdTgiIiISoX0duV7KqHn9OmWaLyIiIvsHJV4poEcMiYiISDzJjOPV2sxqh+/7mtnVZlY/5ZFVYeXxiCERERGpfkrt42VmuUAWkA68BbwMtHH3yB6cXdX6eImIiMj+a1/7eO1y953AUOBBd78WaFaeAYqIiIjsD5JJvHaY2TnABcCr4bxaqQtJREREpHpKJvG6CDge+J27f2VmrYBnUxuWiIiISPWTzCOD6rj71YUTYfKlUTxFREREyiiZFq/HzaxT4UR42fHXqQtJREREpHpKpsVrODDFzEYBJwDnAwNSGpWIiIhINZTMsxq/NLORwDTgG2CAu29JdWAiIiIi1U2JiZeZLYHdHjnYEEgDPjQz3L1zqoMTERERqU4StXidFlkUIiIiIvuBEjvXu/sKd19BMFjq9zHT3wM/iipAERERkeoimbsaHwE2xkxvCueJiIiISBkkk3iZxzzQ0d13kdzdkCIiIiISI5nE60szu9rMaoWvXwFfpjowERERkeommcTrCqAnkBe+egCXpzIoERERkeoomXG81gAjI4hFREREpFortcXLzFqa2UtmtsbM/mNmL5pZyyS2O9zMZprZMjNbGl6ixMwyzOwDM8s1s2wz614eBRERERGp7JK51DgReBloDrQAXgnnlWYncL27twOOA64ys/bAvcBv3D0DuC2cFhEREan2kkm8mrj7RHffGb4mAU1K28jdV7v7wvD9BmAZQeLmwCHhaocCq/YqchEREZEqJplhIb4zs/OAv4XT5wD/LctBzCwd6Ap8CFwDvGVm4wkSv55l2ZeIiIhIVZVMi9fFwNnAt8BqYHg4LylmVhd4EbjG3dcDPweudffDgWuBJ0rY7vKwD1j22rVrkz2ciIiISKVlMWOjlv/OzWoBrwJvufsD4bx1QH13dzMzYJ27H5JoP1lZWZ6dnZ2yOEVERETKi5ktcPeseMtKvNRoZg8T9MeKy92vLuWgRtCataww6QqtAk4EZgEnAf9OtB8RERGR6iJRH699bWLqBYwGlphZbjjvFuAyYIKZ1QS2osFYRUREZD9RYuLl7k/FTpvZIcFs35DMjt39PcBKWJyZdIQiIiIi1UQyA6hmmdkSYDHwkZktMjMlTiIiIiJllMxwEk8CV7r7HAAzO4FgANXOqQxMREREpLpJZjiJDYVJFxRdQkzqcqOIiIiI/E+iuxq7hW/nmdmfCQZQdWAEwR2JIiIiIlIGiS413l9s+vaY96kb/EtERESkmkp0V2O/KAMRERERqe6S6eNVxMxeTVUgIiIiItVdmRIvoEVKohARERHZD5SYeJnZWeHPVjGzc1IekYiIiEg1lajF6+bw54uFM9z94tSGIyIiIlJ9Jbqr8Xszmwm0MrOXiy9099NTF5aIiIhI9ZMo8RoMdAOeYc+hJURERESkjBIlXk+4+2gze9zd340sIhEREZFqKlEfr0wzOxIYZWYNzKxh7CuqAEVERESqi0QtXo8CbwJHAQuLLfNwvoiIiIgkqcQWL3d/yN3bAU+6e6tiLyVdIiIiImWUqMWr0N/N7BcErVxL3X1WakMSERERqZ5KTLzMrAUwFdgKLAAMONvM6gBD3T0vmhBFREREqodELV5/BB5x90mxM83sfOD/gDNSGJeIiIhItZPorsb2xZMuAHd/GmibsohEREREqqlEiVdavJlmVqOkZSIiIiJSskSJ1ytm9riZHVw4I3z/KPB6yiMTERERqWYSJV43AuuAFWa2wMyygeXAeuCGCGITERERqVZK7Fzv7juAG8zs/wFHE9zV+Lm7b44qOBEREZHqpMQWLzM7AcDdt7j7EndfHJt0mdkhZtYxiiBFREREqoNEw0mcaWb3Ejw2aAGwFjiQoPWrH3AkcH3KIxQRERGpJhJdarzWzBoAw4GzgGbAFmAZ8Gd3fy+aEEVERESqh4SPDHL3H4DHw5eIiIiI7INEdzWKiIiISDlS4iUiIiISESVeIiIiIhFJNJzEjTHvzyq27PepDEpERESkOkrU4jUy5v3NxZYNSkEsIiIiItVaosTLSngfb1pERERESpEo8fIS3sebFhEREZFSJBrHq4uZrSdo3aoTviecPjDlkYmIiIhUM4lGrk+LMhARERGR6q5Mw0mY2cFmNsrMXktVQCIiIiLVVamJl5kdYGZDzOwFYDVwCvBoyiMTERERqWZKvNRoZv2Bc4CBwEzgGaC7u18UUWwiIiIi1UqizvVvAXOAE9z9KwAzmxBJVCIiIiLVUKLEK5NgENW3zexL4DlAHe5FRERE9lKJfbzcPcfdb3L31sAdQFfgADN7w8wujypAERERqbq++eYb+vXrR7t27ejQoQMTJiR38Wz+/PmkpaUxZcqUonnp6el06tSJjIwMsrKyUhVySiVq8cLMugKtgaXu/gszuxroT9AS9lgp2x4OPA38CNgFPObuE8zseaBNuFp9IN/dM/alECIiIlI51axZk/vvv59u3bqxYcMGMjMz6d+/P+3bty9xm4KCAm666SYGDhy4x7KZM2fSuHHjVIacUokekn0b8DxwJvCamV3m7rvc/a0kO9jvBK5393bAccBVZtbe3Ue4e0aYbL0ITN33YoiIiEhl1KxZM7p16wZAvXr1aNeuHXl5efTt25drrrmGnj170rFjR+bNm1e0zcMPP8yZZ55J06ZNKyrslEk0nMQIIMPdzwGOBcp0edHdV7v7wvD9BmAZ0KJwuZkZcDbwt7IGLSIiIlXP8uXLycnJoUePHgBs2rSJf/3rX/zf//0fF198MQB5eXm89NJLXHHFFXtsb2YMGDCAzMxMHnss4YW3SivRpcat7r4ZwN3/a2ZlGmw1lpmlE/QR+zBmdm/gP+7+7xK2uZww2TviiCP29tAiIiISsWk5edz31qesyt9C8/p1GDOwDacccyhnnnkmDz74IIcccggA55xzDgB9+vRh/fr15Ofnc80113DPPfeQlrbn/Xxz586lefPmrFmzhv79+9O2bVv69OkTadn2VaLEq7WZvRy+t2LTuPvpyRzAzOoSXFK8xt3Xxyw6hwStXe7+GGE/sqysLD2UW0REpAqYlpPHzVOXsGVHAQB5+VsY+/cc6swcz+hRoxg2bFjRusHFL3abzs7OZuTIkQB89913vP7669SsWZMhQ4bQvHlzAJo2bcrQoUOZN29etUq8zig2Pb6sOzezWgRJ12R3nxozvyYwjGDIChEREakm7nvr06KkC8DdWfnyAxxyaCOuu+663dZ9/vnn6devH++99x6HHnoohx56KF999VXR8gsvvJDTTjuNIUOGsGnTJnbt2kW9evXYtGkT06dP57bbbousXOUl0UOy392XHYd9uJ4Alrn7A8UWnwJ84u4r9+UYIiIiUrmsyt+y2/S2vI/ZtHQm25ukk5GRAcDvf/97ABo0aEDPnj1Zv349Tz75ZML9/uc//2Ho0KEA7Ny5k3PPPZdBgwaVfwFSzNxTcxXPzE4gGPl+CcFwEgC3uPvrZjYJ+MDdk3rmY1ZWlmdnZ6ckThERESk/vcbNIK9Y8gXQon4d5o49qWi6b9++jB8/vsqOx5WImS1w97gFSziO175w9/cI+obFW3Zhqo4rIiIiFWfMwDa79fECqFMrjTED2yTYav9RauJlZge6+9Zi8xq7+3epC0tERESqoiFdg5Gjit/VWDi/0KxZsyoguoqXTIvX/HDw1A8AzOxM4G7gxymNTERERKqkIV1b7JFoSSCZxOtc4EkzmwU0BxoBJyXcQkRERET2UGri5e5LzOx3wDPABqCP7kYUERERKbtk+ng9QfCg7M4ElxdfMbM/uvufUh2ciIiISHWSzGOAPgL6uftX7v4WwQOvu6U2LBEREZHqJ5lLjX8oNr0OuCRlEYmIiIhUU8lcajyG4C7G9sCBhfPd/agUxiUiIiJS7SRzqXEi8AiwE+gHPE3Q0V5EREREyiCZxKuOu79D8HihFe5+BxpOQkRERKTMkhnHa6uZ1QD+bWa/APKApqkNS0RERKT6SabF6xrgIOBqIBMYDVyQwphEREREqqVk7mqcH77dCFyU2nBEREREqq8SEy8zeznRhu5+evmHIyIiIlJ9JWrxOh74Bvgb8CFgkUQkIiIiUk0lSrx+BPQHziF4UPZrwN/cfWkUgYmIiIhUNyV2rnf3And/090vIHhM0OfALDP7ZWTRiYiIiFQjCTvXm1lt4CcErV7pwEPA1NSHJSIiIlL9JOpc/xTQEXgD+I27fxRZVCIiIiLVUKIWr9HAJuDHwNVmRX3rDXB3PyTFsYmIiIhUKyUmXu6ezOCqIiIiIpIkJVciIiIiEVHiJSIiIhIRJV4iIiIiEVHiJSIiIhIRJV4iIiIiEVHiJSIiIhIRJV4iIiIiEVHiJSIiIhIRJV4iIiIiEVHiJSIiIhIRJV4iIiIiEVHiJSIiIhIRJV4iIiIiEVHiJSIiIhIRJV4ioa1bt9K9e3e6dOlChw4duP3220vd5uGHH6ZNmzZ06NCBG2+8EYBZs2Zx2mmnpTpcERGpgmpWdAAilUXt2rWZMWMGdevWZceOHZxwwgmceuqpHHfccXHXnzlzJv/4xz9YvHgxtWvXZs2aNRFHLCIiVY1avERCZkbdunUB2LFjBzt27MDMyM3N5bjjjqNz584MHTqUH374AYBHHnmEsWPHUrt2bQCaNm1aYbGLiEjVoMRLJEZBQQEZGRk0bdqU/v3706NHD84//3zuueceFi9eTKdOnfjNb34DwGeffcacOXPo0aMHJ554IvPnz6/g6EVEpLJT4iUSIy0tjdzcXFauXMm8efNYtGgR+fn5nHjiiQBccMEFzJ49G4CdO3fyww8/8MEHH3Dfffdx9tln4+4VGb6IiFRy6uMl+7VpOXnc99anrMrfQvP6dRgzsA1Duragfv369O3bl2nTppW4bcuWLRk2bBhmRvfu3alRowbfffdddMGLiEiVoxYv2W9Ny8nj5qlLyMvfggNfr/qWG//6PtNy8tiyZQtvv/02mZmZNGjQgDlz5gDwzDPPFLV+DRkyhBkzZgDBZcft27fTuHHjiiqOiIhUAWrxkv3WfW99ypYdBUXTBRu/Z/nzf2DUs06rRgdx9tlnc9ppp9GyZUuuuOIKNm/ezFFHHcXEiRMBuPjii7n44ovp2LEjBxxwAE899RRmVlHFERGRKsBS1SfFzA4HngZ+BOwCHnP3CeGyXwK/AHYCr7n7jYn2lZWV5dnZ2SmJU/Zfrca+Rryz34Cvxv0k6nBERKSaMLMF7p4Vb1kqW7x2Ate7+0IzqwcsMLN/AocBZwCd3X2bmekefKkQzevXIS9/S9z5IiIiqZCyPl7uvtrdF4bvNwDLgBbAz4Fx7r4tXKZRJ6VCjBnYhjq10nabV6dWGmMGtqmgiEREpLqLpHO9maUDXYEPgR8Dvc3sQzN718yOLWGby80s28yy165dG0WYsp8Z0rUFdw/rRIv6dTCgRf063D2sE0O6tqjo0EREpJpKWR+vogOY1QXeBX7n7lPN7CNgBvAr4FjgeeAoTxCI+niJiIhIVZGoj1dKW7zMrBbwIjDZ3aeGs1cCUz0wj6Djve7BFxERkWovZYmXBffVPwEsc/cHYhZNA04K1/kxcACgUSdFRESk2kvlXY29gNHAEjPLDefdAjwJPBlectwOXJDoMqOIiIhIdZGyxMvd3yMYEime81J1XBEREZHKSo8MEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiKQs8TKzw81sppktM7OlZvarcP4dZpZnZrnha3CqYhARERGpTGqmcN87gevdfaGZ1QMWmNk/w2V/cPfxKTy2iIiISKWTssTL3VcDq8P3G8xsGdAiVccTERERqewi6eNlZulAV+DDcNYvzGyxmT1pZg1K2OZyM8s2s+y1a9dGEaaIiIhISqU88TKzusCLwDXuvh54BGgNZBC0iN0fbzt3f8zds9w9q0mTJqkOU0RERCTlUpp4mVktgqRrsrtPBXD3/7h7gbvvAh4HuqcyBhEREZHKIpV3NRrwBLDM3R+Imd8sZrWhwEepikFERESkMknlXY29gNHAEjPLDefdApxjZhmAA8uBn6UwBhEREZFKI5V3Nb4HWJxFr6fqmCIiIiKVmUauFxEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYlIyhIvMzvczGaa2TIzW2pmvyq2/AYzczNrnKoYyuqbb76hX79+tGvXjg4dOjBhwoS4602aNIkmTZqQkZFBRkYGf/nLX4qWff311wwYMIB27drRvn17li9fHlH0IiIiUtnVTOG+dwLXu/tCM6sHLDCzf7r7x2Z2ONAf+DqFxy+zmjVrcv/999OtWzc2bNhAZmYm/fv3p3379kXr7Ny5E4ARI0bwxz/+cY99nH/++dx6663079+fjRs3UqOGGhVFREQkkLLEy91XA6vD9xvMbBnQAvgY+ANwI/CPVB1/bzRr1oxmzZoBUK9ePdq1a0deXh5XXnklPXv2ZO7cuZx++uk0atQo7vYff/wxO3fupH///gDUrVs3sthFRESk8oukOcbM0oGuwIdmdjqQ5+6LStnmcjPLNrPstWvXRhHmbpYvX05OTg49evQAID8/n3fffZfrr78egBdffJHOnTszfPhwvvnmGwA+++wz6tevz7Bhw+jatStjxoyhoKAg8thFRESkckp54mVmdYEXgWsILj/eCtxW2nbu/pi7Z7l7VpMmTVIbZDEbN27kzDPP5MEHH+SQQw4BgkuLhX7605+yfPlyFi9ezCmnnMIFF1wABJch58yZw/jx45k/fz5ffvklkyZNijR2ERERqbxSmniZWS2CpGuyu08FWgOtgEVmthxoCSw0sx+lMo5EpuXk0WvcDFqNfY1e42YwZd5yzjzzTEaNGsWwYcOK1jv44IOL3jdq1IjatWsDcNlll7FgwQIAWrZsSdeuXTnqqKOoWbMmQ4YMYeHChdEWSERERCqtVN7VaMATwDJ3fwDA3Ze4e1N3T3f3dGAl0M3dv01VHIlMy8nj5qlLyMvfggMrf9jMJZdeygGNDue6664rcbvVq1cXvX/55Zdp164dAMceeyw//PADhZdGZ8yYsVvHfBEREdm/pfKuxl7AaGCJmeWG825x99dTeMwyue+tT9my4399sLblfcz6Je8wY20rMjIyAPj973+/x3YPPfQQL7/8MjVr1qRhw4ZFlxPT0tIYP348J598Mu5OZmYml112WRRFERERkSrA3L2iYyhVVlaWZ2dnl/t+W419jXilN+CrcT8p9+OJiIhI9WdmC9w9K96y/XqQqeb165RpvoiIiMi+2K8TrzED21CnVtpu8+rUSmPMwDYVFJGIiIhUZ6ns41XpDenaAgj6eq3K30Lz+nUYM7BN0XwRERGR8rRfJ14QJF9KtERERCQK+/WlRhEREZEoKfESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYi5e0XHUCozWwusiJnVGPiugsLZn6ieo6O6jo7qOhqq5+iorqNRlno+0t2bxFtQJRKv4sws292zKjqO6k71HB3VdXRU19FQPUdHdR2N8qpnXWoUERERiYgSLxEREZGIVNXE67GKDmA/oXqOjuo6OqrraKieo6O6jka51HOV7OMlIiIiUhVV1RYvERERkSpHiZeIiIhIRCpt4mVmg8zsUzP73MzGxlluZvZQuHyxmXWriDirgyTquq2ZvW9m28zshoqIsbpIoq5HhefzYjP7l5l1qYg4q7ok6vmMsI5zzSzbzE6oiDirg9LqOma9Y82swMyGRxlfdZHEOd3XzNaF53Sumd1WEXFWB8mc02F955rZUjN7t0wHcPdK9wLSgC+Ao4ADgEVA+2LrDAbeAAw4DviwouOuiq8k67opcCzwO+CGio65qr6SrOueQIPw/ak6r1NWz3X5Xx/XzsAnFR13VXwlU9cx680AXgeGV3TcVe2V5DndF3i1omOt6q8k67o+8DFwRDjdtCzHqKwtXt2Bz939S3ffDjwHnFFsnTOApz3wAVDfzJpFHWg1UGpdu/sad58P7KiIAKuRZOr6X+7+Qzj5AdAy4hirg2TqeaOHn5jAwYDuMto7yXxWA/wSeBFYE2Vw1Uiy9Sz7Lpm6PheY6u5fQ/A/siwHqKyJVwvgm5jpleG8sq4jpVM9RqesdX0JQauulE1S9WxmQ83sE+A14OKIYqtuSq1rM2sBDAUejTCu6ibZz47jzWyRmb1hZh2iCa3aSaaufww0MLNZZrbAzM4vywFq7mOAqWJx5hX/RprMOlI61WN0kq5rM+tHkHip71HZJVXP7v4S8JKZ9QF+C5yS6sCqoWTq+kHgJncvMIu3uiQhmXpeSPB8wI1mNhiYBhyT6sCqoWTquiaQCZwM1AHeN7MP3P2zZA5QWROvlcDhMdMtgVV7sY6UTvUYnaTq2sw6A38BTnX3/0YUW3VSpnPa3WebWWsza+zuetBw2SRT11nAc2HS1RgYbGY73X1aJBFWD6XWs7uvj3n/upn9n87pvZJs/vGdu28CNpnZbKALkFTiVVkvNc4HjjGzVmZ2ADASeLnYOi8D54d3Nx4HrHP31VEHWg0kU9dSPkqtazM7ApgKjE7225PsIZl6PtrCTCC8I/oAQElu2ZVa1+7eyt3T3T0dmAJcqaSrzJI5p38Uc053J/j/rnO67JL5n/gPoLeZ1TSzg4AewLJkD1ApW7zcfaeZ/QJ4i+AOgyfdfamZXREuf5Tg7pjBwOfAZuCiioq3Kkumrs3sR0A2cAiwy8yuIbjLY31J+5U9JXle3wY0Av4v/Azd6e5ZFRVzVZRkPZ9J8MVtB7AFGBHT2V6SlGRdyz5Ksp6HAz83s50E5/RIndNll0xdu/syM3sTWAzsAv7i7h8leww9MkhEREQkIpX1UqOIiIhItaPES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIlIpB1AVqQ7MLOEgee6uB9eJiOxnNICqiIiISER0qbGaM7MCM8s1s6VmtsjMrjOzGuGyf8Wsd7WZLTOzybHvKy7yvVdS/GZ2ipk9k+Jj1zGzd80sLZz+mZk9Gr6vZWbPmNlTZlYrzrYHmNlsM4vbEl0Zfy+x59C+rJNg241lWLe+mV25t8dK9f6iYGZ3mNkNceZHeu6Y2VAzczNrW2x+wt+nmaWbWdKPXonZrvBzrvCVnmDduDEUrzszW17WOMpDnDhK/PuJd47uy9+bREOJV/W3xd0z3L0D0J/g+Za3A7h7z5j1rgQGu/uoYu9LFT6ovDKdSyXF3wVYlOJjXwxMdfeCcLozsNjMDgHeAL529wvcfUfxDd19O/AOMKKEfcctV0XUf+Exi51DcSWzTjmpT1BHe9jLOipxfyWphH8LhaI+d84B3iN4wHAUCj/nCl/LIzpuUvalnkv5+6lPsXM0wr832UuV8QNCUsTd1wCXA78IPwg2AoQtMkcBL5vZtpj314bLzzOzeeE3yT+bWVr4zXSZmf0fsBA4vJT1Hg9b3aabWZ3CmMzsfDNbbEFr3DMlHS9eeSxovfsofF0TpyzXFtukC5Abrtc2bF1aamZvm1njcH67cP5iMxtjZp+XsZpHETy5vlAn4HtgFvB3d7+1lO2nhfsoXtbdylVC/cerj3Qz+8TM/hLOn2xBy99cM/u3mXWPF0SCfRU/5saYbf5feKx/mtnfCr+1x5xnJZ4LZjbNzBaE8y9PVEFmdrCZvRaeMx+ZWWGiOg5oHZ4398WJt7fFtKaY2Q1mdkf4fo/zsNj+/p5g22T/FkqKO7ZsceuhlLq71cw+NbO3gTZx9hn1uVMX6AVcQgmJV8y+nwrrfYqZHRQuTtvXcyRcf48yxVknUd2tTfJ3FrcsyZ4XpcUR8/dT2jl6X+z6JdVBSedSMmWVcuLuelXjF7AxzrwfgMNilwHLgcZx3rcDXgFqhdP/B5wPpBM8lf24JNbbCWSE818AzgvfdwA+jTlWw5L2E6cMmcAS4GCgLrAU6Fo8/mLbLAKaALWLrX8T8DuCm00Wxsx/BJhWhro+APg2Tl2vBX6a5D7SgLUlLIv9vRSv/7j1EVP/nQi+aC0AngQMOCNe+UrZV9ExY88vIIsgqa0D1AP+DdxQbJ1E50LD8Gcd4COgUYLz90zg8ZjpQ2P2/1HM/OJ1VHz5DcAdxDkPi69f0rYlHKekv4W4cRcrW0n1ELfuYn5XBwGHAJ8X1ntFnDvh/s4Dngjf/wvoFud8SQcc6BVOPxnWadxyJqqbcF4BwfmXC7xUUpmKxVBq3SX5O0tUlmTOi4RxABtJ4hyNU8el/V6Ln0ulllWv8nmpxWv/VJa76U4m+AOeb2a54fRR4bIV7v5BEut95e654fsFBH/4ACcBU9z9OwB3/76U/cQ6AXjJ3Te5+0ZgKtC7pEJY0KfqEHdfCwwB3nP3nHDxx0BTYBiwqNj8slyabAzkxxzzcIIPzSVAs2R24MElyu1mVi+J1WPrP1F9fOXuS9x9F8GH7zsefLIu4X+/i1iJ9hV7zOLb/MPdt7j7BoJ/MPGUdC5cbWaLgA+Aw4FjEpR7CXCKmd1jZr3dfV2CdUuKN1a887CskvlbSCbuRPUQr+56E/yuNrv7euDlvYi3PM8dCC4zPhe+fy6cjucbd58bvn82jKOkckLiuom91Di0lDIVSqbukj3XSipLMudFMnHszTla2u81N3xfWMdl+buSfaDhJPYzZnYUwbfDNcluAjzl7jcX2086sCnJ9bbFzCog+MZauE3x22rj7qeEuMqiPbAs5v2SmGWdCJKszoSXIkMdgTehqN5uJfgWONzMDib4xrodmOXuk4EtwIEx23cmSNwuAz4ws/mFSZ2ZzQc+JPiGO9PdJ8ZsVxvYmkSZitd/SWLrf1fM9C7ifwYk2temEuYn+/vY41wws77AKcDx7r7ZzGaxez3uxt0/M7NMgv6Kd5vZdHe/M4l4d7J794rCY8Q7D4sradt4xynxHE4UdxL1UNLf0d7cmp6Sc8fMGhEkCR0tGE4lDXAzuzFM2GKVNL3P5wjJn4+lDfmS7LlWUlmS+Yy8prQ4SO4cjbdNSfao4zL+Xck+UIvXfsTMmgCPAn+M8yFYkneA4WbWNNxHQzM7ch/WK77N2eGHNWbWsAz7mQ0MCftSHAwMBeYkOFZR/y4gjyD5KkyoRgNPA/8FfhzOzyBofl8E4O5fuvslMfsbRvAN9DLg9HCdHwj6pxT+Q+gELHH31cClwPNmdmjYEvahu//C3c8HRsf09WhEcKlxj873pShrfZT3vt4DfmpmB1rQx+cnZTjeocAP4T/UtsBxiVY2s+bAZnd/FhgPdAsXbSC4zFmS/wBNzayRmdUGTgvnxzsPi++vpG3jiXsOJ4i7UJnqITQbGBr20akH/DSJbeLto7zOneHA0+5+pLunu/vhwFf8rwUo1hFmdnz4vrAzfknKWjfJlKnUukvid1aWspT02ZbM7zCZc7S4Mv1ey1BW2Udq8ar+6oTN2rUIvrU/AzyQ7Mbu/rGZ/RqYbsFdOTuAq4Bv92a9YtssNbPfAe+aWQGQ4+4XlrCfFcW2XWhmk4B54ay/xFwijKdLzLrPAIPNbAlBK9XF7v5fCzqsvha2Rr0PLHf3L0vYX0v+12pWEDN/OsE/mbcJEq/Xwnj/aWYvEPT/eIageb/QZoIWBIB+wOsJyhFXSfVhCW6rL899uft8M3uZIFFdAWQDyV6qeBO4wswWE/RjKe3SYCfgPjPbRXB+/DyM4b8WdPz+iOAO0j8Vi3GHmd1J0NL4FfBJOH+P8xC4MM7+9ti2hLoo6W/h0Hhx70M9FP6unif4UrGCvUiYyvPcIUg6xhWb9yJwbpzYlgEXmNmfCfoEPkJwyT+eMtVNMp8PSdZd3HMtjlLLUtJ54e4flBZHsueou48prQ4S/F6TLavsIw2gKhIys7phXwjMbAzBZcVfF1tnSnipcTTBN/BXzew5dx8ZLu8KXOfuoxMc57cEdzguNrMuwM/c/cpw2VTgZnf/NDWlTJ3C+rPg7rTZwOXuvrCi45LKJ/zn/6q7d6zoWPZVdSqLREMtXiL/c62ZjST4tjcXuK5wQdjE/zugq5ndDDwE/NHMfkJMR/LwG+VMM0vz/43lVVwm0MiCoTsKCO6qxMwOILhTrMolXaHHzKw9Qd+bp5R0iYjsSS1eIiIiIhFR53oRERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYnI/wfnEkQQQ2KkdwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(10, 8))\n", + "plt.scatter(np.abs(kds_difference), af_max_pae_off_blocks)\n", + "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$')\n", + "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions')\n", + "plt.ylabel('Max PAE (Off-blocks only)')\n", + "\n", + "for i, txt in enumerate(test_pdbs):\n", + " plt.annotate(txt, (np.abs(kds_difference[i]), af_max_pae_off_blocks[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a6121417", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAH6CAYAAADWRELjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABRWUlEQVR4nO3deXxU1f3/8deHgBqFGlYLQUVR2SEhEREFEWXRWgVEUVFBxLXWqpUWl5+21m9FwVbU1qpVcaF1oYi2UqQKCm5lS9hUXNkCCqiRHUn4/P6YSToJM5MJZG6S4f18POaRufvnnNxMPnPuueeauyMiIiIiyVenugMQERER2V8o8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJSN3qDkBERKSmM7OERht3d0t2LFK7qcVLJInMrI2Z5ZnZZjO7fi+2X2Fmp1f1ulWlomOa2UQzu3sfj5FwHcaLp3wsZrbMzHrvS2xBKl8P8eKvinqvavta32a22syyqiygxI55j5ndAKGEKpFXjP3MNbMOQcYuNZcSL6lRqiN5iKcK4vkV8Ja7N3D3B+Mc5y0z+87MDtyHY+21cDm3m9mWiFeLJByj1V5smlAdVpa7d3D3t6pqfwEoUw+1Lf59idfMGgI/Bj6q0qDiH7MpcCnwaGQcZuZmdmR42szsrvC53SXO7sYDdyU3YqktlHiJJNeRwLJ4K4STkZ6AA2cHEFMsP3X3+hGvtdUYS6QK63A/sT/XQyfgE3ffGeAxRwDT3H17xLws4Dt3X2lmhwCTgT5AN3dfFGdfrwKnmlnzZAUrtYcSL6mxwt8iR5vZYjPbamZPmNlhZvbv8OWWN8LfhEvWvcXMPgy3HD1lZgdF7GuMmX0e3u5DMxsUsexwM5tiZhvM7Bszezg8/1ngCOCf4RagX0WJsV24taowfCnl7IhlM4FTgYfD2x8Xo6iXAh8AE4HhFdRHzDKGZYXr63szeyHROognXhmjrJttZgvDx3gBKB9fyXq/NrOC8HrLzey0GOvtUYeJxlNRLJGtmeH3N8epu672v8t8L4WXR72UF+t8qqgu48UQox4i46+orC3M7B/hmL60iEu2CZQ9Xnli7jdKvSRc31F0BpaEt7Xw+bMyXI8vmtmh4WV1zOwOC12WXGtmPzWzHyz8OVFJZwBvl5uXBeSb2RHAO8D3QB93Xx9vR+6+A1gA9NuLOCTVuLteetWYF7ACOD3i/QfAYUAmsB5YCGQDBwIzgTsj1l0KHA40At4F7o7Y73lAC0JfNoYCW4HmQBqwCPgjcAihf1gnR4snSqz1gM+AW4EDCH3z3Qy0iVjnLWBUBWX+DLgWyAF2AYfFqY94ZVwBzA2XsxGhyzJXV1QH8cpZURnLxXcAsBK4MbzdkHB57i63zzbAaqBFeLoV0DpO/ZTWYaLxJBJLlLqNWncR+/pFeF+DgR/Klyu8bszzKcHY4/3+SuuhMmUN/74XAHeE1z0a+ALon0DZ45Un7n4T+NuOWdYo2z4G3Bp+f3e4LpqH43kFuD+87C5gNqHPiwzgfWD1Xn4WbQCOLzfvGWAOsBa4qZL7exD4Q7I+O/WqPS+1eElN95C7f+3uBYQ+8P7r7nkeuuTwMqEkrMTD7r7a3b8F/g+4sGSBu7/k7mvdfbe7vwB8CnQLv1oAo919q7vvcPd3EoytO1AfGOvuP7j7TOBfkcetiJmdTOgS0ovuvgD4HLgoziYxyxj2YLic3wL/JPQNHYhbByWmhlsQCs1s6l6UsTuhf/wPuPsud58MzIuyXjGhxLm9mdVz9xXu/nmcMpc/RiLxJBpLpFh1153QHeAPhvc1hVDSEE288ymR2GP+/uKoqKzHA03d/a7wcb8AHgcuSOC48cqTyH7jqUxZOwGLzeww4OfARe6+zkMtSZOBXAv1yboRGOnuBe5eCMwg3FK2FzIIJcaRsoAOwGJ3/0Ml97c5vE/Zzynxkpru64j326NM14+YXh3xfiWhfxgAmNmlZpZfklgAHYEmhFqPVrp70V7E1oLQt+nd5Y6bWYl9DAdmuPvG8PTfiHO5kThlDPsq4v02IuonTh2UGOjuGeHXwPC8ypSxBVDg7l5u3TLc/TPgBuA3wHoze94S78ifaDwJxVJOrLqLtq/I30OkeOdTIrHH/P3FUVFZjwRaRCTVhYRa3Q5L4LjxypPIfuNJqKxmZoTO1SWE+kIu8bL9D5sA64DTgM/C51eJRvzvEuWhFrq7cIuZdYzY//+Z2Rwzm2xmB0ds+x3QIGK9A4F2wLlAOwvf7Vgu1pfM7N3w5eTXzax9xOIGQGGMupD9iBIvSSWHR7w/gtDlACx0B9LjwHVAY3fPIHTJzgj9Az3CzGKNaRdv7J61wOFmFvl3dARQkEiwZpYOnA+cYmZfmdlXhL6xd7HYd0hFLWMCx4pXB/FUpozrgMzwP8rIdffg7n9z95LWPgfuTaQclYgn4VgSEG1fh8dYN975tE/nSyXjiyzrauDLiKQ6w0N3Rp6ZwL7jlWdf9lsZRwG73X0l0JRQv6pI5xDqb9WEiL8HM0sj1E9rcXjWNuAnhFrIStbpSOgyd0/gDWBkxH4XA5H9MjsSaq2dAwwCfmdmfcrFcgzQy917E0pCn4pY1o7QZVvZzynxklTyMzNraWaNCH3ovRCefwihf+4bAMzsMkIfohC6ZLQOGGtmh5jZQWZ2UsQ+vybUdyWa/xLqJ/UrM6tnoTGKfgo8n2C8Awl9kLcndAkji9CH8xxCHe4rU8aKxKuDeCpTxveBIuB6M6trZoMpeymT8LHbmFmfcAvCDkItl8UJliPReBKKJUHvh+O7Lryvc+LsK975tK/nS7z44pV1LrAp3CE93czSzKyjmR2fwL7jlWdf9lsZpR3rCV1CPdHMWptZfTO7i1AL25OE+on1MLNjzOxHhPpUtS7ZNnwZdkO5ffcE/h1+/2/g5Ihl04BTIqazgaXuXuTuC4GfAS+a2VEAZnYAUOzuxeHjLQAyzOyA8LmeA/xnXytDaj8lXpJK/kaoT8cX4dfdAO7+IXA/oX9QXxPqL/JueFkxoX9+xwCrgDWEOp6XuAe4PXwp5ebIg7n7D4SGfzgD2Aj8GbjU3T9OMN7hwFPuvsrdvyp5AQ8Dw2K0MkQtY0Xi1UEF2yVcxvC6gwndhv8doXqcEmW3BwJjw/v7CmhGKIlMpBwJxVOJWBI95mDgckKXii4m1Ddrj6EN4p1PVXC+VBTfCKKUNSKmLODL8LH/ChyawL7jlWev91tJnQi3Wrn7fEJ9G98Jx9KO0F2F29z9TeDvQB4wH8gn1MoVr34b8r8WtO8JXZos8QxwZrhlGsJ3NJYsdPdnCP09TrXQ0BLtgOXl9n8woaT4bEJjsNWUIVqkGlnZbgEitZOZrSB0x9cb1R1LsuwPZawtzOy/wF/c/akKV5ZqYWZXAz9x95+Wmz8RGO/uS83sGmCbuz8dvhx/r7tfELHu74H17v5AAscbBhzp7r8PT7cjdDPMaeHz5XJ3X1pV5ZPaS89qFBGpgJmdQqg1YyMwjNDlr+nVGpSUYWbdCV0WXU2oo/1dVDwg8TvALcDTQH/KtQK7e0ItsWEdCQ1/UzLq/V/CMeDuJ1RiP5LilHiJiFSsDfAioTvvPgeGuPu66g1JyskGXiM0tMYnwAh3/yByBTObRuiSYRsze9TdJ1poINY5hMYJjNW3MhEdgH7hLgm7gXHhy58iZehSo4iIiEhA1LleREREJCBKvEREREQCUiv6eDVp0sRbtWpV3WGIiIiIVGjBggUb3b1ptGW1IvFq1aoV8+fPr+4wRERERCpkZjEfUaZLjSIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIi+53i4mKys7M566yzoi5ftWoVp556KtnZ2XTu3Jlp06ZVyXGVeImIiMh+Z8KECbRr1y7qsqKiIu6++27OP/988vLyeP7557n22mur5LhKvERERGS/smbNGl577TVGjRpVOq93797ceuutnHLKKUyYMAEzY9OmTQB8//33tGjRAoBrr72WV199FYBBgwYxcuRIAJ544gluv/32Co9dt6oLIyIiIlKT3XDDDdx3331s3ry5zPzCwkLefvttANatW0e/fv146KGH2Lp1K2+88QYAvXr1Ys6cOZx99tkUFBSwbt06AN555x0uuOCCCo+tFi8RERFJeVPzCjhp7EwOG3In76zZxeo6P95jnaFDh5a+//vf/86IESNYs2YN06ZN45JLLmH37t307NmTOXPm8OGHH9K+fXsOO+ww1q1bx/vvv0+PHj0qjEMtXiIiIpLSpuYVcMuUJWzfVcyOgg/Zuuxdzju1K/XrOju3beHiiy8G4JBDDind5oknnmD69OkAnHjiiezYsYONGzeSmZnJd999x/Tp0+nVqxfffvstL774IvXr16dBgwYVxqLES0RERFLauNeXs31XMQANTxlBw1NGAFD/2+W0WjuT5557jt69e5fZ5ogjjuDNN99kxIgRfPTRR+zYsYOmTZsCoUTsgQceYObMmXzzzTcMGTKEIUOGJBSLLjWKiIhISltbuD3q/I1bdsbc5v777+fxxx+nS5cuXHjhhUycOBEzA6Bnz54UFRVxzDHH0LVrV7799lt69uyZUCzm7pUvQcByc3N9/vz51R2GiIiI1EInjZ1JQZTkKzMjnXfH9Kny45nZAnfPjbZMLV4iIiKS0kb3b0N6vbQy89LrpTG6f5vAY1EfLxEREUlpA7MzgVBfr7WF22mRkc7o/m1K5wdJiZeIiIikvIHZmdWSaJWnS40iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAUla4mVmh5vZLDP7yMyWmdkvwvN/Y2YFZpYffp2ZrBhEREREapK6Sdx3EfBLd19oZg2ABWb2n/CyP7r7+CQeW0RERKTGSVri5e7rgHXh95vN7CMgM1nHExEREanpAunjZWatgGzgv+FZ15nZYjN70swaxtjmSjObb2bzN2zYEESYIiIiIkmV9MTLzOoD/wBucPdNwCNAayCLUIvY/dG2c/fH3D3X3XObNm2a7DBFREREki6piZeZ1SOUdE1y9ykA7v61uxe7+27gcaBbMmMQERERqSmSeVejAU8AH7n7HyLmN49YbRCwNFkxiIiIiNQkybyr8STgEmCJmeWH590KXGhmWYADK4CrkhiDiIiISI2RzLsa3wEsyqJpyTqmiIiISE2mketFREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0QSUlxcTHZ2NmeddRYAvXv3Zv78+XusV79+/ajbT506lQ8//DCpMYqI1HRKvEQkIRMmTKBdu3Z7vb0SLxERJV4ikoA1a9bw2muvMWrUqD2W7d69m+HDh3P77beXzrvtttvo0qUL3bt35+uvv+a9997j1VdfZfTo0WRlZfH5558HGb6ISI2hxEtEKnTDDTdw3333UadO2Y+MoqIihg0bxnHHHcfdd98NwNatW+nevTuLFi2iV69ePP744/To0YOzzz6bcePGkZ+fT+vWraujGCIi1U6Jl4hENTWvgJPGzuSwIXfyzppdrK7z4z3Wueqqq+jYsSO33XZb6bwDDjigtB9YTk4OK1asCCpkEZEar251ByAiNc/UvAJumbKE7buK2VHwIVuXvct5p3alfl1n57YtXHzxxQD06NGDWbNm8ctf/pKDDjoIgHr16mFmAKSlpVFUVFRt5RARqWmUeInIHsa9vpztu4oBaHjKCBqeMgKA+t8up9XamTz33HP07t2byy+/nNmzZ3Peeefx8ssvU7du7I+UBg0asHnz5iDCFxGpsXSpUUT2sLZwe9T5G7fs3GPeTTfdRNeuXbnkkkvYvXt3zH1ecMEFjBs3juzsbHWul8Ds2LGDbt260aVLFzp06MCdd95Z3SHJfs7cvbpjqFBubq5HGy9IRJLjpLEzKYiSfGVmpPPumD7VEJHI3nF3tm7dSv369dm1axcnn3wyEyZMoHv37tUdmqQwM1vg7rnRlqnFS0T2MLp/G9LrpZWZl14vjdH921RTRCJ7x8xKB/XdtWsXu3btwsz4/PPPGTBgADk5OfTs2ZOPP/4YgJUrV3LaaafRuXNnTjvtNFatWgXAP//5T0444QSys7M5/fTT+frrr6utTFK7KfESkT0MzM7knsGdyMxIxwi1dN0zuBMDszOrO7S9MnLkSJo1a0bHjh1L502cOJG1a9fG3e6OO+7gjTfeSHZ4kmTFxcVkZWXRrFkz+vbtywknnMCVV17JQw89xIIFCxg/fjzXXnstANdddx2XXnopixcvZtiwYVx//fUAnHzyyXzwwQfk5eVxwQUXcN9991VnkaQW06VGEUl5s2fPpn79+lx66aUsXboUCD3yaPz48eTmRr0aICmosLCQQYMG8dBDD3H88cfTps3/WnB37tzJRx99RJMmTVi3bh316tVj165dNG/enI0bN7JkyRJ++ctfsm7dOn744QeOOuoopk+fXo2lkZpMlxpFZL/Wq1cvGjVqVDo9efJk5s+fz7Bhw8jKymLOnDlkZWWRlZVFp06dSofDGDFiBJMnT66usGUvlYxBd9SY1zhp7Eym5hUAkJGRQe/evZkyZQoZGRnk5+eXvj766KOo+yo5F37+859z3XXXsWTJEh599FF27NgRWHkktSjxEpH9zpAhQ8jNzWXSpEnk5+fTs2fP0n/AAwYM4Oabb67uEGUvlYxBV1C4HQdWrf2KX/3tfabmFbB9+3beeOMNunbtylFHHcVLL70EhDrgL1q0CAiNTff8888DMGnSJE4++WQAvv/+ezIzQ5fan3766eALJilD43iJSEqamlfAuNeXs7ZwOy0y0hne6eAKt3nxxRdZuHAhM2bMCCBCSYbIMegAird8y4oX/siw55yjGh/M+eefz1lnnUWHDh245ppruPvuu9m1axcXXHABXbp04cEHH2TkyJGMGzeOpk2b8tRTTwHwm9/8hvPOO4/MzEy6d+/Ol19+WV1FlFpOiZeIpJzIkfcBCgq3c+/01ezaEXsU/WXLlnHnnXcye/Zs0tLSYq4nNVv5MegOaHYULS57EAOWjv1J6fxYfbRatWrFzJkz95h/zjnncM4551R5vLL/0aVGEUk55Vs9AHYWFZcZADZyJP3vv/+eCy64gGeeeYamTZsGGqtUrRYZ6ZWaLxI0tXiJSMop3+qx4dX72LlqCcXbN9GyZUt++9vfMmLECK6++mrS09O58cYbWblyJVdccUXpNvn5+QFHLVVhdP82ZVo7QWPQSc2i4SREJOVo5P39W/n+faP7t6m1Y9BJ7RRvOAm1eIlIylGrx/5tYHamEi2psZR4iUjKKfmnq1YPEalplHiJSEpSq4eI1ES6q1FEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RKRKFBcXk52dzVlnnVXdoYiI1FhKvESkSkyYMIF27dpFXVZUFPvh1CIi+xMlXiKyz9asWcNrr73GqFGjSuf17t2bW2+9lVNOOYUJEyYwb948OnfuzIknnsjo0aPp2LEjADt27OCyyy6jU6dOZGdnM2vWrOoqhohI0mkAVRHZZzfccAP33XcfmzdvLjO/sLCQt99+G4COHTvy2GOP0aNHD8aMGVO6zp/+9CcAlixZwscff0y/fv345JNPOOigg4IrgIhIQNTiJSJ7ZWpeASeNnclhQ+7knTW7WF3nx3usM3ToUCCUgG3evJkePXoAcNFFF5Wu884773DJJZcA0LZtW4488kg++eSTAEogIhI8tXiJSKVNzSsofQj1joIP2brsXc47tSv16zo7t23h4osvBuCQQw4BwN1j7iveMhGRVKMWLxGptHGvL2f7rmIAGp4ygpY/e5rMq58kc/AY+vTpw3PPPVdm/YYNG9KgQQM++OADAJ5//vnSZb169WLSpEkAfPLJJ6xatYo2bdoEVBIRkWAp8RKRSltbuD3q/I1bdsbc5oknnuDKK6/kxBNPxN059NBDAbj22mspLi6mU6dODB06lIkTJ3LggQcmJW4RkeqmS40iUmktMtIpiJJ8te58Av8acwsAb731VpllHTp0YPHixQCMHTuW3NxcAA466CAmTpyY1HhFRGoKtXiJSKWN7t+G9HppZeal10tjdP/Ylwhfe+01srKy6NixI3PmzOH2229PdpgiIjWO1YaOrbm5uT5//vzqDkNEIkzNK2Dc68tZW7idFhnpjO7fhoHZmdUdlohItTOzBe6eG22ZLjWKyF4ZmJ2pREtEpJJ0qVFEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIElLvMzscDObZWYfmdkyM/tFeH4jM/uPmX0a/tkwWTGIiIiI1CRxEy8zO9HM/mRmi81sg5mtMrNpZvYzMzu0gn0XAb9093ZAd+BnZtYeGAO86e7HAm+Gp0VERERSXszEy8z+DYwCXgcGAM2B9sDtwEHAK2Z2dqzt3X2duy8Mv98MfARkAucAT4dXexoYuM+lEBEREakFYj6r0cyauPvGuBsnsE54vVbAbKAjsMrdMyKWfefue1xuNLMrgSsBjjjiiJyVK1dWdBgRERGRahfvWY0xW7xKEiozuy5WP6wEk676wD+AG9x9U2Ihg7s/5u657p7btGnTRDcTERERqbES6Vz/Y2Cemb1oZgPMzBLduZnVI5R0TXL3KeHZX5tZ8/Dy5sD6ygYtIiIiUhtVmHi5++3AscATwAjgUzP7vZm1jrddOEF7AvjI3f8QsehVYHj4/XDglb2IW0RERKTWSWg4CQ91BPsq/CoCGgKTzey+OJudBFwC9DGz/PDrTGAs0NfMPgX6hqdFREREUl7dilYws+sJtUxtBP4KjHb3XWZWB/gU+FW07dz9HSDWZcnT9i5cERERkdqrwsQLaAIMdvcytxW6+24zOys5YYmIiIiknpiJl5k1Cr99oNw0AO7+rbt/lLzQRERERFJLvBavBUDJIF/lLxk6cHRSIhIRERFJUTETL3c/KshARERERFJdIn28MLNM4MjI9d19drKCEhEREUlFidzVeC8wFPgQKA7PdkKPABIRERGRBCXS4jUQaOPuO5Mci4iIiEhKS2QA1S+AeskORERERCTVJdLitQ3IN7M3gdJWL3e/PmlRiYiIiKSgRBKvV8MvEREREdkHFSZe7v60mR0AHBeetdzddyU3LBEREZHUk8hdjb2Bp4EVhAZSPdzMhms4CREREZHKSeRS4/1AP3dfDmBmxwF/B3KSGZiIiIhIqknkrsZ6JUkXgLt/gu5yFBEREam0RFq85pvZE8Cz4elhhJ7jKCIiIiKVkEjidQ3wM+B6Qn28ZgN/TmZQIiIiIqkokbsadwJ/CL9EREREZC8l0sdLRERERKqAEi8RERGRgFQq8TKzOmb2o2QFIyIiIpLKKky8zOxvZvYjMzsE+BBYbmajkx+aiIiISGpJpMWrvbtvAgYC04AjgEuSGZSIiIhIKkpoAFUzq0co8XpFz2kUERER2TuJJF6PEnpO4yHAbDM7Evg+mUGJiIiIpKKEEi93z3T3M93dgVWEWr9EREREpBISSbymmFnkQKs/BmYkKR4RERGRlJVI4jUVmGxmaWbWCngduCWZQYmIiIikokQeGfS4mR1AKAFrBVzl7u8lOS4RERGRlBMz8TKzmyIngcOBfKC7mXV3dz27UUT2SqtWrWjQoAFpaWnUrVuX+fPnR11v7dq1XH/99UyePDngCEVEkiNei1eDctMvx5gvIlJps2bNokmTJnHXadGihZIuEUkpMRMvd/9tkIGIyP7ts88+4+qrr2bDhg2kpaXx0ksvkZaWxllnncXSpUvZvn07l112GR9++CHt2rVjxYoV/OlPfyI3N7e6QxcRSVgijwz6j5llREw3NLPXkxqViKQ0M6Nfv37k5OTw2GOPATBs2DB+9rOfsWjRIt577z2aN29eZptHHnmEgw8+mMWLF3PbbbexYMGC6ghdRGSfVNi5Hmjq7oUlE+7+nZk1S15IIpJqpuYVMO715awt3E6LjHT+36OTGdkvh/Xr19O3b1/atGlDQUEBgwYNAuCggw7aYx+zZ8/m+uuvB6Bz58507tw50DKIiFSFRBKvYjM7wt1XAYRHrvfkhiUiqWJqXgG3TFnC9l3FABQUbmfcnB9o1LSAgdmZDBo0iLfffjuhfZlZMkMVEUm6RMbxug14x8yeNbNngdloHC8RSdC415eXJl0Au3/YwdYtmxn3+nK2bt3KjBkz6NatGy1btmTq1KkA7Ny5k23btpXZT69evZg0aRIAS5cuZfHixYGVQUSkqiQyjtd0M+sKdA/PutHdNyY3LBFJFWsLt5eZLt5WyIYpd/MV0O3Zg7nooosYMGAArVu35qqrruKOO+6gXr16vPTSS9SpU6e0leuaa67hsssuo3PnzmRlZdGtW7dqKI2IyL5J5FIjQA+gV8T0v5IQi4ikoBYZ6RREJF/1Mn5Mi5EPk5mRzrtj+pTOP/bYY5k5c2aZbRcsWECjRo0ASE9P5/nnny9d1rt37+QGLiKSBInc1TgW+AXwYfj1CzO7J9mBiUhqGN2/Den10srMS6+Xxuj+beJuN3/+fC688EJ+8YtfJDM8EZFAmXv8fvJmthjIcvfd4ek0IM/dA7ulKDc312ONbC0iNV/5uxpH92/DwOzM6g5LRCQpzGyBu0cdZDDRS40ZwLfh94dWRVAisv8YmJ2pREtEhMQSr3uAPDObReiZjb3QXY0iIiIilZbIXY1/N7O3gOMJJV6/dvevkh2YiIiISKqJmXiFh5CItCb8s4WZtXD3hckLS0RERCT1xGvxuj/OMgf6xFkuIiIiIuXETLzc/dQgAxERERFJdRX28TKzg4BrgZMJtXTNAf7i7juSHJuIiIhISknkrsZngM3AQ+HpC4FngfOSFZSIiIhIKkok8Wrj7l0ipmeZ2aJkBSQiIiKSqip8ZBChMbxKHpCNmZ0AvJu8kERERERSU7zhJJYQ6tNVD7jUzFaFFx1B6JmNIiIiIlIJ8S41nhVYFCIiIiL7gXjDSawsP8/MrnT3x5IbkoiIiEhqSqSPV6SrkxKFiIiIyH4gZuJlZgdGm53EWERERERSWrwWr/cBzOzZiHk/TW44IiIiIqkrXuf6A8xsONDDzAaXzDSzbgDuPiXZwYmIiIikkniJ19XAMCCDPVu6HFDiJSIiIlIJ8RKv5u5+jZnl6U5GERERkX0Xr4/XLeGfupNRREREpArEa/H6xsxmAUeZ2avlF7r72ckLS0RERCT1xEu8fgJ0BZ4F7g8mHBEREZHUFW/k+h+AD8zsRGBHaJZvDSwyERERkRQTd+R6M7sGWAisBFab2UozuzaQyERERERSTLyR628nNIxEb3dv7O6NgFOBM8LLRERERKQS4rV4XQIMdvcvSmaE358PXJrswERERERSTdxLje6+I8q87cDupEUkIiIikqLiJV5rzOy08jPNrA+wLnkhiYiIiKSmeMNJXA+8YmbvAAsIPSboeOAk4JwAYhMRERFJKTFbvNx9GdARmA20Ao4Ov+8YXiYiIiIilRCzxcvMLNzH68kK1vGkRCYiIiKSYuL18ZplZj83syMiZ5rZAWbWx8yeBoYnNzwRERGR1BGvj9cAYCTwdzM7CigE0gklazOAP7p7frIDFBEREUkV8R4ZtAP4M/BnM6sHNAG2u3thQLGJiIiIpJR4LV6l3H0XGkJCREREZJ/EHUBVRERERKqOEi8RERGRgMR7SHbbiPcHllvWPZlBiYiIiKSieC1ef4t4/365ZX9OQiwiIiIiKS1e4mUx3kebFhEREZEKxEu8PMb7aNN7MLMnzWy9mS2NmPcbMysws/zw68xKxisiIiJSa8UbTqKlmT1IqHWr5D3h6cwE9j0ReBh4ptz8P7r7+MoGKiIiIlLbxUu8Rke8n19uWfnpPbj7bDNrtTdBiYiIiKSieCPXPx1tvpkdBPx0H455nZldSih5+6W7fxfjOFcCVwIcccQR0VYRERERqVUSGsfLzNLM7AwzewZYCQzdy+M9ArQGsgiNhH9/rBXd/TF3z3X33KZNm+7l4URERERqjriPDDKzXsBFwE+AucBJwFHuvm1vDubuX0fs+3HgX3uzHxEREZHaKN4AqmuAscC7QHt3P5fQQ7L3KukK77N5xOQgYGmsdUVERERSTbwWr38AAwldViw2s1dIYBiJEmb2d6A30CScxN0J9DazrPB+VgBX7U3QIiIiIrWRucfOpczMgFOBC4EzgR8BlwPT3H1LIBECubm5Pn9+hTdSioiIiFQ7M1vg7rnRlsXt4+WhrGwmMNPM6gEDCCVhfwaaVHWgUrO1atWKBg0akJaWRt26dVEyLCIiUjkxE6/wg7AfJXQX4hJgpLv/E/inmaUHFJ/UMLNmzaJJE+XcIiIieyPecBIPAzcDjYE/AA+ULHD37ckNS2qDjz76iG7dupVOr1ixgs6dOzN//nyysrLIysqiU6dOmBmff/45Xbt2LV33008/JScnpzrCFhERqTbxEq867v4fd9/p7i8BGkxrP2dm9OvXj5ycHB577DHatWvHDz/8wBdffAHACy+8wPnnn09ubi75+fnk5+czYMAAbr75Zlq3bs2hhx5Kfn4+AE899RQjRoyovsKIiIhUg3h9vDLMbHCsaXefkrywpCaYmlfAuNeXs7ZwOy0y0vl/j05mZL8c1q9fT9++fWnbti3nn38+L774ImPGjOGFF17ghRdeKN3+xRdfZOHChcyYMQOAUaNG8dRTT/GHP/yBF154gblz51ZX0URERKpFvMTrbco+Gihy2gElXilsal4Bt0xZwvZdxQAUFG5n3JwfaNS0gIHZmQwaNIi5c+cydOhQzjvvPAYPHoyZceyxxwKwbNky7rzzTmbPnk1aWhoA5557Lr/97W/p06cPOTk5NG7cuNrKJyIiUh3iPavxsiADkZpl3OvLS5MugN0/7GDrzt2Me305fY/LYMaMGdxxxx20bt2atLQ0fve73zF0aOhJUt9//z0XXHABzzzzDJGPezrooIPo378/11xzDU888UTgZRIREalucYeTkP3X2sKy908Ubytkw5S7+Qro9uzBXHTRRQwYMACAoUOHMnr0aL788ksApk6dysqVK7niiitKty/p2zVs2DCmTJlCv379AimHiIhITRJ3ANWaQgOoBu+ksTMpKNzz5tXMjHTeHdNnr/c7fvx4vv/+e373u9/tS3giIiI11l4PoCr7r9H925Tp4wWQXi+N0f3b7PU+Bw0axOeff87MmTOrIkQREZFaJ6HEy8x6AK0i13f3Z5IUk9QAA7MzAcrc1Ti6f5vS+Xvj5ZdfrqrwREREaqUKEy8ze5bQ6PX5QEnzhwNKvFLcwOzMfUq0ZN8VFxeTm5tLZmYm//rXv+Kuu3jxYq666io2bdpEnTp1mDdvHgcddFBAkYqISCISafHKBdp7begMJpJiJkyYQLt27di0aVPc9YqKirj44ot59tln6dKlC9988w316tULKEoREUlUvJHrSywFfpzsQESkrDVr1vDaa68xatSo0nm9e/cufTj5xo0badWqFQAzZsygc+fOdOnSBYDGjRuTlpbGI488wq9+9avS7SdOnMjPf/7z4AohIiJlJJJ4NQE+NLPXzezVkleyAxPZ391www3cd9991KlT8Z/pJ598gpnRv39/unbtyn333QfAkCFDmDLlf2Mdv/DCC6XjrYmISPASudT4m2QHISIhJY9p+mz+29iaXayu82My2FzhdkVFRbzzzjvMmzePgw8+mNNOO42cnBxOO+00jj76aD744AOOPfZYli9fzkknnRRASUREJJoKEy93fzuIQET2d5GPadpR8CFbl73Lead2pX5dZ+e2LVx88cXUrVuX3bt3A7Bjx47SbVu2bMkpp5xCkyZNADjzzDNZuHAhp512GkOHDuXFF1+kbdu2DBo0CDOrlvKJiEgClxrNrLuZzTOzLWb2g5kVm1n8nr4iUmmRj2lqeMoIWv7saTKvfpLMwWPo06cPzz33HK1atWLBggUATJ48uXTb/v37s3jxYrZt20ZRURFvv/027du3B2Dw4MFMnTqVv//977rMKCJSzRLp4/UwcCHwKZAOjArPE5EqVP4xTSU2btlZ+v7mm2/mkUceoUePHmzcuLF0fsOGDbnppps4/vjjycrKomvXrvzkJz8pXda+fXtWrlxJt27dklsIERGJq8JHBpnZfHfPNbPF7t45PO89d+8RSITokUGyf0jWY5pERCRY8R4ZlEiL1zYzOwDIN7P7zOxG4JAqjVBEGN2/Den10srM29fHNImISM2SSOJ1SXi964CtwOHAuckMSmR/NDA7k3sGdyIzIx0j1NJ1z+BOenqAiEgKqfBSI4CZpQNHuPvy5Ie0J11qFBERkdpiny41mtlPCT2ncXp4OksDqIqIiIhUXiKXGn8DdAMKAdw9H2iVrIBEREREUlUiiVeRu3+f9EhEREREUlwijwxaamYXAWlmdixwPfBecsMSERERST2JtHj9HOgA7AT+DmwCbkhiTCIiIiIpKZFnNW4Dbgu/RERERGQvxUy8Krpz0d3PrvpwRERERFJXvBavE4HVhC4v/hewQCISERERSVHx+nj9GLgV6AhMAPoCG939bXd/O4jgJHW1atWKTp06kZWVRW5u1DHm9rBz506GDh3KMcccwwknnMCKFSsAeOuttzjrrLOSGK2IiEjViJl4uXuxu0939+FAd+Az4C0z+3lg0UlKmzVrFvn5+ST6VIInnniChg0b8tlnn3HjjTfy61//OskRioiIVK24dzWa2YFmNhh4DvgZ8CAwJYjAZP+yfv16cnJyAFi0aBFmxqpVqwBo3bo127Zt45VXXmH48OEADBkyhDfffJPyj7yaN28e2dnZfPHFF8EWQEREJAExEy8ze5rQeF1dgd+6+/Hu/jt3LwgsOklZZka/fv3Iycnhscceo1mzZuzYsYNNmzYxZ84ccnNzmTNnDitXrqRZs2YcfPDBFBQUcPjhhwNQt25dDj30UL755pvSfb733ntcffXVvPLKKxx99NHVVTQREZGY4nWuvwTYChwHXG9W2rfeAHf3HyU5Nklh7777Li1atGD9+vX07duXtm3b0qNHD959911mz57NrbfeyvTp03F3evbsCbBH6xaEEjiAjz76iCuvvJIZM2bQokWLQMsiIiKSqJiJl7snMriqSMKm5hUw7vXlrC3cTouMdEb3dwZmZzJo0CDmzp1Lz549S1u5zjnnHO69917MrLTjfMuWLVm9ejUtW7akqKiI77//nkaNGgHQvHlzduzYQV5enhIvERGpsZRcSSCm5hVwy5QlFBRup/iHHaz++htumbKE59/7lBkzZtCxY0d69erFc889x7HHHkudOnVo1KgR06ZN46STTgLg7LPP5umnnwZg8uTJ9OnTp7TFKyMjg9dee41bb72Vt956q7qKKSIiElciz2oU2WfjXl/O9l3FABRvK2TDlLsBGPmYc9v1VzBgwIDSdXv16gXAySefzJo1a2jYsCEAl19+OZdccgnHHHMMjRo14vnnny9zjMMOO4x//vOfnHHGGTz55JOccMIJQRRNREQkYRat30xNk5ub64kOOSA101FjXiPamWbAl2N/EnQ4IiIiSWNmC9w96iCVutQogWiRkV6p+SIikhpWr17NqaeeSrt27ejQoQMTJkxIaLt58+aRlpbG5MmTS+ftzeDbNY0uNUogRvdvwy1TlpRebgRIr5fG6P5tqjEqERFJtrp163L//ffTtWtXNm/eTE5ODn379qV9+/YxtykuLubXv/41/fv332PZrFmzaNKkSTJDTiq1eEkgBmZncs/gTmRmpGNAZkY69wzuxMDszOoOTUREkqh58+Z07doVgAYNGtCuXTsKCgro3bs3N9xwAz169KBjx47MnTu3dJuHHnqIc889l2bNmlVX2EmjFi8JzMDsTCVaIiL7sRUrVpCXl1d689PWrVt57733mD17NiNHjmTp0qUUFBTw8ssvM3PmTObNm1dm+5LBt82Mq666iiuvvLI6irFPlHiJiIhIldpz3MY2nH7soZx77rk88MAD/OhHoTHYL7zwQiB0N/umTZsoLCzkhhtu4N577yUtLW2P/UYbfLvkTvjaQomXiIiIVJmScRtL+vQWFG5nzEt5pM8azyXDhjF48ODSdSOeilM6PX/+fC644AIANm7cyLRp06hbty4DBw4sHSC7WbNmpYNv17bES328REREpMpEjtsIoce9rXn1D3xdpzE33XRTmXVfeOEFAN555x0OPfRQDj30UL788ktWrFjBihUrGDJkCH/+858ZOHAgW7duZfPmzUDoEmXJ4Nu1jVq8REREpMqsLdxeZnpnwYdsXTaLH5q2IisrC4Df//73ADRs2JAePXqwadMmnnzyybj7/frrrxk0aBAARUVFXHTRRWUG364tNICqiIiIVJmTxs6koFzyBaG72d8d06d0unfv3owfP77WjscVjwZQFRERkUCM7t+G9HplO8Zr3Mb/0aVGERERqTIlwwaVv6ux/HBCb731VjVEV/2UeImIiEiV0riNselSo4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAlHiJiIiIBESJl4iIiEhAkpZ4mdmTZrbezJZGzGtkZv8xs0/DPxsm6/giIiIiNU0yW7wmAgPKzRsDvOnuxwJvhqdrncLCQoYMGULbtm1p164d77//fqX30bt3b+bPn5+E6ERERKSmSlri5e6zgW/LzT4HeDr8/mlgYLKOn0y/+MUvGDBgAB9//DGLFi2iXbt21R2SiIiI1AJB9/E6zN3XAYR/Nou1opldaWbzzWz+hg0bAguwIps2bWL27NlcfvnlABxwwAFkZGTw+OOPc/zxx9OlSxfOPfdctm3bBsA555zDM888A8Cjjz7KsGHDyuxv9+7dDB8+nNtvvz3YgoiIiEjgamznend/zN1z3T23adOm1R1OqS+++IKmTZty2WWXkZ2dzahRo9i6dSuDBw9m3rx5pS1gTzzxBACPPfYYd911F3PmzOH+++/noYceKt1XUVERw4YN47jjjuPuu++uriKJiIhIQIJOvL42s+YA4Z/rAz7+PisqKmLhwoVcc8015OXlccghhzB27FiWLl1Kz5496dSpE5MmTWLZsmUAHHbYYdx1112ceuqp3H///TRq1Kh0X1dddRUdO3bktttuq67iiIiISICCTrxeBYaH3w8HXgn4+Httal4BJ42dyaCJH1O3QRPWHdASgCFDhrBw4UJGjBjBww8/zJIlS7jzzjvZsWNH6bZLliyhcePGrF27tsw+e/TowaxZs8qsKyIiIqkrmcNJ/B14H2hjZmvM7HJgLNDXzD4F+oana7ypeQXcMmUJBYXbSavfEOo35qbH/83UvALefPNN2rdvz+bNm2nevDm7du1i0qRJpdvOnTuXf//73+Tl5TF+/Hi+/PLL0mWXX345Z555Jueddx5FRUXVUTQREREJUN1k7djdL4yx6LRkHTNZxr2+nO27ikunG51+NQUv38uwl39P3xM689RTT3H00UdzwgkncOSRR9KpUyc2b97Mzp07ueKKK3jqqado0aIF999/PyNHjmTmzJml+7rpppv4/vvvueSSS5g0aRJ16tTYbnciIiKyj8zdqzuGCuXm5np1jnl11JjXiFZLBnw59idBhyMiIiI1mJktcPfcaMvUvJKAFhnplZovIiIiEo0SrwSM7t+G9HppZeal10tjdP821RSRiIiI1EZJ6+OVSgZmZwKhvl5rC7fTIiOd0f3blM4XERERSYQSrwQNzM5UoiUiIiL7RJcaRURERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8RERERAKixEtEREQkIEq8ZJ+tXr2aU089lXbt2tGhQwcmTJgAwB133MEbb7wBwIgRIzjqqKPIysoiKyuL/Pz8aoxYRESketSt7gCk9qtbty73338/Xbt2ZfPmzeTk5NC3b1/uuuuuMuuNGzeOIUOGVFOUIiIi1U8tXrLPmjdvTteuXQFo0KAB7dq1o6CggBEjRjB58uSY2+3evZtjjz2WDRs2lE4fc8wxbNy4MZC4RUREgqbES6rUihUryMvL44QTTthj2W233Ubnzp258cYb2blzJ3Xq1OHiiy9m0qRJALzxxht06dKFJk2aBB22iIhIIJR4yV6ZmlfASWNnctSY1zhp7Eym5hWwZcsWzj33XB544AF+9KMflVn/nnvu4eOPP2bevHl8++233HvvvQCMHDmSZ555BoAnn3ySyy67LPCyiIiIBEWJl1Ta1LwCbpmyhILC7ThQULidMS/l0bPvWQwbNozBgwfvsU3z5s0xMw488EAuu+wy5s6dC8Dhhx/OYYcdxsyZM/nvf//LGWecEXBpREREgqPESypt3OvL2b6ruHTa3Vnz6h/4uk5jbrrppqjbrFu3rnTdqVOn0rFjx9Jlo0aN4uKLL+b8888nLS0tucGLiIhUIyVeUmlrC7eXmd5Z8CFbl81i46cLS4eLmDZtWpl1hg0bRqdOnejUqRMbN27k9ttvL1129tlns2XLFl1mFBGRlKfhJCKsXr2aSy+9lK+++oo6depw5ZVX8otf/GKP9SZOnMjo0aPJzMwE4LrrrmPUqFEArFq1ilGjRrF69WrMjGnTptGqVasgi5F0LTLSKYhIvg5q2YEjf/0vMjPSeXdMn9L5Z555Zun7mTNnxtzfokWL6NKlC23btk1OwCIiIjWEEq8Iscajat++fek6RUVFAAwdOpSHH354j31ceuml3HbbbfTt25ctW7ZQp07qNSqO7t+GW6YsKXO5Mb1eGqP7t6n0vsaOHcsjjzxSemejiIhIKlPiFaF58+Y0b94cKDse1bXXXkuPHj149913Ofvss2ncuHHU7T/88EOKioro27cvAPXr1w8s9iANzA619I17fTlrC7fTIiOd0f3blM6vjDFjxjBmzJiqDlFERKRGUuIVQ/nxqAoLC3n77beB0KXGf/zjH8yePZvjjjuOP/7xjxx++OF88sknZGRkMHjwYL788ktOP/10xo4dm5IdxgdmZ+5VoiUiIrI/S73rYJWU6HhUQ4cOLd3mpz/9KStWrGDx4sWcfvrpDB8+HAhdhpwzZw7jx49n3rx5fPHFF0ycOLE6iiUiIiI10H6deFVmPKpDDjmk9H3jxo058MADAbjiiitYsGABAC1btiQ7O5ujjz6aunXrMnDgQBYuXBhomURERKTm2q8Tr70Zjwr+NyYVwKuvvkq7du0AOP744/nuu+9Knz04c+bMMh3zRUREZP+2X/fxijUe1Q9NW5GVlQXA73//+z22e/DBB3n11VepW7cujRo1Kr2cmJaWxvjx4znttNNwd3JycrjiiiuSXQwRERGpJczdqzuGCuXm5vr8+fOrfL8njZ1ZZjyqEuXHoxIRERFJlJktcPfcaMv260uNo/u3Ib1e2TsO93Y8KhEREZGK7NeJ18DsTO4Z3InMjHSMUEvXPYM7JWWYhFatWtGpUyeysrLIzY2aBO9h9uzZdO3albp16zJ58uQqj0lERESCtV/38YJgx6OaNWsWTZo0SXj9I444gokTJzJ+/PgkRiUiIiJB2a9bvKrT+vXrycnJAULPKjQzVq1aBUDr1q3Ztm0brVq1onPnzns8duitt97ilFNO4fzzz+e4445jzJgxTJo0iW7dutGpUyc+//zzwMsjIiIiFVPiFRAzo1+/fuTk5PDYY4/RrFkzduzYwaZNm5gzZw65ubnMmTOHlStX0qxZMw4++OC4+1u0aBETJkxgyZIlPPvss3zyySfMnTuXUaNG8dBDDwVUKhEREamM/f5SY7JMzSso8yzD//foZEb2y2H9+vX07duXtm3blj7/cfbs2dx6661Mnz4dd6dnz54V7v/4448vfa5k69at6devHwCdOnVi1qxZSS2biIiI7B21eCVBtBHxx83ZwNS8Apo1a8agQYOYO3cuPXv2LG3lOuecc1i0aBHvvPMOvXr1qvAYJSPnA9SpU6d0uk6dOhQVFSWraCIiIrIPlHglQfkR8Xf/sIOtWzYz7vXlbN26lRkzZtCxY0d69erFc889x7HHHkudOnVo1KgR06ZN46STTqrG6EVERCRZdKkxCcqPiF+8rZANU+7mK6Dbswdz0UUXMWDAgNLlJS1cJ598MmvWrKFhw4YAzJs3j0GDBvHdd9/xz3/+kzvvvJNly5YFVg4RERGpWvv1yPXJohHxRURE9l8auT5gJSPi++5i1j51Pesn/5b0emlceFwaWVlZZGdns2zZMrp160aXLl3o0KEDd955Z+n2H3/8cel6GhpCREQkdSjxSoKSEfHrLPs3BzQ+nIPq1uGewZ3Y8sn7nHPOOeTl5dG+fXtmzpzJokWLyM/PZ/r06XzwwQcATJ06tXS91q1bV3NpREREpKoo8UqS3KbO0Ts+4dWH76DHMU04YN0iHnjgAf76179y6qmnYmbUr18fgF27drFr1y7MjGnTppVZT0RERFKHEq8kueGGG7jvvvtKR50/88wzufrqq7nxxhtLx9kqLi4mKyuLZs2a0bdvX0444YSo60kwduzYEfPybywPPfQQbdq0oUOHDvzqV78CQk8WOOuss5IdroiI1EK6q7GKRA6YetC6fFrVOYScnBzeeuutmNukpaWRn59PYWEhgwYNYunSpXTs2DG4oKWMAw88kJkzZ1K/fn127drFySefzBlnnEH37t2jrj9r1ixeeeUVFi9ezIEHHsj69esDjlhERGobJV5VoGTA1JKxu9Z+ks9ny2bRrMXh1Nm9i02bNnHxxRdzzDHHRN0+IyOD3r17M336dCVe1SjW5d/8/Hyuvvpqtm3bRuvWrXnyySdp2LAhjzzyCGPGjCkdvLZZs2bVGb6IiNQCutRYBcoPmNrwlBFkXvs0x17/NM8//zx9+vThueeeK7PNhg0bKCwsBGD79u288cYbtG3bNsiwJYpol38vvfRS7r33XhYvXkynTp347W9/C8Ann3zCnDlzOOGEEzjllFOYN29eNUcvIiI1nVq8qkD5AVPLzj8k6rJ169YxfPhwiouL2b17N+eff776BdUA5S//Llq0iMLCQk455RQAhg8fznnnnQdAUVER3333HR988AHz5s3j/PPP54svvqjO8EVEpIZT4lUFWmSkRx0wtUVGOr1796Z3794A/OY3vyld1rlzZ/Ly8qLuL3I9Sa7yDzMf3b8NA7MzSy//Tp06Nea2LVu2ZPDgwZgZ3bp1o06dOmzcuDG44EVEpNbRpcYqUDJgaqT0emmM7t+mmiKSRJR/mPmqtV/xq7+9z9S8gtLLvzk5OTRs2JA5c+YA8Oyzz5a2fg0cOJCZM2cCocuOP/zwA02aNKmu4oiISC2gFq8qMDA7EyBqy4nUXOX75hVv+ZYVL/yRYc85RzU+uPTyb8uWLUs71x999NE89dRTAIwcOZKRI0fSsWNHDjjgAJ5++mnMrLqKIyIitUC1PKvRzFYAm4FioCjW84xK1LZnNUrtcNSY14h29hvw5difBB2OiIikiHjPaqzOFq9T3V0dYqTaxOubJyIikgzq4yX7LfXNExGRoFVX4uXADDNbYGZXRlvBzK40s/lmNn/Dhg0Bhyf7g5KHmWdmpGNAZkY69wzupL55IiKSNNXVx6uFu681s2bAf4Cfu/vsWOurj5eIiIjUFvH6eFVLi5e7rw3/XA+8DHSrjjhEREREghR44mVmh5hZg5L3QD9gadBxiIiIiAStOu5qPAx4OTzeUV3gb+4+vRriEBEREQlU4ImXu38BdAn6uCIiIiLVTcNJiIiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQMzdqzuGCpnZBmBlxKwmwMZqCmd/onoOjuo6OKrrYKieg6O6DkZl6vlId28abUGtSLzKM7P57p5b3XGkOtVzcFTXwVFdB0P1HBzVdTCqqp51qVFEREQkIEq8RERERAJSWxOvx6o7gP2E6jk4quvgqK6DoXoOjuo6GFVSz7Wyj5eIiIhIbVRbW7xEREREah0lXiIiIiIBqbGJl5kNMLPlZvaZmY2JstzM7MHw8sVm1rU64kwFCdR1WzN738x2mtnN1RFjqkigroeFz+fFZvaemXWpjjhruwTq+ZxwHeeb2XwzO7k64kwFFdV1xHrHm1mxmQ0JMr5UkcA53dvMvg+f0/lmdkd1xJkKEjmnw/Wdb2bLzOztSh3A3WvcC0gDPgeOBg4AFgHty61zJvBvwIDuwH+rO+7a+EqwrpsBxwP/B9xc3THX1leCdd0DaBh+f4bO66TVc33+18e1M/BxdcddG1+J1HXEejOBacCQ6o67tr0SPKd7A/+q7lhr+yvBus4APgSOCE83q8wxamqLVzfgM3f/wt1/AJ4Hzim3zjnAMx7yAZBhZs2DDjQFVFjX7r7e3ecBu6ojwBSSSF2/5+7fhSc/AFoGHGMqSKSet3j4ExM4BNBdRnsnkc9qgJ8D/wDWBxlcCkm0nmXfJVLXFwFT3H0VhP5HVuYANTXxygRWR0yvCc+r7DpSMdVjcCpb15cTatWVykmons1skJl9DLwGjAwotlRTYV2bWSYwCPhLgHGlmkQ/O040s0Vm9m8z6xBMaCknkbo+DmhoZm+Z2QIzu7QyB6i7jwEmi0WZV/4baSLrSMVUj8FJuK7N7FRCiZf6HlVeQvXs7i8DL5tZL+B3wOnJDiwFJVLXDwC/dvdis2irSwISqeeFhJ4PuMXMzgSmAscmO7AUlEhd1wVygNOAdOB9M/vA3T9J5AA1NfFaAxweMd0SWLsX60jFVI/BSaiuzawz8FfgDHf/JqDYUkmlzml3n21mrc2sibvrQcOVk0hd5wLPh5OuJsCZZlbk7lMDiTA1VFjP7r4p4v00M/uzzum9kmj+sdHdtwJbzWw20AVIKPGqqZca5wHHmtlRZnYAcAHwarl1XgUuDd/d2B343t3XBR1oCkikrqVqVFjXZnYEMAW4JNFvT7KHROr5GAtnAuE7og8AlORWXoV17e5HuXsrd28FTAauVdJVaYmc0z+OOKe7Efr/rnO68hL5n/gK0NPM6prZwcAJwEeJHqBGtni5e5GZXQe8TugOgyfdfZmZXR1e/hdCd8ecCXwGbAMuq654a7NE6trMfgzMB34E7DazGwjd5bEp1n5lTwme13cAjYE/hz9Di9w9t7piro0SrOdzCX1x2wVsB4ZGdLaXBCVY17KPEqznIcA1ZlZE6Jy+QOd05SVS1+7+kZlNBxYDu4G/uvvSRI+hRwaJiIiIBKSmXmoUERERSTlKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCA1cgBVkVRgZnEHyXN3PbhORGQ/owFURURERAKiS40pzsyKzSzfzJaZ2SIzu8nM6oSXvRex3vVm9pGZTYp8X32R771Y8ZvZ6Wb2bJKPnW5mb5tZWnj6KjP7S/h9PTN71syeNrN6UbY9wMxmm1nUluia+HuJPIf2ZZ04226pxLoZZnbt3h4r2fsLgpn9xsxujjI/0HPHzAaZmZtZ23Lz4/4+zayVmSX86JWI7Uo+50pereKsGzWG8nVnZisqG0dViBJHzL+faOfovvy9STCUeKW+7e6e5e4dgL6Enm95J4C794hY71rgTHcfVu59hcIPKq9J51Ks+LsAi5J87JHAFHcvDk93Bhab2Y+AfwOr3H24u+8qv6G7/wC8CQyNse+o5aqO+i85ZrlzKKpE1qkiGYTqaA97WUcx9xdLDfxbKBH0uXMh8A6hBwwHoeRzruS1IqDjJmRf6rmCv58Myp2jAf69yV6qiR8QkiTuvh64Ergu/EGwBSDcInM08KqZ7Yx4f2N4+cVmNjf8TfJRM0sLfzP9yMz+DCwEDq9gvcfDrW4zzCy9JCYzu9TMFluoNe7ZWMeLVh4Ltd4tDb9uiFKWG8tt0gXID6/XNty6tMzM3jCzJuH57cLzF5vZaDP7rJLVPIzQk+tLdAK+Bd4CXnL32yrYfmp4H+XLWqZcMeo/Wn20MrOPzeyv4fmTLNTy966ZfWpm3aIFEWdf5Y+5JWKb/xc+1n/M7O8l39ojzrOY54KZTTWzBeH5V8arIDM7xMxeC58zS82sJFEdC7QOnzfjosTb0yJaU8zsZjP7Tfj9Hudhuf29FGfbRP8WYsUdWbao9VBB3d1mZsvN7A2gTZR9Bn3u1AdOAi4nRuIVse+nw/U+2cwODi9O29dzJLz+HmWKsk68utuQ4O8salkSPS8qiiPi76eic3Rc5Pqx6iDWuZRIWaWKuLteKfwCtkSZ9x1wWOQyYAXQJMr7dsA/gXrh6T8DlwKtCD2VvXsC6xUBWeH5LwIXh993AJZHHKtRrP1EKUMOsAQ4BKgPLAOyy8dfbptFQFPgwHLr/xr4P0I3myyMmP8IMLUSdX0A8FWUut4A/DTBfaQBG2Isi/y9lK//qPURUf+dCH3RWgA8CRhwTrTyVbCv0mNGnl9ALqGkNh1oAHwK3FxunXjnQqPwz3RgKdA4zvl7LvB4xPShEftfGjG/fB2VX34z8BuinIfl14+1bYzjxPpbiBp3ubLFqoeodRfxuzoY+BHwWUm9V8e5E97fxcAT4ffvAV2jnC+tAAdOCk8/Ga7TqOWMVzfhecWEzr984OVYZSoXQ4V1l+DvLF5ZEjkv4sYBbCGBczRKHVf0ey1/LlVYVr2q5qUWr/1TZe6mO43QH/A8M8sPTx8dXrbS3T9IYL0v3T0//H4BoT98gD7AZHffCODu31awn0gnAy+7+1Z33wJMAXrGKoSF+lT9yN03AAOBd9w9L7z4Q6AZMBhYVG5+ZS5NNgEKI455OKEPzSVA80R24KFLlD+YWYMEVo+s/3j18aW7L3H33YQ+fN/00CfrEv73u4gUb1+Rxyy/zSvuvt3dNxP6BxNNrHPhejNbBHwAHA4cG6fcS4DTzexeM+vp7t/HWTdWvJGinYeVlcjfQiJxx6uHaHXXk9Dvapu7bwJe3Yt4q/LcgdBlxufD758PT0ez2t3fDb9/LhxHrHJC/LqJvNQ4qIIylUik7hI912KVJZHzIpE49uYcrej3mh9+X1LHlfm7kn2g4ST2M2Z2NKFvh+sT3QR42t1vKbefVsDWBNfbGTGrmNA31pJtyt9WG3U/MeKqjPbARxHvl0Qs60QoyepM+FJkWEdgOpTW222EvgUOMbNDCH1j/QF4y90nAduBgyK270wocbsC+MDM5pUkdWY2D/gvoW+4s9z9qYjtDgR2JFCm8vUfS2T9746Y3k30z4B4+9oaY36iv489zgUz6w2cDpzo7tvM7C3K1mMZ7v6JmeUQ6q94j5nNcPe7Eoi3iLLdK0qOEe08LC/WttGOE/Mcjhd3AvUQ6+9ob25NT8q5Y2aNCSUJHS00nEoa4Gb2q3DCFinW9D6fIyR+PlY05Eui51qssiTyGXlDRXGQ2DkabZtY9qjjSv5dyT5Qi9d+xMyaAn8BHo7yIRjLm8AQM2sW3kcjMztyH9Yrv8354Q9rzKxRJfYzGxgY7ktxCDAImBPnWKX9u4ACQslXSUJ1CfAM8A1wXHh+FqHm90UA7v6Fu18esb/BhL6BXgGcHV7nO0L9U0r+IXQClrj7OmAU8IKZHRpuCfuvu1/n7pcCl0T09WhM6FLjHp3vK1DZ+qjqfb0D/NTMDrJQH5+fVOJ4hwLfhf+htgW6x1vZzFoA29z9OWA80DW8aDOhy5yxfA00M7PGZnYgcFZ4frTzsPz+Ym0bTdRzOE7cJSpVD2GzgUHhPjoNgJ8msE20fVTVuTMEeMbdj3T3Vu5+OPAl/2sBinSEmZ0Yfl/SGT+WytZNImWqsO4S+J1VpiyxPtsS+R0mco6WV6nfayXKKvtILV6pLz3crF2P0Lf2Z4E/JLqxu39oZrcDMyx0V84u4GfAV3uzXrltlpnZ/wFvm1kxkOfuI2LsZ2W5bRea2URgbnjWXyMuEUbTJWLdZ4EzzWwJoVaqke7+jYU6rL4Wbo16H1jh7l/E2F9L/tdqVhwxfwahfzJvEEq8XgvH+x8ze5FQ/49nCTXvl9hGqAUB4FRgWpxyRBWrPizObfVVuS93n2dmrxJKVFcC84FEL1VMB642s8WE+rFUdGmwEzDOzHYTOj+uCcfwjYU6fi8ldAfpn8rFuMvM7iLU0vgl8HF4/h7nITAiyv722DZGXcT6Wzg0Wtz7UA8lv6sXCH2pWMleJExVee4QSjrGlpv3D+CiKLF9BAw3s0cJ9Ql8hNAl/2gqVTeJfD4kWHdRz7UoKixLrPPC3T+oKI5Ez1F3H11RHcT5vSZaVtlHGkBVJMzM6of7QmBmowldVry93DqTw5caLyH0DfxfZva8u18QXp4N3OTul8Q5zu8I3eG42My6AFe5+7XhZVOAW9x9eXJKmTwl9Wehu9NmA1e6+8LqjktqnvA//3+5e8fqjmVfpVJZJBhq8RL5nxvN7AJC3/beBW4qWRBu4v8/INvMbgEeBB42s58Q0ZE8/I1ylpml+f/G8iovB2hsoaE7igndVYmZHUDoTrFal3SFPWZm7Qn1vXlaSZeIyJ7U4iUiIiISEHWuFxEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgPx/LgwyhlGQ/V8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(10, 8))\n", + "plt.scatter(np.abs(kds_difference), af_mean_pae_off_blocks)\n", + "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$')\n", + "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions')\n", + "plt.ylabel('Mean PAE (Off-blocks only)')\n", + "\n", + "for i, txt in enumerate(test_pdbs):\n", + " plt.annotate(txt, (np.abs(kds_difference[i]), af_mean_pae_off_blocks[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "73b13944", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAH6CAYAAADWRELjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABhL0lEQVR4nO3dd3xUZdr/8c9FQIyihOpDURFUQFpCIigCIkoRXaUJKiqIdXXXVVcUdde27tp9RH12LYti4acisogNXQSkWCiGKuJaQAwoWCItgSRcvz9mkh1CMplA5iQZvu/Xa16Z069z52RyzX3f5z7m7oiIiIhI/NWo7ABERERE9hdKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCUrOyAxAREanqzCym0cbd3eIdi1RvqvESiSMza21mmWa2xcyu2Yvt15jZaRW9bkUp65hmNsHM7t7HY8RchtHiKR6Lma00s177EluQipdDtPgrotwr2r6Wt5mtM7PUCgsotmPeY2bXQiihiuVVyn4WmFm7IGOXqkuJl1QplZE8RFMB8dwIzHb3Q9z90SjHmW1mv5hZ7X041l4Ln2eOmW2NeDWNwzFa7MWmMZVhebl7O3efXVH7C8Bu5VDd4t+XeM2sHvA/wKoKDSr6MRsBFwFPRsZhZm5mR4anzczuCl/bnaLs7kHgrvhGLNWFEi+R+DoSWBlthXAy0gNw4KwAYirNb9y9TsRrfSXGEqnMMtxP7M/l0AH4wt13BHjMUcDb7p4TMS8V+MXd15rZwcBkoDfQxd2XRtnXNOAUM2sSr2Cl+lDiJVVW+FvkGDNbZmbbzGy8mR1mZu+Em1tmhL8JF657s5l9Fq45etbMDozY11gz+yq83WdmNihi2eFmNsXMNpnZT2b2eHj+C8ARwBvhGqAbS4ixbbi2KjvclHJWxLKZwCnA4+Htjy3lVC8CPgYmACPLKI9SzzEsNVxev5rZK7GWQTTRzrGEddPM7NPwMV4BisdXuN5NZpYVXm+1mZ1aynp7lGGs8ZQVS2RtZvj9DVHKrrP9t5nv1fDyEpvySrueyirLaDGUUg6R8Zd1rk3N7LVwTN9YRJNtDOce7XxK3W8J5RJzeZegI7A8vK2Fr5+14XKcZGZ1w8tqmNltFmqWXG9mvzGznRb+nCin04EPis1LBZaY2RHAPOBXoLe7b4y2I3fPBRYDffciDkk07q6XXlXmBawBTot4/zFwGNAM2Ah8CqQBtYGZwO0R664ADgfqA/OBuyP2ew7QlNCXjeHANqAJkAQsBf4XOJjQP6zuJcVTQqy1gC+BW4ADCH3z3QK0jlhnNnBpGef8JXAVkA7kAYdFKY9o57gGWBA+z/qEmmWuLKsMop1nWedYLL4DgLXAdeHthobP5+5i+2wNrAOahqdbAK2ilE9RGcYaTyyxlFC2JZZdxL7+EN7XYGBn8fMKr1vq9RRj7NF+f0XlUJ5zDf++FwO3hddtCXwN9Ivh3KOdT9T9xvC3Xeq5lrDtU8At4fd3h8uiSTie14GHwsvuAuYQ+rxIAT4C1u3lZ9Em4Phi854H5gLrgevLub9HgYfj9dmpV/V5qcZLqrrH3P0Hd88i9IH3ibtneqjJ4V+EkrBCj7v7Onf/GfgrcF7hAnd/1d3Xu/sud38F+A/QJfxqCoxx923unuvu82KM7QSgDnCvu+9095nAm5HHLYuZdSfUhDTJ3RcDXwHnR9mk1HMMezR8nj8DbxD6hg5ELYNCU8M1CNlmNnUvzvEEQv/4H3H3PHefDCwsYb0CQonzcWZWy93XuPtXUc65+DFiiSfWWCKVVnYnELoD/NHwvqYQShpKEu16iiX2Un9/UZR1rscDjdz9rvBxvwaeBs6N4bjRzieW/UZTnnPtACwzs8OA3wPnu/sGD9UkTQYyLNQn6zpgtLtnuXs28B7hmrK9kEIoMY6UCrQDlrn7w+Xc35bwPmU/p8RLqrofIt7nlDBdJ2J6XcT7tYT+YQBgZheZ2ZLCxAJoDzQkVHu01t3z9yK2poS+Te8qdtxm5djHSOA9d/8xPP3/iNLcSJRzDPs+4v12IsonShkUGujuKeHXwPC88pxjUyDL3b3Yurtx9y+Ba4E7gI1m9rLF3pE/1nhiiqWY0squpH1F/h4iRbueYom91N9fFGWd65FA04ikOptQrdthMRw32vnEst9oYjpXMzNC1+pyQn0hl/vu/Q8bAhuAU4Evw9dXofr8t4myroXuLtxqZu0j9v9XM5trZpPN7KCIbX8BDolYrzbQFhgCtLXw3Y7FYn3VzOaHm5PfNbPjIhYfAmSXUhayH1HiJYnk8Ij3RxBqDsBCdyA9DfwOaODuKYSa7IzQP9AjzKy0Me2ijd2zHjjczCL/jo4AsmIJ1sySgWHAyWb2vZl9T+gbeycr/Q6pEs8xhmNFK4NoynOOG4Bm4X+Ukevuwd3/n7sX1vY5cF8s51GOeGKOJQYl7evwUtaNdj3t0/VSzvgiz3Ud8E1EUp3ioTsjB8Sw72jnsy/7LY+jgF3uvhZoRKhfVaSzCfW3akjE34OZJRHqp7UsPGs7cAahGrLCddoTaubuAcwARkfsdxkQ2S+zPaHa2rnAIOAvZta7WCxHAz3dvRehJPTZiGVtCTXbyn5OiZckkqvNrLmZ1Sf0ofdKeP7BhP65bwIws4sJfYhCqMloA3CvmR1sZgea2UkR+/yBUN+VknxCqJ/UjWZWy0JjFP0GeDnGeAcS+iA/jlATRiqhD+e5hDrcl+ccyxKtDKIpzzl+BOQD15hZTTMbzO5NmYSP3drMeodrEHIJ1VwWxHgescYTUywx+igc3+/C+zo7yr6iXU/7er1Eiy/auS4ANoc7pCebWZKZtTez42PYd7Tz2Zf9lkdRx3pCTagnmlkrM6tjZncRqmF7hlA/sW5mdrSZHUqoT1Wrwm3DzbCbiu27B/BO+P07QPeIZW8DJ0dMpwEr3D3f3T8FrgYmmdlRAGZ2AFDg7gXh4y0GUszsgPC1ng78e18LQ6o/JV6SSP4foT4dX4dfdwO4+2fAQ4T+Qf1AqL/I/PCyAkL//I4GvgW+I9TxvNA9wJ/CTSk3RB7M3XcSGv7hdOBH4O/ARe7+eYzxjgSedfdv3f37whfwODCilFqGEs+xLNHKoIztYj7H8LqDCd2G/wuhcpxSwm5rA/eG9/c90JhQEhnLecQUTzliifWYg4FLCDUVXUCob9YeQxtEu54q4HopK75RlHCuETGlAt+Ej/1PoG4M+452Pnu933LqQLjWyt0XEerbOC8cS1tCdxVud/f3gZeATGARsIRQLVe08q3Hf2vQfiXUNFnoeWBAuGYawnc0Fi509+cJ/T1OtdDQEm2B1cX2fxChpPgsQmOwVZUhWqQS2e7dAkSqJzNbQ+iOrxmVHUu87A/nWF2Y2SfAE+7+bJkrS6UwsyuBM9z9N8XmTwAedPcVZvZbYLu7Pxdujr/P3c+NWPdvwEZ3fySG440AjnT3v4Wn2xK6GebU8PVyibuvqKjzk+pLz2oUESmDmZ1MqDbjR2AEoeav6ZUalOzGzE4g1Cy6jlBH+7soe0DiecDNwHNAP4rVArt7TDWxYe0JDX9TOOr9E+EYcPeu5diPJDglXiIiZWsNTCJ0591XwFB331C5IUkxacBbhIbW+AIY5e4fR65gZm8TajJsbWZPuvsECw3EOpfQOIGl9a2MRTugb7hLwi7ggXDzp8hu1NQoIiIiEhB1rhcREREJiBIvERERkYBUiz5eDRs29BYtWlR2GCIiIiJlWrx48Y/u3qikZdUi8WrRogWLFi2q7DBEREREymRmpT6iTE2NIiIiIgFR4iUiIiISkLglXuFnei0ws6VmttLM7gzPf8DMPjezZWb2LzNLiVcMIiIiIlVJPGu8dhB6hlYnQgPW9Q+PLPxvoL27dyQ0yN3NcYxBREREpMqIW+LlIVvDk7XCL3f399w9Pzz/Y6B5vGIQERERqUri2sfLzJLMbAmhRzH8290/KbbKaOCdUra93MwWmdmiTZs2xTNMERERkUDENfFy9wJ3TyVUq9XFzNoXLjOzW4F8YGIp2z7l7hnuntGoUYlDYYiIiIhUK4Hc1eju2cBsoD+AmY0EzgRGuB4WKSIiIvuJeN7V2KjwjkUzSwZOAz43s/7ATcBZ7r49XscXERERqWriOXJ9E+A5M0silOBNcvc3zexLoDbwbzMD+Njdr4xjHCIiIiJVQtwSL3dfBqSVMP/oeB1TREREpCrTyPWyz9atW8cpp5xC27ZtadeuHePGjQPgtttuY8aMGQCMGjWKo446itTUVFJTU1myZEklRiwiIlI5qsVDsqVqq1mzJg899BCdO3dmy5YtpKen06dPH+66667d1nvggQcYOnRoJUUpIiJS+VTjJfusSZMmdO7cGYBDDjmEtm3bkpWVxahRo5g8eXKp2+3atYtjjjmGwnHadu3axdFHH82PP/4YSNwiIrL/KigoIC0tjTPPPLPE5d9++y2nnHIKaWlpdOzYkbfffrtCjqvESyrUmjVryMzMpGvXrnssu/XWW+nYsSPXXXcdO3bsoEaNGlxwwQVMnBgaym3GjBl06tSJhg0bBh22VICyPsQq0+jRo2ncuDHt2xcNJciECRNYv3591O0im8tFJLGMGzeOtm3blrgsPz+fu+++m2HDhpGZmcnLL7/MVVddVSHHVeIle2VqZhYn3TuTo8a+xUn3zmRqZhZbt25lyJAhPPLIIxx66KG7rX/PPffw+eefs3DhQn7++Wfuu+8+IPQP8fnnnwfgmWee4eKLLw78XKqy8iQzy5Yt48QTT6Rdu3Z06NCB3NzcACL8r7I+xCrTqFGjmD59+m7zYkm87rrrLk477bR4hiYileC7777jrbfe4tJLLy2a16tXL2655RZOPvlkxo0bh5mxefNmAH799VeaNm0KwFVXXcW0adMAGDRoEKNHjwZg/Pjx/OlPfyrz2Eq8pNymZmZx85TlZGXn4EBWdg5jX82kR58zGTFiBIMHD95jmyZNmmBm1K5dm4svvpgFCxYAcPjhh3PYYYcxc+ZMPvnkE04//fSAz6Zqi5bMRMrPz+eCCy7giSeeYOXKlcyePZtatWoFEGFILB9iCxcupGPHjpx44omMGTOmqPYpNzeXiy++mA4dOpCWlsasWbMqPL6ePXtSv379ounJkyezaNEiRowYQWpqKnPnzi268aNDhw6Eh7ops7lcRKqna6+9lvvvv58aNXZPg7Kzs/nggw/44x//yB133MGLL75I8+bNGTBgAI899hgQ+jyZO3cuAFlZWXz22WcAzJs3jx49epR5bCVeUm4PvLuanLyComl357tpD/NDjQZcf/31JW6zYcOGonWnTp26W5PPpZdeygUXXMCwYcNISkqKb/DVSGnJzKJFiwD48ccfadGiBQDvvfceHTt2pFOnTgA0aNCApKQk/vGPf3DjjTcWbT9hwgR+//vf71U8xWvfImOJ/BCLrFmK/BAbMmQIN910Ex999NFuv+f/+7//A2D58uW89NJLjBw5Mu61dUOHDiUjI4OJEyeyZMkSevTowZIlS1iyZAn9+/fnhhtuiOvxRSR4hS01hw29nXnf5bGuxv/ssc7w4cOL3r/00kuMGjWK7777jrfffpsLL7yQXbt20aNHD+bOnctnn33Gcccdx2GHHcaGDRv46KOP6NatW5lx6K5GKbf12Tm7Te/I+oxtK2exs1ELUlNTAfjb3/622zojRoxg06ZNuDupqak88cQTRcvOOussLr74YjUzFlOYzGzZsqXMdb/44gvMjH79+rFp0ybOPfdcbrzxRoYOHcqJJ57I/fffD8Arr7zCrbfeulfxFNa+FVa9/7h1B5dMWMj3976BhT/EUtg91sIPsezsbH7++Wdq164NwPnnn8+bb74JhL4lFiaDbdq04cgjj+SLL76gY8eOexVnoamZWTzw7mrWZ+fQNCWZkR0OKnObSZMm8emnn/Lee+/t07FFpGopbKnJySsgN+sztq2czzmndKZOTWfH9q1ccMEFABx88MFF24wfP77oi+SJJ55Ibm4uP/74I82aNeOXX35h+vTp9OzZk59//plJkyZRp04dDjnkkDJjUeIl5dY0JZmsiOTrwObtOPKmN2mWksz8sb2L5g8YMKDo/cyZM3fbR4sWLTjkkENISkpi586ddOrUiTZt2kQ97o4dO7joootYvHgxDRo04JVXXqFFixbMnj2bBx98sOgfeXVWmCx8ueiDUpOZkuTn5zNv3jwWLlzIQQcdxKmnnkp6ejqnnnoqLVu25OOPP+aYY45h9erVnHTSSeWOq7D27dZbb+Xhhx9mamYWX2/aRt0tO8j9biVbFr/LkBOP5dA6B1NQUED79u1Zs2YNV199Ne+//z6ZmZnk5OQwZswY7r77bv76178W7Tsej2uN/JCFUHP4fdPXkZdbel+zlStXcvvttzNnzhzVvIokmMiWmnonj6LeyaMAqPPzalqsn8mLL75Ir169dtvmiCOO4P3332fUqFGsWrWK3NxcGjVqBIQSsUceeYSZM2fy008/MXTo0JiHS1JTo5TbmH6tSa61+z+m5FpJjOnXulz7mTVrFueeey7btm3jnnvuKXP98ePHU69ePb788kuuu+46brrppnIdr6qL7DuXm/UZP4a/kQ0aOoyZM2dywQUXULNmTXbt2gWwW3Nc8+bNOfnkk2nYsCEHHXQQAwYM4NNPPwVCtU6TJk3itddeY9CgQUX9l8qjeH+IB95dzS532FVA/uZN1D1xGIdfO4lmg8cCoZspMjIy6Ny5M08//TT9+/fn0EMP5bLLLmPJkiXMnz+/aN89e/YsurP1iy++4Ntvv6V16/JdS8UVbw4H2JFfwI9bdxRNH3LIIUW1ib/++ivnnnsuzz//fNEHq4gkjuItNYUiPxOKe+ihh3j66afp1KkT5513HhMmTCj6/OzRowf5+fkcffTRdO7cmZ9//jmm/l2gxEv2wsC0ZtwzuAPNUpIxoFlKMvcM7sDAtGbl3tfYsWNZu3Ytxx57LOnp6QAsXboUM+Pbb78FoFWrVmzfvp3XX3+dkSNHAqE+Ou+///4etSULFy4kLS2Nr7/+et9OshIU/0bW/OrnaHblMzQbPJbevXvz4osv0qJFCxYvXgywW6fvfv36sWzZMrZv305+fj4ffPABxx13HACDBw9m6tSpvPTSS7v1XyhLtP4QhR9iP737OAc0PJK63UL7/XHrDsysqB9YmzZtWLNmDQDdunXjySef5MQTT8TdqVu3LhC6Q6igoIAOHTowfPhwJkyYUNQkubeKf8humnY/379wAzmb1tG8eXPGjx/PqFGjuPLKK0lNTWXq1KmsXbuWyy67rKiTvYgkjqYpySXOb9Wxa1FryezZs8nIyChadtxxxzF//nyWLl3KkiVL6Nu3b9GySy65pOiu6Fq1arFt27YSbywriZoaZa8MTGu2V4lWITOjb9++mBlXXHEFl19+Obm5uWzevJm5c+eSkZHB3Llz6d69O40bN+aggw4iKyuLww8/HAiNll+3bl1++umnon1++OGH/P73v+f111/niCOO2OdzDFq0b2Qtwu9vuOEGhg0bxgsvvEDv3v9t1q1Xrx7XX389xx9/PGbGgAEDOOOMM4qWHXfccXz22Wd06dIlpljK6g9xcFaotq12s7bkfruMQ7sMwmoeQKuOXdk67SDMjNmzZzN58mS++OILAFJSUnjooYcYOnQo9957b9EH3IEHHsiECRPKX2BRFG8Ob3RW6AaD4s3hQ4YMKXpfmNRHqui4JHi5ubn07NmTHTt2kJ+fz9ChQ7nzzjsrOywJ2Jh+rXfrfgB711JTEZR4SaWYP38+TZs2ZePGjfTp04c2bdrQrVs35s+fz5w5c7jllluYPn067l5UfVtSX6DCat9Vq1Zx+eWX89577xWNtVLdFE8WCrXq2JU3x94MhGqQli1bVrTs7rvvLnp/wQUXFHUQLa68/d/K6g9x6V+e5PyBp1OnY192rFvBpqn3cMTw2xnTrzUX3F3yPn/66Seuv/567rjjDo488si4JjVV6UNWKlft2rWZOXMmderUIS8vj+7du3P66adzwgknVHZoEqDCioLIG27G9Gu9TxUIe0tNjRKYyEFXz3n+c6ZmZtG4cWMGDRrEggULim7RXbt2LWeffTZLly5l3rx59OzZEwj1Y1q3bh0Q6kz+66+/Fo3N1KRJEw488EAyMzMr7fz2VUX1nasIZfWHGJjWjJaNDqbxIbWp22UQDY5sQ6PFT3NWpyal7vPPf/4zderUoVatWjz66KNx7UtVkc3hUr2ZGXXq1AEgLy+PvLw8zIyvvvqK/v37k56eTo8ePfj8888BWLt2LaeeeiodO3bk1FNPLery8MYbb9C1a1fS0tI47bTT+OGHHyrtnGTvDExrxvyxvfnm3jOYP7Z3pX0eWDzuKKpoGRkZXjhekFRPkU1Xu3bmgu/i4DqHcPvprXj0hpHcdttttGnThp49e9KzZ09efPFFBgwYwIoVK1i6dCn16tXj//7v/1i+fDlPPPEEL7/8MlOmTGHSpElFdzWOHz+evn37Mm7cuD3uTqkuig+BUFnfyE66d2aJtW/Fm+pEqoOCggLS09P58ssvufrqq7nvvvs49dRTeeKJJzjmmGP45JNPuPnmm5k5cya/+c1vGDp0KCNHjuSZZ55h2rRpTJ06lV9++YWUlBTMjH/+85+sWrWKhx56qLJPTaooM1vs7hklLVNTowQisumqYHs2m6aE2qNGP+Xces1l9O/fv2jdwhqu7t27891331GvXj0g1Jnxwgsv5Oijj6Z+/fq8/PLLux3jsMMO44033uD000/nmWeeKfF5kVXdvvadqyhqqpPqrKQvMEuWLCE7O5tBgwaxYsUKPvzwQ84555yibXbsCNXmfvTRR0yZMgWACy+8sGgA4u+++47hw4ezYcMGdu7cyVFHHRX8iUlCUI2XBOKosW9R0pVmwDf3nhF0OBKDqlL7JlIexcdwg9CXhsKm5jvvvBMz4x//+EfREzUiNWzYkA0bNlCrVi3y8vJo2rQpmzZtolevXlx//fWcddZZzJ49mzvuuIPZs2cHeGZSnUSr8VIfLwlEabfyljZfKl9V6Q8hUh7Fx3Ar2P4r27b8Gpqfk8OMGTPo3LkzRx11FK+++ioQunFn6dKlQGjYk8La9IkTJ9K9e3cgNNZbs2ahv4HnnnsuyFOSBKPESwJRlTqOi0jiKn5jSMHWn/n+pVtY+PAlHH/88fTp04czzzyTiRMnMn78eDp16kS7du14/fXXAXj00Ud59tln6dixIy+88ALjxo0D4I477uCcc86hR48eNGzYMPDzksShpkYJjJquRCTedGOIVAXqXC9VQlXpOC4iiUs3hkhVp8RLREQSRlUaKFOkJEq8REQkoah2Xaoyda4XERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESkcC1aNGCDh06kJqaSkZGiYM7A7B+/XqGDh0aYGQiIvGlcbxEpFLMmjWrzGfeNW3alMmTJwcUkYhI/KnGS0SqhC+//JLTTjuNTp060blzZ7766ivWrFlD+/btAcjJyeHcc8+lY8eODB8+nK5du6JnuIpIdaMaLxEJnJnRt29fzIwrrriCyy+/nBEjRjB27FgGDRpEbm4uu3btYuPGjUXb/OMf/+Cggw5i2bJlLFu2jM6dO1fiGYiI7B0lXiISd1Mzs3Z7dt6fn5zM6L7pbNy4kT59+tC6dWuysrIYNGgQAAceeOAe+5gzZw7XXHMNAB07dqRjx46BnoOISEVQ4iUicTU1M4ubpywnJ68AgKzsHB6Yu5P6jbIYmNaMQYMG8cEHH8S0LzOLZ6giInGnPl4iElcPvLu6KOkC2LUzl21bt/DAu6vZtm0b7733Hl26dKF58+ZMnToVgB07drB9+/bd9tOzZ08mTpwIwIoVK1i2bFlg5yAiUlFU4yUicbU+O2e36YLt2WyacjffA11eOIjzzz+f/v3706pVK6644gpuu+02atWqxauvvkqNGjWKarl++9vfcvHFF9OxY0dSU1Pp0qVLJZyNiMi+UeIlInHVNCWZrIjkq1bK/9B09OM0S0lm/tjeRfOPOeYYZs6cudu2ixcvpn79+gAkJyfz8ssvFy3r1atXfAMXEYkDNTWKSFyN6dea5FpJu81LrpXEmH6to263aNEizjvvPP7whz/EMzwRkUAp8YqjgoIC0tLSOPPMMwH4/PPPSU1NJS0tjZUrV9KlSxc6depEu3btuP3224u2i1zvq6++qqzwRSrEwLRm3DO4A81SkjGgWUoy9wzuwMC0ZlG3y8jI4IsvvmDw4MElLp89e3bUUe9FRKoiNTXG0bhx42jbti2bN28GYOrUqZx99tnceeeduDszZ86kTp065OXl0b17d04//XROOOGE3dYTSQQD05qVmWiJiOwPVOMVJ9999x1vvfUWl156KQBvv/02jzzyCP/85z855ZRTMDPq1KkDQF5eHnl5eZjZHuuJiIhI4lCNV5xce+213H///WzZsgWAAQMGcOWVV1KnTh1uuOEGINQUmZ6ezpdffsnVV19N165dAfZYT0RERBKDarwqyNTMLE66dyZHjX2LtiP/yrYaB5Oenh51m6SkJJYsWcJ3333HggULWLFiRUDRioiISGVQjVcFKD4y9/ovlvDlylk0bno4NXblsXnzZi644AKOPvroErdPSUmhV69eTJ8+veiBwCIiIpJ4VONVAYqPzF3v5FE0u+o5jrnmOV5++WV69+7Niy++uNs2mzZtIjs7G4CcnBxmzJhBmzZtggxbREREAqYarwpQfGTu3ecfXOKyDRs2MHLkSAoKCti1axfDhg0rGnZCREREEpO5e2XHUKaMjAxftGhRZYdRqpPunbnbyNyFio/MLSIiIonPzBa7e4kDDaqpsQLs7cjcIiIisn9RU2MFKBwY8oF3V7M+O4emKcmM6ddaA0aKiIjIbpR4VRCNzC0iIiJlUVOjiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISECUeImIiIgERImXiIiISEA0cr3ErEWLFhxyyCEkJSVRs2ZNqvKDy0VERKoiJV5SLrNmzaJhw4aVHYaIiEi1pKZG2WurVq2iS5cuRdNr1qyhY8eOLFq0iNTUVFJTU+nQoQNmxldffUXnzp2L1v3Pf/5Denp6ZYQtIiJSaeKWeJnZgWa2wMyWmtlKM7szPL++mf3bzP4T/lkvXjFIxTIz+vbtS3p6Ok899RRt27Zl586dfP311wC88sorDBs2jIyMDJYsWcKSJUvo378/N9xwA61ataJu3bosWbIEgGeffZZRo0ZV3smIiIhUAnP3+OzYzICD3X2rmdUC5gF/AAYDP7v7vWY2Fqjn7jdF21dGRoarP1HwpmZm8cC7q1mfnUPTlGQu6VyX0X3T2bhxI3369OGxxx5j3rx51KhRg7Fjx9K5c2deeeUVjjnmGAAmTZrEk08+yXvvvUdSUhITJ05kwYIFPPzwwxx77LEsWLCABg0aVPJZioiIVCwzW+zuGSUti1uNl4dsDU/WCr8cOBt4Ljz/OWBgvGKQvTc1M4ubpywnKzsHB7Kyc3hg7iamZmbRuHFjBg0axIIFCxg+fDiTJk3iiy++wMyKkq6VK1dy++238/LLL5OUlATAkCFDeOedd3jzzTdJT09X0iUiIvuduPbxMrMkM1sCbAT+7e6fAIe5+waA8M/GpWx7uZktMrNFmzZtimeYUoIH3l1NTl5B0fSunbls27qFB95dzbZt23jvvfdo3749rVq1Iikpib/85S8MHz4cgF9//ZVzzz2X559/nkaNGhXt48ADD6Rfv3789re/5eKLLw78nERERCpbXO9qdPcCINXMUoB/mVn7cmz7FPAUhJoa4xOhlGZ9ds5u0wXbs9k05W6+B7q8cBDnn38+/fv3B2D48OGMGTOGb775BoCpU6eydu1aLrvssqLtC/t2jRgxgilTptC3b99AzkNERKQqiVsfrz0OZHY7sA24DOjl7hvMrAkw291bR9tWfbyCd9K9M8kqlnwBNEtJZv7Y3nu93wcffJBff/2Vv/zlL/sSnoiISJVVKX28zKxRuKYLM0sGTgM+B6YBI8OrjQRej1cMsvfG9GtNcq2k3eYl10piTL+oOXJUgwYN4vnnn+cPf/jDvoYnIiJSLcWzqbEJ8JyZJRFK8Ca5+5tm9hEwycwuAb4FzoljDLKXBqY1A9jtrsYx/VoXzd8b//rXvyoqPBERkWopsKbGfaGmRhEREakuKqWpUURERER2p8RLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvALSokULOnToQGpqKhkZGTFtM2fOHDp37kzNmjWZPHlynCMUERGReKtZ2QHsT2bNmkXDhg1jXv+II45gwoQJPPjgg3GMSkRERIKiGq9KsnHjRtLT0wFYunQpZsa3334LQKtWrdi+fTstWrSgY8eO1Kix+69p9uzZnHzyyQwbNoxjjz2WsWPHMnHiRLp06UKHDh346quvAj8fERERKZsSr4CYGX379iU9PZ2nnnqKxo0bk5uby+bNm5k7dy4ZGRnMnTuXtWvX0rhxYw466KCo+1u6dCnjxo1j+fLlvPDCC3zxxRcsWLCASy+9lMceeyygsxIREZHyUFNjQObPn0/Tpk3ZuHEjffr0oU2bNnTr1o358+czZ84cbrnlFqZPn46706NHjzL3d/zxx9OkSRMgVEPWt29fADp06MCsWbPiei4iIiKyd5R4xcnUzCweeHc167NzaJqSzJh+rRnYFBo3bsygQYNYsGABPXr0KKrlOvvss7nvvvswM84888wy91+7du2i9zVq1CiarlGjBvn5+XE7LxEREdl7amqMg6mZWdw8ZTlZ2Tk4sG7jL9z40idMzcxi27ZtvPfee7Rv356ePXvy4osvcswxx1CjRg3q16/P22+/zUknnVTZpyAiIiJxoMQrDh54dzU5eQVF0wXbs1kz4Y+MGNCTLl26cMYZZ9C/f39atGgBQM+ePQHo3r07KSkp1KtXD4CFCxfSvHlzXn31Va644gratWsX+LmIiIhIxTF3r+wYypSRkeGLFi2q7DBidtTYtyipVA345t4zgg5HREREAmRmi929xEE7o/bxMrMDgTOBHkBTIAdYAbzl7isrOtBE0TQlmazsnBLni4iIyP6r1KZGM7sDmA+cCHwCPAlMAvKBe83s32bWMYggq5sx/VqTXCtpt3nJtZIY0691JUUkIiIiVUG0Gq+F7n5HKcseNrPGwBEVH1L1NzCtGcCedzWG54uIiMj+qdTEy93fAjCzFu6+JnKZmR3v7guBjfENr/oamNZMiZaIiIjsJpa7GqeYWVEGYWYnA8/ELyQRERGRxBRL4nUFMNXM/sfMBgDjgAHxDUtEREQk8ZQ5cr27LzSza4D3gFygj7tvintkIiIiIgmm1MTLzN6A3YajOgj4FRhvZrj7WfEOTkRERCSRRKvxejCwKERERET2A9HuavwAwMyOAja4e254Ohk4LJjwRERERBJHLJ3rXwV2RUwXhOftt7Kzsxk6dCht2rShbdu2fPTRR+XeR69evahOj0ESERGRfVdm53qgprvvLJxw951mdkAcY6ry/vCHP9C/f38mT57Mzp072b59e2WHJCIiItVALDVem8ysqCO9mZ0N/Bi/kKq2zZs3M2fOHC655BIADjjgAFJSUnj66ac5/vjj6dSpE0OGDClKxs4++2yef/55AJ588klGjBix2/527drFyJEj+dOf/hTsiYiIiEjgYkm8rgRuMbN1ZrYOuAm4PL5hVV1ff/01jRo14uKLLyYtLY1LL72Ubdu2MXjwYBYuXMjSpUtp27Yt48ePB+Cpp57irrvuYu7cuTz00EM89thjRfvKz89nxIgRHHvssdx9992VdUoiIiISkDITL3f/yt1PANoCx7l7N3f/Kv6hVS1TM7M46d6ZDPjf2SxcvJjjeg8hMzOTgw8+mHvvvZcVK1bQo0cPOnTowMSJE1m5ciUAhx12GHfddRennHIKDz30EPXr1y/a5xVXXEH79u259dZbK+u0REREJEBlJl5mVtfMHgZmA7PM7CEzqxv3yKqQqZlZ3DxlOVnZOSQd0pCkOg159j+1mJqZxdChQ/n0008ZNWoUjz/+OMuXL+f2228nNze3aPvly5fToEED1q9fv9t+u3XrxqxZs3ZbV0RERBJXLE2NzwBbgGHh12bg2XgGVdU88O5qcvIKAEiqU4+ahzZk8/dreeDd1bz//vscd9xxbNmyhSZNmpCXl8fEiROLtl2wYAHvvPMOmZmZPPjgg3zzzTdFyy655BIGDBjAOeecQ35+fuDnJSIiIsGK5a7GVu4+JGL6TjNbEqd4qqT12Tm7Tdc/7Up+fPNBNhXk06hbJ5599llatmxJ165dOfLII+nQoQNbtmxhx44dXHbZZTz77LM0bdqUhx56iNGjRzNz5syifV1//fX8+uuvXHjhhUycOJEaNWLJhUVERKQ6MnePvoLZR8AYd58Xnj4JeNDdTwwgPgAyMjK8Mse8OunemWQVS74AmqUkM39s70qISERERKoqM1vs7hklLYuleuW3wP+Z2RozWws8TuhOx/3GmH6tSa6VtNu85FpJjOnXupIiEhERkeqozKZGd18CdDKzQ8PTm+MdVFUzMK0ZEOrrtT47h6YpyYzp17povoiIiEgsSk28zOz6UuYD4O4PxymmKmlgWjMlWiIiIrJPotV4HRJYFCIiIiL7gVITL3e/M8hARERERBJdLAOotjSzN8xsk5ltNLPXzaxlEMGJiIiIJJJY7mr8f8AkoAnQFHgVeCmeQYmIiIgkolgSL3P3F9w9P/x6EYg++JeIiIiI7CHaXY2FT3OeZWZjgZcJJVzDgbcCiE1EREQkoUS7q3ExoUTLwtNXRCxz4C/xCkpEREQkEUW7q/GoIAMRERERSXR6InOEdevWccopp9C2bVvatWvHuHHjSlxvwoQJNGrUiNTUVFJTU/nnP/9ZtOzbb7+lb9++tG3bluOOO441a9YEFL2IiIhUdWU+Mmh/UrNmTR566CE6d+7Mli1bSE9Pp0+fPhx33HFF6+Tn5wMwfPhwHn/88T32cdFFF3HrrbfSp08ftm7dSo0aym1FREQkRIlXhCZNmtCkSRMADjnkENq2bUtWVhZXXXUV3bp1Y/78+Zx11lk0aNCgxO0/++wz8vPz6dOnDwB16tQJLHYRERGp+mKqjjGzZmbWzcx6Fr7iHVhlW7NmDZmZmXTt2hWA7OxsPvjgA/74xz8C8Nprr9GxY0eGDh3KunXrAPjiiy9ISUlh8ODBpKWlMWbMGAoKCirtHERERKRqKbPGy8zuIzSExGdAYRbhwJw4xhWYqZlZPPDuatZn59A0JZkx/Vpz2jF1GTJkCI888giHHnooEGpaLPSb3/yG8847j9q1a/PEE08wcuRIZs6cSX5+PnPnziUzM5MjjjiC4cOHM2HCBC655JLKOj0RERGpQmKp8RoItHb3Ae7+m/DrrDjHFYipmVncPGU5Wdk5OJCVncPYVzPp0edMRowYweDBg4vWPfjgg4veN2jQgNq1awNw2WWXsXjxYgCaN29OWloaLVu2pGbNmgwcOJBPP/000HMSERGRqiuWxOtroFa8A6kMD7y7mpy8/zYFujvfTXuYH2o04Prrry91uw0bNhS9nzZtGm3btgXg+OOP55dffmHTpk0AzJw5c7eO+SIiIrJ/i6Vz/XZgiZm9D+wonOnu18QtqoCsz87ZbXpH1mdsWzmLnY1akJqaCsDf/va3PbZ79NFHmTZtGjVr1qR+/fpMmDABgKSkJB588EFOPfVU3J309HQuu+yyeJ+GiIiIVBPmHv2xi2Y2sqT57v5cGdsdDjwP/A+wC3jK3ceZWSrwBHAgkA9c5e4Lou0rIyPDFy1aFDXOvXHSvTPJKpZ8ATRLSWb+2N4VfjwRERFJfGa22N0zSlpWZo2Xuz9nZsnAEe6+uhzHzQf+6O6fmtkhwGIz+zdwP3Cnu79jZgPC073Ksd8KM6Zfa26esny35sbkWkmM6de6MsIRERGRBFdmHy8z+w2wBJgenk41s2llbefuG9z90/D7LcAqoBmhOyIPDa9WF1i/V5FXgIFpzbhncAeapSRjhGq67hncgYFpzSorJBEREUlgsTQ1LgZ6A7PdPS08b7m7d4j5IGYtCA0/0Z5Q8vUuoYdv1wC6ufvaEra5HLgc4Igjjkhfu3aPVURERESqnGhNjbHc1Zjv7r8Wmxc9W9v94HWA14Br3X0z8FvgOnc/HLgOGF/Sdu7+lLtnuHtGo0aNYj2ciIiISJUVS+K1wszOB5LM7Bgzewz4MJadm1ktQknXRHefEp49Eih8/yrQpZwxi4iIiFRLsSRevwfaERpK4iVgM3BtWRuZmRGqzVrl7g9HLFoPnBx+3xv4TzniFREREam2YrmrcTtwa/hVHicBFwLLzWxJeN4twGXAODOrCeQS7sclIiIikuhieVbjG+zZp+tXYBHwpLvnlrSdu88j1IG+JOnlCVJEREQkEcT6yKCtwNPh12bgB+DY8LSIiIiIxCCWRwaluXvPiOk3zGyOu/c0s5XxCkxEREQk0cRS49XIzI4onAi/bxie3BmXqEREREQSUCw1Xn8E5pnZV4T6bB0FXGVmBwNRn9coIiIiIv8Vy12Nb5vZMUAbQonX5xEd6h+JY2wiIiIiCaXUxMvMerv7TDMbXGxRSzMjYkBUEREREYlBtBqvk4GZwG9KWOb8d/R5EREREYlBqYmXu98efnuXu38TuczMjoprVCIiIiIJKJa7Gl8rYd7kig5EREREJNFF6+PVhtAzGusW6+d1KHBgvAMTERERSTTR+ni1Bs4EUti9n9cWQs9bFBEREZFyiNbH63XgdTM70d0/CjAmERERkYQUywCqX5rZLUCLyPXdfXS8ghIRERFJRLEkXq8Dc4EZQEF8wxERERFJXLEkXge5+01xj0REREQkwcUynMSbZjYg7pGIiIiIJLhYEq8/EEq+csxss5ltMbPN8Q5MREREJNHE8pDsQ4IIRERERCTRxdLHCzOrBxxDxMCp7j4nXkGJiIiIJKIyEy8zu5RQc2NzYAlwAvAR0DuukYmIiIgkmFj7eB0PrHX3U4A0YFNcoxIRERFJQLEkXrnungtgZrXd/XNCjxMSERERkXKIpY/Xd2aWAkwF/m1mvwDr4xmUiIiISCKK5a7GQeG3d5jZLKAuMD2uUYmIiIgkoJjuaizk7h/EKxARERGRRBdLHy8RERGRvbJu3TpOOeUU2rZtS7t27Rg3blxM2y1cuJCkpCQmT55cNK9FixZ06NCB1NRUMjIy4hVyXJWrxktERESkPGrWrMlDDz1E586d2bJlC+np6fTp04fjjjuu1G0KCgq46aab6Nev3x7LZs2aRcOGDeMZclzFVONlZoeZ2ZnhV+N4ByUiIiKJoUmTJnTu3BmAQw45hLZt25KVlUWvXr249tpr6datG+3bt2fBggVF2zz22GMMGTKExo0TL+UoM/Eys2HAAuAcYBjwiZkNjXdgIiIikljWrFlDZmYmXbt2BWDbtm18+OGH/P3vf2f06NEAZGVl8a9//Ysrr7xyj+3NjL59+5Kens5TTz0VaOwVJZamxluB4919I4CZNQJmAJOjbiUiIiIStnXrVoYMGcIjjzzCoYceCsB5550HQM+ePdm8eTPZ2dlce+213HfffSQlJe2xj/nz59O0aVM2btxInz59aNOmDT179gz0PPZVLIlXjcKkK+wn1ClfRERESjE1M4sH3l3N+uwcmqYkc13vljz95ysYMWIEgwcPLlrPzHbbzsxYtGgR5557LgA//vgjb7/9NjVr1mTgwIE0bdoUgMaNGzNo0CAWLFhQ7RKvWBKo6Wb2rpmNMrNRwFvA2/ENS0RERKqjqZlZ3DxlOVnZOTjw3S/bueTSSzmgweFcf/31u637yiuvADBv3jzq1q1L3bp1+eabb1izZg1r1qxh6NCh/P3vf2fgwIFs27aNLVu2AKEmyvfee4/27dsHfXr7LJYBVMeY2RDgJMCAp9z9X3GPTERERKqdB95dTU5eQdH0jqzP2Lz8fWZuOorU1FQA/va3vwFQr149unXrxubNm3nmmWei7veHH35g0KDQmO75+fmcf/759O/fPz4nEUfm7pUdQ5kyMjJ80aJFlR2GiIiIlOGosW9RUmZhwDf3nlE03atXLx588MFqOx5XNGa22N1LPLFY7mocbGb/MbNfzWyzmW0xs80VH6aIiIhUd01Tkss1f38TSx+v+4Gz3L2uux/q7oe4+6HxDkxERESqnzH9WpNca/c7EpNrJTGmX+vd5s2ePTsha7vKEstdjT+4+6q4RyIiIiLV3sC0ZgC73dU4pl/rovn7u1gSr0Vm9gowFdhRONPdp8QrKBEREam+BqY1U6JVilgSr0OB7UDfiHkOKPESERERKYdYhpO4OIhARERERBKdRqAXERERCYgSLxEREZGAKPESERERCUi5Ey8zO9vMusYjGBEREZFEFstdjcV1BTqYWU13P72iAxIRERFJVOVOvNz9lngEIiIiIpLoyky8zOxA4CqgO6Hxu+YB/3D33DjHJiIiIpJQYqnxeh7YAjwWnj4PeAE4J15BiYiIiCSiWBKv1u7eKWJ6lpktjVdAIiIiIokqlrsaM83shMKJ8B2N8+MXkoiIiEhiKrXGy8yWE+rTVQu4yMy+DU8fCXwWTHgiIiIiiSNaU+OZgUUhIiIish8oNfFy97XF55nZwcBA4HzgjPiFJSIiIpJ4yuzjZWYHmNlAM5sEbABOA56Ie2QiIiIiCSZaH68+hIaO6AfMIjSERBd3vzig2EREREQSSrQ+Xu8Cc4Hu7v4NgJmNCyQqERERkQQULfFKB84FZpjZ18DLQFIgUYmIiIgkoFL7eLl7prvf5O6tgDuANOAAM3vHzC4PKkCRoOTm5tKlSxc6depEu3btuP3228vc5rHHHqN169a0a9eOG2+8EYDZs2dz5pm6KVhERPYU00Oy3X0+MN/MrgH6EKoJeyqegYkErXbt2sycOZM6deqQl5dH9+7dOf300znhhBNKXH/WrFm8/vrrLFu2jNq1a7Nx48aAIxYRkeomlpHri7j7Lnd/Vx3sJRGZGXXq1AEgLy+PvLw8zIwlS5Zwwgkn0LFjRwYNGsQvv/wCwD/+8Q/Gjh1L7dq1AWjcuHGlxS4iItVDuRIvkURXUFBAamoqjRs3pk+fPnTt2pWLLrqI++67j2XLltGhQwfuvPNOAL744gvmzp1L165dOfnkk1m4cGElRy8iIlVdTE2NIolqamYWD7y7mvXZOTRNSWZMv9YsWbKE7OxsBg0axNKlS8nOzubkk08GYOTIkZxzzjkA5Ofn88svv/Dxxx+zcOFChg0bxtdff12ZpyMiIlVczDVeZtY24n3JnV5EqpGpmVncPGU5Wdk5OJCVncPNU5YzNTOLlJQUevXqxdSpU0vdvnnz5gwePBgzo0uXLtSoUYMff/wxsPhFRKT6KU9T44NmNs/MbgSeL2tlMzvczGaZ2SozW2lmf4hY9nszWx2ef//eBC6yrx54dzU5eQVF0wXbf2Xbll9D83NymDFjBunp6dSrV4+5c+cC8MILLxTVfg0cOJCZM2cCoWbHnTt30rBhw+BPREREqo1oI9e3AH52980A7n5G+K7GBwg9q7Es+cAf3f1TMzsEWGxm/wYOA84GOrr7DjNTj2SpFOuzc3abLtj6Mz++9b9877s4/sWDGTZsGGeeeSbNmzfnyiuvZPv27bRs2ZJnn30WgNGjRzN69Gjat2/PAQccwHPPPYeZVcapiIhINWHuXvICs8VAb3f/NTx9DTAcuBT4P3fvXa4Dmb0OPA5cBjzl7jNi3TYjI8MXLVpUnsOJlOmke2eSVSz5AmiWksz8seW6vEVERIqY2WJ3zyhpWbSmxloRSdffgNOBPu6+CqhbzgBaEBqA9RPgWKCHmX1iZh+Y2fGlbHO5mS0ys0WbNm0qz+FEYjKmX2uSa+3+MIbkWkmM6de6kiISEZFEF+2uxq/M7FmgOdAZaOfu2yM72cfCzOoArwHXuvtmM6sJ1ANOAI4HJplZSy9W9ebuTxEepDUjI6PkajmRfTAwrRnAHnc1Fs4XERGpaNESr+HAMGAn8DWhZzZuBNoAI2PZuZnVIpR0TXT3KeHZ3wFTwonWAjPbBTQEVK0lgRuY1kyJloiIBKbUxMvddwIvFk6bWQbQAfiPu2eXtWML9TIeD6xy94cjFk0FegOzzexY4ABA9+CLiIhIwot5AFV3zwXKMzT3ScCFwHIzWxKedwvwDPCMma0gVJs2sngzo4iIiEgiitvI9e4+Dyjt3voL4nVcERERkapKz2oUERERCUiZiZeZtTKz2uH3vczsGjNLiXtkIiIiIgkmlhqv14ACMzuaUGf5o4D/F9eoRERERBJQLInXLnfPBwYBj7j7dUCT+IYlIiIiknhiSbzyzOw8QmN3vRmeVyt+IYmIiIgkplgSr4uBE4G/uvs3ZnYUEeN7iYiIiEhsYhlOItndrymcCCdfK+MYk4iIiEhCiqXG62kz61A4EW52/FP8QhIRERFJTLHUeA0FJpvZCKA7cBHQN65RiYiIiCSgMhMvd//azM4l9IzFdUBfd8+Jd2AiIiIiiabUxMvMlgORz1CsDyQBn5gZ7t4x3sGJiIiIJJJoNV5nBhaFiIiIyH6g1M717r7W3dcSGiz154jpn4H/CSpAERERkUQRy12N/wC2RkxvC88TERERkXKIJfEydy/q6+Xuu4jtbkgRERERiRBL4vW1mV1jZrXCrz8AX8c7MBEREZFEE0vidSXQDcgKv7oCl8czKBEREZFEFMs4XhuBcwOIRURERCShlVnjZWbNzexfZrbRzH4ws9fMrHkQwYmIiIgkkliaGp8FpgFNgWbAG+F5IiIiIlIOsSRejdz9WXfPD78mAI3iHJeIiIhIwokl8frRzC4ws6Tw6wLgp3gHJiIiIpJoYkm8RgPDgO+BDcDQ8DwRERERKYdY7mr8FjgrgFhEREREElqpiZeZPQZ4acvd/Zq4RCQiIiKSoKLVeC0KLAoRERGR/UCpiZe7Pxc5bWaHhmb7lrhHJSIiIpKAYhlANcPMlgPLgBVmttTM0uMfmoiIiEhiKbNzPfAMcJW7zwUws+6EBlDtGM/ARERERBJNLMNJbClMugDcfR6g5kYRERGRcop2V2Pn8NsFZvYk8BKhuxyHA7PjH5qIiIhIYonW1PhQsenbI96XOsyEiIiIiJQs2l2NpwQZiIiIiEiii6WPVxEzezNegYiIiIgkunIlXkCzuEQhIiIish8oNfEys3PCP4+KmJ0Z94hEREREElS0Gq+bwz9fK5zh7qPjG46IiIhI4op2V+PPZjYLOMrMphVf6O5nxS8sERERkcQTLfEaAHQGXmDPoSVEREREpJyiJV7j3f1CM3va3T8ILCIRERGRBBWtj1e6mR0JjDCzemZWP/IVVIAiIiIiiSJajdcTwHSgJfBpsWUeni8iIiIiMSq1xsvdH3X3tsAz7n5UsZeSLhEREZFyilbjVehVM/sdoVqule4+O74hiYiIiCSmUhMvM2sGTAFygcWAAcPMLBkY5O5ZwYQoIiIikhii1Xg9DvzD3SdEzjSzi4C/A2fHMS4RERGRhBPtrsbjiiddAO7+PNAmbhGJiIiIJKhoiVdSSTPNrEZpy0RERESkdNESrzfM7GkzO7hwRvj9E8DbcY9MREREJMFES7xuBH4F1prZYjNbBKwBNgM3BBCbiIiISEIptXO9u+cBN5jZn4GjCd3V+KW7bw8qOBEREZFEUmqNl5l1B3D3HHdf7u7LIpMuMzvUzNoHEaSIiIhIIog2nMQQM7uf0GODFgObgAMJ1X6dAhwJ/DHuEYqIiIgkiGhNjdeZWT1gKHAO0ATIAVYBT7r7vGBCFBEREUkMUR8Z5O6/AE+HXyIiIiKyD6Ld1SgiIiIiFUiJl4iIiEhAlHiJiIiIBCTacBI3Rrw/p9iyv8UzKBEREZFEFK3G69yI9zcXW9Y/DrGIiIiIJLRoiZeV8r6kaREREREpQ7TEy0t5X9K0iIiIiJQh2jhencxsM6HareTwe8LTB8Y9MhEREZEEU2qNl7snufuh7n6Iu9cMvy+crlXWjs3scDObZWarzGylmf2h2PIbzMzNrGFFnIiIiIhIVVeu4STM7GAzG2Fmb8Wwej7wR3dvC5wAXG1mx4X3czjQB/i2vAGLiIiIVFdlJl5mdoCZDTSzScAG4DTgibK2c/cN7v5p+P0WQs94bBZe/L/AjaivmIiIiOxHSu3jZWZ9gPOAfsAs4AWgi7tfXN6DmFkLIA34xMzOArLcfamZbo4UERGR/Ue0Gq93gVZAd3e/wN3fAHaV9wBmVgd4DbiWUPPjrcBtMWx3uZktMrNFmzZtKu9hpQobPXo0jRs3pn379nu9j9tuu40ZM2ZUYFQiIiLxZ+4lt/aZWRqhQVSHAl8DLwO3ufuRMe/crBbwJvCuuz9sZh2A94Ht4VWaA+sJ1aR9X9p+MjIyfNGiRbEeVqq4OXPmUKdOHS666CJWrFhR2eGIiIhUKDNb7O4ZJS2Ldldjprvf5O6tgDsINRUeYGbvmNnlMRzUgPHAKnd/OLzP5e7e2N1buHsL4Dugc7SkSxJPz549qV+/ftH0V199RefOnYum//Of/5Ceng7A4sWLOfnkk0lPT6dfv35s2LABgFGjRjF58uRgAxcREdlHUTvXm1mamQ0Ffnb33xHqHP8IcGIM+z4JuBDobWZLwq8B+xqwJJ5WrVpRt25dlixZAsCzzz7LqFGjyMvL4/e//z2TJ09m8eLFjB49mltvvbVygxUREdkH0TrX3wZcACwG7jeze9z9aUJ9v94ta8fuPo8yHi0UrvWS/cDUzCweeHc167NzaJqSzMgOB+22/NJLL+XZZ5/l4Ycf5pVXXmHBggWsXr2aFStW0KdPHwAKCgpo0qRJZYQvIiJSIaKNXD8cSHX37WbWAJgOPB1MWJJIpmZmcfOU5eTkFQCQlZ3DfdPXkZebX7TOkCFDuPPOO+nduzfp6ek0aNCA9evX065dOz766KPKCl1ERKRCRWtqzHX37QDu/lMZ64qU6oF3VxclXYV25Bfw49YdRdMHHngg/fr147e//S0XXxwasaR169Zs2rSpKPHKy8tj5cqVwQUuIiJSwaIlU63MbFr49Uax6WlBBSjV3/rsnN2mN027n+9fuIGcTeto3rw548ePB2DEiBGYGX379gXggAMOYPLkydx000106tSJ1NRUPvzww6L9aBw4ERGpbqI1NZ5dbPrBeAYiiatpSjJZEclXo7NuBKBZSjLzx/Yumj9v3jxGjx5NUlJS0bzU1FTmzJmzxz5/+umn3e6MFBERqQ5KTbzc/YMgA5HENaZf6936eAEk10piTL/WRdODBg3iq6++YubMmWXub/To0Wzfvp3u3bvHJV4REZF4KXUA1apEA6hWf8XvahzTrzUD05qVvaGIiEg1E20A1WhNjbKXcnNz6dmzJzt27CA/P5+hQ4dy55137vX+/vznP/P6669To0YNGjduzIQJE2jatGkFRhx/A9OaKdESEZH9Xpk1XmZ2oLvnFpvX0N1/jGtkEapbjZe7s23bNurUqUNeXh7du3dn3LhxnHDCCXu1v82bN3PooYcC8Oijj/LZZ5/xxBNPVGTIIiIiUkH26pFBERaaWVHGYGZDgA+jrL/fMzPq1KkDhIZAyMvLY8eOHXTp0qVonTVr1tCxY0cWLFjA4MGDAXj99ddJTk5m586d5Obm0rJlS4CipAtg27ZtuptPRESkmoqlqfF84Bkzmw00BRoAvaNuIRQUFJCens6XX37J1Vdfzcknn8zOnTv5+uuvadmyJa+88grDhg2jc+fOZGZmAjB37lzat2/PwoULyc/Pp2vXrkX7u/XWW3n++eepW7cus2bNqqzTEhERkX1QZo2Xuy8H/gpcCZwC/M7dv4t3YNXR1MwsTrp3JkeNfYueD3zAHc++xXfffceCBQtYsWIFw4YNY9KkSQC88sorDB8+nJo1a3L00UezatUqFixYwPXXX8+cOXOYO3cuPXr0KNr3X//6V9atW8eIESN4/PHHK+sURUREZB+UmXiZ2XjgWqAjcDHwhpldHee4qp3Cx+JkZefghB6Lc/OU5cz+Zhu9evVi+vTpDB8+nEmTJvHFF19gZhxzzDEA9OjRg3feeYdatWpx2mmnMW/ePObNm0fPnj33OM7555/Pa6+9FvDZiYiISEWIpY/XCuAUd//G3d8FTgA6xzes6ifysTgF239lV+5WcvIKuPfNZcyYMYM2bdrQqlUrkpKS+Mtf/sLw4cOLtu3ZsyePPPIIJ554Io0aNeKnn37i888/p127dgD85z//KVp32rRptGnTJtiTExERkQpRZh8vd//fYtO/ApfELaJqKvKxOAVbf+bHt/4XfBfrfRd/+v0lnHnmmQAMHz6cMWPG8M033xSt37VrV3744YeiGq6OHTvSuHHjok70Y8eOZfXq1dSoUYMjjzxSdzSKiIhUU7EMJ3EMcA9wHHBg4Xx3bxnf0P6rOgwncdK9M3d7LE6h4o/FERERkcS2r8NJPAv8A8gn1Ln+eeCFigsvMYzp15rkWkm7zSv+WBwRERHZv8WSeCW7+/uEasfWuvsdaDiJPQxMa8Y9gzvQLCUZI1TTdc/gDhqtXURERIrEMo5XrpnVAP5jZr8DsoDG8Q2retJjcURERCSaWGq8rgUOAq4B0oELgZFxjElEREQkIcVyV+PC8NuthMbxEhEREZG9UGriZWbTom3o7mdVfDgiIiIiiStajdeJwDrgJeATQE9mFhEREdkH0RKv/wH6AOcRelD2W8BL7r4yiMBEREREEk2pnevdvcDdp7v7SEKPCfoSmG1mvw8sOhEREZEEErVzvZnVBs4gVOvVAngUmBL/sEREREQST7TO9c8B7YF3gDvdfUVgUYmIiIgkoGg1XhcC24BjgWsKH9hMqJO9u/uhcY5NREREJKGUmni5eyyDq4qIiIhIjJRciYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAQkbomXmR1uZrPMbJWZrTSzP4TnP2Bmn5vZMjP7l5mlxCsGERERkaoknjVe+cAf3b0tcAJwtZkdB/wbaO/uHYEvgJvjGIOIiIhIlRG3xMvdN7j7p+H3W4BVQDN3f8/d88OrfQw0j1cMIiIiIlVJIH28zKwFkAZ8UmzRaOCdIGIQERERqWxxT7zMrA7wGnCtu2+OmH8roebIiaVsd7mZLTKzRZs2bYp3mCIiIiJxF9fEy8xqEUq6Jrr7lIj5I4EzgRHu7iVt6+5PuXuGu2c0atQonmGKiIiIBKJmvHZsZgaMB1a5+8MR8/sDNwEnu/v2eB1fREREpKqJW+IFnARcCCw3syXhebcAjwK1gX+HcjM+dvcr4xiHiIiISJUQt8TL3ecBVsKit+N1TBEREZGqTCPXi4iIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiAREiZeIiIhIQJR4xcHo0aNp3Lgx7du3j3mbyZMnY2YsWrQIgNmzZ3PmmWfGK0QRERGpBEq84mDUqFFMnz495vW3bNnCo48+SteuXeMYlYiIiFQ2JV5x0LNnT+rXr7/bvKeffprjjz+eTp06MWTIELZv31607M9//jM33ngjBx54YIn7W7hwIWlpaXz99ddxjVtERETiS4lXQAYPHszChQtZunQpbdu2Zfz48QBkZmaybt26UpsVP/zwQ6688kpef/11WrZsGWTIIiIiUsFqVnYA+4sVK1bwpz/9iezsbLZu3Uq/fv3YtWsX1113HRMmTChxm1WrVnH55Zfz3nvv0bRp02ADFhERkQqnxKuCTM3M4oF3V7M+O4emKcmM7HDQbstHjRrF1KlT6dSpExMmTGD27Nls2bKFFStW0KtXLwC+//57zjrrLKZNmwZAkyZNyM3NJTMzU4mXiIhIAlBTYwWYmpnFzVOWk5WdgwNZ2TncN301m3Pzi9bZsmULTZo0IS8vj4kTJwJQt25dfvzxR9asWcOaNWs44YQTmDZtGhkZGQCkpKTw1ltvccsttzB79uxKODMRERGpSKrxqgAPvLuanLyCoulN0+5nx7fL2ZWzmebNm3PnnXfyl7/8ha5du3LkkUfSoUMHtmzZEtO+DzvsMN544w1OP/10nnnmGd35KCIiUo2Zu1d2DGXKyMjwwvGtqqKjxr5FSaVowDf3nhF0OCIiIlKJzGyxu2eUtExNjRWgaUpyueaLiIjI/kmJVwUY0681ybWSdpuXXCuJMf1aV1JEIiIiUhWpj1cFGJjWDGC3uxrH9GtdNF9EREQElHhVmIFpzZRoiYiISFRqahQREREJiBIv2S/l5ubSpUsXOnXqRLt27bj99tsB6NWrF1X5DloREane1NQo+6XatWszc+ZM6tSpQ15eHt27d+f000+v7LBERCTBqcZL9ktmRp06dQDIy8sjLy8PMwPgxRdfpFu3brRv354FCxYAcMcdd3DhhRfSu3dvjjnmGJ5++umifd1///106NCBTp06MXbs2OBPRkREqg3VeMl+q6CggPT0dL788kuuvvrqoqcCbNu2jQ8//JA5c+YwevRoVqxYAcCyZcv4+OOP2bZtG2lpaZxxxhksXbqUqVOn8sknn3DQQQfx888/V+YpiYhIFafES/YrxR9mfsezb9HrqIMZNGhQUYJ13nnnAdCzZ082b95MdnY2AGeffTbJyckkJydzyimnsGDBAubOncvFF1/MQQeFHopev379SjkvERGpHtTUKPuNkh5mfvOU5cz+Zhu9evVi+vTpAEVNjoUKp0ua7+57zBcRESmNEi/Zb0Q+zLxg+6/syt1KTl4B9765jBkzZtCmTRsAXnnlFQDmzZtH3bp1qVu3LgCvv/46ubm5/PTTT8yePZvjjz+evn378swzz7B9+3YANTWKiEhUSryqudGjR9O4cWPat29fru1Wr15Nampq0evQQw/lkUceAeC2225jxowZcYi2cq3Pzil6X7D1Z75/6RbWP/M7Pn30Svr06cOZZ54JQL169ejWrRtXXnkl48ePL9qmS5cunHHGGZxwwgn8+c9/pmnTpvTv35+zzjqLjIwMUlNTefDBBwM/LxERqT7M3Ss7hjJlZGS4xlYq2Zw5c6hTpw4XXXRRUR+l8iooKKBZs2Z88sknHHnkkRUcYdVx0r0zyYpIvgo1S0lm/tjeUbe94447qFOnDjfccEO8whMRkQRhZovdPaOkZarxquZ69uy5R4fuXr16cd1119GzZ0/atm3LwoULGTx4MMcccwx/+tOf9tjH+++/T6tWrYqSrlGjRjF58uRA4g+SHmYuIiKVTXc1JqgDDjiAOXPmMG7cOM4++2wWL15M/fr1adWqFddddx0NGjQoWvfll18uupMvke3Lw8zvuOOOOEcnIiL7AyVeCeqss84CoEOHDrRr144mTZoA0LJlS9atW1eUeO3cuZNp06Zxzz33VFqsQdLDzEVEpDIp8aqGio9FNbLDQXusU7t2bQBq1KhR9L5wOj8/v2j6nXfeoXPnzhx22GHxD1xERGQ/p8Srmikci6pwWISs7Bzum76OvNz8MrYs2UsvvbRfNDOKiIhUBUq8qpnIsagANk27nx3fLmdXzmaaN2/OnXfeGfO+tm/fzr///W+efPLJeIQqIiIixWg4iWrmqLFvUdJvzIBv7j0j6HBERESkGA0nkUCapiSXa76IiIhUHUq8qhmNRSUiIlJ9qY9XNbMvY1GJiIhI5VLiVQ1pLCoREZHqSU2NIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISEHP3yo6hTGa2CVgbMash8GMlhbM/UTkHR2UdHJV1MFTOwVFZB6M85XykuzcqaUG1SLyKM7NF7p5R2XEkOpVzcFTWwVFZB0PlHByVdTAqqpzV1CgiIiISECVeIiIiIgGpronXU5UdwH5C5RwclXVwVNbBUDkHR2UdjAop52rZx0tERESkOqquNV4iIiIi1Y4SLxEREZGAVNnEy8z6m9lqM/vSzMaWsNzM7NHw8mVm1rky4kwEMZR1GzP7yMx2mNkNlRFjooihrEeEr+dlZvahmXWqjDiruxjK+exwGS8xs0Vm1r0y4kwEZZV1xHrHm1mBmQ0NMr5EEcM13cvMfg1f00vM7LbKiDMRxHJNh8t7iZmtNLMPynUAd69yLyAJ+ApoCRwALAWOK7bOAOAdwIATgE8qO+7q+IqxrBsDxwN/BW6o7Jir6yvGsu4G1Au/P13XddzKuQ7/7ePaEfi8suOujq9YyjpivZnA28DQyo67ur1ivKZ7AW9WdqzV/RVjWacAnwFHhKcbl+cYVbXGqwvwpbt/7e47gZeBs4utczbwvId8DKSYWZOgA00AZZa1u29094VAXmUEmEBiKesP3f2X8OTHQPOAY0wEsZTzVg9/YgIHA7rLaO/E8lkN8HvgNWBjkMElkFjLWfZdLGV9PjDF3b+F0P/I8hygqiZezYB1EdPfheeVdx0pm8oxOOUt60sI1epK+cRUzmY2yMw+B94CRgcUW6Ips6zNrBkwCHgiwLgSTayfHSea2VIze8fM2gUTWsKJpayPBeqZ2WwzW2xmF5XnADX3McB4sRLmFf9GGss6UjaVY3BiLmszO4VQ4qW+R+UXUzm7+7+Af5lZT+AvwGnxDiwBxVLWjwA3uXuBWUmrSwxiKedPCT0fcKuZDQCmAsfEO7AEFEtZ1wTSgVOBZOAjM/vY3b+I5QBVNfH6Djg8Yro5sH4v1pGyqRyDE1NZm1lH4J/A6e7+U0CxJZJyXdPuPsfMWplZQ3fXg4bLJ5ayzgBeDiddDYEBZpbv7lMDiTAxlFnO7r454v3bZvZ3XdN7Jdb840d33wZsM7M5QCcgpsSrqjY1LgSOMbOjzOwA4FxgWrF1pgEXhe9uPAH41d03BB1oAoilrKVilFnWZnYEMAW4MNZvT7KHWMr5aAtnAuE7og8AlOSWX5ll7e5HuXsLd28BTAauUtJVbrFc0/8TcU13IfT/Xdd0+cXyP/F1oIeZ1TSzg4CuwKpYD1Ala7zcPd/Mfge8S+gOg2fcfaWZXRle/gShu2MGAF8C24GLKyve6iyWsjaz/wEWAYcCu8zsWkJ3eWwubb+ypxiv69uABsDfw5+h+e6eUVkxV0cxlvMQQl/c8oAcYHhEZ3uJUYxlLfsoxnIeCvzWzPIJXdPn6pouv1jK2t1Xmdl0YBmwC/inu6+I9Rh6ZJCIiIhIQKpqU6OIiIhIwlHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAVHiJSIiIhIQJV4iIiIiAamSA6iKJAIzizpInrvrwXUiIvsZDaAqIiIiEhA1NSY4MyswsyVmttLMlprZ9WZWI7zsw4j1rjGzVWY2MfJ95UW+90qL38xOM7MX4nzsZDP7wMySwtNXmNkT4fe1zOwFM3vOzGqVsO0BZjbHzEqsia6Kv5fIa2hf1omy7dZyrJtiZlft7bHivb8gmNkdZnZDCfMDvXbMbJCZuZm1KTY/6u/TzFqYWcyPXonYrvBzrvDVIsq6JcZQvOzMbE1546gIJcRR6t9PSdfovvy9STCUeCW+HHdPdfd2QB9Cz7e8HcDdu0WsdxUwwN1HFHtfpvCDyqvStVRa/J2ApXE+9mhgirsXhKc7AsvM7FDgHeBbdx/p7nnFN3T3ncD7wPBS9l3ieVVG+Rces9g1VKJY1qkgKYTKaA97WUal7q80VfBvoVDQ1855wDxCDxgOQuHnXOFrTUDHjcm+lHMZfz8pFLtGA/x7k71UFT8gJE7cfSNwOfC78AfBVoBwjUxLYJqZ7Yh4f114+QVmtiD8TfJJM0sKfzNdZWZ/Bz4FDi9jvafDtW7vmVlyYUxmdpGZLbNQbdwLpR2vpPOxUO3divDr2hLO5bpim3QCloTXaxOuXVppZjPMrGF4ftvw/GVmNsbMvixnMY8g9OT6Qh2An4HZwKvufmsZ208N76P4ue52XqWUf0nl0cLMPjezf4bnT7RQzd98M/uPmXUpKYgo+yp+zK0R2/w5fKx/m9lLhd/aI66zUq8FM5tqZovD8y+PVkBmdrCZvRW+ZlaYWWGiei/QKnzdPFBCvD0sojbFzG4wszvC7/e4Dovt79Uo28b6t1Ba3JHnVmI5lFF2t5rZajObAbQuYZ9BXzt1gJOASygl8YrY93Phcp9sZgeFFyft6zUSXn+PcyphnWhltynG31mJ5xLrdVFWHBF/P2Vdow9Erl9aGZR2LcVyrlJB3F2vBH4BW0uY9wtwWOQyYA3QsIT3bYE3gFrh6b8DFwEtCD2V/YQY1ssHUsPzJwEXhN+3A1ZHHKt+afsp4RzSgeXAwUAdYCWQVjz+YtssBRoBtYutfxPwV0I3m3waMf8fwNRylPUBwPcllPUm4Dcx7iMJ2FTKssjfS/HyL7E8Isq/A6EvWouBZwADzi7p/MrYV9ExI68vIINQUpsMHAL8B7ih2DrRroX64Z/JwAqgQZTrdwjwdMR03Yj9r4iYX7yMii+/AbiDEq7D4uuXtm0pxyntb6HEuIudW2nlUGLZRfyuDgIOBb4sLPfKuHbC+7sAGB9+/yHQuYTrpQXgwEnh6WfCZVrieUYrm/C8AkLX3xLgX6WdU7EYyiy7GH9n0c4llusiahzAVmK4Rkso47J+r8WvpTLPVa+KeanGa/9UnrvpTiX0B7zQzJaEp1uGl611949jWO8bd18Sfr+Y0B8+QG9gsrv/CODuP5exn0jdgX+5+zZ33wpMAXqUdhIW6lN1qLtvAgYC89w9M7z4M6AxMBhYWmx+eZomGwLZEcc8nNCH5nKgSSw78FAT5U4zOySG1SPLP1p5fOPuy919F6EP3/c99Mm6nP/+LiJF21fkMYtv87q757j7FkL/YEpS2rVwjZktBT4GDgeOiXLey4HTzOw+M+vh7r9GWbe0eCOVdB2WVyx/C7HEHa0cSiq7HoR+V9vdfTMwbS/irchrB0LNjC+H378cni7JOnefH37/YjiO0s4TopdNZFPjoDLOqVAsZRfrtVbaucRyXcQSx95co2X9XpeE3xeWcXn+rmQfaDiJ/YyZtST07XBjrJsAz7n7zcX20wLYFuN6OyJmFRD6xlq4TfHbakvcTylxlcdxwKqI98sjlnUglGR1JNwUGdYemA5F5XYroW+BQ83sYELfWHcCs919IpADHBixfUdCidtlwMdmtrAwqTOzhcAnhL7hznL3ZyO2qw3kxnBOxcu/NJHlvytiehclfwZE29e2UubH+vvY41ows17AacCJ7r7dzGazeznuxt2/MLN0Qv0V7zGz99z9rhjizWf37hWFxyjpOiyutG1LOk6p13C0uGMoh9L+jvbm1vS4XDtm1oBQktDeQsOpJAFuZjeGE7ZIpU3v8zVC7NdjWUO+xHqtlXYusXxGXltWHMR2jZa0TWn2KONy/l3JPlCN137EzBoBTwCPl/AhWJr3gaFm1ji8j/pmduQ+rFd8m2HhD2vMrH459jMHGBjuS3EwMAiYG+VYRf27gCxCyVdhQnUh8DzwE3BseH4qoer3pQDu/rW7XxKxv8GEvoFeBpwVXucXQv1TCv8hdACWu/sG4FLgFTOrG64J+8Tdf+fuFwEXRvT1aECoqXGPzvdlKG95VPS+5gG/MbMDLdTH54xyHK8u8Ev4H2ob4IRoK5tZU2C7u78IPAh0Di/aQqiZszQ/AI3NrIGZ1QbODM8v6Tosvr/Sti1JiddwlLgLlascwuYAg8J9dA4BfhPDNiXto6KunaHA8+5+pLu3cPfDgW/4bw1QpCPM7MTw+8LO+KUpb9nEck5lll0Mv7PynEtpn22x/A5juUaLK9fvtRznKvtINV6JLzlcrV2L0Lf2F4CHY93Y3T8zsz8B71norpw84Grg+71Zr9g2K83sr8AHZlYAZLr7qFL2s7bYtp+a2QRgQXjWPyOaCEvSKWLdF4ABZracUC3VaHf/yUIdVt8K10Z9BKxx969L2V9z/ltrVhAx/z1C/2RmEEq83grH+28zm0So/8cLhKr3C20nVIMAcArwdpTzKFFp5WFRbquvyH25+0Izm0YoUV0LLAJibaqYDlxpZssI9WMpq2mwA/CAme0idH38NhzDTxbq+L2C0B2k/1csxjwzu4tQTeM3wOfh+Xtch8CoEva3x7allEVpfwt1S4p7H8qh8Hf1CqEvFWvZi4SpIq8dQknHvcXmvQacX0Jsq4CRZvYkoT6B/yDU5F+ScpVNLJ8PMZZdiddaCco8l9KuC3f/uKw4Yr1G3X1MWWUQ5fca67nKPtIAqiJhZlYn3BcCMxtDqFnxT8XWmRxuaryQ0DfwN83sZXc/N7w8Dbje3S+Mcpy/ELrDcZmZdQKucPerwsumADe7++r4nGX8FJafhe5OmwNc7u6fVnZcUvWE//m/6e7tKzuWfZVI5yLBUI2XyH9dZ2bnEvq2Nx+4vnBBuIr/r0Camd0MPAo8bmZnENGRPPyNcpaZJfl/x/IqLh1oYKGhOwoI3VWJmR1A6E6xapd0hT1lZscR6nvznJIuEZE9qcZLREREJCDqXC8iIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgFR4iUiIiISECVeIiIiIgH5/0LCtwtoSCM3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(10, 8))\n", + "plt.scatter(np.abs(kds_difference), af_max_pae_ab_off_blocks)\n", + "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$')\n", + "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions')\n", + "plt.ylabel('Max PAE (Off-blocks & Ab, no antigen block)')\n", + "\n", + "for i, txt in enumerate(test_pdbs):\n", + " plt.annotate(txt, (np.abs(kds_difference[i]), af_max_pae_ab_off_blocks[i]))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "5ed33c20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.04743004, 0.04359913, -0.02374935, -0.04402399, 0.03390503,\n", + " -0.43619633, 0.16000652, 0.12265968, -0.10205984, -0.58374405,\n", + " -0.24315214, 0.543231 , 0.25175667, -0.2643156 , 0.2960267 ,\n", + " 0.04346514, 0.0728693 , -0.20428371, -0.10948181, 0.12342739,\n", + " -0.16520834], dtype=float32)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kds_difference" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "77f14829", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SignificanceResult(statistic=0.6511278195488721, pvalue=0.0018736439667456594)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAH6CAYAAADWRELjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABgL0lEQVR4nO3deXhUVbb38e8iDEZBwmgLiCjSgMwkIqJARAEHREAUFQVEnK8tekVBbae2WxTtFvX24ITjK9g0IopTKyCDIoOESRtbEYWgAmoEGZOw3j+qEouQVCqQOpXh93meeqhz6gxr7zoJK3vvs4+5OyIiIiISf1USHYCIiIhIZaHES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgVRMdgIiISFlnZjHNNu7uFu9YpHxTi5dIHJlZSzNbZmbbzOx3B7D/OjM7vbS3LS3FndPMnjWz+w7yHDHXYbR4CsZiZqvNLP1gYgtSwXqIFn9p1HtpO9j6NrP1Ztax1AKK7Zz3m9loCCVUsbyKOM4iM2sTZOxSdinxkjIlEclDNKUQzy3AHHev5e6PRjnPHDP7ycxqHMS5Dli4nDvN7JeIV6M4nKPZAewaUx2WlLu3cfc5pXW8AOxTD+Ut/oOJ18zqAL8BPivVoKKfswEwDPhHZBxm5mZ2dHjZzOze8LXdIcrhHgLujW/EUl4o8RKJr6OB1dE2CCcj3QEH+gcQU1HOcfeaEa+NCYwlUrF1WElU5npoB3zu7rsDPOcI4E133xmxriPwk7t/bWaHAVOBXkAXd18e5VgzgFPN7Mh4BSvlhxIvKbPCf0WOMbMVZrbdzJ42syPM7K1wd8t74b+E87YdZ2afhluOJpnZIRHHGmtmX4b3+9TMBkZ8dpSZTTOzzWb2g5k9Hl7/AtAUeD3cAnRLITG2DrdWZYW7UvpHfDYLOBV4PLz/b4so6jBgIfAsMLyY+iiyjGEdw/X1s5lNibUOoolWxkK27WRmn4TPMQUoGF/edreaWWZ4uzVmdloR2+1Xh7HGU1wska2Z4fc3R6m7zvZrN98/w58X2pVX1PVUXF1Gi6GIeoiMv7iyNjKzf4Vj+soiumxjKHu08hR53ELqJeb6LkR7YGV4XwtfP1+H6/EVM6sd/qyKmd1poW7JjWZ2jpntsfDviRI6E/igwLqOQIaZNQXmAz8Dvdx9U7QDufsuYCnQ5wDikIrG3fXSq8y8gHXA6RHvFwJHAI2BTcAnQCegBjALuCti21XAUUBdYAFwX8RxzwcaEfpjYwiwHTgSSAKWA38BDiP0H9YphcVTSKzVgC+A24DqhP7y3Qa0jNhmDjCqmDJ/AVwLpALZwBFR6iNaGdcBi8LlrEuoW+bq4uogWjmLK2OB+KoDXwM3hvcbHC7PfQWO2RJYDzQKLzcDmkepn/w6jDWeWGIppG4LrbuIY90QPtYgYE/BcoW3LfJ6ijH2aN9ffj2UpKzh73spcGd422OBtUDfGMoerTxRjxvDz3aRZS1k3yeA28Lv7wvXxZHheF4DHg5/di8wl9DvixTgI2D9Af4u2gycUGDd88A8YCNwUwmP9yjw53j97tSr/LzU4iVl3WPu/r27ZxL6hfexuy/zUJfDq4SSsDyPu/t6d/8R+CNwUd4H7v5Pd9/o7nvdfQrwX6BL+NUIGOPu2919l7vPjzG2rkBNYLy773H3WcAbkectjpmdQqgL6RV3Xwp8CVwcZZciyxj2aLicPwKvE/oLHYhaB3mmh1sQssxs+gGUsSuh//gfcfdsd58KLC5ku1xCifPxZlbN3de5+5dRylzwHLHEE2sskYqqu66E7gB/NHysaYSShsJEu55iib3I7y+K4sp6AtDA3e8Nn3ct8CRwYQznjVaeWI4bTUnK2g5YYWZHANcDF7v7tx5qSZoKpFloTNaNwEh3z3T3LOBdwi1lByCFUGIcqSPQBljh7n8u4fG2hY8plZwSLynrvo94v7OQ5ZoRy+sj3n9N6D8MAMxsmJll5CUWQFugPqHWo6/dPecAYmtE6K/pvQXO27gExxgOvOvuW8LL/48o3Y1EKWPYdxHvdxBRP1HqIM8Ad08JvwaE15WkjI2ATHf3Atvuw92/AEYDdwObzGyyxT6QP9Z4YoqlgKLqrrBjRX4PkaJdT7HEXuT3F0VxZT0aaBSRVGcRanU7IobzRitPLMeNJqaympkRulZXEhoLudL3HX9YH/gWOA34Inx95anLr12UtS10d+EvZtY24vh/NLN5ZjbVzA6N2PcnoFbEdjWA1sB5QGsL3+1YINZ/mtmCcHfyO2Z2fMTHtYCsIupCKhElXlKRHBXxvimh7gAsdAfSk8D/APXcPYVQl50R+g+0qZkVNaddtLl7NgJHmVnkz1FTIDOWYM0sGbgA6Glm35nZd4T+Yu9gRd8hVWgZYzhXtDqIpiRl/BZoHP6PMnLb/bj7/3P3vNY+Bx6IpRwliCfmWGJQ2LGOKmLbaNfTQV0vJYwvsqzrga8ikuoUD90ZeVYMx45WnoM5bkkcA+x196+BBoTGVUU6l9B4q/pE/DyYWRKhcVorwqt2AGcTaiHL26YtoW7u7sB7wMiI464AIsdltiXUWjsPGAj8wcx6FYjlOKCHu6cTSkInRXzWmlC3rVRySrykIrnOzJqYWV1Cv/SmhNcfRug/980AZnYZoV+iEOoy+hYYb2aHmdkhZnZyxDG/JzR2pTAfExondYuZVbPQHEXnAJNjjHcAoV/kxxPqwuhI6JfzPEID7ktSxuJEq4NoSlLGj4Ac4HdmVtXMBrFvVybhc7c0s17hFoRdhFouc2MsR6zxxBRLjD4Kx/c/4WOdG+VY0a6ng71eosUXrayLgK3hAenJZpZkZm3N7IQYjh2tPAdz3JLIH1hPqAv1JDNrbmY1zexeQi1szxAaJ9bNzI4zs8MJjalqnrdvuBt2c4FjdwfeCr9/Czgl4rM3gZ4Ry52AVe6e4+6fANcBr5jZMQBmVh3Idffc8PmWAilmVj18racC/z7YypDyT4mXVCT/j9CYjrXh130A7v4p8DCh/6C+JzReZEH4s1xC//kdB3wDbCA08DzP/cAd4a6UmyNP5u57CE3/cCawBfgrMMzd/xNjvMOBSe7+jbt/l/cCHgeGFtHKUGgZixOtDorZL+YyhrcdROg2/J8I1eO0Qg5bAxgfPt53QENCSWQs5YgpnhLEEus5BwGXE+oquoTQ2Kz9pjaIdj2VwvVSXHwjKKSsETF1BL4Kn/spoHYMx45WngM+bgm1I9xq5e5LCI1tnB+OpTWhuwp3uPv7wMvAMmAJkEGolSta/dbh1xa0nwl1TeZ5Hjgr3DIN4Tsa8z509+cJ/TxOt9DUEq2BNQWOfyihpLg/oTnYysoULZJAtu+wAJHyyczWEbrj671ExxIvlaGM5YWZfQz83d0nFbuxJISZXQ2c7e7nFFj/LPCQu68ys2uAHe7+XLg7/gF3vzBi2z8Bm9z9kRjONxQ42t3/FF5uTehmmNPC18vl7r6qtMon5Zee1SgiUgwz60moNWMLMJRQ99fbCQ1K9mFmXQl1i64nNND+XoqfkHg+MA54DuhLgVZgd4+pJTasLaHpb/Jmvf97OAbc/cQSHEcqOCVeIiLFawm8QujOuy+Bwe7+bWJDkgI6ATMJTa3xOTDC3RdGbmBmbxLqMmxpZv9w92ctNBHrPELzBBY1tjIWbYA+4SEJe4EJ4e5PkX2oq1FEREQkIBpcLyIiIhIQJV4iIiIiASkXY7zq16/vzZo1S3QYIiIiIsVaunTpFndvUNhn5SLxatasGUuWLEl0GCIiIiLFMrMiH1GmrkYRERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhERkUonNzeXTp060a9fv0I//+abbzj11FPp1KkT7du358033yyV8yrxEhERkUpn4sSJtG7dutDPcnJyuO+++7jgggtYtmwZkydP5tprry2V8yrxEhERkUplw4YNzJw5k1GjRuWvS09P57bbbqNnz55MnDgRM2Pr1q0A/PzzzzRq1AiAa6+9lhkzZgAwcOBARo4cCcDTTz/NHXfcUey5q5Z2YURERETKstGjR/Pggw+ybdu2fdZnZWXxwQcfAPDtt9/Sp08fHnvsMbZv3857770HQI8ePZg3bx79+/cnMzOTb7/9FoD58+dz4YUXFntutXiJiIhIhTd9WSYnj5/FEYPvYv6GbNZX+c1+2wwZMiT//csvv8yIESPYsGEDb775Jpdeeil79+6le/fuzJs3j08//ZTjjz+eI444gm+//ZaPPvqIbt26FRuHWrxERESkQpu+LJNx01ayMzuXXZmfsn31As4/tTM1qzq7d/zCJZdcAsBhhx2Wv8/TTz/N22+/DcBJJ53Erl272LJlC40bN+ann37i7bffpkePHvz444+88sor1KxZk1q1ahUbixIvERERqdAmvLOGndm5ANTpOYI6PUcAUPPHNTTbOIsXX3yR9PT0ffZp2rQp77//PiNGjOCzzz5j165dNGjQAAglYo888gizZs3ihx9+YPDgwQwePDimWNTVKCIiIhXaxqydha7f8svuIvd5+OGHefLJJ+nQoQMXXXQRzz77LGYGQPfu3cnJyeG4446jc+fO/Pjjj3Tv3j2mWMzdS16CgKWlpfmSJUsSHYaIiIiUQyePn0VmIclX45RkFoztVernM7Ol7p5W2Gdq8RIREZEKbUzfliRXS9pnXXK1JMb0bRl4LBrjJSIiIhXagE6NgdBYr41ZO2mUksyYvi3z1wdJiZeIiIhUeAM6NU5IolWQuhpFREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgSrxEREREAqLES0RERCQgcUu8zOwZM9tkZqsKrL/ezNaY2WozezBe5xcREREpa+LZ4vUscEbkCjM7FTgXaO/ubYCH4nh+ERERkTIlbomXu88Ffiyw+hpgvLvvDm+zKV7nFxERESlrgh7j9Vugu5l9bGYfmNkJAZ9fREREJGGqJuB8dYCuwAnAK2Z2rLt7wQ3N7ErgSoCmTZsGGqSIiIhIPATd4rUBmOYhi4C9QP3CNnT3J9w9zd3TGjRoEGiQIiIiIvEQdOI1HegFYGa/BaoDWwKOQURERCQh4tbVaGYvA+lAfTPbANwFPAM8E55iYg8wvLBuRhEREZGKKG6Jl7tfVMRHl8TrnCIiIiJlmWauFxEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgCjxEhEREQmIEi8RERGRgMQt8TKzZ8xsk5mtKuSzm83Mzax+vM4vIiIiUtbEs8XrWeCMgivN7CigN/BNHM8tIiIiUubELfFy97nAj4V89BfgFsDjdW4RERGRsijQMV5m1h/IdPflQZ5XREREpCyoGtSJzOxQ4HagT4zbXwlcCdC0adM4RiYiIiISjCBbvJoDxwDLzWwd0AT4xMx+U9jG7v6Eu6e5e1qDBg0CDFNEREQkPgJr8XL3lUDDvOVw8pXm7luCikFEREQkkeI5ncTLwEdASzPbYGaXx+tcIiIiIuVB3Fq83P2iYj5vFq9zi4iIiJRFmrleREREJCBKvEREREQCosRLREREJCBKvEREREQCosRLREREJCBKvEREREQCUux0EmZWBegANAJ2Aqvd/ft4ByYiIiJS0RTZ4mVmzc3sCeALYDxwEXAt8G8zW2hml4WTMhGpBHJzc+nUqRP9+vUDID09nSVLluy3Xc2aNQvdf/r06Xz66adxjVFEpKyLljjdB7wINHf3vu5+ibsPdvf2QH+gNnBpEEGKSOJNnDiR1q1bH/D+SrxERKIkXu5+kbvPdXcv5OOf3f0Rd38ujrGJSBmxYcMGZs6cyahRo/b7bO/evQwfPpw77rgjf93tt99Ohw4d6Nq1K99//z0ffvghM2bMYMyYMXTs2JEvv/wyyPBFRMqMYrsKzeyZAss1gTfjFpGIlDmjR4/mwQcfpEqVfX9l5OTkMHToUH77299y3333AbB9+3a6du3K8uXL6dGjB08++STdunWjf//+TJgwgYyMDJo3b56IYoiIJFwsY7QyzexvAGZWB3iXUBekiFQCb7zxBg0bNiQ1NXW/z6666iratm3L7bffnr+uevXq+ePAUlNTWbduXVChioiUecXe1ejuvzezB8zs70AqMN7d/xX/0EQkkaYvy2TCO2tY/dpz7Px0DlOnv06Vvdls3bqVSy65BIBu3boxe/Zs/vd//5dDDjkEgGrVqmFmACQlJZGTk5OwMoiIlDVFJl5mNihicRHw+/C/bmaD3H1avIMTkcSYviyTcdNWsjM7l5SeI0jpOYLkakkMbbqNha89x4svvkh6ejqXX345c+fO5fzzz+fVV1+latWi/5arVasW27ZtC7AUIiJlT7SuxnMiXv2AZUC1iGURqaAmvLOGndm5+6zbmZ3L5MXr99v2pptuonPnzlx66aXs3bu3yGNeeOGFTJgwgU6dOmlwvYhUWlb4TYtlS1pamhc2X5CIxMcxY2dS2G8GA74af3bQ4YiIlCtmttTd0wr7LJa7Gp8zs5SI5ToF73QUkYqlUUpyidaLiEhsYrmrsb27Z+UtuPtPQKe4RSQiCTemb0uSqyXtsy65WhJj+rZMUEQiIhVDsXc1AlXMrE444cLM6sa4n4iUUwM6NQZCY702Zu2kUUoyY/q2zF8vIiIHJpYE6mHgQzObGl4+H/hj/EISkbJgQKfGSrREREpZLPN4PW9mS4Be4VWD3F0PXBMREREpoVjGeEFoGgmLeC8iIiIiJRTLXY03AC8B9YGGwItmdn28AxMRKS0jR46kYcOGtG3bNn/ds88+y8aNG6Pud+edd/Lee+/FOzwRqUSKncfLzFYAJ7n79vDyYcBH7t4+gPgAzeMlIgdn7ty51KxZk2HDhrFq1SoA0tPTeeihh0hLK3SqHRGRA3ZQ83gR6mKMnMI6l1+7HUVEyrwePXpQt27d/OWpU6eyZMkShg4dSseOHZk3bx4dO3akY8eOtGvXLv9ZkyNGjGDq1KlFHVZEpMRiuatxEvCxmb0aXh4APB23iERE4mzw4ME8/vjj+7R4ZWRkADBmzBjOOOOMBEYnIhVZLHc1/tnM5gCnEGrpuszdl8U7MBGRoL3yyit88sknvPvuu4kORUQqqCITr/BEqXnWhV/5n7n7j/ELS0Tk4ExflrnPBLDD2x0adfvVq1dz1113MXfuXJKSkqJuK+XHrl276NGjB7t37yYnJ4fBgwdzzz33JDosqcSitXgtBZzCx3M5cGxcIhIROUjTl2UybtpKdmaHhqdmZu3kgbfXk70rJ3+bWrVqsW3bNgB+/vlnLrzwQp5//nkaNGiQkJglPmrUqMGsWbOoWbMm2dnZnHLKKZx55pl07do10aFJJVVk4uXuxwQZiIhIaZnwzpr8pAtg84wH2f3NSvbu3EqTJk245557GDFiBFdffTXJycnceOONfP3111xxxRX5++SN+ZLyzcyoWbMmANnZ2WRnZ2NmfPnll1x33XVs3ryZQw89lCeffJJWrVrx9ddfM3LkSDZv3kyDBg2YNGkSTZs25fXXX+e+++5jz5491KtXj5deeokjjjgiwaWT8qjY6SQAzGwQoTFeDsxz9+lxjmsfmk5CRErimLEzKew3mwFfjT876HAkwXJzc0lNTeWLL77guuuu44EHHuC0007j73//Oy1atODjjz9m3LhxzJo1i3POOYfBgwczfPhwnnnmGWbMmMH06dP56aefSElJwcx46qmn+Oyzz3j44YcTXTQpo6JNJ1Hs4Hoz+ytwHPByeNXVZtbb3a8rxRhFREpNo5RkMrN2FrpeKr6C4/vG9G1JRkYGWVlZDBw4kFWrVvHhhx9y/vnn5++ze/duAD766COmTZsGwKWXXsott9wCwIYNGxgyZAjffvste/bs4Zhj1CkkByaW6SR6Am093DRmZs8BK+MalYjIQRjTt+U+Y7wAkqslMaZvywRGJUEobHzfuGmh/7IGdGpMeno606ZNIyUlJabu5Lw53a6//npuuukm+vfvz5w5c7j77rvjVQSp4GKZQHUN0DRi+ShgRXzCERE5eAM6Neb+Qe1onJKMAY1Tkrl/UDsGdGqc6NAkzgqO78vd8TPbt/0cWr9zJ++99x6dO3fmmGOO4Z///CcA7s7y5csB6NatG5MnTwbgpZde4pRTTgFCN2A0bhy6fp577rkgiyQVTLTpJF4nNKarNvCZmS0KL58IfBhMeCIiB2ZAp8ZKtCqhjQW6mHN/+ZEtM//Cd76XE148jAsuuIB+/frRpk0brrnmGu677z6ys7O58MIL6dChA48++igjR45kwoQJ+YPrAe6++27OP/98GjduTNeuXfnqq68SUTypAIocXG9mPaPt6O4fxCWiQmhwvYiIxOLk8bMKHd/XOCWZBWN7JSAiqYwOaHB9kImViIhIadD4PinrYhlcLyIiUi7kdS8XvKtR3c5SVijxEpFSkZubS1paGo0bN+aNN95IdDhSiWl8n5RlsdzVKCJSrIkTJ9K6detCP8vJySl0vYhIZVNs4mVmJ5vZv83sczNba2ZfmdnaIIITkfJhw4YNzJw5k1GjRuWvS09P57bbbqNnz55MnDiRxYsX0759e0466STGjBlD27ZtgdBDjC+77DLatWtHp06dmD17dqKKISISd7F0NT4N3Ejoodm5xWwrIpXQ6NGjefDBB/MfOp0nKyuLDz4I3afTtm1bnnjiCbp168bYsWPzt/m///s/AFauXMl//vMf+vTpw+eff84hhxwSXAFERAISS1fjz+7+lrtvcvcf8l5xj0xEyrTpyzI5efwsjhh8F/M3ZLO+ym/222bIkCFAKAHbtm0b3bp1A+Diiy/O32b+/PlceumlALRq1Yqjjz6azz//PIASiIgEL5YWr9lmNgGYBuzOW+nun8QtKhEp0yIfy7Ir81O2r17A+ad2pmZVZ/eOX7jkkksAOOyww4DQzOBFifaZiEhFE0vidWL438iJwBzQTHQilVTkY1nq9BxBnZ4jAKj54xqabZzFiy++SHp6ev72derUoVatWixcuJCuXbvmP5IFoEePHrz00kv06tWLzz//nG+++YaWLTXnkohUTMUmXu5+ahCBiEj5UfCxLHm2/LKbZkXs8/TTT3PFFVdw2GGHkZ6eTu3atQG49tprufrqq2nXrh1Vq1bl2WefpUaNGvEJXEQkwYpNvMzsCOBPQCN3P9PMjgdOcveni9nvGaAfsMnd24bXTQDOAfYAXwKXuXvWwRVBRILWKCW50MeyNG9/Im+MHQfAnDlz9vmsTZs2rFixAoDx48eTlhZqRD/kkEN49tln4xqviEhZEcvg+meBd4BG4eXPgdEx7ndGgXX/Btq6e/vwccbFEqSIlC1j+rYkuVrSPuuKeyzLzJkz6dixI23btmXevHnccccd8Q5TRKTMiWWMV313f8XMxgG4e46ZFTuthLvPNbNmBda9G7G4EBhckmBFpGw4kMeyDBkyJP8uRxGRyiqWxGu7mdUjNKAeM+sK/FwK5x4JTCmF44hIAuixLCIiJRdL4nUTMANobmYLgAYcZEuVmd0O5AAvRdnmSuBKgKZNmx7M6URERETKhFjuavzEzHoCLQED1rh79oGe0MyGExp0f5pHmcDH3Z8AngBIS0vTRD8iIiJS7sVyV+OgAqt+a2Y/AyvdfVNJTmZmZwC3Aj3dfUdJ9hUREREp72LparwcOAnIe3JtOqGB8b81s3vd/YXCdjKzl8Pb1jezDcBdhO5irAH828wAFrr71QdTABEREZHyIpbEay/Q2t2/h/x5vf5GaEb7uUChiZe7X1TI6qhzf4mIiIhUZLHM49UsL+kK2wT81t1/BA54rJeIiIhIZRNLi9c8M3sD+Gd4+TxgrpkdBmTFKzARERGRiiaWxOs6QsnWyYTuanwe+Ff4jkQ9x1FEREQkRrFMJ+HA1PBLRERERA5QkYmXmc1391PMbBvhWevzPiKUjx0e9+hEREREKpAiEy93PyX8b63gwhERERGpuIq9q9HM9psuorB1IiIiIhJdLNNJtIlcMLOqQGp8whERERGpuIpMvMxsXHh8V3sz2xp+bQO+B14LLEIRERGRCqLIxMvd7w+P75rg7oeHX7XcvZ67jwswRhEREZEKIZbpJMaZWWPg6Mjt3X1uPAMTERERqWiKTbzMbDxwIfApkBte7YSe0ygiIiIiMYpl5vqBQEt33x3vYEREREQqsljualwLVIt3ICIiIiIVXSwtXjuADDN7H8hv9XL338UtKhEREZEKKJbEa0b4JSIiIiIHIZa7Gp8LIhARERGRii6WuxpbAPcDxwOH5K1392PjGJeIiIhIhRPL4PpJwN+AHOBU4HlAz2oUERERKaFYEq9kd38fMHf/2t3vBnrFNywRERGRiieWwfW7zKwK8F8z+x8gE2gY37BEREREKp5YWrxGA4cCvwNSgUuA4XGMSURERKRCiuWuxsXht78Al8U3HBEREZGKK5YWLxEREREpBUq8RERERAKixEtEREQkIMUmXmbWxMxeNbPNZva9mf3LzJoEEZyIiIhIRRLrBKozgCOBxsDr4XUiIiIiUgKxJF4N3H2Su+eEX88CDeIcl4hUYM2aNaNdu3Z07NiRtLS0IrfbuHEjgwcPDjAyEZH4imUC1S1mdgnwcnj5IuCH+IUkIpXB7NmzqV+/ftRtGjVqxNSpUwOKSEQk/mJp8RoJXAB8B3wLDA6vExEpNV988QWnn346HTp0oHPnznz55ZesW7eOtm3bArBz504uvPBC2rdvz5AhQzjxxBNZsmRJgqMWESmZWCZQ/QboH0AsIlJJmBl9+vTBzLjqqqu48sorGTp0KGPHjmXgwIHs2rWLvXv3smnTpvx9/va3v3HooYeyYsUKVqxYQefOnRNYAhGRA1Ns4mVmDYArgGaR27u7Wr1E5IAsWLCARo0asWnTJnr37k3Lli3JzMxk4MCBABxyyCH77TN37lx+97vfAdC+fXvat28faMwiIqUhljFerwHzgPeA3PiGIyIV0fRlmUx4Zw0bs3bSKCWZMX1bMqARNGzYkIEDB/LBBx/EdBwzi3OkIiLxFcsYr0Pd/VZ3f8Xd/5X3intkIlIhTF+WybhpK8nM2okD6zf9xC0vf8z0ZZls376dd999ly5dutCkSROmT58OwO7du9mxY8c+x+nRowcvvfQSAKtWrWLFihUBl0RE5ODFkni9YWZnxT0SEamQJryzhp3ZvzaW5+7IYt2z/8vQs3rQpUsXzj77bM444wxeeOEFHn30Udq3b0+3bt347rvvgF9bua655hp++eUX2rdvz4MPPkiXLl0SUh4RkYMRS1fjDcBtZrYbyAYMcHc/PK6RiUiFsDFr5z7L1VJ+Q6ORj2PA6vFn569v0aIFs2bN2mfbpUuXUrduXQCSk5OZPHly/mfp6elxi1lEJF6KbfFy91ruXsXdk9398PCyki4RiUmjlOQSrc+zZMkSLrroIm644YZ4hCUikhCxtHiJiBywMX1bMm7ayn26G5OrJTGmb8uo+6WlpfH5558X+fmcOXNKK0QRkcAo8RKRuBrQqTHA/nc1hteLiFQmSrxEJO4GdGqsREtEhNjuahQRERGRUlDixMvMPgu//iceAYmIiIhUVCXuanT31mZWD+gah3hEREREKqyYEi8z+w3QBXBgkbt/D8yMZ2AiIiIiFU2xXY1mNgpYBAwCBgMfm5kekC0iIiJSQrG0eI0BOrn7DwDhbsYPgWei7WRmzwD9gE3u3ja8ri4wBWgGrAMucPefDjR4ERERkfIklsH1G4BtEcvbgPUx7PcscEaBdWOB9929BfB+eFlERESkUiiyxcvMbgq/zSTUvfgaoTFe5xLqeozK3eeaWbMCq88F0sPvnwPmALeWKGIRERGRcipaV2Ot8L9fhl958hKwA3GEu38L4O7fmlnDAzyOiIiISLlTZOLl7vcUtt7MDgHOiVtEv57nSuBKgKZNm8b7dCIiIiJxF9MEqmaWZGZnmtnzhAbFDznA831vZkeGj3kksKmoDd39CXdPc/e0Bg0aHODpRERERMqOqImXmfUws78TSrZGAX2AY9198AGebwYwPPx+OKFuSxEREZFKocjEy8w2AOOBBcDx7n4esNPdd8RyYDN7GfgIaGlmG8zs8vDxepvZf4He4WURERGRSiHa4Pp/AQMIdSvmRtzVGBN3v6iIj06LOToRERGRCqTIFi93v4HQRKd/Bk4FPgcamNkFZlYzmPBEREREKo6oY7w8ZJa7X0EoCbuYUCvYurhHJiIiIlLBxPSQbAB3zwZeB143s+T4hSQiIiJSMcU0nURB7r6ztAMRERERqegOKPESERERkZI7oMQrPHu9iIiIiJRAzImXmS0ys5vCM86/H8eYRERERCqkkrR4nQUcDnwNTIlPOCIiIiIVV7SZ6yeZ2dERq2oD5wMPAu3jHZiIiIhIRRNtOonO7v41gJmlAv8PGOnuC8xsUSDRiYiIiFQg0RIvN7MeQFPgT8CZ7r7azGoAtQKJTkRERKQCiZZ4XQX8EdgDvAbcYmbvE3p244wAYhMRERGpUIpMvNz9Y+D0vGUz6w/0BV4Fno5/aCIiIiIVS0keGTQDtXSJiIiIHDDNXC8iIiISECVeIiIiIgEpUeJlZlXM7PB4BSMiIiJSkRWbeJnZ/zOzw83sMOBTYI2ZjYl/aCIiIiIVSywtXse7+1ZgAPAmoXm9Lo1nUCIiIiIVUSyJVzUzq0Yo8XrN3bPjG5KIiIhIxRRL4vUPYB1wGDA3/PzGn+MZlIiIiEhFFFPi5e6N3f0sd3fgG0KtXyIiIiJSArEkXtPMLHKi1d8A78YpHhEREZEKK5bEazow1cySzKwZ8A4wLp5BiYiIiFRExT4yyN2fNLPqhBKwZsBV7v5hnOMSERERqXCKTLzM7KbIReAoIAPoamZd3f3PcY5NREREpEKJ1uJVq8Dyq0Wsl0qiWbNm1KpVi6SkJKpWrcqSJUsSHZKIiEi5UmTi5e73BBmIlA+zZ8+mfv36iQ5DRESkXIrlkUH/NrOUiOU6ZvZOXKOScuGzzz6jS5cu+cvr1q2jffv2LFmyhI4dO9KxY0fatWuHmfHll1/SuXPn/G3/+9//kpqamoiwRUREEiaWuxobuHtW3oK7/wQ0jFtEUmaZGX369CE1NZUnnniC1q1bs2fPHtauXQvAlClTuOCCC0hLSyMjI4OMjAzOOOMMbr75Zpo3b07t2rXJyMgAYNKkSYwYMSJxhSkncnNz6dSpE/369St22xUrVnDSSSfRpk0b2rVrx65duwKIUERESqLYuxqBXDNr6u7fAIRnrvf4hiVlwfRlmUx4Zw0bs3bSKCWZ3/9jKiP7pLJp0yZ69+5Nq1atuOCCC3jllVcYO3YsU6ZMYcqUKfn7v/LKK3zyySe8+25o2rdRo0YxadIk/vznPzNlyhQWLVqUqKKVGxMnTqR169Zs3bo16nY5OTlccsklvPDCC3To0IEffviBatWqBRSliIjEKpYWr9uB+Wb2gpm9AMxF83hVeNOXZTJu2koys3biQGbWTibM28z0ZZk0bNiQgQMHsmjRIoYMGcIrr7zC559/jpnRokULAFavXs1dd93F5MmTSUpKAuC8887jrbfe4o033iA1NZV69eolsIRl34YNG5g5cyajRo3KX5eenp5/U8OWLVto1qwZAO+++y7t27enQ4cOANSrV4+kpCT+9re/ccstt+Tv/+yzz3L99dcHVwgREdlHsYmXu78NdAamhF+p7q4xXhXchHfWsDM7N395755dbP9lGxPeWcP27dt59913adu2Lc2bNycpKYk//OEPDBkyBICff/6ZCy+8kOeff54GDRrkH+OQQw6hb9++XHPNNVx22WWBl6m8GT16NA8++CBVqhT/91Fe4tu3b186d+7Mgw8+CMDgwYOZNm1a/nZTpkzJ/55ERCR4sXQ1AnQDekQsvxGHWKQM2Zi1c5/l3B1ZbJ52H98BXV44lIsvvpgzzjgDgCFDhjBmzBi++uorAKZPn87XX3/NFVdckb9/3tiuoUOHMm3aNPr06RNIOcqbvO7dL5Z8gG3IZn2V35DCtmL3y8nJYf78+SxevJhDDz2U0047jdTUVE477TSOPfZYFi5cSIsWLVizZg0nn3xyACUREZHCFJt4mdl44ATgpfCqG8zsZHdXd2MF1iglmcyI5Ktaym9oNPJxGqcks2Bsr322vfnmm7n55pvzl4cPH87w4cMLPe78+fMZOXJkfvej/Cqve3dndi67Mj9l++oFnH9qZ2pWdXbv+IVLLrmEqlWrsnfvXoB9Bs83adKEnj175k/1cdZZZ/HJJ59w2mmn5XcHt2rVioEDB2JmCSmfiIjENsbrLKC3uz/j7s8AZwBnxzcsSbQxfVuSXG3f5Ci5WhJj+rY84GMOHDiQ559/nhtuuOFgw6uQIrt36/QcQZPrnqPx1c/QeNBYevXqxYsvvkizZs1YunQpAFOnTs3ft2/fvqxYsYIdO3aQk5PDBx98wPHHHw/AoEGDmD59Oi+//LK6GUVEEizWrsYU4Mfw+9rxCUXKkgGdGgPsc1fjmL4t89cfiFdffbX4jSqxgt27ebb8sptm4fc333wzF1xwAS+88AK9ev3a8linTh1uuukmTjjhBMyMs846i7PPPjv/s+OPP55PP/10n3nXREQkeOYefWYIM7sIGA/MJvTMxh7AOHefHP/wQtLS0lyPp5GK7uTxs/bp3s1TWPeuiIiUXWa21N3TCvsslrsaXwa6AtPCr5OCTLpEKot4dO+KiEjZUmRXo5l1LrBqQ/jfRmbWyN0/iV9YIpVPPLp3RUSkbIk2xuvhKJ85oL4PkVI2oFNjJVoiIhVYkYmXu58aZCBSuTRr1oxatWqRlJRE1apViWUM3+7duxk2bBhLly6lXr16TJkyhWbNmjFnzhweeugh3nhD08uJiEjZFss8XocA1wKnEGrpmgf83d31BF45KLNnz86fdyoWTz/9NHXq1OGLL75g8uTJ3Hrrrfs8G1JERKSsi2Uer+eBNsBjwOPA8cAL8QxKKp9NmzaRmpoKwPLlyzEzvvnmGwCaN2/Ojh07eO211/InZh08eDDvv/8+Be/KXbx4MZ06dWLt2rXBFkBERCQGsczj1dLdO0Qszzaz5fEKSCoHM6NPnz6YGVdddRVXXnklu3btYuvWrcybN4+0tDTmzZvHKaecQsOGDTn00EPJzMzkqKOOAqBq1arUrl2bH374If+YH374Iddffz2vvfYaTZs2TVTRREREihRL4rXMzLq6+0IAMzsRWBDfsKSiW7BgAY0aNWLTpk307t2bVq1a0a1bNxYsWMDcuXO57bbbePvtt3F3unfvDrBf6xaQ//ibzz77jCuvvJJ3332XRo0aBVoWERGRWEWbTmIloTFd1YBhZvZN+KOmwKcHc1IzuxEYFT7+SuAyjRmr+PIeAP3rVAnOgE6NGThwIIsWLaJ79+7MmzePr7/+mnPPPZcHHngAM6Nfv35A6HmE69evp0mTJuTk5PDzzz9Tt25dAI488kh27drFsmXLlHiJiEiZFW2MVz/gHELPZjwG6Bl+HcNBPKvRzBoDvwPS3L0tkARceKDHk/Ih7wHQmVk7yd2zi/Xf/8C4aSuZ/OF/effdd2nbti09evTgxRdfpEWLFlSpUoW6devy5ptvcvLJJwPQv39/nnvuOSD0nMJevXrlt3ilpKQwc+ZMbrvtNubMmZOoYoqIiEQVbTqJrwuuM7Mr3f2JUjpvspllA4cCG0vhmFKGRT4AOndHFpun3QfAyCec2393BWeccUb+tj169ADglFNOYcOGDdSpUweAyy+/nEsvvZTjjjuOunXrMnnyvg9QOOKII3j99dc588wzeeaZZzjxxBODKJqIiEjMin1W4z4bm33i7gVntC/5Sc1uAP4I7ATedfeh0bbXsxrLv2PGzqSwK82Ar8YfcAOqiIhImXNAz2o0sxqFrS6FYOoA5xLqsmwEHGZmlxSy3ZVmtsTMlmzevPlgTysJ1igluUTrRUREKqJoY7w+AjCzyDm7zimFc54OfOXum909m9CDt7sV3Mjdn3D3NHdPa9CgQSmcVhJJD4AWERGJPp1EdTMbDnQzs0F5K82sC4C7TzvAc34DdDWzQwl1NZ4GqB+xgtMDoEVERKInXlcDQ4EU9m/pckItVSXm7h+b2VTgEyAHWAaUxoB9KeP0AGgREansoiVeR7r7NWa2rJTuZMzn7ncBd5XmMUVERETKumhjvMaF/706iEBEREREKrpoLV4/mNls4Bgzm1HwQ3fvH7+wRERERCqeaInX2UBn4AXg4WDCERERkYpk/fr1DBs2jO+++44qVapw5ZVXcsMNNxS73+LFi+natStTpkxh8ODBADRr1oxatWqRlJRE1apVKY9zfEabuX4PsNDMTgJ2hVb59sAiExERkXKvatWqPPzww3Tu3Jlt27aRmppK7969Of7444vcJzc3l1tvvZW+ffvu99ns2bOpX79+PEOOq2hjvDCzawjdffg1sN7MvjazawOJTERERMq9I488ks6dQw+9qVWrFq1btyYzM5P09HRGjx5Nt27daNu2LYsWLcrf57HHHuO8886jYcOGiQo7bqLNXH8HoWkk0t29nrvXBU4Fzgx/JiIiIhKzdevWsWzZsvxn6W7fvp0PP/yQv/71r4wcORKAzMxMXn31Va6+ev97+8yMPn36kJqayhNPlM+ZqKKN8boU6ODuu/JWuPtaM7sAWA7cF+/gREREpGL45ZdfOO+883jkkUc4/PDDAbjooosA6NGjB1u3biUrK4vRo0fzwAMPkJSUtN8xFixYQKNGjdi0aRO9e/emVatW9OjRI9ByHKxoiReRSVfEup1mtjd+IYmIiEh5Nn1Z5j5PKrmx17E8+furGDp0KIMG5T8MB7N9HwFtZixZsoQLL7wQgC1btvDmm29StWpVBgwYQKNGjQBo2LAhAwcOZNGiReUu8Yo2xmuDmZ1WcKWZ9QK+jV9IIiIiUl5NX5bJuGkryczaiQMbftrB5aNGUb3eUdx00037bDtlyhQA5s+fT+3atalduzZfffUV69atY926dQwePJi//vWvDBgwgO3bt7Nt2zYg1EX57rvv0rZt26CLd9CitXj9DnjNzOYDSwk9JugE4GTg3ABiExERkXJmwjtr2Jmdm7+8O/NTtq58n1mbj6Fjx44A/OlPfwKgTp06dOvWja1bt/LMM89EPe7333/PwIEDAcjJyeHiiy/mjDPOiE8h4sjcvegPzQ4BLgbaAAasBl4qrAsyntLS0rw8ztUhIiJS2RwzdiaFZRYGfDX+7Pzl9PR0HnroIdLS0gKLLShmttTdCy1YkS1eZmbhBKvIFDS8TdGZm4iIiFQqjVKSyczaWeh6iT7Ga7aZXW9mTSNXmll1M+tlZs8Bw+MbnoiIiJQnY/q2JLnavnckJldLYkzflvusmzNnToVs7SpOtDFeZwAjgZfN7BggC0gmlKy9C/zF3TPiHaCIiIiUHwM6NQbY567GMX1b5q+v7KKO8crfyKwaUB/Y6e5Z8Q6qII3xEhERkfLigMZ4RXL3bDSFhIiIiMhBifqsRhEREREpPUq8RERERAIS7SHZrSLe1yjwWdd4BiUiIiJSEUVr8fp/Ee8/KvDZX+MQi4iIiEiFFi3xsiLeF7YsIiIiIsWIlnh5Ee8LWxYRERGRYkSbTqKJmT1KqHUr7z3hZc2CJiIiIlJC0RKvMRHvC85eqtlMRUREREqoyMTL3Z8rbL2ZHQKcE7eIRERERCqomObxMrMkMzvTzJ4HvgaGxDcsERERkYon6iODzKwHcDFwNrAIOBk4xt13BBCbiIiISIVSZOJlZhuAb4C/AWPcfZuZfaWkS0REROTAROtq/BehuxeHAOeY2WFoGgkRERGRA1Zk4uXuNwDNgD8DpwKfAw3M7AIzqxlMeCIiIiIVR9TB9R4yy92vIJSEXQwMANbFPTIRERGRCibaQ7K7mtlyM/vFzD4CjnP31939YuCo4EIUERERqRiitXg9DtwM1CPU3fhI3gfuvjO+YYmIiIhUPNESryru/m933+3u/wQaBBWUiIiISEUUbR6vFDMbVNSyu0+LX1giIiIiFU+0xOsD9n00UOSyA0q8REREREog2rMaLwsyEBEREZGKLqZnNYqIiIjIwVPiJSIiIhIQJV4HICsri8GDB9OqVStat27NRx99VOJjpKens2TJkjhEJyIiImVVtMH1+cysG6GZ6/O3d/fn4xRTmXfDDTdwxhlnMHXqVPbs2cOOHXpuuIiIiBSv2BYvM3sBeAg4BTgh/EqLc1xl1tatW5k7dy6XX345ANWrVyclJYUnn3ySE044gQ4dOnDeeeflJ2Pnnnsuzz8fylH/8Y9/MHTo0H2Ot3fvXoYPH84dd9wRbEFEREQkcLG0eKUBx7u7xzuY8mDt2rU0aNCAyy67jOXLl5OamsrEiRMZNGgQV1xxBQB33HEHTz/9NNdffz1PPPEEJ598MscccwwPP/wwCxcuzD9WTk4OQ4cOpW3bttx+++2JKpKIiIgEJJYxXquA38Q7kLJu+rJMTh4/i7P+MofFS5dyfK/zWLZsGYcddhjjx49n1apVdO/enXbt2vHSSy+xevVqAI444gjuvfdeTj31VB5++GHq1q2bf8yrrrpKSZeIiEglEkviVR/41MzeMbMZea94B1aWTF+WybhpK8nM2klSrfok1azPpP9WY/qyTAYPHswnn3zCiBEjePzxx1m5ciV33XUXu3btyt9/5cqV1KtXj40bN+5z3G7dujF79ux9thUREZGKK5auxrvjHURZN+GdNezMzgUgqWYdqh5en63ffc2Ed6rTe9dcjj/+eD7++GOOPPJIsrOzeemll2jcuDEAixYt4q233mLZsmX07NmTPn36cMwxxwBw+eWXM3fuXM4//3xeffVVqlaN6V4HERERKaeK/Z/e3T8o7ZOaWQrwFNCW0OOHRrp7yedkCMjGrJ37LNc9/Wq2vPEQm3NzaNCtA5MmTeLYY4/lxBNP5Oijj6Zdu3Zs27aN3bt3c8UVVzBp0iQaNWrEww8/zMiRI5k1a1b+sW666SZ+/vlnLr30Ul566SWqVNEMHyIiIhWVFTdm3sy6Ao8BrYHqQBKw3d0PP+CTmj0HzHP3p8ysOnCou2cVtX1aWponcs6rk8fPIrNA8gXQOCWZBWN7JSAiERERKavMbKm7FzoDRCzNK48DFwH/BZKBUeF1BxrM4UAP4GkAd98TLekqC8b0bUlytaR91iVXS2JM35YJikhERETKo5j6tdz9CyDJ3XPdfRKQfhDnPBbYDEwys2Vm9pSZHVZwIzO70syWmNmSzZs3H8TpDt6ATo25f1A7GqckY4Rauu4f1I4BnRonNC4REREpX2LpapwLnE5oTNZ3wLfACHfvcEAnNEsDFgInu/vHZjYR2Oruvy9qn0R3NYqIiIjE6mC7Gi8Nb/c/wHbgKOC8g4hnA7DB3T8OL08FOh/E8URERETKhVjuavzazJKBI939noM9obt/Z2brzaylu68BTgM+PdjjioiIiJR1sTyr8RwgA3g7vNyxFCZQvR54ycxWAB2BPx3k8URERETKvFgnUO0CzAFw9wwza3YwJ3X3DCrxg7ZFRESkcopljFeOu/8c90hEREREKrhYWrxWmdnFQJKZtQB+B3wY37BEREREKp5YWryuB9oAu4GXga3A6DjGJCIiIlIhxXJX4w7g9vBLRERERA5QkYlXcXcuunv/0g9HREREpOKK1uJ1ErCeUPfix4AFEpGIiIhIBRUt8foN0JvQA7IvBmYCL7v76iACExEREaloihxcH34g9tvuPhzoCnwBzDGz6wOLTkRERKQCiTq43sxqAGcTavVqBjwKTIt/WCIiIiIVT7TB9c8BbYG3gHvcfVVgUYmIiIhUQNFavC4FtgO/BX5nlj+23gB398PjHJuIiIhIhVJk4uXusUyuKiIiIiIxUnIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlIiIiEhAlXiIiIiIBUeIlB239+vWceuqptG7dmjZt2jBx4kQA7rzzTt577z0ARowYwTHHHEPHjh3p2LEjGRkZCYxYREQkMaI+MkgkFlWrVuXhhx+mc+fObNu2jdTUVHr37s299967z3YTJkxg8ODBCYpSREQk8dTiFaGolpuCnn32WRo0aJDfevPUU0/lf/bNN9/Qp08fWrduzfHHH8+6desCij5xjjzySDp37gxArVq1aN26NZmZmYwYMYKpU6cWud/evXtp0aIFmzdvzl8+7rjj2LJlSyBxi4iIBE2JV4S8lpvPPvuMhQsX8n//9398+umn+2yTk5MDwJAhQ8jIyCAjI4NRo0blfz5s2DDGjBnDZ599xqJFi2jYsGGgZUi0devWsWzZMk488cT9Prv99ttp3749N954I7t376ZKlSpccsklvPTSSwC89957dOjQgfr16wcdtoiISCCUeEUoquUmPT2d2267jZ49exbZCgbw6aefkpOTQ+/evQGoWbMmhx56aCCxB236skxOHj+LY8bO5OTxs5i+LJNffvmF8847j0ceeYTDD9/3UZ73338///nPf1i8eDE//vgjDzzwAAAjR47k+eefB+CZZ57hsssuC7wsIiIiQVHiVYSCLTdZWVl88MEH/O///i8A//rXv2jfvj2DBw9m/fr1AHz++eekpKQwaNAgOnXqxJgxY8jNzU1YGeJl+rJMxk1bSWbWThzIzNrJ2H8uo3vvfgwdOpRBgwbtt8+RRx6JmVGjRg0uu+wyFi1aBMBRRx3FEUccwaxZs/j4448588wzAy6NiIhIcCp94hVry82QIUPy9znnnHNYt24dK1as4PTTT2f48OFAqBty3rx5PPTQQyxevJi1a9fy7LPPJqJYcTXhnTXszP41oXR3Nsz4M99XqcdNN91U6D7ffvtt/rbTp0+nbdu2+Z+NGjWKSy65hAsuuICkpKT4Bi8iIpJAlTrxKknLzWGHHZb/vl69etSoUQOAK664gqVLlwLQpEkTOnXqxLHHHkvVqlUZMGAAn3zySaBlCsLGrJ37LO/O/JTtq2ez5b+f5N9w8Oabb+6zzdChQ2nXrh3t2rVjy5Yt3HHHHfmf9e/fn19++UXdjCIiUuFV6ukkimq5Obx20S03EGq9OfLIIwGYMWMGrVu3BuCEE07gp59+YvPmzTRo0IBZs2aRlpYW30IkQKOUZDIjkq9DmrTh6FvfoHFKMgvG9spff9ZZZ+W/nzVrVpHHW758OR06dKBVq1bxCVhERKSMqNSJV1EtN3saNKNjx44A/OlPf9pvv0cffZQZM2ZQtWpV6tatm9+dmJSUxEMPPcRpp52Gu5OamsoVV1wR72IEbkzfloybtnKfpDW5WhJj+rYs8bHGjx/P3/72t/w7G0VERCoyc/dEx1CstLQ0X7JkSakf9+Txs/ZpuclTsOVG9jd9WSYT3lnDxqydNEpJZkzflgzo1DjRYYmIiCScmS1190K7vCp1i1dpttwUp1mzZtSqVYukpCSqVq1KLInk3LlzGT16NCtWrGDy5Mllatb3AZ0aK9ESEREpoUqdeOUlDkG13MyePbtEk4M2bdqUZ599loceeigu8YiIiEiwKnXiBYlrudm0aRNnnnkmS5cuZfny5XTs2JGvv/6apk2b0rx5c1auXEmzZs0AqFJl35tP58yZw1133cURRxxBRkYGgwYNol27dkycOJGdO3cyffp0mjdvHniZREREJLpKPZ1EvIwcOZKGDRvuM1eVmdGnTx9SU1N54oknaNiwIbt27WLr1q3MmzePY489lqOPPprXX3+dhg0bsmjRIvr161fkOZYvX87EiRNZuXIlL7zwAp9//jmLFi1i1KhRPPbYY0EUU0REREqo0rd4xcOIESNoc/oF/P6mazhm7EwapSTz+39MZWSfVDZt2kTv3r1p1aoV3bp1Y8GCBbz//vsccsghNGzYkGXLltG9e/diz3HCCSfkT2nRvHlz+vTpA0C7du2YPXt2XMsnIiIiB0YtXnHwY63m/PWj78nJ3Zs/MevtE5+nRZuO9O7dm+zsbObPn0/37t2ZN28eH330Effffz87d+5k+fLl9OjRY5/jbdmyhTFjxrB27dr8dXkTuEKoKzJvuUqVKvkP8hYREZGyRYlXHEx4Zw27c369U3Lvnl1UOaoDDS/9Mx9++CFbt25l/fr19OjRg2eeeYbq1avTv39/qlWrxoIFCzj55JPz9/3www/56KOPuOWWWzj22GMTURwREREpJepqLCWR81oVnBktd0cW30++g2+3/0S9uyE5ORl3p2nTpmRlZXHnnXcCULt2bapUqUKdOnUAyMjIoGfPnlStWpU77riDxx9/nNWrVwdbMBERESk1avEqBQWf+VhQtZTfAE77ax9j165d/OUvf2HXrl1s27aNmjVr8sQTT9CsWTM2btzIjh078uf4atasGR06dGDq1Kn88MMP+UlXeno6b7zxRv7x58yZk/9oooKfiYiISNmhxKsUFHzmY6H27GR0/y5kZ2fnPx6ndu3abNmyhXXr1rFu3Tq6du3KjBkz8pOolJQUZs6cyW233cacOXPiXAoRERGJNyVepaDgMx83z3iQ7164mewfM9nwf8Op+t/ZjBo9lntGDci/ozFWRxxxBK+//jrXXXcdH3/8cWmHLiIiIgGq1M9qLC165qOIiIjkifasRrV4lYIxfVuSXC1pn3XxeuajiIiIlF+6q7EUBP3MRxERESmflHiVkkQ981FERETKD3U1ioiIiAREiZeIiIhIQBKWeJlZkpktMzPN9ikiIiKVQiJbvG4APkvg+eMuNzeXTp060a9fPwD+85//0LFjRzp16sTq1avp0qULHTp0oE2bNtx11135+0Vu9+WXXyYq/Epn165dRX4nRXnsscdo2bIlbdq04ZZbbgFCTxLI+85FREQiJWRwvZk1Ac4G/gjclIgYgjBx4kRat27N1q1bAZg+fTrnnnsu99xzD+7OrFmzqFmzJtnZ2ZxyyimceeaZdO3adZ/tJDg1atQo8jspzOzZs3nttddYsWIFNWrUYNOmTQFHLCIi5U2iWrweAW4B9ha1gZldaWZLzGzJ5s2bAwustGzYsIGZM2cyatQoAN58800eeeQRnnrqKU499VTMjJo1awKQnZ1NdnY2ZrbfdhKcor6TjIwMunbtSvv27Rk4cCA//fQTAH/7298YO3YsNWrUAKBhw4YJi11ERMqHwBMvM+sHbHL3pdG2c/cn3D3N3dMaNGgQUHSlZ/To0Tz44INUqRKq4rPOOourr76aG2+8kdmzZwOhrsiOHTvSsGFDevfuzYknnljodhKcwr6TYcOG8cADD7BixQratWuX3xL5+eefM2/ePE488UR69uzJ4sWLExy9iIiUdYnoajwZ6G9mZwGHAIeb2YvufkkCYik105dl5k+gesi3GTSrchipqalRH26dlJRERkYGWVlZDBw4kFWrVtG2bdvggpZ9vre8iW8jv5Ply5eTlZVFz549ARg+fDjnn38+ADk5Ofz0008sXLiQxYsXc8EFF7B27dpEFkdERMq4wBMvdx8HjAMws3Tg5oqQdI2btpKd2bkAbPw8gy9Wz6Zho6OosjebrVu3cskll3DccccVun9KSgrp6em8/fbbSrwCVPB7y8zaybhpK4HQhLjp6elMnz69yP2bNGnCoEGDMDO6dOlClSpV2LJlSxChi4hIOaV5vErBhHfW5P/nDVCn5wgaX/scLX73HJMnT6ZXr168+OKL++yzefNmsrKyANi5cyfvvfcerVq1CjLsSq/g95a742e2b/s5tD78naSmplKnTh3mzZsHwAsvvJDf+jVgwABmzZoFhLod9+zZQ/369YMviIiIlBsJfWSQu88B5iQyhtKwMWtnlPWHFfrZt99+y/Dhw8nNzWXv3r1ccMEFmoIgYAW/t9xffmTLzL/wne/lhBcPy/9OmjRpwtVXX82OHTs49thjmTRpEgAjR45k5MiRtG3blurVq/Pcc89hZokoioiIlBPm7omOoVhpaWm+ZMmSRIdRpJPHzyKzkOSrcUoyC8b2SkBEEgt9byIiEg9mttTd0wr7TF2NpWBM35YkV0vaZ11ytSTG9G2ZoIgkFvreREQkaEq8SsGATo25f1A7GqckY4RaTO4f1I4BnRonOrQyaeTIkTRs2PCgbiS48847ee+99w4qDn1vIiISNHU1SuDmzp1LzZo1GTZsGKtWrUp0OCIiIqVKXY1SpvTo0YO6devmL3/55Zd07tw5f/m///0vqampACxdupSePXuSmppK3759+fbbbwEYMWIEU6dODTZwERGRg6TESxKuefPm1K5dm4yMDAAmTZrEiBEjyM7O5vrrr2fq1KksXbqUkSNHcvvttyc2WBERkYOQ0OkkRPKMGjWKSZMm8ec//5kpU6awaNEi1qxZw6pVq+jduzcQepzPkUcemeBIRUREDpwSLwlEwUfzDG936D6fn3feedxzzz306tWL1NRU6tWrx8aNG2nTpg0fffRRgqIWEREpXepqjINdu3bRpUsXOnToQJs2bbjrrrsO6ni///3vad++PR07dqRPnz5s3LixlCINRt6jeTKzduKEHs3zwNtr2LorJ3+bQw45hL59+3LNNddw2WWXAdCyZUs2b96cn3hlZ2ezevXqRBRBRESkVCjxioMaNWowa9Ysli9fTkZGBm+//TYLFy484OONGTOGFStWkJGRQb9+/bj33ntLMdr4K/hons0zHuTrSTey4asvaNKkCU8//TQAQ4cOxczo06cPANWrV2fq1KnceuutdOjQgY4dO/Lhhx/mH0ezxIuISHmjrsY4MDNq1qwJhFppsrOz2b17N126dGHRokUArFu3jv79+/PUU08xfvx4pk2bxmuvvcaFF17Izz//zN69ezn++ONZu3Ythx9+eP6xt2/fXu4SjoKP5mnQ/xYADPhq/Nn56+fPn8/IkSNJSvp1UtOOHTsyd+7c/Y75ww8/7HNnpIiISHmgxCtOcnNzSU1N5YsvvuC6666jZ8+e7Nmzh7Vr13LssccyZcoULrjgAjp37syyZcsAmDdvHm3btmXx4sXk5ORw4okn5h/v9ttv5/nnn6d27drMnj07UcU6II1Skgt9NE+jlOT89wMHDuTLL7/Mf+h0NCNHjmTHjh2ccsoppRqniIhIvGkC1VJUcAD5mL4tST/mMAYOHMhjjz3GjBkzqFKlCmPHjqVz585MmTKFFi1a0Lt3bx599FGuuuoqrrnmGtatW0dubi5169bl2muv3ecc999/P7t27eKee+5JUClLLm+MV2R3Y3K1JM0SLyIiFZImUA1AYQPIx01byZyvtpOens7bb7/NkCFDeOWVV/j8888xM1q0aAFA9+7deeutt6hWrRqnn3468+fPZ/78+fTo0WO/81x88cX861//Crh0B0eP5hEREQlRV2MpiRxAnrvjZ6xKEjupyfg3VlDtvfe49dZbad68OUlJSfzhD39gyJAh+fv26NGDYcOGMWzYMBo0aMAPP/zAd999R5s2bYDQTO55SdqMGTNo1apV8AU8SAM6NVaiJSIilZ4Sr1ISOYA895cf2TLzL+B72eh7ueP6y+nXrx8AQ4YMYcyYMXz11Vf525944ol8//33+S1c7du3p2HDhvmD6MeOHcuaNWuoUqUKRx99NH//+98DLJmIiIiUFo3xKiUnj59V6ADyxinJLBjbK27nHTlyJG+88QYNGzYs0QOn16xZs0+r29q1a7n33nsZPXo0d955Jz169OD000+PR8giIiIVWrQxXkq8SkmiBpDPnTuXmjVrMmzYsBIlXpFyc3Np3LgxH3/8MUcffXQpRygiIlK5aHB9ABI1gLxHjx77zWeVnp7OjTfeSI8ePWjdujWLFy9m0KBBtGjRgjvuuGO/Y7z//vs0b948P+kaMWIEU6dOjWvcIiIilZHGeJWisjSAvHr16sydO5eJEydy7rnnsnTpUurWrUvz5s258cYbqVevXv62kydP5qKLLkpgtCIiIpWDWrwqqP79+wPQrl072rRpw5FHHkmNGjU49thjWb9+ff52e/bsYcaMGZx//vmJClVERKTSUItXOVRwotbh7Q7db5saNWoAUKVKlfz3ecs5Ob8+nPqtt96ic+fOHHHEEfEPXEREpJJT4lXOFBzEn5m1kwfeXk/2rpxi9izcyy+/rG5GERGRgCjxKmciJ2oF2DzjQXZ/s5K9O7fSpEmTEj1KaMeOHfz73//mH//4RzxCFRERkQI0nUQ5c8zYmRT2jRnw1fizgw5HRERECtB0EhVIo5TkEq0XERGRskOJVzkzpm9Lkqsl7bMuuVoSY/q2TFBEIiIiEiuN8Spn8uYJi7yrcUzflmVm/jAREREpmhKvcqgsTdQqIiIisVNXo4iIiEhAlHiJiIiIBESJl4iIiEhAlHhJpbRr1y66dOlChw4daNOmDXfddRcA6enpaM44ERGJFw2ul0qpRo0azJo1i5o1a5Kdnc0pp5zCmWeemeiwRESkglOLl1RKZkbNmjUByM7OJjs7GzMD4MUXX6Rbt260bduWRYsWAXD33Xdz6aWX0qtXL1q0aMGTTz6Zf6wHH3yQdu3a0aFDB8aOHRt8YUREpNxQi5dUWrm5uaSmpvLFF19w3XXXceKJJwKwfft2PvzwQ+bOncvIkSNZtWoVACtWrGDhwoVs376dTp06cfbZZ7N8+XKmT5/Oxx9/zKGHHsqPP/6YyCKJiEgZp8RLKq2kpCQyMjLIyspi4MCB+QnWRRddBECPHj3YunUrWVlZAJx77rkkJyeTnJzMqaeeyqJFi5g3bx6XXXYZhx56KAB169ZNSFlERKR8UOIllcr0ZZmFzvqfnp7O22+/DZDf5Zgnb7mw9e6+33oREZGiaIyXVBrTl2UybtpKMrN2krPjZ9Z/t5lx01Yy5aMveO+992jVqhUAU6ZMAWD+/PnUrl2b2rVrA/Daa6+xa9cufvjhB+bMmcMJJ5xAnz59eOaZZ9ixYweAuhpFRCQqtXhJpTHhnTXszM4FIPeXH9ky8y/ge7nsSRh77WX069ePhx56iDp16tCtWze2bt3KM888k79/ly5dOPvss/nmm2/4/e9/T6NGjWjUqBEZGRmkpaVRvXp1zjrrLP70pz8lqogiIlLGmbsnOoZipaWlueZWkoN1zNiZFHa1G/DV+LOj7nv33XdTs2ZNbr755rjEJiIiFYeZLXX3tMI+U1ejVBqNUpJLtF5ERKS0qatRKo0xfVsybtrK/O5GgORqSYzp27LYfe++++44RiYiIpWFEi+pNAZ0agxQ6F2NIiIiQVDiJZXKgE6NlWiJiEjCaIyXiIiISEACT7zM7Cgzm21mn5nZajO7IegYRERERBIhEV2NOcD/uvsnZlYLWGpm/3b3TxMQi4iIiEhgAm/xcvdv3f2T8PttwGeABt2IiIhIhZfQMV5m1gzoBHxcyGdXmtkSM1uyefPmwGMTERERKW0JS7zMrCbwL2C0u28t+Lm7P+Huae6e1qBBg+ADFBERESllCUm8zKwaoaTrJXeflogYRERERIKWiLsaDXga+Mzd/xz0+UVEREQSJREtXicDlwK9zCwj/DorAXGIiIiIBCrw6STcfT5gQZ9XREREJNE0c72IiIhIQJR4iYiIiAREiZeIiIhIQJR4iYiIiATE3D3RMRTLzDYDX0esqg9sSVA4lYnqOTiq6+CoroOheg6O6joYJanno9290Nnfy0XiVZCZLXH3tETHUdGpnoOjug6O6joYqufgqK6DUVr1rK5GERERkYAo8RIREREJSHlNvJ5IdACVhOo5OKrr4Kiug6F6Do7qOhilUs/lcoyXiIiISHlUXlu8RERERModJV4iIiIiASmziZeZnWFma8zsCzMbW8jnZmaPhj9fYWadExFnRRBDXbcys4/MbLeZ3ZyIGCuKGOp6aPh6XmFmH5pZh0TEWd7FUM/nhus4w8yWmNkpiYizIiiuriO2O8HMcs1scJDxVRQxXNPpZvZz+JrOMLM7ExFnRRDLNR2u7wwzW21mH5ToBO5e5l5AEvAlcCxQHVgOHF9gm7OAtwADugIfJzru8viKsa4bAicAfwRuTnTM5fUVY113A+qE35+p6zpu9VyTX8e4tgf+k+i4y+MrlrqO2G4W8CYwONFxl7dXjNd0OvBGomMt768Y6zoF+BRoGl5uWJJzlNUWry7AF+6+1t33AJOBcwtscy7wvIcsBFLM7MigA60Aiq1rd9/k7ouB7EQEWIHEUtcfuvtP4cWFQJOAY6wIYqnnXzz8GxM4DNBdRgcmlt/VANcD/wI2BRlcBRJrPcvBi6WuLwamufs3EPo/siQnKKuJV2NgfcTyhvC6km4jxVM9BqekdX05oVZdKZmY6tnMBprZf4CZwMiAYqtoiq1rM2sMDAT+HmBcFU2svztOMrPlZvaWmbUJJrQKJ5a6/i1Qx8zmmNlSMxtWkhNUPcgA48UKWVfwL9JYtpHiqR6DE3Ndm9mphBIvjT0quZjq2d1fBV41sx7AH4DT4x1YBRRLXT8C3OruuWaFbS4xiKWePyH0fMBfzOwsYDrQIt6BVUCx1HVVIBU4DUgGPjKzhe7+eSwnKKuJ1wbgqIjlJsDGA9hGiqd6DE5MdW1m7YGngDPd/YeAYqtISnRNu/tcM2tuZvXdXQ8aLplY6joNmBxOuuoDZ5lZjrtPDyTCiqHYenb3rRHv3zSzv+qaPiCx5h9b3H07sN3M5gIdgJgSr7La1bgYaGFmx5hZdeBCYEaBbWYAw8J3N3YFfnb3b4MOtAKIpa6ldBRb12bWFJgGXBrrX0+yn1jq+TgLZwLhO6KrA0pyS67Yunb3Y9y9mbs3A6YC1yrpKrFYrunfRFzTXQj9/65ruuRi+T/xNaC7mVU1s0OBE4HPYj1BmWzxcvccM/sf4B1Cdxg84+6rzezq8Od/J3R3zFnAF8AO4LJExVuexVLXZvYbYAlwOLDXzEYTustja1HHlf3FeF3fCdQD/hr+HZrj7mmJirk8irGezyP0h1s2sBMYEjHYXmIUY13LQYqxngcD15hZDqFr+kJd0yUXS127+2dm9jawAtgLPOXuq2I9hx4ZJCIiIhKQstrVKCIiIlLhKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAKPESERERCYgSLxEREZGAlMkJVEUqAjOLOkmeu+vBdSIilYwmUBUREREJiLoaKzgzyzWzDDNbbWbLzewmM6sS/uzDiO1+Z2afmdlLke8TF/mBKyp+MzvdzF6I87mTzewDM0sKL19lZn8Pv69mZi+Y2XNmVq2Qfaub2VwzK7Qluix+L5HX0MFsE2XfX0qwbYqZXXug54r38YJgZneb2c2FrA/02jGzgWbmZtaqwPqo36eZNTOzmB+9ErFf3u+5vFezKNsWGkPBujOzdSWNozQUEkeRPz+FXaMH8/MmwVDiVfHtdPeO7t4G6E3o+ZZ3Abh7t4jtrgXOcvehBd4XK/yg8rJ0LRUVfwdgeZzPPRKY5u654eX2wAozOxx4C/jG3Ye7e3bBHd19D/A+MKSIYxdarkTUf945C1xDhYplm1KSQqiO9nOAdVTk8YpSBn8W8gR97VwEzCf0gOEg5P2ey3utC+i8MTmYei7m5yeFAtdogD9vcoDK4i8IiRN33wRcCfxP+BfBLwDhFpljgRlmtjvi/Y3hzy8xs0XhvyT/YWZJ4b9MPzOzvwKfAEcVs92T4Va3d80sOS8mMxtmZiss1Br3QlHnK6w8Fmq9WxV+jS6kLDcW2KUDkBHerlW4dWm1mb1nZvXD61uH168wszFm9kUJq3kooSfX52kH/AjMAf7p7rcXs//08DEKlnWfchVR/4XVRzMz+4+ZPRVe/5KFWv4WmNl/zaxLYUFEOVbBc/4Ssc/vw+f6t5m9nPdXe8R1VuS1YGbTzWxpeP2V0SrIzA4zs5nha2aVmeUlquOB5uHrZkIh8Xa3iNYUM7vZzO4Ov9/vOixwvH9G2TfWn4Wi4o4sW6H1UEzd3W5ma8zsPaBlIccM+tqpCZwMXE4RiVfEsZ8L1/tUMzs0/HHSwV4j4e33K1Mh20Sru80xfmeFliXW66K4OCJ+foq7RidEbl9UHRR1LcVSVikl7q5XBX4BvxSy7ifgiMjPgHVA/ULetwZeB6qFl/8KDAOaEXoqe9cYtssBOobXvwJcEn7fBlgTca66RR2nkDKkAiuBw4CawGqgU8H4C+yzHGgA1Ciw/a3AHwndbPJJxPq/AdNLUNfVge8KqevNwDkxHiMJ2FzEZ5HfS8H6L7Q+Iuq/HaE/tJYCzwAGnFtY+Yo5Vv45I68vII1QUpsM1AL+C9xcYJto10Ld8L/JwCqgXpTr9zzgyYjl2hHHXxWxvmAdFfz8ZuBuCrkOC25f1L5FnKeon4VC4y5QtqLqodC6i/iuDgUOB77Iq/dEXDvh410CPB1+/yHQuZDrpRngwMnh5WfCdVpoOaPVTXhdLqHrLwN4tagyFYih2LqL8TuLVpZYrouocQC/EMM1WkgdF/e9FryWii2rXqXzUotX5VSSu+lOI/QDvNjMMsLLx4Y/+9rdF8aw3VfunhF+v5TQDz5AL2Cqu28BcPcfizlOpFOAV919u7v/AkwDuhdVCAuNqTrc3TcDA4D57r4s/PGnQENgELC8wPqSdE3WB7IiznkUoV+aK4EjYzmAh7oo95hZrRg2j6z/aPXxlbuvdPe9hH75vu+h36wr+fW7iBTtWJHnLLjPa+6+0923EfoPpjBFXQu/M7PlwELgKKBFlHKvBE43swfMrLu7/xxl26LijVTYdVhSsfwsxBJ3tHoorO66E/qudrj7VmDGAcRbmtcOhLoZJ4ffTw4vF2a9uy8Iv38xHEdR5YTodRPZ1TiwmDLliaXuYr3WiipLLNdFLHEcyDVa3PeaEX6fV8cl+bmSg6DpJCoZMzuW0F+Hm2LdBXjO3ccVOE4zYHuM2+2OWJVL6C/WvH0K3lZb6HGKiKskjgc+i3i/MuKzdoSSrPaEuyLD2gJvQ3693U7or8DBZnYYob9Y9wBz3P0lYCdwSMT+7QklblcAC81scV5SZ2aLgY8J/YU7290nRexXA9gVQ5kK1n9RIut/b8TyXgr/HRDtWNuLWB/r97HftWBm6cDpwEnuvsPM5rBvPe7D3T83s1RC4xXvN7N33f3eGOLNYd/hFXnnKOw6LKiofQs7T5HXcLS4Y6iHon6ODuTW9LhcO2ZWj1CS0NZC06kkAW5mt4QTtkhFLR/0NULs12NxU77Eeq0VVZZYfkeOLi4OYrtGC9unKPvVcQl/ruQgqMWrEjGzBsDfgccL+SVYlPeBwWbWMHyMumZ29EFsV3CfC8K/rDGzuiU4zlxgQHgsxWHAQGBelHPlj+8CMgklX3kJ1aXA88APwG/D6zsSan5fDuDua9398ojjDSL0F+gVQP/wNj8RGp+S9x9CO2Clu38LjAKmmFntcEvYx+7+P+4+DLg0YqxHPUJdjfsNvi9GSeujtI81HzjHzA6x0Bifs0twvtrAT+H/UFsBXaNtbGaNgB3u/iLwENA5/NE2Qt2cRfkeaGhm9cysBtAvvL6w67Dg8YratzCFXsNR4s5TonoImwsMDI/RqQWcE8M+hR2jtK6dwcDz7n60uzdz96OAr/i1BShSUzM7Kfw+bzB+UUpaN7GUqdi6i+E7K0lZivrdFst3GMs1WlCJvtcSlFUOklq8Kr7kcLN2NUJ/tb8A/DnWnd39UzO7A3jXQnflZAPXAd8dyHYF9lltZn8EPjCzXGCZu48o4jhfF9j3EzN7FlgUXvVURBdhYTpEbPsCcJaZrSTUSjXS3X+w0IDVmeHWqI+Ade6+tojjNeHXVrPciPXvEvpP5j1CidfMcLz/NrNXCI3/eIFQ836eHYRaEABOBd6MUo5CFVUfFuW2+tI8lrsvNrMZhBLVr4ElQKxdFW8DV5vZCkLjWIrrGmwHTDCzvYSuj2vCMfxgoYHfqwjdQfp/BWLMNrN7CbU0fgX8J7x+v+sQGFHI8fbbt4i6KOpnoXZhcR9EPeR9V1MI/VHxNQeQMJXmtUMo6RhfYN2/gIsLie0zYLiZ/YPQmMC/EeryL0yJ6iaW3w8x1l2h11ohii1LUdeFuy8sLo5Yr1F3H1NcHUT5XmMtqxwkTaAqEmZmNcNjITCzMYS6Fe8osM3UcFfjpYT+An/DzCa7+4XhzzsBN7n7pVHO8wdCdziuMLMOwFXufm34s2nAOHdfE59Sxk9e/Vno7rS5wJXu/kmi45KyJ/yf/xvu3jbRsRysilQWCYZavER+daOZXUjor70FwE15H4Sb+P8IdDKzccCjwONmdjYRA8nDf1HONrMk/3Uur4JSgXoWmrojl9BdlZhZdUJ3ipW7pCvsCTM7ntDYm+eUdImI7E8tXiIiIiIB0eB6ERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJiBIvERERkYAo8RIREREJyP8HitRLJ7TSUz0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "fig = plt.figure(figsize=(10, 8))\n", - "plt.scatter(np.abs(kds_difference), 100-af_plddt+af_max_mae)\n", - "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$', size=title_size)\n", - "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions', size=font_size-1)\n", - "plt.ylabel('MAE + Per-residue confidence error', size=font_size-1)\n", + "plt.scatter(np.abs(kds_difference), af_mean_pae_ab_off_blocks)\n", + "plt.title('Impact of AlphaFold\\'s folding confidence in $log_{10}(\\overline{K}_D)$')\n", + "plt.xlabel('Difference of $log_{10}(\\overline{K}_D)$ from original structures and from AlphaFold\\'s predictions')\n", + "plt.ylabel('Mean PAE (Off-blocks & Ab, no antigen block)')\n", "\n", "for i, txt in enumerate(test_pdbs):\n", - " plt.annotate(txt, (np.abs(kds_difference[i]), 100-af_plddt[i]+af_max_mae[i]))" + " plt.annotate(txt, (np.abs(kds_difference[i]), af_mean_pae_ab_off_blocks[i]))\n", + "scipy.stats.spearmanr(np.delete(np.abs(kds_difference),8), np.delete(af_mean_pae_ab_off_blocks,8))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "25fc1397", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['5w1m',\n", + " '4f3f',\n", + " '2r56',\n", + " '3vw3',\n", + " '6axk',\n", + " '3eoa',\n", + " '3bpc',\n", + " '1yej',\n", + " '5vzy',\n", + " '4r8w',\n", + " '4kht',\n", + " '2p45',\n", + " '4rgo',\n", + " '5cjq',\n", + " '1tzi',\n", + " '1a4k',\n", + " '1m7i',\n", + " '4u6v',\n", + " '2i5y',\n", + " '5w0k',\n", + " '3o6l']" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pdbs" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "bc7909e4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5w0k\n", + "8.242629830611952,30.27,3.5956022799744902,31.41,12.468638799317148,31.41,8.032120539645819\n", + "3o6l\n", + "2.774010850577801,25.11,2.4794398865784504,26.06,5.190018633540372,26.06,3.8347292600594116\n", + "5cjq\n", + "10.795276123642791,27.73,3.358474541331684,30.84,17.655406292894096,30.84,10.50694041711289\n", + "4f3f\n", + "225\n", + "[[ 0.75 0.79 1.26 ... 13.59 14.62 15.93]\n", + " [ 0.77 0.75 0.76 ... 12.29 14.08 15.4 ]\n", + " [ 0.94 0.76 0.75 ... 12.26 14.11 15.42]\n", + " ...\n", + " [24.83 25.64 25.61 ... 0.75 1.69 3.91]\n", + " [27.19 27.77 27.77 ... 1.36 0.75 1.69]\n", + " [28.84 28.98 29.06 ... 4.17 1.49 0.75]]\n", + "3.502604340178686,18.91,2.296170864197531,30.55,5.387693790849674,30.55,3.841932327523603\n", + "4u6v\n", + "10.322043611687258,25.83,3.358852043248603,31.53,13.606600092719987,31.53,8.482726067984295\n", + "1yej\n", + "3.5487529198732455,27.94,3.5487529198732455,nan,nan,nan,nan\n", + "4kht\n", + "10.537643320884804,31.38,4.386712686638317,31.08,21.204458118300913,31.38,12.795585402469616\n", + "5w1m\n", + "4.426376923076923,29.19,3.067827594054726,28.47,5.915545179971737,29.19,4.491686387013232\n", + "5vzy\n", + "4.191917333380018,28.31,2.9207198024691365,29.98,14.260933333333334,29.98,8.590826567901235\n", + "3eoa\n", + "12.740540766733819,30.34,3.196612192749947,31.34,21.95208830664726,31.34,12.574350249698602\n", + "1tzi\n", + "11.565669478293808,31.55,3.6586974838411823,31.52,21.80017543859649,31.55,12.729436461218835\n", + "1a4k\n", + "2.535208673000881,21.25,2.535208673000881,nan,nan,nan,nan\n", + "2p45\n", + "7.3740316783122815,20.62,2.9419944444444446,26.94,11.96730813172043,26.94,7.454651288082437\n", + "3bpc\n", + "2.3592412827644647,20.88,2.3592412827644647,nan,nan,nan,nan\n", + "2i5y\n", + "5.822245917355372,31.64,2.853489336911234,31.56,6.933185197155784,31.64,4.893337267033509\n", + "3vw3\n", + "3.2568023462828655,23.48,3.2568023462828655,nan,nan,nan,nan\n", + "4rgo\n", + "12.608831911143566,31.56,3.476865842535272,31.5,20.846261284032643,31.56,12.161563563283957\n", + "1m7i\n", + "2.6607237495549185,20.67,2.6607237495549185,nan,nan,nan,nan\n", + "6axk\n", + "3.203643481882549,24.03,2.5909717656512528,28.67,9.67198717948718,28.67,6.131479472569216\n", + "4r8w\n", + "16.474883693152975,30.88,5.824465368945225,31.58,27.663577036688217,31.58,16.74402120281672\n", + "2r56\n", + "4.718328665351742,28.11,3.205357067943021,23.91,6.445597385337276,28.11,4.825477226640149\n" + ] + } + ], + "source": [ + "#Code to compute Max/Mean of different blocks of PAE matrix\n", + "\n", + "import csv\n", + "import json\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import glob\n", + "import os\n", + "\n", + "def calculate_metrics(matrix, n):\n", + " # 1. Mean of the error_matrix\n", + " mean_matrix = np.mean(matrix)\n", + " \n", + " # 2. Max of a block 0:n, 0:n\n", + " max_block_ab = np.max(matrix[:n, :n])\n", + " \n", + " # 3. Mean of a block 0:n, 0:n\n", + " mean_block_ab = np.mean(matrix[:n, :n])\n", + " \n", + " # 4. Max of two blocks: 0:n, n:end and n:end, 0:n\n", + " if np.size(matrix[:n, n:]) != 0:\n", + " max_block_offb = np.max([np.max(matrix[:n, n:]), np.max(matrix[n:, :n])])\n", + " else:\n", + " max_block_offb = np.nan\n", + " \n", + " # 5. Mean of two blocks: 0:n, n:end and n:end, 0:n\n", + " mean_block_offb = np.mean([np.mean(matrix[:n, n:]), np.mean(matrix[n:, :n])])\n", + " \n", + " # 6. Max of the block in 2 and the two blocks of 4\n", + " max_combined = np.max([max_block_ab, max_block_offb])\n", + " \n", + " # 7. Mean instead of Max for 6\n", + " mean_combined = np.mean([mean_block_ab, mean_block_offb])\n", + " \n", + " return mean_matrix, max_block_ab, mean_block_ab, max_block_offb, mean_block_offb, max_combined, mean_combined\n", + "\n", + "\n", + "\n", + "main_directory = '/Users/kevinmicha/Documents/PhD/Results/AlphaFold results/'\n", + "\n", + "for i, path in enumerate(os.listdir(main_directory)):\n", + " if path not in ['Old', '.DS_Store']:\n", + " with open(glob.glob(os.path.join(main_directory, f'{path}/{path}_scores_rank_001_alphafold2_multimer_v3_model_*_seed_00*.json'))[0], 'r') as json_file:\n", + " data = json.load(json_file)\n", + "\n", + " # Extract the 'predicted_aligned_error' field\n", + " error_data = data['pae']\n", + "\n", + " # Convert error_data to a NumPy array for plotting\n", + " error_matrix = np.array(error_data)\n", + " \n", + " with open(main_directory+path+'/'+path+'.csv', 'r') as csv_file:\n", + " csv_reader = csv.DictReader(csv_file)\n", + " for row in csv_reader:\n", + " sequence = row['sequence']\n", + " break # We assume there's only one entry in the CSV\n", + " print(path[0:4])\n", + " # Find the index of the first ':' character to determine n\n", + " if path[0:4] == '2p45':\n", + " n = sequence.index(':')\n", + " else:\n", + " second_colon_index = sequence.find(':', sequence.find(':') + 1)\n", + " if second_colon_index == -1:\n", + " n = len(sequence)\n", + " else:\n", + " n = second_colon_index\n", + " if path[0:4] == '4f3f':\n", + " print(error_matrix)\n", + " \n", + " metrics = calculate_metrics(error_matrix, n)\n", + "\n", + " print(','.join(map(str, metrics)))\n", + "\n", + " # Create a figure and axis\n", + " #fig, ax = plt.subplots(figsize=(10, 8))\n", + "\n", + " # Plot the error_matrix using imshow\n", + " #cax = ax.imshow(error_matrix, cmap='viridis', aspect='auto')\n", + "\n", + " # Add a colorbar\n", + " #cbar = fig.colorbar(cax)\n", + "\n", + " # Add labels and title\n", + " #plt.xlabel('Position')\n", + " #plt.ylabel('Row')\n", + " #plt.title('Predicted Aligned Error Matrix')\n", + "\n", + " #plt.tight_layout()\n", + " #plt.show()\n", + "\n" ] }, { "cell_type": "code", "execution_count": null, - "id": "0d97182b", + "id": "672c9f69", "metadata": {}, "outputs": [], "source": [] diff --git a/notebooks/[Tutorial] Explaining affinity using ANTIPASTI.ipynb b/notebooks/[Tutorial] Explaining affinity using ANTIPASTI.ipynb index 3a186f3f..64752fac 100644 --- a/notebooks/[Tutorial] Explaining affinity using ANTIPASTI.ipynb +++ b/notebooks/[Tutorial] Explaining affinity using ANTIPASTI.ipynb @@ -23,12 +23,10 @@ "import itertools\n", "import os\n", "import pandas as pd\n", + "import matplotlib\n", "import numpy as np\n", "import subprocess\n", "import torch\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\", message=\".*The 'nopython' keyword.*\")\n", - "import umap\n", "\n", "from copy import deepcopy\n", "from matplotlib.colors import CenteredNorm\n", @@ -36,7 +34,7 @@ "from sklearn.preprocessing import StandardScaler\n", "\n", "# for reading and displaying images\n", - "import matplotlib.patches as patches\n", + "import matplotlib.patches as mpatches\n", "import matplotlib.pyplot as plt\n", "from scipy.stats import chi2\n", "%matplotlib inline\n", @@ -47,7 +45,7 @@ "# ANTIPASTI\n", "from antipasti.model.model import ANTIPASTI\n", "from antipasti.preprocessing.preprocessing import Preprocessing\n", - "from antipasti.utils.explaining_utils import compute_change_in_kd, get_epsilon, get_test_contribution, get_maps_of_interest, map_residues_to_regions, plot_map_with_regions\n", + "from antipasti.utils.explaining_utils import compute_umap, compute_region_importance, compute_residue_importance, get_test_contribution, get_maps_of_interest, get_output_representations, plot_map_with_regions\n", "from antipasti.utils.torch_utils import load_checkpoint" ] }, @@ -69,6 +67,19 @@ "name": "stdout", "output_type": "stream", "text": [ + "\u001b[31mPlease check your arguments if you have upgraded adabelief-pytorch from version 0.0.5.\n", + "\u001b[31mModifications to default arguments:\n", + "\u001b[31m eps weight_decouple rectify\n", + "----------------------- ----- ----------------- ---------\n", + "adabelief-pytorch=0.0.5 1e-08 False False\n", + ">=0.1.0 (Current 0.2.0) 1e-16 True True\n", + "\u001b[34mSGD better than Adam (e.g. CNN for Image Classification) Adam better than SGD (e.g. Transformer, GAN)\n", + "---------------------------------------------------------- ----------------------------------------------\n", + "Recommended eps = 1e-8 Recommended eps = 1e-16\n", + "\u001b[34mFor a complete table of recommended hyperparameters, see\n", + "\u001b[34mhttps://github.com/juntang-zhuang/Adabelief-Optimizer\n", + "\u001b[32mYou can disable the log message by setting \"print_change_log = False\", though it is recommended to keep as a reminder.\n", + "\u001b[0m\n", "Weight decoupling enabled in AdaBelief\n", "Rectification enabled in AdaBelief\n" ] @@ -77,11 +88,10 @@ "data": { "text/plain": [ "ANTIPASTI(\n", - " (conv1): Conv2d(1, 2, kernel_size=(4, 4), stride=(1, 1))\n", + " (conv1): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1))\n", " (pool): MaxPool2d(kernel_size=1, stride=1, padding=0, dilation=1, ceil_mode=False)\n", - " (dropit): Dropout(p=0.05, inplace=False)\n", " (relu): ReLU()\n", - " (fc1): Linear(in_features=154568, out_features=1, bias=False)\n", + " (fc1): Linear(in_features=334084, out_features=1, bias=False)\n", ")" ] }, @@ -92,31 +102,34 @@ ], "source": [ "# Parameters\n", - "modes = 30\n", - "n_filters = 2\n", + "modes = 100\n", + "n_filters = 4\n", "filter_size = 4\n", "pooling_size = 1\n", - "n_max_epochs = 552\n", + "n_max_epochs = 422\n", "\n", "mode = 'fully-extended' # Choose between 'fully-extended' and 'fully-cropped'\n", - "pathological = ['5omm', '1mj7', '1qfw', '1qyg', '4ffz', '3ifl', '3lrh', '3pp4', '3ru8', '3t0w', '3t0x', '4fqr', '4gxu', '4jfx', '4k3h', '4jfz', '4jg0', '4jg1', '4jn2', '4o4y', '4qxt', '4r3s', '4w6y', '4w6y', '5ies', '5ivn', '5j57', '5kvd', '5kzp', '5mes', '5nmv', '5sy8', '5t29', '5t5b', '5vag', '3etb', '3gkz', '3uze', '3uzq', '4f9l', '4gqp', '4r2g', '5c6t']\n", + "pathological = ['5omm', '5i5k', '1uwx', '1mj7', '1qfw', '1qyg', '4ffz', '3ifl', '3lrh', '3pp4', '3ru8', '3t0w', '3t0x', '4fqr', '4gxu', '4jfx', '4k3h', '4jfz', '4jg0', '4jg1', '4jn2', '4o4y', '4qxt', '4r3s', '4w6y', '4w6y', '5ies', '5ivn', '5j57', '5kvd', '5kzp', '5mes', '5nmv', '5sy8', '5t29', '5t5b', '5vag', '3etb', '3gkz', '3uze', '3uzq', '4f9l', '4gqp', '4r2g', '5c6t', '3fku', '1oau', '1oay']\n", + "scfv = ['4gqp', '3etb', '3gkz', '3uze', '3uzq', '3gm0', '4f9l', '6ejg', '6ejm', '1h8s', '5dfw', '6cbp', '4f9p', '5kov', '1dzb', '5j74', '5aaw', '3uzv', '5aam', '3ux9', '5a2j', '5a2k', '5a2i', '3fku', '5yy4', '3uyp', '5jyl', '1y0l', '1p4b', '3kdm', '4lar', '4ffy', '2ybr', '1mfa', '5xj3', '5xj4', '4kv5', '5vyf'] \n", + "nanobodies = ['1g6v', '1kxq', '1kxt', '1kxv', '1op9', '1ri8', '1zmy', '1zv5', '1zvy', '2p42', '2p43', '2p44', '2p45', '2p46', '2p47', '2p48', '2p49', '2p4a', '2vyr', '2x89', '3eba', '3ogo', '3p0g', '3p9w', '3qsk', '3qxt', '3qxv', '3zkq', '4eig', '4eiz', '4hjj', '4kfz', '4krl', '4pgj', '4pou', '4w6w', '4w6y', '4wem', '4wen', '4weu', '4x7d', '4x7e', '4x7f', '4y8d', '4z9k', '5boz', '5dmj', '5e7f', '5fhx', '5fv2', '5hgg', '5hvf', '5hvg', '5imk', '5imm', '5ip4', '5ivn', '5j56', '5j57', '5jds', '5lhn', '5m2i', '5m2j', '5m2m', '5my6', '5mzv', '5n88', '5nqw', '5o03', '5o05', '5o0w', '5o2u', '5omm', '5omn', '5sv3', '5toj', '5u4m', '5vm0', '5y7z', '5y80', '6ehg', '6fe4', '6h7n', '6h7o']\n", + "pathological += scfv\n", "stage = 'predicting'\n", - "regions = 'paired_hl'\n", + "dccm_map_path = 'dccm_maps_full_ags_100/'\n", "\n", "test_data_path = '../notebooks/test_data/'\n", "test_dccm_map_path = 'dccm_map/'\n", "test_residues_path = 'list_of_residues/'\n", "test_structure_path = 'structure/'\n", - "test_pdb = '1t66'\n", + "test_pdb = '4yhi'\n", "\n", "# Pre-processing\n", - "preprocessed_data = Preprocessing(modes=modes, pathological=pathological, regions=regions, mode=mode, stage=stage, test_data_path=test_data_path, test_dccm_map_path=test_dccm_map_path, test_residues_path=test_residues_path, test_structure_path=test_structure_path, test_pdb_id=test_pdb)\n", + "preprocessed_data = Preprocessing(dccm_map_path=dccm_map_path, modes=modes, pathological=pathological, mode=mode, stage=stage, test_data_path=test_data_path, test_dccm_map_path=test_dccm_map_path, test_residues_path=test_residues_path, test_structure_path=test_structure_path, test_pdb_id=test_pdb, residues_path='lists_of_residues_explainability/')\n", "input_shape = preprocessed_data.test_x.shape[-1]\n", "\n", "# Loading the actual checkpoint and learnt filters\n", - "path = '../checkpoints/model_' + regions + '_epochs_' + str(n_max_epochs) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt'\n", + "path = '../checkpoints/full_ags_n_modes/100_modes/model_epochs_' + str(n_max_epochs) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt'\n", "model = load_checkpoint(path, input_shape)[0]\n", - "learnt_filter = np.load('../checkpoints/learnt_filter_'+regions+'_epochs_'+str(n_max_epochs)+'_modes_'+str(modes)+'_pool_'+str(pooling_size)+'_filters_'+str(n_filters)+'_size_'+str(filter_size)+'.npy')\n", + "learnt_filter = np.load('../checkpoints/full_ags_n_modes/100_modes/learnt_filter_epochs_'+str(n_max_epochs)+'_modes_'+str(modes)+'_pool_'+str(pooling_size)+'_filters_'+str(n_filters)+'_size_'+str(filter_size)+'.npy')\n", "model.eval()" ] }, @@ -146,7 +159,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNcAAAQ9CAYAAAB6NKvAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e5wdRZ3+/9RkMpkMk8kkZEgIQ5hAgABBAoQALnITbwi73hBdUeNl0XW9oP7U1XW9rnfXy6pfcUUF7woqriyi4IqCChIkSpCAXEIIECAkIRmSIZmZ+v3RZ6Y//Tmna6prqs8led6v17ym+3R3VXXduk6fep4y1loQQgghhBBCCCGEEEKK09boBBBCCCGEEEIIIYQQ0qrw5RohhBBCCCGEEEIIIYHw5RohhBBCCCGEEEIIIYHw5RohhBBCCCGEEEIIIYHw5RohhBBCCCGEEEIIIYHw5RohhBBCCCGEEEIIIYHw5RohhBAnxpg2Y8zzjTFfN8bcZozZaIwZNsZY8Xd5xPg+oMJeGytsQgghpB4YY1aoZ5ltdJoIIYSUR3ujE0AIIaR5McYcAeBSAIc1Oi2EEEIIIYQQ0oxw5hqpO8aYd+hf8ip/ZzU6bYSQFGPMIgC/B1+sEUIIIYQQQkgufLlGGsGrCn5OCGkMFwHoUZ89AeB6AD8B8CPx9/v6Jo20OsaYa9UPLBc3Ok2EkMnR6rJ+Y8ypNX78HWh0ugghhDQ/lIWSumKMORH5s2DONsb0WWsfrWeaCCHVGGOeAuAU9fG3AbzBWrutAUkihBBCCCGEkKaEM9dIvXHNTpsK4GX1SgghxMnZav8xAP/EF2uEEELIxFhrL7bWGvnX6DQRQggpD75cI3XDGNMF4Fz18ajaf3WdkkMIcXOs2v8/a+1QQ1JCCCGEEEIIIU0MX66RevIiVPs3fUztH2mM0V/qCSH1p1/tr21EIgghhBBCCCGk2eHLNVJP9Ky0mwF8BICWmXH2GiGNR78I396QVBBCCCGEEEJIk8OXa6QuGGMOBHCy+vib1todAC5Vn7/UGDOtPikjhOTQ2egEEEIIIYQQQkgrwNVCSb14FQBp5LoLwPcq299EdrbaLADPB/D9+iQtPsaYvQEcB2AugD4k9/4ogAcB/N5aO1hy/IsBPAWJtK8Lyayjv1hrr/G4diaSFV0PQVIW3QCeALAZwHoAfyzD1N4Y0wHgJAALAMwDMALgIQCrrLWrY8dXI/52JGW2AEmZ9QDYhKTc/mStvbfsNBRBpHcASXr3ArARwCNI0nt/41LXfBhj9gNwNJK86gMwjKRs7wfwB2vtkxHjakgbqpGOWQCOB3AQgJlIPC4fAfB9a22hmYiVsJ4KYBGS+3kcwMNI+rMHYqa7GTHGGCR96hIA+yJ5+bwNwA3W2hs9w+hEUh7zAeyDpG8ea7N/tNY+VELSZfyLkHgp9gPoQFJ+6wBcX6afYqWvOgbA4UjuuwPAFgC/ttbe5hnGDCR5Nw9J++1A0n43ICmDTZHSOgXAwQCOrKS1B8nz+4lKmtcCuCtmnTfGHIGkr9gHwN5I6tWjAO5A8vyzseKqEXcHgBOQlM1sADsqcdfluRtCs/SvjaDSh5wAYD+kbelRJG35j9baR0uOfwqAZUjaRx+SsfyjAG5DMu7QPsohcRgAC5H0t/siaYPtSMaxjwO4D8Dd1tq1k42LEEKiY63lH/9K/UMyQ3IdACv+/kccNwDuUcd/4RHuqeoaC+AfJpnWH6jwHgIwxfPa6QDeDuCPSF4M6bSN/e0E8H8AnhuQvotVWNeKY50A3lEjL6vOVWFOAfBMAF8AsBrJF/C8tFskLyVuBPByAO0R6sd+AL6G5ItLXpx3A3iTjA/Jlxx5zgcC4386gJ8gGbS57vtvAP4dQHeD29OxAH44QX5ZALcCeA+ALs9wXWFN9Hdx5Hv8gAp/bWA4vQA+WMkLV/q3A/gZgL8LjKeubQi1+74BcfwMAFcjvx8aKBDWUQB+jORLVN793ATgOZ5pXzvJuhbUzidI07V59blSh/4DyUucwnUfyfPtRQCuQvLiwnVvf0HSz3UUTP8KHZY6fl4l7Lx4tyJ5tuwfkHe6PD8gjs1H0iY2h5Qlki/UrwXwGyTPzbz0jwC4oXKfbYF14BAAX0LyosCnHj6AZLzwEgB7BcR3MID/RvIyyBXPI5XzDgiIQ4e1QhzbB8Dn4X7u3Q/gjQCmesR1sWe+5f1d6wi79P4VNdpQ0b+QtlmgLJ8O4H+RPKvy0jCKZPz5Lz5lVrAtdwP4UKU+5sX/KID3wXPMUSP+fQF8slLvfPL8UQD/A+A1AGaFxMk//vGPf7H/Gp4A/u3+f5VBkX4ovkid8yF1fAQTDPSRfGm5W113+STS2YvqLz+f9Lz2PCSD7aIDst8AmF8gjRer66+tfH4EgDsniOvaGuEdN8FgaaK/NQAOn0SevwrJFzvf+G4CsG/l2rXq2AcKxn0IkhcQRe/5EQDPb0A76gHwHUz8xUL/PQjghR7hh9YBiyZ8uQbgbcj/Uu/6+xGAngLx1L0NIeeFGIBpAL7uEefARGFVjr0b7pdq+u//YYKXG2ihl2tIrAzyXqpNWPcBLEfSZxW9x7Uo8KIXOV/gkfQZVxaIdxuA1xTMO12eH6h8/iJM/INFblkCeDaSmVtF8+4vAA4reA/vBfDkJOrkeQXimgHgKyjWrmwlfR8EYArEpcNYIfL2sQJx/wETvLxASS/XUKf+FU36cg3JC6erAtJzJ4BTIrXlZUhmi/nGfQeABQXjfg2KjQX133uLxMc//vGPf2X90XON1AO9QMFmJLNEJN9U+20AXukK1FprAVyiPj7TGNNXOIUJL0W1z9TFrgtMwqcAfAvJr/RFORnAjcaYIwOuHUvD4QCuQ/JLeFHGZKuhHIok/ScVvdAY80YkLwJmFLhsGYDfVmS3wRhjTkEy0+GMgMv7AFxmjHnbZNJQBGPMvgB+C+AfkZVX+7AvgEuNMW+PnrAmxBgzzRjzXQD/ieSFeVFeAOB3xhi9WmoeDWtDinYkM8xeNclwAADGmM8C+CiK2Uf8M5J8b3mMMacC+CWS8g25/sVIfjxZFnD5AQB+ZYx5SUjclfg7kXwpf06By7oBXGSMeXNovJW4X4Zkdq1eFMX3+rcgmaVzSMDlRwL4vTHmNM+4PgXgw0jkdaVS6VOuB3A+ituydCCZFfT9ipQzNA0vBHAFEgmoLycA+EVF3ltvmqV/rTsVe48/AHhWwOUHA/ilMebcSabhqUj6sQUFLjsEyThtpmccbwRwEYqNBQkhpCmh5xoplYpPz/PUxz+0yt/IWnuXMeb3SDx9xlhhjPlI5SVaHpcgmeUy9sJhKoCXAfhcQHJXqP0brbV/neCaLwN4XY3PrwXwCwCrkPh2jSLxinkqkllu+4tz+wH8zBhzjC3uGzMdiaRxVmV/CMBllbjXIZEQzEciJRyYIKydAH4HYCUS/4wHkPySuAvJoGcRkkH2C5EdmHcD+IExZqn19PswxjwXicRD8xASL75rK9tdSLw3/h7APyCRhywC8A2feHLiPhnJl2b9BWU9ki+ENyKZ7fUEkpczR1biPl2c2wbgP40x91lrfxSaFs/0dlbSu6TG4auRlPedSGad7AvgFCQv4eTLXgPg08aYx621F+VEpe/jOUjyf4zbAeS1h5tc91AvKl4tP0H1C4URJC8afoVEVrQJSV8xH8DTkMiH5AvbJQAuN8b8ne6rJqBubagG7wdwptj/A5KXbX9B4us1C4n32kuQ9Ecu/hnABWL/NwAuR5J3jyHxb1uG5EXe4eratxhjfmStvT4n7CuRSNKApK7OEcfuQ5J3Libqk2MwF8lCO2ML6zyOpG+4BkmZ7kTSb5+EpG5lMMa8FMksU/0i/A4k7WwlEo+kHUjq3TFIZnodJ86dBuCbxpi11tobAu7hUwBOFPu/ReJjugZJnRzrK85D8mySfN4Yc7+19icB8R4O4F+R3vsGJHl3LdJZgP0AnoEkXzMYY/4VwMdqhHszkh/lbkZSn3cheemyHMkPY4vFub0AflJ5pt6Tl9DKjyy1fnS4Fkk9/SsS6dmTSNpobyWep1TSv29e2DXi6gPwe2Sf/QAwiKQPvx7JTPzHkfhnHohk1v+LkfRVY7wYyUyuN/nGLVgK4PVInqNA8tz4IZK+4hEkde4QJH3EM9W1xwF4F5IV3mtxE5I8ApI6cJg4th3AzydIm4/3Xpn961qkz8A+VC/A9XPUccXsSn35Narb5ggSKeTlAO5FUjf3Q1IfX4J0LAgkY5zvGWM2WWuvDkhGfyWusXHAeiRS6OuQjM/akNTT5yHpv2R/dwCATwP4J1cExphDKudpVgL4KZJnzkNIxrZdSJ49Y56IZyAZHxJCSPPQ6Klz/Nu9/5D4dejp20/NOff8Guee4hHHNeqaVQHpPKxG3K+b4JrzalyzEsBRE1zXgeSFoPZD+rFHOi+uEefY368h5F6e930mkhcO58DTNwbJAOdjqJYnXuh5/UzU9pn5OoAZjuuOQVb6qvPvAx5x74PkxZm8bmul7jm99ZB8EdXS38cR4FNUsIy+UCOvHgLwDMc13Uh8evR1gwAO8Yx3bdH8jXjPH1Bxr/W87t9r3PMvASyc4LpuABfWuPYzTdqGTnX0A5tRwHsyJ6yxdD0M4AzHte1IfKr09f/rGfe16rqL61XHJkiH/PshgL4CYS1G8qJbhrEBftLsF6LaS3EdJvB5RG1J21gZPg7gBY5rewB8u8b1D8HDx6hGPyH/vjBR2lVYpyDxy5Jh/A3AqRNc14bkhfCQunYlHDJlJC/i5fkb4SmlQ/IiYTmSH3qcZVtJ3y9rlM/n4HjmVa49AMkLJZ23f++Rxrw6sQvAm+F45gF4RY2yeAzANI94P6CuWzuJttks/etAYPqr2qbndT+tkYY7ABzruGafnOseBDDHI07dlmX+fRRAp+PaZyD5QVJevwsVGw/HdZ9V1wxB2cZMcP3hSLwD3xRax/jHP/7xL+ZfwxPAv937D8mvzJmBsuPcXlR7nl3iEcfLagwmji6Yzk+q63cAmOk4fw6qv0D93GfgKcL4lxrpPmaCay6ucY1F8mItd+DjCM/bv6XGtReoNGwHMNvjOu2vZwF8zTPOflQvjjH29wGP67+vrnkMwNIC9zyAav+X/4rVXmrEtxjVXxA2ATjC8/ov1sinyz2vXVs0fyPe9wdU3Gs9rjkC1V8GLypSx5HM9tED/Ym+HDSiDZ2a0waeQPG+Ly+sjQAO8rjeIJl1I68dnijfKtdeq667uF51bIJ0jP19BwUN8pHIzWUY96KA/xCSGULatPxtE1yzIif9T8LvByoD4Ls1rv+0x7W6nxj7+1jBfOtAdd9+M4DeAmGcjeofXVwvFvXLgJeVVL9er+IZhVhcwOP6aTXa2J89rqtVLqPw9AxF8kJFX/9ij+s+oK5ZO4m8a5b+dSAwDVVt0+OaZ9WI/154+PMi+cHj8hrXf87j2ry2/BbPe631A/k7J7jmr+r8fwstb/7xj3/8a4Y/eq6R0jDGPAXJbCPJt/LOt9ZuQTIFXfIiY8xEPgw/RrW8ZIVHEgGMLy1+ng7TWlslWRG8CakEAkhmNJ1rC0jIrLVfQiLrk/x/vtcLBgG80lo7VPRCa60NiG+MzyORnI0xHYl8MpeKZ8tr1cf3I/kVfUKsteuRzIYsjDFmEZJfvyXnW2tX+YZhk6XfL1Afv8YY0xuSJg/ejGpp2duttT4SGgB4KxI5p+RsY8yBk05Z8/FOpHInIJFkv75gHf9XJLK5MaZhAvlVvdvQBLzXWnvLJK6XvN5ae/dEJ1Xu/0Pq4ykA/i5SOhrFegD/bK2dSEI7TsXn63jx0SiSlxHrfMOw1t6EZHVSyduMMSHjtU9ba3/jEadF8gJogzr0qoosvSh/QjKLtAgvQ1Yy+QSSF2NbfAOw1v4MycrTkprP1IpvZ5f6WHvBTprK+OId6uMvWWsv9g2jMq44D4kscoynGGO0dNOH/2f95b6fQPIDg0TLJUulyfrXevGWGp+9xlr74EQXWmuHkcj1tfz11caYEA/E/7XWft7z3IuQjIUlE9UXLZOO3gYJIaSe8OUaKZPXqH0Lx8u1Cnphgy4ATkNWa+0OJD4Qkn80xkytdX4NnoVq75Rv5J1cMRPWL3g+Yq3d6hmf5DNq/9kV36gifKvIl7dYVAa9P1Ufn1jrXMEZqM7rT1prnygQ7/8g+fJWlLcg2+f90Yb5pX0fiWRqjC4kv3RHpVJ/X64+vg0TLLIhsdbuQrLio6QN1YuMtDTGmHlIfJck76l80fDGWjuC5AuZ5Mxa58YgsA3lsRmJB2QM/opqDz4Xv0Iyk1eif1hpNb4Q0KfrRU4uq7wsK8oXkUiqxtgPic9XEQaRzDzyonKv2utsNqo9U334RNG2h+q8+5K19r6AuPUz9YSK96tmSo3Pij57fXgeEl+qMZ5EsjBBISo/7OiXYkX7pl2o7WeXF+fjAP5Pfdwy7Tpy/1oXjDH7IVnNVXKltVaXQy7W2s2o9sabgcSvryj6hxNXvKOozu+J6otuh2W0QUIIqRt8uUZKofIC6mXq4+ustfdOcOkvkPj8SHxWv9Mvw+YAOMvjOqB6lts6VA8oJccha5Y7iuSFSwi/QdZcfBYSo9YifDsw7hjcr/aPneB8PZtlBGF5F3LPesD63YAwxgaQ16qPy/g1/xhkZ0cCiWyu6C/5/4vqGSlPC05Vc/J0ZE2/H0PicRSCbvtH5nw5j0XRNpTHZSGzV3O4tEg9q7yUXK0+1jMSWo3vFDm58jL8dPVxaB+zFdULOxTtY35c5EeLCt9F9qVeSLxPIJGleVN5oaAXbAnNuzXI/vhhULu/ewzVs7JeGRLnBOjnzs8rLz9C0H1T0bL5vbVWzyyaiD+r/VZr17H613pxEqpfMOX+2Ovg28jOdASKP/fvs9b+seA1ur7sO8Eqs7o+ltEGCSGkbvDlGimLv0d29T2gelZaFZVfu/Wg+qnGmEMnuO4GZOVcgIc0tPKl+e/Vx5dMIAU6Re3fEzpYrsy6e0x9fFitc3MYRtgsrpoYY/Y3xrzJGPMNY8xKY8z9xpjHjTEjxhir/5CY5kv6JojieLW/xlq7MSCpeSsR1sQYMx/JSmKSiVYldLFe7RcpM19q/cJeeMWvSpvSX8qWTTDgbTV0m7yl8sInBF22bUhW0POiDm0ojxsDr6tFyOqU+keRmTES0iDWB7yEOA7VMsNG9jG/KhphpS/+i/pY99kTcYu1Vn+pnwjdfodQ/bK2CBPmXaV/0JLZ/zTGvD+yzF/fWyPrRMu36wb2r/Wi1nP/mqKBWGsfQ3VdKzprL0Z9AZJFU/LQ/dRbjTFfMMZ4r8RLCCHNxO705Yo0F1p2tgPApZ7XXoLEK0ryKiR+SC6+gcQjZIwzjTH7WGsfcVzzj0h8lcawlfhd6GnuiyqDuFjol5Iu1saYrWKMOQbJog6nY3LT8iea4aOXTddf5Hy5FUlZ+aa1ljTh+uIK3FyKlJkvB6v9J5HIQkP4E5K6PkYXksUh1gaG12zo8j2j3m2yjm0oD/3jwmR4aOJTqtCyUD3rspUIyctafcz6BvYxqwLjWYXs7J7FBa+PkXedAIbrkHefRGILMUY7EjP+fzXG/BLJTPrfAvhrEe+9MYwx3ajux//DGKM99ULpNMZ0WWu3e57fsu26CfrXeqHryz1FfAcVfwLwVLG/yBjTVqAux6gvQFJnNuWc/1kk3xfkzPM3Ani9MeZaJAuF/RbAqgCpOSGE1B3OXCPRqcwS0ka7P/X1r7HW/hnVL11eUTEGdvEtJDLDMdpRvVCBZoXa/62HifecCY5PliKDvy2TjcwY814ANyGR1k3228xEA+9eta9Nd72ovFAsInlqpjILDfPhSQwu9YyHWuG3Mg0t3zq3oTy2TDJeSYh/pP7C1srjiy0B1zRbHxPyxRgAtGl6V8XmwZctAXE2JO8qPlYfqHGoE8mM9i8h+SFnszHmKmPMu40xywvEW/Z9AcXqRYx2XXdPrCbpX+uFLs9az25f9LUGxWYexqgvgONZYK29A8DralzXjsSj9z+RlP3jxphrjTEfNMacErjACyGElA5nrpEyeCWqTUonlITWOP/TYn9fJN4l/5t3gbX2IWPML5A1+V2BaoNjAIAx5nAAy9THPt4WZcxSkvguxAAUe8FUhTHmPQA+nHPYAngEiWfJFiRSHb0a6gGozkMXvWq/1q+cvmyF/0C5mcrMFz3IDhnojlFr5dvZNT5rVRpWvg1oQ3lMqi9QxJz114qE5GWz9TGh/UWtvmIWasu9atFSeWet/aAxZg2S8UZ/zmk9SGa4PQsAjDH3IlkZ8YsT/GhY9n0BxepFy7XrJupf60U9nvu+NiZ1qS/W2m8YY9YhWcglb6ZsFxKJ9SlIFgTZYIz5JoD/nECdQgghdYUv10gZrKjx2fnGGL16qItav8a+Go6XaxW+gezLtSONMcdYa2v5kumFEgYBXOaRNv0r/v0Aipq+uvhrxLByMcYchtq/2l8B4GtIFqDQfnA6jFcB+HqBaJ9Ett8pMiNCU+TaWuf+GPEGj2UM7vQv9LEHui33RcuBLt81CJfQ1mJtrQ8b1IZIc6Lr4BAmfl4VIWZ9dtGI1fp03j2G6kVjJoNzxVZr7Q+MMZcDOAeJfP4UVPvnSRYiWY3xrcaYV1trf5ZzXq3nznWI+7yI+VK9qdhD+9c98rlvrf2VMWYJgLORKE7OgHuW3TwA7wTwL8aYC6y1F9UhmYQQMiF8uUaiYox5Gmqbfz8vQvBnG2PmTGCA/z9IBubyF+MVUKb/FYmploxe6rm6mvaOuMNa+yKP65qNd6L6V+9XW2uLrExV1Nx4C4C9xL7L6HYiilxby+/jzQGm5fVEp3kyRtK1rg1dsa4Z2YRksD3G9dbaf6pDvI1oQ6Q50e21DcCLQ7y6ItGDMNl9rX617L5C593mej9TrbVPIllh8duVlV+XIVld8WlIjOBrzUKbA+ByY8y51tpaP8zVeu58xVpbaCXaPZg9sX/dY5/7lUVGLkfSptoALEXS/k5CstJ8rUUO9gLwVWNMj7W2pkqFEELqCTXrJDZ6NlhMpmICD7XKKmV6tdF/rOEZ8xxkv4wD/sud65d7B3pe1zRUBi7PVR9/r+CgFSjuKRMl74wx/Sg2c63WC9lmLzc9CJ47iRU+9/MIv5Wpe5tsYBsizYmugx2o3e7qRehqe/PV/vaA1T+LovPuAA+P1dKw1u6y1v7BWvtJa+3ZSFaYXIZktpr2smsD8BVjTK0XGa343GkK9uD+VT+XJ9OH6GstaktFmw5r7ai19k/W2s9ba8+x1s4HcASAdwOo5Yv8cWPMQfVNJSGEVMOXayQalZWxzik5Gp+Xd3rwtTeSqeaSFWr/LmvtdZ5puEPtH2iM2d/z2mahH9VL0of8mn7sxKdkWKX2jw6IM+Q6XWZAIv1pZv6m9qcBODwwLF1O2zE5o+RmQ5fv8caYaTXPjEej2hBpTpqtj1ka6bqYq9DmofNuKpLZYk2BTbjZWvteAIuQzHCTzAZwbo1LN6H6BVuzP3eahT21f9XP/QNzXtz6oO/9rgbOpJ001tq/Wms/jsSX7ZPq8FQARaxnCCGkFPhyjcTkxag2mH+NtdaE/qHab+MpxhjnYMlaewuAP6uPV4xtGGNmo/pl28We9wgA19T47O8LXN8M7FPjs3uKBGCMmY7sMu8+3KD25xhj/q5gGEBBmbG1djWADerjfwiIt578vsZnZxQNpDID5DT18U272bL2uk3uhYC8Kkij2tDuRMNXIozIbwDoNtXIPub0ohcYY/YG8BT18Y1xkuOk1jO1Kftna+12AK9F9Qy2k2qcawH8Sn18sjFmd1qpuRYx2nUj+9daL6Dq1Tfp575BskpqISp1TI+Va40pWg5r7bC19l1Qdi+o0QYJIaTe8OUaicmr1f6TAH40yTBr/VIZMnvt2caYuZXtf0RWUjiKYquZ/hbADvXZ2ys+La1CLclNUcnheSjumfYLVBvqvq5IAJWXoyF+PL9U+8uMMWW/gJkMtyBZZEOyIiCcM1EtEfttSIKaGF22QCIfKZNGtaHdie1qf3pDUhEBa+02VH95fb4x5tBGpAfAC4wxe018WoaXotrjqvS+wlq7BsB96uPzK31901HxZ/ud+rjWyyAgeeZJpgJ4e/RENRcx2nUj+1edfqB+fdP1qB4jhditnIdktrtkd3vu/5/az2uDhBBSN/hyjUTBGHMwEsNRyRXW2kn5O1hr70L1Sl//6CH5+g4A6RPTjtSvbYU69xpr7f0F0rQdwFfUxwsB/LtvGE1ALaPrY3wvrnzp+UDRSK2196L6y8Z5BWevfRxhA+bPonrQ+nljzIyAsErHWrsLwCXq4yONMa/wDaPi0fZR9fEo/P0FWwJr7T1IjJAlf2eM0S/8Y9KQNrSboZ8P2u+r1dCG2lMAfHkSXomTYQaAd/meXLF10C+kN6G6XZXFZ9V+D4DP1SnuEPQYRP8QMsb3UD3L7QJjzJHxk9Q06Ha9d4BMv5H9a61xa136JmvtgwCuVB+fZYw52TeMioz039THWwFcOsnkNRu+bZAQQuoGX66RWNT6EqsXFghFz16bhQlkgZUVRa9QH6+oLPWtp8qHvGj4OKp/3XyvMSbY88EYs8QYUy8/lrWoXpXqLT5fAo0xnUjKJHSw+WkdJIAfG2MWe8T9dgBBq0Baa1cB+In6+HAAPwiY4TGWnh5jzMtDrvXkC6h+IfgZY8xhntd/GsAS9dlPKy85dzc+gOq8+rIx5jmhARpjnmqMyfP3W4vGtaHdhTvV/tHGmK6GpCQC1tqfArhZfXwaEsP7oBdsxph9jDGhXqbvNMZMKJUyxhgAX0Z1ffyGtXYoMO6ifAXAg+qzlxtjPhgaoDFmwBijTfHHji02xhwfGG4fqqX22isLAFDJv4+pj/cC8D+hBuzGmCnGmHONMb0h19cB3a7bUNxDby0a17+uRfbHWaC+ksPP1/jsG8YYvQhXFRUbiK8DmKsOfa0yu7ZpMMbsa4x5RuC101Ftx1KzDRJCSD3hyzUyaSoPcz2b5nEA/xspiu8DGFGf+cxI0S/NlgD4L/XZFgT8Mm+tfRjAm9THBsBFxpiLjDFegzpjTJcx5kXGmCsA/AXJsuOlUzG11eVzNIBvVgYtNTHGLEIiwXt25aPCvl3W2l+hekbWPgBuMsa8rdYXBmPMEcaYy5C+mNuMsNUu34zqWQTPAfBHY4z+spSLMWaZMebTANYBeH9AOryw1t6B6jq7N4BrjDG5nkrGmL2MMV8G8BZ1aBDAO+Omsjmw1v4ZwH+ojzsAXGGM+Zivz5ExptcY8wpjzHVIpF9H5MTXsDa0G6H9vLoAfLEyi6pVeTWqZ1C8GsC1xhivmTfGmDZjzMnGmK8gkUsWks5XsEhmdlxhjHmeI64ZSDxH9UrcG5CsjlkXKi+hVqD6Wf8+Y8xPK7PjJ8QYM9UY8xxjzHeRfNl+fs6piwHcYIz5vTHm1RW/OZ/wFyD54U7XUdesoC+jWsI2AGBlJW4vS4nKy8J3IHl59f0aaWgW/gRgl/rsU5W886LBY5RdSGwZJG8O9IctjLX2alSPSw8E8H/GmKV51xlj5iCphy9Qhx5EHdtyAeYC+KUx5lZjzJuMMV4ro1ba6qUADlCHdreZeYSQFqQRUgWy+/EsVP9CeFnFl2TSWGsfNsb8HwD5C9cZxpj9J5BzXoXkC4L8tU+/QPle6C/z1tqvG2OOAPA2deg1SH5xvxLAtUhWW9uERI7Xi2Rp+KcgkTicjOQLZSP4GICXIfuS/aUATjLGfA3AH5BIM7qRyF7PRPJFZcyvbgeSFz/e0iPBBQCOQ3b1y24A/4lkSfW/IHkJNh3JoHKhuv6fAXwCySzGMfSspSqstQ9Uvmj+BkCnOHQ4koHrLUjqzU1I7n0QibyqF8DBSMrsJGQHdXo1uNi8C0m9lUbj8wH8yhjzCyS+hndW0joPSZ06D7V/tX9zRWq9u/J+JGX5QvFZG4B/BfBGY8zPkJT9PUjaZBuSsp0L4Cgks1r/DllPRheNbEO7A9cgaefSE/BVAF5S6QMeQfUMkh9aa39Yp/QVxlr7F2PMeQB+jGy9+DsANxtjrgdwNZIv7xuR1IGZSPqyw5C8QDgZ1TNPivJlAG+ohP0TY8y1AH4A4HYkfcVcJCtXvhzVnowA8AZrbcgPGMFYa682xrwV1T8o/D0SadzVSF5S3Yqk/e5E0n5nI/nx7Ggk99RbINoTK3//bYz5PYCVSFa1fgjJDzjDSPLwECSLRDwf1XK0S6212lxd3tdwZfbhjUhWGx2jF8DXAHyw0jf9DsADSH70m145vn/lvo5H+OradcVau80Y8z/I9sPLANxrjLkNwP2o9q29zVqrf6hqZP/6bSR5PsYsANcbY9Yifd5mxhzW2hAv2DxeC2A5ss/xw5D8CPlTAD8FcC8Sb+P5SMbHL0XSFiSjAF5hrX0sYtpiM/bD9+eNMTcjaSe3IFnRfDOSe+xBMhY8GcA5SMZlkhuQ5AkhhDQWay3/+DepPwCXIRlkyL/TI8fxyhpxvNfjuk/WuE7+HTfJdBkkPjUjE8Tj++e8JyQzDOT5104y/e8KTOcwkkHsCn2sQNz7AFgdEPc7K9evU5+/o0Dcx9W4PvTvrjq0sXlIBpuhaRwFcEHBONeqMD5Q9n2KuD+g4l5b4NqpSAbqMcrWAjiv2doQgFNrhDcQmNdRwkJg34Rk1nORfIteD5H8CCLjuDhCmM9B8gIoRh28ZoK4quoQkpczNwTG95YC97k2dvlU7mdHpLy7KCeO50UKfyWA2Z73NbdGXZvMX/8E8enzVwSWRSYcz+sOQ/oCyuevZn+BBo1RkPzoWWh8EjP/KtceiuQFWmj9GAJwTj3bMgo8TwAsjdQO7smLg3/84x//6v1HWSiZFJVp6Gerjx9EMoCMyY9R/UvniopXjItvOI7dZq3ViyUUwiZ8DMmvhrdOJiwAf0W1TKpUrLWfQDLbp9bS83lsAnC2tfYnk4z7EQAnIDGy1lKgWjwE4PnW2k9W9meq496LZ1TK/Rgkviw+cefxOJK6WSrW2g1IfrH9DpLBZBEeBPAia+3nYqerGbHW7rLWvhnAuUi+mEyGmwDcNkF8DWtDuwPW2m8CeCOq+/eWxlr7cyQzIbU5eVEeRoDFgrV2B5JZ5dcUuGwQwD9Za2t5PtUNa+3FAJ6K6hU5i7IW1XLMMbajWJvVWCT2Bqdaa7U3WO0LEjuJMwB8EInBfCjDAH6GAs+8emOtvR3Ac5HMUptMOA3pX22ycNWZSFbvbAg2sYV4KpLZ9EX5G4BnWmubWSr5JKrlw0W5AsCJ1tq1k08OIYRMHr5cI5PlZaiWUH3fJn4Z0bCJEevP1McHIXnh4LruduS/sLp48ikbj+f/kMjK/gHJw95n0DuCZGbBhwEss9YeYROvjbpirf0Qknz8JdwvbjYikW0urnxxjBH3oLX2bUgkl+8GcB2SGWU7kXzZvgeJ7HEFgIXW2ssBwBjTgWpZwJaCcW+01p6H5NfhLwG42/PS+5BIec4BMM9aWxcPM2vttkp6j0PiLTJRHbsNwHsAHGytLf0FYLNhE+ngIUhmvV6D6gVIavEkgF8jWWntMGvtcmvtLR5xNawN7Q5Ya78EYAESH8tLkUgXx2R/LYu19l5r7XORyPkuRiJz8uEOAF9E8uW+31r72cD4HwfwTCSeb7c7Tt0G4JsADrfWXhQSV2ystbdYa09CMhPmh6i9emTVZUgknZ+uXHegtbbmwkrW2l8imRG8AsmPFms9k7YZwEVIZr2vsNYWWqHQWjtsrf0AEmuBf0OyAIbPDzybkfyQ83oA8621f2+bzKBeY639DZJn+4uR/NB5MxKpd6EX6Y3qX6216yrxnoxkNvRvkfxYVSUJLQtr7UPW2ucgeSl7Jdx5Z5HMpPwXJG35t3VIYjCV8fkcJPXj60j6PZ98fQLJKrxPt9aeXXlpTQghTYGxti7PB0L2KCqLPByNxAdkbyQ+GMNIvsQ8imQQcaeN5EsXi8pMxJMA9CPxe3kSiW/dbQBWxX5pGkpllbcb1MfHWofvjWe4/UjKbQ6ScpuGpMweR/Ki73abrETbcCqrph2P5EtaHxIZy2NIvrz8qfLFgFSovJBdhsTDaG8kHjo7kZTvBiTeiHdZaye1wECrtCHSGCrG/EcgqYN7A5iCpA5uAXAXkj6m0IwkY8wKqFna1tqqWd3GmEOQzKbrRyKffhjJjxnX2fqtChpEZZb6EUhemI/lHZDk3WNIfLDusNY+MYk4+irhH1gJfy8kL762IulXbwXwt9ht2BgzE4m/1txKvDOQvEDYhmTm1+0A7rccsO/x/WtlJdQTkdx/H5Iftx9F0pb/WFEEtCyVBa0ORdIG+5D46VkkbWEjEqnumsk+pwkhpCz4co0Q0nIYY96D7OpXTwKYYZNVvgghZI/B9+UaIYQQQggpD64WSghpKSoztl6nPr6ZL9YIIYQQQggh9WSRMdbHe6TZeQj4hbX22Y1ORyvDl2uEkFbjQ0j8mSSXNCIhhBBCCCGEkD2X7aj+1b8V+UBii0MmARc0IIQ0BGPMKyseN0Wu+f8A/Kv6eCuAmqbVhBBCCCGEEEJI2fDlGiGkUbwJwH3GmG8ZY842xujVPwEkBr7GmOcaY34D4FMAtJfQO4uu2EYIIYQQQgghhMSCslBCSCOZDuC8yp81xtwF4AEkq3N2IZmefASSFbFq8WNr7VfqkVBCCCGEEEIIkRhwxhJJ4Ms1QkizYAAcXPnz4SIAbygvOYQQQgghhBBCyMTwJSshpFFcj8QDtCh/AXCOtfafuEIoIYQQQgghhJBGY6y1jU6DF8YYe+yxxxa+7uabb0bIdfXkvvvuwwEHHDC5QAaV5dTUqeObtmPa+LbRblWCrVuz+93d6fbOndlj09IgnWESf4aH84+1idfgTzyRf9306dljznIaGakdyJQp2fPay5vgOjo6im3btmFwcBA7duzAk08+iV27dmF0dBTWWkyZMgXt7e3o6OhAd3c3ZsyYge7ubpgGVjqZbXpfNDsAbBtlMDqa3ZdtQ5eNrMq71GvYTZtqn6f7Qdmm2tTPUfI62V/qeqCb1GTR9yKbaNl1Tsct8yT2fdYDXZ8k8t7keToP8q6Z6JgsKzkUK5qPGzduxH333Zf5rNnHPUWR+eMatrryPwau/idGGI8+mj3WV2jJn/qg+1nZHnT/0yEMHXbsSLf1kFXmiexLgWwf7Ns29JhV9pGhdUSmUd9n7H7X1S+VHXfZ+Pa5ZPdi7dq12LhxY4vVVn/2M8a+vtGJiMD7gJuttcsanY5WpqVkoStXrix8jTEm6Lp68rrzz8dXLrxwcoFcf312v79/fHNn/4Hj2673JNdck90/6aR0e/367LGBgXS7oz19Uo6qyZBtcDxFI6PjdqXDda4vMswY4W3Zkn+sszPdvuGG7DE5GD/66OyxvHICkB3dbtyYbuuR7Zx0VeYi9xmj7GV8vuHFSmNeOPpLgSy3efOyx6ryvMUo0qYmG75veNuHsmmSbUOXjazKGzZkj33/++l2b2+6fdVV2fOWLq0dl75O9pe6HugmNVn0vYgmWkqdk+Wk45b3FnqfIe1QX+dbl3R4Q0P56ZLlLc/TeSDZa6/svnwRofNHPo/l7xs93f7pD2mH9e7HQ5HplPnj+iGqqzP/WR96LzIMXV90n5AXl28YF12UPfba1/qF7yL2eGfrYDY82R70GFMMRbF6dbqth6zyxduJJ2aPyT5Yt6G8PkCPWWUfmVdmtZDhy2ePvk9XvxvjOSfRcfv+/lnGGCoEV5+r228eRfpB3/spO39i96Vlj89iMZbO5ct3//c1fDdMANYDQgghhBBCCCGEEEKCaamZa7srFmb8zb7r107nLxFyihKA0f4F49sbxa+KekbF2rXptp71IY9t25Y9Jn8F7O0N+2U4xq8uMX6V9o1Xpzd23DIfgfxf5089NT8MfY3zF035E7DnT59FZgCWPevMF9cMw5A06l+9pfRWTgAEgHnz/GYrNHKGpyt/YsyKiTFbROL6ZbuzM39W0nXX5ccly2LRouwx2Ux02ctmI4+Fzoxw1X/ZtnU/7kKGqft4mU7f2Q+u2Vca77KXCavK5LyFgsPi0ufpOpOHa7aFzAP53NTomcUhivvQZ6y8Lnic0UBkXul6LPf7+8vtw3R9yWu/OgzZfrWYQs56zZuppuPSuMowZJa9Ky45Aw3IPvd0nZbNecmS/Pg+/el0e//9s8dOXvSg2FMdUM50WTljLhayD6h+Fvjlvy+uZ4hvX6QJLfvY4zJ9b7Jt7BzOnx3o6sNcxO4DXPkj70Wn3/s7jx7Ib6j9JW4YHbmnFekHo/T/rqnFnV1hYRLSonDmGiGEEEIIIYQQQgghgXDmGiGEEEIIIYQQQkhBDDhjiSSwHhBCCCGEEEIIIYQQEghnrjUBBjZX5+6tf1cGE/I66ft0+eX5QWh/gDVr0m3psQZkPR+kvL6jQI2K7QFQhpeUr9dEGasH5XlnaDsDl8eDd/0RJhgur5jQlQh9y7Ns3zxN1kPFrwx1Hvf1pduulUS1T8r8ecVXOixCDJ+UkJUaixByr9KTRaO9gORqns9/fvbYFVek27J/c63Eqb1iTjgh3fb1QXPW/+Gd2Q9EZXN5+vgiV+RTwXu37e7uuF6ZyXWCKuNIP8+1UHyfQzKvXCuCPvxwfly33JLdnzo13ZYrIoZS9ip/VUtaywYnG5seMHg2Dt/0a5stlwdV2eSlWdcr2X5dfmBl+JPGrhey3wOyK3NKD1Ig+3yU6Crx7Gen27otjM6bP74d6q0Yisw7WcVDw4iRft+xSix8n/UxVux0rQQs21CRuH2J0U7kcyLYo1hngjA1lH7amx/NnlbGat3eyBtXg+Rm9fEkpCw4c40QQgghhBBCCCGEkED2+JdrU6ZMwdKlS8f/1tZY6mvFihVYuHDh+DlPfepTAQAXX3wx2tra8Je//GX83CVLloyHMTAwgCOPPBJHHnkkDj/8cLz3ve/Fk08+WY/bIoQQQgghhBBCSMm07QZ/ZPLs8bLQ6dOnY9WqVROe96lPfQovetGLqj7v7+/HRz7yEfzgBz+oed2vf/1rzJkzB4ODgzj//PNx/vnn45JLLvFOX6hcLG/6sZatyWnuWvEh911LqPvEC5SzdHbodOMYMrzYU51D5EmAexp9DDmCnIq/fShbvrKO6CnpvlPUQ6WHMfJfyvy8w1MapFGxzLhriXldbpu21JabFJEmxJbYhvYxsl8JlSb4UuP3j9y4Zf2U0iUgq1yT5511VvY8WW5a7RZyr856nKcFh1vC7CvbmT49u++ILohgWY1nRkaxEnBpCFUDluFIOaxLlrhoUfaYq/7s2lU7GbH6gBhhZPJV6+JOOqn2eQXkUPJc33vR8jCdr3lxxxhXFLm3PAYG/OPzTYcLV/8cI+7+/uJ5cMMN2X3Zr596av519bQ7qLU/2TD1GCpPmu96TsSogzHCqBWOD/p7iLQrkM8o/cx29aXymRhqXxL7u8DWwWye3nVXuq3TL7vWHsdzWebdn/+cPSbl5qESZhdlS4IJ2V1gjZ8kZ511Fm677TbccccdzvO6u7tx4YUX4vLLL8emTZvqlDpCCCGEEEIIIYQQUiZ7/Mu1HTt2jMs9n68drwXveMc7xs972cteNv55W1sb3vnOd+KjH/3ohHH19PRg4cKF+Nvf/hYl7YQQQgghhBBCCGkcjZZ0UhbaHFAWOklZKAD84z/+Iz7ykY/g3nvvnTAca23RJBJCCCGEEEIIIYSQJmWPf7lWi1e96lW45ZZbMH/+fFx55ZUTnt/e3o63v/3t+MQnPuE8b9u2bVi7di0OOeQQ77TE8FORvk9ahy+9P+bOzR4bGUm3tR+bDMe19LQL6T2hvaokMXzVQq9xeRnF8LkIQftQSK8SV/n2lOCFJcvN17+pnt4ekwpDNhyZ6aoA2oTJUvu8+d7B+/p1xfb2K8PPSd6L7itm9/rF5dv2tF+RLCbdj8i2ob2wJCH1uAjSa2XDhuyxpUvTe+vpzs9vVx/pSww/vBjen7HqdFBf4sjIIj5H2SDz66f0Y8vzWNPhF7mvncOT9xpy4eul4/IE9A3PhStPyvYOjOH9Wc9+XMclPa3K8MQMqbsu/0pXefrWxyLlFOKrFurN1tXZmPoyUZi+ZRgjXS5/Xjm82rw5e97+++eHWcZze7Lo+5RjEO2VnDl3UB3cuDG9biD9eM2a7GkzZ6bboc9pma6rrsqeJ8cur32td/Cl1GVCmpkm7I4azze+8Y3C16xYsQKf/OQnsW3btprHBwcH8YY3vAHPe97zMGvWrMkmkRBCCCGEEEIIIYQ0AZTXeiI915YuXYqdO3dmjnd0dODNb34zHnnkkcznp512GpYsWYLly5djwYIF+MpXvlLPZBNCCCGEEEIIIaQEDBrvl0bPteZgj5+5NqjXhK7BxRdfXPPzFStWYMWKFeP7b37zm/HmN795fH+t1CR5UkSO4EJO7ZXTpbX0U8oFpk7NHpsxI93WU/j1lObJptGFayp+aNwh14XGHXtKtJZ+Hnpoui3LDAiTkhWR3/gu9+0rqwmV3pZRL9rkzc6bl27riis0f21i+j4AdCxePL69eVtH5pgMXm7r4Nvbw/Igr924znPhW266TsRehl3XQSlH03knl6bXkjkppwuVIfkyMJAvG/SVs7RteDDd0ZksGrrMD72vZSohMsJQuZVLsiVxPRc6Sh6xhMjD9HVaEunbB4e2kxA5VJHnVZ70E8iolTJdpEZep/sz3zpYRh8fQlU6pI5NdjiK4DGCHKOKytRWoOD7+rxPLRV5n9OmZfPjjDPSbd29xeiD61lH6o3v94RWyAP5XUNXcflskN9d9LldESwUNL7fQ1y4JNkhYWoLjj//Od0+/jj/cGTcsn8+9dTseddfX/saQkiW5u9pCSGEEEIIIYQQQghpUvhyjRBCCCGEEEIIIYSQQPZ4WSghhBBCCCGEEEJICJyxRAC+XGsKLEyuF0JsjwTt9yM9urS/gcvSQx4L9x/w8yBxefXkecvVgxCvqtC8ktfpfJM+DqHLb/t6cuk8zpzrMksSpjvaK2a0syv3shi+DqFLzGfyRxon6UYkC0CuVQ5k8mRun7pvEb7MOr38/Nw+P6+h7UNhXk8uQjzv9DXSelJXEbk0vfYP6e2tHbe2yezp9ivfMvLHF19PN2f9XL063VGmRDuXLh/f/tnPstfJ6nrkkdljGQ8zz860bXBr9gOZkRE6YVcQMfwBY1zn6zNXVrpCwnDhqoOyvemycViMZYjhOxfi7ecK39WPFMpTbUjrga8/JgC3UVNkXOnwHcf45t3RR2f35aMztA8I9Sh24Ts2bxYPqhjehNpbUaL9zGJ/R5F9hcvH0dezGchPY5EyCynf4Dqh2/ySJeObswfXjW8/9NCCzGkuD+SQ9qu/a0hfREJIPnzJSgghhBBCCCGEEEJIIHy5RgghhBBCCCGEEEJIIJSFthCuafqavGn1oUuyV00jlvPGA/VVrin8efemp6vHkIK6ZC+dnXElCDGkBKFTzUOXaPeOz1UYdZS2aEJlC5n7lhWvWr+Yf0xK+cTUfgCAkMPKrCvSRmUadV2VSZHLq0v5UxFC652vdExLGvLaV1VVEg1YS45lJnTOm58Nf3hnuhPYkcSQSvlKsXDqqblhyOSffXb+MX2bmbgdeZA5L0JbDpWv+4bjep7EkLTFIkR2HYMi4bmKO0a6dg6neaAl8dOnp9s9ntXOt63p+wq2b4isL986OHnbh9BxhnxcLV6cDaOjffLjDpkOHV5/v19bkDYDQFY66BqvScqWA2qC6pbWLcv+2VHnYshmY1Tp2Pmmw+xwPMtknwLU3zImOjn62E98Irsv71PnnZRdz5sXZn+g85xkMeCMJZLAekAIIYQQQgghhBBCSCB8uUYIIYQQQgghhBBCSCCc5NkEGFivKdTBKx36rkYnZVJAVlem5W55SztpDZiYzjza3pEfdwHJqyR01VIZvpwCv3599jy5EJhLTueKW69SKPGVnUpirKg2UTgxCAm/DCmBa+UrHXseXbKS6NXhpHxD6ynkcpgqIW1r70l3stqWbBiBS+LKU32VfK46Eio1CpUTZVaYdZ0ntUyuMHQfJsomxoq+oWF4S70c/aekqzOsnZfdH8RYKblRMkpNGXnl28zLiNu1WrSL3DqvJW2SqmXJ81eLll1h7FW3Na6+zjeMvPCKEMNBITR/5MrCsaR0MawvZF6uWpU994QT0u358/zicskGm2XVzyLaTDnG1GNYWZ/mi2FGGfYi3uhBmXw2C3+ILUPZvkGuXumqn751t+xVmEPxTVeRvmKeo+x9vy+W3fcRsruwR7xcO+nEYxudBCfTpsX17CCEEEIIIYQQQkj58LUiAfaQl2vXf35Zo5Pg5HWfX9voJBBCCCGEEEIIIYSQAPiSlRBCCCGEEEIIIYSQQPaImWu7K77+Wt6+AtqoQHpLCR8EAFlvtRjmB56ELhHuygOZRL3itWtpa1//gRhp9vXEqbfXQSt4K8RYVj5TFrpOy7ah24lEG2TIhJXQhmR0oT4aDfXY8C24ZWJmsjSu0lR5PaX7sf1VyvBy8e3TQ/spVxixw49FXjqj+IY5CA3fRajPWiOfB7lxFzAD6hBh9PU1zussxNtPnxujL/VNVxntzlVs9c7XPPbbL7uf95hw9VNF2lqMfI4yHncg80D65ulgyq4/3uMMXWh64F2h1zEECO33yvYUq2e+hvooa89B6dN34EDteIvQNL6FhDQIvlwjhBBCCCGEEEIICcA0OgGkKWj+aSeEEEIIIYQQQgghhDQpnLnWZLimKZcx1dZ3GnGVFC5nynoZ6Y8he/GdPl1EQli2HCQvLlf4RaaJ56VLXxOax3lhlF2Pi9QXea6eKi9Xi+/pdqR5cDDd3rgxe0zKFLXmJkcKEUqopM1XZtBI+agzfNkXqX4ptF74xh0i1wjNA3nd2rXZY7IqxejDXOlfvTobxpYt6TEtSZLp6mivn8Q4lvQ5pN9yxV22nChG+I2U/caW4AH5eSL7dwDo8mw3vuVb5F7kuVsHs+F3d9cOs0g5hfTjsaTIeXEXaefyuqOPzl7nq56McT+h+VNPOWZ7e7nS6tD0h/TrjZQlhtZPVxi+9WzNmuyxxYs92+/GR9IdqfUEMLr0mNzrpMtPDFrBLoaQMmELIIQQQgghhBBCCCEkEM5cI4QQQgghhBBCCCmIATCl0YkgTQFnrhFCCCGEEEIIIYQQEghnrjUZRTyztmxJt3t73eFMlhi+W64w9XWh/lE+cRUJw/e+y/bSKcN3zhfpTaN9aqS/k/as2T6Upktaj/Uo67EYxMhj7d3i7V0lvdT0RfLGdeZJf7Y5czwjax58vWhi+5/E6tvK8PbK+zx2HmiPFFnNinD55en2mjX5nm4yPh33smXptn4O5SJ9CoFMW2jTgTgCzcv/WP56vl46vvimSz7b9b7uYqaIn8r7+vLjLvsZWMaz2Ld8fcOU52l7zDlz0mOuvn/Dhuz+vHm14960Jfv57F6//Ln99uz+1KnptvRfW7QoPwxXfoT6t7rCCPE01J8//Ghb5qhk1qx0Wz+nQ3zcyvANa6jvaMB5RcKI7aFVdvhlpyO4LBzjwUd39Ixv/+xn2cvk/k9/mqbx9a/PnvesZ+0zvj13IP/rvW5DMilf/GJ+P7h0abqtLYRdQ9j58+rn20lIM8CZa4QQQgghhBBCCCGEBMKZa4QQQgghhBBCCCEBcMYSAfhyrSmwMOPTkYvII3t7Jz+F2VduFUPmFDr1O1QSppe0l8jpzh3DYk60kiu1ibnPo51d3nFLvNPv0naJedyx5D15cgqtXrz11nT7gQeyx6RiS9dHeUxKyarSsWVTuqPyf7R/wfi2Syo1b166raeyh8ok5NR5KVm57bbseUcckW4/8EBH5tiGDel+f3+2/jxlSe3819VApqNteGf2oNQoyUzQF3oSKieS6HIaHMyvW4csEmWjdVp33ZVuSw1UAQltPSWpvnFJuTSQra9VYUi5pCjrDlW2HQMD49u/vCZbzzZvTuM79dT8dN1wQ7qtJR/yOikNAYAebE13VLpG23P6TB2BrMe6kjgIkYSF4mqjko72+BIYGZ9uX/KYlBAC/jLdMmTXeTjDV2XfJhqHTGORspbnSrnzqlXZ8/bbL93ef//sMVldL744e+xf/7V2vK68dz2LjzwyP/xnPzvd1rJQVxm68kvWn/b2sDHlgxvS63S+LlqUHhPdlLOdTJ+e3c88AyP0wS2P51gRCJPOhyKl0Fr5L4cnvvWsbHuFstk5nI1rcDAdD87uzZbTLDEOOOecbDjXX59uSxuGN74xe94Xv5huv+K83swx17NSVqe//S3d1u1QDtFOOCF7TPZHeujZKNkvIY2CNZ4QQgghhBBCCCGEkED4co0QQgghhBBCCCGEkEAoCyWEEEIIIYQQQggpiAFnLJEEvlxrcjI+GhsfyRxrE95Dvl5JoZ5cLg+PUN+b6EuLKx+K7u6OnBMV7cLsoIDfT17UOoiMv5urxWkznaHaXnBt2tBAGpopwzHpFTYykr1s3rzaZaU9yw47LN3WYUhfDelZAwBzH/trunOxMI2QxitA1sRJ+4YJdu3K7j/6aLot81970Uiq6pLMV20Ws23b+Gbfc547vr14cfY06UOnraRkXq5enT22ZEnt/HdapemDWSOT/Ouyxjq5p4V6msh2r72GZJ5s3px/XZu+cP362hced1zmtK2d6fLzuu66siTvXov4zuWF8adV2fNkndFpdIYv/eWkB53cBjKZvnFj1udMxjfXZJ8hL9hyRbr9H6mZy87FT8mc5/Q8Gk4jeHhzts99PFOE+fl65JGHjG93tWd9BX2fKbIv0p4+Tl87T+R1vp5BoeHP7s0em92dtt+dyOaxbNquuuVLEU/P6F5tjhuI4a8nH5XautHVV8hj0vcMANrW3pOma+DA9PMCvmfymM6Cl70s3ZbPYk1o/ns+Gpz5L/PypJOy18n7cYXf11c7TWVQxMurWXzcpJ+Z9HIFsnmsh1BdnZP3R/bNA/kI12MhWfbVvqzp9rRp6basE/VADrm1Bay8H90/S2Te6fou80f7sckhzoED2fw+cH06fn7xK08Z3178JZs573OfS7fPO8+/H+8R9/blj2wZ33541+zcMLQfW6aeVTVgvmogexZ8yUoIIYQQQgghhBBCSCB8uUYIIYQQQgghhBBCSCCcq1lhw2PbccFnfo+bbn8U06ZOwcC+M/C5t52Io877ERYf0IuhnSOY0TUV//KiI/DK5yYSlouvuAPv+MKN2K9vLwztHMbrnn8Y3vrSRE5z4Y//ii9ddhumtLWhe3o7/vvdJ+PwA2fVjNvA+k27dq3trvj9DbVlBlqK5loOPQQ93Xvt2vxz5RLtegq5L5l8U/O4MzIzpbWQU7ed0rS8uBQumZDvUveuuJ3aDTmXfcOGzKEZvfPHt9esyQ9SymU0PRtT2ctTe5Xm9YRU71Yle5kxkG5L3YjWvYjCd0lntERgxox02yVbc8qcZMWT8lQgV5ui66qUYeginDkz3da3fc016bZUysprAOCJJ2T4+Uu7L5iXldNlMqUEKWheGDq/ZR/T15dfFluHslKXHq2/GkNlpEsJp/sjydBQ7T5Sy7od3UiuLE5LhzOyRCEjA5AtG6XpGW1P86RNBqrrpkhktfxY7Fx1Vfbgt7+dbgtZdIfOhKOOSrdPOy17TFTeWbOyZfjYY+m2rMdaGS6zYPuwkjw52raU1nhWd3dHqAsuJ6BQewVXXyST0bElK9/FFal8V5sddJxxRrrj6sgdaXQh0zU4mL1udq9f3+GKz9eJwSV5deVx29D28e2Oyy5Lt4XsHwBG//lfxrd1vzG7O+1bjxm8IXtQyKIhZKFFcNWn41d+Od15/OB0W5a7okj5+kqJXWHKPr5DPR9DpMOu9qvldE7Jeg5qmITOznxbA9/26ystDZG5A1lbDN3MfaW3Mm79CAkeQ0n7GGFd06EzWYwB27vnZw7J9ibT8eSTOoh8+XRemoock/VAy2udz5Sc8F3Pgo4N6zPH5r72tePbd159debYIcIKo/N3vxvf7lbuEOeeO/l0yRud+4f/zQYitaCu7ys68xx2L7sbnLFEAL5cAwBYa/H8d/4Sr3zuIfj+R5IBy6o7N+Lhx3bgoP16cMu3XggAuOeBrXjBu67G6KjFq84+FABw7hkH4ovvOAmPPT6EQ8/5AV50+oHYf243/vGZi/D6FxwOAPif367F2z7/B1z1+TMbc4OEEEIIIYQQQgghgRhj2gC8BcDrAAwAeBTADwG8z1r7hONSGcaZAN4L4CgATwL4FYB3WmvvVeftC+CNAI6t/M0BcIm1dkVOuNcCOKXWMQDHWWtX+qRvMvAlK4Bf3/wgpra3jb8MA4Clh8zB/nOzP8EduF8PPnPBCfivH67WQWDvmZ1Y1D8TD21MfiXtEWb6T+wYhjGmpNQTQgghhBBCCCGElMpnAXwGwF8BvAnApQDeDOBnlRdvTowxLwBwBYDpAN4B4FMATgbwO2PMfHX6oQDeA+BwADd5pm8jgJfX+LvHdVEsOHMNwOq7N+PYxXMmPhHAMYfOwZr7tlR9vm7DIIZ2juApi9LVVb506W34zPf+gp27RvF/XzrLK3znlPEC0i4p//SWy2gthJzWraZ4t+nV6irMVlOFZwuZzeiSpyAP1xR1bxzLf21Vcpa8afShkgN5rLs7G0beqpbJuem2lIBV4TjW1i0SqSVz4pBL8eSULUgNQoFlvEY7xaqFnV35JzqQVVJXTyktc6Vfyo6q81+c293jlSZdN2W10+E//ni6rVWnUsUspXw6jJXiNxY9u14WzYKz/BpN6EpgMXDJTbSK5Oe3pOXxtKeln8/Tq5DJ8Ldsyhyb7dKcybYi+i1XH6DJyzstWcmc55Luqcgy18nOQi+JK67TsuJMl3zqi7IHTz21dty//nX2PLlMoUPT2YGsNHnRorTfkrfdg63ZMGQxdWbboUtW7/1skxTIf18Jl69M1NtaQEtuznKMHwrYReThmy4tiZf3Jvtn3ZZlGWZkyvCXJXqvLq5WVc900FJqrjpaGf7GjUr+Ku9bVzTxYI2x6qRc4RsA5p59drrjaaEQKutzXSPLV1c5Pb6SZMY4jnTIZ6DuYnq6/Vbq9b3PIivF+vYBvu1cH5N5J6ukVq9LfMdyrrhd+XjP2vxjB/ar1ZyldYHLikWMr3Y8mjmUqSPyq4VcMBzI3qdr0Xk9Bvet47FXhHa1w6E5CzLHOq/65fj2IZ/7TObY2re/fXx7wQlPHd8+QdXj738/3fZdnV6nK2OVcuKJ2RN9H7hBX+BIq2CMOQLJC7UfW2tfKD6/F8B/AXgJgO86rp8K4AsA7gfwNGvtYOXznwO4GcAHAJwvLrkZwD7W2keNMXOQzJKbiCestd+e+LRy4My1gtjsysf4wTX34IiXXIoDX/A9vOXcJeiclnYq/3LOEbj7xy/FJ954PP7jG3+qc0oJIYQQQgghhBBSJm27wZ8HLwVgAHxOff5VANsBnDfB9acAmA/gorEXawBgrV0F4FoA51ZewI19vs1a6/NCLYMxps0Y02MaIB3kyzUARxw4Czev2TjxiQBuuXMjDhvoHd8/94wDcdv3z8F1X/l7vP2/bsCGx7ZXXfOSZxyEy3+zNlJqCSGEEEIIIYQQQurGcQBGAfxRfmitHQKwqnJ8ousB4A81jt0AoAfAIZNLIvYDMAjgcQCDxpgfG2MWT3BNNPhyDcDpy+bjyV0j+Orlt49/dtNfH8F9G7KrSa19cBv+v/+6AW86Z4kOAiceORcvf/bB+Pz3k7m4f1uX6sH+93frcPD+M6uuIYQQQgghhBBCCGkwc4wxK8Xf+er4fAAbrbVP1rj2gcr1Dp8jzBfn1roeSF6OhXIvgE8CeBWAcwD8PwDPAXCjMebISYTrDYXRAIwx+MknnokLPvsHfPybq9DZ0Y6Bfbvxubc+FXc/sBVHv/xHGNo5ghldU/Gmc5aMrxSqedcrjsIxr/gx3rNiKb546W245qYHMLW9DbNmdOCS95+aG7+F8fJ1KOIHJj0qXF4QuVp7IGtqoI/JyOWS9vvumz1P+NtoPyQZZrvLb8wXh85f+7rk5d3wcH45dAT6cvT1pdsFLMu8kfVieFjlo4ivqzPfi0OGob0+1q9Pw+ztzYYvq4j2A5MeLWvXptvar0V7Z0hktXN582wfStO/LftOHLNm5V/nIt9Py7G8OrIFPDCQ5ldHeza83t7avojazlD6w+i8O+mkmkkshRDfHn2dPk+2B12+stzkfVfFJQPR/ZTe90CXk6+Xjvd5Lv9El1eS9LbRjU0Y+D3nOftkDsm8+78bst6HN9yQ+r5IL6wznv+yzHmutpdJs+rgZF52yKIYzg8wNP+9cdQJXcfl7QwOpts6P3Sf4Bu+vJ/MvbmMHUvA1balbaF+Nvztb+n2jBnptvaXdDXDkDJ1+kaqTjLjc9Sdtg1dhq5uJFMe+ubyGoesMCpQV/qrnlft6Rgqcy/KTjK2d53GVYYybvmsB7LjAnme9tOSHqRVtojiodimb1RE4OpbZd7p5uWbJ6HPQF9kunR+y9vWx9qGqhUzNS/0RNctOaaaNy+bx9LX13kDAl3HZd/hGiPLdD30UPaY3D/66OyxgYG03PTzJY8yvGjbBlOv0S2DWW9R6Zf22te+LXNs4KqrxrcfFuI4PXZ+7WvTbT1ECLofh59n2W2BNJSN1tpljuNdSFb3rMWQOGdnzjljA9FaYQypcwpjrX2V+ugyY8z/IJGcfgbAM0LD9oUv1yrM79sLP/zoGVWf7/jta3KvWXHWoVhxVvqibX7fXtjw85cDAD7/9qfmXUYIIYQQQgghhJAWx2CPkQNuB7BPzrFOcY7regCYFnh9Yay11xljfgvgNGPMdGvtjpjha/aQekAIIYQQQgghhBBCAngQifSz1sux/ZDMfMubtTZ2/di5ta4HaktGJ8taAFMABOqZ/OHMtRYidCq7xCk/VRFkltjW8/SlTMWl7ZJh6vne4liRpeNDcK4MLeaad+nlwz3T4SwLcd8dOo89JbsSKbfU+6FqItdsfsfM8IzyRUuGrr023ZbZqqWMrryTUlwty5X5I8PXeSD3tdzhUTHFvlo+6iclyJShirw95zydLj2FXyLLUJfn7N7ifYCvtDH0uiJt2TcPnO1XHAztN2SanZIzzzA0MkyHWsw7/dVpTHnKwNbsySICLXuXbVvmf9eGe7JhiIMPbsnO1pfy5q5OzyGFs0CbB0+VU0vgqlvy0bx5c/bYk3niD2RlSbL/nDIle57MO1f/oJ9tef1bVVuTHbtqYG2i0+xql2MQ1Ve3p+lwPTdHO/PVKpl0BVaYqqaxYUMavmiHLilyjPGTzmOXLYbMOynvBLL16UjhdqP7QVmXqsYc305lcVWa0TNSxUlbd9izILr03DMuIL+auGShVTgO5uWDqx26rDp0VK5np0SWty57iawvDgVwFTK/9Hl5j5u6yxdFRzt/y18zh17yksPzr7voovFNaTOj0z+/W2Zs/AeWtI/R7Vz2+X19YWMo0jLcBOCZAJYDuG7sQ2NMJ4ClAH7rcT0AnAjgGnXsBABbAdwZI6GKg5GYJW2a6MTJwplrhBBCCCGEEEIIISSPHwCwAC5Qn/8TEq+074x9YIzZ1xiz2Bgjf5X6DYCHALzWGNMtzj0KwKkALrXW7gpJmDFmpjFmSo3Pnwvg7wBcXVnVtFRa4+djQgghhBBCCCGEkCZjT5ixZK291RjzJQBvNMb8GMCVAA4D8GYkL86+K07/GIBXAjgNyYICsNbuMsa8BclLuuuMMV8F0APgrQAeBfB+Hacx5r2VzbGXdE8Rn/3WWjs2W+40AJ8xxvwMwD1IZqotB3AegI2ofiFYCny5RgghhBBCCCGEEEJcXIDEw+x8AM9F8uLqCwDeZ62dUAdsrb3UGLMDwHsBfBrJyqG/AvAua20tv7UPq/2jK38A8EGkUtQ7ANwM4CwAcwFMBbAewIUAPpoTdnT4cq0JMLDjmvQinkeuc4VNh9OnwDe8qmPCd8TXcwFqmfQYXkaSKD5tVb5waZpdXkzOcnOsLa49unzQl+y1V7otlzQH/Fdhl/cyZ072XlxhSN8F7cGQ54FxyCJVntJox2Xw5onObtkW9DFp1aO9hWT6pa+UC1c90H5vMl2yTBctyr9O2804I/AtfEERb4w8n5oi/Yi8Tnv69PfX9ilr786GIcs01MqrUN8nCPESKcVuTLYbbVwl6kF/f7YPlvWpQ66avkaZ4oi6NWdO1nMq69GVzauuzsn7gjaLX0uz2sSF+IK6rpk+Pbsv+8VdSqjxgBimTp2abq9fnz1PdkXLluV7T7psyqTfjw7/wAGH6WYeKhDpKys9xADgnrV+flQx+oqq8zyNU13hbx2U/qTZNGbafYRKrv32dH0aQ5e1fHzpR1nXtm1ecXt7p2nTL1FBRx3j1NC+KGRsKsd1QDYfdTHF9tjr0kMH+ZDVw1mHd7Kkuzu//d56a7ot+xHXEEY3C1mkeizqHDdFIC//9XhzuHP2+HaX+l42vz31Sh3t7ske7K59Aw8/mo137qziYz4X+r5kHuthhhy3Nsszm5SHtXYEwH9W/lznrQCwIufYFQCu8IzPeJ53O4BzfM4tkz1hBiMhhBBCCCGEEEIIIaXQpL/FEkIIIYQQQgghhDQvpvJHCF+uNRlFptO6ZB55S10XkZb6sn0oDUNPV+9oD5seHDKt2HWNW67aXnsbBaSfrvMcslCXDCMvTNcS7Tq4kHx0he+6FT1N/4gj0u2MNMS1DrvCW+Yh0Hkg70dPZZdqE33fLolSDHxVm1KG1Da8M3tQ3qwKMCTvYksgJ4OMT0qZdPW5/fZ0W0u2Rkbyw/eVy8cmQK07IVLK1Kal1aKOdLj6f9m2tTZZhKHbl5QN5knAYhFDMiqfVxpdNnW1JAgkRrt09eu+fb5sl3fdlT3v1FPzw3BJwyWy3rnarpb1ZeKSgagHlqsMY0iCg+tIhMh37Ei3q59rcb8GaGsKKclz9X0yXVW3vHRpur3//tljIlDvtqAT4pA25pWbHkvI9GektsjWO98+bNasfPl0EWL0D842lRO+6z4HBrLHZN5Jyai0zgCyeeDql6ZNyz8WMi6aiLyxurPM9HNa3JBvumbNUh+U7F0gy0mPteR3vUY+DwlpBtgCCCGEEEIIIYQQQggJhDPXCCGEEEIIIYQQQgKYMvEpZA+AM9cIIYQQQgghhBBCCAmEM9eaAAszrlEP9QDQ18llryVyOXsgK9HXy59LTwPtcyS1977eVM3k55TB4VMQ4s9QdZ7LFM0Tl6ebDNLlF+JMf8bvIUtHxm8pe1Ta1rhuLRu3qjAiblcdcXl4+PrlaJ8Ouey7Tn9s+wpXeLKKaDuYrk6Zd+V22UU8GX3zPwbSz6Nd9W377ptua88v6TXk8l/zJbR9+fpBhvpGyr67szPrj+Pdtzq8J11xx/auC81HX/RzThLqh9cK3mwSnV7paaj7SJkn2k9L9p/yvKOOyp6n/ThDkGnucpSTd1tThe3qz2LU8dj9ZZG2oMstNjIt8+bl+2lJdJ1wdD/A056Wf9DhZ5aXxtCHu2wbu3blH+vo9PPSddExvD2zvxNduee6xoB5xBqPh4yRs2MaoL8/DUP6pem6I+9z48bsMXmd9iJr6PcLgcuDOuObGugv7CLGdxnpian9MWX4+hlSshUcIU1Hc4z0CCGEEEIIIYQQQghpQfg+mRBCCCGEEEIIIaQgBpyxRBL4cq0JMLDRpy3LKfdyiq5ruq5eWlzKZ/QxuYq0VFe4pj278F2ePJSyp4U7p9j7zon2nEtdRLrnRBawjFvNxddSYolzmrtIl2tKums6fBGZ6Bg622T91PIeKRssWzqj0xVDKhWbItLbvDYVLE32RIchZUg6j6WcXTev9evTbZfMXYZZdj+l2T6UxueSLIbKGWUXICXfRfpxV/eW10ZDZUeTCWeM0LzypVmkny58ZfRAtp/SeSfblxwTaCI4I0QhVA4l20bo89ctmyreRxbpi3zrvKu/8U2Xqx7IMPKsS2rG5es9UjKl11050FaRtQdKoSWhz+IQSXNo+LNmpeFL2TmQleK66nSzyBBD88D3PF0WzfLsaZb8J6RRNEdLJIQQQgghhBBCCCGkBeHLNUIIIYQQQgghhBBCAuHkzSbHexq3WjqnQ8yZHu3uGd/evDl7mZy+u2FD9phLUjUwUDuMWISsoBdDolX2tGqnlCPCSqJFjrmX5/I65E3Zq+m5wpeSG5e6xFf6XATZbvTqVnlp0SvzzvdcqU7nnZT8uVbXKxJmHsFSpiGxIprKZF9Jocwvnceyv5OrigLZspF9n5Y1TZmSbvf1ZY/F6H/cdbf257o/lnlQLWvNT2NeFxCrHyxDBiwJyX9XWw5drVVeVySM2M+vMpD1QuedlGn5KveKyCozKzB6SpVDpdsxnj2+YdTzmTrRuZu2pGleuTL9/KSTsueFPkN87QNCaZQUTq9IGVymspKXrJ8OzfPY0nxX+HLcosdCckXQvfbKHoth6xF6n/WsgzFWFy+DZn1+1RvOWCLAHvJy7dhX/6jRSXAyfUbfxCcRQgghhBBCCCGEkKZjj3i5tuxjL2x0Epzc9+21jU4CIYQQQgghhBBCCAmAMxgJIYQQQgghhBBCCAlkj5i5FsLqK1bjtituQ9uUNhyw/AAsf+Vy3HP9Pbj5ezdj8/rNeP6nn4++gxM55yN3PoLrvnQdAMBai2NfeiwWnrgwSjoyOnZtQCC9GtauzQ9j8eLx7enTezLHpK2D9DoAst5D2svI14OqDA+tvPPK9oWIQbOkA0Cup0eoZ42LGEvAl4HLJ0g2L7mtfQsff7z2eUC2Dem48tqQLpbQvAvxiau7h0dAIncOZ9PhsqbZf/90W+e/7DJlOeluVhLNZ8cTGX62bLJ5IPtnnaXSq0qXYez0h/qjxei7Y3iiadatT8OUbVt6jk4Ud6sj80v69wHA9Onpthw/6H7Q149NE6N++no3xg6/mXC1PVk2M2em27H6hrJ9BUM871zE8M3bPpTfz1Zd194xvtkmDha5F9++L7SfdYUR25dVPr/mzMk/T/cxrqGEbx/QtvGRdOeuu/IDPOEEZzixkWMeOf7s64s/Vi+DVugjY7Hn3ClxwZdrNRjZNYKbv3czzr3wXHR0deC7r/kujnrhUZh1wCw8493PwHX/77rM+bMPmI3nf+b5aJvShu2btuOyt1yGA5YfgLYpbGaEEEIIIYQQQgghuzN8uVaDHVt2oKu3C50zOrFp3SYAQEdXB6Z1T6t5fvu0NBuHdw7DwNQlnYQQQgghhBBCCCGksfDlWg3sqAUMcMult2Dld1Zi8TMXw7S5X5g9cscj+M1//QbbHt2G0956Wjmz1rRu06VfypkjreUZLqmRnJKtp7LLKdlZOUg2DBmfnsYtpzdruVVHTs10SRaLSI3yaOS0apfcLVT64LquUfdatuxUEyp13LAh3V60KN3WS75LaZRGlqFLtiDTqOt+qOxCXhdDmhNDnuc611eWMqQkNzJfXdJbnf9btqTbO3ak2yMj+WG40uV737obl+FXyVRy8kT3x/K+XXIlec9FrnPh28eUIeHPOzdUhrJpS/Y6+czylSi58jHGMyoGrnS48l/fm9yX0mT9rJfndQXI1TWufHPFHSp9i/GM8g1DSwpd/UOMuKVs/Mgj07hd9bjIOMwXGaZW5PX3p9u6P/btY2LIxn3bq+8zA8iO++SzTQ/vp0zJD3Pq1HRbWhwUwVe2H5o/IXLbIs8k33TJ/qHqe4ZrMKEfniXiyqsnnki3+/r8wwy1bIhBs8pVCSkL6hYdHH3O0Xj5t16OwUcGcfsvbneeu8+h++CcL52D5//n87HqslUY3jnsPJ8QQgghhBBCCCGti0HyUqXV/8jkYT5OQOeMThx08kHYePfGiU8GMGv/WWjvbMfm+zZPfDIhhBBCCCGEEEIIaWn4ci2HwY2D2PLAFgDJaqC9+/Xmnrt1w1aMjiTTXrc9sg2PP/A4ZsydkXs+IYQQQgghhBBCCNk9oOdaDm1T2vDLj/wSZorBzH1n4vhXHo97/3Avfv/fv8eOx3fgqg9dhb0P3BtnfvBMbLh9A/784T+jrb0NMMBJrz8JnT1hxiJOrw+XmcLtSrYqTcyEyYBL+754cXZfWg7oqPO8EGIt355HEc+aeur8Q+OS/iq+eRfrvnyXJ59seEWui+F3Eor2SZk3z++82GmOkY+xiO3VVsTLKO86nf+y3bh8sXT7OvTQdFv6rGnPJu2RJgnJc5d/ZXt7mC/QnDnF+5EyKNvPz0VoXXXVLdkHuHyUXL5evnVEei+F+raFeiWF5r/Mk2livaeNaqL/XnvJa/z90qQfmMR1n75eYWWPD1rRZ8hVxyVljBGkx5j2G8vz+AXc9SkkXWW0Exd5vqzad06Ox6UHnQ4jBjG800KRZa37A1//QVcaZV5VjUdkJg8MZC90DQQio+9NjgvyxqX1oFm+bxHS7PDlWg5ds7pwzhfPyXy28MSFWHjiwqpzDzntEBxy2iH1ShohhBBCCCGEEEKaAMoBCcB6QAghhBBCCCGEEEJIMHvEzLUr331l4Wv2mrFX0HUhzOlxaJkkeu631Gruv3/+Mb2kdA4u1WnotHM5rVtLRfSU7xB8pyKXPZ3Zd6p89XTv2ttlUIbkMrZEIDS8GHI0LcnzbDal00ipXT2n+vuWvaud5MnIatHXVzs+lyw0Rhsto527ZInyBnp7uzKHpPxKSm50PsZu57FkZTH6f4mrbLLy3bC49DFZt2T4Pd35+R8qrY6BK7xZs9J0TZ2aPebbl4bmq6zHOu98w5AUeVa6ZO8h+Eozy6aMvt/VhuR9L1qUPbZjR36YeWOo0PFOaB/jG74Or2145/h2h/i8t7cDefj2UwDQ4Zknkhj1WKdD7rusNYaEVYou97q2Dd1pBQwIY41n5X5XydJtSYy2QMieyB7xcu3+1fc3OglOXnf++Y1OAiGEEEIIIYQQQggJYI94uUYIIYQQQgghhBASEwN6bZEE1gNCCCGEEEIIIYQQQgLhzLUmo5CmXRovaJMKX4MYT3S6Qjxsini61dPjJ9SPLSSNrmu0R0UMb6aQeyvbZ6FIeDItZfg9lL2svIu8+2mkx5qLUK8hVxmW7dnnSmPeMd3uXFYred2sy09Shy/9ojSZuNeuzT2vTZ7oMDPS+d/ZWfu+dw5n8yrUCyuTxiZtv9L3bNu2/PNGRtJt7f3jyn7XfUufR3ldkfsqu4/0Rfr09faW+wwJ9Wv1TkeBh3Gz+BG6qOdz1F3f88OQx7RvnvZDzbuubJ/RUrx7czKlvz+7H3lIX0VoPZbpks8y2a8C/pZlsm91ebO5CPWWk/sxxuON7I+LlGfssSghezqcuUYIIYQQQgghhBBCSCCcuUYIIYQQQgghhBASgGl0AkhTwJdruwt6/rSnbsJ3mnu9l5j3lSyWjUvu4Js/vrKgMmj1ad0x8rhsYtSRMqinXCyGlKbs/HFJUkPTkScV0Z/7ykS1LFH2mR3ywIYN2ROlBmdgID+QOXNU3GmoMg+Gh/1kWEWIUb5lyIrl/cyYkT0my01u62dZqDTNNy9d0tWpU9PtsuWYMSjSj+ed61A+x8FRMLGtIvR1oZK2GGWdlR6G2QBUsWVLGobst3Q/JTWFykOks7MDzUBsWaILXQV9+wrf51wsZLpckk7f9Et5edm48sqV3tA26kK2PZ0HIWVY5FnpOxZqxucJIc0IZaGEEEIIIYQQQgghhATCl2uEEEIIIYQQQgghhARCWWgzsG0bsGpVsj1vXvaYa7lNeUwvzZN3XsnUfaWlQGRapBrBJTcJnSIdQ7oUOrU/xkqNvrLHsil7pckicdczjGZpN/VexTREhhSjjpeRDpf8W8r8Hnsse0zKFDvks0FIrQAAa9ak2/oZIhhtz8qrslKU3MtKX6kuZOVZVxhFkI9OLd/dtSvdlvLLrs769kUyz+WqpQDw+OO1zwOAHs8V+spG5o8eqsiqPGVKNh/7+mqHV6R9tQLyfrYOZu9FrrIozytS333P9V0V2BmebkRyECX7JtdgK0In0yzPzWYidCzn27+55Nn1Xs3cJx2x6khe/7ZxY/a8PAktkO0HBwYm/wyMsbq761i95cetwpRGJ4A0Ba09IiGEEEIIIYQQQgghpIHw5RohhBBCCCGEEEIIIYHw5RohhBBCCCGEEEIIIYHQc60ZGB5Ojb+0l47Lc02ixf1z5tQ8rYg3TGyvME2ILr8M360dO9Lt6dPrG7e0J9FeNHn+FdpfJtTfQFujpOHnX1Pvpbnpm+L2yojtcxHq01F2WYT4nrnC0MTIR9d1rmNTp6Zxr12bPSYtijp7u9LwFi3KnvjQQ+m2w3/T5VUl80A/hiTd3e79EBrp1+Lq72QfnOmPVR5naqSrI3eZEjmQffUUZeri8vhplOea61mp81vWH+l/Opn4Jo1OSEAlD31WFnn+5lHEP0ueK9v96tXZ6+Twc/HibBgd2JnubNiQvVB0YqO9s/PTKPI4xrPGVQfrPY6JQegzMOTeGjkOCH0WxBgjuJBh6rGz7INlG1q/Pnue7P51lyKf/frrW173EzrmcJ3ruk/ZN+0cVn1Ae/O3obIx4IwlksB6QAghhBBCCCGEEEJIIHy5RgghhBBCCCGEEEJIIJSFNhtajiDnGPf3Z4+59APiWOjSzb5EmVLv0oM4JBkxpsrPmJEvWYktF9CKCYm+zTzZpqbDUQ1c6Zfh520D2TyJIQHThNa7EPlAGXKBelK21CVUShCDVpDmBCMblepkpFTE1aU/+mi6PWNGT+ZY18KF6Y7Wc+nnhqBtOJVzbR/uGN++//7seTNmpNtaluib/kbiek74ykLbNjyY7mj9pdQFaS3QwEC6vXRpblyOKpLZ19YFvqrTRkpvZXz6edXe7ff89e3rgvtBl0dDGQ++HLo6/SSdrvHBsJJs+daLL34x/VwPyc46Kz+MTMHpQY7Qkw53pn1Mlb3F0Pb0vPYu5BHLFkMSo22UbYHiIpvl2XRIiaEspiI2J/UcN7nue/tQfv3v6Y4jkRxD37OMT7eNvHG9Pk+2Q31MPlL0I/yEExwJDcA3P1zyV33PixY17vlCSLPRpENhQgghhBBCCCGEkOamtX++J7FgPSCEEEIIIYQQQgghJBC+XCOEEEIIIYQQQgghJBDKQpsBa1Nxu/b2kOufK0OSjE+EXrtZnFvGEt55/if6Glfc2esUUtzvaeoTqvN3+ZG48M1X6VugvYymTvVLh7xtfd6cOWncLr8WV5gSafMHZIti3rzsse7ucn0WYi+vXsRnpNVopM+Fr2dNGb5wscswRhqrl6lvzz22dm26vXlzNhzZFuX2fvtlz+uSzwlpzgYAixblJ1Q07s7u1A/piSeyp0nPNe351aw+axJXHfFOv6sTlp2kLAsga3rkGXx1ncv3GpJ9cquXhX5+yXNlFmtLtM7OfN826T/m/XwMHRQIXP1UkT4lL79cZa3ryF13pds673bsSLel15MOQ3pE6TA6IA46DANdtnY93WmeN2s19h3n1bsdhlgCtuLYx5WvZXtK+loyurwQ5bO+up9Kt7Xn2pIl6bbLWy4Grn5Wpl8/5mT6XT7QhOwJsAkQQgghhBBCCCGEFMSAckCSwHpACCGEEEIIIYQQQkggnLnWDAwPp5ofLSEZGPAKYrQzu3R53rRo13TpsmVlzvDruNS9JsZ0fnfepe+wpQwUyE673rUre0zKr1xpDE1z3nWuqeBatnbwwel2b+/k5XQufOWAReQO2ansXD7chW951ltuEpqu2JJU133LY7rdSQXayEh+3OvXp9tVSsNe0X9q3aZs0Bs25B5rEwmbNy/7PNl773S7gV116eiyyZS3PKi1P1KKO2tW9pjW0ueFL9B1ydX/93TuzE8X0spVz3ZSBr6qXI13fZWBOC6qd/7kWSO4+iKdP7JayOc5kO1XZFXVfUx/f7pdNXbYImShur6LxLQ76rGr/2wb3Jp7LKRDilFmUiYLZPNYJymGTM5V9tKeIwZtwztzj422d+Qey5xXQjuRY7TQPJW2DLoMZZ0sUq2kRFK2p40bs+fJff3VTu6vXJk9JtPpW9au/qFaVp9uS/sJnT/yPD2UkM2eslCyp8OZa4QQQgghhBBCCCGEBML3y4QQQgghhBBCCCEBcMYSAVgPCCGEEEIIIYQQQggJhjPXmoGRkXQ9dJcJgDKpaKQXSulxt4CxT54HhvaakD4Rc+bke+lI2x59TBb9Xntlz5PHivhcyGPt7fl+LbIotCeUrK56ae48D5VQ3z9fLy+X14S2JJLeE+0OLwtX+brijoHvEvO+Zd9IzyAXofnqmz++6QjNY5evmgtZJ7UPi2zrsn2tXp09b8GpIsIqQzaBNIQBsgYroqEPDGQ912Sf4PK30n1HCEU8+2KUabVPWc4xaTKj81H63OlCDDXFFDjz1ZH8kD6zkf2BK73yOSqfV8l+uq2LU+6vX59eJz3EAKDDUQ9kumSTAYDZSD9ok41UhdfmWw9uuCG7v2xZui38ror0l/39+X3T3LnptvRW3Hff7HmyWlfVRzlIcFRWWYaFvDl1e8tJmPYelsT2HBwbso8h/XR1VZL1NbR9+Y5BfMPQxBhf+cbVSBxfqZxdtTymx7rymGxD+jz53D7++Oyx/fdPt/UzVvY5U6ak2319OYmtgSyPLuiHeNpmpaebjAsAZsxIt7WfnGz2zerbSUi94Ms1QgghhBBCCCGEkAAoByQA6wEhhBBCCCGEEEIIIcFw5lqzsWhRdt8xT9lXDiWXntbB1XO6buhU4diyuFB8JWGu61yKLT0VfNu2dHvXrnRbSzNduPIu79jQUL50Vat15XR1PQW+p7u4ZMuVx6GyDpmvMk+BrJQjRn0pow7GkDpO9ppahEpT8sLwlZvEymPffkXikvuEIvtkuZw9kJVhyEfDqlWOQDSy0erzpNxKyB67FvfqCMa3dP8gg9R9mEuCE0Jw3XVJP2UnphMpb+jee9NtKQMFMtK90e6ezCHf/i1UliXTvBMdmUMbN6Am+jnU0WIjQV2cLsmotFuQ12kHjtminbjKYoPK09mdW9Id+RAMrfC6cEQ4odJA2QXoPkYee/LJdPvQQ/PP03kwZ05a52VZRMPlPxGSz9UdeeHLZN8cmoxQXM9KXa8lUvKnw8jse37vqBVO3nkZCw6HHLOesvQeNZ51tSmZRlcd7+tLw1i8OHtMtpuDD84ek7JK/TVQ5t0TT8i4cpPhLietbRedgmznLncefcxVvmNjhiLfXQhpZThzjRBCCCGEEEIIIYSQQFrs90pCCCGEEEIIIYSQxmPAGUskgS/XmoGZM4Hjjku2lSQghvSqkYTIvmqd60PodPLYcqWq6dhbNo1vd6mVtOTqVnr1Mjm9X27rFXx80+VCpllP95YyEi37kunSq2fpKfc+lCEJkFKOxx7LHlu7Nt3eti1bbnLKvVwpTS8GmBcXEGeVsNg000pOMSRzrj4mRFLrKw0JRcfb25sfX9fw1vHtznmp9OrMxfdkT1wjGqJerU+upqcli3LJLykV0UuBiU6hszMbhqTI6muZdERYxc6JlL/edVf2mNa4SWRjl8u5KW2dztfMMc+6GwPXKnOyX6+WVUZNRjC+9cBVr3Qe3HFHui0X3qxCBKqldTLv5GqAAICRtL3FGNOMLjoks5+3argzDEc6dNnL7kJWdy17lHniWjHYl0LPHdlGHbJZ7/AdMnHXqq7yvnU365IKyvIo+/mr0yXTLG+7jDbvWpldWnJoeaAs0rL7ojJWWs07T67SCwBnnJFu63KS1U6PMWUZxmh7VdJqQWgf7LMKqzG+CSSktWmSIVW5HHv8sY1OgpPpbQXelhBCCCGEEEIIIYSQpmGPeLm27L2unysbz33//ddGJ4EQQgghhBBCCCGEBLBHvFwjhBBCCCGEEEIIiQ2VrwTgy7VcVl+xGrddcRvaprThgOUHYPkrl+OGb9yA+/54H6a0T0HPvj045c2nYFr3NKy/ZT3++M0/YmR4BFPap+D4Fcdjv6P2847Ldu017rPh8gwK9QqI4RMU6hMRel7evZbtV1HEFy43jMGt2Q+kx48yVhuek3quaa8z6ckgj8Va8j3Py0XZCWU8HvQK3jJd2qMlL+9ceVzkWB76vOHhNAxtt7RyZX44RxyRbkuLCu0lkueNB2TzUvqv1UrnZGkWL7UYZaivc4XvuqaeeRAal2xDVb49l1+Thi8r4R/+kD3vsMPS7Wc/O3Por2vz+5gFeRXb0cl0dU6+j6w7sjPVjVSaWEpfNSDbX4vt0faOKMmKXT91scniddjsRC/DsttdVfjiwbRt1+zMoWvSJoSlS9Ptnu78eqzzUcY3d4YyPRr2MxcN7QfzmmJoX6r7ABm+6zknPbM8bc/iIduvNqvKYftQtk7LNHY4DKNcbcEVdWj5xkDGpz3L2rsD2rY29hKVoU1XoBx0Fk+fXjO4UtBlKOOTt+Z5K8Ho57n0YKv250239XeILvHM6pw33ysMJ46K7FuPXf1nXnRtLTBUICQGfLlWg5FdI7j5ezfj3AvPRUdXB777mu/iqBcehf6l/Vj+iuVom9KGGy++EasuW4XjVxyPzp5OPOu9z8Jee++FTfdtwpXvvxLnXXxeo2+DEEIIIYQQQgghhJQM3yPXYMeWHejq7ULnjE5seWALAKCjqwP9R/ejbUqSZfscug+eeOwJAMCcg+Zgr733AgDMWjALI7tGMLJrpGbYhBBCCCGEEEIIIWT3gTPXamBHLWCAWy69BSu/sxKLn7kYpi2rpL7jmjtw0EkHVV177+/vxZwD52DK1PquABpjCfjQ+FpBeuWSi8UIMxOGXDYeANasSbeVJKljaTo9e2d3Vs4i8Z2+XnUvzvn3taVNOozOzvQ+tRxEBu+p1nASRdan7rldSLiUKjdXLgAARx6Zbu+9d27wGTZuzO7L4payGgCYNSu910WL8sOMVecnG4avZN0Vb5F+Knb6J4ovZlzBsi8tWVy/vvaxEfXjjQjktyu7Moek9FnK4gBgwWLVoMfQGsLIuq8y+nFnWUt99gkn5EegNfEBFJEth9QZVx7oPlj2164idPWDLmR8Mvwy2p3zOhH5DJUHJ51U87SqG20TNyOfeQCyGXT99dljS5akYYgHdZF+0HVvMfopGYa2J8jDJevT45HSLQ5kx+XSNzvI3k9+Y3Ddi2/eaVzta3AwDVPempbfhxJUNg5ZaKiWUsoIy7YSqL7n2vE5pZmR7C3y0lXIJkQMLIfnzK/1MQD/x1fo9yHfY3myXGv90teqGAD1/eZPmhXOXHNw9DlH4+XfejkGHxnE7b+4ffzzP/3wT2ib0oZFp2a/EW9atwk3XnIjnvaGp9U7qYQQQgghhBBCCCGkAfDl2gR0zujEQScfhI13Jz8R3PmrO7HupnU4/e2nw5h0NtvgxkFc/dGrcdoFp6Fn355GJZcQQgghhBBCCCGE1BG+XMthcOPguN/aI3c+gt79enH/zfdj1Y9X4VnvfRbap6Xzh58cfBJXfegqHPeK4zDv8MnLSgghhBBCCCGEEEJIa0DPtRzaprThlx/5JcwUg5n7zsTxrzweP3rLjzAyPIIr33clgGRRg6e94Wm47X9vw9aHtuKWH9yCW35wCwDgzA+eiem9011RjGNgJ+1ZUbbvWagfjCuMei9XLvH1TwhKoza+kR4VDuMbfajs5cp9bZRcPhExrJh8fZNCkdmvvc2kJ5G2GZH+FXneQnpfe9LJMGfMyB4rw6OuTEJ9OlxtLXb6i4QfI+6Quus8T1eKU09Nt2Xl0mYropLPU/2GtCuq8mQRYa7bkHoT9qq2IP1yNKFlX08y6YjgqxZKvet/h6cPmm8/7ur7XOnwJdhzU9T/LnXNM8/IuWY48OGl60+AB1WMelDEfzDEY1aHEfq8yru3InVkdM4+XtfJY12R0psXn/5853Bb5qhEthPdZqY0o0lTjMGJgxjPgiJtRuZ5oGVcfZ9fDvNMeS+uYir7WVOEsTQb4z5vd4AzlgjAl2u5dM3qwjlfPCfz2Uv++yU1zz3m3GNwzLnH1CNZhBBCCCGEEEIIIaSJ4EtWQgghhBBCCCGEEEICMbZF1sY1xtiQtBpj0H9Efwkpisecnjm45fqbJzyvyLTevCnMMcJwUXb4rvgaKTvKoPWcUsKl53EHLCsfa3p3Jr8cGtTR9o7cY75SlBiEhu/KLynbdEmefKVvLimvS3oVmo8hkstCcpyA9lVEGu5bl8to27FloTHicuXP4GD6uUva0ja8M/uBvFD3P2L/l9ekcS1enD1tQf/kZX5lS4F8JboxJIu+bbIIzSKb1cg+zbcPC42rWfMgdnm72nk920msMGNQdrsMCa9ImFlZaBbXWCLGc3p3pd5Sxnrmeb2/K4UQeyy6fPkyrFy5crcVhx5mjL240YmIwAnAzdbaZY1ORyuzR8hC7199f6OT4OR155/f6CQQQgghhBBCCCGkIJQDEoD1gBBCCCGEEEIIIYSQYPaImWutTOzp/c0qr/Kdfly29LAIudP5tXYmwup0wVIjLRET7EQq92wX0k/XNc64Si6LUCmN61joimJ56KIPkXuWnY+x2lDZsspGrm6VR2wZqA7TdV1P+/Z0Z9Wa7EGxDO7vV/dkDq1cOXt8+wy1cqKUf8qVdAPU6tGIIf8OrVe+/UgZ0mffa+r9zIuxInRsQlfKdEn4O9pba8X1rYPZ86RUvOw6WIQYFiW+hK5M7VpN1bdfiSGZbhYpaCNlxfXMgyLPiSjtV46tld2K7I86kB2DS2uWsr/DhYbfLHWXkGag+b69EEIIIYQQQgghhBDSIjThb5KEEEIIIYQQQgghzY0BZyyRBNYDQgghhBBCCCGEEEIC4cy1JsDCjGveg3Xr2kBEGECEetH4esy4aKTXRIhvRAyvpFh+FSF5XiT8wcHan/f2dtQ+UAPf5eclMfxgiiDDHxrKHpNpdPmlxYg79DzfdhjqaVJ2/jdyefsQL6Yi4YcQJf8dBj/3q8WxL7oo3dZt/jWvSbcPHJi8T1mM+hnrujyK5H8Mn6AQrx5dTvLx3t2dTVPGn0ePAzprm0q67ssxlHAS6mnlCiNz7saN6eerV2cvfOih9Nhxx2UObe8/ZHxb3ot+FnQIzzL9XMv4sakL2y67LE3/ea9AHq5xmNx/+NFs3NOnp9sbNqTHdLnIom5v928zZXtnhlyj82DWrHTb1xuvVTzjWs2rytlGZeeh24mssLpfkteJbZ3Do51dXmn07WMa6eGs+5+77kq3587NjsH7+tLtGN/FXGFsH0qP6WKK4c1GyJ4AZ64RQgghhBBCCCGEEBIIZ64RQgghhBBCCCGEBMAZSwTgy7WmwMDmTrGNIc2MQb2lZL7piEEZy47HiDuPQmlyaHpyFEPO+OotIQyR6+kwtMwpD31eR+TeMUZdKmPpeF/ppG9a6inzdaVDn1tG/ueFX4bcZGd7KokZGnhK5li3kLSde/b2zLFZs/KlNCMj6XYM2WaM50SROh5CDOl/2ehu27cPKyPuGER/xupETp1aOAjf59+EcXsGJMsw9Nkio+7t9b+u7H48dh/gG1e9qWfcZVuxFIkvyjg4pGNR15RtQRAD5/OrXcg9/RT8VWE2i70CISQftjZCCCGEEEIIIYQQQgLhyzVCCCGEEEIIIYQQQgKhLJQQQgghhBBCCCGkIAacsUQS+HJtNyGj5UdWo+/rBVTEVyHEgyGGp0OoX06Ma2LkXdlLfxfJH+nx0DYkfJqGHCcqpCVGDK+V0PxxLa/usvqQPjjbtmWPTZ+ehiM9rXSaYiz7Huol4qqDeeEU8d/x9SwL8cYLpWxPnxj9YJF89Pdq87zPq67K7D7zoYfSnaOPzqZr3lPHt9evTz+fMycbZFdnmOdLiJ9T2X2ki2bxpdFdrsz/akQHV4Jhmm/fFOoLtH0oPVd7y/WIfjdTKU86yTv8Ls86KPc72h35rfJ49EUv9k5LHjLuuX35cWfywzO8WvsS3z7MNzxfXOHP7Zt08NHwfY42q89XXZFto9uzsurrxHYZ4/1Qr7YY/q3yus7ObFyLFuVfV7Z3qTy3y9OLsuzvYoS0Ms0xkiSEEEIIIYQQQgghpAXhyzVCCCGEEEIIIYQQQgKhLLTJCJUe+k67beT03NBpymVTtvzBRcgS9qGyPidajxNAPaWBGl9JUgzVVKy6GltyWTaNbKOudEhipKmM+wyVzMlzvRU3Wl9y113p9ubN2XQN7xzfHh7uENveScxQdh2ptyQ4pI22ggSmmSRtjSK0zw0tXyk11eHL9tbRAqPyGLK4etPqbTQ2MSw4ilwXmxh1sJHSxiJ9cLZ/mPxYgpQHc5kArAeEEEIIIYQQQgghhATDl2uEEEIIIYQQQgghhATCl2uEEEIIIYQQQgghhATSAu4OezZbB9P3n9pnJ8QjoQxvpxgeBqGecTF8vkK97Brl4VHE88J1bPuQCKe9Z3yz03Mp7nrgW76uuuQKQ/pXzO2Lm6ZaackLp2wfurx4J7qmbJ8RSSM9QVx9mK8vYmgfJtuhb9vTYewcFt5sS56SPbe/P93RpoNbtoxvDgzsM76tPddC2qEmRhiTOTckjNhepqXU8aGhdFtVIDl+2LEj/XzGjGwQrnoXkuYifbCM29t3VHgFAgA2bkyvmTc/c0hUcfT25iYjE7eu/y6vzra77kzjXnRI/ome+Hov6TSFjKdCiTEGKTQmc5lAiowo+xlShqdnjLhkmLI7ALL1X7Y1V1tw5XdboHFt7LKJ8X2l3n5xoWmO4RUs8R3HxCqzPcnvzTQ6AaQp2HNqPCGEEEIIIYQQQgghkeHLNUIIIYQQQgghhBBCAqEstMmRU7q1LLRZKGOauy9lTGGOjpinXzWl3jHfu+wp69u2pdsjI+n2nDnZ85ySmMgyiSJyorLjLjNeVzhFJDchku9QuYkmL5yy8ydUelhPSU8RXIon3/5NypulRA4Advbuk3cI88UzpW1oexqe0gk2bd8agdjy/tLzyqX7UoOEwcFU7r9hQ/r54sX+0ZUtvfVFtpPh4Y7MsS6dJ4JduyYddYZ167Plu+Cmm9IdhyzUt/0+/Gj2vFmzCiawDoSWZ6iNR5ssX13WUt/YntYLV7/asUV1hLLdqL4vZFxQxFogNnJcBwCrV6fb8+al27N745RhjPwJOc83rt2BkPtx5Z3uY/o8LVEIIX7w5RohhBBCCCGEEEJIQQyAKY1OBGkKdt+fowkhhBBCCCGEEEIIKRnOXGsy9PTf7u7895++U6tD5WKtIAVyplHoAtrWr88ek1IC57JJfnE5p/079Amj7R25x3wJnQIvV4yTScxIzBQ6D+Qqha7rXNRTjqmLIqswyS/fnu7JSyjKlpy55BrNIpMoW7ZZhLyyKUOa7KoHLrl/5joh28xo/IBsH7Z2beZQx5zB8e0hHJg5tqkzlQ3OdtTx2FKd0HrswretVa00KXFo4OtZd53h6TQ6lvqcIn5Gl5cVWRG6nrYPvnFpZWCXWBFXp6Ovr3gfrLNYPje0tHrBwQfXDD+0nUiLBh23a2XVVkAOw3S/J7sw5xhK930yU7rT8ZSrDKsKMS+8AtRzvJxZ6R3Ze50+PXtunuLV2c/W2a4kuwpufj7Kdq/lr77SRnnfRVYFlpQilRc3N9rZlTmUtxpsV6f/WF3e6xNPZM+NIQttCYseQuoEWwAhhBBCCCGEEEIIIYFw5hohhBBCCCGEEEJIAJyxRADWA0IIIYQQQgghhBBCguHMtSYndLlsX2J7B5ThpZNBma20DaZ+QlWGCdLgY9Wq7LGBgXR76dJ022GA5OvFVHWfIkztlQFxOy6/B18viCqkt4jyKumS9yrWaN86mPV7cC1pL7Nf+wM6PVQCcHlIyPxxxbV5c3b/gQfSbW29N2dOwQTWoBV9cSQhPhpR2nkBQtMVEoYvrjzQx2Q3petgxutP9n3KVw3Cc6qqwYr9OfOyhzL9irxOm1qJ/TaVyBDfSFdfGlpfvK/Tnk2yE5P5COQ+D5yebp4epxOdm3ddm34YODxD+0Ty5/b5p8uXPK+kImXoG7e87epxUXGPqCL3LO9TDh0AYLR3ec24itQDuT9/3uT9PUvxkpJ9QqAvmezrdFNzWt/KG9AnimOu9Ge8vHQYjnGfb98ku+S99soeC/K00n2wKNR24ZUJZLswXdZyeOs7TiobHbfLZy0EV9uW2aqzWFZrfczTmtmb6mdBimvMLR9fB/bnN3RXHs9T44C8uhDaj+v0j30N2bXLOzhCWhq+XCOEEEIIIYQQQggpiAHlgCSB9YAQQgghhBBCCCGEkEA4c60ZGBpK58u71idXuKY+l7JUtEfcvtJJfcxbjqDnakudgdbxbdmSbk+Zkj0m5y275mBHRidfTtN3HXOoFtxIrcLf/pY9dvTRNS/R2SGz0aW81WmU+x2BPY2sF1pSK9MZmj/yfrSUIzjPPfFtQ7HjqrccpJ7Lshfpf2Lgm6+udKxenW5rucaSJel1HVKzok+U6EYq9nvat2ePyTC3CG2RbPSAU3ekZaIh+OZdcN119fGez4Kyn6mSIrJiV/htGx9Jd+SzYMmS7HmiHoS2GVllenvD0u9LkfzxlTy50iWrha9VR73l8RKHMryqacsuQFo76G4kRk8qh2G623DWke6e2tvwz1d53s458zPHgm03BBFUs1lknwtkCq5jTraAOztn5wYj01KGPUeZ/aKOq6tzVGy7z83DVdayDHX2ux5zeZJIV1xVj5r21I5F25dMnVo7jUWQeazzrmzG0jza2i4phHjDmWuEEEIIIYQQQgghhATCmWuEEEIIIYQQQgghAXDGEgFYDwghhBBCCCGEEEIICWaPmLl27PHHNjoJTqZPmZIK8F1mGTGMIQrg8roJ8bmI4ZNSZWYhjRC0KcLixen2wEB+OOK6Qn42OenXRTgkvMLGlqSulQyXF4q0k9NeYE4/MxnIwQdnj/X3j2+OdqZ+D0MqHdJXTadRVklteSeJ4Zvkqv6uMOWxuX3ZY3J/53C27KW3hfSoqLeXjqtuyTwpOx1l+5mF5mu9PeTycPcB6faOHdljsn3JbSDbpvr70zbapvszGaHuI+UxbSST5zemwwg1eolAiF+XrhPbhzvGt9vnLcgca+/P7rvC8UlHaH2M7k8KABs21D6mzxNl31bAbHJY9JkOWz70iCBD+5HQfJVenTJdHe3+4bmypBn7wfb2fH9S3TfJcpPNXpehHCOElsW++9aOS1O2N5jLgrHaa84vLYcvjvwc0pVODr7UQLJrXgyDXj+a5XnrwjVOco0jZbaG+ua5wpdtTT+KZZcsu20AOOigdFvarY62dyAPZzk5vmf6tnNXv6fzYGy4Mm1afpII2Z1o2ZdrW7duxZVXXol169ZhSA0UjTH493//9/H9Ze9dVu/kFeK+r97e6CQQQgghhBBCCCGEkABa8uXa7373O5x99tnYoqfRVNAv10JYfcVq3HbFbWib0oYDlh+A5a9cjhu+cQPu++N9mNI+BT379uCUN5+Cad3TMLR1CFd/4mo8+rdHccjph+Ck1580qbgJIYQQQgghhBDS/NBriwAt+nLtggsuwMDAAL761a/iyCOPREdH/tTYEEZ2jeDm792Mcy88Fx1dHfjua76Lo154FPqX9mP5K5ajbUobbrz4Rqy6bBWOX3E8pnRMwXEvOw6b7tuETfdtKh7h9OnVssUx5Ky8OstCYxM8ndw1P1vmm57q7Dk9Pk82ovd95RpacSPfAd9yS/bYjBn51+VJNHR2OGWhefUKyM0fLV1duzbd1tO6pdJUqEwBxKmuLqldDGT4DqUUOjsjSLYUIe3BJXfQxJYraXzTX3Y6XIRICmOweXN2/7HH0m39m5Cri89T8nUK6QagykK3a6kx0VoUue+S2HvaE9RbMu0bl0sWV7bkz7d/iFJXXbYSrhsN7FxlVZDPBl3NurvDLCZit1nZhjpUdsTuK2I9C0KeL1ryKmWi+jldxnM1jwX98fuDvPxxyY+7OptH2ijHn9IWYObMbB8/V3oE6AYWAV+pe9ky7thhuHCNn5zjV9Vo2nIe4qPqOe16Drna4fTp6barGw/OL2kLIMNQiXLJUF3paOQYkJBG0JJva26//Xb88Ic/xLHHluOltmPLDnT1dqFzRic2rUtelnV0daD/6HRUss+h++De398LAJjaORXzDp+Hxx96vJT0EEIIIYQQQgghhJDmpCVfri1YsABPPvlkaeHbUQsY4JZLb8HK76zE4mcuhmkzmXPuuOYOHHTSQTkhEEIIIYQQQgghhJA9gZacq/n+978fH//4x7F169ZS4zn6nKPx8m+9HIOPDOL2X6SLDvzph39C25Q2LDp1UanxE0IIIYQQQgghpDkxSF6qtPofmTwtOXPtiiuuwMMPP4yFCxfixBNPxOzZszPHjTG45JJLosTVOaMTB518EB5e8zAA4M5f3Yl1N63DWf9xFowxE1w9eXyXRY7hf1TEC6WeuDzRtLdIHr7LRof6hMm80v5c0rZAei8BwBNP5Med57mmz3OWqafvnEx/b282vGVisV1t4Ra6XHkIZXjDuMIMWdG+SPsKoZm8YnwJ9VQK9bILSUcMdg6n6dXtfNu2dHvKlOwxaW+mPQ1l+5J+PNo3qWtYePC4jNt0hZcR5HU4QLYxqEbvW4YufMsmtAx7uvM9g3z7Fd9nQ9m+c4X6+8WL021p9ucq3wLIYKR/aKy+OjfvHOaT+hr5PJZNoUg5uTyn8o7FehbknRurnskylGHIcReQzfLBwewxaQfmHJMNOvqpeg4mtGeZrBjabzKy17EuNxm17OM1cxf1pjs6jYFxx74u61ubvabssYusu04fYkFPZ7Yf6V6UeorpLsblRebrbemyNZV5N3Nm9phv9+w9ZorQ/5ftL0xIK9OSL9euv/56GGPQ09OD2267rep4jJdegxsHseWBLejdrxeP3PkIevfrxf03349VP16Fsz96NtqntWTWEUIIIYQQQgghhJCItOQbonvvvbf0ONqmtOGXH/klzBSDmfvOxPGvPB4/esuPMDI8givfdyWAZFGDp73haQCA7772u9i1fRdGhkdw34334cwPnolZC2aVnk5CCCGEEEIIIYQQ0jha8uVaUa5895WFzh/eOYyRnSPonplMlR3eNoyrP3Q1evbuyZy37f5t42H39vVmjv3hy3/wjm9Oz5zx6byxps/6Tg9ulum6VekQ06yHh/OXf5ZLzEMtE+26NzmLO/Ks/ypZxJBD1ir3583LHpMSTHnMld5qOU4at6+EVqdDouOOnY++8l0gK7XrCVM1ZfKkvTtMMlF2G/KVVZYt6w6WITk0Ym1y2frdyO1h772z+1J1obPj7rvT7ZGR7DFZ59esSbez8hvgKYvEiQ7JnFPyJLalxBUA2ntT6wWpLtRBBKoLS5dTS7QiTO7r9Of1aaF9ne99hkqpqxBSu9F5870uCZX7dNVR1ees44q8NNazzk1EiAS+OgtEGFs2ZY61uXwlZB1BbQktAOzalW7rNiRloZrMvckLdQRC6z5aYCwXJCnXmbdhQ7qt5amhnZpA5oGOWga/dGl+MsomdJwhj8kxmX6WdTnGlbHxHqtUNaL87xpOAmW6eUyfHjU4AHFsNlzyeN/rdnd2n1EsmQwt9XJt165dmDp1KtatWzfhuQsWLBjfvn/1/YXiWbt2Lc466yysXr26cBpDOP/819UlHkIIIYQQQgghhBASl5Z6uXbLLbdg+fLlGBgYmNBXbUT/bFKAgYGBur1YI4QQQgghhBBCCCGtS0u9XDvooIMAAF//+tfrslJnvTCwXtNmfVepclHG9NxQOZfv6js93ZOXjun7zshJHefFkKpJidiSJdljUk6hV+LMW8XLlaYCaplcXNe48lGrPPLCdK3k5Mp/Hf6TT+aHE0Jo2cde1bIIMeIrXR7lWgJNaJDb6q2DiYys4319+edJBRKQlQXpPkD2D3KFUC3L2jqcrirdM5yVhLlW+swrm/ZFh2T2Zb+ycWN+8BEUVFX41k95ns6fHTvSbf27m1y91SXbjyF7bwV5TNmrnU4UXx6ZdLj6Cl1BJaJBFenvfSW7vs/pIuOKPEnh5s3Z8zJ9jm7X8kKdd4sWpdtCFqfru1S+yZVha50raRvcWjtu3RGKCNqUzC76M0p3VLKjDWzoMo133ZU9Jvsjbbsho5a3XeS+YoxBfC0mXGUh5Yx6LFpPGbZ3eKoteK846jlWKdLHyCBj2AKUbbPh+q7RCs85QsqkpV6u7V15S7FixYrGJoQQQgghhBBCCCF7PLvPtB8yGei9RwghhBBCCCGEEEJIIC01c03yyCOP4Hvf+x7uuOMODCm9mDEGX/va1xqUMkIIIYQQQgghhBCyp9CSL9fuuOMOnHDCCRgZGcETTzyBOXPmYNOmTRgZGcGsWbMwc+bMRicxGjGWTJYU8VOp61L12idFGhAIMX+bww9Dp9fXQ8KF73m+PhTacy3nNgulScYdw7aqSNlmz83mQZ7NS5E6KI/l+eTpMGPVzRBPwyJtJu/cZvKrCPLt0GYct9+ef640mWmg51qIr5c+5vpcXqfshDL70n9Hs3Rpuq3tijJ9xw0rswdloIsXZ49JMyCxiI/2PELvPrXjQtazTPsiZr0W/fIxhlfMli3Zffl40Xk8v3d7uqNvQOdDhRjtvAguzy8Zfgy/tGovncmPA/J8w/S+y/POiazH2m9M+mu5Gpgg1O8qFN/4ZPV0eo5qTzHZB++7b+5lsix0OeWdN+FBWTayjw80aIzyfHQZxAYi07VyZbZOrFqVbr/kJdnrtAebD7H8/EJw5X9nZ347d1HPsVDos17ej3yWOVGZ4Pr+EkIMfz1n+I70eucBIXsgLSkLfcc73oHly5fj4YcfhrUWP//5z7Fjxw5cdNFF6Orqwk9+8pNGJ5EQQgghhBBCCCG7MQbAlN3gj0yelpy5dtNNN+HCCy/EtGnTAACjo6Nob2/Hq1/9amzcuBEXXHABfv3rXzc4lYQQQgghhBBCCCFkd6clX64NDg5i9uzZaGtrw8yZM7FRaD6WLVuGD33oQw1MXfNRxhTy6FPPi8whz8E1RXrncH56fZeQjiG50bOsfadWh8oefe8nxvR7l6ovVF7rkqnkKLailJOmjOn3eRKEMtLvIob02VlQDzyQbu+1V/aYo9KUIfWdLL4SZldeaUnn2rXptlZKyf0dO2pfA2TVnl1r1mQPHnRQur1oUfaYlMlVVuMGUCWbkv2WLrInnki3R0ayx2Qb7XD0s94yFc/rdN9Q+R2uZhpHO7vS8B1ysTLqo1TMufLYlT++ciXf56NME5Dfz4aiw5eSXV3/ZfXscI1WZSb092ePBcjNY8iWXXU19BkuJbpOhdnAQP4xrUMUAQ2JsnGVuy6nzP3ohOXoHnd2z85LRvl2JTqNDn8O33KT52n7j7yoNL7p188QKc3v68sPM9TewlcuKdH36dv/ZGXi2bh860gZZPtZz4sKyEB963XZY1HXNb51qVnGa4Q0ipaUhQ4MDGBD5ely6KGH4tJLLx0/dsUVV6A39miQEEIIIYQQQgghZA/FGNNmjHmrMWaNMWbIGHO/MeY/jTF7TXz1eBhnGmN+b4x5whizyRhzqTFmYY3z9jXGfMQYc5Ux5lFjjDXGXBwj7LJoyZdrz3jGM3D11VcDAN72trfhG9/4Bg499FAcccQR+PznP49Xv/rVDU4hIYQQQgghhBBCdnfadoM/Tz4L4DMA/grgTQAuBfBmAD8zxkwYjDHmBQCuADAdwDsAfArAyQB+Z4yZr04/FMB7ABwO4KbIYZdCS8pCP/axj+HJylJJL37xizF9+nT84Ac/wPbt2/GWt7wF//RP/9TgFBJCCCGEEEIIIYS0PsaYI5C8UPuxtfaF4vN7AfwXgJcA+K7j+qkAvgDgfgBPs9YOVj7/OYCbAXwAwPnikpsB7GOtfdQYMwfAoxHDLoWWfLk2bdq08cUMAODss8/G2Wef3cAUNZ56+0r5Lp3t7TMizVVKwGXpJm0RYnjJ6bikP0loOZXhYRA7zDLSKPNy167ssTz1t85/6dtRxOupnr4RIb4oRYjhF+Vs27IRuczxtOdXyX5Ivvcamv8xykpaROluUGaP9NnRnmvS1mj2s5+dPSg7IJ3fIvLtcxaMb2urGLmrg5DFrb2Y5Ln19NDT6ejpTuPbPpQtM2lR19mZ9YHqF+EUsM/JRTcN6aMncTULHUaQF5BC3pvOu6wHUvZYSJnq8KUHm8Pyzt1XR7YCcT1DquKu43PCv14or6qBA73C12WTDTG9T+1hOzSUnz95XoK6rLO2ZyWLanRGin3fZ4g+T9Zj7bn2lMU7050IHYn0KQSytzO3b/K+oK467ep/YniiufoA2cxjPOs1rv6sszM9Vl3/021X8cpyKrvfCB3HxEhXvX2DSd15KZLFUT+nPv8qgI8DOA+Ol2sATgEwH8D7xl5+AYC1dpUx5loA5xpj/sVau6vy+TYA2zzTVijssmhJWSghhBBCCCGEEEIIqQvHARgF8Ef5obV2CMCqyvGJrgeAP9Q4dgOAHgCHTCJtZYXtTUvOXAOASy65BN/73vewbt06DKmfOowxuPvuuxuUMkIIIYQQQgghhOzuGOw2M5bmGGNWiv3/ttb+t9ifD2CjtfbJGtc+AOCpxpgOa+3OGsfHrh87t9b1ALAfgNuKJLoOYXvTki/XPvzhD+P9738/lixZgqVLl2YkorU46cRj65SyMKZNmz4+jbZZZWuhcXtLtgLkYRMh4+vqnPzy1b5yQy3NkWFoSZKcQt7R3hyS0UZO6XZNxXeVoZymv3lz9tjUqel2b+/kp8oXyZ+QvCvSB5SZjuD4dFuWMkWH7sg3X+t9nzGQ6TpwIHtsYCC/fKXUSCpqq2SbYv+vQ9kf5XrFthbfy2Dkb1S6CGXfNLs3e0zvS2LU3djXuWT7rnNd/bNLViP3tdzNJeHKQz9fZJgxpFKhkjzfstZ1V8qitSRM5r9LeiWfE77WFK706vB987Ge0uf587Lhy7GFTr+vLYakiDRQ9lNTpmSPTZ9eOwyX/NiVljJsE/LiKoLT/iOCFFTe91OWhFm4yHT5yiP1ubofzJOi6zBc5Ztn/6HrTtltyreeuep/Vt6cH34RfPsV3++LrvN843L1s0Vk9aQp2WitXeY43gWg1os1ABgS5+S9XOuq/K8VxpA6pyhlhu1NS75c+9rXvoa3vOUt+OxnP+t1/vWfd9WRxnP+5+9rdBIIIYQQQgghhBBCarEdwD45xzrFOa7rAaDWzCif612UGbY3Lfk6+bHHHtvjFzAghBBCCCGEEEIIqQMPIpGO1nqBtR+SmW95s9bGrh87t9b1QG1Zp2/aygrbm5Z8uXbKKafgz3/+c6OTQQghhBBCCCGEkD2Ytt3gz4ObKqculx8aYzoBLAWwssY1+noAOLHGsRMAbAVwp19S6hq2Ny0lCx0dTTTen/vc5/CCF7wAe++9N84880zMnj276ty2ttZ5b2hgvbT4vl4iE13XLNTTnySUPM8XIH/peH0vvmHkeVfUm3qXha+Hiq+fkPRYA7IeHi5iLOVehBAvoJbEZWrlST37iiLh551bpAxdZZ/n5aI90WQWawvSWbPSbZdvmMs7LZRm7Nd13s2bl26H+l76EuLdVeS6icKZbHi+hPpG6udj3jHt6yW9jVz+PqEegL5eRvWs7zpNsl7H8GVyXedqQy5c4fuOf1xlE/qcCPGqqnff1kjfV0no+ESOg7Unl6xPIT6U9UZ7qcn6L+/NZbUXOkYIJca40rf+6348whCQNBc/APAeABcAuE58/k9I/My+M/aBMWZfADMBrLPWjskxfwPgIQCvNcZ81lo7WDn3KACnAviGtdbzm1sVZYbtTZN8nfdjqvjWbK3Fq171qprnGWMw7HLPJIQQQgghhBBCCCETYq291RjzJQBvNMb8GMCVAA4D8GYkL7e+K07/GIBXAjgNwLWV63cZY96C5CXddcaYrwLoAfBWAI8CeL+O0xjz3srm2GIETxGf/dZa+9vQsMugpV6uve9972t0EgghhBBCCCGEEEL2NC4AsBbA+QCeC2AjgC8AeJ+1dsKpltbaS40xOwC8F8Cnkazu+SsA77LW1vJE+7DaP7ryBwAfBPDbSYQdHWOtrUc8k8YYY0PSaoyBvfH8ElIUj/M/fx8u/NZVNY+VvXRzKDGWhpaESl59cU2jj7F8tYtmlEbVmzKkjiH5GiqJcYURu3zLkISVcW8x2qgrDF9JW2j7LbNdFulvXOnYOZyeKyUmrjxwSc/ZF7mpZx0pko4YuORKZcgIYxAyfmjWMYcvzfIcmii+2HH7PgtCnxO+cfvSrH2p77OnDOlns46Xy77vPOpdB8tOf0g7lOcuW74cK1euNBGT2FQcbYz9v0YnIgKzgZuttcsanY5WpiXNfXbt2oUnnnii5rEnnngCu3xNlgghhBBCCCGEEEIImQQtJQsd4zWveQ2Gh4fx3e9+t+rY6173OnR0dODrX/96A1JGCCGEEEIIIYQQQvYkWvLl2rXXXotPfepTNY/9/d//Pd7xjnfUOUWTQ64W6ppa26zyjDLS5TuVPXTF1BApQeh08nqWW4yVwIpc5wojbxW1IlPX3StMFZfxlC2xjCHViVUnGrWqZiy5Ul6dKVJ/QmQSMaSxsVZ3zFu9ct367Hlz5qTbXRvXIe/gaGcXfJCrlAJZaaluh1KGqlcRjL2CYTNJ4ULSEbrqZIx+PcbKdWXIxGPncahUKvQZlZeuMuRnvuOMWNL5kPNc6XJJk7PHVDsf2p7ubNmSPSb7t/YOr3To/MmErzqxvHt19kW6k3QtsCaPZZeg90qHjrtsqaAr7hjyyxhjrRj3XHY+lpH+kLbsIvR7DSF7Oi35cu2RRx7BPvvsU/NYX18fHn744TqniBBCCCGEEEIIIXsafOVIgBatB/vssw9uvfXWmsduvfVW7L333nVOESGEEEIIIYQQQgjZE2nJl2tnnXUWPvzhD+Mvf/lL5vNbb70VH/nIR3D22Wc3KGWEEEIIIYQQQgghZE+iJWWhH/rQh3D11Vfj2GOPxXHHHYf+/n488MAD+OMf/4iFCxfiP/7jPxqdxGBi6fzruTS6N9KcR6PNejzSVIX2tRCeFY30B4jlv5QXnu+91T0P8nxGHL4oGun9pKxWMDCQbpfta1e2p1s9qXc9iFE/y/bKixFXXrwThR/ia3Lttdn9U09Ntxdcd1324Iknjm9u6T0wc6i7O92WFj8bNmSDkJ5u2o/trrvSbdkmAaC/X4ZfX5+pGOFLyg6/jLhj4+urWSQMFyFhVvlpRfaGrDpv48Z0WzaUImF4pkt6gzn9E6vGQsW9yHQ6QtuaPHfz5jSMWbOy58nhoeyXAABr16bbK1dmj51xRro9b75fomR4QHZwoTqxtt5evzDzwgPcZnN59UfVJZdtWwfyzWnb5DjYc+wVwye1jPBD++pQz1ZXmHmUMb6Sz9yqthFAGd6lsT3vCGllWrIFzJkzBzfddBPe/e53w1qLVatWwVqLf/u3f8NNN92EOZ4DHEIIIYQQQgghhJAQDJKXKq3+RyZPS85cA4De3l586EMfwoc+9KFGJ4UQQgghhBBCCCGE7KG07Mu1PYUylnOPjfeUYj0d3iHbDJqmrMMX6Cn1He3Fw693fseYYu8rTytdupSRRfjLQqVaeK+98oOUOKpBIWJIziYbryZUElxGXco715VGrQyX5esr5QiVJJVBPeUU8ryBgex506aJnYULsxcKHYlUIGmk+mnmzOwxWU67duVf10hiyIpj2TKE0CzPc4e7QvT6HkroeKEUCfD69em2VE24MjIUqQ9TstBMmpV2W0obXXkXOl7wza8ZM9JtnR1S7tY2vDN7UJ6sFywTx7zLTctCI5B5RmmbE1kX9DF5bw57FJeyNHNQ6/Yz2n//sVd0hvOlq762MC58peFl97Oh42CZLp09O3ak2y5ZqO+9VXdNtfMu1nizWZ5thNQLvlwjhBBCCCGEEEIICYCvEQnAekAIIYQQQgghhBBCSDB8uUYIIYQQQgghhBBCSCCUhTYD1qYieJdfgqLN08Mjht7dNwzXecPIegz4Vj6nh4E0cXL4NnQMb89+sH5Dup3xpFCpEl4loRYqMbyAXOHF8BMqw5tqpyxv4S/R4etJAaBLLDHf1Zct353DtT0qYnmuhfh0lO2RGOxNuGVLeo0yySq7f5Bp7NJN1FFwefcWqz2F1P9QvyJffNNx8kmOetb31Nxji9RC2nnxze3Lj1uXoevcEELL13Wdrx9PkfhiU0Yflhe+fpbJx6jLC8tFGc+TPB8incaQuGP5ArUtXVrz81HlqRTFa27OPrnhZfLAYYTYSD+krk7PflZ7gy06ZHyzbdGiSadj9NTTvc8NqU+j3T3eYYwq77y8a1x5N9qehjHcXjs8wH/MHeMZq8OQ4//2znK931zP6Ub657Y5/AHlubp/68t5xoaWU4ej/yxjrDv2tXZkxCtoQlqelpy5dvrpp2PNmjU1j9155504/XT/BychhBBCCCGEEEJICG27wR+ZPC05c+3aa6/F1q1bax7btm0bfvOb3xQOc8Nj23HBZ36Pm25/FNOmTsHAvjPwubediKPO+xEWH9CLoZ0jmNE1Ff/yoiPwyucmv6JdfMUdeMcXbsR+fXthaOcwXvf8w/DWlz4FAPCZ7/4FF/10Ddrb29DX24mvv/cUHLDvDFcSCCGEEEIIIYQQQkiL0ZIv1wDAGFPz87vvvhvdvjqGCtZaPP+dv8Qrn3sIvv+RMwAAq+7ciIcf24GD9uvBLd96IQDgnge24gXvuhqjoxavOvtQAMC5ZxyIL77jJDz2+BAOPecHeNHpB2L/ud04+pA5WHnJC9DV2Y4v/+iveOcXb8QPKmFXMTqa6jL0EuGLF+cnPEA7EjolOliOJtBSFNfq5N5IGa3OD7kvZHFV10lNjJblCsnH5s3ZqeyzZqXbHe31W+q7CI2UPMlslWU9u9dxkc5/uT9vXuZQu5COyKL2XWa8CL7yv1A5Qil1RmbE+vXptkMypPGVW/kvP6/aqCxf3W+XoY0ThNSFGJIqZ18aqD0PlvHk6AGrZFm+4UWg7DZaBqFSGpcUyBddZSR5/eLGjdnzXM1QPpu1nMgX336kSkom0rx5c7otn71A6V1FBp3foXmSh28fE2NMVoR6tqlQeX+sMCdLkbhip0u3BVf/EIJvvZOPFp2Ogl/RJoyrVrpi4+rDYtjm+NLI51woY1+/KAslewot9XLt5JNPBpC8WDv//PMxY0Z2JtiOHTuwevVqPP3pTy8U7q9vfhBT29vw+hccPv7Z0kPmYO2D2zLnHbhfDz5zwQl4++dvGH+5NsbeMzuxqH8mHtq4HfvP7cZpy+aPHzthyT749lV/K5QmQgghhBBCCCGEENL8tNTLtSlTpgBIZpq1tbWN74+x995745//+Z/xrne9q1C4q+/ejGMXz5n4RADHHDoHa+7bUvX5ug2DGNo5gqcsml117Gv/swbPOXH/QmkihBBCCCGEEEJI82JAzzKS0FIv1379618DAE477TR8+ctfxmKXZLIkrM3u/+Cae/Drmx/CHeu24KvvPhmd07JZ+u2f/w0rb9+I31x4dh1TSQghhBBCCCGEEELqQUu9XBtj7CVbLI44cBYu+797vM695c6NOGygd3x/zHPtD7c+jOe+7So856n7Y97eyVLY1/xxPT5y8S34zZfPxrSOKTkhApgyJTUhyFnWHQj32Ijh6RAjrs5O/3f6eV4CVeHPyZ9xmPFIUH5do/NS2W4mTO3NJowi+vryfYhCvQ9CvWgaRRFvpyBfDe0HVsAfbIx6+u+UgcvPo1BblhmxZIl3fL54113h31V1b73VM31r4etdF0pwHgtcXiiuY5m4HZU3RhqrCDC7bFavp3p6KhXpj8tOl29/19WZpmNBf/ZYPT2DXOi8kn5mfX1hz8q8vqNIG5Xo/A55hreir2BeOpoJZ/44vD+DPSubBNd9xx4P+eaH69ESw7vUFabrGRuajnp6jYbmR7P2K/2V501H/lcoQnYrWvZr6NatW3HllVdi3bp1GFLOmcYY/Pu//7t3WKcvm4/3fPmP+Orlt+OfnncYAOCmvz6C7UNZJ9C1D27D//dfN+BN51R/UT3xyLl4+bMPxue/vxof+5fluOWOjXjdx6/DVZ87E/vMnh5wh4QQQgghhBBCCCGk2WnJl2u/+93vcPbZZ2OLnmVUoejLNWMMfvKJZ+KCz/4BH//mKnR2tGNg32587q1Pxd0PbMXRL/8RhnaOYEbXVLzpnCVVixmM8a5XHIVjXvFjvGfFUrzjCzdicPswznnPNQCABfP2wv98+tmF75UQQgghhBBCCCHNSXNojEijMVabiDUpxhg7ltbjjjsOIyMj+OpXv4ojjzwSHY65psYY2BvPr1cygzj/8/fhwm9dBaCYJCxEZlC2pKeMadX1lqL4EjtdoWUYSt4S7VpGECpXDcnXULlV6DLpMep/s+RBDIr0D3l5XiQ/YkilYuR/aBghbVG3u8HBdNtXBa0ma2ckf5kAgYw+Zyeyz0rZ1svof3zbaGh8Mpydw+l5Oo/lfXZgZ35kJWjKZfp1uvKUaq5klG0fUHb/WW9ZcQiF7ln+yOtowDEsINqGRd3VnYBEVyDPylWK9DyEjRuz+zJfPduos57l/DAPoMrPwmVrkBdfaBsKzn9ZF3QnI/WZEcret/0Waueeg9F6PqeLhJ+Lvi/Pchrt7Jp0mvQ9yyqvuw7ZvAKcIrxZvnwZVq5cacqLobEca4y9odGJiEAHcLO1dlmj09HKtOTMtdtvvx0//OEPceyxxzY6KYQQQgghhBBCCCFkD6YlZzAuWLAATz75ZKOTQQghhBBCCCGEEEL2cFpy5tr73/9+fPzjH8fTn/509PT0NDo5UXFNX44hp4g11b9p5AOeOJRSaG+v37245Eqhq+KFTnnfvDndHhlJt/UCrB2hvUTAVH99b9uH8iVVPZ6rkcrrqmfi16/sW0EO5aJI3yRx3afv6n1lE7LSmAtXO5ftDgAeeCDdXrw4eyxPorFhQ3b/wH4R4apV2YNipdi1G7Ors8pFlHuGhBRLS6OETEVLSuS+Tm/eCtFFytq3bGQfr1Vlsk+bPbwle1AWTgRZnwtdbnfdlW7LNOp60NEu4nNoS/Vqs1IG7Kt4lfLaia4LeWaVsjqxo5OXdTdznR4UiBttc2mjdAO49tp0+3nPS7fXr8+c1ja2ZN4EVEm+sT3dkRVGV3JZUHqpbrm/aJFXOuq+cqIsD5mnAHDSSem2HqDkVFBnGleuzO7L8l66NBtOd+3wQ5+HLoLzVdY1XYFkfkXQ//mmMSNhBrLlq9ueTLMsT13W3fnf93z7Z9k9uL4XBMsj5b3I9qr3d+zIHjvuuHR70SG5QfqmSz8m1q6tvQ0Ay4QAcEF/BIshlbGjjnLbnTBo0RlLJDot9XLtFa94xfj2ww8/jIULF+LEE0/E7NnZLwzGGFxyySX1Th4hhBBCCCGEEEII2cNoqZdr11133fi2MQY9PT247bbbqs4zZrf1SySEEEIIIYQQQgghTURLvVy79957G50EQgghhBBCCCGEEELGaamXa3sCRfy0yvbECFmaO3QJb9exKu8GiTQW0N4bwqigp8qXoz1nO58i6c8jz4YM8PfE0ch0aL8cl1fDrFm1zwuNu8oPSSxhn7lmaLvaF5FrrxjhGaTzTt6ry7tOHgv1D/L1hCoSZoy4M7iMvhxxeXuoBHr9+fYPZfj4hORrDE9DnfWyaGS7A4C+vsLBV7dXVwMWbWrD6uyhmTPT7Z4nhE+KugHpQSU9KnXUu3Zlw4/R9nyR/ZvuRrJx5yckRjpcbNmS3b/ppnR7//3TbW3PNbtbVCBd1i4ToXkLah7Sz4JhR/DSpsm3bdTdT1JmrM6DgQPTbXmj2nhI3qjLH02Hr7zVxtF+S56ea12dKu/WrE23b7gh3ZaGiTp8VwE3CdXPIYHLF07nt8iHXH89FV+bzjuH2Vbs51dVm/H0pnUivcl0eLJBOzoB3/Gsd9vWnZ1sD57PqyrPNUGof7G8zvW8qvI+9PVgkxFok83bb0+3p0/PHhP3rfPY17tUoqvPMUvTMJcujf+cy7QT1UduGEw813R+747Qc40ALfpybd26dbnH2traMHPmTMyYMaOOKSKEEEIIIYQQQggheyIt+XJtYGBgQl+1Aw88EO985zvrlCJCCCGEEEIIIYQQsifSki/XLrzwQnz0ox9Fb28vXvjCF2Lu3LnYsGEDfvSjH+Hxxx/HG97wBvz2t7/F61//+kYntekIlYRpQiSRhabU502t1nPB5TEthZDT0Fetyh4744x0+4QTcsOILRNyTWUvQ45WpbIUyPg6xHlV8k6HLCKo7NesyR5cLbRqJ52UPTYvlfS4Vm93qSJkkbrS76mqrCKGbCRYRiUTrWUYOZKKInG57q3u0q8cYkjW866ZKC7f+i/rki4mhyIpg6z/Ve1aRiD7MwDrNqTSan3d1Knp9s7+tK3pui/v26Uwk+HVCqdMZN5p1Ve23Hozx0L62VCLgKcsydafJUt8LRWEPL4zK7eX5bFtV3bl9CfF41HWO626k+XkemaUbUXhS1U65uyTpsMhJZNWBW1LlmSOSZuBDte96Ax69rNrn7d4cTbuQPsMLD685rZ8bAJZVavOAle/4ouvjUco//39nvHtmTOPyRw7t/Ov6Y6W28obF7JQTSaNugGIDCrj3lzhZepkaFwyDyKgx1qSHs/+oaodiv3QfkT2dUXG0hIp7xxWNiqyaulmfohDqSwZ7U7r8fCpz8wcGz4p3XdZR0BJUmX7leNeHYYst9m9/uNNWR7bh/LLZtu2dHtkJHtMpmv16vk1r3/iidygCdmtaMmXa3feeSeWLVuGyy67LPP5+973PrzwhS/Ehg0bcMUVV+DlL385vv3tbzcolYQQQgghhBBCCNmdmUhV1xJY2+gUtDwt6b337W9/G6997WtrHnvta1+L73znOwCAc845p57JIoQQQgghhBBCCCF7GC35cm3btm149NFHax579NFHMViZG9vT01PzHEIIIYQQQgghhBBCYtCSstBTTjkF73nPe3D44Yfj2GOPHf985cqV+Ld/+zecdtppAIC//e1vjUpiIQxskNdC2df4nluK14oU8Mul17XJwMqV+WFIUxK9fLvyJQrB16tHeilo7xOXJ5G8LoZ3UYxy0vfs8sDI3rfws9m4MXvi2rXptiqXrs40zfPm5cfd0S7841ReOf09hneOb7e3d+Se5yLUSy3Xg0evAS8L35XJruXtc+KdiBCfskL1zFHJ89JZRh8WO3yddlk02s9Gervo8KQPlPSD2W8/FZ/wGtJVRIavvchku3lwQxqXtvDJ+tRkj8k+TfvUhHhzFiGkfF19mCbEd1ETw2tR1hnt2Se7U21nKctD3svcudnzpk+vfU0oZftWxUCnUdq39vfnt18g6+vVueiQ8e3MfarG5utZ5ptX73pXNowjj0y3tbBjYCDd9q3TsTxC5b26/KJe9KJ0+/vfV4HIDkn7sopj3s8r5c0WMtaq7jfS+6zyrNyyKTectrxG6iBGX+rKK1c/Hhqm73mue3ON87wHo+Lm9HhcWvEV6Qfz6rjsU/QxHbfs43U1OHxxet9yLK2fBTL80DqyIcenE8haV+tj0mJSW1yPZf/27UFJIqTlaMmXa1/60pdwxhlnYPny5ViwYAH22WcfPPLII1i3bh0WLlyIL3zhCwAwPoONEEIIIYQQQgghJCrG1HcVp7LYtavRKWh5WlIWunDhQqxZswZf/vKXcfrpp2PvvffG6aefjgsvvBC33347Fi5cCAB461vf2uCUEkIIIYQQQgghhJDdmZZ9xTp16lScf/75OP/88xudlMkzOprO51VzhUOnTzdKhhEtTTIfpKZBz0WWaM2T3Ne/JixdOr6pJQISXylH3rRwHXWVXMCRJ3IKvC+uJbZDpTpyRr2eDCr39Ux8Ob1crsp+iF6ifcmSdLu/Pzcdmzdn9x97LN1etCi9N9cS7e3tqn4GSkElvnXedZ6U/6E9Wx8zdUalt21wa7qjdQaeuNLoknvm3U+heiZuLpMH+ac5KUOOFqNPcylWfJHdoJZtynRouUxvr99vaPPnpBJpl0RXl4Wsdq4+K/RZ5ouvNNk1oT1UEhlaz3zvW+axLntZHvrepGRU1rvHH8+eJ2WhRcjKnMLKsAy5sMRXuu149GSeZbIduihbGvu//5vdv/zydFunUdaRRkp0XQ4fcrj2+tfrK+fpD8YJtiQQuJ4veeHra1yyvi5543qAKMdDIhP0uFRepoOQces+TPcXZRKjLHzD17QFSGr1Jb79vysd27blX+fqq2U5ufoima+ze/PPc9kfuL6HSEm8tjaX0s/7788ek8N4uQ0AV12V/J86NT+9hOxOtOTMNUIIIYQQQgghhBBCmoGWmrn25z//GUcddRQWLlwIY0zuecYY3H333XVMGSGEEEIIIYQQQvY46LlG0GIv13p6egAkq4W6Xq4RQgghhBBCCCGEEFIPWurl2thCBRdffHGh60563ZUlpCYe0zpmpqYe2jfM4aPUSO+MPG8F7SMgPQx8PcuSYwKZBzo/li3LPyZ/QVAmBqO9s8e3Xctju8jzXdBhtA0LL6OSm1ywf43IhDZlCtUhClH7N/l6SGTypFN5romD2mdE1hGXX8Patem29iORRe/yH4nhCRXaJmXe6R+NZs3Kv65DZmyE1ZGL5IGvn5zL7ENe51q2ftGi/OBdhLSHImWY1w/qMKTXn7YcdP3QKY/JuqvD3z6U7yPTMbgp3XGZynj+4ur0lOz285kq4kflKkNfjx95nsvzzjeMsj3WNDKPXUWo+zfZL8r7lhZQOkwdvnx+jSrPx67O4vng8gLS+E4CiDEWcvVncljm6z0Zq47khaM/f8Hz0m3tX1n2WNG3bUgvOF0HJUXSG3Jvug+TVI3fPMOX7abqGnnjusLL53ZmMJodC8n8kl6KOkjt1zW7t3a9dtWzRn63cOHyDcvgMgfuX1AzPCDrGRrqtdrX1ya2s8d8613os0ym3zUG8fV6Pv643NMwekJ+/uh0jXmwhXp7EtJqtNTLNR+uueYavO1tb8Nf/vKX8c+uv+V+xxWN53Uvf3mjk0AIIYQQQgghhBBCAtjtXq49/vjjuO222xqdDEIIIYQQQgghhOzOGLN7eK6RScNa0AxMm5bqDvS8YTlX2HWszuRNK+7pzpdMVM+GT49VKzpT+UmH1LpozYrUa6hAXHEPiVniPYMP5ofvuTa3S1IipTQuSUlsaUshXPPVHeF3CxmYnom/alW6LYum/3kLMuf5yhG05Enuy7h37HBf1yzILJfbWhm+ZUu6raWThy8WXbi+UBAqR4sihVNSMolc6v2hh7LH5Jo0UlUj5Q06XWXIWbzlrw685XOysAG0if5n61Caj91Kfinlf7rLWtApOj/dEUpJtue9admybHt6XNmV84iqKienNjC///RFXjc05F+GwTJ7j3SExqv7WZl1Y/KbMaRETMrK5s7NnjdjhiMxolCr0i87row+OH9oqcPo8ByFyjxRzQSze2ufN1HceeFrXEMt3/7Bt5+K0Yfp58S8eWm6pOwLqK+sVZb1gQNBwUfB1R9Xjd9y8ke3Q1nlq/o9ebLuoLWOs4LO/0MW1d7e3cjct7Yokfv6keHqf0Se59XHiXCNhfLqiO6n5HNas3hxut3Zmd+GZBbcdVc2jMMXI5eQ9lzk+edKF2WhZE8j7siREEIIIYQQQgghhJA9CL5cI4QQQgghhBBCCCEkkJaShd5zzz0TnrNBz4dvAUYwBdtRWRlIrRDUtUWs9KbnGMvp5E2i83atBKanRF97bbp96qnZY/K6gYE0zK7OsPvUU/iltKlzzvzxbVc2NnIluRhSEWf4nvLXqutEuuYrVeLTn57G99hj6ecuSY/Gd1q6a0HZGFKskPAmuk5O/ZfSVa2Qk/ml7y12vYtxbzofXYrjH/wg3XatNCzDCKyqUSh9FbWVK7P7S5eOb95+7z7j20cemT3t8MVpuh7coOqxQxcty0rKBl1S6ieeyO7vtVe67eo/nfUsT14IZGShMXANEaR8zkWV9E2uCK0bsO9ysA5k29D9p+8KdLJMdRk65TryfnQjlRGUMAbJs3bwdDFwhhdjdWhXmL7ywonSEoJekVgWm37eNstKoq2G63lVhSyQBo7VY9TP0uuxbOh6WVTZeevBkLTF0HksOr+yx+ouGw/5vWNkJHtMnqvbr7SBkH2fDn/x4smPYUOtEGRR6WHMWJ5oy5bdDnqukQotVQsOPvjgCc+x1sIYk/ns2OOPLStJUZg2jUJ0QgghhBBCCCGEkFakpV6uff3rXw+6btl7l0VOSVzuueS+RieBEEIIIYQQQgghhATQUi/XXvnKVzY6CYQQQgghhBBCCCGEjNNSL9fqyeorVuO2K25D25Q2HLD8ACx/5XLcc/09uPl7N2Pz+s14/qefj76D+wAA629Zjz9+848YGR7BlPYpOH7F8djvqP2849o2CNx6a7J9/NE780/UXi5yX+m8tw8JnzJsTw841pQP1dpL/f6jj2aPSS+X1auzx2RSbrghe0x6DmRWKi/gZyNP1bct/TF8JfKuJeZj+3q52DmcH0aw3D/wQnk/2gfn8ceReywGMs/b28Py1bc8ZF0qsny7C+nTJL0EdfnKuLUXh4u8eyvitxFSr/U1XZ21zwOARYvSbV1HZJWU27oLyJRHISMcP0I8WkLzEYsXZ3a3dqY+a7Iv7RrahCxpJnd3dyEE2T+rZGTyX9fBnm6/e3PWu+4erzCqrguo48LGrgrX40Ufy5L6wrV3Zj3iQnx99DU9ohoPq/5Be7BJ5HNPWhIVsYXz9lwT6D6so33y7Ub28S5PQBe+ZVGkzPLO1Z/HePb7ooulqzPfM6ueY5ey/ddi+IGVUW6jDt/IvGF8I/3pQvPAVb7enrayj9H9jfwyoJ/teQMGR7pijOk10tOwtzes7vj6aOrndAxC+4MpU9LtadOy544VlTxnt4Sea6QCVwutwciuEdz8vZvxD5/6B7zwv16IO399J54cfBKzDpiFZ7z7Gdj3iH0z53f2dOJZ730WzvnCOTj1glPx68/+ukEpJ4QQQgghhBBCCCH1hK9Ya7Bjyw509Xahc0YnNq1LZgh0dHVgWve0mufPOSj9KX/WglkY2TWCkV0jmDJ1d39NTwghhBBCCCGEELJnw5drNbCjFjDALZfegpXfWYnFz1wM02YmvhDAvb+/F3MOnFPoxVqbAaZOTbYf3pydPj63rzfd0foPOXdY6QA+/el0+3nPS2VCS5aouCNMPZfTgx97LHtMzpB1zeKeOzd7bP/90215a3p6vSv9cka5jlsek+E7VLPBy1eH5nHedXp1clktpPQHAGb3+i2hHirXkFVwzZrsMSkzk/m/n1JMu+KWkgktZersnLzExCURkHVE5nF/f6DkT9+AzDyRQfo0mQ4poywUt4My6kUeOowTTvCTeq1fn27rWffzZZ0vMCXf9958ZSSufHRJuSWbpy3I7H/lc+m2lDMuWjQ7c56UffXoexnMf05ITjop/zTHo6aulC370tVH3rfud/PQkpi+vsmnWaZRP8v0szMPV9OQ96nP6+wUMuP+bP2UyH5qw4bssUWLJi/bl3nVVaAOZmV3YbI13z7AFV4M+WUZstZclCRvuDOVbrvqUtlyxtByio1+Xsk8cY0ldN7JtiL71vlqLFc2sfNOhyH7GJfEvrs3fbYNd2efc05pvjjWpWTovtJtSbC1g+MaX9msfsbmyePnz/NPU9mybvmck9/fgHTcqp+NhOyu8OWag6PPORqHPfsw/Po/f43bf3E7DnvWYc7zN63bhBsvuRHP/eBz65RCQgghhBBCCCGENAR6rpEK9FybgM4ZnTjo5IOw8W73z9aDGwdx9UevxmkXnIaefcPMmQkhhBBCCCGEEEJIa8GXazkMbhzElge2AAAeufMR9O7Xm3vuk4NP4qoPXYXjXnEc5h1e57nchBBCCCGEEEIIIaRhGGtto9PghTHGhqTVGIPz/+f8Qtdse3gbfvy2H2P6zOkwUwxm7jsTp731NKxftR6//+/fY8fjOzBtr2nY+8C9ceYHz8SffvAnrLpsFWbOnzkexpkfPBPTe6d7xXfr/7sPX/zIVQCAXbuyxwYG0u0nn8wek6tStw1uzRx7cDCdPSe9IUL9crTXQcjMV63R3zqYvtvVfjZr16bbMg+0z4X0nymSpti+IGV4rsWO2+X75FoCPtSrIc/Do2yvGxehnllRytBlpuYyJ/REp19G19Hu7y0iKbvu+iLrbsfw9vwTC3Rwsf3kZHjSXwYA7ror3db9lNyXfV2tc/MI9YOMQdltyDf9ZdTVvDJ1ev8ofJtzaBlmPcV8U5VPkXvzpWyPLpk/Ov3S00qOHwK7WScxnldyXARk0xn7eajJ9IlDqp8VhbgTHXmHSm+HLsrIn5DnRJE+99FH0+3p4iuDq35WlY3E8QyMPVbU18nwlWVfpl3qe5PHZD+rbaal96p+xsown3pCc4xbiiDzTt+39E7Ouwbwf4bEOC+EZcuXY+XKlX4G5i3Iso4Ou1IbX7cg5v77b7bWLmt0OloZioNz6JrVhXO+eE7ms4UnLsTCExdWnXvMucfgmHOPqVfSCCGEEEIIIYQQQkiTQFkoIYQQQgghhBBCCCGB7BGy0P4j+ic+sYHM6ZmDm6+/ZcLz9DTrELnJ9qHs+1SXikpOV3/88ewxKUmVYbjko0WmGMeQMjVSjllmOkLzRpYnAIyMpNtz5qTbvtP+JyJEBrNjR/bY3L6409xdNIsEsmyKSGNbIV99JcfNIs92XVeG7KiehErKQ/sY33T4EipRj4FvHdH9uLSL6FdDHSmdktu6j5fPbS1JkuMObcsgj2mZlkQqZfSYI0/yBIS1DS1pk7LQadPS7VmzsteVYY0gidG2S+nDRCFub0/tRLpW/T573tKl6bYe6EXW2JaR3zGeV6Hpkm3KJZGWbaNsm5MYdh+h4ejqs3lzun3bben2VVdlz5OyUG2h8Oxnp9snn+SXxiL34urfZLnFlmfrMGOMMzS+FiKhjMW9fPkyykJbAMpCJ88eIQu9f/X9jU6Ck/PPf12jk0AIIYQQQggh/z97/x7nV1Xf++OvPZl88skwGSY3MoSAYwgQMEDQANGijS1aVGwFsV7qBVuL9mit1tpqv7a156inPW29tPb87LH9amsVvPOrVDmVVlSKqKFEjRIgQJCAgYRkSIZkmExmf/+Yy3qv9+ez3ll7zdpzSV7PxyOPrD1r7bXXXntd9uxZr9cihFShKPIYn5I5z+z88zchhBBCCCGEEEIIIXMAflwjhBBCCCGEEEIIISQRrl+cQ2hbixR9fVcz3mNAbgsuw0DYq62KX5dV/hR/kjq8Dqwyha6n88hdxlRfhR/8wD+W/hUbhLpee1l0d0/dA8Yql/RZk/5BucjtlVSH54WVR93txypX7LWlp4zloVSF2GunjjEx1z1aHrFeLhYpfUh71kgsPy0dJ5+bHNP1PJFK7BhpnTOd3n51+C3FEpv/8uXhOF3+rmb7sHUt/Z4hfdV0nPQhstqkbFt79vhxvb1561V7Bq1aVb2PzgXP11RaxrevfGUyvOuZvzYZ7lv/LC9dbl+po5UrhVRvqtzekJY/sm6foXy0x9eBAy68aJEf12V4J9ftO5ryfiV9EAFgx472cfKegdZ6laxb58K6HNYcGEqnx6nt28Pl2LTJha1nEUsdno8SXX75u8A5a9PynK0+sITMBPy4RgghhBBCCCGEEFIVeq6RcfipmRBCCCGEEEIIIYSQRPiJdRZQoJz6cm2lyegQX89Tl+uGpJ8VioHOzrzfb3NItjTTKSdNlRTGYuVx6aXGtQf2uoMh/yGOdp8UPM+SHMRK5lYImVOsRLFKnLxelToO3Vsu2dp0tk/rurGySqu8UgqamofFdEoO6pB0SnJIV6WMA/DlnWvW+HE93eH8YyV5qfUfurfZJL+Mrf/ZIvOrVD+ReiiZTMvWlvSGr61lou3y0/T2huMsUuVtKeNPHe8EqXlmscgQD2RgsOFF9b7SSUFXX/8lF3HZZeoKGfRuBjkknbFtpO55qGXMlR1C9Y2OQL9sNv1ryTFeS0Zl2lj7kpmUiOpxQ85ZMk7eMwC85jUuvHFj/LVjFxPJsW9lnx8n7VH0/Btto2CMx7FtK1biauWn22eKFJQyUELCsHcQQgghhBBCCCGEEJIIV64RQgghhBBCCCGEVIWea2QctoLZhrXNkIXRoa3l0nJ5uV6CLY919n1iybSUj8pdf3Q6fSvDI64s1i6jMT8/WtqZXMJc925NsZjX3rYtHLcsLAtNvl4kOeS2qVKRFLlYajvzl/qnSWJSZTB11F0ozhre6t4hq25JtnWtaGmy3qJMVNDgSNdkeNUqP5nc4bclf1npSus/NOIkYnIM1m3QmgtkljneK6d7jJwt47OF1YfksZYyhfSZWorWsJ6byGMEvqRQXlvKPa12EPtKA/jvJ1b7zCHtrXs352m1AdC6wdtumwwukVuDA3h4V89kuO8lV065HDnm7JbzRobDcdP4y6wsv3x/BVSb151UbjWp/Vbk4G14sciurB9vLDnGuhzvOBo5JshxRM9z8+bFXStHP7Qk8OesTcy/sxGOiyS1uafsqp7rHWy2zquE1AVloYQQQgghhBBCCCGEJMKPa4QQQgghhBBCCCGEJEJZKCGEEEIIIYQQQkhV6LlGxmErmG1YhiTatEB2Ym2YJr0bDB8HGdWn/Fqk94G+dKiY2iNBnrdrlx8niyxtJ8bKldcHx6q6VA+GaB+luYB8cPLBw39uKsprP6meZVb9Wz4jPRW8e2KulUoOj5kcPhqp5+TwIrPuU9rPaE/GdevCeYa2nE/1Zqvb0826VjS6g4nO17Ns2WR4tLML0RhzSjOy3cliaTshSR3jYMpzssqRw2tousd7eT3tNyZ9iFp8oJrt20ml8svOp+bRVO+nWLqaGXw1QwOJItaTKLUc0+n7+pMd/nNfc8kvTIYbt/yHF7fykkvE0dR/Jdi92z9etMiF5Xud9U7WwubN4YRiEhkV7T3XGJDU73fuDB/rl91I9Pv5VKnkeRf5rhv7jqOnuRCtvxfEnWeRw59RI8ddOSbqqTdyKEomdYyJbePWeC+fzZz/fYiQKUJZKCGEEEIIIYQQQgghifDjGiGEEEIIIYQQQgghiVAWOgsoUUQt523ZclyuMdZ6KyEhkuvJdR7Wda0l2CGZhD5HFlEvkZZF1JJRGWdJRGOXQevlzLKcjc7p3ZJcEis3SV2KHy3NXHVaMK4vQX6ZC9lcdfuJXcoul+xrSVusPCF0XU3dcrRUckghYu9b5yHlu+cZMlCdf0gKWqX+p1OKlQU9xgc02dZ4Vsc9y3rVcmx5vZmU6OaQoceWa+9AOI8lvWl9yCqHREolx47D+WRpC2ISbyj7iZXd8uIzOFFYJOivZrJ95kBLLuUwctqmTbVee/Fi/1i+mkr3Cf1YpJxU59HwpMnq5sRxqrQ3Zd7WxZA01q71fyBfNCK11Pq6Wg4eS6jtVmnjuaX5Vv493e48/b5wcMil0044vb0zJ9sPvafqcjSMoSiHpDy35FWny23Xc0xCzzUCrlwjhBBCCCGEEEIIISQZflwjhBBCCCGEEEIIISQRflwjhBBCCCGEEEIIISSR40Ic/IyLnzHTRTBpNhcG43x7Bv9baFdTPD69Z7UU/gsNeBXvBGvb6JA/gPRE0Odpvyu5u7q2jNuwwYWlfYX2nYjX/de7RXUOLJ+FWJ8gnS62/NrzTrKyr16vsFg/LdPjxBjJUraA12Wpw88p9rzY6+UoYw6q5C/LrJ+vfG7SN6+KR2JKnVTxO6m7zjvWr3cHskKUbY9VDtunxoWlb1vdY11qG7Hyie0LqeOsnIv1fCh9gixm0hPQn88rtGl5s9IMVZHbFygXucul+1DIY6+Kr1fK/K7zk8fr1sX7Z8XmH4sen89c0z7dv93kl+OGG1z4bW/z066WL4/afDXwfmv1tdQxXqaz3kda+lffynDiwLViy3G082KRecj5VlO3R7H1nGSdHz6cVIxaCNV/jvc6K3/rvDrG2Zn0DZ4TFAU91wiA4+Tj2ob3bDh6ohlkxz8/MNNFIIQQQgghhBBCCCEJHBcf11LYesNW/PiGH6NjXgeectFTcNHrLsJ9t9yH26+9Hft27sMVf3kFlp+xHAAwtH8IX//zr2P3Pbtx5i+ciUvedMkMl54QQgghhBBCCCGETAf8uNaGI4eP4PZrb8fLP/ZyNLoa+MxvfAbnv/R8LH7KYjzv3c/Dt//3t7308xrzcOGvXYi9D+zF3gf2Zi1LtFRnz55wXBUtnEAu/47dpluWF/DLPKTyuER8g9TnSZWrXGVr1oGhK9P551i5G7sUPHUpdYpcI/VadUg/pYxKSmn0s1jSG3ct/cxyLMWXZTxwwI9bvjwuz1hZax2kPO8q56RIOTSWokei5SYyzzqkKLIeYp9hrLTLkrMMKUmnrBNTkifoaqp0W7e68KpVXtSOXUvaFxjG89AaftlpVZli68SyGYiljv5ly7tcWI9bQfQDNjrASGdX22tpctx37HxeBSk5luXX9+JXQdr8mCIP1shHs3OnH7dmTVydtMjRAs+3yjibMv5Y7xk53jnq5tJL/eO//3sX1sMP7rzThc89N5hn6lycUv89auz86c44S4sTTvDj5HvGbGH7dv9Yll9LjlP6b+ocK4dPPXdNt9w8hlQbgBwWIjnsLFLzr+N6hMwl+HGtDYcGDqGrtwvNRU3s/enYx7JGVwMLuhe0TT+/OR995/Th8Z89Pp3FJIQQQgghhBBCyExBzzUyDltBG8rREiiAOz5/BzZ/ejPWPn8tio5ipotFCCGEEEIIIYQQQmYZx8kWHmlc8LIL8JpPvQaDjw7izv9759FPIIQQQgghhBBCCCHHFVy5dhSai5o4/Tmn45Ftj9R2jQLlpCa9io7d8/hZE9jv/Ch5Wj4IKf4A1jk93WHd/emn++dFe81Jtm3zj4VRREOafgHA+vUuLM0bjCW9sV5qLT/fvDmcv3xuykQiVJepfjnTvTW33I5+2TL38xb/LPGcOlT9pNxrFb+KaB8lgxweXRbRz02ZR412NmorU5U8pTeNNcZM9zbvofMsn5RUvxPZ5jureE7JZyrDuuHK8U17ru1w4aVL/dOCfpa7dvkJZQeu4OEp85TjQRVS5q8qfTLWzy/62Te7/B+IY+3vFutDl9vXMXUM0OWXPpVHjriwbC6A7bWYYwyQ5w2P+OWXTVl2DeOVqcU2T3ocrlisKmFAJDZuNPU+Q+fNdR8jXf7PXefCLW1wmzAmq/COFsT0lGw/b+r8dfll29LtR/YbyyssxSPUKqOVh4Uuo6wuPQY0En6LtMbBLvEoqtxLbo+xXN7JSXno31duuWUyOLjplyfD8lcLwG+DZ67JPz7kGMMIOR7gx7UAg3sGMfDQAHpP6cWjdz+K3lN6Z7pIhBBCCCGEEEIImS3Qc42Mw1YQoGNeB/7t/f+GYl6BE08+ERe/7mLc/537cev/uRWHHj+EG//7jVi6eile+KcvBAB85g2fweGDh3Fk5Age+O4DeOGfvhCLT1s8w3dBCCGEEEIIIYQQQurkuPi49tXf/2Kl9CPDR3DkyRF0d88bOx44gK//yb8AABYvb2Lx8vF1y4cOTebdu2QBsMTtJvqdj/5H9PWW9Zw0uWw21/btKfKB1GW+OZb8rlieuMx9ZNgd6DXScq357t1+nNCEjPYumQzr5fzyjxDmHyTktbTkQC/xlvT1ubBai59b9pEqQzSXghu6Jim38q6tK1nWl5acpUg0tOZAlMuq0y6ltEtZAl9F9jidsh5Z5fo+JalSi1Q5S2yblFKvXH8YTKn/aZWGAPED0Lp1k8F/27zEi5LdYeFC41pSP2r0oSrkkD7H5qGLLIktfg5pkdXGdTlkv5RT1PLlafO5Vf7UerTqVbYnOYxrqW2qnDqlv+k6ltOqld/+QXftFnWneFBa9tshNbByrtfzfv/q4LXlfWtFtnxFyC19s8pRhdxzWUt+YnxDf78X1SLDjsGQ76bO9ZJUu4kc9ahfP2V/aDbD7yPyfnT1LFiAOCIHYd1HvfHCe6f03/9i6ydVulq7fFEWTI8PchzRD1GMP3KavuEGP9nVV7twlr6sytgRaQlBGSg53jkuPq49+I8vrZR+x8MHcPk7bsTWiuelcs1HHpiW6xBCCCGEEEIIIYSQvBwXH9eq0r9yEbZe+7KZLgYhhBBCCCGEEEJmK/RcI+OwFcwCrN1C69jZL0d+ctWyv+w8Pv8cO6DJHRE7Lr/cj7zxRheePz+Yh16BLbF2LfXKLJev9/qyrI61a92BXm9vbaNWM6FnqGWDZhs0ZJuheu3ZucP/wf33u/CFF/p5NE8K5iflMiZyabuWpIql+Ppegrsn3nGHn8fJJ7vw+qcHi5FF0qP1DvJ+dJxohzKqyhiTY/xJlcbKOCnr0Ne1dlzMIfGZEwi5xqWXxp/myerVLqMeomLrqKscfUNKiw4OhfPTu5bWvQOjNc/Jtvvkky6shykp56rCzp0uvH27C19yiZ/OUh8Hd5RVdItdcPV9yiF4zx7/PKnyi9251UKXsbc3zsJC7maudxy9+RYnPdy3zz/v5fLvsPLmWm40LAuVZf7CF/xrv/rVLixVWdO9W6hskzl22a6EeIfaO+DXT7donzl2/k21LsidRy4spabEL7NfXvn6bEm+O1LnCTk4yX6z8Vnha6k6tu4zdmdwK7+UXVFbyiHfMZedFEw3tOw077jrKjc3C4E03vc+/7wf/ciF9fuyHN90fci0cnf3KjuDW1x//dj/lkMOIccSc/w3CkIIIYQQQgghhBBCZg5+XCOEEEIIIYQQQgghJBHKQgkhhBBCCCGEEEJSoOcaAVCUZTnTZYiiKIoypaxFUaD87jU1lCgfb/zIDvzdp74GoJov2XR7bswGqvg4dGz7iTuQvl4AsGiRC0vzLu07NO3mItWxfChy+IWk5uflI81/LNMdw+Mh2iclcjv41PxT/aFi687s1/re5LE2asrgl5HFJ87IL3Z8s9p4HdcOpbPyrGM8DpVL+6kcOuTCixf7cZYP0cO7XP6yuVQZ9nL42tU9l2Xpe4n557i31Pyld5gcHrTVZ0o/rFIOb5zSY5hobLHvOKnvQqneV3WP67FzeB1jUUr5Z9O7aA4/s5kcf1Labmob0V6Ckhx+dRY57nM6SX7XrZnp7OdViMn/oos2YPPmzUXSBeYAG3p6ys0bN850MaZM8fWv316W5YaZLsdchrJQQgghhBBCCCGEEEIS4cc1QgghhBBCCCGEEEISoTj4GKHupdrW9WqXlCSkA+Bt345ly/w4LaELkFtWmSP/KuSQ7qXitRGpOVOapNHeJS7dyLCfiXhOHVqrFpJ4Wp4HWpLkaaV6gqfF1knt/VDfW2Z/h9Tyx0oVqshZUsYYq1yx5JBW52LHDheW6nUt65NdowG/D42iEcxf5impUqepzz43sfPLwaFwumYzbY7KLderMo/WIZmOzV/GmeVIHKdCeabeZ90S3dQ8cvebuiVtVcbI6ZTMHUtWKbnaiMwnx+tC6hiWMk/MpDSzyhwo5xTLUqFOyWUVUt9xrHTS+UW+twDAhnGB4eix0z3bUxT0XCMAuHKNEEIIIYQQQgghhJBk+HGNEEIIIYQQQgghhJBE+HGNEEIIIYQQQgghhJBEKA6eQ9ThZ5O6vXfdPh2huGTPJu25Fonl1SOl9TI8kx5NdVPFh8JLq02iQnl0+v5QI013rO3SujoTvDlU/h3d7sGlen55+SX6f8X6kZh1bJl9ROZRh5dRjntLGSuOlkfK1vRVfHCmei0A6O+PS9fZKfMPT+st5ZVGKcIXcbjp+w/K8a0OT7q6/ThjfYfq9turo41byHu1huDcfc06r8N4ALm961Lz0Pc5OOjCPd3x7yAhqrzHxJYxh/dk3d5pqfWfuxzW9abbly+lTnJ43lm+YRr5apF7PNZpc/i+5qBKOwi9euXyWMvxnpHy+2OV57RqVfuwd/6x+6vRGPRcI+Mc602dEEIIIYQQQgghhJDa4Mc1QgghhBBCCCGEEEIS4frFWUaVZcSpUqMccSnnWFKL7u6077w5yh9bj5GquxmlDqmIl4fWZsp0kcuhqyzfl5cbGvLjuhKkCqnSwDpkKnX3r9ySszrkODnaZ+5rp0oyrDxynGeOdTvucwe33OLHbdzoDtas8U8M6DesnjzdsvfYOtk74NJJtSvgKV6DkpWjXSu35MZKV6WOc8h9ckvOqpDSnlLboJxPduzw85BdQ9+XfD8xx4ebb3bh73zHSzf67v8nrpDbtvnH8sUjpBM/Cjnk8SnXsvI37Ql2PewnlnWixrAOq0OHUO8x8t2l7vmwDvlujjxT32+nU445U+8ER7t2qH+Z54wM+z/Ys8eF+1YapQyXyZKvx+YTaxNSx/vgnIeyUDIOV64RQgghhBBCCCGEEJIIP64RQgghhBBCCCGEEJIIP64RQgghhBBCCCGEEJIIxcGzgBLFpOY9xxbtgG8p0dmZdwt7Ter24ZbPWopfVN1eDXXU3UyS5PFTwU8glGdLPfqN1YtqNjtEOPrSwXJU8ROqm5S+XaW8ofyn+55z+5hUIfbZ5/YZqcWPxPA79LyYDF+m4RG/Hvftc+FFi1y4q5nm15LDry61vUhfNRmeSv65+2Udc1Tu8S11jJHkus9Yz7hY5PSi7Qet/E0vIxkp++jJJwfzN59TX1+4YAY5vPFivdl0frFjZvScp+sgsU6CZPBFyjHWaer2jo29Vuq95R4vU8eKOjxPY8+LLodug6KNp47j3d3Vy2iR6u03m96zpxV6rpFxjpMWTwghhBBCCCGEEEJIfvhxjRBCCCGEEEIIIYSQRLh+cZYRK4E8GnJlah3L1everjwWawm2jJPKDcCXGMau4jWXSEs5iJJvDY50Bcsh5UupsseZJLodyG3Ht2/3I2V9rVsXl4c+z6g87zkNDflx4jwtmZNJ5XL7Km06h1QnlVD+qX3Zav+p8vVUmYFVrqleeyafmcXewcZkWI9ZlhxE0oDfh1YsdxnlmntiqHKt3JJd3c8lul7rthNI7TdTLocaB+XENLrspLg8ppnUd45YyZYV19MU/eajH/MvKOvyLW9xYdWYouVilqZ5YMDlp59hpHSyDmlXjn7iXXvbT/zIL3/Zhc8914/btMnl0d3j8rDa6pYt/vGqVe68ZcuOVtS2xNZd3fNLx+bv+T+45x4XvuACF1671kvmlf/aT/t5HDniwq9+dfjisk3ql11ZRt125bucaP8dVl8wqKONT6fktWNwv3+8das7EP18tH91dP7Rc6d4Nh179vgJRT9Jzp+Q4wB+XCOEEEIIIYQQQgipCj3XyDiUhRJCCCGEEEIIIYQQkgg/sc4hciytrSKFsK6dskS6Sh45llZL+Y+10V6WJcvyrxXqLxdSsaXViyl/5Mi1E8/egfbn6ZX4WSRhcnm5XmpuyDC8e9WVJY+lzGDnTj+dIU+QS+wbSlbT2V1dsqXrSra7Ruf07jabQ3KWsntcrh2mUnb/qkN+kGOcyiEpkf1SqMNajrdt8+M2b3bhyy9veHGr+wOSy1tu8dJ1yB1IhTREc3DIL/+OHe5YSle1gk32jdSd8GLrWA8PEmOj1WTqltTGynHkszlwoMtLt2J5s+05ucidZ0t+UtYqpIGAshPYtWsyONB9mpdO7l6+Y4ef/ZlrxFxz9dV+5N//vbt209Vrqjz+n/7Zf76vfYUov+hEe7HES7dHuC1YO6Hm2Cmwjl11vblSSRbxm7/pwloD32zfdrX827NK0fYTkS9iqbtbx84hsXO2jpPvcpsHLvLi+s51x+etUdYagTwPXvFrwXRd1nu8tPxQ713DG541GZa7VAPAkyLcKx5FT81ywrp3fK2026mUgt52mx8p2ud3dzsp6L9f5yeTil1jmraRv6RUyMS614mmINXFhBzLcOUaIYQQQgghhBBCCCGJcOXaOLseO4i3ffBWfP/O3Vgwfx76T16ED//uM3H+q7+ItU/pxdDwESzqmo83X/U0vO5FZwIAPnnDXXjn33wXpyw/AUPDI3jjFWfj7a88DwDwrTt+hrd96Fb8cPteXPc/fhFX/WLYeJIQQgghhBBCCCFzEHquEfDjGgCgLEtc8fv/hte96Exc9/5LAQBb7t6DRx47hNNP6cEdn3opAOC+h/bjyj/4OkZHS7z+xWcBAF5+6Wp89J2X4LHHh3DWyz6Lq35hNU5d0Y3TVnTjk3+0CX/56R/O2H0RQgghhBBCCCGEkHrhxzUA37j9Yczv7MCbrjxn8mfrz1yGHQ8f8NKtPqUHH3zbRrzjI7dNflybYOmJTaxZdSJ+tucgTl3Rjf6ViwAAHR1FpbLk8Pc5Wj51XjvVVy32vCoeCZ2dLq32EfPOk2YfNfzVQV5LlqmlHIpU/41YtHXJlPO3jO20yZJEenPoPGKfh+UTIXx2WvI3KiFHH9LPO4WZ3MY8xbct1WsoNV1uT6vU/HP7tehry7glvQim27DBj5PNP5qNG/1j0Q+t+tCekto6KYXYet0/6MqlbRZlN6/DV83C8uDxhyMXZ/kzprYz+Wz0c5pWjDE+tq9pv9Bm0/msHdjtp120yPkM3rjZ+axdfrmfbutWF16/Xl1Q+oRqj9C3vGUyKL0Pe3v9Msq4Jb3hfm62T1FX+p1GH0+VKu8csc9N1sGAeoamvZOo89hrma8Oie95qR7FsXlKYjysJpC3s2lT+FrDEJ6bxqtW8vggvexUP5dj2vLlM+dIlOqJFptW3rb295RxZ65Rz11OUsZDvECEzz47nIUmV3tNOWfCz3LevMqXIWROQs81AFvv3YdnrA2bqkueftYybHtgoOXnP901iKHhIzhvzZLWkwghhBBCCCGEEELIMQlXrlWkLP3jz950H75x+89w108H8PF3PwfNBaxSQgghhBBCCCHkmKco6LlGAPDjGgDgaasX4wv/cV9U2jvu3oOz+3snjyc8177zo0fwot+9ES941qnoW9oVzuAo5NoaWsompFygSn6yLLFqvVTpaux9x8qmjpY/tmxx4c2bXfjSS71k+5e5jSgOHfKzWLSobRFb6Gq6crTc19CQC6tK7pBr8yOlM1Web+wcEC2LUxl6z2bbT1zEhz/snyjXzr/3vV7Uv4lt5bUUQspnZBtf3d8MJ7SQzwLwNSziWYz25lmdGmy78rqAf+NaryElSomS2hxyRqsfxrbX1LEvNo9Uead1nqzykRGXzpLVmGPYrof9tLJhy0ylTA1Axy23TIYbSov5kpc4uwMtU7n1Nndt2ZRWrWp46ZqiKeVuL5rU9iMlMZY8pmNkOByZ+GKcKk3OPgbnkJBrHbFsNFoSaVkBhNAPRxx3qLjQfVsSSKvvSbXVjTeGi6WH4O7ekybDO7b7cWvWuL5ivWtpmWgIrciWUr4RMUXpttOZ2Edjpf/DYnxL/f1R1o/1DOueC+rAqp/ctgbm+KauJcslyfUNINR+Rjv9OUS/XkmiZagyE/1CKDPRFRQYp/Q7qyT1dxlpBWK9eur8dws5++OP+3Unh11ZZD1O9XRP3WYmlir9ayatTQiZCSgLBfALG1biycNH8PHr75z82fd/8ige2OV7ru14+AB+769vw2+/bJ3OAs88dwVec9kZ+Mh1W1viCCGEEEIIIYQQQsixCVeuASiKAl/+8+fjbR/6Dv7sn7ag2ehE/8nd+PDbn4V7H9qPC17zRQwNH8Girvn47Zeta9nMYII/eO35ePprv4Q/vHo9tj0wgCt+/+vYd+BJfOXbD+BPPn47fnzdy6b5zgghhBBCCCGEEEJInfDj2jgrl5+Az33g0pafH/rWbwTPufrys3D15e5D28rlJ2DX114DALjwnJOw84Zfy19QQgghhBBCCCGEzDz0XCPjsBXMAgqUk5p0rWOP1cnr86Sl2AknuPAFF/jpYseB2HSpXh+ppHhxAPC3DJfGCMrLqAf7J8Pdy3vC+Q8ddAe6sixbmkizidx+CZpYbyrpC6FZsVh5xsl6WLPGhd/2Nv/ErUJKrbwxrG3lgx4z2ovDMiiRphXawCJgmFGlHyb5UGgzGll+y7hkmif13D5QOdp1ah4p3myAX+VZ/LP6+qLSduhxY9WqyeDwmnO8qBGjyUh7NssDKZUcY7ykih9bkAr9JFj/Vfw9jfNy9KHsfmyqDQYNf4Cw55oeg+WxjpN5GGN1jvGh2XR1pT1Ur7vOha++2o+T01eshWeq/6OuYjktWX20bi/E3NOLLu99O9y1dRPsGnTvZR26EiL9aHNQR/3U/dwanXH5537H1Hl0iSmrpW9IH8whw1hQznvRRm1t8qmR1HeJ5cvbhzWyen72Mz+ury/NFzHl2dNH7fimKIoOAL8D4I0A+gHsBvA5AH9cluUTkXm8EMB7AJwP4EkA/w7g98uyvL9N2hMBvA/AlQCWArgXwEcBfKws/a0mi6K4GcDPBy57YVmWmwNx2eDHNUIIIYQQQgghhBBi8SEAbwXwZQB/BeDs8eMLiqK4tCxL8+trURRXAvgCgB8AeCeAEwG8DcB/FkWxoSzLh0XaBoCvA7gAwN8AuBPACwD8bwArALy3zSX2AHh7m5/H7V45RfhxjRBCCCGEEEIIIYS0pSiKpwH4bQBfKsvypeLn9wP4awCvAPAZ4/z5GPtI9iCAZ5dlOTj+868BuB1jH8uuEae8AcCFAN5aluXfjP/s40VRfBHAHxZF8YmyLB9Ql3miLMt/Tr/LqcGPa7OAEsXkstxUyZk+75JL4rbfTl3CnHpe7jxSkdvbN6QsResRhEzFXAZtLFG37s1aAS+X89e9xby1jbysnnvv9eMefNCFn/lMf/twed7u3S7u4pOV9EfqlqVODUBjyMlytSRydNlJaIuSFpn131ziDvqWeHGhJ5pa37ocIUVVi4xDPhBL4ppYDkkO2V0d7TOHZKXu83KMYVYb8fqlHm+EzH3XLj/qO99x4Qsv9OOWYK87GBJ5aom0aHej3b483qofmY0sclczrZ1N9zwRokofsohOK6WUahzskGNCFalUCD0wBRuhOpbpdDlkmaXMtF2eglD9mGOMbrs33TQZ7BL1+IKrfj14XV0FQnWNnTv9uJBMdMcO/3i1SGeNs/raUgUp5XN37/Dn2zVr0sbI0LuFdiCwJPA5xnhTbrtD2HWotqXHoxCp8ulYaXiOa6fmn3JtS9qekh8Av/HqhiwazeCQ33YHBtxxb68L9zSNMhn55yCLNFbaxQC+7YwcVKDecQb2enH4Z/eNYOTqt06G9Rhz8skubLmLWNRtQXNMc/x4rr0SQAHgw+rnHwfwZwBeDePjGsYkmysxJiGdnJTLstwyLul8eVEUby7L8vB41KsAHBzPX/JhjMlEXw7gf+mLjEtXuwEc0NLRupkdb6qEEEIIIYQQQgghZDZyIYBRAN+TPyzLcgjAlvH4o50PAN9pE3cbgB4AZwKTH8ieDuCO8fwl3xsvR7vrnQJgEMDjAAaLovhSURRr26SrhePiEyshhBBCCCGEEEIIacuyoiik6f//Kcvy/4jjlQD2lGX5ZJtzHwLwrKIoGmVZDreJnzh/Im2784Gxj2M/BrAYwMJ2acuyfLIoisfG00ruB/CfAH4I4AiAiwG8BcAvFkVxSVmWPwqUKxv8uEYIIYQQQgghhBBy/LKnLMsNRnwXxnb3bMeQSBP6uNY1/n+7PIZUGivtRPou+YOyLF+v0nyhKIp/AXAzgA8CeF4gr2zw49osoECZXds+ndtvx/qBVfGdCJUrl5+TVz/CA+bhXX7+0qagpzvOD6+Kl0WzGa6TFK+PVC8gyyZA2kRs3erHSR8H7fFw550ufOSIiFCeO6MveNFkuMWnpld6QimvocD9HBzy60CW39rZ/fBhP076Qsl6reJ9KNEWIbJc0idrzx4/f2lDd9qqDD4gFXzVptMXMbVezTFMelVl8KtLJXUM27fPpZ0/3/1c+tIAQIdo2MrKBS9+sQt3DT7qR27f4cKyga5Z46czvCetdqHHhJhzZhOxnl+xRI/Plp9Q3e3Y8lWLPU+fo71Mp4jVBncO+t6ZIxt+dTK8euTuyXDPh/+7l+7Fv/fHk2HtN3bDDS585SbfD2kU/vUm0P0wts2YfmYi0vQoy4CuAzlXWk0ixztayzlyPIr06Ev1EI6lDm9ROV2NjKh3UdHt9ft97t8f9g+GvT/1mB5qn3sH/TlKtiedh4yT70U91lCXwdsql3dmEO09KcdBNcaPSB9o3fkCWV5wgR+nxxxJSt+oo40f0xw/nmsHAQRMryftqg8G4mXcgojzrbQT6a1rAQDKsvx2URTfAvDcoigWlmV56GjnTIW58YZLCCGEEEIIIYQQQmaChzEmHW33wesUjK18C61amzh/Im278wEnA90H4FC7tOPXX4r28tJ27AAwD2NS01rhxzVCCCGEEEIIIYQQEuL7GPt+dJH8YVEUTQDrAWxuc44+HwCe2SZuI4D9AO4GgLIsRwH8F4AL2nzMu2i8HEe73gRnABgBsPdoCafKcbF+cbZTophcfltFcmOlk9vFy6XCqdtvx2KVP8vW1omSNhOxBLuvryuYLPlaUuuopY3i4cRuKV8Fq1yx9dPX5+77Fa/w4+QKaL0CXi9Zdyc1AxFtlrV39rqw1hIMDLiw0FM0V51m5xmgpT7Esn3vycvrAr7MVcu5BA21XHzZMperzFIrAhaEFkMfhdixI1VmHJtHLDlk6S1YEjpZ6aLxduiGnFCOKmOFNUYuFn9fk82nY0T9UdCQIkh5M5q+JNvrU7LtJtaBJrfcKoftQB2yNUs2XiWfSdTzHO1stE+H+PqxkOdZilTr2jOJMex6UruHl505GV55+uleOtnkdfO/7DKZsDeqTKa8swJ7B9yzkfcSO68B8CsoUlZ5+LDfluS8pFW+uWXeLflFtv+Yn1cl1L/M/OWDAtAhfR/0e4x4f+judvnLUzRLesNxmt27XVhaC1TJI0Xpdttt/vHNN7vw5Zf7cVL1O29e9WulUmUczzKXGRXpxegOdvXVLp1IqKXhsWVMfedLfR+cKzYQJJrPAvhDAG8D8G3x89/EmP/Zpyd+UBTFyQBOBPDTsiwn5JvfBPAzAG8oiuJDZVkOjqc9H8AmAJ8oy1Ia9VwL4OcAXAPgb8TP34axj2WfE9c7EcBgWZbSjAhFUbxoPI+vtdl1NDv8uEYIIYQQQgghhBCSwnHguVaW5Y+KovhbAG8piuJLAL4K4GwAb8XYh7PPiOT/E8DrADwXYxsKoCzLw0VR/A7GPtJ9uyiKjwPoAfB2ALsB/Im65McBvB7AB4ui6AdwJ4AXArgCwPvKsrxfpH3ueLqvALgPYx/fLgLwagB7MPZBrnaO/VZACCGEEEIIIYQQQqbC2zDmYXYNgBdh7MPV3wD443Epp0lZlp8viuIQgPcA+EuM7Qb67wD+oCzLh1Ta4aIoLgXwPgCvxJjP2r0AfhvA36qs7wJwO4DLAawAMB/ATgAfA/ABnXdd8OPaLEDuFpq6o6Ym8+Zc/hY+QFifoL7azxbZiImUhNUhOw3IFwF4Dyr22qm7KqYi85SyhaNdryGaQqxsSv/Rx5RhyMSifXZo2ea6dcHrmcj8YyVziX+1kupFrWSUquLFi/26i90VuG7ZZuqOozM6PoS2spxmYnfxjd1NUg8xg2LnN33LXU1jh0fBXJMHz6Z2lkNOlIPU3SolKTLTo5Hj2cgyR7/7yG10j4KURHap4b/uHZVln7VU7mY9JsxLy5dXPmVKmOXfvt2FtR5WzMexss0q40PKe1iLt4N8JzEeosxD2nFUQr3/rFjonn2s9UjPrrv9H8j5Rm5fbrBpk3/8jGe48KJFfpx8pZKXGh5Je9/RpPRLPcU2cvy2LDNVz6lDdnQVN7qs/caMld6Xa2ZO/K5HsjEuu/yr8X9WuqsBXB2IuwHADe3i2qQdAPCW8X9WujsBvCwmzzqhEJoQQgghhBBCCCGEkES4co0QQgghhBBCCCGkKkVxXHiukaPDlWuEEEIIIYQQQgghhCTCT6xzmNx+Vy35Sd2/NuvRnhI1kuojULf/QLQPkfSo0EYOhn9X3V4uIXJ5usWWWTYlXT2Wx4wXKbazb/EHNMpUt0+E9AzZtcuP+9nPXHjhQhfWTeLUU11Y+2kt6Q1fO7f/VaqvWmrbDZ2Xel/T+exTt6LX5wXLaIwb+g+nsn9pO8LOZa5cqX42dfehHON4bs+46RyPNVXqYO+AK6ccFtesSbu21YesOpHjeuof9q120DG43+WvfKW0RZfDn1yi51s9CAcmqTr6hVV3qeNzKF2qx2Ysld5F5fyuKiHWEy2V2Lrz26eiv9+FI70+k991dXsUfnUdct6QZdJs3eofHzrkwpGea10j+/3j+W4QGG0uCZ4nxwr9a4b0/K3iDSmP9wsPUsMCOcsCJNMnWM/hMk6290Ry+Apa6Hf1PXs6gnETtzNKWzZynMCVa4QQQgghhBBCCCGEJMKVa4QQQgghhBBCCCFVoecaGYetYBZQopjyEvZKS+xjkYOEHjCMZfohUu/RKn/Kkn0rz4NDfjp5a5ZsKlpGonVZsh4NuUCqXKlumVPKebpMzWZcHua9SSmEWpMuz9Myg66wuq51bfsEejl/pOZJSxBC6GYgb82SycY++yrPbCa3Vw/17Vj5GeA/Dt31enuryw1Tx1lrnMpRxzJP3TzDsri58R4YW3c5ZHGp8tHUPEPPPle/O3zYhWOdHKw+pAndm77Wzp0ufOaatHlU5jmk5uklvW5grHuutL0K4q5X5fnmsIeo5f1QYEnP5fwu5zarD7U8GzmoqQaZUj+p9yzvTY+z3nEVWZ+sPOud20D22X37Gl7cov5zJsNdncNxGepJI/QuZFGhn4Sy11UgrTV09rJt6XYgq1gqXDOoL0307xNSmn/aKv8GUtpuHdJnC3k961dC7cwy0W+OHEkoHCFzEMpCCSGEEEIIIYQQQghJhB/XCCGEEEIIIYQQQghJZA6IQgghhBBCCCGEEEJmGfRcI+OwFcwCCpRRmnetr0/R2w+PhD3FWsqgTSVCJ9aM5VWS24Okit+MxPRBkEYRt90WvsCmTX6c2Co91jOlSv1Y58WScl4unwivXUjDDWXGIcs4otr/3oH2fjAA0JHQxnX/2rGjfRgIty3x2AH4t5Pq9RT7rKuMMXX7sYWura/78C6XTnt9yP4s/acAv54XLnR5WFYx+hlKa5pGwlgB5KljOcTodiyHce2FNZ3vgameUxKr7mK9aCz7IF0fudv4dHsYzp/vwrId5JpHQ+hXBz2mTTXPHO22yrOQY0Kqt19u38XUZ6jHAOmJFlsOyzdV+1iFnlWlNme9iwbQ3m/yGcaO1dNCwr3pupN1vHixcV6n82Mzn3WODquvbTzvWKs5awyw+pc8z6ruuv1P+/rSrp3D2zgHVh3L5xHysuN3J3K8QFkoIYQQQgghhBBCCCGJ8OMaIYQQQgghhBBCCCGJHBeLNC9541dnuggmC05wa2iryAVStmSutCzXShyZUawUKIdMogqhutPLuFOWMZtl1+vCpa5MraWW5ZJSplbpanh7bKtcOWRaKdQhSfLy6PS3opfXk9uwA8Dtt7uwlgOuWdNe6qKlh1Jms3WrHyeP9XP7pV9y4XPPdWFLtlClrkLPNNcYM53txyqHlEFu3hzOQ9f/okUuLCVEuv7l85XdVRMrX+8Y2OvFefLj7dv9TGXB5NihtZ9YGSyXLIscK6oQO3bHtiUrD+u8FBm0psoYGXOto50n06bOc6l13NvbXu6sy2HNL43ONKljKA+L2LlhuuVFpn1GAqlzcY73wdi6S22r1rOOnb9yyMa7u8OytVSsPHy5bViWqEmZp+3xLa6Ozecb0vXNMFY/zN22qlgLhNq8vlasHFlfW7atrkR5f+j3CU3seG8R6idFEXX63IWea2Sc46IV3HLHgzNdBJM3XnPNTBeBEEIIIYQQQgghhCRAWSghhBBCCCGEEEIIIYkcFyvX5hJ1yAVi85/JnQFzyABylD/Hit6WpdRyDbbehWnNGhc2tAP79rnwkSN+nFSIWbsBdqnsBwdlOlfmrs5hL90wfJllKH/NTEoFQ+idtNavd2Et6fz2t11YyjZ37vTTyR0k5XMCfBnhhg1+nGwKsRuG1S6pzXDtHDuatjsOIetOb7grZcBy50TA3z10yxYX1opL2X1PP92Pi90Jr2PnT92BtaWp3PYTAH70Ixe+4goXVlvhrVwmCjKkCtXp9ICdWjI9Ivq60Zlj28h0yr6s65lzwW23+j+4/34Xlh0d8Mbn0WZXMM/cu1ZrctSXlCRZO71p5A7IsfJOKw/dxGXzj91dr26Lgyp5pPSNKmNd7Dhrxck8rGcdO1anIt9PqmySmfJup9tqjnddOZ8sXOjHyWFd17Fsx6l9KNZ2wEKet39Qn+OOe7rr3WlSk6NtWdL2UFuz5PGprjjWfcpxUL5/A8CS3oQ6Vy/8HZGdSr+CSFaKtprjd04g/27UsxrKQgm4co0QQgghhBBCCCGEkGT4cY0QQgghhBBCCCGEkET4cY0QQgghhBBCCCGEkEQoDp7lpG4bHbu9dywzqZlP9VNJ8aFL3Xpa0rJN97p14cRCn39wyL+2tFWS4e5uL5kn8a/iYyL9QyRdy/1hQR5pTzfp3aCvvaQ3rhwp3mmpaL+TZcvc9aT9HeB7Yixd6sLK7srz+dLPRtaJ9dxiSfWKye2rVgep15Jl7lF13N0dzlP2U+mNp71QpEeU9juMZtkyF9YdRR6vXevHyWNpBqfzkIXUA5Aw9+uYJX4gdbfjljwH97sDbZoozZN0/QgjRs/PRpuBiWcz2hn2qNTI8VSGte+fJMccZZ0j/TdzIatVdgXAn0MeVBu7hzzXNEk+a3oyk31IF1IP3hHXruNdq24f09hr5WiDVa6X4x0hNg/r3qRnqx4q5HuBHoJ9L6+4ukv1R47Fele06qAOn8jcfUg/mxTP5Tr6mszfGuOt8zwqvPDL+5HvvdPBdI5bM0pR0HONAODKNUIIIYQQQgghhBBCkuHHNUIIIYQQQgghhBBCEuH6xVlAiSJpu/Xc6eb6dsmpS49z37deFTwKJxOqUkapRJFSNUtyUGWb9yeeaJ/H4sV+fezY4cL79vl5CMWZpZzxqFv2UiUP+axOOMGPk6qh5ctdeNGicB5V5AhT7fNHI0e7zi2ZrmP7dks2bpVfPquzzgrnLyXBsVKOlvuU8g3dgUXHaanjNZGdSua5fbsfpyVuEtnIRTmG4UsbY5UO+tZiz8s9z7Ug71PXh3yoWocoBz+pWdTaYVF3HVJjrPNXNJvueVt1VUXGJqm7j6bkIe8Z8B9HqpwrSaqmG6t8ppZ0O1H2Y96LaJ87dnV5UXKOleSQ7gHA7t0u/PjjLtzX5+cRO79byGpMbWeWXDJ1HEm1HpHIoUMPD9a1Y4l9vrHvHFYzni0yvtR3Od21U55vjved4RE/D9kulvSm3VsOGiMH/R8E5KV1yL8JOR7gxzVCCCGEEEIIIYSQqtBzjYwzt5cqEUIIIYQQQgghhBAyg/DjGiGEEEIIIYQQQgghiXD94iygODKCjsH9Ywc5jC0ykcNvKbef2XRvUx/r1RBbLp1u1y4X1j4dJ57owtKXRm75DgAHDrhwV/zO3C0eY+3KBPgWTlbzbPWam75v9znaqvZSC6HvM8f27dPpA5Ka/3T7bYSuV8V/KrbM0lNPs3ChCwesSY6ONIFRmcgy677d3R3pkSMHD52JOB7uPcmL6ux1/k6yiDt3+lnIsULWB5DFjirNM8tCm+7IQmoTK8sPTyJv3DKXs/JQyPvp7HR1YPlqVmmDObykYjH9zGQ61UikB5tlDyj9i3T7lHWysi/xPkMmp0CrF1+A2LGp5VmIOtF1EOu1lfqusnixC8s50PK/++lOPw/pz2b5vs5Wz6YcPmXyvnt70959ZBu36t/yjLNIaUup155Jv65Uj1DpKTx/vh8X+0xlnnv2+HHbtrnwpk1+ftL78LHH/PPOWTsz/aZ1mpve378Imavw4xohhBBCCCGEEEJIVei5RsahLJQQQgghhBBCCCGEkET4iXU2cOAAsHXrWFhLViLlCDmwlvXmkIFOp0ywDmKXyut0llxDSmKGhvzryWXp8o8hWs4p1UpVluJLKZxUwTzyiJ9Oyk6XLvXjpKQkVi4wrfKkCmi5VUh+lesPUznqYS70qVTJbqzMKVWuHUsWpX5ko9FjgGyDMk5n1yUPjAJbikUpidHScEuuJ8uSo29kGR90QWSdWIXUcfIByEHS0oYn4t+3327lc7PayKxB10ekVNayFpBxuj3KuGQ5Wm+vC2tZaALWfNhSRnEDPd1x5bWUyZrYcVAqyvUYsG6dy0PK2wD/eTQQV7A65oLs8vJEUvOXzU73cylLnE19PlZqOpPlCD0P3YeeeCKcvxwe9HnyucnwTTf56Sx7l8cfd2H97EMkj3XGeGxJk02kVn/VqgonEnLsMft/MyOEEEIIIYQQQgghZJbClWuEEEIIIYQQQgghVaHnGhmHK9cIIYQQQgghhBBCCEmEn1hnA4cOAfffPxaWwn5gWj3X6sbyIMnht5GrXClYXhNW/tI7Q9sgHD7swtqfQSJ9z6ogr2f5Jp18sgufeqofJ7efj6WKL8ds3N67ipdOlXxyn5PbpyYHVcofSlvlXmJ9WKy6Su3bKWivlZA1SssfR6XRizakEnOK5dUj/Wb0deXxkSPhPGYS6zl5Y13Tc6iz20i3qGir8iI9xWKxLN2qXCp3+0z2+In8a35s38vig2g9zz17orNJGT+rPJdHdrv85Vyv20HKXAz4j8Z6z5Do+vcer647OR6JhKlzUmobND3vavYNi52LZZOU73+A/2x009W/NsRQ5X287nfwHKSUUdej/HXLmgM1sslLP0LtjyyRFmX6eN268HlZ2qfqwDJP+Q5y553+aRdeiLbpAKBLVgI918hxDleuEUIIIYQQQgghhBCSCFeuEUIIIYQQQgghhKRAzzUCflybHZSl09pUWN+dQ/Y1W7ckD+VRx73UvX279ZzksnRLpSKXYB844MfJ8+bN8+MWLnTX7un2rx2SglqSG604y00dcoTUNpNj+X1KmZOlV7OUVLlJyrOvW86ye7d/LPuX7Ie7dvnppNxEy7dk39ayLJmn7HuNkYN+QtmB+/v9ODGnWPWjZR6hMmZWQLZQxxhvve8Oj4Sv15DniUxa+mjsC7WuvMjzLNm+V445MJ9XyTMUl6WN6IpMbNih95Mq47h1PwsXurAsovW+4MnEAWzf1TMZPvFEP+ny5S68dKkLS5m4Zv16/7gxuNcdGANJ3e9vsTYAVUiRjKZeWz7TKr+j+xYfafYHsfeZ+l40G+1d9Dmy7vR7dqw0X3Y9/T6up2aJvJ52AwrVeapNiIW8N2kJo+lqqmurMYeQ4xnKQgkhhBBCCCGEEEIISYQf1wghhBBCCCGEEEIISYSy0NlAR4dbD56ou4tdhp66014sdcuyrPz3D/rll0vsY3fSmknZS2+vX365DP2xx1xYyzXkamytyJASz2YznL9EK5NlHnXbCeSQHFjKqxy7VeY+B8gjQa1bshKbZ2od11EHOWS51k6Zsu9Z0mqr31iSPy0rmUTvyCcLaVzcquNY6eFMYj3fdMloWBo7IiSjpgzPQj4bY3CKfTapzIUd/3KQZUfTxIddx66T0TvFysFIJZQyM+vWrJ3HzfFhUFzPeIe16mc650CLOt5TU85rVOjzKfc9nbuEV7n2TI5Nsl1bfUEjpdZSMq3tIQ4dcmEpxwaAU08N5y/tIuT7ea7d6WU+cnyotCuztcXp8UJRzN6XJzKtcOUaIYQQQgghhBBCCCGJ8OMaIYQQQgghhBBCCCGJ8OMaIYQQQgghhBBCCCGJUBw8GzjxRGDDhrFwBb12kjfBTTf5x5dc4sLNLi8qxaNlun0cZLkGBvxrS+sPa3vyHPeWw0vE8jdYutSFq0j6ra3dQ/fd3R32nNKeL5YvSCj/OtpIpK3RrGUmvdqs/HL7n1TxWpFprbEoNS4W6Zui+6j06Ir1LNN1YKW96y4XnpgiAKCxfbufUPotKVMlq84tq7YQCxb4x7n7VxVf0Fhiz7P8qLxyWeZXsQZ7Rv7JXjq6XPJYze8esv1oP7/+/uiypJA6r04ZbbAnn402S1q1KphNqtelxGrz2is1eI7hGdcT6Tk7NOSuJX1eAd+DqsXDVhpBzeCEK+tkeESPs3HPKXWekNezqiC3x2kd+acSOyzOBc/HKsO4vG/rPWDhQhfW1oT+7yt+nJybU8fElHehSl1ZmzUfj9BzjYzDlWuEEEIIIYQQQgghhCRyXH1cmzdvHtavXz/5b8eOHS1pbrvtNlx88cVYv349zj77bLz3ve/FJz7xiclzGo0Gzj33XKxfvx7vete7AAAf+tCH0Gw28fjjj0/mc/PNN+PEE0/EBRdcgLVr1+L3fu/38KMf/WgynyVLluCpT30q1q9fj3/Vq8kIIYQQQgghhBBCyJzguFq/uHDhQmzZssVM87rXvQ6f+9zncP755+PIkSO46667cM455+D1r389AKC/vx/f+MY3sEys4b322mtx4YUX4stf/jKuvvrqyZ8/+9nPxg033IBDhw7hggsuwBVXXDF5/auvvhqXX345rrrqKrzxN38zKDuIXcprybnkkuXGmjX+iWIJa5Wl2qFyWbIsTez91LKEeRqR9a8VN3K5tyXLevJJF96504+T23QfPuzHnXyyC2vJ05Le9tfS9W3JKVKek1bjHDjgwnLZPBAvVYuV5OXAatN1yyo1KRIBq0w5xgArT6t+YuOq1L+FTCtVYFpxKfuXVsiF+rYeZmPRUhHZlrsGHnYHUsanCrJ/RMn/RFLdN7qaro77+lx96D4akr+mYkm3c0ieUiWE0e2/SiUkVFiyvFlfK3Dtlr4mH7CeYOTDSm3YichyyiYfOy/oPLy6s+rKkIFqckhXc4zdpqY5kuQsRN3pewlJ5qw2rscH69mHxg79t3M5tur7zFB1Hnp49u05ptd6IfR+XqWthp5h7DlVzptJyWuqJYFsk3197X/e7jg2LtTGc/2+JeOkDD3WquNo+RNyvDFLP0fMHI8++ihOHv8iMW/ePJxzzjlm+nvvvReDg4P4i7/4C3zgAx/wPq5NsHDhQqxfvx4PPfRQHUUmhBBCCCGEEELIdEPPNTLOcSULPXTo0KQs84orrmib5u1vfzvOOussXHHFFfi7v/s7DOk/4SuuvfZavPKVr8Szn/1s3HXXXXj00Udb0uzbtw/33HMPnvOc52S5D0IIIYQQQgghhBAyOziuPq5NyEK3bNmCL3/5y23T/PEf/zE2b96M5z//+fjMZz6Dyy67zMzzuuuuwyte8Qp0dHTgyiuvxOc///nJuG9/+9s477zz0NfXh8svvxx9cr0wIYQQQgghhBBCCJnzHPfrF1//+tfjjjvuwMqVK/HVr34VAHD66afjt37rt/Cbv/mbWL58OR577DEsXbq05dwf/vCHuOeee/C8Sv48WgABAABJREFU5z0PADA8PIzVq1fjzW9+MwDnuXb33XfjkksuwRVXXIH169e35FMWHRjtbABI161b5zUw7A60sF8aI+hVetJsSG2z3OGbSMQVUhHtDyDLpc0sRLm6uxteVI7VuY/sdmVctMiPk1Vge+K4OO3tIctobWMu/Zx27/bjpB+bxvR0k3UpDUpUwg5tNBUg1oPBuk9dP6keGCnn1OEZkeJJl5q/JnS9VK+MVK8zy5PRKkfddSfz7O1119LjhuwO0psNANaudeEFC1xYt+NYzxrtuSaH3bt3rpwM33Hol710L3uZuLbRv/bt84+79jh/rQ5RsC71hyDpw6LrQKLHmPBzi/Nl0sxan5fYGzCMiGLHs1RfL0mLp17nSZPhJWtV4tyGVIpYHyhZjFRvSA/rOVX5Q6hnCNYTf54gxQsrV1+Q+cgq0a+8Mm7/oH9t2e/1+8nixS4s292BA34e0m/V8kTL8V6X2qStOpZeatZ7niY4z2mDXpFphxpoc/iQWm0wts5jvW9jfeHmCrLM3d3hdwnZLvRUkHsMyDFPVHm/nEmvPEJmG8f9x7VPfOIT3vG//uu/4oUvfCGKosA999yDefPmoVd9WJrg2muvxXvf+168+93vnvzZU5/6VDzwwANeujPPPBPvfve78ed//ue49tprs98DIYQQQgghhBBCphl6rpFxjitZaAyf+tSncNZZZ2H9+vV4zWteg09/+tOYN29e27TXXXddi3fbFVdcgeuuu64l7Zve9CZ861vfwv33319LuQkhhBBCCCGEEELI9HNcfWId1JLCNrT7MCbZIeRz7T6UffCDH5wMb9q0aTK8cOFCb7fQT37yk5PhAmVw2az3c11+Y+9mbwv7ISeX7AmswgPQ+sVdprV0Tps3u/C6dV4yvXzdi8u8VNiSG6YiJZdStgDEl19Wq1X9Wk4hOXzYhfWms7JZVHm83jOVeo0KFZmy9Fw3CVmMRufsXz5eZTm8lS53+5/ubepzyA5SqFKPlrT07u0uTjZ53fy3bXNh3b+kcmfNmnAesX/M1O1fSo1OPNH9/Oyz/fNk992504+TCjc9hmGR0qFGoOugivwn5pzpxn9WfnlD49HBIX1fbo7tssawxBtPlfuE+oZsV4CyOGie5MXNFkmPrLoqY0CO8svr6Xl6xeI4jWFuyZYmt4y+ZawQ6NdBOf489pgfd+SIC2/f7sJ6HJHvBVqVGyvjlPctpexV8tCk1Kvu5rGvVI0RUZFWJkrXLW1adNsaCmSps09tk6E6GR7x87N+/ZK2DLNlvElFll+Ps5Iq9R87dsS21VhZbo65hpDjEa5cI4QQQgghhBBCCCEkkVn092NCCCGEEEIIIYSQOQI918g4XLlGCCGEEEIIIYQQQkgi/MQ6l6hgGqEsGSYZ7Wx4x6ZO3vBL84x9rr8+nG7DBhdO/aJv7cMujnVxZdJUP4BlwpIoxVtIY/lWLVrkp5XP8JFHXFjv0C7vW/uYmE1G3pA0jFInSe+MHH+U0XXQSNmmHvk9bOr2RKubWM+OVC+OHPWT6pVkeokILxo9vlnXlh5mEt3Gpefa6aeH0x461D4M+P5FepyKbcfLl7uw9jUSVqAtyPHihBP8uObirsmw9BfTnmLyPlO9i3J7X7U7TimH5YsTou4/TlfxEEupA8vbTxM7ruRA5yfbofTr0m1Qln91f73jtp6nrTFHIudRPYdLzylpYQsAl1wirmWMgzLOHGeVAVhHoDEPDvp5yHHLeA1rGd927XJheW/9/eE8tK/dGWe4sOUrK6niDSlJ9bSyxvHo8WKXaBiy4gD/hVB1gNENF02Gt2wJZ3/KKS4s5xNNlXeEUJx1zwMD4eO+PpdHlblmNr6v6TqILWPdnozaAzD0Dj4b65SQuQBXrhFCCCGEEEIIIYQQkghXrhFCCCGEEEIIIYSkQM81An5cm/V4y9CtrblVnFxO3TGw1x0MtegpgnlY+Qf3FpdyUQBYt86FlV4gZYtzS4KRugTboqtZPY8qcg1Jq9TFhWU1rljhp9MylVAeeiv07m5R/0JD0SJpCGefnVjJgUUV2VQOaWMqofZfpby5ZQapfSa2L1vPJjauRfJkvMxYZVm+vH2dzJ/vH192mQtLmbhGFkMPj6nvW6H77uuLz8Mql8SS9OR4X0wZ7/V5qVRpkzE0Rg76P5CDq6VHax2EK5fDqo9WuVV1uWTHyLD/A9loInVauST28nJy3tN9tG5k+ZvNtLFUSlctCwstl5T4r2SJ/cIaBAybDet1UKLHSJmPDB8+7KeTx4sXh/OIJeWcXKRaL3hjR6t22IWNCUBHzZvnwta7YmwfjU2nrWnk0GcMg1nsXOogtw1J7LVSr2edk3s+B2bXsyJkpqEslBBCCCGEEEIIIYSQRPhxjRBCCCGEEEIIIYSQRCgLnQWUKCaX2FZaTh4rh4rcbbOF2LX/ckdQawuoDNS99LiOHRFTCUlFVq0Kp9OyICm1iN15KXWnqNi0qUve695pSe7mBvjShSW97tpaVSPTaSmErHO9+Zd8jlKiWzc5JAf6vNkiCcjRdnU/sXanC11P776Vu43L9qjZO+BfS96PVu3LsaOn2+WZWv5Y6pbVpBK7W25H6papqecJrP5rtd3o/lphzo59jqljhUy7wtjdMHqnzEjqljzJvqavp+d3ifVorDLKua0R2QYtWaX1nqElu7INyldFnYfcIVRLSxt7Hm6fIeA1emtHxNhmbfUvOddrebDegTdEa7lE35CVLndwH0soL+5FyTKvbA6EL97sDUZ5fXRwfzgPo2HIcmjZsnxs1q72DQhZuqqrYThbGK2ale9eOn95XLf1haTu9yJLXjtb3smA2TvfZ6co6LlGAHDlGiGEEEIIIYQQQgghyfDjGiGEEEIIIYQQQgghiXD9IiGEEEIIIYQQQkhVKAsl47AVzHKybP8sDQ20KZREDwrW3ushHzft5xE50Fj3Np3eAVX8qELlSvV9ir1P7Ycksby7Yj1BqpDLn22q+cfWXatfmstDe8CccEL7PCzbQrntPeB3B8tnJJbU9hMbZ3kNxfaNKn5FKXFVxgOrjYTitJfOnMBrvEu8qM2bXVi3Oe1tNFOkznOhtpA69iT3k9jOrAaPWF9KC5m2SxUj1JYr1Y8oc44xvQ4/s+j2Y73TGMSOu5b3m5Vfyjyn87CuJ1/79gz66fr62pdDe4RaY8Xjj7uwrtaQjdihQ366xx5z4dbuFNe//HrMP45b9sXS107H+V5k4fy9Z22Z3lVBPnwZNnzbcnwg0O+bjdjbGQlHhW4F8KdA69ecJb3hOOt9IfY9KRYzD3UDHaIzHuxbPRnWHqpLl7rw8uWzxz96Nvm/ETIdzMHfIgghhBBCCCGEEEIImR3w4xohhBBCCCGEEEIIIYlQFjqHyLK0VstSOt3W1i35W0vDZZxc66+1A0Yes2WpcN3yxejzUveOn9oplUiVK+WQw1aR2YTQVSzRMtBFi9qn0+WVUlxLFW3JamS5tKQhlzpkgjq2RY/NM4ccKjWdlO1oLKn1rGRw0D8WspEla/wG09vrxnjdlmR7TZG+WemOlnY68/AwBgE5H1r5pEqTLeqYD6dzbLUkW1oSP53Ifu893QrzbUr7r2OcTSVWtSzLbM1lehyRcdYcK8/T1X3kSDjO1GMKZPmrvAvF9hOZpz6nszOuD+UY38w2aA3ykZUy3NkVjGtE2itYmPcsxmBL3qnfp+T7m2xL1rWn+3eQ6Get5/dbbpkMdr7CyUJ1X3vySRdOvbfZNG7NOei5RsZhLyKEEEIIIYQQQgghJBF+XCOEEEIIIYQQQgghJJFpWb9YFMVSAK8CsBbAIQDfAvCVsizL6bg+IYQQQgghhBBCCCF1MKWPa0VRnATgo+OHXyzL8rNt0vwcgH8B0Ct+/HYAtxZFcXlZlo/rc443CpTZt0mW21J7fifKU8ZPV2Hr5pDnmtabS1OADFr0HFtgt8snRG4Pleg6VeTwLEsl9dqh81KfYcq1AN+3Q7Z3wO8bpi+QYYomPU4s3xXtjyGzkY9el1HGdTXzez1JUus4lRSvtiq+atbwI49nq49S8HqWqZW60b4+F7Z8lCSp3opWXN3jZ/Q4ZZlCqfkxhSr3OVt8R1PLEepful3J5hrr/2VRpY69soyEItLbZ+4xITU/6xlKT8nO7rh+ot8HJfr5SpsvPTSFfMr0XGkMYUBnuNFk92Q00spr5XoXTcm/0ntkYJC38t+3z08rPcz6+sLn5egLlnejZR8n4/QQbw35KcT65ul0OcZ7y98wx33OVt/IOQE918g4U+05zwdwFYCXAvixjiyKohvA5wEsBlCof88C8OkpXp8QQgghhBBCCCGEkBljqh/Xnjf+//1lWW5tE38NgD4AJYD7ALxr/N/DGPvA9oKiKDZNsQyEEEIIIYQQQgghhMwIU12/eA7GPpx9NxD/qvH/DwB4ZlmWuwGgKIobAPwQYx/YXgng5imWY05TophcfptF9gKg2Yz7biqXUle5tpdWZrJzp3+iPNZbhK9d6/I35Dix5bLS7R/0yy+L3OhMkyVGb+ktt9XWUpRmeMvzWGLLsXfAr4M9e1xYbmu+pDe8lF23g7qXjcv89ZJ3+dysMsoq103QWsHdMTLsDkIaTn2OUf9aBiPLYkmqrDLGPvscS/1jJQ06/4ND7tiShLXkL8eOVauirq2RbUa3n57u9lLBvYP+WDQkyq+lw13yfnbtCpajQ3awHLIB3ZBlxSotzZJOWQkqnyFRFpFHy3g/uN+F1UOUY3esLKVV7uOup8fjlDmxtRwi/wq6xNj+FW0zMHTQ/4Eo6Gh3j0snxx4g2TLAu3biGFBlTJtAN0+rXUgptzkeR8rizHeVyLE7xxiZmoeuqxzSbeu8kBQxtY5j3z11P5dtSV9bvrvothV6f5tuSVtKO7biqrxr5RibZLqFC/246ZQbWtLP2KnTcqexSH3HyS7v1y8al17aNtkpp/jH+rnFMp3vkYQcD0z1LX/5+P/36oiiKJYAuABjH9+um/iwBgBlWf6kKIpvAPhFABdPsQyEEEIIIYQQQggh0w891wimLgud+Lh2oE3cMzG2Mg0Avtom/gfj/582xTIQQgghhBBCCCGEEDIjTPXj2sTHs3aLUZ85/n8J4Ntt4idEad1t4gghhBBCCCGEEEIImfVMdf3iYwBWAji9Tdwvjv9/Z1mW+9rET3yQG24TR9pQRdff1YxL29Xp7U0fTLd7t3/80EPuu+zhw+7nF5+7zE8o/cYqeN2EiN0CW8elrtRN8avQfkJd0txM10FfnOdarKeG9paTl5aPAgAOHWpfrCW98eWw6ifkc6GfheX3IPPQ9ToiPFpim1YlDw/LCC0B7Q0Tqjt9L7EeGFXiQuksL5FUnxHZBrWViPbPSUGWQ3tAybpsaY+BBmq1Jd0GB4QX0Ep5MzoT0X5SvXOikRUO+F5w+gH09cXlaRnhGISsCmN9BFPRY5137e78XjHWc3tkt7veD37gj/fbtrmwsCDF8y8JG2+l+qVFe4RmQOffEPUvvakAvxvqdpFSzhz3lntcBeKfm2678v1q+fLwM0wdV0JtxBrvU+sn5X0KAK6/3oU3bvTTrl0b1679dpY2l1np9uwJv4/oYTflWqn9N8Uny5qXU/tXSvkbNby3+3N42J/X8mKue/zUHtQjy1ZOhhvi2iuWIxpZJ3qMCT3v1Dao63/iekeORBSUkGOAqf7G+EMApwC4rCiKZlmWQwBQFMUaABdhbNXatwLnTshBH5liGQghhBBCCCGEEEKml6Kg5xoBMHVZ6L+M/78MwGeLorigKIpnAbgOTjL6pcC5GzD28W37FMtACCGEEEIIIYQQQsiMMNVPrP8I4F0YW4V2+fi/CUoA/1WW5b/rk4qi6AfwtPE034u5UEdHB4qiOHpCRbPZxDnnnFP5vOmkq8tJReqWDP3HzX7+3/++W378xBN+2k2bXFirh0LLiPcO+bKXJVLromRYeulziBx1Ykm9al9uLy+uCtIxIlTRGf7iIRVgALBdfLru7/fjTj3VhefNc2FT/qeeYYchV5LL7+VpVSQSskpSVcVZ/pBkaJfkfVtbvutyyKX50fXToo0VJ+q1/gHJXxVJT6zs2kLeT4vkVbb/HTv8yMgHZ5XDlnm0z7+pfiwl9g/v8q8lZX3N9T2T4V3qT0byUSxpHlQXTGjYVRr1MiHV1wN35LVjx2pdrFg1aYp0qUo5cowB1jxhlfm733XhX/mVR1XszsnQddc93f14YMBPJhpQqlTHnNssbaYRl/JOMlv/sB8rJYvtrrpuYtu4oShX80tY0la7bK1uabtCvtccUNunyTqxZISpUvTY+5HlkFLeXMSWI3b8zPWcUsbr6W4/sWNO3W0klZQxM/a9qMp50h7oyBE/nZyy5K998noJv8ITMieZ0mtOWZZDRVFcDuBrAFap6J0AXhU49TUi/B8x1xodHUVZlpXLWBQFfvKTn1Q+bzq55po3znQRCCGEEEIIIYQQQkgCU/4bYlmWPy6K4mwAvwrgAgDzAPwAwGfKshwMnHYOgG9ibDODkCcbIYQQQgghhBBCyOyEnmtknCytoCzLJwB8YvxfTPpX5rjusUjHHiUbkZoqQ45mSUXkUt4tW/zsHxHbSaxb58dJNdHSpX7c8sAuNVq1dt8OV46bb/alRU97mgs/+aR/niyLlEnE7oIKAB2D+9tngniZU46drzxNmNYNZpC+yTL29YV3S7QkW1ItZt3zMNQuRoZcJlb2GCtl0jt8xeZh7Rory6UfTZe8nwz6VN03JFJG0nIvcvdHrfuVhW7ZiTZuJ8hUWVnoPN1We7rFeXonS2N8k3Fyh0GdLFaylbrbqTxPqyql1Fpe+0c/8tNt3uzCV13lS+e7EiQluh/KKumQAzeQtOtt6k6EOl3Ke2aOHcp0X7a6SSgdkFZ+rej01dpqIoXT4598svixamjJkiRL7pmCHsQytC1rXM8hEc4hOa5bVizR7zihdt3AMHymvqOsRbR9htGJUqWNlwvDmRUrgtl7ZHl3q4AcdnPseltHGWcLde84asVZ442FNY7EvgvVTez1Ynek1/nNnx/O07JEmRjTOo7dJk2IB5s6IYQQQgghhBBCCCGJ8OMaIYQQQgghhBBCCCGJZBUHF0VxGoAXAdgAYDmAEwB8rCzLz6t0S8aDT45LSgkhhBBCCCGEEELmDvRcI+NkaQVFUfQA+GuM7Q46YSJSACgB/GubU74OYD2AuwGcnaMMxwxGx7T09DpO+rx88YsuvGaNf95ll4XjGp3VfRG6lJa/2Wzv/QYA997rwtqKSZbF8wfQni8iUvoyAUDDqMvc25pL9GVlHkMjYa8kq75jfRx6mr4PS88yZ4Qw3Nmlk0dd20I+jp07/ThpDyattVbpfYUzYNWJ5asm0U3La8uinVXZ4lzmeeCAH3fkiAvPc9ZLrd5gsvKUn9bBIZe2a2hvsFwWVtuKbXfR/USbfcgKUx5xofaqPa22bXPh9evDl4vt81a6nm77eIKHHvLrQ45v27f7adetE34tI37/7ehM8FFK9AS0kHUi2xzge9jocSTapyny2rGkVkHse7E13+q5THbZf/iHeV5cb6/zYJNz3mh3T/DaVbykRoQ3X8OqR6OdyTZoDqCzlFC/qeLt1+hsn06nTfbGMwj6ju4Z8BOKhpbqWxiLfZ9TR5fxPOHBW4ePVY46qeL3mUKOedoidxvJghpvOuRLpn4RkAOoNkdNuNyQmues55v7e4rVf2Ofbw5fOwvtky3nvVtu8ePOOmssT+ktTMixzJRH/KIo+gDcDuA1GPtWUIz/s/jQeJozi6LYMNUyEEIIIYQQQgghhBAyE+T4E9CXAJyOsY9l3wPwawDWmWcA1wOY+O79ggxlIIQQQgghhBBCCCFk2pnSYtaiKF4KYCPG5J/XAnhtWZaj43HB88qyHCyK4nsALgHwzKmU4ZhDSsAqoJcA33mn+24qZVPPeIZ/nlxJbS1ttpahW+lW9rl0L3uZHydXeGtJnjz2lmOPhAupZYl9fU5W1jTuLXZL79jl0nVI7j1pqaqrESGH7e72ZaeyxJZkKxadx+Cgy0PL3eQycS05TiGHlNd6NlpJIGXGUvalsbqsvN7ChX6clCB48sU9j/oJhfxhf9+ZXpRs8+esNQqSSHYJjiXX0LoLUT+yHvUzfPBBF9aS4zokyCFkXW3a5Md94QsurCUTsoxLVPXsHWjf75U6OFkCsl/03x072pcJ8Nu4VgZafSq6XPLmdIaRA6q8lrQjmAqx5ZdyPd2M+/td+Pzz/bjly9tfK3a+1XQMHfSOG+JhSalp7JwHIDxQVUFKuNQE1iHk4HVI/nKQRRIfmX90n1HPwsojt8xPWj4A/njU0C8oiRK9EHXL3VJJlWbOFglm7nJUka975+162B3ol3r5IqZloXKgTcR6z5hOdXzq71s58rfasawD3c0lusvPnz/2v/FZ4NiAnmtknKnONi8f/38PgN+c+LAWyQ8xttpt7RTLQAghhBBCCCGEEELIjDDVj2sXYWzV2r+UZXmo4rkT9vbLzVSEEEIIIYQQQgghhMxSpvpx7aTx/+9LOHdiW7SGmYoQQgghhBBCCCGEkFnKVMXBhwEsSMxn4sPcwBTLMCXmzZuHc889d/L4+uuvR7/S7l999dX45je/iRNPPBEA0NXVhVtvvRWf/OQn8eu//uvYsmULzjvvPADAunXrcMMNN6C/vx/9/f1YtGgRAODIkSO48sor8Ud/9EdYsGBBsDyP7Pa/d957rwtv3Bh/X48/7sIveYkLa1uCKj5rMXGWz8Lqfj+ut1d6hflppaeH1PYvXep/i9U+VnWSur29TFdlu/bdu11YPk/t/yXrTnsldQmzuVQfHwvpPSE91vSx9GxqLb/hv5FQRn1OwxqdxA0Mq+/8sg1K6w/tsSaP9bWlF5Pua/K5dQzub39hwDMV61FmW319SxAiZct2q43HUqWfSF87XT+y31u2PRdcEJeujvYfyu/p6/046U24ZYsfJ73Ommv9Nij92WRf055uS3pjSxnmzjtdWNejbON6DEuxGGl5FoaJzWinq5PYtpXq92Olld1SP8OlS11YtkcgzbIsW9v0OpHzXKvmCRWJvFFtyKPHNInwXGu9dpqPVQx1jwdVSLq2MdhJL0WdNIfHrJ7DvWkp0XMoyXduCufNFlLepVPj5LVS27/plxaZhx7uGyPCK1JOiFZD0y9iRn+IHTtkubqa4XuR73VAnvfUlPGtpR47623/sor1sC3nttD7w3FhR3Zc3CQ5GlNtBY8A6AZwRsK5zxr//0EzVc0sXLgQW/Sbchv+4i/+AldddVXLz1etWoX3v//9+OxnP9v2vG984xtYtmwZBgcHcc011+Caa67BP/7jP0612IQQQgghhBBCCCFkFjDVPwXeirFNCS4riiJa3lkUxQVwfm3fmmIZZpTLL78cP/7xj3HXXXeZ6bq7u/Gxj30M119/Pfbu3TtNpSOEEEIIIYQQQgghdTLVlWtfAvBaAEsB/AmA/+doJxRF0Qvgn8SPrptiGabEoUOHsH79egDAU5/6VHz5y19um+6d73wn3ve+9wEAnva0p+HTn/40AKCjowO///u/jw984ANHXZHW09ODpz71qbjnnntw8cUXt02jv9FpqV0IKa8CgLViD1YpFbSWIusV2HLJsV6BnbI1tD5nSa87bq71z7v5Zhfevt2Ftax1zRoXtpYpa1WKXLYsZYl1bPNu5fnwrnD9S2ScXnU8rlZuG2cRklNYcgEdJ9uFbiNyQejhwy68bp2fzpKsyOvpJfDyXjtGhttH6BONSu7sDUssZRZ6yXuslEaXXx43pIxKl3FiH3PA7wwADj/louD1gtfKJB1IkWxV6SdSeqFu2+PMPbe6g/4N6nrhv/nkkJnFjhfPucSl6+vzryvHJj1OyT4k251W3Um0JEyOg/rZyzyXi62FdBeS96klMVkQhZQyUMBvu7Vc22DbNhe+/noXflCtt3/xi11Y17EpS8+N1p3G6lAtRGMw+681+VhjsJSB9a/2olIkf1XmL+u8FHK8P6TepzUmWOeF6keXQ48rQSLbXOqziK5jNeF2RLbjVKy6S7FomG5i22COMjYG1QIDOcHLhqx9TgwJuXzeeg6RWR444MKLFx+tpI7cNjn6HDksWvYWswVdxkNiS0P9e+tE1ztypN4yETJbmNJrX1mW/1IUxX8BeDqAdxVFMR/An5Zl+US79EVRvBjABwGcjrFVa18vy/J7UynDVJmqLBQAXvWqV+H9738/7r///qPmU5Zl1SISQgghhBBCCCFktlEU9FwjAKYuCwWAVwB4DGPy0HcAeKQoiptE/EuLori+KIpHAFwPYOJPk48AeH2G62fn9a9/PdavX48XvvCFUek7Ozvxjne8A3/+539upjtw4AB27NiBM888M0cxCSGEEEIIIYQQQsgMM+VPrGVZbi+K4hcBfB5jGxt0AXguxlamAYDc47IY/387gF8uy/JnU71+HXziE5+ofM7VV1+N//W//hcOyDXHgsHBQfy3//bf8JKXvASLq6xFJoQQQgghhBBCCCGzlizrF8uy/OH4JgVvBvBbAPoDSXcB+CiAvy7L0nCYmn1IzzUA+N73fDVro9HAW9/6VvzO7/yO9/PnPve5KMsSo6OjuOKKK/BHf/RHLXkXKCe1+b29/mJCy2LAQlsVTKB1/toHSuJ5WmnvgJ07XXhgwKWTJmhAtP+GTiazWbrUhfV3SenzZW2dPTAQ9jmSPm66/iW6DlI8pzTz5rmwrgPpaSB3IE+11Yn1f6jiqSF98y6+OOz15PsmhfNL9kKxPH2sCwozDn3f0htrwQL3c+vbuOf9pmg2fR8Qr1jyQJtZGH5s0ifLIsdK9VQfFqufSG+OlYZnotnG9+2LuvYju/1rh+ou1S8nFj1Eyset73PcDhSA/+jluKHRvm1yDmkYfoH9/e4+tX+iNT4cHHJx2hMt5O/XUsfCI8eak46WT25k+5T1eobaH137SEpS2k8u78/YfFKv53s5Rp6kzcFEJXdoU9UE8tzL1MeAKs8ix7uExPIFTUXOIVXm8Nx9NNb7yqrFHGXKNS+EPCWteaiKl9dM+rh5yBvVk5Sc3OSEpSci60VANEo9h8g1D08I06KFC8PZa49BORfoYSrFJ1GXUXqWxXquWf65VjvIMS/o/GVdam+1iUdTFCDkuCCbOLgsy4MA/gLAXxRF8VQA52Nso4NOjMlGt5VluTXX9XIxaLnIj/PJT36y7c+vvvpqXH311ZPHb33rW/HWt7518niHNOolhBBCCCGEEELIsQM918g4tbSCsizvB3B0d39CCCGEEEIIIYQQQuYw/MQ6GyjLyTXCa9c2jpK4PTk+luulyOaiPrmmWchCNbFbquvlx2vWtF8CX2XJu1zWrTeElbKqVOltbDms5fwrlueVg1jXtkheJi7awYoj/v7bz1/vGuVw70ntTql0PVN2FCn9bMFYfy+X3K+IlF9atCzhl+WS5dANUksjBB2D+9vnoZCX6oqUEQNpcocqMpTt211YynB1PqdJmbseby64wIV14xLtQksVZJ1IOUiVfhhKW0VC68lhpdwewGWXnTYZlnW1aFG4TFpxc+KJLtxjyE1kM9PdyStzi+y6ZzKoqz9aKmiQY26LnYd0Oinh/bVfc2EtKZY2DHWM4xaxMrk6CD4bHSEb1x5/nvAajR6rYz0PIsktv0wltj0eLa0kR1VZ45bMX9pUADO7WCP4TCsUKmV80E1VXs4a9/T0dfiwC8txvdlMa5+pMtDYvpEsMw1YyQDwdfWWH4SoZLNfGO+YMkvdRORQpIcp0yZHEPsupK9tzemp71cpxF5Lx3V3u/P0Y5t49+2YuSGXkGmFTZ0QQgghhBBCCCGEkES4co0QQgghhBBCCCGkKvRcI+NMqRUURXFfhjKUZVmeniGfYwJr9xdNylJ2reiJlRK0yDGldE0u8Va6oNy7MqVKJrSyTh7LcMfAXj+hqKC9Q12hKLMe696xTZK6U1SWZedaEyZ0Ew2hI9E7Cto71kbukCV2G+zQD1vqN/TFYrdliqXKxBpqNLr8NU/WqRKQHLKqJEm2tR2mgZYyVZEnT1D7zmuqTTR23D0ZXrv2TFeOoYP+eSOujWzb5lsLyOpZcUTVnWhb3UK6XQU5/OsmXUWC3KZI2TAlT6Ih6Bbd19cQ4amXw1Ate+SSLMZKvbJLJHVDkGOa7ohSf6Vk0S1b6wZImb90Oj0v5Sa1jkP3Mzzi51f373SyHFpeLssyneWoEhebp35OoedmqZtXL/NftGUOQ0M9Xpx8J9e7V4bK2CKrtHYbT6CWd1E5b+t+LrfFltLPzjw2OVJyGbKDAPxnqF/DlvRWfxeq0udlWSz7ldgOVse7SqrkdSYl+ITMBFOdBvsBlBXSy414y/HjKucTQgghhBBCCCGEEDJryPE3puLoSTwmPqZVPY8QQgghhBBCCCGEkFnFlD6ulWUZtdazKIqFAE4DcBmA3wWwCsD/KMvyT6ZyfUIIIYQQQgghhJAZgZ5rZJxpaQVlWR4CcBeAu4qi+ASAfwXwnqIousqyfOd0lGE2M4oODGPMWyDXAwlp3LVd0apVLqzHBGndYHoASBMDvT95Zk+rKtr9nubwZPjSS33vhqDvwh5lSicqRdfd0qWBPDShulL560xy+Mik5FHJt83y+giYWukf79sXzn7xYhdu6P3VZUZN54fXUn5Rr9a9aQ8bmX1XM4N/hWG45D0n3RGt/qW9VwQd/f2T4WbT5V+lD0X7sYlyjPYuCabTbWnNmgSvP93ZLBMV6fun/cxENcfWSWy6ZL8T7UelTTInuOkm/1h4U23bdk4oCmeObA1eurFhw2RYP0MP1c+3b3HhdetUWll+cd5MerB0jAz7PzD8bGI9y2LTxb53VyljaBw5Wlm86yXcp5nW8N9s6aOHDrnwVr99jq5xPoO2N2c4Lhbv3lrGavf+sGOHHyW9+CyPQZmlzj7L/GIgn5Pl+5fDp2nbNv+4r6+9H1uVV8OOwf3uQM+B0hwrsiGk+ozKdwSriY92+75qLR6ZAllk81nIC2rPMnmi8in0/GgT3wEl0e+iux72f3D//S48f74fF5gn9LtQqjewfP+x6li+EyzpDeen6yf0ilbpdyqJnve3b3dh4U+X4znpfKI9DVUZvffsRK88Qo4Vpv0NtyzL/QB+FcAhAL9bFMWzp7sMhBBCCCGEEEIIIYTkYEbWL5Zl+bOiKG7A2Ee2NwH49kyUgxBCCCGEEEIIISQZykIJZujj2jg/Hv//WXVf6JJnPqPuS0yJxoLw/tuxco1Y9FJ8U85oIQcQqS3NJAPNsXxd0uhU+TUD52lZlrhPvTW33DY9WjppSHo0oTxTl4JXknumXC9SFmqh1QKxxN53HduTzyiRW7RXaRcpeaTiyd9iX0qMPpr6YpMqi4slOU8h7ZUqjB7d18R9X3qpH+VXV58fGdl+LKQsrmX4HwlLFnOjZd2SlvFfImWVGeQs0dLJGpju8S3Ub1qk7RI9Lyxa5MLSB2AOUsezDs1fuk3PpNR6rv8+mTI/6mlIoi1ERkacbYWuKzl+yvfxg0P6um5s6tIvo8a7VsqYYI1hqe+R3guz9YuIYeMhb7NhtLlUaX6Od0Ur/+TxOfkXtThyzxszOQcSMhuYDVNi39GTTI1bPrLh6IlmkN/88AMzXQRCCCGEEEIIIYQQksBMfk7eOP7/EzNYBkIIIYQQQgghhBBCkpmRlWtFUfwKgBcAKAH8cCbKQAghhBBCCCGEEJJMUcx9jTzJwpRaQVEUp8UmBdAN4EwAVwJ4hYj756mU4VigoyhtT5jQeQmeWVq6Lz0M9A7nku5u5bMgfRFWuWYwk54vGss/JzT+DXd2BdOt7EvzKPNsjZpdCJHDF2tGvQ0i/eR0W1+xPPoC4fxDe6ED6ND+JAF0uSxPjyQiJ90WT5OAH0nLseXLEdjqHsjjIybruFJ+O3e6sK4f6eUoyeTrGOoraod583Ip/S21vr1ybNoULMcL+4f9ODEO7h88z4uT99orqr+rwli0Zk0wKYYhvIbEz+vwroumwstvjvnMGJq8LivniWbTn7sazakPRrG+f1X8lqKRjVePU9J0So3VvsdY3KXytBG//mU/Wd0f5yekfbfkbVrve9prK9ZuKbatZp/X1LXPWRtOl+ppdbCzZzI8JMLA2C8WE8TeWg4/rZ7ucB6HDvnP8MEHXfjUU/20Xc04v0/PVk3PjRm8My1S3k07+pTjz8aNLmwNhImk9Ptc78vyGeZgtNtv41h7Ttt0tXjjxVLhPeyY8zom5ChMdRTegbHVZ1Upxv//DwCfmGIZCCGEEEIIIYQQQgiZEXJ8ti8S/h0B8HcAfqUsy5SPc4QQQgghhBBCCCGEzDhTXbn2LcStXCsBDAJ4BMB/Afj/l2X58BSvfdxhLQGOXXZ7+LB/bOzgnUTtS5GN66VeS543OBiWZHSpleux186xNbdMV4f002oHdW9dnp3cjXoWYUpGLaQMI5OsMsvzlo3LeG6xkrYcWM3HlHxn6OcWVh5+mX1JmzXJb93qwmuFnOu0PlUJxs1ZY5M8zUqXo35SrBU0MzmGyWeo22BnZ9yYb5W/7nsz85cNIYMEbLqRstAeNXyG2vXAgJ/OspWQ5+ln748x+cfB6ZzDY+WFOt2BAy78hNoCTTanOuyOUupk4UL/eLmwvrCav7yWft80mQs+T1omKglMurruYyXNddsO5OgnVebA0NzQbIbz0PnH9vMc48F0/x44a6DnGhlnSq2gLMtNmcpBCCGEEEIIIYQQQsicYwbdzwkhhBBCCCGEEEIImdvw4xohhBBCCCGEEEIIIYlQHDzLqKJVT9kee/Fi/ziHPDyHfj/2vqv4jaV4/Oj6iK2f1PtMwfLeq0Id3m0zhjQyUaYm0+nXZWG1wdr9cjL4rNXio7FqVeVT6n5mvb3xaXOPDzlo9ety4Z5u/9p9fa5cCxbE5T9rfb1qIPTcqvQFY2gKpqsyxs+kn02oTlrKVLMPTWz9pM55KcOnZTGlkWXs7p76fJ7jXSsXOca+RYtceP58Py7UtKw+VHcd6PaSw+Y09ztmrjEmu/fqDDJbvcEsP84QdfjCxeY/W+uxdui5RsY5hn67JoQQQgghhBBCCCFkeon6xFoUxf9bYxnKsix/o8b8CSGEEEIIIYQQQgiphdj1i1cDKGssx3H9ca1EMW0SPWvFah1LeWMlGdYS9RzyuVi0bCpUptlEDolAjpXMqdLe3JLIKs9pOuV6OUguo9CcWfWfQ7pa5fmm1H+u9lOnbCK1T6aWSfbfKn35vHWh69UrbZgLfU2TOv7XbROQQpU2mDqHh64XO9enksNKQ6eLlWrK83p78zzblPpPHSNTJYV1EyuttrDqZyZtPXJfq478U9rddMsS627/Ke+YufqJnNMt+wDJdMu/yfFFURQdAH4HwBsB9APYDeBzAP64LMsnIvN4IYD3ADgfwJMA/h3A75dleX+btCcCeB+AKwEsBXAvgI8C+FhZli3fp6rkXQdV3qCLiDRlRDqdps6PdoQQQgghhBBCCCH5Ob481z4E4K0AvgzgrwCcPX58QVEUl5ZlaX7NLYriSgBfAPADAO8EcCKAtwH4z6IoNpRl+bBI2wDwdQAXAPgbAHcCeAGA/w1gBYD3puZdF7Gt4LlHib8cwO9i7KPZvQC+hLGb2jP+s6UY+3p4BYA1AEYx9mBuqF5kQgghhBBCCCGEEDIdFEXxNAC/DeBLZVm+VPz8fgB/DeAVAD5jnD8fYx/JHgTw7LIsB8d//jUAt2PsY9k14pQ3ALgQwFvLsvyb8Z99vCiKLwL4w6IoPlGW5QOJeddC1Me1siy/GYoriuLNGPuwNoSxG/+HQNLPAPiDoihej7GlfL8L4P6yLP93tSIf26Qu861bXjJblhjP5O41deRR9zL63BKHXDuVhvKoe9dMq7x1t/G5sCy/Shlzjzmx9T+T9ThbxkFN7n6eKuGvUq5QHrOlTi3qtlCYrdQhwc4hG69b9pVbcpZ6LzmkjdPdznLIWqeTOsb4lPYzk3NxFWKvnWOeyJ2uynk55tHU8nd2Tt87slWOKu/PVj5kzvNKjC2c+rD6+ccB/BmAV8P4uAbg5wGsxJiEdHDih2VZbimK4mYALy+K4s1lWR4ej3oVgIPj+Us+jDGZ6MsB/K/EvGthSiNyURTnAvjg+OGvGh/WJinL8hMAfhVjD+ZDRVGcP5UyEEIIIYQQQgghhJDauBBjCsTvyR+WZTkEYMt4/NHOB4DvtIm7DUAPgDOBSW+3pwO4Yzx/yffGyyGvF513nUz1zx3/DcB8AN8qy/JfY08aT3szxlbO/dYUy0AIIYQQQgghhBAy7YyiY87/A7CsKIrN4p+WUa4EsKcsyyfbVMFD4+c3jGpaKdK2Ox8AThn/fzGAhe3Sjl//MZG2at61MVXnvV/A2IYE30449xYAm8bzIIQQQgghhBBCCCHTz56yLDcY8V0Y24GzHUMizbBxPgJ5DKk0VtqJ9F3iuEretTHVj2sTX/9CFWgxcc5KM9VxRt269Vwa+th08npVyh/rQyGvXbff2NHKEkOO+s51vVim079lJn3PYj1sqtTp8eg1kcvvZDp9ZKbTryiHl86QWhw/MuLCerMqeSy9W6qWJSf6vgYGXLjZ9OOaTReuo7xWO5P1KtH1KKnbjy3Vayt1Pp/JMWw6rx07N6f6pubwbYsldY5KLWNu79Uq5PbbS71W3e0nd7lyebqF2sx0eqxNBzne92PbiJ53cmxAWffvK7FzFDkmOAjgpEBcU6SxzgeABRHnW2kn0strVcm7Nqba4ie+DKb4pp2n8iCEEEIIIYQQQgghs4uHMSb9bPcB6xSMrXyzFl09LNK2Ox9wEs59AA61Szt+/aXwJaBV8q6NqX5cuwtjGxNcXhRFtEHceNoXY0xSevcUy0AIIYQQQgghhBAyrZTl2KrDuf4vgu9j7PvRRfKHRVE0AawHsDnifAB4Zpu4jQD2Y/zbUFmWowD+C8AFbT7mXTReDnm96LzrZKqLTT+PscI2AHytKIoXl2X5E+uEoijWAvgKxpbslQA+N8UyHNPUsUw8B8fLMt8c28NPZ13VId1IXt6vtWsTNOPl7pZkIoccoW4ZdopkK1WukWOL9lRS5UR1y0PqkKyH8q9bDojByV3F0SXCAIC+vsngwaH45zk84tJK6UmyhH/XLj9SZtrbOxkcge91e1hsiq6HDXFai2Q0WA6D1PZuSW87hoTKQOpYj0JKm8lljZDCbJKMxpJD3h/KzyJ13Mshj6ySR+4xrGPEWLAgOk7dMlDrvCrS6pT6mU39Ikebz9Fec7z/5G6rdb//WVjtTH/gkMddneJgzx4/YXe3CPdElyXHM5QTt85ttMI7P5kTfBbAHwJ4G3zP/d/EmJ/Zpyd+UBTFyQBOBPDTsiwnXpS+CeBnAN5QFMWHyrIcHE97Psa8+D9RlqV4K8S1AH4OwDUA/kb8/G0ARuB/R6qady1M9ePa/8bYbp+nA3gqgDuKovgMgOsxth3rY+PplmJMOnoFgFdibIdRANgO4G+nWAZCCCGEEEIIIYQQUgNlWf6oKIq/BfCWoii+BOCrAM4G8FaMfdz6jEj+PwG8DsBzAdw8fv7hoih+B2Mf6b5dFMXHAfQAeDuA3QD+RF3y4wBeD+CDRVH0A7gTwAsx9k3pfWVZ3i/KVjXvWpjSx7WyLJ8siuJFAL6BsY0J5gN47fi/EMX4/z8DcPlRdLmEEEIIIYQQQgghZGZ5G4AdGFtN9iIAezC2quyPx6WcJmVZfr4oikMA3gPgLzHmv//vAP6gLMuHVNrhoiguBfA+jC3QWgrgXgC/jTYLtKrkXRdT3oOkLMt7iqJ4BsZu8Eq4j2cWXwbw5rIsdx01JSGEEEIIIYQQQsgsY8Jz7XigLMsjAP5q/J+V7moAVwfibgBwQ+T1BgC8ZfxfTProvOsgwwa/QFmWjwC4qiiKswG8GmPa2DMBLB5Psg9jBnK3AvhUWZZ35rguqU6qH5L05gHit4au25Oobmay/Lk9hOr2JGqZVaQvlGwwc9x/IdWTpQ7vvdyeTanMBQ/Guj1akpEmY5aHikynvc1E3+sS/msAMNrp/M0GBvzTZBddtsyFtbdZdN1pwzR5LL3Imr7n2uLFLrxvn5+FHFbqaLsWctjyPOm0r5QspB4HIydLPcdKGp31zj2Wn5xVx7n9Gq386/Days1sfd+pe14y79VqXAlMt69gLLPpeYfI7XtWJf8UUseeHO3damepXq7meWJO6Rrx59HhpvNPOzji5s4W71U53yrPtdrHpsz9nJC5TNYeMP7R7P/JmSchhBBCCCGEEEIIIbOV2b/cgBBCCCGEEEIIIYSQWQrXbs4CCpRJy3Rzy7mqbA2dsuq3juX8OaQiFrklEzNZB6ny0eg60I1CStpEA9KSKilbO1pZksplnBNd/9O45L0OWYrVz1PPy1H/SSQORqkyj1iS5dnyfrRuU96b1G0q6adVDkt1Ki/d2xvMMprR/tVR6ZTqxbvN5cuN/CNlQlXG1aS5V41ZHd1pbVAin4VW1/b21vt30Nmq6JkpqV3qu1BqeXOMsznafxbpmG5A4vh4tQ+YKWmyJtYGpg5iy1XHXBySauaSuMb2odQ6li4Qcg5/+vo1fkIhE63jeZr1Jd7350I/r4PjyXON2ByfPYAQQgghhBBCCCGEkAxE/Y2yKIrnyOOyLL/V7uepTORHCCGEEEIIIYQQQshcIlYAcDOAcjxcivPkz1OR+RFCCCGEEEIIIYQQMmeo8lGrqPhzEkmJYlKjXrdXjIWlk282p56/9pGRqmSdf27fi1SflBQvCH2f8lqNzun1kMntfdDqJ+Dyb7k3eeOyUlQmHYmeWSlUaleynIYp0XT6AqV6H9bh+xfbN7J7regOJr39KuRfZ9/Qz8kcP2X5162Lu4D2ZhNGLLo/NYUPmrRtA/yqTPXasjxmfrjVxcn816718+gY3O8OdGUZBYt9hsMj7cuRSpU+k9LOrPkwhyejziPH/J5KLt+jUH6hPPQwIuvAKpP0PwKA01ZV9yybTZ5cIT+qOq6Xw0M1h69dlXSh6+VutzrPmfIb1OU4Gjna7nS2+bp9jlM9kOW8fbCzx4vbscOFFywwMjXehaxrpzCT7XO2Qs81MkHsa+Y/Vvw5IYQQQgghhBBCCCHHPFEf18qyfH2VnxNCCCGEEEIIIYQQcjxAr7NZQIGy1qXn07ktcpUt7C1ySwn27fOPFy1y4S4pibE0nZ2NqGtpxZYnxdKRUosSqc2pQ44Qi9wGXB93d/vl6utz9dXV2+siDEmbXtZ+sLlkMnzgQLhcCxe6sFWNnZ1qKf7IsDuwtHwZpGkWrZLp9sXQ+GrVqcs9q0hGc9x3Sh6j3T3BuFS5RqpsJDS+6SYum7XuJ/J6B4fCcr0OQ5qMwUEXVp1Uyk2WrFrlxe0frC6XfGS3X8bgWAq//Ob4v3OnC2vtqjiOldPpdPLaDQx7cV7ni5TVVMGSTYXqJFWmGdt2rXl6rhNbB3rM7WrGjQ+yq1W5dg45r0VuWWUd9gE5SL1PeSxl4oA99qU8tyr558bq27HznDVW63vJMXZYU1udzNZxUNeBnBJj5ev6GVqWNJR4EpIXflwjhBBCCCGEEEIISYCeawTALPlMTwghhBBCCCGEEELIHGRaVq4VRXE2gDcAWAvgEIBvAviHsiwPTsf1Y9j12EG87YO34vt37saC+fPQf/IifPh3n4nzX/1FrH1KL4aGj2BR13y8+aqn4XUvOhMA8Mkb7sI7/+a7OGX5CRgaHsEbrzgbb3/leQCAj33pJ/jbL/wY8zo60L2wE//n3c/BOasXVy5X8nJpoUvydo9Tspccu1t5GDtB9ijFTe4dayzJzZNP+udJGWHwJMCr9FTJq7ccW2tKEtbAWztG1rGs3doFUcrf9K1JJWizKdqZzkRuvyZPAjDS52Shjz8eLpdcKq+y8OpHy60a1s0FqGMnLXnpQ4f8uHhZaPUy6XLNBXmAJ+UF4m+8Qt8OYY2DWpZrXTqUp5aqyeMlvc32EQBG1z/dlWnPo34msmOqrQ57pN5E1Ie1s+p3v4sgl1zin3fmmsj2lKiDjO2LMvuDQ768f2jEHXcaw3OOXZ91O5NtRubfKukJ52HJYUkYPU/E0t8/9Wvn2G3Qom4JqoWWRIbmaY1MZ0lvtXI7dud3id7xVaJV6ZZcWCIl/doWwH8XisouGylzm55Sc8ud9fg2U7JQi1T7Fdn+LZcZq11p64I1a9wcJS1uOob8X6EPomsyrC1cThOOEHW/581WuS0h08WUhrGiKE4D8IXxw4+VZfn/tknzEgDXAZgvfnwFgLcURfGLZVnu1OdMN2VZ4orf/ze87kVn4rr3XwoA2HL3Hjzy2CGcfkoP7vjUSwEA9z20H1f+wdcxOlri9S8+CwDw8ktX46PvvASPPT6Es172WVz1C6tx6opuvOr5a/CmK88BAPzLt3bgdz/yHdz4kRfOzA0SQgghhBBCCCGEkFqY6t8Ing9gA4ASwH/oyKIolgH4RwDtnODPAPB5AM+cYhmmzDdufxjzOzsmP4YBwPozl2HHw76D+upTevDBt23EOz5y2+THtQmWntjEmlUn4md7DuLUFd3o6Xa3/MShERRFUe9NEEIIIYQQQgghZNooS3qukTGm+nHteeP/31mW5Y428W8GsAhjH9++B+BD4z9/D4B1AC4qiuLFZVl+ZYrlmBJb792HZ6xddvSEAJ5+1jJse2Cg5ec/3TWIoeEjOG+Nk7H97ed/jA9e+0MMHx7Ff/zt5bmKSwghhBBCCCGEEEJmCVP9uLYGYx/ONgfiXz7+/24AvzjhsVYUxX8CuG/8+i8DMKMf16pQlv7xZ2+6D9+4/We466cD+Pi7n4PmAlelb37Z0/Dmlz0Nn/m/2/G+T/wX/vFPnts+09FRJ85XhgypW4R3SNMHaVKhDCtq91gyzBRi/ahSkZfTPhoSz3NK1Y/00dCPIuSRoz019g64PLr7TgvmEetrof1+Uremj7mWpq/PPpZIv4ndu114/vyTvHRL1ok6V3/2kY9jzRo/f9nEpYeK9juxyjja7ArGyfLLsO6T2gPGyz/Sz6y7O+x3YiHbWmpfzjEG1O2ZIn1MGpaRiSZkmgUk/YnR6mkNkX9fX7z/mrydw4f9OOkVKdsIOv12OyLbZ6/fv2S5WoxYAnNDS5sQJki9vT1e1PXXI8imTWLsE5dq8WTpXx2+tiDHGLZ9u38sq2TtWj8u1Le1v57VlFI8oSxPtxxzpdUGY32xLGK7ZC5S/JFSxz3LKynVpymFKu1AD5mS0POuUl5ZFj3EyGvL9zB9XemzVsWaVvbRRmTb0mWU19N9vivSI83yn503z4UP+IIYz/9XXjva57hN2hB1vHOHyhXrMauPU8ei2HHFeieLrZ/YutPvon7b8vMwPdhGnLfaiuXSe9VPt2OHC1ueayaJL3OWd+xkmtlv6UtIFqY6uk68xe/QEUVRnIyxDQxKAJ+RmxeUZfkQgBsBFACeMcUyTJmnrV6M27ftOXpCAHfcvQdn9/dOHr/80tX48XUvw7f/7pfxjr++Dbsea92j4RXPOx3Xf3NHptISQgghhBBCCCGEkNnCVD+uTfwd6ok2cRtF+MY28dvG/4/9nl4bv7BhJZ48fAQfv/7OyZ99/yeP4oFd/p+Ydjx8AL/317fht1+2riWPZ567Aq+57Ax85LqtAIB7fuq2NvzX//wpzjj1xJpKTwghhBBCCCGEkOlmwnNtrv8jU2eqC/SPjP9/Qpu4Z4k0t7aJ3zv+f1iXNU0URYEv//nz8bYPfQd/9k9b0Gx0ov/kbnz47c/CvQ/txwWv+SKGho9gUdd8/PbL1rVsZjDBH7z2fDz9tV/CH169Hh/9/I9x0/cfwvzODixe1MA//smmcAEMWagkVnoCIHq/+FgZQ8fg/nBhZNjaJ12vFY68Vy3BScGSIMhraVmBXMK/aJEfJ2/NWr4u87DkGYcO+fc5X+yvK/OvUh8pS+U1sszWMnddBzKtlGKdoEaLCy5wQ0DDWBqvl/DLepB1rPuJXG6v71Om3an2LZZSU5mut9dPt25d+3RjZURldD3KPOU27ACweLE88u9NSstSJSCx0qAcUi99LSnJlm1wCQxNidURNaEB1ZKPWg84shL0M5RSDs0ZZ7TPXtdVY3DAHagxeLTX+YBChg1axntRyOesUmP8S5ykU8uhDh1y4Z7ucHuMlTzlkEadt85o0/oGJE1339Y4Yk1zWmIWvB/VzkY72+0JlY5uxqH5EPClylKmrJHtU8rggLD07WiEnn2V8Sy35YTVdusoY+wYbKUbEbJ6/XyrDJkTyLFZ52m1/9ihVNt4WK+RKZxyin8s23VKfejz9L0dORKOk+95HSPD7kDfqPELgLQzscaK1L4QOwZ7ZdLSf5FHqkODHKfk3AKkjTF129GsUktHrHe5ZlPUsa4Q+QItXjj3j/i/Pt9yiwtv3OhFxY8xst0ZFRn7OwPg5hDZDwg5lpnqr0SPAngKxuSfmonNDn5YlmW7N9aJTxWtOsoZYOXyE/C5D1za8vND3/qN4DlXX34Wrr7cfWhbufwE7PraawAAH3nHs0KnEUIIIYQQQgghhJBjhKl+XLsDQD+Ay4qi6C3LcgAAiqJ4OoDzMOa39s3AuU8d//+RKZaBEEIIIYQQQgghZFqZkIUSMtU1sV8a/38RgP9bFMUVRVG8CsAXRJrPBc69CGMf3+6aYhkIIYQQQgghhBBCCJkRprpy7VoAvwfgfAAb4H9UKwHcVJbld/VJRVGcA+D08TS3TbEMc5/OzkkjJ0vHrn0KLH+PUD7W1tMm2mxLiuplWJsMSCMKLcQXN9Shbm5oqL0/Q0jLD2j/KaAxJHyDWow04jxspM9arK+U5Zml/6oht8vWdj/S20v6lGnvN3m9Kp5EIa+YVtx5uoyyTpb0+nl0d7vzZBmfUNufSG+zZcuM7clV5fV0uuOLLzTa2a6ByWCHMkwbEZaPu3f7p8l7PVHsR2L5eVhtZHjEvzfpiRbr1SN9RQDbHiN2DMjhx5aah+/V4+ch+4bXp7qNSq5i/hZrrmPlGejcejyTzJ8frqvly/3jUFvT9T3UdF5qXRj24jwfH1Wu4HO7+Wb/WNZVX58X9Zz1bpwd7e7xrx05v1iePjk8p2LR5Y+9lvTL0c0q2k9OPic11lntKZSfRmbZpbwtm33uPD3VP+72ZjJtoKxxUXrtVPFcC40xVcawYP2rycx69l4ecsICWvpDiFjfqpa4gCFeh+Vvq5BJ9fNNQbcDWUTtlxb7vGP7b8OY52LrWL9DyXlVV2NsnvLVQvuySkxf1gFRkfplyzJGlO/dsb6aGcbLKnQMOQeghmpAjYBnnH4ne0TonPRzknWux+AcnrCS2PHHG9MBNMQzXLHIL+Sw8E9rbN3qZ3Sb+zV5dN15k+EtW/xk0jdYegEfDa+NJ/qsyTpZ0tv+POkvSMixzJRWrpVlOQrgRQBuB1Cof1sAvCZw6utF+N+nUgZCCCGEEEIIIYQQQmaKKX/PL8vy4aIoLgKwCcAFAOYB+AGAr5dlWRrX/UcAw2VZcuUaIYQQQgghhBBC5hT0XCMTZFksO/4R7Rvj/2LSvz3HdY9F9Epwuby5MaI2VhVrnYdGfJmjXB4sWbMmLA3UyCXAQ8tO8+LkAOKVsdNYam5JS5WWoLu70TbZPfeEs9eSuYaUb6h14T1iGf1Pd7lrjSjp3uo+Uedq0Bzt9LfBDiG3DNdbUcu600vXZZXIldqWNKezM1H6acwIPUKGd067fYHH0UvG5f3Mm+fCuo3LZqHrQMqVoLaY96RScqtyvVZeynbWrPGiupa5PC680M8/pHy2ZF+6DuS96uZ/mlJQt8sP8J+pXrHvyQ4G/Iod7nbyEFlVqRLO2HvTynAL2ey02kqOYf39ohx9YfmW7hsHDriwlo3LOskikTH60LCQoWvJ0IUXurBuI1IdcsopLrxi/l4v3YHDQgq0yG/HUgK4d8B/hrIty27zLH0vsmLlwwC8RplLchybh3c9661WPOxY6aSV5YCqR1k9+vlqiUwIKYeKlYEeDV927cJaWifrUUpcrfyA1rE8hGXtEGtrkBrnoQcZiZCF6vtsyMl/xw4/UswvsW2rYVh8tFSQHAhlReo2IqV1Rjm0fUMIy0ZCz0Ny3JLvOzqt9ZwOCluAljl2QIx3KrJDHIckovracl4AfKsKrfINdUVt8yBp7PppMJPOvpVelNcu5OChK1n6JFgWK0YdyzJrGwZ5n1o2Ltk/6J8nn70sfk/Tl0SaslZxrzLqscf8ZLLrafmxvHbsBw79+0rsfGW1LQ9dEDn+qHY8tGy1K9e2bf55+p12nI9+1D+2xtJYebNFtMXBNEuOCZltTP3NlxBCCCGEEEIIIYSQ4xR+XCOEEEIIIYQQQgghJJGse6gURfFzAH4ZYzuHLgdwAoAPlGX5DyrdBRjb9GBfWZb35ywDIYQQQgghhBBCyHRAzzUCZPq4VhTFaQA+BeAS+WMAJYAT25zyVwB+HsBOAE/JUYZjBe25I30EGiNhn4UDh3yfnc2bXVhaNbzhDX4WXcrbIrZc8lha8DSGlAmLZbYiPRi0UY3wn5E+AnorZ3lt7dPhmTJorxVRlm3b3LW0h8zqVcL0SJVxaNWZrrhGT1qxWHhP6AsIr4mH9/jPUHqXyHvT1SjR1RjrITGCRjDOGiRCvmSAbxXzgx+Ia6nJZ/16FzZ2AY/n8GH/WD4cdYH9Q+6+rTYu72XpUj/dhRe6Otb3Jp/hggWB8uoTdRvpdX5aLV4WstJVIwz5H1p+ITrOaj9yXJH1oz3XZJz2s5HeLt3dYT+wWAsqy7dtwwY/zvOwtLyMDEI+WQeHwr40epySx7JOAeCWW1z44otdeMViP+GKPlHmpt/GZVl0/Zwz8sPJ8Pbt502GR/qv9NJdcgmCWO1HNutQGPCr3PL8snhkn3sW2ttSTgWNof1+pCyM8CkEwuObtt2S9apsHU3PtVhvmlQ/GzkGeD5rerAWDbSpPKFObPcGN44cTmU6PU/LdA0oLyY5w1gNIxV5r9KbUw8IAu1Zu7pflGPjRi/O86YVl9K+VfL9Tfu1eufpwsjKE4Nrqp+h9grrDFS/rvrQfQK+N6S2ZJRel57XnHrWBw64/quv3bAGUNG5O0I3ozJdsVz1oeUuGOunZfoj/+hHfqQwD+tQ7achBwxZsVZf0C96LS+/ApFnZ9O1Lj3XyOz7+vw6kOOIPk+OhfJWejpVQjlI6gYkMm2I53lOf6+XbM0aV35dPZZPnMTy5UtF9invvUs3ZFFB+n3/tptc+MpLL/XPE7/QdWx1c/bQ0HlesrXCEzn53oxBIHUeogcbOd6Y8shSFMVZAG7H2Ie1Qvyz+OvxNKuKovj5qZaBEEIIIYQQQgghhJCZYEof14qimAfgegBLMfax7EsAfg7A0daffA3AxN99fmkqZSCEEEIIIYQQQgghZKaY6pr71wI4C2Pyz78qy/L3JyKKIrx4rSzLJ4ui+C6AXwRw0RTLcEyhJVX+ctre4Hkruv1ltxs2uO+mctl2laX+1ip0ibcce+eAHyklDToTI9PQMuL+/rB0rHWZvpP47Oz05T4nCrmeXErdokK5ZUf7hPCXx8vz9Bbh3gPQhRQ6uZX6xIAkRsvnUrGUiKFiWH4CWpkQqtcDB8L5W+gyDoot4VfKjqM1PbINqkLuEUmlYgjwn6M87YknwmW06mf5cv/YX2Ifh5b0jHT2TIa1XGOVuO2OESfF6jAqvMr27bIvSimQrn65XfxLXuLHrV3r8tCSUVn/lrpcXk9f25SWDogGJdtIBSmaVyfi4Q8N+ZIP2XZ1+U84wYW1pOqtb3H57x1wdXWweaaXTt5nx9BBL65LSKrOuf8O/wL/4OxQX/ve97r81/hyE0suJm9It63BwUa7ZGYd6PytxyHb5yOPuJ/rvvC0p7nwige2+ZG7d08GGxde6EUtaRnMx1i2LCx/tcrYMq/JE2Wl6MFUyI9bxgBDbhuS2DZ0QnGsy7h4sctDj2EhSbDO3pOCWt4XimhbA3G9Fjl8SPKtGuHAkJOcafn06v7wtWUdDAkJdovlhrzvPl/8KefErsV+g9/fe5o7iJynI1WCLWktpw6Jtm+4/HIXNiVgxkAi7TO0ZA7N1cFyNUU23rWNG92vxmdP0hmwU9As6TXSXXCBf6wblERWumwjuvxyLFIP4OCIGGdVG1ki54Y9j06GV/f5eQx3hiWjchzRc9Tq/vZzIHZVkHjLl68HH3Ths8/2kjXEw2+oOhgV1iax6nLrd57WsbR9HjptZ6cYszobwXS6ju+5RxxsUBeXuuvbbpsMvulN/jyt361DmONqZ9giRmLNQ3reOV5koWVJzzUyxlR/S79i/P8HAby74rkTo8WZZipCCCGEEEIIIYQQQmYpU/249nSMrVr717IsjxwtsWLC4XOJmYoQQgghhBBCCCGEkFnKVGWhE+uUf5pw7sQ60Sw7ls5lShRJO7vIZbl62fOZa9rvwmetzNZqDbnqWssApITLK/uq07x03nJga3slvT47IJdZ0q3lMu6GtAxDyqi05E9KC+Rq+zP71U5mUtuodGvdoi6tVf8r5X0qmdGw2J0uVo3WstuasWOktZZd7twl24h+TNYyZ2uTxcb2n0yGzxGN676+Z3nptmxxYS05kNWv61isjseqVU7ScMIJv+ClWy6VyWFVbst9hmShukqlDK9T7QKndy2U+CowsRS/1/97gyXflXWi60feW6fc1TLTLk8hSZh8ngBw440urGXv8n70BlkhtJxC5i93ZwWAZz/bhVukIstOirugIFbytKTpX2zJGtdoKo31Ms/e8AAh54KhEb8N9gzscAe/93v+iX/5l5PBH8JJTFap4diUQMmGpzrHEtEI9wsZtx7u5e6SqRtEnrfOlVFeqwXdgeXFjcFOPjctHWukvsXISdeTDfpzzZDov7qfy9Ms5wW5ifLixT1eusFud9w0ZIOxtMhCm+GJQu6429JHRdia5uSYoCW7DZlY7NZ334A/zvq7Jfr537cj3J5Wr3LzcW+vIanSmQrk7pWjaudu6SphPesVK1y4ZY4S41ZPM6yZ6+2NG5ukzcBRCUhBW3YWFvet39dkFnoOke8MniSv22/jEmuubKh33RBaFue9l+kXZst7xNLLh9KpPGTd6ff4wye4+WDFfJHHN77hpWsIzffWAd+tR2xW2WLtcM4a93Du3uHKsXOn/7vA2rXuuG+dn0fH9rvdgbwBXY/yWA0W8ml0Kmmj115F3Wn5ory03nTes15Q7wEtEvAg7nr61jxHAm1H8OpXu7DQYD+j9JP540j8rvASa5y17Dnku1fL7wLH/W/55Hhjqk3+IIATASS8fuHk8f/3TrEMhBBCCCGEEEIIIdMKPdfIBFOVhf5s/P9zEs59DsYkpfdPsQyEEEIIIYQQQgghhMwIU/249i0ABYDLiqJYFHtSURS/CODc8cNvTrEMhBBCCCGEEEIIIYTMCFOVhX4WwBsBdAP4CIBfP9oJRVH0A/jE+GEJ4FNTLMOc58knnQeE9sqQHhha5x+7bfrKvjiPpb6+tG+t1u7hMs8ObQYhb1bdwLDwkGiMiBvVplPG/vP33CP9H/zTZDk3bhQR/3ydn3DTpsngI6Xv0bRIXE76gGjfJ/SJSLVm2PPp0MuJQ/4klvGWbkCyYIbXR0P62uk8xLHl1dDiRxUwLdPZS+8JbUvTMbhfFNf3UJHPUFbrI4/4eSwSn/11P+nY6ewiz+zVfn7SE1BcYKcy/RLtuiE8fQBgZZ+7oPZoCZVf1498bNr7So4P2otG5q/9PXIjn9O6df5zesMbXPhNb/LP27bNhbUPjqwT+dwWLPDTXXKJC2urkp/9zIW1j49MK9udHsPk87Da/4jw22sMKrcDkUmsh2FLYUQeP9zme8q85z0ufM89fhY7driF5Ye++1k/UlTCml73465meM5o8XKRD0eP8eKhdvetnAxb1pBW/Wivs1C5dHuXeUpvOQDY0+mO+wb885bOc+GFC11Ye/VY5QoWBPDHcj2uC2Qz0MlknDUGyEcj7wUwrYw8WsZ4kVjO712Wcad6OHLsaLSY/Mh5w9W5VY0a+Q4y1O3m8Ntu8tNddZW4rCrG5z/vwtIDDQDe+c6Az5oacEbXnBkupIHMxrBv9eY5Ez3AiecRsEcDoJ69MUiOar8r+XBEph3d/gWGhtxz0t6rp/WJ9yQ9xqBXhMO/0sjx4czeR/3IAWk05VfsaNON67J+tPfnSogf3HGHHyn8zKDeERCon5YXAWOs6BlxL7g96rzhxavFeSLirrv8/GXDPsP3XLtOvBbrYp1ztct0507nYyg9cQHghBNceGXvQT8yVAf6pUC+yOtOL+ahDv2iFzDN7dAeoYavqYVsW5Yva2PE3ffqfv/aJ5zg8vi3W3zf1H0niF+tfas8j5e/7GglbY9s1z/6kQuffbafzvLhrvsdk5C5xJQ+rpVleXNRFDcBuBTA64qi6AbwrrIs79Npi6I4EcBrAfwxgKUY+7D22bIs75xKGQghhBBCCCGEEEKmG3qukQmmKgsFgF8D8ADG5KEvBXBPURTyT3ZvKIpiC4DdAD6MsQ9rAHAPALWOgRBCCCGEEEIIIYSQucOUN8gty3J3URQ/B+A6ABMCnadibGUaAJw1/n8hTrsVwJVlWR6Y6vWPBYaGgAcfHAsvXuzHydXNWo6jl2cHsdb6C/RyZlMCJbKUCgEp89Lp+vr8rbkbA2JpvirX4IALL7E0Q/I8lcePf+zCclk7AKxf78JXXupkKbhJaUUuvXQyePvtfpRc3S9lDC3Lo+VSdl1B8gFruUBI62stedeSCbF0frR3iRflyXRlGbU2UxwPjQQkMGizHbmsCFHGld1+O5s3z7WzJU0lF9i8ZTK4duNzvCjZFKRERitWZLNoWbIvE2vtsKwHS74V0neqY709vLycfIQnnuhnIRUluk/KS2uZipbWpBArd5D3ubrPf4Zr13bp1JPIqtTVL6tS3suKFX66tWtdWI+JUumi5cKh8dMaVy3JqCxvQ/VRWY+VZKHyAuIB/9mfrfSSfeUrLxZHvjZw7dr/32R47ypfEin7m7zUwSG/nUmZqG4Hw91uXGkZHbZsceeJymv2r/aSdYw42deIMcY0jDeWWDnpzp3+vd14owvrPrNhgwvL4UAPkY1YSYw1f2mdn0A2pyXdw17c3kFXX3poOnwYwTiJNVZ0DBgbustMZWfTg5HlYSG1rErXehDtxw7L/UD30dB5Uk4OKGmvmqevuMJJq2+5JZy/x/e/7x12yPldtQNpg6HHADmNPn+D8SyavZNBPU9447h6Qdk/GJZTBzHy0I8ecOODfE4NNY7IZ+PJQAFg82YX1n1IvszF3oDW9srJx/MJAUaWuTa4b5/7eYsstHPAHdx7b/jaurMF3pPMyUxf3HjHb4j8R5c5WXSHeLcF4OmPn3+JP4e/972uDvTYJ8sv4+TYCQAXXyie9y2b/UjZaeWg9dhjfroD4ldG+WIE+OOKJUs3fmew5mnr1yh57PW1EdWO5Tu3yuSJJ9yz2brVP01Wz+mnu7CW98e+r+m4EWFZIpvuueciiPk+SMhxTo6VayjL8mEAPw/g5QBuBnAYYx/T5L8jAL4L4NUAnl2W5aNtMyOEEEIIIYQQQgghZI4w5ZVrE5RlWQL4PIDPF0XRBLAWYxLQTgCPAbinLMvH9XlFUZxWluVP9c8JIYQQQgghhBBCZiv0XCMTZPu4JinLcgjAFitNURQrAbwHYzuMxgocCSGEEEIIIYQQQgiZNdTycc2iKIoVAN4N4BoAC6b7+rOR3uYQLj714bGDFj8nZ1Ix3On7j0j7Af21vKcpfmD5nQi0T4fM07KKCVlTAb5NhLbDWBIynQLQ29sjLm5sTy6Qvh9jebjwunV+Wnk/373TXeviyy8PJpTeToBvkSPrQ3u+7BpxXnMnnO/7zi1a1D4PwO+cfr3699kp20Vvl4prnx8AjPY536aOFiMNkU76UBh+Ni0ETH7+a3uPd/yFL7jwunV++V8lPVq2/dCLW7/e+UfJS+nd22UdPLLbr7vHRs6cDHevOtOLWyBGp+X9LtziNWH9qUp4bHSoB7xunfOi8fJsMQ0Kt/nOTnc/+hHm9sSwPBgHO9299Oy824t7/kZRsE5/ENiyxeX53y5XC5hFB94P12a0N5u0ZdG2hbrfB7KPxvJjk3HWWFoJ2RZuu20yuHbtlSrhB0T4/V7MGWe0LyMAjDZdf+sYdN6TBw75fVS2s8bQfi9uSDybTu3raPllSoSHUJdqyHJct9qghTzvhf0/8eJe+AZRLj3IGx6lKddG0x/fOqQJlWHq07FHuGgoX80lsr7UJCvHu9CcrWnc8CX/ByFzyzbXm8QycdMdT+avGqgcy2WULr/0BGzx/gxw2jI1zt62xYWVp1XnWue5Ji2+NN6Ye+GFXpw3jyp3Qjl/Len1x+3nbxSRW4QZk657UTDrfU33IenvJH2ydNO3/Jx6Op1HV0+//wB+sq29j5X2T/SuN6RuQPZLw88y1mfqkadc5MU92eeOl/nZoynKJd/XnnjCT3cfXBtZdvU5Xpy8t5Z3dewPR0rkfVvGsrqPBia60XW+/yb0scDzJdaIOf2c5n0uPLjFT3e9CKtxdlT0r44h4fem60OOfboO5C8b+iVBjkfipcCapy3bSKuKZbGaTb+fd8gT1QVWd7sx/nffpi4gM5V1oJ7twSE5v8R7dMu4q65yYc+HsgKhei3LNokJOQZJfnMsimIegNMx5lb6BIC7yrIcNtIvBfAuAL8FYCHcBgfsboQQQgghhBBCCCFkTlL549q4nPN/AHgpAPF3HAwVRXEdgHeVZblbpO8E8LsYW63WA3/X0NsA/GlCuQkhhBBCCCGEEEJmFHquEaDix7WiKM4BcBOAFfA/kgFjq9GuBnBxURTPLctyd1EU/QA+B+AZE1mM/38rgD8ty/LrieU+tjh40G2DbezD3ujz1/UuX+6W3grFEACgv98tR162zEl1howdqvVKarn6WA8YJ5zgwosXu/CJJ/rppOqlq1MtbBRbf+sLdAh9wminuxe97P/gkKuDLVv87GX5tTxMrrJ+XG6zobcnF7qU1avU0viAJEbLUrZudWXUy8lluZTax0OueNdqSymR0c1n6VIX1juXSyy5lbUFubXUfLjXbS0ul5drNY6Updx0kx/3kpufE3WtQ4dceN8+P04qAh5XW6rcfLMLS5k1AJx9tgvLZtEiOxKV0rIcXtSBVjF4rUdWsta1GhquXXucDEA3x1h5lKSK7E72xe5ucZ6WhMl+rvaYf9ObftUd/PPN/nmXXDIZ3DEYloVu2+bCl13mx8k2o9uPL99ArVjqQhmnx4Al3aJgonP88Yd9+frQ0LmT4R07rvPi3vUuF5byOcCXXPYImcqKXn88HhWyX93Q5JEn6QH8AU608Rb5lpTIqMrq7D4JMcjTTEn0/ff7x1LfJScsAKNC5rp7N4LMn+/CIaVkOxpSZ2/II01Np3HBhQvbZyH7DADcc48Lv7wwJnutuxb1NTwSHjvMZyMnNNW5V0vZk6VllRiSOe9dQnfKQFsF/DJLiTTgF9+z41B1ZeVhqo/l8924MXiSfBfSVSCrUb/L6XeSELL82oKjR7Tjg/Clz1IBKPPQ7UXO20884ecxOOiOm0qu571jRo7jd93lH8v3q02b/LjTVrkyDw21l7gC/jv4WWf5caee2v5agG+BIqdOfSsd1iQV0k+PXcDlIepfz/UtbhSCLllodePD654+GW7IzqDmesyb58KyHQO4/noX7u52z1q/tze7XV01Vbv17AT0ACdvToT1WNTwhtl4mxyvjMZjkuMPhC1LS1m0JlW+Q8l7kzpuAJ1rnbTXUsZa1iYN+dy0fFfZGoTQ9TPRt/nhiRwvRP8mNS4D/QwA6w2nAHA2gI+Mr3D7JsY+rBXj/24B8LyyLC/hhzVCCCGEEEIIIYQQMtepsnLtcgDnYcwj7QiAjwD4MoBHMbaS7SoAb8HYB7urACwHMPH3mh8BeEdZlmpdCiGEEEIIIYQQQgghc5cqH9fk9mSvLctSak+2A/jPoij+C8A/ApgH4Bcw9iHuoxj7sMYFoYQQQgghhBBCCDkmKEtKX8kYVT6uXTD+/w/Uh7VJyrL8VFEU74Bb4fbVsix/Z4plPOY5vGgJ9q4b85bSen15rD0RZJz26rnxRhd+0Ytc+JFH/HTSquGWW/w4y2Pm5JNdeMECF1a7z3uS/c5l/rbUDeGpZBkVSB+f4U5f8y/tB3QdSAsGsUt9S5zkP25eotK54zXaBqd9Fi1cLuyRtA2F9Py6804/7sgRF5Z+CdK6AvCfob4v6blmYXmhSPRj6tj5U3egHsCeZc7/QfrOaaT9hrYbk74R2spL+rgtWuTyP+MMP530m9G+c/J+dPv3/E9EOsuXzPLwaChrJJnPMETfWLXazwPCq1B5cYyMhD3XZP6mB5WBdZ7MX75QDA35/fzQ0nMmwys2+oXsGHH3tv8lr/Xi5LP/whfCZZSeQdp3UY6Zum9IPxfLtzAFq96035Lk68os4V//1dXlP71PmKe94Q1eug+85CXu4G2XeHFeB1CjlrTIuXO3a3f9J3jJILtNi6+gePaNWGM7/QYqy6jyiPXDi22rg89+kRcn+43OQ84vP/qRC2vvRtl+Lr7YjzO9LjvjPGwgvN90Ga3xqKdb+CKucen0OOu1+WV++znY67yBrGdh/VJh9inL3FXGxXquqULK+pHZ9fb64xS6w96uXjI1zlpeqaFytPhvxvr0GQao0k+xa0QZsw65tPsO+G1O2+iFkOX/2tf8uHPPFb6+6t7kO2CzKfqhKuJDD4XLtLo/7BUWKqP1DJ9ziR93ySVxecrn5A2r8B/HCXr8FGOA7nvSzkzmr+wfPb+rDv0yJPtGZGPS9WPNS94DUX1UPsclstD6BlascGHVl3/u51xY1of2kpZzvW4jzT7nx9ahzdpkpUd+/bDe5cy6ikQXQ+bf0rhCnVRlItugbiLR74CyA+vG2r+6bTLAnhsm2r/0JiXkWKbKCHEKxj6Y3XyUdP8hwh+sWiBCCCGEEEIIIYQQQuYKVT6uTfxZYJeZCpBro7YGUxFCCCGEEEIIIYQQMsepIoCZh7GVa0dbUzsZX5alISwkExw54pbY6qXycmW13p1ZxmnFhFwevHixCz/5pJ9OLuW1FD1a1qF2aJ5Eb+supXstyOXr+uKBpdu6Dg4fDpfRWMkeVCvpepTX0xJLudQ/RT4H+FLQe+/14+Sy7tNPd2G9tFpv7S6R0tLYZeH6mXlSCyHjA+BrYtTDWbnO5fPtb7s8vvtdPwu5gv9d70IQq/xWO7aQz1sq63Q+lpLAbOOmVqrR9sf6lM6mSzfU62/f3hxwYT12SGVBrJQ1th1rZN/TqhTveLDXjxQd8c47/fo491wXlrJuKSMG/DFHjwGpclhJFRlwDC19SDB/vl8HUqr8ux8+bTL8wY99zD9RNppYaSaAlX2uwq6/3t2nHmPkHKLbmRyDFy7066q7W0iZZF1puYlsJIasKcfzlFJJAP4AqrQua9c6SbMssh6r5TiyaNEUC1iRlDrR85zsQz/Z7o8xAztcWM/7Ibmn/rknHdavkHIO+cpX/LhnPjN88QBWf5VttWWclWVW7UBK8jS+givulVq/x8j6l9JJQD1fS18rb0jqmQHvga/QL2mImzBlvd5+ux/3ghe4cM/Qo35kZ6/Iw41vupvL9wB9m9YzlXh1ZT7gyDzUteXYp4dZ+T6uLy2PtWJRvufJZqff6/z3VL89dohIXVeh8UGns6rHkq8vkflvFV4OeqKQ/jFq/F8k3mtOPdX9XM9DMkttjyLjOlV5O4XVhnWfqe8/xhQbxGrjHSpydNlJLk72X6VJl+WP7TMAMCrfRTc+q21++tgap3LIZuci9FwjExyfPYAQQgghhBBCCCGEkAzw4xohhBBCCCGEEEIIIYmk7It2elEUz7HiJwJFUTwbQHG0DMuy/FZCOaJ5xq9/sc7sp0xz0UnBjbDkUttVq8LLcJ++Pu5aQ0N+HnJJut7cxytj5h3bAKBDrnu3dK1CP6CTWRuIxe5eJst8jlKepEjCrGX569eH618j5SZSSjaq5ISWnCIH3n1a2kO1o9FB0dZe/jKXxwte4NeBlMjkkH1prDwbI249f0Pd23CnW4pvbTa1ut+4uNQLtOyQ6HZY27fP/fixx/xkslp1P5TVL3eLA8JyZFP2a9SVJZeJfm6qgf5wu5NvaDmdvJ/e3vBOh3IMaFUCRZbR0HVkb5O6D4lrX3mpr5Xa8y63A9qJJ7qf7x3yZS96czGP7vbyY8Cvr02bXFiPq3LnVl3/UrJuye+7ZLVqXZy8AXUzOerfzEMOwurm5G7Ia9Y4Wa61mVvLjsqGVCcUl6vNVZEGTaDv7cABF77nHj9O2g4YG76qx+u3xw754iG14OrE1HFKsnx55Hyu2qcsY6rsTqY7zXjXMhHjZ8uzFe8FHRs2hPPQfS/y5U725Xe8w4/rGRC7hm/e7EeKXeGlpK1hyRCNdquHz6CK3NjOUL9DWcjntqQ3nO7hXWlzlFTwynFW70Ir71M/3rVr3bX14wzVZaoE0hyb5ECof6EQffmg+j1E1tduYSYkd5AF/Lr62c/8ODmML1zox8miWBYi1hhj3XdXXBdKrtfQ+3+HOfHHkyInTR2DCTkeSPlV/E3j/yzK8f9vjsivTCxHNBv+50vrzH7K7PjnB2a6CIQQQgghhBBCCKkAPdfIBCkftY66Eg3u41pMWkIIIYQQQgghhBBC5iRVPq79FO6jGSGEEEIIIYQQQgghxz3RH9fKsuyvsRzHNQXKSY16qiZfnyeXpkrrCentBPheBNqKQ56n7LTQMXTQHUR6drSUX56njTOksYa4mZYtqo36CvmqHe28WGLzsHwcLA8PLw/hs6C3aJfPWnu4aX+tULkkLc9JNgTtYyKe2327fB8oWa4ze13j6lGmKT2eN0f89/4cXiJee1LtWJZf+p/oZd/RXknqRJl2xXL3c8sXSON1hxbDsUb7dIoc/hixdTDa9NuI9Au02t3Gje487S0n2bPHrzv5SKVvW8v1Yk0lFaH71u1Mtp+BgSVe3Op+UQ7Vua95tfBYUnUn0d1SIp+9bgdyzJdjh64O6XUzb54fJ/1tgv5HGj1Q1WEWmcBo30rvWD7TTuELpOdK+XzXKt/OZctcW4jth7G+Xjptal+W5dJ+e9LWR7ezgDVquj+j9mnSLx4R5JjbdTlS8pxJ3yGz/QjfsypIP7AWr9hOUV+Gea8sl9WW9FQmx6Pt2/04WRZvjO/u8dLJOqj0jhD5HOXQLcdLwG/G+t7ksexrsr4Bvw60H5scj3T1h2Rq0o9UU6XtevUl5yhjvrKkcyef3D4MAOvXu7BlN6bH2dAcaPsyp43BsZj+sMJjDYBnShfr/5j7vQ7QHqrxY3yWMZmQOcTseKMlhBBCCCGEEEIImUPQc41MwM/JhBBCCCGEEEIIIYQkwpVrAbbesBU/vuHH6JjXgadc9BRc9LqLcN8t9+H2a2/Hvp37cMVfXoHlZyz3zhncPYjPvflzeMYrn4Hzrzg/6bq5pARya+utW11YLqsGgK6R/ZPh0zrVHufL5Fp8pYORa9aN7betpcLD/WdOhlvkMmJJuSdBVcQu1baWJaduvx0rS0xdEi3Pk38N0bJQKZMQu94DAM5REiVJ9PbbUo+gNENyS3VL5uFphpTmzNtavEL7z7J9eEjXBKBLpF2zxuWvJRmSlmX68l4z/EnLkpQ0muHhPLZeLZlBlTgrz+hyibrbtsX9eP16VQ4xPqzsDedhIhuvbp8J/Vcpn3H99S58881+3Hvf6/JfrbUuAR1hrr+OynLK29bVdvrpLnzkiB9nyWyCMsho/ahPclvKkIcc+vTzveUWF9ZyLil91nK6Jc1wu5PElrkO+Y3VLkLlMON05cmXFY3olx2izeS4z9wyr1x5xJZLV2OsLDf2enW0JVlmLa02pmJTtizbZI7359Q8pNp240Y/Tvb7Awf8ODmeyncLPVaccooLL/d/9TAJWYPkeC/VxLZd/XyttpuCZZMjw3o8k3G6f/UYU1ZsH7IcViyZqyxYih2NJraOdR3I3yU3bkx75yPkeIA9oA1HDh/B7dfejl/5i1/BS//6pbj7G3fjycEnsfgpi/G8dz8PJz/t5Lbn3fr3t+LUp586zaUlhBBCCCGEEEIIITMFV6614dDAIXT1dqG5qIm9P90LAGh0NbCge0HwnB237UBPXw86F7BKCSGEEEIIIYSQ4wF6rhGAK9faUo6WQAHc8fk78MW3fhFPuegpKDqKYPrDQ4ex5Ytb8IxXPGMaS0kIIYQQQgghhBBCZhouszK44GUX4OzLzsY3/uobuPP/3omzf+nstulu/8ztOPdXzsX8hfOntXyWV9hpwvrslltcui1b/DxWbhDC/82b/Uhp+qBNEqRBgGHEIss1POJ/y5WeG9pvwMsy1jepZurw+4n1qZHbdFu2TNZfTWK37a5SRrkdt+XvNgrhoZfJVzCH94Qk9j67lOeL1Q+9h2OaaoTLIfPft89P+9hjLqzrP4cHVWy56kZ7RXpIYxBtEiI9IIMGYPDGmCr3FapjPZRKHy7ti+g1i8g2Yt2KjrPagRxXZNXp4X7F8jhfL+1H6PsoGf0kken0i5LXkh6MgD+XfeEL/nnf+Y4LP+95ftzll7txsSHH45FhL12qL2XIa0i3Een/o+cQ2SSt+UW2JbOMunGtFQOXNiKKnPtjvZ5Sfdbq9rVLwRoDNDn6m340scj6srzTZNuyLBn1eTnGgBztR1oPW96T8l0CAPYPuvxlc7d853KQOp/nOi9EHeWIXU1k+f7lINa/Uj/s0f7Vk2HZD3Vbyj026TYX+XoS771KyDEKm/xRaC5q4vTnnI5Htj0STPPo3Y/ivlvvw3c/+V0MPzGMoigwb/48rLt8XfAcQgghhBBCCCGEzF3KkrJQMgY/rgUY3DOIgYcG0HtKLx69+1H0ntIbTPvLf/bLk+HNn9mM+Qvn88MaIYQQQgghhBBCyHEAP64F6JjXgX97/7+hmFfgxJNPxMWvuxj3f+d+3Pp/bsWhxw/hxv9+I5auXooX/ukLp3ytEsXkct7UJdeWlE+qO/Wu9/cNnjQZXn3ZZX6kXMur5VZybb7UAhnrgfXW6zJLvdw4l2xoqtQtFYmVHMi4p6/346RESVf/T3eGtz9f0tu+HHWT61pefYX0TwA6xPp7LU2OXq4ut0IXEi1NjnvT7UAer1jup9XHMWWx8s9BDvl0lfNGl7kxrGPZsug8Q32vShlD96olVBs3tg8D8fITa7yR7bil/HKgVVqUvj7XlmUeDfiyRPmqYM1RlnRMXlpKCNuWOUAd0uSUNqnPeZZ4pvPm+WX69393YT2N7tjhwmf2i3FLTZYdWgsniK2DAwdc+MgRP27ePBd+/HE/TrZP/XxlXBbZV7MrHBeZZw6Jn55HG8Y8kWMcCeVnoWVlOcZx69pS9pgqSe1KdPiwypXyDpXjfc3KX7cXeZ7Ow3I1kMRK8mKJrdM6yJF/ah7y1xVLmpxDypgqQ9dxctzdvt2F162Lf9dKkds2m/45UsE/kzYhhMx2+HEtQNfiLrzsoy/zfvbUZz4VT33mU83zNrxqQ53FIoQQQgghhBBCCCGzCH5cI4QQQgghhBBCCKkIPdfIBFzH2YZFKxa1rFojhBBCCCGEEEIIIUTDlWuzDMs7LVXTLj1+bA8A30vKu3Z3T/C8kWXOJ6XRGc5/ZV8NPmrSjECZJHSI42PZD6Cn29XrT7b59/mjH7nw2Wf750nPNYnlpVCLZ1aOZyM9iqQpBQCsc5uLDGKJFyV9TMy+Z/isWVgeHrLpSj8ky0ctB3V4ollIH5ke5S8my2Jt3x47DlrPUJNyrzp/6WEp7d4uvdQ/L9W/JdY3T6bbP+if02y6sVt7qXU1A3UwqMy1fMO0YFn6+sJeMbF+NlWeYQ5y94cLLwwf79zpx0n/H69SDCO+1PHyiSdcePduP+7kk11Ye6NKry3t8+VPv65c1ntADqr4/YSeoXWO5blWd3vM4RlXB/rZS6xypZRZP5vUsSM2ziK2/aTmb9gpBsnhC5r6TjaT7TO1/ci2a9V3bNua7jFAep+dty6Dt2ViOSzvQDkX6Hluos611ychxyrH7hcHQgghhBBCCCGEEEJqhivXCCGEEEIIIYQQQipCzzUywXHxce2r7/7qTBfBZFnPsqMnQp6tlTUyD0+iAqC318XpZb5yAJHhM9f46TxN2JCSGglNXqzsruVe5HrvCqOaLJaveMorHQCAg0MuT73sPMd23xZSCnToUDhdHbK7YCMx9CWV5AghrciqVX46oXNa0qvbiOt7OWQesl0Bfr+x5AgLF7rw8Ih/3RwSK9n1dPWnSi1ike2uu9vPQ445eniQ9RXbLqqUMYfM48EH2/9cP2urjDnkqRJDUYjoKd/SgFn63QrZSHLL9q2poMqYG2oj1jO0nuegkuxKCabs9w3jIVZpL3I+k/3r8cf9dHL80e8BUkK6aJEfJ9OmyNs0+rmFxi09T6f0L+t9SrfbOsaflDxS0uUixzwRO+bquEaiFHSmyFH/ue5rOuXDOfqCRY48rbkh8jU1yxw+k20ktfzW85VuLNpaYMI+w/odhJBjiePi49qDWwO/Ac0SrrnmjTNdBEIIIYQQQgghhBCSwOz7kw8hhBBCCCGEEEIIIXOE42Ll2lzGWkYvJWhaRZKy/D60eyQAfOc74e+wcgcYvVtcz44d7kBuXQkAL3iBC/f6uziGMJdBd4Z3O9WSM2PzuyCpu2AFd+RTeeRYar52bfi4jh07zTqIrNhkSWpodz3dGRKlwynoS/f3ty+GLopsn3fc4ae7WO0+KLHqXx7L3aaq5BHKr0oey5eHry13a7V2UpTprGunErtzoG7SF19YXSqVQw5ijUXWWBeN1Xe19llcoMM4bzp3W6tDbp+jnWnFutwlWPb7Cy+MnwusepV9SPavffv8POROt1re+dhjLqxloTKt30/Cuz3qIVjWgd5NLrQZuK5HSR07Wlvklr/F7tCXqw/lyLNu2axFym6wVQjVT673qVA+FdT3JtM57sbed6xsv442HrqWpso8mruOU6XVtbzHB9LpZxiaa+SxHOuPRei5RibgyjVCCCGEEEIIIYQQQhLhxzVCCCGEEEIIIYQQQhLhxzVCCCGEEEIIIYQQQhI5LjzXLnnGM2a6CCYLmgsnw1V8Fnq6p2+LbWmdBgAnn+zCsox6q+Ueacqi92fObIxjeQXE+g7l8BxpySNkHAPfo0j7JaT4OOTwAUn1cRge8dN53hkJ/mv62mYdGA/YK7/y5asby+5tYntyzSOPxOefo13MJNKnQ4YB4GMfc+H3vteFraaUw29Jt/etW11Yexp2pfiZZcDqk7HeMEBifSWO27HeS1XKVLffUm60J+OFwk9RThPa1q5HnReLzFOON5Zfjp7rL7vMha22FetfpPO/804X1p5u0ltt3ToXrmM8i/UyqnvMtfrodHqWaVLfH3KQcu0cz7Bq2phra0LlanTODg/AKvnHtlU9VoTOq7sv6HFQeoXp9xH5q4wex+VxHe/ZoV8hGpH12O56U0W/v27f7sLar+6mm8b+p+caOV44Lj6u3bJhw0wXweSaHQ/MdBEIIYQQQgghhBBCSAKz88+7hBBCCCGEEEIIIYTMAY6LlWs5ed9//Rc+e++96OzowN/83M/hz7dswVekbiKB0VG3jNaSVuhlvnL5aeoScrNc4nrnnuvHbd7swnJJ9M03++me97yTXLpLfsGLy6EK9ZY6G5paLbOR6CXeKdc2l7Jv2eIOli3zM1mzJupaObb61ttjy+rq729/LY1e7i2XhlvL6Ff2IYh1bzmWsltL5eX96CXry5cfPT+NVXe6j54mJE9SUrtpUzCLWsghh4qVI+i4w4dduLfXz1N2ldixIlVuaJ23fn1cHnWQQwYjxz4t69OyktyEymy1syr3GaofPRbJ9qPtFGZS7ibpaqbJ8+Q43tnpx8k+JWWVei6Q05CeovqMsVtitVU5x8q5pl1ZJCFZ/XS32zokzdb1Zoq6pZN196Ec70mpcrrc48hsaRNHI8czjZ0nciDngio2PDKt/n0i5XcIq51pixU5n8nxONdYFNvWZB3o3/UkekyfkPf/4AfRRSJkTsOPaxW47ZFH8MX778cdL30pvnDffbjq61/Hn85yPzdCCCGEEEIIIYTUAz3XCEBZaCW+88gjeNFpp6GzowOXnXoqHj10CJc/5SkzXSxCCCGEEEIIIYQQMkPw41pFFsybN/n/KSecgFNOOGGGS0QIIYQQQgghhBBCZgrKQiuwYflyvP+OOwAA//LAA3j44EHsPnQIyxcunFK+HR3OW8TSyT+8y/8WKnX/a9bUu+3y0qX+sfQAkOG1a/100sNg2zY/Tvq8aC+gWDyPDcMwQXsi5Fi6G/Ip0L5kXdK0KTKPVKrkt3u3C8v61x47sq727PHjpOfa+HfntufFeqHU4XVjnZfS7qwyVtleXSLrSm5pDgBr17o8dHljPQdTqdsjJ+RrBwCveEVcHnV72KRsb2+m0wNEyFgK8J6h760VLq/OQmbfcl7IkM26gI5LaGe5+nJoXOnunrpvm3Xt1H5hnmcYg4529wTzkP5jB4f88svxWj4mPU9Ln7UFC8JFtEjtX9IXTnq56rgTT3Th5csrvO/I/mYM+Km+YSG/wNQ5yUqbI89Y78wqcbHU7emWgxx9uw6/NDmuW2N8bp9aIH5ctPLIQY56leXSHpVyjNS+nRLtDyvT6riYcmi0P2+zWa8vaGzble1Ov8bIOWXHDj/uJS8Z+//WW5OKR8icgx/XKvDsk0/G03bswAu/9jU8MTKCf9q0CVd+/ev4vy98IbpyuPMTQgghhBBCCCFkTlCW9FwjY/CLUEX+6pnP9I5/7YwzZqgkhBBCCCGEEEIIIWSmOS4+rl3y1a/OdBFMFkhNhoGWNhoqkmisZfry+MIL/aXCJ5/swjfc4MJa1iE3U5USQgBYscKFLXleimxHn2dJaXLT1dRLs+O0h7Gqvir3CZVScuSIC8sl3nq5t3xuerl3SFUG+G1Epusxti2vsqxd1pd8nlWkA/JeDxzw41KlyinIa992mx8n5dQTy+sn6Oqs/meyuiVJuSRzsVII69oyTo8/8tn396flH41srFbDMlZAy+3ttXRbZqllxXLeWLVKZSorQVx7tLPhJTPlxxJV/txSqdj617KaWPSthR5brDy4EomSxeERVxZdfilRkhJRPcbLxzZ/vlXIMLF1oMf/DRtc+XX7/NnPXFjOV3XLBKvIlqdTsphKjrE7tk5q6RsZmC3lSEX20bqFMqn2HLF51E2sdFujrU0kciy1pJ+x9g0t9TMy7A7UL3dDQ0vCGaVgWVMYWG1Qvqfq96mJ25FjOCHHMsfFx7VbHnxwpotgcs01b5zpIhBCCCGEEEIIIYSQBI6Lj2uEEEIIIYQQQgghOaHnGpkg/5Y2hBBCCCGEEEIIIYQcJ3Dl2ixD+qcAvq79+uv9tNKfRGvcYz3FUn0Q5LWlX5TlA7dunX+8aFH1clXZItxKV8d25SnIv3JIzwLA93WQ9Z16Xe3TJK3+5DPUnk2yDW7Y4MdJHygZ1mi/wBCx24ADyi6qO94jRyK3YrfaYw6se5NeFNYW8C15Km8sSWwf8vLL0E9SPQH1eSFfkyp5yDai288JJ1TPPwuqIPIZWteW44O2SJH9S/dfOXZoe8/O3pPaFktb+cl+0mH5sxjGkXXUaxY/PAPZF6Ufz/LlaeWw+sYwXDvQljjy+Vp/Ge/pDl/76evD50l6e9PGgNQ6kPOLniceecSFZZ1X8e8z22sGcngJ1n2t1PckSWw7mOveZjmo4/2y7nfd2PxTfflykPteNIsXu7B+15XjrvSvBPwxTI7dLfOt9XuZvID6Raq7t73nWqW5Rnq6afPktWvb5ql/H7X85Fr8XAVr1oz9H/t7ACFzHa5cI4QQQgghhBBCCCEkEa5cI4QQQgghhBBCCKkIPdfIBMfFx7VnXPyMmS6CycIFzckluw1j3fArXhFeaNhymujhlnRMUmUpu0z7B+90P/+vLeEy6pXIcvm0WJUMAFgpJYzGaNUhbjyHpKFuLEmMrgNJcvmFrqmh1rI3hO6ua7ELL1/utxdrKbiUI+vHJC8nJX7d3WHZgvUMteR41y4XXrrUheXSfkBJ2lQ9pmxvn9pPLLmGlGJt3OjnsXWrC994ox+3fr0Lr+6f3jaeIlNJlbpY58h2t2+fn/bJJ11YSxJkm4x9TlXK5eFpmP2Gtnuf62+LF/t5NDrdteX4OSGzmEAq37ScVl5aS88PH3bhJ55w4ac9zU+3YrmoA+vtMbYTKWLHbitdtERUl18c6/l3ZV/c/chrV5mHZFp5aa1klEWWbULnoWU8Om0KsfcT24esOpDtEfDrxJLLR4/JchIxNEo5xqmZpG7p/3ST490uh+xxJokdBzWx42Jq/rOR1P5rTV9y6NC/y8ihRIb1OB6yujhaQQ4dap+/RcuzlpOI9nCR+lVRyE7jd0dtMyPfM/T7yUTa+fOD2RFyTHFcfFzb8J4NR080gzzwqftnugiEEEIIIYQQQgghJIG5/ecJQgghhBBCCCGEEEJmkONi5dqspyii5DRWEm8nGMX3v+/CZ5zhx8llyjmWgj99vb8U+V9ucHl+9KPh837jN/zjl1+4wx3IG9frqsUaaS0blPLDVOlAylL52KX3QKuMR+JJeixNjLVOXGoz9Rp1eSzWdHd0+w1Nyio1lhxNrjyXxbeKa9WPlIHqPGU5HnrIT/f0daJvVJCt7d7twnLXunXr0mQ1Vrqupov7hU1+3Pr14T4k6/gtb5m63CdVTjSdMhLdFb7wBRfWklq5g5Vun9O5E6pXaFUQKWPWzTMkG7R2k7zkEj9OSlhuuMGPkzs4y7pq2TlXXzBEoiw0ti1lkeslltGSww4MOvmMnoek4qbZnLo8ybrnWBnodFsoWNI0ebxwoV8ua35JKkd3T7AcFrGS1+nccbFKX8iyq641Bsi+Ealbm+42mOMdcLYw3WVKGWdzSJNztZHY/GUT1zuCyt3Fzz/fj1u4sP119TurOYYZvgCLA7tFNyrME96RnmDEjUsbId3l5U7klkWM3jl04vXnyJFgcY8J6LlGJuDKNUIIIYQQQgghhBBCEuHHNUIIIYQQQgghhBBCEuHHNUIIIYQQQgghhBBCEqHn2mzg8IgTpacai2zb5h+vXTsZ/OQn3Y+1l8673uXCOTyJNJdf7sLai0Z6GmjPgn/bvnoyLPX7a5WWX5axpzutvDm8SkxPCkOE35DGBSrdKIT3QXPJZLirU/nryfO0r5qMs4yaZJwur/BgsHxe9POV2cjb1J5ZS3oRRBZLnyePTz/dhVu6kGFgJPPXu5NLvwyZTvpUVSHay0XV/8CAq/8bbwwnlX0NAPr7p+45KIn1+KniBZRSLukhBvjP5mtf8+N++7fj8kzt27F14HWOSE8ifdq+fS6svdNkOxBDPwDfO1APD9InZXW/5RknKln3J53pFMkx75h9TY9vspL1vcnjLVuC19uz7FmT4Tvu8ONOPdWF16/342KrLovHkrjvllYr7jOH55Q1Blj9SXeNTZtcWI73+hFa3kPBcrXMc3F1kMX3z8AoVvR1U+MsOmRBMngr5iKLn5zAer6zxX8t95x6tDxytPG6fdtiz7PSSU9MOTceDTmF6PfgJPRLbOA1vrO7Qh3IPqtvrq/PXSrw3g4Aa9a4sPQS1cf6vIlxff78YHGPGei5RgCuXCOEEEIIIYQQQgghJBl+XCOEEEIIIYQQQgghJBHKQmcD8zuDctDopdR6ma9Yl/uCF7gfa8mQpVDKvez6Va8I56+X0n7sYy4s5XlaGrhuncvDkoVa9yJlU5rFi11YS0+i5QKG3ETSodZSy+XfBw648K4nGl663l533KtkRh1yHbfK3ytLs2sy2LKs2VsmHi/p8cosnqFeMt7bG85TyqZ0E5f1s3x5MAvzOcl7lbI7nb9k61b/+DxDJpokp1AVJOtAbwEv0XJJiZSIaqy2K+NyyMU0KWOMltbJ56THN1l3qVI1i2gJztpzgnHyaeu2JdvnQw+5sJYAy/uU/Q4AzjjDheV4BvhSjuixSQ8Q8gGoQcDre4P72xcYyCIzi36GuvxyUtGaHuFJ8NNVTvrZIt0T4QsuCGZhykDrlkCl1nFu2aMm9r5l09K3kiTdM+oj2QLCIHYstR5TbLmqjM3R0nbR6A+O+O8gXc24fli3bDP22aRKP2PvrY65MjW/6Oeb6XpHu26V/FL7mlX/sXnqqUAeCxUlAH9cl+NUpbZk/J7QgLOCaYzIgvUG829BDixa0yn6dmczbAMjfwfqUnUwPMK1OoRMwI9rhBBCCCGEEEIIIRUpS3qukTH4qZkQQgghhBBCCCGEkET4cY0QQgghhBBCCCGEkEQoCw2w9Yat+PENP0bHvA485aKn4KLXXYTbPnEbHvjeA5jXOQ89J/fg59/681jQvQA779iJ7/3T93Bk5Ajmdc7DxVdfjFPOPyXpulprL72qtM7fwzBPkx5FOg/LC8u6Xm4fB+1ndumlLv+//3v38y1b/HSyjD26CsT63JbSipv9wQ862v0YgF93ljeYxcEhd55V/tX9fpz0TnrySVkOP53l4zPaGfZPkMf7B8P+dwE7wJY8Vq3y6+e0VS5O+jHINgf4PlP6Xs5c4/JYqdqjbIPSNknnL+tYP0P5vLVvmzyusi17blb2uTr4yEf88t9xhws/9ph/3nXXufA64Qv3y5fHeazVQaqHyvXXu/BLXuLHbdxY77WtrelT0B6P0gdtz55wWnltPTZLX6+dO8Nx0oIR8J/3fTvCY0B3d89k2Bp/zPZjGXxOJ3qQiezcQ+LZaH9D2b/0s5F1qeu10Vndu7QKOebpWFJ9lCy/q9A7gs5D+iG1vAckYHk2WX5dVfIMxaXmb/lKyfpJ7YZ7h5wvq/aj6u521zt82I+T45v0bK1ynyntNfVdNIdfWt3zqEUOv7Gj5TnV/GPrONe4l3Lf2sNZjistnmiBcVyns+YC+VuK9pZe2S18Tb/zHRdWBp+jfStFbhXqTrxcxPYFHZfj3YiQYwV2hzYcOXwEt197O17+sZej0dXAZ37jMzj/pedj1fpVuOi1F6FjXge++8nvYssXtuDiqy9Gs6eJX3rPL+GEpSdg7wN78dU/+Spe/clXz/RtEEIIIYQQQgghpCbouUYmoCy0DYcGDqGrtwvNRU0MPDQAAGh0NbDqglXomDdWZSeddRKeeOwJAMCy05fhhKUnAAAWn7YYRw4fwZHDR2ak7IQQQgghhBBCCCFk+uDKtTaUoyVQAHd8/g5s/v/Ye/fwvqoy7f/eSZqmIU3TkNK0DRDaAgELFChQncJUrQ5iPSD0AkcQPIyHd5gXHHVG/emIM+rojDgemBnHcRQVBTyioqLi0FFeKFKGqlUKFAjQQqGn0IY2bdPu3x9tsp71fL/7ydore+dA7s91cbH2d6299tprr8PO7rrv9Y3V6Hp5F5KaxEvzwG0PYN6SeRXnPnrno2ib24baSbXh10MyuMRWL+Vtb49bKi+X7EpZkF5uPHlydrlkWksamHVdIH5Z94ld7rxzz3V5rl/vpzOXIkuNldZKCSlQXd0Rg2FdP319GDayGE884cdZEg0pp5DELr+2lsZb24fHbm8v8ZfN+/nJZ6olVfPnh11bSkGlHBIADjvMhZcu9ePOOMOF53YOX9akKUIeIvPX8oMTTqgunwZ86ZqUrZVNbH3o87b1uOPXvTbu2VjIvi5lTtdf76eTY8BVV/lxWVJxS942U8mP5cVfstQfEKSc+oUvdL8f1fM7lUnnYGj9+mYvRvZtPXZImZaUoD73nJ9OziHWmBUqfYvFaj9lS7GkelQrSWW/tO6zvucZ/4csvZ6aeA50HJWZZxF1UrTsyyLPGBB6XtGK4zxlzEob+y6kz/Pfw+LmYkvSFlou+Q6oldV33OHCq1f7cYsWubAvny7mXTGzfeolJGLwi5X9xrbdrGtZ542mdLuo84abX562WsR7qsyjiDai08n5VltAyPdgHfe6ZeJATs7Kn6DG9A4SGF4yRdQjIRMdflwzOHXFqTjh3BNw+zW34/6f3Y8T/uwEAMD/fut/UVNbg/lLfQObbY9vw91fvRuv/MgrR6O4hBBCCCGEEEIIGSEoCyUDUBY6BA1TGzDvnHnY8vDBf0p48JcP4vF7HsdL3v0SJIlbzda7pRe/+Pgv8OKrXozmWc1Z2RFCCCGEEEIIIYSQ5xFcuZZB75Ze9GzsQcucFjzz4DNomdOCJ+59Amu+twav+virUDfZVd2e3j249e9vxRlvPAPtJwYuyxUkSIe9W461y6iUTOjlxnL3OOtacjdJnWeecklCl2e3tbnftRzHXAUtT9R6UlFBmzc7WajecVHKOPUOWeZOpQIpp9BST0viKaVGsv71OXKFt94pUz7vmTP9OH8Xr+xyxMqCstLqtiOlIrHyHll+LeXVuzNKxtKuXgNYkkKr/vUubf/5n64iXvtaY0vZgDJVK1chiE5Vox5+a4sLF1EunU5KrFpbXNzFF/vXksoLPQbIOpe7y+aSs4idONet8+PkjsEnnCAiVq7xE4rBqL8/+x93rJ2FjzzShbU8Xo51ZWz6WbR8sWI7T3njatIIHdOsMdKSjtXD3CLOISeKEd56LbYPFUGM1LRoub3OM48kLCvPoiR4chzMuhbgz3sNDXHzdGiZ9TiyfbsLawuRrM14K3fOzb5elFRNvwiIQtcY/StWNlt038gz5xW92+xYIVaiW9T1yjxP/nkC+O8W+u+avQ1uTq+X26WrP+iC60e1f3meP44gM91YbC+EjBX4cS2Dmtoa/PxjP0dSm2DarGk467Kz8N0rv4v9/fvxk7/7CYCDmxqc/X/Oxh9+/AfseGoH7rvpPtx3030AgPM+ch6mtEwZzVsghBBCCCGEEEIIISXDj2sZNE5vxIprV3i/XfzFi6umPe2i03DaRaeNRLEIIYQQQgghhBAyBqDnGhmAnmuEEEIIIYQQQgghhETClWtVmDpzasWqtZEij/+IpXmXmn2ZrrlTf1YPawIjbAHjsXChC+fairuu3p2nzebEDa0Qj1r7c917rwvv2ePHyToOfW5LlvjH0tPAykP6HGnfJ+mzpr2SpP+J9ITKg1WuGC+snp5sf0Dpv1aRh/4nIfEMN21yeeo6kBYVZ5zhx8WUP4+nSYyfUB5ku3j96/24//f/XONatgxB5PHRCPXf+Pa3Xfiik5SpmNWwQ7eVDyTUS0ePdXL80X5Cuq0NlfdQafv7/TKedcIOdyAGiwOXvNFLd+ONLqw9jmQZV6/24xYvduHZ7a4c0o8OGN3xXxJcr7rA0kimwoupcTCordo2bHBh6U+q/XIkFd5Rsiy6TYsx7YCYr8pgrPrlhHpKxo6lw/WzHaocRfu/1fTv9SNF+7HqwPJTtIjxFNurxik55kya5J8np23Zb3QXtdpnlO+rYQ5ZureonstkJahy1QQ+X0mefpJ1P2X3tbLffULLkQdzjJTPUM8h4pmGtuO6Or9+OjpcWPdlv17FPNE+G1nEjlPWOFLUmEnI8x22eEIIIYQQQgghhBBCIhkj/x5NCCGEEEIIIYQQMr6g5xoB+HHteYO5XFcuYc4jlxFLnRsrWkr1ppNn+W8RMgApTzB2Xke91PcAnj5BXmvGDP9aMg+tMti924WNVf+WOsEkqw60wlXKKrVcSR4XIXeI3eZdomVr+jgTQ5smn72W6lmSNvnc6uuy781SBDQ3ZbfVImQSVj+RcVqyeOGFLizbTHt7MbKm0Hu7aIXI/6eP+pGzZrmw1F8GXneoa1tlzDpPyjOGuraUT+aSrGdw8vxd/g/yRU109Jpf/9pL9udC274XvrxQtteVK/3spQyyrc2VMVZiVjah9VhjPUSdVjy3zs5suVtoHhXIB6DevPc2NLsokayM+i9avhibZx5JXsyYWfY8Z+VfyFiq5MEyLjR/XW/rhBpfd42mpvxyYT1Xyn5z0kl+2qy2XERdAXFtxHCYiGf9ehd+6CE/Tmplpb4c8KTiNVL6X5BFTBFS05hrFVGmQuTBBnmksX39rl82NA2/j+p0jcaYL8sirWu2bvXTdXVl5x+K/FMpxzRqMpZsCMjYIEmSNwJ4F4AuADsA/AjA+9M03Wye6OdxFoCPATgLQArgTgDvS9N0TZW0kwH8fwAuBTAbwAYAXwHwyTRN96m01wG4LOOyK9I0/c5QZePHNUIIIYQQQgghhBBSCkmSvAvApwH8D4ArAXQA+GsAL0yS5Mw0TZ8LyGMxgJUANgL4u0M/XwHg10mSvChN09+rU24C8BoAXwZwF4AXAvgHAPMBXJ5xmUur/PabocoG8OMaIYQQQgghhBBCCCmBJEnaAHwUwD0AXpqm6f5Dv98D4Ic4+LHt4wFZfQ7AXgDnpGm68VAe3wJwP4BrALxcXPM8HPyw9uk0Td996OcvJUnSA+CvkyT5Ypqmd+oLpGl6fdRNgh/XCCGEEEIIIYQQQnKTpvRcC+C1ABoBfH7gwxoApGn6oyRJHgFwCYb4uJYkyXwAZwD48sCHtUN5bEyS5NsA3pQkSXuapgNeKn9+6P+fUVl9BgdXzF2Cg5JSfZ0EwFQAvWma5tI28+PaOCKP14Ts4HUNjdl5SH8PkU6jfaykj1isX0UR/gny2qa32RVXZEb9/DZ3belZAABLl0YVK5MK7wHLDy+jYrXnl+X3FuPdo5+F15bqsuM0Om2ZWO1R+krp+pdlfKTbL+8dd7iw9K4TFikAgPnz3Xm6/mVdWp6AFqH9RHq/AcAbL3YPR/bzsrdTr8hfeNHsevErvajbbnPh5QuHX45YP6TQ56SvLf0OGxqy/e8svHKpRuF5rex2/lwzTz3Vz6S3dzB4x5pWL2rtWhe+7jr/tCx/laK8VrIoym+paGI9rcy+Ycy/fe6xeXOsbj+6b4eWSxJ7bzF55MnTInTsi/F3ynPOWPQM+t1av4wLFriwLq/02dRzVBH3NnNGmO9oGcTkX4jHmp4oZAfWZliHH17ABbMJ9S8u+lpFpAOy+3kZY5GVh3U9630txmsu1tdx+nQX3r/fj4v1ubM8hQkpmDMO/f+uKnGrALw+SZKmNE17q8SH5vFmAKcD+LFIvzFN0ydkwjRNn0iS5EmRn+ZZHPy4tjdJkl8B+GCapncb5RqEH9cIIYQQQgghhBBCJi5tSZKsFsdfTNP0iwXlPfvQ/zdWidsIIDmU5sFh5AEAc1T6P2bktREHPd8kmwD8C4B7ATwH4BQAV+Ggn9t5aZrehiHgxzVCCCGEEEIIIYSQicuWNE0XWQmSJGnBwQ9OoXwuTdNtOCgJBYA9VdIMrJvMltH58aF5NGakHUjvXS9N0/epNDcnSfJNAGsA/DuAY4co38T4uPaT9/9ktItg0tbsNGexUgUdl7XsPU8eklCZU+w26bHLmUPPs/JYtmyIwgVcK5pAbaC8dldXnMQmVq5hSSisuKz88zzPbT0urZYmS+na4sUuvEhNCaFl7Oz0y9XZmX1eSH4aKRvMc15MOgCZN56nHYRKFcz8588fDOvWvnx5UJZ+fjnqIGb8sZ6TRkuEy2TqVHnQ6UcKfedLFvu13NnZKML+aQsXurDsT7HjeCxFzBMjSWz96HRSomfZGhQhqwzNr4w6LkPCJQmVxVnvBLHvIKF5xJJ17Tzzk3x/C5WjlSG/z7ruUMRYiOR5FlHPTb+7SV2uDAP+XByoSc0zxhQxhxcxxhdh9VJE/kXYDuTJP/RvjdhryzhpZaKbYKw8WOYpXtcq2NEbJi8fD7L6MphgnmstAD6cI/31ALYB2HXoeDKA3SrNQIveBRuZh6ZaHrsy0g6kH+p6SNP0oUMbJlyeJMlxaZpaK+smxse1J9Y+MXSiUeTtb3vbaBeBEEIIIYQQQgghpCppmnbjoIQzL08e+v8cAOtV3BwAqUgTkodm4DcpGX0yI+1A+mry0mp0H/p/G2zZasn/HE0IIYQQQgghhBBCJir3HPr/C6vEnQXggSE2Mxgqj8U4+IHuXpV+TpIkR8qEh45nA5D+chYDctCnh0rIj2uEEEIIIYQQQgghpAx+gINy0CuSJKkd+DFJklcBmAfgGzJxkiRtSZJ0JUkybeC3NE3X4+AHsRVJkswWaWcDWAHgv9M03SSyueHQ/69SZRk4HrxmkiSHJUlS4deUJMmph/K+P03Th4e6yQkhC32+UIQHQ6yPQBHeZrGMtH9CmehyrBeLYrWHQaifU6yPRoyf1kj70kivmFDfv/q64bcXC32f0mNh+3Y/bsaM4ecvKaIvxF471EejDN9Fi9B2XEYbzxpjivLkkkirngN1vt9rf+dxg+H6TY97cXPbWgbDncubM/O/Tex/pH0dO/ReSvLaov1rO6FQv6sRRZs3SkIHGUURXkPRnoYRfksj7alnETMPaWLqQN9z2d6uRb/HBNq15sp/V192/qGeSkV7d8VilbGU95jAB1KGJ1fM/BLqTZinXLEUUf7Q/Mrwty3aZzD0b7GWlmK8zUL/XpRNXE+jrS1Rl35eMcE816JI03RzkiQfAvApALclSXIDDkoz3w1gHYDPqFOuwEFvtzcBuE78fiWA23FwB8/PH/rtr3Bw0di71TV/nCTJLQD++tBHurtwcNXbWwBcn6bpHSL5sQB+miTJzQAegtst9M0A9gMI8vHixzVCCCGEEEIIIYQQUgppml6TJMlWAO8C8DkAOwB8C8D7AiShA3ncmSTJUgAfPfRfCuBOACvSNP1tlVNWAPgggEsAXIqDPmt/B+ATKt0mALcBeDGANwCYAuApADcB+Mc0TdeFlG9cf1zbtGkTHn/8cfT19VXEnXPOOaNQIkIIIYQQQgghhBAiSdP0Ovgr0bLSXQ3g6oy4uwC8NPB6fTj4ce2DQ6TbhIMf34bFuPy4tnHjRlxyySX41a9+VRGXpimSJMH+/ftHoWQjS8wS4FjJUxn5xyyPL2rZc5aUo2xpmqazM+pywdcuewv7Is6LzVNuC94r/q1jdqCctiikFE7KQDWxskoLmadeji7lsWXIJLLyjG2DRYw/ZecfKzuNka3pOC25lHhxhobTKsf8+e5aWh1pPUOrXEXLDYt4hrHSz1j5cRGS4NjzYuwhRpqi+3nZxErDQ/OwkOnq6oppLzJPS9lYtny3CIp4f4sltn5Gso+WLaUsQlptETuPhl636PZZ1PtIEe+KMdfWv8sxR0+jRYwPhDxfGJcf1975zndi7dq1+Kd/+iecdNJJmDx58mgXiRBCCCGEEEIIIRMIeq6RAcblx7Vf//rX+NznPodLLx32yj1CCCGEEEIIIYQQQqIZlx/XpkyZgiOOOGK0i1EYKZLBJbWxO4LGLm8uYjfJImRlZSw7j1lWH7sTW548JZakqmhCpbFDnRdK0buG6fzk7qp6p9XQchSxfH2sLIHXbansnbWKkByHSiKLGOs0ofkXcS2LkdyFz8KSqI/kjq+xeZYtSxnN5xQ7PxaxW2jR9VrGHBszPpQhbRwr44gVF9pGyihHGRRd5iIku2WkK+JvgbLnkJGUC5dh81D231ujtatonuuV/XclIROBcdkD/uIv/gJf//rXR7sYhBBCCCGEEEIIIWSCMy5Xrs2ZMwdf//rX8ZKXvATnnXceWltbK9K8+c1vHoWSEUIIIYQQQgghZKJAzzUCjNOPa+94xzsAAN3d3Vi5cmVFfJIk/LhGCCGEEEIIIYQQQkpnXH5ce/TRR0e7CKUxlvwSYjzFyvDbKGKL89i6K9o3bKSx6m6s+gQNN7+iylG211PWfefx0SjaByS2HcSWowgvR0ns+Bnq/Zbn2lnlsIj1nbPKEfpsRtpPK4uR9O0B4vpvbLst29tyrPiI5RlHiph7ip6/RnPeL9q/aajzyvamDb1WEfddts9oGcR4G5fhm1e092ERjPR8VVTaovPIuteyvd+s6+WZA+nBRiYa4/Lj2tFHHz3aRSCEEEIIIYQQQgghZHx+XCOEEEIIIYQQQggZTdKUnmvkIOPq49pvf/tbnHLKKTjmmGOQJElmuiRJ8PDDD49gyYZHgjRomW4ZS23LlmXFnhez/LvoJddD5V/29uFFy21D67gMyYFFEfUfK/PII68LyS9P/jF5lt0Gi5ALxBJ6byMpM81zXtl9uYi2VLbkaTQl8LGM5Dw3muOnRazcpwhGsvyxFN1G8rzLZc1zZcxDZeQRI22PLUfRY7VOW4YsuojnO9xrDXXtsTKux9o3hL5LFF3/efKPeRe10sWOD2X/vUXIRGBcfVxrbm4GAPzpn/6p+XGNEEIIIYQQQgghhJCRYFx9XDvmmGMAANddd93oFoQQQgghhBBCCCGEEIyzj2uEEEIIIYQQQgghYwF6rpEBxvXHtd/+9rd44IEH0NfXVxH3xje+cRRKFEeKZFC/HusFYVGGT0eoT9NobnledP5F+GKVvX14EX45RdVbEZ5loRThpxXjazHUtYvwryjay6uM51uEl04ZXmRWuUK3t7co4r5D87eQ1y7Cly/0Wpqyfe2KoAgvrPE4RpbtiziSY5hFEe9Jseli34tixu7YeaiM8bkIv66y32tCKfsdqmzPuFDGio+aRZ4ylu2BXDRlzKNFvMMW7WtHyERkXH5c6+npwStf+UqsWrUKAJCmKQB4Pmzj6eMaIYQQQgghhBBCCBmfjMvtPj7wgQ9g69at+NWvfoU0TfH9738f//3f/403vOENmDt3Ln7zm9+MdhEJIYQQQgghhBBCyARgXK5c+9nPfoYPf/jDWLx4MQCgo6MDp59+OpYuXYp3vvOd+OxnP4uvfe1ro1zKcBKkw17SHLuUvehlvnkkBzHXLltyOR4YzfscaSlKaFnKlkkUIRkKvfZIb3EeW4+h29uXTRHStND8Y4mVcxWR/0j2k7HKSEuVh8tIt+PY+gmVtZYhuc9KV8T4med9KuZ6ZUhGh1umohgrz3A0GQ/vqbHy+CIki2XL3suWVY4V+4PRnNeKshh6PkHPNTLAuGzxTz31FObOnYva2lo0NDRg586dg3Gve93r8OMf/3gUS0cIIYQQQgghhBBCJgrj8uNae3s7enp6AABHH3007rrrrsG49evXj1KpCCGEEEIIIYQQQshEY1zKQpcsWYK77roLy5cvx6WXXoqPfOQj6O7uRl1dHb761a/i1a9+9WgXkRBCCCGEEEIIIYRMAMblx7UPf/jDePLJJwEA733ve7F161bcdNNN2LVrF1796lfj85///CiXMB8pkkFNelFeH0V7B4z0ltU7et316kQr1Xr2TZtcuo4OP66xQZTxH//RjzzjjMHg1za9fDC8ZYuf7MILXVjnL5H10dvrx9XVuTJ6ZQL8G6rzu2PZXkyh19rV587T9d/clL9MD673y9Hd7cKLFvlpW1pc2Crj79a6PL/0JT9u/nwXvuKK7HL19fnH8nHU142cp1UsT27yy/WFL7iwbMcLFvjnFT0GWO1MLyw+br7L46ZvZ5937LEuvHChH1e2n411P0b3zczDGsd1/5J5xngX6fwrnmH/3qoX29vvp4spRxkEj2GHVrYPxskbaPIHLZmnnHc08rQinlPetCHEzvuxbSvr2kV57MSMrUX4IRXhQRfrW6XnoX7RF2UbLOpdcSS9dYsYq4PPW7vWP5YvcPLFogTK8KMqeqwo25dspIm5n6K8IWOIfp5i8qmxXjoMdPlD32PGitfcWIWea2SAcflxbd68eZg3bx4AYNKkSbjmmmtwzTXXjHKpCCGEEEIIIYQQQshEY2z+EwQhhBBCCCGEEEIIIeOAcblyDQAeeeQRfOtb38Ljjz+OPrWOPkkS/Nd//dcolWx4aGlXba0Lz5gRl+dIbrscuxxen9fU5OJuvdX9vm6dn4eUuOnluJ2dQo75wAN+5AknDAalgkgrCZYudWFLFirvRamOPJnH3ff4z3fWrPrB8FEtO/wTGxpcOHL5dyjWMndZjNg85fOVMlnAl9FKiSjgSwAtWaLMY+VKP48bb3RhLYmUzzf0PkOlUUOlDcV6NrK+vv1tP+6661z4sMNcWNdB0TKPinsWHfP736/3on72M3ft22/3x/E3vck9ENl9df+aP79YWW4eOZduyyHlsOq7jG4ux5+KNp5xwZKHm2iCn28O2ZfMU847FuO+fnJQ+vgwBomVixVxb9Y8NJqyLGkPkeedoAi5nkXm+NzV5ScM7LRFS2iHIkuOXJRsM8a+YTz0Uc1I9lEt3c7qD6XUo9GOY+0nQmWhhJAwxmU3+sEPfoAVK1bgwIEDOOKIIzB58mQvPkmSUSoZIYQQQgghhBBCJgL0XCMDjMuPax/84AexdOlSfOMb38CM2OVchBBCCCGEEEIIIYQMk3H5ce2RRx7BNddc87z8sNbW5h9v356dNnS3KLkcWG2ihtaeR9yB1j0GLj8OLVMeyVyWVEerfTZscGGtAvCWan/qU36k0JZdLv6lQeYHAO3tmUX0sO6locGV/8c/9uOkXO/yy5u9uJlNw5cLjOTOTqHPVz9DuZunlvyFIuWjUg4J+FLfXJIbsfb/QENjZrrQXXuLkPTo3QylZPqXv/TP++AHXVjuFlqU3ETKhCp2wZWIceQv/sKPev3rXfhLX/IfjhyrFi92Yd1HOztduD7PjJall1T/9GjtyFWI5MnQZDy92dXx9OkuXLkjsQvrMV72Ny2ZltL5uW1Oll6j6uBAS6sLG/28bKlRIbJr3YBkfpb2PxT9T9fyYemHI9rdgfbZrhxjSJYVOqfH7rY5qjvvZVGxHWx99XQGZls1dGU1vcoeImubWjVWlL1rtRwio/OXfUEPYvJYvwjIF2NjV3WvDiL1bbGS4CK0dSO5g2esdUHseUVgtfEidr0NvbcypNsmWW0rxzhlWbPILP3XovC5fizNWYSMNuPy41pXVxe2bt062sUghBBCCCGEEELIBIayUAKM091C/+mf/gkf//jH8cgjjwydmBBCCCGEEEIIIYSQkhhXK9fOOeecwfDWrVtxwgkn4Nhjj0Vra6uXLkkS/M///M9IF48QQgghhBBCCCGETDDG1ce12trawfDxxx8ffN7pZ51eRnEKY0pDw6BeXWvhp093YW0V09Hh0q5f78dJH6tVq1xYW1m0dgmPmQiPtaHSSR2+pcmX/k0A0N3twtJuY8EC/zxZZO2D4F1Pm9kJZJVo37YikOX4y7/07/PZZ1140iT/vP9e6dJu2uR+X7zYz0N6TuUha/mybgbSCkWf09riwuvW6fxdOU/udD4yrS1+I5SeeppQDwzp+bVwoZ+f9UxNH5yMCtrbn13e+rpiPAezrqfb+PLlLqyLf+65Lqx97rLKlcc3I8t3xLpPXQ55/J73+HG7d7vwAw+48B13+Ok+8QkXPvdc/9oXX+zC2j+xJusGStiL/sH1rlza1quxwV1Pe+pNmeLCckycNs3PQ47reoyXt6nHCu+4T9y3ykS2LV09cs6qsIARaYvwY4vx/6oomOF3VUGG76Kei2X2DQ2+783s9hZ3oH2mYk0mh0lR3nhZacv2ZSoif/M+I8eAYP9N3eakF59qn3sbnBdrfcH+j3mo6d/rDoxybOvx60A28Xp53zqPLA9MlTb2HVMSOxeb/abgeaMo/7IYf2TLd66IcsXWf9FtvIixrihkv9HvOIsWuTlldpvoh/IPA4R7hnp9GfD6l/RZy9NGCCGOcfVx7fbbb486b9EHFxVckmJ57Pru0S4CIYQQQgghhBBCcpCm9FwjBxmXnmuEEEIIIYQQQgghhIwFxtXKtQE++clPYsOGDfj85z9fEfd//+//xZFHHon3vve9o1Cy4aOX2krJjZY1SbTcR27n3tLiZAWHH65OLEAKaiHzkMoHwF/5r4shVzdb6SyknE6fFyMl0MTUz4wZ9rFE/guIUESb6fR9WmooS1Irsepf1oHOXz7vAwtcG9T1LaWUuk6LaIPWvXn5C9kX4Eut5TJ9LTNdvDisHKFSJi05u/pqF1640I+74goXvvxyPy5LChoqXQLC+4klyQuN0wo5eTx1qgtryYR8Tlp1J1UTuh30CgmmHG/KkDtIGafVh3QdyD51XP8f3cEkNRnUtQwGW1qyn6+hjvcqSLcDOY7s3OmfJp9NCYpak2BJsyyYWQmKLVtc/kL3fpTOQ/gwSBkf4FseNOp/1s74Z+48415Mey1b0lOUpE0iy6zzl3ON7ufy2Lxv+SzUc6kx+kZWufJI6zyZqBoEsubHPM+wEBmw6EPaGkGOU3oMlsft7U7eVt+gBgs5YRly6dIlwcNIm0Vo/ct0lsTeyqPoMhVF0WUs49qx/SsGbQEh7Xv030reu5xsCNYfhRaWvFxIRg/U+RYHI/m3EiHjmXHZ4r/yla/g5JNPrhq3cOFCfOUrXxnhEhFCCCGEEEIIIYSQici4XLn2+OOP49hjj60aN3fuXDz22GPDvsbaW9biD7f8ATW1NTj6zKNx5mVnYtVXVuGx3zyG2rpaNM9qxp/+3z/F5KbJ6NvRh1988hfY/NBmHPeS47DkHUuGfX1CCCGEEEIIIYSMXei5RgYYlx/XGhsbsXHjxqpxGzZswOTJk4eV//59+3HvDffioi9chPrGenzzLd/EKRecgo6FHTjzjWeiprYGd193N9Z8Zw3Ouvws1NbX4ow3nIFtj23Dtse2DevahBBCCCGEEEIIIWT8MC4/rp199tn453/+Z1x44YXeh7Q9e/bgmmuuwdlnnz2s/Hf37EZjSyMapjZg2+MHP5bVN9aj41RnzHPE8Ufg0TsfBQBMapiE9hPb8exTzw7rutWQGnfpvzZUnETYwXj+HRrLZ8fye7DSyTJaXkCaLMuNPH5Osk4q/Suqn5dni/AivG4sLwLp5SWsfyoI9VzThPojyXRW+bX9g/RaEXZF6OoK9/WS3i7bt/v579njwrJtNTeF17GF9OtaudKFL7wwKjsT+Zy034b0WZO+HIDvudbaEudFE+ulFkOe/iVpFJZEb3mLn4d8HtqvTtbl9df7cdKnUrZdayyNrQPLW1GifQsbscsdZBlR5iDYf9A4T+cx0j5rkqznYbazyLrzbvSpp/w40fDq5XMCUC8bmmEsKMuoPa3k+JDnGZbtGzSSWP6tcqzW7VEey759VIdRN/oCYoDI8w4STESbLMozKysfKw89znZ3u7B+D8h6l6toq5EDScz8XnY/KcJjKo/HWtn+adY78khdV1O2j1eeOs3yytPv37KfaE9cGSfHM33c2SnGmxye2V6Z9YtGhLF12X8rETKeGZcf166++mq86EUvwnHHHYdLLrkEc+bMwcaNG3H99ddj69atuO6664aVf3ogBRLgvm/fh9XfWI2ul3chqUm8NA/c9gDmLZk3rOsQQgghhBBCCCGEkPHNuPy4dsopp+D222/He97zHnzyk5/EgQMHUFNTgyVLluC73/0uTjnllEKuc+qKU3HCuSfg9mtux/0/ux8n/NkJAID//db/oqa2BvOXzh8iB0IIIYQQQgghhDwfoecaGWBcflwDgDPPPBO/+tWvsHv3bmzfvh3Tp0/HlClTCr9Ow9QGzDtnHp5e9zQA4MFfPojH73kcyz+6HEmSDHF2GCmSwSW2eZbP7upzy3IrVAXiB0sKKvOwtv62VgpLud706TqP4UsmrC3ss9IB/spnq/xjZXm5TiflFFb55bPXq70tOVERci5Z/vZ2v/x62Xu1c4BwWc2zSnUtZafWjuSx0oLjj3fhv/xLF9YyFy9/3YnkA1EnymvLZDqL177WhZcvzyyuyUguyy9bcjNzhp/fzOmuwjo7/a3jb73VhXfv9vNZs8aFu7pcuK3NT/eLX7jwSSf59xYquQ+tg+5uP//OzsbBcJ3ov/WbHvdPFIXu6Wv0oqxxpKYnwyNUdV5LKivbq5ZuT53qwrFqzNjxMyuPGl0QS8cj60EOMlo2mJUOwIGW1sGwHLMAoF8cy2ejiyEvp9tnU1PgfY/gGFCELFEj60BKqIDKeU8i61LW/1EdKqF8AFmTVxXKkMtn5R9q1ZHnnSZG8qeUz16btGS5sv71PFqfpR+FL5MeTRl6KHlkm1nnWfNonucbKvsNfc8Ovbey3wPKkGdbdSz7Xl+fHyenFGnhsn69n78cwywLlxe8wI877LDq5dX2AcF9Q82B8l43b3a/W3/PWVY7GspCyURjHExTNlOmTCnlo1rvll70bOxBy5wWPPPgM2iZ04In7n0Ca763Bq/6+KtQN3ncVx0hhBBCCCGEEEIIGSb8QpRBTW0Nfv6xnyOpTTBt1jScddlZ+O6V38X+/v34yd/9BMDBTQ3O/j8HN0/45lu/iX279mF//348dvdjOO8j52H6UdOtSxBCCCGEEEIIIYSQcQ4/rmXQOL0RK65d4f128Rcvzkz/51/687KLRAghhBBCCCGEkDECPdfIAPy4NgZIkAZp0nWanh6nca/wnMoQ32sfAZks1hPHomb9g+5A79++aJELG34bRWzHHevTUYTfj/QZ0XVcL8pl3aflZyCx7IQsjwcrXWjd6fI3NIR5YNj37cK6jUsPLZmuqC3CZ8xw+UjvCbOv6soy2rWsc+nTIX28hsgi2KMllpg88nihxHjRVCDqvF6lW7rU5b9ggX+arH/pIaT9m84+24W1FZP0GNu/P3s8Dq3Hww/3jzN9L/UFROSWDZlRlW3JalwZ6HuRY9OkSbmzy329mHRmOws1tJR1rhuCqMcdaPaiesTz0JeS2ctHoV/QZbrx4DlVFLIvSp81XQey/+omLedf6Xmk/Yo8z8Q8L0OhRmgFUGe8L8S+g4S+W8hMtD9afYOrg139vu+lvHaoT1zlGBNWxNgxII/H2HCJHc+K9gaOza9sj+JYRtPXS44dbW3Z9SM92Cyf4J07/WPpNzxjhgtXeKiG+vKplxzpQzp9enUvYCDcB5qQic7YHCVHmakzp1asWiOEEEIIIYQQQgghRDMuP649+OCDQycihBBCCCGEEEIIIaRkxuXCzq6uLrz4xS/GO97xDpx//vmoG2J96k/e/5MRKlkcbc1tg0t49TJcS51gabuLkEuGLrGXkrmK/KReQ+7XDgylVah6rTzILHVdSTnX1KnZxShCktTUNPxv2LFLsK3zZFuT9aNlNdHbmvfvzV8oAykDBYCtW11YLpWPxWpnnmQoMg8L2U1il/qHPqei5KNFyEOKlnLoMsm2HNqupZwZADZtcmH9bPbscWGtFIxhutoDJ6urHKirrx6ByjkkS/59MP/q+ei68Y5VJjWikC0tw5calSHvic5T3Nveplb3u2pLnsR7kx9nyXKzZH7BUj3406h+vkW0yaKxxp9dfX7cmjUuLKXz1nuRJbeShEoUgZxWACNEnvE3Qv1diWxcstEB3gMxXuWCq6oMiwMrv7EiuYwl9F297LleSrf1PNTVlb8cZbeDPM/JGsdlPll2H4A/Nsl3Ph23Sc0hUk4qbUMq6kNcsEb/vSULpi8gCiPfCay/MaXE/uB5LlzIeDNOoecaAcbpx7Uvf/nL+OIXv4iLLroIRxxxBN785jfjL/7iL3DMMcdUTf/E2idGuIT5eNvb3j7aRSCEEEIIIYQQQgghEYxLWejll1+OO++8E2vWrMEFF1yAf/u3f8Oxxx6Lc889Fz/4wQ9w4MDoGVsSQgghhBBCCCGEkInDuFy5NsDJJ5+Mf/3Xf8U///M/44YbbsC1116L173udZg1axbe+ta34p3vfOdoFzE3ltxBLwFubxfLrLUEL3C30FhkWeqNVrS3rtEVqaXRi6vp2Zb7WprY+zGlrBH5B+9IWanLyryWJfeRyDaTZ5OzrLR56kMuV7/tNj9tX59bXr50qft94cKw8mmee07nH5dPDEW0A2un3tA8yt4BtOxd02LzDz2viLFC5yF3/9LPbPJkFw7ue1pSJajXHT1je64KucyWZwbDCxYcEXxpWWYpld+zx89fSlbqI2Vwo7mbm4k1uIp7lbdtPMIK9wNrM8nQNmNJjaQUS8tx5sxxYbn7cZ5+UvT8a0ny5L0AwMqVLtzZ6cJa7irjrA2bZbgMaaAlwSt6J8uypY0VWFovUenWbsJFyBLLeB8crR1BNWXMvzHn5SmHTCvHRWuMDL32aFpWaOT9aIuSrB085bgE2Ls+e7YAHX755Zh/440uvHChn+7EDnEBPVHIiUlPUuJluhfZlhOyjNruxrKfsP5GJOT5yPOiyXd3d+N3v/sduru7UV9fjwULFuDTn/40rrnmmtEuGiGEEEIIIYQQQp6HpCk918hBxqUsFAD27t2Lb3zjGzjnnHNw0kkn4Uc/+hHe97734YknnsCtt96Kxx57DOeee+5oF5MQQgghhBBCCCGEPI8Zlx/X3v3ud2P27Nm47LLLMHXqVPzwhz/Eww8/jL/9279F26HlrtOnT8eVV145yiUlhBBCCCGEEEIIIc9nxqUs9Otf/zre8pa34J3vfCc6tahd0NXVNXKFGgYJ0kEtex6vgPo66UeQ/ShH00fJtOfJ8BOKxfKC0P5cebzJQq8XhHGfOr+GhrC2EFt1oZ5fu/qqbzMO+F5My5f7cTKttHiI9UyR16p2nFXG/n6Xp37uRbR/6RN0661++f/PO7L9wDK9RbRZieF1U4Q/iSRPHjKtLEes30ker6ciyKo7yxtPP5qNG1146tTq5wDAXtEG6/XzlA22ACPBmr5d/g+i0e/e7d+b9o4ZQHtayfsp3dvJoIhrV7QrawAVz6NGhJvVMzxQ53xqKsefsEtZyHFL2+VIdP7SW1RS1DuB1W9C8+zpceHVq/04ea/St1O3z8YGkb/qQ55HoOVbOIpelDGM9HgZ23hHsn5Cn2Gsp1jovVjPZqTHzyLeEazzZHezPMVkusYc3tKS0HspwpdPT8Vy7tfjj0Tet2VTqJHv2Rs2+HHz5rlwba0Ly7ETADBfVOymTX6cHEz1wxEDb7M0RW7JvgFrONBxo/nOQMhoMC4/rm3YsAH19dmmiwO0WW+hhBBCCCGEEEIIIZHQc40MMC4/J1988cW4+eabsW/fvtEuCiGEEEIIIYQQQgiZwIzLlWvr1q3D6173OrS2tuKiiy7CpZdeisWLF492sQohz3JmK+3Tm6t/N5VbRg8n/6x0ueQTETKDPFvWe1tb12VLvbLOGSr/0KXOsUvxfdlvGFJ+prGqO/QZ6jwa+7YNhpvr1Dr6drdyVMqmNKFtJlYmG9rMYp/T3E4XXrLEL+MXv+SO3/bWwPwjNcujKf+WkglLCjGWpFcxeepHM39+dpzEklXWxOpIJFKnorUi4p9Sp09vzopChnquAv0vszKtFRcrDZHPKVaWFY28AUPzFDPXWFjSNN3OZP760c9ur15fun78djD89wALfW0pv3rqKT/tSSe5sLxvTwY6FOLmipiHYscpS9LmHRudqAjJ/WjJWHU5NFYdl13mkbx22XNxEZJITeh7pQxv3+6n27LFhdvbs8fIWLlnKKF59Kt7lmNrEaIoXQ4ple3oyB6fp0xxYXNusV5I5MMA/PcH6XOi30eEDZOWze7c6cKTJmVnT8hEYFyuXPvjH/+Ie+65B5dccgm+973v4U/+5E9w7LHH4h/+4R/wyCOPjHbxCCGEEEIIIYQQQsgEYVx+XAOA008/HZ/5zGewYcMG/OhHP8IZZ5yBT37ykzj22GNx9tlnj3bxCCGEEEIIIYQQ8jxmwHNtvP9Hhs+4/bg2QG1tLc477zx885vfxPe+9z3Mnj0bd95552gXixBCCCGEEEIIIYRMAMal55rk4YcfxvXXX49vfOMbePjhhzFr1iy8+93vHu1i5SJFMuiFEO03IE2PAOzZ47x15LbO+/f7p7W0ZHu5FOFBIrF8G/TX8iy7AK3zz9oG/OBx9r1lYfltWD44WefkIdTrI48nmkXoMzTrrk54Mihjhcc3VM9T+0lYyDajbSJkm+noCM6yeETfO7nLr6ymJufxE+x3oh6idV6WZxZQvLdLHh8oifQqaW0p5toxxOYhz6vXfn5N+f99qgjfOfNe1q71j0W/rO/q8qLqGhqDyijLZY0xRfg6amLmocJ8kkKN6CIpwtdUDrvaIie0TqxbC80j1gdKvrpMn+7Htbe7cLAdYeBzKsObKthXzWLVKv94yZLc19bE9D1rDCii7orqozHPKs+1Y8aVsutnpOdD7cOYheyv+p2gtlbml53HSLefUIqeCqz3fV13mze7sHznmzlTZSoLZhmd6RsQXmregLxunZ9OmM01NPn+rTJL9efo4N+ge/dmF4mQ5xPj8uPa9u3bcdNNN+HrX/86Vq1ahcbGRpx//vn413/9VyxbtgxJkox2EQkhhBBCCCGEEELIBGBcflxrb2/H/v378ZKXvATXXXcdLrjgAjQ2Vv8XeEIIIYQQQgghhJCiGfBcI2Rcflz76Ec/iksuuQSzZs0a7aIUTqwcoUZpJppEB1+wwIX1auBQuWQZS7DlVt179vhxoRIQWX49qMml1FpuUsSy7iypRVFbuUtJpJT2btrkp5N1JVd3A0BzU8nyAVGRf1zn3/ett7qw3Lp8+XI/i9YWS67k8tRtYvfusDKGShs1ss7vusuFX/hCP91RHdmNVT8PSajsVy6x14q/RYuGzm84hOZp9Sdfzuvfm/Xss6595yo/D1kHsbLokN+BeOmb5OnNfh5PP+3CllqjMXCsrhjURcfZW+f/I9QdK134sMNc+KST/DLKMUdLPmQZdR8tu46z0hY1Bst85PwixwbAtyfQfV4+jpp+pYvJehPXz1Ckq1GNRNofaELrP3SMLEIuqa0dZHuaP9+Pkyrmeoi609UmM9V1mvEyUVQbycLK37z2zp2FlkOTZw7MOm9Hr3+OrOLQthUrDS9bDjjScsOy3yND87euFf4ekP2+Joct3UWz5u3YtqqJOU+Xadq0qEsHY42RU6e68Jw5Ltzd7aebOUMcWH9EacmofEmT2l7ttyJeQPsWvsiLklNW1qVrxr3LOyFhjMuPa+9973tHuwiEEEIIIYQQQgghhIzPj2sD/Pa3v8UDDzyAPv2ZH8Ab3/jGUSgRIYQQQgghhBBCCJlIjMuPaz09PXjlK1+JVYd2VUrTFAC8jQzkx7XTzzp9ZAuYk4aGKaNdBEIIIYQQQgghhOSEnmsEGKcf1z7wgQ9g69at+NWvfoWzzz4b3//+9zFt2jR8+ctfxl133YUbb7zRS7/og4sychobdF//2GBY+oQBwIwZyMTzI1i92otrlWYlcmWfNL+C7+uVZ3tsee0YPwbA91mz/Bmkv40euCxPq2efdeEp6vul5REyWuhybN/u6kv7HEmk95gMA0BzoHddqBeK1Q70s9m3z4Vls9PPWrZBnYfl4xDqFygxfUZ6tnnHR7W4Rnjz027bcem/BgBHrcjOP7RtyTrQvmpf+IILL17sx+njEMr2GtLI/hvjQQf4ZfY93IA77nBhNbx5nk16fMtqC7E+L54vkPbWEhfX/o9btwZlb5ejrt5dW3cUUSnWi99zz7mwXgwu5yXtjxn8Mikz1Q9DHOdpj7EeTjH5b9rk8l+3zk8nx6LDD8+Oq6gseSzrRA/4oSakilCvqti4kOtq9KOXHkJ6TPePjRcUazKIMFit6duVmX9RPlCZnHHGsLPI42kY83x185TVX6+qO7SPFuEpNh4pY9waLkW0ET3USd9O3SXndpbrdygJbY96SLGGkZh5yKpT7aMp0zbCzaOTjg3fyM+bC/TNyRcneaPac80ro38sy6j/1huweCvC65qQ8cDYG9UD+NnPfoYPfOADWHzoL8uOjg4sXboUX/va17Bs2TJ89rOfHeUSEkIIIYQQQgghhJCJwLj8uPbUU09h7ty5qK2tRUNDA3aK3ZVe97rX4cc//vEolo4QQgghhBBCCCGETBTG5SLN9vZ29PT0AACOPvpo3HXXXVi6dCkAYP369YVcY+0ta/GHW/6AmtoaHH3m0TjzsjPxyB2P4N4b7sX2Ddtx/qfOx4xjD2o2n3nwGfz6X38N4KD/2+mvPx3HvPCYqOvKLZc15hbnWm8l1+yKtbhPb/a/pz78sAvPm+dnYUlSi1jKLlci6yXGUkEkH6neQdqTI/T6sr7eptbBcKjkVcuh5Hk6jxhpbJ7l9vv3V/9d7pQN+HUSqR4yyxQqLdJNcIWQS8rnpGV9Ui6gZX1HdWQvt5fPI3opvizMzTdnFuz/XnHFYPjx3lZkEStRkfei6/Hyy11Yr9L35EuqgR4QUkHZrhsb4p6vJiutfhZSFhorC7jnHhfWY4A81vUTc71CZDrGhevr/HqbPz9MFi3HQS1LPOssF55paOz1+CbrThZZj8dSumpJ+M32E6PjVsTaE1hjvET3DYkcm6TcGPCfm7Yg8Mql6yBLFqoagiy/biNSoqebXXPT8CWdeSSGWcgyyvEA8Mv8+99nx8l+Ysk2C8HQPep7PvQqCqBybJIE2y20HRFQwHiKeFfR92nNxVl9VKcrQk433pF9e/t2P27KFFc/urnL5qrjssY03cSt8d96R8gaW3U/X7PGhXX7mdsZdq3QZx/bRmSdyPdSAJg2zYUrbWaqt11rrNbn6PcCDznICF+Slle80ksm7UX0PCfn7R29/rWbmzLGT90QxMtpnr8TxqL0uQzSlJ5r5CDj8uPakiVLcNddd2H58uW49NJL8ZGPfATd3d2oq6vDV7/6Vbz61a8eVv779+3HvTfci4u+cBHqG+vxzbd8E6dccAqmHz0dL3v/y/Drf/u1l7716Fac/+nzUVNbg13bduE7V34HR595NGpqJ8aAQgghhBBCCCGEEDJRGZcf1z784Q/jySefBAC8973vxdatW3HTTTdh165dePWrX43Pf/7zw8p/d89uNLY0omFqA7Y9fnA1VH1jPSY3Ta6avm6yq8b+vf1IkFRNRwghhBBCCCGEEEKeX4zLj2vz5s3DvEMaxkmTJuGaa67BNddcU1j+6YEUSID7vn0fVn9jNbpe3oWkxv5g9swDz+B/Pvc/2Ll5J178rhdHr1qzZCkaT46gpATe8vKdTh6md6Z74gkX1suIlyzJvnYRu77Ie9XLhuVqZH8ptZ+HjGtVkW3iMLS83d3+sZRgtrYMX46wapV/3Nbm7vu4+QdUnAvLW7N2MSpCMhG7hFtLkOROpQ+ud3l+//v+eXKJ/YUXFlMWiewnGzb4+XV2un7TrLVecrtTgbGBUgWhu1b5khv/HLkjaOXzDZNDjeZSdWscCZWkSrm8ls7LPmrJsmyJhgtrOY4ljy8CKWevV4Xc1ufap9wQWo7bALBwoTjQehZxc1t6mr0omVQ2fz3GyB0wdX14w24erVEgRYwBsm3pndhCkfNVZ6efh9W/dvVlX6+xofrEJCXdgD83C4tZAP7urdoyoGxidt7TZZTD7Akn+HGZ87aOMB6ArEu5662WdjVv6XYHOQb5IqwYLLLqWHfz2Gcfs2ty0Srcoa6dVY4851l5FL3bY57zsiTfun1a1hryvNBnY6XT3cl6f5Zp5W7199/vp5Pz15/8ydDlK4vYcUrepzXNyfHZ2llbjxv2buDiAoZ3UOh0a+2cbvYFNS9lMdI70hMy1hiXH9ckvb292Lp1K2bPno1JkyYVmvepK07FCeeegNuvuR33/+x+nPBnJ2SmPeL4I7DiX1dg+xPbsfIzK3Hk6UeiTu9JTgghhBBCCCGEkOcF9FwjA4xbU7BbbrkFp512GqZNm4a5c+fi94eccN/61rfim9/8ZmHXaZjagHnnzMOWh7cMnRjA9COno66hDtsf2z50YkIIIYQQQgghhBAyrhmXH9duvvlmvOY1r0FbWxs++clPIk3TwbhjjjkGX/3qV4d9jd4tvejZ2APg4G6gLXNaMtPu2LQDB/YfXPa685mdeHbjs5g609j2kxBCCCGEEEIIIYQ8LxiXusWPfOQjeNOb3oQvfelL6O/vx9/8zd8Mxi1YsAD/9m//Nuxr1NTW4Ocf+zmS2gTTZk3DWZedhUfvehR3fvFO7H52N279+1tx+NzDcd5HzsOm+zfht//wW9TU1QAJsOQdS9DQHG5KkSAN06Sr9aZNTU7/rs+vq3PfTR94IDtLsbMytKrW2pZaej5In6P58/10UvdfcY/CDKtGGxCIez333EZksW6dC8v60GXRHgM1m56sWsjOzlYvnfS6eVz5dcn71n5jEuk/oL0avNuW5mAA6kWh65p8ryRJqD9JUR4hIdfS50n/imOP9c+TdSx95vJcW6K3Gb/2Whf+8Ief8eK6upyn1d13n+PFNYsGdKDFbxehFOHlEnpeqJdILLE+GnKM0Uvmze3nM/LQxN6b7HuBlibBfS2XL5AsiB7jRbmk95723PHGFcMsRltJybqTfa+mf6+X7qST3Nhq+lcGPow89RMz/ljn5BpTZMWKcI26z3rxDLVfmsTyupHofmJ5Mcl5O9Rb1OrLZfjjyHJZvoj6HWTtWheW7bO5Ke7V1awrWTAdKSapGjWJ14uCBbdr60VAxR3ImPuteoz1JSus32SUpex2NpIU5SsV6gcp023Zkp3O8t6Teci/ETTaf1liud08+2z1MOC31+nT/bhtPdX9/HR9xLxPaaznJO+t3vBE091X+qw9/bQLq1d67z1G52H1Z298EAar1ruiNRdYcbH1Kueo0Hnu+QZloWSAcflx7f7778c//dM/AQCSxN9oYPr06diqXfsjaJzeiBXXrvB+O+aFx+CYFx5Tkfa4Fx+H41583LCvSQghhBBCCCGEEELGF+Pyc3JzczO26H+6P0R3dzdmlL29GyGEEEIIIYQQQgghGKcr1172spfhH//xH/GKV7wCUw9peJIkwZ49e3DttdfiFa94hZf+J3/z3dzXOKyxJuq8GNqasz8Gekvq1Vrb+sAl0nKZuJZ3ymXKettouWz51lv9OCnHXLKken5DYu1hL+61tWlv1d8P4u5bbgMODLE8d8MGFxZaqcYWf5l1d7fLX3/PPf54F25qypYkyeNTTvGf08xnH3QHm1SBhSyxEAmFVSHGOvFYiYk8Tz7qpUv9dPv2uXA9fDka+rL3mM+Sm+hbWbTIhWfNOsKLW7fObTzS3e1rFU5eUF1fEXrPec6LZVefu57c6h4Aurtd+LWvdWEtd4i9nyys/LQUReZ/221+2mnTXPiMM8Lyt7BkMJLGBiN/3YfEoNDTMHswrNWRllpSygitMX5up/v93HP9e5F1helK+yny3LnZjzqqI0Oq1uNrVhqFZuVAnS/T96vEl0TK2ylCXl46Wscj9VGB85WW+8j6aVXzy97+mqrptCzLks6HUoQ0J/TZxD4zOY8CvrWD7EO6HLLutNRclkXmXzHlNbRkF0y+OOk24slJsyXBHtZ8a1hASKwxxSpi6DOUc4u+3khLOmWZdd+IsQUoo/wjacFhjQG6ackxxpIDWq+Hfv/Kvp4s1ymn+OmkJYG2J8jKzyJPHRcx9mWNI5osuwnAb7taBmpJcaU8tsJCJwL9t8zs9rC/JS1ZbuhzI2QiMC67w8c+9jGceeaZOP7443HeeechSRJ84hOfwO9+9zs8++yzuPnmm730T3z1gtEpaCBv/2z3aBeBEEIIIYQQQgghOaDnGhlgXMpCOzs78b//+79Yvnw5fvGLX6C2tha/+tWvsHjxYtx9992YPXv20JkQQgghhBBCCCGEEDJMxuXKNQDo6OjAf/3Xf412MQghhBBCCCGEEELIBGbcflx7PpEiGdSvF+UjIH1fpL+B9qc4ZFlXEQb85a1i92cAvqeH9HTLpbsvQKTf1eXCubw4ZKFFWNep9CbQy30nTQoro/S80FuQ47EeF9YmDEWbGBj5yTJa9WgVKcZ/DQC2O9sz7OjzPWua+0VD1hcX/jZPbnL5//rX2WX8whf84/vvdw9E+4Bkeajk8e+wvEpCsT3MXFj7aLz97S4sn+nb3hpXjlB0/Vx/vQu3V7exq0gH+F55J53kwtJ/BFD1oztp2UYgYqBtbdoxGD7QEOabBMR53uk+JP0yH9ng9yHLy2Xms+vdgRzU9UnS/7HdH1j7M3zDAH/siG3/FjFeOqbnlJ40sjQexuQSmgWQ3Tz18w0dg2MJ9dmx2moRPlb63qzxwjovC2m1mssfVl5A942Mi+v68OYT3UjEOFLxJERjCG3vMT5kReUR628V6llm+lcGXju2rcohMo+vZtHk8V0M7RsyXewYI19h5ZwN+N2m4lWugGtbxDzvPO1YPns5Zu3c6afbuLH6OZpQaaE1l1nlr63Nzic0D3N8M+IImQiMq49rf//3fx+ULkkSfOhDHyq5NIQQQgghhBBCCJnI0HONAOPs49rVV1/tHSdJgjRNK9Lx4xohhBBCCCGEEEIIGQnG1ce1ffv2DYb7+/sxZcoU3H333TjttNNGsVTDZ9cuYP0hdc78+XHLZ/UyXCmdklvTt7eHb58sv8Afdpgfd+utLiyldldd5ae75BIX7uiIW8JsLemWy9BzKcLE2u3/XeOubag1cPjhflzo1vSrVrnw5Ml+3FmnLnQHqsBSqlmPvS7C0G0eqPMlYaHL4eWldR3ELtPPeqbd3f7xbbe5sFCfAQBevjhML7B2rQt/4xt+3MUXu/CyZX7c0qUu3NwUtpQ9z5J3WeQyJCsyf113s2a58H33BWeZSWi5dD+86y4XfvZZP05Ks7RMS8pcpZxL3+e2Hleva9b47X/JEhfWzSdKGmTpHtescXlrHb3W+WUQKvV/4gk/rkJuLlgvlJ9aeY5+UbFaVyxZvHgw+Lu1fhllntZtli0N8Z6n1G8B3sOvUYXc1VcjkjV6cfV1YqwN/CdpOd8ezDNsbrPShY7BZchx/Prx4/S9Fk2m5HvTJj+hbLt6AhMDRkuLGx8q+r+cV3UespHLjohwOaOJvLdAfaF1rUaVhdUOQue50Px0N5HHO3e686ZM8dPJ+Ve++wDFSwUtOZ3Vh8SfIF4Y0NLGuPfZUMrod7Hv4Fl9tFE9s4YWf24OoYi6ykPseJkla9Xt1rKSkfYoM2b4caH1ECrNtN4XQq9LqSch2Yyrj2u1Wih+6LdqvxNCCCGEEEIIIYQQUjbj6uMaIYQQQgghhBBCyFggTem5Rg7CdZ2EEEIIIYQQQgghhETClWtjgLo6YNq06nHBXgdV8gz53fI9k2mlfxMAXH65C0u7k0WL/HTS+qbSE81dT25fXa2cWcjy16tz5P1IzyYAaGtz/g/y2lphLK1WrK3XLf8B6SWl72svhA+F6RkXZoqWZ3tsSWg9aqQfj36+Wf5Leht5YedUEff07ubB8Fb1DE/scmXu6nLluOIKP92CBS7c2BDnIWHVY6h3YCg6D2nxo33h5LW1X+N117mw9voLxbo32bdlP9FtXI4Vzz3nx8nztB+YvG/dLiTS+6ajw4+TY5POQ44/0d4uspHLjq76qPQQivUPkllqfzrpX6St0+T1tF0jlojOpwfJjEx2787OXyPLXLRvEmA8txzGkabFlXy+kf8kXbZvUMw7Qp5xyvIQCiVmHjILUmEeKNB+e8KfrVUPEBLREJ7c5NfP7HbRDqw8YpHtzKjk2LZU9Bxl5W/5jUmstmTFxfpAybGv0jsw+3oS6VWVy+NXEOttFkuop14h1y6h7Y43rL7Q2pLdD6dOzc5Tvj/IaVq/08hhxPIVzPOOH5rOGmMmyrMnZIBx9XHtkUceGQzv378fALBx40a0VHnRmjt3bq68N23dhas+fSfuuX8zJk+qReesqfjMX78Qp1zyXXQd3YK+vfsxtXES/vLCF+CyVx4HALjulgfw3s/fjTkzDkPf3n68/fwT8K7XnwwA+PQ3f4cv/WAd6upqMKOlAV/+4J/i6FnG6EkIIYQQQgghhBBCxh3j6uPascceW/Hba1/72qppBz6+hZCmKc7/m5/jslcehxs/dnA7wTUPbsHTW3dj3pxm3Pf1CwAAj2zcgdf97S9w4ECKN73qeADARcvm4tr3LsHWZ/tw/IqbcOFL5uLImU049bg2rP7q69DYUId//+4f8TfX3o2bPrYsswyEEEIIIYQQQggZX6QpV+mRcfZx7ctf/nIp+d5+75OYVFeDd7zuxMHfFh7Xhu4nd3rp5s5pxqevWox3f3bV4Me1AQ6f1oD5HdPw1JZdOHJmE168aPZg3OIFR+D6Wx/KvP7k+hQzZwzdIfMs5w+VAcg4LRmSchmthJBSL7kSvLvbT3fffS6st16Xy5uXqe+OvpRy+PItvbhRllnKQmPzt+r4qI6C8zSW3pct+agsStj1ZB6tLX5cy8Ls57uj18Udfnh2/rKOjzJUO7H1IyUg27f7eUipo5brSWnj/ff7cVJiItug7kNy6X+zktrK+9GS13OWoCpFLdk35XSCs84odjt3rV5cu9aFdT+XEkktU7YkFFnUWHJDQ6pmTbShcgop5ZgxI7u869f7x7I96Tp4sqdxMDxbN16J6AAnnFCfmUwo8AAAO8UUarWXosfdiuckUROdl4P1fAN1X3nadIVM9xC6L5cxrmehn0WoZC5PnsPG6sy6H2bIeXWdymRaWj1b2laoa9f07XIHRrsz38nqsvtUFtb7WhH1HStf1HHyHUH+m7dW76IlWzpfhKTcksf3iXvVj7C+rrrMT5dJ5qmbnHwPkGHAt4SZOjW7zi1Vetnye4tQyfdw8x6KGFlinnehIu7Tuh/5DLPmBQDYvDk7LsuKZShi7ida3k/IBGBcfVy77LLLSsl37cPbcXqXYeojOO34Nqx7rKfi98c39aJv736cPL+1Iu6/frgOr3jhkcMtJiGEEEIIIYQQQggZY4yrj2tjgTT1j2+67RHcfu9TeODxHvzn+89Bw2S/Sq//6UNYff8W/M8XXjWCpSSEEEIIIYQQQgghIwE/rgF4wdzp+M5/PzJ0QgD3PbgFJ3S2DB4PeK7d9fun8cq/vhWveNGRaD/8oNTmtt9swMeuuw//8++vwuT62owcR5ZYiZ8+r6Ghelq96+lJJ8lz/Di565y1lF0uh9dlDF2arOV0XqZ93gX8dBESTC13aGpy6aTEIDS/oSh6WX6epfJZkono/JX2obnOHTfP8BvQth6Xj5TxHDdflddrQL78JlQ+LZuBljdb9o7yPCkDBfy+YqnPrF1pR1P+k6WA0rLWuZ3Z167p3+vKESiN0jufWjuOWrv9xmDJucqWSVg7jtas/d1geMGCk704mVbXgSeNNerfH0uzJYtaupTVN8qQjQTnGambkvWv79PahTgUmWdRMtCsucHaVbroa1nphiJqt9OmZu9QjjFSU66lw/1NRwyGtYT/5AXIRrQnWS4t35Ljfz32enGy7+nzZswwrh2IOXYE9ht5b3KXcCBckirHY2u3TS2d9B9V9rW9VP1+HdeLC2zY4uch5exdXX4+LS1h7dXajVSOs3pHevk+0W+8isr7jN2pVGK9S8j2ool9h6VU0Ea2H219MX++C1exHg+Cz2YkSAGE+72T5y8jZ+QxhnnJotnYs28//vNm90Z1zx+fwWObfM+17id34j2fW4W/WlH5pvXCk2bi0nOPxWdvPGgAdN8DW/D2T/waP/znP8MRrVMq0hNCCCGEEEIIIYSQ8Q9XrgFIkgTf/+TLcdW/3IVPfG0NGurr0DmrCZ9514vw8MYdOPXS76Jv735MbZyEv1qxoGIzgwH+9o2n4LQ3fg8fuHwh3vv5u9G7qx8rPnAbAOCo9sPww0+dO5K3RQghhBBCCCGEEEJKhh/XDjF7xmH41seXVfy++1dvyTzn8uXH4/Ll7kPb7BmHYdNPLwUA3HbtK4svJCGEEEIIIYQQQggZU/Dj2vMEy0MlVE+vvRRifFi0P4jlF3LYYS6s/ahK305cXkAaHOgLt7dnxmXVq/aj8+pVmnsAvhmH8oqRWM+zjG3BQ68dU46KdNJsQhvWSXMR+SwANDQ4nxrP60/vYy6Oa9Re5aE+XxK93bnlNyPbQmenf55sF7KOdTrZ7GK9jEL9lvJ4MWX51WnfMxNxc6H3pscU6Vmj/Xdi6i62jmO9D0PzlMOU6gpoFCZF9avv9OJOXuBsDA4YY0xoGa170+XK6htF+b/EjH17kd3n6wPz09NErGeZ5aMkiR3jY8bk2HuJHv8FRXnNeciHJQdv9RDl4axZkfkLpk41kvX4pmI1YtCcMiWsDiwPyTz1GDO/h/qr6vPkfGj7efr5R70PSiNWwJuYWloaM/PX9RraN4ym5eUhPXg1lueazKM+R33EvOdZ9T2S3l1FvO8MlbbMsuSpD9mn2tqy8wn1ABxLPmqljOtjFnquEXquEUIIIYQQQgghhBASDT+uEUIIIYQQQgghhBASCWWhY4ADaTK49bW1HLsIuUzskm5r2+7YJb8zZxS7bDlPOWT5d7TNHQznkZVlySkaG9R9ibX+T9fO9qKeFSpRT9qokNI3S1ZgthGlO/JyETdqPWsL67xdfS7ujjv881atchKN5ct9ucZp7U9mXk/W85YtLv+f/9bP45RT3PFM7PXL2O+Od/T5cjGhtPOW6Wv5tFzOb9WBlnJktVdLlqKReWjFsVTFdHW5dLr8RcgHZB6tLdlltPqQlsXdd58LS9m43JYeAJqbwurHejaxkrYipNXWtQfmBQC49lr3u+5DV1zxosHwGy/c5cVt63Ptf9M6/7yOjurX7fVVa57Ut1G3z55tg+FW3QilTrTBZRI711hpQ5+hvjepIm9ry5aj6X6TVQ4Lq4x5pF4x17bKIduZ9ezLkFtZechyWe9Gssw6nRyfN/S0DobnNj3jpatfu3YwfI6+Vv+i7AtkYMk2rcjmPr9cst+EXlvXaZYFgebpzdlxUo5v9QULr/1o+wahe2/U9ykGKm3lkPkuarzMtbb45S9CahcqlbX6UKgcM9YGpoj3divPsUro30Ox43gRdSCfvbbW8J6veGeteOnLmtBzEPquMpLyYELGG/y4RgghhBBCCCGEEJKbFPRcIwBloYQQQgghhBBCCCGERMOPa4QQQgghhBBCCCGEREJZ6BjD1KprjwrDt6MIDxgrXRE+LzGafe0JIr2YtA+IWcbVqweDTYvOHAzffLOfbM4cF54xw89P+nA1NyGTB7udR8gVV/hx0ivmyiv9uJNOcuHDD3fhJuNaJtrQQ5tcZRDrrbCj1533ne+43//yL/10fX1bRREP9+JOe4+oZFV+Wa6eHvf7+vV+/l1dLvz4Jt+v5a67XHjrVi8KS5a4sHzWZXiVWHlacfIRSo81wGvi2L3bhc86I7tMebwVs7w5dDpZRu1Ls2aNC2svtT17XFgPfaGMpPdHrNeN9FDR7fO221x45kwXllZmACDsovD0n/megw884MLaT0uOK7K+ZX8C/GfY3q78nOQ8pC8gj7WRTCCxfnVZ7NsXVYxoim6DseOPLIf0MgP8saO2tvhrF4HVh+TUUOm55sJzO8WzuG2Nn3DzZhe+6SY/7jOfcWE9GInOUSMmG+0N5qHf3WSHk4MiACxY4MK642eQx5NLxklvV4tYf1tvUhIeawD8QWzePD/uFa9w4ZZWZOFdK3K8yeMHWSZjybcqpixFePeW4fEYS7D3p/RE0/OhRL3I14T6HsuxwjR2zC5jmedUYyy1ZUJGAn5cI4QQQgghhBBCCImCHxIJZaGEEEIIIYQQQgghhEQzIVauLXn7T0a7CCaTD2sblC7s6vO/d8pVvzXGPt3meeJLemW6sO+rUuIH+DISqZLQq5TlztD1qvgxsrhnn/Xjpk514dCt0AF4Or+a7kcGwwsWzPWSySo31CAmcvX30qV+3BNPuLC8FwDo7nZhWd+TJmXnr+vAXI5t7fsemoeBbAsy3Nend9NpHgxJBQwAr4xWG5HtbNkyP04qabZv9+NkXe7c6cdJVYmsfy3LlcexdRUsOVDpZJ+aOdOvn0WLqpcxD0XIAqxmJutYjx2yLUgFkVZNdXa6MmolUNlbx8ecV9O7w/9h06bBYEv7cV7UunUufMEFLnzppZlZYOYMv0z797v71mPYxo0uvGqVC2v1mWw/clwCgAULnAy1VWt7JfLiWuJtSegKRo+zEt1WZZG3bHH1qNU+su3qugudY0MpQ2Ijn28OpVFm/8pTxlC5Z9Y5gF/H5rXlg5N+AYA/ify//+fHyUrRckbpGSAKbJZDdljA71SVDahqFvqdzJqHQiXrTU1hY6S255DzqH5m8tnUywFaJ5Q3EFgHRVGEFHQk55A8eWTFWVYLjQ3llin2vBhpaZ5rFSKDtDTqoo0/uD77bzY5FAHwxy35AqRfdiPx6sH4g66MdyhCno9MiI9rd9z3xNCJRpG3ve3to10EQgghhBBCCCGEEBLBhPi4RgghhBBCCCGEEFIsKQCtzCETEXquEUIIIYQQQgghhBASCVeujTGktxPga++f3u770syY4cLr1/vnyd2apY+GtguRlgDa1kJ6ik2b5sc9/XT1a8nd1AHgqqtceHbYLvIm0t5kKEwfjU7nrSY9kI5r2OsnFBWk/eoCLcswu92V4z3vyfau075Y8plKixZdx52dLnxUx8h6ZUgPBt225P38+YWuXvv7/Xbc21s7GNaedKHlamnJ9t2SaD+qZcvcedrvbfJkF/7Zz1xYP/clS1z4KOWVIX1xtFfVyV2irRntTJ43f74fVw+Xx8wZfsFmzMj/bydFeJBYeei4uZ3Z12ptkWmz61GOP9oLq63NnafHN99aJNCzSRstyuNQXyDdgESDbVbjz9Klrq/s2eN+n92yy0s3Gz3uoNcfSGb3iUFGeT092PaiqkXUlkfyNnUdy3o80N7qxXl1KR+UokZeQA+EBfst5fETkh6Wst2tXu2nk1Zz2k5L3o720pFjlawC3URiPRmzqK9T3o2BnoyxnkShXj1FeF/pdLJe77vf+XtOndrspTuxU/SpK67wM5Udwui/wc9Ct2mZv5zQFXJu2L3bj4v11Yzh7rv9Y/lepssh+01np/OU7Oj007UsdGFzDunPfkeT6SxfxPp+f/y0fLJCfTst9vZnnxf6Hhk7PowkRXidjea9FOHpJuN6+v0x5o5bXFi/x8j3SD3/1stJVpyofRdlu4j2zRMNLU97HyvPkJCxAFeuEUIIIYQQQgghhBASCVeuEUIIIYQQQgghhOSGnmvkIBPi49rpZ50+2kUwaWiYMhiWUjSN3O5co5fAy3z27XNhrWqSaDmdPG+/Gi/k0v+ZM11YSwMtHul2Cycrl8a7OLkiWstqLMWQlFDo/D1ZTKCeoojtyXU5pGRU09lZXeLw1FN+OvmspQwO8MtcxDbjNX2+nELm2Nvb6MVJ+erppzt528UX+3nK59vcNHxZUB5pkbxe83w/7eMbXFot185EdbCeHnffK1f6SU/uCsrCkw9oZV1Dg8v/tIX+fccszR9LW63LskiJaLcqoxxz9DgoFVZ6fJPyvTlzXHjPHj9/OeZU1E6opkfw4Aa/nzQ0uGOtnD9v8bbB8NP7nOTyQIOfR42UheoyyfFNVYKsn9PFNHnssbrUDt0GZfabN/txU6e6GmuUg7Ulr40kuO3KAQfwG42Kqxc3V1fn6l/XQei8ZzUXKy5UclN2/42VjRchrSsC+Q5VYR8gH0CXGpylVKrtiKhre/fd4sunK44zkEWcOtWPi32+MXIu3f5ldVn2FrKbW+OIlGPHovuTdxw53ITWj5aByiFGv7PKcln9xBoi6yP+krPenYsYR3R5rfFttGSEZY+XeqqR7xxa1i3fQSrqSnaORYsGg7oP5bHNySTinUaj65UyUTLRmBAf1xZ9cNHQiUaR7usfG+0iEEIIIYQQQgghhJAI6LlGCCGEEEIIIYQQQkgkE2Ll2lgnQTq4bNba4c/aBVEvwZariGXc/Plh6QB7J9Fat8Ejpk934SlT/HRWmaWEaNassGvnWVq+ZYurS71cOkt2UPby5Tz5y2cjn5uuA13nodeO2t1HX1w0GmuHweeec2G9Y2ddU9w3frnkXoZbW7LPySOpkm3m3HOz8/R2aO329WF1DW5X2gr1cUZj1n1NSm60zKCAFfwmRUhL/V3O4mQYMk/dl+UYo+tn587sOCnRsOpRtuv6EipcZlnft8OPvOuuweDMI490v89QW9vqzieQEtL+lmxJm5SC+ju1+jQZ/fX++/1jOa4f1WHokEIHeUUhEkNjp0DZeK1+KOcy3X9ley2jv8p+Y+9KOHxZfWxa6znJHe8sW4DgcqkXGdln5W7LeldXtEdqdgVWGWOlsfK8eq+pFvNv4zHP8Pjj/Tgpndf2GUuXhpUztG8cqKvPjJP30mjJHitk9cW+91nv0qH3qccYKT3XebS3Z++KnXVveSTe8n60BDXrPF1GKY3tVbtcyncjawwYK1jtxRqD5Ryi/zaaMSP7erK9bp5z2mB4y0Y/nfcuGouhF5ZtUr5bAf7fgfrZj6YVwMhDzzXClWuEEEIIIYQQQgghhETDj2uEEEIIIYQQQgghhETCj2uEEEIIIYQQQgghhERCz7UM1t6yFn+45Q+oqa3B0WcejTMvOxOP3PEI7r3hXmzfsB3nf+p8zDj2oEh+w30b8Juv/Qb7+/ejtq4WZ11+FuacMmeIK1QnjyeUpLPTP163zoUtv66nnnJhrfmX+npt6ZMly6/0NqueDvDLLPX6AFBfl1EPFfuRuwtor4MYf5sitpAuantvWX5Z/9ZW7pbXgb52Zlm02Yeo8wNNzX4e4oKt2OXFtYp2Jz0jivJfiPExyfN8pXfMiV2Zyfz6UsZqLeJw6dKQEla2/bmdLpyn/FGeemMUWf6jOvw4qz1JXyU9dEgPmN27Xdjyf4wdH+R5Har8jX3b3MGWHj9S+qyJwVWXQ96LRjZJo2tbVit4fIO7nvYOlN4x+5XdSE+PC0tfIN3GQ32UrLjgcUXfqHXjooJaRZkXL/avtWVLdhaTJ1fNziSPH5LEsIwLpog2rq+7fXv2edIztIj5V7Orz+X505+633VbnTbNpdPvQlHlsIy3DMoYq0PbT+i19fum7EL6WtK/Ub6j6T4jx6ZQ3zCNNeeNpO+TftTWo8/yJO3u9tPJY+t9XHt5NTQM31/YmgOzkGO/PtbzkGwL0tNT/z1R4VsrkPcT+uzLaCOWV7W8Hx0n66e1aW9m/vfe6+ZKPcQsWJA9x0pCn73OX5Yxz/A23t8/w0lBzzUCcOVaVfbv2497b7gXr/nn1+CCz12AB29/EHt692D60dPxsve/DLNe4P/11dDcgD/74J9hxedXYOlVS3H7v9w+SiUnhBBCCCGEEEIIISMJV65VYXfPbjS2NKJhagO2PX5wVUF9Yz0mN02umr5tnvvniOlHTcf+ffuxf99+1E6qrZqeEEIIIYQQQgghhDw/4Me1KqQHUiAB7vv2fVj9jdXoenkXkpok6NxH73wUbXPbcn1YS5EMLkeuWD4r1k/XGGvNOzr8RYhy2bWUIVnLfC21TOgy/ZaWbGmmXnJtbT2diV5rLtbA9/VlS4usJcsyy8p02VucW8uui0bWt65jGaelsVmSA32eJ6eQe77rTLpO9KK88wxNUqzcWaLzkFvC1wu5QOzS/til61Ly2odGL05WnZbSFMG2HnevWg4ikdIoKXctA12Put2FUoREQ8pn9NAhJSZSrqGlKEUg66RRqxB7xGCtH6IYvKV0UstqJLobymv392fXqTVGWrJTWWQtV5J5WmPRmEXcgGyPug9pqbLEtAnoF/If4wHEjk2hcnlLXivHDj0HynYo+5eUY+t0uol3WZL7GNRN94trP/ecC7/gBcVcbixKnmLHztDztI2HxJLayUdTq16RY2w8Yin7mVnvhqF1rGWhcvyslH66cGw9RknsDXQ5rL8n5HghLW20DHTBAhe23ndi5eUx8mNAz20urMsvj7Us2pOFdqk/1NavHwy2tJw8GH7iCT9Z6Pu+hSXvD21nY3FMHDkm8r2TAcbJG+7ocOqKU3Hp1y9F7zO9uP9n9w+Zftvj23D3V+/G2f/n7BEoHSGEEEIIIYQQQggZbfhxbQgapjZg3jnzsOVhw7EYQO+WXvzi47/Ai696MZpnNZtpCSGEEEIIIYQQQsjzA35cy6B3Sy96NvYAAJ558Bm0zGnJTLundw9u/ftbccYbz0D7ie2Z6QghhBBCCCGEEEImGkmSvDFJkvuSJNmdJMnTSZJ8KUmSXGZRSZKclSTJbUmS7EySZEeSJLcmSbKwSrqmJEk+nCTJD5Mk2ZAkSZokycoi8s6CnmsZ1NTW4Ocf+zmS2gTTZk3DWZedhUfvehR3fvFO7H52N279+1tx+NzDcd5HzsMffvwH7HhqB+676T7cd9N9AIDzPnIeprRMGeIqw0P6a2n9e0eGB8yaNf6x1P1rfb30B9Bx9Rktx/JzivZxkBfXBRHoOgjdtnvLFleuadP8dFMiHqHlOWL676jzQn0LpCeO9Qyt/KTnRfv84/xyrP6NC6/7o3+ibGi6wiPMP2K9Miyy/DBGAnm9InznjOYfjeebV0B963uRfkvaayWGPFvAS7TnmvRWyxovh6KQupPmMaqCsvxPLD8bz8cLAMR5+/b5vpSTJmXnKQmtH8tzrYy+l9VvyvB8ic3TPK/gSrHmnlhkEbXXn5w3pFWntu2UfU17bXleQy2RvpfGfcpp6dxzq5cJ8H2y8szTmahnW0iekXjzu/Hvv6Hl0O9/Mb6pU6eG+VblwSp/GXNbTP5WH5X9ZudO/7wjj3Rhq35G0gtYI++toSG7rnbv9o/luJLl4wj4U2Xl+33230NZ83Se9804b+BsD2qN51O5IPuPmQWd7ueyfQutv6ksb9eJSwpg/2gXYsyTJMm7AHwawP8AuBJAB4C/BvDCJEnOTNP0Oev8Q3ksBrASwEYAf3fo5ysA/DpJkhelafp7kbwNwNUAngZwL4CZBeZdFX5cy6BxeiNWXLvC++2YFx6DY154TEXa0y46DadddNpIFY0QQgghhBBCCCFkzJMkSRuAjwK4B8BL0zTdf+j3ewD8EAc/tn08IKvPAdgL4Jw0TTceyuNbAO4HcA2Al4u0TwE4Mk3TDYfSGVt05c67KpSFEkIIIYQQQgghhJAyeC2ARgCfH/iwBgBpmv4IwCMALhkqgyRJ5gM4A8C3Bz5+HcpjI4BvA1iWJEm7+H3PwIe1ovPOgivXqjB15tSKVWtlkiDNXlJr6agMiViWfEzs6AzAX3bd2enH9Q71bbcaWjciyl+IZEXvvy3WJjdELlOWUtCpU/24GBlbrBSnCElknmXhWeXU0uGFi850ZVr/YO4yjTS67Vtyk1CZR+gzzSOLjpHB6HTWdvQSqx2XvZy/iC3b5Vik86vH3sxIWeebN/vnnXRS0KWD24ElETXlo8bDyZKYmJIMT18CT/82aZIvC5XI9livJpfmJndBqw5Cx8s8c0FoH5U2CXnkOKFtMFYCHCcnKgYvTzk36xcBMZDUKA1wXV12+WW9SrmhHpfksX4W3rGh+S6iHtvbsy0UimiDoecUgb7uk5vc9Wa3+3Gzm8QAescaP6OFCweDO+A249Kyu2DJparYmozBu6HJ3/hLvzpK/L7tE2q9IMnzbEZS7ibv5dRT/Tj5nirl/Pq80PeMmt4d2Zk0NGaWsaZvV2acNQHI7LXdihw7LDsXOY5Y9hCxEl1Jnj7vyaRFQ65Xg11Li5t/dfm9qtPvMZ1zB8OyevQ7TOh7ZOi96bE/2JZE//E4cLxvX2AG5HnMGYf+f1eVuFUAXp8kSVOaptYXiKHyeDOA0wH8uITyBeXNj2uEEEIIIYQQQgghuXneeK61JUmyWhx/MU3TLxaU9+xD/99YJW4jgORQGmslx1B5AMCcqNIVlDc/rhFCCCGEEEIIIYRMXLakabrISpAkSQuAq3Lk+bk0TbfhoCQUAPZUSTOw7DN76awfP5w8Ss17Qnxc+8n7fzLaRTBpa24bOhEhhBBCCCGEEELI6NAC4MM50l8PYBuAAV35ZABq32AMiKMN7bkXP7lKXGgepeY9IT6uPbH2idEugsnb3/a2zDjL58XaOl5udT1jhgsLew0AvjReWa14fmyerxGAHb3VvXuam3zPBVmuPB5uTU3ifurqq4fh10msN8bMGXE+HTGeKrEeD1Y7sLY8r/DVEPT0O88T6ffQrqwapYXT7PnzM/OLJbROQp9vEf5K1nl5nrtMq/0qpMeMZ3eSw+cvxretbEw/EkVoXcp7q7hPObCoyqsRxzNm+NeS7Vqe1qb+rcPynAqliDYe/Hy3bPGPhYlNU5P/D24xvppl+I2NJmX7aWX7wvn139vr4rTvUGtLAb5PlmGOYXiV5fsHZHup6TFMvkvoS8l3lTo1v2sf1TKxxnhZdbrPtLTkn6Msz0Gdv2wLVv61tcYF9ZiQwf33u7D2/JLjYK55NGPgqun33ykbjYfd1+euvVv9OTZ9ugtbc00RWG0k1pNRpp0t3r1MD16jv+7o9cd42fdkf/Ud73x09rL9N+vnJCKtcdEaH2Qbl9ey3pl0GWUeRfgXm+eEvswpGutcmz+qI9sf1iqLTJfnXbGIv1ei+9dAfaVpZAZkrJGmaTcOSjjz8uSh/88BoMxfMQcHtbVPwkbmoRn4rZqsM4RC8h77b76EEEIIIYQQQgghY5L9z4P/SuWeQ/9/YZW4swA8MMRmBkPlsRgHP9DdG1e8YvLmxzVCCCGEEEIIIYQQUgY/wEE56BVJkgyut06S5FUA5gH4hkycJElbkiRdSZIM7pecpul6AKsBrEiSZLZIOxvACgD/nabpJkRQVN5jREg0sUmRDC7Z1ctwY2UGU6ZU/26qVX1yNbNeYnzYYS68o8+Xa0iVgZQxzJzpX1cu2R8XWPt7G5SxXXuozMCULHZ3u3BXlxe1YZ0Ld3a6sJaFFrG9ffAS+4r9yfN7UppL2SOfr5W/JM/Se1PqmIGWQhQhBQ1tZ2VL/KxH09hgtHGrEsTg1NHhC2Huu2/IUwD4fUNK8YsiZow3JUm6A4uBXZdfyu9lNR5Addn/UOUto42E1k/ss4mR4+eRHUkpqO6/8ljOqbovtLZkZu9hjsFSN7VggR9pSLvkvemuljWGVdZHWLuwlKtFz7H6XqxxMEYabkk/y8C0t5CDmAwr7hX/Hn/ssX6cfD+0rCgqrDua8k9Suq7kta02Yj3Douvfyj/6XchKJweL9UpNJSqoofM4L2qycA7yxvgGfz70ZafZ5dqr5oa6huy5IgurDnzpoV+P1lRvWWTESnaDifX1yEDbB0gLC23fI4m1L5EUUlfa12CgfsaKdwkZNdI03ZwkyYcAfArAbUmS3ICDcst3A1gH4DPqlCtw0NvtTQCuE79fCeB2AL9OkuTzh377KxwcNN6tr5skyRU46BMHAJMAHJ0kyQcPHf82TdMfxeZdDbZ0QgghhBBCCCGEEFIKaZpekyTJVgDvAvA5ADsAfAvA+wIkoQN53JkkyVIAHz30XwrgTgAr0jT9bZVT3gPgaHHcCeAfDoW/CmDw41pE3hXw4xohhBBCCCGEEEJIblKMgGfZ84I0Ta+DvxItK93VAK7OiLsLwEsDr9cZWra8eVeDH9fGEXmkKFk7TDWqFcuNcv33hg0qTvCwv9uUt6BcyJAOzJibWabmpnJlO3koYml46E5ysTKqmPxvvtlPW1d38mB4aacfd3KX2K3L0yupJd2BFCLDUMvGS1nCP0xi25wlqZJo2YslgwldZV+EXCCW0GvrDe2kutGUKsjt0AzqlCz0yCNd2FImW9y5qvrOXXPUPkNyx2ZNETuZefWqZaEGWe1npPtdEWNkEVKsUKz6r5QUurDe6VC2eZlO7uqXB2sTu2ZjWN/V76RdO7f7cXqXXYkssyfLVQVpbQkbqMoYm7LyzDNfybRaoltEmWX+1nMqu41L54iiFFwxMjOdrl/I5LIUZ9Z1814vhkLmWNlvtIZ8nfDxkHYfgPfgtDx+pjH3ZCFtGCrKpZAWAnIH2AqxaESDqoe/o2y9ITEuoh8G9y/jZa6IXWP7lSz0qaeqX9qa6vPMUUXYH5gMvBzV0OadTAzY0gkhhBBCCCGEEEIIiYQf1wghhBBCCCGEEEIIiYSyUEIIIYQQQgghhJAoxp6VDRl5+HFtjFGU54inje8Vm2/obaKlr0Ov2qRD+izIvaB1nMijpq3NT6cNMiKI9eOxyPQfMHwhYv0Gyt4CXnLHHf7xv/+7C990kx/36vliO3djf29Zfm29IatLlyu4viLNXUK9dIq4lpW/LIe2SZHeJVY7sKxWCtjZfUT9qKxr6/YjPacszzWzjJZhmhiPdB7t7WE+IxIdt150ocmTq1626rVDeXKTu15trft90iQ/nRxm6/vUOC4bUFFGSoKY8a0wL5eI61njVCEenqoN1njHnpOpZ50k20xrS/icJ7PfrvzSnn3WhTf0Z49T+/a58HPP+XEveIEL79njx0lvuHo51edoZ9b4KZtuEV5GRaQr6ryiia0fydKlBRUmgDxzkmwXoa+UeTz1iqi7UMz7tvqN7Az6fS2Hz+a4QtVH6DiukeeFPusixgPrWes/t+St6ne+Y491YTlWF0Xove7odfejPbStex3ovwfGxlBJSOlQFkoIIYQQQgghhBBCSCT8uEYIIYQQQgghhBBCSCSUhY4BEqRBy3L1stuopexaNiV0HQcWnuZFeXkuXOif19PjwnINcw4ZaKjcMLNMKEbSE0tW/cfKWK3ztvW481au9OPmzHHh5cszs6gsS9eJVX+Xjxbwl6FPn+7H+XJG/96sZe6Sopff55GchW5PrpfwS6wmH9omZV3ptl9fl93GZf3LdDptEVKX0Dx0GaWiXLctea9aSpmVZ0U5OjtdOHQgQXb7ydN/lyypnk63if9d487TCh5537q4a9dWj5O3XHE93Vil3lZfvMHJFGXV1dVl96EipJN58hhNmVZWOt3MpGytoaHei6sXz23qVP+8+fNdOFbuJv+NVMuFZTlXr3Zh3USkvFPKjwFfJqrvuwgsVbckdvyJySMPMeNs7BxlMZLyVN1+ZNu15tGYvqbz12Nk6LgSK/0vul6Dpyg9ICxYEHW9Qt4DRCHNZxiYrgwJdhHv/2Vbv8j3H/0uJMfgxrq9Xlxrv0g8w70wWH8TxmLJ9KWNQUeHfy3LfWLDhoP/3+vf1vOQFMD+0S4EGQNw5RohhBBCCCGEEEIIIZHw4xohhBBCCCGEEEIIIZHw4xohhBBCCCGEEEIIIZHQc20MkCIZ1LmX4gnS1DwYrunPIXqX5hDStwdwInrA3xZcm2tZW4sLtm/3j6W3V2AWpg9ODiu4YGL8VWK3h5deB1df7aeT93bttX7cpz6VXa4YDyTt6yW35pb+UIBf/11dLqy9tbS/U1YZNZn1msN3Kys/wC+/9A3TPhTSCqWxIfv56vNkWplOdyFZx/rWWlvGhh+Vxfr12XHSc0rbgfkeYC789Ga/TDOn7qqeMAehfVmn6+ysXj/aT2XVKhc+/HA/bulSF7Y8DeUYqevKQ5q3AP4DUA1ItsmdO11Ye4M1NIS1g8iuVwixnkpZeVhp9Xy1dasL6+pvb3cebI1q/OzqGn7/kmNyS0uY36HlbTZlSnacHrtlPruE56Z+7tZcLP279Njne0pmlyuUWE+uIub6WIr2lbXuLfRa2nNNPjf9nEK9La3ryfZk1etIeotqQp+99b5TBjH3k6f9x7TP0HTWOKXfRUMp42+srDrQ5Zf9xpwr9QAqO5hn8NmIUGLGN/3OKueQyvf46mEAWLeuen7PT+i5RrhyjRBCCCGEEEIIIYSQaPhxjRBCCCGEEEIIIYSQSCaELPT0s04f7SKYNDQ4HYaUgAHxcsa9/dUlGgfq6r10niSgd4efiaXpkbqkyELKa0+a5N93liRMI6UoWoolsdSqZUg5JEUsqZdSI70ju1R9SRnQUNfOStfakp0uj1RESlll/evmEtvGM6Wgeu154AX0Mn2phNYysFBknlJ2B/hSO5lOl8OSpMp/H9ES0aIlMrGSJDlU6H6YpXbQBNe/boRaoycoot9nnafleYsXu7AepyZNcmE91kk59YC0AqhU6Utlfn1TQ3akegChLwCWdM+X54S1kTLG2VhCx2c51zz7rJ/OU+qo+pHEyhKz0mn02CHHHPkMrTFYx23e7MLWHGtJleW1ZXPUcdbQXW8M40XUa9Y5+rwYiWhsOUYT6z6bmvzyh8q/ix5niyLGfiJWem4h39t1X5DjSh65fRHjShH3KscmPU1nzf36d3nfHR0F24mUgH5O1jgrn2/F2CEzkpY884/LvHYR8mk9l3V2urCWhUqyVK01Y3/YI6QQJsTHtUUfXDTaRTDpvv6x0S4CIYQQQgghhBBCcpGCnmsEoCyUEEIIIYQQQgghhJBo+HGNEEIIIYQQQgghhJBIJoQsdDyxZo1/LH1MtKeJ1Oxrjb705JHnmVp7bdgiBfeWoUoBaGsk6ckgPV/27Mn+HqyLf9hhLhxpw+URun11nm3MQ5FeB1df7cdJPyqZrlpZsogto6xH7QUnm4/06pEecYBfZv1c6kNHKGnyYJkeKeR99/X5dfXUU9XP0XUs0fUt2+SePcHF8siy2wB8X7tXL4/LX1JG2z1ufpjni/ZhkW1B3rfM72Cebjv6mjxmNF4ecf/OlFU/+veFC+P6Yb/w4JFtSfeTLA9JAKgRg6uOk7U1fXr1/AC//+pxVvZR338tjiLaYBGeWfo8OYfo+UTOX9r7MNbnKAb93GbNcuGFC11Yz7dyetd5yHvV3ofSL1AOu/v2+ems+Xby5Or56bIU7ZVUVBsJJXaMCT0vtPxF3FtzU1weRfTDsp9NGX5d1nkyTvqr6nFWelxZHsKhjLTvpeW5JucXy4dV3qflSTeaWB53hgVsOKLyyvaIbqywb40bw0455eD/p0yx0xHyfIEf1wghhBBCCCGEEEJyQ881chDKQgkhhBBCCCGEEEIIiYQr1zJYe8ta/OGWP6CmtgZHn3k0zrzsTDxyxyO494Z7sX3Ddpz/qfMx49gZAIC+HX34xSd/gc0PbcZxLzkOS96xJNe19u110se77vLjjjzShZcu9eOk1EIvIa+tDby4PNFaV60ucKCuvmqUXp4eumy5Zssz3nFT2xGDYblkXMtmu7pcWG8NnSVL1OVsbMhexi3LHyojid5uvn9vZiHltebPz5Fn5PbqMfm3t/v5yfpft86FpZRRM2eOfzxjRv4y9qPeO66XdaA7itAW1NU1e1FSUuWXKbwssp1J+RPg152U1tXV+fcsJVtaFpq1hX1FZKRmIqaN5JFbyThLOmZt+y55erv/7KUMYfduP22e5zhAdN82pCISHbdypQvLx7lIbYAdqYb1kFId3VxkXBHXykNo+4mVwsVIvXT9WHKfwiWMegwTD0RfS47JVv+S96OfrzzWci5pP2ENN1LuqYsvia3HIuY5u479caVMYmXR8rwy5P2h19aE2mdY75HDvdZQ6UZSuq2vJd+H1q51Yd2HZP1Mm+bHWZL+oudwC1lGy2VGj0V6XKl2zlD5S8qQYBdtT5AL+VCtP/yMjlOE9Dn0PUYzMP4nSfAphIxruHKtCvv37ce9N9yL1/zza3DB5y7Ag7c/iD29ezD96Ol42ftfhlkv8P/qrq2vxRlvOAOL37R4lEpMCCGEEEIIIYQQQkYDrlyrwu6e3WhsaUTD1AZse3wbAKC+sR6TmyZXTT+pYRLaT2zHs089O5LFJIQQQgghhBBCyKgyshuFkLEJP65VIT2QAglw37fvw+pvrEbXy7uQ1JS3nvXAAbeT4LHH+nFSJmHJOqQ8A/BlkHLJeMXui3JZsbX9jrHc2FqeLSVu5rJqde2avl2D4Y4OtxuglBcC/n3rpfKy7qwl6hZZu8UBfpXIes0jyfCWYJsVmS1LKUISU4S8Sse1Nrn7mTfPlV8/w9WrXdiS/1nX3it2VazYsVBuT6ofYkfHYLBR7YB2VAeqkmc5vGwjM2fETbqyrWo5oLydXWq308ZAWWisVEE2V9kPZ6uNhaXc+UAOeZV83q0tYemmTvXvZedOF37uOf88S0pTJpZURMtjZF/pyGiPgP8s6vt2+JHeOO7Xv3w2+/a5OGs3Nz0PFbGTX9G7tVr5W1IXiyzpEmDLGWPkOEWRtYmyPWfH5Z+1459Gj/FTp7pwRf3IMUxq4vN4I2Qg5wxAzRv6Ybe0DgaLtlMYKq7snTJjKKK/VuxcPIp/jcTK3bLysNB9T47xch7VfUi+3+oxONSaJVY6bEqmPcLmd2u3U+u1xWoj1nlZRdYWHKHS5FiKaGexslBJHvubLPJIXgeKRVkomShQFmpw6opTcenXL0XvM724/2f3j3ZxCCGEEEIIIYQQQsgYgx/XhqBhagPmnTMPWx7eMnRiQgghhBBCCCGEEDKhoCw0g94tvejZ2IOWOS145sFn0DKnZbSLRAghhBBCCCGEkDFDCmD/aBeCjAH4cS2Dmtoa/PxjP0dSm2DarGk467Kz8Ohdj+LOL96J3c/uxq1/fysOn3s4zvvIeQCAb771m9i3ax/29+/HY3c/hvM+ch6mHzV9iKscZHKD89M5qsPXse/odYsLLc81bSW1aZMLd3a6cL/yGWmU5gShRmTw9fY7d7o8B7zjBmgX/ksVfm8SZSiU5TOyYIFffulRMbDdczV03UlPN/93vyK3wXmtPPSQn1bW68wZ2de2fO1qRJ0faGj04zK8D4ryZCnCi8NE+D/IdnHbbX6y++5z4aVLVRl7hX+U1QEsZCNR5kgPbmkV6fzTjpsfVv+SIurOer7aUkPe2q23+nEXXeTubWbkM7Q8QmSztvyofCOTbE+W7m7/uK+v+n1ruyWrjqWv2gyrjwYS6pMS2w/1+Cz9qebMcWHTi2bdej9ywQKRvx9VL4yyZk51/evxPf5YZE0T3r3qhhDo22kR04fM56QrQR4bc+Dk6vsZVaC9vCSW52lNqF9OpG9ho7g1XT9yWqpoI8KLrKnJP08OyTIPy5+0ucl4ntK4DfAHBWnOqU3u5LFqg7LEB4R3mkmOthpobRlNzaYn3YEcEFQZY/2civB0s66dlb9l3WVZSVmPpmx/Otm09LO23m/l/axXw3OWz5p8dwb8uayMdhZdd+Lm6iHDGldo7XUm/eSy/NfUpbB7tx8nvRs1Mk+ZhzUVjKYHoEaO+TW6Ych0gc+wsn9VPy/Wl0+fNzDm19Zmnk7I84oxNHyMLRqnN2LFtSu834554TE45oXHVE3/51/685EoFiGEEEIIIYQQQggZQ9BzjRBCCCGEEEIIIYSQSLhyrQpTZ06tWLVWJgnSwSW1ejmtlF1YS3I7O/3z5MphuYR882b/vIaG7O+rocuDn33W/a6XG8tl3XVNYdcClGxTZDq7xW+ys9uz18fLMutl9FKCWbPlGRexapWXbkPnqwfD997r5+HJzERY38vv1rkl3V1d/mL5+j4pe8yW+wRvk24QK5OwJCahEkmpZhEqNQC+8qdiKb6hw5BL5TdskPn55V269EWDYa062rTWhbXsK0YmkaeOYySGWnoybZrLQ9YB4NerJVvOI3OVyMehpZpeHkruLJGPV0rZAb/8UjVuXauxIVIKJAcqXRB5cdVAs0e9W60AAGwwSURBVOonVh6s1W7Ll1e/9Lp1frp581x4pm7kgvrebf4PstEInXtdnf/MZP/VY7yUQdbra8sJTN9cwQRL4SwtkEI+N6sPyWtb2dc3qEhZXzKhrivR2SzZeCjWPK1paQkb/6XstDGPbE1eXGvD9fEAUksH+IPR2rV+nKjLGhHW0jQPw4JA15UsihwqzOdkaSJ1H5LvJF1d1cM6/0hC57w8bTDrPdKSfuo6jlGX53lvCZfTZZdfzs27+vxry7S66crHLcdZS/qp68f7O0Fbnnia2rh3zMz8AH8Sl5pXXUgxv9QrG5gpU6o/K+0yIOtxv7K2supL3pvV7wuRHBs2MN44brxL6PuOdUTJwup7kqIsaCYW9FwjXLlGCCGEEEIIIYQQQkg0/LhGCCGEEEIIIYQQQkgkE0IW+pO/+e5oF8GkrbmAbewIIYQQQgghhBAygqSgLJQAE+Tj2hNfvWC0i2Dy9s92D4aL0rFn+Q/o7apDt562ymV5IFleLpkFyXOiTGeYLlgWJ1aktL7R9ykvZ3kRaAsYycld2V46klivgxivsDzeLaG+JtLb7y1v8dNdcokLH9WhPR5mD4a1D8XA9t4DVxvA8jxqbfHzP2dJlYKPEEVs+z5zhrufT3zCfxaya0gPmDy+ZDHbsudpP/KZLlzox0lbFulFU7rXhzbFkQaWsQ8qEH1vCxZU7/c/vCXbY1N7MXlltjzRRLh2X3YWu3f7cV7/Ul460o8NBbT3WHzfs4bsSEXMuGt5/0BfSnYAy3Mtkqy+qOtfXi54zo6kYhyxGoOcdGVYDgiAf0P6AWQ8kNhxRBc31Bc3+Hq6j0ozUD0JCqz5ZCS9kiyfJllGq5+UbM9YQawnZhbW+6Z+j5Rj97RpLjxlip/Os05Tz7cee91BDp+vLHL57GZ5Jup2LB+4qshm0YmahDfzDLXuoIh3phHFaggqTj4b6e0HKO9q4Rmn6yC2b4e+/9NnjZAwKAslhBBCCCGEEEIIISQSflwjhBBCCCGEEEIIISSSJE3T0S5DEEmSpDFlTZIE6d1vK6FExfH2z3bjP77+UwDh0qsKLC2cWI6ttwi3llYXvey6lCXFkevEs5Y+5ymjrEt56fq6MHnnUIzWEmyrDZZRfitPqYLRihhPChdx3aEooo2MJrL8UqFhSVuKuDddb5YyQvabka7XLLmSJkYun0daEZrWknbJsUjLrTZvduH9yg5Eq+sGsO5Z15Xsl5akULa7PNLkUEKlb3nGsFCsMTKmbcX2hSLuLU/7tM4LzcOawmPmkCLGkR29fnml9FNT9BhQkZ+UqYsOm+ddMWaMschTx2X0t+ESW37rvKz3wWrHWWWReehxw8pDjvllzOGSivxlQTdscGE9GUjLAKNDxbaXIt43rfyKHlvz5Cff32Q7sMaloq6dlYcmpM0sOvNMrF69Oom6+DggSY5PgX8b7WIUwLJ70zRdNNqlGM+MvVmPEEIIIYQQQgghhJBxAj+uEUIIIYQQQgghhBASCT+uEUIIIYQQQgghhBASyXjYzJhk4HlBWEY4wpBBe92MRT+MXBhGFGXfm6xLea3xvpW1VcY8ngtF+OBIT4nmpri2O5LPY6x66rW2DN9vI/Y82UWldwjglyu2HEXUo/RJjM2/iPZoYZVDeu7oqWDKFBeWljiaLP81jR5y5bW135s+LpPQ51SE512e/OuNt6ysPMfSHBJaB0WMD2X4RcXkGev9ZhE7r2YZK8WWqYz2Y831ob6RRffDogitLznu6jFYjoOh3mkjTfT7mryhzs7c1yqKovMczTFY59/Skv/ecvk6lsy4/zszmBQYB3/jkfKZKC2eEEIIIYQQQgghhJDC4cc1QgghhBBCCCGEEEIioSx0DJAiiZKHeOj15Blrz0d6+/bRlEHG3pvk6c0u3bPP+nHt7S4sJYt7+/28t2xx4b4+P+6ww1x4+nQ/fylVK4OYpdp5pC0yf1knUrEM+E1VSz9D8SUZ/n3JHeH37fPPmzLFpdXXLlqKEtoe8/SZspfbF9FGrDy29bg4S1JYxDgVGpfnWjJtGc83NA/ZpzZt8s+T41RHhx8nz5N9yJIuaaKkTFo3leeCgpj2qcef3btdeOpUP64xsA0WzWiOAUXIlsuWx5chDS+iHq085ByYa24vWCtYtvyyDLuG0PFTppPzPlBMNVpllu8PRbwTx8pmYxmL49tYkgAX3a7z1Pdo/b1V1Dg7HuxwCCkSflwjhBBCCCGEEEIIiWL/aBeAjAEoCyWEEEIIIYQQQgghJBKuXBvHmEuY6+pLzT+GoiSpoXnEIGWgAPCzn7mwlHcCwPLlLtw834W15GPtWpdnd7efx6JFLqwlSdYuc5JYyVlWWl33voLLj7PkLTJ/KdXUsjVPFjofwcj8e3td/g895Kd77rnsPOTmVs3VN2WruFZomYDwXWSzzslz7dA8i+ozMfno3SplW1iwwI+TcsbY6xYtoYiVfsbWuRyPpGy8vs/XNm7Z0jwYXr/ez2PaNBeemTzjxTVvEQ+gV+imlH50Fxozyyj7b7DcLVIGahEqndGyULmD7aRJflxDQ/V8ipi7LMqW/ug6kGRsTpnr2uNdBqR3NW5oH/74KWWKdU3D35E4j3QytL3GyC+HIktunmeujCmLfoYtLS6s+3Vo/rLfVDqxDL+NRO8oa5BVP0XlF/oeaZ1TdBnzlCWUIsa+snfsHK33naGYOLuFEnIQtnhCCCGEEEIIIYQQQiLhyjVCCCGEEEIIIYSQ3KSg5xoBuHKNEEIIIYQQQgghhJBouHLtEJu27sJVn74T99y/GZMn1aJz1lR85q9fiFMu+S66jm5B3979mNo4CX954Qtw2SuPAwBcd8sDeO/n78acGYehb28/3n7+CXjX608GAPzqvqdw1b/cid+t34Yb/+GluPClczOvfeCA8+Owtgu3fAq0j5XvLzH0/VctV8m+ZzH+A9orRnpnWDY+pgeJMEN5+mnfW0j6F0l/LsD2ppFILyllZeT5SsU+p6I9uTSeV4yq41BfOOvepA9dR4dfjkbsCspEllF7rMnT9DOTcU9u8q/d1ubCwV5SBZDHS0eiPWak95z06zouh69dDFZb0r6F0oNNe6xJr54m4VGkn2Gefh9DzDgV632iz/vDH1xY1s+JDX5Fzm1wA+PcBZ5JIrBHhHUj+f3vXfiEEzLLJfvXvn1+nPSKrIe6dqC3Wqwni6zLvcLXsV8VQ/bz2W17vbjZTdkD3AHhNRfq6WaVMbRd5PGcCm2Tsn4sz7XmpvD2Geq3FHpvVv3oZyqx5qEszyx9nzW9OwbDDQ3NflwB3kPW+0LofcvmaZ0TW8dl+ECFzp2F+JSJyprdphJG+jzK/KWvWhmU8Wyynn3stcr2UyzaW244eYbmH3pdqx9m9XN9Xk3fLmRxoCHbG1WO/3I+B/yxabz7ZRIyFuDHNQBpmuL8v/k5LnvlcbjxY8sAAGse3IKnt+7GvDnNuO/rFwAAHtm4A6/721/gwIEUb3rV8QCAi5bNxbXvXYKtz/bh+BU34cKXzMWRM5tw1MwmXPehpfjUN343avdFCCGEEEIIIYQQQsqFslAAt9/7JCbV1eAdrztx8LeFx7XhyJn+PzXOndOMT1+1GJ/71tqKPA6f1oD5HdPw1JaD/6rQOXsqTj72cNTUJOUWnhBCCCGEEEIIIaPAgOfaeP+PDBeuXAOw9uHtOL1LryGvzmnHt2HdYz0Vvz++qRd9e/fj5Pmtua+/Z4+TdWrZoFy+q7cPl0uH16zxz1u40IW13CqL6O2SLb1GAbIgWQda/iqle1IKO1T+UgIiLzB/vr+s+pWvdOEjj/TznN0etnx69h3fcmFdyPlLRRnrg/KLxnxO7tp6yfju3S48ZYofFyqZq+l3Uqz+fv8+9TPNjNS6XIGUfek+NF/IIGU5AGBbryuLlFEC/lL5ehEeTfmBFScllgDwoQ+58JIlLvx3HwwvSxH3I2W/S5f6cbfc4sKrVvlxsrlKafXxx/vpZswYTumGJkYSVpS0Qg4XsiucuEjNV7fd5sI33+zHLVvmwhdf7EU92XbyYFjW/8IWLxnmdgbeT68aPGTHjJRlSax6leOWHurkpet1pJTKaum5IbOJoWzJkyUHlPK89vZw2Wnoe0HsuBUqicwKA/74bCEfdTOUNlYMoK26HbR0hl3AwKtjLc8Wk82OPn9+9NpupD1BzLtd9PugRtzrgZbs9+NCxkw5CKxb58eJF4HYcjQ2FC+Zi+lfRfTXPHnEPJvYMoaWX48Bln1Jo+jOVj0W0ebNuhKFrlGF7O/PvrYne5c3ql7Wa9rdjVqyUz38yKLovzO9/KU8NdK+hJCJAD+u5SRN/eObbnsEt9/7FB54vAf/+f5z0DCZVUoIIYQQQgghhBAyUaAsFMAL5k7Hveu2DJ0QwH0PbsEJnS2Dxxctm4s/3LgCv/6PV+Pdn1uFTVuzzSYJIYQQQgghhBBCyPMLflwD8JJFs7Fn33785833D/52zx+fwWObdnrpup/cifd8bhX+asUCnQVeeNJMXHrusfjsjZV+bIQQQgghhBBCCHk+cuB58B8ZLtQwAkiSBN//5Mtx1b/chU98bQ0a6uvQOasJn3nXi/Dwxh049dLvom/vfkxtnIS/WrFgcKdQzd++8RSc9sbv4QOXL8S6x3pw/t/8Att37sGPfv0YPvyf9+IPN67IuL7TvGsfgS1iQV2bstmRnlDSVwrwfdaK3sJbc6AuzCss1oNB2gpYnnSWz04FsmJFRWpPjTPOGL43RI00mjIKVbpPQeC1+/r8+3r2WReeNCny2uLhnNzkm4OdvEwYYvQprxv5UJW/hNx2XEZt3+5n4fmsbfFXqLaKZ3/qqc1eXKy/TSi+n+Lw85s50z+eN8+FtU9ZDLFec2vFvzfM7fA97846y40dv/ylf572/isTeW95xhGZVqbL491i+ZgsXFi9XHeu9ttqQ+frBsOnXbvMizvQ5NKuX+9fW7Y7OZ/oe95r+MHItDVNgeZXJdDcFDa/HKhTPmodRw0Ge5UN1+7NLjxlisvDus1YH59QP5s8ZPngFOHZNBLItuW1sxxzpRz/j+oQmWxRA4x8afrOd/y4yy+vXpBYpBEl4Jkr1rXP9aK8uSFrwBkGWXVp1fGOXr+NyP5Q4YcnOlVfg/M6q5jzdOfLuIDpByYLojupmFCs/mXlH9s3rDwsK1yJ9z5imGbpMbhor7YyCK0D6xzpDTx1qh9XtpdaZv66kIZxZGNDtl+a9wylEavVZxSyv+m/JbOgdxohcfDj2iFmzzgM3/r4sorfd//qLZnnXL78eFy+3P3VOnvGYdj000sBAGeceAQ23PKG4gtKCCGEEEIIIYQQQsYMY+efKAkhhBBCCCGEEEIIGWdw5doYYMrkAziq/ZB0QS31n9sZlsdxShaatcw9zzLfUKmUl2cubWY2Ms/Wlux0jZacztLdyWO5xF6ls2ROwVuotx2RGVfTJzbAUHW1S8gzY2WDlhwhK06uOgeA1pZAuZWVv5Bw1uil7EIic2DpS/w8ZGFU25KH8jGddaovPcQGIUNVslApBarr8KV2MVICLZ+Tj1R3jZ3C0jH0+Vr9d+ZUX+b07y+71R1IzQRen5mHKbkxsMaYVy8XB3es8uJmir73511K893Z6cKiHZQh2zHUx6bkSaaNVUSGSuJlG1nlVyMeesiFp0zx27FUpWs5iKzily/JHot29GVL/2W5+g35qEyn20is/CSr3VnSK0uCJCXMAPDEEy58wgkuLOsNiH/2klDprUURMh5LMmflHzNW5DkvNM+K/DIqT8/Lnn3AokWZ1wqWSFv3pTuimKMadQPNkDpKuTdgt2ur/cS8H3rTCfy+raf3pnYnu26EtGjo8RPecYcL6wIvc6qSfiXrrqur/jwqfpUFq3hPHb61iWwXsYpds/3Idxc9UMkTF/ie0DX6hS4Da/yMkZbmGSvqI+pLn9PQkL8dlzEWefnrdhXYzqw/o7wyqzFAYt2LrCuLIt4H85w3/kkB7B/tQpAxAFeuEUIIIYQQQgghhBASCT+uEUIIIYQQQgghhBASCWWhY4EDBwb1P3sb1I6Fchm9Wmseu3tf6Dky/+CdE5UmYJfYHUovlQ+VUIRKvaT6DwAmT3bygZlqF1ApByx7NyVZJboO+vrEjpc9flxtbfX8rHrUxOxUp7FkMJbcSi49l+3nwIKTM69ttlt1o709LiyVvc2dqkKkhkvpuUIlefLetIRTFktLCrN2uwOAGTOq52+hJTBefWk9zs03u7DYTjh2yX4hkoA1a/zEcvtfLdmVlbJwocuvhB13Q2U8lmLLKkfoWL1L7dQrq8RqSxJdxV1d2efJfjO7VwygqpE3y/FSSVtkm9ePUF5PKuEsGVCe9hkqCZbl0HOZHN+szddkHjqdtVNp6JxijaVFyE6L2DGviHeOWGuKIuTfJuIBH1h4WmYyOe+o08Kfk+6Icovr22/34+R23cuFxn7JOX65jPeMotvPlCl+XOj8iB5RSCkDBYAvfMGFlbRRykIt2b6HlkOK473wx7Ai/hCKfQ8LlpDKwVrvNiszkXMqUFkPBZN1b7E7ZsdSxLt7rIVOEeW3rCnk/CLLmGcesu6t6PG07PwJGevw4xohhBBCCCGEEEJIFPRcI5SFEkIIIYQQQgghhBASDT+uEUIIIYQQQgghhBASCWWhY4EkGfRMqPBsagrbulkT6x0gsTxOvDwNww1pE6G9MUJ9QOS1tP+X9KTr7fXr6tprXfh97/PPa23Y5Q4anO9ZGX5UzcZ9Wltiy2qVliz71apjaamh/U6KQLbJ3bv9OFkW7ROU5bFk+THkaautLQdEuHp+ulx5PNFk25XeFvK+AL/+rTZt+arpcklknpVbtIt7bTvCz/MLXxsMNwrPwTK2Rbc8NTxfqXf8Xy/O813s3+vFVRh4BVAxPgR6Rco6ydNfs+qyKI8R+bzXrXNh3c5e8QoXPukkP+6UU1z4hBP8OK/N94mGLRs/4DdQNSfJMUf3jVCfuBhPnKKQc8jixdnzrfSz0e1sR6871vfZWCfadYUxpZt7GrUvaIlYY5EVp+8t2IvVYLSefew4qPtejHdsjfAwBOB32qef9uMyJng9Xra2CM844z0m9h1HYvqqKbz85bjy1FN+QukVdvrpfpxolMH+cbqOBfWRvn8Wse0p+P1HDq7SSBPw24jyXIt5vyrDbyz0HSE077Hq4xXbXuQ7cr1u43L+FXOGNVbH1Lcmth0UMcYQMp7hxzVCCCGEEEIIIYSQ3KSg5xoBKAslhBBCCCGEEEIIISQarlwbC+zcAaxZAwBoXrRIRWYv9ZdoFY+kpWX431ArlvXK9cjy4mqd8uw2Uf46X3ITs1RYbz29b5/L88RVX/bi3vrWN2ee19JSfWm1ljeUvfRcVt2+fX7cpEku/NxzLhwtyTCwpAMyf1kmAJg+PawcI7mEXy+Vl5JavYO9vJ/TFvgym9lNbin+jqbmzOt5K/YNWa5VP/I8S2rlyUDh3+umTX5a2eY7O915lvys7OX7Wv7qSXx0BRmyntD865oi5A+V2tuwC4p0NdY5BvrZrF1bvfxaFbRggQtL+SIAc4Db1iPkjE2tg+G+ulYvnWyf1p1Z7b8MSVLMeRVjkZiXKuou4zw5pgC+kk8qtACgo0PMewXMgXnwJNmiGej5UDYLHSfP0/cm+1eoLGisyrkk1nOpL+Gt+UDHUe7ay5f7kbfckjs/q/yxUjt5Xq46yJqkZs3y08nGNWOGH2eMp5n3k2cct14CAwmtOxNL5ycHVyX9lBOpfs+WWO95RVjJWBQhHx1JYp9nIXWn24GwyJCS8paWcNug8SixJWS8wh5FCCGEEEIIIYQQQkgkXLlGCCGEEEIIIYQQEgU918gE+bi25O0/Ge0imEyuaRw6ESGEEEIIIYQQQggZc0yIj2t33PfEaBfB5O0rVjiNfaU52GDQ0sxv2uQrfLU3Skgepu7e8q+QXhAVpkdhTUxfW17O8nz5whdc+LWvfbMXd1yb89CyfCh0lUukJ5T2wsqsL10HEmVKtGFDdjnkzuuyHLoOLI+uUKx20YhdLqw9lercD1b7sapENpEi/Gx0k5O+anv2+HHyeFuv30aamsSxUf5QzzWNrHPppZbH/0Jee+VKP27+fBeW7ey4+Qgm1KMlFKt+dH7Sj1CGdftvbXL9vLnJf/ihZfTSGWNFBfKGLL+cwGvrOpb9Xo4H89Uz9LzadGeT5fJM7vziy/HnoYf8LDo7XVjbIUnK9ksr26PMQrZB6bEG+NWqrQLHiteQnCdam7LbqjfuIdxLLeT3anExXk95PN1Gs81Ign3nZEcHgIsvduE8E0wEoe+HuepUjkdq/PE4/PDwPAWZ5dLjoKi7ivfBwDE/1jsweB4S5aioY+lXJzy4AET7xBVB0V5tI+m5OdK+c1nXqriefp7aY6/aOUPEWW0wy3KwqHGWnm5kosEWTwghhBBCCCGEEEJIJBNi5RohhBBCCCGEEEJIsaTAGFkpTUYXflwbC0yfDixZAgDY26/kkWJluyf9UegV9VLuJuU+TU2RixX1MmW55F4uV9eaGEGeZcrr17vw73/vwq94hZ/uHe9wYSnbAYC9cEvsdUOXZZF1IuVzgH/bdU2By6C1dEM+ACVVaGtzfnu6/LIOFizIzj6U0KXZNX27/B+kBEFfXFRQP3xpRZa0VysapMyvtcWPi9kOXf8u8zxniZ92R6/Lf82azEt5apY5c/y4KVOyzwsldLm9JZ/Wipu1a134wguHX67QOKv8WvYr08r2DgDd3S78ne+48Etf6qe7aIXIVEkzayJl6VFESnOsOpZqEBm25oIKeWpWRwTQ1+f6rKxvKaWudiwpWj4TK+sLlfTEllfODXqslrLZeuz1I0WVW/YEsbKaYKmaNQhL2mcHXWs0yVOOrHZRRDsbKs/Q/M1rB074RUjarPL70vwcdSfLLwcxre+XclgtgzPG1sxrWxLUHMRInzVWvcrXQ1lVFRYZ8n50fWT5wCBuno5lJGWVZchHi+g3ZfS9ouvSekWQTSu2rsbKPEHIaEFZKCGEEEIIIYQQQgghkfDjGiGEEEIIIYQQQgghkVAWSgghhBBCCCGEEJKbFMD+0S4EGQPw49oYIEUyqLdfty47XVeXv9BQauNnzPDTbt7swtLLaP58P11zk+FB0i+8Y/S25tKzRZo7GZ5rGi9/5SGxYYMry7/+q/tde/+ce64Lt7bEedZIvwHL6iPUM67Cb0AbHAhmt7u07e1+ftLKLtZnzSpXZp1oPw/5TA3vk03Kr042GdnutBWK5c9g2EWhoSHC50Jl0t/vPJC0356sc2kHo9tgqEdFKNZz0nUgfXBkGQHttZh9vVC/kFhPkFA/s8rn68JyuNm40U/3SLfLf26DYeinOtGobQ+vx1LP2NHvX8d17Koad0D5G1pjqVex6tqtLS5ty8LsdiZP03EV3kDDJE9bkmnL9rqR/UmPFXJ8a27yK0T6qParR581rpfi3SXbhfZoEg+1bL8c696K8IEKbT9FeWbFENvGLXzfpLg8rHQ9PS7PynabXT+NstFbvpTGWB1KEc/Jmn9j3zO8UlXUQWCZrf4r6mukfcOCPR+LwHiXjvU8LYLx4DEmy6jHh6LfYQmZ6FAWSgghhBBCCCGEEEJIJPy4RgghhBBCCCGEEEJIJJSFjgESpINLcefP9793rl7twtu3++dJKagnCwIwc6pbPv1Ab+NgeOVKP4/ly42l4FKLJfVnAPDooy5sLNU2l5pL3aPStL18mVvmPm2ay2PqVD+LIlaCWwqEIuQUHqrAXv307fLi2tvdc7PkkfIbua6PqCX7kZWqpYcx2egyyjzs7cPjZFStDa7OL7640YvLUtPp9jKSagRLFXHOEv8+lyxxddLnKXPK/TeVWLlVV1d2Otm2tCRPjmlzz/XjrIeTVc480pYoSW2D385qera5A11e0dj2CiloxV2J87b1+pLRpiZ3vXr480QWedp0rISxiPyLwBoj5bGcovR0KKey/v7sMSxUnm2V0SJYUhgpkR5pydBIlmskZeKx0k8pMZYyZcAfF7X9R5SFgkLai+jxQb4q6jbe2dk8GK6vE9fWmchj9T54oM6NaWVYL3jXMp6NOd7LSVZL/yWqgrSMPPQ8Scw8FGwTkoPQ983gZ6jrUTd6ifbFKJGyLTLGCkXI9Kvl8/yGnmuEK9cIIYQQQgghhBBCCImGH9cIIYQQQgghhBBCCImEstAxRmNDtrRL4y3R1cunhX6sp8fJgm6+2U8m5QN6N9IauSOR3p1ILsEWYb38V67i1nK0RrkLpbH8+6wz3HL4MiRbsQTnKZfzKymEl8cWf6fDGiHdqWs7YjCsJUlZlwLsnfyyVtg3NYUvebdkKlnnWdIrK38pvQKydyPNJdM0EmdF6fuUCqtGa5OzAna60sn07rYSWZdSFlQUMX0qVmZw2kIXnjPHz+M//sOFv3bbbC/uz/7MhfWOylnXLkLWsVdJA2VbtaSBVhup7xXy0e5uP1JoaltbjEbYm71TqbWjnZQuxY7Bktjd6EKvFTveW+dJywa9KfaaNS68apUfJx/pokV+3OLFOQs4BLHy0SIIlUoVsUtnGc83Nv/QuoyVuMrz5NwjN2nXx1oh52/EGTcGyzn2qaf8uKefdmFrTvLQ/go5dpofLnl2HY7qK3ocN+b3mHaRZ8fd4aaLpZB37hy7xsZIY61XMo2UNJcx/hT9PGLbuFU/8m+4Mubw8U8KykIJwJVrhBBCCCGEEEIIIYREw49rhBBCCCGEEEIIIYREwo9rhBBCCCGEEEIIIYREQs+1cYynqW9q9uJqtjwzGF640P2urXpuu82FtS3EcS3C4MPyXJPXVdr61atdGXX+7e1ue/Xj5qtIue+7NPFoaPSSxXrMFOEBEOoHI7eRN9MaZiUyXUtL3DdxXS7pnxDqPaHvWdrEbdjgp5VNJMYPA/A9ZqSvEeB7sElrjrmdxrPVNyrMsGpUG5e+WQXYpVWatclM5Q0YplzamrC5afgeHqFeLlb+Vh6xPiNZ582c4f/e3e3yuOMOP+3kyS78spf5cbL9Wz5oNb07XFg/ANlmREPQfUG2EW0jUy9NFHX+ckyQcXJ81EhzJMBvZ/pGZZuUhTbG+xrDB8fqv/I07b8ZOx6X7RskkWVsVtV4/PGuHPoR6raQmX//XnegB5wc3kOSGB+60fREs/KJfdYx58WMS5octlvBz0l2S/leB/hdW7+eyfc+PTyEIi3R9Fws27yO6+x0YfnuUpRnU9az0v1Q1n8uX9ZQZKYZ78fVKNqPqmzfxdC+EZu/WX5jHAy9bzknaf9i6z2gtSUoe48870Jy/Nd/M+zqc/lYU0HRbUn3IYn2Zp44vmpDQc81wpVrhBBCCCGEEEIIIYREw49rhBBCCCGEEEIIIYREQlnoGCBFEiWvMKUEYln6USKuv9+/jpRRacnoVVcdIfLY60dKTZ6xxn7hQpeHXoK9bp0Lt7f75WrO0C7k2SY9S5IEAPWiyNZS9hhZTdlYdZCnfrJkEnnykFIRGa6WTwj6HCkjWbDAT7tvnwtLCY65FF83BHGsz5N1IuU4ebZv9/JsafXL1bPNHaxe7cJLl2bml+faRbTXGDlOnvZTBMuWufB3vuPHTZ3qwnLIAvzxaN48F54xQ11APhut8ZPPSkg4DzvMTzZ9ugvX16k6lbopg70NTvpff+65XtzTu13cVDUcN/Y87g4sPZTUxOh0lj5E9KHK9lJdWh0ryyq7LcVKnqRUef58P27tWhfWat4XLRLzqpyAdX3rwW+YlNFHY6XhMRQh27TOy1MfWefpfl60nE6/T/myaz9u2rTsfELfcRobZJxfRjl+yjFXlyuUItqjJcutuM+IwamijceeV4CUMpTQd8Wix4NYipKWynwsebB2Q4jBKrNX//3qbyrZoduO8KLk30pSDl6G/F6i7Q/G4t9DhIxF+HGNEEIIIYQQQgghJDcpwI+OBJSFEkIIIYQQQgghhBASDT+uEUIIIYQQQgghhBASCWWhY4D9+50/mLUVtMa3iQjzOPnrq/zfly1z52lPIm83cW0WI4007r/fhff72xC3LlrkDlpme3GWv0Gon5Ol++/pcXnoa9U1heUfgy67ZVckn5v2fwgti7m9t+HnUcR29LINao8TWf8SvUu95YUi85QeeoDf1LZvd2Fti9XRUey/IVj1Zvlt6Pqpl31IG9YJZJ3EbAevifUxKdsPJpaLL3ZhPX5KO7PDD/fjhEWah/Yyau3qcgf6OWUM2NKDSxPrFyXH57a2Zi/uD39wYW3h1tl5VHb+8mblvWmjJDmI6Q5g+BWFzmexvpGSIjy/Qq9t5Te30497wxtcHs89pxLL+pJ1vGWLn87yhDIG4Rp5bJlyCYrwMyvKjyem/mPTluHjlpVHEZ5uR3WE9xM5V+p5NKaPSp9Ljc4vq/xF+fJlndeU8Y5X9dpGfyjCEy3YhyvC47Qoir7P0fTkstpWQ4OL0++iRRBcj7rNieOatb9TiU8OunbwczMMCcf7sydkLMCPa4QQQgghhBBCCCFR7B86CXneMzaXIhBCCCGEEEIIIYQQMg7gyrUxQF1tiuam/MtopVJTKpeAcDnFyQsOiHD2tfbOP9E77u4W4UlzB8OnLPKSYeZjvxkMt3b5eoEXLXbHFcu4e3dkF0ZiyJWOam+qng4A+p1E5kBdvfi9+OXSUo1jqWu14qw+q3fqMkr0UnMh+6pR2tgdve5+vPanpUUiT3mOyr5CTnfzzdXjrrjCT6dlVBJ5O/Pn+3HyduRW5b/8pZ/uqqtc2Hi8FUo4SRGSHi3dPlDX6A66/P4Vkt9QZSl6aX6oZKUMSVhonq9e7qfbJqTJ//mfflopn5SyKS1rOussJ2ef0uFL22WbqUd2H/IkH/17M+M0sg5Wr3a/L17sp5MSVz3GHHaYC8+coS4gNWLiZirG4zxjzggS1S+1Lk7ODWoQ8HI0BgurrUqJ8N7pfhl39bnjRqlRsupU+zdICame5+RELRu8emGoyeNHkUHsWBTaz2PHlZj8Q2V8+rwy5FBZZYl9H5FNAvCbgp6jstDWC7I76Hm0PkP5HDrfAnGySiuPIubRoiScRbeZIuS2eerOuvZwKVteqIdZy/1A9o1CyqXHajlxP/SQFzVnmZOFyqlY/40QPB9q2wHDliSLsWoTQshYgL2DEEIIIYQQQgghhJBIuHKNEEIIIYQQQgghJDcp6LlGAK5cI4QQQgghhBBCCCEkGq5cG8ccfnix+Vkaei3Rv/pqF5YWMG9/u5/uoikiUnq+AJ65UYWHwW23ubA0GdDGW/LY8gVSnjJl+gVYxdA+I7JYlee5MtbXifrRnkHS0Ez5qmHNGhdWdddbd9RguFlWjzabEAVrbvLj5Hb3elvzJUtcWHqi6eKH+nloWyBZzOuuc+F//mc/3SLhA6jtihYudOEFhuegJNYPRiOft6wT/QhlulBPnDzE+sllkce/pmzPuNYWl8ekSf61nn7ahe+/34WPPNLPQ3sJSo4/3oVPPVX0Vz1g1mUYDwGe34nn/whg82YXlm1XZyG7tu6+U6a4cIUfj7j2rn537To1FtVLoybd0SP8WvIQ2g6sduyNMXoA0s9KIitd3mfoYKHQz0ZeekOv8/M7rrPFTygHAV1eObjqC8jxf9UqF37ta/10crAugDyeTYX4rBmTbk0BnoBFeEqGzhOWL6gkj/fV7HaXtr19+GO89vgNrRPLZ01ShG9Y7Lwc2x5D587QeylqHg0t13jz0IptI9Y8Eeu7m+XVpvuuV0bd0eVkr146pG+nhTlOyetp08SIOdwap8ZbWyKkaNgDCCGEEEIIIYQQQgiJhCvXCCGEEEIIIYQQQnJDzzVyEH5cG2toyYrQwu3t9xcaPvecC0+f7p8ml+jGLJfWSPkfAJxySvV0J5ygTxTyGUsvqbVX8gakBEcvX7Z0lTFykBznZNVXX59fVzLLozqyl2prSVgmlqxJr2uXcVpX2XEUqmI9JyOpfoRyqbyUMOtiSGKXk0sppVYfSzWUrjqdNoZYmZCUeFp1UgSxkpVQOZQlmbC2jrfIKnOe+pZ5XHWVHyeVjlIWWlvrp5s82YW3bvXjJk3KuLB+oFqGIREDhO56e/a4sOzKuq/J8/QQaUldntzixhyZZ0eHn67e0roIRlMOEnxtrbuWz0pXlpbADhP9fOV4JJ9vR0ejl66xQbR5bY1gDWKLF7uwdS/GPBTT7/O0g2DJpaw8XZGy8epBXtdXQDnKIHTc6u/Pfn+QxMoG9dihu4Mrh38cq64tul6LkIyOdP4xeRR9X0URKzMtWtpbhkR3l3h337nTTzt1qovTtgyyT8kpRM/F3lhn+TdkvljYFCGjl0ilKuAXS7sTWNPLQJ0cGJtNmpDCoSyUEEIIIYQQQgghhJBI+HGNEEIIIYQQQgghhJBIJpQstLa2FieddNLg8c0334xOJalYtWoVrrzySuzZswd79uzBRRddhKOPPhqf/exnAQB//OMfcfzxx6O2thbnnnsuPvGJT+Bf/uVf8P73vx9PP/00pk2bBgBYuXIlXvOa12Du3LnYvXs3li9fjssuuwyXXnopAODxxx/HtGnTMG3aNGyRa28NDY+UMQG+2kHvglj0Bm66WH/xFy4sl0hXLA1eLyJ1oeTSZEuOI8OWfq4EuVLMEnhdxGBZ7pZn/B/k/VjSJdmGszQeQIVcRmYjJcd1hjxVrybfvj07LqvIRSmtZJ5y8zu9k5lMp/uJlL+F7n5UlFxD5mPtAhoqxylC/j2ctFlYslDZJPV9Zg2Fltwkj4xkbqcLX365O09LP+W4q+WS+/ZlXEw3JkOevaPXXdtSdcu60so3ayi1kMOFPK8iD2P8GSuyr+Bdb40KsnZTLUIOpccf+Xznzcsuojf+WA/YGsRkWKcTk3hNU9xrYahMK7q9WNJka97LKIdVXl09crfu0PEnVr6ep/9KrF2lrY0CZdeW44qxqXEFsbvBxhBqXTDSssrg3YpLKFcREsnY/MukjPsKvRf9HvDwwy6s+8Zhh7nwrFmBBdEdPVC+bmG//wiMl3A5Vsh71qfpv0dvucWFly714wbGlV27Mi/7PIKea2SCfVybMmUK1sit6atw2WWX4Vvf+hZOOeUU7N+/Hw888ABOPPFEvOlNbwIAdHZ24vbbb0ebGGVuuOEGnHHGGfj+97+Pyy+/fPD3s88+G7fccgt2796NU089Feeff/7g9S+//HIsX74cF154Id7+trcVfauEEEIIIYQQQgghZASgLFTxzDPPYNahf3qora3FiSeeaKZ/+OGH0dvbi49+9KO44YYbqqaZMmUKFi5ciI0bNxZeXkIIIYQQQgghhBAyekyoj2u7d+/GwoULsXDhQpx//vlV07zrXe/C8ccfj/PPPx//8R//gT69/ldxww034PWvfz3OPvtsPPDAA3jmmWcq0mzfvh0PPfQQzjnnnELugxBCCCGEEEIIIYSMDSgLVfzd3/0d3vCGN+DnP/85vvnNb+KGG27AypUrM9PfeOON+P73v4+amhq87nWvw7e//W385V/+JQDg17/+NU4++WQ88MADeN/73of2ECM05SUiNfTaKyPUV83yewj1LZCeIwDQ2hKW/65Ot/JPb918VMsOd6A9VKRxljAFKdrfB7C9MorwfAj2QdAeDPJYfuTVdSVNU3Sc9HFQPgsyS3kp/ZykB8NRHX59zJiRvT25zqdacYEcXkkG0nZO2Sh65ddeVRJd/ix7v7K3h9dllM9G98MYYj2t8uQpsTyEmpuyr72tx+UZaKkUPb6dcUZ4nln5e+l0gWVjUg3UspKS+J5KflzoedpLyvRZk8jJRl2sbL+f0P4m0/X0+Ol8+8rwMmXlqb32ZsyoXiaN5ZUn84gmtGHohqCPCyZ0jDfHJqshy8HbeDGyno3lgRnqmRU7lhYxB1rIudgaK7JeOUaa2HoMfdfNM2Zlpc3znEbLsywPRZexDE+00Dxj87CGGIkex+V0H/quUtHO5Pu5ukCMZ19FOtnx1d8CMv8sq2cAuOOOzCywaJEL6z+zB+Jqa40CPy9IQc81AkywlWvVeNOb3oSFCxfivPPOG/xt3rx5eOc734lf/vKX+O1vf4ut2tnyEL/73e/w0EMP4WUvexk6Oztx4403etLQs88+G7/73e/w+9//Hv/+7/8+5Ic9QgghhBBCCCGEEDK+mPAf177yla9gzZo1+MlPfgIA+PGPf4w0TQEADz30EGpra9GS8U8RN9xwA66++mp0d3eju7sbTz75JDZu3IjHHnvMS3fcccfh/e9/Pz75yU+Wei+EEEIIIYQQQgghZGSZULLQEL7+9a/jXe96FxobG1FXV4dvfOMbqM1Yy3rjjTfipz/9qffb+eefjxtvvBFnnXWW9/s73vEOfOpTn8Kjjz6KY445xotLkWQuVd60yYUt1WCWhE2zt9+/jlz6H5qHxlqmfNttLnzjjX7c5Zc3D4aXLPHjGpsCtVKR5ZLEbpMeI+XQUou6uvrBcD1UZNYadS0dFnlUllGglpq3dFbP3pJO7uj171Oep6VSUkZVsurIRF5by8Vk/9JllOq9jo6wa8VKLkPlCLFESRuHIOs8sw70AxD/cKHPk+3QUn3FynRj0mnk7bS0iProU3vOP/WUCytZqFzQvGCBf5qsAynD0GO1HBL0vdSLuF7Vf+V5puS4gDG4bDm1xJS4RhIq39Xllf1ZymoAYP16Fz5nSbnyWg9dQcYNFdG/LCzHA9l2zQcQ+MBHUjZYBlZ/ssaA9vbsZ5hVraG2I9WuNxYpYiwqIn9NVtoipLFF5Wnln5Vn7LtEERTxHrZ7tx8n/wzU74Nz5riw7EP6Xc6cRg3ZZsxzM+tAvUBktd2ZM/08pVvP6tV+nJSeL13qxw28J+2nYpJMECbUx7Ve66vBIW7UX4AU3d3dg+FHH320Iv7Tn/70YHipGGGmTJni7RZ63XXXDVkWQgghhBBCCCGEjGXG/j80kPKZ8LJQQgghhBBCCCGEEEJi4cc1QgghhBBCCCGEEEIimVCy0PGIlN5bNimWf4j0NNE6eXn81rf6cc1Nw/dpkpp97T+wbp0Law+D+fOlF1nkMlvLvCrSQyjmsqFePaZvjLG/t+nHIP2dVP47d7rwH/7gwvfc42cxa5YLy+22dbG0n5z0Mwvdgrto7yXAr3NdjbLM0v8IAIQC3POf0c9Q5qEfYUyZK32HjOcrL679zAJNc0L90mJ9TPyxQuF5CfregVneJbp/bd/uwjNmWNeO81iykO1J5rGjv9FL13zqqe5ANRLdpyRy/F+40IVDPQA1xjBSildPqC9fKLHlsHxwLM+vGF9Ta57TY4z3HEVBdsFvP7KMrS3qgtYAFFpIw3y1pn+vO4icN62+1tCQ3RaK8KMKbWtl+zPGEuppJe/Tumdl5zQmyTPXxDwPq+5i84gt01jxqwudD8uYR0Mpew6RY+sZZ2T7U8t3ZwCYOtWFo/0+Dc+1ouvY8mmWU8Ozz/pxa9e6sOUPq189B+quhst5yASBH9cIIYQQQgghhBBCcpMC4K4NhLJQQgghhBBCCCGEEEKi4cq1MYZe8iu3oq+Qgwj0EmkpybvlFhfWkgApScqznDl0afJZZ7h0p5/ul1Fu3fy+9/nnveENLvyKV7jztDTHXCYulllbMoOiJU/9/dnfrOVzAYDJk1145oyw7phLnicqbC+yl4LLZdwnnODHyTaj5WjyGep7k89Kti0tH2002l3McnhdP7KMTzzhp500yYX1tuNSySelmbv6svOPletJRYBu4/J+pFQVAHp7nXxs5kxfSjazZIlGlCzD0OWuW++3z8MPd2HZBnUdfOlLLqzHEUsGWaaERconAGDLltmDYS0Dlfejx2cp0bCkybH3kiW3teaCIuTBeeJi8tRjjKyv3bv9uOeec+FQyZy+56c3u3I88ICfdsMGF9Zyma4ucSAqvVHl742R+uYszXSW3NNKp3dVl1rWJUu8qFgpWWiczF8WuT7Hm2to+9wr5m1Lih/b/scKlrJX3oue56LlbhEUIfstSppZRP4WRedfdnsMtY4ooxyx80RM/tYQWTb6PmPHPivPLKx3emuqke/PeqyYP//g/6dMCSoCIeMerlwjhBBCCCGEEEIIISQSrlwjhBBCCCGEEEIIiYKea4Qr1wghhBBCCCGEEEIIiYYr18Y4lk7e8w3r3+vFXXKJ8y966in3+1/9lZ/Huee6sPbiCPVPCC3j377Xz+OP69x5nZ3+edOnu7D0ANBlbGgI+z4cun14Hk+HrDppbMi+lvbTkuxVXm2WN0omhh9PfZOf4YwZNSLsfh/wR6iGLlNPjwvX1vpx0n9Mel+V4e1nIetcbpkO+NUl2xwA1EP0qR7nQ1TX1Oqlk/1L14/2WMrCuk/ZLrQdkvTE0FujF+F/YuUR2odkmZvrVPsUjUH71cnntmpV9fwAv861H9vChSiVrHrVfiSyn0gLK8D3YNNjh3z28llXjA3yAnqQEYml/xfge8PJuGXL/HSdnUZbkgO07txNzahG2b5Alteerh459oWi2/jDD7vwypV+WtmuL77Yj5vdXr0ezDlV17FsbHr8F8c74J5FQ4Pvz1jf5vKsuHa78wscaX8xeb1Qr6HQ9xE9365b58ILFoS/B8R4ZpXhAVvEGC/bUmODX+HSg02PsyfOF21QDU6h88RY8RgL9RSL9f8aqx59ZbwjhJyTh8LrTk3UNWK8rFfjbGtLtoeznu+Hix7G5TvDyeo9TxL7t4xEvrPq91dluRlUDgDY1nOwLPu5qItMELhyjRBCCCGEEEIIIYSQSPhxjRBCCCGEEEIIISQ3KQ56ro33/8onSZI3JklyX5Iku5MkeTpJki8lSZJLR5AkyVlJktyWJMnOJEl2JElya5IkC6uka0qS5MNJkvwwSZINSZKkSZKsNPK97lCaav9dGFI2ykLHAAnSwWW0eimvlALpJbrecuxf/MKLu/zyVw6Gb7nF/X7BBX4eoRK9UKlFHk5se8aFX1uh9xwMbutzEpY1a/xkUnKj66euLr+sdfNmP07KCLVky0M+KK07apJyHD9K3k9bmx8n72f37uplOlgucWA8UEuuJ/O3tsvWchB5rKW9Uh0iq0fL/0Kfk4W8N0s2mEfyir7q+45rCcCsWS6spbFR96M0AfXihk7u8Au5YIGTqFqyzTIIvTfZJA/UNWamk20Q8LvR4sXZ+b98yS53oB+ifFZROmubLEnMOUv8ujlHyCke3xAu/5Zjt1RfLl/up2tsE5VlZHhUh1+uPiH1kspSjfesdQeQHU5du2wJVJYMJs91Q6XPEj0OymejJbVS9ms9a3ktQ92PZm0tIDOtmHvccbO8Nz1IinR56q6I51u0/YRunvLZtLdn5yHT6b5gyYyzKEr2mJVnTe8OP1K2A/185Q1YfbQuW/om5/Bbb/Wz73yHsyFprPPvs4g+GkoR76lWutj2GXu98UAR5Y/Kw5qH9HuwbPNycNUd/fe/d2H9oi1e0GvUy24/3HuNHEf0OC6LZVmGWLdWNv3VX3sB2H8ves9QDhYAWg/Vfx0K1s+ScUmSJO8C8GkA/wPgSgAdAP4awAuTJDkzTdPnAvJYDGAlgI0A/u7Qz1cA+HWSJC9K01R0ZrQBuBrA0wDuBTAzsKiXVvntNyEn8uMaIYQQQgghhBBCCCmcJEnaAHwUwD0AXpqm6f5Dv98D4Ic4+LHt4wFZfQ7AXgDnpGm68VAe3wJwP4BrALxcpH0KwJFpmm44lC7oc3WapteHpKsGZaGEEEIIIYQQQgghpAxeC6ARwOcHPqwBQJqmPwLwCIBLhsogSZL5AM4A8O2BD2uH8tgI4NsAliVJ0i5+3zPwYS0PyUGakyTJ/a2MK9fGGFqWKFfzG0oO4IwzvLg3rv1vF77eaZIO1NV76azdZdTKXg8pYZSyPosKyU3bES5uyzN+YrEeubXJ7drY0eGXX6723r7dz0Lu/miVUe7Eo3fyk7sNNlqyXL9CMq+ll1XLpeGHHZadVobr6+KW4ev6b2oK28VUcvICP4+2tuwdxGSZ5Sp6XT1FSIGyrquvZy3Tr8gvSz7QdISX7Kg2IUu01s2rNfa6L7o8fOmk3B1Q73C3oduF53ZmXzqUQnacU8j6t2R3etfGTDmR2hnZezZKW51Zxwax7TG0rWpZtCW5bG935Zd9VPe1pqbq6YbiuPnu2rIv62bs3ZueQ7QePIAyJHNF7FRnxclHoyU9czvD2kyo5Cx0F+xo8jSSAoiV64VK7WQ6PT9KKai8ln4nWLo0u0xlS+yDd4WX5ZL6M8Af+ywdmfafCLguAMxtd/PhX1+hJvFAyX0RfbQIead1vbJlmmXIR4vYsdOU/st0BdgrRJdRzv36ZU6WS5dfHsv3Bd1P5B8NcotywPcUUX2ooc29s1lyz9DdPJub/Pp5kbDFKGMsyhoXrUdtPkMttx3IqOhtVcck41vmPQIMfKy4q0rcKgCvT5KkKU1Ta3XZUHm8GcDpAH4cXcqDPAtgKoC9SZL8CsAH0zS9O+REflwjhBBCCCGEEEIImbi0JUmyWhx/MU3TLxaU9+xD/99YJW4jgORQmgeHkQcAzIkq3UE2AfgXHPRnew7AKQCuwkE/t/PSNL1tqAz4cY0QQgghhBBCCCFk4rIlTdNFVoIkSVpw8INTKJ9L03QbMLj7x54qaQaWo2bvfObHDyePTNI0fZ/66eYkSb4JYA2Afwdw7FB58OMaIYQQQgghhBBCSG5SAPuHTPU8oQXAh3Okvx7ANgADPjqTAexWaQYMSXbBRuahCc0jF2maPnRow4TLkyQ5Lk1Ta2UdP66NNWbOiPP6kP5lAIClLxkMZnp2qPy1HF76vWkPHun5I73Cnn3WT+d7bRn3or2SMu77qI64+rH8AY6bXz2s8zevZZgTWNeWPlkx/jJ50OXIKpf29ZLUq9uU/hKW10TIdYF4rxUZp8soaTS8pPR918sOIMKVrmqGz5pgL3yvqi0ZnobaEkfej25mlt1VEd4xI+lFE+zDon3U2mdXTwh/TNMWKlnttbPTbweyzrUnpvaJyyK4HtUDXrw4I51CWsdYdkt6HJdtq7VuhyiHn/AAsr3rimgjZfgQFY18NNrXK3bsLrz8lteQ5QdZMrH3mem7WMJzD51fLEL9/GI93bw81ODvxUV66pnlEF6gNT3bVFyGQWxBlOGzloXVR8vwDgzNv2xMX80x4iMl36Hqm8L/fM3sG3q8lD6G8v0P8Nu1ekkLfYZFeLZa15JWZ60t4e0xpt2Zc9l89YfUwOQ5inMQKZY0TbtxUMKZlycP/X8OAOVyjjk4+IXySdjIPDQDv1WTjA6X7kP/b4MtWx3FkZwQQgghhBBCCCGEPJ+559D/X1gl7iwADwyxmcFQeSzGwQ9098YVz2RADvr0UAn5cY0QQgghhBBCCCGElMEPcFAOekWSJLUDPyZJ8ioA8wB8QyZOkqQtSZKuJEmmDfyWpul6AKsBrEiSZLZIOxvACgD/naZphjbIJkmSw5IkqVhimSTJqYfyvj9N04eHyoey0DFGnuW5chnujl7/PLny2ZIjyGXEDz3k579fSMe1hKqjw4WlXEbLWmOR5ZL3YkpLDax6lTt6a9mdPC5jabwsl5ZzyWNZB5GKj2C05MnUmTU1Z0bJZ7hvnwvPnG5Jl7I9KIuQTFjSWN22ipZo6Hptb6/eL60l+1rFsElMHx0dxUvrrHKFShViCc0nq59onnrKP1640IV3C+cHa/t5LQMtZEyQD1VdfMMGF5YqFX2f1n0Hl1E3rsBkssgx0pahzrOIkQpa1w4tV6w8LJRoea2WTItjL0/rIY4hQp9vEZYKoe0gtu3GjrOh+fuSsKBTTKxpv3mT+rtFtic9GEkJXeDLS576zySyjcdeu4gxzCrHcPMbTv4x91bIONi/1zv2Rrc+9XxjJIe6Tcg/dLQsNJBSZL6yLUvpqrLEyCMFHS557C0mDhPKcy2KNE03J0nyIQCfAnBbkiQ34KCU890A1gH4jDrlChz0dnsTgOvE71cCuB0Hd/D8/KHf/goHF429W183SZIrcNAnDgAmATg6SZIPHjr+bZqmPzoUPhbAT5MkuRnAQ3C7hb4ZBx/u20Luc6L2AEIIIYQQQgghhBBSMmmaXpMkyVYA7wLwOQA7AHwLwPsCJKEDedyZJMlSAB899F8K4E4AK9I0/W2VU94D4Ghx3AngHw6Fvwpg4OPaJgC3AXgxgDcAmALgKQA3AfjHNE3XhZSPH9cIIYQQQgghhBBCSGmkaXod/JVoWemuBnB1RtxdAF4aeL3OwHSbAFwaktaCnmuEEEIIIYQQQgghhETClWtjDO1zIb2AtN+P5dclZflqx3YPaYGh08nrjfRW3NJrSNbBSSf56RobwjwGrPJv2ODSqR22TduFGG8La+vslSv98+QzXbLEhbVtSRHeHLF5WPeWVXcHoLZ5F/4MZfvahfqGVUublS6mHBZW/toXTrbXdWqxsrQgkX17pPtyEW3rkW5337pdyWN9rXoxw61YkV3/zU3F+qRY7awi/yxfLPh9XT7Pmg2P+3mIhnBA+RaG+kX1oNVdS9vZiHqs8GTMyC8PpfjUZGA9GwvZv3Rfmz/fhU9eoE40PSvdAy5iPNZIqx7ZF7Q3W6iX1GiOHUW0LQtrnshKV8S19Hmhz0LnIX1NY9u4RL9nbN7sws1dXX6kbGjy5Q0I9sIqwjcv1FcwT/3EejkOG2kGDPg+VsrTSl57W49/bzIbOVc2qsdSdv+yrpX53PQzlH/YyDDg35yuH2kSHUqMh5uiKI8+OV7XCF+4orxLsxjp8f75AT3XCFeuEUIIIYQQQgghhBASDT+uEUIIIYQQQgghhBASCWWhY4AUyeByXr0K+rdiz4ulS/04ufJZ7iCdB3k9LTv1lgRraYtcMm1suxy6hF+nk6oDuet7xaVkudQy7n4hP9RyOnltKZmzdpAuQtan41paXJ5S1gEATz3lwrIO9LPWy/tDCV7yrfUhgUgZyXPPubBV/rIlYXmQcgop321vD5eUWPcj829oCJNe6Th5nlbqhJapCNlLqHQsz7Vl2rmd2WOFNY7EyK30GCzR40PWfRchMwJ8hZUcp+rlgAB4jWk9jvOipHS4tcUqi7sXaxy0KFtGUrZsPDR/KQMFgAVaCiqR85LVuEpAPsdQqaOuA+9YS9XkwCjjtL9C4BxSxthUBEXLlssor35/y0Q/w0D5W3e3C0+d6tdBo9CNb2uZ68W19u1wB7JBFiC7A7KfTY0eI0WbrDHaY7SkVvbt2AFUoutHyiB1nLif1pYwqWAu64KCqahTeW9Sc6+fk3x5tOrY8nMZh4zW+FOEvJyQiQg/rhFCCCGEEEIIIYTkJgU91whAWSghhBBCCCGEEEIIIdHw4xohhBBCCCGEEEIIIZFQFjoGeO45ZzNwYpevaX/5suzzYvzM9vb750jrhgo9fQH+MNISzbJd0deWHmlyF+2KMq5dm5ln/eLF7sDYll36Gh12mJ9M+pgYWRSy5fbZZ/vHL3uZC1sWEmPFA0bnMWNGjQhnp5NtUtdxY0NYuZ7c5PLQVisLFwZlUVGPsm/EehpaXhlm38sg1rMslLI9j6yt4y2vJ/NehF9LjdFR5Hb2Vrn6+vxryXHLKn+Md1dFGdV9zpzpwp7FjPS6ArxBcku3HzVtWti1pVeP2Q4i/TclsWNWEb6X1rRWr4ov8+nqCrt2RRlluzPaoJVHEZ470WOFnCB//3s/bs8eF5ZtUnuuLVnirtXSmlkuq3+FEuvzWvRYOmYxvM6s+pkyxYWl/xrgj5kV/oM9Geal8sUOQE2gB1vws5AmlTmIfhcKNOsMbZ8VyLrT46yYpMp4Hyx6bqtZ/6AfeccdLizrcc4cP50ci/QcuGhRVLlGiyLGm7KfkxVXlLcuIc9H+HGNEEIIIYQQQgghJAp+SCSUhRJCCCGEEEIIIYQQEk2SpulolyGIyZMnp3v37s193uGHH44LLrighBIVx/r16zF//vzRLsa4Z/0ff4P5R88cOuEo8pv1j2Pm0UcVmmfv0714wfEvKCy/36z9DWZ2FFuPVhlH87nFPI+i6xsops7LKFcRlNGeYjDb4G9+g/kzhy7j+t5ezH9B9TyKvs/exx/HC+YVO1YQn/UbejF/jPSZe++9F6effvpoF2NMMh7m9rLJM1eNlXeCsTrvF00R40ieOh6Lc30ZbWQkiS7/OJ+nR3IO/OIXv3hvmqbjS7+bgyQ5IgUuHO1iFMC/P6+f00gwbj6uLVq0KF29evVoF6MU3v72t+M//uM/RrsY454lpx6JO/7jvNEuhsmRl30X5/1TsR97V390Ne69+97C8jtywZE47x+LrUerjKP53GKeR9H1DRRT52WUqwjKaE8xmG3wyCNxx3lDl3HJ6tW4497qeRR9n6vf/13c++Wx/Q9D450lV67GHXeNjT5z4okn4o9//ONoF2NMMh7m9rLJM1eNlXeCsTrvF00R40ieOh6Lc30ZbWQkiS7/OJ+nR3IOTJLkef3Rhh/XyAD0XCOEEEIIIYQQQgjJTQpg/2gXgowB6LlGCCGEEEIIIYQQQkgk/LhGCCGEEEIIIYQQQkgk/LhGCCGEEEIIIYQQQkgk9FybQKxcuRKXXXYZjjnmGADAD37wA0ybNg0A8KlPfQrf/e53UVtbi2XLlmH69On4/ve/j+7ubkybNg3Tp0/HRz7yEdTU1OBVr3oVnnnmGdTX16O7uxtnnXUWTjzxROzfvx+f//znceWVVwIA7rvvPpx66qk45phj8JWvfGXU7rsav7xnI/7+v/4XaZri8GkN6N9/AJu396GpcRKaD5uEf7riLMw/chqu/s/V+P7KbrRMnYxjj2zGl/6/PwUAvOY9P8P/3PcUvvOPy7DszI7ocqRpil984hfYtXUXps2Zhj/9qz/FD9//Q2x7bBsu+MwFmDb74PP52Ud/hqf+8BSW/e0ydCyMv15ZZdy7ay9+/vGf40D/AdQ31uMl73kJ6hvro685nOez87m9eO3f/Bz7+g+g+bB63PAPL8HUwyrLkqYptm7YiZvfc7NZ9z983w+RJAmS2gQvfc9Lo+9pKHQ9n/7607HyMysBAIe1HYYXv+vFqKmtGdW2UCYh99+/p7/QdlYWof0aALY8vAXfe9f38NbvvxU1tWPz37uGO16e8/aDfaiuNsEN//BSHNE6ZZTvyMaaK48//njMmjULwMFNCP7t3/4NnZ2d+NCHPoS3vOUtWLlyJW677TZ89KMfxbRp03D66acjTVP8yZ/8CT784Q9j0qRJo34PE22+txgr7wIWoXPVwNxwVEexuxemaYqf/+PPc78DlMlIvCOMFGmaYuvjWwef71Bzf9HPtwh0Gwmdv8cKIW0cKO59cKzOqWXOfRMDeq4RrlybcFx66aVYuXIlVq5cOThg7tixA7fccgvuuusu3HHHHbjyyitx5ZVXYuXKlbj88svx/7d37/FRVPf/x1+fQBIhINdwU+6IyEUFggIKRIqFIlAutlYkKtpqpfUClHopBdRalUqtNyr+LMWCIPoTUApFFAUFgxCsERRRuQiCWISoXEMC5/vHbMIm2SSbzWZ3g+/n4zEPZmfOznzO7GzO8Nkzc6ZNm8bKlSvp06cPCxYs4Morr2TFihX527z88st56623+POf/8zs2bPzt9+pUydWrlwZcxfa33x7jPv+8T7/ntaft2cM4eHfXsTxnJPMufcy3njyCu6/OYUb/rSKvJF0p93enVVPDwZg09YDADx9Vy/u+EXHcsdyYMcBEqonMPSRoRw7eIxj3x/jx/f8mFY9WxUo12tMLzoOLv/+KirGuKpx9B3XlyEPDaH5xc359M1PQ95feT+f+KpxzLm3L2/PGMJPezdn1pLAsWz8/ABWxUo99oP+NIjBDw6m7WVty1Wv0hQ+zlUTqtJ/Yn+GPDSEmg1rsmvDLiC650JFCqb+4TzPKlKw32uAj5Z8RP3W9aMQZXDC8fdyxVODWPX0YK4d2Jbnivk+xppAbSVAcnJy/vLp06fnL5szZ06RbXTq1Ik333yTt956i/j4eJ566qmIxQ9q70sTS9cCJQm2raqotiEnOyei1wClidQ1QqRs3LixwOdbGdv+wudIZWu/gznHITzXg7Hepp4ObZ9INCm5JlSpUoW9e/eSmZkJQJ06dYot++mnnzJ58mQWLVpUZN23335bQRGG15I1O0n7yTn5v1S2bVabxvWr56/v0KouLZvUZOfeQwXe992h4/nz/uXLI/twNkn1ksg9nsuxb4+RWDOR6nWKbrt63fDsLxTBxFg1oWp+jHFV4rA4C3l/5f18zkisml++apU4qhQTS9bBbKpUjSv12MdV9f5M5h7PpU6z4r8b5RXoOCfWSPRi8Dum0TwXKlIw9Q/neVZsHCdOMGL5ci5auJDpH33EjatWlX0bQX6vD+w8QFL9JOKrRaY3UyjC8fcy3vcdOpqdS4dWFfcdipbExEQuueQSXn/99WLL3H333SxdujSCUQX2Q2vvSxJL1wIlCbatqqi2wZ1wEb0GKE2krhEiJSsriypVq1Tqtj/QORKN9jtUwZzjEJ7rwdOpTa1MbZ9IpCi59gMze/ZsUlNTGT16dP6ypKQkHnvsMSZMmEDbtm0DXkgDvP/++6SkpNC0aVO+/vprTp48CcDrr79Ot27dGDNmDLfddlskqlEuX31zhMb1Sr5IaVI/ib37jwIw/rG1tBg6l8SEKnRsXTe8wXg/TPHimBdJqJGAWexcbOQrQ4w5R3PY/Npm2vRuE/LuwvX5HDqSwzOLNjOyf+BYXJD1OrTvEIsmLOKjJR9Rt3mYP/8CAQWO5/D+w+z+YDdndz59bgENqAz1D8d5VpyXt2+na3Iy6T/9KY98+CF9fLdBlEmQ59bGVzbScVBs9kTIE47v4869h+hx4yKefOkjOrWpwO9QGAVqKwH27dtHamoqqamp3HffffnLf/Ob3+T/mh9IQkICOTk5FRZvIGrvSxZT1wIlCLatqrD9+/6gReoaoDSRukaIlLweSpW57S/uHIl0+x2qYM/xcFwPxnqbejq0fSLRpOTaD0xed9+pU6fm/5EE6N+/P8uXLyc9PZ37778/4HsXLFjAihUrGDBgAFu2bOHdd98FvNtE1q9fT1paGps2bYpUVULWuH519nxzuMQyu/cdzv8ladrt3dn4/JX878BRjmXnVkhMI58dyVnnn8Xm5ZsrZPvhUFqMzjlWPb6KbqO65f9iGYpwfD7OOW740yoeuKUbtWuWHEtp9aqRXIOhfxlK15Fd+XDRhyHUqGz84zmRc4KVf1tJ79/2jtnncYVbafUP13lWnC8OHuTCevWoEhdHhzp16H926P+xKenc+m7PdyRUT+CMM88oT7gVLhzfx2aNapD+j6Hc+6uuPDKn4r9D4VBcW+l/a8ykSZPyyzdu3JiaNWvyySefBNze8ePHI/a8tTxq70sWi9cCJYn2dUKkrgFKE+lrhEg5Hdr+aLff5RWJ68FYb1NPh7YvOhzeM9cq+yTlVXn+YktY+f+RPHr0KLt37wbgzDPPLPaP4Pr161m9ejXLli1j4cKFLFy4sMD6CRMm8Je//KXCYy+vgT2bMmfZ5xw87HWx/nzXd3z1zZH89Zu3Z/HF3kM0bZiUv6xmUgIjLmtZIc/mOJLl7TupfhIncmLzD1swMWY8n0HD8xpy1gVnlWtf4fh8Js3I4JLzG9I3peRYTuSeLLFeJ3NP5v+qnFAtgSoJVcpVt9IUPs5vP/k27Qe2r9DbUWNJMPUP13lWnLOTkthz5AgnnWNTVhY5vh47ZVXad+bAjgPs+2wfSycv5cCOA7wz/Z1yxV1Ryvt9zPH7Dp2ZlEC1Myr2OxRu/m1laW677TYef/zxgOumTp3KoEGDwhxdcH7I7X1JYu1aoCSltVUVLZLXAKWJ5DVCpJzI9Y5pZW77Y6H9Lo/SzvFwXQ9Wljb1dGj7RKJBo4UK2dnZXHvttWRnZ3Py5EnuuOOOImW2bNlCgwYN8l+3a9eO9PR0br311vxltWvXpmnTprz//vt06dIlEqGHJLlONf54Q2cGjX8N5xx1z0wkIT6Oaya/Sc3qCdSsHs8//tC7SLfwkf3b0P/2//Dr4e25bdoa/r16J6++8wW/HnaQm4adF3I8ezL38MrvXyGuahw/mvAj3nj4DfZu3st3e77jguEX0KJ7C9Y8s4ad63fyxbovODjgIOcNCH1/FRFj8jnJZC7IpGG7huxYu4PWl7am/cD2Ie2rvJ/PkF7NeXh2Jj3Pb8jCVTu4ql9rbhkROJbsIzkl1qt+6/q89de3IA6qVK1C6h2pfPzUxyHVKxj+x/miay9iw9wNHNp3iE2LN9FxcEda9mgZ9XOhIpVW/wZtG4TtPCvO8JYt+eXbb/P6l19yfdu2/P6995j7o7KPClbad6Zlz5a07OmNyLX4nsX0GtMrrPUIl/J+Hwf2bEbalLeIM0hMqMKsSanRqUiY5N0aA3DWWWfx/PPP569LSUmhbt1Tt+hs3LiRvn375o+Yduedd0Y63CJ+aO19SWLtWqAkpbVV/tcJuQdzeeaZZ7jpppvCtv9QrgEqSiSvESIl+3B20G1/RXy+4RBK+x1LSjvHA14PfvJlmfdTWdvU8rZ9eSNLi5zuLC/7HetSUlJcRkZGtMOoEDfffDMzZsyIdhiV3qWdm7J6xsBoh1Gipte9zMCpI/Jf79m4h92Zu+k2qlvI28z4UwYb3tsQjvAAaNqxKQMfPHUcKzrGaH1uKzfsYcgfV3D1P9PK9L5wH2/wjvmFIy8s13GuiLjCofD5VJxwnGclKfEcbNqU1QNLj/HSjAxWbwi8Df96huU7c/fLbJg5ovSCErJLb89gdXpsfGfat2/Pxx9XXOK+MqsMbXtFKmtbFe62ILllMk0valrmv2ex2O5XhPL+HVm5ciVDfjaEq2deHVT5WGzrK+IciaSQ46/k7XQk20Az2+CcS4nIzqLArL6DwdEOIwxmndafUySo55qIiIiIiIiISJnlPXNNfuiUXBOJoiadmtCkU5Noh1GiyhBjKFK7NqFWcuwMbX+6HudgnU71P53qIiLRFe226oykMyqsR7FAamoqtRrWinYY5VLZz5HKHr+IxA4NaCAiIiIiIiIiIhIiJddERERERERERERCpNtCRURERERERERComeuiXquiYiIiIiIiIiIhMycc9GOISgpKSkuIyMj2mFUiPr167N///5ohyEiIiJRcMYZZ3Ds2LFohyEiIlIRNjjnUqIdREUxq+dgQLTDCIO5p/XnFAm6LTQG7N+/n8qS5BSJVbNmzWL06NF89tlntGnTpsC63Nxc4uPjmTx5MlOmTIlOgBGQmppKbm4uq1evDsv2rr/+elauXMmOHTvCsj0RCczMdB0gp42S2uM85WlfWrRowaWXXsqcOXNKjePkyZPccMMNZd5HIFOmTOHee+8lJyeHqlXL/1+ovOO0fft2WrRoUf4ARWKUmUU7BJGI0G2hIiIS0B//+EcWLlwY7TBEROQ0E4n2ZdasWcycObNC91EeV1xxBenp6TRu3DjaoYhIuTjg5GkwSXmp55qIiATUunXraIcgIiKnIbUvkJycTHJycrTDEBGRMFHPNRH5wdq+fTvXXHMNycnJJCYmcuGFFxb5Jf3zzz8nLS2Nli1bUq1aNVq1asUtt9xCVlZWfpmpU6eSkJAQ8NmJ7du3Z+jQoWRnZ5OcnMzYsWOLlJk1axZmxieffFJivJmZmQwbNox69epRrVo1zj33XB588MEi5d544w26dOlC9erV6dixI4sWLSpzncC7bcf/VpUdO3ZgZsyYMYNJkybRuHFjateuzeDBg/nyyy9LjF1ERCRP4fYFYNu2bQwcOJDq1avToEEDxo8fzzPPPIOZBbx99IUXXuC8884jKSmJlJSUAo9ESE1NZdWqVaxZswYzw8xITU0tMaZ9+/YxZswYmjZtSmJiIk2bNiUtLY3s7OwC5bZv384VV1xBjRo1aN68Offddx8nT57q9XHs2DHGjh1Lx44dqVGjBo0aNWLw4MFF2vi8tt+/bi1atGDUqFEl1k1ERGKTkmsiclo5ceIEubm5BaYTJ4oOj71r1y4uvvhiMjMzefTRR3n11Vfp0qULI0aM4NVXX80vt2fPHs4++2z+9re/8dprrzFp0iRWrFjBwIED88uMGjWKEydOMH/+/AL72LBhA5s3byYtLY3ExERGjx7Nc889V+TB5TNmzKBPnz60a9eu2HqtW7eOHj16sHXrVh599FGWLFnCuHHjiiS1tm7dyu233864ceNYsGABjRs35sorr+Tzzz8vU51K8uCDD/L5558zc+ZMHnvsMdLT07nmmmuCeq+IiEhhx48f5/LLLyczM5Pp06cza9Ystm/fzgMPPBCw/DvvvMO0adO4//77mT9/PidOnGDQoEF8++23AEyfPp3OnTtz/vnnk56eTnp6OtOnTy92/1lZWfTs2ZP58+czbtw4li5dytSpU8nJyeH48eMFyg4bNoy+ffuyaNEihg4dyuTJk3nuuefy12dnZ3Pw4EEmTpzIkiVL+Pvf/86xY8fo3r07e/fuLfVYlFY3ERGJTbotVEROKyUlqPxNmTIF5xyrVq2iXr16APTv359du3YxadIkhgwZAkDv3r3p3bt3/vt69uxJmzZt6NWrF//973/p3LkzTZo0oW/fvsyePZsxY8bkl509ezZ16tRh0KBBANxyyy1MmzaNl156ibS0NAA+/PBD1q5dy7x580qM93e/+x316tVj7dq1VK9eHYC+ffsWKffNN9/w9ttvc8455wDQpUsXGjduzIsvvsg999wTdJ1K0rx5c+bOnZv/et++fUyYMIE9e/bQpEmTEt8rIiJS2KxZs9i2bRvvvfceF110EQA/+clPuPDCC9m5c2eR8t9//z0ffPABderUAaBRo0Z069aNpUuXMnLkSNq3b8+ZZ55Jbm4u3bt3L3X/jz76KNu2bSMjI6NAG3j11VcXKTt+/HhGjx4NQL9+/XjzzTeZN29e/rJatWrx7LPP5pc/ceIE/fv3p2HDhsybNy9gD/ay1E1EYlHRH/Llh0c910TktLJw4ULWr19fYFq7dm2RcsuWLWPgwIHUqlWrQC+3/v37k5mZyffffw94v6b/+c9/pl27dlSrVo34+Hh69eoFwJYtW/K3l5aWxtq1a/nss88Ab4TSF154gZ///OckJiYC0LJlS/r378+MGTPy3zdjxgySk5MZPnx4sXU6cuQIa9as4ZprrslPrBXnnHPOyU+sATRo0IAGDRoU+M9JsHUqzhVXXFHgdadOnQAC/gdIRESkNGvXrqVZs2b5iTXwRhgcMWJEwPI9evTITz5B+duh5cuX061bt1J/XIKibWDHjh2L7PfFF1/k4osvpnbt2lStWpWkpCQOHToUVBsb7rqJiEhkKLkmIqeVjh07kpKSUmDq2rVrkXL/+9//+Ne//kV8fHyBacKECQD5z0+7++67mTJlCqNGjWLJkiWsW7eOBQsWABS4vXPEiBEkJSUxZ84cwLtQ//rrr/N7qOUZM2YMa9asYdOmTRw+fJg5c+YwevRoEhISiq1TVlYWJ0+e5Oyzzy61/nXr1i2yLDExsUCswdYp2H3kJQ+Dea+IiEhhX331FQ0aNCiyvGHDhgHLh7sd2r9/f1BtbHH79t/v4sWLueqqqzjvvPOYO3cu7733HuvXryc5OVltrIjIaUy3hYrID1K9evXo1asXd955Z8D1ebc3vvDCC1x77bVMnDgxf92hQ4eKlE9KSmLYsGE8//zz3HvvvcyZM4dWrVpxySWXFCg3cOBAWrRowYwZM7jgggs4ePAgN910U4mx1qlTh7i4OHbv3l3WagYUbJ1EREQioXHjxnz88cdFln/99dcR2X/9+vXD2sa2adOGWbNm5S/LycnhwIEDYdm+iIjEJvVcE5EfpAEDBvDhhx/SoUOHIj3dUlJS8n8pPnLkCPHx8QXe+89//jPgNtPS0ti6dSuvvfYar7zySpFeawBxcXHcfPPNzJ49myeffJJ+/frRunXrEmOtXr06l156KXPmzOHo0aMh1viUstRJRESkonXv3p2dO3eybt26/GXOOV5++eWQt5mYmBh0m/njH/+YdevWkZmZGfL+8hw5coSqVQv2X5g9e3bAwZVE5HTg8J65VtknKS/1XBORH6T77ruPiy66iN69e/Pb3/6WFi1akJWVxaZNm9i2bRszZ84EvCTcc889R6dOnWjTpg0LFizg3XffDbjNfv360aRJE2688UaOHDnCqFGjApa78cYbmTJlCpmZmUH/x+GRRx6hT58+9OjRg/Hjx3P22Wezbds2PvjgA5544oky1b0sdRIREQnFsmXLaNSoUYFltWrV4vLLLy9S9vrrr+fhhx9m+PDhPPDAAyQnJ/Pss8+SlZUFeD9MlVX79u2ZPn068+fPp3Xr1tSsWZNzzz03YNmxY8cyd+5c+vXrx8SJE+nUqRPffPMNr7zyCk8//TQ1a9YMer8DBgxg0aJFjB07lkGDBrFhwwYef/xxateuXeY6iIhI5aHkmoj8IDVr1oyMjAymTJnCPffcw759+6hXrx4dO3bkuuuuyy/3xBNP4JzjD3/4A+Dd1jlv3rwCD13OExcXx8iRI3nkkUfo0aMHbdq0Cbjv5ORk+vTpw8aNG/NHJS1Nt27dWLNmDZMmTeLWW28lOzub5s2b549OVhZlqZOIiEgobr311iLLOnTowKZNm4osT0hIYPny5dx66638+te/pkaNGowcOZKLL76Yu+66i1q1apV5/3feeSdbtmzhl7/8JYcOHaJPnz6sXLkyYNnatWuzZs0aJk6cyEMPPcT+/ftp2LAhffv2LfGZqIH86le/YteuXcycOZMZM2bQrVs3Fi9ezLBhw8pcBxERqTzMORftGIKSkpLiMjIyoh1GhTAzKsvnICLll5WVRbNmzbjjjju4//77ox2OiESZrgNEAhs0aBCbN29m69at0Q5FREJkZhuccynRjqOimNV2kBrtMMLgldP6c4qESpNcM7N9wBfRjkNEpByqAmcADYBawCYgJ6oRiYiIxIaGeA/+ycZ7LnRd37QT2BfFuESkfJo755KjHURFUXJN8lSa20JP5y+kiPwwmNn1wD/x/qNwk3Pu/0c3IhERkdhgZr8Bfgs0A6oAW4DfO+f+EdXAREREglBpeq6JiIiIiIiIiMQK9VyTPJWm55qIiIiIiIiISGw5Ge0AJAaUfVxrERERERERERERAZRcExERkTAzs1lm5nxTahi2l+q3vVnlDlBEREREJIyUXBMREYkwM9vhlywqPOWa2QEz22hm/zKzoWamxziIiIiIiMQoXayLiIjElipAHd/UEUgDPjSzkc65j6IamYiIiIj4+e41WFw/2lGEwTfRDqCyU3JNREQkup4Gtvq9rgo0wht66gLfsvOBFWaW4pz7MrLhiYiIiEggzrkB0Y5BYoOSayIiItE13zm3MtAKMxsJPIfXXjcE7gdGRy600Djnrgeuj3IYIiIiIiIRoWeuiYiIxCjn3FzgMb9FI8wsPlrxiIiIiIhIUUquiYiIxLaFfvM1gdYlFTazy8zsaTP72MyyzCzbzHab2WIzuyGYwRHMrIqZXWNmC8xsu5kdNrNjZvalmb1vZi+a2a/MrHkx7w96tFAzO8PMxppZum8gh8Nm9qmvDueXFqvfdlb67bNFEOXzyu4IoqyZ2U/N7Dkz+8zMvjezo2b2hZm9ZGZXmpkFsZ1qZnazmS31HcujZnbEt50M3wAWaWbWMLhai4iIiEgs0G2hIiIise1/hV7XDVTIzBoAc4DLA6xu4psGAb83s6HOuU+K2c5ZwL+BCwOsPss3dQZ+BmwAUkqvQmBmdg6wBDin0KpzfNMNZjYO2BTqPsrLzNoALwBdA6xu5puuBNaa2XDn3FfFbKcD3nFtUcJ2uuINYPGyb5siIiIiUgkouSYiIhLbCvdiOly4gC8htppTiZtDwDLgY+AYXuLmCqApcC6wxsy6Oud2FNpOHLCIU4m1g77tfOLbb5JvHynAeeWoE2bWCHgLL1kHcBwv+ZQJJAC9gN7AE8C08uyrHDGeD7wJ1PMt2o93PD4DcoFWwBCgPtAdWO07rt8W2k4N4D94xx+8EbmW4Q1kcZRTPRIvBlpWXI1EREREpCIouSYiIhLbRvjNHwO2+K/0JcTmcSqx9i/gNufcd4XKxQMPAuPxer/Nxktg+UvlVE+0DGCAc25/oKDMrBXQt2xVKeBJTiXWdgADnXObC+1jMPAiMK4c+wmJmSUBL3EqsfYwMMU5dyxAuf8HXI2XbHscuLbQ5n7OqcTaEuDnzrkjxez3fKBDOOogIiIiIpGhZ66JiIjEKDNLA271WzS/cHIHL/mWlyRb4Jy7rnBiDcA5l+Oc+x2wwLfoUjMrnFzr7Df/UHGJNd/2tjnnng2qIoWYWXtOJQ1zgSGFE2u+fSzGq3+pzzOrAGOAtr75vzrn7gpw7HHOHca7lXOdb9HIAM988z+uk4tLrPm296Fzbl7oYYuIiIhIpKnnmoiISHRdZWb+zy2rincraF/A/4H+nwB3Bnj/GL/5u4LY3zRguG9+CPCO37oqfvPVgthWqEb5zc9zzm0soew/8OpV4kAOFSDvuB4F7i2poHPuhJk9BjyPdwyvAJ7yKxKp4yoiIiIiUaDkmoiISHT9upT1J/AecH+bc+5r/xVmVg3o6Xu53Tn3WRD7+8BvvvBgBJl+838ys83OuQ1BbLOsLvGbX1hsKcA558xsATChAuIIyHfLawvfy7XOue+DeNsHfvMlHdfHzeyqID8rEREREakEdFuoiIhIbFsFjC+cWPNph/fwf4CWZuZKmyg4IEJyoe29DvzXN98cyDCzTDN7xMyGm1mTMNWprd/8B0GUzyy9SFhd4Dd/WZDH9SO/9xQ+rnOBL33znYEtZrbWzB4ws0FmVg8RERERqbSUXBMREYmuy5xz5pwzvHa5EdAPWOpb3xd419ebqrDyJmWS/F84504CA4E3/BafjzcIwsvAbjPbbGZTzKxwAqks6vjNF/tcNz/flGNfoQj3cT2I95m+71tkeCOD3gMsBvaZ2QYzG29mNcu5bxERERGJMN0WKiIiEiOccw742jetMLPH8R7o3xR40cx6OueO+73Fvx3fApR1gIFAAx/sBS43sx54o1z2wUuw5T03rB0wGRhnZtc550q8rTNMIj2ggf9xXYuXWCyLXYUXOOe2+J6t1w/vmXe9gfPw6mZAF9/0OzP7mXNudSiBi4iIiEjkKbkmIiISu8YDqUAnoCswDnjIb71/r6/jzrlHwrVj51w6kA5gZmfiPdttADAS77bHmsB8M+vsnPuo2A0FloXXQw+8XmKlPdMsmJ5kzm++xGScmVUvZVv+x3VfuI6rL3n6um/CdztoL7zegr/AO6aNgMVm1tY5ty8c+xURERGRiqXbQkVERGKUcy4HL8GW5+5Ct2N+hjfgAUB7M/O/3TKccXzvnFvmnLsDaAW851sVD/wyhE1+6jd/QbGlylbmkN98jVLKNitl/Sd+8z3MrEKul5xz+51zi5xzNwHnANt8q2rjJTFFREREpBJQck1ERCSGOedeB/JuETwTuMtv3bdAhu9lFeDaCMRzCHjUb1G7EDbzrt/8sJIKmpmVVsbHf8CHtsWW8vQvZf0mYK9vvj4wOIj9l4tvwIpn/BaFclxFREREJAqUXBMREYl99/rN32Jmjf1eP+E3P6mYgQ8C8iWuyutoCO+Z7Td/tZm1L6Hs9UCbILb5vt/88OIKmVktCvYGLMJ3++aTfov+amZ1g4ghbx/ROq4iIiIiEgVKromIiMQ459wbnOrtVQ2422/1PL91dYFVZtavuG2Z2RlmNtTM3sJ7gL7/ur+Z2SNm1qGE958FTPRb9HbwNfE45z4G8gZCiMd7xti5AfZ1BfAUBZ+nVpxXOHWL7C/MbGiA7TUG/o03QERpHgc+9823At42sy7FFTazmmY2yszep9Az4szsBTObZGYtS3h/e+A2v0VlPq4iIiIiEh3m/TgrIiIikWJmO4DmvpeXOedWBvGeHwOv+V5mA22cc1/61jUE3sF7bleejXgJmq/wfkyrB3QELubUM8m6OefybivFzGYB1/lebgXWAduBg3iJu3Z4gxrE+5W50HerKMVsJ2D9fImuDUBeL7xsYDHwIZAAXIo3mAPAX/EGcwB4zjl3feHt+bb5NHCz36L/4I32CdABGARUB/7EqQThF865FsVs7zzgLaCh3+J1eMnM//niTMYbTfUiINFXJtk5943fdlbijboK8BHerbw78Xqn1cd7ptxlnPrRMx3o5ZzLSxaKiIiISAzTaKEiIiKVgHNuuZmtBbrjJXH+ANziW/e1mXUDngauwhsts5NvKs5uvFE7/R33m2/tm4qzHriycGItWM65r8zsMryeZG3w6nSlb8qTi5dU28ip5FpJxuMlGPv6Xv/EN/l7FJhEwd53xcW42cy6Av8ELvctvsg3FeczvEShP//j2sE3FWcZMFKJNREREZHKQz3XREREIiyUnmu+9w3A640FkAO0dc7tKFSmA5CG11OqJV6Ps1zgAN4onevwesCtcs6dLPTeOLzk3Y98/56L12urOnAE+BKvt9lLwKuumIuIYHqu+ZU9A/gN8HO8gQgSgT14PcamO+f+a2apvtdQQs813/aqAKOBUXg9ypLwBidIB/7unFvlK5cXe7E91wpttzvwC6A33m2ltfGSZvvwRhdNB/7jnFsX4L3xvvf1xUvMtcE7rgl4o5zuxBuBdZ5z7s3SYhERERGR2KLkmoiIiIiIiIiISIg0oIGIiIiIiIiIiEiIlFwTEREREREREREJkZJrIiIiIiIiIiIiIVJyTUREREREREREJERKromIiIiIiIiIiIRIyTUREREREREREZEQKbkmIiIiIiIiIiISIiXXREREREREREREQqTkmoiIiIiIiIiISIiUXBMREREREREREQmRkmsiIiIiIiIiIiIhUnJNREREREREREQkRP8H39uUTIYI/cEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ5CAYAAADcN4iwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydeZhlRXn/v3W7p6e7p6fpGXqgHQYYYERElpFNUVDco6gRoj/jEsWdaHDF3SSYSIzGjcQsBqO4r4hBjJpoBFwjICMggoKMMMAAAzPALD093X1+f5zbfd6qe6u6bp06y739/TzPffqce07VeU9t59zq+r6vSpIEhBBCCCGEEEIIIYQQoFG1AYQQQgghhBBCCCGE1AVOlhFCCCGEEEIIIYQQ0oSTZYQQQgghhBBCCCGENOFkGSGEEEIIIYQQQgghTThZRgghhBBCCCGEEEJIE06WEUIIIYQQQgghhBDShJNlhBBCSkEptVwp9Sal1PeUUncopSaVUon4nBPhGhtFfhvzW00IIaSuKKXOMZ4jp1RtEyGEkN6gv2oDCCGE9D5KqZMBXAhgVdW2EEIIIYQQQogLriwjpAOUUkcY/8FMlFKblFJ9VdtGSF1RSh0C4L/AiTJCCCGEEEJIF8DJMkI642VtvtsPwFPKNoSQLuJcACNi/9cAXg/gVKR9Z+7z2fJNI1WglDoltgSXEJKilDrD6F9nVG1TO5RSaw07L6jaJkIIIWQOyjAJ8UQp1Q/gxZbDZwD4bnnWENIdKKVGAZwmvvodgOOTJNlVkUmEEEIIIYQQ4oQrywjx5xkA9rEce45SaqxEWwjpFo4BMCD2P8OJMkIIITFIkuScJEmU+FxatU2EEEJ6A06WEeKPKcH8kdheCuAFJdpCSLfwMGP/ukqsIIQQQgghhBBPOFlGiAdKqXGk/pXm+AOA1xqnnVGaQYR0D2PG/gNVGEEIIYQQQgghvnCyjBA/Xgxgidj/QpIk1wH4pfjuBKXU4eWaRUjtGTT2k0qsIIQQQgghhBBP6OCfED/OMPY/3/z7OaQ+meR5byvBnlw0V8qdCGACwDiAnQDuBvDLJEluLOB6BwJYD2A1gJUAtgL4ZpIkdzjS7AXgCACHNtMMAtgG4B4AVyVJcnNE+w4H8MimfQ0AdwC4IkmSG2Jdw7jeOqTlsQ/SlVdbAWwG8JMkSe4u4pqedvUBeDSAQwCsQloW9wDYCOCnSZJMhWQbzcASKbKOmsFCHgbgcKR9cBTALgD3AfgtgCsDy3qh6y4B8BgA+wN4CNK6+XWSJN/uII/9ADwWwIEA+pC2j18D+EWSJLOxba4CpdR6pOPOQwAsA3AXgM8mSbJngXSjSMt3NdL+M4W0fK4D8KskSaJOFCulDgNwfPN6s0jHrauTJLk+5nXEtQ5vXmsvAFsAfDlJkvsXSDeE9FmzP9K+lCAtkxuRjrEzOWzqR/qMOBLpc2wZ0jJ/EMBtAG4C8Ns87bKCZ+U6pGPwfsjK6pdJkvwq9rU6pVkWRwBYB2AF0n8gbkXaP36RJMmmCs3LhVJKIX2XOwxpOx1AWvabAPw4SZKdBVyzkLpWSu2L9H3mIKR9tQ/ADgD3ArgF6Zi/Nc81CCFk0ZAkCT/88OP4IH3pSMTnSnFsXwDT4tidAPoceZ1m5HVRoE3PNfL5mkcahdSv2s8BzBjp5ef3AM4CMOBpy1oj/QXi2J8C+DHSH3LmdZ7TJq/1AP4e6Yo9l40J0pfYdwIYzVG3z0X6Q992jQ0AThXnXyqPd3itZQDejTQapO16s836OTX0ngLLYQ2A85H+8LHZ9iCALwJ4aIftwfdzTqR72Sjy3FiXOkL6Q/tMAN9GKkV1lcWuZlkf2eE1LjDyWdv8fjWAf0E6wdHSxo085LFLxfePBPA9tO/LCdIJhNcD6F/AxpC2kQA4I1L7OKNdvkgn49/pqPsxR55/BOB/kU7U2Oy/A8BfAxjpwFZbXTwb6dhku9a1aDO+Oq5zipH+nOb3fQD+3HGt9Y48Hw3gW0gnl2x23gvgowDGO6zDfQD8o6U9m5/7AVwM4Pkd5F/Fs/KJAH7muNYtAF7cYf6dfE6xlMNJzbK+3iOPG5vtZalHWWwMtPOcNnmds9C9OOxYCeBDSP8RYrvmZLMtH9tBvoXWteWapyP1pWsbo+c+s836/HsA+3d6HX744YefxfSp3AB++Kn7B8B5xovGG4zj3zGOW39EI/1P7D3i3Cl0+EOhmc+3jGs+c4HzDwZwVYcvpdcDOMjDlpaXQqT/lf3KAvk/x8jnLwJfnjfC8aPNUQ9f7uAa/9BMd6n8voPr/RHSidRO7utCAEMltO9Xw/2D1vxMAXhnB+3B93NOpPvZKNtGHeoI6SqMPQFlMg3g7A7u4QIj/VoAT4B7EnSDkYc8dmnzu9d2YP834fixHNg2EhQ4WYZ01dO1C1x/rE1e4wD+p8P7uB3AMZ62tquLj3Rwrc9igcnLZp6nGOnOQbqa8tIF8l/fJq9hAF/osEy2AXiaZ5k8Ee72bPts8sy/1Gdl8/u/6+Ba/wJAeebfyeeUNvl9KDCvDWhO1HuO0518zmmT1zkL3YvFhmchXc3re+1ZpBOHjarr2rjWUgBfCyzPV8YYV/nhhx9+evVDn2WEOGjKll4ovppBOski+Zyxf4YtvySV8XxRfLUEHUbRbC6x/yPx1V0Avus4/zik/8U8xjiUIP3P+BVIZULbjeMPB/CzplSgUz4N4P+J/R1If1Bc1bS3HaZvq7l0NzZtvArZC7bkQACX+9qplGoA+CqA57c5fFfzOr9BurpnjrOVUm/3yb/N9V6OdHJzwji0G8ANAH6B9B6njeOnA/iBUmppyHU9bXsXgE8AGDIOPYi0TWxA+kNWsgTA3ymlzivKrrIpoY760Or2YBZpoJBfAfg/pP1jV5t0/xDa9pCu1PwW9CALtwG4Eqncc3KhDJRSrwbwz8js342sT97aJskfI12x0C0sB/DfSOVlc2xBWi/XIl2Z1IJS6mCk4+qT2xy+Fek48iu09p/VAC5TSp3YqaFKqXcDeJP4ahJp+/xl02aTPwPw2abErBP6APwngMeL7+5HNibca7FvHOkE2wvbHL6zmfaXSP9hJNkLwCVKqdNdRjXl8t9Ga9CQKaQrAq9A2rZ/h7SddkQVz0ql1LlIVzTOMfesvBLpaieTP0e6grMM2j2TtyEbE69GusLb5GgAP1JK7V2caflQSv0ZgIuQ/iNDsgvp879dO1VIVxJ+vemyoNNrFlXX5yNdJW9yD9I+93Ok7db27kUIIcRG1bN1/PBT5w/SH8Pyv3D/1eacYeiyqt0AVjrytMo6PW16s5H+Q45z90Eq/5Hn/xbAy2CslEA6CfIMtEpuroJDZoLW/6DK1TkbkEYRHTDSHAHgYOO7s5H++PsqgJc28235rypS/04vad6HvO4V7c5vk/71RroE6YTCI43zhgC8COmPgQTpD7LbZDqPa52CVhnPDwA8Dcbqm+Z9vQbpC608/+MFte2noVWucROA5wBYIs5rIJ0QMNtFAuAlbfIdbJ4/9/mskeYtxvG5z8GR7mujuNbGOtQR0hVIc33p3QCOAzDY5rw+pP7Avmrkv8dsn5brXGCkm+uLuwF8EMCBxvnDAJ5sfCfT39ZMmyCdIPt/MFbSIfXxY66unQHwcIuNc/X9FiPNZy3tYu7zkEjt4wxLGSVIfzwfCzGONNv/U2RbQDo2mCvR7gDwBgD7GNdrADgZwA+N828FsGIBW+X5m5Ct7tsC4JUAlhnnn4hUhmX20z/36AO2MrkM6aRZX5trrTLu01xltw3AX6KN1Avpc/Abxvn3wzEOALjEOH8D0tVBLSsZkU7uHoH0efkzALctUAZVPCt/L7avAPB0iLG3meYEpBNTMt12tHnHgD72ftBI80G4+1dLWwTwcaT/OLkAad/fz3JfqwC8Dq0rc7/uKIvHNq/7IiPN9xaws6V9oMOVZUh93E0aaTYjfe8YNs59NFr7bgLgrxa4RqF1LdIcb5y/B+k/K9qudASwN9I+829I+ydXlvHDDz/8OD6VG8APP3X+oFXu+ALLeRcY5/3FAvluMM5/RAc2/cpIe4Tj3G8b537FfBlsk2YQ6aoCme4NjvPNl8K5z3/C05dLM59HwPih6WGn+SP9qQuk2bf58qn9iFggzT5I/9Pcco8LpNsLrT++FpTUIZWE3WSkOzpyux5qY9tP4fCnhPQHovlj9X6IH8yWdOcYaU6JeS9trrdRXGtjHeqoWd4ndngfLzPy/6JHmgvatNMdAJ7YwXXb9eX/WaBt9CNdnSXTfGSB65xinH9Oke1CXPcMyz2+o4M8/tlIeykcP2ibaRoA/tVI99GAutgEh8SteZ3PGWkeALBvB3Ux9/lXePwDopnHW420vwZwgEe6dxrpLrKcNwpdCnwDFniWGenbTt6K41U+K51yWaS+FM3J2dd32M7PCOgrx6IDn6BI/X9JCessgIctkMYskwsC7DzHyOOUBc7/pXH+bwFMOM5XSFdgyzR74H73KqWu0Top+vIOym0E9FnGDz/88OP8VG4AP/zU9YN0YkW+nD9oe3kG8CTjheWqBfJ+k3G+c8JGpPNelYb0v5Ty3J+6XtKMtCNIJWJzaW+BJXCB5aVwIzpwZJ2jjvZG+t/Ruet+eYHzzR9ml3le5xFo47NpgTRvN87/hw7u62joq50+F7ncXmHYdh8WmPRqphtGq6+Z9yyQ5hzj/FMKbhPSvo3dWkfNa3xe5D8FYPkC51/Qpi86J+7b5GGmvxUO5/Yi3eFGut8scP4pxvnnFNkuxHXPaHOP1hUwbdKvge7I//cL1YtI24dUciufKdaybWPnLIDHelxnCVoDl/xlB3WRNO20Bqsx0g9Dd7a/DZZVSJb0F4q0M2gTRASppFja9/aIbaLKZ+VVMFYYWdI+w0j3nQ7b+Rkx+5HjuodCHxf/foHzzTK5IOCa5xh5nOI413xXm8ICE6nNdA2kckaZ9pMd3FchdY3UR6QcT7z6LD/88MMPP34f+iwjxM6fQfczdGFiDx/+Q6SOm+c4Ril1pCPvL0D3f/RiTx8YLzX2P+M4903mfpIkps+ltiRJsh2pI+k51iL9L7Mvf9fMo1CSJLkX6eqyOR67QBKz/N7Z9qzW6/wa6X+EvWj6RZO+Ru5DGgnPiyQNHX+x+OqPQ3ykOHiVsX9ukiSmf5Z2du0E8C7j61dHs6pEuqCOAN0f4hKkP+o7YRPS1UF5+ECSJNsWOilJkuuRroiY41Cl1EjOa5fFuzs493VI62KOdyZJ8qBPwiRJZpA6+J5jBMBTO7j2N5Mk+YnHdfagtZ++soPrAOnk2oznuX+G9B8Xc7w/SZLbbSe34W/EdgNp1GgT06/ing7yX4gqn5V/1ayvhfgedP93nVyjNJIk+S1SKeEcCz2Ty8Z89n0iSZLfLJQoSZJZpJJeyQs7HOOKqGvZL2abH0IIIZHgZBkhdsyJFdOR/zzNF6kvGF+f4Tj/buiTPA/BAj+alFL90B0nT0EPFiDPbUAPAnBTkiT/58q/Df9t7J/smW4WqYSlLG4R22uaTqZbaH7/MPHV75Mk+WkH17HWfxvWI3XkPYdrotWGLP/lzTxzo5RahtRn1hzT6GAiEOkqkG1if/+ms/NuYz1qWkeCW4z9R3aY/isdTHhY8+jg3KvFdgPAfjmvXQZXJUlyYwfnnyq2tyNd2dEJ34f+g9Z3XAXSlYO+fBu6g/IDOuin9yC105dTjf3Pd5B2buJZOh9vVyZ3GPv/rxmAJxcVPyvvh/4eYKXZj68RX60qMvhLTuS41emYVTSPN/b/wzdh831BTqwNwf8fGEXVtewXo0j9kRFCCIkEJ8sIaYNS6njo0dFuR7p6zIU5mfLi5gSXjQuMfXNyzuRUpI5057ikubKqHUdCjxh2xQJ5t+MPxv7DPdPdkCRJ2whyviilxpVSf66U+qxSaoNSarNSaqdSKjE/aF0d1nayDKkjXEknE2VAKkvynXgwfyxd2eG1gPDyX4jjkcrB5rjGZ1XZHEmS7AbwY+PrjiP71YBK6kgp1a+UerpS6jyl1A+VUrcqpe5XSs20advmJI6tbdvo9Ee/yS1JkrSLsmjjbmN/r5zXLwPvMlJKjUF/Llzb7A/eJEmyA3o0yU769WUdXGcagLkKzfeH/RXNfwAtSDPSplw9dGeHq8rmkJFVW8okSZI/II1yOcejAHxXKZV35VKVz8pf+pZzk8r6l1Jqf6XUm5VSX1ZK/VopdbdSapflmSwjfC9TSrWLqlk6Sqm10CMe35skyYYOs/mBse/77Cuqrv/H2P+CUupspZQZ5ZMQQkgArh/yhCxmzjD2v7jQi06SJNcppX6F1JcRkDqGfwZ0qZbkW0j9vMz9AP5jpdSYQ/JkTqZd4DDHfFl/gVLqBW3P9Gel53m/D71A8wXv/Uh9aoWOT7aXRHOVy4LSC0mSJLuUUhsBHOJxuln+n1BKfaKT67XBt/wX4kBj/1cBefwKwDPF/gHh5lRG6XWklHoJ0khlDwnMv9MfQMF9sYn5g20hdhj7pnSujnRSRochdfY9x4nNyYE8+PbrWwP+CXEt0ui2c/iuLOukTPaFfg8PKbBMzoG+gvuJAJ6olLoVqXTtMgA/T5Lk5g6uVeWzsvb9Sym1BsBHAfwJ9LbfCSuQRsqsGvPZd03bs9yYz0vfZ19Rdf01pDLyw5v7IwD+AcDfKaUuB/C/SCfNrwhYOU0IIYseriwjxKC53N18WfaVlZiry86wndj0XfEl8dUg0vDs7WzaG7rU5S64l/Tv7TgWypjneQ+EZN78r+8vAbwG+SbybXKFMWN/W0DeWz3Pq7L8F8KccOlk5dAc5kq0bvwvdml1pJRqKKX+A6mPwdCJMsDetm0E9UXBZM70oT+uy6STMqqyX4f0U3Plse+1alkmSZJ8EcB7kDozlxyA1BfV5wHcpJTapJS6oLmCc6FnSZV1Wuv+pZQ6Bunk0HNzXqsuctEqn32F1HXzPfJZSKPDSpYgDWZwLtJovduUUj9SSr1dKbV/TlsIIWTRwJVlhLTyx9BfgDYD2Ecp9WSPtOZ/D5+plBp3SJkuAHCW2H8pgH9vc94LAQyI/S8s4IB4bAE7Q/CdXO/Y8XLT98x/IXWOLLkZ6WqBG5BKYbcjfemUq/xegtTB9EKYL+xTndrZQZqxgLwXItY/N0yHxOZ/sH0w0ywPtKVKxgrI01ZH7wLwcuO7B5G27asA3IY0wMAk9P6zLzr0/2QQ0wl6r9JJGY0VcH3ffh2yKiS0n1ZdJtaJmSRJzlVK/TeAvwLwdOiS8jn2Q/osfSmAm5VS70yS5GuWLMdy2tqOrv9HdHOV93fRukruOgA/AnAT0mfyTqTjlpzAfCs6C1xRFj357EuS5PdKqWORvku+DkC7ybAlAE5qfs5VSn0OwNs6ccFACCGLEU6WEdLKy4z9CbT6hfBlCYAXATiv3cEkSX6plLoWqd8UAHiMUuqhSZL8zji1kyiYQOsPqwvQGoCgU3xXVYXwGuhymLsBvDxJkm8vlFAp9STPa5gSppCX3FHP88zyfxPSHxl5yCupm8OMUrosIA8zjVc0wJpRSh0ppfZBa2TCDyCNQOosN6XUw1zHSemYbeY70CMhhrDL87zhgLzL6KdmmVwN4G0FXGeeJEmuAPCsZt96CoBTADwOwKFtTj8EwFeVUh9KkuStbY5327OyLN4N3UfqTQBekiTJzxZKqJR6RWFW5aNnn31NieUHlFL/AODRSCXKj29um5OEfUhVD09VSp3S5n2TEEJIE06WESJQSq1G+vIdk5fBMlnW5DMAPiT2X4pUajJn0yOghw6/OkmShXxtmCvZdidJ0kl0s7L5U2P/9CRJTOfUNnz9w9xn7K9ue5YbXwmdWf6ba1T+5g+5Tp3GA/qPqHZ5dgNl1dGzofubOT9Jknd4po3lp47EwWwzjRL7dUg/NSWG2yLYYWKWyXBZZdKMKv2F5mduYvrxSGVpfwJ9gvFspdT/JUnydSObbntWlsXzxfYkgD/qwBdcXcetnn/2NX3r/rT5eZ9Sqg9pRNKnIXXzcZQ4fTWAryulHtlh8AFCCFk0dP1ScUIi8xK0l3Xk4Wil1HrH8c8DkJLKP2tGGJvjDOP8CzyueYuxf2zbs2qAUqqBNLLZHBs6mCgD9Oh0Ln5t7HcU0r7p58PXv02dy3+jsX90u5MWwExjRoPrBsqqo8cY+//cQVrftk3KwWwzjzTG6iI5QCnVafTDo4z9WKtTJZuhr447JMDOKCRJcneSJF9LkuQlSJ25/5dxytltktV5rK4EpdQBANaIr77bYdCER0Q2KRYbjX2zf/jQVc++JElmkiS5MkmSc5MkORqp/znZX49CPSWzhBBSCzhZRoiOKXf84yRJVKcfAB828jnDdsEkSe5C6htkjgMAPAEAmv8VfJE4tgfAFz3u4xfQ5SXHKqXMaJB1YW/oq1xv9E3Y/FHm++PmOuhlcpJSasz3Wkh92fnyQ2P/WR2kLZorAcyI/aOUUt7/YW8GwHis8fWC0pwaUlYd7Wvse7dvpFKaXsVcyVD7YABJkmxCKkebYx+kMqeyOMX3xKZje3Oi9hdRrcG8g3H5z41+pFGgK6XpJ/SF0H1MHd8cvyTd9KzshDz9K3jMakrHOym/0saBJEn+gHRyd469lVKd/rPIHJO76tmXJMmFaH0/PakKWwghpBvgZBkhTZRSJwI4THy1DfokVieYE1ovajqxt3GBsT83afdU6NK/SxzBAuZJkmQKwA/EVwrAWxZKVxHmy/FA27Pa8wp4RtpKkmQG+kqDpUgjqC1I84fnmR3Y9X/QZZ8PU0o9u4P0hZEkyQ4AV4iv+uEXIGGO06EHwLg1SRJzdUY3UFYdBbVvpdQE0rLuVUxH2SE+uarAjELczg9WUZj/zHFxKnTJ2K1JkhSxsgxoLZOzS1xxZyVJkvuh+yFswJAIdtmzshPy9K88z+TXdXAuUP44cKmxbwZesdJ8RzxcfLULBUxAl4C5ct+UlhJCCGnCyTJCMs4w9i9svkh3TJIkv4T+39hxAM90JPkW9B/uf6KUGmlj0wUdmPFBY/91SilzpUEduBe6DPXE5uSUk6Ys8i87vJYZafQvlVIP9Uj3DnQgLWlGKv2o8fV5nazgKpjzjf13K6UWlJgqpYaQhqKXtIveWntKrKPNxv7Jnuk+js5+pHYbpg/BgyuxonM+Cn28Ok0p9dySrv0cpZS5qrOF5j9m3m98/cliTJrPW/puOgb1mXAy+3M7H1Pd8qzshDz9K2jMUkodg87+qQQAD0Bf6Vz0OGA++85USrULDKHRnPw1V2R9ofnPp27Dp08QQggBJ8sIATA/CfB84+sv5czWTG9G2ZynOSknz1+GdNWUXOlyD1r/g28lSZIfG+cPAPhPpdQpvnkAgFLqCUqpwiZEmiu+fi6+msACqzWUUvsC+DaAsQ4v930Al4n95QB+oJQ6znKdPqXU2wH87Zy5HVzrH6H/6FgL4HtNfzBeKKWWKKVe0rQhJl8EcIfY3xvAN5VS1v/qN3+AfxnAQeLrB9Clk2VNyqgj87/473OVczPPDyB1UN7LbIQeSe5JSqm6Ogafp7mK0vzB/Rml1P/rJB+l1DFKqS93eHkF4CtKqQMd+SoA/wE9uvB2tNocjSRJHgDw98bXH1BKvb6TfJRSD1VKfaKdDFIp9UKl1Ls7aSNKqT9BGg1zjuuTJJk0z+uWZ2WHXGvsP1sp5TX5niTJrQA2ia+OU0q9wJWmOeH0n0gjgHvTlPHKfyyu9/wHVhBJkvwvgF+KrwYAXKyUWmh11T8DOFHsTwP4WFzrOkcp9UWl1BM6OH8pgDcYX18V1ypCCOkdOFlGSMppAKRT4rvQuly/U8zJsqc3o3XZuMDY/3sAg2L/C80Xy054CXQHtOMAvq+U+pxS6jHtpKFKqRGl1ElKqb9VSv0GwP+ieAewnzX2z1VKfbQpRZO27aWUeg2AawAc2fz6N74XSZIkAfBK6NKP/QH8n1LqIqXUa5RSpyqlnquU+iukPzjmfgRegw78kzR/QD4XgFydeAyAa5RS5yqlDmuXTim1T9OGf0P6g+Uz0H/45qb5g/Hl0Cf/TgJwtVLq2bJdKKUaSqknIZUtmjLFs5IkuSembWVSUh1dBH1SaD2Ay8yVK81yfpxS6ocA3tb82rttdxvNviijDu4F4BdKqXcqpZ6jlHqy8fGNRFsGb4b+A3MY6STWxUqppyilBs0ESqlBpdTxzfu7spne/AeNi9uR/kDfD8BVSqlXKKWWGdc4Eek/A0xZ9TuSJDFXC8XmH5CukJ6jgXSl5uXN+lxuJmhONB+tlHqDUupyADcAeDXaT7jsA+B9ADYppb6hlPozpVTbVUhKqQOUUuei9RnsmsjqlmelF013DVeLr9Yhfc69SSn1rDb9a4WRhflM/oxS6j3K8PPZHAvfjtQX5hqkz5RO/DICwPfEdgPA5Uqp9yql/qTZn6SdMVaenQFgt9h/GIBfNduUjFwMpdQJSqkfAPhzI4+/TZLEDBpUBc8A8L9KqRuaz6yTzHEBAJRSA0qpZyCNkin/OXgngEtKspUQQrqPJEn44WfRfwD8D9KXvLnPeZHyvdLI980LnH+tcb78HB1ow+FII361y3MH0h8oPwfwKwC3IpVEmOdtdOS/1jj3ggAblyD98WhedxbAb5v23Yh0UkMe/zyAc4zvTvG43inNe7eVtfm5G+mPjUvFd9Oe9/ZcpA6k2+W7pVnnP0MarfMuy3kdl6mnbe+yXO8BpJODVyOV87Q7x6uPhNRPznva6NNuy6wjpJI0W7u6AsAGpFIYeexOpPIn73aAdMJdnr82oPxk+ks7TNtRXSMNFNFuvGn3OSNS+zgjRr5IJ602WGzdjXTc+r9mH7oFaXCWlnM7qQu09tedzTZ5ZbMttbPlKwDUAtc5xUhzTmCZjCKdAG1nxzTS4Ai/QDrW3wxg0nJuS7sF8EbLuduQPcOubPabduddDqBvAftr/axEh/0bwJ9a7qXd5xQj7Qqkk4ft6vF6pG37pjZl8L4AOw+B//O4pW0i7B3gJc17aVfPc33KNtZ/w6MtlVLXSNu/ad9Ms+6uRvrcuh7t+9oeAE8P6ev88MMPP4vlw5VlZNGjUt9XZoSjvBJMWz5WKWaTz1i+35Akya9CDEiS5Hqk/0n8dpvDw0j/q/oopCHE90f7Fae3hlzblyRdMfcctP5HWgF4aNO+Q6GvOPgiOnDOa1zvUgCPR/qjZyGuAvCYJEluAjAivr/f81pfRxqV7oY2h/cGcATSiHqHI1090ZIFgNt8rtUpSZL8HYDXQA8lD6Ty1CORroIyVxzsAfCuJEneUIRNVVB0HSVJ8mGkMh6TVUj75tHQJcV/APBkV569QJIkPwHwWuirPLqCJEluR9pmLkBa/5IBpOPWCUj70FroEX/n6Kh+m/31I+KrIaRt8li0d9L9RQAvSpLEtK8QknSl5tOQ+gAzV0H3IZ0UOR7p6s2D0T44yxa0jkcu9kL2DDsWqYzf5JtIJwVm2hybpxuelZ2QJMmXAfwNWiNO+qTdijRC8J3GoT6kq2hPQFqfsgw+hM79iCJJkpsBvACez9QYJEnyWaSKgm3GoWFkfcoc6xOkviSft1BbqpgG0qjq65E+tx6O1r52H4DTkiTxdu1BCCGLEU6WEZJGGJN9YWOSJD+3ndwhX4b+onqEUupYx/mfh+48eo4L8hiRJMm9SZI8E+mPu4uQ+rBZiN8g9cnxmCRJHpfn+j4kSXIb0hfwjyFdMWHjWgB/miTJi5LAAAzN612J9IfR8wFcCOD3SH+k7Ua6OunrAJ4H4ITmRBmgR1LzfrFPkmQD0gABL0Tqw6pdHUumkcol/hLAIUmSdPwDpAPb/h3pROR/oPWHg2Q70snfRyRJYjoP73qKrqMkSf6imffvHKfdj1TOdlRSD4lP4SRJ8gmkkxB/jXRV0u3IVpnUmiRJdiZJ8jKkE8ufQ6tT9XbcglQO+FSkk2idXvMtAP4Y6cpPG78G8NzmGLlQO45KkiQzSZK8Helk4b+gdbKlHXciLb/TAKxOkuSuNud8AqkM/N+RrtpbiGmk0axPTZLktMTTEXs3PCs7IUmSv0baPj+AdHXdZnhORiZJcg3SSaML0Dr5KfkpgKckSfLW0InZJEkuRvocOhtp1Oo/IC37jif6Orjmt5BO+H0Y6cpMG7uRShWPT5LkrJpNlB2P1Mfr9+HXVjchdS1xaJIklF8SQsgCqJL+4UgIqREqjTZ5HNIXxXGkK4l2IpWC3YzUEfKWCu0bRupD61CkK24mkf6IvjJJEtdkQ5E2jSKdTFLNry5NksTbsa6R1whSZ8H7IV25NIjUr9UWpD8Ef+P74y4mzXbxKKSS01VIJ5HvQfoD/6d5Jie7jaLqSCmlkP54PR5ZGW9BU9qUdO6XkNQEpVQD6SrBw5C2mb2Qjl33I+1D1ydJ4jN5NJeffEG7LEmSU4zjD0fajlYjnVS4E8DVSZJcl+M2otO08wik7X0FUjn9A0gnRH6TJMkfHMltee6NdAXQwUifYUNIy3ob0v65obnSLa/ttX5WlkXTV9nJSAO8jCKdcPsDgJ8nSbLJkbQraI7LxyBdhbUP0tWh9yCdXPpxFc/jTlFK9SEde9Yh9R83ivR95UGkk6S/AvC7slaaEkJIL8DJMkII8UAp9RykKw3m+FCSJM6onYQQEspCk2WEEEIIqZ51SiUuSUy3cCfwvSRJ/qhqO+pEOx8ahBBCWnm9sf/jSqwghBBCCCGE1IKdSB0AdzvnpCuoiYA+ywghi46m5KKT818LQEouNyP1q0IIIYQQQgghpMfgZBkhZDHyJaXUW5t+b6wopYaUUucgjYAl+Th9SxFCCCGEEEJIb0IZJiFkMTIB4IMAzlVKXQrgZwBuROoceglSB7+PQhp9bZWR9spmWkIIIYQQQsgiRoErkHoVTpYRQhYzSwA8pfnx4RoAp3FVGSGEEEIIIYT0LpwEJYQsRm7v8PzdAP4ZwElJkmwqwB5CCCGEEEIIITWBK8sIIYuOJElepJR6L4CnAng0gIcBOADAKNLVZvcDuBfAdQAuBXBhkiSdTrARQgghhBBCCOlCVJIkVdvghVIqOfbYYztKc9VVV+HYQ/cqyKL83HTnFNYdeni0/GRVdhbrz4PZ2fbbLiPktpnGlkdDLHbs69OPyZuSx2LfrLTNzDvkWjt2ZNt7hHrPvD+5PzCQbTccC0Btle6y21ZHrjymp7Pt3bv1NFNT7W2V92Dum/duQVaFvIzJ4GD7NA1l3N/MTLYt62LJkmy7v8T/IchytbVvA3l/8nYA/TZiI5uKvK5WXKZBcl9um/1fZi7v3VUX8jxXHwlBtg1Xf7GNV2Zjtd2T73gi24mJZ7vRO8YiWlTuenbZytUsH1s9h9SfeU2Zhxwjoz/EuwhbnZllJ/flQ8DVD2S5LtY+0U243lGKvlYZ16yfCSQPthe0Il/OXNSoQW3cuBFbtmzp2Za8n1LJa6s2IgLvAa5KkuS4qu2oE121suzKK6/s6HylFK78xMkFWZOfZ/3tJnzrf34RLb+p6exlz/f3fgOOiS/J5GT7bdfLq9yWaQBg+/b21xkZab8N6C/D8pjnzc46VMdaOUhbzbxDJlJku90kFHxjY/p5cn/NmmzbLAeJLGNpm8tu1w83Wx7btmXbN92kp9m4Mdtetizb3n9//by1a7Nt1z0Jdk5mdSaLzjT7sMOybVl9w/3GpIVsdzLDiYn5zdnxfbxscyHbk2x3Lf1Nlqssb6N8ZB7y/mRyAFg94dmfPTD7iyxzWYwrx2bbHwB0A+W2OR7IfdkPxsftBsrz5Nhg4Or3Eq1uNm/Otl39RV5X2iP7hHlM3pNjPNHazbb7/Gxw9StZxo7yyotvedvwfib5Iu/bbJ9btrRP43r2iLqc7Tf+ISDQ7kO2ffOasg3IcV98b5Zp9DIqEJ/20HI/tjozBzxZlvIh4OoHsrwD+kTQeOLII8Z5ReHb7kL6vPf9ON5R8o41Jo1py3/kjHE69nUltvl781GRtz0UeQ9ltVXvd/qA/ILvwfaCJt4xXdeVRClHS4NyPbui29DkuBNOiJYXIWXSVZNlRJ8Q27pVPyZ/n8l5iaEh/TzPeQod+SJp/tC14ZpYsh1z/fCTxzxfmFy/c/WsxUPSlShgkmd43brsgLxv8+Vc/qCW1zHP87kp149w+ZA0HpjWB6O0QTYuoHXSb46ghma/rLwl8/emnNuQv63WrNHvb1jaJH+YRpg8sJWd82XDVnYGtir3XKAXHVne0vXlyjFHn5XbZgXaJuDleebEmaxo10SxL7bJPN8JfIlpq0xn+0eBkVfDNhGnF771flt+6OZcMVnWD/cYP4C0PAaHs/RmGci6kP8EMJ9xsj7F+NeQk+yuH5+y/jz7vKSbJsdMbP84cCLbvuvBLV+CRL+YWpet2Hc1+4brOrYxwJO77snudfly/djwoGUiNaBtVIYor4b8xxOgP1slIWNQmSu9JY5/msp2E3vSyfd2C51gyUnsSawy8oqGrQJFP58dW1nc9c1nlxzXHONYLcuSkJrAdeeEEEIIIYQQQgghhDThyjJCCCGEEEIIIYSQDlHgCqRehfVKCCGEEEIIIYQQQkgTriyrC55OTKUc3QxKKIOtyGNmgDrdD5T01SWcm7p079KPkMt/mc2RrrlvO89ME+CXyBYsyztRoL8MLZlvfhb/Tq1Odi0XiuD4VqbTXStlfn9GBx0+ZFzBHxwO7H3wDXZmuyQAd/tqYpbcrPB55MLm08nb15PD2bTN1Z3LnU9sbDEinG52ZCOybQP2erE5rQPczv9DsPkmCxkDzEKxOdxzjZ/y/lw+DH37vcd5rvZZO58mjnHVZusUdB+GA6b/xTnMAA2Wcc1V3lU7Z49BLRzRy7Yv/X8Ceh8RdRT02HYExQl5nsr3sZZ3D+l30OH4O2ZZRvcjJcvLvAc5xnkGZgppQ0H+8HyJ4QezAop03B9C62tgfX2tRbHB1i+kjz/jOiF1Zu0vnsGO6lDehHQL9RpVCSGEEEIIIYQQQgipkO75dwkhhBBCCCGEEEJIjeAKpN6Ek2V1wbHMWy6X3bWrvSQT0Ff2y2OmZE0qF7SluLYMAH0ttZRQmee5ZFO282zbJhbNmUvtl1uO4cjAtaRZSyalB7aQ6oB27w9sz/I2TRgeLEceIM2W1Tw7OKqd1xgXFTBt2QaCbJXl2teXlcnQkH6eTaI50G8sNbdpCUVYb5csxoXWBuSSe5cM16avdBCQJAhfqYAcDkZNda2tb7vK+J57sm05JpntyaZBbZFADrQ9rbV5ZufJe985md33TTe1vyQAHHZYtj3gauvSPnl/JrLTyTSGhPm+7ZndtiQAMDjYnRIMq622vmwwK+p161b92MxMViarZZs068XyzGtM7syuEyDXNqmiXnwlQDHkXb735y0XcmrAc5JzcHWaZhn/Wl0uxGsPIXn5PgMaZlnJMUpKMh36/YZlzCy1TGxuJBzS90KloD2A72tfbIlgWZJD7/YZwU2Krw02uum5T0id4MhOCCGEEEIIIYQQQkgTTpYRQgghhBBCCCGEENKEMswuY/nybHvFCv2YDOz1859n26aiRAb6eshDsvnS9esPmN8eHan3cl257Ng3IqBU2pnB+HSVUyYzDJGNtKTzlZkKBh3KvSqW+jvNtkW2jCwRle3djAS7YUP7y+7erZfVmjWZVKohKz2CtlFb9h+gBbZHItXbrsvU4QJlmRIpOZTSRCn1A4D+/qy8ly7NtncbfXZCjD0DsETlDYigambhkilKpPRSlrEZPNGspzmc44FNlu0rW3a0J1fQzJ7G043BqlV6vcj6u3WLkFGueYx2nnRdMDzYuexqMUUhiyGbs6XxzbtbpXF1bxu2cm2pF1tk4YBI4zEiB3oT8IzppvYl8Y1uWwV1k6qbdFMU5DrYsJjoztGALATrlRBCCCGEEEIIIYSQJot+sqzvSZdg/Ssvn/9s3LwTl27Ygr2e+V088lWX47CX/BBn/+v1bdNu3LwTR7zsMmveH/rKzVBPuARb7p+ynkMIIYQQQgghhBBC6sOil2EODfRhwycfp323cfNOnHzkSlzy/hOwa/cMHvmqy3HaSRN47JErvfO97e5d+J8rt+CAfYcWPrkDfKU1j35053nLVfFlLsPOu0zYt0xsqrtO8iiLAoNcxl9+H2Cs71J1eZ68jBlUVMqkXEGsNCySiyLbvm/epmm2yKRltltZT/392X1ISWYcREWLGw+tlwAVtPU8V70EEaGj+wYE7BY5RpF2mnmPjDTEtl8evu1QjkMyKq9LStitUc18x/DYdufN25XeGvnREvUYgLU/Vy1rW8iGmFJZ81raeYHRxetMWZLfxrT9n+6zlojPLXlYbPUt79rJm6V/CnN/7cHzm7EjqvqWQ5HjuYzELF9YzGuGvGs7r9tFfZOQWNRgtKs3Q0v7sH7dXrh9y+TCJwve9M+/xgdf83CoguwihBBCCCGEEEJIdSikkyrd/iGtLPqVZbumZrD+lZcDAA56yBAu+tvjteNbH5zC7zbtwOOO9l9VdvFPNmO/8UEcvW504ZMJIYQQQgghhBBCSG1Y9JNl7WSYAPCja+/DUa+4DDfetgPveMEhmFjpp9/ZOTmDcz9/E/77Hx4V21RCCCGEEEIIIYQQUjCLfrLMxpzPst/eth0nvf6nOO3kCeyemsVrPnItAOBvXnYojjqkdeXYzXfswC2bd+Lo5mq1TfdM4phXX45f/OtJ3hNuLnz14tKnUEgeRfsjiOkzIATpq8aVdy38MhgUaZ+tXKsKle17ryG+u+pYt3O4/OfIe62b/4gY9tS5XmKg9xcHnv7M6tYGugnfsvNpk6b7qiIJ6SO93k5szyFfX2QmXs8eTx9cdaBIv3Ix/PDFpkgbKrmnAP+WMfq8LY/QfhUV88XP14FnLxD5gaPVp3CMOzs4nDvvuo2FhHQKJ8sW4ND9R/DOF67DB750M770l8doq9A2bt7Zcv6RB4/i7oueOr+/9k9/gCs/cTLG9/JzwEkIIYQQQgghhJDugNOCvQnr1YMzn30gLr/mXtxyZ+vk2I23bcea531//vO1S++owEJCCCGEEEIIIYQQEoNFv7Js+3ee3vLdKevHccr68fn9oaV9uP1rT2k5b+3EMPZ8/1Rn/hu//KT8Rlowl7ZOWgJ2+krUypL01YGWMNyWJe5R7kFWjCPEsy9lLWm2STNCQ2W7pDE+xJRMmfkVKdMICcveybEqqJs9sbG1DV/pSUv5iDGgsX172+8xMqKnMfdrTMz+45J01ZkAlVSpFPncKOuZFEMimJcYbge8x42c+Noa+9kaUka2vGO/J8W+17zUQs5o4Pv8K+P6Jpo95o+bEH8cOalsTLK8H0SpowrKkZA6U/2oTAghhBBCCCGEEEJITaj5/0IJIYQQQgghhBBC6ocCVyD1Kpwsqylyma4MemKTWgLA5s3tvx8f1/cHB9tH1vPFW74WEq3FpWWx3aAZAUfmIW2wyZ/MPBzyp9zyCWlPf3lBH/IuzS4z+lrQsn9Rrg1R/75RurRqMZpg0H1YogmZXUJvhpk9oyPdIT0D4B6U5ABjkSMD8OoXjUndZ2SMKE1a/jGjBLvGPjkO2cYqY38KA9bTbGO4r9TcVzrdTch7ks3OVXYD/X73KqtP4quarYPcug5Sr7IoMiKgSVnySl+KjE7toqz25XpuS/K6fQi5H3OssdpnnGh7fwmxwfX+k7ttOOx2/miRrkjEs16Oq9PTut3y9TykXurwHAtxX1IHu+sgfSekatiiCSGEEEIIIYQQQghpwskyQgghhBBCCCGEEEKaUIZJCCGEEEIIIYQQEgBXIPUmnCyrKVInLvX727ZBfK+ncbnkkuy1V7b94IPZ9sxMtm36XxmdvLvthRsTE9p5Uqu+c9ruk0v6ivHWxEujXI5opO8EuS0vajqQcDm8EAT57BC+laTZ5hU9TQjy2RAz/LdvqHOXbS6XTrZymJpu74cIALZvb+/7wmzH4+PtbZL2tNrW3reZ06+Y7CPbH5jf7h8Z1U6T97ppU7a9bVC384A14lou319lEeKPUNh61z36/d1/f1Z/0sfiyhHhd+umm7Q0jTVrsh3h1CTUX0ZMPxuzpt81sd9Yu7bj/CYtfrJMtL7pO6A4yOtLJa/fn9js2qXvy2YsfXm6is7W9E1fZro/ND/7YvvgsY37mj8742aDbBCF0tL2PezxpZv868W2x7fs6ub/KOa7h0mEIa4wvG0zX2ZEwob07xXQ9s00UevCvEH540T6FzbPE/fUEM/tEfFu1Pp+B3Fe5/fg8t1WJLGfeXXr2xJn25p7PiRJiRYREo/q314JIYQQQgghhBBCCKkJnCwjhBBCCCGEEEIIIaRJjRcxk3ZIWZlLgSVXRLvOW7Ei25ZLnU25ysiqfea3pazMREpUpMTTdZ6v/KUhb94WptpEnmdq8jyIvYw6RDUXY4l13tDp3uc56kLKc/T6t+cty99VlTIPKePzlUKEyDmcS/ulQUJTYJapbPsudZ62xL0q6aUPjoKU97BqlT0L6+2ZlW7RmrtU2XXAV0ohz/Ot8rKkjiGyllDJjE95ue5blp1vObrqQjZDt3y7fLzrxfH8lDm4JJUaUnZu2mTJo0h5XgxiSkZD7y+kP9ehLH36puveYoxjPjYEveMY1EFeHmJDdLvlwChdJJgDo8eAHPsVx7f+YvedOvTFEHwlv9ayc/kk6HFU1QaQQqh+lCeEEEIIIYQQQgghpCZwsowQQgghhBBCCCGEkCY1E6gsLhKo+WWsruW6Um1kUyICuoxLRtZbulQ/b8mSbFuulpXbUsYJADt2ZNuDgyKin7Ha1iZFEUFvANgVkW5FZT4pWh2Wy/tSZCStvNdxSn08NW955aimDfKyeSUToem1Jem2KKwO6iYXdGKLOBuIXZYp8nboVG1y3W7C1baquqc6y0h8x3P5TDHLMUyG1f66Zt7yuT3g6QGgkvJ2RMPUoje3BJCOJw2vKlpdbGJHf81bDnWWupZpT97osSF5e9e/2XdER6vbO6uzfCx+Msx70MZjy3UcAUIx0B83iq7veTH7YmjePm2taMm313mtD4v0r6JIkXQnXfqzghBCCCGEEEIIIaQ6FIC+qo0ghVCvf1sQQgghhBBCCCGEEFIhnCwjhBBCCCGEEEIIIaRJz8swD3/xpVWbYGVgaGx+26UDly4NXL5rpFZ9YqJzHz7Sj9jEhF8aX3xtqLu/IV+fJHl9l7h8EFThx8LXJ4LrvCLLxCeNi0JDyEdu1EX61agbdfPZQoonr89BE1f3CxlTfN31ufxv5qWsfuHriizEHtfzIKaPzdj4jr91sLWbiP2s9sm7yDryHscivB/Y+lKR746hefncboxxJ2/dxm4bUfKTzqS//vVs+5Wvnt8M7UdR36lz+rAkpG7UfGoiP9c//ktVm2DlmTd8uGoTCCGEEEIIIYQQEgj/vdubsF4JIYQQQgghhBBCCGnS8yvL6oxCtvTVV4bpQuYRsrK77hJISZnyuhCKDNkeImcsckl6iESzLELsMb8PaUO2MukmWWHd+lg3lV0MqpBx+crhYlOHcSPvdRrbH9D2B264IduRD/Ejjshtg628YsgZ845XIe22yLZe6rixcWO2vXat9bSQevaty5DnWlnvES57QtLFfqb4yhnzEuOdwMsmQwvekPueevJufe6GyFGdZSrLTm6bP9DEsdn+gbZJBvrt9jhtkNfab78szQWfyr4/4wxr3t5s355tm21jcLhtkiL7CyFV00XTI4QQQgghhBBCCCH1IF0AQ3oR1ishhBBCCCGEEEIIIU24sqwmxIzwA+SPxFWVJLOs5bvdvEy4W5fF+0qHulW2GJNQ2WtZS+G7SbYsYduqPzEkYXnrNuT5OSDDSQNOuWVR1DKC22JizZrCss7rDiBG3t1Ebll1L7yLmi/yAS/2vdg2gu7JNwyy5ViU31RShvmEJ2Tbk5MRMheYzzILvdg2CGkHfy0QQgghhBBCCCGEENKEK8sIIYQQQgghhBBCAuAKpN6Ek2VdjGsJbH9/93TZIiVdIefEkPeERLHypYqIVCHR03wjEPleV6aPEUHKdk++5euSj+aV+/mmKVJKWFWEuiLvKXZ0vyKjBdZBJloHmUXM6IqxXRdIaU1L3iJqWJHRiGuPLQKfg7yy7OiR8HwR9xfyjhG7z9eh3fg+Z4t8T+qFSH2+7am0+zMHzBCdoW3Q9cyrDlF0Q96NQyOua+nk88WMyBmQty/d2n8IyUP1b+OEEEIIIYQQQgghhNQETpYRQgghhBBCCCGEENKEMkxCCCGEEEIIIYSQALgCqTfhZBmpF76OYxw+DYr0FxXT35DLb0FZ/op8/YaE+IAJvYci/YuE5F2W/7C6+YLw9qshw5Z7hqqP4c+uSHQ3S37jQZHtJLbftDrjahuxfX/JvH1d7si2EeCOK4ovnLrVubNeAnwZ5fU3Ffu8vGlMbPcU45mUN4+qnkNVvP+YxOibtry0NHLgkM9PAJD+p0Tf8R0PQsaNljQ+g1yIjzITmYftmh1cK+az1fc5FOp/LIQ6vCPW7dlDSBmw1RNCCCGEEEIIIYQQ0oSTZYQQQgghhBBCCCGENKEMs0ISZEtaG9NT+kEffce2bfr+yMj8ZsNc2u2Tt1z+7QhFHB3X8mtJzqXYrpXvttXlZUprqqCqJdW+kouyZJO+9hRaf662L4+V2Td9cHUsMSbllWMVTYgkL2//8Ved2/uBrYxi9O0iJdE+1/Q95i0jMtpnw3aeWTGizw2MjWXfi4YSo7x9xyFp3vbt2bbsboZ5uXHJknxtlfaEtKfYY3Ps51/ePhLDNYO1z5pt3/KiU4d3mdh5h/QridmPZB624UX2SwDo68vSrFgxML89MGLvpGW6v9AIaBu+ZectR5WI8Xe2Pyu72JLoIinL1rr9xlhMKHAFUq/CeiWEEEIIIYQQQgghpAknywghhBBCCCGEEEIIaUIZZl3wjCKnIeUgZhop1YoQYXLnZPtl576Y8hBtqXDOCDtT0/qcb0iEMltAP9PumJG5uimqTJBM0VxWL/dF2w1aNm7mLSq9YYkmBYRJF7ztkzbZts0GKY/JhuvSUzn6S17ZXJAkVtpqDg5SKm6Rr/na41JpSEKGUsDRdl0Diqck1ibbCVGdlxl9qwqiREr1LWSf9JEJlTNKtm7NtnfsyLbN5jjQ79E2zHs19WOWzBuWBiplUoB/O9byLlBSGfIsC4k2GOI2IDQCn1feZj1b2nhDjOehY00V8m1fXOUYIlt2vS9KZLfyjbYsKfJ90czbV50ucd27Fd/MtQLLxpciI8rHGKdDKMsNSJES9F5/RyGLj0U3WbZ511a88arzccV9v8PSxhKsXbYPPnbsq3D0d16Pw0bXYHJmCsv7h/C6Q0/FSw9+EgDggt9/H2+9+tPYb2hvTM5O4TXr/ghvOuw5LXlfete1+NBvvoFLTvlr7ftX/PwfceV9v0MC4NDlq3HBo9+IkSVDJdwtIYQQQgghhBBCiqJ7lkCQTlhUk2VJkuC0y8/FSw9+Er580tsAABu2/h53TW7DISMTuPrp5wEAfr99M06//O8wmyR42SFPBgA8/4CT8fHjz8S9ux/Awy45E8/d/7HYf9kqr+t+9NhXYnTJMADgzVd9Eh//7SV4xyOeV8AdEkIIIYQQQgghhJA8LKpJ0B/edQ2WNPpx5kOfPv/d+hUHY//hce28g0cm8JFjXoF//O23WvLYe+ko1o2sxp27trYcszE3UZYkCXbNTEEpFXgHhBBCCCGEEEIIIaRIFtXKsuvu/wOOXXmI17nHrDwENzywqeX7W3fcjcmZKRy1Ym1H137Zzz+G/7rjKhw+uj8+fMzLO0pr1ZYbvkGsmnHjPFsa1zWluxKbSxPzPJePoZh6+RC/P6Z/BV9/SDa8/exI31qe/rTqjnbvsnFs2WJPJPxXRQlVb/MRZjrxGRn1upbE2/+KLQy6zf+Veczlu29iou2xMv1OSGzHWvwYeToysfVhm28mE1nNLleO3tj8lHn6KHNhq2azDGx2+/pM6laijAcSl89A2T7lMYdPRNv44rTasxHa+p/ZNmZm2pvWgrRV+g90jUm+HcbSLxrj+j8fbX4HXV2pF9pxbFztQWKtPrPAbSc63lFCiO3HzXaeSUz/VSGYjz6HK9XaYXtGuYYNp79aW+byPPnu6GirIb6Ce2U8sY0BXr4pEaccrOUvxw35rAEA45lASLdR8yG7OhJj/yu3/gg/vPsa3PjA7Tj/hLMw2GefgGrHpx/9RszMzuCsqz6Br/zhx/PyTkIIIYQQQgghhHQfqvkhvUdvTLd78oi9DsRV993sde7V992Mh4+umd9//gEn49en/gt+9OQP4C1X/wc279qKi277Gdb/1+ux/r9ejyvv/d2CefY1+vD8A07Ghbf9JPgeCCGEEEIIIYQQQkhxLKqVZU/c9yi861efxfk3fQ+vWvc0AMAV9/4WO6d3a+dt3H4Xzr76Uzjr0Ge15HHiqsPwZ2ufgPNuvBjvX/9SnLb/ifPHLr3r2pbzkyTBzdvvxLrlq5EkCb51+y9wmJiEmyMk1K55zgPbszxc6idb3lPTWXpzmbhMMzLiN8fqssEWMdqlRLMRQRkVlEfQkmanfqL9asXYsivf/GzL2FvSy+Xzmzdn2+ZS7IDY4lZbfSUlkfUOznKQNvk0cBOpH3TcX1dJCmwSOKMt2IplyZKFzwnFOcZ6amZi1oXr/qoKvd4tId9bnp+2Ad1XHmSOVT592DG2h0jRXFnLIdflFkFLKE+0yZ8A/d7lmGSWnS2PFv3ZcLYpqiWGTCpv+wyRdMXGtxzkeZOT2Xlm9ckyltvDg35uH4p8uoRIrF3vxnUYnxqTO7Mdh854wNdHiTgvhhxVEtLnZJrBQUcaeU/yPdAci6UkzzZOm2NswMPfdX8+w3nIb7IY+NZzke9Dud9rzAfWpqZLo6mpfPkSUhGLarJMKYWLTn4X3vjL8/H3138dg31LsHbZvvjYMa/Czds345HfeQMmZ6awvH8IZx36LKtU8u2H/wmO+e4b8a5HPA/Llwxrx35w1zVYc9EZ8/tfOelteNvVF+CBPTuRIMHRYwfhX094bZG3SQghhBBCCCGEEEICWVSTZQCwenhvfPWkd7R8v+v5F1rTnHHwk3HGwdnE2erhvbH59M+1nHfKvke2zecnT/1goLWEEEIIIYQQQgipK31VG0AKYdFNlnUjjels6erO6Uyq19+vL5XdtSvblkoI3+XDcllvSxoZ6cQzE7mU1yUV8F1OHBJJqXaE6EwjINuQtkTaWAafe6m5zM+MgGORF7iCsfnIQgFgGrJfZN+b9+Oz1Nw30ljLMn1b3crOaMoObLINs22IDtSQaRyR5/ISpb/Zwj0aA0LDItEdG/OTlkuckaF8K1dsS3m6K7siu3ZeGV+3XdcHV7uTdTZg06V1gqVCtfJxVLqr7HzK1TRbBse1BbkEgOEx0WlsiVySdlenk9GOHRJya5Q8LZKoPZq0a8z2Pc9GSJv2lUqG4JteVovp7UAOrXv26LlLrONVhMHLpy7qENW3UBvMcpRtX/Yds/9ZxqiqIl9racR75KzpNsTWbqQkE9AfmuL9ZXZsZdtT0i+yTd/Ij7ZLmnRT1Eytvfq697ClD8T6TiBtMN/952ytexhYQizUe2QghBBCCCGEEEIIIaREOFlGCCGEEEIIIYQQQkgTromsEAXPZbFi6eqkK/JVTjSpnqnnsEn3PJfVBgRC1KMMAbq+wKF5kpKuOkgAtPzE0vVQmZtXNCjPaEsLXcsLl/TSgi1YJJB/pba+Ot3vfmQaV9N3Se2GZbFaGnyLfLR/uO15LVIDm4GGsdYogAVilQaYyDIxCs8my5XlMBDjaRXQuFzRBqXMaWgo2w4Z73zxlYHVXVJSJHp3sUu+JVrkwH4japfsZ9IlQYDE07f+XHXpUnbbrtWwJTIHPN9Qm2tEVG8hw3RGkfOUmJUlZwyRVFYlR7bZKtW1LuqmgCo62mCR45/2TiCivcrnuTnWaNFIPTX7VbkesV5X2No6NGTvtqOu90CLOwYpY++3RIYPJUS6WSYhv1OK7NC+7xFekky53+jtd5L0Nz3pRVivhBBCCCGEEEIIIYQ04WQZIYQQQgghhBBCCCFNOFlGCCGEEEIIIYQQQkiTmnkxIHmYmQlIZPEf0OLHRO5LPboj7HXD5RfF4gPGaYM85vIVI3yzNGx+kkyHEha7Y/iC0HzBCRsK9SkU2y+ZI33D5gjI/F7U58B4Zp/Lr5jVb8y07lNoIGK5+vo1MrFdVzbjBx/Uj+3YkW3L5nnAGv08q4+hqhzRSBu2bcu2TUcmlnDisyOj1qxlEqtPDNMGWwbGfoiPIon0UQYAS5YsmKRUihxT8pZdDHx9qcju4nLBJfu6cLuF4bF++4k2P17G4OBsux1ippd5+w4Bmj2+ieQ9mY74LM/JVh+UC/vj8S2fIttZbD9nMevfRag/pip8GsYoB99y9RkrfP3BmufJR8+uXe2vL31YtiAHm8jPcJfdtrIL8eHrdNHYb/dPak9TXDm4KKufRu9vshEW6Ku2Kh+N3QpXIPUmrFdCCCGEEEIIIYQQQppwsowQQgghhBBCCCGEkCaUYXYBcvmuTXkE2JUipgxCrtjV5BimzMKGNMIVWt61rNpHVmYuLbYdc8iuNGzSz3bX6hCXTCb28vIi5RO+MicN37KLKW81y1TUZ8Mlt7VI8ny7gczOlFRK2YXMw1U8UsZnSvw0pIGyz5nG+vbhvNjatFnecl/WkWtpv+ynrgHPdmxiQtu1ScRah4D257kU375d23q/Lkmt2N856Sc59JXT2KTGoUNVWVIWG65rjozYJYveShbb88aRyCohj1A+tjyCxlXHWKptG2OL7VquNlRnSY9LkmfDJTmNfa++z+a8fTF2Xy5SmlqFlBSwd3vbcwMw7j3ATUYMmXAItvpzPitcz3CLaxRfu11tyDePEAl4XkKkrk6qcsFByCKEvY0QQgghhBBCCCEkAMr1ehPWKyGEEEIIIYQQQgghTbiyrMuQK5jNKDwyKN3Spdm2MyqPDU85VcsSa5+oYSY2zZorLKEtyqWJTZLnCovmIEimKPOu+dJp2z25iscn2pnrmEv+Io/JKjPtGRkZEAezzQHYsUUpdUXnlKxY4cjbcu9S6pfuZ9ueTbDQyEcuNBmfKNkB2Rdd44ZLBi33N21qn8Z13zK6mNG3ZURcWbdFBulqqX+fMcDzQq4hV0oOfeUlsYekvDKikLx9IxS6+l8QEQqvrKiZ1muahSD7knyp2LJFv5aQO8/2u0bacogtP6taWuwiRqS/KiL/xYh6GpJ33rZh5i2fI7E9H9jef6JEZo84vjilwIPDWZrA6NQ+1CFCc4j0M8Z5df8tQUgvwZVlhBBCCCGEEEIIIYQ04dQ0IYQQQgghhBBCSIcocAVSr8J6JYQQQgghhBBCCCGkSc+vLDv8kldVbYKVpWPL7AeFIxqp+Zc+aUxXIxs3ZtvSr43pU2Ht2mxbC3Xu8kUmfZfIbfM8mxMY6QfFdZ7LiYzN74+Zxuc8U+9v8adk+lsI8k9g8S0QGva6ClzuEaw+Flx+qUSGvj4apCsq0+WcrdkMwLBBJrT4w2oYbdU3XLp2H5a+1OK/Q1x3wDUay3Tj423Tl4ksugGX0xabnzKzbcgxRfosk44Zly/X08jryjqLUCa2ena1O6cLEdtBWT6yDAyGRZ1PGp74TN+VmW36eDKAzEffgMVvjO+YFDJ21WF8c/kFHOgX9+RyDGfB5XvRdZ7vMZ+8Xef5+ntr+PoQDfCZE90PmOVZHbsci/StJIlRJr3mX8237ELqqG5lFZsy/bhpPk21oUJ/XvXCj86Qsivy+VcH320u6vDsJyQPvTBuObn+P4+r2gQrz/rbTQufRAghhBBCCCGEEEJKo+cnywghhBBCCCGEEEKKgGvoehNOllVIAjW/PDVEVmHKtlasaC8XW2aoPeUxH+kYAF0i9OCD2faOHfp5NgmUS7Jh04y6ZB+2bd/rhsg9ESdku40Q2U4tsLUbs/4C5HG2rLdu1c/ba6/26YcN5Z6WidTUxY7/bmufpo5P3qCvpq8i6aWXCS675b2a5bB5c7Z9553Zthx39t/ffi1Hn80rgZLpzfu2jqUhbNmi71ukfysnJrT9nZPt788cwvtHMjmMtNVldx0kHHnxlVFrBSbbI6C3VyGJnR0Z7diesqR/vtc1r6M9uxzP2Zj2ecuIzHFDjg9r1nhdy/rOY+IhMw1QojrxlfLWDWdbkP3K971NUKSUsKryLuudrirpX95+UdUYGUKR7dNFiDy5qvGkW8YxQmxUP9IQQgghhBBCCCGEEFITOFlGCCGEEEIIIYQQQkgTyjBrQstycMs6ZtfSWykRcgXMa0zubH/QloHrQmaEOpscypS52aLX2aRVrrxNPNaAt5S3tMEWMRHQbHUtb9aVB9l5WsQ1T+oWNbPMJdW2qpyZse9rzWaVQzdn2Z6a1stXquNk3maAV1nPkmGXbDJAllIHpKlW2ZZ5oute5b4s2CVLsm1zTJL7ZmUIbEorZ3GLMUCODf39emSvxnQWYTKo/mwRPQ0bNIwxadgyJnkEcOw6fKPk2c5zjl2yvM3IpLLMXc9GgfW6tnoFtPZQ1jhb1fMl6Drm89gjP2c5ut4pZBRjSx9zmSefB100tMfHcwCOLb3zGSt6RR5mlRYXKJ0OJWaZ11FWaL4/zuE7BsSWTebtV73SR8pAgSuQehXWKyGEEEIIIYQQQgghTThZRgghhBBCCCGEEEJIk8W8OLznkOoQGbCyVUk4PL+9eWP2/djYgDhnpZZmeK2QCzmkEN6aJ5+Ifr6SLgOfZcytZSLS+EYldCCz0K9ll2aERM0sclm97Tpm9L3JSSlNk21Iz0+7X9FMfKWpUqVmqqSuu05krQVd1G1ds2af+e1RiwR50hGwUtalGbxQIrN+sE/aMKydJ4PJyuu4AsG61IeVL5k3G7WUGYrtKehyxoHDxHlr12bbssBdDcoxngTJMC1jQEv55tVXyfRGlEvnvVtwRUuWfbhIqUdZUp8YdmvlIDuTq17zRs4NiGbrHS0yAr5RM4usc+s9ucYXwbT2fHFcyFci70nsQMUx+2mMNhRkT+xI0zWgivHOm5ppfit/J4lESNsvsipC2mDIPXRrhN6qUFUbQAqhZqM8IYQQQgghhBBCCCHVwckyQgghhBBCCCGEEEKacLKMEEIIIYQQQgghhJAm9RK3k3lCtOU2fxku3bz0f+RyCTbbL3wMjWTbherXPQX/IT4jTD9Guo+TzruFS9cv/aHZ/CfVBZ/69HU/Z96rzQWT06eMQLoUkm6tzPy8XeqNZb5UZP2Z9yP7iDUvA98mNDTUPr89e/TzZmbsx8oiqK/bCsIoO+v4EsHfjaerQ33MrcLvi6c/Jhdl+rYqisb0lP1gzmeCq3xkG2yYzgA98/AictuK7X/ORi3aj2efkM+A/pG4vrpc+Pp7801v8zPoc00zTYzzQgjpL9oYEKG/2PLLW6+uY7XzZYZiba1kfDAdx27enG0fcUQpJphlZ2uuMfzchYwBIecVaUOv01e1AaQQ6jeaE0IIIYQQQgghhBBSEZwsI4QQQgghhBBCCCGkCWWYXUDIkt3hQb8lsQO9F9VbwyYvMKV2viv984Zo7u+vfn7atRzcZrfcNmWTNhmlmbeUGeZVVpgqKanOCZFHhtxfCL5huF3tTN5fty59H+gvz27fa9kkT77yJRd1q6fYsquokiOzk1o6dGyZU4x69klfZHuamraPubZ3Al/pbmypllMSaysvzweHzTVAJ/jIjVzPT198JX6ybmUx+D5TQm2wEbvdWOvZ8KvQEJXrXd6WdhM69vm0jdgS3xj4Suhitv3Y450+NhhIWeaGDdn2+vW5bfCxLTRNWc8Xb5u2bWu/DbT6QPGgjpJkQjqBk2WEEEIIIYQQQgghHaJAuV6vwnolhBBCCCGEEEIIIaQJV5b1KL0QFc1F3mW9IdKsTrCVceyy95U7lGWPC6mECIneI+/PFWlTHguV2xZFDElCiIQxZJl+r48hJmXJl4qkyKhYRUopXONYWZFJXX3Ep7zqIDWpenxbiCJlyy4pfUwbYtxDiOS77nUrCekL1nJwaGpDnqd1G7OLJMRtSFdh+uOQETBrHHo+hnS6UBtkn3NEhiZksdClIyQhhBBCCCGEEEIIIfHpov9VEUIIIYQQQgghhNQHrkDqTVivhBBCCCGEEEIIIYQ04cqyRUiMMMNVEzukvc91XNeqqhxDfFKUFSbe5TLC5VPGdl3pl8yMZr19e/v0e+2l70u/L9IGl91y33VPtmN79mTbQ0P29NI2l38a37KTdKs/rjLHqkL7tmwcBTofKrK8ihxzXXZX4U8nhv/HELt9/WT5tlWfsSK2n7si/ZLFyDvkPmSasvqBSRVjeFW+rGL0HVs9xc47hBjl6mNDqJ02+2I/X/K26dn+Af3g+D4d553X728MfMs15pjpel41pM8yh89AX+rwLklIHriyjBBCCCGEEEIIIYSQJlxZRgghhBBCCCGEENIhClyB1KtwsqwLsC0TroNcpVCk7s5ESJkahqzJWg5Sq+daWuyQSZUl//SlrCXkzvSiXBtCbjYwMqKd1rJk3gOpXnvwwbaXbEFW3/Ll+rEBTGU7W7bNbzakrf3DWhrZDKWkcvdu+3V9sTXDApV68XFJDEuSH4YQ1F9cOlzX/eUtB9ngzfSWRuQKDZ9XTlOHZ4/L7thyoZj356oXG77lHZJ3mXj3KznoyvY+qI/N9iyychiY3qmfKPuLvI7Rj2L2l6pYTO+LMfpVzLwXyqNqYrvmqKJflHlN3/qT45D2vinGGvM3i7cPDg97zKFUZidfI0ZG7PdTlRyVkLpSr9GbEEIIIYQQQgghhJAK4WQZIYQQQgghhBBCCCFN6qWLIQuiKwn1uc6yVE5T0/Y5VmlD7uW6LhmmlEwYN65dV65JliEUx8f1/GQesaVjNvlnaN5VR9Yz68VWTy3rwTMZpq8EQN7ekiXtvzf3nUUibbJJcIz0tiicLjWcrTm5I4TWS+LrjSwg1w1qUlc/uaZsG+a4Y6vnQuVGLo2DC5sWQpOYGXJKWa5bttivOTEhjvlJnessMXPVl1Vq16/b7RyvbDgGkTqUi8Q3ambXYoY7btIwn9tan8nuXXaxlSNGf5F5u56llr4dIwJ1iDuHkH7qG1kvRGImif0aEsPdRcxxzRk5sKKxISR6s698u1uoo1xQk2FOioHIIfnWOpDhviQm8jLmELtyzK/PFRo1vAfozp5EFoL1SgghhBBCCCGEEEJIE06WEUIIIYQQQgghhBDShJNlhBBCCCGEEEIIIYQ0oc+yLkP64jCRUvey9ONl+UkD4PaHZDtPCvP1uMl6Grnvuo7vDdtskOl9/aZ5+25z+CvydDZi9cUhy076TzLtc/n9EbaG+MiQt7psmX5sxYr2l23pB9st5ar5kxjVktiqwtWEpA27drX/vt2+D3Xwl2LFbKs2n0CuGw8olBjlYM1D3oM5AEtbx8b8LmRpRGafaAkv3y69YZ81jYH0/1bqGF4Wsp4s/q8A6HUrO7A5NgcQw+9SXoocK3x918jz7GkcyPbueAHqHxye39ZcArmeny6HkhE7RkvfttSFr7/FIus1pEgK9RNJOoJl3xkh5eXyiTkoxiHIQyG/X0w8xiTzFGmr9HNtXobtJg4sxd6E9UoIIYQQQgghhBBCSBNOlhFCCCGEEEIIIYQQ0qQXBRg9h1weKxUlfX36eZoszCXjyxmaOIo6wRWyfQ6XpMsMvexzHRc2G0Jv1ibdkvmZ92CTgrpkJJq0zSHDDECTekgbTFmTLSS2KUsLkItJZJJ9l+/UD95wU9vrtJSx3LfIY/vH97HaIJObWcvbbUxm9o2sGoYNm9S1YfTRKpbIe4dl961LV+h0Dwb6w+RGuWVKLhmYvA+bHNk8JrdFozG7Vb/oz6MTE9kBc0wTNuycbLT7GoBeDnZVtp9crCrJhvWxYdaLlIqbsnGJ7LSudmzTpgW04xB8ZXxdi1n2sl5k3ZoNV3SahkjS3y/G3O2ez0/fd4UI1E3ypI8NmW0PPqift3x5tu1q+nklyLHLJ7ZsNSSPImXZnl42SA6s0kvjwd0YF4Vu+62V8zdYKI3pqfntwcECfy/02vOJLHo4lBJCCCGEEEIIIYR0iALler0K65UQQgghhBBCCCGEkCZcWVZTbCq8zZuzbWfwNSldcEVwK0lG0oJNkuWyTcppXGEJbXnYrmMSsHa9VSZjyS8kmqZnNEznMn+Lfsk8z7acf8BVL/2WZeeu8wLQkm82pFUbNrRPZNqwdm00G5Yu1Y81ttyd7WzcmH0vI+uZbdUm112zRs/b0oaqkmdpS+5d2lRb9DqXTNEVfVLium5e5HVttgH2EKgB48uePfYksyN2Ka9EyqZaI6/aI2EtYFot0WS5ptRy06Zs2yJ7BWB/JpgF5NOOAwuvLEleVVI0H/lZyzhme46Y9eLjzsEcG2xpqnoXyolv+wmp89279f2hoXw2uPC1L+R+bRFZQ/tB3jyqkGQCccf3OkjtirShJW9bwbreUeS7n3j2FPneZpo5APGFeE4OGBGfZxFXlklIL8GVZYQQQgghhBBCCCGENOmi/yMTQgghhBBCCCGE1AdVtQGkEDhZVlPkUloZbMUVGErDJR2yRfYKWKMto6uE5uEtn7DJMYz7mxVR5Bq2CJMOyYVvFEDnUnofKahL9mGLngfY78MVYSfm+nuX3S4ZZkwcUdE09t5b3/doa65+JY+1SFK2iM5ps8e1ZF8eM5bIW+Veg37yvNjIchiQRdqq/Vt4G7BLjW3Sa0CX1Bmy1dzYruuQRM86otFqo4Nl7Boa0tOHdNmZmfaXAXTZoox4J6/jkoPULYKf1sduukk/Jv0VyDHJ1a9c8l/b89QmQXfgehxLXMNn7eoiMvL+pqU8yOhjA4Ptn8Fa13HJMAPfA4rC5RahSIm0Vt4BMr4Y44avtDG2XDOEOkgQbURQhlup83278G0L2nsNjI4gnwkuly7SBYDMUD57jPe2mBL5ljrfZnHJYz4Lc6KPVT0evZksOnr7jYsQQgghhBBCCCGEkA7gZBkhhBBCCCGEEEIIIU0owySEEEIIIYQQQgjpEAWgr2ojSCFwsqwmuFwwSQm8K7q9dKsy7AqJntORgaY/N334uLT8NhtkHq70Np8wvteRPo6MNNH9W+T1WWbLq2Csl3I5wvB0kmErY19/BrqfLOM6sm77xOPqoIP086RvK0/fNbbba/HtItuntEduuxzC2HzyLWBfFVh9lrnsdPVtW7txOe1xOm0MwOazyuarxJHcZMA1HjfxdHnlRDZ917DhO0zXjQcfzLaHl3u2NembZWJCP0/2TYn5XJP7tvYQ6LNM3tPy5e3P66Y6io2rHLye246xJu9z33x2WZ9xDt+uLhuqqHdZ3kuX6seKfAzl9WtklqPTp2yNiOGDrch2Umd/U77+hYPyNvwjNmwPTdP3V8B7ifV9KoCW+7a9tEZuNIv5GUV6n/o+QQghhBBCCCGEEEIIKRlOlhFCCCGEEEIIIYQQ0oQLJ2uCuXJXRr43o9jb0CQqS1x6sYjEkHiakhdbXgExsbWQzA7pg+/qZN8Qzzsns/OGPWV4U9NZmgEtzLRRxrK8hPTHKTWw3JSvjESzwZQuBSzt9l12Ls+Ttz1g2nDYYdm2LDtjifzU4GiWx/TO9hfyxGy2sxP7zG83bLI713VkRzclXZa2b9owXKBMxlYXg4Pt+xgAf22hPM8mcahKiirbmnk/wiZX9dnSSFx90fUMkNlJGZ+vOr1b2Ynh+e3hI47QD8oGKupvamSlNb+BflH+rn4q87Y9uxyYZT80lG2X1cR9n2OxZU4h0jjXY1+zwXMMN+VVMbGWidmBxQDhei8pEtu1QuTgIXaHyuTKvFav0S3S1KpwvvsPZs8b7V0I+ngyutbyvlfV+4u8rumGoCQWU1tbPHe6uGC9EkIIIYQQQgghhBDShJNlhBBCCCGEEEIIIYQ06QExRveikMwvi56ets9bypWzW7bY85uZkZl7yr3MSC6dElvPI8OAmsuWcy5pdsmaZNY2RZgrPxOZ35SQffQPZtvyVs39ZcuyvFetGtXOa8QIm2dB2qArmdrfA6CXkWuZvyxzmcYlw7SWv1kGspOINi2lWgAwKWxYOeYnj/SNMKhJE8cyuZeWtUNZbI22ZCDlukUqrE1sMkwtCm+o0sCmtXJEsI2OzF+2J0cEWynpkn1nzx49631XZelsEjizv8j8pCzfLAabqS2ICpyebi9F6++3R5TzpUipz5Il2bY2Vg2u1k8U5SDbZ59RLytWiB05QJkPWnmxnJ0uRKlcpGStKomMr/zTu9v7RNStCs/3FW+3CJ55+MpofcvbVmdlRqKklLCVvON0HfCtyxjRQ33yDm1bmsxbbLtcKVifAebYFfIOZHufMvKuSg5OSDfAyTJCCCGEEEIIIYSQADjN2JuwXgkhhBBCCCGEEEIIacLJMkIIIYQQQgghhBBCmlCGWRNMKfp++2XbMrS8xOXSC3D46YgZwtjlD0TelOs8eUwK+800cl9uG4UnfT/Z/JSZLmlkFp6uo/RrGn4UBgft/tFsNsh96cNA+ulJjwX4c7GUv+ZfwcDml8psPvKYa/59165s29amXWjXNe/H0qbN02RdyDoaFH7YzCJdvjzblnabZe9TF64mPThor4vG5M757QFxr9OGjymbP6zY5B1CWnzc2AqvaD9lNnL6ctT8RwLYOdm+X8g2qPcjl/9A/Tybu7cWxEHpuy9GEZfl/0baKn0Jmj7idu/OtmUfM8tuAFPZjixw06GkrADvAm9P3XwFhVLkWOPrG8vLngLHEG/fPoO678wq2oDLr1heX011bNM+7bNIX2t1LJM6kLdcfced2PVn8+s3OmLYIB448v3a9+eQ67eND642reHIu8hyJaQb4WQZIYQQQgghhBBCSIcoUK7Xq7BeCSGEEEIIIYQQQghpwpVlNWF4cNbYFztCOzYyMjq/7ZbDOfCJVR+KNMImm3SlkUQIm2xTeJrSyJjKVEA3VUqE7r8/23bVV17lSMsyalv5GzJMWQ5yW96D2XzkfWx3yLukCaa01Ia8jwGZ35Zt+ommpnXOhhFd/rJ0qd91Jba24Suz6O/3+5+Elp95P5s3Z9uiIAfXH+OVdwxkOQwjk4Vqtpk6N3Pfhk3nm1OS0Akhsh2JTSII+N2GW6KbbZtFGjJ2xS7KvJI8X/mTr0ReSqdt6QEAk5Zx0RzkbM/MyAXZrRK4suTfrrxjSuh8cUm1qqoX33sPKSNbmjq0wdjkbU+uNHnHyKpsCKHIvhg7b1f/9W4P4pkg07hcLmjXivzOk/eZQtklIZwsI4QQQgghhBBCCAmCU4u9CeuVEEIIIYQQQgghhJAmi35lWd+TLsGRB2XSxm++7zhs3LwTf/yeK3HwQ4axa/cMnnnivvjQnx/eknbj5p145juvwHWffrz2/V9+6kb85082o6EU9lkxgAvevh6rx3Po/ERkrv7+UbFt3IuU/uy2aHhi4xux0lx37KMZNW/QphE07k8uG7apu8wiqSLonmmD3N9rr2zbVAAN9FuWbEtc5e1oD/KQbE8yupyZtUxjU+Ga+Ja3tix+0iL9A4CNG9teePCIfazXjV7nlrCnMtJjvxEVzZpe3g8A3HBDti3ur7F2rX6er+wxAE0qIO352c+y7SOP1BMddli2LRpyo8gxycQqQTai6HpIL822b2tDpsw4pN3Zisj8PkTCEbv4Q2QbITIg36Cp1jKxyS4Bd9+xPdcCCtJXGhUip/Mt0xhjs489JnmlX755+0Zzi3GezYY6UJaK3TsCX8407dKRerCY6iVvtEjfqNWxYR8jJIxFP1k2NNCHDZ98nPbdxs07cfKRK3HJ+0/Art0zeOSrLsdpJ03gsUeu9Mrzrc8/GH/78ocBAP7xwlvwN5/9Lf7tzUdFt50QQgghhBBCCCGExGXRT5YtxNDSPqxftxdu3+LrPR8YXZYtK9gxOQOlVBGmEUIIIYQQQgghpCIU6NuqV1n0k2W7pmaw/pWXAwAOesgQLvrb47XjWx+cwu827cDjjvZbVTbHuz95Az7735uw17Il+OFHH92xXZoEQOrwhFLLlFJoEcBWTGR5GREPhapTi3IopUMuiaC2lNelZ3TJVVw6kHZ5mfueS5V9pUw5lTVOZL3IMpZlDwBDQ+1tcN6qb8RRlwbVwooV2bYMzrhrl37eqlXZ9vh4tu1S2gaVsSwIVwMV2+ayc1tkyuiyJJ/2DcM+eSFTElZkBFsLziX7IfaI+2uR4Ig608a+KvTRhg2yKh98UD9P9mfX8OTT3s1zZF+KLaeSUm6X5CJvZL0io2p5l4Nsd8azUI5RLoWmvNboWHuJp0tW1k3RxUoMQFsJ3Sqp9KUO9efTxmOUr2+/KjJCaAh1iJraTfhGp65inA25TgwZpu+9xm5f3fQsIyQWPfgq1BntZJgA8KNr78NRr7gMN962A+94wSGYWNnZr/tzX3kYzn3lYXj/F27Cxy/aiPe+7GGxTCaEEEIIIYQQQgghBcFpYQsnH7kS1/zH43HtfzwO/3rxH7Dhpvvxf9dvxfpXXo71r7wcF/9k88KZAHjhk1bjwsv9ziWEEEIIIYQQQgipG0qphlLqTUqpG5RSk0qp25RSH1ZKLesgj2copX6qlNqhlLpPKfU1pdRBHumOUkrtUUolSqnn5rsTPxb9yrKFOHT/EbzzhevwgS/djC/95THaKrSNm3e2TfO7Tdvx0DWpTOnin96Fww7wbjuEEEIIIYQQQgjpEhbRCqSPAng9gIsAfBjAw5v7j1RKPTlJEqf+Vyl1OoCvA/gVgLcC2AvAGwH8RCl1XJIkd1jSNQCcD2ASQGn+aThZ5sGZzz4QH/rqzbjlzp046CHD2rEbb9uONc/7/vz+R193OL78v3fgxtt2oNEADtx3CP/2piPzGSD8F415+sWZms58s0wbvqNsfsqiEOBXLET37qubl755JDbfVZ3kLXGdZ3MXZrq1CvIv4lveAZnLJNJ/km+aGG62rD691qzRT5QFG3DhKL5d5HU9fZZpvkvkPaxda89bOloyfZuVhbTvKU/Jts2GktM+3/7n9MsRULl6fpkN0q+gmXWAW0BrXkCYX7GqfLzZxsw6+Oax+Z8z900fkhJZrFPTWX4DjvK23XuIz6zYPpfq4MsqpD240lTS1jbrqoHZidXl22DQE37mPB2v5fWZZNZRFT6YXH63NIy2FvSCZrlu3f2m+dpqOy+kXn3rxdeeTq7lk7feRwasp4WUnQv6KSNKqUcAOAvAN5Ik+RPx/S0A/hHAnwL4oiP9EgD/BOA2ACcnSbK9+f13AFwF4BwAr7YkPwvAIwB8EMB7896LL73wWM3F9u88veW7U9aP45T12cNnaGkfbv/aU1rOWzsxjD3fP7Xl++edsrrlO0IIIYQQQgghhJAu5AVIg39+zPj+fAB/D+DFcEyWAXg8gNUA/mpuogwAkiTZoJS6FMDzlVKvS5JE+xemUmp/AO9DOpm2BSXCKWJCCCGEEEIIIYQQYuN4ALMAfiG/TJJkEsCG5vGF0gPAz9oc+zmAUQCHtjn2LwB+j9ZJusJZ9CvL6oJvCGSpxnItIXep80IkQrbrhBJTghFbzhEDn/wHHL3POwy6Zfl1iNTHdR2XtKOsJfxWySIATEx45REz7LUzXLelwLwlBGZ6eX/bt6MMnDIEaZ+UZAZqgHykAt59IjIxpMU+7c7VNnz7WGzJRYg9ZY0HIWOcOeb2j7R/tvqilff0lP3EgH5RldwlpK2FELutViIl27ZN358oR1UQo4588ojdBsusI58x11sC6UmhfXaLsZBCvgMJGabvmDTrKd2rA3V4ppT1bHXlpV3XU4bpS0gZB8lHexxVtQHlsBrAliRJdrc5djuAxyilBpIksQ1Aq8W57dIDwH4Afj33pVLq+QBOBfDYJEmmlSq3pDlZRgghhBBCCCGEELJ4GVdKXSn2/z1Jkn8X+8MA2k2UAanj/blzbJNlc87f2+UxaZwDpdQY0tVk5ydJ0m41WuFwsowQQgghhBBCCCFk8bIlSZLjHMd3AtjHcmxQnONKDwBLPdN/CKnbsHc48iwUTpbVBN9lq3qQoOqXSrfYLQ10RQTMqwWNTOxl53Vbxm6tF0Me5FqaXzXWJeiALk2Ubaui0GDR61/KfWpwT5q8Q8pDzOiXnv3cOv6JejalqbHL2Hfoktiqwvzex1ZvyYUjjK4soyLHoDpI42ofzc0zol/dcEUPtdFFtxcXT/m/L/6yq8j9PHJbzR2J0PM9JHa/r917m8SMAN7DnS60XmNGrAyNDhnS9oPuVz73Pa8ZIsuudZ8gVXEHgMOVUkvbSDH3QzrZ5vBLgTvEub9pkx5oyjGVUscAeDmAvwawt1Jq7+bxucm6CaXUOgC3WWShUejd0ZYQQgghhBBCCCGkIBSAvqqNKIcrADwVwAkAfjT3pVJqEMB6AJd7pAeAEwF83zj2aAAPAPhtc/8ApEX7N82PyT81/x4P4Mo2x6PAKWNCCCGEEEIIIYQQYuMrABIAbzS+fxVSX2NfmPtCKfUQpdRhSqlhcd5lAO4E8Eql1Ig492gApwD4WpIke5pf/wLA89p8/rl5/MPN/Ztj3JgNriwjhBBCCCGEEEIIIW1JkuRapdQ/A/gLpdQ3APwXgIcDeD3SibAvitPfD+ClAJ4A4NJm+j1KqTcgnXT7kVLqfACjAN4E4B6kksu5a90B4OumDWKS7edJkrQcjw0ny2pKiN+QyclsW7oKMrXoNg16FP8k0ghXhgF+dmrvo6ZDzOKxuQ2J4ppC1outoQDASHtfIS6XJkWGj7bWubwHQPdZVmNfHq46lwybrr7k/Y7M/yPG7eOmSKThmzdn22bZW3yWOX0dyjzE97H96Zllbxu65Pd9xhr7JUuy7UJd5fk6VCup7Yf4gIlxrSLzduHlc85on6aPvU4p8r5dTSi229G8Y1LdnvVaXYyt1I4VaqulMqL4cizJv56vz6QYPphseVflgyl32zD9gXpcx/XMdNnjY6tvORb5nhtcppoRWRlV1TZ8f9to9gW8D7n6AX2TkQ55I4CNAF4N4FQAW5BKIv8qSZIFO2aSJF9TSu0C8B6kDvx3A/gBgLcnSXJ7QTYHU99flYQQQgghhBBCCCE1ZrFMOSZJMoNUAvnhBc47A8AZlmOXALgk8PoXALggJG0Ii6VeCSGEEEIIIYQQQghZEK4sqylyuez27dmcpmsltk0y4Vpea0sTvBLfU5shl4ebijob+pLtfJJMs0xKUiF4K6ii22CrF+NCtmXavvbo96eX8UB/PhmCtlTdvB/ZMRxtsOql5q5ylP1gatooO3l/FUnttLKTZTwx0f57A5e0vF+MB/LYQImSWp/+Z35vk6y13l/n9ljbu69evkfwkkAGypFjjgeNyZ32g76axZKwKJ1bjvnm4aJImX5efGWB1u+lBB3A7MTqBdMHU+QYUGD7zCuB9HUj4qLq577LBu92smmTvi/qbHZ8n7b5FdnHQuvFZ9wo3L1EzveKGNLgEGLKY115572HytyDEFIQ1T9BCCGEEEIIIYQQQgipCVxZRgghhBBCCCGEENIhClyB1KtwsqxCEqj55aquJc2+K+RHR/Ito3WtTLYt0W25jpBTuZb12lQEZckhTcq6VmWBGmXE0ZHR+e0yl0fbIv64lmxb7TMLUkSItF3TpA4RsuRtuPr57OBw8caY1/SNTCtkmL6Sb18VUewImBKzCcl92TYGBzuXsccmbxSs2MSQQhU59tQicnLExlGkrNT1TIoRoS5vXYREPHRF0c1blq6ozFKKK8fsUMma9TzLe1a7/WjX7ICoz1OjH/lGT6/i+R4SJdh7XDQkv9i2LUuzfn2Wn5Rkbn/Anod8Z5KuFDyJKbsMpcz3tpBxI6QNhkjDY/dt21gKFPtORkhd4SQoIYQQQgghhBBCCCFNOFlGCCGEEEIIIYQQQkgTyjArRCGZX+7qWh5rk2e1RrHK8giJMOmSQIYsd5YR/XwVKa6IdDaZVJnkXQYtCSmTUHwlAHmJIdvJS5lyk7yERKMtq+37SofMyJ2Sbg3c6LqnvESPQExa8JW/RB2DaxbxskxcY1JPR0Jbs0bf933xikjoc6wOzz8vPMO19nQ7A4C1a/X9jRuzbVu7M8tOntdF41UVbbUOvzGqiroZm26yNS+L504XF6xXQgghhBBCCCGEEEKacLKMEEIIIYQQQgghhJAmnCwjhBBCCCGEEEIIIaQJvaR0ATZfYjH8AYXk7e87rHOfZbbrxCB2SPQQnwbbt2fbu3bpx3bvzrblvcsI3+Yx23aRPgJcbjB8fc5FN0Lsa6HlKwpznde3nXl7A/3t/VjUzU+L6TrFbONzDA3Z89DGl+mp9gdgL0vfscbRhHKPrXv26PsrVixsg3nNLnIp4+Vnxbet+vrKk7TWZZbGNSbZ8jDP82kP0mcoENY3fft23XzAFDkmBeUnKjDUn5rtnrSyN58vI9l+bD9udatzSey2qqUZHO48jWGTb3mH2GprG+Y18/aL2fF99C/EvvVex8b0NOZ+DrppfArB1Z7KGqdDnoUL5WHLy5p3hHfouednkuTOqvZ0f8sn7WC9EkIIIYQQQgghhBDShJNlhBBCCCGEEEIIIYQ0oQyzQhIor2W1Nnnk8KC+vHZKSE+GJ+/LDpjaKJu+x6U1kXnI87ZsseYxIK4zMD5ut8Fqj9k8LQXh0PvJ8nVJnnylOpIQSZ2riKVEU9LXp+/bJGwueWze5eDSbrM5SbvleaZ8VK/ynLIds7A2bcq2RVtrGO1uCu2XlIdIRFvsljbJbVFgDaOtyz6iFZ7ZJ7Zty/IQ9zRrSFSqkGUOQEglB+1L9uUtaWkAYOPGbFtWhqxXQ0LSkPuynvv1MrH1OVdftFWLS54nq9zss7b25epXIWNSVVQhu3GNq7a6NdvdgCj0AbMCJLICROOY6rdLxHzLpG5S6l7DJaeKTVl1GSJPb8nDQzrtShNCiBTbVw5n4iWjjUwvtK0YlFXesQmRZfvm4SoHLY3jhSNECtryYjGXxnjH7KZ6IqRsav4KTgghhBBCCCGEEFI/FCjX61VYr4QQQgghhBBCCCGENOHKspoiVFc2BUjL8tp+KcmyScIAXc4k87Btm3k8+GC2fe+9sGLq8GzHbBF6TCmaTSZjnuehWXLJdmR2RcqfTDml7VpLluj7PvbFWFJtU96ayKqU7VZuA3o1+0b6s0bWMw2SF3MsY+83I0p5YGt2w+Y9SBukfFBmYPaJiYn2mZsFJPufpmf1ixRWFmZ7lLerSYfM+tu8OduW5XXFFdn2qlV6GtmgHv3o+c2BNWsMq9q3IVcb1GVO4oBD8iQV6Wa12mQSehvS7bRFmTXtzht5tUhCoiT62u2SqVrHrkGHjlZWoMt1gWjUA6Kid07qEmRfGW0d6qlu5JXQ1SFSX+wIoaVJPCNI0WISI5pp7DqvQhJZZ3ntYsAqlTR/X9l8kfi+q7neF33w9UlgfN+wuK+JwVzWSkXNlpDS4FsaIYQQQgghhBBCCCFNuLKMEEIIIYQQQgghJACuQOpNWK+EEEIIIYQQQgghhDTp2pVlO3fuxIYNG3D33XdjdlbX259++ukVWRUPm8sx6aZnfNzQwAsJuua3x+V/RerW5XkuHb48b8UK/TxpoMsvWYhjMNOmdnnBrrcv0v+YC5sruL4+/Txpn8PtlrafN0S3y72BtHXPnmzbrPKB/syG6enMBtNnmcwjBGnP8Pi4flC2d5eDNYHNT8fUtF6O5n3MX2ZEP2/U1qb1TqtnIuyW9Wdec2Td4fPbA5hCnZjtH7Ae09txdt409DQD69dnO9J3lOzzrg7sOGbzX2W6A9GysDmqMxLJNjQ97eh/NgdkgmHj652ijGzmALrfM98xwGaOaZqtK1U1ltow+3J/f1YO8l7v26aXz8jIyvntgTXipmydPs0829YKyN4PQlhMvsxc9xrkd0kbePLXi68NtvPM70P892lpAvwLmdf0tdWVR8h1fYhhQ17fXYu5/8X0YVYH/4HRsb0om8csPsfMJPJ5NeDp0NfaVs3xbiTuc4mQxUjNXnn9+P73v48XvOAFuLeNc3mlFGZmZiqwihBCCCGEEEIIIYR0O105rf+GN7wBp556KjZt2oTZ2Vntw4kyQgghhBBCCCGElIHqgQ9ppStXlm3cuBEXX3wxVq9eXbUphSHVWnfe2f4cl7LR74AhoZLLdUdGrWka00IGZsjKZscyWYtLDWeT8WhLtl3Lmx06IKscQzA4qC9N9szaG5nfrl3ZtpReLlmip5HXXbYs2zarr8gw3za5l5RetsgAJ7ObHRvLpMGeq8m9kWW6c1Kf5x+WnUFK93yN8JRTORWeNj2btM3otHL5vEsFLY+Nj2f2FTmAx5BmDAgDbfcKAANSriC3ZYG7Ct+Utwpk/9u9O9s2+7mmmJAHXRpIiwktzW6bRx7G/WltWoxXZjFI2XDI2BV77LNRpNTHRErDBwft7U7eu9YGXXpUuS0qut+ol7pJVUPoWgmVrOhAGVLefuF8D7FkGEOOWlR6M4+QthGjz/vakDfvqmyoA2Xdny3vGDLckPbuLdeVD/iJCf2gHHvEeXIIMFX+8nfBvqs6H2wWq3yYkLLoyl712Mc+FjfeeGPVZhBCCCGEEEIIIYSQHqMr//d55pln4uyzz8Ydd9yBI488EkuMJTrHHHNMRZYRQgghhBBCCCGEkG6mKyfLnvvc5wIAXv3qV7cc61YH/+bSYikdGRpqn8Yz6F8LUrZjixRnyoh0hZmQNQjZJaDLx3xlmFL9oi3/NjOwLG92XshygwMtofCKixgj68+3TGQaKSlyEbI83bRHRqyUc9B6pED7TUiJ7vCgPrzYrjvgOQrJKm8pky2i4cloisYNNizRiSQueZ6U9LVktXFbti3X2fu2VYcNcpm+LRqqL9Ejs0kcciM9jW6DGYF0jgGpbTS1qRbZq5mXlF7K4aAl4qgchwYzObHv8mtTFq8h24DNCFMjKAySsnFXoEZffGVl1sCPkcktHXEYZ0ruvWwY1CNN+8iFulV2WaaMLG89O22VbUCMFeaYXzeZUt3sCSFvtFAgLMplXrpJQukre43dnqqQnNaxXvQAmPZxf9jiwqF/0O6iRL53l1Xenspw0gEKQN+CZ5FupCu7xy233FK1CYQQQgghhBBCCCGkB+nKybIDDzywahMIIYQQQgghhBBCSA/SVZNle/bswZIlS/CNb3zDed7pp59ekkWEEEIIIYQQQghZrHS/qJ60o6smy7Zu3Yp99tln3mdZO7rVZ5kL6QvH4qanI6RWXbp3ki5zTP870u2H67rSp5OsBtMdj9Tsy20tb5eTnBAHOkU63TGw+WSzuFVxpi8Ss0hsXUf3MeYwrkDDnVnbOoZ5g7LQLRk2jO/7+7PHn/TjJv2zAdCdScltpzMrP4wYJh1TqB8Ml6NCS0c3T9u6Ndtevjzb7hc+Ec16kZnI+zPHGnkt3/FTS6P5LwssO9uFPfuLvK70ZxlKSDettU8Ts0GJ/YbWBAdspznx8QMUwweMj2+02IT6MCwLb3tkBdi2AW//pLb6C/IdVaBPVF9Mu0PaVN3aRq9Thb8wF3Wzx4W0L8b4Kd8r5O+cFSuME20v9uI9wnwllHnnLVfffl7r5zkhNaOruss+++wDAJidrfcgTQghhBBCCCGEEEK6E64YJIQQQgghhBBCCCGkSVetLJNMT0/jF7/4BW699VZMTelyqJe85CUVWRWOa5nwxES2bZMUdYJMJ1VScimwKWXqE/Fwh4ba2wMAO3a0P2baapNeakuIHdIab2yF1CLp6jzrkOXSA1rZ63Uuw0eXhVkMtnrWzwtreDFVsC3SofHxzjPxNMgM821FdhqbDtcocJsJMklHNlgoVDIh79vVZ8VNmPcnlQu2YhwwC0FK7bT709vGsmXtjNblnia67Niv7JxlbJNeSj2GeX+Wscs8zVe6V4XEz4VN0lOkPWYZSIm1r7zOhlldvvdUNzmTzdYy7czbpq0vNgAwkk8S2U1StLLwlX75llfscs2bX1X9N/a4WNY4WxZ1uIeWx3TAy1qdJZGuvt1r7SkvClyB1KvUuIvaueGGG/CsZz0Lt9xyC5IkQV9fH6anp7FkyRIsXbq0KyfLCCGEEEIIIYQQQkj1dOUk6Bvf+EYce+yxuP/++zE8PIzf/OY3uPLKK7F+/XpceOGFVZtHCCGEEEIIIYQQQrqUrlxZdsUVV+Cyyy7DsmXL0Gg0MD09jWOOOQYf/OAHcdZZZ+Gaa66p2sSOcS3lHtAUPNn8ZqisTcqKxsbaz5e65JW7d2fbpsLBFmzQjP4SJCuTFzN1XIJZEXmqYYuMaNxgf0C0Kt9lx7a6dZWBc1l2DC2uBRl10SqPrQFmwKHp6az++kdWz2+7lG02ya9Zr/JaMgpS/wq9zQysW5ftSO302rXzmw9s1/PeJaJA2sreaXcdcPRF2yBlShulJFlG6JXS5KEhvby1yIaOsVDKia2Rdw1yj0+uDGzHHI3VKf2y6FZd0UOr0H0U2m5d9+qol5YyslCo7bbnkrA1tszNha/MsEhZry0P831D/r93WNatR9TjIshbJiH155t3jKinMe+jm6TJLoqU5VLaVh9sj+2WYLsi6qUvRQ5RRUp5fb6PdV1CqqQrW3CSJBgeTgekVatW4fbbbwcArFmzBjfddFOVphFCCCGEEEIIIWSR0OiBD2mlK1eWHXHEEfjVr36Fgw8+GCeccAI+8IEPoK+vD+effz7WydUdhBBCCCGEEEIIIYR0QFdOlr373e/GjqYu8H3vex+e+cxn4glPeALGx8fx1a9+tWLrAjHX8tqkNWItsJRkmvguDR8ezI4NTmRptm3Tz5OqBrn94IPWrDV1liu6n9U+U2sncaxbtuZni0hXML5LkL3Ny2m7LB8zIqcta1d7Crm/vJh5yaYiu9LSpfp5K1Zk21LeLDM0u6ItUqPJqlX7zG/L6Jz3bbP3K4mM2hga8dAnjS/e9Szlgg45s8semzzy/vuzbSkFB3Rpt6tt+far3BKanOFezbKT9jijBBdkTwzKihTXgrx3lyRPPphcGl1bWdY5jFkgNtlOjEiGvvJReZ4cc6VEG9CLf1go37V6NeouryzJlT6vRCmGVDKm7IryqeLp1jKO0VZDrmV9LhaM/L3l8jwRgu4hofpou97XtYUuN8fcvOHcCamYrnzTe9rTnja/ffDBB+P666/HfffdhxUrVkApVaFlhBBCCCGEEEIIIaSb6crJsnasXLmyahMIIYQQQgghhBCySFCgz69epSsnyyYnJ3HeeefhBz/4Ae6++27MzupLRrsxGiYhhBBCCCGEEEIIqZ6unCx77Wtfi4suugjPe97z8JjHPKY3pJeePsus8YsN8mrdTVcsvv6BJC6fZUE4NPE2NF8HNdfNy9vzrj/d2UHH1zSvY/ODV5Y/ihi4isTmG8J2jolvEdvuqSXMuCU/13WK9HHi66NIs8Hhpywk776+9t+b3Vfuu3wgevtdso25LuR5jkEuxPeThqtRese0b39PsUPLV4J5b7b6M51eSX9mE8LpVUj9O4hdxrb8vH0Yej4/G57353vdEL9nLl9B0jzrs96415htPPS5WAcbqibEt91C6TrNL4Yfvl4kxEdqWeR+lgZStzIpy5+kE/nO5Bhz5/eTpPNrEFIDunKy7Jvf/Ca+9rWv4clPfnLVphBCCCGEEEIIIYSQHqIrJ8uGh4ex//77V20GIYQQQgghhBBCFjHVr70kRdCVk2Vve9vb8JGPfAT/+q//ikajR5pmbIlgTnmeCymTMs22KUZNE7yWDUvtJ6DfkyNz23LiOiwh70V8JUYxm6RtlbeJKemzSV2l3aZtNlngkiV2+/T2bc9bNuOhIXt+0r4Cu3YQMeyR5TU0lN3rzEx2jq0eWm2wt0GndMHHeM+xxhdXes3WkIKtQ+OIjLfsRnYs8zkikWVUUnk5253FhtB2ZusXQe0pNsK4WYeU21PpbMe4V185VYjsqpvkej7SRJekncQhujSuQKpq33V2FVCH+osxJgXVre3ZVYfnCyER6aoW/exnP3t++/LLL8d3v/tdHH744Vhi/Gq9+OKLyzaNEEIIIYQQQgghhPQAXTVZtvfee89vn3baaRVaQgghhBBCCCGEEEJ6ka6aLPv0pz9dtQmF0bKMdnA4X35C1pA3AhWgBz2R0ihXhLoQyYRWDmMrO89gsRF5uXO3yEjMdmdra75B8lxtX8ojXUHk9MBA7aWXy5bpaWTeLtmyvG5ZMkxfCUFsG0ZH2tfFtm36eQ8+mG3byjHNw/PCtmi7jgxC5CEh0owYEcCqiiLWKY3JnfoXovx9n2uarG9EpAkNy1yB9jmGhMdmaplSJuu1PKPoakkiF32REeVC8vOWZXumCTnPds1OyDvWNLY/kO0YfTaojDffke1IWXaJEdKLbBshNsQ4T1K3Z0pIefved+x7tbkHMckb1TU6om96lZ1SBRpTPQr0WdardNVk2Ry//vWvMTMzg6OOOkr7/pprrkF/fz8OP/zw+e8Of/GlJVvnz8DQWNUmEEIIIYQQQgghhBBBV06WvfrVr8brXve6lsmy66+/Hh//+Mfx4x//OPvu8V8q2zxvnnnDh6s2gRBCCCGEEEIIIYQIunLF4DXXXIMTTjih5fvjjz8e1157bQUWEUIIIYQQQgghhJBeoCtXlvX19eH+++9v+X7r1q1IkqQCi8JI9c2p1rxIHyK+IdElw4Ozxn77/EwfTowYTGzkbRsuv2LSDYnLvZBP2zfPGbW4OfLts75+/Fy2yfsNKcfYocXzjle+Y5Ich4Yn3HkslFdH1Gwgc5V9zNDwMfyh+XzvvK7pnE6eNz6e7QTUUXA/iHituvn2Wczk7lfGC1BD+tcryc+g+b1M40pvOy8GPvfrLO/Nm7Ntw69YY0I8CCzl3WLPlVdmO/JlYf163aaR0fbpI/u8KtNnYAh5x6gifZ5V5e9Nkjc/V18Mwbefx27HpBWWXG/SlfX6+Mc/Hueeey5mhKf56elpnHvuuXjc4x5XoWWEEEIIIYQQQgghpJup17/PPfngBz+Ik046CevWrcNJJ50EAPjxj3+M7du34/LLL6/YOkIIIYQQQgghhBDSrXTlZNnDHvYwXHPNNfj4xz+ODRs2IEkSvOhFL8JrX/tarF69umrzgvBdOltVaGPbdQf6Ow9zvNCxvOQNg163pcpFLmkPKZOi79t2Ld/l5KZE00bu8PaeaQbEKFt3mUbecSNUXhBSF779vMy2a6MONnQNUmoJANu3Z9sujbUg7zPARd5xo271H+NdoW73FEMC6YXZBrX2OVDcdSPg2ZWqQUotr7tOPyZ9GUhJpYsjjsi2N2zItk3Jt0WGWSYx31/r1i9j4C2l76K+WOTzykaZbYOuB0i3U7dHpDcPechDcO6551ZtBiGEEEIIIYQQQhYpvTc9TQDWKyGEEEIIIYQQQggh83TtyrJeIIHfUtiqpJe2vEOiKJUpbYwdqU8i76Os5e5l1WuMNL5ll1ei65LaxY6qFELefhGjjH3z8yXvWBU7wlbIvVZV5zHHh9gRK2MQs1xnTcnM2MpoeZsUKb+uQloTIoMOtacOUelCrlnkGCn1jDHuO6QN+d6Hj/TS9zkU/T1CyiEf/RivdM781h6c7YhtM01sNwQ+mHVpK1ffuvCtF9/nVd66jeGKIaj/eGqL8/ax0OjUeSly/I09ZveiHJgsLtiCCSGEEEIIIYQQQghpwpVlhBBCCCGEEEIIIR2iwBVIvUpXTpa9/OUvx3nnnYfly5dr3+/YsQNnnXUWPvWpT1VkWe9iW0YrA86Y9HtGAQxZau5L7IhP3bqcOK/ddZA2xpDyVrFEPrbcwZV31ZH6YkgEC5VJRaZu40Hd7AkhdmToOpDXVvM5W4fohXkj+xYZsTtkzC1STuVq0yG2xpZ4xoxGTDojRgRpX/KmiSFvLlIaHvP+fAl5Ly2zj5XVTgjpZbqyR3zmM5/Brl27Wr7ftWsXPvvZz1ZgESGEEEIIIYQQQgjpBWrw/0l/7rvvPiRJgiRJsHXrVvSLf6/OzMzg29/+Nvbdd98KLSSEEEIIIYQQQggh3UxXTZaNj49DKQWlFA4//PCW40opvPe9763AMkIIIYQQQgghhCw2ulKuRxakqybLfvjDHyJJEjzxiU/EhRdeiJUrs5DyAwMDOPDAA7F69eoKLYzH5GS2PTiYbbt8cIVo4vP6EzFtkPZt355ty3tol65tBp6OWUx/LnLf5lPNlbVpa0xi+2QLweVnThLkF8dV+KJgu9X3kDeiAzfEfZv3KotooKtG4wznWBHQn63jmK+DRELyUgMnYdIE+T4A6ObI55XLj1Ctx9kalHds8vpCKjq/qq9TJt10H91kq6QX2k2Iv7huvdcYQ67t3mv9rCEkgK56I3n84x8PALjllluw//77o9FghySEEEIIIYQQQggh8eiqybI5DjzwQOzcuRMbNmzA3XffjdlZfXb79NNPr8gyQgghhBBCCCGEENLNdOVk2fe//3284AUvwL333ttyTCmFmZmZCqyKS1kqhACVlJOQPLQlzQ6DbJIS32v2gLIjGFl2/f1Z2UVXv/hqh8R2aOj0WiPvVWvTA9YkrvuOGZbdRR1kW/oQIMYGl+Zb4BvSPgZllZdL9lGH/pJXzq9h1KuWs2XcKLMMyrqWTWppHvOlDn27SELuL3c5GM+42cHhtvaY5K2LGPXnk4fvdXzHJN/xoLHl7mxnbEzPWzxDvccXi0+QWeN5HDJeVSXJs7WhIvt53caNGG5NYvdF33e1EGI+Z4v8PdSt0tS8KNBnWa/SlfX6hje8Aaeeeio2bdqE2dlZ7dMLE2WEEEIIIYQQQgghpBq6cq3Nxo0bcfHFFwc589+8ayveeNX5uOK+32FpYwnWLtsHHzv2VTj6O6/HYaNrMDkzheX9Q3jdoafipQc/CQBwwe+/j7de/WnsN7Q3Jmen8Jp1f4Q3HfaclrwvvetafOg338Alp/y19v2LfvIhXHnfTVjS6MMJex+KT5zwOixpdGXRE0IIIYQQQgghhPQ0XTlj89jHPhY33ngjDjnkkI7SJUmC0y4/Fy89+En48klvAwBs2Pp73DW5DYeMTODqp58HAPj99s04/fK/w2yS4GWHPBkA8PwDTsbHjz8T9+5+AA+75Ew8d//HYv9lq7yu+6K1p+Dzj3kLAOCFP/0QPnnzf+PPH/oMZxrbEtnYS2cH+tsvQQ5dbm1TUboiVmoSkwihKC1qv1pQh2Xscom0KwKjrT04l1i76k9KVkZG2uZtUgfpUJDMoqSGV2SZ5I2oC8ApO7VdS7ZJ15jUIssMsc9iQwiutpq3HYekLytiXozzNFulZMpESLJiSFOteTjaVkiE5bz45u0tcyswKrNv3tp1PMeJEBtC+6LXuL95s573mjVZek+5oG951TnyXIj03fnc37Ah21m7Vj8m9r0lmTfdlG2Pj2dpRH25bCpSUus9TptuLWQejojbQdcqkELf6SxRyEOI8Uxx5ReT2FLgkHc/r6joSZLHLEIqo2ZTCW5++ctfAgDOPPNMnH322bjjjjtw5JFHYsmSJdp5xxxzTNv0P7zrGixp9OPMhz59/rv1Kw7Gxu13aecdPDKBjxzzCrzl6k/NT5bNsffSUawbWY07d231nix7xn7HzW+fsPdDsWnnFq90hBBCCCGEEEIIqS/V/+uCFEFXTZYdf/zxSMTM9Ktf/eqWc1wO/q+7/w84dqXfarRjVh6CGx7Y1PL9rTvuxuTMFI5asdbPaMGe2Wl87pYf4rxjW+0mhBBCCCGEEEIIIdXTVZNlv//970u7lrlY9Cu3/gg/vPsa3PjA7Tj/hLMw2Ne5bOC1V/wrHrfPETh5n0fEMZIQQgghhBBCCCGERKWrJssOPPDAXOkfsdeB+PqtP/U69+r7bsbDRzN/BnM+y352zw049bL34umrj8XPttyA9177JQDAJx91ljO/9177Jdyz+3584oTXeV3fR9cfqk0P0bf7nif9Ddl8D/na5mtDDN9KRfoDiR2O3Mem2GXi9B1lu5bhMyJmKO/YYbhDfcrkRfoiCrlOqF8NG75lUqRfI9/zYvvuCulXsX13EWh+yQDoTsLEtq/POl9868i3z5bVR3yvGftZXxZFlnFuhP8rAMC2beLYPrmz96mL0PrK61esUI44Itu+7jr9mCzzsZV++R12WLYt/cyZ/hFHRv3yKwnteRzBn28lDhcdRB9rZBnZHCiXaY8g5vtvKLHvr2MfvkpFvT4hZdFVk2VzfPazn237vVIKg4ODWLduHR75yEe2HH/ivkfhXb/6LM6/6Xt41bqnAQCuuPe32Dm9Wztv4/a7cPbVn8JZhz6rJY8TVx2GP1v7BJx348V4//qX4rT9T5w/duld17a165M3fQ/fu/OX+MET34eG4o8mQgghhBBCCCGkF1C9MCHIQAwtdOVk2ete9zpMTU1hz549aDTSyafZ2dl5R/979uxpO1mmlMJFJ78Lb/zl+fj767+Owb4lWLtsX3zsmFfh5u2b8cjvvAGTM1NY3j+Esw59Votz/znefvif4JjvvhHvesTzsHzJsHbsB3ddgzUXnTG//7WT3oEzr/gXHLhsH5z4328FAJy+/4n4qyNfEKMoCCGEEEIIIYQQQkhEVNIlM4hKqWTO1u985zt473vfi49+9KM4/vjjAQBXXHEF3vKWt+A973kP9ttvP7zsZS/D1VdfjeSF36rSbCfPvOHDuPiKHwanjykvqgu1llwYhCyXzhsmPhRfOaPPeSFh4kNsc9nQTVQl5a0zIWVS9zKo2/gUA1u/L7MuqpAz+lKWbLmOFCkX8rmmed06tNXYxHS5kPc6RVzXRgw5sU9+dWgbMe61DvcXYkORY3sdXEqUVS9FyjV93/d9yvu4E07AlVde2QNLr9pznFLJlT2wskwlyVVJkhxXtR11oivf4N785jfjvPPOw4knnoj+/n709/fjxBNPxEc+8hG85S1vwdFHH40Pf/jDVZtJCCGEEEIIIYQQQrqMrpRhbty4EcPDwy3fDw8PY+PGjQCAgw46qGSrCCGEEEIIIYQQsmhQqrJgGVHZs6dqC2pHV9bqCSecgDe/+c343Oc+h4mJCQDA5s2bcfbZZ+NRj3oUAOB3v/tdlSaWgu/SW1sAHPOYq4/bjpl5u65ly6/fEjXTXMrrG7GyrIA/RcoHZd4hZRpynRjnacZOTtrPGxmZ34wd0dGXKqQLvv3FrMv+/nJkRXnlSzHGJFs7Dm0Xvv3HxwZfekWSVwdb88r9Qtp03ut0cq0i+1mR5JX2x6abysSWpipZYB3kiEVSpKsI3/GpDmUc852njpGgY8qJ6x6Jsiy3Lc68C4xOTUidqP7tIoBPfvKTuOOOO3DAAQdg7dq1OOigg3DAAQfgjjvuwCc/+UkAwI4dOyq2khBCCCGEEEIIIYR0G105FfzQhz4U1113Hf77v/8bN954I5IkwcMf/nA85SlPmQ/b+pznPKdaIwkhhBBCCCGEENLb9MIKO8owW+jaWlVK4WlPexqe9rSnVW1KIdgUbIOD9jTbt/udJ2VJvjJMiVyWO+CQi8l7MPO2SaMG+mcXPsnIcNs2/ZAsB5nFsmXZ9vLl1uyKHeukceaFBofbnrZrl37azEz7rF11Li8lzwupcyfScLNixsbmN2PInCQxl6HHjl4pt6en9bwffDDblvXa16fnNzSUbY+OoHJCykiOB+b4JpqGXpeeY4C0RzZBoLX/2FiyJNu29RHXOFbWO1KvSDxDKFQyIyUlZv79A/PbZvuawxx/5bMwxIZufekusg3Glse65EY+UqTQe83rwsGVPqZ7iKpkhVVFA+9WQqSg8ryQiId1INge248TzzG3Ds/gyuS/8hkl3/HlS5xRjnVrN4R0Sle9jU1OTmJwcBAf+chHnOe9+c1vLskiQgghhBBCCCGEENJLdNVk2Y4dOzA4OIh/+qd/sp6jlOJkGSGEEEIIIYQQQggJoqsmy/bee28AwC233FKxJYQQQgghhBBCCFnUKNW17hOIm56q1T/84Q9461vfiq9+9atVm5Ib2d98fYzJY5rvL8NB0IB0rqI5+LJcFNC16TI/47zG+Pj89vCIdK6kGzswaGl60p4tW/Rj0u6JCetpcl+aKiX1chvQy1IeG/H0D2UWl8xP833icOTWEPcnfVvt3u1ngyw6m887QL8nUV0AjHZjw7xZmw+DzZvteYyttGbn86xpTePpk0TrQAPIQ4jd5jkrVnSWvkxi+r4BgOHB9tuu6zZkZzYLXPSXhmjUIyPDCEH2C1+fLbY68y07l19Hud8rvnV8KNL/Sotvnu0PZDvmg0SeJxrHqHhA7JzOxhBzzLW1p5b7sz3gJUbjkKfJ6/o+r3oRXx8+Mf3nhPouCrHVeq2WB5Hfc80n714Zd/LeRwwfVV51GZi3zUdqKD3vY8pznJX4vhP49u28+Prhi+6vT5aRzRHtYn4QkZ6kp0bEbdu24cILL6zaDEIIIYQQQgghhBDSpfTUZBkhhBBCCCGEEEIIIXmomfCHzGFb6Wr7HmgNXb/wAXgvl50dGfU6z3d1s7YE2KYZNBMJW3dOZvO8Un7oykKe58jaqYqxrdL2ltDJupCSRYORkZXW0xwqWEd+2baUmbbILm06X/m9WeCalFec52hbttXbpn0201z3LY+1yP3EPdmWy/suY3fVuWyfLqmdbA6x5RMh+UWXEATIHbR6HlttzUpm4RribCphM43cH7CYFyK9dREQtd5pRFkSkKqwte9gmZRt4Hc9VESHHhzJJG+uJC5mhWyu4dkIpKm7dmXbZpv2yc6029Ymnc9wQZkyWtuxEJmbS07la0OIHM51npc8sm76/S7Ct86LJIYk07ftx3StENrPbbbGeF7Z8mvJ2/J7psh3sLzvZmYeEt8xxFkmntfUriVf1uWDpOVBlM/lSddAn2U9S++9TRNCCCGEEEIIIYQQEkhXTYE++9nPdh5/4IEHnMcJIYQQQgghhBBCCHHRVZNle++994LHDzrooJKsKQ+bms0pi7CFyzIT2paMGmkannJNKV9yLju2RdeU26Y+RIRulLdnRnS03brcDpGrhGKtFxNxTMojBwf1BaA2WZ+8J/P++vraX7JlKbZlubRTHiSPebaTEPmZLBNTJmdbUu4rs3DJAWzqrD179DyGhtqnkeeZxaNHsBUHXOFMPaWuIeSWabgkuhJHBxyQ2+K8UMmMjJTqinTrFQnWQWN6Sl7Uep68jyjjjkU67SsnDqFIqZ2L0mRSZv+z6Hcba7Ly7u/Xo7Ba+7aDkDpasiTbDnknGPXVMLteFwOiyBVJjLbuI5syH+e+9ZyXqvpfWcSOxBwqOevUhjpI38tq+7GfLzHKsaxIt0WeV2QeMeSx2nnyJUo+AzZt0jNfe3CHlhJSL7pqsuzTn/501SYQQgghhBBCCCGE0GdZD1P9v0EIIYQQQgghhBBCCKkJnCwjhBBCCCGEEEIIIaRJz68XPPySV1VtgpWBsWXWYyFhy7VjMhz9iFHN0o+QzTeS6YzD5tfE11eJ9PliXlfm4enTy+WqyeYvambGnkb69JK3Gt2nkCwHh082mWZsTPcjZvM/Jn3XhPpjkm1Ir4rs+wHp+Kn1xAyzzYg61+wZzO9/xeanzqy/YWmSOHF2MPM3ZFbLli1oe8zM2+Y/LsQ/W0vZyQtXFKLbWhc2x4CA21bbeZZCarjSS4z2OGqOfx7pZi3l6OxHnpUbMrZr92T2t4DrFulbJyS8fUjezvxEGWnWuMrKHNck0gfL5s3ZtmiTw2vW2NNHZnhwVmyLA2bbkPvSbjmomU4/ZTlIn4GBY4u1zlxtWiL98Bn1VwcfURLv9pkTX99Dvml6gTLbgq8fr7zUoX2HtOkQH3GeQ4CTXm/jZeGqc3lMO0++nxnPQtYL6XZ6frLs+v88rmoTrDzzb2+v2gRCCCGEEEIIIYSEQJ9lPUv1/7YghBBCCCGEEEIIIaQmcAq0rli0ZFKGYC51tknRBk2Z2+Bou6zRmNzZPoPWDO122zBn2206SikJMfVwmrQmW9Y7MmIvB7ntmvAv9J8B0giXxtNihKu4bRK/lmXPtjXujhu3lqNR3jbpn1M2JzIcCJDWmOfYlMWmskpbNm65d7OoZH67dtltGhrKtm3FatbLAOTFPBuor/Q5gBCZxXR/JmEdGDfq3NYGzO/tg1fH9jSMCrTJx1q7RHbedM7hziWVtEkcvOvOc9zoRUqTc7gkmUG66owQCZ0Tx0NOtv2GlMbI+3M8m2PLwKzjr285tvQry7MnguTYp63VsevZ7t0shyqkUb7yrqoIKRPbPbnuZzHJ0syfErbhKkZf8m1DMes5BmXJt31x2eBlXx0HRkJyUP3TiRBCCCGEEEIIIYSQmsDpX0IIIYQQQgghhJAQuKquJ2GtdgOeWkJ5SAZddAVPW7o0216+PJNT9Y8Mw4ZmjsMGyXaMavtS2jSAqWzHFcrQogs05XT9/Q2x3d6eUpE3OzGRbbsilznur0VW24YWyUVAxDxZjrJazMCm1iiQg0YbEvt5l8GbCl0Z6M0VnHGZCEC7YkUm4XGVjk3BKqOPAnaFrexjJjaJoGn3sMzcoQuMuZzfV9KgdVlDottwha2VmBH5PLBG0urX252UVD74YLZ9//32vKXZssv6SplckQOD6sXRf0Oi35UVGbMsWu5Byg9jRHAbW9l+24H1uo5xX0rXvevFc2zX2qTnPRSJt0xNDva+44ktrw4IkUvb7qkqCWQdJF02Yow7dRu7QqJA1lGOasNlmxzWtm7Ntnfvtuen//7Itn1dH5TZvnNfyyPadjdT53ZLSF7YugkhhBBCCCGEEEIIacLJMkIIIYQQQgghhBBCmtRBpEYIIYQQQgghhBDSXShVE98/JDas1QpRSOZ18Kbee1b6d5qeQqe4fCbZfAP4avIHRN6+vjhGXa5GtgunQtIgV8xpTz9uPrYBFentDbtnA/zs5MVVfwP92fbYmMU/FOzVYmKrJpcNNr9Upt+0LVvaHzN9m0n/U5KhIbud++6bbc/MZNsuvxqeLsas9ezjl65ofH2peLsRkhUzNmY/z7Nv2/zruZBjn9w2L+s71FQxboT4xTGx+WAq8n6K9NtUR99MVr9ErkHSQhS/a575FdkGvOtJlpH5HiAZGbUfy0kd21RdCenbsdt0DEL8P9aBvD5gYyPfp+Q2YH+k132OIcgfrGWsj+GnLqZ/2hh51L2PEJKH6n+REUIIIYQQQgghhBBSEzhZRgghhBBCCCGEEEJIk5ovfF28aNIYS5hh11JeKTczVwJLaZpviGYNGerePBayllrouLTlyOP7dJ5XjxCyLNslp/KVF9iWdvtK3mTb2rNHP6bLfztfQi7VOFJ2aV7XJZuTx6SkUmL2CVsfkTJVJ/Kipi5UZi6MbdRdkyDwlvHJCty0ST8mZZmyTGR5mXIsMW40RBrTBlmUtStWR2O1laVLxedq+z73XqY0yjbWmPdXZJ3ZbChU+uX5QG64pMoWfMfzTvIoDF/9foDLBWt6FyUODrElVFUTo23Fbqt536HKInSssdoqn5MhDwHPa7qesy7XDDa7Y4+5efuYyx5vW22uVYz3wIblN1AvjA2LCvos61m4sowQQgghhBBCCCGEkCacLCOEEEIIIYQQQgghpAnXC9aEkOgovlEEzVWhNnWHc/mvr5Rhsn1kyzIjGvnIaXwjxRUpNwq9bhXL2GMQEATOO70teJpv5M5du7Jts78ESZUlMsMAaVXRxFz270zvWp4uZQk23eT4eJANedtxHSKN2WTGgC55sSlYzWNSSu0ad2z3HruMJb4qhhjttoqoww1zQHFFeywDl+41RMLoq6P11UeLfm9zSWGilXeBspgYUq2QZ30dcPW/kKiSse9V5jc1bX8ftlGVHC73+2fuFxY/Yki+XfnlzTvkueY6x7cuglTjWiK/Ma6KZ1eZ1yWkTnCyjBBCCCGEEEIIIaRT6LOsZ6EMkxBCCCGEEEIIIYSQJpwCrQkxZHcxpTAtefkuDRaz6mVKLyU+S7a3bdP35cr14Qir2KUESm6PjDTEtp7GFn3SlxjLo/NKAMwImBJZxiFL6WUETVNpINWNcltGhQXskrXFTAxZg+17LW8ppwpY2u8rO49BoXJUgZSVudRrsq2akWDlMRmh1RW1VrPBU0oWu0xCpFq282LI6kuTtRjPUi3qZV6tuoHXPbn+Ex7yX/KANM7+6/nuUQd825otYGGvL0rwHU9ijDsyD1vkat93aN/nS4wxKYZ8Ny+2Ycgm32+3H5M6SP98f4dZZZiefkRcsvG8z0xCSBhcWUYIIYQQQgghhBBCSJMe/z/WwvQ96RIcedDo/P4333ccNm7eiT9+z5U4+CHD2LV7Bs88cV986M8Pb0m7cfNOPPOdV+C6Tz9e+/6t/3Y9vvXTuzCwpIFDVg/j029fj7GRJYXfCyGEEEIIIYQQQkqCPst6lkVfq0MDfdjwycdp323cvBMnH7kSl7z/BOzaPYNHvupynHbSBB575EqvPJ9y7Cq8/1WHob+vgbd/4jd4/xduwgde8/AizCeEEEIIIYQQQgghEVn0k2ULMbS0D+vX7YXbt/iHd3/q8avmtx99+Bi+ftmduWyoyveXRPrdkph+t+pgqw+TRnXa/hkQ6mdH+naQrgqkrzTzmtInl7fPI4tvj9BwzyH1J8ty9+5se+nSjrMKRpbxsmXZ9l576eetWJFty/KX7dt0LSHvT/qHqoP/o6qua7tOiL8pX1p9erXvY930jz2b7yIT6XOnr8/uI0W2SZdPPl//KzEpyzdajLx9/SnFQPNhJrZjlEPIvZf1DI9xf7Lty75kvpfkJcTXlsR8f5J9U/Z7+h5Kie1/1fecvG2/TH9jRfrs9HmGxr4H32uF3HeR/cp8L3nwwfbnDQ6KcX7E8FuZ074Q/3hF+wwkpJfoop8VxbBragbrX3k5AOCghwzhor89Xju+9cEp/G7TDjzuaL9VZSaf+s5teP4TVue2kxBCCCGEEEIIIYQUz6KfLGsnwwSAH117H456xWW48bYdeMcLDsHEys5D5537+d+hv0/hRU/eL4aphBBCCCGEEEIIqRPdJG0g3rBWLcz5LPvtbdtx0ut/itNOnsDuqVm85iPXAgD+5mWH4qhDRq3pP/Pd23DJz+7CDz58IpRSbc9JoGorWzSXFst9KSnYtUs/b/nybFtKDYpcyhuy9L2vTz9mDfFsDHy+S8Bt5SUxpSIu2VRefJdV2+7PdT82KdkSI6ZF3meItMFsn7LsZmY6z0+2YyklNZHS0qEhuw1SIijhkvZwzDrfujXbdtX5+Hi27dsG88rXfNO42rRNSibH2NiEts8iJUF58/O+J1ObL4k4OJcprwy5VpF1KfHN2+wXEvkssr2XrFrlcEkQoN+OUSa9IL3sJrvr+p5dNj7vd4C/WxJJkWWc1+1DDGxjrll28v1RvgO7HiF5389DyqGObkQIqSucLFuAQ/cfwTtfuA4f+NLN+NJfHqOtQtu4eWfbNN/9xd34wJdvxmUfOxHDg31tzyGEEEIIIYQQQggh9YOTZR6c+ewD8aGv3oxb7tyJgx4yrB278bbtWPO878/vf/R1h+Od59+A3Xtm8ZSz/w9A6uT/3958VKk2E0IIIYQQQgghhJDOWfSTZdu/8/SW705ZP45T1mfanaGlfbj9a09pOW/txDD2fP/Ulu+fd0q9Hfr7LLE1ZWRyWfbYWLZtLi32lhfYtBUuzUVOKYy0Z8kS+/3F1pzbsjO/zxuhLmQZvCtqpr7UPDvPVCvJKpMyRVcxhkTlkdIaGVXUxDeqoMxbLpe//349jZT3yLzN5ihlc/KY3B4uUGpbC8zGIfdlQ5HaSE+GB/V2IqPH2qTO5jFZRyGSzNiMjvi1fV8bSlISlkqhskDZOAoMpxhb1lKkNLgKXLbJdxFX+7ZFxly1qvVckbmHdfnboNmc6lwXITijb+eUusaQ/vm+W1URJbjM+7NRh2dhCGVKCW35ucou5N2jLIk9KQCl6LOsR6nXyEcIIYQQQgghhBBCSIVwsowQQgghhBBCCCGEkCacLCOEEEIIIYQQQgghpAnFtaQtprZ9NK4LF13XLYX90r9Fgf7LpN+1TvD12SDNs7m/8ZW2m8VgcwESw+9EiI8bed2hoWzbrCJb1fr68ZqZaX9NAOjra39eC+LCDbE9NpYF7tizR09i85Oz1176vrz3kHrpCcybtd282ahlIcuGY3P6AaAh8pbj09S03r59XebE9I3V4gtneirbkQ735P1NTOhpRDnsnPTz2yTvr8VPkrQhcqPMW16+Y02hPoU8O23uduJ6rkWulxAfNbXwSyQaeUNsDxsPbvnsGBtr78OwpQxk/5N1YXYYS3vwrf8ifVF1E7P9Ax2nqVvZmXlFHe+c44G97LR3NTm2y+vU/OXDVo4x6q5If40yb7OI16zJtm0/bWJUS7f4o1xU0GdZz1KDtyJCCCGEEEIIIYQQQuoBJ8sIIYQQQgghhBBCCGnC9YI9ik3VBHgu3zWXhtukC+aSU5vm0Fc26ZLCiDx8l8GHLFWOIUOxyaF27fLMQJSxuRC/f7BzWUNehgezsusf18tHLjWX92fe65Il2bbvSmVZZyMjDbGtnydtkG1/9279vClRmgMWG5Yv1/dtsk4puwT0Jr5oV2I7+qxTPygrcMuWbFuONfIcMz/RIAYMOaOtnl3YxooHtuttX7ZD5/hiGxBcEhyBa8j1lneIg77ylyIleSGSyhAJpPO8kdEs78md2fdmW9PSiPpzyKSs7aHEwaEWkkoPWuwczGTxmpRs82b9PDFWaLJsbdwxHhY531GitDsL3SqnKtNu2xhQpA2F9iNjPAi6lszD8ZwNkcRWQYsbA8+6jS11DEHaKt1DuNpqWZJRSZl9tlueQ7mhDLNnWSQtmBBCCCGEEEIIIYSQheFkGSGEEEIIIYQQQgghTbhesCaERP8xV1tLpaRUK5irQteuzbaltM0asc2FaYQtkp0LGeFKpndIlGJGrouBa9m4LGPXCl1tKXaR0dgsefnmN9Cvp5H3J6vcpdCVVeu75F6mlxGHAGDTpmxbNt2NG/XzpE2rJ9pHOOvv1+2xNWlXQEebmtjM2yYbaCkDmbkrglu3YhsrXA1Kjhs2HS5glW/7jrm6rCKCdGFQC+GXbZt2i3oeFfUc2ud90sUYS6uQSUVBti+XJE9G1HVIW2OOzXV4xsXGt/9p0rGJ1fqJYj92ednsixENk5QnNyviWkWSO+JvzkjxMYgd8NdXSihdLmhjSKCs04bvGGA7FtseX0J+Z3ZtRGVCIsLJMkIIIYQQQgghhJBOoc+ynoXTv4QQQgghhBBCCCGENOEUaE1wLcuVS5qlUsdULsnV1+vWZduuAHWa9FJqN01JkE1XJmVEprESU9YpjZfHpL7ONNwS/c53yXdVS4NlGQ/LW3JEQYpta5HLvAeQ3d/YmF90OFOOKPFZDr5yRK/0kcOy646P222VzdV2HZfaT26b7W7r1mx7x45se9kyuz3yPJm3lLYCwIBntKu8FCqbc8lDbBpdm0QbcEfOjYhvX9TGUoc9Wn4i6p+2DT8ZmIsyI1mWFXHLuy48ZTJ6V8rGkOFBo/5szyut02aRNTuxwXZet0pZzHExpGvmlaKFyI1c59VNEhs7yneR7wdVlV1e+ZhMH6M9FUmMfhHTBlef97GhSHcA5n5MSWYoRY41ee1z/TYN6S+EdCPVj/KEEEIIIYQQQgghhNQEriwjhBBCCCGEEEIICYE+y3oSriwjhBBCCCGEEEIIIaQJp0ArRCHpWNu9a1e2PTFhP0/LV/oiA+w+j6RPIOk7zDwmnZI4/G5pNpiOTDZtam+P9A3jcrYmbn7A8Js2NZ3Z4DC1PHz83QBoiP2dk9k9mNUl9/v6su3ly7NtZ/Rwz0LR6lL6Y9qyRT9R3J82+24aLvxSNdau9bquhs15H4CB6cyG1RNj1rytiLxn++1+1yRm0cnyl0i/ZGY3sN3SyjFjXJi0OOaL4SBIkNvXhOlI0eJnsKWBmr4P5/D0SzZr+PvywdcfyD332I8NDWXbIyNZuynSj4lvmjKp2keJy4eabJLmo1CiPU9NH5sbN2bbMkPpHNTwWVaWH7eyaLHb8hxx+aOMbkMFefj6ryrU/6Mn0obIj4ogyhwXQ8rfxx9TKGX5hZPEfh64ysTX11ZMm3z9afnmEbuOQvxWur4v6/meu1+Zz0/b+x0hXQJXlhFCCCGEEEIIIYQQ0oQrywghhBBCCCGEEEI6RSn6LOtRer5WD3/xpVWbYGVgaMxrWa3se0uWZNum4kmufF2zRiyVdeg1fZf1SjXV5KRdpqZLBLO8V0wcoJ03MD5uyzzbNuV+Ns2aoS/o95TRFYm2VFnKz2RlOu5vWCxb7h/R70fWu8zi/vuz7VaVW2bPqDzWos2wlJ3vA8Am1wWs8l/v5fLSNqNMcssQIrQZeetyW0r1zD5rS9MiL7CdGJm8IehnDSmaKU2bw5Q2zsxkMkpZRlINPuhogrKpuZSgUrYs6wXQi1XmsXu3/boyD12VVp78hfi3W7PryKFZbmPSONH2DPWUl4TIWqqS1NposccyZvrea69TB+ml4zVJa+9VjC8hsjTzWAxZoM2mvO2458dps0EJGuJ9Me87RSd5dMv40pNtQ/o4MJ6X3VIvhNjo+cmy6x//papNsPLMGz5ctQmEEEIIIYQQQgghRMDpXkIIIYQQQgghhBBCmvT8yrJuRYs+KCJxrRTRt2TUR8CQkfhex1O+ZgtKJ6NzArrMaWYm225R+4nodXLJtmtptysaog9VRcaU8sGGVPe4Kkzc34ChCBofby9/cUkutH3HiTIip3XptCk9ktomeU9mRBxxXVvEUjM7iczOlNpNTLSPfmc2E3ktmzrWFTXMt4/JfjXanxkxOm40PHkxh7zSV6oVM9Kba+n8fduyY77lI/Ped0Xnodl8l/L71pFLJSzNkYqC0HHDFuQ3tqI2tgSubnKREGmVbA+jI573Y1aMdBsgI+cOtpcPm1kMONpN3jKW46IM2mkib2Hp0mxbunYA7NJwF9o9OJ7NmjyrP2702LIIlQ/GvK6rH8j2YHs0+17HJO/9VSUnr6R9OV4k8kbq9KXQ+3Y9QLWXKz8XF76SWt88QiirfYbaWVb/C5K9Tqye3zSbxkB/94zvuaDPsp6FK8sIIYQQQgghhBBCCGnCyTJCCCGEEEIIIYQQQppwsowQQgghhBBCCCGEWFFKNZRSb1JK3aCUmlRK3aaU+rBSalkHeTxDKfVTpdQOpdR9SqmvKaUOanPe45VS/6yUulYp9aBS6h6l1E+UUi9QSqm4d9YeimtriubPQ/gpk5g68JVj2bb0KTQ5qc+J2lx/2fySmfvSHcHy5W1Na7mOifTvMjiY3Wv/+D7z2w3pZCUCtZCSSyNM31+eDA9m9T4+3j5MvInme2ZQVKDDqZct/HfDdGQj9jUfBqIuAd1Hgm9VyDRjY+39kgHAz3+ebcsilj70AL29ynYst13tNgiX4x9hrPTj5vK1JsvBpCyfG/KWTNd0EqufHLMzejgUdPrhc3zv6yNMlrm8J+nfadUqe3oX8rq1GIcWEa5+IPucy9chkD2jpqfF8yrAn2Fs9uzJts22JdudrX2b/UU+lpaJ196hIf086/16OjoL8T8XMqaV6WMsZPyNbV/Ia0UV/plc/jZ9yyRvGRfq08tzoPf1O1qWLzlvfN8DI9iT16+bmZ8c80L8aVXle68KzPuz1a18pshnEgDsG/je1HUsLp9lHwXwegAXAfgwgIc39x+plHpykiTOjqGUOh3A1wH8CsBbAewF4I0AfqKUOi5JkjvE6R8AsKZ5rWsBLAPwfABfBPBEAK+Kd1vtWTS1SgghhBBCCCGEEEI6Qyn1CABnAfhGkiR/Ir6/BcA/AvhTpBNZtvRLAPwTgNsAnJwkyfbm998BcBWAcwC8WiR5O4AfJ0kyI/I4D8APAbxSKXVekiTXxbm79lCGSQghhBBCCCGEEEJsvACAAvAx4/vzAewE8OIF0j8ewGoAn5ybKAOAJEk2ALgUwPObE2pz318mJ8qa380iXZkGAEd0fAcdwpVlPcrKsbgSh5A8ipRWhOSXd2l4DLTl2xGW60pJ5uBghKX0FkLqtVUO1z6dqxhs11qzRt+Xil2XjNJHklfVKmqXbfKepFzMlELF7Euu5ffSvokJv/xk+tbQ4gsXuksa7ourfPpHMvt8JXW+Y43N1pAxN1SiEkLd5Caxx3ApwZFuDFqwDCqau4TtD+gHt2va6Y5t8x1zpTTYVyYsJZmu8dLz8ZC7XmK0LVtbjf5+MT2V7fzbv2nH7nvx6+e3pVw+hg0hz2Bfiqy/kHtvbLk72zH6juxz3vnJOrO4lwDC5H6+47RPXs7ztt2nfyHvY2S0I9tCbaiKkPbpuifd60PcvCXRfzdJwzduzLaFqx5fuW7s9wjXI64Ov71IVI4HMAvgF/LLJEkmlVIbmscXSg8AP2tz7OdIpZWHAvj1AvnM/RK8a4HzcsPJMkIIIYQQQgghhJBO6R2fZeNKqSvF/r8nSfLvYn81gC1Jkuxuk/Z2AI9RSg0kSTLV5vhc+rlz26UHgP3gmCxTSq0G8BoAvwfwY9t5seiJWiWEEEIIIYQQQgghQWxJkuQ4x/FhAO0mygBgUpxjmywbbv5tl8ekcU4LSqlhpM7+lwF4VpIke2znxoKTZRWikE8yGDtikIugpfQ1X9pdFralz2Uul867ND/EVvMfLHnzc+ErF8p7Td/z8srXYkgOyyJESmjej095FT2eFClzshHjOr5tLWb5xZDFlCXxjBJFztIBtTYjpFAd5e1BDBcJkrzjpYsQiVKR/S006qINzX3CEbqrlJWf/8cs77/IJJmhz/CyxqEQe3T5rl12HvTuIXXwmzfrx4TPhdlB6+8p/Z6kQZaI36Z9MSWZLrzbhukbQMjwGiOZb4bZidXZ96Z0c9OmbFv6rnD4UgiJJFrFs9TEdV3b+OcbCV1KN2M812xpzHvQJMjrDm2bV/RnaYs/lc5l0KTn2AlgH8uxQXGOKz0ALG1zzJleKTUI4JsAjgPw0iRJfuS0NBIUEhNCCCGEEEIIIYQQG3cglWq2m+zaD+nKNNuqsrn0c+e2Sw+0kWiKibInA3hVkiSf97Y4JzVer0AIIYQQQgghhBBSU3rHZ9lCXAHgqQBOADC/sqs5mbUewOUe6QHgRADfN449GsADAH4rv2xOzF3UvO6rkyT5VKDtQXBlGSGEEEIIIYQQQgix8RUACYA3Gt+/CqmvsS/MfaGUeohS6rCmn7E5LgNwJ4BXKqVGxLlHAzgFwNekH7LmRNk3ATwNwJlJknwy5s34sCimQLsRH915VT7BYvggKMv2OoQsDvH54Dovhl8MHxvy2u2bX+h5MSnStiLvpw6+nsr0NxRCFf4WY/TZPP4sFwOx/Tr60k3+7Kogio+4buGUU/T9k04q5bIhPjZjU+gCCulUas0a62lB9xfB8Er6pmn3unULpxkbc+/noI7jU973ksWxKCglr79OsnhJkuRapdQ/A/gLpdQ3APwXgIcDeD3SibAvitPfD+ClAJ4A4NJm+j1KqTcgnXT7kVLqfACjAN4E4B4Af21c8gsA/gjpKrSdSqkXG8evSZLkmnh32Ap7ASGEEEIIIYQQQghx8UYAGwG8GsCpALYA+CcAf5UkyYIzsUmSfE0ptQvAewB8CGlkzB8AeHuSJKa/srnInE9ufkzeC4CTZYQQQgghhBBCCCG1Y5GsxEuSZAbAh5sf13lnADjDcuwSAJd4XGttxwZGZnHU6iKkjkukJT72tSwTtsV1dgxORUqZckshWkIyt7+P2HUZKv+cxxFfu2EJ0Q7oYa9dIboXybMmClVJcOogvfQdDuoggw2pC1s4+Rgy6NhtI6bUtUhpeJnPRVt5x7ZB9oO6j52+9x6zfbryij5GigoocmxwpZdlHLvPx7a1zpQ1VrjqL+Qds5vKOATf50PeZ0JoOYb85gh5FsYm5vOq19sgWXzUe0aFEEIIIYQQQgghhJAS4WQZIYQQQgghhBBCCCFNar5ov7dJkC1xrYMspky5UtC1pMZkcrL99yXa472sWupkPDUzMm9TbmbLwrcYokv3bPdnGN7oz/b7B4dtp5GCcUUOrLt8W+Lb3m3tK6Tdmdfs77dIOKan3Ak9qEJGW5Z0LAYhkpsQiWcMiszb1bS0+5XPTN/G73rAiP3Y91ekZDgvRUrfvaO6Ot4j6iC/93mmhPbFIt9tY7rt8HU10SvPY19i9pHgvMRY2JCRVy3XcV3L97wY8lGfvhTad3I/Q13Pl5ERr7y7HqXq7wuBBNF7IzEhhBBCCCGEEEIIIYFwsowQQgghhBBCCCGEkCZcL1ghCmHL7L2Q6eXyWEd+jdh6OHkdY6mzbdmw97Jqy9JpE18JQKFL3wO0kq7q27Ur216yJNdlWhgc9KgLI/MptI9y2W9U0UD/bNvzPIOCaudt3aof273by1St2diap5kmIAirN0XmbaPU6HCCoKhKppzRhkMS5luWNhXBnj3ZtuxvJrINDQ4OaMeqkJLFjjxYljSuqoiVkiLlmlXlrTVQ1wBswzMKci9Kx6rC2ue6KASq7d3KW3LqSez88hJaLWVF0S0LZ1R7mzsVh+Q7yvuLLWq7p2uU2NFH8/4eKlIaHvs3GSHdSL2fsoQQQgghhBBCCCF1hD7LepZFV6ubd23FG686H1fc9zssbSzB2mX74GPHvgpHf+f1OGx0DSZnprC8fwivO/RUvPTgJwEALvj99/HWqz+N/Yb2xuTsFF6z7o/wpsOe05L3pXddiw/95hu45JS/1r7/+I2X4GM3Xoybt9+Je07/PMYH9yrjVgkhhBBCCCGEEEJIhyyqybIkSXDa5efipQc/CV8+6W0AgA1bf4+7JrfhkJEJXP308wAAv9++Gadf/neYTRK87JAnAwCef8DJ+PjxZ+Le3Q/gYZeciefu/1jsv2yV13Ufu+rheOZ+x+OUH7yrmBsjhBBCCCGEEEIIIVFYVJNlP7zrGixp9OPMhz59/rv1Kw7Gxu13aecdPDKBjxzzCrzl6k/NT5bNsffSUawbWY07d231nix75MpD8hkudf2+uvAtW9qnN/PwdXRl0/ib2I45bLCFbvbOO8APWH9/w3HMzxwXef1L+FaL9KeU9zouXPdjc0FhVqssc1eUaVtz8G12rqZqsy/EbY+v3b74tsFu9WOSO7y5q5I8fZroSfx8m7nqwjaUOv20eHa6svxp+dZF1T6AiiDknmxpivQbY2JrTt5+m1xtMMR3qWbQgP08Eo58eG3fnm2bD56Ql5kCfaCFjGMh+cW+blXP1l4cZzVkOzZ/F9iQbXxkJL8NAe09t59lT2I+kzohto9Tjbl6nu3xtk16lkU1WXbd/X/AsZ4TV8esPAQ3PLCp5ftbd9yNyZkpHLVibWTrCCGEEEIIIYQQ0jXQZ1nPwlq1kBj7X7n1R/jh3dfgxgdux/knnIXBPv73lBBCCCGEEEIIIaTXWFSTZY/Y60B8/dafep179X034+Gja+b353yW/eyeG3DqZe/F01cfi59tuQHvvfZLAIBPPuqsfMaZy5Hl7LRF3+WUXIyP26/VrTPfvlJQj+RSxWDuy1XeMVZ858Wsftsq9pkZexqbrNMlHfRdlm2TM5pV5Kuita2Q95VN7t5tP0/mJyWsrnLwlcSGEJJfVfKQ2HIan+s0HIUvz7NJgU1c5W1LJ9vJ8uX29E4sF7bdgyOJv9QuAoVKM0rIC0AUCaxtvHFlbZNHxr4/2W5bb699/Um7Bwf1f/w1avB+UGcpWgwZdO7783WZUWNiyJbLKm8zfRXP4Dr3CRPNVvPBGuJOxfIiHlz/nr+pqqDIZ0UMQspo3tVOo/ryJSSERdVyn7jvUdg9uwfn3/S9+e+uuPe3+MOOu7XzNm6/C2df/SmcdeizWvI4cdVh+LO1T8B5N16M0/Y/ERue8Y/Y8Ix/xHF7P7Rw+wkhhBBCCCGEEEJIsXTHv6AioZTCRSe/C2/85fn4++u/jsG+JVi7bF987JhX4ebtm/HI77wBkzNTWN4/hLMOfVaLc/853n74n+CY774R73rE87B8ybB27Ad3XYM1F50xv/+1k96BK+77LT54/TeweXIrjvrO6/GM1cfik496fZG3SgghhBBCCCGEkCKhz7KeRSWJ6Z2rniilkk5tVUoheeG3CrIoP8+64cP41hU/SHdcmjWbRswV5VJGwzQ7rzwvZwi/qWm/iHImuSKqAO7yEUb4LhnevLl9dubqb9/78zF1oD9sibUsc98V7WWN3zY5KwA0tj8wvz07Mjq/7Ss/k2W6bZt+zNaMzWihUkYXIq90ygukUbawm6Y82tJWnf2jwMhlLqR9NumXaY71Plyyc9v9OWSY3pE2p6e88rPh21ZDpFq+efteq1eiufncR8s1bZEDfd0duJ6Z4phrLLaNSTFkfL6yY5sbAdcQElR/Lv29HOM8I2XWUX40R4x+FSIzbGwRCgjxHIkShdXzmVLkmFJklOfcbdr3eeUYQ/JKRsuMtmu7rnYdz+jUzt82cmyWaVz+TwLaZx2k0yH1V6YbhJD3KW97mnV+3Ikn4sqrrlJhFtaf4/bdN7ny+c+v2ozcqH/6p6uSJDmuajvqxKKSYRJCCCGEEEIIIYQQ4oLrBQkhhBBCCCGEEEJCoAyzJ+HKMkIIIYQQQgghhBBCmnAKtEJmE2DnZDpfOTzocDIl/CXMDmYBBRouf2M2XwDt9tvZ5jmP6u1XR/oKCs3E07+azbeSdJVgukSQWcuic7hDcyLdV8lt3X2VXsY2Nw2m/j/vPy6k77AWvxqDw1gI033Hgw9m2/fem22PjennrR7v3D+erDNZjrKOzGMudu/OtpcuzbaHhrJtl7sMq3GA3XmQp98tiekLcACi/0h/hBMTC5oZimsMkLchfe+ZaR7Y3j6P0RFHW5DlKLeNimlY/KI0XB3Es/P4VKWJ7q+v8/9Dxf6HpDluVOXDrAzMe7O2Ad8+aw78Fp9cA+K8/v7yfArZhhQ5NAD6uGhzI2SO07Ltutw26e6ZMl9kzv4nqLNfMheV2S0GmAcG95nflv5WAWCvvbLtFSuyunRVS0idxR5PfH12hvhx8vYHKnE54zRfQOawdTgADfn88vRtJm11vUNLX4CltU+zTCw+zFr8FIr96f7sfVN7VzeKVxbdgOP+bOPV4GCYb2VJSBvK20fKHGt8r+UzBrS+vxLS3fTu2zMhhBBCCCGEEEIIIR3ClWWEEEIIIYQQQgghnaIUfZb1KKzVCpmdlUuF9UV+cpW2lFvec0/2/dCQfWnxsAgt3tJ5RX5BYYE9JZVyKW6/Z8h4ibmqW8q9jDXW1jxsh1qljZmt3jI8Bz55eI+phv5F1tiATVtjygRs4c2NAvIJYe2Sps7MtE3ecqK8jilfsh2TikNXNHKbsgpw3roVrUxsEkETm0EtWiaLDMFs+yOikIVuqmW5e39xy/ZlOQxsEdofof1qrFmjJ+pfOb+pN0nd7tERi92uMpadzNWZZGE6QtpLKZJsdzbFjQtTFmxK3eavGUFuVAVFykN879ui+gFgyD5cHV0eizHw58Rn/DWRt+BSZcumr0nxTe3m9izDAfEe0T/i9wyvqt0GSe1yXsdFDBtszx6Hik9zNeBQsWsUWWchkrUY9tjyCHrnNccQuW8rZE/3J972RP4R7ttfQuSszvOkjF18LccX19juylsWke9wXmc5eIt7gZJsDWkbUg8+YL4AzT1HnD8QCKkv9X0bJ4QQQgghhBBCCCGkZDhZRgghhBBCCCGEEEJIE8owa4pchjyAbGdmJluq7JaROSL5BGBdiutYLx0ivZQMTD6gf7FxY7Ytl/maUfLkvtyWy+WNMhkV+pWpgNgtLllnX1/7NDKKpImzbuW927R7ZgZSBxZZbiSLUl52zx7jREtbCYnENWAkkX1kcMyv/oIie7kklT5aUJe+IOC6/WMLRy8NpaXPSxtkCLYrr8y2163Tkowed1y2MzI6v2lWubbs31ZGDlmLUzYg00lNpXkd0XhllMOxsfbRAc192Z+XLNHP81SNF0rMSHZlStGiEiiNCpFH5sWVt60uzdvxkpCbMkzLc6RhaInrJhOuQ1uLbYNtXJRyezk+Afbnca9QZCRC2yN8uxHVWXaF4YAo7SH4jgd505jpgqKHurCMQ/K9vd8jKns7NFtdbklsvhWkjr1E31PWCKgB40nos9lXtmy1SfaDW27Rj82Vt9SI9yL0Wdaz1OtthxBCCCGEEEIIIYSQCuFkGSGEEEIIIYQQQgghTbhesEIStJGqNdGUcmJZp1zBvHWrnkaucF2zxr6MOUQSpC0T7veTeLqi+7miOc1jygXl2ndbhDtfXHqqnPJRExkARl5m6VK3SZk9DumQTXNhlp3Yjy2fsUkXzPuZFeWad3m5U2oncAVTHA6RqPhqXDzrxVfGh0GLlHBsJUrDdh+uEFRif/tmWJHJRm2hIz1xygZ8JciiYqzRZ9EayTX73r0/h6sv+iqspQ1WGYphRF5JZh2ieDqHfXnrnv3UabdVGmx/VvhKo6KPhTZs5WBIp1tkmRVTVpTL2iMjnAtc0al9X40akzuzHdnWzfHS8t7l6jtBkfVqgLzV0OiMIdStHCS+zw29mZjjncDygmbmPBsoy7RiC4tOCV048r3toQ/Vj801CJtPGkJqDkcGQgghhBBCCCGEkE6hz7KehTJMQgghhBBCCCGEEEKacLKMEEIIIYQQQgghhJAmXC9YIQ0FDA21P6at5NQcJmQ+UqQvLMAeDdnbHoc/gsb2B7IdlyMozd9QZqu37wyXDWvWZDvSf4cr836LryeHPx+Pr4ORfsqWL7efJ81zelCz+cYqMGa8Wf023x5me7znnmx7xYqsbs0ytoXO9vWFZIlMDsD0EZjl511cLv8WtkxiNCJZsJsz518N049NgfWuIUOsyz7v8HEzOJi1ZNNXo7w9Wz1rfnXSDH0s9Q+lPj3V3iDP6+QtetNXzfR0ZveuXfZ0WpG7HO34+ufyoCy/ZCbe/nxsToY8K0lrC4D14dqQviAN/2W+ZWTzeRTDd5HVn5LrWWHzRxiBvPfkKtM6+3qKghzrt22b3xw0/Fa6/GtJtPIS+TnrXLYN6dfRkUbWmfdY7HoPLLCebe43zS4i9319E9ootJ8HEpKHr4+3Ads7lPSVaIy32nuOr99RmXdOP6gmdR6HQq8f1W75fghkL+KUKJIuhS2XEEIIIYQQQgghpFPos6xnoQyTEEIIIYQQQgghhJAmnAKtkEbDvqJYWxIrlicPDq4W23oa3+X3PkqUliW5tjXW5g2IWfW8jcu5LFjcxNS0PucrV3DL7fHx0fnt4RE9b21ZtWc5upD/XPBVjNqYNYSYDbmkXOoMHTHj88qmXMpbm2rn/7P37uF2XWW9/3eu7Kzs7OykO2nS7KZpDW0spbSllFKoFqgWPHJTUTgVDiocQVABAQHBH0JR9KBykeo5qHAAjwLKHawCAnK/SEELLdBCC6FN25SGJs11Z2dnz98fe+093zHWet+8e8yxrvl+nidPxlpzzjHfcZ1jzT2+7yslp4AuOU4ilkUJGcmE2AI+PmWKWJePUcfBuNC0oMbgk7LqlSuN+1r6kIzEfSYIBz9ZjaXG9u3VgXj7vbBbdtt4rrL61xJxWUUfaMgM4jkppY6Ua6w6sZSbKRIHWQwpwzTnedlPjBNT5M0Dh6X78WqCREMFbRSPba1exffeNu6lrMxDW/uPZZ4za9LN+ummVC63NE7KfBtavwUwNpYwnuXkbD3jJMo4yMEgzEnNsapevXXaTbtT+lAv5xZvtwl+GSiy3lRUFw4w1vvGeRp167Xfc37X0X4XNvo/rglJgT2XEEIIIYQQQgghhJAW3FlGCCGEEEIIIYQQkgJ9lo0kbNU+UsDYjquFFXRG6JFk2fKr7bE2JoakOUOW1ZLCBF831dOkOmvnzio9PR1uqsytZuvqfKlJ8gzqyq6s+pF5z83pefu36VdIW4MIobFuT0SIDKRVcbRIiSabjOpUldPENshoThIhcYnr3grQqtrqjGqYe6u/JpVcJ+vLiDol7YllLS45eozslDKaW2yoN3qWcp6UeTuD6PpxSpnaZLlKFk3Uk0bl7jO5ZUnhWBRYzwrZHyy5pvW9lodTYi2x6ngQotrlZhBskKT0yUGQBQZ0M+qx8XzpZlu61yjamO3iosuS8Q1c3xB0c33glTZaNjVqupRIuWduUsZI7nHVr+ic7ufVYttShkmGFPZcQgghhBBCCCGEEEJa8GUZIYQQQgghhBBCCCEtKMMkhBBCCCGEEEIIWS5FQZ9lI8rIt+q51zyz3yaorJpaU31w+lKx3O/IY4252eqDNXg1R0Sx/wCZhzxm+Blw2yDRfLUZ9jWiSpmcrHyYSZdVln8o+dnrn8siOE9py/nI15qXFP8LOf0WeH1VrF4dfk7xqSerLvTNZGD4XJHdfWJccaLW5phKuVvcp6W/LmW8xF1a2mP6dFP81MXDV57W7OLsLt2zrbP8wilk96MhO1fcfvKYNQ8px7Q+uJysXc7pogwaIvPx8aoPalN2W95OY7vpp6yur0QTy99bgl9HNe/MWP5qvG3h9RXTD39Ko+CjLMe9rL7fTR9FSfdJ+YHnvCb7HNBN32TKmjWH3YM2LgaBoF7FOiu1rlL6Wm7fbXXtqWtDfJ/cfjA1Btl3HyF1GfmXZd/60MX9NkHl8X+08/gnEUIIIYQQQgghhJCewVfBhBBCCCGEEEIIIYS0GPmdZUODU0bilWGash8pFzM1PYKUUOUp0kuZtmwzdJMNcd+pqep9sKyfNqWdYmrytmV5g717O+cd16n4bEk0NZu84daDs6KCyzy0Zhkf1+9j9U9dfZYgUYkzk3Us0m11jImlVLA93dm/g2viTiMKr9VjjBY5vTkW1cHuvVXaGBeBVDXz7K7KROWHWGeqd6LwvBSpnCYN985pzvnJUnhKLFWgqx6MPjgxPi9OM8aLtM/S6PbIr0ZXpRlGeboqVVfumyq1qyuTsa7vhwyolwyazFSzJ5D3Id0Fw3Jx9y3nfGA+/xzX5Div7jUmJ5C/odzyvKR1aQK9ys87ztvOE8/d+fFqvSmXRvFyJ+czwHte7janDBP0WTbCsHcTQgghhBBCCCGEENKCL8sIIYQQQgghhBBCCGnB/YIDSrBddnp6KS2VNaZyTJMoxcdS5E9OrG25wRZgbdtqbLemgTJkV1JeJ+V+Xd8pK28g7bNkpkIe25jMbKAmAzPaX1M5WdvOJXILunEa1k0mbAePM7v77iotZcYyDQDCpkAa4wyHGqqb9f6tZWGprdukl1qG4iKvnDg3svpnx6o6bY6FciM1om1uQ62wlCkScoHs77Fk2I0WbdUdTjMDWlTeHkXLyo6zvqwAoRIpb22TZWuTl2FDSr16r+lH1LcYed9u9qHaktqo0etKIJPKGtnQMOS7/SaHpMuTR2o/GbT6GjQJcm4ZXzejRWr3TW3jnH0jOS9lveF1URK4z+jiAi+1fFp7UpJJRhm+LCOEEEIIIYQQQghZLvRZNrLw9S8hhBBCCCGEEEIIIS34CrSPlCiWtqvGW1tvvrlKa9KfNWvCz6tXiw9eeWXNt+CzhhTNvq2yhTyWzUk0KYxTZtU3iZGmZ7Q0eb2yJ8JVxfFJiqwzxw5y9ZrYhttvr9LHjlXpqG+Mn7eh+qBIsuIt5Lt2Vendu6t0PMQ2bqzSmuouRi1ffJEi5R2b0vPOjdZ1pWljk6HESY0yaoxZTd5jzTXNDJEePbIWS26kKU4BYGpqXZWHEvVW9jMgrCJrWlQvivuQOKbVpRWZdhCkFbKOpa2WYl+m9+8Pz1u5UuZXpdsiyWrRVoMQqD55n1ey5pVGWW3UzWdezry72rfaHkS9iUSZQk9l9Wb43uWRO5JlvyL15ZQ2dhutfIMwT3vpVQTN3IRDR59zGzOHqgPyuR+VTx1+CeMyRfaaIw9rnUTIsDPYMxIhhBBCCCGEEEIIIT2EO8sIIYQQQgghhBBClgt9lo0s3FlGCCGEEEIIIYQQQkgLvgIdUKRvFukn6aSTqnTsp0W+0M4dyv3QTL33qob7nPBFvPVWXvHD1ks/LUloDqysBrQcXWm+RixfLEp+Xt8JjbnZ6oPm2CzCakqreK78Yhtih0+L3HZb8LGxdWvn80TfirOWY1GmrebTiM8J+qo3c+HAai6y1em+rzbu+yQYpI1f2/ebb75z+8nRHJBFDRj6ZKvy3rs3vExOXWNinMrz5Dxv3TaeBlUfIobfyhmleF5Xl/1CNsuKFVXaGi7eecgcv/Kg8vCyfJHl9sHj9a2Uex3gseF4Ni33+hSCcsdjVtpjdACPfe4yGPOgtEfz5doVMu6ACNYHUd796ic961/OcZXiD826T6/8etWdQ6z1eV0fcf3ybSaHTlvfl2tR+cCanq6uiZyQ5vb5FyDmuEbCuEyxZ+B+gxFSE+4sI4QQQgghhBBCCCGkBXeWEUIIIYQQQgghhKRAn2UjCVt1QJG7dHfurNLWOEwZo9rW2dk5fdNhirwuvibYxtzNLbtSU9crjVqMJumKNU/eBqytYVx+1s0xx0nRsVj+IiUmtZ8nsVZS6tksqev69VV640ZpnEiHclZvn5a3auy9ZyndtLRtMyJzqcMTW/aPe2PfodpoSrR+ST9lu3hDubuRY9bq76KdpLzSWyfe9kqZGrz1oNUjEI37AUBKL1eurNKNmUPhiXI+EJU3Ectfxg3pusYAL4b7JUvy0iv7ZD9uJvoDqCtZqis/7DpuDfJw4pH7WdfkOM+D1zbveba7AlcWLhuGSWrnlbCqEm0A8+L5HpwX+1yQ6zi5EJBr1riRRN7ZZa9Ko8fy0XnFBi/D1B8IWS6DvbIihBBCCCGEEEIIIaSH8GUZIYQQQgghhBBCCCEtRm/v9RBRzsudueF7yzVrqrRUi8mdvLESLae0Md65K3cNy/t6ZaHd3OXfVlZtu3O/ZAeaDbE8U9O5tW3Z7lHFSrQOEB+TRJInM1rncol1bprUMbZVfpbb56Wtk+uSTAqkP8K+eaPcwRZ5Kb2Myjc/PtHxPm359XkrfDcj7sXl1oaVFS3SUmWrEfSs6K9iDE9ObVBP0+ZmKZWMh4vn+nZ8f//KPW2kSJ5SOHZMOTAXzaVSCiPbL+ocMjruvDXuuzjP5pDaDEveKaRExpNN3vRGeDX1a75nl/aYtJT4gy6dTaGubLXfz7Fu0M05Ulvyxs+4nDZ4I0tbbdnNdk66r7Y+RHsEy47XAOGDXItwH801OaNUxuZMaC4hRlB63XeKgvU6oozeU5oQQgghhBBCCCGEkET4sowQQgghhBBCCCGEkBZ8WUYIIYQQQgghhBBCSAuKa/tIiUq6HkcfXrWqSksJfHyeJHTJ5fP/oB2Lvx8f7+wPxLIh9pfguW8W6vr0cvo2c/vY8Po/GgCtu2qCdLFgOY9yhsdOIfAJFjuBEb6HAqQfMCB0AGj5qFFYsUI/FhR9rPIxNrO3+j6uXzmuxgy/ZJqfwIQiZCdoly52Yaus1lzjzcM1JxljVPNFloq8VXNM2Cb9cQHBA2LMGmOiE42J/qndcxBR22/ccLIpfUPGGYi6a8hOlKEieuXH7YQi7vuinaRPITmvxnXvXnsE64DlP7sOH67Sls+yYaUxc0g9NoeqvgZ9TvFg9aFR97U2yGSvb6uzyh9fXmfN2gMr+h0gfdJ2k24+hzgOQJ9lIwxXcIQQQgghhBBCCCGEtODLMkIIIYQQQgghhBBCWnC/YB9pNKrt+VIpAgBHjnS+Rp4XK/rkMbnt3ysJ8so1pcShTWmn9Khubstt3yJ/fIPssNcCo4DuMkl5jyXD1HBKQSVttinbwdvL4OgrsT1O2WqKLElTeDbjMN6nnVal166t0rEMU37WBkyELNLKlZ1ti7OTTS6/l/LqGGlCnLeU9Egbjh7V88uNpmzr1a5zr/Ih7tOyr7nlULJ/WRpPxSizTkRFzs1VciVLYj89LSQO8RwiPjcmjRD04r7NcVlHw/k3s2CMxPOBbGhtYBrYz4flP8vMa7T509IMK7LAbj5n+yatkfUQyzDloNm+fSk5tvGU5edtPdecyKF58GCVlo8kwC8b92C1i/mcrTtxy8JGE6tzSeDCms8tNFmYW4omCtGICpEiZ+umBK5uHXvX8Rb9mB9S52l13SwLHi8WvDJMeZ4cIzVdgMRofbptbqkpJ0+x54SFMsyRZThXyYQQQgghhBBCCCGEdAG+LCOEEEIIIYQQQgghpAX3C/aRAuXS1tWNG8P3lnv2VGm5q1fuDI6322pqE++OXymv9G6ptXac9m1brmMbrLntPIOGIJAAyMaw9BfKfa1ITEmRvczvlW3a0m5Ly2ZEIpXlSImgGJga16PUucjImLEMU8q1lME0FlVJKGnW7fPs0o+rW5N1WmNWSi9juXY3IxLJ+UWTlk5OJkaeU8gdYVLSXsciMqmQK0hpoxdz2lAOWhFQZdobNyvHHJ5C7iiQMj/Zv2QfvGdveJ8N27ZVH+SYjyvZO7gFKWUK2sIbEblPco6Bk9PIeojnc8UvhaWwV5/NmUMLy+dBrBKuK8P0tlGK/Ncav40D+6oPUhI7iuE+DbQ6GoSot9YUkuL+Qss7ZpiiIXrarxH3aU0iHw9mTYapSTIz43Wn45Ww5nZJQMgwwpdlhBBCCCGEEEIIIcuFPstGlv7/GYQQQgghhBBCCCGEkAGBL8sIIYQQQgghhBBCCGnB/YIDQnMs1H6vXVu9x5R+ieQOT8vvhRWB3uOSK4fvhX75MKhte4Lvmrh8gY8h2VCWQwnDT1lttA7R5ryt2fFQ4FfMsNvqlGEd1SxffB/pX0L6tYl83IRt1pm4eJafQInm0yvFDZF1nvRzFvssS/EFl8L+/VX65JM737/bNmjEY8frrs8zF3qvMRGTw+Rk5YEsdsckXQKl3LTN31DG+aVfvko010jxuJyXPuekfxijAa129uDuC5llGqPgN8ZdhrihpW860Tl279IvkW07MW60RUInGACXc35SDJQLGzlBRT6Yxqc2JBrVHQbBl1g3sdb7OfMeNHLMfV7/cw1t8RdXuOYj0+v3NwGzHrTOMab4J15O3oScIAzwNNgbVlxxDc6/z7qlzx989cXYsesQfv7lX8WZp07g8JFjeNylm/Ha3zy37doduw7hcS+7Fje87RHB9+/59B246u3fwbdvPYCvvOkyXHzfqW4XgxBCCCGEEEIIIb2EPstGlhO+VVc3V+C6tzw8+G7HrkN42PkbcM3/ugSHjxzDA5/5WTzhsmn85Pm+v5add5+1eP8fXoxnvf4b3TCZEEIIIYQQQgghhHSJE/5l2fFYvWoFLtx+Em7fbYR7j7jfj62tfV+5Y1fKc/bsEbatDq/RdtvKSMaAHlbdkptlf1nu2Sue4abaFuKxsYZ+nqwwS+5nEFy2VwkfHddBsE27sxxygcr2WL6rIu026l5WuTT10Ex1zwlLiyjzlh0tsmHMuQVc2hNUfdyptYsiUraUy+LKOrHGiFe6qcl2LKWrbPO4H3fzj1qyTKeeWqXXrzfur/X3+ETtmFV5CjPRVO2VpXjqLjWvxtxs9UHIl6S0Y3r6lOCaFSuU/Jx10tbXRSZaOWK7NflSm0SlR1INaZ9Uu1gE8kqE886c6CteKZPsX0ePVmk5DuL8fAf8DKs0RpM8uTH6/vz4RMfTkuWxCe0k7yvT8aPQ23f7gdku0nC5ME2Yp1Op3YcMAjcNQ7pDJMXs3EW12mVY5y6tTG39RI4ROfAzj5EkNzfC1viaUZcqE1KH4XwaZOTw7DFc+IzPAgDuc+pqfOCPHhwc37N/Ft/deRAPf8Bg+WAghBBCCCGEEEIIIfk54V+WdZJhAsDnrr8HF/z6Z3DTbQfx0iefhekNvfvLGSGEEEIIIYQQQoaAId2RSmzYqgqLPsu+c9sBXPa8L+IJD5vGkdl5POv11wMA/vDpZ+OCs9YdJ5d05BZZKbWKpR4aUioSK9ZkJDtN8WTJUKy5QN0iH2doyegWsSSPcjtxwuRkblvOsF06yN+reXLIpIBIejmj6IiivIO2kJHionqQn+fmqmsOH67OmYj7oLd8wtbGpK/NtHHQdk9FT9wmF5NyOEX6F9eJvK8l7/EodFMlCFpUybir5pQ4WPUgy2pKgbW+EeuSwhtV6YSxmLpW8VwXT1syCJy8vq0dNF28qMhGpM1au1aJTJsaSSvQGaZl0W+8/VuTlMQSXTmvrRXeE6wIikkSP4dtwHBJlFRZUkIZvBKgtrxFY1hBnpPIKJuKI9tu3ZotaxNLqpUiuwqizHZRhumVmOWWZIZLgv5Ecx91cs4bs3NhXmGk2+Xnl9Kf2taY8vksB3o3o907scYV+zghOnxZdhzOPn0SL3vKdvzpu27Bu/7gomAX2o5dh/poGSGEEEIIIYQQQgjJDV+WOXj2z/0YXvvuW/D9Ow/hPqdOBMduuu0Atj7pE0uf3/Db52JsRYHnXv1N3H3vLB77sq/gwrNOwsf+/CG9NpsQQgghhBBCCCGELJMT/mXZgY88uu27yy/ciMsvrPQ1q1etwO3veVTbedumJ3D0E4/tmO8THnZqx+9VYn2IlIWJvcVNsd3d2sprKZmkDFMiI3vFaLvsrehpwbbeuHxWVMjjfQ/oYTy9ZNFpOPPXyhrbID5b1gWSPEV6mbqFXKLJjeajSJbuDeXd1PLLOpZyT0seEvfJFjKqGqArhuNu5ylechRBRcY3tvGU9nN7gFpWS26tSYbj62TFGm3p7ePe6UUbmnJeVLpMO7HMVIsSK7+Xmk4A40pE3Pbxt3z5hNZ+XqmWdc+eSUyMuVRK82V9xeU+dqxKy64aNYUaKbPbj5F+kyyP7NI1KX0rHopyGsktU5S454o+4ZGcmW3UJ1lZN+ekUXc31E2pXd0+kDLXdLO9vPNB/Aw4cEC67VBc9eg/905oaf/QUxSjP4mcoDBWLCGEEEIIIYQQQgghLfiyjBBCCCGEEEIIIYSQFnxZRgghhBBCCCGEEEJIC4prBxXpaEPRQFuaeumXQ0b4BoCpqc5Ze6N/eyXZgT+QOHP5OcXxi+EvQ3MXFt6+2fkAgOak4qAmFc0IoyLdkdi7qI+XobcPzVR1HPuAWaf5jMvgtEWGBpfZtd1TOhkSHTwOLT4m/Bc1nL7u6nZV6xoZnt7C+1cNywfPconHlepyTBYw7o/ys8wgdgpl5bFM4su1sRS3i+aXyrpGO9aMbyodYjkdQMr2mxP92KqeoP1nomjN0g+mp7DLOC/I2+ELycLst5rvN2OuaYj5YDzyRyifhZKULmj1p8CeAfchk9JmOecdK28LWd9yerF8Ewa+OI37pExPmzdX6ZUrfdfkxtsWSb4zRUXEfj2ln8fVq6u0171syhzSTb9pvfTJptEvP5G5x3ZdX4WWPU1lPOe226pv+VjasaNKy74fzyHyOaQ9kyx7vKT0oUF/Xg0U9Fk2svT/CUAIIYQQQgghhBBCyIDAl2WEEEIIIYQQQgghhLTgfsFBwdLdiX29h8aqUMTxJdp22Ylx+7MLubdYpuN99Zqu09p37NFNxnmIdHvo5s7ZyfPirc6hedU75GZkt3u7u7xOK6thhLXlux+SAEuKOD/WWdLamIzaPIekdRFDhrlPhO4+fFjPYtMmXYorcUtiFaxd2bJKbDWjkI/WNSgRzdYJS1oj9VDamLAyl0RzQ0M7FvUNOYbl2PHulpeSIssk2SzxmAjaTJsPjPGhSmDhl/K6yDlGu4HyDGirFKVe42ekVndeFwejoLjo5fMkReqTIsnzSue98kqvpFbat2mTZWH36KYkVqsIy8tGN8eINv/GpPShunLyVLQ2S7HbwspP5jEKMry4rDnLZP200ZYlK1aE13jlyR5Sy+rtd6PQHwhZLiOw1COEEEIIIYQQQgjpMfRZNrJQhkkIIYQQQgghhBBCSIuevAItiuJkAE8BcA6AwwA+C+Cfy7Ise3H/QaUsi6Vofc2xaGur3FMu9vJaQdWOHu0sAciybVbuJ5Y6x1jjEEe507AkNMu8fiaKzihN1eRLKRE9k9H2WBu6gUGIvqTZkFx3mlzT6J/uaK2ijg/vr74+ckTPrzE3W31wRnQ0JS4OTaUmWY0vsdTIG8Z1CbKkmXl2l9Ui56HJyapMc5HdMupsQwvDG3/WIh7GIde0+o7nIHHfhtKWMdIcGc3t4MHwPCnzNecXbdBIu3fvNq6pojh6oy66SdGfdRGvPMg9OWQogybJSsnaW76uyumUewJwaxO1cliynW5K23K20TCTs6+kyF5TbfDeK0UpXrevdTMSZY6Ipd5okYNATil2at3XjfxozWNyub91a5X2/v6oO3YsaXjd+6TmNwi/ZwipQ61lRFEUpwD4q9bH95Vl+U8dzvlJAB8GMCW+fgGALxZF8biyLO+tYwMhhBBCCCGEEEIIIbmo+ze3nwHwRAAlgD+MDxZFMQngPQDWd7j2JwC8A8DjatpACCGEEEIIIYQQ0lvos2xkqbs38lGt/79fluUNHY7/BoBpLLxM+x6Al7b+3QGgAPDooigur2kDIYQQQgghhBBCCCFZqPsK9FwsvAj7D+X4U1r/7wdwaVmWdwNAURTXAPgGFl6YPRnAp2vaMdqMdfZRJN35xMfWrpWX6+9E23ylOWww47I7HUqoundvzHcD7TLNLVL82QrjnORzpa5/tgHA9o1Vzw+NNzS1rLq2a0S/EV0/GAdxHmpbGG1k+nnQfGjJ66O85diUh6QvLAA4dqxKHxoX/qsiH2E5Q5DHaNUi56HY15p0H9YUGRyaCdtvYlzUq+YfMZ7wND9Vlj+0BORtpNu1OGvzNrJMWj8xBpl3yjX7t8NfW9w/hwanz7K43JpPyyb0Sg783hk+CL14fMd458hhYhTKkIOUNUU3/VJl9y/k9IHnpZtTVEpdatfkqMdutnPd/KzyeZu8bn27/Vsa5PY5J/Mz/ew67Om2/7FeMej2EXI86s7mi27kb4kPFEWxAcADsfAy7R8XX5QBQFmW3wLwKSy8LHtITRsIIYQQQgghhBBCCMlC3b/RLL4s29/h2KVYeBlWAvjXDse/DuAKAGfUtIEQQgghhBBCCCGk9wzr7nxiUrdVi9b/qzscu7T1fwngcx2O727930Xh0PDQJrOYm+143qpVeh5yjEp5SbwVOGksS32XpQlK2HccbtkWW5BjQxWZkiURlFmsWNH5+1TcW4udNxuW8MpxfQdt1qPw0e1tvvy8Z+eqa2ZmKjnVuslEqaVH/2sgT1sfhUSRCsREdfKyidtStrOcDqziaWPbrBJN9xhrTLVMDC1qSh+Ut4llmJrcxJwbNEm7Ub45RcUZE9zXnBg7ywdzyP1yz2NqmbwTf9BITfU0s09mlNLnlHp1hcyL/V5Jhwbh+dnNdqo7Fhszh8KDsWZ+8bx4klPyc5PwXPTeJ6WruuvRO9ekaO0E1pzrtbV238jcb62qU6srs1zXiybrTK2TJFctCinPY+say56687RZd4ttW5auvAgZNOquLn7U+v+sDseuaP3/7bIs93Q4vviCrfNbIUIIIYQQQgghhBBCekzdl2WLTvp/tiiKpb8XFEWxHcAlWNhV9lnl2kX55V01bSCEEEIIIYQQQgghJAt197p+GMCjAWwE8E9FUVyFhR1jV6PyV/Z+5dqLW8dvrmnDSBDviJ8Y7yz7iKP7SfYLz3HKDvs2jh6t3peuXFl9v3dveN7UVCVfGR+v0vHm9LkoYN0iscJI29UeykfDd7ljzshj8l5Hj1ZpWXfxVnBvfY062pZtrwqpmxGgckszZB+U0Sfb+12VdpdO0SF4o+fFZZB92lIr9Equpdkjpc6APq7i8Sfbdmau2TFtqIOyR8jSbItxq0WskJpaZkrmuSXkXZVNJhDbE8wH2kRkVYo4FtsWj3Vxkds+D3XlPd57ZpGYDVj05uxlr3nfHLIk7Zg3+l2SZM06T07UxmJIRp32SrrUMTtM9NCVRspckXJN7nlIuoqQ6ynrN0tAQt9Imu+AsI+LxUyKGxHrmpTnbN15zGtP6n2T5sWdOxf+nx1xIVlRDO8cR0zqzux/B+AHrfTjAHwVC/7JFqNg/mdZlp+MLyqKYhuA+7c+fqWmDYQQQgghhBBCCCGEZKHWy7KyLGew8JLsdizsJJP/bgfwFOXSXxHpf69jAyGEEEIIIYQQQgghuai9X7Asy28WRXE/AP8dCzvKVgD4OoB3lmWpiPJwLoDPYMG5v+bTbPQROzbjXcLBtmqx9d0bd0dKMr3BeqRk0RvhLkYLQuaN4KdF9FwOsrxaehCUJ6lb9j1bu+tuqU6553LO066xrpPnyciKx8vPk3cWqYDW+QVWWa1oiu5Ikl1Eq39ZVCnlTkULFmmRW3qpXe/t020RqWRBEhrQqgc1u5pR2oC0OapnkRuN8uWWluasB2+Es25KZU1Eh8pRbi2PFJliL6lb/zkkTzmJXQA0PCGNMzxsvK4HNNzS1MzUtbuX9GuMSLRHXG63Hd0sazfnnUFoI4uujitGwyRDTpafXWVZHgTwttY/z/lPznFfQgghhBBCCCGEkL5An2UjSw//XEkIIYQQQgghhBBCyGDDl2WEEEIIIYQQQgghhLTIul+wKIozADwWwMUANgFYA+Cvy7J8T3TehlbySEvCeUJSoFzSsesh7P06+onAZ4DPx5Hlx0uiuWPy7jj15u29Rh6LXdd4bPLaneL/6njXLeec492nLjlCk9f1m5ZyXY68m4FfjYS29Povy8Ag+7vwuuOyfLJpvtsGYUd7jvEXjJ+EQlmXdDPUvKSnfrP6TDd96aS0V/bx38NB1s3ypvgYGgR/aBLLnpRnj9uvovDJ1Zhcfh/o1byR27ert/375jNQMGh91aqTXk0pSb5wY4Okvz7tmmUcq4u7TDOHqg8331ylzzuvtg1dnT83blz4fxAWdIQkkKXnFkWxDsDVWIh+uWLxawAlgH/pcMnHAVwI4DsA7pfDBkIIIYQQQgghhJCeQZ9lI0vtP5cURTEN4GsAfgULL9+K1j+LN7TOObsoiovr2kAIIYQQQgghhBBCSA5yvAJ9P4CzWumvAHgjgK8DuMG45oMAjgBoAng0gK9msGPoKFG4tt96t4OHEjOffFBeY0nRJF45lXaNlxwqt5mZKr13r37e4i5hwK47L7NzVT1IGyRxGWI56SIpodPjc7Tt0inygn5JEjx1CoT1mKMtJXXL3m3pSr+lGt5x2c3+6c0jhzxMyzuWkB84UKVnZjr34+np8Bp5TNbr4cPheceOVflJdYmiNGmzzyvx9ErSuylhzD3+UiQ9bhs0PwJRhQ+avFVrc7e8r6Z7Aiu/VLcIOa8xEYuM2ckN6mkp82Q3ZYF150j5bAZ85cvRlr163uWen7xuScz7yoeKuGh+fKK6Xsr2IoLzBkEaLvDOIdZ53exDbimi0tBSAp2MWCBYa2Ptd4U1Rr390z1vTE0d/6aEDDC1em5RFL8E4KFYkFu+C8CvlmU53zqmXleW5YGiKL4C4DIAl9axgRBCCCGEEEIIIYSQXNR9zXtl6//dAJ65+KLMyTcAPAzAOTVtIIQQQgghhBBCCOkt9Fk2stRt1UuwsKvsw2VZHj7eyRF3t/7fVNOGoWV+vtpJbUnycm+517YNp8g9l3NMkrNMsbxy9+4qLbcT799fpdevD69Z3CUMhFESvcRbn+VnLS3vCejbpWM8dRzXb90t6SkSHK/MwjrvkJCsae0KGFvNJ31yP+85daUHVj1a0jjZb6x+kjN6ltdWqQaJifu4514p0j9J7jkopR537Qo/a7LhPXuqdFyPsg+cfHKVPnhQPy+WaEqkLDP3eq6uRMzb12R9HTlSpeN+pklQU+W/nnHVlrdSyTmefZZMxnON91kjyTGu6s5PKXUXj726UfvMtZHI0HIVYEmkU+7bLbzjJe6PWtnDyMl63rklp7klg175vYf4Gk3m1lYGT0d2dnBvO/eKXt4/ZR1h9c+u2i4H0DnVPhOrKzi9AajkniMJGUbqLplPaf3/vYRrZ1v/u8TbjUbDlHZ2Ynx8HOf+6ieXa1fPWLl6qt8mEEIIIYQQQgghhBBB3ZdlRwGsSsxn8UXbXs/J8/PzKMtyWTcoigLf+n+PW6ZZveMxr7q93yYQQgghhBBCCCEkFcowR5K6eyXvav3/4wnX/kTr/9tq2kAIIYQQQgghhBBCSBbqvgL9IoDtAH62KIpmWZazx7sAAIqieCAqf2efrWnD0DI3V/lhin2ITE8f//puauO77TMgp08Ky7+TPCb9lJ10kp2HB1mG2P9G6JujSku/REePhvlZPqt6hjRQVGTDcngkDZfpnTvD88R1jW3bdBvEeZpvrNhHkfxs1p3sHCLDhte5liShkeJxJfu+1f5aFWcwKQnpP27Fiiot/UgB4TiQactPSwop81WKD6bUeVHON9o8dOxYeI3s75s3Vfc9tHbwfPh0E9lX7rqr8/erVoXXaPNvTF2/d9Y1vfLbIqc0a26InzeLpPgvs2irO8/kZTSSrMX5Md1rh95mPv+rKe3V1uaT65bSh++uvpfjtw35nIyeQ/K5OxB+gOJneouJeME6XrWn9Dsq+2rst02bZ70+vWJ6tT6WNlhzTWNO/DwShWpGA3B2rnOZ4jUmxieOa2faeIHP6a7VMDIdTzDeydlB6pzr6hvWZCrXxnH5tHoQ+Vn3l+0fV09wTMw1Ftr0GxcvxadpY+bQUnpe9Md+PQsJ6RZ1e/D7W/+fDOCVnguKopgC8P/EV/9Y0wZCCCGEEEIIIYQQQrJQ67V+WZYfLoriPwFcBOClRVGsBPCqsiwPdjq/KIrHA3g9gLOwsKvs42VZfqWODYQQQgghhBBCCCE9pyjos2xEydGqvwzgS1jYXfa7AH6rKIovi+O/VBTFwwFcCmCj+P4uAE/PcP+hpdEA1qxZSK9cGR1zhqfX6Nf29LrIbb3Yuzc8KPcJi/TkZFhWqfCTlzQO7Ot8AFF9WVvNlZjv8fwoP8vt94dPqrbFx21ed47NstVZGqHVg6V7lW12883heVIrJWUbRsHHx6v62rq1+n7d2KHwRHkv2UaxvFLTAsoyWNvqU2LDG2gmWP3Ju5W+m0gZptZlgLDJZbXG58ljTa8EoEfzmPc+8rwztobHAonRjip49GZDrnLPxlOqD2JcTRiylq7KHZw68ZwS+/hWmlp67Vr9mmEi6GuivmM5lab08ZY7S/1oc2H8vSbjsgxSDGyTPGkaUnGfeLxIWaB3rvEin/VHjog2i8st62jHjioduycQtgcjSdRPTyVO8vku03H5NlZLfVn/+3B86WBMT8dyzf4pCWSXcd7amglAU9TdLHQZZV0suV9D2icf9vGaXKLJK+MxKifxFO1fAsHvCiAsk8RyxyHHrKwHyyeId40ZULV5juWmtnZMre7gGSVk2Q1DXtvw+BUiZICp/ZQty/JmAFcA+C6AAsAEgJ/Cws4xAHgogMdj4UVZ0fp3M4CfLsvyzrr3J4QQQgghhBBCCCEkF1n+JFWW5TcAPBDA7wHYgeqlWPxvF4CXA7ioLMsbc9ybEEIIIYQQQgghhJBcZNv3WpblIQB/DuDPi6K4D4AHYEGaOQbgRwBuLMvyhlz3GwXGxoBNm9Kv75fU0hsdLimKnKXpkuHhxPbtOJLhukmxHVheI7dOx9uE5WfjPG2reVw+KfUYExKa1av1rDV62s6yfEIOoMoTAL9GUDvP2JLeHKvK15QSwxsiieeXhfJ7UdsMAPe7X3jeeedVaWXLfSx5Cuq4pvzFUijJaHWWTHHPniot+1NurIhGUj0hFbBxlFmJ1YXCoe2MLjYAcnLVhkjm0dCkJ0p0VgCY2iZkmLuMyhOdw6pj2YeSokD2KVyvnAOmp7VIcWl55+xDcZ165aia9DKInhYVUOZnKXqc06yad1L9WI3hiBRnHvM2tPEcGlMiBHojuGWpEznWZcNYMjAlHHRKVN9kpC8ELVQ1EM5x4rzJjboMUxsvXZ3nM7tVCLD6qjHvB/1hckNemxQTYtZ5xlk8oShtbkpYneM5ZSwGx+LCyqiumtsOyzZ3+HWBJuOMGBPuF7zdU5Z1ImoWLVpr6jNT/raZkPVoPWwWP3dzvA0C9Fk2snSlVcuy/D6A73cjb0IIIYQQQgghhBBCukUPPYMSQgghhBBCCCGEEDLYcL9gHylQuqJepkRjq4slKclxH1USILewxhFU4u3qi8RbezUZpZQVxtuEM28PliZIsy0TvGj1n9IucTsE/U4amEPro50Xb1v2RFmLt9XffXeVlnpGq12dUQTlsRRFkBU0TCoAZHRUK2/ved1EC24kFbBAGKXQsvXw4SptBaOVDLRc0whLOjtVySxkWddhX3BeYLcm24rQZL2AXpehNKOhHoulgHVJiZrpNaEvkq6I2jK+hIijXjVjFryN4ZFnxcYpUYtjibzElF0JxiY755E7mnRQPXFdyTrRwncDejksdweS1EWGhpSfSbt37QrPUySajRT5mkVdabh37ZEj+m+CBs5qWi0Lrz3ymRuzTnPvIG8a91UtCqTV950kSdotAqmrEpHTO3a8jaS5eomPZSask+W70ImRHibO0EKc798fXrQ4B8z333UGISnwZRkhhBBCCCGEEELIcqHPspGlVqsWRfG9DDaUZVmelSGfZbPiimtw/n3WLX3+4Ksvxo5dh/DzL/8qzjx1AoePHMPjLt2M1/7muW3X7th1CI972bW44W2PWPruqrffhMnVY3jRlVVxXvtPt+DFf/1t3P3Bn8HGk/S/ihJCCCGEEEIIIYSQ/lP3Feg2AOUyzi9Eumx9Xs71WVndXIHr3vLw4Lsduw7hYedvwDX/6xIcPnIMD3zmZ/GEy6bxk+cvPyrNbT88jI9/dTfO2NzFkHWEEEIIIYQQQgghJBs59gsWxz8lYPHl2HKv6zmrV63AhdtPwu27jRjLBi/439/Enz3rfvj5l1/b8XiJYtl+TXrlc8UbRt3ykWJd7/LVpoUfPp4RmtMjcf3sXOybp9r117B8Kji32K5Y0fG2Qbo51r1Q9V7/K952tn1xiB2TU9VL5cY5hl84yx+EVseWvwzpHGvTJmHPVHCa9Hmj+eFL9V3TmJvtaKv0A+Xt0t6o5Sl4x6KFtFu6rklltfh7guXjTSKPye4Qdw2vz6qsvq1M331VcseOKn3OOeuC05rSBsvHHzofsnyWxccWkcPoOLdykeoXJSeD9sy0yj2Han4K3P5E58l2sVzFaD4DA190cf3IDMWJlr8wSfuaQM65wYHO6Qi3nzKJMXGYz/eMmC6PxMFDmFhKj0V119R8KEkfhnGFK+XzjgP3uPQ+iLT1mNMPmIlzgkqa2y2/cI77tj1nZfvJurMecv1CW2tZD1rFz6C5PtfKHuet1Le1lgnaPM5v69bO9zL82GpDbjLygdjU+pfXB7BByvNY82nZdPp5NeeDCy+s0tJv4c6d4XmLjs6yO84kpDfUWgqXZel6qhZFsRrAGQB+FsALAWwF8EdlWb6yzv3rcnj2GC58xmcBAPc5dTU+8EcPDo7v2T+L7+48iIc/oPOuslvuOLh0PQDsuucIXnTlmQCAD39hF07bOI4HbF/X8VpCCCGEEEIIIYQMMfRZNrL0pFXLsjwM4CYANxVF8TYA/wLg5UVRTJRl+eJe2NCJTjJMAPjc9ffggl//DG667SBe+uSzML2h818BztqyJrj+qrffBAA4NHMMf/wPN+Pf/vwh3TGcEEIIIYQQQgghhHSFnr8CLctyX1EU/x3AdwG8sCiKD5dl+ble22Gx6LPsO7cdwGXP+yKe8LBpHJmdx7Nefz0A4A+ffjYuOEvfMXbLHQfx/V2H8IDWrrOdd8/got/4LL7ypsuCF28FyloSkdQQytqW9F7JYiyS6sMKTa1s+zVf/meQaaxf3/leVvn6JRfSqNsf5scnjn8S0uxpxBKQs0SMEKk9MtpSGweWnCpoSym7BMJ9+uLEdU4bekU3pXHetowlAGOT1X01GWY8ZuUxr6rBW76skswoPym/Hh+vvpfdBwAmRZ00N26sDhiFtdSasr5Wrux8njkv1vyLaao0fBDIKZG3qKtSOXJEPyanxcAFgBxwnT63aMg+CGB+sloDeaWg4+OdZfAW5nmaxC+DtK3u2khO+/H1sooXFUpAu6Q9kKBKOaslZ3ROht7nn4vY3YHMW5OSOsnhNkCV58V5yYaRE/L0dHieaFxN5tY+luU6olobNeO1TODCIc6jMyl1Il0ftN1HGi/tM1yZSJowxqL8LOtYkUN2NrAzqvQ9knLLuUxrv/iW8pjsJvF5Tbnc0zpEXL6U3ykC73pF3iZuv9gtjIbsDnfsrfrxFssfx2KbN/r/G5OQFPqyX7AsyzuLorgGwH8H8GwAA/WybJGzT5/Ey56yHX/6rlvwrj+4KNhFtmPXIfW6889chx9+4GeWPm/75U/iq3/zMEbDJIQQQgghhBBCCBlw+imu/Wbr/5/oow3H5dk/92N47btvwffvPIT7nOrbKUMIIYQQQgghhJATAPosG0kGoVWnj39KdzjwkUe3fXf5hRtx+YXVFt3Vq1bg9vc8qu28bdMTuOFtjwi+u+pp9+14nx3/eEVNS7tHXdlV6ryQInNKkkYpBrZJ6JzRdoI8DBvqRq2pWyepUssU6YknsimgK2bWOVWvwX1iaeOP/3jnGxmEO987Sy3j84Jj8dZ5GQFI2nDOOVU6snuYZNC9sk9u85cSJWtMdXN9kkOSqV0nlQuWBE9Kmq3ohc1A3hG2lybR9MrEUxi1iJcx3ueD9zwpy9XOiZHXWAEK1bkr1v/KQWdIGxvbt4tP+q55l7TUmrO1KHvxdbYG7rikuEiwnp9S1mQ9C52BbkMyuIrIOWbi8gXPTCHXzeECImVOSYqAKRspliaLhpJRLmXk67gLxvLkRTZtCgOIybWp1R88ZfLOG233mRFRcMWzR1ZDHFFZuh5RdcaAPma7GKU2R1/Xxqk51dSMBJvS181oy4Y6tqlUf1x30j3E4cPV91LW2ZTRRoGqD6xYodpGyCDTz19nD239f7CPNhBCCCGEEEIIIYQQskRfXpYVRfHzAB4NoATwjX7YQAghhBBCCCGEEEJITC3xSlEUZ3hPBTAJ4GwAvwjgl8Wxf6hjAyGEEEIIIYQQQkjPKQr6LBtR6rbqDizsDlsuRev/fwfwtpo2kOOQonuPdfjSrYnm7+Z4xzS8PoH65Zcmhbq2WnWSw4eSJ+8kRMdptHUAJax3htDwQWczQpCHeVf31VxLxMis27z0SN8cO3Z0vijw84PQ98mA+S/rF7IppeuT2A2G9M8k2+zuu8PzpC+Vbvrn8iLbVvo1amZeY7WFtPeEho87f8LCr5t9t1dtlqMMWX0rxQ5mlHl2ctIbhMh4UGv+w2LfZmJwjm88Rb+TpwvF/c7rc0xbcMjJwe2EUqeub9AYy7dcTlJ9rqpo7TIWPg21as1uT03a1h7ehlH848ncxsd1P37Sf1k8rMZEXY4F3/tM82I+C8VBzXVb2/PlwD3Vhxtv7HwREK6HrHGaEe9cbD0jvb4hg7lClklWZFzWaJ26dH3C+tx6hCu3WRbSpk2bOs+L89HqeGlc0WcZGVJyrGqLhH/HAPwNgJ8vyzLlZRshhBBCCCGEEEIIIdmp+yr/s/DtLCsBHABwF4D/BPChsizvqHlvQgghhBBCCCGEEEKyUutlWVmWl2eyg2RA28bu3cq7a1eVlioyANi4sXM63k0s85BMT4ef+y7r7rIBHqmkd2t4vyR5SXYbMbWlLMFS2bhkpnH7ya39XgmPQIbAPnbMd82GqWhPu7bHXW6/jyVOwm5Z7gxquL6QQ2ajSWLjOWTdZJXfoZnqvvHcde+9VVo20fR0aKtLppiBnBJtAMB4Z+mdeR9VTpXW0erOUYMgsfdK37uKJhG0/CIIGhvD9psf6ywFC8oaa4rkQNP8LxhYrhlU4rnTkix5Mk+5xsDbP739RHtUpPS7bvbNdhcJnbHqZ9DXOQGyYTSdf4wiW26MhddMiLzHxvRnvXar+PlU1x1HyjWatwsAoRuKO++s0vGCSs4v8seErO9ogHTz+SLz9q5fJic7u/AAwvZrenWPGRd4VlY5ZJiSxtzs8m7cGIAx3k3os2xkGfGeSwghhBBCCCGEEEKIH74sI4QQQgghhBBCCCGkBfcLDgg55EspW5U16WW8tVgG8Wvc/B01v41bz15Ky4g/XnJEeuxmtMic16VKfYLrlKhMbTj3X6eUV63vaDuyPCZlCEnE5ZGfjdCWmtRx5Ur9VtqxNomKFplNSpniyFCCufF1S+k9e8Jja9d2znqYdnxb/VsLwHfxxVV63Y1fCQ+Kep0Q0o7TTjs3OE3KMGVTSNUIEMoyU+bcrGPHIItkMSEKoBctqusgSC1jtPJ5+6p8xq1eHZ4nZUpuSWxKFEjjejknyTKFU2Qo410nH/bGfKU9U+KupZbdKqsyycXtoqqJheS/m/0uh3RwkKMgW1ESe3pfQVcl35rO0OqrCW4frGe4pkC2yp0yz9ruNIR8WxRv1SojQ1lfmzbp52kyTGONmjJGutmHJNbSOmiXDBrIunNFr57Bg/isJ6QOQ/RTixBCCCGEEEIIIWRAoM+ykcXVqkVRvLWLNpRlWf56F/MnhBBCCCGEEEIIIcSF9xXo0wCUXbSDL8sIIYQQQgghhBBCBpCiKBoAfgfAswBsA3A3gHcDeEVZlgedeTwGwMsBPADAEQCfBPCSsiy/3+HckwC8GsAvAjgZwC0A/grAX5dl2c33UwCWJ8MsHOeUjvPic7payHOf+uluZl+LVaunln1Nbp8WmkuSbdvCz0GIYM3BEICJAz+s0uunqgPR1tSUkOiaDj53aHKvr4O6uvzs/kkGYPtvjvrxXGfV3dxY5YNnzHATYYZBd9Bmp/S/If3+yMzjNhKfpT+tI0f0+2r+y3LTS/85ckqREeQbM4eqD/FkdfRoxww2r58NTlu9uvK/cvhw9f3B6HEubZhIcC+S2/+YVv+pvg77QdIcEPsAytjJU+tKmiR93cm0HP5A2pyi3jSuA+n/xjpPQfZ1Oe8AwN69VR2NjW1YSq9YEZ4nXTkeFb7b5PwERGNJ869mzIt1ybGOGAS/Zyk2DILvoLrrNiu/unOft2+Y61fp3ysDdX2S5ujHHjds8c+AQ1NbltITl03pJ4oHvOZDNqY51v9+nNNHWC/nmq7OAZrvzAH4LUK6zhsAPA/ABwC8DsD9Wp8fWBTFI8uyNDteURS/COC9AL4O4MUATgLwfABfKIri4rIs7xDnNgF8HMADAfwlgG8DeDSA/wNgM4CrchasE94e/VPHOf44AC/EwkuwWwC8HwsVsLv13clYeHP4BADbAcxjoaKvWb7Jy+Nbj3hXt2+RzONvfF2/TSCEEEIIIYQQQkgKJ4jPsqIo7g/guQDeX5blL4nvvw/gagC/DOCdxvUrsfDS6zYADyvL8kDr+48A+BoWXn79hrjkGQAeDOB5ZVn+Zeu7NxdF8T4Av18UxdvKsvxBpuJ1xPWqvCzLz2j/AJyHhRdlMwCeWZblj5dl+XtlWb6zLMt/K8vyY63075Vlhp+UFgABAABJREFUeTYWJJdHWtfcv5UHIYQQQgghhBBCCBk8noyFjVB/EX3/ZgCHADz1ONc/AsAWAG9ZfFEGAGVZXgfg0wCubL1QW+QprXzfHOXzF1jY5H7lcoxPodYr0KIozgfw+tbH/16W5b8c75qyLN9WFMUPAfwzgDcURfGFsiy/XseOYaVE/yU0MoqzpuwAgH0z1VbzyfMuUPPLveU+dx5Z7/PBD1bprVvDYxdffNy8U+VUQR49+itGSt1bEgdTSiF1QTItO6uBt0rqVl1b+aR2WfSHea9MQ6gV4hDtK8Vjo1d/uGrsuiP8QujM3GVyokrW5KR0+eXhMVERlpxDfl69ukrLOo2yc0sqvfNdXSmENV5SZEkp9iTNTynlftGLws+bN1fpF7+4Sg/AX3ClCfGYTcrE831MgvzFkojKKdcjxwKAY8f0a1TJmjGHePtN7jm87nmSFIn1IOAdv92ca7x92m2flAIGOsewDw5CuwyCawXNBvn8jMf5fiHF3o/KFcbatRPhiYoXF6vcXpcEXnI+M63rc8uE6+bRM0kmGXUejAWF4Ffkl2VZzhRFcV3r+PGuB4AvdTj2ZQA/DeBsAN9s+Ua7CMB/lmUZzx5fadlxvPvVpu5I/C0svNX7rOdF2SKtcz+NhZd1v1nTBkIIIYQQQgghhBDSHbYA2F2WZSfvyrcD2NjyM2Zdv3hup+sB4LTW/+sBrO50buv+PxLndo26r4J/GgsbpD6XcO3nAVzeyoMQQgghhBBCCCFkqBiE3akZ2FgUxVfF578ty/JvxecJLLjT6sSMOGdWOWdxu2mnPGaic6xzF8+fUI5lo+7LssW3eVqFWCxes8U8a4QpsPxtscH5O3aEB+MQlg42THVOz86FA17bYZsc9c2r7/AYEaPkHZQocctwMBFeI+JTxG1x1VVV+qEPrWxIlBS47KmZl0WQnzNaXfJDQ+qAdu2q0lKSN1VFaRsU6kbIklEgU4YHkBZJVL0mDpMnr3FKYq37SrRhkSI5jk8Lomt6x4UWtS+uE/lZ9M+GEQEsSBsEkUCFDW21KApsznGatEmRs7bZkyDJSsnvh3/5l8Hn74j0ZVI7G8s1HaTOi01RXdPTVZlkBMwUGVFsk1feHJTDOS7kNbI88rkPAFNT/V/s5/zBkTsqczelm978NJcGy7lvSkTyFGrLNeMoyEJD7HYHoGiLG1EI29zuBfpBzmihQP2o4T1FWTjlaNd+uIHxju3cbZ5Cv6IJk66wuyzLzr6EFjgE4BTl2Lg4x7oeADo5r4ivt85dPN+6VxbqjqrFN30PSLh20fGV9raQEEIIIYQQQgghhPSXO7Cw+6zTC6zTsPCyzdpEdYc4t9P1QCW73APgcKdzW/c/GZ3lnFmp+7LsJixskHpcURRney9qnft4LEg4v3Oc0wkhhBBCCCGEEEJIf7gWC++PLpFfFkUxDuBCAF/tcE18PQBc2uHYQwHsQ+vdUFmW8wD+E8ADO7ycu6Rlx/HuV5u6Msz3YKFgTQAfKYri8WVZfsu6oCiKc7AQCXMVFl6WvbumDScusdTHiWebrlelmCXqmyYPsrRoloGe/HJEbvnlX67Sb397eExKB7RyZLBhELZf16Wtz0TSiCWc2sS6kY5y16N3TMj7DkRgoTjCayyHWST3uFJIbZck6aX2fTznanOw9zzr/tp9c9Rxj9oshVOe+9zgc0PKMnfurNJdLINXMpzjtjnnm2F9BuSGsp/l0avpwN0uCdJiEyl93727Sre5lOi/DHPQ5L+DgDvqtPf3w4CRMl91M6J17ki+o9gnO1GWQ9Xt6vBPAH4fwPMR+qx/Jhb8h71j8YuiKE4FcBKAW8uyXJRLfgbAnQCeURTFG8qyPNA69wFY8GX/trIsj4p83wXgJwH8BgDpp+P5AObQg/dIdR+L/wcL0SzPAnAfAP9VFMU7AXwQwHVYiFIALGyTewCAJwB4MhYiaALAzQD+d00bCCGEEEIIIYQQQkgXKMvy+qIo/jeA5xRF8X4A/wrgfgCeh4UXYe8Up/8vAL8G4KcAfLp1/dGiKH4HCy/dPlcUxZsBrAPwAgB3A3hldMs3A3g6gNcXRbENwLcBPAYL75ReXZbl97tQzIBaL8vKsjxSFMVjAXwKC476VwL41dY/jaL1/50AHnccXSshhBBCCCGEEEII6S/PB7ADC7u9HgtgNxZ2fb2iJZ00KcvyPUVRHAbwcgCvxYL/+k8C+L2yLG+Pzp0tiuKRAF6NhQ1XJwO4BcBz0aMNV7U3XJdl+d2iKB6EBYN/EdXLMIsPAPjtsix3HfdMQgghhBBCCCGEENI3yrI8BuB1rX/WeU8D8DTl2DUArnHeby+A57T+9ZyiLMt8mRXF/QA8FQva0rMBrG8d2oMFZ21fBPD3ZVl+OyHvcrm2FkWB8in/vNxb9YzH3/g6/PO1n0y+PocOvJu+Pfrl+ymnDTm0+3XruF96/9x9wwqJvdzrc6D5KfOG6x50hrXfSXL0wV6VY9D9JNUdf6NAL/v0IMxxw8qJ2j9z0Kt1CTnxGLT5qZtrtVEcH1b99ML/8SWXXIyvfvWrng01Q8lFF11cfv7zXfc133XWrCm+Vpblxf22Y5DI6sqz9RLs/8uZJyGEEEIIIYQQQgghvWKw/kxACCGEEEIIIYQQQkgfGayY8WSJUdhOPArhh9tCU4sy9apeKQvsDl5ZWi+2p+eC0sv+MUwyx2GyNYXc8vtBGBeELJKjP2p5DMJ84JWL1c2vlzL/QajXFAZ57htk27rBIPRjolOWwNxcv60g3YCjgxBCCCGEEEIIIYSQFq6dZUVRPFx+Lsvys52+T2UxP0IIIYQQQgghhBBC+olXhvlpAIuhKEtxnfw+FZnfCUWJautr7i3auSWQKfc5kRl1mZOHVClFN7eDe9qC29H7i3fsDEKUy0HrK7nl7f2Yu/plT265NZ8BJCe9khYP2nwwCHRzPmB9E0LIYLOcl1RauNeRDQNLCCGEEEIIIYQQ0gn6LBtdvC/L/m6Z3xNCCCGEEEIIIYQQMnS4XpaVZfn05XxPCCGEEEIIIYQQQsgwckL6ChsUClQ+CXL7vumVL51B89nTS7xlr+u7ZhTruF9l8rSFt40GsV3q9rXcfpvqQhtINxkEn0DsX+0Msr+3YfUxldvvlmSQy52K1Qfr1uUgjPlBHmODQNxGrCNCTlz4sowQQgghhBBCCCEkAfosG036/+cNQgghhBBCCCGEEEIGhJ7sLCuK4n4AngHgHACHAXwGwP8ty/JQL+4/qJQYjO3YiwyaBGuY0erSu/U9t9QjpT1HYZu+JZ9IKR/HxeAwCH1S6w+UcAwm3nbIPR945/Pckv1hkf2nytxG4RllMcjPm1Go7xzjt1fksEG2mbXe186zGIQ6Iu2wXQipT62XZUVRnAHgva2Pf12W5Vs7nPMLAP4RwErx9RMAPKcoiivKstxZxwZCCCGEEEIIIYQQQnJRd2fZzwC4GAubpP49PlgUxUYAfweg2eHaHwfwHgCX1rSBEEIIIYQQQgghpKeUJX2WjSp1X5Y9qvX/t8uy3NHh+G8DWIuFl2lfAfCG1vcvB3AegEuKonh8WZb/XNMOkog3IuCJupW3m1IDr2Qmhw11t9KnRIZKlZnWpa6c+ETt6/1kZqZKj411TscMQmS2fkjXT2SJZ0odd7N+UuY465q6tg7CsyI1P899cpRvEOYNjdxSu27OScMaFfREpq4bkGFy1ZJ7/Tnqkm/JqJePkOVS92XZdiy8CPuqcvzK1v93A7hi0UdZURRfAPC91v2fBIAvywghhBBCCCGEEEJI36n7p4FTWv/viA8URXEqFhz6lwDeKZ35l2V5O4CPAigAPKimDYQQQgghhBBCCCGEZKHuzrKNrf8Pdjj2UJH+aIfjNwJ4PICtNW04YemX3MiLtdXZo+u2JFi9IjVK0KBvUdfwbLP3ysBS66AfMsocUUpHgUEo3yCM+xSsfttNCYeW96BJFnPY4C3roJejNtoDNBo8oyCnqovVN7ToyNZ5g0C/orqmkDvvnPLmQWvXmLr2dVOKmJscfTXnuBj0viHxri8G4bk4ytBn2ehSdzY41vp/TYdjPyHO+WKH4/e0/p+oaQMhhBBCCCGEEEIIIVmo+7Lsh63/z+lwbNH5/zfKsjzQ4fja1v+HOhwjhBBCCCGEEEIIIaTn1H1Z9l9Y8Dv2s0VRTC1+WRTFRQAuwIK/ss8o196n9f9dNW0ghBBCCCGEEEIIISQLdb3DvB/AE7CwS+xjRVG8BsBqAK8W57xbufYSLLxMu6mmDScUWTTnOUXViQ6G5GWyTLNzg+UnoJsa/0H3LaD5bIltGybfDnUZZD82w8z4eI9uJOe+IXWOZo2/HP5cCNqfkVq/SehD3fSv5p2ThnXuylG+unmk+NRLtaFX5H6ueeohda6q60u1V3iX2d18DA1aneSwoZtrsEEbl8PKIPa7XkCfZaNL3Wn6XQBeBOABAC4G8F5xrATwibIs/yO+qCiKcwGc1TrnyzVtIIQQQgghhBBCCCEkC7Veo5dlOQ/gsQC+hgU5pvx3HYBfUS59ukh/so4NhBBCCCGEEEIIIYTkovYG4LIs7yiK4hIAlwN4IIAVAL4O4ONlWZbGff8OwGxZlj3bWbbr8B48/2tvxrX3fBerGiuxbc0p+IsHPRMP+MjzcM66rZg5Nou1Y6vx22c/Fr925hUAgLd/7xN48X+9DaetPhkz87N41vafxQvO+YW2vD991/V47bffj2suf+XSd0/70hvwuNMuwRPP+En8+pevxlfv+S5KAGev3YK3P/T5wfW5t6ma24nHmh2/HgSJWXNseKQLktxhuAdt23Iv+0a/29m7hTxHG/W7rINO9nFQV/MS77FX8kuVSlp5LJdBm0O8eOfF3HKxgOgZ2ZDtnFln4ZXuqST06WHtG90kt2zSatcUaWIKg7DGyF0m7xxQe1zVJB6WgyDP6tWzp1f0y85urttSyjRoY2JY+g8hXrKo5VsvxT7V+uc5/wU57rscyrLEEz77x/i1M6/AP172EgDAdXu+h7tm9uKsyWn816PfCAD43oFd+MXP/gnmyxJPP+uRAIArz3gY/urBz8aPjuzDfa95Np54+k/i9DWblnX/NzzoGVi3cgIA8MKvvQV/9Z1rFl4rEkIIIYQQQgghZOigz7LR5YTZ1vCpu76BlY0xPPvHH7303YXrz8TpExuD886cnMbrL/p1XP2df27L4+RV67B9cgvuPLxn2fdffFFWliUOH5tFURTLzoMQQgghhBBCCCGEdJfhDAeWwA33/gAP2nCW69yLNpyFG/ftbPv+1oM/xMyxWVywflvH6z5397dw4b8+rzr/0N143GmXLH1++pf/Av96x9dw7rrT8bqL/ic+d/P/Xl4hIqzttvLtdvymW4s8Z27RTQjtI/OzLh8b820N7pV0wcuJJKE7kcpK+os6B+T4k51TsqbNXWOxPG9udtl594qUiFQ5ZFv9kPqYeRkRULXnZNyUTflZaefcdRdcY0XnlPeJbPNGDkzBG1h2WOV+3STF1m666hgm2dQwtbNkwB4PJt3snylRZnvFILiiye3ShRBSn6zTd1EUPwng57AQGXMTgDUA/qQsy/8bnfdALAQB2FOW5fdz2pCD2NHaP936OXzqh9/ATftux5sveS7GV3T2+fWwTee2+SyTvO2hz8ex+WN47tf+Bv/0g8/nNpsQQgghhBBCCCGE1CTLy7KiKM4A8PcALpNfY+G900kdLnkdgEcA2Angx3LYcDzuf9KP4b23ftF17n/dcwvut27r0udFn2VfuvtGPPYzr8KjtzwIX9p9I151/bsAAG95yHPddqxorMCVZzwMf/7t9wPTk8srBCGEEEIIIYQQQgYG+iwbTWrv3SyK4r4AvoaFF2WF+GdxdeucrUVRPKKuDR5+evMFODJ/FG+++WNL3137o+/gBwd/GJy348BdeNF/vRXPPfvxbXlcuukc/Mq2n8Ibb/ownnD6pbjuMVfjusdcjYtP/nHz3mVZ4ub9dyyl//n2r+Ac8TKOEEIIIYQQQgghhAwGtXaWFUWxAsAHAZzc+ur9WNg19nUAB4xLP9I6vgbAfwPwmTp2eCiKAh942O/j+f/5ZrzmW+/F+IqV2LZmM/7iomfilgO78MCP/A5mjs1i7dhqPPfsxy9Fwoz5vXN/CRd99Pn4/fs/CWtbTvuPR4kSv/alv8C+o4dQosQDpu6DN13yW/gft7xp+f55DMcH8pI9IgbB6tUuM0NbDkTNF3/W7JmaqvITx2Zm9Peyk3KDnSzEzIx+L+F4La7DnPr9FL8/ufHakOIrqJvXeOlm+6WQo437XYZUrLLX9WOSVCdyDojnIM1pUuyUUXPSGKHZJ02Is4p9mOXE69ulbh0Pmo+ULHOs0jdiu2XbHj5cpdeuDbPz+tX04J3vAp9SCb72gKRlhOrHzXKbZg0/T90NwnxpPWfrtnmO8qX4GLPmBi2PQfDb1Cty+2GUeMfLIPoys5bhi8R2y3Gu5WXloV0PDIbfQ6+Pxm4yLPPnIPifIyQndYf8rwK4Lxbklq8ry/IliwesaI9lWR4piuI/AFwB4BL1xMxsmTgZ777spW3fH77yfeo1TzvzkXjamdWLsy0TJ2PXL/5923mXbz4fl28+P/ju7Ze+YCn9hZ/5sxSTCSGEEEIIIYQQQkgPqfuy7Amt/28D8LJlXnsDFl6WnV3TBkIIIYQQQgghhJCeUpb0WTaq1H1ZdhEWdpX9S1mWx5Z57Y9a/2+oacNoUnPPr5ReOlVIIbHkadeuzudNTuqfhd3uIlj7v50F6ZWMILdkzXt9N/MeBDxbuHOUYdkS6GWc1xB9NcXWxK5fG2srfU75mVvevHdvlbZkmLLChBQcQFh5cn6KKrVhyPU0E5Tprqt45WIpEuvl3DcnQb+bORQezKhZioeslF5a59W9V9MwO+l5lbGzxe0f2uqTJS0n/+WeY81Jg/4sG2Q8sqlhru+cUrDcc+QgS/oWj3bCa7fXm4pGfI5X4qedlyJBnp0bnr7uhfJIQtKoOxtsbP1/a8K1i6N2ABX7hBBCCCGEEEIIIeREpO7LssU/Aafsezi19f89NW0ghBBCCCGEEEIIISQLdXd13QngJADnJlz7cCxIOL9f04ahpUS1Pbhte2zCPm152rrJ5W8nDrYwx/LKjRurtLQtkjLNj1cRQqVkKZZsSKVUUHZZiNiGXmnRvPRpL31KhDMvgxzt0zqntuRMagW08E8xVn8M+oYvYqIcL1J9CITjJR4WkpztlzsSrMyvPVJYdUxWa9s8FF5UpWXnt/Rhsm3bw3l1vER+HbeLNV3lJIe0vN/RqpIlXSnzrHJe3DVWrqzSR4/q52mSSqsMKa4Hgty8fVoQR80MJJWy78vsjLybIr9mNN9NaNNfnN8BZcw55bVWX+2my4V+j5eYwAZRx/PO54sdlXD5kXclwyTPTMIb0tH4ehCiXnr7cXOsOq+pPdfiOpFzhShrPE90c1zVlcs25maX0t2MdD3MuKJ0aw/Q+f7Po92EPstGl7pPuM8CKAD8bFEUa4938iJFUVwBYDF05Gdq2kAIIYQQQgghhBBCSBbqviz7p9b/kwDe6LmgKIptAN7W+lgC+PuaNhBCCCGEEEIIIYQQkoVaG4PLsvx0URSfAPBIAL9WFMUkgJeWZfm9+NyiKE4C8KsAXgHgZCy8KPunsiy/XceGkUVKJhS5l9wyDCDYBi23ylrRaFRF5fi68KLp6HOH6wFg144qfffdVVrKXQDgnHOq9MRYvX2rfZMADMK+eidJ0k3loljqY/U1SU4VrdXmbtVWSqXIKJfRNn01O+Mc+VlK/NqUTEKiKetRyiVy0Cu5URxVcufOKr15c5Vevbqad8amOs9BQNhkbXUiK9PYI6/1KZn3GVvDvA/N9Gbu8UYETJGheK/JLXlz9zVHlFILeY0ljZIyTCsarZSsWV3LPd+l6DZqzl2S7G0ZV572UJD2uCXtegMOgkSwmzYEeYhnjzdysvXsCfv38m0b1qiZpqsBp/RyWMqailo+Q6bofORifHz5dZcShT6+RrqmkWuRycmqTM0uRrsfCAwZrcQqa/gztfP8BIjfDI0RqDdyQpLj1/7/APAVAD8G4JcA/FJRFNIP2TOKovhVLPg1W4EF2SYAfBfAszPcnxBCCCGEEEIIIaSn0GfZ6FL7NW9ZlncD+EkAn8fCi7ACwH2wsHMMAO6LBf9kY6helH0RwMPLstxf9/6EEEIIIYQQQgghhOQiy57IsizvAPAIAFcC+DSAo6henC3+OwbgPwA8FcDDyrL8YY57E0IIIYQQQgghhBCSi2xOl8qyLAG8B8B7iqIYB3AOFnyTjQH4EYDvlmV5b3xdURRnlGV5ay47RgapH5fC8MnJzt9Hx6Q/s/Fx3beANzq9dkz6WYpNOnKkSh87pp83MTbT+UBOJ1cRTrm+7VfH7Rxr+aT4B/L6idCuASL/cdKZgyxf3C7OENvdbFqtvO3tLHw1aW1mGCd9XcwZrnmk/6O1Ik5wbM/hw1V61aoqPTUVnjenNMuG6LxhIa5iWb577+2cllNfzIoVVXr9+ni8iP4p+mrc/K4xEzlbmwgyEf7sDF84Kf5OUq5P8e2SmrfnOtM/kMT0FeSbazSfbM14yCf4zJFIU/fv14+tM/pu0mSo+ExK8Tno7Se2zythQzxQU56N8pqaz1avjz93/8xsgxf5fElZekyM6zbIvGV+qXVSd77rlU8oszzW4lh8btT0X5ajb9TuqwlzrjUfzChLeiB8Vktk/7TqoO58B+jL2WAcTPr6fkr7pTybcxP73PXWpVwCyfT09PLzImRY6IqH8rIsZwBcZ51TFMUWAC8H8D8hf2UQQgghhBBCCCGEDDj0WTa69DycX1EUmwG8DMBvAFh1nNMJIYQQQgghhBBCCOkZyS/LiqJYAeAsABsAHARwU1mWs8b5JwN4KYDfBLAalbP/Urtm1ClgbFeVe4N37+78vbX/Xugjm7GmSyJegzcT5CCT0VZluY1Z3jZSL8WZdLSnm9JGKcfrBnVlCNo2f0C3PUVG625yQ+MprbEkv9468Wyzj79vQimg1Yc0XUskI5L2WOog+dmrYLWkhRqjsMU9rofzzut8ntV83v6kSYySiBvMnNg6422/3PIled9hkUnFJNkd64AE8pnXTBiLcvaTbgeA0PWAlGFadmvzdJZHoTbfGQ8OKalsOp9DbSgPGSlpj/EWN6fsNMe4TJEpeu+ldeO4b+jdPbS7ttLVlO5VGWplzTGH9OxZ6Cyrd1dJcyyz3dp4NhYpwTrL2QGMqTS4lfWTQxK0n8i8zR6nfWnjr6oH63Ee/9ZZJLd8u67LBe/aOpVQfi9sEK5/1IEwP/xrV3JisuyRUxTFlqIo/i8W/JB9G8AXsCC53FMUxf8timJTdP5YURQvAXAzgBcCmED1ouzLAB6Tbj4hhBBCCCGEEEIIIflY1t+TiqI4F8AnAGxG9cJrkdUAngbgIUVR/FRZlncXRbENwLsBPGgxi9b/XwTwqrIsP55oNyGEEEIIIYQQQkhfoc+y0cT9sqwlu3wngGno0skCwP0AvLEoihcB+AyArahekn0eCy/JPpls8QnC/PjEUroh9zTLbdRWNBO5nzgevdqxjRurdCw3SpBoyqg3llRAyjEsyagmz/NGu0rB3GKdeWt4gJG3lp9XFmM3pSNMULxXXZzXmPSFV/Vu+1eJ9QAyLKule7TyWMSpjXQqM0waM4c6ZxjZHY/1fpA0rjQ5cVR5TUUeYkVQ1SQFgRwAtjRYIs1TJQVxm3cxYm/d6Fsp5+WItFkbY2AlyUi8bWSFcJME+rV1S8nYbBnd1ooq6YlyaKmSzOiFsh9r5fPq9+X6wMDbRl4TzEDMNd0p5O7HOdceMd7I5RIZoTWOSC7rUnvktZXBK/frkTsNL945MiBBzqhFhIyzmBP9NvsjJGFhEkuitXLIZVZ8GxkN0e1eQq4lNXczQKjrTKkwI3TnhMhvZtw3T9dts9zSTa+033JJMaGUKbZNjcC+V7Sl1vkpwyRDynKeYo8DcAEWXpQdA/BGAB8A8EMs7DR7IoDnYEHa+UQAmwCc3rr2egC/W5blJ/KYTQghhBBCCCGEEEJIfpbzsuwXRfpXy7L8R/H5ZgBfKIriPwH8HYAVAH4aCy/W/goLL8q4OZEQQgghhBBCCCEjQVlShjmqLGcP+wNb/389elG2RFmWfw/gG6hkl/9aluXv8EUZIYQQQgghhBBCCBkGlrOz7DQs7BT79HHO+3csyDUB4PUJNhHoIZUtZwCBvwxL/685C7EcDYg8Ds3oun7J2rVVev368FjzwD3CHsUZR2R3Q3EUkBIqObZbc6th+kOT/qaiDKSPqSR/BJpvkBjpb8HwAROEeD6wr/pgOdaQWJl7fZKk+DHxOvHxxir3OH6J6iToQeKapuFXTN4mCBMf+3vbtauzPdIBCABMbaju00W/OF7cPmCkkxM5v8j5KTomfTSOCx8icVfVpopm3H7Cj17sm0XLb2JGtJNso3gOkmVy+nTKjdYHrHnR22/60r+c84tlm7dOAp9esk/GnU22u7BnYmP1/Zo1oW+81as722a4z1GnOMuFmuU/Z0z6Opys5pA545qJ8c51Z/k1spYRHh+bcZ0cPdo5HeP2jaSQMpd6ffzl8P8XHqvy87rllG0Zt5/mv8g95q3nsUKOOqnbZpY9an7x+k6xQfp9ks8uwO8SMckfltYWznaxXMDKJUsOv11yrDc1+6xJsu5NgbCAgg3iGX5oLs1PrNY3vHOF5Y85J1lcCWoTf7weV+qbkGFhOTvLFj3Z7jLPAu4S6RuWZw4hhBBCCCGEEEIIIf1jOe+WV2BhZ9nxXvEvHS/L8u4UowghhBBCCCGEEEIGGfosG13yxnQm+XCEbDe36G7b5stbu08sMRObEGU48ttv128jlWTxrtym3LKr7UmPt+7KaxL0FykqQHObfsJ2dzeWDFOUfd+Byj5tuzwQ1v8GaWosC9T0HZbuQ2sLI9y6GyVEO8aiLfLis/dh1ZSVYlWelOHJY9G4bIgOPz6ubOGP60DWnSyrkF0CeneIpR6BPYMgodMND8+T9bpz51KyIep4//6J4JK7xB7m7durdFvNi7aV846UkwOhCm/Vqqr+126r0ppELcaUb3exXbwyJ+95fSHuG2JcaLIWb522zw1Vb2lu3apeJ+8lp4qdN+t5y+w0qVbbZ2W8xNdoGqi4XWV2e/ZUaTl24kfA1FRDpDvnBYSPZ3ksXnpsEHkEZZKPlCld8iTty/2Y9dLN8WvmLQq/TnnOWm0upa7Wo8eN9jzOTL/msaAtjM4WtJMyZmPLJoI1lL5eqbtO1dyVxMgyyH4SI22Q80G8ptf6U7ycCuW/1TN9nZw4Ul19aFiTl/L7YyJ2hSGo2z+tNapsixxzjay6dZOKe5+FMztnYBmrTc5R51haz/ZrAiekJgO8YiaEEEIIIYQQQgghpLekvOY9qyiKh1vHFxNFUTwMVWRMlbIsP5tgByGEEEIIIYQQQgghWUl5Wfbs1j+LsvX/px35lYl2nDhoIWisiF1SUxRvo73ttiottyOvXFmlY4mZSG8WW2w3x5oLaYPMe294mit6YbyvW3xO2X7v3QHsjWBjbU+2tvC7SLjeHZ1I1qu9H/z46ehzDllEytZzTclr7+avbA1kwbEuSWZihbQKotYqsqK4kYyt/lrWlkyjbrerHa3M6k9yToolb1Lqet11VVrMQ5ujazafI+pOXr9jh26DyG8imrukJORHP0LHtJSoAXrzxfXTr6ilQ4khw5RY87RW33H3DANNi/lgZl9wXkM8y9YJe04+ectSWvYTwJiPLSMsObhEdc0QIqPNbdpU9e9jx3RztOnOi/saKVkzJq51Ymr2trM8z5qSgkjFBt41gXvtoNAerfX4jRHL7maEvNxaE3jLXpcUWeEgYLazjKIr17lxlGeJfPaI9e+hyHGAnAJk+3nXdyn90xtcXPPMYeVtRbqVeXglsElYrkO8fjuCjrz8SJmWZxWtuF1dT3tdsMRI47Uol1GBGnXDFg8J9Fk2uqTMSMfdKYbqZZnnXEIIIYQQQgghhBBCBoLlvCy7FdVLMEIIIYQQQgghhBBCRg73y7KyLLd10Q5CCCGEEEIIIYQQQvrOEHkQOMHwaPYNXfn8OecupQP/CkAoqpb+faTTldgXmRZDvj3ufOd05Nznrj2V5n/Tpur7xq47qg8DoHM3fQ1pvuQAzAufBkn+igwfYYeET5LALZxIx7p5WZUyNPXkYkjnZWCVx1vW3CHf3f7aFAJ7JtcFxxrnnFN9kJVs+cFQ8vb6M4iHf6+GgtV+aptJf2HxfKD5MIzml9npM5bSzXPEuJLz0/XX6/eVc43izwkAsH37UvKO3aHfEXkr6TZNTl2yK8S36qY/nsCfy6j7P0uoSG+dxFlLF0OyO23bFs4BE9LpphjEK0X33r8/zFvmd+Y2wyjteSqfL7Hh1piTiHHREOnp6Wret1zEWU2h+eBp83ek+d1yOl+s+6wYJj9ZbWjzp6zHaC7VnjFt9eA+sTOWfzatbwxTW5j+5zT/TpYvLKXwE+Px3NW5v3v9XKWQst5om3NFn5QlWBflvW69Yri1NsrtA1g+1LU2s5wvJvgskyb00q+VunawfJalLDituhuA33K9gD7LRpe8v1gJIYQQQgghhBBCCBli+LKMEEIIIYQQQgghhJAWQ7Qp+gSmpixlPtoyHMjKpPbom9+s0lKHBITbaqX26OKLw/Me+cgqvXXrUvLWnfo2/c2bxNZgsT06t1TPIknaZMlkuojctr9qVecw8YaqxU1duVeW9qsZrrvuLQFgTN534ym18ot3vmtKXi10e5zfQMhaLAmkNFDMB3FF7D5Qyd6mt5+9lA560Je/HOZ9001VetWqKr16dXievK+o5KnpM4PTpMpJmi2nS6HibDuvm/RLejkK8k9ZhuZYWIazRXvOzhnzlWxo0XenRNdavz68JEkarsm7UvSQQNipBQ0hi9kwFeXtnGC0+b3N7YNig1vvaZDyjOlmP9bsiVVJ7r6hPRQM6e2GKWf5EurcOx9kaNq+oJXJ7DOygJq7kmUgmzy3pMs7XqwpZZHx8TCv4JPs8JbcT/s+PkdWSl2fG3H+2mKri7pX7/o87ndd/U3kfd7IY1LOqrkQAKq6LBkjkAwnQ/QYI4QQQgghhBBCCBkc6LNsNKEMkxBCCCGEEEIIIYSQFiO/s+zca57ZbxNUVk2tqXV9vCU3kD+I19uNaNvyXfsnltKbfuEXq/OkxiiWYcroW2uE3ZdeGp4n8pBRG+OdzjI4ira1Pykyn5MsUgxjr3o3JYwybylh3bRJj7ro3eadQj/az0uObex1ZY9WkKGjR6u0Jb3U8ovpi1RORq4zpLKBNDyKOLplUrFbzl0XXhge0yLrSdll9FnOSXFwTakouOyyKu0N5DQIMkUzgltNvHNSbeSzBvDrkxW8dRJINOMJVHEPcPfd1SmWciiYI60TtfJZ0iNL+qVJa6xok065ux5MMXL7IG3wui5wyu+NgNTV/a2+2UVNu0fKBixj7HhlUk5ySli9z9mUNUGOZ7h23zivFLtV3WTc6N5IsAo5uqd3LvREM3XXiVdzaIWLHIXwqgKv2d18hjfkgicVuTjS5nmgCjvNbVdkSBnOmWYZfOtDFx//pD7x+D/a2W8TCCGEEEIIIYQQQohg5F+WEUIIIYQQQgghhOSmLLl5blThy7Ihpm17upArBFKPKBrN5pUyPJ84T0ayiyVPUhojZR9ReLhZVDZ4g9Z4ZQgDF5lNC5+XAa9cIZA9Chluu3Aln31t8t/cbSG3cIt0wynBkvalbGOPm9Irp4l3ni8id6rH18eBG+vSqzES1GtClFK3HGfrGdU1kbxSa9s2BYfSLg9+sM+mQZt3ckszUubf5Rxb9n3j6IniQTI/teH416fcM8aKKiki4h48WH0dP+80+W7b/KlIlixJc3C9nLDiSUgxwivBsr6XVSJvuybyLrFpk5BcR/JrFaXssQ3793e2wa3WNeSogVsLcZ5XymbJ7+sSrPV6OSf1QQKXY77rVdTUYMzGfXi8cn8SqJGjPq0FOvX2IatZtHqI76nNAXLMy0jsALB2bVW+QPEdzYuues0QHbf2uIhs6Kbrl5x5u/MyfqB583DX8WIHO3bMdz4hAwYd/BNCCCGEEEIIIYQQ0oIvywghhBBCCCGEEEIIaUEZJiGEEEIIIYQQQsgyoc+y0YUvy0YIVT8eOTsIdP27f1gd2Cmic0ofZQCwYkXn/CLde4qrgUHzCSSxtPsNpzOr3OXT/BM0+hROPoUkHwsJxM2SUkWaSyDpLwfQ/Rdp6WEjpc3q9vfAt8tYeE9PBHrrvBitTLnnpLp1l8PHmHaelXdunyvqfeNBIj6rc1/uNhL+hYDQr5i817Ztmf0pOX11hVTXjE3qfs40d1Nx3TXV8RKWVTaTXB6sXKnfV2K5Wgt8HjnH79GjnfMbH/e1UWzD+Pjx/YKljomwLUQ/ln7SFg6qeXju4x3P7rlPs6ftQdu5H+bwHdarNUpA7NRL8TPozUIur+PpbtWqKh2PJY3wOannrV1z+HB47MiR418TN7m01V09ffCBZyH7Vop/WiCpa9Sm7vN3OYT1UuXRtJw0LvqbbS7fvy0hgwBlmIQQQgghhBBCCCGEtODLMkIIIYQQQgghhBBCWvR/3yvpLxs3dk7v2BGeJ/eQO7VkoRTCZ44lrUmS2sg9wzLudWyQ2Dbs3p7sjOWt2d0Wqj6hfLnlR0nh0rspKxNbu72yK9nke/aEx9avr9LNMZ+kSyuflF0CwN13V+nVq6u0lCjJ+wP9UR6k9rucW/29dSzlKnFdyeEn09467aXkWyufW4Wye3eVnpoKjykanBmEUkJ5r9xSkbqy6mD8WRoXx/WxPSnklpx6kW1kSZ609sviL0XeWKSb0TNzw1Tnh3pK/Xj7YHze2rVV2rve0OqoXYbpsykFrW2npkKZUj+k7ynMK7LLGGu+85a17nlJY7vmWm8hiyrv7dv1PORSO2U8a5LMTp8XkesVIFynJD1PpREHokJo7ku8/ipyPLDEfb1915FV2+cUU3vloiQVuRSR6QvOMy5a7NTzg+VmJzf0WTa6DN5IJIQQQgghhBBCCCGkT/BlGSGEEEIIIYQQQgghLSjD7CMliqVttilSqNTt9q7t6du2JeWdoKAJyCIh8IQdMrZ5u7dBSzmUsd96dq7R8TRLila3HlK3b3vua0mesmwbz6hNjOUFcou0FvXNKoPsNmvWhMdk35ddQ0qFrKL1Svo1CBFnveXxqjFS6jW3dM/KWyL74M03V+mTTw7P27xJfJBzWiwJkpUkOuHEZFieW3dWNukS1qhOZHQ+57isLeu1ypdwn9x0U7asSSqlB4H4mIXWzrJK2+ZBmbnU2Vg66OBZ6IvIaa0VZNbe54sWDTM2W7uvvB7QI1bmQJPaxQpr7RqnKrA2uefI3BL5rrqhyByp0W+rr695TLKigctjcbBPeZ50V2Ei54qdO/XzPOvmxJDW7rlZzFHanBQ/djT1aIy8TrWnTfNduUxIcQmSA+88K+ce2eQBcfkWO9ixY4nWEdJf+LKMEEIIIYQQQgghZJnQZ9noQhkmIYQQQgghhBBCCCEt+LKMEEIIIYQQQgghhJAWlGGe4KSE17b2mU6MV12qtr7e2s8qnSzEzgWkqF7zvZbDB4Lhe2HfgarsUte/cWOVXhf5HUlqCwWvr4PcPhEsvw7j4z4bln0jIOgPTdEuM1F5pO+fienl2yDrR4ZXB4CVKztfY/nmCX2DdL5PzCCEFk/xA5Zi6/S0fqyuv5p++bzasaNK33hjlT4vCr2+dm1VXxOakyMAs2OVvxOMC39R0RCRc4/XT0uzpq8eax5T+0bsuCmjD8PcpPRp75wb+pILjx0+XKXlvBP73dq0CctHdg7ZIWLHRgoN2dEiNN9fsQ8ubWzG38tnijbPWnUX+7SUaC6rvHOadJdqVInb/9i6ybzzvjY2pY/VGK39vHOp5r/Va1vXSdBQqWurmUPhF5ojvWjSHVP8aXmRc4Dl81Mei9vCum6J2GGV7PCWIz5tYnP6FM6B9MUp61ua5vW/7H48yQwHUKvnnVNkHW3frpwUV95iJRXF8g0jZAAY3FUoIYQQQgghhBBCyIBCn2WjC2WYhBBCCCGEEEIIIYS04M6yfiLeQsfb24Mt3GJLslcCUFe6Z4YMT5AwxvmpYdClTi7e5r11a5Xf1IaldPwmfy6QFVVbrBt775EHwotkmbz7qo3zpGTi8OGGSFfnTE7mDcueg7o2yHaNd2JvmU6QkWh1LLf8A8B111VpoWcb33pmcFrdv/rI+mlGpk1N1ZRkBbqfZniekA3IMRJLnnoVWjywVYzThqGbTJFkDsKY8GJJhw7NVMc+/3lffvv3V+kJMfelSlS6rGw5Lu6+aRhaV57VzWdmKtq4kFNfLNXLqUxte9bLm3knTGGQtXaQ6dgNgYomXwPQEJ/l8zRlntdk9DnYsyf8LLu4JcNM6e91r7Ge4dJWr3x0EFDroW3xqGhvI2R9ad1zbFzI4xH2VcsGKQu0xrksk/z94O3H1pLX1W+82s24o8jPCQ8lq3+rx4x2bihzV1w8QzkboN7X2bfC03q0nouwnpOyv0+MK2WVv+OAqsIowyRDCneWEUIIIYQQQgghhBDSgjvLCCGEEEIIIYQQQhKgz7LRhC/L+sjhw8ANNyykY/XS9HS1hVuTZHaTvsmf5BbtOIqO3Dot7JuLojfJyapxYF/1Qco6463hQs6WIxKTFjVRqgfj4GJuWUpGTLltAnJ3edx8Ydi9CXiYF5KEYPt3nLmMeioGU1zHwe53VT+RNi3WloWJsrblJW2VW9ytMGs1sSVrAlnJcYUrkq5YktKvqJ69Qka91BSVJ50UXnPkSJU+tLaSnY/H3VNZnHmlNX2LPOdFFCSUhVV2x4/FumNxIOtBIMvrVPe4F/FBBFTluQhkrqPYOG0+jgsoOkRTVIolX5IRMOvKWS0ZmFemqEXa9N7XmjtT5lVpTzydy8dN4Bogqkgt6qWUo8bRpGO3Bj3BO2CM87Sx2N6lQ9cK1YHw+xkl6GxsgiYZ9C5last64zVY24IvnezRXi1NpUKOugtwTgj9Cv7srXPZ34M6lh0+Xpculr2bWndCusho/0IhhBBCCCGEEEIIIWQZ8GUZIYQQQgghhBBCCCEtKMPsI3PHKmWguUM3QQSdO+qX9z5a3vH34+OKfXIPclzum2+u0kJq1ybJk9fduKPz9VK2B4RbyLXt8gZWfTfHqrLHETC9efQKlxTJkMzILdpNzIbn7RX6AkuGKfKTt5ISrBmsCy7ZICJg3rO3c2QvINodruknBoHYHikhFnb3rc9o4zSOgqRd0y+tQY+I2+Xo0Sr90IdWadk/N68VcnsAh9ZWYyQlQG8g3wfCdpIRlgetLQx7NDXymjXheevXV/Uv51+LQZdealjSL1lfmqrMknd5SZKwapM7ECyI5r3ydFEQq09Liab1CEh5JEj75LM+fg7VpZvzvns6ECfORq4wpNxSyl6PHfNl7Y7M7kTrn215KwMjPk/2Dc0LQVyPWhDI+DyvrFpiRc7NSTd/V+SIkK21bY7xokWpbLNHacBBWN9LsteJ07XKKFOWg/dTguRhsEYvIYQQQgghhBBCCCF9hC/LCCGEEEIIIYQQQghpwZdlhBBCCCGEEEIIIYS0GDBnJScWjaLyXRC70Ap08IoI2gpb3i+8vktU3zrS6cOuXeFFX/1qld66tUrHPsukHxPpp+zOO/VragrNTX8Nwt/UBnHfWSzfN1qM1xeHlyS/E8J5UNNyxlET6fcp5tBMVd7Y/Y1EDXtt+crrok8nt184abhMDwKywuMxK8epTEeN1HD4YcvhuyY3mq2xj6Lzz6/SE7tvXUqvE74XccONwTUTF164lI59AmnIbtM2u2gDw+vkJsWZTheRw+BHPwqPSd9I09O9eS7m9udjXSPv5XUFqJ1nXWP5YFL9jlpoz9nU56+nIFHeY4oPNOmHKAfytocPh8dk/5TDL6UPdfNxddJJvrzjqeXIkSq9dm0+e7qNVv9ef3aW/0CJ7A9x/XRxCaVjGNsYAL9bdZ/13jVhblL8sHnngH61hfQVGv+MOtGhz7LRpf9vVwghhBBCCCGEEEIIGRD4sowQQgghhBBCCCGEkBb911KcwIytBBZVOE3Mhgd3CjmTIpPJEWo5KeS7E/c2YbmvV8q4brghPE/KMKWk8vTTw/PkPtidO6u0rMdYJyX3aU+uM83tRJtEbE60pyyfYGzjKcu+T0xXt2VrmoJ4T3tcl4vE/TZhv7u87cGDvmukeUkyBmsfdRd1EcFYjOtKyvUGgMBWKa+M606T+EX16JmHBkF26SXuJhNjYj64Ucgt5diJx5H4PCbmJEsSZHZPTYvi1f30SXqpzWvWdK5NSd779LKvpdw3PG/5El1vU1pdI6mOcmtUpIFKAefHQkHyjOgbTacC2Ytsy5Sietdqsn9bU27dIbt+ve+8+D7SBmnfihX17OkX1pwr3UNY9a15Uogf9ZZksN8M0zPYGn/aUtR2HeOcp3u0RuwXnmV8Dz2ZDBSUYY4u/R95hBBCCCGEEEIIIYQMCHxZRgghhBBCCCGEEEJIixNkc+RgUhRie2ocRU4i99wnhB+xoshpMr4c261r53HyyeFnKUWTIYTiOpF7/WXYoU2bqnQcftQpdfVHpBIRt2TezshzdaOnxXZrikpzS7U8UfbBWCegnReTsBdbXiJttaJvyfOs4aLWcWxngt11x9IgbLe3ou3K6WpqqpITj1+cJi0eFnmHt13axpWU1cvK2769Shv9rHFg31K6GWU+Nl7NNcE8FBuhjVNLE9SjSLCyXq05d2pKjCshdT8wGUrtbrutSsvq9qqZUyKvWuPFPZ69c6lop7HxiU5fmwTRqA27reZ3z3Fystb0g5ZuR0iQ29qli/1Tyzplbo/ljKrULj4gGlTeS0YijS/Zs6dKyyVPjDb+NGUrELmXEAcnoo7niZSa2nQ516mpcjF5nlyKrlxZpeOlXnPMZ2vuqKzOm/b+nhG51wCyvpve4hlzUptrDAXZP7VxHle3274EcgexltXQmDm0lJ4Xz6Eskn1CBoj+z5CEEEIIIYQQQgghQwZ9lo0u/d++QAghhBBCCCGEEELIgMCXZYQQQgghhBBCCCGEtKAMs4+sWCF8Kl13c3hQir5j/1pDiOUDZn56S/W95d/r4MEqbcVOl59Xr+5sUOS8RurtLY2/5i/D9AWwcWN1fRTGXsPycZPTT0fsU2FCc8sgCxjXdxd96gWua0R3iO2Wx5L8lEkSHTtofcPrY8Xrc076pJH+UgC/z6K6SHuuv95njzWN5faX2Cvc/kCk46y9e6u07MhRBR0aq3w1ybyt+8ihODkZ9qGmvJdMy8FjdCCv363c/hbV+95441JyS2T31PlnL6X376++j92Aae3ndC2ZhaC+ZLvIPhPPuVu3VmnDV4zE44MrxutWTPpZamt/zfGk9QwPOvI6aKjzhsgv9mum+dOyfLel+P2xrpH9S7MbALB7d8dMmuIhd2AuLM+xYz4bJNb4C0h4Nkq/RuOir7qvz+w/1/IppU1/cbPI86RvLNm32uyWmch2jYxoirXpfEJ9jQIpPiOXhaxz+Tz2PlxlB4geFrKZZdaSeI3aTZ9lmq+8VL+4QVuIAjame7T4JKQP8GUZIYQQQgghhBBCSAL0WTaaUIZJCCGEEEIIIYQQQkgL7izrI0Uhdv0KqR4A4JxzlpJe6V5duil/svKWO6LHxoX0aHsov2hs31590KRM8TG53V1IV+Y3nqJekkOOE5RJtJ814LS/SHiloF57QqmWnreU95hhs72G10SaEA8XVdbiJIcMULvOkrh45S9aqPp+Iev/E5+o0nGTX355lZZjLEGtOxBYMj5Zpra+IDuvvEhmKOc3ADt3VGmpGo/HrLzXzEzVh+Ih29QmswH/U6g6Hm+7rUqvXBkcmhCS1pmV1fyryWIAYNWqKt1Wd11cKQVzjyZZjMk8t0pSuoN8vsQyR7VMVvnEuHDPx6ERS8l4Xg2qLnxQh/nVXHd5pdPqRUD72mYRMdnEc+ndd3e+xKxHWd9inpDy2jaMQkmzJ8Sga07r7SJxu6FQ2jzOQyv74cPqbczzZNGbB/ZW99HaCwgnn5uF25X4moc+tEpvPcNnYALZXR/IZ5kiHwYQLh6McZqVuI537qzSsl0MeaVmt4UlY+8WbW0p5fyiTI2ofEn1r7VzXD+LhR/wtQYhGtxZRgghhBBCCCGEEEJIC+4sI4QQQgghhBBCCFkmZcnNc6MKX5YNCPPnXRB81gKvWEEJu6jMUMmxfVuWT9sRDYQSo8nJDUvpsanIJq0iYu2ewKt+8aKZoEU1jJFSO6tdta3Tcd/wyg0894m3bwdYEc6EXsTbb+R5UgrVjE3QQnxalSca2iuVrEtqNExJryJeWkgbLrusSsdqB9kslt39iIDpbWd5niXDlMOiCWPFJHVTUiIh0wAmJysJjncOWLFCP0/VhWV+cGh9N0sbywqX0stIi7ZvppLQGYHnVHVspOrE1NTxJUtZZERevbxoM6teU2zyLvattYjrIgvZnlZIx3hALiLq0XQh4CRliFjXyCIFEl9rglG+j9c7a9d2bvO2+W5utvqgRMf1jlkrerO6Johkrt6+GqxFEmR8skzHjoXXOLoTgCjIurZAtx6GMh3rZsWE1ZCuQ4ZJCGTJUR0+GOJuX1sGb0WZlc9dr9TSGNyetX8O3BFstcifMqIyYEYdDpAFidYsS8S/tQZh0UpIDYZo9iWEEEIIIYQQQgghpLvwZRkhhBBCCCGEEEIIIS0owySEEEIIIYQQQghZJvRZNrrwZVkfmT0C7NixkJaRjAHgvPOqtJT4S9clsTbeq2HPHjK6JtKGDVPV93EZpOz9xhurdCy9Xyf18kqFxW4ipI+aFP8k7fVY2S4nT+kywEKeF7t4mBg/fpvFPh42bcq3iXQ+8jXSkAZKpx+LnXuRbduqtMNvhUlckfK+Mu+4Mfvh2C+BuD8Ngr8SbX7Zvn35148KmhuasXFjjDz0oVX6+9+v0tFDYMuF1Tw2Pz6xlLb8bh08WKUDvzpAu9+rTt/3aXy4n1fSPuEs7679E/ISfO3zVVpectJJug2WK0YP3jEbt5/8vEEaqz34Ab3jxTYltOf4+PJ9zslrzHGu2RrZGdSdeN605a05mdL8SMWfM/d3zcdmzIEDVfk2TBptqfn70tY4CIvubguvTyFpj/SbF10/Nibar+7AcpLyfImXIZZ/Q0ngU3hjNfeMybqP+5a25rnrLt0Iw8ebJPA/52zX2msK662A5dBQuc47dpKIG1M+a71+t4Td1m8o+Xlysjpv1arqnFQXXklrKPkDSZZhfKLDyY57yrqUP6SsNp+eXvi/LF33JGTQ6P8vMEIIIYQQQgghhBBCBgS+LCOEEEIIIYQQQgghpMVwaJJGlPHVldzynHPCYx51gLUl1x1WuItY9/VsJ7ZkLXF9aedpYeM3bTru7Y+LtRW7OdZ5S/nEdL37tKHqwGLpib6FX6P2lu+47nOK+WNJg/hcV2ZsXdMvCfOgSRgHwR5tXHjbbznHFplOGL8AgnGhygqlthwI5DgNcX0sk5PDSiokDh8Os5vcVIWGbzilUd5nhzX1LDcvtz1CRrIyUtlIpauchuIpSJPFx2WQ13klQtozOM47mCaljkvKgOK5VDa01IRZGl15Y6P9vWM7qT1zy3y18hmSIOlGQI4/b3lyzH1BM42JD9Yz0um6IMk+ry5MDhhZx5FkbUzU8fz0lqV0ULyoqDK71Dl8ucTFlsXYv1+/7tixKr1nT5WW0vfxSObWVORwgT4PCPwazEKs28zlU3Vec3z5YyyuU1cfsiYy+aCM+3SPpP7m74A1a6r0ySdXadkBzIm6YnYurDu59pdD1hra3j7tWX/Gec3MVX1jZqZKTyVKQYN60AoYF3ZR9jo7i1GGPstGF+4sI4QQQgghhBBCCCGkBV+WEUIIIYQQQgghhBDSgjLMPlKgXNpKmz36i5OULe2DIMFyo4Q0aotUpGwNT97yr2mjjChdbomfFl5TiwgJYC82dLwkDvjjUWe5t+zHmfcIrwS5bj+26qGbcs1ulmkU0dqim/J0qx1k8K2N285eSjctKZQY2+0SyqocUjoUywHWrq3SE+JWKfVgBTjrpspG3kcJzAfAH4BPnifziyWs8r4ywplVVq0P2I8eZ6RG7RnQQ8mTe65xRMCM+6AWBDKIsghgcqp6rgX2yGeuUQcpfd89/3oHhSWPleXIHVVS9huZt3UfTdMcrbOak53LOzfnGzteZo38PM/juA/LedGaI2cU5axXahdER16/PjxRFKTuvJq8VnBGrVXRKggI+5Dsg94ItinEz9bTT6/Sp55apaV8NF6/KjYMeoB1uSb40Y+q9IYpn9Q57kNzUvIr+672OweoJnRGwyRDyoAPc0IIIYQQQgghhJDBgz7LRhfKMAkhhBBCCCGEEEIIacGdZX2kRJEU0a3f9Cu6ZlejPCVg2uOMPKbhrmMtMk28N3xv58vjaHBSfrR+fWWDjPDTbVmhJ8pPjmhZufuxll9uSWa/5gZPfXXTttR2bcyJCEziz35apNzl3CslcuCWyX3VgTExN8ShNkU0TFWugjDy3PnnV9/H0dzklFC37+dWyaTc1woOmNIPZZRRKxqmU1WfJP+VsjJ5z4nxqDzyZtIIbzTMXiLv65RHSrMteWwY9LKqu3WTRp0kRIb2ItuvaUTknJwUNsjCxnNSRull+3NWoEkyY+QxS2qnkKIqtdYHKe5LUp7HllxTtrksX1u3k0NWyocvvFA9ca6zF5E2sks0HVFi2+pOm5wtzX5duadBmHU45oPIpLKhElyHtNVD8ICoIqLKNbSXpCilEZs2LfsS83kl3UicIetLTtTa2mrFiuUbQ8gAwJ1lhBBCCCGEEEIIIYS04M4yQgghhBBCCCGEkATos2w04c4yQgghhBBCCCGEEEJacGcZ6QmD7IPNol92mz5uNH810plAxAbhD2lqavk+W5JDkGckxb+I5fNBHpNuJmI/blumj+9DDagf5p3YxD5g5GfLf5X6pz7DqYzHZ0t8zOqfwTHprOe666p0XAjpD8Tpe8pyf6TZ0y8flP3Amg+8Y1ae571G3tf6y7Oad3yR9A8jJ6zYIM3BWjeRtgG6wzfR32P/gWNjvj4psw79mSn+y+DziZmK2h+iA4G/LllfsSMvj3+neB5T/C6ZPqYksj/Fc5K0QdptOfkTx6yx0485KYdvSumLqmn4YVPvFfX9QzPVebJPr10bXuaZh9xrs7gPyTy884Y2zi2fZZoNGZxiBj7C4ntq9kk/oTGiHhrW81jk3ZB5W/WolC/32nrzJpFfvNA1F1EVq1aJD+PiGlm+eB7bsWPh/7J03YOQQePEWSUTQgghhBBCCCGEEHIcuP+BEEIIIYQQQgghZJmUJX2WjSp8WdZHCpQ9kbDF99DC03vlJSnb5Xsp49OkUTm23KfYUBfTnsXtzXF627bwvJq6QKm4iB8GU1PLD8XeKyx75E78/furdKxi8balppgJx1iY18T4YNWXRTflSxoy71hlLLu0VBTEXT/ovDIdN7Qik/DOIUnzi7QhHqPSVkNz2qg5tgdNkmmN2br2eeeneI6T/WvFiiotpVGWykZTrwH6c1emm3Ebyz4gj8VyqlgO0w80KZJRYbKdNkwZecvyrp5Yvm3KPYH6fc19vewQcZ1oHcKSrHlR5JpuLPmoRLT/ukmfvN1E+zUa1UPddaCWFwA0DuyrPsi2kPUwrst/ZX6p9ZDV1YMhw3TLtzWD4rw9bxPaF5nHv89y8PzYiSdqTe4uXJyY+VkPAWf5tL7iXndLGxKfDUeOiA9Tihw1lnQu3qvR//UFISmw5xJCCCGEEEIIIYQQ0oIvywghhBBCCCGEEEIIaUEZZh8pUSxtq/VKALwSFa/8bOfOzudYgdnkO9Y9e8LzVq+u0oOgAMmx5V4S1KsR/tCzLTpV0hXkrW0NjxpQ7RvO0Gzj43o0N0tmqCFtaKsrp8wiBVkPMjvZb62AcpJYQinrSFP+xWPCO2YHAc3WbsqoJbFyQQaSvPhiI0Op3zQixmpRZrNLE7WoYVu36vZ0MbzqIEgvc1N3XElZNgDcdluVXrmySksFTjy2vc8/GfEukLgIpNQdCOVswY3imypRXa3Ivd76UvObXBfmJ23SJlNLqnXzzZ2/B4JJYZ2YBOaFDVYE1LpY6zavSjE46B3nUhrndJLjjQxtEbSlFq0XcJUjuR0GIdS0LK/suwkRHeN60NZapmuUvfdUHyypnbRbrh1vuEHP/MIL9fw0vJp0bT7IEA3TvF6ujzWfGZY0VZLQ902XC8Z8kDRmPBF1O9nkwdsfFtc2zeby7zFE0GfZ6DJ6q2RCCCGEEEIIIYQQQhLhyzJCCCGEEEIIIYQQQlrwZRkhhBBCCCGEEEIIIS0GQPx/4lKg7Kr/jEVifxTSR4r0WSZl89u2+e4Zy/qlPxeLnOV2+9tIuKeZtxXy3RtuW0HWa6yBXze3t/OJ0oeIM5R74LcCUP2epbgz8Prha0PzGxE70nOQ4o8prm/pv+jYsSo9tjHMW3F5NRC++3KQffwoeWu+dOIhJdtJtlE8J03Iyczy3yH9mYm+1hDpVP9ejbnZzveVnSMqYO0w8cNK3C41/dWktNnBg+Hne++t0tK1nHea1+aG+LP0nWi5HkpxjCLHhZz2V6wIz1u9urNfR6sZLFdN0gdTQ9otn5+xL0F5TC5S4vOOHq3Scsyed95Sehahn5xmj1a9sY9FybpJMYZTHhAJ/gyteUObc+MyyLZsGnNXP0j1ASvRfIQF87d1YoqfyWgsS0vHx3UfT0F7ygG4e3eVDp0Nh5/leddfH54nFzrCMePstrNVe4LijlV2NyadE4c1p3mdtym0tb+0L+X5YrSzp6+13VN+rlnWNjI70ZJzwqGZzmWN12AbplrzQ2O09+fQZ9noMto9lxBCCCGEEEIIIYSQZcCXZYQQQgghhBBCCCGEtKAMc8iQW3xT5TibNlXpyy+v0nJXdryNVpOVDUIU727Kw0xSttw7sVUNU1VSyE2sDII6krbG2/QV5PVjY4lSNG87SdsT5B3ettWkUXFTyvHiZRDGRW0yyOE0eY8l0dX6yfbt4Wcph5NzV6wsHp9eV+V94YW6sd3cP6/NFULiQloMwOCxmkXKUDQVvIUlJ5b5yfvEcrhVqyoZ0dq1nfOKP8s87ryzSsvrgfD57lUISrvjtYNkbKwai9K2jWKMxvdtyIEfyzDlYBeNNi9kVojqpO4aSpvTYqTXAKtOeoVlq1YPZvuP6c9mlxTNWffJ7hwSUKceSzZXU4Ia9NX4ttZ1sh/LCcuaiKTd0j3Box4Vnic7rDhPm/sAfdkWrxcDeWtm+W7K2J6dq66RZRofD+ek5rSw1VgreOeHgAQptrusWqc2nrOW3XI6vvFGX9ZHjzZa/6vZEjLQ9H9V2kdWXHENzr9PNSF+8NUXY8euQ/j5l38VZ546gcNHjuFxl27Ga3/z3LZrd+w6hMe97Frc8LZHLH131dtvwuTqMbzoyrPwB2+9CR/6wi40igKnrG/i7b93IbZs7L9fB0IIIYQQQgghhNSHPstGlxP6Zdnq5gpc95aHB9/t2HUIDzt/A675X5fg8JFjeOAzP4snXDaNnzx/w7LyfvGVZ+KP/ud9AQBXv+/7+MP/9x389QsvyGY7IYQQQgghhBBCCMnPCf2y7HisXrUCF24/CbfvXv4e+nVrqrCQB2eOoSiKtnNKFMveru6N+OPdgtwvRVAOOWkvMG177Wur9EMeEh579KO7Y1CMM0JkNyOGeu/pzvsf/qFKf/7zVfqv/7q2TdpYyhHtU8Nb9ykymeyIffVX3f/+waGrvva16oMlZ8yINfdJBYeUZFqYbSEjZCVIKaxrckqHksfVsBBL7QQNITGy5Et1idVB3ujQEv8zuGpPOZ1LZY5XxmepebzyyhQ3C95AdinXBFEXYy12qJvqmFduVa93LFveBPqx/rHkjHXXB/1YX/SSHPN3N8se2GfMi6o7jnhcKXlbfTrFK0ndcZCjXaStthoyn9uV1Gd4Unlrus9oz66yQfMCo83tA+BhgZAkTuiue3j2GC58xmcBAPc5dTU+8EcPDo7v2T+L7+48iIc/oPOuslvuOLh0PQDsuucIXnTlmUuf/7+33Ij/9287cdKalfjUGx7ahRIQQgghhBBCCCGEkJyc0C/LOskwAeBz19+DC379M7jptoN46ZPPwvSGzn+xPGvLmuD6q95+U3D8j59xDv74Gefgf73jZvzVB3bgVU+/b94CEEIIIYQQQgghpG/QZ9lockK/LNNY9Fn2ndsO4LLnfRFPeNg0jszO41mvvx4A8IdPPxsXnLXuOLlUPOWKLXjsy65te1lWoKy2uzojzwXbY5///PDYa16zlJ4fn1Dtqb0d3KufkGWIr5HyCS1kV6wL1SLnxBoVKeNRtCdZovBcfHGV/tCHwmOrV1dpGXI0gdzb95PyE23UsNpSEu9pV/p025Z0qam7+eYq/dKXVte85s90W510deu7vM/MoepDHNZOfpb9VpYbCHWGNfuTiWizn4kO/eGDHrSUfsWRI9UB5956q749bZE6Dmq3X82IeV5ySzOGSfIU2BpLy3fu7HzR9JbO1y+DFBlQ7mh82n2l3MUbLM0rn3Gq991YU0BXpTfiOT4K46CXeOrF6/YjN0kRBZ355aAfzxQvOepLyyNz8MqeMehzQMrc5Y00nhuPFFub8zt4IyJkKOje024EOPv0SbzsKdvxp++6BQ85dz2ue8vDcd1bHo6f+8njO/f67s7qR/CHv3gXzjljTTdNJYQQQgghhBBCCBlIiqL41aIo/qsoisNFUdxVFMVbiqLYtMw8HlIUxSeKothfFMW+oig+WhTFhR3Ou6goitcWRfGfRVHsaf27tiiK3yqKYmWHrNvgzrLj8Oyf+zG89t234Pt3HsJ9TtV3a8W89G9vxE23HUSjAfzY5tX46xec30UrCSGEEEIIIYQQ0kvKkjJMD0VRvADA6wF8BsDvANgK4IUALi2K4pKyLA868ngogE8DuB3AK1pfPwfA54qi+ImyLK8Xp78EwCMBfBDAmwGsAPA4AP8bwM8XRfGzZVmW1v1O6JdlBz7SHrHw8gs34vILq4hbq1etwO3veVTbedumJ3DD2x4RfHfV0yqZ5fv+8OL4EkIIIYQQQgghhJAThqIoNgJ4NYBrAVxRluWx1vfXAvgwFl6e/Ykjq6sBzAJ4eFmWt7fyeDeAbwN4HUJPMn8J4GllWUqfQX9VFMU/APgfAB4L4BrrZif0y7KBIsWxx6tfHX7ulUOBFAcl8fearRs3dv7eIs5r27bl55HCz/5slY79SNVsi4HwUyax4oLn7neXXValP/jBvHknULvurHjrsr9Lv2QXXhie16uY28KGn/jBD4JDPyH9qw1RDPBB91dSF69/n175GNLu6W6HeIxs376se3abXt134J4BA86glS+HD7x+l6mun0kgLF+OsvbD31d8z360i9enZQ7b+t3vLLr5HMtNiu+9lDE3CO01CDaQoeAXAEwA+MvFF2UAUJblPxdF8T0AT8VxXpYVRbEdwIMBvHXxRVkrj9uLongPgKcXRTFdluWu1vdfULL6Jyy8LDsPx3lZNjyzDiGEEEIIIYQQQggZJh7c+v9LHY59GcA5RVEcL6TR8fIoADyow7GYxd0Bdx3vxOHZHhDxH//xH/jkJz+JH/7wh5ifD99oX3311X2yihBCCCGEEEIIIScCI+SzbGNRFF8Vn/+2LMu/zZT3Yhjz2zscux0LL7q2APhOjTwA4DTLiNYLuRcDuBfAh6xzgSF9Wfba174WL3nJS7B9+3Zs2bIFhYhHW5xIsWmNePKDviW2l6GOu4aUohltoTG05c5MWz046nUk686SuvYDKQslXafb8pl+jJlBH6eDbh/pH8Mqtx006pavl/UzyG0xyLb1EkvaOMh1lNu2kfgNRQaV3WVZmo7Xi6KYAvD8ZeR5dVmW92BBggkARzqcs+hT7HjRFGvlURTFCgD/AOA+AJ7SsstkAH6RLZ83vvGNuPrqq/Gc5zyn36YQQgghhBBCCCGEjDpTAF65jPP/AcA9AA61Pq8CcDg6Z9Fh7SHYyDxizDyKomgAeCuAnwfw/5Vl+a7j3AvAkL4s27dvHx7zmMf02wxCCCGEEEIIIYSQkacsyx1YkEwulzta/58G4Obo2GkASnGOJ4+Yxe/aJJrFgvTwLQB+FcCryrL0RN0EMKQO/p/85Cfjox/9aL/NIDVoYH7pHyGEENJP5sVTiRD2B0IGm0YwSvlbgvSXRZ9lw/6vy1zb+v/SDsceAuCmsiwP1MjjoVh44fY1+aV4UfZ0AK8uy/Iqr8HAkO4sO/300/HKV74SX/jCF3DBBRdg5cqVwfEXvvCFfbKMEEIIIYQQQgghhLT4EICrATynKIp3lmV5DACKong8gLMA/IE8uSiKjQA2ArizLMt7AaAsy5tbAQieVBTFH5RleUfr3C0AngTg38uy3CXyKAC8GcD/BPAnZVkG9/AwlC/L3vKWt2BychJf/OIX8cUvfjE4VhQFX5YRQgghhBBCCCGE9JmyLO8uiuIPALwWwCeKongXFqSTvwvgRgB/EV3yHCz4Rns6gLeL738HwKcAfK4oir9sffdcLCgmfzfK488B/DqArwP4dlEUT42O31KW5Zcsu4fyZdn3v//9fptACCGEEEIIIYQQQo5DWZavK4riRwBegIVdZvsAvBvASx0SzMU8vlgUxeUAXt36VwL4IoAnlWX59ej0xcieDwDw9x2y+zsAo/eyjBBC6sLQ24SQRTgHEAn7Qx74nCUnKt6+r/lF5HgZLhZ9lpHjU5bl2xHuFNPOuwrAVcqxLwG4wpHH5cuxrRND9bLs4MGDWLNmDZ73vOeZ51199dU9sogQQgghhBBCCCGEjBJD9bLs6NGjAIDrr79ePWfBjxshhBBCCCGEEEIIIctnqF6WTU1NAQA+9alP9deQEYXb5cmJRK/6OMcVIYSQQaJXz6VBeOZR5kZGDfZdQnrHUL0sI4QQQgghhBBCCBkE6LNsdBnal2Xf+c538N73vhe33norZmdng2Nvfetb+2QVIYQQQgghhBBCCBlmhvJl2b/8y7/gl37pl/DABz4QX/va1/DgBz8Yt9xyC44cOYKHPexh/Tavb2hbzfudVye0LcSjIllLKUfdOs9dX7n7QD9kj2R5pNRdjnb1yGSGuV3rlmPQx3YKvZoX+0VKm2lljf9aPaas3OJ7avnNzFTp8XE7Dw2Zt7TP+5d1WYa4PN18VvTqOWvdpx9rG8seb52kzGM5x8FykPfV7E69zzCvTZdLN9t5FNHqK2U+GIS1AiEEw7kKfcUrXoFXvvKV+NKXvoRVq1bh7//+77Fjxw488pGPxOWXX95v8wghhBBCCCGEEELIkDKUO8tuuukmXHnllQCAlStX4tChQxgfH8crXvEKPPaxj8ULX/jCPltICCGEEEIIIYSQUYc+y0aToXxZtnbtWsy0dASnnnoqbr75Zpx33nmYm5vDnj17+mxdGjm2wXu3yEsJxv79VXr16iqtyTyAcDKYnNTP8zIIMpvcW8095yVLAA7sqz7IxpSNEWtrnHRTotKP6FspY8QreUrBsudEJkWGILu+JLHrZ5VCpOTRzX7ntaGXDJo9krhvyc+yXaznnzbfxeWW7V63T3vz3ru3Ssf9bMWKKo+VK/XzNOLzpA3ymPZ9G4ZmVJOCNseGSPLvroh6ZHnWCFuDkme2O8c6d9Dml9ySOk9+7jY/cEA/NrluKSmHYvvzqrLHO1/1S27tum88GcsCWwUcax4/7yEirkf57JDVIKvn8OEwj2PHFv4/ejSvbYT0iqF8WfaQhzwEn//853HuuefisY99LH73d38XX//61/GBD3wAl156ab/NI4QQQgghhBBCCCFDylC+LHv961+PA62/hFx11VXYv38/3ve+9+Hss8/G61//+j5bRwghhBBCCCGEEEKGlaF8WXbmmWcupScmJvCmN72pj9YQQgghhBBCCCHkRKMs6bNsVBnKl2WSvXv3Yn4+1J9v2LChT9YsjxLFkh68rm+C5Zwnpfj33lul166t0rELCnmN1KPn8FkmSQnLnsPvQb/u66HtPjffXKVvuKFKy8Y455zwmunpKr17d5WOfC805HmCQ3OVH4b4YZC7D/QDWabYfcfUVOdrYpcWqb6yBolh9aEmfS/G7RCUSfZ9y0+LaPSGSOfwg6O5KIrNkeUYH/fNO/fsrc6Lx2UX3SF1FW3xabl6qlvWeGxLXyu5x7lWPlmG5tyh8OCMuMhYnY9NVWshafeqVT7bpA1xnU6Mi34oO+/uveGJcgLdtbvz9zt26UbIvDduDA41RCdvyg4vbVCeaYDf/5XEOk+aKs0x51VrHvI6yOsV0lbDl5z60HTiXWel+EiV38fjXOvvKevzeFjKzxMQ41k+k4Cgj8+PT7hsaMzNVh+8/UneV64jo2ON885bSk+I9KywLc66MRPNVxLRV7S6S12HzM5V+Un31dL3IgBsmFIyCOax3cpJCMdiVN8NWb7pLdX3skyJDkpT5ivVcWXs/1HxtRZ3J/nZO8wXbzWsaxBChrLr/uAHP8Czn/1sfOpTn8JRsYotyxJFUeDYojdBQgghhBBCCCGEEEKWwVC+LHv605+OvXv34q1vfSu2bNmCoij6bRIhhBBCCCGEEEIIGQGG8mXZV77yFXz5y1/GeWJL8CijbUmOv0+RYWpSlni7rNx13C/ppXaNFVpcI1VO1SuZWrhLO7S1KRsw3j6/SNxIWqMZ+qVDM9V9pT3e9k9pl7abKbblxlK7aDvXR0F22Yas+89/Pjx2+eU9NeV4yPp3dw3LoYTUFIhOkEN6KdFs9UoJvfbEKpJuzuG9QkpApDRSuhAA6k8VVv3ILrR3b5WO5wNtfojnwbGxzrIwWda5yVDypEr8ov4d3svXb6RkSdZjILsEbJmShhxjynhrwxqz8piscJl3m+Spkht1c2zLvjE1ZTwLrYls0BzgaLYaA07WsSZTBfKvrTz5WXOuV3qpuXCQ8xMABIKXqWo8T8Q6N5FhY9u2jvdss08zwloHyg5q9TOlbZtjUf3IycuS6AY/OjpL/6xx6ZXfy/qW7mYAQ4Yp68e7wDPOc7VRnEfNhWVb3Yk6bkyKCjKeFTIPyxztGq1dRn1fC32WjS55Vwo94j73uQ+OHDnSbzMIIYQQQgghhBBCyIgxlC/L3vjGN+JlL3sZbpaOzgkhhBBCCCGEEEIIqclQyTDXrVu3lJ6ZmcF973tfrFq1CmPRns99+/b12rTaWNuOvdvTvZFS5E5jZ6CU2rKWXkbZ80TYsSSs7ghLMgJRVEF15R0yuzhiU/PCC6sPMuTPXXdV6ThMjfwsGncW4Tb4XTurtIyYtmmTbqtXJuxG284fRULzkGKDVw43yBFUk5ETws6dwaF+R4K1xpR7fpLjwGhob5SunDIuS4nW2HuPeqKMYmXNG5p8ZZjkxFLaZG0udyrEVKxIdppkO/UZqbWFLKttjxiXhhHykJStWoHZzDJp0qE4QyX6XSAznessx1pAPxbYJ/IbF5H62uRiXcQbTTGYN6KoghKrPbuFFS1yQpss4hMVZCT19jXm8aNXxsdSkNfLewK6+wuvEliO2TjOmKwiGb15wojWKqM7tiOOjYn+vnWrcY1A3jd2aSMHp5CCuh8W2g+LKA+tf6fKMCUrVnS+xosWHRKI+mD84NbklpZmv4vjXJqza1dVr2ds1e9pjREtAqa8Rkbvjo8RMowM1cuyv/zLv+y3CYQQQgghhBBCCCH0WTbCDNXLsl/7tV/rtwmEEEIIIYQQQgghZIQZSp9l73nPe/ChD32o7fsPfehDeO9739sHiwghhBBCCCGEEELIKDBUO8sWueqqq/D617++7fs1a9bg+c9/Pp74xCf2warlMz9fSdqlLwcAWL++Smu+HNryU3wKxfp/LcK6FcFckmJDDmTeUv4fh+hevbpKB+4EDGcHXt9Iaijo+LyMPghinwHzwj9F4373qw6cemqVjv1WiIrYd6DKb9eu8DTZB2Qf9NaPhfe6hvRxIRp6fuMpHe2J807x8ddNhspfg+y327f3z44OeNs87mfBeYr/pLZ7Gf4I6yLnLjk/tflW2r27c7ptbFe+VeRzJDZbm+sHHa36Zd1pflQA/9xludmRz5iVK6u0VY/S7hQfPNKvmNf/nBfLL5maX2yE7MjOziXtln019u8kkb6HYrRbWXXvlcnUrVerb8iqlM/gdlejPfITKSpFrl1i30MqUWG1/i7b2fKVZ5HyrNeuiW2Q7WL1T81dnxyzFkFZd+4ND4qJzTvONV9r5jpeHpR+yeIMlWdmW93L+UD6O40rWfqelc8y6cssytv23VYhr1u50lcPWiXHZkv3wEeOVHnHLueams+y0EljeJH1AMuI7N/ydwAArJtcvs/rAGUOAVCV3ZroCRlghvJl2fe+9z3c9773bft++/bt+N73vtcHiwghhBBCCCGEEHIiQZ9lo8tQyjDXr1+P7373u23ff+c738Fa7592CCGEEEIIIYQQQgiJGMqdZT//8z+PF7zgBXj/+9+Ps88+GwBw00034YUvfCF+4Rd+ob/GLYNGo9rSKncwA+GOXblD19oG7d2SLnfIyi21Obb5J8kZFSz5hJQuxHUn60vuLp8Y17u7VyIY1L/c0xzLEETY6bqSrviSoO7kfWVjGrIIeSjeQu6R4qb2E7eUU9GypNw3d9j5USTo07LupVzCuMaim/Wt5Z3lnqIepATEO3zl/A3okh5V0gDoGhynEXHzDYv00pLbbtokzps5VH2IFIJaYa28LaS03+uuwIuWR0KTu5GPrvgv4Vr5mnGdyget6MjeOpVyVlm/lg0p0r24zaVbg7q7AKy5piltiySsMzMTHQ/FLiV6hjLXtJVPOS+WdGl915LUSmQfsto8ZY0pr4mVxXLejo9pyDncO04D2wwdtJWfdsySbmprsFg2J9evWj3EEt2GrAiZjhtQWadaba5hjT9z/tSkkmJOi6+R89W99xp5HxAVpkkvjTZPdXOiIW8lVa9xHde+b+6HFCEDxFDuLPuzP/sznHTSSTj33HNx+umn4/TTT8f9739/rFu3Dn/+53/eb/MIIYQQQgghhBBCyJAylK+C165diy984Qv4+Mc/juuuuw5lWeKiiy7CFVdcgaIo+m0eIYQQQgghhBBCTgDos2w0GcqXZYs86lGPwqMe9ah+m5FMgXJpG/EZ0+EIm0Wz0yUBubfr5qZupKIYGY1GEsuN1G3xdUOIpaLcy5IIuttWkcJYmitNhptK9kiUnpBi0RNJiz6aI2rmIJNDZqpekxChqV2yUdk3Md696LhZyw1dEhJ3M69SUkaWjSWaKprMbXyi/dwWUs6WMsV562QgkPp7K+Ka0TCyvAcO6PIsmV1b1NIWqWPR04/jiMiSsA/qNihBhtuQUsCgP01GeStSZUs2pwTZa5vmtXpotkmexGDSnhttBlVrq54tA6IbyTqWpvYtWJzhUiJAafMYT4RXb92ntpFnvoqj0Gvy5NiGIIrxzD7fRfKzjG4sI0cCgVZubGpDB6vbqduPrbrSxm88rIJfLJZ2WrmvFSxSYyLqqjI/acKaNb78wvYLf4PJYXHSSUYe1sR2vO8T8T5rpHQ29aVO0rp5ccB4ddiEDBgDtvolhBBCCCGEEEIIIaR/8GUZIYQQQgghhBBCCCEthlqGSQghhBBCCCGEENIPypI+y0YVvizrJ8eOVc5DvvSl4FBz06bqw8UXLyW9obJ75V8m9T7SVjWcdaSNX7++OiZ9X8T+ZdSQ37kdlGjx7SNyt0VQR07fByn+c7x428/tM87jsyyRYfVT5m0X7bxafiaOg2zW2BeSzMI7d3nRrsnhx02izicIyyv9Wlnd1u0KTsnEWow5p6SBxj0HSb8/cceTn2VFCH9AAIIOak07nrp0+0eMOlTD4fgurpH5seP7NI1tkLex+rS734gTrT6pFS/w/RY78tMuis+TnzVfQbFx01t0Y7tFZMPq1VX7HTyoXxa6EvO1pZxz3XOfuEj6Iov9xEqfatL90MqV4Xmam0Bv3zLtVvqG9/kiyyd98gFhOaRfubh868Znqw837uhsWzyJyIaR85PR91PW9O46nhNliDuRyGTM8JHpunFcPmVdIf3HHTmiZ225vQr7jVFf2mQv6qExGZZHjj95eVtf1SZXpx83L+oYifOWZZLmTK7z5Wch8pa+VK1nISHDyFD24F/4hV/ANddcg/n54fzhSwghhBBCCCGEEEIGk6F8WbZmzRpceeWV2Lp1K37/938f3/3ud/ttEiGEEEIIIYQQQggZAYZSqPGOd7wD+/btwzve8Q687W1vw2te8xpcdtlleMYznoEnPelJWB3vrR5UDs8AN9ywkP6bvwmPTU93vKRx3nnVByNGe0P5Pv4st8d6QtgvBysP7V6a7AAIZRvNuerE8alwm3isyOl0zxgtZLgpx0mQCMr7tDdL5zqx7M4quzPIIqFTtum3yeY89TqsGjOD3FvVa/eBqB20PimbIlZYeJsp99zTLeK5RSoBJXE9eBStKfNT/FlKh9avD89rQshunPKlQSPoG1Lec9tt4Yk7dnTOIJYEnXPOUnKdaKSe1olsQIckc+FzUz2kZS1lTpYKSMqc5BTQmDkUnig65djkBj1DQWCr7NTxwJJaZUtzqD1Q43buN9FcKqcDWTyv2dn94oi6mxE23HuvelpQJEuGKck+t0vJYnRTbQxbzyuNNrt37KzSN9/c0Z5Alx9/lufFunyvUTkxHipyPSbXqG0cEGNRPhjjh6T8nSJ+56xeXa3jpdw3Ns+SYWrE+UkpbtOSbCuY6xqtg4U/blz38coZg/Ni4zSZqZThdrrOQ/Cbc3DXbb2CPstGl+FZJUesW7cOv/mbv4mvfOUruP766/GgBz0Iz3rWszA9PY1nPetZ+Pa3v91vEwkhhBBCCCGEEELIkDG0L8sWueOOO/ChD30I11xzDcbGxvDEJz4Rt912Gy644IJ+m0YIIYQQQgghhBBChoyh1DIdPXoUH/rQh/DWt74VH//4x/HABz4QL3nJS/DkJz8Zk61tr+9+97tx5ZVX9tnS49Aoqi2y8f57uXV5p9jyvX17lY63a88o26Djbd5KOLacEemWg9xaHMg+4rx37arSonyNqDwbRMQzbdtyvFV2//4qLbdsGwrWAK+EypNXDqyIgHUlRlabdzMia91InYOOV7Y8CGjtbE1JVjDUuu3UKxlnrBaT0jZZVre8x4pIJibD8fFKdmdt8zdlXIrczxtRd+BQXBW0YenqVQmkL9qkxD1GvQ+VlDCCRhbSO4WlPJLPv6BLRlHxxoT7gxmj38n8N0zNdz4Qo0iHTImRJ6/M5JiX5VwhZdSAXnRNXgvEEXHrzYuW5Fum4/lOq/Is87RzLHjyN4JARt9H6ylZYCmvlBnE85NXWiwqr6uR1L3zi7B1DvpzaHyqkmI3tm2rDsRyVFEPMoLi3N6Ot2wzL5b8amh9Nf7clEU33BPIZ6v5fJcHvbJ6J94I4ME1Cbpjb79rKPU1TOvunFCGOboM5cuyU089FWVZ4ilPeQpe85rXdNxF9qhHPaoPlhFCCCGEEEIIIYSQYWYoX5a94Q1vwJOe9CSMG38xXB97NyaEEEIIIYQQQggh5DgM5cuye+65B/v37zdflg0Fq1ZVskohHQQQ7mOX++zlNlqvJMG55beb22jd23rlfePt6TLqkNRDxdu8pcRIbn0X+TWja44da3Y6LRltK27K7mtvRByLbkovh2n79TDZqpEQVCk7sh5DSUNYp3FEW09+/ZKDa/lNTla2nXxyeJ6s/zVrOn9vIhtTysyjTBqBpCeUCGoR6trmmhGQBwT9REh95redGZxnPkckGaQxHe+JGrLMRZydyJI3a9nJx2IsLZZyI++z0JKexI/njgbFJ2ntYtWJPGYOhIpBmEulefHfeGVbaNLLgwfDa6TcNiWwojf4qOxDsfzbo0QbBKz+HUtiJevXn7KUbl7ceU0+G83TgaRW9LWJjQOwDnF2FBGEXo06v5DdlqX02FR4TNbDzK7O38fk7jeyT3pdtcgxF8rYw+sDVzIpoVcFljsV7fv4Gu/aKufvikFzG0JIXYayR7/uda/Daaedhkc/+tF45zvfiUOHDh3/IkIIIYQQQgghhJBMLPosG/Z/pJ2hfFn2gx/8AB/72MewdetWPOc5z8HmzZvxK7/yK/jYxz6G+fkB+CsNIYQQQgghhBBCCBlKhvJlWVEU+Kmf+im8+c1vxq5du/B3f/d3OHz4MJ7whCdgayxnJIQQQgghhBBCCCHEyYB5EFg+zWYTl156Kb7//e/jm9/8Jm666aZ+m5SGdAARf5ZpI7SxGgp6WH277d4dft6xo0oHjg+M+N/aeVGdrFixAZ3IvSXV8r1g+R1IOc9DDl9P/fD9ZbWLt44HGatdezWcvX1LDtOpKcN/h7PfDppfOdmfNm0Kj61dWzNzOSfF8530cSKeAWOToS8cibS1MTer3yvBf0rKvJNzroqZFb5iYp9J8u+Ak5MTS2lrbrDmlMAXX12HlAkOeKy6k80amyabWZ4n/THF12g+y1asCM87dqzzMekzCwiLG4xtr784ay2jHUuYJON68DRTDn+i1j215Us8VUik70TZ/pZtmp+y2G9X3AcWsap70PyUhW0W1ok1liR79lTptWur+WVGjJ247o4cqdJBnRjPzG6S0lctf3bymOZrz8pPYrljTplmY1ulvzVv3tqz3irfoK1l9h2o7Fk32X97CBkWBuwx5mffvn143/veh3e84x34zGc+g7POOgtPecpT8NSnPrXfphFCCCGEEEIIIeQEgD6/RpOhfFn2xCc+Ef/6r/+KtWvX4sorr8Sf/Mmf4JJLLum3WYQQQgghhBBCCCFkyBnKl2XNZhPvfe978d/+23/DCm1f+DAwX1b7gzdvDo9Jvc/55/vy015pxxqVWPKZkaxSm7g8mj4gLp+2l97YY79yZZX2qkO8yFt5w6h7t2wPwtbufuBtF2/o7UHHUBD3nRz2aO3ilSObeAed4z6xPVrZ46lLNUHOxbE0MkF7EsgFD8zoJ9YkRX6WW7JmEctuFomrOGl+lxcl/Bm5rdxjlaxW69NW3VnmaCpF+b2Uh8XIa6y8Zfqkk8LzNMWve2zLzJ3yYW/fqvt8T5E2An4VtFzeau10+HD4WZ6X8tzwSmplGRJU3SZZ5n0HcfvLsls/LaQkT6vXOG9NtjxoMlULaauU+wK6zNQ7RVqP6RQZpnZ9nIeWn3Wfdtl/hVYOS5Kp9feUvu59VhBC/Azl0HnnO9/ZbxMIIYQQQgghhBBCyAgylC/LAOCee+7BRz/6Udx6662YnQ0dGb/iFa/ok1WEEEIIIYQQQgg5EShL+iwbVYbyZdmXv/xlPOYxj8H4+DjuvvtunHbaabjzzjuxatUqbNu2bXhelo2NARs3LqQvvDA8JmWY3j3ucs+9FY5G7MVtePeQ94PFullk27YqbUXImp4+/nmRFHVMCRSXWg0JyhE3KRF2UiRPwypZHEVkf5KRnLLIyhS8UgFrvMgpae/e6no5RLNjaSAlGSpLk2jGWetSbCHBk/NbfKJyz9z0Sv6UmzjynEbcLrJMY2POCK1xlFEH8no76qZyoO0ZXvUbKwikVj5ZD/FYTFnsW7Imtd8YuqtuSnS7OB0s+57HY/36znmsWlWl771Xv16TIwO6VE5KL2PvIF53FYMWsVvDUr5bBFGHhX3j48uPYj0IS21vJNi6ckjrum5Gno89z2hRuqUR82N61GntPl5Sn7Mp7g7q5HXc/JUJZn58ouP3hAwr3VuRdJEXv/jFeOpTn4rbb78d4+Pj+Pd//3fceuutuPjii/F7v/d7/TaPEEIIIYQQQgghhAwpQ/my7Bvf+Aae85znoCgKrFixAkeOHMHmzZvxp3/6p7jqqqv6bR4hhBBCCCGEEEIIGVIGYAPw8mk2q+2xmzdvxg9+8APc7373w+TkJO64444+WkYIIYQQQgghhJATAfosG12G8mXZRRddhGuvvRZnn302Lr/8crz85S/HXXfdhX/4h3/ABRdc0G/z3JQoMIuFF3/NSy8ND1o+uTS812iOB3burNKxvzBPrOVEwvDmYrPj5LrgvIb062aVVSm75Temrj8Jr38nC68vshzhpDvdMzVvK79+kNNfyqCg+cDrl78TOX4svziHD1fp2G+IhnccqOfFlZLiJCVzxbqyix3oSL+Tmj9KQHdaZdVDQvmsdvHMLynXeJG+lGI030xA6CPMmjcCP2XhA0u9RiO2Yf/+Kr16dZXHunFxT8NnmelDRtin1XcTYd7NOaWvxX0m6K/i2IwxrmT/tCaR6Nm/XKTZ8bDy/pipOwV4h5vsW7GfpOZYZ59z1vJOGwtxFUs/f9JPmUT6TFuwQb+vxDMWcq89vPeS94nvKecD8zmkOKEMShRVVlM5NkxrFFkP8bwRdDBrbCsDsGk5X5TzbIIvsXgOaMwcEvZ1trUR/QaS48/yQ9zNNZlnjKQ+hzS72+4p23PXriotFnhtFixOyHyTRIaU4ZmlBX/8x3+MLVu2AABe/epXY9OmTXjuc5+LPXv24G//9m/7bB0hhBBCCCGEEEIIGVaGcmfZxRdfvJTetGkTPvKRj/TRGkIIIYQQQgghhBAyKgzly7JFvvrVr+KWW27B4x73OKxZswYHDx7EqlWrMDYIsZg9FGLra6xRUrarmlts9+6t0rt36+fJvOV95TWx1Gfr1iptaAAaCXUvtzdbki5MnrKUDKonriphuqZKGsQukiRDkBVhFMorQ6hLSn45ZAjafbsp7egmlqy3bt/NUd9exXeKmtzbZnVDpLfNVXLyUSq5m/1pdi60sym1HnJuj/FObMqxYZIBacR9y5LJSNzzopxnFXlsLNvRkM87AFi7Vh6D8sFAkYTF9rnlyNo6ID5PVrIsu1H5QV8bn1hKBjLXCFmEiXGfLFvKv+O+IWWvUrJoqkwTsIZsgLOdgzoSbbFp00SHs9tOa1vSHTly/HvGdafZYE3ugzC/5HYvETw7tDHW5UVmTncTlqnhmry6z8S4IfOXnU1K9dozrJC/ReLBJ+Xkznk2aPO480uXMxJ53zZJezXO+vX7IWc7S4n3su6j/eawnkOLz5QRl2HSZ9noMoCvDI7PXXfdhZ/7uZ/Dtddei6Io8N3vfhdnnnkmXvjCF2J8fBxvfOMb+20iIYQQQgghhBBCCBlC+v8nnwRe8IIXYHp6Gj/60Y8wMVG97X/Sk56Ef/u3f+ujZYQQQgghhBBCCCFkmBnKnWWf/OQn8clPfhLro1A9Z511Fm699dY+WZUZxz5fM0qJ3HYsNQnxeRK5DTreVq/tLU2Q/sVoEZ9iM+VnS64pi+GN8JISgc/aqpxTrmVFjbrnQBUZSAnSBiCuB13Sp6kpuik/yy27y41363tKpKJeSQ5T8vISy8ok2lb/JDmBEekvJe9DM+F5c3PVH17m9na+bayWd0e8c0hm2qfY6rymKQ/pHJHRksTXlXPkiGTXK0mJ14ag7gxZoDusq4JXwiNluXv2hBHgpHxwakpExrSkzkoEvrZWkH1NriNiXaEyMOJodYE6R3lut0m6BFI2GVsrpwBpjpQYxuPq2LHOaa9M3EILFBeryrQuFKvF9u6tyjs9XdVrWyRCgbZUi6cN2Zxa2ePImhumli8zDMbSgPm/iOcgTUnWHljYGD/Oe2k4PWvo7gUyrhWAcPzJcTU5GV4/OVk9P5tjSiTnGCmptGSYoiLkvBjXjyY7HhsLo+uuk/eV9hmhxr2y17ry2F5FkPbm0fa9iFTsdrszPb3w/4CNf0K8DGXPPXz4MJrN9vDBd999N8ZzrHgIIYQQQgghhBBCDOizbHQZShnmwx/+cLz97W9f+lwUBY4dO4Y//dM/xRVXXNE/wwghhBBCCCGEEELIUDOUO8v+7M/+DI94xCNw7bXX4siRI/jd3/1dfPOb38S9996LL3zhC8G55z710/0x0kFz9dSyrzG3WMutxTt2VOk47JGmPdCiW8XnJWyl9W5bllv2x8fD3YPeyHopUsKULdbdRNrQrn7pLFWV5bZlmBV79oSfZSA02QXGx30y1WElZRt7Sj2k1l1dyUXd+1j3ylEPqvTA+Wc6eX2s+rACA0vk9KepMWJzpERFegVIkWTGeQd5OOshlPD0529hfYl+F+vXND1VVI+BpTKPOD85oYrI0POTobwnzNs7XvQ+sIh8ZMeEbR4+M102xA8YGSnuhhuqtDWQxLHGtm3Boab43JRS0HE9iqNESgGtYaB5oVi1Sj9PC2qYirRPzg3eyJpxt5PLOJn3xo2dJeMxR4/qecvm9MrJ5TrALUGvKb3K6QYhzi+uE+mxRI65FSvC8+Rc39TmjWgR1pCdwJiTmmLhNY92BU0nurkWWb++87M1btbm3KHqw403VmnZiYGwXqT0UpQ7dpEAZVzJSMIxUgYdzxsXnKfIMC2CiTahXWTfiCaEus9Mr+sYOeanp5cvCwbCx8O2bZ3n8HhcrZtsdZZ4IBEyJAzly7Jzzz0X119/Pd70pjdh1apVmJmZwZOe9CT89m//Nk499dTg3G894l19svL4PO7G1/XbBEIIIYQQQgghhBAiGMqXZQAwPT2NV73qVf02gxBCCCGEEEIIISco9Fk2mgzVyzJvpMszzjijy5YQQgghhBBCCCGEkFFkqF6Wbdu2DUVRqMfLslxy9j8MFHD6DfDGkpY6+MVQvZ2ukRp9zelVdM2s9J1gmBP4H0vxpyQyjK9vjnVO58byXxb4VupiSHTZ5Jb/Mdnk68aEzwjL545g86bQd8K+A8f3YzAIPt1ykxLuu5f1oNnXS/9QVkjzumjlazj9icjxErtW0sZSPCQ2jIvxs6NyzNHcvr2jbXEe1hTgaSf3FBLXSVCQap42faDVJKX9U30PadfJ8jWtZ5zli0x+lk5uYj9e0oGj8LMzN175LGufciu7J8brjZfY1Yv01dMcE3lb40UaKOsrHjB33tn5mHRWEyOdPUmnQkDYUKLuGtJfUexLThyTvku9fVhmJ32eWXnk3hEgl6GxzzJt/MTtLJvs5purtOyqx8tjkYMHw8+yOTUfjfEcKYeFvCY+L5xzB8vfqeEurK2OFrGml6Z2wBqL2vwU0RDr+HgeVH17Wo7F5Gd533gOEHlIH2pNOWZjZIe67TY9b5mHuI/lp1drs3hsy34oqyEeL5OT1b3Ghe/EoE/HPtnGOvfd9ues8htB+60FqD7QzDZPQDa59zkbd2PZzGvWVGk5duJrtm1bKN98qf9+J2SQGaqXZddee+1SuixLPOIRj8A73/lObBUOdwkhhBBCCCGEEEIISWWoXpY96EEPCj43Gg2cf/75OPPMM/tkESGEEEIIIYQQQk5EypI+y0aVoXpZdsKSop+R4dtjDYAWj9yQe8pttYqqog1TptZFCaPHBu925l7KBqStlvI2kPTI/eWargIIZbnGbD45uU49NmqkSBi9iui6Nlj9bhCkLN0kKJ/UY8g+DGB2rqo7Q8kSSAWkfG1ibDY88Uahc5IyErlzeTwMla5JM2JS+lrQv2YM7ZDn+i7TSznwIkH5xiJZi9YhYvmLnD+l/PBHPwrPk3Uu+uTc1JaltKmOFVh1Jcsk+9YEoszluJDpWG8kM9T0yHv2hNfIsluaNfk5ri+J1ErJwSgjl8d5C+nXhBx/cacW13nlmqtWVWkpHcoxXjzV3YZov/XrNwSH5JRnzXESKf+0nldy7aa5dojt1mTsvZxr6j7/LFvlMeu8oLtKibZ6EtrXZIvEY1bKFqVs2epEcvLRtLLxZ9mh5G+COD+NuHzyvrITWlJQZ8fRzLGytvqn/KzJluPiNYX/mYbIQMou4+s6iyvRVqDGZJVf3WdpfL20J+gOsfR9rLMNxpQbTO2Wi4vF3yyN3i8TCMkCuy4hhBBCCCGEEEIIIS2G/mWZ5fCfEEIIIYQQQgghhJDlMFQyzJ/7uZ8LPs/MzOCZz3wmJiZCacyHP/zhXpo1mMh9sHEABLkXV9mnv28m3EAsd1hbW/tllJlBJkuUmS5qD0zZhkS2pWznSB87O1aNEa90zFsnWnTGUZcLujFkc9rWd9JCC9MGYEaoSOLoWRKt+udWh3PcOildl9Ia92Csh3kbp6bEmpFSIr5qdLOvZsnb0pJp58n504omLPqJDPwYS4Xq+i4J5tK4DFKfJ8tg+UWQyP4dG65FD43rRFsIWHo/idUuXo2f0vflJXHxNDVcDpRu0qa027ZNtK0wtolQGn7aadUcdddd1fdyvmtfg3W2J+6PWjBS2TUsFZ+1jpib6zyGg0iBA7A+iMuXIsOcF5EMG5GrAMmhGRGBcaqS27aN7QSZYtDQsmGtvGVDy84KhINGlknT7sb5WW4/FBtkn7bmUm/xpAlWREcpw5RuGuKmnJhSNNZRJMuwWhR9cw/RJNbevhXXsQgOHtSjDIgsVbgAMNPq+0eOuG451JRl/+c1kp+hell28sknB5+f+tSn9skSQgghhBBCCCGEEDKKDNXLsre97W39NoEQQgghhBBCCCGEjDBD9bKsLrsO78Hzv/ZmXHvPd7GqsRLb1pyCv3jQM/GAjzwP56zbipljs1g7thq/ffZj8WtnXgEAePv3PoEX/9fbcNrqkzEzP4tnbf9ZvOCcX2jL+9N3XY/Xfvv9uObyVy5997QvvQGPO+0SPPGMn8T/+MJr8dV7bsbKxgpccvLZ+JtLfrtXxSaEEEIIIYQQQgghTk6Yl2VlWeIJn/1j/NqZV+AfL3sJAOC6Pd/DXTN7cdbkNP7r0W8EAHzvwC784mf/BPNliaef9UgAwJVnPAx/9eBn40dH9uG+1zwbTzz9J3H6mk3Luv//2HY5/uEnfhcA8JQvvhZvueXfUEL3z5LTn0NbKOHJDcqZ4pxE9yRuehRrPKUe3X63XvSiKv2gB4XHnvSkKp25rIF9wgnB/OS6pXSbzwfxeU74Dcnhjim775HnPGcpOfumNy2lm9JpixauvcskNWXCRVl86iXQOLCv+nDVVeHB1762JzYEGD6YZN+V3SF2raSFnY9dqRwar8bP+PQ6ePDOFbX9hTknXW8/yem/LDeN3T8Mv5Dl9frkck5scs5sOP3s7DtQ1de99+q31EyI20j6cdKYjXxAhX26KsOk0W9lkcIxEvncEXUyLsaVdxqLq87ju81ww2ci61LzzRN3GW0o5V6SSBd4lk9Fyz/bJrHMXL26Ssv2kz6X4vOsMmnzouEm0j2/9Gh5Z+KZmy1/b3XvafV7WffjG08JjiWtWaXftEm98lU/iLHPMmm8OE/OQzPRcxao/OKOT5+xlPb6ftPcrgFhfVlu0yTyvLh42niUNpiPEHFjd3slLLbjvD3PauuaHOt9+ZhctapKSz9lms+5sqx//8GmBHDsuGeR4WOwVsld5FN3fQMrG2N49o8/eum7C9efidMnwh/dZ05O4/UX/Tqu/s4/t+Vx8qp12D65BXce3rPs+z/mtItRFAWKosAlJ/84dh7avfxCEEIIIYQQQgghhJCuMgB//+kNN9z7Azxow1mucy/acBZu3Lez7ftbD/4QM8dmccH6bR2v+9zd38KF//q86vxDd+Nxp10SnHN0fg5///1P4Y0P+g18/Z6P+gtACCGEEEIIIYQQQrrOCfOybDnEO0X/6dbP4VM//AZu2nc73nzJczG+otnxuodtOrfNZ1nMb137Jjz8lPPwsFPujz+756P15FXXXRd+vvBC12WeLfLxdnRNKdAWPlzbe27tSdcM8u7lj/dUxzqsTt9LjQRCOY5FsI39xhuX0jNvCNt6XMZIftrTXHl7pVGePhNvt9ZktG15yRM13U5cv7t2VWm5/1rGmAba6lzl5puXkm8RX//PzZuX0uNxbOqadFXmKOsr3p8uPjc0rUH8uVcal3h+efazq/Rf/3WVluMvnji6aKsmu/L2fSu/xtxs5wxitPESIwwMRnaKtm0QNE4JuCUlcT3K+PRSAyLTmWxawqhj2b+kCfElbc9Ghw1ancR5eyWeYR5V3l65WUpXy3GNVo64frT6krJs75jPjSzD1JT+PJcSOiuPdaLNJifrrQ8AYHx8+ZIujbgdPPXqlX+nSNEGgVRpcV0s+ak618R9UMo6HVJnIO0Rpcmgk9evAlk+azlV99HqXau73bvUxLLH+0yykHW0eZPvN8vi0rapT3WEDDTDuepO4P4n/Rjee+sXXef+1z234H7rqh/2iz7LvnT3jXjsZ16FR295EL60+0a86vp3AQDe8pDnuvJ91fXvwt1H7qVzf0IIIYQQQgghZCSgz7JRZDj+RJOBn958AY7MH8Wbb/7Y0nfX/ug7+MHB0JnwjgN34UX/9VY89+zHt+Vx6aZz8CvbfgpvvOnDeMLpl+K6x1yN6x5zNS4++cePe/+33PwxfOzO/8S7fuLFaBQnTLUTQgghhBBCCCGEDBUnzM6yoijwgYf9Pp7/n2/Ga771XoyvWIltazbjLy56Jm45sAsP/MjvYObYLNaOrcZzz378UiTMmN8795dw0Uefj9+//5OwduVEx3M68exr/w9+bM0puPTfXgwA+MXTLwVWLr8cwVZeZ0RAc8uvsge52SYpcd1Kp5taCG+Il9yhr17+8sqEiy8Oj51zTq2sU7ZpW9e420+rF6uOtShyqaGlRBTG35LfxyGNhgVLX6AdyxG2KAV5X9G/AQB33nn8a3qI1t+T5y5NRpmiKUnNo1vXDyCqJMh6rilzSl3ZehuGpFYqSZpG5DmNHLamPI9l3rWf58sg57380Rj1Os6paLYkgt2UC+aQcXny6JfkcdCi9fYqGnUqudeLKdd0c06pO9/lyDulH9btu1ZU9Nz2yLxz942J1hKx0f+hTEgSo7cCN9gycTLefdlL274/fOX71GueduYj8bQzqxdnWyZOxq5f/Pu28y7ffD4u33x+8N3bL33BUnruyR9qu+bxN77OZTchhBBCCCGEEEII6Q0n1MsyQgghhBBCCCGEkDyUoM+y0YQvy/pIiXrbdOe3nqEes6QG6nbZlIiVqecpJEVIimVgiizMGyXIe9/5h/5EdUCmnfmlRoOqLRfz2iAjJE3KdBg51CsHdvPQh1bpj340b94Cb8S12vcxZIq9ipDkJYjMdvlPB8dU+5zls0gpu5Z3cj3WDOOXvd84I2ml3FeTXKSWIetYitphfnpLikkdbXD3jbgveKKeOvtPinRvEOaGVDxlyjFPyDyspYwMOizPsxTy2veW3VaXkfey6qEfzwfvPWfnqvPiIM+aNwYrkqFXwprSbwZBypmbQVs7jBrePhP3/RRvL73qn3Jc5oiMSciJwug9QQghhBBCCCGEEEIISYQ7ywghhBBCCCGEEEKS4I69UYQ7ywghhBBCCCGEEEIIacGdZX2kgM/Xi9TES18Xe/eG12ha+TbdvMxQc+AhHU10zKTdTsDvTyJnaOJu+kXqZn5e30NtdexwhDCKPjq6STf9TaXY4O0bg9Cnc4/zunSz7/fLN0zu++auI63vJvmCTHymSOSjLPQpE14vH3OBrbEjGvlZebhadktS6t6btzePHO5JNZ9cVt5y/TI25vP3JWnGtokT5XPRylsjLrf8bJXJm5/E237h8qwqk8w79rWWe10SICqiGRjR0E5z9yevj0bPNbmJ8/b0B8vtoeW7zUvddrbmA+1ngfW7QjvmtTPHOkL73RTb6vHXZa3B5LF4rkkpezf7sVUPGoO2piOk3/AXNSGEEEIIIYQQQgghLbizjBBCCCGEEEIIIWTZlACO9dsI0gX4smxAsbb5LhJvv9eONfbeEx786ler9IEDVVrqOrduDa+Znu6YeWPjxvA8oWtpGBIVTbfRsApVk0HfWuzdij2ryDEs+ZO2Pd0Kaa9t2R6EuhoqDE1K3e33OeRZVn59YffuKi3ra2oqOK1tXlvE6tSWJkFq8rx6BWmPU0oocde3YbecZw/NVPl1cSo1qduHvLIrC/nMdDelfBbecEN4bNeuKi37ybZtlW3btztvlAFNZ2oUNpQpNvXznHI4r9TRI8mLVa/ymsOHq/SmTfG46kxjbrZzZgDGxyc6XtMmzRJGjSnXeKVazV07wwvlWkuumUR/AsI69kob5fpAEk+LWn7WvNGQY0TUT1N+j0iiKYnXi5LY9cciUd7aIiVFqpdDjuy9Rt5rz54qvXJl2F6yeN45vO5zPx5/sYuXRVatqtKrV4fHkp43iow6foZ420wiy9TWteI+tYihMw0sEtc344Lv2t3xvKCCorXM/NSGjubkkHGmtIu7P8nnojWJLDZaip6dkAFgAH4ZEUIIIYQQQgghhBAyGPBlGSGEEEIIIYQQQgghLUZehnnuNc/stwkqq6bWuM7TtnYnR0GS+5PlNmEpf4r3LcvPciutta0+M72SiLmjax7YV32IGyNlD7/M29hWLbMOFTi63Z7oRgOD1ADI/hlLg2vSM8mhUckpUb+6SXCfaMv8vJBu5Yz0Z7JjR5WOZW7aQIjRdC1Ru+w7UNkupV/r16uXBOSOAhng7EOSuEr6JctcLjmiG0sZ3sS44Q5AYoV6kx1CYvW7BGr3h1jmooR0bCjfm+fFtjqjT2r9Tk7tWvUCwL33VukjR8Jjq1ZVc9KxwFVM9f3GjaHkVFcChWVoynoQ/UnOg1aURFknpnsJURFxfp7ndqwok+cdParfVsOMpO5pTCA0XNP0GWvHYGzHRmiy48g2z7M1df3jiabYTmXPwYP6WVKhZ7VF2I+rvFNs89aDlF7GPxEC6bOF9vtDSmojmWJINf4su63lQdMT4tObeYxWvhR9bQJtfV2Udd6Q33vXogHaBBWXb/G35ayzjwwt9Fk2qgziT+WsfOtDF/fbBJXH/9HO459ECCGEEEIIIYQQQnoGZZiEEEIIIYQQQgghhLTgyzJCCCGEEEIIIYQQQlqMvAxzFJCydy26NmBozmP9/8VCmiozv/HGKr1iRXiNGYdZYIR/1s7zOkyQknhvyG+ZTvEjZCJ9vBmhoHP7m5L5jY/7wsRrdTKQfoxkve4UUmXhsyzuWyl17PYP5Lg+RssvvqZXvsiSiP3QiD7tra8kPxjSl43H901MPJ8ofkNmEfrvkJetXOm7Vc8YMOeCcVsmtXMC8j7mPT2+uuL8xieq82L/eNpEuW1bx7w62qR8nzL3BGWXtsVjVqI9QOOHheYTKu6DYh0g67UZd1WRn6xjedu1a1WrAz9lsQlynEqfZXKqsJYrlpudZsIaRT0tXoPJG1ttJtBcIXmnxVWrws/aHGetrZqaz8fYKZT8PD1dpWU9OBcfss8AQGPmUGcbrDwGYF+ALK6shrj5FTdeZj+WpMzFcTVaLg3VvLU5Je4bsoBaYQ0Dm6Y/M3lJVQ9triWVsW359DL96Em0hpbrGm/fN54p2vrV2+bWmDDzk20rO6Vct8s0UK3jR95nGUCfZaNJ/58ghBBCCCGEEEIIIYQMCHxZRgghhBBCCCGEEEJIi8HSdpAl5DbYugqctu2201uWko0D+6rvd+3SM5HbhuXW2y7Kg2bnQrv37KnSMpx8HIHcu11d4t3GHJwn9Q9RPdihr5dHiuQplsK0SWMUvPLBrpKgE61rdzelspJU+WhumaiWd0o9eCXRVhnU+wrpbZveSG71t2TiioHNqbBvyTEy4ZQne2WBnjo25Q6GXEXK8MbHdRlJN+m3nNgcVynPqHj+lv3L0u4ZNnnQ+kmyjEwbnLI/WRI6SVyP8jxNntfpcws5TJtj+nixlHseuZi1HtCKsHBQpA0pr0Qd55bWTtCYC2VKk5PVePYqNzXpntflgqWgG5uU5TOQRiTIzyRtc4szj27K1FQMebPsN1NTVbtaXgMsci6947zkmNu/X7nIkm9rmmHrmOyslh+RBNouV2SY7jnXskdb+4vyeftWDsl+z1w4yHEZt5+1SCRkCODLMkIIIYQQQgghhJBlU4I+y0YTyjAJIYQQQgghhBBCCGnBnWUDgrW9NiViYdJ2Xbl92NIupOztj0ixT0ovpSQzlmF6dh2nRoJR5T09jFbXTXlBTjlVqnSoIfuXjKQlz3FuT88RNbMudeVYMd7ouF7UOkkY2/Fue2lrijI56N9WYQ1JdFBJCVIP73jRJJnxeSpW5SkRPQFEMpLO33eyqQ5dHVemrtcnM80e/c6SmDjwynvCQJS6K4ZQKlfVyaSIWAu0y/o6Zmg9uzRJ5nLyE3Un7Y6ll9ptvabKY965RjarGVFVwT0O4jGrzWWxxFrkNykkkFr9xLeq+3wwm99yl+BwpZAqResVSfdNiOxuSSCzu2BRbJDraQBYvbpKr1/f+Zo4cmRwJ+8cqWmG4wEsI1Y617xm3Yk+qdVR+/JAnCfK3maDMuhS1hHWeRopETSXk1/wDN54SpW3LLcWojcOyUvIkMCdZYQQQgghhBBCCCGEtODOMkIIIYQQQgghhJAk+hvsiHQH7iwjhBBCCCGEEEIIIaQFd5b1kfn5AodmOr+v1HxpdNUXy9atVToW/O/eXaWd/ggsfb3P70BYVs0HwdGj4WfVH4RwwNGI/Gh4fV4F1kl/WoZ/pxS/Yl5S8uumD5AcfhlS/eD1G61MOepbuqzqmXs8w39OeJreljltbfORojkmiucn2Z9qGuRtyxT/gQ0r3LrluEmeJ9PROGrU9MGU6udx2TjbKIePxiS0+jb8qVn1I495u6fWHWJXMUePVjatXVt9PzGp+AqKP3udYyk+hWLCLu1rl5THQZZHSIIPQ+28eL0R+OJ0rqekj7epqbx9WvZJy1de6DqxOq8Zz8UZ/frl8I9Yd07yzoth/w7nA81HmPQPBtR/XFn+0DSORQH85Dyi+b2Lm3idPFHe2HquybThCzllDrcemd303+nB63M3xYbUvFN+Z8rHw9zcxFJ63VR04mLbNn0+RwkZNLizjBBCCCGEEEIIIYSQFtxZRgghhBBCCCGEELJsSgDHjnsWGT74sqyPlKh2IcfbhLVt49klmd54615JkOeaRNasqdJaZOKYoB6tOOjj1RZit9lGfWWX/mSkm7JQ731NauoQzGYez1f25NDbClYo90BCNd5FWbYkQQ7XjC4Zm/SFZY+v82DKnAIjBkt6qWJJl2T54rJaHV4hRTLcVXcATno5XwXIOpdaNJHOIe33dlVZDxPj4REN2b2k+4f4nmPyWTjW+bm48IW4RrlPnL+3fF4ZpdYfUqRHKWQZL0Ku57VHPgNi6o5NaYN8XgL6VNMmU6wpYbWoKyvzugeRtCsJO0svDx+u0rG8Upve28ZfzaWydb0mt924MTzv/2/vzsPkqMr9gX9Pz5KZycxksgyZ7CsQwhYgLJHFIKAIAVlvWAV+gqICgiCCC+LVixsoIve64QUVBZTrliiooCzKGiBAgAABAtkGEsg2ySyZmfr90T1Tb53uc+bM6erumpnv53l4qO6u5VTVqVM1lfO+Rz5/yHMup/VrtLZW1GMR5q0fU9Pzte16iTv01qUOuR5Hnzrt++zo8neh7TefVAq2ZUy3RWMDXlZmXBdRkiX3L3oiIiIiIiIiIqIi48syIiIiIiIiIiKiDIZhlpBC2NVX797uEi4W94gqtnWZRp6zdhO29GOOjqISrkN2Y29vjy6zbl04/e674bTe41d2f5dhYJGSRvoMR3+TYShWjv3lTSOA2c6fT7dz1+XjDmVyDV2QrIcuzxAOuV3tNEcGITNxHdEzDrKszc3m+cY2iu1aRuArSZiabegswwiBephpY2OebZfH8HdxhHqY1ucVAqJfMLKRtIwUZryYCjhsqq3tijMMzJdrmKlrqGQkxFLGLHmMDF3IUDS9apjC9TrEPbfQo+sWbfReDz5tvXO4mKgbeliiT4iuiV5On7pmarvkCJyAOaw+i0cKDtdrVtbdSNmKWM9k0yxHY9efWaWKinA68ozqWe58Q5AlvQyNjeG0KQzTVm7TCKE2caQH8QkldOW6viSkKzAp5POhadRUAGElCIKCbT8ZmLNssErWlUxERERERERERFRCfFlGRERERERERESUkeAO8oOfHA1TDxeTXVptoXsmtu7S8nO+I/rp5ZZltUVGmbp2y/Vt2BBdRoap2UbDlN2+ZcTM+KYGpxXkO4qOrzhH5oo7xEyyrVv+ZhukT9Zva9kMff1TnR3RL8TG6sXKW1vNIzFVOl4HcY7EpG/HdB1MnaotKCu/DO+ZOLHfZfMV5yiq27ZFP8uwFFN3fr2tkVzbHZtSjRLrRJzzrDrUmTvUtaqId/ekhZ64Xn9e4e6OYfpJrkOVkdgo8wOCvK5cw8X00D2T2OuJbBfl9WI5XwUdOdmSDyAVfcBzWp1zyLDHiHmm9dlCPK1lE/vkGvKbhDbEtH/yOgDMgxPbwisLGi0vKrKs+84h+xamfXV9TnY953GLuw4VawTpJFwHkk+6n6w2aciEYdJgxZdlRERERERERERemLNsMCr9a2siIiIiIiIiIqKE4MsyIiIiIiIiIiKiDIZhlpCCOZ7fY+TtCLlM3ENqy7K1trqVQR8+2mc4ahM9t5kpB1pbW/huuKlpVGQZ11wMruQ69HwXPVxzfyUu942FPM/6OffJJWXKgVajJ2SSP4oNjxwZPc+mnGWueSLiziEhj0lTUzhdCXNOtsRpaMh7FfIa9slZJpfRD1W+9c5G1hvXHC6m/ajXj6NjwU33Cv36M7WtA6l9yZfrOfLJ0+JbhkLmpYnuk2BrT0RFSbnekG0PLKYcSuW5c+15kxeWpdyGW4W12K75LSPkvuoXo2lDWiFctuWbM8krt5mhrHp16hR5yuQz4siRORfPKp+tDLY2rlD08sh8dqUSOV7yQFgeqLvFNRfZJ9sDuumPCcs1Zl23yx83nn+0JCLflzx2Hg8fPs/+cefcjV3P+VSqtOUg8jSkX5aVHbEYe06r7/38h6/Pxcrm7fjIl5Zg+rgatLZ3YcG8sbj+k7Ozll3ZvB0Lrn4Sy259f+931972Mmqry3HFwhn43I9exKJH3kZlRQozxtfg1s/PQUNtRVH2i4iIiIiIiIgKLQBzlg1OQ/plWXVlGZbecljku5XN23HonqOw+BsHoLW9C/tc8BBOPKQJB+85yrCW3I7arxHfuGAWystS+PyPX8I3frUC3/rEbnEWn4iIiIiIiIiIYjakX5b1pXpYGebMHIE1G/ofAvXB/Rt7pw+a3YC7H1yXNY9Khb10bRE4rt1oXUL/4iB7SNfV9X8ZILp/ZWXhdEVF7nmA6DFavTqczg4BCKc3bcr9vU6GwLkOGe8atmPqIa/vX2WMV2Mhu17b1m3rYe8TDmcK65TD0QNApWN4gFxH3KGuPuuQRa2vFcu3tJln9DmQHlzDGJxDAMTBb2jofwiWbCcAoLo6nC7SIYmFjBaLhGQ2RY9jZ2dN73QkNDXm0KOBGvIdh5KF6pSCqY0sdCyboT32vbdGRPMshMs3jTcu4rq75R6hl6b7fktnfWS+KvFbTVV+15xvCJZpOZ82YOvW6Odt28JpeRxkm20Kt++Lz3Nu3O2az/oK2taYboDatWcst/4QLT/7nChbPo48JaHNjhxH/diJY56EskqlSjXAMEwa6Ib0y7LWji7MOf8hAMC0cdX4/df2j/y+cWsHXl29DYftnbtX2Wtrt/UuDwDN77XjioXTs+b733tWYeHh5oc3IiIiIiIiIiJKhiH9sixXGCYAPPz8e9jrYw/i5VXbcNXpM9A0Kve/2swYPzyy/LW3vZw1z3/d/irKyxTOPHJCfAUnIiIiIiIiogQYWr3zh4oh/bLMpCdn2SurWnDIJY/gxEOb0N7RjU9893kAwH+etwv2mlHfx1qAn9+7CosffRv33zAPKkf3U4Wgt7tqvd7TOd/hMIVCdsX3HRVoVK0Y7c+0r1XR7tvjm8KXlrW14Xb10TBl6KVcnexNrvdadz3ErqPtyF3auDH3PEkIHYt7FB1bNKTPSEWm9VV2bo/O2NwcTo8Z0zvZWR69TuV58RoNzMIldCjVaRnlUk6vXBmdT4YbyZhhsa9xcw7/lvukD/UoL05R4UdNnBidLxIvLS5UcdJHjozWmXxH+S1oKI0WetKJMOxUHiLZNowYEV2FDGWKDCLouN9xj4LsqmgjksU99G7MkhDeatyuY2hVscKI9HIaR9PTQ55kuyHOuefgk7GSRdWfUSLPIk1u92CfEXpdvtdZnwnEAZOpENrbo/OZBlO0nRef0cCHUti4dV9ND7qa6AiaHcb5Iu2nmHZuD+RIt3GPeptw3QXcX5/22LRMUUNEey78ICjeNolixJdlFrtMqsXVZ8zEt+54DXd8ed9IL7KVzdstSwL3PvEOvnXna3jwxnmoqSqzzktERERERERERMmQrOyDCXTh8VPw0HPv4o119pdjuou+vwxbt3fiqCsex5zzH8KF332uQCUkIiIiIiIiIqK4DOmeZS33fDjru/lzxmD+nDC0qXpYGdb89qis+aY21WDZre+PfHftubv2Tq/41QdiLCkRERERERERJUsAoKvUhaACGNIvy0otgOqNG8/KR+CQWMM135Q+n/zNOSeGIbdSSs8N45orRq5PJvGx7XdDQ+/kmDE1xtkM6Rbk4llpHeQ64shlJHMRrVkTTk8Q4zxUlpc+F0fcw0f75CdxFalaG7TcWLIOTZ3aOylT2uhlGtXQ7yI4M+Zc0XPuyFxrch+WL4/Ot2JFOD13bjgt9hVA8XI1yQO7enXu74Ho/s6aFU7rlcOQe0hWKFsOvGLx3aYpN1J1dThdURH9zZSnLKvd8MwbmVReeRQ9k0+53v/yvScUMj+MtWweCbqKmsvGxJTLUW8/5WdD/ka9qZGLFLK5tKXUk2WwnaJinQvX7cj5TI9tugSkD0xE/kAT12ewol6XHnnKjHkGdaKSJ6KtyVcSKniJGM+56fwzZxkNUIOgpSIiIiIiIiIiIooHX5YRERERERERERFlMAwzIbJCJfPs2uvTvdkaLibDpAo59ropHAuIxFHKn/ToC/mbDLeMo6iux7VLhK3L7eqhVkljClHwCVHSe2KXlxtCIbJnzDlfpAx63Zg4sXdyS2cYoqtXYxmK61OPncOWTfTtmCpoU1N0vmXLwml5jbREw1G7q8J9L1q4ie2alfshp/Vz7nGh+oTWFDIcJ7JubR/ktkaMCOeTu60fOmvopWE+l0gIfZmBGpbkwzUlQRzybit86Cc9xnQOfW6rj+30Z7uRdZtiFvVtGbZrK44tJNPl9mA7PlUiPFpft9yuTNnQ2GhcnXPZCtnGmSJiXduaHTvMy1Qm4a+RPOu0jeu5KGARzCwrN7VjWfsjn0XkM4ElT0rKlGvAUh5bGQZFWOdAxTDMDOYsG4zYshAREREREREREWXwZRkREREREREREVFGEjo+U5GZuir7jGZjGwnGGt5h6n4tWUJKZFn17vsNDX2HIehli24q/M2367tp5E19FE5TmZIeGiWZyl1VZT7GeYdc6AdSfhbRAJYBVVGs5i9yfCxhipH5RFgpAHOYYqlGYpIHUo5yGT3A7heQXK6A8SaFvK5cRyAe2xhOd3SG89lCLYs2hF8CGcOAHEN1TOvqjyS3zRGWY2Kqa877YwvxtJXBJ22DrOOy7tvWLabLqyqNq5ZNaWtrOC1DBPVV+zRJNVXhcR0zJlof9UGDTUx131Y2n5B0H2Vl5t9cw8ETx/VE51k55LWoM1X32G+Ljis3lbUSliFebRVc3uvlcbQ9HBtSc+iKVfdtfFKZFEtBUwPINtt0r1Aq3m0mTgCGYQ5Opb96iYiIiIiIiIiIEoIvy4iIiIiIiIiIiDIYhllCCkHJQzqMI2Dq3WhlF1tLCKVr197uchEmIaZTTZYQI8fhlyLhOcZQkWiYRtwDfMoQDFelrgu+XLt2y+PqGk5lYgujlauz9ez33VYPn5GYbPNEQ1ei9bN87vt6p2UIVTG79pu21VK1U+90rSUkKLJ8uTlMSnKNPow7TC7f9dnqRjSE3DICsWOjJNcnR5x1VchjV0iu2/HZp7j3oZDhL3J9ehUqN1xnXiNg6nXQ5T6rzWfabtb38plAD+2WDNu1nfPaWrfj7zICpi3cWpatXh/pdky4f/o5M0l1doiyubWfPlxH+JSHvqtLn8+0fDhd0NEdCy3P0EttEOsIGQ5cXd3vzThzfRaRZZVla2yM1sGUaRh615QuLt/HJN/22HsE4Ty5hHi6PpfGMZLo9rbcI/4an+kHfRgmDVYD+XZFRERERERERFQizFk2WDEMk4iIiIiIiIiIKIMvy4iIiIiIiIiIiDIYhjkAmOLR44g5j5Bx5nrSCY+kXnHnATMmwvDIiaAfuxrDqn2Pqc9yceY6KGQ+H9/1uear8cknYaprerqbfPNP+eSqcF2mMjKSuzknW77XuWt5XLfjem075/oRNm0K59PPpS2HmZSEIdud2A6k7TdROVIO+aF0hczplYQ8jK452ZzzbZa4bdfXl+91moRzZNOBMDdS1j4Ycne57pMttZLcVt7HSEtMFnneqOp//rFIrsNC0g6KrGn1kRRV5hywctd9ngNd7xWFZMuRaprW93Xr1nB682bztuQ65D1Pv9+ZjqXPc7de92WesuZm83zS2JGigLLgrvmPSyTufJJJft6Io2ymOmDMfy0/68kNiQYIviwjIiIiIiIiIvKS7H98Ij/JfQVORERERERERERUZOxZNsDYQkpMw5brfbHlOiLr8w0DylO+3aCt5c6TLdS1VOErLmXwLZtp3XHst+t5dimDztSbPwlhpnGUIc4qHkcommSLpPAJbTOVT4axANFjIqd9Qw1czpNvSJDTfPpJdjzp3YZQNFdxhGYkOZQvyWXTOZdVht6KkJearBlFHZLhM77xWZFVG9ahh+DIddTWu23XsLi+alPmCJ/7VUFDG01hSQBqxozpndavRefnM8Myku150fhMaIvPM4R/A0Cl+FwpQvLiuO8XMg2BiX4Y5OlsbQ2nZZRZWVl0GfmbPFy2S8z2m6k8kutlLk8rAGzalHvaFCIKRO9DKf1Hk9hztQxMpUjBYmMrj0wXUtkpKt4mOb0pulBPBduxI++yEZUCe5YRERERERERERFlDN1X+URERERERERE3gIAHMRgMOLLsgHAdZQ903xvr4/OJ7uDNzWJH0zD+th4jIypL5bvaGWux2EgjeBm47J/rtEz1lBew/dxjE5VrGVsCjlqUTS6oP8jaPpKet2Nk8toYLb59NAT2dFajpLnOgJxvqNKJjHk26RU5Yk7NNy07o5O8+h3MuRJTuvhyPKzabRlfbvGjeqVWP5mipPSl5O/ycLZ1m27kZhCrSwxaymxXZ/wYRnyZiOLUF9rns95JZJPuJgtjk+sTw9f294m66Hb/cpUJ6uqzPdtYx3U97XNEGrlGHaXkg2rZ9hdvs93PvSimnbDFA4JABUV4bQM0ayujs4n70t6KKdr+UxMbZweHecyIqdrpKW17pvaJM9RMvN9xvdJCWO99xjacJ9w5DjEHvUqz+WGDeG0/nC1enX6/+3tMWyUqPgYhklERERERERERAWjlPqoUuoZpVSrUuptpdQtSqnGfq7jQKXUfUqprUqpLUqpe5VScxyWG6eU2qSUCpRSV7hsiy/LiIiIiIiIiIioIJRSlwH4OYDNAD4D4McATgPwgFJquOM6DgLwIIBpAK4B8BUAOwN4WCm1Zx+L/wCAY7/dNIZhEhERERERERF5Yc4yG6XUGABfB/AkgCOCIOjKfP8kgD8h/fLsOodV3QSgA8BhQRCsyazjNwBeAnADgA8atn88gBMBXAXg267l5suyQUTGuq/fGOYDeeGF6HxTp4bTqbbt4Yfly8NpPc+ATNIgkxWIYc+B6BDinSInwtat0dWNHBlOxz1ke5xDi7vm9OrPOvIl1y3Thsj0AXquC5kXQ55K27FyyeugryNpuZXiYMrzoF8iLiluXI9PqY5xIeuqT24PSbYZtsUr27ZEf5T5M0Tl7+ysN84WXSR3LjMg/+MVdy7AJMi7rlrybhXyOpD5ofTcQ6a8RLL91attJB+o4Hwd2L43VVadzP1jykWm76wpp5CNvDBsDaM4YCnx7KDXfbmIfHbQU97IY266F+q5upxz9RjyKTnnGZQb0p6TIudMFlxvYFCZczbTqgBzGii9CE653PSDJT/LsurlNl0wcjprXwcOed5rIun/wvOvnxdbPjPJlE7Qtd76zCfzqdnKIx/9s+6F8m8JWQltB0LOJ1eoV1aPBFu2pqvSYXU+z/oAkOrs6LMQKcf9ifuZIPKchI7oj/kmMbNV8J7fgiC/bdBgcAKAGgA/6HlRBgBBECxSSr0O4Cz08bJMKTUTwP4A/rfnRVlmHWuUUr8FcJ5SqikIgmZtuToA/w3gh0i/rHPGMEwiIiIiIiIiIiqE/TP/fzTHb48BmKWU6utfUvpahwKwX47fvoF0J7EvOpQzgi/LiIiIiIiIiIioEMZn/r8mx29rkH7RNT7Hb/1ZBwBMkF9mcpx9EsClQRBsditqaNCHYc4+64FSF8FoWHVDwda9RlQhvSdwpIezKRxADgMMABMnhtOmrvjaZ9l9Ww8hiHQHNtTCQg4FXswQp7hDh+Qp6xmRGYge0wmRZsLcw9rWVV2GFEi+oakDVTSkJ5y2HTvnkc8dx/Ie7MfYFJ5jG54+2oaI46M3NvKzWGjUxGjb1dAgwtjX515cP6+y7fIJae7vPEOC5cLyCV+xhbpK8panR5TI1AX1VWH4Sm1tGCZni4bMm2tjox8f02/ye31n5Y7YtusaomlaJtL2VWbPm9ElUsDouyfTDcj5TJF/QD+i//IMS4rUNW3/Uo6FkKfJdMrs9/BwWq+fMrzcue2RDbIlRjCy77VhuLttO67PSYV8LsyXLWxS1lWZFsP2rBB36KWJXoYRI/peRr+uakyVzRaW7TINOO+grDfy+VVfnbGuuV5MtrbLI3a2WHU6cp5b2sw/ulYouYzpb0Rp2DC39Q5YAQZJzrIxSqkl4vNPgiD4iZxBKdUA4NJ+rPOmIAjeQzoEEwDac8zTUylrcvwm9WsdSqkKAD8FcF8QBHe5FTdq0L8se/H9d5S6CEbHLb+h1EUgIiIiIiIioqFtQxAEc/uYpwHpEShd3Q7gPQA9yQ2HAWjV5ul5+7oddnIdulzr+DyAmUjnS/My6F+WERERERERERGRvyAIViIdMtlfazP/nwBghfbbBKS7562FnVyHrue7nhEyxyGdo+zn6Y9qpjbf6Mx364Ig2GbaIF+WlVCAsPtt3CE4ciQuWyhT95ideqdTBx0U/mCLXTCMTgaY98M2uI1rF2TXcJqiueiicFoeOwCp007rne62hJj4kMdu7Njc89TVRT/L3tKmruo2RR0F9LHHwmk5QutZZ4XTlm7i+YbD6Vx7p7v0XM8qm6gbiQjDk+EF//pX9Lf58/tc3Pu6NMSi2I5pNIJVbHfi5Mh8KRke4GhsY3gutrSE67aN3Otz/nyOly0MuljtYtzXWKTduO++6I/yBnbIIbmX8bx2TIOx6fVO3g7La3O353oVdg7FlkwV3hZeabvBG+7VkdDyhmjEQ8q2vnw5hp1LrsVxGY24XyzPOX193xf5TGA73rJeyzBxU73V2UZvjpTHdT+q+oqOsXPdTiKe7yxc2h5be5Bv2KS+3XyPl2vbZRtEd7sYubVGPvD7DBvueYBM50V/zjU9O6Qcrvn0QuZn+jjrrm20XdN8ztuPYTTabtEedJaLae0U1+yxR3pCxh/TUPUkgI8DmIfsl2UHAng5CIK+klr0jGQ5D8At2m8HIf165anM57FI9zb7ROY/3VWZ/04FcLdpg3xZRkRERERERETkZVDkLCukPwK4CcBFSqlfB0HQBQBKqeMAzADwZTmzUmoMgDFI9/zaDABBEKzI5FQ7VSn15SAI1mbmHY/0S69/BEHQnFnFG5nvdLsDuBbALwAsQu6RNXvxZRkREREREREREcUuCIL1SqkvA7gewH1KqTuQDom8HMByADdqi1yEdG608wDcJr7/DIB/AnhYKfWDzHcXA0hl1tWzvc3I0WNMKdUzpNPzQRAYe5T14MuyElLIL/Qqtfqt6Bci3Gh8E4yMXchNQy/ZymApv/ytElq/3DaHcAzX0QFto3mZhpDSQx8cu1/L7T79wx/2TneKaQA4QC4jwwcd2crgcppc65V1PlOfe31YLTFfZJQvvZu3a9f6e+8NN/u1r/VOV8n1nXKKcXGfEbdsx9ujeppHWHIdbSmOOA0f8jzfeWf0N3nejz46nJbn3yv2DMb9lWGP+jlyHeE1EmZhOeemelNfaxlp0zQEouOohCnbOTeOvhXvqKlxhFTKdeQdWnq39twih/z95jfDZeaa88+ayq1/L0czHdXQZzEBRPfPNjquKdVA7OHWHiPF1XhepibOdchQVtt5MY2WbSuDT4RRqUL/fNJQRI6P476Wav88Im8HFNNxjXtfXUPybFzC+GxkvSuvNW/fNhKsKYQx7nuXrc11aVPiHpHV9XnTJ6TSpw2Je332NjvzhfJJcUWDTRAENyil3gVwGdK9zLYA+A2AqxxCMHvW8YhSaj6Ar2f+CwA8AuDUIAiejbvMg/DWRURERERERERESREEwW2I9hQzzXct0uGSuX57FMARntt/AP0YoIAvy4iIiIiIiIiI+i09bB8NPskecoaIiIiIiIiIiKiI2LNsgInE4Tc3R38UOctsYs+ZItlyMpnmMy2j5z8yJYHQc5bJvEIyeYkpl5k+n6N9jzuud/rpRYuiPz72WDjtkbMsX3HkIYqQx3jDhuhvpnOpny/XYyzyYVUtWRJ+L4+pnrPMZThyR7FfH7bx1iVbvq9iJXuRZViwIPqbPBfz54fTtnPuUe4486rYOJ9nW1tlyuWn77fMkSh/c80TaTvGrnV/oCQP0ttLmTtP5i+z5CwrJFOeFpkbLw7FyjHlmgvJNT+pj1Ll0yokn9xDNgP1GLk2NXEfr7jXVwoFfVYX4j7ePtsq5DlK2vmPI/+c67pNXHO2uq6jWHWVqBSS1YIQERERERERERGVUIL/eZmIiIiIiIiIKMm6Sl0AKgAVBEGpy+BEKRX0t6xKKQRnLOp7xhJZsPwG/OnJfxZk3ZEusa6hkTGGTBVaErr85hvqGPexK2TYgesw2kk/L0nmc/5KdbwLOXR6vgp5THzLnbQwtSRcpz5cQwTzvn5s98wShLDGHlafMAOpzU5aeF++4W9JFMcxNh2XgXQcpEKG7sUtCffguMMKSxEWX8y/EUy/xXku5x5wAJYsWeI8AuFAo9QuAXBTqYsRgw8/FQRBafJcJFRyW1siIiIiIiIiIqIi48syIiIiIiIiIiKijCGVs6y5dSMufeqnePK9VzEsVYGpw3fCjftdgL3vuQSz6ieirasDdeXV+PQux+Kc6UcAAG57/T587plbMaF6NNq6O/CJmUfjslknZK37gbefx/Uv/Q6L53+l97tzH/0eFkw4AKdMPhg3v7wYN778J7zWsg7rT7odY6pGQCHs4lrQLr5ylDYgOoKbaWQ2y8iFSQu9jGNUFx/5bsc1tNFnHb5lcxmpSF933Mc739EQ86VHYLkO9imVl7vNJ/mEAJSq7idZEo5JHGHLpvlcwyds8g1nLGaYTdxtnJG8T9pGrZX3RtsIpgaxjzznOtqu5FruAoacxnEcXAbVjmGA3ogkhL8lrZ2PO2p5KI8eajKQ9scrbNzx4cr1Xmgl20nRFiYhxNr1OTDfssbShsjjaGsEeo7xAEn75C8Ac5YNTkPmZVkQBDjxof/COdOPwJ2HXAkAWLrxdbzdtgkzapvwzIe/DwB4vaUZJz10HbqDAOfNOBIAsHDyobh5/wvxbvsW7Lr4Qpwy6WBMGt7Yr+0f3LgbFkzYH/Pv/0K8O0ZERERERERERLEZOP9Ukad/vv0cKlLluHDnD/d+N2fkdEyqGROZb3ptE76778dw0yvZAwOMHlaPmbXjsa51Y7+3v8+oGZhaO7b/BSciIiIiIiIioqIZMj3Llm1+E/uNmuE0776jZmD5ltVZ37+17R20dXVgr5FTcy738PoXMecvl4Tzb1+PBRMO8CovEREREREREREV35B5WdYfelT1XW89jH++8xxe3rIGPz3gYlSVVeZc7tDG2Vk5y3zlO+xxR2c4XannJzHFmdsSgDgmnnDNGyIlLf+GK5+8Yq75iuRv8lzqKg3H1StnhMaUQiIJOaFsfPI7yX3VU/zJzy5pGYBoWiNL+j9nrvn6Csml7sYxrLtpHfqxN6Qd8c5J5LJ/rjlEbOLMMdafdeS7nbi3WchcZHmvw3ahe7AdL59NlZfLemdZmbwYTBtyLYDnheVSV+I43LI9kG223v7K3YijbU4cw407jhypkjzetlR5Psc77txRSchFJcWd482V633bJfVhLLkAXf/+MORYdG7nbYloDTmcU4475FqfXK+RuJ+1813G+reES9JI+RtzltEANWRelu0+YgrufusRp3mfee817FY/sfdzT86yR9cvx7EPfhUfHr8fHt2wHF99/g4AwC0HXlyQMhMRERERERERUXGV/p9YiuQDY/dCe/cO/HTFX3u/e/LdV/Dmtnci861seRtXPPO/uHiX47LWMa9xFs6eeji+//KfcOKkeVh6zE1YesxNmDt654KXn4iIiIiIiIiICm/I9CxTSuH3h34Blz79U3zzxbtRVVaBqcPH4sZ9L8BrLc3Y557PoK2rA3Xl1bh4l+N6R8LUfX72ydj33kvxhd1PRV1FjfP2b3r5T/j2i79Dc9tG7HXPJThm/H7AiPD3uENPWlrC96A7dkTLOXJM+LkSHblXpnVBNnXF1bsWb9iQe3VNTdbV56VUYYBxd282rc/eZd8tZE1+rqoSITxt27UyiHVXudVvn1C0YrGFzZnodVOGjuzYEU53ab2ty8rM63Dh3PVdzJe04x23TZvCaf2Ymq4LvU4b4x+00I6UKWTNEAICDP7jX0imOu56TONodyJlqK0P16fHixlifmWIvC0C0hYN6RrJYl53mBaisqHBvHKhWyyD8txpJYD467frvspLLtUpnlEsB7mqKvd+2MKf5HYqy/t/rygVUwqB9GdxHAypFHJ97i95XGU7rZPHOI5weVMdsjTTBT2XrtesT90vZEimPCZ66gn5HG86xnoTKT/r15KR6w6acoJoTNdFudbGpWrFOkwVWa9Qhu2mtPlc6preJhXrnGedaEmcQFv7IsteK+6ZNr33kVRy21QimyHzsgwAxteMxm8OuSrr+9aF/2dc5tzpR+Lc6eGLs/E1o9F80i+z5ps/dk/MH7tn5Lvb5l3WO33Jrsfjkl2Pj/x+3PIbnMtOREREREREREnDf0AdjPial4iIiIiIiIiIKGNI9SxLMp/RC127lr/wQvTzzJnhdFOTCOHoFOFLWnddGZbSbQnbMI0cOGZMdD7X8E8T1+NV0BBBubOWLtv5hgDYwgskebz1cFjZdVqei/rONuOMqYbchXANH/UdkTMSRid3ytBNvK/1meYzla++Squbsmt+haifI6NxCB0IrwtZjeMYwUiWNclhr94iMRPhcZRhr3qEmZTa9F74YfXq6I/NzWLd4sToseFyA6Zh2xzDGGxM5891xERbE+k635BiiXnqFNesKVQdMI/6tXFjuPy2bdF1Dx8eTjc2mosn23fTIG060y6ZRkd2XR4obL1x3b/IPU9ec3q8nyhszcRwUCb9/Elyda6jdCc5JFM/jqYmSn+OkM2d6z1cnj/ZNttCi00hyLZjn4Tjbb23ih0xPg1n7aA5tM2w6rzTOfhyGCwyi/E3vYL6DH3r+BDsWu5IKhLTuvULyRSP6lg2Uzuf67MLr2vE1gBHYkErjbPJvy1MjzzZqy799UyUD9ZgIiIiIiIiIiKiDP7bMxERERERERFRvwUAuvqciwYe9iwjIiIiIiIiIiLKYM+yAcyW12hUVZj3aebMGuM6IrH8q0VuHz03iEh0lbLkBhE/2XODFCm5TkFzOslcSFpCpe4xO8W2mVSnlkPLcLxaWsJzsWpV9Lf29tzrrp/aEP1CJiQwJJUx5njwlJV/TNY9OT1rltM6bOfclOchckg3bIr+uGxZOC2TNMjKDqBS5MAy5pPQk1M4JnRxzSkTa33Xzr/pvMeSX0bse0rs+9iR4pi0WJJnLF0aTre2Rudbsyaclvu0337R+XbeOZyW51meF71dlMfEMWeZ5JOnzHaOy8sHwb9/6e2O2PmUTy5Iy/2lUrStkXxfbdp1Ks+7OM+bN4/qnd64MbqIzFlmK47c3a1bw2lTmw0Aw4aF03V15vlM+y6/dc3NZG27HO/hcjb5fGA55aj3yGMq161flqZLW7925HEpVf4yl/a8Pmv/ipPTskt0oNDTO5nOray3vo8RsjrY8t7FypZ3y1QIrd5WiopXXps7V6JN3OdSrk9/jpd5bWVuuurqcFq/riLlk8dErxyyLTXd5GwJ9iz32crysAyV/b8d28tgKKtPexDzI7Q7W5st77PiXMr2BLDfEkyrJhroWKWJiIiIiIiIiLwwDHMwGgT/DE1ERERERERERBQP9iwbrET/2MkNW6K/mboxy77Bsh+2tozsdqx3w62vzd21O6tbbnl+/ZBtYREuIXmxhK/J4+jRrzqObvUdneF+yN7t27ZF55O94levDqf17vdNTWH4aCFDT6zrK2BomyTrruy+n1WpZRnktFapzdeFLE90oPlOcV6qqoyD0BvrSkHDjPXwCYc6Hnt55IFcuTL6mylcVw/DlPsxdmw4PW5cdD4RVttRHoauV0KEQet1Qwu/NvG5flxDGVzXXapQMheRemPZ8YKW25Y3QNwPu6vCutEpIvFliBJgDo/Uo7bkZxl6GXemAq9j5xqGaSHPrQx1lCF5+jGRl3P9xFrzjK4xbAb5HlefkH+d7Tyb1mHbrmsb7FMfZFnLysJp/dYgLyV5LmVzOXJkdBlTqLleTp9T7tP2RZ4jbfc+UyoFR5Fnj4QwPYLZrhev4yWvZ/m9ntak3PxsZJL3s4i+sy7xhzFtysSnPYiQ58Wz8ZOnplQhxETFlqwnZiIiIiIiIiIiohJizzIiIiIiIiIion4LwJxlgxNfliWEbWRLr3XIvtNy1DjAPOKLHnppWEb2nM7qhivC+uR8ejSdT3diU3hl3Ms4s4Xt1Nbnv37DuuU+mc6FrQe5DIvQq4bsYm0aWc+2btt8Jj7nwjfUxHS8IiMn2eKkJK1SyzLJkUltI3bJcyEH13SNPi3oaJh6GKatfTCUR7Jep1W5R+xN2donWcFkRdbnq6gIp2fODKf32CMy25Y2EeoRqRtiO7YyFEkcoYhJDsn0Cffzvg5Mo4NZQrH1yyLHLFmr8yGrvgx5A6Ihn7FXwXzjP/VjJ0e6FTvV2BieMz2ENbIK22i0ct1iNOJCjghZyJAi16pfqjZAlkc2q3rUnemyiqOu+qwv7+dpy/pSrgVK2BCBch8sAyM6pzIx/ZYVkik/F3A4RednEVMZ9O8ND48pPWTUsF3bc6BrCLLXfTvmYxx3egCigSBhT8lERERERERERESlw5dlREREREREREREGYO+E+XsxReUughGwxqGG39z6W7rPBLTmJ0iv6U2vRd+MI2Oooc7iN+qRIihraeyq4KOWGlZn2ndzt23ZUiWx2iY1v2zDDMju/3L0SxNgzYC5oED5ciY6fWF0yNG5N6+DL/QxTDYjtexNLGNslZrCr1sFkPcAcDy5eG07HKvr1zscEPT+Jzb1FctowdHjzaUDW4jvMZOhDXZFLI8W0Q4a604pkA/wl8ky9BextXZ4skNChnaGEfIvml9iQjJtFz/BS2r3K4lFLu2NgwZtl0ipqhOW6id68hzsqj5jqaXdRzFyHM+o5RmnRXDQ4EMz5Jhk4AlDNM2GqYMjbKF1BYpdihy7Cz3ikoxLUe3LjSf50qZmsHW/JpGU3St367iPpXOz2BxbsdSNwpZV53v24YRK1NFPIH5tvvWfXXdD1kfZCy+FpefEpXcVFZ9kwUd7dw04mhfhXLAkMxcmLNsMBr01fvFP84tdRGMjvva6r5nIiIiIiIiIiKioknAPyMTERERERERERElA1+WERERERERERERZQz6MMzBwCdu3RrjLxNHmJI46QHoIrmSzFVQXlUTma21NZweOdK5uDnFEa8fdz6lSG4WbcjoWNdty7kiyNlkcfRFZK4smcJAz1kmlxs71lJYQZ7niRPN8zmfC5nwJMb8ZVbyoFjyFWH9+nBav0bE9ZMS+eyqqiphItPeyVxwzsPWFzJ/mXbs892uT64RWT9nzoz+VinLZ0rKB0QTw02dGk5ruUZqTLlGWsT5d6yPceQVcz3GcdaBuPOhxa2g5ZHXsyU3VqoprAMNDW7lsTThkduu87mM5PGyJEQT9TXvHEOW3F/WHEym/D6yvdRyAVZG7n+WMsn1mXIL6uWRv9mS7phy/fgcR/1Ga0jkVWnJiejT/npdL5YcR7IO6XnmJHlfq6nqf1ldyx17niRTXdU3ZLqgbfXEVFjLNeuaJ1Dyuh/Ykg9r98leel01PbO65mRzzKcl66B3XmNbEknT96Z9sjXugjytRcs7qzOdS8D4bKOXVeYt7PfxDgK3+QesACjVuaWCStaTMBERERERERERUQnxZRkREREREREREVEGwzCHgKyusrK7s4zPs4QAmLod6z2QGxs9yxSjfLunu4bAua4j79AhSxd52SVdBsROnhjtUt3SEpZBnsodO6KrlqGXkybl3GRWcUaMCKeTNny0bUj7SK/zTW6hTJFpGWuS63OOMoweHf1NhrC6HruSdeEXfK4xn9ChWbPC7/XoylG14lyUlZlnlG2caRqIxHmm2raH39vaRUem9sB6TAwha96hJ6Z1y4pXrLBnG0u4nxRHKLDzOgzhWSnLeXEVKYNrSJAtbFzKN3zQtK7+MIUv2eqd6Te9jZW/ma5T33LLdTuGWhnp4U/ys9yOnsdAhqqaQl3jvmZl+2m5gcraXm8LU1wt1tfUZF63QRzPY85M15VrHLVkW8YxXNO2f+ZIUI8wOVvotGlD+jKm68WW1sKUR0RnCE31CrsE7HW8h37N+tQNVy5hvRa2epIytQ+2+4aFNeTepGf/ukv/7ErkI2F/2hIRERERERERDQQBgK5SF4IKgGGYREREREREREREGexZVkIBVLwj2viQYQ3Ll4fTerdgOZ/oGlxZnrzR0+IMgbQubxlJy+e8Greld6OWI2uZRgDTurTX1oZBmjISQjduXDhtiCq0Rknp9cHE2m08xrpvC8OMnL4xO4XbP+ig6EJyGEZbSJAhfKJS7E9jY3H2OxZaF3tjd/6Yma5fffPd5eEoo6n99w9/qKuLzihHwJwzJ/f3OnmNWebzGaEuMp9tdCpDqGTWeTCFhNhCOBzDuGINJ7eIHEdr+FJ4zvM+9jZ6aJUhDLO7tt5pdbZT0dEp2grHUZCdR9YrBVuj61pu8Tlynes3L1GPjfdcW7vlGqKZbwir7Zq1jD5pDGezhT/l207b6qBp1GHLyNCu7VO+o77rvNor03m27Z9pPtfrwHIubZezS+See9oQjemc2UYqNx0T1/uVTb7tmuuBdB3N1BL+7VXvXO/b/VxVenWi/ayNOeWC6flF34ee+brY64oGptK/2SAiIiIiIiIiIkoI9iwjIiIiIiIiIvLC3nODEXuWERERERERERERZbBnWQkpBKXPUyTzLu2xRzgt81FYuOdEKM1+FnS7trw/Mk9A3GUw5buw5IaRaRXk6PR6foNhw8JpU/4xOTQ5UOBjnGcuh1RnR+RzVVV4XoypQvTcG6ZcHBp5LURPi8dQ7o4KmvutuTn62Zbjq0DkPrS1Rfc1kitP5jLS82jIcsv5bPmBDDkabeXzIsuqtyHys62tMeUN0fIWRsg67Xhd+aTQ8uKxMv068DkvkRxo+jG2NZoObGmgok2c2I/IPUQjFzJNA+Z8WLGesD645IHyzUlkyLsTRzubbz7ZSH3S81vK82LKQQqYr+FCnj+5Tb1tcT1nch2G5xLbNWvNR1jIOi3LbWs/DWzlNtYn/RiL49WGsA2w3a7y3nW93tnuS7kKYCuQ7b5WLK7Ja23LyM/i/tldVROZzXV1heK8nTgKJOuJKX+ynK87YXl5iRyxZxkREREREREREVEGe5YREREREREREfVbAOYsG5z4sqyEAiinMMaihTB6dEHPHqY4nC5kuV27u0d+K1ockRvXMARdyuXcaPu6Y0dlzp/0HvHV1X2v2pllSPSsMKdCsQxPL0OeTGGTvmqqctf9uMPFdLFec47hp8UyqiG6b9tFWGZ5bX3vdEqGWupk+IR+HEXYGxpG+RWypwyObVJ30/jw+5YtTuvu6IyWu1K2B5ZrLhICJffVQpZVhmXrZYiV7abiyBrGZWCbL3K8HI+dD1OEWaUtJMhVrHFbZnpYUsoU8mQJyTOu2zUYwmNfndftSBahUr9ny/AlOaMe+m5JrdDn9/0Qqfu2cCrbb6YyiWnZbujFNh3/rO9F/bJds85hnR5c6kqh79Om025tx0xl0p/H5LmVv9me20yNVynCLvtiC103kcfEcRnnZsgxnNinjYq0Q+WGH/rYrpE857JNM4VvMwyTBiiGYRIREREREREREWXwZRkREREREREREVEGwzAHgLi7kMe5bn3ERLm+Yo2UGUdoRt4hGFldmsNQnUi4mKW3tXMZDKPyGOcBUFERTtt61cvF8j4mvuEhpi7yriNxOY64JeuuPsJnoZR89Nv+sFwjpv0oWogoonU3sm4tDNNUJtvAgZJPNKrtOLy+Mvxt+PDw+7F6CLTcQRHWsGGDPpsMCwynq7T9qzIMomsLyy7WdaFtNNbVxVEnXeazbcc1A4DXSGaygurhL76jTObgej/QNxkJ/fEYedW2C8YIL9f4J3Eh6KkBXMICbeHWkai02mjorjE0Vd9ZeT71ETVNy+RL1KeskG8YGg6tkew2hEqaIvUAc3u+XRsFWc5XyPuNbd2m9tPWlkY+yxn1keflsRTpBXTGdsNSH1Kma0G/+bmMsm67rmQZTKM16+soZrimKWTQVgZ5/Tlecz7tedzh4NF2SLZdbpxTh9gq/5DCnGWDEXuWERERERERERERZfBlGRERERERERERUQbDMAcYny66pRoxKF9xdEeW6+gsD0MDsqIm5bTrVWHpamzqZV9WFk6PHKmVwXG7cmS2VG3uhfRjF+nZL6b1bfqEGxnPk8eIe87btaw7aXXXeZRTn1GsHLfrxVK/4w4VcDle+v74tF3RMNzobzJEIW6yDZDX3NiRHeGHZjETgI6myeEyYnTOztXRdcuwzI0bw2kZeg0AM2fmLoMPn+Wd67dl5aZ12EbntJU1zlQBtpA8V87XrCl8yRbblueoojpTKFr2wJ3xtUnOEYdiv61hRKZwM7i32ya2rAHlMkxx1qzwBz1kzTa6ba4NxUwvzii5KXm8bLHqYiVVVWFYoW/0qGk5n8PgGjot21UAaG/vuzwyxB7QRre1hWFGQqyNxYuOPN8p7iOWsMLIs6O8DlxHw3TNSZCwkeezriM56qz8TY5aawsldHz2N80Wx6joJvo1a6oOWSMsC87tnWl0XNOOp9g/hwYmviwjIiIiIiIiIuq3AEjAP9ZT/Pial4iIiIiIiIiIKIMvy4iIiIiIiIiIiDIYhllKQRjfrof4l2LkXZ+4eVvsvU+eD59lXEemlrl95DQQHRW6qSn38lbajPKTXJ8tBUmcuThiYUtE4yCOHFxx73y+Ob3yrd82ca8vbzEc+2gVKtz+ueYp81mHPC+269c1xYlMi4LVzblnQjRPjsxvOGxYdN2mNk7PWSbVVPW9r4knTkZLW43pp0j768ul3bAdO3mO9Dokr5FKx5RAEXnmFnTNtZaENETOeT1d67HcKe3EdFfVIC76M8qOHeH0WFlBV2sJCSXH+3GcefgibRUAUxIt6zZjrhymNli/DEy58iJ5bLU6Lc+T3I4tlZwpVVN1de5yAog21DJ/lrZC2z0l1tys2YkGc89nyfHntHyp2E60zBkn59NvHKY8kTDPJplyPAJAvU+7L9hS4Mnnhci9ppCnKPtiTP9fJm0mGkAS1qIREREREREREQ0UXaUuABXAAPpnZCIiIiIiIiIiosJiz7IS6g7cRgbPezuOoZKxduvux/p8Qn9kV2NbD3IZblRbG27HFroZB9O+14jeyb4hTz7nSXa/3ro1nK6ri85X4xD+67x9S9xOKuZu+qYyxV2nbev2CXnq7/JFpZ8/Mey8ZLsWXcPJXc5fHOFFPu1ddL5oGVz3r6a8I/ywdFnuFchYcABrlofTMqRHhmQC0dMkQ4L0ECr5m2k8ef26dD1e+dZdr+tUhDI1TJwc+UlGs/lEk+cbog24H5PIZWYJC4wwhAT5pEWwlVNWE9djp8/nciz1eWSIUCX6fwK96qMtztSR3A9b2HmX6HwQucZqtXgsU30Q8+n7aoqUyzoPriF1DvR1d3SGZaoUN4jypv6HtvreU1zoz4HyXiYPj3xmAswh7rYos8pycYzkhvSViw3LZfTzHG2bBXnAfC9aeZAdww9d+VybsT/HyevK9bqXlUUso1+zsu2S+yoPYwxNjZG+bvlYYTt9Xm2mPCbyOJjyCinV/20QJUDC/jojIiIiIiIiIiIqHfYsIyIiIiIiIiLqtwDMWTY48WVZQtRjS/SLNkNX6hhGQYqTa+iJrRu1KUxGX2Z7W7huGWKk9/iV3edlOIBcJpaBfBzPRapte85lvEMRTaEZke7ybuEO+rGLlNu137htmB+D7oZR4Xb0umE4LrbNyBBbydp9X3aljyEsNN+RMgs50qYXx2Mie+LrIzXqUUUDkqgnNVXlxt8i9Pie5SKm8rHHwuk5c8JpbfStKsdr2BTJqYdhpja8E36QYUByRn0hQ+htITmH24owzJR2vMdMnd07bQvDNJ2+OEYKc72eI2WSjZw+ZLPkeDPzaUdcw1bzDityvafIaS1U2XT/k+15MdtS00iLcvRLwHLK9ANuur8L+mGUUX1yO1khuqYTKL7X1226LqzH2JDzwjdC0CQra4BhOZ9IZ528/GSVtEYsmobX3LbNXEBXcsM+N13XWFfXxtQ2XwnuKVlcKodeb+UxcR4VNNzXYqTcAbKLExn52jqkscd5MR3H7GF0iQa0BPxFRkRERERERERElAx8WUZERERERERERJTBMEwiIiIiIiIion5jzrLBii/LSqi7G2htTU/Xt2+K/igDz2WcuZbXxoUtb1PcQzL7rC8ypLYlsL8m8lt4fMq13D6mFG+ybFVVfp0qXfcvMt/KleG0KdkFYE4Co+cZkPmG5G8iV0VKS1wg99eWAi9SbpmzQU7rC5nm04kypRxzGsicc7YUPobDkJ1jpZBjdguxD3UurF8fTtfVRX+LYWR3J6bLVC9PnHnY4jimsZ8XeW3b6v4zz4TTS5eG0zNnhtMrVkQWGT3lgN5peclF2kuN6TrPKp+cdq00rsmsDLJyJuV7LiwNmUOqpz5/kyK5HB3LbcpfZS+DQy4dILKDtu34pGKUy7jmdHJMqxplyw/knBMo98acz1cMuSpN5O7p7aKxPugHXM4o7/viOVBfpL09nJaH1TWVlXP+MZkjLusciXUYzl8cddV1eblPtvlcUnX1tQ6nlctnP/05UJwo13tm7Hn5fB4kDI2Aa9lsbaRPDklj/l0gejH0/BEG2HNBmm4qettluNDyzvHoS7Yb8r7RND7/dct9lcfLdIEolf82iUqAYZhEREREREREREQZfFlGRERERERERESUMaTDMMuOWIw9p9X3fv7D1+diZfN2fORLSzB9XA1a27uwYN5YXP/J2VnLrmzejgVXP4llt76/97trb3sZtdXluGLhDPz2gbW49rZX8NJbLXjih4dg7q4NWevo7hajRtdqXX5ll9bVq8Np0f3eN6zFJ6TEtLwu79Ca5uZw2hbWJEMOtdDUKhGWmWrbnnN9ehhgtxg2OfZQLVP8oB6KaAq9dI3hcew67xUmY4vHMZ0zfUN6uEE/i+DVdV1fyFQ+ly7kBeYarlBdXeCC9LAcB9dh0H3CSAoZwurFVh/kgVi3LpzW467efTeclu2BXF5r7xob+1FGF6b9KFF99yEPUf0ee/ROb2+L1rMN4pbp0ezEHjJqC8GRn2tqxYyy4PpCor3yuVVItn2rrQ2Pg37NmyIlvY6VLUzKEtKVFV7V3zJ41H3XtBatrWFZR440bzayPlvlMNzfbYfOmetxcLwJR1bnWO5i8UnHYTumMopP3puzQzfFPU4eE33lhmvbljLDFIrtGpqqi/Me7Loun1BLZ3odlM/ephwe+nkxhV46XhOyCK7PTz70dXc3jeqdTm14J96Nmeqxfux6jlFqKPTPYc6ywWjgPCUXQHVlGZbecljku5XN23HonqOw+BsHoLW9C/tc8BBOPKQJB+85yrCW3PaYVoff/edcfOK7z8VZZCIiIiIiIiIiKqAh/bKsL9XDyjBn5gis2dD/fwbYbUpd3zMREREREREREVGiDOmXZa0dXZhz/kMAgGnjqvH7r+0f+X3j1g68unobDts7d6+y19Zu610eAJrfa8cVC6c7b7+7K+zN2zFxp8hvkW76jv3VXUOe8u1ibRvhLtZwKj18UY4cJ7v5at2gU50dudchp7Vu2alaQ5yMb6yAHIFm1arc29XXbRqGTO/mbQhRiWMoxMj5k13V5Xb082Lqhm4bvtI2XJ34LH8yFQcA6qvEObeFj8rP8hxNnWpeeQnYRt8yDZRbTPLQyWn90HkM3psIzu2YvBa7RPd7PcTadCDkwRs+PPJTpB2zDWtnuF6ymC4gU3vSD3GOeqqTdVxGfG8QYU0yU4FOXto2xdoHPbuA/K2hQaQDqHU8F5bmznRLcD3NtpA1WW7bCK3GOFFZOM97V5LDt+WolNbjY0s3YboBGmYB+nFYnUJYHa8D/RnMoYLZ7nHFepZ1rXa2AcB7U6kges5tg51H2lz93uAYR5tvG2ULBawp0qjahRRtdiojv9XIY256JrdVDlt4tEPdr6kqXFulNydy9PTq6vDvTJ9o7Sy2cGKp55gM+tEwAzAMc3Aq/V+FJZQrDBMAHn7+Pez1sQfx8qptuOr0GWgalbvRnDF+eGT5a297uWBlJSIiIiIiIiKiwhvSL8tMenKWvbKqBYdc8ghOPLQJ7R3d+MR3nwcA/Od5u2CvGfV9rIWIiIiIiIiIiAYaviyz2GVSLa4+Yya+dcdruOPL+0Z6ka1s3m5ZkoiIiIiIiIiIBiK+LOvDhcdPwfW/eQ1vrNuOaeNqnJf7/cPrcPFNL2D95g4ce/UTmDNjBP76nQMj81QOC/Op6DlXpk8VMe168gMHScvfkTXku6l8tsRUki3PjinnmOsyMujfd1x2Gcs/blzu77V1R/Kv2HInOCTa8M1nYTwvtqQ70o4d4fTKldHf5HKzZoXTev0W2yovD3NNyENf2fJedJnl4gKy5ZyT9UuWR+ZX03KIdJdH812YmHIeuV6LtlRrcjdKladMklVQtl161ZSntpCp4Gz13actdD6XMiGWrEN6nZ4/P5xetiycljnL9Nw1shLIdesVQGzLVk/Ka8Pe0CnHdizOY2djm0/meyoXecpkLpZhw6LLTJoUTvvUO5/9tt/jwt/0sspTke99Wza/+ueKinBaNoOu92b9+0qf69mUv8xyknzqkPNxtOQeyjeHna2djpRVXtv6denQgOr50OQ1YuNyvPR9qJTHyJZXVZa1gA1/vjnr9NxRrue5tTWcNqVf3bo1uoz8rdJW98VnWx3K95lgKOUs089FzUixg7IxtD1bm+q0toysQ855HeXJqDL/nenSZOqpDWW7b0t96mpLS7h/9UW6zgeWZP3tTfEY0rW75Z4PZ303f84YzJ8TPqBUDyvDmt8elTXf1KYaLLv1/ZHvrj13197pEw8dhxMPHacvRkRERERERERECRbvkE9EREREREREREQD2JDuWVZqqVTYFdbWJba7YVTu5eHXhbwUnLvIyz7EMlQPiIYiyf7Eer9j2R1YhDaZukcDQCU6wg+mfvWANYxS6hZdqVN77JFzeev5snRvzjf0wIusoBMnRn+ToWjNzeH0229H53MNsXWhn0BZNyS9W73cD1luvQ55MJ1P1+tSVjsZnQeYI4NHjIjO59u1vr9kdJDrCOuF7KVvuw5cj79r+JmRrE96aEbT+HB9H/pQ+MOaNeG0HisiT7qc1uu+OOnl5TXG2SLl8bhXFPLu4hryJuudvF70y1ePaHXZbtzkfsi6L8NigOzQyf6uW57nbdvMyzhGEfmFV9p4hOqY6oAt2s9LzDHttmcMI7kTWkWWKQCKVVclvUmqahTPNbZ0DJGFwgpmy3BhOpeuz7nOqT4sXJepqwu31dUVfi/PeXV1dJnI/snzbIuHtDDVL59rwqcNyuJa4YsUrieL095umVHcP52frR0ftIy7qh8rxzBMl+3oRZPtu+08m/a3ozN6XS1dGk4fdlB4Qy5WW0VUCnxZRkRERERERETUbwGArj7nooEnuV2RiIiIiIiIiIiIiow9y0pIIejtrppvqFBfvxVKQbepjygnP8tuzHrMmux3LKb1EUelpqawC3Fk7EPHLvL6+YtEKFTt1DspizpMjKgEAI2N5vW5bFeeC98QXeN8ckRIQ1gwAKQaxPEaOzb6o4xLcAxndWYaGkoPFTGFa8qwCK2LfCrP8rke+yrDAE2AOWzKYWDUgpDl2XvvcNoaeuLIdLxsdToJ7WL3mPA6T22KjtYqR24ce/jh4Yfly8NpvYFyHTkwAaNQ5ZsCwHV5GWKiR+m7KGRdcG1zbadLhry4nlYZKqffCmXYjby/SNmhjQUM8zeEZMY+erNs9/VGskhDC9va5ki5RVn1kZejo9cV7rzIeiPLrYevRUf3c6ygcoWWMExXSQjxkqNolo/JHXqrn/9IuW2hyY6jYeZ77zeNlGvlOgKq6zCehp2I4+8huWr9TwnTtqK3Wb8Rtk2/RZ9XNAVsh/RQ6h76nzauI6CuWxdOd4i/lmQtTnJKICIfrNFEREREREREREQZpf8naSIiIiIiIiKiAYk5ywYjviwroQCqt7tq0ka2dB1ZyFbOgo7eZAkLTG14J/wQ6d5c3zu1cmV0fcOGhdNjPUYq0vd1w4bwuKxYEX4ve6Dvvrt5HT7n32eUzNhHF5P93Q891Lix7tp6mJjKbhxNCoiO0CkPuB6X5EI/CDL2S07rdUMeTDmfFlrjsll9RKNijXLpU+9keFcco1L6LO/aDuU7n3P4hVaHxjbIdYsR5WQsoR6SYgpV1itDJPxFTGrXtimS0zZCXaRIRQr3TEKYlY1P+K9pZEzAHG0rVZabtzNyZLhuPWzOFI1Y1Mhd2U7KAol7hes5t47UaUrNoO+saUhVvT3PM85NPlNYifLoWQNkZLZsKuJ+PpRNysaNHgvZnpPEb7W15pH+SjHaZxzblNem10iy+jOKrMcN5uckE9d7cF1d+L0MKwVgTldha6xMYZiW0ZsjPK43179Tsi7thvCZTKZI2Lw5nNZHVJbFcz3PztdpjA2yPuKlvCfI46CnzHAtqwzZfeaZcHrSpHC6VM+vRIXCMEwiIiIiIiIiIqIMviwjIiIiIiIiIiLKYBgmEREREREREVG/BWDOssGJL8sSwjX23raMSdy5IFy3G3c+M+f4f5mTRCQBmTxme++0LXdGR3n4W2WDX94S07DVEyaE02NHdkQXkqkdHPNcmdiOlWvaCVfGc6klKujoFEN0i9wJ+jZlPgjjuvWFZIIJPfGLaTnTgbDlX5Hrdh3X3XIufXIB2hQy70u+6y7oNR/DOmLNA6Qn6RB1KiXqRneVyF/mum69fov8MpWisSmvNd9TtrSEv7W2hvOMHOlaiP4rZi6ypF0HtuZF5pgxpe2xPR/IJk3ea4Boakc5n6kZtG3XNa9q1vExbMD1HmW7J6Xawnu6cUdsK5AHPIbEOnLfKyrC/bM+C0VypEZ/M9WbPNOpZZGHqKsr9/d6Gcprw/taqtZyjIuaIK9/sq6rTvFMVqxyWxI8+RTB9T4WWbfeKLkkO7RVQltllZ/jrsiCvHb0PF6yeNu2hdNyt+V9UaffW0tN7qvcHyCak63L8h5Hpv21nRbZXMn1ueTeJBqoknXFExERERERERERlRBflhEREREREREREWUkt3/0EKAQ9Hbb17tOuw5Pn69ibScOXmFctbmH3tajK+W65THxDSWVUYH6ENShwl1+trKVl6fEdP7bcg3HMXXTjqUnvlzJHnuE01OnRueTQ6Lb4pck1/glQ/imT711DXmKW2S7WeOt932ifMLJXctTrGNgK4M3w4UWWfesWcbFu8fs1O/y2OqQKRJGL2ac94RSnb845HufrCwPl6mqMh+HTZvCaXn5ydAXABilfQ7XHf1sanNlM6g3YzIqTE7L+4Zt3Z2d+v6Je3BVON3SHH6tRxabIuH149DUJNIpiLpbOdExpNJ8c45wDZeX841qCKff2xSdT+5fU1MYzqiHfsnbUtwRa6a21XZIXMOrZMqFlpZw/2T74hr1Wsx0I915pr9wFTmOTZON88nm2NY2y7B610hJOd+Wtmhaktbh03unI6F2lvQZZWXhdF2DWxniZrrH6UztnwzXfPfd6DJyfbKdth2H6upwur5W1E99IbFy12d3Sd5fpk41Xy+uWUSiYf7R9R1ySDh9333htDw+69ZF17f//uZtDT7J/jua/Azcp1ciIiIiIiIiIqKY8WUZERERERERERFRBsMwB7A4QrVcw5xcw1CSFmrjM9qgc+jXkiXhtB67MNHctd60brndfI+x77r7ux3f5a3hHKtXh9Oyv/ycOf0vhGWkqXz3L2XpSi/jbOIYFbZoIdKyn/6110Z/u/76Phcv5Mi7cY/cWtS2yqWwjmGvWde2aURAffny3OFQibN8efSz3I+p0+Ei37BJn7rhep27hiXZBuU17Z93mys0i/BIW4iuqQ7JMCQAaGzMPZ9ctx5eKcsqmyR93bIMcr5K2exrOy5D7YrVruq3IdOx00eri2GAzliZyq3XO3nI9XPbX67PucVsz03Xkm3UW1N4ZGXn9uiM4sftbeZ9kuFxrvVEHku5bn1/ZPigZAvjk/vb3i7LaS6PazqAfO9XepsrR36Ux0SGD2/caF5fRYXbtmqqcrfNkVFXAfPoo45sdV/+aSLbdv1PFtfNyvMuM0fIczRsWHSZpKf4IepLkh+ZiYiIiIiIiIgSKgDQ1edcNPAkqxsQERERERERERFRCfFlGRERERERERERUQbDMBMijpjufHOzDNS4clt+LpM48q51zz3AuL5C5skp1nmKO7+TKT+Frlvke0vJ5BIxMO2H1zHVk3Z45J1I2vXXXVsffrj+u07LFDJPmWTLW+JTBp/cfQU9R5Y6Y92uKRlOf9bRT3HnB4q0NbNm57V8oRWynd6xI5yWp1XPfyQ/14hTnr3NsKytreG3mzblngbMzZgt59nw4eG0nqOsri73+uR25H4D0dxdttxtcj6Zz6xe5nDSGo4464rruirLo/O1iNxI69eH31tSbMYu33uh7TqQh1zWG1sb7npdmeqh6/0hjhyiMl+YrJ+260qSedzGjKmJrltMe6SvipQnO/dX7jxl8lrUmeaT6WT17draClmnZd4seUyKeR1I8njpedvkvttylknGuqafGMfEfi712JZLzlaffNpF2e7L4+VTb4mSjC/LiIiIiIiIiIj6jTnLBiuGYRIREREREREREWWwZxmFbH3ITWOBjxnjtak4Q5viDsGJu8u+SanCLn32yXZMTN3v9a7z8jc5rXfZznt/LXEfkXWbYgVs8QXLluX+HjDGIqXmzu2dth17n2vCJwTZxic8uZDXiC2yNXJqV6wwz2iKCdBDIQxxwq7HJO9QXr0+yvLI9lgvt/xNts0+sRC2WKYiKejxjqEMknPIvqXcNQjbkZpqUQdkGFBWHKY4Ty3mRre8KgzxGjky/L69PZzWq51chfxNfySQn+V848ZF56upEvvb3Nw7OcoWtyXr7tQwFN+5rXGN/XONUcqXbJ8ANMzcpXfaFrIWJ73eGY+lrU0SxzIlpm3PBKaQTN/DXdAmShbcUjdS4rMptFG3dStyzmcLObRVY1NR5fK2Y1VfG9aH+s5N0R/lxS2e8beMqYeJuLQjtyE9k4Yp3DLuNjff1Ay1tdHtyCqgh1VHiJPWjcp+l8GHPP+yngHmMHjX6yjrflWVezppKUWI4sSeZURERERERERERBml/2dkIiIiIiIiIqIBiTnLBiO+LCuhAKq362rcoye6ri8yn+gf3d0wKjpfy5bwg6n/N6Ld031CVIxlK5EkhPo4swyD1F0edge3hQrIkALXcFTZtdu2T5WiSHI7sXPtXy7nk/F+K1dG53vmmXB6zZpwWg/XlHEIhlE8O+ccEPm8cWM4LcOkbMenVNeFabtxj4woyWgQPVxlVG1H+MF1OK+pU3snre1n2/bwQyFHmLTVVUPoe1borWnYRD1uzhSD4Xi9FPI8uypkSHqxwt2zzp88L6Y2XK/8pnuwJexctikye8KwYdFVyxBNuVl9xMpt28JpefnpEaORYyyHv7PfiHIu73zvsg0laqr7lpBDV8ZnGdHu6KwhXQ7rduUasi+fFVL6MXEMbzWFEsYRcuqazqFgG9LIw2AbvFtWQ/no4HgZZKmKhMPl+feD/rxvGJ2xVYzcKkfXBaJtimmUS8C8T3HfX7xCtuU8WkErXZsDGarsek9xDRs38KkLhRzRmmiwKf3TLxERERERERERUULwZRkREREREREREVEGwzATIu5R7WzrNpEDNulRA5Wym7BliLr3NoXbskWRmNhC/wo5+uRA6kJsDPWwxCHIU6ZHZ0nyPFVV5T6Xei/xfEcdimNEubzJ+i1jI4FovJFtBLf1IkbBMJJhJUToIID29jDkRYZmyDCGktH2LxKeI45/HKNYyXXIzcrBR48+WltoqfhRVnB9hF4RG9PRGZZh9erobPKUNTWFowgWrW3wHebNMIpn0uWbeqCYbbbcrqxqcloPNzKdiuyoH9HOitErbYxtvW30QnG8aiIRudHrUrZDtv0TA/7GHo5sOt62QTPlb3L/rNdVkUZ/lW2ndb4CPge6itybHeujjUfEd+zrcw45cx052cB2vuTzlC1c01Up2k85suJuu0V/M52XBAywnCVyHGIuoFdamRIcpII+QyfxpBdFAOYsG5zYs4yIiIiIiIiIiCiDL8uIiIiIiIiIiIgy+LKMiIiIiIiIiIgoY6gGFieeS24B15hzfT5TTL3Mk7R8efS32tpwaOnhw8PpkVqKh3KR0sk1T1mxlCrHTbG2a9umPBcynYAlxY1xSHPXoe6TwDVXSaeo35VHHRX9cZ99wmlbTiiZ9E8m2pkzJ5zWcjnI3CW2XHJS3EN+G1nyTpjqWhw5d+Rm5fGRhxQAMHPfnMs3N0c/d4q2TB5jmX4OiOZkkmnP9JxOUqlzCulc64ZpHUWrWwnk2ma3tobTthSGklyfXp/kcrZ1SJXy0swzT53enjc15c4XZktD45UP1COvzY4drnOG5amp8nvMdakPhb5e8l3/QMrFWkiu5y/y2SNfW9z1Ie7zl+/6aqryv/ckTbGe1a3Hx5AP1sb03FWyvIdDNk+Zjm3uYDQwWzciIiIiIiIiIqIC4MsyIiIiIiIiIiKijAHTb7KyshJKqX4tM7JhBI772poClSh/a9Y24yNH5Q4lIj+rV2zBxMZJpS6G0eotKzBxUmOpi1F0STgvQ/XYU3Ik4ToYjJJ2ba9e24yJ45v6npEADN3rImn11tdgOH+D5VxQPAZqnU5yPX7qqWeeKnUZiHwMmJdle+65J5YsWVLqYsTquCP2xaIvTyh1MQaV2R9Zh0WHXF7qYhjNfvB0LPrynFIXo+iScF6G6rGn5EjCdTAYJe3anv3R5Vj05f1KXYwBY6heF0mrt74Gw/kbLOeC4jFQ63SS67H6xzOlLkKBBQC6Sl0IKgCGYRIREREREREREWXwZRkREREREREREVEGX5YRERERERERERFlDJicZUREREREREREycKcZYMRe5YRERERERERERFlsGfZELSyeTv2ueBh7D2jDgBw7EFjcc2tL+PA3RrQ0Rng4D1G4jsXzs5abuaZ/8CKX32g9/P8Sx/B7V/cBxMbq/Ghzz2Op1/djM+cPA1fOnvnou1LX57b+AY+v/Q2tHZ1oKO7E6dMOhg/eGURpg4fi47uTlSkynDFbidiwYQDAADVd52MA0fvgo7uThzcuBu+s8//y1rnzD99HCuO/0nv5/n3XY3b33c5JtaMwYf+cQ2e3vgaPrPr8fjSHgsLum9xn8f1mzpw0feXoaxMobxM4ZYr9sL08cNjK28xz8X6ts24aMmPUaZSKE+V4ZYDL45tPwaLuOtPfU05jv78E6gsV9je3oVvnL8bjthvTNH2h6KKeb3VV9Tg6H9+BZWpcmzvbMc35pyDI5r2Ltq+mhTiXgcAr6xqwe7nPYh/fm8eDtlzVHF2Joe49g8Avvy/L+MXf1uNnScMx303HFSU8selGHUdAL787O34xRv/wM5143HfEV8vyr7p4jrnre1dOP6LT6K1vQudXQG+cs4u+PCBOxWs3MU4R62d7Tj+oa+jtasdnd3d+Mqep+HD4+cWbJ8GgjjbiLOvewar3mlFS2sXzjxyAi47dXpR9iGJitXmnP3IDVi1fQNaOttw5tT347JZJ+Rd9jjrBADs6OzG7HMfwDkfmpSov/+I4sKXZUPUfruMiDwQ/3jRm3jgxvcBAD7w2Ufx0ptbsduUOuf1/ezKvXDfUxuwen1b7GX1tWXHdpz16Hfx+0O/gBl14xAEAf627hmUqTL888jrAABrt7+LYx74KnauG49d6ydiQvVoPHDkNwAAH7j/i3hp8yrsNmKS8zZ/dtAluK95KVZvf7cg+6SL8zyOGz0M9377QNTVlOMvj72Nr9z2Cn75hX1iKWdX0F3UczGuehTuPfxa1FXU4C9rluArz/0qlv0YbOKsP7XV5Xjo+/NQXpbC62u3YeF/Po0n9zu0IOUmu2K3fbXlVXjoyG+iPFWG11uasfBf38KTR3+vYPvXH3Hf6wDga798Fe/fe3Ss5fQV1/596iNTcN7RE/HxG54vWFkLoZh1/VO7HIPzZhyJjz9+c0H3qS9xnPPyMoWfXrEXpjbVYMPmDhx88b8L9rKsWOeoPFWGnx5wEabWjsWGts04+O+fH/Ivy4D42oiffW5vVFak0NnVjd3OeQDnHzsZdTVD78/IYrY5PzvwElSWVaCzuwu7Lf4kzp/xQdRV1OS9D3HeF3+86E3Mmlybd5kGvgAMwxycGIZJETs6u9HS2okg6N9yPf/iniSL1zyB4ybsjxl14wAASil8aPy+kXnG14zGp3c5Fne/9e/I9zu6O9GyoxUB+ncgJtYkoyeNz3lsGlXV++BTWZFCeZmKrTwtne1FPRdN1SN7Hygqy8pRnirLcw+GFp/6k0oplJelbylbtndir+n1BSod9aXYbV8q04MTSP8hsVfDtDz3oPB873VPvLQRTaOGYWJjVWEKFpP+7t+40VVIpeJr84ulmHV9XPUopJDcY9Sfc15RnsLUpvQ9sqoyhZQq3H4V6xxVpMoxtXYsAKCqrLKg+zQY9LeNqKxI39/bOroxeadq1Awbms9VxWxzKssqAABtXR2YPLwRNWXDYtgDs/7WiZbWTtzz+HqcdOi4gpaLqJSG3j8JEADgqVc2Y/6ljwAAvnrurlizoQ3zL30Ez762FR/94ATMnpr9Lwpd3UHvMgCwdMWWopXXx6rtGzCpprHP+SbVjMEzG18DAKxpfRfz77saz258Ax+d9gHMHjE5a/6uoAvz77u69/PSjW/EV+h+KsR53NbaiS/e8jJu/Xx8YVQ7urtKci62dbbhi8/+Erce9BmcsvTxPPdi8Im7/qxZ34qF//k0Xlm9Df97ZenD8IaqUrR9a7a/i4X//hZe2bIW/3vQJTHsRTziruNfv30Fbr1yb1z+wxcLX3gHPvs3mBSqridZ3Of8Mz94AVeeNqMQRQVQmnP0mad+iit3O9mrvINNnPXl1GufwoPPvotPHj8FZTH+g+pAUuz6fOrD38SD7yzDJ3f+MMpi+offuOrEd+58DZeeMg1rNiQnqogobnxZNkTpXXAnjKnCAze+D282b8cZX38GHTu68ZPFb+LuB9dh5oThuOVze6MspXq76QKI/DGRRJNqxmDZprf6nG/V9g2YUJ0OqenpKv3mtndwxr+vR0fXDvxkxV9x96p/Y2bdONxy4CUoU2W93akBRP54LLa4z+OOzm4s/M+ncfWZM2P9I6siVYa3tq3vc744z8WO7k4s/Ne3cPXsUwbcH0PFEnf9mdBYjX/94GCsbN6O+Zc+igXzxhZ1fyitFG3fhJrR+NdR38bKlrcx//4v9OZqKbU46/ifH30bc3cZgdEjKou+HyY++zeYFKquJ1mc5/xrv3gFI+sqcN6H3dNN9Fexz9HXnr8TIyuH47wZR8a2DwNZnPXlt9fuh+1tXTjsM49g4eHjB/3L+FyKXZ9/e+hV2N7ZhsPuuxoLpxway/NsHHXinY3teGbFFnz1vF1x272r8i4TUVLxZRlFTGmqwYf2b8Qtf34LF504DRedmPxwGpMFEw7AN1/8P3xsxlG93aX/vu6ZyDzNrRvxP6/+BXe874rI91OG74QPjdsHt7z2N1y06wJctOuCopU7Dj7nsbs7wFn/9QxOOKQJJxzSFGt5asuHYfHaJ4t2LrqDbpz1yA04YeJBOGHSvPh2ZIjwqT/tHV0YVpn+V8/6mvIhmcskKYrd9rV37cCwTLhIfUUN6sqTF5av86njS1/bggeefRePXPk4nn9jC5a/1YK7rtkXU5ryzyETt8F0L7cZyvd5XX/P+c2/fwOvrt6Gn189p6DlKuY5uvnlxXh161r8fN5l8e7EINSf+hIEAXZ0BqisSKGqMoXqYWWoHqJhmMWqz0EQYEd3JyrLKlBVVonqzH+F1J868dzrW7B+UzuOvvJxrNnQhvYd3dh7Rj2Oe99Q/UdS5iwbrPjXDGX55Eem4P2XPoqPHze5NwdRXy64/lk8smwj2nd0Y8nLm/CHr+9f4FL2rb6iBr+c91l8esmP0CZGrOkJJeoZsebaPU/HrByJNj+58zF4/31X4+Mzj3bOeXXB4z/AIxteQntXJ5a89yr+cNiX4t4tZ/09j797eB3+/Ng7eHtjO27/+2rsOb0eP7hkj1jKUqZSRT0Xv1v1KP68dgnebtuE21c+gD0bpsayH0NJf+vPsje24rL/eRFlKYUdnd248dO7F6GUlEux275lm9/EZU/dgjKVwo6gEzfud0Ehdit2/a3jXzxrZ3zxrPRoX+d+cynOP3ZyIl+U9TDtX3cAHHn5Y72fb/ncXlj86Nu48x9r8dJbLTjy8sfw48/uiRkT4hsNuVAKVde7g24ceX94/77lwIuxeM2TuPOth/DS5tU48v4v4ccHfLr3j+WkcD3n152/Kz5z8wuYN3skDr/sUQDA/TfMK0hoXbHO0XV7fxSfefqnmDdmVxx+/xfS+/SBr8cWujYYudaXH162By64/jkAQPuObiw8fDymjUtu21dIxarPP9z/U7jgiR8ASP+D1MIph2Jabbz/kJ1Lf+4bj/73IQCA2+5dhdXr24bwizIazFTQ3+y2JTJ37txgyZIlpS5GrI47Yl8s+vKEUhdjUJn9kSV4ccFPS10Mo9kPno4Xb59f6mIUXRLOy1A99pQcSbgOBqOkXduzP3o/XvzFEaUuxoAxVK+LpNVbX4Ph/A2Wc0HxGKh1Osn1WB2++KkgCAbt8LRKjQ6AY0tdjBj8clCfJx8cDZOIiIiIiIiIiCiDYZhERERERERERF6Ys2wwYs8yIiIiIiIiIiKiDL4sIyIiIiIiIiIiyuDLMiIiIiIiIiIiogyOhllCo0Y2YOOmzaUuBhEREcWkqqoKbW1tpS4GERFRUgzqURaVGhUAHyp1MWJw56A+Tz6Y4L+ENm7ajIHyspKIiIj6ppTivZ2IiChDKVXqIhB5YRgmEVFC3XbbbTjkkEO8ln344Yex6667xlwiIiKi+PTnXvXAAw9g4sSJBSnHtddei7POOstr2V/96lf44Ac/GHOJiIio1PiyjIgGralTp+K+++6LfJfPC6iB5NBDD8XLL79c6mIQERHlvB8D8d6rzj33XHzpS1+KZV39ceaZZ+Jvf/tb0bdLRESFxTBMIiIiIiIiIiIvXaUuABUAe5YR0ZC2du1anHzyyWhsbMS0adNw00039f72xBNPYN68eWhoaMC4ceNw0UUXoaOjAwBw4YUX4oorrois6yMf+Qi++93v4jvf+Q5OPvnkyG8XX3wxLr300pxlWLVqFU466SQ0NjZi9OjRuOiiiyK/X3HFFRg5ciSmTZuGe+65p/f7W2+9Fbvtthvq6uowffp0/PjHP+79TQ9XmTp1Kq6//nrstddeGDFiBBYuXMgk5EREVFL6verpp5/GPvvsg7q6Opx66qlYuHBhVm+xG264ATvttBPGjRuHW2+9FQDwk5/8BL/61a/w7W9/G7W1tTjuuONybu+FF17AUUcdhVGjRmHs2LG47rrren/r6OjARz/6UdTV1WH33XeHHFjsm9/8JmbMmIG6ujrMnj0bv//973t/03usK6Xwox/9CDvvvDNGjhyJT3/608xjSEQ0APFlGRENWd3d3TjuuOOw9957Y82aNbj//vtx44034q9//SsAoKysDN/73vewYcMGPProo7j//vvxP//zPwCAM844A3fddVfvA/DGjRvxt7/9DaeddhrOOuss3Hvvvdi0aRMAoLOzE3fddRfOPvvsrDJ0dXVhwYIFmDJlClauXIk1a9bgtNNO6/398ccfx6677ooNGzbgyiuvxMc+9rHebe60005YvHgxtmzZgltvvRWXXXYZnn76aeP+/uY3v8G9996LN954A8899xxuu+22OA4jERFR3jo6OnDiiSfi3HPPxXvvvYfTTz898lIKAJqbm7F582asWbMGP/vZz/DpT38aGzduxMc//nGceeaZuPLKK9HS0oJFixZlrX/r1q048sgjcfTRR2Pt2rVYsWIFjjjiiN7f//SnP+G0007Dpk2bcPzxx0f+4WrGjBl4+OGHsXnzZnzlK1/BWWedhXXr1hn3ZfHixXjyySfx7LPP4je/+U3vcwUREQ0cfFlGRIPaCSecgIaGht7/PvWpT/X+9uSTT2L9+vW45pprUFlZienTp+OCCy7AnXfeCQDYb7/9cNBBB6G8vBxTp07FJz7xCTz44IMA0nlWlFJ4+OGHAQB333035s2bh/Hjx2PcuHE47LDD8Nvf/hYAcO+992LMmDHYb7/9ssr3xBNPYO3atfjOd76D4cOHo6qqKvIv1FOmTMEFF1yAsrIynHPOOVi3bh3efvttAMCxxx6LGTNmQCmF97///fjgBz/YW55cLrnkEowfPx6jRo3Ccccdh6VLl+Z3cImIiGLy2GOPobOzE5dccgkqKipw0kkn4YADDojMU1FRgWuuuQYVFRU45phjUFtb65zzbPHixWhqasLll1+Oqqoq1NXV4cADD+z9/ZBDDsExxxyDsrIynH322Xj22Wd7fzv11FMxfvx4pFIpLFy4EDvvvDOeeOIJ47auuuoqNDQ0YPLkyTj88MN5vyUiGoD4soyIBrU//OEP2LRpU+9/PT3DAODNN9/E2rVrIy/Trrvuut6XUa+88goWLFiApqYm1NfX4wtf+AI2bNgAIB1mcdppp+GOO+4AAPz617/GmWee2bvuc845B7fffjsA4Pbbb8/ZqwxIh2BOmTIF5eW5U0g2NTX1TtfU1AAAWlpaAAD33HMPDjroIIwaNQoNDQ34y1/+0ls+l3X1rIeIiKjU1q5diwkTJkAp1fvdpEmTIvOMHj06cr/sz71s1apVmDFjhvF3/R7Z1taGzs5OAMAvfvELzJkzp/dZYdmyZbzfElFGgHTOsoH+H+n4soyIhqxJkyZh2rRpkZdpW7duxV/+8hcAwCc/+UnMmjULr776KrZs2YLrrrsuknfk9NNPx913340333wTjz/+eCRP2QknnIDnnnsOy5Ytw+LFiyMv0vQyvPXWW70P5K7a29tx8skn44orrsDbb7+NTZs24ZhjjmFeFCIiGpDGjRuHNWvWRO5jq1atcl5evmTLZdKkSXjttdf6Xa4333wTF1xwAW6++Wa8++672LRpE/bYYw/eb4mIBjm+LCOiIeuAAw5AfX09vvWtb6G1tRVdXV1YtmwZnnzySQDp/Cb19fWora3F8uXL8cMf/jCy/D777IPGxkacf/75+NCHPoSGhobe36qqqnDKKafgjDPOwAEHHIDJkycbyzBu3DhcddVV2LZtG9ra2vDvf/+7z7J3dHSgvb0djY2NKC8vxz333MOh64mIKLF27NiBtra23v/0fySaN28eysrKcPPNN6OzsxN//OMfraGOurFjx+L11183/r5gwQI0NzfjxhtvRHt7O7Zu3YrHH3+8z/Vu27YNSik0NjYCSA+us2zZMudyERHRwMSXZUQ0ZJWVlWHRokVYunQppk2bhjFjxuD888/H5s2bAQDXX389fv3rX6Ourg4XXHABFi5cmLWO008/Hffddx/OOOOMrN/OOeccPP/888YQTFmGFStWYPLkyZg4cSLuuuuuPsteV1eHm266Cf/xH/+BkSNH4te//jWOP/74fuw9ERFR8RxzzDGorq7u/e/aa6+N/F5ZWYnf/e53+NnPfoaGhgbcfvvtWLBgAYYNG+a0/o997GN48cUX0dDQgBNOOCHr97q6Ovz973/HokWL0NTUhJ133hn//Oc/+1zv7Nmzcfnll2PevHkYO3Ysnn/+eRx88MFOZSIiooFLDZQuxHPnzg3kEM6DgVKKXbiJBrG33noLs2bNQnNzM+rr60tdHCIqAt7bieJz4IEH4sILL8R5551X6qIQkSel1FNBEMwtdTkKRamGAJhf6mLE4I+D+jz5GDAvy5RS6wG8WepyEBH1wyQAZQBWlrgcREREA0EtgDYAnQBGA5gC4HkAO0pZKCLKy5QgCBpLXYhC4cuywSv38GsJNJgvMCIaXJRSwwG8jfQL/qODIHDPUExERDREKaU+DuBrSL80ew3AcUEQ/Lm0pSIioqFowLwsIyIaKIIg2Ib0gz4RERE5CoLgJwB+UupyEBER8WUZEREREREREZGX7lIXgAqAo2ESERFRrJRStymlgsx/82NY33yxvtvyLiARERERkQVflhERERWZUmqlePmj/9eplHpPKfW8UuoXSqkTlFLsCU5EREREVCR8WUZERJQsZQBGAtgDwNkAfg/gKaXU7iUtFRERERHREMF/qSYiIiqtHyE96luPcgBNSI9Dvnfmu70A3K+UmhsEweriFo+IiIiIctv8V2DRmFKXIgYbSl2ApOHLMiIiotK6KwiCB3L9oJQ6A8DPkb5fjwXwNQDnFa9ofoIgOBfAuSUuBhEREVFBBUFwdKnLQIXBMEwiIqKECoLg1wC+L746WSlVUaryEBERERENBXxZRkRElGy/F9N1AGbYZlZKHa6U+pFS6kWl1EalVLtSao1SapFS6v+5DBaglCpTSp2plPqdUuoNpdQ2pVSbUmq1UupppdRvlFIXKKWmGJZ3Hg1TKVWllLpMKfVoZmCDbUqpVzL7sFdfZRXreUBsc6rD/D3zrnSYVymlPqKU+rlS6lWl1BalVKtS6k2l1G+VUqcopZTDeqqVUp9QSv0lcyxblVLbM+tZkhnQ4Wyl1Fi3vSYiIiKiQmAYJhERUbK9o30elWsmpdROAG4HcFSOn8dn/lsA4Eql1AlBECw3rGcCgMUA5uT4eULmv30AnArgKQBz+96F3JRSOwP4M4CdtZ92zvz3/5RSnwWwzHcb+VJKzQRwJ4D9cvw8OfPfKQAeU0qdFATBOsN6dkf6uE61rGc/pAd1+L/MOomIiIioBPiyjIiIKNn0Xkbb9BkyL7j+hfBFTAuAewG8CKAN6RcxxwKYBGBXAP9WSu0XBMFKbT0pAH9A+KJsa2Y9yzPbHZ7ZxlwAu+WxT1BKNQH4J9Iv3wCgA+mXSc8CqARwKIDDAPwAwA35bCuPMu4F4B8ARme+ehfp4/EqgE4A0wEcD2AMgIMA/CtzXDdp66kFcA/Sxx9IJ9G9F+mBHVoR9hg8EMC0wu0REREREbngyzIiIqJkO1lMtwF4Wf6YecF1B8IXZb8AcEkQBJu1+SoAfAPA5Uj3Tvsl0i+kpPkIe4otAXB0EATv5iqUUmo6gA/0b1cibkb4omwlgGOCIHhJ28ZxAH4D4LN5bMeLUmo4gN8ifFH2LQDXBkHQlmO+nwI4HemXZzcB+Ki2uv9A+KLszwD+IwiC7Ybt7gVg9zj2gYiIiIj8MGcZERFRQimlzgZwsfjqLv1lDdIv03peev0uCIJz9BdlABAEwY4gCK4A8LvMV4copfSXZfuI6W+aXpRl1vd6EAS3OO2IRik1G+FLwE4Ax+svyjLbWIT0/veZD6wAPgVgl8z0d4MguCrHsUcQBNuQDp18IvPVGTlypsnj+hXTi7LM+p4LguAO/2ITERERUb7Ys4yIiKi0FiqlZN6vcqRDLz8AQCa4Xw7g8zmW/5SYvsphezcAOCkzfTyAh8VvZWK62mFdvs4S03cEQfC8Zd6fIb1f1oENCqDnuLYC+KptxiAIupRS3wfwK6SP4bEA/lvMUqzjSkREREQx4MsyIiKi0rqwj9+7kE74fkkQBG/LH5RS1QDel/n4RhAErzpsb6mY1pPzPyumv66UeikIgqcc1tlfB4vp3xvnAhAEQaCU+h2AzxWgHDllQkynZj4+FgTBFofFlopp23G9SSm10PFcEREREVEJMAyTiIgo2R4EcLn+oixjFtLJ8AFgmlIq6Os/RAcIaNTW93cAz2SmpwBYopR6Vil1vVLqJKXU+Jj2aRcxvdRh/mf7niVWe4vpwx2P6wtiGf24/hrA6sz0PgBeVko9ppT6L6XUAqXUaBARERFRYvBlGRERUWkdHgSBCoJAIX1fbgJwJIC/ZH7/AIBHMr2ddPm+ZBkuPwRB0A3gGAD3ia/3QnpQgP8DsEYp9ZJS6lqllP5CqD9GimljXjRhQx7b8hH3cd2K9Dl9OvOVQnrkyy8AWARgvVLqKaXU5Uqpujy3TURERER5YhgmERFRQgRBEAB4O/Pf/Uqpm5BOcD8JwG+UUu8LgqBDLCLv4y8D6G/C/VwDATQDOEopNQ/pURzfj/QLs568W7MAfAXAZ5VS5wRBYA2jjEmxE/zL4/oY0i8K+2OV/kUQBC9nctMdiXTOuMMA7Ib0vikA+2b+u0IpdWoQBP/yKTgRERER5Y8vy4iIiJLrcgDzAewJYD8AnzsdTroAAAVSSURBVAXwTfG77JXVEQTB9XFtOAiCRwE8CgBKqXqkc6MdDeAMpMMM6wDcpZTaJwiCF4wrym0j0j3ogHQvrr5ygrn09ArEtPXlmlKqpo91yeO6Pq7jmnkZ+vfMf8iEXx6KdG++05A+pk0AFimldgmCYH0c2yUiIiKi/mEYJhERUUIFQbAD6RdmPa7Wwh9fRXoAAACYrZSS4Y1xlmNLEAT3BkFwKYDpAB7P/FQB4HyPVb4ipvc2ztW/eVrEdG0f807u4/flYnqeUqogz0tBELwbBMEfgiD4OICdAbye+akB6ZeSRERERFQCfFlGRESUYEEQ/B1AT0hePYCrxG+bACzJfCwD8NEilKcFwPfEV7M8VvOImD7RNqNSSvU1T4YcAGEX41xpH+rj92UAmjPTYwAc57D9vGQGcPiJ+MrnuBIRERFRDPiyjIiIKPm+KqY/qZQaJz7/QExfYxgIIKfMi6h8tXos80sxfbpSarZl3nMBzHRY59Ni+iTTTEqpEYj21suSCZe8WXz1XaXUKIcy9GyjVMeViIiIiGLAl2VEREQJFwTBfQh7Y1UDuFr8fIf4bRSAB5VSR5rWpZSqUkqdoJT6J9IJ5eVvNyqlrldK7W5ZfgKAL4mvHnLfk7QgCF4E0DMwQAXSObp2zbGtYwH8N6L5yEz+iDAk9TSl1Ak51jcOwGKkB0zoy00AVmSmpwN4SCm1r2lmpVSdUuospdTT0HKsKaXuVEpdo5SaZll+NoBLxFf9Pq5EREREFA+V/sdTIiIiKhal1EoAUzIfDw+C4AGHZT4I4K+Zj+0AZgZBsDrz21gADyOd96rH80i/cFmH9D+OjQawB4ADEeb02j8Igp4wTiilbgNwTubjawCeAPAGgK1Iv4ibhXSS/woxz5xMaCYM68m5f5kXV08B6Okl1w5gEYDnAFQCOATpwQ0A4LtID24AAD8PguBcfX2Zdf4IwCfEV/cgPZolAOwOYAGAGgBfR/jC780gCKYa1rcbgH8CGCu+fgLpl5PvZMrZiPRooQcAGJaZpzEIgg1iPQ8gPaooALyAdOjsW0j3HhuDdE62wxH+I+ajAA4NgqDn5R8RERERFRFHwyQiIhoAgiD4m1LqMQAHIf1S5osAPpn57W2l1P4AfgRgIdKjQe6Z+c9kDdKjUkodYnpG5j+TJwGcor8ocxUEwTql1OFI9/SaifQ+nZL5r0cn0i/Jnkf4sszmcqRfGH4g8/nDmf+k7wG4BtHecaYyvqSU2g/ArQCOynx9QOY/k1eRfvEnyeO6e+Y/k3sBnMEXZURERESlw55lRERERebTsyyz3NFI95YCgB0AdgmCYKU2z+4Azka6J9M0pHuEdQJ4D+lRKJ9Auofag0EQdGvLppB+GXdE5v+7It2rqgbAdgCrke4N9lsAfwoMDxEuPcvEvFUAPg3gP5BOzD8MwFqke3T9TxAEzyil5mc+A5aeZZn1lQE4D8BZSPf4Go50sv5HAfwwCIIHM/P1lN3Ys0xb70EATgNwGNJhnA1IvwRbj/TomY8CuCcIgidyLFuRWe4DSL9om4n0ca1EehTPt5AeYfSOIAj+0VdZiIiIiKiw+LKMiIiIiIiIiIgogwn+iYiIiIiIiIiIMviyjIiIiIiIiIiIKIMvy4iIiIiIiIiIiDL4soyIiIiIiIiIiCiDL8uIiIiIiIiIiIgy+LKMiIiIiIiIiIgogy/LiIiIiIiIiIiIMviyjIiIiIiIiIiIKIMvy4iIiIiIiIiIiDL4soyIiIiIiIiIiCiDL8uIiIiIiIiIiIgy+LKMiIiIiIiIiIgogy/LiIiIiIiIiIiIMv4/1STFI0cBx9wAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -169,7 +182,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydfXxdRZ3/P5OmaZqmadqmbShtCW0pBQoUKFCwYHFBUUFBQVFhrYq66/qAuu7qLr8Vn9dV14fVXXxaUVBEUdi1Cyis4FIVpECBIpTHUlpoSx9CCW1p05zfH+fmzme+957JuTc3TdJ+3q9XXplzZ87MnJnvfGfuufP9jkuSBEIIIYQQQgghhBBCCKBusCsghBBCCCGEEEIIIcRQQS/LhBBCCCGEEEIIIYQooJdlQgghhBBCCCGEEEIU0MsyIYQQQgghhBBCCCEK6GWZEEIIIYQQQgghhBAF9LJMCCGEEEIIIYQQQogCelkmhBBiSOGc63DOJeZv8WDXS9QW9bPY19hfZdo5d5l55tWDXSchhBCiv+hlmRBCCCGEEEIIIYQQBfSybD/AObe4zC+dvX+bnHMNNSjjw5EybqvBYwghhBBCCCGEEEIMOHpZJiYCeF0N8llSgzyEEEIIIcQA45xbYn/cHOw6CSGEEEMJvSwTQD9fdDnnjgVwVG2qIoQQQgghhBBCCDF46GWZAIAznXPt/bj/HTWriRBCCCGEGDYkSXJZkiSO/joGu05CCCFEf9HLsv2XZyk8AsBF1WRS8Hf2VvooAbC+H/USQgghhBBCCCGEGDT0smz/5UpzvaTKfF4PYAJd/xbAuirzEkIIIYQQQgghhBhU9LJs/+V2AI/R9eHOuROqyMeaYP6g+ioJIYQQQgghhBBCDC56WbZ/80NzvaSSm51zBwB4JX20DcAv+1knIYQQQgghhBBCiEGjfrArIAaVHwL4FPxL0wuccx9OkuSlnPf/JVJ/Z71ckyTJDudcLesIAHDOTQRwPIApACYBcACeA/AMgD8kSdJVw7LGAJgL4FAAbQDGAtgJYAtSf2x3JkmypVbl9VGPkwr1aAXQBWAjgD8lSfL4QJdfLYXDIhYCOBhAE9J2exbA7UmSbK5xWQ7AMQBmA5gMoKVQ3kYADyRJ8mgty8uow1ykp8FOQ/q82wHcnyTJLVXkdTSAowG0Ix1bmwDcA+CeJEmSnHnMQ9om7UjH9gakbXF3pfWJlDEOwGEA5gAYD6AZwIsAtgJYi1RGX6hVeUOJ4dJHVNbhSPtqMtK+6kQ6PlYlSfLAAJTXAmAR0vHQBmAHgNVIZWLATfSdc2MBnIi0bScBaEA6V6wHcMfe0N2VQvPbZKRtNhrAC0jl4iEADyVJsrufZexrurJfeTnn6pG2+QykctLbHs8hHctPVlqnWuOca0M6dmcjXQM0IZWLrUjH1F1JkuwcrPoNJIVxvBDAAUjl1SGV1d5x/PwAl99QKP9wpK5GdiCVjRVJkqwcyLL7g3NuCvz6qxmpvKwC8Pu8c7JzbhJSHTqrkMcWAE8B+F2SJC/WqJ4jkcr1YUh1dQtSn8dbAGxGOgZX16KsPuoxGn6dPR7pOuYZpP084DpRCDEMSJJEf/v4H4DFSCch/jurEHez+fzNFeT7kLn35MLny83nt1VZ79EAPgrgTwD2lHmG3r9dSH2lvbbKchyAlwH4UqHusbISAD0AHgDwfgCjqyivo0yeiyl+JlJz1h2ROjwM4G0A3F6UoyW2Hib+VAC3FNqnXJ33FPppYQ3qckihjTb20VePA/hnABOqKOOKLDkG0AjgYwCeyCj3tgryGgngw0i//GQ9x2MALozUdWRBHh+L5LEGqdl0xTKD9KXQKwH8G4CVkT7u/esGcCfSg0Pqaz1GBki+h3UfmbKmAvhGIb9YP60D8O8Apteg/Y5AurN4Z6S8ZQDOrHU/I/3h72IAv0M6H2SVvwfAHQAuBFA3kPKUo87jAFyK9EVrX+PpBQC/QqrzR1VYzr6kKyvKK6OufwHgOgDP99EejwL4fwCaK2yLqmUawCgA5wL4LuJ6ovfvJaRz6tnIqTMAXJYj39jf6pz5lk2Xo37nAbgV8XG8G+lYf2ve5zZl2PyWUNxkAF/vQz6eRqrLR+5FfbG4TD06KL53/ZW1fn0R6fw9PlLGyQBuQjp/l8tjB4DvAJhY5TMcAuATSL93bM8ha08D+BcAB1RZ3mqT32UUNwPA9/qoxz0sG/rTn/72z79Br4D+9kInx1+WvdV8fmPOPE8y962iuH6/LEP6ZWZdjsnU/v0OwNQKypmB9BezaheOzwBYVOGzdZTJZ3EhbklhUZO3/OtR4ZenfsjRElt+4fN6pF/MK2m3T1RZh5EAvoZ0sVxJeVsBvK/Csq4oJ8dIXwo80kd5t+XM6yAAKyp4jithXj4V5MmOudjfz20efbTD8ej7i3bs72EAh9dqjAygfA/bPqJyHIB/RGU6JEH6JegyVPmSDulLhdiXW/v3PaRjud/9DOBMpDsnKpXL+wEcNpAyFemjv0eqk6oZT7/OWc6+pisrzsvkOwelPw7m+dsI4NwK2qIqmQbwOvT9Ai/290cAB+Yo57J+lJFggF6WId1hdGcV9VkO4MgKy7J5LCFdsrnCNs98+VRjvbG4TPkdSHcm/yv6fuHe+/ckgENN3nVIfyzOm8ezAOZWWP/b+iFzOwH8TRVtttrkc1nh8zcgdRuTt/z/BdC+N/pZf/rT39D7k88ycR3SBVovZzjnDsxx34A49ncpX0L6hXNqFVmcCuBO59yROdO3IH1hVi0HAPitc+78fuQBAHDOXYK0HZsquO31AH7a37KrxTk3olD+Byq89fPOuQ9VWNZYADcA+BAqNyFvBfAt59xXXT/shAsmbbcj/YW0XzjnpiPdaXN0BbddiPQLcG8eBwP4PwDHVZDHeUh3E+Wl1/S5Wg5FOiYX9SOPQWEY9VGvWcuVAD6LynQIkO7Y+SSAa5xzoyos918BfBrpy5m8vAvAT5C+OKqagg75H6QvQirlSAB/cM6d1p86VIJzrhnpnPvPSHVSNfTZP/ugruxXXs65lyPdUXh6FbdPAnCtc+4j1ZRdATOQrkeqZSGAu51zh9aoPnsN59zLAPweQDWHTB0H4Hbn3OJ+1uGNAJYiPN29LxYC+HXBpHew+D7SXc95x2oH0jq3AUXz7B8C+NsK8mhHuu6dWEE951WQ1jIKwDedc1/tRx4AAOfcuUh/jBpbwW2vQPq8k/tbvhBi+CGfZfs5Sepj7BoA7yl8NAKp6dQ/Z91TsPF/M33Ug/RLWi34DwDvLfP5bQB+jXSHx5ZCme1It41fCGA6pZ0G4FfOuWOTyvzT7EFq8nkngAeR7jh7AemvWs1IFxnHI/0iyy/yRgL4T+fc/UmSrKqgPOY1SBcrvdwD4BdIfzXdVCh/HlI/cSeae89xzr0tSZIfV1l2f/g8gDcWwgnSL2hLke4A2Ip04XkSUvmabu79gnPuf5IkeQx9UFjQ/QLlv+zcgfSF3YNIZWMK0jZ6G1KfGMwlSHfdXNpXmWUYjfSL7vjC9U4A1yKVyzVIt/NPRbp47+gjr3qkzzOtcL0Z6cuD3yLdrTgC6UumC5GaDTF/45z7GYC7kO4snG7yuBXprsy6Qh4Xlcnj3c65HydJ8rs+6mnZhfRLzXKk7b0O6S+0u5EuPmcj/QLxRoRfOpqRvoiZnyTJcxWWOVgMtz76D6Qyb1kJ4McA7kXqc6cN6cu/t6H0JeD5SPv4wjwFOuc+jPSLmuURpHPCcqQ7cyYCmF/I96hCmvOQ7lCoCufcxwF8oUzU3UhNFu9Gqjt3I33hcQKAtyD1R9lLK4DrCnPFE9XWJWd9RyI1cXpZmei1AP4b6UvV9Uh/wBoH4EAACwCchrT98pSzr+nKfuXlnDsVwG+Q+q5j1gL4GdL5/hmkz9qK9CXq65F+Qe6lDsBXnHNPJUnyiz7qWwu2I90lfw/SvtqAVM/2IJWLQ5H6BXw9Ut3ayxQAP3POnZhk+zL7M1L5ANJdswtMfF/PtzHnM+Si8HLvNyh9wb+zUJelSPu5B+kLxdci1R2cfhyAG51zxyfV+RObD+Cv4H3wPoJUNv6I9HlHIX0hfwHCQ62AdE349wA+V0W5/eVD8AdzJUj13n8jNSHuQvpj7isBvBvpOOrlIABfRPqjxT/A6/sEaXv35vEC0nX2q5Cu4RopjwOQ7kZ7ZxX1fgSpfD9YKOf5Qn2bCuXNRyrbdn66xDl3V5IkP6miTCDVDx+F99O8GcDVSHecPgNgDNIX8uchfWbmMAA3OOcWJknSXWX5QojhyGBvbdPfwP8hYoZZiF9o4h7qI78LTfobTXxVZphl8k0KeR3dx30NSE0ArK+GX+Yo8wikL8jegZzb6ZF+if4wSs2Obsp5f0eZ5+zd/t4F4C2Rex1Snw/2/pV7QY6WROr9CIBjI/eORvrSwN7/rZxlf7TMvS/00VYjke54sfftAXBKjjKvKHNv79+tIH8hVeTF5g4/jske0gWxLf9mpIvd3uurALRG8vhwmTzyyutrkJohnA9gTM57mpC+yLBmHZf3Y4wsHmD5Hs599IYy9+4u1Kusby6kuuRvUN588q05ypyF8v5eLkOGCWmhzA/B+8QpZ/bTZz8DeDlK/eo82te9SL8k/TVK/aotz2qnGsrXv5V51u2F9mjIcf9sAF8G8N99pNvXdGV/8pqM9Esw57EN6Rf/ETlkzLqCeB59+PdD9WaYf4V0jnwNcrpWQPqDxH+WKe/jOe9fYu/th3xfZvJaneOekShvnn4HgEMi981E+qONve9+AI05yrX39eqh3QA+GJMNpD9YWt2zOW+f9aN9F0fqvRrA8ZF755YZB90AzoI3036yjzwOQ/oi3+qHPk1/C/ffjdRFQCXj97Vl6r0ZQFPO+1dntFeC9AV8W+TeVyH9camqsaU//elv3/kb9Aroby90ch8vywpprLP+TCfsSL84c9o3m/iKX5Yh3e3wgrnvxkoWIEi/+NnnzHyBU7inakfaSB3x2vL69M2E8ovpBOkXuBNzlv2TMvefMMBytCSj3o/GFh10fyNKnRZvRR9fFOFPKOL7XgJwWs56/22ZOq/Icd8VGc97K3IsyHPm9aM8Moj0V257b+8i9wc587jW3L8HORzn9nOMXGLK3I4cDsQzxsjiAZbvYdlHSF/eP12m7D5feBXufxNKX1ptQB+6F6kzf1tm3i/p78ho6z77GemPI/bggrsReRFZJo+zUfrjyhsGULasj89e3VfxYSeI+LLDvq0rq8nrpyaPzQDmV3B/B0r9NX4jxz0V6648+iFy79dMeWtjckL3LbF17UcdLjN5rc5xz3vLtNVyAGNz3NuM9KWavf+SHPeWk68e5PRNh3RHvb3/TdW2Xc4yF2fU+1kA03Lc/5oy9/b+UPIMcvj6RfpyzebxdznrX60/zIOR7oLlMv86572rM9psac7xsQDpD9h87w4Akwayr/WnP/0NrT/5LBO9XGGurU8yAIBz7iCkJiG9bEX6a2h/+QBCc4J1SF/CvZQ3gyRJvoV0Nwfzt+XS0j1J7hqW3nsd0m3vzJvLpc3JpUmS3Jkz7WVlPju1H2VXS4L0S/mmPhOmZiH/Yj5uhTfLyuLdKDXR+OckSW7NVcEk+TLSU6KYo6v0cdIF4O1JtolLJaxB6kg7jwx+pcxn9UhNhd+fM48vmes6pKY8UfozRpCeKnY/XY9Gal4xXBgOffQGeFPRXn6U5DRVSZLkZ0h3pzCTkZoslsU5NxWpQ3Lm90mSZJrvmzJ/gL7NvbJ4G0KT7heRvujqzJtBkiS/Qurrh4nOFf3kH8t8dnGSJHdUmlESNwHaV3VlxXk552Yj3Q3LvCdJkhV580iSZDXSF/7Mu5xzrXnzqKCs/ujZjyPdBdPLgQBO6V+N9gofNNe7kJ4o/EJfNyZJ0oVUF1iZ+IBzrprvNv9eWNPl4Ytlyh2M9ReQyvTavhIlSXID0h/FmV4/k+9OkuSZHHksRXpgD/PyPJWsVr6TJHkSqR9O5oJq8irQCeAdfejR3rKXA/iU+bgRGd+PhBD7JnpZJnr5EdJf2nt5c8E3meXtCJ2AXl3JC61yOOcakB7DzXwuSZJtVWT3r+b6zP44Kc7B9eb6pCrz2QzgW3kTJ0nyCFLfI8yxVZbdH25KkuSuCtKXW4z2Ve93mestKO+rKEa5L8IXV5gHAFyZJMmaKu4rx9cKC/4+KbxE3ZyRx4v9yOOYPPdWS2GB/F/m42rHyGAwHPrIjo89SE21K+ETSL+oMrHx8XZ4/z69lHshFOPjFabvxTpa/1aSJE9VkY+dKxY658aXTdkPnHOzkJoTMTckA+P7al/VldXk9SGEa9w/VdnmP0XoW68J6S6fIUPhJeJN5uMhrWedcycBONx8/L0kSezLmEySJHkcwOXm45kI/c3lYTcqGCdJkjyP1HclMxjrr/sLL/7zcmOZz+5LkuR/KsjjBnM9oGuIAteb6wX9OFTha0llflO/hnSnNVONnzYhxDBFL8sEACBJkmeROlntZRxSM8MihZdObze3XlGD4o9H6Ay8B9Wf8Pi7wv29jEfqsHegeNpcV3LiHbM0SZIdFd5zn7m2DvT3Bj+rJHFhkWKdemfW2zk3BaUn3V1d6W6FJEnuQ2qqxVTzy/tVVdyTRaVf3OzL0Vrk0Z+TYPNSqzEyGAzpPiqcRnuy+fimPLsEmMK4tF+6jo+cjGl3UTyF1Dl9JWU+htTvUG4KJzXbU9WqcvZc+FLOushhYHbjlHO0//VaF7KP68pq8jrTXFcrJz1IDxhiBmsXUYzhpmfLteEPqsjH7hAFKpfXPyRJsq7Ce4bC+qvSueXBAcjjgL1wGqiV7SakPtSq4UeVJE6SZDfSQwCYQ3UyphD7D3pZJhi7UFlirl+O9Fe7Xh6scFdRFnYb9xNJkmytJqPCCye7MyP3pOqca3POvds5923n3B+cc2ucc1udc93OucT+IXzBCAATCl9gK6VicxyU/to1roo8+stA17vcr+PW1DYvvzbXMwrmZHnpRno6WS1YX8VOCftr6PokSewistI8Wiq8H8656c65DzjnfuCcW+6ce9o597xzbk/GGPmOyWJSpWUOEsOhj45EaL4O1G58NKDMF+7CjyYnmI9/W6WZzf9WmN7OFTuRnvZZLdZ8qdovYDEWm+sdKN2VUgv2VV1ZcV6FutrTPZf3ow57Q04CnHNznHMfc85d5Zxb4Zxb55zb5pzrydCz/2CyGOp61srr1oLZW0Uk6emX9seBSnfVDdf1V163Hb2U21FVizwqWkc45xqdc29wzn3FOXezc+4J59wm59xLGbJtdz0D1cn3kwWzzkopN0/ZU+mFEPsoA/1rgBhe/DdSs43eXV5/4ZybTl/2rJ1+Nb8ClsNuX59dmCBrxcS+EhT8m/wLUsfP/R0XrShvjhXD7rbKg/XrYb807w0Gut6HlPms2i9h5e6bg9KFdhara+R/B6iu3aw5YC3yyC0zzrljkY6RVyA0xa6Umpu6DRDDoY/2xvj4g/lsMsKdwACwosoy760wvZ0rGgF019DSvs+5ogqsqdnyPP5yqmBf1ZXV5FXOJG7ZEJcTAIBz7i+QmgQe38+shrqetfJaqS5g7gHAL3PtDsu+2F/WX+VcCqyvQR7NSL87RHHOtQD4JFKz7op/qDNUI98rqiyr3H1zUbobWwixD6KdZaJIwfcYbzeuQ3pMNpxzYwG8keK6UTszi7Ya5ZNFdFJ1zr0D6e6Ec1GbF8jVLJqq8c/WY64HYzwPdL1t3yVID3+ohnJOcCtZcHVWWW45+nRgXAb7ArkWeeSSGefcpQDuAvAX6N+LMmBwvlRUw3Doo3Ly26ez5wzyjo9yn1XzZRPI//Kll0GdK6rEvliplR8vy76qK6vJa9jJiXOuzjl3OdIDFvr7ogwY+nrWtmG1eqvcvZX2Ty3WMQPpGzeLSueXcj9C1yKPPtcRhR/bViH1OdnfF2VAdfJd7TxV7r6h/jJaCFEjtLNMWH4A4G/o+u0APgfgTQDG0Oc3Jklit6FXy4D9SltgZFaEc+5CpD4vshY6m5B+4XgOwEsoPQFpEkp9b1SzaKrlTrq9Rj9P8MqDXZC8WPAhUw3Pl/nM7pCJkctJe05q0W57RWacc/8A4DOROmxE6lOkE+n4sAd+HIT0CPbhxnDoo3IL9mq++AH5x0frAJcZY9Dmin5g69w5AGUA+66urCav4SgnlyM9zbQcPUh3AD2NdKztRKlp2uEIzUMH4+VNJVh5rVaHAKXy2uKcq69gB+ewXH9heMxRcM4dgdSUsTUjSRfSF57PIpXtnSh9GflGc12NfFclY0mS7HHOdSF8QaeXZULsJ+hlmQhIkuRu59wD8E7xD3HOvQyl/suuqGGxDeb6aQB/qmH+5Zxuwzk3CcA3UDrpLgPw7wBuKxx8kIlz7jQMjP8ZkWL7ptYLu+G6SN4rOOcOA3BZmailSF8y354kSdTkuLBz8z9rXzuB8l8YqpXpcvflzavaMiv9wmPnis0odb7eH2rhg7MvBkrnSFd6rJwAwC9Ru2fYWKN8AADOudNR+qJsD4BrkDok/0OSJNEdQM65TwH4p1rWay+zP8vrvs7lKH1R9gSAf0N6IE30BNSCn8xqX/wz/ZGJof7yWQgxQOhlmSjHFQC+QtefAbCIrjch/bJcK6yvg1VJkpxXw/yzeB9Kfx36VJIkl1WQx2A4dd2fsLLR7Jyrq3LHRLm+quogif2Iv0PpLop3JklSib9CjZGBo5yfmHEZn/dFa5nPyo2Pzowyq6FScxz7XFv30lzRHzYDOJCuB2pHgnSlp5z8f7CKEw/3Fv9orncBODtJEnuAUIzhpme3AjiArvtTf3vvtiRJ9vQjP1EjnHMvR/j9AQBuAHB+kiTbc2ZTK9muKp/CoV1jzMfDSR8KIfqBfJaJclyF1CdZL6eZ+B8nSVLudJpq2WSuZ5ZNVXteZ67/UOGLMmDgfaPs79gFiUPoyLcSDizzmRY8GTjn6gC81nx8dYUvygCNkYGknPyWk/M85B0f5T47oMxneah0LNu54qAqTx/em9idlzMGqBzpSo+VE2DvrSsqwjk3HqUvE75S4YsyYPjpWStP1eqtcvcOJ1nd17Hr7C4AF1XwogyonWxXO0+Vu08yJsR+gl6WiRKSJNmI9JefLK6ocZGrzPVM59z0GpcRUNjWfZT5+CdVZHVcDaojsnm0zGflTjrLQ7m+eqTKvPYHpqH0ePYfV5GPxsjAMRjjYyNKvyjMr7LMYypMb+eKkQBOqrLsvcWD5vo459xA7OqXrvRYOQGAl+/1WuTjSJRaeewPetbKa6W6gLHPPpxkdV/H9utNSZJUuvO5VrI9v4b3RU1HhRD7DnpZJrLI2j2yIkmSFTUu65Yyn9lfo2rNRJQuUJ+oIp9X1KAuIps/lPns9CrzOsNcP5UkSaWn8e1PTC7zWUVjxDk3GsDJtamOKMMDKD3NrFbj4yUAd9tEhUM9rE/J0wo/QFRKpfqz3Fzx+irK3ZvcZq6bMDDzhnRlgSRJViJ1iM8MVTmphZ6dBuDQKsouMdGtchxXg5XXCYUTEyvCOXc4SndQlhsLYnCw8l3NOvsvalERAAc75w6u4r5y+vrO/lZGCDE80MsykcX/ID0B0nLFAJT1fwB2mM8+6pwbiBOneilnulPRr/3OuTMAzKlNdUQ5Crsc7S6BtzrnRlWSj3NuHoDjzcf/15+67Qf0e4wAuBC1OSZelKHgl8d+MXy1c669knycc20o/YHiT0mS2JNNe/mdue5AqSlZX2XOqvSegiPop8zH73HOVXJS497mZpQ6lv5QrQuRrizBmjEuKDjSH2rUQs/+NapzQF7OFG50FflUQzmZekcV+bwrZ95icLDyXek6uxXAW2tWm3RNUkn5IwG8xXy8qqBvhRD7AXpZJsqSJMluAGcCeLX5q/mpdgXfBd82Hx8M4P/VuixiE0q/wOT+VdM51wDgyzWtkcjie+Z6IoC/rzCPcn1l8xUh5V6WVzJGJqD8SZqitlg5rgfw+Qrz+BwA+1IlNj5+hPS0PptHJXyhwvS9fNVctwD4WpV5DThJkjwJ4Ffm49c4594wAMVJV3q+itI5/uvOubGDUZkI/dWzs1D9y9fny3xWrZ+7ikiS5A4AK83H73bOHZI3j8Iuob82Hz+G2p6QK/qHle9Kdw/+M0qd6/eHDxd+HMrLBwHYH590urcQ+xF6WSYySZLkniRJbjJ/0ePL+8E/o/RXzkudc+V+NcyFc25e4SSeEgo7Mu43H78nz0K64Pj8P1Dq80wMDN8D8KL57BPOuVPy3Oyc+zCAV5mP702SRL8+x1mN0lPlPpTH35JzrhGp35298sVrP+c6AGvMZ0ucc2/Kc7Nz7o0ALjYfbwDw06x7CqcK/rf5+BTn3N/mLPMvAZyfJ20Zvg3AmgRe5Jz7VJX5wTnX4Zyzh1nUknIvBr/vnFtYaUZ9jD/pygIFdxHXmY8PB3CNc66qL9/OuRbn3EX9rZthBUrNIT+asz7jAfwM1b9MKOfbq6Ldnv3kG+Z6FICrnHPNfd1Y6MMfo3Qn3L9VeQKsGBjuMdcvd84tyHOjc24JgPfWuD7jkerePg+Gcc4dg9If/HYi202NEGIfRC/LxJAgSZINAD5gPnYAvuec+55zLteXbudck3PuPOfcUqQvw2JfEuyXvakAro+Z9BTMm64F8M7CR91ZaUVtSJKkE8Cl5uNGAEudc5lfuJ1zI51znwTwFRO1B6WyJgyFLxz/Yz4+BsCPCr7IyuKcm43UBOrMwkcaIwNI4cW/3VnikH7p/JssH0Qu5a+QHmxi1wKX5Djx+O9Qaj7/L865/5f1QqdQ5vsBfL+3+n2UUUKSJDsBLEHpzrZ/cs79V96dKQX98Grn3E+QOhs/t9K65KWwi+br5uNWAL91zn2wsFM5inPuYOfcFwH8IlJOJ6QrmQ8CeNZ89moAf3LO2VO+M3HOLXDOfRnpS+lP1rB+KDg7/735+Gzn3JdjX+gL/r3+D36nTsV6NkmSp5C+GGf+yTl3RKV5VckVAO4yn50A4NfOuczTS51zHQBuQunhHvej1EpBDC52ne0A/NI5d2TWDc65Uc65y+B3cNVqDdE737wOwM+ccxMjdTgDwK8B2Be3n06SpNxuUCHEPspAnMgkRFUkSfKfhUXaR0zUu5DuHLgB6fb6h5HueOlB+oWjDekur2MBnIrUgXIevgHgEgC8m+wVAFY5536A1C/Ps0i/bExH+ov7eZQ+QWru9E85yxPV83WkL19410ML0gXPH5DugnkQQCdSh7InIPVNUe6L8+eSJLFfTkR5vgDgbQhfprwFwCLn3PcB/BGpmUUzUtPp1yB96dD75X8H0nFWqSmYqIAkSa53zn0HwHvo45EAvol0x+yPAdwLYDOACUhP93obyp/y9aMkSTJ3lVGZjznn/hHAv9LHDsCnAbzNOXcl0i/CmwplHg3gosL/Xv4dwN/keERb9s2FXVB2Z8rrAJzlnLsZwG+RHoCwBcAupHPFBADzkL70fXnhs73FxwAsAPAy+mw0Ut32MefcfyF9+fEs0kMbWpD+gHMsgNMK9wKl/uIs0pUFkiRZ55w7B2mbNVLU4UhfVN6L9KXLXUj1WBfS+b0VaXsci3Sn1UF076YBqOpnkX4xZz4K4LWFtchdSE+g7a3X65Dq2l69vBHpS1RrkpiHqxDuZDsYwErn3CoATyLd8c8vtTcmSfK+KsopIUmS3c65tyHVTbw77uRCHX6O9GT2NUjXe9MBvBbAm1C6ztsB4C0RP4tiEEiS5LfOuT8ifLE5HcBy59xPkfbvE0hl7ACkP3C/GcAMSv9Z1Malw4+QruHHAHgD0l1uP0Z6cMyzSPXxIUh3PZ9Z5v67AXypBvUQQgwj9LJMDDX+Fuli9LMIv6A3ADin8FcTkiTZ5Jx7N0rNjdqQfrH5WB9ZXIL0l0y9LBtgkiRJnHPnAfglSk9qOxn5T1z8V8iPVm6SJHnIOfcPSM2kmenoux33IH0hM24AqiZKeT/Sxb41EzsK+U3GrwHw7rwFJknyVefcDKS6kDkUqQ6PcR3S8Vjxy7JC2f/mnHsBqUk8vwipQ/qiyJoTDiqFFwOvRrqT7ywTPQ1pO1TVFqYc6UoiSZI/OedORfoyabqJPqbwN6gkSfIb59x/oPRl11wAX+zj9u1I10XVyvuXkOpp65fpUJQ/YdMesNEvkiR5tLCLZynSl9m9jAbwl4W/vugE8PokSf5cy7qJmvEOAHcg/HGiAfn69xcAPoPa6KLVSHcl/wzpDzsTke4+/WCOex8G8NokSbRTXuz3OOc+gfTHpOOQ/sDyVJIkHVXk8xqku+GPRnoC+/8C+LuCr1ebdhzSdeUbkI7dx5H+IHx54ZT2AUNmmGJIkaR8Aeki/4F+Zvdn9HG8c5Ik1yD111PJr5HbAbwzSRK7q0EMIEmSdCH9VfnrqHxbfieA9yVJ8tGBVqr7GkmSfBGp6VElfmC2ADg7SRLrM0gMEIVDWd4O4B9R/pS7GDsAfArpzoy+zC9tuR9GKh+7K7jtRwAuQGUyVa7sK5C+/Onv7qfVSHeiDSgFn5+vR/oDS1eV2fR5n3RlSJIkdyFd2P8Ypea7lfA80peQA8EHAVxe4T1rACxOkuSP1RZacIHxSqS7DQeFQv1fhj7WaxncDeCU4ehXb38hSZJVSHdqravw1m8CuKCWPuiSJLkW6dxjfTvGuA3AaYWxIoRIrapegfSF1dZqMigccrQU6Q8jH0P6w82pAH5vXS8VXFXcDOCvkP6o+wGkp3//O2rsGqEcelkmhiRJkvwW6Zvm1yMdTOVObbLsQfrr1WcALEiS5IgkSW7OUdb3kZq4/BzxhfQLAL4L4IgkSeTgcxBIkmR3kiSXIDWj+QHKnyTGPIH0l/lZSZL8xwBXb58lSZJPI53EfoO4n6lNSP0ezU2S5Ma9UTfhKfzY8HkAswH8G4C1fdzyDNKdWXOSJLms2pcjBfk4FulusdgPD3cifYn69kpfykXKvjdJkkUAFiPdMZDHn0yC1LH6lwv3zUyS5Ce1qE+fBSdJT5Ikn0H6a+wXkO5Y6IutSOenNyDn7mrpypAkSTYlSXIh0t1S30K6yM/DU0h97J0PoD1Jkr8boPp1J0ny10h3Hd7RR/K1SF+4HlF4Edjfsh9Aut56DVKfX3cAWI/0hcJeeWGaJMnDSZIsRGpieRviL9+7AdwO4K0Ajk+SxJ6qKYYYSZLcidTs/ytI19JZdCM1zTwlSZIPDMROriRJfgbgSKQ/2uyMJL0P6Q/jpyVJsr7W9RBiGDMrSZKJSZKcgdIDl/rEOTcS6Rr1aaRj/d8LG2VeBWAKSneSXgzgeAAfSZLkI0mSfDdJkjcg/fHqH5xzB2EAcfvID4diH6fg6PYYpF8wJiLdrt+NdNJ9Dukb5kf666/COdeC1EdJB9JTc7qR+gN5GMDywu4NMUQoOC8/FunLgclI/c1sRdpnDyRJUu60L9EPXHrs+iKkpmOtSF+OrEe6M2FFLX8FFv3HOTcPwGEAJiHtr+dR0JlJktw3AOWNg5ePNqS71p4C8KckSZ6udXllyncAjgAwB+lc0evE+QWkPtseQfrslewsGFCcc9ORzm+TkLZZHdL6rkM69zySpAc59KcM6UqDc24a0nZvQyono5C2+/NIXx4+lCTJQPgoy1O3qUjH0QFI+2oH0i8l9ydJMmi7wPYWLj2Z/CSkzz8Zqdncc0h9S/0xSZI8P6CKIUjhi/IJSF/kT0Sq77YCeAzAnUmSbKtROasR+hv8VJIkl5k0TUjl7FCka/4XkY6zFfujThSiUpxzKwE0V2KG6Zw7HelOsX8q/HjIcf+LdANLW+93bufcMqRz9cQkPeSpN+0pSH29/n2SJP/S32fJrK9elgkhhBBCCCGE2BfI87JMCNE/qnxZ9gmkppxnJElyi4n7HIB/ADAvSZIHnXN1SN1P3FOwIuC0o5C6HfllkiSZJ373Fzn4F0IIIYQQQgghhKiQ2c4llTqLHYo8m1qJsHnyd5Ik+U6Ni+n1SVbOj2HvZwcirct4pH7NStImSfKSc25zIe2AoZdlQgghhBBCCCGEEBWyHcB7B7sSNeAyYGeSJAsGuJimwv9yrpN2mjSxtL3pmzLiaoIc/AshhBBCCCGEEEKIgaR3E96oMnGNJk0sbW/6Ad3Up5dlQgghhBBCCCGEEGIg6T1Bs5z5ZO9nvWaXW5EecFOStuCzbCLKm3PWDJlhCiGEEEIIIYQQQlSIg3YgVcBdhf8nAbjFxC0EsA3pyeVIkqTHOXcPgGOcc6OSJGFzzBOQNvvygays+lUIIYQQQgghhBBC1ATn3AHOubnOOfYr9jsAzwK42DnXTGmPBrAYwM+TJNlN6a9G6pfsPSb7SwB0A/jZAFS9iHaWCSGEEEIIIYQQQohMnHMXATiocDkJQINz7tLC9VNJklxJyb8A4O0ATgNwGwAkSbLbOfchANcAuN05910ALQA+DOA5AJ80RX4XwDsA/KtzrgPAQwBeA+BcAJ9NkuTJmj6gYdi8LHPOJccdd1zF9919992o5r69yRNPPIUpU1KZS5Iw7iXabNjdHcZNmeLDzzwTxu3Z48M7dvhwvelx57Lj+JrTAUBjI8pSZ/Yqcp0bGrLjRhm3fVzeyJE+PKIuyU5o4UbYtSs7biedkGsfoLU1Oy4vXV3ZcdSQL+0JO4D7jau4e3eQLHgUW0Vu87FjwzhOy+2/eXOYbsQIH7byyX3T0hLGBW3ObdDTE6ZjQWChtsT6+tlns+MY20B8bQV09OhicLfzcXacvJR1PguAxpHUOabxeup8Rvxo7qWdQbqgfawcc1vaZ2PBmDQpu5K1prMzvLYNljeOhGsPvBBaGeSxYbPL0oM2H25WlmmbxwsvZFeX01lR4vFldR2ntfdlqZxKVBE/p207hmWQxzwQipmN4/ts/llxdijHhnYt4H7jfgLCtnzxxTCO5YL1rs2DdYBtnyw9C4TyOnlydv6kilDXYxYCmzb58NatYRwPDupE6wmXczTiD34cO1rreH5kIWluDhNyB7S3h3HU+TtHhpMUt6udNoJ6RMYD9yHnMWFCmI7b3PYhx1kd89xzPsyPFpPpp58OrzmtfU7WR9ysY8eYhCwHdlLiBxo/PojaXT8a5bBjoXWMHwC7jZTw2LBFbydh43a061m+tm08c2bZKkZ50nx14jynT688PwDYsMGHx4zJTmfHL+t1+9xZcbb9Y98FmIMPzo5jrAzyGDqwnBehAuvXh9csr7E5kL8zNJlz60a+1FU+oV1LbNyYWa+EJnhXUJgNzmEXTTwHOPfJw50rfgm3uo7FzrW1hZGkoLv2hGOGdUzsO09sLuC0Vn5iy6S8bNtWvh4WlmvXZRY8vI5nxQdgBykBuyTubZLNAF5IkgGe7cVe4l0AXm4++0zh/+8AXIk+SJLk5865HQAuBfBlpKLzvwD+PkmSdSbtLufc6QA+C+AtSP2UPQ7gAwC+1Y/nyIVLYqvnIYRzLqmmrs45DPVnfPOb34uPfOTbAEoXGqtX+zCvhQDgI5f4WeqfLgu1H88xDz/sw7y2BUIlbNewnNYq9kMOQVnsGpnr3NGRP47rNW2aD7c07spOaGHFzg0JhA302GM+bB/03HN9OOsNYV8sW5YdN29eMfhEZ7h6X7nShx96yIfXGTeG/Ji2+tyuixeHcfwFbPZsH77qqjAd96ldpLHMnH56GFe3do2/uP12H7ZCzoJwySXIJNbXX/hCdhwz2nwx4IezK8QjjywGN4yaUQyb7xolosXMaacVys7wJdj2Zr/44kdreOzPYSYsq/YbALel7XxebV98cXYla83SpeE1LzqtANkFKUMDfxv8m1ibRUy/8Xf0Bx8M47g71q71YasHeXzddlsYx3XhdKyzgHB8cdimtfdZfdqL/aJmF9dZdYx9yWIZtO3IzxabQ2z+WXGxH2aqpQ7Zb1N+e5ufH+1vF6zW77gjjGO54C+J9jsc6wDbN/wjhZ3nJk704Q9/2IftOy9SRWjqMl8Yr7jCh6+9NoyjwdFDg2FFmAq8tDDij1YKm/dLaOb5kQfUy14WJvzf//Xhj388jKPO/3P7K4IobtfYi2r7Q1BWHlzFt70tTMc/ElkZ5/62+uHyy334b//Wh2MyzelsWvuc/GJn4UIffsVC88rzBz/w4VWrwjh+oPPOC6I2TDmqbB1///vw+g0L/S+yG0ZMDeJ4TfLoo+F9993nwyzX9kc5bmPb/j/9adkqRlmyJLzmqebLX648PwD42td8eMGCMI770OoH1ut2Hc86gd8/3HlnmC72XYBhdWBhHfnBS8LvDDzXfPaz2Xl86UvhNS8zYnPg3Lk+bPcvTHn8D/6CJ0i7lvi3f/NhM+ntfOCBYrhx/vzwPlLe91A4lOJQvzW8+91h5PvfXwz+oSscM1l9Y/U9zzWxdYCdo+x46MXOeT0Rz0q3kFeo2FcZ1jENy34bRv7xjz787W8HUffT29cnTJ5bCv8/DWD1Pvyy7EDnkvcNdiVqwKXA3UmSLOg75f6DfJYJIYQQQgghhBBCCFFg2Jhh7sskSXxnQB5iv2LyDvzYzgIbZzbCBPAvH7GyOQ+bX94dD1XDFbM/pfA178ixP1HXYssD/yxk6rGr2f+W9Zz5RZZ/nYyZ+vEvgra6/Dh2RxTf17Ta72aaNu3wIB33m92Cz7+i8S4MAJjBP5UdcIAP25/NatH5sa0FPABsOt7aYW0zqP7rVviP7VjlNrCPMm2a3xHV1Br2/SZqSxbBKXbrAneq3XLCP+ta+9xayG41xOxrLFxHW18aK53UVlaP2F/xGRY1m47z4Wa1qoLzsKIbqz4T03Vcj9jQqGYHV7nrrPvy3lNJ3GCJoIX7tJI6ZunW2M44qx+4f+2uIa4X70KwOxKC3ab33htGLqdDoO66K4jK2oDSaa7Zgn6yiWvPqiQQ7IwOhDdm9s1bQYFgYB7+twuDqPZ2b6/Fuzdilt6xMcR9YefU2BiNyXzMy0Lee3jXE0+VQLgjJ9gdfpvZBslbkex2Z+4n03hjzQ6XXkpM8ajfpswLB8D4eeV3SQPhFMXrh1j7Z+2orQS7Gye2iTkv3Ca2jjz9xupv5xduL16e2PrzcsrKo53682Dn0by62rop4Hry0oXlFgB4s9eE+m1hZNaXDdtpWSYtABo5DzuIaOsjP2anyYOH5Wy7nfGgg4rBkz/QEUS1tnoNShvcSuAqWh3GO5Lt2OA2Dsw8K5hfWe7srj/ut4bltMvvppvChLS1fq2x4+Xl/xaE9H7LGSLLASEqRjvLhBBCCCGEEEIIIYQooBe9QgghhBBCCCGEEBXioB1I+yrqVyGEEEIIIYQQQgghCmhn2RCgtdWfQGJ9EbCteuzUvdjpZQydrgwgtI23NvRs425dCnBdYq7B2JeCOWk48M9g3TSxa5QWkH+DlY+FCWPHunDFrEOtLGdGthGqcfhj4cYyPhga6HrSpPCsseefL1+U7WtuAtvvsZP2murpZNEfXFcMnv6x0GcZV982NzeXLXtXt38X38CVtkJYC8dG7JfMnnjJZVtnIpEGemK1rz/7WrFjgV032BO+mFGjwnPEuV3ZD8jcuaEcdHT46ybbVpyJ7YCYo7uBJObwJ3bMkxkbz2zy7cVujuxQ5jjbvVycdZUU83PEcJ9al3HsQoXLtmONXQbFTsq0ccFpV9SOPfWhLNXa/6MVs5hfxGrz3JucPJe8qBgFyieI2TqyfuMTie1cHPPryHlY3cH+nBpu+42/sJPl3Xf78IoVYRz5MDPVCvzI8Mlv1n3TTAo3n3FGGHnmmT5sjnDrOet1xXBdl5+ndzW2BOka+MGtkPMxbcZHDmvCCXz84NzwCXoavW8zqx+y5kd7eDDLeCzOYtcuebCu3/g65uup7tqf+Qt7yjb5E9pp/Ak1smAb4W3idqUGOvEQMxg+SycTmjwaqE+PWrQovA/ZfcNw39gxVA12LPMSoVqs39csrA7m57HzUNZh7FbH8PRo5bEaH292GOb16WZPAeU689LLynhLt9fBa8zJ720L/Sm4rA6mTXtdkO7Yy0j/2EmbjzK2C1V62Nnf/W4xbL5NBPqzzjiYnMlHqLLiBnA46ci5559aDMfmAttn/H3ILmGZ2DzK6wV7MiYPy7qV94c3XruCwv5E5e5f/SpIxqdcrjZl86Naldjb+katCjFs0M4yIYQQQgghhBBCCCEK7Pcvy0aMGIH58+cX/1aX2b61ZMkSHHzwwcU0J598MgDgiiuuQF1dHe6/37+lnzdvXjGPjo4OHHnkkTjyyCNx+OGH49JLL8VLg7XbQwghhBBCCCGEEDWlbh/4E6Xs92aYo0ePxgpr1lCGL33pSzjvvPNKPp82bRo+97nP4Zprril736233oq2tjZ0dXXhPe95D97znvfghz/8YZDGde9GXWe6RbnB7N+ePTv7SG7Gbt1nSxO+z24P523BNo4tJ+zR1BwX2wLO5mX2yGm+z+YRWMpsokrGzoW3DRQz0eS42DH3nGe1dkS8v93ufacH3Wm2bHMVeUu73S4/bpwP0wnZJWkDs0sg3CN+333FYMPKe4Jkc8gOZOvWUJVu2lQ+O8vhbIcW239uydvm3EDWVoLLM423q80bJ/GzAKF5BJuPmN35gZmebQPuQyuOnDZmyswcPrcj/IDl3xaedRz7QGP7LK8pszGP66I252FvLdRiZm58bePYLIfDe/ZkV9GqCrZKmzIlOx2LpzWjZvGs6zZjtApizR8bToNpJhkzH8lK11faAB7AxtS+jjqA51sgbDsel1bF8Nz26KNhHP8+ZmUwUEfXX+/Dy5cH6XruuqsYtpZsPCNuicS1ZIQBoPnss/3F+98fxO1a/MpieOXK8L6bv+TDkyb5XK0s/eU55/gLtrMCAHq2EjcIfM3moGbBU0cDbIYxA6wnk+WYufWYMdlxMZ1sp/Q82PUaT49z8EgYySZSV1zhw48ZIzKrGJmYrTcTs4Xk8mL2ykbBHUUPO21atoxwG+dYkveJbWNeJ1VLzOSWn8dY6cXUT7Du4G6y67zTT/dh+5t+Nc9mzSntvJTFqYtCHRxUhh/0puwFYfPpbwqu2YKS1YP93nHGGd5FiG2fU99f3pwYQGDL3ERK+KgrrwyS8V1Wz+6kjpvzhS8EcfXUBnWUbqrRRSMmevNTu87IO0/nxc6VgfI25pX49a+LwY23314MP2Py5DbZaOJYqxxu46ZPBwCMroV9tRCDgF4i9pOzzjoLDz74IFatWhVN19zcjMsvvxzXX389tmyxS1ohhBBCCCGEEEIIMRTY71+W7dixo2heee6552am+9jHPlZM97a3va34eV1dHf7u7/4On//85/ssq6WlBQcffDAetT89CyGEEEIIIYQQYtgx2CaUMsMcGGSG2U8zTAB461vfis997nN48skn+8wnSZJKqyiEEEIIIYQQQggh9hL7/cuycrzjHe/Avffei6lTp+KGG27oM319fT0++tGP4otf/GI03QsvvIDVq1djzpw5YcTOnd7W3xirN5E/ldbWJmQRO0qa/SxYU372oWJ9NnGc9cHAfljsMesMH4Fs/bXMmlW+jkDo/6cp5viJiflGsg3E7cxxA+HnKVZ/qnNra0MQxT4k2D+DrWJLo/dztOaAMI/gse257YF/iZt8mB1nAMCzzxaDJ7761UHUSy/l+x3imU2+XlPtmeJcyWqdNRx2mA8bZxY9zd5PivUXspaOcbfiw2OFq2jP6OD7bP7szsM+GjVrgB2HnGdnZ9je8+Z5XdJiB5Ht772FlR+WeSu8JAtrNoX6jV1sZIWBsL1i/rps3/D44rBVFZyHFV1yhRL1K8hxto4NO7f5i8dMn2XotDpTQENELwYaIaYjGdsI3G+2rFj/clxOpywlvlYi5E5LflhwwAFhHHX+VHYeBQQrpLZF3p+Z7V9+TOtnh+dO67IlaOalS4vBrqefDtLxtL09zALsZa3VxLHDhzYWwuOPDxOSn7I1HacGUcuu9WHrK4l9DfEYsiIye/aMYvhk9l8GBM9dIp8PPODDrM/sQoYHt+mcqeyji+q1vXFCkI5F0opxTHStTsiDFbM5jWv8xZU/DyPvvtuHyaFTlxE0bjnr+TDojpiS5Ad/+OEwHXe2FWRuc5s/9dUESrdw4VFBsh07fLjMOVsVY6dDO2argac2O08ztgnYnVzMbzDnaWVw69bssmPL4ixsPWK+hwNiXxQ4U9vg1CjGJSPuvdeHWexsG/D3CTvuWlvrKC70ytjCA27xYh++7bYgXSPp3W0IWU1hO+vMuPpqXxaPDeNXcAr7MLO+A3eS0Ng2tmuqXipZL19+uQ9fdVUQtYYc8bLHxE6TBbfJZBPXQeFpdn55/evT///+731WU4ihiF6WleEHP/hBxfcsWbIE//Iv/4IXrPfvAl1dXXjf+96Hc845B+Otd2AhhBBCCCGEEEIIMSSQeWpO2GfZ/PnzsWtX+NtdQ0MDPvjBD2LjxvCMkNNOOw3z5s3DCSecgBkzZuDb3/723qy2EEIIIYQQQgghBgCHwfc3Jp9lA8N+v7OsK3aWeIEr+LhuYsmSJViyZEnx+oMf/CA++MEPFq9X591LvnMnYMwugrgCJeZrZHTB5kBAuEuezSPs6eIjRpQtCkBo6WBNmDhtbAf+2LHlywJCaxi7Y3vKWDI2eZjML6xpGRdoC+At4byHHQj3czM55KFiOE/byNSwbW3hxuaGetrsTc9dYnK12nf2tHmhaUNdF22ctm1HQrKLdkQ2WLlluTNxzc0zi2FrfsRdE2z5t0JSi3Oys8xqEZdje511X+yeavPnOK6+PVKczUli5kEl2jyvyV2tiVUyYj7V3ByaYbKYx0ykuB3tI3PaWLXYlJzNgWy6MWPCOLakYB3c0mwMNXjcWHsXbhPbPll9mNtmxhCTicwB28d91cTZz2uhA/JiO5g73+o+EsKmxs5i+Nh5HSaZN3a15tWbN/uwnX/5sdfSGqAzTBaY1dmWYjNb66ghWPgeeaQPL1gQJpw719cjtByKTl9MljUfEJpWzZoVmj8GpknLloU38uC2tltZBVjYhIn6s37xK4NkDdzKjaE7A342K7oHHujDecW4xCRwNZldWZ8XvICjfmq2wjRypA/bDuA2sPaJrEuyfD8Aoe1ozNTe2phSnbmB7DDkx66FBwE7lFmOFy7sf54xtWet6PjZbNfwNa/brZHK44/7sF1XWIu+PHBXA9mWfoAxd7c+nu3Cr5fp08NrWkc+FloBYt06H86y6gRCmbFTJbd5iSsFcmEzgSdqIwizSQfb5d8zFG4wccHWiYce8mGWfSD0L2Nh5WEFKMvWu5J5k2xd1xvh2pIRtm3Axq1W5GbyBZu6AsBJJ6X/f/SjvmopxJBELxGFEEIIIYQQQgghhCigl2VCCCGEEEIIIYQQQhTY780whRBCCCGEEEIIIapBO5D2TfSybChQXw9knZCZ0ybdJmN/BOzPwPrcYV56KbxmNxTWLQH7YGDXFrHjqNmlhk1r/ThsJ+8rTdbHRlYmthG4cOt/g+P4QW1FauFLh3x4bKvPPq7+BeNWbdIkr3brYo4cYo5k+Dkjji0a2LlcBc7rWM6sn5GsY9B37gynk+Zm76st0tOh3wzDhlEziuHNxn0Nu2d4/vnsOlo/F1znceN8OCZm1g9IzAVelk+u2NHyto05j1mzwuPSp1h/GXuLLP8aQMnD7WqbWgw/em+YlJ87JuLWhV9WnG1X7iv2n8hDAQj1llUjfB34Kcvb8RZbySyHUZX4FKsmXey+mL+xvHF700cZEE5udiLiDrf14vbn+hs9OG2a12FW/Hlqt36IWO7YS02Ye7hQs97qWJoajJ+gJi6QfYOdeWaQ7s+bfP3vuCPMn/00RdxeBnrQ6lK+z64zAp9xxuEb+89pfvTRYtjOBI3cH3aes/5/CjRYvzqUR731H0peibZ1hx6Lpry0huo1A3mYsPb+8IMbb/Th664L43ixleXbFgAOOcSH7ZqJHVKVOEzLIKZ0Y844Y87CaAxNifg9W7RoTt/16wPrli+mdvPComWbIKYiueyJE8M4HqI8J9l07ArO+ns75phytY1j/bY1POxlssf4vg2wCiJrTrG+90gpNDeHa5UsUbOfs2hZPcJtF5uGFiw4thhuOf30IF0L+WPrJn0DAJzlMwghz8DYRUpx6q23ZlfEOqflDt+wIYzjhqh27qR+W2+i+Fg6XrnYuaaVwlNNXP3ZZ/uLc84J4nYtOBkAkDSbxZUQwwS9BBVCCCGEEEIIIYQQooBelgkhhBBCCCGEEEIIUUBmmEOBxsZsEznechvZRx6zHuQd+TYL3gkc2TVdsvOXzS/yWjFayyRO+5g5rp7zbCNTrdbZ4ebflkY6tDmy931LZ/hemC0zNq32YWu90IFsYmaBzBZ408tOYxHCW8enTDL5PUz2hMuX+7B9TjJdqYvZwdo46sQesgWoY5MQILQ3MPv/Z17kTTrGHBqaoGze7MNcfSsHfH3eecikIaKtbrvNh60cx6xJGGudwlYiRxzhw3yEu8WOLzY/smYbWRZqtn3Y8sZa4bBZgh1DbW3eXMhYXWWSV6Zj3LM2NGGKWemtJbmw9ef2iplksomshS3urGkYq1y2WLVywCJ/2GFh3FGt3gQLt9B4tXbrrGitnV6sgbJsmS0xe9O8JpRZdsFA2AExM5BYHbnsmE3UQJho8kCxgsBYPwX83NyHxrSvhYTppJMOz8zCPjZXhWe20Fg/NE9vsJPUX/+1D1vZ4nqSacwj3TODZHcs82GedoCo+s8U3Zj51NKlYdz7LrrIX7BdKoAJl1/uL3iyNCZSwX22DbJ8BUTcGdR17wrjSCk3Npve4Qabls8MM5gQAeDXv/bVMh3A0wGvYuwoaeJGtzLOpq6WLB3z3HPZ6awgxMxgWUh44WjNMGfNKgYXnFudGSbPXyfPyzaF70FoBph33mtZ7yepxo6wjlvJjUbMLYoVOzYnzPIOYuG1FRCKdcwLAsNdAQAzIjf2kOTVWftNnjB58WLsYLfs9K5VrKUui13MVQyrYNvGeT2VcFsdfuCBYUKqc6vRMU0UttJizRqL95ix3MoLEvsAJP+4++4wLmsBZ8d5xNXBCgqbpVZgRsqjd7JJx5pv8imnhJG0eN8+/+QgannBAtSuzfc1HLQDaV9F/SqEEEIIIYQQQgghRAG9LBNCCCGEEEIIIYQQooDMMIcCPT35bMXstl3ap533gLWYhUts67LddZ91OEslh63xfdZKgHcXc1wlFjo9Q+RdMPeNPS1xAp/39bDZzM12aWwCETOpsHCD2caj/e51bNpjT+lh+4JVq8K4Bx4oBqccGUZNme3z7Oz0JoHVHuSXl8gwiZpBRQ7nwpQ9/vyjF9tDU2Auz5pactNZq5a8p3PxaXoxKzpLrds1L9YCkesYi7MWBTZtL7F2s/fEDpHiU8hiuo6HQ0mbZtmexU61tLa09vhNhgWKH842Ql7zR9tAo0eXv8fmFzPlzBs3mMR8CjB2APN1lr0UELZXxMrTNiurcjbtCY3EgAY2kTrjjDCST3SzJnBs70R5rL0tTBa6PQjjsqysgOxDEWNrCWvm+dvl/mlfYc2NHnrIh9mGx9qQMbaS3N88j8YqGYmrb80uj8357PojMPWL+KSoN2O7levFp51aezU+EtHKwaRJPhzTHdxWdrEyf74PW/lnQeBjG4FsHWnrQaa0tnvzmhZym3c32lHksRogMDOMmWRSm9guZPUQc0di1U/W+sGKIB3UWDLuuCnztpXNY0ZbzsW17XsukCpy5wNNQbJ163w4ZobJ06GdGrloa43O1zH1HLTrwQeHCcnEtM6Y2s+5+eZi2J6vy1myAfdGk66Z1sv1I0aEkStX+vBdd4Vxl1ziw1k+doDolz0+yHgbQniksOmlPZ2+nTvkVa8KI0k/xNSzEMOR/eJl2aKTjhvsKkQZVTei70RCCCGEEEIIIYQYUgyNLRqi1uwXL8uWfX1B34kGkfd+4c+DXQUhhBBCCCGEEEIIAb0EFUIIIYQQQgghhBCiyH6xs2zIM2JE9nH2bIMecdYT85HAt1kzeXZLYc3fY76e2I8Sl2X9OPB9sTqyvwebD9/3/PNhurY27wursbEhiNvZ6cPG/UBwHbOvZ9cflfhLY9g3UomLoE56UFsRriQ7mLA+y2JOlbIEAQh8hAR+cNg5hsU6m+C01tfZ3LnFYFubP2bdPmaWb6pKYHc2lTTBlCk+PHParjCS23/ZMp/urLPCdFzgvNBPCsuubZ6s4WxlldNZPyM8Tux9Wf6EYtTCzx/7JgFC1cY+3IBw3Ns4bi92z2N9KnH+Vpb4pHarYlnfsb+6LFUMAPakeazr9GEe6FahsSM0q4T5Qa1Q8ANxOqtMY47c8vozi/kXy5suxmD6L2MlYJ3SxerFioX7IuKTrm1uGMVFW39CgQ8e7kP2TQUA55zjw8av17Z5JxfDVgdMWzijGF5PTmus/0QWSSv/HBfzB8lYkeOms2sEds3Z1hb6OTqK5yWudGyhYRUEF84PEPPLZ+PousSnVTWK1t7DusP6CmPYb5hdsB19tA+zjzIgbJO8vtqsDmPhtXXk/uBJFQifNbZYpHFpuzAv3DcNO03+JNhRf3IxqP6VrFvy+k3lJom5prV5VLM2LZnn8upn0znbGycUwyxKdqm4YUN2UVk+inn+BsLntC77WE/Z4cvtGgy9hcZRLd9oMmmk62nkewwAtlOmvIo0EhjE1duFEjlz7DRlt2b5FawAnhommzj2cDifI8iHG4DQL+LZZwdRPfOOKobXLguiik3Zk3OYCTHU0MsyIYQQQgghhBBCiCpwg10BMSDIDFMIIYQQQgghhBBCiAIuSZLBrkMunHNJNXV1ziG58z0DUKPa8d6vr8a3r7wRQGVmULFjykVtyL09P0Ksb2qR/3An97HtOfOohFq3/1Adh3tTzioxcRmq7VUNGssC2Pu6aF8aQxaNqf2Tqs0kI3n0N7++8hwq5H22WrRxuXyGE9IvtSOPHJxwwgIsX758n918NcO55O8GuxI14APA3UmSDO2TEfcyw1fLCSGEEEIIIYQQQghRY+SzTAghhBBCCCGEEKJCHIARfaYSwxHtLBNCCCGEEEIIIYQQooB2lg0xrA39cPYHsC9QC78Xw94vQt4jxWNEjrvO63uv2nbMfV/e58z5LIDGL6A2EPs+NZFx1j8RHbM/jaesZx32c6ooISbXtZb54e5H1i5VIuoiN3l9x+5P+ic3WWvHgegozrOxMYzr6vLh5uYwbufO7Dy5XlXWUT60xb6MJFoIIYQQQgghhBBCiALaWSaEEEIIIYQQQghRBdqBtG+il2VDgARO21aHKLXYkp93e3stqNVx4AG12Dqek1rUt+o8BuA5tTV9/6Ha/o3JSJYsV1LW3jQrGhD9UwPyml0N6hgl/bO361GNDFr2Zp1rUVYlshmbw6uZ3/d2/ashJgf78lw2HJ5tLy7JhixDZW4BkN0hA9FRsTyt6SVjTTYHkCHVN0LUgKE/KwghhBBCCCGEEEIIsZfQyzIhhBBCCCGEEEIIIQpoM68QQgghhBBCCCFEhThoB9K+il6WDSPsKcQN9dlx1ebZ33SV5BEzva/GBUAsrtr619cP8BHjfJxz3kpGHrSuWr8EfOS0rUesXrE4rktWGPl9hMTaO6xGmB83V0ke3P7cBhZO19oaxsWO3abr2MndMeoj45yvbdEc1xJxZVFrqn3OvNRCF1nyuhax6RrqSZ6qHSdEXawTY+kGE6pLXfeufucxENTt3J6rrNwLXZMH67BK1CfTtLPT18Pqcbre1V3dcpyrbMdobJ7L2yp5xT+WznZN1nQWjLtKCo9lHlGmsbknkPmcchzIY19wvaqd36sYX7GxHJWIvAuxCsZQNeqhFnkMBNWOk7zjJu9cb5c7nEdTRMxi9co7zi2xJVRWutg6z5IldtE1fN4HBUKFmhW2xMay7RzOp7PThxcvzk5n81+xIjuO17Ts9yyynu2pb0AWQ3XsCVEtegkqhBBCCCGEEEIIIUQBvSwTQgghhBBCCCGEEKKANkcWWL95Oy751z/groeew6iRI9BxwFh87SMn4egLf4G5B7Vi5649GNs0En9z3hF4+2vnAACuWLoKH/u3O3HgpDHYuasb7z33MHz4LUcBAC7/5Z/xrWsfxIi6OjSPrsd3PnEqDp85vmzZDklxO3C1x1YPxLb1vHF52b07vI6Zl2XVv5LnrOZ59vp24VgjDEUqqWPG3ncr4zFTwn4WVSYuLLsuK2G1VGBakkVMxqsdo9XqlWqotv6xfDiPHTvCdCNH5s8zD5XolIZq5LUWSqYSW7a898XyyDvAhgO1ENCImV53xEwyOn9V2Y610J9Z+fWVZ1aVY49i1wF561J1W2WktToxr2lzyX2UP5smVeSmYaDHUF4hqUE9YnNNrI1jVm61luuBWGdkpas2zqarZNzsTbLqXIv6VjIN5aUm7lMsWY0Qc+2xfn123AsvhNebN/vwvHnZ9+UVyrxCWGUj789ml9qBtG+yH4u0J0kSnPt3v8HbXzsHP/3c6QCAFY9swobNOzDrwBbce+UbAQBPrNuGN/z9zejpSfCOsw8FALz59Jn45scWYfPzO3Ho+dfgvFfMxPQpzXjrK2fjr95wOADgv/9vNT7y9T/ipq+/ZnAeUAghhBBCCCGEEELkQi9BAdx69zMYWV9XfLkFAPPntGH6lNBT5swDW/CvlyzEN362siSPieMaMXvaODy7KXXc2tLsf2F8cUc3nHMDVHshhBBCCCGEEEIIUSu0swzAyse34ri5bbnSHntoGx5+qrPk8zXru7Bz1x4cNXtC8bNv/fxB/OvV92PX7h789ltn5crfbhGOmXGxCVBsR2/MyoR3CccOYLGHumTt1I0dIGPzmDYt+z6OY+z2Xj7ExR7wEqt/1iGUNv+OjvL1qAQuqwmmIo895sNPPx3G7dnjw1xJexojP/jcuWFc7Jgh7nA+KWf16jDd2rU+zCfxAEAbjZsRI8K46dN9eMECquPhQbKtW3140iRUBct/7KCfklPUuP2XLw/j2N5v1SofftWrwnRjx/rw7NlB1M7WqZnZc3dwHa2Z4Xiy3t60KYzjLowd7mYPTRpIuEmBsF5WfGJkiXws/0rMX/g+zt8OL6Y5/P0EM1qpA7hzYgrHEjkpNre9eF4lHCub84id1FVJ2Vn2GNWe6mfg+TFqXsM6LWbbEzvljLETFAnNpk1NmVnYeXrUKB8+8XdX+Iv588OEZHrT1Tg1iGL1bKvflrGsefbZ8Jr1rl0HxLqKn4311osvhuk4T64vEI4pO/bY4ojjJnR3ZlfEVri+/EKpzs6VsTyoYbsRngLXkNPMk6mzjczzr5VPblieU2253ECxY0WtEsuSfzvZcPvYPIi6rMUbEHa+aeOdzV6u7RIkZnmWBa8rgNBcP6bjY8TWs3lVsO16vmb9YOdKTmfj+HkuvDDfCe7LloVx3G3z5mXnYedf7tKujOmwL9rbfZhFa8yYMB33odVtsUMceQiNH++fraHbnErLHWUbmYXSxt12W/k421j8oHwPgEeee87fFt6F1yxd6i+qnDs7TzyxGG61A+Dcc3140SIftmOZrnd2hOv4WNP19s1w89ggRC96WVYhSRJeX3PLE7j17mexak0nvvuJU9E4yjfp35x/BP7m/CPwk18/hs/+4B788JOn7eXaCiGEEEIIIYQQYqCQud6+ifoVwBEzx+Puh/P9DHLvI5twWEdr8frNp8/Egz89H7d/+3X46DfuwPrN20vuueCMWbj+d6trVFshhBBCCCGEEEIIMVDoZRmAVyyYipd278F3r3+o+Nldf96Ip9aHJ5KsfuYF/O037sAHzi/dE37SkVNw0ZmH4Os/Tf2ZPbrm+WLc//x+DQ6ZPm6Aai+EEEIIIYQQQgghaoXMMAE453DdF1+JS776R/zzj1agsaEeHQc042sfPhmPr9uGYy76BXbu2oOxTSPxgfPnFU/CtPz9Xx6NY//yl/iHJfPxzZ8/iFvuWoeR9XUYP7YBP/zk4uwK9PR4BwglR9Izoa8Mxpqxs/sotvO3xznHXFqxT4aYn4W8LmusS6uYr7CsesXSxdz9xMz8a3EcdYwwz4gvEeuwK8sZU8zhRswfj4XzZ+dsNn92DmEdUcTqwg4nyKFEJX4LOG1Dzr6J5b+r24wodnRhnWBw+/AgOuywMB3lsb15chAVc3OR1b12rHHRsfEVGxt7k5jLoLz+j+w1t13sNPYYsfaJuOCJy2uWvzGbYbWVzvInVElnV+LIrb/p8pLXt1kfRP2U5SVWdt6JiJ6H/ZDZpFZdBmKSoS/7qmNe93I8/7IfRFt0LI+YGLCeiumALH82NmwJ2s5aAsQWK1w4z1/WHw/nEVkM1TebdRg/UHMLsghk1c6jnIedh3hdwHW2CjOvL6O8Pg1jDmIj8rltZ/Y6tYXvM+XWer5il68A8NJLPlytz7IXXsiOi62zuS4x/795sc3PrrDyYsXfuFvNJJaOfa7ZYRh7zqy+5zYFKnOlWRVcgB2H/AC2A2bN8uEHH/Rh8kMGIFgQrjZxf6LwCbZe7Bc3piQjtPKzHX98GHnccT48ZYoP2zag69gUbufA3irb74BCDBf0sqzA1Elj8LPPn17y+Y7/e1fmPUvOOhRLzvIvzqZOGoP1N14EAPj6R0+ufSWFEEIIIYQQQggxJHCQud6+ivpVCCGEEEIIIYQQQogC2lk2FNizx+9ZjpjvNGWdAw9garsxR8k849rsnR3rt+ZubwuPvOct55s3h7dlmVbFLANix13bbet5TSPzWh9Zq4esI65t83OTV7vNm03xdhoThba2OcVwu9nenmm2EbOXtcSOe8+yQ7P7q3m/vs2D9+QbW4Bd9V6e7r3Xf/6iOReb5eKss1AVd92VHTd6tA/bpmtvn1kMzztzZhDHTdcy75lieEvj1CAdN8n6tUFUcHK4NUvgsZF1fLyNs2OIn2eccYtoTRj2FjEzq5hphr2PdQL3oSVmHcdYE44sq8mYmUyJBQQn5nDM3s5mErPBzVJUMTPMSswuuS55bdVjeiSvTdHethHmdrTPGTMzz7rPpiOmzJ0bfkBt0tgY6v+gKV980YfXGkVCdaxvD029Wex27MgsOsDqmK1bffj558O4LHNxWzbH2XqwCZx9NJ42Yh4A6lbe7y9uvz1MyMrjqafCOK4YT8a2n7hi7JYACOSgztqhfe97Pu6yy5ALugcAsHx5dr34mgXGjiHuqErcMVRjBxixmW/paM5OyxP1hg1Bsqb584vh2XOPrbxOBrsm3tLZ/70BbL4cW3bZ9WzMSjjLxYDNn03brAnlggXZdcniqLZnwg9u8TLYc9brMu9rWPrL4PrwRYuK4dZWr5vsfM46J2bOmrUuAuIm7TEVz23Juqi9PfzOw/nX2XHBBbAeAYD77vPh668vBrcYU0tWffcjZBGFO6xLllrAppzWPPTxx8uns/WgNomt5ez02Du17dqVs65CDDG0s0wIIYQQQgghhBBCiALaWSaEEEIIIYQQQghRBdqBtG+ifhVCCCGEEEIIIYQQooB2lg0F9vR4o3rra4INw62vmJhxP19zOOLnotHY78dcWWT5a4j5K7Jm8jHy+luKudqK+Ylg/wnsqiTiFq5qYv5g2LeLrX9rq3+XHRxIbxPaRmdifc9wg1iHAzFfRtRgj6wN5Yezue02H7ZizEWfeWYYl9e1EbuMsMT83wX+xtZnxy1Y4P2UrTU+11hmbB4sW9ZPR5arqoceCtPxWLBdw37Kpk8P4wbrmG7bBuxbxIoqP7f1ZcTEfB+yzyMrqjEfJ1lE3PGUDoXODJ9iMacpsbiYoxduIHs2e0xhWgc6TNaR9DG/iHkdRQLZuiM2uQyEP7OHH/bhiROzy7MDLKtPrTDx8xjfjYHPsubQ31hDPflVWrHCh61PHCq7xTosgte77I8HCMWCuzCSfcn4jfks4/Ebc70X82fD+Vtxaelc4y/uuMOH/+u/kMkDD4TXNKa2UCNMsA/KitdWhMee7fvvfteHL73UhyNy3PPVrwbXqyncZvyxtRxyiL/ghrR+1di3mV3IxBzLZi3mrEKOCQKntZ3PwvbTn/rwypVhOvJ91XTxxUFUz/wqfJgtWxZcTpg3z+eHCZXnB6Bhk/fztbM59F0a8zfGomZVPDddzMUsu8qzbvNaVnsPWD3zjrLVLs/SpeE1+82L+CzDTTeF1yTnU6mN29pCH7D8nOwiCwhFhP2TxtxjWhGP+T7kvuE4m39wn9UPrJ9vuSWMI7m+n+bbjWGqwGeZlegOXsAtXBhGxpyq5mQ7fQFrMF/G6vfs8Rc8tiOLyBEHhfLPcm1VR6/Ot/OTEMMF7SwTQgghhBBCCCGEEKKAdpYJIYQQQgghhBBCVIgr/Il9D70sGwqMqPNb3CP7jrd1h2ZuLfAmHNtCQz00t/vruq5tZfMDEGytt7uOebevNZ3gLbcxKxbGbs1lk0S7qz9rS3XstHTbdDGzEDaJi1m61hpb/9iW85ZmMtFZbTqH4UavxESKO5hNIp5+OruS1vyLTIKaWw8Potj8NK8VmoWr3BB5NM7DPiZbofGjAPHm4kdt6vZjqLnZjDXqt5gZIO90t/VkGbSmupzOjlEr1wxb2O1NrA6I6RG+tqZh3HbcxrFnHjMmvLb9nUXMypDbv8R6MCsyZocWM5m3DcRKk8NW0GKm0jHYLoIbwdqxsMKP2cbYwcxxMXvogTC9ZNiEZtasMI6FhO3igWzFFWnvntbQxKuue1cx3GnnRzK1b2IzQDt4jzjCh81AaW72etdWP8sEOmZOaXVMrHuzxqLNn69jIlLSrCzzPLhtQl4wWFl69tlisJXlwMp4zD6Ly47abnl6jOFGHa3XrEkHrdCwy8R1PfpoMTz16qt9xGGHhQlf9jIftiaaRx7pwzFdwR1l1wGbN/uw9Smwbp0PWwHitQWbr1l7RDYvNovFuvnzi+FYuwY8ZvwlsFwsPDlfHpE8GxeGZmg89mJrHNt0vE5is+mYiJfMQ9X4D7G2nHnN+8jUEkAoa5SHXSryMInpnxdf9OGYh5GYHrFw/tyuE1pNv7PMsO8QIDQ/vfHGIGolLTLJcLzEDHMGha0xfaBj7BjKS2SOJUcEsF9zJpPpeisvmG1HbdhQDE4x8rOnNdu0ubevenIOMyGGGjLDFEIIIYQQQgghhBCigHaWCSGEEEIIIYQQQlTBIJ2rJQYY7SwTQgghhBBCCCGEEKKAdpYNBbq7vVG9Nbwno/2WadbXhE/b0mg8XXSRQX+Wwb65tj4A2F8Auf0AELqvYBce1sdAXlc6MTcg7I7BNg+ns2Wx6b3Nn13C8H2Rk5Krht0CmRObo9TX+3fZLfwA1o9A1OlLRjqbz8Pk0cAKAvsSmTQpjCO/BQ+HJ7UHbhdiLhisn53+wv0OhL7CrHzyNTcBEMrW+PEtmemmTPHhVavCOHaBYZuVr1ku2IdJX3B3266x/rv2FuxbBQjHXmx82bHB/cYqzPZhlm8zIGwfex/rFU5n+4nl0z5bS1uGw7qYA5VKfH5lOXqxfpKyfIMB4YCwjvO4zjGfULFn4+u8vsgG2kdZrDzryC6mW7N80kUc5pT4E0JDMWRd0nHadvKnZb0HtXB5RsnM/Ku/8uHj54Y30sB5pNvrMFt9doPGrtOAUGRiOiwmBiyuc00VzzzTh+d0/imM/PKXfZgb7/bbw3SHHIJMaPLppI+zPeyg9AHYmVRkjZaX7eaam9W6tWMPmS0kI812UmU5tuOc2yfm3yqmaHnis87qWIBs+9Ak2E1K3g6TRvZtFlkw5PYvFvEbmTsPi3U4RvA6z+oAbkr2yQWEPkp5qWW7aU47ebazfXPLbcVg3YUXZtYxYPny8Jrb3xC0F/udA0qdERc48eKLg+uOV80phu0aiovmbou5UYv5Lo2lDcTTdhTL8bJwQdtz3XXF8J9N/k9QmMfvZJOOryfYBdtpp/lwbB0QmzsjcQ0UtjqGfSZOpc6ZauWM/SQan2XtZ72uGLZr+l5XZ7usQ0YhhgnaWSaEEEIIIYQQQgghRAHtLBNCCCGEEEIIIYSoEAftQNpX0cuyocDIkX6brTWvoa31W7oagig+9viZTWHciBH+enSz38hvt8e+uNqHzYn0wdZl3ioOZB9Db3ftcpw1L4uZTzVnWDdZ66CYCZ+1RMiCy2LzzFrBz2nzj5muZBIzFbINFDPP4q3eZN4RNcGyx41T/rHb2KTAmhdU1QYGNoVkcwignFlU+Tg79Ox1L1ZWY3LGecRMCtjKJyaD1oKM87dml+PHZ+czkOQ1ve6LLAs4O+ZZT8XMPK0c8NH2mWYaCPu3xER2dqsPx+zFGdtAsfFrha2XSsww+draKLPgxRRtzNS7FgN4oGETvlj7WOXE7cUDKmJrbOdRxlossSzPoL7osv309NPl6wQACxb4sLVNIrO3Oa9+dTH82OxwSW/NQxnWWzEzTCayjCkxw5xTT0ZMPA8BoU0omwDNnx+mO+YYH+7oCOPo4SZw/rav85oq2jF5/vk+nFP+m045JbieSWalj5m03KOPUHiCMVXsuPJKf3HSSWEm8+b5sJXdLN3BvjYA4MYbfdjYEu4iOWuw9vTr1hWDLC7NVo/U2m+ANZnkMVQt9CwN3aExbVtbUzFsxYB1gh2+LE5shslhAKFPB9uHtC7riXxdD8wpFy8OI+3AJDjPule9KozkRQnbVxpbyymzvWzNnn14EMf6h7spZmoZW9fZ9mdRC5rO6pvrry8Gd/F4AsApnzHlbaEwa44Ok24ez7fnnBNGHnGEDz/+eBiX18VDBP6GaJtuC8rTYHQMX7cYGawjpX/kkacGcb1rqKG6PBCiL/QSVAghhBBCCCGEEEKIAnpZJoQQQgghhBBCCCFEAW2KHAqMGFHci72rO3x/2d3tN89aE8cJrciMi21RZmKHH7GJReyEvrxlWRMyJmbCx2FrARE7pIpNsqxZCG+F5/yzTO/6A9c5ZooXO+WvpYP25NsGpwfY3mzP3/E0dW8LP+AHD45lM1v82ayFzTkAPLHay6s9wIqfddw4H2aTSSDb0qwSuIrWLDLLnA8I29zKII8NNqOImQbEzJmslQmbi3LZEyeG6XjcWBnntPZAuIGQ5TxYKygmZqJp25X7hi1qYofBsj6wcXbssSURm8fF5MAyfryX//b2GZnpgnqY/Fpb/bl8dfbheCzGbIaZmJlhTAHF7OJjpqJ5T+Ct8hSvmsDtaE3sso5eBsJ6kWDvamwJkvH8+Ji1oyOsGWbQHVSPbmPKtpOU606jaFu/9z1/YU2puACy7160KDSTYf1m52m2xrOWbeyeIcvsHginjQsuCONw6Td92JxAt41MuVqyTIZtgbNmhXHc97HFRExGSA7sGq3hxBNRMQsXBpeTqQM6jbngloywpZX6uvXee8PI2MTE7RAzVyYTxB5jS8hi3BBZSDZzH1pZ5Thrq1gNsQVnLTA6q5Eu67p3maShm5TgPhJJNr20Hi9wBZ1eaSdZ0hd1RrYyzTLtXBBZiEVPD2WFxydsWmVHdT7z/Z8PoljdsQhGDh2OYtdarOID89Y7zLGct95aDFo1zqaXdhzyybozKTzP6ik22eZjgIGwT6dPD+PyLpIjDTSHGqHJjNE1FObliX1Oluq5V18dFk31P/zj84O4zs50vmzIHgb7DNqBtG+yX7wsO+6dvxjsKkQZ3Typ70RCCCGEEEIIIYQQYsDZL16WLfjCGwe7ClGeuvLJwa6CEEIIIYQQQgghhIB2DAohhBBCCCGEEEIIUWS/2FlWDSuXrsSDSx9E3Yg6HHTCQTjh7SfgiWVP4O6r78bWtVtx7pfPxaRDUvPJjY9sxO3fSo/+TpIEx73lOBx80sH5C9vTUzTOr28OjbpjPsUYe1w9+xYxp3xXlX8sLis/IO4ih4mZ5Md8obAvglK/Cv5dcMyXUVZ+sXSVwD4SbP7cPrG22kUHPzc0mkrFfAYxtnPYOcSjj/qwdZbB/kNsR1GWtm/Y5UnW8eg2+2rb+8gjy5cLADt2+LD1Z8ZybR+N+yPWxLF+4/62z8bNz3HkWqgkDys/7LPswAPDuPHjs+vFRP2RELEj6RkrB7H+5bZj/0c2jvVZrL0r8YmW5U4rVn/jTihwMxJz68U+VKwuCvzbxByyxXyKxZyzxSrGcZxHzC+Z7cSYXzK+ziprb8MKAQgHovXXSO28vd77KVttHNqwe54HHsgumv1/AUYmFywoBicb313sgLPbTsZ8vWJFGMcCS8LaYuTsnHNeUQzbrmeXRNZ36eOPoywxd2AlXc91MX6sWtg/21ln+bBVhNR21h9YAC2UeppDv3N13Nc7Q11X3+y9Etkh2vCWt/g8IzqS4+ouvjiMpLLn/Md/BFEbqQ1W0+fWlSLHtRoZ6bjlFrroCG/kCZnHgsljIylCq2aDp7Z9w840OW7x4jAdx3FfI//cE8xlp58eRpLg2fzyzoHcdtu7w7U6i3VDRL/Z9Tira27ylSvDdMdSe20YNyeIY/dseV3A/rkt9FvI477DpA1k9x3vCCNZ+ZU4WiNo4FgXenZO7MXOxZy9dU14yinZcbwWalj+B3/B/h4BrCYfidZnGfvvmmDiplL4cI549avDhCyTtq1YacYWK9VCi+S2228PovjZtlPYeDnGRgrbEXk46y3jNO7ks88GADSPMHPvPoh2IO2b6GVZGfbs3oO7r74bb778zWhoasBP3vUTHP3GozH+oPE44xNn4PZ/DxXNhIMm4Nx/PRd1I+qwfct2XPuha3HQCQehboSGjRBCCCGEEEIIIcRwQi/LyrCjcweaWpvQOLYRW9ak79wbmhowqnlU2fT1o3wzdu/qhoPbK/UUQgghhBBCCCGEELVFL8vKkPQkgAPu/fm9WP7j5Zj7yrlwdfEXYBtXbcTvvvE7vPDcCzjtw6dVtKtsV089NuxITQJeNNuTeYezPYn52Pk+bE0/eKs3b+22u3mtSQETM2niHcOxPDhulHnXGNtZzGZXMVO5ML+wzWP14rJ5939TY7gdP+/2/xh5rSSt9ZQ1efGEdWpr85vAV5uTsLnsw6eZxuPGZDuZI44I0x12WDG4rXFyEPUcnU1h+zcre2uGyf2U2xzCwDvaY6Z+ViZiY4NNBdhyy8ogp7NmAzHzo6xd91ZeWD5t2VxezESZibVxLeR9QmuY/7Yun6c1g+Xd+tYCjuE2YZMTIOybSeZgYb7PmlByHLe/bTfWpXzEPRCad2TpFCB8NttPjY3enKepNBJlyepcoFTI+TqvXbwtlwWvWjPMwYRNz9gsDAjacsPu0MBmZKu/Xrncf/6YsdHha+sSIdYEQVedc44PWyVJAtpsTTS5r4yA9pAJX91yegA2bwQw9UJfyXPOCc2z2BzMWoCy1WfMypYt7ho2PRNG8uCbPz+MyzLNM+OkZ7Y3S3vYzIFc5/Z2byTVZiyduruzdR+bYlv9c+dd/r7jj8/MIuCZ5tCMbuqZZ/oL08iTr766GN5G/WaWioEplV36dLCAmr4PlBPL0pQpQbK6jDAANCAC58/jkE1nTbrtzeE6I+cSKjQXtDoy4kskuC+2BiH92RQYrAHB16nOULhaSY/E5jkW65L1K0WufjSMeuklH160KDt/htWBxVrqMnc+0BRcT5/uZXnq6dRTVs7I1YcRrWDY83rKtgGnmzcvjDtqNvWH/bJ0JymFq64qBjcac0RW63Z8scaxxqZ8XXfRRf7CdgZfxwRhIOZR0p+NZn6fd/PNxXAnfW5XCyzVtn2eoPE184tfDCOfeir9v3EjhBiOyE4wwjHnH4OLrrwIXRu78NCvH4qmnXzoZJz/rfNx7lfOxYprV6B7V+RNjRBCCCGEEEIIIYY1DulLleH+J0pRu/RB49hGzDp1FjY9bt+jl2f89PGob6zH1qcytwUJIYQQQgghhBBCiCGKXpZl0LWpC53rOgGkp122HtiamXbb+m3o2ZNu3X5h4wt4ft3zGDtlbGZ6IYQQQgghhBBCCDE0GSIORYYedSPq8JvP/QZuhMO4A8bhxLefiCf/+CT+8J0/YMfzO3DTp2/CxJkT8ZpPvQbrH1qP+z5zH+rq6wAHLPqrRWhsyetlISTmbynicgEbNoTXnJbN9+kEegChDyEbx745bL0mTvRh9pdg4XpYFxJZx0XbstldTsylT133rjCSK22PYmbfT2vXZ6arY8cIVfoNaFr/hA8bXwHN7d7fmPXPwFVZn13FwLeZ7YuguNhx1Acc4MPW8Qo5sLBuKNifk3Wzw301oZn6xmbCQt4aOXo8QsPKe/yF6aemiKO7lix/LQh92HDf5PVBZ9Nan2483jidlXEea9xNQOj2ogFG/tn5R8w/BlGtz7jMcgG00AO1mK7gNra+gLJcbVk9yDosNoaefz6rwuG4sXqK81i3Loxjn2Xch9Y1GIuglR9O29SaU8fYAmK6iePyCq/Nj+/LW5a9Hkz/ZezUMDKJbN4cRnEzsy8y65eM/WRZdzkZRQEwKvmcuT7MzvyAUsFjWOiNz7JtFG5l52PPPhvmQUIfem0DTp2drZPZXyYPeztG2QfSru6pQVwDz7Gnnx7eyJmSj6ue+tBLVmxtxG3MfWPHOfe17Sfra5Hhrsnrs4x9vQFA48ITiuEJ7zfyOWtWMTj7mmuK4RnG3xL1buC/DAB23nqrL8v2J3cON5ZxANlC4Qbr1Orgg33Y+mniPqV5aE1j6LeN++axO8IsLrwQFXPnszOC644Ofz3JJias385gTiQZ3I7Qdxc7iqtvtqPIw/54LSzu1vfe+vU+Tys/vJbI67PM6qmYP2DGftfgefXpcb6NDzggbP8ZNM7vM24XWSXz2Dv00DDdm8+nvrBO1y6nTM0ahB0vdv3qV8XwPWEqsDfFGSaOR03H3Llh5Gmn+TD7njTjpKdjJrIIvr9Y5VSLuZPHoVFwddQBE6hdtz0aOsdjHWD9mT1C4R4j5DO++10AQJK7skIMLfSyLIOm8U04/5vnB58dfNLBOPikg0vSzjltDuacNqfkcyGEEEIIIYQQQuy7yFxv30T9KoQQQgghhBBCCCFEgf1iZ9kNn7ih4nvGjB1T1X3V0FTfhlWr0rA1J4id+M3YXcdsUhAzIWPTJ2udwjuB7RZttuqy1n1Z9bJ5lByNnXFfbAdyaN4UmmbwszY3tyCLhmZ6gIE4spkb0jy0tabKiuNwbBu/JWhz2wH8bIsX+7DZYr6r0bddt5EzlhlrhtnUSFvm2dQ1ZjMTE4pYX2QJPBAKaCzO5D+DHqitrSUrWSBn1tqRm9LexyZ8XC02uwSyTZIBoG4nHZceq1hOrAlKNdSZSm7f6fO08h5p/kzTDHvsPJuBWB3Gedq+4TxZ31gLI36cmOhynH0Wzt+KYGgtHrZ/W1u2OU8AmwDFVJYxX8tMZj9obCqXrOr8B4KoCfH8+cXgtvrsNl1xW3idZQpv52JOZ4ddzMQ6uF640IetLRULUMyM/bbbgqjWZWSaFLOz4gd44IEwjhchxnbrZDY5WujNrJ5YbUzZOr1h4GPrw/Y//IILiuE7nw5NNEdT+2yiR4m1sdUx7KbAmnozsamnOzK+YnN4Fna9xtZOkyaFplozzz7bX9ADNJj+bLvxRl9HUx6b4zbaBVvWBGZMwRrYxtRO9qw0yVTRXrPpojW1ZLPDStY4WViTap5vJ8XsMGPQgO2O9Huw9gHQ0ZE9r8bkjmHTS2sGXg1WjVjLvyxs2VnLK5vf/Pm+7+2YYUts5tgOY1D8H1f78O9/H8bde68Pm4m6ix52BX3+DEJY+xxl4iafcoq/uPjiMJIXejTXWGXB1bLquCGmZGoBN7JVoGTqzd8FWm65JUh27B00aJ9+Ooi7n8JWpLdkfC7EcGG/eFn29Mqn+040iJx//nsHuwpCCCGEEEIIIYQQAvvJyzIhhBBCCCGEEEKIWuIg31b7KupXIYQQQgghhBBCCCEKaGfZEKCry59sbH3isH+AmG+MmN+wmCk8+0yxvnrYfYX1tcKnj3Od+QhrIDxW3dros/sTa0LPz8P+K6yvj5ivGPaZEHNF1sANOxC+ArgipqP4eZ57LryNfUqwewD20WQZNy685vzZ7xYA1Nf766nkg+G/bwn9E3G7sv8XIJSZEhdZ/Kzc2dU4eekLftBKfKKNGuXD1pEJpW0KBD7sw/b2yZnFNTz2Z39hnnsO58lyZ52CcJx9No6L+STK65CkFpg6NrZ7ebLNz1W21WffbS+95MPcZUDcZxkTi+Mmt77NWKfZsvm+cKyF6Xgs2/w5bsyYMO6AA3yYuzp2srxVYXndAMZEiUXXxvG4j/lji81DA6F2md8s936yjNutoM2Ni5agT1md2fmW01l3Ttw+No778c57vb+3DRvCdFOmeB0zaVKob2Z2kEcq+3DccVxJdhAFAH/8ow/femtmHt1GN9WzIyXyuTbT+q0iv2ezl7wniNpFnoLuWxreZuebXqzvMR5vdg2S5d/pxBPD65j/xJhLTJ6b87odYjdwAPDssz7Mug4A5s2bUQy/7LXvLIanGGGaweEnnwwzYSE8/fQgqme2P8md28C221Hvf7+/4LkLCJTatrbQ59od5GuOdZ3Nn0XX6shqsEOBm8BWPwb78XxstR+jdq3FPtHsXN+yyT/4UdNawxu5UWhBtXNnuA6zuomJLXmysMswu/7MwrYrl81h+32Cr888M4xruOo/i+FjuXMu/WmY8D/+oxhcY+rFXw2s90p+1EcoPMekm0/h5vPPDyMvucTn0XZyEMVtsv5aH7brAJbB0u9b2X5BG+iJWB6tn86Yz9lld3jZbW09PIirP9hfTyPXbC1Wj7O+N/4xZ195ZTFs1FvRN9zuzNoJMbTRzjIhhBBCCCGEEEIIIQpoZ5kQQgghhBBCCCFEFbjBroAYEPSybAiwe7e3kODt+EDcNICZMiW8ZjMF3q1/4IFhOjbziZlh2m3xLfXbi+Fd9dnbh4Ot6QbeBm7NWtj8guOseQqbsVjzIN4CHdti3tHhzQb27AnjYtYAdgt0Fvev9Bs4W1tDU0g2RYiZS3F/jhwZxu2mvc3cn2l52fnz9TOd2aZyLHfW/GXsWB8usa4kM8+mmN0D702v1h6Lj+u2trr8QDETUCtAXJeIsDbxfTZ/tkuwcVl2yDYdd6Ld18/Xpv67ur3c7U1Fv615anC9abUP2+PqY0fNZ43tCc27gnRTJtHTRQpYuHAGsmAdacUgZuLC45fDdpxkiRIQ6iarp1gfWfMypsQEOoPY8OI4a27KdbZlcR/GdMdgwn1jzYh4CMXUQ2wY8tw5d252/vPmhXHcljy32TrGzOPWT/d6dt7pbwjiWhYvLn+j1ZG9fiDKFUAmmyVmmGy+GXE3wIIRmKYDeKLRmwBZ2XrxRR9mc9kdOzKzL8HOl1mwrNqxFpPj2BonC6vreA63Mshd9fjjPjyFzF4BAK99rQ+vWhXGcaZmocc6h/WNFZFgjjXzOa8Bu8x93KesV2Km5HacVIPNY9as/ufJTddQb9Z/PPfYxsuyBQaABx7w4UMOKQZPNuayO3dmm5Lb7w15sHpqd04bOXaPAGS7UrD5B213xXfCyKuu8mH+snH99UEyNu8zMz1YdTxj4rg32PRyvknXfPbZ/uLCC4O4XQu86eVKYy7OXR8z2Y6pyCyTcwAYP768EVhDBfMri6TVMXzNzzJ//rFBugncqWaANdFAP8r0W69CbSpRKkIMD2SGKYQQQgghhBBCCCFEAb0sE0IIIYQQQgghhBCiwBAxkti/cc5vT7fmO3wyUswUwJoaZJnl2Px5W3zshLKS/Hb6/cX1kdPQmGrj8rK3T1jLS5YZAlB6+l0eYm1lzYN4W3xeU63YqaI2jrfkN2F7GJl1FN5AEDsOMEbMRJPjYuaUvJ8+lkfeesSwz0Ydsn1n+NsHZxk7KLPWWBOpmFlCzIQvt8jkTFjXvSszrrm5gcJhHDe5NXNm/RzT1WzWZXV13kNMeezFTqSsVu/FzK3ZPGuo6tkY3F5W58baNToHEty/MXNiWza3c8xCJTZOWDVZ86z2dm+6NWE2PYw9ljN21Cc1QonjATaZYhMda4NFDbS9IzyJbfUd2UVnDe2YaaXtJ+5Tzs/mwX0di7PyzvnnHQtWRrhe1hVE5mHIVljZzs0eqckNa+5jVwpcj5K1CctBY+h6Y2fOKZDbtdqxlpeY2Xq1BP0bWwdYeGFmhXr6dB/mPjRCEju0Pa+pMWPbP+98a8vKmhtsc7B531Fs0guEp/Pyc5tTe5vJZNVazG+hsFWlvCxm0Wq2/mXYtNDoMDaTtCarWfOvbePYetzOuUwt5thY2VnzS8nh621+3LdYHc8nZ2bZCfPR5fsoA6B2xBBAO8uEEEIIIYQQQgghhCigl2VCCCGEEEIIIYQQQhTQyzIhhBBCCCGEEEIIIQoMA28j+z579vgj0mP+fmJ267Ej7znO2qrz9aRJ2ffZ/BsoXEeeTOxRxo2N/n1szNeNte1n+/2YL4uYz7W8vmimjPe+jHrqG4J0/Gw9Vb5bZncV1lfJ5s0+HDvOmX0HvPBCmK5Xdsrlwc9ty2bYv0TslPMoMYczj9Gh37YTY2fG53XWwJW2zn9igszXtoG4nhwXG2wxh0I2LstZFTv36CsPavOmWP3h46qV47zweErxY8p2Jz+OPZJ+/HjKoZ68Ja03/cvPGfMbY6HKWN8cDHe3dcXBYscibruCnzs2Dm37ZPl7s3nERDIv3IxWzGJzSMyf1lDxZ/b00z68bl0Yx+6dYkOPnzvmD4l9QAGhfxvrIofLZtliWQKAKVN82PoMis0vgYpZTQ93xx1hwmuvzYxb/9xzxfAT4V2Yu2JFMTyBnReddVZmJZtOOimIamz0ftWs/HB/xIY2tzHrDZtH1j1A/mnC1pGnG46Lyb6tEz+b1TEsg9QV6OgI9fjhhx3mL6yQcAFGCDl/TnbffWEWx1/sfc2tXJmdvW071pFcf1632Dxq4WPTjnNeU9q1bl74WdrbQ79tTdyudkKJCS8v6KjxdnWH/ctZ2iWOlZk82Hvy+iyzssv9zfWyfRjIRSySMyEfZQDARW8z9eqksHHdi6kUDlrVKkxWpsav4+MrfNiOjWqoZBlZC9jnmvWLyH0a83/KYnzUvEgfmgls56OPAgCSvJUdpjhoB9K+ivpVCCGEEEIIIYQQQogCelkmhBBCCCGEEEIIIUSBIWIksX+za5ffBmu3V7NZpjUvYKxpDO8u5i291gyEr/nUaiDchdzQtSWM5P3oWYUBmDF7dmbc+nZvnmWfm5NyG9jd7Vy0PS2dtxDbLc9sRtPW5uthd8u3t/f/fTI3VZvZH87bn2MWfDkt8Uri+DpmCcC7pq0ZJu+Yt9uygzZvjZhXckfFzDCrtdviSsbMQa39VKzsLFurmI2aFWTuOCuEWc9q7RzsoM0LtfNAm14y1pSZt/xXYiXZADLn7IzYCbM82faPQfdNmzajGI6ZitquYPM+xpp4xcZorMqs+6xlFVOt2RI/K5u02yHK9R8zJjsP60aA42KmJQNtrvnggz4cG17WNImfm3X3uHFhOjbxsjISsewJnvuWW7LrYds1K4+YK4JTF9FcbIXOVowgA2hsN3GPUPhwMplqsRP13LmZZbXNf1MxHDMvZvm0cz1fWzWbZSZsTZEGwvQpC1sWm0ixqaJNy+Hly8N07WfNLIYnLDQLDZ7gjZBkTV/WFJitc60K5nrZNQ5j+43hvrdr0Wqw4zAi4rmJ6ilWFnZ8PfywDz/7bBj3+9/78FNPFYPhLArMm3dqMWx1WDWya/sp79xs24DnHp73Dj00TLdgAV187Yow8nvfK5uJEXGsoXCniWulcJOJY5UwgyOOOSZMuGhRMXj/Y2Eut9/uw9ydlpiMxNYSsTk8K866vYnBY9aaQGd9D7FqnOvR2RmuKU9duNBfLFsWxDUWJiJnlYoQwwS9LBNCCCGEEEIIIYSoApnr7ZuoX4UQQgghhBBCCCGEKKCXZUIIIYQQQgghhBBCFJAZ5hCh1z2StXdnXygxm3brf4DTsk8K64uGr21cQz15K4n5aYo51Mo6lxxAW5v3HmDLzrKht/5IYscc83XsubmtYr5hakHMpxj7LQHCpuP2sG2QdewzEPrWsf5g+Fn5KHjrj4HztP6K2DXHtGktQVwdMuQnJkvVwrJlnW/kdcbBTnGAcPDxALP1jw0i9ntmHVllORqx9Y35PePybBxd15ETmIH2X1a3aWNw3d4+OTMtN8+UST1h5NoMJWD9wXDf2LaLOc2ituPbYj7LrA+PDRt8mMehHWsvvODDkyZl5x/zOcVhW49qyWqemF9E+2w8TGJ+oGLPGYurBewDLOYf07Zrluqww5yfO+8wt3BZdihz/rbsvL7Ugge/994wITnA2micZvFotpp6G4XJwyAmGGd+k+naaoM5Vy0uhrceGsb+8Y8+zM9ife7knV5iU03ePGJjIy/2ns2bfZh1ChA+K48NnrOBUA4mTgzn4mOOObYYtvV/zruaC0RkxYowHY976zOL42JjO+a7kfOwOqYW1EKvRJcqsbmGG3bdujCOnc/xItA4tZr7fu+zLLZezkut9Cyvn7leRx4Zppu68wl/8fOfB3F/JqXJLbfalMX6ptXEzaSw9fLKwy3wWfayl4UJybHayp+GUY8/TvUyFcvyG2m/s8XmcJZ5K2c8tjn/StZyrFds2Tw/8postiQu8QE4N/IFNcv/rxDDBL0sE0IIIYQQQgghhKgQB5nr7auoX4UQQgghhBBCCCGEKKCdZUMc3pobO5LbHrWdZTVmt87yTu+p9aH5FB6mrePWdoX3IcdMwSI2lDMW+8psMccQZ5mRxkweYqYT9j42lWGrEzaHAEpNpqqBm86a6MSeJ8sEy27B5+e0Zjhjx1ZeRwtv+x45MruOpSamvk+bWJDtA9SCmJlkzN6AG2/8+OrKzjJJBkIbGms7lNXoVihiNikxO2QaRANtehlg+jdmRh08Wl4TbmPiFdg42gEc2/5P+U+Yy3YURj4pau7c8Dh5Nl/g6sZM5mPj17YPP1qsHfOaj9vxy8TM0GJUknaw4DpaHcxtac1O+D5WMXa+ZTk+5pgwju87fK4xNSZ27PBjtJJ5gqfimAV68znexHHmKaeECclGZ7Kxw68jIbS1p6ID86ktJt0EvrDjlyo5aVJohskqmdWbVbNZZlBAOBZjU0Esj7z558WqdM4jFse6w5rePUDmlC+9FMbxdYn5FMHyYtvYmn0yXK92awOXkb+F75s3LztdDHb9MHduOOe1dK4phnuaA2O83PC4b+jeHkbyZPDoo2EcD1LTkF20AG1mZXTAAUG6htNPL4bnzJ0bxG3a1JBZ5yxichDDrjF5jcxjo0TXXb+iGOwydoydFOZV0TaEsHGx7cH5fGFtQFmnXXyxD7/lLUGya37uZcaaIT/2mA9XssRk8pp6W/2flUclprRZ5tC2bI57/vkwHZdn1xwdHYcXw8deeGEY2bvW/fSnc9ZWDHWcc3UAPgTgvQA6ADwH4GcA/ilJkhcjt8I5txjArX0UsShJkt/nSP8/SZKclbPaVaOXZUIIIYQQQgghhBAixlcBfBDAdQC+AuCwwvUxzrnTkyTJ/mUQeAjARWU+HwXgO0jfmf+pTPx3ANxuPltbJl3N0csyIYQQQgghhBBCiCrYH3xbOeeOAPABAL9MkuSN9PmTAL4B4AIAP8m6P0mSDQCuKpPvW5A24Y+SJCm3v/KPSZKU3Lc32B/6VQghhBBCCCGEEEJUx1uQnmfwNfP5dwFsB3ChvSEnvTbS38tK4Jwb45wbAF8+cbSzbAgwYoQ/ktf6v2B/JzFfEDGfZYz1U9DSSAe+P2ycYLDTCuvAgp3pxJzusGONyHHaE0yFW1v9e9yYS6iYLxEmduQ3u5Ky+cf88TTkHD18GnjMLVPe4+pj/lSsT6LYaebsxyTmLyHmZ4Trb32ocHkzWfBqdWY5w4PDPmjMrxenjQywXc3e605DqxGm2Fnh7IDGNmxWO1inVpynzSP2bAPRzlXQUO93Y9fXh7/PRKuY5eAj5pDHDvRq/ClGKpXX11AlXRHTMXv2lE8Xe8yB6Pbh4JcsBreP1ZH8bNbHY++8DIS+eqyq4OnLzrETJ9KFVZLUWaNHe39dxl1RNP+8vocCmbELhPnzfXjhwrBs8qnUZvyZNVKmLCLG+ym46O0mj6ZbbimGZ555ZhC3eLH3TMQuoaz855X5WoyNav0VMXaa4OvYWm72bB9mH0pAuI6xYsZpbX2z1hn2OXkdY+WT67xgQRiX5deU8wNCX391d/whiOtZeLKPK/GcV54JXWvCD+64w+dxXnUOuxrWrvYXtoGefdaH77svjGPhNfLPNkRNtK5uu+66IF0Td75p5JPPO68YzuuflLOrBNv3hx7qw4ccQhHXXhsmvOKKYvDPJs9NGWH7NaaDwkfZin3gA3SjuZP9xF1wQTF4z+rAmyJWrfJhO054frfrAPbfxcsRKyK8lrbravvdg6nWTxkT84M2Zky+PGLzKIv4sWYOKfKNb+QrSAx1jkfqwjQwlUySZKdzbkUhviKccwcDOA3AsiRJVmUk+zqAHxTSPwrgWwC+kSRJUml5lTI0vk0JIYQQQgghhBBCDDP2EXO9Nufccrr+TpIk36HrqQA2JUlifrkGAKwDcLJzriFJkl1l4rN4J9LdauV2le0G8N8AbgDwTKH8dyHd2TYfwDsqKKcq9LJMCCGEEEIIIYQQYv9lU5IkCyLxTQDKvSgD/EbyJgC5XpY550YAWIL0ANyf2/jCqZivN/d8F+nLsyXOue8nSbIsT1nVopdlQ4A9e/w2Xrs1l7fcWusshneAA/m31k+Z4o+cnmLtOdg2IHY++ogRPmxNpHh/vil8e7M3O+k0ZgNZ1pts/Qnkbx9LVpsMhLmRbRKGLFxK0vG2bN7ibLdhkzVr1FTXdmHW1u4XzaG/nL/dKs4ngMfMU9rbvZzFlA6b7FVEzB43FsdCY7fuU1qWxxltrdn5x/bdW3jvO+9pt3XketnzumO2f5UMiFpi6rGr2//WFmsOtDYEly2sj1ihsUACYRuMGhXGcbta/UaDpad9atmigLBLrekTj0seC7YrWH6sCUfMRJy7kNWsZYhY3A5ZuO1i5iixvmC434FQrq2MsM4cO39qEJfVb1aPs+ged1wYd+SR2fXkoTKjndatyx7OTmj1Bttdmcmh/dFHi2HWfFaLd1K4wcQ1/fSn/sIMjgWnz0A5rJkhY1VkNfN7JeuAWphh8mPbaYhlYfHi8p9bbBvwMmz8+DCO2zJmDnriiT5szZVZJlu6ngkj13ZSnoeXLQsA5swmqbltZRBXl2XWFYMVMlA6aKshNk5sozCsIIwCYpXTGSl6xnLa6GHLZjPq2XMiuXis/MTGFGPnr+nTfXjCTur7ZeF3154bbyyGzQyeaXppzTCDoRazp7cLVX44UtDzLjwVWdgseFzaOeTxx8sXZfUIj0s712R9Zyt3XQ2x7yGTJvkw96cVswMP9OHjjaFdMETvCMdvMaO8E6wY6mwHMDkjrpHS5OVVAKYB+HaSJLnuS5Kkxzn3hcK9rwEwoC/L9pEdg0IIIYQQQgghhBBiAHgGqanmqDJxByLdmVaJCea7Cv8zHftnsLrwP8NLe+3QyzIhhBBCCCGEEEKICnFIX6oM978c3FVIekLw/OkplfMBLC9zT1mcc5MBnA3g/iRJct9XoPdIkQ0V3lcxMt4YAjQ2+q2vdos8b4WPbbs/5ZTwmrdK887XCc3mZS9vD7fb1mNbZrNsI/n4NiDctm5ssJro4Zqaw/2+c+e2lC3WWlnxzvdKDkHMspyLmolVSeyUm+ef92Hb3NaUopfYYYmVnMLHcWwRaLfZczpbR+7emLhwHW39+XratGxVHTsFazuaiuEma27HnWoerqfeGwVZ8We54LhRRzchiymxQZq3M+wef97/HzsONrKvvy5ikpn39KzcmDo2NPp6tLeHp0/FZBebMgZjzN7XmmZUcVqoNfXmLGPmU1OmlM2uJM+YRbuFu5QfxeqGnId5lsDPltdcbTiejMmnWrLJCRA+D5uZ2Pu4XY84IkzH87Y9ZY5lpKl7Wxi50xc+d+4ECofJ+MS5KevuCSNvWu3DRvfN4Iy6I6f2sn2fhR+A/QYAmPCLX/gLMnPrJvNMIDQ1M1aqaLn1Vh82pnIT6PqVdOLfuHGheea6dT5sVSRbkfI4sWbNMVURs2jnNVrescdWc0A4/wYnCiJU/zO6n/AXc2cG6dj8d/PmMA+2nrXTY9Z4tusAXtrZ5+RxUmImv2JFMTjnHF/4nNlGBq+6yodvuimMu/ji8pWMQeWWrVd/sQ3EQnL00WEcrwuMMHWQeSJbQtraNtA4aTcmjjz26r6Xb3PGhD/+T3D9ijPOoKtsQT7rrHC9UHf9L/0F9eEWc5onj3tr8cmrJt4icrhJ18yD7fzzw8glS3zYLuRJD+668J3FsBWzWBfyOLSm0pwPj0Nr2spjyKjSADsmY64D8sJ5WvXPzcph24w8t1kdFpj8m9NaN+xIv8/tHlXB4kcMZa4B8A8ALgFwO33+bqS+yn7c+4Fz7gAA4wCsyTCx/EsAIxHZVeacm5gkyWbz2SgAlxUuf1XxE1TIfvGy7LgTj+s70SDyYtfovhMJIYQQQgghhBBC7GWSJHnAOfctAO93zv0SqaP9wwB8EMDvAPyEkn8BwNsBnAbgtjLZvRPp72lXlYnr5Sbn3DMA7oY/DfNCpDvL/i1Jkj/164FysF+8LFtwaexQh8Hnt59+arCrIIQQQgghhBBCCJHFJUh9hr0HwGuRbob9NwD/lCRJrpPanHMnI33J9pMkSbZGkl4L4BwAHwDQCuBFAPcC+GSSJFdXVfsK2S9elgkhhBBCCCGEEELUGjfYFdhLJEmyB8BXCn+xdEsALMmI+wNyNFmSJF8E8MWKK1lD9LIsg5VLV+LBpQ+ibkQdDjrhIJzw9hNwxw/uwFN/egoj6keg5YAWvPyDL8eo5lFYe+9a/OlHf8Ke7j0YUT8CJy45EQcefWDfhRQYOxaYNy8NW1807L8i5jdjart5kUvOOZqaqZtjDrSsDwbGGrmz0T4btltnFpynMYDvafMnz9Z1h77UsnxcWRt6zt62HfvjsTb/7Dtgb55mbJufn8c+Gzdl3qPl7XHvnDbmK4ld1qxalZ3Onr7Ofgqsz68srFsvrpf1p5IXrldzc+hTrLHRX683DnNi9c86idyKOPubWbcu9OfR2jq1GO5YODWIYx9s23f6+5oaw7G8rcvHtTSG42QXvM+1hq4tYcVi43kgiQma8cXBY8+OjfZpM8uma1kc0UVWQLmzzMDZ3u3brpN8i8Rc28TcybGujumU0cbqnvWWjWPdN26cD/Px7kDY1Xld49n8ORzrQpZ3m2fMHyGPp0p8K9aCs87yYSsiLHcx3crprE8xbi/bduwba1dj6Iuzod6P9dNP95/P7DR+yX690od/+lNk0ruQ6IUd7xxzjA8b3bCmcU4x3HbhnCCOffDAPPdR73hH2YRTbR3J31L3HXcEUfdTeLLxddbx0Y8Www3UcScaH1ZbFnvvRg8/HBadNaewv1MgHHvWZ1BsPHC/5eXY1ifC61eT4F1/fZiYFdIttxSDc972tiDZHHJcu31x6NPtgQd82OoYflYer3YssI+iFhjfe9yn1hEU+9diYbKN+oMfFIM9phOr8qpp27EW3HabD9uO5wazjhEPPtiHzUK1lZXfr7zrHevX688U3mYmojnUdsjpswz/9V/h9Usv+fA552TeFvgoA4BvfrMYfIbG+f1hKjxDYaOlwLY/da9+tb+wvupICJ9pDH32LSfX4HYeal/o/ZCvJvG0S6RTF5BLJeNzbQo7/jOLxXdeeGExvOG1Xhf9+tdh/rF15EDDbsSsTuT1/4RO0k1WCbAfwFtCCZ1A42FLd+ib9u670//by3msEmIYoJdlZdizew/uvvpuvPnyN6OhqQE/eddPcPQbj8a0+dNwwl+egLoRdbjzijux4toVOHHJiWhsacSrLn0Vxkwcgy1PbcENn7wBF15xYd8FCSGEEEIIIYQQQoghRY2PQds32NG5A02tTWgc24jOdZ0AgIamBkw7ZhrqRqRNNvnQyXhxc/pLQ9usNoyZmP7cPn7GeOzZvQd7du8pm7cQQgghhBBCCCGEGLpoZ1kZkp4EcMC9P78Xy3+8HHNfOReuLjSrXXXLKsxaNKvk3if/8CTaZrZhxMgRJXFZtI4DTjyxfNwUt9FflNj20F5aOn66hGrtC2K2fxwXszmK2FnVrV3jL8wZy3Myzi+etijces2mbGyuBoS73fdE3l3GTMFqAW8Jt00V24rNXcPNHbOus9vPOY9YWWyyaruaRSbW1THzNe7eSkywuOyGSLqt5BoyZs5qTS25XtY8i5/1hRd8OGaRbOGybds1N9eVjePPAXPk97SGIC5okipNrHkMWXqq+T0l0pAT7P7/Lh/XPC00Harr8qY+3fVkvmY6IDBTNZ3RQya4tv1ZXmM6gPvQ9n3WuGR5sfdZc3G2frFjgevFYzSGVfF729xjqGNFcNQoH2ZLRZs2ZobJercJxtYk1gEk/zPXrvCfX2UOhmKztNtvD+PY5MuOc64oxxlBfpis6Gx1WWda2dqxw4+vjo6jiuEpZ2X7S5hgzDA5pbGSRyeF5331q8Vw02NhygmvelUxfPJhh4WZ3ERpWT+wbS4A7KSa2HakgbgdoZl/3dL/Lpun1Z2Bnl26NMyf+8m0T+BbYfZsHzbPuWGU15+PrwizePppHz7ggDCO5Z/73srBQw/58PjxoTnxHLbjiq0p+VnsPLFuXTFYZ21kq8GaJB96aP/zvOCCYnBbazhf8bqjzZjB8rhpsou0I48sBltJ7lqvvDLMn8LWRJPjjrV1zqDru98NrptvvtlfRMww8Td/E1w+QosoNp61y0F2QjHbxNV94AP+YtGizHr8+WE/ph64K8yD3YfY4cuixqrUzgUdHX5sz2C/CgCwkkzh7UKS9NEUGjiHHhqatPNcb9fLLD9Wz9aCKVN8+EDjJWhCI81ZbM9qJ7pIxbbVe9PLFcvDuN4235subwYDByD/N38xnNDOsgjHnH8MLrryInRt7MJDv/YrhXt+dg/qRtRh9uJQ5W9ZswV3/vBOnPK+U2xWQgghhBBCCCGEEGIYoJdlfdA4thGzTp2FTY+nPwM88r+PYM1da/CKj74CzvndZl2bunDz52/GaZechpYDWrKyE0IIIYQQQgghhBBDGL0sy6BrU1fRX9nGRzai9cBWPH3301jxyxV41aWvQv0ov9X2pa6XcNOnb8Lxf3k82g9vz8hRCCGEEEIIIYQQQgx15M0kg7oRdfjN534DN8Jh3AHjcOLbT8QvPvQL7Onegxv+6QYAqZP/U953Ch78nwex7dltuPeae3HvNfcCAF7zqddgdOvoWBFFGrAr9E3G3HVX+c+B0OD+wQez07GPhBHGopr9ncScVRk/Cz3NfvdcHaeLOd2xjgRizrDYoJ+cxdRZfxiUh/VX1Njo/TtZP1Z88jbHDbRNva0HY5uOH5W72nYTd41tnnZ6d2ufjZs/0tXR467Z59dzz4Vx7Ccu1tV8Xa2vBnYhwX4hLMbVTeDLwvqqymoT62qF28T2L+dp47gfY3LBPPtseD1+vA/P6QgdcPTUe/mP+SWLwffl9l8WGaMlUOPZ9m9s9DqG27y5OfQZxKqitTWMixXNbc79a+/ha+vjhO8bN86HN2wI07GfoJivEvYfBAB8Wn3MbyFfx1xkxfwFxvQIpxs9Ojsurz/Cve1HjV2vWP3GOozd5QBAU+cz/mI2DVirSFiJ2YfjAq3y5s5nP2U//3lm/lak6ydO9BdWQMlRTU+79xpkdRj78bG6iP1dWd3KepfdaZ1++slBuhlLfGTbLbcEcS3kK2lXmH3gi+kRzu9XvwrSTeAHYL9YQLiG4glxwYIwXdbDAIGQNM2fH8Z97Ws+fOaZPlwf+pcM+OY3w2sWUOuT7tWv9uGIg0zWFbYP2d+h1TG8BGTRZR9HQKjT7BgKlKStIysTbmPjm62THD221sJnmcXKRTWQorVtzHo9puPnzg29itXP9tctrMhNAe3XXVcMW99+pKVy+yz7s7lupb6Zg2z+bPwLr6YwP7aV1KMoPOHcc8PIj3+8GNzS6PXUUuO6kcXHroWef96HrRpk8QzXEmE6znPGAWbjA/ssM22AZcvKhk9csiRMN8kPnGdmh/6XWYXZtRCP32rnzjPO8OHARxkQ+inj5xwzJkzHk3972D7cN/wsgG/zXVbB74NoB9K+iV6WZdA0vgnnf/P84LMLvnNB2bTHvvlYHPvmvFOUEEIIIYQQQgghhBiq6CWoEEIIIYQQQgghhBAF9oudZTd84oaK7xkzdkxV91VD28gmb9ZhbdQef9yHrQklY/ftZu3VtdtqeT+9te2h7fRbukKTAt4hPmNaxE8b70e3z8aZ2PrzNYdtHvycJo8G2iY8wdoN0OXIkd50ayDMg3j3/9atYRxvr7bb+nmXM28rt4/CZhWcX7m0TJb1rN2azk1udl6DLCcCk0CbJ4uWtdKIWJbkhsu2bczE2s7GZZlGxsxId+zIzsOKOA9nNlm1cH9YEzg2/bMF1GV1QJXkNuW0DxrTASSEE+a3hnFUfzapjqkRa0LJcTELcVaLtt/5Pps/ywybM9lxyDIeM7W0deSmYznIO67L5Zn3vlowEHn2F6tvuH0Cs0sgtNlhwbBmOIwdazHlynFklrbTjCEeeaGhMbJtgQGAzNlY3q2ZGGPHF+uc2PzC97FJDgA0z5tcDE8466wgroFubDMmiFsozJaj1lvC5Ecf9WVRGAA6KdxG7TrB6inuUysksTWItQcrENWX7AcCCGWGTTIB4LzzfJjMQ7dMOypItpIswew8xFaNdg7J8tJh03HzWPF/dpyXypEjQyO+Y8nELhA8Y+fZyosJthmrlve/P7h8ptnXa2oFbgnY/cBdD3nXAHYssFjEluN2bLAoHDb/1GK45ZIw3TRSpo3GDNmaVObBLm94rEXNMM31Ngrz8tAYMmPqaaf5iwsvDOKegTe9fJqGb2wus+tN7o+Yx5fYmoBNOZ+ZPiOIm8o2+tYMn8222QbRPgCZOE5dGM4Fne1eR8aeu9rvKMGaweowOy9lwV8AzCJkB7lhyco+9hVWiKHMfvGy7OmVT/edaBB575veNNhVEEIIIYQQQgghRIXIXG/fRP0qhBBCCCGEEEIIIUSB/WJn2ZBnzx6/N9jaAPHWdLvvm4mZJ8b28OY8qS5m+rR9p3/narNriR2xxplauyJrppBF1pGO5a4ZKq+TTAoG+jRMa27Hpg7WPIstatgqxDZVzMKOd01b0wB+1rwmXrHTMGP3sbzEToysFrbusPmzGFjzI952HxMXbp+8J/4BYRvzUAayTZhsPWIH7TGTyNTJUu1pmFVRwam6zK767JMsWUZipq4xE9nYIZ08DmNybMca51m33pvwTbD2ykG54W9ULJMx9cxll1iV03Ulp2GyWQRPL5XogErKy0NMVnOfyGrgtrNdE+jdp8wxkVnH5cbMMGMPbQvnDibzQXtoWAtfHH98GMmnOh55ZBhHPgBY/+T12tBXXJZ+s6dtMqeyWSEQdM5sY0K5idqZzb06TZ4x7cbTAd93gp0MuNJWh0WOTd5JZleRYROwy9jiNcROf+QOoP7cZETQ6kUmdpJulhuEhvqwVevrs9d5vK7ZvDmMe6bd6/WpHGGPVuUjg+fNK1+pSjBHIj79gA9PjXgOicHrhZj7iNhS1KoOHjec/6JFpwbpmt7sLWTaVqwI4iY/Xbn1jNWk28qmKsWmY93UQeE5VteRWWzPOW8IopYv9WEeXvaE9dip4Txnxb5OsPzHvpLYJp16JMnTgQeGkTz42AzzttvCdHzSpBGS2WeFbcLE5uMs7DzatJZMR2PHtbK+ifmTMAPgpYjO73VzUaftOWKYItEVQgghhBBCCCGEEKKAdpYJIYQQQgghhBBCVIiDdiDtq6hfhRBCCCGEEEIIIYQo4JIkGew65MI5l1RTV+cchvozvvc978G3L798sKsRJa+vmL3qG2kAqMQnTt5nrdbPzv5ItfKzv7bxcB9veRkO/St9UMpQkc+hMn/ZeuzN8riswZTBoSITw4X9RV/UWi5i7TYc1xn78rgZbjJu+2Kg9Wwt+r4Wc2B/n+eEExZg+fLlrl+ZDGEOdy65crArUQMWAHcnSbKg75T7D8NLQwkhhBBCCCGEEEIIMYDIZ5kQQgghhBBCCCFEFWgH0r6JXpaJXOTddiyEELVmIE0DalUPIfpib5t5CiGGJ5prhi4xPTvcdfBwr78QA4FGhRBCCCGEEEIIIYQQBfSyTAghhBBCCCGEEEKIAjLDFEIIIYQQQgghhKgQB+1A2lfRy7KhwLZtwPLlaXjnzjBuxYrs+97/fh/+27/NV1ZjY3jd3u7D06Zlx82dG8a1TvDh9euz8+e47u4wrqurfNjmw23S0RGm4zzb2oKonrbJxXBnZ3gbZ/nYYz68aVOY7swzfbjejJaGnKPnqqt8eOXKMK65OTt/7o5DD/XhsWPDdK2t5fMDgJZm7/diS2eoxrnJly0rXy4QtpXN/+GHffiOO8I47houy3Yh5/nxj2dPNQ312T48vvY1H7ZDiHn66fB682Yftu3PcJvwsADCofHCC2Hc6tU+fMAB2Xly+1hZZWz7t7X59mIZAYCXXvLhGdMG9ujxqH+VtWt9mIUVCDprQzI5iBo92od5XNp+smolizFjwus9e3yYVQf3mWVOe1d2JOs6I+Q99Q2Z+T/3XHaWLJ8TJ/owtw0Q1yN8PWJEdlkjR/qwVeM8pmxcbNzU11e+dKzWP13sPta7Vv/w2Ju6fkUYyZ3FjcwybTPhjgLCzrKFc8N+85s+zJMSAMye7cNHHBHGzZ9fDNaddloQ9cT6Jqqybzsrg3xt9SePL9vX3CQctnMIj69TF5gCeOL48pfDOJqYVpNy3RWmQiuF7Qjlnmqi8IKlS8OEDz7ow9SmaeGrffj004Oo9bNmFcPtL77oI+xA4XvMQGznSd3IT92nPuUvLrigGLzz3oYg3d13ZxYXiI9dytm+KpbbHbbyf9/ky7NywGrd6pgTD9vmL26/3Yd/+MMw4V13+fAZZ4Rxl19evpIR6pb+d3C968zXFcN5125AqHNicwOPGzuH8xgaNSqMY5Hhdjy2zeiY733Pl/WZzwRR91D4ZJ7YIvzMdBSPm3dG8rD3tVB4JoXnWF33la/48FlnBVG3LfOyxarUqtnY2ojvszLN6zLuw0mTwnSsp+xSZdEiH565+rfZhV97rQ8vWBCm44nItMH20718lqr/8vNeRMWUzId1XTQOY4soaqDts48KknG97Fc2/qpq699bz3XrsusrxFBGL0GFEEIIIYQQQgghhCigl2VCCCGEEEIIIYQQQhSQGeZQoLHRm2dYmyK2P9qxIzsPa5/Fe8I5T2tjwfua7f75iP1FHe9RjplhxvZNc9rYvn6uR8SMZVdjSxC1lcyb2JzJZslNbM0wa8Gzz/pwbHt+rOls/bOwXdjY6N+H267nbdRsnhgz1YqZOFrRzRLBWLpq2b07O46fx5qvxbaxcxyH7fb8mBksWzPErJy5L2weHFeJCVwt2jUvbKpi+7eBHsiO0QZ6oD1m7PGzcRvb9mei5qAxU2+Ka2ubECQL2tgO4IzO394dmkh10rOxurRZ2rbLiou1QcwMMxbHsmrT8fiK5WHrH5PPvUnMjJdNdKYe0hFGZiloK0sM2z8DYcPyZGDjXvtaH7Y2daw8bOePH18M7qpvCqLYxJdlqRJTS8bqH9ZVXC1rqh7oPuta4qGHfNhOwKS82UjbVrGBbAsnmwHWQA8ejEo7GbANllXCkQEX1CWvTbiFG9aawHHHkV3a2LEzg2Tcb1Y8+dr2fdY83dwc6rDYWoWbyy7RAtPLVat8mH04AOgi86/m668P86jCDBM33RRcNrBQWvO4nMzs8PPLhuey9xoYjyBB21krbe7uqc1kKnfF9WHCK68sBsOWAzZm1iQbq8Gay6YqZbK55hm3k/M3NqvN3B/GFnX+SV732fkxi9g60uowdjHA7W2n89g6Lxg3tgCWrXnzyodtAUYG2XTRmp+WjKkcWJcFqzf5tZfVD4HunutNL5cb1yrcXrYJWHXb/Hv7qqf/3kCGPNqBtG+ifhVCCCGEEEIIIYQQooBelgkhhBBCCCGEEEIIUUAvy4QQQgghhBBCCCGEKOCSJBnsOuTCOZdUU1fnHIb6M773Pe/Bt6vxySCEEEIIIYQQQgxRFpxwApYvX+4Gux4DxRHOJdcMdiVqwJHA3UmSVOfYcR9FO8uEEEIIIYQQQgghhCigl2VCCCGEEEIIIYQQQhQYIge7C1F77NHJ1VCH/p91XIt6VAvXfzDrkZdq23s4PNtgUgs5HmiGQx8Od32wt8nSP3tbHvO2+XAYJzFizzlU5oLh3saDyd7sN9tPtS57MHXAcFhn7E/jZF+aEwdCz2rdIcTgopdlQgghhBBCCCGEEBXiAIwY7EqIAUGvmoUQQgghhBBCCCGEKKCdZULsw2jrtRiuDLQJX1aelYyZWuQhhBB52Js6ZiiZkNWCoVKPGMOhjmLgTZSFEEMLjXAhhBBCCCGEEEIIIQpoZ5kQQgghhBBCCCFEFWgH0r6J+lUIIYQQQgghhBBCiALaWTbUueMOH+7qCuNOP92Hv/zlMI7TdneXDwNAc7MPNzaGcW1tPtzREcZx2k2bsvPYuROZtLZm18uWV2Bb28zgmqv/3HNh2hdfzI7bs8eHn37ah9etC9P91V/598n1ZrQ01OfzL3HppT68enUYx801alQYd8ABPjx7tg9zswFhG7S3h3Hjxvnw88+HcSwiN92UnQd3jW2Dzk4fZlEFwq7n+6ZNC9Nx/S+7LPv9fay9v/QlHx45MozjsteuDeNYdK0Ict/wUOC+KHedlb8VaW5n7outW8N0LMdjxoRx/Ky2HmHZ2T6/BtrfRl3nlmJ4W/2EIK6l2ddl/frwvvZ2Xy+WpaZuowe5g62OZIwuqmPBo87vrJ+cmX1Ll63k1LJFWTl79lkf3rAhjOMxZGWQ41gGOQyEOsGqYK6/Hb9ZcVbHcLPaOL6vdHqpKxtXX58tc9XKZ8zfz/XX+7CtP7fxmWeGZTV1PuMvWF5WrgwzYeHdsSO7kqNHZ8exYrz55jBu7Fgf5goDwKxZxWDdq18dRD2yyY+3tWv9s9mxtmKFD1v54b63cazTWCZf9rIw3ZTR2/yFXassX14M9tx4YxDFI7aBwvVWmZ52mg/b9rnlFh9mBfrrX4fpeCFw8MFhHA/oBQvCOK4LK1072IidI8Iz0xqPPNJf2MXKRReVLbvrzDcFyfgxrf5hmZ83L4yz832xTqavly3zYat/SAQx5aU1YeTll/sw98111wXJniChbEbIZF6w5WXhwvD6ggt8+JJLKs8PQN1jjxTDPbPnBHE8pkz34qWXfHhG67YwkhUjN/JnPxskW33XXcXwClOvLRR+Z862ut5Ukme9kyN5PGzu20hhfjI7Mx7LF+94RxBX9/GP+wtayPzhjlAfP/aYD/NQA0KZt2vM3bt9+O67fdjOBSzHJ50Uxs2f78Mtv7o6iKtjfUGVrOPvaKbS2zqOCqJ4/Wz181lnlf8e0mwHSgQWrdjXLW47u6Zn7PeV//1fH2ZVCvg17JNP9llNIYYkelkmhBBCCCGEEEIIUSEOMtfbV1G/CiGEEEIIIYQQQghRQDvLhgDbXnC4Z0X63pK3CwPAibzl3+47ZqxZAm/l5z3g1kyJ9+Na8wU2W7KmJWz/xfdZO7GY2Qnv5Y/Yd2zf6d/prlgeJuNtyLFHi5lhcrPa7c8xE8S8cJ6xOlo4bazruZvstvKs/GL5WxMC7morn9y9sS3h3L22q2sB19HWI8ParqQutn24LTkPO9R427p9NjZxsfc17CSjhXZfwLau8DeMWN9nWVvbOGagzS6tGmltJVOwh8O4iRN9XWx92ayuqZ4e7rHV2YXbxuJGscI7frwPU8dNmGsEiPMwleSx19npn4XNLoHQ/Hrz5jCO2yumH7LMmu21lQOOi41tll1rPc/XMZ1lyUobq+NAyGdMx2eZugLA7NnemKib0s2wNs/ceGwrBISNFxnMT8x/QzE881wjg9xA1gSUKt3TGpo5r6ekLFtWDmKm/DET3COO8OFJk3x4yotPhAlXkY2Ute0hm506Y0PfxAUuXuzD1sSO46zwsv0UYzub29jGMXaCOfPM7LQZBGaXQGjaaX018GChuJb67UGy1tamYtjKODdJbB2Q53OgtHmmjN/lL35+exjJ9qHcn+xfAAA/jR0lk1E5u8hsEQjNeKs1w2RbtjqjhKfyQsCOc076q1vDOJ4QyF58ran/nym8BSETUDkd5npuzvvmTp8eXLfR+GXNZMXnEQrPueqqMJLbjuyETz7nnLCsNt+LdpjEhi8Podgamb8XWDND/grUwsoOyLRjXNMdGqPWt/nrh813GTYjtWPPLl2yiH1feZjWXrH5nb8r2amG2862MdfZukIRYrijnWVCCCGEEEIIIYQQQhTQzjIhhBBCCCGEEEKIKtAOpH0T9asQQgghhBBCCCGEEAX2i51lx5143GBXIcquXaOL9uTWVn3kSG+j39YW2r/PIJ8+WLQovDHLUZb1pZDXYY6FjejZON4aq7ORu3UCwHb+xpHA/SvL+zKyNvQTJ/owu2azxVk/QWyjz48S86VTLZyndXcS8zHAcdxt1i9WzB8JY/0ecHlTpviw7cKYX6+xY33Y+oLg/DmO+wwI/URUC7er9aXAcdZXD9fL+trifPhZrE8fdtPH7WHzb+jcGEZmOBxrMULS1dhQLlnJta2/vd5b2HL5Ma2fEU5rn6293euA5mbfBiW/8ER8ikV1WJYTMOvQgzGDj+vPz2Z9BnGc1VNcZVs0yw8XHfPLF/MJGPN1FvNtljfPmP6shf/HauH2scfacx+yXxcg7I9AXBaEXpSmzmvNLpwLiPgsY1debWcdHsRx+zewcxsTyX7+AKC52Y8Wbv+Yb0V2HwQAL7zgw1a/sfuiQC/e+FCYcN06H7ZKgJ3kWOU6lzwpXXCBDxs/YX9Y0YQsFl56cjFc10nenuwgosHW0xjmV8cNZoX39a8vG2d97wV9Y/2cjRvnw1aBsg88XgAZJ5ivOOusYritLaw/N7ldhuXlxBN9eIozc9nN5F/rmmuCqC7yvdXM/WuUDItkZ3VVDDA1RBvVo2q3qTfd5MNWfliR2wmAFxOrVoVx1L87b/X+zFabojlHM0pwOCpnvnWietFF+W78wheCyzbq79m/+lUxbFoArLVazGK0nXzBBYqWxz+AjrlHlU0GhKrVrkV5+LJ+s0OZ3RueeIjxDMcFWB3G/Uv+LHeaRmCxsH6Us9bLlRCbV2N+g63Oz6rHrFk+zC5fbR62b3qnrL097wtRK4at6G7btg033HAD1qxZg51mZDrn8P/+3/8rXi+4dIG9fUhxx5eeGuwqCCGEEEIIIYQQQggM05dlv//973H22WejM2PrhH1ZVg0rl67Eg0sfRN2IOhx0wkE44e0n4I4f3IGn/vQURtSPQMsBLXj5B1+OUc2jsHPbTtz8xZvx3KPPYc4r5mDRXy3quwAhhBBCCCGEEEIMa+Tbat9kWL4su+SSS9DR0YHvfve7OPLII9HQ0ND3TRWwZ/ce3H313Xjz5W9GQ1MDfvKun+DoNx6NafOn4YS/PAF1I+pw5xV3YsW1K3DikhMxomEEjn/b8djy1BZsecoe6tw3XS968w+7e5t3dlsLhbeSVcITO0MTzWnz/HVDNx3KbbcPc4HWvINfRppjvqOmSgxvT46YaG7ZGZoNPERWHM8/78PWTObAA7OL5m3C9r1qlmnkQGwTjm2v5maMnVYfszTjHe12O3VeKzQ2U7VtkGWOaMuLWSXwc1sTL2uWVg1cD9sGXHbMjNG2a9Z9c2aHpk6h+YUxs+JGtuOLO46F1R5Jz6YIppG7u/3UPFS2uMcsIa1+i5ko8/PUdW3zF9aOju14bRwLV+ws+AMO8OGIqZytZJZlhtU3Gzb4sJXBvGbUjM0/y5yykriYmQbXyzZjzAyTr2O6aKBll8XCWkHFrCR5vuGut88ye7ZfgxxlzZuyXCIYlt/mw3Z65f5YvPgVmXmsviO85vqzPrNjjSyHcMQRmdljytjt4Qe33OLDXGn+3BZu7fDZhYQxu8LChcXgM7NPLYbvuClM9uijPmxNRUPzrAnlsgYA7OymdaTppvr6Fh82fd/wlrcUw9b0MpMlS8JrXtzZNRpfP/usD5sHWLPJr6HsVMNiZ9cZW7f6MKtLLgoITW7HGzPkBm50M5gD08uzz86syOzrriuGG+1CrwqmmuucK9Y4LOPWjo7jrroqjCMls43MQQGAjGwD00VrxjiHwh0mbtrxx5dUtU8+/OHw+pxzMpOyXO88921BXBMJxjTq+2nUnwDAPfqMyX8XmZ+2UbiJTZABNJCuOGpBaDE09zyvHxrqzRqN2r+x0euAFSvCZDzU7mmfEEbCX89bMieI4WquJR1s5xMWETvHWp3M8FenaudKHs+xr3OsD2KqyH6X4We1U2Bvnas1ARdisBkiX68q46GHHsLPfvYzHHfcwPgi29G5A02tTWgc24gta9KXXw1NDZh2jP8WPvnQyXjyD08CAEY2jkT74e14/tnny+YnhBBCCCGEEEIIIYYHw/Jl2YwZM/BSLbajZJD0JIAD7v35vVj+4+WY+8q5cHUuSLPqllWYtWhWRg5CCCGEEEIIIYQQYjgyLM1rP/nJT+Kf//mfsW3btr4T94Njzj8GF115Ebo2duGhX3u7wHt+dg/qRtRh9uLZkbuFEEIIIYQQQgixr+KQvlQZ7n+ilGG5s2zp0qXYsGEDDj74YJx00kmYMCG0LXfO4Yc//GFNymoc24hZp87ChodTpzOP/O8jWHPXGpz12bPgnOvj7nx07/Ym9dbGnX1xZJxnAAAwbhACNynNzd6XxbRp4SHTE9i4PObPzBbO12yIPnp0mI7zN0b5G17w9eKT5e01+9uwvlxiLonYtt/6A2B3RTGfXLWAfWhZfyHcxHx6PBA+Gz+3bYOY3y3G+kjIap9YHtbfWNaR3Lae7KbGuq7j8qptfxYz6y+hqZH8V1hnQ1Tgtq5wmuBnC9ok5tPK5s/jxDYsC2zMuVPEP+CYMd6XDrvustkPJjH3hjwO7Rjl+5qaqTPsmeWc0DrS4EFk47hA9qsTcR6yqy30hLN+pQ+zXyzbF9z1dgwxVv65KiyPMV03VHzXDVVi8mj9NIX+rnw45tON/WIBQPtsf90Q65zbfND6nOKy7TRtxZoZM8aHee6x8xDr7pb1j4SR/HDsTBQAfvc7H+ZGsZVkQbbjlxW28cO1fYH3Q7Rymf+c10VA3O8l+xPiKs6bF6ZjVc3tBoTj2bb38uV+3rB+0Bj2+7S6MVyHPUfPM2lSKD8zT6cfZZcv92EjhO1Ur9g0ZOvP3cvPaXUYd1PgBxcAXnghs1446SQffvnLffjIIzMLmPa976G/1LF/NABNt93W7zwDrOMnvjYL8i7qgI0mGx7qvLIwLorBHroaTzstjLzkksxqstzVgdZCxm/ePY/5tcR8s5Zjli0Lrxcu9GO0hath5tH2K68shq0/NuvDrJcZ1vchK2jjADXwXG1lkPTRyWedRclCX8k8Tqyq5rlg5cowjvU1h+1cw3laHRzzWVaL+Z3Hs82D68nprP9HblZbX17j26Hdqx6sXhViuDAsl9XLli2Dcw4tLS148MEHS+Jr8RKra1MXOtd1ovXAVmx8ZCNaD2zF03c/jRW/XIGzP3826kcNy6YTQgghhBBCCCGEEBGG5RufJ598csDLqBtRh9987jdwIxzGHTAOJ779RPziQ7/Anu49uOGfbgCQOvk/5X2nAAB+cvFPsHv7buzp3oOn7nwKr/nUazB+xvhYEUIIIYQQQgghhBBiiDEsX5ZVyg2fuKGi9N27urFn1x40j0v3mXa/0I2bP30zWia2BOleePqFYt6tk1qDuD/+xx9zl7dnR1txW6zd2soma3ZncVY6IDT1yb2F1+7dj8Fp2SaI7aqAqM3LWNrqbZ87y7QkZkll24e3/MbMm3g7dMy8qVrYwou3KgNhnWNmmGwqYZ8zZoXGxMzyOM4+c7u1ByAiVrZBnfnZYiZq1cLt2lS/K4zsjNjxkhy32AfY5NNO4IZd2xmm4wazJpp8bR+UxxA3ih2HoU11EDWpw+skm721dtpbxMwJYuPXmiVMaCWTkfXUjraNub2saczu3T4cG9wsFxGBbGgLZWvcOG/8EWvvmKlxTP7z6p9KVHcW3FTV5m/zqEW9asHmzT5s6xSbVzktzyf2Hhat6BwSMQOPmcLzbStWhHE8pmz2PFQmTcpOFzyPLZwzefzxMI5tHHmisAVwnJ1QzjmnGNw196ggatltPszmTdbsktsuZs6dF7ueipl5xtxjZMHNBoQq3hpLrJ3tdfzsua/w9xhT3a6HfdiqyJgJMXcVt5W1pL3jDh8+8MDQfO3EV7/aX9gJnhejlG7N2tDtwYzzaEFYTaNazjsvvLYTTDW8+c0+fNhhYRwLqGlkNr20JojcVVxDu+xqfMtb/IW19120qBjsyel16Jmu8PtM3ibfujW8Zsvsw+aTSeZ5YYatXMCvfhXE8RBlA98uNu8F0Mz6x064Bx3kw9Z+kH0kBIIdmkNzVMwrTWwNnrXuBeJ6KuYOphZmmLH5hbuGLV3tUObntPIym6zF7bP1ttf+4CJCPr/2TYaV6O7evRsjR47EmjVr+kw7Y8aMYvjplU9HUpayevVqnHXWWVhpDdMHiJe//L17pRwhhBBCCCGEEEIIEWdYvSy79957ccIJJ6Cjo6NPv2R77CvxCujo6NhrL8qEEEIIIYQQQgghxNBhWL0smzVrFgDgP//zP2t2EuVQwDm/PdVu7+XrmImd3fbKu5DZRK2l0ZiosXmT3ZvL1zaO7W34xWTMpiUSFzvhkeNiBwXaLb5cLZs/X7PJQqwe1W4h5jytlRjHWSsBPliU+97KAdeRt0LbuFi9pk/3YXtaH8fZ/GLmlZz2+eez8+D2t/XPy4YNPjxyZHAuEpqb6TQ6Nu0D4gKUJYSWWCNzY8aOI+U4W4/IMXaxk5dq0a7VYLfns+qwcbHm39LpN7RPiB3DFLNxZD2V15Yq1p/mmMJDDplZNvuYuFhVGtMrbPrHOt1amXCT2PxYBK15WZZ5hzUl5PxjecTiBtMkk097jJ1QFrGSDPKw44nN0aeMN3PsWrLfsfZxVEB7+5xi2FgfZdYJCEXX3sd6ka0f7Tjk554379ggrqFrS3bhPC4PPDC7gGOOKX8PEDSmNfHKKip2klxsfoyp2VhczIWBPQU6D/bEZp5HrZritNyHdp7m+deqyNjJ4FnPPXdumI5l3tY/sFF72lhysFJ42NuKzrDmuKxba2GGyXajQOkRhtVw993ZcffdVwxuMSc1si3ME+a2ORTmFpls8+cOsP48qlicWvnJe1KhnXu4ewP9aQfGiScWg61G0c7/I7mt4QytEPIRtqxvgNIjGBlWCiR39caUOWu+tcTaitf4Nh3nafUUj8PY16hqic2BWV512H2BrVdsHrKnOfeWt8tMjUIMF4bVy7KJhQliiTnyWAghhBBCCCGEEGJvs+9s4xGMfNEJIYQQQgghhBBCCFFgWO0sYzZu3Iirr74aq1atwk6zp9Q5h+9///uDVDMhhBBCCCGEEEIIMVwZli/LVq1ahYULF2LPnj148cUX0dbWhi1btmDPnj0YP348xtnzeoc49fXej0TM103MjYO1EWfYj8mePaE/p/Zp/tTQOmuEzs4tbOGcKRviW2N7NpQ3RvrrI65cstrBZh87ipmvrX+GLB8nMZ811fosY/8e1k8B+y+yfliy2iBWD1v/LH8tQNgG3E02j1j7sF+1mA8Yht1I1Qquo5WDhnryU2YdRuV1LsUPYxsh5myCGyjm0CnmdKpKIbQyv7eIVb8SXxzc/BOmtfoL6wslq5+AsH9jjnx48MV8y5lB2kk6LOZbMeYziGXX6gB+VL4v5rMpRkx8OI7F1pLX9V4s/719hLx1fcPs2OHD1kcLw3rLToc8l7W1RebYSB0nkqsn2z4x2eJr228897DMWLUXU28NMeFlv1OTJpUPA6EgG19Va9b79lq9Orwty5+olTP2sxNTATGfOzF9yao7pt9qgfWPxvqhbtPGYnjK6GwHt62toQzycs1OQ1nq07oUY3dRdeufCSPZH9iDD4Zx7Gsrpo853YIFQVQPjZw6GL+jWVglWQt4oW39hpE/NrscZz9lM03cVAqzn7Lm448PE55zjg/bMdTZUgxPyzkXWF0Xc+nJxHzOcvfOnx/6PmziSKuosuTCzvVZCg3IPxBJeXd0TMhOZ4jNsdwmPL5ifskq8VlWi7kzpv+zfDNbNc4+2Kz/5ay1Cl/v7XlfiFoxLM0wP/axj+GEE07Ahg0bkCQJbrzxRuzYsQPf+9730NTUhOuuu26wqyiEEEIIIYQQQoh9GAdgxD7wJ0oZlu9577rrLlx++eUYVfgJrqenB/X19XjnO9+JTZs24ZJLLsGtt946yLUUQgghhBBCCCGEEMONYfmyrKurCxMmTEBdXR3GjRuHTbQPeMGCBfj0pz89iLXrH9ZELa/JmjULyTI3iFmhNdm9vzGbBd5GHTu3nfb+btgamgbwjnZrfsFxbEJgt4rHzH44LmZFym1SiYljQ+W7vqPHLdumy9qZbs1F+Nq2R9aR0EC4XTxmscB5WvlhEyYLb9O29zFswhQzl4oRM0MeNcpvoB0/viWIq2/213Xd5lxr7qyYuWZeW9eY+WbEjnR7szfOWL86zILHja0iy7i16BhI7Fjmvn/ssez7YmbmvAl6BptiAKEAxTKNKQvum5gNJXJHBXDRtp/YtMFWccoUHx4/3odjJufVmjrE7strXhmLY/Opngo2tcfMrvLms3ixD9vuZRHZsyc7D57ybB5MzEyywTYWRcZMXxnbF2wGZdcLnOfWrT78/PNhOh6jdhy2tXkdOXvBCUFcHU8cHDZjcnubN0XtNvLPZduxkaU+K5FxTstqNrakqcQS3lrj5cGqML4O3AYAwC23+DCbO0bsNZsOPjiIalq4sBi2YybLBHfObFOPq6/24VWrwrjly4vBzhtvDKt15JH+gifqv/iLMI8DDiifrlpuuy243H7XXcVwU5VZPvPznxfDLRQGgIcpfL+5j41KjWEhJrBJJQ8AuyDkgW7MMK0o5KFW5sQsM9F5iAc6T2xAidltkaOPDq8POSS7ANY/VolxxajtWhpDGZ8714+Nhq4tYR7zWn3YKPld8N9tWHRjJuE871sGwlzRmlUzXE8WM9uMnEfeZRfgu37XrpKkQgwLhqUZZkdHB9YXRuqhhx6Kn9OktXTpUrTaSUYIIYQQQgghhBBCiBwMy51lZ5xxBm6++Wacf/75+MhHPoILLrgAy5YtQ319PR5++GH84z/+42BXUQghhBBCCCGEEPs4w3IHkuiTYfmy7Atf+AJeKtjjvelNb8Lo0aNxzTXXYPv27fjQhz6Ed7/73YNcQyGEEEIIIYQQQggxHBmWL8tGjRpVdO4PAGeffTbOPvvsQaxR/2ho8LbgMd8DY8dmx1l79CxXIuPGhema2GbfumViw/nYWcbsDyDi3MYeWR5zdcbHELOrA+sPhtNZHwDs48f6+co6pjl2fHy1fgQi7qiCPG0fZrnCivkPsr7H2EdCzEdFzO8K95vNIyaT7P+nSpdQueF+y+terFZlRzOMnTfORDo41naxou1421vYesSOS8/yJwSE4znQizFBjvmMi/iLisLpjPO99nbv/YblzmbN/uPskesxf2ZZfspqdbR8reXf5pflb8x+zn6UYj7KqqWhe3sxzH0G5B+iLJ+2/Vl3Wx3MZcdkjt34WN+cMX9aTMwt4qRJ5fOz6WJzlPU92UIP28P+H9vCinC9rD+b2DDMGr4x96q2/px/zENHtWMor685Jq56wr0JDVxpXvBYB3URAd3V7fOMzYHBc9vO5gnFLlSpXq124mGHbFxHm44HTqSjrM+1TH1hBKFaP2UMu1xabuKeoPBRJu4o/n5iHbMuWuTDD5PnM7sgjCiZPZtQMVbG83qvifm3ZTaZOk3l57ZO+6ZP92GeLNmPHRDKvxVk7u+I88Nd9TRnGxHnNmkw8sNjqL4+9L/cnbHOjn3vsHoj5pOxFvN07HsDD+eYX0duEisHMf/FvfnEvl8JMZTRjkEhhBBCCCGEEEIIIQoMy51lAPDDH/4QV199NdasWYOd5lcE5xwef/zxQaqZEEIIIYQQQggh9nUctANpX2VYviz7zGc+g09+8pOYN28e5s+fH5hklmPRScftpZpVx46do4vbVO3W3CxrR4uNY3NL3i7LZj0AQpsIu+0+dqY7w3F2r2+wVTrcuhwze8jadmyrETNn4Dhr+sSPHTPviOXfkHP0cDPGtkLH2iC2NTrYOo7wbOb65rDNs2CLiFgdreUHw7vngbCv7JZ8ho+grtZMcsMGH7YmTDw2YmZKjY1hW7W2TiiG67q2ZWcSExIuIG86M5g76Shy247PPefDbPYKlA7nvUXMzMrWibflW7nj5+E+LTHDyWs/Zds/ZjfJcJ5GAbGpRlubN++w44SzsNZH/Nx2DLEeZ91dYu7YTeM+r3kpAHDSWDvGbERqQLWml7nvIyXT1jYziIqZGXIc94U1P2cLqSZsDyN50NrBQYwcOaMYtmO51sS60LZBzAy8u82bXu4mXTR+/IQwHeVp84/NN1nqM1b/WH5s2h3LoxIRb2n2Mmh1E8Oy2rSzM4xkvWIXOatX+zDLj7Wbi/hLyPs8UTPMWMNyWmtr9eij5e+x6fi5V6wIououvDC77CyWh4aStMyAMXDMDU3FWG3iWKsYQ0vgxBN92Jogsmkhm2HayYDjzBqhvSPUaXmwbkvyktcNSMn3lcc2lU8IhLLMypTbBsD2nMa0TdOyfUFsJT0VNaE2yq6bvr/YdXYTTaTWzJ+JfY3iNcMATLGBqWXMJY5dP+cl5vaj2jyFGCoMy5dl3//+9/GhD30IX/3qV3OlX/b1BQNco/7x2r97arCrIIQQQgghhBBCCCEwTHcMbt68eVg79BdCCCGEEEIIIYQQQ5Nh+bLs5S9/Oe67777BroYQQgghhBBCCCH2Y+r2gT9RyrAyw+zpSX0+fO1rX8Mb3vAGTJw4Ea95zWswYcKEkrR1dcOny196ybtUYf9NQOgfIHa0s70vy09TiS08+5qw/lQ4UxvHGcUcFdADbFobRq2l64ceCuP4fAauhnWjsXWrD0+aFMZxe1m3GZs3oyy2jS+4wIer9SOwcqUP29PAmZhPOu5D9p0DGP85xilCXXM+H07Nzdn+GPjBOzvDccVuNdi1CgA8/7wPs7sN6/OC4847L7OKUR9x7J7EuLmIHncdG1/sQ2LK2Jz+nCycNpaOKvnM+rCNH3vMh7mtgLDNbfY8ZC++OLvoWsPyDoT1euCBMI79XNj2z3LjY5t/anPELxwrjFhcrJ9iTu+C8eZ9lVgfiey2yvotYd8x1rcHj+1gXHYaRZjX/1qMmINMzt/GxdouKy6vk8paQYOoeUHo3yfWNyyTMb8rgV6PDUQ7UROru47ydTRNzHPlxIlhHOsHOz9yPlyNtWYu5ue2OpLzsO6WpkzxYdb3VgdzG1sXs9On+7AVAy6bn9O2Dz+bnWO5vbj+gZ8/APX12f49o77xSCnXzfXeqmL+y7B0aXjND2dl5Fe/Kp/HMceE19zoC0LXI3XUqQ2xhWQXCcK994Zxy5b58G23BVE777qrGP6zzZPap4XCM81zBW1nJrq6L385u84Z3MMOPRH6LHtNxbmlPELhOSaORX6biWvmH/ezFp9A2MYWXqyYgV63yOucntm2ZuWZMimU6SdezPedyfpN5fXo1GZ6cvud4ZZbfHjx4uwCaHDvqg/9f61d7cMx/8IdHU2Zcaynpow3a11+OOPzrokLtItdouHAA/2FcW7ZMHt2MbyrbWoQt2OHDw+Ey9ApI7eUzxAAVncWg63tXn7sfMJzg+1ebjr+XgYA69al/+26SIjhwrB6WTaSvlklSYJ3vOMdZdM559Bd7RcGIYQQQgghxP9n7+3j+6wKu//P9W1IQ0jTNE1JKGkX2lJCKZBCgcINDhAcat1AYcJuVNzt0D154x51j86p03sPus39ZNNNvIeCUwcbVbvBbjpBqVKkQnlsgVoKtFBKaEObhjTf3x9NvudzPsl1euXbtE3Sz/v16qvnyjnfc53rPF755nw+xxhjjDlimVBflv3RH/3R4S6CMcYYY4wxxhhjjJnEZOVy+XCXoRBZlpWrKWuWZSj/4PqDUKKx4/q//glu/OeVo/4cSwOSW/5zPnOoKVrG8cRY1NehfG4tbzX3Hos8qqXa+j7YZTyU4+ZgPMtEL3+KwzmnMYeyD6buNV7qY7wyXueK8dJ/DjWHq1yjaScu10QfX547DFB9PziU/We8ztXVMhGe52CW8eyzl2LNmjXZQbvBYWZJlpX/3+EuxBjQDDxQLpeX7j/lkcP4eWMaBa+//jpeyxE/v/baa3idzYaMMcYYY4wxxhhjjCnIhJJhDvG//tf/Qn9/P7761a8Oi3v/+9+P2tpa/NM//dNhKJkxxhhjjDHGGGOMmchMyJ1lq1atws/93M+NGPezP/uz+K//+q9DXKLxTQkDlX/jpRyHuyxHClrnRepfUxpj9o/ntiMXt/3kZqK3r9dzo1TzbnggnxuP5D+Jx4kxJjAhd5a9+OKLOPbYY0eMmzVrFrZu3XqIS2SMMcYYY4wxxpgjDX/NOjmZkO167LHH4uGHHx4x7uGHH8bMmTMPcYmMMcYYY4wxxhhjzGRgQn5Ztnz5cvzpn/4pHnrooejnDz/8MD7xiU/gbW9722EqmTHGGGOMMcYYY4yZyExIGebHPvYx3HnnnTjzzDNx1llnob29Hc899xx++MMf4oQTTsDHP/7xw13EQ85E9AsYr0fZT1Zcx9XDdTcRx9pk4kit/6Ljt9pxXrReNf+J0B5jPfdNhGcer6Tqbn9emgfz3pOJauvK65wx+5jo69xo5tKJ8GzGHE4m5G/PLS0tuP/++/GRj3wE5XIZa9euRblcxu///u/j/vvvR0tLy+EuojHGGGOMMcYYYyYxGfZ9qTLR/5nhTMidZQDQ1NSEj33sY/jYxz52uItijDHGGGOMMcYYYyYJE/bLsiORybxVVp/NkkEzXvEW9kPPRKvjiTifTYQyHmomWr+bzBxsieZEZ6zrYDT5eZyYyU41EuXxNC+lyjKeymnMeMRflhljjDHGGGOMMcZUgb92nJy4XY0xxhhjjDHGGGOMGcRflhljjDHGGGOMMcYYM4hlmOOARx8FfvVX94W3bo3j2ttDuK0t/m7z9z4cdPP/ensct3hxCC9cQPr6jRvjG2zYEMIvvRTHvfxyCHd3x3FTpoRwU1MIz5kTp1uwIIQ7O6Ooh9aFMq9ZE39s9eoQfvbZEH7uuTgdZzlzZhw3Y0YI82MCwJYtIVyTGAW3U73W1cVxtTXFfAsuvzyE9aDWqVND+Kyz4jguF/cDzYOrf257HLerN5S/vz+/jJs3h7DW41FHhbB2n4aGEH788Thu27aRP6f1zZ/74hfjfsxpU/V9ww0h3NERx3H9cFjz1ziuc86ztO3FOCGPjd7eOI47jY4hbhC6WX/b3CjZgw+G8BNPxFlonTPcx7VeDyYf/Wh8zY/J4xqI+4/260suCeGurlD+RR274oRcCdyRgbgStG0Ybqfjj4/jeAAoS5dWgpt6mith7vsAsH59CL/2WhzHfVC7SFdXCLe1jRwGgMYGGhs60FMDPw+d7DiP1ISp5N17NHmMAaXe0Gf+8976KI7npp6e+HO85qa6yKmnhnD95ifjSG58XcCIz/VeXwnrWOAurvMbr23a7+IpJjwLDwtl/vz4etq0EOblHIjXX647Weqjft1cJ+OQxiWPISDuJnfdlVNgAC+8EMInnhjHcVuddRb5DvX3xQnpZsN8KTmt9t1Vq0L4wgvz82Cfo49/PM6D5y1tnHvuwYhcdVWcP1c6lQMAdnWeMXIeiB+Hw6XNm+KE/JKmjfGd71SCj8pLAj8Nt+6xUg6eceTO6Nq7F6Pl3/kdFcB2Cl9XRX4A8G3KU2uUp2RZoVCvL3cMv6x/4xshj507o2Tcm+o0v6uvDmF+GULCa0teuvu6zq6EU9Pz/ffH1/zKP/vBb4ULfVn85jdDeNmyOI4nPHoXKkm6HU3h3UiXFh5Cra1a6sAjj4x4KwDA9OmUx9aH4kiuFH4pU6hCSlqRNEa3I57reP7k9yK9Lrp0puafvv44rrZ3RyX8ow2NlbC+X/Law7+XAXFz6/AaWpf0M8ZMFCbkzrKLL74Yj+f8lvjkk0/i4osvPsQlMsYYY4wxxhhjzJFGaRL8M8OZkDvLVq1ahR07dowYt3PnTvz3f//3qPPc8vIu3PBX38f9j72EqUdNQcdx0/DZ3zgXp1/7TXT+VBN6+/ZiWv1R+NUrT8F73roQAHDTiifw23/7Axw/6xj09vXj/VecjA9dcxoA4K+++hC++G+Po6amhFlNdfinP/hp/NRx01JFMMYYY4wxxhhjjDGHmQn5ZRkAZFk24s+feuopNOge1v1QLpdxxe/8J97z1oW49RP7tD9rn9yGrS/vxvzjG/HgP78DAPD0czvw9t+9EwMDZbz3bScBAN55yTx87rfPx8uv9uKkq76GKy+ehzmtDViysAVrvvx21NfV4PPffBS/87kf4GufuGTE+9fVhZ27Rx8dx/HOepXeMKQGAgDMbaGN4GsTMiXeOyvbviO9kO555jrmdJoHSwrkAVpbwzZk3Q7N17ybfs+eOB1LBqfJd5GqJGJ4K7NKbxh+bK2C2oKjR6VVDFejpsvrxvpcLOXUTOopk12ojeL4eVi+o3LE1L05D1WP8DVLhTQP7ZJ5+afqO5UHP4/em/vWccfFcXkSzWatIJb36R55Tqtx3PEondYjq6FVZsVZaPYp1eGhhOs86qvI7+NAYuyldAgivYnSpuSIqUng9ddDmBsDiBpk7oImulX89zmdmxiWLKTmLGZYFfCzacMXlWGm6iqVR9E6PpxQGVMSF11jVXY4hEoh6zc+Gi501ztPTjqAuYh0b5Vhcr845pjcLIZVP3frvLB+Tq0gXn2VypgYeqlpkGleIJ2c6qS9PZYmlXrCH0UXLAjyIB3mXH6VyJ5zKr0LrSIdOMvfJJOSdhJuN20cks7h/PNDHqlKuPnm+JotMESn3UPzT0PKU4A7q3RcLr4+Wu56r52JO70OjJNPrgTbRX7HpgXdFNY/d3Nt6Sjpyiliiu1y3TxiqtHB00PbrFlxJL2E1+sAY1mszgEsNaS4ujvuiJI9T+FjRQsZvdmJDDOSXjI33RTncVl48RhY/rMjfwYynoB4fvuP/8j9XIROtOw3QP1se0NsSfH4uvws+b1p9+44jtdYfhfVpZJ/n2g9rimO5HdrnST5hvyOoIONxlQzzRX7yhLeGfiVQ6nWESGa9Osac5NxnWhX5cfhdQGIq0SnjqGqG6+vB8bsjwn1Zdkb3vAGAPu+KLv++usxTX4D2b17N9atW4c3vvGNo8r37geex1E1JXzg7YsqP+ta2IKNz8df/Mw7vhF/dcMy/OZfr658WTbEzOl1WNA+HS9s24U5rQ24aOnsStyyxcfi5pXrYYwxxhhjjDHGGGPGNxPqy7Ipg39OLJfLKJVKleshZs6ciV/+5V/G7/7u744q33VPvYIzO1v2nxDAGSe14PGfdA/7+aYtPejt24vTFgz/+9U//vvjePO5c4b93BhjjDHGGGOMMROTDPb8mqxMqC/L7r77bgDARRddhM9//vPo1COXDgHlcnz9tbuext0PvIAnNnXjCx95A+qmxlV683fWY81j2/DfN77tEJbSGGOMMcYYY4wxxlRDVtZvf8YpWZaVqylrlmUo/+D6ZJr/uv85/MkXH8B3/z7W6W98fieW/+ZKrLslHNH9/9Y8h9/6m9X40f99B25a8QTWPPYSPvfb5+O+h7firb+xEo/eehXaZu47mv6uH27Gr//l9/Hfn38bjm0WMzLi+r/+CW7855Wjfjb2IkgeUz4B0PKPF8aiHg/ls2l5x2u95lFtfR/O5xzrsXYwnuVQzgcHuy0mwtw20dtwsjER+uShLONEqA+Fy1ztOnekjKGJ2L7G7I+J/p53OH8XSJXjUK0NZ5+9FGvWrBnZcHwScGaWlb9/uAsxBtQBD5TL5aX7T3nkMKF2ljE7duzAt7/9bWzatAm94tKYZRn+8A//sHBeFy+djd/7/A/xhdsfwy9dvs+o9P5HX8Su3tiNcOPzO/Fbf7Mav37V4mF5nHtqK9512Yn461vX4c9+9Ww8+MQ2vP9T92DlZ9+S/KLMGGOMMcYYY4wxxowfJuSXZd/73vfwtre9Dd05xwyO9suyLMtw26ffhBs+cx8+9X/Xoq62Bh3HNeCzHzoPTz23A0ve9U309u3FtPqj8OtXLR5m7j/E7777dJzx7n/F713Xhd/+2x+gZ1c/rvq9uwAAc9uOwb//xWWjflZjjDHGGGOMMcaMTyaWlscUZULKMM866yzs3bsXX/jCF3DqqaeitrY29bn9yjAPN2Mhw5zojFe54ETfej1e6zUPyzCHMxbPNtFlmBNtrnMdjC/Guj0OtszwYHAoZZhFyzFWpJ7nSBk3k61NjRmv768T4T11PP4ucCTIMFcf7kKMAbWWYQ5jQu4se+yxx/Av//IvOPPMMw93UYwxxhhjjDHGGGPMJOLwf9VcBXPnzsWePXsOdzGMMcYYY4wxxhhjzCRjQu4s++M//mN86lOfwhvf+EY0NjYe7uIcMibzVvfxuGV4IuJ6O/T4JDZjzFgy2dbDgz33HYlz60TvE5ON1Gmt5sjEY/TIIsME3YFk9suE+rLs3e9+dyW8detWnHDCCTj33HPR3NwcpcuyDF/+8pcPdfGMMcYYY4wxxhhjzARnQn1Zds8991TCWZahsbERjzzyyLB0WTZp/QONMcYYY4wxxhhjzEFkQn1Z9swzzxzuIhhjjDHGGGOMMcYcUWRZVgLwvwG8H0AHgJcA/AuAPyqXy68V+PwqAD+dE31WuVxeI+mnA/g4gLcDmAngKQCfA3BjuVwuV/cUxZlQX5YZY9JMNq+bIxG3mTHjD/sQVY/9nCY3bt+Y1Bru+kkzmd5//D5+5HEEtfBnAHwQwG0A/hLAyYPXS7Isu6RcLheZ6LYB+NAIP3+aL7IsqwVwJ4AlAP4WwGMA3gzg/wPQCuCj1T1CcSbkl2WbNm3KjSuVSpg+fTqmTZt2CEtkjDHGGGOMMcYYM/nIsuwUAL8O4F/L5fI76OfPAPgbAFcD+GqBrF4rl8s3F0j3PgBnAfhguVz+28GffSHLsm8C+L0sy75ULpd/MqqHGCUT8suyjo6O/fqSzZs3D7/zO79ziEpkjDHGGGOMMcYYMym5BvsO//ys/PwLAD4F4FoU+7JsSM7ZAGBnQk75CwB2DebPfBb7ZJnvBPB/ityvWibkl2U33ngjPvnJT6KpqQnveMc70Nraii1btuCb3/wmXn31VfzKr/wKvvvd7+IDH/jA4S5qITZvBr74xX3hbdviuGXLQritLd7guaiTdjn29MQf3LBh5PCWLXE6vqHm0d8fwnV1cZxeD9HaGl/PmhXCHR1x3OLFleDz3fVRFJ3lgJdfDuE1kYo5zrJGevOUKSH81FNxHD92d3cIaxWsXBnqXB+5vq7YdnpuQy1jQ0MIU3UAAFpaQnj+/BA+7rg4XVNTCC9YEPcRbkJ+To1btYrziNNNnRrCr74ax/HzcB5A3NWefTaEZ8zIT7diRf4m5lR9X3llCLe3x3FcP/zMCrcFENf5iSeGsHbj5rpd4aK3N4obaKKTenVw8zUV+qXdjVEyPsNk8+Y4C77m5wSAjRtD+FOfOnSbw2+6Kb7mcbN6dRzHfVw5//wQ7uwM5Z9d82KckB9UKyg1uLlg3JE7O/MLpfMnFbKv6dhKmKdcAHj44RDWMcTF0iK2tXE41IH2Qa5Hnaf40XT+4WseG5ouFafXzHiRHD3+eAhzWwDAc8+FsM59cVcI9b+woy9OuHbtyDcD4j6jkzBV3s0LPlYJL1sWj1fOUrsn97XUszU0hDy1n/G19i1uX+6PQFxfnG7p0jhdbQ31g7vuiiN5zOokzPPp5Zfnpvv+6vBsWj/NG34YLtatC+HLLosTciXoxMRl1Aq6+uoQ/sY3QjjvHQkAjjkmvj7qqEqwf+fOKKqG4nDKKZVg6UOiXlm+vBJ8clt8QjwXX9fHvDm4uSkeu339oY5r1/0oTsyL/xfi32ce1fEwSLdcb6ewzPD4xb17Ry5kgn/nF0AAcyncVUV+ADBAeWr9l7q6woWOc650fYnlhZv6z+b774+SbaRwrZSrg8LHFn02Hcw8vm68Mf9z3MeBeEx99rO5Hxugfl264oo4ksZiiV6EB5adl3srrWJ+DdBH42mEq1+HIb9b8zslANT3UK/8+tfjSB6jjBSkRP1gV+cZUZy+MzB582xq7VXJJ09v+irKxeT6uffeOB13Y61/XgKVoXs//XR+GjOhOAvAAIAf8g/L5XJvlmVrB+OLcDyAHgBHA9iVZdl/APi9crlcWTQGv0w7A8CPyuVyr3z+h4PlKHq/qpmQX5Y9+eSTWLp0Kb4hk/Yf/dEf4R3veAe2bNmCFStW4F3vehduvrnIDj9jjDHGGGOMMcaY0bE/1duEoFxuybKMv9X/h3K5/A90PRvAtnK5vGeETz8H4Lwsy2rL5XLfCPFDPAPgewAeArAXwDkAfg3AG7MsO79cLg/96W8G9n2Z9pxmUC6X92RZ9jL2fel2UJmQXnQ333wz3ve+940Y9773vQ9f+cpXAABXXXXVoSyWMcYYY4wxxhhjzERjW7lcXkr//kHi6wGM9EUZAPRSmlzK5fJ7y+Xy75fL5a+Vy+VvlMvl3wbwJuyTZP6V3Av7uV/yXmPBhPyybOfOnXjppZdGjHvppZfQM7jns7GxccQ0xhhjjDHGGGOMMaYQuwBMzYmrozSjolwu3wPguwAuyrLsaMkndb9R32u0TEgZ5k//9E/j937v97Bo0SKceeaZlZ+vWbMGv//7v4+LLroIALB+/frDVcRRMW0acPrp+8LqZ8M2CCkLjMJeZGraxIZU6hfCgng1tmCfBTYEULMAzlO8PvpqwpfBWiz2tTr66BBWnbzahzCc52uv5afbvTuEUx4A1TJzZn45Um3KlhtcH+pNxU2T8vXq78//bpx9XtirCwDYAoPbAoi9UPT7a+6C7CehlhraptXAXVxtq7gc2s/YHka94LhbsyWF2JJh/vzQj/fsif/AsZE8Ntrajo3i2trDNZdZfYe47ti/T8siFi2HDR1D3Me17/L0o8+m7ThEb0dcjx1Lw3VJJwTuXAm/qKgDpTzLFOpQtb07KuGmpvgPNXPmhLCOoZSPHk+n7Bei03F9De121w7K13ozqoNarg+ZmGoj0zKZtBLlz3245GI29ixqD23T0BC3DVsqqW/k7DpyUuK1jAclEE9++mxsjKMDgNrm3VfS+56YxSy8kIwvpR/XLQ5uTNr03Nd4nUt5H77wQhzHc58Wn+uOH1tfR5qawtpzsRqa8fNowdikiCdrWUTOY4PDVRvjPFauDGE21tFycKF1EuM4GXwD3/lOJVxKDWbiSWmoPrreIWmbX3+9El5A5a9RkyCatzq6zo6i+Hb6msdtGnkMitdYLTewGizpeMiBfcnENinyMDsWB45asc0dMdXoKPHacOGFcSS/rKspFH9OjRF5YqfGaBfvul5qDzXuYQvConXXIy9sDXfeWeyDt94aX9OE0U1lbpo2LUoW1R37owHAtddWgk9uCHPFGrlVyteLpxGtYo7jocxNpp+r3/xkHMlz8pe/HMdxW/FLvi4o9H5SL+qoBeRhllimC/+Oon6hjfeEeapRX0LuC234hrOC/VP71QujZLyUPfFEnAXXq9oUDr1eFZwezfjneQCLsiybOoIU83js25mWkmCm2AjgQuyTX+4G8Mrg/8OkllmWTQUwE8B/V3mvwkzIL8v+7u/+DpdccgnOPvtszJ07F8ceeyxefPFFbNq0CSeccAL+9m/3nSzaoy62xhhjjDHGGGOMMWNBlh2cHReHGvoDTQ73Y59k8mwAleP4siyrA9CFfbvDquVE7PsT7HYAKJfLA1mW/QjAkhG+nDsb+xSSa4ZnM7ZMSBnmCSecgMcffxyf//zncfHFF2PmzJm4+OKLceONN+Kxxx7DCSecAAD4kJ4WZIwxxhhjjDHGGGNGw9cAlAHcID//JezzD/vK0A+yLDsuy7LOLMvq6WfTsywbpoXJsuytAP4HgDvl5MtbBvO9Xj5yA/Z9sfYvVT9JQSbsV6BHHXUUrr/+elx/vdbdxKOMoCpQGQVvH9YvrOfyEeB6Hjjvd+VMNRO+QVFNIBDv5eewloPitr4eH2f+6sYQ1l38fM0bBFXewbdOFV8VWLxLnuVfqTyq/YMB70bX3c+s6FAFWWvryHFaxfX9JNzYKNv/qdDNKpGluM7O8L15c78c3N4QKqWlJZYwcZ2ojJEpun0+tf08RUpqyVI/PeGbr1Wektc22kdYIqubWfneWi6+5l38KkfcujWEtR55aKvy43BtrNUt+NOnh7CWP08JCeSPRe0TLCNqTsjchn0wrwG0Irkgr7ySXxjqQLOHSTlLIyUbhhaRsylteT5cbJbK4srTRYSfUzshPxuHVefJeWod8+eKDuBqB3q13FP54yfmXnBBfOvFYU7TKRKP04KTZz0AAHvyvGcRSwZ1AooKQnUgk/zT23jejefgu+4KYV1HuZq5mbT41VY/58NhdcDgda+/P34PuPDyn6+EayHKjVWrQpg1Uo89FqfjhlMdKQ84/ou59kGOS0mZVUJJ4aLiYjVLUEki083FoHCDNjZJVmtl/C5YMK8SHmbVwAswP5tO5Fxfa+QP+atXh7CUi81k+Dm7EdNE4WYcOKr4UuliNQxQnZTUL4EHmO7MYDmejO1NPeFp5y4jufUVV0TpFnz+8+FCvSxYH1eQhlNPjX9Ai81AYh9FiSXPQPSSE0kvNR3XD8kuAeD7q8P9nn02/Fzf97mr6jqa+l0g71cUXaajptmYuLm2L/X5XhpDdfoAfEORgdcPW3yIhpHjtJ1Uehnxgx9QflJ5PO6pXxzTGifjeVynSM5SXxGG1pfJsOnKAOVy+eEsy/4OwK9lWfavAL4N4GQAH8Q+SeRXKfmfAXgPgIsArBr82UUA/irLsjsAPI190/XZAK7FvmXiBrnlFwC8d/AzHQAeA/AWAFcA+Hi5XH5mbJ9wOO66xhhjjDHGGGOMMSbFDdjnL3Y9gLdi35dcfwvgj8rlcuJbWwDAEwAeALAcQCuAowBsBnAjgE+Wy+XnOHG5XO7LsuwSAB8HcA32+ZQ9BeDXAfzd2DxOmgn1ZdmPf/xjnH766TjhhBOQZVluuizL8NRTTx3CkhljjDHGGGOMMeaIYzJsn9u/ZxnK5fJeAH85+C+V7joA18nPHgNw1WiKVC6XuwH82uC/Q86EatXGxn3yg5/+6Z9OfllmjDHGGGOMMcYYY0w1TKgvy4aM+2+66aZRfe7893/7IJRm7Ogrt1RsclTinjpqlz3LfvBwfRTX0bGoEm5lIb768egNGfbBURMAFqVznPgxbO+prYSfWBdFRUVR+w0+QZ6PvH/11fxipKx0UhTR2h8IbEVQ1EtB0xZ9lmEJUx8k04Hm/mLGcDUd+Z5larnAfl3su5WyQ6q2vrnuNP8cW6lkHnqd1901fy0/W3jo5/iPN2xBonmk+kFRC55DScoySy2/+Lm1/HyyPdc/9ytAx1dtFFefanCe3/LMnYC406gxHxeMOt6OnthLJOUfl3q20uZN4YInxZQBXqojqNdN3ud0IuQHSNVp0bPhU+kOxl9m164N4RNPjKIa2sKcxn0OAFrJrLCvJqyxNW2zo3Qlri99Nl3cGKrXPoS+Wyt9kLPU6ufqSi3TjObBln1K0TmGu5Z2M17DU123tz8ev400pna1ke+WPFjk+3SpLACzZoVwzngFEFekxiXGRt2b3zxyHgkWyjXPFjskjh1E2fJx0W23Relq2VNJTFrrr746XOR1CiB+Tp5vAODee0OYveQAbKGBI46noBks8ilTXzKu8UQJC6M6IC7XbFTH0xRewB5QQNzp1SSX1w0ZpHM7m8LFPeSDlvLOVL8x9vMT2Ncq8rS67ro44Ukn5eYRceWV+XH8oqcvVHlGxIi9cDnquUiMlX7X4rVTuzhbunEcW8QBQP3mJ8PFihVxJHv4PfJIFNVDE2HUuloQ9q5rFUOwlIErw2O0pjY/ncJ5av/kazKWbdWXevJxW7r0tNxiKUM+dJNh05U5Mpl0Xfeuu+7Cb/zGb+Chhx6q/OzeB59NfOLwc8UV7z/cRTDGGGOMMcYYY4wxmIRflr366qt4RL71N8YYY4wxxhhjjBlTsszb5yYpbtVxQG9v2PGuO99VtpSHKj0iSQRJ52Z3JDQcRbf+ptKqBoukJTqHcBb6MY7jsNYHx6XmqJQkjXdKpxRG1cL31vwjCUritHruF1r1M2eG9p3REsskI4mjNCFL1kqcUCUoVGjtZymlLh8znSdp1DyUousOqaWGyUGnTAlhlkUqM2fG11zOolJOrQMuS0r98tprITxsCCVgpUZKPXgo0edMbc9PqYRnzBg5T1VC8nPWY1ccyfKClP6LM9FOx9ciLelrOrYS5jGqcj6Wj2sxWKJ21FFxXGsX3Y8rKzVZjEaimadrGU0nT+kA80jV8cGApXg8WQDYTNo2XX/b2oL0kucpnlP2ZTk33ErURyWuE5VW5cytC9tlEqNyzW6LBWYLFgSZFcuNgHgO5n6mc2RRKbyO7eOPD2F+52C1ERB3p/PPj+Nq1/4wv2A0fuOqi0V8a9aE8IamWJp0yilnV8KtVzeFCH2Y1ItAamywLI3SDSCWYrMErnTFFVHcwrvvroRfFIkUj/QdOWEAaNmQ6MjcwEWtGnRBpHINyATHZXlesummcBOFZZigHgeX7WOQR1Tn69fnJ9QXJV43tP8880wIf/ObIXzffVGyHrLHaJgzJ84j9XKRh8ouL7ig0Meer5kbXc9u2jVywnXiu8IyXpGNLly6tBLuuDBYyOhcxF18NPMUp+WhMOx9gS1ItA1Vukg08IslPcsweezy5SF80UVR1I7+MAIa5QEiKW21a+WZZ4Ywv3AC+RWr7ws0CTd3xDNQe3v43UOdXIbWTl03jZkolPafxBhjjDHGGGOMMcaYIwN/WWaMMcYYY4wxxhhjzCATSob59NNP7zfNltTpjuOUUinshNcd8Sn5DqM2bS+/HMJcJW1t8fej7e1hS3WT7Itv7KAtygWPc9v6SiyBeOqpEH5WzllgWUVRKR5Ls4D0SZZclyrdYnnKwT4Nc8mSEFaFI8OSFgDYsyeEUyoxRuuRJaBad6X+vnDBW84TMg29N5crcSBTdPCPSiFZeVNtffPOd1XycJ4ptUJKnVJUqqtjlNNG9Q1gIOckIy0jKzi0frg/qdSY+8+hRMvP8i8dh4zW6/TpIZwnowDieaShIRbz8Gl6wxo4T8Mt6XbRCX39dbHMuZvm1tTSw1nqiZdcJxqXq79OddbRyDCZ1FFjeen0OiXzLHpS5sGA61Ekau3t8/KikHfAIPdpIF6nud8CwJw54ey9tsVyimYvrbF074G6fFGayvtS6yPPhdx9+P0ASNsBMLp+8TqaZ52g16rOOoM0m9t74+du7gqTwmY6jE7lPDz3afmfeILK2xXOoRzNPF7TpGc3BkqXXUYJCy5g114bX1NDHctyNQA9D4cTEllKqNNNP71gtd1ySxzJ2teUXp8nU355A9B7552V8AbEcFlUhjk7J3yalkPk0QfKGXK9ecRUB4DK9Ki+umUxbmKZ2ymnxJ9j/TLXybnnRskauFO+851xHiSh1Pkhjx0XvDW6fuyxED7rrPzP8cHCALCFpOpncL9WyTnT1RVf00tDav4p+r6vXYnjonF/111xQtZz07gbRsqzgzXo+lLMBRv2PpJ/uzGBy6gvh9y3uN34BFAgnrxlAj0t0t7H8/iQPUD9wdZaH27sWTZpmVCteqIc+T4S5XIZWZZFPzvznDNzUo8P9uw5ev+JjDHGGGOMMcYYY8xBZ0J9WfZP//RPVX1u6R8s3X+iw8j3Pv2Tw10EY4wxxhhjjDHGGIMJ9mXZe97znsNdBGOMMcYYY4wxxhgziZlQX5YdStatWIdHVjyC0pQSfursn8LZ7zkbT9/7NB645QG8svkVXPEXV2DWifuOo9/84Gb88P/+EHv792JKzRScc905OP704/dzh0BLCzBke6G+NwmrlSR5pxyrl0jiNGTMnBkE5kcdlS8237Y2hFPlV8+yo44KYfVbYq8VltOrHxV7Yc2aFcexdFx9ZNhjJuV1UNTGJwVbmqQ8y/QY676aUOe1/RSnBWGPgRnxDdgXq9Qjh81z469aFcJqBkGVMle8JnaQl4taMLD/ErehZp/yqCha51yv+pmUVRL3u5RfHYd1DLF/0datqVLGHmWcD48N9RPi+lEbkJQllLbHeED7/86dIaxzAFvCcJ2o5xHPCer7N2dO8BjT+mlpCX2X7TfUN0zbg2E/Of6c+vLV15BfnXYgfiBtYDaS4QlTJyruvFqRKfL8crTz8ESuA4zvrQsKx6UGOt/vYHh+3HRTCEsZG8nw8E3Ll+dmsaMm9BduFiC2gNE5gOPU5qipKczxi5rI7Wl1nHBhZ2e42BD3kba24MOlfXzhgoFQrpeCl5Guxbxu6xrOzaZNyJY2r7wSwuprxGNU771gQagDHRrN/d2VcEfHyOMViL3atIzctRpreI1NTZCjOPuq4ETLXlIlXWwSpnEDOWH1LIs+JY3Yxut7au7gBv3GN6JkaxP3Zi+1uRLH15Hj46mnxgmXLcstY1R3US3k0/jmN0fXi3TQVsEivrjiijiSOmWTvqxffnkIR95OiAcHm/HpIsKL5aWXRlHsFSyvwbnoXMRLQQrtutFywwui9jMa3A/htChqN80JDzyQX0YeamoHxtf6nsGfq91M3tc8LoBo4uoTvy52nNUeWEfjrZZ/EdEJmdtaJrHIX3VzPMeXuF6ZHN/bEeGKVS+yBx+ke1Pf1V+42HtPn43W1c4L3xRFDSUd5sk62bBn2aTFp2GOwN7X9+KBWx7Az/35z+Edf/MOPHn3k9jTswczfmoGLv3IpTjulNiluq6xDj/zBz+Dq/72Klx4w4W4+zN3H6aSG2OMMcYYY4wxxpgDwV+BjsDu7t2ob6pH3bQ6bN+0729mtfW1mNow8tfiLfPDXwRmzJ2Bva/vxd7X92LKUVNGTG+MMcYYY4wxxhhjxif+smwEygNlIAMe/PqDWPOVNeh8UyeyUrb/DwJ45vvPoGVey6i+KJs6Nex2TUnBUked625ZRvNkeMe/qndS9+YduCydUBUO56+7yrlcuqOXd3Bz/vqcXK6h44mH4G3lrGAC8lU/B2ObMOdZXycbuLnCZOt+bV46hbfni7ShxFu7VePC1yzb0HtxBUlnamwPDdfYkt9BX2vPl/FyG1a7gzmlIEtJQPl+eTvdAZGwDhuIYYOu3jslk9TmyMuDr1VixKoNPQ38cO0G1/seTYf9atUVnd/4OV97LY7jeUvrgOt4uAxz5HvpXJEqV2N/ECA1ZnSDdRvjhC+9lJ/Jc8/lx3FhuMDaWVNyR35wrQS+5sZIdcJUJ9fGz4s71J2TO4lqe1I6f/pc4wknVMJLlkSCrGj6VAVWqvqjpuJ6TQ0UqbtktdJcPm1akDEeLQdwc/cZjXybxxdbG6h0OdXcrDzWpWduZ2iPnoQNRdE63oWwDuljpuT6nMcwmX8dWRHkZxHDsloAOP30EJaFoX39+nBv+nm3ZMmfUplkG8uutJK5AdasCT9++OEoGYmEh927mcL6KspquRJL1C68ME5IcuhhGjtiICGIiSSal1wSR9JLpeZRVNpZd9ZZ4eKUU/IT6jxC0ssdDbOjqMfuD+FzLrqoEmYbDgCo7X6xEn5yYyy/4yZUO5I8VG6d6v9M3nsLAGzaFsqsy9BCktmuvjX/3tQFh+WRstvgKVOnz1Ivya/5wXUteOaZSrAvjol6yLA3QK50/uVFfSF43U69qB4MuFL0RTjvl0RtAO5o2oEoD+6rAHD88ccCGP5uZcxEwV+WJVhy1RKcfNnJuPsv78Zj//EYTv6Zk5Ppt2/ajh98+Qd465+89RCV0BhjjDHGGGOMMYcFe5ZNWuxZth/qptVh/hvmY9tT25Lperb14M5P3omLbrgIjcc1JtMaY4wxxhhjjDHGmPGJvyzLoWdbD7qf6wYAvPjki2g6vik37Z6ePVj5sZU4691noW1RQg9pjDHGGGOMMcYYY8Y13i+YQ2lKCf/5if9ENiXD9OOm45z3nINn7nsG3/+H72P3q7ux8mMrMXPeTLzlT96CR771CHa8sAMPfu1BPPi1fUfwvuVP3oKjm47ez132ke3cidK6hwAA9bKF87TFwdvi+S35323OnBlfs68PS+HVrmL37hBmzxEg39crlec22YCnkneGbTvUb4wtKziPhJXFMJ8CLtcUsZBT36Mh1O9hLHbURnlqBbHBjcaxzw4XWM3l2KiJfHUAxJWijcHXXI6UX452NE6rngv0ubq6Yp5l1cJ9Vduai6VVULD4Ebt643GYsJ2L8lCvD7Z84LCWI1VGfu7ReG0dTFIeiRqXmh+4Trju1GaE61jtv9jjROuO80/ZgaXKOHcBZZrXoADw7LMhzGaKQHrscWdm80NNlzKaSj0AM5nlAzw41D+O20q9hnIWulrpyFOnzh4p2bBrneK5Gc+o25KfkNtGbjB3KXVYbes1ayvBelpwOztj3yTOPrVM6DrNcSnv0tRcxHkO66r0g4aGegrn55ey9zwYtkBsGVrY7037GfscySRWR3FNNPnprXhV2iFxUZ/XRYqhytuuURRukjh+Gn1FK116KX2QPskeZXLd1z4viio6M7EXWUk90biOq4XzFH/YlAHwQFsYbxvXxR/j5n5+Tujjus7Nn39sJcwWdNWi7yNFp/+ivwvw7xYAsKMtKG50euNl7oUXQnjGjDgdDxttTrKFQ+nxR/MLuWFDCMtY6KNK16mIPcsa9WWLJzGenNSouaiJbcoYjijqtQcgbhzNn3+/4MbRhuJOqZ2Qn0cap3Vw7TkK8rvLZGQyv0cdwbhVc6ifUY+rPndV9LMTzj0BJ5x7wrC0Z7zzDJzxzjMOVdGMMcYYY4wxxhhjzEHCMkxjjDHGGGOMMcYYYwY5InaWffsj3x71Z46ZdkxVn6uGlj4Ad9yx72Lr1jiytbUSnK0apl/+5UrwnUuejON4KzBvv5UjyzdtDt+X8u5kIN5VnpIwsTpId6Cyak93JPOOdv3cQtDzsPZSJQS8L1s0HK8fE7Z9qzSD5RKpo+v5uavdXct51GrkY4+F8BNPxHG85ZnDKiPiiuU97ADAR52rvowf6H/8jxD+wQ/yy6E6mZdfDmHdF0/atv6GICFInVxfVAqpqGQhD919zt2HpXgAUMuHh1Mha9rjAzy4jCrDSUmT+FlZhqBVnJJy8thTdV9R9d1Yo2XUes2LU2kVx6nymElJq1KnpZ9ySgifeGIINzeJtIErUjvax28M4bVrQ1glCtz4epw8NxxrSQCgqyuEWfqhlVVUc5vqFNzRdOBVq9EZL5BMpnf16iiKu2vj/fdHcd0UPpYjLrooStdKErK3XHZZfO/Ll1WCT2+J5ehR321oCmGdSGju7pNVhNft/v44rvP8iythXjqlCqI89D0gpQjiuZvT6XjlYaPj8IEHQlgfu6OjOXyO4ur7Y6FhY1Pod7NbpA9GOlgqZE0shaxNLPZxrcZxra9Rxc7qqAQHUn+LXidaPLZS0PnhmmsqwSaq5DdIX43eA1j2DQAXXBDCuhDdfHMIU573SpHPp3CzxLWwJPHKK+PI+fNDmN8XdK6guam2Jp6Dk3WZh3Y0lX1Ww0//dAgvWRLH8Rws8zGPN1Xo81LB07PaSfB6KK/xyTU2T6p3+eWSrj+87wwMf1OtcPGFcX47ekLbsPTyqafiz/HyqHMMd0n+FYi7C5B+V+chdfrpi6I4Vhm2dJ1WCZ/2xa4oXS01VIu+Z3PBtG/lWZWkfCdSLy4F9dw6LpKyTH4/P+mkOO6cc0KYfWO0HNwA2gnp+gfr4xniucFq7X5N5KvGTBDG6Zvt2PLsumf3n+gw8v5LLjncRTDGGGOMMcYYY8xoyLLx+wdDc0BYhmmMMcYYY4wxxhhjzCD+sswYY4wxxhhjjDHGmEGycrl8uMtQiCzLytWUNcsyjPdnfP973oO//7M/23ehnjJsRqD6cdruyd5jCvsasXYfKH5asfonsMUGfy7lt6SohRbD8nrOU70ZUp5i/Dk9xlr9nYZIWQGN6phmIjrOnHwhAMSF1AbIi9PjnPlaPRLYqEYriD0HUkdac7/T/LmCEv1zV3++B8bOnSHMdglKqv63dxf73j9lBVFfl2hfbgvJhD071EcjLwsgf9xo9fP45XEHpK2quEnVCutgon4kKWsOfm7tnnnzkXZ/RvPg+tG4PL807eJcfq3v0tofjVwwNW3iCact9kpK3iBvfCXGWrLCi6Ll4MYo6o8G5JfrUEsV7iUHJvWd4wlozpw4jjszL1i6eNH1QPvcKIqn4NQau6iT5h9pQ/UpY155JYSPEksY9t/r6w/zlPompbyAio5R7vK6vvKY0nmQ5yaNI8tWHH10CA8bh8ivu+g6NdaKjptUJSTGRvQe0BN7rhVeODisvmRs8KST8JAnruYBYAWZZr1IP/9FLcev/3oIp/zAUoZaXFdajzQv6nqutzuYJN/zqJ0GmmJfJu4+2o95vGkcjz2e1rU76rLBcLdLpeNn4/cWzSOFlovnH34/0S7Nza2Wnkyqi3AZ9XcBvtY6yBuijVvE65kbSisk9YsIk1rbUga3qc+lXmSKwuue5sGNmnpJ5kbVdFTGXQ2Rw2dliX3Tm5bixz9ek+2/sBOTpVOnlteo5+QEJHvmmQfK5fIYmDxOHiyuNcYYY4wxxhhjjBkt9iybtFiGaYwxxhhjjDHGGGPMIP4KdDxQUxO2sCa2tqaOCU4pD6pV6LD0UuUdefdSqr23qphGym9/candxHn1k5R3VEmUhxRyoKExpEtt+07pd1hjqvoa1gCplpYriKUTWo5UBZE+Inm8e2KXd6pfFK3/lIQgpf7iOC0/x9VSoUdzjH1q133ec2vfZ/mRjsPUcxc8fXzMqVbdpOTNP6lxnpJtKPw5vleqnZL9kW+WunFKwjEW8spq/7KZ+lyqMxUt4+H8i+uCBSGsz8LSEm0blmiy9FLTUZ5aBfzYqSrgeaVfZJd5ckcgtlbQ/GtqRi9PV8kb34/nIiBfejYaOwbOQ+0S+NlY2qlNWMv5j4UMOUXqZStBUiqaWmOLvqzo2s8cd1wIr1kTRbH0MhJPnXVWnAdLLVXnxuNLx0ZBfd9o1tVqKKoCT5WjlBjnzGjWqLxy6VgYa8ZqOuZxmRrLvIYnfs2J5p9jjsm/r1p2pOqY1/dkd+Sb60TImWof5wk6pcctyvCJvLp8mJSNA5c59X4yFnJQYyYg3llmjDHGGGOMMcYYY8wg/mrYGGOMMcYYY4wxZrTYs2zS4lYdBwyUatBXt0+Op1u7t5GKTk+XOY1OkdLTZfK2iOvP8+SOQHrbNM8HqdMwi5Ladcz3TqkRU0qh1K7j6BREvcFoTn7LI3HSVSmxrXkX6kNUE4Vb4pNmSiyJ0JPeeP/5E0/Ecdz4/Nx60ltC+rGrN2xO1Trmkz/r+dF64k7SGH2wuimptn9XuJBOzhJK7aC1UUeWz41B26vyNY+UVCvVr6dPD2E9gW4sum416H1TcpLUKaD8PHzKlqZLndaXlw7In/v0xNFYXhZvxl7QecaI99Z7NTaEOWaYnL43v+/mnuSn+AWtOCozYbmNzn00t/a1zK6E9UTWbrresi6OS/VxbrbU6dAp9d20aSE87ERfluZRJg3t8RqSOmw5pdDhtKm1matY6yB1UmaeoolP4AOAo4/mdag+iotkbizV0kLW5J84yqgUu68hnIpYk0gXyWwb4pMUa+vCHDAg5Y9OzkxJvFheuWJFFPWjO++shNfGn8Ivsp5t5swQvvZa5KLzTcFT8lJSMO6q2peqOQ1TX7tSMr2xIHWgIFeBPltelWi6vFMnNf/UaZgMO3TovVNzkap9uZ55rdcysoQ7cRBqNKeo1JLT1Xc/H0dyA6yLC1nPlcnvyHfdFefBFbl8ef7NU1YlRf0vilobjBUpCSXPJdyguhhw4+tETh2qvqMjiqofHMBH9R9kbbExBwnLMI0xxhhjjDHGGGOMGcRflhljjDHGGGOMMcYYM4i1G8YYY4wxxhhjjDGjxZ5lkxa36jhgz54gBVcbig0bQjjlWfbww8PzHC06xtknQuX1fKTzyy+HsMrY2SpA/Zv4efTe/DmW2mv9cFzqmGmF/ZBqWsIGy9qDMdFx5UkF9SH4pPTLs+3cOXJ27CUHAM1cCYsXx5F8bzW1mjMnhNeR0Y76MZBRzUBDYxSVslHKJeXLVG39p4yBUj4vCT+zPCOxkpSxv5+8aOTWKd+w1DHreWj1pLy8Ch+XPsbos7z2WghrFaslBpNn9Zf6jM4B7OeUsA6M6k7HF89FL7yQn0fKd66/JX8Td3NT/vwQ3Tx1g2rHTZ4n2mR74WOvlcRg2N4b+0XVkVfkFvL4UWtIzl49fdgbj317gHj6qccu5MLNsa07ioq8FTfIzXlepwW9tGBBlKyR8th9TOynxXOMVh17pbIHUsqXSetn6dIQ1vkhz89M30d4ztH559VXR/6c+q8xw8ZvNDTisczPzVY96k2Y95l9nwv9LPIwBOJK5vCqVXG6L30p5C/3W0vhLi0MNwBPcPzyCQD33BPCaibV2RnCF14Yx3XRHakBdjXNjpLxvK5zvHTXQqT64GiIvOdoEalpqx+eeKTPAHj99dAXdB3iZ+X+rnMMjz0dQ/xsXN0peGrQ/FOeZdp3+Xl4jKon6NSp+Xmw9yp3cV0Oo3JpJXCF6cPxDe+/vxJ8ce3aKBm/3dZp/+dOeMklcRxPJlzIlHld6uW54LvoqEgNsJdeCmGe8LUO9DovjucDINSPmk0aM0GwDNMYY4wxxhhjjDHGmEH8ZZkxxhhjjDHGGGOMMYNMMq3FxGTq1HAqse6+5a3kGseowo4/x3I+TZfaCZx34rde523D1nJoHrxzmU8s1zjedaxHiHOcSlxYjqHPzeXkMkaSqLEiIfVL7ahmORinG9ZmFLmrvzaO6jytEo5jED/4ypX5heIt1W2xdILbXstVV1c7YlyjNOKu3vCdfb3IF4oy0BSkQyqB6COZZG1T8bgdPSSvTMgLtm4NYZUXpI5xZ9UA12Nq577GsXxB+z+jqpmDiUrAUwpZjtO5g1UWvHuf6xuIx7k+Z55cHMhvGy0Ht40qP/h+3DaaN7dhLfriyM2J49jzJtCUhiwlQy4qgdY5gCtBJ2EmJXNOyTwPtuxzxYoQVokI0XyZNBwVua4ulqAzrGpR+VRq3Y6qkicP7WiM3oBlP6oT/t73Qpj1WdqG1J82ro+jWMao6h1W5nGx+DP7o7Hn+Up4/vx4fWk9anslvKknzPFq6cD3U/kdd10eNjqEuJ20O/Icw9JuIFYwsQwzhQ7D0pZQB7j33jjy1ltDmPrxWlmInqZwt9zvTRRuv/TSOPLqq0OYpVRf/3qU7Lukj9OR0HbnnSEsn8M119DNQ1+tv/zyKFln57xKWLt4Ncxt2hH/4PHwbANdZ+R+Tt8fIqj+S8uWRVG1CbuHaV3nVcLPPRdnyf2T+48OUR7mKSlkUbSOeapWlSHz7LP5cTNmhLBKtk89NYQfeCC/LKtXh7A+J0s5zzlZtLk8OenNc97BdZZ9iMJNd98dxbXQdYf28SVLQpj79fz5+em0jCm7kLx0o1k316wZOazXPIFKJ3mRJrv81RCo0wluaO3RX8QmI5PNwsIA8M4yY4wxxhhjjDHGGGMq+MsyY4wxxhhjjDHGGGMG8ZdlxhhjjDHGGGOMMcYMckSIa88858zDXYQkNTVHVyxK1HuArUtSvgTD/aLy7lUsHRB7JqQ8y1jinjoWO1UWlbLz51KeR+zZpF4ieb5kGsd5zJgRf3+cOrI86W1BPL0x5FlXFx83nrIf4DKnTpxuaAjeYFr/7O3SqkZKXMkpUzS6ViuFlOcUZ8nP0tIS1zEXY/Hi/O/vU/XN1gp1dXEe/DhTp8Zx7K/V0BDH5dlGqF8OP6eOk1Qcjy/1QWO4/NqPOU7zz/NCOdjomE/NDynPu7z6V6sPrseUV5h6uuXZfmn+3DbqI5PXNvqc3DY8XgHx8EtVQsoLI2lqiPy4vLSj8T2bCB4d3CBaXuoIu2rynVg4Cx2HTKp/puaAqF7ZaBSIFzcdGHzD446L43gBO/74EJaBsnVnWJfU20+LwrCvZsozMeU7ypU5S9fbx8ML0NSZwbOM7wsUt/vRtskro6L3Y/S9owjD5uM7Hwxh9Sy77bZK8En68SbJopvCTRLXzhfLl8eReS85c+ZElyXyLOuWpNGMIH57bd/4xsj3ko5QuzgsHAulTANoRhGid4RVq+JI9mMTz7Ki73KRt5M2Ii8UsgDUL11aCbe1xfM/zyXsS6b9cW7Lrkp427b4PbIaz7KUZdZo4HHPzcZ+oQBQvy302I6Oubn35qmJPcqAeG7a3h/P1c18c32h4oyoHzRRnwbiftwd5xD9stwtFd50333hgsuhL4s8plK/fFXbGCnYXFHN4HhscLmkjNxz67T8bOCqY+Okk/b9rw062ciyifE+ZEbNEdGqS/9g6f4THUae+OJPDncRjDHGGGOMMcYYYwyOkC/LqmHdinV4ZMUjKE0p4afO/imc/Z6z8fS9T+OBWx7AK5tfwRV/cQVmnbjvm/TeHb2489N34qX1L2HhxQtx/gfOP8ylN8YYY4wxxhhjjDHV4C/LRmDv63vxwC0P4J03vhO19bX46v/6Kk5/x+mY8VMzcOlHLsU9/989UfoptVNw1v88C9t/sh3bf7I9J9d8aqeGrce6g7Pojk7d9ZonRUjlX1TKqXC6lERNy8T308/FsqX8MvEW8NE8W0ramVfGanfX8jb7ahVMXD9aB7Xoo7h4i39Eney750rgStaGIh1OfZ3KFYJ0MSW55TiVMMUyzPw8UrAMU+s01YZ5clyFj0RP9aWU3Dclk2R5QUr2pLAESOVNRcfvWJOSiu7eHcdx/Wj/yatXzYPrQO/NdZAaa0XraubM+JqlnJx/6uT6YVKwzd0hrA/AkqZUIaud7PIGhxYyTxOueaS02KnBkPeZsYJlJypBofvV97yYm0Vb27GVcOoxq7U6iKQwa9fqzUdOB8SLv96MO+iJJ1aCW6fMjpI98EAIr14dZ5GSeHFV8rhUSSZ342ESRBr4Je3/JElsXZ4/mOtI1qXNy911dl14Pxuoi6V9LMXb1RtL8lNtuKgjyOMGUJ+fkKhd8/34B9/6ek6Z1wABAABJREFUVgjfcksU9SiFWXqpyy2ryudKHN773hC+5JI4jh/ulVdCWBYiXvn7ENPN2UlczbPPVsKNFK7VBWvduhDu6orjrn038siVUKqclTpyYdmlwp1LB0ZChskTxpQp8Tsa98/a7jD/zIVMMivCwLxYpLQ7+ov1O+Z8+Zt+0feOJUvia55imjf+KFx0ywcfe6wSXHDW/4yiWA3Jcyu/1wHxe5K+LyxdOq8SXvTmjjiS5xWaB3WctH3nO5XwjyRuB4WflrhmKnTHHXeMfF8glirqpMIdQfsP63Or5cc/DuEHH4yidtG4jHqSyPWjWVdk2rjsshC+/PI4btmyff//4z8WKakx4w5/WTYCu7t3o76pHnXT6rB9076Xq9r6WkxtGFlvfVTdUWhb1IZXX3j1UBbTGGOMMcYYY4wxhwt7lk1a3KojUB4oAxnw4NcfxJqvrEHnmzqRlbLDXSxjjDHGGGOMMcYYc5DJP3rOYMlVS/Cuf34Xel7swWP/8dj+P2CMMcYYY4wxxhhjJjTeWbYf6qbVYf4b5mPr41sP2j36+oL+Xk7dLgz7BgD59jMqk09Z3XCc+gTt3Tvy5/S4aPYTUo8B/hznp2k5nebBUn59Nv6c1mte/mqjceqpIVzt7lq24lC4zHpvvl/SU6lgwQbqYl+LEneM+fNDWD2JyICmrz/+fp0tGdRKJ897Qu0XuG3Y9kCpTTwmW/yk+oFWFft0sJ2E5pOyjEiNoZTVU14ZX3stPw8dh+wN1Noaxx11VP79DiY6RtnKRT1I+Fl1jLJPHz+L+iHxuNF5kK+1/vlz1fgzjpTnEOpplfLsa28Pziml3l1xZJ7fWFFvsP19rpo8RnOs/WjSHky4odQ0i4wSB1qOjaJK3SN7kGq7p2zDeE3UdS6a81dTJ9GBwugAY38bnajYZI/8Z56Tufrhh/NvzeMy9Y7A41WrmK/VKwmfI5M0naBXrRo5EzE5rb+gqRJub2+M4/rJbWjN2kqwNOSjMwT1+bom8TOjcanrKO68O6R785tDOvlbdOSTdfvtcR633VYJbhC/IvZHYke92HUOmEfhhTr5X3hhCIsPUVTn7EN01llRstPIzC4uYVwunWHYc41bZgE9MxB7ndWIZ1np2msxar7whfy4G28cfX5A7PWkvkw8mPfsieOob82aFffPaE7gl8XH5A/0//ZvISyDtJHHxpVXRnHaD4dYVCfOWwvC3DGAfO/bhW074h9wWW66Kfdz/IK48Nxz47jO0Ht5vlHrrtRc9MILXKT4mZuaQp3PP/1NlXDrlbHBYS0tzi33xN7U23PCSgsVskHbkPu1GvQWNVglknOMwpUnL5m5q7S8FDewadyCBXFamtgHLrw4ihqaxne+5v05ZmLiL8ty6NnWg+7nutF0fBNefPJFNB3fdLiLZIwxxhhjjDHGmPGCPcsmLW7VHEpTSvjPT/wnsikZph83Hee85xw8c98z+P4/fB+7X92NlR9biZnzZuItf/IWAMBX3/dVvL7rdezt34uf/OAneMufvAUz5s7Yz12MMcYYY4wxxhhjzHjiiPiy7Nu/881Rpe/v24u9e/rR0LBvq39/907c+cf/DgCYMasOM2YNbpfdvbuSd1PzVKA5nJZ53+f+X+H7NdUfmxvHcg+V6TG6sz5PmqTykVJ/OAS8L7H1mk8UB4BX6eDPlAyN1QCq7GF5lspTOC6lHCqq8tE8WArFW735vmMF31vLwTuvVb7D11PpINYZ+h0syXKatYGjxkkUUo+BZqiS+WhzAGhqCn1Xn437TEpVxKexp2Q+KTh//UxKhqmSOIbrmatVn5PHmsbxs6UklIxKD1h1peOQZc5ad0WlhWONqsSYV+XAYH4elWFynaek5HnjRON0/uRrVqupDJbbQ+VlzU0ke6AG2NEbz6Xc9jrXRWgH4ptzxarePTXRpiSUeXp9rSweKKORgKYWh8NFooylHpEYUadsbg/pmhbEUiqW6bW1xTI97iO7emMZSn1NWH+xsjuEta5YXqlSS5KDbdoS97uWrhB+/HG61co4C1Z/qZw+1Wx587PO99z/dfy+nSV2XEi9Zs38c8/F6Wiyrtf25YdjWafKiKitSzrQOU4/9/d/H8KXXhrCNfnvU/jsZ6PLtfTisUmS8nTKb4pzJd1Cvli+PI7s7KRyJRZIbhx5l2iiOqmTBuYuokIrbo3nc34OAE0U7nzkERwoPbKQNqReoKtB8+M+I3E76kLLdcfKv2iszF66NFzoiwC3TcpXRGSYudK8FSviay7zte8e+TNAPIaAfJ8UkdJy/WyqmRdFrborhHn+0cfkKkktZfo5fg/juLdfckmckCaqBevXR1Ev0gdFwBrJkll23M7+IABm88uFjkPWp7/0Uhyn89EQDYk5Rrn//hCWCop6CP8uwP0RiOfMq6+O87jy5ythVZkPTeOp921jxjNHxJdlz375HaNKv/H5nVj+myuxbpSfq5b3/J+fHJL7GGOMMcYYY4wxxpg0R8SXZaOlY/Y0rLvlqsNdDGOMMcYYY4wxxoxX7Fk2aXGrjgPqppYxu23fRtiGhngTeyOCLGSBSD+YMzrkfBbeDr0u5+hHIBrYtarlpG34M2bEUlE+7Id362sWLAEdzUmcOcUYtjOd76dzVEr6wYdpsbpDSSmYUqczMrzjWSVqvPM9pbxhlVVyLtZM8iQWes0yDd0CrkcMErytWre+8+lErKbRIqZOgOW0qfpOyTwZVejkHTYIxH2Lwyqn5L6k28x5+78qZLlaOU/t45ynHrJVuF8cQrSbcR/X+uG0Kn/MO60ylX+etBUYdoBeRErFmHcvAHFjUbhRZBN1dWFeT0lLmlPSntRpWalxzg+kOnN+8FT+qbiix/Yezg7KJ4/pfMZ1ro3DmiCqx2FnelEjNg+T8IXP1esCyY3Pkh2R70QTkJaf8qipiddpXm84rHMMy6FTdglK3vyjc2lSesyJVQPKEkqe5DUd15dOMnSK43Za25o//OE4HS9S2o/5ftKGO+64oxJupGcpJfr7Q1KpGymsJ+1xa9MqjQU6V7zrXSGsR47yia96KjZLj/m5jz8+zuOaa0IyWXAXrFkzch4AGuioVZaYqiKLn7tf6qeamaNBTwS94IIqchHe9rYQFolaX3uQFtbWxNLHx0gBp2s4dy0+yXWeziPcn3R+4FMXP/UpLfXI/MVfxNe0QCZPH/2DP4iv2RKAx5D2Tzp9Vt+D896RdSjztVpScPWkXAT4Xl1dsZh5Hp1mi6eeiuKOveWWSrg7IWPckRMGgAaSdjaq5Jxlq6kXmbFYR3WM8qTP7anr1fz5ISwyW+6SPG0D4XeBg2FzY8yhwOe4GmOMMcYYY4wxxhgziL8sM8YYY4wxxhhjjDFmkHEi3DHGGGOMMcYYY4yZYIwXPxQzprhVxwFlZBgY3OQ33LuLPDD6++IoHpRqQsLXbAKghiQpoxEyWdIDitvbgzdKVK62OCVnr15PbCmhxc/zktI8Uhp49knRx2Z/pFdfzc9jLOB7a/nZxyplBcQMOwqcb5A6m1n9Bxj29FE/GC6k9BGOmjo1/hi3L39M22IsjpPmPFJ2TgrHpWya2CZIy3/ccfn5s7WF2uBwc+RZRmhcapyMl2O5tYxcr1rGVNvw52bODGG182Bvv+nT47gZM/Ljpk0L4fre4JhT19EcpWNPw9JGOTQ+rwHEV6qWBkpNTbyhm+ewvv44rjbPA0w7YWqSVJOcPPheCW/LYaQacbzQ2hrCah6Yem6+5o49GuNF7hcpEx6eg9V05/LLQ5j9JQF8//HQX3Xq5mbjLqM+nTyHqdUT51H09wCtYvYLVD+btrbZlfB5110XR3I9cx1rPfIN2b8JQD/5lLGHULPmkTJ1Y/NJMVx6nsKNBceCWDaB79YsceyqtIAXjSuuiBP+zM+E8JIlURT7lJV6d8Wfy1s4dGFjDy31M0u8yBz77LOVcDfVq96VHXlreHKuFl1IU+8/ReE8ZG6Omz5ftKPvSVxdbBc778SOOOGZZ4aw+GkNMwErQsrAdTSceGIIz5oVwjxnAZFn2frvxFFcd9yV1LaNuyq/EwDxWq+2jnl+pWrP23Ri8J1rvvpqiWyqBBd+8YtxFPVxfkPQGuVWGuZZxm04zBx1DOA858yJomq4L/M8wh5uQFSxT/bGfm/8ONqVhoZzyVo2M0Fx1zXGGGOMMcYYY4wxZhB/WWaMMcYYY4wxxhhjzCCWYY4DMpQr0rq6Ovn+cnNCGsB7lFV/wfuLt24N4ZS8RuU7ia3wpRx5SrPuf+4J+3HPOas9ihqg72pTioi84gLx1muF5U2qZuJi6lbssYa3JKvkkyUvWg5WEbAC5fXX4z7SytIA7SPUTnpkPDchS2MWLz4tN53yUjgVPpK2AvFzc/1rG47FjvOictaUClnJU2ClPqNDhsulz8l9MO9eQNzHNQ+uV5UsVKuqOFC0HDol5KGqGVYBcR5aByzDTCns6iHyI4YqXWWYUXs/1x3FDZtYcn6+qzeM2ZSUlqdqAGhqChK19mUhnJRSpSSaqfmfw1qReZ8Z6boIY5HHaGA5iTzb89uCdcBsfW7WTHGb6gLFusYXXojjdGJkuD1U2sZwuaSMXCyVeL38cn6WDFe/jlfOUyWaefN6ahzqY0bquI0b40juyxw3TD/VFMLy0N0Ujows9H2Hx5DqVPNsLQC8SOHOgjLMF+WaBU06XZ7Glf6ud4WwyNz6lp5XCWs11tB1e3v8HlBbR3XMjbhgQZwJy4RVdnzyySGsExylXXDbbZWwmEnEf7lP+WsUhSWBQLxQVAvXSd7cPwKp91Tu/1GRtY755XHNmiiq9+HwIla0VFsSL74pwWof3QsAanmscF9VmSHV3YknNkZRPEWmVOvctXSOScnF8yxfnngiTsdTR1fX2VHc7Kubcgt27OrVoVz33FMJxyNN+vzSpXEkjy+dhMdifbzmmhDWlyiuTCrX9vb4dwGe+lROz3OOLo9D2ZfLxYo6Yckye5ZNUryzzBhjjDHGGGOMMcaYQfxlmTHGGGOMMcYYY4wxg/jLMmOMMcYYY4wxxhhjBsnKE0REnGVZuZqyZlmG8g+uPwglGjuu/+uf4MZ/XjliXGmYs8PkZGCcfm87FvV/KJ8tVd7xWsdMtfU9EZ7tcHIo55FD3RbjcY48kvoj178+93hpm2rbYzKPm4nAeOk/45Gx6i+p8Xug+R1JjPX4nWz1OJnmt4PdNod6HT1UbXP22UuxZs2a7JDc7DCwtKmpvOYNbzjcxThgsjvueKBcLi/df8ojh8kzexljjDHGGGOMMcYYc4D4yzJjjDHGGGOMMcYYYwbxGadmXFB0m/Fk2sp9qNE6dl0eXsZa/nKkMBHkKR5rxhw4eeMmNb4mwvwwGg6lvG8s1qTU5w5n24xFHzmU8/h4rccUR8o6dzBk/Qe77o6UtjmsZBlQ469VJiMePcYYY4wxxhhjjDHGDOIvy4wxxhhjjDHGGGOMGcRflhljjDHGGGOMMcYYM4jFtZOV/v6Dm/8Y67KL6un1sYoWo2h1aLr6umKfK5pnqhypZ0nFjRf/itSzFa3/urrqfDp6e0N4NF2Ty1Vt/VdLtX2+GmoP4UyfGqOjeZa8Oj/Ux6ofSqqdH4pS1DNlNHVatB9PZl+pMRmkNbWH7daHk6L9uqjX1pgsRFoo/hwvNhrH4ba2/Py7u/PvJ/cu5cSNladYXr2OxncxOZ7z6mc0k11dFS9ikn9pDCbQw+kzWriPF33Onp78z6XqO3HvqEakHKn6Gus5LDV8U+mKUri/pxjFzcdi7RwLv7QDbady+cA+P+6xZ9mkxTvLjDHGGGOMMcYYY4wZxF+WGWOMMcYYY4wxxhgziPcLjgOy/tdR6t6+70K3cK5bF8Iat3RpCH/jG3Ecb/PX7dbM1KkhfNxxcVxTUwi3t8dxLS0j58+f0Tj+DBDJGUoNDVHUrt7wPS4/9ubN+cXQLcJcBRs3xnEvvRTCTz2Vn8dv/dbI5QCA2ppi26H/4i9C+Nln47gZM0JYVRtc5YsXh7BWY3MDFVrlHQlZCEc9+GAIn3xynMXu3SF89NFxHHfPu+6K47ZtC+HHHw9h7UqsavniF5FLShJ7ww35cYwOBb53qotz/atCYcGC/Pz5uXVocHNwXW3YEKdLDWUeNh0dcRw/23XXFfu7yGikN3msWRNfcz1u2ZL/OR2j/Dmu82OOidMdd1z+GOXPNTclxisVrK9ldm6y2scfin/AN+SG4g4DAA2NlaDOYfwxLT9fc3/RPliLvnBRVCYmN4haOiXDUZlYfsrofnlyskON9vHt3eEJmrc8Gifmwch1ovMsd+yZM+O4vXtDWCf5118P5Xruufz8L7wwhLu6oqjHHw/yzVTfmjIlhJ94Arlo9+HH1mbjPI86Kj8dX+s8yEPltLYX48iVK0N41aoQvvvuOB3X69q1UdTz9EA76OedjzwS57FiRQjrZHr77SH81rdGUf907bWV8C9u3YoifFf6yLEU1tmn8W1vCxfvf38lWLrooijdoxvrK+GdO+M8Zs0KYV3nanu6wwU3FC9KAF46Zl4lPG1anEd9L+WhHYjbkN5Te7/znbgcFC69+c1xHtw2RdGXgiuvDGEeT6OBFvRSZ2cUtaMnzCP8zgQAL78cwjoF85jlsXHeMlmvbrklhP/t3+I4rmOdO3LYNn16dM3FauM5S+jl3xkA1HE98O8QWv/Lf7YS1HdFXvtTyxW//8ivDBH6jsyfe+WVEJ4zJ07Hc93xx8dx55xF7cFtAQA/+EEIf/3rIayTHbfNL/1SFFV63/vyP5cnxRbpflKiedNNuflHv39Re26dOjdKx0uUvq9xP9b3vKHsU+9/xoxn/GWZMcYYY4wxxhhjzGixZ9mkxTJMY4wxxhhjjDHGGGMGycoT5HiKLMvK1ZQ1yzKUf3D9QSjR2PFLn/0J/u6mlSPGRVK/1DFzuvWdr8fidJaUrqLaPAiVe+UVWR+z6Jf4+jlSv2DPnvzPqWSBKXoqzabN4dlSTZiSkOWFh5WjylOS8mSv+4PrVSWCeQeIpfJP1XdK9sp1PBpSp2HyNe9SLzoUgPRz550SmeqrCXVEJIlSWmcdutMHWY4CpKcphp8TiCW/qXHC11WfUlX0WNTUBMR5iEaE57fRqCSZlByucB0Ih/pEtyEO9WmYPL+lqK+TcuV1WG2o1EAv2LcGmppz41LLedEpf0wO7EwMjaL56zhn+abCfT5qm9RJftpmnDY10aqGlWHfBpVatraGMMsHVUrF3HtvfM26MdWQ0VwyUBekltX2g2HraF7/lAz7kH9aa/K07n6SiHNbqFyQG1s1dinNXR4pz4IxYDRzZ9E5nknafqT0ial+x6iOjlEZMqNaOr4ftaHOuWNRB9WeXl70NMyiYyjZNnnzjcbJOE+N7WrX9zxSv2+l3tHyPlOUiy9eirVr12Sj/+TEYOnMmeU1P/Mzh7sYB0x2yy0PlMvlpftPeeTgnWXGGGOMMcYYY4wxxgxice0gW17ehRv+6vu4/7GXMPWoKeg4bho++xvn4vRrv4nOn2pCb99eTKs/Cr965Sl4z1sXAgBuWvEEfvtvf4DjZx2D3r5+vP+Kk/Gha04DAHz3wRdww2e+j4c2bMetf/pGXPnGeanbG2OMMcYYY4wxZqJhz7JJiVsVQLlcxhW/8594z1sX4tZPXAIAWPvkNmx9eTfmH9+IB//5HQCAp5/bgbf/7p0YGCjjvW87CQDwzkvm4XO/fT5efrUXJ131NVx58TzMaW3A3NYG3PSHF+IvvvJQ7n2NMcYYY4wxxhhjzPjCX5YBuPuB53FUTQkfePuiys+6FrZg4/Px+dvzjm/EX92wDL/516srX5YNMXN6HRa0T8cL23ZhTmsDOmbvO1u7VNq/PLuEAdSib+TIbd0hrN9Ys1eAHPNd2LOM81QzrJRJDscV9GtRnXxR7X2VNmhRsVKWbqmTtlMeWkXhplEbDT6Fmz2agNhig+0NtDlruQ5SRiYFfZTU2iPlE8HPo1YWeXWs3Yyptr5T9hvMKKon8gCbNSuEtQ74c+rH8+qr+Z875pgQZt887Y9cxpTfT8qSZdas0NbVel6kPFo4T+3jeVOFop/L8xJMTUU1Nfl+aXV1+Z47JZ6nalLpEsZ8HNZOTnlqH9y9O/d2ESnfvCSJ+b90hPwVNOU3E1WPdkIejEU9QlMTXCKutHlTTqGAeloABhoac4uY8sPjtebll/OLWKXtZWFS82dbWxxX2vZiuNhAC8yzz8YJeSJMtSGHL788TnfXXfmFvOWWEP74x+O4b30rhK+4AoVYtSq+5nc5XQQXLKgESxRGTX2UjNte14lp0+hjNfoeRiSMpfqr9CyL2oN94XTR5rGhHWHx4sQNctB34tT7bAJe91JrZ8qTK9U2vM5xsdR6rLY3px71+pJLcssYsWZNfM1j433vy/8cjxMg7q9U6PrOzijZDoT+qu841fhkjWaaLbxMU/2rB+yMGSFc27M9juSXX24LbezXXgthqZ8S+cTVDnu4kfvrqH6novFWkvz5frU0Ie/qj8d80d+p8iwlx8I305jDgT3LAKx76hWc2dmy/4QAzjipBY//pHvYzzdt6UFv316ctiDfpNcYY4wxxhhjjDHGjG+OjD8rjyF6IOfX7noadz/wAp7Y1I0vfOQNqJvqKjXGGGOMMcYYYyY9WWbPskmKWxXAKfNm4Bv/7+lCaR98chtO7miqXA95lt338Fa89TdW4s3nzUHbzPr8DEZLSj/CpPYTVyvDTMXlpRsj8rJMFTGVVqtAt1gfTHJO1gaQbl6W6RWuYk1Y8IPVNmHqtHeOq1IBUZiWYhtDkzLMot1f+07RPqjpWDnEpOSUqSPFU0N0LNAt/nmyTC1/tTLqvDGq9VZ0ikxS9IOpSk7JHanuVAbF8uvUVF21PK7gs6XkRikJbgrOp6ic6bCS1vgW+1xKA1R0kGpj0+dGMwewCoj7mUq8UrfOu9doPpeCx/kwiwGeTLjQqUpQDVBeHqoF48pTT4Frrglh1uQDsZyz6Dxy5pnxNesktXFIkjhQF94t+0UGlZoHD4Z8lkm1fW1eu6XGWqqDFkVeClheP5r5J28OGw2ptuH1jMer1inLr0tFX3hSqNy3aJ3r51gym3jZ7e/OjSq8hqe6D5OaB/fuzU+Xgu9dq3WVNwD05zw3pV6YCw7YUa2jBX8R4XGipUjJVFO/rwxdH8rfu4wZSyzDBHDx0tnY8/pefOH2xyo/u//RF/GTLbFn2cbnd+K3/mY1fv2q4f4J557aindddiL++tZ1B728xhhjjDHGGGOMMebg4J1lALIsw22ffhNu+Mx9+NT/XYu62hp0HNeAz37oPDz13A4sedc30du3F9Pqj8KvX7V4mLn/EL/77tNxxrv/Fb93XRce/0k3rvidO/HKzj24456f4I+/8AAeufWqQ/xkxhhjjDHGGGOMMWY0+MuyQWbPOgb/8snhp8js/u7/yv3MdctPwnXLwxdns2cdgy3feRcA4KxFx2Lziv859gU1xhhjjDHGGGPM4ceeZZMWt+p4YGAgnLurA43P402dua4+HXlnJafMLEYR19cfFLy1FMc/17jhNiPFVMCxLj//qGT1k0j5aLBvAVfxwTjamJtGm4k1/Owpo7CvhdoN1KZGcVGTh4KkLBheeSWO4yPROd1ofOeKwvYzo/F9KupZVhR+Zi1Xavimjt3W08cZ7hcpy5GD4RGVl2fKTkjZvTuE844bV1LTlHpicP2kvZ6CT4ceic6fa6yryY9MjDWem7QcXAfqx8Ztz/1F6yDZvgUntVKiocai/xxOnzJ+tOHloHVDGz9v4kp1Eq3HonEbN+bnT75AtewRBKC/JvhYcV8C4vmI1zy168rrxiMV+UDReXbq1BCu7d8VR27eHMJcP/xzzUQf7uWXR47TCXPNmhBeujSO0/ZguFxF19sHHoiveXCrH1VnZyXIY7Reyr+jJ3+Oqeo1YFhHyE9aW5Pw9eIxxF5wzz4bp+PJr6MjjqvGw0wWlFLKDLQKUnWcmuN5HAL5XUvfB0u9NDa2bYsjn3kmhKm/JHn88fia87xk+MaBCmvXxtfsYcZzkwz0mprmSljX+tTwYor+KpOyjeRwyl9V86ivo3VD5x/u1+vXIxeef04+OY7jwqT8zKp9p+cyJvwCSxQe5s1G70m61rz2Wgjnvctp3zdmomDPMmOMMcYYY4wxxhhjBvGXZcYYY4wxxhhjjDHGDGIZ5nigVMo/w7jo1vFUuqJnwY/ibHCWV3JcbUJmMiwuQdEjulPpUo821qeUp2BVRWrbt5aRJWWFT5WuUjOT+lgqLlV33GVSauKxQJRJuRQdCnrNKh+VynHbqHQi9bmcITSsjxQtc+q49ENJSs6qcXyt9ZOXRyqu2n7M0ry6usTck1I0FuzYmmzatAPOcnQ3HGNSc3CeTP5wSjKVqHq0g+ZNcCk5Zd5avr98UpMYlWOgrj6K6ifJi44hvuY5OLUOHWq4jPpspbw6UakioxqgPI3+Cy/E6X7rt0JY252vVTPGMrSinHlmfM0LhzZOjrRNx13ReXAYBfXuY9JHuB5Tet+xkEyORg5dkFJ/H2VRm5su9S6hj503XQz/OWWi/XPOnNyy5KJS19bWYp/r6oqveSxyuaQNa+i5p0+PsxiL5ub35ZSdATOad45o/dL6T73kMDwX6dzGn5M8ontXOxC5nVIvaWyrg7iPp95Fjzlm5OyA8B6sNhmTDnuWTVq8s8wYY4wxxhhjjDHGmEH8ZZkxxhhjjDHGGGOMMYP4yzJjjDHGGGOMMcYYYwaxuHY80N0NrF69L6xacj7eWXXyy5eH8IoVcRyLy1mwr6ZKrGNfsCCOI0399p5Yu86nELe1hTg9tZ3jesVKpLmJfGv0mG8uP2U67Chj9g/RumsIR1Vrufj6scdCWI82vvzyEFYpem3B0bNqVQjrad38OFp8tkJhmwj2wQKA1hkJLw6q14Gm5igqz1MsahfER9Jr9kPdFoifU26NjRtDWK0ymE99Kj8uVd9f/GIIq6UMP6eeuP7KKyGsth/sr8CnfGsd8PNo/tzeKSsa7o96KnnKi4bzWLwYucy68ND5RWkdcBl37ozjeLzpifT8rNxOOkZTfn41CZsXpr091I+Wn/vTsmXxPFjiSO7kMpfyX6V27ox9mfbsCWEd20xjA7Wbmofw9WjimJTvSsKTq+hf3KJ0h9jXo9S9PVzIBBH5YvGEBsRtyh1IfbG4fjo74zh+Vl1jOZ+lS3PLiEsuCeXldR9AI11vrzk2iuO+zGv2unVx9nw7Tgek/ZaYlFUPx6ndGD0amu/7Vhz55S9Xgj1f/3ol/LTkz72pW+Kep/AOCv/iN78ZJ+R3qPPPj+O4H/BLAYDH58+vhDtfew1FeFLakGeVRknbfMUV4eLXfq0SLIl31JbusL5r9+Suq1ZJtfpiNoRMhD0t8yphHb71CB2opz+e3xq5Q916awjfdlucCRtIfeADcdx1141cxhTSyQcuvLgSTq2BKQ/GfmqpV16K47jpU++bOrS5azG6nr9hMbUTv/AAwOc/H8LPPTdyhsKLb3xjdL2Jwkt1kSV+KJ/jGa2Z575PfCJKt23p2yvhlSvjPLkOUvMN92t9n0rNMVzn/OsQv9cB8ThRK8LGzY+Gi5tuiiNp3dh+zz0hvzhVNDc1X3RRHHnDDSGs7w9cGKqgYR6PqXe7D384hLVic/zMai+8MEpWS2vU5lfj3yf4XVfXl6Est2/H5MaeZZMW7ywzxhhjjDHGGGOMMWYQf1lmjDHGGGOMMcYYY8wg3i84Hnj99eHanyF4C7tqmBg9Bp23tPO2UJVhstZMt4/SdtyehDRJt5UzydPA+ZlT2id+tlmz4nS8nVh0VrUkN2hvj7cMc9Ldu0OYJVHAARzHTuSdrA2kj8wufD8+6rk//v67NpFJXhvu6o3zYAmBysR4W7z2gzwJnNZB6sjporC0JKWQ0jIW7cfcPbm8QDws9d58rTKlPGnAMDVxw8hhIJaApuStB1t6yah8obQlCKFaEx2+Z0EsQMqTfGkd5x0LD8RjOyXR5LYYTf+pz+uwCS3w0UfH0glWvOhR9jz2dk3jcRnLQevq4msmavuUjo6ZZFIClqBzfwQQ1wl3GL3myS812SkpeSvR+9JLuXF17BWg+izSvDSLNK+O1j1+zJkz4yxYQqb9Pypj4rH50fQx+Vrnh0gWuOKpOHL9+krwRfpxztsSAECLz9LLaIbRNuOFSecpjpPPJfPMoVmuKXfU6DsOS6FIBvV8Tzxf5sn5gLj+dQrIfUeQOmB7AM2jjuRgKuM96aSFlXDrZZeFCNUqcsdLeQokYAlladmyKO7++0P4rLOq2yfw4IMhPGNGHMfF1zqoRiWv1RPNYVqwgvJfpk+udxX8XLdc81hs5gfP+50Gw+eHvPds7ZpcP0Wn3BQ63XO5tA3ndXWEC5XT08TYzH4SJNEGgGbWKuoLG/+ioFrpsYDLojJbHuvcbomXYp0iU++pQ+1R8vYcM0GZXG/ExhhjjDHGGGOMMYeKSfaHRrMPf89rjDHGGGOMMcYYY8wg/gp0PFAqBYmHbo9lzVfqOLfjjouvWTLC0kvNgzURsi2YT8BUlefLL49cDJVE8bZm3ZpbmzrGLo/UUYcJDVxJpRN07zlzwnPqFvmx+CMBVzGf6gcA06aFsD4aNxU3p0q1mMISC8RtE520J0ydGr5TT91bTyBihS+3ve4+V1ljNfCueJUvcL0mlMbDpAEsr+TPaR3wkB0uT8m/d54iTsuRkrC2tubHpU6nO5iUenbEP+AGSAywlpZYVpQnYdVhztJplVGnVIfcjpx/Sqqr0oz29iA/quVOnmhsbZeUVDSv/6SkPEpNDUmTEvNBJGES2W7qhDjmUMp9qyY1qfOEDMSyf56oNB03lE5wFLdVTkKdNi1cswxKS1jHC65OcKyPk0mgvi103o6O2ZWw9nHOUqunqFQ9Ndel5lnOs14jVZI4iPYynhL0wLWWnPCwCZO1qSkZpsTNrmKibdGjl/neGkeSxF01YY7UeTBVx9Onh/Cw7s9zR+r4YFJn6XyTkrE/8kgIt57fFS5UdkyT9/YFZ0dRzVWcXvmDh+OxxodEnnVWbnZJeBiqDDMlH8yT/ANxW/H7oZ6KzQf1nsdHyALDj5IuQLu0b5/OKzmokUKUC1esSBVTMl6eWtUpJrp3YolNnYbJn+P3Uh1qqV+xIvSlNU9Cqb+X8QtE6oVQKyjl11IUfuHRX+D4ftxQGzbE6Whtm90Zl6l/Qfg9Km+dqM13izBmXOOdZcYYY4wxxhhjjDHGDOKdZcYYY4wxxhhjjDGjJcvsWTZJ8c4yY4wxxhhjjDHGGGMG8Veg44HX+4KGXMXerC1XPzNG/QZY484mAPqtN6VjjzIglq4/JSe68+2K+gKpj0BjW8IoiI8v3ro1hFVrz0YFeg40P2vC4GM26fD7+sf++2O2I1GfC24mLSL7J/DnhtU3/aC3N27D+qbwnOonVMtdgc+dF8OTGS3B6ybV1uwFAcRtzxYPavfAtg5Ffb0UrqvRlDHlA8X+V9zftatyHuppxdcpT7qiz6nWFdwvmpvE1yXqUGPgeVEUPTJ+W8LshvpaU9fsKIr9D/ljOtWx9Y1OkVzn6uPDfYGrKtUW2r7chs2pzkQ3qJWJ8Oijw5yT8jMrSsrPjP3LUmi6OI/8z6l/EM85Kd+zar3OUj5rufnrQOTGZ6PCkdLmkTDn7KsLPlPPrYs/Fs3/9HN9kkbq5AtvuimO5LlbOyitbfUXXlgJt7QcGyXjMaXrUMqPivtFUUs39vAEgObup8PFihVRXN+dd1bCG+nnMsNEfm/NEset0RRFFPcli651kHZ1hTANjtRYiD4DxD5HiXeV+v7gB9neHns8Fh2j2qVrG3I81yRhU1N4t9A5mO+XGkKbtoQ85i5ZEiekvvv443HUectGLmIK9koDhlukVQMPr5S/lXrTMuqryc2tcbmkjE2Lwn0OQENBzzKFe+uxPBc99liUrvOaiyvh1HtSai1O9XH29S1qI6jpuEqGVekqMo378Y/jOH3nGUInO36An/qpOI7nmKLrzmjgMuoAY9asCWE1zsvLD0D7haF9uRsAw6c0YyYa3llmjDHGGGOMMcYYY8wg3llmjDHGGGOMMcYYM1rsWTZpcauOC7KgCap2oKXO8mYtj27vpeu6pjgqVZQ8qZL+PE9KNewGqbO2mdT+atb9aVr9HF3v6g0bLFNSuWp59dUQ1u3nvHX8tdfiOK4ClnIq9bNCQq5vJSkLSejVuN1UYsE79/lodiBf4qgSHW62onJEhbd5q5qAH01VvNoeTJ6UgtsMiHfP62e4LKkuzs+tbZhQeEX3G9a+RbUIh5LEee/abjxuUjIxHTdMSs2QV//6mdSJ7lFazjBx1Pv27rid+Hn0Y/xsrKafiFQrtRyTPFP6HR4nWsms1eV0o5DJpNZRjuMcd0k67nbbZBJuefjhcKGyn5xOrnMY90FVFPHYy1MbAfFaKQqvKG7BAvngN0j2c889UdRGCm+nsNZPPYVTgvPk8sIauNG8yOQsIsm+uX59fM2VrPnde28I04Rff+qpUbK2trmVsK4hLE9XaXddXZiPuLuU5DkTU1oUR8pfALHNwtwGasX7HowTktfHeb/WlX8zIa+eTzklnmefeCL/MymJOJOyTuDrlB1ASgXO4/LEE+N053VRr79xVRx5990jFTdJn0jxuikci7Rjdsg111wT9evm//iPKF3zRRdVwscfvyiK46Kk5pvUNM59UH8V4PHAU3zqfb+04ck4kuWJq1bl34DHdmcnctFfLlK/rzDV/o6Y0tPTmtJLeuU6lWFu2BDCUv5Sb+if/f31UdxQ9gNj/wpgzCHBMkxjjDHGGGOMMcYYk0uWZaUsyz6UZdnjWZb1Zln2bJZlf5ll2TEFPjsjy7L/nWXZfw5+bneWZU9kWfYPWZbNGSH9hVmWlXP+rRjpHmONd5YZY4wxxhhjjDHGmBSfAfBBALcB+EsAJw9eL8my7JJyuZzaR3jO4Gf+C8DnsO/MnsUA3g/g57MsO69cLj86wuf+AcA98rPEKRRjh78sM8YYY4wxxhhjjBktR4hnWZZlpwD4dQD/Wi6X30E/fwbA3wC4GsBXE1k8DuCkcrn8FP8wy7JvAbgTwMcAXDnC5+4rl8s3H2Dxq2Lyt+pEYMqUfEMa1q6zf8r+4M+xSVTCuyuF+jOkfJQYvnVLi0SmjKY4LnXusJqvMCmjCJrQ6ulh6pr04PkDp2hdpbwstm7N/9xrrwU1tR6PvndviNPuc9RRIa6ZGqevKXas2Eg2BdpMfK0+KbxmsIeN+q+xx0m16wxb9WiXTnUDJtUFOa61NT9/9Srh9laLiry+cIxsYp5Dm5LVAoP9f0obn84vWMo7Y6xRn4uU0RFVQrP4LdW1N1bCKW+5lI+Jtmne54pONy+8EF/z9NN06uxKuFfyqKsL88o2qR6+n86zPJ5Tfn7c51PpUr55PD/ocsR56vhKe3KFOSbVTmNByiNq6yu1lXCrGGrt6AllbFSzLS4oD2DtJBQ30NAYRXEb6sc4e14en4+TgT+2SeJKGzdWws3sbwXElU7jsrUrXozr6kL96LzE04jOTewNxFU3f36cju21Srd8JY78x3+sBNfJgOVnZa+kuIYBXrU7kE+0sumD8vyjLyspP0LyYmKSHqHnnhsn5kVw9eo47vjjQ5gXGBnovP6y/RoQ9zsdv5wlP1pNTVzLPd0j56foGsjsonmw/uST40jqx8NukHpxIrjOU+WolpS/ZMrbkklZVXEXXLxYPrhyZQhLH+mnuis6tWoRa0dMNRzNn1d37lp1d9wRpaunl5Vzbrghint1afDb49cH7hJAXP/qvcekvHtTFs6l/r5wkTJv1A/yixj/0vPOd8bp2IR02bIoaqAz+Ljpe0vU1RLrKPf/Yevhz/wMZSidl7zISmvXIhcumHjecX01Nc2NovT3EjPhuQZABuCz8vMvAPgUgGuR+LKsXC5vzPn5XVmWbce+XWYjMijz3Fsul4sbx44B9iwzxhhjjDHGGGOMMXmcBWAAwA/5h4NfYK0djB81WZZNBzANQN72kL/Gvr8d7s6y7MlB37OsmnuNFn9ZZowxxhhjjDHGGGPymA1gW7lc3jNC3HMAWrIsK7pZlfkDAEcB+LL8/HUA/w7gdwD8LIAPYN8Bvp8F8E9V3GfUHBEyzPPf/+3DXYQkU0v1QcMwmv3bDG/VB+KtwLy3W7ffktxg5ytxVEqyliej0Z9zHsOOLJ8RtvnX6rNxRnSscbIOVDqROuf7EOrK+da6PZzlEvyYQLwLnLfqa9G5Xl99NY7jbqBVFx2vzTcTGSaXX3em87Z4lT3w51ISr4JK4CTcrbWpuX60DlI76zlPjtNjyRmVunIeOvTynpvbTNMlJXCps+wPJamxphWUeLh+qvOij6Jjg2WSKk3Kk2Gm5j0dXyyP5nZLqL6HSSxSz8Zl5jIealsMnre0D45G9nm44DG7qzf+GyHPaY0spwHiQcs6Q21EWntUhcxJ9WNcP3xnVbmxBFEVyfxG2vDww3EcN9z55yOP6dPProR1juTn0f6fN4cdd1x8vahjV7j48NeiuOfvvrsS3oCY7RRmgay0UiS9rL300jiSNUAnnkgZiuSW0XcJelDtP/UXXlgJq/Qyl66u3PyHSRC/970QZj063RcAWi+5JFzIsz3dH+SPOl55ruLpWdeh2XXUGk3S8FSu2Z1NcRzLurZRnL5MPPBA/s2vvRZFYOnZeYvjeuzoUPHuyJ9LtSE3mzYT16OOIU47zI6E4CFav+a7ceSNN4awSOVIPFj4l7p6KWRHQd1ql1yz+QOP13X6uc98phKuFcuFpdf9xoj32iATQupdl4eQxvE8y1LyYW3BMvbbb4/j6HrHs89GUY08z7K8+IQT4jzouXeIVHHbRuSSev8vzKxZIax6elqYuFs3r18fp+O5dI4cWkiy0o4L42cbmh5Kk317zuTxLGvJsmwNXf9DuVz+B7quBzDSF2UA0Etp+nLSDCPLsisB/CaA/wDwJY4rl8vfA/Bzkv4LAL4N4Losy/6xXC6LB8XYMiladX/c++Cz+090GHn/z//84S6CMcYYY4wxxhhjjky2lcvlpYn4XRALUKKO0hQiy7K3APgKgAcA/Hy5XC7v7zPlcnkgy7I/A/AzAN4C4KB+WTbZv+c1xhhjjDHGGGOMMdXzPPbtPhvphL3jse/LtkK7yrIsuwzAvwJ4BMCbyuXyjv18hNk4+H9iv+7YcETsLBv3NDSE0+pUv1N0/63u+847hjJxHJrufOePqWKB1Sl8kFNKJtbY+2Ic2UORuiWfP8gaGtXwpU6p4jit15wjEktaP5RnYYmFwFlqHfPOd90Fz1v3eTu6FjElg+LH1C3nLLno6Agn8TxwV5yOm0ZPA+R7p057XLIkhGUHfnRQo57gU7TO57aEP2K0t9fnptP6536tW/5Z8cJSJB0LKZlk3jgB4nbksKbjdmvulXPyNnaHsJ5OxAw7Wusgop2EtYR6ei2fDiXlb6QOtZROy9L+zooU7YPcd3WKSR3SyfA4UelN6gC3PFIyqOnT4ziuHu5bqRPVUqRkqnknGwLpU0V5Sq5W+XuwlQurVoWwLhOvkP1AT09ss9HQEPpdN+mK2triP6p2U9fVOigqn62/5ppK+Ixbboni+FRIPSmTZ0x9O42eJnGS2ZKrgwxT1TU8H+mpZpyWT8BsffXJOOGNKyrBbXJKXp6MC4hPuWRhz0IdABdcEMLLl8dxPMCokHpqaak9NE5fTbyG1LSE697uOPv6yy5DEaKT6rSMqSOhWRrMk53Iavk0PW0nXst0rmAFGffVRx6J07W1hdbQ16mWlnmVsJ5b2UzlZ+lZ42LpretogI2BN4O2b3/3AWcZrRlFTycG4vn6pJPiuBkzQrh2NUkv9VRUHrMyIVdVWyxJBtL6UE4mi0M3dS6ei3R53UjhhSwpRXwS9ptIzrdgQf6pik88EefPVZJ4jU9aw0R1oC9iJHtu1Het970vhEmr+6Oas6NkvfQe2auacyJx2HLyVx5G353X1YWynPYheR8k6Wgz+8Gonp47feKloLku3lTU0bFv/tTXv0nJ5JBh7o/7AbwJwNkA7hn6YZZlddin1P7uyB+LybLsZwDcBuBxAJeUy+VX9vMRZWgSyzsQYMzwzjJjjDHGGGOMMcYYk8fXAJQB3CA//yXs8yr7ytAPsiw7LsuyzizLor9AZVn2JgC3A3gSwBvL5bL+rYzTzhzhZ1MBfHTw8g6NH2uOiK9AjTHGGGOMMcYYY8zoKZfLD2dZ9ncAfi3Lsn/FPqP9kwF8EMB/A/gqJf8zAO8BcBGAVQCQZdlSAP8GIMM+M/83Z1mm97iZLldmWfY89nmaPY99p3Fei307y/62XC7/cIwfcRj+sswYY4wxxhhjjDHGpLgB+9TV1wN4K/Ypr/8WwB+Vy+WB/I8BABYjqMc/k5OGvyz7BoDLAfw6gCYArwF4EMAfl8vlW4Z98iDgL8vGAbv7j8Kmnn1+ECp3blo8uxJWj4RGdgi46KIobqAu7HhkvyVtcPZaUZ8F1vYPK1dTCLOnj+YRlVkyGWgKHhgl9QfgG7CPQMqXLCXgV7hgbBBQrelOAi6iWq2wPYDemn1GUn5I7DnCp0PrvVNV9/LLIax2DHxvtaNivyJ9Nra24OZVz7LSNvKyE98M9TDLhSorpS1f1NkRXTc1hdTax7kvc9toV2W0DflZ9XN5XkaarpadiDaLE8hB7rtVweZXQNxJ1LSCTeQShoepfsxdRm1X+HOp6mH7jdQ0oj5nXP3sX5ayrUjlr2XMK3PRdNWSyl+9FRmei4D8MXSobT24fbUNeZ1jjzggntO4fVOebqn2TT73xz8ewkvjg6jmrlxZCTffeWcUx0vDsG7Ahb6LzChlQamlSpgtg2g2eXJt7429vJqbaH5mjyW+FwD88R+HIkkR2d1socTNo/Bsfsf5wAfihFRf25vmRVHcB3lNbeqOs3j99XyvS+7zOk09tCX41y0uaDP8NOIybqGqO0890LjTrFkTwmIcVtoQarJVOuHR9B6p7xJ5Xk/qSzaThDCpcdJYI4egbQiVXtMSPKj6Ykc91PJiWdQAMkFp86boem5UJ035n0u8c3R2hvcFLWLqfZlv3TpN6udxMq9ic0Ueu0D8ssgGgQBKJ5wwcoFTvOc98TX5ViX59KejywVf/GIlPPeein0R1iGGHYvb1q+P4hrZw4w65LxLLonSzTshVOSMGbFvJM/r2nfz3j9rt4kD5K00b62TJ+BOLn6BoHI+2R/G9r0r42Qpj1++1r6l62o18PS8bVs8113M9cwv+ew3CwD30oGD0oa46aYQlrpbNFhfda/vxKQmy44UzzKUy+W9AP5y8F8q3XUArpOf3QTgplHc69MAPr3fhAcRe5YZY4wxxhhjjDHGGDOIvywzxhhjjDHGGGOMMWaQI2O/4DinpyfsWtUdnCz3UHlHI1/LB3kr+dSp4TtRVj1pnsO2z1OeCxbIlvlu2lTN+5+f6s6/gWwrLy2m44tVG8N7kimPgbbZUbI8NSUQV0mj6rM4Me/ZlkrW45eroVqlHKfV6mE4LiWRSklkeXe1nljOTaHb27kJU0pajotkhUCsAyl4fPkwOA+t5EQDzOZCdsbb+jmqqAxTt9Zz2vpu2fLfRA3CFXuv6GCZDXLeODeqHuWthRlj8sZGSTsJl1EnsZ2JbfmUT30bdfJnn42SnbZkSbiQgTKbJtAFC+L2ZXk6T01afJ5HdH5++OEQfvXVENaxxl1QJXwcp+Oc5Rc8d2sfLKpA1/KzhJ7z13UiJTPkZ1XVBitweQyl5sGDoWJYuXL/aYBYagbE5S8qhVeZOT+Ptj3X3UM9Qb5z2g03xAlJZtjAky6AhvvuCxfacAsWjBy+/fY4Hcv77r8/jqO0zfpwvFjcfXcl+HScCqR+hM5up1G4Q+Ja3va2cPHOd1aCA1f+fJSOp8XNa+M8eDzzmF++PE7H7ZuypOAxA8SKo87OEE71Y63iJ54I4S2L43ccZvmv/UYlzGs2AHRTOXQe4TGrfZCfjcO33hqnS42h448P4UsvjSVei7vOroRXkcpN6+dNLAXj/lgt2ld1Ys8h9c7HS48ONV5udeltrKN3nnUyAlasCGEeT6+8Eqdjj405c+I4kW0XgtdNAOjqKvY5kUby4lBLA2euyMX5qLsfSZYLaO5opnA9Dyggeu6F73tfFLWQyrWrrjmKq9/4aCXch0WV8KPd8VhbQONLJZp9LfmWODxW2MZElbQ8r+ij8XgYAxXyMLhrqcL08ccbK+Hlb/vVSlhdM1qvuy5c6BrCnZ4nWiBUWLlcqKzGjDf8ZZkxxhhjjDHGGGPMaDmCPMuONCzDNMYYY4wxxhhjjDFmEH9ZZowxxhhjjDHGGGPMIN4vOA7Ysyccaa5aePaeUK+YeR0h/KN1sacYEx2X3hTHsYa+o6M+N06p5YJyQv0QF1r9qNg8Qwq2dXfQ0B/dEMLdIoVntO6OOSaEG2clDLsYPY69IQyRav3Lpk8P4VSd6nHs3G5sAaB+Bnn2a4o+Ml+zF4f6naQsp7hJTzopjmOLjdrN5GKT6uRqxlR0SzObKqXOdNd708PNFg+JlsXB44qzUK8Jvp128fptdHw9NyiQbwanDZAys+A47VypzlaQqvp86kz0lLnWaAz9mNQAoLi6ltizjIuSmsK4WJo9j9nUXJ16NPYFSU2fHNYqLlqtqeGUqoOUb1teuvEE18Hu3XEc+5Jt3Zr/uaJzK+cH5LchEHud/fjHIbxmTTzuOjvfUAkv+4s3RHGl73wrXOgDcIOwgc769VGyvnvuqYRllkLz2rWVcMNRR0Vx2+kB2KdsO2J42ZbpE5Hb0l/KKfQf+EAl+OjG8H6yVvy0UvDSoLaODLdvag6QKkjmmcdzz8XXL7wQwmr3wx5pXEb1Q1IvMoaXVe2DeeVPWWCmPJXYs0nzYY9HHSc1NcFn6mLxxeJ1iP14U3FPbojHUEtL6D9NVS6N7Ml44olxXHKO5LVfJxKO4453wQVxOvYc1JcQ8htLrdlcP5vaz4viNpJN3Pnn52aBezfEPl+Lr/1gJdx89dWVcMtNN0XpWm67rRKuEWNcckCOHG3rpDPV0HW8miMaOPX6Mvq971WCtTQYFl15ZZRsgPrg073xc666OYT1VY49wHhs6DrN74dqqcdjVMeejpVq4PcMfcVki0CO0zJ2dob6OU+969jDTP3MhtCKM2aCME5fbY0xxhhjjDHGGGPGMfYsm7RYhmmMMcYYY4wxxhhjzCD+CnQcUC6Hbf66Q5u/pE5JbVKymZkzQ5ilcUAsVWyu2RFHdtN+YtURsQaAC63783nfse79TekXSHrAspnUR1Iyw6OOir8XbiBpZy3tle6ra4zSjcUAefVVyk8y5Gvdss3lZ4mFyogYlQFy+2of4WZLlZH7z4wZcRwrA/Q086i/bk5oXPi62r/KcB6pCmLdk15L52Kp8fz5YUt+c0NflK6hIUiga7tfjOKicVJUhqk6HK5IfTbOgxtb4wpSrdQ4eV++1jieL3Tu2LkzhHkwqP6I0QnipZcqwZJMrrNJYzDlpDDuWWoDxF1S55i8+Ugfk9PpPJ6S9+XdOzXXjYax+CPoRPhDKtfP3r35cfosedI8bV/+HM+JQNzeqg5iSd9//VcIa7/ia5bMA8C55741lEuUW/xszT0kCde57jvfqYQHRPrEq/YOmT9Zesmzm7xJgNU8w9SCf/InIbx8eRT13TVBOsdSRZ0CuD1S61xqrFVLNWNPy8FzTkqFz3IprYPW1hDm9VzR/smk+hmXS8dJqg54Wuexp0sZ37uvP16H+H7VrlFVLIfD4Pcrncdre0h8vEUaMSGBjnSr/KA6CRx/fAiLPo5tS2Ylfk9g9DVD+13RzzEdHUEcOVe1nPQ8dSLD5BblOUXNZZopfKzqfZeSoFs7ec4E/XR3c5Ts3hUhrOOL1OjDmiav/+v7OBeDZZEal/pdr9r1VuXjDLcp94MNG+J03Gwbzp8bxV39gSDHrdVJeOg97IknihTVmHGHd5YZY4wxxhhjjDHGGDPIBPibsDHGGGOMMcYYY8w4w55lkxbvLDPGGGOMMcYYY4wxZhB/BTrOSdmBMWqHlGd9oH4trI2f0Rn7dUW6c705x6k+nWHRvgr7+eYSt4dulzqSO+WVwWm1iLV8QDU9W22DuK1QGav1yuAqSFWVPgvbwySqKom2N5PnkaBlnDYthKdPj+P42fTo+lLvrnDBpghqyPDKKyG8eHF+IVOw0YIaShQdRHo+N5mczOqiY8S74zxq87zHgNh3K+WXxo2qZi5cB2qoxWlThksJxsSnrFpShmB5aDvxtdYPG3UkjB31YwwXS7tPnh+SNnVqukzNU3l2fjqEqp0f8uZW7UpTpuTH5aXTtNX6qo0FqXmX606HDF/zs/GwBuJ5Vr1/OA+dI7l+UraFjPbB444L4Y6OOC7qJzwvygtDH/n/PC/3o1l82Atj5GdG4UZJx85A8yQOl1xSCW6dvjCKuvcbmngf+r6T6p8Hw6eMqaZfaxvytbY9P0/KjlOnRYb7Qco3letRPY6KLnMpS0mO0zH52mshrONk2bL8PBley9TSitups7NYfgq3DXu5AsCsWaGXl7SS+cHVPI0fll+oxPNr4M3Bm3CYn9b3Qvjyy1EI9aNK+QEz6mXHn+M83/rW86J0rVeHTjj7G/HAriEfN34bURs1coXDDilI4woyHNM65oYj4795F14YJVu3LtxdxzWPUa1/Hl+pscZxOl55PKTW0WpJWQPzeObnTvmrav3U9tIKoINv6Dr1/m3MOMY7y4wxxhhjjDHGGGOMGcQ7y4wxxhhjjDHGGGOqwZ5lkxK36jigtzfsEk7tUtVjiBndFnzMMSHM29tTMp8RCzZE6iz7VCYJ7VBfXRBr6JbejeswYpzWT0o6lOKYY8Kh1K1UsVwmYGwGCFeV7g4vuiu5qARL88/bHg7kb7fWPFhuwJJMTVvqEQkr3yDVUJppNaT2sOeVCUj3cdK8lNqez0/Heao+aOvWEE41Nuu4VBPI9aPnjXMDzJoVx+VMGAdddqkaGirHQFN8VHupn+TQKX1QSuvE2iStY/6c6uMo/5aW+Bj0PFLjKzX/pOYwjlN5E9+Pu7XKPMda4ng4JZMHA5aJ8XoIxO2mw5cV4lwnr76an4eSmrsZnlYSXXXYvdbRWplyS7j4fNKeia6tljJpe/jhKI5VgSqLypNeygwQSy8vuiiOpLI8tTqOYlkX151OwTxOVN6UJ5VOUbQ9geFjsQip8aVxfD9eJrQvtbfnl4nluboscJ9h6WUqf63/1HsGT8+ppTkl8aoGfS1Njb2isA2FylSj9x8dwDyx6CTD1wk/DE720ktxFnq7ImgbFn0X1bmPX1e4DfV3ktZTF4QL7kyIZZg8vKSIEY/K9UKat5pvuSWO5MrjB+fJE0BLy2mhHIk5QOeRojYIqXm86O8yHFfCQBRX7btd3jtIqk9oHxxoCCtASQfbUF8uWcxmJibuucYYY4wxxhhjjDHGDOIvy4wxxhhjjDHGGGOMGcQyzHFAqRR2qaZOYBnNlljeacxhzZ9lJrptfebMsK12VkcsT4y+ZU2dmsn7/2Xft+5GZ/K2MqdOkkudPJOST2Fj2MNeC0E/WAWsSquv6YvieprCHVMnXTGpbd66PTx1WCJf86543dLPcoOk1DV1lBy3vT5o6sjOPCmnktfhgfRRhykJX9799OfcKZMdTeC0XAeaB+ef0hGp9iZnwhirrfu5JDpoJLtUUgOYaW2Nr+fMCeHUEVMLFsRxVM+bSe6VUpWrtITHCs+lo5FYpE7K5K7AcTNm5OehFJWFsMJXy8hzQLUndY1G2jbWcH2lTvnTqYPTcj1yWwPx8NVT5jj/PHWKxmk6zkPripdYPTUwyodOgcO990bpekjC9GKcRXQtQntQsZInXjZzRUoht3eH+UdP2uPpThXoTFEJ9MEgtXzlMZppPE+NLkq26CBplVpyXOpEX+4vmscpp4TwU08hFx1DPEeyhC/VZjqG5GDIQqRO5dS6Kwq7KugcXNMW3pEb9H2ZK0Fvzg0wf34I0ymxALB2VQjru3PqWfNIHRqeQtPl/Y7y4x/H6Y4+ur4SPu0d74jimum0ymaaBHrlZnxSr77d8PmLXWvXRnH8hlNz220h3NUVpTvvfaHTb+MT0AG88EII6zyVt4anLFNSMuGUFLtaUq+pLC/mVyg9nJ7zuPTSOK604t/Dxde/HsX1DJ6GGb95TkKyzJ5lkxTvLDPGGGOMMcYYY4wxZhB/WWaMMcYYY4wxxhhjzCD+sswYY4wxxhhjjDHGmEEsrh0H1NcHqwL1v2BfgZQU+rjj4uu8o4BVC892TuphkJcOAOayEVfCkGegJnhy6Tez7EGi/g956fZXLoZ1+Y3qtrKZPCTY8EENPVi0X6UWvb6bnBbEg6G9Y15eFF5+eeRbaxvytRafPQaKehcp6qHCRGVuqsmP5M6lDZrqeEVhE4+Ud1rK3EnNmPIMXCSPvrrgT1LbhpjE56JByw2n9cMNoA3MJiqvvRbH8f0Spi/qYcawn1lhr7Nnnomvuf6L+s5pWh7M6kuW8hWkuF11zVFUN3UZskzBMcfEWfCcrN6Q3BycTh+Tm1S9gDitxnETcjr1QtGum5d/ipQ3YWrY5OUxnuB6ZX8WIF57inrFaBfkfqDTD3dr7T+cDy+pOszZbk/bgod248aH4kj2SmIfn9tvj5Kx38+mOIfIG6hR4ri79uWEAaCH5rAGHmwAmut2VcKzZtVHcVwn/Nxa/ykvoKKWj0xqjU3FFUXX1KJ5pMay+ugxqeWRbTtT5eDlZTRLLPd/LmNqrkj52RZFfbz42cQOrKo81XqMh5qWf2Fn58gF0WuaqLbujMfCzp0hXK3fWOozY9EHU76XEbNmxdc8wdECPDfhPXasZMlx9W9+cxzJD7d+fQgnzOv0tYLXiWnT4rg8z7LReCyn3vHHAn6v0fz5eXjO1erheVb9zLCKjAZl8G0fum+Rgk5k7Fk2afHOMmOMMcYYY4wxxhhjBjmiviybMmUKurq6Kv82jnCEzOrVq3HOOeegq6sLJ598Mj760Y/iS1/6UuUztbW1OPXUU9HV1YUPf/jDAIDPfOYzqKurw6t01M+qVaswffp0LFmyBJ2dnfit3/otPPzww5V8mpubccIJJ6Crqwv33fetQ1UFxhhjjDHGGGOMMSbBEbVf8Oijj8Za2darvOc978G//Mu/4PTTT8fevXvxxBNPYNGiRXjve98LAOjo6MDdd9+NFtoufcstt+Css87Cbbfdhuuuu67y8wsuuAArVqzA7t27sWTJElxxxRWV+1933XVYvnw5rrzySlx11fuHySiHSB0nzKh8h7dsM5pHnlJO02p+DQ1hizjvOm2UgrCcRCUcLKWo7d8VxbW1hfxrWdQhDzBAsg3dVl5fR7KxDbIvnh92LPb8p0jIDEv94dn6+2ujOH6evOO5gbhtVJ6VUqgxqX6m6j6Gq66zM5a5lfLkd6o1Tt2gKHyvlG40pS/TyqI96FtfCW0zY0b8nFwHLS1xL6/nfezaD3iscAPoueSsNdbG4c7AehpguFapClISzVxYP7w/WIujHZvbI6VBzNNqAVEdb94QR7FshpVhmj13p+eei+O4SVNSraIyMb13nmxDZZdcjanuf6SSmgdZnpKSJnH3TEnNdJhzWlZNaxyX8fjj43SsUlJpTOO674eLu+6KI3ly2hAGwOPSScgoADIKwV1SRUsshUqtotsp3PDww3HkypWVYOeyt0dR/PdMrteU3UBKMpx6h6pW+lSNBE7tI/jeKk/kcc9TnfZpllKp1JjlcfqcfL/UXFS0jouSmqfGQoam7ZL3TjwaUnLr1Dtae3t4L6iRuqvNew8QuH01WeJjuVSrFku1PT9KR0ccx3MYVnfnF4Ykmi2idxygRjxWpZzMsmXxNS/2/H6l70w0Ry5ePDsvCo8/HkUNy2aI1O9bqbUmFcdVlWuFMQL62s3wXMLtplJLXntqV/1nHEnz+BZ5gO6hMuyvkMaMU46oL8uK8OKLL+K4wW+upkyZgkWLFiXTP/XUU+jp6cGf//mf45Of/GT0ZdkQRx99NLq6uvCc/qZljDHGGGOMMcaYiYk9yyYtR5QMc/fu3RUZ5BVXXDFimg996EM46aSTcMUVV+Dv//7v0bufPxvecsstuOaaa3DBBRfgiSeewIsvvjgszSuvvIL169fjDW94w5g8hzHGGGOMMcYYY4w5OBxRX5YNyTDXrl2L2267bcQ0f/RHf4Q1a9bgTW96E7761a/isssuS+Z566234uqrr0apVMLb3/52fP3rX6/E3XPPPTjttNPQ1taG5cuXo4330BtjjDHGGGOMMcaYcccRv1/wve99Lx588EHMnj0b3/72twEA8+fPxy//8i/jl37plzBr1iy8/PLLmDlz5rDPPvTQQ1i/fj0uvfRSAEBfXx/mzZuHX/3VXwUQPMuefPJJnH/++bjiiivQ1dU1LJ/6etHzE2w5oj4ITMpDhT83Gs8OzlN3lrLnBvthzJoVf//K9+7sjA977iEbgcamOP/IwyxRCSUS29cPqwR6IPUlyzvnO3Wsd7Xba9kQSctI5W9oiD0S2IeCPUh0syMfaa2kPEgY9iLQcy/Yz0CLz2XRqosc2FKGTqkOWrTOOY/UZzSOK0XPA6cHf7U7P0vuSjpGFy3oCBdiZtTXFMZD5MvHGer1Cy/EcWxEoaYUCa+8sSDXz0zNYdhgS816ePJQsx7ubGyGIr6Im7aEnjZ1ajzHvEzeIuozwtXDQ1S9gPoT0wh7laSOhec8dSnh8at+VHnTz2h8mVJDL6/MKV+1lBVe0aF3qJUKnZ0hrH5v/Dz6bPzcqWWC0eGbelbuF9deG8KvvBKnW7IkhGu3PR9H3vSNENY/ApJ/YD+Ny6elHFxksT8Fr0qdEtdw6qmVcDt5kdV2xin7ePCddZbcPNxdvVdPOSWE6fykYWtgam3jtkpNian+mWrDavy7ND9+bvXy4vmB64OqHgBw5pkh3Dot9oDlCtvR0pwXFfVHfSflV9fU+2bKb4nR5YrTjXD21qjhOR1Ivz8XJbXW87XOAVyvWj+LF58xYtwja+J0/Dy6DlXjm6cU7cf6N/+89tWfc53MvfDC/BvwYBDvsWPJFwtLl8af4wpSsy3uUFElPxKn+8lPKsF4lACXXRaUQVrfeb+i6BjKe6cHYu9MJW/+0XewlIfZ/PkhrGOPn4erfFGLKKV4Hv/c56KonjvvrIQ3yr13DP5vO1UzUTnivyz70pe+FF1/61vfwlve8hZkWYb169djypQpaMpxB77lllvw0Y9+FB/5yEcqPzvhhBPwE5pwAWDhwoX4yEc+gk9/+tO45ZZbxvwZjDHGGGOMMcYYc4ixZ9mk5YiSYRbhn//5n3HSSSehq6sL73rXu/CVr3wFU/RP0YPceuutw7zPrrjiCtx6663D0n7gAx/Ad7/7XTzzzDMHpdzGGGOMMcYYY4wx5sA5or4C7SmwD3ukL7qYjbSdd6Qvvv7qr/6qEr6QthofffTR0WmYN910UyU8dWrY2lzqJzkWgIaGIDHSrd1Mamu0bvdlXnsthHVrceqYY/7ynLcWp7bWa/VH30GqPoJvyFuoNZOCx24npW2c51icia7ws2gZqSJ7uuOovOPktYgpCQen1W3eLDk6bXHYzr12bfwdOpdD5UG8/VylEwsXUKdsbQ1hbeux1meldFaqgePjx2XP/NZykPTx7nN+FCBSOo0gZQ7jt6kplghu2xjCPM5n65nrXCd87LnePDWADyXavjwpqESTpa85O3gBRONmV38k8MXGdSHMqk4grh7tn1xM7sepatRH467GQ1uHOT+aqn1TnztcTahM9D+W8vqYkrso3B5cB7oMcb9IyWBTMsCF7SSda5Ib3L4qhFevjuNIDrNBFgDuPvUUFhUX+PVhnsR18uJz+eVx5PnnV4K1XC55IanlB1c99IYNIZ0sbuewnPPCrkpw6yvxHMDqbl3qub1TtgGHso/rEsXXKq/kuWPQ8QMAcPzxcbrWvSTPfVxamF4SGtpjgVne/KMSMr7WumM5Os+5QL68W8dQUcuIohyM9uQypsa5Pht18cJSeE3HrwX6Tq/v3UVQyX/RV19RWEf9k99F5zbtiBPyIqsTIXcuvoF2Qn75Ym06EFcyzUsA4g514on55bjvvty42VeHBrn22oujuHvvHbkYCs8//LsXEMvM9T07z+66pqa6/S6aH/eFhb0PhYubVsYJ1wRt8LY77oii2BxAROAVaf8Ef40wRzDeWWaMMcYYY4wxxhhjzCD+otcYY4wxxhhjjDFmtNizbNLinWXGGGOMMcYYY4wxxgzir0DHAVnvbpQ2bxoxrpHE5f1NtSOmAdJHnbNHjvogsNdH6shv9WBg6yTOP2ULp35C/LnWThHRs79BysghdcOi572z6ULOYQ4HDap0tdPK8ytKedfpZ9iLYM6cOC7yBVm7thI8//wzonR8v5S1nFY3H2NdOu64EMEeOMBw84Zq4AdVU6KULxabN7DhBoDX6CRyfraUPwh7twD5R4oDcb1yd6zrnB2la+6khtL+z8ela+OnDJIOJtrRoocTY5Q8wxMg8it5fluY+7aIHQ9XgQ5f9gHRccNVyZ/TInI6LSJ3Hx5P6gnC1ivqFcPjvnVWsaPgU345qTglzy9HxzLXSWqtSd0r7zMHQgkD+08EYNmyYvfmvgTEQ4i7qvYlzjM1RypRWWgOHnaDdWTMp4Uk86pmMeZj16DtFL5QyjGXy8TGWABw2WUhzBUJAEuXUqaUq86zfK2GVKtWhbBWnvqbDdI6zHApVGRLZ+wNyX2Xq1X7QaqIqdeCk07Kj8tDfcm4jPpoPOecsYBaVCfC9etDmPxxAUQTUEkmOPbS5Ci1fZpXF1yJ2i+J1yi2onzqqfhzPL/xvJjyluN5Gyg+zpm2tnju5DatJj8AaG8PeaY8vtRTLK8P6nXKF5H7J9uwAtU9m65RnH8qj1NOieuVX6+iOtkiD8CLw+LFcRw9+KMbwlpf1xD3s3lX5b+vRdcpY1/2RNPGYMM9nWdpnmqUyeMtl4XB8uSGUD/ahrwW6BTJfUaLPxZWyueeG8Jz26V9ed1YST5lbMYGAA8/nJs/T5mzJW7IJbEexkxMvLPMGGOMMcYYY4wxxphBvLPMGGOMMcYYY4wxphrsWTYpcauOB157LcgN5Oh3liU06zHKCHtzdUdynlRPZWKcLrVlWHf88/14m/2MGVLCoseB6815CzRLMbQgfHPd18z7w1P6Gg6nClntWfNcyVpGynMP8klJpBitRi5ycms3bbduf18sw+R+oP2Km0OrmPOfzfU6Gp1SUfjBVYbJGhqtf9K8sNQPiJVPjz0WwtrH+Zhv3sUPAFu35t+a65KrRyU/p57aWAnXa//k+SKl7ziUsEYbiDUjOn5ZC5LooFvoOHZVZtFp5sPGBleBKNRypYvahiwxUnUT34+bJiVj1MfkaUrbrJQzH9UO02Ucvk3iRaWXB4NI6p2QDtX3kghRJ0mq4/b25iiKpxL+WMqyQLs4T3d669ZWurj55hDmyQdA/z33hPzjLMDTro74Fyl8MYXVvKCGO6G+Z3R1VYJ9S8+Lolil09V1GvJo7ugIF6tXx5F33hnCLCVULrgghFlKBUTzeL3oBzs6giiIx6UOIW4bfU9iuwqVwKVk+UXhsuijRe92d4d+MGyi4rljw4Y4jjNJDNjamjCGWHIIALg3TLz1XXHl1c9qqoS3bo0/p/U1hI4hLqLOs3ly9BT6PsJTaTX5AfHY1vWc0aWX3wN0HWLZLSmqh7lT8BDS9YWX0dSz8RwZzT0AZs0qlkfrHrGMeWJjCPNiyQ8NxD4sojXetC0I9HhO0fnykkuCZLhb3gOWLVuY+7lo/uGOJo3RTe8ujfIeU3rwwdzP8XMvpHnq6W2NUbKUM0ZqHskbsqP5XiaS3aq8kl+i/uzPKsEtUmDu1jK8Ihlmo8SVhtaXsbBcMeYwYBmmMcYYY4wxxhhjjDGD+MsyY4wxxhhjjDHGGGMGsQxzPJBl+ftpeT+x7u2mrczNNTuiqPnzw0ZY3kmrW995i7xuXebr1MlRiQMFI3mBqjuibexFtSvVan5U28bXeVoqpVotOldK4gSfbaKcyKuClARI4/hzugWcFXyt8+eHckg3y1Os6v00jvOZ3UL1qnU8Fkf98BZ/PW0zdS+61v7PUhzePR7J5oTUSYF6GixXA5+EpPnX15G8TAvJ+iDVDh0ufdweERSzviB1mi1LOICoA7W0hPlMT4tjtUSq6VMy89SprjxHpqQ3eXnrdUqK0d4en+THEl9+ttelqhit/qKnYXL/VOlUSs6dOg2z6EmZB9vmYzuCvLKhLZZaRvNnYnil6oCn9YTKc1hcJI3hyJdeitLxSZYqtXyewt0Sx72JpTHDmiLvyEIgerjUGOK4YeOEK08kgt2USY1orFkYX8sDQDsM5y8vGvXUWC0tcdszqSUkNYUVnRMYPfma+1lKSj6XPQB0oeCJUTV2fPqgtG836an6+8Pfz1XGeBqdfLqpOxZa9VIZ9VWOlyWe+/Q5ufi6lFWDvmaMxRyTeg9jtPw8n2rT8NyhB0kzZ3SF9wCVSZa6t1Ncfh9nliyJr2v7d1Ee8bmFkcSdT+0F4hMS+RhT7UDcwCeeGEW1LD47hOUVmeF61fpPndpeQ/L6Rh4LejJs4rTHSKeqCwDHUcd76bE4GY9zddxJnYSqU3I1cHPMY1kqEMtKaV5plIpko4M4BuDXsmFNOKQtf+SR/ZRygpP6Xd5MaLyzzBhjjDHGGGOMMcaYQfxlmTHGGGOMMcYYY4wxg3i/oDHGGGOMMcYYY8xosQxz0uJWHQ+Uy8EII2V2kzJ5EB+QVtKkL14c9PqqhWfpver82XuCvXP0c+zZoT4RqbjIm2Cz3DzPpyw1EanRCPuSpc575zg1TBiLiY8NB8QrYEd/8IbQ+s/zyDnmmPxbpfxyklAdqLdWqgrYd0G9zrjMnZ2zK+FazTBl4lS0/rle2T8CiCtB6n/T5rC5Vk8D5+PruYhqV5HyjEt5tHDa1Djc0RPK2JjwvBvW+KmzyA8m2oEYrQR+8JQZXIKUT1nerYC43biLpIqYqn6ejnXcpcZhnu8TEFvAFLX2U0+laqzrtE55nFc7JR7Od8i8sba/OC5zypuTUXtM9jsUK7J4qvr6/ZVgj3h3baLw84jppnCTxHExm2nua+bJDQCuuCKEL7kkitrRcVolvPre+GM8ZyamWTSyUZN4E/KU+WL8sUj6MJv8hJrV3/DUU0NYDX5oQm0mv6IddbE/ILe9jpnU2FMPxSKIZVPUB2fXSC20NIXwajIeUrM0vj7uuDiO6mRXbywo4WdNjvNEJaRsX/ljPBa0jskSbUxsTMfC50lJrRNMak3SZY7z4SYc5oW3Zk0lWNIXDTLuLF1zTf7Nido1349/QC/5pTe/Of+DK1fG1/fdF8JcrpdfjtNxAy9bFseRZxmj75RPPZUfl1rn+J3qPJ7fdPBSHQ97IeRnk/k5uqZOMmvWoiiZru95pCwZx8I6GevET46etY/6klYpe0iqM14Hd9hLL40jh9r+eV29jJkYWIZpjDHGGGOMMcYYY8wg/rLMGGOMMcYYY4wxxphBLMMcD5TLYf97ai/xaOJovy8fl65beHnnbEoNp4ouTsth3R3OxdJdzVyW2bpnnjPi/dZ6A5ZQ6t593u+uD8APzrKxKqVgSWir9/be+EjuVN3xln8urh5LzkVOnSavO875qHDeft4qCad1LUQeef0AiNv3wQdD+MQTY/lLc1fXyB8aDQkZTh9tHhe1cnStR97zNbdNapyoNIDbSrfg89jgz2k6vvfSpXFbNHInUf2LFuZQMWdOfM0PqtoS1qHxke4AdrXNq4Q3rA4/1zbUeYVJ9U+WHM2YEcIpCYTK7xYsGDmsUmlWRek45/vpFDZ9egiztEePnc/LT1GJYJ5cKCVHrFYidThlmLMbdoSL3nitrOc+mRikCxY0j/TjYWgWfK1x3E+2kZRHujhYNLND4rhLzk3E4ayzQphllwDwW79VCT60bXYUtfrWEFb1EY8pnm5OOilO137VWyvh0n/9VxTXsDoM7o3xx7Cdwn0UHpBB38KSL9WA8oRBn2u47hejZKXesB721cXrNPddbcPTOkPJBmpqUYQzFvfFP+BMv3hTHMeTzr33jvxzIJ6AdJB2dlaCNS2NURT3QZ4HOQwgekeYq+9rNCA6lsVrVAkDVMTw93mdB+eS2Lh3gfbk0XP66fE1S0Cr5ZRTQng0r4rcvCkXCg4Pk2FyJrqYsT6xKDqYX3ghhFMyTJYqAsDatZUgT4vJ6V7GKCmssZkmO13b+Z1M18DUOs2q7afbQv+fl1ro5IWwJyFPbOIbXHBByP8DH4gTLuioBNmCBUivKdWsnTzuAKBxzapwceutceI77qgEH43yiOHZbZizxJIlIfxzPxfHDckyv/rVkQs7WbBn2aTFO8uMMcYYY4wxxhhjjBnEX5YZY4wxxhhjjDHGGDPIIdkvmGXZTAC/AKATwG4A3wVwR7lcLh+K+xtjjDHGGGOMMcYYU4QD+rIsy7JjAXxu8PKb5XL5ayOk+R8A/h3xqeYfAvD9LMuWl8vlVw+kDJOCPXuArVv3hdWQSr228lDDJdJNsyeL+lWwz4j62TApLzK2UtB0bAmQ8mxK3pA/qPXDsPcYED9QyiiIfc9Ubz7G+nP1WeD6UY8K9l1gixCtR/4cWydoHrU1sYdB5N3D9SN9qZ4ymT8/PjCa7WBSx2KzX4jabTR3iMEEMUCbX9WDIYLKuL0n9o3h+7EfBhA/asorLNWVuA21T7OVzp49yCV1JP1LL4Wwln/RAqo77UDJAXYQ0XJwp9QyceWJ51reFKBWbCkPOa67olOp1j8XUb1Q2N6PbIGGzaWtM4JH0Y7efF+j+prYy6hmRkhbS65NfcjPYzTNXnR643QHw5IjObYTDBTdHM+dJLUQ6QCjuFrq17XiddPZGTyWdCl+5ZX87HnpWUc/V7dB9ilrlLjZOWEAiGZr7qDiD9jXEj65eW2cB49D7Vt57wHPPRenI1synHf55VFcw7rw5LPvvDO+N4Xz/MsAYDvNMQvVj2fmzBA++eRKsHT11XE6arhaNfjsCSWpqZEWIM8mLD0bhVC/qNQEx5MOez2pbxi3r0J9V9evPN/CWq1lntd1IqSOoJ6SeQKWYfMI5f/4qjiK7diKojZe+tzVwOs5j10l9b6s72j8bsR2YOrXdeWVF1fCtRufjCN1YimCLpyPPFLsc/ffH12S8y3qeV5kj0QAoPG29fgzoqgHvhnC/Cipd0pdY1M+nrz28zvBvBNkDLF/rtDwne9Uwr1adzzp82Sn5o3k59qo45XHl060TVLOQXT9S66jK1eGsMyzfVR+rvLYVQ04NicMIK479i8DsKthX+qB0iT387Jn2aTlQGWYbwJwJYB3ABg202ZZ1gDg6wBmAMjk33kAvnKA9zfGGGOMMcYYY4wxZsw40C/LBo+4wDPlcnndCPHXA2gDUAbwNIAPD/57Hvu+MHtzlmUXHmAZjDHGGGOMMcYYY4wZEw50v+Ai7Psi7Ac58b8w+P9OAOeWy+WXACDLshUAHsK+L8yuAbDqAMsxsSmVgoRQt3Dynu3U9k7dk8z7wGlbf63snm9tDZIClY/w9nBVVuVJn3T3cE4xhuXRvjg+KrzE+685nNIY8RnoADBrVggfd1wcx5IvljNIHadkPkWlQyxx2fhgHMdb+VNK0ca6IIlobJB+QA134omxEKe5icqoe9rzpEkqEaGt9a2ydbyFZL3aJzhLUtoMe87u7lDHiV3wSR7aEDaMaz/mcqhaga/1FHHe1j9jRggP2yHfFMLax/Wa4fulVGKMSjl37gxyvCVLYmlDbe8OHBZUXpAavzT2NvXGG/tZhsJhOsEdQHF5jbYvX7PqStNxkVUOxI86u4HqW+fqbd2VYENbPEajKpH6qeVsqB5VBsj3q02t6sN0dDnpklKC8SMzKCzf5ElB64CfVScxvuawSIZZFNvREa9l06eHMMu4gFghyFOFTgEs/BOBIHi0NejY4zVw6dIQXrYsSvYgrUsPPxxnwZJKnT+LLs28pJx33flx5GWXVYJzRR7EdcKzmdYP98hu1lkBqKPrOn6YlJRK2pcftK5DZJirVoVwURkmS6KAuGI5Py1Xalwef3wIT5uWmywlM4+klynPAm1sqp8Fy86Lokq9JNTjPHTiXh3u19n5pjiPxDjPe0fj7g6k1+Ki8PyvXYSrJOUWonFcDYkpJkpXq/Wv2s4iaPsO18+OiL5VRIYA3Jl0LiLp9xNP5BeF24kl7EA83+gSyO/Sie5fcbwBAJwlvxDxGNL6IC2n1sEu6tc1FG7UQrL8Xfs/v4SkvFaYOhVKJrj99kqwWzS+/Dzcs9TsgbtkSWW2Z55ZCfYtWBRFPTy4vqTGhTHjmQN96x16E3tKI7IsawawBPu+TLt16IsyACiXy49mWXY3gDcCOOcAy2CMMcYYY4wxxhhz6LFn2aTkQGWYQ1+WjfRnjXOxb+cYAHx7hPgfD/4/d4Q4Y4wxxhhjjDHGGGMOOQf6ZdnQl2EjnQtz7uD/ZQD3jBA/tNm2YYQ4Y4wxxhhjjDHGGGMOOQe6X/Bl7DutfP4IcW8c/P+xcrn8ygjxQ1+w6SnghuFzvdWXjFGRPmvl88IA9nSHcOpYeN1ZWs1O09Rx2nrvWr7BkJ/bSKSMUorGJQpSovpK+ZelYB+QGTNiFwD2pVB7g+h0djZySPmpNMnNU3XA6M1z8lefi/b24E2QsgJiSw0tvl5XAxc/lZ9aP3CZU55WbGunVjd8v5TfmMLdmoe5wvnrUEh97rBtB0+ZfiUMxlJzDNfB0fKnGY7T7Dltqn05D+0/7F2XyiO6uT4MdYzIwwcy16WMC1PmbJxO7110DsjLb395cNrUJJBaUA42qTKmFiKGO4JSsI5Tj829QqcwXgrENi/2KVMfGe7MvKBIJ2dPRrX35DGUWHqiuTU1BTy0Ll5HT7v88nCxZk0U13nLLZUwrzxqP8U5Jlsitc5x3GheePL8hFKwN5Kixp18zfeKXhAAnHBCCI9ifMVJ6ULrihdBDgPR3DTc+ir4KnV0zKuEa/XVv6OjElz9jThqwYLRv3tpOaqZBhXu71r9PD3oGpUqB3sD51kkAnFzLFsWe0LNu3QULx5DkMcUgOFmrzkM8+E68UQuWAhfe22U7Omm4Kn6eDzMo6WNu7i+76TmIu6SbP+ltLbShTbGnDkhrKZ39O57rMxT3Fh93BHUS44bVXzDwF6L3CmAeA6gAVtKTbQ6B5DZq75JcC5NOWEAaEjVD/tjCkPrS+pXWGPGMwf6xvoQgOMBXJZlWV25XO4FgCzLFgA4G/t2lX0357ND8sutOfHGGGOMMcYYY4wx45Mss2fZJOVAZZj/Pvh/C4CvZVm2JMuy8wDciiDR/Neczy7Fvi/Tih3BYowxxhhjjDHGGGPMQSYrl8vVfzjL6gA8hnyT/h+Vy+Wz9IdZlnUAeBr7viz7ZLlc/sP93WvKlCnlgYGCx8QTdXV1OIG3p49Dpkypx1//9b5tvfffH8cldrbiuutCWBU69SvpO8qbbqoEd91xR5TuXgqrHnY7hfUI4Qtz4povuEASUsr3vS+K+tG20G3kxPjoaGnelq2KB94JrFuv+Qt+PTac1YS8c1m31l9yycj5AenjzJlvrwzfSevO64cfDmHdus87rLka37RMDq7m7fP33hvH0fbt7R1nRFG8I5xOlY7uBQCPPx7CKjPk63Xr4jjeQk+nbuP88+N03Da/9mvIpbYmv76/emv+9/6p48ZZqqFx/DnuW6qSIfXIsG3mfEy59s/mmtCOT29rrIRXr47Tcb3qUeosw9Sxwdc33IBDBk03AOK5SVUJPM5VdsJjkeuYVVsAsKj/oXCh8oibb64EX7z77iiKZV2bKPyGOAc0U8dYIxPtUpadXHNNCF99dZTuB88cWwn/27/F+bN8JJKIIFa4cL8rdW+PExbVzI8mjigqQR+vKkye77WfpeYAVjhymef2PBon/PCHw70Sa+zzUi6WXp54a/67GM8ju3fHcazYUSUVKW9w8skhrO3Ec4XOU9w/dX3kcZknpQKA9etDWB0jeE1MKRpTUml+Hi1/fS+NlTzdqGai8MNpJ7nvvhC+9NIQTnVyXnC1LFypQPRAj24Ib1u8LgNx2+t7xgLS7mr9cFxqjPKrha6BXCWLOmKZebSApQrJ6AvbRz+anzYP/Qw/uLyLFuauu0JYpahF5bhiZTFsUA2hDcx9MLVY6gKZx4oV+XnwuqbovbmjcJzWBw9ayaOvobkSru1+ceQyAXhyQ/46xF1Lb83DftWqkT8DxE2TGIbD4lhVzTJ2bdr6uvAO29cfPwvfmxWZAHDqqRiRlKpc4fdKXheA+D2Sh6sOUZ4f9HcBHrJaP8ccs+//b35zKV58cU2GScrSk08ur/nylw93MQ6Y7JxzHiiXy0v3n/LI4YBeWcvlcm+WZcsBfAeAqsQ3A/iFnI++i8L/r8i9BgYGUM0Xe1mW4dFHH91/wsPIlVe+/3AXwRhjjDHGGGOMMcbgwD3LUC6XH8my7GQAPw9gCYApAH4M4KvlcjnPdXIRgP/Gvs1MeZ5mxhhjjDHGGGOMMeMTe5ZNWsakVcvl8msAvjT4r0j6a/af6shh796wpXXPnjiOt72mTvnj7b0A4j2xpIEQ8U4kvZTN8xF6egpvkq+ncLPqSJlzzokuF1wQZJi8NRpIb/dlWNal6VgSpzvHuXpU1jLW8L1UXcDyGt06ztu+o7bXveO8V1q37pOuq0aOUeM5PXXiH9djSqqoKhZWDXC6lCS2WrhKEgcRJk9zU/IUappH4rDZSH7a3CBC542h0O0dQYapW/f53npIEpM6bfZQomMtpR7hvqDl53pgxcuidpEhf5GkMaphJenlRikniT3AxdLu+CIVbJPELeX7sc5NToqa0XIs8uA+qH2XJWtcd80pnUlCajlQEwvqoz6SkGClpMxFD8PMvW8i3VjBdadjPjX3DclHALFEWCFWq9QPtI/QrSE9F40UfvXVENb64flNxwmvX7o08PqSsnRgdP7h/FMHsnKZ9eBQfq/RE3x1TsjLs+ihpSr1rp9WUKuU6sgpkkcSF7gXEC8qMrZ39YcxmzotMRXH7Vb00VJzgI4hzn+grj6KK+UdO5zSkB2uxWusSJ0mPJpj5w8m6hmRaA+W4Q87gTHv5UjSseywVp6Tq6A20fZFldL6Tp/3DqLvoqlD54u+A7KdyrDmbAp1oHMpj6nU74HVdhHOn9caIC7/Cy+MHAbi99mUDJPXTSA860Qf1ubI5UAN/o0xxhhjjDHGGGOMmTT4yzJjjDHGGGOMMcYYYwYZ0z2/WZbNBfBWAEsBzAJwDIAby+Xy1yXd0NEnewYlnMYYY4wxxhhjjDETB3uWTVrGpFWzLGsE8DfYd/rlkBA+A1AG8K0RPnIngC4ATwI4eYT4I4q6uuBPpeOMj/VeuCD2JWMfAdx8c/zBW2+tBDeSj5U4rUQeZnMljv1UmiRuHh8tzUL288+PE7KH1owZcf6bwymlnZ2Lojj2BEh5TrEPS+rkbvV6ykub8oWrFr6Xnja+eHEI65HubHt0Rgs54XxR2noDtepjj8Vx9ECNfKw9gMb20NnOPTf0pUUNsetOx9tCz1CPB751yicl5Sk2muOv80itT0W9blJWIlxGfU5uX60f7v6trbFfVEfHwkr4qTXh53x0t94v5fWkFiSHa83W+3K5dNyxP5J6eHBarv9N3Y1Rurk85+iR93R99p/+aRTVTRX7JP1crP3YygsPSRyfs9z+pWDZ2SgdYeENN1TCV155sZSD7iXty/NFcxPN/6nBlvAsK0lc5B3DlSwFqasLfVezL2GA4optVj/UfZP7kvZBrmM98r50L50/9PerQljW2++/9FIlLK6RYBsxmf6jdfWE05HLzJkh/PLLkj/dQL1o8tazVPdRuCunrPK4y6jvGa8Tugby5zR/Lj/Zbw7zX4s8j3rEmfXxjSMnXCAjPeX7lxpfahRXhNRnpNHqO5sq4SlT8sdXqg3Zwylll8bVM7cldrFtaYm9yBj+nD7abO4MKZPK1EJRDdoJjz/+wPPkzptYzPpq4rriOtcWHGgP71dJ766ixoVF0YmEjbK6uqIonuOH+eJyPSRMll95JYT37o3XcLbdnT9/diX83Nr4VmvpWvsx+2sdd1wcx/MdF1+rMTWGeA7Wd3WeSngNqYX41FJB6qX/9LaENTZlC1ct/LuGzsFROagO2DMViLugeg3z5557Lo4beh71YjNmonDAMswsy9oAPADgXdj35Vs2+C/FZwbTLMyybOl+0hpjjDHGGGOMMcYYc0gYC8+yfwUwH/u+/PohgP8JYHHyE8DtAIa+Y37zGJTBGGOMMcYYY4wxxpgD5oA2d2ZZ9g4Ay7BPbnkLgHeXy+WBwbjcz5XL5Z4sy34I4HwA5x5IGSYDtbVhW6wqAxq3kEDosyuiuBJJe/C5z0VxO+6/vxJm6ZCc9otjKSw7i9FB4Zo5c+LIiy4KYd7jrLoPlgV+4xtxHG3Zfssf/EEU1XdJKNnq1SPfSkltqSaVDIB4y7ZKV3KKWPVW6JTygLdzq4LstDpq+zvuDOHbb48TpiqF4/Tm9EALFpBs4MGHo2T1J4bPzZWt4w1doZ30KGneps23Th05nZIZpkjJPFMKGt7urqoNjuN20jy4ilUNwc+jUmBWQfC9dIs8V7lKNBmtV70+VKgUletL644lC/rcPBfy2Kjf8nSckAe3zlOcyQUXRFFN1Gm6aL6sPfXUKN3Aw2E8HIsYFnztoPC8O+6I0vHnzvhoUxS3a9kZlbAqXLj/PL8l/G2rpaU5SlfbIHKPPKQBBvL+XlYTS4ZZizp8jE6sc4K0n9V2vxgubr83jly5MoRvuqkSXPv661EyluOKOiWyN+hMxO2agVx4jVIpyzHHhLAuv3lSZoXbNLWO6lKTt/TovfLkmkqq/Cy9LPXsiNJFvXU02iomNVHlpQOG69+LwI0GxA8ulbe9O4wvXkP0sfJsAwDgqKPy43jdix5t1eooXVPTxSOnQzznP/tsHNd2VpDVlbjQulAwqv+qBtXKnXjigefJC5ZUwi6Ed6htIkXlpLNlAuLli8f2XJ2oUnUn81EhdCAWlXKmXiz4QSX/PXvCKE29A6ZsLbiuuE8D8fuUxvE8lXpdZlLzVFEGZB0tJeYYnkZSc3W1v4fkqWWV6dNDmKWnALBzZwhPnZpfLp2bhrrnQOwkNPmwZ9mk5UDfct85+P82AL809EVZQR7Cvt1o+v5ojDHGGGOMMcYYY8xh4UC/LDsb+3aV/Xu5XB6tw+TQ3whmJVMZY4wxxhhjjDHGGHOIONAvy4bUJU8nU43MkG6kNpnKGGOMMcYYY4wxxphDxIGKa18HMLXKfIa+aOs+wDIcEFOmTMGp5FFz++23o0POj7/uuuvw3//935g+KOaur6/H97//fdx00034xV/8RaxduxannXYaAGDx4sVYsWIFOjo60NHRgWmD3gt79+7F29/+dvzhH/4hporYu27va5jdM+hPtUZMa9iw67bb4jjyLBsgzx0grlTWxqov2UIKt4mnD668MoT53GEAO5YG/4rGGjpiPGXodOaZcdzXvhbCfCY0gFoSvb/hsssq4V398XernL1ah6hHFHP00SHMx1bz8fTA2MjP2TZJ8+skEXLzlkfjyC/eFMJr1lSCOx6OPcXYvUVPhK5hEyQ9052MC2azicG3vhWn4yPXxbOsecmSSviyy86L4rheq7WDKQr7LOzdm5+n9hH2a9GT5bmPcBvyc2n+2uc4rdqKqL1WXv5sXaKePmx9oyfZq6fEoUKtVrjMWn6uOx177FFUjzDHbG+aF6VrvjTMat9dHc8PU1tPq4TP+QtR/JOpXu0K8oOUByjRHLxQ5mAesZsorC5JJfIwa5GGql++vBI+48IL4w9yBy1qLDUKs5XIQ4WNUmQgRrU6bJCG69rE+E3F5XqnjRFzG8hdTtdYmlvVD7L37rsrYXZw2oQY9inTNZZ73XmzZCM9m/HV0N8cpY47LgzuZuprx2NK5z6O4yx1KUh5+qTmZJ6rUv6PfD+1RmJ7Kr3X3HZ6e+EHZ0PM/ZGXVt7zIiMlNQ1KjS82SyqKVrI2HNG8LMxHbW3BFyvlWaZweyQ9+zhT9usDcOZvhnc+9c3je6sHLPtMtaZeBHjB0raphs54vt/VHt5261HcMYbnpu7+xhAh9c19PNU9t7XFaxTb+nK9dnXFvpSnLZbFk9GXhmoo2o/1XuwNR2sbe7jpx3QOYy/WDRtCWOuR0+m7BM8r7K0FxI/GeapHNI8T7YL0qovTT4/jWjMaQ2voAbSP8xwjA7GV63Favrlu0bWyJH28fk3w45yrlUf5N715USWs9c9LpfrC8bjX9WVoWklMc5MHe5ZNSg60VbcCaABQjXPm0G/WzyZTHWSOPvporJUvakbiz//8z3Elf3k0SHt7Oz7xiU/ga/zFD3H33XejpaUFPT09uP7663H99dfjy1/+8oEW2xhjjDHGGGOMMcYcBA70z7nfxz6T/suyLCssp8yybAmC39l3D7AMh5Xly5fjkUcewRNPPJFM19DQgBtvvBG33347tm/fnkxrjDHGGGOMMcYYYw4PB7qz7F8BvBvATAB/DOD39/eBLMuaAPxf+tGtB1iGA2L37t3o6uoCAJxwwgm4TaWOg/z2b/82Pv7xjwMATjnlFHzlK18BAJRKJfzO7/wOPvnJT+53x1hjYyNOOOEErF+/Huecc06IeOklYEgGdGtcHf0kr5Sdy2Bh5EMSxw07m8J69GjjNdeEi1/7tSju+Y4gq9PNd6s+HsIsDVAp2zsvvzxcaCYsHf2Lv4jjeM827cuul33T9SRbGmhojOJ4y29Kfpc6wTxF0e3QrLrS08yb7yPJo8ofv/SlSnAXySO6E/eqIUkxgFg+q1uv+cFZ2sl73YF4T7Vq/Uh3WCvngS+ktuo/P0jndBe/ykkOFG1rVtRoFXB7aNvwo85tCTLAnp5YXsDokegsvXzuuTiOt63zln8t4/nnh7BKaLiMKWnVoUS7CD+bln9eC4mItd9toMpcFzpJ0/KfjZI9tC78nYbVlEDcxTf+zMIorqMjXJ/zB10hQjtkV4ibLVonlld208+fj3OIZJmL//mfo7j29evDBWuWAICl8TSedK4rcafRTshlTmm1OC4lQ0vJDIpKQCUPlYzkUbVck/uWdhJqw6dFH0TiGnDv1CWDhcGnSVzXibTxXtc5Xs90ABP8l8gFC+bmplO42bhbaDPxONE4zkMllJyW513Ng5tb5Ts8X+jcERUspRVltO/m9WvtxymJIH9O8+dJragERzX4nKdUwkBdWG84e51L+TF1DWGG1THXJdc3a64AtO4Ns1pf2+wo7oUXRg4D8Xo/66zQd0vahlwHVcoweX7o7VgUxfErzjlnFctD4ama5cNAWobJ7abLC78XcJy2YUtLmAVm68tKNS9RwzrCGEBtqEXi+eeVV+K4vC6oXYT7uM5FTErul5Ja8pjSOK7yGTMk0805k2tqjlFSUm8qGK+V2leT6yh3UC0HdbZGqqBFC5qkiLUUjrPgd928KVjb3ZiJwgF9WVYul/89y7IfATgDwIezLDsKwJ+Uy+UR3aKyLHsbgL8CMB/7dpXdWS6Xf3ggZThQDlSGCQC/8Au/gE984hN45pln9ptPuVwebRGNMcYYY4wxxhgz3sgye5ZNUsbCVfdqAC9jnxzzNwFszbLsLop/R5Zlt2dZthXA7Qh/hN0K4L1jcP8x573vfS+6urrwlre8pVD6mpoa/OZv/iY+/elPJ9Pt3LkTGzduxMKFC5PpjDHGGGOMMcYYY8zh4YC/Ai2XyxuyLHsjgK9jn9F/PYCLsG/nGADQcU/IBv/fAOBny+WybNgeH3yJ5G9Fue666/B//s//wU49hmWQnp4e/Mqv/Aouv/xyzBi2h9cYY4wxxhhjjDHGjAfGZL9guVx+aNC0/1cB/DKAjpykWwB8DsDflMvlnpw04xL2LAOAH/4wVo/W1tbigx/8IP73//7f0c8vuugilMtlDAwM4IorrsAf/uEfDs9827bKMd097OMFgBx90Jco32y5bspJV3vVVfEP3ve+SvDptvOiqLvI2oWPcwZi+zH2VlArhUs/Go4bb9ZzmletGjkTAFi9OoTZAEKNCuiGJcmjbUH+Dj62BGApv/qAjAWndVLL6ZnZg953AIDvfCeK2kimADxYtB9E9gBqFjB9en7BuBLYOIPNPYDYZOaYY+K4lMEEmZUsuu66Sph9D/Zd5xexKOwfkvN9NYC03YycNI/aXhp9a4NjUfvieJxwNeq9uW+xRxmQ72OiXZx9HtRfj/NQq6qx9oKrlpTdT1RoLTCPZ/JXkSkSTz0VwuqHx/X14x/HcWS3hzlzmivh2S0ywnhSW7o0LiL5XXGv3oUYLpYuugM01819TRwMtm4NYfJnLOlcyhWr9ZjyQmFSnk1ckWz6ovfWTshtyOXQjlBQupDyZEn6md18cwiLZ9yTVK5H5WO8/vLQkxoAu4h1qSnXtdeGMorfHi9tc58hz0rNg8qYssFRGyKO4ybU5TZlB8bNpnE8p/FSkyh+ErVtm724KVxwoVOeempayWvW0UeH8Gh8yRj9XDXeTzqGEhVU6gm9sKWlkcJxuoTtWZS9fg4bqWNwh7z77jgdXdcuWRJFnXxy8AfjKQuI/aN4+qnVgtD1kxvjd4SFC/J9mvLQtSDyDBXPsqJ57tmTH5fnDwjEa7qu4eyDxtO/dgnudl1dx0Zxcxcn+mseuoYkPBMj9CWZ10cy+no8tryLXn0feCCO498v2LZT35lSy1DKpy/Pz09/X2GfMvUs4+vo3RCI644LmVrXUt6K2vg8oKN1uvC5enFH43kQiCuT5wCZ8Ds7w+9U2o/5PVXngKFH06nZmInCmIlry+XyLgB/DuDPsyw7AcDp2Gf8X4N9Ms3Hy+XyukQWh4UeXdVG4Kabbhrx59dddx2uoy8BPvjBD+KDH/xg5XqjrtbGGGOMMcYYY4yZHNizbNJyUFq1XC4/A2D/bvfGGGOMMcYYY4wxxowj/BXoOKB/2zbs+NGPAMRyHQDgzbiNyEd31pcuuIAiKXb58jghyYpeeiyOSm1XTkndGFZaLl0aH3k/l+Qpekx5xDrakKgyIt5OLNqDEm1zHnbUNvHCC2EL/qxZ+cWoGt6vrDsZ+Xlk33fHI4+EZHQuswqRoo3Yy5bFkSefHMK6b53/AsIaxIsuitPxlnD9qwnL0ubPj+OoMneQ9JKPmB4pywNFjw1PSSd4x7lu429rCyOukdomJXd8+eU4LqV647iUDIplhnokfUp6kFISjTUsj2toiCUtrNoYJnFclzjOnGQifU1BdvLjm+JkqRPReUipIjlXPaWZ8AN0dUVRDWcFPc/ZpA8VkQZY4KLCCZ7j+0UCXcPjsrWVbiwNzw+jnS4lw+TrlJSTO6XeO09PrHnyvbQcYzwJDJNrktR1o5Tx+ZwwALxI4XkUVoF/F1/QbnMAkXyWJUaAVANPVDppUf3X9myPotrbg4RYm2bqVIwYp3NMSgHE1xrHczk3oc49fK1l5DE6bEzy4OZC6wuITvoMf66ojk77Y2oir0bvzpolLZcuMFR5zTwXSZnqOsIcWd8fz0C7msJaVrtNejmf4k76qRfjVDj2iSfChTRUI5Wrqak5iuP2ru0ngbp2wqjTxHkUlUmmGAtbgtQ44cfRJuQ47UqRPJRIdIPh0yUnTr0UMPoABVQ2I6bjh6N33aam2BwmtUTl3Vqlfqk2TC1DeTJMVZQuXhzCKsOs3/J0uNAC83jm+khJvVM624MBa+N5YQBifWRiHqzvCbNCZ2csBeaPqQxzqLpUnm/MRGEsTsM0xhhjjDHGGGOMMWZS4J1lxhhjjDHGGGOMMaPFnmWTlgNq1SzLnt5/qv1SLpfL8/efbPKyG0F+qRVakxPeLyw7ZOkQSUIA4MktYXs+qf4AxJIv3Q7N22x5bkidsqU7f6OtzHy8JoAXSWZx7J13IheWFqaOtknsy54zJ5zkdDBOw8SDD4YwSxkAgE7T65Ey8kZvlm7FAgUAp54awnJaH+8rH5CTc0p5k7r+PHVUI8tkEvqCRpLUzZkzL0qmB/PkoVIMllrxFv/U7nbtn9xltO0bWUxHA6ChI5YX8A52zX/mzBBOSZ/4cymZkp4mxAdapU6xO5So2nd2E0lv6FRRALFOWwtMc0AtyR2nT4+3//M8pV2Q64TlrArXeU9P3M/q6sKIm3v++fEHL7usEmx79tlQDjlZjMWneubYtpx0ALD4nnvCBTc2j3kg/YLGcUV1wQrP1dXmkZJh8vVBeNnsI3mrrrGbKDxMekbhxpyfA0AdS9epTwDAwPlvqIQfWJlfxnncCVNHXkpcan7jaz5pT8do6lDaVPdJnrKYgy4hKfkaOttGjtSCcKZ8NDKQfxqmakV5EUnpSDWOxmVRuWBJxy8/W0IGPtAQemFpm/bWfLid6lXrylYNVHeSKi5XQk+l/YenwtbW+kp4Vuei3HR6aLge3FgEPcGd869W1sl9tVqbg5QCnbtx4nDx4V13aXgnqU+cGByhlVp03tX3bLreRdLLzbLUc/3rHJBXDD18PTXXpYZv3kG6mgfHqV1IdAP9IDcqjw3NJGEbU3idrha+n1ZsXuUlXiJThwLrow1d147i8E5jxhMH+lbaAaA8ivQZhcuD16P5vDHGGGOMMcYYY4wxB42x+BNutv8kEUNfjo32c8YYY4wxxhhjjDHGHFQO6MuycrlcaC9zlmVHA5gL4DIAvwGgHcCflsvlPz6Q+xtjjDHGGGOMMcYcFuxZNmk5JK1aLpd3A3gCwBNZln0JwLcA/EGWZfXlcvm3D0UZxjN12Pft4VCYYXekBj3LmCh9/OPxD9hDhTwFnq+ZGyVjHwT1SIjKmLD3SMnrOf/vfS+Oe/vVV49YRgA4lieczs4QViOK008PYfUqYRMqFdFTodlrpbT2R3E69nsTCvte8IOLN9t28gSID3tPoH4h/JwJ05pS9/Y4jv0I2JROfQrYYOLll+O4lLEdQ204e2ncmVo6Qy8fzTrD9c9dRJuaH0eHEDdvaaO4GfHzkKdM42L1BAnlUN8efp49e+K4lE0Nw+NLj+TmrsBjDYjH7CWX5Oc/1kgXBxB8ahYvPjuKaeRxLz5fA11nVMLczbQOuH21+zM6h+XZ7qR8z9rbY8fAUmtruDj33Eqw8bbbonTsd6UuIPzU2g2aqU5m3313iFC/mZSBDleQjm2+ZkM8NfDjttG42PAtjsszEzwIL5SlhFfPGgo/KXFc/x0Sx9e8Fs/jCQcALr88hMXXjscl2fABkD7YSWMhZQgjnby3O4S1G9T2hDmf++5LLyEX9RPiPLVYeR5O2g34c7qEcNrHHovjGhqCyU1Le/C4atSJvOgkQAXR9bu/pl5T0+conQ6htlCupvwcIvQ9bPYCcivUMUqVXOI1aV1sChV5kclc2px4j4nWOfJd1PeRlhUrcvPn62WXvzuK4rmbLZs0C34cfc2rBu2DqW5RFO52OhZS+VO1Dlu/8qZufR/nOtFXLb6+/PL891KeI3+wPl7L5swJ1ynr3pd+Kl7D+Xk2rw1hsokcVsZXX43j8upgxoz8dGqdxkuiLlE8pHjJfvOb43SNPc9TIaUDcYfVFz2+AY9D7YSp30mGGTYSOetlas1Loi8/bGjJ5dAFi+Jmkx8yALSdH5w88yxJb7551CU1ZlxQncvlAVAul3cA+Hns87X/jSzLLjjUZTDG/P/s/XucXVV9/4+/9mQymUwmk0kySSYXQsiNAAGSEEKgAUHBIkTk+hFbEGyx4re22qKt9WerttpqFUXF1nopWBDEKxUUFFoQKAQJEiFAuIUhJCGBXIYQkjBMZv/+mJmzX+s9s97Z58yZzJzJ6/l45JG1Z6299trrtvfsWa/XEkIIIYQQQgghRG8MyHrBNE1fSpLkVnR+NLscwL37OEUIIYQQQgghhBBicCEZ5pBkIFv18a7/T+jvCy07/pj+vkSfGL7nNXSLDezy5/o5c7IDlnpY7HpiWna/Y2e2gHBLi8mflo7bpcusyrESspdeysJ792Zhu3ScV/Q+80wYd09TJntYdurbg7gq3jucC2YnogkTEMXZ9pjzCbK0N+BpTKtz7oPMy7dNmVieZUUgtbxUmrd6PvbYMOHixVnYNqInz4rtw20lRrze3daPTcvwvXK5+mFbbL4V20V6bAFOsBxpkl1aH5GX7doTLshl2ZKncrNwOTmdXY3PMi6WtABh81pphr2d/YW9Z+7+VnnQ3JyJ2xoXTAni7rsvC/N8Y+sgpoCwx1Ymw5Ia7uLFqCPA8zNNkg2mkIc/9FAWZ7Lg6jJCaayjcN2KFVkZDzkkTMid0MrRebzZsceDg+ebgw4K0/H9WAmo13lj147pNIB+edlkVZdRfwXP3OkmbgaHebC9851hQpqD2xonBlHVVD22WoM+6fkgOPVTWzsuFhW2R/04xODuw4ocANi+PQvbOYaLHFPcAuG7hO2eXK1WdsWPjbpakhxtag0T5u1bRJV5VtZQ3XkWCza7cY1ZufJaM0xpagt/wNp1O4a40rmyrO7e6tJieBJfapweqkJuRDsJr8yEzg1Ghnz4bCoXlbnB1H/7vGxm5D5XKlap687jJeTpTXX2GcJN6HVPbl776jZ+fBa2Y8heLw82j7wyVTtG+XcDvhcrs+V0ed/R7M/5EeV14xEjwjie09z75InLzsespfV0sFwwq2nnY/sw8PTukfnfzjeuLJMr0+u8sXOAsBFNHlX0wtneHparu1o7SlSNCjHQDIZPoJ48vizc99XF+040gPzpGb/bdyIhhBBCCCGEEEII0e/sd88yYmnX/6+7qYQQQgghhBBCCCGE2E8MyMqyJEneBeAdAFIAjw5EGYQQQgghhBBCCCFKJknkWTZE6VOrJkliLT6iSdFpgTAXwLkALqS4A34z2erx41B/1NGdB9Z84G1vy8KnnRbNY2PzouC4dU3v6aw0nfX7nmWT9SCJxVmfApb92+2i2ZbM5v/2yy4rhNtoS/ca65HlbdNMN9TRFPrI8PW2kP3G9CKMntgfwPUqYW8O44NQfeSRWZgNtIDQIIO92RYbWTHXifUtYR+EvD4FY8aEx1wn1sNg8uQsbB8SfK+chzGNYLsHW/15nzt8a7YvWb89hv32ephZ8MWprjzLNeszErOFs3CZbf5cjdYqg1ljxvzUqfG05Yb7vy0Hzwm2/Fxf1m6P8/F84TgP9nUBwmHjeZxwHrb+uW/ZIdTA/l2ciZkI68nvZx77EwHYQzfUGmYfHNOm9mh84IEwIV/bPkO8QcSVyXlYXzL2R7KNyNezPi8xPzPPS9H1iSztlWUthWeaOL5Ta9hQQ/Mzli7NwsuXhwlpDrbPQMbOAUFTtTudkE80dcBVbqt1HJ3HWVpfsmAeNLBPkC0/Pw7y2mN6cXZ8cfd57bVsjunhL+n4+DBVrdtypSvGVjOvT1mAvVE2dN28OYxbvTpfHp7xIo9nO9HyeVThtfZda8OGLGz90nhOs9fm/Pkdh3x1AWD6iScWwjuPtM6OxXPCYuMLR43a0cMhNsPzfRq38s4sbObI6fOyem2bH+bv9X/v+cWwxZVtes/uMIadp7jPz58fP+/ZZ8PjvNfmbmCHL1vy8lxkn/Vcj7Yb8/uOtQPj+uJyNLQbl1Du1/ZGbZ9nuDL55uxEwkZx1m8577Mt8C/L6ZsMhPOK95LDv3dY8zdubPuOQHH1xh+z+9bY9lCISqKvn0Bb0Lk6rFiSrv//F8A1fSyDEEIIIYQQQgghhBBloRyeZUkJ//YC+A8A70rTtJSPbUIIIYQQQgghhBBClJ2kL9+qkiS5G/lWlqUAdgLYDOB3AP47TdON/ik9rlXSd7UkSZA++GdFn7c/+cBXW/Af1922z3TeNsElSQGwj62G+xlXLlGGeyuFgawPj/1ZB6Wiuhu87M+2Gcj69u5zsJZrsDBYxslgrav+rp/Bet9CCCFEX1m8ZAlWrlyZ7DtlZbJ40aJ05X33DXQx+kwyatTDaZpaV4oDmj7JMNM0PblM5RBCCCGEEEIIIYQQYsAZHH9KFkIIIYQQQgghhBBiEKCPZUIIIYQQQgghhBBCdNHX3TBFP1MOL7LB4kXjYf1aBqrMni9cufKM5V8J7eRRjvLLt0fsi1L7yEDOMXyt/u7j/TGHlYPBUg6PSp+DhRBCCDEAJAlQrc8qQxG9GQohhBBCCCGEEEII0UWuT6BJkvxnP5YhTdP0T/sxfyGEEEIIIYQQQgghcpF3veClANJ+LIc+lkUoVbqSV04yWGQnnnTIkzCVQ6ba3+S9Vn+3dV4Gk1yqv/tnKfc6WMbMgUol1P9AjqGBlJvu9/tub8/CZZA/5C3//u6D5Za4V8IY8vD6+GB6fokDh8Eypsoxh3l5DJb77A8Gy9wxWK0UmKHcD8S+SZKkCsCHAXwAwAwArwD4IYB/SNP09Zx5nAHgkwCOBvAGgP8B8Ddpmj7fS9oxAD4L4FwA4wE8B+BqAN9M07Q/v08BKM6zLMmRJs2Rzqbp95sUQgghhBBCCCGEKCsHlmfZVwD8JYCfAbgSwGFdxwuTJDk1TVP3C2+SJOcC+DGA3wP4GIAxAD4C4P+SJFmcpulGSlsD4A4ACwF8HcCTAN4B4N8ATALw6XLeWG/kbdVT9hG/HMBfo/Mj2HMAforOCtjS9bPx6PxyeA6A2QA60FnRtxZfZCGEEEIIIYQQQgixP0iS5AgAfwHgp2mankc/fx7A1wBcCOAG5/zh6Pzo9SKAE9M03dn189sAPIzOj19/RqdcBuBYAH+ZpunXu3727SRJfgLgE0mSXJOm6Qtlur1eyfWxLE3T38TikiT5c3R+KNuDzhv5biTpDQD+NkmS96Fz6dxfA3g+TdN/K67IBy6VsDS3UpBsI2Qg62Agl3OrHwgxyGGppeUA+StuOSSUQ1k2o7lbDDQHqnRRlJ9KmM8G0u5BDDjvQedCqKvMz78N4PMALoLzsQzAWwBMQadkc2f3D9M0XZUkyd0A3p0kyZ+nafpmV9QfAdjVlT9zFTplme8G8K+l3Ehe+tS7kyQ5EsCXuw7/n/OhrECaptcA+H/orOivJElydF/KIIQQQgghhBBCCCH6jWPRqRD8Lf8wTdM9AFZ1xe/rfAB4oJe4FQAaAMwFCt5oiwA80pU/89uucuzren2mr5+C/z8AwwHck6bpL/Ke1JX2bnSubPtgH8sghBBCCCGEEEIIsd/pQFXF/wPQlCTJSvr3Z+Y2pwDYkqbpG71UwYau82ucappCaXs7HwCmdv0/FsDI3tJ2XX8rpe03+qpheCs6DfrvLeHc+wCc3JWHEEIIIYQQQgghhNj/bEnTdLETX4fO3St7Yw+laXPORySPPSaNl7Y7fV0krmz09WNZ99e8WIV4dJ8zxU0lClSCjr0/8O67HNtkV7pvVTn8bIQQfaNf5g7268rpz1WRc4DnS1bu/Mvgcya/FiFEJVPq80pznwDU7gc4uwBMjMTVUhrvfAAYkeN8L213eu9aZaGvvb37S18pvmNHmTyEEEIIIYQQQgghxOBiIzqllr19wJqKzpVp3iKqjZS2t/OBTHa5HcDu3tJ2XX88epdzlpW+/on1KQBLASxPkmRumqZP5zkpSZK5AN6JTglnrnOEEEIIIYQQQgghBgtp2v+L5AcJDwF4O4AlIBuuJElqASwAcE+O8wHgeAB3mrilAHag69tQmqYdSZL8DsDCJElGGJ+0Jehc9LWytNvIT19Xlv2o6/8aALclSXL4vk5IkmQegF8gW1L3wz6W4YChFxO+IUs/GBaWdF0xtOHWFmLQUV2d/RuklDSG2tvDf3nh+hjEdSKEOHDZ3++Reo8RQuxHbkLnYqePmJ+/H53+Yd/v/kGSJJOTJJmXJAn7iv0GwEsALkuSpJ7SHo1OL/sfpWn6JqW/sStfu9HARwC0Yz98R+rr2+a/oXM3y1kADgHwSJIkNwC4GZ3bh27tSjcenVLNcwC8B507aALAswC+0ccyCCGEEEIIIYQQQoh+IE3Tx5Ik+QaADyVJ8lMAvwRwGIC/ROeHsBso+b8AuATAKQDu7jr/zSRJPozOj273JknybQANAP4KwCsAPmUu+W0A7wPw5SRJZgB4EsAZ6Pym9Nk0TZ/vh9sM6NPHsjRN30iS5EwAd6HTqH84gPd2/YuRdP3/EoDl+9C1CiGEEEIIIYQQQoiB5SMAWtC52utMAFsAfB3AP6Rpus8lrmma/ihJkt0APgngS+j0r/8fAH+bpukGk7YtSZJTAXwWnQuuxgN4DsBfYD8tuOqzjiFN02eSJDkGnQU+F9nHMI+fAfjzNE039fX6QgghhBBCCCGEEPubA8izDGma7gVwZdc/L92lAC6NxN0K4Nac12sF8KGuf/udsph+pGm6GcD5SZIcBuAiAH8AYC6AsV1JtqPTrO1+ANelafpkOa57oHEg+RHwvbLnw/6ug7JfuxwzaZm8eqL30x+zvVNmr17lGyeGBN6YKmW82fFEx3Y8lXsMFe1Ntq+wpbY2HpcTe89V3rW9+VS+aC6D6HFW2QzGiiy1TF45OM8h1vAD+a5SynuqV97+ficbjN29T5TjGd7f5C1jznL193uGEIOJso7Wro9g/79y5imEEEIIIYQQQgghxP5Cn4KFEEIIIYQQQgghhOhiMC1kPXDJK3Tu52W7A6m13t8rkmNLhu3S4rJIL/fsycL9IW0oUYIVLN1vd/bZKHfHMPdyoCzf7u/x5anLavbj+CpXF8+bz/5U9tj8c0uZPRlgXnkiX9yRYVoZY0zS7l3OvU+v/DzXeXE2j6am3gvSW2FKobU1nl/eenXSeXXMFKMAZYrJM0/+5VYF9xel1E9F2FV4Y6g/KGUMFVMmTuvJqEvprIMJ52FT6hyQF75cqfPI/qS/55hy1IF7TjluoNRC5n0ZKuamy6x9LaWPp2nfizCYOZA8yw40DozfUoUQQgghhBBCCCGEyEGuz9JJkpzEx2ma3tPbz0ulOz8hhBBCCCGEEEIIIQaSvGs47wbQvYAypfP456XC+QkhhBBCCCGEEEIIMWAU85EqKfLnIi8dHT29Xrrx/B9KoFQ9dakSfQ/fhiufQjivV0lefb31diqLF0qpfkUltH1HdU3R5/Qg1hd7Y5BsE5/XXsJWae72De4lXselWtHktXIpxkYj8Cyrz1eOcuB1n1ItNvp7/snbjS3BfOEV2PPr2rkzfgE+jztvvWlQjivCJ4WjcvuS2fJyGb172bIlC8+YES9If8wVfG1bd47fW7RcTrpSrZ5q0Pf5shzjpNTyl0opTV+yByMV2D4rPc8pN478PjnP3M8TwJ808z5HvfeFvBXr+Q/mPS9vuiJ8F0uiP/zRcraFbfu29qzP9IenUVis+Ltuf/j5xe7Hu89iulaMcjwmivIsK+WGvHd6r//3hykdP5vzziOed1oR78HdyLNMVCp5R+D3ivy5EEIIIYQQQgghhBAVR66PZWmavq+YnwshhBBCCCGEEEIIUYnIK2wwUFUVX3bubNWbd0k1p8srbxxM5F1iXup23aXmn3tJO8t+8sotOgvTezpn+XYxy+yj9WX7Yqlyhoi+xl63HGrNvHkUs7o9kGiWWLC8Esp+lxTsR8rRhl6e5VIolLKLu3tOf0ikeL4oVaqYUzqRO49i4PI3NWVhT+5YIt78n/vaeeczh9JvJd+Jg2keiaUtnx1DvjxKkZd55xSVH91sqc8Jl1j/9GRc5bhWMVJI7wE8lHRJOevYm4tcZVvOseA9A/tDapmXUp6p5bpW2YdeuV4kBwslvKsXlUeOZIlMm0SFUgEjXAghhBBCCCGEEGLwMZT+NiAyKm+ZkRBCCCGEEEIIIYQQ/cR+WVmWJMlhAC4DMA/AbgC/AfDdNE137Y/r52HT1l34yJfvx0NPvoIRw4dhxuTRuOqvj8fRF/0E8w5uxJ62vRhdNxx/fv4RuOTMuQCAa299Ch/7+oOYOmEU9rS14wPnHIa/es9RAIBv/vQJfOPHj2NYVRXqR1bjW393Eg6fObb3i+/dm+1U4knsnGXxvjQj30485dgFy8vjzTfD4+HDs7C97XJshlSK/JR3tuo6MZrWlf1wnltezg6KkWHGdqWxlePtXkO45c27Y6fFW77N90pSVFuK6nLs4El4xS/HavlixlDeHR3t2GB4nNjuM2xYFt67Nx7XsB93w3zttXgc34vFts3u3b2ns/fJ8D0Xc728igs79KK7YdqG4mMb19oaj+MdrLzdMBsb43H8DKl2Oihfm3ePtGW0cXy9J58M4045Bb3S7xoaw+rVWZjrCgjLn3enTJuOKHnH2hJ3wyxFllnqe4A3TzHeGLX5jxiRhfOP177v+FfUjpdeno7FQIweqfLutOe9GJUaF8PubJu309jxlTcPKmPJlhce5X74m/y4zN57gJ3ieUwV83yMUV+fb2zYcuQdX3nfcbxX3XLshmmf9SNHZuG8UtcedVrqzvWx3a69d/pixmSk8YsaJ6VsU+5VZG1d7kt1ZzPUd8MUQ5c+PT2SJJkO4Mddh99M0/Q/e0lzNoAfAODHwDkAPpQkydvSNF3flzKUgzRNcc7f/BqXnDkXP/jcqQCAVU9vweatuzFragMeue48AMDaDTtw7t/egY6OFO9756EAgHefOhNXf2wZtr66B4decBPOf+tMHDSpHn/09tm4/NzDAQA/v6cFf/3VB3D7V88YmBsUQgghhBBCCCGEELno659a3g5gMYAUwP/ayCRJmgB8D0BvS0fmAPgRgOP7WIY+c9fDGzG8uqrwcQsAFsxtQsvGcInEzKkN+PJHluKKr64ofCzrZvyYWsyeNgYvbdmFgybVo6E+u+XXd7cjkbOhEEIIIYQQQggxZEhTeZYNVfr6sey0rv+fTNO0pZf4PwcwGp0f034L4CtdP/8kgPkAliRJ8s40TW/pYzn6xOrntuOYeU37Tghg0aFNWPNCa4+fr9u0E3va9uKo2eMKP/vGjx7Hl298FG1vduB/v7G8XMUVQgghhBBCCCGEEP1EXz+WzUbnh7CVkfh3d/3/CoC3dXuUJUnyfwDWdl3/AgAD+rGsGKzm+qY71+Kuh1/CU+ta8e2/Owm1I7Iq/fMLjsCfX3AEbvjVs/jsNb/D9z4V8W8ZNizzQCnCB6GmOq5PzytBz+vrlXen5HJta1/K13mbv1d3sWtV18b9s6wfQG4fDfbwKObG8jZiTmx5A7+DvAZOxZSFvVzIl8yWI6+nmF/f+bdqj1+7KndcKZTDMsWzufD8TvYn7B2yL7zhELufYnxdyr2VvZsur6+gvWn2v7Jx1jeopIKVgFeR9t64jIcdFsbFvL2K8GvJ6wPlMnt2FrZlyun5mHeOLPUZWw4L2TIU342zzZb3cVau94I89IvfVQkUdV2vcbyxF0tXTBzDDeX48rnneZ2kHGa0eekPH8SceRYzhkp59uR9H8+bX39QTB2UI89yzG9uJnkNaL105Sgke5AWM8fknTtKnWOcZN3HEliJSqWvb6ETu/5vsRFJkkxGp6F/CuAGNvNP03QDgNsBJACO6WMZ+swRM8fi4TVb9p0QwCNPb8FhMxoLx+8+dSYe/8EFuPc/zsIVX1uBTVt77llw4WmzcPNvWspUWiGEEEIIIYQQQgjRX/T1Y1m3dvH1XuKWUvj2XuLXdP0/rY9l6DNvXTwFb7y5F9++OdvJ66EnXsYLm0LPspaNr+GjX1uBv7hgfo88jj9yEi4+fQ6++oPOXbeeWfdqIe4X/7cOcw4a00+lF0IIIYQQQgghxP6m27Os0v+JnvR1IW73BuGjeok7gdLc30v8tq7/4/vP7ieSJMHPvvB2fOQrD+Dz/7UKtTXVmDG5Hlf91Ql4bsMOLLz4J9jTthej64bjLy6Y38Pcv5u/fe/RWPTen+ITly7A1T96HHc+tAHDq6swdnQNvvepk+MF6OjI9to161ergiWx+WWSMcohVfTS2p/ztth2O3m79TOTV8pV6lLy2ErpYpY1594mnmVK3n7d3jbT3s9LlFBG77WYfb29a3M+9XF5a14ZpkfevlsOFUip44THgoXHhrdyv5juw3GNjWWQsuUkr3LQYueDN97Idx7fp82jGMlmDE9VUVOdMyE3nG3E1tZ8cd5YY6k3h/cFN9YWWl39/PNhus2bs/CmTWHcqaf2nh8QH3BO5ZdFdml59tks3GT8SVluZqVnMXmKM5G0m/2MWHrpyqdKnAjzShzzqoh278596R7P9Dz5e485O35Hj+79vHJIyPpDnsl5ev24ypsfLLGG8+Sa5aigYiZyLr+df7jMnM6WkTqCO8/mxRlsbtt4/SJnJ/TeA2xTe+8FTLltFrx3ibzWFb0dd+PNI6+b5RWldNcRI8Jjrh9PQclxPZTG3iRZyvM97zu9LZgXV+pEyOM5r1+FV5G18V/dY33C2hgJUSn09Yn6MoCD0Sm3tHSb/z+apmlvT93u16CeusUBYMqEUfjhP5/a4+e77/nT6DmXLj8Uly7PPpxNmTAKm267GADw1StOiJ0mhBBCCCGEEEIIIQYpff1Y9giAGQBOT5KkMU3TVgBIkmQRgKPQ6Vf2m8i5h3T9vzkSL4QQQgghhBBCCDEo6ZZhiqFHX/UOP+36fzSAXyVJck6SJH8E4MeU5oeRc5eg82PaU30sgxBCCCGEEEIIIYQQZaGvK8tuBPBRAEcDWIzwI1kK4M40TR+0JyVJcjiAWV1pVvSxDJVPW1vmF+N50dQ2RLPw5PUsky/VD8nGxSw2PJuLYjwS2H+APR3YwwQoXb4ftR8ox57cFvYCYg8ii62goO2pEa3RAh+X6onA17aN6P2phK9t86d8qpxt6MvxlxgusjcWRhl3Re5neXe89/qxrTrPqiqWznqYcBlt/uzbYX1AuMzT9uM2Ki++GI8rZvzG6sTzPrT5e8MhpwWVa7NTg4gZjR3nMW8wAGhpycKvhZvKYMOG3gvZ3Bymmzo1C0+YEMZxuazf2DPPZOHHH8/Cdrxed10W/tznwjiepzyPFmfC7xefMubWW7PwjBlhHA8OW69cD3yf1vcsuLfQs8zzKwqq2ZkI2QfN5sHeQNbXKNavbff0ysjk9VuKeZnZawFhtXqPKM+TiHEf2YGPZvyZVBSlvITYSuA5wfND8p63XlxeH0O+1vr1YZz3oObzvIcNdzxb/+xZZsZQWTzLGJN/bv861/cp7svK07p9TntZMlxddhx6r4cxrKeY9y7E5P1dwHvVtY/AGHnrwx7b8nMZ3bryJkLPe5hv1svD8xb1Gq4cho1c6Z5nmTchBx6eoWcZFzH2e6D3XBBiMNOnN9Q0TTsAnAngYQCJ+bcKwMWRU99H4f/pSxmEEEIIIYQQQgghhCgXfV42k6bpxiRJlgA4GcBCAMMA/B7AHWka3fuiGsD3ALSlaaqVZUIIIYQQQgghhKgo5Fk2dCmDxgzo+ih2V9e/POn/qhzXHTKMGJHJP8z6YZantJsVvTVxVUtU8dJjuTmN7Pr6+DLyvPnbrd8Zb2m3JSbv8CRwnoLSk+bxtdoQ1gHfdslbzbMswZPv5N1muhzSUEtMLgX4S8DpPCulYunljp1VvZ3SI/tS8fod422/nnencHdlek7Zn8WTa3pyZT4eOTL/9foTqwL08No+JpMspv65X9i2j53nzSM96rQ9ktCOc5Y2WKkfzw+28Vk2aXUzjNWfMt4N8Hlc5mefDdNdTIvEJ00K4/LKMIl+l11azj47C3ttU6pul+7b9s+q9rYsrt6Rf+Wc1z3LAm9sMJ7ix5NhenOk9yjz8vfUg3ZOi6Vj3Od0zjou+VlfKnmfv57WLO+DwoPzt3LlvI1qO1fsPKeMZXnFKbUOPLx2coj142KyYcsF5zWs5DLlLUfeaxWjcs57ba+Le/OI9x4QkPdFI69njaeXLaZ/lqPvelLsvDrenOWITU1V+/mxL0S5UNcVQgghhBBCCCGEEKILfSwTQgghhBBCCCGEEKKLsuq5kiT5AwBnoXNnzAkARgH45zRNv2vSLUTnJgDb0zR9vpxlEEIIIYQQQgghhNgfyLNsaFKWj2VJkkwHcB2AZfxjACmAMb2cciWAtwBYD+DgcpShoml7M9vW1+jFq4LjuKeYu0t2zlb2ZPh2K+CYr4lNx+WyW0l73gdsK8N5jBoVP8cS85wCQp+yN97IwjXVoVdJWbx1eAt2zxDG22aaG8N6CnhxeWdub1tsLw8qY5VtUMqzunZcNAuvShivLXg79mKK79k5cR/hONvHvbjYjuL22nyezcMbh3xtzx5j9mzsN1pawmMuP/uuAOHYs/NUrF94tljedvKWWJzNP7btPADUxLaJ97adt43IFWYnyTVrei+kLTz7oFnDx+eey8KrVoVxDzxQCG6iMjf/xV+E6Xjb+UMOCeM8L5TIw8cbC/3C7bdnYTsYpk7NwtZwLza3et6TFoqz982+o0Gf6eFnU9NrMiDsTnZ8xYrFzWmx3ZOxXYvHL1OMZ9n48VnY+glxt2bfIe/dobraeGeSZ5w7mIke/puehxnl2VFbF0/H2Epmb0Inf9dfL/a+APiGTrFr2Ynce6Hi+/G8zrjjOZN1u6nHmlLmB++FNm87Wfg+exgzxd/P+TQ7xb/2Whb2/LS4urxnoDcdx8pk88jrrwqE98NV7M0xtruX4llmfxcYOzYLO6+iQT3aLljT7jzD+Ua9Fz1uUH4xBcLnhn2GMJ4pXakPS/49xMufy+UaxIZjyPtdr/u0vXvzFVWIwUafvwQkSXIogIfR+aEsoX8eX+tKMy1Jkrf0tQxCCCGEEEIIIYQQQpSDPn0sS5JkGICbAYxH58evnwL4AwD72gflNgDdn+b/sC9lEEIIIYQQQgghhBCiXPRV/PBeAIeiU255ZZqmf9MdkSTxxWVpmr6RJMmDAN4GYEkfy3DAYJdes1SgHLKWckhhilEZ5s2H781bHu7VgY3j5cAcVxbZpUcxDcVpvZthiqnkWJ5eHt629g7lKnKePOy1du/Owp5KlWU+QGlLxu21+dhKmPjYU/B5MkzO38YVs3V7OfFkpF792K7lycFi+RezU3veMsbSAQB2Rjqel0kxcbGO7VWklU+tWFEItj7zTBC1jsJHebrdSZOysJWPFCFn60/ySuV6DMTYw8Ae83166eob4teuNvKvMhiceFmMHFn8Od587HVPLx0f83wM+PNUKdXj9oOcY6+qxJchvrbb9205PC1eTEPmVbJHqem8+cd7AMfeLZx3ibLIsot41+K2yt1/euRfE43yTmMps/fO4VkulFJfnjWJh00Xu7dy/C7gqQA92wbvNbXkKTdv/2fppad1LdUypVS8CspbDsdSIE8WaRo/ZyiQpvIsG6r09U32nK7/XwTwd0Weu7rr/7l9LIMQQgghhBBCCCGEEGWhrx/LFqFzVdkv0jQtdh3G1q7/487fQgghhBBCCCGEEELsR/q62Llbj7HOTdU73Wud+3sfrMHPsKpsea6RtHQ4S7sZuzSaV9kGy8pdHVS4m4+35DkveZVDeVf1ezKrUuH87RL8ssiI3KX7ObVheZdNF6Mhy7teuBxlzJldOcgrubVlsRKIWPUUI1+I7bpqr+3JlFiVY/s/S0dLlVWUm2LUQV4c1wPXgb2vvNLsvN3Yo4dEpxR9R49d1HKOIZZ02K3GOI52uASAFtqaaq3JchEfHH98FrY72nHH83bjzUm/735p4Tq3Mrdy7DTGEj6nj1TbvrqneBm7J4PKm0epUpG8Y9vLP+88u6+4/Yon0SylkJ4Wb19puylGo5ZXZ+7l72E9DJgSZJjurrGDlHKoW/OeV+oc4J1jd9KNkXf8FiPD9LpPjHLNYbnxxkPMU8PKMLmSva27++MByeWyFV7m65XDFkiIwURfu/AuAGMAlPLJYnLX/9v6WAYhhBBCCCGEEEKI/Yo8y4YufV0281LX/4eXcO5J6JRwPt/HMgghhBBCCCGEEEIIURb6+rHsHgAJgNOTJBmd96QkSd4G4Miuw9/0sQxCCCGEEEIIIYQQQpSFvsowbwLwAQD1AL4K4E/2dUKSJDMAXNN1mAK4ro9lqHySJBN1G3G359fF3ih794bfPfm8cFtsg+enQvSH5tzzUGG/Is9zKq8dmC0/S/aDuB6maHXOBUKPtyjsW2A9DErxAyvGM8XzCIldO2+6fcVF+lYN2oJktbXxeuQ+7vnHeb5VbCdRjMddKR4/nl9a3vPsOWyxVAn+Pp5Xmq1/HucjR4ZxXA9569FSyhzgpcs9AdlM+MZtHp7xHPmN4ZlnsnBLS5Bsz6ZNhfDTYQ5YQ+ElJq5xzpzsYMGCLNzUFCYsseNVtdNYd+aKsnhD5sVrG9tBY23qzcFOHwnqo7e00fyzYKljwcu+3BTTXUrpWr41Z9iXqrx2KweUZ+5+7JXDeupxWs9frxwGrl5+ngkV470/RF+8wuPB8iwrF+X2HCzG9y9Pfr3lmfe8UsZoqe1bDu/k3BfwvEVtHI/ZvAZsxdxMuectb47J6X1YTBt2n5Yk+c8RYjDRpxGYpundSZLcCeBUAJckSVIP4ONpmlofYSRJMgbAewH8A4Dx6PxQdlOapk/2pQxCCCGEEEIIIYQQ+xt5lg1dyvHn3D8G8AI65ZjnAXgmSZJnKf6yJElWAXgFwFXo/FAGAM8AuLwM1xdCCCGEEEIIIYQQoiz0eW1nmqavJEnyBwB+AGBZ148PQefKMQA4tOt/XoB5P4Bz0zR9ra/XHxJUVRWW9bYhlKSxaq9ftmL2JDQkgbPShnJs9ewpV2KqpXIt3+ZVyMGKaiOTrHKkDVw/Liylsg3V2JiF824Fn1P6WBR5l59bKG1be9hHaui8IAtTRk+GmRdP5cZtXaJ6yk2Xd8v1UrfT9mSNXv6DBU/ekVdiXQ68OcCb6wLFgq//ysKenM/mwfpT29g8dzz+eCG46bXw0bkmEgaAEyg8g+cbAFi6NAvPmpWFi5Fil6IjMvnllVt7c25oN2DS5ZXIeu3mSeA88k4yJcrocqpmcv0c8J/tpaqB+lv2yfScZ6lflGopUGpc3nP4IeLJH0t9TpeC1x+9l1GvE3oPY7peWeb+Yuaw/UipckcvrhwyzFLrPDa1lvq+09/kLkfe93F7bCWOjBdXglzcPivd30m851cJjeO9S8eylwxTVCplMQpJ03QjgLcAeDeAuwG8ic6PY/xvL4AHAVwE4MQ0TV8ux7WFEEIIIYQQQgghhCgXZfvWn6ZpCuBHAH6UJEktgHnolFxWA9gK4Jk0TV+15yVJMj1N03XlKocQQgghhBBCCCFEfyPPsqFLvyyMTdN0D4BVXpokSaYA+CQ6d9As8zY+QgghhBBCCCGEEEIUz35XkSdJMgnA3wH4MwA53X4OHOxXabawMXZaATaONeNsL1HntLjn81JdHfpKsfQ+r6eSZ3Nh88hrD+NZeNSgLQtbe4zG7H6COl+9PkzIHj+lmjC0tMTjOP/6+nj+XoVwxdpKLuXPHEV4NbBPmb0U95jgtC2tQbrG5rpCOLcPnMFaMTF5q8BWnVetea+V13eEw/ZapfqxjR4dv3a54XYbPjyu7vdscOwcEKtzzyvDS+vadDhznee3FzXq8HyHPF+srVvDuGeeKQTXk0+Z9SV7lMKLTNxcPjj++DByxowszJ3JVj57pNl5qpQ50vErKnUOcM9j77fXHKvUnP6MPerAmyBKMUY05eBD6ynGcdY/sRTPMmurk/f53t+eRGWxDSvRC8jD8zWNYs9h38K8nnpeunJ4l9o+7uE9iGKTsK0DOt6zJf+lo5To6eZ6JjoPlLzeunnfEezPvfeRUsZeqZ5lxdxbLM57THBcKd7IfSlH8HuCN768BsjbGMVMaJ4hWDkoQ56lVIEQlULJXTpJkmEAZgEYB+B1AE+ladrmpB8P4OMAPghgJDLD/zR2jhBCCCGEEEIIIYQQ+5OiP5Z1ySf/CcB5AHjtwp4kSX4A4ONpmr5C6asB/DU6V5M1INwVcwWAz5RQbiGEEEIIIYQQQogBRZ5lQ5OiPpYlSXI4gDsBTEL40QvoXC12KYDjkiQ5JU3TV5IkmQHghwCO6c6i6//7AXwmTdM7Siz30OKNN4BNmwAAdU1NQVT7yIZcWXgyTJZmVI8NJUY1tLR4155w+TnLkfaY/Pl6PDmw2gUIVytvMUvrvW2mx45Fr1i5HSsFWHbZ44LmArycvoYL8uSTYR6zZ/dekGJYsSJajqAiTdsHafnGbSWUIvOx5N0K3uRRQ0UJexaA9ZmktcrpCFWc57Rp8XI41GFXIbynti6I85QfnsQorzyCt4IvVTrB48aTW9s8uPx5paL9AUtXbJ2+8UYWLkaxxPXgtVNe5ZxHfT3Jsk097t6dhRtG53xk2sbgPt811xd46KEsfOutQdSmNZngchX9fLW53GIKzzNxtc3N2YGVVnElc7mmTg3TbdiQhe3kzJVsOy9fjweHJ0XtDw3HXXdlYds2LIGz831EAmelWizFa0P8Gduj/mPzcw+dUo/ZNRc11SxNzScttGON5zdPnctKPO99xMZxnp7DAFPMLyScto4u4Mnt8srEOsnaJnfP9SwXbCVwg3h9JO8DIK+GzzYUH9s4foDZcsWko6YOdrVn9WjfFac0o2g4PyCc14tRmAbwHGDGJL8j2yr2qi6mCufnJhBWq82jlF/Q7bt6XvLaVXj5v/JKeMxTMGMfE7ZOGH4t9srovhN4z6FyeGrExrKXR7nwKiHWiM6zuLoxfilb/FLltEIMFnIbM3TJLm8A4D22EgCHAfhq1wq036DzQ1nS9e8+AKelabpMH8qEEEIIIYQQQgghxGCjmD/hLgdwFDo9xvYC+CqAnwF4GZ0rzc4H8CF0foA7H8AEAAd1nfsYgCvSNL2zPMUWQgghhBBCCCGEEKL8FPOx7FwKvzdN0x/Q8bMA/i9Jkt8B+B6AYQDeis4Pa1ej80OZlLxCCCGEEEIIIYQYEqSpPMuGKsV8LFvY9f/vzYeyAmmaXpckyRXIVqD9Mk3TD/exjEOfHTuAlSs7w8a3qmFx5kbT2Bj3L/Mscnjwvv56mK6xMfN3slY67OuQN3+yqQIQ+hbYuDFjsrD1LLD2Xd1Mae7oPQIANhmjC74hzwiK9fu//30Y9453xM/LC/sQ2YokT6IeXmRLl2Zh9vKyvjpcWZ4XiueRwHVly+h5MPD1bB3zvc2alYWt8QR7KpXoWcYdrbaxLppsXKPpP3w/E0IfB/bw4y5i+3Fe2PsKCL2AeJzYdJ4lFOdhx2+pVdlXNm8Oj/l+PAvA0aPDY26anY4fjOep5NlkcbfjOOvZ9OqrWXiS6SPRsfHss2E6Pl61Koy77rpCcI0xemFvsicovCjMIfApa7YVOWNGFva8Srw5kjvXPOuKRnhmOhzn+cH0g2fZEy0thfAUCgNA4/PPZwennBKeyN5thx1WCFbZBxTVa0+/pcZCeFtr6HzR2Dguy3PTxp4F76KmPquT4cNDrySeTtk3DEDQvtXk5eg9Cri/myx63Bt7D/Ez3PoVxfwZgagtHIBwjHp4XSa4V0qY14JoX3F8nNcLq8P4alZ5z2l+aeMx5JlC2TxiL1QWbuzud9JueGK0z3DuGPPnx6/teJZxFmaI4iiTZR6857T3HKqC845JZfYs4+w06N1brBnts8zz5CrlWW+vy97GHnn92Oz7CHef554L49jTiucwO665y9jX5Vg6oKdHWhTPZJYb0cZxZXLYpuNxU6pnGcVVFfOs5HJZE7G8fodUsT2egUF24TOqu5gdztASYjCT27MMwFR0fgC7ex/p/pfCXy62QEIIIYQQQgghhBBCDBTFfCzrXta0yU0F8LoCu2mXEEIIIYQQQgghhBCDlmL0DsPQubJsX4rcQnyapnkXvx7YbN0K3BnZ+4CWzk4nSSYAdGB6IWyXYfOKYV4abWUUvIrXLg/nZdlWvhlbOm6XXnsriz1l4aJpL2cHvNz3vvvimdhC8bG9ca4UvlGWDlqcJc+8Db1dxr+F1oBboU3NQw8VwlY8OJ3icOyxWfgtbwkTLliQhY88Mozj9eje0m6uq5deCuNYV2fr0dMnrliRhbnv2vXz3IYsPQWMPCtc2h1AMre6eWE7zZgxMTuw7cv3Y9q3LrLOv7758OCYV7B7Vbx1a3gcW/FvpUhcPTaOFXZ2/OaVBJWDsM+Hf4NheZaVVXEZ+V4A4LXXsvCGDVnYNiF3XTv/8HHe+ccO87DLh/c2tz7S/+++O8yEjtvuuiuI+i2Fnw7PwjoKsxJpsUnXzNLIOXPCSO7HnnaFsbr4vJ08r4S7GGOPMkg0uR53mLjpNE9ZiSZOPDEL8zxoJSgkPbN9cMuWrM/YKZLHw6LZNBjMQG9DNvdZmTBXaw8plZkvYnjPaU+FzxJoLw8+j8c14Kt/OY7v23aDUaN6L5O99qhRWVvYLs5ycStn5WvbOJ4feA7zuqrtB9P5RFvJfMyZ2orLO75swfiY87Byca5kr4Lsg4fHCuXf0TwlSLaeXhfsGOoo6u/6vefBeDJM71p72rNx6PXj7dvjcfa8WLN548J2EftekAdPKl3MeTFlsE3H95ZXim3VglxGOw+WMk+VjKcP9dLxS4d9hvSD/UBATOsKxBsgrzwTyC1xH8rIs2zoUvwTSAghhBBCCCGEEEKIIYo+lgkhhBBCCCGEEEII0UUp6z5nJUlykhffHUiS5EQAyb4yTNP0nhLKkZtj/uQn/Zl9nxn5Uiuw6ZbOA7t2nGUhy5YFUVWf/GQhPLc+PK+2Nlvizqo6uysM73xlFSix1flAuIzaWzrOK3qtVJTVgycs2BVGfuXbWXjy5Cy82tjgcSZ2zTbrLLztiVheYNfQciWUuEy6PRIGAFZj2L1Oa6iSJ95xRyHsfuE+6KDw2JNdxbY5e+qpMB3v5Mc7xwFh21htyTPPZGFufLtk3dMb5K1zZ+1zkIXNz9vCKlKu2hlxGaaHJ03ydoRjyYitOlbfWWnDQO2GaSUu48dn4ZmN28LIaqrj1WH/OfHEE7IoGvbebmJ2+sy7CS4rIryN43p0Mx43rA81cvFdJL181GTBu1xamfZ0CrMMs5ll2QCwfHkW5goH/O3FYhJHq5flXSHtnMKd0nZQr2PnpQzyFL7yWhPXSuFtpgPN+9GPsmKwxH3SpDCToL4mBlGcpe27LMlaNCOuY6yhKhg9OpSjc/P2UAO1ZgOgiuq/tjZ8iuSVUHpOB95ufYxVAHHz8qMYiO9+53VBT6LmSTl77CSak1JkN7Yem+dl72s11WbLOL5ZvhnbmbgP2gt4FRR7gbMyTLZImDAhjKNJc/OI6UHUBspm6tQsbquR0/M48SSUebFyfb5t8yqdG94g1Eqe2arElp+bw+4WHdvp2etXdpznVdd759jHRgxPPcjjy073eTeT9O6F69jmwa/79tosi+VfE6yryPRpdHHbAFwwO3nEpIt2HHLl2Rv1Js3IM9BKht2dXHnM2gqKzTHe70NOWWI7pmo3TFGplPIWennXP4+06/+7c+SXlliO3Cz+l/P6M/s+88Jl1w50EYQQQgghhBBCCFEE8iwbupTykWqfK8WQfSzLk1YIIYQQQgghhBBCiEFBMR/L1iH7CCaEEEIIIYQQQgghxJAj98eyNE1n9GM5Dmz2dgBtnSLvl03UxLvvzg6sRwV5luHHPw6ipp96ahZemJkI7d0b+p1s3ZqF7XbXb7yRha33j93+uhvr+8E7olufiBOans4Orr87jLzppixM99KjIDFTE3txC3sJeD4Cjs9ObItx+/PmE08shOvvvTeIY2sL4/gFdnFjF5x55F8GALW87td6GbFxlb2XmF/XihVhusceKwTbjRlHNfsgGEM8bql6vpY1tSLjrVK2iAcQ+KnsQl0Q1U4FabCeC3zfbO4HhJ2Zyl9nOnJ1U3i9GJ4XB3dBaxc1d1rWE2prw2t59hJsNcfeZv0Bt5v1a+Eh2lY/LoirYWMZNoQBMIXDi7Mb2LIlzIOtdTw/M1s/XC6uf+sHw12mx3TwQDY2cPvtWRnNGGWfsmcRwj5lU0zcXArP4w70rneFCXnc2z6+e3cW3rs3jItpBuyNjh4dj3MrKEIZfMiKoZHCxqYmmHdtbfDTspbmwenXXx8mpHlw3vL/F0TxdGotbILqp47XhvA5HbOXtHG2+pubsyfHazQ9W3tJngZt/jFPJSAsv+e3xF2Q3yvs9Wy3sPUVS8fHfC0g7PJcLu7SQOi3xP5HNi6v7Z+HrR9+9xo+PHwGNjaG8103Vd5E5VWQ9wzksPWHnT8fUWgCte3LdcdxxXhylYJnn1gq7FNm+w/3M2ufy9cuxV/M5uE1fV5KnYJtu/Gx1752XOYplzfW9lWuGOx71tPaLxt7tbXhHFxHfbyjOoyr4oJyQfJ6gwHhBOr5l1H+VcU0oveg4Hw8bzaqg207wzrgqcO+A3Zfrq0tZ1mFGGTs3zdWIYQQQgghhBBCiCGAPMuGLiUu4xBCCCGEEEIIIYQQYuihlWURVt+6Go/f+jiqhlXh4CUHY8klS7D2vrV4+MaHsX39dpzzpXMwYU64ffbOV3bih3/+QxzznmNw9DlH57/YyFpg7EEAgDazLngLrWHf88wzQdw0Pvj3fw/zZG3DggWF4PxTzw2SsQrq1VfDLFjS5G31zCt1p00L07H864xTzRrcj16dhY08sZUkL42eRo2XDNs4kmG2tYffhWuadhTCO9BQCDe84x1BOl5u7W7L7HH22YVgvdGvNpKGbBdCeCUz/7GiwaSb+cAD2YHV13AD2PX//CcQ7i9my/g2klcaESwaKc5ZOB52EiuP9eSyOdn8WiZPtEqz4Lbt8nNPosZwu5nBUBPII+KSTE/CFJMEAgjaY7qtq/VZiyxYMDeMsrre/YQdhqy6rdm5LYxk6SVLzoFwcqI5bNnpfxYk467LpwChHMA2Pc9hnkLBbZvnnsvCt96alcMka6HwRhPH0sujTNwiPrj44ixM0m4AYSXbjubp4zguJsUAwjHqSdW9OK5ITybWDyygctSa+mFZrJ2Dubfy3FdlpOrTqO3rjMy8sTFrResiEBxT21QbCRB6TwYgv3qH46z8yJneguvZa8ckU3YM8XnWqoHx1EHcfawMraE+ezbX1obPer4fTwrG0kvbHb24UmR19j750WNljLHhO23a9CAd96WG5vAC21qzOmlsDJ9RVWjNDvjmrJaQX+6mTg3jSKL5UviaGlh9WHkrE2vrUrHF98ZGXljCZ/sx58/pgPiz3sZx/7T5e44jpfRBe86ECb0m64F9BrLMlsvIklUgbHuvfb04rw3t3Mpwe/BYs+9IXjs1NcXn5HGcmAvpaYG9Z17OzmptS9zfUXiSt4PDk4cSbbXZbx/rzUsOv4dZGWb3rUqGKSoVrSzrhb1v7sXDNz6Md33xXTjva+fh6buexhs738DYg8fitL87DZOPmNzrefd/534ctOig/VxaIYQQQgghhBBCCFEutLKsF3a37kZdYx1qR9di27rOvy3X1NVgRP2I6DktK1rQ0NyA6hGqUiGEEEIIIYQQ4kBAnmVDE60s64W0IwUS4JEfPYKf/OVPcPCSg5FUJdH0b+55E6t+sgrHXHjMfiylEEIIIYQQQgghhCg3WgblsPCChTjs9MNw15V34clfPYnD/vCwXtM9fMPDOPJdR2L4SMeMw6NxLLBsGQBgGhuFAYEhwCZPx25NEtgLiLYAbzCfvS+9NNvm3noYsHWV9Tgx9mkFrO8BW2b10OGzycDChUFUIxtdLF+ehSdNCvNYvDgLG3+AjZuyb8HWz6C6mrT35FswY0a4TXtzYLNT4rflU0+NRp1AlWw2ag+8dFopbNO1Ur0uuv76MJJ9EU4+OYzjvkbhbeRDZrGOCFVkrFFnzarY1+Sii7KwqY91WzIPlWbHE8fC/gy//33WNvYvO2zBMHv2lCBu+imnZAePPBK/GHtTOcY6u0NLusDHwfZB9vpgrxI7BRy1fGkh/LtVYR/k+lm9MogKxuzSpdhvWB8Qrq7W5nB8HX7hhdmB7T8R7w87jXh2G+PHZ+E5c8I4stkJhoaxnELVlpezg5tvDyM/+9lC8H5q0EfDVKAcMN3EzaCw9Syr4f5Jvm096srzQuFjW3kxfxJny3jXWMrxO4kaXJUJ9m/p4d1CdTfN+I3tiIQBgC1WeD62fzyuve66QrjJPCwXfeQjhXD9pW8N4rZvpwMaOFXmWdZA9d9q/My8OYaPuemttx8X2T7reZ6yflqxPDyPU9tFvK7LY5sts+r2GO/DluwCNabuuLYaRmdxHbVxf0nbf6w3EGN9WvNgrSfrarPrWX9V7iPcnradQt/FuL9Sj7ERMxvasCFMZ32OGKpz20di04O1c+J787zl8jJ6dN/zsHjl53Fi+7hnY8XVz35a1t+NPcD4uQb0fC1mYj5Wtg/yI8Xzvppu+ju/F3Pb2/cAbtNg3kP46wvXj32XY9st7zFn/dJifo12DHmPyjFjsnCPvhWbhD2DyWKM+cqxXIlv1vrz8rFTrvb6ib1mB4Tt/eyzYVx3vXrPDyEGM/pYtg9qR9di1kmzsHnN5mial59+GWvvX4sHr30Qba+3IUkSDBs+DPOXz4+eI4QQQgghhBBCiMolTSXDHKroY1mEnVt2onVDKxqnNuLlp19G49TGaNqzPn9WIbzyhpUYPnK4PpQJIYQQQgghhBBCVCD6WBahalgVfv25XyMZlmDM5DE47pLj8PwDz+P+b92P3a/uxu3/eDvGzxyPMz5zRt8vNmECcOaZnWH7WZrWujb/6EfxPOy6b14Ty5pJs3a5io6XLz83iGPljZV3cBwX2W4rfcJSWs7dsiWM5DJbnRhndPbZ0Qts3JnJKWHKyCujt5hL82pou80xY9VOJcF6L7u2+z3vKQTn3nhjEMWSoC2RMGAG8X33hZEs3bJ1HNmr3ROb9hB3sDTDbid/7LG9Xntjayh/IZVwj/rmvlVTHZcG2CX/DHezUaPCuGnHZrLMqsmmI3CmXBA7GIJl6zXRKG/LeN4m3kpQ1rZkLcJ1BYRNaKVVOXcfLzvedux2rL02K1vWf9z554eRnJgGsJ3qWE4SyL4NrNgGwmE5s/3p7OA+U8jHHsvC3/teELWStDeUQyC7BICJFJ5r4rjIdaedFkZ2yfMBhPpQO9FypdiGL4dMkjuvl0deiaanoSkDVjZXdeKJhXC9kaDMe+ihQtjKMHdRuIXCRgQYSOMPv+WWIC5o+4+b+uE2rY5LXTdvz+aVl14Ks2DZtn3OcTY8Dq3U21MOcdPYODufdmMtHTj/UtVH3K3rvExsX4r8qd+Tmtlzgt5k8895c9wn66rbwsid2c1ZGenIkdl57E5hZVCeDJZvx9pJNPABP89tIx5EO70bv41d7Vn/tNXD8jV+vjfU9zB1iF66FOyzgOunGJktw+W3fZ/r2Cu/N9Vx09s8+Nr2VWvy5HieMWz+Ve3UJ4uYj3mO4TytNNS+NjHcr1nW7L3DWKkl179VGXIcz5F2HuQ+Yt9F+dhKZAO8uvOegdz43jO8VLjQdp7icc/vFiZdC71jWqklv3/aeu1GMkxRqehjWYS6sXW44OoLgp8dcvwhOOT4Q9zzFv/RYjdeCCGEEEIIIYQQQgxe9LFMCCGEEEIIIYQQokjkWTZ0KXF7v6HN6Emje6wqE0IIIYQQQgghhBBDH60sGwyMqgPmzOkMn3pqGMcGQNakgmEDHiAQ5reT/r3aGhvdeWchWGP2QD9p6YLo5aqrM48Kuw10AJW5bdrMIKqG/bTsfZOXy67m8LwYdmdztgewVjr89d+zEciL53+yY2f2TbrBGidddlkhWGP28j7h+usL4S0vvlgIrzD5s8MSeygBwKKvfCUro/UsixjVWNeVajai6O6n3XC/O/nkMI7ad2115tTUaiyhPF+KvO3B/iGeX8Wrr4ZxZFeEhQsXBXE17CdEddDWODFIx/mz9wYQ2m7Z++R+x01h/R7Y58H6RPB927qy28vvL6zXB9+nHaN8r6+/Hv7tprEx85ObMSMLrzYDgK9nrbx4SjvrdOMTtIIyuvXWLGyNnx55pBBcv2pVEPU7Cm+k8Iwwh8Cn7AS77/zy5Vn49NPDODbe4XFoO5M3iELDojDO8ylj+NpeHp5nWZ6f74O83kI94Do2HbSBOknDAw8EcZtoADfSz01PwloKW0e3WvIwa7AdlJ+BF16Yhc2fp3lOe/31MAueO2zXjWF9BfN6ltnxy2ljz1Sbv/cstkSf4fZGYwWxF2fM89YdJzy+7A2wkaR9xhLBO4KZRwJMH+H+ye9d9ra4Sux0wMO3h+UgZ8Tmmdb0i+vLjKHXXkMUtjdrYFfANWEnnEL32dQUOKn5/nIRZs4Ij9etj88dXv4dOb3U8k6lnuWjZxnHVc72cQAwpbn4+qlr3Rj+gPsBv/tYjPFoY3P2bObXTzvHePcdG762j/OvQF5+dpplH1jPy9ibw1wPWD7RMw/kOM931Lu5UmGTN9tBedyTTxn/7gKE9fXKK2EW3N7Wm7a7etrsg1OICkEry4QQQgghhBBCCCGE6EIry4QQQgghhBBCCCGKRJ5lQ5cD4mPZL//ulwNdBJfxo5vQNqNTqFNjlz/zelYjteTl4VUf/Wh4Hsktq3nJrV36y+ucrTSA19Ua/dfbzz+/EGaZpKcUZbUCACy66KJC+Nf31QVxzbS0e9N92c/tjsfeVt6eOigmC7H5cx6lSAEsm18JF3NOWrYsfnEqWNONNxbCzVZKS7xsjnkReJ2RaAbLsmfNKgSrjzwyTMcVe9hhYRyX38gwdzVNL4TX3J393N6mt6V4OeD87bX4mOUiQCgFabCSHcJT77CUwlY/7+TNMgH7sPW25Oa6tH3cyiEHClYi2HvjKcYqFvjeeFq0eRxzTBZmtR0AzKwlqckXrwkj/+d/CsGOu+7KyhGmCsbU70wcC1mmUNiI4rGYZQ52rqaxBzv2eL72KpIpRmoZmyRLlWuWGFeyvDIvrMe1HY3nQfOMbb799kL4raTZtlMWP9psy7Aa6fBrTB8k2d66s/8yK2JrmIznACtv4kezJ8PkrsTzDRDKv+z8zHOYjeM8PaklY5/TjC0/3xtL/Q46aEqQrpbKZctY074rO8grSbZ4/d/T5sWwhfTyi5TLmwJsF/dUqjUx+RdLhIHwgWLKNJIOjZtH+BxaTw3sPIxr7A3Y99Y8mHfW6UEejbmz4fe+cWjNIkwnr59RF4sK6tw2L08/bBNhn99cfJuHN39G31ttH3T6JOff3hSOvU3OM5xxug8mT87C3H9sF+H7njQpjGO7Cvu6FqtjT2ppxwn/bmPL3zCbCs31aG+AT3Te93tUZE7bArcf8Lu7M8c8ujrLw87H/OzZvDmM41u1xe2+NSvjF6JSOCA+lr24+sV9JxpA3v/+Dwx0EYQQQgghhBBCCCEE5FkmhBBCCCGEEEIIIUSBA2Jl2WDn9dczmcV6s2MPyxGnHh0ufw5UY85umMHy3sceC9OxvuOOO3oWrIuXzXZHE2n3uDraybKOJUWG2e/84+B482vZsnUr0Vy5svc87OphVgrYlfq8ktkuJ47tUmiXZfOGUNXVYdvklWWyuvWll8K411/PdreaMWNJELf0o9lxHRVkMe1waS+wySzfrjvttOxg4cLwPFor3TE726+vivWBQKiBM9qAHc3Zeby5IBBX8dpNtqysiOGl8DXObGV3uWS469rl4byTq5VJsizziCMySekksxdeDQn36meHu3hxn7T5jx2bhbkOWE4AhGMj70ZvwD52b+pHbBlZ8mV3KuV+Ye+F6467nd04d9Lvf50d2G2YaJ7a8qMfBVEsZubdDL2H4tPm+CgK8+idduyxYcIPfagQ3HH2e4Mobxe7aqqTubM74glL3PEykNfk3AzQ1g+n9XZS9PLvb3Y0ZVYB9TPM7sqnvr0QrGrdFsbR7sX1NM/WmwdUB+14afsIP9qsgH46TZpPk92AbV5Paunt7sbSIX5FsOOQn6tW/jV1aha2UnWWO/G1PCmnfcbykLX9h+N4HrFzJPcnW/7mZpLHUbmq2p2t2TyNo40rxaTG2a6yo3FcEMX1yvVh3yV4J2Zrh+G8luEoeokKrD0uDxvq/mezXaCt1JLnbhtX00pCdi6Y3U6P69HO42efjaKxLyTeQyQvPBBNJ6+hB9b0Jkdma+7tuIVZhbUhex+s2WJ2q+T6We94FuT1X7CdJKec2D6nYztI2n7Au3Pbd8DYRpy2iPzrii0uV6u9Nssw2crCdjOeP/nd0B7b3Ui3b8/Gzdix2fhtbg7HMs9TdgrYGZSlJohrijzCi3mObp6a7fa+YUMYx/ncfHMW7vn7Sha2liA8nPndFuifzT0HI/IsG7poZZkQQgghhBBCCCGEEF3oY5kQQgghhBBCCCGEEF3oY5kQQgghhBBCCCGEEF0cEJ5ly445ZqCL4LK3Y2RBm2819Kxrt3Gnn56FH3wy9Eo67OSzCuEGFvd7e7Nb8ygyCOgwfma77r23EK5jvwRrPkaeLw1b1gZRLTuNdwzBXgVcfKsH5/rp4QFAPgiejtzz3CkHfC/WW8s2B8P3vWjZsuxgjXG+ISOZZuvTwUY1znbR7DcwidoMQGAi0VZdF0RtoS7j+SdwF2H/CMD3M8jrycD52+2pOX9vt3S73TgfBx4MZkt6vkCVGUPjuEPZzvV4ayE4k9qm+fxFQTJuNvb9AELvHluvo0djQPC8A+0YZXsV64XC9c8eJzNX/zxMeO21Wfiuu4KojTT4njDl5OmUu6BxikErheeaOG6paWygeMklYUKarO0UyXOAP/9kf9saMyYch2wz2G7qmL3yrFdVDDtOuG1snDd/8tjLOwf3B47VUNAnG41f1HSed9lMZ+nSIN0UuoHmn/0siONubfvWPKqg/6FNu+1zIuaxCYR1bMfeqFFZmH18rK0Rx7FHGRD681gvIL4e92PPNs+z22NfMiB8JeH8N28O03Gb2mcqe+twXS1dGvoChX08jENtNt6s11nbvMy5sCanj2nb/HCOZz+kDavi53k+lPxssM/UyZPjcW3t2bzC+TfYB6JTLqbHWOYLcp62s9qB2Vfsw7IceBMVdyCvoWwHpQFQw3XgmXiad7kdyN7/vVpkn90djdODOJ5jeKqzWD/hmGeZ7Wd8a3Ye4WptwI5CeEpjWN/sP2i7C1erjbPX68bOIzxXeN3R/i7G8PsnjzsgvE9bP54XGTd9qd6fzz2Xha3fGJeZ65E9yuz1bJ3yM8VOHd3d9fHHcxS0gpFn2dDlgPhYdp/95X+QccEjLwx0EYQQQgghhBBCCCEEJMMUQgghhBBCCCGEEKLAAbGyrJx89ne/w03PPYfqqip8/Q/+AF9YtQq3sB6yBJIkW97qLau12ygzdjkxy3KOYimezcQu9WZora4VF9TxMnBeuTdpUpjw2GMLwW2NoexyPakJPWkGLxG2S5f52NadtxN2bKlszt2zi4LztDITxpY/aKp5lIndB57XTdv11VxBjn5nONerKUgHSVD2mO7iKQ84G64Du610XmmYB+dv+wiXy8Z53Z+XoLOksSav3nRfcGFoDbsdotxnhg8P4/jY3lt/9OU82CqwsthYWjs2eIwGypWlZqXwmvhE0nzbbYWwlcCto/A2CreadI2IM5EPFi7MwkceGaTraMpSthsVtSddYcaMycJWYutJIUuRmdsu7s2zeaUg/S219GAZiy0H10kP9dS0xizMndUOLpJlVhmZdvVjjxXCoYAP2EYX5LHs1bHtIzEZlD2Pi+/N1XaO8cZvjFL7YN5ngdeXvDooh+S/HNhr8Xj23nE8dR9j25DbPrf8yyT07AzYAqCu2vTy1ogfhr2ZcsswLaxHLxV+YfAmEm8AlAOTn5Xe56FccrFYPl7+timCrpZTru89o7x3IXIt6THf5LUbsNeOdV37mPDm6v2JndP590UuF8v4bTr77sx5xuxOSnmWCDEY0MeyIlixeTN+8vzzeOS88/DjtWtx/h134DOD3A9NCCGEEEIIIYQQ/YM8y4YmkmEWwQObN+PM6dNRXVWF0w86CC/v3o3lBx880MUSQgghhBBCCCGEEGVCH8uKZETXOtIRw4Zh6qhRmGrXqQohhBBCCCGEEEKIikUyzCJYPGECPvfIIwCAn7/wAjbu2oVXdu/GBBZyl8Cbb2aePNZyirXfxVguBFv33n1fFl6xIkx4/fWFYMeLLwZRXJTVJv8FZKw0/dprs4hTTw0TUt2MW7AgiKquzrZnt/p3rgf2Mnr11TAdb1fs6fCtPUbM/60/fEv4Wlu3hnGxbe2B0KdpxozMN2zmnDlhQjbXstuS8x7gZq/nNmT1v+LO7Oenn354kG7Vqixs24kv98wz8WJx/VsfB1vkUuA6tv3gjTeyMHurAGF7WM8s9gHk/BctMPuqe8Zt3Kj2Rvk8SrdlfZhsw4YsvN7EMdYnIq+/Tbmxt8nlsOOO+/8rr4Rx7LsT5Gk7kGOotYvCOxDCXZk9y8aZdDTFwFZpMGTZGIsnJgBsY8XjCQiLz1kA4a16/nRV7ZlPUE2t8Rykv4lZiUDMZmcg/cX6A743O4f5Y4r/npjNl1NsA2zaVAi2kUcZED47nzD5r6WwN4143oqc1qbj4/Hjs7D16uHbscMrNo972Hk2di0g7qtmyeu7ZfPgMcXnVRkn1trarK15PAFwtTU1rTQ5mXEfo6plbXDMHrDNzeEMFHvvs23NbUPdEUB43zY/bivuF3tqw7+l8zix81S0IEA4eXOht28P03Ghje8fewLm5qmnwuNyeKLxA6yYSZLT2oaLGfrZRnSuPS54twsbpyOyJmJc8NQD6mfYJ1/v2C7O703WjzbIn6qffcN6sKn39yIAaEf2HmyHpOfpzFXO1Wp/3+JuZ/u4Z1nJZeF0eb3NbBltFynHs5nztL+HxF5TX3opTMe/U9n3Zc9vsntKKIdtoBADwRB7Je5fTpw8GUe0tOCM227D6+3t+K+TT8a5d9yBX51xBuqG2m8XQgghhBBCCCGEiJKm8iwbqugLT5FcefzxwfEf21U+QgghhBBCCCGEEKJiOSA+li375S8Hugguu6ubCkuIPRmmJ8Wwq9YnTcrCxy1enB289lqYkKWRRobJH8hbzfUe5QM6b9o11wTpqvgze6ANBWpr30rhMH++V17ybFfue1s987JgT57CiwJt9ZQDXtZsV9Zzu9k6GDMmC999dxZuOn9JkK6B14tbCQQtz2fZpS3LmjVZ2NbjaqvBjWCXYcdUA7aIdjl3XmLysmK2p+Y6Hz06jIsqarzOZDVdXAlWp8pr4WngH3XyyUGyLQsmFsK2j3B/ZZkeUB7VSSl4No62bbhfWAnH1KlZ+OijKYKk4wCAf//3QnATd2QAv6NwKHyKSy9ttbEga6aJqzrllOxg+fLsWtVzg3R3k8x55cowD57fbJ/joe0N8/r6bGzbv2yy9MGTSnjw9bxF1PbaMYXR/l6Izc9VTwpsZSI8tPm8I44IJUvHUdvX3HdfEDf3oYcK4ZdNuaZQ+OdUDjvFeDJzlsbY+YHbjec3m45VXKzcB8LH9pTmULrI89107qCmI+yd3VAIe1J+T6nuyblZSujJ0fm+p02rctKFz0qQZUQPiWZO6aV3zi6Sl21qiZ/GZSxGZu+NN7Yp4DzN62BUTdmDemdpBU92tlCxyaJclMOXIKZbt/l7enerbYvYMfTwJZg8ufd0QFB3MdllD8xA4fb1urR9h+Vm47nIShX5uGr9ujCS64ffoazclCenTWF7zpxBk5ip/8bGbPzyfGb7Mfd52z15zrHNy++wPM/2fE5nYe93Hq/7lAq/Gj35ZBjHZebnoZ2PeYq3Unu+t4MOCuO6277GTKtCVAoHxMey++xTf5CxfPkHBroIQgghhBBCCCGEEAIHyMcyIYQQQgghhBBCiHIiz7KhS871ukIIIYQQQgghhBBCDH20smwQ0N6e6eG9XaU97DbHgT3YZhKe2z2DSYhv5OnY5VyPnZn4i2uLSbf4uusK4TrzyX3Z9ZlnmdXGs08W1wH7awChJ4C33bKN6w9vshhsPWFtKNj/wfOYYr+BFSvCuBkzMielucbvio0ibB2zdcaqVVnY+iywh4H1smAfCuulw/4/HLb5v/46ooQ+R/Fv+54dCcdZnwXuW3as8b0FHjn2Yty5jGdWUOnWrIq9ObjDm/wXn/3eQtj+1Yo97yrxL1reduwLF2bh4w4ht6fL/z1I9yzV+RMm/xYKt5o4njIPp3CDScfnzTNxeNvbsvDSpYXg6tvDZNy81peS79vOU9wVeK6wfieM53eSt4943leOXU7ua/eHZ1kVMj8t69vDQ83Og9we3jzy6qtZ2PryHbeQ/HLMJNlIDTzRmG3RWbn9qDxvQntebH7z/ITsu0SQ1pqFcafkBjYFaZ53eCyqh98qYy/X26WA8N6s71zePj+Q8ye/j9h3E/YZ5PqwdcPlt75SngcV9yduG/so894DgneX2eZFhicMDtuO4PSfQYNnOpV3IrQvsbF0toHZEMy+yNCDo8oM7qiHmanjYcPyGUp5t83VY+eRumry+rMdNNZ57cU8z7sSBrDtZjzHW7jZPLs6TleMb6xneVcOuFo3bw7j+L69OYar3LYvl9k2W/dxkuQpqRCDD60sE0IIIYQQQgghhBCiC60sE0IIIYQQQgghhCgSeZYNXQ6Ij2XHHHfMQBfBZfeukdG4vCvT7W7UTz2VhUcuOKoQbjg9rt+Z+Nhj4Q8ciSbLnViuaeeJ4Ngsva7ak53Z3FwXxPFqa17KzFs0A76Mjo/tsmBe0e7lwdhJsCbn6GGZw0jT1HlX9bOM6JFHwnQsl6g//6ggjvPfaVa+89JrKw9lWBpml157W0nzcvTYUn2gpySoFLjubP5cLt4iGwAmTMjC06aFcTObs/65rZH6Z8v6MKGnf+HGYS2eTcvr3QMNNdBw+ssUNTGI47ax8qOBYuzY8Jj7vx1DLDGy/Z93iQ+0Wo8/HqTbRuGNpiwcN87EzaTwEgrXmXTcok0XXBBGvu99heBPb81kLCxrBoBnnsnCnlTOwnGe5JzxXtY8+ZonZas0WJIJAO3t2SJ6W3d87EnbWIZmh/mMGXML4eMuuyyMJGn8kiuuCONOOaUQ5Pa19c8SdztfehI7ngt5WrFzHcfNnR3WXfDwWb8+HseVZ26gigZ3nZmgp03L5jQ7Fngjc36eeO9CeWX9nlLOy7+uNizkttasb41r7LDJe2WXmWX4WeyV33vOcd3Z9yTuM3kl3J4Ey3vXcic4T5fG5xWjX4thB0o5fovN+4LoWTXYxuFj7uSeXNNqsb1GjWHq+HV6yef3IoudP2NN1aNIm+gCdgKN+Q1Ybw/3AvE4llDNmze9ELaSfM8WxVOHxpo+JiMHfBVpf9gUcLt5ljXe7008pMxrahA3f34YN2ZM5//29x8hKoUD4mPZ4k8uHugiuNzzuRcGughCCCGEEEIIIYQQAvIsE0IIIYQQQgghhBCiwAGxsmywwzrn8ePDuMmTs7CVwDHveEd4zMtgq3buiJ/Ieow5c4KoiaTNW2y2cGOxAXciI9IIdqObftddQVzjd75TCJ9w4YVB3KbTM2kGL3+2KhDGk07YZcd2JXwsD29pNO8y5O3Exkux7XV5mbOV03DT8HJxK9PYsCELW/mXJ9HhOuE87VJpvm8r32GpnFU9sLTEU0CUY+MrvhfbTrHNuICwfrqXihegzjaOb9yurefGue++MI7GUIeROW+KpJti5dBUyLnnnx9EtTuSAk+q15/Y+mc5g5WX8Zw2z2w1OXPT/dnB5z9fCN5nMuHN9Iy4A9z9p5i4RVzGd74zOzCddcoDD2QHy5cHcWv3ZLl6cxPLf62ChuvLttmWiHLF27m1VDyJlycR9OSbpaiD+gOWmRcjjeH75r5qn8WBYsrqUzixlfGefnohWHtnvBxcj8XIMBme3+x7RnBsJxKuMDtZx7TB9kHHeZpO3tSUPevtc4LHDT+XbDquH1t3ngyc4b7ryawspTy/7Dnbt2dh712F+5ltJh6z9h2Bd9j0JF587bxKOSC0OtgxP9xPuKE5uyDLT60cN+hn5ZjQJk0Kj1nzXyo82IrR0XGcfcHiOK7IYrbu3o/YscHNyMVimxUAvkw1tl16MQORyVk/xYxrb5zHbAvsNFgOdXGpcBm9nes9GaYXx/dm77N7HvdUtUMBeZYNXbSyTAghhBBCCCGEEEKILvSxTAghhBBCCCGEEEL0G0mSvDdJkkeSJNmdJMnmJEm+kySJs7VIcG5tkiTvT5Lkv5MkaenKY22SJDcmSXJYL+lnJEmSRv6t7u0aFskwhRBCCCGEEEIIIUS/kCTJXwH4MoDfAPgwgGkA/hrA8UmSLEnT1NkTGgAwA8C3ANwH4LsANqJzg/sPAjg3SZLT0zS9q5fzfgbgp+ZnrXnKrI9lg4C9HZke3tqdHHlkFqYd6AGEPllHbbk7jPwOOfmMGpWFvb17rWnQ0qWFYOPq8OPrCeQ/1haUKeRlClsp96KPfjQ7MAYc537844Xw/asynwvPU8x60fBtWx+QmH2Ft227h/UpY/jatvq5ym31L6ZNXNkPyduV3HrRsF2OrR/2FWDvsUMPRZRly8Ljo+aTe50xMtmz2LpEdWK9ncrhrZXX08d6KcydRr4atmLZAI7jPD+MZ54Jj6nSW8OYYGxspLCxosFRX/96dmAMEQ6/7LJCePP4cUGcsRncb3g+VdbPgfv8zD1PhJFXXVUIrr3llkL4aZPnOgrPMHGHU3iciWvmi596aha2/cAxFuQ5hseG7dM8vuw45PFgvYA4H54ivTouxs6G03qWMux5ZMcXn5fXFsj2g3Jb8Nj5eOvW+LV5jrSejFwubkP2BAWAo+bRU/COF8PICfTHUnqmAggm+VqyOyx1TrTeObG2CTzW7HFzYxjpmfWwKQ8/3KzfEncaMwlzv7ZjI68fmOeFE/MTsv2A68fG8bHtW6V41Nj2ZX/PvJZx3vOcPfqA8L2GfeCAsPzevfD1XnopjGNfOPvcaWrK3t/4vpuaaoJ0jeRdV2UHYimw4W+54HJ5L6PFmGFxWh4ntqH42p4xaE68d1YPe2uxPtnYWBeka+DyW6NFzpQnIzuP8Hn2IcgTua0Pqq8t9KuRHWt8bOcUjrPZx+bZmHeXPcfSH5Z0PEatb2psjvSs97zfQ2K+oAeCn9eBcI99IUmSJgCfBfAQgLelabq36+cPAfg5Oj+e/fM+snkFwMI0TVeZvL8P4BEAXwSwuJfzHk3T9PpSyi0ZphBCCCGEEEIIIYToD84GUAfg690fygAgTdNbAKwFcNG+MkjTdKv9UNb18ycArAYwv8dJXXRJOOti8TH0sUwIIYQQQgghhBBC9AfHdv3/QC9xKwDMS5KkpH1jkySpAjAZwOZIkisA7ALwepIkLyZJ8o9JkoyIpA2QDHMQMGJEtrp4wYIwjo+rfvzDMPL887PwD34QxvFa0GOOycJ2aTrrSew+x4cckoXNeuV6XvJM0rMpLF0DsI3Ca8LcUUtrf+f+0z8FcdW0xveED30oi1g6PUjHsqW8UksgXB7Nt+2tkC91aTTnYVefc/Ufd1wYN2lvJs6rr88kjUYRG8i47LJyvh43GRBuV89lZElI57URh9dbm4ItWkzL5IO1yRODdOVYcs7qBVvHrLbrIV+7e0X8xNgFbIXwMeumgaBBxjkaI+66G8NUqCddy8wvfSmax6Tly4Oo0UcuwkBgpeSxsQYAk1b+Ijv46leDuJY77iiEV9HP1yGEZ4TZJm4J6w2OOCKM/OAHs/BF9Mcs207UgdbOfnsQdd+vsjCPLyvT89Qj95H8bsWKMI7nI08i4s1TfGzPY+VcbWy4wpeoecTS9ofMxIPr0dY/q4MmTQrjeC6cNSsL2/bd1ppJysYdFvrLrqueWQhPvyzU2j+xvqEQ5inGqo8OOigL23ncyvcZfjZ4kv+6PfSkXvVsGMkPVjuAN0feSW06h/nvyJ5tdujF5DxWys9zjPe84n7gSS09qZmNY0nitGnZ35/ZJgMIZW+2/Gvo5ciTYfK4sVXM/dpz2/DujfEkWNaugvOwUvKYfNO+ivI4nGkfIqVgB2nOicuTJ27amY3X5uaGIC5ob6+SbQfl8cWNaBvYmzTLoP3i7L2+O2ZMeB6rzLn4DdW7woRb6D5tJ+GLc4exEyEPDjsRenVM9TNmTA2Fw2Q8B3tVauP4XdqbK5hilLMskyz12elJ+/n5bquV4fbl5yEQ9oPZ5kWsO0/PPkIcMHQ/8Df0ErcBQNKVxjqu5OGD6PxY9k/m5x0A/hfAzQBeADABwP8D8Pfo9Ek7nVe59YY+lgkhhBBCCCGEEEIUSZoOGc+ypiRJVtLxt9I0/RYnSJKkEcBHisjza2mabkOnBBMA3uglTfen5qJlkkmSnADgSgCPwniepWm6DsDbzCnfTZLkWwDeD+BCAN/38tfHMiGEEEIIIYQQQogDly1pmvZmkM80AvhUEXlej06xWfeS0xEA7BL07rWHZlmqT5IkxwD4BTqFOWekaZpzayB8Dp0fy86EPpYJIYQQQgghhBBCiFJJ07QFnZLJYul2mpkKwHg+YCqAFD3daKIkSbIIwB0AXgVwSpqmvck7Y7wIYC8AR3zciT6WRVh962o8fuvjqBpWhYOXHIwllyzBimtW4IXfvoBh1cPQMLkBb/nLt2BE/Qisf2Q9fvtfv8Xe9r0YVj0Mx116HKYePTX3tRobsx3lD9/zuzDyqruz8De/GcZ5nmVsSsLeDWZL7ie2ZP5Rze/44yCOLaj2GK35smvPKoTrtmQuQnOvuipM+J3vZOHXXgui2MPs5fAszP/iFwvhJvYv++hHg3RPNGaORc+aYedp+9lDiLX8xnKtLEylrnDyyWHccSMfzQ6+f2cYScYmM+nEmcabin1S2PsE8HfTZv+AM8/MwtZ2i30cpmwy/fNW6iR3mvLzMTXGok9/OkjWNj/cQr4UuIvPnR36bQSmUJYf/zgLW58U9s4YNSoLL1wYpuMx1T2Qu2FzGmPYMI4MXCZSx7OOKbwWes8rrwRxh3/lK9mB8QGpu/zyQrhj/lHYX0yxz7nVLYVggzXE+Oxns2TGsIvvu4XC9k4WUHjmO98ZRn7841nYGGk8+Hw29/2eNpNuagpXgDc1ZXPdGtPFeUxx049b/2iYkCcnY0r0RzSPNzWNC+J4DrZeRkxeb0W7ZTzD51kpgfU6i2HTeXmWG89riOdgO8yPPz4LT68Nn0RtjVkfqVn12yzi1nCsjTv11EJ4V/PMIO6+m7Pwnj2hzxEPWZ7DrL8Ml9nO4569E6flZ15ddVv8JJ7we7sgM3ZsFo6ZXwGuEQ6fZvsuF8Xr1146zp+9fyzcP206z8/M+nd14/VH68Xm+abG/PasLxk/ojgMhNXvNS9f6+ijEcXm73mWcX3xfb/xRjxd7bzQ13SK8dCKwXW+ek34XlFdnR0fPi/uyeXB71e2H4wYkeXxxhvhtafzs8fz2uI40xE66rO5o6o9HL+72rPr5bWFsn0w7/xs+x2PN563djWGz9H22uy4YbFZtMKZcB3YwcyTmO3IdLytNd6e3O9Gjw7j+FXOzsGeDSMXk8N26uQiO8XvEcd1Xqpn2aGHZmHza2DQF/ja1mOM+8icOWEc36s9r7vMSSmfVsRQ4yEAfwbgePT8WHYcgKfSNHUc9jKSJFmIzg9lr6HzQ9kLRZZlJoBhiG8IUEAfy3ph75t78fCND+Pd33w3aupqcMOf3oCjzzsa0xZMw5L3LkHVsCo8eO2DWPXjVTju0uNQ21CLP/zkH2LU+FHY9sI2/PJTv8RF1+5z91MhhBBCCCGEEEJUKEPIs6w/+W8AXwPwoSRJbug21k+S5J0AZqHTdL9AkiRN6Fz59VKapq/SzxcCuBPA6+j8UPZ87IJJkoxP03Sr+VkVgO6/1t+yr0LrY1kv7G7djbrGOtSOrsW2dZ27RNXU1WDawuxz/MRDJ+L5+zvbpmlW9peQsdPHYu+be7H3zb0YNjznn+OFEEIIIYQQQgghhhhpmr6SJMnfA/gSgDuTJLkRnfLLK9ApOLvKnPIhdHqjvQ/AtQCQJMnB6FxRNhadH95O6DL4Z36Wpmn3uu9vJ0nSAOB+dEovmwCcB+AYdH68+zH2gT6W9ULakQIJ8MiPHsHK76/EvLfPQ1IVrh996s6nMGvZrB7nPn//82ia2VTUh7L6vTsy+eXVV4eRpMPZ88wzQRSvdO0wEscqXq68YEEhuKN5bpBu1a3xcrW0ZGErDeCtkufMyaSQiy67LExIa4ankLQSyLa9AHquxeSP80u+/vVCuMFokQ4nqdnhy5cFcTt2Zkux7df+cTsz6SivSW5sDJdvl2Or42OP7T0MALiKdF1c4fbitDR93fqwjCx7ePHFeDns8m0+5mXeVkbBXav52EVBXNDPTB/Ec89lYZahGa1oDa0B71h2UhCX9680c5u2ZQerWsJI1tZyeS1HHBEe0972HQuy+zZKSOylMk658MIwkmWYViNLmrW538+8JZtvuy1IxoKL9Qipprqb+e//HsZR5VVZCTeRV4KSm2uuCY8ffjiadBVJL43AFzRCMYPCi0y6GRdckB185CNB3Nrm7Pn57KrwvEceycIbyOXAqmR4nFipN0vgePiOazaZcB+0Wm/S382fHz7vY1vSe3JKDysvyyvpKPV6pVyrP+D5jYY1ACNJue2hIK6GJ+xAJxY+GNZuyiRGdhrn5rbSJ4Yl+nbeY4mmfSbVbVobzXP67Iisa6V94qL3dPaCVh/EjerplPjGTf51PODMjS9enL1b8KXWm4lwzJgsbOV9Vk4VuVRu7Hme+jSGlVRvJhGIzZ/LzzJnT6rlvbfYcRiTptoxz3nu3RvG8aOf3AUAAK++moV5PvPGgqW5ufhnlJ1m+b7nzSvtmcePcFvH3DY9pbnZ9errQ6n9uOZMEsrywdraUMrZTv2goT5sxFo6rEI+iaktv6OUDvKcPTvMjyXdLAeta98RpGurDSXo0cKwns97aTUax7b2rFy2b/FpI0ZEswieBXaM8ji3Y57nnJgs1Z5np0uuAk8iW+pzlMeslVEz7OBj5xguPz+TgLAupzQZmX/XicNgJg5xQJKm6ZVJkmwF8Ffo/Ni1A8APAXw8pwTzEADju8KfdtJ0z8S/AHAxOuWf49C5E+fjAP4cwDfTNN2nzl8fyxwWXrAQh51+GO668i48+asncdgfHgYA+N0Pf4eqYVWYfXLogbNt3TY8+L0HceZnzuwtOyGEEEIIIYQQQgwRJMPMT5qm16Jrpdg+0n0a5oNYmqZ3o4jNBdI0/S6A7xZRvB6UeUnB0KN2dC1mnTQLW57r/DPD0//zNNY9tA5vveKtSMitcOeWnbjjn+/AKR85BQ2Tnb+gCCGEEEIIIYQQQohBi1aWRdi5ZSdaN7SicWojXn76ZTRObcSLD7+IVT9dhXf+8ztRPSKrujd2voHb//F2HPveY9F8uCPzirFxI3B913Zs3f930U5r5O1qf15FXWXXy/JaWgpbGZEntWSpg10WzFI0ljDVnn54kO5wkkVNN7vdNdx7byEcLtgGSFSHpyk878Ybg3T1vPbX6AcbWCNlb+Duu7Mw1d1Jp58epqvO1hqXKld7a/MT2cF3zM6MN9+che2acJLPcpy9FU+exdIAu/Sa0/LSdJZN2HT2ryY1vHbfbi3EnYs1b3zPQCA1rloWSmmrq3PWOUsQ7Q1wOawMkyvP6neo/3AWVgIU7ATWNCWIa6TjaRcuCeK4LutIQ9NgBmLDXXcVwusQQpslwu5vN/+667IDR4bJEouySDJ/9avw+KFM2rbH3BuNjB73Np3CvHfWjNNOCxPS7qpPIJx/br85C9t24+mC5UFWlsTyBSvN4O4fjMsFpp+xxsLqnFdm+36GvQd4xzsyWSZv6moVz4ydAzzZRmwHK3sOx/FcYdN618qbrj/gx6GZYlC1igTAVjLMcxoPWDNX8/PQPmO539n+w9nw46qHbUA77dK5yagUeMtU2zG4/HwxOxi8xs+7pXKpWiHWKtm5j+drimtqCv8gya8/3vPR+6s/x1mZoSef4jbNWwVWqujtdMvV4+04x3FWUufttMdw+W0e3BReefl9EAifnXwvm83+Y1zHVspsdxHPA7/iWaxbQl74FdbWvyej82hqyp65Xr1yf7Ky1HDX23zPcFtGfldscDbA7dGvqdPs2UO7cjaanX9pypk2I9wxmPtFw/zGXBff/Er+3Wa5zCy19MaJN35tO8Wex55E2z6nvU2Hy/G85PblTYxtWWaRu5Dd8ZLbaXrTrjCSK319ZEtfbztiIQYx+lgWoWpYFX79uV8jGZZgzOQxOO6S4/CTD/8Ee9v34pf/8EsAnSb/J/5/J+LxXzyOHS/twCM3PYJHbur8KHDGZ87AyMaR3iWEEEIIIYQQQgghxCBDH8si1I2twwVXXxD87MJv9f7nqEXvXoRF77a200IIIYQQQgghhBiqyLNs6CLPMiGEEEIIIYQQQgghutDKsl4YPWl0j1Vl/cq2rcCdd3YGjaab9zN1tw1gwxMAOProLPvazAnnmWfCZKxB97ZKtpr5mI+P3a67dml27ZmXXRbENVKmU8iXCQg9yx6lcGuYPRZ9+9uF8DjyRgIAnHhiFrZGMmwAxCJ9C5vdVNfE03nwtWeHO6hi6dIsfOqpYRztzbyR3IyeDa3fgnayfiTsTWB9CmI+CFu3hsdsRcD2OACwaVNWJwtOfW8QN2UxOU119W8APfuqbZtSYL+xgw8O49iYwpqfUNzmUaGPxuOrsjCPE283c+u1wj4m7GtkOfL0cwvhOmMKtYjMLJpvuSWIIyejHp5f3DHm27gIdtv5UlhDXoQA0EJhuyc0+xHONXHsPjafx8mHPxykW1ubpVyzKszD8yvitpkwofcwEPcMsnlw+z74UPh3qOO431nPMh4nbKiCsD/l9cGxfkvsVTLSOANwnZTq5+Sdx2Mjb7r+gKvc1uM4NmPyjKA4nekIm+/u/Vo2S5s9z9dT2nuM4IwVq7KwNcLxjEe5nNy3bCWMH5+F7UOEj63nI+N1Ji6XZ7hnK4/LSXmMM+MELRRnyjiuOauD+vrsLcq2xZgxWdiOE8Z6DdnHWR4OOig8fv31LGzHAvub8dxk/Zb4PHtvsXRAvNl22skafY/ja9u5lLugtQ8tBTsUvHLlhbujfZ6zPaB9l7bdmuE6Z+9M2we5vbmvAsCkCcU/t6c0GZfTYE4wnYuoefaJ8Ad03jgeDOvDOaCxMXMhtdNDcOnGmmg6/vXIeuN5nnHc7zzPPo6bNCmM4/5q6z/mN2b7AU9bthxcfs/rrFQmT87Cdu7gel64MAvXbNkYpBvX1Jgd2JddzsSbgISoQLSyTAghhBBCCCGEEEKILrSyTAghhBBCCCGEEKIE5Fk2NNHHssFAdXVhTe44uzaXJQW8PhZABy0MrHrf+8LzTjutEGTppZXQcPaeFMZOAN4W5gzvUD/zoovCSJI4Lv74x8M4kkneQ2uvzcJx8ObF4+yyYNJLbDISTV4VP460o9PXrAnzuPzyQrCqPl5BHd4izW9+Mwuff34YR/KyzUe/PYh66qkszMvK7RLzUaOysFV5cvvapdexdrNVwG1vq5iPe6rLMnncUWdTh+H9120mpqNxrXZ4MtiVK7PwmWeGcSylZckbgEdXZ1fYZNSg3HcZqwDievSkzB5cJUcsDss/icb9FDM/TPnRjwrhneZirJjNK8MsB4+aYy7VWhPH5Vpu4mrPOSc7+PznC8HNY0LB5pqHs7DdmZz7PMsRLTwvWqUZV6sdQ/a4m+eeC49Hj55YCB9u5sG2+nGFcM3ObUFcPQ0HT+7FZSxGwsFzPqt/Pamxl8dgfVHkOrHzVPW0TOLeYGXaLIXfks0/e8w45/u2dcVzsu0vLD0LJg9bkVxo28m982IaYiuF5DibvwPPyVXeiwA3gNUxclnstTmOtXlWU5dTT+zNAVys/d2PPXki2yfws95KwVi2Z+cwzt+eF5M82nnEkxOzBNHmx03K9W/rmKWoeSXnHixp7K1cpcD3UowcnfHkoVwHHAbCNrRWGSNHZu8xDfX5JJltCN+nakqVznHBYmH4Et+YRNazTshbDHvMr1B2rI1rzOquujp8p+d2K7Wq+Hr9bT1gLTVGjMjuJ3juIJz7AumltUjhyrO/DMTSMYP1BUGIfSAZphBCCCGEEEIIIYQQXehjmRBCCCGEEEIIIYQQXUiGKYQQQgghhBBCCFEkaSql6VBFH8sGA42NmXeVFdGz9tuaJTEmrqMp88h5dVX2c8/Phv0wAH/79Jj23haf46yvV1XMTwUApk4tBJtJG99oyjFxzpzswPrNHHxwloc5r5k9zNjg4/3vDxOSOYHrS+ZBfmy7Fp8URNXtyTyKHl8VnsaeWewn5HmJ2Dj27fC2i2aK8VJgDw/rM8Llnz072za8bmmYroeHWSmFWbAgC/Me2UBQQZtfCdvQ80aJeWBYzxf2e7BWDXyerX+uO86D/V8AAJscQyo68WUTF9nNvN8xllBopfBME8dlrPWMQMiXaWRz6FnGdW67C9er15W46uw8yFjPIx5D7DFjm4ktpxobxwVxz5K53IgRYdyDD2bh3buzsO3iPD9YLx0us7WLYrz6YeuomB0J0NNyipvU8/Xqb9h6xY5DngNOWBC6+7FPGbeh5ztk51VuG1t3wVj3JnLulNZ8iSck2/j8XOWL2/y5kBbHbCiYTb3JlM+z6bgz2Huz9xPDM86ja49taohmkdeHyKbL6/vKeP6D9lWIj7mpJ0wI03meTaV6LMXyt/2Yu4/1Q+JXU+52Nh2/yhXjuxjj+OPD43LkeeSRWdi+jnM72TmG29t2T65LHia2zThPe+2qVva6bEQerD9m1N/Q4k1+PEmaGx03O/IwAFA/m3w7qzOvrbb28H3NG1+eHx7XJd+a1ydsFXD+tn1j+djpi9vajiHPE7Acz0v2PvR+t3N/oSu1kPv7gS9EmZEMUwghhBBCCCGEEEKILvSxTAghhBBCCCGEEEKILg6ItZG//LtfDnQRXJqSEcCyZZ0Hdn01H9u1v0z3+V2w7IR3lrfwStpilu7HpEo2D14Ovcnos6awdG758jBy9uxCcO53vpP93Oqg+L4XLw7jeG30K68EUYGYhApWbyWBdANVzlJiV6K5Zk0hWDc/lPnwMmdbPyxj5NXQLMeycbaILPPJu2raLmHnY6ug8VQyfF4ddmUHVB8AgFWr4hdnqmvicXfdFY8jncykbrlzF1tJlmPHCdePJ2XzVqbz7ViJmieJixbE1g/p46wSwMoh9xet5riRwnZKmcEHxx4bRh5zDCXMUsa2mQd69mkeG7b+Y1iJAvdxT77A040dy1wuT6LJki6vXFY1l7svGbg7DWWvDZ637I73YVvVBXE8J3j9zpNhstzGkwflnsjzTrpA+LDgjse6WiCc4Lz8vYeIJ8PkOM9HwHbsWJ1470ImrqM+m+M3rY8mC4plq9+L4z7CcjtPeWSfNXzsjUNPVs5VZdVTXK3e/MZ52jJ63dObF1lZy/f26qthOm8MlYLNoxxKsLxSV69tbLk8xSPjvYextL8KHchDW30o+a/x9PWMfUjF9LnehGnmgJpaej/ck91ojzc+Oq+5eWIQVdXexjkGcdw/qzZtLITr7D1vycrcYCaI9vb4Oz63Dd+arQJuN28qtVNkKRYG9ncSLov9HSL6/mA7q3dzXiG7j4fySwbkWTaUOSA+lr24+sWBLoLLB845Z6CLIIQQQgghhBBCCCEgGaYQQgghhBBCCCGEEAX0sUwIIYQQQgghhBBCiC6SNE0Hugy5SJIkLaWsSZJgsN/jB/7sz/Af3/xmn/JwPbMqkLy+C5VOf7dbKfW4v/tSf7f1UBsbMSp9zBwo7eThtaFXP3zeUBu/5YDrpNTyDsa5uj9Q/ymOUvqW5rriKPd7zGCdA8pBqX2wHOOwEurHYyCfo3kpR98dqDl38ZIlWLlyZTIgF98PNDUtTs86a+VAF6PPXHNN8nCapov3nfLAYXDOBkIIIYQQQgghhBBCDAAVbfC/adMmrFu3Dnvs1iEATjrppAEokRBCCCGEEEIIIYSoZCryY9mGDRtw0UUX4Z577ukRl6YpkiTBXm/78wqlP5ZND1YGw5LhSqQcdWXzGKzL0WNUWnnLxYE0PwxVSu27B2qfLwXVldgX/SHhE2Iwo3duIYTonYr8WPbBD34Qq1evxr/+67/iyCOPxIgRIwa6SEIIIYQQQgghhDiASFOgvX2gSyH6g4r8WHbvvffia1/7Gi6++OKBLooQQgghhBBCCCGEGEJU5MeykSNHYuLEiQNdjH5BEpGeVLokYn+2aTmkePu7D1bCTnVCCHEgUOqOrOXIf7BQ6VYEQgghhCgPFfkG8P73vx/XXXfdQBdDCCGEEEIIIYQQQgwxKnJl2dSpU3HdddfhrW99K8444wyMGzeuR5o/+ZM/GYCSCSGEEEIIIYQQ4kBBnmVDk4r8WHb55ZcDAFpaWnD33Xf3iE+SRB/LhBBCCCGEEEIIIUTRVOTHsueff36gi9Bv9LdfSCVSCR4nQgw0GidCiHJzoL53MJpbxVCjP/o05znU5o2hfG9CCJ+K/Fh28MEHD3QRhBBCCCGEEEIIIcQQpCI/lgkhhBBCCCGEEEIMJGkqz7KhSkV9LPv973+Po48+GocccgiSJImmS5IEzz333H4smSg3kj2UB2+5uOpYCCGERznkR0P5WTOU702IUrHjQtJFIUSlUlEfyxoaGgAAb3nLW9yPZUIIIYQQQgghhBBClEJFfSw75JBDAADXXnvtwBZECCGEEEIIIYQQQgxJKupjmRBCCCGEEEIIIcRgQJ5lQ5eK/lj2+9//Hk899RT27NnTI+69733vAJRIlAv2N6h0TxBtOe1TjvY9UOu40scGI48TIYYGQ2le2hdD6V1FiKFO3jE6lMeyvIyFKI6K/FjW2tqKM888EytWrAAApGkKAIGPmT6WCSGEEEIIIYQQQohiqcg/3X/iE5/A1q1bcc899yBNU/zsZz/D//7v/+KP//iPMXPmTPz2t78d6CIKIYQQQgghhBBCiAqkIleW/epXv8KnPvUpLF26FAAwbdo0HHPMMTj55JPxwQ9+EF/96lfxX//1XwNcyvIzlJfHDuV7G6wMVZmb15cq/Z4PpHFyoEprhRiseFLpA2luEmIwUQljr9LfyyqhjGJgkWfZ0KUiR/9LL72EmTNnYtiwYaitrcVrr71WiDv33HPxi1/8YgBLJ4QQQgghhBBCCCEqlYr8WNbc3IzW1lYAwMEHH4wHHnigEPfss88OUKmEEEIIIYQQQgghRKVTkTLMZcuW4YEHHsDy5ctx8cUX4zOf+QxaWlpQXV2N733vezjrrLMGuohCCCGEEEIIIYQQogKpyI9ln7b8hyYAAQAASURBVPrUp7Bx40YAwMc+9jFs3boVN910E3bt2oWzzjoLX//61we4hPsfz0tEDB4O1HYaLJ4alVj/g6XuhBCCqbS5Ka/HmvdcqLR7FkOfA8U70PMxLbfHaSW8G4rBhTzLhi4V+bFs1qxZmDVrFgBg+PDhuPLKK3HllVcOcKmEEEIIIYQQQgghRKWjT+dCCCGEEEIIIYQQQnRRkSvLAGDt2rX44Q9/iHXr1mHPnj1BXJIk+O53vztAJSuBbduAu+/uDNsNCmbMyML19UFUx9ITCuGq1m1B3JpN4wrhlSuzn+/cGWZPG4li794wbtiweJHHjs3C1dSLGhvDdE1NWXj+/DBuXPvL2cEPfhBGrlmThX/84yzMBQaAiy/OwkuXhnHr12fhT30qiGqhcBuF5w4fHuaxaVMWNvXPN+7KNi78f9nBW94Sxh15ZCH8RNNJQRy3W9d+Fj3CANDcnIWnTQvjuPtw2OOWW+Jxr74aHvPQs9c++eQsPO7W67OD7r7exa5rrimE615/PXrtjtq6aNyuYUkhXD9nThjJN37++UFU1emnF8LrMD2IW706C/N9cp8Gwm5h24aXZNvuw+NrwoQsPLP+5TDhHXdk4csuC6KeoILdH54F6v34tB3c/ci/mYmDa9VMP+ApYX5tbRhJY7vqQx8qhHfNPipI9thjWXjr1jALni5s32V4XuTxBIRtytMBAHCR+bZtObgLLlgQxm3ZkoVnzw7jeArjMtqqYuwU6cHTHfdPO1dwGe04r6/P5r433wzjRo7s/bq2/NX9/Cby53+ehe30wGXx6p/nAFv+V17Jwps3h3Fcr1aiwXPJX1++J55wxYosbCcZflbaBzxXLHfslpZ4Ib2HuO0YfB5Xlq0gLrN5XwvS2o7ADcJxtqEoz13VDUEUj1m+7SOOCJ/Z/OixxedqHTMmPI83X7/ooizO69Of/3x4zOWy1c9wE9qm4GayY3TUqCxsx2Ts3eLWW+P583wA+NIjvreXXsrC9lVr3rx4Hp//fPF/17/oovCY2/Q73yltnQA/fu3rJtePnQe5reyjmM/bvj0Lv/FGvBy2j4Rzdz4J8dPPhum4fqZPyy9R5t89OhrH9fpzAGGhzRxWxRff48yDNBCr7IOazttZPS6I4uxrWuh3LPsyR3nsaZwSRPH0xmEg/LWN29C+B4wfn4Xtc4hvx06R/M5QXZ3Vv32n9Lj66ixs5w6eq844leqcny02Ib8gAz2fPUx3O/KDUogKoiI/lv33f/83LrjgAnR0dGDixIkYMWJEEJ8kSeRMIYQQQgghhBBCiL4jz7KhS0V+LPvkJz+Jk08+Gd///vcxgZdkCCGEEEIIIYQQQgjRByryY9natWtx5ZVXDp0PZcOHZ0uU7fpt1hDYtbkkw7RLYmcvzSR9vJLWKjhYemC/iHsyAl7Kz+nsObzKedymJ8LIO+/MwiTFAxCsX26npbvVdu0yr923Ok+WavzFXwRRM26/PTvgOia5F4BgnXNHdQ1KgvO0y77p2lY6wVIHljJYCQSvfrYyMU9dw3Dbe4o9K0/xJEzj9mzMDlatysKmDuo8TVlOfVb96NHZgR1DPADssnKqlOlnh8v6t2ypoXC+Inm3YlUDnM/0ZhID33x3mPA//qMQ/J2ZA9ZS2CgDYLpTn8m7Q1yjiWOZsy3TOj4w9zbv298uhKupsuqMFHXGjEWFsJWusCTRTp/c53letG3IeXgyTO7WNg8ee3nHORAOG08qytfz5nHbd2Nxtq48ZQzjzR18XjHPmnKwYUMWZgsBwG83LhfPpVb+EpPLAsDu3VnY1g/n31ZNMnNTHzVcSFtZ3LmsdwI/qDmdd6NcYCBsfKvx5TgeRLYc/KJhO5ftzExEommfxVX1WdyeVuTCygBLxZvzSznHjg0+5kebN595iijbB/OObc7TpuM8xowJ43is8GPadmOWqHG6UvHmyFLhIWTnAE9ubecchsvp5cHH9l2ulPnTtlPJUMGq2ulpb3/ZYLwHqdch+dhp0OrG8LimOiIrdRqx1bxns7zS3hrH8VRnp0tuN/uaynjtWeqzMva+Y9m8PZtbJ3neLfYXEc7U3ni3+svz9hFiEFORH8vmzZuHrVYMLoQQQgghhBBCCLEfkQxzaFKRu2H+67/+K/75n/8Za9eu3XdiIYQQQgghhBBCCCFyUlEry046KZMWbt26FYcddhjmzJmDcePCnU+SJMFvfvOb/V08IYQQQgghhBBCCFHhVNTHsmGkdz700ENzn3fMccf0R3HKxsjhNdlevrwHMRAK1I3On32C8OKLQVzNvJcL4ebmiYWw1apzllYLbz0xGF5qyrL/SZPCdIHk/fr7wsiVK7Ow9ZIiY43qI4/Mfr54cZhu2bJ4HGvqzz47jIttgTx1KmIE9W3w/JyCSr/33jDuhRcKwQZjWHTSyScXwk1NMwth60fieRFwWs/jxGtrthmwPiB8fHjr/WHkl76Z5X/ddYVwrfGda6WLN8aL4bKHPBL2GL+EXRRu/spXgriqY4/NDsy21ove975C+NFnMz8ha9XAdWe9RDyvqqDOV6zIwjffHKR7gvrMqjCLwPPLOPbhcBSP249znvdHNtLxk1tFlfC0OY1diebeeGN2YDrhpA/NKIS3NoV/OPG85tiayRsn7IPmeQHxpszWv4/tFKfvCe+06dS50Wtz/+HpwVp/sP+S54Vi4fMi9lAAgFGj4nGMZ0nieaf1N2xtaW1Y2A7Mjt+YT5m1unnmmXicnS8Ynq/5MWTb8LiF1IE800obx50y1tgWa2rF+XtmNzzvslcaEDa4rWSeGE3crmnZ2ODn1ZMPhVmMHZvNP+wfBACbN2dhHkPcJ4Dw1mwRuQps+1qfwTzYc/jY8wXlarS+Xlxmazvn2drF8NKZDeiDtrFecDHLO9vN2FfQs7HLS3/Iobj+bf1485s33Lg/cbvZZwH3T+8dcMGC+LWY556L5zHJsYM29siYNCn7/eLVluzns2fPDNJx/jW1rfGLew9jPnYqtc56A++k8xzzPfaNtFMpj1E7frkuuZ2892pbRLbg9vpuqf2a78f7XYDvZfi8hiAd9+sGO0i9Xyi667wj/juUEIOZivpYdtddd5V03uJPLt53ogHkhWue3XciIYQQQgghhBBCDBrSVJ5lQ5WK9CwTQgghhBBCCCGEEKI/qKiVZd184QtfwPr16/H1r3+9R9xf/uVf4qCDDsLHPvaxAShZaezYPRy/a+mUDy1iWSEQLmf1NEBW9kDn8WplltMAvjqCL2eXlbNakZcPH3esWWbLa7bvvjsat8cs261ljQHLK5cvD9K1LViSZbcqzL6pKVse3rT0rUFcHd8sS19N/naL+lLYdepZ2XW99fgvvRQeU7maF2dL2m0WrB7kbauBUPZguw8v+bfnMdwUVroypZ2EgNfeHEY+lGlldtCPa40OqpH1DCXu71572mlZmCWNANqpEnYhpJ3K2Gh1kqQnOer88wvhzZNCqR8z6Y114Q947fvKcAVp0LOuv74Q3HjLLUG6VRQ2uWM6hWeauMNz1mWp0sso55wTHvPkYco0keS5LSYbPm4nbcPhV18dJqQ8D7/wwvDS87MasvIpHvYs1bKw5Mj+1ZDHFI8hb8d7WxDuIp48i8P2XjwJJePJgzjOlp+lqN5fTq20arDgSSH50WPljyxJ4enBSmi8+ZPry9Y/X4+lnFzfADB6dDZbTJs2JYhr4EnZ3ih3FO6sRnIeaIfszfAN2MbnG+BCW50ev5/YzsvH5iWE+zy301NPhVnwafY5x1XCthPerXhxFu+1LIanLvOuzc9s4zYQ5PHqq2EcP8NjCikbthvOczPZfsxltu+RPFY8iRrPRfZRXAqe3LoceR50UDx/Wz/Tp9F7sW3glvWF4CTOZEI4Ttatz57TNgs7nPNg+y0fe+8E69dHo3rIf5katMUz4c7szUWM14HsHBOZwzpq64Jkm6hYdirl8WDHBqf1njVcLNuGzmtSNF0xeHMMVz+/F3lVfMJS4zXBBbMdoXsSq9L6HFGZVGTPveaaa3DUUUf1GrdgwQJcc801+7lEQgghhBBCCCGEEGIoUJEry9atW4c5xiS8m5kzZ+IFMk0vldW3rsbjtz6OqmFVOHjJwVhyyRKsuGYFXvjtCxhWPQwNkxvwlr98C0bUj8CeHXtwxxfuwCvPvIK5b52LZZcv2/cFhBBCCCGEEEIIUbHIs2zoUpEfy+rq6rCBt84h1q9fjxFWAlAke9/ci4dvfBjv/ua7UVNXgxv+9AYcfd7RmLZgGpa8dwmqhlXhwWsfxKofr8Jxlx6HYTXDcOwfH4ttL2zDthe29enaQgghhBBCCCGEEGLgqMiPZSeeeCK++MUv4vzzzw8+jL3xxhu48sorceKJJ/Yp/92tu1HXWIfa0bXYtq7z41dNXQ2mLcyMFCYeOhHP3/88AGB47XA0H96MV196tdf89sXrrwNr1nSGZ8wI/UjG1dLHN28fYmt2Q/rx+adnvj3We4O9LazHA2vv7TbZCxdm4WAH4dtui5frvvuCqI4XX8yKCwMX5uyzC8EdJ58VJLvvzixsbRDY/sHe95w5iwrh5mVZeE1odwVrIcfk9Q7oblsAWGTNONjTbdWqMI78GsaREcjJJy8JknEWthuwVYz9iwf7C3HcrFlhusmTs/CULY+GkXdSA9x8cxhHhQnsQt7yljAdmd6V7J/18Y9nYdPPmtjDzPjC7eI6t7vtsncGmf1Neuc7g2Qd9bS99o33hnmwuQ6bQQDBeF5PPmVPh6mC47kmbgGFD7fz3gc+gN4ou0eZ5aqrwmPuXMaMYwrV8XTj1cY+d7xbfa0xaJn57/+eHZhBOfeiiwrh5qUTgzhOylMr+zEC4RiyXiWcx2yy8LDzxswZ5FmzoiWIm76gkcoReqiwjwyX0fMes3M1We/1gM+LhYHQa8XzU7FxpfqrlJsFC7Kw9VTiR40tL8+RPC+OHRumYy8si+fnxHH89z/rJ8R//7PXWrw4mxUaZoc+Mrv2ZGO9rp1GlL1RztSa7rD/jO1M3CnZGMt2BH4Y20ogz7VtO0OPUH528qXsc87zo+K6zPtXf1s9fNt2fFl7pDzY8vI7lH3N4/ytNW0Mm4fnm8fH3M/sq4rXj/lRGbwPIl7ntozjx8evXQrWX5XzL0eetoxcJz3mPR5TnvGl05mqq7P3DJuFZ+0Vw/Ou87DzT8zSkN8bAaCxMRvbDd5EyDfjdVaLZ7oZFqQQtPfMr4c2jvu45zfGvtA8JQL+NMhNb7sB51/qM5Wv5/0qyb9H2TrgPBobw/fIGTMy19w6W0Hd/b+m7x7QQgwEg+RVtjg+/elP44QTTsDcuXNx0UUXYerUqdiwYQOuv/56bN26Fddee22f8k87UiABHvnRI1j5/ZWY9/Z5SKqSIM1Tdz6FWctmRXIQQgghhBBCCCGEEJVIRX4sO/roo3HXXXfhox/9KL7whS+go6MDVVVVWLZsGX7yk5/g6KOPLst1Fl6wEIedfhjuuvIuPPmrJ3HYHx4GAPjdD3+HqmFVmH3y7H3kIIQQQgghhBBCiKGIPMuGLhX5sQwAlixZgnvuuQe7d+/G9u3bMXbsWIzMu0a9CGpH12LWSbOwec1mAMDT//M01j20Dss/uxxJkuzj7Hy0tWWrVI2CDE1N4wrhEy69NJ7JhReGxySD8LZ6ZgnK4sVhHC/BtbKBulX3ZwfPbM/CN90UJuR1u0aaUfWOd2Rhu3b/9NMLwY7lmfRyxZ1hMl5O7C1dtnCd8PJqT05TKiwlqV1weBA34/LsuG69EeBRA+yaR1LRu8NkrO6zclNW0HhbhXMZbVuzVHf6YqM94Eq2HeiSSwrBYMH2+94XpqMLesvbPXYsfmshbKVIOOaYLGx0dHW33pod2D7IEk3W/fz4x0GyKupMOz71qSCONkvHWlNmdjdcR+GNJt1JFDbKEkx5z3uyA5IrAwBOPrkQ7HfpJbGraXo0jrcoB4BJJBVdZDroDpLFsgzTylR3UtscdcUVYSQN6Ib584Oot9Ic09Q0kcJhFjyF8VwBhGOPu4i1zVy9Oqv/GTNOCOK2kEqYxyEQzm88tr1HnVXAsZTQSshiyhU7Dvna3sugnX+4LJ4UrL/hdrPzINexjePnBLkG9Kh/Ps/aGfCx6YKBOovV4p4kykqBuY6tNIbH25w5mYxrnKexs4PUe4hwxXKnt53Eao6INmTSHKsA5ecxF8uo6YM2tP2f47w+6MmVOa1N58rvItg5Zju9QllJHefvST557FmZFTehhePeeCML27bge7PNyXVuH6Mx2bbtIiyTPOKI3s8BgCp0ROP4OWfHmi1XKbAMc0qzKQePjZ2mAWIvnPaYw9aygLTkO/aEcjbjTJAL25dssWLYKSAm37djoaGe6osnUyCc1HjQe5pkG8cN7N0MFdKOCy6G10zeeGJsHfAY9Z41kyaFcTxflPoc5eqyv+dwWXgOsPlzFTtTOg5vNhNcd6EHiy+DEEVS8T135MiR/fKRbOeWnWjd0IrGqY14+emX0Ti1ES8+/CJW/XQV3vnP70T1iIqvOiGEEEIIIYQQQghh0BefCFXDqvDrz/0aybAEYyaPwXGXHIeffPgn2Nu+F7/8h18C6DT5P/H/6zTVvuGyG/Dmrjext30vXnjwBZzxmTMwdvpY7xJCCCGEEEIIIYQQYpChj2UR6sbW4YKrLwh+duG3LoykBv7oO3/U30USQgghhBBCCCHEIEGeZUMXfSwbZFh/MZZ4b94e+hRMmkAeANYYgkasYxuGOXOy8LgtoRvQOD5YaUTut9+ehVkM/9hjYTreP9ru3c2+KUuXhnHkJxSzjgJ8Dw+etLxtsrmOi9lyPS/sdWCrh9t78eK5Qdy4abt6zc9Wo/XIYaZOzcLWa4XvjfuFzS/wV7EdlDOxJ552Whamtl7XPiVItn5lFra2Z3nhPjJtWuiZNe207Lhmz47wRO5A9t5Wk1PW5s1ZmE2gzHnG5iVwVzFXBl+NfcqmmHTcK6a8851h5OWXZ2Ezhtauz+aLGcZCoj+xvluM9QEZfcqZhXAdm2UAaKBO2XTbbYWwdazherS3OYXnKTt5UP5HLV+e/dxOAmuy85YtWxREsU0TF9+ONfY4scXgucheOubJaP1C8vom2Tg+jnnP2HJUou2I56+S9zx2e7D1w3Mk+xoBvi8oTznsWWZfuNk/ysaxb571ymO/SZ62ZswIZ5kpi+kGrKEWG9x4Rj7cQW0n4Uow+XP57RTM2XMf9PzFbB3wMV/atiEXf9SoMC42TgDAWmTmwfppcT+z/lMxlxFvHNp5xIPrkvuIrQMvjo+9uYnrzvonjh6dhSeNtE9L50WPYD+z6Y3GFGpTaxa2nn05mdJEg6/VMT/0XiTzGrPadPSgaDCVPHZs8Z6ktp08n0Qm7/xv89u1Jytj3YQJYSR3Qq+ueAB7hlqegTGl29oSJuN51jYhZ8F9FQiLz+/nBx0UpuNiWQ89jrNjvhzPXK46r629bsxjludtm3b8+OC3R4yd3XmcjogYGAoxyNl/rs8VxOhJo3usKhNCCCGEEEIIIYQQQ5+K/Fj29NN2PzQhhBBCCCGEEEIIIfpOBQoqgHnz5uGUU07B5ZdfjnPOOQfV+1ij+su/++V+KllpDNvbVFiebrf05VXIVgFx4YXZt877VofLXnmJL+dhl16Pq6bl7p4Gwsax1spbn8yaFKsfPP74LGz0Kfevzra5512m7fJhXlrsrby258W2mvdkSqXC+bMsBgi3qrZLnqdNqyuEecvpDRvCdNxMxciNYn3LbhnP5Tr8ZKMx4g5rGmDzwUsKYb5vm789LgUuo5WxcFxjY0MQN+XUU7MDq4/je2OdyXPPhelWZjrSjWFMMMGa3AP54LRIGACmnXNOdnBh6Ju4Y8FJhXCrmTu4Hjypbn/Dfdf2cZYlH3n6uUFcHWkX5770UiHcxJpbAOu8i3Mb2sHBcxhXkJ1IaHBMM/IpVupyH7fzzWuvZWErIfNk4Dx38Fxnb8VTwHmwrMKTGXryqbzXG0j5JteXp5DynhOeFJJldbbuWApf0xL+oW8mPajffDOcmxgul82f524bF5P42vtsa8ok2zWePpE7MhB2BtY72k7uaHw91VUM7zntSZi8Zz3HeTJPe55VrXZTZQTjHfS3aSvB8mSeXP1e/XAft+XnOsn7jjN2bDydlZcx3rOGH6PePNjjfdNqm/Pg6d1LlGH2KBfj6df42nbwcaPa8cXwQDeNVl8fnzti2MecZ2nC2P7JUwDnYdPV1dJ4sB2ZXxLKgc0/MsnYvs9TmI3zxqG9127s3MB52vy5y9jf9fobLkve+dhrQuOoUUibpqWVr5KQZ9nQpCI/lv3nf/4nvvWtb+Hd7343Jk6ciD/5kz/B+9//fhxyyCG9pn9x9Yu9/nywcMYZHxjoIgghhBBCCCGEEEIIVKgM89JLL8X999+PVatW4bzzzsO//du/Yc6cOTj99NPx3//93+josBbQQgghhBBCCCGEEELsm4pcWdbNUUcdhW984xv44he/iBtvvBFXX301zj33XEyePBmXXXYZPvjBDw50EfsM76JmV3bzMv/168PvnrzSO7brIQC0z8uWb0+3WzR5+jhea8/r/+26Y17ubrVDzprk/bmUlZeRW4lROfAkTCxFmDQpjONl39yedrm8t4Kdd7Cy8hTOx9sljJtmV3u4I2sdJzYddNLobDfPCRMySaldfl6OtuZiWPnImDFUprFtYeRK0tHZbRzvuisLs2SYdmYEANDOTo2mXKsobAUcLASZQeEegorYGn8TZevRbtq5v7D90ZM0MT3kQHwDtKvuONtO1O8abaasd7LSG5aFe7ts0by1fXsYFZufbZNxHdjx6zRvUBSeO3KqTHrkYfHyHErklRh58hdPrslWAVZix8qqSQtnBHHbdmbzKUtX7LPek9ly/+G5zsZxF7eP6ZrWl7MD6wXBx/adILatmh30sV0z4cubYtJR207uO05kR2tns0FXImWdJmx1ddPh/C3aqvm4Wu29xaTStk97r1r8bmGfC7H6sfl7r3lcP1Xt4TO2ozrr46+/3vs59toNMW1rMdgbKGaL0L5SzG6Ysa2GHZ1kW234lrCJdia0808M2289hSnj2Vxw37JTA4+HHiODOwY/VPnnQPhy4W3v7vmRUIFnLwh3t+bnu7003499D4hZmniSVU/m6b0TlAq3k31H4+t55aDXsB79jH8lnN5s3rO7KqWqYwi/ZIghTUV/LOumpaUFjz76KFpaWlBTU4P58+fjy1/+Mq688sqBLpoQQgghhBBCCCGGIGk6tP/oeCBTkTJMAGhra8P3v/99nHTSSTjyyCNxyy234OMf/zhefPFF3H777XjhhRdw+umnD3QxhRBCCCGEEEIIIUQFUZEfy6644gpMmTIFl1xyCUaPHo2f//zneO655/C3f/u3aOpavj127Fh8+MMfHuCSCiGEEEIIIYQQQohKoiJlmNdddx3+9E//FB/84Acxw9mnel4p200PAFVVmTbcSu09qwP2APCsRPg8z7tlxNETg+MJ87LjKiuw5wtwoa0RQszbDAhMNja21gVRnP2rr0YKvA9iXhxAuIW59biK4Xn/eLCXiNX5syfA9MYdYSTX5bTGQnDXvLCd2GvCVj9XueeDwENl6dIwrqY98x7DnXeGkd/8Zha2FXT22YVgFV1g5uLF5uqZp0mpdcz1auu4oZb8Ezxfsl/9Koh6dsWKQriOwo+aa0+jSn/axJGVCGabOD5mh5ZGkw6zZ/ceht/2MTuh/sYbr54nlPVMmcmdksPGD2bck09mB/Z5cNhhWdh6Ms6Zk4XZI8cWkjqltUkhu7ogzvZBbgvPjsezifTwtqRnPM9E7zyeOzwPOptHzCOq1HFeKlzn9jHE9zZiRBi3dWsW5jJbzxquE9t9uO03bgk9H2Pt7dkr2Wt7nl8xnzVbxnH0fOlRQXyiVzA+zxp70YDY1TgliGpZQeGW8DSe07gYdm7zPMu4yFxX1rfHe9fy4rw5LYY9J+bNBoTVyp5Qnq+aJa9vZMzjzsZ547cNYR/f2ZqFuYzs5QeEnn2zZ4fvOB7s3RvgvUyXimcSyngTIb982jydiWpXfVYn61vCLHjcLFgQLxZjn7cvvZTvvA0bwuOY35XnzTnTPqdjdWk7LtedNd/zHoJ8TAWxl+U+6M0B9tJ8b94Y8mzV+NXOVg/nGe3v8H0S+RXKvgewP5v33sjlt/MN113U2zhJ4pkLMYipyI9l69evR01NzT7TNZXDJFQIIYQQQgghhBDCIM+yoUtFyjAvvPBC3HzzzXjT2wZQCCGEEEIIIYQQQogiqciVZWvWrMG5556LcePG4d3vfjcuvvhiLLXasQqiujouj+Slrp6Mzp7Pq5V5u3G79JflQlaOGGwBbi8+fnzxF7DLykmOscmo42KSHVuMvNKhvEuL+0Me5OUZxFltBksGqSPUGRnj7NkzC2H7Vw1Pdsv1w01Ts/p3YUJe43/zzUFU+223FcLVJ54YnseZ0hrzHXuMTKMMckHOw0qbdo/KrjfJrm8/9tgsbPSDM+69txDm7hkKhoH7KbzRxB1F4bkmrpXC/FeLHmtmDz00C5vVsq2ObG9/S91i1/XkQRzXQ87E+mUOW/0I9zPWRQKh9sCuNObzvELSDTlK8mCq4+nRwtMlkL//551Hcs83Tpz3rPEULh4D1R+BsOltU3vKKlYTcptu3hym43nWqqz4uWr7D8thrHSX4TKzZAYI5ztPnjhpUu/ndOafzTozZoQzVR0XzGq9edByOtOBWEJmpZY8nG35uX64jseMCdNxHdt65H7HedhxyG1jn5ssz7VjoxS3DyuVY0mi17e4um1f5Ta1fZzvLe84tHXAeXqrJ7x3EJ4vbTpu+6rWbUFcR+M4p6QRPK1rqeR8TvSovLyTK09UTkPZ7EsR0XBbAD2leTGmTo3H8Zhy5coLnMmOb87TJNu28OqO8txVm/WlZ83vHXZuYrzfxfjSXK/W+YHzsPMUH9e1boxHOr+wsETTSjL51wZbfp6DuZ3sEOJjW1fe0GhubuhM82bOTibEIKMiV5Y98cQTeOihh3DRRRfhpz/9Kf7gD/4Ac+bMwT/90z9h7dq1A108IYQQQgghhBBCCFGhVOTHMgA45phjcNVVV2H9+vW45ZZbcOyxx+ILX/gC5syZgxPtChchhBBCCCGEEEKIMtLtWVbp/0RPKvZjWTfDhg3DGWecgRtuuAE//elPMWXKFNx///37PlEIIYQQQgghhBBCCENFepYxzz33HK6//np8//vfx3PPPYfJkyfjiiuuGOhiFcXIkdlWwVai73lUMHm3Dfd8InpaAWU+Jo3TpgdxVbG9ks0NtDVlvmTWJ4V9yqwVCuNZEcSs02xa6xWze3fv55Xqx+PBdgPWz4Y9cbDJ2auaO4JpKP7iPW3azCCOy+9thR3c5+3Phgm5cUxHCzaxtpXM3hPUR6xfgj2tFLiPsL8M0LNfRE80JhLVVLBWqn8r9GZ3iSkmjt1/5h95ZLwc7LlozEQ63vPHhfArr4Sncbew9ehZo/Qn1ouDu4zng2Pnh43NWW1OueiiLOLkk8OEz5r+yrBHXc7+2WMSpriqnTuCqG4vDiAcQ3XYFebhDMTaJuuCVzx5/WYs/GxgPG/IYubIgfQpY/J6yNl07A/G3SeYtw12nuW6tM/pvXuzMHdVO056+PkRnNbOfYxXZm8cch+vsVZDXCk0l7a1h3+H3UKPEHsvnp2TtSCMpeM6sP5NPDa4Dmzf5Lorpt96vqB5z/Hy4DLHXrvsse2DpXiW2XScp/c+lddb15Yx2K+rHA8vewP784For80VZm885nVmysu+duWwX7NF9OYHxnob8+14Vcztu/mVcH6YFHvJ9wwmvThLJM6OO8830mtCPo/nG7LqBRC+Wth5qqb15ezAvtPEXpKdwVwVvp1jeiNdfH5DEBezgrOvQlxf3u9ig+W5L0S5qMguvX37dtx000247rrrsGLFCtTV1eGcc87BN77xDZx66qlIkmSgiyiEEEIIIYQQQgghKpCK/FjW3NyMvXv34q1vfSuuvfZanHfeeair6/tf54UQQgghhBBCCCHy0O1ZJoYeFfmx7LOf/SwuuugiTJ48eaCLUnaKkbjwMts9e8JlzbFtvq0Eglcn22XBvD07S0QAYNLYxkJ4B20739AcrmveTrIxb9W0d9/lWHJuYfmRJ18oB5z/pAnh0uhA82KXXnNjcYXwenyTrtZsB56XhnoqVxEal6DZHnssPO/uu7MwrcGvOfbYIFlz88T8BY3ARRzXaOqY69HW8R13ZOHrrw+iVtN5rBJuMdeeQeGZJo4Fs/OthvId78jCLL00MsxQ+hcun2fsOBmoh7YtB8svvDJaSUQgLfQ0QLFt1QFfi839nC9uNeGOziQq/Gh19AumEmook8bG8I8+MUmErcdSpZAsA/TOcXarrwg8qX1dLc8X4XOU68e7b57GbTpPKs1tymH7nOb29iSyVkoV6/5Wtjt1aha2MquanduyA6vRjHSMGjOY6+trkAfbr7keApmegcvsyfu4fuy1Xn01nv8bb2RhW//8SLGyqxhr1oTH3E72MXHQQVnYk7x5UmN+JnY4VsX8TllbG6bja4djpvPMGHn7OB8PnxfOg42Owi52P1VWU0cXsOdYyVoU72XRe1H1JtDYg9qMoa30MmEfUS0tWXjZsngxGNsHuf5PPz1+Hl8LiPdJ8xrj221wJhy2OsBYZwJ8PTelraN6nTYtfPfkJrTNyVOfvXTsOW1l5BxniziOI+07fjle5qh+vOxiqmAgbEMr+ed5yv6+2P1rg2cTIMRgpgJfe4GPfexjA10EIYQQQgghhBBCCDEEqciPZd38/ve/x1NPPYU9vfxF573vfe8AlEgIIYQQQgghhBBCVDIV+bGstbUVZ555JlasWAEASNMUAAJjf/5Ydsxxx+zfAhaNt12fEEIIIYQQQgghBiPyLBuaVOTHsk984hPYunUr7rnnHpx44on42c9+hjFjxuA///M/8cADD+AHP/hBkH7xJxcPUEnzsfrfXyjoxL2ti73txa0fAC+2Yw269YlgHT57lAGhr9dzz4Vx06ZlHiScR3Nz6AXhafS9e+W4J5/MwiPNd8WtW+P58317VkZMf+wuPqWZ/DBuvTWMXLkyC99ySxjH5hBstjJ/fphuwYJCsMZ2BDq2PjIAVcrdK7LwtdeGye66qxBcZzrQbyk8zphZLPmXfymE6y+4ADECDzPjieb5qzDBrVlfnfVk9vHQQ2Ec+ZStNSYeqyjMTmem9sHduNHEBRY273lPGMkmM5s3Z2FrKET9YhL7nAHY3DSuELY+JtZXY3/xzDPhMfs+2UXA3NzW4yTw+7jtkSx85JFhQu7zxjRo257M+8Z6rcSYN29ucMxzxfbtYdpJb6zLDvgCPK5tJtaPhMZ23bx5QVQdVUrjvMMLYdvWjDcPluo35vlLMq73Tz8bn3lzRcPOjdmB7YTUbg1m/gmOV2fpDqc5FwDW1Wf9zNoi8vTjefZxN7ZTmOf75/nsjBqVhXnqts9D61PGTBob99tjOhqzucj6bvH7w+rVYRwPG9uv7ftKN977jp33+F75/cHzQLNefjFLJXvtvNg8+Pll33F47PG92SHEZe7xHkMXrPLGHt1MjWmMGh4LPeyiMi9NW/+xfmfrjS9ny2+GWy627Qx98hqb4t6oPHe4cxh3vLwvlRZ7c3TMz6stZh5ZtSoL23Fi54s82Odh3n6c9z3DzgGczlbdPPKoa27OwjXeC7l307YtuN0oT28s2/nBK4p9d+lmZtOO4HhXczZO6lo3honvvDML20nSvvN0Y9/pvWcs/e4x0xjbjZo1pRB+8cXs5+zVaLO0Ho/8K4rtI92vtPqQJCqVfL+JDjJ+9atf4ROf+ASWLl0KAJg2bRpOPvlk/Nd//RdOPfVUfPWrXx3gEgohhBBCCCGEEEKISqQiP5a99NJLmDlzJoYNG4ba2lq8Rn+pP/fcc/GLX/xiAEsnhBBCCCGEEEIIISqVipRhNjc3o7VrbffBBx+MBx54ACeffDIA4FmrgSiR1beuxuO3Po6qYVU4eMnBWHLJEqy9by0evvFhbF+/Hed86RxMmNOpE3r56Zdx7zfuBdDpn3bMe47BIccfkvtabW/GVxTHZAgWbzkx52Gvw3F21S5LOCxGrVLALkfmcliZJ0s/7BJwXl3M8oLdu+NlKkbZE9seuT9kmEGlexqdDRviebA8y2oSFmcy444ZM4Mob1V2IMdg3evb3hYmpEqZ/rOfBVEt1HBmUTmepvCCH/0ou+7RR4cJef123n3PDTU7t2UHto5ZXvk//xNEsfTSCOcC6SWL++aZdPNpiX+7GbAtfPDAA+GJp5yShXnZPestgLDhXn89iDrqoouya7fXBXEDteTdkzBZeOzNbNwWRq5qycL/939Z2NRBgBnA42hCam0M64ebioehlXjxPPj442HcyMXTC+GGBXSinbhZWmv1L6x3d4jN6UBYx8XIMPmYi2iLxOm8ObK6Ov73N1f+1d9wo1rdEHdCs+f9DmSymYb5Wbp1W8K+xEOW+xIQNretO243LoaV+3J78HQJhFP31KlhHEv6+BFin+2TkpezA9u5HqcbsnVHnaZqcqa9mWQ8FsYuzmQ+xfTPmLzypZcQxb4j8HTB0jArMfJUXdwetvw8dS9fnoW97r5iRXjMae27EHdJ7iMjRoTpOK7HtZ0Xgbb2bMwGsjfzMtdRHcoamS3URex8z/0/NucCYf1bCVwpMkzjqhCMEzPMAzw59yuvZeM+sAkAUOU96LwXbYqrb6rr7ccAwnq1w7AUGWaptg15r2XnKZ6Cbf1Pb27rvWC2k/DgsAOdXzysxwufRxVZZwrS1JTN97b+WXbo1R2ft/2IhiAdzzkLFkwJ4hq4LHYAlMNLgd6tNyK89hp6r+H7dBTDPX4HZAeMmTOMlLmrHYenbRjKpKmkpkOVivxYtmzZMjzwwANYvnw5Lr74YnzmM59BS0sLqqur8b3vfQ9nnXVWn/Lf++ZePHzjw3j3N9+Nmroa3PCnN+Do847G2IPH4rS/Ow33/tu9QfpxB4/DOV8+B1XDqrBr2y78+MM/xsFLDkbVsIpcuCeEEEIIIYQQQghxwFKRH8s+9alPYePGznUsH/vYx7B161bcdNNN2LVrF8466yx8/etf71P+u1t3o66xDrWja7FtXedqh5q6GoyoH9Fr+uoRWTW2t7UjQdJrOiGEEEIIIYQQQggxuKnIj2WzZs3CrFmzAADDhw/HlVdeiSuvvLJs+acdKZAAj/zoEaz8/krMe/s8JFX+B7CXn3oZv/nab/DaK6/hlL86pahVZXv3Zst4rTyCN07zdsO0Sz95Fa8nxfPy5FXNdol2bGm9twTVxvEybWcTx9hGNj3y9HbztKuaJ0/OwtObdsULiXgF5d2pMdDo3H13GEdbB7aZ7YNq5szJDlhDQ7JLAMH6Z7t0nNu7oT5cGh3sAMUJYzvvAD00IotIlmk3U+IF9NztjrrppjAh7wRpZJi8M5Vb3zffnIWtxoV2wHzZSByfiIQB4HAKc43PNDsW4v3vLwSrzfr82VyWSy8Nz+N2ZNmAlZFed10WtgOFOvYiKgcArGuKy2b6E0+KbTniCDqwY4N1RnzfdjdYqrvNb44Lol6lTmjVjzzUWdFhd/HiYxvHkpTaaZnkosZWAuvGrE6VcbaSq6vNxkJ9fTgWuI49mZslJr305JoWjnN3khtIuFLsHE96EpZdAmaHvhlxiQ73H9vfvbrj5y93cZsHx9lnNqt3rLyJ005pIgmM1VLxnGN3a+WbtX2XL8DpTCFrqjOZZ3NzuCshl9nedyxLO0y4fmx9swyTi2+7gbfjpXdeOSRwsXIA4XuN15e4i9tnPTa1ZmHTNtX1YZ/vZld7+PzgS9tyeLtc8pzJThN2PvZ2Ti8F+xjlMnoyTA9+VbFS9XF5X9DtM5xu3JPacz+zcaXsyFrKOYD/fMn7HHJlwh480Voddd4ta7kiTUGm07udtRTIqaQNwlu3IkqPPs5ltFvilgN6zu0x6lauLn4VtV2Vu7hVuk6pp50/aedoANkWm56PjhCDmIr8WMbs3LkTW7duxZQpUzA8p/dLXhZesBCHnX4Y7rryLjz5qydx2B8eFk078dCJuOAbF2D7i9tx91V346BjDkJ1TcVXrxBCCCGEEEIIIXpBnmVDl4o11br11luxaNEijBkzBjNnzsRjjz0GALjssstwww03lO06taNrMeukWdjyXL4/H449aCyqa6ux/YXt+04shBBCCCGEEEIIIQYVFfmx7Oabb8a73vUuNDU14Qtf+ALSNC3EHXLIIfje977X52vs3LITrRtaAXTudtk4tTGadsemHejY27ns/bWXX8OrG17F6Emjo+mFEEIIIYQQQgghxOCkInWCn/nMZ/C+970P3/nOd9De3o6/+Zu/KcTNnz8f//Zv/9bna1QNq8KvP/drJMMSjJk8Bsddchyef+B53P+t+7H71d24/R9vx/iZ43HGZ87Apic34ff/9HtUVVcBCbDs8mWobchvuvDGG5mHhbU94G182WfLMn58eMz55PXU8Hwo7Fb2eT0lWNd++Dzjo0GmFdPtxXdmx/X12TbHNhn7Xtg43trYau8Dn7K77srC1ivAeGgFOFupB/D21+SfBSDwKegxGNn3iMtx8slBsl21mU/TM4+FWRx0UBaurY37HAXbVvMe0EDYiGY/8Hq6t2nm3loovJLCUx4LC9nEe7x/6UvhtfNuk33VVYXgNpP/Wgo/bU7jY+MEF3iWBT5lF10UJuT2sIONDWes1xnXObf1ffcFyXaRCUYbecQBQCP3LbOX/fSlSwvhDkzH/sJuKc5VYsfhpNepdW69NYyMTTLW8IfqceumeFJ7Wsxnx04B7KXTbb3RDSv/2Zvn2GMXBemqmjdmB9Zwhi9oHwCRQo4YUYe8eFYuDFe35w3pzf3W5yVGMd5mnldh3nw2bsryGDYs9GiaQF5kz64Kz+Phxf3A9iX2YrJTQF5vIE5nz/G8YnhamT7N1Adn1OIY+MVuFOjpYcbw84D7tfWmoXRTzDSIeZmHmecHxsWyRWRs3XFaHqOerZGXhz2Pq87zh2U8v668foH8bmjzsJ6GNTxoTYbhvWbn8WMZ6DmvM1yv1g2FfZvWO12QfWVtHy8FtokEej57SoG7uK2Pjsb4+2DQGrYDUcM1TGsshG0bcvntI8Qel0Je+Zjtj/yKw93M2nZ63opY05KFuSNzh7FxFr4B2zgcx53VdjQaDO3t4TPWm/95nuI42y5cP/bSi9iL1TNl9HAmnQcfyfone+8BYTXH/KJt9j3mg2cpE/ui1P2AbGvDUEYyzKFLRX4se/LJJ/Gv//qvAIAkCY33x44di62eq2JO6sbW4YKrLwh+dsjxh+CQ4w/pkXbuKXMx95S5fb6mEEIIIYQQQgghhBhYKlKG2dDQgC2R5VItLS2YYFZYCCGEEEIIIYQQQgiRh4pcWXbaaafhX/7lX/COd7wDo7uW9ydJgjfeeANXX3013vGOdwTpf/k3Pyn6GqPqqko6rxSq04mF5bl29S3LH+2ycsYuyeeloLy83S6r5eNitnoeMSIL87J7W37+pvnEmvDb7IwZMxGDy1JPy5rt0t9hw7Kw/UbqLSfGytVZ+Be/oIsZGdRiEufl1J72kAbxHua8jz0QaGiq7Lr1887LwuefXwg+/WxYj9zWVgLBt1NTbcrFskxqYJv/mDHZqslJF84I86CKPdxIKBvvvbcQ/i39/OUwB7RSB51t1zAH+q9wWTzX81qSXj5q8ufrbTRxvB50iYmbeM452cHb3paFjz02TMiyVU/CamSYG7dky+KnnHpqFmEGUd0zzxTCHatWBXEdJH2tWrEivDZpAKouuyw7p5//RnL4tB3B8ebxmcxt0gTTB1fSBGHHHkuPqR47lp0UJOPhZeURLDHiOcsejxoVLwZ3wbFjEYXnYKu2njw5k5JPP+WUeCHd/p/NP8ONTGzv3ni5PBkmz+uefICfId406OXB1ypXH8ybj+0XDEsozfAKZDQctjI9rh/bf/iZZZ+jMXWNTRdTbAPA9GaStjzbEkZyQfkGWIoE+DpDfqjYguX1Y4iVA8CU2U0UZd8RoqcFsA2FHQt8aU/F5b3veHGOwjGKJ3O2eXB/YtWrzYPnsx7Peq4Ec4FqyofLYceMJ9Mux0b0o8ts82v7QTnkUZ5U16niUAbrvWhTIauNzQc/o+y8kVfqzdh3aaucjmHlg5wPl8NLV9Vu5HixAWDrii/AL//2PG8gvvFGFraTCnX6xqbw9xPv94nY3GTnG298tc3PrmfHLz/n8loP2GcjP+e8/sLtZJ81fN81W8zbNGs5rbqruyI68tsvCDGYqMiPZZ/73OewZMkSHHrooTjjjDOQJAk+//nP49FHH8Wrr76Km2++OUj/4vfO6z2jQcLyj78w0EUQQgghhBBCCCFEEcizbOhSkTLMGTNm4He/+x2WL1+OO+64A8OGDcM999yDpUuX4sEHH8SUKVP2nYkQQgghhBBCCCGEEIaKXFkGANOmTcN3v/vdgS6GEEIIIYQQQgghhBhCVOzHsqHEiJpM3+/teGw9AFiTbrXlMX8Vu0SUvVasZ8HIkVnYWgDElpp6Xh/23upqSb9uN2zYkhV60QK6OWMOMGLGuELYel7UYVd2sPrZMPK++3oPW8+pnGtqXR8BrgTjWxVc7w/+IIwjb6NHV2dtbbdcZ08TW//smdBgvHSYtvYsf+ulwHm8+mroozH35JOzg2fDOp5C20dPpEKHzmMAbw4+25o/0M15dbyOwnbrD3ZWsGtO2bNs4oIFYeTy5VmY48y+5zuQeXLZMTSJ2nvz9rDuwm3oszxq2IAHACZPLgT3GFMldgeb8uMfh+dxXyPPMluPZfcwu/ba4JDroIdZxpo1Wdh2PD6myc9mwf3Tdh+e36yvY8xuycufPSSBcHrgcWinM7YqbFoa9sJYHjauxUxhsXSen5b18WHbF57vvfytPxHXY15PtLxWV+ViNVlUWu86z3PT87hi2AbHnuPNz1wPPK3YfsCPCfusD+bd55+PF5Ibf/PmMC7vjdqCMdzA1puTYW8bIKiUefNCn6DXXsvCPH5t/+Fi2f7PxeJxWYwvmWeB5FVJDFt+rn7Pz8zzH+Q+yM9zwPfMis0ddi6N7KnV4zxbV9yGfJ88LwH+OCkF2w88z7u8cB3Y91kus51jJk3Ibs5tG8rE1gH7Zdp5vJT6mjQpPPZ8Lxn7isyvK9wHzWtS+PuLbQyvY8ewD6y8D9Kc3mY2ip+VXn1znH0f9DxCwyoI+0hY5OL9y4D8/X/MmCxs+3hQravNhMCDmwc9kFWEPMtEhVJRH8v+8R//MVe6JEnw93//9/1cGiGEEEIIIYQQQhzIyLNsaFJRH8s+/elPB8dJkiBN0x7p9LFMCCGEEEIIIYQQQpRCRX0se5PWbbe3t2PkyJF48MEHsWjRogEsVd+prg6XvjK8lNxbBm8VTLGtgUuVF3jneSuoeTWulQ/ycuIxYyYGcZOmZct1g22TTSVMmJ3JMKv27Arigkp57LEwjuRseyiu1haSK9LIF6ryrn1nmafNn9e0k9wOADqaM7lWKyltvL9c2NXnwRbXplPURPVToVyQT7PSiR3NmXyw4dBDw8iFCwvBJrpvs2l4ICXsAV/c0bu0UNiIfMCqJbOqHIHo59hjw0iWD7L2yewbvvuVLGzVRztGZnVpZYA8NliZNPPII8OES5cWgk3clwC0ciZ2K3Xb1/qRQA5gJyOuu5deCuNGjcrCVrexbFkWJhnsmlVhMr6cnfcc9VEPqUyedCyFAeJd0pbDkzdxd6ra8nIQxyNx2rRsjvTy97art+fFFCl5ZSb7iiuHnCovniSlsTF7huSVuQFh+e3cF0tn8zfTRQD3H0/Ox3nU2BmUG9xOQLFCW30QY+cR1qnaQcPjl3Vc/HMbV4RukZVWLPHyZJiWvP16f+L1M0veMcrHNdVmLDiTQHVt+LyPwU3vyQDtvXFajuP2tMUqh2TS5lGOPHmoeXJrC0sv7Xnj6MRde7J0trzetUtZzZJXdmnJO4ZsmYJu12gqiyuPT7STpye19LTAeQtJFWvnGM+Who95+rSWBZ5E05OIsxySi1xj0nmWGp4NAh+znU1DvZlHvE7IHbbUziXEIKWidsMcNmxY4V9112zCP+N/QgghhBBCCCGEEGLgSZLkvUmSPJIkye4kSTYnSfKdJEkmFHH+tUmSpJF/5/eSfkSSJP+YJMnzSZK8kSTJc0mSfDJJkuG95W8ZJH9nE0IIIYQQQgghhKgc0lSeZXlIkuSvAHwZwG8AfBidAqC/BnB8kiRL0jR1dgjqwcW9/Oy3vfzsJgDvAvCfAB4AcDyAfwIwG8Cl+7qIPpYJIYQQQgghhBBCiLKTJEkTgM8CeAjA29I03dv184cA/BydH8/+OW9+aZpen+OaZ6DzQ9mX0zS9ouvH30mSpBXAXydJ8q00Te/38tDHskHA6NFAt02RI6GP+pD1RszDxlqOsA7f8xjI61nmeelYzybOg22NAGASLcasWr8uO1ixIkhX5W15/ywZfX3/+0FUx223FcKr6ed1Zsvjw/kGSvyTQetdd2VZmLim55+Pnse35l3a88sJ8PaqDhou7mFifUbYZ6Fhzpwwkjyo2Ctso8kz8BizHS1np2/hy5o4Pp5u4saxPxh5gwEIPMva6jNvvJ2tYTKuE29HdM9XkPNoWhCWsoG9u4xnWe0dd2QHW7cGcTupL3suQez15HleeOcFUH/vAXkFAgAWL87C1riR+s/Tz2blslZsXOe2u7CtideVuNvZdJ79Rl7Ff8zTBADqQF6Lq1eHkXRi3eysM9UZL5ddtXXRa+d9bvDcUS4nA+7/A+kXxZ4v1uqGy5jX58g8JoL68uZqL84r47ha6iObjHnpK6/0HgbCiYUztRM54xnaTDAqCe6H3NGsuV9OPyHrO9rYmPVrb4x6/qoc570ulKN/5u3v3qPYS+u9jnCcncerymDcxvOg955nvXX5ucdxdmxxsdavR58pRx5ens3NYZzn6cbY+35zUva+xY9wW36uO9uPPT/FGJ41oYedm3iob98eLxOXeVdj+Lyq418AvEHEx7YgfAGeTG2ePGfZ/Cmd5yto647bnn+nKgbPOzNWJcW8r/F59vdAPh4/niJsJ+SCcGMDvg+mEBlnA6gD8PXuD2UAkKbpLUmSrAVwEYr4WJYkSQJgNICdaZrGjGv/qOv/q8zPr0LniraLAAydj2Vr164thPd2PY02bNiAxl4cdGfOnNnjZx6btu7CR758Px568hWMGD4MMyaPxlV/fTyOvugnmHdwI/a07cXouuH48/OPwCVnzgUAXHvrU/jY1x/E1AmjsKetHR845zD81XuOAgB8+YZH8Z3/XoPq6ipMaKzFf37yLTh48mivCEIIIYQQQgghhBBDie6d1B7oJW4FgPckSVKfpqnzp62AV9H5sawtSZJ7AHwyTdMHe7nmhjRNX+Qfpmn6YpIkG6lMUSrqY9kcu3IFwNlnn91r2r1F7MaRpinO+Ztf45Iz5+IHnzsVALDq6S3YvHU3Zk1twCPXnQcAWLthB8792zvQ0ZHife/s3Pnv3afOxNUfW4atr+7BoRfchPPfOhMHTarHwrlNWPm9c1FXW41//8kT+JurH8RNXXkLIYQQQgghhBCi8okvbqoompIkWUnH30rT9FtlyntK1/8beonbACDpSvP0PvLZBOArAB4G8DqAowF8BMC9SZKckabpneaaT0Ty2YBOzzSXJE3TfaUZFCRJkl577bW5019yySXd5yF98M/ctP+7cgM+/e2Hcc9/nBX8vGXja1h+xe1YfeMFQdorvroCj1x3Hq699SmsfPIVXP2xTpnU0j+5GV+74gQsOWJikM8jT23Bh770f/i/b7+r1+v/2VdfwDevuz33vXVTinwqKp3aB8Us9x1KlFpfTLnrrhxlKpX+6AdD7X4GI/uzjiuxTlU/IZX4nPDK3N/PRyGEEELEWbxkCVauXJkMdDn6iyRZnPbuLV9pDHs4TdPFXookSRrR+XEqL19L03RbkiT/A+CtAIZZ2WSSJP8I4O8BLEzTdFVRRe48fw6AVQA2pmk6h36+F8D/pWl6Ui/n3APgqDRNG728K2plWfcHsHKz+rntOGZe074TAlh0aBPWvNDa4+frNu3Enra9OGr2uB5x3/35Grzj+IP6WkwhhBBCCCGEEEKIgaARwKeKSH89gG1AwaR3BABrdNdtkLoLJZCm6TNJkvwQwKVJksxN07R7ddquruv1Rm2e61XUx7LBgF2Id9Oda3HXwy/hqXWt+PbfnYTaEWGVXn/bM1j55Bb85pvv3I+lFEIIIYQQQgghhCgPaZq2oFMyWSzde7xNBfCsiZsKIEXPfeCKoaXr/yZkUs6NXXn3xlT0LgkNGPx6kP3AETPH4uE1W/adEMAjT2/BYTMaC8fvPnUmHv/BBbj3P87CFV9bgU1bsw+Ud/52PT537SP4+Zf+ECNqyrS92ABRhY7gnxCVSIfpyeLAZX/OZ+pzlYHmByGEEEIUTwpg7xD416881PX/8b3EHQfgqSLM/XujW3652VxzapIkgcSv63gKAPZn6xW9DQJ46+IpeOPNvfj2zU8WfvbQEy/jhU3h/vAtG1/DR7+2An9xwfweeRx/5CRcfPocfPUHqwF0+pR94PP34udf/ENMHFfiXsJCCCGEEEIIIYQQlct/o1N++aEkSQqriJIkeSeAWQC+z4mTJGlKkmRekiRj6GejkiSphSFJkoUALgDwZJqmz1HUjV3/f8Sc0n38fewDyTDRuQnAz77wdnzkKw/g8/+1CrU11ZgxuR5X/dUJeG7DDiy8+CfY07YXo+uG4y8umF/YCdPyt+89Gove+1N84tIF+NjXH8TOXe244BOdGzJMbx6Fn3/p9P15W0IIIYQQQgghhBADRpqmryRJ8vcAvgTgziRJbkSnFPIKAGsAXGVO+RA6vdHeB+Darp/NAXBbkiQ3A3gG2W6Yf4LOpXHBro5pmv4iSZJbAfx110e3B9C5su1PAVyfpul9+yq3PpZ1MWXCKPzwn0/t8fPd9/xp9JxLlx+KS5dnH86mTBiFTbddDAC48+ozy19IIYQQQgghhBBCiAoiTdMrkyTZCuCvAHwNwA4APwTw8ZwSzE0A7gRwCoA/BjASwEsAbgLwL2marunlnAsAfBLARQAuRqdP2T8A+HyeMutj2SCnvT0eV1OdL11I5Slvq+k+S/YXshXEx3v2xM9rbCztekRV67bsoNoMudraaBx75oTFD9vQZhmmLL6+yuXVE1ybb6C1NUzodV5umxkz4unWr8/CtWZ1Lh1XefVvGIyeRT3a06s7jnPus9xUtbeFP6iOT1Qd1TXRfPLPaaVRXV18+9oyxcZe3nQWt33zZuKQt08Pxr6/P+jZ5/ZfPZTcR5j+HjSWMvRJJm+/K/U2yzyceuTJ06zXTrv25O9XsXKW+7kPlGfc530kFUNdbfH3Y+uY66umurT6aWvP8ixz1+9BqXWV9974XorJwzvPoz/6a0l4FesUMv4+XpbsS0pn643LaOPytlvJv2/l6bB2h7whSb97fg0J0jS9FtlKMS/dpwF82vxsEzo/eBVzvT3o/Fj2yWLO6+bAfCMWQgghhBBCCCGEEKIX9LFMCCGEEEIIIYQQQoguJMMcosRWxPb30vG85QD8spSlnP2hB+grnhy0HxrHW5ZdbkqWB7HU0qarr893cda/2Dx2kgTeymqd+o/dT6lSlVK7nNstBqofexRRJq/PsEyyP26zHHnmzaPkYV7CnFCJEkruB8WUP++c1s/TbPRa5bpev0svS62gvC8aOfP3ZEUejtK74unvvhur42L6cSmvWv0xTjz4ejVluNb+Ln+lsd/rY39O8iXiFXGQFjnOUJtohXCotOEphBBCCCGEEEIIMQhIIc+yoUnl/QlaCCGEEEIIIYQQQoh+Qh/LhBBCCCGEEEIIIYToQjLMQUDSsRdVe3Z1HrC/EoBNeyYWwiYK8+Zl3zp/9rMwbsMGymNT/Nqsk2frKMC3i4pZRFkZO6dragrjjj46Cx95ZBhX8+wT2cGWLVl4xYow4dKl8UK2tGTha68NonbedVchTFdCncli/gsvZAe2Qqz/VYSnx4/Prmvi5lK4/uJwJ9yqD30oO2/2kkJ4zZowj2HDsvDIkWHctGlZeFytaWBunNbWQnBVy7ggGd/mqFFhFpNG78oOrr8+jPzSl7I8n3mmEG4LU+GXFP70c8+hFL41aVIhPM3ENVC42cTNHj48O7j88jDy/POz8Lx5hWB748QgGY8vqkYAYZdZvz6M47Q8Nk5YbGroO9dm4a98JcyDOkMjtyeAXTSg6/b+/9s79/gsqjv/fyaEhxBCCBBMCBcDBEQMiAiKipYqVorYeuu2tVKx7VbbbVftZdvuz1rb2u3NXu12tWurXW2xtfVStd4rVhTUoKioKKiIgCC3CDGEEDK/P/Lkmc/5JnMyeXhCAnzerxcvzuScOXPm3GYyOZ/PSbY0PCd+UXPnuseTJ0fhmho3rrIyCpsJiPs/pp+UCT70kJsFD3Nb/zFdHIDbl3nc2HmK29fOkTy+uK1NU6C6OgqPbHjVjeQbsPMbZ8pz3XC3lzcPH5kJ2/vkMtvyM1xmW35+Tvi8VrK0qsoJPn9GfoTY9mXs3MpNw/din6lc53yOvZ6v//Cwsc/6KZPpgG8GAJYti784X5Ab1d4A35x9zvFAGTHCjeOHw44dUXjo0Phy2AagPJpL3bmV24Oz8NXx22+7cZyW34t4egHcKrGPdq5ynrIA4HLaiP7666NwQUH8XGqnSO4/tvr5ehyeOjU+XVWVe+1C0HPaDMS6hlQmvHNn9PMnn3Tz5zq2/ZOPbddatCgK8zPQPg+5zm39P/RQ5/+uP3u2e8xj7eabs1sn8PWvR2Fb/+X0cmHfg/nadvjyeVx3to9zfdn6Z666Kv7eeF688ko3jqeHyy+Pz8O+5nFb+cYJ52/jysuj66Xyae62nYkvYAcKD6KqKsTC7yB2LqJCbi0d50TRKyxefNE9jduG5x/7Ps51YPvPCSfEFRgYODAK+56jPu9P/h2RX3sBd26dOTMKV+Sbzsode9UqN46P7QBobZuNG9sWWoj9AH0sE0IIIYQQQgghhMiKrt1ITXQPkmEKIYQQQgghhBBCCJHmoFhZNuOiv3ecqBvpVVCKjTtaBID9+7tCwLWr2jujLbt2uce83JdUgG2W3/q2XLdSnLjzfHA6u+KZy2KXpo+kddrN4ydkwnl2fT7J49poXHh9u4krorhj7r47uhZLSYA2cqdsqKDwal/CF15wj0mSNYgqb/Lk0U4yLrLtB85Kdd9Oz9T4dgV7cQHJAu2y+Boqs9HH1dO6df5bi1FfYA4feLS/Pong8RROmTg+rjdxm3fvzoRLFy50I0nayZWcmjbNSVZeHkmHbPd06s6UjMeG083sYNi0KQobGVQJyyvPPNOJK7T5pOmM1NJHXD55rFUB3DFqZYY8ybCcDHAqM0Xi3fJytx59CrK4S9ljn1ycZc52fLGchK/NUw8AVJRQz3vIo/WzbcbSEh575kbzqDMNsp2wKIprRHzd+eZ0RxrjwzxE8vOj68XKdg1J03WGioKt0cEGo2GiGy8trXCiWJbGzyvbl3xWB9xU9hnLfY3zsDKr11dHY63EyMAHsczZtj1nxBe3evr33ovC9uZ4AHDYpuUOZMvB1zYarPqmqI+sNkODlT3cFlu2uOloGndupb3jOGzbJMX3nhRHmyHqkXDzs4HnFTtP8XFhgRlDtfT+YwZ6UVGq3SgrlfPJibmb+caG7z7jrpUt9j3G3k828KPM5sdtavsSv4NbuE443KePm46Hns3fJ6+Pw56TtP/buY7bnh9ftn19/Scxvl9Y+NhOoEl/YaFC21N4/rfTZ1zb23HumyKzkVr6sOmGDo1/7+PXDKfqqsxA9NUx/yJibT9ab6irvRiE6CIOip676Nm3ursIXubPv6i7iyCEEEIIIYQQQgghcJB8LBNCCCGEEEIIIYTILSGAZJtpif0LeZYJIYQQQgghhBBCCJFGK8t6AGEYSbwL695x4saMifxJyoa4GnT2DDrsMDdPtsFhKbndjpo9BnyeBdZ/gDX7rOW3XhPst1Fd7caNxutUMONktTAqaB7vs24u8PrayG+joMD14ymtLM6EU7M8XZ109Hm2EliXb/T2zQWuv1wmD+MVUDR2bHQO7z8N4BlOZzybJl1ySXRp2pu68GMfc9IVkpHG8xvdMrmecaa8dKspuu/iuvVuuhoyklm82I27//5M8KXHHnNPo/BqCs+Fi/PF3ppOJfQ4YKch69TFd/OOiWMHranGM66ajvM+8pHYa6dOPDEKWzOO5ZHpTuX0450o7moj86mUN9zgpGu+/PJM2N5bMYULbN/lPcD3JTNmOIf1iPpd4XST9o47orC5b8fDjPr4lEsvNZlEc+RaM42wF8dbRo3P27r7vHpi/TzgTkc811XUveomfIh62s03u3HcbnaiZZMiNrEx82BzeTQCfFYuSX1pbLoUDUuf552NceZC38W72suEG9H6wpEJT4V5SBUdHvlDsv/gS+ZZw/3OevrwpTkMxDfvxo1uOu4W1i/nqKOi/p8a7nl+cZhNvoC2ZnxxcTZdnCeanQfpBqxvHtedHb8vvxyF2QbH1vGwYVHYepTxOw/Xv8/3qTNxtsxJsOc0xFuKxQ4Na6fqel+5I7HYY+YY5x9lPZV8cL1a29e4oWfbkLuktcbLhmw9uTqTJ+Oz0+J3ZNuefK9cB9b2iX36fL5hSbG/CySdgtlHEHD7nc+zjOvE9l2OS8Ezj/gGSlIjNC6Y7eQ0IVu/aB6ztu7efTcKx1jFtrm0ncdTG9ZEB7ZB2YDP977ggZ81PmtUvs+CAnceYQ/SCvuixGW2D7rWSSFP63PE/ol6rhBCCCGEEEIIIYQQabSyTAghhBBCCCGEEKLTyLPsQOWg+Fh29LFHd3cRvBQU9I2WyNasduLKqmmN81p37WwerWUeONBdJMjLglmWYCUKvpWzjEdV4Sgz7Gp/nwQFlSVR2K5bp3XmjUWDMuH8EjfZpqejMMuqAPfeiopGO3EV554bHUydGoXfftvNJIt94a1MKW/y5Ey42MgweTX9apNPPYWn/PjHmXChXQM+e3YmOGn+fDePhqgsdtV6XlMkK3LW1hs5JR5/PBNsuPdeJ4pL8pR7lhPHtT/epCskmWo29Q0Agy67LAqb+hn37LOZ8HoTt4zCboyjUsW4W2/NhIvsnvSssbDL56nTcz8AgAEDSBb7ZryWJ4/yP2TMGDdy2rQo/JWvOFFbCyJpXkls7rnnbw/FS4GHDx/pxE2aNSs6WLjQzYiX+fP84NGL2Cif9IbjXAmTm87XJVnpWrjq+ejg+uvdhE9HE1XdkiWIo8hejMcG958RI5xkeXSeK3JzJdZerQ3XlZWn0Hyc56sg2/85rU9Cw3SFJPPuu6Ow1TDx3MfPAgDFXOc0d0zgfgsgf2Y0w9k+x1OOjWMJVv/+UZglV4Bf6sfP+vLyCieO1brlNG3lTXatAtrUCcNtavsnty/FbW9y5wCW/Sy/L/7Sthh8HncL20V4CrbyJq4D7tYJb6XD80ghnrjrmkeBk6dVyPI0OHBgFLaWF1z+zgwhvja/E4ysMzo0pzO5c0C/flF722vz45LlsmVlbjqWHtt7y4bx5kXDSv/2Nk+WtQFuPXqnWTMH8PjlcW/fl/k4FxJT24+zfPWKldmuWOGm88kTeYopL09R2H1vL6ykectWAhfEdKD6pijPwmq6UfMs21obvS/b7Dmpefw6j2k+z76usbT2qKPcODxINiD2AcD3w53Lp3U1nXAcImuIcVMrnbiSkqh+kvaz2lr3TaOqekomnMo3z5fWB5hHDi5ET+ag+Fg29fKpHSfqRlbf/GZ3F0EIIYQQQgghhBBCQJ5lQgghhBBCCCGEEEJkOChWlvV0mvdEy10LfVsQeXZ7satbedUuL53dtCk+e9+KXps/L0HnYlmFGqfjJfgAvMumec28T8bCS/d9y8rteZtLI2lnCYXLzY6dbZYTZwPtXllp1qYX0I6L9kq1FGYVzri77nITcuOYnQgLnR1rzHDnte+8VeCjjzrJmh98MBN+yZSRhGdtZIx8ZV7bWWh3ljSSJufaSb/nX3xxFDZSV7zySiZYwbsvAqglyalVOvF+hrUUPnnBAjfh8uWUsNaN4/Fsdg8q4w7KMjErs+XzzjjDjTvzzEzw+c2uBIvVZZSsy+Ed7ABXImVlVqWzJ2TCFbaQvK3ak09G4ZoaJ9kU2sGwYIZbB7zBKe82CLiSCJbD2anIN48UbqYdrHj3TpJdAgDWrcsEbY92BGsTJ7qRrNdiDZCZaHnHUSsB8s5hMfqdNlJyn0bNJwuJS7ev4XHo8xuwMlJ+YPK4NFvCVZIM08q9uM/bKmALA9+upVwsnzTGp0xyd3R027eyMho3beT6tVvjC0aJeXfoOjPOuRpt9XP92OrnMvMY5TkF8O8iyPikijw/2DifxC4byaCV8LF01G44ytJL3/DybkZaYsXZCTKxujnPu6lvM9U4CavvnCFD4uOSYus4F9LOAQOisJX7soza7gjq24AxLp195+bjXOzs6ZvGOwOXJdtdTOPUg7ZM/Fxqs3O9bztSMidoLor2ELfjhLu8lUP7HnNxvw9ZuSbPb6mmejeSPXLs1t3ZbGlt4d89zA0MHhzZY3AdbNvmZhH3vLLY3Xgz9huphPPQfo08yw5EtLJMCCGEEEIIIYQQQog0+lgmhBBCCCGEEEIIIUQafSwTQgghhBBCCCGEECKNPMtiWH73crx494vI65WHQ485FMdccAxeX/Q6li5Yim1rt+Gsq8/CkLEtxgprn12Lp/7vKexp2oNe+b1w7PxjMexIa9AVT5BHengr0vcZURC+bdDtFtoMe39Yiwq+nC1WnK+AzzOFrKMAAENmRD4v1suoggq9zVhQMXzfPj8PW6647eqtn0p1dQ6+J08lx65zz3WiyskYYZzxM1sbE84zN1PFflennOJemxvHmniwgQL58dSTRxkAkCOX4+MFuD5llSZuOoXHn3hidHDBBW7C978/E0zsUWZ4PX9cJlx64jgnrpivbbyeJlBdjjQ+U89Q+B0KNxtPsSY6tqXP/+AH6cDjGceGKradPP3npbrIa2KZa+XltWbqSnyeQbZMbPNVQd5+ANwJiQ1huD4AxwSmdrUbxR4b1ueIs+Qqt55TPJe28b35y0NReNGiKMw3BjiV0maaYoMee3E+9my7zl2rjUeZa1blxsWYxeQVeZ5DnfGK6Safsjaeaz6DFa4f+xDk8rM3oTEeSlHbzJhxvBPHzWa7BcPWhLbauFj2Vnx+YPxM5DxsOrZga+vHMyg2DjSF1VIethpXeeK4LLaLx3V/6/vk84FifHnEpbPHNo4tN5N299NPd495CrC+bXw9X10xNg+fD1RhAc0XPBasdyZPkiaTkpLIr66NX1qMD5ftx3w537tcUox9a06mIh6j/PzoCJ+v17vvtp/O9k9+dfFN40mx9ZMU+/hlfza23fJh++daesHldvJ5GJaWFjtxffrQsfGM27KFoiiub183Hc9N1pOO5yL7mB5dSWOIG8N4WzonbjATIeN7icoWNnA1nbCMrFLfGx69U9rnBL9PcZsBbX+HY1rfm7ZvT1DO/ZoQ8iw7MNHKsnbYs3sPli5Yig//+MM455fn4NVHXsWuul0YeOhAnPqNUzH0iKFO+oLiApx2+Wn4yDUfwcxLZ+KRnz3STSUXQgghhBBCCCGEEHuDVpa1w87anSgsKURB/wJsXdOyE1SqMIU+RX3aTV86JlpuMHDkQOzZvQd7du9Br95Zbg0jhBBCCCGEEEIIIboFfSxrh7A5BALg2VufRc0fajD+A+MR5AWJzn3jiTdQOrq0Ux/K8hrqkVr7essBSz0Ady22XedaXZ0JDipqdKJ274626OWlxnZpNy+Lt9nzEly7hD1uu3crseBl63ZJ9XTS6bVZdk9rfCdOjGQgdrk552njuPx9zHdOXuXMS7tzsfy/DXwBK7GjgthNlbkoq2J+DgCDSIcz6OGH3Ujeu9reHC8Rv/POTPAZNxVYHGpWXoNFjRNMXCUfnHZaFJ440Um3cUck4RiSZf3zknCWJQHAwIHR8vxxs2e7kdRJiu64w4k66d57M+E11IZ5n/ucky7Fnd7WMckm66ee5EQV5tOY9ekA6ebW5490onxL37ukLyfAdnGf3InTNpoRkF9ekQnn0Vz3/NpBTjrulFbmFifvsNdmeSXPWYBbj6nVRojM0kuau+uMFomP7HLuYuqw+W+/7Uayhp4nO6OPSJXQQZ3RQflkmHH4JMM+qwCfPihG8rlP4Ho1cnfn2E4erI9jGYvV45JmZ5CReldVHZIJW+kKN82k/Jei8Ax3Dti4M5rDXnvNzcMqfRgee1zl9ja5HDuMhGngwPj8uUn5PJaWAfHvCwAweHAULitz4w4/PApzlY8Z46ZjSZyVAZLTgZPOdkHO38b5JI80NSXGPAJRWLueLhY/NhqHR33Jyq3rG6KZxTf358HItHku4cax44QbaqirriiujMpcW+DOz1yXPLf6pgrfcy1bbL/LBn5vtOOEJWo+CwQbx3PCW2+1fy3ArR/7PsvTVFLsFNbGYiCGyZPd4zhLEzvX8WuSVfhyf/U5D/BY5ldbwJ3r7DsHX3vnzihsxyFf277HFDeQGYftTHfT7208AdmJduxYxMIdw/4ixWT77Lz//ihsPXHoxWk0W4fYipxcmQn26eO+ybDU1bZva9/l9jtwae44idjvkAzTw1EfOQrzbpqHunfq8PL9L3eYfuuarXjy90/ixM+f2GFaIYQQQgghhBBCCNHz0MeyDijoX4AxJ43B5tc8X/oB1G2uw4P/9SDef+n7UTy02JtWCCGEEEIIIYQQQvRM9LEshrrNdahdVwsAeOfVd1AyrCQ27a66XbjvO/dh2ienoXxCeWw6IYQQQgghhBBCCNGzkWdZDHm98vDA9x5A0CvAgKEDcOwFx+KNxW/gid88gZ3v7sR937kPg0cPxpxvz8GL97yI7W9vx7N/ehbP/ulZAMCcb89B35K+HVyl9WJ5kWjftye6MeNopm+dTcbvh/0TeveOvzTL363Xhz1m2JuApfbWp8DnQ8FeK/Zag6oqM2HfVs8+bw6fFxnH8S7KPm+SrOGLW0MkMoAYzoYVAPKokFx11npjNYUHLV7sRvL+4NYkZOHCKI+nn86EjVOJ41Nm3LQwjsKTTVweex8cd1wUNmYQ79EFfN4bbbxWiPz8aCxYrw+2l9i4zR0nZWycZ01IqN1Gkn9Zm73T+QLWb2zWrExwyRI3qqkpKsvw4ZMy4bU1brrx4yMPmOXL3DgusrWyGDAA3YL1PvGNUZ47rF2j608yJRO++0Y3HY/fpUvdOO7ytlzcDXnc2zkgr6E+OrCT2Mskz1+5Mrqum8r5q5SdYvK5IKNGuZFcaK5In29YZ4jzEcs2v54KPwTtM5a9mOwDhuvhvfeisDUe4mMTV0o+U9ZryGlGj7FXGfmg9Z9sPPtiigu4t8pZWh8yjuPbtNh3CR6j7Fljp1LO384HbH9lrLCcxyXXFXuP2Tjri8PvQty8PusfX/e357EHUtbvD/xCYvsW+Rel+OJ8YQCFPkM2rkhbyDjPMjvX8eRq32Moj5HW1IrLspruxUzIpaWRIsPcWlbwsAb878FJqSiP3kHYI87mb/sPN6+v33Eetrw8buz7cjbTta3jpJ5uvmvxfGPTcfl9vyf4yuGzx4y7FuB2eY4z9pJI1ZIvWY15IeFnvW0cNunymb/xxW0h+Tz7jMqFxydPyuy/CbgNwpOknSuGDcsEj+X3ewCvrorGQ9zvkkEy6+/9mBDAng5Tif0PfSyLoXBgIT7yq484Pxt13CiMOm5Um7RTPjoFUz46pc3PhRBCCCGEEEIIIcT+hWSYQgghhBBCCCGEEEKk0cqyduhf1r/NqrIuJa9XtCTXLnv1aZiIVFO9c1xaWpgJFyKKGz680EnHS5ntLsdclKSqH7v8Nm7resC9NSvb4Ivvqm3/WkBbyR3jW7LNS705zic9zRqWWdkLHHlkFDbbRZc+8kgmHC+8AWr5gLUwgLu82vYtinuVf2zyZ2HheBNXTeG8U091I084gU6Mztze4EohfdusJ8W3JJ/b+t133TiWN3n3q+d2s8vsuV6NPKUxPxpvPpkzN70tBsspc1FXuYJlsSwJ74y8iY/tbumcT5xSCHDrx+bvaRpUU+dl5VDeipfiC8naccDRrDUlbJyU1Rrz/vVWF1JWFoV9MknfZJdUu8L520ZMKgPxnRcn+dwXsDbPzoPcHvZ5y2XmPGxnXbcuCpMcFwAKKc+JE0c6cc6cUGP6VkzCQiNjHzMmEsOz5BBwpyp+FNjq565ru7ivqeLUgz6ZmG/6tHHj7QMnTWrz+tgylZn6YblcYUE0ZzU2uX8rzrZLWuVuEtpciye1t9924/iZ7tOr+WTacTo0myc3nJ0ruAP55hhT/7FaYDMOe/WKZJi2H2eD792wMzj2D859u+8xPD3Y/s/PdPuezQo+HkO2CXlsWKlxLqbThL9qeFWG3Ly+x6F9x+G03P190llbx/b5HpeW6yrVsN1NyI3BsksAePHF+AvwDXFBrBbY9x7JFh6+lyEfvnQ8IGwDrCDzFR6vtlPwvRnNfGV1pK6yz5DW28nVmBRiX6OPZUIIIYQQQgghhBCdRp5lByqSYQohhBBCCCGEEEIIkeagWFn292/8vbuL4KW038COEwkhhBBCCCGEEEKILueg+Fj21vK3ursIXi761KeiA6tjZ/8H1rQbnl/lepG5fgFRHEvyAdeGYrnZKZn9B6wUniX1fC3rpeDzSVm2LD5u/YZo0SNL6IvzXW82nwdPRTl5YvjMyOLMowAAxkOIaE66MJMr1pb38MOjsPEASM2cmQnPeOihKMIYvNVzRfbq5ea/cGEUvuEGJ2ozdYYn6OfHuzlgHIUrp01zIz/8YYqsdONGjEB7FDe84xxPqeTGL2n3nI44aTJ5TxifhUbyFknlNztxXq8VHovcTtQuALC9LuoHdnzVLonCdrt07mrcx21X5WL5imh3G/d5izCOJ0uWcB6zZrnjIs4vBPB7uWzcGIV5p3Nbj5yHHb47d8aV2O0mPNdNnz7BScdz2pD5k5y4PLpA/muvZcIl9kb5AnaccENZPy2OS2oq4zOHTHpeZzyPfNdOWo4sTXcSz8Fjx8bHsTGWb9BMnx6Fhw1z48h3bn2p20fYv2XxYvc09uSZUksd22d6ZOqxbOrU6MB2eOqT42bMiMLzJzvJnlkW1SM/ToB4f0/AHYtx1lSA6ytoHwuzZ0dha/GTWkX+gdw21hDJ07ccL7WC6D591l0WjrPnsbWRfTzGYd+1poyn9wzb9uxZxoZO1LYA/A3Fx2zWCMSb0x57rJvu8cfjy+gzrOMKowfY1vxDnGSvkW2S9TyirpsYmwd3H2sb6YPnmCZ6l+iMvy1Xq/Vt4lc2bgo7hvg5xM/G9vJMgn1XSZqH775jmhqAO7atLR/PHb6xxm1ouzHbffr8yypK6HeI6290I/l92RaS52D7POEG5kLbyc73wsZ52BvIhSkdG7M++KAT1UyNmke/azSa3zVS/ftHB2aApch/ec5ZZzlx9TNb3qmuvbZTJRaix3BQfCwTQgghhBBCCCGEyD3yLDsQkWeZEEIIIYQQQgghhBBpgjAMu7sMiQiCIMymrEEQoKff42c/exGuvfY6AG1Xz/OSZ7skmVfmWmlSXDq7hNqnQPRdm1fd+6ROvNzdKidY/WLjeAl3v35ReKCxd3NkdT4dhSWuUmwF2aXS2cAV25nl1Hwer5lfudJNd//9meA7d93lRLHA7iG48CLqL1C49MIL3YQs/zUSRGftu5WQ0bFXCpkLuO1NHTc2xf9NgJvbFt+RJ1LC7U2u5Jkv7RtDVlYRJ3P2dUGrsuXxYMvv2wGcyYUMk7H1nVSGaecAW1+tWHUE14E9h+uEpWCAq3rm+Sa1eb2bkAttC/n001F4164ozJMb4HaSzkgs4uJ8D4POEHdeJ/JLLIX0wH0wF/m1yX8Dtam9N5/uh+N8ngI+CQ3luWate2+c/ej8NYiFB7O59sYd7nzE8NjgcWglWDxvxY27di4dO7/5VIA2D36E9OnjxsWpZweVxM9ZvvmHmzfbIWPnS75e0jxt/aSa6ttPCMTr3nwPFDtP8QXfMrYkrAXmvusbCzaOJ1qjv2vOj579eQ10nyaPrbVRPdri+2R1cfj6sX1WJiWvqTET5vsC3OrxNY2N47HHedg+wmX2xbHazsJ996UV7jjhPDyOL84zG3Dvh7uqrwva31fi5gc7HzBW4cjlt2r6uDmgIt+1BIltDMC90aQX8NkZ2E7I17NjPqmnhg/W19uXqPfei8I8fm1jc5wdlBS3frM7Nlqr9eMfn4oXX6wJkhV4/yMIJobA7d1djBwwdmkYhlM7TnfwoJVlQgghhBBCCCGEEEKkkWeZEEIIIYQQQgghRKcJIc+yAxN9LOsBhGG0AteuvuWVv1buyBJHu7SbVwLzUmbfRmlWccirgn0Sr6TL3e29+Zacx+XZt697nF8ULY5ss0ySbzapRLMzUs5cELcTFeBWsi8d7Ypl1QW0wZQjuwTcfT5LeUk1b08GuEvArbzMo/Vz5FRcrUm3U+oMHq1fypdnAfcfV17D5c+jPH2TZmfUcXHF8o1ln/orW3yyt2wkmj4Jli/O7qQbp/qxUmxWBvjkKb6NJlOI5DXe3dx884NPB8J5WI2LTwYed71s5ymfBDHLzuSTUCaVV3aF9NLBt9MnHTeXDHKiWHblrfOEGsSSknjpFvJL4vNnSbuRGbKCxsIKO+5aPuuEzhBXrT65Zme6IJ/HEnRfP/Mpn+LO2RuS2gpwmdsMNacfxN+AI2m0DxDfPMUSLLtNJL8gcoXzLqumHD4ZJlsuAEATZVnofSeLzsvFc83Xz3z43gN8BfM9yxhbdXFSQ3sp7v8+FWxS7Pt+0lcvm843tuPwvcfkQirtw+kHReZm4t65AXeOt3Fx77RJt9i1ZKsT9uHbWZvL77Oe4XcXI7eub4rGr32HbX3eNHeBA4sQ+wLJMIUQQgghhBBCCCGESKOPZUIIIYQQQgghhBBCpJEMUwghhBBCCCGEECIrpDU9ENHHsh4Ae5ZZHF+dhu1OXDOKM+EJ480AZQ06e1RYPTpp9reWHBKbRUW5m/+atdGiRN5t2cLlt/fIRbHbTDOsf+/Xz41j6X3KGBywt0tTk+uj0eBo6gszoUElXTAkPCYM7O+RspMsV+wKch+7+WYnWd0NN2TC/zCXfobCHzJxFXwwalT71wJcnwJrIsFxxoupgeqc27e0tNBJx+1bYqwUkvrK1OcXx8bV0u7XfhsKd6Gt07coYX6R62vkg8eQ9XFgDxLG7urNPn3Wa6h//yjs8+SyVnNdyerV7vGOHVHY+o1x2m3b3Lg95JPK92LnG743G8e2GsW1a9zIhdTPeS976+nDjbh8uRNV/+CDmTB33bzLLnPzmDw5Cs+c6cb5/AgZny+WzzCK6YypXhyec3LlA5VzfOaZdJy36lU3jtv75Zej8Lvvxqfz+DoWH320Gzd0aBSuro7Cpo7Xb4h/3vIYsnNMXNeyU7zPNo/Ps/5KPDfxte3c5vNV4+sZGxznHYHDvn6W11Dv/iDONNFOmEnN0+wY4gaxN8Dl4jJv2OBGcv4ev0P3Pcl9ju4Oo+OB4913OeftxzYOeZ46dcBzIuB6mFl/0oLo2ts2uac5PrP84mU66yB6f8jP33vRS2F+o3NcT7XQFfMUV92uXW6cz9eLx0acTyfg1qONGzAgvlxx92q7GXvv+Twk7a8QSe26uLntHBY3LG0e/C7BUyfg1qu1BeVxw+Hqave9saCAjmudKFRWxr9jFuZTQflGff68dv7J1q83Kb6ycOWxf7HpJFubojpYUeNmwW1qp47WduP2E2J/QjJMIYQQQgghhBBCCCHS6GOZEEIIIYQQQgghhBBpJMPsAeTlRStw2yyZ5qWzdm3r+Antp7PHb70Vn44YNNVdclvfQN9SjWygqSkS8fnUQT75FGPjeIUyb8Ntl7e7ygn32y/fqpWvxS99d+WaBTRCsl66H7cvNoBU7dbowLZvDa1z/stfMsEN997rJHuews/AZQqFrRLPEUGwxMhIzTB4cBQ+7jg37pRTovC0aU5UYVVVJrxqM0ti3Sx4Wbxd4s9yAF/9sxTJdnHfjt/ct8aOdeMcuQQX0sgwm2JW4ANuv/b1f8bKGFl+YfOIkynZsmQrw/TJMbg9OJ1VGPnkKdzlrRSb24ax+bNsdcsWN86VYZoLsBZtyZIobPs/XXDDJldjxOONhU9Tf/UrN48ZM6KwHQCe7didRvXJxHwyzKRSy2wkmVlix7Kvn+UEn0aEO5QdwDwHcx8xk0zTCy9kwvm++dPmTwOzfnw0WzeYZPwIt32cVcN27uPHDc99K1e66ey4ZPg8O3/yeT4rBa5+n9rIDg1OyxKeXr3c/tK7N5/jyhPzHauGHDzDOxOXi3OcSknFJmPZuq3HFD2L23QSPpHnn6efdtPxPGU6Qh6d17u3eYfi9t5M147zHkHb6ol71tg4BzPWCu0DMiFO/pRnnunI/O7YmemZsdND0jhmyBD3OO4dytoe9O0bpbPjnLHPXz7mruVTGvtkmIx9B2D1O1tQAG692rriuYnfF6wU1TfXefH05awukDC/xGMBcBvE0wmdPItc6WkdPTpt+/J7q33Etv7+1egqow9AQgB7Okwl9j+0skwIIYQQQgghhBBCiDT6WCaEEEIIIYQQQgghRBp9LBNCCCGEEEIIIYQQIo08y3oAQeMu5G1+p+WADUgAV7vOnimA61nG3iqAaxSxcWMUtvst0zbBTz7tfjtlb5TBgyucuMcfj8Lsf2K9T2bNisJWhj+yNNrivaHa9RkZV749E15TG+nm7db17EXg267eehgk3d2ZrT6y9dXJY38AK+a/774o/NBDTlTzrbdmwuyNZH3J1lP4eBPHx4WXXebEFVJfq7/rrkzY9DKUkE9TJfs8ARh0993Rwdy57onk0zTpYx/LhDfucNva+sllA3tg+OwerF8Oe3kVrnrejVxIY5HGV+rcc51kKfJCGT9+tBPHw5m9MgC3f7KdCvvvAO5O3rauuGtZz6CkNhrZEjcebBfnMtoxyu3B92nj2ErHerq98koUttMg1//s2ZOcuHFzyTOEL2aNTOiC5Q8+6EQ10+TBvecdY7ZS/sgjmfCUxYvd/NkHkD0AAWDy5Cg8YkR8Gbn8tuGTbhnP51k/Fc7DDqK4PExcXlNjuz8HkvtBZu1txs/OZcvcOO401oiFvMheoh9btxku1XATh8MPj8L8QAScTl+49tUobOp/4sTo+Wv7P3t5sacP4DYjN42dY/g862XE3kDZ+i3x/Gy7Fs8J1rJvwIAozF5MZUNMf/H5+SVNl60vWYwXltfv0Z7D48vnK1saP84biyLPrBSMORAntRMt+zDyQ+TOO910/O5YVubGUf3s7uW+K3J/KvN4Nq3fENWX9bSqro6vy7h63rTb9RbdRc+l4W0GaTIa8snDyeO9yh6DgPtebKdIfqXi+7bvutz/bffhxwG/s/qw3oecZ2f8uvhRx3OAbUOeWs1rpHMet43P39YOk6KYxzngvnvZOZLhOrfDpLCW3rTtxXlS9j0P7QTH+Azf+D2AsL55XhYujML2RYzz9Hgsj6QX5reHud6Evnfw1v7fnKVl5P6FPMsORLSyTAghhBBCCCGEEEKINPpYJoQQQgghhBBCCCFEmoNChnn0sUd3dxG89M3rFa0vfuON+IRW38TYNc+8Jpm1W7692Q2c1C5d5qXXLNMYONBNx0u77bJmXro8jvVwAFATrdMuqjomtowsZbNKCV7abSUivOKZl3ZbdVNSdYcXvrjV0JD0spFklwCwjMIs8VoPFxY9TDJxRRdeGB1YmeTLL2eChaQbSBmZEvcsKxA5hCQcVQsWuJF837SMvP/4KU4y35b3TMpT/7b7M75t2wsbtkYHVgLN8iyukxNOcNPxdvLm2sOHR7JM2/QshRo2LAr7pKL2Pn3bsSfdaj7XWLkpzw/23nh+sPIRjhs5PFq/v3atW8vcZ6w8hac+W//l06O2KWaZQ79+bkKeFFiyBKDcSuPTGBGFo9gpMRKOCpJoFvgmmb596cJGzsEV65Nd2gGWVKvLncknX7PX9slD4/Lw4JNreiWarPuxWl2Wpxj5LIvZ+M6sSqmYD2wn5I5tH4Jxshyjg6qlDsWyS0vSZ5SVWfF5No6PfU3PXcRUo/faPA/a/Pn5zt1/4ya3rfv3jyRBDWbec8sSpbPvKkmf9Tauti7KM0aR2YaN21wJUxlpz2w/5nJto+mnd283D67/oiI3ju+7pNS1QchjeTc/RGxHY40aT+qAM0e+u9qN4vL3ryxGHHxpaymQDfadlaembGWYXCXcHzvC1594iuR0VirN9Win2Wye9b55xKcWtG3DElPfo4ex48TnghCXzuZhZauMrctWfHVg54dBVVQp9kb52Pc85JuznSKhFDtrWHppK487M5fRTNbbG6J5xDe+LK3ZeNSfQvRoDoqPZVMvn9rdRfDy5m9e6jiREEIIIYQQQgghehAh5Fl2YCIZphBCCCGEEEIIIYQQafSxTAghhBBCCCGEEEKINAeFDLPHs3NnZKjz5JNuHGvLjaeS499iDYv4PN66fqorSX3y6eh7KVu3AMC6dVHY6tF5a2z2nLJSeLZoaeMTwR5stvxUmEHzySvAaOgbCqLtwX12PFYrz7ZEnK4zOzEnhs2STCWzT5l1P+LWZrc6W42TKVz+wQ+6keefH4WtL5xjJmI8SAhuemsNxnHNppMMp3srpI5QeHGJk278+NFIgs+TiPudtYLguHFVxvPoL5FnHBYtcuPY54jDGze66XigmC2/C2dG/bW09BAnbsCAKDxxImIpXP5UJlxypuvfx5ezVky58H3JBuvlMnhwfBxPRxWbn3cj15IRy7Ko51VXf8hJxk1j75mnzC1bTPY0qGbOjOp1dHW1m5AzNWNo6re+lQlvpoI84eYAtpRZYeK2U3jSgw86cU6PHzIkCtvJ1OcNxsdJPcussRSb4thJ0ufRwnFJ/dGyNof0wIPj6aedqA1kamWdnthhieOsrU7h+98fHZxzjht5xhmZ4BNrRzpRdauj8AeqyY3S1DF7UNkxxFO39ebhZuTqt75A7OtlmzcuD0ucf5nNw0e2lnp8beuXxp5Kvry569o68PmZ8atLUs8yOxf17h3/bOP7ibsXWy5bRp9tbSrOoIrnm5ZCxl+cMm1oiPdS47qyUwU/y7Zti79UUnwWv9nCPk22Ovh+bDtxnfv8c30+uz5v3WywfTApPrsun+8cx/k81nxjLc7fDXDnQZ+3Ir932dde3zzV2BSN0ZSvYEmxA5ErzFZe0onQB3dK20G5IjzmeAUlUdjWFfdJW/xWPznfFCJET0Yfy4QQQgghhBBCCCE6jTzLDlQkwxRCCCGEEEIIIYQQIo1WlsWw/O7lePHuF5HXKw+HHnMojrngGLy+6HUsXbAU29Zuw1lXn4UhY1uWqTdsb8CDP3wQm1ZuwriTx2HGxTM6d7Fdu6I16EZq6axtffvt+DzsmnM+jyQ7dsv1V16JwqwWBFx1mW/ZNK9Itiv6WS00aXyjG3nfsihstRMsiZs+PQobnUNBVSSfssvDfSujuXp4BTLLRgH33hzZK/yyQIdly6LwX/7iRlHYyrNIlAMW7xiRGKbwwbnnupEsKbNr97lRZ83KBI957DEnGUsvrbKBq/xVE/cOhaf/+MeZcL6RkA2i9m2e6soMk8JyPrs8PG8D1eSCR9zI3/42CtsxtGlTsov7tgOn9ehFRa4Mk6u/EPXRwQrTE+64IxMcNLPWiRpUVZUJb6505ax2PO8r7FzBQ3boUDeugnv5Lbe4kTHywdFGSl43vCITtl2c5QC2eXnbeE43eXKhk66kJDoeP/dfnLhCaqvS66+PwqxTB5yZw0qZuce8Y+LKWTLI86DVOfi0ckllmD75Y9Kt7H1ykaQavhxg52pnLL/3nhPlu7N80o0U0TOq0D5cuE+eeqoT9czmaPa+7z73NK6S6dOjfrx5bXw62/RcdVYGmFQW6JNQ8q3ymPHBcjXAL9HxKXV5zMbJvQD3vcPmz8ec/7HHuum4W7BNg42zdbp8eRTm9wdfl37hBfeY79PWQZz0LE49ac+xtJFh8tzBYfsyxJViKqExP5ojbf3zvXGc7Uv8vNqTg8UZ9lU6FxYbLBW17Rsnp+zo2lzlnM5OuZynjcvGcsHWD4+padPiz1u50j3msc5t7fudga0ZAFdazt3O1hvft2+uS9rWPkcBvxTYlRqXl7dvJVJc6T6HttdFvzMUF5lnlK9z5QKuWPuiRO+RzVXjMmH7HN1MRbTzCGdp41rbpktsboTYB2hlWTvs2b0HSxcsxYd//GGc88tz8Oojr2JX3S4MPHQgTv3GqRh6hPsbX69UL0z7xDRMv3B6TI5CCCGEEEIIIYQQYn9AK8vaYWftThSWFKKgfwG2rtkKAEgVptCnqE+76XsX9Eb5hHK8+/a77cYLIYQQQgghhBDiQKS54yRiv0Mfy9ohbA6BAHj21mdR84cajP/AeAR5QdddsLk5Wl9sl9+yZM23Vcvcue4xyUJeXx0tIFzysJuMJQQsuwTcJc9J1TtW6rSEtngsL3eXLk+ZQXJVLgjgrtdliaaRxhVNbv8UwF2WXZhvJKB2DXordxsJnK1XJt/unRbDtddmgiuM/oL3/1sPlwoKV1F4skmX95GPRAdGoubdNilGqpvind0AVCxenAnbHS+5Vq0M83UKs7Btyg03uAlpp7q8G2+MLa5P9lr80G2xcY58+WF3ADQ/EskyrUgsxbuBDRsWhe1OhLSE3bcV57aX3SjeVLOyMqqhQXac86AyO/lx3ORzXSlALnbMygar3mG50GGHmcTP0bhnuTLg1itlurFXhZOMNzq08w/LU3xKQp9ck+VBVu5y8uzZ7V5g6ve/76TjsWHl1lspbGelRrrgSJ5MuW4Av2wjm520fHpWG+fTDsXtrJV0e8RcQY3YYCX/RJtSHXFEJljJHeHjH3fTzZ+fCT7fMM6J8vVPfkaxCsem4yr2SbysNImbqg/9rc+346XN3ydNitud0e56lnRTVHtt3sUx6W6VNg+Wl3E6+6j0ycZ8m8Fms+uilcizzNPWDz9u+No+CZkdXpxnYYH9ZS4mUzuRe7aySzVFNgJ9+hTGpuM2tJtK2+O9xdePuwJf/XNc3E6BNuyTYdo+klQezZiNu739n7F9l+cAztM3zm39xEkoeedKezxwoBvHc51ninfysBu+Mkl3LQXinQ6GD3ffWfm8oiI3Lo8v0KtXfMGyhcez1XDTLt/8K9bAgfHv3L7XANturfVsd3IWYn9BMkwPR33kKMy7aR7q3qnDy/e/3PEJQgghhBBCCCGEEGK/Rh/LOqCgfwHGnDQGm1+ztsxCCCGEEEIIIYQQ4kBDMswY6jbXoXZdLUqGleCdV99BybCS7i6SEEIIIYQQQgghegwhgBxs5St6HPpYFkNerzw88L0HEPQKMGDoABx7wbF4Y/EbeOI3T2Dnuztx33fuw+DRgzHn23MAAH/8zB+xu3439jTtwZtPvok5356DgSMHdnCVNDt3RkYAPjG88ZBgD6c8E/fSiihuBZnkrDCGOewxYLdj9/mMxGn0bR7sb2BtyaZ8jExDrIECC+DZy8gYW6TIRyPl25fY7tX++ONRmOvcpps5s/0yAcijCnLawhg8vko+U8/DhX3KjBMWJlF4MoVT7FEGALNmUSZuLo1NUblSML5tDJtGnHKKG0fmBMOtrxR5KxSazsX3yr26zuZBx0Xk7wbA7YQ+j7gf/zgKjxoVn84YzOTRfaesj8Nxx0VhrtfJk51k9UWHZMLWj6SJjq0nIHd59jWaMcP1PCrk67GJD+CYAhabOWCC0z9Pwr7ivHNNP+PxtXChG8c+XHbu4/uhPv7kk24y7nZ2GvH5jLBvCqezXjF2TnM4f3K7F0gZY5fqBQsy4e0mi1oK27h6PuDOZQvlmqG4cc4YSvjIt+l47vPlYeOyuXaW2HnXgcxp8k0nKaZwkX2GjB0bhQ8/PAqffrqTbGv5hEx4yV/cLHjK8fkVcbNZPxg+tv2T44ptD3L6SVT/ZaUe068q9+LNNO/6PAG5/LapuYz9+iGWPeb3DC4W5289iTjO55Xk82HlqdV2A46z58X5NPm6u30WsGeZbwjxY9p3n96hZk7k9s3jirQGkzEepwBQT66k9t54fvb523I9+vwlk8LPVMD1USKLwazz9Hl82emZ283nR/gu7RFm87Bzx95i69j3+sxY3ym2svM9Jrjb2WvxPMjnWZs83xwTZ3Ns07JPmc93y/cuYdsizhfRwvOILX9FnHGbPc7GgxRwfU7NO8LW2uj3hP79o5+nat9xy1galbGi3NwAVcrw4YOcqFRdizNrn15Zll2IbkYfy2IoHFiIj/zK/Sgx6rhRGHVc+7+In3f9efuiWEIIIYQQQgghhBCiC5FnmRBCCCGEEEIIIYQQabSyrB36l/Vvs6qsSxk8OJIZGYkXy4+257tLW3kh7W2LDnHi4pa0WwnEEUdEYd+S5KQyTLu0m3dAthLQ/7slWv4/efLZTtykH0yODni98n33uZnwcmK7r/2LL8aft3hxJlhHhX7dTYVJvv26qYJ8EqAnKLzaxE2g8CQTN37ixOjg3HOjMEtDAVeuxku5AaQaSMjl0zawrKK62o2bNi0K233DqaOV/8XVHzWQpJXFQSYHRxw6xZbR2Y89Xoa5meR8pa+95kZy/dhOyAOCJVeAWw+8hN0MlB201bZPmuGTBnDXtVU8Yfbs6MBqOBgrI33kkUwwb8aMTLg5R38jie3zphLqC6J5q9DqF/jeuI4BNH/ms5kwKZnbyLl5WA4b5saxZMQqWFmOwVVntz1n7Py5cVvUJ8t4XFop5NRIcn78TTc5USxLftVczxG0ct+1Uma+nu0HHJdUoumTemQrA+liGaZPCs99K9+M30H8oGNJOwBMnx6Fqe62Dndna24aO4Xx1OqTJ/KwsX2Vn6NmikdxPs3xq838wPogX/1zm5oxmkf1M9LI74poTvbJuJIqd+30sGNH++fs2uUec93ZcziO87fdmCWgNo6vZ+Psa0cSrMSOnw1W5hYnwfW8jiCvwRFwIxX3wgbXisDJ5NRTEYvthJ5Xi7j3Q5/MMNsphrHP4qQyw2zh/G31+KZgfqbw1G3Lz+PEF5eUbPOw5/HcxPiUhLZ+ysqiMMsABw920/Ez25aXp6ZNm9w4Hr8jS+ht1E7WdVHHKyqqQBy2f3I2cXOWPc+O84rxlfEXyMLOwL7n1ZWMjM2ex57zeLT1wwltHL2bpuwvk62/J+RCX93jkWfZgYhWlgkhhBBCCCGEEEIIkUYfy4QQQgghhBBCCCGESHNQyDD//h9/7e4ieCnN92wPJYQQQgghhBBCiB5ICMkwD0wOio9lb/3+nO4ugpeLrlgaicitmJ/06dbjgb0PrBQ8bgtz6yPAefi2abbEeWfYMvriVq2Kwrx1NACMP2t0JpyqIdcva1jEBk/WTIGMZGrJvwkAeFdodvd4yc0Bk/hGs/TcWU3hShM3mcLj2BsMAC6+mBJSSvbgApJ3hKR7zdv8udP44ozXWeUtt0QH5LFUt3Klk259fKkSm5c4LWM918ivq40nEftkGT8ep87Jg2H9BndBrs+HhYu/xzxDucq3bInC1o6qYXzkbDd+xgQnrtB38UcfjcKf+1wm6PPXy4mfmfGuKxw/PjbO6ePcTgAWLozC7Flmt3SP2xYecKdT6xkXt4W8nYLZW8QXt70uqrti8igD4DXMKSKTlorHHnPinH7NefjmIt8k7/Ms8+Xh29be94CJM7601+1iPzNwH7QdiI2CDjvMjeP5jjrJWmN9yLdmq5j7lq0ejhtXGTnUNVa6/oypzTRL2nfxVeRTZu+N5wTrI8P4DJ0orr7JLRdb2HAXsdN2nC8T4NaXzxuVu4h9zLHPIM+lADBwYBTm6vANE1+c7aojRsTHxWEfNXw93xBifPaebU7ymZ0RzflR+zaVuD64nL/PE8o+htjTjd8xbV1xH7FtmA3W/y4X8PCyw4n7iL22xxIw9v3B5ylmr23HVBLGjHGPhw5Ndp59tDE81iw+uyrrQdiK7SP2dxSG6//dd+OvPXK4Z8KhSi8oib+WrX9uKy6H/b2GsUO0ETT24M6zSe32fO927IPJvnCAO3cXN22NDqyBru93De68vl8ehdgPkQxTCCGEEEIIIYQQQog0+lgmhBBCCCGEEEIIIUSaIAzD7i5DIoIgCLMpaxAECJ/8bBeUKHd89hdv4tqb7uv0ebzkNql8yrdMtyvIiawrB+zr+86GXNRVtvfZ1e3UU+u/p/TPrmZf1n9PqtPu6nfZ1kFXlHdfjm17rZ4y7g/W+U0IIYToCUw95hjU1NQE3V2OriIIDguBX3d3MXLArKVhGHoE1wcfPee3GiGEEEIIIYQQQgghuhl9LBNCCCGEEEIIIYQQIo0+lgkhhBBCCCGEEEIIkaaL92sXPYHu9FPJxletK5CnW/fC99md/fFgqe+Dlf3dO8rXP/f3exNCCCGEODAJAb2nHZDoN0chhBBCCCGEEEIIIdLoY5kQQgghhBBCCCGEEGkkwzwI6E4JXE+VvfUUSVNPkakeyBzI9errP93Vx+11ffNPrtumO+sgF/fSU+alAw3Ns0IIIYQQorPoY5kQQgghhBBCCCFEVuzp7gKILkB/YhVCCCGEEEIIIYQQIo1Wlu1HNDW5x6n8+Lg48vPjv4/aPPIT9o6k1/ad57sWx3llSr6CJI2z6Roa4uOGD4/Pk9mwIQrbGy0qygTzbBwdd7V0KBcypTZtE1evBQVuutraKFxSktW1UVcXhU09tqnXOEy6XNd5tuOESXorbS7YqRN7BrmoL/57UFdUQTayycTjxBfnmSva9P+4dF1AZyS4+xSquzajOgfz7L6cnztFF88B+5uktSuqg/NM5Sdrp8am5PWWTTlzMdaybdtcvA9aCgs6fz/1DW75uR6TtpPF1275nvdxX1yuyUUf9PW5ri5/0nJkS9KxsT/MbV1hedFTnzVCdCc9fzYQQgghhBBCCCGEEGIfoc+/QgghhBBCCCGEEJ0mhDzLDky0skwIIYQQQgghhBBCiDRaWZZmw5Z6XPrTJ/D0y5vQp3cvVA7tj59/6Tgcef5fMf7QEjQ07kH/wt74t3OPwAWnjwMA3Hj3K/jqNU9i2JB+aGhswkVnHY7LPj4JAPDPZ9/GpT97As+v2opbvnsKzj1ldOy1A4QZnbjVlSf1B8h1us7QFdeO9SljD7GOMuU433lJPctKS+Ov5YP9tKxfF98o+ZcBbl/w3SZnYftPt/oEMb4b4PrJ1rNs8+YobOuYj62Xgk27l3S1f5/vxDZ/+chFvWaDGWuOZ5yN87UN3ZEdvkxSv8OumPvYAzJb30jnyOdZ5s+0/TBy473im0eS+pIl9VPpMXMWsusz2Xp/steQt81y4c3pI+mAMvh8L5PGWXLRd5Pa/uUi/1TCPH3zmSWunD7bwmzxvXMknUuTTmGdGVuFWTymbR07nmXuq1ZWeXamvn2vmNk8o3x5JO2DSd8p9xdy4bvrThCpRMlyRVfXeVZzX2duNMmk0Nxznu1CdIb9cErMPWEY4qz/eAAXnD4Ot3xvFgBg2aubsXHLTowZVoxnbzoHAPD6uu04+2sPork5xIVnHAYA+Ois0fjVV2dgy7sNOOwjf8K5J4/GiLIijCwrwo3fnImr//B8t92XEEIIIYQQQgghhOgckmECeGTpevTOz8PFZ0/I/GzyuFKMKHP//DR6WDF+eul0/PLPy9vkMXhAAaqGD8Dbm+sBAJUV/TFp7GDk5QVdW3ghhBBCCCGEEEJ0A62eZfv7P2HRyjIAy1/bhqPHJ5PYTTmsFCverG3z8zUb6tDQuAeTqgZ1vgCbNgF33w0AyDNSv/zpx2fCTz/tnjZtWvSt85Zb3LjatkUE0FZ1xuose05RwqXqvPp20yY3bg+Nuw0b3Di+1cMOc+M++MEonHrojujgV79yE/rWsL/8cib4vLk4H62NCQPAFa+8Eh1kKdm7mW5ukombVFkZHfzkJ05c09yzM+HVq6OfW3kBF2v4cDeuMJ/qxDYw1x3JGFfnj4vNn5V9tizjx7vf3lMPPhgd/OEPmWDzggVOupcoXL1lC+JoLokfWyvGjMmEJ/Tv70bOmhWFq6rcuNmzo/DUqU7U2triTNjedxxrbQcitm1zj3ftisI+xWR5eRQ+eXq9G3nDDVF43To37uqro3BndD97y5lnusfTp0fhH//Yjfv2t6MwtwWAJbXRaFm4MPq5bQvun7bu+NhODwMGRGHuMnbe42Fj5Qs83rhc9lo8zEcWbXUj7703CtM4aXPB8eOj8JFHuukOP7z9QgHI4xsyc1ic/LGxyYxlJNRwtNEHRVIWn9wuW5ke45VyrlgRhVmyDbidZPIUJ4rHMz9C3norvhwbN7rHcX0EcJ+Bc6bXZsJ59lmzbFkUtnXMDwf7kOULlpVF4T3mhZj7iH2IcCG5IwNoKorm5FRDdK2mgmInHce1uTcuo+1bRW4+rfjeVWwVcPVwe86c6abjbuGbA6wbw403RuGvfCXqg77Xha99LT7OPr4GD47CQ4ZE4SOOcNMNHBiFx5nHnDP/m/7TXNT+c27VKjcLHib2PY+fZTU1bhx3Xc7fDkOuL9u+S5Z0/u/65nHitOlDD2W3TuArX4nC5nXBeZ68954bx33G9k8+j+cO+y7hk9HxO8Kll8bfG8+LN98cX0b7CGeWm7UC3G481mz/972CcNvwvdnnOY8FO4WVl0f3beuYqWiiirVzKXW8vMmTnajtdVH+dmzw9XbsiC8j1wm3GeBOrbau7JTcirV0YOxzlMelvTYzuoBuxg5mbig7gHlSGDHCjWutlLhfTIXo4ehjWScJQ/f4Tw+9jkeWvo1X1tTif79xEgr6qEqFEEIIIYQQQggh9lckwwRwxOiBWLpic8cJATz76mYcXlmSOf7orNF48ZaP4LHrPoQv/3IJNmypjz9ZCCGEEEIIIYQQQvRo9LEMwMlTK7Br9x787x2RbO/pl97Bmxt2OOlWr9+Br/xyCb74keo2eRw3sQzzZo/FL25p62cmhBBCCCGEEEKIA5HmA+CfsEgzCCAIAtz+ww/g0p8txg/+bxkKUvmoHFqEn192PF5btx1HzfsrGhr3oH9hb3zxI9WZnTAtX/vkkZjyydvwn/MnY8WbtTjrPx7Eth27cNdjb+Jb/7sUL97ykfYL0NAQmaDscD/Q5ZG4fOzY0bH3YK2Y2Dvg7bej8O7dbjqW7Fs5edKtpTmd1egzVidPNlNt/EOKVz0THTz0UBS2GnoW+lszEcJaTq2nMFtDtLEG4Bv1ePX4/HImULhNC06cGIXZkwiuLwL7V1jfG+vrwJSWRp5Bg3wmdFR3a8333j59orD14uC2t+UYOXRodEB1l2dMWepNn88GXs/ZYPIr4Iq0nXDnzihs2pd9Izhsq9FjB+O1d+I4n5eF0y3S3oYZ7rwzCi9Z4kS9SoPddaHrWurYqw5A0QsvZMJrjBnHSONfx5z0leiPErW10fgiK0IA7pxj5ze+nK+bseeObUO25rBxcX3E589SMtn13is+8cTowE7CPKjGjo3CxjuqseSQdssLAA1kQeLrn+x/wmMeAHr3TlE6Xx4pJ66pgePyKOzm4fMl83qRJTgHANaWRP53w83furhONhuvG7ZhYV8aOw/ynOzzy+Hpxouvo9lMuMFt48dN0LafNTgNFV8uM/k5rU3XThWZh5TPq8ZjxpQXY65TUOCOoVR+1C+sjw/35V694ovhu20fCV8RvLz7brJ0vXtHYY+9J7bWunVQVFSYCacK3DHEfZfD1jOLm9D2cd97JOfJcXaO7NePy4seia/8XGbfPGu9vPh1yPcc4mdb375uHNsRJsW+LvOxb54tKckzx1GYy+zz/bN1EDeGuE8ArmeffQ/Oa2rMhHv1cp9DDg1USFsQKnR9g3ufXH7bx3na5XL5+oitH6472/Y+v7qk+J5LzOjxVCe2kEl9m+3LVmvHbtaHGLF/oo9laSqG9MOf/2tWm5/v/OenY8+ZP/cwzJ8bfTirGNIPG+6dBwCYNuEQrL37E7kvqBBCCCGEEEIIIYToMiTDFEIIIYQQQgghhBAijVaW9QS2bQMef7wlbNfYrluXCQ4yWsXmqcdkwjNmuKfFLff1qSESS0QQL9G0MgeWDdgVvby7cNme9W7k4sVR+N57M8F3zPLeYpJ4FRh533pK+7op5xoKj6RwhUmXC41FIYWLPMu+LRzF24vbYnCW3iImXEJt8+Al/1ZmGyexAICRLBXjDmo6zwSW4vk0Xh6mUDhv3jw3krcAtwOlOtJkrdlc6ET55HcMyyN8Uj8r3WI4fysv4OXzFVZvTeV3tNcAUjmQt+YEuoGtJmrka69FB7YDkQ6oqCgapVaCYuuL8bWbL47xTQFx86zNm7d+L8Z2N5I7mu0kfLMeva9P5sNzsk8mz+l43rb5+2WY8flnKx9hrLwyqSzTkRhtfseJS1FdVpg+WDEt0kCvGRpd20rUuAntc9Qnk3fqhAe6rSzfg5vT8oMCcBucK8E+dziOO6uJaxzuGgls2xaFyyqjPBtdgSZSfD2rTYrTAQLufVNcYanJg/KsMOUvKorKwsPJjhNuJ59c00qU2U4iKYcf7h5z/7HSM27COPsLwJVy+lS2VkYXNw9amZ7PboDjfPMx17EdF3w9qybOBp/MLRf46oDHhS2Lz+6EZd8sybR52Lbhd+mk2FcJj4uJw+hKM+fSje8ui96h7LPGZ1MQpwK3Y42lx/b1ZsiQaJxzPVr6T4zmMDvNpoqiZ7NvyrVjlOuOw7aM/CuKre9cyLl9sKLd29Y+DwmeNO0A9nmJtOaZVMa53xIC8Lxkif0WrSwTQgghhBBCCCGEECKNPpYJIYQQQgghhBBCCJFGMsyehl2+ysdWHkH4lgz71BeMXVrMkoWkS9h9S/Dt6l4uc32JK4As5F0iKVxipGZcLLsLIm/qaGWYo2PCbaon4Q6YPpwWPe44N/KEE6KwWRe/2exK2YpPyWnb0EmbsBF9G+BYiZGzk5yRTqwvjXYsq5jVdvOMzPVYfpTlMu28D34wOjjtNDeS+k9z9SQniruTXboftxrdJ0MzSmAHKx9keNzYZlq5MgqPP2OKE1c4tzb2xEo+cR9SZHZq5C2syp9+2o1jWayRmW8l6aVPocZqANt3feqvOAll0p26AHdu9clMuGkaC4qduBTfgNVHxE3Ypq15J7CCAlcC55NuxaXLUg2dmKTyyY5IOgc7bWqfUQn1LxxlZXrcbJ7u30a54hzzJGDLwQ3newDYgrEWyrcVG9+ARx9nn++sGq7vH/U72/8HldD17L35duKM2yLOp+MycSzD5Fvz2RlYOM5KlLl9k+Ib5rYcfDscZ5swqRTbN7Y5nS8Pe22Wy9nuwzs12rpjfHLlbEgqK+wMgwdHYVtefvey3dNXr1z/PssLPs8Oc59sOI7O9H8Hj0yP29eWn8toJaa+nSCT5p/0d5SkO0v66sOO+bh+7Xsf6cxGk7l4/sZJRduwmSZ5+8Jf5JnHOc4OjtY+k01HFaIHoI9lQgghhBBCCCGEEFkhz7IDEckwhRBCCCGEEEIIIYRIo49lQgghhBBCCCGEEEKkkQyzJ9DUFBl4Wa03G0FZU6jyyOdrUFGjE7V7WOTTwVuK+3YF9nkY+PwAfHYqcekA1/+hMN8tf5yPTMqYA6zevTsTXm+u9wSFjzdx1RSusD5xDN9QQuMA66NTcuqp0YH17iI/rfom12sori6t9xVbBdg4p8gJfXB8t+m7toX9bRorI2e4lPGmyolZw/z5UXjqVDeO2td6+3EZfX4qSbf1tvUR5zdjSeqjYaeAkdXUk32GWvuSyy5zj8lLsM1IY58+M/fx7fj8bNgGw3rG+eawOP+QzrQvH/sslThdKt/j1+UztUpYyFz4jWXrkWK9yPLz82LjsskzqUdZmzw2vxMdrF3rRnInYXM8E1c+fCTi8D1XuQmNrabbX2s9D1k2RLKdnAeANfJh+DlnJyOeK8zzcHtdVOd2/onzKLVjbffuKI++fQuduGLfPBX34uHzLDOTfB7lUV4+CHH45mDf/M8edUnHzZgx7jE3m7X1YV84xlYbl78z1kBxz6Vhw+LL4fOL4vdNIN6Pzfe+ab1Xs4EfjYB/jCZl7NgobF8b+X5s/fi8yOK84Gy7DBgQha1nVja+efz+DXTCM84OerrxoqJobNOrOQD3/cr26bhhbi/l8zbj+vL1T57D7D073oq18fn7vIF93mw+X0FfXFy6zuCzpXSezTzHDxzoJvSZrnHBrL92awOk3N9xxMFLEASfBHAZgPEAtgO4C8A3wjDc5D2x5dxKAG90kOz8MAz/kCD9i2EYVsfEZdDHMiGEEEIIIYQQQohOE0KeZR0TBMFlAH4K4FEAlwAYDuBLAI4LguCYMAxj/kSUYROAeTFxvwLQF8D97cTdDuA287PaJGXWxzIhhBBCCCGEEEIIkXOCICgFcBWApwGcEobhnvTPnwbwN7R8PPsvXx7pj2k3t5P3cQAGAPhLGIab25wIPB+GYZvzkqCPZT2APZs2o37FvQCAQiuxOOKIKGzXzlZPisLLlztRQyZPyYR5KXBnlqJzWrvkOW63d59c0y4fdmRvpvxYtCgTrL/99kz4JZNnDYWNgAYzKTzdxBVwPR9+eJuyZsjFns3jx0dhbs8O4Ob21Stv225XRjvLq32Z0Hr3kpJiJ4qXhNtl8ax48SljeOl7G9lrNjoWC8v5TP71iKQBVobJ5bJL6+Oqy1eNvvGV7Xlc521kmJNpbb1du2+Xwu8rbDl4bK9c6caxVmPGDCeqmOS0TU15FHaz4LrzSWntedzVfFJOnzQmTi5kx2FFOY3DFSvcSJb+2a3aeWxwvzYarEZE8obOSO3j4nx15SNbmWSXwwOnpsaN4wpbvdqNIy1XHvXP8qpxTrJNJBzwSWh88iBs2xZ/Ik9cNhMuv9U+MT65IzVwfYPbhnxpq1JN+j7B/afNGOW+ZTP0TX4M37dHb52iIdRc4koyfX3cJ+dOLF8jrLqJb9OWw0q52iuTLZe1S7DTChMn/yrGdifd1t7Re8EmI5ThZvM1IeNTcfnUxEmx17US6GzgseDLz3ZVrhOPitGbp0/Cys+hpHJ32wcdqbpvrrCTANukVEWN2revK7njIep7j0z6HLJxPokmH/ue55wwP98tf2EB16s7R8ZZ0dj7TGr3YMdQLn4N4XLlNdTHJ+RC22eST4/OF4h7CHZGHy4OVM4EUAjgmtYPZQAQhuFdQRC8DuB8dPCxzMNn0v9fH5cgCIICAHlhGHoGQVt66JutEEIIIYQQQgghhNjPmZb+f3E7cUsAjA+CwOOG3T7pc/4FwBoAD8Yk+zKAegDvBUHwVhAE3wmCoE9MWgetLBNCCCGEEEIIIYTIigPCs6w0CAJegv+bMAx/k6O8W3cmXNdO3DoAQTrNq53M96MAigBcHYahXV7bDOAfAO4A8CaAIWj5sPZNtPikzeZVbu1xUHwsm3HR37u7CF56hykAjR2mE0IIIYQQQgghhMgxm8MwnOpLEARBCYBLO5HnL8Mw3ApkfHHaMxhoFSAXthPXEZ9By0exG2xEGIZrAJxifvzbIAh+A+BfAXwMwB98mR8UH8sWPftWdxfByycPPRTvbF0DAEgZ04LiJUsy4aJRo9wT538qCpPHFwDkkedAnz7RlvfWu4K3cF67Nr6MPg8An4ydNfplZW7c5Ml0cNXdbuTd0fEz9OM1plzsnmCcsDKfrwG0cXFooHouYIMJ66fFZGscwJXgMSvxWQD4PEH4vLZxeRR2PRiSelvEXaujcnFfc+JKPaY+OaC5wJ1nd5C/ivVaYfsNa9PBdg3sY+Xzf7F14PMpi8PaPbAnDlkotcD+S2YOcLyx5s/vfEGyheYsAE651hrTuMJlyzLhQQ895J5HY7Gq6qRM2Fp+cZbWI4SPbVtwHA9RnyVUttu9Oxezni8+PypufKqP7XWug4LvPhk7ftlChL2kbDrfHO/Ln2E/s2zmnr3CGiQx/My1D0H2/aNKzqtz/Zz27In8nKwvImPnH55XJr3n2QBqy5YobE2sfBMSE2ceBTidvMBjV5T0PcDCcW2aotYzNrhtuGJ95oTWsIsL6TEY4z7ZGe+9XPgJ+azm4vzMfM9b29Sc1lZPnB9bykxoddQ0777r5sHPSuvXFTc3+d4Vs3luWqz/Fw+hbOHxa+uA78c3B9i24Wrmod3HiIN83rRDhsRfL45UgzuHOQ3n8yyzDcw3TuOr2LxL9+3L76JuFnHPWN98Y/s/10+cz589z+bRTO/I9to8J9jz4savz5/O1oHPcy1ujunM3MNlLizynMgX95kH5mKQiv2ZEgDf6kT6mwFsRYsMEgD6ALAvL62jv1N+YkEQTECLNfn96Q9jSfkeWj6WnQ59LBNCCCGEEEIIIYQQ2RKG4Wq0SCY7y/r0/8MArDJxwwCElCYpn07/H2vsH8NbaNHNev460IIM/oUQQgghhBBCCCE6TYgWHdP+/q9LeTr9/3HtxB0L4JUwDD3L4F2CIOgNYB6ATQDu7GRZRgPoBWBjRwm1sqwH8B4iJzuzMBolFJ6yYIETN+jmm6OD680HVVoOXfaxj2XCq1e7UjxWnSxf7mbBy3Z9y8p522q7HHz8+Ch8+OFuXN6990QHP/uZE/c8XfB5+vk7cBkXEwaAcSTVaDTrpGspXLB6dXRgl5/nQmPBa7FtJdNxypRxEFdmVVUmuLXA3fKeT7Mr5Hlpelv5RfStPEX3aXd39kloBgyIwqxYAty2z9tAfyhYYQrJsr0ZM5AVVI95ppBl1Ka7hrp1x6vM7dJ6hlec++QcVsXly5PhItsuOH16FE7dfZsbSXLlNjLMt0h+fu21yQriwUqTYqV0t9/uHL5DY9koKB2m/+//OsdFNG4m/KAyE64tH+mk4+Fr+z/Lg6w0g8cGq6MrK9103IZ2OmApOYcLm8xMftddUfiee9w4bnw7wLgwFLbyDt/8nHS3dx98XlKJiCUX0ktfHl7pHFfQKvPHTNb1cjsBbodindvEiU6yklkfyoRt27Cy0EqIWRU4p9pTyVZTxvC9+Rpn6NAobCcm6nd5ZgLq0yeStSeVYXZGCuzVHzE8gK0M0zdIY7TSbS8V33988zh3ER5PvnFh1aZvvx2F7XOanymcvx27XEZuasDtk4lfcWwhEc27to9vpF817PDiOZjnWTtncZ48p2fLK6+4x/bZsLd5WkcNbg9bflYk+mw0uE5s+7Jk29e+xUn3kfN5CnSGmEnAzsd8b3Y6i7O88E1ntv/w7SRUnHvlyr48fFJjLodNx/3A5wxg+0jSecWHO0+5vwdyPRcnnch9HTnuvDDsoJTiIOBOAL8E8IUgCP7YaqwfBMEZAMagxXQ/QxAEpWhZ+fV2GIbv2swAfBgthv0/DcOwXUF0EASDwzDcYn6WB+Cq9OFdbc9y0ccyIYQQQgghhBBCCJFzwjDcFATBNwFcDeChIAgWoEV++WW0/D395+aUL6DFG+1CADe2k2USCeb/BkFQDOAJtEgvSwGcA+BotHy8+0tH5dbHMiGEEEIIIYQQQgjRJYRh+JMgCLYAuAwtq8y2A/gzgK93UoI5HMAHADwRhuHLnqT3oEWq+VkAg9CyE+eLAP4NwLVhGHYoe9DHMiGEEEIIIYQQQohOE6LFL150RBiGN6L9lWI23ZUAroyJW4sWz7GO8vgtgN92pnwWfSzrARQAaLV7etXEseT9JRPH7k4bXnjBiStnLyMyjxoy5Bgn3YsvxpeLdfi+7a7ZY8P6/UydGoWL7/uzG0k+ZUuMAQHbXrBP2SGmjOxeNMHEYe7cTDBlNPSHcH198INReNYsNw+60c5sJ+9AnnFtjL14L3IL1wk3QJHru8VWLux9ArhtYz0S2Guub9/Il8a37Tb7SVh8W2HzNvTN1ZOcdHl0n1nX8cyZUR7DXU8r9jnavDq+jNaCgf3M2K7IesowPhsQ9nezjB0bhdn7CgDy7v5bdMDjGgBqajLBppUr3Wtns598LjDbjddS2HXKcMd5iYkbRx6NxWS0c/xXvuImnB6197JlbhS3qd0Fnfs5e6bYdvLtnh7ra2LNStjUx3oBcYNXV7tx5OH3zLJobPg8yiw+n6O4OJ4bANcX0df/feTn7/1+QtnOD43jozknxQ8lILnBFpsVGmOmwtmNmXBJidvLOanPB8cx0bNwpfsa0U7CcWaI9p45nccUx5c9+69Z30suvuNfCbiVYscNdzxv5RHWEImPqQ5SXGCD7Wd8n7bq+JHO9WP99ThP+xoQ5/0GtPXBbMXn+WV9wzh/233ivJMqTCFXLYzCdgrjY1t+9vbiudW+K5ItKzxNk5jDDnOPfcMrKT57Sd+1fOdxe3Ac+1sB7qPBviMUbnidMqmMLxhj/XN57HFjWOI6JODcTJ4Zr5WVozNhWwf8LOZpyvZxfp7bOYbjfFM6v3L7vAjtdMN90p4XZ5noK0cu4jrjX8ZltFMk13+x7XgMzwm2EqiCtjfYN70W9jRns3miEN2PdsMUQgghhBBCCCGEECKNPpYJIYQQQgghhBBCCJFGMsweQCGA1kXPRqCAegqbXecdGaaVaJbeemsmnE/r3Udf6i6tX1FekQlbRSCvtrbL7nk5PS+btvKCcfm0PPxXv3Lili9Zkgkvc08DX44XhE8y6SZNmxYdnHuuG0kSpjbrmlmGedxxmeD2qilOsoKECh0fjVOPz4RTa193I597Lgo/+aQbx8uc6V4GzZ7tJBtEMtvNm4tjy+FTsbDUbORw43Xo6DtWO1HHjqUGX2F66DLqQHQvebad7F72ROIl59TxrPyFO/LkyUaiSZKg7UUVThyrErgK7FjgZrK3wmW20gOOm1K1PTr4y31uwquuisJ2T3q6eP6IEW4cyZB9sDzIJx1KfN5nPuOkG3f77VF43TonroFkVmZkOPLNyddckwmXGh3R8VdemQlv2FDoxLEs00o6+JjbxsoMuZ2sPIgVC4XLnogO7rjDTXjLLdF133rLiSrhjjZ4sHueI0uLROg+mYaVWbFcxY4hPvaNr9694+N8xOXZZowSvj6X9DybLtVEg9QOYJq33nFjcAg9o8BhK1Uh2dL02R+Ky76NcsVpR9Zi+2SStoG5j9hJhjusT0JD99NoxNI+WX6c5MhKpFjGXmzLyMf2BYIvwB4ANg++uOd5wvXRGUlvV8iiGJ8cjCVTcXIvG+eTadtr8bucM86NlrOgYFwm7HuW2e7J+Gwh+Dw7DWbD0KHusU9OnxQe9vZZwP3A2lX4hm9cn7F2AJxHYUGHftQdYy/sazjGNg5XLFeKaeCG2mRF8dkGcB3bZxLHsXrb8u67Ufi99+Lz4DkLSD6muArsOT55cbZzR1L43rgOAPf9tnR89B5caAq8cUf0ftXfTLN8r1ZN33pvvnY5cJBn2YGIVpYJIYQQQgghhBBCCJFGH8uEEEIIIYQQQgghhEgjGWYPIO/QQ5H68IcBACeR3AhwpUlrPHk0mmNeBVvOy+nNDjiTJ0dLbq2yhJex2w1wWC3BO/NMyjeC0Ct/kAmueOwxJ4pLYoQx4KI4Mky7jpmlZnYnS9o+qL7JlZYUkmxmY6+oDhbe62ZxxhlRONtl0qRCw+GHj3biJvFOmXbtMutiTzwxCpvd3F5dFX3ztio9nyIlbhOysjL3G3rv3pG0s7LSFcLy8vMKkoO2uThJn9ZsdqVypZXRPqb5HrmLj5dWRGW2KoEyWstvJSiFtDbdt7uYVW4x3C/sGOLjipJ6N5LXxf/lL1F40SI3GUmGbfUU+LQrtj0SkO1ug44Ezl534sQoPGqUEzXokUcyYatEWk1hHnozfvxjJ10+1cHZX/iCE1deHkkXbRvyVMj9wicPsnCek6orowO7qyXNTSXPPuvGfe5zUfj8852oBxZFY4XlfLZMLNmxMlJOa2UncZIXO2+wbMPKg/h6Vq4WV3ed2RkzaZ9k6aU95yGqx1lf+Hf3POqvh9gb4IcbPwTtXE03mqp1xZzDh0d90O5ix7KUxspI5mafNXm+rfe4kn06Yc7DM6Glmtx5qry8MCal208KG7ZGB3ai5TKuMFs1chlt/fP98MV8GjifdosqtjOSc9+zP5Uf3+/isOOLi+zblZnDdudrjuPdfQF3R0qfgpXZXDTOOebXNyvN5VcVe29xEkS7GyY/Ntr0/yxk29Onu8c8fDvT9syYMVHYt6OprWO+V1/b8zuHrZ9BBTQua8xOlr4T47BzmE9rzFj9I3e8OO8KAOMml0QHppOXl0fvmBXlUdtsrXXbhact+zsJX85ajsSNX1sFPqsS3tDaTjF8O75y8LRlJYk8pmxTcJ/J9vcQft+xu7XytfleCgrcuZ/ry77r8r3GPffDMEFB92tCSIZ5YKKVZUIIIYQQQgghhBBCpNHHMiGEEEIIIYQQQggh0uhjmRBCCCGEEEIIIYQQaeRZ1hMYOxa46ioAQKqszIkaf+edmXD+00/HZmEdTViKX0SmWUXGK6DiE5HZRMWIEU5c1ZknZcKrPDYjFXWvRge/utZJ9+pNN2XCxs0MZMED667Ejj/VbD5x+eVOuuYPnp4JL1vm5rGbrIG2bHHjSkoin7K33op+/sorbroPfhCxJPUOePHFKGy9PiZ9jDzXamrcSPau4nZj8yIA48ijwnoMMNaTi8vPXhBDhrjpfH5OjnXManOBGKMF6xPB3itHHYWsYP8K2y5lVVQOa4xF5hClHr8x9mCwfhJcP9auq7B2fXRQYwYRZ7RkSRQ2fkL8F40C9v8CXBMk42UH8sPL1ossK8491z0mf0DbgaZ+/euZcC35lwHAMgqTGxJehcuEH0S+iNYQ5vjPfCYTbjZjg5NyG9r2ZW8aMz2jrD/5yNx8dxS2kxHD/oMAMHNmJvjEMreMPO/yVvZ2HLKNjO3/fJyt30lSOxubLul52ZaL8fVx9nI0loA4acaM6MAa4XBF87xLPoIAgF/9Kgobz6A5F1+cCc+YMcGJi7MTtfVRUjIyNq50chRn59a3Xo7C/ftH4cGDK5x0e2qjsO1bO3cgFqcsvkb0GOI1D4/Kb73ZGosGZcKphu3xheSOZk2/fA+wGHweWW0gsx6ftxznWVTk9lV+jto27NUrCrPnoL1Nrn477rjtsx3LfG3rScTzj/Xk4mOuHmutxc9b65sHxBtHxrXVkUe6dWw9luLy8M0j/Pj1eZZZrypO6yvHDhprjkcZ4L7A2cbJZgK15/jMORnfDXADm/yb8yPf4LyGWieupCTyLOMBMMh0prq6qG1sP4uxJmwDjy/7TsxxPutDnxcwn+crh7V+4/Hle4Zni2+K5Dh+zNnr8rs6e1oDbp+3XaQ1H/v7z4GJPMsORLSyTAghhBBCCCGEEEKINPpYJoQQQgghhBBCCCFEGskwewC1dfl48uWWZcjHXnaZGzltWiZYdf31sXkcY455kXYh6+rs+vDnnovCf/iDE1U89aFMeIrVHz35ZBR+8MFMcLmRkC2jsBGhYRKFJ5i48SxV+sIXMsHtJ57upHuZlKlWaslLi02xHLUNL722Eggm26XQfG27ev7/bomWpldXH+/ETbk0ktU9vyJKV1fr5rH85vgy+rac5qXYf/lLFGZFoE1XXe3GsezwsMNGO3HrVkfhkpJITmOVTlw/VmWYtM5ZZtVWChb/N4EJ4yujPFx1KwYPbr+MVn7BEprCzWvcSD7Rapl5TTvLukxHzmN5tG0AlpBxGMDW/EOiMmLfsb5hkHNcPvPkTLiNZGb+/EywxDTc6Mcey4RZEbHMXK+B9mAffcklTlzJHXdE1zbagJNIoomZUd1trUs56QbVvp4Jb+/r9vFnVkSyyer5n82EU2tfd9I5A9HoO/7+UHQ9KxHk6ZoVLgMHIjFcrdmqd/i8PR6VATUFgHj5ci5kJRafdG716mgO2LbNjdu8OWrDE07/lBPHspGRbAfAEybg6nOXLnXjSOtT/MY9TtQUmvB+c18kR7QSoDgpG+CXf23ciHaxMhnuT6nad5y44oAOrFJr2er2L271TXxB85DN4wnUdFBuq759I6nW5tVOMuSTxKukxB2/BSTx4mfnoBK3v7j9M/6Z0aafJZWvefLYvTu6nh2jcRJrnwzTVj8/y2wcw9e2z2mWZ1kJJY/7YcPcOH58cf4DBrjpUnUktrfPSmsxkICy3lvd4+qSROfZtmFZJjsK+KR4dh505Pr8sgI4DVnIg/s5k44ztQPbV5g4bAfyySt91+Jxz3majpbH6YyVSCG/VHH9mGuNpAYYWe2Wd315NO59liOcvf29gIto25Blkha2SPDJnG2fZzZFjjhtnrGHHRaFrXwzKSzz980B3AVtHXC5bDk4rbUjaZ0iu+K5L8S+QF1XCCGEEEIIIYQQotOEQGf8LsV+g2SYQgghhBBCCCGEEEKk0ccyIYQQQgghhBBCCCHSSIbZA6irA158sSW8enWhE3fUUR/IhMddacySiNSFF7rHbH6zcmUm2MjCeAAp8gWydl2lixdHB+x7BqCR8mR3CetLxsdVJo7dl8bNm+dGXnllJvhqU+QTVHO3m8y3TTMfW1uROG+yuC2PO8K39Thbsli/nIciW7g2Nh0bNkQeDOwfYj2z2GPAWlrxfVuLCq4Dn68R+zjYeuNyWb8ctqXgOrD4fOKSwmXm7dcB16PC+v28tCJqK+tfEecP06+fm87xj1pR60ayOYQ1imBvMs6EfAoBuIYV7OUHoL4qcv6zViibyaPC2Jl1KbYfu35y7tgYPuOTmfDoWbOcuJE//3kUvvbaKMI0MDvT2OGa98gjsXGFMUYmg+wgWrgwEyw2hjxTPvjB6ID7vzH1eWJJdN/GrsU5tn2QLVt43FvPoGwsawC3j3O4Tx83Hc8jvXrF55Gtn0pXw2W0dj/sRWOHKM9bRTMjT7FBkye7CckbD3fd5cZxA9tJcubMKKrkO7HJ4rzrbJydS3nssd8Se7EB7n1WVh7ixPH18poa40/khPbByQ9WcwPb88nj0Jy2juYS7oN2jo/z9bLnOe8B5kGX4hN9xkMWrvSkvk/GEOzww6O+5bG0cuYH20e4yPZZ7/MZjLttW8eMfZ/ibsAeZUBb/6JWBjW53nhYTXViKyELzzIsW+Yec9vEFaod+N1uHL/E+kzjLJtro7DPMIqxDdzVJH3ZtRNQ3IuSbyD68vC9uHvmmKSemFyttoq5aXzvrLZYfOyxJ8XQoVHYN48n9S3sDL7fleLK4Ztj7BBlzzLz62Lm2o3m8SHE/oI+lgkhhBBCCCGEEEJkhecvE2K/RTJMIYQQQgghhBBCCCHSaGVZD6C5OVq9bCU6LBlZPnyCE3cmrSTPu/pq90SSDrEuKmWXppNMaa3RAK2nNcl5Zuk4K63WU9gsrMdkClsZ5rgvfjE6uPhiJ+6BVZH0cq1ndT5LS3zLpi12S+RWrMTIR5st5GN+ztvQWzkE349vSTg3TZWpSI7zySNsHCtyX3ghCtst433L2zl/n8yT780qVXwr95PCZbRbfLPkyC5v96lt4lQDZUNMu3MD2AHMjWj1ibyXN2terKaONXdGIvjC01HYyss6oyTKJb6l+zaO+1rD5AonbsL8+e1mMuhnP3PScbdbZsqymsIlJm7GTTdlwnnc8XgfeACoqYnCRoa5viGSkJGivU1bcBZ2fHHfsmOUi+Uby7nYkj1pHj1VaunDN09xe/jahh+pJ5xwspPuo1eTztk+iLjT/8//xJZxs0cqHdcPbJy9N3vc3jmAe5/FRWZ+44ncSsjsA7kVO9D5AqZQvvJzNj5FO+dhn+1xdTC60q2ERpKIp3yDwU6sVk+VBDOAkz5j+d6sTJLfLXzVb4mzYGCXACBeambLOGaMGzcof3v7maz1aI2NXUhWvP12fP6dkGE6cH/3+X74XobsJMON2rdv+9cC3Ea0ndw+EJJgJ5KEEuLtKHaOi0upXL65Ik5PDLht4/P28EyEI+nFuLEpfh0IW6HYKuYsfdO4b3rg27TNkjSPXDzPLVwu3/wZN+cCbS1IGH4vsHXX2nW74r6E2BdoZZkQQgghhBBCCCGEEGn0nVcIIYQQQgghhBCi04SQZ9mBiVaWCSGEEEIIIYQQQgiRRivLegBBEGm5rZSfdebW8ujMM6PwkysHOXHH8lbb7N1gLrCZjteYcpHTRJuvquxNVkvhQ0y6cRSeYD0RvvCFTPD5hnFO1N13R2GfnRDbOXVmp2q2hmCysR/pCPb3sBYM3L5s99Be2lasZUqfPlE4W08A9huwPgvsW2DLyPYStlycluvVdoNc+Bj4tsWO82QB3PL7LEj4XrbXuaOhmG/OmrlwweyNc6Y8Xk85xUm2/cTTM+GahW4W7LlhbVKysTHJBdZLhz3jbP/h4zZz38zIo3HKpZdmwuPIZxEASsmH0boIbqWwHU7sHDPyoYeig+HD3YQ8EF97zYkqOQvtYu+TLXisZQ17/Njuw12Gi2WL6PMSsT6JSejfPz4P3zjxxXUnXI92nHC/s3E8t7IP3bp15gI8sdjGJ8O6180FStjozuNZxtnbMvq8vNifxzePs1dnaamZ39iAxk6gPMn4JhyPaRzPF7avxvku+vqV9dSLLaLJ3PEp64y5JVds0hcI0wCDqkqig/KUExf3bLPenD6vJD7PxsU12+DB7jFXgZ1/HE/PgY1u5IrV7V/MToRcJ9b0MRvsIPVNkknhMltjJr4334ueHcA8+PgFN+4FEGjbH+OM+XwkNTgE0Ey/AXjndN844ThrDswTrW9O8T1sYpLZSyd9Hiadzuz1fL5nPt9RPu4Kv9mk3qjcDXzl8HW5uLjm9m2ehejxaGWZEEIIIYQQQgghhBBpesjffYUQQgghhBBCCCH2J+RZdqCij2U9gObmaNmq3THbp+7II9HR44+7iwQHzh2ZCY97//ujCKPTKH3jjUx4pNlHmY/MgnlHellC4QqTrooPTj3ViVtfFEkvly1xz1u5MgoPHBiFOyOxSyoBSiojylZSlDQPn/KDV6lbeQRLjKqr469tJTosReXl4VYKxliViW/pOF/b7nQely5bfHXM5fKVwy6Zj6uH4gIjM6mlNedWJ+zTSHHBuCK5w8OVidn5gbP03Xd34pOQ8ZzGkjEAGDYsCo8fH81nhWPHOulSJMO0t7ye05k4RxHw1luZ4MhrrnHS1VMlFxppTOH552fCAweOzoQ7M86ZpNvJ23QsPfP18aT0lL6TK3h4WQWQT33HcNNbyfD2psJMuNhOJHTBepNnIYU5T9+zwM7BHoUjtmyJwix3tAovn9LSO4DjtH8+jZG5gS00B9gpkl9JfMVI+ozlYgwa7yZsbIreoVK+FwF78Wy8G0wfac6PZifbNnzfPjllnBQMcN8ZbHFZnch5mMeQI6e3z0YnT9uIPjkhk2vfANtOuZgY+YFl+whfz94zvxdYnwKevH2dl18CbSP6XtriMLYQzeX27b19zK8JKCqKxs3w4VEeefZeuF9YHxTWRnI7+eYbTz+zkikezyUl0axrqzGppYlPgsjn2fx95/l+l8kFnKftnjz0uIvb3zl9SuOulpEK0Z1IhimEEEIIIYQQQgghRBp9LBNCCCGEEEIIIYQQIs1BJcPs1asXJk6cmDm+4447UMnbKQJYsmQJLrnkEuzatQu7du3CRz/6URx66KH4xS9+AQB46aWXcNhhh6FXr16YPXs2fvCDH+BnP/sZvvGNb2Djxo0YMGAAAGDhwoX48Ic/jNGjR2Pnzp2YO3cuLrjgAsybNw8AsGbNGgwYMAADBgzA2rWbcfbZLde3u5D5dnRk7EZ746pIZHQjaRx5m0kAq2lNtd0Nk4+3mjhe9M37cFaZdCmWTB17rBPHshO7MdK770ZhXrFt68AnS0hKVy8Z9u3UmFQ+MmJEFD7qKDcu3eUAAKML1ruR1DEaGtxv43HSy/Hj3Sx4F1Zbx7wU27ebp2+JdtKNnPLMXoe8Q5NvCTvnb+uYN4r17TLHbNzmCvqGDIn2gM2j+aVNprbz8twzeXImWD/5eCfZs3dFYbMZo1NG2za52PwrG+wubdwP7NJ9Lr9ttxdfjMIsCfoASR8BoIg63jFmp0zu8WZkOHPaMgrnm4bnPOp490IAh/zlL1G5aMfOpia3j/g2euM537d7Fo9Rm467lk/Cl3STP9uX4qRglp6y+6WF62voUDeOpYp2iFbRA43baeZMN11xzT+ig5tvduJeJ4lvDVy4mn1SyLi5CHBVXXbscb/j+/TtOslSJAAYOjSSLQ2vHO3EOU8UvgEz0OtLInmW7SMblrdfDpvWJ29irE0BjxvnvM7shul7SMVt++wbDEbHy5K18nJ3T3GWp1upelwRbXG5X9h3TLt7aFQO99inQPTCdckdmR++gNsps9nd0WIfNrnY6jypht6nkbUNEFcu+0LFWElpNvVln3O19ES0MmEa6b5NQPOaGtuPsCfazhX38m4vxhOy6YTbURybHVcPv89aOT3PkVYpylgpP7+f8Pu4Vcf61LI+mWQu4GuXlblxfK88x/jeA+xcxMPXSnVbnym5GNY9H3mWHYj00FfbrqFv375YRv427XHBBRfgz3/+M4488kjs2bMHr7zyCiZMmIALL7wQAFBZWYlHHnkEpTTzLFiwANOmTcPtt9+O+fPnZ35+4okn4u6778bOnTtx1FFH4ayzzspcf/78+Zg7dy7OPfdczJlzUa5vVQghhBBCCCGEEEJkgWSYhnfeeQdD03967tWrFyZMmOBN/9prr6Gurg5XXXUVFixY0G6avn37YvLkyVi3bl3OyyuEEEIIIYQQQgghcsdB9bFs586dmDx5MiZPnoyzzjqr3TSXXXYZDjvsMJx11lm47rrr0NDButEFCxbg4x//OE488US88soreOedd9qk2bZtG1auXImTTjopJ/chhBBCCCGEEEIIIboGyTANV1xxBT7xiU/ggQcewB//+EcsWLAACxcujE1/yy234Pbbb0deXh7OPvts3Hrrrfi3f/s3AMBjjz2GSZMm4ZVXXsHXv/51lFudfpr8/EjnbpOwZH/4cDeOfQSshwruuCMKk6/O5iVLnGTPU/hVkwXL5geZuOEx6ZpNOmzaFIWNWQ/bD9h7Yzsnn2+bz/MrqR/YvsRXRusPwMcctt9v2UegfqK7/XcteTJYHwTOJ+m21T7PI9+W913hVcAeZk1N7fuX2WMbt2tXFLYWIezJwL4u1o+B4wbZ7djzI++qPF/F0nm2HOwFsb9vye3r/3Zsx/V/FBnjj+rqTLDkjTecqEnUWNYupJDCXKyKM85wE3LnNfOnM4lxEc298Dxuxzmn9fnOxdYHXK+YlKnk/Pz4v4nF9SfbTkl9F32eU90Jl996cnH923ZjnxfOgywGW/hLZLzVRB5lAFBLYdsS5PDjeEXaevN5ljF27uD28PUzTsdzIuDO6/w4B4CyuAryTPgp566B8vJojkxa/xYuv32XGFRQ3365GjrROX3Gl2y4ajxwY7EmrUTKHA8cGHmYWb9DxudZ5otj+yt+1tjb9D3rHQ8n30san+gzt8zFC4O9Aet/lQ2ch71Pn3Ek34/PcJKxHZ4Hpm0A+1KSBHsOl3n6dCeK37Uq8s0k00DnrfUY2/kGcJzfocf0q7HJnU3Xerx1+dZ4jvS9s9riczOxh7CN4/nHNjXfzs6dblzc+7gtS7bPVL62HV5xnsLWz9D3+0qS4RuGHZdz/yaEPMsOTA6qlWXtceGFF2Ly5MmYM2dO5mdjxozB5z73OTz88MN47rnnsIVdH4nnn38eK1euxKmnnorKykrccsstjhTzxBNPxPPPP48XXngB//M//9PhhzohhBBCCCGEEEII0b0c9B/LbrjhBixbtgx///vfAQD33HMPwvTn75UrV6JXr14oifmL1IIFC3DllVdi9erVWL16NdavX49169bhzTffdNKNGzcO3/jGN/DDH/6wS+9FCCGEEEIIIYQQQuwdPUQk0XO46aabcNlll6GwsBD5+fn4wx/+gF52n+A0t9xyC+69917nZ2eddRZuueUWHHvssc7PL774Ylx99dV44403MGrUKCcuLy9a7mpXHfOSXisvYCrWPmULlwnWURmfd1OBxQB2t2JeHF5p4kZSeA2FrQxzM+lHSmtqnLjiZf/MhKurXT833lU8ZmFfh/BSYLvkmY95dbtPemBJJRw9vuXJnL9d1jxsWPthu+0zU1jgtkBDQfQ93LcqnpeR89bXgF8K41seHld3tg5ysU22bwk7t7VPCeBTfrAc7t133TiWSBUVuSKabSRbKrODO+YjvE+KZLc690lM93TTanBbj3bsMXyvVoLOiiZSWgL3ulJLpwGGDHGiDuE4o2WL3cV9xgz3mCVTL7zgxrGmg1YOT59+TGwy3roecGWBPpkwjxObLlUQDb5mz9/AkkqsfWO5p0grOwPXnR0X3AftkBwzJgpz16pY/YSbkKwOVptrb6ewnX5YCpxHz3dbxzz/+Ma1T17jazc+z87HvvMGVhW3+/OUmcQ4/8ICtxMWFERzpp0ieWz07x9fDs5/UJEr88RqGr/cke2E4+vkfAE7QSfVyDI7drjHXOm2AUoiGabP2oCLYbPguMGD3bi4/mSflXw9tiiw5dreVOjEFSeVP+Z6kuFBA7S98WzgPpNUTgn4Bxifx/dtpbrciLbxrf46CVZTnbTOPRJip4y2A3Hd2biEMsz1G6Jnm60CfjfyyTA5nR26/K5i8/fJ2OOeIb50vvdx33tqtnC57L1xWXxyTW4aW0afvLU1n/3dRkQcvOyHr73ZU5fgt/Jb6CNTe6wmnf8bxh8HAH76059mwjPJSKxv377Obpg33nhjh2URQgghhBBCCCFET6aNc7c4ADjoZZhCCCGEEEIIIYQQQrSij2VCCCGEEEIIIYQQQqQ5qGSYPZXCQqCqqiVsbQ9afw4Ao4e7XhzNvMk4eaYAAO67LxN8lX5s7HLwDoUPMXFskTbJxFWSodBwkqaWWh8QNghwjIcAvPVWJlj+fjdq4sT2s7A6f/Zxs34njNXK867lrM712WvkYstm3qYdcNvXVh1X12GHReFjJ9a7CdlYoMZt4UHUTrVFbgvz/fC1jjvOzZ49lmw9ct1ZPy32NOAidmZH8aQkbRufB4MvjtvG2oNw+9r64d3Zx49363/k1KmZ8NamyPvHWPs5eViPDZ/NS4zVYpdjy9G3b/thwO/Zx3DfGnTqqfEXsJC/yiF2juTBzjsV24EYVxAAWLSo3TxSs1xflzPPPDsTtm3oGxvs28bFKoSZA2qjTNr8BYwyTdkLOHH0c9OPrRcfk0eyg/z8ZH9/29e+Z1x3Pk9Arm8AGFdOjmM8MK+/3km34bHHMmHfM3aQieNaHU9zMHt1AcDGjVHY50dl742PeazZPujznuT5zpYrru+WlbleZuRAgfwq19PK9TNzJSyF+VRoLoiZrAt58thsKmjlyijMBl32hcFnyMPXs3FssJoUblDAncNMA6ToJSc/PxWXzIvPKyjOast65D79dBRu9dhtD9u3ivkCPt8tfjny+X8lxZrcGT/LrOBnhi0jxdU3uPNgAZ2WZxsj7sXVZ1Dq89RLijUDTmpyyi8ktixcDtuBPOaQG3dHM2PZ+Cjd+s3uc2f58vYvBbjVZX132fuTi2/f5XxVwEW2rwh8PLrSI8OjQhaaOigqiuZF20Vy8bzk3zV8vyux1Z+d73ke9/kv267bWn55lon9FX0sE0IIIYQQQgghhOg0IYBu2llLdCmSYQohhBBCCCGEEEIIkUYry3oAqRRQVtYS5qWyAFC46vno4Of3uZFf+Y8ofM01TtSrtEb2Jfr5enPtCgqbSzvSy9Lp093IuXOjuIcfjn5u1ic3LliQCaeWLHHzoDXVFWaJfMXkSJPyekNUSrvbdS7g7aKz2QW+I3ybsLLsZ/x4N+6UU6Jw2RBa2l2z3E3oW6NN/cAnf+QV81aK5Mue68tKTFnqyunsUuxcLM3mNrSqPJ9kxKf2SLqdNt+bbWu7HN3Jv7q43Z9bCcGRR8bHxcmJgX0vdYu7rm/L9dZ5DwDGjnXjeC4s3kBi8uWereut1NseM4MHt59uxgw3HUs07SDlzsDpjL6DpTfnnvsvThxLS0iZDiBeOlc03JWypYqybOyEncSnAGruIX9z85WDy2/HPM93FU1r3Mg7Fkbhu+/OBLffequTjK0Otppr8zPW9B5HlllYTjYLZpIZOD6aK6x0yKdsi5sX+eeAK1PyyWtsHJeF69XWsU9q7KiR7IQZp/O3BeGJxT5QrOQxLh0fd+YhxZWXlE5cu5mkl74i+uqYsc9Drjo+b+RwV07Wt280vnyWBWvN9DxyOr1ccKGt5wXHWQllNtgXGftynQXNw0dmwrb+t9G76bvvunE8HirMO/L2hvbbd5DV+vFAtw3se8mMw+cH4MPKMK1WrxWfp4mZIDauiMJ9+0b1YacD3xTgi+P5jucs24ZsXeF7j7HzG0sXnXr1yblNIfv0iZ7pNv9cvMvx645v6PnsO1imarsPd4O46TIMfSUUoufSM95yhRBCCCGEEEIIIYToAWhlmRBCCCGEEEIIIURWyLPsQEQry4QQQgghhBBCCCGESKOVZT2APmEDyvak3cQWGT+qO+6Iwjff7ETlfeUrmfAyo3/nXHgre+vaMIHC40xc0Qc/GB2ce64byR5mLIBnEyUAKfIsw4oVTlwdGZAVWW0/+UuMpmuPPmqyk2zjtsjfwFqH+HZ75yKzD5rPtqHtds7Rt+Y8RP4e1juHz7N+IZMntx8GgLI3n4oOXiRPipdfdhOyGQ2bQAHOjfcpG+lEsQ8C23uMLK130vGW1tY7wfrnMOwhwXVsvc0Y35bZPk8ibnufR5n16knqWcb9xZYxqZWIz+uM7UnsDvfsJ2fvjfP02f3sS+xYY78367nGPmWDGoyjYg3NF+wHZj1SPHu6b0fk9VQ80zQAF4w9cqyhB6cbNcqNowHQ9MILmXD+ypVuOuo0xaaTHE/+j0/2Sjlx7BHC7bltm5t9//7Rebb+GZ6ngOz8xnxj1PZ/vh7Pl/uaOH9GACiuJZ+yW25xI8lns/H22zNh90nm+pTZKYWfucOt5x0PAJ5MzWSRoi5YUuJ6HXJ72LZPav3El/PNG3YOi/N1tL43PNft2OHGuf3JdC4ujC8Ta1QZd/E4f6W2BelafAaiJi7uGeKzPfP5Dvm8mJzzzPtaSckExBFnLQcA6zdE476i1OnIbkKfsWA22IFuPcwSwnMk+7H53oXsexF7WvUyc/yWLVHY8Syrqoy/gM8UMFuS5mEniLgJyGNOuLXOrYO4erX+d3xsi+GZPp20nM4WkY87Mx0400+dxzzQY/7Jr3Zd4TfL75VJfSnNr3OO/aPvOWHfs1vfY/blFCtELtHKMiGEEEIIIYQQQggh0mhlmRBCCCGEEEIIIUSnCSHPsgMTfSzrCbz7biT3YNkl4MhCnjf6tUkUNuLNWOnlMSbdONZpzJ7tRn7sY1H4zDOdqFdXRYsSx51BS8Jratw8SGZSb6RJqylcShIXAKDF+sjnrapJsgQAZTNnZsK8rTfgSv/skmFexR63RLszJJUzWZkMq3JGV7oSKSyjNecsWWDpjo2z26PTBd8z8oi4pd71KHSOuX6sioWXVdudzjl/liGw7ADwyyaTwu3pk9za7a75PCsP5XJ5dvyOvU8b51vyP6jpnShcYhLetygTnGK1unSzjVMPcaJWrUK3MHWqe8xdMm/zO27kvQ9G4eeec+NYBsTanupqNx1JwpuLXInasqjqcNhhk5w4nlYOn/mhdn8OAJWTT8qEiy+udSNpwsjnwWA7GncalpQCziQwdKgrdWLZiU/uyzJkO0a5H1spZNwcYH/uk7QzPql6V+OTwjPFRWaeXU6VbNsm5oFQaI6nULjEXu/9748O+JkKuNpF7uMezXYhnwNgJE1ifY4e5MTx3OeT8PFtWgkfS3Fst+b5jq81cKCbjvtg2RCPFHjRavdEvqCvfrhT2kk4Tt7nm5A7E5eNZNDaJfDD08gTuW180iffuPTBeTp5mHJwNdpy2H7B8Hzaa0w0P5d53lVg+nhWGMmz885a1WxTZ/DNHfxMtd3s3XejsJ02+Hbs+w8rill235jvzjIp7md2ks9Gt+eTCPrwyTAZq8WjdAUFrgwz6XOIu4hvCvDlw23hG8pWJWzbm+FbLaZM7PtIXlHcYAN2k7VCV8gVub58Te+rHx7nPhV1nKLXvuIJsb8gGaYQQgghhBBCCCGEEGn0sUwIIYQQQgghhBBCiDSSYfYE1q0DbrwRAFB7111O1PMUftWcxqIiq7jiBe4sWhpn1ypffHEUNjterh8eiTYXmk3CWBFxwgmR/PHYmUaSMGNGJmh3iKulsNn0BrxIe8Ktt2bC5WaHJl4XnEfXAoAykmv17u0u++YlxLyqvCuWP/OyZlv9E0pJllaz2o1kSRDv7GQlCpypvQAd26XRcUvOC+HuhlleHskBUmh04rherRqFj3kXRLtr6eDBUTjbXYDskvC4OKsgYDWD3TkuTnlj69G3iRTHWakKj6FxpZ4LsPbDdlBa/58aMcKJmuDIFUsyoWx2QOwM40qM1PIO0kLa7a1uuCEKG/1jM49tbhwrRSU5z3KjR1+8ODZ7RyrDuzxZWGJxLMm+21wwTlJn073xhhtH5408t8SJaiityITjJJmAfyM5nhKsxM6VaCIRPXVHK1+/duYHK7V85JEoD9692VBLYVsFvO9e3rRpbuT8+VH4/POdqPqGqMyFNf+MIuxuj6zP8mxHWlZldlgbH8mAuL/7djS10w/P11aqzhJNztPbR0xkHh/b++Zjn9bPs8ucU2hfJ/dJLX3PWO5cSQeR3fLYs0tk7eoo7Nv5NG73ZsAd9z6FqYN5WLIMzfcMtFPfW2+1X46yiZXxBbGeDglxdq7c7MoYeQoeZxSgSeFHsS2ib0dQ3zsCn8dd1eY/2rdltt22MAm2AyXdPtu3DWvC69Wa+uHdnblYVs4atzku4K/juB3YfUPZyi75FcSOGZ6eOVNbpcUeGfgej9WVb3pLStI8fJYm3AV9Uuy49xPfLr0HDvESb7H/opVlQgghhBBCCCGEEEKk0ccyIYQQQgghhBBCCCHSSIYphBBCCCGEEEII0WlCAB49rdhvCcIw7O4yJCIIgjCbsgZBgJ5+jxd99rO47tpr98m1svUryvPosH15+s7LBV3tv5SL8ictY9JrdfU9+8i2PnJdB/s6/664Np/X1f2sq8dh0nJYcl2u/XFs+DhQ+8jBRHfOTUIIIURPYOoxx6Cmpibo7nJ0FUFQHgLzursYOeDqpWEYTu3uUvQkJMMUQgghhBBCCCGEECKNPpYJIYQQQgghhBBCCJFGnmU9gPD++9GU3lN3oYl7ncLrTdyVtNfw9WZP3mMoPIn2PM67/HI3k0svzQQfWJhyohYtisLLl7vfVXnb4PHjo/DMmW72Z49fQQW+0olbdeutmfDrcFlDYcoeE0y6QR//eHQwa5YbOZVWkfLW7ACwdm0muLUqqq2VK91kRx0V/z056RbOq1fHF6P42h+1nxAAFi+OwkOHZoJ5VWbf8+HDo/DcubFxG3cWO1EDB0bhVFN9dMANb7F7QnPj232m6TiPyvHEErdOebvuqqrs6vuhh6Kw3UKc6/ytt9z8qVq91+PttG0z8ZbcdjttLkt+vnttrq5TToniygY2upnceGP7JwHOHvV5XJEAUF0dhadPRxy5kC6yhCxv0T/dyLvvjsI07gCgccGCTLgeLnynBWPHRgdXXeWkq5/7L5kwVxXgdmVbdcxhh0XhESPcOK7Wo49248qeeyA6uPrqKPzgg066DRRugstwvrfzz3fi8ubPz4TXYGQmbIchw30VcO/b1gH3cds/49L5SOXvvdTY9kc+rzNxTrpVr0YH11/vRtJz6BkzuAspzP3TfVIC1TwP/uu/utemZ+wfb3HLyPPDp8rujQ72GN8TnmTKy904bhwbR5Pf1obobmz/4WG5ebMbx8d27uO+VlnZ/s8tPC2ZIqJ41TNu5Ntvt39xWz/M4MHuMd8sD277ssKNYQcK17+9uWXLovDUhMoVW5H0fGzOd3vXkiVR2Dfu6VEA+yjgW7P1z8d5TfTs+d//ddKtP+vfMuEVK5wo59jeGjcHT3W2qrgf2DwmjO+8DQg/dgBg+fIo/J9fj5+nfPzgB1GYX7sA99lvy8/tYduG25TbiacUAJgxIwqPzDe/DfDN2ffgOOjZCwDYsiUKf+EL8efxcw4A+vWLwjwJTJzoJHupLnp+rVrlZlFTE4W5H3CfBty5yL5r8TRoh699J2zFTpdcfNtO3B42jo8HFUVjaHuDO5aL8+kpYgpZ39D552/S5zIA5NVtjw5shfCcFldZANY3DMqE7VzEbWrbt5WNGzso5H6PPMsOVLSyTAghhBBCCCGEEEKINPpYJoQQQgghhBBCCCFEGn0sE0IIIYQQQgghhBAijTzLegCbAbQ631ip91YKV3jyGGeOJ/XuHR2wD87s2U6619dGmnpjJ+RgNfpx/j82j1erI5excZ/5jBNXRcYOTU8/7cSxbQpnadX008l3oeiNN9xIFtVbszAyQxhEcdOmjXaSsVVJZ/wBmNGl5BXQZByL2ITBVjJ7PrCZAhssAa4PC6cD0Jgf+dTs8fhppQro5kweXi8XTuupoI2b4r/L+/xtksLFsp47XOXWS+Tdd6PwgAFuHFn9Ofj6gbV7YF+N3bvduL59o/DSpVG4pMT1uTj+3HOjA2sUwX451sTDHseQCy8pB9sAPCk8+6wTRSMDJSab/GnTooOPfSwqx7n/4qRbeF/8pblf2HbjOJ4ufX4n69a5cWVs+MNzqxnL5XfdFZXRdhLulNYvkPIfOSvKs6TE9R/cuTMK870A7viydeB4FBHWN8nxOzED1ukX5t7yuDLt3MdQwXz9MWlfbZOOPeTuuMOJqqP6t76gh1B4eMzPAQBnnRWFjW/kq6ui+vH57Didy04WPo8uzsTWMc0Xg8h0J9+0L08rdopJ6snIXd52ce4GNg/HN8hTfrz3XvwFGOPf6pznM/3ia9ty+F4EfP06ybUAp1LyTP6lpdFY9/kPMtaLyedn5owVrldTVxXlUbrNm91nAft3+d4jGVsFfGnrVTV+fOf/rm/z4ONsfTq5Smw97tjRftiXB+DeNw97mz8/20ZWm/fZbF6i+AWkMySdm0wHbaDy+9qG68M+z7nu+JkHuB68vuHLVWXHCdsB+151bVxhPj1HaQAUt/m9g27ItFkhNbh9/uaEOHM8wK0grnRTkRXjoxsvKSl04jhp3DSb7e9Q+xfyLDsQ0coyIYQQQgghhBBCCCHS6GOZEEIIIYQQQgghhBBpDopFkT2dXYjkH1tN3CAKj0Y8k+wPSLaEM8/MBOur3JSrSPVjl8/zUlorneBl5ry01ubBqqtxZ8xwIz/84UxwtJFhcjZ86Vq4sIyr6MUX3cijjorCvnXfw4ZlgnkmXf7047HX+PZ+5z2z7VJ6Xtds1+Qznj2zG6jybPZOUr5vn5zPlt+zZJvTltEa9v6TXRFTYd07mXBzfhuBUyImT47CPkWCXQbOaXkHdMBVKfjy9C0/59Xutlp37YrCrMSzW9JvpVlgUIFn+bzVfvikSl2JbyIx44v/WpNv9YMscZw5MxNk5SkAvPBCFH77bTfOp0TlNuV09hyuYjuNYDLpOLjh7Hile2sw7fIOyVoOYbkgELuXffHUqU6y/P6RVMv28RRIItLg0T4Rebb83IbmAl6pJR/75Nw5wCvRfPjhTHD7ypVOFDepFdRxKVn46kiEAWD69Cj/ctcUgZ+xtv/06UMHQz0aO5+ui7Gdd9u2KMz9x+iPyssj2Y9v+rfzIDepT67pG0OsVCq0k1/cHMaTp72A1VZxHOdv65j7tUcv1Njk/o05RfNUUnlfw3C3j/Bt2ivHzWF2iPKtWScFbjerDIvV4G7c6KZbsSITrKqa4ERxFdtqZasDfl1YvtxNx+fxaxHgTP+JoeICSC4P9RHX3ztznu3Sce8IVt3Ibbh7tyvTO5bmn8TYc1ZZE5gYDj/cPeaOSGNhY+i+y/G0a+0wuNv55hEellZFyjYaNo4lm+xawrJLACClepv25dts0/ZcME5oB4MvjrDPsqTzCp/X5hyfBjKu0vn5AThlLjQTyfjxUXvHyTCd550Q+xH6WCaEEEIIIYQQQgjRaULIs+zARDJMIYQQQgghhBBCCCHS6GOZEEIIIYQQQgghhBBpJMPsATQg8ugyjh2ooPBMTx4lZ5zh/oB8ythHwFqfsL0HWwQB7g7R7DsBxNvPWC0/79r+5AvuVsPHfvGLmXDK+GOcdM01mTA7KVjbCXLjQb25uUI2RvB5frHA3uxV7fUAyAZrGMK+EdZohCuWG8qm4y2nTRl9NizOMRti+IxpjOFG4/DISc+2fQH5QbBPTS/TBwv7Z7HtuYHvxe5szn3XeilwuazVTZxPmc9uyedt5juPq9X6ebCFxPjxFU7clFmz4k+MM47IEq8nFGP7J08sxoRkEJeR7wUAzj8/E3ypYEomvGyJm4y9XcaOdeOsvQrDUwKH7RD1WQeyf1GKjfOsAR510OGLFrlxb70VhX2dhOcmM08VltMAsH4qPqOdOE8oWw4+z+dL1hkjn30J9TM7i3NzW1/QSgoXnXpqdDB7tpuQzG6szw7PK9xFADNfvN0LsbAJjzV+Ya8/ny8N0Zyf6jhRml5ULDu/eewyY9P5ug+KPD5i1ogoLl0vU49xvnkWTpewHtucl5DCAncuLSiIeqWdZ8vL23/v8M1Tti34uM2txTViWVnsBWz+3Md9tnOczpafm62Nr1oW2DzYtypbuPw+D1hrqcf4/Pzinkn2etbeMytsR0jqI+k1v43H5wE7eHD76XweV9bTbciQKGwfv9wevjrm69lr59VFDskpe8+1Mb6+vuetjeNKsb6gWfwekvh9rTN45kjf7xqtYzsIcl8kIfYF+lgmhBBCCCGEEEIIkRVd8JFSdDuSYQohhBBCCCGEEEIIkSYIw7C7y5CIPn36hI2NjR0nNAwePBjnnHNOF5Qod6xatQpVdg9j0WlWvfQUqg4t6zhhN/LUqjUoO3RkTvOs21iHIw47Imf5PbX8KZQNz209+srYne2WTXvkur6B3NR5V5QrF3RFf8oGbx986ilUWdlRe+nq6lB1RPt55Po+69aswRFjcjtXCJdVa+tQ1UPGzNKlS3H00Ud3dzF6JPvDs72r6cyzqqe8E/TU536uycU80pk67onP+q7oI/uSrMu/nz+n9+Uz8De/+c3SMAyn7pOLdQNBcEgInNvdxcgB/3NAt1M27Dcfy6ZOnRrW1NR0dzG6hIsuugjXXXdddxdjv2fGUSOw6Lo53V0MLyMu+Cvm/Ci3H29rrqrB0ieX5iy/EdUjMOf7ua1HXxm7s92yaY9c1zeQmzrvinLlgq7oT9ng7YMjRmDRnI7LOKOmBouWtp9Hru+z5ht/xdLf9ew/9OzvzLikBosW94wxM2HCBLz00kvdXYweyf7wbO9qOvOs6invBD31uZ9rcjGPdKaOe+Kzviv6yL4k6/Lv58/pffkMDILggP4Io49lBy7yLBNCCCGEEEIIIYToNCGAPR2mEvsf8iwTQgghhBBCCCGEECKNPpYJIYQQQgghhBBCCJFGH8uEEEIIIYQQQgghhEgjz7KDiIULF+KCCy7AqFGjAAB33nknBgwYAAC4+uqr8de//hW9evXCrFmzMHDgQNx+++1YvXo1BgwYgIEDB+Lb3/428vLycMYZZ+Cdd95BKpXC6tWrceyxx2LChAnYs2cPrrnmGlxyySUAgGeffRZHHXUURo0ahRtuuKHb7rs9Hn56Hb7z22cQhiEGDyhA055mbNrWgKLC3iju1xs/+sKxqBoxAFf+bw1uX7gaJf37YOyIYlz//94HAPjwV+7Ho8++jb98fxZmHTM863KEYYgHf/Ag6rfUY8CwAXjfF9+Hv33jb9j65lac8/NzMKCipX3uv+p+vP3i25j1tVkYPjn763VVGRvrG/HAfz2A5qZmpApTOPkrJyNVmMr6mnvTPjvea8SZ//EAdjc1o7hfCgu+ezL692tbljAMsWXtDtzxlTu8df+3r/8NQRAg6BXglK+ckvU9dYSt56M/fjQW/nwhAKBfaT+8/7L3I69XXrf2ha4kyf037WrKaT/rKpKOawDY/Npm3HbZbfjM7Z9BXq+e+fervZ0vT7qoZQzl9wqw4Lun4JBBfbv5jvz4npWHHXYYhg4dCqDFlP/Xv/41Kisr8c1vfhOf/vSnsXDhQjz00EO46qqrMGDAABx99NEIwxAnnHACvvWtb6F3797dfg8H2/PeR095F/CR9FnV+mwYOTy3u/OFYYgHvv9Ap98BupJ98Y6wrwjDEFvWbMm0b0fP/ly3by6wfSTp87unkKSPA7l7H+ypz9SufPYdHMiz7ECkZ76Ziy5j3rx5WLhwIRYuXJiZALdv3467774bixcvxqJFi3DJJZfgkksuwcKFCzF//nz85Cc/wcKFC/G+970Pt912G84991w8/PDDmTxPPfVUPPLII/iv//ov3HTTTZn8J06ciIULF/a4F+fNtQ34zm+fwd0/OQ3/vO5D+OEXjkHj7mbc/O3346FfnY7vXjQVn7rqUbTuFPuTS6bj0WvPAAAsf20rAODar5+ISz9Wvddl2bp6K1KFKZx59Zlo2NGAhu0N+MB/fgCjjx/tpDvx8yei+oy9v15XlTEvPw8nf+lkfOgHH8Khxx6KV//xatbX29v26Z2fh5u/fTL+ed2H8OGTDsWN97RflhdWbUXQK+iw7udeNRdnfP8MjHv/uL26r46w9Zyfysdpl5+GD/3gQ+hf1h9vLX0LQPf2ha4kyf3nsp91JUnHNQC8eM+LKB1T2g2lTEYu5suH/3suHr32DHxyzjj8PmY89jTae1YCwJAhQzI///Wvf5352c0339wmj4kTJ+If//gHHnnkEfTu3Rv//d//vc/KD+h53xE96V3AR9JnVVc9G3bv2r1P3wE6Yl+9I+wrXnjhBad998dnv+0j+9vzO0kfB3LzPtjTn6kHwrNPiFyij2UCvXr1woYNG/Dcc88BAAYOHBib9tVXX8W3vvUt3HHHHW3iamtru6iEueWex9dg3gfHZv6SOG5kCYaWFmbijxg9CKMq+mPNhjrnvHfrGjNhTr837HpvF/oN7oemxiY01DagT/8+KBzYNu/CQbm5XjYkKWN+Kj9TxrxeeQjygqyvt7ftU9AnP5M+v1ceesWUZduOXeiVn9dh3eflt0yTTY1NGDgyfmzsLe3Vc5+iPi1loDrtzr7QlSS5/1z2s9hy7NmDcx54AMfcfjt+/eKL+PSjj3Y+j4TjeuuarehX2g+9++6b1UbZkIv5snd6DO3c1YQjRnfdGOou+vTpgxNOOAEPPvhgbJpvfOMb+Pvf/74PS9U+B9vz3kdPehfwkfRZ1VXPhnBPuE/fATpiX70j7Cu2bduGXvm99utnf3t9pDue39mSpI8DuXkfPJCeqfvTs0+IbNHHsoOMm266CTNnzsSFF16Y+Vm/fv3wi1/8Al/96lcxbty4dl+MAeCZZ57B1KlTMWLECGzcuBHNzc0AgAcffBDTpk3D5z//efz7v//7vriNveLtzfUYOtj/0lFR2g8btuwEAHz5F0tQeeYf0SfVC9VjBuW2MC1/OMKfP/9npIpSCIKe8/KQoRNl3L1zN16+/2VUnVSV9eVy1T519bvxmztexnmntV+WMOF91W2qwx1fvQMv3vMiBh2a4/Z3CtR+ed7b8h7WLVuH4UcdOJLLdunE/eein8Xx1zfewNFDhmDxhz+Mq59/Hu9Lyw46RcK+9cKdL6B6bs9cKdBKLsbjmg11OO7Td+BXt76IiVVdOIZySHvPSgDYtGkTZs6ciZkzZ+I73/lO5uf/9m//lvlre3ukUins3r27y8rbHnre++lR7wIekj6ruuz66QltX70DdMS+ekfYV7SuINqfn/1xfWRfP7+zJWkfz8X7YE9/ph4Izz4hcok+lh1ktC6v/dGPfpSZ9ADgtNNOwwMPPIDFixfju9/9brvn3nbbbXj44Ycxe/ZsvPLKK3jiiScAtMgynn76acybNw/Lly/fV7eSNUNLC7F+83veNOs2vZf5S89PLpmOF/5wLt7ZuhMNu5q6pEznXX8ehk0ahpcfeLlL8s8FHZUxDEM8+stHMe38aZm/KGZDLtonDEN86qpH8b3PTUNJf39ZOrqvoiFFOPPHZ+Lo847G83c8n8UddQ4uz57de7Dw5wtx0hdO6rF+Vrmmo/vPVT+L480dOzB58GD0ysvDEQMH4rTh2f+i4utb765/F6nCFAqKC/amuF1OLsbjyPIiLP7tmfj2vx6Nq2/u+jGUC+KelSxFueKKKzLphw4div79+2PFihXt5tfY2LjP/Mpa0fPeT098F/DR3e8J++odoCP29TvCvuJAePZ39/N7b9kX74M9/Zl6IDz7uocQLZ5l+/s/Ydl/ZmCRU3jS27lzJ9atWwcAKC4ujp3Unn76aSxatAj33Xcfbr/9dtx+++1O/Fe/+lX8+Mc/7vKy7y1zjh+Bm+9bhR3vtSxpXvXWu3h7c30m/uU3tuHNDXUYUdYv87P+/VI45/2jusTbon5by7X7lfbDnt09c6JKUsaaP9Sg7PAyDDty2F5dKxftc8V1NThhUhlOnuovy56mZu99NTc1Z/7qm+qbQq9Ur726t46w9fzPX/0TE+ZM6FL5Z08iyf3nqp/FMbxfP6yvr0dzGGL5tm3YnV5R01k6GjNbV2/FppWb8Pdv/R1bV2/FY79+bK/K3VXs7XjcTWOouF8KfQu6dgzlGn5WdsS///u/45e//GW7cT/60Y8wd+7cHJcuGQfz895HT3sX8NHRs6qr2ZfvAB2xL98R9hV7mlrqdH9+9veE5/fe0FEfz9X74P7yTD0Qnn1C5ALthimwa9cufPKTn8SuXbvQ3NyMSy+9tE2aV155BYccckjmePz48Vi8eDG++MUvZn5WUlKCESNG4JlnnsGUKVP2RdGzYsjAvvjmp47C3C/fjzAMMai4D1K98/CJb/0D/QtT6F/YG7/9fye1WYZ93mlVOO2Se3Hx2RPw7z95HHcvWoO/PfYmLj5rBz571uFZl2f9c+tx53/cibz8PJzy1VPw0A8fwoaXN+Dd9e/iyLOPROX0Sjz+m8ex5uk1ePOpN7Fj9g4cPjv763VFGYeMHYLnbnsOZePLsHrJaoyZMQYT5kzI6lp72z4fOvFQ/PCm53D8pDLc/uhqfHTWGHzunPbLsqt+t/e+SseU4pGfPgLkAb3ye2HmpTPx0n+/lNV9JYHr+ZhPHoOlf1yKuk11WH7XclSfUY1Rx43q9r7QlXR0/4eMOyRn/SyOs0eNwmf++U88uHYt5o8bh/948kn88ZTO73rV0ZgZdfwojDq+Zcepu/7zLpz4+RNzeh+5Ym/H45zjR2LelY8gLwD6pHrhxitmds+N5IhWKQoADBs2DH/4wx8ycVOnTsWgQZEk5oUXXsDJJ5+c2RHsa1/72r4ubhsOtue9j572LuCjo2cVvyc07WjCb37zG3z2s5/N2fWzeQfoKvblO8K+Ytd7uxI/+7uifXNBNs/vnkRHfbzd98EVazt9nf31mbq3z77WnZOF2N8IWr9O93SmTp0a1tTUdHcxuoSLLroI1113XXcXY79nxlEjsOi6Od1dDC8jLvgr5vzonMzx+hfWY91z6zDt/GlZ51lzVQ2WPrk0F8UDAIyoHoE534/qsavL2F3ttnDpenzomw/j4zfM69R5ua5voKXOJ583ea/quSvKlQtsf4ojF/3Mh7cPjhiBRXM6LuOMmhosWtp+HnyfORkz3/grlv7unI4TiqyZcUkNFi3uGWNmwoQJeOmlrvsQvz+zPzzbu5LOPqty/SwYMmoIRhwzotPzWU987ncFezuPLFy4EB/6yIfw8d99PFH6nvis74o+si/Juvz7+XN6Xz4DgyBYGobh1H1ysW4gCEpD4IzuLkYOuPGAbqds0MoyIYQQQgghhBBCiE7T6lkmDjT0sUyIbqRiYgUqJlZ0dzG87A9lzIaZR1dgwJCesxX7gVrPSTmQ7v9AuhchRPfS3c+qgn4FXbbiVwAzZ87EgLIB3V2MvWJ/7yP7e/mFEF2HDP6FEEIIIYQQQgghhEijj2VCCCGEEEIIIYQQQqSRDFMIIYQQQgghhBAiK+RZdiCilWVCCCGEEEIIIYQQQqQJwjDs7jIkYurUqWFNTU13F6NLKC0txZYtW7q7GEIIIYToBgoKCtDQ0NDdxRBCCCG6gqVhGE7t7kJ0FUEwOARmd3cxcsAfD+h2ygbJMHsAW7Zswf7y0VKInsqNN96ICy+8ECtXrkRVVZUT19TUhN69e+Nb3/oWrrzyyu4p4D5g5syZaGpqwqJFi3KS3/z587Fw4UKsXr06J/kJIdonCAK9B4gDBt/zuJW9eb5UVlZixowZuPnmmzssR3NzMz71qU91+hrtceWVV+Lb3/42du/ejfz8vf8VqrWe3njjDVRWVu59AYXooQRB0N1FECIrJMMUQgjRLt/85jdx++23d3cxhBBCHGDsi+fLjTfeiN/97nddeo294fTTT8fixYsxdOjQ7i6KEGKvCAE0HwD/hEUry4QQQrTLmDFjursIQgghDkD0fAGGDBmCIUOGdHcxhBBCxKCVZUKIg5Y33ngDn/jEJzBkyBD06dMHkydPbvOX7lWrVmHevHkYNWoU+vbti9GjR+Nzn/sctm3blknzox/9CKlUql3vwQkTJuDMM8/Erl27MGTIEFx22WVt0tx4440IggArVqzwlve5557DWWedhcGDB6Nv37447LDD8P3vf79NuoceeghTpkxBYWEhqqurcccdd3T6noAWmQxLQ1avXo0gCHDdddfhiiuuwNChQ1FSUoIzzjgDa9eu9ZZdCCGEaMU+XwDg9ddfx5w5c1BYWIhDDjkEX/7yl/Gb3/wGQRC0K9e85ZZbcPjhh6Nfv36YOnWqY0Ewc+ZMPProo3j88ccRBAGCIMDMmTO9Zdq0aRM+//nPY8SIEejTpw9GjBiBefPmYdeuXU66N954A6effjqKiopw6KGH4jvf+Q6am6NVGQ0NDbjssstQXV2NoqIilJeX44wzzmjzjG999vO9VVZW4vzzz/femxBCiH2DPpYJIQ4o9uzZg6amJuffnj1tt3N+6623cOyxx+K5557Dz372M/ztb3/DlClTcM455+Bvf/tbJt369esxfPhw/PznP8f999+PK664Ag8//DDmzJmTSXP++edjz549+NOf/uRcY+nSpXj55Zcxb9489OnTBxdeeCF+//vftzHyvu666/C+970P48ePj72vp556Cscddxxee+01/OxnP8M999yDL33pS20+Ur322mu45JJL8KUvfQm33XYbhg4dinPPPRerVq3q1D35+P73v49Vq1bhd7/7HX7xi19g8eLF+MQnPpHoXCGEEMLS2NiIU089Fc899xx+/etf48Ybb8Qbb7yB733ve+2mf+yxx/CTn/wE3/3ud/GnP/0Je/bswdy5c1FbWwsA+PWvf42jjjoKkyZNwuLFi7F48WL8+te/jr3+tm3bcPzxx+NPf/oTvvSlL+Hvf/87fvSjH2H37t1obGx00p511lk4+eSTcccdd+DMM8/Et771Lfz+97/PxO/atQs7duzA5ZdfjnvuuQf/8z//g4aGBkyfPh0bNmzosC46ujchhBD7BskwhRAHFL4PTsyVV16JMAzx6KOPYvDgwQCA0047DW+99RauuOIKfOhDHwIAnHTSSTjppJMy5x1//PGoqqrCiSeeiGeffRZHHXUUKioqcPLJJ+Omm27C5z//+Uzam266CQMHDsTcuXMBAJ/73Ofwk5/8BLfeeivmzZsHAHj++eexZMkSLFiwwFver3zlKxg8eDCWLFmCwsJCAMDJJ5/cJt3mzZvxz3/+E2PHjgUATJkyBUOHDsWf//xn/Od//mfie/Jx6KGH4o9//GPmeNOmTfjqV7+K9evXo6KiwnuuEEIIYbnxxhvx+uuv48knn8QxxxwDAPjgBz+IyZMnY82aNW3Sb9++HcuWLcPAgQMBAOXl5Zg2bRr+/ve/47zzzsOECRNQXFyMpqYmTJ8+vcPr/+xnP8Prr7+Ompoa5xn48Y9/vE3aL3/5y7jwwgsBALNmzcI//vEPLFiwIPOzAQMG4Prrr8+k37NnD0477TSUlZVhwYIF7a4w78y9CSF6Im3/MC/2f7SyTAhxQHH77bfj6aefdv4tWbKkTbr77rsPc+bMwYABA5xVaKeddhqee+45bN++HUDLX7v/67/+C+PHj0ffvn3Ru3dvnHjiiQCAV155JZPfvHnzsGTJEqxcuRJAyw6ct9xyC/7lX/4Fffr0AQCMGjUKp512Gq677rrMeddddx2GDBmCs88+O/ae6uvr8fjjj+MTn/hE5kNZHGPHjs18KAOAQw45BIcccojzy0bSe4rj9NNPd44nTpwIAO3+QiOEEEJ0xJIlSzBy5MjMhzKgZQe9c845p930xx13XOZjErD3z6EHHngA06ZN6/CPRUDbZ2B1dXWb6/75z3/Gsccei5KSEuTn56Nfv36oq6tL9IzN9b0JIYTIDn0sE0IcUFRXV2Pq1KnOv6OPPrpNunfeeQf/93//h969ezv/vvrVrwJAxn/sG9/4Bq688kqcf/75uOeee/DUU0/htttuAwBHTnnOOeegX79+ma3sH3jgAWzcuDGzgqyVz3/+83j88cexfPlyvPfee7j55ptx4YUXIpVKxd7Ttm3b0NzcjOHDh3d4/4MGDWrzsz59+jhlTXpPSa/R+jEwyblCCCGE5e2338YhhxzS5udlZWXtps/1c2jLli2JnrFx1+br3nXXXfjoRz+Kww8/HH/84x/x5JNP4umnn8aQIUP0jBVCiP0IyTCFEAclgwcPxoknnoivfe1r7ca3yglvueUWfPKTn8Tll1+eiaurq2uTvl+/fjjrrLPwhz/8Ad/+9rdx8803Y/To0TjhhBOcdHPmzEFlZSWuu+46HHnkkdixYwc++9nPess6cOBA5OXlYd26dZ29zXZJek9CCCHEvmDo0KF46aWX2vx848aN++T6paWlOX3GVlVV4cYbb8z8bPfu3di6dWtO8hdCCLFv0MoyIcRByezZs/H888/jiCOOaLMSberUqZm/5NbX16N3797OuTfccEO7ec6bNw+vvfYa7r//ftx5551tVpUBQF5eHi666CLcdNNN+NWvfoVZs2ZhzJgx3rIWFhZixowZuPnmm7Fz584s7ziiM/ckhBBCdDXTp0/HmjVr8NRTT2V+FoYh/vrXv2adZ58+fRI/Mz/wgQ/gqaeewnPPPZf19Vqpr69Hfr67HuGmm25qd7MhIcSBQIgWz7L9/Z+waGWZEOKg5Dvf+Q6OOeYYnHTSSfjCF76AyspKbNu2DcuXL8frr7+O3/3udwBaPqr9/ve/x8SJE1FVVYXbbrsNTzzxRLt5zpo1CxUVFfj0pz+N+vp6nH/++e2m+/SnP40rr7wSzz33XOJfBK6++mq8733vw3HHHYcvf/nLGD58OF5//XUsW7YM11xzTafuvTP3JIQQQmTDfffdh/LycudnAwYMwKmnntom7fz58/HDH/4QZ599Nr73ve9hyJAhuP7667Ft2zYALX9o6iwTJkzAr3/9a/zpT3/CmDFj0L9/fxx22GHtpr3sssvwxz/+EbNmzcLll1+OiRMnYvPmzbjzzjtx7bXXon///omvO3v2bNxxxx247LLLMHfuXCxduhS//OUvUVJS0ul7EEII0X3oY5kQ4qBk5MiRqKmpwZVXXon//M//xKZNmzB48GBUV1fjggsuyKS75pprEIYh/t//+38AWmSUCxYscEyIW8nLy8N5552Hq6++GscddxyqqqravfaQIUPwvve9Dy+88EJm182OmDZtGh5//HFcccUV+OIXv4hdu3bh0EMPzey+1Rk6c09CCCFENnzxi19s87MjjjgCy5cvb/PzVCqFBx54AF/84hdx8cUXo6ioCOeddx6OPfZYfP3rX8eAAQM6ff2vfe1reOWVV/CZz3wGdXV1eN/73oeFCxe2m7akpASPP/44Lr/8cvzgBz/Ali1bUFZWhpNPPtnrKdoe//qv/4q33noLv/vd73Dddddh2rRpuOuuu3DWWWd1+h6EEEJ0H0EYht1dhkRMnTo1rKmp6e5idAlBEGB/aQchxN6zbds2jBw5Epdeeim++93vdndxhBDdjN4DhGifuXPn4uWXX8Zrr73W3UURQmRJEARLwzCc2t3l6CqCoCQEZnZ3MXLAnQd0O2XDfvOxLAiCTQDe7O5yCCHEXpAPoADAIQAGAFgOYHe3lkgIIYToGZShxThnF1p8lQel/60BsKkbyyWE2DsODcNwSHcXoqvQx7IDl/1GhnkgDzAhxMFBEATzAdyAlhf/z4Zh+JfuLZEQQgjRMwiC4N8AfAHASAC9ALwC4D/CMPxttxZMCCHEQYl2wxRCiH1EGIY3hmEYhGF4qD6UCSGEEBFhGP53GIaHh2HYLwzDgjAMj9SHMiGEODAIguCiIAj+EATBiiAI9gRBkJXEMQiCY4MgeCgIgh1BEGwPguC+IAgmx6TtEwTBd4IgeCMIgl1BELwWBMHlQRD0TnKt/WZlmRBCCCGEEEIIIUTPorm7C7A/8A0AgwE8C6AfgOGdzSAIgukAFgJYB+CK9I+/AOCxIAiOD8PwBXPKnwB8GMDvACwGcByA7wKoAjC/o+vpY5kQQgghhBBCCCGE6CpmAlgThmFzEAR3I4uPZQB+CaARwElhGK4DgCAI/gzgZQA/AfCB1oRBEMxBy4eyn4Zh+OX0j68PgqAWwJeCIPhNGIZP+C4mGaYQQgghckoQBDcGQRCm/83MQX4zKb8b97qAQgghhBBinxGG4eowDLNeghcEQRWAaQBubf1Qls53HYBbAcwKgqCcTjkv/f/PTVatx+d3dE19LBNCCCH2MUEQrKaPP/ZfUxAEW4MgeCEIgv8LguDMIAi0ElwIIYQQQhysTEv/v7iduCUAAgBHm/TrwjB8ixOmj9dTfrHo5VsIIYToWfQCMDD9rxrAPADPB0FwXhiGL3ZryYQQQgghBPHu/cBdpd1dihxQEARBDR3/JgzD33RbadpSkf5/XTtxrT8bZtK/FJPXOiSQgepjmRBCCNG9XAvgNTrOB1COFm+HI9M/mwTg4SAIpoZhuHbfFk8IIYQQQrRHGIazu7sM+4ogCEoAXNqJU34ZhuHWHF2+MP3/rnbiGkya1nB7aVvTF8bEZdDHMiGEEKJ7+VMYhgvbiwiC4DwAv0fL87oMLTv4XLjvipYdYRjOR4JdhoQQQgghxH5DCYBvdSL9zQBy9bGsPv1/n3biCkya1nB7aVvT18fEZZBnmRBCCNFDCcPwjwB+QT86JwiC3t1VHiGEEEIIcXCSNukPOvFvVQ4vvz79/7B24lp/xhLN9TFpW9O3J+d00McyIYQQomdzO4X7AxjjSxwEwfuDILg2CIKXgiDYFgTBriAI1gVBcFcQBJ9KsllAEAS9giD4RBAEtwVB8EYQBO8FQdAQBMHaIAieCYLgz0EQ/GsQBIfGnJ94N8wgCAqCILgsCILF6Y0N3guC4NX0PUzqqKyUz0K6ZmWC9K1pVydIGwRB8OEgCH4fBMHKIAi2B0GwMwiCN4MguDUIgnODIAgS5NM3CIKLgiD4e7oudwZBUJ/Opya9ocO8IAjKkt21EEIIIcRBwdPp/49rJ246gBDAUpN+WBAEIzhh+rgCAPuztYtkmEIIIUTP5h1zPKi9REEQHIKW5e6nthNdkf43F8B/BEFwZhiGK2LyGQbgbgCT24kelv53FICPoOWlZGrHt9A+QRCMBXAPgLEmamz636eCIPgSgOXZXmNvSW9VfgvcHZZaGZn+dy6AJUEQnB2G4dsx+RyBlnqt9ORzNFo2dPhrOk8hhBBCiIOKIAhKAZQCeDsMw3cBIAzDVekNCD4SBME3wzBcn05bgZZ30n+EYbiBslkA4BNo8Vj7Mv380vT/f+ioHPpYJoQQQvRs7Cqj92yC9AeuRYg+xNQBuA8tuwA1oOVDzOkARgA4DMDjQRAcHYbhapNPHoA7EH0o25HOZ0X6uv3S15gK4PC9uCcEQVAO4BFES+Qb0fIx6TkAKQAnAjgJwDUAfrI319qLMk4C8A8Ag9M/2oKW+lgJoAnAaAAfQssL3XQAi9L1WmvyKQJwL1rqHwA2p/N5DcBORCsGjwUwquvuSAghhBBi3xMEwRmINq6qSv/s8vRxbRiGv6LkX0CLN9qFAG6kn1+ClnfHx4IguCb9sy+iRTHJH8QQhuE9QRDcDeBLQRAMALAYLavSPg3g5jAMF3VUZn0sE0IIIXo251C4AcArHJn+wLUA0Yey/wPw761/iaN0vQF8Hy0vE4MA3ISWD1LMTEQrxWoAzA7DcEt7hQqCYDSAkzt3Kw6/QvShbDWAOWEYvmyucQaAPwP40l5cJyuCIOgH4FZEH8p+CODKMAwb2kn3vwA+jpaPZ78E8EmT3b8g+lB2D4B/CcOwXWPZ9Ae6I3JxD0IIIYQQPYRzAFxgfvbd9P9vouW90EsYhk+k7T2uSv8LATwB4CNhGD7XzikfAXA5gPPRsnJ/HYArAPwgSYHlWSaEEEL0UIIgmIeWv5i18if7sQYtLx+tH71uC8PwAvuhDADCMNwdhuFXANyW/tGMIAjsx7KjKPyDuA9l6fxeD8Pw+kQ3YgiCYAKij4BNAD5kP5Slr3EXWu6/Qz+wLuDzAMalwz8Nw/Dr7dQ9wjB8Dy0vYE+lf3ReO55pXK/fivtQls7v+TAMF2RfbCGEEEKInkUYhvM9GwFUmrRXpn9+Yzv5LA7D8JQwDIvCMOwfhuFpYRg+E3PNhjAMLw/DsDIMwz5hGI4Ow/C7YRjuTlJmrSwTQgghupePBkHAvl/5aJFengyADe5XAPhaO+d/nsJfT3C9nwA4Ox3+EIDHKK4XhfsmyCtbzqfwgjAMX/Ck/S1a7su7sUEX0FqvOwF825cwDMM9QRD8Ai3+F73QInn9b0qyr+pVCCGEEELkAH0sE0IIIbqXizuI34MWw/d/D8NwI0cEQdAXwPHpwzfCMFyZ4HrLKGzN+XkJ+1VBELwchuFS5J4TKHx7bCoAYRiGQRDcBuCrXVCOdklLTCvTh0vCMNye4LRlFPbV6y+DIPhowrYSQgghhBDdgGSYQgghRM/mUQBfth/K0oxHixk+AIwKgiDs6B/cDQKGmPweBPBsOnwogJogCJ4LguDqIAjOTu84lAvGUXhZgvTt+VB0JUdS+P0J6/VFOsfW6x8BrE2HjwLwShAES4Ig+F4QBHODIBgMIYQQQgjRY9DHMiGEEKJ7eX+rZwNansvlAGYB+Hs6/mQAT6RXO1n29iNLPz4Iw7AZwBwAD9GPJ6FlU4C/AlgXBMHLQRBcGQSB/SDUGQZSONYXjdi8F9fKhlzX6w60tGmrp0aAlp0v/xPAXQA2BUGwNAiCLwdB0H8vry2EEEIIIfYSyTCFEEKIHkIYhiGAjel/DwdB8Eu0GNyPAPDnIAiOD8OwkU7h5/grADpruN/eRgAbAJwaBMFxaNnF8X1o+WDW6rs1Hi3beX8pCIILwjD0yihzxL42+Od6XYKWD4Wd4S37gzAMX0l7081Ci2fcSQAOR8u9BQCmpP99JQiCjyTZ0lwIIYQQQnQN+lgmhBBC9Fy+DGAmgIkAjgbwJbjbXfOqrMYwDK/O1YXDMFwMYDEABEFQjBZvtNkAzkOLzLA/gD8FQXBUGIYvxmbUPtvQsoIOaFnF1ZEnWJKVXiGFvR/XgiAo7CAvrtdNuarX9MfQB9P/kJZfnoiW1XwfQ0udlgO4KwiCcWEYbsrFdYUQQgghROeQDFMIIYTooaS3tv4y/egbRv64Ei0bAADAhCAIWN6Yy3JsD8PwvjAMLwUwGsCT6ajeAD6TRZavUvjI2FSdS1NH4aIO0o7sIH4FhY8LgqBL3pfCMNwShuEdYRh+FsBYAK+no0rQ8lFSCCGEEEJ0A/pYJoQQQvRgwjB8EECrJK8YwNcprhZATfqwF4BP7oPy1AH4Gf1ofBbZPEHhs3wJgyAIOkqThjdAGBebqoXTOohfDmBDOlwK4IwE198r0hs4/IZ+lE29CiGEEEKIHKCPZUIIIUTP59sU/lwQBEPp+BoKXxGzEUC7pD9E7S07szjnJgp/PAiCCZ608wFUJcjzGQqfHZcoCIIBcFfrtSEtl/wV/einQRAMSlCG1mt0V70KIYQQQogcoI9lQgghRA8nDMOHEK3G6gvgGxS9gOIGAXg0CIJZcXkFQVAQBMGZQRA8ghZDeY77eRAEVwdBcITn/GEALqcf/TP5nbQQhuFLAFo3BuiNFo+uw9q51ukA/huuH1kcdyKSpH4sCIIz28lvKIC70bJhQkf8EsCqdHg0gH8GQTAlLnEQBP2DIDg/CIJnYDzWgiC4JQiCK4IgGOU5fwKAf6cfdbpehRBCCCFEbgha/ngqhBBCiH1FEASrARyaPnx/GIYLE5zzAQD3pw93AagKw3BtOq4MwGNo8b1q5QW0fHB5Gy1/HBsMoBrAsYg8vaaFYdgq40QQBDcCuCB9+BqApwC8AWAHWj7EjUeLyX9vSjM5Lc1ETD7t3l/6w9VSAK2r5HYBuAvA8wBSAGagZXMDAPgpWjY3AIDfh2E43+aXzvNaABfRj+5Fy26WAHAEgLkACgFcheiD35thGFbG5Hc4gEcAlNGPn0LLx8l30uUcgpbdQo8B0CedZkgYhpspn4Vo2VUUAF5Ei3R2DVpWj5WixZPt/Yj+iLkYwIlhGLZ+/BNCCCGEEPsQ7YYphBBC7AeEYfhAEARLAExHy0eZ/wfgc+m4jUEQTANwLYCPomU3yInpf3GsQ8uulEwjhcek/8XxNIBz7YeypIRh+HYQBO9Hy0qvKrTc07npf600oeUj2QuIPpb5+DJaPhienD7+YPof8zMAV8BdHRdXxpeDIDgawA0ATk3/+Jj0vzhWouXDH8P1ekT6Xxz3AThPH8qEEEIIIboPrSwTQggh9jHZrCxLnzcbLaulAGA3gHFhGK42aY4AMA8tK5lGoWVFWBOArWjZhfIptKxQezQMw2Zzbh5aPsadkv7/MLSsqioEUA9gLVpWg90K4G9hzEtEkpVllLYAwL8B+Be0GPP3AbAeLSu6fh2G4bNBEMw9wkY6AAABLklEQVRMHwOelWXp/HoBuBDA+WhZ8dUPLWb9iwH8TxiGj6bTtZY9dmWZyXc6gI8BOAktMs4StHwE24SW3TMXA7g3DMOn2jm3d/q8k9Hyoa0KLfWaQssunmvQssPogjAM/9FRWYQQQgghRNeij2VCCCGEEEIIIYQQQqSRwb8QQgghhBBCCCGEEGn0sUwIIYQQQgghhBBCiDT6WCaEEEIIIYQQQgghRBp9LBNCCCGEEEIIIYQQIo0+lgkhhBBCCCGEEEIIkUYfy4QQQgghhBBCCCGESKOPZUIIIYQQQgghhBBCpNHHMiGEEEIIIYQQQggh0uhjmRBCCCGEEEIIIYQQafSxTAghhBBCCCGEEEKINPpYJoQQQgghhBBCCCFEGn0sE0IIIYQQQgghhBAizf8HFOH9M3v+x/kAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ5CAYAAADcN4iwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyde5xdVXn+nzWZTCaTyTC5D2EIQwgYIGiAJIAGDQr1Bi1arWKtovWCWpV6aa21rf7UeqnXamtbbKVqi+KNAhVboISLiiZAhACJCTBACEnIjZDLkExm//7YZ2Y/+52z1qyzz5nLmTzfzyefvHvvtdZe973PnvW8yyVJAiGEEEIIIYQQQgghBNAw2hkQQgghhBBCCCGEEGKsoI9lQgghhBBCCCGEEEKU0McyIYQQQgghhBBCCCFK6GOZEEIIIYQQQgghhBAl9LFMCCGEEEIIIYQQQogS+lgmhBBCCCGEEEIIIUQJfSwTQggxbnDOdTnnEvp35WjnSZRHbSVGC+fcpabvXTraeaoF47VcQgghxGigj2VCCCGEEEIIIYQQQpTQxzJRlzjnus1fT/v/fbCKNJd40kycc521zL8QQgghhBBCCCHGJvpYJsYbb64i7qW1yoQQQgghRCWYP9KtHO38CCGEEEcy+lgmxhunOedOrzSSc64JwOuHIT9CCCGEEEIIIYSoI/SxTIwX+sgusrrsIgAzPOkJIYQQQoxpkiS5MkkSR/+uHO08CSGEEPWKPpaJ8cItZL/BOTexwvj8gW0DgMerz5IQQgghhBBCCCHqDX0sE+OFK8meBeAVsRGdc7MBvJxO/XuN8iSEEEIIIYQQQog6Qx/LxHjhVgDddFyJFPONABpLdgLgOzXKkxBCCCGEEEIIIeqMxqGDCFEX9H/k+qvS8SudczOSJNkREZc/rN2SJMljzrmaZMo51wbg+QDmIl3xdhDAUwDWAvhNkiRJlenPBXAqgPkAjkL6AXwngCcB3JkkyVPVpB+47yIASwF0IC3TNgC/SpLkt8Nxv0pxzi0AcDaAY5D2jacA3J0kyW9qlP50AC8AcDRSX3d7S/dYkyTJulrcw9xvItJ+dGzpng7A/UmS/HcFaXQBOANAJ4AWpH3kjiRJHoqIewqy9j4M4AmkY2VLZSUZlO6o9N+RwDl3MoBFSOu7Cam0+9YkSZ4YIp4DcDrStpoFoAfAYwD+L0mSXTXI1ySkfek4ALORtuc2ABsB/DpJksM1uEcjgHMBnFC6xwEADyHtbzurTb/M/SYCOAtAV+l+jUjH4yMAfpEkycFa37MSnHPHI23TWUjni4NI+/l6pM+BvQXTbUU6D3Ui6yvbADyAGjxfytyvAcAyAMcjnYcmAXg0SZL/rCCNdgDnlOLPKeX51iRJ7o6IexqAU5C28VQAO5DORXckSbK7krJUi3PuKKTj+yQA0wE0A9iNtN/dFTOvjmVKc/5zkdb1FADbAWwG8PPhqGvn3DFI+/JxACYgrcf7kc5Jo+5D1jnXgXSOOQZAO9JxdmeSJGsj4s5H9j7iAGwBcHuSJI9UmaeZSPvgAgDTAEwEsAvAVqT1tqma9AP3XYx0PpuDdC7bjPT9r6ryCCHEmCRJEv3Tv7r7h3QVWUL/OpH+MONzfxKRzukmzh/50q8wfy8D8H9IXyQSz7/NAP4GQGsF6U4A8FIAVwB4OJB2/7+7AbwBwIQK7rHCpPFxuvYapC+wvvvdB+Dlw9z2XeaeV9K1FwP4ZSB/jwB4YxX3fimA2wD0Bu7xMIA/B9BcQbpXmjS6SufnAvhHpD9U7H3WmDT42ko6fwFSn359nvz+D4CTPPm6GMC9nnh9AH5YydgYof7r7R8j1AdfB2CVpzyHAXwPwNFl0nQA/jhQL4cA/AuAaQXzvBDA95F+2PXV9w4A/1Quf5H3mATgE0h/SPrKcBWA42rRVgBOBvCfAJ4OlOkZAN8CMK/W/WCIvLWX6uKhIfr4swBuRrrCeVJk2ssA/LQU15fuZgCfBXBUBXn+uEljBZXlswA2lbnPbpNGN13rNnn+MdKPYzaNrwTyNAPA5z337v/XC+BGAM+voKyXmjQujYizuFQPdyMdy6F23QTgLwC0RaS7coi0fP8GjZci5aK4LQA+hsHvP3YM3wLgJRWOB05jJZ0/HekzyPd82gbgfQAah3m8+vrtEgDXlcpdLn+/ArDUk+aLANwRqMv/A3ByBXl0AJYD+HukH8SH6h/rAbwLkfNK6R5dvj5W6luh+eyXAM4dznbSP/3TP/0b6X+jngH9078i/8q8zHWWzt9O51ZFpPMVCv8MgCmh9CPSm4n0pb2SF94nAJwRmf4PK0y7/9/NAGZE3mOFiftxpH+xvLKC+31kGNu+7MscgL+tIH//CMBVcM8pAK6psM4fraBdbd12ATgP6V+JfemvMWnwtZWlc5+IzOsuAMsorQakH01i+++CMdR/y/aP4e6DSD8E/ltkeR4DMJ/Smwzg2si4awHMqjC/H4f/x165f3sBvLnCe8xD3A+4BOnHrRVF26pU119G+KO1/ddTaZmq6B9vQrrKqNJ+fvEQ6TYC+OcK09wO4KUV9BOOuwLAaaX+6kt/t0mjm651l859AOGPS1/x5OfNBerx64j4uI4KPyoB+JMC7ZmU6mPxEGmvLJj2oPFSabko3lkIf5As9+9qAJMj0+d4K0vn3o34eekaVPDRp8CYLddv3464OaYHwEUmvb+C/wMg/9sD4OzIPH6hYD9Zg9If4CLu0WX7GNL3v+9H3qsPwGeGq530T//0T/9G+p98lonxxpVkL3HOneoLWJLuvIFO/SBJkn1Fb1xaav9LAOeXufwYgLsA/Abpyz8zF8CtzrlzIm7TXObcdqQ/Un9VSn9rmTAvBnBTSYJVhCuRl6vuRrqK7C6kq1Esn3HO/V7Be1WMc+7TSP+K388+pHWyGqnkwfIupH+tjkn7KKR/SS9Xns2le2xA+tLPzAOw0jn3wpj7GBYj/Wt2O517vHSv3yJ9OQ/inPsAgL+mU3uQttndSD9WMO0ArilJpID0Y+I76fpOpH3rN0jrlpkL4Ccl6d1QjFb/HQm+DOAtdLwT6Y+UewHsN2GPRanOStK2HwG4iK5vRTq21iJdPcScCuDbsZlyzv0z0hWstn12lfK3FunHMWYKgCtLfSjmHh0orZIwl/qQrpRbjXQO7KcN6cdBGz7mXpMB/BeAy5F+NGO2I63v1UjHJjMJaZmixn1RnHOfRbpJzFHmUoLsObCmTP6GSnci0g8G7yhz+Smk4/pBDJ4bZgC4zjn3B5Xcr0Qn0j/+HEvnttC9hnxeOufeDuCLyHzk9iKV/K5CWh9lZb/Oub9B+tyx9dg/t/+6lE5irr8HwPddrXwpZJSbu/YhXb2zCmm7dpfJz3EAbiu5BhiTOOfORzp+jzGXDiF9tpUbTwDwWgA3luTAld7zHQD+Adm89CyyunysTJTfQ7qqb0Rwzr0G6Yfp/jlmP9JV9XchnWeYSQD+s/QOCOfcRwD8P6QrwYD0D7H9z97dJu5UpM9e28/LUa4P7gawDul4uAfpB0/L8wDc7pybEXGPcvwjAJ4/9qLkSgSDy+MAfKQ0DwohRP0z2l/r9E//ivyDf2VZG9KXmv7znw+k8XsmjRcNlX4grclIX4Y4zmYA7wcw24RtQOrP5xYT/jEMIbECcD3SH0b/COBCeFaYIP1x8xcY/Ff5L0TU7QoTh5fd34hUBtBA4R3SD4S/NfEexzBIJzD4L58sW1uFdGfTiSbOMqQvkxxvL4DpEff7TxMvQSolO8WEm4Z0BYWVuW3xtRPFvdLEebL0/7NIJUjHmfAtAM435zj+JmQS4LuRSh8bKWwjgNdj8Mq1zyD9gNx/fDNS/1aO4jYj/UFqJWDvjqjLkei/tn9cOQJ98BGy/y9QZ1aC9k4AH6XjHwB4rrnXVKQrBO0qhVdE5POdZfruaqQfH3kMNwF4NQZLQA+jJMWLaFeOdwjAp2DknEh96/yrp96i2gqDV+/1APg7AM8pE/ZEpJJfm7eolRwF+sW7ytT34wAug3kOlMLPQvoj9IdIPyJdHEj7M2XSvhG0IrQUbgrSj7ZWCrsfwMIh8v9xE6d/HjoM4Js2PtIVJy8357op/tNIPyglSD8AXwag3YTvKFOGPypT1h8iffY0mrAzAHwE6QcJDv+hIcp6qQl/6RDhP1Tqa1cj/cNRF8qsTkb6DvImDH4erioXvhTnTKTP0PNNnN/Q+XL/TqlBuY7GYJn/HqTvLratTkM6R9m2+beIsWHHRP/zYz3SMTDZhF8I4AYT7zAqkC1WOHa53+5C9mzciPSj4CQK65C62rArLq9C+m7Xv4ryLsQ/e73vqhT366V+fmWpzo7xhJuF9HnzpLnHDyPu0WXi8Bz9KFJXHE0UfgKA38Hg998Ew+ySQ//0T//0byT+jXoG9E//ivxD4GMWgP+g85vhkWQA+AmFexj5H7fe9D1p/YMJvxJDfIhB+tHsGybel4eIcw4q84XVZV529mHoD3Iryrz0JBhiaT1SZ6/25ex3h6Ht7ctc/79vI/BxDumPSPtC974h7vV7Ze7zwSHiLEK62i73Ej1EnCvL3GcfgBdXUC/l6uS/EJCuIPWpwuG3I/1RmyB9MfdKVTH4R9ndEXkcif5r+8eVI9gHg/JepD+iOfzDSJ3fJwA+PMQ9P27i/niI8HMx+MPtj4cYI21IP6ZxnEdBP47KxHmNCf8shpD9IZVflau/YFsh/dHK4Z8AcFpEe/0h8h8b7xmGPnEyBn8M/RkifVIidZo/33PtDAyWMf79EOkdg8EfI39ZYR9LSvf9wwrqobtMGhsAHFtBPXC/PQTg9RHxTkP+o08PgDmB8JeaPF46RPqnoswHz0D4Zgz+2PM7EfE4/MoC/bDScv3EhN+GoT+qfhSD2/hlFZSr/9+NofGB9MPS/5o4X6q0Tqrot3fCfDA0cU5CNn/399UNyOba0Lx5nrnXVgzxx0WkH1WH9IFH4acj/WDXf48+lPmjgonT5Wmr+xB49pb6+80mzmOo4Hmvf/qnf/o3Fv+Negb0T/+K/CvzYsMfyy4Y6iUOqW8xdr7/8dj0y6TVadJ6GMDUyHJMQCo/64/7TOjlrGBd2b9WXzZE+BVlXpSui7yX/RH8jWFo+3Ivc3fBrCbzxH2FiXfDEOFvN+G/E5nHV5p4vTCrw0z4K8uUacgNKkwaNn5UP8TgH3QJgJ9jCL8/SP+6vs7E6xiG9q60/9r+ceUI9cE7h6qzUtxyfr2+FxGvf7e9/jj7QvcD8Elzjw2I+OGCdKWJdZjv3RQDwC9M2D+LrMNy/t28bVXqb7y5yCEM4QvKxP+iuVdFDsoj0v+OSf8eBH4sV5n2bYjwuYh0N0Prc2l5IPzHy7TJkKs5TRrdJv4hAKdXEN/+Aek9FcS9yMT9ZCDspSbspbXsD6V7zDBjNmacc55WFrhndLmQrvS0K1bPj7yPXWF2UwXlSpB+SGmPuM8pJt6DtW4nT7/dBc/KrSH6a4J0NdqUiLj/Y+LVfMUr0g96/KH9s0OE7ypTngPwfMg3cdsxeEXrHw1He+mf/umf/o3UP/ksE+ORm5H32/DmMmHegFRCAqQP9GgfQGV4D6UFAH+RJMkzMRGTJDmM1DF9P61Il7TXjCRJbkK64qufFxRI5i+GDgIgdQLLnFngXkX46yRJrM+wcvwP8j42vPlzzi1EKvvp5xCAD8dkJkmS/0b6V/N+JiDd6TCWTUhfwqvhc5H98Noy5z5e6ptekiRJysQ9PTZzsdSo/44EfzNUnZW4zhwnyPuWK0uSJD1IV1n004L0h9AgSv6a3mZOf6SUxlD3eRLA58zpcn6y+scI+1rcjHTTlBj+AoP9/IX4HaQ/nPv5ZpIkayqI/7dIPxz18/sVxA1S8tn2enP6rUmSHKxB2kch7y8IAP60NP6CJElyL9KPkkzZtvRwAKmcthp+kCTJPTEBnXPTkH9eP4AK5sEkSa5D6g+un5q1cRGSJNmB9I8R/Yy1uettyPxqAcD1pfk2hg8i72/uJc65Eyq49+eSJNk9VKAkSR5Auqqpn5OK+EgrwD8lSfJERLhyz8/PJXH+b//LHA/H8/O3SF1Q9FOkD34jSZKHI+61G8CnzWn7HBJCiLpCH8vEuCNJkj4A36VTF5dxnnop2XfEvAgEeCXZe5E6Ya6Em5D+dbefc6vIi49usit9IVubJMnamIClHwfsnPdYX9ga8jTyP0i8lD5m3EunZgWcxq8wxz9NkqTcZgE+vjlEeiG+H/nhxUeC9C//Mdi23YW0T8ZwnzmeFxmvUrrJrvkPihqwG/kPWSFsfd9b+kETQ2x9PwepL6h+tqP8jzof30L+h/BZzrlyzqXPM8ffi/1AlCTJVgA/rSBPrzTH36kgbv/cdDedquU8+2LkN1C4LfYDUQTnIPUp189vkiS5q4L41cxDP435oDEE/1lB2POQ+v/s5z9Kz/NK4HF4snNuZoXxa80jZHeOgfwwK8zxv8ZGTJLkMQye815Uwb3tH9ZC8FhqwOCNCIaDqyPD2fk8QbphSwwj9fzkPljk+XllBWH/A/k/SpwzxjfmEUKIIPpYJsYrV5LdDOB1/QfOudOQf2HgsBVR2j1wEZ26L0kSu3tdkNJfIHlHyagd4pxzJznn/tI592Pn3Hrn3FPOuWedc4n9h/zqj0pf1ldVGH4b2fYj5XBwd4U/qLaZY18ezzbHN1dwj3Lhl0TuGAmk0txqeCRJkp2RYe1upvfErFrxxI1u7xHsvyPB3VXUWSUfPmLr2/bd2yJXXgIYWF32IJ1qQvlVmMvM8crYexQIzx+3+pD/8BXLo2QvLBDfh93xtpKPgENR7Ty0CqnD9n6Odc7Ffmyodh6qNA37AXN1gfs9ao5r2c4AAOfcTOfcu5xz33bOrXHObXHO7ffMXXZV9piYv0ofMPg9KEG6OUkl2L4Ys6M3kD6f7I6SIWKf2bXiEPJ/VAth5+Rqnr2VPD+Pdc59wDn3Pefc/c65bc65A54+eAlFneL5w4ePXaUVqlGU2pU/IE7E2PwDlxBCRBH7w02IuiJJkvXOuV8BOKt06s0A/qVkX0pB9yN+BU45FiIvYzin9HJSDdNDF51zJwP4GoCXFEx/WoXh7YvqULD8YLI3VO2oJn+AP4/HmePfVHKTJEl2OOeeQPZX8MlId6l60h9rgGpWOgLpjpOx7K9h3CHbexT670gw1uq7qr5LcfgPAfOQ+rJj5pvjqBWoRPSPMOT/iNAA4ECqNi1Mo3OuLUmSPUMHHRIrP6v0Dwwhqp2HEufcfcjLr+Yh3RxhKKqdh/YmSVJJ/7Z/KPqfKtsYGOJ5WgklmehnkErqi74/j5X5qwP5FYvdBcaC7YuxK6OG65ldK3bGruxOkmS/6aPD/fzsBPBlpBLjooNjGuLeQ4DBq99i4yym4/lIfXoKIUTdoY9lYjzz78g+lj3fOXci0uXof0hhfhLrX8zDjCri+mj3XXDOvQzp7lWV/GXQ0jR0kBxD+jkaZarNn++F0/6oqeQv4f08hbxkJPYltdof8NXUSTVxgy/vo9R/R4KxVt+16ruhNIHBc1Wl97ErK8rinJsCYDikPO2ofqwBg58DlX4MCDFSbVmOauum0vgj+jytBOdcF4BbkDpAr4axIkkbzX41XM/sWjHW5vP0onNnIPWFWu0H4Er6YJF+Yef19gJpCCHEmEAfy8R45ntI/wLX/2LwJqSSkDkU5soq79FeZfxylJVHO+cWoPyHhlVId6R7GOmHmAMY/ML2RaQ7o4l4rBPhGIe9FhtnamS8Shyf1wXqvyPKSPXdKebYrpSo9B4+2itMN5ZauaKwdbO3RukC9T0PVRq/vcr7laPqNnbOTUQqre0ylx4CcCvSXYGfQNruPcj7IH0TgD+qNg/DwGj2K1EhpVWNP8PgD2Vrke7avRFpH9yPtA+ywuHDKL5xVKVzOqB+IYQYR+hjmRi3JEmyyzl3LYDXlk69Cfnd1B5H5T46LPZF4gYAX6oyzQOe859F/kPDKqTbwj8wVILOuSIvPEc69gev/TAQg41TzSrGekf9d+QYqb5rfxS1eMLF3sOHbf/NKL/LcaVUsmFHCLuCqpa79R1J85Bt50tQbGULc3+V8QHgnchLRLch3e30v4eK6JwrKjcfbo6kfjUe+Eukbhz62QjgTUmS/HKoiM65SnbitrQUiKN+IYQYN+hjmRjvXInsY9k85H1qfKfATlsW+yLfUMHW69GUZEgX0qmtAF5WgSPZmvltOYLYZY6LOGaeZY5tmkcE6r8jzkj13d1l7lPJD6NY2d1upDus9b+zTAdwcwWbKgw3th/PrmHaR9I8ZJ+n3UmSjAVfR683x69OksT67/MxVueuI6lfjQdeR3YP0ufnQ5Fxq+mDRfqFndd3V3F/IYQYVbQbphjv/A/8qwe+XYP0HzHHp7saeCQuw5nI+5m4KvZDg3NuMoDjhyFP451uc/y8SiI752Yg76/sACpz/jueUP8dWbrNcUV91xPH7jIIDHYAf1qF94iS1pY+ivH9m5FfJTzabDDHS2qYdrc5rnQechjcLuXacixgn6fldmAdUZxzDch8nwLAmgo+lAH5TTLGEk8COEjHXc65tgrTiJkjRJU45+YB6KRTP6vgQxkAnFrF7Sud04HB83q1G4UIIcSooY9lYlxT2tHoP8pcujNJkvU1SH8T0uXw/cwGcHa16ZZhjjmuJO8vRLp9t6gMu6LhxRXGt/KbVUmS9FaRn3pG/XdksX33XOdc9Epy59zRyMvODgK4u0zQX5vjFbH3KHFeBWFvMce/W+G9hpPbzPEra5h2tfPQUgD8EeSxJEk2V5elYWMstvEM5FUY0XOXc+4oVP7Bj1dLDpsj+yRJ7Jh2qGw8AoOfcUNKAkUhCj8/nXPPQf6PdpUyzTkX/YHeOTcT+Y9zhwDcU8X9hRBiVNHHMnEkcGXkuaLcYI4/XMO0+7EvzZXsCPieWmbkCGKlOX6Fc86+tIawfkJurS47dY367whS+kMA77o6C8BFFSRxKYAJdPyrJEnK7fK20hy/3jkX1balsfTyCvJk59k/cc5Vs6tqLfk/5J3Zv9A5d3qN0r4TwLN0vLjCtOtpHroJ+Xq8wDm3eJTy0k81c9cfo/LdL9kPYBF/UZWw0hy/NTaic+5YDHYabz8ai9ow2s/PSvxD/iHyH5d/mSTJs77AQggx1tHHMjHuSZJkLVKHy1Pp3xU1vMWXkfrT6edVzrnX1DB9YLCU9NyYSM65i1DZj2RRovTB4XY61QTgczFxnXMvQ/6HxGEA36xd7uoO9d+Rx/a3zzrnhvzhXvqI9efm9D+XC5skyYPIr3w6GsCfRubvM6hsxeB/AfgtHc8F8IUK4g8bSZJsw+AVzP8a++FwiLSfBnC1OR21iYxzbhEGfwAp25ZjgSRJtiLvHsEBuGKUP4ruQP75fk7MKs3Sx6S/KnA/lqcPt/z8m8ivZPtd59yKyLh/h/wH9ZsqlAaKeIo+P88AcFkN7v8u59z8iPu1I92IgDmS33uEEOMAfSwTRwRJkuxLkmQv/avWsT+n/QgGf3z7d+fcH1SSjnPuDOfc9zyXVyPvX+TVzrnlQ6T3fADfqSQPYhD2x/ibnXPvC0Vwzp0C4Lvm9NVJkjxW05zVF+q/I883kF+lchKA7zjnJnjCwzk3FcC1AI6i048C+EHgPl82x//POWdXnNj7vAvAW0JhLCVJvf348B7n3GdDZSpz72Occ3/nnFtayf0j+AxSx9v9nA7gv0qbW8Tk6/jAD9IvA+Bn1grn3BeHSO9oANdg8CqPSvxtjQafRn5XzCVI6zHaSblzrsU5994qdwEEMNDv+INwB4ZYPV764PzfANoL3HIt2TOcc5XKbqMpfdy6xpz+nnPuxFA859yfIe9wHhgjH67HI6V3h010aolz7pJQHOfcSUj/wFALFwbNAK5xzk0L3G8SgB8hv+nDJoSfHUIIMebRxzIhasMHANxFxy0Avu+cu9Y5d0G5v4w755qdc0udc3/hnFtdim9fQAEASZLsB/BDOtUA4KfOuXeXHKBzusc55z6L1P/LUUgdy3dXUbYjliRJrgVwlTn9Vefcd51z7NMJzrl259zlAH6F/G5QWwG8f1gzOsZR/x15kiR5Eum8xLwWwC+dcytKjssBAM65ic65VwFYA2AZhe8DcGnJv5HvPlcD+BmdagJwvXPuU865Dg7rnDvBOfdNAP9YOtVdYZmuprj9/DmAu51zbyz3QcU51+CcW+ice7tz7mdInch/CEDUR6wK8vZbAPZD+ssArHPOvdM5Z3cOhHNulnPuD5xzP0K6SUDZDQ+SJLkHg1e1fsA59zPnXG4zgdKHokuRtuUJdOkAKpDZjRalPz7ZD6m/A+B+59yfO+e6ysVzznU6537fOfcdAJsB/D2AY2uULbsZ0Kedc18u07+Pcs69E8C9yByjP1jhvf7HHP/EOff5Uj/5Hefc+fSvFptcvAfp6rl+5gBYVfrYyB/N4Zw7tfQHPdsXv5Ukic23qC22D/67c+5jpdVcAzjnZjvn/hzpH6g6ka4crMY/b3fp/9MA3OOcew2vmHXOTSj9cWQVBvtTfJdHvi+EqGNKv1t/4Jx72DmXOOe6C6bzCufcL5xz+5xzO0tpll1RXXq+fs0594Rzrsc5d79z7l3ODcumejmiHf4KIfwkSdLjnPs9pH9NZmeo/TKyg865R5Furd6E9C/OnahsDP4VUsfR/S+wUwH8A4AvO+fWI13VMBvAcSbe+wC8EUBXBfcSGe8CsACpo+x+/hDAHzrnNiGVSEwFMB+D/4r7DIDXJUlypO6Cyaj/jjBJkvyLc+5MAO+g00uRfojcWZqTGpHW7dQySXw4SZKVEbf6Y6SS5f6VURORynE+4px7BOm8Z9v2GQDvBvDT2PKUeD+AaQB4ZcVzka5CTJxzjwHYjvRHYjtSueZw+34CACRJckXpRe8v6HQngH8C8I1SfW9HKl+bjcocb/8N0nLy5gEvBfBS59xWpKs4+neOnWziHgLwliRJ1lVwv1EjSZKrSx+ivoRM6tcB4LNI5cRbkf4R4gDS+WQ2gOiVZwW4Eqmc7YzSsQNwOYD3O+c2IpVOTkNa9/wM+A+kGwD9TQX3+jaAjyJz6t4G/0q2f0fqX7AwSZI8WVqldA2ycXIU0o+NXyiN3z1Ix1G5/voLDP5ILGrPF5A+B+eVjicC+CSAjzvnfot0Pp2BtA/yQoi/RToHPafgfW8FcCOAtyOdv38A4JnSj+PDpXPlVpx9IUmS6wveUwgxtvlbpM+9u1FsBTWcc69G+kf03yB9xh2F9Ln6c+fcEt6IqPSB/kakK/a/hvSPUC9H+sfTOQA+XqwYcWhlmRA1IkmSJwA8H+mLdWIuNwE4EemqjcVIf5yW+1D2eCD9hwH8PtIXV5v2aUh/BPOP0cMA3p8kiXxGVEHJZ9CLkcrTLJ1IZULPweAPZY8BWJEkyVh2qD1iqP+ODkmSvBPAJ5D3uwSkHxdOR1r39kPZPqQryqJ8Y5Veal6MwSsYJiD70Mxt+zTSPyJUuuoGSZL0JknyBgAfRF6uB6QfMY5DugPhktK9y30oewbA7krvHZm/jyJdwfVMmbx1lfJ1OircoS5JkkMALgbwL2Uuz0Fa5lMw+EPZDgAXJUny/UruN9okSfL3SFfmbSpzeQ7SD4dnAViI8h/KDiNdYVaLvPTXve3fDulz/SykMmd+BvwnCqzkS5JkN4BXIb9Bx7CSJMmNSHe2fMJcakL6bFuK8v31hwDOT5Jk7/DmUCRJsgvpnGn7xQSkOxcvQ7qSlH/XfQHF/OZZ3gOA54+pSJ8bizH4Q1kC4O+SJBmOja6EEGODE5IkmZEkyQUo8Jx1zk1E+tHrcQDnJknyj0mSfAbpHwDLffx6G9Ln0AeSJPlAkiRXJEnyagA/BvBR55z9I3tN0ccyIWpIkiT7kyR5C9IXie8g76zXxyNIfwD9DoZYPZMkyc1IJ4xrMPiD3EAwpLKos0o/OESVlPzc/R7Sv2TcgfSHmI9HkK4seU6SJHePRP7qBfXf0SFJko8j/bjwAwz+wMTsQuoA/sQkSf69wns8ivTH06eQrp4qx2GkP7qeV+1H5NKHvC6kvsK6I6LsRPrj/o8AdCRJsqaa+w+Rt28hXeHxdyj/sYc5gHR13R8gXZkcSre39PHzbKRjxCuPRbri9fMAFtSrRC5JkpuQfgB4F4B7kPfbVo5nAdyM9ENqZ5Ik5T4sFs3L40g/SHwF4TF0H4DXJ0nyhyH58hD3+iXSj4CXIZ0rH0L6R4bQc6cqkiS5E+kHv79C+oceH4eRrjY6P0mS1yZJcmC48iTyJElyL9KP4lciv2us5RcALkiS5MNJkvies5Xc91CSJK9H+vH34UDQXwE4L0mSP6v2nkKIsUvpj9/V8CKkq5W/yX9sKb2XrQTwutIHtX7egPS5a/2DfwXpH6nKujCqFa4G86gQwkPJL9DzkL74zkC6zLQH6cqKRwA8UPItVCTt2QBeiNQvyxQAe5G+yPxSsr/hpeQb6QVIJ/sZSOv+KQD31IvUabRR/x0dSo6YX4B0BdYspB8gtiH1mfXrkkPzau/RiLRtF5TucQDpD/7bkySJ+QNCkXt2If0hORPpSqM+pB8YNiFdwfZwLTd2qTBvpyL9A8ospM+A/Ug/KK4DcG9Rvz7OuVYAy5GucJ2J9GPRNgAPAFhTix/KY4nSvHs2UknmTKSrs59BKslcB2B9kiTPjkA+WpDW+0lIJSg9SFdlrU6SZMNw338kKPlDex5SiWsL0hWKmwHcUVr9JkaRkq+yc5F+lG9DOsc+CuDOJEmG+kAfSrcL6btpP/+eJMmldN0h/aPIGUj7xkGkq93urMEPaCFEneGcWwugNUmSrgri/AVSKecFpT+K8bVPI3VFsChJkvtLv6P3Arg7SZLlJuwkpO9TP06S5LXVlSSQ33H2LiWEEEIIIYQQogKG+lgmhCjPAueS0JLjeuFJ4H7kd/b+l9Aq7YIfy74G4E8AnJIkyYPm2ruR+jN+aZIk/+ucm4H0j4tXJ0kyaAWZc24bgI1Jkjw/9v6VIgf/QgghhBBCCCGEEBWyH8A7RzsTNeDjQE+SJEuGDFgd/b5ky60E7zFhQmH7ww/rJk7yWSaEEEIIIYQQQgghhpP+RXiTylxrNmFCYfvDD+uiPn0sE0IIIYQQQgghhBDDSf8OmuV2We4/17878y6kPhkHhS35LJuBwTs51xTJMIUQQgghhBBCCCEqxEErkCpgVen/cwDcZK6djXRzpt8CQJIkfc65uwGc7pybZDbxWYa02lcPZ2bVrkIIIYQQQgghhBCiJjjnjnbOLSztIt3PrUh30X1baVfv/rDPA7ACwA+SJDlE4a9C6pfsHSb5ywH0Arh6GLI+gFaWCSGEEEIIIYQQQggvzrk/AnBc6XAWgCbn3MdKx48mSfIdCv4ZAG8GcB6AlQCQJMkh59z7AXwfwO3OuSsAtAH4UwBPAfgbc8srALwFwJdKO/Y+COAVAF4F4FNJkjyCYUQfy4QQQgghhBBCCCFEiD8G8CJz7pOl/28F8B0MQZIkP3DOHQDwMQBfQLrb5c0A/jxJkidM2IPOufMBfArAJUj9lD0E4L0A/qGKckThkiQZ7nvUBOdccuaZZ1YU56677sKZJx01TDmqno1PHsSCk06pKE6ouZyLC1ctfJ8QYyEPY4Fa18NolL0WZaiXfNdT36pXYuexkaROHoVB1HdTuC3H2nMxGs6szbjvWqP5+2dvb2b39Q19H0tDwFOHr8D2PB/77EhqMZ/7+kYtiM2f976hdo5NrMgLWpUVYbM57uahUDvE1mO9Vopvromtk9hwobnGzms+DpFqKzTXFJiTavnsqEVXKDR8YyPxsyJ2Tjp8eMgw3U88ge27dtXpQBiaY5xL3j3amagBHwPuSpJkyWjnYyxRVyvLVq+uzH+bcw6r//ncYcpN9Vz0yU247sZfAwD6It3H8buvpakxm+AO9g6fO7rY51YoryOVh+GkAZ4fH4Zat0WRssfmleE+WYu29OW72ryFKJLvsdC3ilKkLosQW/8+Qu0yWvU/nPPVSDHW+m6t+2ORcc91MpxtzM9fS2y+c/XFmbUZ911rb8+H2749s3t6yt80VCnNzZVfs52Qj322wVdftZjPfX0jRK2f9Xxfb5uXOx4qsXLHPgpURGy7jMazvgjR+Qm1Q2w9eq4VmhsC8UJlquk8FFsnvnnHhuP5xNaVndd8bNkSl17EnGTrqpbPjqLPaW4XnmtC6XnbMhSJ2yz22bN375BxlvzBH/jvKcQYZoy9Wh+57N6dP+Z5h68dOJDZz/J+EABeuDyzV66Muy8/T2rxA7bIs9T3Y8bes7U1sznffN5eY7hOn3nGnzfm9NP915oi6+SOOzKbn0E2D/yHmQkTMnvWrHy4KVMy+9hjy8eZM+1gPhK/RHDF8nkAfYvPGLA3bcrOb9yY2bav8h/zmMmT88fcTvzuc8bi8vFD3Hmn/1qoD3L9x/a7mTPLX7P1wNe4Lbhd7Xtj7AuY773P9vXFi0dmz5Z16zKby8DzE5Cfo0LvXzHYsvrmpEmT8scTJ2Y290HbFjw/+NqPw9j0+LuEzauvvLHzaugbA5eXx5ydF31phL6HxH7n8JUj9OOsyA9nnq64Tm2bd3dnNs+fZrrz/qaLbReei89a6g/H42XGjPy1qVMzu2VLd3bAk66d8NasyWzueIb9t9+eRfGEsV2zjex5gXCzuWJ5wFxwQT5gV1dmL6E/Vi9enNkdHbkom7Y0DdjcLrt25ZN++mnKn2eMLVyYP+Y247kh1OatrXHzKr93cX5M8XJVMn07tTO3K5B/efA92JbTix8ALFhQPnP8IAOAtWszmx/InZ2ZbSbJBsr4w9uznmLHFZeXk2tsrPz5ZJ+z0xv3DNh9rW2olIZeejeyDwEeS2zzyxCQ7yw8Tvn8CSfk45x4YmZTBe1Fvgx23vbBWeI6WrTIX8c8L3IbtWB/PiBPWByJ+6ddvMBlp/lq21NP5YJx7vaQ3UW2HcpN/BAO8PAxxwzYc+l8M78oA8CKFeXtl71swHxqAqcAPPRQZtv+znA1+NqSp77YOED+eXoT7R/I8wmPNwBo296dHXD7XXyx/0Zf+EJmmx+TPbfcMmA/RudpFGCbSe7S9ev99xKiDtBumEIIIYQQQgghhBBClNDKMiGEEEIIIYQQQogKcdAKpPGK2lUIIYQQQgghhBBCiBJaWTZG8fmHYR8bkTL+Qs4kizqz9PklivXhE4rD1NqRtc9fWK0J1Svfl9vZ1gP7uGH/Brk6sc6V2KkFB3zyyVywhq6dA3Z7+/SyeQjVvc9/GZAveyhcDLH+8EK+SQv4nY7OQ5H8xKbB+au2HotSJN/VhrPuZXz+Fgv4WAaQH3/s+yvUfrG+5Hg4+vraeNhgYLjheuX+YP0j8jH7qLL+YLhdYv138rXYZzD7B5reavxJ8tzM/o/YbxD7lwKAe+7J7Cdoh3Xz8NpMNg+f2WRbFzntbLOvH+tkc9GizLY+nRj2/cRl9fnRBNDRkfkLCvmS4/qv1v9cLfDdy84HuX64cXdmW2dIXK9cKE7QOvXyOVS37wQ+X3fsvyzSOWHouca3jfXTzthst3dW7qeMOYjMH16Tfcfkhgk5qQ85v+zHOpvlNiO7seC8H/POYv1CTpmSrY9oaaZru00ZfGXy+bYDvM5dZ5OPKwC5l9sW8mfWQHNNw+OPl7//EHCu2W9Wu0mvjX13cTnIP9ucs/OOBnfsyOqOq8dWle89gKfmontyML6maOvdmQ/44IOZzX7mQj7LyFdir2m/35LNsz7XNz9fAGQFrNcdYcURj1aWCSGEEEIIIYQQQghRQivLhBBCCCGEEEIIIQqgFUjjE30sq2OGUwoVK0Ox8JLkkETswIHM9kmeQsubi+SV7Wef9cepNb48WAmPT/5pz0dtM73XVIpPl7J1az4cSTqaO8vLMC3czlwmbmNL7PboPnwqASBe9uirklrLMENL9kN1FHPfULsMJ75823EVKjvj60M+aXII2y6cRuy8UWvpVrWS31Acn2Q7JPXwzTUjKVkrgq+/2/NcDn6+1Lp8sXNAbr6z8jeW3rHsjqWXJA+ycXbT4Gk2D909ZM+MsAGgkeVjXV2ZHXogc4eyeeXGidThNVGcJorT25v/KeIbzyEZZuw8UoSZtjJLcDUCQNN2Esiy3JZluOWO+2Fdr20Xn78DO0hIAudl0qT8MaXR2XVS2VsCeVlYS2MmO+4jCWQsHXk1HBq2Z4KvvpmDBF9D0tSzx3+R65LlraE6Zp0on7fSZM/DsMV0mr7m6YiB64Wb1kovmTmz6Brnz85J3O9YwrhjR2ZbfSxPcpwh24Asw+Q6oXCNVo5cAG4xKzhuuu++AbuZB+cxx5TNDwB0ds7P0g6814zU+xlPpW2N+7ODdWbOWL+erq1DFHfeOWB2m0vcMj7p5QKbXn/fGE4fN0IMI/oIKoQQQgghhBBCCCFECX0sE0IIIYQQQgghhBCixBgXXRw5WKkAr1b1LeUNyRyL7AhXRM5o4/h2w7TSh5hdxEIyotDOczFSGxuG81rrlcJF8s0r2o8+Oh+OV+03bNmMsoSkPlxY3hUIAObMGTCbKEMdHfMGbLv6nikiK6wFsfI6pki7hORwMTu82jA+yaEdH7G7PY42sbs82bnLt6udL0wI236sJIqVQPrUYjYO34vHRazMOHY3zJCEskh/GE4p2nDCkq7GVtrVDvkdJlvpGrdFSAXoU1bZayE5sY+mTQ9nB7w7GZCXLd51V2b/8pcDZp+Rz7AU5jGyzf50aCE7J73kLZVPPTUfiXfA5B0vQ9vR8nPEdsgNGzI7Vl7FFU6NNt3oGRs7shJym7GCbrSUP9zvWrA/f5HrgdvfSlj52NfxQrthsm0nUHbB4JsQrK40cjdMvu0zh7KxaDeIjMGqGTs7M8FXkUdhX6t/N80G3wPC1gNPJGxzwX2aXGCwNLEAheR+3O/4HTH0Usc69oULM9vuhsljk/tkqB5Y7unTlVYA5SAnH7R79bJQdcHKldkBt6V58W5bkV3r6MiksrbquAv4dquvxW6YuamQJfu0kyUA4PrrB0ze2TJ0ywdo5+PHzDWeweeSzT16Hgxj+aW1xmgF0vhE7SqEEEIIIYQQQgghRIkj/mPZhJdcj8Vvu23gX/eW/Vi5ZjuOuvBnOP3tt2Hhm27Bh77xQNm43Vv2Y9FbbvWm/YXvPwR33vXY/vRBbxghhBBCCCGEEEIIMXY4ctZGepjcNAFrvvnC3LnuLftx7mnTcf1nluHAs4dx+ttvw6uWd+AFp8XtUgMAj287gBtXb8e8OZOHDozBy9h5V7nckvZnyoexhKQivh3T2I6VmoSkoL5NmWz6LJPgMtVi5S7ngSWCoR1sRmrHNFsn3C5s21XsOUkHL6vnSKFtIHn5vd0dh9d20/L7jhXZwmqr+ojZkSwUrgixu2FauM59mzdZCV3MeClKrLw5Js5Ism9f+fM2PyxR8Em0LRwudhdWVhGFdr+LlUJwHwjJXWJllAzLQkNySN9OoDYPvnnDys9CdTTUeXutSN8P7dIWDXWO3kaSYTY3+oIF+51v3g9J9wrVA8tkVq/OX2PZDF3bQg/73Sa5/R67xYTjv4bOZInRuedmNkstgfwzwCetAvKDm59DJB8FkJdosqyQpaBnn52Pw3KvQB7aSLrVRoN27sLsoXkwsINmreFsN/VSy1hpFEtTuT/wzoOWKVMyewHtN8c7+AH5F4aQvI7hydS2M0OyOd7X8pSFXflwrJ2kftcHvwTSh91JtGFvtptlSFLpIxjfN7itftu3w2tI2sh1wrbpkA3nn5/lL7CeoWndvZnNeeVOaOF+yHmwbc7XOG3ud1ZKyrJMtu2Oqizr5MblerQSz0haFi8esOfTvGP3P+VdHBtpnu36znfogt/Pxlxuo47870Ju9pB7D8b3bLTtz+FatnRnF1hKSrJLANh9++0DNksoA70kJ2HdZq5xq88nu4vsxvPOy0fqrwjnAncVYuxyxK8sG4rJkyZg8YKj8MT2yhyV/Ok/3I/Pv/NkaGoQQgghhBBCCCHGHw7pR5V6/ycGc8SvLDtw8DAWv+02AMDxR0/GTz65NHd91zMHsWHTPrzwefGryq79+RYcM7MZz1tQ+V+9hBBCCCGEEEIIIcToccR/LCsnwwSA2+/bief+8a1Y//g+fOSSE9AxPW53lv09h/Hp727E//7dWbXOqhBCCCGEEEIIIYQYZo74j2U++n2W/fbxvVj+vl/gVed24NmDfXjnl+4DAPy/t5yE554weOXYQ5v34ZEt+/G80mq1TU/14Ix33IZff2N59Ac3wO86YXKcCzSvnyXAv50x+/Sy+Px82PO8OzmnbX3z+Mrki2+P2adMrN+YGJ89w4GvLawPA3Y1wu4gWrabzZvZL8aDD2Y2+4CxTnc4DvujWLXKnwnqEA10fsHC5+ai+PpqyPUJE/LLUa2fI9vOXOdHHZXZXHXWFYfPN5Ytn8+PWsgfnq8fjpYvspGiFr6xfOPZukjh+Y7dooT6RlvvzrIBp3flHdpx32VfJdbvnc8fGhPrZzLksyy27orMf6E4NfFHFgMNupZOqkjjH+ioo7Jnc0tzlrfOzvxc42sLW8e+tvHFHwT7pWL/MgD6yKfMbjrPJWq39yWbm2U6T2QAMGNGZp9zTmYvWZLZ7IfIHrPvoNCEx4MuVHn8gGf/XNZXF0+A3LZ2cHPansZonDm77Hl7m1rQtJfmDfbPZp+zDz2U2ffdl9k7duTDsZNablsua+ilkAet9aHFfuZ8zhdtx499meG+Yh+oo0Bufsr1mYDPMiqT9W321FOZPasr89zUYH2b+eD243czhN+HcnCdx/qm43bhF347ufO452vkE2xQu5KvtD7yJ9lgne76fMGFHuKxLM2UQc00/prN3MVbrtHbcO4pNv+qq/z3If+BDccfn7vUZsvbzxZqo5BPNqqH4HP1ppsym/K6jX1EAvgt2bvJDvksYz9ldvacR/YCn9/J5cvzkeSzTNQ5+lg2BCcd24q/eMMCfO6qh3DVX52RW4XWvWX/oPCnzW/Dtp/8zsBx1+tvxup/Phczj2oaFFYIIYQQQgghhBD1i3x+jU/UrhFc9rvH4bZ7d+CRJwd/HFv/+F50vvamgX8/WLl5FHIohBBCCCGEEEIIIWqBS5JktPMQhXMuqTSvzjkkt1w4TDmqnos+uQnX3XjXaGdDCCGEEEIIIYSoOUuWLcPq1avHrRbzWOeSD4x2JmrAB4C7kiRZMnTIIwetLBNCCCGEEEIIIYQQooR8lgkhhBBCCCGEEEJUiINWII1X1K5CCCGEEEIIIYQQQpTQxzIhhBBCCCGEEEIIIUroY5kQQgghhBBCCCGEECXks0wIIYQQQgghhBCiAFqBND7Rx7IxwuYt+SHW01Pe7u3N7EbTeqcs7Buw716TpdfcnA/X3l4+D3yfvXvz1/i+hw5l9rPP+tNg296T0+dr27dndmtr+XwC+TLZ8tnjfp55JrNtvplJkzL79NP94Zoa+/wXiV/cGTd9dnZm9ryZ+7ODO+7IB9yyJbO7uzO7oyOzbSU8/nhmP/rogHnwiitywZqWLs0OFi7M7Je+NLPPOScX52Dn/LLZ4WwC+T40ZUpm8y0tDShfx/97U75OeSzwfWw1cNsee2xmcx9s6d2Tj+TpiLFjlvvd4cP5NOw4853n8vlsADj//PLp1RrbJfvhugfi5y4+5jjcfjZt3xwwc2Y+3FFHZfacWVl/Otibb78mHMwO1q1DWQKT6ebe2d687t6d2dydbDgffFvuwwAweXJm23plQtdqGcc3ZmvN1qey9ps6NX+N65vrbnrz/nxAvkgdbz9acsG4T/IziqPP6wyUe8WKLK3bb89d2kw2D3uueprZB13jOHPPPjsf8OijM3vx4sw+88zMPvHEfJwFC7K80RzXYTKRa+e1azN7zZp8wJ/9rGy43vvuG7Ab7QvCxImZfcwxmX3BBflwnKk5czL7tNMym8oDINdodg7wETsOGjY9lh1s3JjZN92UD8gdyjfX2Buz/ZKXZPbJJ+fjdHWVT4vvCQDXX5/Z/KznB9asWfk43E5s285BD/+tR53kTS4GWz08f/I7UyxPPZXZ+/b5w/HY5vnEHvuqZMKEfJw5E3dmBzzx80sTACxZ4s8Uw2OO3+9e/nJ/nI98JLP5JcO+4/BDlMffuecOmH2d83JRuBjc1Wx35KK39e5EWXiSBQaPYR/f/W5mU//u/cEPcsHoSQ9+TW0iezbyNPHc+trX+vPGnYDH7K5dmU31OIjQDx/msssGzB56j99ogj1MNtf2pfZllLieOq+teT5ufNWrsgOeQ2wfvvDC9P8k8d5TiLGMPoIKIYQQQgghhBBCCFFCH8uEEEIIIYQQQgghhCghGeYYhZcqs33gQFx8nwzFpueTP/nkYTa+Xdnvy7dNz3cvLp9PTmnTjoWVHRZekcyyJksRWZJP9hoMFyrgjBnlw7EmwVYeL+2mAjbZNfK+zO7YkdlmiXwTLdmfObNtwLZ9g9s2VMcxxK5UD1VDTnrZSAvztxgJAEMdoLm5xRuMmyXU73z9qUg/Gy18Y77ccTXphdLmOcS2OdflnsnZ34fsXDpxYibCmO7T99iGoZv1kp7DSiVZ1WIVSwPxA3WVk3zbgZU7DnWcgH43Jk4ogyPVYTdtGjCnzpznDeaT/9ox+wxJsiZPzq5ZFRCnwWoansfmhSRhJE006vScDJPhnDaZa600ebXxw8tI5HPPCpYmsnTP9HWWXvK4slK09vYsXENIL+2RnHG5W2zixHTSzTVMm5a/yAOLJ3d+XtlnGh03UZy+wN+OWXLK4QZJjleuzGyWyV13nTftnBbQTg4s8eJ24vazcawOvR9bx+wLgQfME0+UzxuQ98HBWH0lyTDnnJ+1f9+sU8rHD3DKzG35EzTX9GF6VBrcTnMm7h6w93fk43M1hOTyPN35XAA09RrJ92rqDyx1Xb8+Hy5Whslybm6zkAyT43Bh7bjyyR6pDzWYeaO5ORsXPtm6vdY7M6t/rseWzsDLf4hFi8reuNFIXRtWrcryQOd5bt5tku68884Bu511/3xPID9OuUOwXxLr38XXoULPVZprWGq5yQRj6WXcaAHayR7kAuC887KD5csz+znPyWwrDe8vh3OROahfxn8Jj0y0skwIIYQQQgghhBBCiBL6WCaEEEIIIYQQQgghRIk6EvuMb+zOOb6VuLErdHn1r5Ul8e5wDO8QGZJAMiFFEC9dt7Ikvhcvd+cysUoAyEslQ/UQ2i3Qd963g2It1EWshAntXNeynXbSIrnRoN3FOCJrybiSeRc0e41tu40cLxUPSGNyUKNP5x1xOvP7CbGkx/abSgnJMLl6Qps8tewmIRBrBXgXMyAvSaDOMd3KXTraB8w9e8tLmSy+KrbnffU1WnJN3xgLyVXYDu3o6JNUWgWQbywFVFdoQSaNaZtlJjm+8TrqAyH5IXWweb5d6IB8QbppbFPGm0KN6dtq1ebP97Cwx7GT3EhtoRkLzU8tAX17Z2cmB+fsNGzJix5bcrthZvXY2pWfu3zyLPvc9kL3aWcJFvIyIJbJtJHdaKVVPCdx5lgWA+QlQRRnT2N2py3d+Sg8FYZcM3D1dy3IdjxsCMkwebzccEN2PvQc4t34rDya28+nGQ29pFDnaAi9SBDB3V5Z7sXPbbvjIRPaQpGfMccdV/58rE8Ci28CDc01XK/cUVgGaLE6vErhdyEg3+btWT+O3oWXytDcFStM8+MbI9PbA9vQc5uZXQmDMl+GnzchXw8Mbz0eegb45L90T7sbODcz26H3eM/UgPb2vFy+LbZt+f2TM2HmxQaag9tpu1Xu7bbXshS+7cYby6YFIL/NOkukeQ64+OJ8nNgfXMSmDRsGbPrlMEjmzzLK2M1jTyK73e7c2b+zJZCvV8/zBQAKzlBCjBn0sUwIIYQQQgghhBCiQhyA2L+fifpCMkwhhBBCCCGEEEIIIUroY5kQQgghhBBCCCGEECXGvQzzlDeuHO0seJk0uX3ANm4LvG5ofOdDWBci7C8s5p6ha9ZdRqyPMHaX4ZPr27R9voxChPIaEy7aD0aAObMoDZ9DGAC4777M3rEjs60DK/aDwFu2s239aXEDcgew215zJT/+eGazvwXbmOyzgfI6ffHiXDD28bUfeZ8UlWLdQ/lcNTXs3ZMPyP6iyFdF0GcZw35HrBMf6jht1EZtHf496Ds6mlCOp57KHz/9dPkkQu60hhOuhtj88LiyY9HneijkD813L+v2JxeuOTBphjLYjx2LnHjINw8XkH3wxPoOC/kR8t3HlsHXUKE8xD5wRsp5Hpcp8iHATTbdxvG0c6wvzlj20IA2M1LOn0vO08vZZ2f2kiX5SDwBct2zzx4g96zY30x+yqgL2m7Lx+wS05bb4/oL82weOCI7HuQb2bmUG42fheSnB0D+mcdxQvN0jENYS2z/5jJxfqxPNvbDdvLJmW3rjvsA+46y4YiDvdnfwHO+9jrbcuEaOG2uL58N5Ocufn4GnoWD0qiUQb5BO8qHi4XGjn3O7tuX2dxtd+3Kh7Pv6/3kp+n8WoS53H4hZ4BFiHUCy/2Y69U6FmOfZWTv7M36EL8eAvl3FK4vWzyuV77GvpTtY/a55jXVx+bd2XvlXDtnMtQnZ//whwN2K72DP2yicDHY82XHnXfmwjXyuOD5ieeuj30snzjPPdwugXmH88d+yuzomEf2fG9qeWbzuzv7KAPyfsro98Oe3qzurZvBwHQlRF0w7j+WPfCiq0Y7C14uWvfF0c6CEEIIIYQQQgghCiK53vhE7SqEEEIIIYQQQgghRIlxv7KsXrAr1X3qF1a8hXaLjpUc+iQloV3UfTYQryryxQkpoXjJNkut7JJ4vuaTe9q8NfQeLH8jtOcDFtHB8rLsLbRg2q5PZ/lfSOvDBWFJAi/zt9IFX/yXvcyfBy7fk09mNpcByEsAfPoEk9cWkkL0Nc/2x/HQ1rszf2KvR6ZmNUYsJ+V24XX/dg05SxIY20Y+/WBAQtfgGYxzTPtNm5Ytca9WElYLuNuxssrCcxSP50Hjr2c/hSsv0Q3JMFkuxmO+3L189NHfjhp8E2hIU8L9JpRZ7oM8Fq1+lCuPKzk0xvhBYqU5MdpZK0WL9QEQ+yCpFp57Ah2qia61tpL8bLd/wPQ1ZpLoXlN1XP1FipSTZdv248Hkk15auTzP9ZShgzPn5oJxdW3vJjuggPSpwkJqMX48NDYa+RlrcHz9hKWWgL+vhl6UOIM+G/D3m9iGDYXj5wi/rNl8H310ZrPkybgu4P7QR/2Yp5rQux5jq76JnzGcCJ+37xFWH9ePnWs4vWplhvaeXJet5d0YBKGKmDw5H5+HJhfJvmvzcfTzONZHSRFi/ZLwvMG2lWGyzJvmp+30esiSVSBfdq7HUPP73h1s2rHw62tPZyY7n3/++fmAnvfjFupbnbffnru2m2x++7TDr5H6ay/ZLL+fVwPpbTfZ8z02AHSeeGJ2sGJFXOLveldmm7rb35HdgV9leJjaIdv/Cp0kcbcXYqyhj2VCCCGEEEIIIYQQFeIgud54Re0qhBBCCCGEEEIIIUQJl9TJukjnXFJpXp1zSN5w3TDlqHouWvdFXLfq5rLX+gp8x+SdG4vEH+/UYmfLsUAt23a81MmRiu0LI9WeOcli4J5H6jykcTWyjIV+NhbaXPUwvhiN9jyS28/3XAs9Z2OfheONkeybsfUam6cjqZ1qTTW/TZcsW4bVq1e7WudprNDlXPKXo52JGvAO4K4kSQLbyR55jP6blRBCCCGEEEIIIYQQYwT5LBNCCCGEEEIIIYQogFYgjU/0sWyMMBbkE+LIY6zL+OqVI2k8H0llFWMTO4eM9z45lss31qRQo/WME4Op1r3IcKdXrdyvFuNyLPTPsTy/iJGlFn1B/UnUO+rBQgghhBBCCCGEEEKU0McyIYQQQgghhBBCCCFKSIYphBBCCCGEEEIIUQCtQBqf6GOZOGII6eaL+KoYLd8So3Lf3t7K4zT6p5dR88tRpBxMoExMrcs33n0+cH2N5bKOBX8yos4JzUFVzi9jeewANRg/Bebvhsg6rQmcvxrcdzjnxXqZcy3V5nUslHWsP0fqtW/UlNBcEzsP+eaA2LRbW/3henoqu+dQ1zwcaf5AhSiHer0QQgghhBBCCCGEECX0sUwIIYQQQgghhBBCiBKSYY4R7Kpc32r+0OrdlubM9q3QtcSuyvWFCy3RLbKUu1qVXAguQ3AZfEBKUWj5PKcXaphYCQdf89jRklNb4Zw/n23x5bu5OR/Od82GiyE2P7Hl88UH8kvhfXVviQ0XEx95KdFYXgZvq67ImGuInfAi6zVWOl3Tei0i4QhVXi0mxmr7YWh+GkmpW4lQe/mmgOHMZlMo7S1b/Nd8cwXPi4H6LlIPvjAhiqp7ctd8GQrN09X2/fZ2/7Uiz54Q27eXP28ryPf8M+EO9mZt66sGm3R8e5bvN77zgJk/Q20Ueg8YZWqhrosheoq07yGx9eWr/5B0b/fu8hkK9U8iZj4Z6loR2gJFYvbuzexQ8biPN/QeLJ8A20D8+7DvxqH4fK+zz/anzaxdm9ncXna+8801oX4SeGgWeaaEbjWecNAKpPGK2lUIIYQQQgghhBBCiBL6WCaEEEIIIYQQQgghRAnJMOuAIpKSkZIzhiQgtZZeFpGmRstuhlO341t+bdPma6Gl+AWkl4WIlczE1heXqdoOGspDrLzHt2a/qKSE4w2j9CR2d7dq+0ORXZBqInMr0Ddq0fdj5pdoiVIo8ViNfGy4WHyNE/sgqfmkW4Bcfpq82YmVCxWhUPFiZTtV6lWK1EOR5y9QrDt5E7T1EyvDjNEmxsav9bPel5/AtT7q00DcY20kFdBeqXF0HTf5w41hYhXyhfp+UXzjJ1Zex0RmvBYyzEOHyp+fODEqC0GqlpTHzkksZ43NBL9v2vgLF/rT82Flov3YfFc5Qdh3q1o+U4SoF464j2VbDuzC5XddgVU7N2BSw0R0TZmNr5z5djzvhvdhYVsneg4fxNTGyXjPSa/Em+e/BABw5cM34cP3fAvHTJ6Bnr6DeOeCl+FPF148KO2VW+/DFx78Ma5f8Te58398599j9c4NSACcNHUurjz7crROnDwCpRVCCCGEEEIIIcRwIbne+OSI+liWJAleddun8eb5L8H3lv8ZAGDNroextWc3TmjtwD0v/yoA4OG9W/Dq2/4WfUmCt5xwPgDgdfPOxdeXXoYdz+7Bc66/DK859gU4dsqsqPt++cy3oW1iCwDgA3d9E1//7fX4yKmvHYYSCiGEEEIIIYQQQohqOKI+gt6y9V5MbGjEZSe+fODc4mnzcWzLzFy4+a0d+NIZf4y//+11g9KYMakNC1rn4skDu6Lv2/+hLEkSHDh8EM65giUQQgghhBBCCCGEEMPJEbWybO3Tj+LM6SdEhT1j+glYt2fToPOP7duGnsMH8dxpXRXd+y13fgU/3XwXTmk7Fl88462Drtsdx1nzPWlSZu/bl9nWLVJLhz89JkbCzvcE8v4E+L4tzX6/RuzDJ9anUMi1C0v0J0zI7Gef9cdh9w1sD/K94fORUgvfU9wYm6hP2cLytVAjdXaWtRtm0kffkN8KrshNpo8//nhm339/Zm/cmNkhXw5dXZlt/TBwvjncggX+vPrYsiV/7Nvy2w4ELgdvvR2Ks2JFZnMZQnvDc/lifbVxfLv9dwcNbmpbO66CfrMiiI0f61KIi9TSGPAHwj48fPUV2N6+IdDfc3UU9B3VkqXXs3/AbuL7bglMrD4fIhbuu1zWUN5CjkJ8Pq/s3MXXYv3wVe2YqsZwHbdPHzBtdriKuGvxMALi+zH72eFnIZ+fE1po/pGPZLYd28cdl9knn5zZPH/ajNs0StguyFOZb4oMTeeM7SZ8zO8L06blw/FjaXojJd7dndl2Pt+wIbN37MhsfvADwGRyZ8ENPWdOZp93Xj6O76XAFtDjGzTIypWZzc9WOz/x82HRogGzgZ8vAHbvzuYkn7tNT1cAEO7THI/T4662y/xNeM40SpCfpbb9uNG5rDRmozGF2L0383sWKrsPLtPhw/lrPveyoanZ54NrlpkP8q9nWRkajP+qvuYWlGPQs5n7F9c/v69Y1qzJbG5oU5F9nfPKJs1ZDf1mKfJ+EHplfeFy/zWGX+m4SFz3gJlO163LbK6fO+7IR7rvvsx+6KHMNvPGQXqHfozO02jBy/7rv/JpcxqRc81jL3nJgD2PL1x0UT7gcqq8U0/N7Je/HF64b3XNz13idmebxwH/TuUsJIn/lkKMZY6oj2WVYMf09x+7Hbdsuxfr9zyBK5a9F80TKnNU+q2zL8fhvsN4713/jO8/eseAvFMIIYQQQgghhBD1hyv9E+OPI0qGeepRx+GunQ8NHRDAPTsfwslt2V/5XjfvXNz/yn/E7ed/Dh+851+x5cAu/OTxX2LxT9+HxT99H1bv2BBILWVCwwS8bt65+NHjPy9cBiGEEEIIIYQQQggxfBxRK8tePOe5+Ohvvo0rNv4P3r7gpQCAVTt+i/29eR1f996t+NA9/4b3nnTRoDTOmbUQf9R1Hr66/lp8ZvGb8apjzxm4tnLrfYPCJ0mCh/Y+iQVT5yJJElz3xK+xsK1zUDirLuCly7xUPLSzMRO7U30snAdebtvb699WuLGxoez5EL4l7SEid2XPh7MZ8q25t2vDi1Seb026TYvvxWvIbTjf8nmW5wW2aG/gJd9Wx8B55fuE1tWzhoPLYLW8nsYNSXS9skCbhyJ7hnNeeZ2+rROWxnCdhORrnAbboXxG9rtYSXO1ksxwenF5yBW3OSD94/qPlD5zPcQqIFtbM4lLuBuXD9di9Ry+8WwnYE78mWfKh7PjwzfxW3yTnJ03+F6x0uBYRkqW6XmwhaSEPvmavRaqhtC0HUWoXaZOzWyeMwPjgPs+5812oZi8htTkseFYmlqofmzGfb4V7Pmnn85s1oiFGt0nQY4dYyGefDKzWb9mZbQHDkTdJ0baFnrXCxETj9t1UKRQHcfKy2Mw8RsD7zYxDCpTBLHNHxrmXCUs84eRYWLm7LibsQaO+12Ip57K7IAEuaH34IA9gVQ0ofLxcS0eKdUSGiN83BIry2aozXrN3NVN9mqyl3Eg+35XwN1LGx+ceGJms+wZyM89ViPvg/Jn687XtlbSLMR44oj6WOacw0/O/Sguv/sKfPaBH6J5wkR0TZmDr5zxdjy0dwtOv+H96Dl8EFMbJ+O9J13klUr++Sm/jzN+djk+euprMXVi3r/AzVvvRedPLh04/v7yP8Of3XMl9hzajwQJntd+PL6x7N3DWUwhhBBCCCGEEEIIUZAj6mMZAMxtmYGrl39k0PkDr/uRN86l88/HpfOzD2dzW2Zgy6u/MyjcijmnlU3n57/z+YK5FUIIIYQQQgghxFhlwtBBRB1yxH0sq0did+VhWOkTwrck3d7Ht/zaqiJ8cpVYiUtoI0rfNZu2b0Uzh2sKSSCHU4/DmQtt/8NLp21+PDLM/T2ZNKcnoDxhidmgXQR9UlDfUnXALx889th8uNiyx2ClkkVkHyyFYSmUlUVEyF6D+Yvdsovb2cTJta3JHjM98lbVwvNLaPl9fmxnZbBSGj7m8oWGGDdfaEdcX36s8ot3cPJ1od5Wf75bZlIftH2IZUp8I85EaDIN4askG98n7fbJM0PphbafHE5JJtVrA43Lnp68LNi386MltMloDNFFffDBzD766Pw135zrk7cbON+2C/mUcqF3Ch5XvNmkrR92HRHaXDWX9S27ySaZ4kPGl6xvp2KbWd69+YknMnvGjMxesiQfx+w4WT6j8O9QF2r066/PbN7tk2VSQH5+4G0Tzbzf2JhJ8nyysqLDzbc5blPPngF7eqtpzLW0p9+qVZm9fn0+HO9GmnPtMLfyjHJfANBGu8T2ofLdNae3ZhLD/b35+ZyfZVwnsSpTPm+Vt03bN2cH3Pd5V1EAWHBSuWwP5vbbM/vRRzP7kkv8cX71q8zm55DNLBV+Fu2GyPVjd0r1EfKYwY+/Wjw2fHN9aKPbXCQes6bfHbzzzgGbWhI7zb1ob03wzDMPAXwPokCl5K6wvNbuTMtyXSvRjCDkriL2mSJEvXNEOfgXQgghhBBCCCGEECKEPpYJIYQQQgghhBBCCFFCMswxAqvAYvFtqATkV1hbQjLKmDiM3cWTl2nbazHh+HxI5RZSRfjkIWzbHQUbhlM65NP3hPQqbNs1zXTtIEnbQhvreYsX0h75KtLuCOi7kV3az1Qrw4zdTSi0JZVPb2TT9u2UGdopleJYqQeTW3FPWXvmqXw4HqehVfrt7dX9/SO0gyaPGc5PaMm9T11gu11oI8mYtLkprbTcJwcPbYgbS16pldVPk02MZVcskyiiZw31aQ4XGqdMaK7xTaChBhxOSeYjj2Q2jcXm9ry8yydTi23z2L4QesZF49s1kc+buaaByl7t7oC13gzVTotNvbTzH0uCWPLENpCXrfLcbHb9612XiZ628T1JljRzHQujAEyZUj7jFp++LhBnD0m1OD+zjTSqjY9ZMmoqr+PsTIYZu6m2j5Dnidxt15As0EZaTfv73XxzZt9zTz6cdcHQz/m/M2Q+B2HT5jwtWYaKob7WYmVp7dlYCo0Lu9F3P9y1WM5q75ubx+6/Px/uNX8wYAZ3tGZJpR0/Plg6y1i3ATS/sKuO9vasP/JQBmq7A2YtHhvcRoPmpL0knuS6W7Mms++4IxeHZ5EtHhsAFpE9n+xGHhMhNwaRcIxear9GlqYDedn5ggVxiVPjti7M787qmwqrdWkwHnDQCqTxitpVCCGEEEIIIYQQQogS+lgmhBBCCCGEEEIIIUQJfSwTQgghhBBCCCGEEKKEfJaNEVqarW+C7Dsm++Dx+a2whPy0xOjJQy5pQudr6a4mFJ9189ZvDPt/43ANvQfhZTj3PWZ/EOyjyML7MHPGA/4kmthvT3Pmb8PWHR/n6sGmvWlTZm/dWj6cdQDh8z8W8n9UrVOD2PihirDOrfoJOQOMTLuP/Aj1Rvr0YkLuq0JZqBbry2+k8sD1EOtviv3yxdaX75722FemUNdv2E1+UHgcAXkfNewjhcd8qK+G4LnCOiv0peezfb7/LEUqrxasX5/Zs2YNmC0m340zpw/Yvv4ExPtZ8YWLra4cdl7kvsL+Zcjv1iD/j5RGU2tWqEmTGnzBag5Pn8EutJcy4fPdF0qcB9nRR+eCNVIaLZR2zosb+5kE8j7QOLM241X2YxrZgz1PbdgwYLbddVd2nvo0ADRQu3d2zkc5Yt/B7NzV1st+m3Zn9tq1mW1frtinE/kv6zN+khp4Qub3iCI88UT+mPtAwGcZ+/vKPdd4vJm+0cJ+Hqkie1vzfgG5XrmoOd/D23fnM8T9PeAsOOinjOEGDfmHZbjuOD4/h4D8eyqNq+aZmf8qO1xC8ywT81ui0LyKfJGmTcvsQdWztjuz77svs2+/fcDcaJ6lm8nmmSvvLROYTnaj78dbDXjMc8+55DcRABq4U/LzJQS9rzSYymttze7m+8kynM+dsY5WII1P1K5CCCGEEEIIIYQQQpTQxzIhhBBCCCGEEEIIIUpIhjlG2N+T/27Jq6D37cvsXbsyO7CSe5C6jvEpcIps/WuXVPuW34akArx8t4gsxi7Z5mXx+Wv5pfT5/GXX2joD28QXkQ/yds0c3+oieC9ulgfYSuU0aB10c/v0skEAoAkkveT7sOQCyHcctlmOwVIFIL/GncsU2KZ6f29W30VW3O9pnJ479vXjtq72fESf7C0kI+PycvlMPbD00leNtl180gWr1vXJDG3fj1VjVAuXKaRa5TkqJKnkazFNZAnNB775xQ6rkIKxH1vWXFdpzvpkS0juwJXnqyBLaGLkeDxvWPkZ9122fXvB22u+e44kXCYef6as20knE5IH+fpuSEZSSGLCEqz778+nRx2vmeW6p52W2VbKtmhRZlNbzlm8OBds1qyWAds3xuy7gk9aM2VKPhxXP9tNmx7OB+RnzMqVmX3DDZltKrWPpMoN3LY5nRtwkDK/H+VpsVLCGDlyQXo89m4TjkfwKTfdlB3Y8UaV3nROdrqjI5Nk2umA24+LPshbwjqSI3InWLcOXugaSy9t3TfRtSaSPXqlkQjID/l9xRzHShZz4UIPZM8Dgl1cpMfl79PSuyc7sFJ8HgdcplB9h3jwwczesSMuDklnc64BzLjK1QOl3UBjhPsgkO93PK/G/kbg+YUllJXA7z/8+tmw9t58QJ57fvjDAfNhmnc2mrRZetnhsQEjyzzzzPIZtc/m0DPYQxvZ28i2Y3H2jTdmt+UXy8sv9yf+ox9lNv8ABTD3/PMH7NYF2TsPd/eiMlohxir6WCaEEEIIIYQQQghRAMn1xidqVyGEEEIIIYQQQgghSmhl2RjBrrz17TTFGzmFdoCL3UnSR0jpE1IExUiZbDifTKooVnXRT/ROojOzJfctjWaZfxGphmeHpUEN4cuUXbfukRHwl+8mm0+OwxIA3t0qlAcug823Rw61pycvXfBJ4IpIB610yJftAwfyfw+YOjVbvJ6TyoU6By+Zp7KzlBQAekiGsNdjW3ySGbPyfczBMovQPFREVh27G2asipbrNbTjlk/NyNg4TTQ/HOwN/O2JI/KOdzwRWikME1uRod39isgwY+e7kZJl+vTNRqrV3p7t2sbt79sAF8hXa2yfji72ySdnNsunAPSQRLOZ5Zo8EEKy3kCnbqB2nk+6pD17s75qVW4+GbSV8fG83bSXdlbcaARM/IxhyRnbxx6bzzePEZacmnpgid9cvi8P4K4uf8Z9Y8IS2dCzKe0+aksjyAOJ9bCFpFEdJAkDkO9s1N9bLrggO293q+vInnG5na+tLJAlsTyWbrkFXkimxnuLt5hgvpmwyG7Lg95/QruoxsC7EVtXEb76tn2Ixkgb941uqmM7sLiOOU5R3wmnn57ZsdrwJUvKx2H/LoC/jmn8tZmHZPPM8m5AYjdODnkQiOWkLuqVd5Lk1Pbp739/wNxEu2HyzGVrgFuJe80C+1BZvjyzee7i+g75ioiknWx+xdxswuXGKe2U6XdKA+Cqq/zXqNHaSPZ/ysKuAXvrU/lx3h/FudBNhRi7aGWZEEIIIYQQQgghhBAltLJMCCGEEEIIIYQQokIctAJpvKJ2FUIIIYQQQgghhBCixLhfWXbK9W8f7Sx4mdSe7ZVsXQ7wsW+b95AvJA5nfXj5XN74/AaFsGlxPLatOxC+xv6ZOD3r/4z9tTGhXZiffTazub5s+fhenIeuLv/35Nhtyzdvz7wD9JKfK5uHo46ajXLMWWAqmQto/WJkN8of+5xo2fhcmexLY+HCzD777FyUnb2ZjxRO+skny2cNyPsOKuKyw7pfYbjokyaF7pv52OAqnb6YfLAh75uM097U7b8v+/R6+unyYQCAd/LmvNmxzb49eDz7xsRw4xuztk/75qiQ2y2OE3LlEesviucedgtm/d4xvms2383N2fzA+e7qym0gjybu5L6Mhwob8qnnq8yQXxSuFM5PUR9lRdIogsc/on3A8LTGc4Cd7nzTZ6hvxPq+zMHzpx0U5B9oPyXOvsym33RTPg77XQo54uNjKlQb1WObmYD7mjMPVFy+pt79Jg80CW/YkNm33poPx76xVq0aMNknUMfjj+fjsM8ybmfru42v+fqG8Yfm80FZxG/QIJYuHTA7yD/Q/qeeygXjHsCPsj7z0jP3xhuzA+54PJGR3yAAaOA64o7MfQYAVpNPJ077oYcy27487tgxYDaHHuJ839iXSR92kPkGbSyhF0G+xn0y1Dc4f+yHz9a3b8yGXuRjCfnbY7i8/BJlfZRRO2PGjMzmsWPapYn8v80LvdT5nBRzPawz+eH5M8Qdd2Q2zzvXXJML5vNTxv6+8k/wvJ+y+ezD7txz8wF5PHI4Lp/90VLg+dlO9226/fYB2/4qYf+I28gOeMHEw9RP5n/rW/mL3Gb8kk8+9OZYH38I9Ach6oBx/7Hsgf9aMnSgUeKiTwZ+8QshhBBCCCGEEEKIEWfcfywTQgghhBBCCCGEGA7k22p8oo9lYwS7itonu4pdvR27CprxrYgOhbMr5H2riadM8YfjsrMKYdq0fBzOd0CBk5PdHD6MsliJp0+uGSpfLKxICNUdl8/KB70J8lL6kNyBl9mzvXZtPhxvdc2yFupQfa1tYPZ6dktn+SEQVgtVSmz/tFXi65+cn8bG/KbaLKn03ceG8/U7G8cXzsJzAKtfhlPxFktsu3L9WHUP14NPGWXrjscI14lVOPi2pA8pCa3aq59QfwqdP9ibvUI1DZIolMI0tpQ9DwBNjSSusJkITSq+TMUOQI4TrTkcRjjfPAkYXXbngpMG7IbdOwfsaV3Tc+H42cHFs88UvsbTr32ueVniX+HezhI9GgiNLAOzA4blLzyf85wN+CX73AfNy0IDDZImHjB20uVj1mVbOO+nnZbdlstnpUw8AE89NbPt2GEdOueHG9DGoTrpM3O9D3a50Ec/hwa5Ynjb2zJ7+fIBc/4Pf5gPR3LUbjq9Mx8KjdTZZl93XXaB29n2DZ4fuG9YWSDlISfr5PRYDgvk2i83mfJ7A5Bvi0gJXZ/nZ2bD+edHxYl1i5HrW6EX75CPAx5XPn8jJEsclDZLGwMvAcHyvf71/vz5uPjizPa9EwL+Fyye8OxLtG+SDMlm+RrHt/mJlWGyXP366wdMll0CAIllczLoLrJN66GT5ZWveU1m85gA8vMN94eQDLMINC5aqL47TFl3k30wMmmWo9pR2cWSVm7nJ57IbNv33/jG9P8kicyBEGMLfQQVQgghhBBCCCGEEKKEPpYJIYQQQgghhBBCCFFiDIh4RDli5T0xhHas9J3nXfpCsHzRpsH3tfnmcDGySUu19WDv49vJsBZwXfp2EQTydcJKiKmn5fflaWn2SLJYmmG3c/PpXq1el5dPk3Sob9FzB2yr3OSV9KE+FJLKVUpIiWbVAT58/dMqEHyKNasU8KnUfDvE2ntxHorK/cYavjEX2tAxJIP2wWmHdhL1qfgsZvO6AazajPsxDzmr7skrxMrLLffuLnsaADBhQvZ3rcmT8/Fz5aP7hmRJPslTEJKsRUueao1vMJoBk8sfNUxvc16GGbPrNBDvosAL7yBsO4dHKtnEu7nx5Gky2EcTUcPGjflwXECeqHnyss8Azl9ooua0+b5W7seDhiVwLFdasSIfh6+xbfXRnFfOD0stm/PjJddVAu8oTGNj+fFix1EDy235eRx4qLTRTnZ2umOJGF+by7v+2Tph+SDLdW2n9u1YyZOpfRD5ZIZWhskvUdVu2WzHi2dyHtQWvjmK82bbxbdbZMhnBr/osBTNdqjcSx3JXk35oudmrv/Y3TB5HuJxanejXb8+s3ne4PLZhyEfc9nttujcv3ge4jq1c0i/jG8orrpqwHyM0lhngrHMkEcPiwc7rbySpZcvf3lmG5n3wdbsGcPdJtbzQfSz9cILy56ebV6AZ9IOrbH70rI4fbO51kv9vZOk4c3cZmaH3gHJ8DiXYTpoBdJ4Re0qhBBCCCGEEEIIIUQJfSwTQgghhBBCCCGEEKLEGBfxCCCvwOClvKGV16Elv3bzpH5iJV2xG675Ngmy4XhFemjZMss1Qxu7cX3xiu/Y8oWkoJy/psj0WKoa2riO64s3HbJKiBYur28HIiu54KXwvq0Hgbx0hGxOzspUQzJDH9wWRSRdobYsIsNkYnfQDOGLY8eeb5za874dIqvdVbQofF8uk5Vl++rYtlERmalvN8yQyi20u6ZvTgqR30U1s+0YYbWPT8YXkveF5jvfLroTJ+b/FlatlDffpyv/O1tNpJsseQnt1OiZaHMSdgBTppQvh+0bvjklevyxVM7mlRN/6KHMZomS1bSTFG0PnW7fsCEfjud6ToMnOfus4EI95zmZbQeFr+PZneu44/DOlpyele1wfVE77zcy2vxGe5nccm9AZerLWojYcI/1Zi4TOpZkdpOdlKh8XCKWZAJ5+dg2sluondtXr86nzc9w326DFq4k3obcSjxph89cO9vdXj2S2EK87GX5YyvR8+DdXfP007MD2zl8PgBCWyxzHfODyKbN9cD1WrB+drbPH7C5uueG5lmWy3L+7O6FPM+y9NLnd8Cmx7JOntOAfH3xfMVyXbO7cSy7PdJLKyVkxyY8W+Wkl697XT7SRRcNmAcXZm5JBm0k6lGWsm27U5FnawPPmVynpl0aaJ5t4h1wA7AM0/amxzhtsmfSLpxtPj8G41yGCaRSTDH+0MoyIYQQQgghhBBCCCFK6GOZEEIIIYQQQgghhBAl9LFMCCGEEEIIIYQQQogS8lk2RrD+XFi3XsTXDOvjY304xaYdusZuHtiXkY0T40eI3aAAeZcGPp9J9l6+PMTGqQWxPq+47Oz7ycr/+Rv3dPYTwYlb/ySzZpUPZ32NsB8S8mOxvTs7/fTT+Sg+VyjsvgPw+3cqQih+aKf6kM+4fqzPMu4PobRjxqmtE3YpxPexfX8s+ywL4atjW1e+cKGxyG1RxK+chfPA7p24zaxPtljfZr77FMlryNdhqK/57lskPyF/bz6sD6FCPsx8HS/kjymSIknEPiu2HmgbsOeE/HMdf3xmz5iR2Tt25OOsyzzytD/4YHae53kg59sM+/aVP299qPExP3ys/yr2jcUDw4bjyWzp0vLxjc+kPcjqi7Oz3bgy4uz5+rT1DxTbZkXGps9F2Hzrx40zfvbZ2T25XQC0Ujtz98z5qdu1K5+2b0KwBeJ3B57IuMKs3y3PtT17rX/EzH9cSy18FQ4Xtu/7/L7alzD2Qcdtxg9066eOjvuas/oxTT5oCPvwuTScG/DR93B31k4zZ84esNsWtPsj+ZzuWr9i/EPj/vsz2/rUI39mfVSIBnpgbTM/WmYjjrVks5+yuSac10/ZxRdn9nnn5eL0Lcr8lHVvzM7b4cfVxV2Ah1/I33TsvMNtOd++xzM0HzeyL7oAi2mc95i+/zDZPCdxqCb2WQeg+QjyWVbjn49ijKCVZUIIIYQQQgghhBBClNDHMiGEEEIIIYQQQgghSkiGOUY42Jv/bunb2Z3PW7mYL34In0wxVmZlw/F9ecV2KJwPXtEOAAcOVJ4/TiMks6lWFhjCJ/0L1QGHs8v0c/XamS1Q5zI02aX4ocZgSA6zc2+2gTTLS2y+Y6V2tZS62iLEyCsBv0LFlxYwWM7mi+9TvIRkbkXGWUiCPFL46s5Kvn11EpJhxsbx1Z09X0RaaKXG/VjVDsdhOYbtQyyTYbhvheYDbmfbH2MlqL6+ElJvVyvXrDks8eOGZkkfgK27srlrDklPNm/JP2e5PdkOuS7g2/rmBsvWrZl9+HBT7lprayYSaltAFcsdYiPpfoBy2vzBmQPyDw+WxrCGy9BLnbUxJMO0x/2E/Cew/ohkfAeb28Cw3NLXRvY4dj4fzjmT+w1XfXNzvs3nsiyT28JMAl1c//aFqB+WtgKDpZP9WO0XP9RZXjlnTmZbvwOcNtm7TXfKSV+5kVrz7RyFbcBqJdehh67vxduON+7jTzyR2aGXHKr/hr2ZkHby5AJ1gnwxfM8Xi+/9fBC+F6oNGzJ7zZp8HG50utZ73325YCwh3kl2Cw0eOzvFyjB5lmRh9yITrp3liBdemNkrVmS2kTbyFMxD1s5JMdTAa0BOBdvcPH3Anrt8eT4gPxvNc9LLa1+bpb1qVe5SF7VtN53narDFm9/f8Y4AGaYYn+hjmRBCCCGEEEIIIUSFOEiuN15RuwohhBBCCCGEEEIIUcIldbIs0jmXVJpX5xySWy4cOuAocdEnN+G6G+8a7WwIIYQQQgghhBA1Z8myZVi9erUb7XwMFyc5l3xttDNRA14G3JUkSWCL1SMPrSwTQgghhBBCCCGEEKKEfJYJIYQQQgghhBBCFEArkMYnalchhBBCCCGEEEIIIUroY5kQQgghhBBCCCGEECX0sUwIIYQQQgghhBBCiBLyWSaEEEIIIYQQQghRIQ5agTReUbsKIYQQQgghhBBCCFFCH8uEEEIIIYQQQgghhCihj2VCCCGEEEIIIYQQwotzrsE596fOuXXOuR7n3OPOuS8656ZExF3hnEuG+PeCyPDXD29JU+SzbIxwsDf/3bKnJ7O3by9//pln8mmctbRvwP7FnXHfQSdMKH/+8OG4cJZnn83s3t7MbjQ9jcvR3BwXZ9KkzJ46NbNbW/3hmKefzuy9e/PXDh3K7IkTM3vRovJpAUBTY5//IvGrVVlbcP1wHVi4Htrb89e4vjo6MpvbaM60g/lI3Ik4AVMRfZ3zBuyNG7PzW7Zk9u7d/rxym9n249tymRYvzodrwND1GurfnB+2yx2XO8/5BPJ55TLZeuBr3BY8lmyb+/Jj4Tz57gMAS5fGpVct69ZlNpfhwIF8ON98YPG1WWx/Yux8wPE4TpG2sPMG9w3uD3bMxpQpti/YevCVz9aPjTfU+VC42DghYsb5ILgBbEMTj23K5oeZM7Pzmzblw3EfsH03hsmTM/u5i/zl4fnKZpuPeT5v2b05O7AZ52OuE9upeRLnQcud9fHHc1H2dncP2NyFGhcuzKd99NGZzZVsH5pdXZnNk/2CBQPmnt6WXBTKQq54ofnc1/ePOSYfh5/vsX3aN9dYON8MtysAtGx/LDtYvTqzH3wwH/DWWzPbN1lceGE+Dtc/d2rurPa+zBT6rcMTOJBrs9x9uI2BfP+iPti3ZFn5ewZouPMX+ROPPJKld8kfVp7eD6/ODrjfAvn3pLVrMzv00sMvR9xR7Hjx1ZcJ19ecHwv92Plyf082p/B0cNIC/zz0241ZnM7O7HxL7558QC47zxt33pnZK1fm49DLSA/F2ZIPBb4Tl5RmOzxs4lxqf5B4uJvyQMXD7BNPzAdcvjyzV6zI7CVLBsy+hafkovBU6vtNBoTfJfuxUyQP7cBjLQdXP3djOxTbGvdnB9xReCxbrroqs9ev99+Y+kMv/YiyPbBpx45SoMiXnDrmCFqB9GUA7wPwEwBfBHBy6fh059z5SZKEXvAeBPBHZc5PAvAvALYD+HWZ6/8C4HZzblOZcDVHH8uEEEIIIYQQQgghRFmcc6cCeC+AHydJ8vt0/hEAfw/g9QD+0xc/SZKtAL5bJt1LkH5v/HaSJIcGRQR+mSTJoHgjwRH0EVQIIYQQQgghhBBCVMglSDf//Io5fwWA/QDeWDDdt5X+/6YvgHNuinMucq137dDHMiGEEEIIIYQQQgjhYylStW1OKpkkSQ+ANaXrFeGcOx7AeQDuSJJkvSfYVwHsBXDAOfdb59z7nXOu0nsVQTLMMUKsH5pYYnXvPj8dVloe66OG/YH4/IABeb9isXF8dWLzZuOVi1O0fEV89VhXIb60fHJ+2/4+3yzReQs4aonxrWTz4/PREOrT1fo8Co0J7kPWf511wdJPyFeeL982bZ8vHE7b+hiLdMXhrdda+I4qQqyfQd/YtsTUg60737gKzX2hfhMqhw++V8hXiW9sj1b7jQsC/k8mTWoasEP+YKodS7HP5pDfLZ+vtK6uuQN2QyhznLj1rcTX2OaMmzj8F9RGdr53/PE2g5nN4U44IR/u2GMzmxwl7ezJPBaxDyB7HPLt6fN9yu1s5xbf+0EtsD4N+7Hlm8dOhtihmQ3I17iwoYdKEeeHbLNDWDvJcjtTJbP/LABobp8+YDdYv2CVYgct568IsYOWH/AhB5Bc3z4HhEDeSRjZ1l9f5Kt7rqvs2pXZfYE1EByHizBzZlsuXBuPbe53Tz6Z2dY5FtVR8xNPDNitxrnyTrK7yWbHQ/NRDK7x2TzQue6BfN65nci2UynXsW8ojiQ+X7GDfOnOzPpXS+xY5Dk75LeQKqKRfPf1GT+YR4Kvsn7GyQqkmc45dmr5L0mS/AsdzwWwPUmScr+ongDwfOdcU5IkB8tc9/FWpKvVyq0qOwTgWgA/RerecC6AP0a6sm0xgLdUcJ9C6FVdCCGEEEIIIYQQ4shle5IkSwLXWwB4lh6gh8JEfSxzzk0AcCnS/T9+YK8nSfJzAL9n4lyB9OPZpc65f02S5I6YexVlnHwEFUIIIYQQQgghhBDDwH6kO1eWo5nCxPJSpBvYXpUkSVS80m6bnykdvqKCexVCK8vGCHb5Pi+r9SkpQvIEuxTXB680D0mheKV/SMbAUitevWvT5rz7VrRb5YmVvVUK39PWXUj+yXD+miJHj6/NQltOh87zzu4+SWZrayZDAoyMJ6A94jz51D2hfheSovnUD3ZL9BhCkj7G9jvOX2x9+8LFSih9YyJ0X9v3Y8s7Uvjq0faNWLlCEZkix+H6CcXha6G8MqH24zzwGLHSOu4rvrk01MahOSlWPhg7h/vSDrXfSMlJDzZnciHfMwQA+neqt1iVG7cTt22oPFyPseqSUF4ZvpabF23GSfICljnZB/+aNZl9O+24TjKpLabjsRxqNqU374Yb8mkvXpzZLNuxEz1L+eih0khSPYtvfrH1zc8oLkZoTrKqRR9F+nTs+1lHRyaNamLpXkju59O+h/xVhDTIvvuy1NJI6HJxSNK1fVM+GCfRVu3kwIkBxfyS+NKzeeO0ud8+/XQ+HNe/HZv9hDpADeAs+N4r7LtVb2/59RGDmojzzpPk1q2Z3d3tzdt26jema4BmLmwjm4WSc1EM/pXdRxNCg30g+yZk6t+7Tca5C/jmHYtPMWzjFBkiLAsN3ZOHbF7wG8D3YgPknz3r1g2Y+6nNuY0BYH5/ffdV/q4vxiSbAZzinJtURop5DNKVaZVIMP+49L/Xsb+H7tL/VWr9h0Yry4QQQgghhBBCCCEqxCH9qFLv/yJYVQq6LFf+dJfKxQBWl4lTFufcbAAXAbg3SZLoeCVOLP2/NRiqBuhjmRBCCCGEEEIIIYTw8X0ACYDLzfm3I13A+B/9J5xzRzvnFjrnfAsb3wRgIgKrypxzM8qcmwTg46XD62IzXhTJMMcIVl7Ash2fDDMkAan1CnCWLoQkiz5pWkhy6LNDS5P5vjbtmB0+R1LWFitZY2KljlwPvt3AAKCNpAd9jZlEs8FIGnjpuU9SYiXDMUoRy3BujhOSR8ZKL2Pih+LEytxi8zPWdk301YMdV7H9PWbcx9ZB7LwYkmH65KOheYzHRZHdg4tKLX2qq1i5Wb3i20USyKvHuE6sosTXzrG7UxeZN2wf4vT4Gu9q12AndN7VjO0tRgDDO73xM4AkVHZY7iabdRS2C84miWcjV6yVyfFOdCRZa+2c540SOwfEKAlDqr1a7yzMTcHzgVUSNnHNcqPbgJygT0Nu4/i2A7bhfDtt8sSxb18+Du+GSPE7O/PCuYbdtOfhxo2ZTW0eDccHgvK/KHiM2DrhfszhNhlNHksvN2zI7FmzMttODtwu1DnaWM4MoA9+eTLDw4pvFXJrwcXlrtXSszMfkOv4oYcy+847B8y9XG7k5wpusc0mD3vInk02l7oSZ0cMp9HA/fvEE/MB+ZpnjNXa7UCt33l9vxEH7YbJc1xHVkNtIfcnvOOlTZCv0bhoofHS9tRT5TPhnP+eom5IkuQ+59w/APgT59yPkTraPxnA+wDcCuA/KfhnALwZwHkAVpZJ7q1IX0O+G7jlz5xzmwHchWw3zDciXVn2tSRJfl1VgSIYYz/BhBBCCCGEEEIIIcQY43KkPsPeAeCVALYD+BqAvy453x8S59zzkX5k+88kSTxe+AAAPwRwMYD3AmgHsA/APQD+JkmSqwrlvkL0sUwIIYQQQgghhBCiAEfK2rkkSQ4D+GLpXyjcpQAu9Vz7BSKqLEmSzwH4XMWZrCH6WDZGsNIMn/SSbbtREePbKcXCG/6EJAk+iUpol8uQZC1GxmVlSbHLmH3l4PixOxnWgiI7B4Z2EeRdQX3yoMHKjEx6yX2ouTnvttCXh5B8LVYyM5zSSx+xUtCQRNAn2Q1JJTkO97WiUkSOV+1mYLXA16ftrlyhfuNLr4g0itOOleFaOXGM7NiW4aijMtsqlnywGickleT5L1aeHgo3HmSZ3Ba8O5kdi7xpG7eLVSkynIbdeZmfk9wHfIo3S2jDQ88Gg2jYTnvFWemZbwc+K5nhePffP2CyNMrEyMkyc7vLmXAs3JpN95ltBwnrxahiG6iwnUaeF1J1Mr7+zs8/2+9jJfJF8PWHQed9E6MtLHcILhTH4TDljsvFB/JSNDsZ+uAJniq/occI57h/WgljpYQm6iIUeajYe9JE0kt9v5F2mR3Ullzf3HFt51iyDDE07c7mh46O2YGQGTwU23o9UlkAePDBzCa5dd+qVQP2wyZtnoJ5ftljwrWRzeJd3g2zaAtz2rkdeu2Y8D0Mqc0bG/Mulnxy+SKSzFrPQSH3C5zv6Lxy/wz5O+AXXbK156UYb8jBvxBCCCGEEEIIIYQQJfSxTAghhBBCCCGEEEKIEpJhCiGEEEIIIYQQQlSIAzAOvF2IMuhjWR0Tq3sPhYvVsPv8CIX08SEfRQzL44fTn0go30wt6ovhOuGy2jz40g753WJXGiF/TOwDJuSKw+efKdbfGJfJlqeILyoftegntcyPxZe/IuOtkni1xG5B31flQuRq55qQDy4eY3ZcFfFPGOt70Zd2qP04r+wLK5RGqO58acf6tqu2XUYSn/+VWH94tfCbWG09hPKQK0crFdb6NfI56LL+obq6Mnvx4gFzJvkesqP6INmbPOeBvK+zDr5gnfdxoXbsyGx62FifV83Nmb8gdplj51VfW8yYERen1rBbKn7mWndh2OJ50Ib8XLHDKX5Qd+RqP99XfP3ExmNnfpy29YHHPoo4ju3U7CvP+tuLIPfssfGr9YH25JOZffTR+WtcXva79tRT+XCPP55FodPNVD+tGzbk49h26sf402pYsmTADj5zqf7bFvD84J/4c11gI5XPOnNk32tU/+x/zE655GExF67NhPP5KZs5deqA3RpyyByg8bTTsgOqR5x5Zj4gP3g9Pv7sPMF+LHmIjYYvXgvPkXb69fm8PmWhP72+rvkDdoP1j8l+C/kazWOz77gjH6d/XnNHivt7Md6QDFMIIYQQQgghhBBCiBL6WCaEEEIIIYQQQgghRAnJMMcIIVmgD14RXzRetZISK0PySV7sUuWRWrocWyaWagynTIPTtvKQWLlYTB3b+uU2L1L3vAQ9Vl57JMP1HWpXX1uE2mi0JHC1JDQfcPlCfdoXLnSv0DiIaYtQnNg280klY6W3ITkqzykhGWbsHBDb11g2xdIhK+WtFl99xbZLbLl5vgsRm95RR2W2ld6yCiin1FpHcjOWjllYE2QbnSuJJJnNJCOba3Q77SSB4tRsS7Lsaiff0kio2tetG5xnk59BlxackuUhMEZ819qaM9HoQTTl4vjaLNTXff17ULgtmwfs6Tl5rJEysZSQbZZaAvkCckfx2UBea0eF2t+Tz3eLlfb2w1otK8/jSmIJo/XnwG3uaf/ouSFShhlyG5C7xlJgkv4BALjv8n04DoBekmtyy3IXmm7qbjpJn3P1ZcfsxRcjCt+4WrTIG6Wh++HsgGWiNq3VqwfMvltuGbA3UhAe/0C+HrhHzjXhusiefuKJ2cHCTBfYbCWssZDUHKeemtnHHpsP55Md08ttR+d8MNz1WX0Yetfmdz9+b66Fmw3PMA9OB7Hv7g29VnTvSZAfWD5/M5zBI0CGqRVI4xO1qxBCCCGEEEIIIYQQJfSxTAghhBBCCCGEEEKIEuNA0DM+KCJnDMm7eMOSWBmYTwoVumbDxe4iFytTY2JlV0yRuhtOOA92SXRsWzA+GYqN49t1z573bczF6oRQ3fuWnds8VSvDDUmQOQ9FpHah9FjyZuP46o7Ph9o8hC+92B0PixCSG8VKG33zgW0/ruNYeblvvITqpIh0r54outtqvZCXWmX9s2h5fO3Mz89awPOsVb+xbKZhO4mbWAZmpWist+XM2gL5tkHmQWL8AbRQuLk0GK2Ch49ZhmmHX/vatdkBF5akoFY71ER7b7a25mWUjFeimSurP37N8U32dkc5PuZ2Dk2gU6ZkdqhDeSbAFnuepWi82yOft/nmSmb5mtUt+3aVLIJ9aNJxSMrpvRaa3H3+OIyfFN9dfZJMAJjOO0yy/NPuOEoEpaq+rctD+HY6tW1E8w2LSVl6aVuVR/Bssm09eEcjl6HoCzqXaevWzLY+TzgcjysK12R2j21tnT5gh6re9/5S62cuD2cugpVhzu2Ik5DnCMmoua/wXDHWtggVoobU6SuzEEIIIYQQQgghxOgiud74RO0qhBBCCCGEEEIIIUQJfSwTQgghhBBCCCGEEKKEZJhjBOMSIeh/KoZq9fG+nX/LXfPFi/VR5PPPZeukWmLTrrVvAb5XKA++cNYdCNddbF65jn1uOYC8HwR22cDxQ/58itRryI9C9PbyRKy7BN8Ys/ks0g9jfA6WO45Jr0j8WlPE52AssT7imFh/Y7F+FJlazL88rti1B9u2n4XGqe9esc+NImOEKTIuawI5iGlsbBmwQ8+rWIrMpbEsXJjZ7I8LQN4nzMaNmX3nnZnNvmGA/OS8YEFmd3T4M9HVldkhJ39UxzPZ3xj7GEPeZxnb25Cnnfxhtf3sZ2XvM8hvE12bzvke5HfLxOuH/Oo0LVmSu9TY3GJDF2bQOOD64sH94IP5cOxPac2azDZ5xYwZmT1tWmazYyLjpKivtc2fYaKB88c+0HgitA6ZuA90dma27Z933JHZVL5C84b11xfrn8sHD/SQA0EeV9anHuVhPuXvMQqz29y2m+p1+n33Ddhttjxf+EKZTJeB65jHj+1DzO23Z/avfpXZPNcA2Lxhw4BNM1JubLNfMntMNQfbGxuWLs0Ozj47s+fMyWwe85Vw1lmZfeKJ/nDcp9jety+zzQOhjfLUumD+gG2bj5uCfZuF/BDHPnt4/HR2Zu/N3D2nN+7JR1rbncXn5waPXwuP59Czh583nJ59DvUX0Dn/PYUYw+hjmRBCCCGEEEIIIUSFOEiuN15RuwohhBBCCCGEEEIIUUIry8YIdmdjn5yGVQgHDgxffnySpEri+aSW5Y7LUVQqOdoSVgu3LbcfKx8srA5g9QWQrzurIih3H3vM5WvauzMXrqNjOoaCl5YD+WXoth8zIVlupYSkf0VkUr4xBoTLFHPfItK/EJy/0ZJh+sZ2KD8h6aZPWcPtYuNwPYTqMXY8+9o5FJ8l0iF1DysXWDLhG782vaB8yav59SfYVOtJjhhWiSbJ69pnzhuw7ZzE9cpFnTIlHy4kKffBfS12/DXtJgGTlbXcdFNmsySTpVHPPJOPc+yx5W8UmvhZJuPrkBbWjxo53IJf/nLA7qUy5UPlZVzNVI6u664bsFtsA/Jg52t2wLDmiRuDz7OcDkDDzLgXhJB7AC8kr8s94FeuzIcjaSoeeiizbftx/VPfz7VfgNxYtJPspk3l7fXrM9tIb3P9k19MbL6pvHtowMQJRA0sTQYGD+JK4Xq0+GRqVlZGfbKJ4rST5NSIrXPjgnt7J0keAaAdkdD4i5am/vznmX399QPmY2Z+oVbGZrLnk50fVQDXUMN552UHVlK5eHFmn3BCZvN4OfpoFIKllzy2bZvzXMZ9n9vCSsNpLDbQXNNixmJzRyZI5WHOU5odLkU4aQGNbX6msBQcyMu8jzkmsy+5xJ84P3u4foD8nMQy8ZB0VjJMUefoY5kQQgghhBBCCCFEASTXG5+oXYUQQgghhBBCCCGEKHHEryyb8JLrcdrx2eLwaz61BN1b9uP3PrYa849uwYFnD+PCc+bgC+86ZVDc7i37ceFfrMLab70od/6v/m09/uvnW9DgHGZPa8KVf74Yc2eG193aVdSxu+kVIWZ3v5AsNJbYXRuLlCl2xzsfsdK6WqiVYtOIkd4C/o3MCkkbTWU1NWZLu9vby39Lt6vTWSUT2jWVr8XWvw/bh2P7mk8qF5K2+pbMxy6lD8mCq5Wjjhd8bVZkd9yiO00xRfpntbue2nzmJFS12FI1dLNKqcX2k0UgyQsrh0LS8JCUlwkVodr5KrdznZWV8Q6RdK2XJHCNNgOzZmV2aGdLnsx8+l8rMeOB5tvG1dBIUp2WVaty11iOxpIuFuvOv+WWXJyWJ5/MDlj6Z/PK8irOH3cI3nEP8D8ETAdo8DzMGkId5f77y6dtpHa5eg1JmZ7znMxm+ROFO4imXJRdJP2aODF7hvPusQDQxvJU34PbjnMeWFwGI3ProQdb1X+Rt5JTrociLFqU2ba+fQ9rK4Nm6IWIBc0tLH9DfsfY3WRbueYZ/jvl2EPjou2JJ+Ii/fCHA+YD1EZGaJcbp3PJZunlXLvbJNcl78jJ0j8AOPnk8nG4PxXVKXLf4PZ75JF8OJ4L+YV2x47MtnJ5hsfs1Km5Sw2d2dwzh6S8fY3ZOI11VRCUgrM80icrBQY/b2IIzQE+2T7Pzbb9JMMUdc4R/7FsctMErPnmC3Pnurfsx7mnTcf1n1mGA88exulvvw2vWt6BF5w2tD8nAPjw6+bjk29NX3L+/keP4P99+7f4pw88t+Z5F0IIIYQQQgghhBC15Yj/WDYUkydNwOIFR+GJ7ZEONAG0Tcn+Cryv5zCcvqYLIYQQQgghhBDjCgf5thqvHPEfyw4cPIzFb7sNAHD80ZPxk08uzV3f9cxBbNi0Dy98Xtyqsn7+8pvr8O3/3YSjpkzELV8+e+gIAXwrw0PSkJBkybc7IxNS2YRUP7WQTfUTu0NoKL0Y2x6Hdqgrgk/pEapjtu2qZ1ZC+KSEsfUzKBMkX2mjztHckS0htzJM7kPc5vv25cPxJlbV7gZkdxKN3WmTy87qDo4f2miM44c2oKpWXhnbN0ZK/RZLaFzFzlcslePzsdLwUB5498rYeSwUzigwBrBzCB9PbycJBsvFQpKnWN15qHPEDLqiHSp28qmWSMmpr/1sFfA45TnF3sa3A230PMaSLJYVArld7XqpzTkLjXZSYskLPyCsTJFhiRIXwsbhQvGudDYcd2qS4c3lLeAAzCaJEE+Ze8i2MrCZVEfT+UFiJV1cl1xHPHZe97p8nFhdfZGJluW2lN5BI8Ns4t1MWYrGOzAC+d39KNzOvdnz2D5r7HO3H1uE1s5s1z7e3S+3hZ+VKbLci18ETPn2833KZyce2y62jiqFx4sdV7Evfzzxs0ST8tpiNN/TaadUHtu74+44CJZK7qc8BGYAbKTO8hidt4JDll6y6DUnvbz44nwkrleea+y8QfLf/c3Z7yrugm2LCvaaWIkuy5tZOs19+sEH83FYzhj6weCZZxu4H4d2IKZwQbkm77zL49JKcjnfkbvo5spnxxvPCVx2n6QWBXcWFmIMMcZ+ao085WSYAHD7fTvx3D++Fesf34ePXHICOqZX9uv+029biE+/bSE+8x8b8fWfdOMTb3nO0JGEEEIIIYQQQgghxKiiz70ezj1tOu791xfhvn99Ib5x7aNYs/Fp/OqBXVj8ttuw+G234dqfB5w/Em94yVz86La4sEIIIYQQQgghhBBidDniV5YNxUnHtuIv3rAAn7vqIVz1V2fkVqF1b9lfNs6GTXtxYme6PPXaX2zFwnlTyoYTQgghhBBCCCFE/aIVSOMTfSyL4LLfPQ5fuPohPPLkfhx/dH777fWP70Xna28aOP7ye07B9/5vM9Y/vg8NDcBxcybjn/70tCHvYX2k+FyzxLrRsD6dKk0j2ueVgfMdyoPPx1TIn1qs25BItzbDFj+UXiht9s8Uu4u2z5eO9RfHdZfzgxDpJ6mJbtTenh8DzEi5LrLE3ivGX591QRHbP4vkx0esP63R8llWxB8h11fsHFKtn0J7zO0Xcunl83kV8iXHaVt/dny8vyd7nWrhzmYjxWYitsKGs+OMUEc82Jr5uHm6Ozsf8h/IhLLpm0ttvELVeOedmW38O+30+Clr9tjpCU9ntZPSjBmZzf5qOI7xKdTXnM3vDbGDdgutnj8t/77TSL6bWh5/fMDmslqfZbvJ7qA4bWQDwE6yp5O/Ic5p644d+cTZD1ts+WIbmn0ekQ+fJtsuixdnNvs4sj6XKI09PeX9htqs+aaKUJ+eOTPzUtV0GgWcNs0fKZAJbotoP1I+li/PH59duQ9g9pnUwHUf6vs+h7BAvrzsd5IfAsa5axf13T66Fr91WB7u+9vIDvksY2+J28m2cdhL1Tz2z8Z1/7zn5SPx/MK+zYx/rj2N2Ry+3SO6aexoyx23hHx3EezLj5uozfoIY5+BPD9wf7B9/8knM5v7wyYze3E98H25P9mXzCLPT3ZOyLbtq7t2ZTb31RD8ghdywOrx/8fvOECZ55cQdcYR/7Fs7w0vH3RuxeKZWLE4mwQmT5qAJ35wwaBwXR0tOHTTKwedf+2KuYPOCSGEEEIIIYQQQoixj1YMCiGEEEIIIYQQQghR4ohfWVYP8IrY0I7FTKxErNbqmVjJIV+rdif3IuqJUNqhugtu5eyB28mnrLLhWFZkd3vmldSTJpVPm9UAg4htGM4E3XTmzHm5KJyHZ58tnx97HKrjGELxQ1LQvPSkfPy21nwbH+wt/zcF2y4xfd+2i69/hmRlHCdWDllrgv2L8I3TkKolVsrri2P7hk/ezPJaIN+PuXwcLtSfmJByoaWZ+hcPZtvosXoqX+FDOlO+V5FKHi39LxEaB7HzPhcppIj1STS5zwS5777MNvIsnm04e20sf1q0KJ/eggWZ3UmiKTsp8TFLjKiwO3fn57fdJI1qb88kU9MXBB6afJ+nnvLmYcF3vjNgb6Ygj+VjYA/fxnMeyMs12YMs53TBFqP14vqK9XEQ+cLR88wzWXS+r70Pt8Vxx5XPG4C+mbMH7O3d2XmeNmzSHk8Kg/ApsuZy3mxZt5N4r5syZPsdyUdx+un+TMQQkKaG6POtBaDyHWzMu5TYRV134sTsmq2GNs4DVzhPIraC6bjrqqson8XgLO30hsrD0kt+/Vlgwi3gB+CFF2b2WWdltpFbc9n7uuYP2Ga6w6ZulL0Wej84yWbQg2/ItXWZlz1uP44UmhtYrrmOBK0sz7RMIX/Vs2ZltpH/FoLln1wGW3lcjtCPRobzasc2553srU9l441VoUD0kB0XuNHOgBgWtLJMCCGEEEIIIYQQQogS+lgmhBBCCCGEEEIIIUQJlyTJaOchCudcUmlenXNIbrlw6ICjxEWf3ITrbrwLQGDJeAWwRLAW6YliskvLcLZFLfJXKbUuT5EyjIU6HYtjbKT6w1gsewxH8hw5GnNFrRnLbTYe6hcwOweOkzIdSVQ7Ro6kNg/V1bioh5C/gzGG5p3xgx1X/e25ZNkyrF69etwqFU91Lvn+aGeiBpwG3JUkyZLRzsdYYuzOnEIIIYQQQgghhBBjFAdglNwIi2Fm7P6ZVgghhBBCCCGEEEKIEUYfy4QQQgghhBBCCCGEKCEZphB1jM/nhnw+FMfnb0HUP2PZ51WtUb8VYvxwJM1dogrYT9kY9lEGqE+PJ9SWYjwztmdSIYQQQgghhBBCiDGKPhmOT9SuQgghhBBCCCGEEEKU0MqyMcKWLfnjvXvL2z095W0AePGKzL7pprj7NjfHhePV3KFV3nzN7lodE47Ts2lzXifQliNTp+bDtbb604jJG8dvb69eksftd+BAZu/Y4b/v9u2Z3dGRD7d799D3bG5uMMfl72Pbv6mRyscdjAqxt3l2Lg6XiXn66fyxr207Oyvfvn3TJm+UYP/k4/b28nHaWvP3PNjbUDacbQdfn+ZqtP3OV3eHD5c/D+T7/sSJ+WuLF4/M3z/Wrs1sLtOhQ/lwzz5bPn5o/DFFVCQ2DtfX5MmZzeMylKfQnObLX2dn/njmzMyejp3lM2EndN+NQ5XHA9oObt+1UCXHNkBo4q4hDT37B+ytz7QM2E88kQ8XqlaGr/G8aKvY95ycNCmzz1rqvw/OP9+f+Lp1mc2TPXeiRYvycZ73vMw+8cTMXrgwH47utb95etms2XmM62TmzGw+aWvcnw/Y3V0+kTvvzIfjyfonPxkw+yi+ef0BNxk1y6CnwcNkt3jCnfFXf5WPdNZZmX3ssZkdGi/8sOCOYthCkw3XdpMN+NrXZvaLXpTZF1yQC7an46QBe+PG7Dy3Uegdzs7HDL83zZiR2XMm0+DhNgaA22/P7Iceymz7wrlhQ2YvXpzZP/+5P0M+PvKR/PHy5Zl94YVRSbBErGHjbzPbvFwdbG4bsJsQeJHgPs3jmc9zXQHAzTcPmHtuuWXAfjgfCotDD3/ip9TXttH5SwPxr6c4bXT+JBOugzsH1/GSJZnN7QDkO+KCBQPmnt6WXDD+rcM2z6XTpuXfY05aEPfe/atV5d9/eJgDwNxGqrE1azL7hz/MbPuCcMcdmc3zrP3xdvbZmc1j++ijM9vO574X9BDf/GZmhyYEHsMveEFmv/zl/rS5Tkx6+7tOKXtbrgb7iFu0SOtyRH2jHiyEEEIIIYQQQgghRAmtLBNCCCGEEEIIIYSoEAetQBqv6GPZGIGlQkCcfDBWXlILisgZQ8qhGBmmXU3M4Wx9VUqsnKoW8L14hbzNg096a2UyfBxbD1w+Tnuw3Cib6hsbs+XzTTOzxtjenY/jWwFu+2Cs8iuG2H5n4Txx3eXlgvnHnS+9WNUch6uFTDFWOj1ShKQ+sXXnI1bdx/cJzRuhPMSoHq1s1krAfffM5b3XEzB2kgxRJE49QY02cWJLIOCQ0QH4ZdA1h6U5oXZhuV8tBjpN9i0enWlzh78eG7aTXIl9AwDAI49kNj+UWC9o41E4FlaxJAwA2slumTUrOzANePCZZwZsHmI5wSjXKQBMm5bZtXwoGbh8B821JtYssYbYSLrauroG7Pb2TMzJz/CQK4xQkbg7zJlFuV3bndksEQaA3/wms1lyyLJLADupndpJllvoh6SV9XLGI2WYOWyZiKZ26l8hfxcsbeMHIJ//1a/ycUh6+RidthLkWFh6OdsbKg+H41lotwnXQuOq7Z57sgs+aTLglQ+2Galrc1eWC9/znd0WVIJvqhg0le42Est+Qi8SrFXmDNpwxx2X2az/DMUpMvccc0xcOO6fVo/qg9vSzLk+VyYhdyNC1Dv6CCqEEEIIIYQQQgghRAl9LBNCCCGEEEIIIYQQooRLkmS08xCFcy6pNK/OOSS3FFimPUJc9MlNuO7Gu0Y7G0IIIYQQQgghRM1ZsmwZVq9e7UY7H8PFac4l14x2JmrAAuCuJEmWDB3yyEEry4QQQgghhBBCCCGEKKGPZUIIIYQQQgghhBBClNDHMiGEEEIIIYQQQgghStR2r2xRmL4afLdsoM3Ka5GeyNdpUdQWYYrUseq0PLXorzGo/o9sRqqfWcZyvxsLdWLzMJz1NVrlHc+M5f4NjI02D/X3SuPXmrFQP6PFWKjXavMwUu/7Y72fjPV5aCyjmhufqF2FEEIIIYQQQgghhCihj2VCCCGEEEIIIYQQQpSQDFMIIYQQog4JSXpq6ZphrEuHxJHBWOiHYyEPYw1fnYx1SV+1bTla5Yu9b7XlG0lpvxBjFX0sE0IIIYQQQgghhKgQB8n1xitqVyGEEEIIIYQQQgghSmhl2Rjhqafyx/v2lb/G5/fuzcf53Qsz+5pr4u7b3BwXrjGyp/T2Dm0DwKFDmX34cPn82LxxHlpby9sA0N5ePg7noacHXji9jo789+QiS5q3bMlsbrPt2/PhJkzI7K1bM3vOnHy4p5/ObF/7cR3YY66TUB3bNutnw4b8Mbcfl+HZZ/PhfG22YIH/m72vvtet80bJta3ttwcOZPbUqZnNZbX9ydf3bfvF5Mf2u1A/9BEaI2efPTJ//1izJrO5DLbP+K7FlpvrPnYOsuF8/d3On7788VwV6tPMggX5Yx7Dc6buzw527y5/U5uh0GTKhAa3r+MUqeTQfYumEUHDls0D9p7WuQP2xo35cFytXF27duXDcXtyW3KbA/m5guFqfPGK8mEAAN/8ZvnMAcBNN2W2L7PHH5+Pc+aZmb14cWaffHI+HE1SDV1d2Xnu/PZhwXR3l00LQH4S5jLdcEM+3I4dA+ZOengcpCAt5rZtEydmB1xWQ9+ddw7YDRRnPzVgy3e/m4/EdTRzZmaHHoahSZfooQdgM4Xbb8Z2C7fF6acPmA2///v5BM85Z8Dc2T5/wLZdKJcHz/PPDksuetvebFzhnnsy+1e/yke67rrMppfRHvNS8BjZTWR38ctCLLZ/rliR2bEvukTDV76UHZx9tv9emzZltq28Bx/MbC7T6tXevK175pkB+7d0fqfJ36WRdfQz6msddH5xIP5GikMtDvtEaSd7Pp8/8cTs4EL6wQHk627RogGzobMzH44ejnsap5fNZ1vj/vyJyB8qPK3xu96cWeY9cuXKzOZ2/t73MpsHCJB/kV+yZMAc9MbF8zHbXD++FwcgV1YreeT34YY7f5Fd4OeGnRz44bh8eWZTGSy5tM2LUgOPGbrv/ubp5U4DCBdXiHpAK8uEEEIIIYQQQgghhCihlWVCCCGEEEIIIYQQBdAKpPGJ2lUIIYQQQgghhBBCiBJ1u7Js//79WLNmDbZt24a+vrwe/dWvfvUo5ao47KIjlpDrGsb6X+F7cRrD6GomGs5ryPdQbNmZWLc/oWvsQyDWf1kR10Psb4F9lAF5FwK+NKyPgNg8cB1bn06+/Pj8fVkXTJMm+e9bKbHxuR6BwT6nyp23afvcZcT63QrVd2w5xsLYZOyc0k+ofKGy+tILUaROQvnx+ZYL+VrjPj1ihApe1LFbvUCTUjO5lIktjnXnE+tHr+rnJPuHsRMrH3Mm2CeYndD5IT55sv++nDb7smH/O9bHDeeB/d3YcGvXlo/z0EP+9Ig2sluOPTZ/kXwe5erODNqGadPKXmt5/PHs/NFH59Nm30E+3332OLLRm2fNKnufFuvok+vkkUcym33EAbm8T1/RRRey95BQvw25WmtrJq9xa+m+99+f2eQTDgAOkrPKJuqDNgvscWob2V3+rHrZRr6+AGD2jTcWSIXgMlmHsNx+Iceo7JuMG4Dy9rDJ98Nks5+y8l67hoY9gc2LjMP+x3ilhHW/yu1HHr3QQP24jX0tAgD7JuM6sb4OaU5q43HOsB8xIO/7K0Ab9gzYrbNohrGDhOdFdrTL86z1WcbzBjsltS8BfI3qpK8588zY0MseG1HsocJ+Dxme24F8+XxxLFz20ARDbdvSRXXXa+PIaZmob+ryjfmmm27CJZdcgh3kOLYf5xwOF3EiKoQQQgghhBBCCCGOeOpShvn+978fr3zlK7Fp0yb09fXl/ulDmRBCCCGEEEIIIUYCNw7+icHU5cqy7u5uXHvttZg7d+7QgesEuwqXl8wXkWiGZE1FJE+x+GRO9p7VftMsoJAYE8TmO1Q/XJc+iWBIURJzHvBLlOyqbA4XucP3sBLq3z45FZ+3KilfHcVKKENSr5j8hPIwnFiZMUuQfXNS0XwWmQ989WXzEFvHReB64LTtOMgp5XwazxD1NMkNJyT7aCKJS3t7Sy6YT6rOihSgWB+KOT8IlhHZCYblWrxa3ifPtMesNbdpswSKOyVLdaZMycfZty+zWc7I54G8VCo0ydGEzGKcpo6O7GDFinycs87K7KVLy98HABYuzGwuE8sZrZyKpVahB1aRMeeTlT31VP6Y25nrlSWQADB1amZTfU2nvn9wJgta812Ai9fSaKRfLLFlySFLDI0MkyWV06ldm/Ip547jnFX42W+Od1P/ai+S4H33ZfbZZ+ev8YOI68f2E49EcxtJlbfYa2TPJns+ipHraeedFxWn4ZJLsvvecEN23kisWSbKIkoev222Dnges7JxhseVL1xBGSaP+wZO284bPK9xm4cmdJ5HWJLJ85g5PtiYPZd6aFy2ttoRUwBf+ey8xXNI7JzGk4h9pvA8yzaPEfsMYGmqEHVIXa4se8ELXoD169ePdjaEEEIIIYQQQgghxDijLv9cfdlll+FDH/oQNm/ejNNOOw0TzTKHM844Y5RyJoQQQgghhBBCCCHqmbr8WPaa17wGAPCOd7xj0LV6dfBfZMV/LZQ5Y23ztCKSUwvnlWU3sWWohTzLl16RXTjtimbfqvEi5QvtXsgr8zkPdlU21/FI7a4akklxH7KSTJ/sistnFRexEqyY8hYdbz75rpWVFSF2V1cO19iYLUoOyV5jJay+cvhkjqG0i9Zxrcc9w0q5tlntlSdQRCNoCW2NVy94GrcWG4QWITbtzVuy8TJhQl42N+fcc7MDnnRZZmMn3RkzMvvkk+MyyJJMK3NiOBxLrWw/410ceRdBK+ukHdiaWI/MkkWWXQLAaadlNkt47MOQ5VCc72OOyeyQDLPWL0AveUlmc1lZLgrk658lmlbS5fMPQP2kqSM/llni1dRIc3tPYPtfu220h9wOpieemB1wfwRwCsk3H0Z12N0iq5V1BndqZFnZypWZbR5Q+2lXUE7hAU7K3PYksrmV57NMrhIuuiiz7fjxcf75mU3joMvIbWeTVLWbzu8mu9s8+NtIAjmd69juzsjHPs2wjXPxxYiCJbbHH5/ZVu7JY5Pnh+XLM9tKBzkc7/zJcxCAg83ZKOFixLoriX6m7G0re37uonx+uL9vfSaThc4JjaTYXTN9Mn8rO+9PL0ni0q1THIAavJKLMUhdfix7hF/ShBBCCCGEEEIIIYSoEXX5sey4444b7SwIIYQQQgghhBBCiHFIXX0sO3ToECZOnIgf//jHwXCvfvWrRyhHQgghhBBCCCGEOFKpy10TxZDU1ceyXbt2Yfbs2QM+y8pRrz7LLD5fWz7bwpJ8S7V+pYr4xiriGiTko4jl8TZctX6cRspnWchfWAif6yFf/QDApEnlw1nY1YTPp1es37Xh9BVUtI1i4lm3OCGfXNVSi3Ex2rBfMTv1+nzE1WLeKeKzjMdBbB8Ktb/P94hN+9lnM3t/T/Y61UL+TvrMa1asL7kctvMyEZ2oFnngNAqVIYSnwu1pfgZw/ww9FxnrO7PIM5hh3zU2zsTOzPdMO9kN7L/M+lbydTzb/uyLijshZ8jGYX9aDz5IGTWVwmnwwLd5Y39m7AfozDMz+/TTc1H6Fp5SNjuTJrXkwk1bkHm0auran11gn0LGZ1lfYxMqhftxsH+fc05mcz3MmZMP99BDmb1xY/k4QN6nk88BkulQTexDaS+1rW1n7lP79pVP2+Snjf3RLVmS2da/09FHD5jzb7gB1dDGvtEAYMOGqtID+wizdcJjjvz19ZmHAI/GzWSzpy3jfQ5cQ7O5jdj3WCW89KWZzT7+Qpx9dmazHy/jd6uFJtDZ5J9tN4WxPtn4kddEfbV1x458QK5z7rucH+uzLJb16zOb56SQL0Du4+yry/ZpmlP2N2bz9DPP5IPto87Bw5enYpsdptpnSnNz/hne2prNmYV+GtuXGZ432OZwtv0uuKDAjYUYO4yxn11hZs+eDQDo66vxC7gQQgghhBBCCCGEENCKQSGEEEIIIYQQQgghBqirlWVMb28vfv3rX+Oxxx7DwYMHc9fe9KY3jVKuhgdeYhsrIwptTexLO7T8l6+FZI68zDeUXowEysb3SQ5D92HlCKtQYss6nITuE5KZ+tII1YlPKldECsp90KYdyjeHq7aOi8bn/MXKAq36yBfHN0ZC7eKr76IS5BhqIY3z1WMInyQzNg07p/nKHpqfWIYXK0moxVzhkzQ3NjaUDWOvxdIUOfFbuWWl4Wour4yF5UJU1kNGCuOba0J9KDQf+MacnQt9hNSxrGRhtdcclgSxRMnCMkOWkQH5+tq6tXx82/FYO8TpGalWrpJZV2TzumhRZnOZWDrGskkATz1VPjuheWLq1Exu1EJ1YmWXsXNuDINky1wO7jS2Tngi4nq1dcyZ5XaOfbnyydyAfJsdc0xmL15cPi2bBofj+EAxvbsPvg8AsBS0CCxF5P4I5KSX3H49Roa5h6OQvZDsuea2s5cuLX9flrMagpJfTsOMHy/c5jywrK8BmrBYxNxGkkzbqnzM012zSbuRB7eVl5e5f0VwX+MXATuuuL9yPXJ80zf29Gbzy97d2Xmb1RiXJYOf9eXDWbg/+KrIVik3M9tzA1LQvvZM3t5gZOy5Z4Iv474XvCTx33Qc4KAVSOOVuvxYtm7dOlx00UV45JFHkCQJJkyYgN7eXkycOBGTJk0adx/LhBBCCCGEEEIIIcTIUJcfQS+//HKceeaZePrpp9HS0oIHH3wQq1evxuLFi/GjH/1otLMnhBBCCCGEEEIIIeqUulxZtmrVKtx6662YMmUKGhoa0NvbizPOOAOf//zn8d73vhf33nvvaGexYkLqGZYPxhJSbfhW6YfkSz4pWoiQVCtmJzubH5/cz9YdKxw4vdhdDWstw+S2CEnoeFm1b8Og0LWQzC1ml8ty8fqJbUtWSNg+U6180JeWJbTjKFNtfwhJsLjsbNv6jq2H2F1PfdRaNufLdyg/XN+xctTQPflenHbsjod2fonZ2dLmgcd2SPXB4dpaqS2oQwzao6+IeqknEIky3xDbcQowrBJN1phQpU6bNj0XjDf3Y+xzMVbtw9XF7Rzb10L925eHadOyHdeaOv360a1PZX/znNNpCsi6G96VkrHSTd/gDslxfPJDIC95YhkYDxLTMM9S0qFnIZO77fYsUoNJ2ydvtv02Rqo8qK9zfXPG+bw9Dj2QfQ/40AsQhwtpwvgav2Ryu9q+4dvxzjYMD0Bb9krp7g4fVwpLLe1ETeXdRtsc2js+QDaLKNvINqMlj29CqYQifi180mDeIRTI1wvtbNpE9TPftAOPlkaOf+yx+bR5DuAdJ2ux5TfPNTzf2bmL+z7XSWC8+H5ThZqvlpJvID/f8K6XoecYX7PD2QcrZefYrTu5bX0yfd+c5FxcBoQYY9TlyrIkSdDSkurHZ82ahSeeeAIA0NnZiY28DbcQQgghhBBCCCHEMNEwDv6JwdTlyrJFixbhN7/5DebPn49ly5bhc5/7HCZMmIArrrgCC/gvFUIIIYQQQgghhBBCVEBdfiz7y7/8S+wrLfP+1Kc+hQsvvBDnnXceZs6ciauvvnqUc1eMht78jp7NzZkoJySp9BErh/LJK2MlahZfenapMu9Ex9dCK8t9K8ht/fjqKySF4fzUWqHkk4tZfOqJkFzMJ88L1cmBA+XjAPk6IhVCUOLJ13wS2FC+i2DjF9mRkYndGTFEjFQ5VnERK2G15RmpXQp9stxQO8TKhH3UQibOebBxYuYuK4ln5QGnbdU9uf7q01sPozRyELFbwY41PNI2uwtoe3sLyhHauSzUB33PqCKEdoL15qc5L9JtonGeU1DF6rxDLxXceXlHuJC2mGWYNhynwZIskkbt3J3/e7ZPzRjLnFm0G6b5W7mv68fuEBvEt2NlSL/NUqZQYVkbxY0eetiHOjjLKFneHKp8lmTNmJHZdjdG7gOUXnB3Rx827VgtmQ+OH9g6kO/yQD4UTiF7Ptk8CzXYXTxXrMhsLtPJJ+eCRffDArth8o6ObRzHTkrPmO2F+6G+NWjnZX6J4r5h5d8xL+hFn0n8gPbt6gvET/yeKJxV+04Qk1wtdsNk+PkUeo2wU7OPXJPtNgXiuuSCxG5bLEQdUkdvyRkvfelLB+z58+fjgQcewM6dOzFt2jQ4aaKFEEIIIYQQQgghREHq8mNZOaZPnz50ICGEEEIIIYQQQoga4CCfX+OVuvxY1tPTg69+9au4+eabsW3bNvT15Zdz1+NumEIIIYQQQgghhBBi9KnLj2Xvfve78ZOf/ASvfe1r8fznP398SC/N9toNJDxvbs78DBTx3xHyk8XXQn6bYn06+fwXFXFBENoRPeT/yvp/y8Jlfl9Ckvpauw7yuRAJEfKRw21Rrbsh6weqWt88ofyMlGukIu4SQnF81+yY8Pnh4/OxPr1s2r66qyd3U4ydk2L9njE+v2mTJuXDxfpljJnjYv3wtTSaOWi3x39KEZ9lNhMhZ3BMjLPDWnSo4eyU69ZldqCs7Z3zygazVeybj0fSv6Wv+XzuYFKyv19zP26clvfV1sQ+tHy+gqw/H9+Dm/0QAXn/XOzLyj5Upk3LbI+Tv6LzAWePb8NlajCOehoby//tvyb+HtkHFncu6xtr9erM7u72p8d553plf1UhP3Xctrad77svs3/1q8y+884Bcwv7SQPQweOPy/T00/m0eWBUu0P9LbfkDrdROWYXSK6byt3FdQDgt2T/guznmzTayW5h/3HcFvaBUmSyiSXyZTt3q+bAPM1l8jnjPPpof+LsD43nCSDfN3jeYGe6RSdWn1Mu2/fZXx+Xj/Ng2quFxlxLa5a/xsa8P0mG5+0ij9nQnNTens1jXPVcpRY7DXnvu3dPdmD7J7cN1zfbvh9v4+G3ujgiqcufWtdccw1+8IMf4Pzzzx/trAghhBBCCCGEEEKIcURdfixraWnBsbyrkhBCCCGEEEIIIcQII59l45O6/Fj2Z3/2Z/jSl76Eb3zjG2hoGCdd0+osaAlwS3t2urkjk1mEdn8/5pjMtlsb+1Z9F5FCxYYLLTv2KYJs+XIyp2ZanmyXt3vWPvNW19Pb88uED/Zm/aipsQZyDKKpd39m0/Lt1lb/lvaMrTsunk+KFlrFzrI0K3/ha77+ZWVtvlXZllB/rRSblk+GF5IzxsqEfcvna602C7UZl7daqWwt8LWz7cN87Nt63V4rIjVnQipFn5Q7RCgcK0xy4bYYvYOvgGwX1TAfSdu0+wawdWOwe+eA3URxOjracuGmTMnsffvKJ10LeE6KnTdC48VXDXbsNPFA9fW7UAf3yWxsGiG5J18je39vJl+y7yhcvti643poihzcRaSXwThcdt+LDQAsXJjZrJuyDchp8B+IWXMa8lcRemCxjG7BApSjw8gUsXRpZrPUzsbngeWhz/ys9NbruefmDmezFLQAlGvsNtd80suTLrooH5Db2TfGrPxw0aLM5jbneqwEuu9BZGMpNL3w+15fe/ZboiGk3fPJK22bc+Is4wy9FPrqrigsTw69mPJY4LJzWUM/QCh+6H2j1i5deMxw2jV/t/LNY/YGvh8d9eofRAgPddWjf/d3f3fAvu222/Czn/0Mp5xyCiaaX4zXXnvtSGdNCCGEEEIIIYQQQowD6upj2QxyMPuqV71qFHMihBBCCCGEEEIIIcYjdfWx7Fvf+tZoZ2H4iNyOL79U3S9BLbJ7ZSy1kGjG7O4XXMkb0owW0JmyVKfQDnUhPGukG0wBWToyaVLWtqG29BUppOYILcX2yfpC7RK77LyWS9Jjd7ULyRSL7Lg2Uth72g3mfOFGG5sfrlcuw3DOIbFp1FpqntuF13ZI3o2LJYMczkrxY+VUsVulxui8Q4M0tOvmSHVE3s6LpTWhZ0CgTL65NVb2GFts34Z5QLHdkn2yG97MLc1fA9mZ7KrJqx828DUrS+JMeHa5HARltoV247MuCXzYLPBtW5C5O8j1EyMxs8/dcnkDUKxP8y57oe1MOX+hDuWrf59t0whtG+5Lg+PbB6ivfDbf3L9ot89CO45u2JA7PEjH/n0I/TxM9i/MtYvJbucLVlLJxyxN5J1NbZ1wm/PDsKh/Cnqm8LtjX2tbmcAprN5t6KHxYvun71kRO85D/dMXrhYyTJ+c1OaBy+sbp6H5gOwWK/Fsz3rlM89kp2uxiz2PH54zuTvV4j07J5G2u33ScYNvB8xa60/rBAf5LBuvjLGfWnHcf//9OHz4MJ773Ofmzt97771obGzEKaecMnDulDeuHOHcxTNpcvtoZ0EIIYQQQgghhBBCEHX5sewd73gH3vOe9wz6WPbAAw/g61//Ou64447s3IuuGunsRXPRui+OdhaEEEIIIYQQQgghBFGXKwbvvfdeLFu2bND5pUuX4j67e48QQgghhBBCCCGEEJHU5cqyCRMm4Omnnx50fteuXUiSZBRyVANCvirI3rM3+77JLhAAoI1k+XzN+jGJ8dNSxJdZKI1YP1chFyl8bebMTDff0hrwzeO5UZ/R4ee2na+1/50YX0GGffv8ye3aldmTJ2c2t3Ok25hglnzh2P0SkG+no47KbNvPfGmHdhb3Yd1bcNlDPt58LinYt4SF69iXVojYcRVy8+BzKWPHSFtB9yeVYvtAP6Fty0M+9XxuvIr4h7L1yPHYt8ezz8alN2lSZlsXPlOmZHbLLLpRyEcR+/3hjhcaCHxjW0CfQzvbcbmzcMXG+syJbYDh9F+2enVmc8NYn0KePNh+63tOxvYNvs1JC/zhuLoPHcpf4+bkbsPnbb5jx4jPZ+P01oATS99Atf0udgL0TbqU2eb2ubkoXEdcdlu+XNfduCmz2XdU6EWiCKH+feedmc3jfNOmfLiVK8vHP+aY/PHxx2f2S16S2aedltl23vA5KH3yyXy4tWsz+7rrBsyda9YM2N0mew3kL4w9Y80z4RpnzRqwdz/1VJbVK69Epdy9bl3ueBvZL6s4tbyfsueba9xTusnu4nkHyNf5woWZze1vXyq4Xbj9zj47H+5smysPpl76aVjgn8+beqk/cP+kNgeQnxi5n/A8G/LpRZux4eij8+F8/iR9LwGVwPHYthPoPfdkNj8neZzaeaOrK7O5/dlnHYAWCtczsYhXvTjamjMfqW38G4jnPuR9qk2ZMj0q7YbtNMrMfOnziXeQPAg2mSm2rz7X5RTiyCnpkUVdtuuLXvQifPrTn8Zh+lXc29uLT3/603jhC184ijkTQgghhBBCCCGEEPVMXa4s+/znP4/ly5djwYIFWL58OQDgjjvuwN69e3HbbbeNcu6EEEIIIYQQQgghRL3i6kW26JxLOK9PPvkkvv71r2PNmjVIkgRnnHEG3v3ud2Pu3LkcB8kbriuX3JjgonVfxHWrbgZQm2WqvK1wbHqFtvKuAfWyLLcW9TNSZS3S/mOBInU8nOUbyTFR63KMVN5Ho0+PFvU0lkKMhbocLsb6OBqt8TJe+m41jMd+X6Rdx2M9HMn4+kConYvEKcJozccj9btntObVWua71nUaw7JlS7B69WpXswTHGGc4l9w+2pmoAa3AXUmSLBntfIwl6nJlGQAcffTR+PSnPz3a2RBCCCGEEEIIIcQRiv48NT5RuwohhBBCCCGEEEIIUaJuV5aJ4oyF5fj1KhmsF4osxRdiLDAW5iemXueqsVaPtWasSy+FGG3Up8cv1bbtWJdejmXq6Z2gSP7GepmEGGk0IoQQQgghhBBCCCGEKKGVZUIIIYQQQgghhBAV4qAVSOOVumzXt771rXjmmWcGnd+3bx/e+ta3jkKOxh4N6PP+G2uM5byNF7gHiDB2xAhRj8T243rq67XOq549tSf07jFS7yTjpV19NVYkfiXXxPhEYy6l2r6vsSPEkUVdjvR///d/x4EDBwadP3DgAL797W+PQo6EEEIIIYQQQgghxHigrmSYO3fuRJIkSJIEu3btQmNjlv3Dhw/jv//7vzFnzpxRzKEQQgghhBBCCCGEqGfq6mPZzJkz4ZyDcw6nnHLKoOvOOXziE58YhZwJIYQQQgghhBDiSKMu5XpiSOrqY9ktt9yCJEnw4he/GD/60Y8wffr0gWtNTU047rjjMHfu3FHMoaiWetqSWYhqUX9PqQc/J8DgfNZTm9VTXoeLeulnRxqhduF+Gxp/atswQ/kt7Ef1KIpQr8+Xeu379VrfQtQjdfWx7EUvehEA4JFHHsGxxx6LhgZNFkIIIYQQQgghhBCidtTVx7J+jjvuOOzfvx9r1qzBtm3b0NeX/2vAq1/96lHKmRBCCCGEEEIIIYSoZ+ryY9lNN92ESy65BDt27Bh0zTmHw4cPj0KuqqNh7578iebmAXPn3qYBe/v2LMiuXfkoZy3N7P9bma266+2tPD82Du2lkLNtOD6Ova8v7dbWfDiqEsyc6Q/X3p7ZvKx6f09WJ88848/P1Kl8z/zqxSLLtH1Su7178+F4g9eHHuI85MNt2ZLZXPbe3ixtrp/B4TK70cwAU6Zk9hNPlA+3aVM+DuevszOze3ry4bhdmM5O/wpRX31zHdh7hfqdrfNy522dtLaWH0u+tCyhMRFqi3weMnvChMyePDkf7rmL4vJULRs3ZnaofNynn33WH66Hxia3ZahOuN9xena8+OaXUPvF5qGjI7N5zM1r3ZkPyBN3d3dm796d2TbjPrgDAMDEieXD2fR4ALLNBQxVXohQGjWk4WMfzQ5e8ILMPv30XLj97Zk7Bm7L7u78XMPNEurHviLx+Rcu9z8buMntvNjVVT4/8zrLP7uA/POLX4N4rgLy8zHTsOmx7MAOBJ7gOeP8cACArVv5xv70uK/xIOHzCxfm41A4zk5HR758Tds3Zwdr12Y25/tlL/PnJ4Rv4giNibe9LbO5MR9/PBesd82aAZtL1LB0aS5cwyKa0LkcXF/cgWz+eH6xD+5VqzL7v/97wOy54YYBey3yUGqYTvZsE45riFoIZxR4N7/ezHc8s76pQHo/o/RebK41nXjigL1tw4YBezadBwA89VRmc/1Tu+4O5KGdJ44LLshfvOaaATMoEfzUpzJ78eLMvvBC/419Y+TOO/PhuK/cd19mT5uW2ebFu8H3ImgnIY7HdccTo31Bv+QSxNCw5u7sIDROb789s/klitpv0Es0Pewb+Jot34IFA+aexmyU8DMldgoK/d7I/WbkuueXMyCX78f2ZvmZ53k2DErbcLC5bcBu2r1twO6bmc0CNn5faxuOBBzks2y8Upft+v73vx+vfOUrsWnTJvT19eX+1eOHMiGEEEIIIYQQQggxNqjLlWXd3d249tprCznz33JgFy6/6wqs2rkBkxomomvKbHzlzLfjeTe8DwvbOtFz+CCmNk7Ge056Jd48/yUAgCsfvgkfvudbOGbyDPT0HcQ7F7wMf7rw4kFpr9x6H77w4I9x/Yq/yZ3/w59/Aat3bsTEhglYNuMk/POy92BiQ11WvRBCCCGEEEIIIY4wnHMNAN4P4J0AugA8BeBqAH+dJMm+iPgrAbzIc3lpkiSrTfijAHwKwKsBzADwEICvA/inJEmSYqWIpy6/2LzgBS/A+vXrccIJJ1QUL0kSvOq2T+PN81+C7y3/MwDAml0PY2vPbpzQ2oF7Xv5VAMDDe7fg1bf9LfqSBG854XwAwOvmnYuvL70MO57dg+dcfxlec+wLcOyUWVH3/cOuFfju8z8IAHjDL76Abz70v3jXia/IBzI6j77GTHrpk5ixrMkSK4csorKJjR+6r+9aSOJ56FBmh2RSfI1llEVkoTXZHYdu3JDLbH5hp09NFcJKevph+Rvgbycbn7uhz7ay11i1ii8PoXZpqrJ/WrgcvjixSjTuj7UgVt4cc3648c0vNj++hb5F5qRQG8e2f4iYOh4sHy1vo91kiCNyQJas2cEYM0kCcZ3app+fJIe+51B5GCk4r6yXN7oWVvHwc9IqBIu4DSgCq3ZsHlqwf8BubW3JLpCErrmdRW95dV3IpQCH4yafy/ph2++KyA/54WULyJngBxNr6e2kSxLGeSw5ZOkYkJdNsb1uXWazlNES+8CKHWMkYWR97H7zsOAa4pZtsNIvfscleRfL11gWBeT7ccvMwEOFpYVUx82rs98os1luCIDFVTs95wGgiWwSo+IMVI4RtGN62VDxsGS0ycp/qU5yZbd9iGWKLCXcl/1GbCAZJ5Avx0Eac7NXrvTmNfj+edNNmc1jLiTD9I2RO+7Ih+M5gcqEo4/ObCs/5DHCdWJlwvwCyX2a54lYHxcWvldonHLZ+V4sneb8APk253H65JP5cDTO2rjftPIcV4PnJ8+F/PwLvEfEVmtINrmJbtvZmY2mLVQ9rSZ+O8Q45MsA3gfgJwC+CODk0vHpzrnzkySJ+fG8HcCfljn/MB8455oA3AjgdABfA/AggJcD+EcAcwB8vFgR4qmrj2V3353q0S+77DJ86EMfwubNm3HaaadhovnKcMYZ5R/Jt2y9FxMbGnHZiS8fOLd42nx0792aCze/tQNfOuOP8cF7/m3gY1k/Mya1YUHrXDx5YFf0x7JXHLNkwF4240Rs2r89EFoIIYQQQgghhBD1QF36tqoQ59ypAN4L4MdJkvw+nX8EwN8DeD2A/4xIal+SJN+NCPc2AEsBvC9Jkq+Vzl3hnPsRgI86576VJMmjFRWiQurqY9nSpUvBq+3e8Y53DAoTcvC/9ulHceb0uNVoZ0w/Aev2bBp0/rF929Bz+CCeO60rLtPEob5efOeRW/DVMwfnWwghhBBCCCGEEGIMcgnS/Qy+Ys5fAeCzAN6IuI9l/XLOVgDPBOSUbwCwv5Q+8xWksszXAfh8zP2KUlcfyx5++OGhA9UI22Lff+x23LLtXqzf8wSuWPZeNE9oKhsvxLtXfQMvnL0I584+tTaZFEIIIYQQQgghhBhelgLoA/BrPpkkSY9zbk3pegzHIPVKMBnAfufc/wD4aJIkAzrp0se0MwDcnSSJdTz061I+Yu9XGDcCftFqgnOuYh9uzjkkb7hu4PjmLb/BJ+67Crdd8NlcuO69W3Hhrf8Pa1/5DwPn/m/Lb/Che/4Nd7/8q7jy4ZuwesdGfH3pZfjlU+vwyls/gQde+Y/45fZ1+MR9VwEAvnnWe7G3t6esg38A+MR9V+GeXQ/hx+d+FA0uXah50bov4rpVNwPIbxFdFPZvENxyegxTi3qoJbWou5Eqk6/9xzpF6ngkyzdS46fWc8BwMpz1P9bmqyOprGOdem2L0XgGDPd9a1lftc7neBlXo/EcHy91J8YGI/leU+29Ruo+RanlO36orMM1Hy9ZtgyrV692NU18DLHEuWTVaGeiBjQAdyVJssR33Tl3H4DZSZLMKXPtagCvBTApSZKDgTS+BWAzgHsBHAZwFoA/AXAQwPIkSe4rhZuB1LfZ1UmSvK5MOtsAbEyS5PkVFLFi6mplWT/f/va3y553zqG5uRkLFizA6aefPuj6i+c8Fx/9zbdxxcb/wdsXvBQAsGrHb7G/N+8pv3vvVnzonn/De0+6aFAa58xaiD/qOg9fXX8tPrP4zXjVsecMXFu59b6y+frmxv/B/zx5N25+8acGPpQJIYQQQgghhBCivnFuHHwLTJKZzjnejfJfkiT5FzpuAeDbYrCHwng/liVJ8hZz6ofOuWsBrATwJQAXUDoY4n4tnms1oy4/lr3nPe/BwYMHcejQITQ0pB+f+vr6Bhz9Hzp0qOzHMuccfnLuR3H53Vfgsw/8EM0TJqJryhx85Yy346G9W3D6De9Hz+GDmNo4Ge896aJBzv37+fNTfh9n/OxyfPTU12LqxHwb3bz1XnT+5NKB4x8s/wguW/WPOG7KbJzzvx8GALz62HPw16ddUouqEEIIIYQQQgghhKiG7aGVZUj9h832XGumMBWRJMntzrnbAJznnJucJMkBSmdS4H4V36tS6vJj2dVXX41PfOIT+PKXv4ylS1Op6qpVq/DBD34QH/vYx3DMMcfgLW+xHy1T5rbMwNXLPzLo/IHX/ch7v0vnn49L52cfzua2zMCWV39nULgVc04rm07vJf81ZJlqjZbSC1Eb6lXSXE+M5XqtV3mzGJqx3O/GOr6xUKROayEJGg9tqflFjAfUj4UY12wGcIpzblKSJHbF1zFIP7Z5V5UNQTeAFQCmATgAYFfp/2NsQOfcJAAzANxa8F7R1OWM9oEPfABf/epXcc4556CxsRGNjY0455xz8KUvfQkf/OAH8bznPQ9f/OIXRzubQgghhBBCCCGEEPXOKqTfj5bxSedcM4DFAFaXiRPLiQB6AewEgCRJ+gDcDeD00scxZlkpH9XcL4q6XFnW3d2NlpbBEtWWlhZ0d3cDAI4//vgRzpUQQgghhBBCCCGOGJwDGuvys0qeQ4eGCvF9AB8FcDmA2+n825H6D/uP/hPOuaMBHAXgsSRJ9pfOHQVgb5IkhzlR59wrAbwAwA1m58urSuffAeBrdP5ypB/Wro4rWHHqslWXLVuGD3zgA/jOd76Djo4OAMCWLVvwoQ99CGeddRYAYMOGDaOZRVEQSZ6Ko/oafiTJrA31VHcaV0KEGc7xXE9zxXjgSH7GHcllF3rWCxFDkiT3Oef+AcCfOOd+DOCnAE4G8D6kksj/pOCfAfBmAOchdd6Pkv0l59x1AB5G+sFrGYA3It358nJzyysAvKUUpwvAgwBeAeBVAD6VJMkjtS3hYOryY9k3v/lNXHzxxZg3bx7mzp0L5xyeeOIJnHTSSbjmmmsAAPv27RvdTAohhBBCCCGEEEKMDy5H6l/sHQBeifQj19cA/HVJOhliPYC7AFwIYA6AiQA2AfgnAH+bJMkTHDhJkoPOufMBfArAJUj9lD0E4L0A/qE2xQlTlx/LTjzxRKxduxb/+7//i/Xr1yNJEpx88sm44IILBrZtvfjii0c3k0IIIYQQQgghhBjfHBkyTJQklF8s/QuFuxTApebcgwBeW0mWkiTZDeBPSv9GnLptVeccXvrSl+KlL33paGdl1NAycSFGj9CSfY3N8YOk4eOHsTgux0P/knytOGO5zW3ejqS21fM9zFjut8PBeJinhRDFqKuPZT09PWhubsaXvvSlYLgPfOADI5QjIYQQQgghhBBCCDGeqKuPZfv27UNzczO+9rWvecM45/SxTAghhBBCCCGEEEIUoq4+ls2YMQMA8Mgjw77xgRBCCCGEEEIIIYQf58aHzzIxiHHVqo8++ig+/OEP4+qrrx7trFRMb2/+eNeuzN6xI7N372Y7r5t/xcsyTf2Pr4nT1PO4Do3x2HBcjp6e8ucBv//AiRMzu7k5f42Pp0zJ7GnT8uGOOqp8epwfti2c9qxZ1fvs2Ls3s7ketm/3x9m4MbPb2/PXtmzJbK4TTvv/s/f3cX5W9Z0//ro+GSaTYTJMJpNkCCGGJECAAAEDQgXFil2p0Gpra+32Rrfa2m219m5783O3t7vd7qq1tv1ud+1Wu7bVqtW20mJXXW4VlCBRggQJMpIACQlJCElIhmGu3x8z8zmv857P++TM9blmMjN5PR8PHpzrc51zrnN/rlxzXu/3ihVxmsWLWz/H9svAQAhzufk5Q0N+Hpz++ef9MvAYWrPGH6udHa3bm9vHwn1rxyrf4zo991zrcrbKYwJuH8CO6VCn48dbPx+Y3P7e71xWLo+dI1ddNXVbGlXG9NatIcz15roC/howMhKX02sHxtaV24HTp+Ixtv84D3tvAtt/g4Mh3NMTwps2xfF6cShc8OBNLQLeIrVggZ+GFzwukL3mRcUbXJbce7YDaqTxsb8JF1df3Qzu71sbxdu1K4R5HdqzJx533M+pZvXWLq7qK67x51HjMPW/bR+aTA1eQB96qHUBAGDNmmbwUN/qZtjOq37sb4ZH+/rDc3Y97pY1GpO82NsF/dFHQ5gb78EH43jeSwGPx82b4zTcDjyZdu6M4913Xwhv3x7C3HZ/+IdxGmq75Njnay5rYnyPUjvwknbQTQEs54sf//H45nXXhfBrXxueM7gy5G0y5/V40aIQ7u0ajiNy337ucyE87lEeAI7demuUZBuFeaQdjXPm1Q5PU/gtL76IqfJPZmKuovDlFfI7SPn1mfZu8NjYsiWE16+PM9lGLcFj4/Ofbwa/bdZvWpKitluFmDWZdeKx1rjqqnDjS1/yE73tbSF8//3N4DBv6AB4pPCq1rtsWXim3eR4zm7YEMLcpgCwimrM7Zp6Obbrg0O0ztr9j6ExHk2gT30qhBPzvMF1sC/bV1wRwhs3ts7Plq3CB5bGPV9unZ9dEKhf9iy9sBlesQwujREaAWYc73m+N+SxJMTbf7izZXEAoKNDNt7E3GZejeCDBw/i7//+7092MYQQQgghhBBCCCHEHGVefSwTQgghhBBCCCGEEKId5pUMcz7Baho+oZuSinhYySPnzaSkUDkyKRuPn1vhtHxSzePVweK1XerUM0sX6nARzkeSPUWKhVVSfLrdpvOkaLZ9POnQwoVxPDplH+XHcshjx+Jv7J6yxo6ZXClvDjY9Pyv1HE9Zw7+zjBeIx25u/3kyY4tXbtt2ufPvZJCa27kyU2+tSK13qfby4uUqBL14tjzeXJqUfvfBEGaJyd69IWwbMrfTvQqmBqFXwdSEyS3DdMI6X2of+3hPnm7jcX/ymmmbLpYQZ5aVuecevxAs9zrrrBBmOc3ZZ8dpaPHp7Qlr86HD5u+fPX3NIA+1ZatYuhkn6WSJEW9EdsHje0eOhPCzz8bxuB4sQebfU+OO47ENAgBgmSDJMI9Smm7W5AJxuTPllbkLB1sHYCX3IROPVUqcc6+n/waiNuGusGPV26+Sc9TZDLvMi0QnPewg/b4fMXxvOdrDvP5gZctY+fTxSw7L5IB4/jFWSsjtxXY7qO3WfuYzURKePcNOeCocpHC/kVG63H13CJMM1466bgpHY4Cll9dcEyfieZWSYdIL7aGOIA3nJm1Y2yOZHEKQCHZQg3dboTBLylm+fdddIcy2ORD3Uyevx7Z+jCe9tLLeKi8pXFbGyjDJVsSK19JzlpkyMNwmpi9O6wltfHQkSC/5tcYWIdVE8wrZLJu36GSZEEIIIYQQQgghhBDjzKlPoN/3fd+XvH/okP37nRBCCCGEEEIIIYQQ+cypj2VLly494f1zzjlnhkpTL53mMHZPTzje6qlpUvKnlBwuJUvx0rR7stTKArlOngdMexKbJTN8j0/BA7F3TO90c0pCF3uNytT7JWjsfrIZ7qQ0Kwf63DTHjoX+t/VjT6lVqKLuYrdxPXQMG4jblb0D2tPkqTE5VezYyJXxcRk4zOoX63jOk7zY+nljisuTq/RJyco8KSkQy4ZH6eBwHXLinPKk1o2Ux8ocT7VVvfV66erw/ssSaQ537nsyjsjyM/aklvKGmVM4INZ/8uBNSVlyPf15DZHSQVdYI7PhdiS5YC8vPAAwGNYoloTkyqMtVcaQG9Hq6lmjwrIwbkcj29l/LAildpNixs6/np6wBrAMk1WTNs0ZZ4Q0K7hsKRe9fM9uWNwBXD+WVNr+4zR8z0ijXDfPTOoFKPUiUGHs8iprPURGRaBwUt7hzCsuWsokRTSdrcQzdq0ewtQvI2bCcLlZenkQMX0U7kV7WJliuxYJRmgidNj115Md242W5zB7Q2SZ+FNPRUnWkBSb61TVd3A/d+655+YluvjiECYpYf8DD8TxOD+uK3vdvOiiOA3bL+F1w8zt0a6wdh0khTSP6e6KMkwexlEWPaaVuayOl+jRhAyzg7zyNuxL5p49Iczji8dTHbpEzjv1Ysntb9dZD+5zk4b3G+4zXs7t0jmxVZdl3uOFmG3MqY9lH/7wh092EYQQQgghhBBCCCFks2weI5tlQgghhBBCCCGEEEKMo49lQgghhBBCCCGEEEKMM+/PC15489tPdhFcFvaRbQ9jT6KTNOiLFweNP9sasVJ5j5R9KM/UjLXt4tnFyHVbnjqZ6uVt6+fZNmPzAwDQ2UGWQyI7H8EOWNI7c8pWRRVyjTDRNZfVwu3AWaRsY3k2pqxpiMaxYGmFbUtwOxxLmFniPrf9l3s6OSeejZNri4jLx1POmnPx0nDY2o7zxj53f8p8TooqJ7vrtlPGVCkPp7FTIteMEJO7/nnmuXJtOabq6pg7AbbvjiOyfREO88BL2QvLxRusQNrI5VyB7b2x3ReyXwYAvRs20FX4m6B1ae/ZsbTrScouXxZcVtvPPHA8Q4pmLPAlm3Jlk0lAbM6Oy50yCRTd47Fqx2Nq0WR4w+LCcoHWrYvTcEXYzpm19+bYHureRcaQzjorTsN55Bo7zJyLazg5hQ+aeLyFsnXD8265xS8Dlbtz06ZmuN+M/VF6d2gcJMtiQ0Nx3mRDC1/4Qigb2a8ylhdBrRrVqc/E66dwN9rDTrenKbwKU+dxCq9lG4hAPCa3bg3hM86I4z3zTOs0nB/HMfTxnKhqv+pVrwrhaL1LcM01Icxz2y5qnu02nvO2frx2JdaNBl2vXkX2sDjNbrO2ZLbR6kGyLMZGtOx+vGVLCHOfURprK4/HcYPsveGyy+KI558fwjw3ed1P/gMkE7sWTsBrHxAbq+Q2MXYwI7aTYTLzQrZ+/dqWSXJswBaFH0eI2cy8/1j2zX/cfLKL4HLT7+06cSQhhBBCCCGEEELMPmSzbN4iGaYQQgghhBBCCCGEEOPoE+hshb5OH6MTyXxa2koumJT0iyUmfBqcf7eKnVwFjyenyv3YzmVISQk5byvH6umhb8AkSeAT5M8/H6fh+g0MBGfnnVbKVuWvBnwUm9IfPRZ/q+Y6sdfxJUvi7LgenqzMFpPlOEx3l6kflYFPb7/4YiirVXN4EiUrp2MJMadZVUFLYeVU/KzUuGNv4Dz2vTa1eXD9nn02q6hReVLjLiWD9spjx/6o8/ePuiWZ3vpi+9zrl1S8hPosgtcDLoMn67bxciWxqbWU7/GY7LYSCa/yPCAXL25dAEtKn84NZic9LyQ8yDmckofk6CxOFK9dPCmLeebwSKPlrVT/cdjud3beOo/1YRmRLYS3iLNkxjyol2RSvYuoHZaZxYsG5Yo1jkzKlmdXSJMqwyS5zwR2g2C4z3iRs7YUzjwzhHmDsPpRbwxw2VgyZfOoeUx3XXVVM7z+wQeb4ad5niOWFpJQEgfNwth3773hgqV2PGaszI3r58m/gVh+9tBDLctjZZh8j6WWdgvnElk521SxO9r+lrHyOcQXtk24LVmqZ9dz3qR4jtx6a3gO/26e20Fjv/P001EJnhdWxuzhrUN23X/ssRDm+cy2J+z85zZ6yUtCmOcyEO9LfI/b1L7g5UpVWTrL7W/zY5mhIyfvGhyMf7jgghDmuUiSaADAZlIzsdQxsV9Vgp/DdUjZsbDt4MF9a/aHyEAM3VvL49GkGUUvhJjL6GSZEEIIIYQQQgghhBDj6GSZEEIIIYQQQgghRBVks2xeol6dLSR0Zf10vJm9JKa8cnnObGw6L4+U7DInvb2XcjTFp5NZXWBPvnM8vmdlc43DdOCdHtTV5ftl4rJG3jTrwNEFdpuj7x0d4aAnq1LsCXk+xe55NbNtYqWcTVIyBPL/w6e8c+Vrts/rcADk5e2RcgjI4VT9vHKn5hWXjyVcdl55bWelhJ4iyKqXZgpPAmnbitVHqT7zlAOp9cVLk/JkmCJnTbKwUiOai1uM9y3rOnUC7uiUxIyp6lY2R8KYWqhnAzt3hjBLaUzbdVKndVIdzjpreRSPx0oVWXUue/by2h57Ou5l+UquPNbT/9rB6rn85TR2kvGewPFScjGWBrPHSwvLrvi51jMbbfB7ngv70KJF8R7eu7kvXHAbsR0DK6dKuQJtlxtuCOFzz20Gl995ZxTtGEnbDtLvZtXAMMVb/rnPhRupscEvRyynYk+yAED57aLnsLjOlodbciWFLzTxOmhdO0aTjM0E5JoGsD77nm4ZK5/oqUYqyevLbtq8Bq202Fs/aYPvNbL6SIhGct0ojCmYUrj++hDO9YbJ0j0eJ3YN4PpyXVnSnHoRZJsb9h2T4fWF7crkygUtPMa5DrafOR7Xj9cuK/3kfrroohC++OI4HvXF/sNhrX+BXgHs+zgPoWyTGdznXD87VvkdI7ddOQ+74fE+wv8YSWyMDfZoLMQcRDJMIYQQQgghhBBCCCHG0ccyIYQQQgghhBBCCCHGmWUaCyGEEEIIIYQQQog5QFHMPtMVohbUq7MFzw27ucf2TTZsWNkqNoDYq3TCHFoUdjwoA/DtlOXar7JmNdjECZtOYHMi1mQA59F5kCxX7DMF54qw7RoO2wJ1sdt5srHADVkVdtGegMu3ceN5zXBjJHa+znbruO14jbZmWTo9B+7WngR14LKNwTk8m9+wpgm4KT3P5ADQ3RVsMXh2OXJJ2bNL2RRiUy9cPh6PVeH2T9naYtjkA5fN7re5/Zxt76JNzjij9e/W1hqXj6elZ8IL8NeXXFtRKXuLuea5uL05zP0FAP2HHw8XQzSX7rorjsjzzLFhOAnPtlKq4NxgtrAczytDakGvYiiw7hfHrVtb/243L64fLQ4r2GYPAKwJe+iePeFna+KGq2Rt4uXAtgUn2cDb3bqsESnDeamNm/Pj8ZTKz1sk7Xj0XiTsROWxz5OJf7f1pnHDa4odnqO0FzZyDXhO5z9meAPkdmBbTwB6ySYQt5a17sS75PIHHggXbK/IvihxIz3ySAjfdlsUbRfd4zcUWtGw2pSH34b6Kdxh7TaRnbguKg/vTvYdwNu7Vi9bFl0v37u3Zbxc1vCFtaVEZR1ku1ubNsXxeEzxuEttMAyvQ2z/aiqkxoCHZ6fMlsF74Tj//BC2mz3bBkytL54RVw7bvSsXzpvfu+0/gviaX/5SLw8Mx7OLEs37np7YPmWteLYlbV15bc2dO6m1mfHGU6r/hZiDSIYphBBCCCGEEEIIIcQ4+lgmhBBCCCGEEEIIIcQ4kmHOFlLueZ3fG1ZCR0fK1/btD7+v6YuiDY+Eb6SeN3l7WpdPHaekm97Jc6uQ4JO9Z50VwuxSOZJaAsBhOubLdU9JhzxtmynoaFdwSd+go8W5UoEk3pH2hEvtxj6quzlWvZIbc3vQC61eT07WU7Ikxsp/KR63Q9dgkCtZCWSubG5kpPW3+Sontq2MjxUTKZlwXJ7Wv1t1Acuu+J4tt6ds87zM2zJ40kb7LC/vmYRlZbn14zrYcnv5pdRdDKex/cLThePZ/ud0rL5u7CJh0jNmXt1/fwjz4LDzjwvB4dNPD+Fzz/ULlMKTV1q8Dkh1YBXJ2nTK3GwbTcCu7oG4rtwmZi1dQfKqFSRlWrWqN4rH3ZmrUGE4jR0aK3ndZristk35Xq79BI6X6iPOOzVhvMrb3zkdTyzaSIb7lkdJPIWRheMNDq5thnvWtH782A+t80o1Ce/7KRMCjeuuCxfcr/ySA6CP2qjvnnvCjeeei+Kx8YT9NI77WV5pX9Z4vH/lK+Hnz342iradwvwWsIbCdmSuYrnfBReE8PXXxxE9/X0Cr10bP/Zj0XXX9lByTpP7btbPkkorw/TKaueop83nsc9rOxBvclUklBYq+569oR2WJbaN3fvIhMdgENl22sHP74V8j+cvSx4BwMhlm9g25Zc1b23OtblgYS09Lw5mXkV9w+XmvrBjg+c2tcPomrVRNJbwjxxsXUz7Ds10dOSdYWnwmOQM7YLJC2DuhsV9bu0OpBbkCew/+Lw9br4hm2XzFp0sE0IIIYQQQgghhBBiHH0sE0IIIYQQQgghhBBiHJ0XnC2kNF32CPEEqeOenvc1xJ4g++m4bFdX+HZqs/bkULmneu2xY84/kl6y8CBX45kqBLcrhdmLFhArGRYvDpJMm3OVY/+RlyBPFgPEDcuyIiuzYLkXn/lOHV33tInbtvnxyEtQ44KQ90rjIfToSGjLlCLMc5JXRYb57LPxdabSw1WfpSSCnrzSDkfPyRNjvW4ePx7CrNLI9aZp27jS+KyAN5xyT6BbZ1d8ap/bkdUS3FYWZ5oDiOWt7NXVtnFvD7UXSX3w2GMhzBISIJ6nnLntaF4DeP7kuv9lUrLzlAbZk1vmenCbDbAXOU8bCcQyIl4jJ3lBbi0z7DeykT6SZVZx1JZ0RMmyFm9/sPXjNFxXK3/x+jbleteLl7KlkJKMevLPxFjj6ZPydOypuDicapJccqVRRweCtK3b8yoKAE88EcI7d4Y0vO4g/ms2G6Xo53WH8wLiRZM8aH7LlJWll7yj88hfZWXPr30tRaSYV10Vx/M8k1aBnwkA69a1jJZtMuOmm0I4JcNcujSEWTYJxOs5D1CW9KVcdlPbHToWv4vmvg49vqu1ORVPDWnjMYNkZgMAGp6HZN67bGbcJnzPuhb2bL/kvvSk8GzJ2DIw/O8rz3uwvaZw6t2zismMXMm3245WJskvVPz+cuONft68p6T6Jdc19EQeZZkXX4hZxix/MxZCCCGEEEIIIYSYhchm2bxFMkwhhBBCCCGEEEIIIcbRJ9DZgvVKyMfs7b0JrJ7jmmtC+Oab/Xj85XvFimawm85vrzZSOwyShLEnSFKsQpClZExvx9H4Bz5CvHWo9e+23lwPPlrM8icgS27UMGeiTzstSC/rOA2ehT2/7UlrUsfYvTPg9gi5J7ux/ewdV0/IbLr5+D3R1RXLC1JKnali+8jzWGlPiec4cLMKOi4rS7BylSZVvEXa+nkOVS3TKb1k+vvoOZEEwEi+SSfF8u9e2xGLyTtcXzdakXLCxO1js448y/J0sZouXodIvoT77gthK4fjdZqlOrYQng7P85KJ2Gsx02Hrx32e6wq2buml86zaZcG8Xt12WwhzfwGRl9LDNHB6tm6N47GskyVZl14aRWuceWYzvMLzXrfM+R1p55ULF/Y3w7x29W0KHiJt83YO0n6auzh4GnQLzwsak0ePxePxGNWjq8cva++GMN73HAh7wmlUhH1DcZpcZbGnAuJmqKoIrDItIlVZT+jXXh5nQNz+tH+uYs+YQLze8NhlT5S2UR59tBk8RGm+Zsp6OYXP46KxTJE9AALxHOFxZ73dpTazqWIlkE6HZq8vL3tZCNO8BhCPfa6TfcfxXCxzmyT0v/sPh3lg97VcsxSczjqm9OC1h6tqu6iPvNP2bqJ3f/YaPzIcpWFzHN0p3Tnf86SbVeHxyn1h93pPbsnj26zzw6uC18tIIW9emT0zNfx7Hd4w2YNwx0AIN1IDKLeN2QNtyi6J9+Ll/ZuzKPKeL8QsQyfLhBBCCCGEEEIIIYQY55Q/Wbbg1Tfj4nPCSal/+P3NGNp9FN//ni1Ye2Y3nj/+Im68egXe+7MXTko7tPsobvyNe7Htw6+Mfv/VP/8mPvvlPeg8rYF1K7vx4V/bhL6e0yalF0IIIYQQQgghxBxFNsvmLad8ry7qXICtf/GK6Leh3Udx7cX9uPkPrsTzx1/EZW+/A2+4ZhAvv7jfySXmNS9dhj94+wZ0LGjg1/7nQ/iDv9mBP/yZC06cUAghhBBCCCGEEEKcVE75j2UnYtHCBdi0/gw8se/YiSOP8z1XBNtfV13Yh0/d/tSJE1m7DCl7EBOkvmBv2pQXz7MtYDXnjo0Tz0bZJGx6z24WG0+wwn7PnbWtn2ePgMLWHhDbPuFwrv2IFLFr8BDutW7L2RYAt4k1auHZNuPCptKwnQjbxnzNNhv4d9Mohw6HtuRuseYRcs0p5WC7PHcces/17ExMpQw59tBS5Um1CZcvNZ07elrbiMq1HZVyVc7peP508hyzleDrRENwfiPOUmvrzbbl+N6k+nnrRsqu2Nlnh/CLL4awXRDYphDPl9NPj+Odc04I89ymMvA8skVlJvd/g+6F9cXaDJxOGjP111S2ScPtaO1bUuP1bNsWfrf2xjgPXhe5v4C431NGCDPITcLjuBNmMHh2K1NGEflers0ySt9txn5XX2v7RcMdZtxRHqedFu7xPptb7NQamWvnbDqHKndF9Fxjh7GX3+m4va3BzAcfbJ3hQw+1fiiAb917bzP8Zfr9B0xZe/kd8eKLQ5htep17bpzIeSc42tEbRTt2MIR5Tar0PmXthTkdaPcud//juZ2yx5TaK7xBlLALyDb/UvbCZorUvIque5y1wtgB6+6hDCM7pgejeK4Bx1zDayk8m1y2v5YuDWHe63l8G3u+Bw6E8PHjIXyy+s9b9ntTRhpzC5uyOcj9zo3CL+HWRpz3b1gh5gin/Mey54dfxKa33QEAOOfMRfjM710R3T/w3DAe2XUEr7g071SZ5S9v2Yk3vWpl2+UUQgghhBBCCCGEENPPKf+xrJUMEwDufGA/Lvmp2/HwziP49Tevw2B/5nET4j//9SPoWFDg315/Vh1FFUIIIYQQQgghxGxCNsvmJepVhwmbZd/aeRjXvOvLeMO1gzg+PIqfef+Yi/rffet5uGRdr5v+rz63EzffvQdffN/VKHLc5aaOznr+h1OkpCKch6fvSmjoWHLTa87VuzKuKuX23A9b7O98TXmw1MsWh49VM3VIOLyT4VYm1dnTutzJtuMCPkVy3yNH8gpnJQ45Lt/N7yMjraU1qaP97R5dt02SUuUyfM8LWyUMXy9e3PqZKarIOm3e3K65eHMxJbXMzS9aNkj6CSPB4rUi9VxPIeb1kY3XOXI0XBw2g4NlH6lO44n63HOt49g1aeHCEOa5ZNdzujfcFfYNbseUbDk1pnl8nlbBj0yVNc2myRlTKZlUNlZGOUFKTsVhlt8Ak+WyE9jO8PZG/t1K2p3ipdYD915q3OZ2YO4CzPcS+nSWXnKaDiv/zRjHqbmdqeSuRN3/rvGazirMepYFpULDM0Nh8Sr/VGzmg6WX30Xh3re+NU63bl0IsxTNkyab69GesI49tzeOxsp1Xp+qyDCPjsTjqTv1rky4axLP09S7cWrgZQxQa+rDW5LqkPHlrvup/ZTh943s94V2X/C4EnVMzNSie+aZIezs26PmXYbHdJXqTec3lKh6+RaDMjM08OCt8sIhxBxEH8tOwHln9+A3fnQ9/vBjj+Jj//Hy6BTa0O6jLdN87qtP4w8//ihu/8DV6O5a0DKOEEIIIYQQQgghhJh96GNZBu/4vpfgvZ94FI89dRTnnBkban1452Gs+qEvNK//6OcuxG98aDuOvzCK1/zKVwCMGfn/81+6ZEbLLIQQQgghhBBCCCGmzin/sezwLTdM+u26TQO4blM4qr1o4QI88cnXTIq3ZrAbL3zhdZN+/6HrKhj0T3lmq3J2PeV9xDteTuHRrvijoHfC2h6/Z2Incn5+fYPdLX/vrMGrCx+lPpZwvJPrbbAKXtuxIz0A6OoKx937+Wh4SmbK5+VZS2plRDt3ti6cjed5faPfrdc+zsKTGgD5srIcUjLFlGSR7+V60OSypurnqbNS6gRv3Nm8uVtyndtOJ7mOq0ZIipIrJWUFsad2AazaOqwhPcbzXCNXxu7pP1myYaV2nF9qzlLH8DqUGhv53jBbM5NeAGcMrgQPdjsgeXKnpJJ8zf1v46XMA2TAUrSUoqtxjE6r76INwo5blhbv3u1n7k061pNb+FncDnZAOfOqYRchKmsvSfx4b7Zj0/MqmZq+VbxmeultvHalynavaRw+FC64/6xXV/aGuX17M/jtW29thu8wz30Le1bnfrZjmhdalp3zi4mtOI19XlfZy6mlXaXWpLY/VqMNh1z5dmoxdQZl50Bc8J4eehetQSqXM96t1J3fMbnqbE0AAJYsoTx4rDL2BZbXRb7H49ve43WM1yr+xwMQe0FOsWVLCJNX2KhCALB5cwjz3kGNYj0895DsuG4PmO3uzZ0d1M/W+ygvptwXnkkDIFprJu2tTzwRwrzW84Cye8BEe5el/8z5QFHMkxctYalmvEYIIYQQQgghhBBCiHmIPpYJIYQQQgghhBBCCDGOPpYJIYQQQgghhBBCCDGOxLVzAc/fc8q9L9mnsK6f2Y4Bu7dmafthY47As61jTV55ZgeshD3HDklfX2wHg6vemRq5jkEBlt6zeS9bhrrd0+e6CY/vkf2ylCEqtv+wbFkI7zXG5CIjcZSftW/A8cgGxf6DoTzWVMWBA62LZtuYaVfWb8eMN4ZS7c0mW2L7V3E8b8rZenN9vfrl2ixLpct1/z6dcF2teRHGWytS9rlybL8BsZ0Vtglkp0tkz6yntX1EAOjq62+GI3slPOCt3R/PXlSigh0dvn0fj1wbKWwfKDU26h43vKfY/aZVnMoMDYUw21my6xg3hGOTBkA82blv2f4c4n2S5z0/pr/Lrx/Pl6StRF4QeGzZBY7vcZucfrr/YG8PsIOB25JsjNk2ifJITW4uK9u8ihZa36apZxPTFtXbt3NtJVranSOcvrfHjI2tO0L4nntC+HOfi6Id+vznm+En6XdKgVfAwDYWH3oohNmek73H9ovOPTeEN26M0zgvMz2r1kbRPLO4Veg8Zmxm8XjfWMFxFqe3mwUPNp7o1safNygTRijZBm9XV7B/VdV+Wa4tP8Z737DvPJ0YDhdsR48TWft6vH5yG3PYXntrnP2Hxc//PLL4+MebwcfpHbjXROvbQfPvmmtCmF9mzMDtWNXaZlnqXdSLZ9u7in1EbqL+Prph90J+f+E5n7IDd9ttrR8EANx2vCd4eykAvPGNY/+XzTIxR9HJMiGEEEIIIYQQQgghxtHHMiGEEEIIIYQQQgghxtF5wdlCrq6swpn2yYqg8I3UO/mcUud53rVtvFzpEJ/erXSCNaXpIlgyk5II1o1XJ9uVCxY49+wxaO+cNyeyrrL5eDmnYRfR9h7JBno2BIlaSvGUK3lp1/V2qstz864y1jhvO4a8MqTK48l/bZqqUqLpIreNc9skkoA7Mky71nB7peazV1abH69DvXyR0lF7C6ids1SRbppXo11Bkmk9tHPdeW3g+WbjcZtMpxogJanMkWRWhiUgXMHUosR6azuRHC3SocNxublvnnkmhLm9IymMgdVevR1H45s7SM7Ekplt21qX08bjNmHZpIUHEefHemZbWJZ12g3Lm5xWp8+yK2eA9m7YEGc90N0q2qRu5uKxUo6nqZ0v0wk3XaRa5b4EYpnTRz/aDO7aujWKxqlIsIarKLz2Va+K8960qXXhTBm2k0xtOcnh+rkM9v3AWeM6zdjojDotdMbo4MrWZUvB49teJ2SY7hr1wAMhfMEF8T2u386dIcwyVcDfrHns2zlLefdH473aGslbVJV3bVbK9XYNxxF5znJ7cyK7YXkPsuuGt0nVbF+CazRk7i1/5JFmeCWFo/5jmT+A7htCmVYZ2THjvb/UvTdHSz3P0zvvjCN+5zshzH35sz/rZ/4P/xDCvG8A8X7qFehUlSJKhjlv0ckyIYQQQgghhBBCCCHG0ccyIYQQQgghhBBCCCHG0XnB2Yp3ZpeONw93xT5eOunY+eO7Wnu5BOIj23ySmk/XptKwkiVXimZONEfkStH43sBAkC91dplh7EhYudypY+t1n6LlcqcUXXzNfbFqVX8csSdcR3KHlJdLr2GtpyLOg47cs2ModmAExGPFq6u9d7Lw5MQpiSCXm0+k2ybmucTSn9w+T7WPp1Cwzu9mCk9qYOF5z2Pajg2O9+yzrfO2bee1iXXExIoQLrdVkXCfDQ6GtXVgle+5rJc7jR9k55Xj5ZC9bq4w3gZZwpj0JBnp4hMDOUfykrv4ZS6gtXjAZFhKlpJ98CDghd/Krkhe9eTu0N52jeMm5nnPXb42ZDWJaG4fNJsrS388Wwh2UOd6yPbMOaQkVN7ktm5vvcXQxmM5G5eP+8W4h+umudAxEOafVQQ521USb+jWse+v7Hg6XGwZCmGWXQLAxz7WDO4m2aMRPUbSS14dIjGjkbBi3boQTrhb7nA8be6jNH333hulWc5etln6ZaW3XmO+5d+1/j3FLbfE148+GsJv/OGp5/fFL4aw1ehye3H97Jjes6d13uwhMuVWm2WvRuI52udL/Ji1q4LQ8BC9D6fWXH5UYx+N1e1DcUSWJj78cAivWBHCtk28DT5l08Vbu2yaXGiB4BFoR+Nu595yljDatZQWm86rw89r1sT9xXtHrhdzvs41Y9A4TF5iedxxfwHx3MzV6/ILmfUE672ozpQNCCFOAhrRQgghhBBCCCGEEFNFNsvmLZJhCiGEEEIIIYQQQggxjj6BzhZSx2Od461WYdHpOHCz8TwZJcdLqTQ4TaYjykkntr00lbwkJgrBR5oXL/a/DXtqxjr+SMDqKu9Ytr3HssfOjvhY/dFjoR7shWq4I3gQ6+wzhfD0h1YqwNBR+BUbQiWefTZuR8/xkZXy8r12JZlWcpMa7x4s6eHxmWoSJuUcziPljK+KDHM6Pb1ZOQdLAnKVe1y+lMSa47XrpdT2vyfltBJyHgOcB89FS+8iR3dsZSQshfCkUSZNw2uw1CKZWmA8yWiuPiSX6fzLKstbuQ4sDwLiui5bFsK8uAPYf7C1uYKUGYKEss2lc/fj4cJqPO+/P4QXLQphHjOm3K5bOyPljRY5zoOlNXbh8bThtrLcEDyBbf14YrFciOvH9TZ5dJJ2bIVdnAsq67ZdaImRKVrPjVMlKY9muSVLhj/72SiaJ720NWCHd1yL3te8Jlxcxb4x4XtENesLtwLXYp/zOwB00vzr8/RmFu6zTBlm1K5f+lJ8k8ZNJZn3Y4+FcGqip6SA3hxJ7QHcXixze+qpON6aPBkm7rmnGezleb9+vZuksf2b4YLnovV6yvd4zeU1wK41vL5wm9h4Xhvx7yz3nQo/9EPN4BqSGY+Y+g1RmMSoGKHyrGSPkEBcd5KcNjZujKKt5PYf6KPMyStsV3hXB/xxnBzf1P9R2Eino/U3V6vO+wPLugHg7LNDmHW9XG/b5xNtVxR5zxdilqGTZUIIIYQQQgghhBBCjKOTZUIIIYQQQgghhBBVkM2yeYlOlgkhhBBCCCGEEEIIMY4+gc4WrJacNP9HR4JbaDbzYU0dvOyKEN6xI4RTNssYlrZbUw6e3Z+UzbLceFy+lF0jzx7WGWd0RvGWLAnXI5Q3m4lgL9cnKitTxUaGV1drF47NvjzzTAgvWhR/02YzDwMD/eH3yMRNbBOhm8cXN561LeAZFqOCj4zEeXM9eJykbEfl2hXzsH3EYzrXLlyOB+zUc1N5e2WzdrK8NKn28eZi3aTclnvmXGx5eKil7Mp5ZkxSf6Tz7qXaLtc7Pddj4UI/3otn9zbDbB5qBdvysA9L2cxh2u1o20DW7tUEKWOCqQGfetZ0wXU4//wQPvfcON6mTSFMbfzksf4oGpvj4a5I2anjOeztpZPgB1mbXg8+GMJs34ntBllbXdwOHLbrORfwzDNDmPvL5u1tWHYMsl0h3rDIHheAuB6MbQeG68QbN9vSAeIXIu+lx9aP98Jc44t0r5GK96lPhTDZDtrF/Q/g2xTmO2tMdmynbJDH9GtfG8LWRhWPAS6rMRy7im3lPfFECFN726WULT/1Uxuv/Mxnonj8ltTLNz7yf5rB3HepkVtuia4bTjgbrmvqJTOFt7HxWH/kkTgNz/OHHgrhc86JojXe/Oa8MnzucyF81lkhnLBZhltvDeHvfCeE2eYV4M9truvmzXEaHmtsN8+2Kc9t3ie5TVNrQ4prrmn53A62Wwmg/847m+FD9PuTFG6YxX3w5pvDRcq+GtfDvgdM5G3tCuauQwyvs2yTzaw10T8scm2WLV0awmyjDIj7nevHtiHtu4Zslok5jk6WCSGEEEIIIYQQQggxjk6WCSGEEEIIIYQQQkyVopDNsnnKvO/VC3/stpNdBJeFi/r8mzThRhz5kpV0MRwvWyrS+vHJeykpWkrB4+XBUiYL3+M0fMo4lTeHrad6vteNo3SnPTfzANC5+/EQpgf1erIoAMdIRtnbE8sVDh4MB0JZoZJSdIHy6x6gOtlj4hnygjVrzouScBmWLAlhVsgAsRqmXfmgPcXuSfxS45jLw3PEnNiPFHSe3NNee2WwEkFPFppSh3B+iSFUiZQ0hmWZXl/atcZbA2y/8NzOVf7lUkXN6MVLlSdaU3YdjG+yRIzlE7GePE7DCxs3bGrBY82olayxtIIHOQ8iO0A9WZJtCG/w1v3iyJORZWVGajfaEaT4B0FS9YNRNHe5M4q15L6UBfe/1d/HuvoQ5rV548Y4DS+A3MZ2Pad7Rzt6W/2clC1He4+dFDxuUpsPjzuWwPEGYTuGr08/PYTtSw/PJZI9RpVi+SIQy9R43KQkeBwvMaaPfvKTzfC36PcnTbynKbyWwueZeJH08sd/PISvuy6EjexutCf0c4P7yNaPpW5btjSDyz//+WaYJWoAojcjlpLuN/G4hVZTeHkFMxY2bxZSty2NSUnVeS7ZFw4e7zw2eNzaMc1jkts+ZQ8gxV13hTBLb3/2Z/00X/966zJY6R7P2XXrQpjHo51X3tplZdA0DocR1unOERpd9uUxF54X3CZmjvAY8iSZQybr/fSiu4pkx73btsURWbb60peGML8g2Bc3npu2vTxuuy2E2SaPHU+eVDLFq14VwlwHALj66hCmNh4eWNkM2+2gL++pQsxa5v3Hsm++8mMnuwguN21/38kughBCCCGEEEIIIYQgZLNMCCGEEEIIIYQQQohx5v3JsrkCH50H4mOsfCKZvXSl5BOs2klJSqyiZ4Jcp0CWXBmmJ3Pisto47MHSyig9PAlWSpravax96WWEI+EY7Yq9SjZGhqectddetu1iWWD4Rt5pj4N7WkIKdxtJQseSUI+U6sprf1vWHOVWSs6YyovHPled0zcOxsKPvr5waD8lg/akl6l5kJPG4nVRHaQ8YDKsJEvN2Vwvs7wOeZLTXOzalSPLPlH5vDiseOC+6E3phD0JTqpA3kJt8RrS3vMatqr+fqZgSQhLE428xGvilDKKsbJLr/lz96FILmgfyhJNz0ulLThLjDzPmIZ9jlPKlIKyr4+l17HX6V7Ps5qVEXHjee68rftRri97GLSFJSna07Sp8E66itsX8Bf+lPwp84WIvUU+TuGDJt5yCrMMc9BK29gz4vXXhzCN/UOH4zX7eXLOt2hR2Lt6rZSXxyF5U+yj3/t27oySdJFcj+uXsgDRLrZXOmwbTZWEhNWdVzYej08eN7wxWo+OLCeme0fjWOhGHsMkH4xm5sc/7icimTD3/7BZkzq5rOwNccWKELZ7HK0Ho4NBkjdJ+u6szezBfWCAxbtAd6Z898mRMLNWXtXHmccReU2huveQlNu+jbN0Otr9jNfTXpI0R8/lcWI9iTK5Mkxe13KlvLn/sGPprfU0TXvtURqtQ44zYiAsV2WZ9/g5i2yWzVt0skwIIYQQQgghhBBCiHH0sUwIIYQQQgghhBBCiHH0sUwIIYQQQgghhBBCiHEkrp0DsAQ6x+wMUM2mV665mhS5Nopy8k7ZHkrZNfLiMUk7WZ5bcJswt1EcewKNhAGrrq5ga8TakfJsVlWxZdW3KrYN0eAG43Zg+xum8To7yLrDwZCGbX0BQHdXsDtx9Jj/nZ6z73SaOGGaJ0qfGkNsm6zTqzfiNummcE9PXIeFC1s/xysbEPcTFyHVf2xPKdtmUiaNhG0QHoeLF4ffU3M+tx28aVVl3Un1OfdRbhlyiZ6b6mgeXxxOFSj3wVxwO4g8Q4FVFm3LTNnp4InP9h8Tf/dLVanK/lfJph5HfMlL/HiXXhrCZ54ZwsYmG9tQOnQsWCw6aOyScd15Cec1xNpe9Opkh1PXqmBntXNNjx+RbZuxLST+3doiYztA3ODGDtRRGtMHuawUXmVtR3n2fVKLV2rD4awpfIjCNvVKCq9asyZc3HRTHJHsa41uvKQZZpNLqWUj6tu+2BpWZMOM6/rEEyG8Kx5Qy595phk+9NxzzbDdrvhJfWiPbmswkG1oVYFtbdn3O77m8Zmy7cr3zjknhPfsidNcdlkIU7t2G7twufBOzfa1Om1EhtuS2rHTztlrrw1hXnsuuCCEedwC0TzlKcZmCoF4qudOxbVrWkabBDflMVoXV224JIrX+drW7/hrySZf914y/gdgiMJsZ+5pxPTy2sVzjO3hVd3rGV7EuS/sWGUbf2z3MMUNN4Sw2Xu+vTvM7sx/IsCaS5y3yGbZvEUny4QQQgghhBBCCCGEGEcfy4QQQgghhBBCCCGEGEfnBWcJ9hQ0e6D2TuimTnuycqFuGUoudUoygfjUcSrvHIVRSnHRmXLdXKUh+Dg/pT9qnIR3kUzi4JCfnafcYpVVLjbNsmXB9XbDaYfRnt7oOpJN0hHw5+JT7BgZaVA4/J7rKdt7pr1OtQN3H0sqowljC0T3hqkO9jkvvnjiZ1p4TKfIjdcuKTnbTFFF5paSYXqk8s5dr0iJFDG4IZYgN1j6c/75IUyypqRsMgVLa1iCwZI3AFiyJIR5jHvzAPAbKaV9n04ZAruxJ1mLlfPwGpmzl1pS1WNyx1rUL6xhtvdYV80PTSx4IyO+8MrrWg5blZunPrR17RwhMdJhGru2M3iSHDkSwlwnm4avub2MNIrFmyxFYwlksjxManCwhCoBK85oxk+SIp7HF1dcEcJWr0TyKpY5WdWqh6f+BoAOMpPQzesTy65sp190UTO46p57mmHbcryLtL0aLF0aX/P7VBW4L3NteKReOLiROcwLj4XG5DGz7ucuKQed31Mj9RjNny5+rpXueQtoSkNJ7dU3GN5lUyYlcs2FVIGLZ7t5NcsWWSd61VXN4OC990ZpGjQBk33EeZ91VgizrD5Frj0IXje4/+z84PKQfD8JpRnuiP+d4q09Uh+K+YyGtxBCCCGEEEIIIcRUkc2yecvJP0YghBBCCCGEEEIIIcQsoSjL8mSXIYuiKMqplrUoCpQ/+tlpKlH73LT9ffjsvV8EUI/8iT3ZzQY51XSS8to335mpvj2V21icPObD2qW5M7PMhjFTd5/PhjrVjebF1DgZY0B9NDW4j06ltpvJsZnbrlXKdKr2Wa7n8zqYeNbmK6/Eli1bilozn0Vs7u8vt+R6HJ3FFJ/85H1lWW4+2eWYTcy/tzEhhBBCCCGEEEIIISoica0QQgghhBBCCCHEVJHNsnmLTpYJIYQQQgghhBBCCDGOPoGKWpkN+v9T1YaEEPOBKnN2Nth30loj2mU2jOPpRHtzmvne/3OJKn0xH8f3fB+T87HPmPnef0LMBJpFQgghhBBCCCGEEEKMo5NlQgghhBBCCCGEEFWQzbJ5iXpV1MpsO/LbbnnqOJY929okl9lQbq/9Z0PZppORkfg6d/+dKRnBfG//KuS2Se19ZAfLBPP8pW0+jsH5sN5VGt/eGJ5KOi9s5wFfe2lS9wYH/fLs29f6OakyULhh4s1Uv7t9luqXVNsxXKeurqkVDACOHfPzq7LGpcYGMWPrtP09t40OH279e0+Pn4bbMrPt7JjMYc6uV7njPUW74zOXCuN4LvWLELMJzRwhhBBCCCGEEEIIIcbRxzIhhBBCCCGEEEIIIcaZ3zqNOUwVVULnSZBqVT3WW1V1MV145enqiutXpe2qqBWqkJu+3TLk9l1uvDqUGVXw6lq1H6qM6brbsrtCW1YhV1HiUaWNZ4OqsOq65Za9btlHbvrZ0Jg1UlW2zKTkKm3vmbxgJRY8fm6VoZFqhypjt9o8bZjr1vGSbeot8PZ3vuYwS9Rsxfv6QphlkwcOxPGeeSaEX/tat6gR27aF8MBACFtpHF9z2DTWdPZZrOLK9AjotbGVBHIhuH51bPacxwytY1Xecxsjw/EPOZJhIL+NDh5s/XtKhsn9lGpHuufVvY6tK5fc95rc98JYKcljP5GZJ3u18Xh98dq4jnGbaX7B21NS/15MtWOVvu3pOUXO5RTFvHu3EmOcIiNYCCGEEEIIIYQQQogTo49lQgghhBBCCCGEEEKMo/OCpyDesepcqUmVI+nTKVGr+9TrdJ6ibVcWk2I6pa3x2Ij7P9Mpz0nBlme2yX9PVaooBOuQ2k1nfm2T8saXm24aPXGl1v2Z8sKaS5U1aVo9hWVq8dnzHMuDZvu61fZQyx379nfWC/E9T54JxPK1vXtDeM+eON7554dwu14XayDX6e20jpVcKWGdLzpV18Xc/JhcD5FVPAzmtl0uVfLI9YZJ+fGaVPcaWfe744w5hk61fU4bT2dlJz2rs/1nCXGKc7L/eSCEEEIIIYQQQggx95DNsnnLKderu58/gHff9yHcu/8RLGychjWnL8cHXvp2XHrLu7ChdxWOvTiMxR2L8HPnvQ4/ufbVAICPfPsL+NX7P4yzFi3FsdFh/Mz61+IXN7x+Ut637XkA733o07j5ut+Kfv/Th2/GBx7+Jzx6+Cns/YG/xkDXGTNRVSGEEEIIIYQQQggxRU6pj2VlWeINd/xn/OTaV+Pj1/wHAMDWA9/GnmMHsa5nEPff8McAgG8f3o0fuOO/YLQs8dZ11wMA3rT6WvzpFe/AM8cP4fyb34E3nv1ynH36sqznvnzZBbjxrCtw3Rd/c3oqJoQQQgghhBBCCCFq4ZT6WHbrnm/gtEYH3nHuDc3fNi1Zi6HDsa2KtT2DeP/lP4Vfvv8vmx/LJli6sBfre1biqecPZH8su6x/3Qnj1OGGmV0B55omYOq2kTJTdsqq2B7Kbe/OjpmzxVPFJkndJ37rzLsG0yBtM532W+owpZJrmmdW2F0icsvdbt6ZZlVmzARILXYUc23XtDugbCHatJ8y2+ySMdNpMmksvxPPq2T7ePa0LF1d9NCp25pJ7RXe0KjaPl4eqeEUtRG3w+HDcUSvjezvnm0yzm9oKE7DdsqeeCKEX/7yON6SJSGcu8Dwc1P2A/ma+9xQxSxVu33bmbuW5o7p6XyRaJdE2VJ7Kd+rtA/ltl3dedh5NoEdgxm2L+v4N8tssNsbVS+1JrGtwypjP3c9yIXLx/1n+rIR5d3+++Fst58pxHRwSn0s2/bsd/DSjA9XAHB5/zpsP7Rr0u+PH3kax14cxiVL1tRcOiGEEEIIIYQQQswZZLNs3qJedSjN9d89fiduffobePjQE/jQle9E1wJ5GBFCCCGEEEIIIYSYb5xSH8suOuMl+NTjX86Ke//+R3FB76rm9YTNsrv3bsfrbv8d3LDypbh733b8zgMfAwD8xcveWWtZ6zzqmiuHm8mj03V6/86VKc7248N19kXVP25wukgyQw/qmAWuqHNlV6l28O5ZORVLLuJ78ZH26RxrM+YSPZOZGp91r13TSSXZca7Oqh4t4Ynzmyd/FW1XjlO7fM2TP1l6eprBBslpOidJ9dozmcBpXnghL02+OYf4OlozuR1YvsQSp1bXrdLba06zb18I7zIKAZZlvvSlIbzMmNUYGAjh3Mo/91xePM6P+jzFbFjj3PXKStFmyp5DzXjSy0pmEWwiT+Jnx/qqVciCx/iBAyG8caOfZvfuEO7rC+HUGIzkg1N/97PNkLveVKHKWtYYGQ4XKRkmtzdX6vnn43jeeI0k9tVk2RFcvkxzDp2Za02VvTDV9hN5lPYUihBzhJkxcDNL+O4Vl+D46Av40I5/bf527zPfwneOPB3FGzq8B79y/1/inefdNCmPq5dtwI+veRX++OF/whvOvhpbv/eD2Pq9H8TmpedOe/mFEEIIIYQQQgghxPQyP/6MnElRFPjMtb+Jd3/tQ/iv3/wUuhachjWnr8AHLn87Hj28G5fd8gs49uIwFncswjvPu2mScf8Jfu3CH8Tln3s3fvOiH8Li07qje1/c8w2s+sxbmtefvObXce/+b+G/ffPT2H3sAC655V343pUvxV+87F3TWVUhhBBCCCGEEEJMJ7JZNm855Xp1ZfdSfOKaX5/0+/Nv+ns3zVvWXo+3rA0fzlZ2L8XuH/jopHjXrbi4ZT5XL9uAd53/fRVLnO95rptO7+Y6aJlOj5XTedz6tNP8ezn1y5VM2WP57XqEq6K6SslM68Zd53lA9eQdxa9aP8aTNtXhONBLn5JTeV6wUmVIlc2bIy++6KdhFiyIrzNP2beNV6fUnOc62XJXiefR7tpQd5pJeB786pBh5roPzY3TpgfN2uH26gp/qKo6/3Ml+znV7UzNPZY/pRZ0TxplJjbLaUZGwppk931+VK7DvCpDzZU1Ab7kzJNNAnF7sSzJStZYYslhTm9lmNfTH0FZemn7hZ81OIgsbr89hLkvbfr161s/10iwOjriP8ZOkCN5smSbJEhJ0bhdd+4MYfYqajNkWSHXOxfbf0yVDS/hKr7hNJL1hsvvgXwvGvt2rPIY5/BTT8XxNm1qWYZJ3HNP62fdcIOfZsuWEOYxuXRpHO/ss0OYBlSDxrQ3NoG4ie1Y5f09Ws5p6FfZ9wHg+PEQ5q607wTRNDtMhfDGNxDLt7kStp83bGhdCB6rvDYkSP77g8ua2Ctc+WdC7plaK7g/uRlS/7aZWGaLws9XiNnMKSXDFEIIIYQQQgghhBAixSl3skwIIYQQQgghhBCiFiTDnJfoZJkQQgghhBBCCCGEEOPoE+gswdoTYVMROWEAeMU1Ibx1awifLDM0VUzwpCT1bMdg8WI/3umnhzDbKsi1PcSS/3ZtlAFAJ4Idi86uUIhDh+Nv1Vw+NmlhzRuwqQLPToBtE86b22fRojheVF+2xUAPbRi7Ix3kTpzTv/BCXD9+1kx5g0+N6cbhQ81wJzfYvoNxPO4AypBtBQGxB3G2nZEyS+WZT7HeyBke07af2QTPdOKNQYtXj5RNNq9NUqaeUmOf4Xt2za0yJhcuDGEe32vWxPF4rGH79hDmOZYqUG7heHLzIgn49rBSLu2ZVGdk2kJpG7Ib0yDbMAcPxnPRM5OVO/9sPK6SN9a+6yqnzADw3ve2TgTEiz2vreefH8IXXBCnoXjdZBPKtgPvmdYs2AT2PYLrNzAQwnYf4uvGsaPhgsc3ENtk+spXQphfUjgM4CjZC+LWOoSYbRTm6h2k8FusDSe2ocUTNbVpZs6/uz70oWa4l37vN/FW8XPf+tYQvvHGOOLGy5tBNt3FfZY73Ww8XgK4SbCN+s/a02KbbLfd1gwevfde97ndbIPrvvtOWM5JfOAD8TXbnHvb29xk1t7TBA2228X2pYB4wNPi0LCDnyZTI3p3oFF4991xmi99KYRvvbUZPGrmS/eb39yy3JYdv/zLzTDPi8t/+7f9NL/2a80wW9HrsTb1XvOaEL6G/mFB7dVpbatRO7zwQngnfOaZOJpnqtDbngBgReZ7DTcldwt3KwD0d9F6xePh4x8PYbYJB+DgAw80w2y19yhiBnhM3XRTCL/kJSFs1ySnsJ4NPQDAX/xFCHOD2b7khr3uuhDeuNHNurHv6Wa40zTeM8+0tpHJfWmXy4n1pSzdRwoxq9HJMiGEEEIIIYQQQgghxtHJMiGEEEIIIYQQQoipUhSyWTZPUa/OEuyx1ZxT/7lzMttleAVS0qiZWjNsW7HEiyVrHM+6s7aupU8G3F4s77JH0s84I4Q9N9y27Tk/Vmd120Pk+xz9khcG0HDcty9aFLsWn075r6eYSanFsM/RR1pdkiNT6+ryXaczqbnsSWhmw3hMUUGhFJFyDZ9S+3nxcp+Vkix5buztWsGw9DJZHq9SqQLxg1MNzve4QClZWR2bR5V47UJ1GiYZdO7+aYvpKVCtItarXmocR7BMzU7u555r/WAunJXU8ppLhRsYWBlFy5GZpqSpvNTbNuBlsrcnU8rr6GNHSHYJAE9TmHOzkieWn1FR0ceRrCzJ05bafazCfOHndjphAHHfZuooc/dPb+yn1umoL63kkGG9JoW7H3nET2MlxBmwhLJhpZJW494iTRJObyRmRxH29I6eED6wN85i2bLlzTDPl+5B6oyzz/afS/e6H330hEVuBb99HHZjxfCyFg2HlEaXxwO113AXC43jdmDppXldjK7ZTEOV7SkF5zHpFZUL62n2TcHt2jPBsP3Bq7yn5a8K67I5P9vg/NylS0M4IcNkcweWvr4w9r3q2VdoIeY6kmEKIYQQQgghhBBCCDGOPpYJIYQQQgghhBBCCDGOZJizBCv18WQSfLQ4JQFJnezndKwIScmNcuG8WSJoy5ojm7NpcqVpKbllDtGx+hocuw2zCIPKZj0F5h4953bgcGo8uOqsg5ke+HI94VH4eSNdqFNamOpXvmflVFz3Tm+S1CwpS2WXKxc7GfLmXFLlabfPc9Nzn9s03tC15XaUbdlS0KSSdyCIZiLvUvzQlFvClG7Ok3WmpDWe/nC2yS4tJKk7cCD8nOvZNHfPTO09PNasN2GP0YSshYsayfV4nLD2HoilUdQXnUZCx1Iyb6jlyvgsUTruANsZR46EMLvRJenlfpM3e7bk4ljJE8s1l1M4EohFrh4Rt13KE2yul1inDKz86raL0hVXhDB7QDVlZQ9zOWpdC4/V1J7J+fWsX9sMN0aGAcmQkwABAABJREFU/YipBY8La2WUDq6M0npdJPlYtvSSn7P+vGbYFtvzGJs9J5Y46zwQy4FpPI2ajsmtERfJkwhaDlKYZZx9VrqXWiAmnp+QvufKvNlrOE8Ru4Tkku1AmieN50nSeH0foPWK19ke23ZnnRXCvNak5M1V4LJyf1nNKZdvz568vDk/M0l6Bpa3vFW3jHZOIptl8xadLBNCCCGEEEIIIYQQYhx9LBNCCCGEEEIIIYQQYhydF5wl8HFkIP9Icw4pSUndnudyy8cSRE8ak5JgpZ6TI21LedDkePaYfwOj/oMdvCPl/Ez7XJb3NI7Fh+z7+lp7YUy1SWcHlZvPTrMsxsLxPO9BFjoCftppk3yAzQje+J507U0s22GOS7nOvlj/0tHTaBUtgr2S2nipIsw2qqxJuetLu6rAlBPI00/343E9PMdVqbp6CiUgnjL9LM+J9E9GPpG7CXgFTzVEBYmZm1fVPCrA3upY3Zc7Bq1sktNx86e8YVZpOpYZWsdsvKN0cqV40PDvQCyt4Q3USL/YU/HAQH8znNoLvbWnkrdXe82Nl5AlcZtw2z1t4q2lMPu8ZDnkJBmmJ0euwRvmcvZ4uGyZnzdLC7nPzHMWlCHMDlF5j0stGym8MRB7QI338F6WpvFAsTYleLy+9KV5BfIwMsxh8vjaSSMlV5LJrzypdbrdfW2F9cLKbUd1arCefAqspgHRybLXBH0U7ucbVirreYylcOo1KdcjeY5lgKngObe1itioo3nsciKzbnSyd1Pqy46nnorz5nhcKc/1Z1U4j71k88Suq6wtTr3vM1wn8x7RS+N6hMxLeMUR85OiKBoAfgHAzwBYA2AvgE8A+E9lWR5JJEVRFEsA/ASA1wG4AMAAgMcB3A7g98qy3GniXwfgVie7fy7L8saq9chFH8uEEEIIIYQQQgghpsqpZbPsjwC8C8BnALwPYx+93gXgsqIori/LMnWy5GXjab4I4E8xZqZ0I8Y+vP1wURTfVZblN1uk+18A7jS/7WqrFpmcMr0qhBBCCCGEEEIIIaZGURQXAXgngE+XZfmD9PtjAD4I4EcA/G0ii+0Azi/L8lGT7z8D+DyA3wXwxhbp7i7L8q/bLH4lZLNMCCGEEEIIIYQQQni8GUAB4APm9w9hzDnvj6USl2U5ZD+Ujf/+BYxZXtg4OdUYRVGcXhRFwgf09KCTZbOUHHsJKZtebMbExvNMceTaAcu15cAesW0Z2F4Xl9Xa8WI4j5RNhJzypeJ4JgyA2C5Grv0yzo/rl2kaa5KNsOgLN1WkM+VD/jBlzjYMHnssjseGUTw7GLbg1EijZOPERkv12VSxNv7s9QTGK3tEd+7gdwprbaR4c4T7vKq79Sq2CqeTKmtA3Xl7aepoK55KXIfUWpMqA09htjnY4AelJkzKoJ1nsyxlLGaO+nnnqufa9eP9pY4mqbKOcVFTVmPY9tB5t9xCGST6nG0jLVkSxyP7Nd1rwtgY6Qlj0Jqg9OqUNFPHmbDRKwDYRSqJ++9vBo9u3doMP26exbbJaLeKbZEBYItabMmzlyNZGz6eoaSUjb9czj239XNt/7HxSt5nTWcsGQyWpXgf4Sa2xeZHebYX7T1vLllTZL2LHZtOXG8gto3ENpyqwHbgAOym4bRq1dT/3s+vP7aLub78TpEaCu6SuzgxnupYc+nBjUybZcMUPkThvieeiCNy/3m2axM2P3P3/dy1JhfPTln3sf1xRF6ThoZCePv2ELbrGLcxP+jMM+N43oBI/eOGya08l+/RR1v/DmCU6hTZx/uv/9XP+777Qti+XNO61k+27jo6wly0a81ElYrCf6SYU1yBMdOiX+Ufy7I8VhTF1vH7U6YoijMALAawzYnyxwA+PB73EQB/BuCDZVmWTvzamDtvyUIIIYQQQgghhBCzhfljs2ygKIotdP2/yrL8X3S9EsC+sixbHVN4AsB3FUXRWZblcIv7Kd4D4DQAf2V+fwHAPwH4FwBPjj//pzB2sm0TgLdO8TlTZl70qhBCCCGEEEIIIYSoxL6yLDcn7ncDcPQ8zYP03YgPsyYpiuKNAH4ZwL9i/PTYBGVZfgnA95v4H8LYx7O3FEXxv8uyvCv3WVXQx7I5gKfAScmN2HO3/dDNCgCWNvLR6dwTw7nSzancmyAl++A6JOUhzjOt7GA6/xjAp5i5DFb+wqe3WTrUzdIHG9HVbhq8BrdHrBctCmEeHPxM44d7tC9IRfgEuD3FzqQUozmkpEMpORyP646BINbptHpbxrln68fzh5s15Y7eylxapbfpvHkwk3iSC7tucLwjCWfSXv9VmZdWAsJDmvNLyfi8dTaVhvvZltsdXrna21ydaQU58VzCU7ikJO05v08lXu4ezLBc0ArH9jnx2MXTqm1GlcBrcGpT4XuUpmcgiBbt2ORrbmOrZuwcORouWLbFsiYgkjYNk/TyWxTFyjBZIjbghIG4LbkruPu6czu9DnaSx3uWbXH7ALGEkRdGNoMAoJMava8v7FepNTJ3LT399BDmedXfQ/++sQOcZWqefM3e44Gz0TVFE5m1iEwcmLxXk/SLsWYRPFasCGHPfAPg7xtAPEd4D162jCJt2xEnuvfeEN5ChzZY8jYFju7d2wzzrLdSZYbFiNyzPTxuAfSTXBrc3lTx/mtoDAPo6WltgiO1NnvjM/U6loLTRXnsOxhH5PH54IMhfJf/7+1ReuFr8MuffeHwClHlHy0pvDRGUst9PmDlth7cPrYzeDxQO3T1hH8HtPt+L2Y9R+EvNV0UJ4uiKL4XwN8AuA/AD+fIKsuyHC2K4g8A/BsA3wtgWj+WycC/EEIIIYQQQgghhPB4EmNSzVZ/rj8LYyfTsk6VFUXxWgCfBvAggO8py/LQCZIwQ+P/t39Hq525/6dmIYQQQgghhBBCiJPBPDjBn8G9AL4HwJUA7pz4cdxL5SYAd+RkUhTFvwHwGQDbAVxfluWBEySxTHiW2TPFdFPmlOjVuUBKgeMdaa4qCcqROeXKS3KVQ/Y5nnrQc+zWKg+P2SbD9JwJWcWMx5Il3dH1COXRTY00PBIOinZ25HnqnFRxT+dEUophOm4NAPtIYZKSYbK0tF1ylTUpr4Sxx9jQdn0D8eliby6kFE/eWLMn9j1pYqp+s+GIu1e+VHun4uVIh2p2IDapDp7XS47nyWaBeLzbsc51ip3xBelKRxeL8OIyNEYS0ihvgOa6fsylTne2FfHmmJ1X3v6XajqWpVl5Vq5812M5rZ8NszDyn1E5a/YI2UOSKwDoIzljVCD28pagMRjKsJK9aQLo2xDkft1dtI/YvPmavSpbKRNdszCNc7N/SmZvlly61fDhXamDPTCa+kWywJPlDZPh8cCuGoFIvtm9KpSHPepavHcoO/at49SW5bHl5nssK7MaXX6YrdNUsZsI52dMQuTASteUR3nPXAkA9PfRvODybadR/cADcaKvfCWESVZ9yCxekSfXBPyGl/tKwPG4VW0PdZH0tfu228IN3tjMfGHJ8HnkwXS0Kx6rvGx408JO2VxY3dx5jFYVu3axzJDv8TprvLg22Cvr5oQ5J463bl0Ie2ZNWl3nsGlTCPO8tHVlOXium9Knngphuw6uX9/yXic1/upBOy/1qWGe8XcAfhPAu0EfywC8HWO2yv5m4oeiKM4EcAaAx8uyPEq/fw+Af8CYRYZXl2VpXNYGiqJYWpblM+a3hQB+e/zys9WrkodGsBBCCCGEEEIIIYRoSVmWDxRF8WcAfr4oik9jzND+BQDeBeB2AH9L0f8AwE8CeBWA2wCgKIrNAP4RQIExY/43FEVhn/HXdPm5oiiexJhNswlvmD+GsZNlf1KW5VdrruIk9LFMCCGEEEIIIYQQQqR4N8Zshv00gNdh7IDqnwD4T2VZnkjatBHhoOsfOXH4Y9mnALwewDsB9AE4AuB+AL9VluXHplzyCuhjmRBCCCGEEEIIIcRUKYpTxWYZyrJ8EcD7xv9LxXsLgLeY3z4C4CNTeNYfAvjDKRaxVuZ9r15489tPdhFcFvYFIylVPAmn7Iql7rGdAM+mRdW8U3ZkmBdf9O95eLJ+a08ix2ZZqmy59tpyybE/B/j2nVK2zbq6gq0tfk6nbQOvUmzPAIhtgHCD0+8HjAlGNiHCZbXl5uxStkJySJmAyTWt5JlwyjXrYG2yeeOL7R+l3Kh7ednyefP3ZJFaN3JtTDG8NsR25aqVj0nNP2+e8u/WlpWXt13fvOmXu9Z0zoYXsFlQht6e8AdLXvuq2jD0+jZ3fcnm2mubwYHPfz669SQ9jN1HsR0ha8eo95FHmuEGTxJrr4YXYTbClKhgN9sL2k3p2c6PvSYbR7j11ija0xSPS8f1sxZuyPQQzuOysZ0eIF6E2cYQ29Cydq34XmxAEG3DxpZShu64vVIDio0kUl/2btjQDFubUN46a9fPzn1Ptk7EZbObHI07LFoUwtYuGY+NChOmwRa52D4fELflNde0TgNgFA20ovtgqHe3MY7Fa0p3R8JO5C6qL7cR2yljG2UAQPP+KNmiOxrHyrZZxqPVt2AXwzb/yNTsJJtlvA6tpfnczfPF2qkzNr4maHAaAKtWhVLw8sRN3NthWyVvbkZjmtp40hhiO2x3BpNL3CaDO3fGaWjORXW3BtbYZplnfK0O+4hLl4Ywt7F5p+eWHKGxmnwit9cTT8T32GaZh50vbExOiDnIyX/7nWa++Y8JQ4wnmZt+L88YrxBCCCGEEEIIIYSYGVr/6UUIIYQQQgghhBBCiFOQeX+ybK6SI93jE/oWjscqDcCXM6XkVHxKOHWqno/9e3KqE+XRKq9UGWy8HBleSgaaqmuV09KeNNHKGT1ljFXWeJJBlhENDMTfwbs9icmZZ8bXfGycjpof7epvhp8YipN4nuZTfcyKoCrkSoFTsiuGx6eN4zVdSh7LpNrEK09KpjgL1HAuVdaGqeTB8DrGedv03pqZksR6Y8j2OfcFz4OUZ3hWh/Dvtl95jpx2WoPidZq842svv6hdnDbOHVtW8jRTHDrcWnqZkrRzG9t4PG5YVZa7/2XPxZe9zL114WeD13MSEYH9qNut4RCF+3jg8eAC4s2DG4Jlcnv3xmlYYvQMeWtPyTB37GgGHzfx+Irrt5LCVqTDQp9Oll5edlkckTuU966UXIzbgcKebA+IxzvHmzQPWKJ0ejCzMUmmyNJQvmclo7zIOQtRwwxCuz5MMGlP8WxwcBnsgsflWbGCHxrH4+vcjdLDFtxKQ6eK93INoJvLzXPJPpPHOMdjCeu2bVGSYYrHT23dWyemg8e1HeMOPOeOOmEgliPyrLiQ5Yt2k+Nxw5JFlgsCaFxwQTPcy2l4zu4wL70bNyIL7hced9bcCI8Bko8Ocj/fcEOchutE8t9Jbc918volU/Jt16Rovbn66taJzBqy+lOfChcsEU3Bklq7P9g9phU2zsTaXJZ5z5+rnEI2y041dLJMCCGEEEIIIYQQQohx9LFMCCGEEEIIIYQQQohxdF5wlpA6xe6F6/AOV8WzV+qUqScfq+L9sio53jAtXL7p9IbJYdsmLBHjeymvkhzPGycAgGOZuis6Cj/aF6SXu4dCFKso4fLlyge53FUkXXXLML2yAbE6IOXgzMsv9fxcaaKnxql7rOaS+1xvvNdRbq+NU2spt2Pumptb1uT8I6r0X66kPbcMTG5dOV5KHpKUqbWJo6CDcbgWXXPYrl1VqNLGeM1rQth4jesg+eDqe+5phgfIs162bzgrf2HvhQw3ypEj8T2WDvHiTlJLAMD994doJD/7tnnUEIXXUphETVh+7rlxouuvp4gU03pV4wHLskfGSqF4j2vz78WT5sFFF4WLxYtD2LYxL/yeO2kg7j9Pd2zapDfyyEk3esxg3U5SN86PpWhPPRWn4Xi8mBqpXSRHbVc2aV0QtzuJOX1qArOE2drMYE+J7C2Q54ixk9JJC1Y/t53nMfFE8JqS6W2w48d/vBneQJLKEeP58VsU5tecQyRn7GVJJuBLJa3kkPvT81prJd+5MkxaP6P2f/DBOB73La8bV1wRwlddFadhOTiHTf2GO4JvUk+B3FfHv7y5TVL/MORC5G5Y/JJh5y+t+1i2rHU8KyefWM/nuwxTzFv0sUwIIYQQQgghhBBiqshm2bxFMkwhhBBCCCGEEEIIIcbRJ9BZQkou5jnvSUneGCvv4mvPKUtKopSCPYqlvHUy0yl7zJXMWGnTTJDqc+5nqzrwvGGmGBwMkspIGsVyCQDDfcub4d10Up3VPVaRwKfquWypNm23vVPOhLjtbJ97x+JTHis9p2F1eErlE/MpWTXn7UnRZhL21OhJge11lT7nNLZ9cts7x7OwveZx4v0OxO3veb218XhdzPW8W0n6VwO5XiDblbPl4rWxbW9eo7jcVlGSu1d48yx77+J1NjVpSZbUTfKgbvayZ+LhnHNC2Eq6WDLDiziHH3ooTsPyQZJnjRhp1OMUZs+dcSxgjRNezp7Z2LscAGzeTIkonpVUcgd4C7XR6PJYze2/ztw5t2RJCHNZzT4bDVj2OJryVsd5JDzujXYFGVjC8SN6WbrHE4MHvyfjBXzZqy1Tu94wLe3KOlMLOt977LEQ5j4CYrklh3ku2QbnDYzHqpWw5sJjIFOGifPPD2Fqxw6zOffRXGcJOMszlxsvib233hrSb9kSbthxcu21IcxSwnXrQtjKMHPhzZUlgnb+8cTw5pyVYVIewz3hfXqSJ+aDaHkvsSRF5O7vT+4LflRXepJMe52bOXsCtfsVS+Z5H0ltyBOVlwxTzFF0skwIIYQQQgghhBBCiHF0skwIIYQQQgghhBBiqshm2bxFJ8uEEEIIIYQQQgghhBhHn0BnCbky85SHYCbXPpD3EbyqzTKG7ZelbIN4ZU3ZKEq1Q45E/2TYKLPYsnn2sKztN25XthfGdqRSDI+Eb+Sdxt4J2/ph0yActp7cPVL9khq77ZJrByplf4xhu3C5dsXatTeVmn9sQuJk/RHLa4dUuVPrgWd7zzPz0upZJ/odiOd9HW2X27dcX54/7Y4nm3e79uxSeVdpr5Qts8h2YiY8TlL28Lhdq8y/1P5QJb9DHcHGTe8GY7CGDdiwzTEOb9sWp2FjOJkGHEfuvbcZZosynWSXDAC6KczxdiGGbZY9SeGNJt4GCvewvSK2U3bRRXGiyy4LYW4Ha+zHG/xU72F0ghkxNoYmSI/9zL8rb6Da8t5q+8iz42VtzrFdKM+QqSl4g57VSfdGOuJ2wDFn0+OyWhtxbM/u7LNbpwGAI0dC+IwzmkFeD+z8d+9Ze1z0MtK2rUS7EXG/sDFOayfNs3vGCw+3DxC3EfeztaeVy8tfHsJstzAFzz+26cXjFsDK225rhnndYMuJPOcBgKfVyHPPNcOjFAaA5ZSfa0SU7cBNhYcfDuHUyzHXl+19sX01tpsI4GhXWMN3DYXfc+1N895lh3TuPsLjnZftEXqnX7XhwihNgzO3BtY8XvpSPw3bKeP1iX83fS6bZWKuo5NlQgghhBBCCCGEEEKMo5NlQgghhBBCCCGEEFWQzbJ5iXp1DuBJxDzpksVKfbx0KXlJruTJO4KcK4dL0e4alErvyXbqoEp+nmwLiNUBXjtalQdfx/KS7ijes8+GMCsPPBfYltwx1G4bp5RHnlQL8MteRZKZqh/LuLisqXmQ83vqOTOJVz4em6l4uXl78lN7r125oMVTh1hFQqpv26Xdeth1fjqlzycDbm877rjuqf7zsG3f7v7AqrnnT4/lcMvWrG2GG7kLAleEpUO2Ic49N2RB0rijJJM5ZB7FcoPdThgAqEpYSeF+E6+HJU8sOePfrYxszZpmcJj2qMlzLLTlCO1xPT2UJrPPa5m/tCBE5g4GBvw0S5eGsJU98kBm6Z4nPwWisTJK0stj5p2gm5/lVd6OJw87PlNjcqJsucIWu5B5EtZcUul5orKsbJcRIfP1dhInclnt5sxjPCV1zYXT5ebB45DHk5WZkk6wg/R+XdQmthWHKPw0F9PE6x8KMTu43KxN5H6oipc3EK+fvCaRzHu4J17J9tFw4CGU+ncYD/3cd8zc/YXf1b3nAMCa9ec1w9mmD664IoTtP0B47Hv/sLBmA4SY40iGKYQQQgghhBBCCCHEOPpYJoQQQgghhBBCCCHEOJJhzgG8Y7kpWU3uvare+aaavm7qlPRNBT5p3Jn53Fx5RxUpWd2StRxPPqkypH6fD1L+XCkbx/Nks5bc/md1x8mS1uV6ma1ThlmHNDx37fO8ZtYhLebysBqkqgdj77m53jCreI89UZmmC88T73R7w2x3/2OVU6odV7BMisMs1bMZcmVtA9EA20/SS/ZkZ+VU/BfU/fxIE4+FhaudMIDYsyXJK6OwkUkdGgkyyoOkyEp5nmPYaWYdXnRz2X+Myn0w/D4w0BvF611FheKIthC8ebDkiRcO6yGU7jU6QgN1dXW78VxZpx137NKY+yxRhkkSvwwiz5jWq2S7sDzPtjfXnaWkVubIfcFtxHORxzcQe11kCaTxRMmkvIdGsk77LA+Ol1qIHKnq+s98phm22wsLJ1PrBks0V27dGi7OPDOEn3rKL1sKlgjy+LQyaO5nHruUZrfRnXORWAKZItf7epW1x1MT2+nG1319ifHEeO0D+HP7kUeawadNIZZPpJnv3jCLYn78Q0dMQifLhBBCCCGEEEIIIYQYRx/LhBBCCCGEEEIIIYQYRx/LhBBCCCGEEEIIIYQYR+LaWULKRkquDR+Pdu1fpfLItbOTq9Gvw317u/bManEh78DlqWrfKbfNc0jVle+lXFOn6jTbyLXBNNW8AL/unv2rdp41W+FxkiJVn9z1zmtva6OI7e2l8uN03ti3eVexbealFydm4cIQTtlk43sc5vSAP16tLUDPHmTuvNxHBn2srZkDB+hiTbArtSJlX4gN6vAg2rMnjkc2ePrvvbcZPkhRhk1Z2aYQx+sz8cjqEtjiWIe1n7R+fQjzPf6dbTgBGNoWwp5tnhTcXNbsFlP3usrmfDhs69Db4ywWtp/Z9g/385EjIWxtCjmDtXvATJghZ1Byen4OEE+MlJFNniRs56wKtk1smaYKt6ldRPjeM8+0/h2IJ3RsFCqEbZt4NtCMPa3R3DMMlI5t/PUmbFGxTb1+tumVWl94bJD9uK6dO6MkXOqDFLZTjOPxU1fffXf43bR39jRlm2UcPuusOJ5jk2u4I7SPnbM87Hhup8h936zyLsrl895xgHiocrlXxktuDI9Pa6/P21wXLw5lqGCncF4gm2XzFp0sE0IIIYQQQgghhBBiHH0sE0IIIYQQQgghhBBiHJ0XnKV40rZciWEqXur0vEduGs89cqoMHikpU93yJT7GbCU4dZJ73DolHWJVAyswUt6euzuC2Karr7MZbozEIpyenk4Kh99ZKpTq/1wZXrtwf02FlPvuduG6544hrwx1uBY/GdQ9L1P9VeVZuTLolMSP4bnI/Z9a7zh8/LiftzeXbLl5rOXKPjiP3HV6NoxBr01sf3FZWf1kpTVcv5SUpU5s3tx/kWLtGBXOFpxlUqytsfKXHTuaQZZX7qcwqXTGsqBwH4X7TTxW8UTbDUm1xm7SXdZE0u9Hj8V/t/Xmix3TXHVv7Nu9cDpJyW2Znp5Q314evPtMb3B/cqU86R8QTwavgVJ5pyRYJJcdHVjeDO/dG0eLJMTtSrJYLgi0v3Gz7NG2CbcXS4PtM70Nggfbhg3xvXPPDWGuk5UtZ8Ltv2+Ii+CfgYiGzZowoxuDRlfIskVuk40bm8EBXoMAdNMCyrk9jZijzr0BKpwVkuZO4ZFHHmmGO1LjmBddem7H4MqQV2Ktef75vPKQMnFa4X3DDk0ekisHfYluBEtYh4bie9tII799ezN4kBaBx012/RONN5r5/LmKZJjzFp0sE0IIIYQQQgghhBBiHH0sE0IIIYQQQgghhBBiHJ0XPAWp85Ro3bK7XGlpbppcplN66ZHbdrZsnjOapJc2OlMefSE3EomFC8PRfj6+7cnNLClp3HR6GWVSnjuZ3HFzMsbGfDnJXaf3UYvXz1UluownY88d37auubKyKngO6nLz9tIDs28cshSmbs/Jqd/bbQdWdFlFEK+zvSMkkGT5y0MPxYkefTSEWe9nG+WBB5rBJ+lnEtlEsksglluynz7rNZMFNSyt6n7uuTgi7zEcJhlXt/HMNjjY2wxz9awXOq/q7XrErkqluZ0qLA8OtsfAg8jqrrwXgdx4LFO0WlJ6Lnfls8/G0ZYsCW8Zncbb45QxnlLbnvgpL5AeuRJWrx2BWA+eq/PPhLNrJLxh9vWFfmkco1lrJ1aO3t30Sze1ySpaAzoR08fZcfqLLw4Xdg3JpIN1jzx3UgsHlZvbpKenG0wqu6gMzpSr+/2Hy8NDzQ67lQO0cu8YCmH2Rmwh+f4kGSZ5QR0h6eVBinLIz1mIOcksexUWQgghhBBCCCGEmAPIZtm8RTJMIYQQQgghhBBCCCHG0ccyIYQQQgghhBBCCCHG0XnBWcpM2Xeq8nzPRIO9l8ojpfnPyZvNd6TIbUe2c1S3jap2bRSl7Od4ZkcmnQT2XMgbmySLB4PNMrZDws+xZkyYlL2wOm01peym5dqOapeUfSceT8ePh3Bq3KfmlWfi5GTYUwPy+9K7lzs2uB1s23n2QFKn4KuYqKliRzH3OVVN5oj8PmdSe0rO71XjpWzKdI6Q7aBtZCtm+/YQfvDBOBHblCG7MZbHKbybwgcp3GfSrKQw2y/bb+JxU7I9s+5nnokjss0bttu0bBk8Bte3tllm954qNhF5zax7XvGaxHsA2xey8ZJG2Z5/vvWD6tjIciZQpvG+um38RdjNzzbmVGF7b7a9+ZrjGduulcpz5EgIOzazxp7bjxzYvlZfX3ciZqC/j+yZDdGKsHt3HJGv9+0LYW4fa8CT5nY/2RyzFtR4fWnwZNywwS9PFXju2Py4b3e3boeBgbVRktQ09fDeI+qYL57NMmviD7vIQuUjj4Rwrs2ybdvie7QX0cgAL82TqjNRwaLwnynELOaUfwVf8OqbcfE54cXsH35/M4Z2H8X3v2cL1p7ZjeePv4gbr16B9/7shZPSDu0+iht/415s+/Aro98/eduT+O2PfAsPPX4YX/0f12Dz+X3TXQ0hhBBCCCGEEELMJLJZNm855Xt1UecCbP2LV0S/De0+imsv7sfNf3Alnj/+Ii57+x14wzWDePnFeX/x2XjOYnz6dzfjZ97/jekoshBCCCGEEEIIIYSYJk75j2UnYtHCBdi0/gw8sS/z3C2AC16y+MSRTgB/nOaTyrkep6vIiKqc7K8ipzpRmXLSnCz52XTC9WOZqT3lzyfIOcyn4rs7WBiD+Kg/P4iPaAPopjPcAwPhaL93Eh+I+5mlJ7OdNpUnM/oHpCqSs5nCk5/ae3VLy6vIelNriDf/Uu3N6zGnses0zxmvL6u2D7d5Kr/pHDcnY3x6cnR7vZi2Y5ZEA/lymnZhaUxj95PxTV5cWXrJ4fvvj9OQFGaUJE8WT4Y56ISBWCa1nMJ9Jl4/NewIl8HqgFi/xB3A8lHTgQ3a2HppA+wwcjMed/yYKjLaOsYtj6dcUwGdfGH7kvdtDvPiZdN4JhfsYOcG814Y+QUDiPRe+4bCzwcOxNEite2q1WiHJ/d1RteDbea3/3DIr6cnzrtzMLGoTBWrt/a02FVlpdFin5nGmyQpuw88Bli6l0jTRdLrVVu3xvEuuiiEeUxzm1RdmHkzZDm4lbpy/Xi9WrWqGexdsyZK0tMTTHznDo12FcMpuLmo2Og+ZgTzLKPkvrjhBj/zLVtC+M47o1v7aL15mn+ncJszR4hZxyz7Z9fM8/zwi9j0tjsAAOecuQif+b0rovsHnhvGI7uO4BWX5p0qE0IIIYQQQgghhBBzl1P+Y1krGSYA3PnAflzyU7fj4Z1H8OtvXofBfn0rF0IIIYQQQgghBDHbpB+iFtSrDhM2y7618zCuedeX8YZrB3F8eBQ/8/4HAAC/+9bzcMm63hPkUh3vVDxL7XLlQVWeM93eOHOkSHV7WErVKSWZmC6sMyFm0aIQtkoIvrYn/ZtYt2GeDsx6CSJJUB/JHVIOpPhRfAo+JdFtV65Z1dOmN75Skq7plGFWkRJyvJmSkaXKwH1p55FXvyoeNC257c/96XnQBGIZJUv3eC5aOA3Pg9T6W8VDlrcH2PJ5dT1RHl4Zcpmp90OvXVMO8zhs50sVb6ZVvDI39pFgxUjfI2+RLJkhKczoPfdESVjISb40J8lfyKcZ2PfZaicMALj4YkoUUvXbclOjd7CXNeud05OJcmdYfSxDm1y3kXiuWhVO/PP8Y0d4qfnL1DGGuXhcvdWrjE9ALuxTT4WwlYt5Lya5lUptFt6CzGVIbPZnnBHa3rbdimVUX8pvNNPTI9OuGjKFneed3gJqX8I44YoVIcxtZzPn+cPtavq8QeN9FA240LtbNy9yXX2T407Aa83OnSFsPdiyN0RPusnaPyBuI5YwGjljdM3vnyzxrKpfZI+azBNPxNfcDp481vT5mvXnNcO57zK5HrurrD1c1Eh6yX0HAA88EMJWEutx993N4JNmfB6iMFed9xGW8gMIDdFIjGchZjH6WHYCzju7B7/xo+vxhx97FB/7j5dHp9CGdh9NpBRCCCGEEEIIIYQQcw19LMvgHd/3Erz3E4/isaeO4pwzYwOzD+88jFU/9IXm9R/93IXoWFDgnR98EHufHcbrfuOr2LTuDPzrf3/ZTBdbCCGEEEIIIYQQQkyRU/5j2eFbJnsEuW7TAK7bFM64Llq4AE988jWT4q0Z7MYLX3hdy3zfcO2ZUypHyrsjnwbmY70pCRZ7I0rl7UkgUzK5XC9PHE5JgryjylbiUkVu5GHj5MjzqsL9x/nZk+aeNz4rteT8Okec0412cHgyTCvXpOvGwXC0e+nSIJ+wx855rB05EsKpo+aL23QYa9vOG692rHreC1MeZ/k65Vys3XGXm84rDwA0YOQ+0wR7hkrVgRVYKQlkTjvkShdS8yol6eF7nEdqHWN4rKW8Yabk1x689qUcl6XWLn4uj/dcb8l1Sy1ZYpQ7br32t33uyTDtOPP20FwJea4azvVqCMRrsOPJsGEkQT2UBxf1acR8N4VZNNXYtClcXHZZnIhlUiy1suXmAcGeOy0stWKdYkpq5cnUTJoGe+DrCn/ITHnG9MZQHaYnsr1rckSejKkNi9vE27xO+GCnDN5ET7jiPk6qQvsacegw7Q8I7w79Ffan3btj6RY/a5K8NYODB0N+/O4CACMj5PGwJ5S7M/VSwG2U0uLzvUyZYXJdtNLQqcIvYal/JPC4Sz3T0yBb+TbnwRLkM+nfTFVlmLyW8XOtuRFvXnHYDOrGsfCufcYZYa1JKci9aVqHDDNSpO+g+tn2Zoktt3cKSmOXSx6RayjcxW16Rewor/mPmPluz6so5n8dT1EkIBZCCCGEEEIIIYQQYhx9LBNCCCGEEEIIIYQQYhx9LBNCCCGEEEIIIYQQYhyJa2cJ1uYS6+A9ST27R7dwequpZ0k127HheCn7HSm3ybk2y7geni0ja7YgZSuN8fLzXMtb2LZAqh06M2cPPzfXlgrbOrDt0NtDVgOGyFYBZ2Dty+zb17oQ99wTx2N7EtRJyzYF+x3PPhsn8UzupOpXxW4TY6vH5I5dnge5NpwYO2c9u2lsxy3XZpLFs7tl51XS1XyNHDiQF4/rnhobDM/NOux8eOtBau3iNNyvqf7KveeZB8q1mVTVRFG7cy7bHlMm7drXy+3LlP1Nr06p/YHHdDb33hvCX/96fG/LlhC+9dZmkK3sPG6y209hjnediZe1vNjO5D1gxYoQto3sTYyhoTjeQw+1fi4/59xz43vr14cw2007//w4Htk56iQjPispfPRY3ppYx5jmvTrKb8eOOCJvmtu2hXBq3/YWqNTCk5okCVtwTWyjULkXLux1o/E7Ctsvq7I/sd1LS5X8Uu9g/A7M72CLF8eOvZ7bG8IreBynFvGdO0OYjR3axYZsBibtOnp2Ajdv9svAaw3btrLl5nHHnevNS8A3zmsN2rGxLa47p7dpcuG5sDd00kFjs6yXrhuPPBJucL0Tdn9XXHVVMzw8Eo/Bdu0fcz/b8c33OvdRnbhf77orzvDjH28Gn6TJtDJRhm9QvH3mHs8EXjW6Uv9Am1hr6jAMOZuRzbJ5i06WCSGEEEIIIYQQQggxjj6WCSGEEEIIIYQQQggxjs4LzhLsCVbPg7EnybSk7nmu06tQx4lTTymQK1Gr8pxcSWfdz2VSUp+UyoKPfXeyfMLTmwG+zCLyP23iUX4pNUcus+EEdpXx6h2lt3I4ViV58sE62q6OvmgXb/6kZKa55c6VxLbbrinpnifVSalDUqqmlCTdo4pMuIrsw0s/lXszRa6k3ZNpJ5Q1Ub/Uvj9wgWzhSNPMw+sQhZ822bE0hlfwPhOP82ssXhwuli0LYTtYvYawelZPY/3YY1G0YyR54uaPpFC2wbkMPPAGBuJ4nM5ZYLqNXIz3z7rXz/6uo+GCy83yLnuPwylpGxeWpHqT9nBOw9h+5jy4XTmeXfConxctCjJMWwSWnfZSX472rG5dtgRnnx1ftysnT62R3prb3RVLILt5DR+ivmW5n7VVcN99Iezp/AHghhuawaRUneWDTEqGyXJgDtuFkevhbVj2d9atLlnil4HhNYnHnfe+eiImDcQx+owMMyq7N8fs4uBsPp2mHTq6OluWoV2zA5PItXlDEya3VfspbJfIaL/hZ3Hb23V6YmIVRWYJhJhdzILXXyGEEEIIIYQQQog5hmyWzVskwxRCCCGEEEIIIYQQYpwZ+QRaFMVSAD8KYAOA5wHcAeCzZVmWM/H8uUBKEuRJL6t4/aubXG+YuXnwiXRbbi9vK2dst75WXtcuueXx5AH2VHVWfjaSp+u08RwPZ50jQV7S02M8Q5G3qjokh3WSaivPq2Sl9kbeuEnJPlJzxyvDbGjjKt5xU3jeC1PrQep3zq/d9cnCeae8LjK5XmF5PKXGZ5X8cuWa3r0qa2zdMpTUXsj3eH2yar9cr5ke2XLN73wnhB94ILo1vHVrMzxEv7NwyHokY5ELS2b6jASvlyWfF10UwuzVbt26OHO+x3Io65aQK5/wxMxCPq4TD+MBIynr4zw2bgxhO/BOP731c1kyZdokMl1Q99+LWdrGZbWeC7lMXO5cSSXHs3Ecl5zDiOVhnZwu16MjlbV3TSIN15fzXjV1GaZtknbNc3gKX8CvuvV42Inh1hG5cM88E99jL7G52v4U1qvuBG9+s5+GvZ+zF1YLj8mzzgphlu6mFkxuZCvJY6kxjw0brwobNrTO20jDXQk5z1+uq4UHpZGMNlyXuERKZkppknsmezPlsWU87x6mvsx9XeRSd5t70XS8+OIQ5vbiNRuQDFPMedr6rFAUxXIAfzp++fdlWf5dizgvB/BPiM1p/CKALxdFcWNZls+2UwYhhBBCCCGEEEIIIeqi3TNH3wPgjQBKAL9rbxZF0QPgkwBaWXv8LgB/A+DGNssghBBCCCGEEEIIMbPIZtm8pd0z6K8Z//9jZVm2OtP70xg7tVkC+DaAXx//70kABYAbiqK4rs0yCCGEEEIIIYQQQghRC+1+Ar0QYx/CvuLc/9Hx/z8H4OqyLPcCQFEUNwP4BsY+mL0ZwG1tlmNew3Zo2rV/Za89GzfTbQuJzR0sWtT691zqtjGWosofDVL2xxjPhEh/n7Fb4Liwdg3d2Ws28mZd2u/ZE8Jsk4YKNDC41s0624YPMZr4Zl/FzlGuDSbPDlSu13Lbl1VsqVSZZzNljzC3DCfrmbn28bz1IdV2PAYWLgzhVJ+ziZrceV5lrNo1m9fPdtenOuLVbZuM4bZLmfrh9uL+57YC4nHDfW7z9vallI24CLJLNsx2gzD2IjQBWaHBQQqTlR8AAFt+6uUbV1wRxWtwBa+6KoTZtg+Hgdj2TOpFgvcOfs5DD0XRuqm+PE2/TeFDcc5YvndvM7zq1lvDDTuxuNOeJYsebF/N1o/q0dFlLfIEuEo8plP7lWuXasuWOB4PZE5jBx7bceI0uUYMiUnTl+1ScVmNzbkI733DLsA7d4Zw9iRpTePg/ui6m9oh2RcO3Iy5e/akeF3B/lsn9xG3j21H7he2N8VtNRVS48aDxuEhmiOdJhqPlY7Fi8MF2+o699w4Edsi47BpvNGB5c2wN68aVV8w2N4iL9pcBwB44olmcJjan1ux39po5LV1xYoQXrYsjufZM+N2SNlDy91o2ebc5z/fDI6Y/eVbFOaVoR8+3A595l6D19NNm0KY7ZR5a65slok5SrsnyyZWiUftjaIo+gFchrGPaR+f+FAGAGVZfhPArRj7WPayNssghBBCCCGEEEIIIUQttHsuYeJj2XMt7l2NsY9hJYB/aXH/6wBejfiPpEIIIYQQQgghhBBzA9ksm5e026sTZyoXtbh39fj/SwB3trg/cYY/U/R06sIyEpa5peZkyj22d4/VefYkvyf9sqelvZP5Nj9P3ZGSLKYUIR65eTOptqsCn8TmvO3Rfj7Nf8YZdMNKJTkhH79PNVCqwgwPApYRkGyg27iqX7Wq9YHulPrCnoqfKqefnhfPSvC4GZYubV2ebhyN0ow6Uh3bfykV7ARWzuWNr5Q8JHccTycsTcxdk1LKCk7Hdc+VKXpls/Fy28tbA+x44nueSgqI+z3HszwQzx+WD6bWxelkOuWVueSqc7y1J7Wv8b2U5JfHe64JgGGSyVjjrk9S+CCF+yhMwh4AwEoKRy9QVv7ClfKklyxdAnCoI6znvB2s2GAaz+5LE+zeHV12HznSDPc/8EB4Dj/TZDFMYV6Nz7vrrjgibwRcHm+PBKI2aST2zI6OEwsvJs0JLgM3XkpeyZI12398jxcO7jMzqI8eC+VO7SP9nDeXh+tgFxd+J+B7tn68GF5wgV+IDPYbwdhhUjByFXJhBaStntdeqdepM84IQuhlGy9phhvmPSlqI5bQ5UooLVxYrlQCll5yVe0bTsfZZ4cLlm9zmCV4iOWVvAR0dUVCcezbwffCWOU1d3CQVzigO3fvYSkgdxLbSBh7QDPYedttIQlLYq2Mltau6Dk8d4C48vySefx4y+dPIvclhaXdJL20aymvn7mvCjzj+u3L+tVXhzCPB56MZk+RDFPMddqVYU6sQOta3Hv1+P8fKsvyQIv7E6//wy3uCSGEEEIIIYQQQggx47T7sWzCSP9ri6Jofg4vimI9gCsxdqrsDifthPxyj3NfCCGEEEIIIYQQQogZpV0Bxz8BuAHAAIC/K4ritzF2YuyDCPbKPu2k3Tx+f4dz/5SminzQS28lKV4eLPWxMhTPG5g9np4rw/Ty4JPlqTQpD6E5bZeS89QtbfO8K9oyeI6vsOOgn7nX4KlGSWm6+Kg4w9IMK7NZFfIeHIyP3HtFbbeNrVc7T4qWchTGTowax+iwuqlfwx6zH6evL65rjnzQ9vlMenKdLnguWm+oudLpHFl2LnZseDLoFN5akZLnpWSYHM+TDk2SdHkPPpzQ/+a6Qa5buzlDWlD2DHz4cGsJT6vrCexazPFYvmvlWJ7pgdzxxCvKQXOPr1n+wkKk80yaTpZALVkSwkYaFVXYkV7uPxaLsIbojSza99fE8ZatCuZmI+91Zv1kOdNKkjIdpCix8D2WG0SSTOOhrsPz6Mcdk/JKmHi5ajhjOilH3r699XP5dyAeRLxwsHQTiPuP9qHRPt+X3TF6bNK7+GnOnOVy2wHOfZvy/EjeBvndoUFeAHM9WfZ3xaOjK+HBNAfezlOmFFK/e3JN3s/7rQyTJXl12PrgNrdzzoHnUuTx0vYzy+icdWO4bzmYfVSEVHE8Ja81n8CsXePfYw51hTL1rqFOW2fET1wIeoGJ1h3TyV3kfbSLPU7aDZ0llnyP167Nm+M03gtHamxQGbi5U6LeXJtHfXxhy/rSl4Yw7zdU16M98dg4SdZCZp6ikM2yeUq7J8v+CsB3xsM3AtiCMftkE14wv1aW5RdtoqIo1gC4aPzyq22WQQghhBBCCCGEEEKIWmjrY1lZlscw9pHsCYydJOP/ngDwo07SH6fw/2unDEIIIYQQQgghhBBC1EXb5wXLsnywKIoLAPwwxk6ULQDwdQB/W5aldyL0QgC3Y+zUq2fT7JQiJSPxTnWmTnumPK55J8BTcqNcvHQpr0N8j08qWzlV7ulkj1wZWN0yTM6Pw1YiwRKj6Ji49ZaUo/FLdXrsyimOx2fhWZKZeeS/l4+dG0mmVZi0g1U4eE1iZVe9PdTGnqTE1s9p126jzuzuCe062hdEQSlnV9wmLGG0aVJezU4G7CAptVbkKgQ9L7G5c5GfY/ucZaIpSSbn0RgJgoxOKmynKffwSPh7E49JK33nvmUZV64UqfKCPM84dLi1p7+U4pSx/eJ5HLVyYi/v3PH5bQpbv3Us4umjMPlbQyd7HQOAiy+mRJTKSoL4HunPhjuClC211vCwe/ZZuKzg51opKNFBa+sl5CF0n1ngnqYwix7tbIm6mRcl1trNpCyG28Hurcyll4Yw2wMgmeKka1q8PCfYFh7HdgkZXhKknCyhG1wfRL92bPSyxIxNM1jPqNz+NB6y1zviyYOx7JJfRazz0BzY4aE1g8DDMNcjtWdG5IUV8fvPimuvDRc8Vj07HSfCrgkZDPCCxX15xRVxRJbeXX99CFODWwecnio39e7vrZ9VHYRyul4eg+eeG0fkjqcC9bGHSR4owGSPmhPYsc/XXKDUP7Cq7O+0lrJ81BoN4eZP+OCMaPBYveaa+CavSTyGaK95zrj0O1le24Woi1reIsqyPALgw+P/5cR/cx3PFUIIIYQQQgghhDgpyGbZvKVdm2VCCCGEEEIIIYQQQswb9LFMCCGEEEIIIYQQQohxaj0vWBTFagCvA7AZwDIApwP487IsP2niTRhLOD4u4TzlSdnwqWKrK2UfKHUvJ02KXOl9Tn42Tm47ePVLpfFs11iSbuMd2GyM168AYkMPKYMZngGAlEEmzzidteXA8TzDE7bgjrGK3sG4DF1dwY5XuyaYcm2WdXeZ/uI6eXbh2HAe4LerNaxBlWpQvJ4e39W916zWttJsO9mdHMcOqbnIpvI4b9sOHmybJzX0625Hzi9lJzKCxk3016qUHRMO564NqU0ll1k28DzTi6l43HTWRpG1GzlBatxVGZ9s1Wa1ubeWwmxTpvM1rwkX1g7YS14SwrwYWptXdG90YHkoD9mo4mUQ8O0FpUxnHloU1vZeazeNx+vLXtYy74E774yuR6lQbI/HFq2fL7gzPcNrltS8qmKczttfbHp+yWC7P4OxVaHhvtBnXDzOmtdOIF4LU0sF9yfH49+tndHeHsdAl7Xb5LVrTyemijXp1a79Tm56u7zxEKqy9HG1J9k95Ipw2L7M5FJlY+Nn8bufNf62fn0I05gchm+LlcdKyjyXNzVTr1a58DBcsCCUdYWtH7e/9zA78B56KIQPGKNcHtzedf7jCIg2H3oKetkGIoA+bvCEPcmI664LYbZfBwAXXNAMDg+sbIa5Ga15N1MkIeYctbwJF0XRC+CDGPN+OTGDCwAlgH9ukeTzADYB+BaAC1rcF0IIIYQQQgghhJi9yGbZvKVtGWZRFIMA7gPw4xj7+FaM/5fij8bjnFcUxeYTxBVCCCGEEEIIIYQQYkYoyrJsL4Oi+DKACR/GXwXwxwC+DmAbxk6W/WpZlu83aXoA7AXQCeC3y7L8vYznlFMta1EUKG+9cUppZpKbfm8XPvv5+052MYQQQgghhBBCiNrZfOWV2LJly4kO08xZNl90UbnlYx872cVom+LSS+8ry1IHmYi2zgsWRfGDGPtQVgL4GICfKMtydPyem64sy8NFUXwVwDUArm6nDEIIIYQQQgghhBBC1EW74to3jf9/H4C3T3woy+QbAK4FsOFEEYUQQgghhBBCCCFmFbJZNm9p12bZlRg7VfZPZVk+f6LIhr3j/5efDCGEEEIIIYQQQggxK2j3E+iEX+tvV0g74RE8y5d0o9FISjtb0dXVhQt/4otTLdeMsfD0vpNdBCGEEEIIIYQQQghBtPux7AUACyvmM/Gh7WBO5NHRUVQx8P/N/zO7DfwLIYQQQgghhBBijiIZ5rykXRnmnvH/n1sh7XeN/39nm2UQQgghhBBCCCGEEKIW2v0E+mUA6wG8tiiKzrIsh0+UAACKorgMwd7ZHW2WYV7wlXvj75aLF4cwf6g+b9XRcLF9e5zJpk0h/Ad/EMJfNFLUu+5qBne98EIzvJWijJjy7acwD5pLTDy+t57CXeea76nXXBPCGze2/H1085VRkt27Q3hn4hPrs8+2/v3AAT/NM8+E8HPPhfA73xnH477I/QPCn/5p6zSrVsXx1lODXdj3ZLi4//444j//cwgfPhzCPB6uvz5Os9nxAmwLsXdvCPMg5HgHD0ZJRjdd3gxv2xZ+5/4CgF10kLKvL4RvTBz+9Nr4Ix+Jr08/PYS52F1dcbyBgdbhlX00r0z9ousdO0LYDsKzzw7hfftCeGgohFesiNNccEEI0zw42rM8isZteexY68cA8bSaTrZuDWFuY9t03MY9PSG8Ek/GEXns3n13CN93Xwg/9liU5BgV4lv0+37EPE1hXlF6TDxeTTdxPO5X28Cvf33L8De2x9YFeNjYPpvAjnVuVw73mIJ7a5LNj9NxmPNesCBOc9ppeXlXWRer8PGPh/CaNSFsl7HVfYfCxT33hPAjj8QRb7+9GRz95Ceb4R1xLHyNwrys0eqL97z4YosSj7Fnb9jfbTSeMzy3aWuelMb20wSLFsXXz5Ml2ePHW6fJ7a+RkfS19zvnz/f4d7tOp8Y7w+3FdeX24tcLmzeXoQHfP9Vo5t+V6dUqKhuHgbiszJIl8TWXlcc475/9XbR3AfFmwY3H7woA9py+thnm958ddvA7pPqP+5nvveKaqfgAG+OOu/y2r5Lfl+8J+fH+ZOHmSs0Rb46l5ksqv+uua/27HZ/cLgsXht+vuMLP+957QzhVVjteJ0iV25tXNm8ekhwvMVRxyca8fv7a1tAmqfWT68fvjjwP7LrjjWm7FvP7J+fBfWTnOZO7Htv3a688e/aEMK8bq1f5bfqNbaEdbV946z6X25bhssvG/j9FcZgQs4Z2T5Z9evz/SwH8Vk6Coij6APwf+unjTlQhhBBCCCGEEEIIIWaUtv4GXJblPxVF8TUAlwP49aIoTgPwO2VZHmkVvyiKmwC8H8A6jJ0q+3xZll9tpwxCCCGEEEIIIYQQM05RyGbZPKWOXv0RAHdj7HTZLwP490VRkO4BP1gUxSsAXA2ADz3vAfDWGp4/74nmXkqDxfB54qeeim4dpPPJLFni07bOSVsAwY0pABwy97ioXLpVVv7CGho+G0wywMaxWF6wYEF3olSt4SPDCZVMFM+Tq1SFj+nzEW1LJGVgbQ73JRCfv+Z4LPezY4PPUvMZaXum+gh95+YG4/PkRmvH/dTVFfpoOvcM7yj4ifCkbVGdrJaQ2zLVL6xZYzkr94vVN/DYJ51Nt9GHdHWFQ8BV634y8GQWGDLjk9eohx8OYZIgj3A7ApGQk8NGlBSta/zUp028xynMItg1JLftZC0xEI8HmmMdHf3w4P7zpB32HktKcvvfzr8c2Zwn75steG03aa3xNHBPPBHHozHFPWvde/NYOUjhPqecFl5K7RLgFdWTQk0FXs5z5DMpUuXx+sXmnxrvHimJb64EbqbgNuIyWNml946Rkjx5El3Ydkx1hkOOnBWI1wfe7ix1tn8d84DJHav8XDtWuf25L7n/Um1Qx7tRlXbhsqbWGm/v8WT5KVJtzOOJf/dkyicid/2086xVmtz9M7VvM6n50i6pscZtmbvmcvuk1iRvDOh7kZhvtCvDRFmWOwC8GsAjAAoA3QBehbGTYwBwFYCbMPahrBj/bweA7y7L8qlJGQohhBBCCCGEEEIIcZJo+2MZAJRl+Q0AlwH4NQBDCB/F7H+7AbwHwOVlWW5vmZkQQgghhBBCCCGEECeJ2g5LlmV5FMB/B/Dfi6I4B8ClGJNmdgB4BsD2siy3JbI4pWGHawAwOBjCjcPs2WsLhVntitgDIrllOma8Zg5RmOVLfNp2pSkfK6hYDLnBxOPTwH0sMbPn+fk8MEubWCZjyr2CpJunnRtkTpEkAbE6LveoOh81TnnfqoLnnZGbBzCeme6hNrHuqR56KISpssMk/eu0rnLYxSdj5ZqeJy1bWIbOXKckDnVKM2xenqzFxvOUy33rw4hvpNwIpgYUuzNl16s8AGw7spdYunf0mP93DC4ee1iaSbxxnPI+2ttD3pdsx7BGgSXaJHPsMB5119L60EVSSSvDZHkdO008aOJxiVh2xz6jzrvzzihNg/ucwhuu++4oHk8/T8Jj4X5OSTg8mZqVVOZ6zZzNsEfA888P4RWFEdWyW0IOf+ELUbSDDzzQDH+Tfn8cMWyugAW2y5EH94WdI553OE6TMiGQksZ5EsjUWpzr5bLKeu6Nu5Q3zNT45Pqm2uhkkyvBstsDt8PSpSEcedM7aHRSnntVs/ktuy54w+R1yPO8DMRrV1UZ3mwitw72HZPHmjevqsrlp5Nc2ZxXdm4H2ya5pOSt7cJrIXu5TMFzjstm/x2Qkmh65JpSqDIGvD3Ftin/2ybl/ZVJve5XGeOnDLJZNm+Zll4ty/IxAI9NR95CCCGEEEIIIYQQQkwXtcgwhRBCCCGEEEIIIYSYD+i84CyBZZcA0NhNAkmW4bH00khK8J73NIPD997bDBv/bZHEhE/ZDzphe80yzB5bcOeM9aiRBTa2bkVL+AyxdcOyaVMz2L+BBKDmbPFpp3U2w6xI8Lz6ANWOWOfC8glW5LGCCwB6j5GUaBsplq0Mk70Ckh6g0pdvq7NgvRifseb+s+fv6d6qVatbJgfi7kwd886B2xQAFi0K4ZSEh4cKH7OPpM4pqWXqvLunm+Pz8jZvbldqsO41ceN1U4ONzpDH0RQ87VN92dhFq80OkgHx+AZiyTXLslO6CJJrriQZplUG8Ho1yBPQSJP7KMwef1ngZ+fYeSzxI41gw6yLa9Zc2Ayzh0JvfbKkJGuetC0lyfPkfrlpThY8f1csoV66x5hA5X3y7rubQZZdAgCPQt4Xn0QMmyVYTeG1qBev/3IlhnVI4zyZTUqKlpKM5kitcuU8Nh6XyfNEmSsf7eho/2/H7bad7T9uO97jOjtIHG73FF5UeM00XtF5z+vp6XXLwHC52cueXTeqSvRaUbc3TCbXc6vF87roeS9NUdUDcZV2yS2rF68O6pZeelQxXZBLbppcUwpV4PUg9/0gt+05Xmp8SoYpThVmweuvEEIIIYQQQgghxBxDNsvmLW31alEU366hDGVZlutqyGfKLHj1zbj4nPAXtX/4/c0Y2n0U3/+eLVh7ZjeeP/4ibrx6Bd77sxdOSju0+yhu/I17se3Dr2z+9tsfeRg9izrwK28K1Xnv3z2KX/3zh7D3H74HA2d0TspHCCGEEEIIIYQQQswe2v0EugZAOYX4BYXL8euppK+VRZ0LsPUvXhH9NrT7KK69uB83/8GVeP74i7js7XfgDdcM4uUX9zu5+Ox8+nl8fss+rF6x6MSRhRBCCCGEEEIIIcRJp47zgsWJo0RMfBybaroZZ9HCBdi0/gw8sa+a0YRf/LMH8d9+5gJ8/3vuPWHcxo5vxT+wTR+27/X5zzeDw2yXBQCfW2MLYYcQw7XppTBb2Vlj0vSxDR6yFYQrrogjWjtj4zTIbgwAYNmyEGY7MmzDybNrBsQGM848M7rVT2XtWxOszaROxxqv6rXCVWV31isHR+OI95BtMu5/Y9/pEBmUOEq/s22mXmMjLrJjkjKG8+ijIcx9vnBhCC/yP/6mbH7UacfEFpuHHQ8NC5ePbW2xzZZe+h0AhrvCvehsqDHWNbrxkma4cYx6hg0t2UYhO1fRPevj2zEOwd0CAA2Mtow3WrMvF7ZpkbT3xuOQ71lDGNyWXHcet9xWNj8aqx1mDVq5ZUu4IFuHg2Z9WUM2zNhm1RCF2ZYZAPQ98kgzvJzWZlvWFTf2NcNHaE3auzfEefbZOG/u8pSpPM9GXyqeZ7vErpHempkbLxcet3as8r2NG+nebWQvztrv/PjHm8F9ZM/ua+a5np2ylSYe2ynjc+ZmRLoklsxoKhw/HsLcpnbt5CU8ZYfG65eUTS9+Fq+zKdtfqf737nG57TrmjdVUGTheygZp7lhNjUmPKraQuNzWBCybHOvlN7ndtMbZlxe7909g7URecEEz2E8GVAcHw37nZQXk2z+qc98Hqq013H881qrMHYtnmy5lz6luW1ZVxlru/GVybQGm8kvl0S7cljx3UmsAv3qk7OqyidO67Y9VIbK5O0JvJvsORvEGBpY3w93Rvxj8wc91t690Of03nXYGhTgZtPWKW5Zl1htEURSLMPa++VoAv4Sxd8zfK8vyt9p5frs8P/wiNr3tDgDAOWcuwmd+L/7wc+C5YTyy6whecWnrU2WPPnmkmR4Adu8/jl9505jJ33/60m6cNdCFS9f3tkwrhBBCCCGEEEKIOYxsls1bZqRXy7J8HsDDAB4uiuLDAP4ZwHuKouguy/JXZ6IMrWglwwSAOx/Yj0t+6nY8vPMIfv3N6zDY3/oL/LqVp0fpf/sjDwMAjh57Ef/5r3fg//73l01PwYUQQgghhBBCCCHEtDDjn0DLsjxUFMUPA3gEwC8VRfFPZVneOdPlSDFhs+xbOw/jmnd9GW+4dhDHh0fxM+8fkwv+7lvPwyXr/BNjjz55BI/tPopLx0+d7dp7DJf/9B346v+4xv3wNumI/G23hfBnP9sM7h8aaoZDaIzLKcyeF2wns8CLZSRrOc2118aJNm8O4XXkj4GO8gOI3ZM/80wIs5wKAB56qBk8TPe6SMpkjy02SPKEiy8O4UsvjSOee25IQ+eBVyfkcB0bw+lBLmodcqOLLgrhJUvoxi23xBFZFsay1SeecPOOpJdnnx0uNm6MI/I9Jtd3+pEjIcxaIQDYEeSj3ZRm48a18LAqw6nCSmAgLirLLGxRWR3HktjeHpIvGtn1MRIrd3LBjYYjHjehZ3q5sFYywwXftcuPR/qABp2/X2F1O7DX42kceaYlJTfiPLp3D4UbtCZNmue8rrHGIXW2n9uLO2zTpjgNawW4Hazuh+cC9x9JjwDgkk99qhnuJc0Fy9ifjnPGdgqPkCx+5eLFcUQaK2tf//pmuK/Plzx5UjK7BnkyTCtty5Hu5a5vNl4VyVrumIzSbCUhJe+R1HcAsIOkl9xnOxDD93gv3GDi8Wrax6YH7ELkkJKG8xrlTRG7jrE8sor0LzeelbvnkJJn8dRMySs9mZNdNvjakwdVlYtVka7nysq47iynsvtifx/Nke20P/CDbKOwXoz3bfuOSfs2N8SKFcGcgB23ObJXwJfy5sJtX/UdzOs/lkTbdZAl0SmJZkrmm4M3bqdCak3x4PWFw3bL9MpUpayp/vMksVXbhOfSGWfkpck1NeDdS71CV1mbc4mkl14BEI+T3mWZ2mkit35MrkRbiLnCSTkvWJblU0VR3AzghwG8A8Cs+lg2wXln9+A3fnQ9/vBjj+Jj//Hy6BTZ0O6jbrqL1/bi6c98T/N6zY98EVv+57XyhimEEEIIIYQQQggxyzmZ4toHx///XSexDCfkHd/3Erz3E4/isaeO4pwzu0+cQAghhBBCCCGEEKcGslk2L5kNvdpaNzQDHL7lhkm/XbdpANdtCmfhFy1cgCc++ZpJ8dYMdmPbh18Z/fbbbzm/5XOGPv7qExfGen68Mxy220cyJxZn+WfbAHZJYAWjfDh9NesdrrkmhF9tyswSKJI5WilTJB/jsPV+R/KVHpZu0fn0w0bS1eO5ZrKLk+dSLOGiZWB9aLGUF50qrDhtf7jYQXW4/fY4Io2B4e1B4GX9i/Kp6EhowLrClL6AdRHWeym3MZ+/5r7gBgJiORyd+e407oQGB0Mbt3tM26bnangSJXsdKeV4bJhxMsJ59PguBfeRqoXLc9ZZod4r1vdFaY4eCz0YfYq3bcwSzWk8454tjfN0CHY8eZqnFSvieLwOXXVVCFM7jG5ioXk8JPuvofayZeC8UxoCWmf7br21GebWtmvu42hNN3vGBNDH/Unzop8koj3rY9my41g4OaY53Nlh+tLTttSxyFHejTbzS47Bm28O4Y98pBlk2SUAbKUwN6OV0S6nMHu8NCJ29LHs//rrQ/iss7ySRvAQtJKnHNlOSnprlwovXq5MkZ/F20aud7/ce3XIR+1rxQSeNHm6yX134K2Rw/3YH0ccOhjCjz0Wwjyg7HsNL4x79oQwewUG4nc6ymPF9aQFXRP7hfWW0pQk0Bs3uTJXO7698Z6bH0tdrcdDJuUR0JtXKa+3jDfHpkJKTprz3NT45Heo3DUgFy6rV4c6ZJgrlvn7yNHFrWW+vOemTIVwWe0+7XmkrqN+EZ69GDNYF/eh9b3EoPE8hNpHManXQCHmOlM3ylAfE/8iOpKMJYQQQgghhBBCCCHEDHFSPpYVRfH9AG4AUAL4xskogxBCCCGEEEIIIYQQlrYOqBdFsfrEscaiAugBcB6AHwDwI3Tvr9spgxBCCCGEEEIIIcSMUxSyWTZPabdXhzB2OmyqFOP//38APtxmGeYHxp7EMNmvImtFOEThhKmSyGbZSnOvwYL0q68OYbZhwTZaAOCcc0KY7I09vis+nDgwEKzAdLPo34rYly0LYbaTdf/9IWxsluGJJ1qnsb7JOR37puYyGEMRnVTWTtLyj06y+FYBtjfFZbCGMAaD+b7OK65ohvsTttaieryGbOtZW3Lcfymf72x4gO1KcRtbQx+rVrUum7GJsOAF99aUsXZLvCZKmXPhez09wWJYV0/8N4BHHgnhJUvCeLd2J8jklWsC7dln4/nC9zZuDM+dZLeJx5BnSw6IxtC0wvYI9+4NYWM7Khrv3GlnnhnH47FG69BoT5h/O8gmnM26Y31Y5XpME7jHp21bkeGdPgpfdc89zbAdZmwDi30dTxqO27aFMNkj5InQaSZFf8poigcPqFzDKKnJONte/Kgv9tFYe9JEY9uebOlyjYl3nhPuY7t5QLxP8r3MhYyni+2WlP2wCaxdI34sm6pkm1KAbz+Ht8UUR8hIRmqrSNnj4e3CLldeGn4W23izW73HyRq23K5sj8mWh5eeyE6ZtSvGayu//3CnW0NZzzwTwrQpHea8APTws7jBqcNWmHmweEN4v0ttQ56Nvly7Ygy9bgKIt5Eq+a3sS1j7pUqtWhX2Hvv66tms4jZJzZfUK10uVd6hPBOidnxyG6fsc3mk8uaxf8YZIbxkSQinbMmlWDkwHC52DLnxurlQ9LAzzgj/crK2JXNtPnp9y22Xql/u2jXcF+ZilLd5rdlHr478ntvf5dt04/fPgYF4jnn2MtluoX0/n6hTUUCIOUkdMsyiwn8vAvifAL6/LMsqH9uEEEIIIYQQQgghhKiddv/+dgfyTpaVGHNKtQfA1wD8Y1mW9o/BQgghhBBCCCGEEEKcVNr6WFaW5XU1lUPcfXd0+W0KG/VRE/8QbUzDyo0uuCCEN28OYZZhchjA8GCQiLHcjNWQQHwkmY/v9qbOHXOiRx9tBh830broXHSDwqvuvTeK18FyA34uyxgsjq/sBksbAfeMtJUDRDK6z30uhFmP89GPumUYfe65kJdtO5bIskbh0ktD2MrcWCrp+coGfL/s3NFWc8H3OD+WDgJYwdLQZ0MZRtefF8XLUY+dN3gouh4cDJIJrh4141gZlgyjJZ4+AcDixZ1oRUq64GGlEyxDaAzRrLdn+Vm6x/oAq7vasOHEhaiDhx4K4a9/PYRZbgjEY4DH8TXXxPGcMTnS5UtheCqlpAtr1oTxxe3faddFHgPPPtsMLn/wwfBMM6BY0DNEYbMs4hhpedd86lPhBlfC9rk3Zy18L6UP4XiezsY+J6Wn8Ujl1y633NIM0oyI2h6I25972U7R5RQeOPvscHHttXFElqNVkGF6XWTxJId2aHhyRNvcPGdSFgA8UtIxLivHs/IlLhPnkTs0eImzy533nCrDLjVdcmEpWWo/iLb0EYro6ZeAuPKcgS2oo4/tufPOOB6vf55pBtMo/KjuSMblmxdoV3JoJcPtmnBIStWpgrn9nxr7Tta1LItV2qFKnXLlh7nPOXDgxHkcPx5fr3YsfVj2HAjvaiusfpehAvK7+3F6XbFWEHjN5Xu8hQNxnbxtNlGcbDqPhXfgHjJXkZL5587FPXtDm9CrEIA8CTJLMoHwKjPvdWSyWTZvOSneMIUQQgghhBBCCCGEmI3oY5kQQgghhBBCCCGEEOPovOBsYfHi6LKfpG5r6Xc+GZzye7fqVa8KF1byxMeTN24MYZLJ7XmB/WkCe0jz4qnuAN9D0oYNsdSum8/y8tl1Ot984cc+FmfuSSrXrfPjeWF7Xp7PJ7OMM/Os+STvhcz21o034rkGA9DBkgszNiJPl1x39niZknOkjgl7XrY4jXXN5kkvrX6C25IlIEaGmXWK2Ug8e1myRo/pXmwy22UFcuPweDTn5fv6wlxIyUu4ul681HyZdO6f4UxS3kxnCpZy8/i0deAxzuU2Mm9ekw71BM+Wu4dCFCt3YDkHk1IS9kSKp9jTbT+vhbzIvf71zeAAS6oBrKK1gv/ylPLOuJpk4w0uEGtygVhDbD3eMZ7GzzYEtz+vhSmtSGJenAxYesnmCYZMPN4z11DYeoZef+654eKNbwzh1742jkjy5idHyCPgwRBldY+/B3heKVPxGLsNcZelFHme9DK1bHiySSutcSwXTJKIclm5PN4rABArDnMVyFXUv6npkrrnwcsf98uk9wN+J+BGYW/ggK+35QazZhpyG4L3UF6nvU4C0Mkyf2qgXusRe9CXhU2VFYuN90oq6+igndEZcNsn3pMa1A7WM3HPquBV0PNGm/KGyc1dtX1yzD5YuKw8tFJrkjd/c+eLjbd0aQjzq0N3B5nIqChli8bKdtohEoVtUOVX8zg2L2vdgzQGqAP5/RDwX9VSHoO5eKl/S0TmXqh8nYl3QjZRksuKRUHiuWKZGWhU+GHyAZ7aK+QNU8x19LFMCCGEEEIIIYQQYqrIZtm8JatXi6L4y2ksQ1mW5U9NY/5CCCGEEEIIIYQQQmSR+wn0LQCm04+FPpYJIYQQQgghhBBCzEKKomgA+AUAP4Mxaxd7AXwCwH8qy/JIZh7fC+A9AC4FcBzAFwH8h7IsH2sR9wwAvw/gBwAsBfAogD8F8OdlOf1+VqdyXjBHbVxmxLNxprWSF/7YbdOZfVssXNTXDI/s3BndY9U6W0tgyxANtkuGWM/euO66cINd3QPBjy8Q2QrafyzYYRgaipPs2RPCbDvI2mDia7bLYE+mrlmzuhnuveKKcIN9RttCeD6Qre2vZ54JYbZJYwvrwfbQqvrHZrZtC2GyQ2S9azSWLQsXbNOJ7XsBsT0dtj9n7UARox2tbQt0WxtTfNOz92aNZbCNN+4La2+F+5NtRhgbDaM5fkcem7SWBlIGMxy/3mz7xA4nNl+VsvvD12xuyjM7A8TNOrom2JZojAzHEb2xljum64Yra23YMVxBNphibdyQHb5dQ+FnNqvD/QDE/XQksTVzE3FxrEm9M88MtkdWs51HbnszX9aSXcUeKqCxsgMuOtvaWnnrrSG9XWvYhlrKrhhXJGWIhtv/7LND2JvnQDxfUkaccuympQy1ZEIraWSnbI2JxzbLyMoSBrjeAPAjPxLCiT1zz4Gwfu5wTOGsNkPawzZDjik4m8azg2ib1Fuvcu1x5ZqpS3UzD13PxphdS738UkN6yZIQ7uwIe0rWfjIFUjaF+kfo5WgbzXrbKPxOwOsnv2gB8Xz0DKKdeWachu0bcsNefHEcj/Pj90/ez+1ez4su583vIQB6+Zo6c7RvLabMli3xNW+uN+TZLIv6jO3C2fXAG6yGToq3YllfuBEZrPLLMzgY3rWrmh3lJrY2/zz4FZOHpDWXybBdsVxba962kYpXi1Egzy6nxRvH/JJhXwR5oaV/BHWbd5luel/31p6qSr1oHFcwdsdTpzu1ttP4PnosrkMH/VvCs4nZrp1CMSf4IwDvAvAZAO8DcMH49WVFUVxflmXCkDdQFMUPAPgUgK8D+FUAZwB4N4AvFUWxuSzLJyluJ4DPA7gMwJ8AeAjADQD+PwArAPx2nRVrRe6UfdUJ7t8I4Jcw9hHsUQCfxlgD7Bv/bSnGvhy+AcB6jH0L+iMAN0+9yFPjm6/82IkjnSRu2v6+k10EIYQQQgghhBBCVOEUsVlWFMVFAN4J4NNlWf4g/f4YgA8C+BEAf5tIfxrGPnrtBHBtWZaHx3+/BcB9GPv49dOU5G0ArgDwrrIs/2T8tw8VRfH3AH6zKIoPl2X5nZqq15KsP7mVZXm79x+AjRj7UHYMwNvLsjy3LMtfK8vyb8uy/L9lWf7rePjXyrI8D2OSy+PjaS4az0MIIYQQQgghhBBCzD7ejLGDUB8wv38IY8KKHztB+ldizDn5X0x8KAOAsiy3ArgNwJvGP6hN8KPj+X7I5PMBAKcBeNNUCl+Ftj6BFkVxMYD3j1/+cFmW/3yiNGVZfrgoiqcBfBbAHxVF8aWyLL/eTjnmAx3miPwgn5dlf9QsD7LySub1rw9hlvMA2H8wfCPdPRR+5xPIVvLEx20PHAhhKzHzlJJWPsGuhS+44LxmuPe6hJ4jcew/go9P8xFpz282EEsX6j5D7Jyzb1h5JV9zn9m6OhLNJ/eF49Ept+JcvUlHsbmjOBMO23I70sZJnZ7S5RJ81NyV0KQGXkoT5KUhbNG4Gim5A6fjKctFtUPBly13RvF6eRx7/shnEh6TPB644kBcPm6gDRuiaE8eDLIUll6y5NuqIngNyZWVpWApZ8eGIO9ZyfK8hGx5+S23NMOrjYT8aQo/zskpvPHOO6M0DZZDsaSE1yrAn+z2d1v2CVKaGX5uSg/njcMK8y/VgSzD3OiEgVh6iRtuCGG7Z954YzM4uuny8JxtcTQehzw+uajfldiOeYrYNaC3J6x3vDdz3nbsM6m1vgrclawQTKl/GbsEcPm47lzvQ4et1Kd1GluGbhY872qtl2/Y/XM618ytW0P4kUdC2HbgffeFMM8xG4/LzvFYG2fntSc/43UMiAcyL35cbgtrkLljzDsmy+qjgbKmggzzttvia37uDa9zk7ly2S99KYQ3b47vcVumNhUeQ5zGk/eZ/DopTaeZwKM9edLSfuwPF4tDeUbR3SL2GNb6QbMMh/fHP3B99x1sBiOzHWYe8btaylyFu16l9Ki5i5z3YJs3789ePF70AX+enn9+HO+cc5rBBqfx3q2Bai8tPBf5RdKY5mBZqJWMutDa0G3Xk45Qj66u+D11gqrSYjFnuAJjCsGv8o9lWR4rimLr+P0TpQeAu1vcuwfAdwM4D8CD47bRLgfwtbIs7cj66ng5TvS8tmnXmMO/x9hXvTtyPpRNMB73Nox9rPvZNssghBBCCCGEEEIIIaaHlQD2lWV5vMW9JwAMjNsZS6WfiNsqPQCcNf7/JQAWtYo7/vxnKO600a649rsxZqD/zhNFbMFdAK4bz0MIIYQQQgghhBBiTlG3Q5mTxEBRFOxZ5X+VZfm/6LobY+a0WnGM4gw7cSaOv7bK45iJk4o7Ed8/TlsTRTseN4uiOIyxL36/VZbl708x7XsA/C6Ao2VZnvCMbVEUU/YOWhQFyh/97JTSzCQ3bX8fPnvvF6f9OXN18qa8TgnBVBnjueNrLs2fmZozc6lNqqC159RmOtcTIYQQ4lRj85VXYsuWLcXJLsd0sXnz5vKrX91y4oiznAULivvKstzs3S+K4gEAy8uyXNHi3icA/BCAhWVZtvxYVhTFnwD4eQAXlmX5kLn37wH8GYB/U5bl/y2KYinGnEV+oizLSbbJxs167SjL8rvyazh12v0Xz8SXvksrpL3E5CGEEEIIIYQQQgghZhdPYuz0WSvLpWdhTKLpnSqbSD8Rt1V6IMguDwB4vlXc8ecvRWs5Z620+7HsYYx5RLixKIrzThR5gvG4N2FMwvmtNssghBBCCCGEEEIIIaaHezH2/ehK/rEoii4AmwCc6HjdveP/v7rFvasAHML4t6GyLEcBfA3AZS0+zl05Xo5pP87X7seyT47/vxPALUVRXHiiBEVRbADwzwAmKv2JNssgWjCKRvO/uQrXwf7Xbn5iblPHeMiFnySEmD/Uub8IIYQQ4tSkLMec3s71/zL4O4wddnq3+f3tGLMf9jcTPxRFcWZRFBuKomC7YrcDeArA24qi6KG4l2LMlv0ny7J8geJ/bDzfnzbPezeAEczAd6R2Dfz/fxjzZrkOwDkA7i+K4m8B/AOArRjzUgCMHZO7FMAbALwZYx40AWAHxrSpQgghhBBCCCGEEGKWUZblA0VR/BmAny+K4tMA/gXABQDehbEPYX9L0f8AwE8CeBWA28bTv1AUxS9g7KPbnUVRfAhAL4BfBLAXwG+ZR34IwFsBvL8oijUAHgLwvRj7pvT7ZVk+Ng3VjGjrY1lZlseLongdgFsx5gr0NAA/Mf6fx4Rxv6cA3HgCXasQQgghhBBCCCGEOLm8G8AQxk57vQ5jRvj/BMB/GpdOJinL8pNFUTwP4D0A3osx+/VfBPBrZVk+YeIOF0VxPYDfx9iBq6UAHgXwTszQgat2T5ahLMtHiqJ4KcYK/AMIH8NSfAbAz5Vlubvd5wshhBBCCCGEEEKI6aMsyxcBvG/8v1S8twB4i3PvZgA3Zz7vIMY8aP78FIpZG21/LAOAsiz3AHhjURQXAPgxAC8HcB6AJeNRDmDMWNuXAXzUugoV9cP2leaSDZbptAslm1Ozkyrj82T15cmaV95zZ0M7VGEurUlimvCMY3QkXks4TSpeJt441vgUQgghRC4TNsvE/KOWj2UTjH8E+//VmacQQgghhBBCCCGEEDOF/nwqhBBCCCGEEEIIIcQ4tZ4sE7OHuSojmQ0SMyFmG958tr/P1JzxyqM5m0HNUsJZzRzSJMzVPZM5WeuBEEIIcSojGeb8Ze6/HQohhBBCCCGEEEIIURNZf9YuiuIVfF2W5R2tfq/KRH5CCCGEEEIIIYQQQpxMcjUgtwEox8MlpePfq8L5CSFqICUpkjSnHlLt2K6Hz/kgCQPmrqy6bZlp7ln8VLzZLNGsojWwabh+Vepag5x1rs6z3HKfjPrNpXk+H9BeL2Ybda87ueNY5iGmn7nkvV6IupjKG2Yxxd+FEEIIIYQQQggh5iWyWTZ/yf1Y9ldT/F0IIYQQQgghhBBCiDlH1seysizfOpXfhRBCCCGEEEIIIYSYi8xioyjiRMx3N/GyxTE15qr9nfnIfLQ/lkOqrqdSO0yyoTVXz+a3W+4a7Iq5zGabbjVzSs0d0ZIqY0DvUELM/38rTSfae4TQxzIhhBBCCCGEEEKISszVv4uKNPpkLIQQQgghhBBCCCHEODNysqwoigsAvA3ABgDPA7gdwP8uy/LoTDx/vjLfjxKftPrVLR2q+08NTpmmVfo3jXVI9fO0HgGfRolYu+XObZPZtgbY8nhlnUtH+7PbmMdTlfmSK92cTvlhqty59zjc0+OnqVIP7zmpvE4hueZsQNK/cXLXgMzxWWX9rNTeufMqVb9TaM55fTEfx/pc2rfbpuo770yN/ek0cVAzp9S4EfOStmZYURSrAXxq/PLPy7L8yxZxXg/g4wBOo5/fAODni6J4dVmWu9opgxBCCCGEEEIIIYQQddHu5+jvAbAZQAng/9mbRVEMAPgrAJ0t0p4L4JMArm6zDEIIIYQQQgghhBAzSlnKZtl8pd2PZa8Z//9DZVkOtbj/cwAWY+xj2lcB/NH47+8BsBHAlUVR3FSW5WfbLMfc59ixvHiZcpPcI/sna2J71YiOrufKfur2PJcrI8rl8OGpp+E62fo5jZd71Dkp4/PaLre9q0hPurry0jB2vuQeQ29THjcbjpPPBnmHWwbTvg3uF7rXSPQXt/FsWJ+S84XHIRc2tZ5XkQ9WkRnmroup+evdS8UbGGj9nDo4eDCEc9fIxPrScOZ2lXHXWbMSpu615mSpdqZ1vcoZ01X2l6p460GKCmtAJUl7FRl13TLMOvb6OvPLnQiJeLl7YTbtvsu0K29P5JE7l2fDe1I2OWtIKl5qn61hfLlUWF9mswkPIWYz7b4yrcfYh7Atzv03jf9/L4BXT9goK4riSwC+Pf78HwKgj2VCCCGEEEIIIYQQ4qTT7uf/5eP/H7I3iqI4E2MG/UsAf8vG/MuyfALA5wAUAF7aZhmEEEIIIYQQQgghhKiFdk+WTegtjrS4dxWFP9fi/nYANwFY1WYZ5geZx6Bz46QkJVVOh8+UY7aODjomPJNakXY92dWRd67siqgiHfIkZkDi63kVCUcNVPJEWEc8pk35yxxyWtQ+FSuYM47rGFqOKjQ7TXaGqUXXkwHlSgmryCtT8VLSMb6XisfSy+kc5FyGVJt4mHjeuKtdhlmzZ8Q6LQ1UJbfJK0l/qqznbVZq8l5YQabkzZHUnK0wjiuZXKi6bnj3an6XyXpmHZwsL541rwGVXsqrzKs2zX7UXe0qz8rOuw5TCt47Qd2SzNz3iCjvVubDJ1O36Z55/947jmyWzV/aPVn24vj/T29x77sozpdb3N8//v/uNssghBBCCCGEEEIIIUQttPux7Onx/29ocW/C+P83yrJsZeF88fj/j7a4J4QQQgghhBBCCCHEjNPux7L7MWZ37LVFUfRN/FgUxeUALsGYvbLbnbTnjP9/T5tlEEIIIYQQQgghhBCiFtpVEn8awBswdkrsX4ui+K8AFgH4fYrzCSftlRj7mPZwm2WYH1TQs6dsbOSalpgp2yd1eFeulZkUlk+nPbQKTGvb59ppmW12THKfdaoYX5gOEmuXx3SaoquSH9tUBMxfm3JtlnnhlO2T1O9evFy7aSlbZIcPt47HNspSZZhqnBPh2WmpyEztk+2SW7Zcs1QziWcjM7IJVnWi53RgFXuwVal7QDlr5kzagXKZKdtf09l/NeRVySZfZn5MHXlnv8tk2Cmbyb05aQ/SeVbKPmlkG9nLIHetSe3HuXt4lXfMGXovrcPm9any2iybZfOXdofwxwD8CoBLAWwG8Cm6VwL4QlmWX7GJiqK4EMC68Tj3tFkGIYQQQgghhBBCCCFqoS0ZZlmWowBeB+A+jMkx+b+tAH7cSfpWCn+xnTIIIYQQQgghhBBCCFEXbR+OLMvyyaIorgRwHYDLACwA8HUAny/Lskw8968ADJdlOWMny3Y/fwDvvu9DuHf/I1jYOA1rTl+OD7z07bj0lndhQ+8qHHtxGIs7FuHnznsdfnLtqwEAH/n2F/Cr938YZy1aimOjw/iZ9a/FL254/aS8b9vzAN770Kdx83W/1fztLXf/EW4860q8cfXL8VP3fBBb9j+CEsB5i1fiI1e9O87AuinOkNZMcgWeSRWP4VVIH4POyKCqjKFdl+jcF319fppcWMpU5fg2u5ZPMK2qiCptl6sJ6umZenly50sKLg+3cSKvXPlgziMnPaqKtmYmJUY5ZNbBrl058o6qUrTcPJhKruZTbuf5mteDlGQj1wV9rgzTKwP//txzcZrjx0N4cDCE7ZqU67q+Xbz1xT4zc830qEN6UoVcmVPuHGm33FXmUiWFUd360Qrpa5G5VSnDbJP55+p6Z7NuOUWqDrOh/aeTGapfle5PpcmVYebmFzVDu++OqcxzG6LN/arS+0FmdidrLxRiNlHLyjn+UezW8f9y4v9iHc+dCmVZ4g13/Gf85NpX4+PX/AcAwNYD38aeYwexrmcQ99/wxwCAbx/ejR+4479gtCzx1nXXAwDetPpa/OkV78Azxw/h/JvfgTee/XKcffqyKT3/j176NvSe1g0A+KX7/gJ/+q2bxz4rCiGEEEIIIYQQYs4hm2Xzl3a9Yc4Zbt3zDZzW6MA7zr2h+dumJWtxdndsqHhtzyDef/lP4YPf+uykPJYu7MX6npV46vkDU37+xIeysizx/IvDKIpiynkIIYQQQgghhBBCiOllnp85Dmx79jt4af+6rLiX96/D9kO7Jv3++JGncezFYVyyZE3LdHfu/SY2/cu7Qvyje3HjWVc2r996zwfwL0/ehwt7z8b7Lv93uGvHn4XE0/g5OvcY7Qsv1Ptczu+006aevjN1czplmHX3hedtLnVcmo9lJ8rTrtLDpo/avErmqTR1erKbzj/f1CDNyHWclP2cefbnKitnreLUjuG1JrWOLVqUl59Hsv9SMkyWPR6gP7bwwlhVSuhN6FQZDh5sHeY4ALCO9kyWS6dkmDm/V4XLWoeEFa2j2bHR9t7YptSuDsVbHSpvL17qOTOmbJur3jAz9/pppd13ptS92bzX10zsGXOaaVfrWLM8LydNijqmZaXq5Y79lNfonPyY6fSGmfgH3wi94VeRtuYWR4j5Rq3TpSiKlwP4Pox5xlwG4HQA/6Usy/9t4l2GMScAB8qyfKzOMtSBNbT2d4/fiVuf/gYePvQEPnTlO9G1oPVnnGuXXTjJZhnz4avejRdHX8Q77/uf+Lvv3FV3sYUQQgghhBBCCCFEm9TysawoitUAPgrgGv4ZY9+dzmiR5H0AXglgF4CX1FGGE3HRGS/Bpx7/clbc+/c/igt6VzWvJ2yW3b13O153++/ghpUvxd37tuN3HvgYAOAvXvbO7HIsaCzAm1Zfi//+0KdRDFYwbC6EEEIIIYQQQohZgU7YzU/aPilcFMX5AO7D2Ieygv5L8cHxOKuKonhlu2XI4btXXILjoy/gQzv+tfnbvc98C9858nQUb+jwHvzK/X+Jd55306Q8rl62AT++5lX444f/CW84+2ps/d4PYuv3fhCbl56bfHZZltjx3JPN8Gef+Co20Mc4IYQQQgghhBBCCDE7aOtkWVEUCwD8A4Cl4z99GmOnxr4O4LCTDABuGb9/OoB/A+D2dsqRQ1EU+My1v4l3f+1D+K/f/BS6FpyGNaevwAcufzsePbwbl93yCzj24jAWdyzCO8+7qekJ0/JrF/4gLv/cu/GbF/0QFo8b7T8RJUr85N0fwKEXjqJEiUv7zsH/uPLf498++j9CpJrdjFexv/Lii3mPZeo2/9G2nQF7r4oNEWvrp13YDpBnqwTIrry199Qqa0sFEz75mXttl7LL0G4b2/Qp+0Xt4uRXtwm8pA2JXPsUM2UgqIp9oKgOvkVCjpayFZVarzyef37qabLtlHHY2v5iO2Vsd4thg2oAsHBh67xT84rD9jn79oXw3r0h/MwzIbxxY5xm8eLWz03ZCJvOMZhrsyzT3pvXdHbc8Vir0xxTVeq2F+SlqWJGMTdNLTZz2jWiVHcH8r6Ua6OT49lxm7lmVsJruzr28FzDdzkk9nrvXQgAGhjNy4/x1o3MceI+E5jdR05OmqHB6aPt99yUsefUnE3dqxNvntbcd7k2r4WYz7Q7q34CwPkYk1u+ryzL/zBxI+XtsSzL40VRfAXAqwFc6UasmZXdS/GJa3590u/Pv+nv3TRvWXs93rI2fDhb2b0Uu3/go5PiXbfiYly34uLot49c/YvN8Je+579VKbIQQgghhBBCCCGEmEHa/Vj2hvH/7wTwG1NMuw1jH8vOa7MMQgghhBBCCCGEEDNKWerk3Xyl3Y9ll2PsVNk/l2U5VVHMhPajv80yzA9yZWkVjvWmJCVM3W6hc08Du/FSmafaq10ZJkt96qggS7C48W1f8rWVcRHxUf8gQ8hValU6pV2HDDNXlpKD7X9vXuQOZE5fwzH22mWY7WY+U1R0qe7d8uRvqfR1qBBOOy3vua70kuc8EEsdWQ7JsOwSiCWQx4/7ZWBtKa9de/bE8YaGQnj37hB+JZkN7euL0/C88MLAzMl2nnqq9TNTa2ly3WktbbN7ZJUtpV1yFUEpeO/PlS0vWNA6vYXnSC5ty/5TDdFuJ9Uxhnms8XqQuyEn47Ueq9mvKLmyMi53SmKWeEepdT3I3OuTEkgmt19Sv9dZv6qLyHRqrCswG15Lcq1VZGVgxx2PGw73GEdtfJ0rlazSFzMkw0xRZX8RYi7SroH/gfH/P14h7cTONvfF8UIIIYQQQgghhBBiXtDux7Kj4/+vYsXwzPH/72+zDEIIIYQQQgghhBBC1EK7p7qeAnAGgAsrpH0FxiScj7VZhvmBPdLuHaVNnCdmz0B8QtcqePjedMpLcp2Vecd3J8nScj0xVakgX3syqaqwHIolU1byxN7w+J6RHYw60ks+Em3lM7mSmU5PtpHr/YdlYDYeS9PaPSpu54vnZTTlNdNLnyA1BL1j/xyPJU7AZAeIc4Y25So2mqfuSbW3N51TQ4sVEqklgOOl0nR6MkyWXQLAzp0h/J3vnPih9vr000PYLpi8Xu3aFcI7dsTxtm8P4R/5kRBetiyE7ZrEZZhOz165PPxw699TMkxbJ8Ibd6nlpXZvwkym1C4lj2RyZcwedr2qlSqSbbsI5CwcAwNwqVuiyfsf73d2A+YOTM0r516l97NcGWZqD+d4vO7YgeKta6tWZRU1wnr15TKtWt1eflVthVD9GlyeXBlfHVTxKO6VL1PL20HrU67j69y1qg71oPcsm3ck2fXWEDvuvA0i1XYp0wXtkivDjEyM5HnUTf1TyRt2s80iyMlANsvmL+2eLLsDQAHgtUVRLD5R5AmKong1gAnXkbe3WQYhhBBCCCGEEEIIIWqh3Y9lfzf+/x4Af5yToCiKNQA+PH5ZAvhom2UQQgghhBBCCCGEEKIW2jr4WpblbUVRfAHA9QB+siiKHgC/Xpblt23coijOAPATAP4TgKUY+1D2d2VZPtROGeYNKU2Xcz55NPGtk48jp5QL3nHplGeTXBkKn8y3crO2HSNW8c6YOnbueZSrwxsme3BLNSzrZTM1sXyLk1c+0u6ly/VyyW1nZWVHjrROU4WUpCFXK8nhlMw0av+8Y+w8l2qXzHjlBia3+XSR63aqgrY7Z/oCvuQiJfvILao3TOzQiEaDNw+AWJbJUsnUYurJB23ejwVLBqMktdwdx8LKiy8OF2vWhDDL1Oz48bzE1uHNqwos/WJJV0qjy5hyevtkaqxV8vqVWl8ySHm0zvWCXKczYkuuzD967rHEeuAV1varJ41KdaY3jutoFJZe8pxPyRnZ622ud8ZElOxqePIzrsNiIxh57rkQ5rk4nfM/JcMk7PswS+34XiPlydCrR+6cTb17tPvOY0l59RxnUpt461CuuYpMGR9j10v+d0G7MvHUsyp5tE7t4dzePPZTMm/ew1MmF6pU3pMTJ9aQ6E02c8ravSfXAocQ84k6drh/C+CrAF4C4AcB/GBRFGyH7G1FUfwExuyaLcCYbBMAHgHwjhqeL4QQQgghhBBCCDGjyGbZ/KVdGSbKstwL4OUA7sLYh7ACwDkYOzkGAOdjzD5ZB8KHsi8DeEVZls9BCCGEEEIIIYQQQohZQtsfywCgLMsnAbwSwJsA3AbgBYQPZxP/vQjgKwB+DMC1ZVk+XcezhRBCCCGEEEIIIYSoi9oMDZRlWQL4JIBPFkXRBWADxmyTdQB4BsAjZVk+a9MVRbG6LMvH6yrHvCHDrkbKVgXbr0qZc/HMeNV9lJRNggGxDTP3uV2Z9jty7XykKsjGDp6r+cCj1xnWboFnZMHUj29xu7ZpFqc6XoEsnk2ZKtjn5NgiA+KG8cZDzYM/16bQnCXXXk0inmfjLeWCPtduE5PqZq8MKVOH7sNStpXYJhBnbg0/cZq9e0P40UejaE9TwckaGjbZMq1fH8IrVoQw21WxC0euTafcDmgXbw1JbYYUHh6J/z7oLc2pPbNSVWteX3Kz8+qUKndul/NQ4bmY2nu4rJ3ejVbXE6TsQPHY4P0ht71TYyi309kuJ9sUso2Ss+CZZ6XMYTFedbtz7QzypLDGZvmeZzMJiOuba9DOI2WfNIFr07fK2KiDuo09ORM6Zcu43XeeVJJcW6MpE4Tt4s0LtpMGGBt2XgY2Mx7vvB9bcg2etgvPC8+2aEW4X6zNOa+N6zbJJ8RsYlreasuyPAZgaypOURQrAbwHwL8DMJP/tBdCCCGEEEIIIYRoC9ksm7/MkAurQFEUKwD8BoCfBrBwpp8vhBBCCCGEEEIIIYRH5Y9lRVEsALAOQD+AIwAeLstyOBF/KYBfB/CzABYhGPsvvTSiBZkyzNRx6ZmSXuaSklpFVDle7FXQnhlm6SVLKepoFD6+nZJhZnagd0S6lr7MkZXZtuPj4Nx29vw2t0NFaUXL51hY9mHLyhKMVDyG7nX0BPFQStXCWfPvVg4QncxPycq88s2GSZs78BL3cpQ6qTg1FCFrLlWWYXou6fl3O19oTTpKaXbFscA2DC6hcGPDhjjiqlUhzNLLXN3dbIMnU2oy0iRLSYdyJUaVplyuBtJ5Zq4UJvVYb+lLUUU5ZNe4SuTu254MM1ei6z0zFS8Fz+19+0KY51uKxDj2FGKp9o6ys2YtPIlYrtw6ZXKB65t8qcvgZO1xmesiS7s7uR1T7zh1vKxVycNbh1LpnX9zpLo/pWZk6u5abnLO265jXKZJ8uRWkYB4bj9LFoXsYurlZ9/324XLw3knNq/c5s5dcnP/7TYRr9S/9sUcZcoG/ouiWFkUxf/GmB2yhwB8CWOSywNFUfzvoiiWmfgdRVH8BwA7APwSgG6ED2X3APje6sUXQgghhBBCCCGEEKI+pvSns6IoLgTwBQArED54TbAIwFsAvKwoileVZbm3KIo1AD4B4KUTWYz//8sAfqcsy89XLLcQQgghhBBCCCHESUU2y+Yn2R/LxmWXfwtgEL50sgBwAYA/LoriVwDcDmAVwkeyuzD2keyLlUs8X8n1BhV5ZWr/Ue06BMyVaeRKM6ITzSkpU0rW4kkzPPmTvbd7d0ZJpwDnl5JhciNlesPMPe6e4VwVgJEU5MpQuEApj5csSxkYyMvbw/aR59Ev5Q3T84xpcWQIdah2ojSHE9IhT9LB4xYABgenXogqeIPNltPxTNo5SZYUxp3XjrneMFNwHilpm7deTZIacFlT2gXup2eeCWHyqnXUZE0pIqnlkIl3OYWX8wJ6zjlxRJ5z7OUuJcfJdQM5U2+IPL7YM1/m/pm7peSqoCuRWChyPB3b65TciPPg5rJjn0mpW72yMvwcC5e708oCPVIb1nTakUg1rAcvEEk3upmwhPhge9lZL4mNXLsdDNcv1dF19oUd/O3KOnM3jnbrMBsl7bkvgs69kYTVAKaKWYQ6hkyuejt6VhWPz1VcJ8/UHpnwTPs8WZvpTahCU9XjPaXKO5gQc5GprOY3YswkSgngRQB/DOAzAJ7G2EmzNwL4eYz9q+eNAJYBOHs87QMAfrksyy/UU2whhBBCCCGEEEIIIepnKh/LfoDCP1GW5cfpegeALxVF8TUAfwVgAYDvxtiHtT/F2IcyfXcWQgghhBBCCCHEvKAsdcJuvjIVA/+Xjf//6+ZDWZOyLD8K4BsIsst/KcvyF/ShTAghhBBCCCGEEELMBaZysuwsjJ0Uu+0E8f4fggf791co06mJFYZn2DvItQWQktTn2rzKLUOu/J9N67juh62ZEK/gKZtlnv0ya1vJc/lex58Jdu4MYa64LQPbcUo0pGfLJtV/nnmuVNN19HQ3ww3OwNpa8zrath23MYcz7YW5eQG+kamUzTJO49kyM9fHqMvqcJ0e2fDJtR3V7qStA++5KeNKhLWf45n68Wwu2Xh1NANPR2/YTTLTszhz7HPmZKdsP0WhVQdAbJtsB4UvN/FW8cW6dSFs7cJ5c6SKUZnUwp9aYNolZcgrg9xpZZdmb4+KbGym4DUlYR+Iy8D2YFJ7OJfHZt2uTZkqJp1yh0ZybHjtlXpPSq2fsw3P7laiTThJ7paZmrKuTdJUoioDKmXcKodUGaqQsiVX57jJzauONTI3j9wX9Db//ZGKl1PUqt3grYU2P95Gepc5a03Kjhszk/3MVHh/PW5fMhxS71beEjDbl1wh2mEqJ8t6x/9/Iuvneyi8bWrFEUIIIYQQQgghhBDi5DGVT90LMHay7ETfj5v3y7Lcm4oohBBCCCGEEEIIMReRzbL5yyz0bXyKYjVdGfKCjkxv5hbvFDofYc51C71woR9v0SL/nle9SNZiV52UToZhiR7HY3llSoa5a5dfhioMDYUwH5EeHIzjDQy0fq45Vn2civ4cuYKuIkWzJ8N5GPK97tQxb++8uy2QJ8Osgk1vy+SRI38xeQ2PhAO4KVkgkysRjGVJ3o1EJql5MJ14z7W/O/3SwGh0/eKLoY256tzGKYVnShLLa1muNCNb3ZU79mntOUQ/P0nhIZP1tyi8kcKrTbxullsuWwaXI0dCmPuJF/Gq0pzc+dcu3tpuB0Dmuu11mc3Ok55kK8IS6wvzvLOep8Z+FRWtV7SqpJ7jvWPwutrR0RmlaXgTMCWNYllSFTnVTMIvOomyslzdG2v6x9kUSelZ65SQtylznFL+7cowE3OEx2BV6aV3z3sdq0quSpjj8TrUmSmXz/rd3qt7PPAakng/5/rl/huB49k+8vLQOiTmM1ORYQohhBBCCCGEEEIIMa+p8ueNdUVRvCJ1fyJQFMW1CJ4xXcqyvKNCOYQQQgghhBBCCCGEqJUqH8veMf5finL8/7dl5FdWLMf8Ys+e+JolM3xEl6R63ev7oiR8XDpXFeNJSlLet1K/t3tSOSr3voNxRJbgPPVUCFuXZORtLmpHlldaGR9f7yDfc1Vc+RiO7g4+MTh1Z6qTWDJqytrR1d8Me15FLbke3Nx7KYkZy6GorpPicftbCepU4fYB8gc8V3Dx4tZxTB/nygI9RZ4n75tEbhsz7cpZq+KVx/aLV2FTvwULgufVXMefniQ2NQ9SMgRP5uQ5nQIQ15fl1tti3zbDDzwQotHv7OWSZZdALL1cQ+E+W0Aex1xBOza4z1i/zd5tU95jc7V2Ob8DldbS0e3bm+EGS07POiuOyG1Ca03PwMooWkp1w+Q6YnbJlON4MiIrhakih6oik6kik6pjaHRWkItFa3uuPrZuuWamvDJavBLrPsvVFyxg2apfBO+xnR2x9B2HHbMWvG6k9tWUZDFTdpzFdMpma9COxc0Q+miSbKfuetQpwzR95Ekvcz2yptaubA/Cs5ncfc3zQG37a6YW5wq063z2VEI2y+YvVVbvE54UQ/hYlhNXCCGEEEIIIYQQQohZwVQ+lj2O8BFMCCGEEEIIIYQQQoh5R/bHsrIs10xjOYQQQgghhBBCCCGEOOnIVthsgWyxAPBtxTBW975mbTPIJqGseSEvu5Q7+lybLZ55CmseiqX8bDKnG0fDBdsOA2JbGo8+2jozAHj22daFZXtaHAYiGz6jO3c2w40abJbxk9iOxYDp8x6u34YNdKMnijd4fejnY47ZEdsPXrFtPH5UZOOEy2YzY1tkKXtv1K5Ys6Z1gXJJDWq25WANLnC6TIM+uTa0uFn4MWw2b9Ei9zHpzA8caJ2GbU/NJJ7xL2uzzGPVquhyUU93y2ie7TcgbtfU2sX9kmvmg+fBkiUhvHLQ2P25jebwXXc1g8O33BJF20phtk32bQqzjTIgtlM2QOFJLcXrX8qoDA9KNvLGDWvWGneO5BqsqdlOD1uCW3vnnc1wj30O7wG0yHWuj8ft4GBYS3kq2eXFs1WYbY6JyjdasxPyKuaKqmCX0lzbQ5VslnnG5FIblmdHMWVPq4rdpxReuW1leXym7E729TWDywaDvT1vG7OP7e0aDhdDu+KI/NxHHglh+97F8PrCE8GuG56tpirYCqYMT+bA9Wa7h4D/EpWw5cjtzTbmJjFTYy03TeLfGN7c9GwqVsUz8VcVrpIdkkz0njtC/+bgfrbvVt7+Z8f6woUhzBVMbRZVKu91humYKll7w8RSZW2fz8hm2fyl3rc2IYQQQgghhBBCCCHmMPpYJoQQQgghhBBCCCHEOJJhzhasLJDPcrK0KXX0mmSYnfuebIYH6fh+Cj51nOvZOKVw4KPOpCYAAJx5ZgivXkVH17eSrGnr1jgRy4VYKmAz947pe+7RzTWn7q7BnfwhJ2wFawM0BtZ89rPhhmn8BknYVq2/sBlOyWMZvnf66fG9zoNPhwtur20kgLLtS/Iz3HZbCJvj6cPUxp3nnOMXMIennoqveQxwuXO1kowZG72bNjXDIwOdzbCV9CUlluMMDMTX/T0kk9lGY9pKAJ54IoT5+H1KwjOdcNvxvLT9wvG4TmbO9m4I/TI4uLwZTskrWRqXO95Tsg/On/spUgzzPADi8f7JTzaDXzNl+CaFH6fweicMAKsp3Ms3rHTI00xUWbvsoM7VWVTRHlSQa9LqBFaHrL/11iheg8cdd6ZZD/qvC/eWLQutzBJfIG6WduVCVqrFskxPTWMlkF5zW0VQjvmElIwvV23LpNZFL2+bV1dfJ1rRsJogT3eV0hF5uqI6dGBLl4Ywv7dZTRh3Bsu2EvOqMRL2io6O1u0DmOrxc6xE3rMVwGXIbW+7sfEaRfeqSJAbNu9s7bMD2wRJ1S9zDB0+yD+H+nXb91LvOVVJ5e9BfXb0GJXVjE+uU/T74dZhS8qiBFed16tclX8KzwpBpaltdeY8T7m9rI0ZTufJluvAa+RE41Vph9QrQRUrDULMRfSxTAghhBBCCCGEEKIC+lA4P5EMUwghhBBCCCGEEEKIceb9ybILb377yS6Cy8I+0sA98EB8c2ioGTxMUqse9qC4eXOc5sbvC+HPfKYZ7L/22ihaP+mK9g8G6QmfLLYn9vk6dfyaZX18Stw4v8PqAfJAc8/WEGY5zT/+Y5yIzwNT+0SuP4H4GDQ/mCuxd2+chnQu0RfkGqQZnB8LcIxvKvAfJFaSBLXTHgen/uuMfg6SzJQjPMaeIMcQtRFL/Li9bWZ0b5ikdr5QpEUBmZw2t22S6+7TO7qeKd3kIZjyBudJACZ5aOI2Zim2lVd67W/l2zMFl4fllffd56fhRpk08AIrrwmym8OHw+yx3eI5Lpsk6XKUQ7YvON6F60keu2VLCH/uc3Gij360GdxKBTRizWius7zyPAqT/1sAQOfFF4cLliLZgvNCm3IHxhIxzo/Ts+tPm0e7Ek9LhTS8prBX0UMm3sC99zbDa3gubTQ+R+ne2uuvb4ZPvyg2XcDDPdcLJHO0I+yzBxMWF1jFzDLj1J6b6pYqMhnPaV/uX8xzPWSnzAZ49e0xXnN7BsNs6uQxTYUd7YlEzG2T9HjIc5bnkm0E9iDNJglS3oRprEYSv64ON160P9CcABCvwZyGy8prBuDXyUol15OovIpc0MsLaP+djN8XU5sAlXu0Kx53nkUPLtrChfFZhEWL+pvh5xNOrJdlKjQPdYT8eG72JdI8viuUKd4/47LyPa4T1zWlKvTk3za/nPRVST0nqvtA6NtO9kJvC8H2GHhMW5Mi3nhPefWtMqa5PDxHzFzkJSC1jzCe42yLpJfiVGHefyz75j9uPnGkk8RNv2c/lwghhBBCCCGEEEKIk8m8/1gmhBBCCCGEEEIIUTdlqRN28xV9LJstWPnLgw82g+wBbHTnzma4l8KAkQd88YshbF1prVvXDPaTbKBnY5A07DKH3s44I4SfeQYufAKZTwNHHi8BYAsJldib4u23N4PDRjbQyZnz2W7rHY6P2fNRZU5jj/bTsegu1tzUcFyahT9PUvgbJh6rc9h73irTDgMsHSA5afcNVD9zFLuX28TztArEfcHnt9nrH3s/BIBHH20GSbyGTtMvnWedFS5YQpxoU897VuO66+IfWG7LWkl7hpwHttcOdrejsbLCkfoAiOrx/BlBMMbd1dtxFBGsa0h5tvT0zZN0nTMEtzdrx6wk2pOP8u+JvNevDx5+c6VjNh431/+fvb+P06sq7/3xz30z3JlMJsNkMskMwyQOYQghBgwYENqgeIQWFC22eKwe/Nb+qq091daHPn9bS1v7YI/aSvs7tmqVc+pDT7UFhRYseEBBQRMlSoAAAQYIJCHPIQnDEOb+/pHJvT7rmvtaWbPnnsd83q8XL65977X3Xnuta629s2d9rsuzAaCjneaom28N9je+EWySXQLABuqzDfS7XTPMKvSVZK8mu3L55fFBLBlMae28fbYc3zDLq/jZk5Ilpc7tUUTHl2Ax2azuecyU20128yOP1LUBoN2RX3etXRuVW3Re6DVWrxW5JZuxkh9LLPHMzfZaJPFjSgKZm7HSIze7JtfBtomnWLIyIj6HlWjWzpWQixVx4xTDveEdqsxjKTVmeVzaZ4Cn90t1Bj/L+B3xe9+Ly51xRrD5HZGfcal3K74HM+8PdQYZc9RHXp1T2Bge451HcmWYtC8VAsCTI9rf9+079jHA6Cb34FcZdq+U6pVdyAtjYPd5CcQb8VGAx32Rx4uF52b+N4vFy9A7dDi8b1astNjD+qc3YeWmq8+Fz5FIP3rCCeFdNFcRzeWK9HOjE38KMdUowL8QQgghhBBCCCGEECPoY5kQQgghhBBCCCGEECNIhimEEEIIIYQQQggxRhSzbPaij2XTBZvS/vHHa+Ywxffh+GUc/woAKOkxBq+/vmY32wBknB6Zzl0555yavYxjfQHoPSfEoEiFd2KZf8sgRY65Y0NckGNgfeUrNfPQpk0128b96aGAC1GkCSvE53hkfB8cy8oe09UV7NWrg50K6JJJ+W1vq9m9FBNsp4k5x3F2+N7t3Nt+++2hOhw/jAMxWH/ygsVwXDIA2LCh/r7Nm4PN7QjEKe35d45RBgAXXhhs8kEvLlkSe3/cnxwnwsZX8+K+2HKMF6jDxpch549im3F7b9yECG7jTWYfw+fgYEa5cTUaDd/7008H28bAe/DB+sc891xc7uSTg00xP8o0FlfyuASwcGGIxcGun4pZVh6kmHF2Xryb4ll97WvBvu66mvlD4/scW3CA7L74zFFsstUc0+Qtbwm2iZMVzV2peSd3TnLi8SAVW8kLJFOkPg2I07KC2qSDnl0Pm3I8q/Ezc68p139riE3Xwz5pfINjJEZ+GMU88u+PfdKGEPXCzfC0Y4cLxzZLNas3FdpQjowXCseOK95OhabjJvIeQzZmErdRyj296Zh/tyGFGume9tnFU3h7e0fNtjF8OntDDDzul64ViaBz/KzwOgmIG+LgQb8cB3jiOF70/jS8+tzoEK5C+4oQn80+Cp+6N9jsa3aKy+HhbW3RNjdJb/vYzxe9OxhnHW4KzxS+Vxsrb8+eYHMsstwYf9znPJZt9VJ4oXVtOF7Guyf7SufFS7Tt4JE7lnhs8zM89zoWnidTdeC4y96rY19f+DcPEPdnCzX4UGtHVK7SRLFPvQkvs4FS78blzHPkxr5kvFCJ9hxeP+mDkZhtSIYphBBCCCGEEEIIIcQI+lgmhBBCCCGEEEIIIcQIkmFOF4zEiNe+9tN6a15IbwR0PrxeG4jTifMa2+3bg23WgldIy9DD0i+TMhx7nfW7Vp7F0JLmliVLanafkSlWLrqo/nUvuCA+H8uX2OY133b9sNVq1KmbJVc+WH7Pe8IGyXlW/93fReUO3HdfzWZ5127EsFhv8T33BJsL2bXTvASc91nfIIlnBK/TZ/kGAJx+es0sswbAai7WrAm29ZuxctVV0WaU8htDYYeVnlBdI02Cp38C8nOnk3+xnKOMhN7I00xYmTDXj/fl5gJvNNy3PMbsPMaSb54DUnoATxdhfLprAZVj2Zzt87tIQsx9tnVrXO573wv2P/1Tzfw+FeFxCcTSS+5Jq6RZzW30jncEm+aDqK2AWGKbq+/JLddIeaW9VgPkli6XX14zF1OogQNGTk5CGJ4N8GTi1E08l7JOB4j9iyXp7KtmTmL40WOnAN7nuT7LvoBYuhUpQQ0nnBBsT5GXchM+3spHc2WY3hTFv8+ZE+9bsCDY3F723N59pFT143XP1HPfymU9XJnZXFM5Lsg+nmoUfm9iibyV+b/iFcFeuDDYNO/Y1wjeTj0yU+rPsWJfHSMZpvPalmL7jtB/8+dX4p2Oas42sR0L9ZiOUjRvrsita+J1OILHGM8htg7eq0zRMbpoUbBTr5jct16bRHJKAIfpHXOYJNYH9sbHNTeHci2OBt3OIWXE18qCO4MHphmMS/m9IhrQfggPPsS2TyoSyVHGO+ZnKopZNnvRyjIhhBBCCCGEEEIIIUbQxzIhhBBCCCGEEEIIIUaQDHO6wBI1C63rbCYJyOJ167JOPbRjR7S9n+zOW24JG7x838rzeL07r5e2GQ859QprIR59NC7HshZey0typYo99yWX1C03Sr7EdSVJwf7BsOTeLifn6vAy2r72uFyhjFlrX12zy1w3Ix1qpfXq7ZSV0q5ofoxsXnDdQjKiViuV5D7j9rYZAVm2waT0OCwl5L4wUt6hFWfXbF4p3pqpFmMe2OR/529vD/3c2hrLLNp4bT6vFWd/t7oPT+Jn16CT45S5vbmf7bk9DYD93ZE+sxwAKLacv1A20v7l4ZqedgwA5s0LNvuWzcLqZQX1pAZA7BwsjbN14PNxuxpZ0qE776zZ6+l3zrRoM/T2kb2S7NVWe8bSS5br0Rh5ZlvcD4N0sSaS9VrJmpcZscnMcblqyxxG+dlESi+Zn//5YJNvLPvCF6JibfTMo/yn2IwY7k+Way595JGoXD9tl9nXeD5PyDC5vSo2o2NT6HdPXWcz5uXCj2OeulJyQZ7evUydtn4pedZ4ZSkpiacnvUxl+5xIWH6YqgNPZfxoPaEvzvw4d27Ybut1sunZZwo7Cz83TIbzKCQBzUPb54Qsl48a5SZfystyCsSyYW6TIthHBfsaj6vc5xg/huw0zc3K17X352Wq9cZbilxpoyU38yPjJWe0smWvz4pkw7R146yXXrmi2TB5XPH57DOT74/bn9uEQ3sAcXt77Wivi+ZJei6mnM17Z01kUudxddi0Q0p+nVMdIWYi+lgmhBBCCCGEEEIIMUYUs2z2IhmmEEIIIYQQQgghhBAj6GOZEEIIIYQQQgghhBAjSIY5XbD6cY4v4cQza+EYY4Zmill12AQo4Rgu+198sWa3UpysUV9RWZzOIn8bcIEDcHjBCYA4nhWfe/Vq/xjex7FibI5oasvdB0KsHxv7grEh2o5iw3zwEtvcOBHUrOjuXlazezj+DhClb1/+sY/V7A5TuR+TzbfEfbbm1lujY8perK5UcAE+hhvCBvq47LJgr11bM7eftDwqdv9dwWa3SYXr87jvPn8fh2uz7tnbG+Kx9K8NdtQ+Jl4RvDhz9uQcu80LRGLbzjrYCPvRVvd3IB4ue01MmRUrJufvH+yS3d2La3ZT++KoXMWLZ2Zj5T3+eLD5GA4wY+O4cSxGjj9mBzPHdiTnGDLzJ8cm42Z9hmzyBABxnLJzOVYQxygDojHCsfsGKPwVx/kB4thR3rQKxK7Gc5J1Qa9cah7z9jU1+X6WG0eoSHy96LnBAZRM3KbOG26o2c/S86/FnI5nvyfJrphyXNNlFNuusmRJqrZZeH3BcXas63M5Dgto42TZ6aYeqThg3jVtuVTcpZywjPbcfD72/SKh8XL9e7LC7gFx2/H9WaJ25YM49pCNWea96Nh3THYc6oxUrLXcNuKpMDfGmLcv95qp+YTPR6+8SaJYcqaP+LXJzsdjxcbTyiX1ep1zrdT4Y2yI2qOk5GapccX+kJrjisDnYDs1P3nPRftqzOOC7XQ7hCdJC40/e0zqeerC76zRS+HeuFwqwJoHna+9PX4X5VPwqYv820iImYJcWgghhBBCCCGEEGKMKGbZ7EUyTCGEEEIIIYQQQgghRtDKsmnC/taeaLvtgvawwVItlnr1WlEQQWnsm4wsqff222s2fy3lD+Jllj8Bca5lXuZrl/zy0mBe9m8/t5PkMNLhkYxvlGxgxYqaeYgENXZl8V5SePHq5JQMk5UM3tJioNjyYr4uSwC6z4tlimUueNFFNbPTVLydbpj771my7WLrFm/ttL0h7j/WHvCadtsvvE32PqMO8apQBCsV4eX8ufKASLbBlbMn5/HDjpJa0u7loLeaC6ddbUpu3k6tuKchMqGwAjK1yr+zs6Nmt7YHe5TIlG+KT8JyTb4oANx/f7BpThsy44VllBVqsGcRs9E5hmfmeMQC5/PGO98Z7J/+6bggzXGbSXrJ7uSlYQfyJSrsdil5HZ+vEfIJPi4lvRwvzwwGH+q54IKww94szWOLSTb56nvuiYrtJZult3YK4amM766HpLzJLkpMSizV4Xb0pGwWLmclU56sM/WM86pq5WspyS/D+zxfs8d77ZC6Py6XkklNhUQo93nHr1lAfL89/JzlBrOTLr9bcUwCqyU89dSaOUzhCXZuCEXsnFRE0eWRkk3G++L5pMi7A5/vhRfC+ew9sG948kNbLtdXPfiYsVBEQszXSh3v1Sl1jFeH3LHdaHi+Ss1PE0nUJuS4Tc1W6D9RFy0I17VAmIaUtFyImYhWlgkhhBBCCCGEEEIIMYJWlgkhhBBCCCGEEEIUQDHLZif6WDZNsAncOjuDzLC1M2RQbFudSNfCsJzOZp4jeJU9y5IqRvJUpu299Puym2+OyjUvWhQ2Tjkl2Pw7EOuAWB/C6btYcgpg92BoE74lOzmxdID32aRRDMvZnn/eL1cErisnJrVL0M9lWRE7hOnns7/ylZq9n35n8VmLzbLI29woNpMotz+vXefj7Zp22re/KcikbHY/buPxLotPySdyfgdiuVi0xNYetHVrsLdvD7Z1KJN1tsYTTwTbSlgdrVVzcyxU9CR6U/VgZpmTJxEF/PZvsztYM8GZLVk2ZzWnlOWSJXRWXsmSSs6GaJuU1JHgmYfyL46SYUZZL3/mZ4J9+eVRsR9uCB6WGNoRLGXwJJSAnzXTzi+eBC5XMpGSeHrlUhSRa7JrHO4PAtmll1wSF+R57aSTama7SV3Xvn59zd5P43fAXHcv2Zw1cynZFEBgFIcOB9lN6nnlJSpOtTcfb9uepyQvy2FKTpXKDpeLdx88nK06PTfTZiNlgY0mN+k0k8oc2Nofngmt3cEu5+qtbWpU0uzzO0oq0kBuplTeHm+Ww1y530QykTK+oucu0g78mE1JsRlPKml/z5WFevfbiHcZb67Zty8ux3MmS585goN93eB/F3hyVgtfp7WV3j4aIA1n6XQkWzYvYbsPh7miY0XeYNyN8B6/zfzzkdvYyyybK0EWYqYgGaYQQgghhBBCCCGEECPoY5kQQgghhBBCCCGEECNIhjlNSC35ZeVIf39YetuyJl7LG8nKWJbCckgAZZKCtdKa+1bWuBhJ2WGqIEv/rOSpl+SaZV6je/LJcUFeI80SP6rbkJGicZZLbi+7fJuXCXsZt1LLnhst5yAVUKRGHSVP4BthyYRJcdi0enXN7ti1q2Y3U2Y2nHNOfO6XvSzYrMex0gwr36ydPJF9i67bRseffvqonIdZ5CxJt9XkNl6woP7vANC1YChsbB4INvu+zbrIzsbr+a282XNKLmdlmAy1cceqWKvQ1B2Wxdu5Yipgt0lJtVw5zjYjgiQ/xkbKS0n9MsT+jVgqxz2xHzHckizJtMlxWWK50rErlKUWAPCqVwX79NNr5u698d+hvDkpJZv02s7KWDxZy3SQLzUaVpiwOrr19I6oXAfNkdGNGxkmTyRnf/WrNXuxef7tJZv9axnyaHTbe5Inex2+XfYvTz5jYTmN9TNPNmV/z8mGmcqKl9t2qUdUDo3ImpkbDiC37bifPLlti32R4GcMT9TmWb//QJijvNAVlly/ayRTNW+l5Om8L1dG6fl+IzIQj9dXc+8h9Q5dRIbpna8RbcKkfDpXWuxlJ7bl5s0LNg/NyuFD9U9gyA1P4GaTNfPBi/Q6O4QQDqCSyEabm+g953feVyr5ZWYD1apils1WtLJMCCGEEEIIIYQQQogR9LFMCCGEEEIIIYQQQogR9LFMCCGEEEIIIYQQQogRZkEUk9lBKkU3h0liqXt/fyJiSn9//ZMBcXwgzhPO5fh3AE1OHnQbdqtMcXvQ3R1sE3cr2qa4McN94Z42UxgpIE7rzGGlbLwTriq3lxfzwx7T6JhlHCKM67BnT1xuqC+klq5w29k4Vxz/jSobRUGwMRG4Erk5w6O89dTTNpgHBwmjcnsH4mKconu8cUhsH3n9bJshitngBc/IDaBjY8WMCkI3Arcx9ysQxxPs7Q31bI1jMG0bCDbfnxmmk4YXN83+7o2rs1f0xQX5Rjg2GcV7q5hOb6dJYDefytaJbI5TZnoimssWk11ZsiRs2HmMxyL1314TEC03JhDjjZFULJ1U3JecMZc7LqdD/DNvXgWA1u4QL7HC86cNdsidQXHOujdsiMtRDDO+FNuJaITZMXxyKRI3xoublzom9ajw4p5xnDMgvj8+huOp2TbgOs2Z49fPi4fmnStFI3ya68p2KmZZ6pFSJOaqi2lkzwe4DrnxyyYS77FalFS/eOENc+dSnpsn2u84NpYNxXgUG9dq/vywPiIVw7DIsyIVf5Px4m82wp9yfSXH31NzUqqufO9RuUbHssoMfDh3Lv27osmPU8ak5gDvmcD3erzG7VLMstmLVpYJIYQQQgghhBBCCDGCPpYJIYQQQgghhBBCCDHCNBBTCGC0rCxHZlEePBTv5HXDJF+ClZTcdVewNwWt406SPxlVSyRfGiDbCkGXPvJIze4me9QNORK48t4gqGpqiqVojJV6MJ6M0kp1GFLZRPKeRsAKs5TEk8v18DrolDZj/vyaWfZkhfYcvObeSjx5H68n53LcWGbf9h3h+ztLZe22JxsA/KXdjCcDtMdbWILRxffEtu0kbpOU43Fl2dm4srYvnfOllr5zdRotGc7F66Pnn4/LubIIW3He3r492DSPDRqHYrnls87vdrvbsQGAZ9Mh3sH+bicRuvnh5iB3sP7JY9uTZNoh66mgLZ48xMo1c8aV7T8ep9NBkuXJjm23sDtVeIe9CT4hPQufMXPcw2Q/RjZ3S1/9qo2qn21jlqd7vmFlUp7MyfpQTniBlKyXST0XU3JNvi7v4/NZqaXnd6nwCdyuPK3a+kykr3rRDlJhNlLlcuaAjly9mGkIdnG+burZ6l3GViE1r42VRsuaUr5R5Lrsd17/2+1GSNZy3lOHzXoI7z23iNQuJU3NfU3y/KToew37bqpdvXmRHwcscwXie0rJR315cwsayaHD4ckW91H0xIvu6fnngz90LfIlmRzyxj5bPfk9k5LhzmYkw5y9aGWZEEIIIYQQQgghhBAj6GOZEEIIIYQQQgghhBAjSIY5TbBLXVkawct/eZnxoe54WS+vdi+zrIwz7gFxRjBag9xOMky7CppXlu4nezN8WMq09MEH453t7cHmzJ3UEFaGmbt0PScrVkq5kJJrFsGTUiTlCVwhyrIHIG4v7mdeH22zLnJ7M7ac18hccauFou1F/ctrtpUJNFLeatWjCxcGm5NznnRSXK5rPontWKr8+OPBZl0UEGeP5QHIxwPx2nUuNzAQ7K1b4UJ91GLW9vf1La3ZU5UBk/Hcidvelovc2LbdZppJ7ryzZh4gKTfL3wCAk+Xy2fabcuwqVB1YEUKPY+O884Jts2HSWOQuT2UFzU1GmyuPO57w5mYrUeN2XbUqzEmj/jrIc+aaNTVz8c03R8VYosuZV/1AAX59rETJk2im5ktP5pSSKebiSWjsNXPlJrmSQ4/cbJ0p6ddUkLrX3Hvnc3jZvNvb4/fAMk+6ZFtJ3j6acnm+4uvYOcjzjVwZXxEaLWvKfXfkqaHR0t2JlJbmlkv1UY4M0+KFACgyLou2jzfm7Pk8ubs3xmy5Is9mzkxqx2JqnwfXx5OgA740tWuRf+49e4Jtn0O5slwhZhNybyGEEEIIIYQQQogxophlsxfJMIUQQgghhBBCCCGEGEEfy4QQQgghhBBCCCGEGEEyzGmCjV/lxbPicBQth210HgrcwnGS2Abc4DocRoPjsth9jC034Oxr5nhOABbffnvYcGJwLbvCxOqib7u5ccW4HTnOAKemB2LNf6PheDps23haUdydnYPODsRxxtjm9b82Th2XS8VD42vlNjIFOCgfCD7Z2dkWFctNSZ8DxygDgEUUf8EJ2XKELRTwi+8vVTkvgIeNP8bBIsjfD+zYUbNbKC4gYP5awYHYTFCMlnNCny3tDX3Z1DQ1f+9gd+Kq2nmL3att8Nmwce+9ccF77qmZhzZsqNkcl8zGLHuGbJ4J20y5pWQvJtt6N++r8A1yjEc7FumGU/E7cmJ7NCLmRyquSpE4NLnlJgtP4pCSPvAwb7P9x0GYaJ+91RbHzo1ZxvFz7LTK2165om3vTeEpf/RiDKXiGqXiA3lxoLz4VxYuZ+vK5/P8m8sAx4gVOk64HTw7tS8VS9W67lHsM66NTjJ0ODwfUnGbPDs1j82ZU78+9a41HlL+VISUrzIcq8n6KvsUj5fccdCIuTTlNznHpPzTjpl6pHzDuybgx/vyYoeNBc+Pc8df6rqpmMdTAf+bhcPs2nvlGLe8b3k/XLZvD3ZqjHA7TLf2EdObUqn0/wD4AIAVOPIKfyOA36tWqzuSBx45thnAOwBcAeAVALoAbAXwPQB/Uq1WHzTl+wA8jvrcX61WVx3rmtPg9VcIIYQQQgghhBBi5qGYZcemVCp9AMAnAHwLwG8A6AXwQQAXlkql86vV6sHU8QD6AHwawF0A/hFH/na+DMCvAvjZUql0WbVavb3OcdcD+Dfz296cOutjmRBCCCGEEEIIIYRoOKVSqRPARwCsA/C6arX60sjv6wB8HUc+nv35MU6zA8A51Wp1gzn3FwHcC+B/AFhT57gfV6vVLxSptz6WTRNSy555eSsvEx7us4KjQJklXSefHO/k9eW0Xrb1uedqdqeRbg6TzZKnuBQwRDavBh4lFvPWQbMczqwnbm5uIdstFuHJTaykwZM4NGK5PMskuFvmz0/Ugf88wQcBsSyMT86VPf30+Bg+Bzcey81sJVg6661vt9elNd8t7fGfWHp7g2gpt888rEvzbVQOHwob2/bGBdmv2deefjrYdg25t4591664HI2fITo318D+0an90UfDxpYtwbb9sqh+nu/u7p66v0801iWPYiVcbc00IwyQP9m2I1+j3ovmEyv53kt2O9m2RVhtwNXea8ot543XvjbYr3lNsO2gJZ3p85Ru3f510ZMocDkra2KpOB9j3ZNlLZ6EztbBG2NWbjTdUsPzc5KnIU51b+E27uuLvaNj9eqwwfOdCRvQQ/PGIEmpc0cf91FuO6bK8b7UX7JzJL+2jCeTSjGRvpGqK/tryvc9ikjjyvQ2NGzebBo9XjypK0uw7OO4uTO8J/G44Nc+e1zqecwU8d1G+8ZkzUOp63h+N5lzZJFrjTcEQG6ogVRohlz59XhJSbFT+46Se382pAs/x6N3ehpwZe8fHGOAr8syzNTzIHecp9rH67/p8H4gZgRX4kg0i789+qEMAKrV6o2lUukxAFfjGB/LqtXqLgC76vz+QKlU2gjAlVWOSDjL1Wr1kFemHgrwL4QQQgghhBBCCCEmgvNG/n93nX33AFhRKpUKfU0ulUplACcD2O4U+RCO/D3+YKlUeqpUKv1JqVRKRN8M6FuwEEIIIYQQQgghxBipVmdNzLLOUqm0nrY/Xa1WP92gcx9dkP90nX1PAyiNlHm4wLl/FUc+lv2p+X0YwP8FcAOAJwAsAvBfAfwhjsRJu4xXudVDH8umCQsWxNu8SpeXMXPiyPJm40u8c+PGYKeyYTIk9Wo3x/BK6opjA7Fck3LfYYspN0TrgXvWratfH74fAD0rVtTswb4g6RslQ3AkS7x02qqpcmUDRZYas2TNS2QJAOVtlN+PMy1azSHfFKcb5PXSNsulkw3z0OG4B1vY8fhmPams3WaJqCnXsYKydLW2YDzYtqsMkjiYZZO2rp60lH+3GkNPMmwyW/IzkqXKVJvRWWYpU2Y3ZYQchaM7Ltsns+33EaxcaLxU9j5b9/eeVqO52LiZbJqT1q+Pig3ffHPN/jH9PkB2LIwD2AU4K+EKU24Z2c08x+0wSXfOOy/YL395sFkCaycb8q+uBe01e1e3nRnrn4LlVFbOkTOPAb4sIiWpZIrI7qYKbiNWoNvnJw9hntJGZcfdvDfY3Mh2DqB9S2ncN7GMswF4sjvbd7lZQb1zcDkrk/Kkiansfl69AV/mNJFyrCIZXlPS6YnEa0eLl/0w1efjlabm1iF1jvH+47HR2TBT5/Jeeewcye1aJCvsVMnbc+cNL9tnqq45c00KbuNcuWCqDvxstRJk7/wpv+V7SmXo5WcUS7azB0+T/+7g1Ydtvm972VxfS/lxzpyibJgznp3VarVezK8apVKpHcD7x3DOa6vV6m6EhOIv1Clz1PPG/A/EUqn0EwA+jiP/hIhknNVq9UkArzOH/GOpVPo0gHcD+HkAX0ydXx/LhBBCCCGEEEIIIUSKdgB/NIbyX8CR9QJHY4XNAWA+7dbW5YwpnlipVHolgH/HkayYr69Wq7mf2/8MRz6WvQH6WCaEEEIIIYQQQgghilKtVgdwRDI5Vo5KqE4BsNnsOwVAlcock1KpdC6AWwHsA/DaarVaT97p8RSAlxDn/qqLPpYJIYQQQgghhBBCjJFZFLNsIlkH4JcBXIjRH8teBeCharV6YNRRdSiVSufgyIey53DkQ9kTY6zLMgAnwE8IUEMfy6YJNkQKx1bh+Ewte+mD64YN8UEc44tjAtmYZYwTvKTFBPVqoYACrRSnx6as4LWPHCVppynH+zopVlOFBf/33hsfRIL7ZWuCnHr7Dj8ek6frP+kk95DC8RI8uC+5n1sOmLhPm2neuP/+YNu4WxyAgQPy8O/2JpwZvKV1OP5hG/UUx/7imF5s23NzHC8bGI5uvkL2cPPY45dVDptVutxGbNsYU1x3L0iGbTsnQIxpuWjb88jUn0s67ruvZldscCWORcb1tinInZhlHDujIfHLuI1TsTjYpzlmmYlTSHvwJNkc63CpqQLHJuMoH8tMuebTTw8b1D6VzeY5zW3OY4nnTzsW+RjqixVrzo+K8dzjhdSz8US4KTkdvY1t5l0ndT4vdon9PbfcZMHzJ9scKtFuc13LG34YF+Rn6BbytkQgzCY++amnJmrbOFLxc1JxdnJe3FPPu9yYZXwOG6MsJ8ZNo/+B0YjzeTGmJpLUdbzxmxrnqXvgOcWLj5jbjqmYV+NlOviG9WHP91NjqZFtYutQxD/5+NSY5XI2HpZHbswyr95F+7zIcV5dU8/CQvNBgx3Zq08qVmmj5zH2Gy/enxCGrwG4FsB7S6XSl44G1i+VSm8EcBqOBN2vUSqVOnFk5dfWarW6j34/B8BtAA7iyIeyx70LlkqlhdVqdZf5rQzgIyObNx6r0vpYJoQQQgghhBBCCCEaTrVa3VEqlf4QwMcA3FYqlb6MI/LLDwHYBOBvzCHvxZHYaL8I4DoAKJVKL8ORFWULcOTD20+MBPhnrq9WqwdH7M+USqU2AN/FEellJ4CfA/BKHPl499Vj1Vsfy4QQQgghhBBCCCHEhFCtVj9eKpV2AfgAjnzs2g/gXwD8bqYE81QAC0fsaxJljn4s+3cA78AR+WcHjmTivB/ArwH4+2q1aoVCo9DHsmmClZF0tFPfbdoUbJYy3XZbfNBVVwX7jjuC/dxzcTmWjrCMiyth19FSuQpJVJaSdAwADtBx++l3uwB5gGyWUPXefnu4pF22vItWUdJ1ulh+CmB+fw/qwfKC8s5n65Y5cvzimt2IZcsrSC9WHngsbFgZLcvCeJ+V5LH+yNy7d8xQc1vN5q49YBSV3d2h7cpccM+e+tcBYpmalQV6sLbYSNaY8iix4wg8DgBgx45gbyf5udUN8HGOZHGUJpoh3y+bQVs5eLBmt1N9+A7s6nSWGXK53jvvjKvEfbFqVbB3RSuLgdWrR1XZ4rYp0hLN6Dj2T5as2TF7113BvjGsdH7MyBkfIHuA7D6yrQxzOdks5G2xbXDRRcHu6gq27X9uVx60LHu1EmTWVNL4LRsfWt7fV7NbW0Mb29MxnnzCKl09dUdKRlIktXtqLpwsmRo3K3cfTycAUNlJgmeek6y8kv3Qi30AxM9GLnfGGX5lCZY1pRTyKWmUR6pcjvIn1Xe5Ek+uQ0qylnOdY12X4et6x6RkoI2WWnp1KHp/OefLjLiQxJN4FpH1AnGbW1nYeClyf/xcm0hZGlNEjjwWcn0o55jUmPXGCD8Wx1K3nOdVI2SYnpQUiMeMJx/MHbPWh9y6T+ADNDUfePeaItUORd4djhcUsyyfarV6HUZWih2j3DUwH8Sq1eodGENygWq1+o8A/nEM1RtFA4LXCCGEEEIIIYQQQggxO9DHMiGEEEIIIYQQQgghRpAMc5rQ0Wyy+20kSR7LLVn+dMst8TF///c1c4gz69mLsQyTdS2nnRZsK0Ox20e54IJos5WkSGtIUnnArA0mYWkkReOsmStSUjTG/N5CaqpozfC2vcG2GUJpfXILp9lr9iV5uVkFy5sfDhvcf1ZGy3LblLTxFa8INsvAUvJBgpdiW4VnJE/l7HCPPhpsqx175JFgp9KisQ+xNDghw3Sx/ccyzCcoe7Bdd85S19yUcqz34mMuvDAuR31RpjbqJHsv1xOxPJlzM1pPb6HskS18Djsm3vtejIeURDOCfZV90MrcbrghHEJ9bnISgkZIlOVyJdk8rAGgfPnlYYN9y8xJkVSZ54MlS+JyCxcGm7VD3N6ZMsxR/ULS0B6SeLaS5NsqhllGwpKXlKyJh1yqXE5mzGPtYxqebdWBlbI97fTMtJlNeZ7lfuUsw0A8j7DUMiXRZenlyScnahvg/rMyFk8em5tRLDc7qkfRjIfjzTzHbZKbec6W83w8Vy7GpDKOetj5sqkp+D4/tu25ORNl6nnM45nPx/a8efEx3ti2GaRPPjmI173kxjb5L8N1sG013syPnmyy3na9Y1J4mT8tU5XxdyLxxpIdIzlj20o3Pblfat5odLblIqEGvPFiX7u5XMr3o+vmpkqlRinTCVM+zeO5tbWF7LhcbmQUJpURdzxza7U69roIMR2YhY8DIYQQQgghhBBCiIlFMctmL5JhCiGEEEIIIYQQQggxglaWTRfuuSfeZhnJTTcF+8EHa+aQkXSx3DISB6QklSw9Of30YNslw3wMr9G1chXONkfrf1ufeio+Hd0v13uAbJZnAkCFpGhtXD8rjWL5INeHsyRa2Q7fE0urrrgiLldkfTjVGw89FGybDZPvifUYto3PPDPYJOk6RDkB7V83DtAtpTLd9PYGWVgkR+WCNrsq72Pdhs3UyG3OWSWNlCVLTmGzYXId2B+sNJX72RsHL395fAxLrVL9z/fOPkgN3n/33dEhneQDPA72I4Zy+6GTpGPtlIFzUuEsl9zeZpxvJl/hjJcPI4YzW7IodxlnpTzvvPigNWuCzVK7c86Jy/H44f63vuHppvh3liMD8VyxdWuwrUzYoa0/XKfNarCorjwm7HgZOjz2v3mNV16ZLddtMJH0kqXAW8zTgvexDNfqw7ghTjkl2PaZyefgYzKl7y+8EOzcbJhFKCKpbbTcrEjWv6LZIqcbuW3M29xeVjLlTUO5fVZponF6IHa8OXPC+wJPPVYOzrDvpqTcRTLwec/9VNsVkXxzO6akeiyVtXJf7/5S99rorKBFyB1LuXLNnGOKnLsRMsxUvb19uZlpU79H282Oxjpxg7k+Pdwcxu/g3vC7Hb+Nnj+9kBCzUbYsxFG0skwIIYQQQgghhBBCiBH0LVgIIYQQQgghhBCiADNpJbTIRyvLhBBCCCGEEEIIIYQYQSvLpgvr18fbd9xRMw/dfnvN5lhGQ+YUS8mOPm4vWhQX5PhMp50W7FWrgm0F6BTDZbi1rWaXdz4bl+P4QKzRN7F+eu+/v2a3UFwjjjxDUWcAALvJ7rvvvpq9zMRui2JHcawZjmOzyZydhfgcW+uSS+JyFOSinCvS/8Y3gv3IIzVzmGOZAShzP3GsJhs/h9p492CIW8Cho2wsDi+DtY2fE4f0CvHLKl58LwB44olgc8wqG7fpzjuDvWQJPLLiIdH4ABAHIuE4UjbeG//Zh/uc749j9wHR/Q43hchiZdvI7HdsU3w22zHtVK6F2msnYjaQ3UN2v/H9xZgkyHd30z2Y2QDfJftJss825VaSvYznjTe+Mdg8PwHA6tXBpv7b3RS3wpYB1KWvb3m0zd3USlVo40J2LPKgY3+38znPKRzzj/3EnpvaYZSvERUvmFEq57v3e2JOK6fO7ZQrEucsGbOF4zzee2+wbXxEjqmXqje3K89JNngU+dr+A6F+7DM9iftrdAwur8tS8Z3GG1Mm9/hUXKPJinfD17Ex1Lj9U9fNLccUiVnmxSUDisXGcjEP+7l0rblz6xfjWHsWL8Qj4McCKxJjLBVXrAh8Po5LBsS+wm1i8eJrpfrIG/dFfT8VM87Dq19uPLVUuekWsyp1f15cxSKx1ixRP3PBBjsyX4efQ3bMNjoOpucDOW1XKo2vLkJMFVpZJoQQQgghhBBCCCHECNPsbwFCCCGEEEIIIYQQ059qVTHLZiv6WDZdsLId2iahTySvTC3qrfAGy5qAON09S/+4nNEDHGoKYqSdpJXs7IwlTy19VENez2/X7q5dWzM77r67ZreRLMkoBCMZF7dDhaVQAHpvvjlsnHNOsOk6B4wkIbrbAjm+rbwgkhyxLHDBglDGymMvuCDYLMNkG4ikhXvp1lndlZIApGSYrApjlrKc1S4nZ70C+838+XE5Pi6lS8pZz//ii/G2J0Wz0j3ed955waY2HTLyPO4+rmpvf1yuPHio/kG2kRnat+rLX67ZzaYjWJ7Me2LPnzwZ5jaq32P0+zOmHI9ZlolbGWY/+wpLL9esoULkg0A0LvYPhhlvYHNczPNp68beS04b+9Ypp8Q7t1DPJObPyO/suBgrtuJFtF85v6dIHONJrZJzZC7cSQcPBjs1kUX6WtMv3JZs8zMSsfTSmw9S5Mowc6U+nrrHSiA9qVZKYjjel30rXxuvnNFO9WMlJQudLFJD0XNBIK6794izryvRuEo87JtjF697HStTLCIlbLT8d7z9mWq7XGkwl2NJn/eKk1ufySSlEGzkI8H+7s1JjZBlj7f9+VFh8eZwex0+R1NTmezwjtLcgD7n67Cd+3xJkVKMevLrRkr+hZhuSIYphBBCCCGEEEIIIcQI+lgmhBBCCCGEEEIIIcQIWiw5XWBtBxBpD1g4wvLK9oRcsMKZ4ljeB8TSNJI2DXeHPHt2OfJO0ntxAj6rfunrC+eosHrQruvlk5B86WySolmJGaurWMBjV04PkgSn+cEHa/aTVNm9iOGMd92U6a/Z3qCz1jgpKWKJLUsqraSL+8zpIyDOgMlqI1YlpaQwKbzl3K2twfPa+5ZFx5S5jdiPrRNxtsDUevccjPQ2khPzOvGUBJmzD5IMk5V1QNzGLAmybTpvXuiXRb1BdBj5hl2f7jR4/3XXRcU66MIse3wMMVbeOFFsIJt7cqMpt8qx+22/vPnNweb5ysl4CQDP7Aw+yX1kp9I9e4LN48KW86QVnSs6anblzDPjg3jQsazXyPgif2W9tK2EVyH2aTuXevosS45Ooqh+guo63myYSTxJs/UnzoK7cGGwbRZebjvOemvCC+wcCLadeo6yvL/+75ZGZKzkciyVswpfloixfM3K6xje5x1v96VkSTnSvVSbpLISjrftGo0nX7JtwG3M9bEq4RyZk72faMwltHZeO3CxlD+lsmHa+xgPjZAIeudLSfHHm7ww9c5VRJpsmTdv7MfkRsKYSLkt+z7/E4brVlR6zef2xli97XqkJNFF2qER/sDP0BdfrL/WJVf2miI1fr1xn3qmHC8oZtnsRSvLhBBCCCGEEEIIIYQYQR/LhBBCCCGEEEIIIYQYQR/LhBBCCCGEEEIIIYQYQTHLpgscmweIxOWL77gj/J6Kv8KcdVawOX4L4ArSy4eHqEgl2ufpsG2omArCOdz4MkAcDIPi+7TRCZs4EBEArgLfgbk7lLktTz21Zi697baavZjjBgGIwhNcdBHtyAuYMWy+O0fxeS67jCpLtbXBbyhmThTzaFQgk/rVyY1NkIq9wPuyY3ZwQS8mmC3nBf7J5fTT421uV74p66AZwVRSIaGY1KnLg4fCBo8DG6vNC5LC4xxAG7UXj6o4stLk8YxjrzLlesiO6pqKHcX9x21n5pPOzhBpkP3WTjueH9v+4+O82C4V6wzs7xxb0MYj5G2enxYsCLY9txenzN6QN/CL5JAvGkDHiVPGeL8DY4hnxm3MgW04mBIQx4LjeZVjGwL+BGrgXdZvxgv7Lt9GI+ID8bk59lcjYibxObgr7PlyYriknkPjJRHatVDMsxS5w4rrZF23oST8m+c7LpaKF5X7jsH7xtuXReJNjeV83r7cct60kWrHRsfNS/k4k9sXOX5sz5Vbh5zYe6k4hSm8Oc7i7RtvnLqiNNKnGx0T08L97j1fjlcUs2z2opVlQgghhBBCCCGEEEKMoI9lQgghhBBCCCGEEEKMIBnmdMFKJXktJ6+X53JW5sasIkHUaaf51yIZ0f7BWHrJcBU8+QUAf326lRixzIxPeOGFNbNl69bokP4NG8Jl6PeyleSR9NKVMhkZJonm0MISwVRObbrXpIyI5aSs4bFrvjn3MpUbbm2Liu0dqH9q7qPUEnmWfaSWDPMxXv8DQMXLQW71cNyuLJOy5GiEBgbibU+mZnwogiWRVNfm5ri9vduzVas0kQ8MZuZeL7BGnn3Vill/IusM42cL2TxzWcXqMrI72Pft3OXJjjN1ESkpk9dn1o/ZHTxZWV9fLHwt81zKEkGr1eMKsp2SqhehEdq96Qz7A0tYrZ+84hXBPvPMYLOfAZETHGoK435wb1zMm2dzyR3mPG8XkUqm5H5F6tMIitxHTr3tdq4CeSLx7s8+j71yqdcN756ef96vT3Nz+Ht4xcxJ7OO58tFcv2mknK3RMsyi183Zl2ofr/9y5YuWIrK3otc6CvuxPVeROSrHbgS5UueUzJTbO1XXVJiT8cKhDLj9p9tjfza8agjBHNcufcLrbsJZp4YX5Bs+sgYD2w7hZ/5gPZad3ILnX3gJV1zYhY/96spRxw5sO4Qrfm8dNn7+NbXfrrnuIbTObcJvvvU0/OHnHsLXvrMN5VIJixdUcN3vrEZP5xQJ4oUQQgghhBBCCNFQFLNs9nJcfyybWzkBGz776ui3gW2HcNFZHbjpL87H8y+8hHPe/W28eW03fvKsjjGd+7feugx/+v87AwBw7b8+jj/53w/j7z94dsPqLoQQQgghhBBCCCEaz3H9sexYzJ1zAlb3n4Snd45dd9E2L6yRPTj4EkqlUvqA979/zNdI8pu/mVWMl/Wm8gRmJBEcdT5099S3AZRZJsok2sEXiY6dSV3jd8MNDT0dJ3dje8pg+RnbV101cdfctKmhp2O/bTf7crPfRb5vpLPhZPFH9/KKFWHj6quD/bGPReV4ov6pvOpMKB+e0BRugVQGRW4TVnWm1OkNx/P945jszJZFjs/taJtdOgN+JlgZ2XgzYE7WPG3bLjV+RMx4/RYAeDqfDqTuqaO9/r42etfrWlS3yKSyssFt2pP5fGhp8HMkdyzm+qH3Cp06fvXq2T0feG0ymXjt35Bs0ER7O72zto/58CQXX9zY8zVibhViKjmuP5Y9P/QSVr/r2wCAU0+ei+v/9Lxo/57nhvDIloN49Svqryp79JmDteMBYNvuF/Cbbw1Rev7fz27C//7PLThp3om4/a8vmIA7EEIIIYQQQgghhBCN5Lj+WFZPhgkAd963G2f/0rfw0FMH8btvOw3dHfXXIZ3WMy86/prrHor2/9m7VuDP3rUCf/HFzfi76wfwx794RmNvQAghhBBCCCGEEFOGYpbNTmb3mtyCXHRWB378j6/Bff/4anzq609gw+Z9+N4De7D6Xd/G6nd9G1//js1Bl+btr+vBv357bMdMJMMo1/47nusgxFSjcTAatYmYLORrYqIok3fl7itHHjl+6ZL8e/rQyH6djljfnc33yuTer9c+x0MbCTHTOa5Xlh2L5Uta8Xtv78dHv/wovvyH50aryAa2HUoe+8iWAzi990jwh69/dztWLJ03oXUVQgghhBBCCCGEEONHH8uOwXve9DJ87F8exeNbD+HUk1uyj/vdT2/CQ08dRLkMvKxrLv7+A2dNYC2FEEIIIYQQQggxmVSrkmHOVo7rj2UHbr581G8Xr+7Exas7a9tz55yAp79y6ahyfd0t2Pj510S/XfPOEJPsX/9kTQNrKoQQQgghhBBCCCEmg+P6Y5mYOqTTF0LjQAghxBEUW2z2Mtv7drbfXyOxbaX3QCGmN5rdhBBCCCGEEEIIIYQYYcauLPve976Hb37zm3j22WcxPBx/lb/22munqFZCCCGEEEIIIYQ4HlDMstnLjPxY9rGPfQy//du/jf7+fvT09KBUKtX2sS3qw0t+tXRaCDGd0PwkJgv5mpgoUv40Wb4meZcQE0uupFLPFyFmLjPyY9knP/lJXHvttXjve9871VURQgghhBBCCCGEELOIGfmpe//+/Xj9618/1dUQQgghhBBCCCGEELOMGbmy7G1vextuueUW/Pf//t+nuioznsmSoUgOIISY6WgeE0KINN675GyfPyW1E+L4RTHLZi8z8mPZkiVL8Ed/9Ef4zne+g7PPPhsnnnhitP+DH/zgFNVMCCGEEEIIIYQQQsxkZuTHss9+9rNobW3Fd7/7XXz3u9+N9pVKJX0sE0IIIYQQQgghhBCFmJEfyx5//PGproIQQgghhBBCCCGEmIXMyI9lYmYw2+NTiNmDYvdNTyarX4QQYrbBc6aePRODnktCCEAxy2YzM+pj2cGDBzFv3jz8+q//erLctddeO0k1EkIIIYQQQgghhBCziRn1sezFF18EANx3331umVKpNFnVEUIIIYQQQgghhBCzjBn1say9vR0AcPvtt09tRWYpqWX6uUvNtdS/8dg21bL/mYXGRGPQOBATiSS/YrYx3mdPahwcz+PleLtfIYQ4nplRH8uEEEIIIYQQQgghpgOKWTZ7mbEfyx5++GF89atfxZNPPomhoaFo3+c+97kpqpUQQgghhBBCCCGEmMnMyI9l//7v/46f+7mfwznnnIMf/OAHOO+88/Doo4/ihRdewEUXXTTV1RNiViNZYX3ULkIIIaYLqWyYjcyUKYm8EGn0fijEzGVGPtE+/OEP44/+6I9w9913Y86cOfinf/onDAwM4JJLLsHFF1881dUTQgghhBBCCCGEEDOUGbmy7KGHHsJb3/pWAMCJJ56IQ4cOobm5GR/+8Ifxhje8AR/84AenuIZCCCGEEEIIIYSY7Shm2exkRn4smz9/PgYHBwEAJ598MjZv3oxVq1bh8OHD2LNnzxTXriB/8Rfx9tNPB/vee4N98snB7uyMj/n7vw/2NdcEe/XquNyaNcHu7q6Z2/dU3OodPBjsAweC3dUVl+taRBtbtgR727a44Lp1weZ7vf76YO/aFR2yf8eOms1LIlsXLYrKYdUq2tlaMw/feGOoTnwEBsnuJbt5+/a4IJ0Pzc3Ioq8v2NTeo47/6Z8O9nnnBduslhzYEvpp8+bwO/eLdY0mGumDg/VtW47PwbfQ0WwOuueeYN9xR7BvvTUut2lTsF96KdjWN7gSTfWnqAMnnBBtRz7A7cq+DsQ3csEFwV6xItirzo4O2buXrkttzF0JAJVB2skHMQMD8Ta3180318xnuE0BPEP2A2Q/Zk5/DbfrBPK/qf376fdnTbllZHNzLbZj9pJLgs39snZtsK1T9y6tmexCTz0VF+MhzK5hT7dzZ7DZ7bifV6yIF2OXNz8cNm65pf6FgHigvuxlwR7J8AwAmD8/Pob3peYdLueMl7rH1TsmdXxqn0ORLMrJDHwD5PH8fOH2AeL25ucBt5Vh+wk9NfuFF+J9W7fC3XeUV6+t/zsQD3ueQ+ptH8XOzYzXZa2tcdvxuXMfV7m8+GKwedqx/1jg+/BcyP4+Z06w58499vEpFi6Mt/l8cR18v+O2S8mpNm6s/7vtYz4fPyqse3Ibe+1gXZ+3uVxzc3x/PN/xPu4vLgMAzz/P9fHby/PpCy4Yu5hlw4Z4m++Jh3YuPG3Y9mbf9R7hthy3F7ePJffR7LWR9Tt+hT7xxGCvXu23MR+TGrPeP/hTjwrzSubCdfXO99xz8TGvOg9ZePdn51L2T74u37d9P+Axy+8Etq14DvYeN42QLbN/sk9bv/WeIz91Sf3fgfhVxmLnm6PwnM19DKR9UoiZwIz8WPaqV70Kd911F1auXIk3vOEN+NCHPoQf/ehHuP7663HhhRdOdfWEEEIIIYQQQgghxAxlRn4s+8QnPoEDI38auOaaa/Dcc8/hX//1X7F8+XJ84hOfmOLaCSGEEEIIIYQQQoiZyoz8WLZsWRD3tLS04FOf+tQU1kYIIYQQQgghhBDHG9WqYpbNVmbkxzJm7969GB6O9d8dHR1TVJtxsGRJvM2BUVh8z4L0VFAFDpJiReY22NIIXb0UrcuM+EPzQ5ws1sB3tA7FJ9lCwYO4DjYu1UMPBZviywxRXCtzZhwiO+rhU06JC3L8Kbr3Jgpm1Hv//dEhgxQcpJljvGUGerExB6KYBByDiduVAw0AcYw2bi8TOKS9PcTW8eKT2C7n2Cd8S3Zi5318jij2woDpS74PrivHorMnHyctqZ0c8MIGT+F2pRh4fINlHgcAOmgfx6Oo7DURuvjeeWzygOFYSkAckIXilD0Zl4pik7G9DFMDzyA8+/aacuzh3BMVbnsA7XffHTbYTzjgkJkjy+TwPTSnHT7sx8fgWBo2JokH+3557+54J/cz9z/HxgPiOZfvgythBy23g2cfa18ORQJBJSgSfyX7GG7HVFAvnvCYRMCwRat74MHzpGcXxTtfKtYXl4vjUvnlvObKjTVk8WIe2evkxCxLua2Nf+Ph9YWNFeW1XSPwYlZZt+M28eInAXFdc9shFz4314Ft+4rJx6RicKXuaaxYfyrqr0fhunGcpdR17T3wPq9NcuOAFaVIeFL+Z0VqHisSs6yRMRGLhl714pRZH+JxyuOKHxupx0tqn0cq1mGRc3CMRS/uWr3tHHLjZXq/T1LoXCEmjRn5seyJJ57Ae97zHtx+++14kWa3arWKUqmElzRShRBCCCGEEEIIIUQBZuTHsl/8xV/E3r178bnPfQ49PT0olUpTXSUhhBBCCCGEEEIIMQuYkR/Lvv/97+Oee+7BqiJ5o6crNr85r3/3pCc2v7J3vF1Lv2dPsFn6w5Igsw63hbRIUQpyll0CscyNZI/Yvj0uR3JLPobVCnbRMouUKosWhY0zz4wLsgRq3rxgn3NOsM3qw2au64IFGCvJJdbclixN5WsCsd6L17SzrBRAx+rQT62tFdQjV/pgl8577lDeSZLDBx+MD1q/Pti3314z95r74yq18oUL6DSsRLeJZH3sua2cSxwA2G+8vN5Wn0eyzAo3kJXRbt0abB5z7Gvs9wBw77018wH62cowHyZ7uWNPJv/F+X2/2ebx/AzZi025Co2Llo0bww4ey3bFsKP76OyM5XSeJMh2vyc9iNSRdr7zZJhW33PwYP0TFtEUFdXzeOMsV5eWOU55LsyVV2Yf4+mfbJuwtiZVjpyjPHgIHs3N9YXfReQ4KYrIPblbciWQRaRxKXlPSobplUvVO1fS5bWLp8KdTFICh9x+5m3vnuwxueW8tisiz5tIyWGj5Yup86VklN45PLnfRMsw+VpFxkuRuqau4801qVAfHkXbyusLO794YzNXlJSaP/n+omcK35RpBA4pkfvMzH2FnkgZpjeHN1rePlNQzLLZy9iDi0wDTj31VLzA4nshhBBCCCGEEEIIIRrAjPxY9slPfhK/93u/h802WLYQQgghhBBCCCGEEONgRi2WbGtrq9mDg4M444wzMGfOHDSZNZ/791sx0AyAJYJALAVkueW+fcG2ki6G1+jaNbW8Ks9LfWQyMPK+Mq8zfeSRuBzLLVlOZdNB3XdfsGntM69gtcKXVpbQrV0bbM42CQCczZJhaY5dJ8wZENes8csVWV/McmFuB5MRMJJl8nXs/VBdW1uD5KwRWb5YmtbRTEvI79oQ7G9+Mz7oK1+pmftJUmsEa1jKGzZbIJNR+Wab0ZUyiQ6RDuWAkSDzdnQGllTaVatnnBFsHpckObV1iMYS9/kdd0SHbCAf+CH9bmWYK8nmdvTz900sTU5G3Q5uAwC91Bcschswx/Fs00/S2c6EHDma16gdW86K18H39YUWY9eqHIgzWx7uDDl2XRlCSi/GNs9Vdpuz9556av3j7Xau7iOlcWmE9m6CyJWe7G8KfdS2guSsqX5hv0ml9+P2GZWBODyNWpqDZPTQYF69ORpAbpPmSi/HK5tLZdDMdZlUHbhrPNVx6jGbKx8t4qq598rlKolynowrJWtKJTX3pHKpqYG3vVc9e12WbrJi3NYtV97aSElWo6XO3A42AbGXIdSOEa9fcqWN45VEN5pcKS+Tmw0zNR94GRSL9rkXpYZ92pazPuDBcxfX285p/HzAtr3BZocyGdeZXElm5XB4ozrppPB8sv9048vmzpG57Z87nwsx05lRLv23f/u3U10FIYQQQgghhBBCCMUsm8XMqI9lv/ALvzDVVRBCCCGEEEIIIYQQs5gZGbPsK1/5Cr72ta+N+v1rX/savvrVr05BjYQQQgghhBBCCCHEbGBGrSw7yjXXXINPfOITo36fN28e3v/+9+Oqq66aglqNj0PtcfShllVOPJaBgWCngl3wWlArYt+6tf4xLDTnGE5ALOzn+ti4aVwn3mdF8BTbimOJcdiDVhv357LLgn3xxcHmGGMA0N8fbG6Hzs5gc3AuII4fdvrpwc4U36diC5Q5Zg7f9549cUHe9/jjwebYb0BU92UXh3s61F2p2RyvARgdhuso9vZ6uinewnq6LsWRwt13R8dwnDLu5TbEtCxZEjYuvNCvRA6XXhpvk493cHuZhhhk//TGUiqQCfvQj34Ul+P4fc7Y3Gzi1FENojhlUXw3ABT1LopfNipe32TxtrcF2wvaAqCf4tlx2x9CDN87zwFtd95Zsyup+Y7Hjgkc1LLKWRdv5rgOnje8QCZ2XsyF55v58+v/boO+eOPCrvOfbgFwiDKG3X25ccoYvvXhpjDflWGeL9SWfJ2yDdzE/so+ZPq5pZ+fjXvD71H/0dxgmDs32DauledqjYjVlCMJSZVJxSIb63UAP2yodf05c+rvs+7txT9KxRQqMkRyj/HiNqXiwqXCDObUITVtpGKy8TbHqEr1Jfdfqg6NlCLZejfy3LnnSsXwyj1Ho6fmlI97cD+lfCM3Np1Hat7I9c9GkoqvxnMN+zfHmQTixzbP2aPqze8pXuxaJ+Zr/RM60Dvvot7wxmjCxibj6Hl4fgLk+5oQs4np9WadyWOPPYYzOOj2CP39/XjsscemoEZCCCGEEEIIIYQ4nlDMstnLjJRhLliwAI/YLIwAHn74Ycznz/9CCCGEEEIIIYQQQoyBGbmy7Gd+5mfwgQ98AP/2b/+G5cuXAwAeeughfPCDH8SVV145tZUryGjVYxCx9bDkkAsa/UYkN2F5ltVz8AdF/gzOMpQHH/Qry+t8rUSQZW/33x/svj5T10CZ9rXx+l++bwB41auCzTI+c+5ntoV24CZqY5mVXerMy6U5rXNiSXS2jIj7gtcwn3ZaXO6JJ+rXp6vLPzf1XwvLUBZUomJWfXSU5HJ79g1en278qYXsNu4Lqze64opgW+ksEfmxJ+Nauzbe5nHBUkkjQe68/fawwXVlybD1fe4Luvdn+FwAhhx7N9lGtBzJMFeT3YeYlVzXc86hg1ZjorD+HfUFXzdT67Pq5ptr9l6WwCJur2eiawYW33dfdEw3z1c8lqzsnPuPx9/TT8fl2K95rmB/snojLwU8S6+BWG5J9u4D8TiNcJq1OaESHtxb/xiLJ1kbdUxTon5TAD9ueG5vb49F3/Pmhe3tdEx/fyxw5rkrunnrQ7yP/1B38snBts8r5/AiMpaiUrTxKnRTx+TWYbyynSL3MFV/3efnKT/+bH14qknJbb1yKZlUQhUf4SnE+BXOhm/I7QvvkZCSZfvnKpvt+ufLfR/LbXu+TiOkZ5MlOZwO5N7fRLaDff1kuC+8cvb3XEm6qy9PhZEowhQ5EbeLJJnieGFGriz7q7/6K5x00klYuXIllixZgiVLluDlL3852tra8D/+x/+Y6uoJIYQQQgghhBBCiBnKjPz7xvz58/Gd73wHt956KzZs2IBqtYpzzz0Xr3vd61Aqlaa6ekIIIYQQQgghhDgOUMyy2cmM/Fh2lEsvvRSX2qx4MxSr+uBl8bwMvZeynpT7zUEMZ1uxJ+fRzBdiWRNLAoF4vTpL3qwMkw+h9fzNJgtgmaWgCxcG+8wzg22ldiTd29+5rGbvHIiL8aU4C1l7e5AUdfYuj45p6Q/L+bfvCO1t8nEW4hBdq4WXZbOE50gFg/3oo8G2WgjuJ5YP0rLsism208Hn5v5vNVPA5oFgcz/zNY12oYmzlr72tcG2GUdZpkQytyJZ8UZlgeT6sWTR+j5rt9j3ub1tOiGG7t2OPn5GsqzwSccGYrklZ7zst5lg3/zmYLPEz8r9MijU3ua4MstoI38yGkHeJt9vNxLW7g0bajZ75DPw4Tmljezk3XF9UpktWU/FWVytnpnvnceckWfuPxwEfwfIcdg9U9nqvOxdlpT0hCUTPC/mMh2kQ/FzMdipjIC8r6XZyMB4LmOZDM8ndh8/8/j3hAwzJZvjfex2XpbMeuc4SsqHPBrRr+OV/NrMc+yfXM76vieN4ja1GRy9ujaiHbjeKf/0JHmpzJ18Ds8GfL+xPsNtycOA5xDbJly/VDbTRpLbL/kSz8YKaor4UyrDay7cf7nzeWoe8vB8tchckyrn+dZY8HzShhvhcl5mSzuOvD4bVdfJ+lhCHVM+HN44+d85QCyrTr0fMHzvKT/JDucgxAxnRsowhRBCCCGEEEIIIYSYCPSxTAghhBBCCCGEEEKIEbRYUgghhBBCCCGEEGKMVKuKWTZb0ceyaUIqUz3HaWF75SqOcmTgmEKPPx7v4xhYzz9fvxI2Ng/HZtm6tWYO21hkFCAkiiBh41dxHKDzzgv2GWcEm+8BwFBviFM2QKG6bFX5NviyfKs2ZXhra1hkycfb0FFFiMNpUcy5VFAEjulm2847hhvC3qAX3MUGF+DzcSAZjsfEfQcAp58e7Fe+Mti28ShOGUxMNY8oThZ7lIkJ5QZMsG3M7eLFObMBdA4eDPZTT9XM3U6dAWDAsVeackvJ7uc68JgAgNWrg833zsckKBqnzMXrP+ur3puD8c/+p58Op6A5haOK2Yg0POzZi1vpXADi2IBcPzvp8jbPkTwmOjvjY5z2f2ZvS7TNp+Ym4Wk1Fbcpl9TQ9sql4HPkxi6ZSLi9UngxlE46KR4HXdyfPH/aIDfevNGAYE3cdhxfKzcOGPeLjXmVU71UDDzvmhZunlzfyo0rltsO04Hc+FVeDELbDl6MoSLxgWy/8LlTPsR4seRS9zdeGt3HRWJr2X7hbfb93PtuRHyn3LnCu27uuM+NWcb3zj5kfdjzL76fov7jxWSzdU3FE/Qo1E8TGcgrM/Cd9d2xnjr3ud+IOHxCTFdmpAzzyiuvxE033YTh4dyAnkIIIYQQQgghhBBCHJsZ+bFs3rx5eOtb34re3l78/u//Ph555JGprpIQQgghhBBCCCGEmAXMyMWSX/ziF7F//3588YtfxOc//3n85V/+JdauXYt3vetdeMtb3oK5RfQrU4xd6pojZdi+ME4RHKneWPKWkqKxzRIlK0PZtSvYtMa2bNdY0zlaWKJ56qluOXR1BZslU0bytGdPsFOSSq/tUsu8c1MlF4FvtbyXxHtWU2T1pB5ceS/vtZXD8TG2wTxyNCBAXO/t2/3juT+53u0dbhXcdPApCR3bLJkCgIGB+jZ/cDfSumEqVyZ5bIdpx818GbL5bCy7BAD3zu2YZe1Cpm6g4dJLxpEX2GuWPV+190Cyzg6aN/hs1hPayK7w5GelkSxbTWkFXvayuvUZJfnlOrWGWnD69hOej8vlSBRsl3sSh1T322mb8WQ7KaXIeOUUPH4b4Y9873yvds7mqTUlk5rbH0Zg2wraaecXvthzzwWbn1cJyoOHanZrayzRtf0+VrhqRV59cmU6thxft4hsh6e0VEQC7xFnYVkZq6gnUxKUK+niR2YRSTRjj/de73If+yl5nzcP2ftOzUNjJVcumEuuP6TkqF65InLIRkgOc89RZK7JlWFyO6TmFG+fNzeMhdznGt8Ttwlf175Cczm2+bkPANi5N9jeg6gR/8jgSYQcoLW1LSpW5N82fExq3vDauGj/zXQUs2z2MiNXlgFAW1sbfvVXfxXf//73cd999+GVr3wlfuVXfgXd3d34lV/5FTz44INTXUUhhBBCCCGEEEIIMcOYsR/LjvLMM8/ga1/7Gm666SY0NTXhqquuwlNPPYWzzz57qqsmhBBCCCGEEEIIIWYYM1KG+eKLL+JrX/saPve5z+HWW2/FOeecg9/+7d/G2972NrSOrB/9l3/5F7z1rW+d4prmY5ets4LNy4y5b198DCuR9g8GiWabzVzH62o96Z+VCHJ2xtTxLLXjteFWysTrfDm7Ikmohprj5cS7KDUeJyi0VUjJczyKZAnKJVrOvYlkgVYiuGlT/X02TZ6X3Y9vwq6d9vbZcixN5PrcdVfNHL755ugQlsc18XVWrIjPvXBhsMebDdPWm6VR7Lu2jTcHseTwnXfW7I1UpMJtgFhS2UPX2YiYh8nmT/UstYyF02ab+9JqALx9qUypEwmN36HDoY/2xMlx42yDXFc7H5A/lKnPWh1JJgA08fnYn1L6iSLpItnXzLxYPrA/bNBE1GUk5HPn2p4fjZXSsJSB5XUpyc14JV2NkKx50mn7exFZpteVJ50Ul2MZnne8PccwySPLqayu/KC12VE9yIfKppGbm4Nv8GVSqvxcmZunpM8tk8pqx3jJli25mT/5GZySMBeRvORmeC2ClxGwSJgNwO/n3PZO4UmlimTATc0bfA/u83wawv6ekiDnjLGJoEiiRe8Ye388f3o+YH9n30+1Ce/zfLBom+bWlfGes/ZZEYVT2fmsf/KckCAcJgdwH+rJMbKF/kFEdWjrjyt+oDWMuVwpdgrJDH0kw5y9zMiPZSeffDKq1Sre/va34y//8i/rriK79NJLp6BmQgghhBBCCCGEEGImMyM/lv31X/813vKWt6A58Sf2BQsWTGKNhBBCCCGEEEIIIcRsYEZ+LNu9ezeee+655MeymYZdBu1lbuSlwSkFSFsrLd/dlsgcyFoP/p2zX9p9vJY3pYtIpfzx9Ap0TK5Kyi575SXcvM8qS73z8e1FGUYLwklBu1guZtdEcztwZW1mNl4j76UKs43Ha8iLyDDJpgXoAIDFvMFOaZeac0bUTBkmE0k4EhkKk6mYqF1Z7tdN2TCfNIdw7roNZD9myi0nm++c8p+OmnAjcd7ppwebJauAmyXWSpUna0LffyD0BY8dlkcDwPAiR9pmZW7sNyQ7bkrIMCNpeErzZMfPUazO7emn65+bsbJeb8yZ+zt8OPQ0S3hSWfFyH29FZGWTmSGwkXjNbbuL/1bGbbK838ha2Dc2Ut8aKXY0T7IP5OohE89MlmF6mTvtNM1TXG7YAe+ZWfQ565Wz5Eh+bRlPomllSc3Nx5bypu6viJQthZcR0I5lr59tO7IszAsVYeViXsbD1HzC+3hOSrVJKkFzI+Re04nUMC8iQW4E45VhFiF1f7l9nlOHolI277jUNb0xZn06ynpZRAedO+nm4oXDMf/QaW72s8175GY3luRQHC/MyAD/H//4x3HKKafg8ssvx5e+9CUcOnTo2AcJIYQQQgghhBBCNIijMctm+n9iNDPyY9kTTzyBb3zjG+jt7cV73/tedHV14R3veAe+8Y1vYHh4egcNFUIIIYQQQgghhBDTlxn5saxUKuG1r30tPvOZz2Dbtm34X//rf+H555/Hm9/8ZvSm5FlCCCGEEEIIIYQQQiSYoZFLApVKBRdeeCEef/xx3H///XjooYemukqFyI0bwjJ1G4OLw+Q8sy18B+3s7InKVTioBZ+Ef7eCfS7HF7IfJ3kfV/yUU/xyHMtqxYqayZmRbRXGGxPDxqCYyKWnURrs+dSuNm4Tx6Xim923Ly7H/eQF07AN5DmOLffcc8Fmp6QYWh0U3wsAyqtXhw2OU9bXF5+b79cLrJJLKq+3N2CAuH4Ue2gxtcmTHGQOwADZHKdsmanSKrLP5iBK3Ee2TbjPL7ss2DQO7PZQU4gDZkNoTdbfCjjUEzf3nj1xOXah3v4Q1a2cGsB0ExxXLhnUy4vdB/jx+lJx0/jciVhkuXVgF/BiGdkpl+MScVwVW26yYpal0tgPF/i7m3e+1LkonF00r9o2yQ4Pw33GfWtjKnr+av3BIzHntrDbdYcYhKmYZUyqz72YeI143nk+bfF8nPvS5mOqgOID7TWxBbmcE4ir0hp+t/7EflfEb1PwfVSawnVsbDUe26nx+/zzweZHSiq2Eu/juGJsA/4j0xtj9lp8PB9jy3m+m+oXxvqGDTU5VlKvuUzuHOLFD7RjwosxVvRViNuf7yM1T3d2hjZP9ZE3XeWGaEzhxSNkm593Y8GL45zqPw4Py9dtObw/LrjXjwsWwQ7KjdfoCdgLLmhitHb08qDNC4TKr6n2Vr1bEmI2M2M/lu3fvx//+q//ii9+8Yv41re+hdNOOw1vf/vbcfXVV0911YQQQgghhBBCCHEcoA+Is5MZ+bHsqquuwn/8x39g/vz5eOtb34o///M/x/nnnz/V1RJCCCGEEEIIIYQQM5wZ+bGsUqngq1/9Kn76p38aJ9i15bMEbwk4L4k1arFo6ezAQP1jAGDhwiD1mNse7DbWcNm14by0N7UWm9dB802whgCI19bTevKhw2GZuP1C732xT1WH2y4l++Bqp85XRMLR003L4jduDrZZLo3NtG/XrmDbG/fW+vO6fLse3csFbc/N53PkjCSQAQA0bdhQs8tLlsCFz0f1KRtpYla7Wo0ub7N0z0hG8YMfBPvmm2vmw3R/z5hLedLLPlOOj1tFctby6aeHHVb3wdvsD1bPSEvuK53hmNbWqQk76UmHUtITN/W63ea5h22rFfE0QVZzwTqLlHyiqyvYPH5Ykmf9ztOymLHdxeege21qqpAdn5q3WdI1WmIdzufJ0upeoB4FdZwp6c9Ysefi+YAfI9wMqagBrCzfvTceL00kaW7uXlqzK0jAF/N0PxaubBENrKHRih6miNQqJT9raP1yXwqiF6i4NxstvWS8cdrc3BKV89zB3g7LIL0+t9MB98ULL/h15XPk9rknm7N9buWbOXC/pOaTBgwfl5m6KqRIm3CfF7lv28dF/imWM3yLno/vz8o6vfaKfj9gBhbLHlPvEbyP30X53SH1LpOr/7X/fjiKfSYVaMyUb0zks0eI6cqM/Fj2pS99aaqrIIQQQgghhBBCCCFmITPyYxkA7N69G7fccguefPJJDA3Fa10+/OEPT1GthBBCCCGEEEIIcTxQrWq13WxlRn4su+eee/D6178ezc3N2LFjB0455RRs3boVc+bMQV9f34z8WJbKiMMKHl7hm1K8eZlyAD9zFUsgK7ZCPAMsWuRfmPfxsmWbNYyXF0cSs/Dhs68vlk/w6TibFCsWAV+ewxKek06Kj+lopQ+uBda0J2VIrIm9885g339/XI5kgdFN2Q5cRXkXDx4MNmelTKWM4n1WVkaSSlx/fc18khyPSgCIJUtrbryxZndaCaTnDzZDZA4sWQXi++D25vsBAKrfRvr5h2Sz7BIAziW7Bz6LyY6kpaz/tc7KcF2tD3LWTNrX3t6RqNHE4SV+tNWOFAHcL1u3xgW5/7wTWnkBV4KllnaCY1/zUpcB8QTBE+2DDwbbjlmuk5cxGIizsNJ4buOsp/Yla9DRWqVSI3pZPO127hznlbNvhEXOnQnPrb299WX6HdgdHdPTH3xj94EwQ3UceDI+eTS3JiSsnvQyNxsm+7sNSUDtVY7aLkj3bHN7LmDLeVntimbX9Eh1vzdX8LQ4ymV27g12SvLkyZfoouWEVLbhkkyuKz3vyuZ9iudtT00FpKXGR7H9xXI4LzOm3edNiym1WCoj53glftwv9nh+jUj1n/dOxhlGrd/xtbxkg7aclx0wlaU0NyNnCk+mn5KzcrkTTwzlrFw3J3m69Y3cR0WODxX94MBjic+dyuoaZcBson8H8PsKEEsqn3qq/gkA/12U31mvuio+hm84V9p/223BTr1De/+4TPyjk+cD289esk9GH4zEbGNqAt6Mk9/6rd/C1VdfjaeffhrNzc34v//3/+LJJ5/EmjVr8Du/8ztTXT0hhBBCCCGEEEIIMUOZkR/LfvzjH+O9730vSqUSTjjhBLzwwgvo6urCRz/6UVxzzTVTXT0hhBBCCCGEEEIIMUOZkTLMSiXIKrq6uvDEE0/gzDPPRGtrK555xuayE0IIIYQQQgghhGgsilk2e5mRH8vOPfdcrFu3DsuXL8fFF1+MP/iDP8D27dvxhS98AWefffZUV68QqZBeHLOMtfapcCl8TAov9kLFBiDgC7NtgwGwoD0VjMPT6FMlyuYGV6xYWvcyNgQM3wefmtuksvfZ+KANA8Hm++OYQoZybmwejkX1ox8F28bdevrpYHOAkdNOi8txnThOGcdF6u2Nj/H6z94DB6igeAvdFE/NRsniz9Pc4y2bNkXlWrw4ZRdfHJVLxn87io1FxnEiuF03boyKcTyyJ53fl5lLsQcsp5h8z+7YEZXbxhscq+L006lQVCqOfcH9b2POcZA+GldlO9A5np1DI+L0dBym8dNK/mTDYGymflm/Pti2HdhXvHGVCgLDcDAkIB4LfA4bcMOL+8HH2JhzvM/GYWPYHzhWCI+J1HziTdSp41JzeM7x9roNjkVWBDfMyjY/uNLgIEVVtPFgqNz+A2FctLXHxYZb22p2mdskN2YZx/K0x9AYPkRxyrxYQfW2Pbx4So0mdW6uw3PPBduLmQUAHblxezJilnEsVnvd3DbJdn0nWOxQU0tUbA89OvbsCXbqdcqrQyrebSqGFveLDd9Yr4ytT25YVO7zItg65PZZw+PRjZFUvLecfj0WcSi/cK/sD7YN+LpOeL1R21Mxh+TOb6lzeLY9P7+KHO6k+Jb2HTp34vBi8/KcloonmgvXj9/92TblDh0O99eSeM/mNrEhIz1/SDXP0e1q1b2kENOaGSnD/LM/+zP09BwJtf2Rj3wEixYtwvve9z7s2bMHn/70p6e4dkIIIYQQQgghhBBipjL1fyouwJo1a2r2okWLcDNnERRCCCGEEEIIIYQQoiAz8mPZUdavX49HH30UV1xxBebNm4eDBw9izpw5aJoGcpGxklId8LLqVBZ1JpXiOWdZdW9vLLZr7Q7bFW9pMRCvNWcZptUKeDmevZzV5rodzaxTjSUOLClg9Ut5gMR2Ni00S/e4PnZJcxHfuueeYN96a7CNpOsQVbyF5XVnnhmf74ILgs0yTJKR7WfpEQCwQoXaq2y1GewQJDOskMRsuZFAUrLtSNo4hJil1A7tp54adrznPXHBnDa+4454+/HHa+YwSfoGzGE/JJsFmudzPc0xy7mN1q6tmYuNxLPzkUfCxmtfG2yWzVq/o3rj0UeDbSSso2S1R7ETQoYMM0vmeix4vKR0QF66das38vTSCxcG26Zo52O4fWx9eB/PO2ZiHO5fXrO5jVjKUrbyUW7/gweDvW9fXI6vmyuHZCk2Y9uOz8f3bq/jSbFTsmzv+Fwa/Cwub6EZxntumH2sijnUHj8rniM53Pbtwe7sbIvKHdjG+3rCZfeG33u6E+OK+8X453BzqBPXJ/cZzliXyZFNpboot/tSal3ex67Lv1sZIEsnK57UMlUJaqCm1kqdwhOE02lNxu9YdmolqEyO8islWUtJ0RieWlNRNrypxk65fC0bJmOspB4vReD62HNzW6au68lWU+OAt3mcFp0iOTLDeKfZVF092/qTV4fcct51ipIrGXXn2VTYh9Tkxbpjz6EaoWf1/h1m/k3G0kt+XWlJhOrxbgHw55RG999MRDHLZi8z0qW3b9+ON73pTVi3bh1KpRIeeeQRLFu2DB/84AfR3NyMT37yk1NdRSGEEEIIIYQQQggxA5mRMcs+8IEPoLu7G7t27UJLS/iL3Vve8hb853/+5xTWTAghhBBCCCGEEELMZGbkyrJvfvOb+OY3v4kFCxZEv5922ml48sknnaOmNzZBFi/lrAzur9nd3UEe0nJ4Px+CYYR9LAmx2aA4caCXgcauLI4TvFBmsFTFGSsX82SPXAmb1Y730RLpDiuVbKfl03yzLJu77774GM5Sycuvr7wyLpcrWWLuvLNm7rcyPCLqJW5Xm5GTpHaHeoN0bJvTrxa+hTlzYrltF8s6uc9Io7SYszYCWExyTRap/dhclxMu/cRtt+VV1mnjwyZOIWfh5BlgwBz3ANksWOQWttkwcfnlwSYZpk05G2Wm5MyK/LvNEEv+sJMG3WGWdAKIrsT9YrNhXnUVJgWWibKv2rRa7O933RVs26+eNpzPbXUxmTKE7c+FP6gs6A4i24oRCsdDM4xGrs5ymzGTZZkpWaAnO09pmXj+S2m1PLlmI/QARfQU49RgpLLYlT3NWeKafIgdftxEPKysAsdL7Mzn7klloOZxap6ZXuYxvqaXXczaKVlZbrfkyq48imSys+dm+R+/bzQn5H5NlLE0mk7MlDSRLs3ZTJtJemkSJ+OFF4KdyozovZ9xueef9+taJNtn6l75vZDPbad99uPxTkONljWl7rWIlMyTFluKjMUUrPTnOthXAobnlFS2Xe7P8bZ/I2TeuXjzoh0jXh2iV48V8btxS59T0DYQa5rZTk3URUIc8L8LyD7U3hMV438Ccebd1POKI8TYbLbeq0ij/VuI6cSMdOnnn38elcroOBQ7duxAc5FJRwghhBBCCCGEEGIMKGbZ7GVGyjBf/epX47rrrqttl0olvPTSS/joRz+K173udVNXMSGEEEIIIYQQQggxo5mRK8v+6q/+Cq95zWuwbt06vPDCC/jQhz6E+++/H/v27cN3vvOdqOzKq++YmkpmMGdue81ua40zaR0a5O+YoZsiJWJ7nLGL2b03HG+XyLMkgJdvp+QTvKyWz9fb2zO68Ajl3CxWDK8TtqmYGE+vAsSV5TXInI3viSfiYzjDY6reRf5sQPoubuIOU6yJ189ffHF9G8Dw6nNr9mZSlnKTcKYkIF46nVou/dJLYcVmD2dW5E43jrKKPlw3k07DZsN8luxBcsLmAjLMzWZ7gOxnyLai7JVkn0v2siVLwgZLUQHgla8MNkt+U7JA7ku27cpXatfOu+8OP1vZMg/aREbHSYOyo0bYenvSAytn5HY55ZRgn3VW/eOBqF2Hu8M8ZCVPrBpm+dOcOfHqZE+eHl1yTZwrtY37nKWznFoR8FNupfQurHniAZzKculI1euefzyk9EuTBV/TaI+27wl9y8PFPgu5SdilbVMlpr88yE/2H4j/Rum5RiMkdDlRAxrRlak2KSLP4WOsDIjhNhqvqCAlgczFU2elXmUaLVPz+sJK0bwpxct4aetj3zGYIq9+OeeydShCKmEwk5t4lfEU8YDfXjbJcy5F5La59fb6r4iv5mbD5DoU9RnvUehlL7XX4nJ23mlZRI7Dz31b2ZwHROoZnuvg/A5FGb/tP4f42cXvPyn4lqzs0qtekVsQYqYwI1165cqVuO+++/CpT30Kc+bMweDgIN7ylrfg137t13DyySdHZR94zZenqJbH5o2bPj7VVRBCCCGEEEIIIYQQxIz8WAYA3d3d+OM//uOproYQQgghhBBCCCGOUxSzbHYyoz6W5Wa6XLp06bELCSGEEEIIIYQQQghhmFEfy/r6+lAqldz91Wq1Fux/xsH54wG0sACc9nVwbJZtsTae4/Z0NB+q2c3NLVE5DivkpVQumqqeq93iBRCwsKieAwzZQAMsxueK23PzdTlO2UMPBZtjlAEYpHhDUTSBRvyZgBqcB9yo7BrctxSDwMbjyQlfZaudG8+Fj+teFfypzPEROGU1EMX46l63rmY/E5cChwvi+GVLbSAh61R1sOfm0cOf1O1n8z7HBsdnszHLTj892NwvqUblmBadncG298r75s+vmUMm9hfHMGulNuZjJpUf/SjYHJ8rFTCD57hE/LEoiEurEyfEbHNz7dsXF7Nh1LwqeOW8eI0A0NZJPsD1zg3okwpy4x2TineSW242BBXxHkqIh0VqmHrdZOdPftwUaTqOQWp9KCe2Tu5jKOVOuTHLcl3SO0dujKJE97lxzmz8HG6vIo/qInGfUnjvU6nXn9yYUEyj45zlHpMbhy3Vt9MZz/cb0d5eCMqi7TPemHrjpRHzRpH2bjTcJhzT6+DBuNz+uWEOb7PvIt4JPRoRKJLeHYdbQ/zqA1viYl5MzBTjjZfp3V7in+/iOKNUKv0/AD4AYAWA/QBuBPB71Wp1R/LAcPx1AH7B2f2WarX6VVN+DoD/F8A7APQA2ALg8wA+Wq1WE1ENjzCj3pjX0T8Sq9UqXvOa1+BLX/oSevkfsEIIIYQQQgghhBBiWlAqlT4A4BMAvgXgNwD0AvgggAtLpdL51Wr1YOp4wzvq/Pb9Or/9HwA/A+BzAO4GcCGAPwXQD+Cdx7rIjPpY9krOSgegXC7jrLPOwrJly6aoRkIIIYQQQgghhDgeqVZn1kraqaBUKnUC+AiAdQBeV61WXxr5fR2Ar+PIx7M/zz1ftVr9QsY1X48jH8o+Ua1WPzTy82dLpdJeAB8slUqfrlar302dY0Z9LJvVWA0Qa4S80ZfQlwyT9PI5s6iRpQK87JiX6FqpCJOSJfE5mrvD0uCyrSvLz/he+QS2TbgdeI30DnODvMZ9165gb6H1yUb2yleqkN2R0qNmMkj3xEePapNFi4LNsjRuKwD7HOklp7q2y6C9aqduh5u/g+vAkkwA6O+vma0kZ11s+u8Q2cP+ZeObciSZ28z2ANlcu1jAGssyyywnpXsYdX9eX9hGZp0F68D4GNvgfC2SgnYY/zzsaThy19U3Gk/zaycE9nFuB7sa+JRTgt3VVf8YI30YagpzHLvanj3xqblK3GVW8sblPHmInZI6O8NsUWFftXoxT5fEmtGi2hNPi5arbWOmuzwz5x6QP995sjI7rPg5ORUU7ZaUNOYoKfmUdWMPbjt7Ha/LGiFt4/rlSion0sW9+qRUVywFtu1dpK6erNPOd15dU0puJlfyO972bnR/cb1T584NXTFe6exEju2ix3jjuRFzRc7xRSPpePfHERIAf4xkz0mpfwZ4Ayh3QsiFzp0KwVLkMrntkCvDFIK4EkALgL89+qEMAKrV6o2lUukxAFdjDB/LSkdic80HcKBarXr/tHz7yP//xvz+Nziyou1qAMmPZaPCJgkhhBBCCCGEEEII0QDOG/n/3XX23QNgRalUOnbg6sC+kf+eL5VKt5ZKpVc513y6Wq0+xT+ObD9DdXKZ8d9/UwH/hRBCCCGEEEIIIcSUcTRz3NN19j0NoDRS5uFjnGcbgL8G8AMABwG8AsD7AdxZKpVeX61WbzPXfMA5z9M4EjMtyYz6WPamN70p2h4cHMS73/1utLTE2R6//vWvT2a1GsOmTfG2J03k9a1WotbeUTPLh4doRyUqxkuceclubsYmJpVwjZdsL1gQ16HiZTzkC1nNE2faGxjwy3nHrF9fM3c/FX1gxmay+ZYaIcPk7Ix8dItp8FbeTmgFvD5jqVButVPloupxfxlZaCRTJPlhU0KGydks+3I1o4SdRZdzdcjuMeWimp96arBZFmglgl5m0lTWTk9+aO+Nz80+vXBhVOwwyTLLJDs+hJix/DlmXPB8xY5CMlwAcXt5uh8gliCzTW3HsksgVlKzEpuV14A/Pdi5i2WYvC+V2LLSRKu++UIs+Qbi9mI91MknB9v6E7crS1CtRsXTC+XqMfj4ohqOIin9MimzaJvHSEIT1EbjqrOTMoUlwgYwNqshH5epBI1IqWMbGeOkETK+6YDXJl620KLnbnT75ErteMixRCxVzjtfqs9TCXB5e968YHuvnkDcdlzvVAbU8fp3IxRrDNfbtm/u2C6S8HA6xzJKZbYsKomcCiZS/uv2X2rQ8mBqtE6RrpPrW43wwZn6TJksfCXgjKKzVCqtp+1PV6vVT3OBUqnUjiMfp3K5tlqt7sYRCSYA1AtucXQGbqmzL6Jarf6u+emGUqn0JQAbAHwKwOm0r8W53tFrHvN6M8rtF5p/QF599dVTVBMhhBBCCCGEEEKIWcHOarW65hhl2gH80RjO+QUAuxH+xj8HgPmzZG2til0HkEW1Wn2kVCr9C4B3lkql5dVq9ei6ikMj16tHc871ZtTHss9//vNTXQUhhBBCCCGEEEKI44pqtTqAI5LJsXJUWHQKYlHX0d+qiMVHY2Vg5P+dCCKkZ0bOXY9TUF8SGjGjPpaNl23P78H7f/AZrNv9COaUT0TfvMX4m1e+G6+4+dexoq0Xgy8NYX7TXPza8jfgF5a9DgBw3WO34bfu/TxOmbsQg8ND+JX+y/CBFVeOOvcd2+/Dxx78N9x0cfjQ+s67/xpXnHI+rlr6k/hv3/kY1u/ejBPLJ+D8hcvxD+f/2mTdthBCCCGEEEIIIcRUsA7ALwO4EKM/lr0KwEPVavXAqKPyOSq/3G6u+d9KpdISDvJfKpWW4Ei0nmPG7ipVq9Vx1GnyKJVK1bHWtVQqofr2GwEA1WoVP/Gfv4VfWPY6vOf0ywEAG/Y8hudefB6/uu5/YuMb/v8AgMcObMPPfvvP8RtnvAm/eNoluO6x27B+12b83Xnvwa4X9uOMm96Dey/7JJbMWxRd61gfy/7j6fW4vOeVAIC3f/djePXil+M/XnoQN677JgBguAGJSTm2SyPONxVE8WmOY2ZS/822Piva9rOtHaYDM2kcpJjtvtHIfkq11XT2h9nex0IIIURR1px/PtavXz9rs/KVSq+sHknoONOp/CBDhlmIUqm0CMATAO4D8BPVavWlkd/fiCMfrf6wWq1+hMp34sgqsa3VanXfyG/zALxUrVYHzbnPwZEOeLRara6k398A4CYAn6hWqx+i3z8O4IMALqpWq3el6j193zwbzO3bf4wTy021D2UAsHrBMixpiYOVL2vtxifO/SVc+/CNo86xcE4b+lt7sPX5PWO+/utPWYNSqYRSqYTzF56OLYd2HvsgIYQQQgghhBBCiBlKtVrdAeAPAZwP4LZSqfTLpVLpjwF8GcAmAH9jDnkvgAcBvJl+Ox3A46VS6VOlUumDpVLpV0ql0v8EcDeAl3Bk5Rpf899x5GPZB0ul0mdLpdIvlUqlz+LIh7IvHOtDGXAcyTA37nsCr+w4LavsuR2nYdP+LaN+f/Lgsxh8aQhnL+ire9ydOx7A6v/49VD+0A5cccr5UZkXhw/jnx6/HZ985S/jx7tvyb8BIYQQQgghhBBCiBlGtVr9eKlU2gXgAwCuBbAfwL8A+N1MCeY2ALcBeC2A/wZgLoCtAP4PgL+oVqub6hzzFgB/AOBqAO/AkThlHwbwlzl1Pm4+lo0FK/b8P0/eiduf/TEe2v80PnP++9B8QqXucRctWjlKhmn57+s+hVcvXoWLFr8cf6WPZULMGlgi5kmiJdUSQgghhBBCHI9Uq9XrAFyXUe4aANeY37bhyAevsVxvEEc+lv3BWI47ynHzsezlJ70MX33yu1ll7939KM5s661tv3XpRfi7896Du3dswhu+9ce4vOeVuHvnJvzxfV8GAHz2Ve/LOu8f3/dl7Hhhn4L7CyGEEEIIIYQQs4KXproCYgI4bmKW/Zeus/HC8Iv4zOZv1H5bt+thPHHw2ajcwIHt+M17P4f3LX/jqHNcuGgF3tH3Wnzyoa/jzUsuxIbXX4sNr78WaxaePqqs5bObv4FvbP0hvvwTv4Vy6bhpdiGEEEIIIYQQQogZxXGzsqxUKuH6i34f7//hZ/CXD3wVzSeciL55Xfibc9+NRw9swzk3/wYGXxrC/Ka5eN/yN+IXT7uk7nl+Z+XP4dxb3o/ff/lbMP/Eluzrv2fd/8TL5i3Ghf/5WwCAn11yIXBi2G/lWTlZvw4fjrcrTf6+qaYp09Nys50VkrNxo9gG8va1t4/9OpYDjgS7uTnezm2kmcLgoL+d6gsu19dX/9zbtsXb3HbcrrZNeXsC29vz45R/J306d0BPlg9xfQpcs9FZDRvRPEXmTO98DenLsV50CvHut9H9nJvxeSqef5VEt4y3HWaLfHuyspmm+n+8wyfVF0OH69/fNByyDSV3vFWaxu7Htk25LYuMi+mcURfIvyfvPiYrm/BMnpOmwgca3V4T+UxR6BAhYkrVqo3QNT0plUrVsda1VCqh+vbRWS2nC2/c9HHcuO6bdfcV+1gWJjXvpW2qaPTL4mz/WDbdX+gYty9m6MeyqWp7fSwrjj6WTU+K9PN4/7EITNXHson7R+ps+QeLPpbNTvSxrHHoY9nEo49lU/OxbM3552P9+vWlhp1wmlEqvbIKfGeqq9EA5v6gWq2umepaTCdm+SNcCCGEEEIIIYQQYiKoQjHLZif6WDZNyZGbzKS/Vtq/PBape/QXjtTKFu/PnEVWljWCnPoYyolVZjnVm0jfGPWXptz7421ePWZXoLW2HrsSqT7nlXw55zLnm6y/zCavlerkiVw2UYQCy7oaITsvwpTJ06ebLn4WkHpG8jBQ04upphHvP9MNjSvRSAqHqBBCiAlmeq9HFkIIIYQQQgghhBBiEpkFf98SQgghhBBCCCGEmAq0CnI2opVlQgghhBBCCCGEEEKMoJVl04Wbboq3TzihZpb37g2/L1kSbJOpcXjV2TW7svfZmn2odXFUbmAg2Bwuii+TGwasszPe5kSEvM8mlSwPPBY2OMbUffcFe/v2+CCuIGdD7O2Ny1Hb4eDBYN92W808vG5ddMiTZFfI7n1p/MEaty1cWLM5OtdiU67lggvCxtVX18zy5ZdH5Q60L6vZjzwSft+3L9gnnRSf+8QT8+rK/ceJKFu2UX9t3hwfxL57Y8g++ww7GgDe4lyWP/vEE/H5MgK6fLerK9ruIZv/AmDbuHnRorBxySXB5rZftSo+iBqizL5ms5yyT3KsNLZtFs977gn2XXcF++6743LcljyY2L+BeIxMJJddFmwe6KbPo3vnfuX2BlA+44ywcfrpwea+aGqJjtm5s75tm4C3uenmzInLPf10sL3uW7EiPqbjcJhnccMNwd60KS64fn2wuR3Yn+xkypX1bLvNlbXZdnnb65dEht5R+zLKNTzWDLcxPZTK9hlAbXm4d3nNtuEReQjbaY3JGVY/e6W/j6/73HPxPh7Cfrm8v2vOnx9v8zm8Z0Aj4mfx+8GLL8b7+BHKj2auT8pVPduSG6cudY7xHsP+xMfYPud750eCvY7nd7lDNiP5M4D8x5WXKNy2N9eb9/X3j/3v8zy32/P19o79fFw3G9KUx5+XxNyWG2+4W9svXhvZuXTLlvrnS7WJ9+5v4X08nuM5xI8TyRQJsWqPOXe1fw7me+tCnXjeSYXP9eaX7u74GPb3lsHdYcPeBDuO50T25M6AtnHc2AfKO+v/G8/6Bffl888H+1Xn1a8aEL+K5vazN7cDwOrV/rWEmAloZZkQQgghhBBCCCGEECNoZZkQQgghhBBCCCHEmKkCGL8aSUw/9LFsumClNd66f5abJLQBw51hWe5es5Sel7XzEt09e4Jt5Ry8bDlXtsHlRslxvLXrvH7XXohlSlxxu6SZ8TQgBl6lPcQ77JpmT2eagASMkRTRCIfQT5K8ngULwo6TT47KdVzZV7NPPLH+4tAXXoi3c6QwQCxLiJaas4zsjjvigz71qZr5ffr5AVOnAbJ/inekdCQOxqWxn2z2tCFTbvGOHTV75Ze/XLPbH388FLrwwvigtWuD7emWAYDPwX3G/mm1XtyuJBM+9NRTUTG+p0g5kvDpCYV9n+8vpVfje2KNLxA7Hk8+dO6KGW/NzbEs04OlB3wZK8PkrmWX5N+tbAebyBM3bAi2kdEO8T6iwu3AEnsgnutTMkxP724rO29esFmOzOWsXsV7xqTGaJGHRS48flIaM2oHlsBZVT0/C2lqGDUvcrkit5Q6xpNesqw+V8pk7y8VWsH7Pff+vEd4bl3Ztax0s0h9ciVdXv0a4ap8jpbmMGsPDvpSJq5PSibsYYc5t2tqiHj3G7+rxfXOHdrjlSZOJOP1byDuJ0+ymEtuiAwLXzf3nlJycIal4V6f5z4qbLmceSglEU3hzZmp8/Ejk1+n7P20NNHbJOuT7Q3xpOs9VOwzvEgYA9LUtqwKk4B9L+J/19moHR6ejBrw+8+bd4SYDUiGKYQQQgghhBBCCCHECPpYJoQQQgghhBBCCCHECLN+seTKm9491VVwmdNOshgr6eO1r7x2lpf/2rXF3SEnYHnzwzW7x8gUTzijrWbv2hV+5+X8dpWwtxTbJiHjpbiVnc+EjS1744L33htsvj+W2dj78zLHnXJKXG7u3PrlSNPQZNa+L+fsmLlpujLhBHq8otkqLDgjZ8fNN4dL2kam/lyx+idqNitGc6UwVsLR00lLze9wpJfXXx8d80OyOQfgk4jpc+wiMsyzzTbfLuUnHNXGLInlW6+QBLbFSgm9zIE28yP7bn9/sFnDxdkvgSiT6DMkU9wfl0I0gtk/rZxxsuDreilUgTgr5KOPBtvqxTgLrpXBHsWMgw66VnN/R8222dNYbsnqQzvHMayC5syylQ3fjwtu3Bhsll5yak3EGXajC595ZrBt2/G87fmgPZ+X1s5ue5qJ3NR6UwXfKz8ftm6Ny1Fdu7hdzTOlc1UH6mFv1Wv+XIlZhQThc+dG3pDVrKnreJndgDypVtFu9WRqKSkaP5pz65Dax9ficiy9LipzKwJft6kp/C06JQPzMmja43IV0d7QTmV+5P47RJJR+yjkcil5M99TEWkik6qDfTXKgeuWklfmZsNMnY/x9hXJzmrrkHsOrgOH6rB1y70n79yp371Hihf6YCx4Pp3ywUKy7JQe2QvVwQ1u02oXcQL+tyC9K7S2Lo2K8Zxrw7PkYPuiSOSPo81VrY792JmFYpbNVqbB2+/E8sDX1kx1FVze+KdO7mchhBBCCCGEEEIIMSVIhimEEEIIIYQQQgghxAj6WCaEEEIIIYQQQgghxAizXoY5Y7ABJXJyhqdI5PGdPz/YnobdVsfb19Y85BdMBTvgSjAchMIGq+DYZByIZMkSv4Je8AUbI4Dj2qTKFQjw0kGBkjoplbRtOY7x1Ub2yn/+57ggxWHjJNHLV60K527mM8RxB7h5ynt3x+e+leIufeMbwf7sZ2vmZhMAguOUcUywZfGZo9htPV7MKyCrjfttn1MAlV7ym21xKQyQzfs4ilAnx9kC0LlhQ6m7ew4AAJp/SURBVP1KcIwyIA6W5eUjtz5N+/iue+JSaOMYF699LVXOxDqcLNaQvJ37ywYMY2fjIDfe+LfwMXZOpLZs6Qx16O2NfZ9jlnUtolTs5nxnnhmOaztM44LviWP3AVFMtmHyk0Nxqci/KhzgJxUvzItjkgq0kwoo4l3LCz6Vuu5UxS/j8cP9Z32DH2z8TDGxzSoUM27FijBj5cbZyY6tQ/Fl2mywvO7YX49i40AxufGBeKpmm89tXcbbl6pPCj6HF0NrVJN0199XPmyemk5ntC0K/j10ePL+JhzNL+Srzd1xbDzuJ3ZpO6zYrXkeY+w0MY9C4fJrUkdr3HZDrWFW8oa2rQ9v8xSeCtvUyFdZID+Glsd4Yi4dhccS70vFCPTa1evXY8Hjh/s8BY+lVEyvnNhfdj7w4oLZct4/TYrEgrR4x9m4hVwHfoViO3oHAIDN9MbI7362o/l9gQMJ80BYu7Z+RYH856zzXtpxgRkwvYtrZm5oNM9PAN8HOF7j8Y1ils1GtLJMCCGEEEIIIYQQQogR9LFMCCGEEEIIIYQQQogRJMOcJuxvj9P9tvXScn5eE83rhHmJbwqzDr6lOayrXdob1nJzyvAWKyTitbi8zHiTEbrxsmFObWzXvj/1VP268vpfqwU966y65Ya647bj223vC3aZtR025/g2K9gbIbWWPperr66ZK7/whVA3kmQCsZyRe7aZpWgAlpEkMvIN6pcKSTIBoMLtuslZTg4At9wSbKrrj2nt9Q/jIyJp43KyTXJsnMsbb3wjxsVVV8Xb1H+tdE/9Zqn6IN3Hs/T7j8m2oqifuvHGml0mvx0256YRiyYeL+zH99wTHXOYfIBXyLexrwLApZcGmyWQ1o8ni9Wrg53SpfF8xQPTjrf77gs2awX4GHuvLOVduLBmlhcsiIp1cR0epblrz56oXBtLewcGgp2SYVL9yqT1aLW6MpbRcr0vvjjY9v7Yb1JSSU/bZucqbtccLcyx9nnlJhKWr3D/PfRQXM6LI7B9e7w9d27NbEncw8p+Go/U/sPNLXVK14H93TyP26jfm3rrSzJTUslUOS8KAR9vz9VoVa7ndikZZiS9tKECGKefhzP/Dpy6vyIuzZLPCtXNXoddlx/v5I4A/PAJLIWy0iqWnKXuwXul42vyNGivlZoa2O+sMn+s2EcF16+/f+zne/rpYFv34TbxXgltHTzbjkXul0SUlGz4WrkyTJZ8ph7bnrTU+92eLxduB+86RUn5pyfDjPzBhszwJlMLl+Nz8L/X7PFFbpjDhbCzmcm0Y3W42da++s8XS3f9xx2A+PZYesn+7UlyhZip6GOZEEIIIYQQQgghxJipQjHLZieSYQohhBBCCCGEEEIIMYJWlk0TbMagpiaSRPKy2txUXKlMYbxN65Fbctdl89Jiu1SZ14OnUgPxPXHmMis/Y1imRMdvM2pUbxX0vHkhK0zXGrq+PYhJpI/JlXqUr7ii7u89N98c/0DLqp+hn5+NS6FC0r3e66/PqkPUrrwcfOPGuBydbyPpQ1giOmBO3Uf2+WT3275885uDzW1ifCOnXctXXhn/wFoP1o6wXBDAqhtuqNnPUjs+TGWs6IcFyRWSXtpyi3nD0xeQXBAAmijDaxsfc+GF8clf97pgUwa/1HjJ9c8iHO4LgtuU/KLM98Rr9q2+h0+SmgMYHtw8P1mpHWtP+JiDB+Nyjz4abJY4sG+tXx8fw/MY9y1LLQHggguCzdohltTazKaeD6XSy6XSXXm6lEZILSdLhsnPAL6m9Sdur9R8x/7A57Ap6k4+uW51ytz/Zq5xr5Povxby/d7ekEHRdiufIvXY9hJDp/BkmLldbJvOk1t2dQXbKKdj6SWPv5R/U2XLVNmmpkq90hNC1EYHQmdUmmIt0/z5LWQ7x8NvO+4XK2GNMpTzCbfEukL2NW6j1GulpxZLydzGOzWkkv8WwRs79lq5EmQvM6aFJbZ83SLZOYG4ja1814N9jV+7LZ4kMleJmCLHh4r6jJfw+aST4nLcXvxIKR/YHzZsiBLvGWwHoKc1Tw2KIjfMzxR+d7GZxum6FX7HsO8oqL/L9td4ZdVCzES0skwIIYQQQgghhBBCiBG0skwIIYQQQgghhBCiEMPHLiJmHFpZJoQQQgghhBBCCCHECFpZNk2wKaxbmunrdJEgIqxNt3E+OCc2Xzg3aICNU8bw+XIDQHB9OF6RFcfTfXA8JhsjhfFu49DhOI5JU2uID1NpGvtfBsqpvyZwX6xYEWwTE2ExxUnisBwPI6aD7GGKs1PmOEt8HSBu/wcfDPZtt0XFNlNfbODfyV5p6sNX6uf80RyjDAAuvpgKhrhNhWJrrVoVb3MMCQ64YOMykA8tvvPOmt1OschsxvhWjkVEx3fv2hUX5DZfu3ZUlY+c3Jyd/Z2Dn5x3XlyO6jDcGaKj2aHYngjp00hywwh1cECQc84Jto0BxXE2Tjst2BxXzMYy4wunctqzb3CglpdM1iI+jvuJj7c50SmuX5Q73QaR8WKXpOrt7SsSVMheN9Vp42Ui45d5/WID8HgxNm3gLi7HMfXsA5nvyQsklYLrbfuI60cDq4XGzlLj+0PdIeYVV43CMI7ax5fxwuEBcQwlHiI2thK7O5/PNglXne2WQYpLNmCe9dxePMYS8Xi8QF5lnoPMMZWErxZ5LpUHHgsbdq4nWuidYGUf1c+My5NOCnXguG7sxm2t5t3jgDM/2Pcpaq/uvmU1m/vPThPs+j3ddF07rrpDwebm8f1N3nZfbuw9D/bBVMwynurto8J7VWb3tG3H7crtaENV5rKsj9qf+7bVP2HLzhC/cSlduJvmEyB2XT4123v2+HXj6TgVzy4nvNdY4Lb0bCDui/LGH4cNvnEb35KfD+wQqWeKF0StEc9I7oDcYHKpuKpEZVNokxWrzo72cROxnfuKIsRMRCvLhBBCCCGEEEIIIYQYQSvLhBBCCCGEEEIIIcZMFcBLxywlZh76WDZNsHKqw4fDor8OL49vKodvKp+8J0vxlgzbfXxMSq7Ctl0a7OlAeI28OffuwbBU/ADdul0FzafjKvAqaqvm4OqxbIDUgoU51B+WMbck1po3UWWX3Xxzzd5p+o+SW0fyyOV33x02WDoIxH3+zW/WzAGSIgLA951zczNYGeYqbsx3vjPYV1wRF1yzpmYeag5i0iIr7p8Z7Ii2m0lG2967tGaXrXSP27+rq2ZWSBa4lNsRiOWDKZ9mGSbbrF+yS99ZY8LnNjJT9v2d1DHW9223TxS8/D4l6TrQGeTO3f3BcypWF8H3zm3CF7LHeFI7O5nyPMn7bGX5WixVZsmF1eOwnuPMM4NtO+KSS4LNPkn+cGjQX+jNbVwePBTvTMkuPHJlIEXkIhMpw+QJmZ3f9jlP9oxtK883rKyTr8V+6Mm/U9dN1dW7J3NMxRl0XaYOi1aEedFReyZVy97rgd3mYWBlmDycy3tJerklSMJGVcLT8aR0gVwh7iP7jkIUCgGQwj5vjjL6BS/YnpYJQBc35qbQaZG8fUvmC9DWrXE52i5TuzZ399Tsk06CS9R2rW3RvpS6fKyk1OlFyD2eZcYWT5XtlQEar3wfon8jVBI+7kINW2mNK9veXrGlR2Hvj/spJUf1pJdeBJexwK9dHa1DYcOEPMFGmgDXrw8235T99xXPKTwu6T0SQPyO4GnfU/++yn1+ciiLxx8PNodjSfG2t/n7bryxZpZNO/TQM7hzVXjX5v63093RWyqV8qomxHRDMkwhhBBCCCGEEEIIIUbQxzIhhBBCCCGEEEIIIUaQDHOaYKUL0apqzm7Ea11Ta5VTGSu9pcGppcDePltx2o6WiR+OpUNDTUFWVmkNMoIhVOj3eGn5i072ndSKZm4iXh3NCbaAOOken88qa7wV0ik5B6ssentD1qnKGqMv4OXOtKx6MWVqBABaXA5eIL2M+rXJZuJiPc2999bM+Mxx5s3lZJ9Pdr+VmnDWy5/+6WBz9ksAT24LfXuAqmcTd+ZgV9V7sojOzp6oXM/FzlL6RYuCbTudJXWcIstqeVNZOI9iNSWOzvexgdifPOX0VGUd8hJEWpWiNw11UkZPAGghH+BsnywPGiXD9DJA2UHKFUw1GO/jG0lktYvw0v4Bbio0niNt1bjasUw8zlxW8TInz0Y8/aCVXfKEzn5ipTXew2LePL8cTzD2QeLB/W/raiWf9eqTSkXJ92cehmXa10Hjp7k3+JC9Ba5qKvMgNwnL9ThrIwCUdz5b/4S5J/d0W0BcWee9JPVszk0uziSlmzQ2y1xXOxF6E3qqTTxZbqriPEYefdTfR/NdmZ5dXYlMopyye9jMSTkyxVzsK6YdCmOFbyk1XbJPp1TZuZFHcuWaufD5K7kaT6+C5uHTRrJML5upvR/PdW05L3NuI5JFdoBk3hvoJdFKE/k5wC+TqezGvI+dyI4RhhuFM1GOd1AAcagO7suBgbgcv7+k/l3I3H9/sG1mb3p+Vei6FWqf1t44TEoZJmPvrEUxy2YrWlkmhBBCCCGEEEIIIcQI+lgmhBBCCCGEEEIIIcQIkmFOE+wSZlZqnHhiyDTU1BzstlWJLE99Qe5XPjwU78zRHqSyXPKSbVOOM7qxvGP+/HiZ/s5ImhikclsG+JJxRp7cFcQM32oqQ1OunK2IbGPHjvrH9/bFeSVbLqMNOnnfDTfEJySJZistuY6+fHOmMQB46qma+TA15AZT19WO3XfRRWGDM/sBsUzxwgtr5jM74/5LJW8dK7a/vL6wv59wQqhTF0sgU9JiT7dhy7FM0EoGHbbvCL3Gyj/2GSCWgeQqsScS77r2d65rSj7a2xukl3tpbughOaPNFhllluW+SGXNZPlaKl0ZTzasE7bnZrnt2rXBNvLaQ50haxTPi/sGgp2ag1KJtObMCe1y4onBv3OV9Clyy02azMJLT5ySIfHEY2+IfYgd1MpoPTlwbgOlsmHu2xdszwlSPp2S2fD90T210JzWYp/13e01c/+g709chbYmCrOw09SBZU58EGdnTKWnnjMn2LYdnIGx/0AYE6lx4F3SUuRZv2gRyclTGcnZP+1D0pMQp3SOXoZQ69P8juBp4BJZzHk+3mleN7jLuNpestAUtkn49jh6Qi4pBasn8Uz5kNd0qfncey8dC3HSUwp50pSYi70LJx7cFbqpzs4gr7OHeO1qh2xUP+7cA4n6pKSODIcs2bgx2JzxEogbj+dPljbaivM7Bj/37Xsg37wnkc+UzVrJd/Sc5WehjUvCPPJIzRyify8k853efHOw7QBkmef27cGmrKBlztQJTF6adiEmCH0sE0IIIYQQQgghhCiEYpbNRiTDFEIIIYQQQgghhBBiBH0sE0IIIYQQQgghhBBiBMkwZxhR7IREsIPygf1hwwZE4+ACXtyCVGrjRKrzFtLvt8ync5i6dnaG2GvlwRDvpNmkIGdY5l8kzkMq7kjRVNU5cCwqDpVgw8u0cBwEjp3AQY4A4Ec/qpk9FG9hG5188a23RofcQfa3yX67qetyjr9wzjnBft3rgn3mmfFBFDthuD3EtDhgwii8+GKwOXRUEYrGoeHYX8OLQl3L3YlAYF5cIxt3wnPQRKA7jjHFdUu1T25clImEb5XjvKTGUW5q+GjqoUHSYg/aRrE0OO6IjdfHgYQOHvQrwedguOI2dgqPWQ7IY+Kd8FjnPsuNP5cKL9PIuSsVlypVjmOrTGT8st17w3W4W1ps3BiuOI9ZW47hzrBBAxmej+fODfaaNf4xPJ9bH+LrcrBShq8D+Pdnz82NxPfOtpnHhilWaG5spSF6ble6zbzoOSiPnVzMuBpuDe8RXjPacGgTCc/hPOZbu5dG5SrcTzxv2JcC3uZ5jdvUHuPF3rMBw3jbmceGTGSjPTQs+L2mEfHeco+fyDid/Nzl9xUbyyz3Wcbkxs/NJY5ZFuxK4tU96nM6yMbG8tp4kFyL2yfFqPiyrfSsaHX+jVC0k73YZnbe997peByMiuVY//k+3ORH/yqzo3ixBMdA9Jzl5w2f+yd/Mj6IJqXKpk15F3rf+4Jt25TnYG4v71kjxCzguP5YdsLrbsJZp4aXrRs+sgYD2w7hZ/5gPZad3ILnX3gJV1zYhY/96spRxw5sO4Qrfm8dNn7+NbXfrrnuIbTObcJvvvU0/NbfP4Abv7sdlRPLOK2nBZ//ndVobx3nFwIhhBBCCCGEEEJME6pQzLLZyXH9sWxu5QRs+Oyro98Gth3CRWd14Ka/OB/Pv/ASznn3t/Hmtd34ybM6nLPU59JXLsJfvHsFmk4o43f+4UH8xRc346O/cuaxDxRCCCGEEEIIIYQQU8Zx/bHsWMydcwJW95+Ep3eOfZ30T50XclpfsLIdX/3W1kTp0YouXqXLdkszp1029SJJQrT22cowPe1PQi4WkVpD7q0NN8uqWzp5GXTY563KTlU1BZdjaYZdVp976+MldQ/DJGUp85JvK3tkrQdJx9ruvLNm7zbXZeklfx5evmJFXPDSS4PNy685TbVdlk11ZVez98eyjfHKMHNJZESP6trGy8atT3uai5QMk21vTCTI9cHMDOQNx2uSlEQw1XReOexNDPRcDSM7G598zpy8SqTkBZ6cLdGBXlWtrMUbI6l5sQi5/Ze6Jpezkh6PInJN14esn3jPKDvx86SUqyt6qcBfjtlPbKN6fsy/2wHjabdS+nTv4WM6k3uvudmXGHnPTNv/ZXdwO/VM7TPSKJ7D+fnOauuiMswi7wG5krrm5tBGLXxPozRrTtvtJAn6VvNu6U0cKYluAVLvMhMplcztF55f2CcLPYcMPAXwOXgKKSLPHAueErstIcOMZLXjVD1aZTjDLmjVjOXDQ2Ej9cJYBG8utfM+z8dcQZYY2orTvkOHSaqeGPOtrfROn5C9MtnPRU8Oad9r+N8LnszfwnOFkb4XeaYIMdM5rj+WPT/0Ela/68hnhFNPnovr//S8aP+e54bwyJaDePUr6q8qe/SZg7XjAWDb7hfwm29dNqrc525+Cm99bU8Day6EEEIIIYQQQgghJoLj+mNZPRkmANx5326c/UvfwkNPHcTvvu00dHfU/wvcaT3zouOvue6hUWX+7AuPoOmEEv7bJac0ruJCCCGEEEIIIYSYBkxcgiMxdRzXH8s8jsYse/ipA1j769/Fmy/qxgtDw/iVT9wHAPiTX1yOs09rO8ZZgP91y1O46e7t+ObHL0SpVEqWtUu2eQVwtGx5SyLrW+fiYHPWE5stabNJU3gUXjpr5Ua81pyzgS1ZYurgLGO28gK+FkkK2lju1xw3ShNlneHVxFYVk7Ma2B5TQCmXjVeHUcvTOYPp448H+8EH44Lr19fMYZJe3kNFWHYJAO8lO1onafuPl8Wz37DswzYQ9Xlzrx/bj9shV/HkkatWsavvs05oZcsMt0luNszEMa3tYcwWkXDwCvvJhOuaUvN4ykTr+5XB/agLz3H2QrzvkUeC/fTTcTnOcumlogSAe++tmYcGBsJlqUjZZsy84IL69TMd2NoesuF5yhM7J3lqP9sM480MnJKgT5Y8vQjRc5HnJ7vNz7sNG+Jy7AMbNwbbZg5kvKynV17pH5NK5ewNIC6X6vRUtk8nG1skI7ISusypkJsulTy7szM8E/haUSiGFHTQ0OFYvsTvATwXTpUKKFeGGZVrD1KtlpTkyZMT52b1tZ3JnUZ+wr6RSrSZm9FxvM96mwycr1tEyp2qqxc9wcLtkKOitqTmVS+hY6oOuYpaPob7JfUOzRS5J3tMa2vwr1b6N0s0nxeFG48rkQqfwBV0soUCsYTVC+8CTF6IkQiuq9XHsg7dvu97nEKLO04+2b+W117mgZAbmkGI6co0e/2dXixf0orfe3s/PvrlR/HlPzw3WkU2sO1Q8thbvv8sPvrPj+Jbf3MhWppz/8UuhBBCCCGEEEIIIaYSfe49Bu9508vw7R/vwuNb0x/HLO/95EY8d+gwLv3N72H1u76N93zixxNUQyGEEEIIIYQQQgjRKI7rlWUHbr581G8Xr+7ExavDUvi5c07A01+5dFS5vu4WbPz8a6LfrnnnGTV78xf/SwNrKoQQQgghhBBCiOlFFUCBbNli2nNcfyybTthwEiz/bml2AszYOC0Mx63YsSPex7FZvErY2BkcFIGva4NasCae4wKk4rRwXTkFsokZwLEB9u2DixeXYdcuvzr2NrxyReL2cH04q/Ooc1GcJHznO8H+8pejYpupHEef45hlNm1FC9nPkr341lujchwBpIn778ILg71iBTwq5DdNTXFcPy9cVJE2tq7P7cohGuy5eLutmWJkbBwIto3px+3AjpIK8MQxGxIxyyp07vnzQ0wMG3bLazvPbycaHn8c78TGJ5k3L9ipfsHOvfUvxGPCpkR/iBKqcCyq++6Ly1H8xmGqoA2/QlfCY2RTJEisNOOllQPqsJ+Y+bOpM8Qs88JNpeLw5cLH2Dg2HOZoImORcRwhjlVSJL6QhdurrdnZAQBbtwabx/Ptt8flDh6smfufeqpmt8SloppXFi0KG/y8+shH6lX5CKlYeV7ARSfe2CgSsXmGmsKd7NkTfufxa+ff3PCNfByP8xR8TGdn8A3rg5WmsfuKFy8qFb+s0b5v4xd5dfCu29QZe16lnTbYB/gENnAld4b3HALieENUjp+t9jnL/uDFPbTbKR9ivPlh375YAENDNhs+944d4XwLFsTlcn3fi92WG7OMSQ3tFDaW21FSc643Ddm68rn5+Z47H6Tik/IUxTbHMrPjqGtR3nww1BriI1Y47KR1ZL6wF+PPOLU3TdsYZTxtR3HYotiScWzfQs9GvqfUv/f4eZXrlNzp9kWC2m6YYs7xqZ+jZ42tghAzEckwhRBCCCGEEEIIIYQYQR/LhBBCCCGEEEIIIYQYQTLMaYJVPVYO7A4bm7cEm6QikfQIAK54U7C30DEpnQUvR+bltiwvAeKl/bx830ry+EZSEgBex8z7EvXu6u+v2QsWBLmCXRrOt8H7rFqB8ZaQN0Kmwc3FGZnbtj0cF7zttmB//vM1c6NZJs5yS2otXED2xaYO5Ysuqtkt69bV7GfMsuwBsjupX/pvvjmc68EH4UL937v6J6Jdnjy2CHZpP/c52zZjOPdFJPFjqZYdV6tXBztVcXYiT0Jll8HTMS2RmqoSFfPkD0UlHOPFu73Eiv3IboFJmMKSAp5D+KCo8xDrH1K6QipXJn1Ji9HzdNPcylLlZ8i2Yoll94TRyHJNqyNpoYbp719Zs7m97BTJrsYSVtvGvM1SS5tBvsi8llvOk5E0QnrJ9LTuDxsbgrx2lLySJboky91JklwA4FHGHtlmtTXsh6tWBbu3N1nfGjyAU1omT7+U6ohMaQ0ra1JysZQ8i/GGnFVLM7wvkitZP3F0lE2t8bzI3cTny1UbpSgiVfbqY+dpHqc8tqP3PiC+EZ4jUw3OleBJxQu/YSrbveLsmp0rYfXkp7ZciuHMv93z+XKPYXheTIVpYFIy0xw7de7JhP0u9TxgF3rJCcGU+mdF6tze/MLjxbvmseA6VVKTnKc1Tkwi7GktNKDtnBRJyDm8BI3Fsn0xLTLZ8DtrSobJ//DxJKcW1uFmTqZ8C0X7b3ZwXN/8rEUry4QQQgghhBBCCCGEGEEfy4QQQgghhBBCCCGEGGEaLAwWAFDBUPwDL59nuRgvGWbJooWPT62X9tZB56Zm81LyAHFdbTleDvzII/WPT9SBsy522MxzTfWzbKUyxeUqXoospWelasvOJ8PGLbfEBf/5n2vmw9Q+VjzBvc4ioH6yy5dfHh+0Zk2wSc7WQ5JMADhAvkaCpyjrZgv7I4DeL3whbFDD2oxy514QhKK7947vO71V/3K/nHRSsG0WnvKGH4YNlqWQnA5GqhVJkFmfYOVUvM3jL5W+0slou4ylXgDQG3x894Gw7H+qsmGy+swqCpiOZhK38Xxl5y6W9p58crD5Bm17e/KAlPaW5wrOmAigjWSYnMeVBWIszwQAVld1kA81WQ0kOSKLNvpWBEmmVUjwtM1Kq1x5ZWqumsiMlRMKNxLPQ48+GpfjfaQJSd1dNF+xXgkAFi4MdpzCLXFGB9sxGRry4dY4s3AkNyKf3n8gnld3UnPxUMp9PWB5XUpak6mCjm4v/j2ud0sBTaUnMUvR6Kyw3vhLyfhYJdXZGWfJayL3qvQ7Mn/7DLES4qOY53Y0L5LNp0spulKuXyQrZM65gPzsmh7s0/Y9MDeLZ5FsmOyf3EVF/S5H6mZlqtx/qUzMOa8vKZ9OSXS5HIcaSMm/e0wEBg9+reikTI0dqzrrlB7Bi9thH8iONLxi3zf2UsN6GStT8v1ch+Dzcd3sC0JX19jPfeaZwTYv24foSbmF/mHA/Wr/uWcjaMxeqpAMc3ailWVCCCGEEEIIIYQQQoygj2VCCCGEEEIIIYQQQowgGeZ0wcqSONPJ+vX1j3EkXKOwqTZZ4sVLdFn+ZI/xtFYpDRYvDbZLmrnuvDacpQK2Tbzl0pQlEwDaqO5tnXRMN7m7WWO/tNfJWNhk1ukTqUxMLGdqWX9X2HHnncH+h3+IjnmAZGAb6HeTMxO8KJrFev2cwfQnfzI+iJdVs6bL+FCF2p8lS4+R3W7qM0RajWV/93fuudkHOijD5HD7MoyVlb374x94DThf9yHjd3fcEWyWW7IM8Omn42N4vKTSF3K72vFTr25AvF59+3b/3NS3HbSEv6PXXqf+lF4ka1gKdrXyAeoLq13ZSPMYt7edD3iss0aFJbBWusA6IN5n68DnPuBIJAA0nX56zT73xhtDMZoPHojPHGXKZOVIn8nO2MnXpTFWvvjimt1j5rFojou0MJn6l1Q6NrLLVouUcUySRqcTZli6zs9FHtdAPK6WLAnVMadr41SE7NRWBs19wzbLM1PkasecFIp2OoijJ4SxbS/jSS89GRkQS6NSGaQZllpZFZCXJY8Z9TsfRJW1s1h7uxX7j65Dyr2LkJIq9/aGGvLwTR3D0tmW5rjc0GG6Y57vimgg7THc0eQcPX3tdKo40x+fjsMdWPbtC/Z427/REi4OzZCqWyp7d45KOJWxm0m1Ywov03QKrlNuplO2WUqaOj61z5sP+LFfVLq7Z0/9c9uZg/vClXzbdzVPt2od1DsHv4dkhrlJhkWwsuqjWGfghs0dTPT+esgEVOFb4vZmWbCX9L1azbu8ENMNfSwTQgghhBBCCCGEGDOKWTZbkQxTCCGEEEIIIYQQQogR9LFMCCGEEEIIIYQQQogRJMOcLqRi+GzcGGzWttuYXgzr2a1OnYMkcAAHjvtjAy54QRFSeef5nigeFwDgRz8KNscySsU5Y7yYUEAcW4DjEfDvtu04GAOL7y+7zL1MOTcezw03BPv662vmA6ZNfkw2xylbbk53Lu/jvn3b24JNMcEAAKeeGmzuS47ZA6CPghD0Ub88Rv2y29SHolJhkGIFLfvMZ6Jyzdzmb3hDzSz/6q9G5bLia1FMKQBxn7Hf2H7m2EYcxIfirkUxHoB4zPHYsQGCDh6sf27G1oe377sv2DZOIfcnp/K2Y/uSS+peNhn7oggbNgSb79XG+eD7uOee+sfYbW5Xvm87B3GMRZ6v7NzgxTOz8wvHoqJ5o5PiDHabOCF7yeazjYqNtW5dza5wABz2LetPfB8FYpGNioPC27mBhMZ7TKPh9uf+M305TG1cplh0oyI9nXJKsNesCbaNWcbb7E+5wYJ4nJp2HG7vqNk8De2ix6IdLuwCHCrRwmEQOa4YT1UpUrGDvFB5tvvZrXmYer8DQFdXiJMzf36wres/vwN14Vhrtouy46YVwJv2Bwf9Zxofs3BhXI77qbs7+MkgtV2Hne+4kbiR7bOC3/2okYabQpwyez/sQ+zGtl/4MeC1SS5F41flwK99QOw3PE2/ZJRVXli4VF25K/i6Re+P2zgVQovh1w3uF1sHPrfnTqnHUIqc8Zcb4tGya1ewuS93OPMEAPT19dT9vWtF4ob4eWOfi9wwqeBt44UnNu50G/uUn12ZnfRM09KaPbAh3heFT91b/3gb40+ImY4+lgkhhBBCCCGEEEIUosF/mBbTAskwhRBCCCGEEEIIIYQYQSvLpgtWnuWtY0+lt2fWrg22XZbLMhI63+4DYfm9XUbLqcCZUemxSRHQwddhG4ilbnwSlmRamZS3btymUM6RwLG0FYjXffPx3I5AvIw5lb6dOPzXf12zf0i/P2DKDZBNQjucbcotP++8sPHzPx9sluCxnwAYbm2r2WXeZ9fs87Lxu+6qmUtJPmrFWPvJ3uj8DgBLb765Zvdwzul3vzsqlyVv/Yd/iLd5KTyvuTc+dIC2+S8FLan02t4Sd6vvYa0GH8N+QjLVIxVy/O7xx+Nynu5j4cK4nCPDbDgPPhhs1jvYscjjmW3bxuyTLL284IJgm3lsuDvIJ7gZUxKOTjpF5fCheCf7HdfnVa+qmcs/+9nokAMkR+XLDpjrssqlm47pY/+86KL4IEcWOko7xFJqLmfHEfsrS7fYP62kxNNapSSeE8nttwf76adr5mHzwGriNiHZcsWO2de8JtivfW2wja/tb15csyP5095gr+xO/EWZ29HUgYc9P2f595QMk09tu49lczw95XYXu0ZR2ZV11xy4rt692jp4rpqqd6NVUjxtlPdSwIJO865AF25uDjJT+0rBUys/Ovh3+zfvDp5beTK072DcYORgZbJXrIiDQPDpOproCW86prk5vEsWldSFOsTb45V4Levzx+nQ4frrB6xM0RtzRabIIuMD8KfwFFxXlm/bunnjh4+JfdAfV3aM5aj5iz5OvNekVB34PlKS9mgS5ue2dQ7vnc6rnK1QLtxI/B5oxvl+hHf/vfTsWtrrjwO+vdSzxxuLVrYsxExHK8uEEEIIIYQQQgghhBhBK8uEEEIIIYQQQgghxkwVgJbVzUb0sWy6YGWBLBncujXYvN46lfaGl+ha6Qkt092+JyyXZwWVXUbLK4t5BbE9NVfvxVOCvKArJW1j2VxqqTJnC+R9dp0/V4rbgTP4UXa6I6cL5+OrtjdguTTnNeQsl0+acn1ks/Ry5ZIlccGrrw42Zevc3x0kE3bZ+QFyp6am0C/tfSujci2c/JPW+TfRCXseeSQ+OcnrWFpqs2YOkd1OmRFbUloYZz3+AcpQCACt1C/D1Gd2oTlvt7JUizPhWd0H72OdjZG6unJp9kfrT3wMjwkrQfbWxVt//L3fw6Twne8Em+/p3nvjciSVG6ZxXrZtx23OEjj6/VDrYjADpOpkiZKVjHP1urqCvWBBS1QuSsK59tWhrtwvnG4LQCtNlB00P9kEZ16mzE7q11ae3yzsQ1Zzw5M177OaEt7mRkmltcvN7DVZMkxqr+FUijPWNnlZwwBX8vvMtnjR/eYNwfZU/itX1P8dAIZaQybDPaba7K9e9AWr3vYYb0Y6wJeF5Z7bugm7J8tCU5n1GM9Vgbiu45VUNsK9ua4t/EyiDJMAUKaLeclxLZ401T5SWEpYSch/o8Z0NGuVpvgJ2txM42JwAjP9EQ1XfCfSTzaRJDYlyUu1f+1ciXo2Qv7rZalMweWsjNI7t4e9P3anXJ9OZdFtJLaP+P54zuXHZ1e/yTLLFeSDUuOK4XIpPXku/J501lk181Dn0qjYloFg8zNlqVFlM3x79tnDEUt4TuK5uKi0WIjpimSYQgghhBBCCCGEEEKMoI9lQgghhBBCCCGEEEKMIBmmEEIIIYQQQgghRCEUs2w2oo9l0wUbh4Zj+PA+jrFiU4EzV1xRMzntPQAMbA42a9NTIWA4vkEqjI0Xv+Gl7jg+UA/HgeI4MosWBZs1+fbkm+kmbMwArhTHeqI4ZdtMRfeSTU2CtfaGCsQW4DheHKdsmSnHIW9Wckynd70rLnjllTVz+5wQn2DgwVCE4wpY+BZsrIu+/hDDrOLFNKEYZQDQQ3Gc9pIT7UQMhU0DR1XoS7WxkxPdxnvrpHNwD9nQG1GkCE63zb728pebk1PsCvZV63fsa7RvuD3EKypbn+Z4hOecE2wOIAjEA5XHPcc2nEy4j7hNOA4cEMV7K+/ZE36/9NK43KpVwaY5jueunSaMG8ff4OaxPu3Fczl4MN7m+Y9jrixZEmIB9nC8QCC699Uf+UjN7nzqqagYzVY4RDaPkYoZVxUeFxy30Pqd55PO2AEQ9xNfx85vjQiu00jo/spsn3pqXI79ieZL23ZDNN/dS2EsTWi6aGgnQh65cLPauZn38ZRbIDzmqO6bO3fsx3j7GuEK3tRu79XbZ12a99n4Wkc5NBgLKIrGXsuhhUc3OU2508Q/oklpbmt4N0qFDHTCio0ijsEUYqW12VicDE+mCWfnOGzYRseYCnV2hnm7iB8zba1xvw6PVxCTmO/KFNV07ty863h9kYq1xscUjdXFLpUbI8oL55sbFy7lg979pcqxzfdQ1Gf4uCKx0qLr2omeXyT4XaZI5VKNkoszSTZ6nk49Q7z2nqwQpkJMFpJhCiGEEEIIIYQQQggxgj6WCSGEEEIIIYQQQggxwqxfLLny6jumugouc+a2h41tRmOUs6Y1JbOh9bGcrt1u85JdT2oJ+MuvbdW8lNG2XCtJD9pYVsbtYKULLL1kzRRLCGxlKe/xTvrdtDb2kx0J21K6iExYMsjyw+Wm3Lm88eY3B/uii6JynBr6aVJusXTIuobnQtY3YnVdEIq2XHBB2GGlhMTKL3yhZu82ul6uwjiVGaMmrjY+N68Nt5I1lrdyu/L9sdTZHPPMtvD3hRNOiKXFi1YEuSW75N6BYHd3x2m9W847L2xwHm4jycPGjcHmTrLzxmTBMlFuY1tvlluffnqwzzgjLkdtPtwX/G4Lnc4Oc5Yb8T4ru+TpgMtZ39+3L9g8llg21706Fk+XWdq0dm3N7Pnyl6Nyu8kedmw7s0QyTJ5YrUbF0+5ZbQ7rKXhfrh5nOugsuDP4XlmKCsTPDp4MTTlW07Aslx4bANxHSpbM0R6fknF6kqCUOjalWs95XBXtyiISTa+uKbfLlZh5lWhqqtT9/VgUahevIRLvEal+9iIhMNn1TBUsUO/U7w2dKsy5y3TCQpLMlLNSIzc3+/JYflR7ksFcaWPR9smVHHrHpN7jeWxyOR6LL2WGZkpF2ciV++XitYntvzlzjl2fZAdyGIPcl+2Uxr6I7pSfZfS8ez4RTicXV5oKv10lvQSAKhSzbHYy6937gdd8+diFpog3bvr4VFdBCCGEEEIIIYQQQhCSYQohhBBCCCGEEEIIMUKpWq1OdR2yKJVK1bHWtVQqofr2GyeoRuPnjZs+jhvXfXNMx6SWnXMmn3FnDJqGlFE/29XxxmT1rdfe9vqzvV+mYiypTWces73PZipTPV8KIYQQxztrzj8f69evL011PSaKUumMKvAPU12NBvDaH1Sr1TXHLnf8MOtlmEIIIYQQQgghhBATg2KWzUZm35/3hRBCCCGEEEIIIYQoiFaWiRkDy2mOJ8nLbJSsieJMt3GQqs90q6s4PtCcKYQQQgghxoveKIUQQgghhBBCCCGEGEEry4QQQgghhBBCCCHGTBWQgmJWopVlQgghhBBCCCGEEEKMoJVlMwyO+zPb47IoxtHUMtv9y2Oq7jvX36fbuEjVZ7rVVRwfHE/PSSGEEEIIMTHoLVIIIYQQQgghhBBCiBG0skwIIYQQQgghhBCiEC9NdQXEBKCPZdOFw4fzyjWFLisqccq91HhpKuBdyXvyKp57Q1wudUyqHG/39uZdd9u2YHOj2Abi7ebmmlk25VhW1Oi+9Posu19SbTc4GOzOzrFXjtm5M95OtesYy9n2Zhot6YraNdcnU5DfTCjcl9xetp4T2MaTNY8xttpu/6V8nykw72f7d+6+IhP1VOG1Y2ouzWS8/lTJvGSROaSIm4zluCJMhdvMKFk3N35mY033EAARKeeaSXOKw2T1xVT59GTdX5G5yx5Tacpro6HDefeU456j+qXIZFpgHHC/ZL9303VS/cqHpNo0tx1zmQXTgTjOkQxTCCGEEEIIIYQQQogR9LFMCCGEEEIIIYQQQogRjqvFkdue34P3/+AzWLf7Ecwpn4i+eYvxN698N15x869jRVsvBl8awvymufi15W/ALyx7HQDgusduw2/d+3mcMnchBoeH8Cv9l+EDK64cde47tt+Hjz34b7jp4j+q/fbOu/8aV5xyPq5a+pP4u4duwt889HU8emArdvzsF9DZfFJ8gkla4muZSBnfuFfppySQuZJKhiU8qXNzOSv76e7OuxZz4ECwHall3W2HHDVqUdcodA6vL2zbeRKqInCbAr5MLVPqmrrZKZHGpPyTsW061TLM3PrY3532L6KwbjRpeYhTiSJzVwOkhLOeQs/JStbpJlKGOZHSy6livPUr4t62HXMkbLnHpPqokFSuAdLLyWrjbOlXgZMXOvcknm+qKeLT9Y7LOX46z0OTOd9510q6dO4/brwLZY6XRo+/6f4cmV1UoZhls5Pj5m28Wq3izd/+M/zCstfhn9f+NgBgw57HsH1wL05r7ca9l38SAPDYgW342W//OYarVfziaZcAAN669CL83Xnvwa4X9uOMm96Dq5b8JJbMWzSm6//kojNxxSnn4eJv/n5jb0wIIYQQQgghhBBCNIzjRoZ5+/Yf48RyE95z+uW131YvWIYlLXGg8WWt3fjEub+Eax++cdQ5Fs5pQ39rD7Y+v2fM1z+n4zT0tXaNveJCCCGEEEIIIYQQYtI4blaWbdz3BF7ZcVpW2XM7TsOm/VtG/f7kwWcx+NIQzl7QV/e4O3c8gNX/8euh/KEduOKU8wvVVwghhBBCCCGEEEJMPsfNx7KxUDXb/+fJO3H7sz/GQ/ufxmfOfx+aT6gfA+WiRStHxSzL5r3vjbdbW4PN8X1e8Ypgn3VWdMjwqrNrdnnwUM1+Zm9LVG7z5mDv3RvsnTuDbXXuXriv9va4HFe1kxbt2VBfvb3B7mgnjf499wR7/fr4oLvuCvYdd9S/qK3sc8/VzB/T77vjIzBA9pNkf/j+++OCBQKtfOmMM2r2Uvp9lSnXfumlYYP94ZJLonKbNof+HBgIv3Nf2vbmJkrFMPD6b3k/FeILAXFffPWrwb7ppqjYJuoL8m70bt8en4/b2DrYCOtPiz98LyO7g3eYMYLVq4N98cXBXrMm2KvintmxI9i7dtWtDgBg4cJgv/BCsLm5uszi0q6XtoWNjRuDzb5ut/eEla2DGzZExZpfmqR4CRdcEGxytsE774zrc955YWPFimBfeWV8vrVrwzlaF9dsb64CgK1bg71vX7BtODveZp+20wb38yJS2fNY6udxAGB5O02a//zPwb7hhqjc4O2312yOSMJVKC9ZEp+cL8YTZme8Gjqq4Lx5wZ4/Py7HY4nPwb+nYsnxM8lSIBZgIX7zN+uf++Uvj8v19dXM8kUX1ez9aIuKbaG/iW3aFGzra7zN/jRnTrB/57fqV9keY/3TC5GZCvH44ovBPvHEYNvuoyk3KleEVFfmxsXJDS3J98FtPHeuPV8QR3jhEUe3Y31Bha0D31Nzc4E4WdzRduxQpfYOhue5rUPqncw7hrfTbRfsFoT3xeiiPO8AGDoc2qEyuD/sMI2/fzC8Iz//fPh90aLxx8zy+iWX8uEh/+R0H6mx6O0rEoLS/t7dnReLzM5RR2lv99tkG71ueGFHgdFz1FFSMR69kF48VwH+PJQKCXbu6vrHWO69t/7v9rXohBOCzeOCh6nth5Ym8ht+cKTixPKNeP+mA9KToQc5wP6m8NbLfQzE/cxj8VXnwcX+04vhtuN25d8t5yWuNbtQzLLZynHzsezlJ70MX33yu1ll7939KM5sCy8JR2OW3b1jE97wrT/G5T2vxN07N+GP7/syAOCzr3rfhNRZCCGEEEIIIYQQQkwux03Msv/SdTZeGH4Rn9n8jdpv63Y9jCcOPhuVGziwHb957+fwvuVvHHWOCxetwDv6XotPPvR1vHnJhdjw+mux4fXXYs3C0ye8/kIIIYQQQgghhBBi4jluVpaVSiVcf9Hv4/0//Az+8oGvovmEE9E3rwt/c+678eiBbTjn5t/A4EtDmN80F+9b/sZaJkzL76z8OZx7y/vx+y9/C+af2FK3TD2ufejr+KsH/g3bBvfg7Jt/Ha/veSVwEhWwa6o9DQYv5bXrmUmGyZqSHiMrO3AgLJHnZfpMSobJS7StSo63WR3EEjUA6GAh5CZaN8zrqFmWBgAkORsizVQltQyaKs4rywdMMZZeslQyuVw6ExYysIBqVK258XhNs6lDaim897t3TEo+w30eyS/8Q+L2Mevv+cv8EO/I1Stw3cz2kLOvOaWf4Jv3fgdw4onhjlOr5Vn1xkv7uVzXIiPhWU/L+R95hH436+BpXAzSXGEjKxqV4IRxiOraQrZRAKBv3bqwwf5g9YwkC2whtWZXV5Bk2qGYK/3iy/I57Pm8PmOSrsljlmSAANDMuk6+ME+MVobJ5/Bkk/Yc7IRWF7FgQf1zpBolVx5SREZSBJbyxvquuBzrQ2hsN7fHMkxuhpTK1JNX5d4qVzVX0pWSYXrY+uSosu1rhCfxTI03K7Xy6sAuyefObUd7P+yuXnvlPl5y55MU+w+wLDT42p4dcbn588O7I6se7fDz5HBM7iuKvT/2yeZFoT5lmmt2743/ns5t3NnZVvd3IH6d5evaYZrDnkQ+rdSrn8cQvcFUmuPG4vccljBbv8t5nyoiTR4Lnm84kSsA5M8vvC81tj34mNzIEIlXx2z4Wrl9wSEzeEzYfmlvD37TlornwBfjTko9OIo4AT2wDtAckpL55/pk6picMZeSZAoxEzluPpYBQE/LQvzL2t8d9fvzb/1X95h3LrsE71wWPpz1tCzEtp/9p1HlLu46Cxd3xfGRrrvwAzX71894E379jDdF+9+46ePZdRdCCCGEEEIIIcR0IzOmpZhRHDcyTCGEEEIIIYQQQgghjsVxtbJsWsNp3wB/HTKvb7frqK/6r8F+8MFgm3Wz/StW1mzOnMKyiFRGOSaVxYptm5gNO+mEXIknngg2pycDcJjkXpzNsimxnpxXEHN0uidNOZZe9vGOBkiKWPjTTnazXc/MOiBeT24an+UP3ipvuxSfl0XzsnO7xJqT6XnZiSpWr8R6W5aOmRQ4y0ymxLoXqrddh5Vmu4MlbFwfzn4JAC97WbBZCkj13r4nFppypkWWhFj5kldtds9DgybDEncUa1RMFjKW6DUfPBjsonqFccJ3waNvvynHntvqSOMAZOkDUkVYQsn+DcRzDw+5lOyOVRbcFbZbsJGEsJzV1d4fD0Duc65cStPu2fYcqUyUOakIi6Zwmyx4wmP9moXGCLd95dRTo2I9NFccXhEyitlTc7PyIzhXbuLJgxqN7Zac+qWmkCLTS0p2lSvJypVQefUrkvmzES6dW29P1mvDYvAc5dXPHsNzIftt5fChqNxwO0kvKXs6V66IP013onsynVShnSee6K8lmMgxnEsq82bOMeO9h0Yk3vak2EUz97J/sp1qH08abonaqzUMrOGm+H2xnPtsdRhGXuZdvm7KF/j+GiEN9v5dMBvmBiE8tLJMCCGEEEIIIYQQQogRtLJMCCGEEEIIIYQQYsxUATRgyaWYdmhlmRBCCCGEEEIIIYQQI2hl2XTBxOeK4i5xjBoOQmFi10T6di+ODYrFKvBiHXCqZSAO1cPhZTgNNwC0cFAgPojjSJnAMU0bNtTsMp0wjsQRxyl7huwfk322OWYx2VEoowakeOYwR53cFyamF1atooPoKBNcaXAb6sJVS8UPSN0Cx6HgPotsxDEaurjP+B5M3KYmL594gTaOYpQBwJo1wea2O+OMuBwfR3HKhtqDB+wy4QP53jkUUi582zZM3VKO8cYDiwMj2X3Uud00JiaTZo6vRv3cbgZ6K9/wihXBZp8Bor4Y7gx9sY/6ws4hPL/wPJQIYTjumC323FH8vq6uYNv+Y7/juY+Pt7HIeB/b1om8OGWNSE/fyOMzGTZ/w4uea97Elgo2kwqu49zTRIYCzI0HY7u5yDFF4hoVoUh8LiYV+zQ37I8X/yi3vRuBd13rnnx/HCd0VGxXgs/B/skxyuy5K000dg7Ek1cUW4knNuqw5naOuBqT8juOozbeNrb3N97zlQ8PhQ07odPJW1tb3GJF8MZI0fvJnR+8a6WO57p65ez9ePeRKufVp2ib8PjxYmvZ7UaH5Rw6HJ5fTZlxxYqQ609F4r/x64Z9Ftrx6F1XiNmE3FsIIYQQQgghhBCiEJJhzkYkwxRCCCGEEEIIIYQQYgStLJsm7DdrXdtYxsPr9Hk9eEor4ukhEacQb2/PW2ruyZcKK31y1mJbWdLChTWzhTRZT5pT8zZLLy8h24jA0M0bXAe7Br3AWuNOlp+deWawWS5ot3kdtFlv3doalnazooulDwsW+PVxFBcA4tvlfaxksn4y3Bdkc2W+V9tWfE98kiJOdNll8TbLP8lPcOqpcTlq4+HepTV725ZQxCroUu3F8HHeLdhzt7eHvmzj/ud2BOKxTp3eZOWokwW3P80vS+++Oy7H/s73xJJFIBrrXnun1HQsNTCq5Qj2b1uOpxseV6yIb2smCQ8Qz61cCTtv8Am5n7mcnQ9ypPhAfCO5mrPc9PZToK2IZJcW1kHzYLKdyfueesovR23Z2xckZ3ace1KW3OZJzRve4y/3mCLSTe9cKXJly0XkzUXP56lyG/KOUoBcSRdvs3SspTn2/ebmsf89O5IZ7qX5yYS1iBrJvCMepWLGSxNJE/k6LDcDYqnWeP3BDlmeH6xkOwt+wCRkmJXWYDe1VrxirjzWMh1karn+6Y2f3DlpvHMXv8uOBX5M8tyQendgcuSnADBM/m5dyLt3/j31jsJtkvJv799rqXrnPh9y36EmS+YvxFSjlWVCCCGEEEIIIYQQYsIolUr/T6lUurdUKj1fKpW2l0qlz5ZKpUXHPhIolUp9pVKpeoz//ltm+Y0519S3YCGEEEIIIYQQQogxU4Vilh2bUqn0AQCfAPAtAL+BI3nwPgjgwlKpdH61Wj1WKrUdAN7h7Ps7AHMBfKPOvusB/Jv5bW9OnfWxbJrwsNluJplhN2XKbCc72Xnr1wc7oQFooSx0uZLM1D5v+e6oDCosk9lG6R030kdeI+naPTBQs1lquR4xnCySs172kD2q7XhtcSolVRH4fCzHSq1VT0gFWIbJp+BiRbOiZSTIGtX/3JUdqex+LCvbscOvRA7cjvbcbHO2SbOPq8AKFXZHID8TFi/79zKzWXkBq1/a2hMdw/IzPsiRz0w4fN3HH6+Zg6bxmrnxUv0SOW8wU37n3br93fP3VFJJduOOVpI1WSkTzUmuDQBbSOfryTBZbm8rkZsNk0lpv3LTBU43NlN61DvuCPZpp8Xl2A95gnrhhbgcOViZ2rG9vScqllKN55CbhbWIZG283ddoeWUq+10ReVcuLLXiubjRGUJZGmUlw56f5MrS7ORVzmk8i/d8sHMSz0NcroAW2BazWdLHg533i0hTI8abEtkc5kkvrfRvMuXJHrnvMjlSwqL1mcjHDY/7lBTY67NUv3qhSGyWbk/ymZJ4FmmT3AzgRZjMDMLi+KJUKnUC+AiAdQBeV61WXxr5fR2Ar+PIx7M/T51j5GPaF+qc+0IAJwH4arVa3TnqQODH1Wp11HE5SIYphBBCCCGEEEIIISaCKwG0APjbox/KAKBard4I4DEAV4/j3O8a+f9nvQKlUqm5VCq1ePs99LFMCCGEEEIIIYQQQkwE5438/+46++4BsKJUKiVSTNRn5Jj/iiPCs1udYh8CcAjAwVKp9FSpVPqTUqmUlU5k1i+oXHnTu6e6Ci5z2oPsxnrGbrJ5BTGvK1xx223+ye+8M9h2zS9rwWhNbUd/yBH54ovxd1QvuaZdksvqOE5414b9cUGSk2LDhmDfckvN3H/ffdEhHIXvGbKNai7KbLmU7GxnL5JSLPd83GA2NaInTTXa1ra+sH34cOinlFSoyBL53OxEUfW2kHOktBi8Vr0R67p5zXwqfSXtO/HE8MeFVAJUPrWXFQ+Ib8NTzS0y4St7uknGs5EkZjwm7PaDDwb76af9Ck0kJJcefuSRmj1girWST/fefnvYYSW6JAlqocSmXV2xHI4Zrzw2lVQyqh5LL1lOCcTSJpaQ27HNTsQXPumkYFvn4EqksmF681VKD1ckG+Z00F946c5Mex+mfmnidrV+xxMbPbw6VsUy7xcXBum7ld3kkJITe+Wi6xtJ0KiwBiNYVygizxmvLDOVEZBJZRHk+0vJGXOy+9m2KqJsZFLZWr2MyKk25XvvWpDQZ+VqPD1nSzmD8/Aabm2LinHogrlzw7uHfdTv21f/MnaKy8FOpamE6VnwQQnN/hAo46Epxod5rxtFJYs2KbJHkQgMuZm9J5KcjJNF62ZV9kex0khvKHhqZAs/ehLK/ob/U4Lhe0r53XjlurnRYqbD68H0YFbELOsslUoc4ejT1Wr10w0699GX+nr/eHkaQGmkjI1OdSzeiiOfUj5WrVbtQ3oYwP8FcAOAJwAswpEPa3+II3HSLuNVbvWY9e79wNfWTHUVXN74p1uOXUgIIYQQQgghhBBi4thZrVaTH09KpVI7gPeP4ZzXVqvV3TgiwQSAep+2j35+HbNMEkckmMMAPm93VKvVJwG8zvz8j6VS6dMA3g3g5wF8MXXyWf+xTAghhBBCCCGEEEKMi3YAfzSG8l/AEdHcoZHtOQCs/OjoWsxDGAOlUmklgAsAfGPkw1guf4YjH8veAH0sE0IIIYQQQgghhBBFqVarAzgimRwrR6MonQJgs9l3CoAq4khLOfzSyP/dwP4OT+GIbrbzWAX1sWyaYCPzcDgC9iaWwA+bQB8ryR66556aXbGBIjiw2IIFwe4O0b7mzo1jVeTEBgFijT6fGgMmshjHLKO6PktxyjaYa7GAOYrdZsrxdj/Z/KnayvCHSHxfSQnxiwjzuZ845hHFegIQB03aZtrLKdfavrhmc2gljqkwFry4W+xCo2K28D1xv9pU9VxBDkSSG4jGuyYQxyHhc9ugEbSPY/ShO6z6tTGJvJgNqfTf80I4wihmTqedkrmN1lOIgDvuiMvddVfNHKLAMUPmdGOOilkQjlPGPTFgynHkwyHy6WV0PwCiuYcbtmtt+P3gwTiOIrd/kVgsqaEd9S3PXezfQDR34cYbnROYbfZPdohUsKdGByVpNEWCPzWSRx+NNtkn+zj2pZ0Yud59fcFmfwRwYrMfO2+8cLwnLw6Nxcbg8fBi8+TGFUtdx6tf0fHnwbHNco/JjR1VJB5aCu/VITdO3YIFFbMzmJXx3nzqweY8+G1crIMHg82+Ye+Pj8v1NQ9bB652kZhlhwbDc6Ql8RA/sDf8nLo/79mT2+dFp8sisRO53rkx1XJj7xW5D+98RWItpo6zv3tDhB/NKd/id+PUvMGPG7Yb8Yj03vFtfVIxpj3Yt3KfAbl+MrupAomYlgIAsA7ALwO4EKM/lr0KwEPVajU7ImOpVDoRwDsA7ADwtTHWZRmAEwBsP1ZBZcMUQgghhBBCCCGEEBPB13BEfvneUqlU++RbKpXeCOA0GDlkqVTqLJVKK0ql0kmoz8/gSMD+f6pWq3X/NFMqlRbW+a0M4CMjmzfa/RatLBNCCCGEEEIIIYQQDadare4olUp/COBjAG4rlUpfxhH55YcAbALwN+aQ9+JIbLRfBHBdnVPmSDA/UyqV2gB8F0ekl50Afg7AK3Hk491Xj1VvfSybJrQZqWQ75+gmWH5oF3uyDJPFQmffcktckNcXO2uD20z+6v7+nnrFouXIALC0m4RhLFliKQwA3HZbsG+4oWZuoCJ2fSbfO6vZrEBmKdmtJK1p3bWrZh82a9ibTj89bKxeTTvyhsiwWaQZSRXPOSfYvOz/qafik/BacU+yaPZVqANOOilICVn6B8TprVPLpefMCTbLX8qDJGK1a9q5finNBfsUt4NpY27LUZLPo7BkCqijb6xzHcDVTLAf27bj4cJVTS3TX0h/x2A5cmXLY3HBu+8ONksvjUzxAM0HvD65SMqYRsBuw/WxvcViYu7lTjMftHk51un3ZSybBdC8oqNmc7daha4nCTBTXNSfLSza5hNaaTFJS7kdWu39sL+ecUawzzwz2Ob+ogolxku0r4gGLlebUUA7kjWWE8eMOm7VqmBzXxhJ+zDvYx1JSt6+ggT8ZhLoWB3auK8v+F2uHDIlC/SklykpUm5XeBKxlAwsV8I43mNyXZCfQykFsvfoWWj+puw9/4pIo6yvevIl25ee9Na+TzGdnZW6v1dS9eabynywDVFoh20D8SH8WsLTjm17lmuOlz174m32BzuH58D3MKpNHUleStrGfVskHEBRvHe6FN780ghlf5Hxw++bzPM27Hcm7Cvs7vZ8L9TLw4fRr9oeqXfo1KPaO6ZI23nzi51rUlFlPHj8FpHreuWq1bzri9lNtVr9eKlU2gXgAwCuBbAfwL8A+N0xSjB7AfwUgO9Wq9UHE0X/HUekmr8MoANHMnHeD+DXAPx9tVo95supPpYJIYQQQgghhBBCjJkqjsSLF8eiWq1eh/orxWy5awBc4+zbgiMxx451jn8E8I9jqZ9FMcuEEEIIIYQQQgghhBhBK8umCxdfHG0u/cpXajbLETmjY0JQEuVdXWzWyHdzBjde98/L8s3a25b+4Cp9fWGZ/ij11CaqLcswf/SjuBxJQx+g+j1JRZ41p15MNguWVptybRdcEDYuvDDYtMa6abMRebIEh6U+BbNhRvIjllexBsBqFTZsyDq3t36+i+/BcLg1yA3crH8AuhaQjJa1BpsGgs33AMQyNbZtOW4H8jUrZcnCyi75plgLY2VXvI9uvkL1WbWKhbyx2osvYyUgPGQqg/vDxhZqB854CQDf+16waUwcMDJsXlnPSp1Wm+l2kqiQVLmP/NaODq43j2cjRkXvunU1u5OdkjVUZk7qYbl05MixP3kSMdt/UZ/xPMZ9duut0TGcdZjn3D6j56iwdoj1ITznWl2vp/+1eHq22ZiSytO4mPZmvzvAzz8jo22h7TJL8S3UF10rQh2Gm/OE0LmSw/HKMG2GNJtJsN51UuRKcJjc7Ic8JOxzyJNX8jF2X64kdiLx5F22rTyZYm4GRWaUDNOb8FJpJakDciVd7Gu27YtmM6yHbdPx9nOu/DBVjv1uvDLMopkRi8jrPNew/ZUzhm0/eJEULF5deWx742gsdWLppT2f5598TJFMq4CfDZMf+43Ihsn/dGN7vNlngXw/dqaQWfnqIY5vtLJMCCGEEEIIIYQQQogRtLJMCCGEEEIIIYQQohDTYImzaDhaWSaEEEIIIYQQQgghxAhaWTZd4DhbACoU72nN7bfX7AEqk4pZxrHNnjH7Oh55JFyHhfksOn/00fggikXV0t0dfrdxqTZuDDbH4Lr33qjYBoodRZHNQBGvYLOCcySp1WS3nXVWXPCii4LN8cdYiG9jXr3sZcE+55xgJ4ILZMfaWrMm2BxDy8ZN42txu9rgSl7cnkQQi6am+mnnbWyBIYRyFQ6EwO1l+5yvxf5kY6Sw34w3sIJtE68dbBAfDhbD5SjmUZnrCaC3l9qkiTIMs68DqHBjcmykrVuD/YMfxPWheFj7KU6ZDanBvRn1JMf0mkxOPrlmctynbhM7iuOUUUSwKDYhALCnrL7zzprdyv360EPxQTx+yO+WcSwzAGgPfjzc3lGzywMmchr7Nd8H96sJmlRZsqRm9z71VPj90kvjc7/mNcHm+JQUZ/AQ4vhX7J4vUiyVVNwm3ueNeWD88WUsZSrozYup+bIMP3N3FP/xkkvqV66vLzpm5Wc/GzZOOy3YJobhYR73vM/Gj+S5kMZzmWMG8jxvYBfiuDhAPE2myjHcz3yM7S/vkZA6pki8GfbB3HhDqdhTXKdUOd433jhZjYgj5MWvso9CL95XKkSqa3fG4zx6bqeCbNI2P/cH6IXMhvzcsyfYqfbm0KDsq7njnEldh8+X+z7GfZEK4+bdAxD3mRcHLBXnjLHnzoXbJXc+9/zTtrE3BxQZI/a+vTbickVjXnkxGu39cTkei/v2Bdv2S27cSd43b55fbrx4fmzjIfKY5bhpKbzXHyB+FDKpZ4oQMx2tLBNCCCGEEEIIIYQQYgR9/xVCCCGEEEIIIYQYM1UoZtnsRB/LpgssLwEiWVEn27fdVrM38zpxAwvJ7ML33VzOyk3qXB9ALFFiSZ5d38znu/vumvmYkWc9QPbDZK8g+2xTpZW8Lvqqq4JtJKyRHIYldbxOuL8/PobLkTQqW2qZgutDclaQ7A4AsGtXsEmeN2ptOcloI/jcRkrYRjKltnaSTDXH0q/yNhLt8nW5//g6QKwXYlmg1QZwm2eu0/bav8zyWsDXJNg149zG7A/s3yyhhJG1cDvcd198btZmkCQP27cH+8EH42Oo3m3k3212/HF/spzGSg4nC56vqF/bjER37c031+zd1HbGgyK5Ju9bRhL0SkqXxn1uZcLUf5HE1sqgWS7LWjKe07hfgcjfW1hzYefztWuDTX325Jbg3ylJUBEJSErSlXP8WGhqGt88mTvP7u9cVrPb1lIDzZkTF2Qf4JsifwJiuXPrunVhY/78+Hw8v/D4Yzshw0zJpNjV+DIsmbFSmBx5Xr3tHLxjikqjxnNNYLSSnvHqlFvXRsuFcuvjSdHs61SOdHbUPXgFzbOQpZcs1eJHnJ2TcmWvKemshyfRHByM5wavz+zxObLOoveQ089Wfuidr0hb2WuNVzqdOrdH7tjJlTPGIQTyzp1bJ/s7zynedXOlrXZ+8u4pdb4i95t6zWW4L1PlGC5nX7ty2lgyTDHbkAxTCCGEEEIIIYQQQogR9LFMCCGEEEIIIYQQQogRtFhyumCyebnroEkC2X/LLe7plpNtV5q38QavxWZZoJWYsfSPJSomXRJn9ONccybvXCS95LqyDHOllcJcdlmwnYxyAGK5H8vZuE3tmmhad7x7b/iGbNVwRdh/OEgd21i2Y7N4cluy/sFK7fg+WI7Iv9tsn3R/h0jWsNPo4bq7e2p2pZXyF3J7WRkor9O2febUYdzrtFPryXPXpHsyTHs872O9yv33x+VY0+FlPd3EuV+BYZJSR3+5sGv7WT7I/n3KKZgorIwlkrl0dQWb+5J/ByJNT8ddd9XsQ0ZCPkT2w87vnffcEx3Tw/JI9s/XvjauA88PbKey0fJ9sMzb+oade47C8xMQjVOWXrLyMyXH8RLgprDl+ByeDCWXqZJZsIr5zDPDk6PtIjOfezdl5OmtJBMGZ7Y0UuxobHMWXBNeIIdcSd7ziQyouTK+nAxljehLfo0okl0zVYbHRUryNJEy0SKkZHJen1kFOd+vJ7uyrzId/NKS0EZxNAV2Y0+NDvhtnJLKjpei/eplysyVYU6kPzWivcYre+M5xT57cuS/qbGYOy492WrRzLa52T759ZrHD5ezUW68DMSWiZxnmdzMu1625RSpbJjefJybaXP2o5hlsxGtLBNCCCGEEEIIIYQQYgR9LBNCCCGEEEIIIYQQYgTJMKcJuw9H4kh0sLzu/2vvzuOrqO7+gX9OEkIISQwhQNjDvshmRRYFRcVqERS3goqKj2JrtVYrtdpapa0/u7jUx/q01uqjbd31qW2hahUrFhVlURBcAVkTQFD2kISQ8/vjTu585+SeyeRm7pLk8369eHnunTMzZ2bOzFwn8/0e+Vq9rWwoluFBRuhXhSiLQDvUiNAT8y3oPDEtW3xfYdTbLMoynOojo54c6XKUKPeV4agXXOCdaeRIt3zccW7ZCK3ZJwJND+2WU9yW5xf38swjX7mWgxeaUVfxvEotI3qKi92QzG7m6GkydE++k26GVMoR+WTchiz7DKuVK947Ly729rvsGnFEbe/Cm+9by37Yp0/seQBP+KAMi/Ab6c2murib53N2sQjYs4XemmQ9v30n30mXHcV8313OZ5tHjpgIIEP2d3mczdFa5fksQ3nN8O04BB2JUNbLkCHE5n6QZGib2IYeYqRcACgUIZbyiMlRMs2x0rLF/q4V5c7Gsj3HQh4j47poDW+WHVLue7OePH7GuS1DL23hTyZbKIs58KONeZraBowNKmhoTSJDNOVgtvK62r+/93qeO8pyLpojEA8Z4pZFjGetMepphu18HjDAv8EOv1HWbMcinn1sLsu2jKAhXEHCOIHgoby28DOz3bb9ZbZBhqrGG57c1HrxLCvofg2yPN/5fUbDrNnjluW1QYZZBQ3bMo+/XEY8Yd5SGMdBhmTW1DT+t4fZb+MZqVhq6j6Jd722eYKGhfqF78czYrM8t4OOHOlHzueXdcV2P5Xf+22flMgQ5KBk28zfB0FHzZRkPXPU1KaOHkrUHPFhGRERERERERFRo2nU/7MutQQMwyQiIiIiIiIiInLwYRkREREREREREZGDYZhpQuaxAYADhW5+rcLivtFyweiAiQEmTnTLRm6zXJn4ReTJ2iNysRjN8bxYKstfGPW2W8pDjXp9ZVm275hj3LKZ00vkPKouHRgt797trSZzjtkcPOj9LHN2yNRhMlVUvGQ6LJkTITMz11Ovi8y91rOnWzZysnly8Mh9J7/3SwIjyubw2Fkd3DZlZ4md4pewyJYXxeif+w7EzhVi5lEIks/FPOadOrnnS4ZtLHBzgTLXljxIJrlfZb01a7z1ZMNFzqMKkVzJ/OtEjuyIMh+WuVO6dHHLsj+YfSOAoDnKfMn8XLKtZr+T+18mvzAueHkrV0bLWWIeefSWG03YKMpyrUPlCQygl/wsj9Hq1d4Fyvxvsp/Ii4BMkgR4c5aJY/HZOu8+tuUpk13QzDUSdCh22zliNlUuL2guIttpn8i8ZH7kfpRdy9ye/v3d+0NBf3HHMs8rmVxJXEszzGRyYmWy5xavXRstB03ZYrZVboffNgVZnnm5C5KzzI8tB5Df8swcN5Lc3TLXj9+y5fLMdsvlNVUYfdq2DHP7bMfML/1jfn7s783UtXkl7j3cuzzv7w15K5PdPZ48iiZ5bFN1rbCR7fbbBr88kUH2Q9C8XfFK1n6V67HlqzI/B912ue/keR702meS55K8//n93pfrkueLkV42MNt+kHnzzN9gftOCkNtQVeWdFs89Re4Hv5/7tvypzF9GLU2a3caIiIiIiIiIiJqLEP+CQ2mDYZhEREREREREREQOvlmWJsxX322vBg8e3CtarhcqIsnQIfPdfkvcR7moIssAsE+UZRjmVz71ZIDYQKOeDMPE+PFuedQotyxDnACgf/9oUUS21Qs9keEFtle+/XaJX0RePKFIO3fGnt/UptQNkyiS4XV+7zTLDbHFd5mfRSPy872hGdlZlpFc5Maa76d36uSWRburke2ptn1j7EUHHc5akpHEgBlNVRAt5xQXeOpl2N5Jt4UVAt59J/eDGf8ip4n15JaV2efp188ty74v+joAYMAAtyz7hgzd9BFK6KUk2yD2o3nMs2UYs+zH5rVL7OPBL70ULcujZ/ZMea2pFuXtRj3ZohIRkllrtCFDHid5EZDxHGZspDieFTlFMWcHvNcAGRLS1HDIxrCFH/ldx9Ih9FKSp6Jfd/LeA9y+nyvPcwDo2DH2ioybyh6xgs3ye1E27laB2cJ24gnj8guNCrLOoOvxq2eeImY4cJ2gIV2ynskWyhl0/rD7dNBjGc/+l2W53bIctoDZHHy3oakhWeb88V7/6sSz7/36kC1UOWjYcryCbkeQecxz1hYe6bdOuR8sP4XqTZN91+96EJTtmPn1oaCh5rb5zbba+oDfb7Cmhl5KfteaoOdi0L5lO2a2NigVbP1E6YZvlhERERERERERETnS4G/FRERERERERETNjQZzlrVMfFiWJsywHVuEpXy9daDfUI0ypMuMg7AMxdT5k0+iZTO8Ur5JLcOc9hn1ZNiUDMPsZdaToXuW0Mvawd4xNOVIaDIM03wdWe47GVHnF01lG53KbySYoOToNLYwInO9vu9Lm0NY1hEjMNYfIiv2iIW5Zr09lrBOyRxaqEOHmNXM1+/Nz03hN+qbnFZvN9pGw5Rl83yxDRtmhrrKRoh6tSKOod6rvHKIM3ks5OiXgHUEzB07vUuUp1UiyfW2aeMGOprXsR49ukXLuf3FvjeH/xVD2OaJg5YjDqa57+RIvDLU0i+SIluMXmgOPNdZxErmyBE0ZYyvOfyTOK9s3QQA9u4V7QsYDilX1dTQo5ZCntu26zzg7V5yv/bqYYRhdu0aeyHGhUMemhpL2U88IXmpCsOMJ6zPr622UVibGkbmNy2R50vQkKkwjrltml9YYIYnYN1tqy0cFggebm0LoUvkyI+JDJWNt55t/4ex7Hg0NQwz6O9cW6il+Vn2DfM3mO2nrfzeb0RdP7aB0M1rmqxnC8M0/x8hSEi0X72wR8O0hVf6HcugYZh+x8IW3urXN4iaO4ZhEhEREREREREROfiwjIiIiIiIiIiIyMGXJYmIiIiIiIiIGo05y1oqPixLE0FzjXhizs3ETTLnikzoIvIBAQBE3p5qkadss6gi8wEB3jxlYskoNOrJz51FOdeo58nBJDeq2M0pY26eTBEVNP+VjN+XucOOGNczW/qqMMhD4ZcbxLPePDHRTARVVhZ7RZ9+6pb9cpbJFZvJfmyNlfXMZYtj+dUBN3uUTPsEePMINXU4eTPllewPsqnmsZQ5tDJkRbmPg3auHj28n+VGiWVnyKQWMkcS4MnRB5mDcMAAT7XaHm7WP79TO1k5y2QOLtmddu/21pO7pEcP94qQIc9/ACgtdcvDh0eLJcuWRcvmaVktyvIMMet9LsoFsJP1hi5f7n6Q/V3mVwQ8nTwrz2/pLlv3MnONyOuVzBNizt/Uc0muN2i+qjByOcZDtk+evuZlTHavXiWip6zb6K348cduWfS1PcbFa50ofybKMlfeqBjtDcKW+ymR+Y/87kPmvTHWPLE+N0XQ3z9+ws5TFk8eoXj4HXOZt9Bye/GkvQTguenliWuSeY7Ie4e8pgTtg3550xIpkdea5pprKVk5LYOuR15DzHlkDqxE9qGg98Wg/T1orlF5Lsk8gVlZ7jXEbFs81xfbsfDLEWemXLWR14owcw0TNVcMwyQiIiIiIiIiInLwYRkREREREREREZGjmb50HI7MUxdgeB/3NfW/3TEaG7dX4Oxbl6Nv11wcqjqCqeO74O6rh9abd+P2Cky9ZRnWPHpS9Lt5j32KvHZZmDujH55bVI55j32GjzcfwNLfT8DoQYW+bRHRhwC8kT/yNd9exRXuhzVuCCUAYPRoMW2NW1650ltPfC4XX8swzI1G+/bJtomyEUzlCY3KsHwPADn797sfZAicCH/JPeANBi0tdcO4bK9EA94wNSno69Zhv3ZsW2/c4VNyIfK9atmJzNgM2xjPQcf1lh3SDMMU6z2wx/06kWE7Jlt/MMMwZd+QISrZMgzQ7ABye2XcgNnR5P63jeVtnugdO8aex+igMiQoJ8c9s8zQmmSR6/Xrx3JzMw6Iq4jfSSYWni32fYmxv+U1RQZAms2Re3KwaGyN0QbP1UYec1nPPObi2lVcOjBalofVnC3oedDUkKDmGlLkp0MHtyz7ll9UL9aJIMoNG7wV1693yxs3RosV3lqez/K+lsjop3iOX9AwWsmvP4bdh5IVZuo3v2158hqbTLbbOeC93dhuD/W2p9I9oBk14ippXO9ycgpEOeCy4xD2fT+R4b/x8As5TJawz5Eg2xH09535vezjMiSzqekE/PjtH9u0ePaJWU/2DVuoc0PtC7KeoNfwMMJe47k+1LVP66avP/0xZ1lL1AJ/TgfXLjsTKx8+0fPdxu0VmDi8CAt+MQaHqo7gmDn/wTkTSnDC8KJGLXtYn3z89Wej8a17PwizyURERERERERElECt+mFZQ9q1zcSo/kehbFfjXzUa0tvMukpEREREREREROmuVT8sO1R9BKOu/A8AoE/Xdnjh58d5pu/eX421Ww/ixJGx3ypbX34wOj8AbP+qCnNn9I2rLWZ0lvzsiXpbKUIvZagl4A3DfOed2GV4R32ToZdy/C8Zdgl4w5x6iXJno54clU6Gq5gj1BXI0cbEiJyeDTdGG8wtdd81Li11RzWUI84A3te5/V59lmS9sF8Ht41GY4bQHXWU+PDlHrdshn7J2EL5/rXciHiGCzXnC/p+uqWeX7VkhZj5jcQkd2ORX1yhXJk8Fn4hlTLMWJ7Afp3Lb0hWsd5c0db27bM91WyhRGGP5mYbidA8Lrk14koiz3lzqFT5WW67iGMw95y89sitM6/Wni4gRhnN2rLFU69WHltZlqF75kkrhmXNLnWD2jt16uapJkcPlaeY36hayRLPelPVVrn7u3SJXQaA7O3izibDMFev9lYUo57KETCN3um5f8kzLmgUtF+YjAyNSWRIVzzLCxrq41fPNl86jHgZtqD7yzaPyXbP9A/DtNzDjXuKDMO0jcjqR95Lg44iGI90GI1PbqvJdswT3VfDXJffOWvbdr9RIP3IUZ7lMmzhi6kSxvXOth/DDn237cd4lx3v72vSYBhmy9SqH5bFCsMEgMWrv8KIK97Ap1sO4uYL+6GkKPb/4Pbr1t4z/7zHPk1YW4mIiIiIiIiIKPFa9cMym7qcZZ9tOYAJ172NcyaWoKq6Ft+6N/JX6Z9dPhAj+hU0sBQiIiIiIiIiImpu+LDMx8Ceebjlov741VPr8dRPvuZ5i2zjdnO8LCIiIiIiIiIiau74sKwB3z6rN+5+dj02bKtAn665ged7YfE2fPf+D7FzbzXOvGUpRvU7Cv+6a6y1vpGeC7mVX7kf1olMYCtXumWRbwUAMHt2zGnbjaQD5aIs85fJPC0lRvvk516WMgB8Icoya0+9TEolYolBcgUBnkD6gsFutpiCTt7MMW3auBmMzHRfNrJe2Pl4bMuTeUIAY1hnmV9k1y5vRTPfU6x6QfOc+eTG8iQIkvMYebcq4J4XcnFmE2Qar6bmhfPLjxFPHoWsUjfTVY6RiChb5iaTG2g2orTULcs8ZfLAmhsu55HnhJkPTc6XqoRRFhk11dFyXp43hxq2W/qduR9kwr7Bg2PWyzX2d+7OndFywcaN7ixG+/bID3K/Gh20WnyuEcvOkGVj2Z7jJy7iPUZ7c5bJVe3e7Zb9crOY14c6fodfTjPnDzNnYKrIU0Skn0MRvvJWfEvcG+V90sjfWbN4cbS8UXxfDi95xZWXh3h2o18uR3nM5CkS9JrmuYcgWC6bMHJr+eXwCZL60qxj6/thS9Z5YG6P7f6Xn2+vJ28p8tacUWn84VZebOQ10/gdUTzMvUbJY7ZjB2J+D3jzLsm+Zu7HMHMZJfL3WNBlm+eVXw6z5sjv+JnbHqtOrM9NaUO8579cRtDfmPJc8stdHDS/qC2NsGSe503lt92yDWbKVZv27e3TwsxB2TLFzhtMzVur7t4HXvpGve8mjSrGpFHu/1C1a5uJsudOq1evtCQXax49yfPdvNmDouVzJnbFORO7hthaIiIiIiIiIiJKtHCHSCMiIiIiIiIiImrGWvWbZenEE3YJACKsCOvWuWUZRrJokXV55SJ0aKsxTSwNm0VZhlT2NeYpFWUZYJQtQ6YAFK9f734Q7wPvkzF4gHf7ysoQk/kOswwvkO8CGyFrRSIcKqfEDRH0ey07ka/Vy9Ah+aqyjOACgKI8N5zNs3/EsQRgf1dcvmPtF+sT9B3ygGOi5+a4rx3n5dmfv8sIRhlSEg9zfrlJbdu6ZTPMTe4uuRv9Xp2vFH9TKJArNkMlzc91ZL+V46abK9sqzlTzXXd5bEUbusjOBcB2Sc/weTW8No6/mRRkidCfrW6QWr0lyWuX7MfyOgF4+7stFNg8YcS1J0/GNRido1gue9gwt2ycB523bHEnie/3iXLBhx9629Czp1vu0iVazDbi6ktL3aurPA/8onptp2zQU9svJM8W8uI3TzqQ3b0oR/TBNeu8FWW6All+801PNVsaAjMjqbznySNbhGCChs62a+eWDx0Ktmx5/IKuJ+zQy6CC3oZsIX7mOmU9eWmNZ/uysrxXL79rZhB+56KNGSYl72VymqfeAePCYUu5YPyOkPftwkJ32+WyzSwNUtBrQ5ghmWGIN4xdkr8rmnoupds1Nl62MEW//RN2uLVcnt+ybW1tTqkKbO2T1wzA+5s3aGiqvA+ZP1ltxzbd9xdRU7B7ExERERERERE1mgbgk4iWmi2GYRIRERERERERETn4Zlm6kCFYAPDxx255xQq3/Oqr0eIuGV4EQAaBfSbKm+El5yoV5f6i7B3LzVsPo0a5ZTkkGeB9z/fgwWgxywjDlGEu+0QMZNGyZdFytt+IjvI9+H79vPXEu8G5InQrq9gNyTRfGZaLlq8dh/FqsRzoT77e3CXfCPbZKPrA2rWxGwR4w9SCvmNte7/cfEfeFuLpFy8mphUXF0TL5uvgcjCupo6Gac4vX7n3C2UK8pq93whgnjBMs3/a4lf83mmX+9IMVZbkzvSLjTGH1Q1Ahhv5hWR6wpLkwZSjs5ptW7Mm9jzGtcs6wqsl/LTeZ7kfzXqys8hQWSNsVo51LAOw9ohytRGvXSyuV571GiGjRRPdafIcCcpvMFTbSFh+9eIRNHwpkTxRx7IPyX4GeMMt338/WtxsHD9515XhtublSd4PZbqCwoDxdX6jRdrqhRHqFTCS3ncZtu9tqQv8Qt9tyzav53LZfrcrWS++0Mtg8wRl28dB0zyY90x565D7KDtLXKHq5Q2ojF2Ww1wCnvtXXp4YDdqSqgDw3k/9jkuYoZdBR1f1Y7uvBV2Wefxsx1nur6DHPN595TcieJB1+aWekG33G7FZsoXzm/vB9ttP9vWg6zTJ+cIO8Qx63Qhy3P2OedA+GTTUNZ7+FXR046aOsEzUXPDNMiIiIiIiIiIiIgffLCMiIiIiIiIiigtzlrVEfFiWLuSocQCwapVbXrgwWvxChJ7IkbwAbximnGaGYcqRLuVYljK8pMQMLxk3zi3LMEwxAhwA7zu6GzZEi7kyrBDe8BcZgFUuyt2MeUpsI+bJ8C7AOixWtgzpMt47H9jfDULNy8uOlsMI05ARWfJVc3zyibei3Ka9e92yOeKhHIFUhn61b++W5Sh95jLkfjBHcJQbLOv5xdKIfZmb586f285b70h/N/ysqaNhmpG3khwY0ewacjeYkc91zOhK2VU6iG3INvedLSRWxtb4hRbLa4DfsuXOE/0WQFxhmFLgEeBWr3bLcmRLc6fK0XvltpsjvMowTHnCDB/uls1OI+vJfWyOmin3kbx2dezoqZYhO4vo491efz1arrd3ZNyHPJ/N0T7F+VjSY4S5FADBrzVBo63NevKzLWQmaOhmqka+KioUR2C56GtmWK9IY1Ar+p15/LJFWZ5JZqCsPKty5PW3a1drWyXbyLuAN/padie/eaSmhrSbgob3+IVaSbZpcj1+I8H6rccWrhU0jMhPPKME25jttJ1/QUewlW3LMDcoyJDPxrRscV7l5LjLNhdtizo268lwzaAjgYbNdvyCjh4rmdtg63dyeUHPiWTun6BhwvGEQabqOAdhbo8tBNUWZmzO4/e9/CkSNPQ9HrZoa58sKZ5t6mYOpG6Zx1xe2PcbouaAYZhEREREREREREQOPiwjIiIiIiIiIiJyMAyTiIiIiIiIiKjRNJizrGXiw7J0sXKl9/Orr0aL5SI/0AeiiplySWQV8+Qp62XUk59lLpaSTp3cD6NHGwsXSx82zC2beYRkUi6Z88rI1ZQj8vtUi+9l/rIvvEtGN5FYYfD8+dFytpn/yJanQwbby0QxxjzdRE6aWuSiqbq02xe7beYxl22VOZzMJAG2RCby+JnHRX4Wy6vNyvZU87xq6pdURgqYPKFE5PvK2OUe3erCzvZlW3TpUO35LLcjo7IiWs7L8x6/7KzYuVkkc1Nt6fG6Gbnk9h1wl1cgp8kEEF9+6V24POZ+iSLkZ3ks5TwAMH06kuLDD93ymjVuWeYyA1At+rg8YuaNRx6JbJl0TuYfM/OzyeuQzNVm5izr0yd2PTMpSVmZWxbnX5ZoT6Vx3aiU1x5RzjFzx4lEOUXnuPno8vp3i7XKyLItp5xfnh05TeZOAbw5ZWx5R+IZth7w5rqLJ9eT3/yePHqyr8l8eG++6Zlnq7kzHfuMzzKNjMwSaKZzyT7uOPfDhAlu2ch7Z+OXu0bm07HVC5p3yy9PUjz5c/zq+a1LCpJXzG+aXE/QXEpB+7FcTxh5+Gz53mSeLMB+LsqfTOY0ee/yZTvQ5r1CfhY3ucLCIuss8prkl7uoqfmr5DUgaB7FoORPVHNZtlxyYUvn/F5Bmedv0OtBssh9bF43bH0onutL2LnI4uF3bffLZxZkefG0gailYRgmERERERERERGRgw/LiIiIiIiIiIiIHEprneo2BKKU0o1tq1IK+vWpCWpR0037+VbMf3VFqpvRKgUNFfKEACV4Xa1VPPu4Je7TMPpaayL7QNAwPr9+k8j9n279tbn2Ndt+bK7bQ0RE1BqMHjMGy5cvV6luR6Io1VUDl6W6GSH41Qqt9eiG67Ue6fULnoiIiIiIiIiIKIX4sIyIiIiIiIiIiMjB0TDTxcyZno81zz0XLS8U338uyuZokfPEUC4Pi2F9hhn15JhyxQMGuB8mT3bL5miYcuQ5MVpkvSGRxCiX2LjRLRujleHpp6PFdVu2uLOLKuXeOTwjlMltGGoOLSS344QT3LKol2GMzolRo9yy3L5h5t5zBQ7lfOdt94McXur5570V5XAyctQ3c2S94uLY0+Q2yDqAdyRBeczMYYHkeuU02W5z2Bu5PL/hduR+FcNK1g4b4akWZISyjK2bvV/IYcREG2pLunmqZRxwx8OryCpALGbXEN3Td8BROVLmUUe5Zc/InXL/AsC6dW55oTjTzdH85KiLcjgvc4TIBx9EUsyd65bluW2M8LrZMkRWvdEG5Y6VI3rKc1n2bwDoP9Ati/5ZaRzXXMgh3NzRUTM2fu6ph+XLY5f/8pdoscI4LvIaLHv+YHhlnHOO+2H2bLcsry/GKJ4Vle71JeiofbaBcoGmhyrawl4BWBvoO08cMh5+yP0g7iHVr7/uqSeuuJC9oQJecqxceaXPnjjRW1H2QzkytLzOmv1T+Gxd7GMJBBtM2G80zPbt3bK8NADea5lcRjyjovmNfidvweYpb5vmNyqhvJzLst+Ie7ZRRc1beDwjwQYdgVFeCv32nWyDHLV2yBB7vewDX8VeqXnDkr+75H1bjh4LAGec4ZbFzUzej+XPOcB7j5PtNkcRNJtUZ8oZjR811/zpKNcrB6kNSu4e82eStNUcbl6QgyIfPOiW/c5Z22iBZt+aaskcY14/X3zZ3X+yn0yaFHt+AFi0yC37/aSznWd+o0XaRhI1lyVv9bLd8veUOVj92OOC3Ts+WOPuE3ndMLfPHOW1jry9m7/v5DL8rknyuibr2bbV5DfKrCTPMb9jKX86yoHGhw6279N3l7n7sarKO02ef3Ka3wihdbfMZpL1iagePiwjIiIiIiIiImo0DcDniTI1WwzDJCIiIiIiIiIicvBhGRERERERERERkYNhmGmiVuQoA7w5V0RWI4iUEejsszyZ5aqvMa1Y5saRCQ5knjIz/4rIN7V5l5vpxcx90l/ku8iQgflmELsIuO8vcs/sEckKzAwd8rPMNpRhJA3o/9JL0bKng/vl1pLT5PIGG9mHRGC+zCHhm3/DTPxRx8xLJRNoyGNktkFO69LFLcuEJ2YiDLFsWy4kACiQy5YJF2SyEnPZciF+iT7kPrclNYmx+JjMpBOW5BDmanJy3AxG5u63fS8/y/wkZm4JuS7ZnC+Ls6PlwaO+5pknQx5zuU1mn7ElQ5HHJZnkThFJ3fYY56I8y2TuqOwSI2vZaae5ZZkfasKEaLGi0Jt/bp1I/5aX5y7dPOaFhe71Su66Hj28V8bccaLjyYMr+nSuzDEHoGTZMrea+H4fvApkDjR5bfVJbJQr+4YnIYixcDmt0idRkm0ev0RnQoZfUhLbPCHkKfMQeZdqRZ4y81SWZ4W8Mpv3TPk5W+Yik30Q8OYpk/fJoAlmhIC7zvc6KFcrc+SYzZH5ZYLm3ZKC5t2SzPXIenIZfrvO1lYzPWmQLhnPdsdLXvclM69Rhw5uWe6Hgiwjq548n+X9IehG1VjmB7z3DlEvY7ubLbZHD+8113apMPe9zF8l81wFzVMmmXnFmno85fIK8rzXJ9k+v5+vNnFcIuMm+1rQfSLr+eX0suXI9Mt1aGuDeZ5nWW6zcVxKfdcV9Ppiy0VmnsuHDsWe5rdPbHki/XJQBiWvKfHkoPRj5r6UZN4z83pcxy+3JFFzxIdlRERERERERESNxpxlLRXDMImIiIiIiIiIiBx8syxNmMFU8rMMP5RvpJvhldIIUe48fLh3ogwxkeElIjyotv9Azywy+kiW/V7f7tGjV7RcMMoehinDAUpfeMH92jsHZBBBpaUMAGLJKN6wwf3gN561fOdehiuccw6sLCGZ9awR8WJyB61d660n1+s3trSMI+jZ0y3LEErjwMjQS99XtuW767b37813xuWx9AvD3L079jzxMMLhbHEDRaU51no9erihe3LXm/tHNjXo0PC2ocnN3dOrhwiYlsdv2zZvRXlcZAikjA1IJrkhX34ZLVYb1WRPkWGYnpBhwBuaOGxYtChDL83IVNkE2SXrh2HGrmce59JScb0aJg6mDLsz5IgwTMm8dmWIUNW8N9+0N0KSoaq28zLW5zp+sR5yeX7xPAFDNAO1Jwxi38lTyS8YWfY7I6ILRfKck6HAMj0B4Omfn+9ylyh38cD+wUJOg4ZXyluUX2ijX+iRDKeRbZVhcn5kCF3QUC2/bhc0DNOvu9uWHUYYV1PZrjXmPrFFWNe7cdjiuILuPD+2e4e4sBaM8p4xNSKlgFyNyJ5RT1PDEc2fQk09zgU54i51wHv9laHmMnw/aJib7XwzhRGmZgv59RM0LNt2bttCqhtanmQLdQw7DNMvzNR2/bOFZJqfbf+7YC5DtkeuM+gt3I8Mh6yqir1+wNsng67H7/ob5DjZtk+pYOsnSjd8s4yIiIiIiIiIiMjBN8uIiIiIiIiIiOLCnGUtER+WpYnlxucPRFmGVMqX4o/3WV43GdYkw0sAYORIt9y/v1i4u3QzlCnoq/S2AQ8LZLgZUH+0zbomiJlOEaOdAcBmUZbNM8aP8oyMVlxW5n6Q7063bx9z/QCCv3MflHwnWYZWjR/vrSdHvZRxGua+k8dMbJMMtczJyYZUIzbJLwSgtjD2qIJFYp1yPQCQWyrCj/ze07fsVzOENdCIWea74PLYivflK5DrqeYZXEx0FEtUcGQeSwSquTlBomTMZWdludvazW+UPfnOvVxIqkbDlOevaGtnIyyxswx9lttnjjYoP4vzYPtG92tzf9tCRfxCzGQ9MwpJhlMUyPNUbqsZEyQW2H/xYvd7ed0BvNcb6yiXPnFu8cQyhTHkVroRFy95hTOukJ6zXqYryDbvOxMnumU5TV5jAdSK0VYrfSLNbfwOc1NHi5T1ZJgVYB/Rz3bumOLpgkHDMIOGbvp9H2RQ16BhnGGQp7nfiHKeURj94veDNNCsY4sXM39HyHuKLdzTuL8UyWuXmCerg/c+65fxorHMgZMzatwwylpko9FseRUAz77MLXS/zin0bp/fOVfniM//M4fxEzOe0TrlIZeCniN+14N4wjDlvdrWHRvD8jPQd3lymjxm5vVX9mNbuLzfsmXZPA5Br8dBlu0XNhnPMTL3nezvtntUokeCJUo2hmESERERERERERE5+LCMiIiIiIiIiIjI0QLiMlqGNcbnMaIsx2KTYZgZF1xgX+C0aW7ZDD2RISbi1fyKnKJoeZcRaiLfXPd7FVtGEchXfvPyvK/Ly7A+21B22fKVfwD9Fy2Klvft3Bktl3ub4Bk1c58YpqlAvvsuQx4B73vxtqEM42V7J9kMi5Ajs8lpZhyCmFYtwhD2iIgJcyQf26vmJrnp3mOZEfN7AKjJc6cVyBWbFeU+9mmEDMu0hmSay7Z0vNxCb4hnTU3s5fm9Nh701fUgIyyZ4Rey2RUiBDZX9gXAO5KojDWwxYAkmmxf0GHfZBimzzXpqz3uMZLXHfOQ28IfzK5lu17JEaQAb8RRXp4bdlNgC482yeOyxriiy+Nni+U1N1AOMecXnxdP3EaQ703xxM2FTcSvyCORJUcFBtBZ7jsZ7m6ObGoZhbW2pJunmhyA1m/kPxu/URvj2XW2sGMZ/mZq6qXC774hBQ3DDDqPH7lNcttTNYirDK/yHTUunt8YfsOeSraRtM17iryW2drjd8MSsvO8O8/8vdcUMuyyXpviWY/fkNaWehlG5zDTXARhu4THG6YqQ36Dnpu2ETTjGaHXXKe8Dvm1xxYW6JfBIyi5DPk7Uv5+NXn/PyX2ssw25ebI35XB3jmR+yTea41tm2yjbsa7rqApABhuadJgzrKWiW+WEREREREREREROfiwjIiIiIiIiIiIyMGHZURERERERERERA6ltU51GwJRSunGtlUpBf361AS1qOmm/Xwr5r+6ItXNICIiIiIiIgrd6DFjsHz5cpXqdiSKUp01cH6qmxGC36/QWo9uuF7rwTfLiIiIiIiIiIiIHHxYRkRERERERERE5EjSeO9Nl52dDaUa9/Zmh8KjMO3nZQlqUdNtLd+BaafxTccwbV23Dz069Ux1M6y27luHHj07pboZSZcOx6W17ntKH+lwHrRE6XZuby3fjh7dSlLdjGajtZ4X6dZv49USjl9LORYUjubap9O5H69Y8T7zDlGz1Gwelg0fPhzLly9PdTNCNe3Ur2H+T7qnuhktytCzt2H+hBtT3QyroW9ciPk/GZXqZiRdOhyX1rrvKX2kw3nQEqXbuT300k8w/yfHproZzUZrPS/Srd/GqyUcv5ZyLCgczbVPp3M/Vv9+P9VNSDAN4EiqG0EJwDBMIiIiIiIiIiIiBx+WEREREREREREROfiwjIiIiIiIiIiIyNFscpYREREREREREaUX5ixrifhmGRERERERERERkYNvlrVCG7dX4Jg5izGyXz4A4MxxXXDbo59i7JBCVNdonDCsA+769tB68/W/+N9Y98Qp0c+Trn8bj//4GPTo1A6n/+BdvLd2L753Xh/cesmApG1LQz7YvQE/XPkYDh2pRnVtDc7veQJ++9l8lLbvguraGrTJyMTcIedgavcxAIB2z5yHsR0Horq2Bid0GoK7jvmvesvs/4+rsO6sh6KfJy28BY8ffyN65Bbj9H/fhvd2r8f3Bp2FW4fNSOi2hX0cd+6pxrX/vQaZmQpZmQoPzx2Bvt3ah9beZB6LnZV7ce3yPyBTZSArIxMPj/1uaNvRUoTdfwpys3DGD5ciO0uhouoIfnHlEJx6bHHStoe8knm+FbTJxRmv347sjCxU1FThF6Muw6klI5O2rTaJuNcBwGdbDuDoy9/A678ZjwnDi5KzMTGEtX0A8JP//RR/fmUrBnRvj4X3jEtK+8OSjL4OAD9Z9Tj+vOHfGJDfDQtPvSMp22YK65gfqjqCs368DIeqjqDmiMbtlw3EN8Z2Tli7k3GMDtVU4az/3IFDR6pQU1uL24fPxDe6jU7YNjUHYV4jLrnzfWz54hAOHDqCiyd3xw0X9E3KNqSjZF1zLnn7Hmyp2IUDNZW4uPQk3DB4epPbHmafAIDDNbUYOnsRLju9Z1r9/x9RWPiwrJU6duBRnh/Ef5i/CYvuOx4AcMr3l+DjTfsxpHd+4OU9ctMILFyxC1t3Vobe1njtO1yBWUvuxQsTf4R++V2htcYr295HpsrE65PvBACUV3yJKYt+igH53TCooAe6t+uIRZN/AQA45bUf4+O9WzDkqJ6B1/nIuOuwcPtKbK34MiHbZArzOHbt2BYv/3os8nOz8OI7O3D7Y5/hLz86JpR2HtG1ST0WXdsV4eWT5yG/TS5eLFuO2z94IpTtaGnC7D957bLwn/8ej6zMDHxefhAzfvYelh07MSHtJn/JvvblZeXgP5N/iayMTHx+YDtmvPkrLDvjNwnbvsYI+14HAD//y1qcNLJjqO2MV1jb952ze+PyM3rgqntWJ6ytiZDMvv6dgVNweb/JuOrdBxK6TQ0J45hnZSr8ce4IlJbkYtfeapzw3bcS9rAsWccoKyMTfxxzLUrzumBX5V6c8OoPW/3DMiC8a8QjPxiJ7DYZqDlSiyGXLcKVZ/ZCfm7r+9/IZF5zHhl7HbIz26Cm9giGLLgaV/b7OvLb5DZ5G8K8L/5h/iYM7pXX5DY1fxoMw2yZGIZJHodranHgUA20btx8dX9xTycLypZiWvfj0C+/KwBAKYXTu33NU6dbbkdcM/BMPL/5Lc/3h2trcODwIWg0bkf0yE2PN2niOY4lRTnRHz7ZbTKQlalCa8+BmqqkHouSdh2iPyiyM7OQlZHZxC1oXeLpPxkZClmZkVvKvooajOhbkKDWUUOSfe3LcN7gBCL/IzGisE8TtyDx4r3XLf14N0qK2qJHp5zENCwkjd2+rh1zkJER3jU/WZLZ17u2K0IG0ncfNeaYt8nKQGlJ5B6Zk52BDJW47UrWMWqTkYXSvC4AgJzM7IRuU0vQ2GtEdpvI/b2yuha9OrdDbtvW+bsqmdec7Mw2AIDKI9Xo1b4TcjPbhrAFdo3tEwcO1eCld3fi3IldE9ouolRqfX8SIADAis/2YtL1bwMAfjp7EMp2VWLS9W9j1fr9uPTr3TG0tP5fFI7U6ug8ALBy3b6ktTceWyp2oWdupwbr9cwtxvu71wMAyg59iUkLb8Gq3RtwaZ9TMPSoXvXqH9FHMGnhLdHPK3dvCK/RjZSI43jwUA1+/PCnePSH4YVRHa49kpJjcbCmEj9e9Rc8Ou57OH/lu03cipYn7P5TtvMQZvzsPXy29SD+96bUh+G1Vqm49pVVfIkZb/0Kn+0rx/+Ouy6ErQhH2H38jsfX4dGbRuLG33+U+MYHEM/2tSSJ6uvpLOxj/r3ffoibZvZLRFMBpOYYfW/FH3HTkPPiam9LE2Z/uWDeCryx6ktcfVZvZIb4B9XmJNn9+YLFv8QbX6zB1QO+gcyQ/vAbVp+46+n1uP78PijblT5RRURh48OyVsp8Bbd7cQ4W3Xc8Nm2vwEV3vI/qw7V4aMEmPP/GNvTv3h4P/2AkMjNU9DVdAJ7/mUhHPXOLsWbP5gbrbanYhe7tIiE1da9Kbzr4BS56625UHzmMh9b9C89veQv987vi4bHXIVNlRl+nBuD5n8dkC/s4Hq6pxYyfvYdbLu4f6v9ktcnIxOaDOxusF+axOFxbgxlv/gq3DD2/2f3PULKE3X+6d2qHN397AjZur8Ck65dg6vguSd0eikjFta97bke8edqvsfHADkx67UfRXC2pFmYf/+eSHRg98Ch0PCo76dthE8/2tSSJ6uvpLMxj/vM/f4YO+W1w+TeCp5torGQfo5+vfhodstvj8n6TQ9uG5izM/vLcvGNRUXkEJ37vbcw4uVuLfxgfS7L783MTb0ZFTSVOXHgLZvSeGMrv2TD6xBe7q/D+un346eWD8NjLW5rcJqJ0xYdl5NG7JBenH9cJD/9zM649pw+uPSf9w2lspnYfg19+9H+4ot9p0delX932vqfO9kO78bu1L+Kp4+d6vu/dvjNO73oMHl7/Cq4dNBXXDpqatHaHIZ7jWFurMev/vY/pE0owfUJJqO3Jy2qLBeXLknYsanUtZr19D6b3GIfpPceHtyGtRDz9p6r6CNpmR/7qWZCb1SpzmaSLZF/7qo4cRlsnXKSgTS7ys9IvLN8UTx9fuX4fFq36Em/f9C5Wb9iHTzYfwDO3fQ29S5qeQyZsLele7qc13+dNjT3mD7ywAWu3HsSfbhmV0HYl8xg98OkCrN1fjj+NvyHcjWiBGtNftNY4XKOR3SYDOdkZaNc2E+1aaRhmsvqz1hqHa2uQndkGOZnZaOf8S6TG9IkPPt+HnXuqcMZN76JsVyWqDtdiZL8CTDu+tf6RlDnLWir+3wzVc/XZvXHS9Utw1bRe0RxEDZlz9yq8vWY3qg7XYvmne/C3O45LcCsbVtAmF38Z/31cs/xBVIoRa+pCiepGrJk3/EIMjpFo8+oBU3DSwltwVf8zAue8mvPub/H2ro9RdaQGy79ai7+deGvYmxVYY4/jXxdvwz/f+QI7dlfh8Ve3YnjfAvz2umGhtCVTZST1WPx1yxL8s3w5dlTuweMbF2F4YWko29GaNLb/rNmwHzf87iNkZigcrqnFfdccnYRWUizJvvat2bsJN6x4GJkqA4d1De47dk4iNit0je3jP541AD+eFRnta/YvV+LKM3ul5YOyOrbtq9XA5BvfiX5++AcjsGDJDjz973J8vPkAJt/4Dv7w/eHo1z280ZATJVF9vVbXYvJr7v374bHfxYKyZXh683/w8d6tmPzarfjDmGui/7OcLoIe8zuvHITvPfAhxg/tgJNvWAIAeO2e8QkJrUvWMbpz5KX43nt/xPjiQTj5tR9FtumUO0ILXWuJgvaX398wDHPu/gAAUHW4FjNO7oY+XdP32pdIyerPvz/uO5iz9LcAIn+QmtF7IvrkhfuH7Fgac99Y8j8TAACPvbwFW3dWtuIHZdSSKd3Y7LYpMnr0aL18+fJUNyNU0079Gub/pHuqm9GiDD17OT6a+sdUN8Nq6BsX4qPHJ6W6GUmXDselte57Sh/pcB60ROl2bg+99DV89OdTU92MZqO1nhfp1m/j1RKOX0s5FhSO5tqn07kfq5MXrNBat9jhaZXqqIEzU92MEPylRR+neHA0TCIiIiIiIiIiIgfDMImIiIiIiIiI4sKcZS0R3ywjIiIiIiIiIiJy8GEZERERERERERGRgw/LiIiIiIiIiIiIHBwNM4WKOhRi9569qW4GERERhSQnJweVlZWpbgYREVG6aNGjLCpVpIHTU92MEDzdoo9TPJjgP4V279mL5vKwkoiIiBqmlOK9nYiIyKGUSnUTiOLCMEwiojT12GOPYcKECXHNu3jxYgwaNCjkFhEREYWnMfeqRYsWoUePHglpx7x58zBr1qy45n3iiSfw9a9/PeQWERFRqvFhGRG1WKWlpVi4cKHnu6Y8gGpOJk6ciE8//TTVzSAiIop5PwbCvVfNnj0bt956ayjLaoyLL74Yr7zyStLXS0REicUwTCIiIiIiIiKiuBxJdQMoAfhmGRG1auXl5TjvvPPQqVMn9OnTB/fff3902tKlSzF+/HgUFhaia9euuPbaa1FdXQ0A+Pa3v425c+d6lnX22Wfj3nvvxV133YXzzjvPM+273/0urr/++pht2LJlC84991x06tQJHTt2xLXXXuuZPnfuXHTo0AF9+vTBSy+9FP3+0UcfxZAhQ5Cfn4++ffviD3/4Q3SaGa5SWlqKu+++GyNGjMBRRx2FGTNmMAk5ERGllHmveu+993DMMccgPz8fF1xwAWbMmFHvbbF77rkHnTt3RteuXfHoo48CAB566CE88cQT+PWvf428vDxMmzYt5vo+/PBDnHbaaSgqKkKXLl1w5513RqdVV1fj0ksvRX5+Po4++mjIgcV++ctfol+/fsjPz8fQoUPxwgsvRKeZb6wrpfDggw9iwIAB6NChA6655hrmMSQiaob4sIyIWq3a2lpMmzYNI0eORFlZGV577TXcd999+Ne//gUAyMzMxG9+8xvs2rULS5YswWuvvYbf/e53AICLLroIzzzzTPQH8O7du/HKK69g5syZmDVrFl5++WXs2bMHAFBTU4NnnnkGl1xySb02HDlyBFOnTkXv3r2xceNGlJWVYebMmdHp7777LgYNGoRdu3bhpptuwhVXXBFdZ+fOnbFgwQLs27cPjz76KG644Qa899571u199tln8fLLL2PDhg344IMP8Nhjj4WxG4mIiJqsuroa55xzDmbPno2vvvoKF154oeehFABs374de/fuRVlZGR555BFcc8012L17N6666ipcfPHFuOmmm3DgwAHMnz+/3vL379+PyZMn44wzzkB5eTnWrVuHU089NTr9H//4B2bOnIk9e/bgrLPO8vzhql+/fli8eDH27t2L22+/HbNmzcK2bdus27JgwQIsW7YMq1atwrPPPhv9XUFERM0HH5YRUYs2ffp0FBYWRv995zvfiU5btmwZdu7cidtuuw3Z2dno27cv5syZg6effhoAcOyxx2LcuHHIyspCaWkpvvWtb+GNN94AEMmzopTC4sWLAQDPP/88xo8fj27duqFr16448cQT8dxzzwEAXn75ZRQXF+PYY4+t176lS5eivLwcd911F9q3b4+cnBzPX6h79+6NOXPmIDMzE5dddhm2bduGHTt2AADOPPNM9OvXD0opnHTSSfj6178ebU8s1113Hbp164aioiJMmzYNK1eubNrOJSIiCsk777yDmpoaXHfddWjTpg3OPfdcjBkzxlOnTZs2uO2229CmTRtMmTIFeXl5gXOeLViwACUlJbjxxhuRk5OD/Px8jB07Njp9woQJmDJlCjIzM3HJJZdg1apV0WkXXHABunXrhoyMDMyYMQMDBgzA0qVLreu6+eabUVhYiF69euHkk0/m/ZaIqBniwzIiatH+9re/Yc+ePdF/dW+GAcCmTZtQXl7ueZh25513Rh9GffbZZ5g6dSpKSkpQUFCAH/3oR9i1axeASJjFzJkz8dRTTwEAnnzySVx88cXRZV922WV4/PHHAQCPP/54zLfKgEgIZu/evZGVFTuFZElJSbScm5sLADhw4AAA4KWXXsK4ceNQVFSEwsJCvPjii9H2BVlW3XKIiIhSrby8HN27d4dSKvpdz549PXU6duzouV825l62ZcsW9OvXzzrdvEdWVlaipqYGAPDnP/8Zo0aNiv5WWLNmDe+3ROTQiOQsa+7/yMSHZUTUavXs2RN9+vTxPEzbv38/XnzxRQDA1VdfjcGDB2Pt2rXYt28f7rzzTk/ekQsvvBDPP/88Nm3ahHfffdeTp2z69On44IMPsGbNGixYsMDzIM1sw+bNm6M/yIOqqqrCeeedh7lz52LHjh3Ys2cPpkyZwrwoRETULHXt2hVlZWWe+9iWLVsCzy8fssXSs2dPrF+/vtHt2rRpE+bMmYMHHngAX375Jfbs2YNhw4bxfktE1MLxYRkRtVpjxoxBQUEBfvWrX+HQoUM4cuQI1qxZg2XLlgGI5DcpKChAXl4ePvnkE/z+97/3zH/MMcegU6dOuPLKK3H66aejsLAwOi0nJwfnn38+LrroIowZMwa9evWytqFr1664+eabcfDgQVRWVuKtt95qsO3V1dWoqqpCp06dkJWVhZdeeolD1xMRUdo6fPgwKisro//MPxKNHz8emZmZeOCBB1BTU4O///3vvqGOpi5duuDzzz+3Tp86dSq2b9+O++67D1VVVdi/fz/efffdBpd78OBBKKXQqVMnAJHBddasWRO4XURE1DzxYRkRtVqZmZmYP38+Vq5ciT59+qC4uBhXXnkl9u7dCwC4++678eSTTyI/Px9z5szBjBkz6i3jwgsvxMKFC3HRRRfVm3bZZZdh9erV1hBM2YZ169ahV69e6NGjB5555pkG256fn4/7778f3/zmN9GhQwc8+eSTOOussxqx9URERMkzZcoUtGvXLvpv3rx5nunZ2dn461//ikceeQSFhYV4/PHHMXXqVLRt2zbQ8q+44gp89NFHKCwsxPTp0+tNz8/Px6uvvor58+ejpKQEAwYMwOuvv97gcocOHYobb7wR48ePR5cuXbB69WqccMIJgdpERETNl2ourxCPHj1ayyGcWwKlFF/hJmrBNm/ejMGDB2P79u0oKChIdXOIKAl4bycKz9ixY/Htb38bl19+eaqbQkRxUkqt0FqPTnU7EkWpQg1MSnUzQvD3Fn2c4tFsHpYppXYC2JTqdhARNUJPAJkANqa4HURERM1BHoBKADUAOgLoDWA1gMOpbBQRNUlvrXWnVDciUfiwrOWKPfxaGmrJJxgRtSxKqfYAdiDygP8MrXXwDMVEREStlFLqKgA/R+Sh2XoA07TW/0xtq4iIqDVizjIiopBprQ9qrfO01kfzQRkREVEwWuuHtNZdtNbttdYj+KCMiKhlUEp9Syn1hFLqE6XUEaVUXCGOSqmxSqmFSqn9Sql9SqmXlVKjLHXbKqV+ppTaoJSqUkqtV0rdqpRqE2RdzebNMiIiIiIiIiKi9FKb6gY0B7cgEl7/PoD2AHo0dgFKqXEAFgEoA3Cb8/W1ABYrpY7XWq82ZnkGwNkA/hfAEgDjEXl7uT+A2Q2tj2+WERERUaiUUo8ppbTzb1IIy5sklvdYkxtIRERERMk0CcBRWusTAayKcxn3A6gGcKLW+jda698AOBGABnCPrKiUmoLIg7J7tdZXaK0f1lpfAeBeAJcppY5vaGV8WEZERJRkSqmN4uGP+a9GKfWVUmq1UurPSqnpSim+CU5EREREzZLWeqPWOu5X8JRS/QEcB+A5rXWZWG4ZgOcATFZKlYhZLnL+e5+xqLrPsxpaJx+WERERpZdMAB0ADANwCYAXAKxQSh2d0lYREREREaXGcc5/l8SY9g4ABeBYo36ZmT/a+VwulmfFv1QTERGl1oOIjPpWJwtACSKvq490vhsB4DWl1Git9dbkNo+IiIiIYtv7L2B+capbEYIcpdRy8fkhrfVDKWtNfd2c/5bFmFb3XXej/keWZZUhQM40PiwjIiJKrWe01otiTVBKXQTgT4jcr7sgkpT08uQ1LT5a69kIkDiViIiIqDnTWp+R6jYki1KqEMD1jZjlfq31VyGtPtf5b1WMaZVGnbpyrLp19XMt06L4sIyIiChNaa2fVEp9DcCNzlfnKaWu0lofTmW7iIiIiKjVKQRweyPqPw4grIdlFc5/28aYlmPUqSvHqltXv8IyLYo5y4iIiNLbC6KcD6CfX2Wl1MlKqQeVUh8ppXYrpaqUUmVKqflKqf8KMliAUipTKXWxUuqvSqkNSqmDSqlKpdRWpdR7SqlnlVJzlFK9LfMHHg1TKZWjlLpBKbXEGdjgoFLqM2cbRjTUVrGcRWKdpQHq19XdGKCuUkqdrZT6k1JqrVJqn1LqkFJqk1LqOaXU+UopFWA57ZRS31JKvejsy0NKqQpnOcudAR0uUUp1CbbVRERERMnhJOlXjfi3LsTVlzv/7R5jWt13MkSz3FK3rn6scE4PvllGRESU3r4wPhfFqqSU6ozIX/BOizG5m/NvKoCblFLTtdafWJbTHcACAKNiTO7u/DsGwAUAVgAY3fAmxKaUGgDgnwAGGJMGOP/+Syn1fQBr4l1HUzmjLz0Nb9LYOr2cf+cDeEcpda7WeptlOUcjsl9LfZZzLCKDOvyfs0wiIiIiApY5/x0P4GFj2jgAGpHfpbL+xUqpnjLJv1KqJyK/if/R0Ar5sIyIiCi9mW8ZHTQrOA+43oT7IOYAgJcRSWxaiciDmDMB9AQwCMBbSqljtdYbjeVkAPgb3Adl+53lfOKst72zjtEAhjRhm+AM7/063L/6VSPyMGkVgGwAEwGcCOC3AO5pyrqa0MYRAP4NoKPz1ZeI7I+1AGoA9AVwFoBiRH6ovens1z3GcvIAvITI/geAXc5y1gM4BPeNwbEA+iRui4iIiIjSm1KqGJHfVtu01nsBQGu9zhmA4AKl1E+01uVO3W6I/AH331rr7WIxTwG4GJEcazeK7693/vtEQ+3gwzIiIqL0dp4oVwL4VE50HnA9BfdB2Z8BXFf340LUawPgF4j8YCgC8BdEHkhJk+C+KbYcwBla6y9jNUop1RfAKY3bFI8H4D4o2whgitb6Y2Md0wA8C+D7TVhPXJRS7QE8B/dB2a8AzNNaV8ao90cAFyLy8Ox+AJcai/sm3Adl/wTwTa11zFwZzgO6o8PYBiIiIqJ04Pymqxvlvb/z3a3O5z1a6wdE9WsRyY12OYDHxPffQ+QPrYuVUr91vvsuIunF5AMxaK3/qZRaAOD7SqmjACxB5K20KwA8rrV+s6E282EZERFRmlJKXYLIj4A6z5gPaxB5mFb30OuvWuvLYi3LGRRgrlKqD4BzAUxQSk3UWi8W1Y4R5V/aHpQ5y/scwOcBN8VDKTUU7kPAGgBnmQ/KnHXMV0p9F5GHUcn2HQADnfK9WuubY1XSWh90jlM/AGMAXKSUus14a0/u19ttD8qc5X0A4IMmtZyIiIgovZwHwPyN+nPnv5sQ+SOqL631204u3DucfxrA2wAu0FqvijHLBQBuBTALkTQXZQBuA/DLIA3mwzIiIqLUmqGUknm/shAJvTwFgExw/wmAH8aY/zuiHPOBjuEeRB6WAZEQQvmwLFOU2wVYVrxmifJTWuvVPnUfQWS7fAc2SIC6/XoIwE/9Kmqtjyil/huRV/ozEQl5/R9RJVn7lYiIiCjtaK1nA5gdsO48APMs05YAODXgcioReVh2a0N1Y+HDMiIiotT6dgPTjyCS8P06rfUOOUEp1Q7A8c7HDVrrtQHWt1KUzeT88q9ydyilPtZar0D4ThDlF6y1AGittVLqrwB+kIB2xOSEmJY6H9/RWu8LMNtKUfbbr/crpWYEPFZERERElAIZqW4AERER+XoDwI3mgzLHYESS4QNAH6WUbugfvAMEdDKW9yqA951ybwDLlVKrlFJ3K6XOdZKohmGgKK8MUD/Wq/WJNFKUTw64Xz8U85j79UkAW53yMQA+VUq9o5T6f0qpqUqpjiAiIiKitMGHZURERKl1stZaaa0VIvflEgCTAbzoTD8FwNvO206mpj5kaS8/aK1rAUwBsFB8PQKRpKn/B6BMKfWxUmqeUsp8INQYHUTZmhdN2NWEdcUj7P26H5Fj+p7zlUJk5MsfAZgPYKdSaoVS6kalVH4T101ERERETcQwTCIiojShtdYAdjj/XlNK3Y9Igv+eAJ5VSh2vta4Ws8j7+KcAHm7kKveaXzjDbp+mlBqPyCiOJyHywKwu79ZgREYo+r5S6jKttW8YZUhUEtYhyf36DiIPChtji/mF1vpTJzfdZERyxp0IYAgi26YAfM35N1cpdUGQUZqIiIiIKDH4sIyIiCh93QhgEoDhAI4F8H14R/CRb2VVa63vDmvFTgLVJQCglCpAJDfaGQAuQiTMMB/AM0qpY7TWH1oXFNtuRN6gAyJvcTWUEyzIm15alH0frimlchtYltyvO8Par87D0Fedf3DCLyci8jbfTET2aQmA+UqpgVrrnWGsl4iIiIgah2GYREREaUprfRiRB2Z1bjHCH9ciMgAAAAxVSsnwxjDbsU9r/bLW+noAfQG860xqA+DKOBb5mSiPtNZqXJ0DopzXQN1eDUz/RJTHK6US8ntJa/2l1vpvWuurAAwA8LkzqRCRh5JERERElAJ8WEZERJTGtNavAqgLySsAcLOYtgfAcudjJoBLk9CeAwB+I74aHMdi3hblc/wqKqVUQ3UccgCEgdZaEac3MH0NgO1OuRjAtADrbxJnAIeHxFfx7FciIiIiCgEflhEREaW/n4ry1UqpruLzb0X5NstAADE5D6Ka6lAc8/xFlC9USg31qTsbQP8Ay3xPlM+1VVJKHQXv23r1OOGSD4iv7lVKFQVoQ906UrVfiYiIiCgEfFhGRESU5rTWC+G+jdUOwC1i8lNiWhGAN5RSk23LUkrlKKWmK6VeRyShvJx2n1LqbqXU0T7zdwdwq/jqP8G3JEJr/RGAuoEB2iCSo2tQjHWdCeB/4M1HZvN3uCGpM5VS02MsryuABYgMmNCQ+wGsc8p9AfxHKfU1W2WlVL5SapZS6j0YOdaUUk8rpW5TSvXxmX8ogOvEV43er0REREQUDhX54ykREREli1JqI4DezseTtdaLAszzdQD/cj5WAeivtd7qTOsCYDEiea/qrEbkgcs2RP441hHAMABj4eb0Ok5rXRfGCaXUYwAucz6uB7AUwAYA+xF5EDcYkST/bUSdUU5oJizLibl9zoOrFQDq3pKrAjAfwAcAsgFMQGRwAwC4F5HBDQDgT1rr2ebynGU+COBb4quXEBnNEgCOBjAVQC6AO+A+8NuktS61LG8IgNcBdBFfL0Xk4eQXTjs7ITJa6BgAbZ06nbTWu8RyFiEyqigAfIhI6OxmRN4eK0YkJ9vJcP+IuQTARK113cM/IiIiIkoijoZJRETUDGitX1FKvQNgHCIPZX4M4Gpn2g6l1HEAHgQwA5HRIIc7/2zKEBmVUqoW5X7OP5tlAM43H5QFpbXeppQ6GZE3vfojsk3nO//q1CDykGw13Idlfm5E5IHhKc7nbzj/pN8AuA3et+NsbfxYKXUsgEcBnOZ8Pcb5Z7MWkQd/ktyvRzv/bF4GcBEflBERERGlDt8sIyIiSrJ43ixz5jsDkbelAOAwgIFa641GnaMBXILIm0x9EHkjrAbAV4iMQrkUkTfU3tBa1xrzZiDyMO5U57+DEHmrKhdABYCtiLwN9hyAf2jLj4ggb5aJujkArgHwTUQS87cFUI7IG12/01q/r5Sa5HwGfN4sc5aXCeByALMQeeOrPSLJ+pcA+L3W+g2nXl3brW+WGcsdB2AmgBMRCeMsROQh2E5ERs9cAuAlrfXSGPO2ceY7BZEHbf0R2a/ZiIziuRmREUaf0lr/u6G2EBEREVFi8WEZERERERERERGRgwn+iYiIiIiIiIiIHHxYRkRERERERERE5ODDMiIiIiIiIiIiIgcflhERERERERERETn4sIyIiIiIiIiIiMjBh2VEREREREREREQOPiwjIiIiIiIiIiJy8GEZERERERERERGRgw/LiIiIiIiIiIiIHHxYRkRERERERERE5ODDMiIiIiIiIiIiIgcflhERERERERERETn4sIyIiIiIiIiIiMjx/wEjmud2QfdlMQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -192,7 +205,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAQ9CAYAAADnOaJIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyde5hdVXn/v+tkcnIymUwmkwkZwogDBIgYFDBysahg1VqLrTeqVtRYLbZaEWttqz+r1tberVZri3dsvd/bIl7wglUpSpCoUAOiBAgQyG2STJLJZDLr98c+M/td7znrnbX3nLl/P88zz+x91t5rrb3Wuy5nn/V+l/PegxBCCCGEEEIIIYQQMrNUZjoDhBBCCCGEEEIIIYQQvqgjhBBCCCGEEEIIIWRWwBd1hBBCCCGEEEIIIYTMAviijhBCCCGEEEIIIYSQWQBf1BFCCCGEEEIIIYQQMgvgizpCCCGEEEIIIYQQQmYBfFFH5izOOa/+NiXcc7265+qSaT/WOfcu59wPnHM7nHNHVLwDCXH8qnPu35xztzjnHnLOHVVxbCmTN0IIITllxgoy92A9k/nGQrRp59wm/dwznSdCCJkJ2mY6A4TMJZxzXQCuBvBbk4ijD8CnAPxKa3JFCCGEEEIIIYSQ+UChFXXOuYua/Loz9rfLOVedbIacc6810rh+svETUhbn3BIA38LkXtJ1A7gBfElHCCGEEEIIIYQQRStX1K0C8JsAPjfJeDZNPiuETAlvAHC2+uwYgB8D2A7gqPj8YCSOfwLwMPXZMIBbAOwAMCI+v6t0TgkhhBBCCJlinHMXAfi2+vgk7/22ac8MIYTME1rt+roJk3hR55w7B8CjWpYbQlqEc24xgN9XH28B8GzvfdILNefcagAvUB9/A8ALvfcPTTqThBBCCCGEEEIImdO0+kXd05xzvd77HSXvf2lLc0OIwnt/UclbzwWwRn32e6kv6eo8FYB0Dz8G4EV8SUcIIYQQQhY63vurkWlBE0LIgqYVu74+II4XAXhRmUjq+na/Iz7yyFwBCZkNPEad7/Teb55kHD+axEttQgghhBBCCCGEzDNa8aLuP9T5ppLx/BaAbnH+LQD3lYyLkFbTp863zVAchBBCCCGEEEIImae04kXddwHcKc7PcM6dWyIe7fb6kfJZIqTldKrzQzMUByGEEEIIIYQQQuYprXhRBwAfVeebitzsnDsemX7XGPsBfGGSeSKkldRmSRyEEEIIIYQQQgiZp7RqM4mPAvgL5C/+nu+ce633/kji/S9Gpm83xqe994edcy3KXo5zbhWAxyLbGGA1AAdgJ4D7AdzgvR9sYVrLAKwHcDqAHgDLAQwB2INMf+8H3vs9rUpvgnxcUM9HF4BBAA8B+KH3/hdTnX4qzrkagAsBnAigF8ARANsBbJ5N+ZyNOOfakNn1icjsuhOZne1EpoVXZNOLMumvBHAegFMArAAwiszGPuW9T1o56Jw7BcAGZPnvQdZWHgJwF4CbvPcjU5D1sbQXAdgI4Mx6+keRld1tyMpvdArSXAvgbOTPuxjAAWR90c8A3N6KdJ1zy5HVTW89rSqyZ9sB4Mbp6IPKUrerxwFYB6ADwD4ADyLrq1sujeCcOwPAIwAcB2AlgAFkNni79/6nrU6vSfr9AM5B1o47kPWBd3rvv1girtPrcZ2ArM73APgJsn4/qS0559YhaxdjcTwEYCsyuzlWNE+RNGbFODkTzJU6EmmdDOBRyNrHKuRziV8CuLnV/eRMzwnq6Z8HYC2yZ24HsAv5/OkB4/YZod7fn4usvHqQ9SODyPK9FcD/ee8PtyCd+dRXTiou51wFwFkATkY2xo6Vx04At3nv/69onlqNc24Fsvo6DVn+OgAcBLAXWZv6off+wMzlcOqot+PzkfWRxyGfAz2I7Ll3TnH60z6/bAXOuS5k3x3XIftOcQhZX/897/3uxDhWIOtDT6vHsR+ZvV3vvR9oUT4ryNreI5DVcSeydwp7AewG8BPv/e2tSGuCfCxG1veegWx8HEY2n/8/7/1Ppjp9Mk/x3if/AbgI2SYP8u+Seth16vPnFYj3Z+rex9U/36w+v75IfkX8SwG8DsAPke20qZ9h7G8YmTbeb5RMxwH4FQD/UM+7lZZH9jLjpwD+EMDSEun1N4nzIhF+MjIX4sNGHrYCeCEAV+aZW/GHbHL0UWQdeCyfPwbwO+o+fc2mhLSuV/dcnXhdkb9t9Ti2TSKOJFsH8KsAvojsBYYV388B/DmAjha0+X4R/mRkbT9m6/0TxL8WwD/V82flfwDAJwFsKGFfuh7eKsI6ALwN2ReMWNo7AbwZQHsLbL0XwN8B+L8EG9gN4NMAfhPAooLptAF4OYDvIOvXYmkcA3AjgMsAVKaxzU9kV49Gtqr6qJH3mwD8egvyshbAuwHcM0F93AfgXwE8rEQab1VxbRNhiwBcjmwsiPYniXE5ZCvaLfu6H8BrYjZVj+OFyPpcq028HkBbibKY1nGynqaOc9MU2/ecriOVVheAvwJwxwT1tAvAvwN4RAvKb9rmBJGyfS6Ar8KeO3lkL1VfDaA6lfaUkOcagCsAfB92n+mRvQT/BoDfB7C8YDrzqa8sFFckr48B8PF6W7PK414A/whgdYnyKGXT9ed7KoD3ALgVWT9q5XEEwA+QbQiY1Gcg68esOCf8S423ZLv4VQBfRvaCKZaHUWTfDV8FYHGJNLap+N4qwqZ1flkgz/1N8nGRCH8U7PnXMICPATjBSOORAD6D7KV3sziOAvgsgBNLPkMfsjHyvzHx9x9fr4OrAJxSMr3rVXxXi7BVAN6B7HtKLP3bAfwRJjke82/h/RW72H5R9zvq868kxnmBNmYRNukXdci+gN6X0Ij133cArC2QzokA7i6Rztjf/QAuLPhs/U3iuagetgnZr2Wp6X8JwJJpN8DsZcKBAvm8BvXJZZOwTQnpXa/uuTrxuiJ/2+pxbJtEHKatI/t1Sr8cT/l7CMCzJtnm+wEsAfDhhPT6I/EuBvDXsCdQzf6OIRtsk78YNamHt9Y/34hibfZ2lJ9UVJG9mCj6vGN/7yuQ1tPqeS2axk/Qgi/Zk7GretgbMPGXTfn3ryjxkhHZF/L/h2L9pEf25f2tKPDjBiJfGJFNNn84QXrbEuPqBvDNAs/xdagX98gmnF8vEMd3dRwTlMO0j5P1dHU8m6bYvudsHam0Xo7sB4MidTSCrE2Wmk9gmucEKu1zkf0AUNQutwH4lam0KSPPv1tvF2Xa0+2Jacy3vrJwXCreXmQvISZ6+aX/DgD4/YL1W9imkXlXWC+HJvrbCuCMhHQ2TSIND8CnxluwzI5H9qK9aH7uAPDEgmltU3G8tf75tM0vS/QZ/U3Sv6ge9sdIn3/tQn1hjYr/j2D/QCz/9qP4d9+PonjbG/sbQfbDU6E5IyLfHZH96PhggfRvAXD6dNQz/+bHX7GL7Rd1SxG+TR6B8bZdxPl+Fd+fibDSL+qQTSz+oWRDHvu7F8CZieltmGRavt6xXVrgGfubxHERgCtLpv/FaTW+7NeQMvn8PrIXRfrzTQlpXq/uuTrxuiJ/2+pxbJtEHFFbB/BEZC5SZeM+BuCPJtHm1yH7lTIlrf4mcXah2JfVpuUDoCvxGXQ9vBWZO2XRLx2+HteKgna+BpnNTuZ5m9pppE1NtELJ+tsL4OJpaPvN7KofwDtL5vudBdNfjOwX4cnUyWeQ+DICTb4wIvsyoW2zqc0lxLUC9uqq2N9/o/4lGtlLpDJxfK1AuU/7OFlPV8cx4VgxSfues3VUT8cB+NtJ1tP1SOyjVf9VJq3ScwKR9m9j4hV01t8QgOdPdd+p+rCrJllH2xLTmU99Zam4VB82mR8bPIB3TWXfBeCSSebPI3upaL5AwSx8UYdMRiGlfmN/R1DMI0yn9VZM4/yyZN/R3yTti9DYXlL+9gI4VcT9VyVt7bQC+dfvBsr8fR7FfkC4Xt1/NTJ36jI/vt9f5Hn5t7D/WqVRB59pyn0a2VJyIFt2/SJkk72mOOeWAnie+GgUwH+0KEv/BuAVTT6/HsDXAGxB9rJjFNmvY49DtvruYeLaPgD/7Zw7xxfTyDmG7Ne6HyDTILgbWUc0hGwpdD+yX7yei8yVYIzFAD7snJuMP/3Tkf0iMsaPkHVIm5H9+tGBbKLxYmS6AZJnOude6L3/eMm0k3HOPQvAu5oEbUfmSvA/yH6lWIHM3//5yH65ALK6+ocpzuJ3kJXXGBsBPFyc76pf04yH6v+vRaaHMcYTkWnGjHE3snppxm3NPnTOPQHZaoqqCtqObDL8A2SDwEFkL8TOBPBbAJ4krq0AeIdz7m7v/ecj6Vu8BZmdjfG/yJbJ/wRZuaxEplX3fGTtS+Z/KTL38rNVnMPIVnV+B9mvuQPI3HkeVs/7CwEsE9c/EcC/O+d+y3vvC+a/D8B/IdMbArKy+zSylScPICufkwE8E1kblWKZD0fmwvJ7KQnV9Tm+C+DUJsF3IFsNcgMyWz+IrOxORGZvT43cF0vrzwD8TZOgm5F92b8ZWf0cRaaTci6AFyCb2I7RBeCL9T7vl6lpt4g/QPYjwxjfQWYTtyJb1bMCWbm8FFmfIHmNc+7z3vvvJab1b8hsSnMrsv7nFmQuKT3I3HBfWP8vuRSZ3V6WmKakgsyVe6xPOYbMJq8F8AtkvzKvQdZ+n5gQ30eQuasAmR19EtmK23vrcZ9cz++z1X2XALjMOffx+j3N4tiOzGbG4niOiuOpzrkXe+//PSGfkpkcJ2eCuVRH/w/Anzb5/C5k7eMGZONcFzJdIDk+j/FEAP/pnLvYJ2gwzeScwDn3gnoaWhj5duTzpweRvchbhUzP7LnI7HOMJcjGpG3e+xvL5qUA/4Fw/jzGLmT9/beRld0AsvbUi8xV8wnIvmCmikDPp75yUnHVNSW/h8wGJbuQufHdgMwteH/9mtORzZWegXDzvtc45+713r9jgvy2gmFkL7I3I+tn76vn7ygyPdB1yOzhOch+CBijA8CnnXNn+biG2zZk7QPI5hRPUOFfQfYiY1pwzq1GZve9Kmisnr+ErA87gkzL7CnI+pGV4toqgE865/Z4768rkY1pm1+2mN9COP+6Hlnd3oasD1mN7GXeHyDr98foQvaDwa86516IbOyQcXxBxLGqHscrVRwd9Tjk95RU7kFW57ci668HkM0jasj6pDORtb8L1H3PBvBGAG8vkSaQte/PIVukBGTj8WeQ9SX3Ipun9COr52ci1OE/HsB1zrkzvff7S6ZPFgpF3urBWFFXDz9fhf1sgvguU9d/RYWXWlHXJF5fj+vRE9xXRfaLgl6R8oWENB+J7EvHSwGsTMxnG4DXonGJ8FcT7+9v8pxjy4EHAbzAuNchczHT99861W+HkQ2KO5qk/T4Ay4z7nl9/Lvmc8m9TQtrXq3uuTszz1WVssRVpi/uPQ6OLy35kL8dNDTNkk07tAr4PE2jIoHmbH/vbC+C3Cj7Dh5rE83EAx01wXw+ySZa+94qENLdF2ohH5n5bM+59Chp/GT0K4PiEdB2A/2yS513IfsSYcOk9si88HwBwVUL9jqh0fg6hOxK5r4Js4jWk7t2ckr+yfxG7GquXBwE82bi3DcB7m9z/5cS0n93k3qPIVvM0feZ6Xb4Kzd05fichzbca7egnSFy5HYlL2vN1MCQbkH0Z024ttyObOI+df32COC5tYmvmWC/unfZxsh5H4bFikvY9l+vo3Cbpe2Q/AkRXRSFbkdZMK+iNCWnO5JxgPRpdbXcAeE7Cvc9Boy7RPSjpalzAvl7X5FlHkOlhTZg2spcUf45MSN+6br71lZOJa2n9HhnHEWRf9s3VgsheFmhNyqMAHpOQbhmbfjoyr4VLrfaj7mlH1sZ1OzLnHuL+i5rktb+kfW/ScSXe12y+dbtVzsjm1c3uux9AT0Ka29R90zK/nMwf7O+OewA8zbi3t4kte4R94W4Av2bEcTwatek9gPMT838tMq3nCd2zxT0XNEnzKBJ1NNH4/U3W8/cAPNy497HIfgjQz5vUtvi3sP+KXTzBi7r6NbohRBseGt3fnqfCC7+oQ/aFXk+6voICeinIJhn6Oc+Z4J7SmzEAeFaT9FL0IZp1th7Zl+7zEtP+RJP7z51So8s2DyjVYSFbZRTTT9iUcL/ubK9OTPfqorbYqrTF/Z9S9+8GcFaB+/vRqFvy7gnuadbmPbLJxdkF8/+0JvG8ucD9DtkvVvL+B2FMhOr3bYs8w2sS0728yb1/knDfC5rcdzdKLHmHIUCL7AcGLe59Mwq4nSH7xVH/QPHsovkskF7MrnYhQey3bgvfU/eOYIIJLrKXPvc2SXfCL5D1+38bjV9kHsTEX9TeGnne2wB0Fyy7WFzfRIJ2I4C/b3Lv2JfqryNBUBvZr/6Fxw3MwDhZv7fwWDFJ+57LdfS/Te6b8GVb/d7Ho9F99AiANRPcN5NzghvVPXehgFYUsi9h2v0pSVqipG2diMaXYEcA/GaJuKxxZT73lWXi0q7gQwCeWuD+lWjckOW/Eu4rY9OT6WevVOkdSikrzPCLOgC/1iT9u5CgNV639S81uf9dCfdui9jYaxKftdT8cjJ/iH93PAjgUQn3n4nGH4LG+qRBJGz6huxHaD3n/NfE/Jeyb2Qr+vQLs79LvPf6SJndhLQfR/qRraiU946iwI8F/FuYf8UuTntR96cqvKkIOrIlvnIQ3wM1gKPci7q/UPdsB9BZuGAaxZo/MaUVkS2Vlun9RcI9sc72jwuke9pk7i/xnDU06qv9Qtf9BHE0+wKSOoHRne3ViWleXdQWW5V2/d51aBzUJvzFv0k8etOXgzBe6ETavAfw2hJpf0fF8d8l4liO7GWOjOfyCe7Z1iT/1xRIs1LvR5LvR/YiSf/6fhSJL9ALlslLVTqDMH7dM+LReqE3tDqvCXb13AJxPLXo/ci+POp7Plow7x8s2veg+RfGYwA2lii7ZnHtR+LmR8h+zW6mY7gfib/kR+J4/VTZi0i38DhZv6/wWDHJfM7JOkK2mk6neX3BZ39Tkzjealw/Y3MCABc3aZOPLVHfb1TxbMcUrUgG8C9NnvN1U5DOfO0rC8eFzM1NrxYtXObIXLRlHKOYQFh+Bvouh0YdzJcm3HdRk7z2l8zDJh1Xwj3XNkn/SQXSXInGH7L3Y4Lvj5iB+WUL6ri/SZ49gFcXiOMrkTheNYk4bpvK566nqVcJ35143/VNnvUoiq3qu7RJHEkvJ/m3cP+kZkKr+HdkA+EYz6vrUmlegtA3/5Pe+yOTSdg5VwXwh+rjt/tyPuD/pM6f5pxL1fQow5fUufanT2U3MrewJLz3dyBbxiw5p2TaKTwLoR4EALytYN2/DdOoezFLeA1CjZMf+nL6cp9C9qvOGO3IJlhF2ItMtyYZ59yYNo6kmQaSiff+ALLJv+Tpza6dgLcVSHMUmWuEZKI2cjGyXx0l7/fe/yA13QL8kTp/r/f+7hLx6D7vfOecbqtTyf8h17tJ4ZvIVk9LJqqXl6nzY8gkAIrwBmS/HkteXjAOIBP4j2lUFuUj3vv7Uy703j+ATKNV8+F6WNk4tO7kVPAldV52nJwJ5kId6fYBAK9PSU/w98hWTkms9jGTcwLdd37Oe39TiXj+BdmXtjFOQK4l2DKcc8uQ7fIquRWNfXcrmK99ZZm4Xg6gU5zfD+Cfiybsvb8BmSbnGA7ArxeNZyrx3ns0zndmdT/rnDsBmceG5Frv/bdS4/De70WjXtlyZC+sizLV88upYCeyH2tTubbJZw+hcX5eJI7TnXPtTa9sHV9GthpwjBOdc2tjF0/Ax7z3+vtzFO/9Z5Hpxksuq7+7IKQpLX9RV58cfl18tALZRGyc+guvl6hbr25B8o9FKIY6iuzFRBm+g1AIfyUav3i3knvV+WNKxnON9/5wwXt+rM4f1vSq1qBf1hxCsS/nqL94/WLLcjQ30JOQT5SJpD4puF59rOtkIj7nvR8qeI/O/5YiA5xCT74eX/Al+t3e+x8WTFO3keOdc9ZmPE9p8tm7C6Y5IfUJ6gb1cVnb2IrwJa5D5so2XXy2/iUhCe/9MWRfUiXRvss5twjZigbJV1Nfnoh0dyITa5c81jm3pEg8yHZSbBVFX9o326xmsnGcWPD+MrRqnJwJ5kId6bHgtqIvrrz3w2i07ROccyclpjktcwLn3GI0ipeX7Tv3o3FjqKLjagoXIhcvH+M9RfrNFOZ5X1kmLj1/+Yz3fqTplROj5y9TYSeTZa71sxeicXOUj5SI52NofLFcdA40HfPLqeCagj+ONBufJhvHIoQbR7Wcev4eUh+Xte+iG2g1u2c5gLNKpk8WAFOxog5o7CA3qfMnItv1ZozCk8EIT1Tnv6z/SlKY+suu3erjR6Te75zrcc79nnPufc65G5xz9zjn9jrnRpxzXv8hfLkJAN31yVJRyuw2pn/9XlEijlTOV+c/8N4Plojnm63IzFyg/mvPOvXxZH5d3q7Ok+26TplVYbpttjL/3Qh3152IVrQRIPyFXXOROv+5n5odKnW5DqHx5VURJmsbk2Gq+64zke0uJimzqxuQ7RwuqaL4ZK9VqytHkemkFEHv4jeK4m1Sx2G1h6bM4Dg53cz6Oqqvnj1dfdyq9gHEV+XM1Jzgsch3ZhxjJsfVFC5q8tk1U5DOfO0rC8dVf6GrX1rOdjsJcM49zDn3aufcR5xzm51z9zrn9jnnjkX6Wb2yavVU53GSNOtbvlE0Eu/9bjTWbdHVhNMxv5wKiraxZjsBtyKOQs/tnGtzzj3NOfe3zrkvO+d+7px7yDl3uJlt1+1bvwwsY9/DyHSSi9JsnDqvRDxkgTBVb+z/C5nmyNjqtl91zj3Mez/2K81L1fVlfvlohl4uvK7eKFvFqokucM6tQ+b68QxMvny70PiycCKS3GIU2n1MT9BayXp1vqVkPLdMMh9ziWbL4L/XQk/sCe1asbVEGvoZXu6cK+MCE2MVmk92mtGKNgJk7WRP5Poz1HmZyVsKulxrAEZm0DYmw1T3Xac2+Uy7IaTS7L7TANyQeP9R7/0vSqat2VdiFbV+EdKKOJLHjVkwTk43c6GO1qFxVUqr20czZmpO0Gxc3T7L+049rtxbdJVbIvO1rywT1+lofKH7Medcq1b5TdkY65w7B1k/+yQ0tu0iTKcERhm0vf7Sez9QMq4fIXwxu845V6l7o6QwHfPLqaBovpv9mLKjBXEkzSPqq3L/GJks0GRfJJex79u890cnvqyBrcg2/5GrivUYSMg4U7Kirr609JMqnRcDgHNuObJtnMcYQeuWtfe0KJ4YZmN2zr0U2WqWZ6E1L0HLvDAro8enB6ApsYt6x1pTH5cZ1IBMI2ShMKN23YSBIhc75yol0ihKkfhb0UaASDupuyzoXwXvKZFmCrPNNibDVPddzZ5Fr25Ipdl9RcpqX8l0m9Fskj8R+gesVsSRNG7MknFyupkLddSy9lFfmaLlERrin+E5wVzsO/VLnakaV+ZrX1kmrrloJ3DOvQnZKt5fxeRe0gGzv4/VZVjWVpvd61DMy2hK55dTSNHxpdkimFbEMeFzO+f6kW3W9ldozWrPMvZdapyqu8xr19vZ/iKczCBT6QP/EQCvEucvQSbU+dsAlonPv+K9T10JMxFTvfpjcSzAOXcZgA8hPiDuAnAfsqW+R9A4iV2NRq2KMoNrS7VKWkyzzqjMoAa0dvI225kxu45wsOD1KzH1k44izzDVbaRZfQ1MY1qtpKhtTIaprpep7n+6m3wWo2gbsmhFuU3LuDGLxsnpZi7UUSvbB5C1EfkSrln7mMk5wVzsO3WeB6YgDWD+9pVl4ppqO2n59zDn3BsB/GUk2CN7UXAvMvsZQtbXSh4OYGOr8zWFaHudbL+l6Ua2iVoKs/k7mMVcGKPgnOtFpiEf01s9jOxl6/314yGEG1wC2QYucpVsmTnEZG1M6inzRR2JMmUv6rz3Nzvnfop8A4ZTnXO/gka9uqtbmKzeOeVeAEVFPS2ait8751YjE4rXjf17AP4VwPUT7dTmnLsYjSKzC4G5OqhNJ812BPoCWld2+tedVtMs/z8CcFcL02imdTGbmCo712W7G42bhUyGVmiHzhaaTcbK1kuz+9iXGXCcnPW0sn00IzWu6WpHuu8cQrYjYKtoJrbeaqaqrNhX5jSbv3wNzd32Zhzn3CMAvLVJ0DXIfiT5bn3FqxXHSwF8uPW5mzK0vbbavuaSvc53/hGNL+l2AHgvMhv/yURuys65u5vEUZTJ2MRc+HGRzBKmeleZqwG8Q5z/JbLdecbYhdYK4Wp//tu9989tYfwxXonGN+J/4b1/a4E4pnIDh9lCs1+kyj73QiivMZrpVFzhvb9v2nNSjmb5/4L3/u3TnpPpodnzTtUvZjqtvdPU581FmtXLisjnE9HV5LNSGxctIDhOzm5i7aMs+t5m7WMm5wT6eSsAfruAFtVMoF+wTNe4AizcvrLZM/+l9/77056TNP4Ejas5f9d7X0QLfK71s7qOWtlvAXPLXuctdZfXF6qPNwP4de/9rgJRtcK+JxOHlsahfZEoU+2O9jFkGnRjXKzCP+6911thTwbdUE9uelXr+U11fkPBLx/A1OtgzDh17ULtynR8yeimdAvvWUazAWi6bHvS1Otd//o8Z/JflLrArF4WP9lf72Jo23j4HNkFcyZoNhk6oWRcze7jZMuG4+TspmXtwzm3Co3acw3xz/CcQPedVZTvD6YL/aJuqsYV9pU5c2b+VdcD/g318ScLvqQD5l4/q+1pMu1Y3+uxsKR2ZjPPUOcewGVFXtLVd3FuxY66pcapuob1cerjudQfkmlmSl/Uee8fAnCtccnVLU7ydnV+snPuYU2vbBEu2yLsUerjT5SIquh29XMVvWPoWSXjOXuS+ZhLaLsGgCdOey4mh36GuZb/omi3p/OnKB1drosBXDBFac11ft7ks2Y7P6bQrL++o2Rc8x6Ok3OCO9HozlO2fTS7L9Y+ZmpOMBfHVT2uPMw5NxU/WrKvzLkTjRpXs9VO+tAorv/xEvHMtX5W2+vJzrmyK570s985y1fZLiR0H3+z975ZP25xDlrjevrI+ku/oqxHuOMr0DgGEjLOdOwqE/slZ4v3fkuL0/pGk8/0r/itZhUaXYh/WSKeJ7UgL3OBH6jzc51zy5peabNQygve+1vRuO35b81EXiaBbpunOOceOSM5mR6uV+enOudOn4J0mvV5c802poufonFXsieXjOsp6vwIgJtLxrUQ4Dg5y/He70XjFwZt56k0u++GyLUzNSf4DkKPD2D2953XN/nskilIh31lHe/9PmTudZLfqK+MmW3olTpAwX7WObcUwONKpN3sZdZ0aXHpvsUh2+22EM65lWh8URfrt8j0o+27zByisF1EqAL4lRL3NRun9BhIyDjT8aLuy2gu9H71FKT1P8h2eZG8ruRb71SauZkVGsCdc08BcFprsjPr+Y46Xwbg2UUicM4tL3rPPODr6nyjc67sxHkm+FqTz94w7bmYPnR9AcAVrU7Ee78VwN3q48udc0V21VsQeO+PoXHS/ev1XcSScc71oPEHoB/W3fhIczhOzg3+R51vcM4VWl1Tn2+9SH18r/d+W+SWGZkTeO8PoLE/eNYU/aDSKr4P4JD67NX1Fastg31lA3r+0ovGjfFmA5PuZwFchnKugdouAWBpiXjK8D00rgZ+aYl4LkPjaifdJ5KZQ9t30TnEIgCvaF12Gsa5FF6szg8A2DL5rJD5ypS/qKvrNT0N2XbI8q/lOwp57w8BeJ/6+CQAf97qtAS7MAl3EedcFdkuNguFL6LRH//Nzjk9OFr8OcKttRcC70Sjnf1z/QvKrMd7/20At6iPXzDHXjYm472/HsCP1ceXO+fOm4Lk3qnOOwG8awrSmQ98UJ23AfjrgnG8HY2TeR0vCeE4OTdoZsd/XzCOP0b2ImOieMeYyTnBP6nzRQD+bZauloL3/iAay3IDgNdOQXLsK3P+DY2LAP5yityOJ0OzRRFF+tluNN8xNoVmOm7TUj7e+/vRKLN0iXPuCalx1F1l/5/6eD+Az04ye6R1aPsu6o7/erRW1/NFzrn1qRc7556DxhWbH2uxVj+ZZ0zHijp473/kvf+q+tPL6lvF36Lxl503OedeVjZC59wG51xTTYr6L48/UR9fnvICpS78+m9o1O6Zt3jvh9C4mnIdwt2BozjnfhXAla3N1eyn7ib+RfXxGQA+XdJNCM65TudcmV+EyvIWdV4B8Bnn3MayETrnnuacm5XCzgD+Rp23IXvewquCJvji+D4A96vPXuSc+4ui6Yj0+p1zWpR6PvBFAPeozzY553475eb6ROvl6uMHAXyqBXmbt3CcnBt47zejcSXVk5xzr0+53zn3K2j8YfQIgKuMNGdsTuC9/080umFeDOB9ZV/WOeeOc85dWubeRP4RwFH12d845wrLvEzwjOwr63jvdyDrgyS9AP7LOdfM3XRCnHNLJvO9JMI2NO6A+poUW3bO1ZDp2ZV9ubYNgH7hcGHJuMrwz00++0jKKtD6SqsPA1ijgj40hd9VSXF+pM77nXNJK6nrK/JLz4kjLAbw0ZTvYM65hwN4t/rYwxgbCQGm6UXddOK9fxDAq9XHDsAHnXMfTP0FzDnX7px7rnPuGmRfMB5vXP5f6nwtgC9Z7mf1weNzAH63/pHWSpnP/BWyCZvkVc65f3XORX8Vr09+v4Ssc9SrMxYCVwB4QH326wB+6JzTOypHcc5tdM79I7JJuH55NmV47/8bwL+rj1cC+J5z7o+tupc459Y45/7AOfdjAF/BLN0B2Hv/aWT2KjkRwA3OucvqLyBMnHOPdM5dBeBfjHSGkLnhaMHrNzvn/tM5d2pKfp1zi51zv+6c+wQyceZnpdw3l6i/MHqN+tgB+Jhz7lUxFzKX8fvINkDQ9XYlfxFNguPk3OA1aHwR9PfOubfVVzY2pf5i5stodHd7a31jMYuZnBP8Lhp3Jf9dANc755JWbDjnKs65Jzjn3odMiqCV7lUB3vt7AfyJ+rgK4AvOub9wznVMFIdzrtc590ZkrrSxdNhXhrwVjZt5PAbAj5xzz0p1P3bOneGceyuyF1vaA2hS1Dc9+LL6+GwA/+4y7blYntYhk+t4Wv2jwv1s3XtKe01cUX95P+V4769D43zrZADfcs6dFbvPZe7Zn0Wj6/z9yFaEktnDNWjUQvxwbCENkL2Edc69sn7v2PjVinnE2HhzLoCvOOeiK/VcJh/xDTR+V/mA917/gElIwKxc3j9ZvPcfdplQ/R+poJchW2lyLTJR3q3Ifn0aBdCFbEvyRyFbTvsEpLtSvBvZL7pydcCTANzunPsIMg2WBwDUADwMwK8BeK643iNzKXhzYnpzGu/9HufcHwD4ggr6AwDPcM79B4DvAngIWRmdAeAFCH+d+1cAr5qG7M4avPf3OeeeicyeaiLoDGSTkVsAfBXATciWiA8iK78uAKcis+sLATxc3Ju8rXmLuBzZagkpVrwEwD8A+DPn3H8hq/u7kblDVZHlfy2y3QAfC+A8zJ0fGTYhqw/5smwVgP8A8Of1570Bma0fArAC2cu8c5CJcJ9Rv+ejViLe++ucc69F4y92v4nMBeQ6AN9CJhK+B9kv310AupG5Tp2NbCe7ruKPOLfw3n/JOfd+ZLY4xmJkL0Mvd859HNkXjt3IyucsAC9E890o/917P+dWiMwQHCfnAN77zc65t6DRzfHPAfxOvX3ciOzF2gpkfdTz0PzHzOuR4Do7k3MC7/1PnHOX1dOW48qvALjZOfc9ANch6xN2IXOBXIHsR6ZHIOs7n4DG1ThThvf+Xc65CwDI1W2LkLWNV9bHlW8BuA/AAICOev7ORlZPFyJ7Vq1vqtNhX1nHe3/AOfcMAD9E9l1hjBOQ2c4dzrkvA/hfZG1jPzK9xS5kEjznINuRXbrK6R/XWsHfIKsDacsvAHChc+5D9fztRGYTJwF4OrIf5cZeYhxG1lf/aYm0P4ZsfjbG2A+x25Dt9DsI9ULde//cEunEeDmyFyfyhcgjANzknPtPAP8J4C5kq3zXIptjvQCZ7UpGAbzYe7+7hXkjk8R7f6dz7tPI6myMFci+//wnshe1dyD7oek4ZLb4PIRt7mpkq6bl96Ay/CdyW3s8gNvqebsWwHZk71dOAvBMZO1L6+vdg8wVlxCTefmirs4fI5tU/RXCAauKrOE8s1UJee93Oed+D41L+nuQNcSJGuOVyFbtLZgvIN77LzrnrkSjllYfsk0GrI0GbkRWvwvqRR0AeO9/6DLdjc8j+zIrORuN25fPKrz3R5xzv4bMzUC7B61CJgBcRgR4VuK931evry8hnMACmTD+H7cwrfc45w4gc9GRL3IryF56/Fqr0poH/CGylT/a9ftRSHex/DSA32tlpuYzHCfnDt77v3GZW7Ieh09BevlfD+CZ9VU+KWnO2JzAe/+fzrlLkLn+rVTBF2J6XfhSuQzZyyDtXtqDbEXg7zbcUQ72lXW893fVX5B+AcCZKvi0+t9U6AUm473/WX215N+qoIdhYv25Y8he8q0omfyHAfw+gEeqz/vrf1OK9363c+5JyH6wlum1AXhO/W8ijgB4kff+m63PIWkBVyL7oV++aKsgexk2kRfIDQBeCeBnLcjHPmTfYb6JbL7dgWwxUIo7+w4AT/Xe729BPsg8Z66sSimMz/gbZL+Y/HSS0f0fJtg+ue7m9nJknXwqhwD8rvder4JZEHjv/xnZL7Xa7cTi6wCeVnf3W5B4729C9uvsxzG5X2T3oXEFw5TjvR/03v82si8AE7lEmVEB+DYadXRmFXV9m4uQ/Upd1u0nqY14769GNomJujQlsg3Ziox5Sd1N5yXIxKOb7VZncRiZ1skL5rAb14zAcXLu4L1/I7K60ppXE3EM2eq2p3nvmwnMW2nO2JzAe/8VZK6MWpS+KA+i0f2w5Xjvj3rvfw/ZqsNmmwikMGE5s68M8d7fCeB8AO9BsX5McxhTpNfnvf87ZLImSS/J6+wB8AzvvdZCLpLuIWQr9L5XNo7J4r2/Hdkc6Kslbv85shco3EBillKXUXgqir9s+xyyutWbwkwmLzcgcxcv4pn0YwAX1+2UkAmZty/qxvDefwvAowH8FjIf9ZSJ4zFkv9D+JYCN3vtH1vUPJkrrQwA2ItM7sF6gHADwAQCP9N5/JCE/8xbv/QeQ/fr277AnjbchcyMsPPmfj3jvd3nvLwNwOoD3AvhF4q13A/gQsl+Cer33Wutm2vDevxfZr56vRvZiKWUifxCZLt0fAej33j/Jez+rX9QBmY6c9/41yFxg34PsRdhE7EDWLp6CRt1NK61bvPcXIns5+BmkfYnzyLaI/8f6fSd77z+RmuZcpP5jzl8jc8V+DzJ3BYv7ka1WPM17/1bv/ULUyZw0HCfnDvW6OgWZVtPPJ7h8NzKX/g3e+1d570u9xJjJOYH3/i7v/W8gW5l+NSbuE8a4HZk76NMB9Hnv9U7cU4b3/ipkWlxvQOaGOlG/dBDZi8SXIGuHKWmwrxR47w95769A5tr2t8hsMeUZdyDT7nsJsvnXZVOYx7chc8n++gR524Vs45b19ZfVk033nnq6T0D24+T/ILOHBrfXqcJ7/4D3/tcBPBnZi3fr5YwHsBnZatwzvPf/Mw1ZJJPAe38HMhmcN8Oe33pkkgm/6b2/1Ge7Zrc6L99BJsXwbmQrnGP8HMDrkL1T2NrqfJD5i5tn4+eEuGx3n7ORDbCrkGkTjCD7UrAT2YTrjrKTTJFOJzJ3iX5krhQjyFYPbQWwuf4rJRHUxW4fj0yj6zhkL27uQ1ZeE31JWPA45/qQ2XYPMttegsyu9wH4JYCfee+nW5Mumbpo+Jjmwypk7heHkT3Dfcjazl2prlSznfomDxsArEb2vKPInvVeZL8W/qIVX3DqItePROaWs6r+h3pau5Fpetw+FZOYuYZzbgMyTZvVyLSF9qE+LnjvfzyDWZuXcJycWzjnTkH2w+dYnzWIrH38All9tbRvng1zgno//UjkfeciZH3nAIA7kY2rs+bHQ+fcamTj6HHI5gKLkeX3QWTtamsrVrexrwypl/tG5G1jGbL2sR/ZD3M/897rzcCmK289yPrZPmR1dQTZS8PbAGyZL3OqGC7b0fYCZM+/GpkE0k5kbeKHfuLNbsgspb4p29nIxqUeZG7O+5F95/lhq77zOOeuR6bjPMZHvfeb1DVVZH3v2HhxBJnu7m0LsU8krWHBvagjhBBCCCGEEEIIsUh5UUfIVDCfN5MghBBCCCGEEEIImfWsc84XFQSdjTwAfM17/7SZzsdchi/qCCGEEEIIIYQQQmaQQwBeMdOZaAFvzdyRySSY95tJEEIIIYQQQgghhBAyF+CLOkIIIYQQQgghhBBCZgF0fSWEEEIIIYQQQgiZQRy4kopk0A4IIYQQQgghhBBCCJkF8EUdIYQQQgghhBBCCCGzgAXp+uqc8495zGMK33fzzTejzH3Tyd133YWHH398djI6Ggbqc0lHR348OBiGOZcfL1qUH3sfXtcmzKmi3gHLOORxs/NY/MeO5cf6WeS1+r5UZJ51HLEyUGHe5XE4hHF4uGhYtAw0R4/G82g9d6x8rLpYsiQIkkWuqzdg375oHKb9yDCdr5jtyvIAgMWLxw/37A+7N5nnrq7m0QEAhofz42rVuFBhlavAaoaWCUrzN0zQRkZiYUQobbxkFOlYNq6fRYbpQm6LDHVF+imLWKVadqzvGRnJj63+LDVfVl1LA1Jl4xfnNn/wYDyLtVo8Snnd0lp6Hfq2vP264SPhfbItynav82/0wQG6/GW5Wh3cwEB+rBui6H+CQtD5lGlb/bauaxm/tmlZlvK+Av3sEVHk2nxkcrt358dLl4bXWeNErAh0tuR9uggsG5SPurhi2L/VvqxxKDb+HjkSv06PUXJM1IUnbVwWUKz/apa2vNbqA6zKEGG6eHSfIJHZl9HrplBdJPKly8eaI0jks1njhGqjfokymgTc0OF4oDbCVHS9Say6sRqHeNZgOmL1g3K+o9HztxjGs/hqPI6GPj4IjPfHflHcPmNdq24K8rrUryRAaMvWcC67ankMqGmlbhyxxDTSRlSGR11uB/q5Y/1sIQ6L9qAfTmLYqvw+pE1QnusiGHue3bu34cCBXa2YZRIyq1mQL+oAYPPmzYXvcc6Vum86ecVll+F9b35zdqJfuOlzyYUX5sff+14YJici8oWe7kF7eppfB4SDipp0jrblo1YFYrTT8csvSENDYZi8Vt9nDXYS69lknvVbHhE23NY+flxFOPoMoxoNMyfikh074nm0nlOWl/VNR+ajvz8IOjSUD7rttXBWMioW51a+8uU84NRTw/itMpblqstD1/cY27eH531944ef+Gp3NOnfvMR4WybjFPFpRtWC5MpIXqfSpjWxRwHC6tDFI5uv1byCPEE9p9UHpESI0MZLRpGMLFMAYaHI/kCH6UKO2ZZh/1YdNpRrrFItO9Z1sWtXfmz1Z6kFq8tHIstD9tsAhntPHD++8cZ4lOvXh2ErVuTHDz6YHz9qfXodDvesHT+ubv9leJ9si7If1Pk3+uAAXWeWXUiuuSY/1g2xtzc/1uUv8ynrPvXLmI5fPXeQnsy/0Ra0jW/b1jw6ndzHPpYfb9gQXmf1U9LsdLak/cj3V7oqZNXrtGWcazv2I0psPNSZ1OUfG3/vvDN+nTwGwnH1rLPCMGnjsiB1XUtkpelrrT4gZo8qbHgkHOfkFFgXnXw0Gb3s2gDgxC5RN7p8rDmCRD6bNRdS87Xh/tPicUaobv1JPFB3hKlom5HIwtMNRTYI1ThGOzrHj2URmP2gnkPJ+PpPjoYFY6C2QcFwXzyOhj5eItue6kiGO/K5na56WVzyHbD8cUFfp5u5NQ+TtmwN5yeckB+PrZ0YQzbzysCeMNCa40ikjagHONSW24GOQjaH1HfMDfOdW2/Nj+WYpPMiE1B5lN+HtAlKc9q5Mwwb+6HgbW/baOS49XjvL5rWBEGXR5JBOyCEEEIIIYQQQgghZBawYFfUzVva2uJ+fdavyBaxlSrWr5jWagX1y0pF/qpjrSSJrTjRWCtOjHyY9yWmF/6KGd7TVhOrFwoUf0uIlau1WkeFjYzk+de/ssvq7pS+MfpnRuunSnmeumrI+ElQByV7qIgL9ao5SYM7jzjWv0DG4tF5kivI2tRqF8t0oytRrZ+bNakriqYRveIn+Zel1Oc27L9irTa1VvRKdBzyPh1Hmf45ta8rEIdssrr5So+X5IUeOhJ5o/q5v2otuUrsw9qC8QRxyi75NFa0WCsIkvtgqx+0bESEjfYcl38uVtkA4QoF7bEmVzLoapOrU6yVJLIKV60Kw+TKEr3SQy6asRa1WdOMe+8V8T0ifG5JZ0981ZZc6aHj74yNX/phrHZujLGHkK8GbR8ZiF4XoOd7MQ8IFTZay9OqqELeP5j3tFZXanWRJtaqfp3nWAJWf5waXyqGF0Uh5H1yJZKVR6v/VMi2LV0ea7X4XKJTr9ZMXXUv0fkXeTSLyjIgUeaHRsL87xArsJYtC6OQfVrZrwIW0nT1SlGJXsEnkR7Fq1eHnh+BF4GVMWOstJyPDhxoHn21zfAy0cQ6axWp/J6g8yHzaK2o0+a4Zk32X6tOEDJf4Yo6QgghhBBCCCGEEEJmAVxRRwghhBBCCCGEEDKDOHAlFcmgHRBCCCGEEEIIIYQQMgvgirr5xqJFue6Dpf1RRIciJkij47d2srO0FmK6L5ZGnbVNkxW/pd9i7TYm9X864to3Q7JYa+HumG1Sv67sTo4y/9aOUJauSRktOJjSOkHVdMp8WUJE1ramlj6VVdcik0UkCGMXWvJCJurZKuK8PdDWiduZ/hWlo6tbhBm7uVr1m7rjr96ZWeYmUT6trIlLGuV4cq2adq2Nkmo/qVqalm6QFb/VUGR7KKA9lIylnxYTl9LPKbKsNz02NlMMdHfkox2qhRo87R1Cg0fv2Cp3xla7TgflKjNWVq+07LVSW8pqQ1aYlWdrDLQEBIVt7VyS79wrJUOBUMdKhxkbQAb6hDJbWuJK7t66enUYZm0ML88DvSTVLvr68nFV5gkIdaH0ZqIyz6tW5f3Z0qWh/pU1xYn2kboQrHZobLsYnFp6h4LRLkPjSu94KjSjpM7XkiVhGezblx+nbiZvhTVc1ysqW5WB1OnTjy3rprvXmAtZWpdlSN1mvQBy59IGzVlZh9p+DAGy1f3Nd33V8QfFVVOBZTT9rLHYwtBQlLp0lgSkHqPks8p5Uk9PXFfZmqvoPiaG7m8sSW2po6f74N7eyBwndU6vsLqmcDfgAjYdqScAGIjsiqvrUJaP1vqzdg4fG1Na0AQJmRNwRR0hhBBCCCGEEEIIIbMAvqhrIYsWLcJZZ501/rdNbl1TZ9OmTTjppJPGr3nc4x4HALj66qtRqVTwk5/8ZPzaDRs2jMfR39+PM888E2eeeSbOOOMMvOlNb8IRvWUbIYQQQgghhBBC5iSVefBHJg8Xj7aQpUuXYsuWLRNe9w//8A947nOf2/B5X18f3v72t+PTn/500/u+/e1vo6enB4ODg7j88stx+eWX46Mf/WhwjV/UNu6aWdHLoeW5tTTdcpc7ejQ/tpbIt8Idycq/Fb+VL8udJDFfDW6HQRQVcZwUXTGs5069ztqXPuaGDKCtLV/ibnhdha5hui7KuqTE8qzjF3GuWRO6KC9dmpiWUXZWlqsdRoWXcXubCizXPMGoGmJbka1Uk7SaudmmLLtO7Tti90yUuJV2mTisfEgjtFyyGlxaI8+t7KBNRL9mTfNbAGDlynjSsq01mNlgPP/VoG+N1+GokBXQ45zVPwd23Ra67Fj3BWhfokgeS9tg2b5C3Cd/I3zwwfAy6aK1d28YJl1HZTeuz2W16eKQ5zqO6tD+8eN2be4Daa5cnT35jTt2hHUon+3AgfC+Y8ea52vZsmhSDa673X3iwa02L8e5RYviYeo+Oa4Go5dRHttVGUjXub07w2ulS6ssK8MDsaH9yrLTjy3rXobJaSMAU4LhgMizrDNAe33mbbmnJ3T/3XZnfrxiRShBovutFKSbKhBmvz1wH0TyxE+7+0m6uoT7o3ZNNYipOmjzkS7uR9eE5bN8eX5siIwE3L9L22B35MqQ4Vo4R5P90X335cfabTJ0Yw/D1qxu7jZfVZO3avBdIJ7HztVhKaxcmdudTFsrNWzdmh/ruk5VwJDfJ3p6wrLq7hDPqSp417b8WHc/nTVhr4kyOA3zwZ6148fbt4XXyn7FUiORZaLDZD+iXZvHzquhyREyb+ELz1nEJZdcgttuuw233367eV1HRweuuuoqfOlLX8KePXumKXeEEEIIIYQQQgghZCrhi7oWcvjw4XGX1mc961nR617/+tePX/fCF75w/PNKpYI/+ZM/wV//9V9PmFZnZydOOukk/PznP29J3gkhhBBCCCGEEDJzzLTbKl1fZwd0fW0hk3V9BYDf+Z3fwdvf/nbcddddE8bjvS+aRUIIIYQQQgghhBAyS+GLuinmpS99KW655RasXbsW11577YTXt7W14XWvex3+7u/+zrzuwIED2LZtG0477bTgc+9z2YGqFheRQiSpOm5AsrZRMpb2XOp1lr6cFSbzrMpgeES+/w8FEKqJeny1Wlw4IchWWc2vsjpZsft0HRpxWJozwXlMKGWitK1rYzZiaOw97GHx6ExEnJaEXwOpelKWPqQRVrH0FWXZyePUtjxHCLLfYTxbWX2w1D4m1a4tfTmN7GOsPFr1K/WvNDJOQyerU2jfdA5sD8ICYZnd8fGlUwjLPLgz/F119epca+fOO4OgQI9ml9I96uvLz6UG28n9cTsYRrw/1kVcq+X5tPTq9tRyfR5d3JWhQ9H7ggSt8USi7cXSrxPnsnyk1hMQ6iNpE5fZOuGEMGzx4vx4/fr8WGszyTKpDO4PA62+L9b2jL6uTekMSr05vddWLGmt4WQhbXBwIP+8WwspxdoaEBayerbDh/PjzqVpupd6zzKZtNb2kmVg6UdJjagCU4RAg1A+5+LFam2FyOT+wTBM6iRqE5fdj6XzJfuVdevCsFSNOvlsUndL025IVlpYGoGSA4vC8lkjK0cVUFXo5bV1VGOXBelJTTqgnLayzr/sP7W+mQwbGQnDDh7Mj62uQqbXoD0cE+crooks0WUsCmj16lzfT5ej1AHU7dDSZ4vJN2o90Uc8Ii+7kZGwH5Rl96j1SkNRdhgyAd2HGUj9ve3GFMEqcmsaI01cjy9jGpnUqCMLBb6om2I+8pGPFL5n06ZN+Pu//3sc0GrIdQYHB/HKV74Sz3zmM7GyjDIuIYQQQgghhBBCCJl10IV4BpAadWeddRaGh8NfPKrVKq644go89NBDwecXX3wxNmzYgHPPPRcnnngi3ve+901ntgkhhBBCCCGEEDIFOMy8vhw16mYHXFHXQgattdp1rr766qafb9q0CZs2bRo/v+KKK3DFFVeMn2/T/g0RRkfzJcVV7Rom1xpba+3LuE8BtluOReq1luuflefIfXpJvqy+BhdH4WIzopZzB+6uxkr7oMjLuiBavpeGW2+07FS5SVcxbc7yNu1WJN1VgrXqPcovxHDbCNbMp/pfGC6O2qVJum6ZiDisbDS4x6W6VJZ10ZQGpe+L9T06jkT3aG27qV1HWWJFZ3WpbW1h+2237D9W5qkupvq+xswUv86SJrDik4VSyDc7kg/LznQFpPojCXRfkeqNlOoJ3+BaFTxbPI6ymB5UVv3KspP9rlVnVids2I90d9VuVzL/q1aFYXKB/urVYZhMTmaru0v1gzH/Sp24JtX1VVzX29sZBJ15Zn6s3RVlOchsSHc7nY1gXEP80brH/LGaRWL5n6o2s7JLxpE2Blquc5olS5ofHzsWXieLXLoTA2F7bmjy8tlERrq6usPrdkm/t7AOZdqJiiMNyPt01aQi49fTmOQbjbFA5kvHb0YxaMwRxBwqEHJR153cKxI0+phRXW8ROtuUy/8uEWfPcdH7dBcmbU16YlpDZWPakXmk1VCsMVsbobhWzgH1fER28WW/DqWqpMhHbrjP6n+M55bjqs6/7Fu162ti9EGdWl8T9Fe7MfduB2q0k4UBX3gSQgghhBBCCCGEEDIL4Is6QgghhBBCCCGEEEJmAXR9JYQQQgghhBBCCJlhuJKKAHxRN+84dgw4fDg7rtXCZl61dNwk+rqYqJDWbrA0tMposhkaWmaYIWgxWsu3Uy+ijySj1NFXRvLNQOTW7W0d8W3pkzXYNJb+j8yYLu+YHod60GpHHtbdpdKW13a1B0Fa6ygWf0CR+pVYmk4ivTVL94dhQZl0pecrEoXWJKlYul+pumipNq7DYmI+RlmNtoX721vyeLFsWJSNQ96ndQa1lpJEPk9FP3esf0htJ/o8VWvLir8sqdo6VhlYQjhSdGbLljBM6t1o8aeICFhX72nBZdU2qWkWtiGraiRmMQaB1bTL1HnVKFapB6SLuLvLGIdSxflS+0HjAWQetX6RzJZuTzJKnX3ZFlesiGerNLE2avRhluyUlmaS5zt35sdaQ1F2pQcOxOOQOk1LloTjoYyzpyfUYGvv2IMYoQ2mdbRavljm3zKzVLnbpUvDMHneEMdA8wTlHElnrC0uAdZg4rKrks+m61qWiZ7ObtjQNIsmWodL5nFtb7m5nGyXepyT6PKvWv1DrGNU1w235fba1hPabjC8xLMVcAhhHDURZ4OWr0CXqyyTmKQnEJZXx+ow7UqrRXStgUIYoW6vXWKOPPadbAyZf90Hx2xc9+NSCtqUR9c3ykIv+T1ERqn7mKNHi0ev+xFTwnWs/D016sjCgC9sCSGEEEIIIYQQQgiZBfBFHSGEEEIIIYQQQgiZNpxzFefca51zW51zQ865e51z73DOLZv4bsA599vOuY84537snDvqnPPOuX7j+hXOufc45+6rp3ebc+4PnHMucv3TnXM3OOcOOuf2OOc+65w7qeTjFoKur/OM0dHc7WLv3jBs8eL8vWyX2nY9WJ6ul47H3KQSXRABpG+TbsWR6vKlw0Q+LZepVLerypDaDl76Xcit23X5yPOyrq+Wb5KsN6MMRjtCVxyJ5SoD4d4g3X4AYN8+cXLh+vxYFeSegdwGdVpruxJ9diyfCJnerbeGYbJ8zjorHr8oK13XVZkvy73VItW9Uscv7cxyq0v5HI2/0lTFtclu8gbaNTj9vvx4+fIwzDL/oA+z3FUst89YRoqQ6uasH6Cnp3kclo2ovvrQSO7qqd321vT1Nb9PN+Z7782Pv/GNMExeu359GHb66WjGSE/o+rp/MLcL7fok3dLuvDMMk5628j7pAgQA7Ubxy3PtjiSL1XJ9ld7A2nz6+vJna3B57BVlXtYFOtGeLPdHGSZNDgjLWIfJpIPuQScgz60xPFUewHjmji513tH8WGdF9iva9Uzet3hxGLZMfGWQzXf37vA6+Sja82zJknzutWZl6BJ659b8eMMG4cpvuA/q+KV9GtOAoA4tJQVd/NK1TYd1xzpooyFqE9HdkUS6tMrhUEcv49B2nOr6Kst8+/a4i/5apQAwmrj+QeZRD7dLluTHup/qXG6MDbF5kxprrClUFblNjhrSAZJ2qDmxyIaUm9HI5wTiw17ZoTigSJ9bRubC+D6k+xjpGq/HEDluHzzYPCkgXd6gYSDdKjoZUfmW3eq0ZRTL1GsU6aotbVf3pTKPuq+WYaFUBoDBen2MxvvE+YDDgltJ9U4AVwD4IoB3AHhE/fxs59yTvfcTVfgrAZwH4McAfgGg+YQUgHOuCuA6AGcDeA+AnwH4dQD/CmANgLeq658N4HP1uF8PYAWAKwF83zm30Xt/f4HnLAxf1BFCCCGEEEIIIYSQacE590gArwbwBe/9c8TndwF4N4DnA/jEBNG8GMD93vsR59y/wHhRB+DlAB4L4Arv/Xvqn33AOfd5AG90zn3Ee393PQ+Lkb3MuxfA4733g/XPvwLgZmQv9S4v8rxFWWAvbAkhhBBCCCGEEELIDPICZIsI36U+/wCAQwAumygC7/093vvUZbO/U4/3A+rzdwFYDOB54rMnAlgL4INjL+nq6W0BcD2A59Vf5k0ZXFE3z/A+vsJbLqOW7gsAsGZ1frxnMFzu3tVz3PhxRSwDH66Frj1Vy+UrdQs/a/dWa620sU2QdAcruwtaQKq7YpEyKOM2WeRhRHlZ3supUVpVY9XhkHD3KL0BZqqdWVvGWVjXyeexXL4sty7ps2O5mJbd9jLVZ8QIGx5RO0a3RdxKW+KTEseqwsb2mue5armFt2LH1tTntnzPjEZ0aEiUv8pGTcgWWFnUriZBoPSV0S7i3/9+fvzd74Zhli+OPF+dDyi6uKXJa5cdyytZjlmWd2WtK+/vR0xX/nIYnscB2vVY2ueIGJOsrqJT9w/Wg0cu0/FLs9Mb965Zkx9bChhBtorswG6NX7Hx3YhDJ23tFhgb33U2rD4mtut0o3tr8+uA0O12zerwAWLF067yMRrYUhgmhxddh3K3Xms6Jd1FrSGqwQRj7q6GC7SOX57rZ4vtjqr7CnmuXUdTsVwBrbmidJm14pB1od1zTfUEWZapEhiKWF8KAO21EmN6ycmcteu0Ndw2jG2S2Nhccgft5PtUQXZ1dcaCGnYplshrpV1oG5dtVqpVAGE/jq3bwsDrr8+PxQAwcv4TonnSxSPdXfWuxLK9WTtEy2fT41DQJxT5HkXmKo8FMArgh/JD7/2Qc25LPbwlOOcqAM4B8CPvvR7BfljPh0xv7Ph/m0R3I4AnATgNwG2tyqOGL+oKcuEFj5npLJhUKksnvogQQgghhBBCCCGzinni8tjjnNsszt/vvX+/umYtgF3e+yNo5D4Aj3POVb33w03Ci7ISwNJ6vAHe+yPOud0ATlB5Q7PrxWcngC/qZg/f++eNM50Fkxf97d0znQVCCCGEEEIIIYQsTHZ57yd6cdIOoNlLOiDfmqYdQCte1I3tbmOlJ3fAsa4fUtdMCfPkhS0hhBBCCCGEEEIImQMcAhATjKiJa1qVFiZIT6ZlXd/qvDWFK+rmGdVq7vtvaXMcib1LRqN+ndRGkJo5WjOhqyt/qVzpUDoCUnhBaz7ENAcsbQhLgEbdJ8+krkPDtt+B9oeRthak2RERXtPiK/398ThTkYVu6L7otPcP5u/k5W7tWptGRqmzb2kbyfse3JvrLz34YHidLDpdvUuW5PazZrWqX/nc8ljbjqwLLQRiCQfFMqmRBWZpZVgaaTKsiEad1YZi6Otk2enyEfFXOwzhJl35ESot0K/rRNjJdPaKctT1FNNH0lg6cRKrfRXRz5SIMgl06ABsv1Nf3JgsEJqM1mySmj8N2ZDxyLrfujW8bnPupTC4bVs0iq47VYalXYiys/R4dJOsjuTznVot/JEypg+mxytLZrAVWGZmdU1yzDU19kT8gx1KL1bo77X3qAoWiff15R9LPSEAeMQj8uMNG8IwOURVdj0UBnaIjO0ayI+tdqLDyujYGtdVVPzdonH094dlF+uOdPSy7KxrpV1rG5c2KTXpgFDmsb8//lu5pVEXyxMQdouWzqC0R62RZk0z2tvyRQ0NemYxkUA9WRSFLIdsfa6fTc4n5HPu3Blet29ffnxfM4elBKTW3LZtYT3J8jpjfXifpUsn2b07P9Z6llLbS5dBe+r4JQxe607LctTfBZYsyfMvpEZNRjtCvepA4s24T9uWbDfWcCupjKhFNqn9iKVFnDp/kNepxtbZledr+0hY/hLdd0i7lkOqlSXdx0j7byjku+6Khwms9ORYrL9nyv7tYQ/Lj3UfI59NfzWq7ro/nsexetMDP5nL3A/gDOfckiburycgW5XXitV0ALAXwGGE7q0AAOfcEgCrAHxH5W0sHz9rkjeguVtsy+CKOkIIIYQQQgghhJAZxs2Dv0RuQvY+6tzg+Z2rATgLwOYm95TCez8K4EcAzq6/mJOcW8+HTO+m+v8LmkR3PoD9AO5oVf6awRd1hBBCCCGEEEIIIWS6+DQAD+BK9fnvIdN/+/jYB865451z651zk9GF+2Q93svV51cicxz5jPjsOwAeAPBy59z4slnn3KMBXATgs977KV3e6bz3Uxn/rMQ558s8t3MO/ge6XmcXl//z3bjqP74KIFy6Pydpld9SC1zw5gKpLhfTyVRX4WyycVn++rljHl+WaZrPZiVApsbn0aLF5T8VbTlmd60ypVSPIyt+KUcwPFKJhs0k09nPlu3fdNlJSvc5M0WRtmw8XKvrTWarVbYp85haF/q5UotroQwZs9Kmp5sWtaFUUu1Y22702laM51Ns8GX7l1QFgCJYjxoLsxQMyqZdJh9AWpvdeO652Lx5c4FFW3OLE53zfzLTmWgBrwZuTthMAs659wD4QwBfBHAtgEcAuALA9wE8qb4SDs65qwG8BMDF3vvrxf1PAPCE+uklAM4D8A4AAwDgvf8rcW0VwA0AHg3g3chcWp8O4FkA/sp7/+cqb5cie5n4YwAfANAJ4LXIXi4+xns/pa6vC2SoJoQQQgghhBBCCCGzhCsBbEO2yu03AOwC8B4Abx57STcBTwLwFvXZ68Tx+Is67/2wc+7J9c9egEyX7hcAXg3gvTpi7/1nnXOHAbwJwD8i2wH2mwD+dKpf0gF8UUcIIYQQQgghhBAyozgAiya8av7gvT+GbAXcOya4bhOATU0+fyuAtxZIbwDZCr4/TLz+GgDXpMbfSmafrxwhhBBCCCGEEEIIIQsQrqibZzj41mtyTLfeUwxL3GsaBVcsXQ1Lm8PSsCijR2NVi6ULlVpUZe1I5lFr91j5t55nbEd2QOc/LFMZVqvF47OezdJ3klj5L1v+Msy0l5L23gobnFZUQY62VcePzfymlk+r+rZU4cFEiuj6xLJhYeprlTTkqjiVbahQcYj0qvrGeCcQYjX8aaQl7SlV7FKHTfzxnEG2+amgSBcgdZwOH86P16wOr9szkNt/V1cYJs24s2PyNmKNQ2XHQIuy+mOp+ZhqDcgy8VdGhuOBJXURp3W8neI8WnOmqtH/NLa9yLhh9AGzZd5SNh9tbfE5bGrfpPXlJLoPiA3vZWUMy34Va0X/Q8hCgBZPCCGEEEIIIYQQQsgsYI7/1koIIYQQQgghhBAy9+FKKgLwRR1JYbb4zsySfFhLtsuGlUlbuxSMxtwGpiAfFqnxF6nOjo7icZR3RYiHpXo4zhJTbWC2uIkkM9UFOVsrysCqQ8vNKNllxPBrSY2jhIfmWGg8KNYJzCBT3p5KdjIyaDa1+VJuh1Ocf6vNNFwrTLDTMMfurnierfvKPKt2XS/TB0yFi+Z02t2MtkODVrgGlyW1TFpRdg3yCVN8Xyoz6SbZinJNNTvLxT1VoqWIXMtUu7cSQnL4wpYQQgghhBBCCCGEkFkAX9QRQgghhBBCCCGEEDILmHt+P4QQQgghhBBCCCHzCAeupCIZfFE3zxj1ztwqfQy9nXdnR64lsGcgvl14qjaBtV344GB4nrotuExbx2HJFy1Zkh8vXdo8Pn2uw1LzKK+zdCNaot2gCrmSKgwl77MeVD+AVamSHTui8VcMkbeqrESrcsR1+wfjtlqrldPdSa3rBm0giBu1gXZ15ceiHPcMtgeXWTY+MCDzmNZGi7QTK0yagqW/1Gp0/YbmE4YdPpwfHzkSxhOrU1mmQFgGRbTVZNiyZfHrZL6kSei0KyPD8YQtYRlZUSosKK3t2+OZlOj2u21bfpLYH1R7esIPHnggPz7++DBMXtvbGwQ9uLc6fnzsWP65ttvOmlF2LaAydCg/sTr5xPIZrbVHw3T7lUh7B4CVK/Pj6q0/yk9UOcLqZyU6/9JgRcM5VOsOLosNNTpMm658Hlm/Vl9nZfHo0TBMlk+g4Te4P7xQ1qnuIGSFSFtVRii1sSwzaK+pvnTXrubxW9x6a3je358fq/wHJSmes5LaucEew6MDkb7OKJRYHoGwXIN2qBhuy9vU3r1h2OrV0dui6HFIIufORZBVo7sRq53IotM2LtvN0FCeZ0unzGpDJ/enPduPtoTlI5/njPXxOPR3Dfk8cqy02pA1BKZ+d9HlL8tAxy+7AHldMGbrG/UDiEgqOgHZB+zcmR/LsRcA7r57/LB6/vlh2J135sfr1wdBVWl4Bw6MH+5/0auC68K5dBh95YPvjwfK/kcWkB6oZQK6rxNhw6jGgghZEPCFLSGEEEIIIYQQQgghswC+qCOEEEIIIYQQQgghZBbARaRTwI7dh3DlP92Am362E0sWL0L/8cvxrj+6AI++7PNY//AuDA0fw/L2xXjVcx+Jl/zGaQCAq6+5Ha9/zw9wwuplGBoewSue9Qi89gWPAgBc9YX/w3s/dxsWVSroWNqG97/hCTjj5JVN0644P+6Sp11gyy4ZliuxpVuXdCMFQteVffvCMLm6W3uTxDwxU703AdttL7b6WpeHDCvi9Rl7Nu0Ct2b15F0GDwl3hra20GWqCrH0XvtMxfwhrQfVvnkyTN8XW+av8yHPdaFKFy1doSK94Vrn+LH0stW3WZ5DVaMtWF6BshiXLAnb1+rV+RL9ijZyWT4i090bNkTT0i5fVh5ldUi70+3QqhoZh3QXB8K23t1Rwle9JLp+Dc/OoO1Z7vUyDtm3TRS/5UYj75PNxmpeOo7AZVM+jG4LVvu13G3kw0rXGH2djEP7Vx48mB9rv6vFi/NjaYQ6j9KYdCM1DHT58tzF0vLQH20LXWXKYEoTyHLUicvzRI2HiuESdPhwJ2Ls3h2eS7e3tbJ+dbp9ffmxKn9ZdkNQLrnSTIS7q26jluu91b5k1cfcYAFg0aL8WJeB5WklzbO7Q7Q13Zla2gey7oUr2uhFTwouq+y4f/y4XbseB/aj7H/r1jzOC5+Qx2fZ4733hueyQiz/X50vScx/sCzaEKyOMJYPjTEpGxJzIz0GlnF91dmXNthpzD0tZNVYj2m1EytMuvzKbltfJ7wfAYTlc3J/PF+x+AD7eSxkPuUQqPsYiS4D2QdY7psyTE91LfOPlX/V6jd0AcmH03PFzZvzY9Ef4KabwuukK+xVV4VhslKlKyqAAXFf10c/On5sebE38M535scnnRSGXXRRfizdbuW4A5hfxqS7q3ZdX748+z86fQosMwZXUhGAL+pajvcez/qTr+Mlv3EaPvX2JwMAttyxCw/uPoxTTujELf/xHADAL+/bj2f/6XUYHfV46TNOBwA878kn419efyF27xvC6Zd+Gs990sl42JoO/M5T1+H3n30GAOC//mcb/uif/xdf/eenz8wDEkIIIYQQQgghhJApgS9sW8y3b74fi9sq4y/WAOCs03rwsDXhz24nn9CJf7ryfLz7M7fqKLBqRQ3r+lbggV2ZWG5nR/7rwsHDI3DOTVHuCSGEEEIIIYQQQshMwRV1LebWX+zFY9an7dZ1zuk92Hr3QMPn9+wYxNDwMTxqXe5e8t7P3oZ/+uRPMHx0FN967yXxSI8eHXetqOr13IG7UNw9SN8mVyV3DuYuHdpto1MsF5dugIC9XF97V42hd26U+dL3hLtdNY9PY3ktWa5txgZOwRJ9Hf+aEi4XGrkSvtHzLC/zjo7jgjC56rzWldtVg0uNtRWZgdz5r71DxKErWy7DV4W8v5bnWbskyjLfek1+rF0ipDfPM58ZhqXutLtlSzxM1rV2rQo3rDw5CFvh8+M1G/IL9a5n3bV8J7uurtD1TNe3JNU7SbapIrsvr2zuaV8+I4lYLu26HcrysdxhYm6qQLp7q0aGpXpr6bRl/5yaEekGDmj7DPvgam2w+YU/+1kY/+2358c33hiGSZcaXQHSzeXss/PjP/uz8DrRuEf7TgyCpMug3k1UErgcqd2XR43fH2UfoK9L3onbaiipvtlWOxH3aTc9mcfly8P8BzuIStdjw7VW76i3V2wyqN1KV63Kj8NdWRHFcs1Lxdqxsuzu7KYGgBxUpI8jANx2W9M4Ri4MXV+rlv+vCGuwwTI+gw97WHguXWF1xy0GqdH+fIxq2LFSYm09rDsxOXBH5B4a0O7vwl71+CizcmJvfIvuXSI5K/uplHXltBhz4QOA9hG187D4ajaiJE6snckl1pgtzVN7QMtzSz5H9kWP67snjET28Tgnmo/uXXcE57W+08aPZRMtov6gZTti11lDrCxXvTNzR0fzHZ2rHfEdikd6lEyNfCBtoHKMlW75F18cXiczfd11YZjsvM88MwjqCk7yM8v1VdtZ9aUvzU+sXV/XrcuPdTsXacsd3YFQHUO7bY+NPVoSgZD5Cl/UzSDeh+ef/sYv8e2bH8Dt9wzgA294AmpL8up51aWPxKsufSQ+8bU78Vcf+RE++hbVaRNCCCGEEEIIIWTOQpdHAtAOWs4jT16Jm7fumvhCALfcsQuP6O8aP3/ek0/GbZ+6FN9932/ide++ETt2H2q45/lPOQVf+s62FuWWEEIIIYQQQgghhMwW+KKuxTxp41ocOXoMH/hS7k500/89hLt3hFsrbbv/AP743Tfi1Zc27vp4wZlr8KKnnYp//lSmX/fze/Jtq778/Xtw6sNWTFHuCSGEEEIIIYQQQshMQdfXFuOcwxf/7qm48p3/i7/99y2oVdvQf3wH3vXax+EX9+3H2S/6PIaGj2F5+2K8+tIN4zu+av70xY/GOS/+At646Sz8y2dvwzduug+L2ypYubyKj77lIisDubiAFh0QWgjVBs2N/NrK9lBvolPqi0idHa05IIQM9BvgdkMQojOm66Pzf2u+UrFTpy3PuwzxOUskZ1CEqbSl5kxVZatTaD+duLFr/PieHaHugtSsSNZDUkhpC71t+a1iXxL9mLJ4ZHH09lbUdbku1BKlibZyZf481ZFwtWegITeQa99oXbX7hOSVpQuiNeokUtJD7TwfSGJIvauGSDc0viAfY+PG/FiaOxCWsX42ea3Ov9R9OXIk/vvI0aO5lskRowz0c8s6tWQGZRnrOCzdmsqQrO80fa1W6NWtbXsoHtinhGvW5Q+7fzAs45jGUHVIaQPJ/FsCWw1h4lg+t0o4UKpR9TvcJXQlO/J2qG1pcDBvh1LCJguLJo2+vrXjx+suefb4cbXrW+GFUshw27Yw7MIL82OtTyXPTzklP9Z9tTAu2Z4A4FHiUp20bNuyKrSOkuwXFy8O46jVmusLAaH2kNa9k3xrW96/SSk4INTW6e8PNfY6xHmgsadtUFRi5c5Qw0neGKoehWF3nPob48f6OduEPUnZQiB8HqlJB4RaQbJ/0DJussx1H5OqLWgN0+0QfZHuYwxhq9BOROOQHT4QNiLdzmUFiwYmtWMBoKcnb8trO5QtiflU2K8C+OpXRb7ORYxgLqEK68GNed1rnV85NgyKsXjRonCuIvXNOjpCO5bNfGggCEK3bOui7EZ71wbXySllQ1ea5pCC+3flee7qCvMv83hyf7qGZQypHQugJaJ1QRQ7BqOB7R2hjY8KfenKrnB87O7tyk+kXfQZ7UQPIjtkvcX15QJ0A2gQYE2jfVf+3eOMHlFAWvbbEoUVzzbaEWq4SgJdRm2EgcZk2L46pcZkLe+F9ZxDjttaonFoKM9XW1uYx7aVeVs5/x/ztqyLWErC7nxdGPa+9+XHb/5gqAMbaFjKSJ/2myqPIk/KfL5+1p+MH69Q60b27RMn2yPHCLtnS+9ZV++Yaelxh5D5Cl/UTQFrVy/DZ/76yQ2fH/6fl0Xv2XTJ6dh0Sf7Sbu3qZdjxlRcBAP75dY9rfSYJIYQQQgghhBAyK3CgyyPJoB0QQgghhBBCCCGEEDIL4Iq6+UZb2/jaYO0SNCKXWKuV3u3SDaWvLwyMbSWuXZosf5UgI8ae8qnucnqttDgfbQvdIEJ3sHypuk5KlpZc0p6FifLR/pARV5kTu/Se8uLY2ive4LS+3AVjdF2YR+mVc/hwUnQNVSi3tl++PAwLXLRUfmPL2LVJWB4R0p1KF7FEFrfe2T5wtbp1W/xGw/XVyqP06NPbw8ul+LrsZJOS5VMZVG5vslxXKxsJCkX7tOb3dXTk9q/NyrIL6bKm6629xS6tyajKGEbc/Vr2d1YXE2A9i26jqS70qXGq61KL2HJRlmHaJWXNatGHSXcn7Vu7ZUt+fCDUVg0yqctHGrbojPYMtUcv0924hWy+0pVIxyHtuGQ3ayLL3PL+1SYim2+gBKHcsyoy07qD1h1ehO1b8uOY6xDQONRXB4QrnW5E0q1OuuAuDS8L20kYR1utwWG3aXKyfBrckHcZA4A8141DuJbvH8r7Ed0nrlyZ10d1cE8YKAtMZHLz9eFlMv89PeE8rL8/d23rCm/D2vPPHz+W9tLVZfymrsay2zfnx3I8B8JxSZqWNrPuLlHmhgRArUu5FkbmQjr3a6U7p2rAewbyq7W8xO7d+bHstqQ3HxD2AUdPCFNfvRqF0X1YmyiSTu3anMjOnSJPyjXYUmCQc/d2q4Mz5GaCMtftpAzSDxMIOhlT5kXqGQDxTkD7jko7a/DtFzI+Iu0Gl2erfKwJhLRrMX/rVHF0Cnfj/v7wO4ms+wcfjCd95535sR6mP/Wp/FgXzyteIU6+qDQMZMeiyz+SDytMS1TI7yGyX9HjtOxKuzuGw0DL77aeeMWrCTgh8xSuqCOEEEIIIYQQQgghZBbAFXWEEEIIIYQQQgghMwxXUhGAdkAIIYQQQgghhBBCyKyAK+rmMUVkFyR6m/GOru7xY6mf8+CBULdj5UpL/83QPEkVDmqL65pI/QlDsiKep4nCZKRaF0c+T0SjBUAoDlS2DIS2VEXpkzxqfVxrROr2SYkKLXFiYghKDYnHltoTOn6pzbFUaRular1I+5QaHgDQCaH5dsstYaBOMILMR0dH2BZkFeoqC3SVlH5aYBfbhdiIpYOmE5A2aAjpVUdyvY8RpdcoNYp0O5FJN9jFkMhLK/Tqytq/RGcyMVuB5lWbjiOPRGtdSiqWuJolMCTyrDVzRiKyLPoxpe5LIblPKWQjG87mzeF1P/3p+OGgEqDpuO++/OTJamdzaVCiE7Dk/KRUHgCcvCF/WK27I8tBZquITpxE61+lImX7dNrttdy22trC+pX1IfOl9TjbhN01DiHdiFER7V5qderhypJarFqFF2tU2kANfSFrHlAV10q9yUNDYTm2ywagK0CkPaq0//aKsUdqmMljQPXdugwiDe6znw3PZfnrYedpT8uPte7UWlGWMkw/pszG9h3hPCzUtmuW2wxLy7FWy8u8XVe7MKiKLg95LstO95fSKFWYbJdSkw4I+4u9e/PjffvC62TSa9aEYZdeisJI2U4g7IMfFZe7NZHaZNoGrfErLK6w7AJd6rbcLrSdyfOenuOCsEBDNJ6NEEMrr0EbTqDn2VI7UtpxT09cw08j8y+va9C6tCK0xvBY5Rhjve6DjxyJ3xaLUutNSrTMYKDD+JSnhIFy8LzxxvHDtmc+O7hMVqnOo9Y2lcRkzHUXEBSjNZnWtjVmGN7HM0HIPIIr6gghhBBCCCGEEEIImQVwRR0hhBBCCCGEEELIDOLqf4TwRd0849ioG3cV0auJ5VLyRYvCsPZa8+uAcNlzd5e48EB4nUxPblsOIPRFsJaSW2v+DT8m6QbaplzWYi5HVZ2U4ZZWkZHo/MsCk2F6ybbl+pqK9P3Q6+mlv412ORJhR4/GXZQPH86PV66MZ0OXj7xPunFoW5LnOu1afx5ndUjZj3juTlGu52h3363CpU/6FwDJrq/SLVAvOZZpN5S/5Q4pwyx7t/wNYi7WBu1tKg5xX7tOW7rkWr5Wlj9VKqmurg19hWjbqgyk61x1RPUVqa67IqxhubnlDhPk0Xg2GX/DdXm7lG5dx46FV1kuytL9sSEfsrzksepXR4VrzK06h8J3/VGf+1wYeOGF+bHobyzvQe26fuGFuWundn1dt655li2vGdkvaXS5hm5S8fsOHsyPdTOUrmc6TLr0ybQtD1PdpQSuYjoBEdFXv5q7s+lylMOEPAaARz4yb19rVP8vXcErlu+uJf+Q6FImXXCr2sjlY6sCOtSWu7v+9Kbwtttvb57FA2oec/bZeTvs6AjdStevz13wtm7NPz/zzDAO6Sqps//Vr+bHv//7YdgNu54wftwn7muU6cjtTLvdSpdK3TZkfctuXLqoAcD69flxb284n6qmztescUIUipZakd712sSl1560a+WhH5yfdVYY9rxL87JsmOdF5FDuvFPJFAjT1a6vlqunRE7lLPf9BhmZgT35iTKuoKZE2MhImCeZdqPrfX58/vlIQxmQdFe31FVuuDHMl6xT6Z67QZWxdPXUbp+Vodx1vSoryvpiY/VTFoaLpnS91xIP0j5lPwKENm81ofPOy4/1VFfGeYZ+FtkJPPzh8QQMvvSl/NiaZlhjzYoV+fGpp4Z20N1m1NuYYZT9DkXIHIOur4QQQgghhBBCCCGEzAK4oo4QQgghhBBCCCFkhlk08SVkAcAVdYQQQgghhBBCCCGEzAK4om6ecfRo7tKvdeikrMyyZelxBtILIpLFi0P9lkAfyaIF+k7WfQ3yVOJcahZp3Q5LHqy9ZuiyxPaDN/SvGoRrUrEyGUsLCAph9eq83rQmS62Wl0lDVYg4h0ZC3Rqp23Ryf3OdFx2/JtClS9RgM0nVQbPus+LQdRgTQ9Tn1rMZOoxmvmK2YNmqkX+prwIoO7FsvMUcQtjHHBDabatXh3kMNMa61LPFRM2KaNOkatqkxq/KrqMnf1azL2oT/ayRXakTBADtsu6lCJXSgKlcfPH48Ynf/nY8AS0609cn8jXS9GMV1BAmx5CenrCPkTJIUrtH67jFumON1qhLReooaW0viW4aMs/SHLVGmtT4bJC9NLQF5cPKKtUSP1qzTiLtbvH6avS67lqijVsChZa4oIW4TuubSS0oqXUGhOUg9a90FqU+pM6SvE/Gp+vQkiuVNmN1z6lITToAWLMmPy6ib5mMzKQuPFkoMgFjvKqpNiQvXbIkno3UqZZlVjFNuomQ8adq0mmsKYF8btkfAEpbVldipMPT5WhVTRm7uH9HvAy0hpxEP3dsamRdp9te++rI4GmVlTFfNgvI0N5OnUrobEktU4vly/NjrSct9VwbeOxj82M9hidiaefFprDWtFf2qwDQvU70MXoAI2SBwRV1hBBCCCGEEEIIIYTMAriijhBCCCGEEEIIIWQGceBKKpLBF3XzjLa23DNBr9iWS6UD96ns6vGjE3tVmFyzLJYhd+s17QOGW47EWhNuLCUP1kfrddRiLXa74Qtlul4if+62Wtztx1wKn+oqWdbvRJa5LmPpU6PLLpKvQm4bIg7pgtiQFblUXaU7NJS7K+osdvTmYVXLn02gXSPbZflo+0z197Z8kwyXCO0uGrutwT4T4y/l+loEEUeDG3vMrhPtrCxWH6bdlqrSD3RI5Uv2F6k+KVYZ67YXe24rDpUPWeZVcV9VRz0o0lb9yDDyfkt7jLRLfxV5fNZZ4YUXXjh+uFa5vgZPrdtXzDdVYZqIlDBI9ErWXaksx7a2sB8vohaQgpRSAOzmK/PVLsLaVxsFkuobphKXLsVaAkO2IcuFSbtgSTfKQ7W8321v0x256N+K9Aex8dEYKw8rtzdZh7qbjZmnbsrHH58faxM/bV3e50jpjKc8JZrFhvjl42jX782b82PLK00Wq35O7QYXu0+i8yjNTJtcW1te9x1dSv5EdjqWD7qI1GrnR440zy8QDufaBV3WWxl3Yk2ih2kD1nWyqLQ7uuUa2bUun2c0DkOivxNxaPdZGacuO8udP4ZuJ7KvG0V8Li0VGABgxYr8WLp06zq0upVgTivKo2LNuXVFWdfG5vsqDulCr91zrWnG0qX5sRxfdFuwvmLdeGN+/Lhf/dUw8Pbb8+PVq6NxWAoelvyDbJdWMVpf9aRsR8N8eeziKZZdIWS2wBe2hBBCCCGEEEIIIYTMAviijhBCCCGEEEIIIYSQWQDXjs4zjh3Ll0trF4hgpfCugTBQrl/WW/DINfrSD8JyC9RYy5RT3eqstdLWDk6CqrkTWX7YsBuYlXbMD6UV7ogaGb9eEi79ebTfm8i/9Xa+Gqx3j1+nd/wNkOviVR47uuKurzJp7ZJbidTbiPYEk9dpf4xUd2NrVzW5M6pyq7O80uSztncZu+ZZpLpYxxJWpJaxvrYyjS4H5saQ1o6SmljlWPdYu/papLrP6rRlm7XikM+ibVzYpI5+tBbZ7VnHsXFjfvyMZwRBtZ078xPtMit99cTWk1JSIMtj/jw9Pao3Epnu6grblywG2dU1NGvh9lxTEgbSZMpWr3Ql1btqWq6XydIQkiK7poprZdra7U1GIXdJBULTsspHXndaf8ndFDWJY7jk4MGwfuXz6CFQ5tkaRq3uPyYVYe2yaPVh1ZFDQVhPZOdnC918pTutVQZWEcv2ZSl96DxWYz6bxhbIB3aGQYkbGwd2rctATkGsnWNTKas0kaqeoNuhRLsWyr5bS7nENsjUw581nZUu73oeHLN/7bor++5aYr8KNPZVY6S2ZcDoIovoHpTd/V2wb19+rHdmluVled3K/MfKRl/XEOfZZ4eBUvsg0c9Zxy/bm5ZPiH1FtNzrrT6mvz/s46dz/jnTcCUVAfiirjCP+d3Pz3QWTBYvPW6ms0AIIYQQQgghhBBCSsAXdQXZ+DfPmeksmPz8w3fPdBYIIYQQQgghhBBCSAm4spIQQgghhBBCCCGEkFkAV9RNE7decytuu+Y2VBZV8PBzH45zX3Iufvm9X+LmT96Mvdv34ln/+CysPjXbKvuhOx7Cd9/7XQCA9x6PecFjcNIFJyWlU6nk23trV/7KkNBD0aIVlkadvDZVxKYIMZ0H/bnc71wLNkihCp2viDDR8Ej4nlrqszXod8V06IC4qI0lwlYWS7jGit8SJYnFr9KSGleDykSC7eePiECVVqcUt7A0DhPLqrE4RN1o4aDU8i9ZxlaxRrXVigh3yHNLt0xiPEslVQQJ4bNVjWKMadg0pK01IBPS1eftOv8y0BIMTBUTtOwlubKN+6y6T9XIUXFUu/Iy6epSfZjs/2XZaZGZ9evz4yc/OQzbti0/lpp0QChcc/zx44day7EykmvWtakwea1lngVMN6CMVKpGPralAyufsyHQskGrrzY1VqW+H5oe66R19HLo17pTsTLv6wvrsF0nGEs8FaMMdBOKyTxq5BBu6TtpfbPKwJ7x4/7+7vHj9jZV1zGxMADDXUKeZDB8gKGhfIwNtR3DTMr+s68vbOerVom7DO0nWRX6Oa2uVE7DNCeKgh2G0MtU9dSOvC9aujTUu7WGOVlvlo2P6TQDjd1UmTFK6v7pfKXquOn7ZD3p6eyyZc3vacij6mOkJqdlx9Z0VvZpqWWly1+2h1GE/YNEawvKPKe2ZV0+1TZRH5aenGVoqWFGR7LtG/mx/kplTTPkVzErG/I6Xb9BepaWtYjUmpO1tYV2YGlySiw9V9l36/KRmo2yLQDA6tXdY5lKy8QchiupCMAXddPCsaPHcPMnb8bzrnoequ1VfOJln8Cjn/NorHz4SjzlDU/Bd//1u8H13Q/vxrP+6VmoLKrg0J5D+NxrPoeHn/twVBax2RJCCCGEEEIIIYTMV/iibho4PHAY7V3tqC2vYc892S+y1fYqlnQ0346qbYnY1XJ4BA5uWvJJCCGEEEIIIYQQQmYOvqibBvyoBxxwy2dvweaPb8b6p66Hq9gv3x66/SF8593fwYGdB3Dxay9OXk1XWZS7NzS43lgud7HrgPi6c+0TYfmTWMuUY+6i+h7pH1Bk2XPEj6Oql4QP5GENW4Bb/kIxdyTjugbX2kRXQLN8Ut32rLq3km7LXVR09GPu1gCABwfi+bBcn6x1/kFG8uesNpRBfjjauzZ2G6pWeYsLLbc9qLBUdzzpQlzRNmK1IRlm2aDEshHL9VIRPGlb3I4lyTZtELp/KbfbAcOWLBtP7Yss137LF8dKy0o71scUiUPc19GhXI4Gm7sBDSvXpKr0Fdu4MYxDus1YLjXiuGEcEmn39MTdoiwPShlmu+zE4yjL6tX5sdnmU21E26o1TluurwLpmqRdh3bvzo+1h6Z2QYoh3WK1i+yyZXmfMO6mVCcYV63CS5VnMJCuYRpp4lZ0wbgGBH1Ou3yWO7eF18lCOXo0CKpecEF+ovrckRFRXrLudVsTaNdO+Tw6/7J+VbYCdu6Mh0kautmePHFZBA1tuSO/bmQgHr/lrSjj1C6UUopj+fJ4/BZybLOGUY3sj6zx8ciR/HjfvjBMPluDDUakXABgYFfzyywJCct1NNX1tb2m+mA5NneFfUCQ1tD+4Ly3t3P8WDYN3U/Jc22D+wfzPEtX4KrqEKT0jelerMYXeZ90A5f1CYRtzfqqpPupNWvyY8t2raFYmsVwrTMIC8qhpIaE7HN02cl8SdfXgwfj8Wn7lPUr1TaAvJyH1bSCkPkKfSmnkbMvPRsv+o8XYfChQfzsaz8zrz3u9ONw6XsvxbPe8Sxs+dwWjAwnTvoJIYQQQgghhBAyp3DIXtDM9T8yeViO00xteQ2nPOEU7PpF2k/XKx+2Em21Nuy921DwJYQQQgghhBBCCCFzHr6omyYGdw1i4L4BANmurl0ndEWv3b9jP0aPZcutDzx0APvu24fla0qu3yeEEEIIIYQQQgghcwJq1E0TlUUVfP3tX4db5LDi+BU47yXn4a7/vQs3vP8GHN53GF9921ex6uRVePpfPB07frYDP/7LH6PSVgEccOHvX4haZ5qWQGX0GKojh7ITLd5giSZIdJjc615SRD8nVVvNIlVwSOcrdl8RAaNUbR0jTOp9NOg2lRFTKqJtJOvU0DiJbj0PWzIn0BC59978WIpUAKEN6mdO1SyS9+nnFAIZd94Zj+KM9fGkYvcATTTxBKlyH6HOXZreWANl7xtprlNWhFTdmtTrLBq0Ii1a8GzJ8VthqXVjCQelosV7RBwN+oeyrYh2UlUCUoeGcl2f2vmPC8IqUpzG0Ek81HGcuC68rL2Wl49uM5EsAojrUzVgNMRUGUyLk/sTtRe3q1XzMl+WgFSquJRGhFnlIzWvVq0Kw6R8ke7jY/KWOktSi0jKymZx5npJWg9PptfZYehBivP+/lDjUDaHvr7obUH5FJqOxMYefZMUgDt2LAwzxNtOOMFIO4LUI9TobMn6tTT8pC6UpQ+mtexqF+R6ZDIOXcZnnZWPDVorT+rN6eFd5tnSqJPXLVF7tpWZbq5X84UgX4aQntY3k2Pi6afH0165Mj9u6M5keqpyuoQenNW/yfLprh0KA3eJuWLPcUhCG0mqDrK6rl20+/Xrcy1f/ZVEJqc1GmOapVK7TsdhSf6OjIT3ybzIpqzbguzfdFuT5zr/K1bkx9IOdH0Gz6keoLc37xcb7MAcPNM4Y10+h90/lKbVrE1E5kvXr/U1YQxLY5OQ+QRf1E0T7Svbcem/XBp8dtIFJ+GkC05quPa0i0/DaRefNl1ZI4QQQgghhBBCyAxDl0cC0A4IIYQQQgghhBBCCJkVcEVdQa59w7Wl7lu2fFnpe4vQ096VrzG23B+LkLq/vVzzrP1mLJ+j2FppHYd8Hmtdf6rrmS4PyyVU3mc826Gh/N233rJeRmG5UJpY/pWp+bd8Pwz32WCr+5HQXaKvrx1N0W4/lv+sPDf8rkbb8nzoXxrkMvyy5n5oJI9DN6GOjjxFyyvNKn7p+lfEjqVt6dsC98VUN3OrHZa1T0HMBaUI2n3WjNNw2y6F1da0ccXal1XG2oDKGKzlYmRJAMgwlW5bLXdP1O4q3dJnR+dXxC8frbOm3Px35ZF2Kzcc2bZ1/zksXJBSvXdaYYMNSJ96bSPS7nThWXUfw7IfnbY47+wYFcfhZT098d9nZZat6YNMuoiKhnwc6Rqp4+zvl31d6FolXRmlaxgAnHJKfrxmpbK7WJnrflb0/wcOhJd2xvpFHbcc93RBykJWhhxMtRJNpH1kfzxQ2WCnOF7bEx+H+vpyl0dtxjfdlB/r4V0iH02bavuOX+bHDW1I5KXHkOaQ5borNLQTZTtUdTOMRHdOQffIQ+EHcgxHubHmzDPzY21nslwb+jr5OKrsZDyB/asy6B4ayE8GlH3Ka8u6vqai242Ip9qW12m3ss/uvrzMh0fC/mHv3rzv2Lcv/1y6qQKNrvcSa/qwV+zr9+CD8evWrMmPL7ggDDuxT4xLOmOyTW03vvMY/vs9PXKOnDZnKjTXEnnuVDbY2dV8HtnbG35HkFWvi+DGG/PjmFc1XV/JQoEv6gpy7633TnzRDPKKl7xkprNACCGEEEIIIYQQQkrAF3WEEEIIIYQQQgghM4gDtclIBu2AEEIIIYQQQgghhJBZAFfUzTeOHcuFYbRAjDwvovEmBRukLoIWD5BhBTTqQs0xQxdB73EusYRypBiCpelkXZdYXu1d4rodA8Fl1d7e8eNCehASKayhtV3KaPjp6+S5il8WcVdXqDcR1Papp+bH4pnrN6blSyPqpiKfU2vw9NZEUNq28Zp25Pp7NfWclaE8rGpEqOtXmpbU2tK01fL0tHyLJUEof3PRmk7Nr4Kts2bVRUdnPKzFyPIGEBaC7n+sPMe0vaw6tMrR0v6zxAqtPjhVR9J6ztTyMfq6kd68fn/+8zCKxYvzMtmwoTsa/eGd+XHngBKgkUi9NwCV/v78ZPv2IKwahIk41bgwKtpQZUTplEl0H5+q0Wj1wak6dNZ1Vj4sHU+JUb8NmmCSrrx+tYaTLGarG7e0g2S2tC5XmWFaa9QFGm86kkRdwHbxcENDuq+OtCHd1uS5Lshly/JjNT4G1T2UKFKn05YVZfUxBsY0INBPS5XybajPXkPr0jKEWJglqNgKvVJrfmno6eryl/O8dqETV1sd9qWBnjFUH9aWF/ohpc+2e7c8y8OWLw+va68V0DYtQ1mN20QdSXk+pKpG6tJZw2GqJKxO+siRtPtWr86Ppa4mgHLje2qniNAk9w+GfVhNjI+p1dTw/cSax0QmqlWlOdvWludLdolA2C1q/bqxZ6twmRFZINDUCSGEEEIIIYQQQgiZBXBFHSGEEEIIIYQQQsgM42Y6A2RWwBd1843R0fgSaemnYPmuaBdTuY7acj+1XHYsd8sIDe6hMs966XjMrUufW+vdLdfR1Pgtdwxx3QhCV4RqmZZYwL042SUrFp86bVgKL+OU69b7+sw4JdJlTVOJ5d9wa1m/Pp5FE5GW+ZwqQukqaaVlhUmTsUzcwoq/muhebEVSaYUrkYXVXkvabmD/Iv/aDdlq5kGUqZVhuS6WdEtL7ot0Hx/zRWtwjcxtfvHiePloZFtZuVLct0X5rsh8abdA2XeU7astUhtmGTdqjW4nsfHRqsMi9pPqumuUQbu4rbc3HKNkkZ91Vjz6xCEQS5eGYbHsWx5flvfyaC100Q/coFPdzDWxNmTVk45f+usaY2wyqS7W1rVGPnQUsolql7VYsTYka81HyrheWs+p+sFSZVxkrpWKuG/nzjBo8WKZdFyCwXIfly6gBw+G153c3xXPV5H2MIb+XpBaJnqMitynZSikiSiFhAYX1xjW8GL1P6EETH6s3VtlO9Eu+qY8RmxsSH0waMmQcF4dU26wvhI2YHUQseuUXVXE+cqVYR61Yk6zKOn6ShYKNHVCCCGEEEIIIYQQQmYBfFFHCCGEEEIIIYQQQsgsgK6v8w3n0padF9n1NeaTkrrkuVUUyXOZ6yyXJutZY65KqduMFqFsnGXcGRTy0RrckmNL+S23LkXFct2K+dEY9bloUTSoPIY/j9wJVO5olZ03v83y8pkKc5f11rBzaaqNTyeWHRTYsThWYK0oY+vixt2dBUX6mEnmoyEs0RXe8kyqthlu4dK1X0cizy3fRcvdzHC/DndMVLSiwmXaus6srS5TXcZTJRiKyDPEMK5rkGOo5aVpmY/loZW606KFZQaBe6veNTXWdxhjVFeXsqDYTqzaDqQfXAG3ycB2WzGnSXUrVXm0zExGKXeAte4rVO+pu1qnakjoxMvsWm75cBfyGWwe59Kl8Tw19LMCLU0Qm8I27DpqVUjwbN3x62L3AK3Z9VWUj56rtAt77egIyyDWfepHluWjw2Qfph9NNhVZ9dZQ0FCHQ82fE0C63781FxJhnR1h2rVaC9bnWPoGMQyb0DvCrlo1cR6n4ivmbGMqvsKQuQdX1BFCCCGEEEIIIYQQMgvgizpCCCGEEEIIIYQQQmYBfFFHCCGEEEIIIYQQQsgsYAF4eS8wRkdzzQBLnyRVB0SfWwJbiZp1WrcplFqoNP0caKKZE4vEem7rOgvrWkvQJXZdWcmvslphqfcZ9WSZTzUWv7aJVouyGfoe990Xj2Ktsf27ZHgkLIOqpWMoSJXPOXw4DFu8OH7f0aP5sSVPZVGB0AIpom0kCHTuENfPaQmWxqGli5N6X1s1epmF1iAMA/M4G/uwxDyWyZS+tqQgmLT5nTvDsCNH8mOtDST1vIZE0qbWVmpD0dfKZ+vpicdhpZfap2t27cqPtf6YJXwUi7Nkn27qH+7YkR8X0coT+R9V+lRVof+2f6i5Xp1GJy37O933SWTRyX5Pp6eLuLPNmJ+kzmNEWMUav6y2tnt3fqxF+6SwldI3q/aK/jTVLiyNq1QbV3FUu0Q+lKbVihX58dKlYZQxW2jIRqpQqzWXsyYksj6UvZdq9lZfVBbRj3R2qfhEnzaqlDZlnyz7YyBe9aY8ptVOUjXqrDqstQengQ6jJWgZ0z0GzAdqhR6wJf+WKO+arulsYV1naToL9g/G9ZJbIqNtzcNMu6hFr1u6NLeZhaBF1wwHrqQiGbQDQgghhBBCCCGEEEJmAXxRRwghhBBCCCGEEELILGCBLiqdxxw7Fnd9LeH+CCC+57t1nYGVDcszaUS4ZLXXjLRTt54vUj5yqX2qu5bOh7hvZCR0ZzDdemPxW5T1jUy8ruEyWSbSFU27KBhuOdo9QBJ12TTqsKMjLONkRBxtyjUSQ+VcXmJmd+xYeJ0+T4mv2fkYukkGdlbErVS6g6W6uxbxMUp1+7TsX4YZfdGoqFPLo6msy4VlntJltjIVCaS6ysRc+NSp9ODTtyWXnXQV1Rc+8EAY1t+fH2u3qJirYUMhV+Nhqa7TFpY/lVGuUfssko/UMFk+Rdz2RH9d0X13pG8t4r0sXfV0XyddYVOLscH1tSuel2jfkeqeZWVM++cuWtT8GChnZ2WvS5WeUNdJ93d9i5RnSI1eZ3G4LXdtq9aMNpSKNd9Rdlyq27XmMWWRbs/Kfd8ao2SfrLORWnTdfcY8vsyzaUMw4giCrLSN8Vzapx4m5LnlnW59TbCGWBm/5VKcbMZWGRjuoabkjrh2cDAu7yHzr7zwbVLlLEq2k5SpqPeloiZkzsEXdYQQQgghhBBCCCEzDF0eCUA7IIQQQgghhBBCCCFkVsAXdYQQQgghhBBCCCGEzALo+jrfGB3N9Qmk6AsQisJY4gqpuj7WdQW0Ccrc1rDduXVxTFipiLhOGV0ZS3uonNRZeZ3BFsQvo2zQKZPlJcQuDg2FNdNuiH/YkmbNa7jhU5GPoaFQmyN5K/rAIJVGnYhE26AlXRULK7uzvZY9krpBkgYz7hAaafHoTeRzJ+vVlaWIxlgJ3a+yMp6aMt1Dgy6l9WwpEerzVG0y9bm8Tev/SLk5HSZtculSEaDFgGQ9HTwYhlmJy3zGhIiA9FlN2cq3hPrkuFpWKzUWn75W902xvjVVK68AlvZTWQm/WJxF4ujtzbXPzP4tVSg3NQ4pvqfPtY3LeVkRDc4YRe4pUd+6b0vVsio13upzHUlqu5GZLiS+FUG3Q2v+nIo1F0LetnU3uG1bfrxqVRgmp/jSLPRXgd7ePP5aLexHSmmnluxHkuNU5b13Z368Y0d4m+w7pHSkLsfUpDVlZKK1qVZjF+pzS4cuUa9U988y/62QWiytN5wYJTXqyEKHL+oIIYQQQgghhBBCZhAHujySDNoBIYQQQgghhBBCCCGzAK6om88E/kcKa+m+dhUQ58Ni0XbV2pJdLYeW7nKpHkd6iblcxq7DurqEy0vqem7LNazIMnNZDvLYWBI+MqLcllKJbd2uGFVuUZXYtUZlVEaGg6COjmrT6wAEZTnc1i6uU+kZNpLsNSzCOg23Fh2UvMxflJU2EekmYpmPzr+0XYtUjyzp4tLsfAztIiup1dqD82pNuLFadjGd7q6m65+q0Fg7RGiTgwP5561wL9aUdiex/D1i11luJ1YfluiGosvAejY53HTWRN+h/a4s19FU38gybsKashUlG7M2ipLyDwEl3Z0Cl/RUiQqNbDfaZ0qkXR3ZP3589GhnNHodxd698WzIqpcu1jqOFSua3wMA69blx50die54ZSUwUtvasmVhmDUvawVl2oO6R2a/2hb29z098d/3ZV3Jrlt340GcZV3QrXYSu64AwTinx5ORvAx0+SQjZTTUWCzHKMu1XHtcy0eV9+kisMa99loLXF/LSrRE6kqWNxB6k+vyiakiWHNKPVeU9qofLVZ2xtemRhtJHScSbVzLsEhZhFbJewSUcf0u4OZf68jbQ8xEKlxmRBYINHVCCCGEEEIIIYQQQmYBXFFHCCGEEEIIIYQQMsNwJRUBaAeEEEIIIYQQQgghhMwKuKJuvlGp5KIKlihDqubaRNdGrtOaCZYskcTST5A6XFqTK9xyPNRnq8a0q1J1oCYiJoRhPGhLdCI0hrZae+y5LQELFUlFmoUh0GYVQa0mdJQa9LUQJVqUhvhKoKkHU9JP5UNmJK4laNWh1qSTUlbSdpcsCa+TYVbzLYuWCwsQdaPb0Kz5RcdqvzJMaajEdOmsMo7p/gF2/Zaup7K6PrEwrSMjy8fqhAVagi352aRwkBQUAoCVK/PjVB06jZGRIGhoCjra1atF/EY5WvqBLcAqunYpkGTlUdtIqo6hsCVtIzJpS8pImgEQ6tfFsgSEuly6jUptO91rdfb25idSyMrSukztY7SYowxrHATj8ZfpPKx2rgY9OS+T2bJ0uNoR5r9TZrFBZzYfN2S29GMGeopG/ke7uoOg4FqrDsV19+8I7UCaQare6v6hcDyU3Vtvb7nRcagt13YcUTpr0o63bw/D5GPr8VzKH8o45D0A0NOTHzcWXf48sqws7tkeloGcexkywmb/s38wj3NgR3jZjh3NjwH9XSA/1jYutS5llw6EedblE9Nh1PF3duS2pTX2qiIBrSctqRhjtqWTKNvXgQNhnNYcM4q+UD542XHOiEM+T1dXWHZjXa2lv0zIfIIv6gghhBBCCCGEEEJmmFnzAzmZUWgHhBBCCCGEEEIIIYTMAriibr6xaFHc9TXVrci4r60WX6Y91Viui6ZbY+y5re3CrW3jU5d2J7qXFWJKfGYjWG44Rj7a24bzk5p2oRRL9BviyK+1ij90bVNlLP0S2tpRChFnTbnPVkbyZ6uVbAtyyb52G5PnVvO14ozFB9je71WIetNpyXK2/NlajdVGrTBFrZa7GcnnHlQuR6nuFKVdQiWpFZzcGIw4gLgvWoE+xbpNumF1LhX50n7CsZsmyst09n0W/f35sfYpkwORNi6Z/1SDKfDMQZSWz5dEhyW6bB5CvG+VSWu3N5mcZRYyDt3WUj24G4quI+K2arm+amKurzqT0r/McMtsoExHovMrHnxYSTfIMpEucaaZ1RJ9/xDWh2wauilI18t2o/z1fbVabnfVLhFguObt2BIGre1Nc3eVhC7VwM6d+XGqe6hGumxaXbzuYqQrrCxHANi9Oy1tGWeyJIiBLh+J5fraYJ8R+9FloO1CEpuq6zK25CpKKAAErrQa3U9VO/IETO93Y6wPTlUBhbIynUFYbAxPdQMvjfWghot+TH3AuVZmjpDZC1fUEUIIIYQQQgghhBAyC+CKOkIIIYQQQgghhJAZxIErqUgGX9TNNxYtypf9F9mRTmKshQ+WR1tuV8ZORuZtLbBIvVS6GnNXKbLjmrUW3nKjiWaspAux5Xsm0m7IRswWjN1bzTDDXUW6M+gdp+TQo11erKqPPXZV26pwAehSbiGVoUMyw0mJNRZx/mxDgzqseR51mPSKkru0aVrRFjSm+XTEbVK6augdnSVm/5CK5baX6tqp7tO76o2hXV1lfeikLFc9SWo30rAjaaxyLL8ca9fOkv48sui025Ll4hQgXXH0rq+yX5FbeAKhT5Puf2J9mHoW070+uXIMjF01zXqLbX2e6lulrtUyFEE01raFgmElDyCLv7srTFvuMij7Pstz1ArTjxbbZVlfJ8/1jpjSnVC7xw2KXSR7enJ3sPYe1YZkQapIgvIS7vQN45D0h9RhfX35sXqAYDdUJGL4FuomI9uvfDSrjDv6tPxDvHy6xC6tlh0EO852hTYoo9cuj3KX9JUrxX0q/r3CNVXvChpNzGBgICwD2aWV3JzaLH+JZT5WuVpjveV2K83ptHXx3UQlW7fG8yiPNbr9xvKo27LcIdrq4i03fDl06jDLXTfc8Tc/1vUky0qPm7Iv0vmXNi57geXLVTsR+eg0vpPs2xcGSRvRrtPJiPitXWslFVVA+0fy5zm8M7xW7ggelkdezhW+xSILBL6oK8hjznvMTGfBZGmFe1YTQgghhBBCCCGEzEX4oq4gG9+0caazYHL3+/9vprNACCGEEEIIIYQQQkrAF3WEEEIIIYQQQgghMww3tiUAX9RNG7decytuu+Y2VBZV8PBzH45zX3IubvzIjbj7h3djUdsidB7fiSde8UQs6ViC7bdsxw///Yc4NnIMi9oW4bxN5+GER5+QllDb4lxgwdL4sYQ1dJgUZbA0hIQgREUJX7TX8nOpdaOTsySWKiPD8UCRr6rWbZKPY+k7WeUj9RUSdU0sMb7S+mPGjVITo+GymGCJZSOWmKAuO1E+1ZFcCy7QkdFRKo2uai3+bCMjzTU9tC1JtYzKwJ4wEvlsUlxEIzKZWtUTXRsrOl2MUl+rrS18tka9v5zly9PyJM+15polaTki8mLp6bSa0Y7O4DwokQL6Y7qcY7e01/LyPzQUlr+lrxXkUfRTDeotg6KQG0W08mP5bDoxqw8T4jrDKnWpK9YpRXhUOcrkHvlIRMN00oHGWCBCpfIvb1yzJgyTz6bbqAyT4jpFRE8t/cNE7tiR22RfX2if7RA6mI3CRPmxNdYkil5VusKgBp20OocQ9sEyaa0RJTXB+vtD+49l2aomrU8l25d+zkMj1aZBWqdM5kNrY23Zkh9rnamYVlZPT/iccq6iE6+KSGX/UF23TkeaH/f3B0EPHs5tZk1X2AcE+oqxTkuxZyS0we62PA5dv/Jcmqc2HZl9bY4n94iLVR/W3pH3fYeG8vq06tDqBi19OasvuvPO/LhBB63IoF7n1lvDc/k8F14Yv89KStqqzv8JYrpvxaE1VmVbtDTqZP6LyHgG9inYti08l88TuwcItdoA4PDh/Fjap65DmWc9hEh9M5kP3U8tW9b8HgCotsXzLNu91Z/9cltu/9p+rKFH9lMySi31GujL6UoUDWxkJJwHWN+xJJZe5p7BuC5dTMt36dJwHJJlovsAWQa6rMbqyvEtFlkg8EXdNHDs6DHc/Mmb8byrnodqexWfeNkn8OjnPBp9Z/Xh3Befi8qiCn5w9Q+w5XNbcN6m81DrrOHX3vRrWLZqGfbcvQfXvuVaXHb1ZTP9GIQQQgghhBBCCCFkCuG+KdPA4YHDaO9qR215DQP3DQAAqu1V9J3dh8qirAqOO/04HNyd/WTSc0oPlq3Kfu5ZeeJKHDt6DMeORrZEI4QQQgghhBBCCCHzAq6omwb8qAcccMtnb8Hmj2/G+qeuh6uE63Zv/8btOOXCUxruveuGu9Bzcg8WLU7czXVxW5rrq+Xnpn1GYtda67eNNdXWcmsZZi2Zt/Kit5CvxHzWrDIw/QDVMvPYXu6Gy1rphmf4BFUsV5lUdw8ZR0mXMulqdWBveNnixflxV1e4FD6ob5XfNrEFvOk2HHMf1GGW66u4rtYbuhVZRSBJdW0O3LlVAu0N7au5+y+Q7pktw46pd//S7USHSRcbq9nrticx23OkwLRLRK2W14d2TwncoBPdeaxn0WFWlxBQ1jW+jHu94fJS7Qjjb+sQ5bNd+BWpB6sM7h8/Xr48tP9IUgBUeVnu9bJStT+P5ROXXAGC0hoDcVasyI/b21T7HRB5ttxurc/LuueKMr9nIK+3Bx4IL5N9sPbOjUTXkBUZ1t2l2rUYl8IeHsBg3B+vPaIJoCUA5LCnhzwZps1Hus9ZrrUbNgiXL1U392zPw2TZ9fauDa7b/NX8uFYL3cQCL9kOVb/SH2zDBsSQ/ayuw+6abCdhDcjnln26NkFZrg0maLlti7D2tjyspyfMh3SVtFwvpXuiRo5RcuzSWTQ9iBP9PvUUL7Vbsa6TrourVoVhq1fnx0uXxuPQzy3vs9qCNU0K3I0Ty0fbYIO7sUTEuW1bNRYUxGllQ7utyqmdrDc95QvmD9ZYoxpATcpx6M5D0NXV3TQfOnrLLVlmS9uxNYWVCXQo+RD9qGWwFJBiLteBqy5slR1ZXrrsqoOZpI07VtyFfS7hACR+6yfzHK6om0bOvvRsvOg/XoTBhwbxs6/9bPzzH33mR6gsqmDdRaHOyZ579uAHH/0BHv/Kx093VgkhhBBCCCGEEELINMMXddNMbXkNpzzhFOz6RfZz0R3fvAP33HQPnvS6J8EJdczBXYO47q+vw8VXXozO4+OrGgghhBBCCCGEEELI/IAv6qaJwV2D4/p0D93xELpO6MK9N9+LLV/Ygl9706+hbUm+9vfI4BF89W1fxWNf/Fj0nmGtbyaEEEIIIYQQQggh8wVq1E0TlUUVfP3tX4db5LDi+BU47yXn4fOv+TyOjRzDtW++FkC2ocTjX/l43Pbl27D/gf245dO34JZP3wIAePpfPB1LuwyxijrHRis4VN+Ou9YR6j8EGmaGtsIhtZ13u5RosMQ/EsWx9NvhakzIo4wmUdNsNNf2amsLdVMCfTxLn80S77EEIMTztHU0qPcUx6jDBmSeZX4tfST9nFYZlNCC0tUbtTMAVRkm0mrQRJP3aeEUGbZ+fTxjog4rQ4fCfIi0q7XwmcPt7A09tiCPA/HrVJlKDadRZT8yn1YeZVs4ejQMkdpVWqOuFSSXj0Br8Eiz6+gI696QlTH1D2ORVFQk7TWjbcQyknodENZ3WQFEERZo9imifS4QtJt2hG1o/fqTx48t+wmeTQtNyXKN6XsWCStSVi3QrNu3Lz9euTIcK6uWvlzqeJZqB0YffOed+ceB5hRCrSCdJVmsOvtS0ywY+nU/K8dAnf/E8VE+W01oPel8aN0jmZwljSjLRGdJDg3Vvr4gbPuN+fHWrc3TBYCPfSw/1uW4aVN+3HfJcUFYVWRs/2Defjs74v2l1HsDgN7efGzQUwRpMsuX58eWRt0iLZRkzQNkguLB23vCQtC6g2FYfqz12WRyu3fnx7qu7703P9YaZskiriIj+hZZPtZUyAqTcUhtOcCeoi1Zkh/LvggI24PsdmVZAaHNaz25oCytshIZ0111VK9UYU3RYlNWINRn019DYvpm1aH94YWWjqohRhzoChtCax2RfADhc+ukZZjuuyWyazqxTy3oEJHoPtLUn4yhnk2OL6lfIXQ9xdoCEJZXgw7smPGOFtAwn6NwJRUB+KJu2mhf2Y5L/+XS4LPnv//5Ta8953nn4JznnTMd2SKEEEIIIYQQQgghswS+sCWEEEIIIYQQQgghZBbAFXUFufYN15a6b9nyZaXvLUJ3R77O2XIBrRprnhvva+7qoF2rQicgRapLpeX2I9NWqQXRGx5llntcuBW6ir+Wn2u32NE2EWa5dYn7SntgpZajJuZLUcQ1zEo7uC4tCpPEC3U2glprgZub5ebc4HZbJJ5J5sV0HTXcNiykK6N2x4h1F2XdflLL7sgR+zxGg5dhTfR9rbALi+R2YrS9sq6v4sGrus5koUgXNcuVvzd0qRkabH4ZoNxXZJyBTyxsF9Ayz13Efb8FrBObs1cGlTuVHESM/r90XRuuVuGz5j2hdl2U9abrUGZZuyPJ86D/2aZ8R608lhhfAlczhO7GyjM1yGOqW512r5dI91MAuFG4vmqXU8mWLc3zBIRNau/eMGzNT3+an/Q/avywyFgj69SqQ8sOpLtcQ5XtMHwSLd/jhHzoMGuKI6/T5SiboWyvExJplxs2hJelqodoZLvZuDGv0/YR1Y9YPomiEFauDCUwqiO5BEbH6jxMd8GyHLV7tHTpTuWBB8Jz08tfJL5zZzjPlq7Oshy1++aaNfmxdhuW17bXRD9leN2bMgWJdaGRdbFuXVhPlgqRnIfJMMs9tCEfIv/9/WGQdKeVbtQaGWVV2bR0q9a2FRt+tQKG7Lt1WODuGvPf974hz4TMR/iiriD33nrvxBfNIC9/+StmOguEEEIIIYQQQggpCF0eCUA7IIQQQgghhBBCCCFkVsAVdfMM7/OVwbbbgFoyL5bk613QOnubL/3W7gbSJUW7nwarx9vUbrQi7WBnSMOnYHAgGtTgyiKXZltL8uWSc9tjLcx/sEQ8lqlWYbmWpLp5lXV9LeHvoXdts6IInkcbYdR119g9d+fO8Dx1K9NE9+IG+5RYdSOfrYhrnrXjcoRC7rmCqfYOLUuq55/l0tHW0XwXaEBJAmgXd6tvChJogQur5W6TWjmpuzZb22OqsLXSj0bnMRandgFN3TLR2krQ8tubLeh8xfJs7Z5u7Zpq9MHWhrlW12Ht+hq4uybmY6qx3Ca1x5QMk9mXu58C4e6QI22d0fTkfOH228M4du4cEsdh2OBgHsl994Vhax58sGkeLRPRrp3Vtrye9M7Y0sVMjs26HKsQrmdWR2uFGbvDLlqUz5R0FDLtxl3Lcw6viPfjsv83u4dEWzXdDkvSDrGjvGWsBtWOePmHLuNxYZpC08hI3Wv3x9RdX/X8UM7dpUurriZ9nyS41tqhuKwsQqq0iGjA7bUwrb6+vF+xopC7+mqTCHeCjksktG+/Iwjq6jktnmAEPY+UdWPtDi6lSrSLsrXrdFSngMxbnHMVAK8B8AoA/QB2AvgMgDd77w8mxvF0AG8C8GgARwB8E8CfeO/vUtddD+CJRlTf8N4/JfH6x3rvN6fkryyz9OsYIYQQQgghhBBCCJmnvBPAFQC+COAdAB5RPz/bOfdk770hzA04554N4HMAfgzg9QBWALgSwPedcxu99/eLy98O4INNonkegEsA/HeTsF0AXtvk819a+WoFfFFHCCGEEEIIIYQQMoM4LBxtMufcIwG8GsAXvPfPEZ/fBeDdAJ4P4BPG/YsBvAfAvQAe770frH/+FQA3A3grgMvHrvfeXxeJ503IVuJ9rEnwQe99s8+nnIViB4QQQgghhBBCCCFk5nkBsneT71KffwDAIQCXTXD/EwGsBfDBsZd0AOC93wLgegDPq7/Mi+KcezyA0wF80Xu/J3JNxTnX6ZxzE+SnpTi/ALc4ds75Ms/tnMNsL69XXH453nfVVTOdDRNLNyvQwZlntPq5y+qPpaZVNv7pRD9LoCNW0pbmwnPPJHO9jc6W+p3ucizTNqakjymjpTmLaEUfM63YgqvJ0cSeW9vIVEsKWVkO6qMVGbE02FKva1VYItPZv83WuYRln62ea83FeUZyO0m1QUv8uSyJ+q5TUY4taIbTijUPnujaMqSW+VT0D2N1c8EFG3HzzZun9YXJdHKGc/4/ZjoTLWAjcLP3fqN1jXPuawCeDKDde39EhX0fwGne+9VNb86ueQOAvwbwFO/9N1TY2wG8EcAG7/1tRhxXA3gJgCd777+pwq4H8CsAjgJYiuzl4dcAvNF7v9V6tlYwB7ogQgghhBBCCCGEEDIH6HHOyc0W3u+9f7+6Zi2AXfolXZ37ADzOOVf13g83CR+7f+zaZvcDwAkAmr6oc851ArgUwF0AvtXkkrsAfB/ATwAcA3AegD8E8KvOuQu99z+N5Ksl8EUdIYQQQgghhBBCyAwzO3w/Js2uiVbUAWhHpg3XjCFxTexFXXv9f7M4htQ1zXhBPfzDzdwtvfcvVR99zjn3X8jcav8JwFP0Pa2EL+rItDMn3IUKEFu2PRXPOVvcWmaL+yCZ3xRxW5otNmm5XREy7cwBF0qL0q5n1o0tcgeeFehnaatOW9KtcCslZJxY25vmNjnXuoC5wGwZT8is5BCA4yJhNXGNdT8ALCl5/8uQrZT7iHFNgPf+u865/wFwsXNuqff+cOq9RWHLIYQQQgghhBBCCCHTxf3IXGSbvWg7AdmqvNhqurH7x65tdj/Q3C0WzrkzATwWwFe9902vMdgGYBGAlQXvKwRf1BFCCCGEEEIIIYSQ6eImZO+jzpUfOudqAM4CsLnJPfp+ALigSdj5APYDuCNy78vr/z+YklHFqQBGADTdJbZV8EUdIYQQQgghhBBCyAzikL2gmet/iXwagAdwpfr895Bpx318vFycO945t945JzXnvgPgAQAvd851iGsfDeAiAJ/13h/VidZX8L0QwIMArmmWMefcCufcoiaf/waynWCv895PwbbXOfTEn2d4uHEtAL1jupQyqdXCsGpbri1yz/awefX15ceVkXz16Z7BUAulqys/1mnr9GLIPFoyMjt2xOMfHAzDOjryY5mvZcvC65YubX4PYGuvyPSC+3btCuMQmRyudQZh1cSWWNlxf36ihTR0piXyWnmsC9JCVEhFV6gI29+xttnHDVnU2Q/KWN04jNzWZB3u2BHa6mm1e/KT669HlMsuiwZVBsSPI6pMZT60nR0Vw8Dy5WFYe00828BAPF8SXUCizA+NVGNBATopWXY6TCan268shv7+yf++k6o1d+edYdjISB6mn1nnWSKvlf3UUTV0rxYbwOv4Yk2oAXFjxYrE6qDldfpBrc40FgeAijTYrWJH+b17wzjuy1f/N9T0+vX5cX9/GCbTu+WW/PjYsfA6OaCoPjKoHP2cMj0RNqo0uax+pBXiQ3IMNBtYT08YJq+Vz6b7baMOg04n0S4e3BnW4hEht/zAA+G1st9atSoMW7NSPPf27eOHeiyoRgfECZDxiOP9Q6EGtCzGW28NozhwIH/WffvCsLA6cpuRJg0AZwz+sHmeAPzXtkeNH2/bln/+b/8WxrF1qxs/di4s/82b42PIE67+/fHjX77pw+PHuqmFJqLsf9svx49H+08Ow0TbGBZ9aVVrdEs71jYoO2Vdv7K85HxBtmsA+5HPfxrmWnL8VffJfI3WcrvYuTO87Lbb8mfTUZyz3hgoIv3Dzr1hGS9enB93dMTHQ2uOUxncnwdYE2Ydiax8o33tH8zzpad5ct60dWv4bKJp421/Zsg6iTy+8a/aY0F48x/H43jbP4b3yWJYt67550A4hOj6lW1FFk93h7Jx68uG9WVJIscvHUekP9MZ03O59rY8n/fvysP0c7ZLyS2VdkWO78p+/q92DppxxvpwTib7B8sEq0P7w0BxsWyjlV0PhdeJDrlB61L2AaqTrNYTd8OxvQfIXMN7/1Pn3HsB/KFz7gsArgXwCABXIHsJ9wlx+d8AeAmAi5Ft5gDv/VHn3GuQvfD7rnPuAwA6AbwWwE4Ab4kk/UwAqwD8vfc+9sbhYgD/5Jz7bwC/RLaC7lwAlwHYhcaXiy2HL+oIIYQQQgghhBBCyHRyJTLNt8sB/Aayl2DvAfBm7/2EuxR57z/rnDsM4E0A/hHZDrDfBPCnhvbcy+r/P2REfTuAmwFcAmANgMUAtgO4CsBfl9C1Kwxf1BFCCCGEEEIIIYSQacN7fwzAO+p/1nWbAGyKhF2DiAtr5PqnJlzzMwCXpsY5FfBF3TzD+7jLqLXSW7pe6rDQkyVfim0t629ri7sDaLc3uezZcne1wqzrZP6tFe3yeSzXPCs9uUS/vfHSptcBQLWAh9A41gNYS/ll4tr3xipky21MxNPWlbu+6luki7WZx4a0c7s7LDbBbrjFcrVKNSARh3R1nSgK6Q7TUFSx8rfcJTTi2gZ3J2Gvsj1p106Z9IEDYZjMv76vBR6Dychnka6u2XnzY8B2fbU8TltB0F/IBCyXJh0Wczcr4pZjhUXc0gJfSKCx8iWWIcgw6e6q3UOlD6IOk/49um+SyLLqCNtCsn5CK4za8gmy6i3WH+jzIv7dIi/SnWr37vAy2e6l+yYQyj/opBYvzuPs1n5YEqvMUxupOD6s+ilpMto1XnqiadPq7c2P5TChPZTRJz5Q+Y250B9/fBjF7t15Z6qHJGnWDcUhMhObt+jzYEwFgge35lrS4335cuV+lyhVUrYzlWN4w5AtXee0S5yoAPlsy5eH18l6srqzBiy3c4HVRJO7lVSpEuM+6d6qkW1BKwzIdq+7WS0Jk4JsW0C6oorOl6wr6YKr27I8127hsWLt7irQV6f2U1ZfF+ssABwayutNP1utV41ndQL5FADYZXQkMlLl2z8gyjVVkkj3I9b3O0nwfUhVjLRdbYNre8S11he6eQ43ESAA7YAQQgghhBBCCCGEkFkBX9QRQgghhBBCCCGEEDIL4Is6QgghhBBCCCGEEEJmAc57P9N5mHacc77MczvnMNvL6xWXX473XXXVTGeDEEIIIYQQQghpGRvPPRebN292M52PqeKRzvlPz3QmWsCZwM3e+40znY+5DFfUEUIIIYQQQgghhBAyC+CLOkIIIYQQQgghhBBCZgGpG4kTkmFtR568L33IqHhfrLcBn05Gp/i9dSuebXgkLY+pVTEV5d2KcrTMLJVqW7lnSy3jspRsJi2hFc13OtvoVLfJqUCWj5X/mWx7qe2riK3OZN89naSWcXJ5TMGY2gpSbXc2tdGWlLlEl7+8Tx7XauF1Q0PlwmScqXWvn8W4r9V1VbbNT2c+dFpl8jwV/fhMtpsgz1ZbsMKk7Uqbtq7T6PtitjuNNj3facU4zTInZPrgizpCCCGEEEIIIYSQGcQBWDTTmSCzAr4WJ4QQQgghhBBCCCFkFsAVdfMMDze+LHnaXZHKuG1g5lympnr5tvYaqLK1kRlmJt1uSeuZ7j6M9kNmE+bcoax+gmXkqQ2gFXGkUnKu1Yq+oxVupUUo49pcaUF5z0W3/uS20QqdkVZRwiVdP+dcc8uc6vzzewghc5u51aMRQgghhBBCCCGEEDJP4bt1QgghhBBCCCGEkBmGK6kIQDsghBBCCCGEEEIIIWRWwBV184zR0XzH85GR8D2s1Cro6Ajvq7blOgn3bA/vk9fWatWm8enrUndd11gydzLOwcEwbJHYHufgwbS0dRl0deXHlcH98UjUw412def3DR0aP65u2xbG0ds7fri/rTsI6uxI00Cp7rineYYBjHZ0Ru+rjAznJ/JZtm+PJ6YrWJ6rtGWFDHSdPH6s7aCnJx59rZYfS3sEgP2DuU3K+3T8a0dE+dx4Yxh49Gh+/IIXIEZ1cE9+ostY/Lah05bn2uakrQV1MTAQXihv1JGI8+G29uhtVvns2hUPi8UBhPk/sS8/bplGUaTha/OUeVyktsTaty8evbxv2bL8ePHi8Dr5nJZcjlE1QcFWLJE3XQGyU7M6TGmTtdAOZPnLNgOEz9M9dH9+Io2iWb4kZ501fjiMahDU1panV/nKl/MA3Q+eemp+rCt4/fr8eO/eMOzMM/Nj+TCiX61nBFFaoFe1c2d+vHp1GFYZyPsOOS4AQGXXQ/mJ7Ow08tn0dbJuVNiosAXZrezYEUYhb5PPAgDLl+fHfX1hWDBeigQqZe1YIxMQx4cQ2rg01zvvDG1cPvfRo6F9xjj++PD8Cf33NL8QwP9sO3H8+NZb8/i1iX/qU3mYLp7XvS4Pe9azwrDTdm0eP37wlMeNH2s7kyZy551h2Bl9+dzlwcPhnODYMTRFz4WC8Ur36Vu35sfWQCcNTV03MJLny5qL6j5Mri2Qda2H0W3b4nX/mxftj4bF7PWGLe1NPweADRviUVjjhKw3XQZybDtyJB6HbtuyK5Tzf93F79qVl8/27WFZyeZ7xcsPBWGx8vm794TlI+fgb3vTMGK88a/i8xj5LLoblGG67GJha3uVHctGpL9QyHOrccjxS4/1cpyWE18Aw6Ju9u4NbVzOSWS/ovsRaXedQw+FgSJfu3rPCYK2bs3T6+/PPz+5P66Vp/sAOW6sWR0vVzlHCObVAIY7upvdAgBoHxFtVNfNWEHohkHIPIUv6gghhBBCCCGEEEJmEAe6PJIM2gEhhBBCCCGEEEIIIbMArqibZyyqeLTXmrufyeXWRTxS5MpjebxkSXidXL4svQyBRhezFHQeZdp6qbR2g5PIfC5dmh83uJtafoFyubvyswjedstMGn4Jhw+HQZ1qdX0UGb92Py1DqgtWs/NImCw6yz1UJx0sr1dpSZdrk11GAmX8r9UDSFfGdhV/rSuex6hLqM6TjFPnX6SdWjU6eun2qaO32pBsN5KWuLoaYb292r0ynvbixXlL1P1PeB2i18lsFTF/ma+OjtydJ3BzBjDalj9PxbLPxMQaPWubu4gDYbfV3SdccbRrSSxPAPYPxaUP5KWdspAtFxXdEVrPLZHt0spIanwao6+QLta6XXSKOtVJV2OugEZa0l4ABK7OOv7BgfxYDg3WWGy5v5v9c+wmfaMOs+ojct+QMk8ZhXbdla6dVvOSnmgNw6i8UY312h14os+BxjJeudK4r6N//DDW52p0ER9qy91Kd+8Ow+TjWFIooftg+Hu+tHGz7YlItR3vEm6funxqtTw9PYWSycln0XHIMO32iScX7x+kt69Gu75ayOSkW6P23pc2qd16ZXd9771hmCx+2bVqO9Du0hJtCyno+b3VHiTr1oXn0rSs+b70ONVlF8v/oaHQjuWcsmEstjR4Yp2k8Z3h/h1xGQo9/MbUMRr6e3Ffpx5CRCS6Dck+M/krhEr8yJG87KxyDbKl4pCnBw6EybUvb96PALClOQiZh3BFHSGEEEIIIYQQQgghswCuqCOEEEIIIYQQQgiZYbiSigC0A0IIIYQQQgghhBBCZgVcUVeQx5z3mJnOgsnS6pKo5lCgEmJsJa71JWKSAO1tatt1oYsg9fCaJZeCJQ1hSchpvQwpIxHo9+lyahAziSSu74vpvBURAkxFpDVc6wyCtJaPpFNm0RK+sCrKEpgTzyq1zorIxMnt4KE0baT+kqRBi8wSH0o1QqmtIzShAKAydEjkMXwYWzZLtof82dq1/obRhuR9ljRQK9BtKDn+sppgkTiqNUOoUmWqpuoqhiUPlvqc1nWWbl+gWac7MUuURxJoeYXtREapuyl5PixsqWppjKk8Ws8dhMk4tI3Ldrl6dTxtK1+WhlAqJe+T+ki6f+voy22wqu0gNpAadd2gnSTOdb0Fmkvb7xk/XqNFnGSWuuL2o9k/mPdHnaIOdT9VhbBxXcaWgKmwE6l7ZNnxwYPx/OrHlvqcp56aHzfoNG0TCSiBsJM35P1/V1e8v5HaW/oxb701P9ZzqP8bWJvHIYYy3adYWpTSPuUxAOzdmx9L6UhLBkrPBzsNvV5Z31LPUmPIwAZR6vzLa7W8ZSwOrdEVkNgHWHFYUVjjtIzT0h/TRWxp81llkkpQ34kDpJx2AUB//8T3AMDGjfF8yLrXU3NLSzY2TbX6tnZrrLEwrtszlPcPWuPQklGN5VnnX5bJ2vVd0QQGbw2Dli9vnpbGmsdIG9Ra5TKfsquoqk5G2r/u4xcvzstOV01nXz3T1UTdakLmOHxRB2D//v249tprcc8992BI9YbOOfz5n//5+PnGNxkjyyzg7qt/MdNZIIQQQgghhBBCCCElWPAv6r7//e/jGc94Bgb0z1Z19Iu6stx6za247ZrbUFlUwcPPfTjOfcm5uPEjN+LuH96NRW2L0Hl8J554xROxpGMJhvYP4bq/uw47f74Tpz3pNFz4+xdOOn1CCCGEEEIIIYTMXqhNRgC+qMOVV16J/v5+fOADH8CZZ56J6hQspz129Bhu/uTNeN5Vz0O1vYpPvOwTePRzHo2+s/pw7ovPRWVRBT+4+gfY8rktOG/TeVhUXYTHvvCx2HP3Huy5e0+xxIaP5GuKrTX5xprnwL0PoUtZsODQWNevk7aWqqd6Mcm0tcuj5SkWxGn5hsmwIg+Qul24jFO7bKYil7Sr7Msy0S5Bbb1iy3ThLlftMHwuNLF974GgTLTbZJCPxPq13GEkDWa8uis/1v4YiUh3V10cHR2RtoBwi/ljx/R9+XFg7x1hfzNilIHlLhFDXyfdnSyXC+keASgXrRZ4tyajfV4M9+u2rnjdyGfVrhpBHEYZp5a55cItqXQYfYzlZi7ORwwb0c01mn/dKGW7UZFsvzM/1q6FQTbLduSWxIDEchMu01A0Rv6la5juYgJ3IW2EVp2WyVfDGBVJy/DbW6v8GqUba3UknAdUO0SeRfmPtIUSDFWRLenCmiHcRZWr+i7h6paY/Qaky5122ZR11d0h+rNBoxEZ9dTdJepa9VPdffH7enpEean7+vpy19fAhdiYqp+xPnRRky7KK1aE18p5wc6d+fHKleF18rEbPKd3jTS/EAj6i5HB+GUyTh2WOpezpiNyvnDjjUYkFiIj69eHQalTRSspaaunnx6G3Xdffnz99WHYli3xOM8/Pz+2pj/SNVsT3KceQI5tsq/T8ck4Ro3XDbqNSqy6ls1G9w/yXN4XuOMinAesXh2O011CEkAPUQdF2r293ePH7bWwv5TDu35O2S7lnEznWaatrzPNWDQqPd9phWqEfJ6gL9XIhqIm8X19J44f66FeyhHE5v6ELBQW/Iu6n/3sZ/jMZz6Dxzxm6rTnDg8cRntXO2rLa9hzT/birdpeRd/ZeW933OnH4a4b7gIALK4tRu8Zvdj3wL4pyxMhhBBCCCGEEEIImV0s+Bd1J554Io7onypajB/1gANu+ewt2PzxzVj/1PVwFRdcc/s3bscpF54ypfkghBBCCCGEEEIIIbOXBe8C/Za3vAV/+7d/i/379095WmdfejZe9B8vwuBDg/jZ1342/vmPPvMjVBZVsO4iYz06IYQQQgghhBBC5iUO2Quauf5HJs+CX1F3zTXX4MEHH8RJJ52ECy64AN3d3UG4cw4f/ehHW5ZebXkNpzzhFDy49UEAwB3fvAP33HQPLvmrS+Ccm+DuBI6N5roAlgBBqoYQgEqgPSe0HLS2i6HnUkYLoYi8kCXdU20TGi4yz5aQVRF9v9h9iVvbF8LQAbQYMWRlougLLe0nERbTYwNUXajAEcT1vGLFqrVLAg2VBnGdNCy7C7esD4chqc2XqtNXxMZTr7XsIqZ/AoS6dA02MtQCYZNWYGhFStvq6grrRuoHyrqxuoCy/U8yZUXwEvOh24au7xiHhObYjm1h2N69+bHWQJLZr8pAKTgDhMa1dGkYJjOthWvkfan9rFUxlradgcyG2ZemapdqEo1Qaz8F2Zf36XKUFyoBoKqsK8scxYMf2BsGta3M+3FLX0g/mtSdklnUxShNRFfZsmX5sdZnCzTlBkSZFElAIh9OC2UNxuM/cePG/GRXGFaTbUrepxpzMA6ptDt6c507nX3Z91lzguT+TN14aKR53RtSdoWmWrH+TV+3aFF+3DANSO0TxHW6C5P6fq0YDrVTj6x6q51o7bPUIWTVqnhYGWlfXcapcWh9s9G25tpwlmZxqpy07ouk/ehhSGLFL+cV7SvjhqDjkOnpuaLMVzBfVkg9UWsuofUnrXylXhhqfBrji/GdypRbjcj1AsBwXdfZowXflwmZAyz4F3Xf+9734JxDZ2cnbrvttobwlrw8AzC4axAD9w2g64QuPHTHQ+g6oQv33nwvtnxhC57x189A25IFXxWEEEIIIYQQQgghC5oF/3borrvumpZ0Kosq+Prbvw63yGHF8Stw3kvOw+df83kcGzmGa998LYBsQ4nHv/LxAIBPvPwTOHroKI6NHMPdP7gbT/+Lp2PlicZPI4QQQgghhBBCCCFkTrPgX9QV5do3XFv4npHhERwbPoaOFdma5pEDI7jubdehc1VncN2Bew+Mx9+1uisI+99/+9+ktHqWLM/XERfxKZDoLdnFcvQRsQy5OgUucJZboOW6VWrLcV0G0r9Bh8lzy2XK8j0TWK6RqRTxbI6Va7WIz4tVOSIey22jVhOuqXopvJENucW8LLvULeonvjgN7W4WS84ykVT3Sm3vyc8dSXeiMHleGQldUpJ9p1vgvmmS6LYUuOgj3t6ki5SKoiUuTVZx6DxWYj7jRkZ0kHSJqyrfxeXLqyJM1a/A8ppM3ndJPov0RwTKu60m+owH7u9WHu3KiQad2CelFAz3XE3MZ7ZIPlKNMrUd6utS3XWFH9ny5ccFQdK2arW4nIHu37R74RjahVW6jWnXv9Wr8+MGly/5bLFjwLaz2OBmXXf4cBgmXVVVfQbtsmwdClKbl75O9osN8hWyotSNcn5ombgukhiWS6vsYvR4tWZ1nq/e3gJKSZG613YWs1UdhUaWQ39/fnxi2/3BdT1n5e7LmzeHcawTUtba5VSeG2YWoN0+5bXWfEeiXV07O/I+0oyjQWYnL6ClS9vHj3V5W88my1jmq4xLb5MsGvPbsK+zpESS5U+sPqYtLx9LjkcHyX5Rhul6CmVejHyVRLZZPU7I8tFztLGwFjm7zWqo8UaABfyi7ujRo1i8eDHuueeeCa898cQTx4/vvfXewmlt27YNl1xyCW699dbC9xblFS984ZSnQQghhBBCCCGEEEJaz4J9UXfLLbfg3HPPRX9//4Q6dMeOHZtUWv39/dPyko4QQgghhBBCCCGEzF0W7Iu6U045BQDw4Q9/uGUbRswKlixpss1VHblc2Vq7r1w25VLvYJej1eF1chciazdFjXSBkS5q2jVGul1JV0gdv+Fx2hos9yCZeJFCSEVs+dWu61C6svS0B0FRN5QiuyJa7njiXLq1aJfDMIqKERbeJ12a5JL5Ue0+OLAnP7F2o0rcEVa6cOg427WhiQcYVvmy3IEl0ub17wPyXLsDSCwXWWkHDTuK6fKSlN2qdrJYOywb2+FVVd10d+Xn+wfj/VSZMm6WlRiWjbcn+qVJFxXTE1JlKnC1Nfqwzlrevvr7QzuWbVt3P4H7mdVHWtumpm5FmbptpEVJt1JpPx0dndHrKqnPZhmP3lVzKO4ME0gaWOO7lZ7cUtKQN5C+Z+3rdD3l55Zbmu7fYm1Du7DKrls/pnRva/AUq+VjYqUm7FNnUtqWVY6yv7QmHTrMiFOOZw32E0PFZ3n1xpplARMEBuO+8W0duRu0vM+SLbF2Bt66NTyPFfPSpWE/JePcsiW89pyz4unFuPPO+PlZJeIDAPnb/fW71gZh0tVWm6e0f+kGq/O1bVt+rOtdut1qZYJTT22e1pSgjGtYuI/u2J5/vlftLC2/h1jdrByvtI3L7xDWUKObq7Rl6d7ajkPhhaLQ23tVJNI1tSs+V6zW4vOuYP6m524iko6OUJpAYs1xTFKlk4aMflbkuWp0Amu0z/LYbZNcQEPIXGHBvqhbVd+ffNOmTTObEUIIIYQQQgghhCx45tESIjIJqFVICCGEEEIIIYQQQsgsYMGuqJM89NBD+OQnP4nbb78dQ2qNuHMOH/rQh2YoZ4QQQgghhBBCCCFkobDgX9TdfvvtOP/883Hs2DEcPHgQPT092LNnD44dO4aVK1dixYoVM53FYhw9mgt0WMIjOkyKUWzfHgRJLa72lUIkZNdAcJ3UhRppCzXSrKQllpaJ1JTQW8oHWmKWNpzUcrAEXCxxHUvbSIqoaEEVoevQZkg4mcg4tU6EyL8OqgzuHz8OFDEsLSlL4MwogzUdw4gSCuSpKEKtjtht8jptS4E2k6WxZBAUSS1cdFwVcWi9KJkvywRjmowarR9iXWu1G0mgf2JpORax/1ZjxS/rUOuaGLpuMSyNFi2BIq/V5W3pAkpkWBWqncR0WpQdV6znNOqprSvvk0eFtlqDFpa4T0ev+11JoK8ldWVOOim80GqjMixVo64ILbBdmWXZrwKwxShjGnW6szDqV47Fo7VwjA2Sk+WYqhfYJL0oloai0T9bw6+Ux7NkDGUcOrsyzlSJtwZkpq26sRKz9D6N+wKdx9S6UP1GrS9v21YUMou6nmTz0o8idRkrqh22i/y3deR2oPMhJA4b0paPY80VZV9kyMU26KxJjc8KlE6rRGRaxy815MpiDWWWBKd8Hq2dJ8tVTuO1zJdM+2EPi8efiqXlC0PHUxuXnF+tWJH3b7oZSr1qTawfsaYLUmsOCL9rdHeFzya1uIMxfEiLYkb6CpUxbYM1Oec0Gqns/4fawjKu9Yg+wJBqtuaUJpYQZqzjLakJG9Wa9j7tfkLmOAve9fX1r389zj33XDz44IPw3uMrX/kKDh8+jA9+8INob2/HF7/4xZnOIiGEEEIIIYQQQuYxDsCiefBHJs+CX1F300034aqrrsKS+k8oo6OjaGtrw+/+7u9i165duPLKK/Htb397hnNJCCGEEEIIIYQQQuY7C/5F3eDgILq7u1GpVLBixQrsEuumN27ciLe97W0zmLsSVKuN69zHSHVfs9xhEt3L2tuUW1ctfm3MFWHUWPDZ4LJguZrE8my5T+kysFyVJJb7rMBy6TARdbt/ULteiqXwA+Ft3V2RZ7V8hyzXLQvLzow4qoi4hiFuIyMjugzEddIHArDdkiNZrLYpOxvI7azdiEO6/VjxW14DluuW6bJj1aGMdFAlbrWhWBxTgcyz9leRYZZ9Gj53nSL/ndajlHWTTO1ndVOIlatuC4aL9YED+fHBgTBsYFvz6Ht7Q1uVZt1ZC/vx0Zpwbx1RYdJ1PXB9Uu0ksR3qcUy6mrd1HZcfqyI23QfFuR5fzDYl+MAH8uNHPCJ0OeoTbocnnBDetzTy2JWhQ+GFVj8r8q/Lv5oqwSDiH1VyA4Erb6pLk+pnpWt2t0q7u0ucqLrp7W0ul6G7JWkWuouXUVoulUG+igzGMgFZHpbvqGK498Tx4+pQ6Dp9aCSvj/Zamj0Gbs4Atm3Lj3UVStfInTvz4337wutk9lX0WL8+P+7rU9IQony2i3zoOpR5lHkCwjrV3b90y5RxalfU0vOrCNrOlDpMFGuIuumm/PhrXwuvu/DC/Fg3O2n/um7WrcuPZZnoblDeZ7kNJ2O5iBdB3Ge5t8r866RitqttxLLxMlOcQ8r91LJjq5+SafcIF1adpxFDAkCODVpSxnKrTmXPUN5X15QEg5yDSPf0mrKzvXvz4zX9KtByrR1r+KOJ/SMhc5wF7/ra39+PHfWZwumnn47Pfvaz42HXXHMNunQPTgghhBBCCCGEEELIFLDgV9Q95SlPwXXXXYdLL70Uf/RHf4TnP//5+N73voe2tjZs3boV/+///b+ZziIhhBBCCCGEEELmOQt+JRUBwBd1+Ju/+Rscqa+x/u3f/m0sXboUn/70p3Ho0CG85jWvwe/93u/NcA4JIYQQQgghhBBCyEJgwb+oW7JkyfhGEgDwjGc8A894xjNmMEeTxLlceMDSH7NEGCxdMUufzbrO0LarREQxzF8TLHEFHSaf1dLYs/TrrK3WY2np5yorCBGJQ8dmRS/1mAINtgbhC0OgJFE7ycTSETPSqsTqUCGrpr3kdvBHj+bHWgewU7jCDyt9vCqULqMg0H6q5bojVhE0aGaltsPUNmrqp02B7aZiCbhYGpDWfbH22wqbBsqJ2lj9lMjXMEKNmcGBeJQHD4rrlC5UTPZF6j5ppGYWAIwExR+G7RC6TSf3iP7TGguM/ke3r1TtpLg6ZGuQel5aq0oOG1oq9tix/FgWQUM/larxaYkbScz4VWlJo9H1FkvbamsF+vjOrjz/su61vlMrpjHJ+UrtHyyhrAKZDC5N7avVXGVwW358+HB4qSzLBx9snhSQPoQ0arDl9Sbj0BpvUpdOtyGZR133EkveUuqRWdel6lTqfOjnSUVW4+7d+fGdd4bXPfnJ+bGuC0uj7vzz8+MtW/JjbYIyTh2H+DpUnhaIBFrT8TVr8uOVK+P3yWzo/tjSapMab/uH1Bgo4uwQWsRWP6XtZdmy/FiO2Tqfci5a5CuP7MfbVeUP15prgRYhUao86H/0dXI8lPqzgBoTYyKKFa43IwsDWjohhBBCCCGEEEIIIbOABb+iDgA++tGP4pOf/CTuueceDKmfr5xz+MUvfjFDOSOEEEIIIYQQQsh8x4ErqUjGgn9R95d/+Zd4y1vegg0bNuCss84K3GCbceEFj5mmnJVjyeJq3G/BWo4ulxdbfg+F1l8LxPLrUeVuE7gbpLr2WM+i8y/PpWtPEfc+WT56HbuMX16n4w98zEo6aIk49XbnEtPtxwoo4g4Zue8Q8qX1OraqZWeW3SXS3ibcT6V/DRD6eBj+ftKVwnIpaOvoDMNE8VSGDoVh4tnkfdK1QZ93dGi3HEERl7hUZPvS/kiy3chynAqXWJn/rVvDMMvnQtZpqitqEbdD41mle2roYhdeZ3vG53FIOYAiHr4S7fp67735sXS70sjqXb8+fp1urkF6XSJjqi5GheuNzn9VfDCi+shY8TfEAaMOjfva2vIWFnOBA8JuxVJIsCjdbAy7lu6i1YGH8gCdSVFRFUseo9GvsXk+9HWy77D8Do1CkDXf09MdzaJ2N5M2KN0fG7CeM1XawnJvNVz0A+kJlbZ8nu6uePlIl82dO8Mw6Uapy0dWjVVNltJE4LZdC9uJlIqQ7cTyotb5l67lt9wShsmxWeZfD+dnnZUf6+naEy6Mt+0YX/pSeF52miTDZD09//nhdVddlR+vWxeGSddI3ce3D9w/ftzXt3b8WH+tufnm/FjXvXYRTcJqQ3qeJNEPIAp2SLicahu577782HJ9lc+inzOco6kKlUbTsTYIirmjLloURrF3b36sXZutOpRYHqCW667Z/ySkNRGWS2td8h1AaHf6Ouu5a71yLqQkZcbqpgXu1YTMBRb8i7oPfehDeM1rXoN3vvOdSdd/7583TnGOJscr3nHnxBcRQgghhBBCCCGEkFnHgl9ZuXv37rm9eQQhhBBCCCGEEEIImRcs+Bd1T3ziE/HjH/94prNBCCGEEEIIIYSQBUxlHvyRybNgXV9HRzOdine961149rOfjVWrVuHpT386uru7G66tzKFtoEcXLcZwR/YMWhdEappV2wydDq23EtNtsjRsDM2KSluiiId+ACm4YmlLWWIOlq6BFFXR8ZfR2jHyODRUTqPuUFuu97FdeTlbRRfTHentDfNRrYk8a3EX8TyjqguWZ7bEj9DyUhpUnV1xHUOpUbJ0aTyL8nnatTDImjX58YYN0TxKbZE1K5U+htR30tpbUmPMqHupubFmuaEROKBEPGTBWm1Uin/ofEgBsiLtN6aNNRU6ITEtLMDWqJPXWppRVkOJ6U02i1NQFWGB5TZogOVpVxv6DdG+hI6b1pmSNq91XmQXpuX9YvdJkwCA/v78uP3On6gstjW/EEBtXZ5nbBeJKQEp2Zalng0AnNibx799WxgW0/Vp6NsM+5H9lmW6VWNm9L//2zwfgK2Lpst5jJ4e3QeLE8s+VVhVJDDac1w0j7Wu9mhYt6wrnbase0MDKZrfZucxRJztvWEdtnc017ECwrZiSsmuz+d5OvuBdlXDJCrPy3CbKMeB8LJu0XfItgwAW7fkx+esDxO/VYSdf77QHDTma1KvCwj7AEvDTyI1pwBbfi+IQzWijo68PiydOxn/8uVh2MGD+bHqYrB4cX68YkXz+HQeC+lBRjqFdevi87Uiw6hko1DR2bw5DJOadatWhWFy6qLN856RXE9t27Z42rJtWMNoMtb82EJ13lLfWGoQaruV51Y3JY8rg/vDCy2dStFwOlUBdS4VBTSQ37d8eeN3xzF0mUqdO/1sst5k+9VxyLFGax2v7s3tQJfPgQP5sWxPRepdahxq+5Qak3I4OXYsvE4+tzafQMfTErMjZAGwYF/ULRY9lPceL33pS5te55zDCEUrCSGEEEIIIYQQQsgUs2Bf1L35zW+e6SwQQgghhBBCCCGEEDKO897PdB6mHeecL/Pczjn4H1w+BTlqHa94111439XXFL+xkH9AhnZ/nE4qMFx3Z+sKyBJl3EDqs7UgrUb3VqPMpzCOBqa6DKz4p6Bcp5IpaSetsONUWtWWE/M8k32apCXtxEA+p5XWdJfHVD93K0gtu1anVYTS+YrJXFhhs6gfmc66mQrK5F/biFUdsTCrKqywsn1Hah7LDvWWQkIZuxgeSW+Hrc6/jmOqh9/AXXQG21Cq/aSWx2ztq8tON2dyjpD6rFOSx3qBbbzgAmy++WbX+gRmB2c7578105loAd3Azd77jRNfSWLMjm8lM8jRo0dxUIpiCA4ePIij2vmfEEIIIYQQQgghhJApYMG6vo7xspe9DCMjI/jEJz7REPaKV7wC1WoVH/7wh2cgZ4QQQgghhBBCyP9n793D5LjqM/+3Wq1WqzUajUYjz1iWlbEtG9nIIEAGwxow4BACJhtzWUiWi9klhtwIJAFCEnJhAxuWhHs2JGQDSbiYkAR+iUO8gQ0GO2BABgULLNuyLWxZlixZGksjaTQaTf3+mEu959t9vjpd7tGMZt7P8/hxVZ9Tp06da03pvO8RQiwkFvyHuptuugnve9/7Wob91E/9FN761ree5hzNILMo2+u0WtGVVHqSnbJ0QupzhuPVfWyJe8eWvi/QMhcLkzNdwifKkzrHlt21NpmZHnNPt6ZvjtDpvu3tOlqWmZbclZV2xp6tnWcu0zfaSb9M+bcjPU7tJqnyYu91ObWsyrwbnuq6MvLW2aTsc87EnytnPCoEIaY5A4a/meXhhx/GWWed1TJs9erV2Lt372nOkRBCCCGEEEIIIRYaC96bTABQO8BZZ52F22+/vWXY7bffjlWrVp3mHAkhhBBCCCGEEEKIhciC/1B39dVX43/8j/+B73//+8Hvt99+O9797nfjxS9+8SzlTAghhBBCCCGEEEIsJBa89PVd73oXvvzlL+MpT3kKLrvsMqxduxYPPvggvv3tb+O8887DH/zBH8x2FtsjywrTg5I6/0545JSl7Fblru/LQvSXm2H/nwXrm9UBs0Uuu7Kejx3hTDRH6XBf7pTnZixbc9VbJ7X/lu3nqeV6Jo4jnc5zO23wTOiiAd4YM8OeuWV9s8rcu1Ntoow/WFm4+GfCky51nivbDFI92CydKNey/TD1WTs9b8x0Wc1mec+q1WXieGb70Ez0h05T9h0h+mwL1JNUiMfKgl9R19fXh+985zt4xzvegTzPsXXrVuR5jt/6rd/Cd77zHfT19c12FoUQQgghhBBCCDGPyTDxgeZM/088dvRJG0BPTw/e9a534V3vetdsZ0UIIYQQQgghhBBCLFD0oW4+4ywttsuTU5c5z6b0JlU14z6blluL00HiMv92JBEzjtc3Zqvje3kq2Zdnuow7PcSUHatnU2pyJkpaZ5oy7e6Mk7qeIcy0LNbDk7d2WvpadvjsdBm0k14ZWWBZaWcqnZK6xvI/E0Nz6nQ+E+WT+jyp9XZGvLa34dtTxv5kLs2pXl5Kv58IIVpyJgx/QgghhBBCCCGEEPMaSUcFoHYghBBCCCGEEEIIIcScQB/qhBBCCCGEEEIIIYSYA0j6Ot8YHwdGRiaO6/UgaHSs+C5r7QEaFHXq8lbnfNzTk56tVPsGjmeyH9zbpld38l+tFs/dXT1aBAwNhRF37SqOu7rCsIGB4nj79jAsZqaxf38Y78orpw/vH+oOgtatTfR12LNn+nB87bogiB/HlgE/zrFjxXH/anNfepaKLR9+Nlv5FPdQtbdVck2X2Tw2cBQxRquNltmwWeytHipOPvaxMJDr8FWvit8Ltenj2sihMJDKv6kMbJthhoeLY8dwpcJp2MLjNOy9OE2OZ9IY7ynqpjI2GqbBFWILltMcHMSMwnnesSMM4+e05bh27fThaD3sX7EuapPgMhmv1oIwbwzjovPS99KLjYO2nwwPV6JhzK5dYf5tlU6xeXN4vga7i5Nbbw0DuQ/xMRD2h61bW/8OABs2tM4IELSzo11nBUGx8mnUzRjm9BP2A7Jlx3OI57Pz315fpLFpUxh2xRWt07NZ4Wfx4lk836aDB4vj/tXF8dGR8N9j+X5cVADQzXnxxn9vrvTGKa8T9fW1zORRNIJonMQdd4RJHDlSHHvvJ+vXF8e2HBtIe9EYHin617FjYRmvXFkc2zK+6abi+CVXh+n/0z8Vab74xUWato1zO77lljB9fj05fBhRjh8vjm1Z9fcX6Z97bhh2wQUUb6mZH6kw79rVes4Gwqa1c2cYxlOsHf4ZblreOMjpAcBf/0WiNxbV/ZvfHLbBJUuK4/e+Ny05y2/8RnFsy2DjxuKYuwUQTHNBNwTC8efuu4vjkyfDeHw/O4zz8PyMy8Mwbnc8RtqhgseYnp74ehDbvfiVmacQ24c4HpcVACxbVhxz2+3rC/NRq1Kfsu/qfG4HaO4s/OCmE+0eKd61vNcY2z5j7w/8dwwQ1pt9JevuKp7twFB43YkTxfHSpa2vAeBONv/6lSJNbo9A2Bc5j3194fsIF7EdfxpjNK7EKt/r9ELMIxb8irrnPve52G4/vExy11134bnPfe5pzpEQQgghhBBCCCEWGpV58J947Cz4FXU33XQTDh061DLs8OHD+NrXvtZ2mnseOYo3v/8b+M4d+7Bk8SIMnr0cH/zVp+OJr/p7bPixHoyMnsTyxmL84ssej9e+6CIAwCdvuBNv/ci3cM7qZRgZHcMbrrkYb/mZJwAA3v+Z7+Mv/r/tqFYrWN1Tx1/+9rPxY2cvL//QQgghhBBCCCGEEGLOseA/1AFAlmUtf7/nnnvQ5elQWpDnOa5527/itS+6CNe/+yoAwNa79mPvI8dwwTnd+N7fvBQAcO+Dh/CSt38Z4+M5XvfixwEAXnHV+fjoW6/AI4+O4HEv/xxe9tzzcW5/F550UR+2/NVL0KhX8ad//0O87aPfwucm07aMZ4umZYJjZmUwyyB4ybPFyiV42bwnyfIkX54ELL7UO4xnV6DH0nB3/eZEbN1ymL25pzni6zztbie2I6d72/LnJe2LFkUvw+LFaem3BT3bUFx5GcD5BYDGSrq3ebgqy9JInjgyEi6nR51uaDUFiQRFYJfdx3TggN9AY3hpeBp0r4M5nbQycjQaFlznactPJ/a+3gBBeQ5kLQBqiDTEEfM7S7/NrWt0v3Hn3wqDe3v6VpNGGfmshZurVfPEVDpNVbuD9FTbtoVh/Dyp3gdeGThtfMzkKzbMNuEUmHcdh9USJcupcmggPr3YcdDr5oxt44sXF+2JbS5S89EU2W27iMfzwtopsEkaXXa+Lc7PPjvsQ3a4Zvi9hu0f7HwYSF8dDwnuX1baxmX80ENh2H/8R3F81VXh/MXSXe6v9YHwObkY9+0L0+fnfPTRMCz2emKrlt8P7WsSy3oxHG8jnCbLEQFfHe29osWmX6+N23snv4dRPJa6AqFs2FLmFcpmiaWMdpiNKMQBhOW1muTvMduDTmHfN+2YFsPmKzb8eAp6Wz58ztfVYKw+hhPHOu9vAef31D8nvNcwT93JaVr5aXhhKNu2Mugy8NiXatXg0TwPJU6yQiwAFuyHumc961kAJj7SXXfddVi+PFyhduzYMWzbtg3Pe97z2kr3q7ftxuJqBW98ySXTv226qA87d4dfv84/pxvvf/Pl+LUP3Tr9oW6KVSvqWL92BR7afxTn9nfhOZvXTIddvvEsfOrGuyGEEEIIIYQQQggh5hcL9kPdosl/AsrzHJVKZfp8ilWrVuHnf/7n8fa3v72tdLfdcxBP2dB36ogAnvy4Pmz/0VDT7/fvGcbI6Ek8YX1vU9j/+cft+Mmnn9v0uxBCCCGEEEIIIc5MMsjjTUywYD/UffWrXwUAPOc5z8Gf/umfYoO3E90Mkefh+ee+ci++ettDuPP+IXz8Hc9CfUlYPZ/6l7ux5Y79+NrHXnwacymEEEIIIYQQQgghTgdZbr8WLQCyLMvLPHeWZci/dZ0b5/9950H8/l/chq//2U8Fv+/cfRhX/9qN2PbZl0//9m9bHsSvf/hWfPevX4pP3nAnttyxDx996xX45u178aJfvRE/vP7lGFg14S/wlW/vwi//8TfwtT99Mc7qjRvM/dwHf4Q/+eSNLcM87wzeat36L3GYS6e9BEr6pdn8zxWLA+spVAb2HmqHMkVp693z5ZppytRh2fIuW8ZMWau/5L6WSDt1llrGnWjHqXSiLoB4fbRV3mUaYdmGQHSqDjkrnW5nCwmvPjwr01Tcuklsg+PV2qkjlU8+GAO8PtqB5j8jbZXrsOw8NyN9qEwDascHkEk0wpzpeb+pHNvxPIz93gGvXRdOv6x/aycGixJ+e22R+mypE087lM1z4v1m8322E2PH6cy/l1/v70UO87pomap++tM347bbtrQ2mJ8HPCXL8m/MdiY6QB24Lc/zzbOdjzOZBbuijjl06BC+9KUv4f7778eIce/MsgzvfOc7k9N67uY1+M0//TY+/sU78HM/fTEA4Ds/fBhHjWn5zt2H8esfvhW//PKNTWk8/dJ+vPoFF+JD12/D//zFp+J7d+7HG/7wZtz4wRe6H+mEEEIIIYQQQgghxJnLgv9Q9+///u948YtfjKHItkjtfqjLsgxfeO/z8eYPfBN/+NdbUa9VMXh2Fz74lmfgngcP4Umv/nuMjJ7E8sZi/PLLNzZtJDHF21/zRDz5Nf+A37x2E976kW9h+OgYXv6bXwEArBtYhn/8oxe0/axCCCGEEEIIIYSYm8ijTgCSvuKyyy7DyZMn8fGPfxyXXnoparW4ZCRF+jrbXPehH+Fjf9Na+upRain26daUdnhJe1m1RNnHlvQ1nU40rdmUvlpSy3+mJYll65Dr43RKX1NlhoAvpei47LOMRKokkr7OLTotfZ0J+fV8kr56zLQsdkbu5zUSVnSUlR2WaYQm3pyRBabKetuRXnbCwiBRNuzSCelravrthDGpbdAokZLLJzWP7ZRPJO5MtOlOvAaUHVNmU/pa5t6d/nNxIUhfb53tTHSAmqSvj5kFv6LujjvuwN/+7d/iKU95ymxnRQghhBBCCCGEEEIsYBb8ysp169bh+PHjs50NIYQQQgghhBBCCLHAWfAr6n73d38Xf/iHf4jnPe956O7unu3snDbms/RpLu1WOlcooyJQuTXzWHeqOhWzuuOgw0xL2Mrg5em053cuFpAhlC/PXj7E6aWd+XCmx7dO0JFd6J3+Op/fjQKoDMpaDMw4qbJJT946w7uHliZxp93S7TG1M89ERy8rW53pXX1LZGOuTO16H19YZNBKKjHBHBmCTj+vec1rpo/37t2L8847D09/+tPR29sbxMuyDH/1V391urMnhBBCCCGEEEIIIRYYC/ZD3c033zx9nGUZuru78YMf/KApXpbNW69KIYQQQgghhBBCCDGHWLAf6u67777ZzoIQQgghhBBCCCGEENMs2A91oiSn07hmhs0h5or3xOmgzLPK66+ZuerbFEN1NkMspMFDJJPaLDris3YGUtI2LiDZv6usb1mqL1rqNV4anRhH5lkb6Yg/2zzCm8M7Uj5eP5lpUu9V0pB2Pr3/6H184aEaFoA+1OH++++PhlUqFaxYsQLLly8/jTkSQgghhBBCCCGEEAuRBf+hbnBw8JQ+dOeffz7e9ra3naYcCSGEEEIIIYQQQoiFyIL/UPexj30M73nPe9DT04OXvvSl6O/vx549e/D3f//3ePTRR/ELv/AL+PrXv443vvGNs53VJDLk0eXwR0eKhbSNejyNA0PxBbcjI7Xp47pJg8/bWanO+Q1kD2OjQbzxag0xOA1+TkujTmUzNBQG7twZz2RPz/RhbdeuMIzjjowUx/v3h/GuuGL6cPfYWUHQmoE0CUNt173FyeBgEObVG2Ufw8PFcTcOxW9myidIva8vjEvP+sPhddPHXBz2Mqt64MepjYT5Gu/qLvJB7WLvwbBN9B+h8vnkJ8MbdHUVx7/+64hRGz5QnNgH4DLh9ICwkG3nGKZ0uL3YNshpWDiuF48KtmLzz3m2FeBJw/ic7+3JZspKajj/tny89Dlftm5i97blw9j0uU5terExwIuXKHuzvfroWNHmbfHwrbdvD8M47tq1RarPusKMPVu2FMe33BKGXX55cWzGn6Bzf/nLxfGRI2E8GgexZ08YxmWydm0YFptg2miDPL94VeNJyt785uKYi6PVOcPFU61W6DieD5g5L8iXabtH0SiCaIwfMvPCwACHxfNox+AgY7uKeqvZBxiJjHUAal5/i/Tf0Xp3EI3nr+3bw2dzbh28u6xfH8/G+V0PR8MOVIt5e9u24nf7SsDlasv4gQeKenrnO8Owr3ylCLvqquJ3rjMgbLsf+4tGEMZdyuaLy4eHSFseGzYUx7abP3kjvZfZh6NCP4DeVj8DAO64ozi2w8OOHcXxzp1h/R4M5vv4++DZZ7fMEgDgN3/JeeeJjMk//2thGXOeP/rReBJe3+br7Fi0eXNxzO3dsmdPWD6bNnEYH4dltX17cW7bFreFn7o6Lrfksehbt4fls3hx6zxZtm4Pr+P2yf3LliOXiW27/Dx83PSOzYVu2nGNb2Df5ajj1Pg6E29vXowVt90WJnH4cHFs2/jx48UxZ8O2kac9rTi+8sowrH918azf3Rqmz/1+xYrW15yKD36wOD7nnDBs6dLimMcOO45w++R8AED/8qPFie0Ak2WeHXfmEiHmEQv+Q91dd92FzZs34+/+7u+C33/nd34HL33pS7Fnzx7ccMMNePWrX41PfepTs5RLIYQQQgghhBBCzGdOpfY7I8jz2c7BGc+C9yr81Kc+hde//vUtw17/+tfj05/+NADg5S9/+enMlhBCCCGEEEIIIYRYYCz4D3WHDx/Gvn37Wobt27cPw5PLbru7u1vGEUIIIYQQQgghhBCiEyx46euzn/1s/OZv/iYuueQSPOUpT5n+fcuWLfit3/otPOc5zwEA3H333bOVxbY4NpLh/l0T3189656+vvAbLXu3ebZW1voplobrcTU8Eg2rsM+D8SaoJJrgVY2nDT8P+7jV671BvMZax0PLyVfUc8z6iFG8RWVXA3M+TEVVq42W0YDQT2RsjOq+7vhweX5C9gb0rIcfKn4+eTKMZm37GG4i1n0m8Cuk8l+6NKxDPEJ5tv45qfBz27r2DGO4HXh+bBxmC8Qrc8+wJHZvLz0Pz5+tLJ4nW8xXzPPi8wyAbPnEyi61Pk+Vfmr5czynD3nlPeZUqXfrRYuK4yVL4mmA57obbwzDuL2yiRYQGlsx1s8yNGuLpj/eE/btykjhW3OI/MbsnMQz27j5t0ivfLjIa05T5etsGqnpe1NZkA+EPq1BezU3aPQVCd14U9zHkL2CvC45MBD/x8mK4+/kjlPHjsVvyOZG7ANlxoBeCtu4cU0Qxt5njz4aJs8WtAcPFsd2jlr2vMJbir22gLBrsAek9YNkbzj2o7JpPvBAGPYQzZ1crJ5HHVtK2jD2ewPiFpCe16Vtx6M0O8dd4sJ7edXuvSravs1Ni4eiJktYiue9s7qZoQdYvjyMZs9jSXh40xwPkTaM681OX+vWFu95e/cVY98jj4Tx+DpvirUPU4kMGLYPsYef5/d5991xfzbuo+eeG17HeaY/2wAYrzU2Qttq/FCZso3QiXecotkxgMeiO++MJ8/Zt0XP4/iDD4ZhixcX5eq1Le+1zs6dDI85/CxAWAzcR71pwvoM9q+mjFkf26mEbKMTYp6y4D/U/cmf/AmuuuoqPPWpT8W6detw1lln4eGHH8b999+P8847Dx/5yEcAYHplnRBCCCGEEEIIIURHybLkDcfmNCdOzHYOzngWvPT1vPPOw/bt2/Gnf/qneO5zn4tVq1bhuc99Lj72sY/hjjvuwHnnnQcAeMtb3jLLORVCCCGEEEIIIYQQ85l58Ln2sbN48WJcd911uO6662Y7K4+ZPI8vvedFgfZDfYOkFZ5kirErj6tVlpWGoojYknkAYYa9tdheGhTmrWJP/gcKT/bmaYoZ51mspKYUTfmIRz06UtQN1+9oVyOIx7K6hpN/uyye6/fss4vfPeVfqkTEi9z0c2zdPZAu32StQNmVtKnSSJsnPvcKqB1ZJuNJYb2OwvniMm6rEkvg6Qc7cW9vQLB1kzj+lCpHAEfHijFzZCh+K09ZyMWV/A+Ztoz37i2Ob745DGMND2tvgPBZWcN04YVBtPEqPWfXWUFYgx6O5YMAsG5tUXZDFGariWceT5pq5XicfU/6ytj0PdV8bArxm0g4j3aRHLgyfCgIY0kiy5uscoulczZsTR9bDCTK8NuRxXtjR6xvOOl3V48G5xdeWMxntvw5GZZ+c1MFjHTOMDhYzHss7/ve9+L3sm2E+6WV53JerFwuhpW2cfpWUsb54u5r1encRqzstswij5Ur42FWtue9p8amL9tEeOpvKsfUd1E69qYhD2+KYkWfbatc5lwXQFjfTY9CN1y5shgP7Lt6fz8oXvzeqZW9aVN4zmXuSSgvvTR+HQ8B55wTxmOVfFPbijUgO9il2pN47wGOjUZfXzFWmykwkE7zswBhu+C69oZLO9dz2PkD4RgZNOYx9mBIH8dXrCiO7fjAxcxjjI3H2FcJ17Zmqvznw46oQiSw4FfUCSGEEEIIIYQQQggxF1iwK+r+4z/+A0984hNx3nnnIXO+zGdZhnvuuec05kwIIYQQQgghhBALDnnUCSzgD3Xd3RM7mj372c92P9QJIYQQQgghhBBCCHE6WLAf6qY2ifjkJz/Z1nVXvOFLM5CbzlGpFWYjnk2W57Fh/Upice3H/spYor9Nqk+WZzDkGPvUycfnVLeLpu/5UnimQl7BBsY1iXmykNHDgaFQuc62DsuWhZdZH4xSOD6A1XrhDcT+P3wMhF4pXvu05cj+S9We4l5DO8M0egbXTR9XrPGFNTqJcGisSL/bGgAxtq69uBHvm47Es+degy9rrtOOD1UsjU5Qto9ymcSObfpeGaSaFtk0HM/DalcxbnH2rZeaY4sTjAHW/4phG7pDF4c+lW6bZwOdffvCMO5vbFRjzGk4z9aH7pKB4t67todhPT3FeMfP2eR9E5R5DamkNlf2v7L553NriRTDNh2+rrvL+KU5bbdGjWbJkqJOPR9DG8aeeN1dYR9ir6mKZ57EtHNzJtUP0sRL7dpeE2c/10Y9LP/Vq4tj9g57+tPDNDyrVG4j1kNu27bW97LwY9s0+H6eFy6Xj5dH73VnTT3ulcp91KbBYfbePMRYq6rY8O95Rdp3EJdIu/OsZFMti20YD592rN65M54Gtzs7N3D/HUm0123nNSYYA1D0DdtP6vU0V6VVq8JzLstHHimOrceeax0c85Dz3pnKvqs4nrPcjvkYCNu1vTX7v3mvNBzPvt9z+o2+tD/zPS9BC49NXnthbJ1xH23ySqX3gKjRtRbYiAXCgv1Ql8JXvvIV/Oqv/iq+//3vT/92y/cemMUcnZpXv/oNs50FIYQQQgghhBBCCFECbSbh8Oijj+IHP/jBbGdDCCGEEEIIIYQQ85ksm1g9eKb/l/y4WSXLsrdkWbY9y7KRLMseyLLsj7MsW3bqq6fTeGGWZd/IsuxIlmUHsiz7fJZl57WId2WWZXnkvxseS9ozgVbUzTMWL05biuzJcprkNrFl4Vbe6i0l99Zwp+JJX52l694O7QG8xNqmH1tO75GsuU2Hl6fbpeR8bm/NEoNFi+LpBzKIIU+aFJ6yDGL58iKPtqisVCPGqJGsHTxYHLOcx1MWdlvpq7c/PBGkaTuTs15/tBpKCJkaS0PKyEiBdO167BogXZ5rG5fX9zqNN4540jl6NpavAUAjVYeYOgZ4sluvrJyyq1WLNlLtiv8b2vHjrW9lsVmMDuOmqrtZS/ec54SB7Itw9tlhGJcxJ2r0a11ru6ePm5ojlY8NixV/U5GOFA9aN9XO1WtlgWWatTcN2TAuHg6zz9mokoXEkKPxcqRcXDW2fj3JIMftMm0wGFv5YdqRvjKefJyPbQFR2N6D4TzBEjPb5dkOor+/OLayukDGZ9oul8jatYVUffPmMA2eaqy0c8uW4thOUXzOj83zq82Jlb5y0VkLDJZYesM959kWP4et2WgCqby81x8uVp7bAeDw4eLYayIc5k1rTV7mXkdPfLfj8iqb3IMPFse2jezY0fpeQLqknucJW44slbRllypl9KiMHJ0+Hq/H34v6V4fteunS1u+3tg6PHCmObftZubK4X62HArwG6YV52m/nd27jqRJuIKzflSvj2eIwm0Uuu/vHwjGSx62y8GuAlS/zeOrN01zktnxYOt1rG+RU4Xl/yIgzkQ8AeBOALwD4YwAXT54/Kcuyq/I8t5NgQJZlLwHwdwD+A8BbAawA8GYA/55l2eY8z3e3uOzPAdxsfttlI5VMu2PoQ50QQgghhBBCCCGEOC1kWfZ4AL8M4B/yPH8p/X4fgA8DeCWAzzjXLwbwEQAPAHhmnufDk7//C4DbAPwegOtaXPrNPM8/dYq8lU27Y0j6KoQQQgghhBBCCCFOFz8DIAPwQfP7xwEcBfCqU1z/bABrAPzF1Ic0AMjzfCuAmwC8YvKDWxNZli3LssyTKJVOu1Ms2BV199577ynj7LFb9ZwBVKvF0nVP8uLKfFJ3W21np6QycjBP3mfX/zs7kjLNEpII7exIV0KSWFb9yPm30qTUTaxY8uXu3GtxGg1Lchv77y8CzIN2r+wprqnGd2S0TdDKk6awzSB4bqsrstsZl8HZ4dfbiYyX8tfrxXNX7AN4EoyYdg6IaylMHr0yD1pTqm6ynS3vvOtS8ST0wdgUBh0l+UeDpRSeZqQN2WpyHj2o7CrBeBb/9zRvHLHNn+Gm1JQGl4/V9HmNPFb3po2zLGpkJJRFjQ8UsliWwNlzzoa9rbfPaydU2zF5ok3fmaLSVTupu58CQUF4TdyD82XnAh63gl3L3e27Dd5LCBdY7Nhcd3wofitLbOdzWxcsm7c7yHPb5Uex8tPa/kIJ0zsQ5n9sU9HGOT0A6KEdzT2JIxcd7wJqsW4PbD3B0kgrvfTuzWnYnSL5rKxbwvLlxbGtM84n59FO7Vw3TUNWiUHAjpHeMJgqhWU5p5Vven96eLvp8ntS6gbmXn5TdwJtagclX3BjU2eTfJngdgwY94quoj81vWvFbmxJfRZTyHyZbZ/en1F8He9YbJ/Tk5+yxN0+duxvoHZ2fd2woTi2Ywz3DQ7zitjOo0GeRxLfKecbUx51C4PLAIwD+Db/mOf5SJZlWyfDT3U9AHyzRditAJ4L4CIAdtOBDwH4BABkWXY3gD8B8OE8z/MOpN0xFkwrsFx44YWnjJPnOTKzBfRTnvaUmcpSR6jXI2+jQgghhBBCCCGEELPPGgD78zw/3iLsQQDPyLKslud5bCXJGorb6noAOAfFx7QTAP4RwJcA7J68/r9jYkXfJgCvewxpd5wF+6HuL//yL0tdt/m3N5860iyy81M/mu0sCCGEEEIIIYQQYmHSl2UZbaGEP8/z/M9NnAaAVh/pgGL9fgNA7EPd1NLZVmmMmDjI8/zfAfxnjpRl2ccx8eHu2izL/k+e57eUSXsmWLAf6l772tfOdhaEEEIIIYQQQggh5hP78zw/1QqnowDOioTVKY53PQAsaRGWcj3yPB/Psux/AvgJAC8EMPWh7jGn/VhZsB/qTjfbbtiGH9zwA1QWVfBjT/0xPPW1T8W9t9yL2z57Gw7uOohr/ugarL5wNQBg1/d24dt//W2cHDuJRdVFeNq1T8M5Tzwn6T7HR4Bdk5sLe9u6W9+C3h4nUTZ98DyoUuN5pgwebM7hmBrU+sL0Dh5j74XW278DwBoyVBithh/I+dG6rSkD5T/wt+kLxx32hmikeuUZDgwV6dstzfl5bJHydvZcdO34O3HkWjX8h42jI+QBxkYyNiN0XukKh59R8uJiHxybTz62lm58615bT7bNRAizH5ZIg4xBrKfHMF23xAzpUasJWwFeH/K8z2KmOSYet8FR431WK+st5dzvMWPbj+MHyc9j20VQ9VxWttxiJkiWVAPQdsojYnBmn4XPrY8be9NY36Nzz21926bhl59t27Yw7Jtk0/Hyl4dhnH8ycjuA0OeLb2eT57zceWcYtnJlcbx9e8tbAQB6yaDQ616eHWTDmZL4MW0zSJyigjQWGxviRt0Z4LzxgcPW9kajed5VgReoabtjlHzN6xup7wGevyWn4RiCDQyEc6zni8ZhMc9TIOxTTX0j8jzuPGoCg3bhhHlDR+gzFY7jnIb13+P3AG8YdGxOw3xYT1uqN86HTZ8f23pveXW4bFlxzF521gOM07BhPG83+XVFzMPsGBP4oJWc8lavLo55bAPCsrPjCL/W2Gfjbum958XSA4DurqJMUn3LKsOHwh/4hsbnMRoPQJU8dD0fVa57m/8aL7oZchp5B7xkA8xYXa8XXpTecGmTS50n2JfOhjG9OBD+sJ9uGBRy+qKgMkVnpzLPs5XLpOlvkqkLjS3VvGNhedTtBnBJlmVLWshfz8HExz7HQB27Ke4dLa4HWktXLTsn/88ja6fSLo12fT0NnDxxErd99jb85/f9Z7z0wy/FXV+9C8eHj2Plj63Ej7/jx3H2488O4te76/iJ3/4JvPwjL8eVb74SX/3AV2cp50IIIYQQQgghhBAd5TuY+B71VP5xcjfWTQC2tLjGXg8AT28RdjmAQwDuSsjH1OYFe2cg7dLoQ91p4NjQMTR6Gqgvr2PowSEAQK1Rw8pzV6JnbU9T/L4L+rBs1cQ/Ha5ctxInT5zEyRPOPwELIYQQQgghhBBCnBl8DkAO4M3m95/DhP/bp6d+yLLs7CzLNmRZxktAvwbgIQCvz7Ksi+I+EcCVAD6f5/kJ+t3skwxkWbYEwO9Nnv5T2bRnggWzrnI2ycdzIAO+9/nvYcunt2DD8zcgq6Qt273vG/eh7/w+LFq86NSRMbGN+ZT8xm7x7i1XftYVxfH9+8Ml0AMDxXmwrNyT39l1zql7xccybM7H164Lgvh2+3eFlz30UHHMS+ab5XHFc444smEMxzVTdVo+XhkxsvWyS+0j+bBJeBIVflZXaezpThzNV7WL5A07d6ZlxGgWWE61cmV3EBZTRXnyJjhyDw9X9kM3sP/K0dVVLNL3VLaBTKQdXVqqNJWvMw/AUpZmBUcRVrMP7mlnOk3ic44aUQSrVq3KhdtMX1/RtlwJn9e4vL7h9XPn2UZJKjM8VPxux/ET9EpgJXyc/NnhQu1AvsXV2zAy9qDxbtgQht1yS3Fstffc7ymN3h4jL6PK6eoK+zlLYDz5uJXKpOKlkTokc5HYuuF2ZotnLKI44nYLANX1xRxS7wnn4toYzSl2AqNy5WdJluHDDBfmARqc6WHnQRnvPcCTtSdabNSMt/SyZcWYYCWVJZJvguelsTJzKoxccSysDC7iJllmBDvX8Lmtex4vvHcCz14iaD+2MVHkOuXDSty539jm4+Wf5X4sF/UkoF5796SdFbpw7dowjOcXW09empwXfv2xFgZcBvbZEh08kvu5rV+2kEgdE8fNOJ7KoZFwDo/1S+9dtymPI5F52htvnHbszuGOzJ9l2nYa5SSszQv/jRK7FRBKlC3DwxU+CQMjg5U33tg2zc9jpcfcn2OvpZamZ/Em0qkwz79AnFHkeX57lmV/AuCXsiz7B0xs6nAxgDdh4kPZZyj6/wTwWgDPAXDT5PUnsiz7FUx88Lt5cmOIbgBvAbAPwO+aW96YZdluALeh2PX1VZhYUfeRPM+/TXlrN+2Oow91p5EnvfxJuPgFF+Orf/xV3PF/78DFP3GxG//A/Qfwrb/6Fl70+y86TTkUQgghhBBCCCHEaWdhedQBE6vpdgK4DsCLAOwH8BEAv5Pn+Sn/1SrP889nWXYMwG8D+CNM7NL6/wC8Pc9z6yH3dwB+GsAvA+gBcATA9wD8bp7nn32MaXecBdUK5gL15XVc8KwLsHf7Xjfe8P5hfPk9X8Zz3vwcdJ9d7l+rhBBCCCGEEEIIIeYaeZ6fBPDHk/958a4FcG0k7AYANyTc670A3ttm/pLSngnkUXeaGN4/PO1P9/BdD6PnnJ5o3OPDx3Hju27EZa+5DAOXDETjCSGEEEIIIYQQQoj5g1bUnSYqiyr413f/K7JFGVacvQJPe+3TcN8378M3/vwbOPboMdz4rhux6vxVeOHvvxA/+Ocf4NBDh/C9z30P3/vc9wAAL/z9F2Jpz9JT3mdxrfC0sNYEqTZTbjwKtP4SvB151XhWpPofePeu0TJg+2weS6nYUm3irI1DrZrmFxM8p+cx1o7/GOdjuNhqvWau6e6LG0KMs3feEG3Xbu/LfhBt7CkfeAXt2FEct+NDRGYXtS6TPqXDvk379oVJBLcbeezDW7NfUdHmPV+ipvbOz8qN10vEM2ZJ9JAbrTZMvOLQ+uKwN8oYbN8uzitj3i7piXjtnZ/FGPIcGk77t6XU5IdNer1kCDReDcvA7duJN+exzrYRvoq7nvUosr5NMZaa6aJ7eHdxwt5Ye0wj98yrPO8YNluzjYuhsrP9a/Hi1sdAWKwcdsLa+C5N6/c2/VSuuqo4tnacXG9eF+Vm7c3TNqyri/pzl/GvowJqoPCyq68O4zm2SqFfklc+nlGWZ4BVxqPOzkPOO8iRI2nZSvUq9NoIx0v1kwPsu0Tcoy4VWxWuzx2V3dGxWqufAYTVZttgcL+tW8NAKpQqjVs2DR46bP7ZS9Mbx/m6VcYavGlMKAGP1daHK/Vd2rM53bixOLblE/OyA8J2bNuu9TtrdV/AHwM4/VQ/PPsexnOP16Ztftl2LNWu105D7BNd575gMsJefJZanbxAvUbIYcZsdDnVW6Me92DrXm3GQZ5UqDKafIN53jbPVq3S3197jAmqbVARPK/FNT1UPjtCU/De2B9ZNv/BPOH4ANoGNNUoy07gZxILS/oqIqgVnCYaKxt4+UdfHvx23tPPw3lPP68p7pNf8WQ8+RVPPl1ZE0IIIYQQQgghhBBzAElfhRBCCCGEEEIIIYSYA2hFXZt86R1fKnXdsuXLSl/bDn2Ll2HNromdhdesNUucWUPVpOnrmT46v747DLqVpIwkaep+5jPDeEOOZMrRnI6QBMPbjjyQP8KEjRwq8mVkk+tAugJeRm2XVPMaervkeNhZh8/XWZ0aQ2naZfe1VOkMayRsAd19d+s8AaiwrpFlafw7EC6Lt8/COghTBiyjabzsZUWAlcZwnq1ubM+e1vcCgrqqrF8/fXzkSCixDrJlpAjBvdeuRQwrpWC4+K3cJnove+FwpD3ac9vOqEysBDTWvWw2PKVtLL3ORGwDRx7dXY/EA9BdH4uGxSSnY6Yfcjs+fDDM1uLFRVyWAtvb1Vga7JWPaZ8VqqwatZF1tkF68lMur2XL4ve+8MLi2BuzNmwIz7lferJY7ts2jxS2alVvEOTJrjwVTSqdaK7r9n+3OB5w5pAh03+5nPdQPDsWDcUlTZ7cKRhXnPHNGx9YTTTeE9YND89ruor5drQrjMdNsGrkua5kjevXkW+Okiy/uysM27+/6KNes47JYC3N1getr7t3ZziO9PWtmT5uko5SmocPh+PImoHiefgdwbPe6K4eDX/g9mMfjs7tGMawJHH79jDs1luL4+c9L1R+3HNPcXzBBcXxXrN3GjdP24wTlXnBdStXxuNZC4Ay9PeH557E2oOrgyW+to1w+7TtmMvHSk6PHy+OWUZqx1Kv/CvDh+gsTYvdv/RQNGwc8c3w+lcaG41IZzw6EvYvnjrtJRzGZTXipGH7eZUsQ/wxgP92CZ9z/9bieONG+75WpN+w7/6x92zPCsW8JwV9aA9CPAuVVLhQbAONDK7WSoTH/xNGAv3oo5xcOL9MMXpyUcvfhZhv6ENdmzyw7YHZzoLLG175ytnOghBCCCGEEEIIIdohy+RRJwBI+iqEEEIIIYQQQgghxJxAH+qEEEIIIYQQQgghhJgDaF3lfGP5cmDTJgChl4ul1uN4E1hDC/Yp8gwbGBvP2Wu9ETHYasr9/sLIo2mrcsYuF2YPBfaJM3eo0XNbP4XKiPGBYfh5Ej0fPM8ZF8/AhbzbbBnz8wTPYvPLZinWROhf/qU4Nt521Rf8VOs0J9viNLZtMZxna5wS3KyoQ/Z5AUyzGzD39tIkuBgbdVNPI2n+P00uiqlL2Dl961FHddPk+jJM17HXWZOPVXHYv9TkKbidE1bW16QMntec1ycNlYhHYLetFyq7hn1O8vwJfKBsPh0zNfdfxriuaMw6itDni5NM9dDyaBqLOB+XXx6GffKTxbHty3xOJkh2nB3bUHjODB5GFM8e7ylPKY6b/KmqRf69IvCGIo8Dg/Ed2evk/eR0X/TELeTQALVrmwjjzbHkA1gxDaFG8Xrt+MBxh8Pr1vTQ3El+TOwPC5h5u2rHCvZIi/tsVtjn0TxnzSmT89fS81jjL05nf1rHadjyibzHrF27JohWGyvqsNoT9l/GWsRyHqv14rpxM3IEvn1NJng90ftxXxyhy1asCON5ze7qq+Px2PuMfemsx9tVV8XT8Cw4Y/altiuwL533LKlYTzovTa4bW2+M57nJr3k2jO/NnpJA6Es30vqVoOneQV+zN0jF+gHTDSree9euXfGM0YPbftjX12gVDYBv68Z4rzGehyWXJcez3ZDzYdtx8Bpvy9szEWUcr+OgTu3fDDFvu3Zklnw/z0OXjiumwHv57y3TT7hdx+pJqlCxUFBTF0IIIYQQQgghhJhN5FEnJpH0VQghhBBCCCGEEEKIOYA+1843xsenlxvX4Ehj7Dpt1izYZewMX2fXJHtr+Z1/GWBZprcSu+Kl7y0Rj8hVatWxaLyKLbtEuV8gMTXbrgeyPbsleyJWkhvDfoGPSonssnU+3749DLvnnuLYLKevbf12cRLbXh5wl+vz+Wg1LhcKkjTJHyYpXWN1mP7oWFEqnvT4cCDHs/KseL5YSmTb7thYUW/dJGtskjQ5moujI5VYUChxpQKyskNPVeH9411pqfZjhOvM0tQTYvJTIGyTXFapuhbAHz9j2EL29Ejc91j240hXGjb/kXYA+GNTFNtHN25Misvtzg4BnnSL8aaQJskg4cnNOgE3paZyDPR4YRvp5udh6bQ3RrYzx3LGPAm9p+uiNHi8scmMBU03FOIH8kTTTTjs2DFEWby4aD9VM+fx03iquiZ7DK9vx/DiJerOvZfsJpVhouwwtABwxhErG+ZjCrMWAP1kjdJ1VSjrvfHG4tiWP9+amyO/OgBA987vxxOhMl8zkGhx0oZccxy9p45kOH/As1mI59EbZy+/vKhDO53wozXZb9Cz1uvx+Z3Lv1E18tbA4sQZoMuSuhLIG9+c/tqoF89zdCQsg9jrrTcVt0Ps0TwniHVdB8JAlt57lc/YsvLGce9dKFa/Jp4r4fbeYzx7GIaee6weziFe8lPZ70QzFeJMQCvqhBBCCCGEEEIIIYSYA2hFnRBCCCGEEEIIIcRsIo86MYlawXzj5MlirbCnOUrdTche521lVFL6WqE14uGObo4szeKtg05c6u2SuLNrqDiK72rXKLlxpisN3v9wceLVIWfS2/XPhvE2jFYWm7rcnbHth+5Xs5ImlixTPLskn1Xbe/eFYbwj2hpn89zjx+Nh3m5UXvNPXqbvRozLCXlxNEvFxpwu41WTDeuEbLsMblMqKRsrf0MnXmxsakc6F5Oy2L6cKrs1BLJq1uV4eWzaNdiRZRKexLq7q2g/nrQ5dWPv0/0uW9l1fzyQM+3shOjOJ9487T04jafj6y+K55FoarbOeMGPs29fcbx6dfwaT63F4zFgpHpW7sc4EvTxHpI1Djv9i3FkY+P10OogttO03fk2mK+ciaJWN/emx/GkZ+4Y7M3hlBd+Nq5PAHjwweLYTvWMbeLk6hAU9wUXmAu5Du3W7RRmrT6C5+b3h5nWwbXjE5EI25F0d8VtLuwYWeNdiYceDsKCTtQB3Wdyu3PSa6vtlvhbw+7O3uhrrYc/VI1LZG3z4XZtp9tFi4pj7ie2CDjeyJNCuTVneWAwvC7YkXfoQOsAw3hXKB3l4urlTmkDy0LjytFqXLbKw48txyEqY1v+vBlwbHocNWpuIeYrkr4KIYQQQgghhBBCCDEH0Ic6IYQQQgghhBBCCCHmAJK+CiGEEEIIIYQQQswm8qgTk6gVzDcWLSpE/Vb4zyYB3gDg+XE4/jCBIYHnv3Sq+7W6FxB6K1jvFc+jhO/teQPx89j0E30dGoEfRJgn63dThsALx6tDz/co1c9l7drwnO9n96LfuLE43rKl9TUAMEDmcDYftsyZSP7tkuCursKH5MSJeBIenI1O7HrfBLX3iud1ZsLqXaHHChN4J40UGbH+La7JYVDGiId59dRh2MenCa9PeuONR6IXpesB6fXL1Ebi5SO136f6m43Fx6kmP6E9e9LytXZdNBpji8PJVoBns1mrxr29OsHRvnXRMM5z94CpJ8+/LpaIN0Y6HrSev5lXru1MKbFrliwpjpcujcf1ulCyh2473mSx9wALZbKp/cf8IZsMmIZa3xfw/SEj9ds0T8SuMefW442ztWcnHe8JomHHjuLYPprnxRp7hbrxxjDepZc+efp4/y1h2JIl8Xlu6dKiLff1Fb5f/FoBhNVbw2M3sxrtCj3GDh4sjvu70j1buS9u2148p/c6a6t+cJD8YlPf82wi3AZtBSf6zQV9w/tbw0vDm6Ninq02zKYR9VGNtyubXX539No/35o96QDgyJHimD3XAGDZsmhWgqrp5vw7A2ZlOPTIrNfJN86+J0XGvrbmSkqjXg/L9fDh4pjLJ9X63NLOn5JCzEckfRVCCCGEEEIIIYQQYg6gD3VCCCGEEEIIIYQQQswBJH2dZ5zIqzgwNrHs2S4Z7iGpQKPuLNe3OoKYHM9bju7IckrJvwB3OX1wb6sjsNuTT3J0JPxO3eDr7Ppqb6v7xDw2yRTK4EgjXVlUrN68PNmwDRuK48svD4L2Hi7kcv1btxYB55wTz6OVz3ptJKaZMmXQ21Oc26X8XrUFaXSRVMbmw0mkxs9jrgvEAV5GHDlnxes3MTlYO/WbKt88nXjtwPbzVDm/N4548vdYet6929ESxiRxpp9wu/aaZ90Me1HZvMljIBvbtTNM5KtfLY5Xrw7DaJxlqV51YE0Yj26wa1com2G1/U5zaw5jKdH69WG82hgXQmg3kDrE1Jxq2769OLby+sWLi+NzzgnlcsepaQ0MFPJZ20QqntzJk4NR5Y+OFW2EZXoAcPx4y0sAhGUyOBi/9fLlxfG6vqNhRE/fOlzccF1fD6JE5WsG867Cks0uI1ccGSqOWXrGdQYAJ0x5Mf3LI+8IVtvGBWsbGr+PmLB7dxb1dv5A2ni890T4nCcdVTVniyVqFk9Z6LkgXHFFcfyVrxTH5nUhmOY8SVzqq5aNFyr0wzGGXTossWLmPm/v3W+GQcaTE7JDSNO7ek/rYyBsPl1d3UFY8HrYF7da4fLp6TsrCOtuQ8o7Db8bAunv+GaQiY1bJ+08R218cDAsg8Aug/Jhn6taZRl1mH5q++cwG49fgy085njpj/L81RPWpyfpHqLyaXh/dngyf8K246NjRZ+qmz5jx9Mp2BIB8F83eVi3f45OjTmefHjeMFfew8WsohV1QgghhBBCCCGEEELMAfShTgghhBBCCCGEEEKIOYA+1AkhhBBCCCGEEEIIMQeQALpNnvK0p8x2FlyW1JZOy9qttUtw7hn0pOL50J1uHN+16JbyFs+7ikn1p3LMJ8aroW+Kmy+Gn808J/tGVE3dcxYrXY5Rk2fi5Hmfsd8NG36wmREQmtrYNDjMmN/E6tDzgKnsfzg4DzwIETfu4Lpp8oVzDHpCz8OwfgP/K77OtrmynhSpHmmeP6Hnf8h0op+npt/OvVL94DwTJC+NMmXSTv5j+Woaq4u2ZZuPZ8XX01N4+QRPYpKvjZHn2LZtYeA99yAJMkGqWAOgoMzj/eTYsfAy9oOzYWUoOwWG/ldhmOebw90+GI/HjNeQZ3yUmEm+7MiRMIzbRdlyDIY+b4xMNXgC4nObNUKjsN17wvGf68Zexu2Hi/HkSURpsqlM9etlvIZmyiDVR5V59NHwPNXXjcvKjhXsIWc90jh9a022rrp7+vjyywtvSuuHt3Rp63vZfNln4Xw6Vn+BZaDto5s2IQl+z9i5M2xnQb8x/nveOwnnkz0423mV5jKw9bZoUXHM7dorn2ar4w6s3yjpQz1G77DcrpusLuM2xejpofdgmivtG5/XfWtVeh+vh+UR81az7YzD9u1DFM+j0bPJ7esrns16jgdp9plE9pOBHf9NYtqt9zcJtx+bR04+1evPK7tY3WRZNHvzgyyTR50AoA91bbP5tzfPdhZc7vnkj2Y7C0IIIYQQQgghhBCiBPpQd5rYdsM2/OCGH6CyqIIfe+qP4amvfSruveVe3PbZ23Bw10Fc80fXYPWFE9tHjRwawZff+2Xsu3sfLnruRbjijVecInUhhBBCCCGEEEIIcaajD3WngZMnTuK2z96GV3zsFag1avjMf/8MnvjSJ2Llj63Ej7/jx3Hz/745iL+otgiX/dfLcOBHB3DgRwfauleeJ646t+uQef2yDYvJsOx6ZY8ycjl7jafpcPb6rnA+U+Vx3rPZNFLLgfJY6YDE0cpnx5ziCW4XkwG2Oo+EjRrJWsDatcWxlb3xXuuONtsuww8VR5WWvwNmGT5raGzg4CCS8OrahB0+GE+GpT61rpKyUm8/+zJy0XZknrO1BN/TRKSWFRDXhNp4nqbGI6bVaKd/xcYRJx8s5wN86SvfesmS4nj1apPojp3F8S23hGFbtxbHNr+LFxfHrH9x2tJB02e4W1pJH+OF8YOWVfbXnKpn2Y8d3qxMkOHiCuSuXpsoKUHnoc8Og6nqUxvGbS14Tk/TZHWNHNeGxWwRnDHYtnFudp4snOFma7PRVJ/0aDwHVgfWBNGC2cv0k73HCgl6/+KwDoMiSXyvYAklEBa/lZyyDJrv1SwfLI55Orecc4754UhRyKtWxdNnbBjny9YZt2WOZ5sSl4nXJy0xuR/3eSAs41Spq4XlkPx+YK/zZJ9eE/H6uSffdxxIorDtCgA0El+J7Xsk91+uQ2+I4VdKSzDmGiuUmtco6YY1U0BBjp0KHhw8a/r4jjvCMK57a03AbdmrX5adW7lyMK8Omgu5MNv5G47YsaM4tv3Lk80zMRk7EI4r3XVjDbF/8gazabUkxGlEH+pOA8eGjqHR00B9eR0H7p/48FZr1LCka0nL+IvrizFwyQAefcj7a0QIIYQQQgghhBDzAnnUiUnUCk4D+XgOZMD3Pv89bPn0Fmx4/gZklfnuhCmEEEIIIYQQQggh2qED2/uIVJ708ifh1X/zagw/PIw7/u8dp75ACCGEEEIIIYQQQiwYtKLuNFNfXscFz7oAe7fvnZH0ebVs6VWz1piCE2J/A8/AwvoHtGNSMoVnnuF5hzm+Vuwn0nTbkUSfL88rL9FDa3Qs/EYebAfvwT53xk9ljNLs7jLphSZvbd/Lnld7GkFQ4PPDRlOmjYx29UZvV6Pnsc9Wr7f+NwXr3xLcjo00gNAIw/GoC7yqvEBTPkuXOr59sTQsid5Myd4intfcbC6rL+uj1wn/Pc+jMRbPpumNb56XYJk0zHhTobDly7uDsJMni2Pr28RJcj8J/NIAYPv24vjLXw7DOFE2ybH59IymnLbL4yB7UQKhj5PbjBOtC62/X5nu4E1R1vusUY340nntoJ02GBjMtc6vTcLieWPFpr3ulT3xROzNPH/I2HObMuC50+Yxlo1WWYmRT32LqQABAABJREFUamnL5cHeWgDQ11d41tl8sPdW/5PC+ZHTPDpSPGejHs6H/B5jfR653Vn/q5gFp80jt+Nly8Kw5cuL4yZ/y0eLhLi/2nje64hnY8jeal75cxnb19SYDx2A6HywZ084t6f2IW964bHatmNOf8WKtHt597ZthO/neeCletRZL8TqSvJvdK5LtcM+diyMx2Vn0+C4XI6N1M5ssQWU+v7gcPx4PCw2Btsscpu3YVw+1ss6mFWdvyc8PAvaWJEsWhSPZ4uYy6cp/1ONsqJ1RmJhoA91p4nh/cMYenAIPef04OG7HkbPOT2znSUhhBBCCCGEEELMBeRRJyZRKzhNVBZV8K/v/ldkizKsOHsFnvbap+G+b96Hb/z5N3Ds0WO48V03YtX5q/DC338hAOAzr/8MThw9gZNjJ/Gjb/0IL/z9F2LlupWz/BRCCCGEEEIIIYQQYqbQh7o2+dLb/r7ta8ZGT+Lk8TF0dU2s/R0bOowv/+4/AgBWrq5j5erJpdTHjk2n39O7BOgtdoX95kf/LeleK5aeNS0X8D7GDwyEkqlg2bPdKzu2/trKcrzl40xZTQrHs2vyOS9mT3CWkHAWrfSpf6UjrY3dq9V5Ah35hxJTjl1dtETc0xR4egZ+FkeP4VbhwEA0eVc1TFvMWzleJSqnssv6qR1bPUwiQfIjjrbEPEy9K5QDR+Hr2tFueZIy77rUeI7kjuVmtbGjafkoC+Vr1NTv2BhJatpQ01c6kU+vXGNhtsG3M66c6ncAY6b5cDasbIyTCcY+2wa3bZs+PLR1axDEYpMu278ig+t4PewXfDtPAuSNFZ68rEZlbNPguCwPagd+bE+W1izLp7ZbL46bJEfcRjz9qdN/WSJo24GnrOWp00yjgaSsfzmNAcPOXONVQCrmGq7fvr5Q/uRJxVj+ZyWhzDnn0L0wGo3H5XHTTWGYN43y41x8cTi+8XUsJ2yYeuI07LN4945h65qncCtb5biVkaNhIN2c82HjsQyxXg/LgF9PrOQx1jW4vQPArl3F8dq1YViZ+XFkJMzjqlXx5FKT53K0r2ScZ1s3/Hpu2zin470usDTYm5Ls2DQesTW3bYSvi10DNNdvbHhjuTXg/ynAcYPxLfHPk6abl4zH9WTLh8dkO43G3AFsXfMc7knXKzvuCgP5htTQvHqy6XMSS5aEYTynexJ6DrN/MvB50xgzdfOSsmMhzjT0oa5NHvirl7Z9zc7dh3H1r92IbSWubZfXvPdHM34PIYQQQgghhBBCCNF59KHuNDC4Zjm2ffbls50NIYQQQgghhBBCzEXkUScmUSuYx9hddljq0ywXKo4PDYdLoLtjuxzZNefeWvtO7NbIGoDEnV09eFeyx0Rsvb6zHt0r/+R7mbXw1b6zKCy+IyDLCWveFolOHXobkh4dC2XVzPBQy+Sa0kjcP7VZFchr8lnfATRrwCIES+096ZYpBG/n3qBNzvSSfU/bFovX6jwWlJr9mRgDOpB88q5tZXaqnqk0E0nd1DfYkdTZWtG26GSRP+nxKnt2h2nQjpjWZYF1Pz094TgSkzs1FXedt7NMym1T+qnYOcTLVyx9O19VvPaZ2La4Sq287Oyzi2M7hbPkyO4cHuy8PeRoTD1S239i/+rri88UqZsN23hWZhdA7yB7C4U4vvKVMJq3q+amTcWx3ZicJY+PPlocr14df6fxNqX0SJWlefJoDMXrPpANO5O9fU/lvNhnY6m5J3Pm25VwJmmiU38vczpcjlb6x/Jr2x5TnUu4DGz9riS7ayuttfXBxHYGTZXIWjwJOs8NNo+xeEBYxsk7mXo2Pt57krN1MteTzaMnaeV2za+zdpreuBFReIzHLqOtZQ8AGnDaqUNv19dYf7O7oPO5tZAI3qWttYIQCwztbyyEEEIIIYQQQgghxBxAH+qEEEIIIYQQQgghhJgDSPoqhBBCCCGEEEIIMdvIo05AH+rmHdVq4Y3g9fHAP2Qi9vRRkwdGzI/G88/xvHQ8856y/k50XWUsfLYGeRZVqxU6Nmmwr1s7A2TMcGImBlknzcBjwsQbrzemj9knrqenEcTjR6m1sZ893459d2xb8poPW2csXRp6D3V3tX5u3qIeALCY4lmDm9T6KBlvdCxte/tGqmmO17/a8JeLpuGZo5h7Vzph9FMC6/sXeDmaPNaC85IGdvycM+EnVyJNr121c6vDh4vjwPOnDR+0oFc6PqFBx3Q8zFatMj9QG+zqintdso+S9WCr14tc2kdpGi9K4HVDzpfn9ZR8g3bm2Gq11SFWrw6jDQ4Wx9b7qRuHipMh0794MOc6tYN8qtechzfeUBtpjAwFQet4nugJ771iRdGe2K/XThON/fcXJ44R5vr166aPd+0Ko5HNY+DnZGG/OgC44orimOdDC1d9f38Ydvx4cdzkAUlwEbczvNv3q2iijGmr7H/F+QXCurHFz95q7G9m+/X69cUx+/61yksK1kOLfePKWs5y37P9kL0vvWHWC/Neq3kMsOXTGKMxAI4hHrN1a3BaoQcaHzw/etn5g+H8znMdDzHd1aNBvGSfWSQWlsU1QU3Lh1dP3J5s8jwe8Rxi47FnnW0/S5bQiR1I2BzOMf/z/pTxPDhjz+1NE9yvAfhe6FMXlp5ghTizkPRVCCGEEEIIIYQQQog5gD7UCSGEEEIIIYQQQggxB5D0dZ4xNta8FLklPVZaWCxB37cvjLp8ee/0caOniGclWTVvObqneeQwT3pGS6BZygmEss9Dw2G+WBrFsgq7cnrlyiLNMaPWYjlVxS7F5jzzenQj+RonKdf+PUEQ1gwgDUdWdHSkeO66KR/OCstE7JbsgbTQStbofk3yF4o7MtLd6mcA4Sp2W72e3CMm/7Nbvrvr9ctoVNqRBRqZZhhGJ3uGiuN25LmeHCCWL6cPcXsBgHpf0Waa1Ios3eUk25G2lZDBHRgK88htd/HimgmrUViYTldXMYYFsn9Pd+LVvSPnTLYHsPC9qQNUq7VoNCv75OTt+MZyrTUD1FZvMYMR6cZ6Lr00GoaNG8MwbpM8iXzzm0G02qXFA/TbcqQHeMIGMwiMFe3n0kuLMcY2K+6H9XrYfjqhZmapmO2G3O5s1/aaDMNWDe4Y5ozPLLe0+fAkUxs2FOXaNM3RcdgiDd7NE6W7ri6TM2bC9h4r8v/gzvCyu+8ujvk9wJbBRS+gCubCAjDeU4wjeyh9K33lIjh8+JEgbMmSQu9tFIO46qri+BG6zBs2+Fkm0i+O9+4Nw7joeHzwXmmaFGae7o3hsjM38C7jqE02LAQ3f1NNQVMa8N6tEjs9S0WBUE5edgq8/PLi+Jxzwnj9q2l8toW1a2j6sGEbL4XxzbpNIeyi9ynbdsfGij50yYZxG9gyfavhZmlz07siXXfvznB8ZtsUZnAwfJ9lSXdv1YyDsXdwr9G1oy+OlUGijBQI+6Unm+csW4k7T7/nDxhp8LZtxfG554ZhDzxQHO/c2TpB+A4G/KieJJezYfuQ96fe2rX099bQgdY3KKs5P1PIMnnUCQBaUSeEEEIIIYQQQgghxJxAH+qEEEIIIYQQQgghhJgD6EOdEEIIIYQQQgghhBBzgCzP89nOw2kny7K8zHNnWYb8W9fNQI46xxs+tBN/9jf/0jJs3Pkuy15lXrwzAeu7dlrxfBM64TeQ6svQgXultpfTQhk/irJlEPMgmanrxJxhLo59szqeeXgeY6KJ09m2OtJmvPqd6XluBuhE+cce2yuqssXheRqmTjWpYZ0aYwJvsg6kaesstfwZz8MyFeuR24myO53vV969vLJLLSvrd8vl46XhlavHnJ0TS1C2bhiv3GairDredtuZaybDNj/1qdiyZUvW/s3ODDb39ORbnvWs2c7GYyb7p3+6Lc/zzbOdjzOZufdXiRBCCCGEEEIIIYQQCxB9qBNCCCGEEEIIIYQQYg4wNzUKYs5yGpWXpUmVuMzI8vlUedAZji3j+SRFKM0sNvpOS44WCnNR6mrpWF/rxHjktfFY+nNUCilacCZM8Ewb8utYv/H6lw0r89jtdLtOSGtPpwzOGz87MSfZ62r0bJz+TDdHm34nyvF0ztPevarVxz4HttMGU+MtlPcY7zlrTvnMpjXNQqmbWSXL5s48K2aVuf9XihBCCCGEEEIIIYQQCwB9qBNCCCGEEEIIIYQQYg6gD3VCCCGEEEIIIYQQQswBJIBeQPjbsBfHw8PxeMeOFcfHj4dhLKdftCgMW7y4dTx7znn05PleGk3+CbEHHxmJ38DDK0hO0xbk+vXl7sfs2hUPq9eLY1tAHObEGx0rvt17j9moOx4V/Nx8L3O/Jm+gsdHiZGgovI4zw2Vs43V1Fcd79sTzeMUV8TDvOsY+G+fLK3/PYIjj2Qpw0q/EOott47FytHidr68vHtZpbB/ifLXTfyNlbsttvFqLJuH1h1iYbSKMN856abCnUNBnbEa89uO1g9T22dMTBAWeVCNHp48PjYRlynPI8uXx5M9IHxwqy9FqIxYU4FWThedVnlMB4MSJ4njlyvi/wdZAbSa1jQDp/qupk3gnsPnw5kCaG3ieax5i4mGx7uUNs3a45Ljf+U4YduRIcbxvX3H8y7+MKF/5Sni+alVxvHJlGLZiRfFs3Pea5vPEuaFp/Iz82z+XNwDUqvG+zWnY6uX64KmfywoIn80MU1gzEL11FPtK0NNT5NF9F3LgMmkqD68PpY7xfJ2ZREZRjMm2qnl87l/dlO2WbN8envNr2PmD8etsufJ1vI6ku8tpn6kTaTt4c2AnvFipPrguAP/1NhbPjjHcPj3KzrEHhor07ftJMIePOXON146Z2PvJPPYAByCPOjGNVtQJIYQQQgghhBBCCDEH0Ic6IYQQQgghhBBCCCHmAFpXOd84cQLYv3/i2CwNjou6AAwUeoBuHAqCRuvd08e8NN1TTLUjE/MUg6kES7jtUng+T11u7WnWPFkm38s+DD3ogZFQFtXbk7gE3ZEzROWtCOVnxw4Wv1vpGT+Ko1ptlrKQnOpbdxTtxcqzuP3Y9JcsKfK4ePFZQVgPLe3nuuYl+ADQu+eHxcnWreENWAPjSV+9Rs4FFOo0MNoT5pk5yGXuqLMQNM+wx1brxflUF5+CJXFLlxbH9bpJgyXiVjbJ7boDsoImaXMZmYUnwfLCTN0w4/Wi79kkRqj7spTQ4skOufwt3ljn9b0YVjYzRueHj4Vx9+4t+uXgYPF799j9YUTWI91ySxi2dm3rY5h/9aM0upcsCeJ1c+HZsZTTtIVAmR7v6UUMbmd2nPKaNdeHJ837+i1Fmo97XBjWv7rIc830r9pYxBKgbuSDPXFZmjc/ctzaDhoHbTl6ukyev2wf4nT4ZlZbmCpJ96S13oOmSv927oymX6P22WvfF6jNd9v2yQMvtcf/veHDQbSPfaw4vv32H4VpYM300dlnhwPJG99YHJvuFcBVsWlTGOaNMffc0zpevR72k56eBoWFaZw/GH/XClLh8jaJ7N4TlxfH5K32nKvXpsFDztlnh2GveVli+6T833hjOM4uW1Ycv/jFYdmlNuNbby2ON2605R8fAxqUJs9lQChF9uSt7KBySc/uIKybC3bl5hY5n4Tu9YRPvS0M437CncGw5vqPhj/09xfHl14av/fGjdOHTWXA7xkdeN+3c0js7xyb/OHDxfGDD4Zh3ms8Fx0PwbaNP2Ps68XJTlPB3Lhe8IIwjBvDhg3FsZkLYjJ2oHloZfjZ1q+v0e9hHzpI5WPfmbxX8AYmbTUqWmckFgb6UCeEEEIIIYQQQggxm8ijTkyiT9JCCCGEEEIIIYQQQswBsjzPZzsPp50sy/Iyz51lGfJvXTcDOeoc133oR/jY39zYMoxlA1bW1b+6WC5+147w+y0vQ+Zl2VaWwHIDbzc/lg3YuKEcI4yXKg1L3kGrnd2ivF2mYmF2zTYvM7cP4Ej1Am66KZ4PTtOmx8vaWapkd26k5ek2ed4NzO4mF5Q5N4x2/kUopmsB4mXMZQoAO3YUx97Ww1ddFc+HlfsxXiNkfavVRnJckpk3lQ/Xk9VSsCTRaz/etmEcZtuns6NnQCd2L07Fanw5j96WjF7fSN0d2dla2u4OG9sBsmm3OmLvvvi/k508WRzbqgh2VRs6EAZ640+sX9qxwpM1kh7v0HA8//zcnoSGd4cFED6cbbucl9O5s6iF26QzER1Cd3DOl3nTUKoVhK02LhKWNts0KsNkbdGk/U7cCdrbHdbTg6Vu5Z4qWbNwoTi7vh6tF9Jpu/MkX2abYKx72V0v7U6sDDsy3HdfaDNy9tlFm/nAB4rfr7kmnsdf//UwjKWwpBAEEA7d3XWSZntjqTMO2kZ4dKR1X2cZIAD0r0zcDdLuKksyR35F4GkfAFasKI7PPTcMWzPQvgWDHeuCsis7/pTdYdnro7F3WjtO0XvGUWOxwbLYi9anldW/fiUsH77ds66Ip/HdreF155xTHPM7Zm3o4fDC1K1RmdSxx+INtKl/lNg6dDxgeLdwrgvvddC+kq3pKeZVVxpcEu7nTbsex97D2pknEnal3/ySl2DLtm1Zap7PNDavWpVv+YmfmO1sPGayz372tjzPHQ29OBVaUSeEEEIIIYQQQgghxBxAAugZYM8jR/Hm938D37ljH5YsXoTBs5fjg7/6dDzxVX+PDT/Wg5HRk1jeWIxffNnj8doXXQQA+OQNd+KtH/kWzlm9DCOjY3jDNRfjLT/zBADA17/3EN78gW/g+zsO4Pr/8Ty87Hnnz+bjCSGEEEIIIYQQotPIo05AH+o6Tp7nuOZt/4rXvugiXP/uCXnd1rv2Y+8jx3DBOd343t+8FABw74OH8JK3fxnj4zle9+KJreNecdX5+Ohbr8Ajj47gcS//HF723PNxbn8X1vV34ZPvvBJ/9Onvz9pzCSGEEEIIIYQQQoiZRR/qOsxXb9uNxdUK3viSS6Z/23RRH3buDk06zj+nG+9/8+X4tQ/dOv2hbopVK+pYv3YFHtp/FOf2d2FwzYSJW6Vyajn++Hgh6beWCWwXwH5yFrbasng2YmwhdPx4PMz+IwFvze3583D+7bMFca3fAV/oGdBwmL15qn/aAw8Ux0eOhPE8j7pU2LTC83BatSoMi3n3mLIaQ+FXwp50QOibZYu4htZeHey3MRGv8HaxPl8VridrahMrf5sRNgsiPy0AfqNntmwpjs2W9UG+rA8dGz9ab6/Vq4tjzxvR25eeTa484zLGtpFUk0mbPlc+GaJ4/mMenk8Kp1nh9g6E9WHNpRivb3AZW/8Zz+OKzj2bIO43XV3x8rHDA8PN2lZFUHaef5d9NvJGHO8qvLC85thdNR5ydL/uMXMhty2qt4p9AM8fj/usLWS6N48dTjQXz57Qa5+H6me1vAYAaiOF55htgnzO19lmnOrTaocmvu6iPvIutOXvNV7OpNcw2Pzs5pvDMK9hM/bhrKfoFNbwlivOFgK3JxN2YKjoiyNDxe+2OC5ZX8xRS5aEcxQnyXaxthl/4Qu30tlnw0A8Y/rovPNeEYTcd18xh1x2mZlfItxxR3jOHnjsVweEXlZPeUrxbIODvUG8/qXkned5pJk6rFK/5MtsFXIdjiIs4/1DxbHtQ/xsPNV/5zthPJ6a2fcMAP70jxNNICnsD/8wDNq8ucjz1VdHL2uCx5Xvbi/ejazVbpCGSa8WG0iAsNBpvL9/KPTLvOn64ti2f37/f/tbHO8wurdruewMyPv3h3XPeeFxcdOms4J47HPdv9Z0Pn5n8DxbeaLmP0IAfwLmMC4sa9zM17EvMYDRrqK/2T8ntm0rjrmNW7veF7ygOLb9ZA2KHyr1+AR5tKsoV+s1x76M1mv3VhreBgbCd5xVq4o67echzPMb9iZLGzaVf/sHihDzFHnUdZht9xzEUzb0nToigCc/rg/bfzTU9Pv9e4YxMnoST1jf23yREEIIIYQQQgghhJiXaEXdLGI3nv3cV+7FV297CHfeP4SPv+NZqC9R9QghhBBCCCGEEPOeLJNHnQCgD3Ud5/Hnr8Tf/du9SXG/d9d+XDzYM30+5VH3zdv34kW/eiN+8hnnYmBVI55AC44cKZZL2z7OS6qtVOOnaPn+t74VhvEKZV5JbpUxLAux9/bUZrzV/RhtFW+X0/MKaE/udOJEuJx+8eJiZeIQrb5euzaUA3g7rVf4gezNOWMsfXWkc6Xh5eNcoUBYAVYSxFpkfjhTGdWBor1ZuQqrPpuUlsNUJrSWv2aW/HOjqdg88jr/r30teh127CiO77kHUS64IDxn+aYHSyesLo3r2ko6uG7ss7EMgvNlJRfctqwG/c47i+P+/jDs7LOLYy4rq6vgSrTlwXJpTg9I1xMmYiWzUamhLUd7HsPKJbhc+dgOYp4skGhYOQyHraY8WukujQHLlq0JgriL7ttXHNsuNDpWlF3NG4vseENtoUIS027PI8GmQdcdqoYrvrtoBXiFxxVP5m/zz/cz17HcldtLvR4XBnS42QII5ysr2+Mb2qrnrsjFY+Nxnm03Z7yu8G9b49IqlpGxFBIAuqs0hnnSe765vQFLX73+ZKWuPBY67SAIs/2QJLn3j4RyOZaq3nJLcWyn0auvrkXD2BXh7rtvnz5+3esuDSPic3Qcfx/ctMlKX3dPH9frPxa9jrnxxkeC85UrV0VihhLLCy8sjntxIIy4nebYdl7mjJ3FFHY4blA7s1esqRf3W7M2vHe12lqyz5JYIHShOPdcc4MStiNPfGJ4fuWVxXGtGpfJe7AsuTJ8KAwcoUHASgZtYTI8cdDAsm7z5iDaxo1FOX7yk2ES15Ms9u1vTXuHvfba8JyHhPGx+HvvT/xEOD6cd15RN6yu/6VfCq97/uVUXrduCQN5QA3/MAjj8TjFWlogfDdy3mGDurBWK1xv990XBNUuu4yyGI5TPGTyeGPnshtvLI6vuioMu+QFlGf7jsNjpjM8264dy6N1qeHrji4v5qFGl8kHl91DD4Vhj9CYZueXqf5r/ZWEmKdI+tphnrt5DY6fOImPf7EwDvnODx/Gj/aEo9nO3Yfx6x++Fb/88o02CTz90n68+gUX4kPXb2sKE0IIIYQQQgghhBDzE62o6zBZluEL730+3vyBb+IP/3or6rUqBs/uwgff8gzc8+AhPOnVf4+R0ZNY3liMX375xqaNJKZ4+2ueiCe/5h/wm9duwvYfDeGat30ZBw8fxz/d/CP87sdvww+uf/lpfjIhhBBCCCGEEEIIMZPoQ90MsGb1Mvzte65q+v3Y1/979Jprr34crr26+Gi3ZvUy7PmXVwMALrvkLOy64b92PqNCCCGEEEIIIYSYfeRRJyZRK5hnnBwv/AOsFQdbwng2HdabgH1s2O7AeuuwRYO1dWBLm94e4+kxVCTa00M+R2OjQbSensLNxBu/rCUD2014FmCLaStx6wcR+DhZXxzODBuitOMf5RlCMHxv64nBYTa9xPS5zOv11n4zAFAZORr+EPMi8kyibEUxK1aE5zHPKzbdsWlabwuuYA9O03YUNuSwHhncIex1sQ5n2wGXI3uonIpYOXuDgC0P7rS2A1M+rb9capa8PhtN0+Tj0EjRJrttHvmGNozx2p3nz5aahudnSXns3xDm8ehIUQZ8mfuu5o0jNozzzDewY4PnK0Z9qsnbbg+lz96OG429A+fLGq1xHZp88dg0HvHCOi1Q/kdMM6hRmLVg4+GZi26VsRTjbmmbMad5zjlhGA8Xt95aHFtLK64aO5V185zijd2cqPWz5HZm0/DS5HaxZElxbM1SvbmY2tNDd4dBnGUuA68r23cEa1k6BdumTmYkniheEQ259NLCl86zPOViXL48bEAc13sNCIaHYafP2zqL+X0CqHUVidZQXDfWZbyWh5124LSRvr5uOi5+t82As+XYiSZjm3jq65pH8A7lmS5bvAmBfR6dl3wOcl9VvP5LEW0fynPygxszu+Y5xKaopimJM2kHSY7M+bWZ5LLi8QYI/2iw/nVc/p6XpveuRdgijlWbLYNjx4pja2O4e0/xLrGmai6kcqgPhD65DI+XvT1hGL8G2/mL88n5Wud1UjvGex6BUwWU+j4vxBmOPOqEEEIIIYQQQgghhJgD6EOdEEIIIYQQQgghhBBzAElf5xn1JYUi0i6pZlWmt3R/cDA855XHvJTZ25bbLt/mFeJW5lahyJznmlniz2na1f98nScTYexq69iKdgChVMMG8jkv77YFxBnxpA0e/HA2H1xRdpk5Vw7HM2mwpMwutefzRk+idtqRCR8dC+VrjfWOTIFh/dGmTWEYa77svXk5fVm40axeHYbxc1u5BC/T5w5mC9nTj3t6FY7ryAcDvYQtD07TkbxUYKTrEWqdmF2Mbq+bn2fItBFPhhKLZ/EGmVg8G5fz6PRzlroCccWp/Z1vVfNkP56sOrGum9JwJEc8rldonDqA3iDe8FBx3CS97CraVtM8Qe3utLZBA8uKLN0DRd2zsgqId187DzFWPmvTTLnOzudsZWHDsMPRhHJb2Lev9e9AWKnt6N8Z++AxrBaV+t5ll4XtLmZtsX17mMQDDxTHdojkrj0ycun08c03hzYFz3zmb00fc3kDwJVXFse2iK8ia2OvqLz3He6Wnqqd3+W6BkMJXNDC25BhjoLmdHqX2G+qqXuwyKTt594Qtockxlx2drr1ZLFlsGMwS6L7zWtAKgdGCjlwb5+ZTzwLBh48PJsCx4JhYKCQEF9xhZNJ712XsO4GDz1Ena0aH6uf85yw7jmdzZtbHwMIG6/V9nP5nCAJrvdHg5W+8mDhdaLEd113jIzI6QGgv784tuPI7bcXx5ddFoYFsvkNZ0Wz5c2jTRZFBBePdYCJFmtiWwLgl+vU+XyXvsqjTkyiFXVCCCGEEEIIIYQQQswB9KFOCCGEEEIIIYQQQog5gD7UCSGEEEIIIYQQQggxB5AAep7BsnYrb2f7q3Y86vj8ooFD08e7B7uDeNYuiQm2oh+Kmy7VqqPF7yOhNwp71h0aDv3NGGtZwcS2fzfZaLKsWLq0eNZ6X/jcID+Umuc/Rox3hWmkei4FZh3W4MbzxiKfB753ZfhQEI3rqWHy3+A0h+J+E4f6zi9+holGx002Ypx/6z0X8QHcPdQIoq15FRl5fOpTYRqebxnzqlelxfM8T2zd8Dk3UOu/4Xnzcdvizmzv7Xm10fmBofi/03h96HzEfcRiWbLZ8uDrduwP/VXGyM+lXg/rnunq6jXnrY+b+h0/uC07z2OSz9kgxtYnpdkY2x0ENShjveuLY1vGwa2dQg78ogDU2Lhp167i2Fb21q3F8ZYtYRinsWFDEFThtkxjR+/llwfxerkh7DH5p7KrWOMjKrtDI7VWPwMo187sdanjcZP/FZXl+vVhG3zCxiLN0bGiTu004dkkBuN10xhfHN56srj3o4+G0bZtK465qQLA4OBF08d9dAwAtTGaw7n9tDOGpfq0eoa3fG5eZA4NF+W67dYgKLCzY+sq+75z9dWtrwHCR+Ny/IM/CE3Sbr75djoO07jqqsLbznQhPPeLb5o+vvcFH54+9tr0V74SnvN72I4dYRh7XrHfoa2KmueFy43GXFgbPlCcUMMeNB543P7tvb1pmuuKs2WnQ35uG+Z6cEaw/mBcdt4c6I0jQdNN9Zqz59agkPtizDsZAIbiQUF/8OY5qqhrrzXJU/peP3/c4+Lv8XyZ7Yc9G4r2VL08bFu1ERojucN6npteGXt/LHn1xphGzf7M9tY8JvBltp7+1+vvKk6azBypwP7QDBBsSsh/T5jn3LuvaNcrV4ZJcF48C7977imOj68N39e6eoq/E3rtIMwNKGaWbf9Im2/Io05MohV1QgghhBBCCCGEEELMAfShTgghhBBCCCGEEEKIOYDWVc4zsgxYtGji2G6bzatoWfphSV1tO3WfKSpjo60jtnODRGnM2Fi4ZJ6fx5O0cpJePE/V6KoUuop8VbpMIp4kKBVvGT6vR7dlR9dx/huezsSTAzh105HV2vY56ZwlfU11wY/jabE9nIbgSXaq1SJftXqaZCS5L9jrbPmwVCB2LwBHR4r8W8Vjat/wpD6dxlPeeP3Qu46fpWGbvzf+eO2fy5kzVlaXSdjnDLJYDcfBoGnZhFILb9Wq4vhpTwvDzj23OLayK06TG5cnObLwA9gGSm2+u0lz2hpXNlwSfuxa1UrbivzPiGol8QG4eGxR8dCRWIwTcN14YxjfwIZxG/EGmZhWHcA4tXmvi9ohktVVrN48eDCMd8MNxfEDD4Rhy5cXx6zotl1heLiQt9pp6Mori+OdO8Mw/iG1/VjVWGXX/dPHT9hodJ/BPEG/e68m3juCF0aV4zVbV95tAtmOg6XlK1aEaSwjJfKFF8bv7cFjx/mDpp8HD1SuowdScsciwZ1DbBinE5uTAPRS0Nq1cQuJ1EZo23jquHLppeE5Z5MloLZ/NeqtbQQAxMcfz8rCI/U92HvpMHNZo6sI27AhtEhguXS1WjybLYMm2wjGewdheCA0AybLu20RsBTchvHfhUeORJMPz9sZIKbOsyx+jRDzCH2oE0IIIYQQQgghhJht5FEnIOmrEEIIIYQQQgghhBBzAn2unWcsWlQsWealy0C4ArpZslOwbq0JY30GLa3vt1th7aKdhtr5l4DUpeR071671n55sY56+fL4Uv6YQhDwVTm8nNvKhlkOw7DMEAAanfjXkdQ0TDyWcQTPXY9LO2tVZzm6s4sV77hml7t76s1uDjSVw3InluwsCzfbC5+7rPTV2RUuuQqt3CBVisDSFU/X5e0qG7sGQJV2Q7Vlx1L5mfiHvBKb7bWlVvFkb5xOAyQ52jMURuQBwkskVV9vSdUXEw2Tj6CPwtgNeDvC8v08bZInoW/S3xAx2ZVXiZ6syIOfxUnD7rrIUqKy8K09iXuwgzkQ7GLOO5jX7HDg7VQYK2MgeO4bbyz6uZVGchXajfO4+Vvlcb1OUsC+nuljdwfzVIm4xRkjOf3aWJhGje63YUOYLy46VnzZnW85np3bDx8ujrlb2g2K+X3B7pjIYU1OFlQ5XlcIdigeOhAPdCww2ELCU+0dOxyG9a8u6sZKy3nXeM6HNxTZ96nVq8N6C9MvLuR20L86jLd4cZGv3rGHw8BqfAyL2jrYbUcdaXYyqTJwize/cOPlNG0jp7DzzVxw/iD3PSOdjuTr+Wt/GM9j1XQOwu4Wy5d1d9E4wrtMA8BOGkvtXBYbYzyJvoWuGze7y4fjYjHOnsjDJJY6yR87VhwfN482Qn838GPbKnzGYE9xYsdLHuT5ZjbMKQPvNZU3g7dTFCfJfduOpeywsXp1aOHR01OUa9Xko7tncl5dvDieQSHmEVpRJ4QQQgghhBBCCCHEHEAr6oQQQgghhBBCCCFmkyyTR50AoBV1QgghhBBCCCGEEELMCfS5dp4xNha3q2KqXcZbBPHtzmuxr/r2d8djLPCK8Ly3UnF8Ojx7sFRslk6eTMuK95jsB2e9k0plLHV7eaT7gwVhNnnnfmPkUed5W3D5uNYuJpOVMfZ7Ku7V5A84nOjD5eE+Z3FsyzGo06GETtiK1L7g1b3jD8bJexYfqU2rjSbYcRyLrqawoK1xntsZwzz/wDLYgSnmp2PuFY7HcS/KSqonj30W7jfmmnHyjgn8qGxcrzI836AyA1Ub8wf30SZ/rcQxmT2K6gOht07gN2fz5fnLlcExFuNb22bGvkc2i1z17KVmOYTCR6x7zHrxOd5bqR6N3kRB8ax/1L59xfHenfFbc1WsNTZc27a1zhIAnHtuccwWqBdcEI9n6V9ZlNfx42H74Qrgx7ZtM2i7dp6jCmbvWCD02GNPUlsVfO+mdkAFWbFtMGICXKdxw0bz3s/s/N6gZ2UP4EY9LJ/A9y6Lp5+MN9l0Ik370p46vnkekHydbSN8ne1fXoXExmdbPtZQLZJGw3hMjtaLcYX/DqmuXRfEc30wY3Oz5/fplHHFPFtvT+u41pOai9H6fXpjMGefxzPrdcl1OloNx8HayKHixPvjpew7MuHYHwZFbJvZYeN9yXCRN9niThVQbkwBhZinaEWdEEIIIYQQQgghhBBzAK2oE0IIIYQQQgghhJhN5FEnJlErmMc4ihEjJQwD7crxGidEgaMwsh9eRp0qa7F40k4vLJBjhM/WIMnpSD1tEemSJeH50qWtszGRPi3D93THY+XkWgE7dxbHe/aEYY6krEbrx6tdhbyguYypTtuQpY1FlEqe8snuGt+9NKJNMrD0r2YlF1w+qZIIC6dh1t033S+WvncvL17ZsFg8U44sVertMbJGWmDdCVmsR2oatrj5Oqva4CbZXTfjG5eDp0/3pJdepmNSJa8DeHKq1PHS5KlJ7sqw/sZqcRhnHKkMDkbD0j0AHFLbv/e7UwZW7hoLS5XBNt1qOF520Wfz5NenvGFruLnboZSlnt40baVWUasCT1LmhXk3j7xz2LAxI/liOaedHlmi9cADra8BgI0bi2OWqAGhDPSGG4pjqy67/vqW2QUA/PRPOzYRV1wxfciP7bXbL90Yhq1fX8gEd94SxvXUkAznuWkuSPUScfo9l6NnM2LlcUNDxbOGdRiWAdfb5ZefFYSd30Nzgx3fIv3+AELpbj1y7KVhYdm2lVe6/dwr/5i83lT2OL0Dbt8eJsH95FkDZh6N8PVd5wfnfX3F+SX2bw3iS7d0B+dc3/zOzdMOAKxfz7JnU1Y8t3F52DnPK+OYhNies4zXdPSxqpG1E162OGzHjuJ41aow3ubNRfsJpN4A+ldTXlijD6RbDDhw/7L5j0397ahsOSs1mPYzdUNP0ivEPELSVyGEEEIIIYQQQggh5gD6UCeEEEIIIYQQQgghxBxA0lchhBBCCCGEEEKI2UQedWIStYJ5RrVa6Put5UDg3WaNBciLy251j6HWpgNN3gFlfXcYz4cuFs/GdbxvurpCTxuGL2N/DHs7e+vA24ifM9XLpSzeIG7LjvJSceIF+XfSsPeukh8Htzv2ogFCPyBbxkGaZX2aOMx6c3j+gTFsJyrrUVfGw8zLi80XP5tXjhR2dCS+oNpmy9bjY6Wdphu7ruwQ4yYSi2dJ9UVrJw0ek1M9CC2p7ZOxeeR+Y/rQ7qFi/Owyt6qzrwy3R2sW5o2R3K7tHMUmNzEvJsCdQ1wPv0Q4G5XhQ2Eg59neKxbWRv6Dc8dTiKvNG/Zs8adayHFYd18bfYif1WuriR5R7KcFxO2pAH9+Z7hYN28Ow9i+9ODB4njDhjAeN3k7DXH7afJtoptzPqzvGb9z2G7C13ken9bXKjleNRLRwUYray/F85BXh52Yr7iMbRl04u9nLpNaO/NQqrea09c8u9KHHoonH2Pr1vCcfTAvWR+/zt6by4TbiO3n3G/6+sL3mEbsHdbzYPPKuOQ739hY8U7czmterNqWL49f09QX+AZ2cKJEx+m93Y4xXjPj+vXiseegLUau3yNHwjD2r+7uitRNlsVvLMQ8QtJXIYQQQgghhBBCCCHmAPpQJ4QQQgghhBBCCCHEHEDS1za54g1fmu0suCxu9E2vDK7YbdG9PcFJ+uquR/ckpp70NVXqw3jSUU8S5FCzsl6ip6f4bm2zGCwLb7pXYv7b2P48CU+W6clWPYkm48mLTdgYJd9bP1pkaWUoNfYUa0E5eu3Hk4ZxWNnydtoqSwWabl2PywgCeTSn7+mzbBlQHx03/8YSnDnSTr5uzOlecwVbBCxpcoeRkTbaNZMouUuWtbcjfeVzOwbH4lntXBnJjo1Xst9EpVypMnB7nir/LTkXlIW7bHdfG7LVWJvxNKap46C53+MfX/x8zz1hNK5eT/rK8iOTfHDd+WutBrqkPQDjtWN6gJ3bwiCWnFq5HOeZy4BffQBgcLD1sY3LMlgbj7Nvuyg/TmPkQBhIOtlaNf6uwliZpyf73LevOOa69qpi9Wrzw/LEPkoP6r0qemE2eW6TLJezXeHRR4vjHTvCsPNJtueNTTyH79wZzreLFxfHmzaFSQRzPeJ1uH17cbx2bW8Y6EwvPT290bDKSPHuxeV/YCjM/913F8e2n7hE5jPXVcQZpzwHD889wZtW163tah2xHSsabxxP9NjgKZzHCqD5eZjY2GTLiuXYNmwUxbvoMElwJ35ofV2tja8BVs7PcDF7TgdeGXD6S5eGbbd7KqH5Ln2VR52YRK2gTW753gOznQWX17/+DbOdBSGEEEIIIYQQQghRAklfhRBCCCGEEEIIIYSYA2hF3TxjUTaORnVS8uppP7xl4J4Wgdcv2/XuqbKrMjvAPpa4iUve613d08dNsuEyO3o68Zqli2kyl7bkwLHrvLIajqyLP8W9urpoeX21qF9PXtkk7SmjWHPK41A1lIh0D7Qv6WOpq72dLW4uLlu/YdwizZrVRcV0AwAODcf/XYV3Mw6aasnmMptw87QyLt75rLn9lNgutg15d/JusV4aXv+N7fqa2q8tnqya72W0f+N9Z00fbzPSwjvuKI6t3O/ss4vjddwZeOs3IGzXVhPEO9Q9YFav83Wcf6vD8bSdZbcUJtb0kLxsl9HveHNsTGvYzs6oXRFZl4Hrwu6wyX3K7rbHSbK8z4bxo9kxMpD2t7NrduS5bfpcdN6ur7b4OXkedm0WvezHNhW38keWpXFdAEBvD41bu0wf5Ydz5mJ+X7jwwnBe6F9a7ET86EB3EBZrnrZauO6bqswbc7hgnXie8t67FcdduTKehvdsyfJ6wu642Y6KMkZqV0hV0ANAtVq8BxwkmTNLgYGw33fiPcDKGK2cPJXYhuB2Ktu1qzi2r1BdXUV/4PLothNW6t9D1j6Ed0p15oyyDhtcdhzvnHPCeCxJr+x/OJrIrl3x98b+fjq2EnfC/n2ydi1ZqDjtk+vN1hOH2fc8KT4nWUAFkWVZBcCvAHgDgEEA+wD8LYDfyfP8iHMpp/FCAL8N4IkAjgP4fwDeluf5fSbeswH8FwDPmrzXCIC7AHwUwPV5nucm/k0Anh257WV5nm9JyV9ZFk4rEEIIIYQQQgghhBBzgQ8AeBOALwD4YwAXT54/Kcuyq/I8d1ezZFn2EgB/B+A/ALwVwAoAbwbw71mWbc7zfDdFfy+AtZP3uh3AMgCvAPAZAM8F8HMtbrEfwFta/H5v4vOVRh/qhBBCCCGEEEIIIcRpIcuyxwP4ZQD/kOf5S+n3+wB8GMArMfERLXb9YgAfAfAAgGfmeT48+fu/ALgNwO8BuI4ueTuAW/I8P0lpfAjAVwG8PsuyD+V5bvQkOJLn+adKP+RjQB51QgghhBBCCCGEEOJ08TMAMgAfNL9/HMBRAK86xfXPBrAGwF9MfaQDgDzPtwK4CcArJj/mTf3+Nf5IN/nbOCZW5AHAxlY3ybKskmVZd5ad3i2HtaJuvjE+XpgEtLPvfSyeF2aNI9hHxfNxMwSeD55XW1lfKA5zfCmCr9ae/15Z84lO+A2kpm/rvoypSmo5Aqix3wr5NjWMf1SD4+0ZCtP3jFlS41GerX8R+op21t3ltDNqxzZ5rwt5bbdabe3p0eRV6PgYHjtWHFv/qFhxtdMEPfvJMj42nWjuS5eG5406lbGXSc/ciEkclywVr294Y1HsGiA02PLw2n+qx57jdcbZsH2IvY2s91mQFU7fMzuzpBo32brvBKn1xrRjsBUbn9sZZBL9XTdvLo6thd/Bg8Xxgw+GYVzftjlyVtha0Ka/alXhDWqrvreP+q8zdo+Okc9UGCvIv8WzWGWPpPXrW/8OAEuWFMe1kUNB2Pr1hecbZ7+y/YdBvKddSIViO9F+uqEtg7Vr42ERrHcVX2ebS6wL2VtxmO1q4wOh92vk1qh10Vy8q0XkSbi8gXCM8bo5tzv7nCtWtE6viZKTVOpQbedwhp/NDhXWTo3x/PfYu20fedTZMuD+67WR1PKxfYjLvwlKk5s7EC8T24W8P0PidRPWBfv6uitWTBkEw3O1GA8Om3GJ68LmiZO0ZcftmuPZNlEZprHJmgRSJQ4NhT6VnKYt/1TWDRQe3oE/NcJn5bqxTclrnzt2FMd2vD/33InnOTFujO3mG1m2kDzqLgMwDuDb/GOe5yNZlm2dDD/V9QDwzRZht2JCznoRgB+cIp2pHrG3Rdg5AIYBLAVwNMuy/wvgN/M8336KNB8zC6YVCCGEEEIIIYQQQogZpS/LMt5s4c/zPP9zE2cNgP15nh9vcf2DAJ6RZVktz/PRFuFT10/FbXU9MPGhLfqhLsuyNZjYyOJeALeY4PsA/DuA7wM4CeBpAH4JwPOyLLsiz/PbY+l2An2oE0IIIYQQQgghhBCdYH+e55tPEaeBiV1aWzFCcWIf6qaWx7ZKY8TEaSLLsgYmNpZYBuDFeZ6f4PA8z19nLvm7LMv+EROy2vcD+PFY2p1AH+rmGydOFGuPPe2Kt6TWk0zxsU2f18wb3QlLWTxFLksEgXBJdb0rLrmocf/19gv39nyPXTORsdbHQPjcnjyLtky3Wayl9kRvv3NO1OoZUqWvntzGazPcFug5x+vh2FgZi42zKCd9derQPjJLR7uNLCpGO5JPlrl4ajbOV3NXK9q8lVI8+mj8ulj12m3vrZQ0JQ0gWXFXeqV+TDZcrxtRitd/PVk49RUei5oV7kX5H9uHKEuXhmMTX9focQorVfZZVhrpabJ4TPY0KYRV1LAkxcpmon3F5onzwfogANiwoTjea9QHF19cHD/0UHFM4w0Q9sNKOxYPqY13G3kMexYJXr2doPdAqw9lbMfjsrPaTr6Mjm09cXEtXx6GHT5cHK9eHc8KP6bN4nF6VbbS2rtPFHWzeHHYhzwpJsP3Zgkf4EsG+bljxzZ9jFSjYYEMnzsGED6MbeMbyf7GDrqcGa9AKCP9S0N5LkaKuPbZGK8p8fmaATM286DQ1D7pHY3yf/5gTxDt0HDRDrrr4TvB6MqiXdguyTLZ/pXxd76LLy7eO7i7lsWWz7Jladd5dhgDA2nvxN68bIcf7g/c7Lz+ZN8R7GslE4yt9Gy2nfG44sl/bblyfadKs239cvPksrP34nFxYCB8Tw36hn2Vpntz81+5Moy3aVNx7JWp7ULctvh9LRhvAGAs/vcWJ+q1LZ6ae508eu8ZPX1nBUGx1wxPYm2TZ+m0tdiYuu70uoSJGeYogLMiYXWK410PAEtahLnXZ1lWB/BFAJsBvDbP85vdnE6S5/nNWZZ9HcBzsixbmuf5sVNeVBJ9qBNCCCGEEEIIIYSYTRaWR91uAJdkWbakhfz1HEysynNWeWA3xb2jxfVAC1ksfaS7CsDrS+zquhPAlQBWApixD3Xa9VUIIYQQQgghhBBCnC6+g4nvUU/lHyc/pG0CsKXFNfZ6AHh6i7DLARwCcJdJewkm5K7PB3Bdnud/2XaugQsBjAE4UOLaZPShTgghhBBCCCGEEEKcLj4HIAfwZvP7z2HCW+7TUz9kWXZ2lmUbJn3lpvgagIcAvD7Lsi6K+0RMrHj7PPvOTX6k+yKAnwDwxjzP/yKWsSzLVmRZ1rTFcJZlLwLwnwB8Oc/zRG+pciyYdZULhjyPG1J4xjIeqR5sjj8PeziVXc2barGXnIjnZef5F9myi2XGxPO8OpJhswvP+MLzGfQMS7gMvOe0dR8xFKlY7wwnffaza/J2ieXZ/k73O/xQGBTczvgvBdBzWl8QrkPPO8Yr4hMn4mF8nfXmYGzVWJ+ZKaz9lWfjxv6B4/XQP4rrgz3e2sHz64lRs96xXqGn+jA6cPl71mEWLkvPq7Dm+HgG515FeWN3qtEgjx3OYGrzH5sK7PmhkaL9dA8MhBH53tbcyBvfYs/diQmlnXQ8b1PPeCfmc5rqx2nO7XzC/asyVPwDb8Okz2+3vQPhM49vKDzGmn1Ui/S3bi3ubX0MuXhsGD+2bf7sIco+d54fJ/tAAcDjHlccW88ozn+QyeH0Rh5kxTNgYvMn69G4f39x7Jl0eb64jO3zlJdGNRw/160t0mGPtKBsgLDy9w/F82jyz0XCjsJ2zgh86Uwj4TFy3UBPeG9+1l1Ujqb8u1HkecOGNUFYzGfNC1u3NozX0xNPI5U1fUUZHBi2nqfFsR0iufnYIZLjekMRX+c1wdR31iuvjKfv4XlK9vcXx/ZdyLOAjNnYHjPCNC5H2728rh0brq1vIXsoXrLBGcS8SZbD7DjlmUzSdXXzLsc+j+38GRhLvzIcemTW6Nl6A0/zcJw6vy/yvoPw/cHW71S9deB1T8wR8jy/PcuyPwHwS1mW/QOALwG4GMCbMPER7jMU/X8CeC2A52BiMwfkeX4iy7JfwcQHv5uzLPs4gG4AbwGwD8Dvmlt+GsALAHwFwNEsy15lwr+f5/n3J4+fA+D9WZb9EyZ2hB3DxMq/VwHYj+aPix1HH+qEEEIIIYQQQgghZpOF5VEHTHzw2gngOgAvwsRHsI8A+J08z0/5ryF5nn8+y7JjAH4bwB9hYgfY/wfg7XmeW3+6qV1or5r8z/L7AKY+1N0J4DYAVwPoB7AYwC4AHwPwnhZpd5wF1QqEEEIIIYQQQgghxOyS5/lJAH88+Z8X71oA10bCbgBwQ8K9BtvI1x0AXp4afybQh7r5xvHjhZTArg1OlVJ4UpzUNEyYpzjlJem8HbmN50lfa12OlCi2170nfbU3iKVh4/ISbhOPJRJjRgpSS+2JngSX8+gshXcrw9O2eXIt1grQvvdHR8LnbHC+TPmEp1ZyUUMrGvY5CW5LbeHIyxivCGwYy11Z1uXJW20z86otFU6zqeiofpvkPHRhtd5ACmUlQW5f8wrZk4sSnKQnQ26HmKK7SZ5RJ7mZ7V9cIV5lp/4ra6r00uTDKxOWzXjq+mRJjTfGeDdgXbIz19S8cbwsVkPFpD546jzqlE/zo1Db4obnDSTm3hWKW3NsC6644qzpY1scR460vhXgK0Jj02+qMgwAVnuWBnzDVJsLExbMBt5AwgO79z5iKbOCwkqxWf/o3DvoG458tp0+Gp4WJ03SWiQOFqn2JE68LiMdZZLtSBwrl9I48kRPlsnN2FY990VPvulJX8vIIVmmCvjvXsH4bK0tiNWrizLxhjAbFmsiNh7n0Y5FPM95z5I6jLuZLPm3GL9bN4w+2r53M97QlEzygxNeXzYNuZsa6Nq14fvm1O0W1mIzsZDRZhJCCCGEEEIIIYQQQswB9E1aCCGEEEIIIYQQYjZZeB51IoJW1AkhhBBCCCGEEEIIMQfQ59r5TBsecqXSdDyEkr0/ENoNxW7VTlhpj73UG9p4MVMP83s7ZRIl0YeriVhcx8Np3HiRBd4inm9N5BogLIOK9ZZytluPPqpjYGT9WzpNWZtHL17ZJrhoUetrbN/iamvykOuACV5pX7oY7eTDM7FEUlBAbFxqJxse48bnqBIz3yrbSLyMlB1HiFibA8K+1+uZIC1bFg9L9cbyPOriWSw/B7IJm5d/W/5cDqn3tmXgGEgFSbLJVZNRopNeogcqe2Gx5+apbtcJvGbt+l+xEVWq56ytJ8/7jzl8OB6Pw4y3VCm8fHjmXl48x0u22dw0knxX3Ou1MnyoOLEGYaleuN5zU5q1kUNB0HhXd/w6jsfvKuZlohH0jRKmbkDhJQ2gwaZxAAYGeqeP7WPSZTCXBR6N7K1muzI3u0bV9BN+B0SaH23/yngao2NOGrbuCX4/tOXT01Oh4/C6mHWk9QP2pkCe+1MtFJu6lteOUwdJJ161p2jHo2Pxvy3Yb68pDcpiUx/ldzlvHEwNa8erkwp9bKh18nkev1yI+YRW1AkhhBBCCCGEEEIIMQfQijohhBBCCCGEEEKI2UYedQL6UDf/GB8v1ganakQsdrl1bO23k4aVwFWrFTqO3zpVudWURgdke6nSOXcJt/MAYZl0YDGrI1ttokSZ2Doco+X1nvSVl9DbLAZpmjxVSQqYnF2bD5LleNI8F0ojtSt0irJNtyOkdj6iY1LX2P3akUucxpcaTzVfohhnF9PIF/cUx1Y2s3x562Mg7G9B+bRThx5z8aXV6qk4j57s0GskiXKhat0R9noSQa8cPUkW3XvlyuLngwfjt/YUX17xeOMsq43to9SqNB4NmxvEvBDs76yls5nkuHxs2wHrgdsZs8r0DZtHPrfPljrOchkYqeshkjJWza1ZajhKwnNra9FIbYOp0lcvni2DROlrNE+Wsi8FTl1zOx4x74reY8eGDpvFRt3pJ3yDepr01ZUvdzlpJI43tp9Uq/E6jBWrzSLHs/OcJxtmOPtWEd7XV9Rbd93p514lOoNpjfTLVvrKeeZnsZR+R/Z8ZcpIX00h8/PYepuyXRjvsMuKEHMVSV+FEEIIIYQQQgghhJgD6EOdEEIIIYQQQgghhBBzgDmoJRGPiSyLS1u8nc4YT0rhaVecnYB4ByeWwVq8DdeYQOIChMv3PU1NJ3aETd2N0Nn1tbSKK3UpuVc3qRJfg6vKoXQqQwemj+1uXd5S/ipJJLziDy4biWeKN2cEmtVJKZTdedgL43zYMmUJhreZVuKmu/7Gxu3sJhrB3SmsHWIV3E6eEuX84Y59Yf5Tb526YbQXrzJmdsqL9dGy9eTpDjuw66tNnts1y1W67RjAGiGrn+V8WS1RbGw93ZJYvp/VDpUZFNqxLKBzd9fm1F3KHeuAQyOhtJbrcefOWIbDDWd5d1ibRa9Ze3IzlnI1bUCa+o4Tu6bVeWpYLJ4tBG8CKCN9bcfGJHXXV2ey4b7t7T7uVUWj6jQE70JPV81wmRvt3Fjfmunj5KHDk3ba8S24mdPIuaM4dJvy7+sr3pNs+4/ZDzRtLszP48mj+85KymNTGsE47lyXKn21u+72Fen39ITjVEzOad8HGftuaLtsDI5n2xJnudtTR3vWBInlU3N3ua+Y8+LYk8W6eLu+ps5DzoDvKdcffXTi/2Xe588ovL/lxYJCK+qEEEIIIYQQQgghhJgD6EOdEEIIIYQQQgghhBBzAH2oE0IIIYQQQgghhBBiDiAB9Hxj0aJC7+95FHmk6uJTjZo6hOuv5ZEat2z+Ew2qylpvRfG8XTpwA+s/5hLz1SjjudPGrTxvlKGhRhDkWckEUJrVnt4gKPSFeuz/znG6LShcD7lEbyavmXlthu/tetul+nyV9PYKw0J/m7L2b2XSSL6wU2NdrAyM0dGJE8Wx9YE5fLg4tj4+0W5vjZQ8jzTP06bM+ObFKzs28XVsKnmqe6caGSbS3IcIz+TN8/ejurJDazf5ih08WPSbxYvDeNwObPspY/Vq4XxxWz3lhbGxw2bEa598ntp+bCF472Fl2kIn3lvss3Ahm/yyR5pnr9WoF2N6vW7mhf2Op3Cqv6Lnk3U66cT43MZc5jVPxvXw4gttR5+LtPG3hh2Ppli2LDxfubI4tuXIw7rn4+YNI4EvYOrfXu3cgMrAzgVlrbiT8Qbyss9KcJL2vX3KXrEy35cZyaNOTDLfm7oQQgghhBBCCCGEEGcE+lBXkkWLFmHTpk3T/+1ssQ3arbfeiqc97WnYtGkTLr74Yvze7/0ePvGJT0xfU6vVcOmll2LTpk34jd/4DQDABz7wAdTrdTw6tbUNgJtuugkrVqzAk570JGzYsAG//uu/jttvv306nd7eXpx33nnYtGkT/vmmm05TCQghhBBCCCGEEEKITqJ1lSVZunQptm7d6sZ57Wtfi7/927/FE5/4RJw8eRJ33nknLrnkErzuda8DAAwODuKrX/0q+miN9Gc/+1lcdtll+MIXvoBrr712+vdnPvOZuOGGG3Ds2DE86UlPwjXXXDN9/2uvvRZXX301Xvayl+ENP/uzxbphT1LQDryO2pM1RuVlNhs1J6w4bpLpeemXkTG1I931ZFeRJegVJz1XgugRq4t2wkpKvpKlxyylsOvWnXzUqo40cmy0dUbsc9L5iROh9DX5sZ2l+5wvm56nKIs1BSvdYpmFlRamdl9PDtNp+bstA++ytqTUU9iH8dq4l7FIWL0eH4vKylu5b1erjsTXabsdkYx71gcl65flVEeOhGHLl0eu6+mQRUJs7GhqhOWSL4XVWaXWW+p47IzjTXMIx/UGAZYim3ij9e7p4z07wst6eorx9J574rfibNjsc9xFi8IwHvu8JrJ/f3Fsi//AUNHfeh1Zr9sXykgv2xkImU7083b6E8eNlYeNZyrYG4KDqGyXYCwGaqllbEmVj3NjMumVGn7aaSOMV7/uRB2Hq81zB3DxXlbKtMmSz+LiPOjRkUosKMiKdV2IJd+O+j3W7T31eE9PdxBWSR3/E60gKiaNar3RKhqAeP7b+psk8e+h1HmI5x0A2LOrON63L7xsSvo6A646QsxJ9KFuBnn44Ydx9tlnA5hYgXfJJZe48e+55x4MDw/jfe97H97znvcEH+qmWLp0KTZt2oQHH3xwJrIshBBCCCGEEEKI04086sQkkr6W5NixY9PS02uuuaZlnLe85S143OMeh2uuuQZ/9md/hpFTrGb57Gc/i5/5mZ/BM5/5TNx55514+OGHm+IcPHgQd999N571rGd15DmEEEIIIYQQQgghxNxAH+pKMiV93bp1K77whS+0jPM7v/M72LJlC57//OfjM5/5DF7wghe4aV5//fV45StfiUqlgpe85CX4/Oc/Px1288034wlPeAIGBgZw9dVXY2BgoKPPI4QQQgghhBBCCCFmF62r7CCve93r8L3vfQ9r1qzBl770JQDABRdcgJ//+Z/Hz/3cz2H16tV45JFHsGrVqqZrv//97+Puu+/Gj//4jwMARkdHcf755+MXf/EXARQedXfddReuuOIKXHPNNdi0aVNzJqrVwhes7Lbr3sq/KYMAoLRHnf06XIst7/VMH9q5d6qfCJtWeAYIxvhinDz3ApugrtB3AZxkWU8b9nxox6evhCeG9awI/LZsGlwmvLGK9ajj53TMM5r8/VL9qYjjx6PJ+zhppvpieNVZ1p6H/cFSr2vKR6qvh+M7MubYO3nWJR4x/7pKO35FJTzrAu9Dk2bNJB/4Tyb6Z9ZSDW6cNEqPFZaYh5lNj3wTlywJg7zLmMBf0Y4BcMI8f5uYvxbi0Vza8SjtNGX9zVJ9Wrlcbb/gMFPGu8gbiKd6e/7AA8UxexPabJD9btO5rV4bNxZvB3nn2WsCz0/jX5fso1XGv6usT1NZfzPG9oVU/yjvfccx8Dp2sDi2TSvICgWOGV/immcC5r3jMKmTrEmjjLdVrawfqgdfZ9/Vnfv1DBTvlU3zFzHaVZR5DSae9y5a5nk8I7RIvz5lOk4+uIkMDsZvzesZ7HiW+meBx+HD8TC+n/Ui7l/dE78wVgZtvGzxve3wkDo0uXj9N/EG4/T3EXvSAaEv3SOPhGFTXWW8pM23EGca+lDXQT7xiU8E5//8z/+MF77whciyDHfffTcWLVqEnsgfLZ/97Gfxe7/3e3jHO94x/dt5552HH/3oR0G8iy66CO94xzvw3ve+F5/97Gc7/gxCCCGEEEIIIYQ4zcijTkwi6esM8jd/8zd43OMeh02bNuHVr341Pv3pT2OR3epskuuvv77J6+6aa67B9ddf3xT3jW98I77+9a/jvvvum5F8CyGEEEIIIYQQQojTjz7XlmQ4QVba6iMbs5Mkgq0+ur3//e+fPr7yyiunj5cuXRrs+vrJT36yuKhSKZYbp+7LfSqSNYMdIHW/c08uVHa7c14jbp+Z0hw3Mg6Oykvh3X8MKStn8+QSsUzZc07D27/ewFkcrzaCME6yxvnytDFe+yyrqaQ02pGVxmhHFcIylKppIzHaUUyxnNC7rkmWySTKokbH0v4Np2w3tMSuGxkJ81GvF+2u5tWn1bmUkH7b8ql4DxdL04vnjDEdGXO953TSZ4m1hSU8npTIzQff2+bDG+O98eF0UlYz5T13KqlSKEe6OFovJEd2CvGkr3v2FMePPlocL10axvPGMJaq2qlnxYrimG0LrPzam0L4eVZv6A3CApmg9y5EmbaS/GAM8OZODlu2LAzjc2+SSpXFWpWG1+9j6bchwT1+PD63BVG95Ied9s95tP0kNomnPnNZPHlfWbgztDHWVUaORq87Wi36Nr+LLl8e1hkn2WTPUObZHH2lm5y9d2wMM22cx6ZUdbrthotJGu91ZZse33uxlddHrjtyJAw7urwYVxr25qnzHJedGchPnCjqO9URx1p9uHjjICfq9D0ux/37wzCeX+w8NHW7ipYZiQWCmroQQgghhBBCCCGEEHMAragTQgghhBBCCCGEmE3kUScm0Yo6IYQQQgghhBBCCCHmAPpcO99YvLjwc/D25fb8zayvAMdlMwFrfsBh7fxLQKpXirfnOHtY2DA65y3BbREMB8mHHmzcU/bvjGeRi4R9FoBwq/i2/CCIQ9XCd6d7wPG2sKYPsXL1DCzYsAhAhcrxAEL/H751z+XPnT5uDO2O59Hz0bNtkM+5fk1djw+smT6O7NtyataunT6028Yztpk16DzwkQGCxtYNhz1FPOsE1M9t3Fr8DEU8fxzzlfF62Ma95sNhF613PPA6APeNHbusRx0fh/nnPtu91vFN4XGEjbeAdO8wO3jEvMNs+fN1Bw+GYWx443lVeWGOr0/wbDQY7R4J+zJZpzaxcmXrbNhbc5htZxXOB/W1pgvZw8nitOvAS9P2IvKOdL0cPTZuLI69ccoz8Uv16bPt7KGHiuPly6NZvHfts6LJ79gRz+K2bfFscXOy4wPDXnO2CbLHoYXbFncN64HHefaezXbter2o+4GB4ripmVGa3TgUhsX8V+1kw5M9txcbZgvSVkgK7bzL0fneg0UZLF16VjQbNnn2PrNwfbMXYm3kUDyiJdVTznufdYwMa9US/d6bF8quekn1Y7bpc+WY6xo0njZW9hQBTV5/VD6OV23pMZLu56Zh2wG/Yw4Vc//QzmjyQXcCwubTAL2HVcOy4vZpi4CL32uOPMbYruu9znKe164N5yg+b1TjfoRem+SpwXrOcpE3Rg5QJnuQDD3Q0bEw/0NDxfkDDxS/27+HuIy3b4+HxV5/2LNZiPmMVtQJIYQQQgghhBBCCDEH0Io6IYQQQgghhBBCiNlGHnUC+lA3/xgfL5ZEN2k76dyTWNjrYnuhW81ITPtkcZbaB8u7PUmQtwzc2U+d5ZvdRj7VNVBIwJqW69O9uwbj4sVU5VyzFCFN7tE98nBxssuRt3qSVk+aR/lgmW1TEuacm8iaHV8vTtavDyNym2lnEuLnYbmQaceV4LnPD8KSb0fr8Ndt2BAEjY4Vi5Cb0humOnUkiSwFbGpnTjtg2bbXPt26p3gVK5uhPK+z0lHi6EjaQuxOvGPY5sM0yam4T+0ZimcmJlMFXFl1qf7laWqsZscbwxgvjNOwY3ykjazZYMbBrhodh0mwGt5zSOBbsxQSAJYuJfl+VxuyKG/cilAZG02K14TXeGMyaiAsFDvGx9L0NMS2jXCYnX9pXPSUtanTtCXW7H76p8NzzrKtwlCKFpf09S9mmXB44xe+oHju3XvCsYjzaIsnln/vdadeD+f68wep8ILxxuhsOVGrJWe59+BgGOa1H4bKbnRgXRBUQ9HmR430myXFVorGeMNg4MDgNPHaWFHXu4fDclxTp35pbsBSumpP3J6hq6+Q61aGw7kgmCuNDQXP4anUrESf8cZjD+4odhzxrFy8d+SYXYBJ49BwUQbdppOOJwqt+B3EWqH00vuDl17FWpdQXJbJe38y2OLhdheUj0kkiGeqsLtO/cv0Ib7fpk3FsadiT52y7XUj9K5ox1JvbuPhaNmy+L1dCboHXWefO6bE91xA7DDITgI27OyzJ/5//fWnyqQQ8wNJX4UQQgghhBBCCCGEmAPoQ50QQgghhBBCCCGEEHMASV/nG5VKIZ+wy+m9XaYYTw4WS68d7HUxqZiXD6vZ4bg2jO/naDp4KXZXV/gNu0Jpepv58U5EvIlj0+3K6gK952TsevrUuqJ43T0mj842VgMDJG3Z47QzT5PFeOXj7OjG57b8XQkAwztaGZmnl+XeHidfRCBbdfJvyyBUcYT5qsXagqMZGa2GsqJAUTMUXsYyFGezyWh6rbKScp2nLOzqCuVU0TKwN3fkMG5YLJOtzmNpeDt6pu74mDoGpOptjHbl2KJi52TeRRMId2czqvBAosKKmv7lZgdkvt8e06FYYmZvzlIxfjZTBjxWN5V/O/NeDE9mzufebpze1pm8zWnqOAhEBydvc+12hmeuU26qVtnJYVZZNTBQjDk2+1aCF8sISxc96aV9Nh7DvCr0qiaQTdL4WbP1lCopS7XwcNrtyEgozauN0c7hJh9Llxb5P368+N3Old6w4k2/ARRoFdwYiveNBufZ3KDaVWLX5qaJKO2ygFQZ+6lItXnx3oNjc1mr8wi8Y7qVAgfy4jSHgaYx4MQ5RT2tXh2Gcb159+bdSm0Vcvts2sV32BngYokYxml38JqVmNLu0TzWedJObyqwWbQbSE/RJHXlwjI3WLasqN9HHgkvC97fvMHag+5drYbvYdw8uQ5t0+Tx2DoHsIJ7794wbGqsKvvn5xlDlsmjTgDQijohhBBCCCGEEEIIIeYE+lAnhBBCCCGEEEIIIcQcQOsqhRBCCCGEEEIIIWYTSV/FJGoF8xnP28IbAFK9mTwjk3ZwfLkCOh1m/U+qtdbxDJ49Xqq1SOkBmL0oPLO8Thg4WFMJvrfJP/tNBOZVxpxmnBbxVtoxT0qNR2HWF8d6pUSh5/TsDpuq0MtXrG48jyJzg2pP6AWSkrFxs2i6ktjugvo8zXTk3cTzJis7jsTS88I8D7PUPuo9S6pXnsVpqyvJH4a9YoDQQs5a2nBfCfwgvXHKG2NSacdL0CO1jcTM2k5FzD/KGoR5JLYf9owyFoRBEXvF3+QrRnBde22EjwGgNnKo9c0AYA+dOz6DVfKm3LcvTIJtDa1nVKJVbRCPPZaA5rKcYo0tBC68dnwSQ6PceDxK0xZjd1cRtntPOP6zFxQ/i80i91/rSbp+fTxbjTr5hQ0Vz2m7yYkTvdPHtvmPUB4XLQrfybg+2Ee420zU/Jx9fXEPLUu0amxdlH33jb0/20xxWFsvIa3TsF5wu3a1Ts6eX7IhzQeQ0zO3Rv/qeBrWm4zbCR/bcSr0qg2frZcDORHbUZy5puL4YdeoyPv6WvvV2eSt3SqXsR1TYtPEBReEfaF/pXNRXhyuWhUGhY9Trh2P9501ffzAd8Iw9pTjdmGbKte9rQoeTm3Xm5p+Y15+Qsw3JH0VQgghhBBCCCGEEGIOoA91QgghhBBCCCGEEELMASR9nWeMo4JRTCyRrnnbbXvyC+86XqPsxfOW65eVZXpL/lM1p7yO2sQbGYrfuk5bsnudxssGb0vfETy5hCe9ZNqRdIR6gyDoCEsfuuIlxNmqeZojD34Wp50NDoZBybvPU/q2zur1SqtoE0QkCzZfUW2DDTM3qI0d5YyE1w23vq7SIXU64ymsO22p4SmDbRHU6k674HErVbZq6yn14bwC8saw2Nhk43mF4MnlWJvj9KFatWjzGzeG/5bHkhRP+hqEGXlTNMFThXGe+QbtyH870EDH1180fVzZ/3AYyO0stQ22M457cjmqe5ZTPfRQGO34cUTh5mOlr7GpYePG8Ly3a7Q4sbouboOpndu06crQgenj5ct7gzBuMlaKFlPB2eficysbi0nzBi6/KIjH0uO+tZcEYd0jps0wsX7ptNvt28Pzrs2F1NOTFnqvZCx9bUe5G72BSWPp0uLYUyR6Qx/fqqcnlAVaqSHjSbpjxXy0Gspnxygf3V3l3usODBd57jUa8XHHhqUyTPJxb4yhwrJ/C/B7jO0nhw9Hbx3l2LFyaXiyfM6XfUx+nKYpbygyztoH9d51E22CGhxk2uCKFcWxncq4X9psxcLs68jSzcX96j1nBWH8Pm7tBypjo0jB2qYwPL6x1BWI59+TqtpxlvNspfZTYUuWxNObF8ijTkyiFXVCCCGEEEIIIYQQQswB9KFOCCGEEEIIIYQQQog5wBm5rjLLslUAfhbABgDHAHwdwD/leZ67FwohhBBCCCGEEEIIMUeZUx/qsiw7C8BHJ0//Ps/zz7WI858A/COAHvr5LQC+kWXZ1XmePzrjGZ3DjI8XXga1Lse/yPPJst4NMb8GG4/TtMYjqR5dnL6N513neTNRmuz9YZPjLJ84EYZ5fi4xaykbr9bp3ubtWW/hsNgxED6MY0BmPVS47EbXFn4Zw0NhEpzlvr5GEFarmjaTgmOgY31BamBvjsTKMGVcrRd5bvIc9BoJn9u+wXgGPTGvRXud1w44ua64D47l5MlIGk4xlvWvSy3G5uZfLBCveBd6iaT6JKb6oHk+XN5AkjieuW2krBcoGcv0Nhk7FmXsTROBD45Nw/PY47DU60p6CVoPnlQPUb5dwwamzo+OV6o7BzJ2HKG427YVP1u/qOXLW2cD8G3RYhaBTU2V8+z1r9T53fEhtX5j/Kx2Dufist5YjNeF2PeU07CeaHxu8/hk9oyyz8YGT9ZkNUKqFx8Qb4L2OdlDLvV1cOLmreu+a23ooZU6fHpTGT+b97qZ7E3rkDiltkXQb0wlVrzxwXvPjnncmnhrqFGy//LEeSzHcWxTPftsJ3JQ+fF3EM6HfZdjD7PAuxeI+vS19TcPU9InjPuQbYPe+OP51zFc5t6j1YaMJyaXv/ee4cDzCx/bvHg+g3xux0j2yLRedNPvFvN9XY486sQkc036+nwALwPwUgA/sIFZlnUB+DyAlQAy898zAHz6tOVUCCGEEEIIIYQQQogOMtc+1P345P/vy/N8W4vw6wAMAMgB3AvgNyb/242Jj3U/mWXZlTOfTSGEEEIIIYQQQgghOstcW1d5CSY+wn0rEv6zk/8/DODpeZ7vA4Asy24A8H1MfKz7GQA3zWw25y5jY7zyO/wOW6Ut5hsDTtXbdeZhItOH4z29QVCwbbynReiEvMzJlyfn5Gx56ji74pi3n+cl7QBQq5JkitZ915pkmTbTJfCkQ94yaV7i7mhBDg2ztC2UJbBU0ltq76kNeCm8Lf91PVRvnjzUqygKq+26N36d3fM9hslHxZMueu01Vfrt9RNPBxErdEdvUDFh3F6XLo3/G06qurLsqv1U9aCF89IkqImVvydN9fB0vakPbmUnPO560ievb3CBpT6b/d3R3vRy+p5ukrG6KMrXaNXK34uwozRfAUCDxoe9+4r2uXp1mAZLWK281W+vJJ12ZLC7dhXHg4OhpC+Q16d6JKTq+4Bk2wgrd2U4bNWqeBbtNBGTKtVGDoURU7WXqbJzpz/Zolu5sji+554wjLPiZTEmbwXCLsphVv61c2dxzN0JAJ68qUikSX5dLRIdpVGs5rRHmz7LbvftC8Psu8sUtoi5HVjpmTu8ReZmT0a9aFF6+txkuPxt0wn7aBh2/mC8LG19TGGnXm53jZKyWH6WWupYanHef1KxEvHUKZBhOT3Q3GZi2HLl9sp2GytWhPE6IkX23sl4UPDkoZRGoyusi56eoi3x3w+AL2/luBzPy6Idw4Is20GMI7OG2HlO26zuuKN1HoG4c4OdT/jcSl9Xr259DADYPzTx/5gfixDzjLn2oW6qS95jA7Is6wXwJEx8yLt+6iMdAOR5/sMsy74K4HkAnnY6MiqEEEIIIYQQQgjRMeRRJzD3pK9TH+pa/Xvw0zGxYg4AvtQi/D8m/7+u05kSQgghhBBCCCGEEGKmmWsf6qY+xLVaoP/0yf/nAG5uET61vrfcNjZCCCGEEEIIIYQQQswic21d5SMA1gC4oEXY8yb/f0ee5wdbhE993BttEbZgyLLC88NdNeuYPIyOhd9vaxyXjq1nQsPzR+Jze++Y55iN5/lAcdzE5cLtrCpmOwTXBiT1OcuSmmnHm8zWL2O9NMrc2vOfcUn1eCuTkbJ4XmReXM/ohT1CvDZuKdP+vTbolLf1J5wtPP+itqq3jOdPO2NYrMxtGt44FfN/87zOUk37Wp3H0uBza2DklU/EG3G8bjzkKJ69Nc81Y/bR6sW9vfGYveZSh5SJ6+JxGS7+wJ8U8H1IY23EtCX2yWoaqb22RSxeXBzbKmQ/qbPPDsPYg82xMg2z7LXjdsykYv3L6Ws2iC2XrHcSjyXc7qy/k+d9tmFDccztwJYxey5Z/yU2pRrrCn1+ayUMwqy1FCdhPek8XyiG24EtY88DMmZQ1eT5SGHLl4fjQ8xHDwjrY9my4vj48TAeP6dtxzEfOg9bxk39vgShj5hphKlzfWp7cXxIV68NRUg8dqRifQAbdad86Hm8MYax41Rj7FDriCb91HGkrTEs0aTXe7YjR4pj61HH4xHPczY9bj+elybuvi9+c/YcH1gTRPPmTvYC5eSAeNHZ/J9zTnHc3x+Gcd9uYirRLHMiCTF/mGsf6r4P4BwAL8iyrJ7n+QgAZFm2HsBTMbGa7uuRa6dmm70znkshhBBCCCGEEEKITpFl8qgTAOae9PUfJ//fB+BzWZY9KcuyZwC4HoUs9h8i127GxIe8HZFwIYQQQgghhBBCCCHmLFme57Odh2myLKsDuAPxDSG+m+f5ZS2uGwRwLyY+1L0nz/N3evdZtGhRPj7e/tL1er2O8847r+3rTieNJUuw5Z//eeLEfI0f7ztr+pi3QQeA/pWFYvgbW0LZGy+r3rKlOF6/PkzDk0vEVF1AuNSbV+jbf0zYtq04XrUqDOMtvG2+1vVElsnbNed8Q29L9l274umw9sbChRCsTUdUNtYE63k8aZsNo0Jh6at9FF5y3r86LldpkrMNHZg+/u7OQs5ji5HrxmYxkJN4sjqqp6MI8xFIIr7ylTANrpvNm5GE1U9xvmwdMlZPRev+x6tF/7KPGesLQCjdevTRMIybLtfp4x4XxmMpxZoBU7/8rLZvMLaDxTLSCXaYf3fx+oYj+R0lidn27cXvVjLC4yJLBIGwPv7TfwrDdu4sjlkWYuHHOWy2TGIJCTdV28w2bSqOK/sfDgO53mxZsfbEi8eYRvjd/cXUbOV+nH9vLuAxYQ12h4Fch7Zy+ELuKHbMdeTFoay0pHzNk5tRuVopEfdLzr59TI5nhx+WK7IMEwgf9Qk998fzy4OONxlbuFw5k15GPEmZgcdFxp0nLN64FdNyeYOw13iJe4d6W/4ONNchY/s21y/bUPD7jaWy6/7wh1R7BqYdya1nQ8EPxHVh48XGIiAsf6vPjbSt0Wr4HlAjB5yjY2G7alTbd8c5MBymwWOfN95bOPs8/jTZzbCDjyk7jmurLda9PBmjTYOrJnmMLOsj4GUm0QbEs3Lx3CqCZ0u1ibBhnF87kJd4lqaMelYZXFF23ObxeePGIGj3nqK8uLu2Jefm+9l7x8rH5p+vs2GchtXMTpbJ5uc/H1u2bp23+tfNF1+cb/mrv5rtbDxmsqc97bY8zxP/4BKtmFPrKvM8H8my7GoA/wLAfvHYBeBnI5e+mo7/7VT3GR8fR5kPlFmW4Yc//GHb151O3vDa1852FoQQQgghhBBCCCFECebUhzoAyPP8B1mWXQzgvwB4EoBFAP4DwGfyPI/9c+8lAL6GiY0kYh52QgghhBBCCCGEEHMPedSJSeZkK8jz/AiAT0z+lxL/Z2Y2R2cQS5ZMywX27guXhD9Ksiu73L2flu97GxWyyuXyy8N4rFKwy8w9ZWdMzWnz+NBDxbHd5YvVE1Yth/Xd04c87vUNdAfRamNHEcWTC8WkIPYBeIclYw+ZbBbJ6Zsl4YfGCvmHzSJL87wdlQK5n9Xs8G6NA+cHQQ3Kl6d44bBmRRaXQig1WbKkOGeJXdOzLC/qtGG3sE3cdffoSJGPhn0ArkMj/w3UhF0mzKgiprD1xJKaVFkLEO83jzzixQtb3fmDTgeOyao9yULZlwxP9sAFZtJniZNVU+2PyAm9JmHrhrPS/+hdQdjiCy+aPu7tKmRLo6Ydc5p2R9uYfNbmkfNfr58VhPUO9iAG56U2Rg3SSlccn4JhymPipq+uAhd72mjkfIOSO2i7cifGabtWZhdcNlCEeQ4JXhPnedRmkVW+3WMHgjC2HHCtG1J3L/YkWfxwVr/pjAGp0mOvatw0Usec1PaTGM+bU1PV+jZuchP3+m/q+NxOO/DkbIk7947Wi3m61tWGhUfk3rV6XL7caNp+s/15qbcnbGee3DIZGhBqNo/D8RfmKknEndeTgObdqYvyqnaFc1RlhN6DU3dt9tpg6ouLJbGdVc17WOorSPAObmX3dN40xqTeoJ0d2ZlY/7W7gwd5NLA9jHnP43mI30H6rbzee87Uneed9zV3jPFsiKbC7AuUEPOUubaZhBBCCCGEEEIIIYQQCxJ9qBNCCCGEEEIIIYQQYg4wJ6WvU2RZtg7AiwBsBrAawDIAH8vz/PMm3pTm4/ikbFYIIYQQQgghhBDizEAedWKSOdkKsizrBvBhTOzyOiVEzwDkAP65xSVfBrAJwF0ALj4NWZyzjOfZtH/Go4+GYQcPFsdLl5oLaUBYsiQMYvsMtqOx1jQ8plh7swceKI6tvxxbHKxYgSgXXlgcW0sMxrOQs88WxfNdSPWlcNJI3vbeS9/kg33RPAuMxYvpGseKrAkqdLsT/QD5/XkWM+3sUh+D2521oUu1VPFwy8DJJAc16mH9jnW1XrzcXR81vxS+IydPhiH83LZpxey7POuPJl8lzwMs1ZelEy8WqembPNbrNToOL+MxwRtj+Do7xhw+XBz/sOeiIGzXluJ47dq4hxBj88H+kJ7NlEfgWzMWtq0gHa+jcEMzZcweac0ek8UxP9uRI/F4gSGbDfT8rzzvG4fQ36wc3vjAYdYnkc95TrX2VDxH2TGgu6sYVw4N9wZh27cXx09eX3KO8nyhuMy5M9jJ3vEeqjh1xWE1z+vVM7LlTpvaLlL9OC2U/l7jR8jzEntPAqH/pJdF9it1acdfLhbPG+8t3rtRzJvMDqZdva3j2Xx5dUNh1i+24vkwlvC3tD5fTOnpsB3zQiLwkIN57lQPzsDjzfizOf54UVLbxKmu817sI1R6wvNarOxscaTONU3pUBjn1+bdG0sZL8zxi03FvouuWlW05aa/AxPzFfg42/rlcvDaRarnrH3uqfuV9KkV4kxjzklfsywbAHAbgFdj4kNiNvmfxwcm41yUZdnmmc2hEEIIIYQQQgghhBCdZ859qAPwDwAuwMSHt28D+K8ANp7imi8CmFqn9ZMzljMhhBBCCCGEEEIIIWaIOSV9zbLspQAux4TE9bMAXpPn+fhkWPS6PM+Hsyz7NoArADz9NGR1znL0KLBjx8Tx1P+n4JXCVrbKkiCWRgLhCujBwdbpAaH0xq4C57zY61j6w/eyefRWgXsr5vftK455tbWVBg8OFjKCWpfpGiOOHIAzzZpQ+6BUeFZK0bR8PAbnwxQQ39quOLfqpFg8Lseu9WuCMJaTWLkWw7I3K9/xVEVllAi2rQZyP6s9Y+23Q1AVQyPRQCstZNmqJapGMhribpICHjsWtpHaWCF56ekJJS9cvzH1ERDK6mzZBRnz9ONlJSOpUrREScNoNSyD4SE6dsYDlnvYMYavs/JuztbttydlsSl97jdW1hhTc9qqYCmdLVJu8suWhe2R67tnoOjboZQKODBcXHfiRJiGJ8nlttW/9ND08dHl3UG8RpX6TdWRzXiStZIS69KWAwSrPj1Zr5U8MtwurPqXqVXD/O7eU4wJdngLxnhPPuhJk1KlZ+xf0Yb0NVnu50lfU6W7McmUd9zqOmK8p7fl79aCwfZtxmu63H68NALsIOP1k1jZefJir/0kSlMtwXtGVziO11LfhSiebbbdVIfjZj1CcJY8J4WnHXF/8CTcjNPGG32JfduVVzbMeQn/EK+vtXNdrEy8carsO0dZOw/OC78k2Ebopc/PbV+mKWy0Xsyd/H5j6bXlSPez7T8ZJ/889zS1wVhbtvXEiXjt35brVNtK9gY4Q5FHnZhkrq2oe8Xk//cD+Lmpj3SJfB8Tq/A2dDxXQgghhBBCCCGEEELMMHPtQ91TMbGa7h/zPD92qsiGqXVTqzubJSGEEEIIIYQQQgghZp659qHurMn/31vi2ik9TVx/JoQQQgghhBBCCCHEHGWuCaBPAFiCcvma+sg31LHctMmiRYtw6aWXTp9/8YtfxCCbugG49tpr8bWvfQ0rJo28Go0GvvGNb+CTn/wk/tt/+2/YunUrnvCEJwAANm7ciBtuuAGDg4MYHBzE8uXLAQAnT57ES17yErzzne/EEjYGwoQNwJSHjmc340nfrd0Be+h0D++ePt6N0MOMWbQoPGcbFWtVwGF8b2u9smagUEJb3wW2ybHPzdZkbIVgLQ7Ce4ffe9mzbnTMeIexx9CuXcWx489TLbuzuGMOx7YgnuWMZwcRuwYAanShLWPrlxTDu3fMq9CeN8YK/6sDY6H/VXCDyf4yjbsXfeTeNsPcSEwhdLF/kbku8CB0vD+4XTdll9K0vj6xZmF/7+6K9yGMOP5Cib5xHcExaDs6VvTLduy1li0rjrlMbPl4tjI8pln/sdW0jpuLzqbveTvGbDA9L0cbxmnYMPaOZN/O5cuN1x+VY1P72XNXceIZ/B0pbl5da/ooFez9u8I2uJbi2jGlt6douweGiut6u+IOGc3+VBS3pP8L27N5tkQ2jMuS69f60DF2ruE2aLPP8/Q4+U41/Wus5+/k9XMO437ZztjgTQCx+vB86Np5yYl54LXhyRV71EceCc85i3v3hmE8Ldn0ytiDuT5fXhkk+sk1hXHH9AYgvldTZzhr+tBWby1m1mk4NFy07GYbq2KeaEqhRL+3j+nZMHoE44/3wpaamdQXPSeTTV67qd52no9kagGlTm7tTPapnSg2nrVzXao/nudr7Xhker673rsEp1EZOhAE9S8l/7ouMzdH8mjnUc7Loa7wb6XuWMZsWaXOQ7GwPG99n/mEPOoE5t6Hur0AugBcWOLaZ0z+/4HOZac9li5diq1bt54y3vve9z687GUva/p97dq1ePe7343Pfe5zLa/76le/ir6+PgwPD+O6667Dddddh7/6q796rNkWQgghhBBCCCGEEHOAuSZ9/QYmNoR4QZZlyRLWLMuehMLf7uszlLcZ5+qrr8YPfvAD3HnnnW68rq4ufOxjH8MXv/hFHDhwwI0rhBBCCCGEEEIIIc4M5tqKun8A8BoAqwD8LoDfOtUFWZb1APhr+un6GclZAseOHcOmTZsAAOeddx6+8IUvtIz31re+FX/wB38AAHj84x+PT3/60wCASqWCt73tbXjPe95zypVy3d3dOO+883D33XfjaU972vTvo6PNUospeIW1laby6mKWSAFAd52Wxm/bWaRxQVz6avGUMpwvPm5ajU5boVfMcvG+vmIJt11Jzqvmj9EWJUeOhPE8+WZPT/FN267C7+Wl3o709ehIPI2uriLMW+1c4UIxD+rJaWNqEnsvXo3OkmEA6Cdt1dhQGMZlx9KeKRn2qfIEAL1d1M68RrK/KLxq3Szd5wewjfxY2v40gRTEkzYYLULFk/rEJEemIXAa3baAdg1NH9ZM3VspbPF7PM9N/0pDka3krlot/t2kSSqTiifJimHjOdJC7zKWEXPRVfbsDuJxuQ4M9AZhnP177gnTj42tnuLFa45eH/XGUu5vtnz4uh07imOWTAJhvzfOCui+6abixNg6BGMf3axmpTBUKMPDYbvl56HhHgBQrRZtkq0OeOwEgBqofVbDf+9rkntHCCRqBk/eynVvhx9uCyzFbgeW3do5ZO3a4tjLf7J0zvOG8LTZTDuyt9TrUtOwz5aaZ45n8pGqUOSicxwwmsYHHltZvunB7xWnuq4Se8FyJLLjpg9VPH09XXcURd9umAfl/mvLdHCwuM5TMXLf89TRNo1aYtPiscKO1fzYngTR64ejZKdd89Sa7cjTmbKyuTLXeRNd2Xt58sdOjA9ePE+aGpOMp8qEW6UZgccRrxk09VHvJaEDNibeENCRe5XyABBifjKnPtTlef6PWZZ9F8CTAfxGlmWLAfx+nudHWsXPsuzFAN4P4AJMrKb7cp7n3z5tGTY8VukrAPzsz/4s3v3ud+O+++47ZTr5QtDoCyGEEEIIIYQQ850sk0edADD3pK8A8EoAj2BCAvtrAPZmWfYVCn9plmVfzLJsL4AvAjh/8ve9AF53OjOawute9zps2rQJL3zhC5PiV6tV/Nqv/Rre+973uvEOHz6MnTt34qKLLupENoUQQgghhBBCCCHELDPnPtfmeb4jy7LnAfg8JjaVaAB4DiZWzAHA5RQ9m/z/DgA/lef5Q6cto4l84hOfaPuaa6+9Fv/rf/0vHI7oBoeHh/ELv/AL+Omf/mmsXLnysWZRCCGEEEIIIYQQQswB5tyHOgDI8/z7kxtE/CKAnwcwGIm6B8BHAXw4z3PHsWhuwR51APDtb4dq3Vqthje96U34lV/5leD35zznOcjzHOPj47jmmmvwzne+synter3wqrEyf/7ut3p1Gxnm5bd9fdOH1guP7QjYEwoIfcusnwh7fHCerS9I1+qzWt7LnnueIXxv60nn7TbP5zaMPWICLxY2DYK/632qfdehMfJvMWXQPVZsLFJfG/prxXxxPCs19kMCAKwsLrTeVbGd7m0bdD0IOTNexsjgZmzwrHg8bnQAsHgxkvD8SbzC87yfYh51thCaCiUhDcTtl5K9qsx5zTZCr/GmUuY6U8YNKp+enuT9huLFagza2JdozPF4s1g/sik8CzDPY88bzzjLTWMk5dFrnhxmveD4WfpXGj/CG24ojskbFUA4IUx6tQJoegAeL9krDwBWrUI0jNv4zp3FsfXY63XsebwxnsM8HyuaApvmEH5UOwdyWP/qol/u3RcKG9g71Ws/9tk4X+6E5SVifelieH5vnsGiF5YKX2fzy2O895KQ6LNmiVknOTaMTe2A22vTmEJ5qVbTx7dUeHyrOHXBnle2eIJceS9zDPtXAugaKPyNbRI8NtnqPXmydTyL18S5b6d6VvJ9W50z7pxL8Ljb1xfWdWiDZvzHPF+0Mv2rE16R3hjjvZB7k5RH6hiTSjueaLF7t+Nz50HpLF9e1L1tc96raJ28m2t77o/equIZZjqkWvMlm3p6xOo3y5rjCjEPmZMf6gAgz/OjAN4H4H1Zlp0H4ImY2GSiiglp7PY8z7fNYhabGPbeHCb55Cc/2fL3a6+9Ftdee+30+Zve9Ca86U1vmj7fyX+ZCCGEEEIIIYQQYv4gjzoxyRnRCvI8vw/AqXdXEEIIIYQQQgghhBDiDOWM+FAn0unqAjZunDiuIZQt7T1YLKP2ZKtHzB67BxYX8oDe9eunj/d8JYy3YkVxbFdR8+p3K/fo7iqkAoH0rOSK/MrI0eC8t6fIzOhYXOrACyKNUiMqHW3KCz3oaLWBGJ34hxK7qpzlirWRQ0FYV1exFJ4lF6QibUozkFIhlGdYOU9sKbyVhsWuAYykxl7IjYZuYMtxvKeQwlasHjFR1nVouGgj3aaxjteLOq1YSUeoVwnDYtJRryG0oZvksuutU5r7zSpfb9Uvh3k6Ty+MKdnIA3mWE89mozJMbd4OHkNpiYyMFSXJ4xIAdJPW/IorQjkSPyoX47Jl4e1YTm6bOJ9z9vv7w3is6Layz1iegFDSyhJTqwjfsIFObropDNy+vTgeHIzfnMqVpa5A2KxTm5JHU7fmG9TjkjJvfvHkcd3VYn4ZHAzHeB4SmiV3RXu6f1dc/uupMjl9O/wEZekl4snYuTHYMSzmadCsu0ISnjTV0ygztvFyHr0KTrUpMM9Sq7ce00acNm6LJ2ietqiCuom/P5SFH5vfF46Ohf1kxHGhWMcvBrbs6IF4PGuYxsphNn2O6lmEeNXrNfFUuWssvVZplsFaDsRoel/2ZO1eGONJ18sM0GULyHvHSSVV2u/lyYZ5Y1gsTVtWMU8fLz0DX2ZfZznMs/FpR9qfiit9jY2fqZ5HNo1Y/itzcS9MITqPWroQQgghhBBCCCGEEHMAragTQgghhBBCCCGEmE3kUScmmVOtIMuyezuQTJ7n+QUdSOeM5OTJQkrQi1BTcPx4b4srJohJtwC70rtYhGlXK/NOsjaMJVpNu2LRDXmJZ81Zdm/lVLyj7cqVoWQk1sht8rwy29uoytsQs0aFZWWlqfdm7Kpv3uXRbmqK/UPTh6MD64KgIcoLL5P3lBP23vw8VhbrrVRnOIzrDACqK4v2Wetxdn2l9mLliUHjtfpcKjwrf+E22V0nyfjwWDReWztaxXZ6dXbbq6DkjlmetNaTIniVmJj/juNIq8ZCsXS4U60ZgMJypTpM1U+Z87GxcCxNVdxxklbKElM227GCd3/zFCN2Z2a+7pFHimM71rlVum9fPGJku8ZGPeyju3alLeT3FFl83LQ79fK0NumNrQ1PvUnPWa3H5YksdQVC2wUeg7lIgbCePDWVrbdgk/ER5wH4Qm8CsMQkZe2kEUvPkjqhtCNZ40nLk6w5skCuQw6y8yG3JVtPHLfpPaNe5IWfxNtJdP/+sD9xv2/qG0RXVzEmeq4QdhxxXxKC9OlkZ6jzrPZcNH1s3zf5PcNWDcf1VI1e8ywjt7fSQm4iqbu8eml675t2Z+/u1B1PY1J1c27tYKpkk5L8bG1NIs51sbHD5t+r4NRxKnWi9l7WuUF6fxjYNCjuuNndOehedGxV/l72OVvdqWXcBt57PP8V1/DeFb18pOxaXkYmLcQZyJz6UAdgEEDeRnzenzmfPG/neiGEEEIIIYQQQggh5gRz7UMdEH58S2Hqw1y71wkhhBBCCCGEEEIIMWeYUx/q8jxP0sRkWbYUwDoALwDwqwDWAvgfeZ7/7gxmTwghhBBCCCGEEKLzyKNOTHJGtoI8z48BuBPAnVmWfQLAPwP47SzLGnmev3V2cze7LK6cRG/96MTJ/tD8o6ur8FXyduzesCEMq4E9u4o0N28OfZoaOBrP2H7Hy4HxjEfI1KNhfBfGlhZeQdYbiNMM3CDqoTcE++jtDy1VAisNz5rpUNea6eMdW8J4g4PFcVCmLfISu9eDDxbH1vbiooEikzb/nEe2fLDpr1pVHHs+dN04FKZPviacr2XLwjQefbT1MQAcOcL3Dj322KKkRieHhsNv+8PDRT7WcIGfAvasGxkr6qJhCvnAUBGv1xQQ58WWa2OgaJPWX5E5TH5Vy5d3B2GNtcVzW18Thuu33hP20cBzxpooct/zGhA/dzs+IWVeOnbtCs/p4WrcYU1exo13WGirVJQ/+zQBZkKsxn1xbN/g9pn6mJ6dljfeeNfxc1pvqZgljP29Nkbj+NatQdh+GoP7duwIL+RMk6HO7j1he9++vTi2TZCrdOfOMKy/n/JBzdN6XKGnqCevddrruJyD8cCUT8OpAO5f1gczZh9lhyn2IrJjPPvQ2WxU9uwuTmwDjWXEJuIZeHFcz+fOI3Xujx3bNGx6Xr5ivneeH6dJo1aldwkKe8LGniBe1EytVZ6DsKL8ayPUD+1YRNgqY785710lZrVl07DeWEvXF3NKd595NspMlYNMRvjedgzwvNtir4eBPyP8MTKWXjt0wOaraXxjOF+2DPrXkr+ZmecqXt8geGwKxnsAGC4ebrwn7msdvEvY9wWvcphUI2evn9s0Yh6TqX5+Ng3PKNGbqCnMvqcicXjz2jH/nVOvh+nz1PyEDXF/PO8Gdv5ivL8h2Bdz3VrHJzG188XMavURSywQ0lyd5zB5nh8C8F8AHAPwq1mWPXOWsySEEEIIIYQQQgghRNvMi0/SeZ4/lGXZDZj4YPdGADfPcpaEEEIIIYQQQggh0tGqQYF58qFukh9M/v8ZM3mTK57+lJlM/jGz5OQ4cOutEydGGta7tlgqfeJEfDFl01L4yPLxpjGEVyh7a7a9wSfUqMXDWB8BoLuP0hwyOo6IzKVm8sgiuB6z5J9v3YsDQVgvpcNSBCuPCG5n8l/tOwvt0rRynMrVhvEW6t6K86VLi2NvV3oLP1t3vZD1dneFdX3yZNHuvOo9dix+L663umlKgQKjHckR0aiTpGNnKOnoGSQ5qimQet2RX0eyZbsJl3+QDwAYKS5s6r2UaCDN8+RfNszpXx3R+ngylBj2viw7sXotOrflUydpNmejMhKOdbWYbAYIKqvbSNePkly6zGNaUqvJwkXiScpiKkAAxfwBAF/4QhAUDAkbN4bXrV9fHJPcyeaX8+WpYWz1sqSG4bENgDsOeunH6sr+vvdw0Za4vwItJE6Re3NdnDwZxuM0U5WiAFCLyLBGx8I82XkvgAdQb/zkSrWyN2+CYU2lhQti0aJ4PFvojPdsLAem/I93hRYDnP2aTY7K4CiK8X7I9LUuSrPuqIlrI6GFxN59RV31r07Tb27bFp57qlueV5cvL45tH+WmZO0rgjbpzC8jlA9rVTJM5eU5MNh3EO43HM+TvtomwVLz1PH5ppvCc77uyZvS0rDccENxvMmkwcVln+3J69O8D7hd22riLtvTE8pnu8x5Ep5GuZ3riNF6kX9rFcPzbcNWYuw9xps4bT5iMn8grh+3dgN0nfOq0jR88tDHQ12zS0F8rgnen+27XJhIPMzB+zONn43z2NNj7FrIvqVi69AroKmbe3OJEPOI+fShboqBU0cpzy0f2jyTyT9m3vC7353tLAghhBBCCCGEEEKIEpzxHnXE5ZP/P+LGEkIIIYQQQgghhBBiDjIvVtRlWfafAfwkgBzA92c5O0IIIYQQQgghhBDpZJk86gSAOfahLsuydalRMWGXcxGAlwB4JYV9qtP5OqPI88I0wDE3Wr7c8aFI9KNq8uFir4J29r2PxfUMhjzjJi8s0YPKjo+B50NmriMPhbGBogl7thcYDvPIW91726K7/ir0PNbXhK0orF9GJIkmCwi2ulgzEHpbjJDPzDh5UfBzAWEZ2PQ5j709cY83DBVl1+QhRL5BTd4c1kMkwtGRovyt/0llbNRGL/LC/cE1wIr7GHI7sx4kwZnXRyOejE20Y352GgnaTNlxxNQ9l13g0eXVUzvlUa2dOg6AxYvjYStXtv692Zum9TEQ+j3t2hWG8dhxyy3xfDw/v2P6eIj96oDAKahuy6e/vzg+eLBIw+Sf82XHKc+aJuZP9eijYTwuMPbCstdZbzuuG2+q6V9dtE/2FAOA/qXkOWYvpMqqri/GAPuc3ASXLEEpdu8p8mWb+Nq1hR+qbVsVLmQ7fsb6ho2X2mftBBa7zpqkMbYDOJ5Xu/cXfbSrqzge2tUq9lRyYb/m8vKsn7q74mPYoZEizZppI3feWfhy9a+Op8/s2BGec//y/s7zpkPPossj+u5iGiGPRTb/27cXx7aMd+5snbztQ4xt4698Zet4Hlu3huepfz9773K3314c22bM9tJ2nLriiqKNVE3f7qaEuB3Yocgbg1esKI5XJ7ZBz+vMKwMYf0hmJ7WLFSvCfshj/kUDPeGFsbHJG/BtAXlGwrG/NZz3BRtE0yMeeCAMs56lUxjL8WBYZL9JADjCurLEdxz21z4V3A+9ouNm4Xl2h47gJrLN/1RYrKCEmGfMqQ91AHZiYlVcu2ST//83AJ/oWG6EEEIIIYQQQgghhDhNzEWPuqzEfycB/BmA/5zneZkPfUIIIYQQQgghhBBCzCrZXPqulWXZTUhbUZcDGAawF8B3Afx/eZ7vbuM+pb7nZVmG/FvXtX3d6eS6D/0IH/ubG08Zz0oSO4G7xH2G8Z6H8zUTz51y307dm9NsRxXIq93dfHCis+iP0Im2VLa8vXufzvYjZpe52g68MaCM6rCdbn6mtX+vDr2ySlWPW1WUp5hizrRyFEIIIeYKm5/6VGzZsiU7dcwzk81PfnK+xfMoOUPIli27Lc/zzbOdjzOZOSV9zfP8ytnOgxBCCCGEEEIIIYQQs8FclL4KIYQQQgghhBBCCLHg0Ic6IYQQQgghhBBCCCHmAHNK+ipmlk54dp0J3joz4Q1Xhpm4L6dZM723I/U0i750zJnQzsSZT1kvxNkcY/he1WqYj05337naD1O952x5eGEjI2nxPH+/ZC9QIYQQQohWZNmc+XtMzC5aUSeEEEIIIYQQQgghxBxgVj7XZln2lzOYfJ7n+X+fwfSFEEIIIYQQQgghhOg4s7Wu8loA+Qymv2A/1J08CQwPtw5jmVS9HoZ5Mp0gzNEEJUt9OI0W6UTjeXokzocJi8mkUrMBpD8b34ulVADQqD92KdSh4SL9Y8e8mOEzL11aHHvSrVo1UtcWp7C4DLwqbCPJaNW3U2epMsdoe7cklkGrvJTCy0ssXmqh2rjevezgMZPYTuThNYzI81Q60SC969pJP3K/0bGwLXGR2DHgyJH4rfm8p6c4XrQojLd8eXFcr7fRjhPb53i1lhTPq3ouKhuPy+T48Xiadp7k882bW98LALZtK467usIwPl+0KCw7LlevqSaPPxZKyBvrkuswVTfsVVQ7+e8EqbpkwhurS80Zj+E67uvBXOxgxwevyGNhiUV1yrAYsXfSVnAevammrDy9zFxsy7gTEndOs608plZwaiW28yI8W7TTqMuMOe00+MSXUe89OJacl/ypshXDjiOdsMg5OpI2vpV9Vw+IzS/jspaYT2RZVgHwKwDeAGAQwD4Afwvgd/I8P+Jcymm8EMBvA3gigOMA/h+At+V5fl+LuCsA/AGAlwBYBeAeAB8F8LE8z5u+T7WTdqeZzRE5S4iTJ8SzcWbyA6AQQgghhBBCCCFEZ1l4HnUfAPAmAF8A8McALp48f1KWZVflee5+mc2y7CUA/g7AfwB4K4AVAN4M4N+zLNuc5/luilsD8GUATwLwEQB3APhJAP8bQD+A3yub9kwwW63gOacIvxrAr2LiA9w9AP4BEwW0f/K3VZj4qnkNgPUAxjFRyTfMUH6FEEIIIYQQQgghxGMky7LHA/hlAP+Q5/lL6ff7AHwYwCsBfMa5fjEmPrg9AOCZeZ4PT/7+LwBuw8SHt+voktcDuAzAm/I8/8jkbx/PsuzvAfxmlmWfyPP8RyXT7jiz8qEuz/OvxcKyLPtFTHykG8FEIf6fSNTPAHh7lmWvw8RyxV8FcF+e5/+70/kVxEx84S+zVL3kcn1vx8RO3Lsj6bdx68d6nS22YFl8ybrme5Vd1u+RuoS+7I6e7gMkUrbsovloJ6xsGqdbppZCO9LRmSiTOcBMZInVJFZelny/DmSsMjYa/hDUaVzSx8dWVjc01PoY8KWva9cWx1wm9jFPnIiHebK91DG4E/BzNssCE6VPc6U/lZWPl3xHSN1RmLE7sKcWScNpIzbNGFYZliozZcn74sVhWAkFsYtXHtyfgAn7lhTsdQxbfdh+mFqujNfPbR2WTZPx3h2DkNQ5fD6vzGnHHoNJ1U571/Gx9UGIXOIlAaQ/jtd/mZ6ezv8dcvhwWryY5Y6lyWLDvhcwUwXWrE4UZy4/g4lFWB80v38cwB8CeBWcD3UAng1gDSZkstMzYJ7nW7MsuwnAK7Is+8U8z6dmjZ8FcHQyfeaDmJDCvgLA/yqZdseZU7u+Zll2KYD3T57+F+cj3TR5nn8CwH/BRCV/IMuyJ85gFoUQQgghhBBCCCFEeS7DhDLy2/xjnucjALZOhp/qegD4ZouwWwF0A7gImPbCezKA702mz3x7Mh98v+S0Z4o59aEOwC8AWAzg63me/3PqRZNxb8LECsGfn5msCSGEEEIIIYQQQswM46ic8f8B6MuybAv910omugbA/jzPj7cIe3AyDW8XsjUUt9X1AHDO5P9XAljaKu7k/R+huO2mPSPMtfXQz8XEZhA3l7j2FgBXTqYhhBBCCCGEEEIIIU4v+/M833yKOA1M7KTaihGKE9NENyb/3yqNERPHizsVv0Hn7aQ9I8y1D3VTXyUdgXqUqWvWuLHmOYsWuVYJ07SzLXdpr68Y1fDDeMxXrCmPnv8MY8JiuW/yEeuEARwd15pMGR57d+vpaX1bL0tA3B/C/u61i9Rt3VPtUNqxBeEw17+CDXp6etMy4qXhUda8J7Udt3PvGHPQc+0xkepBlfrcnTBgOlWajxHrseTdyvOq4WadmsVmv5xiDBgbC8fxWD69YbZq5oIO2EMGsI+Pxc6TfO7ZF519djwNLoPU8czFRPTGYA5L9fEsS7KXaarXk8dp9tdK9Tktm62ZHpJTvas67UPnYftJqpejF+Z7XqXFS2Umyofz2Ik+CSCesZludCX9IEun34l7pY5bHRjI28libB61nozct73+5c0TZeF7p/bDtkgp88pcEwSKx8BRAGdFwuoUx7seAJYkXO/FnYrP92on7RlhrrX0qS+WZXzmnmDSEEIIIYQQQgghhBBzi92YkLe2+hh2DiZW5XkLuHZT3FbXA4VM9SCAY63iTt5/FUKZaztpzwhz7UPdnZjYFOLqLMuSzfkm474YE7LZu2Yob0IIIYQQQgghhBAdJ88nVkae6f8l8h1MfI96Kv+YZVkdwCYAWxKuB4Cntwi7HMAhTH4byvN8HMB3ATypxYfBp07mg++XnPZMMdekr5/HxIPXAPxLlmUvzvP8h94FWZZtAPBPmFiWmAP42xnP5RnCTCx5LkuQF6f3BjKaubRcfw5KCNuRvsbC7NL0ajVN3pqaLyud8/LlyVX4ukY9Uf7YCdqRPdD5ePX/Z+/P4+u66qt/fJ2r6+vr62tZVuRYdhRHcZzEgZDRZIAQAgSahkDJ9IO2IQylLTylBUppKV9aoIW2tISWqU8faEsoEOapBBpKCgHaDCQhBkwzOUFJ7MSOZVu2ZVmWZZ3fH7J01v7cuz8+9+ZqsLXer5dfPkf7nH322bOO9lrb8z3NaLpFToXscyrkJU+VlugHHaa7j2EcWWPeKBphPk1JmpXE5ZWeeXjyVj7fuzcMO3CgfnwDA+H57t3Z8Z49YdjChfH4mpGttiIPbByevNXrk8OwfDLYhtp87Nrp7htaYVFBeNJdm988Pk4FzWSlJ39vVpY21UXabPvi81pZfv3rWiErLRVbJE0l8s6Ja2im/s+kxcZUzKu9QSSvz4tHi+cdjUTH9Tpv9tjrOI5yeXp/72um72iZ9FscrnwBwDsAvBnhHgW/jXH/t89O/CBJkuUAFgN4NE3TCcnpDwA8AeB1SZL8fZqmgwevPR3jexd8Mk1TFo9/DsCzAfwOgI/Qz98MYBThd6RG4245s+1D3T9ifNfWEwAcD+CeJEluAPB1jG/Ru+3gdUdhXB57OYBfx/hOsQCwAcDHpi+5QgghhBBCCCGEECIvaZr+PEmSjwF4Y5IkXwXwbQCnAPgDjH8ou4Eu/2sArwLwPAC3HLx/f5Ikb8L4B78fJUnyCQDtAN4CYCuAd5lHfgLAawB8MEmSXgD3ArgU49+U3pum6S8pbY3G3XJm1Ye6NE33JUnyYgDfx/imEPMAXHvwX4zk4P9PALjsEDpmIYQQQgghhBBCCDGzvBlAH8ZXub0YQD/GV7v9+UG5qkuapl9KkmQvgHcC+ADG9yv4LwB/kqbpJnPtSJIkFwN4L8YXex0F4CEAv486i70aiXsqmFUf6gAgTdMHkyQ5G+OZdQWyD3EeXwPwe2mabp7SxAkhhBBCCCGEEEK0mAmPurlCmqYHAFx38J933asBvDoSdiOAG3M+bwDAGw/+y3N97rhbzaz7UAcAaZpuAXBVkiSnALgG41rikwAsOXjJDoyb990K4NNpmt47IwmdhSTpGAqjBxcVmlbuebF4xgIz5h/QiIdWs3E2cZ/1kormj+NB1Wye8n3We4LDPD9CzkbXe6WR+kPk9biq9cfLF2eQj/Ymx3gnt78W73XvXJg3jw/5vLzkjcTJAy/NeevPtPYHDbxLU+lq1UzI88zJ+exYjntuhyVTJSrV+tcBiNafkdHwyb4fU7xexKpnIz5fXNxeNu6jvd09jy72pAOARYvicbKHn9dHruimE9eEM2fnZ9+zBT6tRfLIbKhdeP1dxHdzxKmhfvLz+XjW+JQ53mruu7bAYDFvH9lsf9+MF1qlHG9fJRiBSWAg26SvGNXdvONEaXgwHl+T/mYVd6IRj7KpwvHaedXrdB0GKU88Mz7DWLmSK/qmPfCaoYH0577Oa69O2U+112vecS44N/XHHdPJg5n73EHThDwv6P15HbOa7BO9KfLk758W9/c5pwzNuDNxW5prDY8Qhz+z8kPdBAc/wP1/M50OIYQQQgghhBBCCCGmmpnbBlQIIYQQQgghhBBCCDHJrF5RJxpndKyAXcPjS4VHR8Mlw7zy2CrKSo5kJCrZbHZL+bxSB3td3mXaRorA0i5+Tyv5yqs4cleI041DJv+tRKUZtmzN0rxzp310gY7DMC5vTn9XV5gHnHXuV3y71j54WCV62cBAdtyIPJTjOeqo7HjBgjCV7dUWdGn8MGe5fsHUs+0DWVrse7e1ZccszevsyC+t9aQUAZ6MnSuCo6Uo2PjDShN/dqvZbGxHKR01smevg4s1aK+P8Wi6g3Cui0jKbDHxuS2mrVuz4wMHwjBO8tq18ThYOmdVXYE0jxtzvYiyCMM4Ojomj20fye92++1hNJz+/v7suK8vvO6aa+rfAwD06BoWLMiOvSL8z5uz/Fm8OJShsbTW5h1La+c5yrlS3jHWCRstZ/lqpcaF4aF4HM44HfR3VNaujMv+IK/Uzfu5N5dwpPLRQdDrR5xBKpRHxx9r8bKgGXsMO4/ZsSM7XrDAzgGpXuSUmVuKzjQsjCdL14697dH4eDy0VB17jLxdcEusGrx61SRDxXiecLbmlhYC+dtQzjqedyyLyeKBBvOfx5C8vzPktGhx+6JGpLv8OM/LhTFhnmScs4AV45701U7Jwnl8mP/cXwwPZ7nSXjXlxAkx6ec+xrbfMo09XpYE5WTmDkHumPItHbwvOfT+Aoc1c82jTsTRijohhBBCCCGEEEIIIWYBM7KiLkmSC/k8TdMf1vt5s0zEJ4QQQgghhBBCCCHE4cJMSV9vAZAePE4pHfzzZuH4hBBCCCGEEEIIIYQ4LJjJD1qxvZW15/JTYGgI2LBh/Nhu0e3556zsoRPr+RDzirCmCewz4IV5W917P/d8I3p7o/cNFzuzIPLrYZ8jIPQQsv5O7DFmw6rVLM52x/qjGf8Zy5Yt2bG17+L3sdnPXhH8nsuXh9dxvVi9Ou5xCITeTPyufevjaYxZkAChf5QNY0+MZzwjO+7uDq8LfNZMfbFeTVE8bxR6gZFyeyyopm6VI35AnR3xZ9f4xHkPyGtmwWYmtpJwfln/Ma4Y0+lRZ9OR1yvP5gfnV1BZ+/LHEUsHEBYwV2TPpMV0wruQ1SduN7ao+dxmjz2PwUXPXScQekC2j24PA/PWEa6rppxGyC3ovvvCKB58MDv+xjfCMG7rd92VHb/61eF1MSsym0RLXhuqifG1XvyMrZ6x+G3+d3dn/VRn0dRBLjhbMSgx/R1PmzzmsQsAli2lhHgmohbOPE6HZ57k9TFO3xqND6id2DA8oNnC4QrEYbZSeP0/3cfJLTn1yo715TKNQzXxe45/9bFRcJdm5ypcHF5RLF6cHbN3IwD00FzRy7rdu7Pju+8Or+O8s8XJaV6zJgyLdTHWe5LP28sNzCMjDA3H5w7Neg9z87V9hTf0lLiNegamXgHHMhIIOyrbOUUoDO6Kx+Hlt01/rP/x+iXbD8bwfp+wFYjzx1ZyTjP7yvasDC7jJHvjdN4u2P7cKybu6oL+BuFr86u0O32Y5Y474mGcLu4ram0As3T19oa/TwQ+jDGf4iPcwE0edWKCmfpQ96kGfy6EEEIIIYQQQgghxBHNjHyoS9P0NY38XAghhBBCCCGEEEKIIx15uR1hLFyYyQWa3nXd3hjT7XlL5u0D8m613oQsAUC4PN1ojMoUZWl0aPJ4ZY/RIkWWtNdg08/nA1kc7d3xLdnt9ux5pbCOwje3Ko1lLVb6GkpGRhClpo5kD2fJrKca8NQMNnqW33gK6056ns3j3HiyKGLH1vCcFRh798aj56o1MmplCSR9qoYyqIJTx4MMcxr6WDmTGATyAiAum5lJPG2Vp++2UpaYTNbmY0x+Z5/t9WF5ZT8mDm5vxZ54G+JX8yQ13qudd148WZ0d1BdtcDTcXidD2pvtg2E93rgxHgXL3myRcftauzZ+nWdh4MHFUSrG+2OW89hqxs9esiQMiw0pNo72Kj17IGc9M+cruimOGhn4QDzOvO2en+2ko6FJSKx9eeOtba8cp2cdEIuvXroicbQHDTO8h/vWMSNnDfpd86zCAEnNbcWIUBkNZYfPeEZ75Mp4t+WNV/Pmhefe1Ihfh61Wzjgjng6veHmuYuPk64I2AxiPDSeROfGG22bxZPiu9JU7PFtHYhnrjWtTMdbz87wXzTve2ji8sT7v+Ov1RXn7KefH3nStxrIlEg8/2nM78ZS7Xl2ytgjRBxh4/LVxcH+RswtDYXgo/AG/uM2siTDbMQlxhDJLfhsTQgghhBBCCCGEmLvIo04AaHbJiRBCCCGEEEIIIYQQopUclivqkiQ5BcDrAKwBsBfADwD8S5qmQ+6N08TmbUN48wdvxZ33bsX8eW3oXb4I//CH5+P0a76CNcd1YHjkABZV5uH3rno6XvXikwAA1994P972kTtwzNKFGB4Zxe9efgre8uunAQD+6av/i499+RdoKxRQXVDEx//0Qjxt1ZK6z963r3aTnAl4GbK7JJm1SUC4bpvXVHtrsa0sjfF2feUtwPbty3cdABx/fP30AiixXpSWVO8atLJD2nXRZAE/uqsrvhtqtTuL4847wzie+czsuFY1nO+b+S23ZMe2mLyNdbnYuOx37gyv43fp6QnfM6wGYRgXx0MPZcexumjvAUKpGO/yCgB79vCz43F2d2fpKjnL6a0ciRmrZmVYsySfKsKCBXGJkd0pj/OV382u6uc8Zpk2gLBQG9lOlyhw4XvSURs/38fav6nGVnJPEhHb2RUINZb83jb+vFs/2wKO7fTqSXeNZvPhvqwPyLtjnC1Cb0dY3q30m9/Mjs8/P7zujDOydJzWY3Sl/ECO0Ibxe/eeFU3H178eRsFpvv32MOwVr8iOuXpaZVJeRUyzii/ug63sNnjt3nzPW706PB/t4l1fHUmWreOU/zy2FU1fV/Hky94OirGdIp3dZ3NL24D4nMGbL9j0L1sWf96xx9b/uZ0MeXkcuY7HDCD8C3ggZwXC97GaON6y1epFY5g0bqAovE01PYWyt+urtxFobA5id3fmdNh5AE/7Tj45DGPpK8fR0xPOn3p6yOLB5n/e7Z0Jb/PiUpP9CDcbO6QG8wArw+cxy7a92DzAs7Oxky0m71i/fn14zn3FqafG77Pjb94tTzl+O1eJla/Xl3rbBtv4IuNcyXTk2wfqj+f23Nv11ZO+8vTHk9La9loZztpDZUlcvs/vZi1aeGz2ftfgLLHZz9m6stuRF3OfyDeOONY8QhxBzKoPdUmSrATw5YOn/5Sm6b/WueZlAD4PgKfjlwN4Y5IkL0jTdKO9ZzpJ0xSX//F/4lUvPgmff9/FAIB1D/Rjy7a9OOGYdtzz6SsBAA9v2oUr/uS7GBtL8ZqXjM9GXn7xKnz0bRdg285hnHz1F3DV81fh2GVV/MaLVuP1VzwNAPDvP+zDH37oNtz0oUtn5gWFEEIIIYQQQgghxJQwqz7UAXgRgLUAUgDfs4FJknQB+BSAesthTgTwJQDn1wmbNr5/9+OYVyxMflgDgDNO6kLf47uD61Yd044Pvvk8vPVDt09+qJvgqMVlrO5ZjCf6h3DssiraafXSnr2jSJJkal9CCCGEEEIIIYQQ00aayqNOjDPbPtS98OD/96Zp2lcn/PcALML4h7wfA/j7gz9/J4BTAZyTJMlL0jT9Zp17p4X1D+3A2WsiOwwazjq5C/c9MlDz80c3D2J45ABOW905+bOPfekX+ODnfoaR/WP43scua1VyhRBCCCGEEEIIIcQsYbZ9qFuN8Y9wd0XCX37w/60AXjDhSZckyf8AeBjj73M1gBn7UNcIaRqef+Hmh/H9u5/A/Y8O4BN/eiHK87Pi+b2rn47fu/rpuOE7G/DeT/4En3rX8+rGOX9+5ldgPQFKIE3/gDHdYE8GeyObDnCYNehh7J8CvK3iY/uRez53nr+W9ZTg51H81a64x5i1rIhEUQP7S1iLK8bGUcBY/Qtr7mPvoTCMvShs+tlqhP1n2PMFCIvCs+awYVxFTjghO7b2JJzm3eEi08Bbynp6sE2FV0XY8mRVT7ygvPxmr7ByuRKEsU2Z9ffzrMliTaXWh87xlfG8jWK+Sp4xiE0kn3sFPJ1Y8xWvgjJeI+X7bPx57/PCPPMnx8ezpyfrj/J2rda3hu2GNm0KwxYuzI65rT3xhPeszuC8vz87P++SlUEYvw6n6/YvB5fhnnuy461bw7Bt27Lj884Lw/ic26G9Lq8No/V+Gsu5t9ZVV2XHtllw9TnqqFzRBd6cNg7YIZBfwPFWay/TWO+Nt7ZO80BhXy5Wx206+D5vSYDXv3k/9zzqOF32vlgf6RmQeWmkwaZgKyFj88frnyl+ro/u/MAYwJ3GE4Fep48nrAcVY7MgbxfJxzZ7OButRx3Pm2z3XBjcRYFOPbjP8Wx1DZrr0z7waPiD4EXz/WHeclIvtdGadsKTnBpD4+zYlie/m1fHOcxOApsx73TqcUPLgmJ9h2fm6/U/nC5vLmT7QW+sj8zD7PjBUXi+joVR47UW6X+sr3Lgveh5gQ6Yc64LfGz9COnZJZN3V1ySPW+kGM6RY9XHS6K9aYREcyWTeRPPS0vzIcRcYLbt+nr0wf/7bECSJMsxvnlECuAG3jgiTdNNAG4CkAA4e+qTGefpq5bg7vscQ2bingf6cUpvx+T5yy9ehV98/mr86P+9FG/98O3YvK12b4xXvPAEfP0HfS1KrRBCCCGEEEIIIYSYLcy2D3UTf5raUyeM/yZ3U53wiT8rTuOWhLU8f+0K7Nt/AJ/4+r2TP7vzf5/EI5vD5UN9j+/GH334dvz+1bU7Ip3/jGV45SUn4kOfH99J6cFHs6U73/qfR3HisYtr7hFCCCGEEEIIIcThyYRH3eH+Tzx1Zpv0dWLR+8I6Yc+ia26tEz6xDrhSJ2zaSJIEX3v/i/Dmv78Nf/Nv61AuFdG7vIp/eMuz8NCmXTjzlV/B8MgBLKrMw+9ffWrNRhIT/Mm1p+Osa7+Kd7z6DHz0S7/AzXduwrxiAUsWlfCpd10Uff7wcKbIsEuQu7uz5cSVvEu7gbC1eduiM16Ybb28/Jqf7clarG6Sl0ezrsveR5nirhYfiJ/n3cndZgG/dm0HFpe0MiwBtbI3fh8bxhKzpUuzY0/euth8D+ZstYqLiCLIlYB6qkAv/zlOq+g44ww6sZngySVQP6izGt8C/sCBUIrgKbU5f/buzY6XLg27q0AGYdPPD/AqF19nM9mTsHLhcCECYaZ4Mq+85JXXcIU/1H1cSWzF5vyKaTTtfV7eLTRD1LHHZsecV05DGSqG0vsNpGCzyWK84uUssFVk/frsmCWyZ54ZXrd8eXZ8zDFhGGd/ezWU4/X3F+g4+/k//3MYByv1du/+ZRB2ySXHTx7bJsrqp1ifC/jKwuC8RtNXb4+qWjgfPZeF1avjcXAZ2uu4yqzscTpaO4BRYnYNl+jH4XsFcnvb0XLB2ZfjhPIL2L6C77PxMzb9dkyfYI/5u6030Fn5FsNzBC57qzP3pK8R649dg+HfvNs562xD5PRbSR/lJV9WcaZrtpJvaVsxebzNFA1n13xHOWbl2Axnsad4ZEmr7cZZ4u7NQax1Rrmc9ZlctXp7Q4l+ZfDJ7MTWz2ZwZOYenpx+4+asXfLcHKiV5QdwffLqFtddnnQA4WTO+g8sWJAd5x3rbQHnlRfb9hvrL+zPefzdsiUM44rN7+JJX+14zoOgvY/TQn1AwXTkw9QHe93s6GgpGsb7JtpqvJo8zG2357WhwkaScdPDxnpCK4tR3rPRdINf+2Y2b923Lwzj7tTrjjn7TzJjYGDTZOpW6WDdSkaNZl6II5TZ9qHuSQDHYVziapnYaOJnaZrW+5V4wmihVi86zaxYuhBf/KuLa36+94e/Fb3n1ZedjFdfln20W7F0ITb/xysBAB9667NitwkhhBBCCCGEEEKII4TZ9qHuHgC9AC5JkqQjTdMBAEiS5CwAp2Hcn+4HkXsn/hS/JRIuhBBCCCGEEEIIMeuYkL4KMds86r568P9FAL6TJMnlSZL8BgDeN+6LkXvPwfiHvPunMH1CCCGEEEIIIYQQQkwJs21F3ecA/BGA0wGsRfiBLgVwc5qmd9ibkiR5GoATDl5z+zSkc9aycMFYuO07w0YJxhtibM3TJo9rvt6yaY7jr8KeSxW7pTZvt239N2K+Gp5/RSO+IxG/vBqfPkrHqq6OMIxtbKwZ2cYsnbt6T5s8tslnb6Dh0Xxbmls8f5hLLsmOrTUWW4YEHhUWunGsI/R9YasIa+vDWXnaGqp/bEgFAP0D2bF9AU7kmo4gaKgj893hamCj57D2Jnu3IFm2rCl/2trCoJNWU73esCEMvC+rr+38gJ3Go4gLzvOo87zmGC8O61vjeT+xfxT71ngeTh557/M85GwecJ9g44v5X9mKbPqtAM97jsLcvs5hDRk+cPILCOMYGa3vBQcAN98cj5+7a84qzzLUWg/9z/9kx3fdFY4U7N3G9915pzUD/cbk0aJFLw9COPtf+MIgKCgqzqvAzwZh/ltC/7p8nnQWzjvrwcN5bMM4/VyNK9atw/FJ3EXjRrF7VRDGfd+K0e0U0EAbdUxE2YctcFe0LxqbL9g4bRhXPE5jI2aynsdkLMxbtuCFURptMto7KM12nsG+UGXjUUr9CHdZrkediZ/95azXHBdV4DHplZNNv1N/isWsjvBt5877SXjheb3R+IJ5pGkbnF9czWosl4sd2XErlqV4RpgGz5eOYSu1miz16jy3Uc8k0GtrOf16c2P7AM8Dm/G8/zgOO05z4bOfnPdsz6PO3uPlSew+0wl0cppN/q/oorSYdPH47v06xFlgpyPBmLhufRjI6eQ54BnIzXOekx3brOI0cx/D7wUcYp7t1c+JczsBF+IIZVatqEvTdAzAiwHcDSAx/9YBeGXk1tfQ8X9NYRKFEEIIIYQQQgghhJgSZtuKOqRp+niSJOcAuAjAmQDaAPwUwHfTNE0jtxUBfArASJqmc3pFnRBCCCGEEEIIIQ4v5FEnJph1H+oA4OAHue8f/Jfn+rdMbYoOUxqQjhZYS/TLX8bj5GXIZrl4Medqd5bQAEB7NbJ83JNjWCkbbzdvl1GzxmDp0nj8pFvaPhjfMr1YDIQ/6D01k2WODmQ/r1En0lrvcpMtj1eqc5EBoTqg0m/krQMRGYSR+j0+kElLHrszjOLAgezYZjHT0ZHl3UqzZX0gCbX1k+ukeUCFzisUZ19fWJeCVfKjpkLmlItyFaz2hPLfwuCuyeMlS4x0jiXWVpodk63aNPG5zeSYLMQSk5AB4cvZME+yZqUnsTjykvc++1xPzsNhNu+4v+C+wsJx2LKhtIxVwz5g69bseOfO7LhcDuvn/PlZ+9q0KYw+pvZY0RXO1kr03iuKYR684hVHTx5bWfgtt2TH3PQ89RG/CxAWxxNPhGE33pgdP/jgNgr5cXghfm3yyPZhZ56ZHV90EaIE0h4jOSpRIlmKZymMRiwixm+MBr3sZdmxzTsuwxXdoWR5aDhLS6VMYQNhGY4UszoyOuqNQ+GzuTmMdWf9VmHYSGtjN1lM29tLTai6tMn4vTYa65u8wcbaWnCB7N8fhi1aVD9+25d68tmItLDaEV7WtJyW0rxgQfyygJ//PDgtOZrQYnc2VwnexZF2jhmJuNcFc7YG9dNaCjjSwuGB7LiC8AEFagDtHMcGUw94/LXzjKuuij47yrp14Tm/3BlnNB4fgGULsrkEbBXnjPUk4t5cfc+e7Nhqs2PxAeF8+eKL4/cx1uqDy8bLH5suPuf2y+8ChPXV5s/Chdkxj/X8cyBsYHas5/K17ZXTyF4Hpk4H/b3prLlN1Y5DWZiXDK/r7izTxXYOxeVNsuFGuiyvOnHR8O969p7w17JwPsXvVmNRNJEpSRJPhBBHELNK+iqEEEIIIYQQQgghxFxFH+qEEEIIIYQQQgghhJgFzErp6wRJkjwbwEsxvgPsUgALAfxVmqb/Yq47E+MbTuxI09RZCy6EEEIIIYQQQggx+5BHnQBm6Ye6JElWAvg0gAv4xwBSAIvr3HIdgOcC2AjguClP4Gxm2zbgu98dP7amAOzXYPxbeEv5wr598fjZPMD4LgT2M8OhrwknpdZ6K3t2tZp533T1hv5gleHt9R9m02W9adjfgn0kbP5QWLkc92XZsSN6G+66Kzteb3ZFH3qZ8TSL4Nl3sU/cySeHYZUv/1t2woZUQJhIPj777OCyFcceO3ncdeZpQRjbAXn2Zu0g75WvfTO8kPN827YwjMvQ+sqwFwj5pvT0Xhhcdu+92fG5zwi9LXZRnfTs6rgM2UcDAJYsybw0SqPGm+mee7LjO+4Iw7gCcebFvN/qQV4dY72rgqACxupeV/OinrkI+whxfgPxdNp2mNd7Lu99p54aj8PxOarxrord19MThpGfDnvM2ChHTfQxW0D7Wl7Rc1IK9/1vdvLfpiNxvBxLFMlpJu9OuybzdvyDDVnfau2FuOhtX/2Zz2THtio9+CD7MrJv1jnBdZdfntXPN74xjIPzpLPvJ2Egv4/TGfFY5k108/XGtZz1xLeyk+ElYSCXjRmHKjEfVdNGS2vXZsemkixcmPU/1j+Qu8+g/ljI43OMPcsQei3ucWy/+Nn9/ZXgura27HjBgqODMO6arPVQB/kVelaR/J7tZcdn0FZePve88vgBtpJzvaP7Oi8zjZkHf+vTSnEG/TYA0NyrvUjjy6jTkfT1ReO3fpyFmH+X7Uup3hXMWMA+d7ZsOFsDH8n/+3/DC3msYe9AAJ2cFs+Ii/F81qw3WTN4PonNwnXJDgaeTyIPFJ6/IqfZzqc8o0E7f86DrT/cCXjY9HO98HwkvTBOi9OR8HzQjtN8m2cHzL8LLHD8Gms8wbmNGrPX0pYt2Qldt8omktulDWMz6//5nzDs2c/Ojsmz28sDG/a0u+h3DZtBXJeprrbbfpCwvuWcXcVi+Hvg8MGwvcPyqBNzg1knfU2S5GQAd2P8I11C/zw+fPCaniRJnju1KRRCCCGEEEIIIYQQovXMqg91SZK0Afg6gKMw/uHtqwCeDeBQ2zX+B7J9k35lqtInhBBCCCGEEEIIIcRUMdukr9cCOBnjEtfr0jT944mAxNmKOU3TfUmS3AHgBbA6m7nG/pFMUmiXu/OScKPpCyQYVvbGS8bpeKQaLknup5X8ZjV3IJWxqjReYs1JrF0Vnz1v9dpnBWGlgSfrpxcA7rsvO15CUiUjKRirZrKiUaN04EuNUiNIM6uzrJph9+76yaiTlCi/8TKSw3zgA2HgzTdPHo786EdBUOkZz6ifSFvWJIcpnhpKXz2VZrA0fgOtW9+0KbyQ5RhWG8xyANawAqF8mdbFr3zBY8Fl3Vf/ZnayOaz/7bQMf8z5GwWv0F+2yMhb++jduF4BQf7jzjvDsOXL6z/sqqvCc09nQfXaZh3/zWX16kyaVLHly7pe+yxuNyxBQSgDrVjJbyuINIDtxaPr/hyo/etNIBO0UiXOB2qwu3qeFly2/vZ4FNydWrUQ1/+Yytzet9iYOHDyK9wWbIe5bl12/OCDYRhJ14OyBoBjjpk8vOqq/w8xuHuwVZzTaMMA7vSz/ubEE48KruKqZapZWCU3mALgPPGkYdOJzQS2HPBkaQzJrQEElWnL3vYgiFVRRk0VRt8xHAkARkj0OzgQxsFuBF4d9xSJdnyMxeGptdjiwT6Li3uzsdgI4w/nJ11dnXWvC+YONtCz2KCwsY7wWSwXtfLiAnUsVvLVzveVM0lxYdSR+JJ8DUDYcfG4CcTbkJX48rkJK3CemElBUBrcbz3ySBg/V2Q7sfA6CC4bfk8bBw/ijdhLxLBt1IHn0t48Y6jnpMljaz8QDsVhHxA8y2nboNcurj4puC5SjWueXSPNjnHeeeE5tw0nDwok8weAkWJW57l4vf6mRmVL/ciCBfRzEwf3N3Y+ztla0/aoDi5dSpZBg7vC6wbpgVaezpMJO77ztXyd7fC5TloLD848tmSx99m+gygVs7IfGTVleNNN2bGd5Dz96fUjdOa21Z6VwflRNGWwTkwT86a8LiuHK2kqjzoxzqxaUQfg8oP/PwbgTxu8d+JX15Pcq4QQQgghhBBCCCGEmIXMtg91Z2F8Nd230jQ9cKiLDRN/C+50rxJCCCGEEEIIIYQQYhYy2xaPTizWfrSJeyfW6c62d5peCm3ZEmNPUuBJ7OzuPJEtMr2NG81mY+5GlLENtexy92DXRfPs1asziVzljI54wnjZt3kAyw/ssmpegW7Ty+/Gu+bZTU1ZfcfLysfJ+c3ck8Q9lslA7YrpEutuOSF2RzQqHCt7qBSdbaCYmJbZnltpNmekkb6OUfoLLA0wmewly5NgMJzFLD8CjOzHyt48bSS/t6f/YmxDoXNv81ZWSHR1he/cyX2Clc10ZG3oPiOt5Vd7/gVT0MVG8uG//zt+mc2etWuzxdQVGx/nP93Y5xShhSU2XvFyurzitX1kQMRuAEDYr1vpK1cMm0iSwHS8JJO+2rrUWc2kPmvXhtLCV7wiO67dWPeZk0fcxVx5ZXgVq21W9YZ9TCAFtA/gfHD0xdxE7TgR7Epph8C8Wpr/+q/s2I6jnJl2HOWHL1uWHVvZEr3nPjPWeJsdBl25s6ujt+EjZ7mtF1zt+DpPmmrzn9MYyNIQvhsPVwfMn2y99HMVsZK42GaQJVvu3mQlIhetkQjSfXa+0J5TiunKDvkFbEGxL4KnGeR02HGaZPI1WDkqwy/ryGfdnXW5E/a0X+yvYiV8fN+aNWGYtYPIg+2LuB54u487VJBZSPT0hPMMT3o5VizVPQZqpewT5J2u2fNi0ZGtcv3MuzvvIRLG1Yc3n7VVJLa57SGij2L7GI6/syOMpEYGepCSJ5P3do+2ume2tuDrrHyW67EdDPjZdp7axK6+NfnIEzM7zvHF3C5tO6E026xjuWus7G2ZCXGkMts+ag0BWAzA+YoUZcIEanvrkiOEEEIIIYQQQggxtcijTkww26SvE38ie5p7VX0uxLhs9petS44QQgghhBBCCCGEENPDbPtQ90MACYBLkiRx9g4LSZLkBci2mfvBVCRMCCGEEEIIIYQQQoipZLZJX78A4HcBVAF8CMBrD3VDkiS9AD558DQF8OmpStxhwZNPAjfeOH5sjQV4C3XjM8L+XQW73pY9Q8h7Zff+0FeDbRGs15PnK8MeBOw3wT41ALB8eXbseVZ0d4e+He2xvehNIhcvzrYI97Zrv+uuMIx96R56KJ5Gtsez5N5qnH0erC8F+bVZq60u8reo8AvYB3OirXcS553nccheGuy3YZ9nt5vnjDSVJPiLAqfr1FOD6265JTt+/tqOIIwfZ1+N4eyZPz8MW7IkW+x70lrjW8OV1zaAWAF7+WjuGRrOcsHzqHOqOE49ddXksbXd2bAuO7a2Jvy8518Qf7ZL7kqeYduaZx/FTYPfEwjfdZDyhO2cgPA9PdmB9cU56qjsmH24rA8d32ctWyqju7IT9q2xbehHP8riM2Hcauxf4Ybo+LTBWyePv/DEs4LrtuzI+s9lC3YFYRdf3I4Yn/98dsz1jvttG/az9WEquZxexOOVJWYKCNQadBJBFWyiPgLAk3//95PHNje4WnTZAma/HvbNsv5aNDYXq+HeWFz/bfKDujYwGL3Qs07iPtJ2zzx+cdiOHfF02LGefeMWOX+KtWM/w/5FNn62S7L2q8ceWz++9mJYYdiXtOYv2Vx5uZO0nSklrL3beM2NZvW13XrVcsZy4Xg+aLffHp5/7WuThyPmUj6v8hzw+OPDC73JCme6503G6bdp5DA7BnIl8cyCqR+s8Z173vPi8TfjUWcHCp5AeJ59HjRPKvaEIiIee8bKxoeOmvbevWGU99+fHfPcxc5nvflPiWrJGErxCxnbWfAL9KxEFFN/hoez50XsIGuwRRN67NX/eU0STX6wfWNvb9gLxOYIZ51qxiF+Nzth4DnynXeGt1FbYR8nO6c/7eabs5NLLgkDPTNT7qC9+WeQkWE9GCA/7A7bB/CzuUN22p0dQ7iZWxveCW/TZm0RhTjcmFUf6tI0vSVJkpsBXAzgVUmSVAG8PU3Th+21SZIsBnAtgD8HcBTGP9J9IU3Te+21QgghhBBCCCGEELMVedSJCWab9BUAfhPAIxiXwF4J4MEkSXhbnNclSbIOwFYA/4Dxj3QA8CCA109fMoUQQgghhBBCCCGEaB2zakUdAKRpujVJkmcD+DyACZHV8RhfMQcAJx/8P6HbbgVwRZqmjmBijrBsGfCyl40f222z6fzhzaFstZeOHx1dEYTxsnDekt0IdrBsXrZQe9UFZkn1YFyKE8g66E8I2wfD5da81JlWXgMIlSd2GfXS7kzaNUDL5Lu7wyX5G0g2wEvfgXCFuJUbTCzFBkIVlt11nRUdNdJObwk68bMNWbmd9opXhIG0tHyl1f2ceWZ2vHbt5OGu4bi0wSrKCgNZ+Y51hJIsfp3KxRdnJ0aaGpS1rQcciZUSBdpFqkumjo+SGmmoGArTnngiO/akH/a9mUDBYKV5LGe75powjCsUvedYd9jWuH2NjIZ/Rxml7LHKJM5KziorD2CZiCcF8ZRWzUoGm8GqivjRVg7DahIbxvdxnlg1BjWNmj6A88RWzxUdJCzlB5iM3D5QiAVh1yDV14uvqH8MoH00a4dVow2usozm7ruDsApJ4vDRj04evvx1ppL8lCoC12kAFUrzJZeE7Yvzi/PHtqeTT86Oly0Lw4I6aW9kPQxdOGb+3lgK5ISmDbGkzPk7JbfDmvjpuGz6gPLll2cnnnzwoosmD1lqDITjSZsZa1Z1Z/VsVYcpN+6cnqAbjf66syOeP9zebPZzn8nS1MWLEYVlqkDYDoPx0OD1wbH4gLA92/YbtFFmfV9wWuBIrXcATzw4zNPmWVlgrKHYa2OWHUD44mai4aQkLG3ugLjjA4ALyN/AjuFcSWy6YmPzBz4QXseyYTtIcZitCDG5sc1H1lXbiuBJ6mNYL4hWjIGUd150hdFQwFwkGSL3FUDcEWBVr5FY80TAPpzKcPSMc8yzI4m8557wnPucCy6M3IRw0AawgusWta8zzgitLLj/8ax0mP37w/MDB7JjO/1m2bA3T+I47e8rHTS3K9jfxTiRpv3GfhOwvdcgWcVUf/7zMJDrv/UY4N8NKL95zAPgSl+DamB/1+BOmCukbYdOJ8/1zCZ/4rZpnIYKMaPMxhV1SNP0cQDPBfByALcA2I/xD3P87wCAOwBcA+A5aZo+OSOJFUIIIYQQQgghhBCiBczab9JpmqYAvgTgS0mSlAGswbjMtQhgG4AH0zTdae9LkmRlmqaPTmtihRBCCCGEEEIIIZpEHnVigln7oY5J03QYwDrvmiRJVgB4J8Z3is2nIxRCCCGEEEIIIYQQYpZwWHyo80iSZBmAPwXwOwDmH+LyI59FizJvHGPANFLM/M28L/XzTS6yB0S5nFMtbY0ivK3KrYfLQTqthwEZSax4Zvhu7P3keRewnQJ7VAC+Lw57WLDdGwCc1Jt5iLB/yH/8R3jdUjb122DemcvK8atbty6Lf3N36B/yotdlPhi7iqGHHGf5AFlieNY31r+rXM7i3L01DOO83N2W1bNljhncCELfi80DmedVsevoIGy4etrk8ary45PH/zsQerxxNbP2Qtu2RZMSwPXA+mNwfj0+UDFh2XnV2HFwvpYprOT4gpRM4ZSGs0Js7zB1hK7tWNNZ78cAQn9F62/D2Cpo/RanEvYEu+SSMIzTZW2D2BIsr6/MUmO0yT6MNb5HG7L8X2Ebx4aB7DjiuQkAnVwRRsMOZ+/erD1wXbX1uFrNyveY018UhC29ODsvDO4KwsrsaUmZtb3rpDCNfT/JTkwmb6HnLSuH3klr1mTp59ts+jlL7r8fUYqmDzvt1I4sHVuzOrLADCftlK1ePbDDUNBGnXGug/z9cMopYSD5X/F4a5/9c2PpxCxfnh3XjEkxs0UgbBzccdnGTGNzpzFKPO+87L2t1yv3F5x31kfS855jjHVegPWTynsfU+Oz2U+J5hfwfNY8P132dfMGUhO2i8aJdjtPYm+4vMspjB9qB3fWnokfe88ZL0ouVFuPOcaaVsIVlo+tLxx7djn1s6YBsP/tVVfVvwcIzS9PPNGmsnHsQOSZ3BI1vl/EwzSnGTBjGWfPrtFwntRepThNHentza4Nit52dpznth9x4MeVcv726OVBTbp4zKUXqIyasWxpNle0VauB18niM1WQ8y70PA0ZGo7/3hH4NlsPSPZrsx0ojc0r/vu/J4+7v//94LIC33fssdE4rA9g0JF7fYzzi1T1hS/MTuy7PfvZ9dNl2wy1bTuG86Wx26w1nhBHKrPmQ12SJG0ATgDQCWAPgPvTNB1xrj8KwNsBvAHAAmSbS6Sxe4QQQgghhBBCCCGEmK3M+Ie6g5LVvwRwJQBevzKcJMnnAbw9TdOtdH0RwB9ifBVdO8LdX28H8J4pT7QQQgghhBBCCCFEC5FHnQBm+ENdkiRPA3AzgGUIP7gB46vkXg3g3CRJnpem6dYkSXoBfBHA2RNRHPz/VgDvSdP0u1Oe6FnOcKGCx8vjW5n3G7kaqwgcdSWWLTVLvXkN9wAdO9u6N9TDxK71NFNGltbJ66OL4cuNlLNl8hzFnj1h9F7+xLZ8B8Jt2b1l95w97bV6tuyY89XkMZ/aKB4dzKRiXjqc6IP39upIXvmRfQDLGgcH4pdaxUuQ/72ZfKdqqg5XC5s/u3f7SZ3ghBOyY5sHnK+22sZUP0Aon2C5hBUPsXS64LUhW8B0baU8xAHBZe1LKWE2DqdiVKsRKWAj7dzTpBMslWlrC5/LkjhPbVYpmsXYXIEWUKH2OX2Mk8c1sliuKI7sLegETPxLu0MZdywKli9b6eh//RdH3x6EXXTR/2/ymBV8naPhhunbe8/Kwga+F4Tdckt2vHx5KMliSLETyLiAsChslVi8OBolenqyusDSYKtCHhnNrrNF6PWLLNn0+r5/TH5v8ni1rYO3x+Pgc7YKYBWUPa9gKAzsH8iO7ctwp+NZKXCFMp1kieJcVjM4ZAljid2K8nZE8fqHQad9cZptHDudTpjv63c6CG6HXv7YMJZy8bGthF4fEEsv4Mrmo1jt38teVj8dNn6qL2PFsC2HEkdnPmjjj/Xxnq+Iybuh0fh8apjaRvWMCyeP24umnXgNuAm2rw5tRjhdKzxpp8Pt1FfY6mMVoUx7OT4OtSMnoc4/711xWK8P1Prn5EkHYH12smPznoXywORxxVSSQKidtw3lrccmjRVOo+nIS1TnR4x8ucSyVavR5zAaPAssVQfC/PGktbfdFoblnIfxdTYbS5ddlp1Y2TynM+cvFO3GRsO1ShocT0yyPyq4E+KIIqfhWOs5KHW9AUC3dxmAUwB86ODKux9g/CNdcvDffwN4YZqmF+gjnRBCCCGEEEIIIYQ4nJnJFXWXATgN455yBwB8CMDXADyJ8RV2VwF4I8Y/Jl4FYCmAiT9h/hzAW9M0vXma0yyEEEIIIYQQQgghxJQwkx/qrqDja9M0/TydbwDwP0mS/ATApwC0AXg+xj/qfRTjH+mk3hZCCCGEEEIIIcRhT5rKo06MM5Mf6s48+P9PzUe6SdI0/XSSJG9FtvLu22mavmm6Eni4Y6X97G3EHjlAuAX245tDRXRXV+b6UKo6BmeesYZn7sV4Bmoch/V1oHPrtzJMyWKPKxuFZ9vBFhkrO8Kt4tnnp3rqqslja9vBdkCul4jjz8O7rlvPNbalWLcuDONoPC+1wOerHHqvbB/Ip5RfRFvCjBl1/dat2fG+feF9TzyRHS9ZEoYF70ovs9II57u7s7K3Zci70nt41kO8071nu1PjrUP5wHXJ+lMxnR3mBRx/syiOR2BNabJ5mIl/JWdEs5OHvO2eWDbP+F9Rpu/sNr4v7KVk/a9iHpC2ED2Puth1jYQ5cRZGM8+VAweyd7Pdqmffwo9mqxt7Lff32wePDq7r7H8gO/nnfw7CXv7GrE7+rPqsIIyrD2frffeF6eA2tHBhGPbCF2bH1lqHbXE4DvueoadWvM+yRRGz0GmkqL3qc9RR2THnlY2DffrKSwPHJRQwgCj8QG+89QxXOcxmCA1gK7gCcWHY+zzvJy8sr1ekfReueLZx5PV/8/zlYp5Lnhmiyccq9/kmjbu6T5o8bh98PJ5G5oILglOev9ki5PnPvMi8CDDjbyP9WeDLlaWjZA1jqSzY4xeorU7Mxo31f75sWaV+AGrnGRde0LinHHtzAmEVeelliGLnPwx71FmbL8bOU3mOU7CBVOAjiHuIMiUYry9bVnmwE5m8Pmi2gsbGZlsH+Xm2D4h5UTaL10/lHIxL3kTb5l3MLNuWNV9njGBHuldmz7b5ExnobF3lLK8pzksuiaeL34cnu95g6Y1JsTmTvmKJOcKMedQBOAbjH99uOcR17Gb9wSlLjRBCCCGEEEIIIYQQM8hMfqibWFS02b0K2ELH66coLUIIIYQQQgghhBBCzCgzKX1tw/iKukOtX50MT9N0q3ehAMqFEawoPgkA6DgjlDSxfNDKAQq0xfyKLlMkvKSblxs7y+5dSVnepeQWXpJv4udl/iWE0ob2YAV99m3aJpEfHcqngI4O+qZtl1yT9uo++pTs7lBv84ASE8gTzXV8eu4zjYRjffbwZ51hlsIXM2nIoCN5YazUle+zq/U57yqDT2YnA2FeLe1eMXlss5GrU3vVvBs/4Pa7smPWAgM444y4ZNCTmTIryiS33BhGsnBhJinoLA+FNzp1nPOfm4lVmYTKsDD/i1Vqz47sllUEVrrLedJue39+OEvbPJqVHzjSGK7/A+gMwvr7suMdO8L7uL52lo3kt5zlP8uvly4N+0jOn3LXiiCMk8wyVQDYNZzVO1cy0hEP223eZ4ITTqj/c6BWzs32Bnv2hGGrerM29bP18X6wk3Tzw5/7XBDWT+ennXdeeCNpUy989xsmjz/8mbAMY8oYIOyPdu4Mw1gqtmFDdmzTfyEpAW3/5ikq+TxQepsqzkpDK9M79dTs2CqM2tqyY7ZF8FRiVhHU4fSfpWGyZPCkRHm1vLYD5XNPXubIPl1ZbEx7bH/uzUE8aS1fG3sXwPc0YJ0132c7ckfbXHAkuFyfTuvONz3/3/vCcYLneWxDYfGKgpNVGnUaimlEY9WIqceDD4bnZ545eThsqqOn2uZs5jDu9yzW5oUluZZYW7TNKe9cooC4zLZazdLBsngg3hQsI+UwvzlPuB7YsYCrf7UaSmQ7OrI+piPvb4hr14bnVIie/LdgJyhUACPVzno/BmDmMd1O/+D9buEN1Hyt10/xANZIHHTOcxPArJ7hvsjqoznM5OMGspt4mh2nOV0553k1Y43XALhwPI+H2D2HunYizDbsIwx51IkJZnJFnRBCCCGEEEIIIYQQ4iD6UCeEEEIIIYQQQgghxCxgJqWvE5yQJMmFXvjEQZIkzwGQHCrCNE1/2IqE1ePs135lqqJuCQsWdk0uiba7du7enX2XtUtqeXn68Gi4FL7ckS1BLwxncj+7q1RwZpeZe1KT2O5p3vp/E0cg1XBqdWzzRxtm5RGBVKA7lHJZ+dYEdmV2kCVWXpNX60BYSUGBt1c0u0Dxsz25K+NJgz1Zl5fJgbTQxMHyFZaFAEAhtgbc/JxX5NtbrMoiSqgLCYK2UVkvWWJ2mnNUVyzHnj8/Ljtk2stmNzZPFs4P7MjSxe11/LL47njN1MGpxtsszduQ0b6LpwSMxWHLsDCYSQutxMvboC6Gp5RhqZInjbS7IweS8aVh2MN9Wb1jCdldd4XXrboq29GtfPnlQVjla1+j+M0DNm3KjkmbetFF5wSX3XhjdmwVNCeemB1buVasetbkDxXAvHnhGDVvXnacd+NkC3cPVnlpd7FleDzwNnDmusQ7wAKh5LpmT8eY5t1mUDM77Nl48vYVntzMi9/Dk7NxhcorabU/j+26iFCmFsw5bBw8KfAkxKYCLePy9jojwu7+zvXMKnJjqmF3c96usK8rOZU3tASI7zq6q5rJKzesC8N493eWiNt0eVWJ27kn/7XE4rTtPDi3N+Wsx1xVead5IKyCtmoVBjJrjpKpnyV6dnFJlv+cHzaJ3hibG2f3Vk/+6+76Stg4ymWaH9r+LLYTqyevbGTuE9Nm23rAdjZmvhCoQ81OxjxH66C5XKU7zAP+HWWHMYXi3ZFXrw4tPAKLBKK2nLL4bbHsKma/A9nX3k/z+GVsFeB5TXja5mYHaiGOEGbDh7rXH/znkR78/5Yc8aWYwvda+9dXTlXULeGRTz0800kQQgghhBBCCCFEA8ijTkwwGz7UHXKFHLIPdXmuFUIIIYQQQgghhBDisGMmP9Q9iuwDnBBCCCGEEEIIIYQQc5oZ+1CXpmnvTD37SCZta5v0UWEvCwA4cCDzFfBk/15YhdbiDtstuz1zC47UmmLE1vda3wgyBhkqhp4P7MnQ3R36mwV+K3RsLSu8JHleYjHfF7ZnsM9GTxjIfn98mfWh42fVeEo4njZ7ycdm37768dlz6+3CPnTW++zAgcxLY6RY38cHCH3obNiCBRT/qPFni5mqGPMYrjGreuIeb2MI608A+zuZRMbqEuBa2wWBS5a01/txLZ6Xo2GsmNWf4YHs55WO8J7+oJ2EfnWBB6Ft26NU3k2Z2OSH63VpcCBMB+WBTT/z+Oaw3Vivpgm4zgFhcdsy5P5to/GVcapMgNe3stWO5+XI5/ZZnj8n+6dx+m387KdTOPvsMIw96uzLcCavXz95uOaa0KNu3brs2Kb/mGOy476+MCyWd4E/ZgM0W417erJjm8adO7Njm6/z52fHXLesx5hn5zq2NGvnNX0kZ5A11WLyGj16/U8rTK7yXteI/oev9UwgHXjMLThpLIHy3xtIvTBTScIxN1/+eD5ullj2NDIfDHzR7ABGkY7SfSVjOOnNA9h301YtO6eawFb3nPZ+uTGWv2G6mnzAmjXZseefW+N7mdNbjVPlWSLbKHj8tfPPKE49aCh/qLKVOF3ml42SNwjG0uH93uGZNHr+dVzxPJ8+01e3V7OwwG/PEPYxYdgoeYnzuAPEbfoAoLP61BuHN9cNsqFZf7k8DbjZgV+Iw4zZIH0VQgghhBBCCCGEmLPIo05MkPPPJUIIIYQQQgghhBBCiKlEK+qmifU3rscvbvwFCm0FHHfOcTjnVefg4f9+GHd/7m7s2LgDl3/gciw9cWlwz+DWQXzx976Is3/9bJx++em5nrNvH7B58/hxR0dnEDZIyiS7Ipm/3Nul0nxthZY5WzlZsTuTTNnVyqXu7AcT0tx6z+al3kO0tHv82Vkcu8125EE6zLNZWsRSN5ZfAKEk1MbBy7vtbvCcfpYwnHBCPF1DMLK9yCp8T5lkZQkF3g6+GOYdy0m4fPfvD+Pfti07tnWEZTksbwXCPOG8sunnOGokF4O0bfxGU7kikdbkAUtybUHxi6+OS19ZhmylhJxmK/9t52v7NkfjL3Vk6a9Wwzbq/gXNkWrEpA5WVuEpHWLyUABYuDAr72VLRuIX5sW+aCRhY6YPY1kOS3yBsC7buhurk7YPYGw/WK1meXDfffH7GE99Z8NixetJSyrlUP4+NJyVt42f+z5W7FjZ2FbqW5c985nhs/nEajb5nLS1pYEng8suvvjoyePbbw+j4H6qqysMi6V5aThsBniqpRpJWQSbj9zH14yBTt8ds0+wFgNcR2w9Dru0sI/v5EzxpJfeA7wKyuT9U79XAHmvbURWmjf9znNrLCUi0Vc4ek+fnldCXHOaL/0sqQZq5fwx+Fm2Kc+blx3XFEu/I2cLdNs0xjplYeNnRZtXffL2kd59efGsT5qF+xFPqV7zLsM0l3asUfIqQmuH4vj6jWjb8KSjzZJXj523sFvRV3jXeun1JPSOZJaxc3o4Zc31tabuxt7bpMPLEq+NBnJdz9uFB7Mm806IuYBW1E0DB/YfwN2fuxu/9ne/his/fCUe+P4D2De4D0uOW4IX/ukLsfzpy+ved+s/34pjzzp2mlMrhBBCCCGEEEIIIWYCfaqeBvYO7EWlo4LyojK2Pzq+wUOpUsL86vzoPX2396G9ux3F+SoiIYQQQgghhBDiSEcedQLQirppIR1LgQS450v34Ct/8BUcd85xSApJ9Pr9w/ux7ivrcPYrzo5eI4QQQgghhBBCCCGOLLRcaxo58+ozccolp+D7130f937nXpzyK6fUve7uG+7GM37tGZi3YF7dcI/9I5lvjvXPmfCuA3xbB2vtFXgF0Sd+zz/H7py9YEHm7zQYt+9CuZz5MNh08Hdl+5eGHTuyY+vJkNc/jfPE8zyx783+IpXh7ZPHz3hG6K/FPjA5Lbpqfs6+SjV+Ib29k4fWGoLzgL1RvHfxrHXy/qXHeq+E29Q7Jl3WoIrDKFKbjsDFg3yyxh8X7+44LwOPlv6B4Lqensxfy/XRs5W3pyc7pkR7PmU10MXWr2Q04lFn85/L23sW1xEAqBRb4EvH5PQdKWx8NPwBVcKurqODIO7vthoPS/Y+477C4tgABvlq+1Yubsf2JbdvkOe/1F7N6ur2gfBvbZ4lDHtZcZzW42rTpux42dq1QVj1jDOyk/PPD2/kTOEHmEzocuy7uNnb94551DXiR+VZFjHR/gBhWdeOURme/Rt3B41YwXlWPmPdWXsI/DNtpeBIG/Gom41eQfbdvDRyRfEGOmLE+ABy1o1QHzxsklHuWhGNs1TM6pb1GOOUjNGzPd8860nHr8nPqoHyrrw07tnaEJRBZW6/jgmbnStyX23bdmz+5nkKt6LaNmK1mBcvjfxuNc8ejHdcXN7WXzfAa+fD3sNzxAc0b+oXm6B4nbXnD+kRG3Dt8/JWIJtG7pu8jtumlwdBCrNRePMMHl9Kw7vCQI7IM0d0OHCgfjoAAAOR9/YmVPblWm0yKcRhjGr8NFNeVMYJF56ALfdtiV7z5ANP4uFbH8Yd19+BkT0jSJIEbfPacOplp05jSoUQQgghhBBCCDEdpKmkr2IcfaibJgb7BzGwaQAdx3TgyQeeRMcxHdFrX/o3L508vuuGuzBvwTx9pBNCCCGEEEIIIYQ4wtGHummi0FbAf77vP5G0JVi8fDHOfdW5+OVtv8StH78Ve3fuxU1/cROOWnUULn3PpS17ppXleKu5PalVIE2g5codHaG0k1cve4oamy6Wcy5aVD+948+rn14glEtYKUUML/5KOZSMsETFk1mgbyCLoyO8bnRBmF9M3tXcS5dyhOYFaMm8VQRx/nvyOFcORnIqu6X86GiWPxy/fVZXF0mJrGw1r16FElkjfeX7rP6RKpcnJeI4S9Gr4OtyrHSXK1fOP5ONjIayqFLQgMOU5VVZcFvzZIe2/gdyGGYqZAheR+VIIjiI+wMgLBovf/jRLFUHgHnkRPDYY/H4OR2LF4fXcf/myesZlroCwK7BrF54/aynHuEwK53j/nlXMeyz2p/znOzkVPPHI66ErJ02CWF5VrVqpH9U3FaVw+eeRDYveZWdtq8YHIxb+3pjoK1PE7BMyd7nqYXsOMrWFmed6gzoHImnrfX8GTiORrS7HrFrbUZ60l1PD+ZJ3SLxl8x1o8X68wCbdE+1N1qM15+4BUZ4D9dJW7y5s5weVjMeen2w9wAqDy6aiimLffuy43nG4cVRzQdJ2bs3HkfQZ5r0jvmjel1sX8RRWvmyN7dgvD6M4w/tQsLAmmd5HRDD7dc+nO+zHhgxvHboddBew8n7Lo00vlbg9T958Xx26HxoOKtbtr/nKFy1b5P9INctW8c5LbZtVPLOdT0vnTzllqaHvkaIIwB9qJsmKksquPqjVwc/O/7843H8+ce79639jbVuuBBCCCGEEEIIIYQ4MtCHOiGEEEIIIYQQQogZRB51YoL4GnzRMhYtW1Szmk4IIYQQQgghhBBCCEYr6o4w+Cu851GX02YEgLE4IP+B/r54/Pv3h2E7d8afx34ljPUdYTx/IRtf3vd2/dkCn5CSE0aYAij3ZH5PnkWO63HieGKMVdsnj0fDR7u+dAx7atX4Xty1bvLwga5nBUH8qnnzeP78MGzBgixfbf4Enml5H2ArUM6t6INnm/wu9D8ZT4fny5LTy817Nfaos3WuoyPLO89eiD0ObT0rgc0FnYS1yhTsKV7HXmfjt2V/d/L836x9YOw6r82ceGJ4Hosz8JQ013l9GL/b9oG4P4xn3+XF39ubHVtPTzf7L7ooO169OgzjDKO29nh/2F/mtT1q2qPOyQOu8xXP18fB8wHk/GfPOCBM5/Ll2bHXLdk66JVvfz/qBzbr7+SRt6JZPF+iuEFbeO6Z+OVNh4fjv1eJ9H39/fG/ee/YEZ6zf6aNjus1v6a9jj2j7FgQ+Op55euZyfJ1tpJzRXNMFAOvKlPJuQ+w79bZEZ//WK+sCRpZeZLXQ46xHoFe1Yql0T6bs4T9fwEzw/TaSV6Pt6mmWY+6VjyvEQ/FGK3w2m12+ZNzHyfLjtOcrW4W5x1EGsgD99JmPAIbKcOJa5MkX9xCHOZoRZ0QQgghhBBCCCGEELMAragTQgghhBBCCCGEmEHkUScm0Ie6Bvn2n357ppPgsnhB16R8wspPWRJql0rzkvxyOVxoyavMhzpIXmk6EW+lPasl7HULF2bHLAuxq6FZ8mWlZt5W5TGZVI28EiQ/GIz3kBWYFxiIaOTMi5ZAEpVhR87grStnPZUpxALdV62GcjNHzRPAatHSaCjH4OcFMiuEMlaudwcOxJ9l4fK1sliWnpRIMxJIYgEAVPiNSLIIVxrjSL5GRuunEQB2DXKbysqmRl7sQc8bK4blOxpRgnjSv5oGzJXEa8yezqIVEhLGyjY4fhPWTnle7qoEYTFF0GOPhdFzH7lxYxjGr22zZ8OG7JjrrieftX0Y12WuSx42u7k+WUklt8tlS7K+yNYll4svnjwcKrZHL+N0DNwXhvF7e/24TX+lmKW5uztLczNStlZh5Uh87qnf8/bHXhPdvTsMC+qrp4/mSBr5TSAmp7UF5XVAzUhVvThsB5pXFusVgCf7jNDVFbYFbz7C0dv605Ra0d6UV2rYCgmlNwl0tLuuMpLLxmQez3F4nlpTjfPWg5zY+Bsat4lAskz91lg5HK8COXOzbdRrh62WjjYrofe8GxivD8jbp7TiPb3488g1G0xXkcbmBQvCy7wiDM6d/oDHfm8crQ3L6nHNHJx/t2kkT/JeJ+mrmGPoQ12DPLb+sUNfNINce+3vznQShBBCCCGEEEIIIUQTyKNOCCGEEEIIIYQQQohZgFbUHWHMnx/fVS+vrMJbkczymrzSnkPFzzvCsvTMyh/37MmO7Y56J5yQHdvV1kcdlR2zZMHuGokByqBGtodlHSg/wGa4t41bC3bbGxqNS9jyKgUCSYfVtxI2+cuWZce/+EV2bFVRXKZWFpt/s6hMJrLEUTNU7LbHOXd9DeUpBn6AiY/rfLUa3rl3b3bMEobS4PbgumJHtjOwTX6lIyscK8vka/nYtkNOV7kc1pfOvDKO6cTTdDSQRu4vtm7Njvv6wuu4j7F5x83h3HPDsE2bsmPufz1VYHs17H9YHp13004rweJ2aZ8dxEMVqGAiWUZ6VCuLfbgvk/jZ+snSWt7V1FM32Y1jS8O7Jo9X9ZpOZnNWAO1BvTCZQGFN/yXS6STdnbEdYjYAVv7I9gM273gs42PA1GWvE3Ckha43BF/Lhe3pl704DDEJds2u6pwp3rt5cr/YPfY6L3+IckcofWU52Pz5YS3MqwbL3b152ws3K0n07vEqfWxXXythJSldadjkP9ddR7bHtaVkr+unOLxtvnPiqSabVtZSJKPhPq/hzr02v+nczvl4TC94k75wshJNV25sGvNmileXPAm6Mw9rdifTaPyWmObUDojewO3ZD9B9PDa3m3JiuXRNH0lpGes6OgiKuee0N7A5b09PJEIgLn+35LUYsOU7cW2rbVZmGfKoExNoRZ0QQgghhBBCCCGEELMAfagTQgghhBBCCCGEEGIWoA91QgghhBBCCCGEEELMAo5skfcUcMHZZ890ElzmlxdMSvc9a47du+Nh9j5rQTBBIxYB7MPjWYV5PmVsAWHTyL4+1nJjyZLsuATe9j6eDhfPd8fzFiHGzDfyQt7MdPw3OH+s7xHnJV9n85g95CrW7JAu3rs1DGL/JS5fWxbsAWbJ68XF1y1bGvp8jY5Svsa8LRrB3uN5i0QuA8L35rxq7+4IrvPsl/jvKp53hde+PPsoDDZghjZd5DZURJB5pWrRXJp597BHIPcNQFhOnvXWuafsCsJ+Mq+97nXWR4zr66Mb495V/GxrfZO3q3DtqXL65wygMwjasCHfs489Njs+5pgwrIKheDo8fxt+gZhPkD23mZDXBMzJZB5rPGzdijUhro82WV4W2L510aKckXgeTnn95fjlPLNa89J23GPixWH8u6pO+vPiTTQ4zTk9tCqDT4ZhfZmf4jLTIY/1rpg8Zq82ABgazvLHsWdrDXnbicXzMYy0y7GOsB9hGlot4NXrWDoaebcI1s/Yq8e5oXQVy3F/YZvekdH4PCD0zovHyd5nNXNRJyy4juuu0wf4cRhifZM3lyavNsDkSc45vq0SBa9txHwYvX6wWZNDp58K8t8Zy+z8ITb/b8Sjjj043TGc8cYTz4PQ5uvEtYUje52RPOrEBPpQ1yD/vXbtTCfB5Xf6HpnpJAghhBBCCCGEEEKIJjiyP0kLIYQQQgghhBBCCHGYoBV1M8x7f/ITfOGhh1AsFPCRZz8b71+3Dt+85JKm40vSscmtuiu2dGnpcbEY/0YbLGsG0NWVXRuTwQK+SmT58uzYSvNiS7Htsl+Wg1lZmhcWyF09uUTebd1rNYkZ/HKebsmSdyk8v5xZEt62Nzu28iwuG85vuyyeo1y6NJROFChwnrmP4TgbUVbxs/OqDVgGAoSS7oqtkDnlmxx/yZPVmbBi5DL7aC8ZHOYpKbz7uNrZZ3EcNdKq4UgmzyR5ZSGHCKtWs7rM+WPzYOHC7Ni2oSApJn5ultwFtFfDvnTL1qy+2m5k40bUxdoULF2aHTdZxX35Gr1bZ1d8LGhWmYql+eSETcsap5i8w4QHS6xtPeC88/pnO86tXk0nOWVjrr7S3sfX8rHTydj+uYEm66Qri7PkpdHVfjdJrJJ7HW0Dz23KYcCTNueVdzcwzkWvc7AS34BGyiV2rdcZtbrcAcCRleaG8s4mv5KzHrSii5z4fWGSZvLLvkCrrTKc+tmKZl6rji7QsZkHxyS/jUis8yYyr8WD83uNN0dgq5uG8MbpWNl78tZGxqiJ5x3h0lchJpidM+E5wu1btuArv/wl7rnySnz54Ydx1Xe/i/fMcg88IYQQQgghhBBCtJ7Z8vdyMbPok/QMctuWLXjxypUoFgq45Nhj8eTevbjsuONmOllCCCGEEEIIIYQQYgbQh7oZZv7B7Tnnt7XhmIULcQxrr4QQQgghhBBCCCHEnEHS1xlk7dKleN899wAA/v2RR/D40BC27t2LpQsWNB8p7+lsdP+7BrPvsv394W2rerI1tg/0hZ4MO3Zkx5s2Zce9vWEcng9Xd3d2vHhxGMYWBOzXY717YvYwQOjvZMN6erL3qVSpyntec9526vY+PrcGfLE4vLC8xiMmvnnzsvf0kp8Xew/7AXF5AnFrPptVeXe9bzILEDQdrriA78dEBM/2PA2d+2z9P/g9viZKbpMAsJd8BvftC+Pw/ESKkWptX5k9r2waS17hzNQa/Abyn192rFwJgvZuzY630rGN/sCB7HjRomj0NeZhHV2dk8fsS2fLd9u2aBRBdWUvUNuGOF2NeBTlLkLHJG3//s66lwHxbtDWM/YtK3mdvNc/560Xnq9Pk+S1/bLtl5NsuyaG66DNAs7LwHv14E/qJqQRjzHP2ytWNs511kPO88aNPbqhIszrneS9p1e3YoOUHfedMO5/FiyI50dem8Gm67iXV3m9sSwxs1TPv8urZ3kbm+d/1YpO0sThRZ/70cGzSk6YJe6Pl/tV6cIxs16jUMye7XoLMo4Rmo0jeJ5XbjkHrLzv3GzX73r4eb+UNDtnaoU/ZGDEGw9qyboQr3/ImwdeHxDrx9M0X9xCHOboQ90M8pzly/H0vj5c+h//gT2jo/i3iy7CFd/9Lr5z6aWozFIjbSGEEEIIIYQQQrQWXnMj5jb6GjTDXHf++cH5b5544gylRAghhBBCCCGEEELMJPpQ1yAXfPvbM50El/lLlmRrm83n+HbSbg0M5JOgAMDOndkxS0w9lae3pNpKXzkeVtTYleQsGfHkBt525O5S9ehNyP+nDU/u4Ukv866g5Awy9+zfn0kiPKkMJ7ERZSE/u6OjPQiqFDN5wFFHZemYNy+MIu+O9Xmvq2AoCBsqVtAMLMcIpA42g/i8Ru6UHVpZ45492XFedYensD7qqDCM5XJdXZQkk4+u+tepWzP2p71GZBV0XhgO68W8eVm9YHm0lScynnwf69YFYe0v6508ZrmrrQdcfVje6qWlEUWNp5oJzm3CYnBlAtDXlx1znbPp4mPb3weSTZsJnOme7pPTb9IYTVQjYU4H5PWtfJttaxzG0lebj3klst3dcYsKLHE6+WblVE1IEq2sLq9k0HtUqGAN46+4GtEIjdSDmLTT1lWunyb+RYuOjkbPZWil91HsOzczyDZrdZDzWSNGrlniMbaRZ8fS7HV2zdQJw8ho/nrcjBjGvccEDg40Hn+t8rgQDatW882hAkmrmQvZdh8l5zx7rBiX+3oOCd7vBbm7wWa1tZ58PG9H6P08Z/u13X/U/mSp8zybRs50by7hTUi8wtFSMiEm0Ye6Bvnvxx6b6SS4/O5rXzvTSRBCCCGEEEIIIYQQTaAPdUIIIYQQQgghhBAziDzqxAQ51ycLIYQQQgghhBBCCCGmEq2oO9IYG8s+wxvfiC1bs++y69eHt60k/6UNG8Iw9qVjj6I1a8Lrenuz49Wrw7DAM8r4O7FPUSffeGq3uSzzdrF/aeA09/eHYZz+3t7M62JFV0c0HTUP8PxoOMzxpuHysEFxBw6D483EHle/+EV4G+eBZ0XGVcZaP3W6Bmf108HebECYfGttEfXOMOlir7CRntBPZZjerWJNvyjTPQ+V7YNZaXRypQaCst4+HD77wXuzY/Z1NI8Oqssxx0STUQN7Fi1bOhYG0gN2VbP0c3sFwnpgvUvOO2/l5LGtF6XR0PNtSuHMsj6AoUFVEMTlsbkvvI2bNtf/ZcvC6666Kjsurf9JGLiOOhk2zASAr3998rD9jDOyY5P+lR1Zxu7fH/o8PvRQ/fQ++GD4KE6/Z8/W0xOet5fJF8rrBKiBPT4Q1nFOo1c03FUstd43/QPZsbWSOPbY7Nh2ENzwPXNNz7snJ4FnJcK2VhndlZ2YjmrXcNb2bPI5WZyPlra2eBiXaWf/A0FYb+9J2ck2x+StWc+lWFgDJl15LQO961xf1XLOss/7MM8/rQX1zGYVe7o243XWEM3mAdd5z1uKjmvmO/xu3lzLSwtflzMdAJoqt7y2f43cx+kvVR1/MzPv2r8/O7YewM1Uw7xV3CO3J90U4L0z51Wz1py5L27ErDBvQbXAX9GzWc5dX7w2OhXLvrzxZSJPClpnJMZJkuRaAG8BsAbALgDfBPCnaZpudW8M4zgXwPsAnAsgBXArgLenabrOXHcWgN8A8HwAxx/88QYAnwTwiTRN95vrrwfwqshjr07T9MuHSps+1AkhhBBCCCGEEEKIWU+SJG8B8EEAPwDwJgA9AP4QwPlJkpyTpuke7/6DcZwH4BYAmwD8+cEfvxHAj5IkeVaapj+ny/8YwMUAvg7gEwDaAFwG4GMAfi1JkkvSNE3rPOaVdX7240O+IPShTgghhBBCCCGEEGJGkUfdoUmSpAvAewHcCeAFaZoeOPjzOwH8O8Y/3P1Vjqg+DGAEwIVpmm46GMcXAdwL4DoAL6JrPwLg1Wma8lrVjyZJ8hkAvwngxQButA9I0/Qzjb1dhj7UNcjZ554900lwWdDWlsmazJpnVnldcslKhGRV4YILwhCWz/EqfCu7isnLxskkVF09zwpCVq7NJFlbdmTSoZ0DYQysklq+PAwjtVlNulb2kHSJE9ZvEultF86RetuwcwbZNed0X40UpJyzKTrxz5+f5d1FF4W3Ba/dX//nQChnq1m5Tz+oDDwehpHO6+STn4YYLN+0ecBpsfIvlniwfLM0vCu4rlwmOaGnzXMILnNkztWOUBZ44onZsZVfc17mVQ3s3Rt9dA0jJJ7m9Fv5I6fDxh9K+ozMebgJPUwrsGXmyJY6O7J23tERyiJiqm1bTjffnB2fffZZQdgy7mS+HK5Wf+DUKyaPN1P9HDAWA5xkrsdAaB3AklyrvuauiNWggJEoD4b5M1bN2kaQO7YSUkfevTYcJzgfjzoqvO3AgeyYi6kwGLbRoE1ZbTxjK2is7FtVHyPxWFmXJ7hpR/au7R0mXynzLrooa6+2i9mxIzvesiUM+zn9XXfg2JOCsM1U165Y7eQPn3vty4MrgrmH86tZVSmzf3/9n9cLq5Lsv2DfJa/U08ufmPTeFiKfm2dVuAGbsP37c5tgNJ5Gex4blGyYjYPL3htTKU4bfYUsAGrqnFO3Arxne9K52HUWem8rf+deYDqHQ4ut/y1QYzfVtTYr/63pWyMXe3Mfr39gms2PYtHp8YvU39hJhpeRXv2M3ef0swXbFpwMa8nHH28SG+s/G5HQx67DzMqsxazjZRj/uPCRiY90AJCm6TeTJHkYwDU4xIe6JElWA3gmgH+d+Eh3MI5NSZJ8CcBrkiTpTtN088Gf/08kqi9g/EPdqajzoS5JkgTAIgCDaZraAcVFH+oaZO071850Elwe+cS9h75ICCGEEEIIIYQQ4vDimQf/v61O2O0Afj1JkmqapjVLhxqI47UAzgbwrUOkZWJZxJZI+E6Mf6gbSZLkhwDemabpHYeIE4A+1AkhhBBCCCGEEEKI1tCVJMlddP7xNE0/3qK4Vxz8f1OdsE0AkoPXPFAnPG8cAOBu+5ckSRXA2zD+Me4bJngzgL8HcDeAPQBOB/BmjPvfXZqm6c04BPpQd6RRnJdJ/uxyYpJjFEZHwjBartxZDKVK1VMzyRQvM7eyK2/XTpZ5WbnZ4GB92d5Jq8PVoZdfni15rtmRtJxJvkaKoSRxZJRkCiz/skvVWbvrSYK8rVI97QGF7d4dBpXL9XcZrJEGxLZWBLCN8tjuBlYrRa6fRL7Orp4f7crytbPL5EHsAQ7es2328wauwW6K5sJg19e82ioD18+ennBnTpZmeHIMmx1cVHmlJSwTrsG8SyCY4l2UbR0nSSu3OwDYhexdB4wss6MjC2uH6TumkO0mjdz/LFgQtvO9WzksjIf7i8rw9snjlcWwEHetXjF53F4N+x/eNXuZ2dY6tptuIxsa5t3N1duAulrN8qTobIRYilVIIGhTdudSxuYxN8VgbOgzlSnvDtqspQVmVmOWl5zWB3yZVejza9os8DYVD7rCvBq4RnaEjcVjfh7K12ZQppS3//fe2ZYhZ3Kz9dGV4Gb9Xe7opyQdrX22lScGsr1G6lysc/Xkg14ZejhtqFhsQqJs8XatdeA+wdshmmlkQ9JmaFb6WiMpjkRULof5zVln57pc12z/mTddHk25LjQyF439rtGIhJvq07AZYlvR7HOny3tYszszt6LtHQYcQR51/WmaulLEJEk6MP7xKi8fTtN0OzJPrX11rpnoJSp1wpinFEeSJG0APoPxHWB/42C6JknT9O3mlq8nSXIDgHUA/i+AE3EIDoOZrxBCCCGEEEIIIYQ4QugA8K4Grv8MgO0AJlbozAdgTI0x8bV6CD4ch8WNI0mSAoB/BfBrAP6/NE0/d4hnAQDSNH3w4GYVr06S5KQ0Tb0Vf/pQJ4QQQgghhBBCCCGmhzRN+zAuU22UiV0NjwGwwYQdAyCla/LEYZn4WY0s9uDmEP8M4FoA70nTNM/uskzfwf+74EtztX2KEEIIIYQQQgghhJj13Hnw//PrhJ0L4P5DbCRxqDjOw/jHvrv5h/SR7jUA3pum6bvzJpiYkLzGNp+YRCvqjjDSefMw1tEJoNb+p70rvlV24BlijIlK5cwQYunSoyePrbfOY49lx+zZBAB9fdmxTReHLV7MIeF35JOq9GG8Px5J6YILgqAhkpeHtghh/O2eT4hnTMEZwXlnX5SMm6x3Rhi98/2cLrT+dZws6y3l+WYx7J003ywE5tccC13RUKDAeZQO603D2OzJ650R1DtTFoElm/Wm8QzCIumogeIoV0PbAs8WpxnLKBsH+9EMjYb5z56Hy/hGa3ZGBnzV6oogqCV+GM2a1UTu87x19tqF7oiHLVlCJ9zhmExuPzWrQLsGQ3/Cu2movvjis4KwzV+unw7rIcSPs/aBPT31j21b5qyy7YvblI2fn13iemEbIoVZP1GvCPl5lTJ5D9n48/rbeAZMrTBZcutq1r5qfJQcnzL2Qx21tiaRsi8MBJYm6OnpjCaRy/CJJ+qkO5KuKHk9wOqdx35Oz/asw+xt3lgRw/okFoYdlUvs4Z4/kq27sbJvxIPKebb122oKbxCJjYF5TVWBMA/snCny7EXGzzjwSG7ErLYZj7pWDGwm3wqUrLFmPbO892RM+tvasuf588j6x/XO84bFaMBiLySniWuhGiaqEvwqE86DY/2Il1eWvPkT1GObds+32Ruoc/pgum2I7vO6t6aHUS+NsTbqtfMGEjnpaZmmORN7+HKEeNRNJd8A8GEAb0yS5IY0TQ8AQJIkLwFwAoA/44uTJOnC+Aq2J9I03QkAaZpuOLjZxdVJkvxZmqaPH7x2BYCrAXwvTdPNFEcC4BMY3w32r9I0DZ5hnrcQwIE0TYfNz888GPe9aZo+dKiX1Ic6IYQQQgghhBBCCDGrSdN0a5IkfwbgAwBuTpLkcxiXq74VwH0A/sHc8kaMe+G9BsD19PM3Afg+xndi/cjBn/0+xlcLvdXE8XcAfgvATwHcmyTJNSb8oTRNbzt4fCKA/0iS5OsAHkS26+trARwA8Dt53lMf6oQQQgghhBBCCCHErCdN0+uSJNkG4C0YX123C8AXAbw9h+x1Io5bkyS5CMB7D/5LAdwK4Oo0TX9qLp/YwfZ0AJ+uE92nAEx8qNsM4GYAzwPwmwAWAHgCwBcA/HWapvflSZ8+1B1hjB3IVh7XLJvNu6+40bSOVTMJ2EJntTHLNuxSeFZa2TBe+c3XsfwLAMAyrN7eeCQ1Moh4UAgF2kR6y9hzrh9niYSNjrPcjc5Z0s5J9lSeeZe+W6kAp7m9OBQN7OjN5NGeBNSTY9gwlv/xe1r5bwkkB/B0hw78nps3h2FdXZ11r7PpsmqGmJLIUw5t3RqGcXnYV9m5Mztetnr15PGWrWH+LOsiWZqpP6wItXJLlkGf+8ycOl5LE+v4rfSS28k+s5k6p9FKyIJ6ccYZ8QfefvvkYbvpY7q7M6nwPfeEt3Ff5ZUv15kdO8IwTn/R6Yo8vDYUysLjF05YJwDAxnVhHJz/tgsOztfRjQ8+GF7IekVbkTnzbAHHMqJZ/U6z93HjMA29WM7krkGdq314dmjyoNgRjR4LF0ZvC7OnHGjDzKOb7IRjUj1P9unIAqdEvVzOqVnzGpUn7bRWAhPYgYITZjtTJ/4yzbVY2mbllYEc21aSvJJKD+++vPWH4rDltH04e59OsgSpwb6bJ+udSmwfmVPuWiObZzz5YJOaN5Z9cvbYqRB3wdYmgsdOa28Tw1Z/ft7SpfH7RoyFSqlaf25h53n8bjb9PE/yfuVpVhrMcbq1oBXa2mbboZMMzjvv15rc5H2XvHYAhwqbOJ8D0leRjzRNr0e4Qi523bsBvDsSdhuAF+SI46IG0rUZwCvzXh9DH+qEEEIIIYQQQgghZpA0lUedGEe7vgohhBBCCCGEEEIIMQvQhzohhBBCCCGEEEIIIWYBkr5OE+tvXI9f3PgLFNoKOO6c43DOq87B7Z+8HY/8+BG0FdvQvrwdz/2D52J+dT423rMRP/63H+PA6AG0Fdtw7qvPxTGnH5PrOWNj+aw7Rkbj32gHR9uD8/4N2TEvxd2yJbzP+kkxbO1ifS9i3l522W+JItk1HLpDtJPPifWzGKX8qJQzzxC7rXt4k3m49Uoh+HkFJ/ObsWioyQNKh+f/Zj1DYh541gKDfbLYx8TeV+NLEfHusZeViln+d3WF+e/ZcbCXBlva1OQP+wFZc5Sc68hjNkRA6DvV0WF8g0bjYVx98noJWo86z1sk9mrW5osLxNo5WSslxtaFevG5CWkS21d0ljNvxGq1EoRxnth3qVaz8ijl9Q0yFZLrBVuwAaE/G3vm2CrIaVy8OAw79tj6SbJ1xHryMNwnL1sWv27Zko7sxLynrXfM2rXZ8Um9xoNtAw0UGzdmx3v2xCO0jY0bijUpjRnkeQZDnn+ahe5zvaUoHdZjaZh9PKvxBsY+gKNdK4LLBrPL3DE1Zxdce2Fe3zIv77icnE6sYIwwK66vUv3x2PNirYHTktcEzzVzDBkaztLI6ahJOSfavgB3AubZwbsNZ/cV8vpA1TvPE+bVEW+Qyjmpaa+G7Ynz0c5FeY7jetQxeT0HGyCY15n88bzP3L4jb7qcMoyOxSZd7DXH3nUW6+fqXZsXG2eMZn0qPYtMxrNrdJp5MJeziSzx6WALfBLztlenHY4Uw7mQ95u997tY9NleJjfro5d3rhj7RWcsZzsT4jBHH+qmgQP7D+Duz92Nl//Ty1GqlHDDb92A0688HT1n9OCca89Boa2AO66/A+u+vA7nvvpclNvL+JV3/goWHrUQ2x/Zjm+/69u45nq7A7AQQgghhBBCCCGOBORRJyaQ9HUa2DuwF5WOCsqLyhjYNAAAKFVK6DmzB4W28SI4+uSjsWfb+MqDrhO6sPCo8e3dlqxcggP7D+DA/gN14xZCCCGEEEIIIYQQRwZaUTcNpGMpkAD3fOke3PXZu7DmRWuQFJLgmvtvvh8nXHBCzb2/vPWX6FrVhbZ5bTVh9dg3kske7bLmoXIm09m9OwxbsiQ7trJJlpHFJJRAuKTarlZmuaIl9lcDK1/bTHJXu9q6vz/75myfFch1t2bXHTDfPgeQSX7tdvaLFtVPIwAMkDxpBWdCA3KJ3LCcpBxKz4rFLH9s2bOKrEklSDQd9rwwuGvyuORIV+zW9iwXDaQHAAZJushRFoaHguvQ15cdW+kcVWybfC6PFeXtk8e7ip3RC2tkt/SDlT1hAbPUx1MDcNlwmwRCGattX5yWRzfWfxYAbB/IwmzReAonlluyVKlG9uNV7Lx/HqQ4rMS3syPLIJYI2mtryoYk15x+ljIDwMipZ8WTS/HbvOOqxtIhK1PyFGXcZjnMShod5VyAlR8FfQLJ6mxC5s3L+kFXLmQLhztsPva0VDYj+YU8bVLTHWgL4qD8KlbDXoyjtBYMsb+K2nrA2WWzgM9t3Vqzhk4GmpQjMbbwOaFcmfLq8G2YeXalFQNTE32MTQfLyOyr8TlnQbsnn7UTGUePx2NnXqz8Ojjz0sV5ZfOezxtpJ5H2a9uCZ7PQ3Z31P7ZtVLw+ISc2Lc3AWcdjS0PkzVeTCTWSeoLHd+5HrAWGJ4tlpwJr3RDDtpNYVwGE0uBdg9b+hMbmJvvnmLWLrTrB3DGnJULNtZ7Uvtn+LKc83bMvYmwbymON1BD2PWN9vHedpRXzSCGOEPShbho58+ozccolp+D7130f937nXpzyK6cAAH7yxZ+g0FbA6otWB9dvf3Q77vjUHXjxe148E8kVQgghhBBCCCHENCDpq5hA0tdppryojBMuPAH9D40vw3rgvx7Ao3c+iue/9flIkmyV3WD/IL77V9/F8978PLQvb49FJ4QQQgghhBBCCCGOELSibpoY7B/EwKYBdBzTgScfeBIdx3Tgsbsfw7qvrsNL/uolKM7PimLf4D7c9Bc34ZnXPhPdT3M0o4fAUxXl3ZWpEXiJu/1LAEvDrFSAl3DzsmwbB0ty7cpob3enmCTXxsE77Nm84zg92UaAeYAnZ8u9yp8jMWvYWRbi7YiZdwcwm49BGu1uV5Hl7izFGI+zVO+yg3Fkh1b2EMhdWR5kt0WkSvJw1zlB0KozeLtYxLnvvsnD9kBPBmCYJUFhHg8hOx81UpCY0sruhsdl2tUVxu9Jpzl/vI3CWNJt29fpp2fHO3dGkxUc19YR2ikv7+53DrW7t2bxW4n+alqQbPuYBzbUl+va3Xk92Sr3YTWSXNqNdqwjKzcrzW7vyh5uJWuMt8Pvjh3ZsZUmcb/S2RGvW0HhG21S0emDA1uBvoEwkBPqSdTYR8D6FPALePp0x2KgafLGQ5XS/qWzXM3+qGbl+wxnlacc9dq5bXulwe31AxvZXdIbgGMJsy/g7RboyW7z5r+XQU69ziv55dex/WdMdu7+KdXTnuXd1dShpi9iyWkx3scE9dMrJ08C7UHpsGPBMFlB2Edzn28fPTSavU8l5hUA5Jd3G2LZb+cjbox5yzDvzroNtNEq9T8cZG1ePJpZxWPrYF7Vp7eDOcrxdSQ8vrfboYYSU+mo1v05gLCieX1R3vz3fuHyZLHes51fPLyumqOwc6gmm0Y8Eu+XJW8y6nmVxOTFfK7lZmKOoA9100ShrYD/fN9/ImlLsHj5Ypz7qnPxlTd9BQdGD+Dbf/5tAOMbSjzn/zwHv/jWL7DriV245wv34J4v3AMAuPQ9l2JBh7MvuxBCCCGEEEIIIYQ4rNGHummisqSCqz96dfCzV3z8FXWvPevlZ+Gsl59VN0wIIYQQQgghhBBHFvKoExPIo04IIYQQQgghhBBCiFmAVtRNA4uWLapZTTdVjIxktl1HHZX/Ps9WJrbFub1u4cJ4/IFnlPEcKAV+Otm3Y2spYS1nYmm01/GzS2ynYF5glPxParzDyOihWu0MgsjSDI+1Zf5UCxaEHmO9vdlxs9Y0u8pHZ2kshx5I7N9i84C9t5Ytzd5tzHyrD3xrjIGFvTYKFVxHd+je4/nijJWz/LLP4vIdIkegSnEgfDZ5XllvDvZCdL052PfOFgzV3WJHWL5MpRzWH36fwLfM8abp7AiNXsrl+l6O42H1o2RPOouNg31sFi8Ow7gtsq+M11fYvwMVi44/YSRd69eHYVym8+eHYdzOuaxturjteX6N1j+H+4TubtMWKNEFz1+FXrzkGPmwx6S9jNNvy5ft34aGwzQOD2dxsn+dzSvP34bLY/XqVUFYhd+b29DGjWEkefxnAN/7jDPFVkLPHy+WDkveCmo8MoOczOnB5iXDvopny4WB7AcjXSuicXIyanwkc5oW7RqmsdIONnk9zLwX93zomAa8pdivzauCnkcd3xdUT2s6601I2FzTFnBen0eipg+jRI46PphBSCNmVZ5JaSQdFvaqtfBrW6/RIM68q01sP1KNOwpG58GmIyx5Hl154b7DVjRvou2UFY8ppXJ2XbEr7ONny0qdffvCc/ZIdqtZUA/iczT3555htTe+NONB6JmNOnMEHpvtfKHsNFluNwsXhmXPeWznUFGcftZ67ZaqWVgw7/X66kY86iYj1DojMTdQTRdCCCGEEEIIIYQQYhagFXVCCCGEEEIIIYQQM8xsWfkqZhZ9qDuC2bIlPPdW67MUatRIoVjVwUul7Upmll3VrM7n5cuONKZI8kcbhyf78Xa67++vL3ns7g6XbAcKCdtDUuDGgVD6yqoIb7f2np7suDCwPQgr0cvxcnGbB6yaGayWomGnnhreF5Nx1CxH50wwkp2CJ+fhTKA4CoO7wuscuUEgGTTL/Cuj2X27SPpaI6ujdN1+SzyJF12EOD//eXa8enUYRtJa+24lzjsriaP7XJmRU5ErdF+l7IzgThvi8927wzCuP1bJxecskbU0olKLwdWA5eJAWD1t0dxxZ9ZuuC8CgmIL2iW/MxD2bwvsJttUHp1WijMQ6dO8l7a6UqK9O3uAlaZy+k01C6qMfTcu7yVLCtHrOMl9fWEYn9vkn3feSZPHJVtwTEyHbMMsnlSJCOQ2NtCTVOaVW3oeDCwJKobS+CK/mlHjMZwlNntYNl9x0s9Z5U32WU4PhPJ0C0uvuB22dzhlZmWHeeWu3s+9wZ4zzORPTE3lqa5y/6LUgDzRva6J38xYymbjbDr6vPJlS+wBJiFcTLbJl0D2GANO/fHkoYztqBzpazQaGwfnz5o18Wd7cMdr85sni17dsgVsB4SDlMx1Jcq7imm/+/c3LrSy/ZQrr49cZ+F6USOB5nrhadfzjif2Om+syduI8k6GnElaEDIcPrdUjtsJsSx8yRIzDlGkNXOcvAR5F7YnHn/DZIVjS4Uksm5/E8vvJDlEIoU4MpD0VQghhBBCCCGEEEKIWYA+1AkhhBBCCCGEEEIIMQuQ9FUIIYQQQgghhBBiBklTedSJcfSh7ghjXjFuoePtFs54vlbs/WQ7kUqRvEW8rdAtFBF78JTLobcCR9GItRHDFh4bNoRhbG0xNGr8FMika/O68D72beK8sj5fQb5WO4KwsZyLW9mS7elPD8M4T0oDTwZhgUcJZ4LNSMebY/tAlsbO8hCiFB3viTzbrtvrzLXtbE5mjcroPvYlq3dpFG5AjRgYDeb0TeE8N5VkaDjL46A91XteBM7+Stl6uwxkYUvCst+2rVTvMgBhleF6Z/3q9u6Np8uxIIzGYdPBcaxfH4ZxnCeeGIaxByeXTbUa92+x79K+lB7g+Qbl9TqzmcD3UX2pcQ2j9K/o7oqGFXvCd2NLpJN6s7q1eHH4BPa8sn0k9z/WfozPO0cH4hdyZfL83mzhc1tx4vA8kaLlZMM8rKkfQ227ZDsgmm6181jc5fjCwfQBXvqJmG+qxVZBr11WydtrmLLfevGVOA6nH3cTlrfdOC/AfSkQejTu25cviZbo8GXG0V3DWZm224kA442/OSc1+/ebH1Deee9S4iz2Jn02jNI1ZjwNY11fYdTUY+rVauq452cce4DnI9bAb7vR5uXNA3JHYvDS6A2WXGe8/PHGIS5DM/f0PGhj2GTk7UrzWlhWq2Earede9OHeXLQFHnLwfJsZ82LcN3m/54S+ssZbkaO0fTDN/+0cJ1ZFvN9BasZU6tP6zXDI1dOWb5COKntxV6LXVboibbutLR65EEcQkr4KIYQQQgghhBBCCDEL0Ic6IYQQQgghhBBCCCFmAZK+Nsi3//TbM50El45KF5YtGz/esiV+XSPad17K7KoxeMv0RvQkDG9N3hEuh+Zneyv+rWKKl1/zsV2pzvFXRneFgcEDw3RxPCeckB2zTBgIpXTtRvHCS8u9JegLF2bHVqIQLDPv7QgDYwXuSS5MJpfLJHPx5AB5JR2e9MAWDqWF5TYFW9hUWR98MBqEnp74o4OM9WQnFg6z751Tdx4onzpCWZH7VxWKc3Ag+/H+/fauzsmjnX1hSEzCDcSlr1Z90IxsxsJx2HbO2WiLgtNvq8/gYJYPLAXx1JUsAQXgy7bzSvrytg2vntF1tq8oUDrKRvISKPCCzqIzuM57lbyvGWArkxdJXmlqUwlp8NoY3Bi8d8upK63Ysg4GM0c7ZKFnz1+cL4mNDNMxxZ29p1R1Jglen59X1kj5OGKE4cOUXVa6HuubvKHMuza4zmi82jsocHN/EBbUH29ClbOu1vRThCtB9Npas7JkwpOgt1cprJE6nneekdfnJS+N5E/ePqbZ9HtheefZ1JgbebUYXhuqGaOoXnjVnyXdNapVkuHXzItijdQ+jNtsI9LviCzZe08viV4Y/w5RGh2KX9gAnJc8T6pJrzdXp7xjSwR7Kc8PvbmhN9Rbef1kLidJPMIjAHnUiQn0oa5BHlv/2EwnweXVr/7dmU6CEEIIIYQQQgghhGgCSV+FEEIIIYQQQgghhJgF6EOdEEIIIYQQQgghhBCzgCRN05lOw7STJEnazHsnSYLZnl+/9Vu/i7//+/8HoDHbBc9PIUoj/kLTiXk59o7w/HnY06YRry22vuBjG3/gy9IkI6O8pXkYFpRh3vxvwOfC886L0VC9aoE5CqexqTqNBrapb0Udz+vZ1Co83xE6t3ng2bPFrrOw54z1VeKwffviSWTPkwULwjC+tlJ2yn4q8rUVPkgxvH7WIXc9du5ruv1OZX7MIprpE4EG8rVJDz8eJ7woG+l++NpSMUu/fRZf575ns+3QSbRXHlM5JeH8OFQ6mGbHKJe8/ml52+hUtOVmPd6aSb+Nz/P/jGE8CJ9yfDbOvJ6/hwprhkZMGnOSdwxpdoxqiUdgK+p1zr5oStr5LGEq+tw8RXPOOWtx1113HbFGdV1da9OXvvSumU7GU+aTn0zuTtN07Uyn43BGK+qEEEIIIYQQQgghhJgFzI0/e+dg8+bNePTRRzFcZ7nIhRdeOAMpEkIIIYQQQgghhBBziTn/oW7Tpk245ppr8MMf/rAmLE1TJEmCA43oIGeYQiGTX3rLh1uyFDvvHuNTQQNL3wuUlnI5vojUUxTwOcv07H1T/dq54/e2lG+BdC4vjWxZP2uk00Tu9AJ+mpupGM1WpmbTQfcVzHXFYlaOLO9u9tEsMwdCuev8+dmxlcjGZOYNJSQvs0W+2WQ6mu3jj2SZTquZ8ryagjG21YrHpptJC8aop/K4eo+dikfPqvYUe7np7uvySjtb/ayZjMOLs9l2PtWy5Gkee1rCbC3vOch0NnMhjlTmfFN5wxvegPXr1+Nv//Zv8YxnPAPz+bdEIYQQQgghhBBCiCkmTWfNegUxw8z5D3U/+tGP8OEPfxivfOUrZzopQgghhBBCCCGEEGIOM+c/1C1YsABHH330TCejZSRJtqR4VkkuZhJH0sewvK82rP4xEErwpno595TsopfzWVO+62sLaMXzmt6RcbYwjRJiG723I6y347Ind51WDjc9RrN6klbIDJvdnXEO7g57JONVwYZ2dWyiLrTCnmGqacj+QTTHdO+efiRzOPTJh0Map5rDfBxttVOMEEcqs3+WM8X89m//Nj796U/PdDKEEEIIIYQQQgghxBxnzn+3PuaYY/DpT38az3/+83HppZeis7Oz5prXvva1M5AyIYQQQgghhBBCzBW0GFgA+lCH17/+9QCAvr4+3HLLLTXhSZLoQ50QQgghhBBCCCGEmHLm/Ie6X/7ylzOdhJbCO8V4nmtzyieFDA/YL8b+tYLPW7GV+Kz1WZit3hbN/PnocNnzfbbmeQTrqxRrGzb79+/Pjg8cCMO8LFiwIDveuzdfGr1sLOWL4vCgkXYxG/8Em9fLDjgs2kbLzXUOxzxokumcdzTbFKbaO4n71lkzD5tuw6i8hTMb+7MjjRaUb0NelE3E2VAcragzU9wHt6QPOAzGCTVfIZ46s7+lTzHHHXfcTCdBCCGEEEIIIYQQQgh9qBNCCCGEEEIIIYSYSVgdJ+Y2c/ZD3U9/+lOcfvrpOP7445EkSfS6JEnw0EMPTWPKnhpe4256pXTe3oIf0Ao5T7NxmOticldP+tpA9DNHK3rxBvLYW6LvSR9awmEmHXXJ+y7NypFaUJG9tjE8nB2z1BUI5a5e1SqX42Hz5tV/lsWGcRylcpP5M1vq2X+giNsAAP3VSURBVHTO0BrpZzVz9GlF255iGaKXxMNB9jnlY41DLH9KTj42km9TLombi+33cJ8vHMHk7W9sm581knExJcyWaZgQs4E52wTa29sBAM997nPdD3VCCCGEEEIIIYQQQkwHc/ZD3fHHHw8AuP7662c2IUIIIYQQQgghhBBCYA5/qBNCCCGEEEIIIYSYDcijTkygD3UH+elPf4r7778fw3VMka699toZSFFzJMk0avobeVArzG+a7LVCP4vM68J7rBfm+WZ5WB+bZgg8bBoxGJqNpg/N+jQxjh9hKzyQGopjOvO4FR6QhpiXoz1nXzr2pLPX2SS1tT3FBDaAPG3ErKPVs+4m+4Bmuwp+nDeWtbobbMSTrtVZ3Gz6m72vJf3UXPztrpF3ni3zHzE1RTGN5Zu3b2qJr2az7dr7PaEFg0HN7yHBo+NzyiYeFZCmzcUnxOHGnB+xBgYG8OIXvxi33347ACA92PrZt+5w+lAnhBBCCCGEEEIIIQ5PZm77rFnCO97xDmzbtg0//OEPkaYpvva1r+F73/sefvM3fxOrVq3Cj3/845lOohBCCCGEEEIIIYSYA8z5FXXf+c538K53vQvnnXceAKCnpwdnn302LrroIrzhDW/Ahz70Ifzbv/3bDKeyNYQrnhuQhvHSZo6kVRKLZuJxllvbZeYcfV7ZaiOy2Fjyy+V8z2qaqZC4NClRzi3ZadXy/RzRNys19toJ4y35n3Zi+eqkcWQ0fzuJyV099Z2Vui5YEE8Wn3tx8LP37g3D5s3z4o9Ixlshvxbj5K2Ds1GGf7iQu76WnnJ0efH6AC/Mk6d7UjE1yzlEI/Ye3n1zhbxjW87581RbRjTriOP1D4eDzYWbxlaPj+owD0vkUScmmPMr6p544gmsWrUKbW1tKJfL2L1792TYFVdcgW9961szmDohhBBCCCGEEEIIMVeY8x/quru7MTAwAAA47rjjcNttt02GbdiwYYZSJYQQQgghhBBCCCHmGnN0fXjGBRdcgNtuuw2XXXYZXvnKV+I973kP+vr6UCwW8alPfQovfelLZzqJQgghhBBCCCGEEGIOMOc/1L3rXe/C448/DgB429vehm3btuELX/gChoaG8NKXvhQf+chHZjiF04/nHXM4MMU2aDXx57Xtq7TAsy60rwh9iIJy8syBYhF61zXLFBTGGL239VILPOqqzT2a4/Syo1w27SSvPwwz1flv4LZtH83vzZ50QNyXziaXPeXYM85e2+xrcvycJoutF+wXGXgXNuuBNJ00W0e866baJ64Rk88jlRk0gGu26Fud5EbsCT3fqekkb/XMOy+a8vmTNyHxmM522GzFmor7ZmP/M83zAI/pnO/PZFF4Xnyt9ulrOo68v1xMd0bOprQcocijTkww51vUCSecgBNOOAEAMG/ePFx33XW47rrrZjhVQgghhBBCCCGEEGKuMTv+hCmEEEIIIYQQQgghxBxnzq+oA4CHH34YX/ziF/Hoo49i2GimkiTBv/zLv8xQyp4amzeH5/PnZ8dWNraiOzu2e2h0d2ffc1luWTZSzsLAdtCFYeDBDTsA1OrS+Noq6RW7uoLLhoazdOzeEUbB7zM4GIbx8mFOc09PeF1/f3a8YvhhxLhvcFVwvndvdvzMZ2bHhf4ng+u27D568njZoqEwUsqDMSNpZXbQey9ZEoatX5/lT29vPI7O6kh2YtdWc+ZVQ+0op6tmKT/fx8emDIOytxWI8mDXYPg3BE4KP7uy/q4wDnreG/4kLKcTT8yO3/xmRGn//Mezk4svDgODShPWcU5zO0wd5xdw5AwjYFlvWIacXd6SeG73tg/wlBRe/Nx3HHtsdsxSVABYsCA7tl1AXukrp+PGG8OwbuqnVq8Ow/hdbfzcRhcsKNT9OQCcckq83bRjV/wBGzfWv8nWccbrBzs6csWxZUeY3qBfySlBeXRj2Na4+d50U3jtwED2vIsuCsPOOy8LqwxQ37d+fXjhE09kx1yZAGDNmuzY5in3JZx3nFcAxrqyfrYwbPrZvJIdr9xuuSUexu28tzcM4zjpeKxcCS4rjDr9M4+jtnxpABtd/bTJY1vNuHxt+/VYtjTrdx/YwGNNeF2pSGOD503QpESqRHnHcwL7OCvfj2El+pzFlnD4yp69avBnwXUFLuu+vngkXN+BsP5w/thxlBgaDfuACt1m5xKBNQRGEIXT6Mgyx6rtQVAwL6A4bB0P7rFtNJYOC+eP53VgJoRj3SuiUca6h5IdSPl5diDKy3331Y8PqG1UTKyO2HicAZfbjdfF2Dkyw2XNrwKE2d/bG18PYrOV8fqmRYuy40rZmYs6k5qC/UWBw3J6BwTt3MyXvbo7Uszag31U9Nn8CwoQjnvOXOKBjWHb40u5fDs7GpDncsE5ddXrS212MZwFwXgITOZ/kh5elkxCNMuc/1D3jW98A1dffTXGxsZw9NFHYz7/RorxD3VCCCGEEEIIIYQQU4U86sQEc/5D3Tvf+U5cdNFF+OxnP4ulS5fOdHKEEEIIIYQQQgghxBxlzn+oe/jhh3HdddcdMR/p8n6F966xK8J5lfPixfH7KnnXMltZEd9HYdsHwiXzvIzaLqn2ZC4xOd4OI58N8sSRbJYdqYC3uxMv1/ekIHmxK+Q5G23+BFne4TR7Z8vTYEm+XYYfW+bvSZ8MvNOWlSTy+bx52XWdp54aXkgajOXLwyB7aZSFC7NjU1dZSmRlG9xuRrtCSVA1kBwRJj9KxWyZ/6iRLXFW2vyJXWezn89tc2VZqW2iLIdvdmfXQM7gtJNiMStf2wwdBRiOOSY73rkzDOOy2rcvHocn1WjvyTJsZDTsm0qx3ThbsSOjKQyWLe3ZE942siTrV0reTnOUISuNvonfzahKA2xZBBKkPuofbF/BBWAznBuRDeMHOhL9gKn4k7Qni/VkaZE4bBJLeRtRk9LRvHJX27YZLwsCWrEDoO2DnZ2rPTVkDO89LbmrU96tsacCevFCNXx2sOP1cOt3ZOe+g0cvrxus5JVv2rCc8txG6mDujdu9dt5Mn2P7MK/+eIlkSX2RbTTCyzyJuKMIjbJ7d3je7Kb3MZsa776asTiSBzUC3GZ3Jm/BmBLYAzjxB+k3aeLfITzlt2eBlLePrKHqzYWyd8s7lFmmc+dhIWY7c/5D3Zo1a7Bt27aZToYQQgghhBBCCCHmMJK+CkC7vuJv//Zv8Vd/9Vd4+OH45gFCCCGEEEIIIYQQQkw1c3ZF3YUXXjh5vG3bNpxyyik48cQT0dnZGVyXJAl+8IMfTHfyhBBCCCGEEEIIIcQcY85+qGsjn5CTTz45931nn3v2VCSnZZTLCyb9CaztBW+/zT5HQOj7wl5VFvZzsR4SY+RKUuO742yTHkDGBTZ+z7aDfTas50zs0TaOYMNfm3kUSdF4eAT55XgslbuOnjyu2XKcEjPmLHTldysM7grCenszX7T168P72GuKvf86OkIvtYJnKuEZWsTua2DLevalYB86IMzWZYuGJo+HEHr9VRyTMWuVFeX447Nj69NHaRwwHors02J9Xlavzo5LXK+dPB4eDT3qPP+0WPZ7PiC2aFb1Zu/2cF/4bhyP1wfweY3PSM51/FwHR0fj6bDlye3Q89JkrAebazFGhTpaDNtN4CvGkdp35vrvdXDErsEwD7x6zNGXio4xkdMfDw9n9c760HEer1ljHs4J4/htJBxm/PGCa21fwYXjmBk17W+T18sq4qlaE+aVPV1X8vpZz4jUPpvuKyEbX0rGp6xcjnu8uVD97yIPTn7WeDryje/N+kDx2Fk0Pp7eNCP2aJuNPJewfpZ8bdB3bDBGUFyGjz0WhvGNtlP3+o4INV5e/U798fwzYzjXuVFQoHfZSOjaGtZXrxB5kPW8cFvhk+jMB5vGM4X15lpOpnNejlIUtpp5NonNZJc35/YI5tzmnOP0PKg9OKtq+tm8HnVeJffaUzNmf0DoMcnpMIU4XM1+n7DVhS9tNhkuFGnJmceUq9nClxpfvrx1PNYHpGmupApxuDNnP9R9//vfb+q+te9c2+KUtJa+zzwy00kQQgghhBBCCCFEA+TdGFIc+cx5jzohhBBCCCGEEEIIIWYDc3ZF3QTvf//7sXHjRnzkIx+pCfuDP/gDHHvssXjb2942Ayl76rDUFUCwT3fFLOUfQyZlsdJX3t6bl1Hb5eh79sTT0tVF3n+OGmOY1FN2ZfSOHdnxsceGYbz6uua9Cd5K3Ptrhd1ynCU23pbygUTC6Or4fVheBoTpz6sStnKM0nAmCT3mmFASumxpTjkYLbV3JSnesnVP9+C8HEt+O6tGTsVpIYldxVbWvXsnD3/lV8IgW2eirM1WzQ4Z+WllYPvkcXd36GfJUsCtW8MoWcEQyFNMHhcpewY2hnFwO7RKHGbZsuzYSkAXLMiO26thnfjJuiz/rVwipjS06pGmZYeRh61eHebPSb1ZvdiyIwzzJLkXXZQdF51qzO9p82BvW9ZH/uIXYdgFF6xEPWz+cJy2bXd2UJ1nCwBzHVd5V6Zk+45Yu6zpZLJ8tdJgfnap//EwkKWvfLzRVGTWXXn6ZU/6yveZTOB+pOBJ/yx55XKxztre5/WRXBFs+qtZPbOStf37s7LZY9SWq3qdvAuSWIqGuQyzpKn+zxsipza1xgqiWF/eB/hZHsP2WdZ2gYlWH/tg7qy3bQvDuBO293GDy+nVYKOoePLoWB33JjX2AU7bCKSG9HO2hbAsWmR/kuW/ravRkskrY2yA4DYbhzfHySubbMSXImfYMHUrNBWqKUIv+Xm7yBIl3/4u0IqVQBzngQNhGL+bfVa5HJmrl8PaUyOFZfL2/9493kSJwmz/VojFbywkuEy9/PearyeLDcZRO6/z3i3yrIYqRR7pqxBzhDm/ou6Tn/wkTjvttLphZ5xxBj75yU9Oc4qEEEIIIYQQQgghxFxkzn+afvTRR3HiiSfWDVu1ahUeeaQ1nm/rb1yPX9z4CxTaCjjunONwzqvOwe2fvB2P/PgRtBXb0L68Hc/9g+difnU+hncN47vv/y62PrgVJz3/JFzw+gtakgYhhBBCCCGEEELMPuRRJyaY8x/qKpUKNm3aVDds48aNmG+3JWqCA/sP4O7P3Y2X/9PLUaqUcMNv3YDTrzwdPWf04Jxrz0GhrYA7rr8D6768Due++ly0ldrwzN98JrY/sh3bH9l+6AcIIYQQQgghhBBCiMOeOf+h7jnPeQ7+7u/+DldddVXwUW7fvn247rrr8JznPOcpP2PvwF5UOiooLypj+6PjH95KlRJ6zuyZvObok4/GL2/9JQBgXnkeup/WjZ1P7Gz4WUk6hsLoQa8jq+VnswLjcxF4TwzvCsLayJvJiSLw07E2C57dSszSY+HC8Dp+tt1e3vPcYK+FEtgHyniwDcY/io51ZH5k1veLYW+7kjF4Yj+dBmxfojy+OVSul8uZL92WLeG1Md+dWusMx78oZlRmI3L8hWIeNpYxUzZct6o9mR9YjUfa+edPHj+zw4QNZvWaPRktD/Rlz7YeHr29WT2w/lGclp2m6S5dSukgv4/h4fx+SFznrXcY16dl87J6vKsY+uixL92uwfDZm43nFROzParxLmnFnwApjsWLTS2hAlm0KHw39kGyni3sX8celpWiSe9A1lG1G0+YXeQraas/1xM+tuXkecego367YW9OIPQC9Syouroq0TAuT1uGe8lf0bavwBKyP6dBmK0Tnv9SLJEI+4QCh3nxWVrhZdXbG7+Hz22D4vxxnsXlsX9/2Ea5X7HZzePBimLcfIg9kEqNmFXRA7kvrSFnHntjQ+SxAPJboHphk3MkABgMH9DRkY0NNk3sp1YpU7uxExLugGwYdwomwUEd916GCNIBAINOJxPzqPPM/bwCKMa9djGQPWvJknj0ns9pjT9hM7TC08orJ8+XNW9/442bpn/jcdurIjzm2WTYKsnkrHYBPL9pJI5af8L6NOI9yVnJXnaWYjUbH70ytHPR4FrPS83r77kvzZtZJn72CfU86sw0pjUWb57RHT08aL15+6JDhQkxx5jzLeDd7343nvWsZ+Gkk07CNddcg2OOOQabNm3CZz7zGWzbtg3XX3/9U35GOpYCCXDPl+7BXZ+9C2tetAZJIQmuuf/m+3HCBSc85WcJIYQQQgghhBBCiMOTOf+h7vTTT8f3v/99/NEf/RHe//73Y2xsDIVCARdccAG+8pWv4PTTT2/Zs868+kyccskp+P5138e937kXp/zKKQCAn3zxJyi0FbD6otUte5YQQgghhBBCCCEOD+RRJyaY8x/qAOCcc87BD3/4Q+zduxc7duzAkiVLsGDBgil5VnlRGSdceAK23DeuTXzgvx7Ao3c+isveexmSJDnE3TkYo9Ztlww7ciG+cqQcygJ3koKHVzl7u5F7q7nzSln27QvP+/qyYys7ZElWR0col+B0ttOzSkWz3N3R9bJUZsmScCk83xbE2R8mstxx9OSxTX9eWLZnpYvcqS9bFt4XWz3uKbfcQcLb1z3Qx4UE0r/RMB85Sk+awTLqFWUjVyZZUaHv4TCMX64al7560kV7znh1fivJCffsycrN1gNP0cfpsnKGQP60rm/ysP2MjuA6rjNWFsLPs2XPWedKfVqBJ3WgAhh1qiDLQ4GwbB7dmOXB/PlhHVzGBWzq+Cgyqa1XNpx3tnw9CQ/L5jkOOxTxuc2qoB6Yh42x1Gd4qH6CASxYEG8b69dnx2vWrArCOlkSum5dduzpf20/wmk2mRekmTsBE39uKVGzOB2jK10M+p+sAll5H2eJHQNj0QGmz/SkSU7+BOn35g/Oz/l9bFaNNqCwnMCTddkwr+ijkjXzYH7vkgkL7Cw4zDZS1h1afR933ibBgTVEXslXIz4asbrbyG+EFL93G/es3pwvaNfm4po6GPMYsHgdbTmn5JHbpe2LyhS/Nynw8LximJp3KUWDYkVvm673OO9Xn1j81qaGq7+HTUe8POJz3Zo+JlInPRlsuRz/ncHC43TRk0BH7GDcRHoPdywebJnxuGFt1tk+IXd/6aXFa4eMN6n0EhL7RdP7JUGIIwh9qCMWLFgwZR/oBvsHMbBpAB3HdODJB55ExzEdeOzux7Duq+vwkr96CYrzVRRCCCGEEEIIIYQQcxl9HZomCm0F/Of7/hNJW4LFyxfj3Fedi6+86Ss4MHoA3/7zbwMY31DiOf9nfPOKG153A/YP7ceB0QN45I5HcOl7LsWSlY4jrxBCCCGEEEIIIYQ4rNGHummisqSCqz96dfCzV3z8FdHrf+Off2OqkySEEEIIIYQQQohZgDzqxAT6UHekceBA3DOADS1q/AIyr4XSYOj71d2deTPdfnv2c+sPw75Qjey2zZYtebcV97zDXIsir+fL6bVQKoZx8DbvXvyeZUVeDzn2TbH+V571U8x7zubV4sXZsfUZ6Sw7hUMMDTseRU72c/X0LGYCD7nVnUFY/8bseKVnAOdg6zXD6bJ5zI/buDEM43zO63Nns5gtOSr9j4aB7NllH060k4/YXoR5x9aCtpyCetLs7KEJ7yRbB0N/mPi1tl5z9Ct7HO+VDZR3JpIq9YNsxwYAm8nHk4vCq3Je9eT0cnw2WTb+arVA11WCsAFK44oOCjAZyWc2HznNtenKnl3hymQbitdReXWrFbNWz4TTG6QYzhRzHfcPFVs4FP/2gSyvbF/Hecz1yl5rk8jlsWy105k6nWsh79jp+Lk2W4SxfvfAgfg9XlhNEcbSb/PD8a+L1hHbqTs+rTWdBxH43eb1WvSMyvIOwHknDOZ55Wro8clevhxnuTsca0rDu7ITbyLjtKEAL69MWF6P1eA6x2/SekzmpZC3PzMV2fN59OaYeWnG4nPp0uaeVeNPyNALsBecxfOe8/oHr5k3ZXPa7GS3Ef86olLO2tqIyR9uNkscIVbOKXEteU0CvX42b2U1hdFsexPicEU1fhpYtGxRzWo6IYQQQgghhBBCCCGYOf+h7oEHHpjpJAghhBBCCCGEEEIIIenrmjVr8LznPQ+vf/3rcfnll6N4iPXi3/7Tb09Typqja8FiXzc4gXlPXuY/1hHKFEYH6t9ml7vzEutGVnOz3JLls1Zaxa9l1RL8PE8yG+gGGpE+8bnJ30JsGbu9jmQh5XK4VD2vTKHQ/+TkcU/P0UEYKx5tHsRWqtsl/osWOWni7HIka6PlMF0My5t4C/l6UTKsLHriiey4MroruG7+/PbsJLat+yE49tjseEW3kclQInt62oMgrpNW+cRhnP6dO+Pp6OmJhy3qXRmcV2IXn3FGcPrAhrjkjvN4/nzzvEXIR7N6m4jUqrPD5D8lukYMQ1JP2z9w3RocjMtnFy8+afJ42ZIRxGgvh2GDJAHLqRqrUcuxDMVThcSuA8IqXiMr6iApLHeuJpJKOUtkt5GscR/jyTJPO7W7fgBQWziM9+KxQaRZCav3bA9HthTIjQfj47BXhnlx7RNaIbvK6c/gSZHyTEWmiprkDkcGwUYka7HrvIbo5aMJYxlfO0Vh8zivfLOGvB4bXqWkMJtVJb6P8qDmOu9ZefPV+3mzfUAMG39T2khDXr8WE7Z/d/zSVrxqM3HY+tgSeSKVYdHMl2eLdxeno9RIG2oFFH9pNJyPdHRk+WV/j+LfsXLP6zyaLQyvj2SmOh9nMbOlnouZZe62gIP867/+Kz7+8Y/j5S9/OY4++mi89rWvxW//9m/j+OOPr3v9Y+sfm+YUNsbvXnvtTCdBCCGEEEIIIYQQQjTBnJe+vvrVr8att96KdevW4corr8Q//uM/4sQTT8Qll1yCb3zjGxgba/Ivl0IIIYQQQgghhBBCNMCcX1E3wWmnnYaPfexj+Lu/+zt87nOfw0c/+lFcccUVWL58OV73utfhDW94w0wnMR+8p7O325uRH7HctTAYygk7OzKdTnd39m3Xyis5Sm+zNAvvzOQpFljFZ6V53s5GASyvbGSpejM7AtotlVoswfDy2OZPbGddq7gI5HJFEzjsFCK9G8dZKo6Zy7L6Y6XTrATxZLCBZNbk8R5e5m+1hTnlKvzsxzeHf8vo6MjkrsMD8ThsUcc2wbR5wHLC3UbiwnW8Ug7zlXfarVBh88+BMAsaqT+5abXkqIG1/57Mjt/ba6JeFQnrcvhuvCMv04hslcMCmXx3fMe7gpG8BPL0mp29I5E4/WCz0guWPrl/DfT6YGenxdx1qyYPWjzl8eJzOjEuUSuZKndl8llv111XsVl1ZEVc0UwD4F2VLaVqfU231480Un9iOzTmVfECYZbXvnaWr8FbenXEyzt+mNWBb91aN70AwsHY5P8Bto2gdBUakYZxpfEyr8m2MEby7todSLOcLTnS16a1/c3I31uBK6+P988uzcj8Ee5u7u1Q3+Smsk0N4bbf8OaYAU4gjyG2K2WJuLezqwfnXSN5EM/XMA9KPP+0N8UmJPbavJ2pCRseLcWCgj4zdzNppD3FxnCvn8pZDzgpaZo/SUIczuhDnaGvrw8/+9nP0NfXh1KphFNPPRUf/OAHcd1118100oQQQgghhBBCCHEEwmtuxNxmzktfAWBkZASf/exnceGFF+IZz3gGvvnNb+Ltb387HnvsMdx000145JFHcMkll8x0MoUQQgghhBBCCCHEEcyc/1D31re+FStWrMCrXvUqLFq0CP/+7/+Ohx56CH/yJ3+CroMShSVLluBNb3rTDKdUCCGEEEIIIYQQQhzJzHnp66c//Wn81m/9Ft7whjegt7c3et2aNWumL1FPhbGxzISgAV+TYHt141/H629Xr8687EqjQ8FlRfLWsZYt7DFhfWXs9uGx63p66scHhL5l1l+LtyAP3EQ83xHP2MHxWhgjv5KC8V1oxZb1Q8XMI23jxjDMS/6CBdmx6xnC72YLwAsjX5kge0xBjaIdMTzLH46T68uWrWGe9vVlx6vWdsQjceBnWw8zfratg57HG+c5WxRVhrcH1/X0ZO3LJpfb6AMb4p4wRx21cvJ4031hHOzLYr1d+F25vtRLSy6m2R/M89/jcvP8c9hrbtGi0HuI4/Ta0FFHZcc2H/nZnR1mo6KIeUyh6ORjs3nsvQClgz0ZAeDii7Nj65MYNIg+ynDPK5XNG226rMckV1DH5ys3zdZHJ/+DVumZJjqdNXsbdZpyqvZkY6wdNwOfRM/MjqnxCCT/sZqqVd930HppxjxnD5WUvPZjXrF5vlPBHIfrqp3veA/ga71JzZYt8TiOPTb6rC6a47iesIwdLPO2B76uRX01R8O9Z3vV9BUDOY2yvHmYLbcY5l3GuldELw3qCOMN9uTv3BD8Lo6fsTdvtGN4LCs9e7ASrM9pFskY9Qce9neBUpB+x8PPdmKUMPZlLDrpyNvHeFXc5iP3pXYMj8Vph9QS57ktAM8ojsNivxwBYf039ad/MMsvno94ePWsxiOT0+z9nuD5ZXI9c54da3rNehMKcbgx5z/Ubdy4EaXSoc1gu+zOCUIIIYQQQgghhBAtQB51YoI5L319xStega9//evY722fJIQQQgghhBBCCCHEFDPnV9Tdd999uOKKK9DZ2YmXv/zleOUrX4nzzjtvppPVPMViJhmya7G9pfaMIznqJ5VFuRwuR/eUIHnx5Jss9bQLHD3FVJANg86+63zuaQWcP3ME0gmTCeFS/kOv4jwUtnhZbulJIjwV7yht695u1XE593XnyypWnuj0OHaJO8Nlunp1dmxlCUG9sNIYrvPluJSCn7VsWRjGMuq8Em6blEAZ0B3KZjh7rAyH5QE7dsTTtWRJdmzrAeexLXt+b0+pUfKk0y1mzLST4C9Lpg5WqHJ1d4d/g+L3sXnHeHIK/luO/bsO5z/L8OfNC68L63iYxqA/dbqiUnEsHhhGGJyOcn3lhuJ01ra9BhKnQdMH8MuNOv0st0M7DnGaHesAthWwspnCqJFy5SWn3G+Mysm20aHhLC0VbxW+Iz3eNZzV+b2OrNQWWxCl11c7stgSRVKyaeS6S3Es6Qn7MH703r1hFF4Wx6qhNxQHcl8AS5dmxzUyxphvgSfdsnkXKzcelGycCxeGYWyxYup/IB11PSoIbx7jTcQ4zA6+nrybwio2jXzfxoF4Orz6mbdP47zzpHl2QtgMXj/VLBHLFMCR4KJ27ImF8djjrszxBvu8eG2o6sx1PdknUemy+Z31s96Y7Q1DHnbcjsXJ1aJGQtw/EH84tzfvd7G89diGUfTcJwLhuzX7e1ru+s9jjTNgFZz6UzXS8okssX2/EEcqc35F3f/+7//izjvvxDXXXIOvfvWrePazn40TTzwRf/mXf4mHH354ppMnhBBCCCGEEEIIIeYIc/5DHQCcffbZ+Id/+Ads3LgR3/zmN/HMZz4T73//+3HiiSfiOc95zkwnTwghhBBCCCGEEEcwEx51h/s/8dTRhzqira0Nl156KW644QZ89atfxYoVK3DrrbfOdLKEEEIIIYQQQgghxBxgznvUMQ899BA+85nP4LOf/SweeughLF++HG9961tnOlmNMW9e5lfQyJba7DlgzbbIT2GF45PAW6h7lgw2jH1s2GfNWrsce2x2bG0d2qvk6WH9VvjUM63wPOoYz48jz89Ra/GQ1z+DH22Tkbd4PY8f9vuo8ajz8ofOAy+sahjJsFMP2DuMfb6AuB2N9UAKsB5ROTOZ88d64DkWWjWWeAynk6/r7g6vY28a673F5Wt9Wdi/kZuobQo9PdlxjffZ8C4KDF9uhD10GjF7aQaK3+ZpuZylo4K491anKZxqb9Y3cbWw8XtlyHXB1juun9yHeX6ZNRZgjkcjMzoa//ta2O5Db6DQmiyLo6Mj9Gtkj7fADw8ABh1Tm5hvje2s+UVtG6UXGCmG6QpqHfvbOH5OLk3W461bs+MFC8Ky4HpRXtoehEW980zBsydPMK4B2DWYPc/23Z6vUoBnBOuFRfLL85CzeP113uHXa0NBHnvvFnvwoR4e826zCeF6bcP43DwrOG22n817X7PLHbw6EktH3jw91LV542/1Uo5mJ2we1C9ynwKE/Yr3KNsH8Bjl3Rf0695EMi+tqEseJo3sjThajc+TmrVC9IhWu2HnXRrpZ/M8GHB/GZg/n3xUh4eCsM6OLO94PPGo8YHN+btA0yaB/Cwzbk74eydJU9EJcdgx5z/U7dixA1/4whfw6U9/GrfffjsqlQouv/xyfOxjH8PFF1+MRL2BEEIIIYQQQgghhJgG5vyHuu7ubhw4cADPf/7zcf311+PKK69EpRLfEVIIIYQQQgghhBCilUx41Akx5z/Uvfe978U111yD5cuXz3RSWsPoaFxD5ezFPVampdL2/thacrOUuZ10dVae5dwWwEv3bSdlZYIBnGavd/P2I88rCXK0PiP03sVqKH0KkmGy2NuhPbiPkm8Vyt525TG5UEOr0Z3l7mMkjfTizLsrvS0mlsXu3JkdW0XK5s3Z8Zo1RjqX811ZRmrz2FM0WfkKw/Wa77OyPSsxYEqD2yePu7vDLes3bMiOOe+8plwTP2eQKYBSkW/MKWlqAZ0djqxxIL8M07a3CZpVXXlwWdvyrXCyjM62XM3KdCrUa7Fr7c+5HtRIXjjNzUqmqFKOda8I46d65sn3S1Nc7zxibRkIy60wuCsMjI0vppEWnHGoPZAKh9LmqOTUk17aTtjTlUb6B68aWKkrS/a96pJXMWXjGCNpfMEZp/OO54d84AQ8aNhzew/Hb7XxPTRn4IxtJk2HwitrD6ozPO5bCt4A74V5sjpuK95cjsOsn0F3/A/xsfG3UOvBkIWZd/HG8ICg3ErxIENuiTtR04Y8n5Rm6pONI++ENi92vpkzj3lO3MiUfv/+eFhM2VlqpI1yJPa+WP57kzlzD1vHbJ8X1vfOcjYnaUbFfkhi7deLxKkvto+ZqGpjTTpeCHG4Mec/1L3tbW+b6SQIIYQQQgghhBBCCKEPdRP89Kc/xf3334/hOn+lu/baa2cgRUIIIYQQQgghhBBiLjHnP9QNDAzgxS9+MW6//XYAQJqmABBsIsEf6s4+9+zpTWCDLGhmXbwQQgghhBBCCCFmFHnUCUAf6vCOd7wD27Ztww9/+EM85znPwde+9jUsXrwY//qv/4rbbrsNn//854Pr175z7QylNB+PXP9Q5nlgfTXy+gUEPjgIPRRoxaH1F/I6lYUL49fxt0VOlvUH6+urnyQAWNFNHgd2VWTM68XzlPA8E8qh54PN5hgxixwgvx0Ne7BZzjwzO7Z2Fp3VcIvzaELyGgKZPObTCmg7+I1hIXb3rJw8LvQ/GYSdcsrRk8c2T8n+0PXp46pb672VmVrk9TixVcnz2GOby/nzw7AlS+qn4+G+uJejtS/q6Ih7mC1eHL+Paa9mzx4ZtXnQhPdcIzOJZuL0fFkcbylbvrG2Z+tPXp+WTZvCMC7f0C4zXr7VaugzCAprL1N7tYmiB1ivNo6TfR2BMA/4vWv7myzNpf7Hw6C/+Rt7cf1ITz01O77oovA6SvPWxScFQUuWZH3rvT+HCcuOOV+td2lHh+ObhdYa29j+ISgObxziMrUFQA14BPX9eYDaphH0R2FFQ248H1KqF1yrG/HTYo8623zzeiiyf5R/bdj2SpwPnkeXR8zUyZbh7t2Nx2dOS3n7Vs9n0BLzxvIKw+mDa3wAGc8njtNsPd4cb1/3eYznAdYMDcTBfYw7z6A0Ll0aBnlFz/2693d5r4qXycux0go/uWY9Q+19kcnL0Kjx8HP6Qfal8/obxrPjzGshVwN7vZrfGQrDNEe2D+AXivmNm4TUtJmB7LDG53f9+ixs9erJ46HR/Jsolrg927bNZehles7fRxvpnoU4Esnpenrk8p3vfAfveMc7cN555wEAenp6cNFFF+Hf/u3fcPHFF+NDH/rQDKdQCCGEEEIIIYQQQswF5vyHuieeeAKrVq1CW1sbyuUydtNfQq+44gp861vfmsHUCSGEEEIIIYQQQoi5wpyXvnZ3d2Pg4NLd4447DrfddhsuOijV2bBhQ8ues/7G9fjFjb9Aoa2A4845Due86hw8/N8P4+7P3Y0dG3fg8g9cjqUnjq9/f/KBJ/Gjj/0IwLhn3tm/fjaOP//4fA8aHc2WInu6HE8f50hxvHXf3ipnXqKfV5nBclmLTcbQcPbNuWyXmcejCfFksZSXnmx1qvHyrjSaLacvFs0ydl6ezuXprOu3sqsiySUKxXBJfij5ogwysoqtW7PjZUs6grBRR1bKeV4pjtB1YRo9pUAom4zL45iNG8NzTr8t997e7HjnzjBs2dL6klOb3r17s2Nbz0bj2YoFC7JjjtO2IZbi1NRjkpfYasFy3aaNMzzZagxPPmglU9TuvTbJYTYZnuQlbxhLb7zk83VAWIa588fITlgKu2xpmD9c7wKpejmUxuwaJOmr1+F49cCTzlG5Be9sWLQoPI/ZA3hSSDddTcq12ouObInZOBCex6Q+TiUcbWBsKYySXNrr4/PaP5jyLUTK2+urG+kq8pajrRcMZ6V99hj1+YWYDNZGYonYgOCuu8Lrtm3Ljq007MQTs2PTNnaTFLwyL2fmGe13MBfqCOcBeRW/LI0smQIO5gXOXKjdm2NS2FgxPobboqiUI51w3r6oWZqMw5XaU2YVhgeCIO53rawxZhVjz3N3dY7E3XvtEt9m7XLy9q2284j1i6auenOh2HW2f/F+J/G651j/Zm0uuA3ZtjZKMtPRgTCsXM7Ku8Jt25mr2yGW563z54fpWhaL08njmmGCf2DLngvEa6NeJlOGcT4yhSN8mVGayqMuL0mSXAvgLQDWANgF4JsA/jRN063ujWEc5wJ4H4BzAaQAbgXw9jRN15nregH8MhLNL9I0PdX+MG/cMeb8h7oLLrgAt912Gy677DK88pWvxHve8x709fWhWCziU5/6FF760pc+5Wcc2H8Ad3/ubrz8n16OUqWEG37rBpx+5elYctwSvPBPX4gf/eOPgus7j+vE5R+8HIW2Aoa2D+HLb/oyjjvnOBTajvCeSQghhBBCCCGEECJCkiRvAfBBAD8A8CYAPQD+EMD5SZKck6bpnhxxnAfgFgCbAPz5wR+/EcCPkiR5VpqmP69z29cAfNX8bKBFcQfM+Q9173rXu/D44+OG2W9729uwbds2fOELX8DQ0BBe+tKX4iMf+chTfsbegb2odFRQXlTG9ke3AwBKlRLmV+fXvb44n/6iPjKKBEnd64QQQgghhBBCCCHmAkmSdAF4L4A7AbwgTdMDB39+J4B/x/iHu7/KEdWHAYwAuDBN000H4/gigHsBXAfgRXXu+Vmapp+ZorgD5vyHuhNOOAEnnHACAGDevHm47rrrcN1117X0GelYCiTAPV+6B3d99i6sedEaJAX/49uT9z+JH3z4B9i9dTee95bn5V9NVyxmsgK73pqWJNtdiAKMZCG221sgtTFYSaK3ypmVIRxmd7TylmJ7Uq6oXKV2K6z6DzPY9PNKb34Xu/MnL7335Dse/OyaJf/08L1tYfm2zyvWvc6TKBQ7wl0pvR3pAmkk7/5o4l/S3RkN4/xh5RAQ7vpaGszi398W7jzM8lMrW+3pIWmn0/N5m27l3ZDU7kT5wIas5fAOrSx1BcLd32wVfOKJ7Jh3wATCrGTFPucbEEpyOR1AuJMp5yMAdLLUuRW76OVd029lY07hFEiCYWUovNttf39cehzu2BqGcXvzNqvj4waUu2Eb4ve2ieT2ZftqZ8dElsYPI+sf7O6/wXt7W29vNaoCrhe866t9UaqUjeS/bSux6JtVt4bjnCNZc+ouyw7d3RRjO8CasIrT1opFMyeIbT/u6eMseTOvyZ0im90cMm98XG42f4Iyzbu9s33PmG7e6uq8HU+53ZjtPoN+vb85Tw1OVm09rj+PtG2L4yg1UH2CMC8fnUg4LXYOyGUa7Hjt2byYNpR36Im+iz1vRDrNOAOKNz/3LBhi3Yrzq0DNzrTcB+cd6q1NCkv23Tga6ZsieNnPzbK2LjX32Nh9jcgUc25e748TNN/Z2BcGbd5c9zIAwDKeywWVKT7ft48ueQN1jEbKmsJsH+bupCzmGi8DUAHwkYmPdACQpuk3kyR5GMA1OMSHuiRJVgN4JoB/nfiQdjCOTUmSfAnAa5Ik6U7TdHOde8sACmmaDtmwpxo3oxpPDA4O4pFHHsH+hkxv8nPm1WfilZ9+JQafHMS937nXvfbok4/G1R+7GpdfdznWfXkdRkckVhdCCCGEEEIIIY5EJjzqDvd/U8wzD/5/W52w2wGsSZLkUH9VPFQcCYCz64S9FcAQgD1JkjyWJMlfJEliZZLNxh2gD3UAbrzxRpx11llYvHgxVq1ahZ//fFwy/LrXvQ433HBDS59VXlTGCReegP6H+g99MYAlxy5BsVzEjkd2tDQdQgghhBBCCCGEEIcRE5KqTXXCNmH8Q9iKOmGNxAEAx9DPxgB8D8A7ML6i73UA/hfAnwG4MUkS3iau0bjrMuelr1//+tdx5ZVX4gUveAHe//7344//+I8nw44//nh86lOfwm/8xm885ecM9g9iYNMAOo7pwJMPPImOYzqi1+7avAvVpVUU2grY/eRu7Ny0E4uWNamVFEIIIYQQQgghhJgeupIk4W3RP56m6cf5giRJOgC8uYE4P5ym6XZg0sNlX51rJnTjjs9XEJ4rjjRNHwXwAnPdvyRJ8nEAvw3gFQA+20zcMeb8h7r3vOc9eM1rXoN//ud/xujoaPCh7tRTT8U//uM/tuQ5hbYC/vN9/4mkLcHi5Ytx7qvOxS9v+yVu/fit2LtzL276i5tw1KqjcOl7LsXmezfjp3/5UxSKBSABLnj9BSi3N+ELZfyLgu3gPd1/jXdbVo/GipkXhbvbtkkK+9nZ7bbZQ8H1YOMkOdupu95zntEUY16OPUOs5Yxne8fwo62PnvWJisHWENZHDAPZw7cY76dla8ifkMrQ82Ky/lGhb42zZz3j+sOE73zgQHZsy5795p7Wn5mwzTs1/GNJBZlVQF9f2P9x2bCFloXTuGZNGMZ5vnBhGLZsaZaXj24M343fZ1+9LjsHfJ/1HWE4y61HneeRxvZj1pqs2J15n7UXHa+nZg3CYthKzhXBvAC3oZpH04uv7M4Cu7pKiOG15R1mgXPMBtNb+m/bV7VK/kvcd9uC4nPTvjx/IfaV9LwW+bzTPvu887JjNkMEwkp57rnZsW1EZOA4aKLwWLCg/qO8saDGR9UpkEIT3lKuv5/nycOJdvypbNlEnwXjiedV3rzmTDaM46T02zwu0viSd5jwwuzPm7XIDDwIvTygtlczLtPcJRgD95iN5TivbGfKEwg7R2PyZlarjf8sJn6vasWSvGV3OBbPc+Lgcc76iuV+sGsCFu/zY1HkuyPHs4lofYTv/8zz5xLC60Yj8/O2tuCyRqa+ubD9FLsHue3VBOb1H/Oab97mwI8O/GEP+ez6XqbDw/E5X9M4vtkjxaxN7d5t05gds18dAKy+YNXkcVDPvN/nnPlU7jGkWR2kuW8yl9O0ufgOEyakr0cA/Wmarj3ENR0A3tVAnJ8BsB2Y/IVvPgDrYjzReOr6xxEchyVvHADwPox/qHsxsg91LYl7zn+ou/fee/G3f/u3AIAkCTd4WLJkCbZZV/smqSyp4OqPXh387Pjzj8fx5x9fc+1JzzsJJz3vpJY8VwghhBBCCCGEEGK2kKZpH8Zlqo3y+MH/jwFg/+x7DICUrskTh2XiZ/Wkq5bHABwAwMsoWhL3nPeoa29vR7/9i+dB+vr6sNTsyiWEEEIIIYQQQgghpp07D/5/fp2wcwHcn6apo0s4ZBznYfxj39050rIKQBuALa2Oe86vqHvhC1+Iv/7rv8av/uqvYtGicR+4JEmwb98+fPSjH8Wv/uqvBtd/+4+/0tRzFlYKTd/bCF3Vo+LrZXl9utUvdB2dHRttZ6Fafym/lT+OwZFUUppKZo11KbY2vhz/jmyXqufesrvZrcQJVt9Z+JuvlScGS+FNHhc7wq3RJ7D5uHlz9p410ld6QNm8ZiB3HaaVtjY/qF60mxcI5dEmf7huOXotlmeNFUM5DMszbBRBda15cYLK7fbbwyB+HSt95XzeSLLViy4Kr+ssU96Zertla3bfffeF93HZc/KXLw+vY6mqlVhH/p4AIFRQeUXBcdqiX0Q2mFa20V7N8seT7DRNXokEv6jJfy8pI2QDwdcN18hP4/Hx4048MQyrjO6qf2NNmhxZ1AAlxpNPRSSIQJj+mmwM8jg79CTuNdI8bhC2krDE9XnPmzwcMe18x9Z4FJ60fy8JG5YsyY7dsWAqpNmU/1YSV6qyBtoE8vNs4yYKlMZ2k0Hcj9emi449vRn3wWbcDGwcTBI7OjL5Oye/5lFO821Fd+FbTcTl76HULa7r8uYSgRyS77PtxOvIWc/JFRlAaTQ+vgTws00DDmqIqf8cxvOu9iWORnkgzORitbPuZYBJchAY1lvOLivz7OiIzFUAYJDSknPOUZNIsnHIjS1DflFPvuzA723bdSi7HYmHlW251U+irUqB9YrJH2tN0wy5JcsO4dw3X5sE4n1MsxJZ28nEZPNefDb/vaZdGKS5hNPZ8XuzbQwQjpU2f7bS+LtsKaU/niTXIsfzNwh+73D6Wdt8vTo4GU3SzAIscYTxDQAfBvDGJEluSNP0AAAkSfISACdgfIOHSZIk6cL4ircn0jTdCQBpmm446KF3dZIkf5am6eMHr10B4GoA30vTdDPFcVSapttMvAUA7z14+s2Jnzcad4w5/6Hufe97H8455xycfPLJuPTSS5EkCf7mb/4GP/vZz7Bz5058/etfD65/7FNXzkxCc/K71zVg+iOEEEIIIYQQQogZ5wjyqJsy0jTdmiTJnwH4AICbkyT5HMYlpW8FcB+AfzC3vBHjXnivAXA9/fxNAL4P4EdJknzk4M9+H+N/IXirieMTSZK0A7gV43LXLgBXAjgb4x8Ov2yubyTuusx56Wtvby9+8pOf4LLLLsN3v/tdtLW14Yc//CHOO+883HHHHVix4lA7+wohhBBCCCGEEEKIqSZN0+sw/uGtE+Or694A4IsAnptD9joRx60ALgLQh/GVcX+Jcc+7C9M0/am5/FsYX+T2OwA+BuAdGF/L/HsArkjTNFh+2mDcdZnzK+oAoKenB//yL/8y08kQQgghhBBCCCGEEA5pml6PcIVc7Lp3A3h3JOw2AC/IEce/AGjog1HeuGPoQ92RRlvbpAfNiPEFiXrBwXgQ5PVEMsYCwfJMx/vMNTZhDzybXscEouCZM41GjDsMuwbZgy0exV6zCfSWLfXD3OQPx9c0e34QG0jZbOPvIp/Be+8Nwzj7V6/OPKPKxiOq4Ky1jvrz2EDPHIXOrS8Fb7C8wSi4OV/POGPl5PG6W8LrVq/O6vy73hUW4iWXZM/+P6+P5/HLXpYd2zR2drAHVRj/nj1Zvlofw4ULs2POEuvRxdis42ttGPuadHW1R69jOrE9PF/TMXlc49NE5Ts8muVx2fhItsSzLq9fnQkrDGTvU9N38DndV62aPnLQiYM85DptwfVRgXuF6nmkRbxvxtg/1GDrmdfNHnVUVj/37Kl/j71v8+bQX67a8/zJ45O6u8MbKc3sS1ca3hVctmxJvFJuacvKox3hfe1LKV83k62Hye/cY4FXt7x6zGVjvKXYyqrT8fgM2kmt0Vr9CO193hjr1EFOh5c9Fg7jftEb52w28thm+5hmuo5GijA4z/mebpr4QluG8+fHI9m/P36fZ0Qaw/qn5ay7wbO9OZ8J8147qHZ04bZtYTthP9SKU0dcs1o+9jzqHLxpTMAUeNRxWRdMey3x+UD4buzzG3j2AShXs7Hfa2veQFGmMTGv9K6BqXqIHcMj/VvR9LNuH0Pef8Vq3Oss8Ea0Fdnrn6MedeFYGdRjz0gvr4+qqSN8Gfs7A6Fn3b59YRifj4zGRXVuGTrp4oSFr9KcgM8bQ4SYC8zZD3V/8Rd/keu6JEnwZ3/2Z4e+UAghhBBCCCGEEKJJ5FEngDn8oe7d7353cJ4kCdI0rblOH+qEEEIIIYQQQgghxHQwZz/U7Sf5wejoKBYsWIA77rgDZ5111gymqgUcODApA6iRJ7Kswn6q5+X7LCsC/GXOseta8acAm35+tlmOHpUV2bS46cqWrlt569Kl2fEpp4Rhvb3Z8c6d2XFPT3jd7t3ZcfseIxs2MqlJTHqvuipbyr+iayS8luQf1WpnEMTFWyk7S8dJw2DlEq70lcm5LN5uwc63WSkF52Vh8+OTx2vXhpu9hMkK8+emm+ZROsx+9pSulT30cCN5eXRjlq/Vaih16OvLjj21BEdpr2M1oa2DnP9WiVPpzvJ5cx+i8H3lNWEdqfQ/OXlcI4HmhHavij+gBQRt2dN22jrIbchk7K7RrKwGB+NymO7uzmhYkCeetNaryJ5uLNJPFahcLCu7O/LHT/3DWG8mH+d6a2+zdXDHjux47JlPC8IKw0N1r1u6tD28jiTKtn9gyY6rvYnld4uokYoRBRofbTsJ5K6bTR/P6WSpntdZePXMklPWyOVk5d3FavbeNlmlIo8b2XWuxNSQV3brvSZLn6ycKq8kLiqhBFDqiI+PpZzy2UDbaaWRHOZl3lToDvO2GyeMk8UqXhvGdcubNlr5OBdHxZOV2kEwhvPw3NNUOz/zXijvAyhOmwfcPbSbPGC5YqkallOoAI73YTx34f5g/K767dzDVpcSzb3GEB9vayTLMVlpOV5HatNSynVdMP80EtmgHnfEOyPuzwYHwrBqlfvIMH7XaihmL2Rehqvg8uVhFAsWZMfWRiZWJXPLwG26HI8Wr4vxLAZy2w8IMQeYs02gzYr6D/6s3s+FEEIIIYQQQgghhJhq5uyHOiGEEEIIIYQQQojZQJrKo06M09w2LEIIIYQQQgghhBBCiJaiFXVHGvwZ3vMu8Uxg2CjLwr4aroeZ8XnJ+acB9uqwt+zYmh3Pmxf6g4HsGzrtq7GfAvuasGcfgPYzzsiOl5im0Zd5ZbXfe294H+13vizw+gvj6O+9sH46gNz5s2L4YUqTuYfep/uMZwVBbG8R+GoYi5DAp29rGML+UeVusxU9+5zww5x6VlNHKF32ttWr6WR93+Th6JrQo659w08mj+fNC/0m9++/n86Oj6YrwHrkUH595jNhEPvoWX/CmKWN9VBhe0jHYqym3B7fnOXd1qCdxNNRKRqPQzYz+eUvw7A9eyYPR1/xO9mxqYLsGRV63fhEPcFuuik8Z2sC24ae8Yzs2HgKta9ZM3k8iMyHznQBh7DAy7zWhs2jO6nAvT7M81vh/PK8vDwbq8BDy1YSKnyuZ1tNO3/ooXgUfE7dHgCgoyPrE7gqrV1rr8vyf9TEH/RTZdPHDO5CXTyzM69fbcRcjRjqyvz9rN/n0HBWbpWusBPbNZzVi3aunyaNXv3x6meQlvvuq5t2ALWVnmDPvYrttOjhK6k9wfpIMo7/UsnEH9TdgZqBqW46Kl751g5uGd59nK68dcQzw7LP4vxng1sg7k/lpdfzcbN1i9qU6wNFdTDw9gMwSq9q+4CQrC3ktZMDwqzs6or7mxXLR08et/eYuhqYsTpz3ZyMdYfzjGCua7xw87JlR/ZuS5aEYewNOjoa92FEOQyLvWqNXyPP12w74QKoxj1bmZo84Dg7nDhyzoMLpq8I+qbh+ABZ8TwZnc7U9WDmdFE+ls14FeSJfa2YnyiQe/zi+UJHx+xccxP40Zp34TwueZOcwcggONJcuxPicGPOfqh7+OHsg8eBg18gNm3ahI46k55VqxozT9+8bQhv/uCtuPPerZg/rw29yxfhH/7wfJx+zVew5rgODI8cwKLKPPzeVU/Hq158EgDg+hvvx9s+cgeOWboQwyOj+N3LT8Fbfv00AMAHb/gZ/vkb96FYLGBpRxn/+s7n4rjli7wkCCGEEEIIIYQQQojDjDn7oe7EE0+s+dnLXvayutceOHCg7s/rkaYpLv/j/8SrXnwSPv++iwEA6x7ox5Zte3HCMe2459NXAgAe3rQLV/zJdzE2luI1LzkZAPDyi1fho2+7ANt2DuPkq7+Aq56/Cscuq+LMk7pw16euQKVcxP/9yv/ijz96B75wMG4hhBBCCCGEEEIc/qRpflWKOHJJ0jSd6TRMO0mSpNdff33u61/1qldN3If0jt9xr/3eXZvw7k/cjR/+v5cGP+97fDcue+tNWP+5q4Nr3/qh23HPp6/E9Tfej7vu3YqPvu0CAMB5r/06PvzWZ+Gcpx8dxHPP/f144wf+B//ziV+r+/zf+dAj+KdP31Q3zCMmu8p7TyPkjf9Io9n8Ylqdd61IU7NMRT0I3seTxFny7gfvyGjmSr2ezjpzOOap8ifkcBwnvDRP9fgohBBCiDhrzzkHd911VzLT6ZgqkmRtCvx4ppPRAtruTtN07aGvEzHm7Iq6iY9vrWb9Qztw9pquQ18I4KyTu3DfIwM1P3908yCGRw7gtNW13g7/8u/34VfPP/apJlMIIYQQQgghhBBCzDLm7Ie62YBdzPiFmx/G9+9+Avc/OoBP/OmFKM8Pi+cz//Eg7rq3Hz/4p5dMYyqFEEIIIYQQQgghxHSgD3Ut5umrluDL33v40BcCuOeBfpzS2zF5PuFRd9vPt+DFf3gTfvVZx6L7qPGdhG7+8Ua87/p78IP/+xLML7VFYjw8sJKgw0G+JQ4T8u746O0ylXPHL9Xb2Usjm322AsldhcWWk6SwQgghhDg0KYD8/vjiyEUz/hbz/LUrsG//AXzi6/dO/uzO/30Sj2zeHVzX9/hu/NGHb8fvX31qTRznP2MZXnnJifjQ59cDGPel+92/+RH+/e9+BUd3LpjaFxBCCCGEEEIIIYQQM4JW1LWYJEnwtfe/CG/++9vwN/+2DuVSEb3Lq/iHtzwLD23ahTNf+RUMjxzAoso8/P7Vp07u+Gr5k2tPx1nXfhXvePUZeNtH7sDg0CiufsfNAICV3Qvx7x+4ZDpfSwghhBBCCCGEEEJMMXN219dm3jvPrq8zzeGw66tlrki5tOtryJTs+jo6kp1MhfSVwuZKvbUcDjJPSV9nD3N119dG4hRCCCFEPo78XV/PToHbZzoZLaCkXV+fIlpRd4SR7BtGYfPj4ycDA2Hgxo3Z8fBwGHbZZZOHhS9/MQzbv7/+w5YuDc/L5XjCnA8hBb6Pf8O2aeSw3aGUOGDevPC8i3bh7e6ePHx0dEU0ifbRTF9feL5uXXb8mc9kx/Zjwc/W4Slz0UXx+N/+9vrXAUB7P/km2nrBcF51dARBY9X26LNLxeyX0KHh7BfZSv+j4YWUsQUbCT+PygkAtg9kcX73u9nPf//3wyi2bt1AZwvDQPxy8ijdcw5iJPN/SWerg7BLLsnS8RKzp8sFF9Bd4W2oFOkDovOxL/jQODgYRsLtxIZxheVj2yYpjx8fbA+CbrklO+4yG1evX58d/+GbMW3cfHN4vmZNdrxhQxjG+c/1EUDYSDl/bB3k/LJ553UQsa9/1Wp4Hisn+zxOl2mvBY7Txk/t5uH+sHw3b86O+/uz4717wygWLcqOjzoqDFu+PDvu6QnD+EPUrsGsXreXTR7busvQ+9jPYWPFUt1bpv2jbF8+D1rce288jMcoO74uIHsLWzhLlsTj5JflBmwzqLd38nBoNMxTriNbt4a37dkTj5Lxuh9Oog2zVflQPweAhaaL56xrL4+EgfxyXAe5MQDhOGTHSo6Dw2xb5nMzlqGNPIbtHIrjp3IKOjfLO98ZnnMm28zjgYnriG3MlOYhVIIgzi7bvjjKoA/m/tde6GHLhuewjz2WHT/ySHgdVy6bB3/0R/mezXzgA+E5l+k11zQeHwD8x39kx8ceG4Z57Zfrp+1L+T4O43plz20d5z7n138dubj++vCcK4aXPzfeGJ7HGrttQ5wHZp5q6+sE9jW9YYibr62qXBxcHW1/xud2PlgaeDI7sb9QcMe7ZUs8kYzTfnFqaK80MpqNrFxMnnd4zR+ZuO7yhAEIy5D6sO3oDC7jPLbNnM9t9Z+4z/s15shBHnVCHnVCCCGEEEIIIYQQQswK9KFOCCGEEEIIIYQQQohZgKSvRxqlUrZW267F9mRXHvv2Zce8Xpx/Dvg6I06LvW7+/PpxxtY814M1WmYpfCDj6Mjkrn13hZfxim27LJ6Tct99YdjtZCNwzz2ZjKlcDiW4LN+0SQwkj04+chZYlQCvoLdLydtjL2dflNeTm/wvBPLlUF4Q9W3KKxE0YSydA0KJwf33Z8e1autddGy0kTg917Pnzcs2eNm/f1dw2U03ZVKx888PH85qEpuunh6SmFG22uwocZ7bsvGkl7FyMw9g+fJjRpnHUlIrK33iCcwI99wTnntqnlANE9afVSwF4cq0Y0cYCeejp9uzugvuwxgrVeRys3HwC3AZWmmkJ+ty7AdiaiFblVjqY2U/lVFqDxsHos9qDyRYjizQwu9T4yOZtSGW4hSLrfl7Y24POe5cbUfOdWSB2aGdJWWcB9bGYdu2eJin9+HnWakYMYIsHz1lp21fMQeMA0adw8VmmwUrfm3WsSLUxsnEshEw1b8rlPW2x2R1zWqo+OGceCDMLBvGcxybqc2kxbMIsW3ITgwmsIVBHW25KxzrY10dYOSu3jwjJvO32PRypdy0KTvmPh3IL63Ni20MrYBljVY+6OWPF+blJeN58lrrmEbjawTbNmL9vzPOjZXD+jk8UP9R3q8Tdtjka20S88bh2h57Fj/sMcDtxr4AN0SbP1T/p8TrlfswO85xmunF9xsXB8Y6PHivPZFdY7J8FXMEfagTQgghhBBCCCGEmFFSyKNOAJK+CiGEEEIIIYQQQggxK9CHOiGEEEIIIYQQQgghZgFJmqYznYZpJ0mStJn3TpIE6R2/MwUpah2/86FH8E+fvglArfVBpf/R7MR6hqxZkx2vWxeGcUTOtuieP1Jev4nce6Z7/l3W14TjZ+8SYxyxZX+2fbi16eAkB1urA9hePHrymP3qrN3MRRdlxys2/jgM5P3bY15VAL7335nvzvPPGwrjWL8+O+byBKIegbxVu32ctWXhMGuBxGGdw49nJ8Yrhv2RAj8b1PrSMe2bH8hObrxx8vCBy/4wuO6kru2Tx8lRDyAk82dL960Og7guUP0fWnNWcBlXrZXdI0EYZ8IQQt8U9g/0tqV3rKWCa2nXewDAwoXZMduHrOwxRh5cKW+7LQxjrxHbtul8V9eqyWPPlyW35xfiPiqFzY/X/TmA2gbmGdhxxnLmmffk+unZKnneWNwWrPeKtSJiKmXKL36ANbhxfIjYr8emkesPd/FeVnnly/2ZTRZ7C55ySngdF5utZpzGnp4wrATT3uolyibE8+8yD+c6yHXX1k1uyxbOrxXV0N+S/SEL/TSG2PLkwcYUwBj59NWM7+wf6CXSM0/itDjj+Vhv1gfUtFFvHsBh3nWeSZHnfcZ4fl2ejxv3D555FfOZz8Sv43HZxn/GGWEYzwO4bGyHz3jzHZveJryrbD/OXrs2+9k2i/s6ayHn2a1ykm0fwPdxMylsfDS8kBNmynCkZxUapTS4PfwBJ8Srxw5Do1lbrhRHomE2+qA8zBg41tGJetSMxXyfU39GulfWjQ8w8zdnLB7ricdRWP+zaFgsTQBqf4dgYpXE9nV5DeZy+v7tGjaemOXIeGWxjYjT5XkjUl+xi+a2QNj9W7/h887LjnkI9CzNg7kJEE4g7KTVNeeLXJd3QkWsff7zcde6dUn8AYc3SXJWCvxoppPRAqp3p2m6dqZTcTgjjzohhBBCCCGEEEKIGUc7ZghJX4UQQgghhBBCCCGEmBVoRV2DXPC7357pJLjMLy+ZlNWUu44OA0n2YJe0l1jqc0Yo9+Nl8yyV9CQLdmV6sEze2yfdWzbNkRpJJcsm2z1dJi8zN2vCl1kdFtNH9z3xRBDUSZLBS887Y/LYyhD40SNnnBOERWVdhkBu1m+WzNN7bh8Nl8J3NNHSvexorzp/6emj8jRlXeJ0mGpQJFnX7t0mrOekyeMKrd23VemB/izPjz32vCCMq9mYkx8DvVn9L5r4ucpUq6HUASSb3L8/DOEqyfXA5jFLWO2u98uW0fFSk/8U6dAiKntHGlN44QuDsECKg7isutidSYesfDnAk4yYth2VyVpZCGeYlduwTsr0D1wAI8VMHmq7GO4HO6vxfqpYDdtXaTTLryGKf8kSE3+xfl9qCaTTTjux6ed8rAwPBGErqRNYeUkmLXl0c1iPOcufVjWSMm4AHw0lfaWjjpo8Xv6c35w8tso/boe2CLnYasOydHqKpvZqPllaXumfZVV3VtZclwAzJppBMFBzkl1C0VNXmupv+5UAavcVT0MffRh8yTUVSCA19OSnNg4uDztJiEmhPPmU7UC9+UMOORUADBWzfLTj0J499aNbcV441tTYhzBsS8FSVwDbu582edzZ95N4HHxPeUVwznXEWngMR5R0tiiCc1O+ndXsxTs6wr4jpia0RcHjnG2i/Dg7x+QwjrOjI5zPFjuyY2s/8P9v7+zj46rq/P+5k+l0Ok3SSZo0aUlLCgFKKVigPClgRRAWUUFg/YlUYPEn6uoioqvsKoLi+rAoPuyy4rqKC/KgPwEFFHnQqkArtPJUoECBUtrS0qfQhjRNk9zfH5Pkfs935nxzZzpJpunn/Xrx4s6cM+ee53Nzez6fo6bkWKztcp/lZJ7rYz67aaSqsblZP0tE6DpIJqN5K6meMbs8j14dylakqkrYvDT401CrqJdn1rlpJJPR5/2NXUHdsw7xhsVVn+Y9g/g6oTXX5Vdy4WudjuiQtXouapcVqSxg5N9RSVV3IpmM8RD+t+XR2mM5HWj1rBxDloLYVPzKZy1rHrdsKHydFbAlvwO/MxdDQsYOfFFXJA8+9upoZ8HkovPPH+0sEEIIIYQQQgghhJAS4Is6QgghhBBCCCGEkFElBNA72pkgFQA96gghhBBCCCGEEEIIqQC4o26sMW6c31xM+DX0KLuAlMceJkf0Plce052sTqhYUVhnlxsm09/c4fpxtLcXPopenxovPbp6jX9okB5O/XeP7tUT+TpU7e16+En/GW1L0SGtFqa6YdJLqWdJdK1tgmT+a3s2O2Haz26AhOXldd99buRNmwYv6y0DQeGRk1IGMSlxv7TKk3Nv3TjaE2wAy2Ns9WonKCPymFFhTjqvRvLz2Yeq+y1ePHj5kY98xgk64IDCWdTUL384+tDa6oTNnx/5ATk+TYBrFKK8h1AX1U86HfXHBx90o0nrD23bIe3BGhrc8TV+fOSrJL3tGpT/TINIM6V8QDKiDTd3ud5b9fOi09WdHmMamRjE/F1f2/7O50RP5Ae0dc5bnTA5VDI9W9100lF5ukRX0lYoXWLekvMS4Pox6exns37fO0mP8KaRPk0A0FQTjdmMnFQMr7A8IzcZ1/IOE55aM1qUx4+slMVL3LA77oiu9RgVY2XG9OnR9bHHOtHWrovqQPvXSXTRJLJowhoPAFAt1iU9f1r9TgalrCcjMbemlL9WSi6sy9z6cVwN5c3koAecRXD9dtcLUY7tvPWxRvhKWuPLMg+Tn7V5mAyT873l76TSkL6AOovOZ+UBKclYxko+fyqN4Z2UzEb31h6T8rP0pcRdj7sRly+PrvU4eeEFcTO3/uulf51lEisoyg9YxO1L+uczZ603+lK+t6gYe2Ku3qfBreM+0b56nMvbVVW5YbLbyepJtLvPU9LXs7bOraBu+P3gfExrcH3oZN1pD9G4yLLI5+qh6PPUMQB0daXENQpeA27dWcMpLnoOlvOU5QXqjCHAGLNuGo69WdINSwrf0I52+b3b7tXCwzuvH8tOqPu/Z/7sU3OWk6s8r+bodyld/3Jx05O8oK1tH280ua6qR1jnc1zPXN2GCct7zjIrl1g+gFbYANqAk5AxCnfUEUIIIYQQQgghhBBSAXBHHSGEEEIIIYQQQsioQo86koMv6ork8KMOH+0smEwYN25QS5An+xHbkOUWeQBIp8Vx4cYp2ulmKQ1z48k08hCJSJlY7ndD/gQA8MYb/jBLLiG34TsSBi0Na/Bvt+5rifKslSy+3d1btrifHbluY9YJ8yl29JZzqahpO/tDTljqlz+PPsyf795cNpbMsN7Wb+v2CmcY7rZ5p2ep9KVkJKHlsrLger++zNdddw1eds515Y9Svnm66iNaYeZDSiql3BQAXvhLdL3ffjOcsHRD9LlF9QnZxWUxJ01y48li6n4l1bS66mQ1y26tx4nsu9msm/8OIZ8YP979nSW38WZEY/UtD4mNr7tfCI1HrWrQTiEu3NzjylA6RLll/eQpw0Sda+WZDBMKawD53dVHvq1ARLeQ7KSaDdmerEcrk8bY/utj0TisqXGjpdORvHsf3QlvuGHwMk/0JhOSbaM8ALItkZxZT8GyaFJJDrh9fvv26Prgg914Up7Yo+Q8UnZutYUpfRV1vrVDpV8t2rDBWkhF+6rBLG0jduzwZ0NLp71yLUv+a+lPrbFsSbPl57w+mCoYbajbebEeVuKuZVqWhmh+61NyOWfuk3WgfS6kfFzbIMjJQo0vZ561pLtxMedjv/Q1mTTk43LQqrBkWsy7MlG1kCaExDeddp8HZfKWxYkjVTdk2roNS5Gq6jScexeTkMiXnMNq0/5MWffWcs6dOwvHKzGLsdES8diY+neJW864Qzvub4qK7JFl5j0XWQ0Qt3GMRaq2OlqBq5UNkZxWpJoeAFKrX4o+yLUn7T4zmVmUN7AWUuthK+4aVQ5tNiG7MXxRVyTzvjhv6EijyCs/eWHoSIQQQgghhBBCCCGk4qBHHSGEEEIIIYQQQgghFQB31I01wr5o27DWFYktyvVKqiElF/XV7hbuTiEXktu7809X9SNPXdSSWbldX8pU9U5pKRPUkkHvaWw6oQ5ju7VESSlKlRH40KfixkWe7qR3hM+YGh1Hm3dKk6h0ecJsQhVMyizyD/OLwlJKcidlvk2yb6lEZJesVqdkyX5RnzVO4RIF37ZNRWuOZHWtbpAjFbBOInv88eha14Hsn7r+ZZfR8mhZJbIOpJwbcKVuxez49ynRtDyusTG6zpewRu0rxyTg5rlWDo0yS13z0JIm+VmFpeWpr+oUvfrqKJ/y1Gk9RVrFkXWi5zDfAas6vbiHUtbUFD5pG4BbrzojYlz2KUmZPNlOzpdateeURQeK9E1pnpT+qTxmqteK5KY5YVIVuGGDm6Sv6a1sxFUwlYqUr2lSuvF9kkE1yfT0uO0mkVLAvL5aZ5zmWg58edbya0N2WIoaLK8occtWhhOpE5bHhpW+9N/QE7msL9V5nTUwzsmHQJ6UU8qxa9P+38n5QNuW5J/mKihFkms8iyar3f4ubRfkeqtvLSXKlqwuAdWGaf+JwhJZ5YkO9xRxeWpnSfUBdy1Gu98DIFGt29BvUyPryzoU0zkxVz0HpMT9rJNAnd/oZ245B1jiYOvEaNGGeadrp/159CkqbeWl0f+1DU5ceXrMeSpPXi/buwzH8+Zl0Tky1z+Hyd/paCnLYqMcxBlfiT1hnxE96gh31BFCCCGEEEIIIYQQUhHwRR0hhBBCCCGEEEIIIRUAX9QRQgghhBBCCCGEEFIB0KNuhFh21zI8fdfTSFQlsPeRe+PI847ESw++hKU3L8WW1VtwxtVnoHG/nGnF6sdW45H/fQS9Pb2oSlbhqPOPwl5v2SvejcaPj3yFtP+D0PpbHl3ac8DxohNpbt/ueitYnhgSy/bFiidtEbRtgWMHodOTP/T5BOkwhfQkqTY8VSzvJ4nRNCYyzTwLjJaWwcs8Twl5DLtElbknGZVNp+94wqjAN9+MrrvrojS0t0it9NtSlVCfjSJvbnf7Z7205xDlrKlx05flru163Q2U/oTNrjeWxGo3mb72SZT+UZMn+9OQtiM6DYm2JJGfdZj0LpR9qdewuNDeKNIXMM/jUHq2yL5VqheW6bkkPSX93j35E0RUHu1b4/PTtOYinUXr1vJzXGspjfQndLyZLHMdNa63dkXl1P5pEyZEdSI9JXVfcm6nB8OsWdH1zJlumPSlk/nSPnrihtqjTo4NOZcCtmeODx2vlO6q/brk3KQ9JuU8mG6Z4YSlfB5DKlM9hoWQmX+fr4/+ke68PqybWz5H0h8sL8P+5w7LT0rieERZg9RaVK2B7ktP/06259y5bjzLT0qOIVVQxxu0LutPQ6CbU477dNqd9xzfNdGv8zzp5LxrzcGKlCy2/J1h6plS6dXVRR5yVtNI77OetN8HLa+L+JP0o/tSGXy5HG84K708Hze/h2Upc6TlwVay1WXcH1pGv2WgLFadefNg4b+H8uIZf0+4Dwlu35XPLnLN6FbeiikxZrVNqFx+8x79l4t8ldiP12+I8thUY7RZh3GvuPf2+RiGYbzf77aEoEcdAbijbkTo3dmLpTcvxfv+/X048/tn4vk/Po8dHTtQt3cdTrrsJEw9aKoTP12bxslfPBln/+BszP/0fPzxmj+OUs4JIYQQQgghhBBCyEjBHXUjwPb27chkM0jXpLF51WYAQCqTwvjq8QXjN+wb/RNI3Yw69O7sRe/OXlSNqyoYnxBCCCGEEEIIIYTs/vBF3QgQ9oVAADz2y8ew5OdLMOtdsxAkgli/ffnhl9GwT0Psl3Q9PQG2duQ2SqbT7hb5jvbo2pFYwD0qfmuP+7vt26LrpgmIRTE72C1Jq2RCzHubx6nLgGLkDGL7dVJJD2QyqY7N0bXajz7QLoVuHRepRMs/dj0qdyqppCyiTuRO8ozKo5TEaVlpavXKwevu1v2dsGXLomu3Gt26klLPpkZVAJGxbFbJOzoKawszyW43Xlq0/bp2N0xmzJC+7t8W1Z2WUMq6sySDefUvA4UM6MADpzjR4iq3NLIZZb609MOR2xiUZav1cMhiJWq8Jro6RRpu/5HlrhYSWUv6qttXZktLTSQyTd2G8rMOqxJTvCVfk/OKlij3tEfXWjoqmSo2cet8OOXuUoFyodCV4Cu4bk/R/5OqjuW6JOciwM2zVNJZihqfaqbQ7yQpowvKPOq6k/fT+a+pqS+YD62QstwZJDpMzlXrOurho7k5klClejrdQHnzuBJZXQCfDhz5MkcnzBkcRkO1i/StPKr+Keunq8eSiPuTrNbr0kB6abe+M7KcaiLpq47qP9Gx1Qnb0S7iCUlcnjRVIBXngFtdUk4PuFWSTguJne4HcoBZOn9rkrS8AmSmdR8Raer5Tf7MGueyS+ppqrUVRbN+izsH19REnzNG21hIm4LaIp5FpQVJUq0Nsp+khEdFN9x4bvIJb1jsZxDjmduiT/2N4hvOOh9yrddziiy3OeF3FSE3lveWmbEWIomxyBqqcFSLuWLjSjdec7OY79UcIIudZwHjsahINrjPohbPPRdd72h121Dee1qzocW25hhLMjtwA8vXZcxQ2txCxhaUvo4gh559KBbcsAAdr3fg2d8/O2T8zas2468/+yuO+8RxI5A7QgghhBBCCCGEEDKa8EXdCJOuSWPf4/fFxhc3mvE6Nnbgvn+7D+/49DtQO7XWjEsIIYQQQgghhBBCdn/4om6E6NjYgfY17QCA159/Hdm9st64Ozp24J6v3IMjPnwEmmcbR1ASQgghhBBCCCGEkDEDPepGiERVAvd+7V4EVQEmTZ2Eo847Ci8vehkP/+hhbH9jO+75yj2YvM9knHrlqXj67qex9bWteOzWx/DYrY8BAE698lRMyA5t0tbXF3muFGEd43hbSO8SQNmQrIj8DRrb/Dv9tBeW9FupMuz2Mml/PhIbhdeC9nyQZVVhjiebCNP+YynTzyJKpFq9O/VaU6gGSKd3fWek5RnS17qPN09J4QXSI7LVpzxO3nwzuh43zk1D+tmtXu2GSduLY4+NrrX1RFNj1L7yiPdcWFQ43XelV0fCqATnaHvDD8ny/JGVl1JBqWq/706P48fnlm2L8LhpbIy8QDqUt4gca0YXzBu/4wufS5PvYyVKlOejJ29gmXtZnbBUXzofPn+SIcJ0kPQck+VuaPD781hYHnVWejL7eh7UflJxEpVeW4Drn6abUPYt2V90WZy5WxdAGjzNmeOGyUlh8uToWvjgAHA96lR3kb6Yev6R+ZT2NjoNy7ZMFsdqGwuZL8sm54033M9ybpVlKWaoxez+efOnZKPYzN/QoPyFxGftn+ZkpiQjK9iVLNJxfGX1b+S9dd8SYZvb/f8ObVnxyXayPCYleV6pxlxqrV8yqrlGGfhs4kwsj6j8xdh/A9dgy38/w6NO/k7XVVWVXpELJxE3LC56LirVY1ji5Cupn2cNjy5Bj3pCSSY948bw8dTJl1Q2VckyTav+LX9Ry4NQehjrsIzwt4w9j8Rd+C30OLEqUtwvmdRtOORPAOR7a3rjWg1slNtaa6z29RY75twPwH7YHfgcxPN5330JAewJPnxkKPiiboTI1GVw9n+c7Xw385iZmHnMzLy4h33gMBz2gcNGKmuEEEIIIYQQQgghpAKg9JUQQgghhBBCCCGEkAqAO+pGgJqmmrzddMNFXxjJcfSx39u2RddasjOjJbpevtwNkzuPZ89qG7xescKfj0mT3O3cUtZl7xCP3h1LGRcA1NVFkkFrKzbUVnhZD9lslC+dRn1WZMSQe+TJ6iBkL7rSZbzWKA0tu41Lqic6lj4vIyKPqTytQ3SZFnJXI7t5VVBv7JiXKpd6bI4+NGedeGvXReXW6TfVRA1X26MacZ1nK7yS10iJY1k0HZYkSIVlZF5UWJMMWx2lMa2lBV5UGk6bpt1y93j6U1FFtiQRvoTKJHV1JCpS8uWTPRTIk5TXd6m+lclGv5NjTxdTzpHF4OsWWv0ls7xmjRsmfyfj6SpobvaXU0pH8+R46yLNY2PztMFrU2KnJwhLIiQLK7WdbW1uPLFwSBkmAFjDQSYv60dLd61uXA6JXH3WX19Szr9+fbz0NmyIFw9wJXg6v7IupfJYr/WyfvLk7xLd9r4KshZ0PQAMXWZnV+FxKeV8gDvP9ql/a06IH1qyYflsYXVpPf374uatt8YAduwH1MOKU5Ux9YO6+qUaWI+NTI+QM28UP5RSVMCVsetJcerU6FoPWJ+cUOd/5crC8QC37pS0ecKE6BlQSv8sm4hi5hgf1nNSfTZ+OrK/Ouq+avd5OWXJhgWWxF1ax+gmlHOC7uOy+ptjWmTLsavTtGwi9L0tOadEtnf+ml24jrWVjjQ2kXLZvBtYk4DsGLJPA663he6Eon1rVQU5n0W8LlXHjY3RtXYAmDhRfNBj2yNdt6X27r3l/aY1q9/JTimskvImZFlfeVZGIg3dgQbyb/lOEDKG4Is6QgghhBBCCCGEkFGFHnUkB6WvhBBCCCGEEEIIIYRUANxRVyS/vey3o50Fk2ymYehIhBBCCCGEEEIIIaTi4Iu6Inl12aujnQWTCy+8aFDCLy0SAFfqr20XJNrvwId12rn0pNP3s/zlpHeMtiCQfjopdW/pkZFJu54J0pvC8XjTvb/D8KVw8mEUPCaOrx1cfy0T6d2gDUoM/x/piyMtK3RRZJIPPuiGLVkyRVy7YUcfHV2fdlr94HVt+2YnXjodhensdyczg9cpbYnmM4kx/JE6W/Yv/BsAGcuPQ5ovau8My7vEQla0GGDa28W19ck4YdKWzupy8lZ5viPyh7ruZHlKNK7RnlGl4PjV6XzIwqn8J8Tneu3xI6Imq2sLJge4xdYemb5s6Liyq+rsyzlYd2nHV8ZAFtuy8LMM2mS+tm3ze/c06bY+5ZTourXVf3NhBLVqo9uPZ8yaNXjdcb+bhPQo0reWny0LG8lweNQ5/bPHnccnTIjqzrJnk/mSvoKA7ZMorY50fmU9SB8u025SeyfJyNqEVtywc97xg9eZxX9w4/m8CnWYmlvT2WhtMP2ShH9aQqcvypPR/VN0+gkToj6pnzMMG1IHp143Kh8owzzM8R9TjePMOZbZpYG8tfksJyPqfiA/6zBpjmUNGtm+c+e6YZbBsbEOJT3VoJdp+exbijWtxpxni8Dt136v1DzPQ8/N9Ro1YULBaI63pUbXz3DUV9x4ei70IZ/j6+rc9cV5thZ+zPpezt8C7Wqg6z4vkX1SPky/avxtqCcZy7/RM9Z1u/g8bXXyeXOwHPfGg6Rc53QWm5p8N4P/GU3PidZiJutV53/gQUn/kUnIGIUv6gghhBBCCCGEEEJGHXrUEXrUEUIIIYQQQgghhBBSEQRhGI52HkacIAjCUsodBAEqvb4uvPAiXHPNdQDydxprKaykqTHakq/la468R25JzpOXGVIKubVZ/07u4ZZ6ML2f25B2OrooFdYnpG6yLJbcVEuaZJrdPQlfkCNtsGSAVvoWm9v929GlbEzvtJfVKptGN4VsXimfAoC77oquzz3XDZN5ueKK6Hr+fDee7CJa2jZnTnStZYB1ddG1lEBrZP3oHfP28fOCuDptjefYe8DtMzIJ3cWdfmHdS2uyZFxZcD0OLe2lTEPfW2qoDBlWOaSvkkTHVvcLq07i6oHlta4fWTarftravLfq7InmFZ9iG8ifj1eujK6lqkP3Y2uqkHF1+nJOsNYCGU/fO9O+NvqgBrDs47J7ynIBgFC+Yvlyf9iWLW5YU100NrZ2RXVcm+x0I5ZDu2Wwdl1UTkuOpNdfn2rekrAaKnOkuvxj48nV9YiDHspy3tVyOZ8aScsrHUmZIQE151ZrLpLoAoiMdSvrAJ9k3FJu6bbJ9Kg690WUN7O0hZaNRlz9oKpj+byjy+Zb2iyZv6ZpnLCzWLbMDRRl6557pDcfmWQ0lqUth46btz56nq8SXWoOkImoSbivZQaKJbHxdfcL2TaW9t4irq66mDXPN8lYndwK0/JxH3oiF3XS1zzN+zNzfbf6v2XT4atXnZ7sXMX8rSE+y78h9FQnFPp5VSyf1S25r8yWfiaWMmedfWv6yXSJ8Wv9XSbQz3VSuS7XBcCt/kmToutNm9x4kydH13qtsdaXgWweeeQ8LFmyJPBmejcnCA4OgdtHOxtlYL+lYRjOG+1c7M5wRx0hhBBCCCGEEEIIIRUAPeoIIYQQQgghhBBCRpUQ9KgjAF/UjTkSiWirc6knGmq5VlqcnJSR+5Ct04osSYe1zVyGaUmBIWnqS2e8YY5cQmxVt5Vyrhwj7oGY1kleRRzc5kW2m06vNu2XTTY3R/VjqZFk2He/64bJk17PP98Nk7dbvDi6/uxn3XiegyEBKMmUrrx17dG1rHC1L95SdMi2seSzsi/lSWok+gZy4KgweVJwyhoLluQlphzDJK60JOZJZBpLXlySLNaqHx1m6Ux9cjOlLXTa3jhRUspbNTIbWhYix6+UrgCu5FRma/82t0619F4ix5CeE605zEcxKlLrQGFfPqzmzTupUATq+XkkmdYs2kMXVAyTrUKCqJHSJ314neyeup1k32pocNOXp0K3Ge0m6zzPgsE4UjjZUlhSmTeNWCcOxp2n4krbDO2xPjm8vtqzOKSLkJ92eR4aLNmYMQ7zayMlrgw7EjnPGoPUUvtZa6WzPur6//GN0bWec8XElRKTX2qeUj7J9VBlUp6K2503zxae+5Kqjp36KfWIVol5fK4fq92ctSauLYemVOlrubGOuLaIay1iPe/oe/v+DjH+7tDtZE0BvrbSFgwtLf5nbpm+zr58RpCyWEsGrsdovYxbzNHnMZGKaMv+QT7H6Kli/PjoWq/1ljtAyWOFkN0USl8JIYQQQgghhBBCCKkA+KKOEEIIIYQQQgghhJAKgNJXQgghhBBCCCGEkFGHMl/CF3Vjjt7eyA9B+yLEPVG+vlr51kjTAXnmuPJ3clCeHtLTKZP2ey5t2RJ936usURqEl0Oe7YJhwdHVFaVv2XxJirF18FmTaVsTx1uhRN8I6Wulk+gSdZzn4STq0rIbO/bY6Fr6UABun5HxAOD//J/oWtrR7J993X+zle3uZ3HD7qTrOZNqLmxasbnd3RQsbMSwf4vrGWL5GEqkr1g26/4maXhnON5DhqWK43tneTlafSRumOWtozuCnDCU8Yj0cBlJjxDtBdfVFX2uV/NIX7Z+8Nq0vnGq2E1f1sjmDjesXgyATM9W9wai7jKiXqe1dHnjWf5m2CjCWuY60aQfk7aP2rItCuttd8N8vjjaY8bxMGvf7AaavkeF/T91MeUY1WEyeR3meox5MqywfBHz+nFM/8ZnlkdpZrN+HzrdNnK5bKrr9keUE1CPW7ZaZ7FR49dZj6N+kOdt1CH6rtUAen5IR2WtR9Qv+lDvRJNzd944NLwR3bU5SiNVbUymlvmTZcRoeVdZeAwE9TqUFmN02wY3CelFWVXlhjU2Rted4rlFZ9GZj1UdWDKZlGedSOXVgVE/c+ZE13IwA8Dy5dH1xIn+NKwHMekzqB/sfGNUewdaHoctM1A0hv+pXHeKIW9u9VGMH62vXnUdGGu9EzeuN58x1vQ868zJeQ+xnvXFKrPOv+ePmz71TCyrwLLwy/dRLexDXV2tni+NxzDv8yAAZMUNnYzF/4OlW8zVKf2sYnl8xiTuI2YGomzqWVouL3GtFgGgJ5mr/z6+wyJ7CJS+EkIIIYQQQgghhBBSAfBFHSGEEEIIIYQQQgghFQClr2OMvr7oeG9rV7kmI1QzWm4GsWU8I+U1eou53EuubpZMR2lISYeOKqWd27fDG0+XzdpG7eTDUA86klwjkXRayeU8UtIUlITYyFdc5L20pKDbsyUf8MsytXJIftbNK9UfUt4KAKedFl0/+GB0vaprihPPkdy1uGFyMspTdqo69+EoJKSEDEBC7tE39L9SjpQnGzNkn1ISkS+XiK5TpUhXdCIq/7LtZRtaMmfdHx35k5ZTybC4+VdYdeeT1mZ63HxkqkU+lNxJ5lG2hcaSZco554033LBks1/SV91QWAKZrHa/T8hBpfqn1JBI+WDevG1IdmpqxL1VU8iy1mejOrbm47SSdTkyO3WDtPgol4nXXnPzISX1jz7qhsn+qlV1ElfK7J9YEzEtBYph8uToetw4N0xWj1bLuXNrNJ+NH+/ObXWtUZ/R2TfLI/u/0UeccW5J6C1ZlChMQi0UKWcKK0J6LHDkcVrWGHeBt+SWEmuythDpWfJxzbZt0bV83inm1uaPrJv7bmBpz3S9ycGtfydlsfIhQQ8Gy3vFsn8oA7LfaWm8t0+WKR/OOifTtPqgXgCsPh637qz1vJQ5s0Qrl7x4vrnJehaKaR+SUFVVXR3vmdK0+jDayXqeim3XkCxsJ5H3Oek+Z2wTFkJNdcZ8UKL0Va7NeQ4J6cIfetrdeIme6O+jlCqc84ysu1J/WGLMbzMKAfQOGYuMfcZ8VyeEEEIIIYQQQgghZHeAL+oIIYQQQgghhBBCCKkA+KKOEEIIIYQQQgghhJAKgB51Y4zeXuDNN3PXGza4YTt2RNfjx7th04TtyIoVbpj0HNi/JfqwarX7njebjXwStPXBFuGZMJC/AaQdgcyX9oiS+bf8l3TZ5P0sexXTvMrxTHC9LVJJ4WEhfadUJruzkSdbXM81C+2vIpE+OIC/7rS/hPSu0u3b0hJdn3+++7vVq6PrY4+NrnUdS6uaiRPdsLq66DrPG074Wci2SaddDy3ZvlhhtKFh3iZ9gxJdnW6gYZRYKz3wlCdPynO/rV1uP7D85WplnSg/lB5EnmYDHpWAbd+S76Fo9H8ZZvkLlYjXB0b7uFn+PKL+u1S9yqjSh87yfbH6ruzv6tYmkyZF+appmOGEySaVbSjHLuBWgbZ+kmGTJvnzsXad38/SsKFD7Z13Rh8OPdQJk/51KTEQp08/xI3Xvnnw+o033PEr60DXcXNzVHdyjZo7123ruB5UeWE+XyVVQW++Gd3P8jjctMkN89lC6TbU656kuXlawTQAYJta732kqo3HPtkAao6prfYMDt1QgrwVKqa/pfM77dElP1vrtJ6nHIPUqDH6kn5P3jx/v6SYM0WgtV5pT1vLhlQWR6Zp+mSpyUf6lebN8RLLtNhnaqs/S8NJwL9OLF/uT0NPnpZ/l2gb03O5QbS16iPWc5MvLKHzKL3PrLaxkGlahdHE9WeLm2Y5POqKoKT60mWxHpR85VbfOy1t1aOFzIflFRnTW9S6tfwbCnD9aK3n/dhG1KoerXEi1yzTB1mQF08mUoyh+gD6wWhMQo86wh11hBBCCCGEEEIIIYRUBHxRRwghhBBCCCGEEEJIBUDpa5EcftTho50Fk6qqSLcnt0YD8XcKmyd2iy3c1m5xvdta3ltLcqXUsNqvWDB3/FuqxpJ28hs30Lu0HamJkRFLVmfJYXxp6Hiprq2D1zU17nHtUlbqyGG0PFeUxdrSPneu+1lK0aSiQ/cludPekbMC8ffTi0ow29bqQFLHa6EK0JeOJKaJjq06th+ZUWdbvyuLqqoq/BNASbSUXKtdKERlsfUc4EhflQROpp+w5K1xpTeaUgai7kDG+JL5l9JRnYyUwluqOo0s2rJlbpjsTtb8KdvGUFM51zqerALZX4B8W4E4+dCYqp9XXomudR+RNxcNMK2tzY23Mbp5dbUrfZVls6THMv+6LLWiW+TPs37Jr/x3S8fOQPVbS7Yq0f1Afq428mj1QVlWK57sj05ZhkrEStRqnDi/KTWu/l5WZNwBC3g7fZ7kWXxO6SzJJKX8UVskiI6h/zU85Ywb3beiOSyv3WLiFKerxPm41DDZseW1tjCYNWvwsjuZgQ9reTG7VjFS0lIogzzU+9wI2H3c8iaQWM9Q1gJQCqXWR1zviWJkpeYfMDHupT/HfSC35hsrT3p98UjeJ0zw76vRf9tt3Bhdz2jJuoGxB5Ef31qWl6S0w9B1YK1Dcf7YC8N4mSVkN4cv6opk3hfnjXYWTJ7971eGjkQIIYQQQgghhJAKIgQ96ghA6SshhBBCCCGEEEIIIRUBX9QRQgghhBBCCCGEEFIBUPo6xkgkIv8Ay99D2ylYR3H70P5IcW0jLHubiROja21bYNkpyLjaCkH6VWXSkeeD9AgZMmNGNMf3S3wv/cwAoKs9ui7VAsY6lT4ljSmaXY86WT+ON5kqTFdXVIK4x67rfMkkdRquvYrrs5ZumOJN3/GzE4XRdSU9PfJuLjJm9Xer3LIeM+rmMs1ETM+THtXHe8VO97j2LTpf8tpKQyP9tuqz/rormVJ8XyyvITXQnbY32jeuDVdMm0QArl1bEXY0JWHNpVb648ZF19Y8ItOoTSsfycWL/TeXPlTCgwozZ7rxxA11W2zbVjg5AJg0Kbp+7bXoWttNptNR2+v0LesnWe48b7KYWP1H9hEZJqdtjeVzp9df6UNqIguuvarieldZYzSuR1RcivHBjJuOuO5T65A1f8o1K10tPD21X6lVj8YA3hZGa2AmGW++XL/BnevkOK+udp9BHH9aC3k/XRargmQnl/HkwFa/K8ajUT7L9RqqsLR49tJVV8RjzSCb2906lvloaizNS1DOb83Nbh+UXoh53l6iwvKeYcUTaFL0T13HjieeMV6t5yRnvW1udgPjPjwaz2jmA4/E8rH1pT1UmnGJ63NX4pwo63/7djdMjnO5HgLApk2F0wCAhPXHUkwsezmnSX0PpkMlYtUdPerIHgZf1BFCCCGEEEIIIYSMKvSoIzkofSWEEEIIIYQQQgghpALgjroRYtldy/D0XU8jUZXA3kfujSPPOxIvPfgSlt68FFtWb8EZV5+Bxv0aAQBdW7tw3zfvw4YXNmD/E/bHsR87NvZ9xiUj9YG1E1vLiiR6F7Lccr25IdpOv369G09KEfRuZamIkNca+bs33/TH02oMS4kj87W1I3o3nX/iu5BL+NUGjkQQcHfaZ7ORdGX1cjde3DqwkDKpPHXBypVRnlr2cYKk5FfWQTrtSi5k2XT61pHsDQ3RtVRBaKmNlGMkujrdRDpEJWs9mKyw5aJiW2a48WRDaTlGTFmX277uv2WsXh1dz5njyoocea6WX8hERVl0X5LoMWQpFjyqrqKQeenqcsst+0l9tSinJR+JK2+10LpGUQmd6XonaNuG6HrHDvdnUiZiKXCtevRJFwG3//vSA2wlSFzFr+zGuotLSdaECW6Y7DOW9NWZm5YsccI6//KXwevMq6+6P6ypKZwx1Vn7xJjdsMhN4o03oms9NmSYbF9L/luOLqilQ7K+xo9348oqsOpV1r+lPi1mLDsSPEfeqjqT1bks4krXrQaIW6BSvSEk1gOQqAP9r9XJdGQboedZR+4nG0ouDPqzbuC2tuha3WBCs7B/kO1kSAlln9NJ5q2xnkVE23RArtOW9NjQvUlJcUJlsi8bzd3rVsKLtELRyCrRWZTPO5Z8M651QFx1ZbkodZj41hcdz5G+mmt4yh9mZUTajBhpJKy5yCpAKfNDOaSuOn1LOmrl3xhDCU+8phq1juox67m1ruKMHDhyDlDjxJru5RRWW62k3z5JazGDJs4aEgTx0yNkN4Y76kaA3p29WHrzUrzv39+HM79/Jp7/4/PY0bEDdXvX4aTLTsLUg6Y68atSVTjiQ0fg6AuOHqUcE0IIIYQQQgghhJCRhjvqRoDt7duRyWaQrklj86rNAIBUJoXx1eMLxh+XHofm2c1447U3CoYTQgghhBBCCCFkrFHaQTVkbMEXdSNA2BcCAfDYLx/Dkp8vwax3zUKQGJ5tu1XoRQb9cgfdug3RVmlrx7lWWcjP9dlo4kgm3Q2ZtUkhs9DbzFdGUsZ6rROTW5tFxpqbXWmbtZ1byqS00kTmX17nyULM7fTR9n0tW5X3ltdCiQrA3S4+rdmdgDu74m1ulWVLJdUkLuQ2OkyeDmapHqSUy9rVr+sum436lnWynHNCrrqBk8dW99RaR3IkCqDlcfXJqGO81OGeItsgTpW1ziST2dIS8WefLRwPcE/MbWpy+66UIfaINtywwYnmyJisQ7LkCZiAv031SWFSrr5zp9vnPOpcAEZfKJcGyFcAQzKig6S8VcvmpRJNllNLR61TO+VnrciVn62D4KQ0VeZXY8kfLclXU50hS3aq1S+bccr92GNOmBSkN6gJTmYlNW+eN5Oy/t9Q/xZlKQZ9ihprLbPUTrIt9OdaUQfWwZZT3c3wTlH1Mpfqik4GTTdE85vOv2WLIPtZ3tBbsSK6to63jSsBK1XeanVQa1GJewKh74hxIL7cTHZCFS/VLOcidW9fGrqzyrGhFym5yKqjemtbW8Xv4klf8+S5XcZzmIwsrs0TkEvUljtWEOrUV5nHtJLwyarU84PMyuTJ0bU+8Vg+S1jPgxrf0NCH1ko7ldp0afYP0t1Dj3k3H+46nc365w6ZpjXMG4SFTdwDWovCWcMN+axuHF/fUpmUss+4h7nKU5oBIGEdnx53jpRpWPJc63RbjawT2aAq/YT8gwJu2eTPtCp//6znAUW1k/UY5shdrVOh40pfi6m7ASh9JXsIlL6OIIeefSgW3LAAHa934NnfPzv0DwghhBBCCCGEEELIHgNf1I0w6Zo09j1+X2x8cePQkQkhhBBCCCGEEELIHgOlryNEx8YOtK9pR3avLF5//nVk98qOdpYIIYQQQgghhBBSEYQAeoeMRcY+fFE3QiSqErj3a/ciqAowaeokHHXeUXh50ct4+EcPY/sb23HPV+7B5H0m49QrTwUA3PSRm7Czcyd6e3rxyl9fwalXnoq6GXVD3AXY2VeFzV05/wbL8kV7YkgPsGzW3WjppON4RCnvCevYculVoL3JhL9CKhuFbVP+XY2N8CLLo32nZNmkF1xXl+uNIr0cdPa1V5kkrjWQ42ul/J0ywptGHpOeUGaibW2ibe6/372BNFK58UYnKCVunpI+OMpIKVnnesNJnPKk3amjqkp8kOYWqiKdX6k6cLxwtLHGa69F15s2DV7W64YSffCuxUc6QbLYp50GL5nHHx683mfWLCes48DIe27/7OvuD6VXR6/OV3bwsjvt9weTxXHqFG61ag82n6WH9kGTfbA+7foM1s2J8qX9FeXn+rmGyWE5EIX52+PuXFRdHfkMdqguIptqn2a3bJ2IyiYtoyyLKz3mpYeZYw8Dd+jJOtc+aNLbSPoRAkAmGXk6ZbPRnJjo2OpGlAY0S1a6YT4jN8CpoLlzDymYHADU9myOPqiONkNmWppEAcD06dH1/PmDl50NM9wsivtZXqN6aMs53rK+kXOm9lGNa6nYZ4gNZHvMaDB80Na1u2GiAKmOqI4bGlw/S5mE5b+nrYFq4/o8WsT1VZLrhvZgs+YEq+F8hbX8oywPNstbzUrDwuehpevA5zMFOOtX3gQt6yBmHrt63OewjKgD3Y9lMh3t0bXVRVJF+Ef1iWdC59lFP3AaN5RVoLugDJNTk/SAHQni2ila7ZZO+33irKaX/n76SUJ6Bcvf6XUoLtbQSMkmtPwghxntx5zydS09v1iTa1yMZ13ns25gyyhazyW+eALd/+Wt9TqB1qw3HYm5bBgen95yW/PICPYXQnY3+KJuhMjUZXD2f5ztfDfzmJmYeczMgvHP+fE5I5EtQgghhBBCCCGEEFIh0KOOEEIIIYQQQgghhJAKgDvqRoCappq83XTDRRBEO4q14kKqD6wj2euTSmrVXlhOlSnmyHEZpjKW8myBbtJbpVdG+dCSx77maYPXeVIxkc9MOtomn+lqd6PNiiRIejt9Oh2909bSWimDW7Ysul6yxI3nqD+Wr/AGJmREVaft7ZFcovbEE+FFhXX3FH4nn7cbXVxr2W2PkJF1q+Pgna33UjOopLU9aSGtbdnHCZPdoqdtfyes+djoOvXLn0cftAZRtPUdX3CDpNLBkr46eVZ9XOZxc8sUJwzZKQXjAUCHqBJLcSGbe8cON0y2le6DcjhI1bBuX0cGkXXHUEqMm7Y2VwIt8+VKsxWWnMHQUvikhrqcUg6spx8pHXXmLACZbHTvnuqo7xrK6bz+71RenfqhT2poNUCXX9KXkIXTmZQy+VZ3DMk86zqVYU89Gn3/4otu8lKK+S4hYQXgjm3dkUVjrT/5w4PXz6l5cPny6FqrfGRRLemrpey0ZKtxcdveTW8rorGxeqX7O5mXlhb/GEqL5q1Va41rE6Ey1hGFpazOq7XrEquS467hlvYvblipUqi4YXmaLxQOs+Szlv5LpqF18rJj68VAhmlJqGz7mNK8DFyZP9qj3yVU2VLifvViTsybK3rEXNqh8iHmpj7DxsGp1/32c8NE2aqrU74gUzErp8jadLcbUd67WlmteJ6FLLRNgWsHU3RyAOyuZaqeZXlUH4mrcpf5z3tediL6rVAcLFmp1Uf0AmCtnYKEVVBfWGy9chFYc6JlQyHRYXK+sNZbMTjmzHHtJbZvj6617NmxGuqJ5o78OvVb8Hj9fvRnS8ceF197BkFp6e1W0KOOcEcdIYQQQgghhBBCCCEVAV/UEUIIIYQQQgghhBBSAVD6WiS//edfjXYWTOqrpwwdiRBCCCGEEEIIIRVECEpfCcAXdUXz6s/OHO0smJz/768M+hNo+wdpvSW92vLQnirys/QL0B4wcb1ptNeCz5tGp6/zJUjEPWrdOLfc8fxZ596ruTnygLBsp6Q/mM6SY9GgPYRmzSocURmUZLORv8Sq1e6G2OzR7xq8XvG4/96GBZtTNu1bI7OybZv7u3HjPDczvER0/ViWPzJs9gc/6M3jwoWFfwMUYVEi8rx2o+ufIz0IDYuuvHr13dvymrPym+lRvjIbo8y0CO+8PJ9B4c+zuV1vqI78aHZu8N+7ri66TiZT3nimj4yB7GevvuqGvflmdN3S4oZtFV5Hec46orFqk+IGysvOND+TDa47V1wDUMeI0fDwkz5Qqo43iLaR9ZHLYtSm+dUfhWnPJYkce082H+mEHXLVnOiDXmBEHTxwR/S19BUE3D6vq0C2qQ6TdpSybJMmufFkn5feohpnzoJ/qtLfy3xZy46eI6WPp/xdKmlMhJaJn9V/hI9hMV6RDoYH7dYuMdasRcTyrtL4vOf0b2Q8XT/W2Is7uVod1JdHbaYm61+HWXNF3OeYOHkqhCf9vLnaMkkTn2N3LcMLMa2qQFZPfbZPhXl8s9TzmoMus/LGjUOmfa37hSy4XsRjIuc67ROXcSpSVfJKUVa1DmWUJ3CUhEqj3ZjEZJ9sjulRZ/lBKpx2s3yuDV9rZ9xbnTCuEaCOZ/lU+saoNQ8WMwfLe1vP0iIfiS7Xp7KuLvIF1E0js5Lncxozi06+rHLHneus+vHV9x7hUUcIpa+EEEIIIYQQQgghhFQEfFFHCCGEEEIIIYQQQkgFEIRhONp5GHGCIAhLKXcQBAj/+tFhyFH5+Oj3XsEPb7gHQHGKiFQy2o6uj6/3bYHOO7J7mNEyRx9xy12iMq/0clsZ84UVs61ffI5bVxallrMc97Zw8mXVaakNXGKaw13uUihmDohbXSM57oup02LKOkAxXWSk57sBrDqwpgczvyVOkiM5tvW9Rqv+NaWuQ5U4vgghhJDdjXlHHoklS5aMWf1rEBwQAteOdjbKwIlLwzCcN9q52J2pvL8sCSGEEEIIIYQQQgjZA+GLOkIIIYQQQgghhBBCKgC+qCOEEEIIIYQQQgghpAIo0cSJ7A6UatFl/W40/XMs/yKJzr91CnspxPUoKouXneFDN9L+UZWCLGeiHA1qsZt50mmGu3oqiXKXdXfwCrPKbPVPZ9x0dcVPlMSG1UgIIYSQ4gmB3eAZtBIIguDDAC4BMAvAVgB3ArgsDMMNRaRxFICvATgKucp/GMAXwjB8XMW7HsB5RlIrwjDcL2b8s8Mw/H9D5Y2PkoQQQgghhBBCCCGk4gmC4BIA3wHwJwAXA2gB8BkAxwRBcGQYhm/GSONoAAsBrAFwef/XnwTwlyAI3hqG4VMi+nUA7i+QzAkALkDuJWEhFhT47pGh8gbwRR0hhBBCCCGEEEIIqXCCIGgAcBWARwG8MwzD3v7vHwXwG+Re3P1bjKS+D6AbwPFhGK7pT+MXAJ4F8G0A7xqIGIbhIgCLCuRl4EXc/xS6QRiGN8YrVT58UTfGCMNIOakVTRIty8mko2tLCZVMCtlhT7cb0ZJsyrChMuP5Xkq5dHLyc9xblUsa7EjkZOXpiuzoiK51JmXc1lb/zdeti66rq918ZLOD151d8WSZlrK2HFhtYYVZpEVfzUtE1rGqn3IUzpITxu2DEqcsRnrFUMpYAIBM2i8td8b6CGr6tPzUkT2rsO6eePODxFaWqzqQ94vbsa0bGGn0JVPeaHHbNAU1P8s5Ro4TjRw3egwZ+Yhbxxap3eCJxLJgkHUQV1GsvzfrwFrUJdbEQgghhBCye3M6gAyAHwy8pAOAMAzvDILgJQDnYogXdUEQtAE4AsBPBl7S9aexJgiCXwK4IAiC5jAM1xlp7A3gRACLwzB82hMnAFADoCMMw6I0zZVvskQIIYQQQgghhBAy5ukdA/8NK0f0/z9vhxuAxQBmBUHg/9fmeGkEAA4fIo0LkHuf9mMjzhv9/20PguC+fk+8WOwG/35NCCGEEEIIIYQQQnYDGoIgWCI+/ygMwx+VKe1p/f9fUyBsDXIv2aYBeH4X0gCAvXw/DoIggdyLug4AtxaIsg7ANQCWAngTwFsAfBo5/7tTwzAs5HfnwBd1YwwpfdXI77XyKdMcXW/c6IaNHx9djxsXXSeFPAsA0mm/XEvGtVSxjnTIUGe1t/vDNFIFJNSh+dIwS5YmJUdWmMzYyy+78VaujK5fecUN+9jHCudDc8890bWWyLa1DV5mVJiUwsaWQxajnRa423RTnlj5yNtp5ZaUZco67q6ud++2YsXgdd+8I1W+Yu42XrYsupYdBkBCSgFVHaRE3J4etxZ8VanbIm1I0ONKYa2uKrOcV8dJKdlU7Vbuo5NLxGlDNQkks1Ff0HUn5zSrHmXzVlW5YTU1UZvquc+pEl13HvJOLJaZFmkUMwxTPZ3RBznfALb0XtLQEF23tDhBCdFp8iWa8eYYp5hFpJFO+2XPI8rq1VE+1CCScwDSbj/wrnOqfaur/XWQEffLk6f7LBhKxdI2W9LamCeTFyPp9iVfTFgpfSb2Ce/tm/0ZsepKtdPmntrB6/psvPyuXefmUQ5fje8RJ5WMbzFQCt09+qkgnpWCtvCI26137oyue9WmjmnNxZdn1Wp/P5jRUlr9yHYrRqke0z3BqYNimDAhuq6tjle2rR1u/cjylPq4YFl4lGIzUozNS9w8y3h540RkrE89E8QeU3Ef5obBw8acA6wG8HVQK56FL14Yxvs9GW02hmE4z4oQBEEWuZdXcfl+GIabkZO9AsCOAnEGBk+mQJhkV9M4CcAMAP8ThmHeW4swDL+gvrojCIKbADwO4L8A7Kd/o+GLOkIIIYQQQgghhBAyUmQBfLmI+DcC2Axg4F+mxwPYruIM/HNBJ2xkGpo4aVzY/39L9uoQhuEL/YdVnB8Ewf5hGFo7/viijhBCCCGEEEIIIWR0CTECHm8VQRiGK5GTqRbL2v7/7wVghQrbC7lKXAsbmYZm4LtCslgEQTAZwPsAPB2G4eIhc+uysv//DbCluTxMghBCCCGEEEIIIYRUPI/2//+YAmFHAXiukBy1iDSORu5l31LPbz+MnL9T7N10ggHJ6/qhInJH3TCwblMnPv2dh/HosxswflwVWqfW4LufOQZvOfdXmLV3Fl3dvajJjMM/nnUQznv3/gCA6+96Dp/7wV+xV+NEdHX34KIzDsQlHzwEAPDnx17Dp695GE+u2IxbvvpOnPXOfbz37ukBtm3LXe9Qimvpv6Sstxyam93PeV5uPoSfQp5LU5ffqyAlPAjkdSbt7571LX5PBu2HIq2ZpOVDl8ql62vihlVVRZ83bfJmC9nstMHraX83yw1cJ053vv12NyymX8Pmsz46eK19BqVlV1r924Jse8s/xPWt8dex5d0j/SxSyttCto1lWaE9CNvF/aqqIi+yCdqLrCXypUurNOqz3iw7rGo4bPB6vNoMPUHUXZ43irif9oeR3o6y/rU3TaInGmspFSZ9Tkw/lKzfK9LyB+szfNG2bYssGprSI+cPtn6D28+kf04PXH/CpGHBJuc0y9pF1r9pjNMV02CrGO8Y0Rks353tYoP/m2/qbETt1IPZbvIe7yrtaSXnig0b3LDedn++pKdfTU10rdePlPBC7E661h9W20gs/5xy+2tpNlfPGLzW46Qrsq/Ly7+sV4meA6RfWKpH3aA9+pw3A8tOYy3wRsXG9ZCLa1eHuH6ocMtdlvYtgwleIm4a2thXFk63hZGP+mpZKfGMy/TzWqJjqz+yfNZy8qTSiOkzqPu/7AvOc0BSr1fy2v8gkFGKo4yvSnRGxHqLQNe3YeLnYUa14UGIoQ4VLMy0rCibtU7ENfzUv5N1VcxYcIKy/niCWqg+J7LVV10LH1ZfTYk8pvImGTkBlejPZtVx3PoXf0LrvzuSMZ/XSjZ0NdKQdW7NkcO9VsLwVJXE9s0WccOSNmCRMcavAXwfwCeDILgpDMNeAAiC4D0A9gXwJRk5CIIG5BaA18IwfAMAwjBc0X/YxdlBEHwpDMO1/XGnATgbwB/CMFyHwvwDgG7kpLh5BEEwEUBvGIZd6vtD+9N+NgzDF4cqJF/UlZkwDHHGP9+L8969P2752okAgMef34j1m7Zj371q8dgNZwIAXlqzFe///H3o6wtxwXsOAAB84MR98B+fOxab3ujCAWffirNO2AfTm6oxo6ka139pPq7++ZOjVi5CCCGEEEIIIYSQ0SIMww1BEHwJwNUA7g+C4Gbk5KqXAlgO4LvqJ59EzgvvAgDXi+8vBvBH5E5i/UH/d59C7t9DLy107yAIjgIwB8AvwjDcWCgOcrvmfhcEwR0AXkB06us/IKdr/qjndw58UVdm/rh0LcYlE/jY+6PdDHP3b8DKtducePvsVYvvfPpoXPq9xYMv6gaYPCmNtpZJeG1jJ6Y3VaN1Wm57QiLBf0EghBBCCCGEEELGHnuOR92uEIbht4Mg2ATgEuR2120F8AsAX4ghex1I4+EgCOYDuKr/vxDAwwDODsPwCc/P4hwisQ7A/QDeAeBDACYAeA3ArQC+Hobh8jj544u6MrPsxS04fFa8rfWHHdCA5a+0532/al0Hurp7cUhbff6PhiAMo+Po9a545xj51avdQKGfSD3+uBumNZYD6D3JltxGhsXdZq71jzLPOg2RfqqlxQmqF2Gbk1MGr/Vuenk7LQd79ll4mT49ul4uht3ixe5W7/efLjQqra1uIlIXZWzd/+53o2udfymB0XIYebtZQpGb6FKH2bSLtlbt2dnll0U5sq6VK+EjJSo2pbRgWzui9F991ZuEI3+cM8cNu+uu6PrCC92w/faL0tddXDJj5Z8HrzvnHe+Eyd9pKZusLi2Z1WNxgDxFh4yoKjkhI+sExRiV8bQEPSUzmTe+os8Z1fYZ8W8EnV3+MSSzbClQ4srqtMxcji893cgxe0jz625guzGv+NANbM1NMjOyUnRB5e8M3ZiU+qRUQZM10bqgh9qLYhO9DpPSVGmL8Npr8DJ1qvtZ1rGewuSc8//+X3Q9Z47bCzs6os96npVpyPwCwFFHROuXnCuSSXeezUhptqGp6VajQ0aVaWjJjuyDuhvIpm9rc8Nkd0r1iHlXr8Wl9DPArxtWdSAlWpaaSi/78nbSxUH3A5lmnrTNknyJ8eBIL9U4MedBWcnWc4ah190q5ONSvgYAmWrRt2QFvfCCm4jUpFvte/TRbpjMl2xrXcmChJW+xlc/MSX5gFv/UmoPKPmcYxXgWQAL3NuxeJAdTafj65A6nhpD3ae9358XD6klS/zpn3JK0ekBcCdo43k2r+7iDlIZZkpd/T4R3dXKXkKObdnWRvsmfJr/Qr+z5j7f76yyWT4jVv+Pm2e5TuuHboluJ3k/HSbT9/n2AO7iqZ4R5JSwcaO7fu0lLPMbGz35xRBSWNl39SIuLXKEBNfqqhrHgqfH/RtlwJInQOhPgOxRhGF4Pdwdcr54VwC4whO2CMA7i7jnRzHEjrh+yeyCuGn64Iu6USRU88yt97+EPy59Dc+tasd/X3Y80uPZPIQQQgghhBBCCCF7Cjz1tcwctE8dli73yZVdHnt+Iw5szQ5+/sCJ++DpW87GX657Ly79/mKs29Tp/zEhhBBCCCGEEEIIGVPwRV2ZOWHeNOzY2Yv/viPSSj76zOt4ZZ3rUbdy7TZ89vuL8amz5+gkcMzBTVhwyn743i3Lhj2/hBBCCCGEEEIIqQT6xsB/ZFehtrLMBEGA27/5Lnz6mkX4xv8+jnQqidap1fjuJW/Fi2u24tAFv0JXdy9qMuPwqbPn5B0kMcDnP/wWHPbh2/Av58/F8lfaccY/34ct23bgzr+8gi//91I8fcvZBX9XVRVp//M8ADaKnX7a/0H6K2i/Bp/nknWkvKaY87cH0D4R2gtBEtOLIimCtrnvTh0LiO3b3TDp6aS9h6SfmqxW7aG1dl30XnzazJluoOcYc+0TIa1qlBWf07zau03mJbFR+XdJRF1pDyeZvm6K2Ee7Gx4kaeGHUlfnT0LaYxzSstkJy2ajNLq6djphyeS4ovOo7X9kW2t/D8tzw9fF9bDQvn0Sp19YY09mRMWT/lQp3Yjydyof8t5d7d4smlNAKfH0GJV9UKcxcaL4YHnMyEovptHkBGHVv+9a3y/u/KnGSSYbXR98sOshJD3l9BwgkT6Vy9S/B8ksrljhhkmfmcmT3TC5hMyfH13Pm+fGs6pHVnGe5anwoaq1/FB7/P5sklTavbn2uhtAz23z5vk93mT91HasdQPbRWTLq9DNlPs5rueSzIhKI5mO5nXLK3KnO316h8qWLe7nmhrxG+FRBAyxTlj+dRJr8jC8+byo+res7Jw5WAbKQgORUTCQb1gqP1ttaPnWWnOY7FuWj6HEmgc1Ig2dmvvsYiDKpj0gZXNkrHnckyedfuzFxkLPN3H7VlyKyb/Ph07HterOqhPxXBC36jqrpzifre7kzAFWHq210uebDcQfQ9Z6bvnMeuZg6eEMKK/UuM8LGsvn0edlB2BGc5Sv1avd53hpnymnrYw11+l5W84xug1FeaQ/YTrtnxEsq0KkXR/MgdRD8HBFsmfAF3XDwLTGifjFv52Y9/32P19YIHaO8087AOefFr20m9Y4Eet+l/MgPGL2FKy+60PlzyghhBBCCCGEEEIIqRgofSWEEEIIIYQQQgghpALgjroxRns7sHhx7lrvqG5ujranNzW5W9WbktHW5s2thzlh9WlxqIWQH5nHiuvt4tZR6z45jy6AlB+ovfV9rft4b+WccC6yr7fny6JJialOQxf7ueei6wOEknn6dDeezNc0LaWIKT059tjoWu84v+ee6Nqq/mRD1Pa6ilOiH0ClYe3Qd7bJS0mlKpeU0+o8blMSKh9OPh5/3Ak7+ugTBq/PPnucCouXvqysSQe5QRMmRNdaOSrbQ7eNT6mRQreK6JdjOP+qYmjW+pJRHev7Skn3pk3uv9Mkk5FMTY4FwFVr7befPxul4ps6XnzRjWcp76XabG27K5eQNLfMGLzOk3QY0mxzEvBVhCXt0XoP2aHEtWxPna121U6yTnT/nNYsyir0461i7gSA+uqoT/b0uPeW/UdLv6X0VQ57PdUllj05eL255RAnTOZfV3GtqMutPRnxfXl8UOLK91PrVkUfVCX3iHxtrZ7mhDlqKiEVcyRSgNvAeiBafVB+1r4ITh69QU79y7kO8C/NWvUp4yW61IFYlrzVN7j1OIkrSzPkbM56Ve3G65HPC4YkKy0kxCnZ+QG3X+gBYMnGSpHl6/QtSZ/vXroerTREWEZPMl2eNKVngUpT7xbIyHJvjCkLN+R35rNnXCzZZKlYz8syzJI86jBZD3FtavSzdNq/dvqwxom1BHYnlaxRZCthzQHWJOZ72CpG+mq1jWeMZqr1Q7cxviz5sq/drLGs60f0+ZYW92+9uKpwcz208uWZV5LqOSbREz1npNQc7MzPPeoZuT/NIBzr/mchgN4hY5GxD3fUEUIIIYQQQgghhBBSAfBFHSGEEEIIIYQQQgghFQClr2OMRCLaVa1VCVIhYZ2qmb9VXXQTKfGwtqNb27n1NnDfNmqdviH7SYjC1asCZLPRlutEuzglVOVjYzbaIq5Pm7z//uhan3YoJZXy1vKEUEBJhLTcIOY7c3nirK5GGWapbawd/z2ekw8BN8u6aWQ6KfFBnxxrNe84oVS1VD9O2V5zj+et74lOtJ0/393yL0+6NBE6Ty3/amry/8w4NNWvyNrY7kYs9URSgZSbpZWMRUoXLTWMVnL5+oyletBYYTJfUsKqJegSnUep9tPTjyPHk1IKSxYV87Q3AH59jyXJ0umLuJ1ScmpMl3qcW4ehOmUVi8O61W60jUKi8uyzbpgcD+vXu2Gyj8j5U0tk9xH31tUv16y8/iJOae0Qv6uu9s9Z5qxqrUMWxkRYXZ3xBbkWDFK9pk7DqxanX6dUHzclWSL/m9v9J9NasrS4B69K9FBwxlcxkjXfJGNJz6yFSCN+1+NYMLj1L9upqspNQq8HgxRTkTLPuvJKkVQWUweWbFJiySbj3ktSajmttrfyUUpHLiYf5ThJNq6scai8+MKs53FDNixHQ1/WPVXcR322NBmiLrZ3bbbkv6XUx1C/k8TtW3HntkJpSnwPi9YJzsYDZ7aIA50l5qmv8uHLOBFZ2nboKsikY/Z531wRhvF+T8huDl/UEUIIIYQQQgghhIw69KgjlL4SQgghhBBCCCGEEFIR8EUdIYQQQgghhBBCCCEVAKWvY4zx4yP7AG1bIG0qtmxxw5qEj9DGjW5YQ0PkM5CC4V3iNeIq8DlOmPYmkBnThRM+CdKfR0dNST8FVdB166LrnTvd5K+6Krr+4hfdsBNPLHwvYXUGQHnbqTL7LGG0d52MJ/OrsTzSMuiEF8MjLVmdKhgNAFJJ4WHRHnW0VFpFFJ2wVntuiM/S6wlw68SxW5k61YnXLXwGtSed5XfmcOCBIh9u0H77RdeWH5j0iQPgOvVZ1ig+rzPANheUdSkaJ5V0j7ZvbEyJazcJ07tNVHp3eh9vFi1rKWsKkP6E0qPurW2vuxFl/eiJqiMKyypvHa8lkjVPFeN7JDtDXI8oI15GtJv0edG3LsLG0/E+s6z5ZBUfcYQbJrvZ8uVumMyX9OPMs+4RN2hXc5hMX+e/vjWqL+kdZs5FFiX6TK0PozlmnAqT053OvxPPsDt08l/MGiv6YFdMnzWdRApRv8voqagj6mwNDbWD14mNaoyWwUOuZG8py+NT3LsnpsWVlbwsWsryorQW49hmpn60j1jCWkMkxXhq+cLitq/RV7uVR6BMslYbkfrStPqIqo+4w95JUj88lMNfTpoKa7wPPIi9hph90PI+s7xxy0z+M4Lwk5Z5ttbpYnwwfZTqOWiNE2ssy7LFrX+rjxsekKXaQ+b50kmEmazjpwvAedq1uqrhoejMCPphZSChXspCyZ4BX9QRQgghhBBCCCGEjCoh6FFHAEpfCSGEEEIIIYQQQgipCLijboyxZQvw4IO56zlz3DBDDeBgyanqq40t86XewLeVX++VFtutrSPBOzrcrdiunCp6N51tmAIf06e7n596Krr+/OfdMCnz2rYtupYSo9y9PZkqgtS6VYPXM1panLCurqhsUsIEAJDyua6Y0iGDvOzHlRtY/UJKNtNq273oI44sNummJ+u4VDUDRL1u2OAGyTZ1pKKAX7+sP1vag7iSr7hpKBI9QsJa7UqmUpYcxtLxFZ+N+Mp4lY9ORG2f0bIokYjO7vbt0XWmxpinZL3qAsgwQ1ZnSrLiItLQEhQ5znU5ZbbkdAm4ksp0OkpDS+gtWayccrQaTN4vbnfX07jMv/W72KoXQ76sbQUkluzHkvVKNbauR/lZ1mNeV2oQ87g1Di1ptkDXlRwL+cpaLWOKSMi1X/a7mPkAUPK85Y1n3VuFyfaW0WR96DCdXdkcUlJc3VjrxJPNVJ11bRwSlmSthHlW5zGTLmHhsxZLnUfZyQ3pa1+1kEereJ1iDtNJOFPyxnZ/Pj12D3mf9UBsmYGi0WnI9I1nURNZj7qOZSXEfV7WWBN5XFlsicixZs2lVlWlrHzIcRJ3nbb6iA6zfuebwyybAoW0s0gY85RbFHdulr/Ta5mcY5KGsrYMTV2yE4H8myTPOiDOHB+G8TNJyG4Md9QRQgghhBBCCCGEEFIBcEcdIYQQQgghhBBCyKhDjzrCF3VFc+xFvx3tLJh07mwYOhIhhBBCCCGEEEIIqTj4oq5IHnzs1dHOgskpp1w06GtgHctt+Qr4TsPOXfs9bGodDxvltWL5QcT13DB8I7rFkeA6eVkemS1dTum59Pjj/myMG+dPX9pm6fqfOFF8yPNd8N/PQRhBdfe4yvW49j8pn5+WxsijrmPZLxKy4KV6gBlYfXfnTv+tY9sCihtMmODv72Z+44bpcWL5m5XozeQgKkEnv2VL1J927HA9l5Lp6HPW7Af+W8ftdtL76W8r3HzIqquudttGtrfpgVeqD6A1T1n+dd6M+MO2Ci9N/RPLnseqY5mmxCqm7p6TJ/vvLes/0bF18DpTrepjXfvgZXOz276y6vKqUWSsqipq+3L47BRDpicqm66EZEO9L8i7fFlWUg0Nbh/P86yTiMbq6qr1RpP1pdcySX77FvZGrM0aXrUWcec3qyINb68+9azi69fFLEPyd3Htr/I85OJ6+Fl+roK8/h/3ecryO4xbCdqfTeB4uBpl1k2Y6umMl4+4a16pPqESa5IsFTnwrbbWk3DctcbqB4YfrfQWjIv0HATcKq81iiY9nQF3PspmPc+UQPznpHJ4/mp89WoZWioc3z6VL1mTznO19voT98tb2UWacS38UsWso9IDz/ib0Kpip8sX83fIAEFgZJCQsQM96gghhBBCCCGEEEIIqQC4o44QQgghhBBCCCFkVAkB48RksufAF3VjjGQyUiPMmeOGrVgRXevt0PJ4b73TXqc/wLp1blhrq9yg6W6fr08LOYO+gUcq2ZfOONFknrdscZPYsSO6diSmAOrqomuhHEUq6U6CL62M8n/KKW4aiY2vw8eqhimD1+PHR9/X1LjxnK3feXIMQ2Ip2bgx+oWSS7S0RLIrnX5Xl5CKVWfE9/5bmfJBCxFxc7u7abda3DuVVotQTDmD076vtDvRmho2D14/11HvhMVWwAjdc+3cuW6Y7KvGODFlEJZcxQqLK32VciQVz5FLq/roFb61sh8D7hgqps/4wvTYSyajfPmKosPa2twwKbXq7HHHk1QZdSb90h5ZJbXNqn/KCU9OJPoGFoY+V8qH9NwqkT/Tc52F03UN1ZuU72uadqyKrltUHTy+vHCiuhFjatDzxquoux3t/niOhKcIbbZrD2BkzJCUyY+6i/hsF3RbSzmYXipbW901UZLqidYGeW9LOZrRc7Cji1KV0B5lprpazK2678s09GRRiizW0m4Z6Wm5SEb0n2RDvOcdjU8yq7NhWTCURYop0M9CjY1RH9Fl2749uq6r88u0YcgfM5ZMUwwAaUeSUnPACjFV6Hs3N0f5nyb9SOA+p8ZVK2Za4415E5WPojqNDznRWn4zVn3HbAtLIq7TkFnRU3ee/LLAbwDXvsKSvmrpvU9Onvd0bOnOZVhcSXRcyx0dV6ZhxVNh8jksZTyjyT6e0vUo0uxTs538ZCmn3WcyxEfcu6vdG2Q+9jp9ybJK8snO+/gSi+wZUPpKCCGEEEIIIYQQQkgFwBd1hBBCCCGEEEIIIYRUAJS+EkIIIYQQQgghhIwqIYDeIWORsQ9f1I0xxo2LfCWK8R6SlgDa9kJaBEgrAW0dYPkqpYW3TqbB71EkfZq094H0fZGedIDrqSX9tIB8P6wBHL8uuHWgPTfqpemPCpT1ID09LA8V7aElsazaUrIRVQOnxf20v1/S8V+K6qMn6d9Ua9mg5flNCH8wK40URLwOo4J0wUWn7N0ovtfeMeJ38+a5QZn2tYPXfZjmv7c2l/JhmfhZ5jeWh1Pc9K24xr2dXpd0+6BhvYXVq6PrclRP3N/pcSjnJj3fTGuOftijqlV65khfLj0HSPJ8X8TN1250625aQzb6IAtgeBlZ849Mwqq3CRPcz5Z1j8yKnEu1D5EMW7PGDZs2xz//OB1IGmfphhL1mGnxeznW6kmmK7pfQ4PwuvTM7wURlZLI85eLKTAwzMlS1WJ+S7t9xGfNJz3pANe3SbehrNZe9Qw/TTdkP7qZnHxY/m8a0YGqpR9qexGea3HnMEkxHlQx/Q8t4tpayarS85T8/Oabbtg+cq7QD1vyh6YHVdTndT+wvPNk37I8Q002Sh9DVd/ihqmkXOvdeTCd9vvjWbZrnluZYRnPuADit3VepmIb9sbEetjSlOJ3q+OJz1s73L4lm6o+G69f6P7v3K7R/ztrupFppIz859Wdz4DV8sss2ZDZk57OR946IfpTXlNH64b0lNTrk5VFufJYdoql2mVaz02+Z5dEV6cbMY4PnY5HyB4Ipa+EEEIIIYQQQgghhFQAfFFHCCGEEEIIIYQQQkgFQOnrGCOTAdractd6q3F1dSQXsk7DtqSvlsLO2sYu41rbpq1dzlLuat1bS1/jIsutd9rLPCez9U5YWtRlbUckr9R70zcnpwxeW5I+c6e3LKhqKCnp29zu1rH82fbtUZiWEMt7WxJH52h1AH1CRtkjNt63b3SiIdkQhaWrXWmYdVz71q4orqtkUZ115crBy4yuSCnBazakr4ZUxtT/Wmn4BodOQ/SZvupabxKW6lAGaQmo7DIp1YY9oo/r+UHezyq2lFBZci3dyaUMMZ2OfqfnItknLUmHochypD6xpU9w5Sorl7lhzc1R/5RtkVEZ6RZjQ8oYAVfC5lPvaKTkX8eV8wEA1Geja1kHeQpTj5QfALBkSXStf7hiReFEJk5041mTnaHb605H40H2a72eOPJ6A90/48ZLGHOwRLeb7P+yj2v5spQ7SRly7nf+9CW1aaMO2v2SLFNyJMISHVv98STFSF1L0cZrLDmVICXSqM+6/Vjab2h8c7Al18ybLy1tagmSOynrB9w5WPYzjTUfy/Vcr/Wx8yjTVJN1V1f0DCX7e/7n0p4VZRZ1e5aijtbyUCB6lq616sfKpFzMdJ1aHirWw7qHPJsF53kwVhImpSrQdby4smfzBj7tZVyd7VBhvn5trWUa4zkyVR3lecKEeOt0/rNK2hsmfyefH2rj1r1C58trb6Mf2OLKW/do6Ss96gh31BFCCCGEEEIIIYQQUhHwRR0hhBBCCCGEEEIIIRUApa9jjJ6e6BS5zV3uyZ/WIVDWbnop0bJ2esuTIfUuZ/lZy7XkSWRyN7Q+pdY6CVGqq/QJZj6prZaeyXtvVJJNWSf11d0qTEg4O/xyj+rWeNJXUzmhMyaQUkld/z5Zr6x7wJVaWcqkPDmYkEJJiWA268bLyJPgdNmMU7i2i5MRa2o8mQLcRpQdEsivdB+W/sLSn0rUAJOn8Do1YsgxdBtKiYqWd/uqTvefPBmT535acueTk1tVkHevmPIGKYOtrnb7j9U0UuKkm1oqiWTT5J1WLPLRDXf+XLU6Sl8fZCq7mmzSlhZX3i2Hr25fmUd5redLKZF1xgLiq0RkPToyRgBdiOaRDRvc3zXMeevgdZ68Ut78hReia62vlwWXclkAaGkRGXHHRmpW1HApqd1KZlU+EAtrLMj5LS+epT8Vn/PkSCLP2azbtyRWH5H9Om86a4vabUbWkKZaEjCJNbgt3XlcnbzGV6/FyEHj+m8Y36fThWXsOqqVRRlPz6Wo8yz2gP9BwEBLp+XN02nDXkJ2IFVQecK1eSKjnpB90mMVLyuvs04Qmhr9p3L7qkRnsdQ1UI77uApr0+LB6hjWGLJkgdIeQ93b9zNrXdCnEpeCdeCphR4bvvGVV8dirsjrI2JulenlnRwbl1JOqgbsP5YkRr6SSWH3YCSR91zkDAh3rZHDPrbUWJ9a61yrjPmsFSy/pWLsE8p94nLFEoLSVwJwRx0hhBBCCCGEEEIIIRUBX9QRQgghhBBCCCGEEFIB8EUdIYQQQgghhBBCCCEVwJ4i9t5jSKWAxsbctbYzmzTJ/zvtdSSR/lTGqeKOn5G2HHjttei6V8nupU+CvJZ2RQCQWvl89KG11Q0UvgXrN7jvn994I7qWdaCtk+T9nCPGVfqOBwOAbLY++rBSVLoyEUq1tYlP8bxXLDsG6UkHuL5ZK1e6cX0edboN5f18vmQFEQ0uvcLyEN4ZOv9IRs4Xuv+sWRNdS+/CnmrXg6e2oSH68NRT/nwYSG9H7Z8j/We0b4pE+0fJes7ID7qgoqE2rnSDrL4gx7qsgvx8RHnWvj55XkqFs5XnAekQ1yTNQqSRzaaMiC7SJ07PfbLP7NPa54+4bNngZerYY52gjRujfqHrVY43y6JL3k7Xt8/zSreTzzNUk2zxzzHO/KZu0CN8cfQcKeeYpPLfy8g5WWZM17HV0WRedMFlmvJaD4y4XkRGX01Yg803mQLY2hHVufSUBIC6OuGdZNh8yWJbXq+6D0q7vxlzPV5hQGyvyLx4Pr8haxGxwjSW958vH1aY5Q8m0f5sySiedhKcNCn6RnrD6VvJdUPfts9Y56S/q7W+yLDaajUfb2wfvMzrx77OZfWRUud042FR1k9eU4v5IqUHR3vhcZ8xBlFeGgY+/zrtlWpZIZr+lrKwsv71g0ZMTzM9P/iGnmFzZ07HcdHZj4v2V/T6x+rqEA2Q1M+RAmc60H6N5fAi9t0M8K9XGp0P2a+bRZhKX5Ynz2tX5D+d9vuhlozPixKIb1BoefhZa/hAWBDEu89uDT3qCHfUEUIIIYQQQgghhBBSEfBFHSGEEEIIIYQQQgghFQClr2OMqipg4sTctT52fdy46NqSXVVVuWFyZ7OU80g5GeDuZJYSKQBYv75wPMDd5Sy30Gt16z7ii61dSvKYjrZ+79jhhsmySSnX+PFu+o4cTG93lwWSGjsACak1lJWltUnO9m5/Hk2Exi6htoen09MGr2WW9K3lvawd51Y7pXo63UBRP5lZ2cHrPBlszNParf4pyZf9iEQ2bXLDJk8unIhBokuVU2RSSye6e/yyUlepF8Vrbq71xrPks1L+CLjqQlmPOo2BuQHIl6BLGYruF3pOGCks9Z2uY9lHtJpE1p2UJ9bqgSLmGCmBBhxVbF5/lNJXeW9d/7KddBpz5kTXMlu6DqQkXdsZSAuDTM9WN7DL0zFUJuvnRjcfP94dv7IOdP3PmjVl8DolK1wPZtnxXn3VDZMF0GFywZEVrtswLoYezJIdJmQjqjm4VixgyRq3//jmsFSX205yTrCkrzrMqWa5Xlk6vbgyYX1Dmaau/7jeCqpC5PwppcH5a5RfDp+yFjefnM3SBao8jhtXWEam27ZU5a6sg7jp6b7qfLLqIK7MXCMnOEt2LtLsTit5orhdXhdcZ8iqfZJcox/n149h3eDBqkZrCJn3NvqZQxHy+rjIvwW0vUHsZ1GBNcVYWOu7M8p1pkQftJ4jrXbKZqOxbEqUNfIG1mJvVYol0ZfpGPLcRLX4nbaXEJVSNaneF2SrVK2JSt7PWqSs9OJ2Gp80eI+QvhLCF3WEEEIIIYQQQggho0wIlPCPCmTsQekrIYQQQgghhBBCCCEVAF/UEUIIIYQQQgghhBBSAVD6OsYYNy7yMJI+FID/6HYdpo9Ml75x0j5B+l0BrlWN9tCSXhqWp4S8l44nfemkJx0A17Movb8TJMsmfemk11PBG8YN83ktaO8JUdBs1u9RJ/0yLK8kfd9ssyce3Hbz2bzoz6bvjrav8PhZ5Fl9dEjTENe3RhZHe6LJ/mr6pRmeHo7/lYHj9ZRVA0X0A+0nJPOvu4tlieRJPs92pKUluta+Mj7LEH0vadu3bZsbJseDbjen6qwCSEoxu1Hp63nK8pzpMnytZNi0BjF36EoW/UcHvfZadD19uhsm7dQaG6NrXQUyTTnXDRUmkWk2NSpphGVy6LuZrizhbzZ9+jQn6LnnCicBACtWRNezZ80qnGH9WedRjl+9gPmI2x/1vc3Jz++DZholivJkmt0OKudyp0pUGq73pTvHyCDtsepYclp5tIhbPzJNbVZreG/1iXqNa1lUzBpl4lv49I2N/lTfVtifrbvH7S+WT6jlpekrj1VOy0c1ryy+xaFUkzErYyJNx/8XQEqa1K1ud38nK8ya5Es1AiwDcS0ONXIOSFgdWZRTPwPKZ2n9HCDnBGv69FgJArAfoXxom8q447I+q9avkvqhMVcLtFWqeyu3jjPpEp5drD6nw2RmrIlQjgWrUvUDp1icJzS7fw/JtjfbOmb/zLt3XC9QK30rbKAACe4zInsGfFFHCCGEEEIIIYQQMur0Dh2FjHn4SpoQQgghhBBCCCGEkAqAO+rGGImwF6menBRCHj+u0buVpdxy+3b3/a3cfS2v9bZ7qYBpa/PfT+9u90lB9Lb4J5clRDx3u3tLa7S9u2e1m75PRpa3k1xmTO8Jl3v7La2DjKdlGwZ5x8P7vpfpqzxu2BBdWypPS/EiiyIlFoDbhtPSfrnQ2nVRO2mZamPjlCj9DW6YlNJZ0uz166PrpjrVFvKHViIGjiTa0mkb6J9JpcObb0bXWhZlKSJWi34tZbAA0NoaXVtdVUpjdPXI8av7RSYt+mFcVVExmiAPPtUDkJ9HOc71mJdxO4VMLdngSjtlHe/f5o69M86I+vX+2dedsD8si/q1zKPuB3LIaimORI4FXQcyjc4uLdkRN9eV4JOc6ooUn9MqCSn/1VOkTKa1tT7Kk45oNaIvv5q4Gn1rvJYqzZYDzPQHcJFZkdYQEyZMceJ1RMrjvOqRfebQQ90woViO73OhNWsWsgCyg1q6N1Uf5VAkWsrOlOxrxUjRfGGWJEveV0nlUmkh3292n1XiqjdjYy3i+ga+9rbS0Mh5RfUtKW2W0k5pW5L7WfQ5VW1I4uI+QxnywUSPskkpYX6w1iErK2b7ysASpcda/q5ta3z5sOTXRTy2etMvGV/baAl9zD0mpZQFcG1N8som+7j1vF9qJ7EaRyLDjHlcP2Na86c3H9a9Nb6/o4pZi+Vn/RwzUK+mBw4hYwfuqCOEEEIIIYQQQgghpALgjjpCCCGEEEIIIYSQUSUEPeoIwB11hBBCCCGEEEIIIYRUBNxRN9bYuXPQlCCRVAZJQuu/fbvrGVIrPFVWrnTDVq4sfK19sqTHlcawNXE9RIQ3weZ29z3ykiX+9KVHl07fZymU6Or0J6ixvM98ngyGv02efUVcYxPD86GpWXhqKWOK5ubIM2rbtuh76ZcGABMnRtfa78TxrNPGF6IOpHXEuHFuNOm5V1Pj/3cCfW+fvVZRvhcxDUucn2mTMUFKeSgiHZVHjwXZRaR/oM6+9KCyrKWsokn7KG0lYtn/ZJLROMykVcY2inrwmT4Wytgukmjf7HxOiUwnq10PTst7UTajrB/djaUHm/53rEmTxAfHEAxoaHB9xnz5kNVj2R9a/UBWv2wzAPkFkvh8ZXSbiYzVt7jp19S4a4NEllXW8Qw9GCz/GZlHbcDkS8Pqc4a3Ud7sE7fvWvFko6rBnayuHbzuFf9QrrqStx4Bd37W/cK5XVyPumJMnHxzreEvFNdLSicT2+drqLxIfN6Ilg+d5Z0krqWnVS4oGicd7W4S8tYl2qi6lMOHsVQzL3XvHgjvubjJl2MNN24gffOAAp51MfLVA7/PYKlV5/zQ6IP5/sVRX9PPV74xVIxdo/ycKnE5j9vt9PyQ8IwvHa8Ur8tixprzd4LHP7roG0pKnuBiItLXy2hJt4vp1QnA36+L8HM14w18DoJ4vydkN4c76gghhBBCCCGEEEIIqQC4o44QQgghhBBCCCFkVKFHHcnBF3Vjjd7eSH5jbDUeN67eG6Zlh/Kz3Gqvk/cpQAF3N3Se9EDKhcQPOzpcucHq1f70ZRK+07wBIJUU29ilnA+wtQI+TQHgFtySBYrfJUuVSxhbyaX8JqW23cssSrmrlt/JJLWsoq5OfNihGl+U+403vFmEtYl3xw5vkCMX1XJCB0s6F3OrvdM/i9BYWN3HJ8uUEkdNXAU04MqNrfoxVW+GzNccYMOJUZFauu70+bS/n/lksIDbd3U97iNloA+tcMJa5h8yeC3Vp1qJKutfp79lS3RtqWZk9XdXu3NkKq4+Om6/VmnIn1nSXSesJetGtHRjMhE9AfnybA02RaIcMiOrjq17CwlVV1fUP3U9yurR/UcmP326G+ZUZam6N4klVYop3SqiabxZ1nOkfB7R6ZnS5jg301jtK65TSZVGR9SI9Wqy3iqkmNYzVGxJpZ5IShnnpaIK4HyU0lGVjZLlohLL60B8Tvgk/7tA3GnEeoyMK9+35ON6bPiSMfOB+GHu+Irms2La05cGAO+8Ys0jcbt4qcM8mYwnPDNjFSMd9fVrq2GKaOCyTwnFdC4fJdpXELInwB5PCCGEEEIIIYQQQkgFwBd1hBBCCCGEEEIIIYRUAJS+lkhVVRUOPvjgwc933HEHWuXRowAWL16Miy++GDt27MCOHTvwgQ98AHvvvTe+973vAQCeeeYZHHDAAaiqqsIpp5yCb3zjG7jmmmtw2WWXYf369ZjUf8zgwoUL8b73vQ/77LMPtm/fjtNOOw3nnXceFixYAABYtWoVJk2ahEmTJmHj+vXAV76Sy4BxXGDHajeoPgrKk9tIaY4M07IxS3HhbHHX25yFNEGe0GUpTI2DCk05oUnMU7jMjFm6Qyl91SOvK+YpUEY+Uihesumc5ApXUqm7jyMbNiRrXaItdFFk2/Qq+wVLditv5ygvLe2Q1tJKOYySXHi301vtqcKSyegUUq0O9R3GaUk6dP1Y6clqkONSnngM2F3c6YO63KXoS8ohM4yr41Vo6beUr8gktexQfl6t5shqITPVJ5nKfi1P5tT9QKavh5CUpMs8FnWoozVP+fRJVjupjtbQEFkm6OR8B55u7XDHVm21+KGWpZV4mmtcTGmk03f9p9vGvreWPIp6sOTRvvUWcMezPkzXWY8tqwZJMWElHCmZtOoxJsUcFmie6FnKHBazfvrEib4AkBCDQ59eL9tXuzNYst44+QBQ2om2pp+EgfpdQk544l55p1PDuHfcyc9JLv7Jw6XsTrDW6XIsc9bpp/pZZdw4fwmG4wBRie8E1NjPUwqzbZznZf88EldVWsw8EvvU15jya/N3pTaaNTbEvSeodcJ8BoxL3HU67vpipaHnmIH8h6H/N2MGetQRvqgrmQkTJuDxxx8345x33nn4xS9+gbe85S3o7e3Fc889h9mzZ+OCCy4AALS2tuKPf/wjGsTT980334wjjjgCt99+O84///zB74877jjcdddd2L59Ow499FCcccYZg/c///zzcdppp+Gss87CRf0v7wghhBBCCCGEEELI7gWlr8PI66+/jqlTpwLI7cCbPXu2Gf/FF19ER0cHrrrqKtx8880F40yYMAFz587FmjVryp5fQgghhBBCCCGEEDJ68EVdiWzfvh1z587F3LlzccYZZxSMc8kll+CAAw7AGWecgeuuuw5dQ8gLbr75Znzwgx/Ecccdh+eeew6vv/56XpwtW7bghRdewPHHH1+WchBCCCGEEEIIIYSQyoDS1xKJI329/PLL8aEPfQj33nsvbrrpJtx8881YuHChN/4tt9yC22+/HYlEAu9///vxy1/+Ev/4j/8IAPjLX/6CQw45BM899xy+8IUvoFkb1AxQVRV54xgeOdqbSfoFdHS4fhAybomWUc69a6uVn4Xwn5Dpaw+kfss+AK6XC5Ar9gCGNRl6hFdVRvsjWTePe0y6xDDF0NYNsZ18LO8haWikGjjbGnnoWB4V0jNHh3V2ibrTHUHcT6avq7GxMbq2+pL+XaKrc/C6PisDVSZlHVjGMgqvD0kRJh7SIzBZ7baovLWsY+lLpuPF9ihSyN/5bMkKYvmOFJXQCKHzJD5398Tz8SlmCpAeYDPmznXCVj4VXdfVRdfaY2zbtsL5KPR5AO1zJ/MsxwUA2wRPdgyZSBEeMzIvuu7kZ8vrUrZNyupn+ocyrjWJlTo/xyWubxn83mRxs2/Nz8YUDGRjGhHFNXiywsx51SWvvZ2sRLHj+jLmxYv7Q2s+i5uGuF63TicRlUV7+VrzT01NdB3bNs4qS6l9vBxmZ1ZDWZ087u+suUJQ8rPWcCMyluetaPo++qMNt0edj7iedID7rJX3O0/h9PNZSkZLumn46iDvmdLynpPEnRPLZWQYd56yxpDhh22t4bEpx1xqxbM6+cDnMe9RF4IedQTgjrqycsEFF2Du3Lk49dRTB7/bd9998fGPfxwPPPAAnnjiCWzatKngb5988km88MILOOmkk9Da2opbbrnFkb8ed9xxePLJJ/HUU0/hv/7rv4Z8SUgIIYQQQgghhBBCdi/4oq6M/PSnP8Xjjz+O3/72twCAu+++G2H/W/8XXngBVVVVyOrtEf3cfPPNuOKKK7By5UqsXLkSa9euxZo1a/DKK6848fbff39cdtll+OY3vzmsZSGEEEIIIYQQQgghIwulr8PIDTfcgEsuuQSZTAbJZBI///nPUSU1moJbbrkFv/vd75zvzjjjDNxyyy046qijnO8/9rGP4eqrr8bLL7+MmTNnOmFhajz6GqYAAFaudO+xYUN0rSV3s9uiay3VkDuP5XtG/c5x4sTouj7rbivf3J4oeA34d4XrbdmtrdG1lrfKz6tX+9ORu7SbmzNOvPpkiUeJy8+OzlalJyosT44Rd2u8TF9XkDg9WG9HlxI8n0RNf051bXXzaOm1RIFkNCnVArTEwxWh2FIf0VaGCjnlawuVR5O4shxVx1LGYd1q3LjoWo8hq/vI2xWjJPKlr8d5uqV+8DpVraQ4sXVYgnLocix5a9Idv1vE/PbGG+7PZFllUeSQAdz+39Lihskx1Jd27+1Dt2/cKpDLhK6C7dtFWJ2bj5QukO/mVmeSYWqCsGR7cqzLcktJ+JDElWlac5GgGElWbGIONi2H9Kny9Rzpq0cAmD49urbcGZzGsebBYqSvPkrV6CsSIi9SBpsnURP3y1s3u2LKzSzpVkzpq7Ts0BJ3WeW6H8RVne/c6Q9zKMamI663Qtwwq+4M+Zocl4li1gVP+nqcF5VmCZRFXS/LYo1RVXfJpF+867uf1Q10P5NhqZjltFSfGUMZqYvtxI1pyZBOxxMzW/NIUfjaxqqEYu4VU1bqjCEjj5aDRMlYzw8x54CSZbF7jPSVkBx8UVciHXkmb/nccsstZvhK8Sbt5Zdfzgv/zne+M3g9f/78wesJEyY4p75ef/31Q+aFEEIIIYQQQgghlUxMH0UypqH0lRBCCCGEEEIIIYSQCoAv6gghhBBCCCGEEEIIqQAofR1jhGEk4dfSfunjludTIL7Q3kM+X7q99nLjNTVG23TXb3DfAUtPPMu6yjrpe7/9omvtr7VlS3Q9YYI/DRNZ8CJ8m/IMamKQV/+lHuUeM40uodS26lh6huQ5f0i5t/bCEveWaWgPksbGKNWuodXjBcmko36m/Q7rdeQS6O6J0szzQDJ8cSTalyubjcrtesC4W9u3dvh97mSV6/7v87bT9S8/m94l2j6kFH+/UrE8wESmY1pJ6Z853djyWdN1J3+3YoUbJue3mprC9x0Kmb70MdRp9PZG13lel/KDDpQ3sNpJ3lBVQltbpmA0fTsZ1q1mEse/qLnZTcQywbPCRpKY3kO6/2zbFl3L9i1mvZJzgDW2TSM02Q/MRAysSUZieXwaa6wzsxbjpWb5s/nmFcvjLWZ96PlYVrH2Cpbel9qfUGbLGudO0axyanxhxUymVv346kt935OuHbxOWQtRzHkq3+ss+l2PCovruyYph91qHnHLqW6eEYtzt/JKzfNh8yDrYNw49znGaY6YBdfPMdJj0sJ8DpYYHn6JuCZscb3UCt3Ph4yn7ZDizkUaWR5x3Zf0r6OWS5/rCw1MmhTFLub5RNJXHY3fPD9I3/pSTB3H8VHtoyyU7BnwRR0hhBBCCCGEEELIqBIC6B0yFhn7UPpKCCGEEEIIIYQQQkgFwB11Y4zt2yOpxbJlbpg8hr2uzp+G3g49eXJ03doaXUupK+DKXcWhtABsdaiU88h4Wl0ppbZSggsA69ZF15ZkzVJtJNui/NdWG9u0rW3ssgCGtEffO5WOORTlD1UldPZIeaW7GV5Kc6qqoute9Q82Msu1LUVIfIXUKhnzVHrZHzW+3e4AkE4nvPHQ4dGAArHlDK4E1C/90JICKfGzpAhO+qtXO2G1otP3VLuylgw6B6+zWTdMtu/EidG1VghKpaFV/52q/6SzkahYl9tLqXoh8bu+rCtmlmPZUproppZzmqyDtjZ/NnR3l2lqOZssmjFETXW9T+2h52OZL13OhoZIkpJWbe/IsWXGVEVKWYtmougzUuILuHlOtb9eOAAF5OQ+rHm2VM1OTEwJmbi3lMkDbhuqoe20leyDTU1uPDknW6pMLbeUn+X4TVe7YzkRVxuft0B6ZKs6I77fWGkAbmGteDGlx3mTn0dSpqXZqQb/vddvieLKdnrtNfdWb7wRXevqkdnS80Pcokm60+54TfnqEfBPoMXIAi3vAJ/+XeFYbOg09MQukdYTQgrYruq4p9pvIZGJq5oX9xoW6WvcxjbaJtWg6tjXpoY8dOdOt//LJGp1E3r6hbTs0NHqs/AiLWsAoK5OPEMljTk4bt+1sJ7prbqTv5OLse63Vhqyz+v+Lz5v7ojqw3pea6qJKf/FLlgDCWSxq9Vzairtqf9iHthk3enfDdRl3HYmZDeHO+oIIYQQQgghhBBCCKkAuKOOEEIIIYQQQgghZNShRx3hjjpCCCGEEEIIIYQQQioC7qgbY6RSkbfb3LlumJT0S48cAOgT72wPP9wNk54GtdWRb8STy9z3vNITT3s4SU8DbdcgfVqkD8OBB/rjjR/vD9PWBT5fKG0N4WCZkmj/B5mQ5VFnJC/9VqQ/Up96l54wvBsyshKU511LS5ROfbXhMSbTb1e+EdIIUJoVqrzs05qFlxUrBi+bdCeUqE7iqx/pVwcAWN1eME8AgA0bovSMf6OI60+lGzGZFl4vqn0dXzdpWmT0EW3b0S28QFavdMNk08gkx41z41nWQ7LrWn4oGWvVKIdviOGvIoOk1+IQP/PG27bNDXvzzehadBcAwHPPRdePP+6GyeHQ0hJdz5kTL08AMGtWdJ3p2Rp9UGZ505rFfGMVusfwlrImTIEeC03jZF60P5LosPJelj+Pnkd8Rm76d5a/UKlYg0Mi2kP77aVEGnPnuv6Kcu2U8yBeVAZbok62Jqc5QfJny5fDG5bZuCr6oCcSa42y6iBuncv21iZslregL8zKo57jLQNHGSbyn+eZaHikNen+2s/06a5PnPRv1MnJJKzq0c84PvK8vNaJ/qTr1Fd3cf0IrTR0mByvTz3lRKt9xzvEb2L2JZUveSu9FkjyrGnlc1/MucOy19JeylaSznxqPEuYfpwirvSFBoCamqgfJo3k5fPJjh1ukPYejYN+lnZ9bP0V0lTT6X7RUcIcoxpAPttZjyOOZ2sxc50vUd1Jtm/3/8YaeyJuvVwDsyUalqqw7VXRmlJKWwNAfVI8n6xr99/b8qGT9aORD666cw20RxAMmU9CxgLcUUcIIYQQQgghhBBCSAXAHXWEEEIIIYQQQggho0oIetQRgC/qxhw7dkQyOL3T2JKzSTmG3grf1Bht15fHsOudy3KHspZ0yN3pxmnkTppaZSLTVGowU87mU7Lo72Uee6rdI+urxWdnyzzgSrR8GkSFbgtXcWRsdDWOfO/sifK4brX7Mynjq6tzy+YShbW0uMeuZ1qiSu6EChN1sHZdlH/dTrNm7V8wT7l8Rde66trFbvpsNko/k1ayH/fceJSE3LrvOxpeXyukVBcwJC+GdGtac9obNntW1glqbo7qRI4F2R0BYOLE6LpXPQPI+UJnS8rftazaoRzSV4HOh/ysb+VTXGjkOG9sdMOagtcHr1tapjhhUo2h89XWFl1PmhRda/WmzKNW1Mi2SqcjCVPVeFdW12uUzVG/q+6TEJXSLcZ5SkWUdael5QlL0uqT8+jGiDuR60qWvxPx8uwBLOm6hSfNotITc866lW5QT4OwH5AdRi10W7uitlmt5nFZPVpyN2+e+CDrypBWmZIsjU/WaA02q301sj/FlTNbkkGNzLMlLTRkn33V7lgcQLeFZbEh5wQdJn8n51yrWJ1dbv/PyPLoG7iDu/CNdZjGmuPl/WQaSmPXnXSfHyQpS3Zbgsw9ryglpKF/ErermnOHtZhZbSM+19S48nr5Myk/dWw5YA9ZGZbJliYNls/Lsa1ENLJi42YYrkzM7EseKXxemjqPMkzPbz6sOUaPUTF3y+fsrnYdLQpLGGlsrXbtE94UzyDOc10RbEU0D1a3uHNiQpZV1o/uJFbbSHzrl36AJWSMQukrIYQQQgghhBBCCCEVAF/UEUIIIYQQQgghhBBSAVD6OsaQ0lctx5A7kqU8C3B3F2vZ6qrV0ftceRLZpk1uPEvuYUlf5f2k9LWpyY0nt2nrE9HkLmidvtxx7bvW6J3Y7ilfroygQ0iV6g1NhJSbaXmx77A9nY+UUZGWOiDuFncrDdmBurQiNFtYTmsdGKfzlOqJTgDTJ/F1pQunnyd7s2Q/pWBtyVcdKGHJqXynEVqn7Vm6T1U/2WwkP0i0b46y0epKY1Jd0WldWsYlpZf61jKsus2QBZbrBM5+9OnREksVpecwiRxCiY6tbqBoD1lXANDaGtWXliTKk15lPpyTPuHK2vVBbRLrlGzf4a2APX4zYjzIe2uJ9TYhSdd5nGH1T1kpssPEPb4SsCVfnpP4LGlVqTLY2L8z5njr0NGdOx2BlhPvjTeia8u+wjpMt1tIp1PWPGh1GGuAWdJXcxEx0o9pK2DOMdbp7J7TaLV0NFkdzZn6RFXZxWX29Xwg5y1dHVu26ExHTKuO5pwuFJbZarTVR7oxyr8eorXVHjlhMdJXa3KSyD4ipd5w60s304wGo7+KyPIZRJ7WDbjPg1YWLeSzhT5VttQ0HUqV/onPGb0AeOS0CZXhdNovPZZJ1Ge90Rz0OiG7yIwWeJE2KQBQLU62l90io+vbeobyndga8xRoAKbFjPfUY92G8gFXp2GdjC3XaWVdInGeM3QaQl9vyetNpxJjnrUOtK33WFSY83Yx9gwDn8PQn96YoUQbDzKm4I46QgghhBBCCCGEEEIqAL6oI4QQQgghhBBCCCGkAqD0lRBCCCGEEEIIIWRUCQHwZFsCBOEeofN2CYIgLKXcQRCg0uvrox+9CD/84XUAbH8wjRXms10zfXysBC2vAp9ZG1zPEKtslrWOZZlQqp+RNyOaMvt3WWjvNh9lKXOJxM2jZjTzLCk1/xZxy5bnzSd+Z+XLGF4l5aOSsOYHHyXXQTluYBC3DYu5Xdw+EherfmT6Op4VtjsQt+6sNSquzZrGqa8KWWsIIYSQkWTekUdiyZIlwWjnY7gIguYQWDDa2SgDVy8Nw3DeaOdid4bSV0IIIYQQQgghhBBCKgC+qCOEEEIIIYQQQgghpAKgPmKMsWUL8OCDueu5c90weZK4PrJbKmW2bXPD1okjwsWp31i82H3PKyWyPT0pJ0z+Tt9bft65M/qdPN18qDxKamrcz/rk7wH0kfLJZEJcu2Hjx0fXdXVu2JYt0XXT+uXRB3VkemfDjMFreTK8jurWoxsvlYykT1s73PqX7avTl59l+jt3+t/VT5/uz6NV/2++GV2vU8fLt7RE17JOAaCxMbrWkrjN7VE+02l/O6VWPBN90JUgGrzvtPfm5Xvw3qtXRR9kpQJOR07oxmloiNLX0tSuzuiD7JA6DTkYZEOpvOTdWzROoqc7+l5VUKpLlUfQmawdvN640c2/TEaOZU05pIyy7lavdsNkPqyq0+zcGV3L8ZuXX0NO2JeM5qZ77nfntzlzCich+zvgzhVvvOGGya4mr3Ufl+nrMssuo7uPnN9kveo8yu6p773PinujD2p+wwsvDF46vUcObAAJecPWVu/N+7L1TpAst29NAoAU/P1fYklYrX4s60fPg3Lu01OHRLbbhg1uWK+wpckf5jLPbh9sahLXjSL/egGUlaczKT9bHhKy7a2CFoPPY8PKh29x1/F0+jL/qh/Lca77wfoNUf2PGxd9r+cpWcU6i0cd5csw0NS7dvC6u2Ha4LWlZNbVX5uO+n+36iOOdUnHVn+ivrYAgJUro2vdNvJ3cpyrtfjPy9yxLZFzqZ5i5O1kuXUdy99l0vHXJN+coOtYVomeZ2NbJshE9A1korpwMq545gDg1rM1kYv0rXlWPm9adHb5nxesNLp73N+lejzPSdY8ZS2Q1jwi09CNKNGLrExH/hFhDVJrodZhovOu3+KOX4n+O0eSSfrnAN+UWVsdf5ysWh21m/kc3745+qCfx30PPBrfM1m51p2KhR51JAd31BFCCCGEEEIIIYQQUgHwRR0hhBBCCCGEEEIIIRUAX9QRQgghhBBCCCGEEFIB0KNujJFKRbYVtV2vu4HVUwYvtbxfenps2uSG+fzIpN8SAEydGl1PnOiGSbuSPC8E6V1QF/k1SK8YwM2z9IcBXA8qjbSAsCx4pN2EYT+GHTvcMJn9JmmYpPxDukQ8bYlhWGM5aC8QiSynZYkR1xrCCtP5l/Uvw6qq3HiWv5bj7aLM7eplXVoeRTJRHWb5kPgyafmOGJ4nCf07WR7LhFBieXpofGGGz50OyzRHdTd+vL+fWVmWPmgW2sdHegPJ9PW95GfLl8gaX46HmS6LbDdlYpkQNzz88BlOmPQEk96R2p+npiYKszzq5K3zveaia+3PJru/HnsSGabrWNrGOZ5BAHD/yuh61iw3TE6MMiPaBE+M5U5knKBMdVQ43f19c5juBykRz/Khs+zNMkYaGUR1kml0G2fzuHg+p9Lma80af75021teqdIbyF0nVB3LudTqXJY3nDXPWoPUGtySuJ5RhldnXgPIMJFGp/LT7XHq32176R8ou7uefuWzUa+yGfINk1xkFI0eJ8hG5bGWjObmWn+gQDdhRtarrmNRIOk/ljLa07IO0/XjmyOtdaKhwe+lHJft293Pps9pTJz6sSYjq4J0/cvOIH+nCy0q1kq+PuvPlkRn3/GoM7xjdf+sro7mqlTWeE6SN7Q8/KxMxjXttjpXzDrO8xKUHoFpd36W2ZSep0X1W5FISk/x1dH8EPfvDguZR8D926xem0xKfH+Y6c86rByZ3m2gRx3hjjpCCCGEEEIIIYQQQioCvqgjhBBCCCGEEEIIIaQCoPR1jFGd7MLs7Nrch9WufLBWKpCEDBawd3rLrcwynpafShmW3pFfmxQSqnXtbqDc6+1oFtw8yiAt95BhOl/16eje2Wy0zVzvdl+2rHCWdFx9b6lqbGmJ8rxxhRtPbl23doRbrBBp6jTk7nopz8oFRuW2lCtS5mydeq+34cv6krI6fYS8dSp9XDlDX7ZeJKhkAw2RJDFj6X8tZEdWg6E7HcmFUtXd8GJ1UKsiZaNacgD9O1/F6nhagiHY3B79u42Wd8fFlsUWn4Yl3dJoeZLEkUqmU954Mo+1uv+IPimlrvoGtZY0D9G9LVmjT2UIuF1Eq0ozXZsLR4Qrh5RyPF3Hjtx1hZrEFi+OrnUBZJ+XhdETlfi8brUb1NIS1Y8eQrLrynkqr4rFF1qC7pNYayzJLJYvj65VHdSLxqrXDSc+b9oUldNSvekxIyV3kya5YYmNwupCrO955ZT5KkbaL+PKNrVkaVaaliw2zvc6T/qzIUWTtho9/qXGzIolQZe31lnUY9ZBPEto2bwff1/V8nc57q3lVpInfbVkz77+pGwEkslonbYUiXHHhqXgzqT9NgsWsq31c4zZNjGlebJsKV1vskDFTBAloMsS175CUoqcOHcvf5hsp4T1vGP1Qavu5OCw6t/KpBwLxjqnF3Fn/jG6i7QQ0lYH1t9sSPufQcqhHJXLu0ba4Djybl0/sm2KmccHJogE9xmRPQO+qCOEEEIIIYQQQggZVULQo44AlL4SQgghhBBCCCGEEFIR8EUdIYQQQgghhBBCCCEVAKWvY43x4/MNU/p5ZqPwT3MtQ3DssfCGyeSkzcCcOW681tboOs/WYaNhPOLx70p0uT5r8uh26YMAuEeEv/CCG1ZTE/1OWi5pDyT52bIO0/Xj83zQFkWWJYbPBkN/39QUXU+Y4IbJas0Yni2W/YP8LP0xAL9XIVDAb64fbUsh60B3g1S1uLnOmOwXPcIbTjViWvoaJg1zLwtpkqMKmkJ34Xg6rlWxMh/WWIg5TgrG9SHyKH1SdLYsz5+42NZS7r8R+Yom+zsArF8fXVvj17Dic+Yzq5nQbtS/ngR8vjiq4mT6nmkagD3WJLoO0s2Rf6OePzOiv7a2uv6fDtJ0U3vUWf6KstJlZzIaQ/eRuHZkZv3IPj4c/xYp217f/OijBy83d7n+mXI2kl1Ez52yz2tvLLnG5vlkrYsqT3r49eapZ6I6SSuPz1SD0dl8/VoXwDJPsnyJfGnoeLJvWWGqf3b2FPalK8YHU3ozyXrV2ZDFtPxc87y9yuA5Jqvc8hqNO9bMPBr5ddZKOacAaG2NPOr0VCq7k+5aer4boBy+WxZ5xbQa0TQP8/xM98FSzV59C2kRFSST1/NnAoW9+eI+zw6FL8sZa6E2nhXNtpAP0FYBrMJY+RCfu+E+a3WJ9tbeujJbco7R2Zfzf0pnUQ4U9cOUWI+lh5yF7gcyj/JvL82WLfI3bhpy7Ulm3XUo4XueciJxnxHZM+CLOkIIIYQQQgghhJBRJ+6BQmQsw1fShBBCCCGEEEIIIYRUAEEYhqOdhxFn/PjxYXd399ARFZMnT8aZZ545DDkqHytWrEBbW9toZ2O3Z8Uzj6Bt76ahI44ij6xYhaa9ZwwdsQg61nfgoAMOKmuajyx7BE0t5atLK4+j2W6ltEel1vdw5KsclLsvlYrZBx95BG1as1soXkcH2g4qnEbZx8yqVTho3/LOFcRlxeoOtFXImFm6dCkOP/zw0c5GxbI7rO/DTdz1qtxrQalzW6Wu++WmHPNIMXVciWv9cPSRkaTk/O/m6/RIroE/+tGPloZhOG9EbjYKBMGUEDhrtLNRBv5rTLfTSLBHvqibN29euGTJktHOxrBw0UUX4brrrhvtbOz2HHvodDx43amjnQ2T6ef9Cqd+q7wvjpdctQRL/7q0rGlOnzMdp369fHVp5XE0262U9qjU+h6OfJWDcvelUjH74PTpePDUofN47JIleHBp4TTKPmYu+xWW/qSy/5Fpd+fYi5fgwUWVMWZmz56NZ555ZrSzUbHsDuv7cBN3vSr3WlDq3Fap6365Kcc8UkwdV+JaPxx9ZCQpOf+7+To9kmtgEARj+gUQX9TFJwiCDwO4BMAsAFsB3AngsjAMN8T8/UkAzgRwOICDAYwH8I4wDBd64o8H8K8AFgCYBmA1gJ8C+GYYhjsLxD8KwNcAHAUgBPAwgC+EYfh4nPzRo44QQgghhBBCCCFkVAkB5J0ERRRBEFwC4DsA/gTgYgAtAD4D4JggCI4Mw9A47mSQDwE4B8AyAM8CmDtE/FsBvA/ATwAsAnAMgK8CaANwvsrf0QAWAlgD4PL+rz8J4C9BELw1DMOnhsocX9QRQgghhBBCCCGEkIomCIIGAFcBeBTAO8Mw7O3//lEAv0Huxd2/xUjqXwFcFIbhjiAIPgvjRV0QBKci95LuO2EYXtr/9Y+DIGgH8JkgCH4UhuHD4iffB9AN4PgwDNf0p/EL5F4IfhvAu4bKHA+TIIQQQgghhBBCCCGVzukAMgB+MPCSDgDCMLwTwEsAzo2TSBiGa8Iw3BHznuf0//+76vuBz4P3DIKgDcARAH458JJu4H4AfgngxCAImoe6IV/UEUIIIYQQQgghhJBK54j+/y8qELYYwKwgCKqH4Z5rwjB8VX7Z/3mtyFOc/AXI+eKZUPpKSmLhwoU477zzMHPmTADAr3/9a0yaNAkAcPXVV+NXv/oVqqqqcOKJJ6Kurg633347Vq5ciUmTJqGurg5XXnklEokE3vOe9+D1119HKpXCypUrcdRRR2H27Nno7e3FD37wA1x88cUAgMceewyHHnooZs6ciZ/+9KejVu5CPPDoGnzlf/6GMAwxeVIaPb192LClC9WZcaidOA7f+uRRaJs+CVf89xLcvnAlsjXjsd/0Wvz4X98OAHjfZ3+PPz32Gv7f10/EiUe2lJyPMAxx3zfuQ+emTkzaaxLe/qm34zeX/QabX9mMM797JiZNy7XP76/6PV57+jWc+PkT0TK39PsNVx67O7tx77/di76ePqQyKZzw2ROQyqR26b670kbb3uzG6f98L3b29KF2Ygo3f/UE1EzMz08Yhrj36/cOWf+/+cJvEAQBgqoAk6sm71K5LHRdH/7Bw7HwuwsBABMbJuIdl7wDiarEqPaH4SJO2Xt29JS9nw0Hccc1AGx8cSNuu+Q2fOT2jyBRVZn/Drer8+XxF+XGT7IqwM1ffSem1E8Y5RLZWGvlAQccgKlTpwLIHQBx7bXXorW1FV/60pdw4YUXYuHChbj//vtx1VVXYdKkSTj88MMRhiHe9ra34ctf/jLGjRtXEeXY09Z8H5XyLGARhiHO+sJ9eH3lG/jjNX8c8jlhRkt5T6GMs04WegYYTkbi+WCkCMMQm1Ztwh2fvSPWul/u9i0Huo/EXb8rhVKeBd/52XeWfL9KXVOHc+3bMxgTHnUNQRDI0zt/FIbhj8qU9rT+/68pELYGuRdh0wA8X6b7DdzTd1LXGuQ88mTcge8LxQWAvYa6IV/UkZJZsGABrrrqKue7rVu34q677sKiRbkXyFu2bEFdXR0uvvhiXHHFFTj22GNx4oknAgAuueQSnHXWWXjggQfwd3/3dwCAk046CTfeeCMefPBB3HDDDVi4cCEA4Nhjjx28riQ2tnfhK//zN9z17ZNRMzGF51e141NXP4wbr3wH2qZPwtMvbcY/XPUn/OmH7wEAfPvio3HikS34yNf+hGUvbsacfevxwy8ch+tu3/UT+jav3IxUJoV3XfYu/O4rv0PX1i6861/ehUd+9ogT77hPHIdn7hmdEwHj5DGRTOCEz5yATH0Gz/7+WTz/h+cx57Q5Jd9zV9uoraUWN155AqY2ZPDfdzyL6+9+Hp/6+/z87NzRi4kx6v+0q05DIpnA8w88jxdue6Hkcg2FrutkKomTv3gyxlePxyM3PIJXl76KvY/ce1T7w3ARp+x7zd2rrP1suIg7rgHg6bufRsO+DaOQy3iUY7584D9Pw7hkAj+7+3n87O7n8bkFbxnlUg1NobUSABobG/PWtcbGRtx444248MILne8PPvhg/OEPfwAAXHnllfjP//xPfPrTnx6uLBeEa76fSnoWsHhqxWbUTkxhSuskdG3rGvI5YetjW8t6/507dmJiZmLRzwDDxUg9H4wUTz31FIKqAKdffXqsdb/c7VsOdB+Ju35XCnH6OOA+C5aa/0pfU4dr7SO7DRuHOvU1CIIsgE8Xkeb3wzDcjJzsFQAKyVa7+v+fKRC2K2Q89xu4Z0bFhSd+7PzxRR0pK1VVVVi3bh2eeOIJvOUtb0FdXZ037vPPP48f/vCHuOqqqwYf2gdob28f5pyWh7sfWoUFf7ff4L+g7j8ji6kN0bg7aJ96zJxWg1XrOpzfvdHRPXgt4+8KO97cgYmTJ6Knuwdd7V0YXzMeVeOq8uJl6ss9b8UnTh6TqSSS9bmpKVGVQF9v3y7dc1fbKD0+ianjc/lJViVQlSicn7AvjFX/iWRup1NPdw/SE9K7VDYLq64TVQkEiQDA6PaH4SJO2cvdzwrmo7cX5zzwAF59802cv//+WLpxI/7n7W8vW1kkm1dtxsSGidi6rvL+8BqgHPPluP7xs31HDw7ax7++7K6MHz8eb3vb23Dfffd5d8xddtllOO2000b8RV0h9rQ130clPQtYbNm2A3tNmYjwhY3YMQrPCWHv0OvkSMzNA4zU88FIsWXLFlQlq3brdd/qIyO5fpdKnD4OuM+CdTPq8Pqjxd9rLK2pxax9ZEyRBVDMNskbAWwG0Nn/eTyA7SrOwB9XnSgvnf33K0Ra3U/mr1BcGcdLZWpjyG7BDTfcgPnz5+OCCy4Y/G7ixIn43ve+h8997nPYf//9cccddxT87d/+9jfMmzcP06dPx/r169HXl1tk77vvPhxxxBH4xCc+gX/6p38aiWLsEq9t7MTUyfYDz7SGiVi3KTeHXPq9xWg9/SaMT1Vhzr715c1MmPvfLz7xC6SqUwiCoLzpl4Mi8rhz+048+/tn0XZ82y7dslxt1NG5Ez+641mcc3Lh/IQxy9axoQN3fO4OPH3305gwYRhle578vLnpTax5fA1aDh0bMteCFFH2cvWzQvzq5ZdxeGMjFr3vfbj6ySfx9n6pR1HE7FdP/fqpitwRKCnHWFy1rgPHXHgH/uOXT+PgtjLPocNEobUSADZs2ID58+dj/vz5+MpXvjL4/T/+4z/i2muv9aaXSqWwc+fOYcuvD675firqWcBgYJ1a91L7qDwnhP0T2kg+A1iM1PPBSBGGhet3d1r3fX1kpNfvUonbx+WzYP3epc0Blb6mjpW1jwwfYRiuDMMwKOK/Ff0/Xdv//0Ly0b2Qe3peWyBsV1jrud/APdeouAPfF4oLFJbFOvBFHSmZBQsWYOHChfjWt741OOECwMknn4x7770XixYtwle/+tWCv73tttvwwAMP4JRTTsFzzz2Hhx/OnWZ80kkn4dFHH8WCBQuwbNmykSpKyUxtyGDtxjfNOGs2vDn4L1zfvvhoPPXzs/D65u3o2tEzLHk658fnYK9D9sKz9z47LOmXg6HyGIYh/vT9P+GIc4/A+GrfP17EoxxtFIYh/uGqP+FrHz8C2Ro7P0OVrbqxGqf/++k4/JzDsX7d+hJKVBwyP707e7Hwuwtx/CePr1gPs3IyVNnL2c8K8cq2bZg7eTKqEgkcVFeHk1tK/yPJ6ldvrH0DqUwK6drh26FZDsoxFmc0V2PR/5yOK//v4bj6xieHPc/lwLdWDsh/Fi5ciMsvv3ww/tSpU1FTU4Ply5cXTK+7u3tE/ekG4JrvpxKfBSymttWN6nPCSD4DWIz088FIMRbW/dFev3eVYp4Fn7yjtLWs0tfUsbL2jTwhch51u/t/w8rAHtRjCoQdBeC5MAw7CoTt6j33CoJguvyy//M0AEtUXF/+jkaukZcOdcPdZ8YmFYuccLdv3441a3IviGtra70T6qOPPooHH3wQ99xzD26//XbcfvvtTvjnPvc5/Pu///uw531XOfWt03HjPSuw7c3cNvIVr76B1zZGO1mffXkLXlnXgelNEwe/q5mYwpnvmInr7y6/p0bnlty9JzZMRO/OyjQijZPHJT9fgqYDm7DXW4b02RyScrTR5dctwdsOacIJ8+z8DFW2vp6+wX/xTk1IIZEY3ilY5+fP//FnzD51NupmjD3JoCZO2cvZzwrRMnEi1nZ2oi8MsWzLFuzsK02eM1S/2rxyMza8sAG//fJvsXnlZvzl2r/sUr6Hi10dizvF+KmdmMKEdL6cqJKRa+VQ/NM//RO+//3vFwz71re+Narynz15zfdRac8CFus2je5zwkg/A1iM5PPBSNHbk6vT3Xndr4T1e1co9lmwKlXaWra7rKljZe0jFcWvkZO8fjIIgsGOGwTBewDsC+DnMnIQBA1BEMwKgmASSufm/v9/Wn0/8Hnwnv07/5YAODsIgoGDJdB/fTaAP4RhuG6oG9KjjpSVHTt24MMf/jB27NiBvr6+gh46zz33HKZMmTL4edasWVi0aBE+9alPDX6XzWYxffp0/O1vf8Nhhx02Elkvica6CfjSPxyK0y79PcIwRH3teKTGJfChL/8BNZkUajLj8D//enze1vdzTm7DyRf/Dh97/2z807cfwl0PrsJv/vIKPnbGNnz0jANLzs/aJ9bi1//8aySSCbzzc+/E/d+8H+ueXYc31r6Bt7z/LWg9uhUP/eghrHp0FV555BVsO2UbDjyl9PsNRx4b92vEE7c9gaZZTVi5eCX2PXZfzD51dsn329U2eu9xe+ObNzyBtx7ShNv/tBIfOHFffPzMwvkZqmwN+zbgj9/5I5AAqpJVmNI0pWA65ULm58gPH4mlNy1Fx4YOLLtzGea8Zw5mHjNz1PvDcDFU2afsP6Ws/awQ7585Ex/5859x3+rVOH///fHPf/0rbnpn8ae7DdWvZr51Jma+NXey2p3/cieO+8RxZS1HudjVsXjqW2dgwRV/RCIAxqeqcP3l80enIGViQP4DAHvttRd+/vPouXLevHmor49kSE899RROOOGEwZPvPv/5z490dguyp635PirtWcDigUfX4vX27ei9d/mQzwk923rwox/9CB/96EfLdv9SngGGi5F8Phgpdry5I/a6PxztWw5KWb8riWKfBed/ej6eWb666Pvsrmvqrq59A6eDkz2XMAw3BEHwJQBXA7g/CIKbkZOUXgpgOYDvqp98EjkvvAsAXD/wZRAEhwB4b//Ht/X/f0EQBMf2X/8gDMM3+u95dxAEdwH4TP8Lv0XI7Zi7EMCNYRg+qO55MYA/AvhLEAQ/6P/uU8htlLs0TjmDgTfpexLz5s0LlyxZMnTE3ZCLLroI11133WhnY7fn2EOn48HrTh3tbJhMP+9XOPVbZw5+XvvUWqx5Yg2OOPeIktNcctUSLP3rkDtxi2L6nOk49eu5uhzuPI5muzWedQumH7NvUWUbzvrelboejnyVA9mXLMrRzyzMPjh9Oh48deg8HrtkCR5cWjiNso+Zy36FpT85c+iIpGSOvXgJHlxUGWNm9uzZeOaZsXWScznZHdb34WLh0rW4/9E1+NmiVc7zg49yrwWNMxsx/cjpRc9nlbrul5tdnUcWLlyI9579XnzwJx+MFb8S1/rh6CMjScn5383X6ZFcA4MgWDrUaaK7M0HQEALvGe1slIHrh72dgiA4H8AlAA4AsBXAXQC+EIbh6yreFeh/UReG4fXq9z81bjEzDMOVIn4awBcBnAtgKnI+cz8F8I0wDPMMFIMgOAbAVcjJcUMADwO4LAzDv8UpH3fUEUIIIYQQQgghhIwqAx51ZCj6X7pdHyPeFQCuKPX3In4Xci/qvhgz/iIAxUtp+uGLOkLGCNMOnoZpB08bOuIosjvksVTSE8cN2w6uUhjLdT0UY6nsY6kshJDRZf7h0zD/8Gn42aJVo3L/9MR0Ra2TY4358+djUtOuWDCNPrt7H9nd808IqRx4mAQhhBBCCCGEEEIIIRUAX9QRQgghhBBCCCGEEFIBUPpKCCGEEEIIIYQQMurQo45wRx0hhBBCCCGEEEIIIRVBEIbhaOdhxJk3b164ZMmS0c7GsNDQ0IBNmzaNdjYIIYQQMgqk02l0dXWNdjYIIYSQ4WBpGIbzRjsTw0UQTA6BU0Y7G2XgpjHdTiMBpa9jjE2bNmFPfPlKSDm5/vrrccEFF+CFF15AW1ubE9bT04Nx48bhy1/+Mq644orRyeAIMH/+fPT09ODBBx8sS3rnn38+Fi5ciJUrV5YlPUJIYYIg4HMAGVNYa/IAu7LGtLa24thjj8WNN944ZD76+vrwD//wD0XfoxBXXHEFrrzySuzcuRPJ5K7/STZQTy+//DJaW1t3PYOEVCBBEIx2FggZESh9JYQQMux86Utfwu233z7a2SCEEDIGGYk15vrrr8dPfvKTYb3HrvDud78bixYtwtSpU0c7K4SQkgkB9I2B/8iuwh11hBBChp199913tLNACCFkjMI1BmhsbERjY+NoZ4MQQkgZ4I46QggpAy+//DI+9KEPobGxEePHj8fcuXPz/nV/xYoVWLBgAWbOnIkJEyZgn332wcc//nFs2bJlMM63vvUtpFKpgl6Ts2fPxumnn44dO3agsbERl1xySV6c66+/HkEQYPny5WZ+n3jiCZxxxhmYPHkyJkyYgAMOOABf//rX8+Ldf//9OOyww5DJZDBnzhzccccdRZcJyMmSpBRn5cqVCIIA1113HS6//HJMnToV2WwW73nPe7B69Woz74QQQohErzEA8NJLL+HUU09FJpPBlClTcOmll+JHP/oRgiAoKJG95ZZbcOCBB2LixImYN2+eY/0wf/58/OlPf8JDDz2EIAgQBAHmz59v5mnDhg34xCc+genTp2P8+PGYPn06FixYgB07djjxXn75Zbz73e9GdXU19t57b3zlK19BX1+0I6WrqwuXXHIJ5syZg+rqajQ3N+M973lP3jo/sP7LsrW2tuLcc881y0YIIaTy4Is6Qgjx0Nvbi56eHue/3t78I9NfffVVHHXUUXjiiSdwzTXX4De/+Q0OO+wwnHnmmfjNb34zGG/t2rVoaWnBd7/7Xfz+97/H5ZdfjgceeACnnnrqYJxzzz0Xvb29uPXWW517LF26FM8++ywWLFiA8ePH44ILLsDPfvazPNP46667Dm9/+9sxa9Ysb7keeeQRHHPMMXjxxRdxzTXX4O6778ZnPvOZvBdkL774Ii6++GJ85jOfwW233YapU6firLPOwooVK4oqk8XXv/51rFixAj/5yU/wve99D4sWLcKHPvShWL8lhBBCCtHd3Y2TTjoJTzzxBK699lpcf/31ePnll/G1r32tYPy//OUv+Pa3v42vfvWruPXWW9Hb24vTTjsN7e3tAIBrr70Whx56KA455BAsWrQIixYtwrXXXuu9/5YtW/DWt74Vt956Kz7zmc/gt7/9Lb71rW9h586d6O7uduKeccYZOOGEE3DHHXfg9NNPx5e//GX87Gc/GwzfsWMHtm3bhi9+8Yu4++678V//9V/o6urC0UcfjXXr1g1ZF0OVjRBCSOVB6SshhHiwXnZJrrjiCoRhiD/96U+YPHkyAODkk0/Gq6++issvvxzvfe97AQDHH388jj/++MHfvfWtb0VbWxuOO+44PPbYYzj00EMxbdo0nHDCCbjhhhvwiU98YjDuDTfcgLq6Opx22mkAgI9//OP49re/jV/+8pdYsGABAODJJ5/E4sWLcfPNN5v5/exnP4vJkydj8eLFyGQyAIATTjghL97GjRvx5z//Gfvttx8A4LDDDsPUqVPxi1/8Av/yL/8Su0wWe++9N2666abBzxs2bMDnPvc5rF27FtOmTTN/SwghhBTi+uuvx0svvYS//vWvOPLIIwEAf/d3f4e5c+di1apVefG3bt2Kxx9/HHV1dQCA5uZmHHHEEfjtb3+Lc845B7Nnz0ZtbS16enpw9NFHD3n/a665Bi+99BKWLFnirIMf/OAH8+JeeumluOCCCwAAJ554Iv7whz/g5ptvHvxu0qRJ+PGPfzwYv7e3FyeffDKamppw8803F9xdX0zZCCGVRv6mALLnwR11hBDi4fbbb8ejjz7q/Ld48eK8ePfccw9OPfVUTJo0ydl9d/LJJ+OJJ57A1q1bAeT+hf/f/u3fMGvWLEyYMAHjxo3DcccdBwB47rnnBtNbsGABFi9ejBdeeAFA7qTZW265BX//93+P8ePHAwBmzpyJk08+Gdddd93g76677jo0Njbi/e9/v7dMnZ2deOihh/ChD31o8CWdj/3222/wJR0ATJkyBVOmTHH+yIlbJh/vfve7nc8HH3wwABT8Q4oQQgiJw+LFizFjxozBl3RA7rTIM888s2D8Y445ZvBFFrDra9G9996LI444Ysh/rALy18E5c+bk3fcXv/gFjjrqKGSzWSSTSUycOBEdHR2x1tlyl40QQsjwwxd1hBDiYc6cOZg3b57z3+GHH54X7/XXX8f//u//Yty4cc5/n/vc5wBg0G/usssuwxVXXIFzzz0Xd999Nx555BHcdtttAOBIWM8880xMnDgRN954I4DcA//69esHd84N8IlPfAIPPfQQli1bhjfffBM33ngjLrjgAqRSKW+ZtmzZgr6+PrS0tAxZ/vr6+rzvxo8f7+Q1bpni3mPgRWSc3xJCCCGFeO211zBlypS875uamgrGL/datGnTpljrrO/e8r533nknPvCBD+DAAw/ETTfdhL/+9a949NFH0djYyHWWEELGKJS+EkLILjJ58mQcd9xx+PznP18wfEDCecstt+DDH/4wvvjFLw6GdXR05MWfOHEizjjjDPz85z/HlVdeiRtvvBH77LMP3va2tznxTj31VLS2tuK6667DW97yFmzbtg0f/ehHzbzW1dUhkUhgzZo1xRazIHHLRAghhIwUU6dOxTPPPJP3/fr160fk/g0NDWVdZ9va2nD99dcPfrdz505s3ry5LOkTQgipPLijjhBCdpFTTjkFTz75JA466KC8HXjz5s0b/Nfrzs5OjBs3zvntT3/604JpLliwAC+++CJ+//vf49e//nXebjoASCQSuOiii3DDDTfgP/7jP3DiiSdi3333NfOayWRw7LHH4sYbb8T27dtLLHFEMWUihBBCRoKjjz4aq1atwiOPPDL4XRiG+NWvflVymuPHj4+9br7rXe/CI488gieeeKLk+w3Q2dmJZNLdW3HDDTcUPNyKELK7EyLnUbe7/0d2Fe6oI4SQXeQrX/kKjjzySBx//PH45Cc/idbWVmzZsgXLli3DSy+9hJ/85CcAci/0fvazn+Hggw9GW1sbbrvtNjz88MMF0zzxxBMxbdo0XHjhhejs7MS5555bMN6FF16IK664Ak888UTsP0CuvvpqvP3tb8cxxxyDSy+9FC0tLXjppZfw+OOP4wc/+EFRZS+mTIQQQkip3HPPPWhubna+mzRpEk466aS8uOeffz6++c1v4v3vfz++9rWvobGxET/+8Y+xZcsWALl/6CqW2bNn49prr8Wtt96KfffdFzU1NTjggAMKxr3kkktw00034cQTT8QXv/hFHHzwwdi4cSN+/etf44c//CFqampi3/eUU07BHXfcgUsuuQSnnXYali5diu9///vIZrNFl4EQQsjuAV/UEULILjJjxgwsWbIEV1xxBf7lX/4FGzZswOTJkzFnzhycd955g/F+8IMfIAxD/Ou//iuAnHT15ptvdsyuB0gkEjjnnHNw9dVX45hjjkFbW1vBezc2NuLtb387nnrqqcHTZYfiiCOOwEMPPYTLL78cn/rUp7Bjxw7svffegyfMFUMxZSKEEEJK5VOf+lTedwcddBCWLVuW930qlcK9996LT33qU/jYxz6G6upqnHPOOTjqqKPwhS98AZMmTSr6/p///Ofx3HPP4SMf+Qg6Ojrw9re/HQsXLiwYN5vN4qGHHsIXv/hFfOMb38CmTZvQ1NSEE044wfSRLcT//b//F6+++ip+8pOf4LrrrsMRRxyBO++8E2eccUbRZSCEELJ7EIRhONp5GHHmzZsXLlmyZLSzMSwEQYA9sU0J2VPZsmULZsyYgU9/+tP46le/OtrZIYSMMnwOIMTPaaedhmeffRYvvvjiaGeFEFICQRAsDcNw3mjnY7gIgmwIzB/tbJSBX4/pdhoJ9sgXdUEQbADwymjngxBCdoEkgDSAKQAmAVgGYOeo5ogQQgipHJqQM0vagZwvd33/f6sAbBjFfBFCSmfvMAwbRzsTwwVf1JEB9kjp61ge3ISQPYMgCM4H8FPk/uD4aBiG/290c0QIIYRUDkEQ/COATwKYAaAKwHMA/jkMw/8Z1YwRQgghQ7BH7qgjhBBCCCGEEEIIqRS4o44MsEfuqCOEEEIIIYQQQgipLPpGOwOkAij+bHJCCCGEEEIIIYQQQkjZ4Ys6QgghhFQsQRBcHwRB2P/f/DKkN1+kd/0uZ5AQQgghhJAywhd1hBBCyG5MEAQrxYsn/V9PEASbgyB4KgiC/w2C4PQgCGh7QQghhBBCSIXCh3VCCCFk7FIFoK7/vzkAFgB4MgiCc8IwfHpUc0YIIYQQQgRv/B64s2G0c1EGNo52BnZ3+KKOEEIIGTv8EMCL4nMSQDNyR4i9pf+7QwA8EATBvDAMV49s9gghhBBCSCHCMDxltPNAKgO+qCOEEELGDreGYbiwUEAQBOcA+Blya38TgK8CuGDkslYaYRieD+D8Uc4GIYQQQgghIwI96gghhJA9gDAMbwLwPfHVmUEQjBut/BBCCCGEEELy4Ys6QgghZM/hdnFdA2BfK3IQBO8IguCHQRA8EwTBliAIdgRBsCYIgjuDIPiHOAdTBEFQFQTBh4IguC0IgpeDIHgzCIKuIAhWB0HwtyAIfhEEwf8NgmBvz+9jn/oaBEE6CIJLgiBY1H+IxptBEDzfX4ZDhsqrSGehuGdrjPgDcVfGiBsEQfC+IAh+FgTBC0EQbA2CYHsQBK8EQfDLIAjOCoIgiJHOhCAILgqC4Lf9dbk9CILO/nSW9B8esiAIgqZ4pSaEEEIIIZUApa+EEELInsPr6nN9oUhBEEwBcCOAkwoET+v/7zQA/xwEwelhGC73pLMXgLsAzC0QvFf/f4cCOBvAUgDzhi5CYYIg2A/A3QD2U0H79f/3D0EQfAbAslLvsasEQdAG4BYAhxcIntH/31kAFgdB8P4wDF/zpHMQcvXaaqRzOHKHh/yqP01CCCGEELIbwBd1hBBCyJ6D3l31po7Q/3LtQUQvgToA3APgGQBdyL0EejeA6QAOAPBQEASHh2G4UqWTAHAHopd02/rTWd5/34n995gH4MBdKBOCIGgG8EfkXvwBQDdyL7KeAJACcByA4wH8AMC3d+Veu5DHQwD8AcDk/q82IVcfLwDoAbAPgPcCaABwNIAH++u1XaVTDeB3yNU/kDtZ7R7kDhHZjmin5FEAZg5fiQghhBBCyHDAF3WEEELInsOZ4roLwHMysP/l2s2IXtL9L4B/CsPwDRVvHICvA7gUuV15NyD3MkwyH9EOuSUATgnDcFOhTAVBsA+AE4orisN/IHpJtxLAqWEYPqvu8R4AvwDwmV24T0kEQTARwC8RvaT7JoArwjDsKhDvvwF8ELkXd98H8GGV3N8jekl3N4C/D8Ow03PfQwAcVI4yEEIIIYSQkYEedYQQQsgeQBAECwB8Snx1q35RhNyLvIEXbreFYXiefkkHAGEY7gzD8LMAbuv/6tggCPSLukPF9Td8L+n603spDMMfxyqIIgiC2YheQPYAeK9+Sdd/jzuRK/+Q/m/DwCcA7N9//Z0wDL9QoO4RhuGbyMlVH+n/6pwCHnmyXr/se0nXn96TYRjeXHq2CSGEEELISMMddYQQQsjY4QNBEEiftyRyctcTAMjDFJYD+HyB339CXH8hxv2+DeD9/dfvBfAXEVYlrifESKtUzhXXN4dh+JQR93+QK5d5iMYwMFCv2wFcaUUMw7A3CILvAfg5cnX4bgD/KaKMVL0SQgghhJBRgC/qCCGEkLHDx4YI70XucIF/CsNwvQwIgmACgLf2f3w5DMMXYtzvcXGtD4J4QlxfFQTBs2EYLo2RZrG8TVzf7o0FIAzDMAiC2wB8bhjyUZB+WW9r/8fFYRhujfGzx8W1Va/fD4LgAzHbihBCCCGE7AZQ+koIIYTsOfwJwKX6JV0/s5A7eAEAZgZBEA71H9zDKBpVevcBeKz/em8AS4IgeCIIgquDIHh/EATTylSm/cX14zHiPzF0lLLyFnH9jpj1+rT4ja7XmwCs7r8+FMBzQRAsDoLga0EQnBYEwWQQQgghhJDdFr6oI4QQQsYO7wjDMAjDMEBujW8GcCKA3/aHnwDg4f5dXppdfcEzUX4Iw7APwKkA7hdfH4LcARS/ArAmCIJngyC4IggC/TKqGOrEtdcHT7BxF+5VCuWu123Itenf+r8KkDvh9V8A3AlgQxAES4MguDQIgppdvDchhBBCCBlhKH0lhBBCxiBhGIYA1vf/90AQBN9H7jCF6QB+EQTBW8Mw7BY/kc8EzwEo9nCHQodOrANwUhAExyB3WunbkXtZN+CzNgvAlwF8JgiC88IwNKWrZWKkD5OQ9boYuZeUxfCq/iIMw+f6vQhPRM4j8HgAByJXtgDAYf3/fTYIgrPDMHywlIwTQgghhJCRhy/qCCGEkD2DSwHMB3AwgMMBfAbAN0S43I3WHYbh1eW6cRiGiwAsAoAgCGqR88I7BcA5yEk7awDcGgTBoWEYPu1NqDBbkNs5COR2rw3lARdnh1sors0Xe0EQZIZIS9brhnLVa/+L2Pv6/0O/5PU45HYx/h/k6rQZwJ1BEOwfhuGGctyXEEIIIYQML5S+EkIIIXsAYRjuRO5l3QCXKcnpC8gdNgEAs4MgkJLScuZjaxiG94Rh+GkA+wD4a3/QOAAfKSHJ58X1W7yxiovTIa6rh4g7Y4jw5eL6mCAIhuXZKwzDTWEY3hGG4UcB7Afgpf6gLHIvRAkhhBBCyG4AX9QRQgghewhhGN4HYEAGWQvgCyKsHcCS/o9VAD48AvnpAHCN+GpWCck8LK7PsCIGQRAMFacfedjG/t5YOU4eInwZgHX91w0A3hPj/rtE/2EhPxJflVKvhBBCCCFkFOCLOkIIIWTP4kpx/fEgCKaKzz8Q15d7Dp0oSP9LsF1lewm/uUFcfzAIgtlG3PMBtMVI82/i+v2+SEEQTIK7SzGPfonqf4ivvhMEQX2MPAzcY7TqlRBCCCGEjAJ8UUcIIYTsQYRheD+iXWgTAFwmgm8WYfUA/hQEwYm+tIIgSAdBcHoQBH9E7vACGfbdIAiuDoLgIOP3ewH4ovjqz/FLkiMMw2cADBxCMQ45T7YDCtzr3QD+E67/nI9fI5IB/58gCE4vkN5UAHchdzjHUHwfwIr+630A/DkIgsN8kYMgqAmC4NwgCP4G5akXBMEtQRBcHgTBTOP3swH8k/iq6HolhBBCCCGjQ5D7h15CCCGE7I4EQbASwN79H98RhuHCGL95F4Df93/cAaAtDMPV/WFNAP6CnM/ZAE8h97LnNeT+kW8ygDkAjkLk4XZEGIYD0lkEQXA9gPP6P74I4BEALwPYhtxLwFnIHSgxTsSZ2y+HhSedguXrf2m2FMDA7sAdAO4E8CSAFIBjkTtIAwC+g9xBGgDwszAMz9fp9af5QwAXia9+h9yprQBwEIDTAGQAXIXoZeMrYRi2etI7EMAfATSJrx9B7sXo6/35bETuVNwjAYzvj9MYhuFGkc5C5E7PBYCnkZMrr0Ju11wDch5870D0j7GLABwXhuHAi0dCCCGEEFLB8NRXQgghZA8jDMN7gyBYDOBo5F4I/SuAj/eHrQ+C4AgAPwTwAeROPT24/z8fa5A7fVXSLa737f/Px6MAztIv6eIShuFrQRC8A7kdbm3Ilems/v8G6EHuBd1TiF7UWVyK3MvKE/o//13/f5JrAFwOd1egL4/PBkFwOICfAjip/+sj+//z8QJyLx0lsl4P6v/Pxz0AzuFLOkIIIYSQ3QfuqCOEEEJ2Y0rZUdf/u1OQ2yUGADsB7B+G4UoV5yAAC5DbwTUTuZ1wPQA2I3fa6iPI7cz7UxiGfeq3CeReBL6z//8HILebLAOgE8Bq5HbB/RLAb0LPA0mcHXUibhrAPwL4e+QOgRgPYC1yO9muDcPwsSAI5vd/Bowddf3pVQG4AMC5yO10m4jcwRCLAPxXGIZ/6o83kHfvjjqV7tEA/g+A45GTzmaRewG3AblTYhcB+F0Yho8U+O24/t+dgNxLvjbk6jWF3Gm1q5A7SffmMAz/MFReCCGEEEJIZcEXdYQQQgghhBBCCCGEVAA8TIIQQgghhBBCCCGEkAqAL+oIIYQQQgghhBBCCKkA+KKOEEIIIYQQQgghhJAKgC/qCCGEEEIIIYQQQgipAPiijhBCCCGEEEIIIYSQCoAv6gghhBBCCCGEEEIIqQD4oo4QQgghhBBCCCGEkAqAL+oIIYQQQgghhBBCCKkA+KKOEEIIIYQQQgghhJAKgC/qCCGEEEIIIYQQQgipAPiijhBCCCGEEEIIIYSQCoAv6gghhBBCCCGEEEIIqQD+P/LWTHmqTbspAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ5CAYAAADcN4iwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydfZxdRX3/P3OzuWyWzbJZEhJCCCGEEB6CAcKjASNgjQoWLFZEVFS0tD7R1rba2pZWrQ/ValtabaWVX7WABYVKKlhiiYACJkgwAQIECBBIAiFZwpJsNps9vz/O3Tuf+d47Z8+9ezf7kM/79corc+6dmTNn5jsP9+x8vuOSJIEQQgghhBBCCCGEEAIoDHcBhBBCCCGEEEIIIYQYKehlmRBCCCGEEEIIIYQQJfSyTAghhBBCCCGEEEKIEnpZJoQQQgghhBBCCCFECb0sE0IIIYQQQgghhBCihF6WCSGEEEIIIYQQQghRQi/LhKgB59x651xS+rd+gLiLKW7inLuqxnsd55z7B+fcg865l51ze0x+szLSnu6c+1fn3Brn3DbnXB+nraUcQgixN3HOXWXGusXDXSZRHbWVGC6cc8vH4rpmrD6XEEKMRpqGuwBCiBDnnAPwNwD+BICrMW0RwLcBvG8IiiaEEEIIIYQQQox59smdZWZ3EP/7w0HkuTCSZ+Kcm9HI8osxzx8D+DRqfFFW4u+hF2VCCCGEEEIIIUTdaGdZyPsBfK3OtJc1sBxiH8U5NwnAVebj6wD8GMBLAPro800m7dEArqCPegFcA+BOANsAaDu/EEIIIcQQ4Jy7DMB36KMPJEly7fCURgghxGDRy7KQ+c65E5IkebCWRCXp28VDVCaxb/HbAJrp+gtJknw2Z1q7o+x3kyS5pjHFEkIIIYQQQggh9g30siylD16S+n4ANb0sA3A+gAMj+Yl9lCRJlqN2KeXp5vqbdaZ9DcB/1HhvIYQQQggxTCRJsni4yyCEECJFL3RS7qTwJc658TWmfz+FnwDw3OCLJPZRjqJwZ5Ikz9eZ9okkSXoaVCYhhBBCCCGEEGKfQS/LUq6l8BQAb82b0Dl3EIC30Ef/r0FlEvsm7RTevhfTCiGEEEIIIYQQAnpZ1s/PAKyn6/dH4lXjUng5awLguw0qk9g3YX9ltTrkH0xaIYQQQgghhBBCQD7L+ul/yfXnpeu3OecOTJLk5Rxp+cXanUmSPOtcrW6qquOcawNwBoDpSHe89SA9EXENgIeSJBnUCxHn3HQAxwKYDeAApC9PtwLYCOC+JEleGkz+Gfc9DsDJAKYhfaYXAdyfJMnjQ3G/nGVaAGA+0rruA7ABaR08vbeLspfvF2Wo7a/K/aYitYuDS/frAnD7QHbhnCsAOAnAkaV0EwBsAfAsgHuSJNnR4HI2A1gE4GgAbQA6kUqvf5YkySsNvMepAGYCmAygBcCrAJ4B8HCSJOsGkfcEpP7tDgVwENLx7yUAjwFYkSTJnsGVfvA455qQlvE4AB1In/0FpHXckHHJOXcMgOOR1sH+SG3mBQA/T5KksxH3MPery74pfQHAaUjH6+lIT7t9AsDyJEleHSDtfkj78rFIx/pOSlu3XLvUTkcBOAbpeN4GYCfSeeRxACtHqxy85I7h9QBmIX22bgCPILXBXQOkbUU6RhwFoBXAy6W0P29E/3LOHYy0f0wFMAnAKwA2I+2/zww2/9I9pgA4C8Ah8M+wGulc3fAxwjk3GekzTUM65u1Aujb4VZIkjzX6fjWWrQnAQqR9bwrS+uhCOl48DODReudD59zhpbwPQto3tyI96freJEk2D770FfdrR1rPByO1n26kNv2rGvKYh7TPTy+VeQuAGwaa/0ba3OOcm4V0TDwM6djVh7T+n0O6/mvIfD4c0Jh/GNK63oO0P60D8MtG17VLf/gsBLAAaR/ZidSO70mSZES4pnHOnYh0TD4E6Vr7KaS2v2WAdOOQrseOR7oe6QLwNID/S5LktUGUxyFdtx4DYAZSG+xBaoNPIx1rG7p+Ld23BX5+akM6tj+LdD3Q8PsJMepJkmSf+4d0F1lC/2YAOMJ89rEc+Zxg0rw3ln+N5VsC4P+QDppJ5N8LAP4SQGsN+Y4D8GYA30Y6ScTy7v/3KwCXABhXwz0Wmzyuou8uQrqwjN1vNYC37GVbuATA2owy/RzAmRHbWV9vXVCcq3K0Q7V/s5DKh2tOO4z2x+mX0+dvBvATpD/+7X2uzMjvUAD/gnSxHStnN4AfADi2hnLaep1V+nwigK8glbhWu9duAN9Djf3d3PuNAG5DutDMasdnAHwDwNE15H0agFuR/giN5fsygK8DmDzE/c7a/eLS50UAn0a6qK9Wvj4AS2t5bnPfFgCfReUYbdvxTgDn1Jj3oOwbwGXmu8tKn+8H4M9KbV6tvK8C+DyAYpUytQL4ItKXY9XSdgL4Q9Q2xk8GcAWA/8noC/3/dgK4DsD8RtjHXrLBNqT9PGaDLwO4EoCrkucUpIeyxPrYRgDvr7O8DsC7ATxQ6gexOn8YwEdqaVNznyMB/KjUD6rlvwnAHwFoGmxb0TPdh/THfOyZngLw8Wo2PpT/AJwI4MYcdr4ZwDUATs6ZbxOA3wPwaEaefQBWALioxjKvpzzW0+enAPgh0jnR3usbFG+x+e6q0ufjAPwugFWR8i7IKNOQzD0AlnMeOeI3A3gH0nn6hQHadA+AuwC8LUe+swbIK+tfRX+p9blM2nkAvo/0hU5WXX8LwME15HuZyeMy6sMfQfaceg+A04a4r8bstoDsvrYL6ZjdViXP8UjHuk2RtDuRzq8TaijnRADvRboufXkA2+hBut55fY11cVU1G0P6ou+fEO+HXUh/Hx44lG2lf/o32v4NewGG5aEjL7MA3E2frciRzzco/qsA9s/KP0d+kwHcMcDgaf89D+DEnPnfVGPe/f9+mnfwrDZhlSaca2u436f3gg0US5NVnvL0AfjDKm27vta6qBLHTmp5/82qsU7L/4bR/jjdcqSLrK8PkP+Vkbz+BAO/UOJ/ewD8ac5y2nqdhXQB+mTOe20G8Loa7XEKgP+toz1X5ci7BcB/1phvJ4A3D2H/u8rcbzHSnQ4rc5avC8C5Nd7zVKQ7Rmuph/9CzoXwYO0bVX6MlOxiRc6y/hTAfpTfbKQ7NvKkvQ45Xq4g3cUUe4mS9a8XwKcGYx97yQbnIN15keeZvgd6YYZ0V8VAP8D7/32lxrIehPQPN7XU+WoAh9d4n/ci/7h6F9JdRXW1Vck+H6jxmR6p9ZnqtI39S+1bq5135sj7SGS/JKv2bznyr8HWU7r1pc/+ANkvI79B6Reb765C6g91+QBlXFClLEM699gy5Yifd36x/65HxjyAEfKyrNRWtYzPXcj58h7V56eJAG7Pea/dAC4dwj5bzW5bAPw4Z/l+DaCD8jsQwL050y4H0JKznFvqtJO/Q84/gKD63HYs0h2Tee71Imp8Qad/+jeW/8lnWci1FF7onDs2FrEk0biEProxGdx23NlIB+Zzq3z9LNJF5UNIFxLMdAA/c86dnuM2zVU+24J0AXp/Kf9q2/7PBrCstK27Hq5FKFftRLqQfwDpX1YsX3TO/Wad9xqQ0pbqG5H+hdHyAtIF1RNIf+AB6Y/erzrnLh2qMg03e8n+LJ9HukOjn11If9yvRPoSLqlSzoJz7hoAX0KlPb+CVCK6AukuHKYA4AvOua/VUc7DkO60m02fPVsq58NI//rHHATgR865iXkyL0lafgngTVW+3o70h9UvkdZNdy0FL0mbliMcq/rZiHSXwK+Q7s5jDgCw1DlXrY8MBe0AliGV0/azEandrUb6l1BmfwA/cM4dmidz59y5SNvwEPPVbqR9fSXSvm95J4A7SrK6WqnZvg37Id29tZA+e66U/lGkP36Zs5G+nOs/eOZOAHPp+/VI+8YTVe79bqR/QR+Icah039CHtL89hHQeeQTpCxeb7m+dc3+S4x7DxWSkL6yPKF0nSKUwK5C+QLO8B6U6K/XhZUhf+AJpnawrpV1fJe0fOecuzlOoko3/AqmkyvJM6R5Ple7JHAfg5yW5cZ77vAvpXG3H1S6UpPdIx9h+zkQ6j9bsOsA5txDpfHOi+SpB+iwrSvfsMt8fDeBe59ycWu9ZQ9mmId0J854qX+9AKi/+JdI+mCl/rpL365C+9JxnvuqDf+5qMto3ALinJL+tCefchwF8Dd5HcS+8bT6LynHEMg7Af5fK0E//XLsK1ddwI3XuqbYG3oR0Hr8P6QuTrVXiXAzgJtcoHytDgHPuX5Du9rfj8zakdV2tP+0P4Frn3B/UccvxSHcLvpk+21K61ypUHjLVBOA7zrmTsHdwSF9y8gFsm5GuKdagct02H+kL8n6Z4h1Id0T28zzSufcRVPaZNyB9mZUHa4MJ0j/irUZqg2tQfVz5fQBX57yHZSrS3e0z6LON8L91dpv4UwDc5pw7pc77CTG2GO63dcPxD/GdZW0It6dG//oL4DdNHm8YKP+MvCYgHSg5zQsAPgngIBO3gHSReqeJ/yyASQPcZynShck/AzgPwJRIvEMBfAaV0p2v5qjbxSYN78a5A6lOvkDxHdIXNI+bdM+hJPMYgvb/I3OvBOmuu/km3oFIdzD120Qn0oVHf5r1NdbFVVXizC49f/8/3u69yXzH/5qR+jngz/heD8XSDqP9cfzN8H/pfgrpj/WWKnVj2+QvTD57kG4bPwFGFoX0xciXUPmX1kxZCyp3lvXb8E4AXwBwqIk/Eal00N7nizlssQ2Vtt8H4Aakvl3GmfhNSH9g/lWpXKsy8i6gcqdgJ1LfjIdWiX8CUpkOx38FwOwh6INXReq4F6kkYq6J3wzgw0gXkZzu+hz3OhiVf83dXrLvdhN3PtIXAHZ8+Pcc9xmUfaPyL/dPkz18C8ARJv3kUl3Z/nAM/C7FbgB/A+AQk/bQKm39GgaQQJXumSD9wfFnSF/kNVeJNw6pv6//MvfYDeCEOuxj8V6wwf763lWqs+km/kxU7kbuKtnXGuovn4LZBYT0Jc9dJu3zAMYPUMYCwh3v/W38jyjJw42dfx6V8vmHMcDuSKQ7Y6xs62kAvwWSPpbadQlCdwpPo4a2QvrHBLsD73EAH0BlfxyP9HTyVSb+AxgCSSbS8fUec68E6Q/Nc+w9S+1zDIA/RvqipTMj7/1ROdbvKtnh1CpjwzdRKbddhiryX5N2PcV/BWm/7h+TrqhSx9MAnELXi809N1L4Z0hfDNh56XTQehJ7ae5B7TvL1iBdq3yt1J7tkXhzka4drGS1qnsWpPNT/xrrKybNVxBfx52LKuumOp7rd6rY7Eqkf0Dh9XYR6R+JrRuWPRi4315m0vDa/gaYnYVI+9JFxn4SpL74GtpvI3bL49KNAI438Sci7Xu2j70ZwL9SvcTm3m9VqcPjcpSzC6nrl88jnSMrXJkg/V20AKmbEbsj9Lwc97gqoy5uRuW6ugPp76LXTLqnkHPHnP7p31j+N+wFGJaHzniZhXDL+AuIbHstDTg8oLg8+Ufy+icTfzloO3AkTQGVP5S+PkCa01Hlh01G/FlmkH0NA78QsRNW/7/MFwdI//JhJ9W3D0Hbz0SlXv+qAdKcgsof6Qka8LJsANvMzL9K2sCGaki3t+yvml3ch8iCtUr60xD6fdqOHD+ikfoB40XvRpBcrUr8a6uUcxsG8LkB4H0mzSYM/GP4P0yaHXntHukP1+jzo/Kl8MMAZubI9zMm3c212GHOsl9VpY53DfTspT7VZ9IM9ILnZnOfFwHMGyDNn1Yp35Ihtu/LqqTfA+CSAdL9u0nzCPx4nWUf45BKNzntJwa41wQAp9fY1h8w97iuDvuIPkeDbXAHgLMz0lR7CdBf35uR8WMJqSToEZN2IHv/ZBV7+O0B0pyNyh/5A82/S038VVl2W7KD5RGbz2wrpLslOf73McAPMqQvI/7bpPvkENjEX5t79AK4oob0WbbzdZP3ayB/qJE0l6Lyx/zvDJBmfZU2eQJVXlJF0i+OtOs3McCLOspjr8w91gZz5H8WavPPeCLSnWb993gWA/wRFxHfXjXaYe7nQrq7377o/mFWOZH+kc5KUp9BxgvoKs/V/y+zfyDdRWnX3MdnpannX4bdZrp1QeUfYB8t9bk9AN41QNprTdq/y1nOXP2oFP/NSNc5/ff4RY40V0Xq4vMDpDsJlf4Za3IZoH/6Nxb/DXsBhuWhs1+Wvcl8V/EDCelfFfivt1flzb9KXjNMXk8BmJjzOcYhlb30p30VOX+Y1VBXdsfSQBNjtQnr1pz3+j2T7ptD0PZ/Y+7x45zp7IuQBGPgZdnetL8q9fcKzI6XAe53m0k/oONdSvtxk/ZDGXGvrVLW38p5n/tNulMz4h6Jyr8avrNBdt6CcDdVZ411zTto9gA4shHlovyvqlLHf5gzrd2tFF3QIvVBZX9s5vJ1hsodZssGiD9Y+76sSh5/myPd9Cp2NOBYXUp7uklzeyPbme7D/p96BhpjqtjH4iEoUzUb/GiOdKdWSZdggJeppbTvNmm+lRG3gMpdW5/L+WwfNek6UfKpWiXuXBN3B8yutUi6DlT3vxNtK6R/eOK4v0DOHeRID6vgQy6eRp2HGETyb0flD8U/alDeB6DyD27ROcik/VuT7nFk/NhG5foz125OSr+4Spven7eusRfnHgzCEX4N5bm8ln6Ovf+y7HPmfk8gxx/Fke5EfcWkjfoUq/JcCYB/zPk8drfdnwxBO1Wz2xtzpGtGqBjp//elHGkPQTj3rh0iG/y8KdtAf+y7qsrz/G/Oe73HpHsFkblD//RvX/knn2WV/BSpfryf91eJcwlSeQCQDib/MYj7fZTyAoDPJEmSyw9Gkh79/Df0USuA3xhEWardYxnSnTj9vL6ObD6TM973zXVDfRuU/E1cZj7+45zJv4tU2jjWGE77+6ckSZ7PE7HkE2gJfXR7kiT/U8O9voV0R1E/v1VD2pVJkvwgZ9xabPgTQDAG/yhJkhtrKFcW70UqI+7ni3nrusRfU7gA4MKGlCrOCwD+IWfcG8x1Vh1fjtCn0tLSmJaHP0Tom+Qc59wRschVyG3fEXYg7F9VSZKk388i8yxSefJAae9F2C9OqKWANfBdCo9H+tJkpLEBqewlkyRJ7kelb89fJElye4573IrQt1hWff8G0t3d/byIHPZQ4ptIpT79HADgXZG4HzTX/5wkyfqBbpAkyVaksvRa+H17nSRJb9WYlffrQugXaBYau0b4EFJpVj+rkMr1GsG7kc6P/fwa6Y7QPPwV0h/z/RyJdLd0Xm5MkuTBGuJX489L830eRtvcMxDXI5wH6lkDDwmlNe3l5uNPJ0kyoG/TJEk2Aviy+fgjNdx+J1LbzEMtc3ajSJDKfrMjpXX1v+bj15DKcAdK+zxSSXg/Rzrn9q+lkDn5rrmuxwY/lSdSkiT/CYDHizYAv13H/YQYM+hlmSFJkj6UnDyWuMA5d4CJdhmF70mS5KlB3PJtFO4CcEuN6ZchXHyfOYiyxFhP4Vp/TK1JkmRNnohJkryM9EdeP7mcd9fAPHgHzADwqxrKliA8AGKsMJz2d10Ncd9qru3iIZMkSXYj/WttP2c45/KOf3ahl4X9UZJlw28219+o4T4D8TZz/b2qsSIkSWIP+xiKcYX5YamN8lBLHS821/+Wt0BJkjyLykX0G/KmR232XY1lSZJsGzgagNQXD3NzDT9uOe1BgzjIJYunzfVQvZQbDD/M++IGqayMyfWSu/TCZz19NDMj+mJzfX2SJPbghNh9+gB8Z4D8+rEvXv5fnnuU+B78QTiZlMZb/oPHutKLx1qw/bGR45Idj/+hVI+NYLG5/k5pTTEgJZuxc5DNL4vBjkMvIZ3n8zLa5p5MkvTgrr3xB4V6OAqpz7l+tgD4UQ3pv4PwReCpzrlqhyBU46dJkmzJGXcNwnGi0Wv7aqxOkmTtwNEAVM6fy5Ik6cx7HwoXEDrRbxSDnT8fTJLk1zXEt3NALS/nhRhz6GVZda6lcDPoL7LOufkIByqOWxPOuXakJ1b1szpJkl215FGayPk0oqNz3nuuc+7PnHM/dM495px7yTm3yzmX2H9IpTr9TK6lfEhPXKoFXpTYl5SDxe5mWF5j+lrjj2iG0/6QSlIeqeFWdsFsd9LkgU8ZOwCpfC0Ptdjwi+a6qg2XTlw7kj56DakD8EFT+msz/+VxY507nPjFdd52rZehqOP9EI7VCdITMWvhp+Y676mvtdp3NWqxcXsi3QNVY+VLm2vcdc41Oefe4pz7e+fcnc65Z51zrzjn9lSZQx4zyWudR/YGw1HfWXV9mrm2tjgQA9quc64I4HX00dYkSVbbeDGSJHkJlS8OY8xHKnXsp9a1AVB5UmRDxiXnXBMqTxv9cSPyLjHkbZlBrS8kLSvyvjQcTXOPc+5E59znnHNLnXNPOudeds7tjqyB+Y+sI2nssnZ1Vw1/dOrfXfYofVRE/l1fuftvkiQ9CE9Sb/Tavhojff50zrkznXNfcc79r3NuvXNum3Out4r92XV5rTa4fJDxR+JOcCH2GvaIYQEgSZLHnHP3I/VNAqRSzH8thS+jqDuQ8y/KEeYhlAidXhoYB0NH1pfOuaORnqR1Tp35T6oxvv1hOxCvUXhCjWkHYra5zrWrjHgY6V/hxjWmOMPOXrc/4pka/2pvF8yPNeAU9w6EkusYtdjwa+Y6ZsNWzverGnYCDcRUhO1w8F5s13rJXcdJkrxm2j5Wx9OQLv77WZ8kiT3OfiCs9DprJxBTq31X46Ua4u5oYNoBx13n3PuQylQOHihuhFrnkb3BcNR3Vl0fZq5rdQOwBumu3/4/ilaz3UMA8E7CWudEIJUUvm7AWJVj+Ludc++u435Mo8alqUhPq+znuSRJrNS2LkovkHgnzW6ELyjyUO841FV6oTkYalFOjPi5xzl3GoCrUb8UcCSNXYMdI/rT8B9NZwL4eY509azt+1/yNHptX42RPH++DamSYE4N92FqtcHcfwAp8QjC3zr2t5MQ+xTaWRaHt6Ge4Zw7svTXx/fQ5zfn9e8U4cCBo9RMe+wL59wSAL9C/S/KgPDHZx4G9J2wF2k313m3kAMoS/kG094jjb1qf4ZaX1oMZ1kHY8OxN3r2eWpdeGYxnHVVL0NRx3ZBWVN/L2EXzXkXqbXadzUGUydDUZ9wzhWcc/+GdH6s90UZEL6gGSkMV33HGJT9lnYJsx0WnXMtJlr7YO5Rwu6siDGSx6WhHI8PQLjW7qxB7tvPcI5DteQxktsYzrkPIn0RNBifWSNp7BrOOW5I5pgGMuLmTwBwzv0l0tOH631RBtRug4P9rTO+ytwhxD6DdpbFuQHpUd/9g9L7kG5nn0pxrh3kPdoHmb4aVV+AOufmALgZqayUWYH0RKqnkDry34nKieJrAI5vbDGHBet40/5FKA+vYehfHOwt2ocgz7wv4HNLBUq01xg/D8P5x4KJ5rqrgXm3NzCvfvbG4rbRtJpru+svDzaNbbcYtdr3aOFPUekQ/lUAP0MqXXkOwFakcwjXwVTU6LtIBPabJEnSiPlqIsJ5r1FzYh7aB4xRO40aw4dyPB7t41AtebQ34H6Whsw9zrmzAFxj8tuD9OXZ/Uh9CW5GOnZZ2dv3EK79RwrDaVuiRpxzlyI9qZLpBnA30t9izyJ9edmN9NRo5o5B3Hoo5g4h9hn0sixCkiTbnHM/AvDO0kfvA3AMRXkOtfu/sdiB5zaEpz3VQ8wB8JcQvihbgfRI6wH96jjnxsoAaRcF9fylZChOuhku9qb9DZYdSE/lAdIF7luQ+qAaDMN5uqn9a71d9A4G264PIv+pr2MJ+4O3nr5r04ylnaU14Zw7COnLMubLAL4w0A5r59xRQ1awsUsXvP8b55xrqeOF2UD2uzfnRFv2awH8Zx33Y/IegDEQQzke70vj0Eiee/4O4Yuy2wBcUTrIJZMGSEmHin3JtkY1zrnxAP7WfHwtgD8a6KCEBhy604hxXXYh9ln0siyba+Ffls1E6Cfiuw3wSWMHyEKSJLWcOpSL0lHG59FHmwEsKR39noeh9le0t+g01zU5ySxNdmPpr257xf4axBb4l2XjkB5GsGkYyzNYbN87qIF523ZtGcHtOpTYH9L1OGaeMkCe+xJvR+iP5dtJknw6Z9qxMofsTbYhdBY9GaHj80xKzvvb6KOeKi/bOs11PX0kr/TOjku7RtC4NJTj8SsIfce1O+eaapRijpZxaETOPSVlBUsvHwZwQcnxfB5Gkp8yRnPc6OENCE8uvSNJkg/kTDvY+XOwv3V217mzWYgxgXyWZfMTALEf5P/RgPwrjgN2DfBaXoWTEGrcr8/7osw5NwHA4UNQpuHAOqqdX2P6YzF2nPsDe8/+GoEt62B8jowE1pnrE5xzjbKtTQh3+B3hnNsbp0+NNDYilDLMcs61xSJHsI7L7Wl8+xL2tMB/qiHtcQNHEYb15jqPE31mPsI1XjXbfR6h5KyedsrromEkj+GbEO7SOdQ51xDZXZIkCcKXnONR+wmPo2UcGqlzjx27vp33RZlz7kiMLD9lzHpzXesYUS3NSLWt0c5wzp+D/a1TyyEfQow59LIsg9LpdNVkAvclSfJYA/LfgPBH80GoPAq6EdhFXy1lPwvp4m4s8EtzvbjG9G9sUDlGBHvR/hrBneb67cNSigZROmmN+2Er0r7WiLx3IzzNqgnAWxuR92ii9GPoV/SRQ+192B6Gcu+gCjW6Gcw8cnYjC7KPcJ+5rrUOB7TdUh9hOXqHcy63f1Ln3BSkP6zy8EuEMr2TnHOH5L3XUFJa69kTABs5Zg55W44ERvDcszfHLqs4Gco/QFq7OrN0EFkunHMHI3xxa+dM0TiGc/6sdd3zBnNtfzsJsU+hl2UDc23Oz+rlNnP9Rw3Mux87WddyouVHG1mQYWYtwp2CJzjncv3FprTj6v1DUqrhZW/YXyOw5Xyvc25a1Zijh9vN9ScbmLetr0+N4F2DQ8lyc22d00dxzh0K4DfMx3cNtkCjmLrmkVI/fUfjizPmWW6uL3HO2QN6quKcKwC4zHz8s5z3eV+ee5S4FDndeZRezP2UPnIA/rCGew01djz+eAPHzOXm+gN58y650bjYfBxry5HASJx76h27HIDfq/FejfADmIvSH+030kdTAJxfQxaXIdxBdH+SJCPpBPuxRL022Iwa1i0RFtTyRxBUzh32j9VC7FPoZdkAJEmyBumuj4n079sNvMXXAbDvigudcxc1MH+gUkp6Zp5EzrnzUdvEO6IpySGuNR9bh5sx3ov6triPdPaG/Q2aJEl+hfCH1gQA/zoCFuGD4R+QHlbQz286594Zi1wj1yD0PXIiRtYP073FNQgPgni7c25xzrR/i/CHxLIkSZ5sULlGI3XNIwCuRm1/oBEpdyCUWR0EIK+PuI8g3DHSCeD7kbj/bq5/zzk3a6AbOOc6UHngw0B8xVx/1Dln5UnDxb8j9S/Wzwlo3Jh5PUKZ5+uQ/49vf47QZ9bjGNk/Xkfi3FPv2PUx1H4SvHVxMrvG9LVyjbn+Uh6H8CWZ8Z+Yj/+lYaUSlnpt8AtojA/Fr+aJ5Jx7D4AF9NGrAP6rAfcXYtSil2U5SJLktSRJuujfYB37c95Po/Ll2/9zzv12Lfk45050zt0Q+XolQt8973DOLRogvzMAfLeWMowSvoX0WOZ+ljjnrspK4Jw7GbX5Fxg17CX7axR/jvDl0vlIyzohEr8C51yHc+6zpRfBw0qSJE8B+H/m4/+Xt2zOuXGxFz9JkmxHegIu82Xn3CdqKaNz7kjn3L+MFLlUrZRebt1iPr6h5IcminPujwG8y3yca7E5hrEytc875zJ3TTjnvgzgt4auSGOX0jrj6+bjzzrnLsxKVxoTbLpvJklid7z03+cxhLuBJgC4OcvXVGm3ww9Ro+PoJEnuMfcqAvjvGl5g99//jc65f60lzUCUxsyvmY+/5Jz7SA3lsnJJztvOs1c7504fIL93o3K399dKf/gbkYzQuceOXVc45+YOcP8LUN+Yv9pcv7102MZQ8U2Eu9nmAvhulg9U59xEAD9CeIDIMwBuHJISCqDSBj9dOmE6inPuowB+v0H3f5Nz7vMD3O9EAP9sPv6X2NwhxL6CXpaNDP4AwAN03QLg+865Hznn3lRNeuGca3bOneyc+4xzbmUpvf1xBwAonWJyE31UAPBj59zv2RcNzrnDnHNfQvqXywOQOmtdP4hnG1EkSfIMgL8yH/+lc+5G51zge6X0YuWPkUoeWpH+1blzrxR07zKk9tcokiS5F8BnzMfvBbDGOfe7Jf8btpzOOTfbOXepc+4HADYA+Bzyn+A21HwSoe+KCUh/PF7vnDutJKcq45xrcs6d4Jz7KwBPAPhGRt5/C+BWui4A+Hvn3F3OuQtKC+YA59x459zrnHOfdM7dhVS6/BGMbr+FHwXwMl1PBbDCOfdx+0LAOXds6aXvl00e30mS5CdDXM6Rzs0Ij49fAOBndmeQc67gnDvLOXcngD8uffzo3inimONqAPfQ9TgANznnvuGcO4wjOuemlcaFnwDgMfsRAH89wH0+htCf2AIADzrn3uHSk9H67zHOOfdmpH+A6/drsz7/4wBIZZ7sRHwygGXOue86587g+9F9W51zi5xzn3POPQrg/1ApkW4Ef4NQaj0OwL845253zp1ty1aaX452zv2Jc241gB9k5P3nSMfsfvYHcKdz7i/sj2bn3OHOuauR+szlOeCnaKyyYagYUXNP6Y8mv6CPWgHc5Zy7uEqbziu9iP0B0pe5LyKcPwa61xYAD9JHcwDc75z7fefc+c65c82/QZ20mSTJRqRrOOadAO51zi3mNUSpji8EsArAKRS/D8BlNZwOKmrnLoRj5QwAP3fOvaXKOu/E0nr1aqTyzcHOn/33/TPn3A+dcT/jnJvknPsUgLsRnqD8DICrBnlvIUY9uR1BiqEjSZJu59xvAvgfhFK/fhlkj3PuGaRb24sA2pEOtLW0358DeBv8X5ImIt0t9XXn3GNId1sdBOAwk+4TSP2SzKrhXiOdrwJYhLQ++rkIwEXOueeR+oBoQ3oKKC+kPgbg80jrf8ywl+yvISRJ8rcudSrNf22fjfSvYf/snNuA9Pj6nlI5pyGc/EcUSZJ0OefejvQH7qzSxw6pj5qLAbxSsslXkfbdw5C+UOuHnXPbvBPn3KVId4DwjoczS//2OOfWI5WNjENaX4dg5J78VRdJkmx06Q6NW+D9xxyAVAb7Vefc0wC2A5iO9Pktv0A6Du7TJEmytfQyhndbLES64H8J6cJ6PFIbbac4mwD8DvZtf291kSRJn0tlMf8H4IjSxwWkL9k/URqXXwLQgXS+sn8A3QTgnQP5IUqS5Cnn3IeR7ibvz+NwpC8MXi2NE3uQjlHtlPR/kToZ/4sanmmLc+6tSOebWaWPxyFdZ1wKYIdz7jmkf5iagFSCeEiVZ2s4SZLscemu6tuQyjD7eXPp32ulsr2CdA11aOn/fljGafN+zaUy+zuQ+pYC0rH2rwD8RWkc2lb6blaVLNYCeO9I3lXWzwide/4Q6RjUv6abilQeu8M59zhS+z4Y6TzQzx6kctlvobY/sH2llHc/CxBK25g3otKnXU0kSfKvzrmTkL5c7OdkpH/03loaJ5qQ2lXFi0oAf5QkyaDKILJJkmR36YUUb1yYA+DHSNd5/S4eDoUfH4BUvn0JwhewtfInSHfNzgBwIVJ3K1m/dfrve7F2lQmhnWUjhiRJnkd6tPC1CH3sAOkLiiOR/iVoAdIJr9qLiucy8n8KqRxme5W85yOdWPlF2R4An0ySxPpDGPUkSdKLtC7+u8rXhyD9ATgXfvJIAPxhkiTf2zsl3PsMtf01kiRJ/hjAe1DpGwRIFwMLkJZ1Lqq/KOtG+tfiEUGSJI8DOBXpD2LLAQCOKX0/D+GLsjx5b0f6I+8rAHabr8ch/QF+MlK/MrNR/cfKFqQ7TEctSZLcgfRH2/PmqyKAo5DWQbUXZTcBODdJkq4q3+1zJEnyNVSXpE9BOm6+DuHLlGcAnIu9NDaMRZIkeRbA61F5AqJDOhafjLQf2/XcGgBnJEnySM77XAfgQwB2ma8mIl0jLEDYtncB+G1Uzhd57vUIUnv5nypftyDtk6ci9Rd1KKqvVZ+t9b45y7YZ6Qudaj7e9kc6Dp+KdFyu9uIhK++HkLblWvPVOKQ/nE9G9RdlPwOwqLSLaFQw0uaeJEnuA/ABhC5JgNTeFgA4CeGLsp0A3p0kiT34Ic+9bkC6m7NhLlty3PN3kL547TVfdSB98Tsflfb6GtIdZX839CUUSZL8AKnfSTtmHoC0H5yI8EXZVgBvS5Jk1SBv/SLSvriBPqv2W6efLQDeWuozQuzz6GXZCCJJkh1JknwA6aT2XVR/GWB5GsC/IpUkzBog/58iXZzcgvgCN0F6KtSpSZL8Q66Cj0KSJNmVJMkFSGV8T2REvRfAG/aFxcRQ218jKf2wm4VUlml/eFSjC8BSAFcAODhJkh8PXelqJ0mSF5MkOQfAW5H+Ndj+uLCsQyoVHPCUwSRJ9iRJ8idIX3j+M8LTs2JsRGoDFwKYXvoBOaopLfzmIt1lm/VDew/SH6fnJknyziRJRvWLwkaTJMnHkP6lO2vcfAWpFOv4JEke3isFG8OU+t/rkf6R4EFkv6B6BOk4t6Dkk7KW+1yL9AXV/yD0D8m8iHSnwjlJkkR3UuW418tJkpyH9I80NyN0gB/jUaTS8zOSJDmr3nvnKNtrSZJcDOB0pHLCgcaADUhfIg/otDtJkieQzrEfQ/bclSCVu/52kiSLkyTJLQUcKYy0uSdJkv9EqirIOiChF6lD8+OTJKnbh1eSJH+JtJ2/jPTF8iYM8R+dkiS5Cmn/vRGhrNqyDakz/yOTJLF+U8UQkiTJlwEsQej6xLITqdz62CRJGrIju/QHitch9XEX22m8A+lBJ0cnSXJ3I+4rxFjAjYId3fssJR3765D+JfNApH996Eb6Q+RpAI/U+5fGko+Ms5D+1XZ/pAvVpwDcmyTJS4Mv/ejCOXcC0kXGNKSL1A1I66KmHxtjiaG0v0bjUn9lpyCVEvfLJV5FuvB+FMATpR2Fo4KST5fXI/1L9xSkf9jYjtT3xK+TJBnUTh3n3NEAjivlPQnpX9u3I90J9GjJt9+Yxjl3DFL7Pgjp7oKXAbwA4J4kSTqHsWijAuecg9+V3G+jW5C+rLk/SZKBXviKOimNd6cjna/akfbdzQB+2ai+S2uEGUjXCC8jdV5+X5IksRdpg7lfE9KdDkcg9WM2EemPt20AnkQ632xp9H1zlq0Z6Uu9maWyFZHOL88BeLj0AqzevA9H+txTke6E3ob0xcovxsIfKSwjZe5xzs2En2MnIF3XPIG03q0CY9Th0hMxX49UMTIF6S63F5E+4y+Hog+L2nDpIROnIe3745FKz9ci/e1R94tVlx5a9pf00RtZZuuc2x/pS+OjkI6z25D2v+WSXQpRiV6WCSGEEEIIIYQQo5iBXpaJoWGOc0nWds7RwkbgJ0mSLBnucowk5OBfCCGEEEIIIYQQokZ2ID3JaLRzVbp7WhDyWSaEEEIIIYQQQgghRAm9LBNCCCGEEEIIIYQQooRkmEIIIYQQQgghhBA14qAdSGMVtasQQgghhBBCCCGEECX0skwIIYQQQgghhBBCiBJ6WSaEEEIIIYQQQgghRIlR47PMOZecdNJJNaV54IEHcNLcA4aoRINn3cYezJl7THrR2xt+mSQ+3NdX/XNLc7MP79pVPT0AOOfDhcj70tjn9ruseIwtN5ch9nxZz5qX2LPy56YI/JWDKQOXqd5nr3bTrDR79uSLl/F8FdcxuEw5bSNx/jpmtvY7Zvz4eLxYsXfvrv551n0sQTtTeNy4MB4/B39n72O7cJ40WSbAxMqada+hJI+Z1EKs23PeWcNY0E+zKjmr8rgBY4ac9bB5+1gsns07ZshZBh4bV4HQODict9z1jMd5885Ld3e++8TGzKx5iL9rMkujPOOsHcgYHrBsWdnuIh04aQrz5sfj5PvtF6Z77TUf7uqi/OhxenrCNFyElpaqxQEQLjeyPi+A7JALzmFbJ7FJwMaLDaD1zNO28uqB7ZPLljV4xfolENphrC9Zm85aL8TK0Bdpo6x75V2Xcv1nGVSMHTvi+cWMMAtuI9vPY2SNzbEJ3tYjd9SsOWnChHxl4ufgPLLsmNNkrbVja3wa43b3xsd2/vnBYSB8dK4SNg1b3RMnRm8VsGWLD7Np2KE5qCIuRN6FJbe5LWys7qiNbHXXM1xVDNz99PXhpGOPtRneufD447PHGpNHP3uSsEBcRWxOPL/Yauy/7u5ej56eLQ1eFIwstANpbDJqXpYBwMqVK2uK75zDyn85c4hKM3jO/9wG3HrHL9MLHuWBcADnESlrop8zx4fXr/dhHsVsutbW6oWzixBOw99lLFb6aNgo9JqBnfPjZ4o9t02Tl1i5TV47ugtVvyrClJvLl3ehFnuLEvvhZ9N0duaLl/F80bqzn7OtxJ7P2ExPk1/lZDUfT6C8jpw2LYzHeRSbqv8Y2vxSOCXFfjxmETMN2yX4Ofg7e59t26rfhxd6Ns3OndXT2HV2VtMyba05374NEu4vWd2Afyj3ZSwjuF5iJp01HAT91FZy3h9HPAbHxtzYeDlQ3nni2YqMGXKWgcfGVSAse3t71TS2jYIXHXk7Vqw8jWDt2uqf27qLjZn2Gbh8/N3kyfF0sc5oBzJm06bqaYCwrBH76pk8PbjmYZrNdtasMN199/nwvff6MI8vvFQAQtNYsKBqcQAA8+bl+7wF9LKDn5XDWbbP9WXrLrZ24HBWn2Vs5dUD22dsDAHiazCufCC0w0g/rVhbsXHE6tFecxq7XmRiz5Q1NnDbZhlUjFWrwmuuL17z5mXdOh+29R0bD6wNxb7jz209ckfl70y79B13fGWZYcZiILQ1ruMsO+Znz2o/fibOm8a4zduK0ds8+WT1W9rb8rC4cGH1WwLA2YvzrWv+/VrfL3gcskMzV1Ghc6u/2LAhnjnXEduNLWys7qide3rDeTZ4adiccw0XK6u1u9j4kjUuUiNt7w1fcPNtuW3vuceHuV05zcqVCyHEaGRUvSwb09gfAbEXKRzPzgC8cOAFhl0Q8EtHvg8P7OedF6ahRVtfsx88b7mlejFtUY84IpxYH3rIhxcu9PnxOH/UUW1Bmtgf3GbMCK872v1k8/g6PyktXerjPPFEmOY//9OHeX16yy1huXfu9NennpxvUjvrXJ+Gf5gce2yY99FH+/CiRT78jkVmIbNmjQ9fc40Px9oSiP/Ys7Ma29Dll5eDz04+0d/y6jDJt77lw7weTJJfhRGDF48nl0MPPRT/C9fxx1X/fNq0p6NpAF4s2Dbi72ZT+KBy6E1vCsvD9vXmN/vw8uVhzt//vg/zOoQXZi+9FKZZu3YjXfEbso1hRBxTDo0fv385bJt5+6bIuNHglxa/9Vvedvn5XnkljNdLi0K2/azfHmyS3A/s+w9eDC9Z4suzcGHYr1pW0iqOx0z7QuTaa32Y+xiHP/3pMA3X6wUX+LD58fFCd0c5zC8weGi2tsF/ked4ttj8+7Nl1S/8xYMPxjPkXyZU1oJtGL4xN4D9QRb78UgG2tcUtkvs93XsBTmAcBDnwcbaN7VZ3623lsOFQw8N4x1HAwy38+/8Thjvscd8ePFiH+aHoPGyAq4T+yNn2TIfZuO4+eZysGjm8A6y447nn/dfXHZZEO8smqDP+vrX/RecZp4xKB7YvrWK4pm3YFfcUA72vvpqOfxiGAs8IvFw1cJ98S1vCROxUZ92WrwMPKjwYMidxNQd22Gha3v1vCzczlkvaGIvaW+6KbzmxdFtt5WDdvTmEnErTeZnPdP8QZj7AvcR27fZDnnQpR0nW8zzdFC4wPe1gxK9me3jvPfUvju18J73hB9wmdiO88L9lG0LCBeg/Hb55ZfDeLTW6qWBO2vlwdfcD1qPPDKIV4j9QcDCaz8ax3ou/aAvmxljW27wfTYYd8zk00lloB4SPINdUbB1nUFbuc6wvz/Ydrk/LyPrf+65MA2/fcvgg9ee5S9WrCgHu8zvqacoPIe3nXFZP/WpMHNajDze69eOK5eH0Xgaif3t+corwzR82+1dfs2U9cfPX2yYWQ6fMYdG3e9+N4z405/68EZaVz78cDTv7v39GtOW4Bgat4+ZP78cfjv9EPj35bODNP1TCv/uE2I0oR2DQgghhBBCCCGEEEKU0M4yIYQQQgghhBBCiBpx0A6ksYraVQghhBBCCCGEEEKIEtpZNlKwjrdijlnZS3rW6Vsx561A3Mku39P6TaD8CuSfYvHiM4JoMV/Y1l3G5s3Vv+OiWjcRMf+91kn6lCn+HTC75WCXJNY9yauves8MXV3eV1rMAXst8L3YfUeWY/vABY/1g8J+B9gnCcfL66Da+oZg5wl0n3Zy02LdFfFzcBEqDxZivxF0TBtC33T5/IhbJ8TsD4lvbP2hseM775fh0EN9POsW55BDfJj9yln/XOzWiNuP3SJZu1u79iC64jqxnn+8v7fdu8dVDWeS5ei5Drhv8gEG1h0T34ptw7oxifnL5bqzbhzZrRH7Nius/GUYkT3Psr+hAw8M47EvR34Q9udi++LUqeVgX6u3Y2vDa1dVz5qzs8+XdcphLF5A3vkhy4F6njSZhWgwfMoXGyH5zAIQVGaBB6wsX47czs88E8ZbvTqeRz9ZPsuyHH/HJjbGGgf7auLvXve6MB7bNHdU7hP2cKGnyR8k+wriOgDQRXXONWLdfvNfZKNWYp8v5kg+61CcmNP8ese7etLZebcfO2myDdAE2szHlwJosXbdD7dlluN+rge7xmT4ZLwpU8rB9rvvDqIFPv84P/vc9LwFarO6jp85+ODwup4TMBlesNhFGA/IWUcwUjs10bjBtm93IvTFvttbR1hb2E4y5gqube6/ti25Z26lxV/R+ENjd/EFnvi5LXihVQu8YCA7aWVfkACK3K94oRrze2iueRiyzRczzwMOiMeJnSuRRdRssub9nPCI0m6//MAHfPiKK8rBH6/xPtQ+uJi9wgFr185uVNGEGBa0s0wIIYQQQgghhBBCiBLaWSaEEEIIIYQQQghRB9qBNDbRy7KRQtZWet6qzMdMZ8kEWKOUJZmJyTCtFo2hrf1WwcHqAv7Oqif4thyPw1Z6tGtX9e/27AnjxRSHXI2kNAAATJrkJVSkrMKECWG8etRGXJVcBquKiCk4KvZsc+E5EUsurM6NG4DtwUoNIjbFH9Op0gBChQnvaF+79nCTiy/DlCm+vutTVcw217wnfWfkcwDwxnLoob4MrM6ziplYFfO2eiBsz5gNWjnypEm+fCz/3b07lAg6N6kcZtuv3NZeoX0dEuxzxD7neoilAeJDGZut7Xv8HY8nHdb2uUPzd5MmhfHYCLiwbADWOCgel8E+K/cZthOOZ8dIrhNOY8eNtm6S7LLG02pi2XBiZ9rXS6wBc0rZuG2LWUl4EuByW03KEUf48Mknx8tj27MflvPYAvKAXs+EYGWYMSk9P5+R/7KpNFspGbNtmw9ffbVPf+ONPmuThJ+IS9plytBBYTb37QhhaRrXfhv7JGDpJxAaOUum7IIjtsjgdjYTa4HrldPYdskrT2b4mRjbFzkey4mNHbdFwoGE3A42sUWPJebzgtJUyCa5LTi9rR/Oz0rXa8W2S5YUt5FklZvqgUvTQ2H7o7kH1WlmSXUtsA1Rm2XNmS2xPmeedUfklr2RMBA+H48Btudwb2xjiSbbfr02w+MB2yT/HgIwmeTFXO4i39f2WbqeeuzcctiaJ/8e4e8aoQxngt8wWf4cooniNPEcd8IJ4ZdXXlkOXrfMuxG5ZNGzPs7lV4BZ9LH/BQD88Ie5bi/EiEMvQYUQQgghhBBCCCGEKKGXZUIIIYQQQgghhBBClJAMc4SwtXVmcM1yts3rfXjOHL8Zv6V7azxD3oprj+Djk2F4WzaH160L0/B+Ysp77jnnhPFom++JSxaWw33tHUG0mLSNi21PG+TH4O3ldhc7Kw843qpVPmx3WG8jucq2bV57uXPn4CVKfCBZTJ4HAAt9dYVSK9t+/CCPPurDvBWb5br2ZrwH3MpGeCv8Aw+Ugy3z55fDixeHtvrww9WLsHatPRfNf8m75es7SM+KffavGsuezeacrwdW3XHdL14c5sAqp+m9fqv57AtD+dPEif5erFbhXez2kFmGu9y9904NvuMmYyVad9YRirG9/rbC82oCKN2WLbZtU+ywEVMBWSkhqyTYVM87z4et2qhtwyP+4vo7ffihh8KIfKIbN4YtBEnTKrTd/XB/AwDqFzxE2vHl5z/34ZjCxDYDj5ExVT4AdMygiJzIPl9MmhYbG+x1Vry9JI3aseQd5XBLM4nEMiQzwdHLdizl8Y/HVTs43367D7MEjhvjU5+qVuTKeDZvHmBY/pmRppmN6F3vKgd3XPieIF7LZz7jL+jZubVs7+fvsk6/i51saGdMHiWbWAbEElg+ZREI64RPQ8x7ynOW5invhFOPVorLzemtW4vDDvNhLrfps+2xk8uz7Cmmfbd9lOufJ8MlS8rBoj2Jkp+JjyC2eXP/G+zYwGVrRH7nnuvDVsLMCxPui1ZrR3BfbOZ5w0hq+2Kngsak4APBfcGe7FyiwoT5eXmNaE5dnU6/EYJTLjOKw70qJjkFzLOb01/LxOTMA7F8uQ9/8pM+fP75QbSWW2/1Fz/7mQ9z/dj5k65ZZZy1BOOuyVlnuaTIS9C2XPl2gXDaadULlMUXvuDDZkF83e3+t9wl55ILiG98y4fNycn9XbgRHh9GOtqBNDZRuwohhBBCCCGEEEIIUWKff1k27pylWHD5XeV/6zftwPJVW3DAebfjhA/fhXnvuxOf+uYjVdOu37QDx33gZ1W/A4Cvfv9JuDcuxZZXsv7OIoQQQgghhBBCCCFGCvu8DHNCcRxWXXNW8Nn6TTtw5vwOLP3iKdi5aw9O+PBduHDRNLx+fkckl0qee3En7li5BTOnThg4MirlWbwLmXe0s6Rv1qywPGcv9huc79/mT2uZ9bq5QbypvH2bM2cN1dRQBhbsO7aSF4a3AFPYJrFqmH5YCWN3vnPxYtubgXD3ND8qS1vt9vTx4/3JeJymEadhxg7Zs+Xm3fhB+Wxh+eFZvsKn+1npAsP52dPFGG40apipC8PyLF48vWry7u5QGrlhgz8dk0+SzDqwK8akSaE8JJaHrWO+5t3lp57qwydOplN9AKCTDJFPkDJSgSVLTimHuepmzmDhQfj3CZZ/crNs2BDuV+e+wOHdu+1xmPRiPo8ks5Z4BEsPNm70YT7cCgjLykNKlhKU+wibelurEX6xLInlLzbzmC7bcvTR1QvBYXOqFqfhMc2e5MvPETto2BaNxwO+bVvXC2HENdSHuRBWysL1EJMVZY01WfFynBxon6+esZTtbtMm35fa20NpeNNx/rqNn9ueusjHyWYdVcyF5XDewWvNGh++557wOx4suL5ZBmYHMu5oJKdq6Qxto+e558phtgYOW0F17FQ721w8c7RTeJaJ18TPdMghPswytRUrwkSx+raSNa67mFbZnmzKEzwblJ0LY2NAFkuXVv+cFza2fDF5JRD3V5ElM40NoHY8iJ28mpU3jxucn13QPfhgOdhL96nrr/O23IPVsEWPHUf8FGSrnSe7qXCFUKJ3d3gydUw8OjnLN0MW7E6F+8F7PxpPc9ttPsz+M4wMk8vKMwX3EHtiZuz57PgSLG3pvq30G8PWaV71Xg+Ni0V+vne+M4x44YU+HJOC2h8tJPE85lz/FMcsaA+ibV/of5dxd5neTjXWFY6mfa3evU7WEqyPetDM7sf9Fzx+2omVfwvY33UR2N3BLbeE312yhMS4H7vSh6+/vhzsNPn1T6eVp7cLMTrY53eWDcSE/cZhwZwD8PyW2vwk/P4/PYyv/M7RcENULiGEEEIIIYQQQgwfDulLldH+T1Syz+8s29mzBwsuvwsAcPjBE3Dz504Ovt/2ag+e2PAaznpd/l1lP/r5JhwyuRmvI2f8QgghhBBCCCGEEGLks8+/LKsmwwSAu1dvxfEf+hkee+41fPrdR2BaR76NwDu69+AL31uH//3bUweOLIQQQgghhBBCCCFGFPv8y7IY/T7LHn+uC4s+8QtceOY07Orpw+/8XXok7l9/YC6OP6Jy59iTL7yGpzftwOtKu9U2vNSNEz9yF375zUWZL9ysSwS+3rnTh9m1xP6hS6gAPvF76oTt4ZfsZIj9QbBTsCwnanwsMDtRA0J9PPnpmMnHjAO46KJjymF2FcLPZ91gsP6fXRpYiT7HY7cTfGr9xImIknW8cT1HH3OVsCsc656EXasEblZuMT47Ysdqx/yOVLvux/rv4Mpjnw1sD8a3y9kXXVQOt7e3UTjMmrOInW6fl1PNu2i2d/b5YF3c8DWfqD27mXz9LL09TMR1wh3T+NUokF+imXyj232/mmt8yc392OJy+Fer/AZo63KO647dFb38cng8fZR6/JdlYN0A9WN9/LF5cRrbfm95iw+3saekZct82PoQYZ8tPHY98UQQrY995rDvRfLnBCAccObP92F+COvfhOor5goJCLsm94uIu5uK/II6yfJxk9WxIv4k63IaaAfCiA+0vgZv6mcT4HnRmjTXaxsPurbCuT+HTgPDeGxfbDd2gInBjWnHXHZcGOt/3A+A0Aca+SyztsFe/th3UGvkcyD0WZbncyD0WVbR4uyohn0Lnn66D1ubPukkH2Ynf+PMeMfOAfM6xMnrLI9tPKcvx6Bt2c+cHdDZbtie7DOw3yv2e8aLGWvTXEfct22f5WciX0Y953l/RUXrK4/7OT+D9cNH92qiNaLxOpkPdi4KVPoTzAGPQwXOz/qpy+vLka6b2d8Xzw/W7xa1ZeDvq55FJRC2c948eKHEc6FJ38y+v+hzLre9I3/XmxGPNTqtfF/qI822n+ekyGMhjxu2frhfXH65D3P/ja2zbTzz461tsr9X67QW/8VyWq8YGy7M4vL5Gs+cP9lW2d8qL6YAbN7ta5zNc3ZGb2Q/ZRdcYL68fbkPs29CimLbvLkptY5xrq4RQIhhRy/LBmDuoa34zCVz8OXrn8T1f35isAtt/Sbr4hKYP7sNL978G+XrWRf/FCv/5UxMPsAuSYUQQgghhBBCCDGakc+vsYnaNQdXvP0w3PXrl/H0xsqXY48914UZ71xW/nfj8heq5CCEEEIIIYQQQgghRgMuSZLhLkMunHNJrWV1ziG587whKtHgOf9zG3DrHQ8MdzGEEEIIIYQQQoiGs/CUU7By5Uo33OUYKg51LvmD4S5EA/gD4IEkSRYOHHPfQTvLhBBCCCGEEEIIIYQoIZ9lQgghhBBCCCGEEDXioB1IYxW1qxBCCCGEEEIIIYQQJfSyTAghhBBCCCGEEEKIEnpZJoQQQgghhBBCCCFECfksE0IIIYQQQgghhKgD7UAam+hl2Qjhrz8fdrG1a3140yYfbm314XPPDfP4xMf6yuEfLfX5LV4cxmtb/+vqN1q61IfXrw8TrV7ty9PZWQ43h7HQPmWKvzjtNB++7LIw4kJ/Ku329pnl8G23+Sg//3mY5PbbfZiKgCZjxdOmVb1N8Ki9vWGabdt8ePx4H/7e98J4fK9j5vUhD2+/wLfFvHn+8wMPDONxFU3d84K/uPPOMOKTT/rwhg0+zJWy0Jz6u//+Pjxhgg+vWxfG27LFh++7r3p+3d1hmiVLysGei99XDi9bFkZbubL6bb70JURpaa5ex++7LOwvs2b5MD/q/PlhuuOO8+GZ3Y/7C7b9G24IE/Hzjhvnw7aPsOHxjZ94wodPOCFMw53zggvKwf+9ry2IxrbPt7VF+NXy7agZ24FiUKf5jYvaqn2MNWvCJNwu/KhkMgCAs2c95S/YUPjB+XMAO2hM6qLPs2rgIArbsYstqun88/0FF5zHNCDo0L9Y21EO85gNAKtWVU2CLiq4bYYFC3z4xFlbq2dmE/KNd+8O4x18sA/PmOHDbLe2b9uBsloaIOzQkyeXg31UqzarWNaxPg8A193g8+NHtcV57jkfPvlkHz722DDe1Ik7/MXNN/vwAw+EEWki2PTSS+Uw21Nhz55YsePzLABcdFH1NDw2X3tt+B13NNuZmL/923KQa5X7SFY/YGvoMvE4v5bI5wDAI1nxyCP9xXnn+TDXDxD2uSz75DmP7Z3nODsXtrf7cDM9Pc+lQGDHQRruO5brr/fhQw+tfh8gHBjZkO0gwNc8H3MZuA4AYL/9qpfBwnVOg82vuuaWwyce1xOm4bJy/dg1CvcfKnff0h/HyxOhcO2/hx/wwMjhnGx+yVv4pEnhd8Umst7YWggIJ17ui/y5nQToupfGkCY7eD3/fJVSV+H1r/dhWnfvuOFH0SQtF73VX7C9v/pqGPHll32Y1jzdZGv2pUBkOK+I18wD8pw5PsxtaRc2V18dyd3wsY/5MM/VdrHNi3yG09gJisce7s92PubveNzgMZzWegCCZ+9p8qNp1tKssJTamWyoZ8EpQTw2T+7yl1wcn2efWu9bbfaj/xN+yX2bF/lk0xXcf3/6f9YcKcQIRi9BhRBCCCGEEEIIIYQooZdlQgghhBBCCCGEEEKUkAxzhGB39vPOet4NzDvDrWqAYcXSzp3hdyeccLy/73k+3MJboh99NEz08MPl4DTWStpttSx5OOIIH2btERBsG960vnp2vMsfCJULVtXAcDreVc0SPJazAnFlRpbiIi9f/aoPz51GAhhbiOXLfZgbfdeuMB6n43rlhrb1zfmx9stKODgeV0RWmltuKQeLtJ3/rUYD+dZLfWW+0Dy7HG7BDsSp3tBWuslKhkIvSUfsFvm7SRLJOt8HH/ThFSvCNGwcWbIWlk+w5I23/HcZMRPvkad2/Q2jnW5t9RI/VmfxeJCbvLLLDM45x4dfecWHuY8CYbvwI/FQAwDYRA/CcocM+VML2VoLDRwHWTkA5zFxog9baQa3WUwzynkB2NHs24XHHdv9WGEyu+lZf2HHAIYH8RtI7pCldWVsO/PYHJOKWOkJ50FpenrDv7MVIwMyZ5clw8xrkqzcM6rcAJab8LBqlVHTpnnJy2kXvqccbjn66DAi2d40lp5UGHIEfkDTXn2zZqMahVg/sPCYYgcESsct1kJjuK36Ao1XPSRttH9ZNQK9MlYGzek6+Jm4/9nnY3tiQ7GNzoMhz38sI2NpFhB2Ru5/tu64zSL9tM/USuHf/s1fcDvz4gOoNMR+7KKHiS1MbJq8klHWKpM9nDiPWnClGWueftqHWerKcnkglNHZ+bRWbN68/sgpw+R2mvoaSf6daVe2T7YHaxv8fLwQp8972f0CABLSB32kzdgCS7uzBskdJA1ticgKK8bVe+/14dde8+Uxkn1ekbGMmkXQLL223xUpXDEzsH2y7fJiwa6T8hLrP/SsFZDfjp5m/7TFrq1hPC7TPff4sHXbwf2UxwC240WLosXJmgvZHIrcf6kf2N+FPBfadUkMdmWCzZvDL7mPcGF5/WTp77P7gAzTDXcBxJCgnWVCCCGEEEIIIYQQQpTQyzIhhBBCCCGEEEIIIUpIhjlCsLtyY7vneYttTH0DxA+TAkJFQSCNiZ3+ZG/GJ/pZOQFvQWYphN0bTOnm0t7guef5wu1oCk8EZAkO7xq3O6y5CDHpZWEDSaGAytN3+mmPb5fOy9xV/+UvWBZopUux492sBIS3g3M7sSTh8MPDNNzQWcfIxeSavN3anpxEpxJi40YftkdNkX1N58a0JwwykY4w/XZzQhZLcNggbLvGTrGiLe1WXhRIzLiPWDkqb4uP6SONNCMoD0uKeJs/gDNICnjGQqoTaxtNGTKePOTUw/3RH/kwV4M16ZYmqk0+UWytOdWOn5ftk23QSjNi2ulDDgnj2b4QgzUKbJMstTPt2tLtpRpzQd+tCcfFDu5X/KwsRWNZExBKzugExW62MwDNLHeOSVyAcDDMITGz8fqavLim2zRFMZJHXhlmXtrW/rIcPnuxl5Xu6A7/7sd5cxfLelTufsdn1R3bQF5dC/d7MyYV1tDp1Gz7HM+OJ6yTiUhlAQAXXujDVClFzs9WCl230rzdaud67vhUng475rJEjOeOn/7Uh+36IPZM9vRmls+zRJ5PLbZzHPcRDmdIWLlOrPQygNdJPB9bO+G8uR75WG4gnENjMkw7D1E8PvnRenOYyZIolq5n+bhgqRW3kT1x9LDDfDhLQpwHK3WO5JfZLgzPIxm2H8Sz6xBeb0TsqcnU40G8TspLxnzMZxn22pOP+z83Y2wf2Qqvc+y5iFzyFnJd0MLjjnFJ0cxlYLu1Yyn/2OH+wu1sXSTkhfPm+/K61ELrxWKvF6D2kOsLwMxxMRk1EI4j3H6sh7RjTXDSphe4Zs2ZRaq7HZNnlsP33RKm4aVMXrcyU8eTBNWOLzHfGmzv1h77+1Jf/AROIUYyelkmhBBCCCGEEEIIUSMOwLgBY4nRiGSYQgghhBBCCCGEEEKU0MsyIYQQQgghhBBCCCFKjHkZ5jGXLh/uIkTZb0J7OdxtXPjETufNcuHD8HfWxRTr3vk+bdNI42/957AGnTO3vgBi/i7YJwYQHiHMQnoqXMuM0J9Ea6t/t8t1knUaMRensOkFf2F9n9gj6fuxR74zeX1xsK8m9ldkHQhwvXLBrV8N9sfCebCfCOunhRuaw+PMpmG+5vuy3wLjJK6L/DcUKWwHlwI/E9ed9VmWx5mRPU6en4nLanyEcVn5YHDufrbckylNG/nf2WF8R71I4enkn4Tzsx4b2G9IC/u0sH63uC2OOsqHbT8l32a5yemnjCmse7wc7mBb6zSDEts0P5/1acHfWb9u/VhfSNzxuQxZPnf4We1zczoKP7vBjzsz28O8+1q9X8UC253188GDMD8r+1Wx5aExqYdszXrDm2Hs0H9hxhe+F9nTDrQgBpeoqzMaLfAXlOWnLHqfvCZIGfb0+nva+ZNdyvDQbv18stmwqR5/rvGzw3UZ8WWVCfv5tBMW+7HktnzmGR+2D3j00dXLZtucx5GYnyz2QwWEdhLzqWi/475j51Lyw9XHz3rnnb44YQp0cH95y1t8mH1FAdhOz9FG8xL7cGqydcdkjRX1xGM/mGwbtgzs+4nHcOufi/yebe32/fS+5T7KcceF/bebBohYEwHATJ4r8vpWYvvkclufc5yuHueEjK27LP9TeeDBwfYXbrOYbzsgrEwuH8ezz011x3NFhnVm0klh3vXQjjjsaYuH3KKJF3gL5jHkyCN92K6N+XnZR5+tY/JztXmbvzMvK2e95ZggSaFi5VSdrQt/oxzmIW72vB1hRB7L2JccrSuLdg3Nz8vj09NPh/HYvijcQ2NSkfuYLWy795WW2XVoTrnlFv/xBReE0Vq2kH/mVVQ262eQ4YFj6tTwu5NPrp4m6/dQfx8paH+OGJ2M+Zdlj7zh+uEuQpTz135tuIsghBBCCCGEEEKIOtHrwLGJ2lUIIYQQQgghhBBCiBJjfmfZaOH4OeE24Tlz/Nb6FvjvHpnlP8/a9cq7+a3EhU8nD6WcPu/Zdos134yPgrfHQvM1by3mNADw8ss+zFt+Wa5JR1YDwFzeFk37k2fbbd6BJIS2W7MckuUgAHDHHdXLet55iJJXhnn11eXgJtqKfdCKFUG0Aj9vRBIGINQOcTtRPWzvDaUZzdQsRS63lcdu3uzDjz3mw9yWLCFBKC1k0cZWhPSRXOH4G27wX1x5ZRgxSzZTYseNNwbX/NafU2836bh8LD3gLmIsGm1c/yRJaDFSu3baml+MSE4LbPcAOskeuil9wWzTb//ud/0FSyFs5+Y9+LyHn+PZvf11yDCDff9sT1aOw/fi/mfHDZZesh4j66xzlh3zgGflEyRlsjKugNNPLwd3TJtdDq8nVdlMygow0m4eU1huDYT1whJirjsjid5O4yLLZ2y/amMpGtudbef99vNhqn82YzvUsGlkxYt9l1eBlVupRdK9IhWuw4zFCxbMLYdZcZM1ZLN65tkt4fi534FeFjSVp4Qs+2SuucaHrZyRH54LyJW/aFGYhu2dtaW2IinejmYv7+GsrdKOh9/Z59H8whUEhJJDllUfcEAYb9eucjCQ4j//fDnYYaXEMR2ticcy9h1W2l2iyRorS+3yyrIj2Ooucvl4jLN1x5XMbcl9FAjafRUNnzycWJuOudmwCs/t3X4G5EctsqzM2ipf8+LRVgRf55WwxrCS9sHmx3ON1WXH5kIrt+ZrbmeucDsXHnpoOdhBz2QEgrmJieezpnqWVzZHwgBQoLJi/nwfZnlllowvsi4FgEfWebtjc8pSLR8zD7mw024/vWY9PJcridcbNCZh+fIwE7YVdoVh1nRBfu9+dzkYrLvtoEvXvTP82iNrqfYfy6aXw+87l9Yhdz4YJuLfV9yueTGyy2eb/dzK5XuJhg3raeCMGc9CiNGMXpYJIYQQQgghhBBC1IiD5HpjFbWrEEIIIYQQQgghhBAlXJIkw12GXDjnklrL6pxDcsmtQ1SiwXP+2q/h1hU/HZrM6zmGLCbbGiP01fFuOO8pPI2+bxaNKFM/ecs22AOtgNCkBvsMw1XukUYjbUE0jiz7rMcm89pgVt71DO/FppFlX7F6zewHWQ8+lI1B7OiO20Msu3rGnZEwHuzNsTmWH9fd3rRhPqE16/nytvlwtOdQtl89bcF1Cgx+HZH1fJwfx7P3iX1Xz1qvQsqbs45sveRJH0tjyTP2jISxpl5i7VTPSc55Ga45PKY0z2q/vH2kVhaecgpWrlzp6s5ghDPLueTPhrsQDeAjwANJkmTorPc9tLNMCCGEEEIIIYQQQogSI3jPhBBCCCGEEEIIIcTIRTuQxiZ6WTaaacSpdrE9v43IewTQaAnkWCPvVuxGbyEvDqE51XMC3yg17wr7Hm7ZzmiWZkRpsKFknVYWi9doYo80WvtBbhqhrYnlkVF59Uhm8jJa+1zWs+4ldeyQMpRtPlqpZz22N+snVr6sco/WNea+ZHeWPNLZete8ecauvN4Asn6G5Z3DB9vOo3V+EaKRjM5RXgghhBBCCCGEEEKIIUAvy4QQQgghhBBCCCGEKLEPb8QVQgghhBBCCCGEqB/tQBqb6GXZCKG+47qLCK+8tryHvsurj2dyH2Fej6h+LxKUu9HOrHI+U6G3Z1B5W9vg6+7uXEXITT3HTPMzFTlRZuEG59Cl0L0jXoYc6QGg2Nxc9fPcfsCynFXE7tvo88gtkWdqONS2hZHg/CSjDPWMrbFxNu+T5h0/i8g4q747p28sanP2BWifO9afe3p9PFuEwLdgvIL2muOzuG+XeBv39haj38WKWs+wnzVGbtvmw1OmxNPFbDXbL45PY7s/D8GDHXoa4YMr75wS9WlpHqKvqVj1K75Pj7GNWLxi0+B989STR1b/y7LroSKv/6N6nrUe/17WTobSR9hQTs8x26/Xf2s99Z83DddxPWNuGC9XtEzaWvOVe2tnPv9jMRuvZ+rK+n0Vy88ujetwgxmM9fX4V8uyu7B88fEzL3nbT4iRil6CCiGEEEIIIYQQQghRQi/LhBBCCCGEEEIIIYQoMQL0MwIAClteDD+I7LEt5twznC13GHiLdaWCLvZeNS5xYflL3m3QsThpCSKSykacM7+3znlneWVTvO7yyivz1l2siuy2/LgkJP5evSn2HM0t0TSdnT7c0W7sM0d79jSZvHNupY9Jf7Z3Zcm48tp+vD37sXWVVwKQ95jwvXXMd1+kbfNKZrJkZXmPUc9LXkVsnrbISpMJJ+TOzWGroeNOwtjBISK9LbS3x+NRwTk7e0u2/c5Ob7vt7aEdT5vmwy0NkLPFKHZv9xc8L2bIj7NkWzG7q0fe3tYa/27iRB/O6qOx75qawmfgcXtHt/+u0LU9iNfc2lYOD3bKzGKw02KW9J3nJDt+hvVF9UCuDypHaW5oCrdmNGBeNmzwYe4U1qAia7oKaVRz9YpthJwxIGIQdo2Sew22l2TZjYb7VR4pYi3E1lP1zuExyWHFeoqwkuRYGRo5B+eVZcc8uNQCd+F63IgE44Hts3y9ZUv19ACKs2b5i02bqhaoYvVE8bYvOCta1EAGveqX/mLyZB/OmPdDFyXxObOlyY+fWb9T8tpJ/xzVN8bVmA7agTRWUbsKIYQQQgghhBBCCFFCL8uEEEIIIYQQQgghhCgxevZHj3F2tB6UK15vhjyETxxhOU1zc/w0k3pOYalHLpb34MCdO314/Pgwze7d/BxFilf7aWfIKE9zs8+vBebUxVyZh/A25kLnVh+2Ebu6/H1ZVpRX4sBhI0ti+UpwOuf6DUG8It+LylPXCaG8NdyUqampoxyulOAMjuD5+BmAcPs8hdt4/77dfs9ymqzTJmP1n5Ump/zFPkaM9naSIg1SkpkljeLxZfduHx4/PkzD302Y4MP1qKDzVmNW3nlOHgSMDdUjI8rS8bENMraRY41ecWpm5MhDG49tPOiLXqpnu2wsa1slHM9KBmsl94ltGTLvWLmtDeWd//LOazFa1pBkhqU5QCibiYyfBSsRpAdp4TTWZkiGyXXC8+yuXWGSvHWy334+nNW3W5qpPdn2aRApZIzTxXCAqV44AEV+wHHjfPjoo8OIsf6cd2zP4r778uU3Y4YPc6ez7Uy2kXVqJhM/kDwu5eXT0zP7X0yznSEzDZ4vo8/mJe+JfjGy59LqdZxXls1mx30CCJs2mJut9t3K6CJ0NNPaNHioyRVx+ymue8RfZKxRimx35PIitjy039Ujo8zqLtOnxb9j+NRhlr632Ly5znlM4rF5/fowDX/Hcuss249Vyp13hml+8pOqyTOHnW99y4e5j82bF8bj7zh82mnxvOnZC9PCyu+LzClZ/aX/ts7FbynESGafe1m2aec2XPnAt7Fi6xPYrzAes/Y/CN846cN43W2fwLy2Geje04OJTRPw0blvw/tnnwMAuPapZfijB7+DQyYciO6+HvzOnCX4/XkXVOS9fPNqfPXRH2Lp4r8MPv/Qff+AlVufQAJg7sTpuPa0K9E6fkJFeiGEEEIIIYQQQoweJNcbm+xTL8uSJMGFd30B7599Dm5Y9McAgFXbnsLm7k4c0ToND77l7wEAT3Vtwjvu+hv0JQk+cMS5AIB3zTwTV598BV7etR1HLb0CFx36ehy6/5Rc9/36SZejbXz615k/eOAaXP34Unz62HcOwRMKIYQQQgghhBBCiMGwT70EvXPzrzG+0IQrjnxL+bMFk2bj0JZw2/Ls1mn4uxM/hH94/NaKPA7crw1zWqdj485tFd/F6H9RliQJdu7pgdNeVCGEEEIIIYQQQogRyT61s2zNK8/gpI4jcsU9seMIrN2+oeLzZ197Ed17enD8pFk13fsD930DP37hARzTdii+duIHK75/9dXwmv2IsAuDdet82EjJg6PrWYZvfQHEdPCcX2HNr8Mvn3vOhx9+2IfXrAnjsS8Odmpw6qlhvNde82HS2Ldx4az/DvvAJfraQ39vfNu2Xu8jDKtW+TBXpP2O+djHwmsu35w51dMYChe83V+wT5NDDgkjcp3ws1pHQlzH551X9fO+eccESdiHQEtXp79YuTLMe+1aH/7Od3yYfBiQN6eKa3ZVYd/Esxm2XXihv7j22jAiOz+I+O8ovuH08AN+QCrrDuMP5NlIeThs79g8hXaQxo4FB9BLfaSJ4/EzmDR9dF0gfzyFAw8M4nW8xb/gD8rATlIA9H3mzzAYsvx4BeW550f+gp8vayBjW7NOTWgcKXIH5jHAOkmhvhgc127HDe6nZCcFOzAuXOjD1Jd2TJ5ZDres+kWYhu/FPk6y/J0sW+bDXHe23DxGrV5dDlqPZ5PZj9OCBT587rlhxCVLKJEfU1qo7naYQ+25irh4tlvm9rMyWG6/vRwsLF4cLdC6dd4HE1f3cceF2fHQyuU+fo71VUn2eg+N4TxO28yJF2n+s+Mnt3o7jzX8fNa/TMRWbT2wGfIUx8Nilqny43EXs0Xgepze+UgYkf378Fh/773lYLcpBK+82Jzs6LQV1Wmj8Oy/+qvwy0WLfJgLbtcEXK88t2b43dryrndV/dx6VW0/9FB/cfHFPnzRRUG8XzefUg7zUouXY1ku2Xg4tvFaW31tcpufMcePMAXrfOhW+gPyT3/qw3YdyPAa5at/F48X45vfDC6LJ5/sL9gIc9LW6VcBW1tnBt9FXJpWTFfczXhaOoJ+XrRtMP3ge9/zYV4HPvpoEK3v+Y3lcJbf0d799y+HO+nztl2Jj2PK3XXsseUwryoLtnNTHRdp3ihS39mEuUESNhWe6q2LRu7qXMcxN34A8BefRS6+8IXqeSxcGI4cb13S7i9uucWHaX7puvHGIE0nhXnMtjMFj13sPazt4x/3F298I2LwnJvlDo3Hqx5aqxetX0f2YcZrgCyfZTxmc8MAWL7ch7lteUx6+eUwu698KbVj7RMRo5V96mVZLSTm+vvP3o07X/w1Htv+PL59ysfRPC7uVL4a3zntSuzp24OPP/Av+P4z95TlnUIIIYQQQgghhBh9uNI/MfbYp2SYxx5wGB7Y+mSuuA9ufRJHt/k36u+aeSYefts/4+5zv4w/fPDfsGnnNtz83L1Y8ONPYMGPP4GVLz8xYJ7jCuPwrpln4gfP/bzuZxBCCCGEEEIIIYQQQ8c+tbPs7KnH408f+g98e91P8OE5bwYArHj5cezoDc9OX9+1GZ968N/x8bnnV+Rx+pR5eO+sN+LvH/sRvrjg/bjwUC8HW755dUX8JEnwZNdGzJk4HUmS4Nbnf4l5bTMq4k0xZwW89JIPs/yFt+FmHWfN31n1kj2puh/eUnviggy9CsPHugPhg/CNWXZgb8Z72nlfttXzcH60v7xg4gVSzpg0ircZA6GMgJ/JVnLW+dYxnqAXqdywVsvEkjre+myPgo5IrTa/5N99P78qXpxDDvGy1alWqsX3ZUOhffVFlmoCKNIzscTIyo3YDDs4b2ugXOexY9RjslkAPZTedhHePs9SHY5X8RcEkjsEkj5jC03ctrwVnsPmeQpcDxxvz56wDNxfcurc8koq88L5Fay2op/Y50DYt227xuSIPO7YgYvrgfUvdjBleRyfLW/lCiTpeWqD3zm8nhQzZy820gW2XdYh2HGDnz02AFsJK8VjMU5Fq9oxOAZrcrjcVI/WsorUi5sm+zrJGppj2DRcHO5KxSzzZvviejT2tHNn9SR2+OZpIJQshVI7LvsxZCc9rR3lcDFDMhVInuyXbK88tvNYY+dfuu6ZMbsc3mZcqXK7sElyPfDwBoRTABfBekGIDoVrzRjAN46M7XZW5XE6axTrjXzeyRdGqh4UlsNWs8Zltd9FYIk0O4eoMOlYGYyBRpY8wfSQNeQydsnDyrugbTlDm/ljj/kwrZl2PBH+sZh7QutNN/mLemSYP/hBeL15sw/XIcPE3XeXg4F7AwCts3x/ji2FAGB6uxff9TT5saK44Skf6Z57wkR33lkO9pIMc7spXnv1UlfwAoV5rcXrGjvm8qzUyfc0MujARQFXBM3Nc5eYASG4ma8TozKNwtO+9UhQD9xm1vZf2ORHlek8kFGnaJ0/P0hTJFcILAXuW7EiiHcKSSz//dL/K4cv+pDfc9T24Q+HBYqML1nDTpFsv8gPy3MIELbfpZfGMyT6Fp9dDtshgOuSh8hXXqn+OQD/IInVbAkxOtinXpY553DzmX+KK3/1bXzpkZvQPG48Zu0/Fd848cN4smsTTrjtk+je04OJTRPw8bnnR6WSf3LMb+HE26/Enx77TkwcHy6qf7r515hx82Xl6+8v+mP88YPXYvvuHUiQ4HXth+Obp/zeUD6mEEIIIYQQQgghhKiTfeplGQBMbzkQ/7Xo0xWf73zXD6rETrls9rm4bLZ/cTa95UBsesd3K+Itnjq/aj4//42v1FlaIYQQQgghhBBCjFTGDRxFjEL2uZdlIxW73ZYPRmS1EG9ptiqi2bN8mE8sYUkKEO5i5+8mTvTh9etD8cMhh0wvh099E0lCOBEQbvll6ZE9KYy3ffM26LguJtybzduOs2RpvB94oz9lqOLkK9piHZWN1Ek3yRZ56/xkI13gPYpN9ugqhmSZv1pV/UQrW2yuOt5hP3WO2e8ek5myRIzlhgB4lzafDGSVWVykUx58kCJmyDAjbDVx2AI4t06TricSj7Gyn8mxijWyuR30XQt/xxoX+2x03ZeRd4H7EjdmA+wzhu1+QTeLSZQyTqwMvrOyMpbRxU6c5ToAwnpg6YHNm7/jcceMG3fdV6wajVXH++8fWseRR3rRS8eECf4Lq12g8aWL+j0fE2OPjGHlCLeylTdzjw3sLksbyc9O7dfUHJaip9dfc/VbZRvD1dDwkzFjGhBzoyfJNSmroezJjwxPKdbU2MQXLfJSLU7zjgvieRfOJ5cORtPVS7KwJrYbLqyVLVPb8qNz3QNxaVOWOwe+ZnXzwQeH8Vo2PI6q2LmV55Snn/ZhOlW702TBNs7zolUlBXI/Cgcn1NmCxyTf1lgjEs0saVRMLm17Yiu3bYbhNVNRuTtzEjtlx7q9fTyelgLzepTk5LxYBKISTVsl3H6teXWiMdhmgIrT+Wrm+ed92JStOINOWKaGbpnWHuaxyk8Kxdhx9bYfUJvzKa6dpnjmTlE4Dx61s+yT22V75HMAmMYDaGwcsido0sAx77SzymFrj3xSYmx8innfGIgsVTUTLBHuoz5H0uLe1aFbHa6jItlNh5FUfv+cfy2HP/gvXs74S4pzSkZnzKn4Bq65xodZS2/7G2cYcwFhKHT7EbS1NX76b+x3RQX9ttEXd1UgxEhmn3LwL4QQQgghhBBCCCFEFnpZJoQQQgghhBBCCCFECckwRwjF3kA4gOZmv/WVDzvjXfFZEhc+3NFKSnhXNcswWdZppRmHHBKUthw61ZxGtLXbl7uDthY/tSncyjubtnBv7fL5dfBeXrt/m7cTZ51Uxdf88M8848MsAwTwIm1P5tym24rIvUfa8yyFY9IqAOig8LQsCRXtIV9P7ZylYOUd84HCL0t6wt+RLthupH6RwlxqK75gC59D9d2Rc2s4Yw43CqRoLC+wOXO1sHShJfI5ALSTDTRlHNPE7RlYO6cx8sqYLLRCFmEku/6moRUVMk7kywOfeGlNI8ibjY1txkoA+DtOY4/W4+fg7zhs6561GizzNjLM+1f4Zzr55NmIsZIObeOi8lj6uteFaVjh1cF91tYDDbo8HLOt2ZZjEU+W2JbHjRbWuNiBnwd7qlc+za07Y8jl7Oo5FNjC8w3fp67TMM142dnp5bGshrKnRfIJXhs38gm0oc40dqok55clwwzKarSgQbuzxJ3lZ1aXRAZaIFlaWxgLrbO8+wTuzzGPBkDYFnPbaXS3Nr1sWfUM6aQ/AGF/pFOMWUZmx7ti5Dv7110+J7qNJzmW2p13XpiIKqKv3feegu0vdWjBjuNTvy+6yIfpJEQAoZ8Nvq85tm8aPWBeGS3bapYsjfObPplqmU+8tHXCJ/7SorDNDghkK32DlWFa7XS9Gr1+eEC3JwdyxcZObAeC08GDNNx+HAfAdsrvRcTJO4dzX59OYU5t25xnXXYJsjWMhj760TGddexZ61L6rkhGecZp4QnSra2+5LGDYFn+XQus0OVnP+CAMF6xk1qAbZzXetyXAbTyyfEXXFAO/m/z24N477rpI+XwVur3gXjYNgzZeNMCPyZlujFgmzzwQCqoWSfV41aG6qTN5Ddjhi8ftxm7ZrCHuZdtY4zLMB20A2msonYVQgghhBBCCCGEEKKEXpYJIYQQQgghhBBCCFFCL8uEEEIIIYQQQgghhCghn2UjBeOXYTr7+SBfAIsWeZ87WXp2dhNg3GAEOvOYhN2eCs2ugyZNoi+Mw5OOyVSo9f7Gs+fMCTNc6f1GdLCjAfZ3Yp2psEaf/QzYwnLFsMMaOgq6Z+1aMOxVg1X10zOdBuSD/VOwBxDr9ifwlcW+rcaF/nO4XqZN8/4D2J2ELTZX3cSJ9EWWDwpuF2q/gvWTRX5M2C/ZdoTwNddJh4mXxy+c8aQS+Ajj0u0w8bhtuYo4vfX708QVFnOyAdN+MadO7KsGYVm5fmy5m6nN28nvD/sWAQb/14/cPs+4X7E9sD8Yy4oVPpzlV4NtkgceO1ixkfNYYfKeMMF6oUsp9IaekiZP9vFiRWAfZQAwcwbV1y3rfZjrBwj838Ss2/ptYntgnzK2hebyBdeR9TfE0ENxUbNcGHK3tPH4esIEH2Y3aRY23dw+0PiZzBjOLFhwVjnMc6G9D2fX1OTH2RkzwnhsXjw1554euBDGX1+Rv+PMuS1tf4n57zRtXqACzpzW7r+gRUGHrRTO+467fZj94QGB/7Gg3Nb2I3MMj/sV4x2FeUyzth+ko3roJeNqsven+uev2rLWGxm+KgPmkZMx9pW2eHEYj22XF2jGv9f0Vj8KzJnjZyZuctt8XGy2Ty4aAMydQ7V5H/nX4rWorTvu3Ece6cO2fihd4ZZbyuF6PBbZNIUnn8yZzltOMK/x87GPQCCsTFovVgz8sbGH8zZ+cXn2yvLDlxeuF54rsizVrsn6aTHXPEf1Uh01cZ1Yw4utJU2/Op76QvOig3zeZKt2SZ8XdkHHt5061US0P4r6ufhiH7Z+VZcsKQevu8mvFS7Bj8J4t99eDnacfLIvD69/bN1FJhL7cbA0/uY3q6YJF/gIxxTroy9G7LcWwt8cMVdpFfN5/4A1xn2WAdqBNFZRuwohhBBCCCGEEEIIUUIvy4QQQgghhBBCCCGEKCEZ5kjB7JF/doN/j9nd67cq0w7fip3vxx/nw8uX+7DdHc27anlbL+eXpc5jxQU6Q2lUX5PfnlygiJtfCt/LTqXtwM9u8mlm0pHMdvt2T6vf/lvcQgdf2+3SrFHgB6QHL44fHySZe7eXmwRyqMEeUw5gJoV5F7UpdSj/42Or7bZqej4rF6oSBUC4rT1Ic094vHlQ52woOeWH7RS2G67ZXPmo8zyyS8ssc81l4EfvNPF6I2Euq5UE9ZAktshb2q19VpSy/0Z0p/33D75qIztsNpJKpsjb548+uhws2I5aR10GZOnKOO9zzqlaHhxHg5DNjw3PygG4Xtm+eFCyzxaTbhqJxZw5x5TDhfVPVc8bwIwZfpzlrDk7W90vbPLj2nQew62OhGyojSQ8XNu2v/D4wE9u7TMYWbngRtIVSIRIVjTnuAohtL8v3Xi//XzYDJ9Bk3GTc/oM885vtjzWH3KID5v6XrvMh2OmBYRdOEtmyqZSlwyT3RAccED43Z491QvBUq9HHw3TxKR7VnobmyA476yHYLcIJLcHgF6ypyZqly3G7nhe49Kx1dmxs4UbiuR+BVOGJm5AsoEmlrtbeSU1YDAEWCPMMogYPAZwmkWLwnhsx0uX+rA1UKrLhQt9TfI4lCUt5uGgwuUG2wC3Ga95bJ2w8S9c6MPsNgIAdu2qemOWQ/aZv9XHXABUfEoDic0jRiDJzJLUciWx7Ni4Twjqbtu2qp9vMnbHEkieRiosKzYYZthgTNxmk/B9+S6dJh2XlWu4iexk2q23BmnYvJpZim1dM1C9zGV58mTqE/eZNCxVz+CsBb7k22nkaWs2I8wtVD6emEg2uXXOKUGS22/y4UsuovyuuCWI10VjVJHCXPftdlwOflTl5LHHfPjyy33YDgg878f87lh4POAfkwCO4TZ72M9DU/mZ7DzUXyae64QYRehlmRBCCCGEEEIIIUQdSK43NlG7CiGEEEIIIYQQQghRQjvLRgrmBKmZtKW1r9mfVcO7+bOUAbxT1kqHYieUsdrPqoj41JNAmdgVFsKeMNePle0wYX5d1cMAirGj2eyWX95qzJXE0gcjF2MJXDNvuW+EDJPyaKUt6B22Uvhe3AAZp2HOnObPyZu8IC6namHx1gbaYm3lPbFt0lw2syV+7hNPlMNZJ1Hyd20sw6ujjmdb6S0bL7e/Oe2qh77j8vBpUE1W9nrssT7MMhtT7qA9WaLCZbWSIJLbFvk727nZXtk28sowG3CqawCXgSUEWccfHnWUD1sZApcvpnmz8hkjaS1jpAYt3XSWJNeXibdwoZdhcpNx2J4oN30aCWAeJDmHlVVQOx8UO0nN2B3Lf7lV7RmXgZSTxrGCPent+ed9mGyt2Gt7KuXdbM9JK5XHmBk3X5FEdU1N1U8iBbJlmfECRU5ANdK/RYu8+D2myrdZsGmcdFIYj7s2d8WsA0cDWApjTr7GuedWL0SWrIWflyWZNl7M3mOn2VrIVvuMPfHI00rlsSsArvKDKNxEc0Cz7RPc6VjiZ+ZMlos1P/CALwMZV9Gezkl5F9gg7NgVOWG3qdXLuyqG26wTfxkeSFjfbCEJW5HCv0EnbfaZPsbF5j5mpzVcTfJPtiGe11jqDIT9j9cl9oTKyLPnlU0yBbtOsnN/rXB6mzdXGDeunbe5z/B3FLa9Ko8LCAC55+qYpxR7mjfDIz1bTfVRvlQcCnPfts/H3zVbFwAM13/sCEzbZ3PKMEHuVNomTfKfs1QWCO2d7tuzwEsvWXYJBIdhhv5wli0L4rEIsmn+/HK4nU8StTac+zhogucRGht6Fp4RRCvWI/FkbFvec48Pcz1mzVf9lefc4MoixDChnWVCCCGEEEIIIYQQQpTQzjIhhBBCCCGEEEKIGnHQDqSxitpVCCGEEEIIIYQQQogSY35n2TFLPzzcRYiyXzv53DFOwl7Y4j0KsNsRlohbziBZP8vMrUsSdvUzYYIPs5sJ64uDXVlxfi3G99CzGwoUz/vQqnRhUKR4/tPmZu9xob099L6whdwYzJjhfdJYtT9L9FvYJwKXlX1mAaGTN/bNYvX+9fh++vjHy8EOPkbb+m3iSmfndFlH2pOvl6AtbDnZhwD72LC+RmI+r9jHgvUx9oEPlIPcFhVeGLih2U+P9W+Sp44/+9mB4wDh8e8AitSZityZ2GeE9U/C9cph63eCv2OfZVxfsfq12DrmvNkm8x4FnnVfru+c5dt+5tvKYTat9tOPD+KxC5ipZ55ZDu9oCvt24FcsNhDZZ+WBMebLysbjPEzfbmv13mNmzPDjGJuGdS2yvcvHazvhBP/F5s1hRLaVmH8SU57pDz7ov1q1qhx+0SSbwflNmeLD1qdbzM9OrB8AKFBbtNB3PcaXGfsp4zZjn2V5TT8T7gfcR8wYwubA7qGsiz+2XU7D8yIQNg1XUV0uLa0dx2ycC7RxY5iG/dVwgayvGPKT0015cyzrM4mvOZ4dadj/Effm7SbeTArPonAT+fGrWCBwf+Ex3Nh0keZq9tfHpla0PuLY6VyWXyo2Am7oyd7zWsVUxfMp90XrBJbzO/10H7Z+07jsvAijeb9gbL+D895DrbbW1HHM4R77lszpi6zCpqk9e9mPYvXU2dhxLMsBbh64M1vHiWxrXD924b1yZTnYST71uE/YcZqfPeYvFUBuv6PcT/PWK3u1jflQA+K+yV6gMM3YAIz/QKrX1ueeC+LN+c53yuEi1WPgl4z9ewHA5ZcjF1/7mg/zmt46G+X+SP7/biI/ZRddFCYprvqlv+Dxas6cIF4Tjy8UbuUy2PEgp8+ywAR4LqTyWB+kPa2+1YvddnSOwOOv7dvLl/vwLbf4MI87Nk3g8E2I0ceYf1n2yH8vHDjSMHH+5zLefAkhhBBCCCGEEEKIvc6Yf1kmhBBCCCGEEEIIMRTIt9XYRC/LRgpGAjB9cns53DfNS1l4B3mWWu1DH4p/x+qAQi9tuOYy2G3BrF/h7fxmW/5MKmDfDL/994ADwux27apeNt6BbovAz8vhrJPXeTvxjm4/jDXNmhtNwpKi7d3hsey9tLu4o73i0O/qXHGFD/P2bduAvHWZt1izdBMAeFs7y73YOKw+KCbBsvIXjsdbxXlbtpWP8hZrTp9xPHYfSVkK3eG28Tzs+MBHg+uYkrCl2bRRTNPMn1vZTky3bOG+wHUXk1YB0Q69+aVwymV1SHdgQqF9Hj+n9rqsBz7ZnZUsVskUcIgXa1klTQvVXQ9JtIu9GXXHDc12zDJqID7Y2MI++mg52EYFDASjRnKB1siAbGUWU6f6MPcfthnbX0iKXbzvPp98xYow3uGH+3BMcgqE9RWbPKwEiPOg74qT7fxQXQ7clCFhrQuuIzYiIymbPeMpH55MdTKnPcyP65/zsHIzHivWUX7BOLugWolTjj02/h3bLo89GXL5Hup0xdi8AaCXbIVblkfFcAQJJVhs+1Yuxt9x07abeAdxvJhu1X7OEk2Sb9uFRPtDD1HmvhQtnN9Coy7g77i/HHxwGC8yNheo9vrsTyOeC7mPsdwMCAdNHp/s+PLMMz7Mgy63ua077mjcn62U8NZbfXjiRB9mGVmGvDK4b8Zapon6adaKqaIuSxTmzw8/yNsWMdiGsuZzfiY7eJGkrp0k8u3cL012LIDjvmRG/dyuPk7k8Y/Gl+0ZcveZ7H7k4YfLwR1GjspqdX5yztqWskJOWsLWQ9BKsbHPyn/z8vTTPsxzhZVh0tx63U2+hJdcRKPf0qVhGpbCc91ffHEYj8cNDnP/tXM9tXmeaRpA2P9Yvm3KXeT1K5ebXaFYYhJtIGizHpIgFylcscDrn5cGK6EWYpjQS1AhhBBCCCGEEEIIIUroZZkQQgghhBBCCCGEECUkwxwpWDkcSTAKtN22I4hkm8/HmzqR5Fh2L++69T4cO03PygF4GzpJPbY3HxRE493Az6+KF4Ef1x44Gfuci8D5TZoUxgtOg+n1EbdsqX4CJxDuAG9t9fGOOCKMx4qJjvYqha7CI53T/UWzD1v1ROzQxLZ2I5/gwrMMhSvfSsw4Q3viFhOTktFJRT0LTgmSsMKEb7Px3jBrPsyLVU7nnRdu4Oc8ihHhBp9aZNOESrKCiefFQ9OmHVO1PMctCp9v3DgfnjrFl8dKJVk5sMWr5jIPr6RDzYKqt7vgY+olqw45fk71eAH1nOhqiB3Gl6Uszjqht73d9zlWUc6a5duL7QcApk3z381eOKt64YBQ/sCFtVIIbgyWN7P8wsrzuKG4v2QNXkcfjarY8vA155ch4Qie3RoRdww26vA44upls/GyTuil8mQdtBqT1WfC5bNHWzIsXc+SlHC9soFa6R5L2GIyvixOPtmHWfIGxAdQztu2C8umMuRi6ynMXY5P6rMtHjsJL+vUTJZkdmTE66Z5qZlPvLOdOxiQSRZ44IFhPJbRcT0Ep1dm9MUszVPWSbwlCrZWeAxg/xAspwSA55/3YZ6r7bzNfT12FLpNE5No8jho4XGDB2DrAoLvldUP6CRflvjVpcS2a2OWexG2LaKyzFde8WF7yuxrr/kwP3vGabQb6Pl4JWP7C/crLlnd6nS2tSOPzJeGF8s0BzQbGeaOSJh7QafJmr/jZ7UyTI7XTrY27e67y+Etpr9FfiJUsIXaZTKdoPnsab8dxLtnmQ9fci6Nhkvv8WG7jmCJO/8+MtL3nnb/m4innul8wr3tsyzDpEcvNmXYNOfHY5U5fTSw6bzHN/OYeeml4Xck6+y9445ymHtpj7Gn2e2lWaEBa8+RjIN2II1V1K5CCCGEEEIIIYQQQpTQyzIhhBBCCCGEEEIIIUqM7T2Rowkr74mdXvjEEz7M22sB4KKLfPiaa3zYblunU3CC+/BWeitDidBG8jwAaKOt3VNZbmTkIfPmeTkinz7ZR6f7WdnOtm0+zKcD8ucAMGGC3wzfSdug7yVZIO/EB4B77kFVPv3p8JrLNNMcChnjW9/yYa5ue0APq02C6rdbtllOwRIe3uJspSex7ddWmsHx2G7oc1vfdBhUkJ1VcLCagp/91FPDeKzImV5xVFQK1ykQmleWWiymMuVd9VkHVk6d6DOfODGUj/KWe74vp7eKMK5i7s62WfgALz5QyKqDPmgOZhoqeBjiQ+SsGie26z7LPPnwphNOiJehuOlZf3ET6V6tfIL7CHcy2yduucWH+UHYcO3AwTIpDpvTMJ/a4oVqXLzAVk1/aW/3J/bOWejD0+3YzGWlUzMr5BgsWeNG47knSyYR1zpH5WwsjWpqasDf5ni+iZ1mC4SSWm5/2wH5efmU0Te+MYzHeXA7sw3dfnvVIgPA9mm+/dqspJKNgKV73C6moxe5A/LgZdwnTLv++nI4dpKdbRWOF5NWAaG8qp3CVlbGskx2KRHIke0Jyywx4lPb7MDBJyVS3j3NbYjBTV6ITRxAXK6ZxZVX+jC3H/dLILRD/s4e7c3jFed3yCE+bE8O5H7BcmsrZ+Rj0flZeeyy8lH+7pxzfNieOExt0UILgZznh4fwCaNAtqyaqJDI9sN1avsij5HWJhlapHRQX2zhydnMLwfZU5r7sWMNwbK7iufhUxj5mbL4rd/yYRrHCmb8nEzyuj7qFzxW2NMvWa7ZlxFvJoWLPJaSlHSyncNzMpnlqB/+cDnIsksgHF6wfHn1zI46Krx+05vKwfsf9KPf+jvDaHaJ0M+MGb723rqkvXokZA81bAOPN3k3InNnUe3beZ8x8sgo/JvDrgnOP78cbPnJT8rhmfRDoMv85uxvztjB5GMJN9wFEEOCdpYJIYQQQgghhBBCCFFCL8uEEEIIIYQQQgghhCihl2VCCCGEEEIIIYQQQpSQz7KRgnWaxX4Zdu70YfY3Zn3usM8y9oNh/aHFfD6w/wb2JWDvxb4cFi8O45Hvg+10oHxba+hvoavThzvg07DvhKIp51QOs++S583zkOi/jZxjdc335bHuO9hHFFdDI046ZvcifGK8bb6Y+7gOG3Eq1QR/x4W1BefMue6sXw7+7swzy0H2ufPTpWESdvnArgqs2wkuQl7XSDGse5lY3Vl3b3zNrl3YxZF1LcLunXa+2XvgsK5illK9sA1xPVjXSuxHj92l2C7KzcLdOfMk8CE8pptd13CY/c0BYVvyM1nXGdwWHI/zs205bZr3fnIi+wCxhseNwc7yrL8adr7HBcryn8KF5UHEjLmz6b7d3dX9KVnXkkzQJ9oz/FuyjyLbGNb4qmVubSZmQ1nOACMd2GaV1w1UAA823C42c/Yftnq1D7NPISCc57L8tHBHy/J5FOHRR3346KNnBt+1zSEb4jbiAcbeh8vD9WDsrpX9UpGB9ZDNZPki4++2Z8Rjv0S2WXnmL7BjRq7jDAeePZO9f1M7Lk6n9mN/p7y+sGMNj7NtrVSvdp3E5bMTTgzKg8tTsPbED8LtZ9uZnbNyGdh3nx0YeRzL8u/F+bGt/fznPnzrrWEa9hHHawfrS47J6ycphl2s1enPqgyvjY1vyaD/sV9AW8fUl3jHQSc9a4tZSAR+Ankcqnee5jHArtdj8PM+9pgP28E4Mj5w2HqEY8vlnmR9lhUPPdRf8OKYxwDjCzk3X/pSOXjdsoPK4UvOfTGM9+1v+zD/puIysK9EANu7fX/evNl/zmt6IFw6MGzGixeH+1TqcY/Ia9amJl/Ls3nBCoTOg/OOY9deW/1GAHDssT7MYya1WevddwdJfl169sEOBaOBcQNHEaMQ7SwTQgghhBBCCCGEEKKEXpYJIYQQQgghhBBCCFFCMsyRgtXg8HbwLRGZRpYGK0tqZ+UG/Rx4oA9beSVt897e7Lc3L7sljNbeXl3qeMQR4XtZVhcsWOAPl588zYeLdstwTF9n5UW8j5nyaKbj5LPUM/ydjZd3FzMzcaIPZ6mV+JFYaTBzTsYR5lZGEMuc4UJYG+Lt/JQ3t6XdlR1TkeRVgNjjpPNsQ7dx8prG7t2vUbz9q+ZtVR6sHOLqZrULAKxc6cPcxbgM1n4eeqh6mkrJoQ9zN2Xbqpu8MhCqdG6zrOPA+TnYhrK6Ntc/p7FqHDbdrnN9354z5/gg3vRz6fm4Iu1zn3SSD7Mh80McdliYho2D01jDo+umJl/W2FAMhHXE9t7THMo4i80ReaWtZH5efibOvBFStJzkUG5WwoNP1gATkRwW7YAeky+97nXhNRsby3Ny6komTfLhirknNtezrDdLo8syG2vTXD561hbqZLY4bAEsuyqaeIXId9ZKArkWlycmCwYCgyg29dHH5u+79LwxG2LZZdZ9Mr/La6DUrwLpJbclENoxywJNO3dTfs2xydXacMwngX0Gkgl20X1bb7rJZ2WkhEEZeDK0YwOXb7DjRpad1AOXzcpHY+W28m0aD5p5LKU0mbNqI3x97Ldf9fyysNL8foxtcJ/lMYDvYuWV/BRtXF9ZY+7pp/swj7FLllQv5wBc1/2OcviS5h/6LxZ9Ooi3hSS2k9mOeZHB6wEAbSRE5985WZ4L2ITYtOxwPliPGcEyfp2ZF3ns4UJcemk8w+99rxzsYTkygCJL+/l3Ivcl0+f7h7sGLyGE2GvoZZkQQgghhBBCCCFEjThIrjdWUbsKIYQQQgghhBBCCFHCJUky3GXIhXMuqbWszjkkd543RCUaPOd/bgNuveOB4S6GEEIIIYQQQgjRcBaecgpWrlzphrscQ8Vc55J/HO5CNIAlwANJkiwc7nKMJLSzTAghhBBCCCGEEEKIEvJZJoQQQgghhBBCCFEH2oE0NlG7CiGEEEIIIYQQQghRQi/LhBBCCCGEEEIIIYQooZdlQgghhBBCCCGEEEKUkM8yIYQQQgghhBBCiBpx0A6ksYraVQghhBBCCCGEEEKIEnpZJoQQQgghhBBCCCFECb0sE0IIIYQQQgghhBCihHyWjRSuuiq87uz04U2bfHjLFh9esCBM89Wv+vAXv+jD8+eH8bq7fXj//X34yCPLwWeb5wZJ1q/34bVrfXjlyjDryZOr3+bUU8N4e/b48MKFPjx3Vo+/uOeeMNHGjT48frwPv/RSGO+113yY62jOHB9ubw+SPLKpo+pXzc1h1vxM06f1IQ87uv07aa67WbPCeNzkfN/pvc/GM1+2zIe54FxXALBrlw+3tvqwrbuDD/bhSy8tB5/aUCyHb7wxTPLYYz48bZoPs6na4h13nA9fcEEYr7fXhzvaq9fxX38+fM/PdcdhW4YNG3yYq4Hvyc8AhG3Btmpt/777fHi//Xx4yhQfbjIjLjcT2wObNwCce64PT51aPW8AOHtRD6pibzxIHlnr65/L3YIdQbwdaCmH163znz/6aJgfjy8PPeTD3EacHgjrmIc4268WLUJVdu4Mr089/EV/wY25fLkPL14cJuKCz5jhw7b/TZjgw6ed5sNsrNbwuMOwgVqj5ms2yjVrwnhcmW9+sw9PnOjDPIDbMnBZ+VktXFZK39NbiEZjWpozxlWufx6Mbd2tWuWjPfdcOdxs50JuC+4jl10WLcLWOaeUw1ylxaZ4uTe/5J/d9tnCPXf5C7a7pUt9mOseAF59tfp3th7YPmlQ6aT09AgAgKY3vYkuqE7uvTeI10f35VHHjjRNhx7qL7jNsiYBHmgpXk9zWxCtuOEpf8EGxQ1jbLoHfi4r9tJ4ZfsVw3nbAYbhNmN4DAHChQDXK69dAHTu3l0Ot/OkwP2A6xEAuroog87qnwPBINxNdsLttz1MgQ4uA6+tsuyO1q99m15ErRTmhWvRYM3y8ss15xeU204OXEfcZgceGMZjO+YycNl4XAXQR32uwN/ZdTzdt4/2MxRgxhf+zUD9Zce5by+H7Rjbdut/+ouf/cyH2R4BYPVqXwayIc6uaBcp/FuCxxDbXw47zIfZ3q+4ohy8bmnYzy+5ON9aO5j/brrJh2+4IYi2heaEyTwgH3GED3/gA2He1M/6TjujHF6xIoz28MM+HOt+l18epon9bmprjT83r8HmzfOfF277nzDi/ff7MI9xV18dzZvrgccGAGjmBTH3+6OP9mGzwPu/f3saQDhtjVW0A2lsonYVQgghhBBCCCGEEKKEXpYJIYQQQgghhBBCCFFCL8uEEEIIIYQQQgghhCghn2UjBeuThP2UcZj1463W2wjBjqTYXw4Q9SnDPhamnRb6iWAdPbvjMa6/Agk734ZdYQGhK5TApQH7TrBOimIOp6yvEb4xOwrgeMaZw4EHep9ltroGCz9rLGwZN44zMI7TYr5Z2IlT1kOwzwHbgJTfjl7v24XNk/3NAaFtcNGCZ0D4vFmmmwebnsvA1WDhMnAaDtuuyPmxOVl/IHzNabKem12XTJoUj8cuoriPWRdTAQ32UxYrT0v3Vn/BYxWAFrKvGTOml8PWfQ671Nu82YfZVG27MGzGeR/bulyJEjMUe80F5AeyN+MC8gPagsc6SczZFxA6tLMVxvmzsXEZ7D35O+vAsUYaYo5cBvYPZMtG37EXvWbrozE2p2QYG9taoTfLW5fnlVd82JrGTPalyffluZ7LCYR2x45guF2BcIChvtnO6Q85JEzDAwzHY99jAArk66eZy2DbgvOL+WqyfpvICc8LXd5/UaephjlzZpfDbF/BOG3GGo5XbM2wfcb2+xjWf1g/1p5iPgiNU582Xg+xT6h6sM9AY1LQYtRGrdbJENsKL9zYhoGwk5g5oWZs3nZhUStcj1ljGn9n+xUbET8rh017Fdg/F9edsZm+vHsY2K+f7T8lKsbck0/2YR6IMhy1Fp54ohwusg0Zn2xBu2TNazyOLFlSDl53k19vXnKe9ZaXc8F4++0+zH3O+E2bzPMA112WTVM78dD85JNhNDZ3HofsmoepZ27k+3B1zz788DAi+9TLu/CmPJrtgt/67+uHxzQzV/SbTV9O13OjGe1AGpuoXYUQQgghhBBCCCGEKKGXZUIIIYQQQgghhBBClJAMc6Rg9+HGpDpM3i3kVpfG22XpaHLepm937G/b5sMsKTGnCkdVSVbtx9/xzuB5844vh4tWusDb2llmaOuBpQO8vZy2UW/vbQmS/OSW6mXlne5AfjUGc999PswnW/NxzzZvLvbU48zz8X7umIzISh+4zVkOkCE3YhPkaPaU8Xvu8WGWBVrbiClnbR1zUTvaq5dt6dLwmvPjsK2GJOGj66vLWqZMCT9nezjySB+29fDcc9Xzfv55H7bdfNs2v0V+1arI9naETc5KAauemHsFXXBFNliSyTY9Z46XMLdP6wjicVusXO7D1jZYcc19hO3JqrJ5OOA2ssMBP3ps6AMQGjkbDvexikQEF9bWN0sXWN5BFdQ3+aAgSUy9NHny9OC6yBcs98ySa8a007by+Dorv6zvGgnfh5/BtEsvfUciYbSbSi3wxMbhDLltAX3V42VIXNg0OtqNFmXZGh9m47/3Xh9mKQ0QPi9/d+yxYbyHH/ZhHiw4vZXtLFrkwyxXsgZJ130UtlNkkTp7E9sT1x3rug3TaYJobg7n7WIXtS7ZRhsNCD1hDwlNNUtizRHz2rd1CdGPnSzoum/FCh82yXhG6aDxqZnzs4srLiv7zLBz/XPPlYMsemui9RPfHwAOorZsydK+P/igD1vbrRU78NvJo1bYjm2bc/txH7EaupgMmsrGAm1LMUOayuNLpiSTbYDHnskzy8EKs12zpnrY1undd5eDXfSsrdx/SYad3pcGOZY2Wjnj4sXlYCC9vIhq7BvfCtN86lPIBdv46tU+bJ5vEz3TtFWr6Atql9NOC/OmMaoXXhqeZUIxLzBZQ01eOO9A8bvG9BeeU2Ljk4Xmni5T2FauY74xyzXNwrS/CDt2QIhRiV6WCSGEEEIIIYQQQtSIg+R6YxW1qxBCCCGEEEIIIYQQJbSzbKRgt8fyVtfYSVNWg8XwCTtnnhl+F5GO9Mw5phy+5YYwCe/45l29tFsbQLgzm29j1T2xw7h4N/lsm4i3+cZ0d/aaJVQkG2gzdcdSMlaEDPbURiDckc7brc0BPbAHtZWxEgeWP/Dpd3ZbPMN7tlmWa/eDk7yVv4pJ2YCwbbk4Nl7sIC2rEs6jGLQ7+2OnT1o2buT96mxf/mFtubke2LTokKj+bym8sxx69VWSvcIewejT7N7dRp+Hf8doahpHYf+5VeDsLWKHXWXJrfmwLNtlWSWxerXv5xMn+kSvvmpFQf67117zMkdSF1WUlfuzVdYceoE/AXj6Aio4D37mlKdAYsSGYmUtXCg+RYwqomAGhOk8EHElbzIF53uxUWbpoFmexeWxYy6niUk3bfkimpKGKDVZ3sXGZU5m41uxCK9gDfToo32YvyOpEIDg+X54i++b06b5PnvGafGjvgLppZVgsX1Fwr0Z+n9WtrSx7BJAJ0nJ2tkGWa5rB1M6oS6QwNlj3yjvAksyzQmKnRRuoudoZ/mTPUWSBwtqlw4r1+TFCMvmyB6KJu+mdpKKb8l5XF1eli+vXp5ly8J4JL1kawgFo6E8kmeH6JqwFmg9xTbEYTvishXOpPZref75IF4XLWa4V9SznOo2Ey23UtZh0FF4XMw6YjljfIkt1rhsVobJ9cqnjLaTLdQE2z6NT70Lz46nickwWbIIYCv1U36moP1sX2QZJkm5H28/JYi2klxoBKde3r7ch+s9+ZV9gtCY1GPG3E4K88mYfRQucl5AMIHNvaC9HO5eGLpPyDpZPUY9cyMP21MnkbXZeZ/nlJwF6oy4MQCAXrLdAoVbqY4L5j7TLkr/H8ID2oUYUrSzTAghhBBCCCGEEEKIEnrPK4QQQgghhBBCCFEHbrgLIIYEvSwbKVh5SEzbxDIge4wgc+655eDmA48JvopJJVeTwoUVEkC4s5fD3d3hRv3nnmOZmc985cqDg3gsw+Ld26xquvzycPt2kSOyvDLrJFGuO5Je7mgOT+3jZ2LlkZVh1rNdeqdX5EUPc7Ow4rRCHsKyCz7Zkk8Itaf2dUXkJlYPR/KXtma/tXvaNC8QyVJ9cLntju/YYZ3BsyJfHdtis93ETiNK8c/knN/qnyT++SYbbQc/L4dtuQH+gKWXGScoguyYZIWWVav8nntWgNjne9/FkQwafDImKzi4nVndB4TKLVaN2PElvH6sHHr1VdL14hlTCt9+GzZ4GaZVp7NiiW3QqMXCuoxpN+04zddZmthYx4gNhDYeYwcO7kybN/swj5E2f+4wXDY74MXGjaxOmtO+6jHJvkidFMaFfaeZZIYtPBZa4zjiCB+m8XPzzjbECOc/Hz7jtIqoHjZw2y58tC8dM7shY4Lg6mJ5V9GM+0EObJ9ZR+rGjoO25bZ+BEr08lG5CGWGLGXYQR1w+s03h5mw/JPnOCsZZakUGxQ/g7HpwpzIMc9ZEqW8Usfbb/dhmvg7jdSOpy9eQVmZYuy7Jj4Z09pJTDpt6CNbYckgy66sDJNtjduyw8gSOR3XXD0yTHt+H4889cgwA2mrnUBjCzTb/txn6Ds+KfBZU/d8X67HbitZo3Ch4nxUgiW/nMflfxBPc9tt5WAf9VO7TOI+G5SA5aj0GwNA4INj+zy/dmfZJWB+tvAz8LhRr2afJIfbM0515ZGMW5bb5RgrneZ5lsaX41m2DqCry88d1iVEIzlmDvVarkcjH+27445ymPt51ojG9bPdfMctw/MQjwetxvb7u0hBWjYxSpHpCiGEEEIIIYQQQghRQi/LhBBCCCGEEEIIIYQoIRmmEEIIIYQQQgghRI04ZDlTEaMZvSwbKVjfEqzZ5zD7nYn4DAGAHbO8n7Llt4bfsdsB9tvz0EM+TK4NAIS+h3bvZkX7Y2HE4PBzr5Bfsyb0WbZ7t/dDsm6d9z3EriGsO4kO/pLri52CAaH/BvalQc5mWmaEPhGOO84f/3z8PF/unorD3Gtn6mtPlcOnnTa7HLbugdglTOAexkTc2t1SDnfMm+e/4KO8bebszyzLHwT5Yuhr8s/OPoVscjZJdgFk3Ahh/nwfZtcz1h2IdbdWDeuuL+Y6ytrQ2rWTymEu96ZN3sdRlp86zm/3busPpi8SZv9l1p7Yzxn7+wsrj59pkn8EdhOSTR1+yvrMxmP2n8Ll4fbjsgGhDWTZ0LZtXA/kTyvw92Z8JlEdJYlPv2LFvCBWe7uv1+OO85+b0+SDLjLtsuPL4bZTyfEIZwCETkn4Aa1TPR6TuFKeIT9sdg6I+MWpqDweLPi+1gcT58EDP39ux1Imy4Yi31kbGizsP4Xv2GqfdX8/p7Txd0cfHcY7/XQfpvHzJz8Jo3G/v+kmH+Yp+JKYv0Ag9MFly0pzVB+1C/uXsaMG1ypbgx2RglZh++IykJ8fAIH/mxcWvr0cnm5tn+cb8u/TEsYKfONUXx0g9KEHhI7huO4ssXrlAerUU8M0XG6uE9v/sgasGA+S41fKz/pM6qQwT1G2F3EdFWLxbN+LTRbbtgXRCuTXr5cmXS5P0EYI7Yv7ou3lWc+UB55rbBkGS9CSts15LOSFsl2k8DWP088/78PGYRXXA68OMlzXZtJH40aB+0sWtJDnNrJlKEbCPK7axUfPO99TDi+lMfK888K829b+0l9w/+V5LMuhbxaUjv2P7TDReiLhYLloFwgMO2A1vkoXLv6NcpjXkux6MYvcS7XYDwaz9oj5GcyCa9/2v1h/DD43c1z/en+//XIWQIgRhmSYQgghhBBCCCGEEEKU0MsyIYQQQgghhBBCCBHFOVdwzv2+c26tc67bOfecc+5rzrn9B04NOOd+2zn3HefcQ8653c65xDk3KyP+Ac65f3TOPV+638POud91zrmGPVQGkmGOFKz2y2ztLcNSiNPiZ9XzCeY//Wn4XUzNyKfbr11r9wzHDjvfZuLtQTV27zYyC3i5z4YN1WWYdmd5+4Lp5XCBtx3burJ12Q9raSq2CXsZJtasKQeLCxYE8Zqb63i/TPm1zYkfRz6T5CGdnXH5Jxe9gyUlHLb6Q75mqZWVFxCFbr+Be9o0L66x6l+ufpZHHnpoGI+rMibjG6BIVe9j8+NqsOoZVkywDJNtzT4fV90BB/jwxIlhQV99lW4MlrOxYIW0fgDC/kIFMjJMLjeb95QpGBayVIHMHnq8/KomrpOYYAII62h7JAysX39gOcy2YVRJ3E2DsfCsM88shx9fF/b/uWzkWZIu7rSsaWcZijV8llNw5Vl98+bNPszSEZagA2EnYU1IbK4B4g1ltSI5Gjevki0LziIYIe0zHH64j8c3PuecIFrPorPLYR4DSIkIIGy+++7zYau2jcLGZSuCMmer4VhZs05UnodQ7rWdbLKFHrbJykLpu+nvJynZHjO3X3qpDy9eXA4WuYIAdJPEj8vDz9dltPet3BgsE7XzGndUfg6Wi1kdGEtxY9JUIOxnB4duJGJsj7SlNROWRvVGwkDYtjw6NJGEMpjIgHCQYwO1fYQkg0WWAvN9THn4O24JW25+PivL7acQ5BbHSuhiy4MstwH8XXBXu1bka/YpwX4jgNBuIuvwg4wMk0V9PEPVOyxupfDkJ57Ilaab2pnTZ0ntZvMXv/u7PvzudwdpbrrBhy+6yIeLN/5nmDlr3Hkdv3GjD2dJIDPYHpET2/EztroOZMZmTCpSezazDNPmTfP48cFC1feEOrxiVMJzCo+RZmHDbZljaQ0g+8VArD/zfTpN3fV3pX1BhrkP7UD6OoBPALgZwNcAHF26PsE5d26SJAMN8L8H4FQADwF4EsBRsYjOuSKAOwCcAOAfATwK4C0A/hnAVABXDeZB8qCXZUIIIYQQQgghhBCiKs65YwF8HMAPkyT5Lfr8aQD/AOBiANcNkM37ALyQJEmvc+5qZLwsA3A5gJMBfCJJkn8sffZt59wPAPypc+47SZI8E08+ePahl6BCCCGEEEIIIYQQokbejfTwz2+Yz7+NdDPwpTaBJUmSZ5Mkybux9pJSvt82n38D6clo78qZT91oZ9lIIUt7xrKNLNkAbcdn2RbvygfCneacHSscWBoJABs3cvl467o9KHdP1fD48QcGsfgkQT5Uh8ttVQOFXtroy3XCkgQgfEA+4o7r2OyDDpQxGW1Rl5SIy5OlX6Pr1lbaKG60PtOmzfQXq2i7Oj+TtQ1uXD4Jz8bj7dN03xZqmGnTwk3s/Ej8qFbh0JCt5yWy2iHrPrGysq1ZVUssnpVrrl3rbTw8KZOll9a2/N8rmpvjUn8udx6ZagVcYTkbIq9MJis7VjKxhNXW8cEH+4gbN7LkievESrx57PGD3KRJ4VjDynVW01j75O8C1Q1JwqbNOh4Bqzp9OK9Rcjh2jKu95rztcbGxvK1sbgTDj1fMOnQzEq6YA2L1Zca7YpcXI82Z01EOH2X+xrlrlw+zQtDOrVFibQkEp+7xyJq3m2fJMFnCxjIZloG1mTppW7HCX/ACwQ48B1I/o8Gwx9hn7GREcnxQKYuK6eVtGbhe+b78eZZkmLHyZmtTOYi1mZUu8cgak1oCoSws+Ms2l9XaE7tZiJ2qDgRty+WJnoSI+Mmm9vn4uw4MDps310PWabu5TuK19hRz1WFthm2S45H+sNn4EZlO/Yqfqd7TMIN6yZLSE81k00XqL7amuFYK5IYAl19eDl53Q5jqkovJiq6/3ofZTQAQrmc5zPNV3qMjDbEZOO8JvW2Rz22azIVuZI2f8fNj8HCGZtziZ8+7OybLPrnoMQm5Ecuj9pFUjHBORjpt/JI/TJKk2zm3qvR9Q3DOFQCcCOBXSZJYc/xlqRwNu18MvSwTQgghhBBCCCGEqIMxIteb7Jxjx3z/miTJv9L1dABbkiTZhUqeB3CGc66YJIl1h1gPk5DuOHjefpEkyS7n3MsADmnAfTLRyzIhhBBCCCGEEEKIfZctSZIszPi+BUC1F2WA34zYgsqzQ+qhf6Nj1v1i5040jDHyElQIIYQQQgghhBBCDAE7AMTONm2mOI26Fwa4X6PuFUU7y0YKxx4bXk+Z4sMsdl+0qBz8v+Xhu86zF3ufAddc4z+/994wa3KREsAuFl56abv5lqXC7AvHqtHJXwZ5wti92+bnfRI8+aT3UfTyyz7GPfeY8s3wXgTOXkQvva3jGPbfEPMtYHxVtLWSvwU+ttocGd7cHDt0OgOuWPaJkeFnoql5Lt80+I7dPMwkh0w9zd7jQtE6RWDfM1wP1mcZlyl0YlcOLlgQHCYeuE85+mgftqd/z53j63h7l7fdluZ8vrEYe1o7mwDXz/7GDdjztJGXfY5xE9lT4jk/rkY+6RwA5s3j/HybbdgQ9z60ZYsv4Pz51e8DxE2lwvdFHt9k1ndNHQ40Yq4TbVZcr6+8Uj09YE2cL7gBJ5lSVPeuY12I8ONm+Q1Zt86H+WT4BQu8n7J15sT4sxcu8BfcX6xTNv6OOwaHqY9VfNdlvYAQscawvs0YrhR2yLVrVzxeXoeNVLFZSepwoxf6muEOzI7pAOCkk3yYO8+b3hRE++Fy71GJ+/ny5WF2XC1sJ7l9WHJHMGNu7+rV5TD/GbYlErbxeGa1I2lv5DsOh6UJ/c00U9lsE7V9+cv+ggbaonHm2G58N1Ur2wvmu47nnvP34fazA/oTT5SD3dQPmrP6FfelLB+wWX7mSli/WC/ybShsVz9Mpu82Lg4PXkce6cPWeSZPRFl+16ju2teuLYfZQ6p9ah5at2fE49Ev9JlU+1xv8649h5Bg6rHtynX85JM+bCdgtptVq3z4wx/24SVLgiTsI+wgSrMVhpwDI48BBWu7EV6kMvCvS7trYjb7DPzUp8rB62734+UlS0zJv0o/Or75TR+2/sfYZy5DdWz9HuZddbNtxPySAUA7hdkCuE64L9s8psX8Olpo7Ju7YEE5vL11bmXcEtzkWX73CrxIWbPGh2nsBMJnyrv9huvOpolZJJfUbieaMSn9ZHxTkrMEYoTzAoBjnHP7VZFiHoJ0Z1ojdpUBwDakLxYqpJbOuf0AHAjgZw26VxTtLBNCCCGEEEIIIYSoEYf0pcpo/5eDFaWopwTP71wzgAUAVlZJUxdJkvQB+BWAE0ovx5hTSuVo2P1i6GWZEEIIIYQQQgghhIjxfQAJgCvN5x9GuhnxP/s/cM4d7Jyb55wbjF+x60v5fsR8fiXSzaH/NYi8cyEZ5kjh4IPDa9aVka7oV6v8+02WgwDA2Yt9mJUPLG0EQkkJb/kNdxNPMAX08oeJE73u7tVXDzLxzM3KadqC6+5uf8073HkXvN3d/NJLPry1y2+K7rAyzJjMgrHb1jkeyzbMNv1icx1dhhuKw4eYXaW0fXrmhfRMa0MZSfscqvPYNn17JHpMx2dlGnx8d0RvdMYS2qIPhHKxVb6sbVaKttTn10Zb0tFk4jH2OUp0dD4VXs/xZeo7zo/JhU4jFTi53Yfp+U48b5b/3MqGTvNtsb03Pt6zqfCueM6OJatAKE1k9YxV3bE0lE3Vmn60QI04q5zya2/3/Y/la/Y2LPmeRCrKbdvCeKH697By+MAD/eebN4cyTDYNll5aRR7XkVUsMTE5KT9fhRqLb5wllWR4IOObWt1yluaX4YpgyUuW1pUfkJ9hP/OHu0j/q2hovo5I1nJLFjNoZnnQCSf48BFHhBFPP92HyQBe6A3nK1KiBX2Rh0EgLDsPa1byG4Xblm+KUAbUQuNxC3cKHhwAtJANBTJH42Ohi+KxJiImPbLfMXYEYYkmz+52NJ/3znf6Cx7ISKq1zszHLPFr4/o69NAgXhfZeOz5WvNKmG2j83XO8ZP/+sxlsHXC9dVBYfvX606+YBtgGeY0Mx/zddYcQD4T2qj+55CtBvdHXIZpmcXjxplnVo+U0x3AbHNty1QrwQhg1yhEH0kBC3YRTfUV2Ortt/sLXuMAwNe+5sNLl5aDHbfdFi1DVvu1k6uWburnWabK9hV4m2B7AoCbbioHr1vj3RBc0vojH+eCrwZJ+u6+uxzmFau1k5jtt5LN1LtaYalka+RzIJRr8oqO72vTsLX2Uh9psuNGzM0JjUPNl8ZlmLkh6XQwpxjZK8/gzRmuXxheVtoVL9crr6657irmkP76ynINIUYNSZKsds79E4CPOed+CODHAI4G8AmkksjrKPoXAbwfwBsBLO//0Dl3FoCzSpf9fpU+5pzrLN3j85THtwF8AMDfOedmAXgUwFsBXAjg80mSPN3Ax6uKXpYJIYQQQgghhBBC1ME+JNe7EsB6pLu93obU3eU/AviLknRyIM4G8Jfmsz+kcPllWZIkPc65c0ufvRupn7InAXwcwD/VV/za0MsyIYQQQgghhBBCCBElSZI9AL5W+pcV7zIAl1X5/CoAV9Vwv04AHyv92+vs8y/Lxp2zFPMP9xuDb/n8QqzftAO/+dmVmH1wC3bu2oPzTp+Kr/7uMRVp12/agfM+swJrvvOG4PM///fH8N8/34SCczhoUhHX/skCTJ8cPxEPALB4cXD5yFr/fnr9Kv/5977nw1aG+ZHLffjOO3kjdLiF/KWX2ukqds6M0YuBZZPjqoYB4Lnn+Dn99mSrhEgSvzl73TqfN+9aztoxzFLS9vbwXf6CBb6tZs4hcUZcc1opy+zHSgUGK21jTZeVAMTKYKRQQbR2v0l6Jx0yNHEib3A3kp6sZ+B78alFfFPe/g2EmkNOwye62nQRmXFF+WIyMCuVJAMrcBojecIEkhc/+qgPswyaPwcC6U/bQn8K6+LF4ZjQ0uRtbQad3MrVY80udoBiluqOTcgq9+qiDpvm6mfVMpcNCKufzYElbxY2VU5jT/GNjQ9WasnxWPlsxyR+Dn4+Hmd38mG/AFpb/dgza9b0cni6kc0FcIYsS7DGwZXJx7haLS9XEudhJdbcL7jN856aybaRZSc5T8OsC5YL8WlzRvL0i+4Ty+E1t/jP7cGIpIYK2jbLPpm8ytugLY2kK5i9+FRsbq+sNuKOYU6LLLDkl+DWszKb3kjYOjTg0+I4jzYTLziZ8oorfJiPuyYJF2BOU2NZoekjsVM9eUZpzTLCHPJhGy/rhDqWtLL8zM5inAOvwGzdBdds+zy+2OObuS9w3dk+y6c4kq01X399OWxrpJPC3EYVamSWpkVOQ82LPVKN67gDtRPUgq2TqVPLwQLXnZ1syGUGt+WL9HnRnErYzv4BWDZ+/vnZBY5BEx33c+4T9vGC1f573+vDl14axAukl8f92n/x5t8pB581i4+YvdveEvTNyAmveU/3tHDewX3NOrKJxhEeUXj5Ymc4tsOgjs0YO50nFW5nmnyKF18c5t3kR9DcPyvuu68c7CZbs+M0X7dYyWgErjvbt2O/ZKufTd5fiFIp+gZ7lq0Qw8M+/7JsQnEcVl1zVvDZ+k07cOb8Diz94inYuWsPTvjwXbhw0TS8fn6+qfmP3jUbn/vgUQCAf/jB0/jr/3gc3/qD4wdIJYQQQgghhBBCCCGGm33+ZdlATNhvHBbMOQDPb4k4iq9C2/7+L/qvde+Bc24oiiaEEEIIIYQQQohhwmGf8lm2T7HPvyzb2bMHCy6/CwBw+METcPPnTg6+3/ZqD57Y8BrOel1tG77/7Jq1+I//3YAD9h+PO79+2oDxn1ofdjE6aApPPunDy5f7sJU8hbCO6zXzHW/F5U21vHmWjqED0EzbmHnXf+VhQlZIkGK3FvNpmKzCYyVElsQl68BLltpMnuyfqaWXNvDbzFkiyLKB2GmaQP6j0LhA3LBZ+fEWdyMP4brkaFxUKyOaGzsG0DYgb1fn7eXPPOPDdis3bQcPCmEbneuVJQ62DLGj5xiW8ABh3fF9WQNpiclCnzYHq7D8hSRwLVYqQPmdeO655fCs82aWw1ZNxUq5WPMDoQo260DVvUVMGWXVKqwQZOWQjcdml6XQZTgPri+rSuLy8YmcGQehBWNrzGyBQI0TlGe6fUC2Se5XfHKVHdDpxttJ3mwnbT5BMahII8mLHuPIZZ1gT0EmckovA6gr5zz8Lht+BpI19Sw4JYh2y2d9mA+os6xezR3Sj2vjx4diEy575gm0MXgOMONGkdssdrKplb5z23L7mdMiJ7N8l+jJkHVyM7H0yJ5q1xIJ2xG3mSSWx33pS/4LkrTP4TkECAdKeoatptyx1UuA7Ysx/bbV6MZOj82Ac+aVgx3GePXBJ8rZIakwf76/OO88Hybb71twIhhWV7a2+rnH9r9jFi3yFzSvcT3aH36xsk438YJjjHkArUOXbYVbgUy4Dq8YwTNZW+D+wyfq2nLTM7XSBMN9ZD1CTrn5Zn9xMv3OMC5Ycj9UxEVFllq+jdeBn/WD5HUrw9MZL5n8v/7iIu8i6Ck+BdLcNyYntqVs40mU65hlqlnr7gwKF17oLzLcrnTceqv/ij7nZ8iyux2RMAAUaIw6iMbtApfBzAFN0+gEd7qzlXwHpkGLD7Y7Ow4GMvsDD0QuaOHWbKX8p/nfs9N5XuK+Y+eX/t9bkmGKUco+/7KsmgwTAO5evRXHf+hneOy51/Dpdx+BaR0D+BwzfOHyefjC5fPwxf9ch6tvXo+/+sBRjSqyEEIIIYQQQgghhBgitGMwwpnzO/Drf3sDVv/bWfjmj57BqnWv4P5HtmHB5XdhweV34Uc/z+dZ+5JzpuMHdzXCC7cQQgghhBBCCCGEGGr2+Z1lAzH30FZ85pI5+PL1T+L6Pz8x2IW2fpPdgJvyxIYuHDkj3Xj/o19sxryZ+1eNJ4QQQgghhBBCiNGLdiCNTfSyLAdXvP0wfPW/nsTTG3fg8IPDg9Yfe64LM965rHz99Y8egxv+7wU89txrKBSAw6ZOwLd+f77NsoIVK8Jr9k320EM+vHHjIxRrHELItxIey4jHnkjYuwA59DFeNthtE0nWK/y3sCyfw9YdD1+z+7BXX325HL733lBf393tdfDt7d5Pj/XLwHmTKw5MmuTb7oADwnacyr4c2HdJXY51DOyjgTX+1l9GzGGb8a/Wbnwy9cNuiCpcPnDe/CX5QqqIx37KuE6sQ60HH6TCtfuw9X/E94r426goQ1527vRh9qlm/dBwXbJzF/L/0GuOum9ivz/sM8nECzoq2U0H+eapaHNH9tXlw/vtF/pI5GLb6g+IDTVZdco2nrPu+dG5Gm2zclnZzdKuXWE8rhYeU7jr2KrjeNzM1mcZjwdzp3nvHs3NoX9F9gXHZPlH3LzZhydO9OFjbCHY9tmRGyeyTtTIV0iR0lf4ZsryU8bk8bGYd7wz8axvlVqzzj3Msl8bmojWrAqjLfNTMlavfpG+mRRGBI1x4Lo7OIjFVcdTRVZ1B7BfIjtucIZs5GzUdpxmQ+T2t75iuIA0LvZRPDsSF8kmm+i+PSYejxSch7Wy9uCCrrgDsy8zC/md7LA+KN///nKw5YEH/Oc88LCzRCDuJNUOMBwv0nfscDmZ2rKL2tn2Wfbcwz2nYJ0i8jjCdkJh6zqTxzv+zsY7ZiHlzfMnLfbanngiSMO+kfjRrXvZNvK310W2ltPLa4CdkdopnN9PGdU4+1ay7cp9icdjO/Czs1BaZLaR3ZmWRC+t/ZrYV9eCBZFSI9t/GfkcK1Lj9lG0gvW89dOfloPX3Te7HL5k4eNhvM9/z4fJBji3LJ9lWeMB2A9fxKYr+mxeYg4lzQ+QArVzC42LrWSrdgkd8+Vnn4/TdVK4ncaDgrEnbuZiTpvmHHhsrvARxz5Neb2RBY+F1vY5D47H/SXmoFSH3YlRyj7/sqzrtrdUfLZ4wWQsXuA7/oT9xuH5G99UEW/WtBbsXva2is/fubjC3akQQgghhBBCCCGEGAVox6AQQgghhBBCCCGEECX2+Z1lIwUrS+JT4+PKqOhh6QglJXZjLn83oernU6bQ1l2Eu85ZGWDVRqx+4HJb5QlLm1ge0N3tpZdWlbRliy9T1i7hWH3xjntWQgEAHiINFknyKjLnrfB5ZE1AWCmct9WmcsG5UswDcRGstKIfq9qZPNnLTtu4YlmSAITPm1MWiief9OGI7AcAeqlQTax5Y5miLUMM1v4B8WPCV64M41GFbWV5CJWNpSYA0EFtVuA2s+3HWmprvOUbGZvhuiRpwFTTsaacdmK1aBXKoVzk1cNlSDJZJcGPsN9+YTwu3wknxLNmBQY3H1eXVSi1NfdQPD8WWiVGcC8qbHt7KMNE9WhBM9syRFUyto5ZCsFSuXFWIk+Y/tOPPXw9+ItXTCIBAFOnVo/HYWufsfHOPF/MVPKqf3NDhvLCJv/kVpocXpt+GmDFhSlWTsxl5a6dpSaPkuU3IGZ4L3v3BBU3Zh8Jts15oqPGaOa87VhF7VxcvbocPojl6ADaaMxspo5RMI0RWNQdd/gw1wP7dgDCAYbnCttfWM7Gdsxp7CIlNm/bgYPrksKZSnWaT1l2tdVE4z7czl/wIAmE8l2aJ1/o9PO5tX3reaAfO21vP3dmOdx2ArUF3aeDpOAA0BVZcNhe1Em2wbcNaj7nAGDHu46M75gKCWI/bFt2QOfrww7z4fHhejjgYC/Zbn30UX9/s+h9gcIzb7vNX9h6uPpqH84yNp4oyU6C5zbpA+nlaU/5L855cxBvO5U95rTlIFMn3Szt5nHniCPCci9a5MMsq+ewXUjk5dxzfZjHCvsDhDvNtm3lYBOtK61Ns+MWtmO7iuDuyLbPLXFQnjUuBmj+SN4Vvwp5TR6TqVq4LQ4M3eEE7cdjq+1LTP98tQ/IMMf+E+6baGeZEEIIIYQQQgghhBAl9LJMCCGEEEIIIYQQQogSLkmS4S5DLpxzSa1ldc4hufO8ISrR4Dn/cxtw6x2lE5yytuXWc0JZw/UvnqyTz6Jb3/OecFjPSYh5qSfvvFLLLHJuuQ7ahcK2vut5jHrSxMzEfh7d9p91U/6unjq2mhImr8wwEi9vfWfdJtoPLHn1a3kbsBH2moes+o9Rz3GIuaU68TFpsENKXSeu5S1E1pid1/By2vFgyW3TQwg/E5fHPmvWd/XEy0NW/fT0xvPOM23nNY221rAM27uq35dVnI1eKmR5Lsgx/FYw2P6blb6lubE2vaO7dhtq5Nw80He13jd2qF291FPfWXVaT37cF+3z5F2+xMg6vJLJ+q7YNEibzFvwnGvMwdZJXrLGQTuuxYiNd/WUIYu8Y2bsmRox7uQda+opQ9565PyyXBL032vhKadg5cqVY1apeKxzyfeHuxANYD7wQJIkCweOue8gn2VCCCGEEEIIIYQQNeIAZHihFaMYyTCFEEIIIYQQQgghhCihl2VCCCGEEEIIIYQQQpSQDHM0UIcPgkE7wshwVlGX75pGODuopx5inw+l8wVLXkcWkTQFk6apqVAtWiax2+b1ScKfV7T/3qzLPGTVdx0OyGJfDdovWdZ3I61OG0GjnykyJln/K4P1s8PU5ZfMfjdc49AYIFb/WWOSHT9rzbsR1DMkDYevoKGgkWWvx4dW3voeCWSVtR63jvW0bT3LlaFkuMpQzzA9bPU1SD9l9bpIHSyDdFU6bNRTvkY/U1773Ftzx0hvMyEGg8xbCCGEEEIIIYQQog4k1xubqF2FEEIIIYQQQgghhCihnWUjhLtWtgTX997rw+vX+/C3vrWdYu0J0iR7/Nm9bv876Zseczc+r2M8hSdQ+JggxcSJB5XD553nPz/uuDDnu+/mND7c2Rk+3zgqwq5dPrxliw/Pmxfm/eqrPvzOd/qwPap+1iwfPvdcHy6ue8RfPP10mOh//seHV6704e99L4zHe435Rlkcdlg5uKmzsxyeduihYbwDD/ThP/9zH548OYi2ac5Z5fCqVf5zrh/L/Pk+zPVaXPXLMCJX5n33+TDXidnX3XvzzT45fb7DlIGaFseceaa/+OpX42VYtAhVmTEjvN5//6rpO6m+AQRCqy4Kcw3bXett7e3+4sMf9mF7Vvatt/rwW97iw4sXI8qGDT7MZW1tDeMtWODD3Ok4PZDfJmNk7aWndt+8s60cvv9+H8U2y6ZNPnzaadU/B8LH5UdiU7NVwtXP/cB0F6xd68MXXFD9PgDwjW+gKtwNFi8O/77Ez7RkSbEcnr3qh2Emy5eXg73/+I/lMNtjkQdMAFuoQ/OoH46kwDS+OPLIcrAwbVoYkQdutuk5c3zY2g9XMjXAjqa2IFrsCHk7NsfgNMWmDDnkpz7lw5/9bDn4+JaOINpll/m2uPdeHuv3R8gzFH6NwkeZeP5BmpsPL4e5yV7cFC93y3ln+4udO03WVElUEcXXqDy2w3DbshGa/tsW0+pwfrbDcJo1a3z4ueeCaH20MCnQXFYw8ZrY1niM48/tZM8TFnXgohnPcfvtPnwnrXl4UcH1AwBzaG3D9dDVFcbjeqGy9vTG/8bc8rEP+gtaO7y4e3cQr5PCbLltb3pTmOFv/mY52Pe7Hy2H163zUaxp8FiYNZxfcYUPF9b6tVHxyiv9FytWBGlesPVfosNcN4/368rt/OzcLllQwbv3c8FXPPL07EqqJamAJdbFN5zuv/jAB4J4RR7/7rnHf24nH+4XvGilhul74okgyVYKT2abNGXAZZehKuYB2Q6/9z0/3n3wUlrv20qhshZoTsK73hXeisLBHEXhZu6/QNi3aR6qmFOWLPFhXtfwPMRGDIRzVwZta2k9y+Oq7SQ33eTD1E5P0X3taM4WwCNAm4n3FIW5vtopPHnz5iDN1ib/+6qj3d85a6zpon7B0+xBJl4T9cWg7m+5JZp32xWX+As7iZ9zjg+//LIP28Uf078Gztv/hRhhaGeZEEIIIYQQQgghhBAltLNMCCGEEEIIIYQQokYctANprKKXZSOEo4zqgxUBkyb58MEH+02/dmdxuHGY5ZXbTbw9qE7sc+DVV7eVwzfd5AvLu9EBYPVqv+W+udmXYcKEMF5E3RMoRewu75hyyJ72EsgMt7zgL1h6+fzzYSLeSs+613qO3zL00Pb0YEPzSy+FEVlKmHHMDO925+K98ooPH3BAmDXXd3DqW9YxSFzhHDaShKYpU8rhIj2TFf8Gk0iWPqueY3X4AWnbebORjXDOXJ4Wfr49ph+ccIIPswSSZbNA+Eyk/+1b7CVYhW4jTmVbY12grQOuc37WRhx1VEd9s/yMq84q/7j6WY3D3Q0IH53HFB4Hsx6V01g1AOfNihCuegBYvdqHyaQDbBm4WYJnf/TRMCJJyXg05j7SZnTUOyJh21qcR4VMjeFK5zbnSrZSNI5H9t08ORSf2GRDBvsnoPDcN74xiLZwoRer3nff4YiRJCyH4ZZ50cT08193904K0+SMqdH7YONGH2ZZjCU2LrLfAhsvq5PwNafhudDIfwNIotRrbIu78DSSXlaIUfl5WZ6VJZPiMnG/sPXDGumf/cyHWULJUi8MIPNlIicHZsJjMw14ts9aFwX9TLbyMxpcC2Tjc2mR02ukWhH1aAWF9SQY43okXxpbTH1zN2cnBM3Wpo89thxss2utGrGtxXZnJXC5YF2+1eLzeMfxbEWyxJKlaPS5XXVP5smHpZcXXZRV2iisJLz0Uvoiaz7ndqZnKrJbDCDsZzRRdtL6rs+MB2zTHVQPBTsncV3y+MTjGLv9AHLLMAPZMEv+bBm4n/HzUZS8Lz3s1MfzMa+U2zmSlfXmdFcQg/uIzapA41CL/c0Rg+cHux5+7DEf5jVF1tqjX3acJPE4Qoxg9BJUCCGEEEIIIYQQQogSelkmhBBCCCGEEEIIIUQJl4ySbZHOuaTWsjrnkNyZc/vuMHD+5zbg1jseGO5iCCGEEEIIIYQQDWfhKadg5cqVbuCYo5P5ziW3DHchGsAc4IEkSRYOdzlGEtpZJoQQQgghhBBCCCFECb0sE0IIIYQQQgghhBCihF6WCSGEEEIIIYQQQghRIuOMYbE3yTqa3J4GH4OPRO/pHdx70KzTpxtB3mfKw1CWtVBxcHnt5D52fgTD9dDo56mnjhtRhsG27Uhs10bYax7yPjv386EeU8Yae6stRxP12F2jidlxZnsNtkCjufMMZWPUcx+uy0bXaz1lIEbanFL3GDSCB/5hWzvU0w84TXNzvvyy6ru7u/Y09cTLoJ76z1vfefOO5pdltyPYpjMZAeUeaePaULLvPOm+hdpVCCGEEEIIIYQQQogSelkmhBBCCCGEEEIIIUSJUbSXVOxN9pZyQowOxuI26pH8TPX2v+IwjOh5y7q3xpThUlY1ugxsn1kylLzxRGOoS9WSFTGPgdk4I00GNBIWDCOtTrKIGFHefj6UNFxiOAJkYMxeGyMbMTE2ur44P75v3vGlAW0Zq/9GzGMjYf7L00/3ajlHQJ8TYrSjXiSEEEIIIYQQQghRIw6S641V1K5CCCGEEEIIIYQQQpTQzrIRgt2We/8K/x7z+ef953/2Zz785JNhHj100M1++91G32w0d9tD4XEU5pNyDjJpJlP4qMjnAPAEhfencJuJVyyHJk708Xbv9jEuvDBM0drqwx/6kA+PHx/GO+44usu6R/zF00/78Msvh4nuuceHb7/dh5ctC+PxiUQzZiAPfeNcObyFPp82ZUoY8YgjfPjLX/ZhfnAAv8KJ5XBnp/98wwYfnmyaZdEiH27r3eov+LktnPmaNT48bVoY78YbfZiNktMD2ESNO+388/0Xn/98mB9v9V+woGrRCvPmhh/E2mLduvCa22/TJh9euNCHu7rCNFyGiy/24Xnzwnj33efDS5aUg79Y1VIOm6bE1KkUnrC9HC7arfNU7qfW+7Fh9uTt0Xi5qWOb/vr1PsymYavkwQd9+MgjfXjlyjAeVzlXIx/eZZuFi83NPGdOGI/N8PLLfZifAQCuvbZ6HpyexxYA+M3f9GE26eJVfxpGvPPOcnALPeAOitIRpsD2SLjFxOPeWMxqfx5Qub9wo82aZTKn3LnCTbweGs85GrdZltqIi93SHJeoFA6c5C/+6q98+Nxzg3hX335MOfztb/vPX3klzG/jxsfo6kUukbkzj9w8l/nyJHuM8TO2XplxNAdzfU+iZ7XjGHPggT782mvhd2zkr75aDnZSlKzez3a3w3zH3bE9Iw/+rn3+fH/BkxTPzUDlc/Tz0kvh9Rvf6MP33uvDXI9///dBkr7z3l4OF7ZQm69aFebNeVBZ+6ZNL4etTRdpQH+cBg77V+kXKMxTgpnV0EplKLC905zUs+CUIA2Pre3tlJeZe2be/Z/+4mc/Kwc7qcN0Ih+zJk4MP1i8uPqNr7kmnklsHjKLme1kx827kpqzK7RT/73iivBLHhdvusmHuSKB0FZoHbGD1jh2FGt973v9xTe+UQ5ed3s48l9yge1pEXhwpbL2XPaRaJLixz7mL/jZre2vXevDt95aDm6lz810HIwVbGp2JJ3GdXnyyeVggSdXu0BYvhy5OO88H86Qme6g+Zh/9fw6I+sihXkOtmbG8dhyO3g8efjhIE1fu7cB/i3Y0xvfz9Kzn/9d0Rm5v+UgLgP/sLRwG9kTVHm9wPPLIYf48B7+jQkU+u1z586M0gkxctHOMiGEEEIIIYQQQgghSmhnmRBCCCGEEEIIIUQdaAfS2ETtKoQQQgghhBBCCCFEiVG7s2zHjh1YtWoVXnzxRfT1hd4B3vGOdwxTqQaB8Y11KuvC53vl+9q1Xi1/991ZGR5GYePXKFDp91B4G4WtzxD2e7aZwtYXGTnOIn8uoZ8zAJjgS9PtHQSxpJ7dSAGhJP7UI8nvlnVmdMdqH2ZdPjv1Mv602CdM73PPlcNNeY//zoBrP8iNfG8AqND5+0RhGbq6q3/F1WDdigWujDpzPhNnwv69rB8x9m/BvmbYFw+AJs6D/SA04mhr9ovCYdt+sWdiHys2DRsixWO/ggAwf4kfd9jFBndt60uOXaQsWuT70v77h/Gmkh+n4Dt+BiDbN1ID4XKz3c2dEfpb6ery4xW7wbBdlk2I64676e7dPD4BADk4JJ9STz8d9yV43HG+jq3Pso0bfU+dPNnHy/L7wy6YWjY95S+sDxjyUcI1FPPzAoQ+b7L+qhXMfjSG9LIDSABNXJn8UOxHJGu8y/AB09TsPaUUev2c0tRUjCWpiy30DJNvucV/YcbSy37X+yzj4cU2y3e+w/Mkz4XGp2VwzXMcOR1Ehs8yHoBNu/SQIRa5jbgvs18yIBw/2f+mGQ92UL3E7C4LrhHjuSbIj23X+swJfOzx4LXRrym6TWdkU2nN8sNHvof4yVsovzbT6AV24Jm1JmDDsR2/SpQ0C58H1499Aut3sJ+t5rqb2nMy+xelAbRoJpUjjphdDk+dSKWwg+799/swDbpZtjGL2qKXbZD9rQKhk9SLLvJhrrC8A8JllwWXbezzkbKwbdEb+47XAHYS2EK+CVes8GHrjJN9k1G4hW3Vpon4KbtkiWn1puq2VgH7VPvOd3w4w2cZ+x/LGs9x6qk+/Ja3lIMdNFHb1uukcOwXBgA0Ux9pZweljB2o88J9hO3TjLnPUpjnz6w+y88b96oZ+mgMfh0dfTRF4lhh9RfJVrOWxvwV17ctG/fnDhpPMn1V0rxh2699tf991Umft2bYRmv/AyZxH4NCjGRG5cuyZcuW4d3vfjdetk7aATjnsCf20kEIIYQQQgghhBBCiAxGpQzzk5/8JN72trdhw4YN6OvrC/7pRZkQQgghhBBCCCH2Bm4M/BOVjMqdZevXr8ePfvQjTJ8+feDIowXe8g2EcgqSs11xxXvK4SzF1fz5XoayerXRfgUSS96az5uT7RG/vI2ZhRZ20+8ECrNezJbBb1Dm3eqs8FuyJEwxZw5d3E7brTMklcH+Zt5ib9MQQaew+6CzJCERipEw7HHrvDWb72O2yMcUh2wyVoZZ5M3UnJ99Ht66zvIOztDKC047rXp6U8eTWV/H+dVRp6ExmDJxpdhOwlpeLt8b3xi/FxnlI2v93xfM6d+BGopPPmdztCdnc3XxI1m55tQpPjyJ1c3PdFYtcgV1SF37zN9S+EjzYpeXjsyb5yUlWLUmSHPcglOq5m2fL2YCoelbaTiLD/ZEPgd4HGIlkj0Rffx4PyaxmbDU0qrhgq6wjBp648YgXi/JGngM4MfOOvKdWyLrqHquyIKRngTwWMPjkG2IjHEoShAv66lqJyjBGrI1Y1Adq/6vHL7iirPLYR6CAGDjRv98DzzgG/qll8L2C+cy/u6gzPKWyRjj2AwLNCY1sUTs9NPDRNyfeeB/6aXofQqRsG3Vnsh3dqZnKSE/3Q4TL7AGGiR3PPFEOfyCScP3mk4d1VrTsxiYNtvR+boum84HjYoVsku21r5IGDASKG5nlo9yGMDU49r9xdr1PmxlmOx6gtqC27JCEPimN5WDTeSuInMOj0hYc89JU6eG1zSn580ikLmxDwGbAV+PH+/D1oZozOyldikeeaSPw7I7ZEgvr7wyzPuaa5CLL36xHNxCY0VLhqluorJOJ+lmk13TcR2dd54Pk+y53Uglud9nyTDZClt4XqRn6DOy+ry7Omy6POnZcnk0t32WLaU9kh4A2nhty+tPWifbtRWT9R1ToIXJZO6LWb9tpkyJfsfws9v2i5WOxy67AmvtHwMKo3J/jhCjc2fZ61//ejz22GPDXQwhhBBCCCGEEEIIMcYYlTvLrrjiCnzqU5/CCy+8gPnz52M8/wUIwIknnjhMJRNCCCGEEEIIIYQQo5lR+bLsotLpOh/5SOWpL6PWwb89rGDXLh+mLeAdhx5aDp9zzlnR7MIDiEKpSEyN+OqrrO+yhyfETsqsOOuGwnwaYni8n3P+miVPvBvc7gwvrH3EX7BExW47ZlkCb4nmLfZWB8bxWCuXJUvKSStvzefTwA4+OIzIJzIed5wPGwnAJjpAKPZ4FcqH2OmT5lSeANbE0o1+sT6UPy+4+IPlcAtrCe2WeG5QjpdVhhhve1t4zVo5zs/KLLgMVCe/Whs7nwxYf7sPc98xB9gGt2LzZBmmlceyGbJpsQoi/c5vAt5vP//5VGvHdZB32z/HK9DDFnvjJ67xd9t7W2LRgnrlcJLwuGPHJJNJGWv8vmI5b1sG7jMsdbWKX6bQSXIalj2acYKtkFsskDxlSSQy8g7snWy6QoYZGwOyTkVjMuKxRJe/a6KiZp1Wl5fgdEaSHDbbU2GpcxZpPviNiy8Ooq1b54V93OZLl4Zj86uvcp3z+sKM4TEuuMCHTUW0ffOb5XAfPccOmtdaSP4EIJCIsfSoYKT9sdmqO0ccG89KBPk7PnHNSiVfpHALyf04jR3FuAc3sUTe1N0cPhKc7Zv/gJo1v3BfyprbcxprTIpm5aL8HedszxbnephOdRcMVizBAsLn4GOGbTyamFjIyT3JjqTT6TTFFxGng045POh2mkB50rR1GhuTPv/5jDvFiR68ee+9PnzyyWEinnh5/ULrbgBB/Re5Xuk0xuuWhq15ydJL/MXfPloOdhk5YyvLMDN0pp20yGDJr5XAMdzPWPq8ie0EwFySeLaz3P3888vBotmkMI1cyWTZRnSlRWtjO47VQyD/NnNrB80dvPqh5UFFOQO5Jo8pJ5wQRvz/7L1/nF1Vee//nJOTw2SYDJNh8oOQhBACJCFAgPAjGjQqtKDRosWvSL0tWrS0Xi21emt7vfdqq7e2V6223u/1XriVtlZpocpXaaEFSxQUNEECBAjya4RAEghJSEIYJsOc7x+ZOeu9nnPWys7JhMwMn/frxYt1zl5777XXetaz9pysz/MwezpfHpAh1r97pKIdZGXGjFPDF043lt3IXtnwApqggrFtc+8RZTS2yvcN1vEXHH5PbSEcyFiiZPFfvWL8MCYt94knnjjUTRBCCCGEEEIIIYQQ45Ax+WPZMcccc6ibIIQQQgghhBBCCCHGIWPqx7I9e/bYxIkT7dvf/na23rve9a5XqUVCCCGEEEIIIYR4rTImsyaKfTKmfizbtm2bTZs2rR6zrBljNmaZj7uVCiwGzfd0H2NjatDKX3ZZ+NqH7ODlWF6zJsRrWLs2Dpq0cycjjDB20BaLYcSSELPh2GPj+A1sE8NGUO4fxSgzM2PsBMao8X3Hz9To52JZ+fTkw/jgX6k06DmQMjpqjx8/xtPiMfd8DINwwvwQSaajI7jpeTMYPcXMHu0NZcZ28bF+GDCBg4HYWIyZZmaG8CS2YkWIo1f2UW4Yo4397/uhSFwDpLA3Mxucf0K9zO7ysSHWR3HGQlSKe+4J306aFJ/DLmJTtzjTT8cCDGU/FzdubH4fD68XXcNf8NWKCcH7sJMZ788sanilK/S3bzanFY9t3x4CSdVq4Vp7YcwUxkSMY+ode2yox5A0vg0ME7hyZSgzNEjDGDEgHeNOeiPCvGf69i7ETmmIfcJOycVM4liwgS7WYWS8vDbLrczFgozEpdi6yLv4NYBOiTFcJsQRRd73vl+rlxmi0bv53t5gh7feGvz53Lms5aN6AVb0F4cvKyO+TPsDD4Q6biwHErFi/PPxGLu/PfG9WRzrpwtl/3Rc6QcS35uZbbXmMHpOh4+lwzifnJjePtkvtAHW89dOGWLB+KRc13y8R3oextfzd+SyxJXaxyxL2jjjsjJekZkZ339p+zzHXY/jR+v0Y4kWJG3LX88eesiaknMIOLbb2X61ebUsUT2Oay7m5zvfGcp8hzOL5/MZZ9SLjFN26Uq+M5vZ5/H+ivhzDX9cF3yoLn7gfAF+2ehEu7thN/6OUSRixlTjXPr4x6Nz2q6/vl6eQ//LNc7MdmE8I/t6EbGQfbzbgkQxLVGuuvWBz8t4bzw/fouw+IWBcRS5cJjFtoKX9c2Hzwvfu9ekFkIhRzHQohcbZz8Vzp+CMcvYoIqPfQr/Qv/EcoNND695ExTRS4xNxtSPZdOm7Q1UPziYeSkVQgghhBBCCCGEEKJFtGNQCCGEEEIIIYQQQoghxtTOMjIwMGA//elP7cknn7T+/mjTsP36r//6IWrVAeD34VLalMor7GU2gLvLZ8WKyqQChzIyLzfq6wvby/dE23LdfmKj/ChIo3Kyq2T29tx2dF7Q90NK08WL++3A3MZOGYMbF8ouGmSGKaibPO64QvV27Ar36XSdN7C9+elRd/k+SeWj9gMDtm4PbdizJ2yYz6g5ItVHW1v8W/w8ymlS9l2UWP8UtSklhzSLFSvskqefDmVvdikJZE45zWvTnLwslPfi+b5LEkpss1ldtr946VBLpHzSlCnJelRWePNMuTI+6549E91Ryu2D3ymV4np0B7yeH+eUX0yVzcysLzGXvNNlH/EYDdefk5KN+4az83jMdyqvV/TapAUdJU/xkqBWZJldKFeR3j4rR+aNX345qtZZCSK4GTOCODE3fFSyFFW1RBf0k5vrQ2p9nxjbdIXrFx1MRnpbwaKek2FG3gGSYfNynNmzm17bO8ZunBddm2N28snxtdlfOQkr75tyoEceGZ+TCgHQggS54R0Az1HFWMyA7M7MjAI9vr1697KdHyZPDmWO/0TvFwGfwRsrwj7MgFQu1TYPBYx+BedUH8QYtbLy+GuX8bwtaUw4R3Lv3amFwyyyyW8O/D/18qVPfC7Umf7Z6JR+3DeSROfGLwffWelDQIMJL1xYL3agPR3uhZ+vKTueeqpe7rzqqnDAO0nKAgnONzPr4EtYap76l6uCtPF6eL7dzndR+tyN/m9nPYZFMYv9FX2S7weMRf+sIL18bE3z0/eHyN9wzDNhW6LPvq0pDkdYCy+Jhe9pQ39xJnn5dt0QS6Vi9x+jlEw7kMYrY/LHsvXr19vb3/52e+KJJ6xWq9mECRNsYGDAJk6caIcddtjY/LFMCCGEEEIIIYQQQhxyxuSPoFdeeaWdccYZ9sILL1h7e7s99NBDtmbNGluyZIn90z/906FunhBCCCGEEEIIIYQYo4zJnWWrV6+2H/zgB3b44YdbuVy2gYEBO/300+3P//zP7SMf+Yjdd999h7qJ+09u6+y2baGcS8cH2ithA31bW7wplkoP7jpn0hqv5oill9yo7zOP8vfX0FavkqEigDuDqdSzVcgeZBZnw2QWOt937C9upedDeU3QY4+FMreJX3JJVK1cVLJE7rgjlCm78ucjg15nJM2Jq/ExNj8X+pvNnnEOc/yYtc9KZNPzukBcPKVI8GPJ8Vs0H8INb583Yx86ZSTnnhvXy2XKHGbVqujjHGyZn7MgCER2R4KjeHd5KvkSvzeLEzzSbHzTKH32iqVhvBKG5zD5qFcAvGE5tt+zX/0cWbGi6X1HRHpJ1mAsaZDMgmUWzcXpkICcdNK8qBpVIKkEbhs3MuOlmRk7OdhdrRZnIevtDRLyo48O3/ukyXQjnEtsQ0NSSn5BuYnXKvOhaGypVKtmaQm59xspyaGXmqckZzmdaeq+rg2xPL15czwpZXiOSBaGSVbNhCQo+nwpRZ9ZbA8bNwbDqVQKZvfKOVA6hZQMMye95Tlc+8wiaVMZzxplh/MyMDov2pC3p1TGOmfHvG/kgFMvAf4YnaRvA4/lnHMRfB/nJJpDeL9aTtTz39KOeQUvX4pWcWq3Uv1jFtsXj2XeFylnZFvbM/WqibK/RplS3hYoU35qFttQK+RCeNAO0ceDV34sqnbttaF86fyfhg8VSCMvvDA6p8r3V86dVmWYlC3msnoS1qMNucWwg+1j/3MB9fbENS6XlZnw2ix76XRRMEfa6OOcDbVzrYZ0uovPwOztZmmf4hc53LeKrPQdHX427T/ROpuSE/u+48tkUf3nmWeGS7NP3L3a+Ecj+rji/yYb/mPCv3QJMUYYkzvLarWatbfvdTxTp061p4cCDs2aNcse5Y8oQgghhBBCCCGEEAeJ8jj4TzQyJneWLV682O69916bN2+enXXWWfZnf/ZnNmHCBLvqqqtsfiLQpRBCCCGEEEIIIYQQ+2JM/lj2n//zf7YXh7RSn/3sZ23lypX2pje9yXp6euwf//EfD3HrWiQnG+DWVW5vzu2ig0ztrRecFx16ZlP47ZiX465sv1u3tzdsFX/44WPr5Y0b43rcucwd3z5RDu+1ZEkod/c9Ez74i6dSAvq+Y0a+VLZHv3Wa2+9TqTr9fYtCfR07NicByGQ9ZdY2Khx46faBWIoW9V0qk6H7fNhh4Wsqc3wXUK65eVsQZEzpmRnVq3KgU+1pdoNm+B/F0XfMJOrVcJs3hzLbzSR5flg4/WhaOeUDH4EKgKKZabMqoox+bcTllkXIySwSHesVDkwSSzOhn1i3Ls60uWVL+JxK9GgWzwsvbyU8j1N2Xg/mkpfx3fScNSWXdYq2y3ngne4RR4QyJNrZtJK5lKqpDIO5zkvJ2J3dpTID57JhtkIHMjBGTsmPCyc31xEvKYGc+HVLl9TLW7bEwjIOWVdXkAIWVT9lMzry4pSYFcx8HdVrTGPd/JxMps2k8/HfU+5D7bq/J+vRjtknUfwFM5s+PZSZ9c+vDfQvtG8uXrQZs/g5aO/eQHPS5xSJjIBl5w+6nngifMithc8/37wNbOtLLiM5r8eyD7kAO+xM9YlvD8eZtur9RkIi1lI2ce+0W5HYEoZ98HZHcOyaa+JDl12GD19GmI1UjBOzWELMhc3bJ8j2FzPIFt0kkHpe34ZUdttEtsmGY8T7F760pt5FWx3jVIZk/8LBsUjJm31f8Xrsb9/3OI9/a7EbC68bjmQ2TNqaHxf63KI3TmVoNkv7Qvapb8NrJBumGL+MyR/LfvmXf7lenjdvnj344IO2detWmzJlipU0GYUQQgghhBBCCCFEi4zJH8ua0d3dve9KQgghhBBCCCGEECNAyRTza7wyJn8s6+vrs6985Sv2/e9/35599lkbHIy3J4/JbJhCCCGEEEIIIYQQ4pAzJn8s+53f+R37zne+Y+9+97vtda973fiQXvrgSkzJ+9hjocz4H7k0wI88EspOe9/VFWJJ+Qy/w/gwA4zbRAm7r8dwLLnM1knJ/813hfJPfhKfxHgzTG2di+fC2AfU9fu09wxGxXpXXhnXS6VrznEHYlpwnHMxUlLBrMysbyDsoqSZMMzEvLkuLk7qer7vYBAMB8MQMLmQO9NfQcy5Nb1xRY4f46z4+E7sh1QfIyafb0QnGrjIzZGurtB37C8OuQ/7kwql4cO0pEI55B6VmdjPOSeUT1ns4pPweRmD6eGH43rL39C8ERlaiSVVvQvzlHPpRz+KK9Le0e45750RVdt1chgXxpUjflw4Zuz7jElnwwOl6kUGn0kTH/lpHxuL/jgXX4Sk/IE/h4bI9vg1JRWvpGiMxlTZzPoHwr+nxtG+Rhg+H+2OcXB8Pcah8eOXicNGOIdZ9mGJkmTiDEbjwmOMD+UXasZrY0waP0k4nlzjGAuL1/LXYP94h8d6XOwXLozrpeyG1+MCkyMVC8esuCNrJe5oUVL25OcVY0Sx7OvRb9BOWGZQTLM4dhDLOWPlfU87LZQvuSSuhxh/0fj7PmVMNt++/eVXfiX+zBh2BaFpVPlOxxiPZtF7xF/ftahe/kDXt+N6n10XyvT1HP9bbonPYT9wzrXaP4l4dNkpwfvmYvI99VS9OIhxLvf2Nr+/WTyfuRb6d+3USxSvl1sXc9DeGVMvF0M0tT74PmGb+A7m11U8B983c+6gqBuLYtil5rN/VrYv1w+EL6O+QX7ODJOz4+G2DhaMUyjEKGNM/lh2ww032HXXXWfnnXfevisLIYQQQgghhBBCCFGQMfljWXt7u83OZJARQgghhBBCCCGEONgoZtn4ZEz+WPaf/tN/si996Uv2v/7X/7JyeZyYpk+Pza2zlE9w/24uDTD1kW7bbDu2Ps+a1d60CV5qx53KVLb53dLc5ctzli6N6/Fe7bueDR+ocfGyD168qOSCGsGCadSLSnMKw3ZzzPwzcNt45vnYLSlVSwMpKYwfaNz3MOxopwn6TNkcZ9tSUGJG+2ylj/057C/e17UhaivgMx1xRHyMiiV2l+9vmhTVAJQwe+U0TSPqV8od/MVT+lhrTVJZlEjKkkr57n0S67EjnFxswYIgV6Bqg33sx46XYH97qA5gf3spBD9H9+Lz+Q6m/I8XX7Ikrsd+4cVpn/4BaeM0SvajWdxJbJ830OOOC2UaItvmOiWSV3aE9gy6V8LINhLfjwjcTc6+8/IS+no+n5+ACf3u3LntUTU+B6efd59JMLb9TqhaZZtS4+fXqyLSRn8M0ipL3dMsfl9gH/u5nZPvEto120cN+lFHpa+dWzNTk5bfe9tI6aH8YCZkat72IyhfolM68cS4HrXm7G+/rrHtfGliP1AC6+E/KnvbSPkN2oaX2qXq+fFPLbTA92PZEhItTjizRol7AaJu5cLhXkz/+tY59fIHznkwHLh+XVQvGcOBNvTe98bnpOT8fq0oygUXhHJCXtfwanXuuaFMOat/VzvjjHqx/PTT4fucVJLPx3XRz9mU0+Q8L6xvdyxb1vx63u9zzvHFi/f184rvrMmXBYs6nf2fUtubedtP+5eoXsr/+rnIZ8r9zUj8S37qeql6Xqp5MKXvQrwKjCkLfsc73lEv//CHP7Sbb77ZFi1aZBNd4Kzvfve7r3bThBBCCCGEEEIIIcQ4YEz9WHYkful/5zvfeQhbIoQQQgghhBBCCCHGI2Pqx7Kvf/3rh7oJBw+/7ZifWebW+Zz0gfXc1tutfUFiwt3kVH75XbSsl0qGYhY3NadeSpLLAMYbU6vlU3JS/sCtyswOl0oDahZvL/fjUiRTo4cZpLi127ebY0b5hM+GieaxXzlGM2bEW7m7ce3BSpABlft2p1odNa9aCdu/OzrctQcgo127NpS9XIIGxr676KK4Xi5t0DDMMGoWbwennNUZaxlyhZkoD8yf1vT2ObyagMOXUoL6XfBUB7RveTJ8WOdkH/ffH8ovvBDKPuPhq8Wjj4YyjZDZ28zSmR9dht4ypAxTpgRJJlWm3hRS/sVPWXZXJslsNH947Oijw3yZOjWW0EUzgT7FZyVkdrht20I55+9SWcO8M03Jz4pKWQr6McqmfBNakVvmEo8lSS0wXhKUksn4CQgf8Mz2sC76aUWzphsrLMOEH6p6OVxK2kTflevgXFZJOnHqkXN2khoMX49tKppRlc/K7720OJf9ldAPMTU0r5eTpuZsqBXpEKWuxD9fSrqXCYsQHWPbGCMhd9+cHC7V377vKJ2lY805BFwjKbXMMX16/DmXBT5BJBOHlPsvr+mM6n30IqzBax+1JKnFIjV/zdJhRFpdw+mIcL2s2fKclJTULP1+nEoN7q+Ryxqfko0XfZ/OQf+em1cM90L4twPXZrPGrMHDeL+BPqpi7enp6bYUXFtz4xdlw+T4FZSqR2EVKpm5mPPn/Jyyk0yfjGdKpphl45Ux9WPZMA888IC98sordsopp0Tf33fffVapVGzRopDyedH7Vr3KrSvOYZO6DnUThBBCCCGEEEIIIQQYkz+WfehDH7IPf/jDDT+WPfjgg/bVr37V7sCukwff+K1Xu3mFefv6Lx7qJgghhBBCCCGEEEIIMCZ3DN5333121llnNXx/5pln2v2UKwkhhBBCCCGEEEIIsR+MyZ1lEyZMsBcYL2GIbdu2Wa1WOwQtGgHuvDP+/Pzz9eJuxOJoZ0yMXMAU6OsHZ8yMDq1dFcoMK3XrraHswy0whNK2bdTyx3r22bOD5p9ZuXOZxbtn4CBjKtx+e3ROH44x0pY3Yv4C3PHAA/XyVsQ52+7O6UeZ6vrFXpPPPvfxPBKsR8CbTpR9hIZu6vwZ38IFMdjSMa9eZvMYLsyH5qnMDbGWGD6gu8P1HuJOVGheuFFXl4u9cPvqUL7xxlBetSq+NGy3gwZx5ZWusYmYFuSqq+LPJ58cyoxZxvToZmYnnhjKCxfWi3NWrgzt3BXHpeJcYH8zRI5ZnC2d4Tt4vg+3Ek3hO/FD/803xxU5AXHjQRcXrvKNb1ozRiJkRGSGvn1DbHH/WNHDmEmMd8NxMIvsva8v2BfdAUP/+c+cOrlwhCtWhLJ3n6mYjTTBk06Kz5nOuCGcgLfcEtV7Fg1sx/eMGtLp470Rxh7ysVOWLAnlo44K5VzMHHYSnXEDzf1GUXJxK/kYhcND0d7Z98cdF9dLxXvzoE/uuiF87UMi0pXdc08YiylTwnr3l19O3yaav94J8Jk4LlzrJ02Kz0nF+sF6Z2bxxOB9HnoolF1sngH4F66zuX9Z7WB7fHwuvggwXh9jqDHmpFm8gDG+IWOVmpn95CehzAlM4/ITPTUPfJxBtqHgWm9XXx3KXBD8+am4W37OctIwHh37zpOaTP7atAfa5/veVy/uvvjXk7dp730wfLjrrvggfaH39UXgc//2b0eH7lsXLJGRL4vGUfzG9SFO2Ucv2xEfvBWLCv2ijyHK93XaEOdiLgYe45T5tfTzn29sdDP+6q9CecGCenHgsg8lT6l+4xvhA8ffxdrjusRuRHTahvdXQl/hrTGKEsd5wP728cKKwmfi/PVr3C9+EcocP/5dmQvczBc8P5fpr/DO033uufXyjq45dsDwHYPvuf5Z4f+21UJs3ulTLU0uBhr7xc/7YbwvHe7j10DssjG5A0nskzE5rm984xvtc5/7nL2Cl7KBgQH73Oc+Z294wxsOYcuEEEIIIYQQQgghxFhmTO4s+/M//3Nbvny5zZ8/35YvX25mZnfccYft2rXLfvjDHx7i1gkhhBBCCCGEEEKIsUpprMgWS6VSjW3duHGjffWrX7W1a9darVaz008/3X7nd37HZs6cyXOsdun3DkVzC/H29V+0763+/iFtw+Ah2lzYUgpxkSVKK63+bZlXc05onPIcKv9ExssYFenL0f6sqWcY6Xa3Ynejve9eq/ixPJjjVNRuUmqkonLkVp6hlbYVVU35dqeeY6TbnWtf6jnYtly7U+cUJde23PUOhR8Z6XV2tPvCA33e0fB8B3ONOlh/Syw96yxbs2ZNacQuOMo4vVSq3b7vaqOeDrO7a7Xa0n3XfO0wJneWmZkdddRR9rnPfe5QN0MIIYQQQgghhBCvUQ79P++Kg4HGVQghhBBCCCGEEEKIIcbszjLROqNB2iTJ4MElN8bqbzGaGQ3+iYxVXzXa+nGkGQ3SSyFSjIbEb63YdE4imHqmViWHRSjaj7lsmKk25Np2oO325xeRhe4PBypJf61JL0eSsfRO0Er7RvszCfFqo7dDIYQQQgghhBBCCCGG0M4yIYQQQgghhBBCiP2kZNqBNF4Zk+P6gQ98wHbu3Nnw/Ysvvmgf+MAHDkGLRh+DVk7+N9oYzW0bL9ACRB4/Y4QYixS147Fk6yPdVq09I0/u3ePVeicZS+NaqYT/PKkeK0runFaul2srGRho/t9IkLq2/49tTf13MCn67Aejj1Jozu3lQNeRsbRmCiEOnNHv1ZrwN3/zN/bSSy81fP/SSy/Z3/7t3x6CFgkhhBBCCCGEEEKI8cCYkmFu3brVarWa1Wo127Ztm1XwT0OvvPKK/fM//7NNnz79ELZQCCGEEEIIIYQQQoxlxtSPZT09PVYqlaxUKtmiRYsajpdKJfvMZz5zCFomhBBCCCGEEEKI1xpjUq4n9smY+rHstttus1qtZm9+85vtn/7pn6y7u7t+rFqt2jHHHGMzZ848hC0UB8pYSsksxIEie9/LWIhzYtbYzrE0ZmOprQeLsWJnrzVy40K7zc2/1DV8HKjqIXjrPdjxsYqwr7iFw7AffbvZlzy2r5hcw7TS90Wv7dua6vPRMBa5drdyDTISfdxKm8bq+lLEh4xGxmp/CzEWGQXLRnHe+MY3mpnZE088YbNnz7Zyeew4NiGEEEIIIYQQQggx+hlTP5YNc8wxx9ju3btt7dq19uyzz9rgYPwL+7ve9a5D1DIhhBBCCCGEEEIIMZYZkz+W3Xrrrfbe977Xnn/++YZjpVLJXnnllUPQqgNkwYL485499eJgb2+9XD7//FDnkkvicy67rOmlv/a1+PMdd4Ty+vWhfM8921Bru7vKBpS3oNzm6k1B+fh6admyI6Nay5eH8nnnhfIvzbgvfPj85+NLr1lTL/Y/8oil4I7y9smT6+WtO3fWyzvcOX0ob0X5dXffHVfs6grluXOTbSA/njChXu7kpVy9WbQBxt5bvDiq9y+9IV7f9u3h+9tvD+V3vjO+9qmnNt+FOX1Kf/zFhjDOW7vm1cvdA8/Wy88MTItOmbnu38KHq68O5VWronrPPvdcvRxd4d574za0wabmz2/a7n70qZlZ9eSTw4fDDw/l2bPjE089NZQ5fu99b73480fjvlq3LpQxFc2b4FFHhfLGjaH88MOhfM458TmcB29dsil8uPnmuOJdd4VyatDNbPDpjba/tJKuvnrxO8IHjNfgdddF9cpnnhk+zJoVyp/+dFSvt+OUepkmdOutobx69R6LeRzlFzOtDbYydWoYfy812bgx+L8zzwx+7Fd/NdShmZmZvbVtVfhwzTX14u6/+7tkS2ld7HofQGAwUfaLdg990owZobxpU1zx7W8P5ZUrQ5l+h9cyM+vpQWPR2o6OqNruvvBU7QPBu+6uBI/X1xedwiXOJk0K5c6OtLxkk5v3w8zw7eZA4VnLF18cVfv33uDjMHzeddlTT/0Cnx5EOfRP7ZUzmrbNzMy++tVQ5jwwixdkjhl8ceQTzeL+px/DGtlwHhb7gaeeCmXXVK6NbsgiOEqwkobrdU2cWC/vxqBzHrTRbs1iO162LJzjjQh9Fx1DufrZz8bn8L1pC95lHn00rkfbR3lw1hxLUZ5QCvfFu4d5u+W6xHbTt/tjbDf7Z8WK+BzaFxcs7w+uv75eHPje9+rlChepv/mb6JRdPSfUy90bwrta1fcdbfeii5q3zZNYiO6/vxp95tz8yEfSlyP09VzPT3nqn+OKfN+jX+T8NYsXf/wdMgD7rvo5C/9bxbjsWL06qlYt+PfLjsOCrXH+9b9cC+1xXdp+eDiH77nb3bW5xrSjnHvz563KibKZGVeOHvgGO+64UPa22uRvvab4F6xh/HvkbbeF8sKF9WKZdrvHvW+wTal2m8VrD30z1qH+JWdFp7Qke/3UH4UPfOfli6hZ7FPoK5YsSV+ci+ENN8TH2NiHHgpl2rsfvx/8YO//vf8eZ5RMMcvGK2NyXH/3d3/X3va2t9mGDRtscHAw+m9M/lAmhBBCCCGEEEIIIUYFY3JnWW9vr333u99tKZj/ppe22ZV3X2Wrtz5ih5Un2tzDp9mXz/ignXrTR21B5yzre6XfJlcm2YdPeJv9xry3mJnZNY/fap+45+t29KQjrW+w335r/gX2ewsuarj2qs332xce+rbduOK/Rd//2o++YGu2PmoTyxPsrCNPsP991odtYnlMdr0QQgghhBBCCCHEuGZM/mLz+te/3h5++GE7zm9/3Qe1Ws3e+cPP2W/Me4tdu/w/mZnZ2m2P2+a+7XZcxwy758KvmJnZ47s22bt++N9tsFaz9x+3VyP4njnn2lfPvMKef3mHnXjjFXbx7Nfb7MOnFrrvr81dYd943e+bmdmlP/6CXf3Yv9lvH//WuJKXIWBLa5nbWy+4IJT99ntw442hjB32Zmb2/e+H8p49z+IIJYdeCsMN2NxKO83V43bp6fXShg2xDJM7g6Mdu+fMDWUvc4Rkouq3+YIq5JaUP1BwuNudsyVRbtg2vGtX8r4p2MPbeWlXbwZkMhVuB3dbyPl4UNPY00+HMtUXZrGihAqeqVNjiUMZB7u7YAN3hLbNdIrhyNiwZftxt42dUjReYpaXnnj5QhMed59n3n9/vRxJCLyMlrpj2he21Z+wdGl0yhGvD1Kt3HZ5nkZVyssvh7JXA5xB5daPILWk7NJfENqKwcw8KErRrGYRnAewGe81oq3LPMfNqy6oc2ifbFupBOmDmdVqtN1o1jrCvfIqgDDn1q4NMkwq/CbGTbC3XjTXmlX0W7bZL/Q99EmUu/hjuzP1ujB/KrnGeqliM3Ip5VD2WcMiu0E9fu9VLa3AfqSkvUFuzbXxfe+rF+/bEv8DG1XD114bynv2bLAYzkdKnbneZWSYa9eGsp+zlASlpD7eJ9J3ef9JOH5YCyt8v3CTgncaSJSbfU5+j/tSpsax7Hd90o7PuZdUhmOoZupFsC+dnDhZL7EmNWTa5LhwvlGS6e9LzT4Xd3/fY44JZd7HLSqUiZbZhg3OpiFhrUzFuyztwUkEO94dZJgMD7F7/ilRvfZd4a3nZxvCO+LpM1zYhxTo2FWr4pFNvfYWlbKdshiWd3tv8r6R1NIvHC8G2f8gbJpP19AchoDA+34n30n2A16f0unc2xOll/Tg/i2ex9j7PN+v9ewhrlG+H6IZRzs+9thQblUhlHrR5fdm8XzkmCNUCMfYLB5n2kOZvt0s9secc9PD30NV946ZIrfORn8DcZ67dkfvjqyXk2Gy3f5vHv6tyn5kf6f+bhpUBk8xNhlTP5b97Gc/MzOzK664wj7+8Y/bM888YyeffLJNdH8UnH766U3Pv23zfTaxXLErjr+w/t2SKfOsd9fmqN68jhn2pdN/037/nr+u/1g2zJGHddr8jpm28aVthX8se+vRwTGedeTxtmF37g87IYQQQgghhBBCjAXGZGwrsU/G1I9lZ555ptVqIXjlhz70oYY6uQD/6174hZ3RXWw32undx9n6Hf5fl82efPFZ63ul306ZMrdYo8GewQH7uydus6+c0dhuIYQQQgghhBBCCHHoGVM/lj3+uBdfHTxq7vM/PHm73fbsffbwjqftqrM+Ym0TCm/6r/M7q/+XvWHaYjt32kkj00ghhBBCCCGEEEIIMaKUuFNrNFMqlWr729ZSqWS1S0PAru9vutc+c/+37Ifnfz6q17trs638wR/burf9z/p3/77pXvv4PX9tP7vwK3bN47famucfta+eeYXd+dx6e9sPPmMPvu3/tTu3rLfP3P8tMzO7+uyP2K6BvqYB/s3MPnP/t+yebY/Zt8/9IyuX9m7UfPv6L9r3Vu8NIOa16a1QRhQBXq/cEF1g9DIS/TCSjETfvVrPlBr/0U4rffxqPt+rNX9G2gccTA5m/482f/VaetbRzlgdi0OxBhzs+45kf410O0fFvCoaADITbOtQrOPZvuMz5Z6vSACxwgEyM9cuGqgsdd9Wzm/lPvvDwWzTIeDVfK850Hu9WvdplZF8x88968Hyx0vPOsvWrFlTGtGLjyKWlkq11fuuNuopm91dq9WKBdZ7jTAmvfLf/u3fNv2+VCpZW1ubzZ8/30477bSG42+efor90b1/a1c9+q/2wfm/bGZmq5//ue0eeDmq17trs338nr+2j5zw9oZrLJu6wP7D3DfZVx7+rv3pkt+wd85eVj+2avP9DfXNzK5+9F/tXzf+zL7/5s/WfygTQgghhBBCCCHE2KZUGge/BY6RTVSvJmPyx7IPf/jD1t/fb3v27LFyee+PT4ODg/VA/3v27Gn6Y1mpVLLvnPtHduXPrrLPP3i9tU2YaHMPn25fPv2D9tiuTXbaTb9rfa/02+TKJPvICW9vCO4/zB8s+lU7/eYr7Y9OerdNnhjnJvv+5vts1ncuq3++bvkn7YrV/68dc/g0W/ZvnzAzs3fNXmb/9eT3jkRXCCGEEEIIIYQQQogRZEzKMG+66Sb7zGc+Y3/xF39hZ555ppmZrV692n7/93/fPvWpT9nRRx9t73//++2ee+6JZJijjYMpwxyrjDb5oGSYB5/RLsMko12qNVZlmGPFd71Wn3u0MFb7fzzKMIu24UAp+gzJ+3o53Kslc2tB7jca1u3CMswi35vFz96KNDHXd2NJsjgCstxC1xsFfXKo/LRkmK1dyyMZZmssLZVqa8bBzrJSrSYZpuPQr8wt8LGPfcy+8pWv2LJly6xSqVilUrFly5bZl770Jfv93/99O/XUU+2LX/zioW6mEEIIIYQQQgghhBhjHPp/gmiB3t5ea29vb/i+vb3dent7zczs2GOPfZVbJYQQQgghhBBCiNcMpdKo2Nl5wOzZc6hbMOoYk6N61lln2cc+9jH7u7/7O5sxY4aZmW3atMk+/vGP29lnn21mZo888sihbKJokbEqJRwNqL8OPmM1y+xoYyz1neaVEHkO5nweS75iPJBd41qRVLaaFTLFQfxjdETX99xzH2gm0ZFgpCWx4wCt9UKIZoxJz3D11VfbM888Y3PmzLG5c+fasccea3PmzLFnnnnGrr76ajMze/HFFw9xK4UQQgghhBBCCCHEWGNM/jPB8ccfb+vWrbN/+7d/s4cffthqtZotXLjQzj///Hra1osuuujQNlIIIYQQQgghhBDjm/Gw+1IyzAbG7KiWSiX75V/+ZfvlX/7lQ92UQ4bkCUIcOnJb9jU3xw+Sho8fRuO8HA/2JXn6EC1I20bzmPu2JcfW/4F4oNLLUfAH5wGv77k+OdAMoa0yghk5R7PdHgzGg58WQrTGoV+R9oO+vj5ra2uzL33pS9l6H/vYx16lFgkhhBBCCCGEEEKI8cSY+rHsxRdftLa2Nvurv/qrZJ1SqaQfy4QQQgghhBBCCCFES4ypH8uOPPJIMzN74oknDnFLhBBCCCGEEEII8ZqmVBoVEnIx8oyrUf3FL35hn/jEJ+wf//EfD3VT9pvy5R+Iv5gxI5S3bw/lT36yXvzZljnRKacvCZr6C98WNPU337zD3e1hlLeg/GCmhX0oV1Gelqk3n62Las2ePaVeXrEifH/JJaH81hk/iy+9dm0o33BDqqFmTz3V9OsBnL/dHduE8jMo/9IPfhBX7OkJ5QUL0m0A/zKhVC8z0sFMV28xypWvfjV8OO20qN6/7XpdvbxhQ/j+jjtCmX1qZrZ8eSh3dYVy95afxxV37Wpecc2aUPbP/dnP1osD111XLz8Z17JHUaY19Pg+5mJzzjnWjMfRp2Zms3g6yj6yRHnu3PBh8uRQfs97QnnhwvgktOFnm8KorV+frGarV4c7f//74fslS+JzOE6L+mDvd94ZV/zFL0KZ/XPbbXG9H/3I9pdW4m+UP/1fw4dZ6P1rr40rvuUtze/5h/85+rxqVSh/7WuhTJveuNH7MRi/bUT5cFcvBCs99thz62W6VTOzbdvurZcnTjy1XuaY+Xn1559H7JovfzmUf//3o3qcZfS49JbeH+xGGbPSOlw9etnOtrZ6ebCvL6pXfuc7wwc+FMscy2afh6EfNLPdfcGG2iv99fKOvrBWvPRS80uZmU2aFMqdHel4QE9i3s/lgTe9Ka545ZXhnCXvqJdvvTW29f/xP0J5/Xr+I9wGi1mL8rMoH1Uv1V65orHBQ5Rfvyx5bPCuu+pljnk7z589Oz7pcNg4xtweeyy+L471PfdcKKOOj2LE3qfd9WXqTcvUowX1o8xrb3fnpN4w2ly9rSh3olxhnwxlSK+34d2/Fu4zgB7HOJhZbPtYCwd7Qot8CKjqBRdY04Pz58cVtwQvUO7tDd/7dxfO4Y98JJS5BvOeZrajI3iSToPP9A4P63bkgDfhbYgvZGbRvOIz+IVtdyWMBpeED1yy25Ik/sj82bpq9Pn0nvBmsbsnvAP701N/s5a/9ffhw8MPx8f4/rNuXShj7piZ2dNP14uDOFbme7t/j2BH8D6f+lRc75prQjn3hzfscwfaUHmxljxl6+GH1ctd+L5j4sS4It+TUN5+yy31sh9JzkWOmH8CrhydU6eGD7QhvuubxTaZoXwS+pw+wD3f7tWr6+V2HBtAYPOK7xPeh+vszp3xMZ5He7j44lDm3PNtBf0DDW+w9VL1skvD1/QT3mYwZrYM69CNNza9p5lZeckp9fLA/fdHxypci+iv6CO9r7n77r3/352Z/0KMYsZVlMLt27fbP/3TPx3qZgghhBBCCCGEEEKIMcq4+rFMCCGEEEIIIYQQQogDYVzJMMc0Xm529NFNq/1kY9h2fu+98bHTl4RyvLt8m7sKhRIUU1Dg0+XO4cbqo1Ce5+ptaXps9ux4m/HSpaHMncrRDmIeMIu3aVN/6Lcwc8s2yhWU29y27qTwZwRSovPaFJJ1unrcxj6NsjtuiTezI7CPnQqOw8IOe3MKrIbPhaDMgv3tJQmQXj6Or3vjWpEsk1bT00Ljnt13FTNrlBi1o8M4sjO5lf7kk+OTIMc4/bLLQnllV1wP0uB5552HywVZzKIFztIof+G2eK/xJJwXL76Yrncw4TygJMzPWUoSMOfKvY9H1VasCBbBHfw0/d7eeMb09i6ql++/P5Qp6TMz27Yt2BeGpUGVdN11wbfSpdBVeFPd/Fz496bplC2zbGaduBnnOf+1yvsgChZS0k2zWObGHipTZmwWSyeH4n82fO/aHXUEfKGXh0Rusa3S/PsRIBJ/nhsktX797L8gSC+vhuLFT6v16/fgEwX4Xso7BWUKA70XT8B54GU76PMOb5TDeBkSx4mTZMKEZL02XLsPciNvdxyy3Ymy/8y3A2+f7CFem5JM3wZeL2dC3bRP2gP7h9+bf3UIYteZOQky7pO1aYZPwDnPtMXvSTO33Bc+UHbn5WdkMQI14F2ovycWcD8K9WBPT+j9ww6LbXU6paFc6+nPO5zoGw/ff84b6mWvYOVjXH65FYMdC19z+iy32l97Ay7+0aane6LXuJ/8pFhFzlPn+Cm9pJx4V+J908xsGseZUJLpSfSJmUV/I3B9yQndOJodXB8Od/4uIQ2mh/TzfDvKHYmymduhwXWI7w7+PaIoxx8fyi5UAGl/5JHwAWFOIvm2l07Tp6B/ypQ5mtkW/p2Bvuvg+x3lzGaZP4Iy0DZ4vv/bkWtKIqxJA/gDreKl4ewX9hfGMpKWm4X5M5gOsTAuUMyycYt2lgkhhBBCCCGEEEIIMcSY+gn0He94R/b4jh0+ALQQQgghhBBCCCGEEMUZUz+WHcktu4njxx577KvUmhHGyyy47Rvbwc/+xPn18uTJcZYgsnJlKN9wwzHRsaee4nnc4v4Kyj7LJY8FSUqpFNer1cJW/9NOC1t0/Y5mJnCi2uGXlqA9114fn8Q+4r5/LxVg32EL8nac73OdMVNj9JOr1121sMWWsqtcVrvtKE/js3qpHXaXUz2BBE3mk6elkgl1z3XSE2pUuH2bUgEnG+AnPuszFvNMojy/BRmmv3Z/01qNdCbKDZo8wq3mLPt28xro8FnzIZPxOjDKMG+6qV7c7erR6qqQdG3Zsyeq143NwmWIm1rJeOllLZHpo632aJg9g5DkmpmV77knfHj++VB2kqfyiSfWyytXvq1e5uN5hSDbw3nQaE7BOnbtap51auhuqBe+pXvxyo7pUyEroPTA2ROlMRQiVBLfm8Xys4FMvWgVoBzDy9PphJmpjZn1nC8drISr0x58H6ckUBy/V15pXmd/iJ6VjXA+qboreKKuru562b9CHHVUmEsbN9IjeO/MzGjU+abX4IiEnNXMYlthJ7HzfGY2jhnDE3j5UkJ628XFwg8mM+vha+9j2eOcFn6pqSSO0Tq9d+KxaCS8TbNf2K8Z+RpUwvGju2v3V5CPtKicmPeFPLbL+6RNiQt626DElvMX39P3maWnhfefkfSO9+XLg58wuAhdu1eP0iTbB/BGxT7O6SZxbHdH/I7ZnsrQm75ERJWNe/TR+CD7gX9LPPRQVC3lwznMfr5M+853UBE1XQbbZHs8DzwQLufeA1KwS3bg74oOJw3n+xUzRNLUuty1mb23O1Ovgxkwmemd45p7H8vB+C6JbLYN1+eaR6Px8tjp05uf43xuleEmUu30xpmT26ZgPfp59q9Z7EPOOKPYtZcvD2W/PnD+MGMs+/gohuoRYuwzpn4s+/rXv36omyCEEEIIIYQQQgihmGXjGMUsE0IIIYQQQgghhBBiCP1YJoQQQgghhBBCCCHEEON+v+CiGz94qJuQ5LAuxIyg9tvDgFPQhS8680xXMej1r7gifOvj7KxaFfTkjz4ayk89xVgQPrYPdeshTogPBdCGmBSUyjPEiv983HE4wDTMjOdkZvbEE6HMOA8+7TVBTBPGkPDhLBgXJZoUPkZKC1tsuxNlHxWOxxruCyYhZE4q2zb73h/LXDqOT8DB5QVcf3fgZrMQt8mHaWF0n+hZc8GoEvjE4r4vm93TLI5TFt31/BALsCG9Nj73d6XuZFbleTDwTQgD1+knIwcKsWLaXRyTQcYkQTmXiLuVOGU5GFajypgfSC3uU6x0MY4X4zH5mCQvvxyuXQlPNWlSsWegCflQIxMnhlGnafl50NYWxpYhvRiig2Uzi/12KjCgxfFcEMEu8kk+ShZ9FOeS75FotrAjJk+OK3LeIp7LIGJ6+VAqu7aHMk2QPsjMTVn4kIkTw5P7mGW8Vy58EakyHgv728cCvOGGevHKKz9QL69eHVfj5a699uR62Zvnc8+x1zkambWH0H96f8fYOowZuXEjbum8Ka9BH5KLfcrYl4hL1u+unYpB6YeItrsrUy81tJwT3qa7+OH440PZTdqB+++vlyt8P+AzrVkTnTNjZUgUxbiOdlccybRKo0Z/R7HMPF/7WihfdFG92L54cVRt69zT6+XuFT6CKuBz0NegbTOdU2prC6tedwdGyc8RxLyKjl12WShffHF0yn3b59TLP/lJ+P7ss+NLMxSV3bU2lLlG5tZ5OIT2NrfKIXZbKkxd5nLxOu37JOWUnENIxSbLujGM5QCCvPnRn1vwHfNJOGSe0ZU5h7EzuVZvz9TjjOPzuWU26gdez7+jtMP3tDMWHPs7s5Zmof+kr2C8MbPYZ2bebSO4gPElw/nPTq67vDZ9wAj8XRGdk4ptaBb/AfimNxW7NmOW+bh+bDvnBcfPB1IcbmupVOz+Qowyxv2PZQ/+f0v3XekQ8fY/ybwkCSGEEEIIIYQQYvSimGXjFskwhRBCCCGEEEIIIYQYQj+Bjha87oNbWrFtOZIfeq0doLLDZ5NPnbZpU0gTvqchFTUkHNiAvW2brxe26K5ZE7Y0dziNEVONR7ulKbnwkjX2EU9i+nizWC+EbdXdlqYLZW5Bb2i4/1yAuShTFtgVV7MepmxnCmw3gC+9FMocZ46rH2PWi/7hgzI5s3j7dEp/5rd5b94c7nPttfXyTKd5YjryKPl7o5bX9oXfL9rGvuP5Rx4ZV6R9sV8hmfHPt7US5HnroejxSoG5c8+qlx/5XvieU3bp0ljGufSiIBHr5iA5KWiZW+Gx7X/aPffEjUgIM1uRZGb/gWzZslDGnOhy8tFIesBxPu+8uB62/f/DdaGtP/pRqEKfYRYraHKZ5lPZ4L1sh+oJzh+afoNp8iL0Db4ixow+gKNCibA/lpLCmMVytkhq5zuFY4N5UEZbq86/dXU195pZ2WRfOJiTvVK9UvgfY/lMEyaEsl/kIFkrr/r3evnsFSuiak8/HXqZ89kp9+y55yie3YxyCzLMI46Ij7Ej2Elet0rYWEqPHnkkee1BTJhnUSVa7ywtw/SehbKrcqaev/4wNKGGVZWTkX6Ri5+7RuXpp8MH9ilk4mZm5QG0nOud12/zGAy+MmuOJbnxxlDmuFDWZGbd9H98Pv9+kZIa+7by2pGsF8/g+iF6Ps4rTMatHfGzrrk1lDmVTul6Mr72elyP73EFpZes1z8Qr127Zp1SL0fhM9ylUz5q99xF9XK7n4u0Ic5Z+lWLbZ9yxqwcEu8oFY6ll1gXhGft/1tpXjrdhXJnouxDLuxOlH09+oc5WNTbaYMch/2BYVz4brvBqXj4MsH3PY65n2Oci5w7/v315CDnj6534onpc2C8fFfLrov0FfSL3vB5jO2mn/Cw7/yLF+97++2hDJ896H3u8LpW1v4cMTaR5QohhBBCCCGEEEIIMYR2lgkhhBBCCCGEEEK0gmKWjUs0qqMFL4eD9HIA25MrqYwsZmYXXlgvdt767Xr5ssveFVU79dTmt+Uu4ccei6WNjz4a5GPc0ex3/HJnL3c3+2yYyWPXIuOTz8ICac0ApakObpcsY2twBRKXDrf1vQvl6IiXRRSQCHrmotxJyaiXDlHXwGPO+TKD21EhmWlkDi75lnUOQFBTSWSzMYu3afNZoUvbvCeWZk2nhBGUXSNmUTI4ZUootyDDbDv33PgLGhHHzOtRWQ99/HhHkHZscmbnp+YwXtVCBdTzz4cyu9g/KvklSm8bZNCAY+RtaATJSe2qHKOiacgyMkVKD+jicu8dPJbrBia4Yv/7a1MpxanIhHANKuxrodfjBKQs2Mx6YBy8LeU8VWccbTAcHtluMWWeR2mit6GE1CpZtuJZKqPTcFIb+surjdjUwjB1MieZv/it0ItxwXJryrvgu+bPD2sc1XRmZgsWBL99111hkYsjBWRy077xjaFMB24WZzn0cqFhfHYxGiKl5j4DKuRMfFtg2csktyfq5aAd+1yR/EwzmUYfQHm8WbyA0S+6d542riMp3FxMZjwciQx1dDa8ts92TofFen69Yhso3aM9eKeUkp95ORXnDGX/cH433xyfwqW+exekl3/3d3FFzk2M2eDX/k+9XPbzJdHf1W/9ffS5G1ngB7tOqJe9ryqUKdPbBucP/er3vhdVKyfeP3mbZ9yxNlzjWTtw+BbWg7ZyPvvnnoN6HVgPclLJlN/w4tGBAmWz2L9wxs2E3Xq/kwuhQvpwjTbat59XqUzv9AE+M2bqXca/fPCPG/5BhHfPwbZ0Rt2EGrkR3icVhsTM7Nhj021Nwefz/gUN7IcNlVEOpb30DLdJ2TDFGEUyTCGEEEIIIYQQQgghhtCPZUIIIYQQQgghhBBCDCEZphBCCCGEEEIIIcT+UiopZtk4RaM6WvBacmrB+f3OnaGcCqZkFsVsqbpDZy9ZUi+feea8ennhwlCHWZLN4tAX/hhhaACWGWrGzGz6y4h3cdv9oXz99aHs4nwwThljpPgIV1EMH5YZ+83FuGEfMz12KzHKPJHin3EQfEwExhTi2Lq2zlvio8zsZdeCEAehs60/PrgF18jFm2IsDg462jB9lnMbrMdYKj6mXireno+JUGSx8TGKUvf148d74T7zFg/i63jDLWMrMeScD4ORa94wPnbfzA5EC7kBgZLWrIkrMtbStm2h7HzAYIHNwkXjUGVJBC4cdLFcyoybRcfBeBtmVsZzXHrBefXyOeeEaCUM2WMWPzpNxod34vgxtIc3u1TMv5mMPrMONzWLxyWTTr7CgYcRVWkoLohXFJ8Sfr8hjhSvwZg7PjZWIn7K1raZ4Z7u0rvwSKmQLWbxNGsvaGB8vMI2+aY3hXLO1/AYjcOvmbfcUi+ecv759XLHJdOiahxmxrMrDNrdX4nj1VQZ+IwdC7P+4QABAABJREFUQZvx7WaHnxfmi738clwPTqrz/rDOtiF+lbcnDu12lL1tcMj49tLp6nXwOWirHEv/gsCXEbyvNMR04/W4ftIevHGxHs/39VpxlJz3qdhoZvF4MubcaafF9TjRVq0KZcYYiwPnxfd66aVQ9jHLLr88lOHwvrkuxO+8dPF98TnfQBt4n5/8JK7HgJ6PPRbKiFnm16qGGGbDfOEL8Wfa/o/urBeL/o1a/fwfhw+5eZV5B2NL+X6diu/lPyffNx3sI98/PWwr4riRhj5BXONuvGN0M+Cqxe/XfHK21V+a5/D5fJhPxh+jl61i7erk3zn7QRvXvHe+M5Rf//q4IseW5/Cd/OGH43M4z+hD/PybPj2UE/HQGmwdc2lgIFhU1qYZZJpxybyvwRrws3Xh2qcvScfY7F/6unq5eon7gw++tbpxY/ge7zU9WGuEGA9IhimEEEIIIYQQQgghxBD6sUwIIYQQQgghhBBCiCEkwxwteLkYJDllar9ISutlFkueHnooPoZttJQ/nQK5xPz5M3lGpH7gDmavfqE0jbuTp0920sHN20M5taX56KOjUyroo0hG6fuOUgjqqdC4qteSJuR5Xk7Vih69TLmJ37JN2Hl8Jp+mnHIKPMei5cvD93c5zRr7i896++1xvRdfDGUOLvphsCtO5F1eujR84PZ5r1PkWPDavk+L9PGv/Er8+aijmp/v5H78vLsjiADuXx2qMOu9WfxIvI23fZoxFXVUxrGOmdnAQBA2zOH4eVk2NYi03ZwmugXYdVkVEsec/sSfRFtLyAAbjsHW2hJm66pFZT/F+Dk1zc1i9cT0iVvDhxuDpL1B48n5Qz9N+ak/xmcl/gGPPz60Ff06HxJ7MzM7+eRQpt/w60PCbrqXBFvLyXjZX0XdYO4cpzotBp+dkhn6LbPYZ1IShj41s8ZJPMS8c8+NPy8PRvTkgnZffZ/8y6pwjl+uli4NoRDYR+10Ft4f0CnxGQ47LK7HiQFHVMX3Xc4pUZzDpvqnpvysnffxfZxYg+2MM0J52bLolM17whpDFd+MWfOievM+C5/pJZrDOIcw2BaepNyH9xJvoAlJZVIuaGb2iU+EMiVKv/hFXO+mm0KZC44fZ3x+9rbb6uVp1AV7aA/f+169OOAkh5WLL66Xv7kqvO9dOuPfQ6XPfi2+9l13hTL7x/tzysL83EyQ8j3lp5+OPjMcRwVjUdR32Te+Ecq0TbO471bjpcD5Ul6O0kS+5ebkhxXOEafrLhJKwczM/uf/DGXIcrNrOCWt99wTyk6iW33ggVCG3c3HurHdXZqtpiTTLxX0G1Hz4NN8s4u+de+CbXRwnO+8M65Im6JPorzZw3HiPOW7kJk9syU8Ic1mE6bs0q740lGf4OFzvqb//LeF8yuoR9/iGnF69PeMezdme66Cbd19d/J6kXOmnJwxFszCu01Li/4YQjHLxi3aWSaEEEIIIYQQQgghxBD6sUwIIYQQQgghhBBCiCG0X3C04OVilEYwhRs1HF62Q7hV1md1oSSAEgVkn2x3UqETUO+EudiC7GWKlPpswJb29bvS9Sht4jNxK79ZrIEjRWWY3N/s5Tc8B9toKdnwl6jm5BjkLW8JZWryvISOz8Hx99Ivyhp4DT5TLpsQJWHYbm9msd3ccUcoY6t62fcdx4zP52WY/JyTEBfZxuxkUkl9nZe1wI4H8BipLK5mZi+80PxyvpkpRSTPaR/YER/kmD+a0RxyPvKYe75yAVlKKxK6BuivvLY0dRHvKwhtHFm6ZuJZZy52Y3kO+iGV/dAfY995jcq90ElQ0sXMpDltKn1pTr7NvjviiFCeNCk+h/fK+QNKoDg3fb0ClAfiLLodHT6Xcuv4YaEbKqxcoPSSvmbKlLjejMQa5SXtqYx33qYhK5nDuUjZ46wLLQWb4Kd2ZwfWkVwbCKV7LNNZ+ZvRPtE/ZfajmfWkHJnP3swscuwTLzOmQ+W48L6uU15GE6jc8cvGkxuCj+vomFMvUwU9ySvD+YGG5weGn3PrFaGMi+PnMnvH+iw8rJ8IaMM0yq0p/fJ2Qh+A7IcVt7BF0ssVyPh7PdrqnzuVhfOkk+J6fEfJhZ4owkUXRR8rCfv0krWknJF95+WjufAQoDMh357PcAl+DaDfZ/nss5P3yQJZ4OBcyJMzS9SOjjDmnSejol97KKODDXQipEunk8em3l8HXUiCKKxMIlV1mw9jUJAO2jj9k/8bgZJBviuznrdb2grKP380trNUMna6vkg2aWat/CnOqVltw1h6CSTXPK53/m9Osnlz8xuZxe8l7G/6y5QMs6z9OWJsoh/LhBBCCCGEEEIIIfYXxSwbt+hnXiGEEEIIIYQQQgghhtBPoKMFl6nI7r//wK6XyhpmFssfuB2ZMkcvpeBnbr3l+WZxlhnKA7xUgNmcKBdi2Z/D7cB8Jm639vXYVm759tvo+a8BeKbcDuRqRgUbwf5mG3xGK7aB7cvJNbn1mdv+fdYZtoFbpP1WbNohx4IP7juF29VfeimUX345rpeT4RHeK/WvNLkMmuwff09cu62tinKo4h8vlcyrvRJL1rq6mkvW2vuQWdFnbOP4sb+Zwc8s3hafkdcVyaTllYRF/yEssn0+B9vjbZon8VlzUt6UdMz7JB5jfzlZWdQ+nuP9CzOC8flcprCIRx4JZUpwvE+iv2IWQPonb6uUq+TkQewX+go/Fqm0oGCwEttwaip6uWZ0HipSGlWpxLbZ0j/A0nex733GaE5iyme8dCiVWTaXZTY1ZhemZZi5KbJpU+iXnp4g+z+d2XE9qfXTy/3o31M25P1Jyk/779kPtEGXHS4lP9u8MzzrT26OT+H0o0qq6NSm3S5Zkm72YYcFu500aVpU76VtoTx1aqiXy1D37buCzK2rK5RnLF4U1VtEOSNl3tdcE1/QZ/GrXzATD4Adcd559eI3N7whqnbphj+vlweO/oNwOco9fee95z2hDNncjrmnRNX4GjD95SftgLjiivizt/EhCmeR5DN5qR0bzvWhqESXxnXiifE5DB0Bn/RkX2x3iVzJDfzL+iC97MX88d1Frr4a95kVZMsLFsyJ6i26HD6T9sk1jmE6zGI7fOKJerFcVMLMvz+8bLIoDN2SW2DOPDOU6Z9WrqwXdy84PTqFj9sGv8Mu8bflNKWL7B+IbbVRlrlv6PvWbgj+ae6Sd0T15szCtRNzpwE21r8wcl4UHafha9RqxeoLMcrQzjIhhBBCCCGEEEIIIYZ4ze8sm/CWG+3kYzvrn2/47FLr3bTbfuVTa2zeUe320suv2Mpl0+0Lv72o4dzeTbtt5R+utnVff2P0/Se+9qB978ebrTqxbMfNbLev/8ES6+qY2HC+EEIIIYQQQgghxiiKWTZuec2P6qTqBFt7dbw9vXfTbjv35G678U/PspdefsVO++AP7Z3LZ9jrT+4udM3zz5hqf/rBBVaZULY/+N8P2Z/+/aP2Z7+18GA0XwghhBBCCCGEEEKMIK/5H8v2xaTDJtiS+UfY01sK6u7N7JfODPFqzlnUZdf/YOO+T3r96+PPKS14ImV1A4zL4K8V5VVHymj+Iu5/HU/FrPJxqXiM9/Vx0xgngMJ+H0codW3GjPDPx+sxXk0uMBU1+ohj4eX6/nMhLrgglBn35bTT4nps30bYzPPPx/UYT4fBXRinzKduZiyy444LZR+LY/HiUGbMHH7v2GFhZ2YqdJhZ3OVRHC/XBsYeScWH6V/6uuS1OUabXHwgxr+h6bLdPtwbu5Km5ecIY0jw2bt7MunIU3Yc3cjiMedDONhfqX70saNS53ui82gPfHAfV4y+hnG8vD9gzKmiceo40IlU92YWx6EhfqAJx4VxaLxRJ+IxNcwrjvuKFc3r+edLxcXxcQZZj/Pcj8Vhh4Uy7MvHT0kRxSlzbS337U4eS8GuLOxXL788lBlLzsfdSs0rPy6p9dTH50rVa2FB8Jdmd0XHOOY+1iHHmfV836diULK8DcG5/PU4T3NxIslG975Du0P/T+qZ1+xrM0vbRq676RYZZ9IPHT/zej7sHcn5RUI3nXtVW7QCc5Nj4eO90c+yvxPvK/7GjFN26awfxvXu6A2Xpo9jXDK+H5pFccr4brXBrbPReBaNVZrC+7FEzE4/Rsn3CL4Tevj+ecwxoezfp/hMqfWPfWWWjMu5Kx2CdMRJhbhtmMpFJp2ftLzIlCmh7P1L6m8bb8etkIp9etJJcT0GP2Q9rIv+NYvDzLntXTO7gV3H6/klPPdOloLhx9ildLctQ7/v30W5PqQ6wju/lv5wEmL08Jr/seyl/ldsyeV7XyKOPWqSfedPzoyOb9vZb49seNHecGqxXWWev77pKXvPm2buu6IQQgghhBBCCCGEOOS85n8saybDNDO7/f6tdspv/sAefupF++R7j7MZ3fufneVz33jEKhNK9mvnHT0STRVCCCGEEEIIIcRoQjHLxiUa1QTDMct+/tQuW/7RH9s7z51hL/cP2m996X4zM/vj959gpxzXmTz/b25+ym68c7N9/4vLrFQq7fuGfqs6t4pz22tKfpGDUiizWKNAuFU2pxXhPl/vGFKSEK9x4Dbf1H39dm1e7+jMD5DcYs1t8Tk5AGQI/ZWQ0v6lbU3q7ieD80+olyMp4tzM1mTu+fbjTKkA69E2PCntCeUXHm6fp76kIY16mAcJhURDE2bMCDs1u1w9Nq+a8FA+XXdql7dX9aa2yKfkCWZuzNog53BbzTvQD5HCjzfy84U2zrJvREpCnFmYU9KhopKi7HkpyWHO1+R0HympJLWyfpDZ/zn5Nm2X+HM4f1J6Ki8JSsk+/LyixATl/rZgMw0Z2jGXurpCavh23wbaBtvqpRAJ2SnT1g+6BNnRmO/K2F3KJvFQ5QZbDfcq/H5JSQj72Et4KAnhuPpOTmn3/NrDekndZBpeLqfEjo7l+ptjmXsPSEggo77LyWz4fN7v0w75gF5+Rimfv8YQXpWdeg3ITXMq5VLLXQ7vukiR0ABm6fb5qbh1e7hed0qWZmb2KPSNfBDKM12ffrPvXfXypQN/Gw7c6rSSbNTb3x7Kxx+fbg8MdOuu4JP8c8cmFHxc89HPM9gzLfpczr2zsF5qnGjv3jg4r3JhLWigKR/g5Z5o9+ad4R0zZ9M5eF5RqTJhvQbJ8Fz0Eec5/ZCfMJzndGT+AVM3PlC5rllafr95c1yP45lwNl6VnfJD3v0mXFz0Z8lI/J7CZtOkp0/cGlfcgD5+6qlQzoRWyT5gSl+eC42jH5DEGEcWvA9OmN1hf3jpfPuzbz1m3/ovp0e70Ho37W56zs0/fdb+7NrH7AdfXmbtbZm4OEIIIYQQQgghhBBiVKEfywpwxTuOsS/842P2xMbdduxR7dGxh5/aZbPefWv98198eJH94VXr7eU9g3b+x39iZnuD/H/tY6e8qm0WQgghhBBCCCGEEPvPa/7Hsl03Xdjw3YolPbZiSdhGPOmwCfb0dec31Js7o9323Pq2hu/fvaKFgP7MFOehPCSV9s/jpTqEWrlUBswGqR0+U1KZ2nNsFktA/DZ2bnHn86Uydfrrsb/8dvCUDJN7ld224J8/GmQR7OKRSNBDySDVPMcfH9sJdy63z83IqVL79nMSVsrK+OxeN5mShODaXhbx6Nrmt2mQlW0PZar4fAIw9n81YV4PPdT8e7PY1HIyTMJx9qokdkkkU+uIZdhbepvfZ+oC1HPnUC0WSymqUb2enjmhPT2sF7e1kxkLU+S2xOd8Cs/jFv6cvDKVwTYnqSQcQO9reI1cplv6BxqHl4bn5LLDeIfAZ8/JAmHwWweCDezKzJfU47UXlTh42WUq3V/03NX0sSL9k8FLPFO3SUmvzSzuV/p278doNzmZW8puvK2lMtAW1DwdcUQo50yocwASGkrwvJQ4lR3X234qcxn7K/cMPMePOfuYD+HbQI0l5NadJ59cLy9cOIdnREt/qtlmsa/mNM+p5FLKd742eHKZYAmVd6zmlYPdXZAIrsVY+sZyoUzIwb/ZG2eGvrTn33BO5v0sJSHPvR9gwerGO/LcuX69CuXqlmfq5cGO/X83Lm94MtmGhrSCRSiqU+Ra4ec/r8E+ohF6/4t5MR3jN2XpPGsFJrxPhb/wj8pzaJMNCsi71oRyyg89/XR8TspufCM46XJ/c7QCDe/ss0PZZ5Snj2IZPq1rbpzUjZfOqUdTy01OKtuKSjGZeT4XtoVhLXKkNO3+xqm/R/0DDo9tLgP5eKBUkuR0nLL/+WqFEEIIIYQQQgghhBin6McyIYQQQgghhBBCCCGG0I9lQgghhBBCCCGEEEIMIXHtaIFxGMzidPfUnLNeLhYL6+Xir/AaU6aEsg+skooV49MP874U8+fyY2/cGMpM8Zw7h9p7Xy8VfyMp8jerVLpThyKKhrsgvF4qtoRZLP9vZ3/78eOxXLwoksozneu72bPrxf6uEKds3dr4lDVrrCk+dALC1WSztxfhhRfiz7wG7+tD/dD0GZaBjz19enwOpwXH0ocx+clPmtfLhU/iNOcQ5WJatJRhvWgchaL1Uh2eG0x2sn8IHBtEXLdyX8g43F+Jk6uwqdG/+vg2ME7Gscem63EweIzp1n38Dn72hkMw8B1LQ3wmPoNvTjKE1ibnRHgi48vwefxFGFwJY1GuZMav6EQtGNuslXkfPR/L3tncf38o+34gDFTFierbzSBa9L+5xQI89lgoe9/Foejswn3pYJ57Lj7JO7ZhfD/w2RHocQDf+2FANK1oXg26eu2MgXfkkaHsgz4iNlm0vuP8zhXxORXEzkuFMzRLhz+ie2GoU18vigVY6U9X3J4JUgRSMU4bQsim5qmP6bNiRSgjuOc3bw7vK5fO/XF8zobtoUybzjmYb3zDmuLfSxODMZNGbGa2vjeU+YJw2Qea3yfH7bfHnx9+OJTZP0Vhe/xY8gUtFzOQtsH1gS8VftAZJAzHqsuXR9UGl57V2OYmLFoQZiRj7ub8KqdmtyE+4treuOLNN4cyg+6y/Mgj8Tl49gHEbvPNaWOf0/96G2oFjhP9DsfIzOyBB0KZcwT2XXbxX/v6qig3PaXhcnzUbdtC+bzz7IBZt675Pees6Ior5gKspaBjzPkNrrOMC+dejgeH/XmpVOz+YxXFLBu3aGeZEEIIIYQQQgghhBBD6McyIYQQQgghhBBCCCGG0H7B0YLfusltsNzbX3SLJ7eAexkft+LyPjktGrdLs56XofDaKTmkWbyVl9fmNnYvKeFnaiv886Vyw2fkYnORJprVvNSuFebNDdvle3rC79OdA1vjilHq7e2h7Pd5p1K+s+z7LqUP4V5ufw2cU8X3c+fGqc7ZvJysjJ9pnt6Eisiz/I79lCrQP3ZKlcI2eBURj1Ft5M2Oz8R+yKm22Hes54fv8MOb37fBHbQibWuFlDYqN3gFj5UbBF8FSM1zs1hCl5FiJ7XBNBpvUCldte8f1KtuejKUU/7XzIySyF7IS+66K67Ha1Aa8/TTcT22nc/E+xbNae+/z038xNcF1ZoxlNnk5L+U23L8qQU3i9ceOntKpszS67EfswQ8xfuuORbswdZB9kbtppfLsx9y4Q4S0kuuPH60KD4qJ8pmZv2QWnWgPQ1DSR07ybxHLILksK0tyK/946VUsLk1IPWKEq25/mBBzfCJJ4YyVardmx6MK1IKyDXY2d3geb9UL197bfj+0gswgp/GAbNYOskwGd/6VlwPtv8sZGrT6F/8Yshrr10byr5/KGGkdK8VvIw6JUF2DCb2ApQ5zxt8Lt/B4Nu94fF56Wdz0mmuCby2b0NBGSb7df6CRfVyzi3O7AphDWwN7M73cUpuifJ2t85y1e5LfG9m1oW+rKDcxr578UVrie99L5Q58ZcsievRdvkcdCi0YTNbsfJd9TKnb+6drkhEGDP/zlNsD8v8+aEcPd6tt8YV+Xz+3SgFbTejMx2Enbi/ZiJ6WnmnG4tIhjlu0c4yIYQQQgghhBBCCCGG0I9lQgghhBBCCCGEEEIMof2Co4XcVvNUyqeUtM7M7IwzQtlLSghlKNxy77Jc7rYgheAOct/srq6Q6W0Au3f9bn5KIdpnQIaSy7bDrfAs+63F7CNml+KzunPKs4K8oB171yvnvCGqV3QXc8RNN9WLnVOnhu/91v5UxkqfwYZ6PzaI3zPDqFk69aOXNKS0kjjHN5uKWJoa1U9mZp0d2IrNrd0D8T72aoFtzC6BVNIcvEqOO+uhIooS+fB7/5nJ3HzXUaHCbkxty88d81v7qWSqDkBK4TMj+ol2sGDDWfbZ0xLZWvt7ZkbV+pDp8qHV4fuXX27udzzz559QL/u+m3/RKfVySq5rZtbJvqOh5DR0qVSwvh/o11LZ75B91sxio6axeRkm28dO8h1G3QaP5TLqpiT7ORkmOpZSqJwMszCpjKXe7mmTHDM/6Mcd1/w+F15Y7HoF4XLasGyvxdjSbvisXi5P26AzdJIZSi+fxffPsI5rTl+i7KmizEfqcI5xFj5XqU284ALcyN0JYzsPkkzrcPVSTjeSN7ushB1docz+8g69hbTD03/07fCBC6OXRHNRoXFcfHFUjdLLSy7BgVvhd3JSwtwkO+ecenEabZpt8BJKfuaYeT9I/3nnnaH8+T9PtyfFV74Sf+Z9v/a1/b8es2kyq7pZ7BeZ6c+N33ZIBik/w8psg+5FqQdzMZo7t9wS1Stffnm4Rm4/w6c/Hc554xvr5YH/8OH0OVdfHcqrVoWykxzuxrPvwPf0G9vdpSnfpuiu6upxNnaiPAP9xXuamXVZMfpgG230Af5vIPoUznufjRZUe39eL79ucVhv5s7tjOqlIgVwmlYrBy5LfPMKXCOnOye5Y4S6zh/8ID4Gv8hx2p0om5n1DPuhWq3Y/YUYZejHMiGEEEIIIYQQQoj9RTHLxi2SYQohhBBCCCGEEEIIMYR+Ah0t5LJKpqR2OckVt9Eef3x8LJHNa/O2sGH6+d74FCaqoaLP7/KnqiGXoC56XP4ST3mC3yJPvBaQ8HrcPs9GeMkFz8FDVLld28yqbZwyBafP//7fze+Ty1K6YkUo+06mnIoSDn7vZWCUF6SyhZrF/UopJ9o9b248mPNK6Mt/hlwol8GNtnvZZXG9XB8NUf7yl6LP3YmUkzOZRtLMTpl7VPP7sO8clCDzFL+z/9RTQ5myzpxymsc6NyBjms9AtGp7KKd0oWZm73ufjRReAhJlbGI2KeJlOwmJn5dmMCvkwoUh2yrNlqoms9g95OSVVJgccUQo04+ZmW0fCNLQWctDuZxMn+dulpPN8UG8jLJ+UycXS0jytiNznZlZF+cS57N/QF6fWSFzaboSxxpsI+HsOS7ejdGMC/9jbEo+6n0NJxonqpfW0X/i2NauOOMvSWXUPaEnLa2ZueW+8MHLiTlnUqEGfFpmyoVok+75Knj2mbAhjl5Ohrk7U49QiNQwtyG9HMSgl5lxLeVPzGJbpWM1i+dZKg3g294Wn3PmmaGcylDoSaxDDfPgmmuan+Pf1ShBPe+8evGb18bXu3QlhE5fxbU5/rn0zeTkk+PPKQkq/YRfh1LxBby/K9KeDNFa46VxuF5WppiiqL/je7NbVCqYj134nrW8lHAaypxXu9y7aLH8uhbLKJlh8v1Bhtmgwr355lC+5556cdC1gb3ahbJ/JsJnZ6/60ecrEK9dhhS4i5mA94M2+j/O59Wr44p8eaCMnbbm28D1GPYw082/mZw/qRTn2937JnxFpRI8aM6+y9/6+/CBIRz8WsEYHkVjH1AunwkX04W52IVz+nwbhseipdgLQhx6tLNMCCGEEEIIIYQQQoghtLNMCCGEEEIIIYQQohUUs2xcop1lQgghhBBCCCGEECJJqVQql0ql3yuVSutLpVJfqVR6qlQqfbFUKh2+77Pr13hrqVT6calUerFUKm0tlUrXlUqlY5vUW1EqlWqJ/24c2Sdrjn4CHS0cfXT8mXFWqHWnvj4TZ+nBY0OcjvUunATDE1BazvBejCfjoQTe/4hOSXouZAcfb8aMEB9o0bk4adKk+CTGyGB8IB/TgrF6ojgB20PZx/Titbdta/69WfzARVPLM17Ciy+G8pFHxvUYd4Ax53ygK3Ym4iP8/NHw2/fc+YuiU6pdSPrNPsnFO2HcAhqNH3TGYGLsGR8XjmOGtPUNMREKxCyzO+6IP/t4TynYlzRWxqZz9tTOccF9qq5tnX3b6+WJM0KEEj6e77rODsRmoa0xno+/COdFLnYf4bMW/JevKG5MDs6DorEXvU3j80OYLgxR5B+V3cXHy4XIQViUhusxthn909y5p9TLFRcPbdF5XeHDjVizcxfn2NJXuSB4g488Ui8/i++3xle2DsyzytSp4YD3i7TXXOBJkrAVf0o1CuVYaVrPn1O0CRH0IewvvxYy5iNiQu0YaI+qrVkTypsQOoy3MYttjWZMW/vvn23W4CGuvbb5Bfxn2s1DD4Wyj5/DGzMWlV/XGD8OX+dilnHWc/Xrd/X4FLyGj1lWxssErzcT64ZvQycHhr7eGcrgbbeF+3AtYz9y0pvFMcto34yNZpYc6GycLK5/XFMYG88sWv8Yp+zSS5zPveb6UKZR8no+eCb7gc/g20Cb5FqNWFYN72AXXRTK3tZSJGLBFV5f/DsK36EypHxKNRGftuEk9p2bs4w5lopT5uN70Wq2JMpmZqdH56T76OdYR7pvuaVermZ86bM33VQvb8f3/i7dKPMthz6A55ulY5b5NzheI5pJkyeH8uGF/96O4TU4Zi+8ENfjuHNt5nu3j7vFOGf0Lz7eIt9tUu8///E/xudEMcssCc2zevfdzdvm34U5/1Lv0x7+AegXQz4TF3F83+b7bri/fBxVMZb5CzP7qJl9x8y+aGYLhz6fViqVzqvValkHXyqV3mVm15vZvWb2CTM7wsyuNLMflUqlpbVa7Zkmp/0fM7vdfVdwITow9GOZEEIIIYQQQgghhGhKqVQ6ycw+YmbfrtVqv4rvnzCzvzSzS8zsm5nzJ5rZX5nZU2Z2bq1W2zX0/U1mdreZfdrMPtTk1Dtrtdo3Rugx9gv9WCaEEEIIIYQQQgixv5RKr5WYZe81s5KZfdl9f5WZfd7M3meZH8vM7I1mNtPM/uvwD2VmZrVabW2pVFplZu8plUofrtVqDRq3IZnnK7Varc8fO5iM+1Fd9L5Vh7oJSQ6b1BU++O2plMARbEkf7OiMDnHLNncWU9FgFmeq5w5d7sT3CkOqPrjL16tfuNOY6gDvP7izPtoZzC2/lKGYxX3EB/Rbi7lXmdulbw+7N/vZCRbLnLhNfJ6XEpKCMsx1uAa35ne7rcoz8OxdlI5Qsmhm/RC6rFuL+0Bu65u9eHGQunZgl3jVSzMSkono4pCHmZnZn/1ZuC+eye+hpXzsdFyj+8or44o0loS8svc734k+cyYMJspmscNjuZNSJm/U3JpPeZeXU0FW1I0x6+b17nrUIijR/dGPQvmJJ+J6nIDUQXspjN/eP0zBBTybqpy9yRT0lJDzGcxiSUIi9bqvdzb67pnZwW69spGXo9vwyhrWo9/xMh36SV6P09xNRVvUg4vwJOdfBp56ql7mDGMT2ty84sg+ibJ7vMj2Z1E+4WXetEPOK5T9+LMvqVLzy1NbWzivHbbGYc5J+w8YP5hYfH62PkgvvaKECnKOv58uPI/LTU7yG0H/mbH9QnpPs3hxPeaY5ue7a1fwENNgnwNuHdptzfFvprxTF8pefpaC1/P3rGC+tFO2TJmVu1cX+msQ5XLuZSbnF1kvsdY3yJG5bl92Wb3Yf8E7onrXQ1156Uo8xa13RfWiScd1iI7IrVdbt4e52N0Fn+2l76tWhTJ9BbXvXuLJ+ywPz9Tt12n2K97VCksv2bFHHRUfS8g/C0u5cyexj/iO6ca/ihcsPhFF3t5P07PynIb5VjBkQmqezsqYNN/JyomyWfyu1p/43sut+Uxck7pdvZn8cP75ocy54221KBdfXOx6dPaHHda83gc/GJ/DRYBzh+9Cvl4qnM4ll8Tn4L7VtjCA/QMZyTft87jjQtn7Kv4x4CXNKRh6xMvYTzwxlFMhXVJhbiTDHC+caXun/E/5Za1W6yuVSmuHju/rfDOzO5scu8vM3mxmJ5jZA+7YV8zs62ZmpVLpETP7n2b2l7VarbY/jW+Fcf9j2YNv/NahbkKSt6//4qFughBCCCGEEEIIIUSOmWa2pVarvdzk2NNm9rpSqVSt1Wo+1CnPH67b7Hwzs6Mt/Fi2x8y+a2b/Ynt/859pZr9pe3e2LTGz9+9n+/ebcf9jmRBCCCGEEEIIIYRI0lMqlahJ+z+1Wu3/4HO7mTX7ocwsbBpvt8a8QDzfEtfoc3WsVqv9yMx+hZVKpdJVtvfHs8tKpdL/rdVqLuvbyKIfy0YLlHeZJTWMf31t2OjtZUkfuzKUP4vMXE4RZDt3ItujURsTtvyXSpB2WDrBi98lThUIFX1+tzulLJE8Z1nIPDfn3Zktw5SvMQOcWdwxlL9ge3T16fgH7UFIUaLt7V4y04IendvxKff029h5367MVnw2iTusN25MnhKNGRUT3V7CStnH5s3Nb+QMLyW99GIJys9OQLm7aEbHxLXM0pnZGuQ9ievNvf/+0B6UzSyWRLIjfcYfSkM5SKksrmZm994bytxW73W09Accs6JZowpmPGwpQ9nxx4cyJTy+HtvgZRE0WPRdW1f42qsKeblcstZUpkw/tan24vXox/y1588PWU/nUdLs5A5lyMooHWNv+7cKSl5y0rZoZJkpLid54JyL5H5xtsiU2eQklW1d4Rp7MEVyzSnsVnlj9jczD5rZv28J68j/+B/he58UjTLMWu0X9bJf/2q1YNeTJwdDLNzu1MJols6OyrnkfQ3HjH7ayzATmZN5z4rzIZ24dj/sxMvKUvIzn62VPthfYxgv8eTaOID2VNykjawVWS7L7C/3brV1IA5fMUy3l/uxvxIZXhv41KfCfRa/oV6+JY4aEKnF7BvQZPJ9xSyWQMHGt/aEFXSDOyWWDAcZ14wZc6J6i5hZnY6RL4xck8wix9j9vmBbuxecHlWje5nZqqRuGG/T8KVFieYpO4h9YBYvMlxnjz02qtaJPqKt0tZzPptvXV2ZejlJJkezqAKVlk9hd27tSb0R+LyKFAx2odww+sxGS79NW2817hOlypQn+0lLH8wy4wt4+SHXG74gOP+5CWtUB0IrsAVdXqboQ38kiLJhcs5y3c9l4uZ6kJuXnCP+esyQyz6iv0yFxjn4arlDy/iJWbalVqstzRzfbWbTEsfaUCd3vpnZYU2OFTnfarXaYKlU+lMz+2Uze6uZHdQfyzKCaCGEEEIIIYQQQgjxGucZ27v7rNmPXUfb3h/bUrvKhs8frtvsfLPmEk1P79D/D/BfZPaNfiwTQgghhBBCCCGEEClW297fj87il6VSqc32xhBb0+Qcf76Z2bImx86xvRtzf16gHcOyls3ZWiOAfiwTQgghhBBCCCGEECn+wcxqZnal+/6Dtjc6wt8Pf1EqlY4qlUoLSqUSoyb8wMw2mtnlpVKpA3VPNbMVZnZdrVbbg+9dEBazoV1tnx76+L0DeJZCjAtx7biEsTlQPvzwEKkgFzsjl95+505GIUCMKgu6d9jpUBOClt+HkCjSBt/WVCijOTOwc3ONi5dBqKn3wXDYd9TbI9bFLhcDhhEEKJRe7B/Wd2YBGKGGkah8zDKq/Gey3a7zeIjhRR57LJR9l/hs0sN0Mw6DWZzymTFzMjF3GJuDR3zMsmcT5TmMk1aQZ9xn9h33/nrRO/ucI8n05j6iTYWdOWFCKL/sYlOyv1Ix3ny8IgxgH+Jb+Lg/0xBHrYJ4Q4MutlmZ8RIKpqAng5l/P4nimfnYOqnv2T6ma/cxOmigcBzdK+bWyz6NOuNP8VH9lKVJp8JDmaVdCocsG8KQFXkjM9uOMseW9uj3rO9OHPOxYqKRpX+irZrFjWWHoeyfj3hzTx1jE0Y8UzxjsxBn33y8XEivWo3Xex7f+1394SI7d9JzsI+9R080yMcf4zOlgsH5uJz02yxPnx7XYzxBPryPx0NgBD233RbKLh7hbqyn7Zi/bS7GTRfK9A7ZgCSAq5/3TtXZs8MHv5YN8eCuOFbXAJrHpefshbFP2vxSWAmm+Ek3fC33XlNFvzIe3vnnu3o3fzd8uPHGUPbvF295S724dcaieplu1ocUor/zoYPIIvYX/dXataHs1407EBYG8aHaz4tjNLb39YYPjJmUDfiWwM8XOJVWLhd1mPeRqeCurh/K6OR2zJdZiRhVZrG90822W2vwnYWxtnLziudsR9m/0rN99GoMUjTTYnjONNox44iZma1cGcqcGKnAyPsDrj3YFZ62POBW19tvD2W+OHMu+viyhBPrTW+KDlUxf9gn2WiwLfxdEflzTnp/LToLF9uzUHv8+DEGJN/j+Eedf88dvl55nO/PGT8xy7LUarX7S6XS/zSz/1gqlb5tewPtLzSzj9reH8K+iep/ama/YWZvMrNVQ+fvKZVKv2t7f3S7fShYf6eZ/Z6ZPWdm/83d8uZSqfSMmd1tIRvm+2zvzrK/qtVqPz0Yz0nG/6gKIYQQQgghhBBCiAPhStsbM+xDZvY227tX4q/M7L/WarV9Zgqr1WrXlUqll8zsU2b2BdubGfP7ZvYHtVrNxyu73swuMrOP2N5/f3vRzO4xs/9Wq9W+deCPsm/0Y5kQQgghhBBCCCGESFKr1V4xsy8O/Zerd5mZXZY4dqOZ3djsmKv3Z2b2Z/vdyBFEP5aNFlwa3/6usOGZW80feCCUffbhD10eynfeGcp9fV4Qx8+UoaQ1ODt3TqmX160LKdb9bulUxmG/MzWlNhkYCJu+ly9/XXSM1yizU3wjeGPKCyDZ6HDytR6cE20g9jqGFrZL8wxerdvViz6nUjJbPO7c7czH9tIMKhm4e3u3EwG00w6ZRp3fuz5guynJjIUZsSzBSx0jCmi3fN/xevwnDZ++nZICmiTPrzB9uFmcGpy2xhTaZvGW9OOOC2XKXbw9YQDbIAmZ6SUAlFPNnVsvln29IroUXwcTq5wXCwROPTWUTz45lL2OD22N+m758rge7Qvb/n+yOmzb9zLAjRtDmcoh71vYRZTkefXv0/i3LPqabdvCBXt7Y9ugwmgO5yzlYWbWhkaw9ykO8Z6FI1FNlM1ir015eQflJWaxZpsPiPnczvGyWF7XNSvMEi9nTEnzqXLy05rHCisXaF+cl95Hrg1ljn9jOzcmyoe7en4NHYY+4JhEHYvt288RdgyfKfW9WbrDclrZIuf7Y/T1rg2RvU6eXC+2u8WnAhvq8QvT8Dnuczeul5UWn3deKNOnoL+9i6RaiFNk0qR4VeLcpgt3UyTi39aG97a3LkWwgXXr44pf/Wooc156yRPGM/3OFH9OdHHj9wu6Qvmo8E4XvSz4kygZvuGGUJ7hVnvaUMrWik76zMtMS4onJ5GP4JzLhTFIvAfSN3sFLG2cltbVquTwt387lHP6ed7r3HNDGTLqLW6S8OnY7sFEnQbYP/49yb9fjSQYs0h66R0//STHmdppbye8Bufs+nhuM0QIRYfRX3h+vPj3iFvLSGSG99wTyvxDwD8rxxZjnsX9fRTRivb5tSLDFOMW/VgmhBBCCCGEEEIIsb+8RmKWvRbRz7xCCCGEEEIIIYQQQgxRqtVqh7oNhSiVSrX9bWupVLLapQc9o2jLvH39F+17q79/qJsxJsll7RtJCsvSMox0W0eiTUUYzX38arVtrDEebOPVeoaDyXixz9E2Fql+HW3t9LRiD6P9mVrhQOdFUQVQ0UTARTcBJJLH5hTthe+TO3YobKDoGLWixqpW9v95fBbkKBzHKHh3YBtauXZDRtWCfeT7pcj5qXNa2QwzXvxTasxayrTqSPXrSPQdx7Lo+B3qMVt61lm2Zs2a0iFtxEFkaXd3bQ1DA4xRStddd3etViuYOvW1wfh4oxdCCCGEEEIIIYQQYgSQuFYIIYQQQgghhBBif1HMsnGLdpYJIYQQQgghhBBCCDGEfgIVI8poiNVzoDEkhBCHjrEa30m+Rhwoo8GODyYHujb7f7RPxRVqJRZZ0Xq5eGhF73swYxmNNg50o8Wh2qjRyli0Yt+H6vnGSpyrg01qzIr6mkOFxk+IVw+93QshhBBCCCGEEEIIMYR2lgkhhBBCCCGEEEK0gmKWjUs0qqMFt8d3sFJtemjXrlDesye+xPSpYbvt471h02Bu+3BfX/Pvi6Y6z21VbuUaEyaE8qRJ6fPb2jL3QSPKie8bYMeyPHdu+pyClDc82fxAR0f8mQ/ij4FU+u9c30fpxFnRGwBOLKcG0H/Pa6T0Kr4er7F9e/r6if4vb9+ab9O+vs/V8+3GsdS8zF0iNcf8Obl5leJQbbFPDTPnpT9Gcn3y0kvNv3/llVx7isknMtMqmvaHHda8zsSJ8Wc+L8vlvt3pi7NcVNuRmjv+xpnvB2fMbNqEvN0179dDZXflTc+ED11doewavnsgzNOdO8P33oZSrsuTOsYunjc33SflLc+mL85GFPWlqUbkaEVHVLQNufuwfVybOWb+GThRM89XhQ1QQpWybzOz9oEdTe/DdyazeFlauzaUL7kkfe3e3lDm0lXt2xFX5DjzRjldZ+qlxzk1rlE5WWB5F9qE9pRzzhlUe3rq5f5Ke3yM7xtbtoQyzilKw9xh+2bN2v/r0Yfk+ptG5CmwwDe8paUcrbfvGTPS901crqg/juyQduefNTXvi77gk9x6leoH36dF38M5AXPvdImXlnLmZaGa8GNZio55C0Tzl/i+SznD3Nx59NFQzr3opr7358yfn76XEGMAyTCFEEIIIYQQQgghhBhCP5YJIYQQQgghhBBCCDGEZJijlNQuX+5o93WmTw1l7kbOqeFSO82LKgR9PV47J3niMbbv8MOb39NTtX5cwB1MPWCu83iM29P9Q3D7dO4ByV13hTK1s1OnxvV4PW47d/cZqHTWy0XVHF1d4XfxtrYg06ia27KdkhfkJAkbNjQ/x8sreY0FC9KNLbK9/84708dy+t3UfXKyH27Th4yk6tu5KdhQFdejVKhhi3xKCpGTMuWkIuzXg0h1V5DB8lnZBw3H8OxRn5hFz9TW1lxO5aGkLienK6gqisyY3Z2bslQVRdJLXsws9i+bNoUy9Z5TpsTnpB6+cXI3P+YevIyH6owkIfsv+T5k+H4dxtnT9u3Bxz31VPjeyzBT6ljv2nkspaCZN7f592YWj7k3yJQMk/iYC5Mnh3JGjhrRinQoJzdLtdXrqNlWzoNc2AE+U27Nja4R1kWaCWW4ZmZTpoR6a9ZY07KZ2Y03hvK11za/pe/udetC+YgjQnn6RNf3KXvwxsV+SKxRu/viObpzGz+l5+/0KQlZWe5FIiXD64llmMn3gBZkmJHN+Gu3IMOM2uPXIVI0bEdq8Sm68Pg+KSjDjGR4vG/umVLrkF9rUm1nnBQfk4A+imtZKzLMVlNPpq6de+/iMfaP78eUn/VzNnVt1vOy0lbiXOXWlFR7+Ay5uZNbk3iNXAyO1yKlkmKWjVNG2ZuwEEIIIYQQQgghhBCHDv1YJoQQQgghhBBCCCHEENovOFpwW10rHc0zGlUq6axv0fkFE8Gkvs8p46gcyqkiUrt1zWK5JXdz83qR1NKTS3eVkg9yO7LXZjz9dPNzRgJqQlLtMYvlKsRtB2/H9ukKpCfcBe/lRtwhHfWrlziQohn8UplzcjJMDrTPlFNkGzN1xmaxERWVIhWVYaZkDTkpb8r4vW2l5L9edkVZA9s30rZaFD+2qe9TcpyMU6J0szuR7c4s/eg5f5dTTqcyW6Z8mplZZweykPVCFkGJhP/MMm/k++7FF5s3NCezoaSn6AJRkEOVATPiuedCOTOYbW3tie/jz0WVUpyOLalNOM9zmedSqWA9qdSwOQNPvRS0KhtJvUh4u2VbU+tNzqZzcir0JWXGc+fOq5cZBcHMbPNma3rsmmviepdfXqx5hEvZ9EmQyT3aG1fcuLH5BVpKAV5tqDpMdllMhQBISWXNku9W1Zz2ne8/rWTFS0mvWyX3fLmMjCT1PpSTr6Wu5/tu8eL0fYlfY4bJGSvHPPXu4duUSlfv78N5XtS/HEzJWk4Smxo/zkvvi1PyZN8PqXAvBbK87xecFznZau69K0Xu74LUAtiqdFaIMYB+LBNCCCGEEEIIIYTYXxSzbNzymhvVTS9tsyvvvspWb33EDitPtLmHT7Mvn/FBO/Wmj9qCzlnW90q/Ta5Msg+f8Db7jXlvMTOzax6/1T5xz9ft6ElHWt9gv/3W/Avs9xZc1HDtVZvvty889G27ccV/i77/6sM32pcf/q49tmujPfeub1hP2xEN5wohhBBCCCGEEEKIQ89r6seyWq1m7/zh5+w35r3Frl3+n8zMbO22x21z33Y7rmOG3XPhV8zM7PFdm+xdP/zvNlir2fuPO8/MzN4z51z76plX2PMv77ATb7zCLp79ept9+NTkvcjrpy60lUefaSu+/0cH58GEEEIIIYQQQgghxIjwmvqx7LbN99nEcsWuOP7C+ndLpsyz3l2bo3rzOmbYl07/Tfv9e/66/mPZMEce1mnzO2baxpe2Ff6x7LTu4/ZdKRcIBVrwtrYQn4LhAzyU0fsQKdwlmor742X4vNdUPLbPep3KYO3l7NWB3c0blEq77Ovl0q0T1mOcMh+jIXXfXBuKwtgHRWNMsZ7vZLSB1V5+OZRz4TY6EA+v06cpT6WCZtnHykjFRPBxxdioE09MN7AIm+M5GwXSS8XOMEvHKSO5wEa5+GPsF9bLxXF76qnmxziYZrENsH0+ttmrRSrtvI91wf7mMW+gqcBieO6ym3udqNfWE2L35ULF5FxFKqQTp292+uf8BmEjOK7eHuloc3bbSgwRXK9/IJ3nJ75EOfF9sTiYmSZE5fa2TGw09kkyhlM8LTiVUqG+PL5LGUqK3V94OWCMmtwcKbo+sBG5BvFY0Zgyqfb481P9nwtkmmqbf+HgZ/rF3ATGWsal58tfjqutWhXKO3feVC9/5CMXRvWWLg3leXODTebmy7p1ofzSS8EnHX/86VG97rlbw4dcH8M/DCI+ae41KeV6GCfWzKxzSlf4kLIT398cS/T3471xn7ThcjPPmWUHxJIl8ecDjdOJmK8NdsfnK7pYkJzf5zGeP6vF/snFJ0zBmHFce4q+y6TeCT25euzzVKzYlgJDWjpmpx+XVGw6nu/GZbCru15Ohd81MytvesaaVuR9/Ds0+qS/LczzaiWzFnJe5OKzcb0pajM5m0zFxMuN2bBD9u+1QowRXlM/lq174Rd2RpEfrszs9O7jbP2OxsCiT774rPW90m+nTJk7wq0TQgghhBBCCCHEmEExy8YtGtUENff5H5683W579j57eMfTdtVZH7G2CekMREIIIYQQQgghhBBibPKa+rHspCOOseuf/HGhuvdsfcwWdoatqMMxy+58br297QefsQtnnmF3bllvn7n/W2ZmdvXZHzmwxrXwazTTgucu53fHFlFjeIknZSi5a3MHcNnCFuJqQ9pybE9ObZfOSeiKpqZmA3MdlrrvSKRDpvYntRXfzOzFF0OZ27e9dA/boCtt7U0vVzhbd05PxfumUo43+zxMTh/CsSiq6cqR2t6dS2lflJQkyEsXUqnFU3XM4jHnM/hr59LBk1b6rqjvaWVepPSMrcjNMlQjOYeTBCXUYv6xU8dyqqTInvhMXh6bkmgW7Qefxp6kNILeZnBs90D4x57UEJnF07QV1c9BpaDdFl0qCFXdudvmQiFEpGQ//ljKWHMSSA6M9y+U07Qiw8y1OzVhisowi0qLczJ2yMoe7A1r4c03hyobnEBg58576+XJk4P08rw44oYtWIAPnKeQSfku5TlZWysq90O/sAk55WZqifPtGazgH3xRLud8CC4yCFl27j2wvxLGpWoZWVkK34ZWJXrNrpeTLadssNl5zerl5huuTXmfmVl5oL/5Of6ekMFSGjyQecVpTznxVnbD+GulQim48aKcOHrt5hTDe61ZcbvZ0dd8E0NHR3y9ckq6npEzlnftqJc7o9AxrsNT7828XmZesQkNfzel7pN7j+CxouOce1FKzB/6A0859TeCEGOEtHWPQ948/RR7eXCPXfXov9a/W/38z+0XLz4b1evdtdk+fs9f20dOeHvDNZZNXWD/Ye6b7CsPf9feOXuZrX3rX9rat/6lLT3y+IPefiGEEEIIIYQQQghxcHlN7SwrlUr2nXP/yK782VX2+Qevt7YJE23u4dPty6d/0B7btclOu+l3re+VfptcmWQfOeHtDcH9h/mDRb9qp998pf3RSe+2yRPjf7H4/ub7bNZ3Lqt/vm75J2311p/bnz/4bdvUt81Ouemj9taZZ9jVZ3/0YD6qEEIIIYQQQgghDiaKWTZuec2N6sz2I+0fl3+y4fuX3vNPyXMum3eeXTYv/HA2s/1I2/Suv2uot2L6yU2vs2zqAvvoie/Yr3bGaoOwtXjNmvQ571gZyt/7XihT6WVm9txz6WPDMGmOWbyrmsd8Pe62nTEjnT1txoxp9XKUjGZG2JIeZcw0K66N4gXZkdRjeG0GU2Rx2/Ill8T1WpG5XX99KDP74fFuNyIzpmWy8vR3hb5bB3vwChXCpJd8hDmz3Fb6VPaeXN/ddVcob9sWyo89FlXrRzbSaLP8FVc0b3SOG25IH6M2yhs45XHcTj57dij7DKGpDEvMrmoWp0LjWLLsB4lp2zh5/LZ6Dhrb49vQCq3o1HjfXOpdzk2OhZchUO+Xkphl5ABPbgi+xsuQHn3UmuKn8h13NK+XG5b588M/lsxku3221vXrQ5nzhf1Q1I95+QvtgbbrM1rhvPaETXdOcdeO5KM4BVIas3hNSSWj9cPXUvIzDhJ1c24hegBdfOON6fvQXXHIIgmexcnLOJ35TGef2bzJZhb7BtqCWTyXJk9ufr5v+NFHhzJ9V0ayH5ELB0D44P7aXAeoW/X1+EzsB+J9LseTE7DxRaJe7O2dhnKocs89sUM47bRT62VOET+taBu7ZwV7z3nIlJ1073oyrsj3DfbXcS4B1bJlodqu8G60cWOo4iMQpKIB+OejaXRW8K5F/+RtA+8vZdjdTKYONTOrYJyuuz2U3/1uKwTve801yWr9l32o6Sk5ynx38O2mQfj3HML3OPL886GcyxqO+Vz22T4vuCCUcw507dp6sUr/MH9R09P9OdHC6H1SESPy6wtvRv901FFRtTImRqUj2DRdUtW8FHX//1RlSAHvPqscW/oX/oHFCWwW+6RURk+zeP5wonJh9NdGHxd+UrY1l/KbduhtLUXRPyZw33JOtizEGOc1JcMUQgghhBBCCCGEECLHa25nmRBCCCGEEEIIIcSIIBnmuEQ7y4QQQgghhBBCCCGEGEI/gY4SduyKf7d85JFQfuGFUP7CF0LZx+ZhzLJPfpIZPn3aXh5jbABo6u1kd870euncc0N8oRUr4lqpsE0+1g9DczDmBuXwixfHyRPI65aEmDu7La7X3gGzZjAdxmtg2cy23h7iarC3TvDa/SjAWo8V4Wf3318vM3LJCatXR/Vm4XPn4sU4EMeGYB/femsoMwyDD1XDUAXs+1mzYrsrM9YAY1ow8I+LxbHhtttCGd8/EzfBeNa7vvWtennGZZfFFRlXLMFd6FMziyyA0RK2uvP4tHR+c2EPXe6cThplLj4XY9MxntKRR4ayT6HNWCEPPRTKjH1iFseQYEAlBucxS8eKKPqvXUVjTTDA07HHhrJ3SpwjfAbat1kcZwOxQZ7cno4VtB3myRBA/hEY2uPii5s3xyz2rbzGE08Ee3zvexFbzcxWwudeuryr+U3NItu4Dz6J9ui9HefPjkw9RuuaiXLZx0XhA9On0J4ysVQYm8X38aRJzU/x5pC6dGEYb4g25OzpuutC+WtfQ9yYOFqimf0iUfbrH2PQMaBZsIc/+qSLXUPoG3x8IC72jD+Wi0NzzjmhfPbZoeyNOjWfGUuHg+dhjDjvu7iG0kfyedyx3YjnwzePronxvLLly0OZwYf88+HaS5bOq5e5RH3kI3Hf0cQZHsqbPl1rKnSU7963dvwwfLj6hlC+886o3iD6IYr18/73xxeEPWwZCPGdGA7UdwmXbYZT8q8rJ54Yyp0vY2w5x/yY84WDcalOOy2ux05iAN33vtf2m9/6rfjz1KnhNpd/yFKUbbD5gauuCmW/hvNFiT6cMfnMzO6+O5RTcXHdO+YmvNfQh3d6w3v4YSsEfUoUSDjELGvwsRxbPN+zN92UvA3bGnk4H9iR/XAmAjj6OFl4N6rCj1Uq8M3e7nxMwwScj96lRHBs0A+7/+qvQnvcKVXEXhxAnMmKu9EajDPX9y6U551xRnxxrMccs/6B9H6Wgfe8J7QN31f8uDBWGuMD08d6UrElzdJ/2NHB+Hk1/HkwMSeFGOVoZ5kQQgghhBBCCCGEEENoZ5kQQgghhBBCCCHE/lIqKWbZOEWjOkrwWaqffjqUKSlgecKE3BV5cIo75qUowwQ5wFFHxdI/qlwoPaICxCzeLU31mVeLMZs0d1xTeeKzc1OO2tMTNoc37tgOx+YtXBgOcJu4S/fcjZt1sbE+LXQLjnBu4vuZ7nMnt3NzcN2W5rnIdk4pRW6nOlVXVPqUNzmxJDuT/cC+o7TV0YmyFwDR6qKmeolRgT6ek7k27+u3zg4kytwc7jaQWzsmXYUaF2d4A7ChCvvugQdC2evSEunkI4mLWSx54GT0g57TCI0klFawbX6+ULZK5+V1wrRx1JszI1HHzGbiEh0r/WwKUDVAdWxOVcZjlUqYl04RHftgyhC8tGZpmLQzIHmhpbtZEMnUaMfee1MmE0m6fB9zbCgr4jm5uYdjhywzPOVG6OOt2+OZ7lXMAd/LWKQgqWxrmx/V6us7pl5etiyl78lITObPTx+j7BxSn8jP5vwGJdF+/Ci3JDwnt8bxPn7C8Bgngu9879+Hb8MP3t+xv3gfLl5m0by6+ebwNeWV3kVyai6auzt8cOEFFiyYZ81ISTLNrLGPhuG4mlmZczM3/zDubRgmDpl/D0wNi790pB5DKIzo4v552FaWvX2ikwZwrOjb0yA8XoP8JWFPSdmlJ/WeZRY/R87JsV6q7MJJ+PeKYTqd3RWGY3PSScXO4bzCHx39rho/c8w4ym1e//vii6HMY74eJIw81tEzLXy/KdVbeWi6tPfyrh1xxUT7aFllr+NEH0fvd84e23EM3iUKpRBJI82sn6t6xuySUTbYVt9u+hpK2nOkbNostjv2IxvnGzo8GKVSsfsLMcqQDFMIIYQQQgghhBBCiCH0Y5kQQgghhBBCCCGEEENIhjlK8AmymISKyq9HHqGs4nB3FcopHkTZy0a49ZyinnA9v9OdO3kpRaKc0qxR0TEMd2ibxQo/SlBzSi0e27YtfW3KLLouClKK7jfhobycA1uNy8wE04JE0NONBg3iwbuOPz6ueDjGM3qIruS1qe7g7mufjCalurItrmJu+3WzG1m8db2a+N4slmjauecmGpS5L5jpz+FnGMSgk0LsTpQ5qllJAjvWdXIkAkntl/cThJOJZT/mTDtLCaSXOJBWYicUlHFunXt6vbwGCdJ6emKBLDNWvhn67R19sZiwcwB5S9kGjqt/VvR/z9wgw2xvi+U4W7aEfxNqHwhiiJ6eyCIjFWVKUUAFiVksl3+wNwgiFzFboWManTtlQE6qNROyXkot/bzqZh9REssspWaxTaVSheWkRzgWZS7LMOLhO9CvW3tOqJdd4jlDskGLc/T6DMbbrAhtbc2luIXlqPTt3ncxVACNkAu/l1OmOtbLyrg4tiLRpr/y7eYzTUGoB++78LmdNs7rMXueWZypjWuhWxv+8vow7z96MUIKIMPdTJ95l8/Um5BNmpNuRX4782/MzBqNzJH9LqYE1x56oXLB9w1+7adyyncx67hZvHx159Ye0McsgHhprdARmkUSRMrPui3NYKJf/XpcRR8Vll4S2hMya5pZPP+o3/Xzhcc4GOzUzHtNpAxetizd1pwDpdY4s95EcC5gLLu//vWoWiqURRufyfcdDZE2lNP/JqT91RYXjmoF9sAL5rIEY1xoq/3u3bETi0oqhIdZLLdNegpnG2w350FKzejbOoC2dvr4NcxUm00RCvjsvhH0wTl7J7lj4wnFLBu3aGeZEEIIIYQQQgghhBBD6McyIYQQQgghhBBCCCGG0H7BUUJul3C85T7oHhuzH3JDcJA1tLktsFRCcLf0cceFMlVyZrHyi7u/y+sfjOpddNGiepnP4Hdsc/duTulB2EepxDtmsazzkUdCefbsINmYuTyTOpIP6yUJrWyxvfzyerHnBz8I3yOTl5nFD0J9q+uU7o4gTJg/P8ih2DSfXZX9Hz3Spowch5KelEbNzHoSBjUtl2nqoosSDWq8flPe//70tVGeCTmOmUUpVnehHkVlXvbRzq3rmYw/1VSmsEwW1ugz+8FnU4R8on9GkDpWZsWyx3LfbmtKUbstKM+ifVES7RW0TL60dVdzW204MbXN38sLkHWvnfVcI06nNHFdkLa1Owe6cmWQbFMBx8udfHLchGRCON7TzEm/ekM5JTk1s07IwTufeMKS0FdwnvrUnbQv6rJb8Gn+FH4uoKJu9bZROlP6dr8GcGifeiqkDJ48OZbe9vUFqSq7hxmfzeJuZUbVwjLMD34wlD//+fgYO4w2wJv6zuIxlr3PTUmjWPYvEqmsqbyPb2tuEed5zJTJeXD//fE5p55aL+646Nfr5Wuuiat9dMG/hQ9XXt38er/3e/FJlKKxH3IZRylB7upu9vVekOl2F+JG+H+V7uKCzPZ4ySjmcB98bi4jZ2qp9vXoMh/vDS2cxxc8N5ZtqfgXnIxmUV/mpJdFqPJ9zCySlcVZMwtKMpnC3ftpzoXUvDSL5wX7gee7c+bcckvz9tx2W6axGT75yab3Grjrvnq5wcd++MOhjIyM3mV3M0wJn4Mp7ikfN4v7i2PmMwHjvXcrrGMT1tz58+NMtNWCY/vkhmAPDBUw0/s4ppHHS0rX6tXhex/fBdLEQfiGZ10b+EbGeZ9bFiM7HuAbaDrcQQ99F+140qS4Ivs/I7GO4Pun74eUBJmOx8+X4f4qa3+OGJvoxzIhhBBCCCGEEEKI/UUxy8Yt+plXCCGEEEIIIYQQQogh9GOZEEIIIYQQQgghhBBDaL/gKAFZuM0synweHduz5+F6+amnjnFXob49pER/5ZU4dg3DDjDcDePx+DARzORevvG74QOD+5hZ53kIkgEN+4wZM6N6COcRwdAXDG9iFoch2YKM74y9sfdezcsMkTJ1avw78fLlb6iXq9T4+xhTrcAAcNT/+5hlDz0Uyql05GaRQZzAWAWIo3D4idOiUxgipdz7ePjgxi8KcvKLXzRvgw+IxlgVhx8eyjQusziOAQ3M93GRoEfeQBlfhm31hoZ06TzGO+JKZhanEO+mEbprb0e7uzhpeU/GAjGL+4TG6mKW7Z4RYnisCRnMG2LmvDmVQT4XXKmFeGZr1gRfg9BaUYwyz5QpoexDsnXSBDi5aWu8kVlsu5zcPoAVgzHSqbhGnHJeGIvp04O/4qV96BPeivWOPtrNvyXhc/mkk8IBH1+EpOLj+bFkrBDGJPFxQ4qMs782P0cxfNqjanG8IMaN2fct9wfOg3tvDd/TZMz8ehqiyvT1xTHL2EV0+z50FE3ll84Lz7q7r9i/Nw4ifk754x+PD95xR/Mbf+c7ofyv/xqfQ9vnQ/iYNJyQtDUa7vTp8Tm8xsPhfaPhJYX+jxPDrw8bN4Yy14fLLgtlxCgzM7MLL6wXGaeMp5iZ2dpEkFM+Q9EAe36dTcVkS1zKzKI4UIw81DANuCbwInw5c23gI9HefdP4GKzHW/rPNId5jHXoL04boi91azZ7ks+eCUlbHPRJ4ThlhDFWPRwLlr1fxDhbKl6mOyeKREXbyrUnB+cSrpH1uYj3FsWVW7s2rsfYh4wVmorFapY3SgJH2z0/XK+vK6wp1b4d8TkF38PnzAr20D8A3+wXCNruCy+EMmM8sn/Noj4u49m9BfKvsMFEmfHPzGJTqUZ2Z2n4Lsn4cd4AzjknfSwF7ZsvNmaxf6dvZx+n4lbWasXuL8QoQz+WCSGEEEIIIYQQQuwvilk2bpEMUwghhBBCCCGEEEKIIfQT6CjBqyfSmdixPda85okbgEOK7z174vTDjz0WJEFUBTIbdq49b6AEzm23HVx8Sr2ckiiZxTt2qebgjujcznf+eJ/LVM92UwbGOmZu2zcbVDTVcg5uY+cWZq9F42BQI/Hyy+lrJ3LDT3TVonTUHBi/PZ3XS+k53Pb7AWwpjxwK08x7eL2c9CvFc8/Fn9lHOWkNjCgl4Mjendv0nW1U2S8prbM3vJTUxxl16h+rvO1HJGyj5XqJ9rA80RteAj8sNrenab0Ir/GkVOT440PZS2/9PBvGS54gJXuxN3zNtja0G7Af6GvMzMrbt4YPTz/d/CQ6YLPYaVKfTkdolpZK+nnEfqHEhI31BpW4dk7+lFIv+ea08g+w7dufqZd7eoJUtohy28xsz55X3OfwHBs2BONld/vrP7g+/Bsj3fTZZ6bvW17z0/DB2ydlMoT+xUue6P9yckH6WXY4r5db7Cl99os424D596zrPP6LbA/n6RVX1Is/s9Ojc9auCuWPrkTYgL/6VtwGSpFSOkXvcykz5MD6PuaxogaGejR3v6ZUUK+d8ta7744rQvY4D3bS1xcka35epczBzzcuS5Hr+dHaUGY8EP8Zxr89rhWFNaD8cI6loU8ZhNUMOIkgH4P1CksyadO0BbO487wTIBwzzmfIowduvz065RmUZ2L8O1qVYTK2RmKNa/CxF10UyuwHJwt8HHOdfz10IgxFp58v7AeWvd/g2oNrzKQEfZ2TfKd8pAf2GckZfQiHVatCmYs63wm8n4Y9NA86sJfdKLPvomnqXpSqlRbkxAwJQl98/vlxvZRMuOi1vU9iv7KP6Gf9e8QFF+z9v2SYYoyinWVCCCGEEEIIIYQQQgyhnWVCCCGEEEIIIYQQraCYZeMSjeoogYqiZp9xBOXc1l1ut82kqANUsnl1HpOe9J8TNtNXnYTjLmTq4w5dv6P9scdCmSpF7vL3fbBnT5D1PfdckA556VdKSZhSFe4lZElbvCRIQlrKtuQ5E/ocdrLPhsltzJSr+OxiqYxEeMDuuU6Ow63wHEy/RT6l28hssa4wjRwlul7iwIFZsaL5fZp9bsbb3x5/TunjvAQHfdlJmQSkbe3cgm5mFdo4n9X1QzslQUwfS4nE0UfH7aEWBvV+vqU7qnYPEuPde2+yCfa6xQUkrCMA5ynnNmXUZvGufw6rT8C3a1cQLBx2WJDXLVwYyp3se7NYCsNsfD7DK8ePUmeXmZSSHipFaMbeNGnS9HdegTx1ahjPMm2AkkovoeON6bCcZCaZKczLZPznYdjY3FzkHMtKpauZYwcI2sCpncuIvHNn6MfZs+NFZfv28Nm7K8K1qHHtKMA3vhHKvrEcF/pPLmx+ovMc2ruXVFLCRqNOZbL018BCvdulU6TcqAtOwHcPLaqHnYxnXX9tfE6U7Pimm0KZ/WgWp/BevTqUKXVeuTI+hxmk8y8FgYLZ+Laijyji8hIOShMH8ALU6bMSEszFRZCl7eiL5xvV6hxKb3ZzZvQ3P8is3E6+tgPPx2fY7pqak6ntL7vd585UKvWi5FKp8zPnmA+FwTbw/QzzwL+RsB8iL+uzLhaFC69PdZrCZ7Qdxr1ED2KN4V8S9PptfHG32B46+F7p28Z13IcUGMbPg6IyTGYWJv65b0Uq5YQs1K+XzHaeW+GYb7kL5UgA6d5LU3Li3PsG2Qp77OYfYf4kPpPPykx+9KNQpj/wjaINHHtsKPv1atgHl0rpewoxipEMUwghhBBCCCGEEEKIIfRjmRBCCCGEEEIIIYQQQ0iGKYQQQgghhBBCCLG/lEqKWTZOGfejuujGDx7qJiQ5rCto5X3mZ4asYriEjRuPqZcnTnS68ChSBDXxcbwNxrFgmWE5XnJhzhiLiOEaDjusM6rHUAWst3lzfD2GjWDYAsaGmRLCkpmZ2caN4V7Mmu3l8QyLwtAAjJ/k46HxeSnxr1TSmy9bimcW5WjPQIfrB4MkYpY1pL1mhzNuk4/ZwfuyY1Pxy/w1GP/GBwFirCUank9n7Qe0GT7ODgeNZR/nKhWfAs9QYRpuszi2Fe/r+4GfGY8u1yf4vHV7sDUfdovzh0NZpKsOBhwyzt/cewLN2Mc2Yxg9Xm/SpFDu6YnjuEWp5tkRqfh1voGu8zifp0wJY0HfnMu8TrObPqU/Prhleyhz/vGCPiAJP3Pu8HyzuJN4jm8sfQL7gQuMbwP7KBenDMeqbRV8nfafqctVc28liD2zePkJ9bIPKcUQN7NmhWfwIb3YJXQVXF/MGteiYbKh2whjP/mTLrgglGlstG8fw4e+K+ME+ujLUN6BOmUftxLsSpTN4hg801D2rZnDD1dcUS9+89pgG5de4tZSPi+DNDLYqZnZ88+H9uH52MNdfi1MxaXyMf3Yr7mJD3x8rfql3Od2lCNzpyM0i20l0Z5OxmAzs4ULox6v0/AawdhGjCvFPnbBZmkDlUTZLI7p1EoEQ/pi/5bVh/HktQedUCb5fsbF1cep44sh+8Hbxj33hDLmzy7U8xHwZqLcxjFj3NL9gQtlKhaZh2POd5T/+B+javMZlBQxXB/H8/nIcbSNdqxXVTf/ZjLuIIMTMvYb79+kfUluvDGUuSh4n8tx5h9bxMVka4NP4nz2nqGL8d9OOimcQxtyC1ZLf0vgvbSLbfXvmGgD/WUW2qcPwMr1gnEiM+tIPT5arVbs/kKMMsb9j2UP/n9L913pEPH2P9mw70pCCCGEEEIIIYQQ4lVDMcuEEEIIIYQQQgghhBhi3O8sGyt42cfRR4cyd4pPmdKK7qp/31UsVvow87qZl0OFslc8rVoVytyV63dBU2XBHcl9fWG33aZNbjuxvYh6QZLppTWpLO/sRy9J8M87DDPTe9oLDsXg/CAXKkNKMTgrlktEx+bOC99vcDsQKaHKpUEnvAalOV6GwGuzIykB4dZ5fwzbt3fPOiGq1t4Wtpr/+K7wO/0558RCjfLAvu31ZxumJY9RMbN0ZdzHVc4FSp4obcvJK6nVcvIX9l3/krPq5VSWeTOztVANcJf+7bfH9aiU47zyTW2JFmIsUFXG5/MmmDJPP2epjGE/LF8eyn5eL14cfABN8JxzTonqVXdtDR9oHE77vrsv2CRtddas8L1XGvC+kVLHOzz2MWW57CDfKVwE2O6cJIzXo7Qqdy823MvEU7ZRUJaWM63CEkaCZ+iuBDFhZX4cDoAuyk9TQrUP1Su5x6NSjutiFtoaJ4+Z2dVXNz/GyU0pjVk8ZnwIN0kot6TQh3LB3L+YDibKZrH8CDPMlvj14bOfrRe/+cLb6uVLK/8Y6pz3tfgcOkpK5328CjgfPkdW+kfDy62ZCWl/LBFM9x77K3OXiHmUyZlZmZIuzlm2my9uZtZ5ZnNJeqcPXUDpHp34bbfVi8+6ibDDitGRKLeC7+EWBGsx9Iv+/YdjTmfvZZjsLxxjb8Ueyaydcj+OpW9DUbj4QIaX86vVm26yphX9833606F86631Yv+f/mm9zDlvFj8vx8xd2drR/12U8fF5vI8sCmzXOHfoQ8ysD89LeSS/90sXn5eS2m5XL/LVxx4bynw+t9bn/AiJ1lO+H1CGSYmwWfxyxTZ84QvpG2HMG2LW4I+lZ/B1B+aE77v24ef11xpvKGbZuEU7y4QQQgghhBBCCCGEGEI/lgkhhBBCCCGEEEIIMYT2C44SvMqCu2WZjI8qBJ+khCxbFrb/ekkJVRLcDZxS9/ljVEj4RFOp5IxeYUSFCdUBAwNBC8NkYHuPhY3eTOQzfXpcb+HC5vdhe/xOWT4vMw/yWmaxfLOoDJM7ytvagixw2+q43uzZQba4HQqJRT67DR8qleHOb6tPpS/MZaLkoHEwVqyITtm8LYheKGddf4O/dPhtns3zqp1KJVyvmhBd+GRJfAyOkUtoZK+8Eq59zjlvs2bMo/Zvb4Oalh/fHm/A51D0Xh/KfFY/X1JqAy/3YzY+Kq1SkmMzG/nt4LgeTfKII0KZclGzWLI2eXIo+wR+qT7KJfniOZwS/rGPOy6M03QY2897Y7EWn6Mdgpr580PuOq/a4n3Z1sG29rgiPpeZqpGOxw8mHzAlGfaNYiN8R/D6Rx7Z/HsOklk6G6a/dioLZ8X1A2jJPCkThaF09sTaowsuCGPOx/NukXbMss9GyzUqt44k4fi5yT1wyy31cpll9r3P2IZn3w1ZfbvTnFJuySlHoXsukyF71Yvjk9f4v/83qvfN9afXy5ce8c/h2ivfUy8/7q5Nz9rDBYJzxyzK1tjOwU2tXWaNmZRTpF6OgM9iNwvnzEB7nnTnpWZFJLs0s35mFfQa/mH8CxC1wVwMvfOKFqzeUIbdeTkrpXbJjJ4W200r2TCje/rFAu8vLUkyuZj6caUN0af5uB3wwak2+Myou2GrFZR9va7E9RpI2HtOhjmIc7Zfd1297IWgi+nDE/PF34b+gLswfP/wvAHcp0J5bItpvqM2YO6UnePnTNiNY8/ie59TNop48e53h7KXhtPf0IfwmVz8jNSYZdeX88+vF8scL5cxeCtegvmGkZ2X9AdO5s0xY7M5zj6KwWtGhinGLfqxTAghhBBCCCGEEGJ/UcyycYtkmEIIIYQQQgghhBBCDKGfQEcJ0yfHm7EnLgib3Ll7lzvpc9utuSvXS7+4m5/X4zle/sTdxCx7ucoTT0Dihzw4kycfGdXbuTNseN61K2Q2fO45buCNt2IzoQ2VB5SpmsUJC9l3VDz5vuPnFneAJ4mzfabr8Vgkg13cFdXrbwtiiGqq4V5ywYv7LHmE53E7OTRKDz4ab+Dmjm3eJidlyiX34z/MVBMyQy9BpjItl+CM9TgukWT4AuY6cu1DdzPzq1ncD6lEWn4uprLCbtsW5x2bOjWMeU4NV+hftYr+y1dGakcTovTSzyv2d26MeN7OnUG7uWHDUclzqH6ghM5L7TiXFi8Otuvtk35t0uLgf2mCvg1MSEUZZ7nXCcv4gHTALHu5NaU/7GQ/LqxHY/WTJJUBM5M1LCnDzE3axNe59arwP8b+67+GMp/B6eUXUa6HG3d1xTnqKIPmI3kZNMedxzj+b72geZMbLuDktpQORa4GDeq4//7oHNajSc5xCze7lbI5DoX/F1O2jkuhT7wbZb8788x6mbJLM7NLF/wsfPjNT9WLlCZ604ikWwwb4ONDUPdPe8itd4kslw023YIsjJIuvtE96+pVEuVBJ3lii+Y99FD4wLntZaa0NcYh8Bp5OkDYzS6UvfAzJb3NyTC7UPbStiJscePCe/mMk4VgDAffdymH9fzzyctROtuN8dvu6rEvaU1eptiVao+jH/Lr1K4H73M5fmyffy3tQzpuvu0twKLb75xkFf1A+bCXmfKJInvCy9GAi59RdHnYnri27x9mtuS16ZO8bbEfevgi58Mn0F55DC/AzLxtNgIhCSgtdj5kO8q0tVwi9U3wfd4++Zl9nJPs7x5afYpm/RRitCHLFUIIIYQQQgghhBBiCO0sE0IIIYQQQgghhNhfFLNs3KKdZUIIIYQQQgghhBBCDKGfQEcLLoBON2JkdM8PWvf584OSnvFWPO97Xyj7jOPMLk9JfSrzuoeSfP8j+pQpITXwtm2hrT77NOOUsT0zZoTn9lniGRMIIVIars3r8ZlyYUcQ/iHqL58xnOFTipKKX5XJiB7HmnCBJ6oDiALB2A6MPeSDK/EBX3ghee0IdiziKd1/U1zt7rubn87QIGZxtuwjEcLOh4phdunORMwyf0+Gl+Hj0WbM4tAjfl4M47uENs5nYLwx/5njzBASbNveYyGazbZtjBcVx0jp6wtzqaV/uGo1TlmCSZNCmeEyPOxLH0KLxHHGwkTg+XtcLI5du4K955qd8mV+/h13XCh3bkHMsTW99eLSc94cndO+/Zl6edJCxLpb54LTpdLG08F4R8aHmjo1lL2BMnYJDdwHyCMcQOIdXNGgY9lAes2/zl0uCWNW3XtvKPt2bwxx7xgsr5OB7szskkt+qV4ubw+RbCqV7qgeh4x+zQ9ZEsajczFu2rFADCI2GePq+JhCNN2oW92iOfOuu+rlMiZCByZc2T8EHTKOVU87La73hS/Ui/+yNtj+pZ8+K6q2bvXqeplDzh4+Ib6yVY4/Pnzggu4ncypGH+eLP4eGyLHI1SvoF9sRQLUdi1KfC6TIOE484mP9cBUfwHyOWuMXMvoa+gDGd/PnPfJIvchomT7eFOM2daHsl2lGlovjc4V/ny+7aEipY7locf4aheALhn/5oD0wRtzkyXE99jHKjCPmx5IxsHjXVv8IiyLHwu5y77mdmM+DsI12V28tyvNQnkZ/8F/+S3wS/FgVAV2rbt22Bx4IbeCLG8bCLw1F+ygVC87bMX0rvR/HaJrFVOgnly4NZfonM7MVK0Ib5gfPFoU5y7xjcl2sVjL2vWRJKPPFkmufmXX5ANQFYP9sd8cQEjrpDzz3DTUhF7NZiNGMdpYJIYQQQgghhBBCCDGEdpYJIYQQQgghhBBCtIJilo1LNKqjBZ+rntvBIamjjKSjI5aKpHAKgGg7MBU83KXvJZ68BsvbtsVbfs1eRDnIIh55ZImrF+RLmzYdUy9zC7LfTk5lBXdEz58f1ys/+vN6uRsVZ81KJxpn9/PaXq3kZZlFoAKHeJ+aVAc42c5ubJpvpzzAp7AmlGiyY/05CblYf1vou8cei09h31Fe6ZWgVLmwOZ4iUlffdzzH35dQecL28BxKrvy9aBtQOJlZLM+q1TiANBonSbBHUOaNd0S1+vqOrZc5RNl1eYSll6yXUKE0mBNVcyxTFWxm1tdHjWaQpO/cSWN41sjGjVNQDv3T1zchqsfHo2LikUeiatGce+sFc5s2nKoRs1i+Ej27l0DSsR0OuS0nk58UvGBOs/jyy6HMh/CN5fXoyLgIeFL39d/ntD8jyT33hDINyt8/ZXjsew8cgl+OOZx33BHKVHW+Y2X60tFYeAeFi1MuRCmMl0lRnENPM9NJbnisjdJLTgTGNDCL+/KCC0LZyY0ovXzrkrCeD0J2aRbPWsp2aEH++Xo4Oel0va9KyG2jBYHzwyy23Za0wGkGERaBfb/F1eM409N7T7wdZVpNF+XW/gWPPoCG658Vi+FuXIOeK/a4cftyMjdeg3JErnCDBYUtXkzONmTeeJLswrN2+LlI+2Ife6ky/QjewSp+YQO0AfaXt/2i6zH7ZRrDcWTogz3wyb1kNGWf0zjH/Lpx5ZWhDCli5DAd5eefb/p9NRdCIAOfg8+3w9Xj567E9/41soMyaK4pmRdOTkWeMiF+RWnt9xW+L/BGHCNL+5fcX49ce3J9xxkcvQt52bIQYxzJMIUQQgghhBBCCCGEGEI/lgkhhBBCCCGEEEIIMYRkmKMFnyYkJQ9A1swFS85qXsfiRCleoUI1Bbf/UtHgd/Zzd/nmzaHMjJdDd2vanqlTY4nRc8+F8yh742N7SRdlc2x3Q8aYhJaTz+R3eVO9wh327EczN0xTrRBUDlF15eV+SRWlG8D2AWw2595uSn38APJzTnqSyBTG2/gd/8wCyTFavTqWHD76aLAB9msrGXJ8pk0+3nPP5XScYdv/tm0h3xF3tPsMmtxRzu7Z4rQ1tRpFK6k2+IfdnqgXb37fs2cHysFAt2xpYT//CMRUoPKA5pkbSx5rlNqmsj5NSJTNzMKgTZ4cjvl5RQUN55jP4hmpzOgQYODTFy+OT3o0GEE5dSOzuJOoy6bO2+vJOZly0jF+ps74qKPiemwTjZpt8PoQtjunb074lDhbXfxvcy2ZIfskl9WOOkpkmPS+tMysi3i+U0+Ns57SVjjvjz56H+0dhnpNr/HEgtOGhZYt9UsDJS988sFM1sX2N70pfGDWzIsu8q2ts3V+eMfwsvO3zn0wfPj4Z+tFL9vhGwJlmCkJj5mlYy74zHMcd5bpBHwchJS8eQRStVHe2g45VJdbNPnsXgJniWOcfcww2O4XIvoA2pqfo4nMjblpWU2Uc/bZyr/IU6JZzdQ7YPyY08fRv3i5IM/DnGM/+jdh3imSrO27lU3hMld2WX5TtMHvdzBbq6vXhTKP7YAv7fzKV+KT2EfLl4eyb9vChaGMv2fYj+VUCut9wNWmP1E2i22S9s5x8X/ZRH3MbJiUnJrZk20hA+aj8JmciuedF1+7JdUi30UYN8f1XRt8Twu5Yxvm79bEsXm877vfHZ0z/Do17rNhlkqKWTZO0c4yIYQQQgghhBBCCCGG0I9lQgghhBBCCCGEEEIMoR/LhBBCCCGEEEIIIYQYQuLa0QI152aFxN1VH4MCcUjevCKo0w8/PP5NdPbs5rdhuAYvu2b29Tjel0+KzggTITCRj5tWKoUgMAwFwPAkXtfPcCXVTU+GD7eujysyOAAecMmS0+tlHxKBYT5OPjmUfbtbyTTPsDjM6uyzkRfNaD9YCX1cZvpuPpRLHx0FYkvd1F8DsV62wDwZs84sjuHDcDClUhynjsf47K1I/H1cKtrxxIkh1siePXHcNLOXcE4fyuH7Bx6Ig1nRBtjWJ57wgbd+gXLRSCsvoXwkynHEjMmTw2fGSWL4j1cThstgSCA/rxiShP243k3ZRx7hRGPcLI6fj4YU+n/nzmAQjz4a23oqbI+PW8i4jPOmJmJ1+ViAjEVE4/BxqUgqUKTvPNZjudXAH3x4H5tsmIkTm38/Wnj66eZl3270/26MUbsPDkNDRh9PXmpJaAKFQ+tw0fXAGXag3Q1xvEDqXzn995FrTcW2Y9nMdpz3rnr5lpvC9+ef7y6+CpMYgTl9u7sS7Ytilvlx4UsBF/7jjovrcfHhPOXA+EFKOXS/2JOiixTvhet1uJhljKHElSJ3l2T0P7+Gsx+2bQtlHygS7wiMbZd7xUnFevKrHW0g06uF8H3SwitYRBS3yfvSRCyybFAp+J6UfZul+ys3z3NUaGs5/0Lw8tCFRXi3q8b4eLTVqO9932FNeWZGeNee6WNx8oXhzjtD+d57m9fZD/jWxHb7FTNlx7TV8lQXlJh9fCTe1dyL/MYnQpnvGLnwgaTw3xi8L/vYtacDceaKxizL+aT21DH+zeFf8FYUvPFYRzHLxi3aWSaEEEIIIYQQQgghxBD6sUwIIYQQQgghhBBCiCG0X3C0QDmdWVqTx63hT2C/r1mcDn7Nmnrx7JMXx/W4HxhbRuedN7de7uuLN9bzFCokbr75mKgelQwbNx5VLy91shbuIOcOYsrrcqqk6EbU9/kTccFURnWzeNcwu3ux67pWFFBr1zYv+4zafIxIZuhuWqbMglIkpu726eRTGlsvK+MWbnTEwECwB7/LmJdgH9dqsbznqafCJvn160PZ92mRbehetbxzJ+V6kJ5EMkczM6aAn9C07NtDBesRR4TylCmxlG3bNm7in8QroOyTmPNYSn4Yt4mSaD/MrxZsD8eLZuaPURHrp2xbW+iHvj5KMOag7P9tJ8hlTzstnH/22XEtyrlpu14GffZCyDy/B3kIfGmDI/PzZxivE+bnJUuaN8I5hK3bm/9bVodrdyTHp+7VPyChj6SE0U/ulBTUwzYk6vmvW5G0RzI8yj68QcHYKDFq946fDhljuWjFirgeDPviixfVy36Yk3hnT6DTL0O304W2+h7l6hw1gTEEzKwdEpxIzsiF7aKLonNuui6UL7wwlDvX/zRuxM03hzLa7ZdItpUyoGjEvLyS7TvxxFB2zxc5Q0L79vMg9e7QqryZnHtuKMPAe5zdVRN+w894riiDiXLDROK1OUcyMlOOURfKzp1Hx6ah3O3qsUUH+keGm9kN9rW/RLJH7zfYlzlZbkKuybb5s+mH2N+d1iKM7+FfVIfwplHF/Kni3XFg586oHscsKWekbzEz+5u/qRdnUrLofSlf+FNxGlLr6j6oJsp+LNoS5eivHvpLs/jvK8zzn2+fFlW7++5Q5vuZD/twoDzeG7zFPK4vTsLagfW9vyEsSXP8nEsdi+Y2fTjfcSwss7u93ne8IRnmuEU7y4QQQgghhBBCCCGEGEI/lgkhhBBCCCGEEEIIMYT2C44WzjwzfYxbxbmvN7H12syibbBbd8WSym5ud05sJz/66HhrcUq54HdLvwTVG3ej+t3uJCXj8zJMSl6OPDK07/gFcVu7Fwc51eaXwib3VVCNcPe3mdmqVc3bcMklcb1WlBq8Nu/rJXTcSR3t5M3pHlnmnnvf0JQM0zciMRgdHfPqZSYCMosVxLE9PB9XRDbDhx4KUqZW+nTnTn9tigV81sRUveZiCJ+8iSqenPLh9tspSQ6SyokTg0Rwzx6XpTTa1M5sZduiWnv2hKyJTzwRrrdhgxNxpLRtHPOc/q2g1G7NmtB3lBf4saR5UersbxMnaguygalTQz8+91wsLzj++HCM6kgqocxi9UQqIWBDA33K12G8NAdyk/75waarzuENzgpyUvqAnp4wrza5BFJUxjAZm2/CPDrGVNksfvhJkAkXlVqOBpYtC2U+j5faYfHoufXW8L2X1kyfHsqp1NBmkbEsPi+Mc3kXfU1mkeP1chJ5tIH/kumzDdIEohFz/VClVIrynMsvrxf/5eb430zf826I/G64ofn5rq00Si/do8dNWpd/kUhloM3pvIuSCnHRql8knJwZSR+lgLnMcymJWPZfuXkvxhCYEmd5pq10I1snr+3HsiNRNpc5sILUwgf6L/J+VhXNM52iwrbm0tlyLvlMopC2URKbs5IDbXeWovOA8wcLjG93JVHmXfxbVucjj4QP3/hGKDOMgVn8wsDFEGFlBpxsueiqlMrimZOxs+yDZCSBP/CugdOP78YHmgHeE7mU3kRWYDMbhPSylWyY3m45HyOrO/bYUHbS2+1Df3v5aSTEWGGUvxkLIYQQQgghhBBCjEIUs2zcIhmmEEIIIYQQQgghhBBD6McyIYQQQgghhBBCCCGG0H7B0YKPpcKYN4yrAD367kocr6gdivTHN1SbnWJmZt3zIZ738VOGYIwcsyhEQ6SV983ehlBLzOru4+wwg3EqZtlwuuFm12D4lOdd+Kq5c0O/8PEYHmG9iw/01FOhQZVKeNhWQqJ4GH6B7fF9whBD2TheqTgrqbhkuXNysWLQ2COOCbGVjjoqPoWf+Xx79vjf4kPAgr4+Bi+YENUqtos5F12C157kjiGGi4UYLkcdFcbcxyJjrAna+0knxfV6e5sngef03bDh8OjYtm0MAJdL681YZ+HZ9zSkAvfPu58UNHjOU9pqLgTetm2hrZMnT4zqTYAJ7NkT+oh939ER2wnHiePix6+66clQhnHNnTszrngzYqkw+CJ9sQ++iM+c53PnzomqrV8XyuwjdrfvOx6j/215l38rJxaJgefrHUwZAgM7pgJpmsXOlEboAxLyei/6eIIAfrG86Zmm3zdcm7ANGzfGxziB0IZczJ3dKDMOTdXHFTv//FC+4IJ68V9WhahZb13Bq5nZV68OZcYb8tdevTq0AXGIfFwcWhBXhKge4xiZxf3F+IG5erQ7xuoquoj7eiNpx26xr+AFqx2xo3zfpWJHRS3LBU1inDIfwxB2WMYi1YE+ZWw1/7nK+7jnG8n4XGXfd60EOSW0De83eG06XX9PrLu0GpZzY8ljLb9iMqhl4j2+wYRRj0/k39R4mreBYXzMsnbYTQW+wRjLzMzsgQdCme8v6G8fK68r0QZPKs6jvx6fnX426gf/gp6ICezD3vGdJRUemrHMWiWazlxT3B98tC8+t3u6iP5E2Sy2jWj2sEHOHoeX2epBDdwnxMHjNf9j2YS33GgnHxv+yL3hs0utd9Nu+5VPrbF5R7XbSy+/YiuXTbcv/PaihnN7N+22lX+42tZ9/Y3R99etesY+fc3P7aEnd9lP/9dyW3pi18F+DCGEEEIIIYQQQryaKGbZuOU1P6qTqhNs7dVviL7r3bTbzj25227807PspZdfsdM++EN75/IZ9vqTuwtdc/Gxk+3bf7zUfutL9x2MJgshhBBCCCGEEEKIg8Rr/seyfTHpsAm2ZP4R9vSW4lu/Fx4zed+VHP0zYtlOpIaDfHDGjLAL7iXswjYza0/sim/Ijk0NYkJPtWj58vgcbkGeEcympyeWMlElQQWHbwPVE9y2zPO9QpDbmCn33On6IZVp/v77Q5k7wffyeL30xBNBV7hzZ3Np3f5AOenOnUEiODAQy8pSCqMGHS3HjNovPriXXKSkC/77hCZ26tKz6mWvNuL4xQojf09u3A/te+mlWNc5MVboJXjWfeZJlFNNcPXC54m4ERVGXlp89NGhTImfVz5QDszpMn16KD/2WHzOLbdQ2uT0xBF8pnLiezMbwPX4L1wjLJPjONOENm70slBKYoO0sVKZEtWiDe3aFY65DOQRS5eG8nnnhfLMXT+PK15/YyhjoBskazffHMopR8S5ZxY1vG8gXW0dZJi8HG+TUxf5pkZQSkR9h3e6HHeew++99KSorYyEXr0IHPQc7ORc53HScpC4eJmZ3XFHKKc0yB//ePo+7NdJTipNXw1n04V1ukEyAxnfABfAlSvjerCBbz4afPil838a6nwBdm+WXl+cUQ+ifZTxdbqFO2VB0cpKB2AW2y7LObktbZ+xAbxNpxiJHQFcxMlpp8Wf0ZfdkKz5FlCux3+qrfA+fq3nc7BffT3O2alT68Uq7Gmai4UR9f7xx4fy4XF4gS44tr6GUAH7ibONyiuvJCoWZOHCUPbjxbnEFx2+cJpFjruSkK16xRndO8e1K9nQfXDssaHMdSizjlRhA22MteJOKmPMUsq5nDS8M/ciT3uYPbvptbv8OQXpwHh2oA1V93xcraJ5xUr+RZcvhlhTdjlleGoppBvzS0DqVS0H61V5cTfPeaxSsF/ZJ87jWhfvRZn/5ZeHsvujbMLQ9CmVCt1eiFHHa/7Hspf6X7Ell//QzMyOPWqSfedPzoyOb9vZb49seNHecGqxXWVCCCGEEEIIIYQQYuzymv+xrJkM08zs9vu32im/+QN7+KkX7ZPvPc5mdBf810khhBBCCCGEEEK8NlDMsnGJRjXBcMyynz+1y5Z/9Mf2znNn2Mv9g/ZbX9qr5fvj959gpxx34BK9Ybxsh7tlqYRg2c/J6StCmbvnvRrndUuhJaOsgTf1cgdKAbGlmRIzsziJHHfP+63FKWVELrOeVyMOw2RZZsVkfE41YJQFTpzYifK+r7UvKON75ZUgA/SqCPZXY/sAOy+VesfLWji2Axm9GK+BwSz3hU32c+fG+ZGojOLpt93mk2K8iHrT6uUpU6wFjnWfua895O9pa4s7kuNJiR/lla9/fXxlKFRszoxw7aVLY4FCSibM832WWWbQZHnPHp+DiJ2UziQakZJetpr1DedNnhyePT7d59Uiwad426dSjs3j3PF9R5VEZO5rtqebwEHyehU6ShoyH9BLM/Agm+4KXx9xRPq2vDSzgHqfSBfM/mmQ1dMx5iRKvNlok1cWJaVV9+1MSff8mKcMz8uzKCvi9YpK/LiY+WyYiSxr2RFCKt4KnNrPF78rqkY16aUz/j18+NTnQ/mWW6Jz6HkorfKWwFWgDeuLz5LH81KZ9RoykbJP+FLhZUSsVzTFHG0/5xdTPiCHf28aJiOVrDz1VPN7mtk0vPBF0ktKCf1afyQyLDMlubdptpU+BH3c+fTT6Wtz0fTzAPJm2obPEFkIPqvZgfskyuly8t+UVN1RxpytUp5ZtD1+YStKK/bJehPS7w4czVTmTr/S89gW9MmA87m8NuW6tmRJKD/3XLJtWegf0K8+g2pbolzJZHhN3WfWrGnRoVSC+lxSbVJ0KNv7tjZtT9ZWi106kgY3nEN7ZabTT386lN3fFcuufpuZmX396wUbIMQoQz+W7YMTZnfYH1463/7sW4/Zt/7L6dEutN5NuzNnCiGEEEIIIYQQQoixhn4sK8AV7zjGvvCPj9kTG3fbsUfF/zb68FO7bNa7b61//osPL7LKhJJ95C8fsOde6Le3/eFPbclxR9i//o+zX+1mCyGEEEIIIYQQQoj95DX/Y9mumy5s+G7Fkh5bsSRsm5902AR7+rrzG+rNndFue259W9PrvvPco5p+n2yHkxgyYQx31XI3v1cEkbdegM3TzH5pZvb560OZ22UfRdpNf/GEjGT6uedG1abjvLOpz3MZyVasCFuXU8mbvOLCP0aqHuFOaioKnm9IPBgGYM8ebjxuSSMY8cILoUx5lk/Sxox+b16B8fvqN+KK1NYgg98Atq5XzjknPodawJyM4fbbQ5ljDjnH61y6yI7LX1cv34jEg729sQTyiSdCmWqx1lSBsdysVApSpFotfH+Um4ZUolCGyfLplfvikzZhcq4KRrjISWsWvS8M4Na+8KN690DI3Ln5bfGWfdoApdPXX39iVI/+oVajZMnJl3L7+w8UDEw6uWYstJkyJYwLJdvnO3fK/qcS5s2LkfXUT3RmKLwa5XvuiaoNoGMrzODmJDh9sH0+UoWyA2+sZ5xRLy5/56+Fazm1n8+COkxuHpCcQn6wI8h3y7TJXDphStsyWdGsqCylgDSq7Gyj2srbBybMYCVIgcsbnozrUd7DNY4ZL81i4/27vwtlJ1nrvytobNnsMvuO2cA8nMA+FRqdwLvfHe7D/r7oovgcSJb+fVVYr675bFztU5/Ch3Xbm9/TTUZKyapIIe0ldMyASWnbLPSVPxZl8MvZDO2Y/eUzK/IzF/WcLInHispoi0L7oiyU9mgWT2LKDN1LQeXkk5uf06DFBl7SOkzqBcosds6JcTWzOMsdx8/HzKCMDk7O+4BCpOJvtArH3NtTyiZzdpLwn2UniW+n7JHHUhlU90VCQtzZkenj1Ni6eCM9lAbDnnZjXHMyTJb9G0kb7wU5eTTnW+0T/j2C5+twa/18vkNzzeNa4dfPRJbgsrOZnp6Z9TLDqUyfCNnkJrfOYm63dRQM78O/1/jHjbdh+veC/dr2N38TPvAPEzPb3RWer/07f9/8AvfeG30c/nMkG15mPFAqKWbZOKWohFkIIYQQQgghhBBCiHGPfiwTQgghhBBCCCGEEGII/VgmhBBCCCGEEEIIIcQQEteOEm66Kf4MSbw98EAoU/N95pnxOX/86VD+y6+G30GXL18U1Tv9kkvCB8axoI7fx8SgPp7xKXIxbhCDYGsljtXEWzE0wLXXhrLLPmwbNzLQWOiIiRPjeBIM+8HQa/ffz/gULsaG8WYhTllfXxyzrJUQJxs37gh33RLiETCWmZnPxB7G73VMqW0Wxw1hank2jrFhzOI4Biz7WCqM7ZAKludsY9f25pdrjCXXXy/t2VPF9xN9xQLEdlerMT5I6DuGjfGf+RhR+LH1rk8Yf4W272NDYI50MzbEhnC9yfPjecAhY2iWnTtdLJXIXnckyma2K2GgraSWz8QU2rbtZZSZgv5BV68T5RBAbsqUeF7R7I47Dgc4SD4uDjuMbXU+KfkvQi74VxvvxQbR0brYUYPLQ3bkr305fO9D4axaFco0DYZv8b6FvoshhfxQlgf6rSn+gkceGcrePxQhHagu/pywtUE3EinzqlbSMXe+fWPwG/Q1c+fOierRVFacd0K9PGfls1G9yIYyz1ClM2M5FzuK5OJXFWmDj9uExbGvLzz7ZZfF1U64PNjnAGLyMY+39xj0KH6VjEA/dCJOmR/WHrxjtDO+E+3Tv0fwednfLk4kY2lG0Nb9GPEz7+P7uIBNN+ADkQ7jYwVxQtMPudhKyXhd7DsfCGj27Ob1fN/xBYvxq9gev4AyLhyflS+sZrGNwxl6H1CEso+fW3TOpbjgglD2PpLjTLvzz8dxQUyvwUwA3TLXEdZrNZBTYq3esSvdx50pP+bnH+Pe4X2T/sDP88FE2c+cHthDJ/+44Vh4H1kUBn7lAuPnUeo9jnPEz5fcMcDpE5nXhu3J83dXEKcMQ9HuzJPzp5zySX5+FIgn2gAb7v4Qa7/ttvDh4x8PZdqMm1e9l/+5maXd9bhBMcvGLdpZJoQQQgghhBBCCCHEEPqxTAghhBBCCCGEEEKIIbRfcJTgs8kzszR3SFMRNjGjXrv11lD2cka7JMhSFkCi0k4dYE6Gya3OPrX48uX14k9Wh99iH3ssrnbzzaHMXcKrV1NO56Vo21BO6yFTGdanTAkdRnnYXiCLsCAXc0qtlnbYzp4d7sXd1/7aVGAwy3jDND0qtK9BtpH6ntvOuSWdBmWWljhQ+uk6IaVea1SkBOldTuFSROpaKh0VfWa/0p6oSDEzmzq1eVujsfCSBMKHPfro+BgawW31nFfr18anUN0Rqwy9/IbzgrK7qhUiJ6FL1StMpr8MW/Mh8OrtjWWY69aFciyvC883e3YsJ595AZ6DxuYkDmUaAceP/s4foxFSBu38HacPpZe0MzOz449vfomc4onnsKnVgd1xRch8o87zc5t2zQWH9uAnHz+3ZBsjdrqZxX2XazYfletfx4JYBt3XFj7PXLkyfcGUJNI78RSUqDD0gVk8Thx0tuGcc6JTvnl9mBeXLn8yHPBOF0ZZgQSyDH/uvUE7ypxJXhxLK+Q1vPtu52RYujSUGYvhqafik7jecDC9b07JqTiX/ZrGseT1MhK6wtK/O+5o3h46OLN4bLkIRBp0i18E6QS4eFHaahZLUHl+ToZJG4Sk1r7//fgc2j7b4PuOz8T2tIJ/gc2NUxH4LuvnC8f5pZdCOSc7x8taJD/048L+4mJBaev+wPlTND4Ix5YvmX5esa0Yv074roRA2MzitxLvN+hfIttgf7UqtaWk9YknQvmee6Jq/QmZZzUnDacdpsKVmFkZNlXl+kBf5Z6vvSP00u6+8HdTVrbMOcY15aGH4npce8jnP5++9jXXhPLrXx8f+8lP6sU+9GMb/bx7Nx52PVIoirGKTFcIIYQQQgghhBBif1HMsnGLZJhCCCGEEEIIIYQQQgzxqvwEWiqVjjSzS81sgZm9ZGY/NLPv1Wq12qtx/7GA31nOXcIscycwd9h7uNvaJ4JhYibed+nSefWy/3G8nVv4M9IcbhtOSUn9aXH7uGXYyzB5jJkV4y3ofX1hezmfgzufBwbiDEQ7dx5TLx9/fJBr5tQ4RaGChomdfJ+cemooU2lpvU6/xK3dvCAb62WYKekJZT/+euTpp0PZaYYXLQ333fmWkJktl4CINu2VTEUUBStWxJ9TyYmceimy/bdeAIEAJQ3UCHvYWD9p8bn9tNOanr5gQSwlpCqJw7J+fSxT3LgxJffKOIGDCtvD/HleFko9cZCmHnFEXIvjR9NNyWbNzOwOGBElM17vl/JXvh4bwWx1GKTdHbGMb/Oj1hSvImHbqeqkOXnfwqlYXX9f+OAn1jbI07lA+Oyh1O3zGuwf34iUdrKgdjonIymqDCZU7VB54rskdcxPWar93vnO19XLDVJXSl4iXWdBGSZlbr5P6YMpBYXd/fU34nn1gfdBin0X2ubHnC8CgNIoL6KmyDsnteIxjnKDK6bxU9LDSUL/axY7Q/aXz0pI+WYqG5uXW9Op8D40BrNYplZUFrZ6dfP2eEk0JWdFZf9cvDgRvOabmW7Zd35t5yKckp/5icXnYNlLCXmNVlKIEz/mPrPo/kIn4GWY7K9cnBM+E150IzfmUyLz2jzfy+SKOkbaa0Ka2nA6x4U25MePdod+qMKxenllOodxhlQ6aC9hLQqvwXnh5kiVfc4+ydkWZZ30V7k/sOj76JvdXOQ6WfhvDMqJeW0fe4TvNUUlzPSZ3r/ANqKZTXt3MtfhZTIOLyPE2OGAfiwrlUrTzOyrQx//qVar/UOTOq83s++aWRe+/j0z+3GpVFpZq9VeOJA2CCGEEEIIIYQQQggxUhzozrJfMrOLzaxmZn/sD5ZKpQ4zu84Y2TvwOjP7ezNb2eSYEEIIIYQQQgghxOhFMcvGLQcas+z8of8/UavV1jU5/iEzm2F7f0x73Mw+OfTfM2ZWMrMLS6XSigNsgxBCCCGEEEIIIYQQI8KB/gS6yPb+EPaTxPFLh/6/08yW1Wq158zMSqXSjWZ2n+39wey9ZrbqANsx5in6Y3StxhhFxQTg/tqpUAeprOBmFuv6qY938TbK0OsvWTIvVS2SxMdy+xDXqDG+DOISIf5RW1vcDwy3wOfgPRvDhITYCczePhIxyxhfi/GK/POdeWYolwcQOeZ+F0uFjUgF63Kpm6OU2rzxggVxPXZeKliebzgG8GzE3Jl6+cyoGi+3dm0o+0co0scXXRR/ToXU8zHLZvagX2+4MZTX4bf+O+6IT2LfMZicj6XCQEmJdN3tru8uuijESeKQebtbsybY5/r1Ic5KY0ipHf6LgwLj+m3ZEmKfbNvm47yE+HannRaOMVabmdl554Uyw4XN69oaPqxxAcJScUNoq2bxZKdxeTtmpzPuB3yaD2tEGNrD2zR9Cn1ALpxPef2D4QMnTCLtvZnFztTHUmGj2Cec8yPh8HBOLkQc4bFq5papUDb+2j50V5OmmVkc6o7Td8GC9qhelX1H+zrssERLHYzN42NoffKT9eKP13eH9qwKVT6w4vH4nE99LZT5UO4BBxJlRmTzUQYZeyh1jlkc64xW4+OctT/ySPjA2Eif/WwoX399fBLj33Ce3ntvXI8Dz5hCtG+/2Be1aY5Z0XPo9+ksvOEyXhTn3MKFcT3OzVT8Mn/t3HxOwXq8tndkHAsGIPLxufB5kHHlWsGPXy7GWxE46f24MgYh+9GvFbQ7PjtsZrdrZ/udd4YP7ONUnFh/H99WH0uqSbUGs+ULEceW7z8eOEbvAwhjHdKHeP9Soa1xHjB+XNHYWh7OBV7PzwN+TsUA9otKKh7oQw/F9dh2jjNjjK2MBVVl9FilUnAPC98/+YeOf7lavjyU/btRCr6Q+biXqXeHjM+tbnnGzMxKAz4OtRBjgwPdWTbsrR/zB0qlUreZnWZ7f0y7dviHMjOzWq32oJndZnt/LDv7ANsghBBCCCGEEEIIIcSIcKA7y4Z/LGv27+3LbO+PYTUz+5cmx+81s7eY2Zwmx4QQQgghhBBCCCFGN4pZNi450FEtDf1/UpNjy4b+XzOz25scH97HWjD3+vjGK7qoXHjqKW5p/QXOOTF5veeeC3LNXbtimeILyD/qlTrDlLdvjb/gFmLKn/xWZTiK9sVhq/JJJ50VVeMuXSqMqHjz2dZj4UeQO/T1xc/X2xsuQsULd8t3OKvjjnQq7bzKJpdNPAV3SFOO9fTTcb3ypmeaX+CVV5p/bxY3nPICPoRZvF2aN/YyC3ZMats5bcEsNl5cb57bDj5vaeiIvr6wOd+vLZEENbHw+J3m3HHPMZv+/INxxbugtbr55lC+//56cRfKZrHEqMJt9V5qSaNm3/EZ3EQvo97Z0Ou+fME0K0Jq/mbJzNmi56UUfdu2xUvB5MlhwlDh4NW/Z2N/8fSJ8D233hrKdBRmjfKAYbx9UnLBsn/uhGyjvyfIiV90KgYqIjkWXkXy8suh3N42aE3x48KLcP55jSHnLJ+Jc94slrzQ0fL8nGwrp+/B58EWNqwXNUFOH8omfddRSc1jXpbNR+fUZtnMrMoGctAnFAuFYBdcEMrOOH7WG6SXXFojH8cDvg0Z2R39FeVPM7gG0BbcNbrR4d7VcDWmaLXf1RuEgyinZMLeIXDR5ABu3hzX47PnJiDJ6YFTJAzU23o5ZQ8+rgUNjEZIjbY/j/6JLzbueXZUgj2xu32XnA551m6MYDv71E8YQsfvX2ZwjNK9WNxcEC/xZD+0AiX2/lpc2GiTfo7QHhLrS5tbrwYwABU6sqJSWQ9tDdfI+lI+H5+dEmazeGzRbo5fl7s05z2fqOxlwvSF7GM6PO+Ai0J5I59148a4Hn1FKqyJHxfOU04s/8cb3wtZj/bg1/CcFBdE4Qp44JhjQtn13eCCRfVyuRVb8y+ZtBvGjqHf0A9GYpxxoDLM4QAUxzU59pah/z9Uq9W2NTk+/FeVf7cSQgghhBBCCCGEEOKQcKA/lg0H6b+gVCrVf7IulUrzzews27ur7IeJc4fll5sTx4UQQgghhBBCCCGEeFU50L2S3zWzC82sx8z+oVQqfdr27hj7Swvxyr6dOHfp0PFHE8dfUxzn9ubFu3TD1tn168N229xO5aOOClu0/c7bVGJLqpc6loSt/GZmndwmzLLPzEYNHLbvTpkSV+Pua24tvvDCUPaJW9asCfflTmCvquAxJoIhXn1IVUNuJ3Yru4vftfzZ8AH6oOl+6/VtkP9RRum3bKfSffJ7f+1UBinfyakHZBt8ditemx3mZXJHHFEvvvm97w3fb++K63FAE9k+X1f5afzF+u2hzG3jXr5E7dY994Qy7NhnfGKPVKjDdfKQAWQ/q3BeUMLhJYJsK3THb1i2LKp24u+eXi/ffXf4vnBisKKGy3oZueYll4SvqULYtSvWKVO5QIWE913TX/h58wtSi+11RDnJIaFDYId5CQ4lUHAINJlcUi36NK8qi7qf0tKctPF2RC/40Y9C2UtKjj02lFPZ3MxiDfkkyGVzDo82gGv3uxxn1Y59Z8DMqX+LZsPkkNH1edPgo3PK5ZLaPYY0RV5ZcwrlaPSFDWmjE7DhLgbALVeF8vnnh/LpcyFH/hoy95rFcRpOOy19X/oRdjhtJiM3KuP5Ot1a30m5EertdjJ2io7LXBMog/eOjFItZurz7xscQGaf5BqVS2HLsZjkookk5HVZmTFDJnC+eXlmap76OUtHiT5+cnvIBu5PSSWxblCf4pkGqLSinXgfmfKlXsaH52UGaGb9KyzX9nOs6JxLUTT7L+v5zqPtJ3x42dnqLnxuQ59Uc9mNc9DWEi8CDct+Ql7pQxz0o14qs2Xl5JPje3Gese981k6+lHOh5Et4bj3PQT/NOebjrjAuQmrMfeclwiL0u/HjuPM9cDveZboyUnDOkf6BzBxhe/jcBzo/zOJn97bFvy04f/ge4ftu+D03F1JmPFAqSYI6TjnQnWV/YyGI1kozW2N745MNZ8H8Wa1W+74/qVQqzTWzk4Y+/tQfF0IIIYQQQgghhBDiUHBAP5bVarU+2/sj2dO2dycZ/3vazC5NnPofUP73A2mDEEIIIYQQQgghhBAjxQHvF6zVag+USqWFZvb/2N4dZRPM7F4z+2atVkvlaltkZj+wvcH9UzHNXlP4LIvcNUxF3vPPh22vXrpJuKOZZbN453Mq2VJnH6SDZvE2e2479lvIqV/BVvWq013Nw4137Qo5drjDN7cLmjt+fbKWVMKXVAIjs1gpl1NGlS2Rya4ouYuTVLYef8xvLx8mJy+g3CSXGSyVOdCPObdWs225rfS8r3++ItnK/NZw3pdlX4+f2W6UvflEgjMaSi7jWkr6442Vki4atZPHTl0SZJicpw3ZMF+lLeDTp4cyh8t3N80z5WvMzOwOPC99CLPfebtLyVeYFdY3MJcNk2OGju1Cu/10S03TrAmzDan5axbLV1LZAc3SMi7fyTMSD5JrDwe0oG2lnj13elGzTWUf9QnzUkorr+rmZy5RDfaZykZaMLvYr18W/l3ypJPiEAd/8EHILTnvP/+N5vc0i20jNcnMIul79CKRy5zMTqGc0WtTmVYbbWj3GutUlsqvfjWUfdgADuB554Wyl/azXygL4wuVz8aXChvgjTCVRTcH+58Sci8/Skl5XTbM/gWn1Mu0fUrDveQ7tRT65eq+dcEm2Zzly+fVy9XFzu4oAadvpqzXzGxbyOlVLiphTcHYHGaNqbD3F3aYcwj9lfAuWqVNepvmmLHzeG1n053fwHymw/K2UXghAQn79KdXafucz+4PkCr9C7Moc475PyxoYAn5sJnF40dp8YZgG7OWz+QZhd+7+895Q73MR+30jj8VLoTScN+nJ51kzagyu6pZ/OwIpcBXta7Mu2NujsThChLyUT6DmZXpLDjmH/948j5RPb8YcvzYyTnZ63D7JFEUY5QRsdxarfaimX196L8i9d+771pCCCGEEEIIIYQQoxTFLBu3HGjMMiGEEEIIIYQQQgghxg36sUwIIYQQQgghhBBCiCFGdL9gqVSaY2ZvM7OlZjbVzA43s6/VarXrXL3hoB0vD0k4X/P4kAiUglMyzh2exx+fvh7P8aGjqHtPxrSY4TTnU6bgGGIQNARNsubHvEYfDzh37qKmbfN9wtAJDLPiw7mwjyivZ9iCmTNcDIQ77ghlxi4691xLkos3RG64ofl9TjwxrscYILk02nwQ1kOf7mibFp3CPmlfkonTkoqlwE5GWngzi+PaEJeOPIoBwTgyF1/c/Pwc7FOztK0xXoNZFIthAOPcX/S+mdg1u1HufP758CGXLjsVC9DFLOO/apzCuDYzXHsGCgTsy5GLkYJj558fvmZTc2F/5tnj4cNaN2nXrQtlxstIBeAxi+0wFy/Dx0NK1Vu4MJQxr9Zjyvr4QHw++qvuvmfiinToq1aFMp2aD1zJ+XPPPaHsY7VxzPisfixT8RIZU6it3UgZ9foRvc/HprO2V+ff3U6YH/x274JwT9+exx4LZYZZ8l2SCuHj15S2WcGftmeDmzWH5t0A/TttnGN5zDHxOYwpxDiKL78c16ONc93gg/v1pei6xg6jP/eThNfjOSz7e+IdgzZZ/uQn43pXXRXKLyZeJX172K/sh6LBT3PQHkYgHhrtkEsZv6d9m8Wh5Igf5lRoz+oAVjLGXfMX5zrrn4/24AMK7i/e37m1cb/J2F21B8/BTs69J6VsyDub1Djn3g9ysF8RhzYXDjbpr3w8Qtaj36AR+YunYmhlYmdu3d7ch3uzmz7VCsHHQNg8W7hwTlSvcwFuloov66HP5Rrg7RPPzr8yoti3Lo7b7r7QD2wO/+xqgH6Mf+j493P+oejjzKW44IJQ9oshr5H6eyEVZ7lWK3Z/IUYZI/JjWalU6jSzv7S92S+HZ2rJzGpm9s9NTrnFzJaY2c/NbGGT40IIIYQQQgghhBCjF8UsG7cc8D8Hl0qlGWZ2t5n9B9v741tp6L8cfzFU54RSqXSAqW2EEEIIIYQQQgghhBgZSrUD3BZZKpV+bGbnDH38qZl9xczuNbN1tndn2SdqtdqX3DkdZvac7d2Z+ularfYnBe5T29+2lkolq922cr/OeTV5+59ssO/dcvehboYQQgghhBBCCDHiLD3rLFuzZs2+NtOMWZaedFJtzbe+daibccCUTj317lqtpo1M4ID2C5ZKpV+1vT+U1czsW2b267VabXDoWPK8Wq22q1Qq/dTMlpvZsgNpgxBCCCGEEEIIIYQQI8WBimvfM/T/LWb2weEfygpyn5mda2YL9lVRCCGEEEIIIYQQYlShmGXjlgONWXaW7d1V9t1arfbSfp47nO+kYJ4TIYQQQgghhBBCCCEOLgf6E+hwPvXHWzi3f+j/1WytIcrlclba2Yy2tjZb9Ovf3992vWocdnjXoW6CEEIIIYQQ4v9n7/3j/KrqO//X/fDhk8kwDJNhICGEGEKAAAEDBggaNAoqFNzir6pd22qrXe2qi9Z269atbmu3/W6tVdtdu1tbbbXVVqpYcGELFhQQNEGjoPwKEPmVBEIyJiEMk8nc7x8z8znP857PObnzmUkyM7yfjwcPzv3cc88995z3OefOzXm9347jOI4DJvuxbK+kOW2WM/ahrb9K5uHhYbXj4P8nfze9Hfw7juM4juM4juM4jjNDcRnmrGSyMsyto/8/uY1rXzz6/0cnWQfHcRzHcRzHcRzHcRzHmRIm+wn0O5KWSbqkKIpGWZaD+7tAkoqiOFvB39m3J1mH2cHu3fHxY9h1duutIX3jjSF9883RJcNbnmymayedGE4880xc9tFHh/SZZ4b05diFt2VLfA3Psa6f/Wycr6MjpL/whXBJf7+q0Il0bcmS+OS557auz3ITIwLHe+rdzTSrsLBje3wNnnd4+enN9GNm8x8ffdGikO7qivMNDYU0y+A1jW1PxBd9+csh/Zd/GdK7dkXZHkNd+bWbbddzsvl+zbZ8FN+nDz88zse2vOuukL4AQWu/9rX0Ne98Z0ivXp3OZ+2LwIaGe3pbZrn33viY7c82rsnEHNmwIaQ3bw7pb30rpG2n81+KaETr1sX5joH7xcMOa13Zffvia3p6QvqII0J6wYI4H9uf16xcGee75BIdFK6+OqTZXjR8Sbr77tb5tm2Lsu2ErQ3gd1rJElOFbtr0iZjvbBuccUZI//Vft66bJK1CpGyE/+YTPamYhRxnNLx3vSvO+IY3NJP/emMYtRxKzz0XX7JpU0ifempIH3dcnI/mcP75IX3aaXE+jhGWTZO28xgfqbMDY8n2Mwvp6wtpu64RjqtU2vDVq0Pbve6SPeHEVVfFGdevD2naHddPSQNmbh2j48gj4x+4zq1Z00w+oYXN9MIFmfhGGzeGNBtfijuQcwp/t8bBZ2Ko+scfj/N9/OMhzT664oqQNnPNE7vDmnn99eF3Tk+S9OMfhzSHzj33xPn4ikGzoa3ZLp8zp/X15pUn6hYuKbffvrOZ/sM/7Ba56KKQ5nSce0Xh0rV0Sbqfi8N+iqMwUOfN64jysby1a0P6bW+LyzulBzPO5z8f0nxYW3E2JseibWRMFo+ceVkzzT63r3fr1u3AEd8r74szin8KPNxMlfvMvFiB4rB/ML+EyXDfvnM1Udgkb31rfI5LCqcQOy+yjThHslsefpi2IEl434hWkmVRrn37Tlcr7LtMcdjWZvqYY4KtPbkl5Bs2+yH4vDvQlXbaIHx2Tuf29ZyvOZwP+Kpur3vxijBO+d43aLzzNOoVY8dxLrzttpDm/CtJH/5wSOMBf9JxTjNthxXtga8vTz0V53vlK0Oaz96490fN9M4lZ9mat6qOakPmT2qOYXYG1zW75qLiw3/+56Fs+y5K+M7ECViK/y54+9tDmm1MA5BCQ+zdm76n40xjJruz7Kuj/z9a0keqXFAURY+kv8NPX05kdRzHcRzHcRzHcRzHcZyDyqR2lpVl+S9FUXxf0jmSfqcoisMl/beyLJ9plb8oitdI+oSkkzSyq+yGsiy/N5k6OI7jOI7jOI7jOI7jHHSKwn2WzVKmolffLOl2jewu+01Jv1EUxR04//qiKF4q6QJJ2ACtrZKwh/N5zsBAfMyttJRcYK/zTrP/lzvF91ipB+ik9ISaHv5uZFLRNl9KzGw+PMdO7GO2takn0hQr9Jpn6KJk8IUvDGnKSqVon3dnX2iVeh82Ut5rpHaUNkaylNYywInA4iLppdUS4njogQeaabsBneJNtlckw8T1kuI+4577zLboQdSngS3y283+9N477wwHlAta7QKh3dj9/Fbi1QKrUoy2rj/2SPpCaoT4HNxjT3mmFMuhnn66mdxjpKQdtCHYaj/aeKdi6hjDXUh3Gtuvc8s8H962ldU8pPJNFtrXfZDg5GSYsKdBY3ccjSyBYukltg6UvbKPrE1Ths551RoRpAN7IOfoRxYzYtWFduimvNlKQWEbfX1BuscpzSrt2JTsftvE7eTjcsPmyl1DSU9tKl4IUzaZKZsq/6gv7TrEuRX9st3ILmlfS3kCUktJ0jJIpTDZLNzN2djYE+EabmXe7AzOzTmZDJ8d89iweb6on9h4eIbhrlimuG1TSHMa4hCz5yhFs5KuE04IaS5DtjxCFSzlv/V6LIZIm0owamtmuTGSwr6epXmWd0reh+UxnR1W7HNelJM6RwPGYCecFthhFUsvU2kpbgeznk4YW4mjW+aqyo4doV927z4sOsempEzR9v+jj7JvQxnxK4F9bkovtyIdPw9tJT/Nhgru2nVcJl+Az8Fl0UoOWYfUNGvrRhUepa7W40ZkkqsxD2F92W3q09ujanBB5cPmHhDnujDN2+fjfMXL7dhmvsZurDBoiPqyWIbZ1usZ1xE2vn1WnKMFZlareHLnBG7LTxmo/X3sAScYpM9xpguTlWGqLMuNki6S9ICkQiN/s79cIzvHJGm1pNdo5ENZMfrfRkmvKMtysquo4ziO4ziO4ziO4ziO40wZk/5YJkllWf5I0tmS/rNGNhEVif+2SPqwpHPKsrT/SO84juM4juM4juM4juM4h5QpE9eWZblH0p9I+pOiKE6U9EKN7C+uS3pa0r1lWd6dKeL5jd3vnop2BM1MHC8m3srLnc41uxWfEdxWrAhpbmG+g0paxSFfkG+QkVEUS6gyYrgoH+WDfKZxxkm9UG4POdsScpNGTpJAHR/SQ6bodrZLs3odC4IEq2b39kPqU7cSMdCbiCQZiR5zz8p94jYfJJENSnrOPjvc/8EH42sYkZFp2pYpO6s1qCDxssoTNuVCaACGOzqjfDVG9mHHUDuUi9SJc52U3UnJaJgdGUk0/7Wim+PPapRyktYq5Np0shJNlm3L4phFOL2GGbN8Op5h+9hIlHVEDuzkPGTn0p/9DIWjdGpFpEhL1gnpQYMyPmWgdizTf6we7TbXDSnZli2P4yIXeKqqdPNZqKk4VVg5XFuyzIoRMEmkuGdf2gmBDwLpdDwbxGtMjWHM3vzmOCPnNUbUpfwFEU8te1a/ItRhhbFk2iHTfAZr03x22NqQmbsavI51ha3XzNxyFs51vLV1ZD5bVU71titYPKvHYUnJmxTb5L3Lg63Z15JrrgnpgQEafPi32E2bXhJdM15aOAJtXRofKLoaj7X8ddeu+dHx7t3BkDmuxklT78a/KXMdoQTLVpzk9GIoYzEiyy5ZEkaJDWj98MN8DkqQbR3YF8em61cJKzFM22QVzj47rM2MMizFr8aMyDp3bpyvvz+UwdcadssNN5jCRcnnzkQ6hl3WGDdFhnlkYIAVfEGyPEaTTUktpdhDASXWfFZGcbXnLr44pF//+jjf/CMZxfjaZrIG4++1A8FGV0xBdzF0rWH/RuAxHpD9Z18DUwEnczLTBQuCG5fTMZhya33U55mTW48O42A+vW9YmT8m6gVskxyUXtq1Getp5GbjBz8IafuSMubWYLhiVNOZivssm7UckF4ty/JhMV604ziO4ziO4ziO4ziO48wApkSG6TiO4ziO4ziO4ziO4zizAd8vOF2wW2cpmYDciFvx7U5ebtmNvoJSHiRJy5eHNDUJf/RHzeQWIx3DxunIaKyigbu5WR8rIuMmXUqbehLXS1IddaqzfeyWbcrhogJQc7t3OiHP6ug6JcrWjmJtYQ9a7zG0GLcw2zqxPqb/KJxMRRIdF+nvuES0pJzcLxVt0Eo3qffKRSDi8+XCrFUIPUZpgGT6ZVu4b80UnezARKS4cdfQhuy4gsyQOiKORfuvE6zNENqxbtuAETrZXnbeaIecjDKVj1vxOYfYcQV56yBkvYOmaM4vfHLWxsZ8e4gHaK/Ft9wS5etGZMRhyMnHydM5L6I8SqIXmOeLWotSdTu2IX9YvjxI8qjuM4EMI3PiUMzZPqVx848xkgc8UwfkyVRxVY0cOE5pUMWGcnLritIFqMGlqzeEtI0sbCPajtJh5sUOaod+5VdC+i1viS/84hdD+stfDulbbw3pjAyTw7SvL5alPQZTWbLixaFuMM/GEEeIkpL2xg03xPmoo+Oz09YtdEOAQWftk1MUpwArc+R0ymWbz2cCe0cwX0pCOZIv6CYHBoJc0C6F86EkZEDInOeC6soaSuDCQC2KI6Jc7L6swp4n+SA5/TY1YrzerseJqObLli1upq0nhbPPDm382GPhWZ96ysqrqKu1kTInSiyjPeGERYl81aB8kF4ZpHhuzfU524Vzbvx6MC+6Ztcu1pttEttGdVh+xnhBKiJy7lk5LmgylKlK8WtJ1qYjfzHV6l2ZF2D80d7tGOEAxLjaBpWidWMQuyEIaSthTS6FOGGbu52/K6JgtrkJhQZa9X2RUdXtCwcfkC8w/P0FRgo8dq4oqt3fcaYZ/rHMcRzHcRzHcRzHcRxnorjPslnLpHq1KIqH9p9rv5RlWZ40BeVMmMMuulZnntjdPL76Y6u0acse/fyH12vpcZ169rl9uvyC+fr4u8c7FN20ZY8u/9A63f25lzV/++jn71PX3Lo++KbwOB//xwf1W395j566+lXqO2qcu0bHcRzHcRzHcRzHcRxnGjHZT6BLJJUTyM89mOXo8USun1LmNg7Ths++NPpt05Y9uvDMXl37R+fp2ef26ex3fluvXbNALzmzN1FKmkeffFY3rN+mxfPn7j+z4ziO4ziO4ziO4ziOc8iZiv2CExUhj30cm/bi5blzDtPKZUfp8W3796HUivf/zx/rf/yH0/TzH163/8zWaQedczCGOXyNdNGhjIwfIDpjsM5GEuL7YfiRsh4oUp4FOs3xYOKcdWFA3009iWt6rD8DtgMdLlinATy251pdb8F92/ElYBmGf6BaKia3FDvTSPhQk6RF11wTDp6B74ucXzFuDaZPA1N2VCembZxwcvTRIU1nHvb5Kju1mDhRuG3cZ+dQbKHdKV89OXtI+Vqz8PlQXgPOLxpmzEZlsx2tPzSWzXOmn4cTMVtq40Z0gqpbyFP+pqw94ZkacHjSeCb2Y9ODNmJNaSV2rmE+DtNx+3dx39rJJ4ffH300znfTTSFNnx0XXdRM9n3zm/E1DMVOe6cPESnyi5JypcLpTZLmVvw3Fpou09YWeJSa16yflpRrJHt9I2U3OXvi2oPaWVvlucbu7WqJne/o3IxrKftVivvsiitC+ktfivPBZ9kw/IJxvct537nqqpC2psEp5STssT/ttJBevjy2/kaqY+z8RPu8+eaQpo836wgMZZ9+8cXhdzOfn/+OteEARj00FP/DIruG1WOavsyk2LUOb2vzDQx8H0ccQCHjvfcui65ZtUoHEFYwzHFleXSUa2go+PShPfT2G7HGddeFNH0xPvhgSB8dlx05GkxNDpL0wx+GNNaXpa98ZTN9+eWxfz32GV+tnnrKvmfBEaLMe8AEOfzw+Prcq0gKzilr1oT5hC6XpNi/7FkrYLhmwuvrC6sMX+m4nNtXzxtvDH5jn3qKY64/We88LIM+4ubbjE127aJ90lda7F/tqKPCs3O80Fbf8Y64bI7NU3R/OPj7a+OMHNy33x7SJ5wQ0vY9ouqg/du/DekHHghp6xf3kktCGgbFtdm6Hb0Wj8Fl7dFHzTudwvtG/BhhDl8WT0lJP2eNzPJ5/fUhvWBBKHvJksVRvmXLw3Hni+5JF5iqkPVzdscdIc05hfOT9Rs9NqdMxR9UjnMImNTHsrIsK0XTLIpirqTFki6R9AGNrJ5/UJblRyZz/8ny7OA+rXzHtyVJJx43V1/7g3Oj8zt2DeqBx57RS1/YelfZg08807xekrZsf04ffNNSSdK/3LZFx/d16IXLulte6ziO4ziO4ziO4zjODMZ9ls1aDkqvlmX5rKT7JN1XFMXnJH1D0oeLougsy/K3DkYdWtFKhilJt9y1XWf92rd036PP6HfecpIW9Lb+N+OTFh4RXf/Rz98nSdozsE9/+MWN+tc/Of/AVNxxHMdxHMdxHMdxHMc5IBz0T6BlWe4siuIXJD0g6QNFUfxLWZa37O+6g8mYz7L7H92tNe/7jl574QI9Nzis//CJuyRJv//2U3TWSekdYw8+8Ywe3rJHLxzddfbYUwM659e/re99Zk3yw5ty8h5uJ6a8ktuWZbbvcp8vtzpL0oYNIQ05BgUAO031+LSRnEdpuOnf5mMZlLJEe/iMFG0AUtU6pIj1u+6KC+deeMoCucfahlFPyDq7rvjVKFtKfWbhudp13wgHlJ+xH+xFKb2DFG8p53Zn/m63O1MrwL3hRx0V56MWjPKO3IMzhjX34ufCVFMGZKWRFbZq127+t+i4k8+Evu22UlBKjlKy0Jx8lHWzmiDWgfaUC4/Ostn2VpZNfRwlOMaOU01Xr1faBJyVa0ZSOc5P92Brv6nPANqBNbDzy0AiTfGZfYKUDHPQ5OtgnTBnDnBelTSM8djJcUU9JOUbUtzPHBd2bGNOOuutb22ml7ztrGbaquFSw8eaJ6c7yvhqm4ykC/Xr6grSDNrMs1RPZc7ZKaDRkZYspS6iPVWVnlAOqVtvDWkrP0yFtF+9Os5Hec/VV4f0X/xFlG0npCdP4veqAjNWj/0lxf3MKYXX3GPUMxde+OJmeuE7MLfbtqdmje3Aud223datrcsz0vlI5tsTVm67tLIITvtsByt52rUrzHf9/WFezKnl47eUIHOcb1RpVpGVgvWuvlngVKSD7K4ojohy0ey4NI9rPML3IT6EeQ8ct3akfmcHfPe7LS85C5JMSbrkkiDLZL0/+9kzo3ybN4f+W76c8thq7gBoW7/2a/G5N76xUhHJtex1V+B3O8luwDENwKzhL16NDoRR9vWFFWvNmrjoHVBKXn893AHopy3ruX8okW09MMa3gV0dx4hlj1zy+IrIV5xafyyJX7IEb++3oh3topKycb7nVh2klmgwgYxbBD5UZrqLnp3poaHDonysekpeaamaL3UN3x1svXnuFa99bbXC+Z5jK8T+S7W3nTDHjotp733JcVpySPYLlmW5uSiKayX9gqR3SZpWH8vGOOWELn3oF5fp//vSg/rSfz0n2kW2acue5HVnLu3Wk197VfN4yZu/qfX/+0KPhuk4juM4juM4juM4jjPNOZTi2h+P/v/F2VyHmHf9uxfo4//0oB7evEcnHmddTDuO4ziO4ziO4ziO87zFfZbNSqZDryb2cR54dl936bjf1q7s09qVYY/t3DmH6fGvvHJcviULOnX3514W/fbRt506Lp8kbfryRS1/j7DaDG6Zp/SS8kqzNTwao9hePmzKrj39dDgHeRd379o9cDxHOZQVo/arNfYzI2VYrHYUXcxuxaYMk7/bMHLczs09yDlpI/Udxx8f7mNGSCKQaJ7HH299US4SpT1HKPFivSlntPIC7s1ekJHtEMo7aHeMGifF+87ZrkbmFm3fzkk0q2B1O3wmShbtnnS2P7fmI711R2z981clxFZWTpCQgo4b24S6K9bbls1jSnlzZYOqEoBUNE1bRoOaEtpgJkIvW9UOnR6kKRxZmPhdSku5u600gHYMeV5HLvQj5Xoszw76yy4LaY4DStmk2N4xJ3X3PRHSi0zU20WhxVi17oEno3w9y4Mcp7eOmfVBYxuoXxceKRVY0Z7jUBovhwu90ckmwoRpbSt133pXRjLMcc8KWc0T5yiOHRtVjXJi9pGRJtJ26Sqgw0atTcAqWBPilMlzlELZ20RLfx3tYDswpfFkmtpIe8y1xrRdjfM7ZMuXX/6qKB+bktVJNb0k7doVbCCnaN+7l1H8OH5Cm8yLA/0lVfH296pKenL44WGd5PJil3NOL1GzXm3WNUruGdWcaWtQNBaOERuJme+YNFBeY6IWvw4hEI8/PvSRVXg+/XR4J7PK9TFyaw1597vj47O6grx8WEub6coRnxnW0JJ6X7RtnHiX7J4zp5n+jXfEetFly8IsctxxwaCuv7713w37oyjC3wVl+WTLPOPbmIYYBsaZZ8bv0Awa/Eu/FNIL67jPZ/4quoZRyCO3MlZDjneWYdhdFCm+3fdDumShvefccaD/+vp6W/0sKV7ec55MCOcQ3jKlUrTXjHtRQkbm4/C1cw2fY+uu8JfY/I7MeOHDbt4cn0tFX2Z0cTNvNK8py/Q9HWcaU221OjCMvS48k83lOI7jOI7jOI7jOI7jOAeJQ/KxrCiKn5d0qaRS0o8ORR0cx3Ecx3Ecx3Ecx3EcxzIpGWZRFIv3n2skq0b2xZ8i6XWS3oxzX2x5heM4juM4juM4juM4znSlKNxn2Sxlsr26SSO7wybKWPzYf5P0uUnWYXZABx6S+uEEoudkhJmmXtxcQwbXrWumt5tzXfDVQ18slLqPMww64DjxxNb1kdRHHyfwq2HV8Tymv6F+1tP4vOJzRD5kTL7aYQjlTGcjzGd9QjEf/A3lfAtUnhPpH4Z+Gay/Kfi7iHySWF8jdErAMnIO1XiOPkmsMxa2C/2U5fyp8V581ueei/PRj0HOiU8V6ABCko4+unU+6/cOx/dvClbE4my3dHSEDbhr1pzXTFvfWMOLwr8d1HbDdxTzWecuHFf0FWTtEw4q6GewNt55VJPID9QUhDCPfJbRJlFX+iKU4jHbg7R1AcTxTD+ItVfCX6S1VfRlBzsNfskkxU5FOJda32Ysgw1x9dWtf5die6fPQI5lKe5POhGhzw/T5w3cq5Ea85K64LNMkb+T9OTFKrBfrRs3krOb6NxQwtHZBMpL5WuwvTm27Tjns9MBj/VXdNVVIc12NXNuB3xydXCuOe201pU20JUOXIZKin3P8DE45dq2ivOF/l+8YkWckWOGN6JPIK7ZkrZhjuqEH5pOrkm2PIy57tXxLNDTYz2bjkBzf/RRO4+F+tEm9+491uTjOtDasZidInlMM7G2z9cIpnPQ3Jm2fo047XfXEVk9915CJ3Y5+FCc43JOmPC+GBkex5sUvROcu/YVzfRtt8XZMFx08cUhXdVPGTkLfh0lSV8MY7b2wQ9OuDzdeGNI23cZzgF8v7YGwDGTWmjNHLL2zb/cTHOpv/32/dS3EvRmk/F3q22J3+NxRROI/JTdcENI27kUvoMHb7mlmbbvBLD26N2/F23fada4ii4DNYjx0+DYyfkAxjVdXeEdzi6fnDeYtvN5yvVlyiXqyH3T1YuArW3Z0kA6ZLGPyvpwOpi/NnOfjG/s5Dsr31Hpv0xSbawxi0KOMxOZChlm0cZ/+yT9b0k/X5bu8c9xHMdxHMdxHMdxHMeZHkx2Z9m3VW1nWSlpt6Stkr4v6etlWT6Rv8RxHMdxHMdxHMdxHMdxDi6T+lhWluXaKaqHY+jhFnnKiiizyMQzb5xwQijLbIml5KnGMOOUl1jpH/fVs252a/8RR4Q0ZBu1w+PQ1IPQPFBh0ol0jZIpSQu5pxnXjwuAzH3RkBEM3XFHqLa5hGX0Ylt258c/Hmfk83b04Pp4k2YUxvzznw9pto+VDp17butzuT3a3BJNO+F9bHlsV7vXnJoASkIoSbDXsE1uvjmk7TZ9aJH2YMt25yc/GefLSAub/MEfxMdnntk6n93vjn3op1xxRUgvX9JMP7GkV4SPF0lmuAVdUi0ltaP81+7Zv/XWkEb7PGHagGOEZzqMrLMvIW2rLKHLwHyDqGt/om5SLMHgGLMzVzTuke7mTa1EieOC2gOrQ+BxThJL6STnO/bls8/G11CuwPFn8/30pyF9/fUhzWey8wFtgBJPY3cN2HHUJlaqjLWDj8omzintmLYqU57r7gnzw+BQ6E1rZ7aJxshKUu6+O6T53FZ+yHGPeX9cG6ekOlbWfdxxIc35j3qlDBdeGNJW2UYTYNp2H2EzsLxfXrMmzpiS4VGbY9qk76abwgHXbTvHsr243pj1IVoy0dxsupNPjmeELVuWqRUcBiP5wprJLmf3UYUrSWec0bJomVeUyKb5mpSDrwt8PrtknlNHXKsbN4U033GkuPHYlxw81gZ5DR/CzBtRYzIfDcquxVjTa6jrB952RZRtsCusoY3r/6WZHl707zRh/vIv42O+Y7Qjw4REcJxN83mpbbOSfQ5OGjUnOTtP3/pvzfRb3xokrFXXX8t73hPS69fTNUoQN9aM4R133OnNNB+JUlnJTKecKzhB2QFDtwGYU/rofkPSAN7dWbs625Hr7wRo0KY5aFetijNy7sKCswRrjx1WrB5vY1Ts0XR60kkhTRW1nQ/490K9XktnBG94Q+s6WFNl91Ft/Yq1yaJ1/5YgnV+w6PToXPcll4SD+fNDGg1Ws4vc8wX3WTZrOSTRMB3HcRzHcRzHcRzHcRxnOuIfyxzHcRzHcRzHcRzHcRxnFN8vOE3YaSRBjBLT95WvhINrrmkmh82W/frn/y6UB+mllTzVuE+XkjxK+qwWhue4B9lGCfrxj0Oa+3+NXHMptvPvxrNTefKYiXLJKDqt42uNnmM0L+yJ5m53+5U4elpu37YyBD4H2shud0/CvdxWkset/dybb6UZPJfqMys34jPlJGvcz/3wwyGNCKHjJE+pEIqZKDpRtCNb1yq6BLvXPCVbtWXzXEKuYpuEyoOdQ0Ew2G3bgfdKtQPHhK0P8h1LqYhiqWM9kT6YNGBPdWj3rLyZMkyOucUmX539SZt+85tDOheViVj9BPuC97G2QekAbZoyPjvOKVnjOLXyX5a9eXNI07ggnR93juOF0l1LThaIc3ORzahkIjj9peR0Nh/DnrLp7VTK+1aOwspCKAehJFOKpe/ULFo433E8n312nI9rXkr+m4FSwHvuic9RzcQ2ZnWs2bEKUbvmohvT3lNRj+25XKczH9cyjhdJp0OevOgdQZ7HIWG7KFUFK8NMeavo7YHoO7eGk4FMyNF6tVn3V1d+PxxwrrdGffXNrcu2dUvJaOmywY55vkdQCmj7j/el7I02bdcrzj3sNKNFa9BAaQ+XtyHDZDRiSTJuRSZMzs1DKsKufR9O2RAN187TMPjeFwZ3Fx947WujbMP1WPaW4tN/HN6I738MjgzQr9Y9yGc/G9I0Lfsq09jwvXBwHSJgPvhgSNt2ZDhZtp1Zpzvo4oXybU6Edm2uCsdF6m8WKflOtrQvseBJOuViNBjW+he/dWVcNm0l8S47XG+0/H0inNVxfzO96PJTmuncMLeR3lOklMUjN8N8w78RqDlNRS6vGlbYcaYZ/rHMcRzHcRzHcRzHcRxnorjPsllLpV4tiuJvDmAdyrIsf+0Alu84juM4juM4juM4juM4laj6CfRtksoDWA//WOY4juM4juM4juM4jjMNKYqiJuk/SfoPkpZIekrSP0n6vbIsM849ojJ+TtKHJb1Q0nOSvinpt8uyfLhF3qMkfUzS6yQdLelBSX8h6S/LsjyQ36ckTUyGWVTIU1bIZ/Mc0Ic8/a03H8jiJ8WcuT3NdLeJTf4I/AA9AaE5PBPISsn7EH6YPs+6bRhmxrF/4QtD+rTTULk58TUnhtDUw8uDTwWGPJYkzZsX0nRKQj8aUqT571q/vpl+CM9tn4/+j7Yj3WPyRd4l4N+Ccn3rtYLXLLjrrma6Th8UUiz6p2+PzNbbbfShhrRpOXXRxwLLtg4ljj46pBH6fOeKFzfT3danF+o3uCB4jLL+CDpZB5bxgx+EtPXXkfCRMmz8brHN+exdbcRO32KcL/ThuM6xZMtO+AgjjXH+MsKo46N2LVlYpaqq0cdD7llhq2a0RLbPsW1tyHgfaomtQs5fVIo9GKfsV+vJhefoc9DeJgobj7kmCvlufaTQSRGuf2hT7KdlNy4bwpS0YsVZcXnLw3Gjblt2FDuPcb6jfx87b7z+9SF9330hTV8/xjfhbthDF9I7TTt0czxy/No5HH5bOHx4ufVfVtVnWWQ3MKgBXEOXNvaaylPARz/aTO655HXNdOfVX43z0U8S+8yObbYXfaBZaGs5X0YJ2F5z58bnkv7HgG0f9gXNbviS2BtgbcsTrQtkAdaRDddtnrMdSN9DrLj1S4P5r3tBsI0lS4Ln0dySwvTxx8f56HK1d1vw4aP1m0I6598y51QvcU3O31DtuuvCQc4ZoPVD2qpuUtz+PEeDsn7z+Bw8lxuA9B1Fg7S2gXk/8nNm5zvWz7wHTJTdeB+T4jXG9GwS+u6q0e/WccfFGVlv3tfY0CDapQFfW3vQxtYvbgfbi0Zt3v21vJrPMvrLPOWCC3CiB3WI17GVK0OtFi7AOeNnMPJHd+edIY33wEFjw5yieNdOxUTtwvmXbZ8bi1Whfdt52trrGPTBZfPQr/Tjj6fvmxqn/L3v2PgaPG+9HlrM+pwjNdSva0n4ffy7Syijqs8yulW1fz72LsH7LP3M5d67x57vwH/TcA4efybpfZK+JulPJZ02enx2URQXl2WZeIkeoSiK10m6StIPJf2WpKMkXSnptqIoVpVl+QTyNiTdIOlsSX8u6R5Jl0r6X5LmS/roVD5YK6p+LHv5fs5fLukDGvkI9qCkr2qkAbaN/na0Rr4cvlYjf88Na6Shr21V2FTyk5d96UDfom1ec++fHuoqOI7jOI7jOI7jOI7TDs8Tn2VFUZwh6b2SvlqW5evx+8OSPi3pzZL+IXP94Rr56PWopAvLstw9+vt1ku7UyMevX8cl75B0rqT3lWX556O//VVRFP8s6b8URfG5six/OkWP15L0Z2tQluW3Uv9JWqGRD2UDkt5ZluXJZVn+57Is/6Esy38ty/L/jab/c1mWp2hEcvnc6DVnjJbhOI7jOI7jOI7jOI7jTD/eopGNUJ80v/+VRkQkb93P9S+TtFDSZ8c+lElSWZYbJN0s6U2jH9TG+MXRcv/KlPNJSYdLetNEKt8Ok/oEWhTFmZI+MXr4C2VZfmN/15Rl+bmiKJ6UdI2kPyuK4rayLH84mXrMBihrkuKt5qktzTkBSB/1CVZe8upXh/TZZzeT2zuCrMzu2Oeu401X4z598ffWFZAC9jIkvQ1Bzm3o2Kq8EDKGJ+Mrktu8B00+StY6sb2ZbUpJmIVCqwVWH5Lavp3hEaQ54KzyaDnkCqz3uC3Na9aENGRqG4KaVatXL40uaaCVWHR3l9kpm5J3PPdcSG/dGl/DEOnov/vjXFE/9SDdZbfcJ+SRZHvmXCfGUreVgOS2iifuv2TFec00u99e3hgIljfcFSRGUTtae+LWfNTNtkCkckPa2n4Vcv/wVVWSyfr1IN1v8nF24HzVYeVGJ5wQ0pALDq88J5Q1FD/t/ZuCHIrNahVOlB5QTWPbgVPUggWh5uesXh1OXH99fBHnsQceaJ2WpJdjczbD2DO9bl1cH6SHMEb645K1hnViXU89Ncr3o8d6m2mqbNjPVrmZUtrlbIgyNV5jhzn7rLIU+Morm8nOT34i/A55pqR4DFPGbiVrnEsvvriZHOzqjbJRhf40VIp8ptddkVYdvOricG7JknjNpE3SBqlQMq8HevrpkGZ72TGSlDPlOpOSPGLXPh6zXe09OdaxjvTimpdyHEjSsjBb7OkJ7yWdWx6K8111Y0hTSkYp6RVXxNewzwllVtJ4/dEYC6ywDHzqUyFNG7RtSvkSYadLcbsyTaOx11ByxraHuwtJsVFRMsr70OWDFPc5+nnQzF20Qr5PxSLhauw0x5X+hV8ZCVtuEWCf8V3B9Fc0yvCyzNXdjrwG7KsOCWUfJxdJes/7xte5FR/7WEhThvnxjzeTtg0WXo9YbVwouSBIyXVtAIupfb7UO8o4aJN0ucC+aFeGSdvluKArDCmeaPmsfFmwf7Nwok25Y5Fi++J98XstJ/mv+lf5DTc0kw3Wzdj0qlXh/bWqDJOuAuyr2p6BYFOdvBfnCtsmzmzjXI38Gf49/liW5UBRFBtGz+/vekm6vcW5OyS9QtIpkn486hvtHEnfL8vSTgzfG63H/u43aaquOyl+QyNf9b5d5UPZGKN5b9bItPDuSdbBcRzHcRzHcRzHcRzHOTAslLStLMvnWpx7XFLfqJ+x3PVjeVtdL0ljHkrnSZrbKu/o/Z9G3gPGZMW1r9CIg/52PHjeKmntaBmO4ziO4ziO4ziO4zgzilxQhhlEX1EU3Ir8f8qy/D847tSIO61WDCBPSvwytj27VRkDJk8u71j+zHbvqaGYTMTNoih2a+SL30fKsvzY/vKbaz8s6fcl7SnLcr8hpYqimHB00KIoVP7iNRO65mDymnv/VNes+6YkaXCo2gDLyV8Y+SaK/jMuZt4UUjWMWRtOD6fDpDMVbVe1b6tyIP1HVunOqb5/O21sbWMqykhxQMePU52ccU6xUVa1jVSV2gjwOo7UIyUjdRoO1fxZ9dnbyVe1m1P5ql7vY95xHMdxpo5V552n9evXF4e6HgeKVatWld/73vr9Z5zmHHZYcWdZlqtS54uiuEvSsWVZzm9x7p8kvVHSnLIsW34sK4rizyW9R9LpZVneY879hqT/KenVZVn+a1EUR2tEzf9PZVmO80026tZrY1mWL7bnppLJvk2Pfel7YRvXnmXKcBzHcRzHcRzHcRzHcaYXT2hk99mcFueO14hEM+dS+QnkbXW9FGSXOyQ92yrv6P2PVms555Qy2Y9l92kkIsLlRVGcUvWi0byv0YiE0/oBdxzHcRzHcRzHcRzHcaYH6zTy/eg8/lgURYeklZL2t71uLCLMBS3OrdZIXJf7Jaksy2FJ35d0douPc+eN1uOAb+ebrHblKxp5sIak64qieE1Zlj/JXVAUxXKNRMKco5GPZf80yTrMCqw8pB3pCZl2MpI2JFS5Z2hHYpSSqR5oqvbfZPv8QDLd6nMw7fugSZqdEaZCw3iQSEVxzI2XVL6DqDJti8l2S7vyzHYklS63dBzHcRznYFGWM+r1dTL8o6T/IulKxT7r36kR/2F/P/ZDURTHSTpK0iNlWe4Z/flbkjZLekdRFH9WluXu0bwv1Igv+8+VZbkX5X5J0ksk/bqkP8fvV2okEO8B/4402Vfw/6WRaJYnSTpR0g+KovgHSVdL2qCRKAXSyDa5F0p6raS3aCSCpiRt1Ig21XEcx3Ecx3Ecx3Ecx5lmlGV5V1EU/1PSe4qi+Kqk/yvpNEnv08iHsH9A9j+S9CuSXi7p5tHr9xZF8Z808tHtlqIo/kpSt6T3S3pK0kfMLf9K0tslfaIoiiWS7pH0cxr5pvSxsiwfPgCPGTGpj2VlWT5XFMVlkm7SSCjQwyX98uh/Kcac+22WdPl+dK2O4ziO4ziO4ziO4zjOoeVKSZs0stvrMo044f9zSb83Kp3MUpblV4qieFbShyV9XCP+678p6T+XZfm4yTtYFMXFkj6mkQ1XR0t6UNJ7dZA2XE1a3FGW5QNFUbxIIxV+ncLHsBxfk/Qfy7LcMtn7O47jOI7jOI7jOI7jOAeOsiz3SfrT0f9y+d4m6W2Jc9dKurbi/fo1EkHzPROo5pQxJZ5QyrLcKukNRVGcJumtGtGWniJp3miWHRpx1vYdSV+woUId6amnquWbOzekrV+Wzo6QruxnKSWwbtfBTApb2YRTGdZ7YCBdXO5c+jZpP2V8jL1QSs8/ptp9cmxp45NwR8fEz7Xj18i2Y5XuzNWN5VWtT1fXxP3H5fp/qn3E8dykx1WOTCWq+tg7WD6YUvWx/ZJ6pEZ9ituuqsOvNgYJi7a34fMyvXt3tfJyVTviiJA+/HDmS9tC1cdLjVP7fJwL4zrE+Z59NqT37Wt9n9xcw/Ty5a3rLEkbN4Y05yE7J82BG1iumZaOjtCWfKZx4yhV2Yq2NThUbe1pxwceseMqd9+DRZXhfDB98qXq09kx+blzz0Bo79xzp85NhR++lA1NdX3asc/urom38c7daRuebHnTwRekpaodpsZ2bm1NXTMVfpamsi1tfaq2Ccdfu/eqQjvjNLfOZt+HEqTsuKrPz1ybttOOuTZp5/lmIs8jn2XPO6Z0qRj9CPa7U1mm4ziO4ziO4ziO4ziO4xwsDv0/OzqO4ziO4ziO4ziO4zjONGEabkJ2LCn5S27bayQjqbr/fir2j06yjBoeql25UZUq5PJQRjQVTLZZKYWSJi/DbKc+rEPuPrl87cg2ppp2bGPSdZ2CB0/JK6vKM6ca1od1qKi2Hs9k5eC5m7ZRRtV5iBx2WPpcO9Psc89VyzdZ6V5Kgi6l50Kb75lnQppyy127Qjr3PD092So2qWomlGGSnH1m18wqHZhp8Ml6NZjyOWkKmGq19IGqw8FsO9p7O+8Rdg7hux+p+h6Yk2elxj3rbevDc7m5JjUXdnel65qCEu+pLs+2bzu20Y7sNUdnxs0FSbmiaGTaZCpf99tdZg/k+MvZO0m1g13XqlDVhrrasNUc7fTlVLT9dFh7pisuw5y9+M4yx3Ecx3Ecx3Ecx3Ecxxml0jfioiheyuOyLL/d6vd2GSvPcRzHcRzHcRzHcRzHcQ4lVTdU3iypHE2XuI6/twvLe94yb158nNrKSQleNvId92hPtbxyKvbhVtCbNIzekHKvXETGKlKW3BbySEJQNcpehlS2nGxrslGxrG2k5HpToFhri+lwn6qSp7TqKr0xt3Yg96qjQgf0PhWhrdk2Sc5R7egGDtH+9tzzUVqRi9BKCWI7EWNzki6Wl5tTUvWpKtWqKn1nOiUjy9XBwnOUa6aihUr5SJmkNjQYDqZismiDKm3c7now2emhneWv6jVVZUTtSKuIHZc5e5gsVaWXHKe5KLMpuWVVFxxc960MLNX+Vdu4akTyqSY3p1QhF1F+skzWPciBZrIy73Yisk5FvqqkxsgUvMYnJZpV3aQcSKquAVPRL9PgldNxDjoTMftigr87juM4juM4juM4juPMStxn2eyl6seyv53g747jOI7jOI7jOI7jOI4z46j0sawsy7dP5HfHcRzHcRzHcRzHcRzHmYm4+niakPNVQbLh7as6ETmQfoAOoKA95ztoouSaJPJBcBCdeqXCslcl58Mu1Xa5dmCI9VzdUmHnc/km63fE0o7/lar1SfkUyvvBCG1c1a8Y/ctk/RFOY6cR2XpPlgP93GnndJUub8dvSFV7oo+jnF8knrP+y1LX5cZL1bGUcpFZdYzRz0uuHZmP5Vk/MSwja5MH0BdZVar4lLG/Vx1nkx2PjUxfTDc/mCkO5v1T49SOxZTt5t4D2/H/mFt7uEZVnYc4zllv67cp54dtotDH2FSUV9WHU1X/Y6m2qzoODtX4mGw7VO2Hduag3LzTzr1seal3YNp01XfHHIeib6v6PaxaRuX+mwrHcI4zTXELdhzHcRzHcRzHcRzHaYND/Y9DzoFhcttzHMdxHMdxHMdxHMdxHGcWcVB2lhVFcZqkd0haLulZSd+S9NdlWe45GPefCdR274x/qCKpzO23rbolto292Cn5hdSeVCCZLxObPPeVt8ED1LvRkX6GZLNOwT8T9PVVuI/ix+U52wypMgaHwjM16umt0+1IBUhuCzq3sVtpVCqkdm1oMP6hgq1V3dVdtftSUtKJ3De1nb8dybC9Jiu/ji+c8L2mlJyOrw2dYm6uqVqFytNiR6Pl7zkZAsvmmOs0ts7nSNUhM91FtCst5vFU2HsVdu9Ol5WbK1IsWBDS0bwxzu6QHkgMzFaVSv1+AMdVagmuPOZJO+tVm2tcVXl5NKrQ/o3E2mVpZwohdlwdyCnyyCNb/27NrjaAV9/onaeN+bPNxbCW6PfU+5MkNXiM9yn1ZAZwdJ+JN3533fyZEJXXNeHyOofwrt3m613rlSL9u2TajmtcYt3ZH1XnzNQ1WaldFf29tdWqtDPf9PRUy9ff3/p3Y8ecbdj6SfuWNIicnFPorkQ6eDuLUn2Ze/evSjQ/Wdp5wLHKlmV7FXKcQ8ykXhuKolgs6arRw78sy/JvWuS5QtKXJfHV/bWS3lMUxUVlWT42mTo4juM4juM4juM4juM4zlQx2X9je5WkVZJKSf9mTxZF0Sfpb9X6H1xOlvQVSRdMsg6O4ziO4ziO4ziO4zgHlbJ0n2Wzlcl+LHvl6P/vKctyU4vz/1HSkRr5mPY9SX82+vuHJa2QdF5RFK8py/KaSdZjxvPQtu7omFtsGUmJkYFs53VyK3UXtqdTCyO1FzoQ5yLBRDvhVewxHna4o7OZttUmdutziueeC+mUTM6e407us5ZXu0+Oe+9tfZ+cBLIroy6gFInPEW2dzmyRb2TCbw2gdynPYpvYurHe7LOc4onpxX05bVxricJjZj9qOxEGU/ZgI5dVlYuxvIYGW2cy7U15Xiqi4AghXwdkGzZf40BGowQpWeHAQNxfdfTfUCKSmhTPZbTjWm5+qiIjsufaCVmJylpJ165dIf3cc6FNrBqE8xXnJI7lnNw6Z3cpe69qq7yvnXP5HMxn68p8F1/cum65+cCOuVS+O+4I6a6u0NMdRsrEOYrpujGZzg6Ml9wArLJOUm9vqCyTYQdUDUtIqkbIbnfdTlFVK5nQ5Y4bl9G58LOVZefnzBFytjXVcBzk1vMOvOd0dmXsIfWAVd/b+G7V1Z3Mliou954UVa0/zhdPpWFsdrYhEds51Bkds+zONta7nUq3Q2oJsGO2cuTqxDVk3BpeccilpoDGxJWpeaqG+yQ5+2ynvMmS02In0oPmTSL1N0LOfQL/Xku9J0tSR0ewjc463h0zbcL7ZlWqvBkvyqxX2T++2gkP345m2HGmEZOdnZZp5EPY+sT5N43+/ylJF435KCuK4jZJD43e/42SnvcfyxzHcRzHcRzHcRzHcZxDz2SjYR47+v9N9kRRFMdpxKF/Kekf6My/LMvHJV0vqZD0oknWwXEcx3Ecx3Ecx3Ecx3GmhMnuLBvbx/lMi3Orkb6+xfl7Jb1G0qJJ1mFWYLfRpnatVg1emS2syoUVJU9TDSVY3V1pDQAlOHYbfEraRnK7gqsG3qkKdzvndjenomFaKOlieu7cIFfIyTgj+YRpH9YvpQjKbTtnvY86Kj7HSGHR82UigNW6WjfEkiXVIrLaKGspyRmlOpTJSXEUwVwfRbKNjmqDkxH9OnlNzlD6Q/uMky/lOn4KYfTeRkIyJSkjs7Aa5MQ1HKjtRgGtGF0zqXLKdAVtw9rNRO+Tm3fYrTYaLeuwbVu6PF7HuqbGvBTLnVNqDklasiSkU3Or/X3OnJCmXKUqOYknx3NesRbsoV4P82c9sz60E6Uyaq+OtA02JmvvUx0Ns+q5nBwn9UwVX2ByY7aKytROiVWjzrYD70WpVi6CNCMf2+eppdquaj/jeht1ejjh4qDqewjJRbqdbHQ+239VZY8pqkrac+M86x4gQSp67HjXANUane1S1aajvmjDBcuUR+WdaullqryKPkH4vphzi1D18VJ9lHN3sHRBtTmS5fF6G0m9oyPIjhtV3w/5R0vVhqgqyZzFuM+y2ctkd5aNeTU6osW5FyPPd1qc3z76/84W5xzHcRzHcRzHcRzHcRznoDPZj2VPjv6/lRv0Mef/PyrLstW/zY/tM9nT4pzjOI7jOI7jOI7jOI7jHHQm+7HsBxrxO3ZJURQ9Yz8WRXGOpLM04q/sW4lrTxz9/9ZJ1sFxHMdxHMdxHMdxHMdxpoTJCsa/Kum1Gtkl9v+KovhjSXMlfQx5/ilx7Xka+Zh23yTrMCvI+bSgZJy+WOirRpJ6e0J6e3/4DtrRYXxTJDTVqXDfIz+kfYQR+hfJuSdJ6//DfayvINZpKPKrMXE/RLlI0vQn0G19ZrUhSGd5O3aE9L59cb6UTwPre+gIiJ5TfsCsfxLWuzPqjPh5OvqCKjrl98e2Hf2m8ZlyvkGOOaZ13aqS99GR9jvB46p+Pjg2Oebybv2q/jtEa5umnwkp7UvF+vOZrD+Xqgx3dbf8fVyUeNhAzlceGTdfNQuLf0/6l8mQa7sqWF8jfF76C2Naisf9z37WurxFxnsnxw9djVj/XjzHNunuituEawJ9lrFfNm2Ky+Yx60ofZbau7VB1CtiypfU1diyzTVg3uw5xbLNdc/4Iud6k/BBZIh9OQ2YzPR+EDxgNmDb99U3WQddUOGBJ+d1KGa45F/ntMobGGaGR8pljfGLWO1rPXZbU/JCba1I+yyy0u6QfKanagpUzVpSX8lFmb8txbl0csWiu+/PmxfkiG+9HgfSFVJFx7zJsh0n66BznI459m3LaauuQy5e6We7leNmydBmgtu3JZrozGheZNkk5obRUeXGu6m/MtkmVydna+vJW4qUW8PmqOqdDPvr0GqrHHoJo77GPsLhoPh4fndfYx4u6YlG1dh2I3hdb31+K/ctGN1qwIF14VTtJzUm2z1euTJcxi3CfZbOXyX4s+5KkD0p6oaRVkq7CuVLSjWVZftdeVBTF6ZJOGs1zxyTr4DiO4ziO4ziO4ziO4zhTwqRkmGVZDku6TNKdGpFj8r8Nkn4pcenbkf7mZOrgOI7jOI7jOI7jOI7jOFPFpOP2lmX5RFEU50laK+lsSYdJ+qGkG8qyLDP3/VtJg2VZHrSdZVue3aEr7/wrrdv+gObUDteSI47VJ1/0Tr3wuvdpefciDewb1JH1ufqPp1ymX1l6kSTp8w/dqN/6wed0/NyjNTA8qP+w7BK9f/kV48q+eetd+vg9X9W1az/S/O1tt/+ZLj/+PL1h8Uv0a3d8Wuu3P6BS0ilHLtTnV18ZXW/lL1Zq0wq7y5gyTMqAcrv0U7/nIi13dKRDnad25eaiD7dzTXsSz/Q1fF7uOl5odyq3EeqafZHb0cyiKYHM7SZP7Yqvd8WSC8qFKC/JfS2nxJOyrXFSO9x31650eZRoRlLXqmHLwa5d8fNRHplrL55jG+dgO+SqFkmtIK1hOPJ2I7SzvSgDozRAkuYfo4MCJQWUFNFOJGnOnJC2smPCvqgyP1nYxrn5IBfdnG2ceqac9DanmuOzU5LJfLYvuQawva3MgsomPsPurnh0P/poSD/9dEjfe29IU31h60Spla1DFRlmbt6o8rtUXf2Ukqjk5v1nnmn9uxTbZyzXDG3c2ZGW5zUEKVlOG15VwxHrQtPXpx4+t4CSXH1Si0+uo6v6ReC5jAwzeR9irqHdxKeq/dtxI9NclDx1JaTq0gReI1IvZan+N8ecF637jXbMgXDNHXfNQEU7boc23sFSjDfv0F6NlHzYHqdsst3FviqJeSPlIkGSalUloyT1fLl+yJ1rR4ZZFfosyc1JJDEPdfR0tsg8AtdcuxbymPN+T094Z839fVXVvlkHlpeVLbdD3ifBxMooisnVxXEOEVOy6ox+FLtp9L8q+d8/FfedCGVZ6rXf/kP9ytKL9OU1vy1J2rDjIW0d6NdJXQv0g0s/JUl6aPcWve7b/13DZam3n3SxJOlNiy/UX5z7Lj393E6deu279IYTXqITjpjYX6V/9qJ3qPvwkcn3A3d+Vn9x/7UjnxUdx3Ecx3Ecx3Ecx5lxuM+y2ctko2HOGG7a+iMdXqvrXSdf2vxt5bylOqEzdji6tGuBPnHOr+nT918zroyj53RrWddCbX52x7hz+2PsQ1lZlnp236AK/8LuOI7jOI7jOI7jOI4z7Zi6/czTnLt/9lO9qPekSnnP6T1J9+58bNzvjzzzpAb2DeqseUtaXnfLUz/Ryv/7vpB/z1O6/Pjzmsdvv+OT+r9P3KnTu0/Qn57zq7p14/9snjvGbFSrolyoqp7IKRxS5LYJ53bhVt1dnnq+qoqLXDukpI7cHp1rkyiSnS2MlcpFZUKBQ0Ott1+3K0uyUrdW1bFQOktsfKwoMhe+pVNOl1Mk5CLKJWWPbfxTjI0EmyouF2WWZeTarh2ZcEoqaaWIVaWgKVnZdIDtmOsXPnsuGm1K9lgx6Ft2TsrJQlPR63JzWqov2umj1LjeXx1SEfhsPkbh3LgxpDdsCGkrw2QQK0bAtNEwU0HpcmtFLrJzipQ8nRGCLbk5YEfi371sfaqsf6dkgtgxEmHNGkdq/qsavjkXgjFliLkJL2VstiFTumo7qVHHTp0+db1TIfUhGZncXvR5JJmqp2W0lDPmoujW0P4dfUEOl50PGAE1N3klJGu5KJdkXORHyLW6ulqX0RjYGf+A+nR19bYsS1L8EkWbbCMa5rjQwmwTG0K4ApEkOmdbjOJpxwufKSVtzI3ZXFTJqpEfc9r8FFV17NYnwBhcpLiY5siFb06l7Xt3LnIjqdomFSTkdp6uIzomL7fR6lnc4FDrcZX7+6qqS4lUumH11u1orIm145TPmtQ91V7kcceZTkzpx7KiKF4i6d9pJDLmMZKOkPTfy7L8a5PvbI0EAdhRluXDU1mHqcA6WvvHR27RTU/+SPftfFx/dd571XFY6wnwwmNOH+ezjHxu9ZXaN7xP773zf+sff3rrVFfbcRzHcRzHcRzHcRzHmSRT8rGsKIrFkr4gaQ1/1sh3p6NaXPKnkl4m6TFJL5iKOuyPM456ga565DuV8v5g+4M6rTv8i9WYz7Lbn7pXl33rv+nShS/S7dvu1X+760uSpM+e/97K9TisdpjetPhC/ck9X1WxoOK/BjmO4ziO4ziO4ziOM+1wn2Wzk0nvjSyK4lRJd2rkQ1mB/3J8ejTPoqIoXjbZOlThFfPP0nPDe/VXG/9f87d1T9+vnz7zZJRv0+6t+uAP/kbvPeU148q44Jjl+qUlL9en7vsXvfaEC7Th5z6tDT/3aa06+uTsvcuy1MZdTzTT1zz+PS3vnvj2ccdxHMdxHMdxHMdxHOfAMqmdZUVRHCbpaklHj/70VY3sGvuhpISYWZJ03ej5IyS9WtK3JlOPKhRFoa9d+F905ff/Sn/8k6vUcdjhWnLEfH3ynHfqwd1bdPZ1/0kD+wZ1ZH2u3nvKa5qRMC3/+fTX65zrr9R/OeONOvLwdGhhUqrUr9z+Se3cu0elSr2w50R95rzf0L9/8DPNPNb1AmXidB9Q1WVALmoyXY/Q7UjOPQl9uFT1JZaqjz1meamo0vaanAw/Jamnuwzr2oVuViI/NjmnARVDZ9OnQa7t+Oysz/xjYl8qewZaf+OmOxjrrqEmlMFnsA2Bcw08w/zD8axLeqJLovD0YJwPGBj1cAfGTv/E/ymmt2NP/EPCgUP33EwfRY4n0GAZZ3Kst83G56WPhpyZRCG/U30kaU9HNb93KduoStVo61WjyafKs64uUvnYRTlfebnfeVzVtUuqbvb6qpHq+bycczn8rKsalp0LVd/dsX/fQ1Lsp+xWeAG4/vqQvuKK+BquSytWhHRVn5apPFK8plR1pcL1j+1j/caQnHug1Dpr1z/ma8fXWm03fD9ZHzA8TvkUyvmNyRl1yqdM6vdcHSxssFxDsHNYXu5lpuqgTU0CGSePc+f2aqJUdvuzaVMz2cnnHsi8pOQm2gqT3Dh/YVEFa0gNJ/Px3BDX8wHT/7hvvQft2G/y0Q8bfY7RCWJVrM8ykvFZlvKTlF0haTcpv2RS/Hwp31+5RY4va9anV1Vga9EYWbI0fQ2dUrIOFj47xzafKfcHSO4PhtTEXXXeycHrcotSan6ouC0o4xJRtYHwbsp3aPoS26P4b8fU+pWrTmU/tqk/tqqSe6FKtbdZr8bNPY4zw5isDPOXJZ2qEbnln5Zl+dtjJ3LRHsuyfK4oiu9KukjSecmMU8zCzqP1T2t+Z9zvz77pn5PXvG3pxXrb0vDhbGHn0dryui+My7d2/plaO//M6LfPX/D+Zvq2V/2PdqrsOI7jOI7jOI7jOI7jHEQm+7HstaP/f1TShyZ47d0a+Vh2yiTr4DiO4ziO4ziO4ziOc1ApS/dZNluZ7MeyczSyq+wbZVkm4ogneXr0/xPfEz8LsTvNGSmZO2e5u7W7K7219SiEVbA7b1MyRUpPGO1dSkuRrEKCyozc7vJk3bn9u99IT3CzBtJVwxLzuXORqJ95BgcZSV5V7dCSJSHdXYd80JbNbfXkh1uiw04WiP3bncdAq2W3sae0bfaeKYNgv5iObeR0agQdUGM+G06+ympDTZmUljJZONBSMiKrwTruuGayhro2Mlo7Pl8nnzWnz8tIDzoTcpOGGdxDfYub6XaihFelc2hn6xO7TdvjmdhevdZO+OypCSajt05JgW3RvV2DyXz79rWWupLeHjNvwZ56lh3bTFdVLnBY2XvSDFNyT0naORDqTfOm4kaSPv/5kF63LgShfuMbT2ymV62Kr1m2LKQziqekTDEV3t5S9QUzNdXYKYRDOzc9taPaaUvVwnnWPiyNgBXnQpTTvRIrreJcXbUzaHiszz7zipeSkvEaW97TT4c0n9t2DM/lNLZsI96HEk8asaQ6mrIhzAcD6UE7pO50HciGDSgvo//lM3GgcvBIcbvSyCtqkCNR9pb4PSK13vTy5ejee+OTlH/y+exkc889Ic0+v/zyZF2T2DoQaMOrvgdG5eVsyz4TYVtWlW6m3F+04xtAit+BWMbaV6Sv4TxkXXCQ1MRYVY98xBEhbf+YoI2z3mzHnEQ0R6rels2bQzrli8b0fwO2cjrfwTeacZXyHcF3QruYJmzAutXgIy2sw9/2Jiz8ObvjHGLmxYicHRM+a+5dbawOZZkuy3GmMZN18D828h5p49qxvzoO4J90juM4juM4juM4juM4jlOdyX4sG9sm04bXQI1t19g+yTo4juM4juM4juM4juM4zpQw2V1dmyUdJen0Nq59qUYknA/vL+PzgYWPfS/+4Y6wBZjypQa3yFu52cUhEMH8x78ffs9JAJaE8gaxab+qhMtGYupWYku6lX3cndjGntoeLSXlWfaLby+ej2ld90BIR1pLRaHoljIsXUbRV5XuLfeHA27fv/nmOCO3ZvNZ7Xb5VNQZ/p7bYk+i0J+KJRMpeYCV2fBelL9YiSe3fVPvZTWxVaSu69e3/t1eY2UWKfs6+uiQtpHdUuFMc9GuMpGBIrjVn3VjO9pzxNR16JLFrfNNNZSy5CSwtHfOAbZf2Jbsi5e/PKStLAZlNDJSlp4eRJ6i1Mr038IFCRkz0xuM5AJ1qsGObX3OWhLGdldXkHTxkVavjouuPYYN2/04Ycp+qD94MrjjjvC7VS+tW7eumT733HOb6bVrQx6rzKCcn7e1SmV2LU2SQ8wqzNoJzMWInKf04d/Z7o4ftjulW90dr0ORHHiJ0XKCwXrryNeVpc6piHlSrJ1NSRZzvhQ4Hz/+eJwvFfqa98zJQpm2D8tnynVmKhomJUE5vwiUceVk7CnpkPFx0ZmqT4aunv1mGeHuu0O6quyVcjpbH7Yr3w+YpiRMSrtP+PGP43ypKJPsi8ycq5NOCmn7PsVnykWzrAJD90rxM73hDRMv7+qrQ5prjeXBB0Pari9sl5QMMxfBluSkoDm4tlodegrKG9kv1u54rqqLC5KL1psa95xfrM1cemm1+/KdOqe/p32m3ttsfx1/fEin3sektP8Ztp3tL9xruJ6OaM1ppIH1PHpftG2X8uOTk2FSTm7/lmBbsh1ox/b9dexvKvs33SzDfZbNXia7s+zbkgpJlxRFceT+Mo9RFMVFksZCR35rknVwHMdxHMdxHMdxHMdxnClhsh/L/nH0/12SPlXlgqIolkj63OhhKekLk6yD4ziO4ziO4ziO4ziO40wJk5JhlmV5c1EUN0q6WNKvFEXRJel3yrJ8yOYtiuIoSb8s6fckHa2RD2X/WJblPTbv8xIbqYjbvFNbu3Mh13iNlThgGy2ll1Tk2QA2KTqtBaXCvllS27y59d1u/+WWeVbQbqVPbb+mVMBKBFNbzW3UGj5fTjpCuDWc2qjrrovzcbv0ySe3/t0eV9UypaJhUuojxdvTeQ3by8pxHoC8leU9+micD9KvqN7UVrUqvxVWhpmSo9oxwuejXAURL8fJIl70opA+4YSQttvdaa+0Gz6rtWlud+eYt2OHW+ZZPyMvOJARMCNSkicrT6AsjHOcHVfsP46r004LadveKfmEaRMWHYnpjG0womYjJbe1z3fXXSFNm7RyFdj4UsxXS88+O+QxS0Bkq5Ta0QYldfQFGSar8LnP/STK9973hvEHxb5WrlQSNisjgW7vr/bvbFZ6OVnOevQb4eCu/pC+7744I+cUytTsfED5S0ewjpriqKc7ngppykzZPt25oHaUktlByrk1Jb+3sp3580M6tx5UkRnmJo2c7IpjgeuxjWQ3b17ra9iQdj7gHJdzPcG2exgePXLRNFORd1MR3BRHfhxesFBJGHKWMkUrP+LAYF2tCwDaLvuWz2Q10bwX5VBWUsm2Y7vyPnYNJ5yHnnoqPod5fxj20Na/zn/5y/Gxfd5m2fGYZXTM6Ny114a0nfxoD1ybrX3ynYftzfYya/0wbQi/19vRo0uxnJRj5IO/nb7mWxDyZOqajDLLulpbpU0fc0xI2/HHMlKatYry6HGkonVa1yGpv69ox7ZN+Exsbzs38zjlHsLaUyRbregO52//NqRzbj94r6oLck6iy7pyfrH2QMbKmOUyTGf2MhV/Wv17Sd+T9AJJr5f0+qIo6IfsHUVR/LJG/JodphHZpiQ9IOldU3B/x3Ecx3Ecx3Ecx3Gcg4r7LJu9TFaGqbIsn5L0Ekm3auRDWCHpRI3sHJOkUzXin6yu8KHsO5JeWpal+SdIx3Ecx3Ecx3Ecx3Ecxzl0TPpjmSSVZfmEpJdJepOkmyXtVfhwNvbfPknflfRWSReWZfnkVNzbcRzHcRzHcRzHcRzHcaaKKfNwU5ZlKekrkr5SFEWHpOUa8U1Wl/S0pAfKsvyZva4oisVlWT4yVfWYsYyF1h2DunD6+rH5UsAXw2BXb3SKcv0tcKFFafpRR8XFUY7Oqi1ZEoc5ruNeDbr0yoWd5zn+bvX19JHBStgQyPSRwHy8j/VHwGPq9d/61jgfz1X1WXbjjSGNcM+Dxm8a/Vh00AeMDQ1PH204t6cjtH3nIuMrge1KnwbW3xufj2naoPFhMIRn2onfrbeb3ltuaaY72GdXXBFnrOLD4+6742P2H31smH4etL4BR2nQtmyb0J4YFtz60OLAoq2xPOvPh/WjDxHrd4K2lgk1P5U+yypvJ6dfDuu3IuWfJFfROXNa57P+P3A83BNs37rYYLcsWxb8UjUWxHZ2L0yqpyfMa3PmBB9F8082hdNHH33cWJ+ItDu2A33D2DZJhben7xRZP2Xh36De/vbTo3xcOqzLlDFs2/G2O3eHf1uzps9H4vCjixI7nafMwfoeiqBvssw4iPzGZNbMrc92N9MP3hF+7+iI/x2Rz0sz5DOdD5eM42BfWjvmHMBzTFu/OPSxmFuH2EasLH3NWFLzvoX35Ti3xpGaA3L+V1lGbt2mnzL4A6V/qJr11cUyqvhPsnXNsBvG30V/jfb6I44I6dTLlRT3+/HHhzTfCYwPwwjakH1P4mBP+ZC19eGA5lpmnw/tUGvXJ9cYbKtWdUqQnEfYpnbscLzk/P6mfKRm/L3VsFbUKtpTFjsWxsrOzZ+Ja8at26l3aP5u59+UP9+cv0X65uXCkZvbc5xxRuvfra8s+kZmX2A9HjZzH/svWt+tPaZ8K5M3vCE+hg3VovUhs58F79NZH3Hsi5xfMcI62PI49/Bc6qVCCm1Um5L9OY5z0Dkg7qDLshyQtCGXpyiKhZI+LOlXJU1yNXUcx3Ecx3Ecx3Ecxzl4uM+y2cvBip3WpCiK+ZI+JOnXJc3ZT3bHcRzHcRzHcRzHcRzHOWi0/bGsKIrDJJ0kqVfSM5LuK8tyMJP/aEm/I+ndkuYqOPsvU9c8r2AoaknaujWkGW6dW2CtnCMhWbKqCCrYUhGU7a7zVHR6uwOZVVi8ADKpeizXrKVkWKwE2yCHLWtO4hss9Uq33hqf4xZwbmm+/PI4HxuzqqzsK19pJikI6TfZ2JtL2A62bMguth4WJGI/xCMtWBC3d19fkKmxz3rPbl3lcfflRUarRenlE0hvN8Xx+c656aZwYP8phvdNtPEgt6BLGkqkbQByHrOFFkMyMU42wjqkJIJSbLtMc6s6ZXdSvJ0fMqKkXEKKbXCyEpcMWUkn68o68HcplnHdc0/rayyUbbAStkJoVzYjo79LsXKPiouurlgScMcdPNc6/e8uWRIXDglyVAnatxT1Zz9+7knJ0aXY7thea9ZE2a67LqS//vVjm+lVq+Li+Oxs4u6OsGzvHIjnDVYvpwqkSVLpQfVLLmp85X+N/ehHQ/qSS1pXTooqPtjR3epnSbEah/1vzZPrZMo8K8swrayelUotriedFF9z2mkhDfnLuHV2N2ZntpFtCMLOtHJiwnOcF+01lK7zvilpss2Xk3hivtkOA9+DLIuslDT17LbsNqRgvFMHZIrWvOuYDyJvFVarTGOjZA1uNsbJn9iW7HPaoD1HA7/rrpA2A2EY9WYb2+fjHwIsoVsTZ8jYU71did4YfJ+2ckgOaN4nN+ExH9veLETDsAe2T43vnpLqkN7lJJWDKL9hF70UKVm1bQc+E2WwtDU7j/HZec7aJ/+4oDQ45QplIrz85SGdk3nTpnhftCPfZSVpCP00jHSnca3RjTI6eYILY0V/GblsO9GX3VVlvVVdx7BfrO2vWBHS6KedHeHdw9a7c9uop6XS/9x3ZiYTFhAXRbGwKIq/1ogfsnsk3aYRyeWOoij+uiiKY0z+elEUvy1po6QPaGT+GPtQdoekn2u/+o7jOI7jOI7jOI7jOI4zdUxoZ1lRFKdLulHSfIUPXmPMlfQ2SecXRfHysiyfKopiiaR/kvSisSJG//8dSf+tLMsb2qy34ziO4ziO4ziO4zjOIcV9ls1OKn8sG5Vd/oNGdo2n9lIWkk6T9KmiKD4o6VuSFil8JLtVIx/Jvtl2jWcr3/1ufMwt86mt04yIJcXbY3H9QhMFqa8vSDVSyjFLakezvSa1Q742ZBS6qehLjChnJV3cQpyKKCfFe4ApD6EMk/IpSYOoQ4MRbOz25mefbV2HzAxJ8cNDSFuZImOWLoIUYpzsAG13JLo2p1gj0Tn7fJS+so8oXWBUIMWyMspMrdX2IH06tsF32MqmIpQhXTV87p7MMSUhbAW7rb4yfA7KaZjO2NMQBpMVCvWkJJom2lJVZXAVcot+IxWp0UYpZUQwPoOJ6JjU+GUeiJIzKquMeUbncuqzWKLZOi0bWe/HPw7pr32tmfyJKXtbIr3qmmua6cVW+8f57pWvbCaHV50XZfuMvqeWbDPlQQ6zpx5mm+27QztaBV0qGKlRDlV6QawaDTPHrRibZ0He3p2KOiapAUlQr5GhLFgQpCNWyUlSa17lMUYJsr2IEiqu1bSHefPia/AcT2wL/Tde0R5muS1RQM5u5ImvWbQonGukpPj2QqZtpM2UcXB9sREPGUmSZXMdkvQkBi3XBA7zRVbSxTWcgz4n/aood+fsN5hIS7GkYyXSC827Xk/qPSnlqsDm44Rn5y7Ox3jv2siInma9YgtRpmbFgnw+irjO0cS53xwfiwFoBGLV4DvmmWfG5zgJ5PySpCTymZdjtl1ONLc4F80S0FIovl6QmYyH6G4iU59OTvCcuPmsNmo4oQwzE61+sC+4EYkF5O0RlTcACbpd+NlGiKj7GOz9+6ZsuhvheF5o8i1GmlZD6WZfbsxG0Wg7lYLvGIs4JozddVAG286XHCPDfOSxYDldXWH9vNe8+pEXZwJlOs5MYCJ/Tl0u6SyNfCjbJ+lTkr4m6UmN7DR7g6T3aGQOfoOkYySNOVe6S9JvlmV549RU23Ecx3Ecx3Ecx3Ecx3Gmnol8LHsd0r9cluWXcbxR0m1FUXxf0t9KOkzSKzTyYe0vNPKhzDcnOo7jOI7jOI7jOI4zKyhLl2HOVibi4H8sbt4PzYeyJmVZfkHSjxRkl/+3LMv/5B/KHMdxHMdxHMdxHMdxnJnARHaWHa+RnWI37yffv2lErilJn2ijTs9PcqF/6UeB4YdzIbRxzdYdsTcAusWgS4yq0ZrpwsBWga4Bjjgi7YVgfsr/GH9P+WqTqvsaoW8P+GvYY9o7+dXYOnTZty+kK/4TAr0OHIu0bR16dqhfemk4WL06zrhqVTPJKO/WxRthVdlHHUuWRvkaK/vDAX0dZOxz6ZfDt/NawieGFPss66DvC2NE2/vDlb09racoG4Ke94pcsrW8erRspBsXXhgOVq6MM65d2/qctTs+x/z5IX3CCSE9d258DWy8Dt97PbYz6eOrov+cqf4Xrqi8qv5zCJ/B+oChrS1f3kwOLwoeQKzfQ/rXojse65qHx0lfZEpHk+d4OeOMeLzMf8lLwgH8ii2+IY5dQy80tEnOcAvMGGu8/e3h+g//XjNde9evxxVnZTlXnHpqnA/2OQSfZTmfbqmu5TJkSbnu49SZY9jMHLxvD37v5jhYsyYuBDZE29pZ742yPYZhZu2GcCniba0ftiS090XGgQsbjPnoK8YY62A9rCp0C2jbmFNSapm00wltoJcnKzvCNNAfGcvj79ag2LCZsjliODtEvipzjgp5LueAteJkyjuxPnatZ2/SInu4VkjxeEZ6cEGYF+3jdcDPUecStJ1d1/hMsLUl110Xsph69yPNOW2nycceq7ZapbF+Rye9rNHWrG2l/HPZfFX81Zr5PFo+ka7moWw8bPPIs1XOZ1nV36tM1nbMpt4J7ASDuYxz0kLOd206XOUcTn+NTEvSQrxDc3I/Fv7srD+8oUTawrHeg3S0qlX105uB80b0d4WdQ+jL2s4BKdA+O83b9r13hDSXK65D9jVXY/NQYeMCOs7MYCI7y8ZGTOYLhiQJHsIjf6eO4ziO4ziO4ziO4ziOM62ZyOf7wzSys2x/n72b58uyfCqX0XEcx3Ecx3Ecx3EcZybiPstmL+3tdXWmnltuiY+ffjqkd+0KaUoDcluVKSmYvzg6lYosTqmJ3drPazgZ2Cjx3JbL6lnJ03xuuWZdmaYuSpIYzjqlJbX5sL25H9I2uz2SLdmD9u6zUtBUQ2To5+WJ3yWzHZ/9bBpv+1DYFv344+F3NpeVx7Kq7BerrjyLIb/ZR5QF2m31uKaOvdhWAhmJ6LjN39gxuy9FvzlmjboSv0txPzcoC6Rsi9vWzfGeBUGG18m2ktJyqtSgkOJO27gxpB94IM7HOYBpI5eoYpJVFQ7Zslhv2sM998T5OJ5z0g7aGtqVZlevx2Kmu+9und68OS6aY4QcdVR8zEdidebMCWk730XPh7mi32ZDmtu5KUZtnHxyfNEll4RrPvb74Xcj8dSZZ4Y0O22cFiLAbqKaxrYdi+BUaOfzlEp7XHuBlH3l7I6muxs37eLYkeIxh/WhY0kswyRc8559Nj5nl6Jmfaq+QV1wQUhbKcxT+DdFyu4wiQ8uOz26hPb+wx+GtFU3p9wssN5UQ44rg51h530WkpKgS9KRR4b0SSe1Ls82ZGI+sPkoV6dcL7mWSrFRV/3LpqL0nYIljvNOky8loZJdUxLrCPvSvqtxbHb2dbQ+ISXfJevsL641imVlNJPcOmuffaLY6ycih2kJpZZWevuzn4V0bkJIvQfSPo1MkW1E+7TPQxl6LSPSpK1VbeMOvvOgHTrgAkJSbIcpOXhOmppzKzOVLykGdiffI+06tJDvexhMjXXrmuklkGRKsU3zrwJr+zyuURKZc5tTkchjDX5vnHtuOKDEVJIuvriZ/P6mMPOcszJtWz95LFiX/fOKSy3rsxWasil4VMeZVkx63XEcx3Ecx3Ecx3Ecx3Gc2UI7n+9PKoripbnzY4miKC5UiIyZpCzLb7dRD8dxHMdxHMdxHMdxHMeZUtr5WPau0f9ylKP/v7lCeWWb9ZhdWMkM9xBzizS1MCltiBSFSYwkj5JWrFjYTKeiedlttNyFzi3NVrF2/PEhffbZId2omy2/VyOkCre73xF+HzZSNJbAjdwdDMMixZIJSApyEYgoEYy2VVvpAsPtVImIpHiLPO9jjT4SmWV0Fin1Cn+3qpFU9cYFCqsiN3nKuCKETSYjkilu1z2w76Hd8QbXKoGYHjHHXYm0jULGOy3Bc9RzuhZICjo7YDk2fB41bCmt88MPx9esXx/SsP3HbGREHNNurB3zedtUMlQjIcsdNLLlfqRZ1wV4VklJycvyD4V/l6kNWItqLT6xQ5b2xKnQStY4nc6bF9JUrpipNJ6bMZmmxX5x/y1473vDwUc/Gmdk9DvMhQ07RjnRLkNMXUpNJA0vCPP+PpguHyEnm6RJ2jZO2VpOcZOaPqkCsyzns7Nj7IKViC7WiMXgWrSogXT43UrB2UZtjStKL61MhraPc8OQHW80wXG5NFIWk1NKpn637d3bg5G6AePZGj/rzfa37zI8d9xxrfPZ/qOUk9eYB+qGHpUuAKJ5v6KEcpwe1Rp5BVLSRFtSJNek/NpGSk1IJflIVvEWNSX7yBp16uUBL3F1M593QedG+ag1s1oi3Q65NXzS2MZLSQkpz5TSrkMykVdTseHTMePzkkyOxk4O4twEZV/Yx7BaO471VKRGK2FNuCQYF9UebbRgJazoMeSzC0dFXR+rSnO3VdUqjDOumVhLFz74YHRJA5Jk1sa+hUQjmH8QcR6rKInOrZ/dlMoyGrTtY6wpG64OP5+zMl02X++sSdNUOF3R7Oi6Ijo5y6Nhus+y2Us7r31VrH3sY9nsHhmO4ziO4ziO4ziO4zjOrGIiH8seUfgI5jiO4ziO4ziO4ziO4zizjsofy8qyXHIA6+E4juM4juM4juM4juM4hxz3FTZduOee6HA3dP6UQPfQWUlOHM148vTtImnRquC7hu4EKJu37knovoFp6/eHMvrGFniWsnWFrxGK4HfC19r2+AoZ7xJNuo1DAvoK6cAD0u2LLSvVkqdbfycpJ2+ZMNp8DvrbyPmqiPyCGd9Y9Js1NBRKZDPkIneTce4tUj47WAfrAALOnnbiZ+u9g23Mvlhu6lDFxcxGc0wfUfQGYf1J8FZs/8W0RxqxlPYfZ31x0OkVnRyxHa2fwR/8IBQHnxgPKQ1tyPosW5m5birZBv9ArI/x4hb5LGO+TuOPsNv6wRu75jHMIcbuFi07q5nesSOZLTlkcy6JUuOnc/eT8Q+0m6efDvnsdbSpl7+8mRz8+Keb6cYH3xdd8wjaiJa2wFRucUXfibfe2rrabC/rGobmThdTdoym/CVyfrFVS1U1M5VKv/RLIU3HKsaeIj80fEDjm6evL6yFKRdO9jjlFydLLiMfMOFvyLYVfcvRHOzltH3WO+e7L5qj+F5CnztS3P58PoyDcTdO+XeyFU85z7MDE3Mmz0TeDe01Kb9SnLOleFIZ56wwUT2k+USDmXxRe9vOoD9W1LveEWYY23TRcc7HFB3Rsk3g5HHQXMN3GT6DKTla67lGLdfEMats1LfVeiVmJ+yh2/od5QRI+7bgPTWyL8xD/WZN48zDtutWTGtPnOPhu1Yd4yB6r7TGQZumM0/7LoPydPjhIc350/o5S72A2skUY6lGp1csz45Z+06WIOXazE5JSZ9qrAPbQOl3d+tDj2O9wTbO+LOLnreif7ao/zjOOa4N7fjTyq3HqXXR/MkZnm/YvrHOLtxn2exlSn1lOo7jOI7jOI7jOI7jOM5Mxj+WOY7jOI7jOI7jOI7jOM4oLsOcLnCrs+KtvB2pfHYLOffLcgv5UUdF2Xqx9Xnt2tObaSpXrBogtbW0e5sRjP14U0hT62M1TzffHNLYGs6N3bndrGwTa8Q814n2akAqYpV+3Pq+JHPfSB6SC9GNc4vxM7fcmyDx6mPfUhKyYUOc8brrmsm1ay9rpqmEOe20+BL2H/ON2y7Ne9GGrr8+pM22+kEUyBaxcgI+O0uwtlVFhpnb+k6ZRm7TNy1yAeQTDerVpDg+Nrn99vj4vvtCmlvpM9KOARzT9u2G/dy2fzLZLeA5k2bZbFembd2GEuf6Tb5hSDh6bropnLjmGlwUX9W5MkiUzj/55Gb6zDefEuWjgoNqquVGE8QpiqqISAFibWMjBMFHHx3Sb3hDnI/Hq1c3k413/GozveVzn4suuR9ptrGVunajjXr4EEccEeVbdFqQHKZU1UZ5EkG1ip3OaTdsr5xCNGWrWRvmWOREYWW8HHMZeU93Xzi3dm2Q9VolDNdG2pBVIiWhDsjKcRIPzKraS3icU3im1ODsSzvmexdh8T/xxJC2LwWU+5xwQkhTryvFDcY0n9tqpVOyIttWkCKlpH/j5IcpuZiVflVd6wHnOK5JVvEdlZbSiUux1Ar16+hB2abwxgAEejQU6wLgZz9rfU+MK+sqIuXGwM77XMLjtWLi/z6fq0M7RDUwc2RSV2YnBI4FzkmwrS4jbaR18Zmqyi4tld4JcpMpn8+2A18MaZ/83c4HHNsveEE6X8rfC8dllZfAFqSUjtnicvJIMJRIWyIZpp17UiR8F+S8pCTdC1jJOJ6vq6tXVWB1ci5d2HRMV31sx5kp+Mcyx3Ecx3Ecx3Ecx3GcNnCfZbMTl2E6juM4juM4juM4juM4ziizfmfZ6de+81BXIcmcnrD1eZBRjyQ9gXQP0nXIxezuWMrcdkOa02VlfI8/3kw2IAlaSl3SPUbWMm9eSHObr40YxHtRhmmle5BaUTZHUafdOT2UOGfzcaPxsdCoJKWtigdCdM7u354zBxfVW6el6J8XqJJoYEv6uEhO1E5SekIpjCRt3dpM9g6F6HzHHXdsM22Vg9xKnZUOpU6yz01koga26S++445m2kYzZTvwK71tuio78O1m8pTEs8fk462WIN1YuTIcrFkTX4QxElXOyo2o1SL8pyaz5T8lHbLCANY7Fw0zdduKKqLK9CPNcWWth7EjKRvJiQHqlLJQ2mr/yY7R+SBh7jSyj2XLgnWwiMZQFDNPK1cGQQyHwSl9sORrTRxWRhdjfXI2hDEizIP2HyRTdmzHFc9FHW1CgC3tC/Ks3StCm1DGlVOkUI1jVTupKnC45GSYFafSeL15yUtCmmuNvYiS/0y4z7Pe9rbw+8ZYQrV49aqW12ilDSWZ4K1vbSYfqS+NTvF5b/xiSHOpefDBuDgqvKiuu/DCdBVS6qdx09at60Oa7W07kBpPnjOLz/CyIIuuJWSYw33H8hLV+oOVD/eE2aK24ftxHbAWHYt+PnY9noFjT4obIrfYcB7Jhc4F5yDN97Meky+atylts8ZPvTTerRp94fdeu9hTGk7juOqqOB/fK3gfvDPZOYlrD1vOjgJKC3dqctgemmw8Pc76XVYvxoHFCLu2//EOrSOPDGnIwe2Sy/e9Oq8544woX9Xn633lK8MB391zC/+HPhTS1G9znbVlWPnuGPZdMaW5p5RYihcS6v7Zprbe1mdCglO68JcT+qyjw8QcZf3mzw/pVZjnjf7wWPyNdiznRSsz5fvxmWeGdC4EccUXtCjbJZeE9GXBHYuNWvzQUHAEkwvwSjgMrAyT0+fxx7f+fVx3DYy2d1lWq4DjTDNm/ceyn3x91f4zHSJe8wfW+4zjOI7jOI7jOI7jOI5zKJn1H8scx3Ecx3Ecx3Ecx3GmmrJ0n2WzFf9YNk2wHUGZ0kJKBRB1qmFClzHSULR13UTliaL4cSs19+ja7encY0sNjpH6RGU8/HBIc9u5xsvMxmDkSCtTtPKjMey2dW6Y70C9+/BMuWtqjOxlZRq5cwT7pW00pybcoi1Jb35zSFPOavdBMyIf5JovfeMbw++PmT5HOyxchpa1ZfO+nPUpQzjppPgayEC6seV+2bp1UTbaONeTzg7TG5Tn1Fu33unmOJK6Im0230fSmE7uFT/77JDOhUnkeLEyhFQIIY4ls5KmpCx2fFSVXqZ281eVYVbNx/mJdbXScIqruhNpKZbtRC1ECYh9C2FlU+EdJS2mLILyhztiSWUvyo+kTbc/rCQvf3lIU8JxxRVxvquvDmmOXzxfTprag/Q4R6OcmykRtNJE1G/58jCC2Ix2qaAZM59VIJMaLPSww2pIp8uuDCOlcpza9mZkUtqQkahEEk1G/LXSI0rbaF+0LRsBlWBuGMo8dyqIrgmWHZkxpTBU5kixkoxqP5p37bFH4otSUnzbYTQInrNSV5KI+maDmc6bF0bDDpybbyWHVmI5BvvFzue0DTasXc8pm6oow+yEDraTrjVM2OkaBxrrZ9sutfbkonim1ijKZqV0NFK0Qx1RhiVpAZ8pN4DxHAsy711VOMUcT1aGeSz72TxfNLB4LhUR255LhQWWVGd7cR6iC4iJ8LKXhTRdeOQ07bwX+9+8n1cKZ5jz55F7N6YsMxUlmBr0icC/PzB2lto5YBP6gosZ+9Lq0zk22V42H22I6UybpN5zs7CurI/pc1a7qqkxn422zOZKqWMbu81fa+2s9Y4zjXAH/47jOI7jOI7jOI7jOI4zin8scxzHcRzHcRzHcRzHcZxRXIbpOI7jOI7jOI7jOI4zQdxn2ezFP5ZNE2rGp0UnnXhQ40/dO32HyURuxu/bjOi8Dr9UnUhTUW/9QkShruHfYtj4NqBSnb6MrFqfEYzpr4i+jHrMNSyP4b87Tb7IuwjqTZ9lVkI/iPQQ/HLUra8S+gnI+WUAUV3hq6Rm/UTQBwT9XcAvmSTp619vfSP6rbA+J+h/hffZvDnOR988fFbWx/qpYzvANmzrDCbSka8KKfaF0nesWmE9yNDfE2230zj7qXEsnHhiy7LH+flg/egbi/7dpNg5REVfgBwvtEk7/lJbgKdiAm/Hzxltmn1p61lPpPtNPpZBa1h+zTXNtH0H6U75G7KOOWi7p54a0j/8YZyPE+hFF4V0yl+jJK1ZE9L0n0QfZZL02c+GNMccfCB20peSpE7O+/B9cvoNN8Rl028an9XOT7DjlFsbewmPmc65pSKc4nIvkXxUS2SHnBtuvDGkrU8h+g977rmQnj8/fSOWd9118Tmuz/QVesEFre9p2N6xsJnesik+x+mFrtK49FifXiTndutnPwtp+prhfZYsoadQqbE84VHUOKihj1Q+wz33mDpgSRkYsKv1CNZXHl390G6WLInXgw6sD6e/Bz4DOf/atZA2xEa2jYdKDHe0rnfNztQf+1hIc97n+ivF/gQ5Zm1DcL7he4B9JyDsXHaMNaIVK0KaA5V1tXMp24tls8Ok+Jmq+L/K0PHe98Y/TLI8vfKVIW2fjxNbzk/r+eeHNP3Ysm5mPo8GKvxc7VmwNMpWh71n1+D3/24zTbNZGr9dRfzrpuABLhpXy2IvsGyGhRc/0bow2reUtg078bONOOaYr+oCY2F5rIO1mZRfMc5xdq1g//HZjW+6qB04TlN/xym9NjbqGQ99fPfgWDaFcSq0wzRFqhml2N0ez0VdVtX5rePMEFyG6TiO4ziO4ziO4ziO4zij+Mcyx3Ecx3Ecx3Ecx3EcxxnF90pOF8x28B5KvLh9nqG7Tdhr7nzlV1C7KTt1LicD64X0pIY9ujWznbgDEgfexxqaESWE+7CeZs9wF/aaR3JNu7f43HNDGlukF1CeYCUJlGbg+sGu3ihbvSccD1XcLt/1xjeGA/aflVzcemtI85nMlvThdeua6RqfiVhJCcvgOVsHykNS2+LtvmyGzoYkoXfevHSdcmHHK7D47W+Pf6B0hPU2ttHB+7Le3KafC1uekwpQCpbSERmOffjhcAAbXGD6pcG2o60a+fZgNWVwRDs75hdAcrjgwQeb6SEzrvqR5nywRzEUOVFia2W0cSXQxryvlVxwjLAvrIyWZTDfKsi7KHeQYunlHXeE9Pr1cb4dO0KaOoYLL0yXTQkWbY31kaQzzghpSj0410jRWK9te7KZ7oOUzZpqSqJp1elUN1Oel5J72nuxm3P5ojWPleA4kuL2p7ScMlxbOCTWJvC96gkdZDdl2Rk4nO3UzCpQBZSTzFAhxCmg9qW/j/K96jWvCQfROEAj32HmYtoN7c4YRw1zLtfjJUsWRvmogk0pBG2fp5YHO2Q51O86Pswi+/YFaenatbHMdGEPZp+MK4Wdu2HHmHI7O9LSqH8bemkzveySkLbjaiklVHx4SoGleD1O2ZqVINPY7FpNrAuGMbguMi3Fcw/rbeaurU+Ftpt/TEZKVoUrr4yPU+88VaFcuuogs2s9Bx3bgeWZthvGuyNVfHddE2XTa1+brhK56qqQZjf/xrtCfYbNfgiaE6tNZbkUK0sXrsYz5QYtxxLnS+u2g4OW7zIkZ7c5+A7N+9iJg+MPk+5OzGTdl8a28cSW0JYLL764mX7ksbiNuSz11neGg8narQXvHsMLwpxb649Xr0XollP6eK4nWfTp9ftRgDQ5SyMAAQAASURBVOnnDTCiVJ9bvwpjdS3L5D1nA+6zbPbiO8scx3Ecx3Ecx3Ecx3EcZxT/WOY4juM4juM4juM4juM4o7gMc7pAOY8Ub+e+5ZaQ5rZlIw1JRcO0u0K5KZ6bnSn8sjIUyiZrqIMtm+XxS2yvyYfNyckoeb1GisbyIuklI5JJcVsef3xIc1u8lR9S9wGpQW43OHcgZ6VsP//zIb11a0hTHmTJ6HZqjH6XC2VHaByIWDluGzzlFJQ2UYZg2y4lTbTyEPYZy7B1qLKP+ZJL4mM+eyrakr0X81GfYGV8jz8e0tRPXHttnI+2hm3oAw880Ezbf53gWKQJ2RZopMISGhlJO5LKcRHdEjRYNmUozzwT7m/6shP6Dp6x0vBUpNt+6PtsLYchF+P1i+66K8rXg3Q32u4JW1dew3FwxRUhbaWSjHpJWZOV7VBbw3kIcpA9XXGkP05JVAbPZ9RbKR5nlHrYaGyUf0JC149L7FDkY+QklampJytPh1wlN+SjMt7zntYXWYkLG4ztbVwXRH2Lhxg2NvQI0k8ivRxjOxYfxvBZrfKL/cxnpQrXBk7u3I1a3Io56c4744xcGznn5qI6U4PFtjM2vXVXGDGs331GgcxnT6muctJUXm+XHjR/dI6KRbsM9a0O9R6oGLSPj96ZWWY///mQzgWmXbUqjHXW73QrsU7J73PRPlNSOWv7Z54Z0tT/4v1p54oXR5dQac7qbLg6LprV6+gIq94f/7EmzCeujqNFLl8ejvkWUHUd2/rqX26mjRcD1Qaw+mQmvPs3hmdKRQ68FTJJKVbiw3PBuHfMqjLM669vXb3feFf6Gk6TvMaOq1guTVl9kCmuWvVSEZZxyqVYJ/luJcX2Ssl3LqxvVThp0ghz76zIt7ujGz/Hb2t89dvYFc5ZNTPH/fnnJiKEGqq6dInAxFjbjb+ozEQWrRX8m8P+zUkoW7URwLk28l2Ef9u0G83UcaYp/rHMcRzHcRzHcRzHcRxngrjPstmLyzAdx3Ecx3Ecx3Ecx3EcZxT/WOY4juM4juM4juM4juM4o7gMc7qwcmV8nHL0kdG9U+vegN+RhfQLIKkj4Q+ggft0m3OoTfSFdY/JV0+ke0w++gfqSqTrxsdGD+tN3x70t2HP0UEMr7ex6dnGuL4/4+ogF3WcbL/037esQueWh+KM9CfAENj0v2PrSnuAH6KsTzZeb/PZUPFj0L8B7yPFvrrOPTekxzmLwXX0iWCdNFRw2rDn8l9InuvsCL5L9gzE/x7QuRb+G9iZdMZiefbZkKa/jTPOiPPRAQrK7kg5v7HAx1Sd/jukuF/YPi94QZStqt+WJFWdR7361SFNByzGf04nnJ90wgZ7jb/FAdgh/Rmy92zNeNyDtLE61ehEBH20kE5IpHhAv+QlIb0i43+FxyedFNK8pxT5jvrJluDB8Q7j9o6wiebNC+lly2IfPrtRhfPPP6WZnn92l1Js7w8ty+kgNxS70sVFY64q9Xob/1ZHX4Ucs9b/I8fZz34W0ta++YAXXdRM9l13XVwc7JP+N2Mvc2loana5YvvzXGPbE+Fgw6b4ovXrW6fpQ0+Kn4/5OJ/kHHNyLTUGMJ/vLChjzdpXJItjN9GvmPVlxnO8rR2yN94Y0nzUBx4Ivg5XrIjnUpYHl4iaOzcum9O+dduT4gtfCAXOmxfua6cDmiHd5o3rCz4w5xo6SrIO7UjuJYUNxrUZlc1Vh0s4/WfZolkFrk/D5t/qU+ds2ewzTge2vFTZP/5x+N0u4fPnJfyUmYag7y4+X24oPf10SLMdrcu5qvAVkeTagSbELrdzO5+J+Zju3vSj6JpuGvl18LP83e/GhbOROCHk/Chefrkq8bd/G9J0vGbLO+qokMY76wDWVrvU00Vt7hWaU+Yzz4S+WL06+P/rzLyncW5o2Lce2OS3NwQbZNMvXmQ6k23MNTPns4yDzk7OnHT5bvSDH4S0dQb45S+P/H94ku+njnOI8I9ljuM4juM4juM4juM4E8R9ls1eXIbpOI7jOI7jOI7jOI7jOKP4zrLpgt0SSz0G90RTSsF98Bbs7R40p4awrbaB33MbZHmulvjdwg/sOUNLlme1D2efHdKvf31I25Do2JO8Zyg84a5dIct8KxFEe23d1akU7fyrASUl3A2+ZEksp2pwP3dOurduXUg/80xIUxZjpZIsj5JMxjO3+bitmnW46ab4mpe/PKQZjt7s7d++O/RFb1UNawK2qWRlH60lZpLUmQgZHu25t4Wz06ifuPPOOB+f6bDDmsk90NPVjPywgxIatrGV1rBs5rOargP5z1osmyHDqV+yOpR6QtZiqMP2OR9QkmnnmtTcZVuA+SL7pnxYkt7ylpC+9NKQpiTvttvia2g3kNFGc5Wk+7cF8R7VIbzcKkVonpyucnLI557DwQIzB3AwJMzEdhEV4Fl1NMoe7gjzZ20Iq48pgNKoqpLM7z8WhI/n5KQ5nEvZYFbTRVkKG3nfvihbHW4NeuDWoOoL1KvWwGGB0fcsZv2uxjn2l3GlEEmfsR4McZGTVOeY5bxB+bbVH86fH9KQD4+bTDn3wKjtFNBdD89+yrJg5EuWhD63cjgua3wNsMOPY4ZDe2goSCDtUpjycGHt2yrhq0DpZUq+JsV15Xyw4vKzony11LrNvrQNzj6nTdv3COrFMJZ+9FiYq26+Ob6Ex6y3laKxje25MXIuA3ju5pvjuYFN8lu/lSwigtJEKpWtBHLJkrBasN49PbFjEr6GUwLHrrBtx1et3OtdBS8U4+6bep2yrwMXXxzS7CPbDqwD24GvRvVVsa1u3BDSKy+8rJnuxtwpKR50/Btmku+EkmKbZsPaBzzuuJaXc5xajyQsmm1ixzanRfZR57ZHwsG4Z22oJRljYH06N0ISu8XM01zjaJRXXpksO/lHi4UPz362jTdWRs335zgzE7dcx3Ecx3Ecx3Ecx3EcxxnFd5Y5juM4juM4juM4juO0gfssm534x7Lpgt3LmwpDxpFopRkEMjArKuTm9wa2Ki9A+ljusZfZgohIJ/1GVsbNxBQHWCmoEueiDb+5MEGUjph97CnpJaUdQnQ5SdHW8LkoLrpG7U2E3MVMVURj9/Y4I/f233KLUgxg6zr7pfGZz4QDK01lJdhnNrwY2mEQ5xq4fshcU6dkMLUNXlIvt2ZvgXW0EQ3TZomijNaDRXX2mIzrsb2ce+lp7zkZJsbcEMNySarT2BIaHhs9toZrGqyDlQhyLPDhD5bs0kK9CcPGWVhXyi/M2KbckvMBBQU9pmgKGWq0tQsvjDOuWRPSlDJZKQRlCR/7WEh/8YvNZP8DD0SX9PC+fFYz/vpWnd5M07zYdLYZWVUuATaQb0qKtmBBLO1odIX6DSSkURaacV6GmbCVivZZq6g92rIlzHiDQyHdsPfhHMcGN/PqHsxlnZSxv/WtcXlwk9DJ8jhn56AU5p574nOcP5kvpRe0x5jHbGvXaRy0d8rl7TiAjui79wT5mQ1wdi8UrS96UXAp8KCJInfSSeENhOJyRlA95phY5DD/GLyl4PmWLVsY1wFLUUXFd9Ikc00cyZszsGy8gkVpKR7DuaVnMddMvjzwAXM+CTg/Wb0fytu6N0gvqRK2UkJGYORyV5ZPRvl27eL6B/mZztRE2bv3ruh43Tq60LAvcvuHz2Bfu7mssR1s07FdUjJMq/jmub17w4p33HE29nw1OMVVVTCmJPz2VZvHKe8g5k+EqL2orrzkkliu2YU2X5izz3agnjtyO2AGPTse73HdXWHeWbQonpM4FDmt2vWY9rB0Ed5m8O45vGhxdM0QqppTPZLOLQ+Fg1z0SnTG0DXXNNPZFfcujDm63JDiySwVCpZRMqXwUEWRu6vjTFtchuk4juM4juM4juM4juM4o/jHMsdxHMdxHMdxHMdxHMcZxWWY04RBEw2F8shk2Buz9zqKLoRoXlZ1QHlkN/ZVN6A5pCxKknqox4FErMfoC7qwZ7sfv/eY8uosj+GuuAfZbv896aSQzkR5GsADMqhZtL3ZRpBCO3Rji/bujljEWlXqQbh9u7bx/pb3lBTLKbj33Wyr5q5vWk0P9sU3TjwxLjsV+shGXTRR4FpdYyW1jGQY7cW3DcQ257b4nAQ5wdIlJpIWy753U0jbLemMJLp1a0gz8qcN30X9EdphnOSJ7Qpjy/2LRDTqc9EwabzMx3CFBxP2GfvS9l0qmpuhF5qSnegzzkM2XlQtJSXjfCnFWq03vzmkGRpMkj75yZD+0pdCGvZgZbQ9tI3M5NDbEa5csybMKTRbOyVRZU9Vp308Du1TlrWWr9k6LezraaYPOyy0rB3+LDs7LGEDNIdG1UmyIjaIcRMbfWvz5pCmhs5oXKKxSTux8nQes6NSof4slGvaccAG4xrAjrYSJY4/jLEOa0S0cTz74KoXN9NWTnXvzSGdC1bH6H5sVjvl/uxnIT1/HlaPjeHGNXsRjf/pp5vJsyiplrTsyiD/ZLNSUWsuiZqVt7VVYFPmItCS3/3dkGZwONt9qSnTDpedXUF22s0HidY7Y6t0D8CHtYMbY4ZLIZ/VLs0M2s5zu3cfqxQ33kipZC5+emuOPDKWblbtixRsEltWyh5yHkHiKKwhbecq3qujI0gv2aYT4d3vDml6v8jxtreFNOttAvRGY4lpmt3GjfE1HLI5Lw18tXnRi05ppg+PZKrxNef3VbSbX/qlkOb7AScyKRnJl+luMyG8YgUMfk1PMzlcj99Mao9BdnxzYk1ZHeZfKf8KleT221uXbScyrIWVRx8HiTUuHl9xRUhzQTDRwJvGP8XvA9ONsnSfZbMV31nmOI7jOI7jOI7jOI7jOKP4xzLHcRzHcRzHcRzHcRzHGcU/ljmO4ziO4ziO4ziO4zjOKLNbQDyDGO9eJujgF1I/zpC8GR9A1JV3mNDiHXQIQN9hiAXeY5000DcPnXEY6tDL99FHhnV4Qj9ldGJA5x50PCJJ557bTA4uCb4ObNvRXQ2Jwr8v643OLVwR7vvIY+EbspXYt6NHpz+I5ctDvRtDxgMS/Q7gWaMY4ZIW3HFHM82v3TU6jrHOOFLxqO3vaP8G+wV93vn44/E1Rx8d0nTUYf0I0XbpV8E2coXY2Q9tir/z9/QEHyC9vK+1YxoLDYLPaq9hfTBeOjh2pLgdUF4H+q8DfgElxb4h6EeDaSl2bMIxYkN0V2EqnCpwbOYcuqR8rdlBi7mn+8EHm+kh/N5r25tOc2hD1vZf/eqQpg+nG2+M87FOnLvQFwsZUl2K/XcwbL2x/Ye2tPZTZv2+EPp6yvk2I4NDYVw0rKOkBLZZCZuVPjGHD9G/s7G9aMbnLFsSZ6RNcu0ydheNYVwz/MADUb4a19p2xl/OzxnnQvrP4QPaOZEdkzMirv0oo7HkiWZ60aKFvCJ6rci5AuTws+fI0kXwU0bfQaybnZO45sFnmR1XnahEX19YA9hFU7GGV2Xu3JCmO1fbfexy1tW4gI2vSzk2soWn3q0sKINFp1yL2tvm/CxxCq44DVVmsv2Xm0v5HOwj28TsJz5rzhUrj3lNbuzk4HVJX46G7t1h3Hf3hEoMLOuO8vFVJuUjLufjj31+3HHp+nC8kLZdW7EDck7nOAez4pz8bKcj33Bf2kdfVAf+rYX61Iz3sHp9kutpblBg/mSXWR+wqWvGObVk57C9cv5pJ+tocIbgPstmL76zzHEcx3Ecx3Ecx3Ecx3FG8Y9ljuM4juM4juM4juM4jjOKyzCnCXPmxMfR7vl7N4U0NX3r1kXXUBpTu+eecMLKPihL4X7rVEx1KQ4FTEnYrbfG+ShfQizpfiNr6USaX2zr3L+d2SPfgBxjsdnHPgQpkn2MMewWeW4b7uoKW6xtFVjepLfb2spx67Ld+gwo3ozaDuV12D5nZXnO5qM9cAs50gMmrncH68oGs8+X2iKf23Pf0dnyZ1t0VKUulFdVg8MCacPjCkdR5vc6t6GzPEgvd9prMC462RdGehsZLGU2VipQJYb8VGuLWW9bFvNRZmyk4Xsgz6JNR6W96EVx2dSesH1e8pI436WXhvR114X0P/9znI/SV/YT+mKnMbxuPgfb1Yyr+oLFzTSHOadFa3Z2aI5h5yQqHGgOS5bEY4fnaKpM50yjkZBk2oxRGQNt2FZmPmCbRIo821iUJlKXTxmgJFFWi7WnxjVSktauDWmOMY7Fqtgxwo5JLTD2GkqCYESmV1RPuWpI9Ze5Vcq8pbjJOfys4umII4LgZz47LfXcIxe1qLTGyTC/vzHIx1jXq64K6dzywtvmlivS25Mu74tfDOmcTI514rRj30siM+QDPvtsSOM9S1JaV201b7gZ5xQWd/vt8SX33RfSfIa9e3eam1HkxfdUMzdXYNeub5pjNtILJ1zezTeHtG1v9hOXKyslve22kGY/sx0ffti2CTW2YbK/++5YAvmOd6gSn/98SHN6es970tf8pD9Irvs3hd/Xr4/zpRR1fNWz44pLPdtk/vw4H/+2Scl624aTEjuQlZPiv2EIdedGOrinI7hu2YjiOBQl6fxzl7SuD+a7KXFjwPGcazy4sngSP3ePz9mEa0qNfxNIsXHwXWvr1pC2bnfGBlZZZu4683EZ5uzFd5Y5juM4juM4juM4juM4zij+scxxHMdxHMdxHMdxHMdxRnEZ5jTBSnBiKQv0AdznbfQOkTQG23/tZvAaZEWdSNdyYYsow7SR+kgiEkzd1JU7Val+6EK+hpFqRfvBUxoQSR0dYYMx25GP1+jnhmRFsp1eKD32zomj3rSzxZYB02p3/ygcWOkQt41Tn2VkFVRhcaM4Yo7FEU+lWPJiQ24RtP8AZZ3Yf2+FPYyc2kWZk71PKnyWjZpZoZGtCdZ2w8rvhgTLaoJYv8SW/UFsW5dM1CCUZ8dVJ6MdIU1p1HZzDfuvjvs2aAtSXG8+fEqrNxFSOqVcP1AmamVAhPWjNM7Umzbdnfj9WCsjSknjbIRCSi+pn7ERmiApH4S9s3X64yvUTfuiRsXIqBejz/pWd7fMZk2Vwycn6UoFo+2sD8YZIYns6modndOaQlLClrGNSLqZzJW5KKObS6tkzDVcKxhW1NgqZbUN2KRpOXUjArGOOiqkOTdT7muhDMiGa6Zdc63nA2Z0fDU8U83KstesCWksgD/qD7Lgu40nhVtuCWkOFztNs4lzUwWX53mrgpSpIazv1vgRETcaJGZePGcNo2GGf/vlJbbetKFcwLzcuEhBpfhpp4W0nWpSEW2tFJRT5il8EDa4fXkk1HFa20DHbEOzsjgbvJntEMsPY1EXn2PHjky43UrY6NiZ550g1m659HOJsraxa1dY/SmjLEu+dyGioCSJ0uLwTO1GC+WUkHolt3ZLE+IYsabB5+VrOF9DrA3v2BGe94EHQpv098f9z/UqNd3ZfjmrYtDhJ3pOb6YXrk24/ZDihqDLmlRkTEmdHcEgzlqCxreNtwFzPed9DGb7fDwe5+IgBTuD97ES9ly08gTR34KcyKTYqF75ypb32bPivOiSzjHnMTXfn+PMTPxjmeM4juM4juM4juM4zgRxn2WzF//M6ziO4ziO4ziO4ziO4zij+Mcyx3Ecx3Ecx3Ecx3EcxxnFZZjTBBtpt/bYI+Hg7oQG3vjvYDhi+kay7jG4S5SuNI6F5rzG+M5SrN/nfa1TBDpSgNOHIVNX1oGeAehZ4Fj67ZJUp7ODVLxuSQsZFpqOEJhvvQklzXZFvrmrX6XJUtvw/XBAPwPGr5HuuquZ3E5fOsbfgvV7NQY9HXRnneAB698gUR77st/ki+yJ/h/sPembh/3CvpQq7WOubbw//oF+GWg31ukK7RA2PQBnJdZfUdT+8AVna8nr6om0hX2Z8t0nST0/+EE4yDlTueKK1jdqZ294zlEP7Zj+hex9YNNs+4GMTdPPVeQJZ+XKuGzaDdM2TPw3v9myDuPqum5dM/kEfua/KBkvilqc8i1ofc7BB0gn6nrGGac0048/Hl/C6YrTqnVfxaEU+UbqNzO/9a3SgpwvlUbFt4XIbFhezgYrOoViNy9dghnqVtMztE+M853GVx6vYg3sHLACthE54eL4++AHx1e4FXZtTTktor2fdFJ8jnMp12bTjsOrgu8YPvqN14a0NdX160P6rrvC/LlpU7xW7NoV1piOjuBgz3YzH4/nXroajpasUy+2K9PGhvcMtP73XjaDNftGHXbTEa7P+eurOn1yCuAj2bJZJ06F9j7RNJm6yD4gzyXWLnszFmFcwCbJ+ZjasYNHZg0+xNAerdkRPtN4t0/BZ1lZspOeRZqriBSvZmG8bNx4epSrovvGyJcYpwD6vBo2+yF4Df3hMS3FSyhfUx99lH7Y7Cz5ENLhWdevPzPKxfXrhBNCmnN7G262JMXPsXAlCrTvmDxm49E4rM9kLsg8Z+dvlkffrrh+SqR6nNA5zu07PfwWduf8y5KTTw5p+94FZ6rb+8L7Sw/cwK03fjBfunrUkIui2v0dZ5rhH8scx3Ecx3Ecx3Ecx3HawH2WzU5chuk4juM4juM4juM4juM4o/jOsmnCuHDBVWOVJ8rgxnxbkt083RJKHm19uOX34ovjfNySzG3LN90UZetFml9sO3N14n1ZtpUXpOKyc3u03WLNY2wz7liblmFW7iJKE1P726VIh0VrsG3Sk0hH/6Bhdb08ZjtYSRB0CXXocyI1lalP1NqU5B1uQsZT38F0G7YuI9GN5JZsVyvD5DlskU9YzHigV+k0UkLKB9lGDbRxnbHpFUsvOS5tfXpStl9Vr9COpijHc8+FNOtm6/N0kG0MI5+tAW2c80FkGVYOsHZtSN98c0jbcUV7Z11NaPhhytAT9Rmn2oHEIZJFmLKj+QXz1ZkvDzKGefNs4YHlUKxZRUltCJazrT+k7TyIsd3o4wpRTYpGSU/tQP7zaabsri6MMjP+kmDua5hTKWGqXSP34F6d7EvKbHI8/HBIW4l8CmrEqFeS4vmc9TG6sjvuCGlKlG6FTMaqlh94YCeO7mumdu061lQw2PHddwcNjpW2pYZfdGDksdH8zoobzWgnbrYY7x5r1y4Mvy8wvbklVKiB67u6ulWFaByY97aXvCSkzz47pK2p8nE5Xdkhy7ZbccUpasW4f/HmHJzTgmIN5iUcfjlJLeckC7ts3brj0hkrsdAcV3qDTZJTo3Nosi/GTzV850yt4hZIpyFTXLZsfM4qrFgR0nZpHMPa59JFoUN37w6zoX1dJLFNcm4wa5w2Ix3W/bI8LMr16KPzm+lbbgl/Z9AGzWtSZW68MaQ5ns+haxZJD20Ko2Yp30Vp8HZup58EGpGd8Gj894X5k/N09pW3qg6X9+GEYmWY+HsmozqOoVGuWhWfwyTA1y42CdcXSVq9esTWSrkM05mZ+M4yx3Ecx3Ecx3Ecx3EcxxnFd5Y5juM4juM4juM4juNMkLJ0n2WzFf9YNl2wWgjuSeZ2W8g5uCFakrqwUZA7p+32QR5zAzlj93QaKVMXjhvcY0udhxRvG371q0N5n/lMlI2iiyeRpjzTbhnupQSD6cPibd7RXnpuseZWZdvejJ6Gtm+YbfV1yICqqoB0552t70NpjqQhRKrhBnfbfxy0ndj7PMQK2X31DEHEffVW94Fj3petsCdTn52QmHUyEqKkOreHn3iiJsWPfxwf8zk4XmwnMaodZKJ8PivVivaX4xk6jeSwRtkppcHoi5rRF3BdZWm2zxdg/NWtZAnY6FehPMgxqspec6s+5wfKwMy8MQCbzgk4KMPspuSMWp+3vjW+6ItfDGmOK6Yl6VlEKMNY3Gbk24OJNOehca2LvqDtd9vwYmzL449vJjvxrKeM0+OEVlm6CDXauCldNtN2bHMujKQj4T65aJhk3BhpR0rdBqcsQTus3xDSVnqbiFZmnB1EcxfP2cfm2ngs5xCQFfFRrmtlO5yrqXNbsybUDVEtpXgpW3hxWrazAbIkLpnxMmRloQxlSBn70yZfuG7z5mD7hxv5PYcCH2/FitBiC62mLyVbte4hEuEMowB1VhqecNPQtSDuQU4bVZWzx0FxSLl0HB0y7iZKLefMSZedHIt27KXmAFsAzi1aFN682HY5iSBlgBbeat26RemMFSiK+F2hLPcmclaDqjL7fHxdSAVMlKRdu3pwxDHCd1FbT+o/wxiZij+uo9ecjIxv50CYuTlF2iHC4/gViiujHRT7EmkbDTWcs14yxqCXh4nAenOOHFyxOMq3BRF/l65IyDBt5VLuL2z42NSYm+qvKJxU+DeQda2CSanTnktB2aqRsO7cHd6C7r4q/E5TsxGWxx69LKvd3nGmGy7DdBzHcRzHcRzHcRzHcZxR/GOZ4ziO4ziO4ziO4ziO44ziMkzHcRzHcRzHcRzHcZwJ4j7LZi/+sWy6YH0rpcKqI209b9B7B/2A2U4eTqRZA1s2vS3UEVK58aUvRfnoe2jpF77QTFsvS3CXEPmD6UH6dHPNINqkwfaxDg54LuW/w/o64XHk8GQKoM8rpq2fHcA+y0Q6j+paf/rplr9LisNJ03+ZtTs456ijrsPIZ7ejpnz92CDqkR2yL9rxd5TxtRb5k7Bx4ulPB34e+ulvyt6LbYRrttt8KIPt0PnAA800ffJJ8ThLjUt7r07Upws+wXLQl5kNJ58k1y9sV9qaaW/aAC3Ntt1CHqxcGdL0U3bJJdE1/Tfc0Eyzvcf7cgzwiazfNLZKNN8hnduKHbWWbTses73oT6uDs2c8dQ3Xg6+ZmrVpls2Lcr6xkI+X2+kg6f4m93wpcr6VKl4X2THbwVY88VC2/+h/kf1v7ZM2xbWL4/ksZaADJOtPcv78kKZvMzhUsksFlmAtPBuOl4zzIeMisQlN45hjYp+fTz1FH1NsldgXGX0PHXlkOJczBU7T9APVtSSeGbtPPjkczJ0b0vRnKMVtiX4e6memjJ3BBu28ePjhExde0OdYox7Ks2UlpoCo+6X41aYxZL2FjmLXQuuAKpUPbbdsWWh/DiX695LiIUufZfTvZqtw3HFcUSuuPcC4TNLQkLXDiXH++SHNYSnF7c1lyLoJHRiY10xv2xbSbJ+yjB3VFUXIxzGScLu3X1hGwg3fOPgcKTOR4mWc09OOHcciF94pJcX+2ujVMvZZd+SRwe8gfcYx3e4reMr9o8W6OW6Sele3Beb+lqAPM05yaHC79LXl8nPevNa/L4rbO2oUu/akQBnb++O5i/MD6516JeS5mmvZnBmKm67jOI7jOI7jOI7jOI7jjOIfyxzHcRzHcRzHcRzHcRxnFJdhThduvjk+Zlznr3ylmdyOPbBW5kYoarCyspTckpuO7TU0FG6wtpvq+fWVMidb1xdDb3A/NCWsj91ZThHCwq99rZnuvPvuOCP3z3NLNOMZ/+AH0SXbsUWam6obv/M7Ub4a9h3XO8YJ9loy/Ed/FO6D3580+Xhftqtth2gHN0NBM23DWVO+Qimi3Wq+fn3Lc0MZKRNLoFyp3+Tru+OOltc0/uIv4owZaUyTL385Pua+7w0bQvqIWCqwG1LJOtI5CWS0dR3t2m21GQnYXrbsU974xmZ6Gca5LZnHtJMBU4fOxBZ5Uq+n/40kJ9GMJHCoK/flP2HkcCk5+LGK6fmt3woHf/zHIX3FFSFt4pHzKVh2JOk0dGCM1I1GjeMsNccZsZ+egA2xJ5Zec02Uj/Xroq1+85vNZO1FL4quOf3CC8PBFzeFtI3LzvJo71aefuqpIX322c1kB+axyv42MrLHKZH5Jqh97PfDAdvh4YejfDsx13C8PKEYrimck6wyKiWFryhqiaU6ViZDLRh0b999IKziMBNJsZxq06ZgrcccE4+sb3wjpDduDOnNmykRe8ZUdi/SFJ3uU4pdu6hrijVOd999XDNNVRJlV1bGd/4Jpo3GsJKnhLuKxeyYe/kM5hqWZ8ru6grtvyNW1CU5/1zYPt7peq3eD2vro0eHGcsu25Tb8ppoLraaJ17EOYCNL0VSsoXLUW+8C61aFctjKV/7d5eHawaH4jWFrxgZbxOVuPzy+Liq5JBwTrr00lBX+/rDfs7JFHOeLML1sUzO9m2qDlWhuUZTaWYS3707zBWcQ2ybpuWafMOzD/5M4tzWKNeuXT3N9LZtwaDYju30sRTPcXxts7JL2uTZZ4f1r8G/VOx44UVceziRSWmtebsPlYJ/I3Ldt3Mk/x6qamwXX9xMXn9tfIqPYf9sHcOO+bG+HZ64CntG4T7LZi++s8xxHMdxHMdxHMdxHMdxRvGPZY7jOI7jOI7jOI7jOI4zisswpwvcPyxFUrLdCQmcjazH7Z+UItUYWUrSEKLzpeIUJeIujVyfuMYeU4Jlv8oOQCpwCvfsHx0i5ewxEjOWxzML8TySkcxQ/nDPPc3kbrPHnhuk+XzHpvbYS1JFGSbrzfvYkqkcYVy8HpMvivaXCqtlt1vzmHoAhu+S4i3csJtObDs/1sjXKFnLRcNMRX5s2Lrm2nwMu88b/TwIaVzjmVhixJJTsuMeey/u4Udd7fOldpjnxhVtt/bud4ffr7oqyrcb44VjKfevHalIhrlITMOZEnldA+OHbWrbgAvMUqQ73/72OCOll5A+90PO2K8Y1pTtaufFSJRw0knNZLeRM1JqTHuIIpuaslPSPbsTn2N2CG3Xc9NNSsIogJRzWBkmx3MuBBjzQUtRz0Rj41BndeyYjaJ10gqqSi2r5rvxxpBmJFgzZ6TGorUN2lBH4ncp7veU64IsXIesbAearq17Qw23Qr1kFd80hwcfDOnDTaDAVNS9jo4gEdu3L5aLcbobGKCs087LoZWOPDIRmU3pCHW8j1UMJzVrFk5KXNNT0ZFzGJlUA5WdO7f1vGjny9qG74cDugOwEizU+3xKzc26dtppmDXxHLWq4yUVDVyKjQqyZcq73vzmX4guicb21Vc3kw3zHnHFFZc10+1ENmS7vutd8blUd1aVf5/VcX84MHY2jKig9GrBiJBSPJw5HXNatM3NW3G6Wr58PxVOwGikVtmdomIQ60i5R9avf0EzbV/TNm8289oo8+bFGkiWzXbk75s3t77//mB5bG87LzLqbCS9ZKfZDuQDR6F8zQLKxkxMwG1Fv7RQesm/8WzESxpYxXl1J96A7HjjlEIb4u+2CmPPWxSVbu840w7/WOY4juM4juM4juM4jjNB3GfZ7MVlmI7jOI7jOI7jOI7jOI4ziu8smy4Yac3wunXNdD9+pzwo13ncQNxtZIqUlKTKsMocSu34hdUKM3aqNVZ+xviVDcjmzsJWZ7upnmX0J+ojSYspbWN5kB3YevJekbwuI5+oL8jF3Quk4gfZNuE5/uOElQ71Uh+wdm1Ic4u13UfPrdjcA241Evv2tc6HreULbrkluoQy052JtBQ/U2R3dht7Bbbv3Rsd90KSxXYdNvkY32hxIq1zz41vxrbE/vIuE4Ev2q/Off/Qsu0xe9rvhVRnEdJdRjeQEqZuN8fHHsB/1eK/mLEdU9F1pXhsdl56aTj47GfjjO94RzN5/+c+10zTtuw4YJ9RLNbByK9SrM1YsyakOY4k9VIChXFRhwS2YfRwexLphmJS82IN9tBto/qmxkVO38Nr7D9xJiL/MVtOopsjkuiOE6EmaEeLctddzeQA2s6WlIpyaWEL92HMdZl5g/m4PjTOPDNTOli9Oly/8rzoFIOaXf33Ic1XAjPl6mc/C2marZVrsmwqhzi9zDMKSkpodu8OUp9Nm+LIwpRRchnJqZdY1x/+sPXvktTV1UA6rLNW3kO6ad+cZ01fRg9PG7T2GA0GO6ITsJFZBzuwmI9po22L5HFDCUu28wT10ilpqr0XDQWGV1v/vfQ1lJma94jaaac102vXLlUVUi4AejfGdeiNGmWFJswNN4Q06ilJNRjY6Vzru+LVh0sKbZJVs/I1dlNOxVeVpOSzJz3/MnIuu9zWgUPhqKNCmgpyK91kZMvcsEoFq2fZ1jtIVfgcjLCbi8i6HRFCOzpCP3fayYZjOKVntecSUZDbXWcjKL182cta/y7pkQVhvaG3n1csScuWr7supKnQluK6piTR9nlchunMdHxnmeM4juM4juM4juM4juOM4jvLHMdxHMdxHMdxHMdx2sB9ls1OfGeZ4ziO4ziO4ziO4ziO44ziO8umC/DFIklbEtm6qaM3vnnoS6WbunnjB6OWStOXh/HzUWd5yNeAPyYp9uxBlwbHKobPRx9qOvvsZrKL/rgknQ4h/b0Q0ls/SfSn1AVfVsl7KjMQ7D8TMHz7EFo843SA/or2JH6XYt9PqT6SJJ1xRkjT0QNtw8YSx/GegVCi9XGzlGWwbPgnsZ5TWD+2gv0HlkG1ZrAe90ajgg+PbeZ4D2yc7Wj7mV4aonal/yrrq4JtefTRIX3ccXE+lpFwXtJlnDzQHqLHNvHkz6KTFPRFP+xbOrD/qpUqm5bWsP473v/+kP7wh0P68sujbHswtmkn9Etm7Y59W2N75/qP53IOkKxDllF67IBJYO3zEaTp/YbjZZnxLbkg4UNN8KEmKXYCw7nezkm0ITi56YLfGLNURETFGWMYGAozf4NNl5kX6aMo8nlWT/tSuRfjh/OnHec85iPl5i4dEXxyNawzFrR/45lnwu90upMD+eg3RornYPqHYb57791hCgxPv3lz8GS6Y0fsgOyBB7iOc6UMs01HR+wfcf78kObQsbbBIUL/ZRZex2bdsaN1Hint0ss2d28XZgs6eWPj2TkJ/Rw5e7JjHrbb0WPfYBJcfXVI33hj6/pIcafzvmZcRZ7S+BxVfa3RVm0d6E+JDqxuvjl9Ddvr2mtb182UV8OaOfyh39WE4bohxfW+6qqJl/fxj4f0a14Tn+M7D4x68ctfHmVbfEzosyWXBZ9sfAWw6yW7mc2d8vu0P049NaSNi9MkNBX6BbNLIZuBcwD9G9KXmRT7Ucz5wTz//JCmi1y+8kyFHze2yTazIPOZ+KdObx2rilmPdd99IX3TTSFtfQGycD4IJq+cbVR1+Zl0QmnmMU6LnJJesTZd9He/G9Jwnz3uVrQnNoOdDhxnpuM7yxzHcRzHcRzHcRzHcRxnFN9Z5jiO4ziO4ziO4ziOM0HK0n2WzVb8Y9l0gfu3JXVgb3Y09rhnm3uYDbuha7CiFm7tj6SX2C5ft7oI7tNGXetGltQBWRhLsIZGCU1Uv9tvD2mruTj33Gayx8YzBpQ5sQ4UUnQZCWukA6G0tGJMZxv2vIan4n0fQtrKEpOyImMbOvPMkD7++JA+8cSQNvvYU9JLygEkaekybCHndm7u5TaS4VoiLrddM9jP3Chud7H3du2/zW3ZexLn7G5+tmsHZWm0B8ra7DH3l//4x3G+lAQOUpZuo5fYDg0Au6LTtHEvxz00Ej1Ghrk1Vk9PmJy58yWA1t5g+1x6aXwRJTQf+1gzeTdjk9v7IN3D+5h8NfYZ5bGrVsUZOXdR62H1L5xvEjoSK+NLyapzEuThRHrcNm9q2/h8TEvSaaeFNPUzdg5PSLf4s1WiUaISndsdP2FSollx/qwKpwq2t51LU+3aa/KlZG4Nu7bShjiGrdw9wUMKUi1KYSSJ0+f114f0rl0czBTySvETB6nd1q3zlGZuMzVvXngGo/jmMht1X06iyzmcyj8pXk6p6stJrWhCtMEdRo16zDGhB19x8cXhBPvLLjApCaPVDiWk2Fk4F3J+sWvK3Xe3vo+dkyi1So0rW0+WQcm2bQfm44sAr7FrO++bmp+kuP33TnJRsm3Srm5xjMcfD2n7ApRyX2JdLkDDOP+CHtQN1xh7GsTbBx/Bqv1WrAjpWJ4e5+PrB6v6c2uQyfzlzrmHr3TWPGkC7EpKL/n6JMV/jtA07FTK+YXV6x14opnuWLZQ7cDpmM1vZZi8L81BxwdJ+3zbKLQB2s2aNXE+vkfQnvD7s8/Gl7QlO129OqTpssZ0zM0fRfrmakVzetq6NT6XamM+g5X11sb9Feo4MwuXYTqO4ziO4ziO4ziO4zjOKP6xzHEcx3Ecx3Ecx3Ecx3FGcRnmdIERmmSkkjyBPc1DJipaFJmEv5tbRZv2uWU3t3WeW5C599ZIJTtxXQN6v7qREvZCm8EduwPYT95hpZbYdrygYriVLuajbMtunea+7Kp6E1xTy8iNFuPZ9+C595h87PNunjjppDjjC14Q0uwXuy8ecNs/03Z7ulZiLzXbJBOFtRtSDW76z0WooxzxJybAYH1RaInurtbbt7vNcUowY+tgpXxNUvvJ7XHG9pMyTDY4I5lKWsDIlvjdWhOjXjLCa/3d71YVOJxzkbOq+ltY8M53hoMXvrCZ3PqG/xjlm//h/xIOPvOZZtL2KuVxnO+6Tz45HNhxSb0K+8K0cTRGeI0tLyEnZqN0mnmM0YBpNfb5+Ex9iXw99r60NT6DnWtSET7tHM5zsOlcnz/3nFrma5g6RGV0tJ4LrVQ9FTHNyo0IxzPbzqpYeNyDtJVBR3ohylntxEh5K6E9ZaCpWTUcj2PpJbU61uUCj4MgdccOK3lr/e+huWksFcwtp1hjc1nz5PHTT7cuu+q8M3dufBy9BqRkhVammLqxnQ/QMfUuu+Ik4BzCRrFRdFPnbB34TKl3Hvt8fJdMha6T4mfHsw4z4je1eoZ+1LXb5KthXYuer41omEMmHF82UngFtmFe7Nu8OT5J22Af5eTWDBFJnbAx1gbKPgfzRleXfUsJ5FTslE9XDNIcqWW5HNhXR5paShZaUYE+TjrNe0WK2i3hoHOcrVeTRKcCxmajT4JsVNHUJGXHbCofpLv2Pm3JFPmAsK09Q/FbLm0j9YpjoelbySj7jDaUC8Rt1/7Zivssm708PyzYcRzHcRzHcRzHcRzHcSrgH8scx3Ecx3Ecx3Ecx3EcZxT/WOY4juM4juM4juM4juM4o7jPsumCEdHT5wp9W+2BvwUrjeY1DCw/Tp5PoTlF/qxDzvFIyoeTKTsqwfi5WmT8UIzRj3QvfDNJUgMOF/ZAOG/9UNVTDgkots85eaBg35ZFBy9oE6vJj3wQoI2OhY8j47om8mUU+eA58cQ4I9uS9Uk5AZLU0RH8YuS6L+nPhRlNXOgu+HGq4/nsl3j6paJfKesiLNV9xESmVj1lx8ccE+XrpA2wXVPhvu0xx0HOZxmhkw5TNo8WIBb8sPE3tRPpOtv/a1+L7/WR/9W6DsC6siI5HynRdfDh9O0zg5+yl171P+OLrruumRxE21sfU2zJDrYRHbNEDk6UdlBiSZ2zziXov4r+Zngf49yljnmkCz4k7ZzEfj6W1yPdoH82KX52Ooix9sl8rJ91jsXrkM752ICblbgZcz5gEu1t/bLU6zWk03UgS5Du5/1NPlYv8jZlfIOm2sTOcdE5NljFivOSnAutE04Izmx27w7pHTteoBj6LAsFnnhi7AwnXhKCfeemO05jmSVlnHmNYZuENsRn5X059Ow5lmf950Su5VZijKQcLeWwfY7Ksk2y6xP8qio1j0mx86iVK0PaznG5cT+GfT46ROLcZf3uJXycRv5XbR6c67nrrvC7eb/TZZeF9DPPtLxPVepveUv8wySdAvWdeWY4uOCC+CTbm8bGPpLivkj5wTQvNoP18A5GF2/Wj1TG9WzExo0hTbM5J+FeUYp9ULKq1uw4rli/3HyQmhbtaxHdCfKaXoy/PcbbbGcbPr04p9h3TN6X7zVsh15r03wnYJ/bcZX4G0F4T7bvYPz7oZb4feQc2iHhXNK2N6e1ii42Ixu0c27KfTXTRx1V7T6zDfdZNnvxnWWO4ziO4ziO4ziO4ziOM4p/LHMcx3Ecx3Ecx3Ecx3GcUVyGOV3AFl1J0d7ZDkh9uBnZSn0IZU11G6eYch/u0bWyMpKS4VkdH/cA85nMPuh6Is1novxUkhoIR56Vme6DRIUyPEovI/2G0vJDu6c2IbXLhn7GNcxld+vyOaJN6LZf2ObYir1nIHz77uyK69O/KaQZyttKaQaHQhmRfbF97J52SJtqkGEOxrniL/OwSSsBYPG9PWrJuNZmnzM91VB+YduB+/5Zh5y8mfbE680+/eh5X/7ykP7gB7PVrUJOlpni31b9djP9ijv+RzhBbYikLRizfAY7ZqPjlBzOzjXUClDrZXUsnAMycuKk1Jw6BPN8tP1uyDDtwmrHwhhRv9q5paoeLiX/bUffbLBLR6oO9YkXHc2ZVUPL8zY9SHea9XMQ85Aou7J6v3nzQppyGtvGlM0RSmEyMNvxx8fnaHbMxyVqx45ITKpYxB/mGjuXsmw2SUp9KsWyK57LLZk0QQ5FKX4N4JDLqNOTKsrTTovzRc2PuSZKz5+frhAbyDYeqHf1Js9FUJp4993pfHwXydw3WvtTa7BdU1geF/jce0SuPMLy+Ax2DoJLgcoa6xTWZYad1yaDrVuqHcb5q6hwjZlDGgPbm+nly4M92cep2lyrVoU0x3bVa3hfu2RyPNJsUqZlyUk82ZTM17c6tMljm+JrTjcq5hScuzgPbd4c5+Ozc42Lhsg9sRuYqHBqSXM69sSam1xXpchuajljSLiV6VkWrxWURLYzFO3rtF0HxqA9WHsca5LhiatpHWda8Lz+WHbYRdfqzBPDxHL1x1Zp05Y9+vkPr9fS4zr17HP7dPkF8/Xxd58+7tpNW/bo8g+t092fe1nzt49+/j51za3rg286Sf/1b+7T12/bolpR6Nh5DX3+P6/Uwr42/qJwHMdxHMdxHMdxHGfa4T7LZi/P649lcxuHacNnXxr9tmnLHl14Zq+u/aPz9Oxz+3T2O7+t165ZoJecWfFfFkf5rTct1R/86qmSpE//88P6/b+7X3/5gbOmrO6O4ziO4ziO4ziO4zjO1FOUZXmo61CJoijKida1KAqVN12ePN916XXafd2l0W83b9imj//jQ7r2j86TJL3597+v1124QL/w8oVRvv3tLCN/9Pcb9ciTz+oz7z8z+v01f/CYrrnhzpZ1297fWpbCbbR2S21nR9jjSjldroysfJC087k8s+eXspuUwigXbYe0IyOzpLZF9/ZMft8w+7Jq0D6mG3VTh1wjHShyfVkPgs12+q+7a+JtvHN3bN+p6lVt72gcHMg2NRWqMg5yVWqnqrnxwnFg83E7vlWztbrekpu7Uufa6pep6L9cZQHn2Xb6rx1ZRK7tJvvoXEOmI3bcV6Gq3WXXwioNW1W+lsvXRqTNiJwkqGp57dz3YI3NyUr6DnR504zU+iK1N2+krqnajJXfN0HuXXbcu9EEy8s9d8UloDLtPHuWdhaV6Tb+pprp8D6ccClwQPs/99ypczk5c8q1g2WCa8qq887T+vXri2oXzTyOPnpVedll6w91NSbNF75Q3FmW5ar953z+MM1nvgPLs4P7tPId35YknXjcXH3tD86Nzu/YNagHHntGL31h611lDz7xTPN6Sdqy/Tl98E1Lm8e/+9l79Xf/+piOOuJw3fRnq1sV4TiO4ziO4ziO4ziO40wjntcfy1rJMCXplru266xf+5bue/QZ/c5bTtKC3ta+xk5aeER0/Uc/f190/g/fsVx/+I7l+qO/36i/+Nom/be3nzq1D+A4juM4juM4juM4ziHDfZbNTp7XH8tSjPksu//R3Vrzvu/otRcu0HODw/oPnxiJdPT7bz9FZ51ko1Ol+cWLFuqyD62b0MeyKoHLqkrMLMntwFM9yjP79FmHen3/klNbXE4CMMWK0UlTVSI41dv+DzWHok0nc+5QUGUc5GjH9qteY6MgUXpJuWU77d22HO5QkJlsDpY9TTe7PVS0I7fO5Ttoa+GBlEBOtrypuOeBlJZOlkM0eCjHsnaWOmclXJXmwoy+crLrS1VyEs/pzMGsZ84e2mIqKz8FZR00+WGOqfRJULFN7HOnprtcxOe22shfPhznoOGjIMMpJ3TpQ7+4TP/flx7Ul/7rOdEusk1b9mSvfeCx3Tp50Ygm/F++s1XLFx9xQOvqOI7jOI7jOI7jOI7jTB7/WLYf3vXvXqCP/9ODenjzHp14XGfl637n/9yr+x59RrWa9IL5c/WXxrm/4ziO4ziO4ziO4zgzl7J0GeZs5Xn9scxGwpSktSv7tHZlX/N47pzD9PhXXjku35IFnVEkTEn66NuCzPKff98DSTiO4ziO4ziO4ziO48w0ntcfy2YiB1Q+PpV6f1ueIaffn2jRVf1lHGrXKQfkvlPdZxO95wyjkg206wSvjXaZ7DioSu4R9u4Nafopq+I38aBStV/azTeFTAd/fbk+n6lDuJ3pbto9a1X/XlNR3qHgYP7T+qFY/w4gh8pfY6oZZ5L/z+nOtPDFeQDHy7R4vmlAlXHhbeU4M4uD85ea4ziO4ziO4ziO4ziO48wAZuy/DX33u9/VN7/5TT355JMaHo6/0n/6058+RLVyHMdxHMdxHMdxHOf5gPssm73MyI9lH//4x/Xbv/3bWrZsmRYuXKiiKJrnmJ7JtDPgGhW30lcKYX0QpWgp7C1TVWinrQ5VqPPpIAWdDhzIBWXSbdxu5VI3PoCdXnWMEMoupVh6edhh1a9rRW7aqProleang0kbfVa1X6bDHMC6NaZBfXJMdg2ovBa2u/5VYaonv8nOL1OxGE7FIpxisrLVQ7TY5+auKZ3XpsDdxXT+A+9ADsVZQ9U5oJ0JdDosUoeCim1ix3JqzB20d5kDub5Iz197cJ7XzEir/9SnPqVPf/rTes973nOoq+I4juM4juM4juM4juPMImakz7KdO3fq537u5w51NRzHcRzHcRzHcRzHcZxZxozcWfaWt7xF119/vX7jN37jUFflgFFlJ2276gReV1nyNMkoOnZrcpXd4O1IzNrlUMgjqz7POGnUDIkAdrD6S5omO8NTlahYuXZsv2qUS0LZpRRLLw8/PKRttVPlVZFnToTpHDE2N49N46E4K5ms8mh/1yUzzqSF6EAubFXbYbLtNVPbpJ2Q3QeQg1mFAyk5O1hN1859Kj/3VExKB2tcTWcfApaplINPx+cj7bx8TMXa5b5kkrjPsuoURfHLkt4vabmknZKukfShsiyfmkAZ50v6Q0nnSyolfUfS75RlucHkWyLp4UQxPy7LcsX+7jUjLf2EE07QRz7yEd12220666yzdDj/wpP0gQ984BDVzHEcx3Ecx3Ecx3EcxxmjKIr3S/qEpG9J+k+SFkn6gKQLiqI4ryzLZyqUsVrSzZIel/R7oz+/R9ItRVG8uCzLu1pc9jVJXzW/9Vep84z8WPbZz35WXV1d+s53vqPvfOc70bmiKPxjmeM4juM4juM4juM4ziGmKIo+SR+TtE7SRWVZ7hv9fZ2kf9HIx7P/XqGoT0salPTSsiwfHy3jnyTdI+lPJb2qxTU/Ksvyi+3Ue0Z+LHv44dRuOsdxHMdxHMdxHMdxHGeacIWkTkl/PvahTJLKsrymKIqHJL1V+/lYVhTFMknnSvqbsQ9lo2U8XhTFVyS9vSiKBWVZbmlxbYekWlmWeyZS6Rn5sez5wIyRgk9B2PKpZrLuZQ5k5OUp6dcZKoo/FNWu6qcl8t1XNVZ9G51Z1Xdfjsn6KaOPMin2U5aD+ar6L6taNonHS8anYjsDfcZMrO4aZH9UbZMZ23ZTbdNT4eRtovd5vtGOsU12oGcWOc6ZnEstM3aMTAMOpH+2KWcqx2bVl6tp4K9vVs5JVd9/JvuSOVv82R0E3GdZJc4d/f/tLc7dIektRVF0lWW5exJl/KqkF0n6hjn3mxqRbBZFUTwm6XOS/rAsy+f2V+kZZdHPPPOMjjjiCL3vfe/L5vv0pz99kGrkOI7jOI7jOI7jOI7jJFg4+v/HW5x7XFIxmuf+SZQhScfjt2FJ/ybpakk/lXSMpF+Q9F814iftEu5ya8WM+li2d3Tbwl13tfLbNkJRFAerOo7jOI7jOI7jOI7jODOdvqIo1uP4/5Rl+X+YoSiKHklXTqDMT5dluV0jEkxJarWba2D0/50tzpEJlVGW5SOSLjL5/rooiv8j6Z2S3izp73M3nFEfy3p6eiRJN91006GtyEGmajTyyZaXk01GW83bkF7auqbq3k405P3dqxVTIRdrh3Yihts2rU2FEVSB98n0earPpnpneDvXT4micpLtXVWOnGs7HqckkJac9DLFVO+er1rXKnUYNw5Sc9Ih2gdf1d6fpwqFQ0au7StLfkk7tla1Eu3QjuG1sxC1W4d28pFcvas808EccJNthymeuybrCiM3DiLXBTNIijgVS0Wl551JeqypkHxP1varjvODxXSoQ46DZV/ttMN0bztnf2wry3LVfvL0SPrIBMr8oqTtksZ8hc2R9KzJ0zH6//35E2MZlqplSNIfauRj2WWaTR/LHMdxHMdxHMdxHMdxpgPPJ59lZVlu0ohkcqI8Mfr/4yVtNOeOl1QiT5UyLGO/tZJoWh6VtE9S3/4yztiPZffff7+uuuoqPfLIIxocHIzO/c3f/M0hqpXjOI7jOI7jOI7jOI4zyjpJvy7pAo3/WHa+pPv249x/rAyNlvFZc261Rj643VmhLkslHSZp6/4yzsiPZd/4xjf0+te/XmeffbbuvPNOnXvuuXrwwQf13HPP6cILLzzU1Zv2zPYdsand3DlJGM8dLEmmZTqoSKqQk3ZUVQS1I8/LUVVtVCVgU6OqJNNQRfKSk1fmZJhTKb08VPZdldkuWZxq1V07wRCfT8xGG2qLqR5YB0t62c4108HYp0F9KBfMydgnK9fMSuSd2cOBXJynYoxMh3GfoLKbm6ocqvlltr+gOQear0v6tKT3FEXxD2OO9YuieI2kkzTidL9JURR9Gtn5tbksy59JUlmWG0d9qr2xKIr/WpblE6N5F0p6o6R/K8tyC8o4uizLp025NUkfGz28Zn+VntwKeYj4vd/7PX3kIx/R7bffrjlz5ugLX/iCNm3apIsvvlhr16491NVzHMdxHMdxHMdxHMd53lOW5VMa+SB2nqQbi6L49aIo/pukL0m6V9InzSXvkXSPpNea3/+TRnyW3VIUxZVFUVwp6RaNfNf6TZP3r4qiuLEoit8viuKdRVF8SNL3JL1JIx/vrtpfvWfkZ+H77rtPb3rTmyRJhx9+uPbs2aOOjg793u/9ni677DJ94AMfOMQ1dBzHcRzHcRzHcRxntjONNzdOG8qy/NOiKJ6W9H6N7DLbKemfJP1OBQnmWBnfKYpirUZ2h31MI9LL70h6Y1mWPzTZvyHplzQi/+zVSBTNH0v6j5L+sizL/W7tnJEfy4488kgNDIxEBz3uuOO0ceNGrVixQkNDQ9qxY8chrl2brFwZHTbuuquZZkgHbgW0nTe8rwwHRwS/e3b7YO3MM8PBkiUhvWBBSNsR3wf/d11dIf3YY3HZqLcefLCZbHR0RPm2PfpoM92D34cSaZuP3v96Tb4G0t0nnBAOdu0K6bPPji/i8z3wQEj/4z/G+TZtCuk1a0LaPB+pHR364l78/ojJtxTpY5FebGxDb397SL/tbc3kTnU307b7WO3+/pDesiXO94tXwNruRW2//OVmsnZV/BF+G9prG35/Mi5ai5BePhrZVpK+8414zNIMly6CP0Js+R46OvYryZluAGlr+/RuuPjII8MBxwH7VZJe8pKQPvnkkL7++ihbjQ1L0MiN22+Pz6Fj2GW91p4uuCCk0ec/WfXLUbajj25dhZz0smLQ08im5j/+/XBw2WUh/Vrzjz+f+Uwz2Y+frW1wDLMvO2kMHMuStGJFSMOexvUfy1i2LKTXrYvzPYco1GwIzGk1Mx800LcbnnqqmbZzF4cZahrN4aeba/pS9mlZvjykV4UARg2bj2WsXt1MDi5Y3ExvfSq92fyYY0K6tntndG6wI8w9DbUes5aULCUnSXkE6xrH8gKTj3PAYlbcjivaBtpOAwNxvkWL1BJec/nlrfOY8r6z8djoFOfgj388pDlnb978U1NgP9JsiRek6xDNzvObqcMPjycNmEa0LG7YEJfW1xcsLPcHAofmbrwGp+4jSRdfHNLsCiscqN39o3DA+fiOO0L6RS+KL0qNJTu/sFIYY1k5FeaeYcwvNbuGP/NMSL/rXSHNxpKihhheFMYplxo7xLq3PRQO7rkn1OG22+KMsP0aO/e660LathWMdRsM1LZIH98xjziimRy+zax/VTgsXutrHLOPV/HhnC6v8Za3xOfOOCOkuR7QIKXY4GmU7Bj7PrAN44/9vCCevTiXsm/HzYsb4e6HGRfY2TDw0LZQNrv8eOMmG6/uUXF83c+NeSyF2mq8AXEosIkuuaT1fSTpFWuryRR/+6OdzTSnevuey7mHU/hZS7CuffKT8UXr1zeTw9cE1Vb095SkWupvqheEuXn7u383uqanB5FlB8I7+HBHZ5QvsgGuN+94R0jzgSR94qowb3zxi+H3769Pt+l5Fwc7WbdunzkbfIIceWRo5F27+Hv8wjnWn/tsUc7zlrIsPy/p8xXyfVTSRxPnbpd0UYUy/lrSX0+kfpYZ+bHs/PPP16233qrTTz9dl112mX7zN39TP/zhD/W1r31NF/CPSsdxHMdxHMdxHMdxHMeZADPyY9knPvEJ7R79J8qPfvSj2rVrl/75n/9Zp5xyij7xiU8c4to5juM4juM4juM4juM4M5UZ+bFs6dIgWOvs7NRnIPVxHMdxHMdxHMdxHMc50JSl+yybrczIj2Wkv79fw8Ox9rq313qxmgHs3Rsd0t8MO6lq+FJ6MbHK9C765KJDEAr7TX0ihzX0t0DHKlLk52oPfIRZj16s3/ZEXeEZbdw5pnNzUwecJwzjWWsPPxxnpK+7nB8MOkKAn4hc6HR6v2G9bZuwn9k+43xfsJ/gB6O7By3RFbdef884D0YjdTOueaKZnvelsxk6pDB15TN0KyaqAXy2mKqO819TBbY+62OfOrIV2jiflb5FJOlpRBymHynrWINtRB8iLM+MF3qyjMap9a0E/xRbXx38lJ3+//4uysZzKayPm6rRv6N8dK4Ehsw/XNRf/vJmugc+Vp6Ez0JpxLvnGNEYga13pXzCSbERWb8/mzeHNA3+vvvifCyf5f0U/qJMvXlNbh5Kzdu1XJ7DDgtp2qodtDymDVoSZbBfrW+7pM8c80YY2UaqIcw1tcz8mYLjOeffMppzMV/V7AOy7Wg39G8pjZ8TxuCDV/RZZuc7DnWei8flYYphe3GmPcLk48iiw5hgJ3v3Wv8yoTxO9Q8/HDuc2bYt1Ck3h9DdG82TTW9NmqbCsu0fIg32GRcO+g3inC2lHTjajsFxVfvkfWucK6w/NDYE6zpnTpwPz5T6I2xc21f9a43PS99KrI/17Yr5+FiuZbZN6Tcp40OrCrULL4x/mGx59PFofREed1xIsy/o61KKGv0n9wbb6OoKf3vMOSL+O2TeovCP/HzdfMZMLSn3iOPgc3AAZfo/56+W0F0tpz66SbOkliHrRppmx6ryPuYVszKctjku7OtUsrlSk7E5jtYRW3jKf3HGYRfr0PpNfQTOQzVe9OyzIW3eAVLTYg76vj388HjtGRoKx/GfieH5BgYyTnIdZwYyIz+W/fSnP9W73vUu3XTTTdqL0VqWpYqi0D73Iug4juM4juM4juM4juO0wYz8WPb2t79d/f39+pu/+RstXLhQRVHs/yLHcRzHcRzHcRzHcRzH2Q8z8mPZ9773Pd1xxx1asWLFoa7KAYNSMm6qZdD53HZdduy4fCkZAvcmW8kTd+txr7PdL41zKXmehQKHRiItSXuQprjEbjrn5ndKL/vxe6eRw3WgTQaxW7GR04eAcWG9E3Ulg+aYd4rai2HmpWqyK7OFnFvSqVyxatuoPO6LR5zx3cY2+Hx8BrsZPZJlYp+33bVeRUXSmTlHu7G9wrpuRzt2QjLTYWUelDsQK8NkeyW24u8xx3zUqH1MOHJdeWUzOf+TCGJy7bVxPsgwOcyrSi2rsv1LX2qmcwIlSi8ZM37AyhkBbYhW3GHGYp1zD+ckakjMfaN5zfZfSpuRM0j0c22cpjmQkpBXlZNHc4Cdc1NSNCsjSZCTw9GMIwmIMShe19mRMLYpMMKUDNOuFRx9NSvLJUdAtkgbsuvf3LkhzTkyJw0mmD9XXL44OjV/fkhTvUYefXR+6xOSKNEsiliGWZZcO2htnPjj9YUyzHgai/MNDLTOZ6c+miHNk69v883jrV4d0pFE6bGH4ox33906zTkgI6eKbLLiWp8F7xVD0LnVrbsKSqwpoTJ1HayHlS6S7qErrHl3sgMoQbX+DXgh17x589LXwN6jucu6EaHGrx2/CsTOG7nxXAW6FDnqqPhcav7MSD+3wdRoMraajXposfmogo6J8w0OVZT80sY5J6XeVxQvhTR3O0RSqnNip76URxebj83P9uI1W7fu//6toMcMvv+Me88F0XyVcZmhe+5pJvtRYA/d2lhoT5n5pKoMM4L3pUuJY2KDWrbs9Ga6qgyTRVjboKk99xzPhHls795Y3TU0NLIulWW1+89U3GfZ7KWqC6xpxYknnqjn4lHqOI7jOI7jOI7jOI7jOJNmRn4s+9SnPqUPfehD2pjzNuk4juM4juM4juM4juM4E2RGyTC7u8O2/4GBAZ166qmaM2eO6mab9s6dKeHbNIZReBRHgWtgHzO/btaN3oHb4ilTGxcBjCQklYNm73Qdsinex7Z0Siq52OTjud2JfD3mGookogA2Jl/07JQh4Fn7zTV7sK2a9TnL5EtGusnAaJ+5KKWpaJj9RnbVc+ON4YBaFu6XNnunu7qCgJePME4hcQekLNdfj9/vaCb5PJLEIhZm9DhDtCmkrRIili+0nqKsnJGX8K72auZjMCh+dl+6bl10TR/rTYnDdddF+ZArskHWwQj/dAp1ER/6UEi/4Q1xxrVrQ/quu0LaSIdS0sucAq4ddVxK4GdFwdsxb/SiY8+ycxLOPQF7Z7/Yai6ETIL16bFhvhj5lpHV1q+P83EupA4BbbzHzotIc06y/wrFc6lorVaWHfUtdFf9RlPSA4lfhFlTIg0GJKid+H2gIxaBcAi3FbErI08nVfOxn9n2PSZf1JZ8CCtpZ3/SJq0NQd8zBPusH2ajVCaAXNraxnyEv7vkknNaXn733fF42byZcsvQKlYys2sXQ9H9VFXYu3ce0qztTpOvr2V6166jo3xHHx3e22iCDDBogw027vh2SHMcWGkUpZe33BLSjGht9XCc8NhgR8f1bkvuB2nUk/h5oa338ce3vo+5J/89mM1AtZiVVvUuworMi6zWldJCtgNvev75SsH3ynEyTB684AXJMiphjYMa3XbgO5N1d8BzaNh/uzketWzWm28OaXafjWq5enUog+888480bzP1nJMJwDmKfcZ3FLO41zZ8v5k+6aQw11ihDiW/lDbyWa36cCB6F6GOM35HueuuE5tpRlqkCdrp933vUSVYv1zQU0770bD/Kd7QOLdIGsQ6+wR+HzDvBMfi/bHG9wisFT2fjesTSfcqyvj6Maf0fOUr4YRxzfLiDwdt/+5L4gitKdh2bFNJ2rGD/Um9LAxFsQxzYOBcSbNfhunMXmbUx7I///M/P9RVcBzHcRzHcRzHcRzHcZ9ls5gZ9bHsV37lVw51FRzHcRzHcRzHcRzHcZxZzIz0WfaVr3xFX//618f9/vWvf11XXXXVIaiR4ziO4ziO4ziO4ziOMxuYUTvLxvjoRz+qT3ziE+N+P+KII3TllVfqDdbfz0yAvoukyNfAghtuaKYj/2MZ/1k1+mKwjqmoxd8Xa8tT0AdMyv+OlP76an3cRH7FkKai3nqxYT4+kQ3q3TjhhHAA3yA98Ltlfa1R5R+1as5HGfpoOPPdmXWldwo7+PgcbNdxJTNkOPuSDjOMI5PeFXAIQYcnds8wHVHAN9YAfJLEHihM+8NH3JDxtRa1MfxbzD/G9DR9LlgnPAlS9mmhHaa8JFnb6ONzwMGF9d2W6jPeZ5yvp7PPDmnOW+aj/wD88bAdbXkpP2VT7bOsxnGBOWSP8V3DvuiFPVnfZl149gWf+UwzvQl5bH+xvVlep/Eh0vjxj8MBfYhYxygp/1XwNTKuveH3ZzHKs7MGrTg5j9G/ohT75kHZXfRZJ8Xjnv1ix86cOWoJDMB0XyqbGrZsTAqcUur1ifsvy9HDdY0+5jjnS1pIv4McY/RfJ8U+zFDeEMuWVKffOvzebW0oBX0KWR9z8Ov30jcG5zpz5gQ/k8Y1oTZsCH7FuLzbbvniF09tpvfupfVylnvWVJZ+2Ph+0G3y8TjUdd68I6Jcp50W0quC+5zIvHvtbHot/AlyPbANYcZ6Ezoiso3CY44J60cRBh/bdOtbSorW3V728wLzlnJi8NsUzUmmrnxcDu3s3J7yyWbGSDRvsH7spAsuiK9hG8GPZidsWFLs9MiWMVEuuSQ+nqzPsssuC2njs2xPX/CauxGvVjaWGE0S7h/HmSfha1fUZ3PjN5Z6Vbe4NEpWKGcceJD5sNXBebEvK7q7pD+zvMvefYm0hetAmGv4CLl1KAdNmvOidXvHc9H75w/7Qzqjp+PfLzn/nZFBIF0bsn85ZUtpSbSa0kej9Y8Ip2OvuvhinEi/W3PIWdu/995gBOvXB3+E9HVp36KruvZ0nOnKjPxY9tBDD+nUU08d9/uyZcv00EMPHYIaOY7jOI7jOI7jOI7zfMJ9ls1eZqQMc968eXrAhmKRdP/99+tI+6/zjuM4juM4juM4juM4jlORGbmz7Od//uf1/ve/X1/96ld1yimnSJLuu+8+feADH9AVV1xxaCvXLmvWxMcnndRM1vipmjISI0GIZC6UkWT2NA9DYsZtvVYmxU3C3EBsd53XEufMTl4tSuRjHexGZW4a7uV+a7vNn3uuIUOozQvbhHtMWGhKYaJBYfedV5ReksVIM6C2FSVR3jOU+F2SaujPLu6RZl2trJf7zrlN+1kjweF27jvvbCYpkrEyRW5Jpz3lJLrRpnMT6jraup6QYR5rJTOgH+1j/5GHbZ76B6BxYjHKZCBl6aWES4qkctvQDn34gN8TbYOX9FnEEH/HO0L6Bz+IsrHNaZ9WFTFUQXpZVXZpZXOU1EUyX9hdj5GYUaTGOcC2/fLbbw/3feMbm+k+hES39pSS3o6zT8yFnZQwm39wYXkN2iAkSrbedTw7+8IGaOcYifqPciXKBaVYDoVxXj8ilrlp7tyQZr9wjpRibQ3GVW4eS8puzD+fdnQ0Wp6KbKjqP7nmDPRtbwvplARPiucQtjE1UzYfyrM2VMecwtmq284BKTZvDmnaoBTPzZDMnPuGX2imOS1Lcb+wy60M7NZbQ/qBByBNjKSX9ml3IM3nm6s0YW3dvfuIZC6aZG8PbGPDpjgj+4n6tZwsH+t7Uo9ly+BYsuMF+SrLMM89t5nsoIsL2qAkvfCFIY1xvnN3PBbvvTakF+GliaafrQ+flQWY40e2hPG7+IrQXv96Ryy9XbXqVc1075vRR1b6BYnmTzrOaaZPb0OKvfUlr4uO8VoSycWqyry3XxBkmPbVYxPUv1iSRCW/FCv4OZxpTpxupXhs8hX1iFfHbXxMNc8TcX/aeS0FKwGjtu3AIcfn4/K+d+9PTeFPswSkrQYvjIu9e4OtbdwY5iejgq8Mn4OvtnbJjJai1Lpk5oMG3jl7sR7YJTIawcg3jLRdcVmFqoJMWvsevuNYW4D7maiB3vrWZNnnrAylr1wZ15Z1pW3s2MFGrrguOs4MYUbuLPsf/+N/6KijjtLpp5+uE044QSeccILOOOMMdXd360/+5E8OdfUcx3Ecx3Ecx3Ecx3GcGcqM3Fl25JFH6rbbbtMNN9ygDRs2qCxLnXPOObroootUFMWhrp7jOI7jOI7jOI7jOM8D3GfZ7GRGfiwb45WvfKVe+cpXHupqTA0rVsTH3LbPPffcD26lhCQRhUVStCc52lqYkGRacpEaaVB9mXwpdQ+v77L+5xDZUux3KzmkLoUzFyM+mfA4PZC/ZMOLtREhq3Hhhc00o7R1mX7hHMtN7DYGWdSWtA3uXbfRqajboWTCRKykvoARMHPyRdaVktFOk+9YpGu0b6sBqKITtLJllNHDveFmP/8jSHO7e2ciPa4MSvesVgDjqpPtSru98sr4GkSB3PS1rzXTVnJIAU1UPxP1lAMo1YztRiWMrqP0GQPBjuslmK92JqRskvQE9B19SFPCbKOPpmwyJyGn7dvyCKWbHZg3xm3FRlS7Y5+GDMVEbOtKRah72ctC2vYlI+bRpm1kPY5t6k3s/Mk5D/XhNFQxOPI444pt6gBuWKebBWqFbFRKzilwaTBOLkYXBWjHupk/k/NfTgpKKBu313Ahge3XILO65JIXR5fQVDiV2imJipwNG8JKsn796c30jh1WMsMZnXW1K1GwteOOC7O7Vfvx1SZaqlk5ylSl9PuLtX2u1UyzElaGSXlVTq6Jc5X/AKLMPlU3KWoUSi/tfThVsM9z6kpt6w/pVMREKWrX3bvDLPlEPfSzjYRHXnX55bjntvgkjPLmvww/n27UqFX4xjfiY9aJMsyqbjEoTbYycz4Gpc85mSKbmPOnbRK+EvC+W7fG+ej1IQsNgmMpFw2ThoOK7y3T2Y46KqRpxps3G5tORLnkPDFCkFvOg3SaQ7tiEPRx0HMB03gFl2T+JLIdNYYdWGec0UxG8nur8aQRUHqZ0U4PsT4V/yrvw5oyxHXMut3hmsdnzcgw6Q7gkkteEZ2yrylj7N4d+vyee2IN8piniNqM1LI5zgyVYTqO4ziO4ziO4ziO4zjOgcA/ljmO4ziO4ziO4ziO4zjOKDNahuk4juM4juM4juM4jnMoKEv3WTZb8Y9l0wXr04IgHHmEdaRATjghpK3PMjpMgO69hnw9xvkJtyDmQhvToGopcbskQfPfoDMHOi6w1598ckjTEUomJHpy5rLOXejPh31hfT5YJxdVoKMWlNdtfSXQTw78G3TS343iENSRfwL6RHjG+KHhOba3zYf6deBZj4Vt2BalbdCKrZ3Uacd0tJPxUUY/JJFfJOuzjDZOuzH+gY694YaW9cvVO3IiwvRrXxvnQ392vu1t4Xf2P/xeSIoco/Tg53F+6uh0gzZo5o22/JSlnO/lVn2OsZx/RPgkob13G59Q/egn2hNLW8jxL0V+qgYxnu2TdnD80K+csY3hRJo2lPX2Rv9Hxidicn4/7bSQtvMYy2BfPPtsnI8+Ug6Drxjrs4wkDIWX22zZl8DoZG6FSFxTxU+hlHbcZK8/OvjFqewECA9vZ/lkv9sGS5HzbUafN1zT8aydtC1J56zE/AnfpZ3Gp9fy5cGXGJc8unjbvTv2ubN3785ERW2rhHFFv0bWrRiPIxOnnyU6iLIVpD8zO47Y75wX588PaTsOUj7LrKMklpd51YqgfbIvTf9xbKf8X9kictNsBOudah9Je+CbjG6NmA0u9CTFZrxkSbCtBYuOjfI9BheLtoyJQh9j0ni3gxPljjtC2toq25vuSemOUopNl22yY0dIW7OjiY/5cLL3nAjDHcF7aWWJEG+Gih++YGGUjTaQ9mNpjZDrEr2uWp9l4Z015VKv3Q8OrDeHs502olfv1DpkxyzXkeNin1wRqUGb+dshet6Oimsh1rga50vbYRww1p9ZCjgGPGXtWnMyWFvqNdD+aTPWrB5/z5mpzEgZ5hVXXKFrr71Ww/8/e+8fZmdV3nvfe2dnZ2czDJPJwAxJCCEJIYQfBggYMGiQ2IKCogde0eIptvhqT9GjLVbb13OOPfW02te2tsf39IdclR6x2Gorak7BigWFCjaxifJbAokkkISEZEjCZDIZZr9/MNnrs+691+LJJJhM8v1cFxdr72c9z7Oete51r2d21ve+R8YWqFoIIYQQQgghhBBCiHaMyx/LjjnmGHvnO99pM2bMsN/5nd+xJ/hPQEIIIYQQQgghhBBCjJFxKcP88pe/bDt27LAvf/nL9sUvftE+/elP25IlS+yGG26wa665xiZzj/M4YaDWHX3mltZu5kBOSChboEwtJwHhflls6634ve7Y2lvF9Qbctl7++lrmvnMvqeQDcr86tzpTomSWzkGfSyfPZ2fZ20hReWW0rbqg3IjnUEKV2RIdCULcdvAyz2Mfse+83I+yXG419/uluR8cfTKCZ+AGe7NYnDOAst/32ZFKnZ2RYCXlg16HwnbzGCWnFredo5eS/pmZ1XgNapkeeyyumLJP6FAG3DnsL7bHqxAiS6O9Z+TbWeklKSqBI7wv+9tfi7bLMXI+qZyQOrJ/au4fRVJKjZanocwNc6TmbYh+iOdgjtUgTzCzpMS6RcKRmnMsex9EHQllqxnfHN03tz5AKsLbevlLtTKCY8X+bS1WtUBGPRY7c1CWbT1B+lX2fXfJJaHMeUm5ilk8lzAWVd938Lk1rmuUk+egveekmznpLBgYDP1Qx9q6bTgWcNN1bd7cvjl79zopvvnPKcIayu7yps/P0VK9EmPhbXrt2lCmBs73T8r3cJw5R81a30Xane8+1zq6rRCQ+duTT4ayf0fB3O5aNLtZ9ubJz1w6+L3v76lTgw3s2cNb1qN6/bgGlzVOJX/tOXNCed4MeGe3ri3A8156aSzx2198xIVJkw7octHS5d0GX8/4iujrUeVNWM+r6vkaz/JFCweieiMWj1OK8j3/Ej7cc08oL1uWPokaVNC9NJYgn3nmzGaZklM+08aNXl5J38N3W//GGDp5587ga1qvt/9weeby6ad8NNXnYtDoGP1kTG3KyGmi6a/43t5yTrExj0Bbs0EQcnrUFJCJP70hXvdXrQplum2+ynh3vs+/pCW9RwaKWXbkMi53lpmZdXZ22q/92q/Zv/3bv9mDDz5o5513nr3//e+3vr4+e//732+PPvrooW6iEEIIIYQQQgghhBhnjNsfy/bx7LPP2je+8Q1bvny5VSoVu/rqq239+vV29tlnH+qmCSGEEEIIIYQQQohxxriUYe7du9e+8Y1v2F//9V/bd77zHTvnnHPst37rt+xd73qXdYxuOf37v/97e+c733mIW1ocrwCIEjP1J/Z1+pMSErqszIrHcntkKR3BdmL/a2v0mVImv499+vRQpobDyxUIny9Vzh1jlhqfgii1dzazp7awqoj3Yh97qQ/6KOpHL9fkVvFUCiGf5TKVTc9vB8ee+02Jbd4uZ5hRoMJ62e7JSfdAMhtmLm1YxqYp8StDQlVGvYrPlPqRj4QyU3Mx46WZ2VVXhfIVV4QytrTXnR6gjnHaBM2UF1BW2V8He5/3WLISpqRkubnIZyiYlYmtyUnjaMUt/wLE+3Jsc1mCaTfsk1y6yJy+h6Qy0x7jZCi8BjV0lHeZxX2ckr2aJbMEc155qeUQPsfdFderVKpt68Vq6/icscgyy7tCpsaRDsh+Mgso65W9rox9zLIfZzwUsxGXC+pKdsDu6t6/gCj8AcfL2UaUHRP6l26XhXXKlCDvSXe3f4ZUVru4T0ql0F9sjpc88XN19b+FD5SOuZSJA/jMFnR5WT3GhdZVYdgBP+Z8ucr5PtSrdBWUYX73u6FMTZjX7cHWuiET3Ts1ziqZykabWw5okqznk32mzuE08M2OEhIjC2uLvA99fv6S/9gsJ9fzDD6xMGWBY4Hm4Ic8NZ19H3MpSqnv/Tyg9DJKMHjnnXHFq97RvhEenkf576c+1SyOOD9dvuOO8CGThvXc665rljdsCL6d03T16niN27s3Ff7GdyrfTcM5L74YfNxYFfupRJT+epEakT535cr2ZTPbhnqUOubCkjDj9jAaVMnJMCOflA710o9r9OP7WQ8+GFekFJR/d+XAs85Ymr5cyj+NNcPreEcyzCOXcflj2YknnmiNRsPe/e5326c//em2u8je9KY3HYKWCSGEEEIIIYQQQojxzLj8sexP/uRP7JprrrFa5l/vp0yZ8nNskRBCCCGEEEIIIYQ4EhiXP5Zt27bNdu7cmf2xbLzhtwlHW9S5pzWV3dFfJFcvtV+WEgcv44MshRuI/RZkbvquFk19UlTSlc0mA9gPqUwwXu7JrdjcS++1C7h2YfVaQv7UMi4peY57VuZOqrPdvJ7P1EgefjiU/X5p3Cul2ujIyEcjvNSOmo5cCr4EkYTDS2sI+8uNcwe3qDN7KPtu8eL0ta++OpQpuzQzu/32UKZEJXc9tK+K+dfl69F2aZM+U2oRaUuuv4vuIWeqsJSGx3/OtdtnnmrDiLMn+h7OEP8ElDxUkFnPe5AKbKBC/0e/yEyIZrEmiDbk/RPH77TTQvn880PZ+6SifoOkJJlmyXmallqm/Zo3k6Kq/wNlqBYkldFtfJ/AnsoJyWLLZ16DGRjNIt/MLqo7WWCKTvoaD+2avpW+2dsdU5LxmEtDtmTJW5vllLzu4YfjDJoPPXRWs7x9e5jbp5wSr9M0aSac9PKzyKw3JezTpQ6kXJ1SJjvnnKheNbXWMwMq55uZ2Ykntm+DX+vxgIXXesjXorHwKRw579GGyW7+Mdkqy1RT8VHNYqmy9SUkp2ZWQzbv3HJK+EhnXnFBs1z1gw5je2B5+DqViDSHU8PZxo37fw3CKeunJU2gaBLBlAzT+0gucXwNeW3u/SDHG94QykX/Frr44lDmvHBZfQeGg23w+eg3fCLgdevCwZ07g6Ry4sS4bXzdp6yX1xvrGsLoF5S9+gSh0av2w/CzKadmZt300xzogtkwI4m9Nw4+b8GH78K1q3wgStDN4oct8J5lZtHfD+WV/xYdevOyhbh0sJMXXgh1vMvdt3fl1Xw3EOLVZFwG+P+jP/ojmz59ul1++eX2t3/7tzYwMPDKJwkhhBBCCCGEEEIcJPbFLBvv/4lWxuWPZT/72c/s29/+ts2YMcNuvPFG6+3ttfe85z327W9/20ZGigUNFUIIIYQQQgghhBDCMy5/LCuVSnbJJZfYF77wBdu0aZP9zd/8je3evdve/va32wy3nV8IIYQQQgghhBBCiKKMewVxtVq1Cy+80NauXWsPP/ywPf7444e6SWPCp8MeHAy/Yx533OxmuXcZAoD4GDeE8ZT8xRmnhXFRmKPbn4O9mbW1a0PZx4phmxjLyAc4YEAI/sDJoBY+UASuMTBjXrPsQ329CFl+V1dIydy9sKv9/c3MjgkxFqJ4TAeDJUtC2edBJ4hzVWHMq+3bo2p1xlNiwBKOhQ9CwmABfFa/5xZj0YGxGGK8BR8fg4EszjrLkrCtHGd/vSKBDbw9MRAJ2+NsqEJjQRt2felLzXKHvzZjinAsb701rve1r4UyA3Pcd18o+3FB0I5ujosPpsKgG+y7nA94NfdTL10ayozZ4e9Jm2Sgls2bo2odDEyD6/U8+mj43tlJB67dwTb4mHqJgDw1H1OP9Rj3g8FPTj89Pof2QLv1/2jDa7NPaGvOJw1gDajTjnt7LcmePaHs/SevzzhuaHZuKnJox2JaLWFaKu3/rS4Xd49LF4e8p2daVK9zSVezvGO4ju+XRPWicfFrHkHj62vWhO+9r0gxZ04o+xg39Oe0SXaYj7XGOGW0J+c7F1wWIvt1dIT4MjQNxg0yMzvjjFB+4YXgx/zSxWuwG3wMrWm1beHDPYilmRpMsyjWT2SU3qZTMctY5rVy9fy6g/6vFA2Py9hknKc+fiufCe9gtY7uqBrdOy/tHykCz0QfMow4VJlToqb58Ee55SYCNjl/fmfbKiPu3+pT8z73yjQWuLRyyTWLTYD39ebJ1+ZUzDLfV3yNWDAfz8o5YWbWF3xZNgYp4yqigexX73MjC+D5eKc3M6vjQZYsWdD29gz9ZxbHknv++WBE/lU79tvty/6cojDMGF1u3eJQPfXjExOag+kHkI6Sx3LGwcmUi22WakMOOOo61wM/YehnU/GhPWy3j8uJuGfnnz+zWeZjH3dcfMq+RyqVit1eiMONcftj2Y4dO+wf/uEf7Mtf/rJ973vfszlz5ti73/1uu44BVoUQQgghhBBCCCFeJRTz68hkXP5YdvXVV9s//dM/2bHHHmvvfOc77fd///ftggsueOUThRBCCCGEEEIIIYTIMC5/LKtWq/a1r33NfvEXf9EmFN1WOs7gr9NUaeyYDEmJ3ybMk1JSA09qy6+XV3ILMbfoeskTP1N64PU9KenW7t2h7McWbeXl/C/5vG306EybTFmhWSxr4d587i12bah0tJcXtEDZDqU+Xh7GPuExX49jw73rrOe1MLQVdhjlnmZxH6XSTPtxoSbkMScpSEG7y8hfrJKQjvj7pKTFfpx/9KNQRn9TctoiraJ0i5JK3z+st2JF+3p+SzsnN49RImHWksa8idcgUzKY0tAdDFK2kZMk8Jn8+dRwcAKnymaxr2E5JxNmPd9W2gDL1KX5uZiS4Xmfy35Yvbr9OU5iVudzcJ7+8IftzzeLx5w6FLNYGgofUh6kRKVuKagQ9G4/5c6jqVzwbSMnz2L3c2p7BWWlEp6D7vfNly2yJGygt08+IGXxCYmvZ+SBB5LHhlBmF1Xos/1azzWK5VNOiao9tSH4T7qkhx8OZb8EUPnMKeddCNU+Xh0ZwRM5GJReP/FEdMo2//4xSveTT0afB2CUXCmivnvve+OL0EfyPt5vgDKOjaTWJDOzz38+lOnb/Zr59reHMmxoeG4sw+RY0MZZ9m6sVgvzh4+Xe12k+6Xr89DdVVf+IHzguugade4NNzTLIxbLpQnnPef8a18b1zvQpYxT1ivx6abZd/41kMOZUt35ObFgFvzs8rtQXh5XXPpG3+T23HJLKK9aFcqf/sPkKSMIN1GmxtbLvDHxO2EQtVrwq36KvvBCKOdeA1NTjsvVlCnp83PchW7l+jB5cryuUSHdy7856J/oMM1sCD68infeYfcOVuFDcdLRH/hJOxbZKd4jduB6nd6oeS+vq07BSeLWlGcrQXp53z3he/oQHw3p8stf/r9/hRNivDAufyz727/920PdBCGEEEIIIYQQQghxBDIufywzM9u2bZvdeeed9vTTT9vQ0FB07L/+1/96iFolhBBCCCGEEEKIo4FGQzHLjlTG5Y9lDzzwgL35zW+2Wq1mW7ZssenTp9vGjRtt0qRJNmvWrHH5Y5lPnkaijDjcUpvLREmpiN/ym5rNrOf3nVMiBinEgNuCXKd8hduB/Z50ti+RpS3K7OY+l7FtvNNlf+ns6wofuL2csg8vi6GMgG2lXMIDGWY2a9FXvhLK69eHss94SDlNKkOaWSwRomaCW6e95imV7srbBvQdz+EYf46eceGF8TlsAzJEPudsowtSmyr3yH/iE7bfMPOkWfwcsNUhN0ceQXkhZYE33hjKN90UX/uTnwxl6gu8bOc73wnNwRjVUH42PsMGcIzis07X7p477wwfchlj3/Uua0tRSWbRepxLJCfDpPzQydx24Fg/vmef5BLSURjl60WiKepnfFtTGa6YHdf7XGYRo7/yfUe7oa+hnsovApyz1Mp99atxPcqg6UN8W+lvElkXfZewGl2Sdy+sl5Ja+HNSSmxfj/Ks+kP/1iwvgNR8qBLLbFKJFjdviSWevRzzTFbJCNYr+Ga8K3OMXc6n6GCHe1LZIp38l8s2Iw3k1PZ0i7y0V3yn5LYtasbBRFZPrIXDzlb5iSNRdWshxWOc5x14qE4vMUuNszd++tYioQHMIpn/MNraYk2UNp13XrNYb0n9GCwipQT2zeZrAN2dXyqoPqM5Mcuhn8vdw8+FD3yH8jJMwpAQV70jXQ9wzve++JS7XMgOn3vv8nLufVBK6k2D8Jh3B4lkptES0iJn5frH9TMly38lcI0dmJz0AL7dyEtrXZh/FSeDttNOC2WsUT09IQu9n+epxLL+Twl+Tr3uF00c6aG/41LoxzmaC/SzXI+pVTczusk6+nuHa0MnJZF4z6Wl1pzTrcyfiXrpbKZkEPfh4/lrR97Kpz5OkQnjw8uzX7m++LAI+2yl3H5KCnHYMy5N96Mf/ahdd9119swzz1itVrN/+Zd/saefftoWLVpkH/vYxw5184QQQgghhBBCCCHEOGVc/lj2k5/8xG688UYrlUo2YcIE27Nnj/X29tpnPvMZ+yR3gQghhBBCCCGEEEIIsR+MSxlmtRo2lvb29trPfvYzO/30062jo8OefdYLnYQQQgghhBBCCCEOLopZduQyLn8sO/fcc23FihU2b948W7p0qX3iE5+wzZs326233mpnn332oW7emChvcj/yUdifEvl7YTiDMWzeHMoMTmEWx+CZNCmUnTY9gkEtpk5tFis+kAnidNBnVHzQAJ7HGCK5YCp83lSsGX+M973nnlBmDCCzOKYQgx344An4XPa52FMgBTVjRpTd8zEEBGOEdU6cGF+PgUgYGINl2oKZDXSc0CzXF+NODHBiFtna0N13N8scvRPuuCM6pfqmNzXLD2Fct1nMCSjPZ3/7wBpYbVIxSUYefDA+BeV+lJ+zmOgz48cxTtlnPxufhHTruxCDouOss+J6mCMVjC3H0vfJgLXHh1LpgA1FMSnc+A0Nh83CqbBL5Vw8JpKrl4qzkosPxHOc30CtKAZIOVE2i2NxRGX6KrPYH+SCMDFmWCqIpPe57H/atGfVqmZxCP1QZf8wto9ZHFgF1x7wfoNx75ga3vtFxnuiTylqD4DLhlkc24juieRilhWGcZLgi6su1tM0jHNfX3ez3DslTgZkK9147sMHeOLayKBOuWCjgI9ad/68kx22cGEoX355KF92WXTOtrkXNMt8PfDT7xvfCOW77gplmvHGjT5AEAJiYVXq758S1Xrhhfb39eO6ePG0Znn2smVtT6qsWROd0+P8+z58tDDeiiPbj3Knf4/w82If/v2Ha39BY92GOUY/1unqdfN5U0H+LI4fR/h65x+PLo6X9jGm+FqIVzqbOSOsucPDzuuy3ZyL994b16NffPTRUL7K9h8XH3Pe1bMKnZZ6d1gwN7wtPN0RWxT/0KV9+z6m/6M5+VftJLSn3Ht3DvgNWmcujhvtsML3RcbQMzM7/fRQRr01y8PXbspG/cBjO3e6mLvmfPAoW7eG9+6xxixjmDHOER8emOM8LRH3d9i9H/DdrR9l/w7HpxtJlPtaAjsG4vFLi7+eTdRqiai4eHEoX3NN8noRV1zRLP5w/bTo0D/8QyhzanLM16+PfdquXS/basbVCXFYMy5lmP/jf/wPmzbt5Qn8qU99yo4//nj74Ac/aNu3b7e/+qu/OsStE0IIIYQQQgghhBDjlXG5s2zRokXN8vHHH293uJ0uQgghhBBCCCGEEEKMhXH5Y9k+Vq5caU8++aRdccUVdswxx9iLL75okyZNssqY9B2HGMi7zCzeh7xxYyhTQrnXb28G3Abv05GnUqJTS+ElhtR6QC5U9XJGUGEe53POiQ/yedkeXs/nnGZb2T+UTZrF+aOZz5jXhqzNzGwAe8jLOL/m94Nzr3mUTj5tc9ytnpLdmZlR0BNt0qZGwizuS2yX5nb5zXuD9MjMbDMa0dMTBJF9S06I6pUh95oBOdtz2JLuRsW6ISujpbld+pFUknKVbtt/vHiKG9e5Dd6HD/iFd72rWR64+W+b5fqEUqhEKZtZ1P8d73lP+N7PWdhNSj7onzVK8544xyy2mxrtOyUpsrR5jhyEDcVl/+z7WLs2ec4gbMgLRdgvtMhaSlNkZjZ9eihTRuL9nZMkN/F9h3+EiSTN9E9ee0I/S62O64cBzKuf4vvuJ55olqehbGZWgXZkCGO+Lm6B1VGeBmlxlf1jFmu66FPgZ2s1Xi29xPihSLljnn8w1L+RljAHpE09PRkPw7GlBDIjk4nsjnaSIZLG+LWVMkxKuynLpW2a2QN3hjLNzps0lzyqoPdGA0vBoJkZBze8b3hbSKnHsqoyGgcrprS7FvtCL+CiNGogUW8m5fZmre8VKVgvcqYtQqcmT6Hcj7K3wApkpp3UMjl7mjo1hBXhq0xOekuXlJtLfJWMIgogXMVsL0e+/fZmceSrX22Wn4prWR2GOO3v/i4c+O3/J92gFLfeGn+mIWI9L8zyoCWcuWRJdKgyP6w+OYU9pzBV/1x6zp3v3vb+JIS1iPxYKqTBK9CPPuYMnpl5L6Xld3M98OEF+DcH1vpZs+Y1y16Bzv7i68GuXbHsvNHgjA4LB13uWP+ES70O+WWbrt5mwA9hIfPv6uw7/lXg36a6UOYqEoXgcD6os6O9dNbHv2K/8FAk8/bvr6m/FzI8NRiklz/8YXwsLb2kFb4YnTM4+HLogkaj0O3HLYpZduQyDn9VMtu8ebO99a1vtRUrVlipVLInnnjCZs+ebb/xG79htVrN/vRP//RQN1EIIYQQQgghhBBCjEPGZcyyj3zkI9bX12fPP/+81evhX8KvueYa++d//udD2DIhhBBCCCGEEEIIMZ4ZlzvLvvvd79p3v/tdmzIlzs40Z84ce/rppw9Rqw4QL1/iFmlmceReZy8V4ZZ0ZiDyWfsof+C+Xl7bZ0mM9v9in6lPE8TtxbnUJ9uRcYtbwJkFy++p5vOyfX4LOaUD2FY98p3vNMs+2yC3XPMX5JlehpmUZqSnEq/Nq/lMjdymTSnaghfjLc0pidhIVxB7vLguPoXNZjd6RUon9QWQKHQhLqBv91ZIxPisLrdfJEvhpvOnN8S/2Xd0hB/Au2vtt6fnxo9b0hf4EyHpqF/37maZP7Gf4GQ7C2nj6LxhZgOzeJt+KjuR36HNttYSZbNY0toPm6w4++w5iFvAM0lKrep1DaNsc33HjfmpOWZmRrFP9Oz0IV4HxhRXnPNe5sb5wofy8iyex+vxHO8P0A+DmCNewkEvSW9Fm/ESsz7MK9bzormk58ll0aUGCza912Vz4yXoN7zUjrbhb9tsZ+Ztg8dy2dyiDHy5cYFjm/fhWeH7h9bF9dhw6or8A6bWSWbGzFChVstnPWXHMuslJDP/eHs8Y6CGi6IO7NkTX5qSmb17H8ERrs1ufYk8Vqg3ODg5qvXQQ2GV4lLt5VlcY2ZfHTInR1ot977RSc0h7da9E9Qx7pw/0fzz7xEpGWbOqAvCM3IJ/aIrp96tLJ20NqNajeoxa2PVeZhqBypSy8lx8X2AtbAfX3ufFAlVfdbh/cVL/lMhAIrCd2Mne+1bGIel2Id/xaSaOOnX/Ps5bZxrTSarOkMmeL/YEdUDGbvtpkFRi+hDFTAbJrSl624PX/tXf7pgmlOjsT2uGFkHfU/o1KJKac/OneF6g4Phet5korYva58F27+DcZjZPF+P835H4vuWbMvRBfB+V6knq3E2RzJvv7687nXN4tO1IKOdmVlnuczyz0//OR5b/g0bv0gMDx8dMkxx5DIufyzbvXu3VautcSO2bNkSx7gRQgghhBBCCCGEeBVQzLIjl3Epw3z9619vt9xyS/NzqVSyl156yT7zmc/YpZdeeugaJoQQQgghhBBCCCHGNeNyZ9kf/uEf2hve8AZbsWKF7dmzx37zN3/THn74YXvhhRfsX//1X6O6C66759A0sgCTJneFD14qwH3CKQ1dLu0Ut1v7n7pTcsvctbnHmm31mSgpGeT28pNPjuvxGtySTGmVh21gmToUs6Q8pwwpTMVJA7jZObulPSXD9OAY9zry12l/NgUA03jgjDPiisuWNYubJ81slp9Z3b6ZZvG2+FQ3mpmdzS3cb3lLszh71arwPSXCZvY05HGUknqpZN/554f7Ihvps/1xvcj0En08y33upozg4otD+S/+Iqo3BP0KRUns73nmYMYsSBciaZWZdXHOUicDm54JKbBZ3EfcVu833/ck6nlSyuCCiuHktVrwMu1Rak7ayLZyL7DPDlejv6JPueSSdBs45pTT+GyYtGk+lJe/IOPgtv4wU+kW616uAn0Hn2HESUZTXcnvvSgidY63DU6XKp/J9wOzZCXGLwf74WBs4B5TxjP67VxKQK4vmYyxXHt2DIee7XTjPIIsoWX2ndccpqB9ehtiZ+LYs1vDjMnJiDjlvAwzNkNq9yip9Lv0Obj0jPG/rfKRjjsulP0rAV3hEO5VpYQ1F2qAC4LTw9WRQZZLXjSXvC74QB1jhqFE2c/l6DNtl1kILZ7CNHcuPd5P83NO7RXdl7J6lv2LBPqbEjMvw4zepw5UNulTUf74xwd2vccfD2UXoqQM/zkN83Lu3HjFonnSdCOX69tNaTEnsH8JKwiHPbnrIffun/v7YTdkdPCf06eHfvDLSyo6y0MPxeFyeNtNm4KzyKhRCzNxYrgeHzWXVTJqEMpVt8gx5AX723sNelPOg8iC3MSM5bbF4BU62Hk+Q/OppzaLzI48M7N0ccp6uW2jQXudkCjnUiILMf4Ylz+WLViwwB588EH78z//c5s0aZINDg7aNddcY7/+679uJ7oYIo+84bZD1MpX5srH/uhQN0EIIYQQQgghhBBCgHH5Y5mZWV9fn/3u7/7uoW6GEEIIIYQQQgghjlIUs+zIZFz9WFY00+XMmTNfuZIQQgghhBBCCCGEEI5x9WPZrFmzrFQqJY83Go1msP9xB+MomMVxI5jHd+rUUGYMGg/F6R6K+amd5/e53M3U8k+O08m3xB7Zhw+mkgqiBbH8rkzcnxGc0716dXxtxqhBvJJdiHfj4z4l03Af5DgmyVTSOXzMFcRVYLeyG/2/bvAYh7bl8frQE4wfxzgILpZDDWPGvuv3l0acshpihXzuc3G9q68O5Tcvs7a0JL0+55xQZpyyD3wgqsYoIown0YVy1cdz4rNz/vkgG4x9wQFgf7k4Zz52XvN095lxLGhPOessEr/MkzN3nldNxGcbcOcwhl0qloeZWRlzvUofQsP148LgSCz7eqngJT7OFeMM1kJr6zVYm48vg37YgWfw/dCPMq+QGlez2MY543Ixy6Jn9YNJv5joE+/OU/ZQrYy4eu1jvB3kkFC2A/3fyXXRX5yxre6/P31BrKGdnM8uzlm5q/3pcayZFq8UYJwyxD00s8hvbJ66oFl+AOFX+ahmZitXhvL27Xzf8W1IrT4MLMZYM2aMZzYRa8/evfF7VeoVYfPm9t+bxe2+CDECW3wp5yYNiu9FZjYNaw99SNQLPogabeWgBHAMdKJMH9Di71IXcO9PfD1jmd2Vc3dRt/rYYfRl7FfW8/4O8UpzsTPZqxyLsWQUG3DvgXUXF3O/Qdw189diJ8PuZriYZXWMbldXGN0oDFi/sxnaMWMdjtEx1uC7anyPyDndxYtDmfPPGxHiXI10hWeneeaazX7wl07F0Zs+PZT9nwtFSd0319aBwWCVdb7fufjJXbAVuj4fnasrcaxaNF5cNH7xIT4HfQ3HqyVmGdabB/8kfP3my9JNyMUsM9vtvxiF68PERB0hxifj6seyFfhju9Fo2Bve8Ab727/9W5tRNMiuEEIIIYQQQgghhBAZxtWPZeedd170uVwu21lnnWWzZ88+RC0SQgghhBBCCCHE0UijoZhlRyrj6seyIxqf3j6lceBWbr+/maT275vFW8CxT3+gEjb21v05KQ/gt+mn2pRrA7ckYxt0ze3/zaViT7YJklyek5O5Rcf8/u3diS3IGQ+ZareXYVKuEMk2MvvYaSbehFLNS5XNLH5eylcoH3RjTokYpSe+OSeg3E35w6K43re+FcqRDBON7bn88vgkSi+vuy6UV62KqlGIxG3sXazktt8n9/Z7m+bc5DnsU8qxzKwLEuJdKRmRxY6a/e3rHajsrfBCTxuY4GVcaAPKbHeXk/JGknL2MfvLSxdS0gOX037z9iCpnDgxlLudXOHZreEYH6+vDzINPxfRyTlJ5WCizPHzHp+fvYwragI/ULLtBzMlDcYzFD1lxAmqithNUduq5iQzKNchParkwgYQL2nHeA6glys9cY9TFdjTF2KiboLac2Zug3tOglNAVu9Jze1SKX6+RoOfKEeckr44jlHGNzgYz3Meowvwj0dpbzTtcw4q5Uu938AaVcECGF05F5aDDfcGmlrrM3BWUHbunzQpR/Rra+2Vyxn3G3exN6jUi0AqZkO7axSAvVpN1ip2vpmlQ30Uhef7ayViWXR2uJV2Q3AIPT3BH0TLw0P98Tnsy6L+KgcH3s+LfXibThlOJm5HeTB43R74xZSc0ix+vffvpVQ68rZT4JLGYGZmlnazvnsKKbF9uJFEOZJDmpNe8hp43xjyM4EhLhLtbGkeP/DBnex8pBKuWHTq5NdqOhy29pjE9+E5MlGUhDisGUsIASGEEEIIIYQQQgghjkjG/Y9luYD/QgghhBBCCCGEEELsD+NKhvnWt741+jw4OGjve9/7rF6PJRPf/OY3f57NOjgwQ4+Z2WMhb18/5CZd+D4L05lw37NZvAWc+507sKHY7/9N7Qf2siReL5UWzbcBx4Ygvex3t+JG+Eja6PZsdyWyMz6Lspc11aEpieSfPksX+z+3VxnHeK9yomwWy65Y7s5s2eejMyGSVxulVBYt0s1cptME7AU+kxcGRLK3a65pFvucad11V4GbLl8ef77iimZx6x13tG2PWXosoib4PfvUG1CiicxgLXC+pCRFjoFE2Swtw8v9a0dR2dtYEsINwdjYBq+eYBP4TNvcnO2mv6KdsL983yUyYI50xMKI5yGV41B0z4qvNwipXbLvvD4E+jxm/vQzlvLfgUS9ON9a3JcJkY2ZOdulP05Jc/yxKFVqXI2J6HKXO9hZLwkln9sSdfr8+kkfzkzTXjuEz7Uz023g841JTUXbzci3mcST0k+fuDX+/Fyz1Gj4QaJkZq+1J5bMHHtsWDwop/Jt4GOwf3zyyaTd0FD83J40KZRzNo35yHcC7z+TUPe6N9U/VtiZcp6n1nOzeD53c9CdNDyV0S83x1JLT4ux8pk2bgzllBGa2SDCJzyH751pJOWWY4ku/Kz7XHvwwVe8Txac77OrRu977B+fRAznzVyKc9asa38fszhDvb/vWMi9f6TgM1Ge7G2D4465OWNGGEGfdJF2x/dK/45Jv8Hpx+/HqlJNvV75ZTuVHTyyJ5epPOVf/LtZ0lPkFtBU4zJEwuDMezuXQp8QNwXdQWt4F2o5ub6wh+KZmZOKH2k0Gpms2GLcMq5+LJvqfvS5jrGJhBBCCCGEEEIIIYQ4QMbVj2Vf/OIXD3UThBBCCCGEEEIIIcQRzLj6sexA2bR7u334R1+wFduesEnliTbrmBPsc+e9z15zx4dsfucMG3xpyI6tTLZfn/cW++XZl5qZ2S1P3WUfXfVFmz55qg2ODNn7515mH5l/Vcu179n8oH320X+05Uv/W/O76+//E7ti+gV29czX2S/962dt5bY1NrE8wS6YOs/+8oJf/3k9thBCCCGEEEIIIYQoSKkR5xY/bCmVSo39bWupVLLGu79lZmaNRsMu+ueP2i/PvtQ+cOrlZma2evtTtnPvbvu1Ff/LHnrL/2dmZk/t2mTv+P7v238+7a323jnL7Jan7rKVz6+xz5//AXt+zw47bfkHbNVlf2onHXN8dK9X+rHsn55ZaZdPO8/MzN79g8/a6084w/7ppUftWyu+a2ZxXJaxUoaK/WBc71BQtkOk9341g+6MgfE0foXHrGgQraL1UhQN6JJgrH1/yGz3CGY8zYMcB9U2/PwYi78ayxzL3OdgjlOurw5ne9D8F0IIIdqz6IILbOXKlUdsVr5S6byG2QOHuhkHgeqPGo3GokPdisOJw/fN8yBz9+af2MRypflDmZnZwimz7aR6HGx3dkef/fG5v2p/9tNvtVxj6qROm9sxzTbu3r7f93/z9EVWKpWsVCrZBVNPtQ0DPiSqEEIIIYQQQgghhDjUHPotND8nHnrhZ3Ze95xCdc/tnmOP7djQ8v3TLz5ngy8N2dlTZrU9794tj9jCf/pQqD+wxa6YfkFUZ+/IsH1p7d32p+f93/aTbXcWfwAhhBBCCCGEEEII8apz1PxYtj94seffPX2v3f3cT+zxHc/YFy74oNUmtE9YffHxC1pkmJ7/tOLP7fUnnGkXn3CG/aF+LDs8OdiSzJTk6TCQe76qvJqyy8Ow7ygRS0mixyzVKtpHh2G/iFeZw0xCLoQQQgghxJHAUfNmfcZxJ9vXnv5Bobqrtj1pp3fOaH5+58yL7fPnf8Du3/KYveV7v2uXTzvP7t/6mP3ug7eZmdnNr/1goev+7oO32ZY9Lyi4vxBCCCGEEEIIcUTw0qFugHgVOGpilr2x92zbM7LXvrDm283vVjz/U/vZi89F9dbt2mw3rfpr++C8K1uuceHx8+09sy6xP338m/b2ky601W/+M1v95j+zRVNPfcX737zm2/btjf9ut130USuXjppuF0IIIYQQQgghhBhXHDU7y0qlkn394t+xD//7F+zTj3zNahMm2qxjeu1z577Pnty1yc654z/b4EtDdmxlsn1w3pX23jnL2l7nYwv+g51754ftd864xo6dWC98/w+s+F928jEn2IX//FEzM3vHSReaTQzHW+RZg4OhvGtX+7KX3MwIu+HKa36abgzPS5XHSlHJYUo6xOeu1eJz8HmkqzvZBF6C7NwZyi+8EB+7774greX5/+kDB57h7Jt3hmvzkc48M67X1xfK5f5t4YPvU17E99EoI5VYKsxnyg1z1Yba3zc3LgkbenpT3IY7oTq+665Q3ro1rrdyZSjv2DTQtp0XLInPOe+8UL4Sv3MvXtz2dDMz6661v3b2p2w+K+eiP4a+KxeVUNK+OzqjQ/27wvPyNltdnpDZs34+Gfm29Yde6ugI3/u511lL2JPvO57IvkvYdxZv4PzM6/nGFpEz+nNS9bq6oo+cj7xEqmxmNmFCKE/EWtHd5e6ZuohvG/s85SRzfZdZK6JxwrGDnb2yvGtHsYqcGGxbbi7mHGPqGjzHjXnEpk3F7oNr0Gb6++NqRYbSw3NyXcLmcW7nliHa6uTJ6XrR+pJ7iNR7jq/HcWYDd+8O5WOPjc/hQ+X8C6/Hc2bNSp+zfHko5zqlB4mlaDfehnDfoeEwl3JjnpiKVh50611ivUqu+2axIbLv/ULERrDvcgtyCr4QmMV9NHfu/l9v3br21zJL24P/PvU+lFvj2Hc85ifWwoXt2+B5AFn3eI0lS9LnrF4dyhwX75N4LDFfBgbTvp3v2nv2xMdS0znnPru7ir3XPLUutCn3pw2nX3UY84Jj5J2u/5y6eMr2+YD8PkdurXjssfb3zDzsgIW/Weu1dJ/u2BX6MWfGqddh34T581/+f8PHOBJinHDU/FhmZjatPtX+fsnHW77f/c5/SJ5z/exldv3s8MPZtPpU2/SOL7XUW9p7li3tPSv67pYLP9IsD7/rGy3nXPnYHxVqtxBCCCGEEEIIIYT4+XBU/VgmhBBCCCGEEEIIcXBomGKWHZnox7LDBL+luVYL22XLY5FKFpWekFy9sWQsTLUndywjMRxBn2zZEr6nRMmsddvwPqgU4E58M7OHHgpldrEfl2jrMm+U2VbN+3Intt/VHW0NP8hZ7Q7q5dzFKBeimWzYEJ+2fXsos/9XrIgXl0sumWBtwX2XOZU0VU5f+1ooQ5lsZnH/d3clbPLVnAf+/ITcgfZtFsuGUwptM7PZsw6seUXh2LJPfXv6+oJtdHSEcjWnQkhpjIqOS05KmLteERlmTnKRqZdQmWbVE50d8DU8aWt/XDHV7pzPTUmwxkpSft8+c/SYScmfcuNS1Pnl+iE1gGNxrH5ccL2UL/VTItUcD5u3d2/773PnFOUluPDstKqF5yvnbDXVxzktKDvFvxSkKOpTis6RCYm1q+i1M51XqbSX4ufcXRTeIzcwqe/HanhF7lOUXBvGQsH+zs7zIn2X42C8kB3o3wVF14cxwOn3kvvtgFPkYEeB4TUmTSpWzzhkB2P8Un3M8ARuXczO0yL3OQyyYBdZU0qln09bhDjYKNK8EEIIIYQQQgghhBCjHPqfo4UQQgghhBBCCCHGJT+fJFvi54t2lgkhhBBCCCGEEEIIMYp2lh0m1K99a/zFihXNYj8CMtVRpepjDrz4Yij/4i+G8imnxPUWLQplpkFngCcfUCsVDMAH//rZz9of6+uL6915ZygjiEE/0iEPWQzDHDERe6er133qqdaOE554olk+96STomPvuOmm8IExZGq/EV8kFc8jE3PlV75wafge/foIUz+b2dMo81n7fKr63/7tUL7++nD+pvbxbszimF7Eh1o7u7ImfFi1KpT/8i9D2Y350Pr1zTITyF/k7nXRt7/dLF9zzS80y9deG8d5Yey2VCCE3x/+rfiLr38hlDG2g695MKrGkFrbUO5mkI19ea73cdVVocw5wtTtZsXSyWNem5mNJOy919lTLwODPf98KB9zTFRv82MhMBwfqWhIi1w9PsbZN1wQPjAY0sMPR+fswLH+zH0ZwSPycVdeGT54Y507N5Q5Lvzef+ZDuPkXGR7vxcnzla/E56xc2Syuu/fe0O64lu1Amf/uyOg7zuriAYSPHHQxe2r0D5dcEsqLF8fXO/PMUMbzjZx5drOcivfoTsn6F3bjYOZ6KVvr6Ej/G96G3t5muZvncH6Y2QD8bP2aa8IBVy+ymyVLQtl3BPuYa6O3tRQMpHjZZfExdMQ9q8NT0Ty5XJrFrmfLljDHJrpYXYwPNDi4EUdOaJZqtdj/nn56KNMV+jWE5kQXwPPNYrvh9S5aBB/n3zf4gDSo1avjerffHsqYf2xq37veFZ9Df86GT54c16NtwG5GMv/GvOaKK5plzvkTXD16su73vCd8WLgwrnjDDeHaWN+5BHu3yD7upte97742LW5z7J570he/++5mEWFeo7XUzGwayl0od7/USLchwbNveEP0OQpD6gNiFeE1rwnl9743Psb+p21cfHFcD+88duGFocxgnv79gH3MyeRj897+zdY2m4trZWZ2443tr7F8edvzzSxev+i7fBw4/o2A+beja2azzDi/Hh7z9finAO2YbtG73/94Xfpe5MMfDuVc2ObrcL0rrkB86LvuCgf+5/+MztkB3/Msvvdzu5trzDnnhDK+33XLP0bnDA8Hn9Kdi+dKuL5fe20ocx0zs2eX/F/N8qc/Hb7/s8+lL81+vP/++Njjj4cyXfOWLfR48XvpM8+8vMZwSgkxntDOMiGEEEIIIYQQQgghRtHOMiGEEEIIIYQQQoj9pmFmY9jtKg579GPZ4YLfJ4zt5ZRnRRu2jz02fQ1uBfZSEW6xptSAe2q9vJLX3r07lL18gtu5eczLMFlv6tRmcQBVvIKHm3zLibKZWYdve5vzB7iN3sy6P//5tueUvWQGsqsWOU0KSkewnb/mZGB8jmjDfUpDaWabt7eXZvht7Fuhj6SKdsqUuN7ZfRhnXHAYEpeKk/rQcqMd5GedFV8c28ZnP/DPzfJ/+A+/EFXzbWrLV78afdwGW+tGuXb++VG9XZBBciv9c9gfPvvBWLpZpQSL8+DRR+M2UR5JMBeH3JjTJumMK04WQSk2zxly8++EAtLLg5FlfBD9SFt92tXjfKZ9e5liV6reli3hA8tmsY9j2ftSSolyueoxztsGgzSjeyF8FyVKZpHPpG/2Pon9QLvrR5kSZjOzOmyyivKzrt5MzNMFX/xiaM+aNXHFq68OZawB5cHQut27KYKNVU50+7mlh1B24dxGdE5Rm+xHmWptv77UOX+43jnZsh1/fPt6W91opLRDfl1LcfPNobxzZ7LaGz/60Wa5VguzxKsP4/4Ozn7v3nhm7d2L0Az2CMrh+QYHYxnmqlXhnWDr1hDkwK8pnHIcPx+RgPUuWgxvcRt8+DPPxCfddlson3giGxdV+wn8In0PyzfwWuZ8Dxs7IxL4xQ/sjyWgWpbSxJmuHj8vo1zP2xN8FxV+7AZ2j1nc37VZQdZb95JKGhGPce443RSaYD9B2XmaSIYZPavtP04sH42fl8AVYReer8PLD1Prg5dvp3Sw7FPvfyEZ3gof4F1n0Wd6LLEGL8g40+Hf+71muUK9rnfofOeENLXzijAPdu2KV7nUo/OV2czsuONCmVEb+OdHaj15JVIKYj98nNrlrc+FD5BhPuuc7g9Q5hrcbTHz8E42F7Jlzr7Om2Ph8kgXrjIYHn7IvSlxaB/C+9DZX0AYEvdOOA3rWk/PbCsC7/PCC/GxRmNts7xlC5099JnxX6o2YYILCSHEOEMyTCGEEEIIIYQQQgghRtGPZUIIIYQQQgghhBBCjHLEyzAXLH/foW5CkkldkIRktAs1bLetsZ7fss+9s5SX+GtTBkK5Cbek+y3kKenlj38c1+P1eA2/D5oyyESKFP9L7lDiWHbHNtKBbcN93OZ724BMmbz2mTlJF/s1s/X9B+jX7u98p1n2Ah5sBo+21e9yUoEOyDZ6kX3rpblB/OCVmymZTJR50szsIYge/vVfm0VuO+9048VspGVmIv3EJ+JrM0sPpI4X/2ucISupeMFD/IuT2rKHuNG8y2Wf5OOyi9j3flv9CT5r4j7cNn1mKaTVcPbxPmaxpITb9CtuvjyLOcdn3WEx08YgvRyLLJP2wGfod/UoP6wkyv4zn68CW/fSzQqz/9Lv0FeZpY3f+zjM7W5Kb7dCs+EnFsac7fP+hQq2HYl6PqMcj9GG+l092iuvMc3ZfpTpjakM0Sd7nPqwqBwmVW8sGVlzsI+jVY3rnVksK6KTowbdw3UtM87JNHA+i27qfC/XZsfgvn19QcDm/XTsI4Nu3S+za9fyk88bvQ+//gYL3bAhnNNoOEnehjC4qeSx/tjAYFhd60WNI5N1mj6zC2W+K1S9xIzXYNnLFFNrfQYOC5/IL7PRGkNf497pdkDqxi5i4k4/5slm+5AZrMj70o5dn0zDmkeppc9czmMF88Um8cKxE/xc3086mAndZxrnZ3TeUF8spK0uCoPx1IbglWbTx25k9lmL0tv20Dc7f+ByXiahXLOoarHCuUD9rncwtAGEcfnpmmCP/rWI0kZGsqB82NdjeXtI5D2mJKee3J9KzBKc8i9+xtN7cj2vu3o8L/VOUPXy34JwnY3CtuB6ZR9CAAOwaFExGSaH34cA2LiRlseZn1pfwntAqVTo9uMYxSw7Ujnifyx75BuLXrnSIeLK39vwypWEEEIIIYQQQgghxM8NyTCFEEIIIYQQQgghhBhFP5YJIYQQQgghhBBCCDHKES/DHDf4QE3QoHemgkz5OBqpwDFew8407Yz7Q3w8H8a74PV8/BbGQ2MsBhfIhC1l7CH+euvjfBAabhSDwiyOO4FAH9OQxtnHB2IcIRe5JIYxPAoGguJzML6B/6V63pVXhg/IgT3EPjWLc3HjmaZdfHGz3LcwjrHBuBEM29M72UW9ugXXxn2i2DCMy2Fm9va3hzLjlLkYPv2IC8eYD4ucUrpaYdSOYi6KsSE4tv2uHq2QraO1n+Bj3KRgzB0zG8acZUQKjjNjeJm5OGWMxeLGnNfjOblIOjTPgxEvitegtxpJlM1an3cf3lPxOXgNPrc/p5NBUxhHz/tBBkDh/PXBVHge/R39LIOsuOt1L0Z6dBd0pQMxahiviC31ET+qiXq+j3m9yB5yfhEMDQcL9WGNGP6Nj+TjJLHrGI6F5ShOjMNNpSTzORb0lz5eGI2V4+LHjzZEe/DrGu/LIC68Xi5mGfF2R5uEz529ODzD297GKFDpGGE+Ns9dd4W4qPfff36zzP724XM4tnwtqVTiQTrvvFCmy2Q4PLPY7Oobfho+MO5kLkYcYz/5eYUy50Hk7ubMia/NTuLDeqPm54IOlKsu2+bfZaLRTLXH4vmXCr1YNNxb3cfr40WmTw9lxKjysazK5wcbmguf5tchjsVMOzBme+ewdOmBXZDn+zlLg8ckYzwtM7Ne9MsgXh5GsNqX/XsEx5Zr/RgDdNG+ophxOYOgE6Zx+TUTcZL5vt+3MHzt/2ShK+Sc94/HJrCp7K6xvq/Q9xyDkNCnnx7XY7i2Ft8zio9FRpsuZ+pxXLiGR+9C/m+yPngEzstMMLrUe0TVGysCyC173+vTFwScIv6doFYLHbtlSyg/+WSInenNad8jlY+K7TmKWXYkclSYrhBCCCGEEEIIIYQQRdCPZUIIIYQQQgghhBBCjCIZ5uGC16JxjzNlG9zr7LfykvXrQ9lvM+b1uOWXW699XmhIJXdA8uTljJQIcWv43HvvjerxvA4vMxzFy5LK3I5P2QDkh2bmtSPheuivTua2NjP2ZJTWPac3KphOnqnTo1+nvUyKNvDa1zaL1R//OK7HvvzRj0IZsteykyrMpLSC9vBkRv6C/fLd7If3vjc+58YbQ/lTn2oWRyC7NIudDcUdLVvu2ceJ/fgL3WfWGkyU/ecapBBnUlrKvjIzu+++UHZ2k2rDQIGyWSxHLWP+ObFYJHPhtv+qr5cwyYMhwyRlSofgG7rdXOZtc3JN1uNcpHX6f9mpww91wF/1ON/VAalypA+hTNwsHmfOxTPOCGWvSaCMh3bjOrwTc2neAw80y1X6NC+TZB9DsjZC325mXbwPD0ydGl+PMiwvR0xAaQyH1tsT7Y6KWEpuJk9O36ewfV5+eSgvWxbKfs7ygjzmwwvwM/t1+fK4HscJ4xdpEa+/vm2TW67tYYfR/2K9eu1ll0WnHHtVELfRJCnPNItdPS/N76lydLeNXLFT5EXTh3bifRCXavsh5ialrk6aOow5XGHfu4vTJ3QmyjZliiXJadWLah3BrCLtMbM+dhjXHqdhpVI1FWXDS2+5VEfn+AnI9yRehG3zWjuejvWqiw01F8rimmuaRe/3C/GBD8Sfr7hiLFcJvPOdoQxZqZnZtsoJzTLniHcbHR1h5U2piRcvjiVvdV6EtpV5p8hRxfsL3x0ivN0y7AodxymnxPUSNvDoo+Fr/ycCn52vrLk/U+iTUn+W7A+8Hk06tzykbua/7Uwc8zadej+LpLKpyeyOVSrV1KGkDLfq5qJ997vhGMf1uuuSTTh3bgjP0r/Ue68AIxLQTfs/Off1d6mUvJQQhzX6sUwIIYQQQgghhBBiv2mYYpYdmUiGKYQQQgghhBBCCCHEKNpZdrjgs/JwDzF1DNw6/eST8TncW5zJrBd95r5lbN8ddnIjbvOlgMfL3Ehuy320CzrxfdltkU/uq/bZGTPSgbbnm1kP95czdY6XYaKPRwr+1lxmNrZE5h0zi2VgHBfKdMxsGNeofO1r4QD7x485n4lyAGTdNLN4zzzPoTyEskszs89/PpS//vVm0eXZtC7u02Zbh4fiithrPlLxQsOX6fZjDjppu8z8amaPUUIM6ULHd77TLFe9dIESKqZ2cmnkKC3mkWrie7NYZkiJppcAzEa5I5VVy8xG0PTy2EQvgZxUgHI4SPo6nH13sO/gX3L9kPIpvjX8TJ/kF7UK7KH28MPN8oCbV1W0tcL5w/72mhLOJdq0l0BiLlVpQ7Tjk0+Oz+HY4j6zv/KVuJ7XYe3j1FPjzwl9FrPPdnSkfVrOHFIqtaJZLguzZEkoUxfoG5fSonkZLecwpal+bUW9bbCbbq9FSsH1PZceju2jnIYZkM1swZlod1f6+a699qJmmcsQzdbLMCmvZNf19sb1GEWACSe9mrh3Cvw7+5uaUSeFqvDiqfScZtbD+cj5zLnjJKxRA722lPBeBXVhPQhR0MPx8/d5zWtCmQPj5vLx6H92A7vOL4XlTc+2r+h9F9o0UgvisTLW+s17o6AU1kupMQyiw88X+j8fJmN/YYZtM3t2OEglp41hjdtx8VuaZe8O6AI4R7xqnefxGL+nRM3M7CLaIW2waBZdD2R0Fdpa5h21TP9J+/ZhYPi+B5t8CQu1fzXm1ObrtX881uO6wXq5zMk52MW83qWXxvUiZfZyDDRPes97onMYPoEP4cMiRD0OP1RNSWUt9rMt758JOuk3KK9lGlCz2EDvvDOUMzJMw98Vb3T+84wzQuZO/vnAJnglaHX45bfbUuMA30mFOERoZ5kQQgghhBBCCCGEEKNoZ5kQQgghhBBCCCHEmNDuuSMR7SwTQgghhBBCCCGEEGIU7Sw7XPBxZ1JpyxlHygcHofD9l385lPfsSdfjfSA0r7iACxXo3uuISzTN6fUjGJvl6qujQ92Mn4HYGVW2zed75vNm4phEx6jXZxwGxvLwnxlfpGCskmx8KMZPoZjfB8xgsBg+A2MTmNkwYidsQ/+fkOofs7gfENtl8I47omo1Pu+f/mko33BDKH/4w/G1v/Sl0B48kwvzYR24b4Vt9QFBogbV23/vYnXF5+AZXFyxKmx3Hb7nvxr0uD45wdrjIq1FFjAzcW3vcHmM0WFqPtgTbYBBapwdJ+0wF3BqLFxxRSingraYxTH6HnqoWay5erPgb05AvDD2l38CxoKL+tX7Utoa+rXufRfnzIUXhjL9kI/7Q9jHP/xhfIx9RJvkPZnW3dcjPh4a/RXPyY357t2hjLE45pg4RhGXDi5Dvmm8FetxCcjFoaG5e5cbxXNhf/EZfJAUxubhBf1awXgsuf5CH3WvWhW+P+ec9DmE9uRtiHMhtXYxgJJZ/Oy0G3fti65d2CwvXhx8KcPnvPBCfGnelmPpw27xc3UQESo3bIgr3oPPfK9IxS8zi+ccb+TrpeL75N4P6B947aJzOxFHs6V9vI9vNycW+8vZ4Oz5sN1+xIY8M0SxLG99Lr42B5D39eOCeVFmPZzf2+fmxJp1ocwgRR4+H+P6nXl2+pwULi7gtCgGVibmXILO4RBdtHNGV3RsaDisyN7NEvorhsqL4vN5e7rrrlDmupixu+x7ZWKiMk6Zd2lVjjMPetu4//5Qhm+9CO8eF90Qz6uB4TAv+Hi+DaljnLL+9bUoDMPF6de56adxxZ/1hzKfnb7Y+xb+/QDfVfYLFmOGwTdHMcsOxvvY5MmhfOKJoZxbQAv+PRPZpIuX2QsbuPLK8KabCw3atNUR7boS4xPtLBNCCCGEEEIIIYQQYhTtLBNCCCGEEEIIIYTYbxpm9tIr1hLjD/1YdpgwMmNm9LlM6QC3xKbkmf7zKaeE8vbtcb2HHw5lSiEokYBkyszMII3iPmq/mZhbFaPtyX7bMfdIpyQT3PZslpRmDFViqR53p3fPwrZfpoX2W9+5FRvX3jEYSy4qkGAU3NBsdtNNofzgg6HMcTCL5QZsn5MYUaI3Qg0A6/lU7tx+DxlnzUu/PvaxUKb08uabQ9nbBsa5G/LIbp+O/HWvC2VK44puDScf/3j8mbIkykNcuu7Z/+f/hA/33dcsboB9e5FNle2D3Q65ceFsrNGmMcd6nH4tklued14on3VW3AjKxSgd8nqF1Pb+gy3DXLq0/fdeUsv9+PQvXlaGfqk/8UTb78uu77ihfwDlMnUe5iSf6O8h+jRHlffi+WvXxhVPOimUadPed3nJ/D4oZ/XzgH1J3+Dr0R7cs0dQtjFpUijDNqZMiU+h2fAUL92je0nJLb2yOEXWVNlf9JGURvqLsO+83VGK+8wzoQzfYGaRH+G8r6aksp7cGHHdpq1x/P05ThrTxHceBq2M8e/FOtvr9ZVnYg1m27xUaw3ax7HwbeV57C9e29t0SsJ48slxvdQ6wu99OAfW47X9WHrpZBF+8RdDmWEV/Likru2l4QmpXHUh+j4XCoPj4rVRXL/43sW25eSxXHtadFfA29f+Qkm1mW3rD2+Z3WMIpr2jEqTmw/3xMb5OUUlK32eWVrpGNu3DAXBN4LGMz6akskWSyfcr9H/Wf3L82FY/rzi2Kf29a3cd4zxrVngnLw/HASv6+vAOnfgToV7xQS6K/ak6r/Z0+LB6XSjfe29cke+9nAdshJdv8zNt2vvF1ABwnqbk4xaPuSc6bUbCT/t3MD5f0fXqnntC2a+ZeI+r850VdFIWatbal0KMMyTDFEIIIYQQQgghhBBiFP1YJoQQQgghhBBCCCHEKJJhHiaUH3skfZDbnbnd1m/f5jZvbsWl/MYsztaSkJhlwdb+FgNi+7g/3cuS2Aa2j+f4rf2JTDXVWry1OMrnxkvw2l72kZAX7Mqomthdua3TZV47J+3gMUqH/DjPmdMs1k89NXxPmal/Po4LMyu6LKWR9PIP/iCUP/WpUPYSwWuuaX9fL8Nk+9iezJb0JC5DaDILoN+STtncVVc1izMoEXTZt6It5LCNDrf9viOVdQ92W8vJkadPD2WOq1k6k6vvu4Mtt0ww1BFmWbUCeUhOGs7xz8lHObYYv4qfBxjz6saN6cbyXtACVr1/oX6QNp5LzUVJMp/VS78o20hl98vNA57jJZ29vaGcS0mV0g7hnGgszYz/nkaJ5ksuLEcRxdpBMU1KQjjnfcZnyjLZ2JwMhfOXtmoWzdMqJTy+XgrvC0lKQsPx82ED2A9st5cWf+97oZzKwuoHLyXB8vbEAc31a8rG6SP9esU20PZzcp6U/835yFyKVx7DOeXcPE1lPaW03CwOFZBb63kvXo9lv8alMh76jLH0Xbwv1yGfdTrlx3LZt3MSzSI42+/mtbtm7fflosyIOcc1yGfI2Ma6xLh4W03JLcea+jElqQQt2TATa2tLP3DMKCemlNCPK54jeht29SKJHsJnVGlr3qavv94KwXAh7G9v++zzlPTSy4d5LOf36UeK+lwQZX9263H0dwZDYfD9x6+FRd8xUo3w78MMJcNjPMf33b6wKUd8NkzFLDtS0c4yIYQQQgghhBBCCCFG0Y9lQgghhBBCCCGEEEKMIhnm4YKT7WzbFTLGVGYsaJY7K8j75rfHEm699VuauU2X28YpK3NZBCMpC7c35+QTLPt6lMOxrYmMl2ZmT20KGXbWQEHgL83MRVR4xqq5SKwZ7RTnbmKvnhmLYvAfH5jWLHd0hPKsN50b1ZvX8Wz4gIyV9hd/EV+QksFUJlHfUMr4cM7Akl+IqtVv/qvw4TOfaRYHsZ285rdYX3tt2/s8sqEzqsb+p/owJ2RKdfc/3hlnQO3qCp/56F1dJ0T1Zi2d3SzT7Mr3fT98WL48vhkNjNvqvcyCtstzKAGg/NjMbOHCUD799GZxR8/sqNqjj4YyVRFeCfHuqwbs58Gdd4ZyR0f4N5f+/njMe3rC5xkzgu3PPtO1kxJIPiClQt6PpTK9UeJkFmc5pOF52RUlbBw/6g+9VJ2Z2t7yllCmHMvMnuqP/c0+1iGpofdjHR3BpuefCdmrl+2kssmyH83Mpk7lxUM5ITczc5lhcYxtMzPr7AjyiqHhcrtTCiuGsz4WMqKBwXCf+qIdcT3KFFNyM7M4/R0dlLc1rrW57IMpUrIfT0q+5jOSUdZH+ZK3T64VhDbj7Sklr/NSUMJ25waQ903Jkf2xVGiHzLGRrjBfWrIIFm0rKaghHqiF+9Zn4Fm9o+aLSSJzcstntjs3FimJl5dv06a4LlGC7vuHbU1l+DVrzRB4AIz0xGt4eayyxX2w3blxzUmQU3ZT1PaLZiXMwevhvllT5Tl8x/ftpq3xgvSXfp1lumM+n7fVIrL4sUp3aXe8hr9eyr+w7NM6p961/XxLhQFh21x/U27Jda2ac08Mv0AZph/LnK9PkcsSzPcpjiXfn/j3Ha9X1v4cMT7Rj2VCCCGEEEIIIYQQY0Ixy45E9DOvEEIIIYQQQgghhBCj6McyIYQQQgghhBBCCCFGkQzzMIXS8vLwUPiwZl0o+7gQjH+Ui9PCGErUo7OeT0H/UmJrqdf1E2rn/fXYhlTMHRd8Ydas2UWqjSkWTiqchG8ar52Lx0N8+Jt9+OGbtxTxZhh75g1viCsynkAqHbVPbY1GbH7D/9Us9973z+lGIT5QjW1gbArX1s27Q4wqH6pi+/b2TR0LPowCQ1JkQjBF48k2TGN/+fgWvBljBflBZ0woxqRhbBDGF/L1cD1/aZ7G7k9NnVcbhstgSC8fEoOfo3BKvo8ZRzE1Ab3RpOaBbwR9l4/pRBiP5ZRTQpnxTfjg/tonnhjKbmDoA3bvDmV2g388dgPdZV9f7Adp493n4ICfgLxBIo7JUBylLLJD/stai7uLJlq4Bm/j5+JY4j/u2BVaEXXxJvesvBk70t+UfZSKgeevwQlIm8nBmJG+I2gQjAdDv+Ht1sU4bdtOf17K2HJxR487LpRzsXB4X55jZnbssaHM9wU6NR/LkXMJ7Rlx7wB8JDZh/QpeKv43YcZR5FB0uhiUnAtVG7IiMEQc4/rNmHtBVI/dX2UMLT9nU4E+Se797rTTQtmPM5+X9sn3SMeAhWfibVvNbl7b87uSV07jw/Udd1wYl97jXTy6AjAecFdX7O/Kg4ilyf7yfZdal/i9j+mWemEciyM0i97PRuCdK4l3VDOLg/Cyff75aIdcvFhmnCyz2G/4eGaE70msRz/h3zGLwjnCddvPnenTQ5l+iO+B3h/MCL6HNun/tDn22GBTU6eGGIa9S5eGSu4dhXE+c0TxFy+5JJT5DH7t4kQtGHsx8gHeJ6ViTfK+/h2s6H2FOEw5qn8sm3DpcjvrlPDidPunFtm6TQP2tk+stNkn1m33npfsigt77bO/tqDl3HWbBuyK315hD30x/IjwyVset47JFbvpnXPso3/xiH3rB5utOrFsc6bV7YsfW2hdHWNcAIQQQgghhBBCCHGY0TDFLDsyOap/LJtcnWCrb3599N26TQN28VndtvwPLrDde16yc973fXv7kj573Vnts5mleNN5x9sfvG++VSaU7WN/+aj9wZfX2Gfef/ornyiEEEIIIYQQQgghDhlH9Y9lr8TkSRNs4dzj7Jmt+5/m+RfOD9tiFy/osq99b2OmtrVsnS2ntj4zbX0ufTi33vptuam00DnJU0pPk0vlzm3MlJv563EPP9vqnq+Mc2bNmmYpUpInbpf2qtJUduyDwaRJ7b/3yhNupS+zH7k93Szuc/bRpZc2i0PX/FJ0CiWQvf/nr9tfyyweP2zzj1JB+3OwxX0PmuOlGVTa5Sgib/XXTp2Tk2HyGl1zQ3r6upeh0KByF6c0KlXPb0+nFALb2/3z8XJFs3+/mnDXf0oJ7I/Va5AQ+L7jiXxYTsacDJPSAH9tdiblGL6TOc5sOL/3chW2lfWc7+rpmdkse9XUPnJKBTY1JetuaV9Oo8tjka3G1SLZBxpYq8XyJdsVGljtaD9pK5W01KSoSqOzBjkcO5JhB8xiZ58KO2AWrze5jqWzZpl+McNALfxjWz0jkY+g7b/wQnyMtp+TmRaReI01jgHbwEXOS81TNsn3A85fs8gvjlSCrXEozWKlKtcXqhe9oivVJd6m2a0pm/bw9cwv24SP3p1alMxi2+Ax6sBy73d8WC8LpH3xHF7P+ZDhSpBhpiJ4eBKK78L46eFVvimi9yn4sUhaPuzktal3Yz8uKd9aULpJia+/dNEIFU+tC8/Ha6QU2mZmOzrCe3MnByPnJ1LHvIHzHT/3ssdj7G/67KIvi57U301+LNjWVAgHJ92kT8n9eZVyzcfOD++YNd+lY1ApDmEuVulQ/LPmpLNFyK0PqTnijVqIcc5R/WPZ7qGXbOEN3zczs1NOnGxf/73zo+Pbdw7ZExtetNe/pv2usieffbF5vpnZpm177KZ3tsbV+us71ts7L0n/uCOEEEIIIYQQQgghDg+O6h/L2skwzczufXCbnf2r37PH179oH3/XHOvrbv+vSHOmHROd/8lbHm+p8z9ufcIqE0r2S8umtxwTQgghhBBCCCHEeGb/k46Iw5+j+seyFPtilv10/S5b8qEf2Nsv7rM9QyP2/j9+0MzM/vt759nZczpf4Spmf3Pnelt+/2b77h9daKVSKV/Z7zVPSXqoQ2DmLA9lKX6fMLULJJfeKJXRym/5pb4xt1eZ5/EYtxNn5CqRoMe1Idpejpp8hJyixDf1QKEqhfdlFkEzs/KmZ8MHZl306XYIG44MYn7ndHQvNoLpu/yx1BZ5ak3Mon3/M848u1n2KmG2iTvcx6Ic8nKOlPrBX4v3pZqqvuu58MFrfdhw7sXPGQovzut57S3nGTqs20lmuvu62t5mm8vm9fNi9iy8EERZkApm1fKpYGmHiT7JZnli2WfopQ4rZd/+GA0s9Qwe1nMGWpsRZJi8TU6tkFLXeZumeU6bX9CR4SKUK7XIfzsS0vAxUHYvkSNWLAMYiTIU8sG9j+Szs+wdY2qN8mtkam1MZYl2RLfNZZVMyYN8djlekG3z7eYampIZe7impPTW/hiv7bLIRaRkTk7yxIyFVAt6t5FS2FKlmMvQm5P/xhEqgq1WK+k/hn70o/b38VORnxcvDqqDqq/ItTaKG4CL+3cw2gPr+TmSugYksTsG4/WFr5Xse79kUlWbSxBZhJUr4890s8uW7b8PYVtnzIifr9vLgffh/P5AJbz/12dhPuNhn9pU5ynRJXIJCi+7rH0TPCtWtP8+FQ3CzOzBB0P5+OND+3wbZswI2UzrPdvCgVyqeNoTH5CxUMzi9Zid4kO1HCh8KD+vKu3HjIbLzK9msd2kXj3MkpE1ott4+W8FUvOiIQkimXjupZefc1lKSe49hzfmAxZ5SWk0it1fiMMM/ViWYd5JHfbb755rn7ntSbvtv5wb7SJbt2kgc6bZnf/2nH3mK0/a9z53odVrE7J1hRBCCCGEEEIIIcThwf7/s8xRxgfeerJ9/yfP29qN+R/HPDf+6UO2c2DY3nTTD23hDd+3D/zxT16lFgohhBBCCCGEEEKIg8VRvbNs1x2Xt3y3dGGPLV0YtpZOnjTBnvnqm1rqzeqr20NffEP03SevP61ZXvPlNx7ElgohhBBCCCGEEOLwomFmxUIziPHFUf1j2eHE0Iw4i2YUF4NieWrJn38+fUFq9B97LDo0gjgY3FrIEFN+H10F12PEDr81kcc6EHeri8ESzOIAYox1wOdzcUyi1Ns9Ic7H9u1xtRcQr4T6f3ajj2PCMEeMieGbQLk+r50L58M4K6ks1WZmVsMFc2PLOAFo4MDi8ANt/YF/ic9hymgGHvGxCRiv5mtfC2UGYsjEsyvjofr6ZkbVUhntW9K3g5FK+5hcjGNjlo5Z5sNq8DHK/YjFsfzOUPZx3AiNiP1olg4WQtv3g37qqaF85pmh7OP1LVrU9hqVSvtMva82A4Nh5tdzxs9BZyAh55PsrrtCOREMZ9gNOn3UDpR9NElaUI0+xNlxlcaxbFko8/l8IL5UHCHnOGgqnIoPPND+dH/pXKwf+qG5c8PT1gvGpWKYq1wIrlotXHvQuY1O9NHQcPv4TmOJUeZhfy1cGNbMzlNc4BjaHeO0eN+ViEXW74Iw8Sw+eg/XuPZNfrl9/U+HDzn/Ql/BdueCdXGOuHiSFfqXVEw9+nyzeH2ZjsREPu5PKr6Tvx77PBVHz41LFDuqFAz8xRknRPX4SEVuYxavCZw7PtRhaq2vZtxd6h3DXzsVv3Oej/dG+3zyyVCmfecCH/LGfnLzHQzrzSNrwjz3bpqfUzGczGKz2bMnlK+7Lt1UH9NwH8uXx36D16abzkHfw6Vm4cK4Xl9fqEcb6uuLVxU++6xZYQ3muPpYazzG4fPTpSgvvBDKxx1X7BwOOeeBX9YY3q4yBe8YaGvVB9eiIfOhcu+YpLc3lGk0+0MqIKh3CHzAXExLkPIbuRCUtNXyY4+ED26eD9f2P/ZsZwVvQA9hYvo/iLim/PjHxS7OFxbvX9auDWWOJY3Iv3grZpkY50iGKYQQQgghhBBCCCHEKPqxTAghhBBCCCGEEEKIUSTDPEyo9j8Xf0HJEsvc6prTGlBb4/bIc1M0DYAbkHO/onKzvN88zGORcXlJEPeDU17FdnvpCTQAVWw17j3xxKhaLzRLI11hC3lOecKt1MxgncvCXBSq67gtu/eFn8YVv/WdUL7vvlD2jb3pplCGfKL+2T8M33upD7fCU+Ly6KNxveOPbxYHIOnZhfIJJ50Un0NNwr33NovTLrkkqjbhtCCd7Z2Sll4Wgeois3jXN7tr0qS4XnkD5FCcS3yGnNwop6PljVmmPIFp083SUgEvXUik8u7s8QZaa1tvTGQkCfUaZvqG/lD2eg5qDumHfL2UL5s6tVmsuDoV9F3OX/EpRii1c/W6YAPVm28OByiB9e1OSerOOy/6+PprrmmWt50ZpGQ0h1S2dbPYb5x1VlyPipJ6/7Phg5MSRjaJix97bGgPr+XbwPLu3e7Sx9dRMRQpyfSkzCvnY1+/CNIT6pxuv901CM/KfvA3pU2h7IVtnH0DiXKXZchpwwl9q7c1kpDeVfz39FE8xv7xHZ7ySV4aRZ/ENdz3cep5U/7Sn4P2Dfenq1GKRpVTzk2zqb4JubmZgkp8LhteVR9JL+fCl65eE1fkOxD7OzUxzeIH2bw5lNe4a3Nscc6Cyy7D15jXll7WvAyTz16071Iy7de9Lv7MKZKSbuZYtCjcx8vbaStYevhaZGZmxxwTyr3Ht2/Drl1p38epPZZ3SrO4/8d6jX34Kcp34OowvBxtzb+fp455P8bFIyWXT7zv7Be5OUINKx8W7a47hzBjRvuQF972OS6Rbfx4Q/tKY4V9zEb4ceHz5UIzEBqUd4y8Bg0n9b1ZWFNG9n++jj8Us+xIRDvLhBBCCCGEEEIIIYQYRT+WCSGEEEIIIYQQQggximSYhwt+L29KIpbKLueBZHHQZZHjhuSUAfhN0Cm5pheD8BglKh2Z7GKpX2yrPntTKj1cJnNOuau/WZ7G89e4reHo/7Ohm9x8zIKoGrffF+Vc+/fw4XsYM58uKSW99SmfqOlgeirakN+Xzy3SlF/86EdxvTlzmsU6dChl2FBLxrXbbgsfmGrqu9+N6vUuXmxtufba9t+bmXW0zxIU9alZbFAbMLZ+O38q6+Ldd4ey30J+zjm4dtjiPoBMeGZm9RUrwgf09wj624tPOV86qPvxuh3aANvnt/PfeKO1JZe+aSx6uOXLQ5n25GzDfvazUGZWpocfjqptg/6PQ8mRyPVdv6WhiIAiAH+9SCDAiU4ZgvPTI5CNl312VAIpRDeyfr3jqsubZWYYNYvdXXcF+T4fiP1GnZon9r/PqEttWqRbDjLMXBIyn4GWpDLdHqg8qAWmw6SE3EtOqYfjHPGSID4UxjwtQI7ts7CohLbh1/qUHJFlnyWRz0eps9eVXX11KNOgeL3MWjHSE2zDZy0eGEbmVaz2Q5VYulcdhO2y/1PpAX09MM/5xZ6e9utDKsmwmQt5wT4ejEe9VvN5dV+ZK64I5ZwUNFpi2A8+wyjXTJ7E/spJ2nljLxnnvEjIwvzSQKkrT/GybELF21jwJs0IHmOBXZJbCqkK9K+inMLPPx/8Nq+Xk+elwkbsD3QBqWfy48dzMlEW4qgIXfW23/csvCg6h8/bdWbIVNztU46yganwC7nG5eC7JN/PKEc2izuCsQd4X5cKdiY6eWYfBnB+V1Qvmo/LcY1MGlbeNqfSj7gTGdz5DN5Yc+tICjpN7xu4jvA5GELHhcZpjnmpVOz+45aGSYZ5ZKKdZUIIIYQQQgghhBBCjKIfy4QQQgghhBBCCCGEGEUyzMOFnCSPx7iFGRkhW4Ckq+Yy8NUmTAgfoFeoYx91n5dT4RojlOS521JMEUlU3FbeCu5FI9yGcreTuUVbtnk9Zqszi7PBcAtySuZoFst4IPXoveWWuB62II/UYrkJibI0ffjDoez7lbzrXaH8q78aypdfHtdjNkz2CSSUUSons1i7wC3bXv7C62GLdY1aCP8MSE819NWvhjJld2bWQbkmx49SITOXoiwhhWEfmMXjzGfw2jHK/yi149Z1v+2cGgfMubrfL8/PlLAm5o6Zmy84NuL6rosaB7bb6XtGbvyQtaOc08ONRStHGSZlB2vXxvWefDKUYXdevsZRpk/JKRJOQLkL5Q6v06Htou9mOJlFVO/KK0OZKVXdmJfpe6hRovzULJZg0Pd84xvNYt1JJKJsXJynvJZZcW3NkiVt69V5vvv3M0qRqL7wpk+plVeSpeBU4BLlr81Hqt56a/jA8fI2nNI2eRkK+/Xii0M1L2HFmjmEuVgtmtUsl9ky0jah87hO+07l83L8vO17DeI+ctovdHi0jrk+rjNLHvqxWnHBGfh8XJu5DjFjmz8nNQ/MrDuRubOb56zusiT0n27uRPOxFq6XytpoZnbRrn8OH+7Cs+b0fhxbn800lVYyp/GkrXEy+Wuz3qpVoYwxmu3my2y2+2dOZ0i4Rk2Z0iyO2EVtKud556ku5ELkIFy4ggKcvesH4UOHm7/DoY+7OWS1eL5Mm59YmWCD8xa7Olxvarx4bBsjdm77azsW9OM5tmJc+oKfr1RiWy3f8y/NchX96DM/Rra2NdhNJ+1ha2xPs/sSjn+Xs7uU1Jz2OVYZZkpm6NOZpjI3ck5Q3m4WvyPmZI8p6PsKPl/O15T5TphbdPmsCAGRhe81fo1j27kGs+x90sHIbirEIUQ/lgkhhBBCCCGEEELsN4pZdqQiGaYQQgghhBBCCCGEEKPoxzIhhBBCCCGEEEIIIUaRDPNw4YEH4s+MocX4RQzukkq7bGa7oKn3ydWjz7wGYwa4OGeWiFM2ENeKYjDxWKfLo81PNEJGdhlxzzeMz3XEM/PXTubUvvvucG13Du97AmNLZFLal31O8xQcv1xsLKaJZ5yyO+6I6zFmEeKrRfFqfMwyxKaLYg6cfnpcjzHaaIO0T//cr3lNs1hFOusNjOtgZjtgX2Vcu28MMbO2YSzNzBhxw9skeRblWWgfbbrT2z5B/JVhHwOG8ezwNS3IRy5KzaV+V6+KtNw1lP3c7kGT4m5N/7tI0e6PYkd94QvNMtu9w53Dz2yrbw2j//UnzvdRPtjH0fV8nDrC2CW0bw99D30I446YxbFCOJ994C36AF57xYp0e3htnDN8771RtUqqrbnYezi2eUvoPR+mheRcF0mFSRpLaLwWHnqo/QV9zB36bcaS8zBGDa/hfBf7LrI1HyMsRSrepr8v/TnG/+lN8UznOFH0cdGNS6J6f/fV0Nqi8ee6urxXaT3n5Xph1tYQv9OPc09Pd7M8f8nsZrm87qlQycfw2b27fQN9I9gRnD80Vh/HiPMgFRvN18vFeCP33BPKfI/wMXzYSVz3fb1UPELW8/Hw2A/0hd7u6F+45vHdyBsHjzGWrh8X3uvkk0N58f7HLIv61CweT86XotCHeLtjv3KMMjEDdwyG+dLZl7FVXs8fGwscdz4HYw76yZjymd6+Ew7+6a1hnvuu24VQnPFrcxzbl6EYOU3nzAmRS19yzZ7WEuW0Pd9fM61ZnjUrlDvmxvXYDZ278FZIm/ZxRzmvGLfXrwHsy1Q8tMxiyDiRuZhlkR2n/uYxi+NWpmJYOkauekfb25jF475hdfvzvW28Y+no83LwhRhH6McyIYQQQgghhBBCiDFR7IddMb6QDFMIIYQQQgghhBBCiFG0s+xwgTIdMxuG7I07WmvcYpvZ0trBen6rOqVIPJbaMmwWp4bHFvIq5JBmZl3Ypk+pY/mss6J63XhebvTn5nQvu6Ikqx/lEd8GbpHGdvKn2DZ3bX7ugASn7mVX/JyTXWEf8jamtOc5c93e8CuuCOXly0PZS3R53hveEMpXXhnKbpv3SF/Yks5t3uYlrLwX99JzC7p/Vu6lX7q0WRz+1reiakMoc2yHap1RPTa9nPhXmp+6zxQR5P4F4DmUKTSIhAJMe28WSzAgAamsXRvXo7QC5W7WcdJizjKKn/xTU9UwnCibmXWNMeN6Ebi1nvOU5W3uHI45LdILvThmtK5plqZy0knhw/Tpoex8TUra1uIXKe9h6nTOA+8X6Q84LxcujOtRy4C5tCkjGWXfsX8ecfXmwZfSpmu+DYn07Zy+e/bEx1IZ7v2lEiqgaEr45Yr34pxP3dPMbACy1Tr9UEYmFcnAuPaZmS2BbJFj7qUs8NuVNdAbFZWBcfy9f6HkE9cbqYRZ4uWxP/5xKNOFDw6WC9XLKbCoss/Jban0z0l0OUzlNfDcXt9DKIdifz3zTFzv/vtD+eGHm8UdmFed11wTn8Nx5rVzktqowzqT1Z77gz9olukL/Rlcb7oo1/RzNiE53DYcrlibEa0wVmdbU4NuFk9O2nROPgpJ5Fa8Z3m/z7PYuvKv/brtL8O/+ZvR5wrn3NVX7/f17OabQ/myy+Jjp50WytQte4cHv9/J9qT60SwOn8H3AO8Y//V+K8THPhbKnGR8j/TOlM/ufSaZMyeUYQMzzz8/fO/lzfC5lI3npP00z5yvKQpfU9nF/pWVbj9awxFGxL72teicrQh/gUubm1XGXo1slU7SyXBrPIljVmkviTezWJ7M6/m/KzAumyeEN6rezA4oumbvptnHbGpOZfqOZaNflErJewpxOKOdZUIIIYQQQgghhBBCjKKdZUIIIYQQQgghhBD7TcPilDviSEE/lh0uOKndOpS5WbYHe4vdzuJoaz8zSZZ95h3qLLhNmNuqvfwwlb1l9er4M7ahlyktdXusB3GMciN314iU/MyLi07A83ZhzzCv3eXOSWUvrPvnTmUP9fu8eQ1+OOecUL7++rgit89zO7+XalFW8qY3NYs/6Z+ZbM52JN178cWwoXTGjFjoNo+SJUoPKHdxslfKDXZAmnFCXCuSanDM+ahmsfJjWmJrvpdhcvxqibJZ7PBoDzNRrlF+YRbPC9qxl1lQU8AxQ6axipNhMpMkJaLPWgy3AHNjvs+pNTshhzsYmQh5PUoBeWk+g1ncPra7y9XjHOGYRc32WVg5l5jlKdJYWCy74sTwEjrIF4Y6gniouuEpS0IfR3vwbX300WZxK2zjJ6jCOWEW+7gulL3kif4q2iru/T59OuRLu2C2XrXDz6kkX/5WPMakhkXxtso2cMbNQ1bQDkpyzWKNIB1KTmfKeQ45uZnF9kUdSlEZZm9vKNNuXRv+fVPwx5tWhypUcJnFKkX6Ty+Z4ZDTPeWkllRncSy8Eo1dyWO5hGd9589rllveSwg1PWyQ98343I95Rf+5wGeZpUwp1wY+VE4bDOgpOE/9WkjpVhQ2wvsNrheJNvhHqKcO+vN5jH3E9d319ya0FWe0+H1KL/msZ9v+s9p97oOfdULAQmyDlLvbOzL2N23QdzJ9PZ3c44+HMiepWfyuTOl10Yy6Ho4Z5eU5W+WEZtm9l0STm8d82I7EtWfMCllvvd9glz//fChzmhecbi1wmDh8/vHoziM5f6ZPGAaG9u7Xbc6/TkovKfkuml03wwhsqMzreYeOteyW/zd8/bGPpq/NKDB+TeF6k/qTkcuvEEcCkmEKIYQQQgghhBBCCDGKfiwTQgghhBBCCCGEEGIUyTCFEEIIIYQQQgghxoRilh2J6MeywwWXMrwP8Q0gvY/i/rREyYLQv0zd+qmnxvUYw4fxOxgvw6cMT9wnir3gYQABl2a6h3ECUO5EnAAfC4DPTsP18UCYpp19xHgZXYgjZWaxzp+xw3wAnVQMkEywn9pnPhO+v+mm9vcxM1u1KpQZK8QHAMD4bT4uxIBZl8n4zvgNiWaamdm8Cy9sXzFnD4hjwrgOPpbcfMRX4zn/6EJ/MfzCtJ72gbd87BPelyPW6eoNWHuiJNpIEW5mcewK2onvE9ZjfIrJk0N7XIwUxtfjNl8fsiOVQPxgbA1OxTbLxQ1hcnK2wUfi2JSo58eFcT66eODyy0M5F3sxE4SJ8cdI1Y3fQC3U27AufD9jRoi/Uvdp2XGvEcSdLGf8Ip/d+y7Cp6XVeL/YhXKV/cC+M4vjcCWC2OXiheViUaVc4UsH+b2RzYtsn/PNrPic5brEQDYMoGNmIzNCVMMy5vBQT4gxVo29SAxjGfkgjeiw6a8Lni0XEpNxgOjbGULPLO7/tWvDh0olDKafVnx0dpdfQzjOvIYPwUSbKm94un1jfSy5++4LZY6RiwO1FfG1cOWovMDH2Fy8OJRzTo4Pzw7vau9PzMw4slz//JyN5j0DN/kAT2jDjkq470OrQ5VJk+JTzjor2GR9Ljr/DW+IK9I4aJOMS+VilvWjzLhNT1sMn6IL5bHELPPx0DgVxhKzLDJ3Hw82FdPLT8CU3XAibNwYHdqF94p+3tJNwNyaQNbhvBrepxJhXl/mjjtCmXEefT8QOgSe497p+ew041z4Y4Z+4+V893YvTDeP8Hop/2QWLw/TWBGN3eb6hDZOm/RRD2kpnfQ9jCvnKA/DQ0QvZKk3v7gNfexkH0cTg/H88/7Nqz25MHXsY/Yrv/dh05rzpywxmxifyHKFEEIIIYQQQgghhBhFP5YJIYQQQgghhBBCCDHKES/DXHDdPYe6CUkmTe4KH5x2oQPbvgex1zWSOXlJCfc385jfQs7P1LzxHL8POiGbbKkHyVl0zLeV+3Qhiaxj/6+XmfLZKXhxV7Yq24f7dnE/8bXXxidxq/kNN7Rvp6dgfuuBG3+rWa5/9g+b5UFuibdYItjN/uLWd7NIOvvMM+Frbp32mam5o9wrXiLOxPOedVYon39+KDuZ4ghSmPMZtvlr33tvKEN27NN6JxRiEd42aA/VRNnXo/QvEtb4/qY+gPZAyZtZ3HAOQGa+9KBP2HdeLsr2pWTGZpYUgqWklrl6uWM9lBTg+brdYNYhR6RsIDe3o7GgPN1rKc47L5RPP71ZHDkzFvs85lKf7+PMM+dFnzdAicRbsVzv7Y0vAlsZgAyz7rQLlGFRosTx8uIu2kAXyl7qGolhOE+9HAO2u2M4WL/vVkIznjKl/ff+GkXm71ihebJ/6pSyeTgWvuGQb45A8lJ2MkxeoqsryNw2Qf0ye1a6CbZkSShTBuj4V6gPeU+v3KQkcu/eIEJ/4YVYZnPccaF87LFBeplzY5xyLHs1o1dh7SMnGR2ZCzkrbdVDbSH9sZPb9qBRZaxDEd6fc2ypLea7i1n0XlIUvi1wWvW4epEV8pm8A8Za27koeIsZM8K/c/v5G/X/hv5Q9ppoSsVhUCPw4T6UgpeT7sP7pNS72ljw99zRtlZxeP407zc46Sht88ZOW+OxjISV8N2jmDCulWkoV1Pv7t4ZMxQGnYDX2vV4ix2FjsfPN0x0hpt4zWtmR9U4zdg8LlcFX61bYJQEmjffk1tgP0CK33333VG12ZgXuTAwHJfooRAOZ8RJuSMZZsEFtI/+ieuLC+nz003BwiiVzEHT98pwNo9dx1c/v6YcPTRMMcuOTI74H8seecNth7oJSa587I8OdROEEEIIIYQQQgghBJAMUwghhBBCCCGEEEKIUUqNRuNQt6EQpVKpsb9tLZVK1nj3t16lFh04Vz72R/atFd/dr3NGMr9vlrHhnfXGuqX5YHIwpDnlA97QDw5GpxzoNXKdkjmWs4GDSaq//f2T45LJEBrhdTtF8NqTogY2BkP8efU3Oai2fhhyKPr01SY7Zinbz/mQV9Gmk/j2vJqayp8TRW3tQN15tXJkz1khhBBirCy64AJbuXJl6VC349WiVDqtYfaXh7oZB4FLftRoNBYd6lYcToz/N2EhhBBCCCGEEEKIQ4Jilh2JHHn/vC+EEEIIIYQQQgghxBjRzrKjgCNASWNmsZzmgGVqRTvlYMg1U/cq2IZxK1l7NQ1vjBLWI4GDOg8OArn2HG5tPWTQJlPZyo4UvfxhwFh85hHy6EIIIYQQ4iAxTv8KF0IIIYQQQgghhBDi4KN/SxVCCCGEEEIIIYTYbxpmR7OC4ghGO8uEEEIIIYQQQgghhBhFO8sOFwrGqykjsEouLgsv5y99KELjFI0HU6uFckuMo9RDjSX+WK5TcvXI4GAo9/Wl623dGspsq283H57lzG1TFO2SXL0xxUpj43zfpRrun7Wj45Xvs2tX/HksD5woF51XuUsXnWM8J7L3zAWi1vl6Gbs5qOC+ufaUk/H6qqnLFfp+rPVyZlLkGv58fq7ymLf11LwoalA5v5E7VoRce4rMxZ8nKR/inju1ThZ1+2Oh8zDrKiGEEEIIcWBoZ5kQQgghhBBCCCGEEKNoZ5kQQgghhBBCCCHEmHjpUDdAvArox7LDhQ0b4s+UlVB60tXVLJa9RAYSrGqFEsZ4A+HOnaG8Z08oF1UEkUmT4s8TJ4Yym+evXa8Mtb/ghk2hnJMysVxUekY5pG8QZX27d4cyO8jXu/rqUM7Jn+66q/33vt0YW5s7t1ksO4nnzp31Zvn558P3fKSxqvE4ZmxOfXhH+OAlkJswZuxjX4+fr702lMciHfN9undvKE+enD6PD5h42DIf3NWr5mRp/f2hHp+Jg+FtOtVfvu94Xso3mJktW5Zu38Fk5cpQ5vPxecySMj7fx1V+xjmVjs5kE1JT9sUX43opV+HNDsOXVDb29MTnRI+xbl0oe3++fn0o06fQgb7kXrJSsuwJE+J6tHc20Nuxb3w7co7jYOv3xzLv77svlPl8XgYPGxqsdYdyZknxUy5VL9XsBfPT50cXd3OCMlHaYGq5e6VjKYq6yJTZ+eE/5phQpul68yTHHtv+2i0hF1IP5b8v0mEzZsTnJKXhGXssKkd+6KFQ5pj7ecV7sX3uPjsGg1ydl8tFoWD/830sF/Whangf8z6csF/Z97lwALzx/NwkScA+NYv7aNas/b8efXPmHTr7PZ53BCEFIjvOreG5SevtNQXXG5LrE45tztcnxm9oOPgq/wip15JcxIyir/HT+ooFTf/pmvaSe2+eidcN6+7APOB7rVls7yx7eMHUPPBjlIrhkfNJjz0Wylz/3Lq/rT/0CR9pwfx0nz7yWHqcuY7Qv/B7z2vPGni5MKLg92J8IhmmEEIIIYQQQgghhHjVKJVK/7FUKq0qlUq7S6XS5lKpdHOpVDp+P85/U6lU+otSqbSiVCoNlkqlRqlUWpqpP6lUKv33Uqm0tlQq7SmVSk+WSqVPlEqlialziH4sE0IIIYQQQgghhBCvCqVS6SNm9jdm9oKZ/Wcz+0szu9bM7imVSsfkzgW/ZGa/YmYTzOzRAvX/zsz+i5n9i5n9upndY2a/Z2ZfKHKzo0qGuWn3dvvwj75gK7Y9YZPKE23WMSfY5857n73mjg/Z/M4ZNvjSkB1bmWy/Pu8t9suzLzUzs1ueuss+uuqLNn3yVBscGbL3z73MPjL/qpZr37P5Qfvso/9oy5f+t+Z319//J3bF9Avs6pmvs88/vtw+9/g37cldG23LO261ntpx8QVy2/xz2qEU2DtbdfubJ09u/xspFUETC/3WmlcXZJO0DY4h9Vxqe7Pvu1QfUYaUazjxe5CXL29fLwflmtwHnUvNlmvrzvaHxpIgNKcGiJqX2yPPtuZuzAx1kC74NtRrBbZqL10af071q+/jlDyyqPxsLFK0XIbQVHs8Kds/VHDbP58h58eKGigzbQ4n5NpmVqtVk8dI0WSRY0n8yEeKpKT+RuyvohIz6ld4fk7yxDYUTYOck/WyUw403evBkHGmJGtecho5xvbNaamWqXegCUeJz7bL+1LKUjR581giEhRNyswu9qZBKSdl0DmJ5wFTNJ0pG+tlhan3qaL+N0dKapczqMxA08exj4tSNIlu8n0s55NyssKDmWbW6/gO5vXGOC583nJqkuRkmGN5WfMU0YZ7xpL1HddmeIlqR/qelUp6H0aqqbmwLUXJRbwg/Fsnas9YbjyWrO8HO6RBQcaSXdyPF9coHsvK/PdVLJWKNWDc0jDFLMtTKpV6zOxTZrbCzC5tNBovjX6/wsy+aS//ePb7BS71/5jZ+xuNxp5SqXSTmS3M3PPNZvY2M/vjRqPxm6Nf31wqlfrN7DdKpdJfNRqNH+RudtT8WNZoNOzt3/8f9suzL7WvLPktMzNbvf0p2zzYb3M6+mzV5X9qZmZP7dpk7/j+79tIo2HvnfNy/J93zrzYPn/+B+z5PTvstOUfsKtPep2ddEzh3YJmZva640+3K6afb0u/+zsH98GEEEIIIYQQQgghDk+uMrO6mf3PfT+UmZk1Go1vlUqlp8zsOivwY1mj0XhmP+757tH/f859/zkz+43Re2Z/LDtqZJh3b/6JTSxX7AOnXt78buGU2XZSPQ56PLujz/743F+1P/vpt1quMXVSp83tmGYbd2/f7/uf0z3HZnX07n/DhRBCCCGEEEIIIcYn54/+//42xx4ws/mlUmkMOo9XvOczjUZjPb8c/fws2pTkqNlZ9tALP7PzuucUqntu9xx7bMeGlu+ffvE5G3xpyM6eMqvtefduecQW/tOHQv2BLXbF9AvG1F4hhBBCCCGEEEKInwM9pVIJKe/trxqNxl8dpGtPG/1/u51hz5hZabTOTw/S/fbd85HEsWfM7BVTEB81P5btDw33+e+evtfufu4n9viOZ+wLF3zQahPax8q5+PgFLTHLCvPxj8ef78ePrkwRzNzrPkf788+HMlN0u3TdnZddFsqnnRYOnHJKKOfifDC4ANtmZvYo4uw9/nj7c8zMbrstlPFMT68PP/x645zGQGpTp4by8U4Sy/g+jKfFfvBxBdD//7Kys1l+4yLXiFSwAy/sp+ifKb4///lm8bk///PoFPZQneN81VVRvV609SfDC5rlNWtCnZ54w6Rt3BjKL0FS72MY/MfrEC8s0W6fsnzk619vlp/G9y5ih5156qnNcvkDH2iWP7npN6J6s2aFDa//6QbErGLMs954l+YOlLlddsC1gRGwTkC5xlTe55wTn3TppaF84omh/MADcb1cOvF9cJDMbNfddzfLz+J7H/WCM7hKe58+Paq37burXrEJYw2RQlvpvvHG9hf0KdG/EGJnbsgEEaFH7eL3H/1o+OD6t/qa14QybKtz4cKo3raOMNIMIzOzJ7aOHcP1ZpnxgXqPRb1bb40bvjK8TwzjWSsnnRRVG4FfYy+sQ3lmfOWoXg/9gYfx+1hesiSuh355akPo8S1bQpUXX4xPoR9huaMjXgPpEubODeWd0Sbs+Bz6IS5l3p2T5844I7QH31fOOiuuuDMEdqxfeWX43vkNzufuZcvC97ucrdKuYUQjXd3pxpJ7720WBy95S3SI8+ov/zKU6bO/+934ck88wYH6GconRvUmTpzSLO/dG7zkKaeENc5PWZrQIqx/Dz4Y12OXM2TkDPfayWnP7qeb9TGOynyv4Hp+113xxTEfR77znWaZXnbe+e4fjfH+k423yAdBR4zMmm0pHnjta5tlepc+V6+O8mz6K7f2VK+/vlk+dtHrm+UN+Ldc71b5mlNdh7830D9mFk9A9uu3gqqC66qZGf8JmX28zdWbZu1Z9pJ/u35lbn/d66LP7MuLXtr/+EAPwYfwncTMzBYvDmU6NR8j9aGH2h/j+r5iRXwO3hf42tWyVqx72tpRNhfLlfflJPZzhHzxi6HM+7p3uhansA/OiT5n1YyTfOaZzfKGDbHfZ3jJ1atDmY+TizeWg8szr+EfD6+fdtEivBV+Af1DZ2xmO+AAn8L3J1jMNP6tlJjbA5/9X9E5db6ZYkFgbF9PmX6M72O0YTN7YFfwG/wz8yerk5eOLudeWW3jxtCx8+eHZ+Wfe958Hnvs5edomGKWjRO2NhoN/9dvRKlU6jKzD+/HNf+s0Whss7D87WlTZ59x1dscOxDqifvtu+cr3u+o+bHsjONOtq89nZWkNlm17Uk7vTMsCvtilt2/5TF7y/d+1y6fdp7dv/Ux+90HX/7B5+bXfvBVabMQQgghhBBCCCHEYUCXmf23V6oEbrWX/11l378jTTIzn7Zm36+vfp/DgTIwer921Irc76iJWfbG3rNtz8he+8Kabze/W/H8T+1nLz4X1Vu3a7PdtOqv7YPzrvSXsAuPn2/vmXWJ/enj37S3n3ShrX7zn9nqN/+ZLZp6aktdIYQQQgghhBBCiCOBRqOxrtFolPbjv317FPeJaKa3uex0e3l73rNtjh0Izybut++er5gs4KjZWVYqlezrF/+Offjfv2CffuRrVpsw0WYd02ufO/d99uSuTXbOHf/ZBl8asmMrk+2D865sZsL0fGzBf7Bz7/yw/c4Z19ixE4vvFPyzx79pf/jIP9qmwe129h0fsjdPO8/sOFRwEqMRyBD4c14X5CX+l85owy51ET4lOreQU29EGSfuY2ZxLmDKFZ54Iq7HvbiUUnDvtZkN4nlr0P5wo3k2yzGfj2WzeHs4+xVan5FPxck27rknlN+4yIsPAPuhqJ7t5ptDefnyZtF7A1oTx/kEL3XF+M29IsgwOZQ+dXPRjO9Rf1GKyzKlthZLMDI9F4O+81JQb67tKpadBKAKG6AN+TkykihH+jMvQeYxdrKvl0pJz0525/DR2VYf3bJKCTKll05GwvTdPCW6p+vvMckyOZ85YH7wKB9EP/i5zbGgfLebGgD2r28D5ThOTtUNWWD3DIj3Hor1BZ24XiefYyXmH2SXZhZJbdbh6+r6KI5o9Ex89vaCm9FroNyR8/vUUdK+vN/AM8068+xm+ZhjQpUXXohPSanUvGKNQ8Fz6Ie83aXsM0c/yrxcn9MI0g91QwIZyajNYr2IfyjCfoUdlilLcuEOIjAP/NJK90J5HaVDTzyBiW1mZtBoGrWux0S19u7lzArPsHZtGJjh4Xgg+EgcS0qmzOJ20wS95CmndNyHX6/OhpZ3qBYko1Wv74Hcq4x3kR42wt+UDUqFlzCLjTpnG4DSYHr6TlcvmsNTglQ211Y2NfUIZmbVYfwjOe2W73f+XpicnFd+Ka4njvnn4+p8oP8i7yJKWEHhc5JoufOdl7IHH9eCdsh570OjEBh51Abq1vcH6hZ9+1JQksz7eu10KmQJnnvHrnhkaZNrsPTwzw13ieh1k69WPqLFNK9jTlAkEoZZ/CoxhJU2CnFxTOxLuR7zyVten2hDiUXOv3fXu8bwErbXrwnt4b0KnpJ7ZTVuBtq8OTxroxFW3a1bY4+wz7009l+FLY48VpjZ/21mF1qs5jcze62ZPd5oNHwUn4Nxz18qlUonMch/qVQ6yV6OGvDNV7rAUfNjmZnZtPpU+/slH2/5fvc7/yF5zvWzl9n1s8MPZ9PqU23TO77UUm9p71m2tDeOm3LLhR9plj902lvtQ6e9NTp+5WN/VLjtQgghhBBCCCGEONwYeeUqRzffMLM/M7MbS6XS3zYajZfMzEql0pVmNsfM/gsrl0qlHnv530w2NhqNF/zFCnKbmf2SvRxj7Tfx/YdH///lV7rAUfVjmRBCCCGEEEIIIYT4+dBoNLaUSqX/YmafNbO7SqXSbfayFPI3zewxM/ucO+VGezk22nvN7JZ9X5ZKpbPNbN8OpH1ZYN5TKpX2Zbb6n/t+XGs0Gv+nVCotN7PfKJVKx5nZ/fbyzrZfNbNbG43Gfa/Ubv1YdrjQute1Ldntv4Rbgd124uhYSl7pt6dTkpDS3JjF244z2SJriZRnNeo5MvSzaUndnsV7vtHuO++MqzGxjH3i06F8001xRfZRUf0axxZyQS9P4OdoU72XnkCCSGkTlWi54eMW9FzXRVvzIXfxcrgeyL14pN9dbhtkMt2f/WyzvORzH4rq8VapPl7npLeVRNnnEqKMpM5OYdYipoDzxzgWPnUg20Q7ob7AyR26qBtIZEw0MxvE/vlaSirrKCLJNIttiN3tZXPRFv6UEfnxwjEe8bbPTfsdqXHxMkwaCvvVyVqGukK+qq0YomleepKSWvH5vNwl8Xz97hKp6KE5D8Lu579V1vykTQ2ul6dTlgkZZi6hHOUY3h5ILjFw6vuU3eVIybx9/0b2xYfIya5ycuKUBtVnhEuBzKQ/dsnq8pKXlzn22HiMd+6knDSs78cfH8tMmTT6xRfDB04rrx5NJdnz04WPTvmoh89HCSqVkq02GDwC++SNS5f4igGMWfd9ePf1mQznzGl/vgsV4dK/pu8L5uEa0+CnO1w22yF2REIOaWZRx5Y3BNH27C6c49v92Lq257do1HgvZnhllfiMaP1kFkCf/XIWymNMbNjECwxzryxFSOcXtHiN2Q55szdwGiVDkWzeHMp+LGlPnDz+faMozN47PRWOJ2Zk2S80y3zV7j3T2TdtkhMVa0qn1xLiec/u62qW586N80XWB0PgjjPPDKLazk0hc2tvnx/1LisCE8ezeT6jYyrZZzQuLjNtDevsfEj7q96B8ryE1LVlvcstrine9KZQpg25h+vHs1PxnSPZP2Y2PBwuwlewLVvSGZbrtZe9SvmoiZIucjQajT8qlUrPm9lH7OVdZjvM7O/N7OP7IcE818x+z333KyjfambciXaNmX3CzK4zs/fYy3HK/quZ4Q/+NPqxTAghhBBCCCGEEEK8ajQajVsMO8Uy9T5pZp8c6/moP2gv/1j2iaLnEP1YJoQQQgghhBBCCLHfNMwss1VfjFu0KVIIIYQQQgghhBBCiFG0s+xwwcVIKTMODYIF8ddNr3Kv4GiZcSxOjOOYRPENqKln2WvoqeVn7AUvTucxtsHHIqPYnTGdUK8/PsNq6IcoWoKP2cFYPXimRy759Wb5zXf/f/E5f4C7cSx8XIYiwXn8sS+F7Km4S8vzMWpEmf3tU4ujjxligyFJfJfkMprHjUjE5uE4+9hRCAjR/eCDzbKPVUKLGkR8Lm9Cxx33ys30MYoYM4Wj4mPFjDBWDNOo0x4XL44vzmMcF98PjGPCvmM9xo1y1+5En/h8OnzeKmKIlDO50nNxylIUDp2xenUop+IZmtkuPBOfYZa7XGTvp5+Oiqjp4wYx8BLmxLO74rTl61eF8p49ODC3O6o32B/KDPPYm4o1Y2aG2Iv04D7oAucCY+bwnLg18bE646KcdFJckfFKWPaD6WNXjsIh86ekzMu7RX4uw3orlbAm+Wun3GfZWf8I1jXGTGL/+DhE0aX5gN6GeIxj6x0ofPDQcGgPp/y0TBasZzeFc3woOfYLl8JcqLxKJYzl9u3h6b15pkIZ0Zz88pIIs9NiC76L9uFtg+elYmx6V8o+Yugo9qOZ2TQ29owz2l/QB1tjvFQGYnRrReFAegRrSgd8n5+zVR7jM/hOpRGw84oGE+T5DGBnFi8QMJwq+qfK9dLMqn5w933vPnfgejVv8PuJ94vZmGMF6Io+dMUH6R9oD94W+JmGnBuL1Drpx6UonNynnNK+ba49HApOkd4Zzi+mgtlyMvtJS9vAsfos13eMezYL9+G1fX+nnI2D/o/N8X9+pKZVlRfwscjQhir9xllnxfVOPjmU+bdXPhBYKBf1O4nAkyN9cQRBDlPRSxd1G4mQ0K2Puu/5Go1iDRDiMEM/lgkhhBBCCCGEEEKMCckwj0QkwxRCCCGEEEIIIYQQYhTtLDtc8FoIbH/ve/jh8D2lBm5LfCQC4RZivyd28uQxNTHcB3LPnKyF2hG/rZvPi+3XfU8+Gcp+7zSfiemsP/OZ5LUHFl7ULC+46T9ZEl6Pz+D3LfOZiu5pxtbuLmxBX+iqdXKcLrwwlL1toC+5a5yne+UJ5T3PPx/KLaoB7tlmP7DvvSYIdOJY5/33xwcpV0Bj/eW8GqYd89znyqmnhg+0NdcRkTyZ29gpX6Ps0syGukLq81394fvunASZtpGRSlKSUIbeqJtz3mL5aJnP5zprLNJLklFwxNDwOE+dbCc6BeWylxKmdGHs49xchB8a7o+rFbEns1ilGJ3zPPys1ySgfX14pj7XD4OwAaagH4Cco04b9g2iP/DaOtox09Z7u0P/bdhgbfHKmsTp+WMwnEolLZpK2ddI5t/wFqAczQNvTykZu3eMKXmPbxzW2iru29VV7N8bKdfMzSuqdnLqUV6jvz/YE92YWXKKRNPttNPic3r3PB0+PBYaftGi2C+yT/r6gvTZmx2lXylFXk7RzmNUL5qZ1U4NkqNuzhF2HmWX/hjfofw7Cjus6Fr/treF8ubN7e9pFsvxvXaW0I+wY3MyzFS9l9yOB74HpkIuuMGsIJ7DCS++GA74Z8Ccqzz6aLOcFiqn6fN9559jP+mmc8/5Az/pSC5UR7treXhfSij3B/j6oZ4wD6rDCHjg7NbPn30MzKhHn+vDQ+EDn49lP5n5kkk4mc1im2KZ1/NOJCdhBLM7ngsfesIYdXTEoRlm9uH52Eccc/cemHwHzoRJieyk4DPkfE0UogDhQjj+g86Xpvx+Dr5SeFJdRNPw06p5cGQsHkCIQ492lgkhhBBCCCGEEEIIMYp2lgkhhBBCCCGEEELsNw1TzLIjE/1Ydrhw2WXx51UhhdsubMXvoFwwp7niNv+c7iOVYSmROc3MyV/8FnTu86bWx8uzuDUb9QYh6RqymE5s0x7GfStue/PmOUF62bv6B+HAffeFck764LeNHyjYUs7e6nfVOlPb0L1GBcfK/dua5Uol5I3q7PDbndtvIk3tnDcz29Yfzunm3mvfP7ShVLqzg0zL0zA7EVN/emkNP1POxq3zThe6FcNCc+/uc9dOZUrNpSPisWeeaRYH3HyJsmFSEuZ0FSkZZWF5ZVGYDTPT3/y0jd+7dkc+hfIVzgk/lgnNYKUSSy54Grs1Zxr1CrwP24AxMrNIvj2EZ/It4+eeRFbfuveR7FcOWpTS05GTyWAOdzjlSLvTPbQh33eTJuFDZHj7L8PMwSfqRGPLTzwR1avTf1ImTJmqWdxH1I7kJFjwD/WoI9Ln3HNPKK9cGR9jn7NeRg0X9T+ngVcOET4SXVzv5B1xxe890P7GftBhEF1zw5zzZsflgm6D7fayYNoaz/fXplp96dLZzfLsSzJZi0kuC10iIyClUC2SYWbGo/wzl7Gb9/EdwbZzPc3JMPmOyPIDD8T1+A5Eo2RWZmd45dR7k38+1oMMc0y4NnAtjMWDxYjep9eudQfR38js3eIYmaKV56TCWJjF/gXvHkNzF0TViv5R9ixygK++K3z/5qXpc779bdwnkdDTzGzGjOC3Z9I+ORmRBd3MivcDbZ/vYIwP4u1s2TIrxEMPhTIcXtf8C+J6mDMDw1ijukKf1ue6eZUKs+GdbsJv7LDgI1vWvoKZoSMg//RrCuGfPfS/Oeg2ikbaYZfMnuXa3a9smGJ8IxmmEEIIIYQQQgghhBCj6McyIYQQQgghhBBCCCFGOeJlmAuWv+9QNyHJpC5IHW+5JT4IuU8kR8SW9AG3NbyCrb0D2Erf5VPgcKs/055wi7WXJCSyV7bIK3/4w1DmXl4vhcDe4CHIZJDLplXUgv2/lUsuaZYHFr0+qta78vvt20A5jpPtRNvsKaU4CJq1IVybgpfnXD3Kirq4xZ3PYNYm1czLHDc9yDC9dKGjKxzj0OYUXdH263W4npeK8DPa2k9ppMXOpgP977d5J3axR/S7z92pNGteAhCnkQvllBzLzDo6Qt9RGZdM7WYWdzLHz/cdxpkyPi8E5kxP5yJNm+tYzNi7AA7nCD6wXHGDtzVRHrCYPthDdAWmb4q0fhYPBiTp05Al6uWLBwOrVCgtdkLvVJYuahy8lGnFimaR1uDVjHxePl80LF7qk5LZ+8HkJGa7N26M60EWxmmRUuKbpRVsrfKQ9v/uVjSDZlH7pA3Rl3a5ejX6epTLXm9Eo6b0xzslXi+VadGnogQpt2MWL7tbtoQMgzt3hveDwcG43RMnTrB25BLv8lH5CMxkaWbWTf+XyohsZkPDYczXIOqDl/rw9YPHcorhVKSHXAQAXqOvLwj06rV0ZtPkTd3nkYycOIL9xcHw6xCNPyW39p/Zbk5M/w7Gz+wU33l8XrSV0suWWU6fRIPyfce55DPV7i8unXElk3G5CNEzFQ0V4Z9vypRQTqWc9VJC6qrxjknloFk+EyFhpJXoFTEjLU5FZ/EZyWkqM6/AvOfzeWdDe+AxZl31N+bYvvBCKGfCwGRJhMLw4UZqU4J/2AlFLZfSmbk4DTn5NkG9jq7wdc5PFybhx/zXORl7Cp7j20pbYT26MZ8lutuOJhSz7EjkiP+x7JFvpF9gDzVX/t6GV64khBBCCCGEEEIIIX5uSIYphBBCCCGEEEIIIcQo+rFMCCGEEEIIIYQQQohRjngZ5nih/+tfjz4zHstMxkVB3JC6i5/DCDyUrXuZeg/iA1VS8TJ8zJZU0BUvaGd8H5+Wm21CDJgdiTozGePBzOwjHwnlG29sFutXvyNuKvqSMZQ2Qczvw2J18QPj0/igPamU7Zm4Bex/Puu2TL0yxqjT54VmLAzEcZrCDNZbE3FZLG5qS9gDfFGtIdISY235oDT33tss7kKAGm93jPrCuCEutFkhfCilCtrNqC/dDNJhFgf3YGyeF0OsIB9fpmNRSDseDfPD66J6UUyLVMwyH6Dk/vubxWfxtY9Zxtv2o+z/taPT9p9EmI+W8DkMV0M75rjmFhQee9Ydoz0wflmd/eVjiDDeDP2V912YL30zZofvfSxA2jiDnNCGMF5mZv0IAsK4ZL4fOM0GEt93O19a4+RkoBAf947xXThozz8f18M6wphjw4g9lQuZxPLIIfp3toFEucvVY+s4l3pcrEo+boV+zdsax4b9zXhMmZhlqbBG/tKMdxLHKYtXyb17OevCGj44GLebMWpo0gwVNHVq3J7XMj4pbPCna+IxT8UL8yFSN29uX49d7NcAumD6JB/6i0PBPq7TOvw7CucVL54Jllk0RFF0L3bEBBdjju8VubhZbBMflo1IxTY0i5+V7zVmcYehHn1SS6Q2Xi8VQ80fO8yIXFzu5YN9nwusyvexXJw6fsb19rrQkqn4jVVndwVNNyIRpq7lnjy2rR9xPvmsPnYuG8QL+MalgqXRZvg3z/7APkbZL4WMTZZa41oij9J58d3Bx6ZLDEYZF9/bOCE+2DGGP8XxHtDXN7NZ9tOcFI0Nyunsp3LK19MN+TB13e3DLB+BNKw10qM4EtDOMiGEEEIIIYQQQgghRtGPZUIIIYQQQgghhBBCjCIZ5mFCl5McdnGbL+Udb3lL++8dfUhNPfzgg9ExbpivQWJUe/LJcMDLBrjVmFudKV8zs2HIXCgz9Nv5KY2pozx78eLwgbJLM7Orrw7lz38+lFetiqpV2D60m8/alZMucM+211wkpHZelkSZE49Esh93W9ajxKjT53umbWAbe3XlD8L3bu80rz1r1jRLwlzQKentmjXxOc88E07B134zMj/z2f2O+3I/LMdLGUbx9sTrRff1e8j5mc/KcXUytzL6uM4+cZK8aB867YbyrhUrolOG0K+UUDrRRzR+9cT3Zq3y1APBmz4fvYsHmOv+1FOjc/oogcSzP+Ik5HwOSjRnQlJd9fIGSNKj8fPySs4R+hc3Fkb/RyCD7ndzkbbGcRmymMFEmbQsxvS5XgaUgva9c2d8jNoKlCu1YHl+zFMS3fJw/ISTJ7cItl6uhx6qVGJr5ZDRtsrOc9C3pnykl/L3YS4OQWqVE4dV7rkntMf1XYXrM+c5bf+665LX3gipFd2OmXc3z6FMe3c6IoMkz6Y0S8PD8Rzx92p3Tx/tYOT8IBHiuDy0PK7HJYHSH3SjmcWvCCtWcKT4DPEIPvlkeCa+ilC1ZRab+5Rwim09M8zGixY5mVSqU9wcGxgONp2KUNFiq0teH45xwlDaahb7Gg6Al4wSvpfQPhGKwcyi9Tia8+5dLQKTMZLV+8X5TMR62L49lOlXzcyuuCKUvVxvf3HXrnr/vp/QT0d6ZLPYyfFYTlLpJ9A+2FdmNjR3QbPMqCvf/W58Gl9tc9x6ayhTDvcrV7fW3cftt4fy9u3BL/b3x+/DtHGa1/HHB+t445L474+RSjhW3oRV3L+DcfyoDaetjiU2h1k8UTHPp06fGVXjVGDzuLzPWxw7m6FKsJwqHZF3SrQhL09OkdV2v/I5fGz/pw2fL/E63UJKrutuG8lZvfRSiCMJ/VgmhBBCCCGEEEIIsd80jHFHxZGDZJhCCCGEEEIIIYQQQoyinWWHC26vKz91cSsv99Fee210DrfiVi+7rFmuOEllHbIwbpCmXGXIbYOuY+s0jcbLWvpR5gZkL9Kh5CzaIP2ud4Xy1W4/+de+Fsp/8ifN4ja3LZ/t60S/UkA16J6PoiKe3yJYTGU8dFA6xH5I3ccs7pPomE9vw+yYqf3Sfr819tWXsS97ts/kcycklrwG+9hL0RJb5v2YU7DCPqkPDsQVC2TS8r/ypzJtZrPaUY6Tyl5pFusQmLns8cfjeil7YAY+SmQslpLl5JW0G57jkxulLDK3yz8ltcvV68f39CdVn3aKEprLL28WZ2ZkmFSlUTBVc3bR6bOy7munbwNlQHSSPsvso4+GMm0f9/ViyArmTxfmRb+rF2W6Rbma+N7MYj0Fn93rIphukPh+SMgwhyvpHKrJ7Ki1/X918JK1sfxbHfufLaj7ipBGMbtq2cmEo76EtM3LOrn+sRs6CsqFEBWhZVhoahs3Brkeh3/nTq9xCRLGE08MPo7KZLNYAU5XmFKjm8USTXaPd4upjGmU5pjFNlQqBVvj0rN9OzSUZnb66e3P94o3tu+446w9PgVcKhvmQSB6B8tV5DtZLpMv157YIELZdzgbwUH3ayE/IyUqM0t7KWEkJ6Xh+PcIfqZUeSz4cCNe9raf1GhE3qASGSvttNPieieeGMrsI/T9yPwFRtYgqXJKKTtWIjVpxqbZdbt3Z0KRgBdeCGWa2lMbYgvnXGSojw43XNX5sBvaGrWR7N/9gWOGjp0Su5foOTjkkatwjrHKa/NhcwOYqDdxRpwNMw41UDCbIt435i0K5wwMxuvqkiWh7NeHFHxt8wncOWXonmh2VNeaWfE0nEIcpmhnmRBCCCGEEEIIIYQQo2hnmRBCCCGEEEIIIcSYUMyyIxHtLBNCCCGEEEIIIYQQYhTtLDtccLETOhBsZOjee5vlKjX+XoD+F/8bF4C+/pJLomoVXJvxj6iU91GjUrG2/K+tVKanYnWZmS1hoICbbgrlG28MZZ9D+7bbmsWfIoCKi8RhUTQApD7v8rG/AJ89Utf7+A/4PFLwt+ZUjCLfxxwL9l3ZxSjqWLEiXI+xT5jm3dsG+5sxFvzzMbYAgxWsCbHMhnB/M7Nt1p6WOEIginbhY5QViFnW5T4zdlQHgwKxTzx8VvYJg/aYxYEZmB/bxW6L4DHY3SBjzVg8l2iDLoxQ0m5aYmglPHrRWGQ5WI9t4Ph3MYe9mdU45xADpMPH1EP8nF3ou6dRZZ5rD+2LbehhjDgzq7IN9IurVkX1diXGMxVPzSyOU8Y2eM/A/mJ3d/McBrYyiwOHsL98O7l2sN5L7l846SvQ35xuPrRIMkSjm6MdHRiNwXQ9UsXFK5W0L2UMF/r2Z1H2EVE2wQa49nR522BTUe531xtKlBnLLLcaMISTD5PEPucxhvDZudPHFwqfGZLPTysuHRwKxh/zIfBSccruuy+ux5A+nFYPPhiP+fHHh3FuNMIM2r49NNybKu0uGYvMtZWh+xhnadGieCWq0pBxoyEXZcy56iY+rBhhH71xSYi19fSm+NozL744fOCg+2A/jFPGec91yJ+TmnPeOGiUfCjGi/JxYxmfi3PpTW+Kqv3z6jBTh4dD/Ko3Z+IxJd+nPv7x+DOMckyxnhgX10/GY0IswKiP6YvNbFstPBNfk9j1K2+PL/0YYpbdc08o+9fSW27xDW7PXXeFcs4mydYoXFh4T1q5cmpUj69DKR/iQ37SPBnajv7JzOyyyy5oe6xK+ywaXMsxNCu8JVQ3hbcH/47DfuBtI184CwfM4k5OxbYzizuJHQlH70NdRrEOi/5VTgeFd9a6m+dz54Y4kT70XgpOCx+rkn3J2HuMh+fjYL729FE/WyoVa4AQhxnaWSaEEEIIIYQQQgghxCjaWSaEEEIIIYQQQgix3zRMMcuOTPRj2eHCOedEHyvYD7yJ+2AhgetwcrgyZZif+lQon3FGVI9yoZRIxssmSS4lOuWDz+Wu95GPhPJv/3Yo/8EfhPInPhGd8lTini5puVXPPz98wH7iPkrEnnwyPon7rylP8GnKsQeZu619VnYy79RTwwfsud/m9C+dKLPvui0m6kteg7odvzWc0kK/R5qk5Ih4bu802O46c5hT0mAW92tOaonOTEkzqtdcE3/Bredst9cAUCvAY+wTnwqce825B93rJ6gl4pzFdnk/D9gLHPMdrt4slNkjLWb3KsowCW2Sz+DlcI9gnDvuvrtZ7nf1zobciJbLOe/lvqzH/vJ90ok5UklpStw16OMo7sHZZhaPJ2XUc109yge7Fi4MHyjHWrTIIviZbfUyYW/j+/A+gL4M82UXLuenZVLe44ymPDzU/lguZTyOlQsaYc/ll4cyNG+7nGaOEk1e2c8rto5j3u/qcc6lxjynhKIsyT8qhy8lZVmzhl42HpclS0L5ssvia6eU4vzejzHvy3qZiASR+6Xs0sw/e3hYKvqoEDYzoyK5zy/wICUhZrv9cjeND4yyd/tcTnPrO+ErWaUSLGrjRlfxwrPDfTH/Frj3wOih+LDsMDbUN5YD499lODC9vW3PGbjkLdEplBJOXxbkdD9eHV+aEkGOxZudfZKUjPJ/3x7bfl9f6LtlsCH/rpCUZVLWmXkPGegIXhtRKMzMDJFMInfMy7nX8+g1gn1S1LY8nH9+aNtWsnjOrVkTpJc5H8Bn4vLpFO2RDJrn+C5mv3DOzZ8fxtVL/+bNLSaxZbs5z6P1yczo7aPwEmjrDovtrh/jPBOyXEpyzcy6e3CvhJ6VCt8xwxAjKemnmS1aFJ4j50sJVcd+/GhDlCDTBr0vbXayZJhinCIZphBCCCGEEEIIIYQQo+jHMiGEEEIIIYQQQgghRpEM83DBS2mwHb8Le5IpRep3lzgBo7kV6VZ6uHfeYrlJKhuYz2TIerXE9/68LpRnur3mAzf913DOp/57OPAnf9IsMhOeWSx54a7zqs94mEoPlpEfDqK/aqk0WGOFqW+wp9lvLE/J2byQKTqP2bK4Rz6TbTC3ZTvKrMXroe/wbUv7qui7iu9HtjXVHrO8dCt1Dp+DZT/mlOKy3tq1oez77vTTQznX7hSwz1omIytniLeNlCy6333uKtaiQngZCzMWpkbIq76irK4ot8hRMUfmob+2or+iLLcWPytb6lUt0VPQJp18ic/Ec4YSdTwDmWORP50yJZSpXfBamJTvyul2OHd8vcR5PMVL7ZLZMP0cTd23yFx+JXhjSlgp8aUexMwqsBuuUV4dwhmckt6axfLNsbw0dW54pFk+e+6s6BgzifJRKfXycsqUBNJ3N8+ju3rwwVCe6BNtAnZro7HdHQ29smbNyaj3XFSrA3I2ulyau5eRUerD5dwvV/zMa3DJbTF7dlKUoS4dYGIsZswx8n3MdnOM5s+PJV0cs3pfQjvrNZ5MH5rT6vEzda8wKJ8BlXJETkWvDGc9nzVxf/FtoL0vW5Y+L5Up86ebgiytpyeW2pGVuK+XYbJNfHaOK+evmVmjwfUmjNnevSfGFc2Fr0jAezFhdw72HU3Dz6vt28PcXr069NHevaHdTzwxxWLCGrVqVTh20knx83ApozSVbWiVYVoh2Oe1xSFYhJfIsw2cBvQVnbX4LaWTEsbVYdC7z+yKL75mXSjzby+8Tw+f+frolDFlw+S1U+FFzGzekp729ToS4RssI+u1eJw4L1LyfTOzd1w12rHlo2F/jmKWHYkcDZYrhBBCCCGEEEIIIUQh9GOZEEIIIYQQQgghhBCjSIZ5uDDX7TPGHukaJGKd2GfMjF8e7oItO7lYKpsejcHLpHgOJSpeiNaNbIjdN9zQLA986o+jevWpIR3MP6J9lFr5xC3cNNw1f374QJmcmdl554XySSeF8slBKuL7u8Z93zg2UosFqUWVdxHveU8oY89+j9cuYO9yFTqZikthU+EeZ8rKWM7JFCm19PvdU2mMsC87LVwwqzC7n0+9k0rFM5Z0jFdckb4Gn8nrE7zEch/cQz7FyQtSeoWcfonPCk3Qc06GSXkXLTKduymep2Xat5kNjSEbZjJrWKZeGVkJK+i7uU7yzSyFVDKtc9d+BOVO9BHnvFcGpKRx/mkoj6xCejlMrZYj1V3e9mcm2tfNjLxmZvRXS5e2LyNzr5nZTx4KXre3N8izenktMxtB1r3yLvSKl3VCY7JjV7g2p3ku42Esw4zrjUmnljonZ6xXXx3K1Iq4vpt9663N8gjG2cuEaRv09N6G+HlMwlJ2stOozJgxu1lmAmFKgrzr5DFmwOwejiWQS5aEFZXdTTeYWyri5LGxX9yyJdgXl9NNm2LBNI9RIcQhYzJGs3ho+exe3sNnohqRya79Od3zw8WHhsM88EklU5LRHD/+cShzecjJR/kMfjnmONf5gRd4ycl+eGMalH/HZMfi2OadYSZ4CWVK+eXcfnTe+vWU7x5n+8udd8afU8l/c1CSyUydlPuaxa6Hz+SjOfDZU/Ol0fC5d2lgeAdrWe3DmOVcIeetN4EUKemzS8xupVJY6Wh2e/eGtk2cGOub9+6djGOhnpf0pZK1ch747LhFmRoSfFp3F7y2cwJ9fWE9TUlYt+2KZdl8XehFpuqn1sV7TmbTsdFwMu8bY4pWkHjHbLkYtZI06sxEqq4Jb2RLliyIjqWSyHOcGe0kalOjkbynEIcz+rFMCCGEEEIIIYQQYr9pWOs/tYkjAckwhRBCCCGEEEIIIYQYRT+WCSGEEEIIIYQQQggximSYhws+lhI/Iw4Yf930kQ5S8Q18mC1GGoji+aA8w8djog6fAQV8bJ4lS0IZMcvqN/1GVO1pBFzgfVn2z+c/N/EBRdBf0bHjjw9lBjUxi4M2+AAjgH2ci18WpYLmtRmn7IknonNGELDkKXzf4+ItMBLGCTiHkQq6fK5z2hPb4OMb8PN3vhPKsIefxmdENjn/gQfCBx9oh7GW2B7f30VimPnOz8QEimAwFdjxMGPE+XPOOqv9tXyAGc4LBsCZPr1Z9Bu0+RRuxCKmocw5Unf9UKTrisYoa7GNVOw2BKgYZtw8i22VV4sjAcb1OJsZ7qSCOFRmZtV//dfwgbE4GLzILLYHlPtdG2iF9DXs0m3uHI5LNBKuHyL7ZN+hTxk/yVfzMZ1IeRitzQU/SRgHT8nFLIt82v5cpEjbUjf15zFgCoOk+DUAMVzYqwNxrcgmd2Tq8eqMU9eRioHouecenBS3tYp4Ub04duziC5rlWhweKHI13bueDh9ccKVK5YS2h7g8+NCZjDczOPg47xpXtBCL6oknFuL7OFZTf38IJMRHT8UvMzNbvDiUuwdDdFbGGjIzcyEgm2zeHMo5n5iMyTdGUtPAX5vugOPiY0eRaR2JYE/e3/FmNBz/TofBeHpr8Mi0B8b3MovtBmGbWpbC9evpDf8d5Utsf1m/fq37zMiRU21/4TP51wh23R13hPLzz8f1VqygjfMijEsWv9+ZvZSo5yNhupipCRh6NnJD3lmAVDgtH5Ot0Qhze+dOxtoK/mDvXh+z9Wc4FnzzqlVxzKsNG05sltn/qddkM7N3XmOF4Gv96acHz9/pBprzlH8WvPBCKHf71Z6PuyZ02Gwf++uhh0KZ75uYJJUrfynZnkJrqZnZffeFMjvMO1MGcvvhD0P5qqsKXXvmDXGMVA7Url3dzTLNzv951YyrWiql7ynEYYx+LBNCCCGEEEIIIYQYEwWzbYhxhWSYQgghhBBCCCGEEEKMop1lhwvz3VZXbsWFnK2OrfSdmVTElDl50RUlJhSEdFH7cM458Uk8Rg2Il6gxF/fNN7cvW0bWgrI3zm5+OOWUUPbbjufMCeWTTgrlXK5s9vdpp7X92iypoMqzcGH7k9x2+TK2itchF/O/aHNDOaVjkQzTSxG5TdtrJgikGSNoTxlt9e2JJFnc8u1T1dPGM1KBQvj5kpHORrBf8HzRUHq5Spw7vVkcclI7XoNzrszt9645kcwwcb6ZWRc/UGZMW88wZull6hjnEvrBPx/tkHbbIuMDlEBSjjzv29+OK1JGQH2X13BQFgGNWZe7L/0iBRjsEd+LfI5IXEf/ZBb7RZQ3Twreb92q+BQ2m13/4oy49+hS+vqCl6w6FTQrUsKTulb22FhS3R8EtkFW2E3/4v0dJeCURLs5y/Hk+HvJ/2yU65dfHj54H5eCHe47/5hjQnnPnnAfzLFp6e7FAABLFUlEQVTFi9kCN59vvSeUndzojNec2yxTLUSp5aRJcXNoa2vXUiKW9tlTpgSfuX17V3SM96VcjEPkFfuRrOyhIHmqzIplmOiuaAngEtdqGmEF47P6VwJer+hyRZliTqFL2Ruv7WWBkWKXDWJj2QlmaRmXbxAuzvaw73w0h/Xrw1waHg52u3Gjj0lBz82L7L8M0+wR93lqolwMKuO8go79/cwzodz6erEdZXqRHYmyWbwC0ge8aGNhcDC8i+zc6SWR7cm8fjoouebfGeVEHQ/XqPhGvC9Nsnjb0tCPdLL/H300qjd9UfCn5f6w2tdq+CvDyeWbUkIzK+PYtl3xetydCg/gQwWAaG0t+odFKrSKdyLURDJMSg5OEv79Yhb5nvnzf6FZZt/7+VL4/VOIwxTtLBNCCCGEEEIIIYQQYhTtLBNCCCGEEEIIIYTYbxqmmGVHJvqx7DBhZO686HOZW3G5Fx4ZFLtWr47PwVZX7mL2G2DLiXK0XXfy5PgkSh2Z8dJLIKkdQkaVbU7+wvZ1J773Uq3KqaeGD0zF9NrXxhWZoZNbn7k32Kf/oaT19NObRa9KY7XCMkxKdVL6J7NIG9MJ7YjPHMjbJsdygtsizwfhWLzkHDv2v0dSwjbNbXuMEkFuRzeLU/rlNCpFOtbrdihLYdn3N+0B29Upuxp28mZKYmkAXnhCe2Xf5dRrqT5uUSFwnjF9k5NBF9ruXjQrYQ7KCqmZOPHEqFod/qAK+/YyN+7aT0njWtpNKS7H3EvjaE+YFxWnz+KcY/s4Lr7nOvDsUWZSLxOmlAFjSZfr5WL8THP3ag5OpShjZUb2Qe+ey9rHoS0qpRhBj0W+4SCkG+Ty8volCA2wfXtckfMC49J1771RNc5hts5nw4xantPNpXj44VD2GpWfhSxykR1jMMs5m6ZkxumXZr0tlJkhcsqU9t+b+UfiTPBZ+4IMj66+qyteezgVWL700lDunewka3dBLoRB77wstqGlS0OmPSaF5Nzxy1Bq+Lz0K6VmzM0Dumkv8Utdm3hziurNSsi7/LsMoXPwels4lXVIrEcZple0c8YMDobxL5Xizms02OkHGHKhZbXY3rZWUdavD+88GzbEtspuZT+0RjyhvfIaQ4nvzeIsl5SPnmpj4ayzgvTy4ovb1xlxb27LloUy15RW2WOY6+vXQyZudBa+U1L9ENdjBlvOU7YhlxU2R3QeB9O950Z/3mwK82fm3K7w/YZ4QS5zMqKx3f5dlpOGD4vvcwmfC2fD5Lxfi4yx3ongvv1oT1f6ysm/OT0ds0L5QCOrCHE4IxmmEEIIIYQQQgghhBCj6McyIYQQQgghhBBCCCFGkQxTCCGEEEIIIYQQYr9RzLIjFf1YdriSCiSDmFA+phehfNxHfGAMrE7GP1qMGDA+RgqDHTD+jk9FTO38ihXJ9vk27YPRQFok8McgdgLjBDBOllkcd6sWnrZMUb0PKMI4AQis4uX/zNLuw7olYX8lxtLMotgCdcSj85OUfcTmRdtEfcMZJ+fFYqnKo/uedFKz2OkCSkSRkRjL6jWviS/oU1AfCD4mVCr4jO8HPjsCZlQRl6H6/PPxOVMRXwTXq7ogU5G9TgzxRIYQ8MTP2Wqi3GL7DDCCscgGxiEHI04ZYSAg2oMPXIG4GhXUK7sYhqnYe5GfuOuu+Nr0V7yvtw2SCYbShbgmg4w1Ana0/fZlyvRJtBnXph09IW396jtDFR966LHHQpnhhvwjMDQLH33WrNja2EU+bNY+vJlEMdBybwsHal+5wGmAfRTFRvOxF9kpaJu/MtfCWuJ7M7MqY6Ax2BbjY+bgeuqD03Fuc2BY9sGj6NcYu9QFV+r9wFOh3BOecOuyac2yDztKM77zzpPbNtPMbN26sB7TtXv7TMXb41o6NCWOh1alIeNZR+YviOqtvD2U2UX33BPKDG/q20Cz9WHv2L5M+L8IhGmN+sGfz8/sf+8+I/dOh0DbYHAts9gGEnGWfAM7Ok6wdvipuHdvuO/27RNxZGNcMYor9lzbaxfHn9++rcXhO8Ex0RF2EeeB74e1azmgtF2uEL7dQ4myjzl3ohWB5sBYjjkYiorzJRf27thjQyyynTsZi86/zdAHh2c49dR4vGjv/LPiuONC+YUX0u3JwetFTsD9ndLJdwfMpYHBsKbUZsyMzuF8Zn9tXx9Vs9fy2nzPmTjRClE0tiedLhvknQ2CORaMsBn/HffjH8fHcK95DJb3WDCoq666KD5nnw8fKRb3VIjDDckwhRBCCCGEEEIIIYQYRT+WCSGEEEIIIYQQQggxylEtw5xw6XI765Swhfr2Ty2ydZsG7G2fWGmzT6zb7j0v2RUX9tpnf21By7nrNg3YFb+9wh764hua333ylsetY3LFbnrnHPvqPc/aJ2/5qT369C77tz9fYotO68q2pbzp2fiL1H5pSDi88CWSpfDarl406Nxrzm29V18dnTMw9+xmub7638MB6g7MYs0FpDGtbQ1wQzrb6s+pch80pSzsK7PomcpeO7IPrxVJyV8OBpTM5LZYQwMQbXB327crkFkkr+ZlSbxvSmtgFsvr2Hcodz34YHRKne3j+f7a1K2ONTd4EfisuedjvVORvt3bzImQRWAsa15OxX5F/1cg6cupeTiWLf+KQfko+66orebsbiwSOj47y/5alCHAbv1m/JT0klcbctLIKmUWvK+XhhNK1vz4oX28L9vm2z0CeyhzHnipM2USffOaRZoMpZZm8ZBxOvsupnvxquMUNJuce4qOdbRfXzxl9lLOtorKTQAlPOXHHgkfqEkyi9dM2E3L+CXu09JqSts4GEX1eZddFspe73fKKaHMtYzSzYy8OWvTPA9jQbfoldxU0lPh5+0zpb72rp1DwevxESjBMjM78cQggVq4NJTvuzOu95WvtL/vvfeG8brqqnj9pA3t3h3KXvpF0y3qIrdsCZKnlSvDuuGHjypTPvuECXE9LlfR2PJhc+8y1JL6+YaOmDUr+CSOl7eNtWsZe4KSX6/jowQxFXSjKD4oQU/bWkWZMiVIL/3zcennGPlxWbs2nDgRfn/vXtpaLPGMJZrsr8ddvWIyzL17w3nLl5/Wtk7ZebivfjV47meeCd8jCoWZmQ1GCwmfiR3R5e4W5JYTJ4b+oT8xi/uVkTqmTAll78aK0jkIu/PSdcK5gEGnK/Vj/uST7S+1fr3/Jry9v/acc9qec1CiYlBfzvXJyz3xfH1esp2CYQf8JEn9rQSHXt7qJMj7+vuokGEqZtmRyFH9Y9nk6gRbffPro+/WbRqwi8/qtuV/cIHt3vOSnfO+79vbl/TZ687q3q9rn3nKsfaP/32Rvf+Pf3IwmyyEEEIIIYQQQgghXkWO6h/LXonJkybYwrnH2TNbC4dFbHL6yce+ciUhhBBCCCGEEEIIcVhxVP9YtnvoJVt4w/fNzOyUEyfb138vzmy1feeQPbHhRXv9a9rvKnvy2Reb55uZbdq2x2565+y2dV8Rv++Y22UTMswBdwlm8ErJiMycbI5Sj9Owldvtna4/hB1yt94ayty3bBbvscYz+I34KRkmaXm+lPTLywt6exNXBF66QD1GRss0pu3Tqev5i1HSwzFyGc541kiibC7bYNQG7i/3e80Js3WibS1ZWFNZSn26UI4Tn30McqwWUtfw+pdUKjTW8+ckpEwtUleCfk1lLzWL5yb7NStB5pi5NFYjCYGcl2NEpMYlVy+VGorzyCyWjcMGc8IctoD95QWn3atWhQ/MYOptmrorSPL63bxiTjPve/bhxUbbUO7CnKt4/wLpXUoR7aeLN8MUnNrukZJwmFPJ89p9buLnWxEbOgjzfPp0fFiJjF1eXsL1AToZb0MURtUTZTMzY9ZorsfLl4dyLgsrQxw46fSOWpAvdUIyM9IV3jv8ElKnn+UanltTcF/alk/cyunCsr/05s3WFm/6dA8pV+Ftn/JDdpd/3Vi5MpTjPgqN27UrlhHxvjl589ikUmGeM3Pgrl2xNCr1SuATZNfpibimsyNzMsyclhTXmAFFF1VXPin62rXQykVe3L9H8FhBR5bEyy4LZoBOwFdbnwk2JcP0fvWkk8J4ci5t2hRWkZ072Vdm8eoxmPh+fwiS3+hew12h7Hzuj34Uylu28KG8Z+QxPkd42BNPjMd848YwTnPmhO99H7NfTz8dV868ghUmJVX28AboI04rv1xRIU+3Sjlry+fzE1nMM0ThdIbdmxIbxYnKjvTvYHw/p7wyByeCXyBSoQfoX3x61R4/h49UGiYZ5pHJUf1jWTsZppnZvQ9us7N/9Xv2+PoX7ePvmmN93e0995xpx0Tnf/IWH3tACCGEEEIIIYQQQownjuofy1Lsi1n20/W7bMmHfmBvv7jP9gyN2Pv/+OXA5v/9vfPs7Dmdr3AVIYQQQgghhBBCCDHe0I9lGead1GG//e659pnbnrTb/su50S6ydZtSQh0hhBBCCCGEEEIIMV7Rj2WvwAfeerJ99u+ftLUbB+yUE1simST5+r0b7YN/9rBteWHI3vLb/2YL5xxn3/5/X5s+wWu8qbdnDAoET/CxoygZp6q8RUR6xhmhfNVVofyud4XybbfF5zwOiSnF+w89FNeDXv65TFsZIYHtqybKZhYHGEnF5TAze/HFUE7FyfHfM1gI9PVFYwBloV4/FffJLI67w5g0LoBDV2uu6pcvzQ8+6AP7iM/KWDxmcawCgpg7lfvvj48xKAWDnPgYPoyxkIkLV4SBYW8d4XOd/e1jJdBu2P9Mw+1iCkV9yXnqYzmwLxE3qwJ77Hax5BhJrMIx9/AY49kdjHhvpGj8stQ5Pm05+q6SicNHz8ooHfRj/p8nuhJp0Mu+Hzl+ONbFOGdmUUCsTlybUeB89Mpyomy+DbANhlUpGnrILw8pOMV82EIOE4/t2RPKfvg4TWkO1VfT7jJE7WPD/ZzF/KMVe6/B/eH0fGUfaOe660KZtuuDTCX498eChXd1xe8RGx4L5blzYWGwk5YwMTQWlrk2m5k9hovDphcsXRq+9+FkzulqFmu10GPenmjidPXejumCN4YwS1FsHz98kya1v96DD8b11q7FBaNYMaHimjVxjCuGjyO+3WNxhWZr237baBwTfe7vP7lZpk37JSV6v/rxj0OZcfN84zhpOUi+Hq5R73+2We7rm9YsM/aUmdk994TG7t3LiH/PuYb328HDx+HsOqCr5V4P6D9d2N4ILj1c9vn9vff6wcSYRauc77tA7HP90Z+1P6nSGlpmH1u2sA14T26JORfs9dhjGZ8tlOlCzMzWrAnnLFsWvn/b2+J655wTytV7/jl8wDo9s+U91AXPS/Gtb4XyD38Yyv59k34S9+rvDyuC90n33RfK9Mfe5fJ1Y9asYLsLF57dLA/3p8+JxtwcOPjUrhDrcvbixaGOf1ngZ7+upaDz88EpGTiSncIAkr5Trr325f+PZGLnHjEcDc949HFU/1i2647LW75burDHli4MK+jkSRPsma++qaXerL66PfTFN0TfffL6ECD/7RefaG+/+MSD2FohhBBCCCGEEEII8WrTPnWaEEIIIYQQQgghhBBHIUf1zrLDiieeiD9TPvHoo6GM7cQtW3RBjduY/ZbmX/u1UL7hhlC++eZQvv32+Bxuq4VeYceWLVG1EXzmRnMvYKVIkPVyv94OQv5SY594CQ/31qdyUHsJF9MtUwsxdUFUbUzqI/Yd93ZTSmGWlk84SVdnQoYZ9bEf81Sf5HKns8x6p54an5OSD/p97NwOzmf3cs0Cmpf6Lidd4DNRT+P1SxxA9gnHPJUa2+P7gefxGdCPZW+PnD/U40xwsgjaBsvU9GUYycyscmrbeM7YU/pBr2WC1HEko2lm63jXXAZ5ig34BCe4NpT5GbK5Idd3VdSj3LKKMRtycg62m0fqGTncjGsvaJZp+tu3WxKaVk5ZzHpTpsT1qvC0EyeG1eOlTKZzmnFWEnSg8t2CdA8GuVi0Lnp/TrvD1yfEtayPc45SSy/boRyOZQ4Gz3dwOffuhabCx2A972IXL57dLNcpIff+ICXn5/N5P415MH/+vGbZL1dQLeeiBkTmQOll4pYtUG3r2xBL2Ch19LKyV+bgKIv58GzP5KgWl1b2Y++Uoaie/RDjyXGis5gcXzuSCafOMYttBQZ65tIgw/RSuzgaR1gz168/Oa4Y9f+B/pv8edGnc86ZkqhXDEoEOXXMYhkmp7Z3B+y6lG9evTqW/+7cyf6HHxuDrbaeh/dXTrgWo2boAZxjPmFZsF3aKue5l6myH17zmlA+66y4XnXNI+ED/+6hL/aab4b3yMHQChy03DsdHop+iH8SmKXXWf9aw6bzerSZ1J8lrwjGM3b14e2/p2dmfAo+16+4oth9qFX3f0vwM+2L5QMMsyLE4YZ+LBNCCCGEEEIIIYTYbxoWx84URwqSYQohhBBCCCGEEEIIMYp2lh0uPPlk/DmRxYr7d+suE9cAZTLXXBM+eA1HSnr5538eyg8/HF8be40psnECjkjyQlmg/1WWm6IpPKD8yYt5mA2vgv6peB1RKvsk91V7PQi3DUPWMPnit9gBw7HkfZhVxiweZ25Pd+PHDc6cwOz7ll/B2Q/cA+41XZT/pWQ7ft85j3HfuZPoRvX4rMVTjQW8Hof74ikR9NvveS8+H6UsPiVgSmLmr82+ZD2On+u75L9WMKOr/8xrZPbzZ9UYgBLNpCTT16MGgLJgJwOjrfJZ/V14LJUB0z8pr0E/5AUXHZRmHBPkJTtcvU7YLn0S5e6+G1mPVlz3svoHHgjXg/Zn0aIg8/YmTbfGYfaqCJo7j1V3bYsrQkfS0RGkGQcl42/RrMOpY0U1cKtWhTKzA7r+HoEWJhpLP7epg01pTs3M7rmn/b0KZhdLJbc2i8edY3nccaHsk27SpZzLZ/BrCtvHG6d8lVnkp2sJZblZOhmpl1TSTaZU4zkZJqZsm3ocXcoew6w9Jk5EmUwQ6Z8vtWTm4c3oiWJPz+6PxtYbBzVdKSm+t2m/duzDZ/9NhEUor3uqWZ41azbPSJr7+vVe4EzvOlbN2ctMnBhf20dtKALXtfnzw1h4X9pZCSvOrFnhDdbbXUqJxuHzr907d9IeuKo46e2YKOrEaV+0Ex/UJbQp9Xrm5wQ/06Zb5g47KWWruczgYyHT2JFKeHYvvSQpf+BV0P7zK12r3eckGIwJE0K72aX+UXlsXtHJQ234iS5RXUqXm9Pi72vEUZENUxyJaGeZEEIIIYQQQgghhBCjaGeZEEIIIYQQQgghxJhQzLIjEf1YdriQS7dDTjoplH06GnL11aG8ZEl87JOfDOVvfSuUIeFgpjmzWPKUKnv4RH4ndhe36XJr8CWXNIvVu++Ozikn2tfnJU9MaUQo/du4MT7G7eCQJHR++MNRtVotbMYsrB5cvjyUOc6+3cy6h6+rTmZKeWuNEgxujz7++Pja7JNcSqOUbHXzZktCjQIlp1udFfHZmQLu+uvjekU69o474s/cKp7K1GgWPx/7gc/qNU8pDU7RvfMp+YxZnIWTz3DffVG1IWjlaBu1Bx+M6o0kui7XpXyMXNbMKBsiZIUpibbH59siNWQW3YF5kZNupuSRLT6JcmCMuZdrpu41iDGjLNTfNxKyOBl7JIGCxKH7/OBrut1c7L10mrXDZ8x7dmu4c6SqXuPWEAxgrSvIMHOykaTd5AwqlQnrYKQb/Pa3QxnSyCGflRllCo/qXgbN8+69N5S9PAhyuAE8X91L2xLkXBKVk6kEbr67o+Sf14aMledy3TezH6wMtjF//rnN8ga43xkzYqlddy1Y+Xq4F7p23wY+E5OFmsXPvmUL113OGB/QIRjlk08GGZ5PEhz/YUIJZDjHL4Xs16IJ84oT1tnjjw++3U8JvvJEUkC/ZpJUqlsvWaON5zIMslGU0sMgz7kito3Fi0OZksw1a2Kp1vr19FEHlr3y0kvjz/51NkUqpAAzfJY3PRsf3BD6vw5nWnd6zRkzwmqRSizrI1ysX0/75DvFWP+45mTANbLvT5TH9qPsZZjh2rt2hUynkyYZvo/PYD/Q1Hw0jl6+T1EjTV33WNNFcpzYwJNdtlYYL9tHt+/Hj585f/3c7u0N5ZTk2y+F1Uqw1egdLDOUdAFMdOvXF74i9l1+drPcmfvr7eKLm8XNu+M3t95l8FF8Z+FDpcKfNBrpewpxGCMZphBCCCGEEEIIIYQQo+jHMiGEEEIIIYQQQgghRpEMUwghhBBCCCGEEGK/aZhilh2Z6MeywwUfEITxrBh049prQ3nRouTlBha9vlmu3/f9+CBF7YiNlog0Y2ZxRINczDJew8f3ISMQ+vcwvs/b3x7Kb3pTdE6FsbsgxO931+5iPCzq6NnHXtifiivlAhJUo1gK6Y2ZUUyCFSva3nfExaUrI8BBFLPMXbuWivdGO/FxTPiZcR18bAHGeWBQBPaXj+nFoA+MueLjr7Aer+cDOBSJWfajH8WfGUAlF/eF8VxOPz2UGbiJccTM4n7IBSVhH9NucvE3WA/tHnGxlWgPw4nvWw6OgaJhpYbRPkZB8bYafUY/7HDzqgP+jtfj43hfw6bSiltio9HeEbuv5uNCIiBSJ30NxrWPsX0sfr5ojNz4DeK8jh/+MBx44YVQdsFdes86q20bbE0cLGba3LnhA+3TPx+uwdgzNE8/9fiZQ1bvcoZCP8I25AwKxxinxccaio7deWezvBX95e2uE7E9u9H35fPPjysyliPXjSgoWCY2J2PuZODlEBLTzOJlaePGYHfHH98SoKsJu5vhDc+9cX5Urz90VzI+V3eH8yKrQ9Cx154f3jFefDFe71Kh6Vx4J+f+BhNl77PDSXv3DqHsfK5xntEKQj0/RGwPzTNn+0X9Yq0W7InhfHx8J8b+4vRtiWNKw+FFWPZrPX0Xyz4OH9dJXu+ZZ5pFP6+uvfYdzTLt2C+5y5eHGFGnncYjuSi3rBVs7dd+LT52xRWFLpGkfNuXwwfGdDOL30vowxFT08zszcuWNssDw6GXcrEJh4dDHL0HH4Rvt5/lG5yE7yl7k7ViOOdS8f7ia9OO+Zq1bFl8Bpebyy4L5fq6R+KKiDUZBTikQ2EMWbPig06jpE37d9Zosofxo2/wr8b8zGXD+3O+StJv5ELXpmIh+/lHWI8hhf00559XbNtbM136dH94i/LhnXtpBKl3dW/8+84pS8wmxieyXCGEEEIIIYQQQgghRtGPZUIIIYQQQgghhBBCjFJqjJNUrqVSqbG/bS2VSta4+wD3bL+KXPl7G+xb33lZTjaS+d2SO11zCrWxyAZS9XLnp1Jym6Wfo2i7cxzoM5HcM7yqjGWQDgdy7U4NYK7e4fDsRQ2P5Np9gM+X8wFF+XnZddG2HuwuJnzWwjK+Mfgu4p8nJePyz5C871g6yJPTkqXqHWH4sSvarQdzzTxka4oQQghxmLPoggts5cqVpUPdjleLUunEhtkvH+pmHAQ+86NGo5GO83QUop1lQgghhBBCCCGEEEKMoh/LhBBCCCGEEEIIIYQY5cjVZYwzyle8Ofq84447muXOa65plqsf/3izPDD/3OgcykPqd30zfLjllvhmSJ81gIxizInls+zVeZ9MvX6Uc1nyeL0ulDve857w4cYb45O+8pVQ/vznm8UBl3muikxozGw4tHp1s+wNP8qNw+xSyAzlGanVk8dIeWrIpjiCLDE+mVid92UWqzPOiCsy6yVTaaWyMfp6zOLItD5mcUY4ZtpkFsDvfjd9DnVNPk0Q0yXt3BnKvo+RxWhkxkxrR/mM0+MvmK2KmXgWLozrsX2ve10oMyvW/DijXNSvfIbly9P1eB+mq3NZ9tiv0b9cuPEbxudc1tqRF9pL1Q+GhDnK0nRM2EnPrLd+RlRpq8iiNMAMsRbPv208H2WXnCrKehn1nRs/Zpk1ZkN0bShzbOlDkAar+uijcSPwfFX6IZeJcgc+d9JWOf+YdswsTj3Gss80RRvnIDHTmL8XUplt3hJ6z2fS4uXoNnwCvihTJi2CBuWMa2i4fQawXPLYoQnB7phgsNvVq3Idgd/3GaSrTF+HubkL2ZbN4vWC9+2kffvso+BDHw7P6hMePvlk2yZEQ+6hiXP4b7oprrdyZShzGWFyuPqmp+KT7r8/lE85pVkcWnRRVI1ZPJl47vbb48vR1f/d37U/Z+/e5+OTohkdUriddFJsHOvXh7eM+fODR+DzfeIT8ZWXLOF9Q9nbPm2aCZJ7j0/LbX/lhtBuZrz02TA//OFQLu/CmxLfccxig6B9sezXcK67nFj33hvXu+SS9g3kBPRG+La3hTJs/5GOC6JqXPI45c5d2F46n6O8ztknsylef32ha0TwnCgVqSWzU7fUS71Poe82nxz3CV+bvvSl9t+btdrKPqqV2O7KldB/jcb2UH4RqY6dzy1N4rtWeHufODFKWRr5lBtuCGU+9hvPfC5uIBeFBx4IZf/OQ6dEO2bf+/7+7GetEP5vhn0sXRp/xvq3oxJWD77SedNns3k52rpZnA2Y/ZjLtNnZEcaW62LV/4WF8Xx2U6jHtvlrI4F05Co+dGPaj/1wRfqd4I0L8YbGdxH+HZB6R0mlUBbiMEc/lgkhhBBCCCGEEELsNw0ze+kVa4nxh2SYQgghhBBCCCGEEEKMoh/LhBBCCCGEEEIIIYQYRTLMw4Xt26OPnQx4ccUVzSLjlNUf+/fonCiGGUXsPnYNgogwxlCdonrGcDKLhfgo1xiQxMw6H344tAcBQbw6nvHMGKKhg4FQfHCXOXNCGf1Td7GHokAkeCb+MswYSS3tY7wwr7FHDJAyrp2NvwH9PuM75eLCRfEfpkyJKzJgDceFcR4YY8zMrLc3lBGHpiUwAwNm8Bhjn3AczOL4BIxP4cZvEH3J3vLx7KJ7paCdeDhmPp4LbXxyiIWT7Ecz2zEcRqaT8Ul8jCIfyGkftEcfUCIRu23QxeEbKVA2S//rR65LU3HK/DlRzDKez7L3G3w+2GRu/jEWWTf7lGNkFtsx8bG/2Oc8xrE0i8eTncJYHN4f0MYZ54xBk8yslopntXZt+3uaxfOKne9sI7JX2re/Ho7t2BUsZc+e9rcxix+Xt83ZRjS6GR/Jc4pMebM4Xh+fruz9GANT8SH8+HFcJkxoFjt84DRcv5aLb5iA7ooh1MzMtmxhm37WLD3xRBjXUmmCETQ1Gheaqlncr3R39WGswP794HvfC+Uf/7hZrDp7Oht2x7g//nI+ZNE+9u7lc291RyllCQ+7adNprl4IqPPSS8Fz5OLeFQ2bw8f1bi0Fl5vjjmt/LTOz8qZnw4dULDKzOG4W4UNk5nkyAJY/5t+19uEHj74U7wEL3rcwqrZzZ1ghzu15ulkesfYxSLP4IHgMwjSWmGXf+U4o+/5hvzI+pe8HGjnXJYxF72WxoV122evbXi41P14J3nbjxgnpihG7237rl0IuKamYc3bz7fFJtDvGLPM2TAeYmow5u83BeH201WOOievBMaaWHr8msUm5tYv+mOdwOfch2eKL4O0qE0Q29drtXzH5pyDXoQ8lwruZRW6/pQkDi4Ovrw9jbDMxWwsv8EIcpujHMiGEEEIIIYQQQoj9RjHLjlQkwxRCCCGEEEIIIYQQYhTtLDtMGOa2ZTOrUN5ByeHX/nf4nnmOzaxy69+HD3/xF6G8ZUv6xpSvnH56KPu9vNQXsOy312LPb51bcZ1cs4Kt2P34fgiSyupf/mV8bbYJ+4m3ua3cVdy3A3mPE4KGFvrYVv983PsMiVg5s12a9+Xm8hYZJq5d45Z23wb2A/fPU2Lmx4/1KJ8ZjEWQnbwX+zXx3C33wpb7HW5c+Il3rfq2Ftiy3e8+dz3zTLtqrRIA3ms3JAnsb6fh2boOpxwTJJm9Obkf7SGn+4GtjmAv/TZXjbbC3vI9VU10HZsz1h3xPC/1ryz9TiI4hM9DKSmimXWhHEngrrwylL0Ms0XLMIofF16P/s5L96hloH6C7fb6Lh5jjvUJsSzmOZS7IXniuHY9/3x8bUpHOP9yEhVKQb2+B23nY0yaFMo526A63dfjVOo8NhgbpZd+GqQknjl3AJGNdaPc5S9OmRTHyNd78MFQPv/8UN6X6r7dMfo/L/NOQCmT77uNG8NgPPbYyc3ySSelpVVU+dLsqELy92I3dM5NrCFmaTm5tzvYV+fcMOaLFnVG1Tiel13G9vC5vbwywCFbujQ+Njx8Yttrp2RkZmbdHX7lHcWt4UPD+/9vyR//eCjXtwb5YUsf3/y19hfIafJSduf9GCd37nrsWPieEYbPcD67cscd4cPxx4cy/ZOZvZbz52/+Tyh//n+l25PiC1+IPo7g3W8s/9o/gGeq+wlDY6U/5rOaxe+zKZm3m+jdCEPwOx9+e7M8f34UgKMwn/xkKK9axTk34Ks2Of/8Bc0yzR2RXswsdn/n9kEyfB903l7zTfje5d+Np04NZToy9p2fL0XhXGDokVNPTZ7CaUVf4V8v+Poxr/JUszz9nbOjepRs89p0ny1/LsBWKrWWwCRtWTArjPO6ucGG/LXZlSlVt4dRgSjfN4uH/exZ7SXILbr1fT6pVCrWACEOM7SzTAghhBBCCCGEEEKIUbSzTAghhBBCCCGEEGJMKGbZkYh+LDtMqLz3vfEXN98cymecEcrY17vDSTc7voIPlF76LcjcT0y5J8teisHtzdyf7DUlPMYt7m6bfg2Z7PpWrQqXg2yg/957o3PYIggcbCalR2Zm06dbO/p+9KNmecRnlCO5DGe5NFsJeih/wlZzL0qLJuNZZ4Wy15Fwjzz3WHOMvGQG8oKRStjm3SK7om3w2iz7kxIS3U4neeqkDUCmxvaYmZW9DqsNXd4+2V8838up+HwnBglP1D9uw21KWdE7d1ZUj7Iddn83x8/LthJS3mkuw+sg+o695QVFQz8nj15GP1Ju7bNz8jOtxgkqrUyZWyITcMvcS/ihob444xrHjCY47cyM1Jx6hZwMExq4fvjcAedfcNso621k+ZSnmMVSBtq0nx+0Y9q387mUSVAxQZkFM2N6cq7vpTG8H6ZccE4KmspovNXJxXq+9KVmuR/90OWlvFwbmUEzlx6O1yjgq3y1jAsws9DJGeVQ1AQqfqk8MotNKHqknKw3pdn29kTQ/7NmxTJM+s/XvKZ9eygFNovtic3zfcemsk+YidLj15siZKIspOvlQimkJpP/nn3Oi9NofKa/Mbyj0PeU0fllP0npaziALvtvRErWWxT3flcums40QZ2SSu8PEtk+s7LAVAgHPw40aqwv06fH61VRW+NcoGwuwtnd/PnB9mk2PsF5pOzlBMxlYeW9clmZmd2dtsHz/bgUhePEhS0TTqWMNnR0hP4pD8Zy1loNK3ct2MlL7tKUxXP6cG1tMacxxMYYwJsET/fdTTspalucIn76RmtMKmO3Z589lCVmE+MTWa4QQgghhBBCCCGEEKPoxzIhhBBCCCGEEEIIIUaRDPMw4dlP/XX0edoNv9IsDyP7TwUSpc7LL4/OiSRQl1wSyl5WyC3S3H9N3YffJ4xt0SN90yxFObUf2Es4WA/7fCuQZHb5TE6o18ljXqZ4/fWhfOedoQypQMtWfj5vTjYwllSCkJh1IIvSXGQENbNYfpaSvfpjGBfKAFsyTOJzeTiI97ozKiLKEblVvSWjHLfMs61ehpDYwu8vVy8iI/E2zT5hW70kl8d4n4ycKnXIyzVJ9Ah8Pr8PnrIWZnF0dlbbuLH9fVzWoVqHF0IePOp8JvoKjH+HH0xqEphBjLJZs3g8qRtIjZe7L8diq9M3U6bGbh2KRZBWTUlCaNNesgaZbxfmc6fLQExvWqWsiDoNSNPNLE4xyT7x/UBdBOdBZp5StZhTWLMJOeV6dKuEjxyTlM1dbha+r8Of73DZlqk/7KKm5Jxz4nr0XQx34LPfsf/ZYQUlbzRvfwr7NaWq911KU+UY+cxlSfXupkxGVeqzqB3yjUjIs7prsXxpzpx6u2rR83k3TcUaXx2822c/pFxIZ84nprI/m1k1klHiQMaQq1uROTCXeo73ooPy7x5sQyoLubdVwrH0/iC1ZrKez2Ccenb/fsfs1JksyIXw7faZ9vYXyt39ey4nSU6uyTbxHH7v1wpkw2Q299cui7XFufcKct557ZuQY9myUKb0mVEQzMxmz8KcuQfhVNy6FpGSYXqHVyS8x1ilu6lMm74NHBvY7rQe3HddnCl1Jt8DHgtze9qsuPOHKu0zU+a6LranznQ9UEfW01mzwj39o/K1smi30tz9OdH0Y9gGPqxvxL5jR3w2zIYpZtmRiXaWCSGEEEIIIYQQQggxin4sE0IIIYQQQgghhBBiFP1YJoQQQgghhBBCCCHEKKVGo3Go21CIUqnU2N+2lkola9x9xavUogPnyt/bYN/6zo8OdTOEEEIIIYQQQoiDzqILLrCVK1cesYHLSqUTGmZXH+pmHAT+/EeNRmPRK9c7etDOMiGEEEIIIYQQQgghRtGPZUIIIYQQQgghhBBCjFIwmfuhp1qt2v/f3p3HV1HdfRz//HKTAIFgWCIJ+yKyqCDFsigqKCpFQBRtWAWrWBfEBUrdqrb1oVrXqk9dqg9UcUGt2oJCFRSKiqyC4ArKGhbBskMSkpznjxnCTUjIdnPvTfJ9v17zYu7M3DO/MzO5c/ndM+dYKYedrZd0AgP/mF78hhGyect2Bl6glo6htHntXpomN4t0GEXavHctTZsdZ6j3Kioazkt1PfYSPaLh76Aqira/7c1bttG0cUqkw6g0quvfRbRdt2VVFc5fVTkXEhqV9ZqO5ut42bLP1e+QVEqVJll22mmnsXTp0kiHEVIDz/8ZM37XJNJhVCkdL9nKjF4TIh1GkTrOH8aM350e6TDCLhrOS3U99hI9ouHvoCqKtr/tjld+w4zfdY10GJVGdf27iLbrtqyqwvmrKudCQqOyXtPRfB3bh59HOoQK5oCcSAchFUCPYYqIiIiIiIiIiPiULBMREREREREREfEpWSYiIiIiIiIiIuKrNH2WiYiIiIiIiIhEF/VZVhWpZZmIiIiIiIiIiIhPLcuqofXbDtJl7AI6t0kE4OIejbhnyrd075BEVrbjrFPr8dB1HY9530kjPmTty+flve59y6dMu6sLTZNrcdFvFrF8zR5uHtKKu0e1DVtdivPFrnX8dsVUDuVkkZWbzeXNzuLJ72bQsnYjsnKziYsJMLHDpQxo0g2AWtOH0L3ByWTlZnNWcgce6vKrY8o86V/XsnbQc3mve8+5g2lnTqBpQkMu+vAelu/6npvbDeLuU9MqtG6hPo87dmcx7i+rCQSM2IDx/MROtG5cO2TxhvNc7MjYw7ilzxKwGGJjAjzf/aaQ1aOqCPX1Uzchln6/XUx8rHEwM4c/XdOB87s2DFt9JL9w/r3VjUug30f3Eh8Ty8HsTP50+mjOT+kctroWpSLudQDfbdrPKVfN56PHetLrtPrhqUwhQlU/gN/937e8+P5m2japzZxHeoQl/lAJx7UO8LuV03hx3Ye0TWzMnPPvD0vdCgrVOT+UmcOgu5ZwKDOH7BzHvaNP5hfdT6ywuMNxjg5lZzLoP/dzKCeT7Nxc7j1tKL9ofEaF1akyCOVnxKjJn7Ppx0PsP5TDiL5NuPWK1mGpQzQK12fOqE8fYdPBnezPzmBEy3O5tf3gcsceymsC4HB2Lh3HzGP0Rc2i6v9/IqGiZFk11fXkE/J9IX52xgbmPX4mAOfdtpCvN+yjQ4vEEpf3wqROzFm2k807MkIea1ntPXyQkQsf5e2z76RNYirOOd7f+jkBC/BR38kAbDn4E/3n/Z62iY1pV7cpTWo1YF7fPwFw3ty7+HrPJjqc0KzE+3yhx3jmbFvB5oM/VUidCgrleUxtUIPZf+5OYkIs7322nXunfsdLd3YJSZw5Ljes5yK1Vn1m97mPxLgE3ktfyr1fvBySelQ1obx+6tSK5T9/6UlsIIYfthwg7Q/LWdL17AqJW44v3J99dWJr8p++DxAbE+CH/dtI+/hBlvR7rMLqVxqhvtcB/PGlNZzbuUFI4yyrUNXvhktacFW/plz7yKoKi7UihPNav+Hk/lzVpi/XLnqqQutUnFCc89iA8beJnWiZksDOPVmcddMnFZYsC9c5io0J8Ldu42hZpxE7M/Zw1ge/rfbJMgjdZ8QLv+lMfFwM2Tm5dBg9j2subk5iQvX7b2Q4P3Ne6D6e+EAc2bk5dJh5Pde0uZDEuIRy1yGU98VnZ2ygffM65Y6p8nPoMcyqSY9hSj6Hs3PZfygb50r3viO/uEeTmemLGdjk57RJTAXAzLio8c/ybdM4oQE3nnwxb278JN/yw7nZ7D98CEfpDkTThOhoSVOW85hSv2beF5/4uBhiAxayePZnZ4b1XKTUqpf3hSI+EEtsTKCcNaheynL9xMQYsQHvlrL3YDadWtetoOikOOH+7IvxW3CC9x+JTkmtylmDilfWe93ir3eRUr8GTZNrVkxgIVLa+qU2qElMTOg+88MlnNd6aq36xBC9x6g05zwuNoaWKd49smZ8DDFWcfUK1zmKi4mlZZ1GANQMxFdonaqC0n5GxMd59/eMrFyan1iLhBrV83tVOD9z4gNxAGTkZNG8djIJgRohqEHRSntN7D+UzaxFO7js7NQKjUskkqrfTwICwLLv9tD7lk8B+P2YdqTvzKD3LZ+y8vt9XHlhEzq2PPYXhZxcl/cegBVr94Yt3rLYdHAnzRKSi92uWUJDPt/1PQDph36i95w7WLlrHVe2Oo+OJzQ/Zvscl0PvOXfkvV6xa13ogi6lijiPBw5lc9fz3zLlt6F7jOpwbk5EzsWB7AzuWvkSU3rczOUrFpWzFlVPqK+f9B2HSPvDcr7bfID/mxT5x/Cqq0h89qUf/Im0Tx7ku71b+L8e40NQi9AI9TV+/7S1TJnUmQlPf1XxwZdAWepXlVTUtR7NQn3Ob37ySyYNbVMRoQKROUc3L/sbkzoMKVO8VU0or5cr7lvG/JU/cf2gFgRC+INqZRLu6/mKBQ8w/8fVXN/2FwRC9MNvqK6Jh177nlsub0X6zuh5qkgk1JQsq6YKNsFt0rAm8x4/kw3bDjL8/s/JOpzLczM38Ob8rZzUpDbP/6YzgRjLa6YL5PvPRDRqltCQ1bs3FrvdpoM7aVLLe6TmSFPpDQd+ZPgnD5OVc5jn1v6bNzd9wkmJqTzffTwBC+Q1pwby/ecx3EJ9Hg9n55L2h+XcMeKkkP4nKy4mwMYDO4rdLpTn4nBuNmkfP8gdHS+vdP8ZCpdQXz9Nkmvx8ZNnsX7bQXrfspABPRuFtT7iicRnX5OEBnx8wZ9Zv387vefemddXS6SF8hp/d+F2zjj5BBqcEB/2ehSlLPWrSirqWo9moTznf3zxO+olxnHVL0re3URphfsc/XHVa9SLr81VbfqGrA6VWSivlzfu68rBjBzOuflT0vo0rvLJ+MKE+3p+4+zbOZidwTlz7iCtxdkh+T4bimvix12ZfL52L7+/qh1TZ28qd0wi0UrJMsmnRUoCF/08meff3ci4S1sx7tLof5ymKAOadOOBr/7B1W0uyGsu/cHWz/Nts+3QLv665j1ePXNivuUtap/IRaldeP779xnXbgDj2g0IW9yhUJbzmJvrGPk/nzO4VwqDe6WENJ46sTWYuWVJ2M5Frstl5KePMLhpDwY36xm6ilQTZbl+MrNyqBHv/epZNyG2WvZlEi3C/dmXmXOYGv7jInXjEkiMjb7H8gsqyzW+4vu9zFv5E59OWsSqdXv5ZuN+pt/zM1qklL8PmVCrSvfy46nO9/mCSnvOn3p7HWs2H+Dvd5xeoXGF8xw99e1M1uzbwt973hraSlRBpblenHMcznbEx8VQMz6GWjUC1Kqmj2GG63p2znE4N5v4QBw1A/HU8qeKVJpr4osf9rJjdyb9Ji0ifWcGmYdz6dymLgPPrK4/kqrPsqpK/5uRY1x/SQvOvWUh1w5sntcHUXHGPryST1fvIvNwLku/3c079/+8gqMsXt24BF7qeRs3Ln2GjKARa448SnRkxJr7ThtG+0I62ry+bX/OnXMH157Ur8R9Xo1d9CSf7vyazJxslv53De+cc3eoq1VipT2Pby3Yyruf/cj2XZlM+2Azp7Wuy5PjTw1JLAGLCeu5eGvTQt7dspTtGbuZtn4epyW1DEk9qpPSXj+r1+3j1r9+RSDGOJydy+M3nhKGKKUw4f7sW71nA7cue56AxXDYZfN417EVUa2QK+01ftfIttw10hvta8wDK7jm4uZRmSg7oqj65TroO+GzvNfP/6YTMxdu57UPt/D1xv30nfAZz952Gm2ahG405IpSUdd6rsul79yj9+/nu9/EzPQlvLbxP3y9ZzN9597Ns91uzPvPcrQo6TmffE07bn7qS3p2rEefWxcCMPeRnhXyaF24ztHkzldy8/K/0bNhO/rMvdOr03n3h+zRtaqopNfL07eeytiHvwAg83AuaX0a0yo1ej/7KlK4ruenf34DYxc/CXg/SKW1OJtWdUL7Q3ZhSnPfWPi/vQCYOnsTm3dkVONEmVRl5krbu22EnHHGGW7p0qWRDiOkBp7/M2b8rkmkw6hSOl6ylK8G/C3SYRSp4/xhfDWtd6TDCLtoOC/V9dhL9IiGv4OqKNr+tjteOZevXjw/0mFUGtX17yLartuyqgrnr6qcCwmNynpNR/N1bH1mLnPOVdnhac0aOLg40mGEwEtV+jyVhUbDFBERERERERER8ekxTBERERERERGRMlGfZVWRWpaJiIiIiIiIiIj4lCwTERERERERERHxKVkmIiIiIiIiIiLi02iYEVS/XhK7du+JdBgiIiISIjVr1iQjIyPSYYiIiESLKj3Koll9BxdFOowQeK1Kn6eyUAf/EbRr9x4qS7JSREREimdmureLiIj4zCzSIYiUiR7DFBGJUlOnTqVXr15leu+CBQto165diCMSEREJndLcq+bNm0fTpk0rJI777ruPkSNHlum9L7/8MhdeeGGIIxIRkUhTskxEqqyWLVsyZ86cfMvKk4CqTM4++2y+/fbbSIchIiJS6P0YQnuvGjNmDHfffXdIyiqNESNG8P7774d9vyIiUrH0GKaIiIiIiIiISJnkRDoAqQBqWSYi1dqWLVsYMmQIycnJtGrViieeeCJv3eLFi+nZsydJSUmkpqYybtw4srKyALjuuuuYOHFivrIuueQSHn30UR566CGGDBmSb91NN93ELbfcUmgMmzZt4rLLLiM5OZkGDRowbty4fOsnTpxIvXr1aNWqFbNmzcpbPmXKFDp06EBiYiKtW7fm2WefzVtX8HGVli1b8vDDD9OpUydOOOEE0tLS1Am5iIhEVMF71fLly+nSpQuJiYlcccUVpKWlHdNa7JFHHuHEE08kNTWVKVOmAPDcc8/x8ssv8+c//5k6deowcODAQvf35ZdfcsEFF1C/fn0aNWrE5MmT89ZlZWVx5ZVXkpiYyCmnnELwwGIPPPAAbdq0ITExkY4dO/L222/nrSvYYt3MeOaZZ2jbti316tXjxhtvVD+GIiKVkJJlIlJt5ebmMnDgQDp37kx6ejpz587l8ccf59///jcAgUCAxx57jJ07d7Jw4ULmzp3LX//6VwCGDx/O9OnT874A79q1i/fff5+hQ4cycuRIZs+eze7duwHIzs5m+vTpjBo16pgYcnJyGDBgAC1atGD9+vWkp6czdOjQvPWLFi2iXbt27Ny5k0mTJnH11Vfn7fPEE09k5syZ7N27lylTpnDrrbeyfPnyIuv7+uuvM3v2bNatW8cXX3zB1KlTQ3EYRUREyi0rK4tLL72UMWPG8N///pdhw4blS0oBbNu2jT179pCens4LL7zAjTfeyK5du7j22msZMWIEkyZNYv/+/cyYMeOY8vft20ffvn3p168fW7ZsYe3atZx//vl56//1r38xdOhQdu/ezaBBg/L9cNWmTRsWLFjAnj17uPfeexk5ciRbt24tsi4zZ85kyZIlrFy5ktdffz3ve4WIiFQeSpaJSJU2ePBgkpKS8qYbbrghb92SJUvYsWMH99xzD/Hx8bRu3ZqxY8fy2muvAdC1a1d69OhBbGwsLVu25Ne//jXz588HvH5WzIwFCxYA8Oabb9KzZ08aN25Mamoq55xzDm+88QYAs2fPpmHDhnTt2vWY+BYvXsyWLVt46KGHqF27NjVr1sz3C3WLFi0YO3YsgUCA0aNHs3XrVrZv3w7AxRdfTJs2bTAzzj33XC688MK8eAozfvx4GjduTP369Rk4cCArVqwo38EVEREJkc8++4zs7GzGjx9PXFwcl112Gd26dcu3TVxcHPfccw9xcXH079+fOnXqlLjPs5kzZ5KSksKECROoWbMmiYmJdO/ePW99r1696N+/P4FAgFGjRrFy5cq8dVdccQWNGzcmJiaGtLQ02rZty+LFi4vc1+23305SUhLNmzenT58+ut+KiFRCSpaJSJX2zjvvsHv37rzpSMswgA0bNrBly5Z8ybTJkyfnJaO+++47BgwYQEpKCnXr1uXOO+9k586dgPeYxdChQ3n11VcBeOWVVxgxYkRe2aNHj2batGkATJs2rdBWZeA9gtmiRQtiYwvvQjIlJSVvPiEhAYD9+/cDMGvWLHr06EH9+vVJSkrivffey4uvJGUdKUdERCTStmzZQpMmTTCzvGXNmjXLt02DBg3y3S9Lcy/btGkTbdq0KXJ9wXtkRkYG2dnZALz44oucfvrped8VVq9erfutiPgcXp9llX2SgpQsE5Fqq1mzZrRq1SpfMm3fvn289957AFx//fW0b9+eNWvWsHfvXiZPnpyv35Fhw4bx5ptvsmHDBhYtWpSvn7LBgwfzxRdfsHr1ambOnJkvkVYwho0bN+Z9IS+pzMxMhgwZwsSJE9m+fTu7d++mf//+6hdFREQqpdTUVNLT0/PdxzZt2lTi9wcn2QrTrFkzvv/++1LHtWHDBsaOHctTTz3FTz/9xO7duzn11FN1vxURqeKULBORaqtbt27UrVuXBx98kEOHDpGTk8Pq1atZsmQJ4PVvUrduXerUqcM333zD008/ne/9Xbp0ITk5mWuuuYaLLrqIpKSkvHU1a9bk8ssvZ/jw4XTr1o3mzZsXGUNqaiq33347Bw4cICMjg08++aTY2LOyssjMzCQ5OZnY2FhmzZqloetFRCRqHT58mIyMjLyp4I9EPXv2JBAI8NRTT5Gdnc0///nP4z7qWFCjRo344Ycfilw/YMAAtm3bxuOPP05mZib79u1j0aJFxZZ74MABzIzk5GTAG1xn9erVJY5LREQqJyXLRKTaCgQCzJgxgxUrVtCqVSsaNmzINddcw549ewB4+OGHeeWVV0hMTGTs2LGkpaUdU8awYcOYM2cOw4cPP2bd6NGjWbVqVZGPYAbHsHbtWpo3b07Tpk2ZPn16sbEnJibyxBNP8Mtf/pJ69erxyiuvMGjQoFLUXkREJHz69+9PrVq18qb77rsv3/r4+HjeeustXnjhBZKSkpg2bRoDBgygRo0aJSr/6quv5quvviIpKYnBgwcfsz4xMZEPPviAGTNmkJKSQtu2bfnoo4+KLbdjx45MmDCBnj170qhRI1atWsVZZ51VophERKTyssrShPiMM85wwUM4VwVmpibcIlXYxo0bad++Pdu2baNu3bqRDkdEwkD3dpHQ6d69O9dddx1XXXVVpEMRkTIys2XOuTMiHUdFMUty0DvSYYTAP6v0eSqLSpMsM7MdwIZIxyEiUgrNgACwPsJxiIiIVAZ1gAwgG2gAtABWAYcjGZSIlEsL51xypIOoKEqWVV2FD78WharyH5iIVC1mVhvYjpfg7+ecK3kPxSIiItWUmV0L/BEvafY9MNA5925koxIRkeqo0iTLREQqC+fcAbwv+iIiIlJCzrnngOciHYeIiIiSZSIiIiIiIiIiZZIb6QCkAmg0TBEREQkpM5tqZs6feoegvN5B5U0td4AiIiIiIsehZJmIiEiYmdn6oORPwSnbzP5rZqvM7EUzG2xmagkuIiIiIhImSpaJiIhElwBQDzgVGAW8DSwzs1MiGpWIiIiISDWhX6pFREQi6xm8Ud+OiAVS8MYh7+wv6wTMNbMznHObwxueiIiIiBRuz79hRsNIRxECOyMdQLRRskxERCSypjvn5hW2wsyGA3/Hu183Av4IXBW+0MrGOTcGGBPhMEREREQqlHOuX6RjkIqhxzBFRESilHPuFeAvQYuGmFlcpOIREREREakOlCwTERGJbm8HzScCbY63sZn1MbNnzOwrM9tlZplmlm5mM8zsVyUZLMDMAmY2wszeMrN1ZnbAzDLMbLOZLTez181srJm1KOL9JR4N08xqmtmtZrbQH9jggJl959ehU3GxBpUzL2ifLUuw/ZFt15dgWzOzS8zs72a2xsz2mtkhM9tgZm+Y2eVmZiUop5aZ/drM3vOP5SEzO+iXs9Qf0GGUmTUqWa1FREREpCLoMUwREZHo9mOB1/UL28jMTgSmARcUsrqxPw0AJpnZYOfcN0WU0wSYCZxeyOom/tQFuAJYBpxRfBUKZ2ZtgXeBtgVWtfWnX5nZbcDqsu6jvMzsJOA1oGshq5v70+XAZ2Z2mXNuaxHlnIJ3XFsep5yueIM6/MMvU0REREQiQMkyERGR6FawldGBghv4Ca6POZqI2Q/MBr4CMvASMRcDzYB2wCdm1tU5t75AOTHAOxxNlO3zy/nG329tfx9nAB3KUSfMLAX4CC/5BpCFl0xaCcQDZwPnAE8Cj5RnX+WIsRPwIdDAX/QT3vFYA2QDrYFBQEOgB/Cxf1x3FyinDjAL7/iD14nubLyBHQ5xtMVgd6BVxdVIREREREpCyTIREZHoNiRoPgP4Nniln+B6laOJsheB8c65PQW2iwP+BEzAa532El5CKlhvjrYUWwr0c879VFhQZtYaOK90VcnnKY4mytYD/Z1zXxfYx0DgdeC2cuynTMysNvAGRxNlDwL3OecyCtnub8AwvOTZE8CVBYr7JUcTZe8Cv3TOHSxiv52AU0JRBxEREREpG/VZJiIiEqXMbBRwU9Ci6QWTNXjJtCNJr7ecc6MLJsoAnHOHnXMTgbf8Rb3MrGCyrEvQ/ANFJcr88n5wzj1foooUYGYdOZoEzAYGFUyU+fuYgVf/YvsDqwA3ACf78486524v5NjjnDuA9+jkYn/R8EL6TAs+rvcWlSjzy/vCOfdq2cMWERERkfJSyzIREZHISjOz4H6/YvEevTwPCO7g/hvgt4W8/4ag+dtLsL9HgMv8+UHAgqB1gaD5WiUoq6xGBs2/6pxbdZxtX8Cr13EHNqgAR47rIeD3x9vQOZdjZn8BXsY7hhcD/xu0SbiOq4iIiIiEgJJlIiIikXVdMetz8Dp8H++c2x68wsxqAWf6L9c559aUYH8rguYLds6/Mmj+fjP72jm3rARlltZZQfNvF7kV4JxzZvYW8JsKiKNQ/iOmLf2Xnznn9pbgbSuC5o93XJ8ws7QSnisRERERiQA9hikiIhLd5gMTCibKfO3xOsMHaGVmrriJ/AMEJBco7wPgc3++BbDUzFaa2cNmdpmZNQ5RnU4Oml9Rgu1XFr9JSHUOmu9TwuP6ZdB7Ch7XV4DN/nwX4Fsz+8zM/sfMBphZA0REREQkaihZJiIiEll9nHPmnDO8+3IK0Bd4z19/HvCp39qpoPImWWoHv3DO5QL9gTlBizvhDQrwDyDdzL42s/vMrGBCqDTqBc0X2S9akJ3l2FdZhPq47sM7p8v9RYY38uWdwAxgh5ktM7MJZpZYzn2LiIiISDnpMUwREZEo4ZxzwHZ/mmtmT+B1cN8MeN3MznTOZQW9Jfg+/i1Q2g73CxsIYBtwgZn1xBvF8Vy8hNmRfrfaA/cCt5nZaOfccR+jDJFwd/AffFw/w0sUlsamggucc9/6fdP1xesz7hygA17dDPiZP000syuccx+XJXARERERKT8ly0RERKLXBKA3cBrQFbgNeCBofXCrrCzn3MOh2rFzbiGwEMDM6uL1jdYPGI73mGEiMN3MujjnviyyoMLtwmtBB14rruL6BCtJSy8XNH/c5JqZJRRTVvBx3RGq4+onQz/wJ/zHL8/Ga803FO+YpgAzzOxk59yOUOxXREREREpHj2GKiIhEKefcYbyE2RF3FHj8cQ3eAAAAHc0s+PHGUMax1zk32zl3C9AaWOSvigOuKUOR3wXNdy5yq9Jtsz9ovk4x2zYvZv03QfM9zaxCvi85535yzr3jnLsWaAv84K9KwktKioiIiEgEKFkmIiISxZxzHwBHHsmrC9wetG43sNR/GQCuDEM8+4HHgha1L0MxnwbNX3q8Dc3MitvGFzwAwslFbuW5qJj1q4Ft/nxDYGAJ9l8u/gAOzwUtKstxFREREZEQULJMREQk+v0+aP56M0sNev1k0Pw9RQwEUCg/EVVeh8rwnpeC5oeZWcfjbDsGOKkEZS4Pmr+sqI3M7ATyt9Y7hv+45FNBix41s/oliOHIPiJ1XEVEREQkBJQsExERiXLOuTkcbY1VC7gjaPWrQevqA/PNrG9RZZlZTTMbbGYf4XUoH7zucTN72MxOOc77mwB3By36T8lr4nHOfQUcGRggDq+PrnaF7Oti4H/J3x9ZUf7J0UdSh5rZ4ELKSwVm4g2YUJwngLX+fGvgP2b2s6I2NrNEMxtpZssp0Meamb1mZveYWavjvL8jMD5oUamPq4iIiIiEhnk/noqIiEi4mNl6oIX/so9zbl4J3nMh8G//ZSZwknNus7+uEbAAr9+rI1bhJVy24v041gA4FejO0T69fu6cO/IYJ2Y2FRjtv/weWAysA/bhJeLa43XyHxe0zen+o5kUUU6h9fMTV8uAI63kMoEZwBdAPNALb3ADgEfxBjcA+LtzbkzB8vwynwF+HbRoFt5olgCnAAOABOB+jib8NjjnWhZRXgfgI6BR0OLFeMnJH/04k/FGC+0G1PC3SXbO7QwqZx7eqKIAX+I9OrsRr/VYQ7w+2fpw9EfMhcDZzrkjyT8RERERCSONhikiIlIJOOfeN7PPgB54SZm7gOv9ddvN7OfAM0Aa3miQp/lTUdLxRqUMlhU038afirIEuLxgoqyknHNbzawPXkuvk/DqdLk/HZGNlyRbxdFk2fFMwEsYnue//oU/BXsMuIf8reOKivFrM+sKTAEu8Bd386eirMFL/AULPq6n+FNRZgPDlSgTERERiRy1LBMREQmzsrQs89/XD6+1FMBh4GTn3PoC25wCjMJrydQKr0VYNvBfvFEoF+O1UJvvnMst8N4YvGTc+f6/7fBaVSUAB4HNeK3B3gD+5Yr4ElGSlmVB29YEbgR+idcxfw1gC16Lrr865z43s97+azhOyzK/vABwFTASr8VXbbzO+hcCTzvn5vvbHYm9yJZlBcrtAQwFzsF7jDMJLwm2A2/0zIXALOfc4kLeG+e/7zy8RNtJeMc1Hm8Uz414I4y+6pz7sLhYRERERKRiKVkmIiIiIiIiIiLiUwf/IiIiIiIiIiIiPiXLREREREREREREfEqWiYiIiIiIiIiI+JQsExERERERERER8SlZJiIiIiIiIiIi4lOyTERERERERERExKdkmYiIiIiIiIiIiE/JMhEREREREREREZ+SZSIiIiIiIiIiIj4ly0RERERERERERHxKlomIiIiIiIiIiPiULBMREREREREREfEpWSYiIiIiIiIiIuL7f1sPRru8Z4xFAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -223,7 +236,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAARBCAYAAAA7RgccAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZwdVZ3///fpdDqdphM6IYEAEcIiIougQBAHFxhcBmFmFPmiM6I4KvrVr4rOqD8dxwVHx1ncdWRkXBgV9+U7XwYXdMAREQUEBWRRIIQtQAghCUnT6fT5/XFv5546fet01elT99btfj0fjzxy762qU+dWnTpVt/p8PmWstQIAAAAAAAAg9XW7AgAAAAAAAEBdcLMMAAAAAAAAaOJmGQAAAAAAANDEzTIAAAAAAACgiZtlAAAAAAAAQBM3ywAAAAAAAIAmbpYBAAAAAAAATdwsAwAAAAAAAJq4WQYATcaY9xpjrPNvTbfrBKRGO5+9jDF/bIz5jDHmWmPMA8aY7d6+vq7bdcTsYYw5yhizw2lfn+52nWai232jMeaL3vov6+T666zb+6YXGGMGjTFrnW30O2PM/G7XC+hl3CwDAADoYcaYlcaYyyX9WNJrJR0pabmk/m7WC7OXMcZI+rRavyW2SDq3ezUC5jZr7aik9zgfPVHSG7pUHWBW4GZZAcaYZ3l/zbDGmPd2u14AAGBuM8YslXSFpD/qdl16mTGm3xgz6l3rXTGD8v7cGLOpzfXj7caYJ6Wse5e8QtKxzvsPW2vv71ZlAEiSLpB0o/P+PcaYPbpVGaDXcbMMSITh8/HYdnHYbnML+xs5PiLpcd5nY5J+Ken/Svq28++SzlatpxwqaYH32a/LFmIa3ifpO5IWeZN/LOloa+1v46pYD8aYQWVHkW2W9LHu1Ka76JdRJ9baCUn/4Hy0WNK7ulQdoOcxPB8AAKAHGWOWS3qJ9/GPJf2ltfaBLlSplz2lzWelbpYZYxZL+rKkU9tM/oikt1lrd0TUrW5eL2lv5/151tqNXaoLgKyvSXq/pP2a7882xvyLtfbOLtYJ6EmMLAOAJmvte621xvm3qtt1AlKjnc8qz5E04LzfIelMbpRFmdHNMmPMwZJ+pak3yrapcfPyr2fDjTJjzJCk/8/5aFyzZFQZfWN9sW+Ka/YzH3U+GhCjy4Ao3CwDAADoTUd5739trV3XlZr0Pv9m2WPK5v7JZYw5VY2w1yd4k9ZKOt5ae+HMq1cbr5C0zHn/n9bae7tVGQBt/YcaN+onnWmM2b1blQF6FTfLAAAAetNK7/2ablSi1xlj+iQd4X18vbV2+zTLGWPMu9XIDbfYm3yZGvnJSuc9q6vmdnqT9/Fnu1EXAPmstY9I+qbz0QJJ/7tL1QF6FjfLAAAAepN/g2ZrV2rR+w6StIv3WfAmlzFmkRpJ/N8nyXiTPynp2dbaB5PVsB6eI+nxzvt14qERQF1d4L1/rTFmXldqAvQobpYBAAD0psFuV2CWKJWvzBjzeElXSvpzb9KopLOstW+01o6nq15tvMx7/93m0/cA1M9PJa133q9Q44Y3gIJ4GmYXGWOOUGPY/wpJ89To0H6tRs4RW7CMwyQ9uVlGn6T71QgduKaSSmvnMPynSDpc0u6SJiTdK+n3kq4qWvcS69tf0pOa69pN0hZJD0i6XdI1nbhQaybufZIaIS9Davz1/rfW2h9XvW6nDrtIOliNnCjL1Hgk/aikDWr8dfeX1toNHajHEyQdLWkvtdrtGkmXW2tHq15/r+rl7dY85o+UtL+k5ZKWSNoo6UFJN1prf1fx+qOPv24fN8aYQ5x176ZGf7lJjX3/O2vt2qrW3Und7qc7cXwZY+ar0ZYOU6stWUmPqtGe7pB062wZTVSDfdrJ827hm2XGmJMlXShpV2/S3ZJeaK29KnHdaqE5ku7PvY+/04WqzHl1v56oe19pjNlT0lMl7anG9cwWSbepcT3Q0TpVuS+ttTuMMf9X0iudj18m6fszKReYU6y1/Jvmn6RnqdHJu//eG5j/i968lznT5kt6sxodoV/m5L8/SHppoPz5kv5Pc768MtaqkYTVlPyuoboPSXq3Gj8w89Z7l6RzJQ3NcJuPSPp7SbcG1mXVOKn8h6QnRq4n9H0HJb1VjR8G7dZ9WfNfqH7T/ftioG5G0h9J+mdJV6vxlLNQWROSrm+2jYWJt4VptqffBda/tVnG4wqur7JtN4N2915vHWvm8nZTI3n4V9S4KRYq8y5J/yJpeSePvzocNzl1OFKN8If7CuyP2yX9q6RjOrW/FdHOc+o2oor76WnaSPLjK3AcXKDGTc4i2/z25jpPlTQ/RZty6rJmBm2h7TFTs30addwn2K7/7a1nu6QF3jxG0jvVvk/5maQ9qqhbXf5JepH3nbf522ia5X/vLf/Wgsstbu4Pf5ufWnD5p7RZtm1/oIJ9oyo6D09zbHSkv5thG6msryy6b6Yp408k/U/OMWybn/9A0tOcZZ7VZr5VBdZVi30p6Qyv3E3TbWv+8Y9/rX9dr0Av/MvpKN8bmL9tBylpX0nXlTiZfklSv1f2KjV+ABYt45t+GdN817y6P1FTL3RC/26T9NTI7f0qSQ+VWJdV49Hl/6oSF27TfN9DNf2PhctU3QXTPpLunEG596rxBK4U22J5ye+5WdJJBdZXybab4bH+Xm8da+bidlNjpOo31LiRVKbszZJe26njrw7Hjbf+vSR9N2K7Tf57SSf2t9L86OhIPx1oI5UcX966+yV9StPfcA39i25POXVaM4O6TDlmarZPo477RNt1g7ee33jThyV9K6dOn9Ec+PEp6XPe97605PKf8Zb/YcHl/jRnu3+84PJv85a7NTDve7151+TMd9kMjkOrkjfL1IH+boZto/K+sui+yVl2F0lfK1GXCUkfVOOm1rPaTF9VYJ212JeS9mhT5omdahv841+v/yNnWYcYYx4n6XJNfdpSyEslfcwpYz81/iLiPyo+5EVqXMhGM8Yc0FzvgSUW21/SJcaYp5VYjzHGfEjS+ZKWlqul5qnxlJcfGmNGSi7r1+MQNf5K/Pjp5q3QYjV++MfaU9J/G2NOn0klmo+ZvlzSM0ssNizpv4wxq2ey7l7Wy9utGdr9S0mna2rS6ukMS/qMMeZjM1j/TI6/rh03xphj1fhDxp+r/HabtCByuY6pQz/dwePrq5Jer1me37Um+7Rr593mtdUS7+NrnOkHSPqFpNO8ecYkvdpa+7/tNE/NnCX8XEc/K7m8Hz77dGNMkT7vpJKfTzdfx9JnpNAj1xO17SubqRj+S40RVoUXk/QOSR9JXJeO70tr7f1q/BHC9dyYsoC5iJxlndEv6dtqPeL9ITXyXfy3GiMZ5qmR0+alkv7YW/b1xphvSLpK0vckPc4r41JJ96hxgnqCpDPblPFqY8xXrLU/jaz7N9XIOSA1hsJ/R9J/qjGCY1yNEXOnqHFjbqGz7LCk7xtjDrfF8vL8raS3t/n8DjVCwa5QI1/KiBoj3V6sRriV65mS/q8x5gQbl09loRojQyYvnEfV+GvyD9UIbd2qxuiRo9QY5bdGreSZR6uxLSatVyO5ZkiR3CY7JP1KjRsYN6qx3Tc36zbcrMcxamz/vZzl5kv6vDHmt9baWwqsx9evxr4+qPl+q6Svq3GhuVaNEIy91LgQfZUaYbqTBiR9wRhzZOBHhJt4tKpt1w09u92auTMu19RcPOvV6AeuaH6HTc15niDpZDVCKNyL5DcZY+6y1n54mrr4yh5/IR07bowxT1GjL17YZvLlaoR1/EaNcNaJ5vc7uLn+56nVv7ZTt+Ok2/101ceXJMkY8zI12oZrQo1cLz+SdIsao5G2q5GPZ6ka3/dISc9W+ZtORV2sRg6xSc9Utv3cqcZN23ZuzPm82/s05XEfIzdfmTHmuWrcCPBvpt0n6TRr7S8qqE/tGGP2UusadtJvShbz32ocQ5PnioWSnqZG3xmSd1PsEGPMntba+/IWbN6MO977OMXNsk71yx3p72aixn3lpC+o/c2pK9TYljdKeliNEV9PkfQSNXIyS9I5avxGS6Gb+/K3znqlRr42AEV0e2hbL/zTzMMw3ZCcr0haElj2TW3WdYmkf3Tef1nSSKCMN7cp4wcFv2uo7r+T9KTAsgep8ddYf93fL7De1Wqfk+IfFAjvkPS/JD3SZrl3Rn5f99+lKjDUOlDWZTNoc4eq8UP/FaH24i3T39z3YxXs+4sk7RlYdl+1D585vdPbbib/lCYMsye3mxo/XH7rlfeYGjl6giFWalxY+rk3tks6qmT9o4+/Lh43S9W4qeDX/zpJf1Rg+Xlq/JX3h5Je3on9HdPOm8t1vJ/u1vEl6VpvmdslHV5wO82TdIIaN3yi0hGU2JeXefX8Ysnl67BPZ3TcJ9iGH2hTj6epcQOxXVjZLyTt1ck6dvuf2odCHhRRjp9G5APTzL+nN/9j3vszp1n+BG/+HQpfg7/Xm39NRHu+bAbbuSv93QzbRkf6ysh9c1qb7bFF0hmBZfokvVGNwQCTbcYvY1Uv7UtJf+eVs1lSX5Xtgn/8my3/ul6BXvinmd8sm/z3HyqQcF+NXEH+spMXs18oWIafW2NHqGMuUPc7Ci6/VO0TVp4yzXK/aLNM0RteT1fjLzL+BdW0yXYD3/dSSYMl24lf1mUzaHOlHszgLfuCNt/nkBlsi29Jmldg+UM19YbDxZ3edjP5pzQXyj253SR9yCtrVNJzSiy/RFMv7v4zctuVPv6a5XXjuPm3NstdImk4og7B/JKp9ndMO28u1/F+uhvHlxojt/z1TXvjsxv/NPObZXXap1HHfYJt+P02dbkop47nSxro9n7vwjb6W2877Jiuv8opxz/P/HKa+c/05v+49/6CaZb3b4ReNc38pfvGNu35shls5473dzNsFx3rK8vuGzVuet3hLbNdBfN1qfHUyHb7wiruZlnX9qUaf9zw63FgVe2Cf/ybTf9qF1s+i62V9DprrS0wb7vQpX41wiv+T8Ey/tl736epQ9HLONsGhrpPstZuUGNUh1/H1+Ut04zD94cE/9Ra+8EiFbPW/kyNCyLXgBp5VGJsUWOER9cev11wH+ct+11J/8/7uEyuBte9kl5prd1RYL03qnER4DreGBObv6mX9dR2M8bsqqnHy99aa39UtAxr7cOSzvI+PqUZ2llG9PHX6eOmGZp0lvfxXWr89XdLRB3Gyy7TKTXrp6s+vh7nvX/YWvvzknWsvZrt026ed5/c5rPne++3S3q9tfbV1tqxDtSpblZ579dF9ld+CORR0+S680MwP6PGtfAkP+3IdMv3VL6ypjpfT9S5r/wTTW23n7DW/neRha21/6FGeHhK3dqX97T5bL+IcoA5h5tlnfOxoj+erLW/VCMnWbsyHp1BGe0uCIu4zFp7SdGZm+v+nvfxc40xe+cs8so2n7216Pqa/knS/d5nrypZxqQv2WI51urse9774yLL+bi19pES8/sXFovU3QcldEuvbbdXqZEcf9K9avwFvxRr7RVq5AibZNS4YC2jm8ff97z30x03r1Xj5oDrr621G1NVqEbq1E9XfXylylFTd3Xap1057pvXJXtMM9sONZ5GN6OHJfW4fb3390aWc7kao5YnTYbh5XFvht1jrb1Z0k+cz/Y2xjyx3YLNm3D+A7F+0mbWuqvz9USd+8ozvfdjmnpzfzrvSVSXSd3al+1ulvnHNIA2uFnWOd8uOf/vKigj9ilx/xGxzAXe+z5NTQg86Rne+xuttaWSUjf/0vtl7+O9m0+5Kssvpxfd5b0v8wRV1zdKzt8u4a//l8e5oNe22/O899+YwSgn/6+2/vE9nW4ef2WPm2d77+9WI4HvbFSnfrrq48v/YbHEGPOnJdfZC+q0T7t13Bf5I+I8Te0jkzHGvMEYYwP/thhj7jHG/MYY8yVjzJuMMX6y/ar5Sdg3xRTSHDl4hfdx2wT+zZtg7h9Zf+z9H1xejZtw7s2cUTVu1vWaOl9P1Lmv9H9zfL8Z/VKYtfZ6NXK5ptKtfdnueK36wQrArMDNss5YF/EX0wfblOH/kCtbxuK2c00v5i9x/62poZjH+jMZY5ao8UQ9V+FRbJ4ftvms7IiqcTWfglUnxphlxphXG2P+zRhzhTFmrTHmYWPMeLuLazWeQORaaowp+xfA+621a8ou0+azXUuW0et6arsZY+arkczalfc0vSLu9t63/at/jqTHX5XHTfNx9Ed7H3+/SHhFr6lZP1358WWtvUeNJ7i5Lmze1Bhqt0yvqdk+7eZ5t92TMN+pRu411zuMMS+tqA5HTjN9FzWekvckNZ6a/jFJdxpj/p8xplMjkP12v20GZRW92eWHWE4u9xNlry+LLv/zbqbXiFTr64m69pU5T2+NvVGa6gZrN/dlu+N1l4hygDmnv9sVmCOmzfXVhh+ymaKM4YgyHo4JjbDWbjbG3C7pAOfjg9vMeqAaoVqu2Ivmdssd1OazkDV1upgyxhyoRpjLqZr58Tqi9uG9eWLa3OY2n8W0u17Wa9vtCZr6Q+jLxphUIz12KzFvkuOvQ8fNQW3KvnKG66qrOvXTnTq+/knS55z3u0j6hKS/N8Z8X40bqz+z1v4+oj51UKd92s3zbrubZf+qRjv7gvf5vxtj/mCtTX2cu6PbfqbsSBajRltdokbC7/2an/VJOkXSHxtjXmet/WLiOvkWeO9nkrfN/wPsQcaYx7X5g3DbfGPW2geMMTeo8RRmSXqWMWZemz9U+Mv3YghmL1xP1LGvbDeyNXaEWKqRZd3cl/7Nf0kajCgHmHO4WdYZ7Tq76fijslKUETOSMKZzn3SvsjfLlrSZp91n/siUQqy1DxljRpU9AbQrP2RjzLqrYIx5hRrJbP2L1FjDKnezrHSYhbV2ok3u0bk2grXXttuyissvcwxunOnKOnjctLsJ2Ou5DvPUqZ/uyPFlrf28MeZ4NR5Y41qsxoMfzpAkY8x6ST+X9FNJP2omZe4FddqnG2PWm4h/s+z2Zk6hLxpjniTpzc60BZK+Z4w5JmKkf1vNkb2HOh/9o7X2vwLz761GTri3qfFHjoWSPmeM2WytLZuqowz/x7afq7GMqyU9rGwbOUnOzcnmiN5nOdNvsNauc97/WK2bZYslrVbjya6Ty6/U1JGTvZjcv/bXEzXtK0fafOZH2xS1fgb1cHVzX7a7HprJ6FBgzuBmWWdEP6EtcRkxovJSNPlJLIveLJvpOt0L9rIx+YUeoFC1ZrjH5zT1L/+T1quRK+JBNS5i/b/KL9fUfDRln6DTrTbX63ptu5UZ+RWjzHlmRsdfh4+bdtttY6GK9p469dMdO76stX9ljLlW0nuVX8dlkv6s+U/GmBvVuFn779badn/Nr4s67dOunHeNMbtpav4fd5TcW9W4kfUc57M9JP2nMeb4og9cmsahyt54apejaKdm2Nv7jDFfVeOmwwo1fjx/1hjzkwofLrLVe78wtqDmDYDLJL3A+Thzs0zSMcqGm/k3un6s7I3Mk+TcLNPUUWUPS7ompr5d1hPXEzXsK0fafBYz6ECaWb/o6ua+bBcS6x/TANrgZhmmM5POvcjNmXbzpDyh9MSFhssYs1yNIez+trlcjfCQy6y1wRF/xpgTNDXROtBOuxECP9TUMO5aq8lx03P9TUFztp+21n7SGHOBpL+Q9GI1cnGFRtUcKulTkv7GGPOXzSfE1tGc3aeOdg/w2HmzzFq7wxhzhqRfKfsEuiMl/Ycx5kXW2pl+TzcE8yFrbaHRfdbaW40xL5Z0WfOjpZLOUeNmRRX80bUzzYH1E2Vvlvn5xdqGYDp+Kmm7pPnO/O8PLH+ptXYiop4oqGZ9Zbubb7GjIWcyirIu2uWsLhNpAsxZ3CzDdGZyQeR3zg+3mafdk2lmsk5/2XbrrLvXaepf/d9nrX1viTLmWlJ9xGt3DL7fWvvzjtdkZjp93LS70Cwb9t0r5nQ/ba3dJOk8SecZYxZKeqqkp0s6vvl6UZvFVkn6iTHmj2t6w2xO79Omdk/CzORfs9ZubD7d70plv+ML1bg5864Z1uFI53VwVJnPWvtTY8zP1GiLUmPEzntnWJ88d3rv9247V3H+za89jDGHN58+KGVvnm1X4+bYTtbaR40xV6r13Z9qjNnFGe13old+L+Yr6zk16is3tvks9iFnscvVSbvj1T+mAbQx13IJobw9Z7DsXt77dhfP7T6LughrhlT4CSt74YLd5z92+4qSP/il6vNQYfZol49j/47XYuY6fdy0u1m2T8n19Qr66SZr7TZr7aXW2nOttc9R4wbpMyR9XFN/oA1K+oIxpo5/mGSftk/uf63/gbX2ZkkvkeSPTPpbY8xfzLAO7g276yKW/4Hz+ghjzMiMapPvDu/97s18a1GstbdIapvQv3mTxX2a6i+tte1GOrs33AbUDKE3xhyqqdeuvZivrKd1ua9MeV1zwPSz1F67vt0/pgG0wc0yTGeJMab0D0BjzCJNPTHd3GbWP2hquEa7C9gi2i13a2RZXWEamTyf5H18YURR7cJLgHb+IMl/itgzu1GRWF06bm5VY8SD66kR6+wF9NM5rLU7rLU/s9aeo8aPqku8WQ7S1FEudcA+nVrve6y1D7Sb0Vr7fUn/X5tJnzPGrI5ZebPfOsL5qNTIsib3uspoZn/gDLnee9+nxhNVZ8If7TUZOvkMZROS593o8j8/yft/0l3W2l5oj7Nah/vK32lqKGZs/9ZuBGqv8R92sUXcLAMK4WYZiog5eZ2gqTlRfunPZK19WFNvoj07Yn15y3Uy/MX/q3PZhPpSI2m4/5e12yPKqeOPs5AU224umvF2az757Wrv4+fXdDRMno4fN81wH3+7/UnzKW5V6cpxMsv66cpYazdI+ktJY96k47tQnaC5vk+NMYs1dcTIr9vNO8la+8+Svux9PCjp/zafvljWAcqGeF0XUYY/gq+qUeVXtfns8DafleHfLHtGc7TadPnKJv1K2eTreTfLqg7B5PqlpKr7SmvtmKYeT39WthxjzJDi+8U68f+YeA05/IBiuFmGIs6MWOZl3vsJNR4Z3c7/eO8PM8aUGhnVvMDy63mXtXZNmXJmKMXTotr90C5108IY82w1/kLXS5I9aWuOSbXdfui9XyHprMiyuqFbx82PvPcr1chlVJVuHiezpZ+ulLX2QUm/9T7evRt1KWAu79Mna+pNjeDNsqZXq3GTxrVCjSdktnvi3HR1mDQm6aaSy0tT+4BKfgBba+/X1BxHR7SbtwT/JtiwGqNz3Ztdm9XmD63NOo0rm8vscGPMXpo6MrrqEEyuXyJ0oK/8vvf+QGNM2T8k/4Xa51nrNf6x2vaYAjAVN8tQxIllTjDGmKOVfcqRJP2w+cjzdv69zWf/VHR9TX+jxgXrdOVW6RHvvZ+zrYj1mkFojDFmQNK/RKy321Jsu7ko1Xb7jKRt3mfvb/7w6AXdOm7O09RQj3+pMG9QN4+T2dJPd8IC731dnyw7l/dpoXxlPmvtqBrXN/d6k54s6UvN0MqijnRe/85a64d1F+E/VKTKXHH+H1WeMZPCrLXrJN3ofXyGsj/sL2veFMvj3ggzkt6hqTc3qh5ZxvVLvCr7yn+X5LedjzfP99MyxiyR9IGE9ekKY8wKTQ2Z/kG7eQFMxc0yFHW+MWaP6WZq/kj8gqa2rX/NW8Zae7WmhmycaIx5a5GKGWP+SNLfeR8/psYP2U7yc2LsbYxZVaYAa+0OTf1L29nNHHBBxpg+NW56+MOte8GMt90clWS7NX+0fMb7eHK0RNRfeo0xC4wxr4xZtqxuHTfN7fYF7+N9JH3TGDNctrwCoa9dO05mUT89LWPMMcaYQyKXPUTSYd7Hv595rdKbS/u0jWmfhJnHWnuvGjfMRr1JL5R0bmQdriuxnGu5935NZDlF+CN1VjeT8c+EfyPr1cqO+JtuVJg//Wzv/Y3NfrpKc/b6pc59ZfMP9F/zPj5M0lenO9c2z98Xqb6jgss4wXu/WdLl3agI0Iu4WYbpTI7W2F+NRzv7J7adjDEHqpGw05/nR9bai6ZZz5s0NVn2Pxljzg39FcgYc5qk/9LUYe/vzUvUW6F2w5r/tfmksDL+03u/l6TvGWOW5i3Q/MvRtyT9VfOj0F9i6yjVtptrUm6392rqX/mPkvRrY8wLio6YMMYcYox5rxo/2v4toh6xunXcvFNTf6CeJOlyY8zTplvYGNNnjPljY8zFauRwCen2cTIb+uki/kjSjcaYHxhjXlzkpqskGWMOl/R/lf2xPy7puxXUMZW5sk99/siy9dZa/+mMuay1v1Ljxo7vXcaYlxQsxr1ZFpPcX5KOdl7faq31QwJTukTSo877AUnPmmGZ/s0uv80Fb5ZZa3+n7Ci/Ussn0u1+uZvq3le+RVOfjPlCSVcZY05q/rHMrddAs2+7XtLk+fsPievUaX4Ov/+KHMUKzEm9lMAZ3XGFpF3UCBc4VNI1xpjvqHGSu1ON/BiPk3SKpP+lqRfOmzT1L31TWGuvNsa8R9IHvUl/J+kvjDFfkXSlpPsl7SrpEDWG6z+9TXGXqXwoyYxZa282xlyj7BP1/kTSfcaY69W4oPNDti611n7a++wTks5RNpTgREm3GGO+oEaOjvvUSCz8OEnPlfQiZ36rxnZ890y/U6ck3HZzSsrtZq3dbIw5VY18PG6S6L0lfUfSrcaY/5L0CzWOw01q9A0jkvZT48fncZIOdpb1n7JZpa4cN9bah40xL1LjL7WDzqQjJP3cGHO5pIvV+DH8YHM9I2rkRztGjf01OWr3G9Osq6vHyWzop0t6bvPfY8aYn0m6Ro39+IBa4W5L1Gjzz5X0fE39I+RH63zzaA7uUzVHQx3sfVxoVJnLWvtlY8wRaoSiuj5vjLmteUMtrw4rlA1fva7s+pvcG/I/zZ0rAWvto83rPzdH3Qs1dcRZGZepcZOk3e+Re5s3w6bzE+Xn1q38Zlm3++WaqGVfaa190Bhzlho34eY7k45U4+bvg8aYmyVtVOO651BlH7pxlxqhvd/0i05Zz6qYxgOH/Acb/Ec36gL0Km6WYTrjatwE+4UaT5wbkPTi5r/pbJF0srXWTwrblrX2H5p/lXqHN+kAFf8Be5mkP+/iU17eqsYJ2E04Pl+NGwntcqRMyc9grV1vjHm1pg4fX9Ysf7oQmXPUCEnrmZtlTTPednNUsu1mrb3DGHOcGjfH/CedHdT89+YZ1bYi3TxurLXXGGNOkPQ9tW58TTpeaZ+G2NXjZJb002UtUOOv8/5f6KfzA00NU6ydObhPj9DUh4JMm68sx9vV+IH9J85ng2qMaj0mkKvVDwMtPbKseaNuP+ejToxgvEDZG1N/box5bTMUvrTmH2muUuMPLb6iucZ+rPY3y/wHAFSJ65eG2vWV1tr/MsacIenryt4wkxphzH4o86T71bip1256lSM4U3qWGr/dJt2vRjsFUBBhmJiWtfb3anS4a0osdoek51hr856Ambeud0p6laQNZZZTYwTLv0p6nrXWT7baMdbaS9X4q3vZ+vvlfF2N7eD/NTJkq6S/stZ+Yibr7pZU226uSb3drLV/UOOJZJ9Uufbn26apN64q1c3jxlp7paTVaoSmxXp0uhnqcJz0ej9dwEx/yG6X9GFJp1prZ3IMdcwc2KeudjcvSo8sk6TmzcGXSLrZm7Snwk/IPNJ5vdZaG5OY/xzn9R809em8VfhvZb/rMkknz7DMvNFfRUeF5c33K2vt5oj6lFaHfrlLeqKvtNZ+V42Q5SsLLvJDSauttderMaLW1yt9nX8T+d+meWAGAA83y1CItfYGNUaavF+NUKI8d0v6e0mHWWt/Ebmuz6nxF+0PaPpknw9J+lJzfa+vww8Ta+23Ja2S9ApJF6oxWmW9St54aG6Ho9UY/h36q+1mSedLOtRa6ycb7ymptt1ck3q7WWu3WmvfqMaohQ+pkcusSNjBuub6Xy5phbX2pTHrn4luHjfW2rXW2lPUCI36hoo9me5mNX4sHGqt9UM98tbT9eOk1/vpEGvtv6sRqvs6Sd/W1Ccf5rlP0sfV+J5/02s/SmbzPvVEJ/dvp3mT8E/VCOVyPUXSBTn5HmeU3L+ZHN3Njfah2NFdZVhrraSPeR9Pm2pjGjO6WdZ84MJNscunUod+udN6qa+01v5WjXPzSWrkU53cPzvUuPn1a0mfkvQ0a+3zrLVrm4su84raZq0dq7q+M2WM2VXS6c5HjynwsDUA7ZnGeQ9oMMZ8UY0fupN+aq19ljdPnxq5GZ6kxvDkCTVOfLeq8Ze8pI3KGHOAGmETy9UYTrxFjRt2t0m6ukfCPmbEGLNYjVCuVWrkfRhXIxfEzWpsA5J1olLGmOVq3ISaPA53UeNY3KTGqNObrLX3da2CbXT7uGn2lU9R4wEpy5t1GFXjwvw2NZ7Udn+VdeiU2d5PG2P2kvR4NW4gL1Gj/Y+pcdP1Xkm/tdbe0b0apjfb92k3GWN+L+nA5tv3W2sLh38bYwbVyC05GSp/h6SDO/UDvpnzbY1aTwrcIWk/W+IBCZi9ZltfaYz5jKTXOh9db62t/VPnjTH/R40IgUmfs9a+qlv1AXoVN8uQUeRmGQAAAMpr5od7RK0nAZ5mrf1OwWV3USP30vObH41JOt5ae1XyiobrcY6kjzoffdRa+5ZO1gHoBGPMLWrka530eWvtK7tVnyKaif1vVeMPdVIj3PUga+2arlUK6FGEYQIAAACdcaRaN8qkgsn9jTGHS/qZWjfKJOlNnb5R1vQZNdJuTHq1MWZpF+oBVMYY8xxlb5RJxfOeddMZat0ok6TzuVEGxOFmGQAAANAZRzqvN0u6PW9GY8wCY8wfG2O+okZus8lcZ1bS26y151VVyZBmjjr36YXDyj5wAOhpxphhZcMYpcaDiwrlFu2WZvoH98nGm9XINw0gQn+3KwAAAADMEW5y/zFJn/SeATCoRlLx5c15F3rL3y3pVdbaH1ZZyQIukPQaNZ6eLElvMcZ8erbkYcTsYIzZW43cpd8q+hAMY8xukr6lqaPKvmqt3Zi2hsm9TNJhzvv3WWvXdasyc8WBxtit3a5EAvdJP7TWPq/b9agTbpYBAAAAneHeLNtN0usLLnerpPMkfcZaO5q8ViVZa20zifiv1IhU2UXSe9R4MiJQF0skfU3SHc0Rmt9WI0n/lBtnxpg9Jf2lpL+WtMKb/JCyoylrp/nwj3Odj26S9IkuVWdO2arGXw563XunPv11zuNmGQAAAFAxY8x8SYcEZtkh6TFJD0u6R40bZL+W9GNr7fXV17Aca+01kuZ1ux5AAftJelfz31ZjzE1q3ADbJmlE0uOUzfPlmlBjNOe9HahntOZN9H26XQ9gNuFmGQAAAFAxa+12SQu6XQ9gjhuSdFTBebdI+gtr7f+rsD4AaoqbZQAAAACA2WaDGqMzn1JyuR1qhG++z1r7++S1wqxixFMTZytulgEAAAAAZpVm6ORRxph9JZ2oxgMpDlYjXHGpGqPMxtUIfX5I0vWSfirpB9baO7tSaQC1Yay13a4DAAAAAABAT9nbGPvablcigXdL11hrj+52PeqkZ0aWGWPsUUcVDS9vueaaaxSzXCfdeeed2nfffWdWyPbt2fd9zmDQecVyrz72WPb9wEDr9Q7vmTH9PdNyesfERP4096ny/n4aH2+9nj8/O8193+ePD3ZvlLuFZB9hz872+MeCu9/87Y/O8v/24zZlf79t29Z67R4bY2PZ+dzm7x8a7nLuvve7XH+5mfL7iinHNpJz21bRvtpfLrSfis6Hqce5K/WxNt26Y9YXKsM/vy+oYXYzv/6h48HtC935/H42bxkp7rzq9/fuMRXbRtzvXXU7m82mtH+xYeeCNWvWaP369exg9Jye+hV89dVXl17GGBO1XCe95uyz9W/nnTezQtaty74fHt75cmJ4caEi1qzJvl+5svV6y5bstJGR1us+ta6AJryIbXdaCqHy/WkhqeuVwtbR/Pq7P9j9/bR+fev1Cu9B1+77oUHvO7s3yNxC/Jtjy1pPEa5iG4fKjCmjzL4tum53Pv9YcG+6LF9eeNWVHxtVriu2Hr6ix2+o/u5ybpOWsk3Z32833NB6PTjYeu0fX+4x5P+IW7iw9drtL53ud0o9Uhgdzb5361/Hvq1OyrRPl9u2/O3v8ve1u5y7n0Ll+/MVbf++vOWqPk+nkvfd/OPcNdCf/S6x54a8MkJ9TNHyx8az3yt0fl+1qlCRQanPxX79Q8eD2xe68919d3Y+d7vutlt22h7Ly++3TVuydXSPKb+NFOV+b/84L3qMptgXIVUfy7H1cvnH0IBad04n+gdURKf7rBTfuy79bGz/P9M2efTq1VHL9xL+zjU7sV8BAAAAAACApp4aWTZbWZmdd+z9O/yF/yLlDWVwR5O5f83z/2K9cWPrtf/XHnckhv+XQ3fe/v6Z/+U2JLQNim6fon8RqeIv7kX/WhsadeA68MDw+8LcP406o8dCQtvfF/PX1E5ub/+9v1xeOf6oIZc/emnxcNq/NveCMm2kaDmhbeW+d/sinz+SwR0l5h4K7qhZfz5f3giXMiPJYkbHhvqKXhk11C2x7dPd16HRRe451RfqO0JtJsWohm6eA4uKHTnuXp/0D8+8/qF6+H1MTPkPP5x9745Ijh1JVvRclmJ/Dqxbm33vHBBr+/fPTHPbtdtv+aPg/RF1MxU61qpQ9BxVF6lGoseMXh2Y0tf1t51vujI7qYrfF7nlh04wCVQ9kgyYbTgSAAAAAAAAgCZGlgEAAAAAAJRkxAik2Yr9CgAAAAAAADQxsqwGjGxuDHnh3AFegoZsLqzWPdGbb84u5obC+2Hx7gMS/fwPbo6QTuaGKJNPpWius6pVXcds/rji685wFuzmUxU7vm5n4/V5G6/o9nfbv59qwn16lj/NfTppipwydcyLMp2iOe+KLvPgg9n37tMqDz44O+0Pf2i9dnPpuE839cvwj6/QEzBjpH7qIRqqeNJqnlDOslAZ+6yMe7JzJ/n1ysvj5h8nRZ8+GNoXoZxHA/2tC5IJDRVaVyoxffeiRfnTil4HpMgrFV2m2/FJmQvCfbQ1M2lisP3+8NvIHnu0Xi9ZUqwaIVX0ibGpo1Lnb61r/+AqU//UT8Xu9PmwaH7Vwjl+K85Z1mm90F6BEFowAAAAAAAA0DTnb5bNmzdPRx555M5/a9o8kuess87Sfvvtt3Oepz3taZKkL37xi+rr69Nvf/vbnfMedthhO8tYtWqVDj/8cB1++OE65JBD9K53vUuPPfZYJ74WAAAAAACoWN8s+IepentsZwILFy7UddddN+18//zP/6wXvehFUz5fuXKlPvCBD+jrX/962+UuvfRSLVu2TFu2bNHZZ5+ts88+WxdccEFmHitTaJhqmaHFeeWFRve6oZX++2XL8pcrsl6pmmHlscsVHfadQuwjxTtZx7z1+ut2wwqlcOiN+76uw7An+gd2vi68b7yDyC2jzGh5d1uGttVcCbEr2j9s2ZJfhhsyKWVDKv3l3NBLt697/OPzy3eXafe+DuZq+4lVtH8eHs7vw9wuYbfd8tflt8+ioZ1Vhx8VLcOf1t/fvg/reJtzDsTQ+StFCFyKlA4p+o1S6w2dqFMIfKGi1zEPPdR67Yep+mG33ZIiTD52PndaiuMrth2n2AZ942OZaVvH219D+b9J3J/yfpMrGurdUV4Hv3FL63v69Xe/94DqiTQRmKvq+Qu2h5xyyim68cYbdcsttwTnGx4e1nnnnafvfe972rBhQ4dqBwAAAAAAgDLm/M2ybdu27QyvfMELXpA731vf+tad8/3lX/7lzs/7+vr0tre9TR/84AenXdfixYu133776fe//32SugMAAAAAgO7pdgglYZjVqMng5u6ZaRimJP3FX/yFPvCBD+iOO+6YthxrbdkqAgAAAAAAoEPm/M2ydl7xilfo2muv1V577aWLL7542vn7+/v113/91/rHf/zH4HybN2/WmjVrdNBBB6Wqaml+uopdd229Dj3O3M8dkJf2IkVetdkmdby+n3vJfT9vXnbakiWtbezndIjLUZF+n/XEI9I3bmz/WlKfk9BvYnhx4SJjUsf0RD6qKYkR02bgGB6OWy6UJ6jqJ7O7TcY/fvdZ0dpeE4FtFZP3BjNTNN+Vm7tryZLstFBesrw2WWYf1mV/Z9Ni1ad95h03ZXI2Fc0lFVOnWD1x3gwYGs2mIxkfX9qlmqSRIh9ezHxSmryFRZdL0bb889xgTp4yN+eoFP6NUvTYrrr/yZTvXVgsHR5TLmfeTaNDmUmLu9TH9625PfuBu3MOPrizlQG6iJtlbXzhC18ovcxZZ52lf/qnf9LmzZvbTt+yZYte97rX6c///M+1xL+aBgAAAAAAQC3U/89PNeHmLDvyyCM1Npb9C8HAwIDe+MY36oEHHsh8fsIJJ+iwww7T6tWrtc8+++jf/u3fOlltAAAAAABQAaPu5xsjZ1k1TK/k0DLG2Ji6GmNqnyfs7LNfo/POa9xEix0+7A+NzntS+Lp1+fUYGcm+d5erIkwp9DTzmCHhdQlHqYL7Pf2wnoHxrTtfj/Vnh2+H9lvR8JSi9QqJDSGLbf8x6w7Wxd3ooThYP67KCdEcG8+uO8Ux1QttPjZso+h+C/UjeeWVqVeKbRzbjt15t462pvnNLLetStXHmPaY2P4nJLaPCa27k4qGMPlNy43KKRoeXdfvmTffdPNm+v/YGPGA0HFfVF3OE+529bIZZPjXojH1ryJUfTZdb8Zun6rP5y4//UvoXO++T5NypHvcY16ShgarrVduu/Y7/Lvvbi2zav/C5U+WefTq1br66qtNXC3r73HG2HO6XYkE/ka6xlp7dLfrUSfcRAQAAAAAAACauFkGAAAAAAAANBGfAQAAAAAAEIERSLMTN8tqwMjmxsrHxtDnpanxc0HE5sBwxdcxv1vJyzHgr6suOQZSKJonZcq+7W/txIEOP06+8PZ3ch9MqYXzhUrliompRwmZPA7uRg8dRH4+M0fRPBpTctL1x+3TuhwbfePOw1D8L+dsu6k53cpvn9D2qKL9p1A0D8769a3X+wxvyJYxsrRVhp8MyMmbh+qPixT5kKoov2iZRfOfSmlSdHUyD1Rs7sygFBdR3Ss+Suy2c6ctHfEmOgmqJjSkOgq1n7qcb2PF1j9muaK5Iato+ynyS8Yqetx085jPve6VpFWrWtN6vL0DZdTz1wMAAAAAAADQBdwsAwAAAAAAAJoIw+whKYZ9J3v0eCg2I6LMosOhY7dBqPzQV0kx1Ljo0OuiQ9PLlJ+3rjLTiq47WEagjaQYCp+ijMLbwH+eeaj9u7Fzfvhm/0DbRcocTqFjyA1rDIVyVm3C/Z4531kKH3vud5uyfdwQX3+iG9ozmA3tydvfsW0pRR8WmrZypVvGUuUi7DKoitCbov1gbPhaN0OIQ/1RivNjpgy/b3UuWDoZrllmP7n9W+z1SNFzc+Vh924It3e+qrwNJo49qzo1Q+xyMakrJEVfZ9dFaBsUPRcX7SNj0zFUHQrf1dBFt28teKz1QpqPOjFiBNJsxX4FAAAAAAAAmrhZBgAAAAAAADT19rjeOaZMGF3ekOdSw2rdYbt+eIT71D93eLj/eCznfanQhoj7uKEh26Hy3er7DzNcnOBpX6mVCdcpOm/V4aZFVTG0249mcLn7vvAQfH8Iu7sCf1rgcXGZp0QGngjqqusTHV1VPCUsWIYb6upzQzT9feGEGaU4Fqp+ylYVIV5zRTf7prr2iynWlXvcFO10p5SRpl5FxH7PbvbBlbeDyMebdnPf5Kk6hKzyfVEidYV7uBVNuVD0N8N0yxUtI7i9cnKhTI1ETXvs1TX0vZK2lRPSXtn6HL1w3QqEzImbZccfd1S3qxC0YEENnw0OAAAAAACCuC04O82Jm2WXf/zoblch6DUfX9PtKgAAAAAAAEDcBAUAAAAAAAB2mhMjy+rOyhSK6S4TV57kceNu/qVQLqYuPtK6aJ6FojHzkSk7KhGTRyBFXp3Ydla0/CqE2nvR5hn9XfoHWmUMlzgWClYsdtv1+JPmi1uxYsZF1CUfUux8ofyMCCt6rkyd47ETCudhTJCnL6NE55PZ/oND+dMq/i6xeqUt5Mm068B+67XvmSIPbiox1+NlrttT5/Iqo2h+5GD7yWl3oW4k9nq/6tyidRU8f7nJmiv4EdRrfQemZ4zpk/QmSa+RtErSg5K+Iend1tpHC5ZxsqR3STpC0mOSfiLpbdbaO6ZZ7kmSrlHjHtbp1tpvRX6NwuZOTwEAAAAAAJCQmQX/CvqopI9I+p2kN0j6pqQ3Svp/zRtp4e1kzAslXSRpoaS3SvpnSc+Q9HNjzF6B5foknS9pNG+eKsyVsQcAAAAAAAAoyRhzqBo3yL5jrT3N+fwOSZ+Q9GJJFwaWny/pk5LukvR0a+2W5uffV2PE2HslnZ2z+BskHSrpnyS9b6bfpShultWAka10mGolZUfEeFUR3tet8npl3SGdrNdsWlevl1+1Xq9/pxXdXmzXeN3cxpx7igvVdzZtxzrtlzrVpUopvmcny+j09XLqUOw61ilV+b0o+F3rlH8GveAlagxC+5j3+fmSPiTppQrcLJP0TEl7qRGyuTMG2Fp7nTHmMklnGGNeb63d7i5kjHmcpL9X42ba+pl9hXIIwwQAAAAAAECeYyRNSPqV+6G1dlTSdc3p0y0vSb9oM+1KSYslHdRm2r9Kul1Tb9JVjpFlAAAAAAAAJRlJ87pdiTSWGWOudt5/1lr7Wef9XpLWW2sfa7PsPZKeZowZsNaO5ZS/lzNvu+UlaW9JN05+aIw5Q9LzJf2RtXbcmBLZ1RLgZhkAAAAAAMDctd5ae3Rg+pAaT69sZ9SZJ+9m2eRjr9uVMerNI2PMiBqjyc631rYbjVY5wjABAAAAAACQZ6ukBTnTBp15Qssrp4x2y/+LGver/r+iFUyNm2UAAAAAAADIc68aoZrtbnbtrcbItLxRZZPLT87bbnmpGY5pjHmKpL+S9ClJuxljDjTGHChp9+Z8K5qf5d28S4KbZQAAAAAAABH6ZsG/Aq5qzrra/dAYMyjpSElXt1nGX16Sjmsz7amSNkm6tfl+HzXSwZ0r6ffOv39sTv9k8/3hxaoeh5tlAAAAAAAAyPN1SVbSOd7nr1Yj19hXJj8wxuxpjDnYGDPkzPdTSfdJepUxZtiZ9whJz5L0TWvt9ubHv5J0ept/n25O/3Dz/W0pvlgeEvwDAAAAAACgLWvt9caYT0v6P8aY70i6WNITJb1RjRthFzqz/4Okl0s6QdJlzeW3G2PepMZNt58ZY86XtFjSmyU9KOk9zrrulfQtvw7OTbYrrbVTpqfGzTIAAAAAAACEnCNpjaSzJT1f0no1QiLfba2dmG5ha+03jTHbJL1LjQT+j0n6iaS3W2vvqajO0bhZBgAAAAAAUJLR3MltZa3doUYI5Ienme8sSWflTLtI0kWR6/+ipC/GLBtjruxXAAAAAAAAYFrcLAMAAAAAAACauFkGAAAAAAAANJGzrGndQ1t1zkeu0FU3PagF8+dp1Z6L9LG3HKcjXvptHbzviEbHdmjR0Hy9/kWH6uXPP0iS9MWLbtFbP/lL7b18F42Ojes1L3ii3vySJ0mSzvvO7/Tpb92oeX19Gl7Yr8++4xk6ZP8l3fyKAAAAAAAgIUYgzU7cLJNkrdUL3vYjvfz5B+lrHzhJknTdret1/0PbdMDei3Xtl06TJN1+zya98O2XaGLC6hWnPkGSdMZJ++tTbz1eDz0yqiec/nW96MT99bg9hvUXzzlQr33hIZKk//yfNXrLx3+hH3z85O58QQAAAAAAABTCTVBJl15zr+b39+28uSVJRx60TI/bYzgz3/57L9ZHznmqPvGNG6aUsduugzpw5a66b/1WSdLi4YGd0x7dNi5jTEW1BwAAAAAAQCqMLJN0w20P66iDlxWa9ylPWKab79w45fO167ZodGyHnnTg0p2fffqbN+ojX/2txrZP6L8/fUpumVZGE837ln2ayJ1vwru3WXTe8fHW5/3eHs+UsWZNduJNN7VeP/ZYdtp997Vez5/fer1iRXa+lStbrw87LDvNqYz/3YoKbQPX2Hi2fH87lC2vDHfdA/1x5cduH5f/3dwy3Wn+utz248vbju3WlyevHtNNy5uvjND3jmoLo6OZt7fePbTztXso+LOuX9967W/TdetarwcHs9Pc94ccnL7txojtp7ZsyU7btq31etGi1mt/G2TWtWVT9gN3I/sN2S1oZKRtnaaUH2ifRefzq1H0GCp6LPzox9k6PeekerSLbiraPxTdv7FiztlSthkvltfG3XYcakyRim4Dt44bN+bP518ixPSzscdo6FyWOTffkP2D6MRhT2qVP7o1M22rWn380GCCY807h2wYbZXv7urQumL74KLLhMqIvoZyGs3Y8NLMpNjrJleSOuaU5ytTvn9tOunuu7Pv3bbrX0u47SL2u6XePv7BNtHfGkDgNfHca6GHH84vfvny7Hu3XwleI6S+5ovkr9vtM91rPqmz13ahazLX4v6t+RNDOwDoQdwsK8na7Puv//h2XXrNfbpl7Uad/45naHBBa5O+/vRD9frTD9WFP/yD/v4Lv9YF7zmhw7UFAAAAAABVIVxvdmK/Sjp0/yW65ub1088o6dpb1+uJq0Z2vj/jpP1149dO18/+7U/115+4Uusemnq3/cXPPkDf++maRLUFAAAAAABAVbhZJunEo/fSY9t36PzvtcIOr/rdA7pz3ebMfGvu3ay/+cSVesPph/lF6LjD99CZz3u8Pv61xvD93699ZOe0//r5Wj3+cbtWVHsAAAAAAACkQhimJGOMvvuPz9E5H/2FPvQf12lwoF+r9hzWx978NN12zyY9+cxva3RshxYNzdcbTj9s55MwfW9/2RF6ysu+o3eedaQ+9c0b9eOr7tH8/j4tWTSgC97zrEJ1SRVD7y7X318wJ5SfTMTJ4zMlCYk7r5twwE+mkDefJA1nH6BQpRS5tWKlyLdRdY6N0LoGRp3EBYG8TxODQ9lp7ryBJDZ9y4rlCyzKr2LR7R+TY21KGV6uBvdw8HPMuMelm6fjwQezZbpF+qkgVq0KVrUWUuRCKZyTxe9TInJnpOhzQ20k1B6j8+A4jf6wwwby50OpvGQp+oTQfHnl++erbLOe+XmzTC42tz9d7w3Ad7t1t87+pUQFqdQKc7fxQNF6BM5J/nkueXYer88ayev7yiQ/dKTOwyd59fKv84r2waGEcjWRKk9ZEf5mmzcvf1omj15kvqjC9S/a7gLt0a9i0f7BXbWfT+sPf2i93mOP7LQlS1qvC/cBFfO399KR1mv32rDT3HoND+fXY0JDudM6mfsN6ISadBvdt9fyXfSND5405fNt//PK3GXOOuUJOuuU1o2zvZbvonXfP1OS9PG/flr6SgIAAAAAgFowIlxvtmK/AgAAAAAAAE2MLKsBI1to2GrlQ1v9sdHuezckU5oaZzHJH09dcHx1mdCYPCnCC7r5KOnC/GHwofCFwJD8vLCxvvGxqHX3rX8gO80ZF3+FWiMt/dDBvdz1ee0lZvv7Tc79bqFN54dJ5pVRhrv5Q2Xs6qQ09HfZggWt1wsXZqeF6twtsceyH0EZE7o1ZV39xUISi4ZQhtpj4eUiw6dCJpzvmTiqeVYoun+7WX7RMmLPUUXr5UfRuc3VDQWTspcFbr/lN+miYdRFv1vseblwSHjgIKrNNUGg3+hqHf0G5NYz1Nc5jSlF6gpfXfab38bzNkmp82FE6GX0tW6gIrF9jGv79tbr0LWQb/781uui264ubcLXwQw1UxTtI7eO5u/rwcEe+B0FlMDIMgAAAAAAAKCJkWUAAAAAAAARGIE0O7FfAQAAAAAAgCZGltWAlcmN9Q/lMSkaTx7KaxSbg0fO49Nj87WE1t2tGPdK1hvKKRaTryi0TBV5TELJaJzkE2tHd89Mum9e6/3Iotbnew1uyJZx98bWaz+hWQR/c4fyY2TnzbbdmCewl2n/br3cfBt+XjK3jt3MZVFUqnxLbt4LdxtU8Vj1qvNMucaUzaMW6gEK51hyPPxw9v0eywsthkSiz6mRipZZtK36XXzo9LVlS+u1m8/M/dwvc8WK4n1Abvv3V1CwYyx8vHq5DqPqmEiKnHRuHtI+bwcnb5OhxKCha5ei80VKvZ/KlBGzjWOuP2ai6u0T2gYbN7Zeh/qbHTtar/3t4+Y686/5anPdVLCN1zbHl1P/8fFsH+lu49rWH4jEyDIAAAAAAACgiZFlAAAAAAAAJZnmP8w+3CyrmdjQRH+I8+bNrdf+Y3xTGxtvle+PLO7kcNxOh78UliC8IDhEPkGZhcsLTFvmDYt3ngSfHTK/zguhCcRJxoQG+FV01+2vKvSYclfRcOgy7azobnO3Y2zoRy8Oi3fr7IZe+mEabtjhokUqLEWYS0y/UkGEUWZbLVnCgHFf5lhwQtKmiAxRS33uKRPCFHNslyk/xA29cUOk/CjJlSsT18s7eGP6ulR9Yrf61lL7rOIQxwy/Y81bn38yrrpeCWT2tXcimnBCd/02EZNOpYp0AyFVh6a60/zfJMuWtV67zcINz5TCIZquUFOq4rqocJm91sZ9Tv0XD9f09xZQAVo0AAAAAAAA0FT/29wAAAAAAAA1NG/6WdCDGFkGAAAAAAAANDGyrAaM7M448TKx3m5suR9nvnBhsRj60Prc/AB+egk3LUXRMPzUeVd6hruBeiBnQan95DSEUAqozHIrVmQnOg2trrkOQvVKUedQE+m1Y6OK3IF5+cskaeFCOdOyyxXNcVIXKfZ1D3Qx3RXIkZhJwlVCKGdN6lxA/jEUWneKnI/u+/nz85dzp+22W3Za0fyAhftZJz/UXFUq71zFnUKmnRXNWRZqaD1gTNk2WLT20Tn1AnnnupmzL6Ye/rQB9+s4+cxC3bHfjc9zhvT4TTCvLkXzx7WbN0av55F11fVaHagCrR0AAAAAAABo6q0/5QAAAAAAANSAESOQZitultWAldk5pDVFGIWUHb5cdLisP6zZfb99e7F1xQ4tLjMcOkZXhzwnDi+oelv5Yof1u/XMtOMOh1+4xYciRDodBVI0NKnXpQ498MsYHi4WSu6HZG7Z0nodaiOuon1pmRCUUJlbR1vThgZ7O2yjNjp8oKdOPxAbKhQbNhNKueBeI4SOm9Am74Vwnl5IIREK1S3a5pN8l8C6gtcBPWZAY94nre9TyTVaxdeRrm6GaLpf0w/DDESiRqn62O30tXonVR2yCtQJLRoAAAAAAABo4mYZAAAAAAAA0NTb46BnCfdpmNG8GEp3iPuE8+QoPxTJHcq8eXN22mOP5a9u0aLSNSylW0+Nqeuw6aJDnlMMje70d04xZLvo9w4N3ffDkCMfjJcr9smMAwV7aX87uusrWkbVUjx9yl8m9NReN9QyFNKxbVv7z32hNlH0uCnT3t3QtsxxPu6HADn16PHwpsoF4gVTPK01NK3MkyxT1COv/FRhMinC2FMcN91MRVDHJ9yVCfXO9CXr1rVer1yZuloZvRDaGtTBJ4xK9dkmKfrI0HcLpU4IbfJunvby9k1d9lm3zaXtwAik2WlOXFUf9Vff7nYVghYuWt7tKgAAAAAAAEBz5GbZ0f9wWrerEHTnl9d0uwoAAAAAAAAQIwYBAAAAAACAnebEyLIYN1x0g2686Eb1zevTvqv31eqXr9btl9+ua756jR6++2G94F9eoOWPb4RPPnDrA/rZp38mSbLW6qiXHKX9jtuv8LqszM4Yfj+2O/M+FMC/cWNu+X3LljnvBnLn83OULVjQev3oo/mrDulknqyez4ERie8Wz23HfiqjvNxV69dn37t5svwyRkbar6vd+zyxOXG6lcOjTE6TmPwnoWX8febmGPP3jbsf3Wlu/jJfijx2sW3aXW7M68cHtmxovfErSQ6zjDJtrm/9Aztf3zu++87XK1bElxlTrxRtJvR50XX39xc/9lwpmmBdc5f2wvk3mK8uReK5BLqZd67qdaXKEVhVeVLx7VNFbkVX0eaYoqn629G9lgv8pJrS//eCTv4W64U+sSqMQJqduIpuY8f2Hbrmq9fojPPO0MDQgC585YU64rQjtGTfJXr2O56tn/3rzzLzL913qV7wkReob16ftm7Yqm+96Vvad/W+6pvHYQMAAAAAANBLuFnWxraN2zQ0MqTBRYPasLbxF/uBoQEtGF7Qdv7+Ba3NOD42LiPTkXoCAAAAAAAgLW6WtWEnrGSka795ra7+ytU6+DkHy/SFb4A9cMsD+uknfqrND27WCW8+odSoMiNbbNhqguco+x9n15ut88KF01dparWyZYSq6C7nh3fEDONNMfS9m8OHx8bzt10wjCKgaPhI0TJjw1Pc5ap4JHpsCFNouS1bWq/dcEr3teS34+w0P/QvT2wdQ2VUEapRpVD9MyGIgeMktL39feOGXMSGkOW18dB3CXXjwTD8UJ0ItUzCbROStNm2Qi/94z5Grx+jIf62c7nHZdVNNUU4a5lzUmyYfG4Z42PZiRVvsMy6Myk7iutkCF8vKnqt5Z4b/PPEUH/rg/FAOpWByOaSoh33OvdQmzcvO23Hjs7WpZPm6v4Gipo9V2oVePLpT9aZXzpTWx7Yopt+eFNw3t2fsLtO//TpesGHX6DrvnWdxscCv74AAAAAAEBPM2rcVOn1f5iK7TKNwUWDOuAZB2j9beunn1nSksctUf9gvx6+8+GKawYAAAAAAIDUuFmWY8v6Ldp4z0ZJjaddjuw9kjvvpnWbNLGjMYx18wOb9cg9j2jRHos6UEsAAAAAAACkRKKTHH3z+vSjD/xIZp7RrnvuqmNffqzu+MUduuKzV2jbI9v0g3N/oN32300nv+9krbtpnX7z/t+or79PMtLxrz1eg4sLJivyBPM5hRLy+AlDcvJchGLT/XQV7ur8VfdaipzY3DBV59MK5UrKUzS3U2y9ymyrFHnhUjzSOjbnl7ucnzdveLj9Mv6xkCLfWOwyoX3frTwUqdpnXhmhvqdojjhpan83yT8mt28vVq8in0vh+hdtq1O28fDi3GkIC/UBS5bImVa+PClN/1a12JxT7vZyt8/mzdnlFvdvdRYqfpCm3nZF+6Iq8mqGZMqv+OIq2D4D6646p5Wbi9K/nF08XH59KXLXVVFmaPu7m/9hLzhlfGErT1netUknpLiWjj2+iuZ+S9GfuX2/lL0u4BwLzC09dsujc4aWDOn0T52e+Wy/4/bTfsftN2Xeg044SAedcFCnqgYAAAAAAGqAcL3Zif0KAAAAAAAANM2JkWUXv+Pi0svssmiXqOViLFsc97juDH9cdsSz2kMhTCkiA0KPlq8i8qBomEUnQyz8oeMpvnc3H9texVD4bvHr4T6CPTb0IFR+TIhRinp0U5nwixTfO1T+8HD7MmNCo+uk0yFkvSDUloqG+BYVaqv+NLetDaj1ZqJ/QHnqtD/dugxlLjm8beCEXobaZ5lpLjeEb6B/5mHx3QzR7ObxW3T7xJ73i4anlwmnj6lHCrEpL4qmS1i4sNpzfaf7kaiUHeNj2Q86mP/FX1XMqruZ/iVUZtFzVJ3ONUA3zYmbZXfdcFe3qxD0mrPP7nYVAAAAAAAAoDlyswwAAAAAACAlI3JbzVbsVwAAAAAAAKCJkWU1Ex0jPjKStB6+2HxLrjIx/6lzMxXNE1GFbuaZKppbpIrHrMfUKXbdnax/mfJS1L/qPDKdlKIfiVU0H1IH06JICudIy9Rly5bWay8BZJ/T/4fyXc1VRdtZKK9mSCjHUujYc3N7TajYfqtTTrq87ernDQvlwelW/tBUUtc/9pwRu+7U59gU9QrlnauLqvNv+mmIq5aiHbvnMv+85p7LQufYzLoDM1ad1yskRe7DTou51qrTuQboJkaWAQAAAAAAAE2MLAMAAAAAAIhgul0BVIKbZbNFZOxQiqH1RYf3lqli6uHQsWVUHVZRdRhaXUJ03HqUCcVLERqQoowU+7DTIUbdDP8tKqYfKRPGFTOtm9stFLqSsX597oJ9y5YVLAS+0KZy903hMKJEQuFNboBAbDhoUZ0+Nqq4tpipXgjljF13UUVDDiVl+yY3lNyPM3Qbdqghd1HoPFF0Hxa9lihzPq9LeFzoOHSn1aW+sar4fRI6v1S9vYq23W72U0A31f/XFAAAAAAAANAh3CwDAAAAAAAAmojPqIOxsVZYjT/83B2PW2ZoetGYkcRiw9U6GXaZspxOrSt2+HPssP6Y+ULl1yUkMPbpPimeKhq7DboZxttNMU9rLRMunqL8FNyu2n8ao9t1D7hhS36f7oZl+uFNnX6sWo8JPY007zQaetpjFdx1+20kdKqvy1MFM32Yt8FHxwcyc7ryLnl6MeQ8xP0+Y+PZ71I0fC32GiFv3jLnsuD68q5hK74u7YWwxVSqTjURIxRKONuesuh+n6Lnc9/mza3Xy5cnqpgj9XXqbNuHqczrdgVQid6+wgAAAAAAAAAS4mYZAAAAAAAA0MTNMgAAAAAAAKCJnGV1YG0r0N1PoFL0cdruI7kD85bJ7ZE615YvJsZ9tuUqcfm7Pi+/QdW5AmIfWV6XfdHNNlLFukP5SOqYB6Qu9YjV+Zwvre3ld+NuurFMO1i5MjvjunWt1x3MUTkbuJsr1AeH8n/1jY8VKyRy34Tykm3b1nrt58gZSJyuLsmx7H0B910of1xI8j7G35Bl8sXOUKiJdDIP18aN2fdLtaFVj5Gl+QsGOrGJwaGdr6fU1/niKc4hVV8HVF1+bI7Nbiq6n1K01aqPhTLbOC9PmX8ozHMSWs2fn532yCOt14sWZacNVdz9xLStUPvvtWu+VIwYgTRbsV8BAAAAAACAJm6WAQAAAAAAAE3Ea9SBG4bpD/933w97MRWh8foFwz2KDr8tOqw2enh4KP4i8F1ih6bnLVf18GF/WLbLj/TI2yRlInmKfh93XeOBR9dXHeFVxfZPUWYVoXkxx0ooNKMuQ99T1aPq4zJFKEuKeoWOqexx6S4zlJlvYNmyYgXOUUXPE8FN53beofO038mPjLRer1gRWEG+UL0WLiw2XyeVObZC55e8/VYmRC3qGI2NB00g9TmjjHvXtcp3I7slaXRFK/Qy2IpDKUH6B3a+nLKf3FBmZz5Mz+1+YkP26hhGF7zecduLpIkOthm/e8i7rvfnc8Mwt2/PTnP3oX/s7b+qVPWmFfO7wDc6mt03i4fr0WaAKtTk0goAAAAAAKC3EK43O7FfAQAAAAAAgCZulgEAAAAAAABNhGHWjZ+0w813EkpIEni0eWyei5jHQJfJe5bNkeDJJugpXY+6Cj1KumiaFH9zDA62tt5A/8y3gV8P973fzPr78/NcxD6COq+MXti/3VT1o9Rj61E0n1Bs+0mtTM6jvPZZZhuEUmHl5Szz01dm8wJxWvclaUuh5Frue7+TDJyb85Q5FmJ2fZK8XgHhc33xdbnL5R0LUvY85G+DsfGI82ONjqGibbdw/+9tvK3jrVxPbq6k9euzZbiXov72H1Cx67XQNc5AjbZ5nqrPsbE5eGM2XbfOr+1E1cX70p28xpna/xRb7tFHi81Xdc6ykNAx+vDDrddurkxfndoWkEL9z04AAAAAAAA1Y0S43mzFfgUAAAAAAACaGFlWBxMTrfgbP2RjSrxNThHeY5ND4U2Fq5V4yHkw9KPqIfiBcdPdDO/bsaP8MqEIoFihMjZubL1esCA7bcmS1usBr4yiIQV1CbXsdBhjbMhF3dUlnNIXGxoWms+dVrSN+4oev264pn+aGBjkVF6F3Hbhn09CO8eJXyvax5Q5ZlKE3lfdB6coM3SchEI0C0fBujHQJdJaVH3OSnGecENRR0ez14rbtrVfZtdds+932aX1esq+GHU2uhuv6c0c6qWqPk+k3k9+yPyQirWfosrUtwciWDNi93XyazSvs/B/RxXl7m63XYROE/5PO/e9e82dSl5Iu5RtP6G+dP781mu/3xgennlKFqCuaMEAAAAAAABAU4/9PQIAAAAAAKAeGIE0O7FfAQAAAAAAgCZGltWBta3gcD8RQsFkBFXkJataME9KB5MwdDJfixvX73PzGUjSvHnt5wttmjL5VIrmQnHX5+dYG888MT59zq/kufF8mS8Ql6+iLrqZ7y2kaL1S5AJKkSujTO6xFPmE3Cbo5zFxjz0/XyCKiz423J3jnpv9ztrdUX7OpsTKnBpTt/8q+pii5193mn+uycu5479/+OHWcsuXe+X7CxaVPQlGFZH6GsQvw91efjott8rLlrX/XMrmJ53CnTmwDYr2l3U9l7mGxjdlP+jgNWsVbaRoX1GX3xoptkGKHGWhaW6ePymbiyyUnjq2Kwpxt5efX9gVuo5361xFHYG64mYZAAAAAABABML1Zif2KwAAAAAAANDEyLI6cMMw3XHwicQOd6/LsOmiIQrBMK6CQ+SreCy8W2Zo+LY/rNmPyM2br+i6Q8Pu3Wnj4/n73Q8Ndevob+KB/s6FUhTeTyXCnDsZClJFaEMvhLJ0MgS6aAhlmT4mdR8ZCpFatCh/uV5vB10V6sTcztaNofGtXLnzpR/ak3r7F+3HpexXG9LW1huvoXUzHUPR0MuiZfhhRHnnUf/zocDJObh9EoRhFu1zYsO+i4awuqHefn/jzudHIQ8PFwtnS7GvuylTx1Bn3YOqTpcQW36VqmhzA5lzdva7uD/v/Gj9vHDoSvg/IpyVF4yoniJ4bI+PNV5YW7xAoEYYWQYAAAAAAAA09fafQgAAAAAAALrAiBFIsxU3y+pgcLAVxlEiPCImhDLF0+JCujmUvq7D+PtGW+EvA964Zjdkx38SntsUQpFCwXVHDH0PhYr63Hr5y4WeuJO37jIhRkXKk7IjzreMDmWmueEkfliO++RSd9/4+8lVpg1W/fSpugjtw04+Ha1o31d1GIhfj8HB/PUNaGzn6/7BVl8R2h5bR7PlDZU4nmct90D3Y8jc9354ihsrE+gEQk9VSx1qXDgkUNLQqPPdQo+MrOmTgGO2nf/V3OjZFSvy53P3oR9xu3Qk0E8lDr9LkQoiVEaoH3RDL8tcB8TUKzqlRsXrDgqE3PZ6KHzVKRFy46Glwo0tRahoiuuuou3T/1pu/xPqNip+oHJ0+hH3e7vXJo1p+dcnY81pVqZUNYG6mBM3y4469qhuVyFo4fx6XqgCAAAAAADMNXPiZtnR7zq621UIuvMLf+h2FQAAAAAAAKA5crMMAAAAAAAgNQJNZyduluW44aIbdONFN6pvXp/2Xb2vVr98ta78wpW681d3al7/PC3ec7Ge+cZnasHwAt197d361X/8SjvGd2he/zwde9ax2vuIvQuvy86fr4mRpZLic/qE1DVfQsz3qSKXRZXlSZLWr2+99pMROI9c99MIxD7Ceab8PAt5udOkcB2L5s1LzS9/fLxVDz8Xzbp1rdfz5mWnud/HnebnLHPTmLjrkrLbLvho7Vl0nFedbyYkRZ6RTm//YBu54ebWtILPnR8a93PDBJLszRXuwRzKnTOlf26fpyxVXrvkeYL8TthtXIHOumj/0+k8i4XLySQgy6a1cPt49xAa6M/P3RVKodTp81fR+Yrm/gwJfu/xVo6ixVPma7WnuubuquT4yim/6ryXVah830RcxKaqk7s/Amnnoo+9ovP19xc8NqbklKz2B0Be3xHM/ebluQxtk8nqG+4koUdxs6yNHdt36JqvXqMzzjtDA0MDuvCVF+qI047QyiNXavXLVqtvXp9++cVf6rpvXadjzzpWg4sH9dx3PVe77LaLNty5QRe/52K99Isv7fbXAAAAAAAAQEm99+ePDti2cZuGRoY0uGhQG+/ZKEkaGBrQyievVN+8xibb/Qm769GHHpUkLTtgmXbZbRdJ0pJ9lmjH9h3asX1HV+oOAAAAAACAeIwsa8NOWMlI137zWl39lat18HMOlunLjh+95ce36IDjD5iy7B1X3KFl+y/TvPnzpkyLkSIkqK5DwosO902hzKPUk3PjQLwQoL6VTvjC4FBuEUVHYaf4LqEQDj9MIzSkPXZ9RacV5dbLr78bluNzI7IKPtl8yuj5LVvcd9k2mK1XsWO0zLFc+aPgc8Suq0wIZR0l2d5+iKAbwu02Qr9BOo1pkxZnJi2uSXhuV7nba8WKYvN1QEw7KRViV/D75IUpTaeT6QFC3JCgAW/7PGWFc/7tb+370DVBsD/2jtGtap23h/rTH2spQl9TXA+OKT9lRGp1SSkQUibcNHNucMJZJeVfRNXl4ErEPUarvuaLDUOu+pqp19t1zHacS4ykNL/8UTdzs0UX9OTTn6wzv3SmtjywRTf98Kadn//6G79W37w+HfisAzPzb1i7Qb+84Jd6+uue3umqAgAAAAAAIAFulk1jcNGgDnjGAVp/W+Mv/Lf+5FatvWqtTvzrE2WcbIVb1m/RJR+8RCecc4IW77k4rzgAAAAAAADUGDfLcmxZv2VnvrIHbn1AI3uP6K5r7tJ137lOz33Xc9W/oDVE+rEtj+kH5/5Ax7zsGK04JBDiAQAAAAAAgFqbXUHxCfXN69OPPvAjmXlGu+65q459+bH69pu+rR3jO3Txuy+W1Ejy//TXPV03/teN2nTfJl379Wt17devlSSd/L6TtXBkYen1xsZ6dzpGPG99ZWLyY+qc6rHkHc3n1ON5KEL5Tnrh67h19HOUDQ+3Xvu5etxpoe9ZdPeWyQWUJzYXRyfF5h9MkZunTJkptl1MLqDg9vEb0IFOqL+bayvQmBb3ezlxOM1n+/sSecliznNl2lzq3KJFz491uV7wFT22S/UBK/YqNl/BOo71Z3OLxhxdVeRoLXpNE9sfV5GTtEqprhWLluGuL7RuN/ebJI0774fU6rvLHKMx36eb19Ip2n9sH1a0Hae+Ppiu/OB1QAKd/M3TC9epVZk733Ru4So6x9CSIZ3+qdMzn734sy9uO+9TzniKnnLGUzpRLQAAAAAAAFSIm6AAAAAAAABA05wYWXbxOy4uvcwui3aJWi7GssXLpp9pGt18JHEVQ2xjwjZiH+VduVWrWq/9ECDnfYpwtSqG7qcI7Yltn6mHjvuj293dERr5XnQ4fYkIr9zye33Iep0euR4bLpda0WO2z2uEEyv32fnajbzsH8yG8rh64fH0dVU0PCi2n/WXSxGemHp/VxFu1802mTrE0d8+nQ5pKiLFubjT10ydDpvsloH+bD36+93wzfx+PaSjaUUi69HJUMtYnbxeiA7RTLC+2PNOXdoZ0Glz4mbZXTfc1e0qBJ199mu6XQUAAAAAAFBSb/+pG3nYrwAAAAAAAEDTnBhZVndGdueQ1tih6FU8ZSvFsOnUQ/5jQwOqGNZc2MjIjIuoYh+meKJpiuU6ya/jQMU9YOg4zNtevbAdY9U2VLqg2LCEou0g9J3d8K++8bHcifeuy5ax14rZ256KSnE+LLqvY9t46qfGhtbdC8dap1XdLlJw1+U/EDfTP7B/p+hmCFmKp7zWZR8WbVux57lO7psqtnddQ4ZTPym5q7+pgA6rR+8LAAAAAAAA1AAjywAAAAAAAEoyYgTSbMV+BQAAAAAAAJoYWVYzVeSLquOjzadbLkWOh9mkiu/ZC9u4rvkfYsrv9D6s47FRpk512W+py0iyz/rzT93kKAurOidj1W28m+eC2awuuZKKLlcm3+ZsOo92q7yq1tet64dU5VXZh/X6tWedpNjmszmfMRDCyDIAAAAAAACgiZtlAAAAAAAAEfpmwb8ijDF9xpg3G2NuNsaMGmPuMsZ82BizS9FtZYw52RhzhTHmUWPMBmPMN40x+7WZ7/nGmP80xqwxxmw1xjxsjPm1MeYcY8xg0fXNBGGYAAAAAAAACPmopDdK+q6kD0t6YvP9k40xJ1lrg7G3xpgXSvqWpN9IequkXSWdI+nnxpijrbX3OrMfLmmHpM9Juk/SQklPb9bh+caY51hrbcLvNgU3ywAAAAAAANCWMeZQSW+Q9B1r7WnO53dI+oSkF0u6MLD8fEmflHSXpKdba7c0P/++pGskvVfS2ZPzW2s/1KaYTxpjPi3pdZKOkfSrmX2rMMIwAQAAAAAAkOclkoykj3mfny9pq6SXTrP8MyXtJenfJ2+USZK19jpJl0k6o3lDbTp3Nv9fUmDeGWFkGQAAAAAAQElGc2YE0jGSJuSN5rLWjhpjrmtOn255SfpFm2lXSjpR0kGSbnQnGGMWSVogabGkP5L0dkkPSfplueqXx82yGrAymmgeYv4jdiecQ6/M43cncg7ZUPmd5talaD1it0FoudhtHMP/nqnXFyo/tI2L1qNMGSnaYIp6hYyPt38tSf397V+nOA5D5ZTZh3Vp13nrTaXo90xRRop1lVl3qPy8fR9qq+vWZafttYLHtrtS9DexZXaz/YTmK7ruFN+z6nP4TNZXtk6x5Xf6OiAkxXmoSHllyk+hivJD7bGTbdAXc66P3T5VXKvPdF1l1tfN3zyuMv1Zt9puqmuhTl5/IollxpirnfeftdZ+1nm/l6T11trH2ix7j6SnGWMGrLVjOeXv5czbbnlJ2lvezTJJX5B0mvP+l5Jeb63dmLOeZLhZBgAAAAAAMHett9YeHZg+JKndjTJJGnXmybtZNtT8v10Zo948rvdJOk/SckknSHqSpN0C9UyGm2UAAAAAAADIs1XS7jnTBp15QstLjZDKwstba6+XdH3z7VeNMa+R9H1jzDOstT8PV3lmuFlWc1UPqe7m0OWYYcFVDP3t5hDh1EOjqwizLVpG6vnKiA11csPX/NC2PKmGyFcd+lcXKcLQXLHhQbEhZDH9SGw9is7bHzhzj4wULh6e2LaVt0yZaaF6FO0r5mq4S13P4Xl6fT9VEa7czTDGojqdpqNKsSlf6pLKJXZfxF6PdPI6ptfTwcxlvX21Xti9kg4xxixoE4q5txoj0/JGlU0uPznvTW2Wl9qHaPq+JOlfJb1WUqU3y+bIfgUAAAAAAECEq9S4f7Ta/dAYMyjpSElXt1nGX16Sjmsz7amSNkm6tUA9FjTrsbTAvDPCzTIAAAAAAADk+bokK+kc7/NXq5Fr7CuTHxhj9jTGHGyMcXOQ/VTSfZJeZYwZduY9QtKzJH3TWrvd+XxFTj3e2Pz/yrivURxhmAAAAAAAAGjLWnu9MebTkv6PMeY7ki6W9EQ1bl79VNKFzuz/IOnlaiTkv6y5/HZjzJvUuOn2M2PM+ZIWS3qzpAclvcdb5Q3GmMsl/VqN8Mxlkp4t6Y/VyGH2sfTfMoubZTVgZGccM151zHmnY9pnawx9me+VYhvUpYxOiq3v0OD085QVU5dU27tb+63qnEq9UH4380pV0Y5nkxS5bqpW1/N5p3Ny1fHcU8c6+ep63p9Nx1AV6+tm26pjv9jr/WCdpK5zL26DTjDdrkDnnCNpjaSzJT1f0npJn5T0bmvttI3DWvtNY8w2Se+S9C9qPBnzJ5Lebq3185V9QtJzJL1ejZDLbZJukfROSZ+w1j6a4PsEcbMMAAAAAAAAuay1OyR9uPkvNN9Zks7KmXaRpIsKrOtcSeeWrmRC5CwDAAAAAAAAmrhZBgAAAAAAADQRhgkAAAAAAFCSkTSv25VAJRhZBgAAAAAAADRxswwAAAAAAABo4mYZAAAAAAAA0ETOMgAAAAAAgAiMQJqd2K8AAAAAAABAEyPLZokJ775nnyailptpGUWXmW7duXUaH8t+MDraet3vNeeNG1uv16zJTlu2rPV65crW68HB0nUqY2w8+539KscovM3Hx3MnTfQP7HztblIpXMfQ5nc3ZWx7TNEG3Wn+d9u8ufV64cLsNLf+A/3F23XRehVZxl8u5pgps+4UYuvoq7r/KVLedHUq+l1D+9DtpoaHs8u5x1Sm7wsclGvvzpa/z8rO7fue4HcCbr/o9f9uv1jFMRTTfsqU4X419/XQYFw7Lip0nFR9jE5Xl5gyi27/qvvZoue5WMH6uw0o9sJl/frWa7+zc4692OuAbto62qqzv3lCmyvvu/nbwN38U65HIvZNivZeZrlQGTHbwL+cjbl098twN11oWqzg9nHOSxODQ8WXKyjFuSa2/MmvNlH/wxhoi5tlAAAAAAAAJRkRrjdbsV8BAAAAAACAJkaW1cGOHdKWLY3X3lhfdzhuaHhs7NDZ1MPbywyfD4UmZZZzx0P7ITShGKbJbSpNHUMdCEmsUmi1oWHf0UPA3W3gbztne/U5K+jvz+4Lf7G84ufNy06LGRbf6XCL+fNbr8uETuRJET6Sahv0QuhKCoX7kYjyUtUjFKLgRib5x5obLT5QsEG6UeVow+9oA7E9fTnbvJtpD0LL+eW74VoDFV/tuW13yOv7U/dFVfRtsaFnnVQ0JD90LRE6nw8Odi6kNHSC7cVz19D4ptabfv/iJ/+75u1Hfx9m9tugf5x37qdcKPy3aEhybFiz24f5/VmKYzT2Z0HRMNJgHZ3feu51tSQt9n7axOjFYwqoi3pcAQAAAAAAAAA1wMgyAAAAAACACIxAmp3YrwAAAAAAAEDTnBhZdtSxR3W7CkEL5w/kBsv3jY+13nQwL0EZRXP1JHnUuZ8Iy81T5k9bsaL12k3+I2W2pf+YZleKOP+x8db39POFuLt027bsNDeflvs1o5tBICmXuy/8pujmT/BzKbhFjozkr7poLotYRfNj+Ll03PfhR7Xnz5f6cenTLZeHnBTd3QZFcwj5fUDo+Moc98PF8l3RDqZy++D+4cWFl+vktkyRz6zTuUvd7Zo5b3gnkYn+gRmvu+j2mdLP5lxDldneqfMiphBar593NCQvZd+UMhLsw8w1mp+fN/E1QhX5AYPnYqdfSXEchvbhlLxzTg4zN09hFarO39fN85e7XRf3b81OdPLQBbdB5iAayJ0UyknnpmKW0uQsK6rocVimHUwe9n0Mz0GPqufdlwI2bdqkiy++WGvXrtWod+Ywxujv/u7vdr4/+l1Hd7p6pdz5hT90uwoAAAAAAABQj94s+/nPf65TTz1VG/3b703+zbIYN1x0g2686Eb1zevTvqv31eqXr9aVX7hSd/7qTs3rn6fFey7WM9/4TC0YXqDRTaO65B8v0YO/f1AHnXiQjn/t8TNaNwAAAAAAqD8Gz81OPXmz7JxzztGqVat0/vnn6/DDD9fAQP7w8Bg7tu/QNV+9Rmecd4YGhgZ04Ssv1BGnHaGVR67U6petVt+8Pv3yi7/Udd+6TseedazmDczTMX95jDbcuUEb7txQfoXz+/Nj2Ao+y7iKIeex60suFHcYiv0rKBt6MOPipnAHPq5fn53mRiWEQjRdw96QbP8R2rkr8OWsYPPm7Hv3nrS/yC67tF4n2BVTVB2+GQo/jalHmVDjmPBKN+xJCrfXqrddniTh1p7Y79KtbeAfy+4x9dhj2Wnbt7deu6HXUvyj7JHP36ZFj6GQFOkGUqQzCLbxCk50bsjXQL/T6EezG7lvOD/8sei1S3SoqFrXh+NOFYcGi4cYheqRoo9JHWofqmPokiDFuoP8i5fU5QfUNTw9Uy8nDr/PO0b7+/PThSSvRweWKyL22iFF+OBWZbd34cOmYN/qn4fc64AqBPsppzJ+uytaRvKUO0CN9OTNsptuuknf+MY3dNRR1eQi27Zxm4ZGhjS4aFAb1jZufg0MDWjlk1funGf3J+yuO664Q5I0f3C+VhyyQo/c90gl9QEAAAAAAEBn9OTNsn322UeP+X+eT8hOWMlI137zWl39lat18HMOlukzmXlu+fEtOuD4AyqrAwAAAAAAADqvJ8dGvuc979GHPvQhbdq0qdL1PPn0J+vML52pLQ9s0U0/vGnn57/+xq/VN69PBz7rwErXDwAAAAAA6smocVOl1/9hqp4cWXbRRRfp/vvv13777afjjjtOS5cuzUw3xuiCCy5Isq7BRYM64BkH6P6b75ck3fqTW7X2qrU65e9PkTFmmqVnzn3keplcScnrkTjvkBTO0eJy8zT54fQpHjtfRZ6yPH4uo1BOIrdeea+laXK+FPxy7nZcuDBb3ooVrddV5CXrpmz7yX5vNx9PXXIuxLb/borNH5IiF1DRPiamvBA/79+OHa3X/j5cuLD12s8n5M7r9h1T8g5VnXixx3XyWI49z8WWXxuhk1RA0f4hNl9Xf3/77RXaT2Wk6IOLboOqczAWzps3ujW7oNMhhbZr6Foub5lYVW+fZNy+28lZ5ud3G8xP9xZVr1S59zLLjY/lzxhxXkpx7RDinhckqX84be5An7sJ/PR97jl90aKo4oOCdU5wzdDN36dA1Xryqvryyy+XMUaLFy/WjTfeOGV6iptYW9Zv0cZ7Nmpk7xE9cOsDGtl7RHddc5eu+851OvWDp6p/QU9uOgAAAAAAAAT05B2fO+64o/J19M3r048+8COZeUa77rmrjn35sfr2m76tHeM7dPG7L5bUSPL/9Nc9XZJ04asu1Pat27VjfIfu/OWdOvl9J2vJPksqrycAAAAAAADSMdbabtehEGOMjamrMUYrD105/YyO8bFxrV+7XisOXDH9zAksW7xM11x+raSKhkYnGAJbRehH0Xq5Q/d9RYfyp340exkbNrbWvW5ddloocsUNeXSHbMeOmE4RsppC7ND6qusfu+/rEhaVqu/olk4fo6nDMt3y3GgaKRwl6fcJrpXOqcstww/DHJAT/kIYZpB/PikawZpis6YIOYztI4sulyo8MUaK/j92XUW3QRXbJ6avDm6rUDicL6dh+8dJXki4JA0NFts+W0db04bGszmHJ4YXt10mlZ44HwY6o9THRmw7DtXDbRdDyg/V7aZQO0h9DVLmGiOUksUPF43Rzd+Ek+s7evVqXX311dXnL+qSJxlj/6vblUhgH+kaa+3R3a5HnfTUVfX27ds1f/58rV27dtp599lnn52v77rhrlLrWbNmjU455RTdcMMNpesY4+yzX9OR9QAAAAAAACCsp26WXXvttVq9erVWrVo1bV6yHW5G5ZJWrVrVsRtlAAAAAAAAqI+eull2wAEHSJI+//nPd+RJlJ1iZAsNi63iKVupnziXjDMmecAZjp4qxK6ToXPu6PPddstOc5+E5z8dx5X6iWqxqt6OKcqv4glKdQnbKFOPutRZGze2XvshP87BEXpya9Vh4KnLDx3LfgiT2z+EnpDlhmn4IRv9g85Tk7dkw5uClZkjYkP5U4de1rWP6fQTQivlH2Aut7+pOAQrpEwIXN41WqgfyfS5UjjWeNmytusNPXk57wmj7bihl26Z925cnJlvxJk2OJg+1LWjx9f69dn37vb3Hynu7rhAh9PJJ96neNpjXX9edjLkvMy1qLvtanPtFqnX6w/46tmb5diteafhrLPO6m5FAAAAAADAnDd7hvHAVY/M1AAAAAAAAEAN9NTIMtcDDzygr371q7rllls06o1HN8boc5/7XJdqBgAAAAAAgF7VkzfLbrnlFj31qU/Vjh079Oijj2rZsmXasGGDduzYoSVLlmjXXXftdhWTSZFHLEW+kMrzdGzZkp3ZDeB3XpfJARDKwdDJmPpQSoqYnDip8oblbZ/YvFh+PUJpUmLKD0nxOPBYsTnS8sroZk66SrjHtp9sa8WK1uuC+VqqyPuUYh+GynPLyOQWkrRgQet1KL2Y+/j4YM6gq6/Ovn/Ws/LnnSPcZudv/0yOtykdtDdzU5k2WDQXUNEyQ+VXnYOnqCryqwa5O9i/lnB2eNF9UWa7pcj1FGNIW71PAhcabg6zBDkMB8a9deccJ9LULn/SXoMbvE/c/TQUWbOaWLcu//1hh2WnuefASJ1sg6Hy3fPShAYy08hjldXp7ZGiD479nQD0up78VfbWt75Vq1ev1v333y9rrb7//e9r27Zt+vd//3cNDQ3pu9/9brerCAAAAAAAZjEjad4s+IepenJk2VVXXaXzzjtPC5p/kp+YmFB/f7/+6q/+SuvXr9c555yjSy+9tMu1BAAAAAAAQK/pyZtlW7Zs0dKlS9XX16ddd91V653HNB999NE699xzu1i77uj048xjy6xSihCXqoUexx7SrVCPmUjxKOyY711FCFCKYesxIZmzgpdTMiMQelk0TDh1GHJIitAtP0rsscdar/2QJXfzFK3vB688MfP+nc+aZe0pwtBgYBvkxYl5KumDnXWPO2FL/mGRou8oen6c2gZnfg4PlR/a/H7IbCF+mGFEIVWHsybpw0J958jSzPuNar1fOjxWqPjgdw5sU3+5xc7uyHzPwZFC9ehJy5Zl36fISeHyzqnj/a2w1YGKf9VVcQ2VaTOpt1VAbLh1qjKLll/1b7G88kPL1OU3FdAJPRmGuWrVKq1r5gB4whOeoG9+85s7p1100UUaGRnpUs0AAAAAAADQy3pyZNmzn/1sXXLJJTr99NP1lre8RS9+8Yt1+eWXq7+/XzfffLP+9m//tttVBAAAAAAAs1xPjkDCtHryZtk//MM/6LFm7Mr/+l//SwsXLtTXv/51bd26VW9605v06le/uss1BAAAAAAAQC/qyZtlCxYs2JncX5JOPfVUnXrqqV2s0eyUOsY9KCo5SRqdjL2PLS8271aKfF0x66qT2FxDncy314s56Qpz8474+YQicpKU2S9F5y26/atoE27WgMLdYCC52WGHzbhKs05o/7r5naZsVud1JcdlJj/PQP58BYtIka/IPySLphAqeq4JlRFKbxg8T7uFBlYQm5sw1H5StIuo83SgD/DrNDLSKnNC2XYWcy2X4jqmTP1jVFH/wufpFSuyy63YK21dvG036vYB3im2W6Lz8rnfzW8jzgkyRR5ZX4rjvBdz06a+/qw65yPQaYwYBAAAAAAAAJp6cmSZJF1wwQX66le/qrVr12rU+3OkMUa33XZbl2oGAAAAAABmOyNGIM1WPXmz7P3vf7/e85736LDDDtORRx6ZCcls5/jjjupQzeIsWJAfe1N1iGBsmF7yocYVPCK6jqFtKfZn1d+l14dQ+yP3Xf39xb9b3rFRJrwgxf7uxWH9GStXtl4HjvOi7a7TYZIpuHVe7IXJBNvI+Fjrjbvt/Hg1JzzlT0/pydN6x/jbOxT1U/S0FB3qPTi08/VA5PHr92kxQtcBMdugDLf8UBhyKBy0aP+cIp1BCin6KbftSHHnsmSKxuq6Krjmq6vk52YvncHiiPKThNIGlLqOzLlo26psGx9yyqjVdYBT/3EnzHlAY9n5CoaIV1H/UPlFr3XzlmlXZtFpQC/oybPV5z73Ob3pTW/SRz/60ULzX/7xoyuu0cy85uNrul0FAAAAAAAAqEdHDD700EMk9AcAAAAAAEByPXmz7JnPfKZ+85vfdLsaAAAAAABgDuubBf8wVU+FYU5MNGKkP/axj+mFL3yhdtttN5188slaunTplHn7+mbfLq8ix0AnY8mrzr/WC2Jz4sQqun+7md+tm/kMYr531fUtc5z0RC6IBI28k+0zRS6j2DKmLJeXC8jLWYN4A/0Tzutq1xXTH0u9l98wtp8K5ZsM56Isv65SueUicqJVrdPXg8Hl+gcKzdfriuaVSrENOl1+bJl57b9UjjLnAHbb0lAFbdyV7PrJqX8292T2hFLX/rnotDrmgQY6oaduls2fP3/na2utXvGKV7Sdzxij8dCVFQAAAAAAANBGT90se/e7393tKgAAAAAAAGAW66mbZe95z3u6XYWO6+Zw3F5eVzfWl8etR9VhPqF111WKOla9jet6nPTC/i0qNjQgZr6qJQuRGhxMUBvUNawlxTKpv1sV26pomUOB5t7pc6erm/u3k6oI7eyWXr927pXyo8oJpGao67VWL64vtdT94GxjRM6v2aon9+v27dv16KOPtp326KOPavv27R2uEQAAAAAAAGaDnhpZNumVr3ylxsfHdeGFF06Z9prXvEYDAwP6/Oc/34WaAQAAAAAAoJf15Miyyy67TH/2Z3/Wdtqf/umf6ic/+UmHawQAAAAAAIDZoCdHlj3wwAPafffd205bvny57r///g7XCAAAAAAAzDU9OQIJ0+rJ/br77rvr+uuvbzvt+uuv12677dbhGgEAAAAAAGA26MmbZaeccore//7367e//W3m8+uvv14f+MAHdOqpp3apZgAAAAAAAOhlPRmGee655+qSSy7RUUcdpWOOOUYrV67UPffco1/96lfab7/99Pd///fdriIAAAAAAAB6UE+OLFu2bJmuuuoqveMd75C1Vtddd52stfrbv/1bXXXVVVq2bFm3qwgAAAAAAGYxo8ZNlV7/h6l6cmSZJI2MjOjcc8/Vueee2+2qAAAAAAAAYJbgJiIAAAAAAADQ1LMjywAAAAAAALqJEUizE/sVAAAAAAAAaOJmGQAAAAAAANBEGGbdjI9n3/fPfBdNOPdE+zQx4/Jiy58ocW82eT397To62nod2saDgzNedert72/HFNu8inpFrcvdL1J2vw0PR627ijZfdN2heuS1i64eJwmUaZ+py49tByn2YVFVH2t1bBPdVvU5MG9dZdYX05Zi+adD/73LPQUWPYaquA5IfS4r04+k+N6hdYfWlTdvqnYcs99i928Vy3WqvKrK7Na6qjhPd/K3Rhmp20/sejt5Pe4r2p5S1NEvY/L8Ym2hooHa6cmRZSeeeKJuvvnmttNuvfVWnXjiiR2uEQAAAAAAmGv6ZsE/TNWTI8suu+wybdq0qe20zZs366c//WnpMtc9tFXnfOQKXXXTg1owf55W7blIH3vLcTripd/WwfuOaHRshxYNzdfrX3SoXv78gyRJX7zoFr31k7/U3st30ejYuF7zgifqzS95kiTpIxf+Vv/+f29Wf3+flo8M6vPveqb23XNR/JcGAAAAAABA5XryZpkkGWPafn7bbbdpOBCu1Y61Vi9424/08ucfpK994CRJ0nW3rtf9D23TAXsv1rVfOk2SdPs9m/TCt1+iiQmrV5z6BEnSGSftr0+99Xg99MionnD61/WiE/fX4/YY1pMPWqarL3ihhgb79Zlv/05v+9Qv9fVm2W0q0BqnunFjdtrISH7FC4Zopg4hiC5/fCwzbUwDO19HR5u6YXuhkMlQ3In72g8DXLEismItnQyL6mQoj78+/3uOjbevy0BoX2/Zkn2/fn3r9cEHl62epOpDA+oYZtVNpbaxe+wlCDmPVbQPSx3KkAqhl/WRItSsivYTOs1t29Z6PX9+dpp7WAb77oBQH1y0f47tKlKHGU5NlTHQfr5IVYexx6o6hDL190wRMj+XVBFGXaVO79/YMO2Y+eraB8SaPN9M9PbXwBzWUzfLnvGMZ0hq3Cg7++yztWhRdqTWtm3bdMMNN+iP//iPS5V76TX3an5/n177wkN2fnbkQcu05t7Nmfn233uxPnLOU/XXH79y582ySbvtOqgDV+6q+9Zv1eP2GNYJR++1c9pTD9tdX/7B70vVCQAAAAAAAJ3XUzfL5s2bJ6kxEqyvr2/n+0m77bab/vf//t96+9vfXqrcG257WEcdvKzQvE95wjLdfOfGKZ+vXbdFo2M79KQDl06Z9rn/vFl/ctzjStUJAAAAAADUlxE5v2arnrpZdumll0qSTjjhBH3mM5/RwZFhWTPhP83j6z++XZdec59uWbtR57/jGRpckN2kX/7+73X1Tev10/NO7WAtAQAAAAAAEKOnbpZNmrxplsqh+y/Rt/779kLzXnvrej1x1cjO95M5y35x/f16/lt+oD952uO0YrchSdKPf3W3PvDFa/XTz5yqBQPzckqUZEwrCceyYiPcUqk6Fj5TvpdoZCDFukN5ykLzFV2uhkL7rNO5DULrG+iPqIvf/gseD72Q06FbuVtqLSJPWafbf0yZHe1XMa26bK9u9gFuvrEBL63r4nJpXtuKPS6Lfteo80mg/Oht7PVZdewfykhRlzp9nzy99j3reg7p5r7u5Lm/m9fZ3byOqeI4mTy/zAv8DAbqrCdvlknSpk2bdPHFF2vt2rUa9bLVGmP0d3/3d4XLOvHovfTOz/xK53/vJr36z58oSbrqdw9o62g2keuaezfrbz5xpd5w+mFTyjju8D105vMer49/7Qb9w+tX69pb1us1H/qZfvCxk7X70oUR3xAAAAAAAACd1pM3y37+85/r1FNP1Ub/yZFNZW+WGWP03X98js756C/0of+4ToMD/Vq157A+9uan6bZ7NunJZ35bo2M7tGhovt5w+mFTkvtPevvLjtBTXvYdvfOsI/XWT/5SW7aO6/R3/liStM+KXfSf//K80t8VAAAAAADUEznLZidj/SRcNWWMsZN1PeaYY7Rjxw6df/75OvzwwzUwkP/obmOM7C/P7lQ1o7zm42v0b1/6frerAQAAAABAMkevXq2rr77adLseVTnKGHtltyuRwIB0jbX26G7Xo056cmTZTTfdpG984xs66qijul0VAAAAAAAAzCI9OWJwn3320WOPPdbtagAAAAAAAGCW6cmbZe95z3v0oQ99SJs2bep2VQAAAAAAwBxk1Lip0uv/MFVPhWG+7GUv2/n6/vvv13777afjjjtOS5cuzcxnjNEFF1zQ6eoBAAAAAACgx/XUzbKf/exnO18bY7R48WLdeOONU+YzZtbmDwQAAAAAAECFeupm2R133NHtKgAAAAAAAGAW66mbZQAAAAAAAHVBzq/ZqSdvlq1duzZ3Wl9fn3bddVctWrSogzUCAAAAAADAbNCTN8tWrVo1bV6y/fffX29729s6VCMAAAAAAADMBj15s+y8887TBz/4QY2MjOi0007THnvsoXXr1unb3/62HnnkEb3uda/T//zP/+i1r31tt6taiJXRRHPwZp8mcueb8AZ4huYtyi8zr/zU801Xj8y8W7bkLqfR0dbrfq85b9zYer1uXXbaypWt1ytW5JeRgPvdxsez09zVFd0+ZbZjSF45ZfZh0fVllrv88uzEr32t9fqP/ig77SUvKVR+VD0ilwu11TLbv8i6SvGPk+HhGdelLoq2/6rLL9oHh9qBv5sGB1uvK+h+Ktles0nMMRvqR6o4hxeto39+cU+P7jS/a0jR7lKcv2LFbP9U51F3uw70d/BY8zsSZydODA7NuPiO9xt/+EPrtd8gV62acfGdbINlpL6Oj+1TUvRFqX8LhPrZ2Gtp19h4to5umUODnW3/sdur6nW73POJz72O8bumyZ9iY2Pl6gXURU/eLLv11lt19NFH61vf+lbm83e/+9067bTTtG7dOl100UU688wz9eUvf7lLtQQAAAAAALPZdFFvPcHabtegdnoyF92Xv/xlvepVr2o77VWvepW+8pWvSJJOP/30TlYLAAAAAAAAPa4nb5Zt3rxZDz74YNtpDz74oLY0x4AuXry4k9UCAAAAAABAj+vJMMxnPvOZeuc736lDDjlERx111M7Pr776av3t3/6tTjjhBEnS73//+25VsRQjG5X7JjRf0Rj3uuSzmVIPN3mAGwDv57JYvz6/UHeam79MyuYp66AqchK5UuVhiSnDzyHh6u938lCsWZOd+OMft15H7pfY7x2Tbyw2X1GoXpnlQsk4Qht5lqm6vcYsE5vzLq87k7K5PormaPFzI6XYVnNFiryOsfOF6hLMizjuJHvx+oANo638VKH0ni63zflSnKPKXI/E9rtFpxWez914w/l/aPXLcM9tHXXDDdn3zk7tO/DAzKSJwPfJU0WO3CC3zm7+sh4R3D5OsqetyuaTGxxs337KXGfU5TreleJaKNQGB8r0U26f6XRwfl+X/Prcv17LqYck9YUSglWcfzazr5x63L8521YfeSS/DPfS3f+5NflTbA5dvmKW6cmbZZ/+9Kd10kknafXq1dpnn320++6764EHHtDatWu133776ZOf/KQk7RxhBgAAAAAAkJQx1Y+I6ITt27tdg9rpyT9H77fffrr55pv1mc98RieeeKJ22203nXjiiTrvvPN00003ab/99pMkvfnNb+5yTQEAAAAAANBLevYW6Pz583X22Wfr7LPP7nZVZs7a1vhUf2huDYdXh5QJtwh+N3c7jIy0XpcZquzGmqxcmZ22bFmrXv0DuUVWvf1ThI8UDRsrGkIWrJM3jnrreGvb+bsmE9Xi7Jqlfqjln/956/Xznpe/7oDYcOUUioYNhNadmRZoj/60THhWTf6iVcUj6WPXnUJMH+AvM+48oj7UhYW4uze2nc1VmTCf8ezz68fUOqa6GSYfmi9zjvL6gOFAnd0+2O26/TYYG+WTjSqqNmVE5ZyNUJs6hTz1qdn3d9/deh3YobGh5Em4DdKPBXYPPi+MNIXK92kgxM793hvHs6Ftew1v2vl6bLAVLuuHGQZTNbjvQzHWNRV1nRQoYwpnf8SWUTjdhrsvQik1/DZScahlYU77me+dJw5atmHn6039SzPT3K/jX+JPboZ585LUEOg4rqoBAAAAAACApnoMRSjoN7/5jY444gjtt99+MsbkzmeM0W233dbBmgEAAAAAgDmnJhEeM0LOsil6aq8uXtwYovzMZz4zeLMMAAAAAAAAiNFTN8smE/d/8YtfLLXc8a+5uILapLNgaGkriUhk3HqSWPsU6/Ni9EP5wDLzFc1j4t+1d3KPBe/oe9u1aL1SiN3mKfZbTBnBHCbednO3uJ8qI/ePE24OOkk6/vjW66OPnq56bYUefOvWK9REOpkXzhdKcxFMQeJ+oR58Lre7ffx9uG1b6/Xy5XHlxxw3ZXL45JUfKsPtsqTif4hMkd9wrgrm+3H6tNi8jqF+torzryuUBsfNTeZ+bf9YC/WRoXxCA/20tdocb35e1hlKcc0xpUz3OsxvhHXJ2RQrkBdrfGT3na+97l+bRlt5yoLZxtztFUp8WTBnWaf7qbx1VcLv493tNbxYMxVs46EOucf4l+pS64MyR+tkDrP582dWH6BbevtIbuPHP/6x3vKWt+i3v/3tzs8uv/auLtZoeq955Su7XQUAAAAAAABoFt4se+SRR3TjjTd2uxoAAAAAAGA2M6bnRxOiPfZqHfT1tYZOhx41HJoWKj4QRpF6qH1fiY5ibDx/KLP7GPq+0LDywND90FBpd1MOjLYe3R18nHmk2BCd1GFXqfa9y328+ehotvx77mm9djfjyNGrk9fDbQaRh0lQ7KPNix97rWl+E3QjCPzoi6UjzhtvwU6GVYSEtpf7fdywS0l66KHWazcMs0w7jnlMfJlQ2qJlDA4W3BfeDnb7Pre/DIa/zbbwpsS2aij7gXsuiOwrOtkH942PZd5vHW+Fkfq7etWq1mu3WcSe5urajxTtn1P0FVWcR5ML9CO+1PUP9Z+Zc9Is7pf8beBeG/nHWuHN4M7YxW1X9PwYG2pZyfHktP+ifYUvql6hcNAKfmukFvrOoXawcWN23snmSqpx9KqKA8cBAAAAAACA3sHNMgAAAAAAAKCpfuM+A26//fZp51m3bl0HapKYE+c8ZYj/6NbWG39Ib8RQ7NgwhKJCZfhDc+++u/Xaf5CTOyLZDWGKffpW6EGBE4Gn46QYEp7iKZRVDE1PHaa3eDhbxsEHt8rfvLn1uR9KOBSIso2pYxVPvCyqzLB1V6jO7vby56tLqGVR/nH4hz/kT8uLQC+zf4uGQFet8L5xO0Up0zEOuHF03mOqJjJPdETI0OiGzPsNWrrztXuuCSkTipfiuMymDch2oKPj+U92diN93NfRoep+5x3x5Le6HKNlyu5kX5GEH+Ll7PCiTwKv4snp3dyO3TxX1jHiNHZflElDMWN+f+OeA/3+JvBI34mcJx5X0g7cztWvf97jiaVsI6lhSOZ03N+q69dnUx1s3974vwcf2F7OHMpZZozpk/QmSa+RtErSg5K+Iend1tpHC5ZxsqR3STpC0mOSfiLpbdbaO7z5ninpf0l6RnNdo5JulfQpSV+z1tqZf6Owntqrj3/846edx1or4wVGH3XsUVVVKYmFBR/1DAAAAAAA0AUflfRGSd+V9GFJT2y+f7Ix5iRrbfBOtDHmhZK+Jek3kt4qaVdJ50j6uTHmaGvtvc7s/yhpZXNd10vaRdIZki6UdKKkV6f7Wu311M2yz3/+81HLHf2uoxPXJK07v7ym21UAAAAAAACYwhhzqKQ3SPqOtfY05/M7JH1C0ovVuJGVt/x8SZ+UdJekp1trtzQ//76kayS9V9LZziJvl3S5tXaHU8bHJV0q6VXGmI9ba29I8+3a66mbZS9/+cu7XQUAAAAAAIC55CWSjKSPeZ+fL+lDkl6qwM0ySc+UtJcaIZs7Y6uttdcZYy6TdIYx5vXW2u3Nz3/qF2CtnTDGfEuN0MzDJHGzrBtuuOgG3XjRjeqb16d9V++r1S9frdsvv13XfPUaPXz3w3rBv7xAyx+/XJJ097V361f/8SvtGN+hef3zdOxZx2rvI/YuvK4JazQ23oj1H1D2sfDBGP2iiib8ieTG/W8dzeYscFe3fn12OTf61J/mhu+niFKtSxh51XnhyojJJVImp0wd8xNUnZesFGcD9TkN1K9jNn9fmlVXKZybLfvdli1rvfbbS1S35RXSF1gwr55VHKNFc+VtXHZQZtrSfud8UPSA6oVG0k1evrelCfIYps43GeoD/INh+7bWa3/Xu+t287GVylnmzlxwwTLtP7Rcntg+OEX5fhm9kDcyL2eTVNPcjb2gxEE0q753QOiasvD1Zqi/SfDDILavLnycuMfasNcm6pi8TvnfLbbdHtSfzS++Yf7+khopvWa1uZOz7BhJE5J+5X5orR01xlzXnD7d8pL0izbTrlQjtPIgSTdOU85kUt/7p5lvxnosa2ln7Ni+Q9d89Rr92T//mU77xGm69dJb9diWx7Rk3yV69juerT0P3TMz/+DiQT33Xc/V6Z88Xc8651m69KOXdqnmAAAAAAAASe0lab219rE20+6RtMwYE3qSzF7OvO2Wl6TgiCNjzF5qPFzgdkmXh6s7c3PiFmhZ2zZu09DIkAYXDWrD2saTswaGBrRgeEHb+Zcd0BoesWSfJdqxfYd2bN+hefPndaS+AAAAAAAAkZYZY6523n/WWvtZ5/2QGk+vbGfUmWcsZ57Jx6W2K2PUm2cKY8yQGsn+d5F06mS4ZpW4WdaGnbCSka795rW6+itX6+DnHCzTV2z86B1X3KFl+y8rdaOs77FRDaxbK0naumyfzLQhN05p48bCZd6+pjVocNmy1g1efxRwiuHh7hDezZuz0+bPb70OjU71ImNyn6JcJrwjFMblPsHZnVb1CNrYEIhMqMeWTdmJ7hf1dnAo/CLGlO0/7vSFbsiwpHXrl7YtY+HC/DJj61h0+HyZYfbuZh0YdbZ57FD6gnGG/mzbnDCrKo7fTvLru2xZa5uHjr1QNPpQZNRhXrsIHaNFp5XZL+68Swe9R81f5vzBbMWK1mu/w3SO8zkSBlBK0dCbYP/mnDQ2aXFmvtAmd8Mfy6w7bz4//GhRwXq4/PlCEb79btsazv9jsVuGdyrQyEg9wt9jw8SK9g9FpQ7bnU6ozLzvnSqUttfOUSGZ/r5MP+v0HWP92d+A7nEz5ITdu9duUvXbsYrrwzyx/U3mkqlMxRwx6Uf85XpdJakm3POSd2xMXrfOY/xIr1hvrQ09GXGrpN1zpg0684SWl6R2I5CCyxtjBiV9T9LRkl5urf1ZYD3JcFUd8OTTn6wnPu+JuvTDl+qmH96kJz73icH5N6zdoF9e8Es9/33P71ANAQAAAABAV8ydnGX3SjrEGLOgTSjm3mrcbMsbVTa5/OS8N7VZXmoTouncKDtJ0qustV8uW/FY5CybxuCiQR3wjAO0/rb1wfm2rN+iSz54iU445wQt3nNxcF4AAAAAAIAecZUa949Wux82b2YdKenqNsv4y0vScW2mPVXSJkm3emUvUCP08jmSzrbWfr50rWeAm2U5tqzfoo33bJQkPXDrAxrZeyR33se2PKYfnPsDHfOyY7TikBW58wEAAAAAAPSYr0uyks7xPn+1GrnGvjL5gTFmT2PMwc08Y5N+Kuk+Sa8yxgw78x4h6VmSvunmIWveKPuepOdKeq219t9Tfpki5sR4wRh98/r0ow/8SGae0a577qpjX36s7vjFHbris1do2yPb9INzf6Dd9t9NJ7/vZN34Xzdq032bdO3Xr9W1X79WknTy+07WwpGF06xlcmV9O/OQDI1uyE7rbyUp2jqYzQE15MbQj2Zz3axY0WqXoVGhqR8bvnx5/rSlI9mY/7Hx1rq96uvhh1uvFzlJWfzv0t+fX//Q9x4abJ+3oIq8BKm38cRwduRi0XwksYJluBvZy6N00EixbZwiT0peeX4ZZcrP5MpztnkluSucZBwDXsPdI3BMuVK3s04Y6C+2LYeHnfYz7o3udvOfVDAEPsn+9pM45fGT0p10UulVzeacQVWbsq3c9uTkZFns5a0dU+jBT/lSHLN55zJfqB9McdgETgVBZfJIxsznXlsM9btJj7L7LFRGp3OM1YGfV8q91qr6mqMXlOpnnb5jwJvP3a4TRfuRcNKvYmUkktev+FUccE7U/f3539M9Xv0yQmmb9xl8oFWPZXnplOL7lLnSrot+z+B8K1dm3k62eVMs9XdvmwNhmNba640xn5b0f4wx35F0saQnSnqjGjfCLnRm/wdJL5d0gqTLmstvN8a8SY2bbj8zxpwvabGkN0t6UNJ7vFV+RdLzJP1Y0lZjzEu96b+11v423Tecavbv1UhDS4Z0+qdOz3y233H7ab/j9psy71POeIqecsZTOlU1AAAAAACATjpH0hpJZ0t6vqT1kj4p6d3W2mnvuFprv2mM2SbpXZL+RY0nY/5E0tuttX6+ssmHDZzU/Od7nyRulgEAAAAAAKA7rLU7JH24+S8031mSzsqZdpGkiwqsa1XpCiY2J26WXfyOi0svs8uiXaKWi7Fs8TJp2bJp5xuS/3CJ9iEiUuvZq74yjz13h0P7YZJutFDsqFM3BGvAiz5a7LwvGsIXO0y6F4ZXx9ax6PapOvw0VL471N4fdj+U15ADyrTxom0riakxxEmLr0s7riJ8IVOGt91i+4e8esXu92B798MrE6vLvp/VAserH1qVJ0nbGs8PAfWr6KY6cPtW73IhM80/17vT/PLdadu3t17v2JGdz23+/roHAt1gzDHqLzMk9wv1584XW36vc9uIe022bl12G6xw0vH66S9SpEuYaXnTlV95SoqCkvQBCa4dUrXjvO/jVzEUYur2OeudZ6ndfXd2Pjebgf+TaXhVK/RyaYJruSnbJ9QRJlZ1CGjVfVgvpgQBQubEzbK7brir21UIes3ZZ3e7CgAAAAAAoAxj5kTOsrmI278AAAAAAABAEzfLAAAAAAAAgCbGC/aQCe9xy6nzRPjc0aR+yp2iI01Dj6tP8ojixKrOc5EiX0Wo/OA0PyFYThKb2G0QWi42t1zR5VLkP6kkV1VE+VXk5eukKnKhFG3jnc5TU/W+6bV934tS51epIjekW0f/OsA9Ffvlu7ml3HxU/ncOnetDQvkmXW6eMj8nmpuzrIp+vM9PkpY3n1P+XDrWrr229frYw1s7Z5+VxROGpjiGUvfj3eyPU7QtN5ec5KfMyk5zj+2iklxTlijT5fcBmze3n88/dN33fs6ypSPlf08E6+smSJOkjRvz5125sliZdeF31u53HRnpaFWAXsDNMgAAAAAAgLLIWTZr9cAtcAAAAAAAAKAzuAVaM9HDt71hte6jpWOHBae4QZ56SHKZ4fkxYW91Hbof+i6Fv6e/QxO0kRShcm61/HCC2NDFmDLqqtdCgmLbcYoQtRTK1CN1qHFhfhyL+z42Zh6FdfqYTBHKH7MuX6jvLtrMcqIipxV7Ho05LmO3cYp2kSIEMdjPjm7NvD/2mNYO+e0NQztfH3xwdrmYUL/ZppOpQ/zjKRTy7IZldjO9SdF+KhRe6Z7KFizIzrdwYev14uFqr9U1vDgzLRPO7YVopg5DrpzfuBKHXvbaNSswnd7+FQkAAAAAAAAkxJ+cAQAAAAAAyiJn2azFXq2ZvvGx7AdFD7zAfKGh0e5wbj+yJ/R0KzfSx121X0Yo5CImJCtFiFSoHp0eml6XJ4JOaXcO/+lrufNVMFC1Lk8j7WT5qZ7oWJcnKVaxTVKXUfVTM4vyH8Dl9p8Dav/0WkmaGGyFTxECMdVs2iZT+upQCK6jilAh94l9nfyNkOJpg6meOtzNMPCi7r679XrFiqHMtIEtm3a+ftJhJR6FmqPodk0RLttNwfOJf4yuX996HQqB64Ef2lWfR91N4IZdStLiQXe7Ft9WKX5PZNKWjCwtvS6pN9p4FXXs9VQoAC0YAAAAAAAAaOJmGQAAAAAAANBU/zG/AAAAAAAAdUPOslmLvVo3sQeanyys4DPd3Ul+upNQzrK8Iv0cZaHHXbvv/XV3Mra/LrkD6lIPf+e6TSuUg66obn7PFPm/qs6/kCqXTm3ak8PPyRVIsZRRNA9ImTLqkkfDrddif3u4G8zZWKGcTaly3s1WsTl3YttZjFL7sGC+0lD5Raf55bnn8BS/EWK3f4rrhaLHUBW532IE87Zt3JCZts/KkZ2v196dXW7lysVJ6+Vfi/YVvBZ19UIfFjqf3P9wNs/rHm4/7uYoKyHFtZcrth+sOs9uf3+rXlO+cxdvRBTeXoFOsY7tuJSCPwrrcm0FpEKLBgAAAAAAAJq4WQYAAAAAAAA0EYZZM9GPZfbjm9zxy074TplQpNCI56JhCUVH4PtRpG71QyEWRYf7+qOHuzWaO/aR9FU8jjqzXGCDDA3GhaAUDQFKHZISLM9rCBP9AzkzemEtBdt7p4fZ1/FR5KFj1A+7jAlvKrP9eyEcIFTHLWqFSA0GQt7q2A7qJKYvDfHPV263MiWUNqL84HJ+n1WwDyuqTP85lGmHcSfVFOf31MqEodWyj/EveJzrw31WZhto8rBSP3YuJ5R8yjZ26hw6L9eV+32WL/e26cIVrdehULac8qT07Sy2/Cquf/L6gAGvSxkbb803oLHsxIov6gt/t8hwxDqmUphSD0Itp0fOslmJ1g4AAAAAAAA0cbMMAAAAAAAAaOJmGQAAAAAAANA0J4Jrjzr2qG5XIWhwcGFu/Hc2vUF2noF+J47dTwaU85zpVHHmeTkGQuX7qRoefrj1+rHHstPcp2u7Xy0+lr/ax86HpHhEd9Eyyqwr837dutzlJlbslVtGSIq2FrNvgustkQslb92hXB+zLZ9WjCq+V+wxmqTNdLB8v7xQ/quY8hF/DhkP5Ixz8zqG1KUPiK5HIB9LbBuPqkcJKepVxXJFReUuXbascPmV50Pyr00n+dcczvu+gw/OTsu5nq2rKdvU2Qax7bEuOa1S55gNTSuTPzGUK6yT2yfF74m65h2NzS9Z1++TnDHkLJul5sRePfpdR3e7CkFrvnxnt6sAAAAAAAAAzZGbZTFuuOgG3XjRjeqb16d9V++r1S9frdsvv13XfPUaPXz3w3rBv7xAyx+/XJI0umlUl/zjJXrw9w/qoBMP0vGvPb7LtQcAAAAAAEAMbpa1sWP7Dl3z1Wt0xnlnaGBoQBe+8kIdcdoRWrLvEj37Hc/Wz/71Z5n55w3M0zF/eYw23LlBG+7ckLQu7ojO4FBW/1n2LmcIe+zQ2aLDpkNl+KGQy5e3Xj/4YHY5d9R91UN4e6380D6MDpN0Qi1j+e3AHSXvPj3eH6VcNNSsCm4d/UMoL/w3VXhE0eMrpBeGt4fC11yp2nVeGaH1pQhxKVpf91iQ8qOUYsscHAyE6yMotI37+wseo354UOgAcMLCqw6zqiLEcWy8VWbo2HY3wYA3XyfDMjPrShTGVXUah6Lrik0H0DUrVmTf331367W/b2poShsZ3Zo/s/N9xgcXZybFRG1VsQ9jUwqkuI4pWg93W030DxVeLq9eVW/HFNcSZZaLVfV+I00Eeh03y9rYtnGbhkaGNLhoUBvWNm5+DQwNaMHwgrbzzx+crxWHrNAj9z3SyWoCAAAAAIBuIWfZrMVebcNOWMlI137zWl39lat18HMOlukz3a4WAAAAAAAAKsbYyIAnn/5knfmlM7XlgS266Yc3dbs6AAAAAAAAqBgjy6YxuGhQBzzjAN1/8/2VrcPI7oz3jo7tHhnJnRSblyzmEdehZUK5cxYtyi4XNZJ148bseydPxICfkMp9tHrVjyX/wx/yp7l5O0LJixxp8sdVz92HbvPsGx/Lzjjq5CeJ3BexuSDcOhbc/MnyL8Q+Qr7u/Pq6OYpCfUwVecliliuT17Fo2W6Zw8Nxee1CiuaFm6ti8+pE7XsnD5mkTF6yWKnzYqXKL+O2u/FANx7bJvPqWeYcmPtdA5XyLxf8PICuUD62FPLabpn91BPnkKPr/dT66UwMtnJohbb3QAW5nTqZN6+K/ifve5e5no259q06N1hsDmG//xmq+CdKUanz0wG9gsvqHFvWb9HGezZqZO8RPXDrAxrZe6TbVQIAAAAAAHVBzrJZi72ao29en370gR/JzDPadc9ddezLj9Udv7hDV3z2Cm17ZJt+cO4PtNv+u+nk950sSbrwVRdq+9bt2jG+Q3f+8k6d/L6TtWSfJV3+FgAAAAAAAChjTtwsu/ht3y41//jYDu14bFzDw/Ma7zdu1iXv+U9J0pLlg1qyvDkmdtu2nWWPLF0gLW09LfMXn/rvwutbtnj3nUNaU4UiueVU8djz2HCAPEODcUPTM3Vevz470Y2PCIVhVi0vVkXK1isQu1LFY5ljhqanaGdT9sW6da3Xfizkir1yy0wtNKw/NswzVEaSIf+BNj4x3HpEfSfDcMq0kaJtt4oh/1VukxShlWW4h03f1b/KTuzx8KY6KtNXxIQHhcpIEX4XG2rpc/+I7s5Xpv4xx0OK66QpZThfYGgwe2k8Nt5azk8n0d+fuG/asiX73jm4eyKcMoGqw+NSSHVNliJEsI7bJ1adUolUKfQ9Q31uFfKu8cuEowOz2Zy4WXbXBaeVmn/NvZt1yl//QDeUXC7W2R+/syPrAQAAAAAAQNicuFlW1qq9FumGr57e7WoAAAAAAIC6ImfZrMVerZnYIchVhOmFysgbJhzqJ8qE98XUq2/VquzENWvyK+Z8gcqHfbtPvPRDLat+EmdI7k7MPr0t9umbecUP+E8Hveii1usjj8yW8bw/bS0X21s5FenzK+Vs/6JhD6mfvhhaVyk9eJKO6dOqeApc7JNJiz7Fq+rwkUxoGGGXU7l9gHecpHjaadFpodC/0OMkY9vxpi2t9+7DoleuLFScpGy3EqqHG47o18MN59m8ObvcHsvz1130ibVFBa85nPOeX37qrjXYP9xwQ3Zm95zYzeuFHtfJJ0bGKnpNXMX5pej2KbruFGWkenp26n4khdC6Fw/6F8+du7Zz6xX7FE5/e999d+P/sbHYWgHdRQAyAAAAAAAA0MTNMgAAAAAAAKCp9+J2AAAAAAAA6qAH06FgeuzVGjCyO+PEy+T1KjqtqDK5W/zHpxeR4tHXwTwOXq6tPjdXmP84dud9Jo+V85h2SWk6vpGRmZfhSNYOCn632Hx4mTayfn3r9WQCg0nHH996/axnZctIncsr8J1T5MEJKZqDJDqPhvfdupWPIzZXSdFpsd8rVH6KfjZFbkhfbq6VLZuyH7i5jLhYm2IikI8qhaJtPpQny88VGVO+P9/wcGtaKN1VijYeqqOb+yaUB6eKYyhPFf1IEk99atryPLH1rzznZoXlpSqzk9ugrlJcx8f2Z7Fl9pweOIeX6asnc2QO5J/igFojDBMAAAAAAABo4mYZAAAAAAAA0FT/sZ5zXNEhyUWnVR0q5Nej6PpSDN+ewg2p9Ic1j/uPZu6O1PsjNmSyaBllZNqFGwPkhl1K2TDV0dHsNPd9IJw1OkzPaQd+GG+M2P2ZJPSyJm06JNQ/FJ1WJowopvwyZVTtwQdbr5csab0e8MPFEeTutw0b84/RpSMz7z97UWyIeF6IaRUh7bNp+5e5Tqq6z5lN29XVzW0aex0cW0Y3z1G5qQIS9AF1Cnvt5jZOrYpQcvdSffPm7LTJaxdrZ7yaejOmJ0JoUd7sPEsCAAAAAAAAEbhZBgAAAAAAADRxswwAAAAAAABoIri2ZjqdS6HqMmsT2z8YeF59F3Vy+3T1cexFcyz5+6ngfkuR8yvF9ulqe+/BXAkxfUeqx8mnKD/FciF7LK9J/zmLhPKShdSpXRQt3502UEH30Ovnr7qse65sx07q6vVOouVSl1FF+VXWq05ttU51makq2uPQYPvXLmNmvNp6I2fZrMXIMgAAAAAAAKCJm2UAAAAAAABAE+MFAQAAAAAAyiIMc9ZiZBkAAAAAAADQxM0yAAAAAAAAoImbZQAAAAAAAEATwbUAAAAAAABlkbNs1mJkGQAAAAAAANDEzTIAAAAAAACgifGCNWBlNBFx37JPE4Xmiym7zLo7WX7oO/v1cOfdOpqd5o6UdV8X3aZlbNjYWvfoaHbayEjr9dBg8e/mKrNNZlqGP1/h8ke3tt587WvZiffd13r9jncUKi+avwMGB3e+TLGtfLH7rS7ld1Psce+K6adS7d/YMousq9f3bTd1+phJ3Y6TrHt8PDuj835icKjSeoRU0SemKHNsvFVm6PT19rdW26f7u8010J+2jYS2Y+w2LtoO/O8Z8906ejyVmBZS9HzVzeMktJx7nPj7cKh/LL9Qd+a8i/NEUuynkBRty79MDf02iCk/pG/c2U9+RYaHc8vjmgSzGTfLAAAAAAAAyiJn2axFGCYAAAAAAADQxC3Qmis6LDs2zCE2RCTFsPIU4YOh+dzQy82bs9OWLClUfBJuqKU/NN39I0TR7ZNquHNmuHVepTzRw9TXrGm9vuii/PkCYZJB7nLr1mWnrV/feu3vgFWrdr7sW7EiMynmu/rLuKtLESYTu1wnh8jHHuf+fClCKKsIEQ+tb6YK1zcUj7VlS/a92wFBGzfmTxsZSR9akuI8F1omVH5+iNRAZr6hwf62y6TSayE6/jZ2T4kvelF23m99a+blFxWbMiLmXFC0Xfnlx5bp6u9PEA7nX98kGPERez0e0weEtnEVIXCx1wt59R/S1uwH/YGUF/3Z/iimHjFSbcfU1xlTtp0KXgdHynxv9zhxwi6nUyR83NqyNQPqgZFlAAAAAAAAQBMjy5rWPbRV53zkCl1104NaMH+eVu25SB97y3E64qXf1sH7jmh0bIcWDc3X6190qF7+/IMkSV+86Ba99ZO/1N7Ld9Ho2Lhe84In6s0veZIk6X+uvU/nfPQK/fYPG/S19/+xXvTH+3fz6wEAAAAAgNTIWTYrsVclWWv1grf9SC9//kH62gdOkiRdd+t63f/QNh2w92Jd+6XTJEm337NJL3z7JZqYsHrFqU+QJJ1x0v761FuP10OPjOoJp39dLzpxfz1uj2Hts8ewvvh3z9K/fOW3XfteAAAAAAAAKIebZZIuveZeze/v02tfeMjOz448aJnW3JtNdLX/3ov1kXOeqr/++JU7b5ZN2m3XQR24clfdt36rHrfHsFbttUiS1NdnStUlNqdYqJyij6Cu+lHVvqL5ivKWma5eg4Otef2b/bG5P2K45fu5OKp4BHhhBf8CUriOoTxKBx7Yen3aadlpP/956/Xdd+cvF+LmNlu2LDvNzWfm1zGQEy1m3/jLJMm90mP5fmL7qdj5UvRvKaToPwv3/6G8giNLo9Y9m7n5ujqdwi2m3ZXJF1WU22Q6/sdvt98N5aVMnFcqVRnuPvRPGS9+8YxXV0up8jl1rf/p4giPqs+BKc5lVeT3zORl7Y/Ls9XJ6/GqrwliTQwOZd53Mndbimsy3+R1sCn3cxiojXr2FB12w20P66iDl00/o6SnPGGZbr5z45TP167botGxHXrSgUunLgQAAAAAAICewMiykvyneXz9x7fr0mvu0y1rN+r8dzxDgwvYpAAAAAAAzHrGkLNslmKvSjp0/yX61n/fXmjea29dryeuGtn5fjJn2S+uv1/Pf8sP9CdPe5xW7DaUX0AbRnbnkNZUj6N2wx76nIO3zLDjmKG/seUX/W5lwlSD4Y/uY8UD2yf18OcqQhlih5UXHXodmi8zzTtJ5C53223Z+T7zmdZ8q1Zlpo2d87adrzND/D33P9ha1x7LvcddH3xw67Ufhhl5bFRq/frs+40bW6/9R3mvWFF5dWaq6vDumH6kknrk9CmleO3TP6Ym+d9z3brW6736H8jO7Iclz0GxYfdF+4TU/XpsX5QkfNPtb6Rsf+THsPohlXnc+fw4RrdPKxgjG92nuPX42tfy5zvppGyZK1fmrjt0XspTqr04dd4q99oyWw93s4auhWLbVorlYq8z6mhKHZ2+e6J/IDyvI6aPSZWupUr+9wp1FYFsGFmhcG63ky9YYIr0DtOVk1fmlDLWO+dt94QuSYcdVqj8kBRtMLRMFakDgLqoya/D7jrx6L302PYdOv97N+387KrfPaA712Vzlq25d7P+5hNX6g2nT+24jjt8D535vMfr41+7ofL6AgAAAAAAoBqMLJNkjNF3//E5Ouejv9CH/uM6DQ70a9Wew/rYm5+m2+7ZpCef+W2Nju3QoqH5esPph01J7j/p7S87Qk952Xf0zrOO1M13btQL3naJHt78mP7fz+7Ue86/Rjd+7fQOfzMAAAAAAACUwc2ypr2W76JvfPCkKZ9v+59X5i5z1ilP0FmntG6c7bV8F637/pmSpGMO2V13X/SX6SsKAAAAAAC6j5xlsxZ7tQasTG7MeNFcE1Niwt14fjd/WcGcINPJi70vk0uhisdfF54vp0PL5B0KzFeKnycrovyq82kVzf2mLVsy07Zo8c7Xi710Wrn7xstL1vf4x7feeHkoim7+PZY76wrkJZtSoHts+Dkw/PxgneLnmHKPWW/794JO5quIXVeS3FQJjuVQ3r+QTFPt71K7nYWK5hSrY86gaP41gtu4Qm08lE/IzXsWysmY4PokeHy5uYye9azsxPPOa732zyGvelWrjC7u36HBtDkepfzt1em8WH1bNrXeVHDuTV3/KdvNy1NWVIp8VymkyLsYquOQc+hNyXflXneH8hu6/U+Hr88qP+7d674u5hkt2s56/jwHlEDOMgAAAAAAAKCJm2UAAAAAAABAE2GYNWBkdw5pDYV3hEwZ1lxwiHKKod3RdUzwOPNYme89urU1oYJ4c/8x4i53xLm/aveR9FVvq8KPdPceaX3lmlYY5mGH5T8q3F3saV4ZW37/+52vh71h95nh+UX3TYlQttFxZ994+6no08xD+yY0zY30cascDBlOFEbda1L0U6kfnV4nme5+NHc2JNLptuT2FQOqIFVA3sr895F9cOb9ihXZaX6oVad46QD02te2Xl9+eUerEuRsn0w/6KWMcK8zUlzLlSkjSRh7xWF1qcPGqtg+seXXMSQudC3kdzGjo6222++046H+wPcKpdtIoJvbNLTtUGPkLJu1evsXAgAAAAAAAJAQN8sAAAAAAACAJm6WAQAAAAAAAE0E19aAlSmU06DqHBLBR657646JoS9Tfoq8L4Xr6OQE2bAxu96lI+kf1Z5ddf73jHmke2jeKnLpuE+49tNpuanJMtNOOSUz3/Dxx+98vemwp2WmLR4t/zj5sfH83Gk+N72AnwIjZtuVOS7cem3c6L7OrmuPPZzXy2dv7opQno7YHFGFc/FVfJzE1nHLltZrt60ODQb6gG7lgOoRKXJnhvZZqH9OkXvGz4EZldcxJJRvrOhy/jIrV86sTp7Ya6HgvnBzmPl51boot01WkBsns028E2JfwfUlaeM9kLOpijq61wTj3nXM4uF6bIOi39PPqbd13M1Llp1327b2ZQyFTmUJ2n/sb5Iq8qa6/GvRgYp/qeedA2OvW+YscpbNWowsAwAAAAAAAJq4WQYAAAAAAAA0MV6w5goPefbnc8dz5zx6vN37ooqGCBadFluPmDCr0HJ+KGESbiyVH9rghBb64TUxUgwdD4UXjK06KDPtMOd14cib/oNz1z010LLg4+Sdbdw/vDhbQoIn0me2nR/XWTDszd/+w8Ot7eyGIfjFLVxYqPgpUod/xSo6lL/q0IYpy41ubb1xGm/RcKOQVOEdeW23ilDRuSJFyH+ZEKwUx95Af+A855w3YtdVxfm3p9UolLnqEHFXti/K2jra+iS0eYqGOVd9zFQRJhl7Tu3b4qST8M8vzsZ003K4l42Scq/pa2v9+szb6+/aa+frxz0uO2uKa7QYoXNBp8+x7vq6GckX+zshVAbXK+h13CwDAAAAAACIQc6yWYnbvQAAAAAAAEATt0BrwMimD2dIMEw7+GQk941zJz126HvVw3arDgULmjKe3uGMP+/mE0FD63KnhcKBfO4TfGKHtxcOe3C2cZ8fJuk+sjOFCv5y5IZaPvZYdprbfPynp5bZH53S6SdMRUscyhL6LimeKpUijHquCoWyVZEeIK+M1Pu6zLpTSHE+iS0zVury6/qEuOTr9s5zgz32a6HqfRHsR/xrEPd9IObQLcNN09BY31D7dSnNeTT50x69667DR1qvQw/cdX9qpDqXxTzlOPY6Na+8MuvuBb1WX2AmGFkGAAAAAAAANPXY34oAAAAAAABqwBhyls1SjCwDAAAAAAAAmrgFOkvE5uQK5ilwkwf4d8vdHAzOtCri2GPzCBRdrvK8SaGcWYG/QnQrJ0CZx2mnzvfjpcYr/kcaN/9UIEdcp/M5uevzq5XNRdZ67X9nN8WJv30GatiDV51vKVXektT7PkVeLH8+8oKkEdvHp9j+ncyZNWXdo1tbb5xz9sTI0iTrjj03p1h3Xj1SlJei/CpUfS3kqmJfd3I71iq3nHsSL5grs4q8l5000T+QeT+ksdxpefzUb37O1jyh8+jYeKsM/3rKLT/FNo3N3zrdvDOtSyXtxdlZW538elLy9LBAxzGyDAAAAAAAAGiq4bgEAAAAAACAmiNn2azFXp0lUofDSQof9BHjasuEJqUOoSwaflpJqJYbb+ePKx8Zab3u4ljlot+zzNDxmDKizzPugt52TB4eFFlJf8j/vHnt5/OfLB8K0XR1OsS0annHZez+nBriWz4sIXbdPR9i0eNiw2BTm23HaNHjwT0FLh6O+86ZbRUdrz97lDkXF+1/qiijo9daFQtlJsl8zwqu5arePpX3fQVDL13+Nnb7EX+au8lDbdXdh/5uSn0dMKU89wv4F3q9zt2Y3s+cyZ89E/U/xIG2CMMEAAAAAAAAmrhZBgAAAAAAADTNvbHrAAAAAAAAM0XOslmLvTrH9EJeCF9snotQLpqObof161uvf//77LSFC1uvDzssO23Zsp0vY3MepcjHUyYXXBHJc4hJwUez5z02XJLGnfex+Stc/ncLpavLy1nm18M99xbNvdeLYvOAbB3NfxS8+3779uy0RYtar938ZaFrHXd/StlmF7v9o/Of5EzrxVxAneT3Aa6BBFdElfRvjlJ5I93G3MWL+FB6nqg+LMF3qeJ8GCvm/J6qnaU4h6TIXZrabEtrV/W5PnX5Zcoomrc21I8Uzb0XSidX9fVy6At08jxddQ7VvG3cRywbehRNFwAAAAAAAGjiZhkAAAAAAADQ1OMDk4s5/jUXd7sKQQt2WTb9TDPQybCBMmFiRadVoaPha248wJIl2WkrVrRee0O087bB1PCCmW+rTm6PKvZ1pv6Bcfz+tlu3rvXaHzo+MtI+RNMPp3TL3LgxO82d16+Wu+uLPmm+zLaaTSGaoRALd9s9+GB2uR07Wq/9fT9/fuu1u5/88NjHHmu9HhnJr2Phvm50a2Za5tusWZMt1G1QboNZuTJbfv9A7rqRVSYcK+YY6vS5LFgv98s655dQHf3jZKC/WIhv1aE9s0nVodJVn2N7gdtuqxAK8yyzrVLs+14/1xftR/KWKbNcijKKLlenPrGT6+v0ObA2yFk2a82JvXr5tXd1uwpBrzn77G5XAQAAAAAAACIMEwAAAAAAANhpTowsmwtSPFEtVGbRp0nGhmnEDtMtWscq1h1lmRdy64ZTBYbv+k/hcxUN4fPDNd0wgtDI4djt061wgFAb9LeVuzvch5ZK0t13t5/P3xduCJ9ffmj3phitXceQi26GGPlRziFu+w+F4xY9TvLqJEl9Wza13vgNyF2BH+P78MOt16tW5c7XN9yqGE/DnCpznlh3b3aiG+rq9c99TtytG+paSb26mC7Bfe+fJ1KEomb4bTd0gBU9uXVR6n1Y9PitPJ1B5PVUXfqbKuoYaqput15FM676icd12W8xIZm+ok9CrWI7Fk3H0OnzdCgVREYP9Lm1RhjmrMTIMgAAAAAAAKCJm2UAAAAAAADIZYzpM8a82RhzszFm1BhzlzHmw8aYXUqUcbIx5gpjzKPGmA3GmG8aY/ZrM9+expgPGGN+YIx50BhjjTFfTPqFpsHNMgAAAAAAAIR8VNJHJP1O0hskfVPSGyX9P2PMtPeWjDEvlHSRpIWS3irpnyU9Q9LPjTF7ebM/QdI7JR0i6apUX6AMgmtniVBsfCgWvmhOgCoe59xrOTCiHXhg/jQnvn1sPLsN3NQu27a1Xi9cmFtE0NTt2Fqfm+NhIFCenwvCraNfj6GCqQ9StM9QeaFjYXi4/TaQpO3bW6/dNA5+WqlQXjL38fVV537rhcdzx+bpKJpLJ9R2/XW7+2p4uPU6lDZsxYrp69qW24BCyetCOQ3dSgbyivR8f1mBvvGx1ht/B4dytDjJ7PryGoz3Pvo4jEmON42YthDbfgovF/pu3r6ZGBya2bpC/NyBf/hD67V/zvb39wzrElqmiu3fyXPIbM6ZGOoq3Gn+tUSM0HacTdvUlyIHoN/F5P3WSH3tOV2ZKfKxxcqs2+tXY7ZP7LpnNWPmRM4yY8yhatwg+4619jTn8zskfULSiyVdGFh+vqRPSrpL0tOttVuan39f0jWS3ivpbGeRayTtbq190BizTNKDSb9QAfX/dQUAAAAAAIBueYkkI+lj3ufnS9oq6aXTLP9MSXtJ+vfJG2WSZK29TtJlks5o3lCb/HyztbbjN8hc3CwDAAAAAABAnmMkTUj6lfuhtXZU0nXN6dMtL0m/aDPtSkmLJR00syqmNfvHC/YAK1NoSG4VQ4aLlp+iTL+OMXWOHeJf9bYLmegfKFQPX96wfn+IfzaEsnj5eaEC/f3Z7bFxY+u1H8E0MtJ6XfSJ02W2d+o2GWo/g4P59XK/mx8p5466jg2HDtWx6vDNTqo6xCt2W/n71OXu+6JtfEp9Q0PznWluXyFJfUVXWEEI36zibh9/m4bCK93l3LC9QDx6n19GYB+67TX2PFG1mBQMwbQKoTDkQJkhUWki/H3o7l/3pCdl61j0mIy0YWP2u7jn2Kr7QXcT+OfDULeS4voqdZsvkxIkhRTdbqiOVYTH1VFsW4r5LVAm1DVm3f4ysdfqqc3m9oMklhljrnbef9Za+1nn/V6S1ltrH2uz7D2SnmaMGbDWjrWZPrn85LztlpekvSXdWKbSVeKqGgAAAAAAoKzZk7NsvbX26MD0IUntbpRJ0uj/z969x+lR1vf/f8/uZnNn2SybkEAIEUI4BUTOAlqgaNEi4gGQohYEraK21kOtx5/10KotWjzbb2tbgSInqUoVqacWRMtBQZBCOUPAgAGSsCRrsmx2d35/7L17f+a6d669Zu6Z+7B5PR+PPHbundN1z1xzzezk+nwus0zay7KppHkzbWPEWaYtEIYJAAAAAACANFskzU+ZVzHL+NZXyjZC1m86XpYBAAAAAAAgzeOaDNWc6WXXbprsmZbWq2xq/allZ1pfmjlEs2XmRH/BThdNjKtrpPoS1cmHUXa+otD4/WbnTQrddxF5HMoeztm3fV8aHFsVbBocd8T7ZB6E8HLZ3sJpqXmkZPqWLOla0s5NlpwUoee3iBwMfRV3GzPXhby9rIu4vpqdh6XTZMkZZ+f56rXNZ1ZID3tnI7Ycbk5AXx49qystAeEM+9su+fKSBeaTK+M4prUBReTmabbQtsibdzQwv5t7j7IG+nMen2XLatO+m3EBfMfArZ5F3Cd8+7bs13Sru93mpuHkNvr709vZPPU1b25an7KvG7t9N+9rcD6/wPNWxPEpqo3ptFxq3vKaG/BoTzIKzNf8px1L935un6WXLUv/W8Bt35Yva95xLaKuYs77paSXSjpS0s+mfhlFUUXSIZKuD1hfkl4g6SfOvKMlbZJ0XxEFLQpP0QAAAAAAAFnNnZxls7lC0oclvVvmZZmkt2gy19glU7+IomhXSTtKejSO46nQyp9K+q2kN0dR9Pk4joeryx4s6XhJF8RxvK3k75DJdnFWAQAAAAAAkF0cx/8bRdFXJb0jiqJvS7pG0v6S3qnJF2GXmsX/VtLZkl4k6brq+tuiKHqXJl+6/SyKon+WNCDpPZKekvQxd59RFH2kOjnV5fMg87vr4zierTdbQ3hZ1g5GR6X16yen7TjhmmEY+hRldInNE+JVVKhcnn3n7Zpediibr9u37a7vi6Sy3IgQ+x8ZWY5B2n+AbN6c/Owrly1LaIhgGce7jG3asMzQcL4s5SiizJ3QFb6ZYRpZ6n9ouEHBEVi5+a7DXjtz+/ifzUwmenqnp7v6c8aq+2LUCpAn9YC7XhlaeR9N26bvmgw+Pu45tPHWbvxUE/X2NPdZzh6fsbHaclOPpFNs2Jg7z56P0FQQZdfjZoeQFZIuxNY7p8Hv8rQ/rQyFTGu3yiiHr40s4m+G4TETeuncb31/itlTZU/h2rXJ5ewpdJuYrVtn3l6z5Q2nT6aDaf/nUjTs3ZLWSDpX0sslrZf0ZUkfjeN41goQx/GVURRtlfQRSX+vyZEx/0vSB+I4nilf2d84nw+t/pOkT2j20M+G8FQNAAAAAACAVHEcj0s6v/rPt9w5ks5JmXe1pKsD9xdlK2GxeFkGAAAAAACQ1faTs2y7w1BqAAAAAAAAQBWvQNvB+HhtrGA3GUdgzrIi5B1uPJQvR0XovNC8WHk1O99D6H9CeFJZuGnuGi7HvHnJebYKuvsKPYchv59pG+2ojFwoefNE+LRjPrOy89T42ofQtiNLG1N0+d1rOy13SV27YRuIdkmy1qYy3YfsgQ5NWlMC3+Zt3stmX/Otaq8L+c9733Uy9TwWIE+epiznactIbfu2yG6dCM0T5GvfbDPS3Z2+DV/e1Lpjl3LdNDvXXtl1Nc+zUB1Pxd4yVsu76C6V53oo+/iUfd8s4jnS3Ualku8Y2Co/NGS3l76Omxv4mWdq0zZ9YjPY42XblaefTi63dGn6NpI5ywoqGNAm2v8vUwAAAAAAAKBJeP8LAAAAAACQBznL5iTOarspIYSm2UNohwoNX/B1by+zTO6+y2DbVV8ba4eVHh9PzvONcm9DdELDNNxy2CrpVs/QMLfQLvNlDzfu27dvvUJCLDw6PTTVp4jjH7qObxtFHEf3WrPXl71ufJFI7vey4Qu+MEx77XWNjYYUFwHy1AtvuGYJQjff7PtXmqJCvPK0AUWEvGX5g6eIY+z7PrYotj3wFtFpSIZHTAhfT3Jfafd33/bdMLGukS2ewtQ081m0lddC3mch3wNh2cH1ocen059HfOwh9z1X+/hC5nfcMWy9IlKruPKctwULwpflHRHmsrnb6gEAAAAAAAAZ8bIMAAAAAAAAqKLjZLvJOfpl3tFfQrfRLiPr+bq3u92fQ0cJa/aoTGnzfCPx2BEqn302Oc8fhmmm+8NGgcsSCVzEcS07jNHK0hW9jBFgrbJHguwERZy3okNYfeuEhklmCUnIFQ1mh9yS8seMbCdC60h9CM3MYba51d+kZixHK2W51tqxzSkk/K6NYorSwjDreGYOVEzYtvPd0u79oc8Vk/s2054HCF9YfLvU/7yaOdpmEfvuhOf9MhTxPO5earbK2xBl3zXkhjiWEXpp5ak/vj9H3e254d3bpShqq3sHikPtBgAAAAAAAKp4WQYAAAAAAABU8bIMAAAAAAAAqCK4th3Mny8tW9bQJoLj0desSc5csaK2DU8ui7yamcdheDi5Lxtvnzeevuhh4X0513yh7qF5xLZty7eeLVcZuQeCh06fY4rOx1ZIPp6S5S2T77v5jkHoNrLs2xoerk2716jNXRKaqiJLm2j3nchpsnZtcsGyE550uNBj7juHhVxrnh2E1vEsQttdf+7PmZebbZt5NLV9cxMK2ZulmxPQJiJy5Lm3Zfmeac8Idet46pavjGn1znd46vadJdFpk+TNYVvE/txTUfQ9fHvJ75b3PJX9XJQrz6jDvWTKvoRC26m8zzHt+CzadOQsm7M6u8UFAAAAAAAACrRdvSzr7u7WIYccMv1vjdvLStJNN92ko446Socccoj2339/ffzjH9cFF1wwvU5vb6+e97zn6ZBDDtEHP/hBSdLnP/95VSoVPfPMM9Pbue6667Tjjjvq0EMP1erVq/WXf/mX+t///d/p7SxevFh77rmnDjnkEH3/Bz9o1iEAAAAAAACAx3bVX3DBggW6/fbbvcucffbZ+uY3v6mDDz5Y4+Pjuvfee3XAAQfojW98oyRp5cqVuvbaa7XEdMu/7LLL9PznP1/f+c53dM4550z//thjj9XVV1+trVu36tBDD9Upp5wyvf9zzjlHJ598sl7zmtforeeemxpGkyeMwrusu5/AsJC8Qsvc7G7ZzezGnti3E9sw1tM3Pe3rvWu7+LsRInaTbuiBeX9bF+nb3z9z3cpyrELrZ/B588UAtVAZIVKNlqNdZRmSPjRE2Vc/fdsPLacNd/RdXzvumL69rVtr04sWBRcjwReK0TWypfbBFlgiDLMg7XJ9ZblO0pbLwja7vvC7vM1x3vYzLTw0SzlSj51vI56wyzKU/fzTTHm/S9H31aefTn5euLA23VdyyJsvBNQ1V1NUtOmjXCnsd/O1l6Hhm2XUg9DnpjzPZO48YK6Zw81XPk8++aR23XVXSZM90Q444ADv8g8++KCGh4f12c9+Vp/+9KcTL8umLFiwQIcccogee+yxMooMAAAAAACajZxlc9Z29Sp469at02GQp5xyyozLvOc979F+++2nU045Rf/0T/+kEfe/WR2XXXaZXve61+nYY4/VvffeqyeffLJumaefflr333+/jjvuuEK+BwAAAAAAAMqxXb0smwrDvP322/Wd73xnxmU++tGP6pZbbtFLX/pSXXrppTrxxBO927z88sv12te+Vl1dXTr11FN15ZVXTs/72c9+poMOOkjLli3TySefrGUNjngJAAAAAACAcm33/QXf+MY36rbbbtPy5ct1zTXXSJL22msvvf3tb9db3vIWLV26VBs2bNBOO+1Ut+4dd9yh+++/Xy95yUskSaOjo1q1apX+7M/+TFItZ9l9992nY445RqeccooOOeSQuu3EiqbjvcsYKtmbp8NNLGDZvDj9/cl5BXQ1DR1Oe3TM5i1JLmfzA7j5fnp72jD/g3PcejU6PT2h3tTVbB4lN12RzZU0Pp6cZ0+be3y6xmr7TiSqccrY1cxh4Z19F53PI2++n7x527Lk7ypaO+ZCyXKMQ/McFdFmVirp27dV0uYAlJJ5AO1yeZtH36W2caiW33BoRbKX8ooVtem2bPdarF1yDobKe53kvRbsfUiV5H2o6Fw6efPg5C1H6rH0XaQZcgAm7qM5L/wi6mfoeqHL+dqiUec5zH5tX847+7jpPssV0X6WzVfvfHnJ8m4zdJ0i2rSinxF85zC0/MG5mEuQ91nO1oMs9Tj076FmynsfyrIdoBO06S2peS644ILE5+9///s66aSTFEWR7r//fnV3d2sw5cHpsssu08c//nF96EMfmv7dnnvuqUceeSSx3L777qsPfehDOu+883TZZZcV/h0AAAAAAECTkbNszuJ1r+Piiy/Wfvvtp0MOOURnnXWWLrnkEnV3d8+47OWXX16X++yUU07R5ZdfXrfs2972Nl1//fV6+OGHSyk3AAAAAAAAGrddvQIdduPXZjDTiy5rzZo109Mzvfj63Oc+Nz19/PHHT08vWLAgMRrmhRdeOD0dKU7twpr4fYaxmNO6vdaF1PnegtsYPl/4po0RdHvhBb5lL6Jbed/IRmffnvK3iqccs4wlMW39+uRne/i3bUvOs6ejPjzLlGXt2vQdrl6dOquIUL927aKd5/u0S9jl9ipLaMDGodqy7nVjPfVUbXrBguQ8e0vJELmVytcO2qZ7hx3St7FlJHkM+iqEZYYKrT+tvM5dea77ujKa+1Jvk8sfnELCyHKdF3E+7P7c+3RfpT2eLYoONfaFYfoeB33PMfZZxf0/aNu2ulk/8pg3L/m5XR4BXe2SLiFvOYKX9aR86TInJ2/Ki7LlSQuR5Tps5vNb3lD+vKlKgE5H7QYAAAAAAACq2vT/WgAAAAAAANoYOcvmLHqWAQAAAAAAAFW8Am0DsaKgeO+unG+sbaqA3izb8C1rE1PYfFdusokC3rIHDylewr6L5ssV4MsDYvOU2RxKkjQ+XptOGYti1n1r2bLatFMQO0y875AWMdx1K3N25JU3f0XRuXTaRd4h193lUvMuFpQbz+bksdNurhv72c1Llna9uekx7fbdayg0x4ndhpsXyH5uw2avrRSRH7NsecsYul4ZbVERvOUyCa/qvpWt9EUkvPJwr688eZTq24faNtycpPbWnLZfd99Z8g6lLbtpOLncQH96O+V7Rtu8uTa9bl1t2m1Lf/e72vTWrcl5uyydsYheZTwO+s51ITnjPHm9fF/A1qeBcqt/MTyJ7cYqA9PTvntlK/na2SLyJ5ZxT2qX3HhAJ2q/p0QAAAAAAACgRfg/aAAAAAAAgDzo2j8ncVbbXN4wLjuvd8x2eXZOeREXduA2iuha7O0+7ClHu4Ta+MrvFt9+3m232rQbvmCXCx22fXI7plu259jZWZ0QwpTlOsnTNb2o4cDzhlZtL9K+d94QMnc5G/pkuZfC3nvbddK3b9dzo2lCm9nQuuqWIzhUfTtV9LXWNTaa/IVteH1hgDkrRt42wJZzoqc3aJ3QsOmmC7z4yggxTaZLaPye57t+3eqTVv4s3yvPfch3uH377u9PD3ffsCF9m9aCBWHL+bSyHcwdBpvzWdp3rkKVfm3bts9pBzf1LJ6e7vc8b+bVzBDE0v/OaaEs9Tp0PaATtN9fugAAAAAAAECL8LIMAAAAAAAAqCJgow1Eiqe7qebtyupdr4wYHdvv2zOSYqIcOcufZ7nZ9t2q8MG8+126dOZplzvKlu3t7u2qH3je8oYgFjFCUBH7Ct2GlIys6qukb9MX+uoLzSsidAJJRbQxLl9UXdr+ej0j5hXBVx/t6LUzlWV7lDfEOq3tqwtbD72Ymx0bZvZXxGh9ZYfaeK/fSl/QenlHqktbJ8t6oXp70svotjeh5S/63Ljhpnb77r3MN4ijvTRWrEhfx95H2/XeaMvsHp8injvyphTIExpcRmic97t4Yo0HerJfl+5zl+9Zt5nNbruGHJY9MjskRRF5MOYoepYBAAAAAAAAVbwsAwAAAAAAAKroLwgAAAAAAJAVYZhzFme1zRUy5LEvcVLeCzstD5pne744+TJyDRW9jbL3XUTeAHfY9uDtByYJyTtcfd56XHTeM19esryXRhmXV6gi8hC1kq/Maee+qPqTNi9P/pdm8H7vRMXrLb0sc1VoG1N3L8t5oafVwaJyc6btK8s28uQTbXYOnFbuO8/+spzf1Lx5zn6D2wcn2dNE/8CM23DvZTbP2thY+n3UZR8tbKoq372yXf/e9JWriJxxrazHRas7Hj1h9yXf97Z1xq0/W7emz7N1sFIp/hiHXqOWN29YyQ+SrWyfgU5EDQYAAAAAAACqeFkGAAAAAAAAVLVpZ2fMpJDhfp3uvIV0+y4hhC9tvU7vzhseSuVo17iENpG3XvgOa1q19g3b7tve9nIKs7RTeUJX8oa7dHrbkWirx0aTM00cVG//dlLRMsgbGmMVEQrs26bv92XX3aK3P+qE6dkQvry8YbA5wmebfYzTyuQqpRz25hP4vOY7Z32V5Ly+Hk98nGr7s9/NvR8O9Gwxy/UFlbGVstSfPPUubx3vBL5jEFr/3WrsS4eRppC/qRyh7ZR3X25cs41fRvsiZ9mc1dl/PQAAAAAAAAAF4mUZAAAAAAAAUNWU/oJRFO0k6fWSVkvaKul6Sd+L4zhuxv4BAAAAAACAEA29LIuiaGdJX6l+/FYcx1fMsMzvSfqupEHz6/dIuiGKopPjOH6mkTJgUl38uw3aNzHUbgx9crGc8fuBOTCKUEaekbbJiRYY615GLovQvDpF5HhoZS4ONxVEjlQudQkxujzXV+hmfPk27HXZCXlLspQjT+6eLPlO0o5x6L7c/bnLFZLz0SO1XG4lqcycF0hqn3rRLrLkEAvNpdPKe0jR57eIe6x7rRV9nRSxDd91kuU7t8t3Cy1zV87njMQ23DKabY6qNznLt57VxOfIIhTVzrbN82egsp83rSxpfPPkLGv2vTH0ew9rIPF5oORyhj5r5bXdPIOQs2zOarRlfqmk10g6TdJd7swoivolXSlpkaTI+fdCSZc0uH8AAAAAAACgMI2+LHtJ9efDcRzfOcP8cyUtkxRLekjSB6v/HtfkC7OXRVF0fINlAAAAAAAAAArRaH/BAzT5IuzmlPmvr/7cLOkFcRw/JUlRFF0t6Q5NvjB7naTrGixHR4sVBXXPzRKylNbV3t1GaIhXcJfz4eHkZxv35pZpcDB1f0XrGt6U/IXt8l9yt9musdHUfRXd7d53DkfHkvvqHd5YW8+GcVWSw7bnGfY8i9Dth3b/95XJ13Xft83Qfv1ZriG7b7ueGw7tU3YYYCFCYyEdXSNbah8KCNFxT2Fvz8zHy71Oxsxntxj2mG8ZST9vRUQYJc6vZ4NuqHFfZ0U3laJdQqQS9wJXznDu4H0Hfpcs4WWdEDaWp4xlh7tnCnHMsY1WSmtXpfDv3bb3Mo/gMNiczzFFPCeVIXTfRYRzF71e3mso9BjnfV4uIyI5TxqBItqp2bYDdIJG3xIsrf580J0RRdFiSYdq8mXa5VMvyiQpjuP/i6LoWkl/IOmoBssAAAAAAADQfOQsm5Mafd079bJs8wzzXqDJnmOSdM0M839d/bl7g2UAAAAAAAAACtHoy7Kpl2ELZpj3gurPWNLPZpi/vvqzv8EyAAAAAAAAAIVotL/gBknLJe01w7w/qP68O47jp2eYP/WCzZPEY/sQKW44z0DePBeh67l5cDZvnvk96y5LnXefOfMVhfLleEh8t8BkVaXke7B53Jz9dvVnf1ecJd+MPW91OZvsL0LH2m5TTc2JkLMe+/JX5M0N0RG5XTzHq4hcK742IM+p8q3jXiY2n5ldLzgX3izyHJO+oceTv1i2LPM25pwC7kN589TYXHbr1/cm5g0N1aYPGny09mFFssN92dd50dvPlP/Uk9Oz7LKk8T1LFJXHJ5XbyJhjkjeHXp57SJb7Vd5rI03e7fvWKSTnoKcc9jrPkhs1dF/tkvcp9PnTLX8zn1WKyB9Xdt5I3/7KiOTz5uAt4O8hX9s09XfIRAc8rgIzafSSvEPSbpJOjKKoEsfxiCRFUbS3pCM12avs+pR1p54Gn2iwDAAAAAAAAM0VReQsm6MafXX+3erPJZKuiKLo0CiKXijpctVCNL+dsu4RmnyZ9kCDZQAAAAAAAAAK0egr0IskfVCTvcROrv6bEkv6VRzH/+WuFEXRSknPrS7zi5AddXV1KYqi2Rd0VCoVHXDAAZnXa6a+vr6m7atrnROiY0ME3a65S5ZMT/Y5b8v7FqRUnbHkmMcTg4szl9EnSzhBoitwJewYl9JVPDQ+qwBdI1sSn/tsHKYzHvWW/p1n3IY7anXeoc7TojzLGBY7VO7Dn3PF0LCE3F3+faG0LTrQWUJoEvNsWyTlOuZZwirSjrm7jZ4ecw6d66vXlnlwsDY9lPwuo/21drBXYSEQPr76sk7LE5+Xd0KobslGVQt/dI922eFBfetr4ZW7/+AHiXm7PzU9SLgeet3/Nz29yqlnvms5TyhzUd+5iO1M9PSmzmtVmHmWELjCyxgYtu5TyHnJEIpaRDh92r7yKiKUc7ZtWn1jm8wnNw6zdv0WEd5XRohg0ecw7759ii5Xluu6iDBkn7KPuS3zmJJtrq2toc/07uOa/VPDzfww1aTl+BMeaAsN/eUex/FIFEUnS/pPSSuc2WslvT5l1bPM9H+H7GtiYkJxHGcuYxRF+r//+7/M6zXTW889t9VFAAAAAAAAgBrvWaY4ju+Komh/SX8k6VBJ3ZJ+LenSOI6HU1Y7QNJPNZncPy2nGQAAAAAAQHsiZ9mcVchZjeP4d5IuqP4LWf51Rex3TnKHnSwilMr2nc2yfXvRu6M2BjYIia7F69enbuPxkWS4pokAzd32hI6yVXb36rpjl4Ovi3xinvs97b6deWlnvqgRgkIH2yxitMciylw3WmjB9zxf3fJ+T3vNutevb5S/Vsa7pvGNwlTEEGIeeUcX846qm3ZtOzEKa4dq7dvKlckQiDx117fO4GB7jJq23fLVcXtjcyQuV6eeNTUM0CdwFDWfIkKl88o7GmOebeQV3C6NOQPJm3NR1EiZaeXKcgxaGd7X1HLYC7jsdBttFFqfJ51E3tFmQ89hs0e5TCtXUfsq+ny71bPs+tTbM7l9wjDRqXiqBgAAAAAAAKp4WQYAAAAAAABUFdpXOIqi3SW9XNIRkpZK2kHSP8ZxfKWz3FRMyrPVEE4AAAAAAIDOQc6yOauQsxpF0YCkL2ly9MvuqV9LiiV9f4ZVfizpEEn3Sdq/iDLMGRmGDQ+OM1+7tjbt5tjx5FApnPvdTP4ldxjiwcGU1Tw5U+qOT568aiUoYljs4LwiPb2p89xtpG0zb14yN52WPafNTJ/lK3/elDtl5LBJDOVtyjWV32GaPXjOgUzkynBz2HQaTyVJO1aS1Du8sfbBNhyzyHXePHnVEufCuRhWjdwxPb1p+KDEvP7+9DwsefKftGOqunZSer4ft4Lae+7RR6cua6tulnbcKqKdKiVvZ4b9hfDm7Wzy9yw7F1ZqG+DecE09K+L4+LaRt56FlqPZdbAIvmvWKuL4lKGI/RXx3bzlGBqqTbv1v4hEx8boWLIOFvEOJPR+XnY74pPl+dmyp8P+ySlJS5ZMbnOi/S9jYEYNh2FGUbRM0q2SztLky7eo+s/n89Vl9o2i6IhGywAAAAAAAAAUoYicZd+WtJcmX379QtIfSzpwlnWukvRsdfplBZQBAAAAAAAAaFhDHUujKDpN0tGaDLe8TNIb4jieqM5LXS+O4+Eoin4h6RhJL2ikDHNNUeEXXSNbah9s1+UMYUqFc/dt4vT2HXvUWbjWpXpCfbVfe/pC268pJcObfF2o27WLf2q3dacvdOLMO1/UFzpRxBDXtihuKK3tlt3drbbgqwfuPF/oX3K9xv/PwRtqbA7sxODitFka6O+AXAk5YxlsXe2Vc3xsRcsbZ1uAxDXqhrevXz89ObD+oeS8yoratFNeGwpiv1qfE2pZ1BD1c1VdaHMOucNm7Dl164WZ1+dpj4ND59xQbFNpJiq1+2juMKi815PnGu0y4YN563HZ93DfvbJlzw++kPzAlAt5uRFwiaK459eTKqOZyg4ztHzf01d/WlnPCgmTTNmeu563LR3eVPvgPtT7HjhTc7eUL+2YFBHa3ch28gg9T9u2JT/bU7PdpoIgZ9mc1eid64zqz/WS3jL1oizQHZrsjba6wTIAAAAAAAAAhWj0ZdmRmuxV9t04jrdmXPep6s+lDZYBAAAAAAAAKESjL8t2rv58yLvUzKbiBcKGkAEAAAAAAABK1mhw7TZJ83NuZ+pF21CDZWhId3e3nve8501/vuqqq7Ry5crEMuecc45++tOfascdd5Qk9fX16YYbbtCFF16oN73pTbr99tt10EEHSZIOPPBAXX311Vq5cqVWrlyphQsXSpLGx8d16qmn6q/+6q80f/781PIkco1Jybh8N99JqGXLatPtFExucpXUMUkxugKD4Rf3JBNpjGogd9GKlCXXXOp6NkmImzDExsh7jmkZeQ/6xmr5JdaNJI+3PW3j4zP/XpJ6TfGLyNVQVJ4Ie5g3b65NL1iQXM9XjUMlcg25uTjM5y6n/ldMHiJXq4ahd/dVRD48m3Nq1Pn/lV5zAtx59sbU1NxCbn5Ge42a/GWSkhXNqUy962q5HHvtAbFtuiR56gGK4b1GA9vgdpEln1Cu68aTd7FOk+9ZadsObaeanaMstVye3DhbRpLr2EXd1dLOve97enOWtWnOnlbdD2eTdn599bOdym/lLWOibbV5ytx2xFY0928BT73L8wziy3Ppbi/0HPq08pyGnjffn4/z5qUvN/W5a3tIrdqm7R8a0+hZfUJSv6R9cqz7wurP3zRYhoYsWLBAt99++6zLffazn9VrXvOaut+vWLFCn/rUp3TFFVfMuN61116rJUuWaHh4WOeee67OPfdcXXTRRY0WGwAAAAAAACVo9D3vDZpM0n9iFEXB4ZRRFB2qWr6z6xssQ0udfPLJuuuuu3Tvvfd6l+vv79c//uM/6qqrrtLGjRubVDoAAAAAAABk0WjPsm9LeoOknSR9TNL/N9sKURQNSvo386vLGyxDQ7Zu3apDDjlEkrTnnnvqO9/5zozLve9979MnP/lJSdJzn/tcXXLJJZKkrq4uvf/979enP/3pWXuMDQwMaM8999T999+vo446auaFfEMle9R1nbX9YN2QHSO0+23pQxm7oRi2n78N4cjQLdv2hvVFLvb0tK57eyLs1vfdfPWggG6/oefeV89WVR5Pzlu3bnryjpHDZlpFkjQ4mL79VoYe2EP+7LO1aTcMM3SobfcUJk6bnelWVsuZN2bC73o7oPd3ljamVzbsrfa9R5zw6l5zTHqddsRus5XDsSfaN/d69YVYm2sosZ6nTa8L5W+n0PtOY8+HPRfueTLnIzi0PoPgdtCtW4H3htAwpdzfzbZvbkNon3kGF+cqR55UB+46oe14EYqoB24ZAx8Vc0uEyuVMNRz6vYtom1sZLltGiG/hodIZ9l20untUWuil+3dBYIi779oIzOoy6zattGOXt71s5bNKaF11j51NVeKaug3Fcc5CAS3W0J9XcRx/N4qiX0k6TNIHoyiaJ+kTcRz/bqbloyh6haTPSdpLk73KfhzH8S8aKUOjGg3DlKTXv/71+tSnPqWHH3541u3EtBYAAAAAAHS+KCJn2RxVxH+fvVbSBk2GY75X0hNRFP3EzD8tiqKroih6QtJVklZVf/+EpDcWsP/CvfGNb9Qhhxyik046KWj5np4evfe979V5553nXW7z5s1as2aN9t133yKKCQAAAAAAgII1/Ao0juMHoij6A0lXajLRf5+kF2my55gkHW0Wj6o/H5D0yjiOf9vo/stwwQUXZF7nnHPO0Wc+8xltTumLOjw8rD/90z/Vq1/9ai1atKjRIgIAAAAAAKAEhfQXjOP4jmrS/j+T9HZJK1MWXSfpK5K+FMexZyzx9mNzlknSL36RjB7t7e3VO9/5Tr3rXe9K/P5FL3qR4jjWxMSETjnlFP3VX/1V3bZjRdNx4l0ZhkMuQmgehLqYeZuzxZdjIK/QZAJmOV+sfd+IM6iCKfOW/p3N5orPFeDPW2D48s3Y45GhTpSd62Cip5a7pGvJktTlDhp7dHp6o3ZP317JuWKyGKjUcrQMLKnVlwmTJ8yVzOuS1NOTzPOSem589cCZ1/E9vm074h7XlO9d95U9Od7sMR4dS9atluUqzNLG22vKl8vOcvNeevKbYRZpuQTdc+i57zU7d1KasnMeefkSiJrPReS0KiNnXNGy3OfylNn3+JQ3n5a1uGeTs40BM9143WppfslAZTyrhOY9a+XxKOR7u21A2t8QWe6VnnlpOct8eWS3jCS/p72turfUInLSla2I+uO7h9hcvh3/XAo4CqvScRxvkfRZSZ+NomhPSQdrMvF/jybDNO+J4/jOovZXlOHh2d/ZXXjhhTP+/pxzztE555wz/fmd73yn3vnOd05/XrNmTYOlAwAAAAAAbYmcZXNWKWc1juOHJc2e7R4AAAAAAABoI7wCbTeDg60uwTQbttTb4+m2a7tUO+EoRXT9tWFvWUIIEiFx69alLjdWqYVhltFN2rvNwDDSrhb+b4Wv67W1ZSwZZtizZPn0dK9q5yJLoG7o+Sgi9KZuOXPME+GmBXRhl5RvDHNnud42DE9xeY+XiW3oWpb8bom2w3zvPnfYeU/4b6iWhriYeuaGivauWFH7YHtB+9oDwjAz8Z57e73Zc+EJlS499D1DW9c2Ye32OLq9+T1xUUW0u4nttUkoW2H3EKP0sPK0tBAZtMvxz6uI68kXTZ/MPBC+r0Kes8s+N/a6dw+CvYd70k5Yec+F79Zpmx83/fRyPW72vVxpQp+XfVp5Dwldzy1jf//s96UoSl0EaGtt8iQFAAAAAAAAtB49ywAAAAAAALIiZ9mc1dBZjaLooQLKEMdxvFcB25kTyh4lKe/+6kYnSmsQnDCKIsIHfd8z+Bh4wmbsqIdbRpKhhH2V5h3jIrZRdvftLGE+tir0VGrHNUuNyBMa4I5w1JuzCuY6b1nqe9qyOUNcOlLg6LmJeuCGcdlteIa3Cj017TSa3ibTHg2Ehujf6Yyjs3p1cQWa47z3uaJGeg6QpZ7ZMvtGEfTV68LDNd2LzbZp7nG017MTQuwbYTlNEaGonRgi2EwTnpGdQ9vPtgkRzsmNJLRVvnckeY9KPgcnR332ZDFJbsPWSfc5O60gTeYdcdde5+49PCUMs6g6knZI3N/bw7pwYXLeRCUs9DLk9+2sjDJ3+rUONNqqrpQUZ1jeRizH1c9Z1gcAAAAAAABKU8R/QWRN2Tf1coxUfwAAAAAAAGgrDb0si+M4qG9lFEULJO0u6URJfyFphaS/ieP4Y43sHwAAAAAAoCXIWTZnNeWsxnG8VdK9ku6NougCSd+X9JEoivriOH5fM8rQziLFTYtt3zScfL/py5Fgr/ng8nlyBjVbYtj5lSvTFzRldFJNqK/g9FG+w+M7xp0Q8++m2nK/65SusdHkL0z+io1anJhl62do7rEsVc6XE82W083RUrTSh21vIl/epDrmBAfnCsvZpnTC9dXbkyzjSJ5y3X9/QaWZm7Kc63a5Lr3tlCdPUJ5cl1ly9gUfy0QCS8/16+Qsm1iyc9AmCslr6mG/p1NE2VSCofvaOJQ8bnm24SpivSJyo7rHp79/5m124t+U9nv39CS/V+L7pD38SHV/daUdB+/5dHN+FZBbMbT+BC83siX5C7fMVsrF7WtvstR391ylLzfztKtu3zbxnK+hMg/Jzc5P7c0nl7L9vGVsl+cpoChNr9FxHG+S9EeStkr6iyiKjm12GQAAAAAAAICZtOT/duI4/m0URVdr8qXZ2yT9rBXlAAAAAAAAyK0Tu8xiVq08q3dVf76w7B0d84LDy95FQ+bPLzjWT03oBmsbBBt/l7OhyBL6kWv7nqHOLTeUsF00czjnLPvyLWvDJsuuj6Ehdr4Qpk7XCV3fCwk9CI0dzyA0hCDvMc5bzxJf1RPekdj+sXTWdhURXlZ2OYoOtXH3V8Z3S7tuMu0rx/NDESHV7dT2h4ZIlV1/rLxt9WJtTMwbNakVemVTMCTPdSfcvyw3ZD7BxtXK+W4jyUXTqr97PGzz3xua86IEmdIsWGl/M7jzPPsKVcR9uoz6GHr9NnvfRdwnfNvotGsbcLXDK9BlZe/g5188ouxdNOStX1zT6iIAAAAAAABALchZZhxd/fm7FpYBAAAAAAAAmNaSnmVRFL1K0sskxZLuaEUZAAAAAAAAcosicpbNUQ2d1SiKdg9dVFK/pH0lnSrptWbeNxopA2aWFv/uy8nlHe26x5NHo39gxt9nUUaMuy8HQNr2y8hZZsvR28J2tJn5Trzbd24mE4O1nCaDObcfmnMhyzFw89w1S5acNXZeu+Tg8ZWjbp5vmPU0BT2MpNUFtx20u2v2MfZdN6mOOaacwsxRZZ/T0bGwe1mvwq6F3DmDAvnuxbnvy768ZDYxnycXX9H3zizfxbYJiwcbf1Zxt2F1jWxJ/sIcuzzPNE3n5OvqTdSn2kksux6Xngc3w/aHh2vT7jOmzX0Weg4nKn3e/ZUp9Fm9y/2iyzwZdwq4p+ep/0UdN/d85Nlf21y/RlF/l7XLsymQV6Mt1BpN9g7LKqr+/G9JFzRYBgAAAAAAAKAQRbzKjnL8G5f0T5JeFcdxnpdtAAAAAAAAQOEa7Vl2vcJ6lsWShiU9IelXkv4jjuPHG9w3AoWGMuQNcyh7SPp23F4natdjUES5MoX+FbDNooXuq13PYW4tzO+QdixbGSqNcrTyurFhVn7pFa+VbVjhx67ka76Mc+1rEwrfX2AuiE6/FzQ19UOLtz/Q3/j9vV3vS8HHIUeOkyzHuJV/M7RlO1vC9ju9zSkdOcvmrIbOahzHxxdUDgAAAAAAAKDl2i+jIAAAAAAAANAivCwDAAAAAAAAqgiuBQAAAAAAyIqcZXMWPcsAAAAAAACAqqBXoFEUfb3EMsRxHP9JidsHAAAAAAAAgoT2FzxHUlxiOXhZBgAAAAAA0IaiKOqS9C5Jb5W0UtJTkr4p6aNxHP8ucBsnSfqIpIMlPSvpvyS9P47jh2dYdkdJn5R0qqSdJD0o6SuS/jGO4zLfT0nKlrMsClgmDljOXab0LwkAAAAAAFCo7Stn2eclvVPSdySdL2n/6udDoyg6IY7jCd/KURSdKunfJf1a0vsk7Sjp3ZL+J4qiI+I4ftws2yvpx5IOlfRlSXdLepmkf5C0i6SPF/nFZhJ6Vl80y/yTJf2FJl+CPSjp25o8AOurv9tJk28OT5G0t6QJTR7oq7MXGQAAAAAAAM0QRdFzJf25pG/HcXya+f3Dkr4k6bWSLvWsP0+TL71+I+nYOI6Hq7//T0m3avLl17lmlTdLer6kd8Zx/OXq7/45iqJvSfpwFEUXxHH8SEFfb0ZBCf7jOP5p2j9JB2ryRdmIpLfEcbxPHMcfiOP40jiOfxTH8Q+r0x+I43hfTYZcPltd57nVbQAAAAAAAKD9vE6THaG+4Pz+nyVtkXTmLOv/vqTlkv5l6kWZJMVxfLuk6ySdUX2hNuX11e3+s7OdL0iaJ+mMLIXPo6HRMKMoep6kz1U//lEcx/862zpxHF8g6Y80eaA/H0XRwY2UAQAAAAAAAKV5viYjBH9hfxnH8Yik26vzZ1tfkm6cYd5NkgYk7StN50Y7TNJt1e1bv6iWY7b9Nayhl2WS/lSTb/Wuj+P4+6ErVZe9TpNhoG9vsAwAAAAAAABNN6Gujv8naUkURbeYf+c6X3O5pPVxHD87wyF4rLp+r+cwLTfLzrS+JO1W/blI0oKZlq3uf4NZtjSNZqJ7sSYT9P8sx7o/l3R8dRsAAAAAAABovvVxHB/hmd+nyXRaMxkxy4x61lfKNkacZXzLTi3flzKvMI32LJt6m5d2QHym1lnuXQoAAAAAAACtskXS/JR5FbOMb32lbMNd37fs1PK+fRWi0ZdlU2/68uQdO8jZBgAAAAAAANrL45oMtZzpBdZumuyZ5utE9bhZdqb1pVrY5dOSts60bHX/O2nmcM5CNRqGea+koyWdHEXRvnEc3xeyUhRF+0p6hSZDOIPWAQAAAAAAaBdxLI2NtboUTfFLSS+VdKRMGq4oiiqSDpF0fcD6kvQCST9x5h0taZOq74biOJ6IouhXkg6Nomi+kyftSE12+rol39cI12jPsiurP3sl/WcURQfMtkIURaslfV+1LnXfbLAMAAAAAAAAKMcVmuzs9G7n92/RZP6wS6Z+EUXRrlEUrY6iyOYV+6mk30p6cxRF/WbZgzWZy/7KOI63meUvq27XHWjg3ZLG1IT3SI32LPsHTY5muZekPSXdFkXRpZKu0uTwoRuqy+2kyVDNUyS9TpMjaErSA5K+2mAZAAAAAAAAUII4jv83iqKvSnpHFEXflnSNpP0lvVOTL8IuNYv/raSzJb1I0nXV9bdFUfQuTb50+1kURf8saUDSeyQ9Jeljzi7/WdIbJX0uiqKVku6WdJIm3yl9Mo7jh0v4mgkNvSyL4/jZKIpeLulaTSbqnyfpDdV/aaLqz99KOnmWuFYAAAAAAAC01rslrdFkb6+XS1ov6cuSPhrH8cRsK8dxfGUURVslfUTS32syf/1/SfpAHMePOcuORlF0gqRParLD1U6SHpT052pSh6tGe5YpjuP7oyg6XJMFPlW1l2E+35H0Z3Ecr2t0/wAAAAAAAM22HeUsUxzH45LOr/7zLXeOpHNS5l0t6erA/Q1Jekf1X9M1/LJMkuI4fkLSa6Io2l/SmZJ+T9K+khZVF3lak8nabpB0cRzHdxexXwAAAAAAAKBIhbwsm1J9Cfb/FblNAAAAAAAAoFkaHQ0TAAAAAAAAmDMK7VkGAAAAAACwPdiecpZtb+hZBgAAAAAAAFQF9SyLoug4+zmO4+tn+n1eU9sDAAAAAAAAWik0DPM6SXF1Ojbr2d/nZbcHAAAAAAAAtEyWl1RRxt8DAAAAAADMSeQsm7tCX5ZdlPH3AAAAAAAAQMcJelkWx/Ebs/weAAAAAAAA6ESMhgkAAAAAAABUkVgfAAAAAAAgB3KWzU30LAMAAAAAAACqmtKzLIqi/SW9WdJqSVsl/VTSv8ZxvKUZ+w+xbsMWvftzN+iXdz+l+fO6tXLXhfrCX7xAB5/5La3eY1Ajo+Na2DdPf/aa5+rsl+8rSbrw6nv1vi/frN2W7qCR0TG99ZT99Z7XHSRJ+sdv/5+++u93qburS/0LevS1Dx2nA1YtauVXBAAAAAAAwCwaelkWRdHukv69+vEf4zj++gzLvFrS5ZLmmV+fIukdURT9QRzHaxspQxHiONYp7/+Rzn75vrr8UydIkm6/b72e2LBVe+02oNsuPk2S9NBjm3TqB36siYlYb3zFfpKkM05Ypa+87xhteGZE+51+hV7z4lV6zi79ev1L99bbTj1AkvTd69foL754o37wxZNa8wUBAAAAAAAQpNGeZS+VdISkWNJ/uzOjKFoi6SJJvTOsu4+kKyW9oMEyNOzaWx/XvJ6u6ZdbknTIvku05vHNieVW7Tagz737aL33izdNvyybstOOFe29Ykf9dv0WPWeXfg30177y77aOKYqicr8EAAAAAABomjgmZ9lc1ejLspdUf94dx/GaGeb/maSFmnyZ9gtJn6/+/iOSDpR0ZBRFr4jj+HsNlqMhdz74tA5fvSRo2cP2W6J7Hhmq+/2j64Y1Mjqug/ZePP27r155lz532R0a3Tah//7qyUUVFwAAAAAAACVpNMH/3pp8EXZLyvwzqj+fkvQHcRx/M47jb0p6maRt1XmnN1iGporj5OcrfvKQnvvaK7Xq1Mv0rjMOVGV+7f3jn53+XD347dfpvHccpU9e8KsmlxQAAAAAAABZNfqybOfqzzXujCiKdtVkQv9Y0qU2mX8cx49J+oGkSNLhDZahYc9dtUi33rM+aNnb7luv/VcOTn8+44RVuuvy0/Wzf3ql3vulm7RuQ/2YBa99yV666qdrCiotAAAAAAAAytLoy7Kp2MXfzTDvaDP9gxnm31P9uaLBMjTsxUcs17PbxvXPV909/btf/t+TemRdMmfZmsc36y+/dJP+/PQD67bxguftorNO3EdfvPxOSdL9jz4zPe/7//Oo9nnOjiWVHgAAAAAANNtUzrJO/4d6jeYsG6/+3GGGeS80y9www/yN1Z99DZahYVEU6TvnvVTv/vyN+rt/u12V3h6t3LVfX3jPC/XgY5t06Fnf0sjouBb2zdOfn35gXXL/KR94w8E67A3f1ofPOURfufIu/eSXj2leT5cWLezVRR87vrlfCgAAAAAAAJk1+rLsSUl7aDLc0jWV/P+OOI6HZ5i/sPqzPm6xBZYv3UHf/PQJdb/fev2fpK5zzsn76ZyTay/Oli/dQev+8yxJ0hff+8K01QAAAAAAANCmGn1ZdpuklZJOjKJoMI7jIUmKougwSQdpMl/ZT1PW3bP684kGywAAAAAAANBUU2GYmHsazVn27erPhZJ+GEXRKVEUvV7Sv5tlvpmy7pGafJl2b4NlAAAAAAAAAArRaM+yyyT9paSDJR2h5EuyWNJP4ji+2V0piqIDJO1VXeamBssAAAAAAAAAFKKhnmVxHE9IermkWyVFzr/bJZ2VsuobzfR/NVIGAAAAAAAAoCiN9ixTHMePR1F0pKTjJR0qqVvSryX9OI7j2LPfiySNxnFMzzIAAAAAANBRyFk2dzX8skySqi/Frq3+C1n+PUXsFwAAAAAAAChSown+AQAAAAAAgDmDl2UAAAAAAABAVSFhmFOiKPo9Sa/U5MiYSyXtIOnTcRz/q7PcoZocBODpOI4fLrIMAAAAAAAAzUDOsrmpkJdlURTtLuliScfYX0uKJe04wyrnS/p9SWsl7VFEGQAAAAAAAIBGNRyGGUXRfpJu1eSLssj88/lSdZkVURT9fqNlAAAAAAAAAIrQ0MuyKIq6JV0laSdNvvz6tqTfk9Q/y6r/KWm4Ov2HjZQBAAAAAAAAKEqjYZhvkLSfJsMtz4/j+P1TM6IovXNZHMfPRlF0s6Q/kHRkg2UAAAAAAABoqjgmZ9lc1WgY5inVn7+R9KGM695Z/blvg2UAAAAAAAAACtHoy7LDNNmr7PtxHI9nXHdD9efiBssAAAAAAAAAFKLRl2VLqj8fzbHuRPVnISNyAgAAAAAAAI1q9EXVFkk7SqrkWHfX6s+NDZYBAAAAAACgqchZNnc12rPst9WfB+RY9zhNhnA+3GAZAAAAAAAAgEI0+rLsekmRpBOjKFoYulIURX8g6XnVjz9tsAwAAAAAAABAIRp9WXZF9We/pC+GrBBF0UpJF1Q/xpIubrAMAAAAAAAAQCEaylkWx/F1URT9RNIJks6Ooqhf0gfjOH7IXTaKoh0lvUHSRyXtpMkXZVfEcXx3I2UAAAAAAABoNnKWzV2N9iyTpD+W9IgmwzFPk3R/FEUPmPlvjqLodklPSfqCJl+USdL9kt5WwP4BAAAAAACAQjQ6GqbiOH4qiqLfk3S5pGOqv95Tkz3HJGm/6s/IrHaDpFPjON7c6P7nhGefldatm5zuSZ6SiSU7p67WpYnacs57Tzsv8arb3b5ZL7HOLOx6IyOacdrdXX9/8OaDeY/BT35U+3D77Yl5d5z4/unpAw+s/X7qNExZviz8mKTZMjLzsZKSx6dSSZ/n+5729Pq231dJfhdbrqGh2u+7u5PbWLp05nK4O5/o6VWa0PK7ejVa+9CT3lzZ7+J+Ty+7c7cg7gmZMjycvj1nHd8xSfvenq+ZSZbrud25dSaN+51963WNhdWtBPek2fUCr4UsUs/h//t/iY8ff8c7pqf7nEXfPz5eSFnmjJ//PPn5Jz+pTe+9d3LeEUfUpgcHZ56WNFFxj/rM3PbZtrvL9fj09JbB5YnlbLPi1onRsfQ6bqunu28r0WaW8V/jgdeX7znG96xi57nF7+1JuYZ8N0t7YpR8DusacgZwd+pC4W65pVaOI46cng7+nprlOc/zfJi2DVeiLXXvjykPgaFtutQZ97LvXl37Ps7jpj56tHkWtW2KlHwwznmdrF1bm959Rdixss9MktMWeZ57H1+XXC+xrKlLm0aS98CBsdp1s6WyODHP176lci+A0Gc5c4yD/25yef6O8hXx6adr0wudLN+bzV/Dd92VnPfi45tY/9evr027bVvosQPmmCJ6limO48cl/b6kMyRdJ2mbJl+O2X/jkm6WdKakY+M4frKIfQMAAAAAAABFKagPgxTHcSzpSklXRlFUkbRakyGXPZI2SLo/juNn3PWiKNo9juNHiyoHAAAAAABA2chZNncV9rLMiuN4RNLtvmWiKFou6SOS3iQpJd4JAAAAAAAAaJ5SXpb5RFG0i6QPSTpX0vxm778dTfRWNLpkMkdJ79iWxDxfrifLTb/RZ18/lpxLJ7Evp4w2/N1Nx9DXU8tzEVouX1x83TyTjOyG/pcmZg2b3GQ2ZcSqHreT44qgcvn0DdVy0fS5ids8OTzSvqv7+15zXHsrnpxKbrlMnprKMk8+El8dNOfNd27sek46mER+DzdN2AtXm/wnntwwdj03h09KWilJ0ojJq9Hj1kFzTSVyaniS72XJw5KWk86bF8uzP28b0Er2+zhJASdW7D49nch7IwXnb0mm3EnPh5fIf5dh+8HrmHlF5e+wddnmO9nlFa9ILPfxf/mX6enPuAlzkHTMMYmPE8ccV+ru0u+Vbru7rLacL6+U0z70puVWVLL+2NXcVexyvWvWpG6vbsW0ffsScLrXUGD7FpqjtdfZXGqb7OSZs6m2hseSuWKX2/NRRvJVT96w0UNqecqGh1IXU09/vnt413DYPda3jcTz22AyH1Xoc0yWe2cIb461Itpn5zp85cm1E3Lyyc7xUfL5M1EWe98LzB/nln/3HI+p7iW6bNnMy7m8eXxN+QfGnNx1ZoduXtngc+9L0Gv/2HAfMpcsqU3bL+o88yXaG3f7dt9uG5DyHOy2RUuXpn9Pe0yWHl/stTCbxPG3+Rmz/L2Vtj1gDsj9siyKom5Je0laLOl3ku6N43jUs/xOkj4o6e2SFqiW8D9OWwcAAAAAAABopswvy6rhk38j6TRJdjyPkSiKLpf0wTiOnzLL90j6C032JhtQclTMmyR9Ike5AQAAAAAAWoqcZXNTppdlURQdIOknknZR8qWXNNlb7BxJR0VR9KI4jp+KomilpG9KOnxqE9WfN0j6RBzHP85Z7jllfNyGACRDAxarFpbZ5Qm3sD2QJWmZCe+wYRplhAdZbs/xFaZ7eN2+1w/V5jnd/9PCMjMNV2y6Ub+w5xfJeWvvrE33rJye3HL0ixOL1YXD5HHPPbVpt/u2CRXt8rWyoS2wZ8jsif6BxCx77PLWi9Cu2Ha5xRpKLPfi674wPf1H9/x1Yt5eX66FdOzi2ZftMW+H4JaSQ3S7h8dGBbq97u2psvXY7VofKji60lcQz6Lu925ZGGZ9rGtt+pZbkvNMGGYiDkpKhATZWVu3JhcbH69N22gLKXmMJ5RsU9pyqHPn3PeYULH/+Z/a7484YvfEcrt/61vT0+//z/8sp2xzlLceeMIfU3nu04XIED6cVnz3ecFWu1Vr1yZn2vZn5crkPHPBhYbe1B1vU7C60Cd7LAsIc/aFEtqvWUakpZf93s7Oe3vMvXMwbHOZQhAD62syRC2ZLiQ0PN0nNOVI23DvV/Y52zmmac/Lk2wqiLBdl3HvSqQs8JXDaQcnEiGI6cv52OpvUynUPzOZY9Xv3M99+TZsWKY9T+4Dg+E+L3tTOgQKPW9lnN/g9nlo4/T0aH8ypDpP5gqpduxi4sjQoYLvSNWwy0tlE2vMsJik/SV9sdoD7aeafFEWVf/9XNJL4jg+hhdlAAAAAAAAaDdZ3hOfLOkgTeYYG5f0RUnfkfSkJnuavUbSOzT5Au41kpZKek513f+V9N44jn9STLEBAAAAAACA4mV5WXaqmX5DHMeXm88PSPqfKIp+JekiSd2SXqzJF2tf0eSLMiJ5AQAAAADAnBDH5Cybq7K8LDu0+vPXzouyaXEcXxxF0XtV64F2TRzH72qwjHPevK5xLa5Uc0DUjQdei6938x7YXBbuajYnyZIlYdG2WS5ym2Ng27ba9IIFyeWSKUecchQwRLF3qG1byL33Ts474ogZN9d3+6+SvzjkkPR9hzr++Nr0Aw8k59l8Zm4ODPt9bG4F3/d084+UnD9ny0h6fomBHpPXxOaMcBc0edu+qY8m5917Qm166TGp5bDDbrv1zF4nroFl5pi7uXoG7RDjg9OTeYekd/OA2O0ktunkyrB86cCWLk1drancfINd/eaLv/rVqeu5+TGefqo2/cwz6fuzVdyTRqb0VFKFcNqHLpPj7fde/qbp6euuS67Wc+yq6enlb397KUWbMzzJA+tyYtoKZW+qnryCW5atSszy1bu09qKujUnkBZrwL5uybzvtFj+R7/CYZDublj/UJzg/o7uwewHb+4ZNHJnTpuHasfLlJfMeY8/xCM01VPcsZwqTKS9rCvf4J+49nrymPoly3Hlncqaby86YSHnOc7+n71Euj9JzUrp5dj3XoX0GcZdzr8UpRRwDH/f41D2fp3DbA1v+Pltoe+1KyRO8LD2bj20C3OZg/vzatM1FK0kVk9+zy33edzcUwD0+9hoqO/9pEW1AXo+P1J7D+p06ONCfL6/gVLWI3EznQIfIkkVzN02+ALtuluX+20x/LmuBAAAAAAAAgFbJ8rJsqrvDOu9S0hNm+s7UpQAAAAAAAIA2k6Wjb7cme5bNFqw3PT+O46d8C6LKBjq7XeRN9/zekU2p89ye9MmhmGvTvlBLtzu4Da902S7QNpzB7TqeO4TS8A5ZbrnbWL06fdk0BYR6eLknyob2JGJhJC1aVJv2HWTf9s2yoV25ixq2fcJ2ix8z33Od877dhGHqNa9peL++sMs69ri6XfdzDHlfx3PBdXnCv9K4RZoO35a0ZaQvMa9SMddNE7vxZ2HL1bs+WS+WLls+PT0+Xvu9E/2SK8ytlbxhvG5smGkfdvnpN6enTz/9jxKLkScjnBtG5IvQGbCVzd4gPStlCfdN3Nty1lXfeml1zYatS8m2YsuIE2ZlvqovdDE3G65lwo4lJdIPTKzYfXo6z3cuS57zVh8u3mWmw7bhC9Vyn+V6VdvhaCUZ5p92l/N+r6ecR3ubrsLZuS/0MlGOksMOC5EzVjS0TtrNp4VnSlJ/f75UEHnKNNv2+2x9XWvu4XVpLQZr005D0mPqpK3/7t8g9jnAlbwHJr9bjye1RZos4e42HUno9Zs79UwBfNtfbiJk3e8cmoKk2W1wuyBn2dy1fdZoAAAAAAAAYAa8LAMAAAAAAACq8nR83iuKouN886cmoig6VtKs41/EcXx9jnIEO/xN3ypz8w1bsHBpanxDIkzDEwPhhialdbMdGUm+H7WbdLeRp8d5pu7DJhxvy5LdE7Ps/hL7LmFIu0SXYTNyk1RCd2g3zDMw7NMbrmNHyiyZr4uxWz0T3bJtCI07EpLZaN6RJotQN4qj3Z+JiRgeS4Y7DvhCk/yxFEHl8n5vcz24V0Y7hiB6BbZv7iH1NQlFhLkVzb2GEu3siuRIir0nnzzjgm44eq85CK0cSasTuMfDXr/uKIX2c68njMhXCX3hKWnnpqhzlrbvLGEyNhTq6afTl5s3rzZdN6i3+WxDDiWpyx5X936Y437vO3b2XHvPhXOR5gmZ9wl9XvPxf093Xu2LjzghoLYqB5fjRS9KfNw4XLt3Ll7njPhtRsrsCjyfhYRxZRqSNVDgNtx7lF3NnWejkG14rpuVw15f7iOUfQR0R91OU8p9wRbEreSmorntrP3etr1xR8G27Y97HHfYoTZtj5WUbEZS/7aYhe949eUInc5Sx8sebTPPvloZRgo0W567x9uq/3zi6s/rArYX5yxHsCP+9rQyN9+wR76xptVFAAAAAAAAGZCzbO7K85Jq1p5iqr0sC1kWAAAAAAAAaAtZXpY9qtpLMAAAAAAAAGDOCX5ZFsfxyhLLgQC+HBveGHHTL3RsrDd1MXc4c9udtC7Hxtho7UPOXBCbBmt5rCqBm8iSjyc0X1G7xtenlt89UZaTS6eInE22HvjSgLh5lBLb6Knl+XLrYJ85+e16LmyCjAElk2VMaPH0dOh16Cpi2G3fUOfNPK5Z9pX4rp7h3fsqE2Y6fXtbnJyMyfwk7ZHLq1ejic89ldr1UJfrZvUB09Nte23MIb09vmMclnjIzS06UUnmOEyTN4+M7zrP05a4aaXsZ1+Iie/YBbdFbjIm98EjQCH5rorIb+VRxLWct74EpsqsZ587nI0M2jozuDp1E7bMvrxertA8XIl9+XKQlsB+n/Xrk/Pmz69Nj4+nb8Meg2efDduX+7k38PwWlR82cW17cmeGWrBg5mkp2TzkTV8cemn7/tYooo0JbdOLkqf8dWX0JLIu+j4EtJNynwgAAAAAAADmIHKWzV287gUAAAAAAACq6FmW4s6r79RdV9+lru4u7XHkHjry7CP10M8f0q2X3aqn1z6tU/7+FC3dZ2lineGnhvXNP/umDn/d4Tr4lINbVPKqlD7hi+3QzpKkWl/mgR6nb7eNjRxyQv9sl3wbKuEJA3TVD28+M9825nL33tRu2m4Yph17fMWK5DwT2pYlhNXyDbWd2Ibnf1TyDtcdquyhsG0dd0P9bDRA3TG2sQJu7ESecmTQCWF7waEIpo5PDC5OLGe30deTDHEsO5zK8oaa2bgc5/rtMtdsT096mHzovlESW5fcGCB7fp3rfKi/lm7ADYHrtY2mOfdZwliKDg/yyXs5Je8Tzo3Cl1bALOv7nr6UFGnHpNlhUKHbDy2Xe9h84ZVFhdw1ug37qOKGKtry110nOUJHm33/s9XaLb/97Ot5snlz+jbsY3beEMQi5A3hs+u57Yj9bmWHKIdyH9cqlcbbYHvue8fqdjDjclK+MORCOAV5dF3tHuX+qWHxPIK5hho9g/Ft47r1slv1qs++Sqd96TTdd+19enb4WS3aY5Fe8qGXaNfn7jrjejf8yw16zmHPaXJpAQAAAAAAUBR6ls1g69BW9Q32qbKwoo2PbpQk9fb1an7//NR11ty0RgPLBtQzn0MKAAAAAMD2gJxlcxM9y2YQT8RSJN125W361ju/pT2O3ENRV5S6/LaRbbr9W7fr8Nce3sRSAgAAAAAAoGh0g/I49PRDtf+J++va86/V3T+8W/v/4f4zLnfrpbfqea96nuYtmFd4GfLG79vh6rvsq26bNELSxLLlteWceYnECG6SAZtQwZNAwVt+zzDEwdvYHrnHyn72/LdG3txdwTnjTJ3Lu+8yFJEfxnKru/e72XPjyecXWo76XBbtf22Efk9XYlmb1MRlk4u4B8iXyCdFlvqSuqybkMe2re53MXWkN+d10sy8VVB9I2DP6dq1iVmL1/9qevrRJYcl5q1YMXOOujJyTPlut3aeewmF5kcKvs7dnds8qu7OU54LisjpliXvWTvKkreqXe6/tsy+nEdF5OQqO0+bK/RW496zR8dq5Vy4sPZ732NeEbJcQ2XsL00ROdFcaY/FvmPqq4O+7+Kbl8g91pPcgS+nW6uMKnl/yvE4BcwJbXJJtq/Kwor2Om4vPXHPE6nLPHnfk3rohod084U3a/R3o4qiSN3zunXgyQc2saQAAAAAAKBZ4pgwzLmKl2UphtcPa+ixIQ3uNqgn73tSg7sNpi77yr975fT0LZfeonkL5vGiDAAAAAAAoAPxsixFV3eXfvSpHynqjrTjrjvqqLOP0sM3PqwbvnaDtj6zVT/46x9op1U76aRPnNTqos4oNYTJGW+8a3jT9LQNyazbRmB4hCsRmjGyJX3BnP2O84SyZdGO4RgTS3ZOfO7yhKiFHpMyvmczj13eMDTfMchT/rz1LLQcLRtCPIMijoGUIWzDhpznDVsvun1w2zN7jfpCStGZbHzKsmXJeSYkd/exh5LzhmshiBP9A9PTNrJYkvoqjd/b3G1atrq6y9lwJN9jQCFhVj0zh6W6fG1kIeFkzhedMOUq4r6WZRtp38dtYkq/3+aMjbTlqlSaGxpZ9PaLSOngbsNeb1u31qZtSKZUfGhe3vttEeGbRVyjebdhj3eWsMKyw0jb8W8N32NMs8N4gVbqgD+9WqNvUZ9O/8rpid/t+YI9tecL9vSud8TrjyizWAAAAAAAACgRL8sAAAAAAAAyImfZ3EW/yRks3GVhXa8yAAAAAAAAzH30LNsemEDzicHFqYv5YtC7nOD1tPh0b94Gk1soy3o+7RjnX7a682TzqYyNJhe2CRo8OUdamW+g6Nxp7jbs0Ozu//rkScOSJdeH3Z+b/8HOjNhlwQAAwuNJREFUs6dpoKDhucvOSRfKfk8355qv3uUpf5acMoXnNrInuIV5yeragHYZh3574Z57+9lNCJaSSKyMU5bW3kjJ3D1OWtNE8X1tWE9P89qbovItFbHvIrafpy0q6hgHt7OeSlnEvabs+1UR2/flxst7P7HXXmgOrTLuZUXk/22XPLhuGW3VzZKnLG2bZefrytu+hQotv285dx17L3DvIVPHPI4zFhRoE/QsAwAAAAAAAKr4L2cAAAAAAICMyFk2d20XL8uu+dA1rS6C15KBJbMvVJAs3XkTyzpxG4kuiaZ1mOgfUMos9SoZHjThGSa+mSFkzQ4ZKXrfiW24oRI54nmKGNY+rzK6n/f21LZhQ4WK2r7lhjetXVubXrEifT0bDlp2F/xW8nXd91XVvO2BL2zAF1ITzMYb2PgOT9h66eeTsMv25T5JpzxZ2zZrNqEhU9u21X7vtlPd3elFssv6wzBnK2l2ebZfyPXl7KyQtiJQGSHnofvL+93yhMGGhvNl2X6j6xQl7z2qmfWsKGnftYzyl31M8jyPZNGJ59fylX/9+tq0e3+Zekyy9yCgk2wXT9W/ufM3rS6C11vPPbfVRQAAAAAAAIDIWQYAAAAAAABM2y56liGfRPdw28fWo8sZXnB4uBZqOTSUDLu0YWnuKHlp5cgiTzf8MkLg2jWMruwRdvKs5xthquxzEXrufdvoqyTn7bui1h/dNxqs7f7/1FPJebssTV3Ne3xaVe/c/bqhr8l5tWlfroeyIwtzj+CWMrpwS8+FeyAJy2ybkWHrht818Sr2ul+6NPw+5PtuNhzmmWdq075RgT1FrBtJLm00Yd892xeJ6ptXxIh2RWh2/ckz8nhevntx3hES2/X5J4/QZ9Eijkfe4122ZparjBFffXzPI828jZY9GmwZ27D3CXc0zKnPo85A3XMNOcvmLnqWAQAAAAAAAFW8LAMAAAAAAACqeFkGAAAAAAAAVG0XyUyOOfzwVhfBa35lQVPzUoRK7NsdCzgtWYkTsF2p9Jrp5KK9qgWwTyiZzyyP3HmH2uSdcRH50rJ8l6JzgOXN0+HLuVN2noXSry9T6ev2ZRI72Nr/7LMDwZvv9Hwwtrlwm5h162rTe++db/uFHJ/Q8eSNMnIfBiNHmVez28gE99wsWTI9aVMTunlPfDk9fWW023HzyFi+fDMrV9am81Ytu/3Nm5PznniiNu3mItthh9r04GBtuojz0tJ64Nm+r+1o5bNKuzwndSJf/Sni/Oapn2U8L+f9LmU/66Zx21nb9rnPI7Ztcv+WCW0X8+a8a8fcye59YmgofdkHHpj8+eyzhRah7ZCzbO7aLp6qf37EEa0ugte5ax5pdREAAAAAAAAgwjABAAAAAACAadtFz7IiffJXv9IVDz6onq4uffn3fk/n3X67vnfiiU3Zd5bu+YWHDdgYCElav37m5Zw+qH3Llk1PV5b1JeY1M/QydBjoUsIt7LFy+2+7cSclKns4arfbutWXErXbDG0bxtJfC7e0ZVzRvCpRirxhRO6l4atPTWUaC0KROpNt/3t7wkLCm81eJ76wyyxltNeUuRXXhdCYaNBE6KMUfovyXee2HO6995ln0rc5b17YvvPIEvLvSxWQRxnpBVpZrtB9z+X2s+hjkOV8Fl0/syji+Sqt/GX/XZMlrNyXMqKIx/hWPqfm2d+aNcnP9li6fx5O/fnY3Z15N0Bb4GVZBjc98YS+9fDDuu200/TvDz2k1/z4x/pEm+dDAwAAAAAA5SBn2dw0d/+bpwQ3PvGEXr777urp6tKJz3mOnty6VSfvsUeriwUAAAAAAICC8LIso/nVfqTzu7u12w47aDc3ZgEAAAAAAAAdizDMDI5YulSfuu02SdJ3H3lEj2/Zoqe2btXSBQsK20ez8w0Ec4P7bV9TO+0G75v1utY/mZg1Orhz6uZDheZqyLv9QtiEMCXLVH/S+gs7B8uXzyCtGribCT1PZeRqCM1F45tX+nVpDt7QcDKX3+Bg2FDtnch3Xe69d+PbL/ochuY5Kjs/YKef92YLbf9957fsnFBdY6Pp6/XU2gRfOUbHktu3uXVsvhj3luTLKRYqb9tt9+3murHz7HepVDLkMrI3pgLyDxaRRynLPbDoe6dvG2XUcbvNdskfWoZ2yRsWqqh8YHnugUU8k+Xlq4O27fPlTPXlV3XnhZQjy7wyhF6Xvud9e09x2/GpZ7nQYwO0G16WZXDsrrvquWvW6KT//E/9bmxM/3b88Tr1xz/WD086SX0tfRsDAAAAAACaKY7JWTZX8YYno/Nf8ILE5z/eZ58WlQQAAAAAAABF2y5elh1zzTWtLoLX/JLD9ArpHj419u8UG265dm1temgouZwdr97p15wSHVEntItwaPf/dpKny3nuIcWdMJ9NI7XQHnv8K55z4XZN37w5fdmFC2vT9lz3ltzqlB3KWUpdMgdo8boHErPuW3/A9PTKlcnVyj6WeeQ9Pu56bqhVw9vMEleRopWhQ8HH1RcPvZ0KPXYtDcv2nKe8IU22Wg8P16bHx5PL2du773/G85bDrue2WStW1NZzHzO2bs1eDp+8IY2+Z5Ai6kXZ7Urody3i/Bah08PYszyLzrVw1DIVEYZcRLh4EeGEdXXEPp+7f0c1MZWLj71FubcrW2S3HZ+6p8RxGaUCyrddPEX//De/aXURvM49962tLgIAAAAAAADEaJgAAAAAAACZTeUs6/R/zRBF0RuiKLotiqKtURQ9EUXRv0RRtDTjNo6KougnURRtjqJoUxRFP4ii6JAZluuPouhjURR9N4qitVEUxVEUXZdlX7wsAwAAAAAAQCmiKHqPpIskPSPpXZL+SdJrJV0XRdEOgds4WtJPJe0p6aOSPiZpH0k/i6Loec7iSyR9XNKRkn4tKfMrwe0iDLOThA7bK/nzFZWeByFPHhwn7r6vpxajP6HexLy03ARzOd+DzSkjJQ9xX6WAId17ksfY5l3IO2S2rZNu+a0ictL55M2n0pY5qJwLfV/93/T0qA5IzGtmHplQeXMHNv27FJzLy1ePm5kzyL3O2zVfYydI+1/WvLkCffcvO5037VxvT/q5Xr4sdVaCmyswtH0Ozevl33fys82Ds2BB9u1JUpc5eGXkFGvm9VXG/TF0udDv6avjnXCsipDle6ZdN1nuIUUIPU9F5H/M+xxf9jm1qZh9z7q+Z2Qrd26z0B3k5eZEM0nGfO24L8+077tObX7evPAiYm6KomiJpE9K+qWkP4jjeLz6+19K+q4mX559OmBTX5I0Kum4OI4fq27jm5LulnS+pJeaZX8r6TlxHK+tLuf5a3Vmc+dNAwAAAAAAANrJqyX1Sfry1IsySYrj+HuSHpJ05mwbiKJob0nPl3Tl1Iuy6jYek3SlpBOiKFpmfv/s1IuyvOhZBgAAAAAAkNFUzjJ4Pb/688YZ5t0k6XVRFPXHcezr/TXbNt4k6XBJ389dSsd28bLs8KMOb3URvBZUKkFdm3t68nVrLr3r+8qVtWlfLJ47z7QqI4PLE7P6ArsvFxHC10y+Mtou4EXxnfu0UCI3DMfHdr12bxKbN9embZdtXwhT3u75tte62x0877VQdN3yXqO20MuceKn166cn1zr/N2Ijmwf62zPcznf8Sw9vshXDjRswn4tuL+u24XmCGjMh6G4bb7fjq+OjY7X1Co4u3a645y003LKIUForNGzd3WYRoVtZQrB8+863v+Q25s+vTfv+CCn6Gafs0P2yn1WylL/oY9euz2GdEI7eyufZIo5P0ff6oo5BEcfVl3LEttfbts38+5k+p8odv+lhv4Abhmn3Z6bd82KfT9y/V+zmTVRnYtnu7sCyotWWRFF0i/n8tTiOv1bQtqf+2H9shnmPSYqqy9zXwDYkabdcpUuxXTxWH/GRI1pdBK9HvrGm1UUAAAAAAADbp/VxHHtfnERRNCjp3Rm2+aU4jjdqMgRTkp6dYZmp/xLum2GeVcQ2MtkuXpYBAAAAAAAgt0FNjkAZ6huSNkraUv08X9JWZ5mpbo1b5Ge34QrdRia8LNserFtXm3ZDvIrm9s213X3vuSc5z8QV9e3tjP6SVk5Pv+b6EcRaMwqTT+6u6YHhZHV8w9ekxbU4o+n52E26m7dFThS/v9zQO7eLfGh4oi90rst+gRLiZRP1YMnOyXKZ/a268xeJeXcMHzk9feCBzR09qwi5yujW2zVratPOiLt18QANliP3MfXEUPouX1sv0sKaZ9sGymerZK87KnngaIzNHLGwncIALbce29HTiohMatXIjK4i6kGWZ4lCvrcvDtbeK50TFRqq2y6jPbaLvCkpmnkci1jOp6hw6LRz7xvt0X2OtNXafcxIu/+62/A+jtiNlBGG6XtYN1/cNyqz/T7uJuxjcVqIZhyHFrYzbU85y+I4XqPJkMmsHq/+3E3SA8683STFZpmQbbimfjdTiGZu7ZlcAAAAAAAAAJ3ul9WfL5hh3lGS7p0luf9s2zhaky/cbs1XvJnxsgwAAAAAAABl+A9Nhl++I4qi6SEfoih6haS9JF1iF46iaEkURaujKNpx6ndxHD8g6RZJp0dRtNwsu1zS6ZL+O47jdSoQwRsAAAAAAAAoXBzHT0VR9FeS/l7ST6IoukyToZPvlXSPpC84q7xDk7nR3ijpQvP7d0m6VtLPoij6cvV3f67JTmDvdfcbRdE7NJlnTZLmSdojiqKPVD//Oo7j7/nKzcuydmADnT3JZ3zx+xuHkp0EE7HxNleYG0xuPpcypLgtyN57J+f5AuDXr5+e3Ni/+4ybk5Jl7O3JV95W5tEIzslQqQ3s0TU2mlzQl5csNMmAp0yhw4EPjG1M7lqLZ9z1iJOerq9S7DHOklIskWtoeCg50y1onh14BA9nbgu5dm1i1kE9tf882bTylYl5/f2tydFS1L5S652bCMQen3XOfyYF5iwrgjcnjjfnYHqOQPvVnjXj/pjmUVIyhwr5yzIKTTJiD7pzkHttjhmbp1NKthc562PR12+W7eXJleR7lsiSi8kermbmgslb/ma2s6E5yrLM8+nyNSw5n1s7TVE5tNph362sx0U8c2c5HqHbtNU4S1Nt26ZC2qkS8uImuF8uZX/uZW1Xcx+PfWnWprbTtR3Esm0vOcsaEcfx+VEUbZD0HklfkrRJ0jclfTAgBHNqGzdEUXS8pE9W/8WSbpB0ehzHv55hlb+UtIf5vFLS31SnL5LEyzIAAAAAAAC0RhzHFyrZUyxtuY9L+njKvBsl/UHg/laGlm0m28F7XgAAAAAAACAMPcvaQRQ1HDvj7bW7cmVD2y7MsmXhy5rQ0cVjD01PP7FtVWKxRYtq73t9YZi+bt++LtR9BY/gnKX7uf28ZaS23shIMmzLdn+uONWoy9OXPE/Xfe86Th1e3vNk7YPpWPtEvHNiuUql8Xf29hhkCSHolQlp9fSffqJ7OoekdhnZkr7znLxltsd1xYrkPFPmgeHkaMubVCvzQMm9+pvKrdP2vDUx7NKn7jpZsvPMCzrcCD4b6mDn7bJLcjlCLzNwr3N7kN3YEnNj3TK4XCH6BpOfJ/oHpqd913neMKuyw7PybL+MMC5fHQ8NISsixKsIecPEQs9F3vJ7t2GumwkndDw0pUCnh2SGfrdSUpp4FLH9Zl4bzQ5ZzbM/9zZhP7uPfLZtstO+FCNZQqULrz+Bz6y+/bp/G83l6x7gERsAAAAAACAjm34ccwthmAAAAAAAAEAVL8sAAAAAAACAKsIwU9x59Z266+q71NXdpT2O3ENHnn2kbrrgJj3yi0fU3dOtgV0H9Pvv/H3N75+vtbet1S/+7RcaHxtXd0+3jjrnKO128G7B+4oVTcd718V22xwqnjhzb86aJUtq005ys1YNe+6qi9G3uZkeeGB6cpf1v0gst2nBkdPTvZ68TL7vtn59+jvjvgxp1tLY77Z2bXLe7v0ba8sNLk7M6zK5sfpM396+/mQ9cPOHpO3bl4smNKeDt464dSslV88uw5sSy20cqi3n1uOB/ux1MlPuBLtDz/W1S789Vn3+bRbNluuII5LzbCKr4eSIywNr7qh9OPDA4svVTOvW1abd3Ie2fcug6LwpwfXA7adv6qCbv8+eXltVFyzIWDjUuI2MabdsmyUlz2nfUK2trsttZnPleROI5tOuOV+KLlfo9txr115SvR34VFvEc1ie+7lvG65R1Z4zRpK3mkS75TZv9vbl+55F5zwq45opOrecb71m5z0rQt7nSLte3muh6Pu5mwPZtiuh5yY0V7Ik9fTYvMTJeUXnTvb9wRhaB7Mc77Jz1AFl68DHivKNbxvXrZfdqjP+8Qz19vXq0j+5VAefdrBWHLJCR77hSHV1d+nmC2/W7f9+u4465yhVBir6w4/8oXbYaQdtfGSjrvnYNTrzwjNb/TUAAAAAAEBJyFk2d/G6dwZbh7aqb7BPlYUVDT02JEnq7evVikNXqKt78pDtvN/O+t2G30mSluy1RDvstIMkadHuizS+bVzj28ZbUnYAAAAAAADkR8+yGcQTsRRJt115m2655BatfulqRV1RYpl7f3Kv9jpmr7p1H77hYS1ZtUTd87qD9xcpnu7eWtftNXCIX1eiu6xn6Pp26dpd1y3bltmGXdm4JEkDPbVQxbrwOBPG6IaojQ7uPGM5yvhfAduleveR+5IzK4PpK6ac+7xdmovuIj/TsiH77nK6gC8eenR6+vGe3RPz+vsLCE+x9cA9wZ4QrMQ2zL59x6fs66nu+NuQLzfG17lWWiVvvesaG619MG1AGUOU22v0nnuS82yEnY0Ol5LRDKH1wA2b9g1Jv3Jlbdo2YQOV0eSC5lZOyEM2vuOVOKe2ImSQqAtu+xN4w5mo1O5tWcLXQoWGjRXRvuUN3/Ht25uGomDNPN5Ssork/Z5FhPf5MhbYKPnf/jY5b+nS2nQyI0jnhRn6tDIEsR1leY5MU1QYYJ5tFNFO+Y6B2/Tb+/u2bcl5hYdhehSRkoVnEMw1vCzzOPT0Q7X/ifvr2vOv1d0/vFv7/+H+kqRfffNX6uru0t7H751YfuOjG3XzRTfr5Z94eSuKCwAAAAAAmoQwzLmL17+zqCysaK/j9tL6B9dLku77r/v06C8f1Yvf+2JFUa232fD6Yf340z/Wi979Ig3smt5DBQAAAAAAAO2LnmUphtcPa+ixIQ3uNqgn73tSg7sN6je3/ka3f/t2veLTr1DP/Nqhe3b4Wf3gr3+g57/h+Vp2QPbhE+1omK7QkKO6LrHm9bYNeytqhJ1CRk8MXc+GmrkjjXnCVG3oyrqhZIhmxXR5Xj7yUO2DOwyNVs9W1Fn19ZiQKbe8nriKRNduE5I2pmQYl92EW3zfYKr2cxGjPAUv635nE9603ITVSvWhtWkSo6Gtfzw50/Zvd0ZOzBsO0OhyUgkjfLn/pXX77bXpY47JvK+i+MIekiFGzrEz4Yrets4jNKylr1Kbt3p1shybNwfvbsb9uvt2y5EYvc8JF7efK0uWpy+XM0Rwe1TGKHPB4VO+/3b23MuaHd6dZ7my7yFlh4OWUf48vO2DUVQ4a57j6t7CbbVeuDA5r2VNk2fU4TIUXS/KGNHUt/1mlr/svztCtTLU1W3uiwi3DlXEcSTUEtsTXpal6Oru0o8+9SNF3ZF23HVHHXX2UfrWu76l8bFxXfPRayRNJvk/9k+P1V3fv0ubfrtJt11xm2674jZJ0kmfOEkLBhe08isAAAAAAAAgI16Wpehb1KfTv3J64nev/dprZ1z2sDMO02FnHNaMYgEAAAAAgDZAzrK5i36UAAAAAAAAQBU9y2awcJeFdb3KmqWwGPqUoPd2yRWQiclTljcPwvCwp/wrV9am63KWFWzFitRZvlwi9nxmuWhtijdfHoTQvCWF5KFwC2IL6fy3jD0dvuGz7XK9bj4nmxzCSaBSRu6bNKXkx7DHcu/k6Lxau7b4/eVhcqcNrUz2wPWkaSo8b0feHC2LFtWmfbl67Lzc59rNyWg+99ptehIBtTIPS9tKnKje9OXctsM2LPbc+CquT971CuDLHZhnG81W9L6z3Od8x66ZOe/KyDWUJ1ebuw3bHA0NpW/Dbd7SylXIuS478ZOP273EfnbagCKuy3bkfZ4teftl/J2TJxecu47vXNtqUXbVDT12bhk78b4BFGHutMwAAAAAAABAg+hZBgAAAAAAkAM5y+YmXpbNEbm7D/uubNMXuF270YaWa/365GfbzTnRBbmMMBlPn+q8XbYtGynk7qqI0LCyw0ISnC9QCWyhBrSp9sFTp93y2kV7e8LCBtzN2/WyhO+kLZebW3dXr258mwWYOKQWejm0Jjlvhx1q00uXFrCvDMc/7Xz4mgD3PPX0FBw65JFoK/79m8mZRx9dm/aEem+3QuNaPGGwuQXeY8tWdghf3vat6HaxjHa28BBBR9H3CXcbNrrYbd/ytGHucv39tW14IsS92+h49iBniUU1n7tMe5Dlem1lKLBdNjRcOW/qirJDVvOGIKYdg9B9SVJvu/w1bv+gqPQVssm5FF6M7RM1GAAAAAAAAKjiZRkAAAAAAABQ1S4dPwEAAAAAADpGHJOzbK7iZVkbiBQ3nHMg7zDNEz29Qcu5DUCeVCutzFFhU/q4uh64r/ZhyZLkzNAEHIGKiN0vuzHOW8a8Q9IXYZMGpqcH3ANkcjD4ck5tGUmWf9262rTNrTVvXnLzNl+Le13YY+K7hgoZ9ty9lvfet+Ft5iqHUw9sCoxVK0aTC99zT2166YHe7YTwfc/QPCyh50ly8wWm14PQcvgk1jvxxOTMMnItIpWvbtbNM9dl8Lkv4oabU5Z8RWnHIUsdD80TVETes7ztbCufXdL2vXEo+Z3to4q7TqWS3jYV8d1C83bOafZmYKeltmyf8/7NkDcnV+g8W46y87wWVVfztFO+41/GNUPeMCA/rh4AAAAAAACgipdlAAAAAAAAQNV2EYZ5zYeuaXURvJYMLJl9oVkUMaS7b7nQKBBf1+IihsIuJITJtffeubYZqojuz7b8Ntxr8nO+crQyNC+Nb6hwn4F+s9yBB6Yv6NmfDVWRpJUrgzcz4/Zc7nkLXa/Tus/7QoDqbjmec1VGmEXIvnznyZUnuiZvaEkiTMPdcRPD9DpdEfUqd9qD0HOf4Xzm+T5ltynt1GallSVLGYsOUcsibd/9/eHbsNUpNPwrbzsVegyKeB5sKzaFh5vOI4e8bUwrFRFKmDdE01d3Q+t13uu8iDYmtPx5BT9jmmeLunVsegDnHhUaYjqXkbNs7tounrB/c+dvWl0Er7eee26riwAAAAAAAAARhgkAAAAAAABM42UZAAAAAAAAULVdhGFuD4rIIVFGXoiOyDVRsqKPQdnHdHutB+16XDvh2Pm0svx59t2uxztvTiuUr13rTJq51ha1a7nyCP0uvRmagDzPh+16P9xedcL5aJcyFvH3UBZNzbFcguD9eZ47mn3M2xE5y+YuepYBAAAAAAAAVR3939Pr1q3To48+qpGRkbp5xx13XAtKBAAAAAAAgE7WkS/LHnvsMZ155pm6/vrr6+bFcawoijQ+Pt6CkgEAAAAAAKCTdeTLsre//e2688479ZnPfEbPe97zNH/+/FYXCQAAAAAAbEfIWTZ3deTLsp/97Gf60pe+pLPOOqvVRQEAAAAAAMAc0pEJ/hcsWKCdd9651cUAAAAAAADAHNORL8ve8pa36OKLL251MQAAAAAAADDHdGQY5m677aaLL75YL37xi3XSSSdp8eLFdcu86U1vakHJAAAAAADA9oKcZXNTR74se9vb3iZJWrNmja677rq6+VEU8bIMAAAAAAAAmXXky7KHH3641UUAAAAAAADAHNSRL8v22GOPVhcBAAAAAAAAc1BHviwDAAAAAABopTgmZ9lc1VEvy37961/r4IMP1p577qkoilKXi6JIDz74YBNLBgAAAAAAgLmgo16WDQwMSJJ+//d/3/uyDAAAAAAAAMijo16W7bnnnpKkCy+8sLUFAQAAAAAAwJzUUS/LAAAAAAAA2gE5y+aujn5Z9utf/1r33nuvRkZG6ua94Q1vaEGJAAAAAAAA0Mk68mXZ0NCQXv7yl+umm26SJMVxLEmJPGa8LAMAAAAAAEBWXa0uQB4f/vCHtWHDBl1//fWK41jf+c539N///d/64z/+Y61atUq/+MUvWl1EAAAAAAAAdKCO7Fn2wx/+UB/72Md09NFHS5JWrFihww8/XMcff7ze/va364tf/KL+7d/+rcWlBAAAAAAAcxU5y+aujuxZ9tvf/larVq1Sd3e3KpWKNm/ePD3v1FNP1fe///0Wlg4AAAAAAACdqiNfli1btkxDQ0OSpD322EM33njj9LwHHnigRaUCAAAAAABAp+vIMMxjjjlGN954o04++WSdddZZ+sQnPqE1a9aop6dHF110kV75yle2uogAAAAAAADoQB35suxjH/uYHn/8cUnS+973Pm3YsEFXXHGFtmzZole+8pX68pe/3OISAgAAAACAuYycZXNXR74s22uvvbTXXntJkubNm6fzzz9f559/fotLBQAAAAAAgE7XkTnLAAAAAAAAgDJ0ZM8ySXrooYf0zW9+U48++qhGRkYS86Io0r/+67+2qGQNGh5Ofu4xp6hSSV1twvPes0sTqcvZea3kLdfatbXpdeuSKy5ZUptesSI5zxy7G25Kbt8uuvv6X9U+rF+f3MYJJ6SWOZjtl+tuv7+/Nu05v4l6UBBfnQkVWn/svrrGRpMzq4N1SKr/noOD2QvlHmO7/WXLkvPM8c97DaUt1xS27VuzJjnvzjtr0695TVOKI81yfO68I/kLOyCLvc4l6ZBDatPmPG3a+7DEYvYSKuP4J+qus/2075qlHGVvH0lFtHs+zT43nfZ9yrjv+K6hPFrZxpf9jJZ3+6NjtfWyPI7QVvm1qo0vqo7nuZ7zPDdm2UbeNib0Oc8NtUu7Htqp7ocekyLODTDXdOTLsv/4j//Q6aefromJCe28886aP39+Yn4URS0qGQAAAAAA2B6Qs2zu6siXZR/5yEd0/PHH65JLLtHSpUtbXRwAAAAAAADMER35suyhhx7S+eefPzdflNmYIikZZpWT7S7rvvXuHTFhn+6+c2y/qO7biW3a8ES3jDZ0yw3ZM59tRJfkdJtedmBtuoDjXcfu7LbbkvMWLKhNH310cp753mUc41B5u5IH79ue3yLCTW1orpS7Xttw0Yme3trvWxhmVRfCes89tWlfGGO7WL06+Xnlytq0/S5S8lo04bMDw48nFpvoX15Q4WbmO99F1AVf6MdwSvP8xFPJ5Wwz4lb3dgoFaQdFtGeZtmFvuu79xbR3E5W+fNsvWZ7w9Czlz/Ndyw5VzBviFVwOTxxXXRtv60zgvcx3fPIeK3trzn28fdeC/eympMh5D+80zWybirpm8rQBZYdJ5t13aEoE32NqO7XdVuixKzqkHZgLOvJl2erVq7Vhw4ZWFwMAAAAAAGzHCMOcmzoyQ99nPvMZffrTn9ZDDz3U6qIAAAAAAABgDumonmXHHXfc9PSGDRu0//77a5999tHixYsTy0VRpJ/+9KfNLh4AAAAAAAA6XEe9LOvu7p6e3m+//YLXO/yow8soTmEWuPkZLN88o2t4U/IXJsfD4+tqHQjdtF69OXNg5OHNMeDm6bDJeuwx2Hvv5HIm55HN+SIl4+37Kr7Ye3MZlJ0b49hjk599OdLWrZueXDNSy8u0bFnyOAZWkdyCcxgMDSU+dpn+yKODO09P95j8X5LU1V9yM+Q5QL46OapaOW0Js+TLKSL/Q2I9N1mGvR7c/t8rVuTaX6O839Mtv73e3Bxr9vvY9sBcF5LUZfIA3vGclyfm2cPjVoNW5ePI0pYOVGrt4sahWn1cuDC5XNltAJI2DSfPoS+HTV/FM7OAHI2huWjS1nFlqZ9pyxaS18uznSLK3+zcnwnuebfPAW47nuOZJMvxKTrH1ehY+rXRZT+4jZb93kXkLi1BGfmc0rZTeJ0rSGi5yshLVva+fcp+XtgyUivzmjXJeQesLnffRd9DXO1al4FQ7XlHSnHttdfmWu+IjxxRcEmK9cg31rS6CAAAAAAAIIM4JmfZXMXrXgAAAAAAAKCqo3qWTTnvvPO0du1affnLX66b9853vlPPec5z9L73va8FJWshp6u+7dJre7tn6d1edNfZrpEtyV/YwvjCs3yFtkOud8Iwx25IRWCIhT0Eef/nwrde2VEPvT1hXetbeQ7dffeO1EL/Hlo/MD3thjIvNp9Dh+SeaX/TbMihJN15Z2162bLkPBOGrAMPTM5rUWxe3jCfukqYFrLjhGHa8N+Dlv4iMeuJzUembn7EtJH2MvQNGZ+3ftrQJHstzGbChCzbMvq2QchDObqGNk5PD7gze0z9dK67ZP3xbN8TClN0qFyWbeSpT2W0477jY6MYfc2It1z2BumkR+gyF1/u9s2o24YvPDFlvVbeK93yew5dQn+/Kb97oirp11AeRYUCF7FeGaFtja5XxvHxCd1mGXW8He+Jbriyfawpo3dSnjpYVB3piL/NAI/2a0ECXHDBBTrooINmnHfIIYfoggsuaHKJAAAAAAAAMBd0ZM+yRx99VPvss8+M81atWqVHHnmk4X3cefWduuvqu9TV3aU9jtxDR559pG664CY98otH1N3TrYFdB/T77/x9ze+fr5FNI/rxeT/WU/c/pX1fvK+OedsxDe8fAAAAAAC0L3KWzV0d+bKsr69Pjz322Izz1q5dq/nz5ze0/fFt47r1slt1xj+eod6+Xl36J5fq4NMO1opDVujINxypru4u3Xzhzbr932/XUeccpe7ebj3/j5+vjY9s1MZHNs6+AwAAAAAAALSljnxZduyxx+qzn/2sXvOa1yRejD377LM6//zzdeyxxza0/a1DW9U32KfKwoo2Pjr58qu3r1crDl0xvczO++2sh294WJI0rzJPyw5Ypmd++0xD+y3L4sHsuQKk8OHHg5fLkoei4CRa3uHM2zWefsmS6cndx2r53raoL7FY3hHX05bNfTzc82tzb5npLidPWxH5JPLmhPJ+V5N8ZdX6e6anJ1YeOdPSmaVeQ+5/TdkkaW6+LpOzbKKSrBdtW68btXp18vOKWrvsJszZZfzx2ocHhhLz1vUfMD1tq2QZ+U2KaM7Kzis4l+XOg2Prky8xk8mb5+ah7LLXry+hlkcrc1WF5rApQmjOR7eJ9OXJSqptw/tcZM+nlDinZeQ0zHNxl5FzKvS7uGk17Wf3MSDtq3nztnW4vM/SvnV856ZdctlZRZSj7LxqvuOYZd9py7rtlL1O3Opum5zw9gxAM3Tk3enjH/+4XvjCF2rffffVmWeeqd12202PPfaYvvGNb2jDhg268MILG9p+PBFLkXTblbfplktu0eqXrlbUFSWWufcn92qvY/ZqaD8AAAAAAABoLx35suzggw/Wtddeq7/8y7/Ueeedp4mJCXV1demYY47Rt771LR188MGF7OfQ0w/V/ifur2vPv1Z3//Bu7f+H+0uSfvXNX6mru0t7H793IfsBAAAAAACdhZxlc1dHviyTpCOPPFLXX3+9tm7dqqefflqLFi3SggULCt9PZWFFex23l5645wlJ0n3/dZ8e/eWjOvmTJyuKolnWbh3bxbeILtrebuWeOMBmhnC48oYntg1T6Ime3tqvx1IXq2uo7ecCRmP3d033xV94TkAR4b6lnF8TBhsahuOy3endw+MNvbRMqKVvuXYJvyidc7InBhdPT9cdAzds1dh9/a+mpzcNHjY97UTRac2a2vTgYPJc2wg73/EPPTfBbaQbB2Url2kr0KC0NsxtcGylccPM7flwzk2eB+uennz30TLClqzQEKa87LFyq78vbMmuZ0OdFg86C9pzOujOTNeO4WZlP2u5baTv2cIeVt/9sDMf0mqKOOa+551WPkunlUNKL0uWMhZRx4s4PqHb8KV1sXV88+bker/7XVg57KNnM6SFuPsuySyhxkCn6+y7k6QFCxaU8pJseP2whh4b0uBug3ryvic1uNugfnPrb3T7t2/XKz79CvXM7/hDBwAAAAAAAAdvfFJ0dXfpR5/6kaLuSDvuuqOOOvsofetd39L42Liu+eg1kiaT/B/7p5ODCVz65ku1bcs2jY+N65GbH9FJnzhJi3Zf1MqvAAAAAAAAgIx4WZaib1GfTv/K6YnfvfZrr01d/vX/8vqyiwQAAAAAANoEOcvmLl6WzVFFpH8oItfZxqHaNtz0QTYVky/nRZ5ht7Moe9jtIvKRhOYRcOc1Mw1IuwwFX0ouhZwJ34JXsyfYTQjTYblcWjmsfd25T8k75xqojNY+OA87q5bVfjHa05eYZ/OTjJk8Ju6uCv/enu/iPqz1dlb1aS/22kvkhXMOqpk3KidnnDkfvT3JepA3/9j2yJeXzF4O7qlJ++PFe5/wXF/tIkvuTJ/g9tkcSPfebtsYtxx5cyBZZefba6bQ8+Srn0Wd+zzKzgeWV7vkcatU0ssxPi6zXHKevU7KeOESWv/tPcktR+j12y7XGlAUntRmsHCXhXW9ygAAAAAAADD3deTLsvvuu6/VRQAAAAAAAMAc1JEBGqtXr9aLXvQive1tb9Mpp5yinlnClK750DVNKlk+SwaWTHdhzdt9NW/oWRFdwn19c200gw27lPxdjYvosu2rFmmhAe06HHK7ROJl6f6fNq9djmlRyg7zpHu7n/eY2AvHCa0Krp8m/qunkjorb6RuLq0MOelERVw3E5W+1Hm+EJo8KQY65fzmKWeWtArDwzNPu8d4/vza9NKlyXn2Gg2NrmzX5wCr7FC2uu8cWMnd9Xwhmmna8XhL7Vv+PPsro4zJtATJef39jR+7out8UX9b2O3Y7+2Gjtt7gdsW2XlDQ7mKFc5TsOTxTz8+vhDNTmg/y0LOsrmpTf4Ez+brX/+6vva1r+mMM87QzjvvrDe96U16y1veoj333HPG5X9z52+aXMJszj33ra0uAgAAAAAAANShYZjnnHOObrjhBt1+++067bTT9A//8A/aZ599dOKJJ+o//uM/NDGx/bzFBgAAAAAAQHE6smfZlIMOOkhf/epX9dnPflaXXXaZvvKVr+jUU0/Vrrvuqje/+c16+9vf3uoiBokUT3dTzdItOLS7sm+5vOGaoeW0XXPdkcCK6NJeRohm0fIe47Soh1aOeOnqGt5U+7BmTXKmLfSKFdOTE0t2LrdQHShvOLTVCV3dW1n+3CHngbFbwdehZ1i/rvrYlRmX832XdgnZnst8oRZlh+O61cd+9gzSmRjlrKgRa/Ncs7666x7X9etr0/a7ud9z0aL0/dljYKdbOWpvGekMSg/dzdmw5DmuRYRxtfJ+WMS5aGX99PGVyxepW/SIpmU8S4SeN18Ioifzg/cSSvx9NFjytewZirNuNGfDHlffSM6tHK0VKMOceKxes2aN7rjjDq1Zs0a9vb068MAD9bnPfU7nn39+q4sGAAAAAADmoDgmZ9lc1bGve0dHR3XJJZfouOOO0/Oe9zx973vf0wc/+EH95je/0Q9+8AM98sgjOvHEE1tdTAAAAAAAAHSQjnxZ9t73vlfLly/X2WefrYULF+q73/2uHnzwQX3gAx/QkiVLJEmLFi3Su971rhaXFAAAAAAAAJ2kI8MwL774Yv3Jn/yJ3v72t2vlypWpy61evbp5hWqCdspTkEfZ+YpCcylIydwBoXkQms3mMMgz/HoWvmOQOK6eIePluRZ9iXza9fgHs0mDbJIdKZGrLc/mJH8OpHbMU5b3HJY93HghbczIlsTntWv7pqf33rv2e9/Q8l2efCF115cvWSGC5c73Y45/l7kwe51zONGTnuclrRyu0HJlyYmWVmWa3c4WkVu0+v+gkuqPgfcelXIQsrQ37Zgrsuz2sk7O9qfT8o0VIW/OpiLyC+dVRE40XxVpl3yleZ837XNZaBuc5ZLZMlIry9q1yXn77q1iuW3kunXTk73LltV+zzMHIKlDX5atXbtWvb2zP5wusU9XAAAAAAAABSFn2dzVgd04pNe+9rW66qqrtG3btlYXBQAAAAAAAHNIR/Ysu+eee3Tqqadq8eLFOuOMM3TWWWfp6KOPbnWxCuHrvu3rdp9lvbRtZOmSnLZes4edD+227hvmuF2G5Hbl6bpfxDn0crpl267jY86Q0+6w2TPtd7Z9Fx3+W8r5tX3y3d6stj99YEhmljCrTpM31KltOCfHntLQiIW6Nsw31nwOXWOjyV8QSlEMe+6dYxocxh4obxiXG8LdV5l532WH8GXZ/uhYbVkTDSQpeZjTUifMyvxXvy9ctoznpFBFPAuFzmv2M04RIYhF7LeZ37uIVAS+NiDLvJB9ZRG6ni+jgE0xklcRzxK+bdhnW0kaGqpN20jFvNx9Vyq1/e27bJOzdOPPBQm+dCr2i7oPo+b5xN+DKnnseARBp+uAv07q/d///Z9++ctf6swzz9S3v/1t/d7v/Z722Wcf/c3f/I0eeuihVhcPAAAAAAAAHaojX5ZJ0uGHH64vfOELWrt2rb73ve/p+c9/vs477zzts88+OvbYY1tdPAAAAAAAMIdN5Szr9H+o17Evy6Z0d3frpJNO0qWXXqpvf/vbWr58uW644YZWFwsAAAAAAAAdqOMjiR988EF94xvf0CWXXKIHH3xQu+66q9773ve2uliZxIqmY+zdOPbgPAtuspJKX9BqoXkQsqwXug2bEyBvnqai84e0Ms9F6PHPO7y4u70ijp3vvHWNbKl9sHlj+geCt9+u+eSsRBndA1LAiLzt+r1DJXOVhK/XLufed53YFGNF59dz+XJUJrj3ggLyoHW63Oem5GQroXXclzPLk0otdftF5Dxyhd5P3OVs++BW3R13rE0Hn4rABVuZP7GInGJ5c3/mzeeU95kvbVnf80gRbWm73jfz5hTL+9xX5Dqz8bVFVtnP2XlzPlpuDxu3bWq0HN4ylXDPTl5fjsHB2rT94m4SSXOCezz5H91j9fTTkz8Zkw+dqiNflj399NO64oordPHFF+umm25SX1+fTjnlFH31q1/VCSecoCiKWl1EAAAAAAAAdKCOfFm2bNkyjY+P68UvfrEuvPBCnXbaaerrC+tJBQAAAAAA0KipnGWYezryZdknP/lJnXnmmdp1111bXZTCZekunOji6xnKPnTodN/28w5TbrmNiC1y3gam04ck9oUeJD4PD9em3T7O9iC43bc9B6jo4eq7hp3hrteurU2b7tt1oYqeMhYRDpO7i7+tlJ7htLt8XeYD44tDw1psMaRk7/l2DTux1XWsJ3k++yqBoYVpG5Tyx3CXyFdv3eL3jWycnh7S4sQ8e37RfGnn0TbHUrKpcM9ZcBsfyBfa4zalrUwjYNkyuvf6zZtr025TumhR2PYTG3V3kNI+tDLlgitPmGQWoek2gkP9nGPse65sl3D6dhUaKl3mfl1Fpfqwyn5Wz/N9spQ3T/nLDufOzW0T7UOJnec2yOaZfmzFqsQse3zczU81F11tejiA2XTkq4b3ve99rS4CAAAAAAAA5qCOfFk25de//rXuvfdejcyQefENb3hDC0oEAAAAAACATtaRL8uGhob08pe/XDfddJMkKY5jSUok9rcvyw4/6vDmFjCjSmVBq4sAAAAAAAAyImdZmCiK3iDpPZJWS9ok6XuSPhTH8VMZtnGUpE9JOkpSLOkGSR+M4/h2Z7nDJL1e0osl7Vn99QOSLpD0z3EczzpOa0e+LPvwhz+sDRs26Prrr9exxx6r73znO9pxxx319a9/XTfeeKMuv/zyxPJHfOSIFpU0zJpvPDI97eZCCR5B+J57kp9Xrpxxsa7+5CnPO4x4Hj1OviLbIdCXD2Bq2GFJmjcvOc+X08c2WqG5XFo5ZHxdDpWRLbUPvhbYk68lS466EN4huX1ltCfAd7KdbXQFJoooon6Ojrnnpnbsem253J6sRQ/z7Wy/y1zbQ4OHJeZ1Qk4re+iKOFSPDyUHc1ne82Ttg5MsY6J/IGibeXO05GHztEmSxmp1fPHYRmfpwRm34c3PUsKw852ukNyHQ7Vzs34omVvOVrtMKfVCn6xzJvzJlY/Ksw2f0Lxb7ldZuLA27UvH6RV6f/HI+yxUdE4u7z225G0EH4O6e2DtXpm3LjUzR1c75U4LvW7aqcx5uH/bWAMF3LKKPj5uu71sWdi+Q/MD+rZRBl89q8sjPMXzgOn7m8rd/tQjSXf37OXE3BdF0XskfU7STyW9S9IKSX8h6QVRFB0Zx/HvArZxtKTrJD0m6aPVX79D0s+iKHphHMf/axZ/v6QTJF0l6Z8ldUs6WdJXJb0qiqIT46leVyk6Mt3eD3/4Q334wx/W0UcfLUlasWKFjj/+eP3bv/2bTjjhBH3xi19scQkBAAAAAAC2b1EULZH0SUm/lPQHcRx/LY7jj0p6naQDNPnyLMSXJI1KOi6O48/Hcfx5ScdpsofZ+c6yX5a0Io7jN8dx/P/iOP5KHMcnSrpE0kslvXy2nXXky7Lf/va3WrVqlbq7u1WpVLTZDKd06qmn6vvf/34LSwcAAAAAAABJr5bUJ+nLcRyPT/0yjuPvSXpI0pmzbSCKor0lPV/SlXEcP2a28ZikKyWdEEXRMvP7/4njuD65vXRF9eeBs+2zI8Mwly1bpqGhIUnSHnvsoRtvvFHHH3+8JOmBBx4oZB93Xn2n7rr6LnV1d2mPI/fQkWcfqYd+/pBuvexWPb32aZ3y96do6T5LJUlP3vekfvbVn0mazJ92+OsO154v2NO3+VS+kA1vN90VK4I2tGUk+X7UDtu+cGFynjd8JFDaiMRZtv870yHTe3xs2KIk9fTNvKBaN6RzESEW3gPp9I1uatd9N/wrJRS4LtbG9s93v1vJIWU29NKMii0pWay9914+Pd3XM1pqmeqOgTmOqyrJOj6hsDreyhCOalMtyR826g1RWF8LtVwuN3Qtfczy0BCXZoZS1YVAhNZxcyDXOGGANkSkr4B2e65JnA9P6KMbtp5Yz5ynJZ4np0xRgIEL++quL5KztyesLuet/2nLur+37awvHGv9+vR5g4OmjGNOG5wz9NIKbSvK0Mz91bU/gSFk1mglGd5uj75v+75jXHaIWtHbyHvOQo+P+6xu05i41d22AaHXvL/dCNqEpOT3sdt0r3N7bbvl7+8vIEw+x7nJ0k75/vZwU8yElCNLuHLRz2/uuU893+6JWrIktUzt8rzZSnFMzrIAz6/+vHGGeTdJel0URf1xHHueFGbdxpskHS5ptp5TUy9Onphluc58WXbMMcfoxhtv1Mknn6yzzjpLn/jEJ7RmzRr19PTooosu0itf+cqGtj++bVy3XnarzvjHM9Tb16tL/+RSHXzawVq0xyK95EMv0c/+4WeJ5RfvsVinfO4UdXV3acvGLfr3d/279jhyD3V1d2THPQAAAAAAgCJM9Tx4bIZ5j0mKqsvc18A2JGk3XyGiKOqX9D5Jz0j6D9+yUoe+LPvYxz6mxx9/XJL0vve9Txs2bNAVV1yhLVu26JWvfKW+/OUvN7T9rUNb1TfYp8rCijY+OpnUt7evV/P758+4fM/82mEcGx1TpGjG5QAAAAAAANrMkiiKbjGfvxbH8dfsAlEUDUp6d4ZtfimO443SdDjMszMsMxV2lB4yk5yfaxtRFHVL+oYmR8Z8fbVcXh35smyvvfbSXnvtJUmaN2+ezj//fJ1/vpvPLb94IpYi6bYrb9Mtl9yi1S9drajL/wLsyXuf1E+/9FNtfmqzXvSeF+XuVRY6aqNrYnBx6jwb9WbDLiVpw4ba9LNOtXMjO/MoOpTTPT62q/RAf3JnoZU7cYxzD0cayMakKTkKzUTFubbTwisLCDlxFRGGUzfypvncNbyp9ns33tF+H6fSFd612wkB7TX73mGH9JFDE4e8hOPvZWIXs4ym2i5Mz/38fPXfE4acd2Sq0OVC62TuEeJsaPm6ddOTw2Pp7X224Ri3D4l64Ll+vefTrJfltpAclTksvMZXJ9zTGzrabBntQ2j7bEPD3JArW/4dd0yul3qqMrTBtoz29u5uom/MzAwcRbcZ0sLLfI8qoaGWvn257HpZboF57uHtGsbVzNHS3WNsP/vagN7AtqmMxxhbDjek2ty+vCNL5pU39NKyx8TXlvpusaED1xcxAmhe7rlvZr1GR1gfx/ERsywzKOljGbb5DUkbJU091M6XtNVZZupKcnIq1bHbcHm3EUVRl6SvS3qVpP8vjuPLZtmXpA59WWYNDw9rw4YNWr58uebNm1fotg89/VDtf+L+uvb8a3X3D+/W/n+4f+qyO++3s07/6ul6+jdP67ovXKfnHP4c9WQJ/AcAAAAAAB1je8pZFsfxGilXGN3j1Z+7SXKTzO+mydEsH5ef3YZr6nd1IZpRFEWS/kXSGyR9Io7jT4cUWOrQ0TAl6eqrr9Zhhx2mHXfcUatWrdL//u//SpLe/OY369JLLy1sP5WFFe113F5a/6An86yx6DmL1FPp0dOPPF1YGQAAAAAAADrQL6s/XzDDvKMk3TtLcv/ZtnG0Jl+43Wp/aV6UvVHSJ+M4/nhogaUOfVl21VVX6VWvepWWLFmi8847T3EcT8/bc889ddFFFzW8j+H1wxp6bEjS5GiXg7sNpi67ad0mTYxPdu3d/ORmPfPYM1q4y8KGywAAAAAAANDB/kOT4ZfvqOYOkyRFUfQKSXtJusQuHEXRkiiKVkdRNJ2kIY7jByTdIun0KIqWm2WXSzpd0n/HcbzO/D6S9M+aHCXz03Ec/1XWQndknOAnPvEJvfGNb9S//Mu/aGxsTO9///un5x144IH6h3/4h4b30dXdpR996keKuiPtuOuOOurso/TwjQ/rhq/doK3PbNUP/voH2mnVTjrpEydp3d3r9Ou/+bW6erqkSDrmbceoMhCeJyZS3HCOBl8+HidNVoJJh6Tu7uQ8G5fvxujbzzZe343zt7HxvmGaffkTVq5Mn2fzIAwNJd/92rwIvqG27Tvj3jbK7xOaZyd0G660Icvz8uaEssfVl8Sq6CR3knTPPbXpn/wkOc+UZZczz0zMGl1Uy2EWOhx7GYrIxdFKtk1wu6inDbnu3YijLlde2nI5/28oNN9P3lxAoXmybD6/yrrkYonjWunI23rLFJ1Tya0HvqY7tE4m854FreLdvq+tLju/jNuW+toA++xibw15M1x4j52ZWXd+7T3FSRbWlSMpY9fYaHrBnEZyVL0zLlbGo4rvWsh7fwmtg50mbw5MV9ox9+U33Lw5fV+tzIVlq279vb427dbdxPXguUiLyGEbep58bYVbfvtdfX832ceYLSPJcvRVin0ed5Xdrud+xplDtqcwzLziOH4qiqK/kvT3kn4SRdFlmgydfK+keyR9wVnlHZrMjfZGSRea379L0rWSfhZF0dSojn+uyT/o3+ts47OS/kTSryXdHUXRmc78B+M4vtFX7o58qr777rv1mc98RpI0+cKwZtGiRdpgs9bn1LeoT6d/5fTE7/Z8wZ7a8wV71i2774v21b4v2rfhfQIAAAAAAMwlcRyfH0XRBknvkfQlSZskfVPSBwNCMKe2cUMURcdL+mT1XyzpBkmnx3H8a2fxqcEKDpZ08Qybu0jS3HtZNjAwoPXuUCtVa9as0dKlS5tcIgAAAAAAAMwkjuMLlewplrbcxyV9PGXejZL+IGAbx2cp20w68mXZS17yEv3t3/6tXvayl2nhwsncYFEU6dlnn9VXvvIVvexlL0ssf837v5V5Hzv0deVaL48lA7WXe0UM6+2yXYbdbsE2DNPtPmo/339/ct6aNbVp+27y6KOTy/m6MoeGtvV5wg2Cw7gcNpLCHp+eSjKkq/Duw044mQ2xkKfbehFCv4tv2Pnc+7NfxhO2smk4ue+tZmDhXULfgbsHzu7PHbPcvnR3LoDeNgln84UBJo6xEx6UuNhzhArl5R+a3VN+9z9AUuK789bPIsIQfKE3aaHp7nJZrqdEiGl/bdqtxon9Fd1wzHFFt/G+MAz3nmfrhW89O8+tW75UB0WELVl5Q89Cn2sqleRy9vnEfs8sz0m+7SeZA+ueDPvA47azaYX08YWaOWHlaUv6duUL8ww9h1mOcdkhXu2olWFtCxaUuuvcbNtkLwt3nierQtvI8hyTnFeb9oVr+sKoi3oGT+P+HWhDQPP+DQrMZR35VP2pT31KRx55pPbbbz+ddNJJiqJIf/d3f6c77rhDzzzzjK666qrE8r+56LTWFDTQW7+4ptVFAAAAAAAAGZCzbO7qyP8OWrlypX71q1/p5JNP1o9//GN1d3fr+uuv19FHH62bb75Zy5cvn30jAAAAAAAAgKMje5ZJ0ooVK/Sv//qvrS4GAAAAAAAA5pCOfVk2l8SKpuPEy8gFYXMHuOk2Kp40HdauuyY//+53M2+/bO7xsKmYNm9OLtsrm7cjWdVt7hJ7DEqPyXcTjYylzyojx0waX+4cm5+h7OPj7vvBB2vTwTnL1q1Lfr7nntr0Mcck5w0N1aZ9SSQ8mpnjwbs9twLZHGBNzFlW54EHpie7fMfYTaSxYsX0ZO6cX03MKxOaPzFLPpK0ee6+SFOWX9F5veqa+MCwDN859OanKvk+YY+P73rKe62F5lstgn3+8eZNcg+4/Vx/g2y4XHabdUfDbD/4GOcsky8/plVGu1r0dVjGfXnM87zm277vu+U5lu2a88uXmtZ77ALra968zWnbKKqOp+Upc5sK+zdKO92zQ6+90Guq7JxrQLO10eU6u7/+678OWi6KIv3VX/1VyaUBAAAAAADbM3KWzU0d9bLs4x//eOJzFEWK47huOV6WAQAAAAAAII+Oelm2bdu26emxsTEtWLBAN998sw477LAWlqpxExO1CCR3aPPQ7quh3b77+8OGPHa53b7t2/Pbb69N28gvSTr44Nr00qWNd81117HHK0vX7kTo5ciW9B0WEQdiQ/2cMvWaAxva7TtL9/A8x7iV3cPdfQdHD955Z236ppuS8048sTa9bFlyngn1K0OeEIvcXdbdutrK0EvLNha+OHAnnnui0he0eXuM7aU2wyYTig4N6O0JC+/Ia3Sstk035NxeN70ddVdvjtBzbY+xlDyneTWzPS0j/KWZoU/B+3YfNGwIt6cdzJ1ywb1vGEWHD4Yqal9p2ynivLvc68vytZ/tGMbli8Ytu/xlXNd5z2liO+ag9DrL9VTc3xQrT3hlGXXc1gNfNLfLXhtl3zNC/6xpZooRoJ111GN1d3f3jL+b6fcAAAAAAABAVh31sgwAAAAAAKAdxDE5y+aqcocKAwAAAAAAADoIPcvaQBS1Lk9UaJy/m7Ns9eratE3n4cbCj4/Xpt18QvZdrbt9ezx8sfF2Xk+P592vzWkiqcsWtOyDn3Oc77TzUUaugLzbLDpfi1t/9t47cEVbCY8+Ojmv4LxkvnwkReSqcrdh/6cqUw4lX8KuJtq04oDp6QFtSszb0jMwPV2X3yNle+7x8aUrsinS3MswT+6SMq690O3bc79wYfIY2GO3ZSQ5r69CbpHQY+zWwTznPksdCW078rYxzbyHhCokT5DvgcH9r33TCPQG3os3DSfLMWDXKyPPZeAzSOh5KyPXUNF5GFuZGzWvvGXuhNxPhZTDc4CKqLtFKzvHo7t9X16+sq+HPPeQLHntfPfKZp5ToAwddbt66KGHpqfHq29hHnvsMQ3O8EfhqlWrMm173YYtevfnbtAv735K8+d1a+WuC/WFv3iBDj7zW1q9x6BGRse1sG+e/uw1z9XZL99XknTh1ffqfV++Wbst3UEjo2N66yn76z2vO0iS9LlL79C//Mc96unp0tLBir7+kd/XHrsuzPnNAQAAAAAA0Awd9bJsn332qfvdq1/96hmXHbddmmYRx7FOef+PdPbL99XlnzpBknT7fev1xIat2mu3Ad128WmSpIce26RTP/BjTUzEeuMr9pMknXHCKn3lfcdowzMj2u/0K/SaF6/Sc3bp16H7LtEtF52qvkqP/t+3/k/v/8rNuqK6bQAAAAAA0PniuD16iqJYHfWy7Otf/3op27321sc1r6dLbzu1Fi50yL5LtObxzYnlVu02oM+9+2i994s3Tb8sm7LTjhXtvWJH/Xb9Fj1nl3696Ijl0/OOPnBnfeMH96fuvyuKCxmiPrHNHMOB+0OAkp93XzHzdCt5u1D7xkouu/9zwSEW7aToMue+DpYsmXm6BHmvobzcay9Ym8S5DPTbY5IMg+or4Hj1BQ6Dnleec1r2tewLrSz7eHSiZl+zeRQR5tns71L0/oK3597Pfff3HJJtln/f7VJ/rHZK1WCF3suKDocrSjue67mmXY5x2XWwXUPh867Xrt8VKEJ7/DUV6Oyzzy5lu3c++LQOXx32B/Zh+y3RPY8M1f3+0XXDGhkd10F7L66b96/fvUcve8FzGi0mAAAAAAAAStZRL8vaQRwnP1/xk4d07a2/1b2PDumfP3ScKvOTh/Qb/3m/brl7vX76j69oYikBAAAAAACQB0NUSHruqkW69Z71Qcvedt967b9ycPrzGSes0l2Xn66f/dMr9d4v3aR1G7ZMz/vJL9bqUxfepu/+/R9qfm930cUGAAAAAAAtE0sanwP/4OJlmaQXH7Fcz24b1z9fdff07375f0/qkXXJnGVrHt+sv/zSTfrz0w+s28YLnreLzjpxH33x8jslSbfdu15v/buf6buf/UPtvHhBuV8AAAAAAAAAhSAMU1IURfrOeS/Vuz9/o/7u325XpbdHK3ft1xfe80I9+NgmHXrWtzQyOq6FffP056cfWJfcf8oH3nCwDnvDt/Xhcw7R+758s4a3jOn0D/9EkrT7sh303b8/sZlfCwAAAAAAABlFsZuEq01FURTnKWsURYpvPreEEhXnrV9co3+6+D9bXQwAAAAAAApzxJFH6pZbbolaXY6yRNHhsXRTq4tRgN5b4zg+otWlaCf0LOsgE07UrG84XrtsGcP2umVplqK+y5aRWvmvuqr2+yXOoKgvPaHx/W0cqu3r/vuT855jBkldviy5rzzH2D0+vnpQxPbzcPf71FO16ZtvTi67dWtt+ozTw/b9+Lrk9tetq02vXp1ctq9S22YRdTrLMbbLhi7XiXzfbWSkNm3PRZZthCqivQwtR95z5m3jf/7z6cmNBx6XWG6xNtY+9PcnN9rDbd4e17Gx9OV6e8qtg3mFthVF7yuLIq6N0GecLMcgsY3h4dp0pZLcZk/v9LRbR2y9yPIclmrt2uTnFSumJ0fHktu3l2/Z94wi2sFWPpcmPPBA8vOyZbVpt40MlPfaK+L6Lfp4FXEOfesVcp149p33WavRdbJuJ3T7nfYMmLsNnvPI+TUXkbMMAAAAAAAAqOJlGQAAAAAAAFBFfEYbiBUFdWnN0pU1T7fvMkLIsuwvRFFdlW0ExvHHZy5GJrbH//77J+cNVEZrH0aSsR8j6puetqEYeaOqfN3imxli1DU2mvi8y8La9z7wwL7EPDeSIo0tvxtKOzhYm3aPXaJbv1OuRCyOE7KTto2WhkrbmEYpWf6cYSdF8NUzX+jlE0/Vll1gBhR2v0roMS6i7QhtI8sIQdF1101PvvkLyTDMd7978fT00UcnV+vdrkIgZmcj8VyDg8WHJvnkqRd5wxiD678bg2gazSLqdd420scW2dfGD2tgenrgC59JlsO0n71ue//qV9eWMyGTkrz3hlT2puTovfrbyV8cc0xt2tzcyghtSt5Cksfefs28+06sd/vtyZk2H8beeyfnnXlm9p25x7iAcPQyQvRD12tqCGsGZZalqOfStO0UFWpcxDFol3MaWs/KuB8C7YqXZQAAAAAAAJnFImfZ3MTrXwAAAAAAAKCKl2UAAAAAAABAFWGYbcYbt+7JJeIqYhj3omPSi8iJVpdXKmceCnsoly8x26xLaDOYa/uWHXa+d52ThGv9+tq0kwulzyZnMglDJnqSeb3yKj2vgD3I69bVpoeGksuZ77bKOQaDg2Hf1daXXqdK9MqT0MYef7dcNueJPf4F5c0rPEeF2z7YutzCnGVWlvZtl/HauXli6/Lp6Sxfpex8ZkWfw66RLclfrFlTmz7kkOnJb498OLHYf499enrarQbu9bA9sudpsYaSM80Bm9DOpe47VN7cYO2S98Ynb84mX/4132OAfWYYuP2m6emRD3wgsVxl5crahw0bkhux9y97TUrJJIF/+ZfpBbHcRuwnP6lN3313cp7N3+VLwBnIV7dCN5n7HnjZZbXpX/86Oc/mLDvhhOS8PDnL3OSlBSjiuTpUu17LzWyL8rYVZQjOP2vv4W5bYS8wT+7DMnKe5jl2c/k+BGTBYzQAAAAAAEAuvCiciwjDBAAAAAAAAKq2i55lx7z1mlYXwWv+DrXu4qNj6eEFXZ4+8t71zJvu+uXC3pcmhxRPRqzZaC83inH16tp0nzPCui+sIrXLsBNjNNHTO+P2skhso+xwNc+Q8XVD0NuDaU5A15JkPbDlL6KbemFdqNPqqw19lJLhEs46vsPVcDlcbvyaPR/2+PekH39X0cO9e8Nf3PqTM0ynZdzymnqxy9CT09NPPJUMlVu4sHZM3EPga2PSliubWw7btva5x8C2ATbc6/jjE4sdYabdYwBHhjbeNgnDw7Xztm1bcrkFC2rT9Zdh421yEe1I8HqediM0JDnLfSjPer7wLO/3NDeUynnnJefZ+5B7j7KhkGvXJuctW+Yr6szc7dsHqpe9LH375txsGUkeK991HxpCZlNG+EKwNg2nP2+69T3xLLrnnrUPS5cmC3LggbVpGxLbIUq/LgvmPu5Y7RK672sPirifFxXumFjPVnj3AdZcpE9sTqYY2WVkY217hTz4hkuUfyw9bUm7PEMBzdYmTWK5fn7bb1pdBK9zz31rq4sAAAAAAAAAbScvywAAAAAAAIoVSxpvdSFQAnKWAQAAAAAAAFX0LGszvSObEp8n+gdqH9zEYSb+3c0VZhft7q69E/3d79L37Utx5M6zKTdsuo2f/zy53G671abdnGW+PCOp8wrKw2RzcySUnefJHc7cNxS8PbD2hNrfy8mz1sqERW79NN9nYsXu09PeN/TOMSg6D0Jdjgp7/H05v9atS91ml8kpM1FJ5qHoGhutfXDOW/DQ9ubidnPq2e/j5k7z5TgsU1F5QNJyCe4y/GRiuU1jtRxmbjtYqdTK4h6OZGqOYnPLZWHLVXcO3eHlpzj1wH4id4ifL8egy94nFg/XclXdMbR7YjnbjMyfn9zGvHm1aTddWuglGppzquxznzdnjS8vmZ0X+j193OXGVDvfayoHTU+PnHhQYrmDVpu22tdY2NxakpR2jfq495pjjqlNe3Kg2ZyznsdB7/OUT+hybsq1HXZIX3bDhtr0Tnu9cHp64cLkcr7y5xGax7cZisgl69MubX7pOQebKHdbZO4vI4PLE7MeeKA27V5DuxzoSSLXImXXW6BTcCUAAAAAAAAAVfQsAwAAAAAAyIycZXPVdvGy7PCjDm91EbwWVCq1Lr85w9Dcoey7u7OXww0fscad69+Gndhpd1R1G4Li6hrelD7PTG8cq4WiLu6vX3ZKRw5rbEMV3fAUG7Njw0A84Y7NDsNMdJ93xyK34YO2krhhK74xzAtW1/3fhmT1OyFwI1tqH9xjbvnKb9dzLw4Thpk8jqPJ5WxsoVMOW2MmluysdlDUtZYI3TLhrV1OrKX96J4KX4SyPZTJSy15HRYRHpQ4v7ZeSepNtPnJ9n90SS2Mo1e1euELZSsqDHauco+HDddy648Nz+01FeEg3ZFY7r6RZEhf0ULDlJp97tO23651zl5qdVHwgTGxE3vvmzov9Hsn0mtIkvs5gBvSm/eYp63n1iX72b1OFiyoTbuH0YZh2udIXxhpu7ZhwefXDQVOhPyHbT/vNkK1KEvDjELbkbxhgWntZ95w0NByudfJ1q216Rfrv5MzB49RmXx1KyFnxejIv7+AQG3UXJbniI8c0eoieD3yjTWtLgIAAAAAAABEzjIAAAAAAABg2nbRs6zdxYqmu7B2+cLoPPPccEfbk9Z2BbbRcL7l3Hm+nrm2WEcfnZznhgok2B16vpvdtW8kM194jQ2nmW29tmEPuvdApitilKHgru++umvOdSmjNuaMUfAeE/t9PCOe2ZAadzTGAU+IbOpxdcvvO/fme7dLPS6jO35iPec4LlctnNuGbEv14emWDQMKbetcRY8W5W7P1qcec90M9IeHiMDPdw+0n3vdm6dRSalLUjJErQy+8Jq0+ll0yJ67ryzhU/Y+nTpK9Sz79uk152PZstq+3NHoOoE9PlnantAQrNDnhX0Hkwdvor+WAsBdb+XKmUckLjv7gq8udQJPVos6/f1h15BVRoijTzKTSHqqA18dDw4l9ChjhMe0crn3gl13NR96Vidn+lKytOE93RdG7dq+RtUkZ9lctD3VYAAAAAAAAMCLl2UAAAAAAABAFS/LAAAAAAAAgCpylqW48+o7ddfVd6mru0t7HLmHjjz7SD3084d062W36um1T+uUvz9FS/dZKklae9ta/eLffqHxsXF193TrqHOO0m4H75Zrv3nz/bjx4jYfhyfVSmIoYze3is0xEJoya4cdwpaTpNH+xdPTbmy//a4DJQzXnZZjoJW5AYLzZxWVkyvFlpH04+jmSrLHri6fXH/ts2+47iLYfRe1/UR96h9IX9CoOzX2F568Z6n7dfbdjrkrGpHr2nMaI7uNQWdRN69GGt/lVcQx9+VcszmbxjLkAUnbRq9GkzOLyAm4nfDnXTFtzJIliXm7j2yZnt6ivsS8PIe/qHxCafLmu/Jtx5dPyHcd2uNTRq4ee23cc0/t927OssHB2nLu804heTUDlXJ/LCBPWYLngdDdV19l5nrhyw9YxuFu5XNe6PexZXRzlA0N1abd52x7ffUGPqs3M0eZlCyjLx+bzS/stse+3MNWaBl97Wzetsgu19eT/KK799sv6pyoxAWQnpu5DKHXhu8c+sy159Z0schZNjfRs2wG49vGdetlt+pVn32VTvvSabrv2vv07PCzWrTHIr3kQy/Rrs/dNbF8ZaCiP/zIH+r0L5+u4999vK79/LUtKjkAAAAAAAAawX85z2Dr0Fb1DfapsrCijY9ulCT19vVqfv/8GZdfslftf5kX7b5I49vGNb5tXN3zuptSXgAAAAAAABSDl2UziCdiKZJuu/I23XLJLVr90tWKuqKgdR++4WEtWbUk04uySPF0N1V/KGF6t2C3u/J8817PF0Lp6/ru6zqe1q120aJkGX0hFr4hotO6BbshgraLv9stOLTru+1a7HabbpcQpsTxcMpUdHiBGzKzbVttesANT/GE3jSz63UZ+0rbpu979rlhXLY6ORdi6DDoeb9bu4QXW1lCP0JDvHxsu+i2D/Z02Esqy7EKLZdvXp422N1ecrn2aLM6RRFhhqrUQi99kbOh+yq7LQ0tx0yf09h78+bNyXnjJjLFfVbxpYkIFVrGw/rvq31wn4t6bJh8YPyz8p2bLMc/z76KCrNNFRof7tGnLYnPEz19KUt2nrzn17Jhly43ZUoRod5ls2V0y2vbi2RIZnI521a4VbCIZ9E89wIv3w3dE4s6ZlLUSFJvwbf00DD/rjEnpYNJReA7/ts3jsNcRBimx6GnH6qzLj5Lw08O6+4f3j3r8hsf3aibL7pZx/7psU0oHQAAAAAAAIrGy7JZVBZWtNdxe2n9g+u9yw2vH9aPP/1jvejdL9LArmHJwAEAAAAAANBeeFmWYnj9sIYeG5IkPXnfkxrcbTB12WeHn9UP/voHev4bnq9lByxrTgEBAAAAAABQOJKbpOjq7tKPPvUjRd2Rdtx1Rx119lF6+MaHdcPXbtDWZ7bqB3/9A+20aied9ImTdNf379Km327SbVfcptuuuE2SdNInTtKCwQWz7GV2eVNmLVo08++feir5+dlni923zUPmypsLxfINV+yWN3Ro40R+lYXJIZv7PN+nmXz5AIrOFeDmuLM5JJ54KnnObO4MX248n6LzdZWR/yv3NgIvoiJy0czlnBF5h7m33PaggLQ7hQgtR946MpfrRdny5sorWmi+nNBcNEXVEXtvSJuWknXc5sCUktel7/nBylL+RL6fvfcO3mba9n3HuOxrzbcv3zybT87X3oRu35UrR1eTG+Aizk0R91/fcbXXTWiOzZk+t4r9bm6OZcv9bjanoZ3n5s+1VcatPqE5Q/Pmis1z/61bxxba/XLtyKlYfZ4805CkWNL4rEuh87RJE9t++hb16fSvnJ743Z4v2FN7vmDPumUPO+MwHXbGYc0qGgAAAAAAAErCq2EAAAAAAACgip5lM1i4y8K6XmVlihU13KXV7e5ru0Dbec8+m9yP7QnshtGFhjEWIbTLv6/nvruN0OGWFy6sTbdLd/YyhIauuKEw/f219Z5+On377RruZeuxGxpQdmhGEfsK3X4ndIsvo46Eb7N54bnNPhd2f0NDyXmLB5talDkr7/ltar1wQnu6bONnp9euTa5nwhO7nJusr8z2fmmfH9z7dBH31dBwx7yhcnnbgGbeQ3zrdK17vPZhWTJ3bl/FlNF5sJvoSaaeyMN3btollLkT2OtkyZLkPHtN+VKOhD735lVEfXfLn9Z2uCHbdj337xM7r4iQ2CyC17OF9DSSzf4zpPDnMvfkrK8OkOeeUKBDzOFXAwAAAAAAAGUhZ9lcxX/zAAAAAAAAAFXbRc+yaz50TauL4LVkYMnsCwEAAAAAAKB028XLst/c+ZtWF8Hr3HPfmjovNN9DaMy8mwfBl7PMznNj2kfHZt6fLzeJL8dA6HcrI6eYzedRdk6NIoYez7J9X965RG6LZGIvZ7lauXZZ2kjpJmU5xqF5anxCc1mE5nTLYnvM15LluBVxfn1113Jn2fatrydsG6485S87t18njEjfSkVc51naEd91n6iDY5tqH5w6OFHpy1bAAvnaMF8KHistdZqrjDYy9PwGX8u+B5mcEvvzbD/38QlMQBua062I81TG/baV8t7L7LJ95hqqVMKPj5uLtVVC8xu63L890tj2soTLsPQ6nuDkCrT7buW1UEoO3qmTE0U5SgS03nbxsgwAAAAAAKB45Cybi9rjvyMAAAAAAACANkDPsjYQKW64261vCGQ77QuVcNluzW7YZVp3aHf7WfaXR9lhjUVoZvhd/Xeu7duGU0pKnsSyT1SgIobyznveiw67LEMZoQdFK2P49SLCI3xhmEXcCVvZFtntDw7yf2Cu1rbBgeXwtMfB9Se0HR8cTJ1VTphq2PH3tW9FhDnP6VD4ZcumJ+vOYeiNIvCZoOx0BmVso9HtzSbvPSqtLN4yOrH2ifMbeK7zHuMirqG8+wqtxnnPvS+UttNTtPj2FRoCGnwM3BM1lf+nHR9YgQBz+MkBAAAAAAAAyIbXvAAAAAAAAJnFImfZ3MTLsjYQK0rt3lpESJmv66xvJMhejdY+DA8n56XEXk5UBlL3VRcGWLKyw7qKUHZ4VuKYu8PkmfNmw2zdntLNDGdt1xGyQutIGeUPHMisTrscu9BrzVM9U7cnKXg0TNdAxbRvOcMDUkex82yvjPAXu402iajebmUJp+lTrdJvquw8Pe2ew97AOrJlJD1dwuLB9G3Y9t+9Dvv7w0a489Vjex/q9Vxq7RImmXcUuzK2n0futj9nO1jESO2FjIzcQoXXXffG7zyDJ4QOJ2kUla6izPPmbq+ZbUezR64vevtlaNdyAWVrjycTAAAAAAAAoA3wsgwAAAAAAACoIgwTAAAAAAAgF0JV5yJelrWZMoYr9qXS8eYbsCu6iUzsPDPd5SZbKXmo4NDj08pY+7L3HZz7wDk3Nk9NGeUoOq9Du+RL8JXDPaa+HBtpQnN3zQW2Gdm8OTkv+HuntEWS/O2PmVdIPfM0tKE5fer2bSqD92o1B8s9BHnq4FxTdNuR+77sy0NU6Zue9OX3zJL3b/362vS6dbX13GL4rrUVK9Ln2Wqet57Z7+O7fPNeo2XnQSv7HtXU/KopbaJbjjL4vme73PstX5mynKfg+hN4L8urHZ+1XL4yhp6P0O9Zen0fG03+ouS/lXzSjolbj2377N6jQu5LE+1ZrYBZEYYJAAAAAAAAVPGyDAAAAAAAAKgiQKPN5B1OuIju+XVd301sxsSy5cl5I1tqH2z34QxdifOU2df12td1P/S4lhHmUMgQ0bb/87p1yW3YGJolS4LLZbtRJ7phu93DjQlnWHtb/tD1yujeXsR14+2S7/luvjqfpz65myui/K3kC7OynxcuDNtG3ffs7w8qR2jIRe7r1Z4454t2JcLtnJg3Xwzc0FBt2sbYDQ6mbsMNxesNOzzIwJuywBeC617cpu6G3jl9qRp8t9977kmft2zZjEWSVH/NWs2MHApt3/I+B+SVp93Nkm6j9NDLFN7vVRcvm35/b5d7VBH7bmr5PW1FK7WqPkrF/A3UytDLBE/D6nvOLpvvee3pp2vTixalH2+36k79ybJtW6Ola3expPFWFwIloGcZAAAAAAAAUMXLMgAAAAAAAKCKl2UAAAAAAABAFTnL2kCkeDomvYx8AGm5qbKoy9lkE+PYnDsZkpjYOPwtI8ly9VVmLnOWIcVbmVvBKiTfgM15dNNNyXn2mB9/fHKem9soRe4y2qQGNr+Su32Tb2Oi0he8+dBy5c1LE5yXxdZ3NymUyROXZTjtNO4lNDqWvg13f+3IHsa6VDc50h3WtRU9pm0qIIlS7mvBk7MskWfQzVFmE0b58pd58mKlFQOzy5Wjzj2/npx0idyfnrygfYH5N31l7O9PrpdWndz0R93ds68z2zzbTrl10Fd1bXMaWnfz5hXMm/+xXZ4lipClbqXy5CxzpW2/7GPa7PxonV5/8jxruZr5PVuZ/y53XtM2SQAZmlewdyz5rPvss7Vnd9+znOupp2ZeZ24iZ9lc1P4tOAAAAAAAANAkvCwDAAAAAAAAqraLgI3Djzq81UXwWmBiG+rCHXN2zU3rClzYsN45Qy/T9p0IpZrc6Izlcrs/+0LUElvzFLFdhjb3sl/ADa20IUB2eqZlA7jDVluZupi74YpT23BOhm9/LZUWhunh657vbiItpMl3GN15NuyqE0IyQ6MMpWSV7xrZYpZzwnhtdQo9yGVzGxwTqpspfsHGy/niWY1WfeW5KPXe4GsPPOczbwhT3ntUWvijW8SFC2vTbv2xt5StW9P3ZbfhHh5bDjcE1BeGaT/3mXJlOY6hIfplhG+GrJN3X0VJ26b3WbGEcPeOeA4zQq/XvNvMcpuw8tbBIupuqMDHKW/YnhtybhV9vc62/eBjEngS2yXEdKwn+axl/5zI8pyxaNHkTxvuD3SS7eJl2REfOaLVRfB65BtrWl0EAAAAAACQSSxyls1NhGECAAAAAAAAVbwsAwAAAAAAAKq2izDMjrJ+ffKzTfDhBon3zJzXS1IyKYBv6Hq7ni9Jgi+ZSBF8Y82b6S6njL1mvS1Kxtf7ipiWx6SQYdXLYOvB0Ucn5/kSwuSQ6TuH5lKzZRwaSu7PlHmi4uSjClRIvhO3/rv536Z4jnHdvs02x8bSc7P5cnMM9NTydT0+nDw+toi7r0jfRivZXGq+66tX7kEwdcscIPfwT6h2XLP8709Tc+TYnGUedccnLU9ZE4eZR5Xv+JvPbg5GX84sOy90OZcvX45tkleunPn3UvKa8t2K3VxDaTlosjwu+HLf2PV812uePEp5j2kZbUUR2wxtz4o4dr467l3PU8a89b+Z8t4zQutu2iOHVEia4IRmH1Nfyk2bC3HevNr0tm3J5ey8vDndyhbcdngKXHb9D73m3Ty4PZ48cT4rqs+mvW2anhiYTZs0LwAAAAAAAJ2EnGVzFWGYAAAAAAAAQBU9y1LcefWduuvqu9TV3aU9jtxDR559pB76+UO69bJb9fTap3XK35+ipfsslSSNbBrRj8/7sZ66/ynt++J9dczbjsm2s/GJWnyDG4Zp+2WvcOKsfP2OS+6THNqNN7T78OhYcns2vNIXwmfjSXrSo1Trumz3mnntMkyzT6KMBYRalsITJpw4b55YgxEnlLZSKTZUzttF3r1m0uIePHFDdd3nzXru5hMhiN7LtTZzec+TyVljNi7KaR9aFLbnCzPxnsO8sVrGqJx+/p7w1nYM26g7PmvX1qZtDFxgWCdm5wv/SijgflvIvca5mdW1W8bgYO37hIY7+r6KL1K9iObGV8YsoYVW0SGajSwbIjRUN+82XKEpKbLsL2TfRXzPZivjGcQ+GtnHf/casqHT7nUSeHv0lqPoY54lq4sNrwz5/WzyXPOzrZe3/cmjE+t/3mMOdAJq9wzGt43r1stu1as++yqd9qXTdN+19+nZ4We1aI9FesmHXqJdn7trYvnu3m49/4+fr6PfeHTKFgEAAAAAANAJ2uT/1tvL1qGt6hvsU2VhRRsf3ShJ6u3r1fz++TMuP68yT8sOWKZnfvtMM4sJAAAAAABaqj17BaIxvCybQTwRS5F025W36ZZLbtHql65W1BU1Z+fuMFU54yOeeLoWjrR0ae337dS915ZlzAnD7OkxoUm2j7mnv7k7cktinhOPNeGGa81QpjL4ur53ejfmuvKbEbO6bL12h1QzcQh9dec3LOQ09Dj6QgPq1usfmHVfWeb1VXLWLVtIN/zON8RUm4yemPeaSpwPW5e820ueQ98oo95zn7r1Jo+Et25dbdoTfm3L7ws5RwNsu+UeZHNucochl8yXlqDobfq271Zjuw3faMKJGLVly8ILmaI+9UPjIUah57eZIV2udn3OaPYIpHmUUUYbhmmbGPeWnTLAvaTkZVJ2ex8aipc3at2OgJklDDPP4457Ptvkkal0zb6epo5l1KQ/o4Gitedds00cevqhOuviszT85LDu/uHdrS4OAAAAAAAASsbLsllUFla013F7af2D62dfGAAAAAAAAB1tDnc0bczw+mENPTakwd0G9eR9T2pwt8FWFwkAAAAAALSNWNJ4qwuBEvCyLEVXd5d+9KkfKeqOtOOuO+qos4/Swzc+rBu+doO2PrNVP/jrH2inVTvppE+cJEm69M2XatuWbRofG9cjNz+ikz5xkhbtvihsZ91d00kIJlbsnizH2GjtQ4acZb/7XS3Hz6JEMTx5OjIE6duY9y0j6XkKErnHcuZzSuR8cXO6hXIKlp5TJTyPSShfPiHf8Sk6t0jZeZmC1xseTn62uWhWrkzMenRtrcy7r8iXD8bNTZNYdmRL6ryJ/7+9ew+Porr7AP49uRFCIAESbgYIEAERFAQEVBApFopgxUt9RVGorVSrRbRWbS3ipfXyYq3a0mKtYkFBfQW8VvEWFQURFAQV5BYREOUqhJCEJOf9Yze7Z87unMxOZnY34ft5njzO7szOnJk5M2cczu93MrOif+8y75wveSLUhCfr11vnDRjg/fYccH0MtHqRYnOR1uS2sl1n5P3HfnNumM69L9TkNIb8lWo5ysu1e5iztH/HjFjy1NieX21Br+/VxnrlctvqzyLaNeUg6Pk81bLo+ZDSsqO3babckMY21dQ2lJSEp/XEZ+pnLSdmirLxmrTouUp1seS9VD9n2adUdU89Burzj+HmFst9yYu8qaZ12OXsi+UYN6a8i3oVV/fVlJ7XkK7XE65zKyo7YKw9Sn1Vn3sB+2ZOrwdqPjN9nt/HpzHzO68mc5ZRQ9eImiBvZbXMwkV/u8jyXZchXdBlSJeoy094bEI8ikVERERERERERD5izjIiIiIiIiIiIqIg9iyLonnb5hG9yvwkIey7pDuMI9JDxtRoNrVbrR6S5jRkyhR+ZBomXi2+2xAmy3Ju46q0QmYo61HDSPdo4zh0KnC3OVVK6cHwdrXwEfV86KEGbrpDxz1MzCn1vOXl2S5WqYUAfftteNp4LtTzq4XhWI65KYZGY1f/Tcc0luNtd+3FdM7U2AM1JFP/3K6d83XWk9sQDv28qRfjtuxeoemCXI+2bUePk9FDvhR+hy+gqCg8rR4fPeRWWa6qqoX35WhETO2VidrG6ufadSibek7t4rEA7+OJdaZQKjWM0bBvanhlTGFz6n5v326dpzbIR46Ep/VrVD1eeiOuzEtR2h49FExlSomg1x/1NpvlxW1W3zf1mKj1pcDaIJruRW5SMMQSTu/mOdIUqutFGKYfKRFMIdumbau/U6uxaZ2xXPJe3B5ct1/qDqjXnn4SlRBiPZ2K3bWoHyu7zdbF6bNchuH/Vxy39aZ49ATGijq99rzgd0qZ5MacZY3RsVSDiYiIiIiIiIiIjPiyjIiIiIiIiIiIKOiYCMN89XfPJ7oIRnkt2iS6CEREREREREQUEwmGYTZOx8TLsm+evCDRRTC66qGvbed5kRPHi3hx07YNKX2M63CaY8O0bce5OPwO0jfRc5Coxcj2N7+Qm1wlvtNzlqmftdN0wgkO12nKE6GoSbPmREN2+LNXucjiSr34xo61znObnCme1DJq9aIsO/yPCAVKqg9fzoUpd5rTG5yB6/w5Sq45yz2x+G3rcso9JjuPOct06rGL562/Tnpds+FH/iULNZeOdt/wetuReTUV+j1LvSeo06ZrUj/BNifc7XHTV5ea6mo19vQ6oW7QYX3RxbP9cprvzXQdepHayY+8SW7vHervmje3zktPD0+r++2wGgNwd349qxNqndy1KzxteubWrl81h7Cav8xUDxpEXiyXz2B6bmk1H6QfnNaFpDzGRHHAmk9ERERERERERL4RQlwuhPhUCHFECPGdEOIxIUR+jOsYJIR4UwhxSAhxUAjxmhCib5TlBgsh/k8IsSm47CEhxDohxO1CiBwn20qmf2MlIiIiIiIiIqJGRAgxDcBfALwLYCqAAgA3ABgihDhVSnnYwToGAygGsAPA9ODX1wJ4XwhxmpRyrbJ4dwBZAJ4CsBOBjmIDAfwBwIXBbRrG3gWElNL5HiaQEEK6KasQAvKjq3wokXemPFSC2XP/m+hiEBEREREREXlmwKmnYuXKlSLR5fCLED0kMCvRxfDAyFVSygF+rFkIkQfgawCfAxgipawOfj8OwIsA/iCl/LOD9awA0BPACVLKHcHvjgPwJYDlUsofO1jHTQDuB3CxlPJZ07IMwyQiIiIiIiIiIj+ch0Avr0dqX5QBgJTyJQBbAFxW1wqEEEUI9Ax7rvZFWXAdOwA8B2CkEKKd3e8VtQnjW9a1IF+WERERERERERGRHwYG/7ssyrzlAHoKIeoaVauudQgA/fUZQogsIUSeEKKTEGI8gPsAVAJ4s65C82UZEREREREREdGxK08IsVL58zKXVYfgf3dEmbcDgRddHaLMi2UdAHBclHl3AtiNQI+yhQAOAxgnpdxcx/aY4J+IiIiIiIiIKHYSQE2iC+GFPXXlLBNC5AK4PoZ1Piyl3IdACCYAVERZpjz436wo81Ru1zEbwGsAcgEMATAcQF4d2wLAl2VERERERERERGSWC+D2GJafB2AfgLLg5yYA9BEoM4P/LYOZug6d7TqklBsBbAx+/D8hxCgArwUHkJxv2iDDMImIiIiIiIiIyJaUskRKKWL42xT86c7gf6OFSR6HQPe8nVHmqepaBxA9RFPfh9cBfAfgmrqW5csyIiIiIiIiIiLyw8fB/w6JMm8QgA1SytJ6rGMwAi/cVjksTyaAVnUtxJdlRERERERERESuVDeCP1+9gED45bVCiNTaL4UQ4wB0A/CUunBw9MqeQoic2u+CvdRWArhICNFBWbYDgIsAvC2l3KV83y5aQYQQVwDIQWAETSPmLCMiIiIiIiIiIs9JKXcLIf4IYCaAN4UQ8xEInbwRwHoAf9V+ci0CudEmA5ijfD8VwDsA3hdCPBL87joEOoHdqK3jVSHEXgDLAGxD4AXZ6QB+CmA7gBl1lZsvy4iIiIiIiIiIyBdSygeCL6+mAXgYwEEAzwK4xUEIZu06PhRCDAdwd/BPAvgQwEVSyjXa4o8BuADALxAY/fIogM0A7gcwU0q5t67t8WUZERERERERERH5Rko5B9aeYnbLzYBNzy8p5TIAP3KwjlkAZsVSPh1flhERERERERERxUwiDjm/KAGY4J+IiIiIiIiIiCiIPcuCdu0tw/V/+RAff7kbTdJTUdi+Of56wxCcfNnz6Nk5F+WV1WielY5fX3girjinOwBgzssbcNMjH+G4/GYor6zClPEnYNolJwEA3vv0W1z/4If4bNM+LLjrR7jwR10TuXtEREREREREROQAX5YBkFJi/O+W4IpzumPBn0YCAFZ/tQff7T2Cbse1wKdzLwAAbNlxEOff/AZqaiQmj+sBALh4ZFf87aYzsPeHcvS46BlcOKIrOrbNRqe22Zjzx+GY+dRnCdsvIiIiIiIiIiKKDcMwAbyzaifS01Lwq/N7hb7r2z0PHdtmW5brelwL/OX6wXj42XUR62idk4mighx8u6cMAFDYoTlOOr41UlKEv4UnIiIiIiIiogSozVnW0P9Ix55lANZt3o/+PfMcLXtKjzys//pAxPfbdpWivLIaJxW1ir0A1dVAaXC01GzrCzpUVYUma9IyLLNSUBOa/mqT9b1nYWF4Os1wltV16Gocvks1rcO0Pqe/s1COBwDzzhlUVoXLoq4yK9NFmeqwpSS8rcxM67x27cLT+vGwO/5Ol4uFuk712ADa8UmrtP7QzfEvL7d+Lg2PFLyzqo1l1urV4ekxox2eG0MdiaiDVcr+lFpHLK7MDl/LGWnhbZuOdyzXk6v6b3LggPVzcXF4+rzzvN1WLNRy5eZa55WUhKe1evEFwv94of5MX4V6TXl+TDWmc+i2XhjXv2tn+MOuXaHJsp6nWJbL2rMtNL0zrZNlXod2/h6ThkA9rvrtR/2s35/t2gO391y39cDt+r1uG9zWf785ve/u3h3+vm3LyihLB7l8rnAsljbK53uaHa/Op9rG6s+wluW83s89e6yf1Wdr/UJPEl4/cycrL9pKv9fp9b0z0ez+nwdw/gyVyHs8USLxZVmMpLR+fubNLXhn1bfYsO0A/nXrMGQ24SElIiIiIiIiImqo+JoYwIldW2LV+j11Lwjg06/24ITC3NDni0d2xecLLsL7s8/FjQ8vx669ZT6VkoiIiIiIiIiI/MaXZQBGDOiAiqPV+NfiL0PfffzF9/h61yHLciU7D+G3Dy/HdRf1jljHkD5tMXH08XhoQWQ+MyIiIiIiIiJqjGoawR/pGDMIQAiBRff9GNc/uAz3/mc1MjPSUNg+G3+ddho27ziIfhOfR3llNZpnpeO6i3qHRsLU3Xz5yTjl8oX4/aS+WP/1AYz/3RvYf6gCL73/NW7/1yp8vuCiugujB5MrCVVS9DQLSp6LvDzbWRZucyqZYtV9j2NXj4m+Y6Z5BmqeGvVnfuQLUfOSmYroxbZjyVljt35DFQQyrTlHstJiL2NNZpb1C+XzgfXWWXraEVtqobUdUPOk6PmK0pR5GVoyrIw457+q5brO6XlY9OReiaLk2qrJteZ0TFEvju3bLfPUSyU1Vfneh2soaXNxqMdHuclnrfzQsti2gtNC0wXtQAZ6HrIs9bLRbhBl5eF7k1rvYskD6qZuxXIPUNfvd54dp/PinXdL3Z6+LfVz23xlRrkhcY/Dbekc76eeX1LZdoqWt9a0b34ybUvPa2p89FKvqWz7nGURDx6ON+Dhb+rgR15KO/rhUPOmRjzIqFzmY0tUPXMrlnudF/vmdy4vP/K4qUztl1rXMlxeNsmSv5LID3xZFtQhvxme/fPIiO+PvHel7W8mje2BSWPDL8465DfDrv9OBAAM7NUG21++1PuCEhERERERERGRb/j6l4iIiIiIiIiIKIg9y5KATE1DTXaL6DMN3dbVbq9+RFy5GsbaMCS6af3GLs6G4cahzIulm7RaLLuQTMB9l2SVHvajUsMZnEYNeBUSa3f8jWFKMZTLaZinqldP628KC2N/n6+HearnV49eUCMW9HPtput+LMffLoLYbXf8yjTrfu8qGhGa7hTHsIqI8vfsFZosKdGXDpe5WU53y5zCluFpNQTFbbi4UzHcwpzfwxwuZ6xnakHWWXNjri8Nh2HqEV4nRabYJJV6wpWQYQDIUm8YShhsZW4by3JuI75s60UsldBjfqQDMK3fC05DQC3ztHbC6fGPDOUPTzt+XtBD5dSVattOUZdVNmZ8LnLJ6bk2Vc+IecqzrWX9+oHUrj2LwkJH5TIyPXg45LZeu7mGMvQUF6Wl4WktZYHlBBQVxbwtwH2on5t0El6EFZrC3b14XvMiXDOZwhFN5fK6efEiFUHDJAFUJ7oQ5INjpQYTERERERERERHViS/LiIiIiIiIiIiIghiGmQSkDPcQ17teu+2+mqiRFE0jEbrleF/0bvbK5xQt7CEzM0WZdl00ZwxxnhmG+IVKhI+d227SXoxQ5nUX6ojwAgNTCKuFeq61g6WGkarnXedFeGss0VN280zRIqYwH/13aqRGpwL733nNdB/RI23UUXyrtd7rGQe+j7qg3+Edbvk+mpgahtPbGlupjp930kt/sv6u963el6UBi7wPKhyOyGccqU7juC4YQvGgjZBY723FwFU6hhiWc/qc4fWIdvp2LZ8Nzy16mLOaAsNxGKZpODo9xE6tF2o4YrsOtquoa3NuqMfHTbsGwBjybAkt1/OKuAnD1B/s4hjKrPPkGUq9/+uVUD2uLsMwveY6xNFlRY536LfTbbsR2b7Uf52m+6fXxyfeoyET+Y0vy4iIiIiIiIiIXGHOssaIYZhERERERERERERBfFlGREREREREREQUxDDMJCCEEoqvDxvuMM+CF8Mom9bpOKZdK6+absOP3GDW/dTs2ROeVpMjITKHmZ9qlCHqjedCO3bqJ7f5SLzIReB2xPW0NJ9zOCmMx1jZgSrY56IxpZExLed0nol6neicVlU9v9tpg92VxWvq+TCVKaKulsZ+jbrNlaEuZ8oP4nT9XuS/06WouYzatbPMOy1zZ/hDnz6u1t+YGXNVKfmpUgy5kdTl9JpZWWV/Th3naFQudLd1xHH9NyRXNO2Lfn/z4r7uNNeQ223ZrcNtjiM9nZarRwn9R+pK1dxU+rLKCdDLr963TPXAi3xCsbRzlvWrDZ3e6Kl5+bT7mys+POO5zsPlcJ3GdZiOjwf76rQcbo+B+jvjOhxWLj/ykDn9fx4vjo/pOvQiR5mJF88x9VmWqKHhyzIiIiIiIiIiophJMGdZ48RXwUREREREREREREHsWZYEamrCPdIzM+3DxIxdtLUu7WpX5hrDMOiuQi11hjg9PTTMa2r5t+2y7mcnL7ryJ5B6WNVptyEQEeFHNudbr2fq9gzRO0lDDyPavz9cLyoq7H9XUGD9nIHK0LTpGlK5HZJbjaKIJZzDEjpxYJ91phq2kYwnqg412S1C006PiR7Zk5np7Ph7HSYcS5iG42337OlosZqx57pb/zHCeG4ctpV6RctQQucOZraxzEvLdheW4zn15q2Vvyythd0sCz3aS72+vAj1cxq+7HfIm2lelh/pJNQ0AnpDpIZfO+R23/wIM7RQK5faPgHWyqXPawC8qJ9G6vHxJBbYyu92ws09oCG2Xcla5ri2NUSNDK8YIiIiIiIiIiKioIbX3YCIiIiIiIiIKCkwZ1ljdEy8LDtjyquJLoJRelZe3QsREREREREREZHvjomXZUs//SbRRTD6xS+mhKZNOaGMeUAik/UoKwnnYYkll0Uy5g6IOAalB0PTnQqytWWd7bfrhGBeMOSRUbPnZCjlqkSWZTkvzo2xXlSFc3dlGI6P03wzpm27zXWjLpeWZl1H8+bhaT1nmXr4lbRDAIDs7Iyoy3lVRez2O5ZjkFJeFv6werV1pprjqgHk74vYT+WgHywPnws9PUtGWvh3eo5Ep7k5vM7h4VXOJsv5VSueVgmT8V7d6Bju1Wql1NMtubmHuWW8ByvPAVVablS1NunpkJzmuolnHpxYcmslY34eY5n0G1xRkb+FUTjNcRpTXXXaeHqQd8t2u3Vt2yG/rwXjMVYfUPSHlQTmJLU7Jm7vZ37n1DOVsTG3o17vWyz32WS8BxPFgjWYiIiIiIiIiIgo6JjoWUZERERERERE5C0JNLIeiRTAl2VJIDVFRoQPRRNT132FGkanhmLUi9rFXZ32qiu9GuaidDlPybPmd6vJDg95r3cLdtzV2Ocu7I7LoYf2qJ+V2JgMQ6iZ2+7V6jr06IVyJQROP1SmeqvWOwt9Ax6HX+jHIDMzvG+dCqzzysrD8w4csK5HjXRwOqq9HgLqlOthvdUTUlhonbdnT3g6gWGYjkMn9NAS5XOLkpLQ9JZ2p1kW61pov2234Y/1Fct1aNy2TQhTLCEPjS2cxE/G0BL9/qxSbhCxhBG5OTdehCKZdsV0f3O6b/Guc7Gkl6jlWai0z2kQnPL6OUBnvRXFcAzUNkqtXPrDhN1ybiXLcx1iOa6GlVhSq6TZz/OgTH6EUHohWa41nd/Xntdldvq8Y2oPG3ooPFEsWIOJiIiIiIiIiIiC+LKMiIiIiIiIiIgoiGGYREREREREREQxkwCqE10I8gFfliUbPW+PktAgRR/TXaXnLFCTkijJmKpy21gWy0izz5VkiTuPTGQVfV4MuROMMe/qcdi+3X45LYeZm20nMqePmkMuYl/UY2xIZuG0/E6Hyc7QNpXhMH1IZNUN71urXKWeGfLm+TGUt9Pf6TnL1Kqcmmr/O/XUxD2nhunaMyUmiiPXx0Q9sMp+di3/wrLYwdJeoekWaWX269CuoYaQR8OUk5ESSG8PDYmHnOaX8+I+7rROe5wmEoA3Ob/c5rpxk4PHs7yCLsQ7r53buqWqqgqvU38cMT7L2eUu1XmcYyyeOaDqYt6ei7qlXcCW50gPznUs7O5hvuTO1O+7Kg/qT7LmavOC67y4Hm+bqCFK/v9bICIiIiIiIiIiihO+LCMiIiIiIiIiIgpiGGay0YfM3rPH0c8iutVmZoUmU5R1ZOzaZv1dQafwcnpXWTWMSw/pUmPu2rVzVUZTlGFaXjhcNMU0ZLZL8ewWbAq1MXZb92A4cLehMU6p62+RqYVbWLrMh/clmYbuVg9xz572yzke3t0lxyEjhvCvmnYdrL9zeF0mDf3ep37u3Ts8rcX7ttj1VfhDQYF1HS7Cl/0OUdC3W1llvz21+A0hbDRZuQ3JssxT66Ner9TrUmsryxFuiyPaOQ/uJbGE9NVS0y/U9RuvUxbEsg6v2y/TvsTz+vKinTZlxtBvpW7OoV7GQ4fslzU9y2Vn24QImp5v9B1IEsbjqJ4Q/eQY0gGYrkULj2On/QiTdHp9Od6WqZLr4lhn3LYnjbkNT2SYZ3JhzrLG6Fiu0URERERERERERBZ8WUZERERERERERBTEMMxk53K0R7X3cob6Ydcuy3LqCJvqyGuAFgaodwE3haTYFCRFWy4z0z6kwBL2doyMCKf3ME9LCx8fS1d97WCVKaNOmnrqe9E12ti13hQi6GK0slhY6rvPdzVThIUptMGTrumRMS62iybLiK9eqMltFZpO0fd5/frwtDZybllB99B0VmZ8RwlzQ69bdqMV6yPMmUaYJR+uQ/1Gq4YGa21sSXnX0HTr1taf5efXvygmbkLu/AhP9CLM3+1yXow4auJ3mKq6fvUZQQ+LPHw4PK1XT6dtlOn7pk2jlwOwVv8mTazzbJuoGNqyBs/laLkqx+HiDnnVztndW52OAmwsi15HDA+4Tq9DL+5Ffl/nfnO6bb/v242PBMMwGyf2LCMiIiIiIiIiIgriyzIiIiIiIiIiIqIgviwjIiIiIiIiIiIKYs6yRkKPES8vV/JdqXnPDEPep5SXWWZVpoWHvNeHt3aaIydFTWahz1PyD6RlZlnmqT9T0xSY8lE19Ph6PaeSXf4HPfdblk1eI53TPAWx5FKw5AozDOvt9zFW60urXOe/s+Y6c5dDQt1tPaWGaR12h8s4QryW1Mp0HSZLvfaCJS+Kts8p6oHU8kVlqddKQYFlXiXC6zGlXVTzg6m/Mf1Ov5daaCdYLX6LA9usy7Zrp2xM2faBA9btqbknmb/MyJfrQs23pF2jvUqVc5puzctUg1bwk9M8Pqacbm7ygcXSFpt+50U+MLv1u81r5Ef9cVou9dah33vS0+3nqe2j29Rg6rZLSuyX025NaNlSLVf88miacou6ZSyzuoEYNuZFXsF4cpv3z01exIhtGY6r03Kp9UJ/BjM9e7nJhRvLvTQZn9f0a0gVy/UUz3xsicecZY3RsVSDiYiIiIiIiIiIjPiyjIiIiIiIiIiIKIhhmI2U2tW+Bi1C03oInyVsSetzm1FYGJqurLKG9qjdl029zzMM4SlqbECK1v85O7v+Xc4No3Vb+N293YvwERO/h8w2rcMyJH2uNaTITfndOnrUfn2mcmQ4DGFV91Ovxnr4rHPh7alhLT17Gn4SEVsSvi6TsRu/HyL2Uw2v1I+Pel/RQsItYcNqGKMWEr5zT/gY62EbXduFwy3139mVQ69nLbKV/cm2horaUkPrARwsDa9TDyVxEz5C9aDUJQDWm4chVN1SP/V6rK9T4XWISyxh+HbLxbIOpyGPfodGOt2WHyFFbkJYYwkzNIWXOX1+sKYpsJYxJyc8rd2aHPP6OSwDlZbPNah/eLoXZXRbj71u3/24ntyW30399yLliH7NeBGq6/TeEXE87HLPeFUwm3JELUuQ/uzgtv4fK8+m1HjxMZqIiIiIiIiIKGYS4IvBRolhmEREREREREREREF8WUZERERERERERBTEMMxGyjZGXI+Fb9cuPK3nU1Hi5EsP2G9rz56oPwEA5OWF80Rk6bXNg2GgTb8pLzfl8XE3zH19uc0TYcoVkMh8AKahpUuVPEpqTrHmza3LmfKpOFVREZ7evds6Lz/f3flVLwe1jHq1dZvHQV2PehnqLHVGy4vFXBCwHjxTrg/9xKn5FBUp5WWWz7m54WOu1/fKtPA8de16/jK317bKmoPRWqcPHFDLa/1dRvTdJAc8yaOk1jObOgfAeoJNuc00ft8DTPmE7ObF0qaa1m+3Hr/zgJp+58XzgtvcTuq29VyZfj/HqOtX0tlG0G+zXh87x7SC+J3zy+n63eaVbcxtvdf56kznRm07PU4FFrGtmOq7ev9ft846r2/f+hVK40duY79zPxMlEl+WERERERERERG5Up3oApAPGIZJREREREREREQUxJ5lxzo1bEkLYVK71bbK1brVKmEirbKVIY+1GKDv9ofDMNNaWofuTsttFZp23W3XEAfYIjvNsFz8qr56HA2RrhGhVSovjk+K1ue8siq8Peuw8PbbLiu3lvHQofD04cPW3y1fHp4uKQlPjx5tXc6LHubqcV2/3jrvjDPsf2eK0lMvBz+6ravHvFWuq1U0eJ6HnegxiOp1v2mTdZ4aEmeNcbQslqWGecYQSm4nlv1Sj486srwezZeXF56OIYLv2KS3BYZzb6mdPsTsWOqCF/Hopn1T6fvicN/0uus09Mbv0EU3vAqj8zq00On6YtmuKcJXvZc4Xef+/dbPTZtGX5++zpSqyvAMQ51ze2785jRk2O09viHyO4TSKS+2bWgKvA8z1O/Nu3aFp9UHZsDzMMyIm4CLtieW89TQ6zgRazAREREREREREVEQe5YREREREREREcVMgjnLGif2LCMiIiIiIiIiIgpizzKyZYzL3749PH3gQHi6oMCy2A+lHULTzZtbV2FMk6LG86vJekyJpUy03yUqhl5PU+AqDU4MOXewZ094WksmUpXWQvmZs3wM+nD1mZnh37VsaV128ODwtJpTSc9p4gU1BYOe7kHdtlpVAWsqCD3dVVyZzqEilnqbqDwvnuchqw/1WOr3CvWYG64Ty71OPzfKsjWmHIzqtvTrVymXfuzURY8ehS3rdcl/A9NZ8yZpx9+U5E1dVj1P2S0si7mu18q2D1ZlhaZb5BraNb286md939R6rS6ntdOWm2QM7PbblHMqlvtDPNvpeOZf82KdsZRRvT94Uf78fPuyGNfvMjdesvCibXN6/GM5v14cr2Q95nbcltdUV50+j3uSV82Us+zbb12t3zH9QVjNy+oB5iijxoY1moiIiIiIiIiIKIg9y4iIiIiIiIiIYsacZY0VX5Y1EnEfatsuZk37Pk+JJrEbxT4qtUuyuk49lMpVHGPitMj2ILzDFEZkCjWLGDPeGkpUX6bz63cYplpF9AgjNYrXFMHklOk8xRJ+ZLlGPQq9JIPCQutntcKqYQn6uVA/R1xDNpXZdI0awjBNq0lPt13M6eoIMLch+rm3uUF41r4qJ/jIkfDXang7AGSk1agzreswtYFq/YxjxYjl+JjCHx2vx9T4JOEzgtswVdM67NanL6tXab+rRUML73PK7/1K1nbfj3K5OZZuQ2JN9xvTdWK6jajPmOr1pF9b1m1r1A1U+/zCxeH/jJmOgbrPgHVf7Y6VlI42S5R0kvNuTERERERERERElAB8WUZERERERERERBSUfP3TfZSamoo+ffqEPi9evBiFWmjO8uXLMXXqVFRUVKCiogIXX3wxOnfujIceeggA8MUXX6BHjx5ITU3F6NGjce+99+LBBx/Erbfeiu+++w45OTkAgOLiYvz0pz9F165dceTIEYwdOxZXXHEFJk6cCADYtm0bcnJykJOTgz27d9d73+Le1V2NqzONpGWIEDSW2W4UO5chFW5DG+I5ylBKeZn1C7vwIP0YKDGIEeV3eLysgzE6f4fuNLpMrSJ+jDqpDubTpIl1XkVFeFrvOu5HSKhTTkdf82IkuYYQCpPQkTLVdsAUq2uoMMbyG+J9K6vC58kUBahu2hKWF0s5KJJy0CPun17HqBnqVvPm6ujE1sWM17LpHu+0vXQ4Gq/O7n7kdlRL1+2vWuaY8j0425bT0C2/OW0LTPMOHbJ+Vqu4w0F7Y9pesoQTet0e+j3qs1ehzF5ze5045Xa0UPV3pvuIqVxqndevE/U5Umd6PLelX1Bq/hA1DY0fHD746oNmqkXWn6XVUej1wTVrj6tpRO/GgznLGqNj6mVZ06ZNsXr1auMyV1xxBZ599lmcfPLJqK6uxoYNG9CrVy9MnjwZAFBYWIh33nkHecr//c+fPx8DBw7EokWLMGnSpND3Q4cOxcsvv4wjR46gX79+GD9+fGj7kyZNwtixY3HhhRdiylVXeb2rRERERERERETkQnL8k08S+f7779G+fXsAgZ5ovXr1Mi6/efNmlJaW4u6778b8+fOjLtO0aVP07dsXO3bs8Ly8RERERERERETknWPqZdmRI0fQt29f9O3bF+PHj4+6zLRp09CjRw+MHz8es2fPRnkdw+XNnz8fl1xyCYYOHYoNGzbg+++/j1hm//792LhxI4YNG+bJfhARERERERERkT8YhqmZPn06Lr30UixZsgRPP/005s+fj+LiYtvlFyxYgEWLFiElJQXnn38+nnvuOfz6178GALz//vs46aSTsGHDBtxyyy1opwdyN0J6roBWuUp+AC0JRg0yQtMReQTUJFeGnDINgePcFnqyA7s8LNpyxmOiJgjTcyTYvAc2vR/OyrSep8zM8Lb1HCdHjoSnU1Pti+E0D4uJekjy8+2XMw2FrZffLveE25w1TnNsOM1f1hgkzf44TKRnyoViOYema1nLF+ImrVRGLDmtyHVORqc5uVwVRON1erSYyuGyfbE7DrHkHvOkTXfbPtosp5fXizbK7bZNuZicquPffKNymfrNl3xg8c4B5uf6kuX+7DbHqR/nxim3+VtVXly/+vUUTFUNwPl9POI4qs8gfiT2VWmFtDsm+r6oqdT0eer/3u7ZY53Xtm3gv0LEUsiGSII5yxqnhvfmwWOTJ09G3759MWbMmNB33bp1w9VXX4233noLa9aswd69e6P+9rPPPsPGjRtx9tlno7CwEAsWLLCEYg4dOhSfffYZ1q5di3/84x91vqgjIiIiIiIiIqLEOuZflj3xxBNYvXo1Xn31VQDAK6+8AiklAGDjxo1ITU1Frs1b/vnz52PGjBkoKSlBSUkJdu7ciR07duDrr7+2LNe9e3fceuutuO+++3zdFyIiIiIiIiIiqp9jKgzTiblz52LatGnIyspCWloannrqKaSqMWSKBQsW4L///a/lu/Hjx2PBggUYNGiQ5ftf/epXmDlzJrZu3YouXbpY5kkI78M9EiSivGp/XG045BSl325NXhvrvBiGr3dcFhvxDGGKDPVTt+0Dpa+0XsfsDrEp/KKyyr6U+u9MQ23Hk1ouvYzq0Nj6PDUSOMth1/pY6o9dSIFXQ9Iny73DUg5DrKvbcNZ4choiGxFiocZtaGGY6m1RrXPUCKk3HO1ziuHkex76ZwoTTiC3oWFO7yPGa9RliFc8U0O4LaOaLsHEEC3uuFzJyuvnvFjqT0M4Pl6L5bpQj48XIZRuj7/6eKI/v6rXhhp2CQDNmztavfn6VeMaCwudrdAtLYbSrlx6qKXab0T73zlLaKqecaj2WAb7oRA1OMnxhBQnpaWldS6zYMEC4/ySkpLQ9NatWyPm/+UvfwlNDx8+PDTdtGlTy2iYc+bMqbMsRERERERERJTMjr0X48eCYz4Mk4iIiIiIiIiIqBZflhEREREREREREQUdU2GYyUpAOoqp9yQPgmnIeMNwwq5zLqiJL/QkGEoSgJTSg9ZtZ7eo/7aTkDE1jGmmi9xO+rL6caxS8o8dOhT+/ocf7Iulj3WhVhm9arkZrt6Pc62WX8/BoJbZkE4IWUoOBtPxj+Ua9eT6MiVkczqGuc+s+2kvkbmAvGDZz6pK67x2HcLztP3U83uo1FNouj0wX46Z6dipl03cj7HaJioFqUnLsC1jhh9PberN2pDPxi2317Ldtt3mQzJxmw8pUUz3S1MZ490suGnnGvo9K5a8W8myr4ksh9OczW7zmTldv5qbtqDAfn36s63abrhO/6hemEVFLlfijNN7mL6fagpqPcWmumyzZtHXJ4SjzRIlHb4sIyIiIiIiIiKKmQRQnehCkA+S45/IiIiIiIiIiIiIkgB7liUZz7r4q3Ebat9ZvY+wHlen8KRbttq1WI832r49+jSAFGXo5MqCrqFpvfhOh1I3dX2PZ/dzU/dtPbzGaddxt+Ej6rbVoa+rtX8YSU0NT+uRtOr+6IPN2nVN16MF1f027Yvb86SWUQ+1VPdND08xhcd5wc3+VFZZj09VVThcK00L3VKrU7KEekRcwIbQM9sym0Y11itoomgVLUWthFr8woHyrNC0w0jsCJ6E9DZipmhlVUaayzAx043Qaai04QQby2WKI7WbZ0rHoJdfrcsFBZZZdvUumeqg03bUyW+i/c7vsMxEHUuv9tNN+ZM1VFHltkxOj2ss64/n8TFty+nzuNv1+10HTes33WbVz16EGvtR/50eO/X2rzcFR46Ep/VHLfVzerp1Xu3/ZurfEzUU7FlGREREREREREQUxJ5lRERERERERESuMGdZY8SeZUREREREREREREHsWZbk3MbapyxdGv6gBpr362f9oetxjmNXk5ll+Zyi5u7Rc6go5coo3Rf+XguU1/Mc2THliTDlWfA6F4TTvENut23Kx2PKs6DmxMnScnWZch2o69Bzfqn5wJo2tS+HF/mWTOfQVMajR+3nWcqi5CRK0XbAaR00cZojZ/9+67yKivC0lk6oYVCOpfHc79oVntYruZrvUMl1CMCSeM6PfHiO16GWWctn1irPftx5tcymazul9GD4g16R43iPT1Z29zrPqMld1LoKWPOC6okQ9XMVFFN9dJiLrBL2+Q1TssPriLhOslu4K5dDXuf8cp3zSLkuU7Rcrn6XUV2/2+cAt+fG6bOQSs+9mpVmn9DJTU4uP3I0eV13Tev3u63xgxfPYQ09f19KVWX4g1aPnebWVcVSR9R5pry+flP/F0vPS+b0GVM/T7W5dqWsT8mIEoc9y4iIiIiIiIiIiIL4T85ERERERERERDGTYM6yxokvy5KMcUh6m5ANwBqJBACd1P6ye/aEp9XQxwQry2wVmk4ramWZZxmKWe0are4LgBRDn2E3XaX97v6sR0Sp503v8twq2ybuyhBWpc9yGpJi6oKvHhPt8Fuqp6lqqVFKfkSJOQ0V1aJrzNQdV3dUW4nrUGmb3+l1sLw8/Lvmza3z2ubXf6h2r7kOMTKEYkeEr6nrL+hkO8803LuvIR3axVCT1ya83fIy67KGC0CP6Auv3nocM9SLimGXEXwPfVJv3kVF1nmGdtsxpSIbw7718Eo1nYHDay2WY+XmuPoRvma896kh9KZzYQhn1UPvnZbLKTdtiPE+op9fw3473bbaBOrPAQUF4Xqnry9Zww7dcF0HXSx3LPGkjjjNQWL3XAdYG1z9mlE+62Haaoi7+rwWeRmmKNPOihsPdvdg/fCYymw5h+oDP4CM4A4J2XjuBXRs4V2biIiIiIiIiIgoiC/LiIiIiIiIiIiIghivkQQkRKjrqyXkEHDcH1cfpWTnru6h6XZF4WmvusS7GTlHXy5L6dJbO1pK1G0poSV692cLrc+wGnJhCv3YdyA8Tw8v6K5F1HitU54SSmEarlLhVTd+p+dNHT2ugxYNp543ree1hXra3IaK+j4SkikEWhkprSbXGjJsGkHJxG7f0tKs51eN8Iooo3rQlVHroi6b7AyjqJlCtdTTlJVp3WfTCFZuriMvRmvVYxlM5VBHlK1WUmHoYfft2oXvkZnxDDclAJEjPas8Of5ex+XEOc7H7X3czbNFxPVkc24i1q3caGO5N8Tz+rIboRmAtaHQ56lchgVnIfys0qnAg9BijddtfUO/7yVrHXT7/Ol1yLYx7FJnF3qpr0O9hvRGVn2I1XKmpGVm2M1yJVnqruOwS53duTkmhsNMjnNH3mLPMiIiIiIiIiIioiC+LCMiIiIiIiIiIgpiGCYRERERERERUcwkgOo6l6KGhy/LkoCADMd/u8wloseP67mlvOZ1TL2aF8vIZb4NU3lb5dYo065W73rbbvYnWfIZANbzFvdj52K5mKjJJ5TpiG05vGZ92RdTuZKEJ3m+DN9nObyEGuLxaZsfx4KQawnLW9VAxPM+nizr8J0pf6tpnkMRx8Dls5fr7TUwx0r5k+Ze5zbvotOkYu2c/09UQzj3cT2/dvcfNQkrUQPCMEwiIiIiIiIiIqIgviwjIiIiIiIiIiIKYhhmEpAQoSGS/e7O63bYZ11D6HbsmDLMcU1ahmVWXPdTH25Z/ax2OY+h+7lpOHandcE0QrcxfNZu+Ho9nMNw/FWmc+F0X7xYRyzrJPNxVY+dcZh4D7al12Onl5HX5zeWepZSejA0XZnZIjQdSwQK66dzftdBp+vjvcgffrcTbs+v6T7odFtl5eHfZWW6qweW54WqSsu8SoTb5owD39uvRL85qWFvDm9cXlyH8ebVs3WteO+z6Vmxvuvzap1uebJvds/jhm3pnN5XkrW+N4QyJhZzljVW7FlGREREREREREQUxJdlREREREREREREQXxZRkREREREREREFMScZcnGlLfKNHS3nh9K/Z1hqOSkjTs/cCD699q+OM1xZcwjUFoantaPsQfDpRvj/NXztH27/Tx1GGv9GHiQQ8Ut474px85YRiX/g9vyOj3XpjwaTnO6uS2j7zk89uyxflbrrtPh0pOIpW4pubv0a9LpPSAtLTn+bSimfEjKvlryA+r3e4fXGtWD0k5EtE/q9ZXbyjJLz/1kEUvyuXpKZC6dZGmjTJyWw23uTzfb0pdVt+W2nXNcLq1uZqj1OC/P+kP1etDrtMs8ZfXmNkmlS57XY0OyWD9y6/pxbTv9je229WOgtnuGNlCX4sXzj4s8ZaZ7hT4vGf9fjM8SbjBnWWPEK4GIiIiIiIiIiCiIL8uIiIiIiIiIiIiCGIaZBASkfRdctXu7Goqn8yBc0CjOXdqRmxueVrtbu9yuMXRC3ZbPIrqfq/uj75sa9qMeA/1cG8LQnIa/mJZzfaqVMqco9acys4VlsQxl/V6ECnlFrfLqqcjNdR7iEtdu7HpoTJIw1TPH9TO7hbPlfKg/foeQGeuIev9X7lP7yrMsi7VCWbhMenhKHO9vjZoptYHpGKs3UENold+cXocxhQepdc2QMkJt57y4J/pxX/WirfSC23uK40dArQ7ahbFHlENpBGv0UGOl/ldWWY9Phl0Yst/PkKYwvTiGP7tmeB5MSdPuI36nC3HBtI6Ieeq5UtNJ6MfAaTil3/8/pPH6GSRZQ9NNYeDJGEZKyUsIcTmAaQB6AjgI4CUAt0opd8ewjkEA/gRgEAAJ4EMAt0gpV9fxu/YAvgSQA+AmKeXMurbVAFoMIiIiIiIiIqJkI8GcZXUTQkwD8BcA7wKYCqAAwA0AhgghTpVSHnawjsEAigHsADA9+PW1AN4XQpwmpVxr+PkjAFJjKTNflhERERERERERkeeEEHkA7gbwMYAfSSmrg99/DOBFBF6e/dnBqh4GUAlgmJRyR3AdzyLQY+wBAD+22f65AMYDuAXA/U7LzZxlRERERERERETkh/MAZAF4pPZFGQBIKV8CsAXAZXWtQAhRBGAggOdqX5QF17EDwHMARgohIvJWCSGaA/g7gH8g8LLOMfYsSwZShvJIROSPaNfB9mduYsQbZFy5If+AnpZClaX8zBijryak0nMkeJD7wPEx13NOqTnqDDk2Epkzy5SrIUU5duq8DEMeBD2lT0aas2On/k6vE07TXOjlVw+527RPbvMEudEQckjEUlcd113l5Ke4GN5dL1e8h0s3niebynv0qPVzZXY4h1lG+QEPSkWAdo06vAkYz6cHuZLcXtem+43j9lHNJwTY33j1drOgQJlnzbfnRizHwG7fYjkG8bwn+H4f1+qg43ufep/dtdMyq0Z5To1os8tt6oh2bzPdu11x2vDHmescmKbrqwGw3H8O7LPO3L49PK3eU/R7rnoM9Ac9U05nD7i5f8Zy30jWPGV282K5XybjsyglzMDgf5dFmbccwCVCiGwpZWmU+U7X8XMA/QG8os27B4H3Xn8A0M9xicGXZURERERERERELjWKF4N5QoiVyudHpZSPerTu2n9Z2RFl3g4AIrjMV/VYBwAcp34ZzHF2NYAJUsofhBCOCwzwZRkRERERERER0bFsj5RygGkBIUQugOtjWOfDUsp9CIRgAkBFlGVqu4vW1f08pnUIIdIB/AvAm1LKZ5wV16rBvCzLyMhArG8CAaB169aYMmWKDyXyzqYtWzDluusSXYwGb9MXK1DUuW2ii2G0YtM2tO3cydN1ln5XihN7nOjZ+lasW4G2Bd4eR1MZE3ne3JwPr4834M0x96NcXvCjPrlhrIMrVqCobd1l3FRaiqITo6/D6/0s3bYNJ3bz9l5BVpu2l6IoSa6ZVatWoX///okuRlJqCG2732Jpq5LlmSBZ232veXEfieUYJ2Nb70cdiSfX5W/g7XQ828BVq1atisuGKB5yAdwew/LzAOwDUBb83ATAEW2Z2vjyMpip69BFW8fNAIoQyJfmipBSuv1tXA0YMECuXLmy7gUboClTpmD27NmJLkaDd0a/jlg6e0yii2HU8YrnMeb+Czxd58q7V2LVR961QR17d8SYe7w9jqYyJvK8uTkfXh9vwJtj7ke5vOBHfXLDWAc7dsTSMXWX8YyVK7HU5nnP6/1ceevzWPW4t/cKsjpj6kosXZYc10yvXr3wxRdfJLoYSakhtO1+i6WtSpZngmRt973mxX0klmOcjG29H3UknlyXv4G30/FsA4UQq+rqsdSQCdFGAhcmuhge+Idv50kIMRvAVQCOl1Ju0uY9BeASAC1MOcuEEJcAeBrAL6WUj2nzfgngUQBjpZSvCCHaIzBwwJMAZiqLDkLgBd69AP4N4Fsp5WG7bXI0TCIiIiIiIiKimEkA1Y3gz1e1o1AOiTJvEIANdST3r2sdgxE4EbVvgNsi0NtsCoCNyt+84Pxbgp9/YtogX5YREREREREREZEfXkAg/PJaIURq7ZdCiHEAugF4Sl1YCJEnhOgphMip/S7YI20lgIuEEB2UZTsAuAjA21LKXcGvtwa/0/9mBOf/J/g52siaIQ0mZxkRERERERERETUcUsrdQog/IhAS+aYQYj4CI1feCGA9gL9qP7kWgdxokwHMUb6fCuAdAO8LIR4JfncdAp3AblS29wOA/9PLIYTYE5xcK6WMmK9jzzIiIiIiIiIiIvKFlPIBBF5+tQLwMICrATwL4EwHIZi16/gQwHAAJQDuBnAXgE0Ahkkp13hdZvYsO4YUFxfjiiuuQJcuXQAAL7zwAnJyAj0bZ86cieeffx6pqakYOXIkWrZsiUWLFqGkpAQ5OTlo2bIl7rjjDqSkpGDcuHH4/vvvkZGRgZKSEgwaNAi9evVCdXU1HnnkEUydOhUA8Omnn6Jfv37o0qULnnjiiYTtdzRvfbwDd/77E0gp0TonE1XVNdi9vxzZWelo0Swd9187CEUdczDjXyuxqLgEuc2b4PiOLfDYH84EAPz0t6/j3U+/xf/dMxIjTy1wXQ4pJd649w2U7S1DznE5OPO6M/HirS9i39f7cMFfL0BOh8D5ef3u1/Ht599i5M0jUdDX/fb8KmNlWSWW/HkJaqpqkJGVgRG/HYGMrAzX26zP+Tl0uBLn/W4JjlbVoEWzDMy/awSaN4ssi5QSe7cfwuLfLjYe+xdveRFCCIhUgR/99keu96ku+nHuf0l/FP+1GADQLK8Zzpp2FlJSUxJaF/zkZP+rKqo8rWd+cXpdA8CezXuwcNpC/GLRL5CSmpz/flXf++WwKYFrKC1VYP5dP0KbVk0TvEdmprayR48eaN++PYBAUv5Zs2ahsLAQf/zjH3HllVeiuLgYb775Ju6++27k5OSgf//+kFLi9NNPx+2334709PSE78Ox1t6bJMuzgInTtqq2behU4O3ofFJKLLlnSczPAH6KxzNCvEgpsXfb3tD5ravt9/r8ekGvI07b72ThpI4D3j0PJmub6mfbd2zwPedXoyClnANrTzG75WYgHDKpz1sGwNVFKKUsBiCcLp+cT+bkm4kTJ6K4uBjFxcWhG+DBgwfx8ssvY9myZVi6dCmmTp2KqVOnori4GJMmTcIDDzyA4uJinHnmmVi4cCEuvPBCvPXWW6F1nn322XjnnXfw5z//GXPnzg2tv0+fPiguLk66B+c9B8px578/wcsPjMJ7s8/FfdeeisqjNZh3x1l482/n4K4pA/Dzu99F7UixD0wdjHf/OQ4AsG7zPgDAP28Ziuv/p3e9y7KvZB8ysjJw3szzUH6oHOUHy/Hj3/8YXU/rallu6DVD0Xtc/bfnVxlT0lIw4oYROPfec9F5UGd89fZXrrdX3/OTnpaCeXeMwHuzz8VPh3XGnFeil2Xtpn0QqaLOYz/27rEYd884dD+re732qy76cU7LSMOo20bh3HvPRfO2zfHNqm8AJLYu+MnJ/ntZz/zk9LoGgM9f+Rx53fISUEpnvLhfvvX3sXj3n+Nw+ZjueNLmekw20dpKAMjPzw99P2vWrNB38+bNi1hHnz598Pbbb+Odd95Beno6/v73v8et/ADb+7ok07OAidO2yq+24WjF0bg+A9QlXs8I8bJ27VrL+W2Ibb9eRxpa++2kjgPePA8me5vaGNo+Ii/xZRkhNTUVu3btwpo1gZ6LLVu2tF32q6++wu23347FixdHzDtw4IBPJfTWKx9sw8SfHB/6l8TunXLRPi8rNP/Erq3QpUNzbNtl7Q36Q2llaFpdvj4qDlegWetmqKqsQvmBcjRp3gRZLSPXndXKm+254aSMaRlpoTKmpKZApDh+YR+hvucns0laaPm01BSk2pRl/6EKpKal1HnsU9ICt8mqyiq07GR/bdRXtOPcJLtJoAzKMU1kXfCTk/33sp7ZlqO6GhcsWYJTFy3CrM8/x5Xvvhv7Ohxe1/u27UOzvGZIbxqf3kZueHG/TA9eQ0cqqnBiV/+uoURp0qQJTj/9dLzxxhu2y9x666149dVX41iq6I619t4kmZ4FTJy2VX61DbJaxvUZoC7xekaIl/379yM1LbVBt/3R6kgi2m+3nNRxwJvnwcbUpjakto/ILb4sO8bMnTsXw4cPx+TJk0PfNWvWDA899BBuuukmdO/ePeqDMQB88sknGDBgADp27IjvvvsONTU1AIA33ngDAwcOxDXXXIPf/OY38diNevl2TxnatzY/dHTIa4Zde48AAG58aDkKz3saTTJS0btbK28LE/iHIzx7zbPIyM6AEMnz8BASQxmPHjmKL1//EkXDilxvzqvzU1p2FI8u/hITRkUvi3S4X6W7S7H4psX4/JXP0aqzx+ffUqDo5Tm89zB2rN6Bgn6NJ+Qyqhj234t6Zuf5rVvRPz8fy376U8z87DOcGQw7iInDurX2hbXoPTY5ewrU8uJ63LarFEOuXIy/Pfc5+hT5eA15KFpbCQC7d+/G8OHDMXz4cNx5552h73/961+H/rU9moyMDBw9etS38kbD9t4sqZ4FDJy2Vb5tP3hDi9czQF3i9YwQL7U9iBpy229XR+LdfrvltI578TyY7G1qY2j7iLzEl2XHmNrutffff3/opgcAo0aNwpIlS7Bs2TLcddddUX+7cOFCvPXWWxg9ejQ2bNiADz/8EEAgLOPjjz/GxIkTsW7dunjtimvt87Kwc89h4zI7dh8O/UvPA1MHY+1TF+L7fUdQXlHlS5kmPDYBx510HL5c8qUv6/dCXWWUUuLdh9/FwMsGhv5F0Q0vzo+UEj+/+1386eqByG1uLktd+5Wdn43z/vc89J/QH58t/szFHsVGLU/10WoU/7UYw64dlrT5rLxW1/57Vc/sfH3oEPq2bo3UlBSc2LIlRhW4/x8VU936YecPyMjKQGaLzPoU13deXI+d2mVj2b/Pwx2/7I+Z8/y/hrxg11aqoSjTp08PLd++fXs0b94c69evj7q+ysrKuOUrq8X23iwZnwVMEv2cEK9ngLrE+xkhXhpD25/o9ru+4vE8mOxtamNo+xJDIpCzrKH/ka7h3IHJU+pN78iRI9ixYwcAoEWLFrY3tY8//hhLly7Fa6+9hkWLFmHRokWW+TfddBP+93//1/ey19eY0zpi3mubcOhwoEvzpm9+wLd7ykLzv9y6H1/vKkXHts1C3zVvloELzuriS26Lsv2BbTfLa4bqo8l5o3JSxpVPrUTbE9riuJOPq9e2vDg/02evxOkntcWIAeayVFfVGPerpqom9K++GU0zkJqRWq99q4t+nN/723voNaaXr+GfycTJ/ntVz+wUNGuGnWVlqJES6/bvx9Fgj5pY1XXN7CvZh90bd+PV21/FvpJ9eH/W+/Uqt1/qez0eVa6hFs0y0DTT32vIa2pbWZff/OY3ePjhh6POu//++zF27FiPS+fMsdzemyTbs4BJXW2V3+L5DFCXeD4jxEt1VeCYNuS2Pxna7/qoq4579TzYUNrUxtD2EXmBo2ESKioqcPnll6OiogI1NTW4/vrrI5bZsGED2rRpE/rcs2dPLFu2DNddd13ou9zcXHTs2BGffPIJTjnllHgU3ZX8lk3xx5/3w9gbX4eUEq1aNEFGegouvf1tNM/KQPOsdPz7D8MiumFPGFWEUVP/i1+d3wu/eeADvLx0G158/2v8avwhXDX+BNfl2blmJ1743QtISUvBj276Ed68703s+nIXftj5A04+/2QUDi7EB49+gG0fb8PXK77GodGHcMJo99vzo4z5x+djzcI1aNuzLUqWl6DbGd3Qa0wvV9uq7/k5d2hn3Dd3DU47qS0WvVuCi0d2w9UXRC9LRdlR437ldcvDO395B0gBUtNSMfz64fji71+42i8n1ON86uWnYtXTq1C6uxTrXlqH3uN6o8uQLgmvC36qa//bdG/jWT2zc36XLvjFe+/hje3bMal7d/zuo4/w9I9iH3Cnrmumy2ld0OW0wIhTL/3+JQy9Zqin++GV+l6PY07rhIkz3kGKAJpkpGLO9OGJ2RGP1IaiAMBxxx2Hp556KjRvwIABaNUqHBKzdu1ajBgxIjQi2M033xzv4kY41tp7k2R7FjCpq61SnxOqDlXh0UcfxVVXXeXZ9t08A/glns8I8VJxuMJx2+/H+fWCm/Y7mdRVx6M+D67fHvN2GmqbWt+2r3bkZKKGRtS+nU52AwYMkCtXrkx0MXwxZcoUzJ49O9HFaPDO6NcRS2ePSXQxjDpe8TzG3H9B6PPOtTuxY80ODLxsoOt1rrx7JVZ9tMqL4gEAOvbuiDH3hI+j32VM1HkrXrUT5/7xLVzyxMSYfuf18QYCx7zvhL71Os5+lMsLen2y40U9MzHWwY4dsXRM3WU8Y+VKLF0VfR3qfnpyzdz6PFY9fkHdC5JrZ0xdiaXLkuOa6dWrF774wr8X8Q1ZQ2jb/RRrW+V1W5DfJR8dT+0Y8/0sGdt9P9T3PlJcXIxzLzoXlzx+iaPlk7Gt96OOxJPr8jfwdjqebaAQYpWUckBcNpYAQuRJYFyii+GBOY36PLnBnmVERERERERERDGrzVlGjQ1flhElUIc+HdChT4dEF8OoIZTRjeH9OyAnP3mGYm+sx9mpxrT/jWlfiCixEt1WZTbL9K3HLwHDhw9HTtucRBejXhp6HWno5Sci/zDBPxERERERERERURBflhEREREREREREQUxDJOIiIiIiIiIyBXmLGuM2LOMiIiIiIiIiIgoSEgpE10GRwYMGCBXrlyZ6GL4Ii8vD3v37k10MYiIiCgBMjMzUV5enuhiEBER+WGVlHJAogvhFyFaS2B0oovhgacb9Xlyg2GYSWDv3r1oKC8tiZLVnDlzMHnyZGzcuBFFRUWWeVVVVUhPT8ftt9+OGTNmJKaAcTB8+HBUVVVh6dKlnqxv0qRJKC4uRklJiSfrI6LohBB8DqBGw9Qe16pP+1JYWIgzzjgD8+bNq7McNTU1+PnPfx7zNqKZMWMG7rjjDhw9ehRpafX/X6ja47R161YUFhbWv4BESUoIkegiELnCMEwiIorqj3/8IxYtWpToYhARUSMTj/Zlzpw5ePzxx33dRn2cc845WLZsGdq3b5/oohBRvUgANY3gj3TsWUZERFF169Yt0UUgIqJGiO0LkJ+fj/z8/EQXg4iIbLBnGREds7Zu3YpLL70U+fn5aNKkCfr27RvxL92bNm3CxIkT0aVLFzRt2hRdu3bF1Vdfjf3794eWuf/++5GRkRE192CvXr1w3nnnoaKiAvn5+Zg2bVrEMnPmzIEQAuvXrzeWd82aNRg/fjxat26Npk2bokePHrjnnnsilnvzzTdxyimnICsrC71798bixYtj3icgECajhoaUlJRACIHZs2dj+vTpaN++PXJzczFu3Dhs377dWHYiIqJaevsCAFu2bMGYMWOQlZWFNm3a4MYbb8Sjjz4KIUTUcM0FCxbghBNOQLNmzTBgwABLCoLhw4fj3XffxQcffAAhBIQQGD58uLFMu3fvxjXXXIOOHTuiSZMm6NixIyZOnIiKigrLclu3bsU555yD7OxsdO7cGXfeeSdqasK9MsrLyzFt2jT07t0b2dnZaNeuHcaNGxfRxte2/eq+FRYW4rLLLjPuGxERxQdflhFRo1JdXY2qqirLX3V15HDO33zzDQYNGoQ1a9bgwQcfxIsvvohTTjkFF1xwAV588cXQcjt37kRBQQH++te/4vXXX8f06dPx1ltvYcyYMaFlLrvsMlRXV+OZZ56xbGPVqlX48ssvMXHiRDRp0gSTJ0/Gk08+GZHIe/bs2TjzzDPRs2dP2/1asWIFhgwZgs2bN+PBBx/EK6+8ghtuuCHiJdXmzZsxdepU3HDDDVi4cCHat2+PCy+8EJs2bYppn0zuuecebNq0CY8//jgeeughLFu2DJdeeqmj3xIREekqKytx9tlnY82aNZg1axbmzJmDrVu34k9/+lPU5d9//3088MADuOuuu/DMM8+guroaY8eOxYEDBwAAs2bNQr9+/XDSSSdh2bJlWLZsGWbNmmW7/f379+O0007DM888gxtuuAGvvvoq7r//fhw9ehSVlZWWZcePH48RI0Zg8eLFOO+883D77bfjySefDM2vqKjAoUOHcNttt+GVV17BP/7xD5SXl2Pw4MHYtWtXnceirn0jIqL4YBgmETUqphdOqhkzZkBKiXfffRetW7cGAIwaNQrffPMNpk+fjnPPPRcAMGzYMAwbNiz0u9NOOw1FRUUYOnQoPv30U/Tr1w8dOnTAiBEjMHfuXFxzzTWhZefOnYuWLVti7NixAICrr74aDzzwAJ577jlMnDgRAPDZZ59h+fLlmD9/vrG8v/3tb9G6dWssX74cWVlZAIARI0ZELLdnzx689957OP744wEAp5xyCtq3b49nn30Wv//97x3vk0nnzp3x9NNPhz7v3r0bN910E3bu3IkOHToYf0tERKSbM2cOtmzZgo8++ginnnoqAOAnP/kJ+vbti23btkUsf/DgQaxevRotW7YEALRr1w4DBw7Eq6++igkTJqBXr15o0aIFqqqqMHjw4Dq3/+CDD2LLli1YuXKlpQ285JJLIpa98cYbMXnyZADAyJEj8fbbb2P+/Pmh73JycvDYY4+Flq+ursaoUaPQtm1bzJ8/P2oP81j2jYiSUeQ/zFPDx55lRNSoLFq0CB9//LHlb/ny5RHLvfbaaxgzZgxycnIsvdBGjRqFNWvW4ODBgwAC/9r95z//GT179kTTpk2Rnp6OoUOHAgA2bNgQWt/EiROxfPlybNy4EUBgBM4FCxbgZz/7GZo0aQIA6NKlC0aNGoXZs2eHfjd79mzk5+fj/PPPt92nsrIyfPDBB7j00ktDL8rsHH/88aEXZQDQpk0btGnTxvI/G073yc4555xj+dynTx8AiPo/NERERHVZvnw5OnXqFHpRBgRG0LvggguiLj9kyJDQyySg/u3QkiVLMHDgwDr/sQiIbAN79+4dsd1nn30WgwYNQm5uLtLS0tCsWTOUlpY6amO93jciInKHL8uIqFHp3bs3BgwYYPnr379/xHLff/89/vOf/yA9Pd3yd9NNNwFAKP/YrbfeihkzZuCyyy7DK6+8ghUrVmDhwoUAYAmnvOCCC9CsWbPQUPZLlizBd999F+pBVuuaa67BBx98gHXr1uHw4cOYN28eJk+ejIyMDNt92r9/P2pqalBQUFDn/rdq1SriuyZNmljK6nSfnG6j9mWgk98SERHpvv32W7Rp0ybi+7Zt20Zd3ut2aO/evY7aWLttq9t96aWXcPHFF+OEE07A008/jY8++ggff/wx8vPz2cYSETUgDMMkomNS69atMXToUNx8881R59eGEy5YsACXX345brvtttC80tLSiOWbNWuG8ePH46mnnsIdd9yBefPmoWvXrjj99NMty40ZMwaFhYWYPXs2Tj75ZBw6dAhXXXWVsawtW7ZESkoKduzYEetuRuV0n4iIiOKhffv2+OKLLyK+/+677+Ky/by8PE/b2KKiIsyZMyf03dGjR7Fv3z5P1k9ERPHBnmVEdEwaPXo0PvvsM5x44okRPdEGDBgQ+pfcsrIypKenW377xBNPRF3nxIkTsXnzZrz++ut44YUXInqVAUBKSgqmTJmCuXPn4m9/+xtGjhyJbt26GcualZWFM844A/PmzcORI0dc7nFYLPtERETkt8GDB2Pbtm1YsWJF6DspJZ5//nnX62zSpInjNvPHP/4xVqxYgTVr1rjeXq2ysjKkpVn7I8ydOzfqYENE1BhIBHKWNfQ/0rFnGREdk+68806ceuqpGDZsGK699loUFhZi//79WLduHbZs2YLHH38cQOCl2pNPPok+ffqgqKgICxcuxIcffhh1nSNHjkSHDh1w5ZVXoqysDJdddlnU5a688krMmDEDa9ascfw/AjNnzsSZZ56JIUOG4MYbb0RBQQG2bNmC1atX45FHHolp32PZJyIiIjdee+01tGvXzvJdTk4Ozj777IhlJ02ahPvuuw/nn38+/vSnPyE/Px+PPfYY9u/fDyDwD02x6tWrF2bNmoVnnnkG3bp1Q/PmzdGjR4+oy06bNg1PP/00Ro4cidtuuw19+vTBnj178MILL+Cf//wnmjdv7ni7o0ePxuLFizFt2jSMHTsWq1atwsMPP4zc3NyY94GIiBKHL8uI6JjUqVMnrFy5EjNmzMDvf/977N69G61bt0bv3r1xxRVXhJZ75JFHIKXEH/7wBwCBMMr58+dbkhDXSklJwYQJEzBz5kwMGTIERUVFUbedn5+PM888E2vXrg2NulmXgQMH4oMPPsD06dNx3XXXoaKiAp07dw6NvhWLWPaJiIjIjeuuuy7iuxNPPBHr1q2L+D4jIwNLlizBddddh1/96lfIzs7GhAkTMGjQINxyyy3IycmJefs333wzNmzYgF/84hcoLS3FmWeeieLi4qjL5ubm4oMPPsBtt92Ge++9F3v37kXbtm0xYsQIY07RaH75y1/im2++weOPP47Zs2dj4MCBeOmllzB+/PiY94GIiBJHSCkTXQZHBgwYIFeuXJnoYvhCCIGGch6IqP7279+PTp064frrr8ddd92V6OIQUYLxOYAourFjx+LLL7/E5s2bE10UInJJCLFKSjkg0eXwixC5Ehie6GJ44IVGfZ7caDAvy4QQuwF8nehyEBHVQxqATABtAOQAWAfgaEJLRERElBzaIpA4pwKBvMqtgn/bAOxOYLmIqH46SynzE10Iv/BlWePVYMIwG/MFRkTHBiHEJABPIPDgf5WU8v8SWyIiIqLkIIT4NYBrAXQCkApgA4DfSSn/ndCCERHRManB9CwjIiIiIiIiIkoW7FnWeDWYnmVERERERERERMmlJtEFIB/EPg4zERERERERERFRI8WXZUREROQpIcQcIYQM/g33YH3DlfXNqXcBiYiIiIgM+LKMiIgozoQQJcrLH/2vSgixTwixVgjxHyHEeUIIpk0gIiIiIooTPnwTEREll1QALYN/vQFMBPCZEGKClPLzhJaMiIiIiBQ/vA68lJfoUnhgT6ILkGz4soyIiCix/glgs/I5DUA7BIZWOjn43UkA3hJCDJBSbo9v8YiIiIgoGinl6ESXgfzBl2VERESJ9YyUsjjaDCHEBABPItBetwVwF4DJ8SuaO1LKSQAmJbgYRERERESuMGcZERFRkpJSPg3gIeWrC4QQ6YkqDxERERHRsYAvy4iIiJLbImW6OYBupoWFEGcJIf4phPhCCLFfCFEhhNghhHhJCPFzJ4MFCCFShRCXCiEWCiG2CiEOCyHKhRDbhRCfCCGeFUL8UgjR2eb3jkfDFEJkCiGmCSGWBQc2OCyE+Cq4DyfVVVZlPcXKNgsdLF+7bImDZYUQ4qdCiCeFEBuFEAeFEEeEEF8LIZ4TQlwohBAO1tNUCDFFCPFq8FgeEUKUBdezMjigw0QhRFtne01EREREfmAYJhERUXL7XvvcKtpCQog2AOYBODvK7A7Bv7EAfieEOE9Kud5mPccBeBlA3yizjwv+9QNwEYBVAAbUvQvRCSGOB/AKgOO1WccH/34uhLgBwDq326gvIUQRgAUA+keZ3Sn4dyGA5UKI86WU39qs50QEjmuhYT39ERjQ4fngOomIiIgoAfiyjIiIKLnpvYwO6wsEX3AtRfhFTCmA1wB8AaAcgRcx5wDoCKAHgA+EEP2llCXaelIALEb4Rdmh4HrWB7fbLLiNAQBOqMc+QQjRDsA7CLx8A4BKBF4mrQGQAWAogGEAHgHwQH22VY8yngTgbQCtg1/tReB4bARQBaArgHMB5AEYDGBp8Lge0NaTDeC/CBx/IDDi1GsIDOxwBOEeg4MAdPFvj4iIiIjICb4sIyIiSm4XKNPlADaoM4MvuOYj/KLsPwB+I6X8QVsuHcA9AG5EoHfaXAReSKmGI9xTbCWA0VLKvdEKJYToCmBEbLti8TeEX5SVABgjpfxS28Y4AM8CuKEe23FFCNEMwHMIvyi7D8AMKWV5lOX+BeASBF6ePQzgcm11P0P4RdkrAH4mpSyz2e5JAE70Yh+IiIiIyB3mLCMiIkpSQoiJAK5TvnpGf1mDwMu02pdeC6WUV+gvygBASnlUSvlbAAuDX50hhNBflvVTpu+1e1EWXN8WKeVjjnZEI4TohfBLwCoA5+ovyoLbeAmB/a8zH5gPrgHQPTj9FynlLVGOPaSUhxEInVwR/GpClJxp6nG93e5FWXB9n0kp57svNhERERHVF3uWERERJdbFQgg171caAqGXIwCoCe7XA7g5yu+vUaZvcbC9BwCcH5w+F8D7yrxUZbqpg3W5dZkyPV9Kudaw7L8R2C/jwAY+qD2uRwDcYVpQSlkthHgIwFMIHMNzAPxdWSRex5WIiIiIPMCXZURERIn1qzrmVyOQ8P03Usrv1BlCiKYATgt+3Cql3Ohge6uVaT05/xpl+m4hxJdSylUO1hmr05XpRbZLAZBSSiHEQgA3+VCOqIIhpoXBj8ullAcd/Gy1Mm06rg8LIS52eK6IiIiIKAEYhklERJTc3gVwo/6iLKgnAsnwAaCLEELW9QfrAAH52vreAPBpcLozgJVCiDVCiJlCiPOFEB082qfuyvRqB8uvqXsRT52sTJ/l8Lh+rvxGP65PA9genO4HYIMQYrkQ4k9CiLFCiNYgIiIioqTBl2VERESJdZaUUkgpBQLtcjsAIwG8Gpw/AsCHwd5Ouvq+ZGmmfpBS1gAYA+BN5euTEBgU4HkAO4QQXwohZggh9BdCsWipTNvmRVPsqce23PD6uB5C4Jx+EvxKIDDy5e8BvARgtxBilRDiRiFE83pum4iIiIjqiWGYRERESUJKKQF8F/x7SwjxMAIJ7jsCeFYIcZqUslL5idqObwAQa8L9aAMB7AJwthBiCAKjOJ6JwAuz2rxbPQHcDuAGIcQVUkpjGKVH4p3gXz2uyxF4URiLb/QvpJQbgrnpRiKQM24YgBMQ2DcB4JTg32+FEBdJKZe6KTgRERER1R9flhERESWvGwEMB9AHQH8ANwC4V5mv9sqqlFLO9GrDUsplAJYBgBCiBQK50UYDmIBAmGFzAM8IIfpJKT+3XVF0+xHoQQcEenHVlRPMSU8vqUwbX64JIbLqWJd6XHd7dVyDL0PfCP4hGH45FIHefP+DwDFtB+AlIUR3KeVuL7ZLRERERLFhGCYREVGSklIeReCFWa1btfDHjQgMAAAAvYQQanijl+U4KKV8TUp5PYCuAD4KzkoH8AsXq/xKmT7ZdqnYlilVprPrWLZTHfPXK9NDhBC+PC9JKfdKKRdLKa8CcDyALcFZuQi8lCQiIiKiBODLMiIioiQmpXwDQG1IXgsAtyjzDgBYGfyYCuDyOJSnFMCDylc9XazmQ2V6vGlBIYSoa5kgdQCE7rZLBYyqY/46ALuC03kAxjnYfr0EB3B4VPnKzXElIiIiIg/wZRkREVHyu0OZvloI0V75/IgyPd1mIICogi+i6uuIi9/MVaYvEUL0Miw7CUCRg3V+okyfb7eQECIH1t56EYLhkn9TvvqLEKKVgzLUbiNRx5WIiIiIPMCXZURERElOSvkmwr2xmgK4VZk9X5nXCsC7QoiRdusSQmQKIc4TQryDQEJ5dd5fhRAzhRAnGn5/HIDblK/ec74nAVLKLwDUDgyQjkCOrh5RtnUOgL/Dmo/MzgsIh6T+jxDivCjraw/gZQQGTKjLwwA2Bae7AnhPCHGK3cJCiOZCiMuEEJ9Ay7EmhFgghJguhOhi+H0vAL9Rvor5uBIRERGRN0TgH0+JiIgoXoQQJQA6Bz+eJaUsdvCbHwN4PfixAkCRlHJ7cF5bAO8jkPeq1loEXrh8i8A/jrUG0BvAIIRzeg2UUtaGcUIIMQfAFcGPmwGsALAVwCEEXsT1RCDJf7qyTN9gaCZs1hN1/4IvrlYBqO0lVwHgJQCfAcgAcAYCgxsAwF8QGNwAAJ6UUk7S1xdc5z8BTFG++i8Co1kCwIkAxgLIAnA3wi/8vpZSFtqs7wQA7wBoq3y9AoGXk98Hy5mPwGihpwJoElwmX0q5R1lPMQKjigLA5wiEzm5DoPdYHgI52c5C+B8xlwEYKqWsfflHRERERHHE0TCJiIgaACnlEiHEcgCDEXgp8wcAVwfnfSeEGAjgnwAuRmA0yD7BPzs7EBiVUlWpTHcL/tn5GMCF+osyp6SU3wohzkKgp1cRAvt0YfCvVhUCL8nWIvyyzORGBF4Yjgh+/knwT/UggOmw9o6zK+OXQoj+AJ4AcHbw61ODf3Y2IvDiT6Ue1xODf3ZeAzCBL8qIiIiIEoc9y4iIiOLMTc+y4O9GI9BbCgCOAugupSzRljkRwEQEejJ1QaBHWBWAfQiMQrkCgR5q70opa7TfpiDwMu5Hwf/2QKBXVRaAMgDbEegN9hyAF6XNQ4STnmXKspkAfg3gZwgk5m8CYCcCPbpmSSk/FUIMD34GDD3LgutLBTAZwGUI9PhqhkCy/mUA/iGlfDe4XG3ZbXuWaesdDOB/AAxDIIwzF4GXYLsRGD1zGYD/SilXRPltevB3IxB40VaEwHHNQGAUz20IjDA6X0r5dl1lISIiIiJ/8WUZERERERERERFREBP8ExERERERERERBfFlGRERERERERERURBflhEREREREREREQXxZRkREREREREREVEQX5YREREREREREREF8WUZERERERERERFREF+WERERERERERERBfFlGRERERERERERURBflhEREREREREREQXxZRkREREREREREVEQX5YREREREREREREF8WUZERERERERERFR0P8DBHWFMWkXuSwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde7wcdX3/8fd3c3JycnISTkICIQQIIWK4GjAgKCgqrfVapFprbeul3lqrUu/tz1+rrdZLvba2ttWqP3ux3i+l1bZaEalaiRIBMUiQCAECBBIgN5KTM78/ds+Zz3x3v3NmZ2d3Z2dfz8cjj8zuzuW7M9/5zuyc7+fzdVEUCQAAAAAAAIBU63cBAAAAAAAAgLLgYRkAAAAAAADQwMMyAAAAAAAAoIGHZQAAAAAAAEADD8sAAAAAAACABh6WAQAAAAAAAA08LAMAAAAAAAAaeFgGAAAAAAAANPCwDAD6yDkXmX9X9Ls8GF7UxXJyzi1wzr3EOfdl59ytzrm93rH6RL/LiP5zzn3A1In/7nd5suh1m+OcWzOM586wt+3OuReb77/NObew32UCMBh4WAYAAFBCzrlTJd0g6e8kPUPScZLG+1oolI5z7jRJrzBvvbFfZQFK6OOStjSmT5D0pj6WBcAA4WEZmjT+6mL/CnVRv8sEAMAwcc4tlfSfktb2uyxl5Jwbdc4d9O5XTm1zHcucc//lrSNyzn3WObeoW2Xvgg9IGmlMfyGKoqv7WBagVKIoOizpj81bb3DOHdev8gAYHDwsA4bMsIYhpGGfJLE/BgvHq7LeKOlY8/rnjfeeIekXzL93975opXC6pPnm9T5JN2Zd2Dl3uqSrJV1s3o4k/ZGkX42iaG8Rhey2xh807Xd4Z39K0l20c+jQ5yRtbUyPSXpzH8sCYECMzD0LAAAAeuz5Zvo+SedGUXR3vwpTQmd5r69t9CCZk3PuEkn/IGnCvP2gpN+IougrxRSvZ95mpr9JrzKgWRRF086590j6m8ZbL3TOvSuKop/1s1wAyo2HZQDQR1EUuX6XAZCoi2XinFsjaaV56ws8KGtytvf6mrkWcM451XuO/bEkW99vlvSMKIpuKK543eecu0DSY8xbf9WvsuRBm9Mb7OdZ/yjpzyUtVr1X6msk/V5fSwSg1AjDBAAAKJeHe6+v70spys3vWfbDtJmdcxOqh2K9RckHZf8l6ZxBe1DW8Ptm+m5Jg9YrDuiZRmj1p8xbL3DOTfapOAAGAA/LAAAAymXSe/1APwpRVs65mqQzvbeDD8ucc2slfVfSpd5H75f05CiKdhVbwu5zzq2S9MvmrX+JouhQv8oDDIhPmulFkn6rXwUBUH48LAMAACiXMe911JdSlNfDVf+hO+OQAr3vnHNPVD2R/+nm7YckPT+KotdkzXNWQr8uaZ55/YV+FQQYIN+VtMO8/s1+FQRA+ZGzDF3jnDtF9ZvT1ZJGJd0m6VtRFN0+x3JO9fCKsyWtkHRA0q2S/rvov/465zY0tnW0pIOS7pD0v1EU3VLQ+hdIerSkEyQdJemw6qESWyV9vxs36c65EyRtkLRK0jJJuyR9KYqiO4reltnmGkmnqf49l0iaVj0h9W2SvhdF0f1d2u46SeepPmJcJOkeST+MouhH3dhe2Q3C/nDOHSvpXNXPh2WqJ9W+W/V6cmsXttf2+dDr+uycW6b6cVspabnqf8i6X/V24tooiu4qcnvd0qf2rit1vhGyt0HSetV7eY1J2q/6cdkmaUsURds72cZcRSh0ZT0+Nj24DvkhmD+Oouhgi3K8WtJ7lLzfvUPSM6Mo+n5BZemX55np+yRd1a+CVEmZrqMlaIdsWTaqfl1cqfo1ceZ6uK3L2y30eDQS/X9F0ksbb210zj08iqLMI+kCGCJRFPGPf4l/ql+AI/PvohbzrPHm+YT57Dmq/xU3avHvsKR/kXRMi3U6Sb8t6WeBZQ9J+jtJSzN+j7QyvkD1hL6tthOp/penCzvYh+slfVrSnpRt3Kv6qDxN+yLnd/o11W+Wp1ts65IWxzXrv7e0KMeY6uEs/6j6D4+05Q9LulLSU9vch2nf9QmNYxTa5i2qj2rWbl3PvU86qCt2vVdUcX+onkj3dyVdO8d6rpP0G5Jct8+HXtfnFmUfkfQi1dvKwynbm5a0WdIbJa3o5vHKWhdL0t4VUudbbHOD6nmtDmTYj7dL+pik87rQFmT994k51ln4sZnjuGQ+7zrcV3/urftj3ucLJH28RRm+104dLOs/1f8Iab/XFzMsc6y3zKczLHNmi334rgzLXeot84YMdf6KwDzbcp4bb2mz7nalTcl5fDeowHYoy34OLOckvbzx3UPbv1LS+YHjtW2O9ffleKjeTtl1vbYXx5V//OPf4P3rewH4V75/LW5MLmoxT9MFTvVwgI9lvIm5VdJas76FqiemzbLs9fJ+NAa+R6syzlf9h0OW7UxLekeO/fcW1R/sZb2h26N6OEiWdbf6TqMZvtMlLY5rJzecm3Ku61OSFub9ro33/6yN7f21Uh68FLlPOjjf7HqvqNr+kPRI1XuvtLO+qyQt7+b50Ov63GKf3JRjex/o5vHKWhf72d4VXee97b1e0lSO/fmPXWgLsv77RK+PTavjohznXYf76uveun/PfHaMWv/I/rikBUWVoZ//VP/Dov1ul2VcbotZ5p65zg3VBxDw9+OmDNv5kLfMIzPU+SsC82zLeW68JUvdbbzflTYl57EtvB3Ksp9bLLNE0hUZt31Y0qtaHK9tc2yjL8dD9d5xdh3/1e9zmn/84185/xGGiSK9X9ILzev7VH8oVpO0TtK4+ew4SV90zj1S9YdSn5f0ZPP5XZK2q/7X4Yc1/p9xmuoJOu38Wf21pF81r/eofmE/rHp4yqT5zEl6k3PORVH0piwrd879reKu3dYuST9XvTfJGkkT5rNFkj7hnDsyiqL3ZfoWSR9X8jvtbWxrv+p/fT46xzrn4ufTkeo5IO5VPaxuvLHtZd48vyZpiXPuaVEURe1u1Dn3dkl/YN6a+a77Gttb6S3yO5JulPTBdrc1CMq+P5xzT5H0GSVzC0n1HwK3qH5eTEg6Sclz/DGSvuOcOz+Konvb3Gye86Fn9dk5N9ODbWGLj+9ubPdgY1trVOLcov1o77pV551zL5L07hYfzVwj9qheT5aqfv0q7XGR+nJsen0dajkSpnPuUarn7lplPjss6XVRFH2g4DL002O915syLvcNxSOtLle951haONsTW7x3lnNuWRRF92VcbpekazKWr+fKdB0tSzvknBuX9DVJ57f4eLvq16klqrcho41yfNA5d3cB2+768YiiaIdz7nbVe1tK0mOcc/Oiwc1fCKBb+v20jn/l+6d8PctuMdP/rXpuFGfmH5P0CjV3KX+ZpD80rz8r6UxvW4slvVXNYR1PmeN7pJXx55KeJWnUzD9P0i+qHgrm/+XqyRn228taLLdJ9a7kNTPfqOohCn646eFW+3qO73Snmd4s6an2OzWWOV3SWtUfQFysep4Tu47/aLwf+re2RTmuV/1B6HtVvymeDJT3ZEnvbHHcfy/D/vS/q91fV6v+sHS+t8y5kr7vLbdH0rLANgrbJx2cb5n+4jto+0P18C8/9GuTpF+RtMibd6HqD5780Oh/7db50Ov63Fj+LNUfHthl96r+V/SHt5h/UaM8fy1pt5p7lhVaf7PWxT62d4XX+cYyC1R/MGqX+YKkc9Six4LqD08fI+ntjTIV1bPMHqN3e+V5d+BYntrrY9PiuOQ67zrYTye0KO8iSc9X87l5r6QnFrHdMv2T9GPve05mXM4PjwyGn6n+QPWBFnUpkvQrKcut8ub9fMq8c7Y5Kva65NfdrrQpOY9p19qhLPvZm/99LY75JySd7M13hOr39rsa8+xS/Q/lM8tsm2M7fTsekv7dW8eZ7SzPP/7xbzj+9b0A/CvfP+V7WDbzb64wr99qcWGc+fH4+jnK9Rb/JmKO+UNlvE4pec9Uf7D3DW+ZWyWNpSyzSs0PBr4gaSRlmSVqDv/6ubwfGRm/05fTlptjHZ/IUUceK2leG/Of7d1A3Zq2b+b4rp+cY78uUvMDz1d1e590cL5luokdpP2h+oNnPz/Z+zMc86Wq5xSyy/1yN8+HHtbnUTWHo/5M3o+PlOWXSNrYzfrbRl3sd3tXaJ2X9BR//W3ss1rWY9jmsXiBV6YXZFyu68emqPOug31zibfdm1RvX/zyXKcC/7BRln+NtsTmObyrjWWXesv+e8q8j/b25zVm+q9TlvtNb7nfTZk3U5sTqHefyLHvetKm5DyuXWuH2tzPZ6o5j+Yr5ljmYar3NvP367ayHg81PxD8rSKPJ//4x79q/Ct1GAEGzv9KemUURVFohiiKPinpJ+atE1V/OPXpKIr+fI71v1P1EYBmPMk5Ny80c8AB1X9870op4wHVe7/cY94+TtKzU9b7O0qGmm2V9OtRFE2lbOcBSU9X/S+3M45XMpQli59Lel7UYiSwbomi6Mqoje7qURT9UNIbzFvHqf6X33b9UNJvz7Ff96qeDN3KE7I7CMq6P54l6Qzz+rNRFP1+WjklqXFeXqr6j/0Zr2tz222fDz2qz7+perjpjAclXRxF0U8zbvOBKIqyhlp1Wz/bu27U+ZO913+VtTBRFE1nPYY90q9j08vr0Nne63WSLvPe+5LqScd/1oPy9NrxSobfZR4NsdHGXmPeeqxzbn5gdhtK+WNJ/xz4LG05qf7HxzIry3W0LO3QK5SsX/8QRVFqWaIoukn1np1F6NXxuN17vabN5QEMAR6WoUh/nPEH5796ryNJfzTXQo2HWP9p3hpX883FXD6c5eY5iqLdqndtt17cal7nnGvx2Zsa5Z1rO3dKepf3dqs8M2n+LIqiPXPP1nefUv2vlTMek2MdfxRF0aEM8/2H6mFrMx6ZY1uDoKz74zIzfVj1JNGZRFF0h6SPmrcucM61k++oV+dDu/X5Mu/1Hw/iD/kStHfdqPN+/rgs6y+dPh+bXl6H/HxlvvdIunRArot5HO+9vrPN5e3Dq0WSzgvMZx96fd1b7mTn3HGB5Z5gpm+PoujGNsvXa2W5jva9HWo8OP1189a0pP+TZdkoiv5D9TQsnerV8fDPG/+8AgAelqEwu5V8kJXmeu/1tW38Rew673W7F7dPtDHvP6meiHzG+c65BS3me7iSCUd3qj6yZ1YfV/JH96Occ60SjrcyrfoIZKXX+EugTf461w8e3/2SvppxW4dVDwOcsSJw7AZZKfeHc+5ISY8yb/13FEX+X3Dn4rclF2RcrmfnQzv12Tm3SvWcTTP2KPlAcJD0s73rVp2/w3v9GxnLUzb9Oja9vg7555rfm/0U1QfoKYRz7kTnXBT4d9A5d49zbotz7jPOudc4544patsBR3iv230o6Pf0auol1kjwbpO7f0P1fHQ2qX+r5R6mek/b0LbKpkzX0TK0Q49QctCPb0VRdFsby/9Dh9vv5fHwzxv/vAIAHpahMD9MC7/0+KPb/aCN7fjLtnNx2xVF0bVzz1YXRdFOJR/szVfrH8T+X2WvzPhXsZnt3KlkaOqosv+FbEsURffPPVv3OOfOds79qXPucufczc65e51zh1r9sJBkf0Qsb3NTP4yiaLqN+f1Rmap2I1TW/XGBkj9U84QO/tx7fUrG5To+H7pUn/2R666KoujBTsrZR/1s77pV5/9byYdEv++c+2vn3EmB+cuqX8emZ9ch59wKxSPYzXiF9/qpqqdtKMqGlM/mq37uP1z1VA3vlXSbc+5jzrmlBZbBGvde729z+atUH3F3RquQygtUP/5S/Y+GVzTOvW/OsdzAhWCW6DpahnboHO/1/7S5fLvz+3p5PPZ5r/1RuwGAh2UozD1zzzLLv0B1sqzfbT2N3ystzzJrW8xzgvc6bRj2EH+ZrD3m+hbG5Zw7zzm3SfWHnW9W/QfKWknLVB9Fay7t/pBod0jyvd7rdurKICjr/vAfbP1BSq+Mlv9Uz49jLcu47dznQ5frs/9j5+pchSyHfrZ3XanzjZ4TH/Pe/h1JW51zP3TOvds59/TGg5oy69ex6eV1yM9XdmsURR+W9A7v/dc754rqmWP/SPZeSc80/56jerjqexX/YWCepBdKuiYlVLFIbfWii6Jon6Tvmrce5Zyb8GazD72uNg/3vxGYJ/Re2R+WleY6WpJ2yH8Q/ZOWc4VtVWfho708HoX1PgVQXVl+AABZzJkTpUvLtnOx25lj/X5PtskW8/g/kvNsx39gmPVB0gNzz1I859yLJH1EnT1wbzd8oZN6IlXvxqis++PILqxzMuN8uc6HHtRnf5+0+4OgTPrZ3nWzzr9K0tGSnuG9f1bj3+slyTn3Y0lfk/TPjYEeyqRfx6aX1yG/d/dMsvo3qz6K31PNZx9xzv00iqLvd7jNDWb6H6IoCj6EdM49SvVw1lNUf3j5b865s+ca3KRN/h8Ns4YxW9+Q9LjG9HzVe7/+u/ncz1dml5txjHPu1CiKbpBmc+Y93nx+Y44Q/F4r23W03+3QpPd6dzsLR1EUOefuV/uRAzN6eTz8B2v+gzcAoGcZhop/g5mFf/Fc3GIe/y+yeS64WbbTSj8SwD5W9XxLtv04LOlKSX+uekjMsyQ9TdIveP/u6mlh0Q+TXVhn1mtV2+dDj+qzfz4PcuLxfrZ3XdNIgn+J6j2F0n58nibptZJ+4Jy7wjnXbu7FburXsenldajlw7JG6NbzJNlk8mOSvtTIGVjENg9KuiFtxiiK/lf1B0YzI1SeIelFHW7ft9t7nef8CeYta4SPntVq3kZ+2e2tllP9oaL9w0DZe5WVTgnaIf+PPnlGt+3ZyOwd8tvLvqY0AVBO9CzDMPHzfGTh5zBolWfI/+GbJ+9Blu2UxfuU/OvdVyW9PIqiW+dasBFih2rzH0q/U53/aPITHxepF/XZ73nj36QPksq2d428m5+R9Bnn3MNVfyD6OEkXqt7bw/c4Sd91zv16FEVf6F1Jgyp7bAw/DHOmZ5miKLrfOffLkv5Xce6iY1R/YPbYLKOC+hoDlqxuvLwhSw64KIrucs69VfXeqpL0W5L+rt1tp/DbpjwPA7+v+rGdedBmH3o9XvEfD/yQTanenj/fLPeXLdYxMx/a1Od2yH9glOdB7JIOy9Ar/nnj50oFAB6WYajk6Rbuh0/tbjHPrgK24+eg8NdZCs65dUomfP6xpEuiKMr6l8RuJTxGefihX/dHUfT1lnP2WQ/r833e66MyLldGQ9HeRVF0o+q9lD4kzY7y90TV81T9guIHrAsk/aNz7uFtjhrXDZU+Ns65xWrO/3eNfRFF0Y3OueepPgrozAOfc1TvPZonh5ntsdNODrgvqf6AzKmeE2xhFEXtJuIPuU31EUhnvt/qlHlbiqJoyjl3peKw1TOdcyuiKLpHyYde327RHtqHZRc55+Y1RiZ8gplnWtIV7ZYLSX1oh/xrVVsPYp1zSzQ4fwzy87Nt60chAJQbYZgYJmfkWOZM73WrRMbbvNePyLEdf5my/oXr0d7rj2R9sNC4yStymHWU0y3e66wjHfZDr+rzTd7rjRmXK6Nt3usqt3ezoii6KYqiv4mi6Emql99eCxaqeUTGftjmva7asdmgZC/Qe1s9GIii6N8k/V/v7ec5596Uc5szNmddqDGa9kyY9oiklTm2HVr3QUlbzFvLnXNZB0GxbM8vp/hh1xMD87R67whJG51z81Xv+TTjmiiK/Acv6FAP2iF/cJ12wzvztDn94g9GlGdAFAAVx8MyDJOlzrnMF3Ln3HLV80LMOCTvr9gN3/NeX+icy9xr0zl3jJIX7YNKz1XRKX9Y7nYSovohADe2nKu1J8w9S990sk+qqJP98U3v9S865/IkoO6FXtXnK73XFzZ6yRSll/V30Nq7wkVRdJ3qIyBaF/SjLJ6qH5tQcv8mURT9meqhbNbbnXNP62Cbm9tc1oa0Fd2repP3Os8fA5vyljnnVkt6uHmvqVdwFEV3KPmw7omSHqVkj6JuhGBynTa61A79r/f6Kc65eW0s/8sdbr+X7DmzX80PCgGAh2UYOs+fe5ZZz1MyVPm7URQ95M/U6CZ/p3lrhaSnt7GdF6g+1PyM/82TW6UNfgLndnK5+Teno5kWqo+S9bttbKfXOtknVZR7fzRGP7vOvLVEzTf0ZdGT+hxF0Q4l/2o9Iem3sy6fQc/q7wC2d93yP95rP3yx54bg2ATzlQW8UMnzribpn51zp7axzQ1mut2eJ/aB+O42l53Lt73XeXqrXqfk6KdPVLJX2b0KPyC0D8P85fzPi8J1ulmh7VDjWmUfxB4j6dIsyzrnjlA9P1/pNf4wYENMv9MIJQaABB6WYdj8jnNu7VwzOecmJf0f7+2Ppizif/ZO59ycIVrOuaMlvdF7+2/nWq5DD6g+2t+MOfeHscN7fWHLuZr9nppDWsukk31SRZ3uj3d7r9/SCFssm17W5/d7r/8kS1uUUa/r7yC1d93i5wMrS26vKh+bzD3LJCmKon2qjyxo8ygulvSVLGGLzrmFintZ3RpFUbvH2PYmu7vNZefyNe/1Re2uoJFI/r/NW2slvdi8/u/GPK3Yh2GPUX204BkHJV3Vbnky4DrdrBvtkD8YxXudc1kewr1XJfijQUaP81775xMASOJhGYbPzFDywZCIxg+Lzyt50d8u6bMp6/2wkn/1PFnSP6R1X2+EYX1F8ahdUj0/TNp2OtYYzcuGm21o40GG/1fMlzvnTk5bwDl3iaT3ZC9h73W4TyqngP3xKUnXm9dLJX3NOZf5AZOr+2Xn3Lva2G67elmf/1nJfbpY0tez7lfn3BHOuZa9R/pQfwemvcvCOfc259xvNfIuZeU/WPpBkWXqQKWOzYzGddnPMTRXzzJFUbRN0q9KmjJvn6T6SINzhaieqbin3eZMBW1o9FxZ2Hi5M4oif6TSjkRRtF3Jnm5thdwafg+wC1I+s76pOCxygZI9277beFBZqKpfp0vUDv2DpJ+a18cp5VrlnBtzzn1QcW/pQRj1/PHe68v7UgoApcfDMgyTbY3/z5B0jXPuWc652bAr59w859wvSrpazfmIfictHCWKojslvcZ7+9mqD+d9kXNu9lxzzs13zj1T9Zvvc83805Je0MZIfJ34DzNdk3Slc+6tzrlfcc79gnPuYvNv9q+3URTdLOk7ZtmJxrK/5t/gOefWO+f+TvUHj6Oq/2X93q59o87l2icVlnt/NMIZLlUy9GitpP91zn3IOXeWPSdmOOeWOuee6Jx7n+rn65dUz4XTFb2sz40fer+qem6UGSdK2uyce3urh3TOuUWN/fFh1R9epI3m17P6O4Dt3VxOl/T/JN3unPs759xTnXMtRyx1zp3tnPuM6r0LZ0xL+vselHNOFTw2M86QZM/JvUr+oA+Kouibat4nT1Rzb0/fBjPdbgjmY8x0N0ISJemfzPQRytG7TOllC45iHEXRboXz2XXr+0rVvk6Xoh1q3Ov+tpK9+M6UdJ1z7p+ccy9yzj3FOfcc59w7VH+A+arGfP8u6dZOy9BNzjmnZHj6D6Mo2hKaH8CQi6KIf/xL/FP9R2pk/l3UYp413jyfaGP9F3nLvqWNZV/gLfuClHmbyqh693L73gOSrlX9L9T3eZ/N/PvzNsr3t4F13Kv6jeW1jW22muc1Gdafe7976zlJ9R8brcrh/3uLt+x5qodZ+PPtbezHTZJu9z6bkvRLXt3a1s3v2jjedvk13donHZ5vdr1XVGl/SHqs6iFQrZa5X9INqiclv65Fnen6PullfTbb+2VJ+wLfdUdjm9+XdHNjO/bzD3T5eGXa72b+Urd3Weu86g9lQ8fjOknfVf2B0u7AfG8vqj0wZXqBt40XtLl8145Np8cl5/54ibfN7+RYx8dafNeXpMz/N2a+S9vc1t+bZV/UpX1yrJJtxF/nXM8tLfbLtgzLvTNQfx7dxrbbbXM6aud61abkPA5da4fa3c+NZZ6r5mtQ2r+fqh4Wus28t3WObfT8eKj+INsuc1lRx5B//ONf9f7RswzD5hWSPm1eL1b9L9Yb1DxaVaT6g7LXZ115FEUvk/RWJUM+JGmZ6vlWzlAy6a9Uv/F7QRRF78u6nU5F9R41z1VytK6sy35P9cTJfq+DcdX34yOVTJy6X9JzoygqdU6ITvZJFRWxP6IoulL18Bx/lD6pnvj/FNV7jp2uZJ2xuvpX6l7X5yiKvqx6vpRbWnx8dGOb56jeEy/zKGT9qL+D0t514GjV6+Z5kh6hZJiiVP/efxxFkZ/fsu8qeGzaylcW8DtqHu3vr5xzoVyFG8x05p5lrj6S9q83Xj4o6QtZl21HVB9M5cvmrV91GfLTtdCqJ1iwV9kcy+1R/WF/Vwzpdbov7VAURZ+S9BTFURlp/kvSBVEU7VRyVNQyHic7CMFe1XvzAUBLPCzDUImi6FAURb8m6UWSfpYy6/9KenwURW/IsY23qN5l/bOq9yAJ2aX6X/8fFkVRzy/WURR9RfV8Nq9Tvev8z1W/0fWHZ2+17D+pntvkmymzTUn6jKQzoygqTe6bNJ3skyoqYn9EUbQtiqLzVb/p/i9Jc42uF6ne8+Udks6Ioqjro2v1uj5HUXS16onDX6HkyKGtTKveHl0m6S1zrLfn9XdQ2rs5vET1a8Ln1DzoQysPqv4D6xFRFP1JNwvWiYocmxkdPyyL6qNZX6rkiKHzJX3eOXeCnbcRrnpG4+UDSr9f8L1V9fyokvThqB6y2C3vN9NHSnpmjnW0euiVJZTyKkn+COFXRlHkP6AtVIWv06Vrh6Io+k9JpzXKNbOvH1L9j0Y3qZ7f7ElRFP1iFEV3N84b+zCvVA/LnHOLJP2aeeuTUfsDdwAYIi6Kon6XAegK59waJXtv/L8oil5gPneq/+X4bElHqd6z5E5J34uiqJ0b47QyLFC9y/cJqg8YMK16rqObJH0/qsBQ1c6541X/jqtUT2h8v+rf7ztRFD3Qz7KhfJxzY6r3Jjte9ZCNRar/0LlP9XpzQxRFfbvB7kd9ds6tUn2fHK16z59Dqofa3CTpR4NyM1+V9q7x4OThqocITaqeo26v6iGM10u6PipXPq85VeXY9Ipz7hTVw8Ql6aooijKNlOucu1T1vIZSPQT9tCiKih4J09/mVYpzpH07iqLHdnN76I1BbIecc2eoHuI94xNRFL2wX+XxOedeqniU3ylJ6xu9FQGgpTwj5wCVENWfFF+jfOEcWbfxkJJDs1dOFEW3quQJXVEeUT158Lf6XY6QftTnKIrukPTFXm6zG6rS3kVR9HPVe1BURlWOTQ/ZnmyZQjCdc78l6aONl5Gk3+j2g7KGNyvuFXuhc+68Rng5BtiAtkNP9F5v6kspWmj0enudeesTPCgDMBfCMAEAAIDYBjO9OW1G59ypzrnPqx4SN1/1Xnu/H0XRf6QtV5Qoiq5QMsfYm3qxXcByzo1I+l3v7av6UZaAX5H0sMb0AUl/2seyABgQ9CwDAAAAYrZn2Qrn3CXm9bjqIeRrJV2sek6nGQ9Kel4URf/a9RImXab6Q70RSb/snDs3iqKuJdpH9TnnXNRerp4/U/wwSpJ+GEVR5oExusk5N0/1XIIz3t3oRQ4UYp1zUVpi0EFxp/QfURT9Ur/LUSY8LAMAAABiG8z0n2WY/wFJH5b0/iiK7upKiVJEUfRj59xfSXp14613SnpCr8uBSvm6c+7Tkv45iqI9oZmcc0tVH5DnZd5HZRpV9wWqj74t1dMsvLN/RUEV7VPzCTCI3lL/QxAMHpYBAAAAkpxzqxX+wfCQ6oNv7FJ9QKD/VT3U7Mooih7sSQEDoii6TPUeZkARTlI9Gf4HnHP/Jen7km5WfdCbMUkrVR9Y4hmSFnvLfrkxynQpRFH095L+vt/lADB4eFgGAAAASIqiaLsk1+9yACWxUPUHYs/IOP83Ve/JBQADj4dlAAAAAIAZ2yWd0Mb8D0r6oKQ/iaLoUHeKBJSTE6MmVhUPywAAAAAAkqQoii5wzm1QfRCLc1VP3n+cpAlJ81QPRd6p+sAS35T0+SiK7utLYQGgS3hYhsqKomibCKUAAAAA2hJF0WbVH4YBwFCixyAAAAAAAADQMDA9y5xz0SMf+ci2lvnBD36gR558RJdK1Lmtdx7UupNPLWx909PxdK3Tx6BRFH5tN+RceD77mb++LMv4X8J+5m93EPn75PDh1vP539Xuf7uMnW/EO7XttqamWq/LX250tPXyVdj3KK9QXfPrajfbgz17WpfHN39+62l7jknSvHnxtH9uZmG/u1+etDYT0iGTOuehh5KfHTgQT9v9umBBcj57zMbG4um0/X3wYDy9d2/r96VkvVmypPU2q86v0/Y42brv7zt7/cu67+z5Ys9Tfxm7bnv+Fq3QG7cKSmtLi2737bbsurt5/MtXBMwl7X44dK9t2/lesu2YLVsfri/btm3Tzp07K/0Dgha8mgbqbmzTpk1tze+c06a/vbBLpenc0/90u/71v75f2Pr2HYhPU3s/n6am6dYf+Dco9rX9geE3uKGbT7tM2rZswf0vYdeX0tBPm+Yq+P3KwN/Hu3fH02nf1f6Qt9N2vuXeqPd2/+/c2fp9f7nVq1uXdZh+xKH3srYhOdqDNIm24qqrWpfHt3JlPG3PF3uOSdLkZOvpFIl27MC+cHlCD3JQt2NHPL1tW/KzLVviabtf16xJzmfbxfXrZyenx8aDm61tvzV+8b3vxdPbtydnPProePrJT46nTT3x63Cpr2spQudibcp7CGaPk73G+fvOXjMvvjie9q9/lj1f7PL+eWm3OzExO5mrPfGEzu3U+tSHY5613mXdJ1nW1cQeIyl5LEZGlYXdVlpZa7tNui1bT8w251pHp0K3gV4ROq4PRX+HQW2Tckm7H7af2fsAe6/g6epvFtuOmbJNTy5LzNaL47fx3HO7vg2gG/jVO2AOTsWN6q5dyc9+9KN4et26eNpvy+1vusw6ffCV9oMz9GMv5w+/gblo+wcm9CM67eGUvRjbuyl/35nPDk4eFVzd6Ejrm8rEbVXaj/UKyHsTOTD1roxsnbK/FkLtif+ZfbDg/YCyzVVqk2IfnNx2Wzx94onxtHlQ4m83wT8ncpwjifpkC25vflPWnfqjsOJ11V4nR1aump2u+RXAPkj73Ofiaf9hpz3ul1wSr++ii2anm/a3vdA+61lzFTlV1Y9X6k2KPUZbtybns39ANT9GD170i8FVWzV7/vrnld3Whg3hlQTcuj2uD/6DjmWT5niadqfmbaebD2U6Zo5Lzf9D9gUXxNOd3tP5O6+b9xv2mmLrndfO10xdK/oYZfxbSukU8RB5YNg6mPbbxjLty/TEkpQZC+afPw2VOA5Aj5T4SgwAAAAAAAD0VrW6hAAAAAAAAPSAEz2QqorjCgAAAAAAADTQs2wA2FwANjx+4cLkfDbNR/Yc/CYv1Z4H4g/8/B12IT9JsmVzUqQlX7DzZUzUXXkZcw8lXgUSh6clvrWb2bzZ/zRe+7HHxu8ePhyvb9XKauc68HM5ZM3FkWU+8kQE2PbG5otKy1lmc3GY+WreeTQ2lvFvQrYBtdOBnB+puploP2Xgk1LnOOohm3vR2jeWTGo8bvKPJUbA/PKXkwsG8nSm7e9gMvshbgMyf3dbx+1gC36SbJtLzrQhuW4jUtqXPOeVLUPTrZDN8bVxY3AdRdaVPDkMU7dvj8V55yU/u/76eNq2n7Zd9QZhCCY5TzmYWRP3Z2brgC136k10tkEG8sg6rlLZ2v1ATnlJ0sSEySdpvtPAtotpByaQ1D/vPSaA/uAMBQAAAAAAABqGuBsPAAAAAABAfvRAqiYelg0A22XXhhSljVhsR732IyptVEOiO7CNybOhUJK0f388vXt3eMPHHBNP2wKmDf89zKGXAQ/sad1VXZLG7b7MEyJmeCPVB9kopH0HkpeD8bEB7T5vpZ1MGcMsEudSIGyr6WAOa93397dtpLZvj6dvuime9mOZ7OsTT4ynvdCHAyb0zu5u/xBNmOHc7bG8dXtc3z/3ueQy9vyxkUhdPSdy1pmBDXPpkA1xsddFSdq9O/7s7LPOij/4t39Lzrh1azxt0hDUdt4db2f5UR2Vsyw6DQnqaj3zQyVPPz2eTmvDs/DPq3XrOlpdIAKrLhB62Zxyobh9WfRxSYRNeiGViRBLG3Jq7x3tsWu1jhbbkTr/HqnL24uCnU65fy08FLT1ZgrRzbJaeW5Lg2G4ANBnPAQFAAAAAAAAGnhYBgAAAAAAADQMaQzQ4LLdk+1IllJyYCjbg/yee5LreOc74+nJyXgdz3rWY2enV13gdYPOE+IwrCFmBUjrxp6n+3zWbu2hdXdzcL9SKKCuJsIIOtxh3QzH6ZfEd/JDW1cfPztZC42ylrZPU47fThPVeeed8bSNuvPZ0EsbHfS0p2UrQr+OXxXqSTfZFARS8tr4nZtXzU7vueSvE/PZiLFVyw/OTqeNOmyV+bhUZiS2HG14p6FfRY9qV+Z64ksL6avZm1F70qWl5sioq/XVNvaBsFDfoJ4/eepar75rEdfPQQrrLHv5kN1gtgaYC8cVAAAAAAAAaBj6h2Xznni5Nrz4ytl/23bs0xWbd+qIp31NZ73kSq3/rW/qdR++oeWy23bs0+kv/FZw3e/59M1yj79cO+8/GJwHAAAAAAAA5TH0cXILR+dp80cfm3hv2459uvCMZbr8Hedq/0OHddZLrtQzL1ipx5yxLLCWZrfdvV//tWmnjj96YdFFnpXWdXfDhvg5qDfoUKInfGhQyqbu1hnDTfKgC3Lx8u7TXo2WVGbd/N5Z1z3U54RtiEyoTt7jsnp1PG0jPNOituwyVocD5KEP0s6lFSviOrV0aXgdyWtj62thaABcSRqveBh7FdurbqY7qJq0cNSsKQlCYXNFh7oWIVTWbpatDHWrdPeHfnoY+3psfHayimktisa9KRBWgtau3BYumKcN647Q7TtT7oRb+P2/+rHe/bJT5LpULgAAAAAA0D9O9Ycqg/4PzYa+Z9n+g4e14cVXSpJOPGahvvin5yQ+3/XgQd20fa8e+4jsvcq+8j87dOzyMT1i3ZJCywoAAAAAAIDuGvqHZa3CMCXp29fdpzN/+1u68ba9etNzT9LKZdm6ku87cFhv/8et+s8/f1TRRQUAAAAAAECXDf3DspCZnGU/vW2PLnjVd/TMC1fqoYPTetn7rpMk/ckLT9aZJzX3HLv5jr26Zcc+PaLRW237PQd09kuv1Pc/fEHmB25FsHHlo95R9l+30u18BMS9pyvD/slahlBdKcN3yKPwHCk2mZHJozFsOq1PRUjLU1akQa37wyZ0ncxTB9PS55Q5Z1m3c0KF8jt1UxHbCeVnSlt31a6FeZUht1U393kZvl+/lSKXnH9B79UFvoISx3PPntnJ6QkipABaljmcfNyE/uDX1+ldn7pZn/q/Zyd6oW3bsa9p/jPWLtHdX/zF2ddrfu0b2vS3F2r5Ed1LkA8AAAAAAHpvOB+dVx/HNYOXP+MEXXntvbrlzuaHYzfetkern/312X+fveKOPpQQAAAAAAAARRj6nmV7vvrkpvcu2rBcF21YPvt64YJ5uv2zv9A035qV4zr09aemrn/bvzyx80LmkNYlOtQ9vehu1MMWejAsBinsIOt50NXvNJYtBovzpTyy1g2OWTWlhRgdCAyMPTHRzRJ1rpttXJmvCVnLlnYuc57n12n4fb/qVq+2281wxkGtt1lDnQf1+5Ve2S9mQI+V9w4HAAAAAAAA6LGh71kGAAAAAADQLid6IFUVD8sqyh+ZK/lZfDrbwWOyDiSTOXwtFK+Sd8NAh0J1NzFgpRc1Gezqn3aS7d4db2f5UbPTZpAhfzZNTMTlWTZZwfACu7/8cz7xWevBUGo77068tvs1tKpWmwohpANZ7NgRT9t2Y/363pelHYzg16zoc542JLsi6qC9nvrX7SyjvqfJc77Ya49/+2vLl7gm7dyZ3K6ZsdORCP1yd1w/7Q73LrS1ycnW83nfT2a+fWPLWs5mf6NI0po1ZjsZvwPnYjGK2I9cbzDoqMEAAAAAAABAAw/LAAAAAAAAgAbi3wAAAAAAAHKgB1I18bCsorLm6dm1K56+//542h85eNWOH8YvTDKG2saNifmmTb6h+w6MB8szYfI3VCG3QBEx+VXYD1baPklLXxXKFWKXsfVWku69N57esiW87kc9Kl7f/Pnx+2k5yw4dipfZuzd+f+0ab+V2JSaxUc0k45hYf2pikf374+mvfS2eXrMmue8efZ6pG2k7r8xMWe/Ykfx+W7fG7cbq1fH7a5c/EL/40pcSy9Quuih+sW6d/SRX8cirgZC09Jsztm9Pvl65Mp7uNH9SXrZO16YOxtM2p5DNNaRwm9vUTpv12R2UlmcpUZ4eXe+qdl1FzL9P7Td7jvhlC6Y43bo1+dosWDv99GIKVhT7Jfwv9L3vtZ62F3RJWr58dnLcJHpcvXrV7LSf2/Wee+LpFSvab0MKz92GttR231efSMvzC5QYvw4AAAAAAACABh6WAQAAAAAAAA0DFMODdqR1Mx4ZiZ+RLl3aeh4bkilJ2rAhnt62za4sMZvtPm3DUvwQDhv5MTkZl8cPgbPydJ3OGvYRCsGiu3az1H1ix//evTvx0cE1J7eczfTKlxQOWbJ1aPHi5GcLF8bTNiIvrdf3gw/G0zZkKo3d7r4DyTozbiuvDT0wJ0LtwL7EMitWxKHKT3ta/L5/vhw0Q6mPqgTsjk2LYTVfxH4H/5jfdlt4FbO8cDEb6moPuh/C4S/WCdqD4WTrpG0rbBM3b15ymTJESAfrq40R8xrJmnk9MjauTGxqBu+jUFhmP0IyUR5Zj7k/Xz/C5fPcO/oytweBGdNCCUPl85fJep8bnM9eTP2bK3vjlXZDlbz5bzmLH8Laabgt7UufzdRp5/pbjh6o/jccTvQsAwAAAAAAABp4WAYAAAAAAAA0lCBQAL2W7JIcPy996KH4XX+Anq1b4/kmJtbOTh/w5rMRWbbrdGKwOiXDsGyv87TRtzoN2+hm9/0yhAqUgj2wXhd7ezyzhj1adh+PjYX3r53PD+m0x2Us44isoWXS5qvZym+/bEpcaPZQgxI02/Zg2p2SEmuSFoZy1lmh+cxOsXGqHrvviwy7lAjhQPiaac9Zv22wp3q/RsNMyBgHZke0tiHN/uJjY/F8NT+uGuiSsrXHodG7M/Nvjk1DUrb7yMQ9jt8g2DbATPvfIZG1IbCdtPQZecLb0/Zj2epTJc1cKP1cBcCAKMMtHAAAAAAAwEBxkngcWE3l+rMFAAAAAAAA0Ec8LAMAAAAAAAAaKh+GeepvXNHvIgQtWDjZ7yIE80gVnYIkLddTqDyDrOM8FgMq8V1N7hsp3z4JLZM1z0QR+z7rsOwJtiIXfDKVLv9GASdtaBWJ7zo23vF2gE5lvZYNirT2JGsexTztbNbrQdlyCg1SWdFbue77upjvr5v1Me+9VZb2M+2WoujvFPoepTyXd+6Mp//mb2Ynp9/8R7PTpSw3MOAq8mgi7IbHfarfRQh6+pb39rsIAAAAAAAgp+HpGjFcOK4AAAAAAABAQ+V7liGd7bJrh7f3h7ovQyhhnu7FuULoeqSK3aXTwhA63edp6+7HvuxlKGjVDWvYMgZPMDR8593JGXfvjqdXr46nSxbHmdaOdRpeWdQ6yqqpnNu3x9P2mGPoFH1/0MtzIsu2Buk6nbVNSv3eU1Px9IED8XRKrLrdjl1kfCznsbTXjjVrZidr73h7/P4f/EG+dQMI4mEZAAAAAABAm5wI16sqjisAAAAAAADQQM8yZDIoYRFZla1LexV183tnXXcRIUGdGtbj78t7zICBMDkZfj2gwzwXcS5mWUdlznk7pDiQwaDW/UEtt5Sz7LYNzzpMsFFI9L3d7iWXxNM2xhNA4ehZBgAAAAAAADQM5p87AQAAAAAA+oweSNXEwzIAQ2OQQwcAlEuiPRnQUEu0J/UaQh0A0NDV+00bkpkjLBRAdjwEBQAAAAAAABp4WAYAAAAAAAA00GccAAAAAAAgB3ogVRMPy4bcdMlO7W7G+Gf9ruS1Kkba/u50H+ett/04tpWvd1NT4c8y5vAZpnYIgydP/SxDHeK8ArorV9uw54H4xc6dyQ8nJ1tP99KBA/H0nj3x9NjY7OT0xJLEIvbc7ua9HwD0WrnupAAAAAAAAIA+4mEZAAAAAAAA0EAY5pCrHdjX+gPT3brrQmFcOYdhD3UBtz3Ld+9OfpYchTlePm+X8VAZqt4FveiwH7s+u++a9qOpQ9Mjo4WWoVOpxzytUobmW7Om0yJlkjmUwoaR2HJKyRNr+fK2y9DL86VsIWsoj9rUwdYfmGtUN+uPv257mtlpe7pJuS+hs9LOv6zf15ZvbGw4r4sYbHnquh9daW9zV66MQxjHV4fvtUP3P0VIvb7b+3/bxpl7K/9SPzLSen1+G9TN74Te4p4pyYkeSFXFcQUAAAAAAAAaeFgGAAAAAAAANBCGOewyhlvetzt+rmoHx/EjKO3q5s2Lp1esSM6X6H6dI1YkT1fu0AA/knTbbfG0jXJbsSL5PDm0rTyj//jLVKFLeuI7/OM/Jj/cvDmeftvb4umUOphYnz2AW7cmZzQHsHbKKfH7K1cmZpseG2+97jz8OIRt2+Lp7dtbv79oUXKZH/+49XyPeUxyvoc9LJ5OCW3sS4iDLYN/YtnjZM9z/5z3RtaaYb/PPfckPzt8uHVx/FA0/zXQtk7jGTvkX2dtU2HDvTZsSM63ZCJDG+Cv3G/XZnj7oBbYJ34YvJ0tGZJplqngtRDDx9bpBQuSn915Z+v5xlZmSxvRy3PE3u8fOBCXz2aK8G/b7H1z2gDZiXKnzWgFwt1pJ/prmH7bYLgN3cOyHft36bIffERX33eTFtTma82io/SBR75Ej/jqq7R+yWodOHxQi0cW6hUnP1XPX/tESdInfvZ1vf6aj+vYhUfqwPRBvWzdL+n311/StO4r7rpO7/nJF3T5RX+ceP+3v/cX2nTfTYoknbx4lT5x3mWamL+wB98WAAAAAAB0C+F61TRUD8uiKNIzr3y7nr/2ifqXC94gSdq862e668BunTSxUtc8+YOSpJ/t2aFLr/wzTUeRXnjSxZKk5xx/oT50zst170MP6OGXv1zPOu4xOm7RiuC2rPc/8sVaMr/eo+U1P/ioPvTTy/Wm057dhW8IAAAAAACATgzVQ9Bv3nWt5tdG9PKHPXn2vQ1L1+q48WQo09qJlXrf2b+tv/jpvzat48gFS7RuYpXu3L8r83ZnHpRFUaT9hw/KOZfzGwAAAAAAAKCbhqpn2fX3/1yPXHZSpnnPXnaStjywven9W/ferQOHD+rMpWva2vYLv/cB/fsdP9CpS47Te89+UVvL9oMfc27z/tgcJGk5y0KpT1qtvxNZ12W/g59vwX6Phx5q/b4kjQbOGD8mP1Emm+jBJJup+fm0Vq4Krq/UbH6uf40fME//3u8lZkscpde9Lp7PfO/6fPF3T+anSHHzzfH0t74VT2/cmJzvWb/act2h7TeXIeW42ApvE2zZ4+/nWtuyJZ62lfLee5PzPdv0RJ2cbFm2Xkps1+QoqpmySZJWr269Ai+RmN119pyzu8vuRinZDtm0aXlzlA3UOYdS6Ob5Z9ftpwK0OcsefDCe9nOWJU4sm9zMrtDPPRbKz+ZfDO1r03bVvHN+aipuH2wRQk0DUAVLlyZfL14cT/c5BaKk8H2WlLyG2unQdVqSalMHZ6dH7cW6KT+pWWEoAbJ/ETfryHOdztpOl/0ewH4PeyzGx0pQbnP8av6PPxLHYsCVoMkup8h7/elbv61v3n2tbnzgdn3k3FdqbF62pJwzPn7eZTo8fViv/MHf6tM/v2o2vBMAAAAAAAwe1/iH6hmqMMzTjjhBP7jv5rlnlHTNfTfrlCXxnz6fc/yF+vFT/1rfvvhdeu01f68d+3fpi7d9Vxv+/VXa8O+v0qZ7b5pznfNq8/Sc4y/U52/7n9zfAQAAAAAAAN0zVD3LnnD0mfrDH31SH9n6H3rJuidJkq6+96faN/VQYr5te+7S6675mF558tOb1nH+ivX6zTWP1wdv/IreseH5euZx589+dsVd1zXNH0WRbt5zp9YtXqUoivSvt39f65cMXvzB6EjczXdkItszVj/U0bI9ru207bFddFf1tHXbkJA8ZfC7edvvlOiDaONn/JWbcMSBGh77S1+andz96lfPTm/xZjvXTNdM5UgLdU18d1uh1q1LLmTj8GzX/hzdv9O67CeOS9rY6TYMYe/eeHrRouQytru6DRldvz45n/l+/Qq9zCUUZuGFa9pdGZrt0KHkqheaAYXt8lnP2dKfV0DDjh3J1ybaXfPnx9MXXZScb4kz559diT0v/RhP25baaT8O2oaa29wFXps7tvyo2WmbeaB2YJ+ZKeVmASix2u774hcmznjUnjuSRu15kRamGEiz0M3rlb/ukZHW212zJn7fv29LtC/Xmd9Cfjzq6afH06G8LU0rb99A3SflUOom07+mzLz2b+KAATFUD8ucc/rihX+oy374Eb3zhs9pbN58rVl0tD5w9kt0854dOuurr9aBwwe1eGShXnny04Ohkm889Vd09tcu0x+e9mwtbiTvn/GNu67V6i++YPb1py94g95wzSf0wKF9ihTpEZMn6sPn/m43vyYAAAAAAAByGqqHZZK0avxIfeaCNzW9v/85nw8u84K1F+sFa+MHZ6vGj9SOS/+hab6Ljj6j5Xr+5xffnbO0AAAAAACgrOb1uwDoiqF7WIZs0rp821Fvmpgu5aGRW7zZgmFTebud5+l+XfRgLfb7jobCB73RMAeWCRuYPOec2enz/LAdEyP0wMiy2ek9O5OzrTK7JRSGcHAk2aNz17z49WITUuuPEpRYx1R4tDnL1s9kuF+yntVsJbLH1i7kH/NTTomnbSywP6qkGTWzZvbr9HmPDpS6c1nPv8znm93JdgRVJUfQs2G4Nuwj6+h5NmS8SSjmu2Bp+4TwT7TLRnhLycFxN2+Op2+8MTnfigviEMhEjfTOv6C0oa9tSoHjjounvbbLhluO2mVCbSQwSEI5RXw2TPHb346n7T2AlBjStl/XisR27SiHZnpkLHkPFhzN+wc/SM4XSD0xPbms5SySNGLTmqRd33MYpOtxqcsaGp48NA8wQKod1A0AAAAAAAC0gYdlAAAAAAAAQAN9IgdYV0N9/O7ktl90juEic0VZ+H2xQ2XwVl4LhIIm5knZP0WPonPfgbi7+uTpZ2Yqw0CxQ7DZkY585rjYCE0/BHJVhuhUv9rZEeHsusdWhkcptdN2GT96NDTSoh+6u2plIn5Qrfjho1Mr17Ysz5IxL9TZjLKlXbtmJxMjcUnN4Zs9kKjH/jlrd5Kd9g6gPedsfVgyEa97tIirFWEA6JQNS8pwrcnLnldjY8l1n3dePH3aafG0bQeb2NAYey76DbANlbThmv49wfnxSOA2vcC+qcT4zxofM+ecjaUm9BIDyp4yY5NxqPOekXh6p5de4mQbmWZHj80pz71tLoH7fRv+LUkHDsTf/dEXXBB/4N8o2Rss077YVAxjE0vylBRlNVNvnOtvObrMiR5IVcVxBQAAAAAAABp4WAYAAAAAAAA08LAMAAAAAAAAaCCBC2I2J4mfx8R/PcPPO2LyE9TShp0PJY9KG4bbvk7Jf2QF8yn5CSVMrqeaWXfWPDR+noiJiXi52oF98QdTJsfNSDK3y6Dw90ktlMjLz191222zk8fbHDfLvSHIM6hNJXN6LZuMy7DvQPiYhdLtLVoUT9sR3n2m2E3V7uCU2a7JTWZ3ww6TAkhKVkO768483Vu5zfVjlSHvj20b/HbCfnl7XvnDzqvlbIm61pSLJWublDGvVCjXS9G5qFK/E8rJ1mM7bepazat3RR5nf/lxsyk/n1lIojy28fLPI3udtd/Jb4NMDjSbp+zBB5OzJcpnchENat3vaq5YDASbys/eL9hTp+mSbc+liy+Op/uQZzQvW/f9tKyHDpkXi03iWZtgUQq3LwXfy1T+XLTttp8Xrt/8m+OZYx5FvS9Lj9EDqZo4rgAAAAAAAEADD8sAAAAAAACABsIwB0Co278f5ZYMMcsRPhiKUfNf2w2HQqGk9K7BKaGTQbabdp5ux3abKaFahQvsVz/KNFSEprDHsnUvN+E4iZAC/wuuNF3zzf5P63wf/K6hbt6SxsfC4b+h0NelS+Pp008Prjox7YdrHnFEPL1iRTxtq5rdBVIb1bjTut9NaedVQGodDoW8+fUp1PZ48S/2/LGr8NtPGzrtb2pG1maidOcoJOUPqw/W8ZT63qs6kLad4PdNu9Zv3dp6GdvOK9mW2jUsXBgsTunOi05DKpuv4YRYD4Mjj4yn7XXEhiL60ZU29UDN3gh0896zYLZOT06mtKVbTZyqjVmVpI0b42lzL5NIY5Hx3niolSEFR1YzB9C5/pYDyIkmCAAAAAAAIAfC9aqJ4woAAAAAAAA00LNsgPkhALt3x9Npg0UGe++Gwp+kZMhTWmhUKM4pLazTFihrKGieftl2mYwjEBUSShEoa96u5Ynu6oH19TIEJBHaaKabytDF8MHptO0aic9MXR01O29kIvw3BFu906qn3c6orbbeuu0uCYX+Na3c1t0yxCeEzt9Wr0NC8a223UkJvU3sEy88s2Y+s2FSWaMYUo+LUYZDgXR+25B5pNPQNc9UotKHyxuJkTH92HAbJvW978XTV1yRmK12yeTs9MjkstnpXkaJh45frtDUlPnKfCzRff7xX7EirhuLF8fvhwZ6TJWSTyXrfY3Vr9FaE4Mzrjs53qZ/r53SZmbBaLQN3HAAPUPPMgAAAAAAAKCBR9MAAAAAAABtcqIHUlVxXAEAAAAAAICGyvcsO/Xyl/S7CEELJhdlms/G4dt4fT8nwubNrZf3UwasWxdPj43ZvBzGzp3Jhezwz/fcEyxrYmM2mYM37HwwqVpa/qMidTneP0vuhLz5c7IUvej8OXlyS2SVp2xp5UnkmknbWYHP0o6LXcTPzRP8HiYnSVOpTX23+bRS9TIpULvSEiTahC5+IjCb8MTmLNu1K55euDC8XbtPMiaLyVE1mppFv1lDuT2wJ3yOLRk7GL/w8t6l5s7LIi3ZYReF7h2sRM5JSTV7g2Cv535upYztUDfzCNWmzDGzuZ4yXq86zQOV9VAOUj67fgnliCt7jqrMucmsHPl389yDFZG7L7Q+f932t4T9iXD48FGJ+SZtXrccaYjLcMzLhvyKQHdV/mHZDV/eOPdMffL0P90+90wAAAAAAADomco/LAMAAAAAAOgGcltVEw/L+iiSm+0+29R11oY8mH7edr7RpqMXn6YLFsTv+tEStrtzIoxh9+542oZCSckwTBuS4odTPfRQPL13r1/A1kJd0v115+i6PkhC3aeLCIHM00276FCWIg1UV3NbV/1QJlPHU0NGB1XW72TbFBt6ee+98XTKEPRp73daj214bGpbOkh1suJCxzw1ZMpe8773vfBnG+Pe6tMrV2UrUAnO7azXFxuWWVu5Mv7Aux774Zs94bef9risWZNpFYn94K8vZGw823wZhepnVdqQxP3Gtp/FH9jzwNYtSQrUp7yhhGXel91Ma9HN7aTdR9pDu3RpPO3fxofa4DIfr7y6eZ73qg4B4CEoAAAAAAAAMIuHZQAAAAAAAEBD/2MDIKnFaEmBsA07X1oEwcMeFk/7oUOju++OX9jQJjujH9Jgy2OHhPPLaftcp41Ql2UIIb//dmhEMa8MVRsZJu+omSGdLl+FfZqm8O7taUNoos7ul2OOiaftiLr+vrNtSMqwlLadDDVPTbZtm520oWgTE8lwrNBofOiv0Gh6oyNe22UrhA3p84eWtmHCp5+eqQzB65B/XbP6UIcyt+c5y1bo9ca/6TFtQK6Qp7RRSs19Tm316jm346/O/i266qNmph7jtPpuFJ0eYphkbV+KDJ1OOw5pGVMGpU5nVbb6OKhtSBU40QOpqjiuAAAAAAAAQAMPywAAAAAAAIAG4kbKKkO/fT+S0UaHmCiipnCjI444anb6RjPo18qVo2Z6SWKZJXbkIhuSkhaGmdYXO8vIlgWMhlm1kEwpHGLUK1Xv5p139C3MIe2ctY3U+vXxdFqYlJUSjmUjtzJHktmwTrNQ1er6sEuM/Gjr3a/9WnghE5I3zLp5Hcp8ngViqW2z0TxquGFvovzGISW0O6ToKNpK3L+EzpcBDlvv5sjlHevTfh3Y+jmg8rS/ae1Jp6OGo871uwDoihK07AAAAAAAAEA58LAMAAAAAAAAaOBhGQAAAAAAANAwuEkDKi5ProrJyXj62GPj6fnzk/PZlAZr1sTTNv2Hn/Zgemw8fmGmuxq/niMvGTpT6lwcJUC+hi4x53oij1SO/e0vMzGRI59HIBdSkwHOu1NlofYqrR2bnojzdNZsAtA21pFJjjozbPlkgvc/Gc/LZKrD8L6rZcyDmFgmxz7Oe/zscoOavyxx75jRIH0/q5f5Tju9Nlbinm7HjvDrDRt6WpS5dLNOZ113EWUY1HaoV+b1uwDoigq0lgAAAAAAAEAxeFgGAAAAAAAANBBD0kdOUaawt1B36bQusEevyFaGJRmjjeh6W05Zu9V3esw45uiVouva6Ei29XUa8tTN8w/d18sQqiKlXQNsOGLW86DTMmSVa59mDGENRFCmKjrUtZuhs2W7Hyvi3CnD9+imsqW4KLoe51F43di+PZ4+cCCePu+8NkrVnqrU2+D3sPtRyte4AgOOh2UAAAAAAABtciJcr6o4rgAAAAAAAEADPcv6KJLrqItz3mWLGGGu38ocFlMGWcMiynZcgX4hVLn8ehUS5B/LfhzbIsJ6yzZYazdD8joNKyv6GGe9Bmetd2W+58lTtrz7uwrtbC/3V5FlsEpxHJYvT77euDGetjHoOfj7pxTftx/KdhEB+qC8V18AAAAAAACgx3hkDAAAAAAAkAM9kKqJ4woAAAAAAAA00LNsCFUhZ9Wg5PLottB3T8u3MKjHHOimruYysvlTupgDpIg8V2XTj/a9iP3YaX1Ku8b1Ku9WETKV1c8vFDhHish5luf4hZYp+nwr+3W7yHORnFDtKXp/Zc2p100dH3O/nVi5srP19Ug3637eNjLY3pGzDBjipwwAAAAAAACAh0fGAAAAAAAAbXKiB1JV8bBsAITCMdK60VbCzp3J17Y78NjY7GTNTEsp+6FHoVC9lDkcNc8w2hXZR0AruUKoDhxIvrbnSNr5Ypez7VXWc8wu7y8zpOdp1jCizCEuKdeHvoSfmfLUvPZ7emy8sPL0UjD00j+v9uyJp+35MrksuO7kLor38ejUvuSMdn27d5t1TwbL2q97qyqkzMgq9F3z7vuq769OdVq3qhhGm1bXstZD2w6NjrRu72oFXLPznBfJ5q56xw/oloo9XQEAAAAAAADy42EZAAAAAAAA0DCc8RsDbOvWeHr58uSzTi+KYPD5oRm2f7P9sl4YZqI7sV2HnZ6YSK57kEKZigwnTVl+mEJA0IG0cKpA6PTA8r9f1pBK+1koxMzfP3a/2mX8kOrly812RsNlqIB77omn58+P26dlk8n2qXbAhN7t2BFP+8codPwKuJh2HEqWUp9C4YzT3vEvdbttv59fp7dti6fNtdpPuZA8Z+J9bE+XZX6zY9M72BkLvidIu37mqRvdvB6HyuAfFtv8hW7H/M8G6dZqkOQZETfr6OmDopujP/t13762zU7afKMH9qglvx0r8CRJG1jYTtsmVpLWromnixh1eFgN5pmEuXBcAQAAAAAAgAYelgEAAAAAAAANPCwDAAAAAAAAGsgmMGBsug0/xYY11LHkNg9JKD9Q2aXlgQolTxgbD6/PX8cMrxINau4K9FEoKcaACbaZ9nyz+a+kZLKeRO6wlP0QaJP8cy8xvHwo96JXBrtMFc/l+fPj6dSqtn17PH399eH5FiyIp487Lp72kjD17HoaSvbkf9nQ9WGi3DnrgnmW/O+3a1c8nZZXzJ5zY0tmJxOr2+PlDQrlAvTn6zBvXfJQeud2oD7572fJMVV03dy9u/W0JC1aFE8vXBhP1/Y8kJhvZGKJ0B9Ft/t+DqwZA3ypz8V+39rUwdnpUa/dGJlcFr/YbXZeWiK/AnemvyrbPkxMxHXDP7fz1BvyGjer3l0XJI4rAAAAAAAAMIuHZQAAAAAAAEDDkHWkHUy2q+ttt8Xvr16dslDGsJ1S8/t/h0IqQ/3E/c/S5uumUBmydsX2j599nbX7dsax3EO7aFQp+27Y+uMjbIBCnTOHDaSFatm6b0PE/P1gl7Ox9CaM7J57kossXBi3+0tsuJnfHpgyPLAnXqZ5dPrBD5lIRBzaiDwbdilJmzfH05s2xdP+Tjn99MAKPX2ORWoK0c2xXL+Oud1uMNTHPy6nnBJP2/PFjx0y59WouSGaGjOhUHZ5b5kEf90FhmH6/LDMWf65nZZaoUD2GO3cGZdt69bkfOvWxdNLl5oPppLnQaZjjsKEsmwUcTkONXGDeg3xhepnWjijdu6Op71rT21d4J7AHqQ+3SfZcOnly4sNlS7DtQboFn7lAgAAAAAAtMmJcL2q4rgCAAAAAAAADfQsKynbY9dGB9x+e44VpI2mWOYQOj8sxu6IUL9zf7k8IYtFyxP+mTYapn1t5ksNfQh8d3++YBjmSMpMZa5DQB42VCutrUmMxmdCK9LOicBne/cmXx8+HE9PrDThWF5oVmiwzpUrk+tLizIcFPa7LpkwoR5f35Sc8aqr4mm7UzZuTM5ncxnYHeS3cTmumbZtzRySN5JxNEtbhgEKfQ6Z9r53bc2a+IU9Rn6oZCC0KXGI/Ipvz20balnwfsx1WcyxUNYwxzyhUX50s9+mzJahgHDRTkcIHSRFhKnadUxNxesIVW+pEk1FQtHhfrY5GR85GP7QNuh+rLKdb8OGeNq0Q81h9cV9D/92ZXzKVAgzMvS4TUEgaVqdhWXaXTLKTwJUzOBfdQAAAAAAAICC8LAMAAAAAAAgB1eBf5m+p3M159zvO+e2OOcOOOduc8691zm3KPO+cu4pzrnvOOf2Oufuc8591jl3YoblznTOHXLORc65Z2XdXifoLFlSDz4YT9soEmvBgpQVDEqoZRo/fCIUXulJjMoSCq0peJ+kdqvOs920MNpQd/ACZCpeASFKQKnZcK+M4d9+KJmVaB1snIw5dxZ5txjz56eWsNUqEgP/HXFEcr6qhWFqy5Z4+nOfS85oR8C0IX02bFYK75SUEUfztHF2EX8wxv37Wy+zeHE87YdPJa43WUM3B4j9fnsOmO83dlRiviXLW4ezJY6QH4tmK5GNK/SOa6fhfnkuhX4bYutKN89f+1137Yrf9y/19vSx3692YF9yRlNhiw6bZKS9dPPmdW/dVdn3tk6GUt6Mj5gXUiKEMTEsrO9rX4un7QmUCMlMhjyGzpE8+7sp1HabuSmwcdVeGGankuG/3QszRWm8X9KrJH1R0nslndJ4fZZz7uIoilIPunPuUkmfk/QjSa+XdISkyyT9j3NuYxRFdwSWq0n6iKQDknp2V8svWwAAAAAAALTknDtN0islfSGKol8x798i6S8k/Zqkf05Zfr6kv5R0m6QLoyja03j/q5J+IOktkl4aWPyVkk6T9G5Jb+30u2RFGCYAAAAAAABCnqt6xOYHvPc/ImmfpN+YY/nHSVol6aMzD8okKYqizZKukPScxgO1BOfccZLepvrDtFtzlTwnHpYBAAAAAAC0yUmaV4F/GZwjaVrS9+2bURQdkLS58flcy0vSd1t89j1JSySd3OKzv5b0MzU/pOs6wjBLwh8R/fbb42kbZm7Tb6TmtEkbI3pQ8kr55bQJM1JyByXY/ZCS36ubw68HZT0O/nx5jl/GMcODqy42NRpQbratsG1NynmU1iSN2xPLNuJmOytWhIuQ9r5dtS1e1pxng8Tm71y7ZjJ+4e8Um4vqvPPiaZs3RpJWr46nM14rOmXzyknStm3xtE2vtnBh14rQN/b6mXbNteeSvf858sjkfBMTGa7b/jlr6sb02PjcyxegtsNLv2LagLQy9ONW7fDheNpPzeSn/Js1KPeUJVTEPaWt4nbaPyxZz7/QMlVk95HN9za9PJkfsWavFfYa7l9TbPKuQH7htMtLp6dS0/GyK7SNacbfBFnRBAyVVZJ2RlH0UIvPbpf0aOfcaBRFB1OWn5m31fKSdKykH8+86Zx7jqSnSnpMFEVTzmUdiqAYVG8AAAAAAIDhtdw5Z0ZJ0t9FUfR35vW4pFYPyqR64v2ZeUIPy2b+QtRqHQe8eeScm1S9N9lHoihq1Rut63hYBgAAAAAAMLx2RlG0MeXzfZKOCnw2ZuZJW16SFmRc/j2qpw17U8o6u4qHZSVx6FDytQ03sVJGOk/qUUhJV/lfMGtfc8N2Na+Z+Yoeztx3cCpe/2igu7NfBnuYRm03b//72a7dZjz51O8U2Ed+l21bbmvULu+vyxa8An2x046LlRbigAEXCpv0z2Vz/j24K3578eKM6zP8+jMyEtdDG6bvXyvstuz1wS9qFeqnbfrumO3JL636vd8Lz2hiyQ6uXhtc9+iI2T/+SV/gNXTRouRrG91jw9wKjpIpnbSQsNDp4p9XiTrtx7cG3p9ef2o7xWxL8Bz7+teTr01ocM3UT38/dLMOhO4XTjopnvZDuW15EsdvZDTTNqvQBpVRBW67+sbuu6VL42kbTSlJE+viFEr33BO/f/POJYn5Hv20ydYbMvcKabfQhZ8jZruJlAQFVxq7mWE2JIng75B0qnNuQYtQzGNVf9gW6lU2s/zMvD9psbzUCMd0zp0t6UWS/ljSkc65mWQMMw/rVjrn1km6LRAWWoghOa4AAAAAAADI4WrVnx+da990zo1J2iBpU4tl/OUl6fwWn50n6QFJP228Pl71sRP+RNJN5t+7Gp//ZeP1Ge18gXbxsAwAAAAAAAAhn5YUSbrMe/8lquca+6eZN5xzxzjn1jvn7Eg235J0p6QXO+cmzLyPkHSRpM9GUTQTQ/F9Sc9u8e+vGp+/t/H65iK+WAidd0vC7+5uw2ls99bQyGdN0sLmBlWHoaU27CDraDRZu0T7803ZcEYTomDX7XfztqFWCxbEy69YkezmXcsYguoVqPX73vJ2sBxbvjVr4vKMeaN3FT56T0BamGnWUZ5CEaNpZQgMaNTU7dyGzRFuMuBCYdBeZbfhR3v3hlc3vjQ+Zw+OxeezDf3z660N9bi91ZhBDcceG0/naRrKzp5LY2PxPtpk/nZ5+umPTSxjQx0fMh3zR7xIvcTofvbkLiDsMtQm+aOe+q/nWlc77HaLTj1QZBuXFoJs74VShSp8F0+EzPvADnMqZQ7FtvKMXpjnmplWH0Plq+L1Luu+K4M85SnbdyhidM48bZxd36i91KeMtGt/r/m/w+womvYyYkc99pukZHqdgu8j7Y2qHd7W/uCQVAu0SUVcN7qd9ga9FUXRdc65v5L0e865L0j6d0mnSHqV6g/C/tnM/g5Jz5f0eElXNJY/5Jx7teoP3b7tnPuIpCWSfl/SPaqHXM5s6w5Jn/PLYB6yfS+KoqbPi1aR22kAAAAAAIDeGqLHgpdJ2ibppZKeKmmn6iGRfxRF0ZxPeaMo+qxzbr+kN6uewP8hSd+Q9MYoilL+PNwfPCwDAAAAAABAUBRFh1UPgXzvHPO9QNILAp9dLunynNv/hKRP5Fk2jyF6CAoAAAAAAACko2dZHzlFszHpE158/Pr18XTWVBxly0HQVR3mIbF5qHxFDIFsixfKeeWlDNCOHfG0TR/g57ObmDA50LIWKJCDxx/y3ZYpVB4/tUEovU9aTj27f0ZzHMq0um4/23cgeV7Z72ePs3/+WXmqWqc5GobqXC6jHI2ArSeHDyc/e+BAfJ4l897F9cTPYXjXXfG0bUP882/hwtZlqErOMsvmdrH70W/PQ9/dP6w2Z5xsO+avoAx5r0rGtnFFf4dc6wvk3Am+n1Ousl1wQaFlyMO/JtnvkTXPGeqy7KNBPa+7LbTvQvlksy5fRHlC54RvcjJe5uwN3nzmYjRi8vuGfhNIyXvl2p4H4hcp9yGhc7bpPA/dFGS8pvn7gfYBw6iCt9MAAAAAAADd5US4XlVxXAEAAAAAAIAGepaVRCIcRPlC01BXhpAC28N5//54+v7742k/fHHevOK239SFPBQr6Vm+PJ7evj2evvPO1vNIyfCxUJijJC1YEE8vXhxPZ63rie/kx6yFNjy2LLi+rJFVoXDS1H1sVl7EkOhIl7aPs+7XLGFladtJi9zMcvr5Vdq2G3bdNhRxru1Wjf3uNrrOP5dD52zqOT9EoZah1ABSct9l3SXdDMnMY5hDhbJ+9zzHrGzHOY+s14pO7yPTwl6HySCdi1nrd+qxNI2mnW/16njdO3d665s6GL+wjXMBF/fEdyogJL0Mv6+AXuORDAAAAAAAQA48PqwmjisAAAAAAADQMPQ9y+Y98XKdceKS2ddfettGbduxT7/85k1ae8y49j90WE87/2i953dObVp22459etofXK3rP/64xPv/92M36sv/s0M153TU0lF94o0btGp5ytCA6JpQd+mxseRz4oxRih1L287SpfH0EUfE06kjuGXdkO3anTJMpe2lbWf78Y/jaRtCKTWHhbXapF8kO4JfWrhCogu57aru92PfujWeNnGiYxuSYZhpoVutyulLLOPPaONWbVd8cwCnJ8NhoYn1pcVGoUkRIS6driPrIQrVLxumLEkrVsTTixbF0357kDgv7MorWGdCIYJp4YLDGv7kSxuJ2co6+nZIGcLPqnLMexXmVESYoVWV/V+kKoSwpum0rhYRBV+KEMEMKTiaLs32yw9TXgVgQAz9w7KFo/O0+aOPTby3bcc+XXjGMl3+jnO1/6HDOuslV+qZF6zUY85I+aFrvP45a/WnL3q4JOkvPn+L/uSTP9XfvObMwssOAAAAAACAYg39w7K5LFwwTxvWHaHbdx6Ye+aGJYvmz07vPXBYzrluFA0AAAAAAPSJE7mtqmroH5btP3hYG158pSTpxGMW6ot/ek7i810PHtRN2/fqsY/I1qtsxv/56BZ98j+364hF8/XN959XWHlRDL/LdxcHQmsKWwyZHz9jTfTEzly2tPjBjCu03cPXr4+n7Uh9O3Ykl1m3Lp5evTpbcTqOEMt4AP1wBxt+a8tnv59f7sy94m0Z7ApT9ncVwzE6VXi4SqgiphyXUBn88tj5bJ32N5nlHLZh2P7r1OV7FEJeBnb/j4wQBpaXrauHDiU/C0Xs571GVj38bFCktV1F68cxL3pE5G7inGhPntGpyyB0vfIHpUzUhxw3x9QhoLuG/mFZqzBMSfr2dffpzN/+lm68ba/e9NyTtHJZew3Y21+8Xm9/8Xq945+26kNf3Ka3vvDhRRUZAAAAAAAAXVLux/J9dOEZy3Tt3z9O1/39Y/Xhr/xcm7fer/+9YZc2vPhKbXjxlfrK/+yYeyWSfv2Jq/T5K7PNCwAAAAAAgP4a+p5lczn5uAn9wa+v07s+dbM+9X/PTvRC27ZjX8tlbtq+Rw9bXY/d+sp37tL64xe1nA8AAAAAAAwueiBVEw/LMnj5M07Qez5zs265c59OPGY88dmNt+3R6md/ffb1+19xqv7lv+/QjbftVa0mnXD0Qv3N75/R6yJjDr2M8bcpCDrNa5QqbQUZV25ns/nHFiyIpw8fDi+TZ9TrtGOR+MxuaOXK5IyhnZwitEv8xYO7zv/AlulAtgFBErkq7Pq6mURvgGTNSZJ6PufYl1nbh9B8afm0QtKKmfn7DVG9KVueliJyJnWTrRo2Z05aU1V0dapcrqbCL+K9Y/d/2XM/FSmt3vVjP/jbDJZv9+7k6ww3XoVcP0sgaw7RMuvV+Vb26xAwiAbnyt4le7765Kb3LtqwXBdtWD77euGCebr9s7/QNN+aleM69PWnNr3/7ItWFVtIAAAAAAAA9MTw/DkJAAAAAAAAmMPQ9ywDuiFLl+vRkWzhAN3sOp113UeviKebwgamDrZeKCUkpeNu6P66ly9vPZ8ndFzyhI82fYeR0Xg7E62/e9YQkGHuLt/N796rEIVhPn7DqozHPMt1yA87z/o9Om3DK9He9SkMs+jrSGi+QQrPLKIOFVkPC993frx0hjDM4L2ZpGlzv1KEbtahPMclT9hjr9qhgW3vPKF9XJXvl4frdwHQFYNzJQQAAAAAAAC6jIdlAAAAAAAAQANhmIDC3bS7GZKSdZnCQ8f80BG7rYK75od03E3bD0mwI0XZuCI77FsPDVL4yjDpV4hnHsMcyoDs8tS7lEuApqZqLedLizi00xkHI66GgsMuU0dG3LMnns6TNyCNPbgFfKdBbbv6cd3OvK/8e5mSjbwa2ndpo+2G2oqi60/T+kx9D93zZh6ldIBk/S3B/SuQVK7WFgAAAAAAYAA4SfP6XQh0BY+PAQAAAAAAgAYelgEAAAAAAAANhGECKbqZt8DPARNKG1JIagq7cptEwl+5yd8QylfTXJ7WOR9GC9hXweGo/UQYO3fG0ytXxtNpiXZKIJQ7aGTEq3d2CPiSfQd0B0Oxpys8l+MQSctFZl/bVJD+fEccEU8vXhzeVqWPRS/b4tA1PCVJXK/akEof45wK3yd5kgGm1M9uHjNbVR98MNsyZch1WIVcXWnHNe37VeG7A93Cry4AAAAAAIAceORYTRxXAAAAAAAAoIGeZRhKZe9yXHh0h11hSn9324XbhgKGwgV9yfmS+3h0pLNu/4mQkomJ5IerV8fT9vtVJWSxKt8D6AFCWNNlbU4mJ+PpQ4eSn9nQy7QQqkofCz8dQDdjyew1L+sFOasOry/dTFcxqLLeY2beVzbVhJQ4ZtOTy9pfX48sXNj+Ml2vTznqe+HHE8DAKPcTAwAAAAAAAKCH6K4AAAAAAADQJid6IFUVD8sGGKOBdUeefZd1GXvMmgaiDJyN/eqCbrc7njHMJk2ecJzgfP53sPFCgW2mrTtPF/sizr9R8zXKHhqMdHnagDzLA1aeejOaGG253O3OMIU/pY5kZ0aqtqNW+8uUYT8MahtXZPny3BellmH79uRrM1RtbcOG+H17L+SH69rhbe09VOD+qR223LZ9GZ1oMXNDr+55uLeqK/v5B5QVLQgAAAAAAADQwMMyAAAAAAAAoIEwTKALsnT7ThvQaiRjeF6ebtXd7JJehkEb84Y/dGuZrOgiP9hs3fDPbXte2AH07OB5jChXnGHdd1nbp6zXnjyGat93c/RLZTueRdwfEKZWPH/fd7yPV64Mf+aPyjrDP9Ht6x7drBVRt7KG9RZZj4tux7qZNqeXoeq0FenYO9XEcQUAAAAAAAAaeFgGAAAAAAAANPCwDAAAAAAAAGgoQYYh5DVUuUHa0GlMfZ7cAmnL2DQRu3bF03v3hsuwaFE8vXhx8jObamJkpDfPu+138NNj7NnTehl/NHJb7tFOWx4/F4cpVM3kkZkeGU1drFXZ+iVrvbPz0QZ0X9Zz254X/jmxfHnr5e18fh0cG8t2nLPmcxlUoe9n971/Xtt9Z1Vln1h58pTZuurXuzK0hVYVj1lWoXY/q27mSRrm45JHx/vLz1mWlsNshp9TL8syA6Sb+bOKyCGaJ39u0XkG8/xmySMtHd7Mfc7hw4VuspTogVRNHFcAAAAAAACggYdlAAAAAAAAQEPJOtwPl0iu7a6wdH1vCMXTSaqZPsB2/6aFEtpuw0WPBm+3ZUMv/a9gQzTtMvPnJ+ebmJh7m90cUtsPMduxI5625fZ7/NuwzMnJDkMJd+9Ovt66NZ42MW+11asTs01pvOXq8oQeFX0u1qYOxi/8ApnKUitbnJTRzbCfsrPnRUrzlGhfbDX2q7Q9f2y4dRFhGlU4FmlhmGkhIf1QtmNR9PWuCvVpkNT2PBC/8G4IuhmaxnFGlSXqt39RyXEhyRpGnbj3szcSfi6TDNtpukHfvj2etveRa9YkZpueWJJpWyFpu2f//sY2aD4woEpwGwkAAAAAADBYnAjXqyqOKwAAAAAAANBAz7KSsqFttiduaJQvXyW7y9sYPzvtx5Fk6C4dGsFRSo5c180QHj+cMhTGlWe0siJCMUK7e9685Hw2XMzWWzstJcudsXd5QnLEII8toI1n83by2MrWYZhpMod05Yn9CsXrpcWVGf5on9087zsddXFQR/FMK6sd1XXPnvj7edG/Gh1pvY5lE/FxPXQoeSxD0RhZR+nqZjhWGaSFD4ba0omJ5D6xp2nRdTLPSGhW1vLkGTExLYS1DGGrIXlGgMuzT6TwOduvkNpEqFZanHen2xmgtnmYFFHvqj5ycqHSGkZ7gbEpQHw21HFyWbbt2vvXPDfKfo4ZP79DYL6auVcu+t5hxYr6/35KGWBQVPtuGgAAAAAAAGhDif+GCAAAAAAAUF70QKomjisAAAAAAADQMLA9y/bt26fNmzfr7rvv1rQ3Hu2ll17ap1IV57bb4ulQCLvNrSWVO9dIIUJJtDIOnZ62f0I5XIrYp/b4paTTSmwr63bz5Gax/LQMdrfODPfsW7w4+TqUO8jPWVZomhU/l8OGDa3nS0lsVHiupzyVxSyTmpOkxCd3nv3Vr7w/uWRsEPxUIQk7d8bTtk6adR+9MLnufSPxUO5pKRrRXGdGRuL6Zdtc/xjZa+hoj06xtHbQVq+s50jW8y90fcmbs6wf+RHTJMpjLz4rV2Va3q8bIxPt51jsak4oe6DM9S/v9Sq0XBlySw7U9aEEQscsb97EIvdx2rqKzo3V6f1wgt8Q2vPPXlQ2b07Ot2BBPG2Sl9rF7e2AJE1OxvlKx/0fdgHB77r8qOSM5nXRv22AYTGQp8vXv/51Pfe5z9W9997b9JlzTocPH+5DqQAAAAAAADDoBjIM89WvfrWe+tSnavv27Zqenk7840EZAAAAAADoBVeBf2g2kD3Ltm3bpq985StatSpb9/pBZEcc/tGP4mnbfdcP4/NfDzw7PLP/OiWWJdHtOxAbNTk5nnhtZ8vTPdnvar7vQPwc2hbVHqO0MEwbauWHXXUzDMGWdeHC1mUYHfG2bxZauTLuTp5WH+12soY/Jbqdj4wmPzTDchfaFV/J49LNfZ9W7qLDFfLo9LuX4Tt0k42eaGpDbMMdivn22rTx9etnp0MhmfVt1cx05uJWi7dTxs2OmJiI2wr/kmIXG+3T9TMUGpMWMtPpuZQWytuPMLdC2gZ7MK+/Pp7OGIbpS6a/6DAs1K5MSl4cM56002Pjc89UgGS96154Xi91NTy2gnoVilu2/Z+oJ/49plGzF/tLLkl+aC8yJlzaNk82zY7/2Zo18bW+V/f60hDfOwAZDOSvl8c85jG68cYb+10MAAAAAAAAVMxAPkt++ctfrte97nW64447dMYZZ2j+/PmJz88+++w+lQwAAAAAAACDbCAflj3rWc+SJL30pS9t+mxQE/z73W1XrIg7/YUGgfRDSrKGYZatS3qwy7cfb2RDGWyf4bRh6Owypt/xuBmlRpJGTKhO0d2R7cCNhw6F57OhMfZYNoU9BuQZscvvim3Ll3l0TvOhLcMSrz4WGYaX9bvmqdNlCA3wy1C2czYopW9/0eGx3ZRsk7JJDcO0jcD27fH0li3xtN+OmTZqbGUcmuFHdNl2Y2hDKfyLoamHkxnD8Ho1Ap9/jPpxzMrQbnQ84qUvMFpd1rbUv3/yR3Nutb7M38Gvn+akbUopUAEDc70aIFnrcdHKMDpqHkWPFG8zKezeHYdEj4wkw6NPtoNZmvN+bCJOFWLT7EhSr36ypv1sGtp7hwI5SfP6XQh0xUCeHrfccku/iwAAAAAAAIAKGsiHZSeccEK/iwAAAAAAAIAKGqiHZYcOHdL8+fP1hS98IXW+Sy+9tEclAgAAAAAAw6rcCUaQ10A9LNu1a5eOOuqo2ZxlrQxqzrLmXD9xHgub7sbGlacN/14JflC9zfth95dNFpS2Djvt7e8pFZuzzB4bO20366cxsXqVP8CvdvbU8T8DWrIVOS2RYtakimWT8WRMnc024oGh5ZvGkzds/pWRkeTtGLlG1HytMK9rex6YnZ6YWJKYrWxtnD3Oo+a4Fp2fqF95iArPU2aFcpf6yccy5rCzp2Yeie+6+vjOVlaArDmvaE8GQygnV9bci3nOxUHNX5aHf22wzYjNX7Zxo8IzmpNpZDLOWbZiRXKRtLTLWaQdi9BxrvzvR6BAA3VZPOqooyRJ09PVbqQBAAAAAADQH/QYBAAAAAAAABoGqmeZNTU1pe9///u69dZbdfDgwcRnv/Vbv9WnUuWXNnz4hg3x9P798fQgd6PN1J3bDP8uKdn3OS1+JhQDmRL3WHToQeg7jSbCaPv/rNr/3qFdVzR7+EYz7vusYQNVCA/o1bDwecuQ2Mf2PPXPMRtfMKhhmBml1jt7Mtn9sH59PL1yZXKZwP7yz8tR2etffDKVoQ4VIVPokN+Q2QbG1MFRb+eNjMXX3X61G4nt2nL3KB7O36dlaD9DZchc1tWr42n/PiJjGGaW61/W0Ea0p+g6WIY6jf4p+jy1TXPTZdqmhcnYhpf5t1zavus0rLdqnOiBVFUD+bBsy5YtevrTn65bbrlFURRp3rx5mpqa0vz587VgwYKBfFgGAAAAAACA/hvIh6CXXXaZHvnIR+r+++/X+Pi4fvKTn2jTpk3asGGDPv/5z/e7eAAAAAAAABhQA9mz7Oqrr9a3vvUtLVq0SLVaTVNTUzr77LP17ne/W6985St17bXX9ruIbatNJUNJbejIEtNHd2JitNUs7W1rULqk27BLSdqyJZ5esyae9ro6T5sRz2qhMExv541MjuctZUuJrsr22NrRcVJCIHs1IlXWMhRRZ4oceS5tXXa0wIGp6yomzLQvo1XZiuKPTBs4UGld+8sw4lau7dpwr7Sh9Pxwyxl+g25ORrtPmtqGPWa5xAmcDO0fpHOhY6GRkz210FDTBcgcomLLFwjDzBpGVMQxLvr863TUvbQRpG1bv8Qey17lE/BkPeb9OBd7WZ6hamtQSX6zceyxrT/zL9sjy4/qaLvdPBfz3GNmDX0P/c5pZ7tAWQ1kDY6iSOPj9YcbK1as0O233y5JWr16tbZu3drPogEAAAAAgCFRq8A/NBvInmWnn366fvSjH2nt2rU699xz9a53vUvz5s3TRz7yEa1bt67fxQMAAAAAAMCAGsiHZf/n//wf7d27V5L0tre9TU972tP0+Mc/XsuXL9dnPvOZPpcupx07kq+3b4+nTdhOzYQfpo2mWIZQpjSZyuT3ErQxGCmhFYl12+7AoTANT9EDkoVGOk1bdzfDMO3+sWEsadtNq09Zu1jbddt9nNbNO7RuP7LqQCASzT9HynguZJF1dLhubjO4LRsuOLks8/oqx4Zh+kNkZTihp8fCoeCp+y4wambV93fi+/n7wF4rrr8+nvbDhE8/PZ62Iyj2Kg6+X1JyONTMd7fXrm7Wp7S2xhbVv02ybf2SNeaY2TQNXuxmp2FJWZXt/CtbeXqpm2HLw6qMo+hmlaesK1bUzHSRpSm31H1l73lC6QQk1UKpJ4ABMZB3hE960pNmp9euXasbbrhB9913n5YuXSrnXB9LBgAAAAAAgEE2kA/LWlm2LNyjAQAAAAAAoEhO5PyqqoF8WHbgwAF98IMf1De+8Q3dfffdmp5OdhMdxNEwAQAAAAAA0H8D+bDsd3/3d/XFL35Rz372s/XoRz+6GqGX/pjoO3fG0zZph83FkWKQ8gckpI8TH0+H9o8nkWsrY9x80TnLsrLb6tXxy5qXqojyhFIaZN3HdhmbKkFK5rKx67NpiCRpcrJcufyy5mQbNd+pDMNw2zJMTcS9etMOZdnzKHYsJedVnu9eyX3UoeA+8XNQ2tf2OmJzgfrz2etDyXOWhfJupbUNtamD8Qv/2mqZfVKbyLYfUrdrj1noIuAdv1BeTZt21F8scY6l5CetfDtUAZnrE7qiHzlSy64K9S7tO+Q6tvZ3WOiaK8U5RQ8fbn8bQAmU+44w4Etf+pI++9nP6uKLL+53UQAAAAAAAFAhA/mwbHx8XMcdd1y/iwEAAAAAAIbY8Pa9rLaBfFj2hje8Qe973/v04Q9/WLVaRaqmH15pu7TmCQnpVyxhp2xZzzsv+ZmNtbMhT15sRqg7cVo345RIzqGSp6t5KCTIDyXsdB+nhWHa6CpbhfzorJne4FIytLEM/P1lHZxqvV/979cPtse93b++tGZoUEMcEm3KyGhH6xrUfVBK69bF0/YkufPO5Hw29LKLJ1PqsbUnRuAkyRoi47chybYirp+15cszra9w9iJgCjc9Nh5cxB4WPwwzk5QQTwDZce5UV65jGwp396+lM219FLW/DaAESvZzMd0znvGM2ekrr7xSX/va13Tqqadq/vz5ifm+8pWv9LpoAAAAAAAAqICBelh25JFHzk4/85nP7GNJAAAAAAAAUEUD9bDs4x//eL+L0DVNYQhr1na2vpSQoDJ3pU6Em5z36J5ttwzhbFYVRuxKCwnKE04TGrhOkh58MJ62HU39qKYyRySnlc2GOtrpjAO8dpU9Lv4xD51XfljZoNbxPKpwbpeOP/ro8qPiF2a6tiHbaGBlOC55RifL2r71clS7xLYmlnS0rrJdp9EdtQP74hcFHPTa9lvjF/bmIy1vwAApur3q5qjoqBATzp+pnS/zDXgBnMhZVlUDWXN//OMf6/DhwzrzzDMT71977bUaGRnRqaeeOvveqb9xRY9Ll93owsl+FwEAAAAAAADGQD4se+lLX6pXvOIVTQ/LbrjhBn3oQx/SVVddFb/3uE/1uniZPW3Le/tdBAAAAAAAABgD2WPw2muv1bnnntv0/jnnnKPrrruuDyUCAAAAAABAFQxkz7J58+bp/vvvb3p/165dihiaFiVgczv0Mj9MmfipRvKkHgnlyJicTO7Ts86Kp21OL3+bZcu5kbU8ExM1M92t0qQL1elhziMUOn5p53zZ6uAwqfpx8b/DyMhwXnv6JWuupzLkhOrmfUnH32PHjvBnNlFn1ovPt78dTx9zTDy9cWNitumMOfXytPtZlu8l7lGB4nEmVdNAHtfHPe5xevvb367Dhw/Pvjc1NaW3v/3teuxjH9vHkgEAAAAAAGCQDWTPsne/+9264IILtG7dOl1wwQWSpKuuukp79uzRlVde2efSAQAAAAAAYFAN5MOyhz/84br22mv1oQ99SJs3b1YURXre856n3/3d39WqVav6XbzM6sPM9r87dplUcX9U8TuFpH3XIkNP/GVGTUu2bLLt1ZVe2epQ2cpTNuyf/qrC/i/iO1RhP2AILV8eT2/alPxscjKezhqGecYZ8fTmzfH0mjXJ+TKGYVYN7QQ6RR1ClQ3kwzJJOuaYY/T2t7+938UAAAAAAABDaiBzW2FOHFcAAAAAAACgYWB7llVBpGJHoalCN9iyjcqTdZ8WXe5BPZbdPH5VH8kuq37th06PbdWPEfunt4poa/qxz3s5CmGZ7y9KPRpjl7dbhnO9DGUIskM+X3RR5+s7/fTW055O90mp96lnmO6nhum7Fq1sv8mAfuAsAAAAAAAAABroWQYAAAAAANCm+qB9qKKBfFj2ohe9SB/84Ae1ePHixPt79+7VK1/5Sn3sYx/rU8nym5oKvx4ZaT1dRXlGU0zbd/5nIXa/2gGW/G1Wrct21i7WucJL/J1vdrLdbtZ9XERIbL+PXxFls/P567OvO/2uebrf93v/9lqRIQpVb2uGTad1I+t1LOuAgJ3qaqqBlGtFVoQLAeXXzXQFedZd5D1TGWX93VT135ZAJwby7uL//b//p/379ze9v3//fn3yk5/sQ4kAAAAAAABQBQP1LPm+++5TFEWKoki7du3SiHkUfvjwYf3bv/2bjj766D6WEAAAAAAAAINsoB6WLV++XM45Oed06qmnNn3unNNb3/rWPpQMAAAAAAAMm4EM18OcBuph2Te/+U1FUaQnPOEJ+vznP69ly5bNfjY6OqoTTjhBq1at6mMJ8/Pjx3fujKeXL289n5+rpBKx9wcOxNMZk7Hs2RN+feed8fTChfG0H59vN7VyZdtFyCxrvoWBPZa7d8fT9lhKiYpcy5ggYWD3wxBJPS4Zz+dQXg2OOYaVPXXs/YCUvH6tXh1Pp+W9K11OL3sz439BexEGUDiurcPNvz2fmGh/HaE6VLprDdChgXpY9rjHPU6SdMstt+i4445TrcYJCQAAAAAAgOIM1MOyGSeccIL27dunzZs36+6779b0dPLp9qWXXtqnkgEAAAAAAGCQDeTDsq9//et67nOfq3vvvbfpM+ecDh8+3IdSdcaPUJqcbP1Z2hDylWD7BvuheiOjLRdJ6z58zDHx9IIF4fnmzw9vFnOwldKGYdppKVmRbQXvIv98Ga3YsfW7wZeu+3vlGyz0SxEhht0M8+60fPY6ZFMx+J/1qjyl4LcnZkcQVtaeUN3PWje6ur937Iinvco/be4DM5fB3ovYG0Zu9oZeqO5XvT3JE3aZVdO+m2m3o6h7Gy0BJ3KWVdVAHtdXv/rVeupTn6rt27dreno68W8QH5QBAAAAAACgHAbyzyrbtm3TV77ylVzJ/Hfs36XLfvARXX3fTVpQm681i47SBx75Ej3iq6/S+iWrdeDwQS0eWahXnPxUPX/tEyVJn/jZ1/X6az6uYxceqQPTB/Wydb+k319/SdO6r7jrOr3nJ1/Q5Rf9ceL95/3Pe7Tpvq2aX5unc488WX977is0vzaQux4AAAAAAKDSBvKJzWMe8xjdeOONOumkk9paLooiPfPKt+v5a5+of7ngDZKkzbt+prsO7NZJEyt1zZM/KEn62Z4duvTKP9N0FOmFJ10sSXrO8RfqQ+e8XPc+9IAefvnL9azjHqPjFq3ItN3nrblI//jo10qSfv0779FHb/5P/c7DntLoslnvrup3fQ91kU3rNZ6123CeEIyedUlOCc8LdZf294ldRY+i/XKNclkGhRxXcwCm16yN173tZ8n5tm+Pp82BSRvBrWqj7WStJ1mX6+Z+KKROTyzpeFtllvW4ZAlzGtR9UAZFhyPnORfT5Dnv84zEnLVseduhIsuQuHB7o18GyxBIxZC7DF1U9ZCuos+RhKuuiqfXrUuu+/TT4xdZwyi3bImn7fCxdlqdt82lvrcuiW6Ggw/bvsyi6BDr0L1fYhk/XH7Pnvr/RH5hQA3Uw7If/vCHkqSXv/zlet3rXqc77rhDZ5xxhubbhFOSzj777JbLf/OuazW/NqKXP+zJs+9tWLpW2/bclZhv7cRKve/s39Zrr/nY7MOyGUcuWKJ1E6t05/5dmR+WPeXYjbPT5x75MG3ftzNlbgAAAAAAMAgG88/4mMtAPSw755xzFJkEgS996Uub5klL8H/9/T/XI5dl64129rKTtOWB7U3v37r3bh04fFBnLl2TrdDGoekp/cMt39QHH9lcbgAAAAAAAPTfQD0s+9nPfjb3TAXxx+z49K3f1jfvvlY3PnC7PnLuKzU2L1s4gPW7V39Yjz3qdF141GnFFBIAAAAAAACFGqiHZSeccEJHy592xAn63K3fyTTvNffdrFOWxPkMZnKWffeeLXrqt96qJ696pL67c4veet2nJEkffdQrU9f31us+pXseul9/e+4rWn5OrH17Bml/DVJZO5X4rmvWJD4rMldT1mVGB6iF6+Z+KNow1ek80vYP+677Bmkfl62sZShPGcqQy4ED8fTYeP/KkUFoH3czp1RmG+PUJdq0KfmZzW/n5boLsnnOdu+Op+3xkkp/zKqmbOd52cpTtCK+X6Z1hBJJZ80xCJTMQNbcT37yky3fd85pbGxM69at01lnndX0+ROOPlN/+KNP6iNb/0MvWfckSdLV9/5U+6YeSsy3bc9det01H9MrT3560zrOX7Fev7nm8frgjV/ROzY8X8887vzZz66467qW5fro1v/Qf9z5Q33jCW9TzRHRDAAAAABAFTjn+l2EzkV+bB0G8mHZK17xCh08eFCHDh1SrVZ/+DQ9PT2b6P/QoUMtH5Y55/TFC/9Ql/3wI3rnDZ/T2Lz5WrPoaH3g7Jfo5j07dNZXX60Dhw9q8chCvfLkpzcl95/xxlN/RWd/7TL94WnP1uL5yb9EfeOua7X6iy+Yff3ZC96kl1/91zph0VE6/z9fL0m69Ljz9UdnPLeIXQEAAAAAAIACuWhAniA656KZsn71q1/VW9/6Vr3//e/XOeecI0m6+uqr9drXvlZvfvObdeyxx+qFL3yhrrnmGkW//q/9LHaqp215r75y9TdzL1/1LsO+foQEFD1keNYhmft1bLOUwf+uwbL6IQ7W2Fhh5RlkRdSbQZT2vQf1uxbdPg3qfuimPPu4DPux07rhf4e+hccZ3dyvRYbsV1HVr4sYDt1sz7OeI8PU1uS538x6v59lf28891xt2rSpAl2vWtvoXLSpAj3LXBT9IIqijXPPOTz6f8eVw2te8xp98IMf1Pnnn6+RkRGNjIzo/PPP1/ve9z699rWv1SMe8Qi9973v7XcxAQAAAAAAMGAGMgxz27ZtGh9vTsQ5Pj6ubdu2SZJOPPHEHpcKAAAAAAAMDeeqMYjBoUP9LkHpDORRPffcc/Wa17xG//AP/6CVjdFwduzYode97nV61KMeJUm66aab+llEtCFrN+hQ12A/2s++tu2Wnc4YBZg95DBFYplQ4SRpZDS43UzrTpGnu3uuUB870lTjwfUsu9PXr29/3QXrVff7rPtxairt03gdoyPlDQ8oQ3hYNxUdbo3uK3vIWhnLlMUwhS8ByK6b17i09jzzds3NVmKJKjzoyCn0+yq1Pd+5M55v+fKulAsog4G8a//oRz+qO+64Q8cff7zWrFmjE088Uccff7zuuOMOffSjH5Uk7d27t8+lBAAAAAAAwKAZyMfoD3vYw3T99dfrP//zP3XjjTcqiiKdcsop+oVf+IXZYVsvueSS/hYSAAAAAABUWxV6JxKG2WRgj6pzTk960pP0pCc9qd9F6QobrRcKGSwiRLBsgiGLUrLr9MTE7PR11yX3w49+1Hrd69bF034UoN3Hoek0fghdsL20oYmTk8nPVq6anSxgIMlCZa5bW7bE05s2JT8777zZyTyjIRYygqI9UCbsNet2srLlSRtZaM+e1tM+e8yXTXZaus7l2Udlq9NFSFSnkcAHTR8ir7RzaWCFGgF7fUg5QYJ1sE+KaKercC9TBmUPQQY6kfka4N987NgRT9tGc/XqzgtVYoW0AfYadf318fSGDfG099umMtdqDK0S3Fpld+DAAY2Njel973tf6nyvec1relQiAAAAAAAAVMlAPSzbu3evxsbG9Jd/+ZfBeZxzPCwDAAAAAABALgP1sOzII4+UJN1yyy19LgkAAAAAABhqzpUjFwIKV6mj+vOf/1yvf/3r9ZnPfKbfRckkiuJQej8liT3fsuQvG2TBPGU2/5Xv9NNnJ6+4Ipl76vOfj6fNyMbauDGevuCC5OpMCrTEfH5us9HAGePnm0rmPTN5Q7ZujT/w4vrt0MtTU63zafWNTYzj52Oy+R+++c14+stfDq7jwOnnBle3ZEIt2arhp6CYmGidE2F0al/yDXuglh/VekMFyJqjwdaTJRPhfEz+PuqFrN8hNQ+GKfj4WLbLTSHb7RJ/myMjrcs6HciH1866kS5tf5UtR0pqrjXbJtmclitXxtNr1iQW2b07nrbXOJuXM01ac27Z+5AifgOQQ6sLyI/YV726XhWSs7WLytbmpurHDVVV2PbFXnzstP9DdWy8u2UCumyAWre57d69W5+3T0oAAAAAAACANlTqYRkAAAAAAADQCfpr95FzcW/VtJ70fshZ5YTi6/ydYsJSfrY9DnP6wQ+Ss9newDbC5Xvfi6cnvFA/G75il/GLEArD9CIqw+yM112X/Mwc9InzHj07XcTxz9NNP9Gt3u4IG0oqSZs2xdN798bTNoxIShwYG7l5zz3J2R51Tuvy2CL4++TQodZFWLvG6w5uVpIaGtWhPGFOVm3qYOJ1IqjPrs9bQd/DnPwvaw9UWkyXeW1XUfaIojx1qAwhM1UXOi7+MerVsUirG9MrV81O1/w2M8CeVrt2tX5fCqdtsOeYbYt99nLlXzNHR1rvu26Gi5UhFK0MZUhsJ6WRpK2B1atrVNYQ+VA7nTeyONju+2GA606ec/lhlnZfU7MXFZMOJ3EhyXgdqxxyllUWPcsAAAAAAACAhoF6BPqMZzwj9fMHHnigRyUBAAAAAABAFQ3Uw7Ijjzxyzs9PPPHEHpWmWH63Y/u6iiNgJuJF7NBetivv5s3JZX7pl1ou4o9suXp1PG1DMu2q/ZAS+3revFYFTud33w6Gw9mC22kpEU9TO2BHcUx2IU+GqfUo7M52LfZ33tFHt/7MHyLUsHV68eJsRbCjRfojZh6civfDwoXx+6ldyO37OcLp8oRX+u8H1+HvOzuj/cwbJa9XEnXNlm379uSMNmTXjPba1E3f1JvRxDEanEtU4pytZKNdYiknY82cdGUfsS1r+ew1yrZ3fvuSCOc215txc2Fca89L3x4b1+k1uqGblIklyTLYtsK2XXaZzENyhkeZ7UcIetY0DWhP0aGuofUVUU/KELqXJbSxiPVllpaHwoZEmt8BNTPfiNeGdFMZjl+Zpf62Wb8+/sD+2LriiuRKnpbe0QUou4G6tH/84x/vdxEAAAAAAADIWVZh5f4zKwAAAAAAANBDPCwDAAAAAAAAGirfX/DUy1/S7yIEjU4ump32U9wkco1kzLnSzbwMHfPzFvhj3M+webzuuSe4jB2x+NCh5Gw2jN5uZv/+ePrw4eQyNm3LihXxdCE9am0epy99KZ62Mf6S9LCHxdOJxGTZNtPNnC3TJldMzc+TFcp54+elMvmrVi2P6/e8eeE8NMHv4dWnqal4HbYK+dVumU27Y/PnmJxZacOW2/LYfHGtlmu1fObPJieTr23CPTvtzze5LLyxDgWPhd3hfp22dd8vq2VP1ESOov5conK1pbYR99s3cph1l5//0dZD0z7V0vJzdVFavcmTV+joFfH6jl5s6toBrxGy++Vf/zWe/sY34unzzksuY1+bBKDTOduWxHXJngehNs1nylDzrimhfZf1WtjN3FiluO/C0OlXXsZErjSbW9DLM5i4TxqJ85fZpmtqd3LdoVuHtHOM8687QjnxEtfWjRuDywCDqPIPy2748sa5Z+qTp/3p7f0uAgAAAAAAyIOcZZVFGCYAAAAAAADQwCPQstqyJZ42oQe2q+vBqXAYmI0CmpgIPxPt5kPwzCFLlg3x27Yt+ZkJ1Rg1++Scc5LDTNvozb17596klOzmXXjElD0YNkbUjx+13ZjNwRybUF+Euls3dfMPDPPdFK5pK5sJDzp6RfuhUQeV7Nr/4IOt52s6lrYMJvTSfqe0c6LTEIfc3dHtF7GV1Stskd3d04YMt3aPHDU7vWyjdyzNPk5M+3EVNiQ2Y0hmv8JNgmy5/bbLnguEZBbPD6+0YZg2FHjCa0w7PBZFhN2Flkut36HzxdsP06Ztrj372fEHp5wST/vh8uYalecc8yOQk6ewCec34ZVNZUikITArsN9bCl97Cg57DaETQe8NU6hrGa5xeUKabRvgZ2awr21zfMQR8fTChW0XE30QrA9+ew4MuP63xAAAAAAAAEBJ8HcxAAAAAACAPOhuXEkc1UFgR7QyYRb+OWlfX3ddPL14cXK+UDSUjUgp4nxPdMueSobN2XCM0RETcmHDLOzwlVIytMmOkOWF0qxYMWqm2yhwgRLdk9eti6df97p42h/BzX53cwDKEGoQCsmUwhEz06uPT67EvO50pDE/Gueuu1ov03SOLG8dbpn2/dI+CwmNjDmaMcTTD2UatyeqPYFTQhN7VW+SA156+86GHYcqilS60MS0ogbZ72C/N9pSyAiFoSGRQyfmHNvNIq3dKFyOi/X08jhcWhc9oeACxfziJFNCmPLY/eWNmJfYk7axTxtRt0d6FeKJwZDnmA9qHUorm72d3bQpnjaDoEtKtg82Ets22UuXJpcpwz0wsitzHQbyoEYDAAAAAAAADTwsAwAAAAAAABoIwwQAAAAAAGiXc+QsqyiOah85RbOx+H6M9/TpZ85O17b+tO11790bT/vDMNu8IXa60zxSaesYT0tJZJMemZxsTcnWbM6y00+Pp23igxRp3+/g1Ny5rArn518pQT6WLPx9MjLS+1w/fk4vOxy5/cy/btldPDrSejtFHPM810u73bGxlH1asouxPRVTbd4cXij0nVK+a55ccpafvspuqmS7GJ3oUz68TvMHpi7TYWXtZs4kvzi57jHsSnJcF9P2fZHXdHLzdEenbXsZpKRHTNwz5a2PndbjovfroUPx9BFHxNPnnZecz7YHlj3Nuf4ONnLMoWoG8yoEAAAAAAAAdAEPywAAAAAAAIAGOruWRGq31XXr2l7moovi56B25HUpGc1ou0SPZq0NJs6tltZfOmtfajNmdKJr+G/8VsYCZZTSL37EG7oe2YVCJvx6Zy3JEZpjD9+8ecnPFi2Kp221KzoCK62smc4fP340cI6knlclkzlk5vrr42nbCEnSBRfE0zYew1Yi//w1jVfNHOis4SVpu5gwguFjj7kNy/cN0KmZkKjT9lzyzqvMbU+nO8JuN+e6+n2e9nv7w2BQ93HWKl14mGl6/Gfbqwvtf7/cK1a0ns67PmDgkLOssmidAAAAAAAAgAYelgEAAAAAAAAN9BesKNvVeWIi+Uw0NHpd6uhdfvhY6H372oRTTXcxzDHzyF6me2xal+9B7fZfNmm9kfOMFGfXN39+8jP7+vDhTKvrjz6NzNcrqe1G2nBXNizThGUn5gsNozVHGbKGd3DeY4Y/Um6lQ4T8sK1QGJd/rbdtmZ3OOsws4SrIoIz3akW2B4V/h4znVdb0CaF7tbTrbOGj/wJAH3G3AgAAAAAA0C5yllVWhf9cCgAAAAAAALSHR6BDIE9YUtM8Y+PZtmVCpboZupK1y3ZoPn+kRhtFknlUUDSx+3tsrNjwibTQ4pUr42kbBWQj/+planuzA6XfoQxp7UbtkkuC82Upd9oyRbQ1oXX0e58OG/Z3cYL7Mkd4c+b5cvxlPU97gOFQRF3oVX3Kek3Kc+3q5nfI+hshLdSScxZAVdGzDAAAAAAAAGgY+j408554uc44ccns6y+9baO27dinX37zJq09Zlz7Hzqsp51/tN7zO6c2Lbttxz497Q+u1vUff1zi/df/zQ361+/cpdH5NZ20alwff+MGTU7Mb1oeAAAAAAAMKHKWVdbQH9WFo/O0+aOPTby3bcc+XXjGMl3+jnO1/6HDOuslV+qZF6zUY85Ylmmdv/DIFXrHS9ZrZF5Nb/zbn+gd/7RV73rZKd0oPgAAAAAAAAo09A/L5rJwwTxtWHeEbt95YO6ZG37xnBWz0+edOqnPfevObhStqznB/NHfd+yIp+2D8+XLk/ONjPQmsrfTYar93FX8MWCwjI4kj/nKlb3P+1HGIe27Kct36jSXYJoDXhNs2xr7WdHndqdtDQZf0fnxyqxX38/u07ScSZxzg62KuSBD7UHWc6focyzPPu60DEV8h0GuAwCGx9A/Ith/8LA2vPhKSdKJxyzUF//0nMTnux48qJu279VjH5GtV5nvY1+9Tc95/KqOywkAAAAAAIDuG/qHZa3CMCXp29fdpzN/+1u68ba9etNzT9LKZe0Po/f2f7xJI/OcnnfxsUUUFQAAAAAAlAlhSpXEUQ2YyVn209v26IJXfUfPvHClHjo4rZe97zpJ0p+88GSdedKS4PL/72u36fLv3qVvvPd8OedazhPJlTakY8+e5Gsb5rRzZ+v3pWRYph1pvpvdrfOEw/lhfCheL7vY92pbnYZZEHaQnx8abtsh2149+GByvlNMukjbJuUxbKG3Q8uvbNbIaMvZqnKP3KuQ016FrHFe9hf7vxj+eZBlvxZ9/nYzrBMAyqoit3fdc/JxE/qDX1+nd33qZn3q/56d6IW2bce+lst87ft3613/crO+9YHzNT42r1dFBQAAAAAAQId4WJbBy59xgt7zmZt1y537dOIx44nPbrxtj1Y/++uzr9//ilP1Bx/ZoocOTesXXve/kupJ/v/mNWf2tMwAAAAAAABo39A/LNvz1Sc3vXfRhuW6aEMcT7hwwTzd/tlfaJpvzcpxHfr6U5vef/ZF5U7on6X79uRkskv1oUPxtA1lmpxMLmdHoktsJy2sxX4WmvY33GHMS7/CqfKM8pW1e3u/Ql1DqhJ+EfruaVU6ZLTqLa6/U/w47Rk54iGXTCTr08REfFx2747fP/LI5HL2M9ts+KNmdooR/AbQ9u3xtI3rXb06OZ8/7HNDVUIv+62Ia2GoPa58m1t2VYxVLlARoY15rjd57ukItQRSOEcbV1G0fAAAAAAAAEADD8sAAAAAAACABh6WAQAAAAAAAA0E1yKTo1d0mIMnLY7bJhWyOY5C+Y6k5mRpJZMlt0OeocClcAqQsuVMKjrfRjeHQc+zblITdMBPMBSq1LYN8JKM1cx8yybj9w9OJY9lyiqS6+uwPmAA2XpnK4dfUcx8tt4NUj3Jen0oxXcK5C6tpZzANjeZ3wYE152GBr4Q0yOjbS9ThvuXbkp8P3v/KyXr3cSS4DoS5/OBfa1nKjoxZ8FCbU0R94RVr0MoIXKWVVYJ7ooAAAAAAACAcuBhGQAAAAAAANBAf8GK2rMnnp6YSH6WJRyjNnUw+YbfVXyG3+U01O07rTu4XYedz1+3+SJZQ0XKEJpooz7SQsISQ9wHwn4kaWSk98+400LU0qJlLfs1QuGj/rZC/EgaW4ZQZFWr1+2y2/GrJ72vld4epFWUUPh12sEMnEyjy5cnZhv12r8sQnXw1u3JurpypdnOCGEfg2Z6zdrZ6dru++IPdu5Mzmjrnk0BMDYeXHeozSxDeFAZQi1T90OoMd2yJfl669Z42hyXUXuMVq9OLpN2j4HClaG+l469dnk36HnCVhP12N78ezdK0ylhnWWSN0VJaB3UQfQEYZiV1f87JgAAAAAAAKAkeFgGAAAAAAAANNBfsCTyjE6VFoq2Y0c87Ucv2SilsTHTVdmGXvohU6H4tbSRpew6bNdwn+2Gnha2Zbq32v2VNvJVnh6xeUbYSes2HgqbbIpKM8diNKXg/R61z98H9vvZw5wWkRca/DArf9/Z+m6nFyxIzvewh8XTdgTFrGGmWQdSC/HrQmg/NNWzUCH8GOuyybrDQhUnraLYUKu0gxQYvTBrm2vnO351SjhHWhnKfpyGVKIOhK5DvowNVpFhQHlHFu7H9SHl9Mu3H+z5u/7U5GfmdZnDXoFEPUxpX/LcYyZOsoJHis8zMqW9nO/fn5xvxYr2yxA6n7New4sI60R2ZQjzB4rEwzIAAAAAAIB2kbOssnj8CwAAAAAAADTwCLQk0roJ27CGtMHhbBTJunXZthvsjuw/HQ+FQ/mFCIVd+e/b0TXttB1eLm0ZE0u6c2dy9KB58+LppUvj6Z6OImn6odfM90iMRZQyClKpuzF7MZB2709OZhsdLuuxSHS/N2HCS0a8urEy3m5axO+hQ4F1p3TLzzqCpq2edhfZ+ujbuzeeXrQonl66NLl/EmG5dkODFN6XtiNDn9mY8bThR7v417zMIXBpQ92ilBLH1rS//gjEoYtwomaU4C/K/bpu2N2za1fyMxt21Wl4ZNZlCLNC1eRJ1dLOOopkb0v8W5REupfAD5q075O1DUlLrUGYdjGyhseW+vcMcnHO1SS9WtLLJK2RdI+kz0j6oyiK9qYsatfxFElvlvQISQ9J+oakN0RRdIs33+Mk/aqkxza2dUDSTyV9SNK/RFEUdf6N0lGDAQAAAAAAkOb9kt4n6QZJr5T0WUmvkvSvjQdpqZxzl0q6XNJCSa+X9OeqPwz7H+fcKm/2d0n6ZUlXSHqtpD+TNE/SP0v6uwK+y5z6/6dQAAAAAACAQVSCHubd5pw7TfUHZF+IouhXzPu3SPoLSb+m+oOs0PLzJf2lpNskXRhF0Z7G+1+V9ANJb5H0UrPIGyVdFUXRYbOOD0r6pqQXO+c+GEXR9cV8u9boWQYAAAAAAICQ50pykj7gvf8RSfsk/cYcyz9O0ipJH515UCZJURRtVr332HMaD9Rm3v+WfVDWeG9a0ucaL09v+xu0qfqPQEvMKWo7Xj4tFU7HsfdF5AAK5TPzE0nt3BlP21w/W7eGlwmUaeXKZI9Nu1gojVBPH/5v2hRPX3FFPH3RRYnZaub1vqlkHjbLfo9u5ltI5CPYcUf8wde+lpxx+/Z4Plu4bduS8512Wjzfb/5m/H7WvFs2v4XZpiQtMZ+dvX5N/EFa7iGbes1WmuVHZSuPx351W+/uv7/1+02bNem5jl7hHdc93oKhFfYoj1eQPa+lYJ7BpuHtQ3Ug4/ex+f6yypNHw0+jmEi5Mrlsdrq254G2143ey9x+9vu86qFQetKmfWUaL5tTccWKcN5KoB9CbX1V8lWV4Xuk5QizEtfqHNftxLpScj1nvb6Tvyy/4P7avDk53/r19Ylp9m9FnCNpWtL37ZtRFB1wzm1ufD7X8pL03RaffU/SEySdLOnHc6xndeP/u+aYr2P0LAMAAAAAABhey51zm8y/l3qfr5K0M4qih1ose3tj+bQn4avMvK2Wl6Rj0wrYyGv2Mkk/k3RV2rxFqPafSAEAAAAAALrBuar0PN8ZRdHGlM/HVR+9spUDZp6DgXlmup+3WscBb54mzrlxSV+UtEjS06MoOpRS1kJU4qimOfU3ruh3EYIWLJycnU7rMlzmcy+t3Ilwjoklic9mu+VKyVAyG5fmh/HZ+Ux4V82Gd0kaG4sfaIdCSrpt2nzf2sZAm3OV9zDcfPfxiy9uua6+SQupvd7kVTzvvHjahuBJ0re+FU+/5CWzk/sOJOvQ+Fjrrtr7bNu5+uTkMtrXsqxN9TPU7X+s89AhW79Wroyn77knnvbD+Ox8ixbF003hBTZMsUfxxGnndqj7/bQfwhoIafVP7ZGReP/bfbR6tZknWJre8Xe3fZ3W3lmEeqDf0q6LoSalqT0I1PGm+m02lidcGhhEtQP7km9ULZQ7JeVCzVy4pzPeW6VdF/OEVKLHbLoZ7zfP7HGpcXwqYp+kUL6aMTNP2vKStKDd5Z1zY5K+JGmjpOdHUfTt1JIWpAItdrobHvepfhch6Olb3tvvIgAAAAAAAKS5Q9KpzrkFLUIxj1W9Z1qoV9nM8jPz/qTF8lKLEE3zoOxiSS+Oougf2y14XjzmBQAAAAAAQMjVqj8/Ote+2XiYtUHSphbL+MtL0vktPjtP0gOSfuqte4HqoZe/KOmlURR9rO1Sd6DyPcuqrOzhPKk9ze2HoZHwvPDKpvC/GV5s24gJw7SbsVGB/ia72St+2o6SZ8NP/TBFO0KgCTmt+UOg9qgLf6J+2bJdcEFyxpNOiqfPN22fjaGTpJtump184EB8jPbvT842HhjxdcuW1tOSdNFFcVd/OxCPHVxVSu7yDRviaVvV5s1LLrN0aTy9Zk3rsknhkeOOXhjX26PXeMfO1mm7j71wTRu+VDMbShsNqpvuuqf131lWrEi+DpVn7UpvFM+0YX4bigixKHr/2DJVIbIGg8dGwX/uc8nPbJi3vfTY9s4/9dIGrQ1JhJz5ja6dz1x4p9esjd8v+b0MBls32/0gP0zR3nRmPbHKzL8Js7kVTBoRrUyGYfqpKGaMjIRHpcx6/Dq9R2BkzLkF9/HG+LmJP0h7KLVK5VQnZ9lcPi3pDyVdJsmGQb5E9Vxj/zTzhnPuGElHSLo1iqKZG4VvSbpT0oudc++PomhPY95HSLpI0sdtHrLGg7IvSXqSpJdHUfTRrnyrFENxVAEAAAAAANC+KIquc879laTfc859QdK/SzpF0qtUfxD2z2b2d0h6vqTHS7qisfwh59yrVX/o9m3n3EckLZH0+5LukfTH3ib/SdIvSfq6pH3Oud/wPr82iqJri/uGzXhYBgAAAAAAgDSXSdom6aWSnippp6S/lPRHURTN2ZUwiqLPOuf2S3qzpPeoPjLmNyS9MYoiP1/ZzIgRFzf++d4qiYdlAAAAAAAA6I8oig5Lem/jX9p8L5D0gsBnl0u6PMO21rRdwILxsKwkBjU+Pu9wz6HPbE4TrVuXu1ytlCJNhM3jdXGrB+QNdj+UIAY+kcvBJvuSEsm/9h2I55v6pV9NzLbkWXFdGTE5DebPz1YGm3PHpD+TJD3rWfH09u3hdZx2Wjz98IfH06efnq0MuQ5FKCeflEgYdN/ueN/56U5sno/167OdV91sUxYvjqfT9veKFYHy+ImS7BcsuL53cz/Yddt97+dlKcEpjAGTdv20qQ5tHkabo0xK5li0ddLmOfPrqr1EpeUvs9sateezf922GzDzDeo9D7ovre7nqTfB+81u1kE/Z6tRidxYfu5a8zpr7rAs+cukfPsodG2Wkjm1Qvm0+pUPtl86PUd27Iin/eN6fPhUqJbhyVk2dBgNEwAAAAAAAGjgYRkAAAAAAADQQH9BdE2eEM083dM7HS66CH5ZM32/UsSFdi70Xf3eyHY++1lalKLdr2Nj8fLPfGZyvosuiqfvvz+etuFK/rZsiFIZek7b6uCXx3Zrt93d/bCrIqXV6bSoq5DU0JoCD0AZwiXSjp8fYjKjDOXGYLDtmI2G8iOjLFsHbbtoQ5Ikad68eNqGW/tsHU+c22Pj4YUCBqru2x35lrckPrrvdX82O71scoC+k5Hnfqro41fb80D8Iu0GoU/SQvzmej+3isT222Jn/QpZQwSzHBd/u1mPUylCZ20dsPkv7M1sn6Tdi5bhNxrQicFsbQEAAAAAAPqJnGWVxeNeAAAAAAAAoIFHoAOs6BGDeqnI8pUxXLPIbvplOJZZy+APchiS548vtgx+KNuKFa2nixD67t2sT3kjT3o18mNWRYY4lOE8SJNWvlDoJRBSRH0Phb6XLQNA0W1pbepg/MK72BR63d24MfFy2Xv+MH7xtrdl2k6ZpYXiJ6MCk/vU7vJc9bjg0Mt+jIicVeZRF/2bJhtLbT9LuwmzMdd54iFTDFKoXZavGxqps758n0IybcFN6GURIaJZl+u0vgODiJoOAAAAAAAANNCzDAAAAAAAoF3kLKssepYBAAAAAAAADTwCReUUGUefN/4/SxnKnoPJSsuJkDWHgc0BYafHx9rPOefnkwil4vBlzalWpG7mdehXHermdyrFEO0Fq8r3QO+QD6YD3fzrvl33056W/Mx/PYCytlV0oGiWtu8KP5/z5HUr8AaoX+1Tr3JrlbF+92Ofcx0C6FkGAAAAAAAAzCrhs3MAAAAAAIABUMYuiegYR3WAVSW0J9TNNzH8u5SMtbPTk5PJ5TI0Vlm7Fmcd1jttfbU9D8QvQt9BSnar975TX5hYx5ot644dwUVqtpu/Hyu5eu3s5M6d8duTk8l9t2Ri7u7z/iG2uy5tyO9QKGhadEKoDP7hS76Ol8kaFprnGpta7zpsH3rZ/d4eC7sfqhiSWcXvhPyynGd+m7ZnTzxt2x0/MitPpFYetgx+WbO0cb08Dwrd1pD9MKK9quv02jhI+3GQwvBC19Y84bFlPEa9KtMw1W8gi8FpBQEAAAAAAIAu42EZAAAAAAAA0DBcfchRGpm6+aaFONhQQD+GLkPsid9NuOiu5rUD++IXW7bE0/fcE08fc0xyIRN6eXAqHMbXsy7Oof1vY4Akafv2eNrG4GzdmphtdN262enJiy+dnd69O7m6JR2GDtni+etevrz1fCtXtr8dv9qlRaBmYUOZ+jFqZz9liWbKGhJdCn7FM18wESY+bAcaufjnR9Yo/UQKANse2/qZ1ljZDfkbXb16dnJsbDy4iixt4UCd2xg6We8P7TXcvwTYpt6mnhi2ul5keojM6/JzZpg8IDV7U2gO0jC3SWkjiQb3g72++L8RZu79Dx8uonjl5dzQheYPC3qWAQAAAAAAAA08LAMAAAAAAAAa6C+IUknt6mzDK01IX1ooU9aRbtK6Hediy7RhQ7ZlTPfdqQPh2Ub7cdbafX/66YmP7lh59uy0jThdfUlyFSeviUc33W2iaO3ImJJ0/Gq1tG1bPP2lLyU/u+qqeNpG6Po9os87L55esyae/qVfiqf9aCPbg3/evHh66dLW5fTZMvi9022ohp2vX6PaZZUnJCHPeZUIZ/YPZsm6u9vQ6dEyjGaLodN0XtqGY/36eNqPEQtJi6E0jZkNLZ4eGU3MVrLTtGPdHIE4VehYdHEHZ22zhylELY297fNTO9hrv50eG0vu49GRau3Lprphb/jsjrDXzJQcF7nqmr8+G3qZ0bCOYp35u9ob6tCQyPYGGhggFbuNAQAAAAAA6AFyllXW0B3VHft36bIffERX33eTFtTma82io/SBR75Ej/jqq7R+yWodOHxQi0cW6hUnP1XPX/tESdInfvZ1vf6aj+vYhUfqwPRBvWzdL+n311/StO4r7rpO7/nJF3T5RX+ceP9DN16uD9z4Fd28507dc+k/avnYEb34qgAAAAAAAGjTUD0si6JIz7zy7Xr+2ifqXy54gyRp866f6a4Du3XSxEpd8+QPSpJ+tmeHLr3yzzQdRXrhSRdLkp5z/IX60Dkv170PPaCHX/5yPeu4x+i4RSsybfcxK07R0449Rxd94w+788UAAAAAAABQiKF6WPbNu67V/NqIXv6wJ8++t2HpWm3bc1divrUTK/W+s39br73mY7MPy2YcuWCJ1k2s0p37d2V+WHbWspM6L3zFZIqD9+Pe7euMXV3tIjZVgh26W5K2b4+nbTqDrKmH/O+TyPXh5XDJwn69MvTqTfs+NkeYzVnmp4mYmIiX27TJvt9+edL2iV2fn5rHjm5t57vnnvC6Q+u7//7kfLbe2HXY/eCve8GC1utLS6lReH69DNspen258v74w7+n7dg+SC2CrTjkM4OR5bxIy3VocyONjCSXT5xLoYRKaSu3y6Rdj+0yy48SgKSy5R3tGf+6bdsK2/bY+fybR3vNTLl+Bu8dCvgtUXWhnGyZ79XSfrTM/PhKy4EJlNhQtRLX3/9zPTLjg6uzl52kLQ9sb3r/1r1368Dhgzpz6ZqCSwcAAAAAAAYGOcsqi6MaEHmvP33rt/XNu6/VjQ/cro+c+0qNzWu/txAAAAAAAADKbagelp12xAn63K3fyTTvNffdrFOWrJ59PZOz7Lv3bNFTv/VWPXnVI/XdnVv01us+JUn66KNe2ZUyDzX/CX2OJ/Z2Edt724YLStLmzfH0aafF02eckZxv3OsdPqPocLgy/HEi63eyI0bbHvZpPa5tSELWUbztfBs3Jj+zvfbtsbVhl5J09NHxtK0PixeHt2vnSwulyHLM0uY5fDjbfN0MvSyDRDiAH44RmC9NKYZ5D4SODOtw9GiP3+7Ydvb66+Ppdev8JeP6ZduUBx+MpxcvXpJYYnz1sMaLlVzJQseq3l6ltc1VvwZ3qnZgX/zC5j+RkqGXtk7bRs6v3xmun6nlScutkXF9VavvRdThzPt/5ua9BO0WkMdQtfhPOPpMPTR9SB/Z+h+z711970/18713J+bbtucuve6aj+mVJz+9aR3nr1iv31zzeH3wxq/omcedr81P+QttfspfaOORD+t6+QEAAAAAANBdQ/WY1zmnL174h7rshx/RO2/4nMbmzdeaRUfrA2e/RDfv2aGzvvpqHTh8UItHFuqVJz+9Kbn/jDee+is6+2uX6Q9Pe7YWzx9PfPaNu67V6i++YPb1Zy94k66+76d69w1f0I4Du3TmV1+lp6x6pD76qFd186sCAAAAAIBuImdZZQ3dUV01fqQ+c8Gbmt7f/5zPB5d5wdqL9YK18YOzVeNHasel/9A030VHn9FyPeevWK9XPfwZOUtcbnm78vaqS7Pt5W0juk4/PTnfTTfF0zYcLi87uqbtdW4HIVs2WY1u3Xa/2t7y69cn5xvfHIdAT5z36NnprAPk2P3oj3Jpt7U6jp5uCkvasCGetsfChnimRP5pdMQcs23bkh9+97vx9N698fSxx8bT55+fWGTc7LCxlRlD8tJGjeqi0LmeFh0U+h61PQ8k3wjdYGQcFnaQQiQI4UFI1lHI7Klgo5z85qA5LLPOhp2nNiFZQ//MkMg1e/GTEg3t9OrjWy4+SOdv38pq2/0ejag7SMelaGmhhDV7XoSOi73BUDXa/UR98HNc2H1iGx6/rtp2xN7I2ff93ByBdqiI8NjQMsNc9zvVtO9mzpFp9ikG0+C33gAAAAAAAEBBhq5nGQAAAAAAQCEIw6wkepYBAAAAAAAADTwCRdsGKfeCfciflurplFNaL581n5bPprjYvLn1ds87L7kf16xpva60vAy9yqtg951JTyNJ2rIlnv7e9+Jpmx9Mki69IM5jYUfu9vOPhcybF/7MlsGmEvNHLbfbsnnObHoRv9yJPxSFcpX4K7d5OlasiKcDQ5b7q56aStaNcZn8KfYAhCpND6X9Ie3gVOu2YjRlPySS09l97C2TGA4+a24lo5fDxA9Sm4nys+2VPUXstUZKtn/29LHLnHRScpkVK+K6emBqdHb6wV3J+RYuNOteuWp2uubnGwqcj5XICeTfIBTcqyBxrTe54A5OLAsuY4uQZx9nvb/ox31IT9mbNf96ZW8y7Ml0/fXB1dXsPYFNmuvlNhsYGfOKTU8sSc42Fr+emozbjcTtlLkFkJK7fzRjXbPrGxlJXn/p/NPdc3bfAf/+FRhs3MEDAAAAAAAADTxfBwAAAAAAaJdzdFusKI4qMkl0uZ86GJ7Rdr8uQcdF29V4bCwcNrB6dfyZbevSosVC25GkY49t/d3TQkGz6lXIQ2jfrV6dnG/Rong6NRrOdNu3656czBYOZ8ODLrooOd+DD8bTNkLi/vuT89kRzf0oghn+cUnUdxvXZMJiJEkPPRRP3357PD1/fjzthU0enDxqdnqXCXOyi0jS+KQplAnb8MMcR0e6Vzey1Dv/nA9FSjZ10x+bbj2j3d9+2KsNa7EHLWPsdFOtC7RdWc83O1/Wtq+S4UsoRNYQONsep0V02VOktuOO+MWPtyRnNA3juGkwx1ZkC6aZHhmde6YBlji3ve9a9PmcWJ8J8w+1q0XL2o758xW5H4q4j+y4bbbXGikZRmnTL9gbDP9Gwh4081k3910RQvsubS+mXT9Hp+LruD17xibj9iWtTme9NqfdXyeWy5HCYZik1ke77zZtmp0c3+PF0c7kPOlmYwV0Uf+fZgAAAAAAAAAlwcMyAAAAAAAAoIE+p2gpc9fwlG61tRKHZPr8XvadWrq09fs2LNCPKrM9l7OGf/aD31PdDvZoowz9ntihYS9rGXe+PX7jI8l6N27299Kl4TCg0EhhqfXTHqitW+Ppm25KzhcahtPuCG+ozZHlR6mVQ4e8NwKhAmWLGkgbuTWtrInQCru/0+KWQ2GT/obsvrMjifonoA0TLrpBQGWUIcTWrnvUVHd/1LfaATOK7jZT9+158N3vJleeGOYyvhDVvBDyPNf0soWYlV2iXTPXT7sf/WNeBt0cKTPr+vLUz+SlJ17ev3VZvjy+x1gSyudQQHmyLt+X8yrrNdL/jRC4BtdMPPmIN4JmVsHwyrSbbfuZjWkv281VGYVy1vzLvyTnu+ee+v9NPwoqhpxllVW+qywAAAAAAADQJzwsAwAAAAAAABroL4hZad28g2FOKV1O7Uh9/mzd7KafR9FlsN/XjmxoI8nSosXs9Ki8buyh0LSCu/+G6oPfq972rLbhCv5805PLZqfz7O/UUDtbPrN7bI9/KbmLjvdG9QyyC9mQi+OOS85nR8O03fntCFleKJM9lPfeG08feWRKGQZI1lBXux/G7ZB+aSEugX3SFEJu50sbLrBAaeGoGGx5RtbrlaZ21V4f7Llk33/605PLXHdd29tlQLkesNeRLkq9NgdyRfT0POhRZQtlA/CLULZ72W5Ka/vsPrKjky9enEyLMW7bHnuDZt737++mx7KNxBvk34zaMthwUhqv/Gz7dMEFyc9m9mutXNdLICtaBgAAAAAAgHaRs6yyeMwLAAAAAAAANPCwDAAAAAAAAGigvyBmpeUjqO2+L37hj6Nt2VxNGg3OVnWhtBp2dGWbNsFfJpGzbMpLmLFzZ+uN2pXb6VYba5NNVeLnAbO5KkLfwV9u+fK4fo2OdJ7nw9bXrGWwfyuwqayaelHbN2x+i/Xrk/OtDiRBS8mJYV/ZQ7ZwYetV+QY1R0pavr5E2zMStyGJNkhK7rCRcFsTWp+vdmBf6wJ1eO6gAmx9MA1ezdSNaa9ulSGXUaIMoeuDnxfQ5lXMWPeJPOmORL2xOYECdVAqOH+Yf69n6425mNb8OpShQqSVM/V86WJlC6WySrudCpU163EY1Gu4z1YVO910LxO6H/rJT+Jp7x63ZtuktDymVui+Dd1hT4qNG5OfzVSI0eH9TYjBxi0OAAAAAABAu8hZVlmEYQIAAAAAAAANPAJFS5m7wfvdm81nw1y57C6yvZOz/tEhEZY2tiTxWeIJt42BtCv3h97u8Lm47RXvhzba6JCjj46nH3ooOZ8fylAkG0K3ZCLe4WNrkt/bRkqm7K4k+6GN1/R3hI1VTQtVDqx6wYJwecoQ0tVNmaK9/Apk9nHN7nu/TbKv/WNmZagQec+jKh6zoRWoJ4N6jP3wUU0UGyozqPuldHL0WOj4uuG3ubb93L49nk65DxxU42PhtCQhhYbAesp+HtnoSFsdmq/t5g17P2XvmfzrdNp12wjtf3/fVf1+qu/scZXi41ejfw4GEzUXAAAAAAAAaBj8P/8AAAAAAAD0QwV61aIZRxXZhOKkGCluTnnaztRl0ka9DEgb6TSL0ECPkj+aZbzu+fOT8+UJR7VSu8sH6qE/0uao3W4obNL7ssEu+3Z5SdqypXV5zPr8fW+jaBcvbr14VaQdv0zhE36lsbEe9vhlHa41bX3ms4NT4fOlm/dFdp/YquZHpNgmoIiRZcsma2hNaJlCwmxCQ+ym1acSIMSoWZ7rX+n2Y8a6ljrCeYbv5IfoFhmKknWfNs3nt+8zmkbkLC6cOC2MrxL1KQf/O4yM1Mx0eLlE22zD9bKmSzCfNYWQZ9hmv+Qe/bXN9ZWibvk3sDOjmdpcI8AA6X8LAgAAAAAAAJQED8sAAAAAAACAhvLFDQAAAAAAAJSdc6VMx4DOVf6onnr5S/pdhKAFk4v6XYTsbANgk+SkNAyliJ0vgdB+yJtHoR85MuxhTsvfEaom/me9kponwuZVsIW1Oa4kaWy89Qr8vAzr1rVen5kvLRWHXd2wnTu5vq+tUDbfiX/8Qu2VXyEDFTTtmGWu06G8aXbaq081s/IRk5tl//6M28n4/QaWf5yNWqdJ//yDnidnWaji9Ok49CpvT9nariK+d9Z1hHLl5ckXVkR5Mm8za+49+5nNN9XLOu3nJiuwDLXd98UvTBsyHboHaGfdfTgvis6TlSZPXtxEzrGJeLqpbGXODem38zbBqL0OpdShPDk28/yu6FUdbCrDzHF2rifbB4pWslaneDd8eWO/ixD09D/d3u8iAAAAAAAAwCBnGQAAAAAAANBQ+Z5lKEjZuj6XXJbuzrWpg8k3zD7O05U6tev77t1mu6bbuA1fU7JbfChybGIivJ20alK28JxgGF+KRHd5P9QrEPoVClP1X5du/wyStDDMUOhlxjbNHta0kMxUoZDBRJiGV3/MxsbH4roxMpI8/0ZHTL05EAgR9Ndftfbc+z5dDVW327KhWn6onZ3PHIt+hcnkCZPKs+5+6VWYaWbmmNd27Eh8NL36+Eyr6PSYZQ7vytgeJNZnwzBTQt/zhJilynifFJK6T3NcH7Jsp4wKPy5G4W1NjnvjbrYHiX3n131zrh9cd+rs9PZt8Sz21JGCt46Zy5BnmbLXz4FEzrLKKtndBQAAAAAAANA/PCwDAAAAAAAAGugvWFKddiGmi+0ASInpqqV15Q2Osjba+n0pOUJPaLQeKTEiUSDaaKDqVlpZO+2SnjbCWej8HaR9N1BCldX/LAd7zPwQSCt1wC77RtqIlaFl0t4OtQe5Y0YHRMbYFbsb0iJ0x8ZMe1B0KEWeMLcehWSWXcchtduTAyllDYHseAA+W9lMGgQpGcI4nXLd7mpoaeAL2m2mR7Sb0QsnsoVB9zIMLNf6/SG8u7WdAhR5j1H0aK151mXLkLXed3PfZz73/DqzZs3sZNbBY+15lrgOleD75SnDIF1fgCx4WAYAAAAAANAucpZVFmGYAAAAAAAAQAOPQPsokpvtCut3W92yJZ4+8sjWyy9enHxtH2iPcmTLL21oxG6y4UteF/J77mm9yIoVXSxPnxDmVFE5z6MsYS3+cbXL7NoVXveKFUvidZhz7uBUvPyOZLRY4tRMHazVfl+7UGgEzgFmI+psSOzy5cn5pgKDgnrRcIldZ9fRdP3MMSRqKOQsrQ5lWb6KCg83tMfIG4lSGcMwbd2wmQsyR+qljawYaKP8+mm3VfjtQYY4U//t0CKdjswn5QvXyyNt+SqkTyjiXOpH21O2cFZfKKraHx1+yVh8YtR23DE7PW4uMH7odZHndtN+tCMxp6VqSVsHMOToWQYAAAAAAAA00P8IAAAAAACgXeQsqyx6lgEAAAAAAAANPAItKZubxabcsLlrzAjFkpL5LYY538nAfN+0v0Ck5cWxyRMSeVFS8hEE1ufvu4ULWy+e2Kf+uir2l5S0HBYDU7fQUlq7mHi9c2frFdjcVUrmH7N/e7r//uRiNr+kzbVlN3Pnncll5s+Pp9eti6f9nEnBPDteWatg27Z42u6HlSuT89kmyTZXmfNNpQm0d2m5yLqZZ2lQ26Q8+yTrpcfm5ql5N0qJ/WWTD3mJAW35cl3i7Pnn36wFyuPnP+rqpTXDyrOmVa3teSD5hjnRuln3qy7Pd09LVZnnkjBMvyXS2Lpvm4px7UvOeNX34mmb7HDjxtnJmpdkM2susVxMo1kzXyLveVWFvH5Au4b3KgQAAAAAAAB4qtUlBAAAAAAAoFcqFmmDOo5qSdlwka1b4+l77omnjz228+1UsktthiHRSy8UR5Q2Xxrb/z7jMsHNDuo+zWig6z6KYWNZ0uJaTHjV/PlxKIUf7pKIljbT8+aFVx1aJo2N+hgbS7btoyODX6+DYWA7706+YeI1bYDLMhvPKungxLI51z33h/01SCGanYbU5TkPlnghT8EZvQueDbEeGxvPtmHj4JQJ40xZ3h6jnlYz2651Gp9s96Pk3W90McSsYP04X4oIM7WH8sEH4+lQWo28BikkM618wd89UwfjF951f2Riyez0qMx8m69PruQnP4mnbfi1PUfS2qQO2XZHkkYDsbe1A8nw0WnTRg1z6DPQCmcEAAAAAAAA0MDDMgAAAAAAAKChvLEFQ2D/Pmnz5vr08uXJ55a2V7ztmn/XXfH0vfcm17diRTydtYt02btSBwVGePE/SyhxKE1bcoRU5vnuVdldwAzb3qWOomvbED/EyDKj6U0uP2p2Om0UObudxYvjMtj2218msbwNFfE+tCNtVlEwNNwOHy1JV10VT9shR71RCUcvvnh2enrN2s4Kl1Ow3qU0wMMUJpM6ErNhR5Szp6w/wmTwnscPt7YjZa47ea5iNq3CLu6P1mr17VjawhYcNplndL9BCvHrVNHH3IZe7t0bT9sRlaXw9S9Ppo+BHYVeKW2KvY7Ya4ik2kUXxS/sTvHvD045JZ624ZYpqVWKGKUysGqNhi4jFRwtu++c44dTRQ3PHRcAAAAAAAAwBx6WAQAAAAAAAA08LAMAAAAAAAAaCK7to8OH47wWNq2KlMxxYcPe7Xx+io1kCorhyf/QpGox434Sgjz5DWzlSNk/Vdt1QMf5YTLmkUq2s+1v01/1ggXx9OiIWfcO72IxOTk7OWaGf6+iYPq45V7+lf374+mtW+Npvy1dv352smYvugXkc0nLjxdkK4F/gbcqfpwT7DGzx1JKHKeayUc3OZljf/t1wyYdy8Heq6XlLOubDut4bdvPgp/ZXRfKvztIBjU/V9b9nXKLWX32y6adE5s2xdM296W/TJYK77ftPcofdnAqrsdDdYx7hZxllUXPMgAAAAAAAKCBh2UAAAAAAABAA/0F+2jhuLRhQ336ppuSn9koklCkwKFDyWVs1/fkiMXZnolm7VpeiiG+07q6Vq0bbI4u2rWpg8k3bOWwoSve8bN1JW04caDSsobkBT5LPWXNiTU1Ndrq7XT+jCY2sWY23HH4aQnZCJcEE04pKRkmc/vtGVaQlLbv8lzzEsv4xy8U5psShhk6zoMSHtYWux+uuSb5mT22l1wyOzm27uT21+3fN+QIw3zwwXjahmH6qzKR01mjvIPSjnlX24AdO+LpdesSHwVuN3p6a9bxeRFoVyVpeiRut8twzi1c2Pr9tP1t613Wa0/Vbq0lr57YH04bNyZnvP76eDpth912Wzw9f3487Z0joTJkFQrzb7r3MG3cyDCF7/cDYZiVVb27aQAAAAAAACAnHpYBAAAAAAAADfQX7KOReZGWTda70p5ySvK5pe3Gvn17PG2jTY45Jrk+2zM4bSCtkImJ9rutl2GUoDKUoZuyfr/UUB9boWzlsN3OJU2NLQuuAiirPCE3zW2kHSkqDlcYXZkSUxk4SVJ74psP7Xxpy9hRrEbDs1WSPZ6rV8f7wUaB3bo92UYe/+Qnxy9OPDGe9g/66tXxtDkAaZGSdqTprGp7Hohf2ILXVxhP2/i8jPFrVbveNbH74Ywzkp9t2xZPm/26YyIOw/RHokycS3Z/57lp8hw+HE/b+zZbzaTOR4jMeswz1w1TwWspo23Xrr82fnHVVfG0DXtWsZFI/nfoWXh5SohuaB9lDYlNi/4NRWKnzRcK+/eXsWWwbZpN+yIl67FddxVGNk2TCK/1wyZDIfz+jti1K562wzfbae++u0hNddCUL+sIzXnmA6qsgs0dAAAAAABAl5GzrLIIwwQAAAAAAAAaeFgGAAAAAAAANNBfsCSWTCRjv0dGbP6c+H0b9m7TbUjJvAN2GT//ip3Pjmxs5c0LEVqum7HtVYmb73T46NQx6O3rUEI8SVoX5yyz9SRPPrtBlbfuV32/9FvW4+LPZ/O+2FPEbxdD+cNCuWYkaWysswxiNh+Mn8YkmELJT1AzRN3+bf4puxv8XTI9GbdjtY0b4w+aD2C8jMlXM5WSvspeg61QSpumAvqFDSUmCiUiqqDUttPuE/8kefzj42mTN2vr1vht/z7J7u5l9qClNQgZhdLMlTL/Z576tXNnPG1zll10UWK2lRtWzU4PUfOUK3em355kPSzJ9bf+vZDGbsdvFkM5y6p4LEP5uez1QJJqNvFg2o2ETSZtzxe781IvFu3LfO9p7/3NNbKQdQMVVsGmrz3znni5zjhxyezrL71to7bt2KdffvMmrT1mXPsfOqynnX+03vM7pzYtu23HPj3tD67W9R9/XOL9z15xh97yiZ/qJ7fu0fc/fIE2Pnyy218DAAAAAAD0EjnLKmvoj+rC0Xna/NHHJt7btmOfLjxjmS5/x7na/9BhnfWSK/XMC1bqMWdkexJ/+omL9YU/2aiXve/auWcGAAAAAABAaQz9w7K5LFwwTxvWHaHbd2YfVvyUExZ3vN1QeE5oZHn/te1W7Ufa2dHWbViLnfZ7CRfcaxhtsD2npWSI7pKxg/EHaWGY69fH07ZCeV3Ix6ceiLd7OO5xacuwbHKOAldMqMd9U+hXhjBBurR3n3++2EiItBCXLG3cgw+GP0tbd+i42/fHxpL1JxQWmjVOp4p1LXRdTPtjrg2n2aNkaM2UCYGy67Ah6JL0/9m79zi7qvr+/+99MplMJpMwCRkyhEADBIgYMEBAUFAs2HoJVix+Ub9a5VuttFWL1vvPKrb2Yos3ar+9aMV+661qtVpasWpFQETBgoISJGCEAIkJJJDbZDKZ/ftjzsz+rDVnrezZZ5/rvJ6PBw/WOWfvfdbZe+219+ysz2ft35+VbdiUbQ9HH+2uY6+nzsadDxTvVLpMKOQpN/8kNftyfDgL/RvYki3itw1nF8dCo/z4zRlWz7bPLVvc5ezluIgi4X7TBE6a6HFZsyYr//qvZ2WvTTdycEXdbSjC2a/2+Bf4QbG65Q1tzPu1wWtFTrH7fQbKTHCOp7mmVPwdZMM17cWiHfp2c2D9fqPscwnoJrO+G9w3elBrX32DJOnYI+fry39ypvP5jl2junfzHj3jKflGlQEAAAAAAKBzzfqHZbXCMCXpxjsf06m//R3d8+Aevf2lx2t4SRv8qwAAAAAAAGgfDMXsShzVgMmcZT97cLfOfcPNuvi8Ye0fHddrP3inJOmPLztRpx6/6BBbKc4OkQ3NjOkLfeaHANiwTDvcOjTLl7/tvOFGDOudGbvvRsfCx3zR2GPZi00mxiwUryt3driRvqzsH8vKWBbWOWI2PZvCMP3h6fb8QxPEwolziIVdxTaXJ0rioYfc16tW5a/XoeRud7M4Jt7uo95Y6KW59tjm5F/jbL92+OFZeaGXSWH+/EPXLXeUTWym4lkkFj4YnFXbb/tm39nUE7F7meDMlP4BLHByh2bAtLNzStMmj8yl7LDqIvdn40uPmCpXLroo+8APLW6Seu83/bbgRkSbULsGhrQ38/QP7a8y6lDv/X6RfRz7ziLbK9Kepi1nz5FVpkGZvqupfxuZgxsL3+7GtA1AWWbnXdoMnHj0gN7xslV6/2fv02f/6HRnFNqmLXtbWDMAAAAAAACUjYdlOVz+gl/RVZ+/Tz9/ZK+OPbLf+eyeB3drxYu/OfX6Q79/snrmJHr91T/RtsdH9fx3/EBrjz9MX/+rpza72gAAAAAAAJihWf+wbPfXnjvtvfPXLtX5a7OQtvnz5uihLzx72nIrh/t14JvPr7ndi887srQ65h0eGxpW7Y+Qt2GZoZn+/DCGOXNqf2dsRkCn3v5491kaepKXDSmZtqt6zE4PzNiUd5i3/R7JDT1YsKB2HWyIqCT19nTX8G3/99nzxe6vlSvd9fI0af+4MPS9hkDjr3idjX+caqwybXO2G/JnzbSnkl3Hlv11QpFaZRxXQtqLC6Ux8KP47Lm9dWtWnjvXXS4U+RpqJ90ib7srux/Lfc/TZ/7x0ux/OwOuHwJpJ6uLhSWND2RpNuz9kG0LsRnl7KzjfiqMvBp5fah726bD3DvmzjKrBk7wGgzRzfl7Qn3DbNMOYb1512/FfVLeMHH/nuCuu7LySSdlM/Q6kfze31f2HGnk/TT3mw2WJPxt26Vm75UCAAAAAAAA8PCwDAAAAAAAAKjiYRkAAAAAAABQRXBtl7Ix8H5uJZtzY968rDx/voJsGHahkGziuGcklCNngjm4BRKC2FX83HT29bLFo1Nlm5PEX2fJYFaO5YDpFH5TDR2LvGn47HL+Mt2wv0qXs7PJ26UsXVr7fZujTHLPC5uHxLZ3Py9VqA6NzE3XqjxSncruh4EBd9/Za+OBA1nZ71btcbbXzLxtsJPO807KjxfKP7V2bbaMn7PMnsOrV2flvr7w7w7lLItZsyYrn3tuvnV8LW83focX2BH+PrbXPLu/7PlW5Nwpulze/I95+/MyxfLexZbrVJWx7L4ymOjR64DHe3prLpY3r1gj9529bkjSbbdl5S9+MSs//elZ+UgvpbXtK+z9NDoMOcu6VufcFQEAAAAAAAANxsMyAAAAAAAAoIrxgl0kNNTcDymxU6fnHp5s52K3ZT/GyY65L3vO8FkkFjZQZkiAf4jsqPhR9QaXa1R9milvvW24nm3eeUdbMyp7hkI7zAvZqNhYHxM32ev1SYOD/XVVx4Zk+ueBH4rbKPan+7un29tXmWFJ/jqDg/m2beuweHH2/ty5WTl2HDophCpvyJrV8nBBufvfhvvFzll7K2Pvi3xFbmVsKGje0M224zfqvtopIJYtcxc7eLD2KmX0VaHjFwurL6LIeVBk2zP5rMx1WsY2gtBBKthQmnUvavf3woXud9rz/t57ZZbLyv6fTfypBLS3Lr/NBgAAAAAAaABylnWtzhwSAgAAAAAAADRAUx6BJklyuKSXSVotaZ+kGyT9e5qmaTO+fzYqfVi2jUXavDkr+3FI/tSbCIrNmNes4eSxKIvQLI55h4w3ckbAvPw62N/UKzMrk53lKzIdpp1xbdrvsedIYOeNDy7JVdeOCqsom93/dp9u2uQuZ4+ZXc7rgyqrVmUvTOONnWO2jdvwHn8m2GbhHytbKzTroh/61ZH8a7hp5JVA2J3UfuH3oevn8HB4nbznc5Ewyo4NvTSmzUI4UHtWwqEh93Ujr1+2uTYrDD7vrIt5zeZrvbO/TPty9oN3YG3KhfG+LK1CO/RB/v3w2WdnZdv32LLfN3T79b0djhNQj7pO0SRJjpD00erLf03T9F9qLPN0SV+VNGjefqOkm5MkWZ+m6eP11AEAAAAAAAAoS73Ps39N0iWSUkl/7H+YJMmApC9IWux/Julpkj4taX2ddQAAAAAAAGgucpZ1rXrHRj67+v+fp2l6V43Pf0fSsCYept0v6e3V/x6WlEh6bpIk59dZBwAAAAAAAKAU9T4CPVkTD8K+H/j8ZdX/75J0Tpqm2yQpSZJrJf1YEw/MXirp+jrrgRkolC/BPi0P5RSS3CQgkaQdoRj22ZS/wf+trZj22mfz8YQO84ED7jrLhmpvr1V5CmLf29tj82KYD3ImYovl1XDa/shIVjbzhFfGTJ40yc1nZurdDvneyhY7Ls7vs/txy5asbHMlStKcOVnZ7m//WBb4lz67CZtrxH5Nra9qlNn8j5Utafv+uW0OfMWesyZ/TscqOfFTJ/VdefOK1Xv+tfM+aDiba9J2ppEcePF7lKxscwaW0RcXOU6hdUbHwte7bujPY/lg7XUylhc3uL8jOyiW27cV55n/nX19WZ1Wr863Trebbb8X3afev2Yn03re53+QJMkSSadp4mHa5yYflElSmqY/lfRtTTwse2qddQAAAAAAAABKUe+/b0w+LNtV47NzNPEwLJX0nzU+/5GkCyQdU2cdAAAAAAAAmq8bho1imnqPalL9//wan51T/X8q6cYan2+v/r8LJtieBULzHvshHHZcPNpG3mHQoSHutv+3UXKS9MTubLlFA9n6sTDTIsOy84Z12hAAP2zOhplK2bTlW7Zk5RNXRepmf3wsBDk0v713IbW/KRZJOKummrc/3oSwTtsp9rXdebavkoKhrkWqkzfUp+xjFNse07IXV3cagk5lzxf/Gm6v7/a3+sv19CqPVvRdjTxfYtvutr65lP1oQ+lD8e0zYJtk3jBaK/cxCl3DYxUy5bzdRDuEEpbBdinbt2dl/5rpHPbQPs6ZSqEd91U71qnlJu+VSw75B5ql3rvsR6v/P77GZxdU/393mqY7anw++YBttMZnAAAAAAAAQNPV+7BsMkn/c5IkmfqngCRJVkk6SxOjym4IrDsZfrm1zjoAAAAAAAAApag3nuCrkp4raamkf0mS5EpNjBi7Wlm+si8F1l1X/XxjnXXADNlhwntHsuelu0zmuR/9yF1neDib9WtwMCv7YW4ykWh25PSKFeH6dENUS15FQkDaYdbMgYHaIZm+vHVrZGiOrV8sbM5Gh9x+e1Y+7DD3NwwNZeVKaMon/7Ufq1o1vvSIYH3spmPHvBtDMu1v2rYjC+969NFsf61eHd53sRmyQstNEwiXLby9JmmHOnQdv5Mzr51Z7sIR1u13XGz/ZGeW9TtJG/pccvhpO/Rdoe8lnLk8znFeuTL7oEjcZDuItf2c14rQDJHdcv8bmrj6yU+OrNSsH583jBaN8bWvTfz/iSdaW49GSxLaU5eq9+7gnyT9olpeL+k2TeQnm5wF83/SNP2Wv1KSJCslTXahP6izDgAAAAAAAEAp6npYlqbpiCYekj2kiZFk9r+HJL0ssOorTPm/66kDAAAAAAAAUJa6xwumafqTJEmeJOl/aWJE2RxJP5L0mTRNa8ciSSdL+o4mkvuHcpqhyR59NCv7UWT79uXbRmiizB3eFA/zzfypnToyv5HabcYt+519fcXC0sqchSy2rd6ebLleucPvx80Mbnbi1tNOy8rza83tOynWWG04U2j2pjF3PhNbn1jIaN7f3g2K9A2NDJWcTfsetYVmBu6oyb1C8enTpwyeKnZS2oB6tV3YbJvL2y+ODy8v7XsO9V1lGs8522teRWbH7KQ2edhhWdn+1oUL3eXcbAfmWObc3520T1C1tZqa/MCB1tYDKKiU4No0TfdIuqb6X57lX1rG9wIAAAAAALQEOcu6Vmf8kx8AAAAAAADQBDwsAwAAAAAAAKpKHS+YJMkxkp4vaZ2kIUkLJP1dmqZf8JZbUi3ur4ZwokVs6pLh4axs8zn5y1n+iNNQKhR/udk6UrVT8y3E8mgEc4h4ie8q9vXSpVm5QGMouh/teksGs/cHB3PmvLJ19U8Sm2DL/ywHu2l/n9o6dGobypvPzu7GpuYzzNEOy8jJ16nHD9O1w3Usd44jW1l7sY/kLCuDU6dQkrd22JFAA3V7Ex8aql321ZvnsVBOt7w7302oNoNatYDtt2MJbxsodM8z7bisWDHx/95y8wACzVJKb5AkySJJV2ti9ss5k29LSiX9R41VviFpraSfSXpSGXUAAAAAAABoGnKWda26wzCTJBmW9ENJr9DEw7ek+l/Mh6rLnJgkybp66wAAAAAAAACUoYxHoF+SdHy1/ANJH5H0I0l3Rdb5N0n7JfVKeq6k20qoR8dJlTRsGuy8w5NDYWll6BmY+W8rY3/YkdR2pPKWLVnZf/hvo1L6+2YeJuXX29bBRh/a8rx57jYWL65dvzLCtspsZ7m3FYvRLfCvL6Nj2fd6EZ7BEelLBsv9V57ob7dTnw/UHm4eO5b2N/nhh/Z780YKNDLcL1QfP6IrbxhlqK5F2m0zwxxD9fPbp91HA6ZfLPs873b19mNlhG83Ur2/L3/fHO6rQiHfebcdCyF3GnzOeKxCYVddIvTbG3Xf6CtyH9loefdDvXXKu37Zx6IVfU0zj1+Ra17eutZ9v5DzvrRlfZLtMzdvzuqz6sSai0jhLjf2U3fuzMp+hGehiM+zz574/4IFBVYGWq+uvySTJPlNSWdrItzys5J+K03T8epnwfXSNN2dJMkPJJ0r6Zx66gAAAAAAAACUpd5hF5dW/79d0msmH5Tl9GNJ50laXWcdAAAAAAAAmoucZV2r3qN6liZGlX01TdN9M1x3W/X/kXlTutvoqLRp00TZH50am01mUruHJJQ9XDpk2zb39aOPZuVdu7Ly449nZRt2WQZ/6LMNw9q+PSubkdNTE8RMsmGY9Sq6f+sNh3OGp0fCMPOGT9jQS7sf7TBxnzspZSQkyBmT3lt7mUjdisgbruvvOtuOy2wnMbFjZPe/DW/2wzBXm38KiQ3fzz2rUoe4+2739cKFWdme902d7bND2bZh25dtg3PmyBEKaY+GCDZQ2aFaodB+/xw7cCArHzyYlYtc/4qGpQXP7QJ/VDQy7K7dNSv0Mvad7baP26E+7VCHVmhV6G3Zisxi3ayQ6Ojvzjnjur1O2uunnZBecq+T9T7vmbZPVhwz8X9mw0SHqvdh2RHV/99fYN3R6v9znT2VSiUa2llLX1+fTv6tb820Xk0zZ95gq6sAAAAAAAAAo96HZQckzSu4nckHbTvzLDw+Pq40TWf0BUmS6Kf/b/0Mq9U8v/ZHD7W6CgAAAAAAoCjCMLtSveNHt1b/f0KBdZ9W/f+DddYBAAAAAAAAKEW9j0BvlrRK0nOSJOlN03T0UCtIUpIkpynLd3ZDnXXoWGNjWb4tP9dPnpxlmDB3rvva5oGyuYJs+fDD3XXK/scAmzvG5ofZsaP2MlL+aZ0bajKJnuQkCausWpW971fcNl77IzZscJczP6qybl24DmY5PxfcJD9dg61SdGprm+DHJJCr5E3iY3+r/0U2AVXgAE7PQZH9e0Xot0rSnj1Z2bZjv99oVg4smz/OsrtXcvNl2F3s55zLmX6jY/h9kv19haZeR5TNxyW1SV8aEDvP89bVbsOeS7Ft23PT9hN+e+ytc39F8+zYCuY8SPZfdMd7yHlzKI1s+05O0lmaq6tbzObjl+u3xzpTuy3vJMuTw6xoPmen/1t6RM1l/HvCUJ5P/x5s5cqsHLuPtLuld+cvs7qZ+vi/rxX5FoEy1duCv1T9/+GS3pNnhSRJBiX9P/PW5+qsAwAAAAAAAFCKuv7dKU3TryZJ8j+STpf09iRJ5kp6b5qme2otnyTJRZI+KOl4TYwq+0aapj+opw4AAAAAAABNlyTtN5QdpSjjqL5E0vc0MbrsDyX9XpIkt5jPfzNJkmdIOkeSnax2q6TLSvj+jtU7Vzr66InynDnuZ5WRvdkLEyfRLcNZQ1MvVzaZiVVvu81dae3arGzGDA8OuqEZNqykv88MB7bjjr24L2e/Fohj8BezrytjWXTy0UdndfXDX8rsY/MOsZ/WnmyltmzJyiZkUStWuOvYcd62fNdd7nLz5mXl1auzcmTMt62Oneq6d2yvu+DGjVnZ7kh/fmy7wVAsk79OSAkHLDRE3t8ltrmGdnet9cpkd5d/aCfZJuPXx/4GPwTgwIGs3Kkh6LbPPn2196Ftd6F4ONRk+7K+vqy/ip2moVOzHUKPYt2GvVbYE268r99ZzjYbm1Jg//5y61OIH74UCtOPVSIUxl4g5KmjeB2683vtvovcEzbyb7V2OH/QYcqIO69TZfsv3TduvTUrz5+fldesycp56+b9LVHoHHH+5giHmoe2bfsAv9r2WmG7l6K7vrfH1OG667K62Twb3h83lbPPnijMcJI+oF3UfaeRpulGSRdIuldSIqlf0rM0MXJMks6WdJEmHpQl1f82SvrVNE0fqff7AQAAAAAAgLKU8s9yaZr+WNJpkt4maZOyh2L+f1skvUvS6Wmabqi5MQAAAAAAAKBFShsDm6bpXkl/JemvkiQ5VtJTNBGa2SPpUUkb0jQNBO/MTj1z3RniHCOB9w1/+H1XDJG3Y4Pvvdf97KabsvL5508VK+ee6yzWb+NzbMiTncLPG4NcscOGYzMe5pzlcHTMDouuHXrZyDDMvKa1Gdsgbdirja/zpy60+3jXrqy8b5+7XCikJOcPd4Z/b9zkfnjjjbVXetKT3NeTw8Eld/ofG/I0sMhZxdlHZkx7kRAgP2zSNslQU5XckDMbEduqWSTt0P5rr83KsaZhf5MfmbF1a1a2YZjtPvtasE52VlnJbWvktCjM7u+ennznXzu2G8upX2C2SP832N9uz5dYBGSIv4wNdS1934Xafs4wTF+7H9sZi/3uQKoAPzQ1dG2NXa/abfbYWF277ph3Kr+zyTl7ZJ4GlvfeKtYWnM/8/BBf/3pWttdmO+t73nQcbcD+1n7v74rQviyaAeKBzdn2jvm3f8s+sH/Q+Buf/LuiSJ6ATkLOsq7VkKOapunPJf28EdsGAAAAAAAAGqXLsqMCAAAAAAAAxTFesIUSpeFhxH6MXlU3DkF3fpOdafGii9wF7eyYdpivP8TaxnvZuDAbYugPE847hDwnG9piQ9HsYY3OitYOx9keC38GTMvuu2BcsSfQvqPs99idKkkPPZSV7Y494QR3OftZzllmbUhtYEKyaFVtc/RDnuxytqkedpi7XKDazgSjZYuFfq1bl71vf5MfuWAjHEITkcbY5bZscY+R/S677ZadO7YS/nlgDyDD9EvRFn1kTrnrmrOd2O3Z/snvX+wmbF/R0ObobzDUUXIeTBcLqQxNg+wf9EBsfqwN5g1pRlzXh48GwsSjy/ly3PvF9lUp+9je/9ubFPt+kXvUosx5X3Y7sdtbVCD00l5fJGmDyTZ+jP27wN6T+2koJl+PjgroRNytAAAAAAAAzBQ5y7pWXUc1SZL7S6hDmqbp8SVsZ8bmXHCtTjk2S+b9b+9bp01b9uo33nWbjjuyX/v2H9T6c5bpqt89edq6m7bs1fp33Kq7rnnm1HtXfvIeDczv0ZsvzX7OVf9yn97yd3dr27/9mpYe1jttOwAAAAAAAGgf9T4CXSkpncHyiSmn1dczWb9U83vn6I6PP8N5b9OWvTrvlCW69s/P0r79B3Xaa27QxecO6+mnLJnx9h/85T5947btOmbZ/LKqDAAAAAAAgAYqY7xgcuhFHJMPx2a6XtPNnzdHa1cdpoe255h/vYY3/s1P9JevfZJ+4123llyz5rN5AmyKDD81QWg64kJx+GvWxF9P8nOW2dh5WzaV2zvixuH39GSj/nr7nA/y1HSaUH6mWM6yTslpMS1nhNl3Gl4+Vayc5zUG23CKzFsdStzlv7Y5W7wkWuOmrqXnhhjL8jH0mrrOmZPtL7/aod0Q2z02xUar2F28fn3927P7ZfPmrLxzZ1b202AsW5aVFy/OyqtWue2zJedVIG8QEGX6jVhuHmvHjqy8dav7mT1H5pt/s3Ny/I15eWR2mmumrc/AIuXh3xP0NLDP7Tb+MXde2T7FdpJ+zjI/cWQO9rjkbXeN1Kx2Mn1/m++1+9W/WSPUKv8+8NunvScPJXT1c+Q6N85ZfxI7fvazir89e9NiPzM3Xl2ff64g59707W/PyrffnpW/8hV3pbvumvj/vn0NqxfQSHX1+Gma5rqqJkkyX9Ixkp4j6U2SVkj6kzRN31PP99dr3+hBrX31DZKkY4+cry//yZnO5zt2jerezXv0jKfUHlV238N7ptaXpC2P7debLz1OkvTV727RUUv79JRV+W4wAQAAAABAByFnWddqylFN03SfpHsk3ZMkyTWS/kPSu5Ik6U/T9C3NqEMttcIwJenGOx/Tqb/9Hd3z4B69/aXHa3hJ7VlRjl++wFn/yk/eI0naO3JQf/qpjfqvv3pqYyoOAAAAAACAhmj6I9A0TZ9IkuR/SbpX0puSJPlqmqY3NrseMZM5y3724G6d+4abdfF5w9o/Oq7XfvBOSdIfX3aiTj0+PGLsvof36Odb9uop1VFnm7eN6PTfuUE/+Ntzgw/e2kEjh99Hh7vXa3g4/JmN4zLis0LXf1r09mS/b8lg3ZtrK3mn9Z4WtmNe21Adu69y88PcbGyiPbiReEZnmH7kN/X0VEw5e396+NJO1Vpw2ZBX10Ad8mrnf7jKe17754QNi7ZTk99xR1aO/e65c8Of5d3Hszm0Ap3Ltn0/BPLRR7OyvUw6fZcf33zvvTW/p3LKKc7r8RXHTJVt12ejrCQ3KrCvL1+fiyobBjuYRThU7A4vktIgoshxaWTIWtnbjl73J8PFJDe9x6pV7nImdM+mdoilKLFBtZ2ajsP+1um/L9M7Egi19F9v3JiVbQflhxLHb9iz+gXaij13JKmybt1UeVS1j1/Jp1XH8tvn8WY6vv95KEu7cvqzzTE7eNBd6cEHJ/6ftH32JaCmlvzZlabpI0mSXCvpf0m6XFJbPSybdOLRA3rHy1bp/Z+9T5/9o9OdUWSbtuwNrnfKcYv0yy//2tTrlS/5lm77+/OYDRMAAAAAAKDNtXKMwk+q/39aC+twSJe/4Fd01efv088f2atjj+xvdXUAAAAAAEC7aOfQDxTWDkc1EkPXWLu/9txp752/dqnOX5sNJ50/b44e+sKzpy23crhfd13zTOe9K191Us3v2fS5C+qsaXvJOSK6PdhwPTPGurL9l+5ydsy1+YENDR/tQnb/jI65+86OvrdD+FesCO/j4P72x8jbMMxdu3LVr0gIpFMfPw7BzlBmY5HsLK5e+Gi7zULWKqHJTO1ujEVmFJgAbpq8YbnApEaGn+Vdf3Awq4M/U25wQj/7gR92+f3v117OxnRKqrzwheZV7RB7fxMdde/QArFj7nzWrCmR/Zja2IzULVB6iP1kuJjk5gDwZ3Q0v71iLlg9Pdk/qPu3IXv21Fx92rWrtx3+KjPsPg5NNC95v8PeC9n9KLnhrTacOHCvLqnuBxDTjr/dXiCc1F9ntt6f+fthaCjbD7ZN7x3LIqf6zz3X3chkeHM/A07QmVp59p9d/f+e6FIAAAAAAABAk7TkYVmSJL8h6bmSUkk/bkUdAAAAAAAAAF9dY1uTJDnm0EtNLCppQNKJkl4k6SXms0/VUwcAAAAAAICmSxJylnWpeo/qJk2MDpupyflj/1vSNXXWAXUIxeHbVAKSm2/K5lvwU0fZfiKW3qLl+YH8xCqBebDJXVRc7JoRm3Y8Fz9hhs1xMXdunRsPc9ttpE533pmVbeNfu9Zdx+ykds9f1qxzwaYusf2OTf0mhdP22Nno/eVsm+TcRhF5z81mXePstm3+MsntZ92cZebFwoXuBu1JZ/vVDRvc5cyJNrDm9NrfU+M1Ooh/8GwbWLFiqljxEm/Ztl96XrESTctJe+SR2Yv77svKNs+W/9rso96+7IQbGlpk13BuS+ytwrT0XAO191errle2D/H/LrB6N/0se/EpMwbCz1lm24ppQ5ozp/aX+q97ejVTsTZom/iigZw5AyHJvbdy7l/7ljjLVSYX7J35sQPaQRl/kSUF/jso6e8l/UaapkUetgEAAAAAAAClq/ff/G5QvpFlqaTdkrZK+h9JX0nT9OE6vxsAAAAAAAAoVV0Py9I0Pb+keqANTM7uK0m33eZ+tmpVVrYjp3133137/Sc9yX1twzebFpIZm6+bWJHS+cdy6dLsONcdhukfL9ugbFxD5IvytrVgeKRfBxs/aEObbB388FFT73ETXrBtm7vY4sXhr22UIqGgZZy/dhfZXfrkJ7vLLRvKvuuxnVld/WgxyzYT2x4lqbeHMAvUFjoXYv1YKy4p/vnX01O73uN9/dk6q1e7Hz796VnZhqL5ORec76ldlqanYKhZHz8cjpCn9uAfPPvahuvajlpSxTSCdgtbjrI3t+vWZWU/VtKe+HY/GBXvfFli7jn7zPkXjTiM9CGh/VrGvstzzObN8964896sfOONWfnRR93lbD4Fu49POSUr+2G9BUIvrdg+aceUF+0sT/vy23Tv5HnV7WGY5CzrWvQSAAAAAAAAQBUPywAAAAAAAIAqxgvOcjbkyU7w44++t5P4Ldpt0s3tdsfbHn30MVPlwOj0qKYNxWeobNPZMLfeene/H0ZrX4dmc2s0G4piwzlsW4tMJzViZhC65x73s+HhrGx/qhf90nKjY+6/v+Q9zexusetccklWXvboT92VHsqO7RKzg1avXu4sZkMCbNlvGr3hKDNgSigCy07mJklDQ82pT0wohNyebwfSI5x1lr34xdkLG9Psn8y2U1J4Mec6HjgZK3liNdF6NmQ35w1evbM8+/eB9YbNRe8r7QU1Fobpp1OYlDOGMtbc7abtcqGQal+Re+jYPrU/3dZtWgi6zRVx7LG1y5J09tlZ2e7jSH6XvG2oyN8MhHyXj5QW6DY8MQAAAAAAAJgpcpZ1rVxHNUmSTzSwDmmapr/dwO0DAAAAAAAAueR9BPoqSWkD68HDMgAAAAAAgDaUJElF0h9Ieq2klZK2Sfq8pHenabon5zaeJ+ldkp4iab+kb0l6a5qmP6+x7GGS3ifpRZIOl3SfpI9K+rs0TRv5fErSzMIwkxzLpDmW85dp6I88+eXXN3LzdZk3f7DVVXA85SlZef5897NFfaPZi53hxD/Llz6WlVeZhAtekoY8eSeYTh4h/lTithmO9GU5qwa81Ga2w6s7v4U/3NrmO1m5svYG/GQl5vXmzapZltz0MDbNR7vlLPPzmOQdkW6Pn02FVBnZm73Y7uWNCSQgO2Zlvhw3fhqa0HL0O8jj4MFW1yAulK/vwQfd5e65x/atp06VBvycfptqf4+fymx57dRm6HR+3tAc6s1fVtY2gkIXLK/xjw8sKvd7c1ShmUJ5Pu19iJ9+tW/d06bKy69aWXslSVq1aqq4V/1T5RFve9aSQa7BQJv5kKQ3SPqypA9IelL19WlJklyYpmn0pE2S5EWSvijpR5LeIukwSVdI+m6SJOvSNH3YLNsr6RuSTpP015LulvRcSf9X0jJJV5b5w2rJ2y0/6xCfr5f0Jk08BLtP0pc0sQO2V987XBNPDi+WtErSuCZ29LUzr/LM/PSZn230VxR20YYPtLoKAAAAAACgiFmSsyxJkidLer2kL6Vp+pvm/Z9LulrSSyR9JrL+XE089HpQ0nlpmu6uvv81ST/UxMOv3zGrvFrSmZLekKbpX1ff+1iSJP8q6Z1JklyTpukvSvp5NeX6Z5k0Tb8T+k/SGk08KBuR9Jo0TU9I0/RtaZp+Jk3T/0rT9OvV8tvSND1REyGX+6vrPLm6DQAAAAAAALSfl2piINSHvfc/JmmvpJcfYv1nSlou6eOTD8okKU3TOyRdL+nS6gO1SS+rbvdj3nY+LGmupEtnUvki6noEmiTJKZI+WH35v9I0/Y9DrZOm6TVJkvxS0r9L+lCSJN9N0/RH9dQDxS0ayEZK9vVlz079cKpRZaEZPSuOCW4vFLJUxnB5wqQQ0heI+J02vXmJpoUJ21ANU461/VD9/CjOnDPSl8o/r/Kcw36UaV7BcFK7wbVrg+sX6V+K1hUN9va3u69XrMjKl1+elZv4L7j2XOjpydpas8KgY+077/XP7i5bbz8c2YaA796tILu9UNiW5NXdhs97ofQW13Tk0ax2Unq4Z0ToutTI3+pv2/Zxtj62K/a73w0bsvImkwpjeHi5s1yPicqcNy9f/Zq5/wEc0pmaiBD8gX0zTdORJEnuqH5+qPUl6Xs1PrtF0q9KOlHST6q50U6X9D9pmnp3K/pBtR6H+r661dsD/Z4mnurdkOdB2aTqstdr4mHd79ZZBwAAAAAAADTGcknb0zTdX+OzhyQtreYZi60/uWyt9SXpqOr/F0uaX2vZ6vc/apZtmHr/afZXNZGg/8YC694k6fzqNgAAAAAAADpKl4yCXJokyW3m9T+kafoP5nW/JtJp1TJilhkNLDM5s0etbYx4y8SWnVy+P/BZaep9WDb5NC+0Q2Im11keXQpN09szbsrlbrtISBdQLz9UoMxQhrzbii1nwx3MJFHTwjBtqFQstLRZoRpFzt9Y3foDoSdlhJ+Vuk/8nR+KU/NnALNxb3lnkbPfZace86chs7ExXRBbuv2v/sp5vcmU19kPXve6JtRmOtuebOqC2HLtwNbHnm/HrXSXW7mSa/NsUHYfXu93ttv5YuWtW7fc1+bpK/x+oxW/vZ3bDNDBtqdpui7y+V5JRwQ+6zPLxNaXpFqB2P76sWUnl499Vynq7d0mn/Q9pcC6k3OSh54WAgAAAAAAoLUe1sTos1oPsI7SxMO22CCqh82ytdaXsrDLHZL21Vq2+v2Hq3Y4Z6nqfVh2jyZmRFifJMmJeVeqLnuRJkI4f1ZnHQAAAAAAANAYt2ri+dFZ9s0kSfokrZV0W411/PUl6Zwan50t6QlVnw2laTou6X8knVbj4dxZ1Xoc6vvqVm+w3Rc08cN6JX0tSZKL0jT9aWyFJElWa2ImzHmaeFj2+TrrgA7E8GnUo1vaT+h3+GHQvQM1F2uZZu3/loRaxvhhmDY+1sb8+uGZdqbUIlOb2u/xt93IKV9bYOlll7lvXHNNVt6ypbmVOYR2Ow867bswu3R72+r23xczm387IElp2nW3YyH/Iumdkq6Qm7P+NZrIH/bpyTeSJDlS0mGSHkjTdDJc8juSHpH06iRJPpSm6e7qsk/RRC77a9I0PWC2+1lJT5f0O5L+2rx/haQxNeE5Ur0Py/6vJmazPF7SsZJuT5LkM5L+TdIdmpilQJoYJvcUSRdLeqkmZtCUpI2S/qbOOgAAAAAAAKAB0jS9M0mSv5H0uiRJviTpPyU9SdIbNPEg7DNm8T+X9EpJz5J0fXX9A0mS/IEmHrrdmCTJxyQtkvRGSdskvcf7yo9JukzSB5MkWSnpbknP08QzpfelafrzBvxMR10Py9I03Z8kyfMlfVsTifrnSvqt6n8hSfX/j0haf4i4VgAAAAAAALTWFZqYf+l3JD1f0nZNjPp6dzV0MipN0y8kSbJP0rskXaWJ/PXfkvS2NE0f8pYdTZLkQknv08SAq8Ml3Sfp9WrSgKu65zxM0/TeJEnO0ESFX6TsYVjMlyX9fpqm7RVTAQAAAAAAAEeapgclfaD6X2y5V0l6VeCzayVdm/P7dkp6XfW/pqv7YZkkpWm6VdIlSZI8SdLLNRFbeqKkxdVFdmgiWdvNkv45TdO7y/heAACapq/PfT08XHu5pUvr/y6bz2zFitrlbvTxjzsvl3qvAdSPHFMAUJ5ZlLNs1inlYdmk6kOw/6/MbQIAAAAAAADNUml1BQAAAAAAAIB2UerIMgAAAAAAgNmAMMzuxcgyAAAAAAAAoCrXyLIkSZ5hX6dpekOt94ua3B4AAAAAAADQSnnDMK+XlFbLqVnPvl+U3R4AAAAAAADQMjN5SJXM8H0AAAAAAICuRM6y7pX3Ydk/zfB9AAAAAAAAoOPkeliWpullM3kfAAAAAAAA6ETMhgkAAAAAAABUkVgfAAAAAACgAHKWdSdGlgEAAAAAAABVTRlZliTJkyS9WtJqSfskfUfSP6ZpurcZ3w8AAAAAAADkUdfDsiRJjpH0xerLv0vT9BM1lnmhpM9JmmvevljS65IkuSBN08311AEAAAAAAAAoS70jy35N0jpJqaT/9j9MkmSppH+S1Ftj3RMkfUHSOXXWAQAAAAAAoKnSlJxl3arenGXPrv7/7jRNN9X4/PclLdTEw7TvS3pJ9b+7qp+flSTJRXXWAQAAAAAAAChFvSPLVmniQdhtgc8vrf5/m6QLJnOUJUnyXUn3V7//xZL+vc56AAAAAAAAAHWrd2TZEdX/b/I/SJLkSE0k9E8lfcYm80/T9CFJ10lKJJ1RZx0AAAAAAACAUtQ7smxp9f97anx2tilfV+PzDZIukrSizjoAAAAAAAA0FTnLule9I8sOVv+/oMZnTzPL3Fzj88eq/++vsw4AAAAAAABAKep9WPbL6v9X1/hsMvn/j9M03V3j84XV/++t8RkAAAAAAADQdPU+LLtdE3nHnpMkyeDkm0mSnC7pVE3kK/tOYN1jq//fWmcdAAAAAAAAgFLUm7PsS5Iu1sQosa8nSfIXkuZLep9Z5vOBdc/SxMO0e+qsAwAAAAAAQFORs6x71fuw7LOS3izpKZLWSfqi+SyV9M00Tb/vr5QkycmSjq8uc0uddQAAAAAAAABKUVcYZpqm45KeL+mHmgjHtP/dIekVgVUvM+Vv1VMHAAAAAAAAoCz1jixTmqYPJ0lylqTzJZ0maY6kH0n6RpqmaeR7/0nSaJqmTRtZtmXfDl3xw4/p1sfu1bzKXK1ccIQ+fMZr9JSvvUGrF63QyMFRLeyZr98/8fl65XEXSJI+ef839Zbbr9FR8w/XyPioXrvqOXrj6hdO2/b1W+/UVXd/Sdee/56p9171vQ9p/VFn6ZJjnq7fvuVq3fbYvUolnbhwuT559hXN+dEAAAAAAADIre6HZZJUfSj27ep/eZZ/YxnfOxNpmuriG/5UrzzuAn3u3LdKku7Ycb+2juzU8QPDuv25H5Ek3b97i150w59pPE112fEXSpIuPeY8ffTMy/Xo/id00rWX65Kjn66jFwzN6Ps/dMartWhuvyTpTT/8uD76s2snHisCAAAAAICOQ86y7lXvbJgd49tbf6y5lR5dfsJzp95bu/g4Hd2/1FnuuIFhffD039bVP/v3ads4fN4irRpYrkf27Zjx908+KEvTVPsOjipJkhlvAwAAAAAAAI1VysiyTnDX47/QGUuOz7Xs6UuO14YnNk97/4E9v9TIwVGdunhlzfVu3PZTrf3PN2TL792m9UedNfX6sls+rP98+Ic6edHR+sDp/0c3bfybmf0IAAAAAAAANFSpD8uSJHm6pBdoYmbMIUkLJP1Zmqb/6C13miYmAdiRpunPy6xDGfxEa//ywI369i9/rHueeEgfO+v16pvTW3O984ZOnpazzLrm7Ct0cPygXv/Dv9e//OKmsqsNAAAAAACAOpXysCxJkmMk/bOkc+3bmnjudFiNVT4g6ZmSNkv6lTLqcChPPuxX9MUHbs617O2P3acnLVox9XoyZ9n3tm3Q87/zXj13+Rn63vYNeu+dn5Ukffypr89djzmVObr0mPP0V3d/ScnwwMx+BAAAAAAAaBvkLOtOdecsS5LkJEk/1MSDssT8F3N1dZkVSZI8s9465PGry07V/vED+tjGr0+9d+ujP9Mv9vzSWW7T7q168+2f0OtPvGjaNs4ZWq1XrHyWPnLPV3Xx0efojuddrTued7XWHX5C9LvTNNXGXQ9Plf/9oR9otXkYBwAAAAAAgPZQ18iyJEnmSPo3SYdX3/qSJkaN/UjS7siqX6t+vkDSr0v6Tj31yCNJEn35vHfqiv/5mP7ip19U35y5WrlgmT58+mt03+4tOu1rf6CRg6Na2DNfrz/xoqmZMH1vO/k3dfp1V+idT36xFlaT9h9KqlSv/N6H9cSBvUqV6imDx+pvz/o9/e/7/rbMnwgAAAAAAIA6JWnqZ+iawcpJcpmkf9REuOUH0jR9q/lsvPr+W9I0/WCNdb8h6QJJ/52mae0nU+7y6UzrmiSJ0pdNn9WyXVy04QP691u/1epqAAAAAABQunVnnaXbbrvtUJFnHWvNmnXp5z9/W6urUbcnPzn5YZqm61pdj3ZSb86yi6v/f1DSO2a47l2aeFh2Yp11AAAAAAAAaKo0JWdZt6o3Z9npmhg99h9pmh6c4bqPVv+/pM46AAAAAAAAAKWo92HZ0ur/Hyiw7nj1/6XMyAkAAAAAAADUq96HZXur/+8rsO6R1f8/VmcdAAAAAAAAgFLUO6rrEUmHSTq5wLrP0EQI58/rrANKMp7z2WllalBg/nXybg/Io0hbbYc6xNaxuQ5ieQ/6+zrzfMn723sKXJXoQ4A2kTdpS5ETHWgzZdwDh3Tqda3IPunU34oJsWM+W44tOcu6V729/A2SEknPSZJkYd6VkiS5QNIp1ZffqbMOAAAAAAAAQCnqfVj2L9X/D0j6SJ4VkiRZKema6stU0j/XWQcAAAAAAACgFHWNg0/T9PokSb4p6UJJr0ySZEDS29M0vd9fNkmSwyT9lqR3SzpcEw/K/iVN07vrqQPqU2S4tF3HH3I6MpKV9+3LynPnussNDGTlXqIxutLoWLht2Qic2BDtUPuMtTv3e9z1+0x2xbxDw/OeI6Ewyr6+8Pmye3dW3r699vq+4eFse4OD7mdlDnf3f3eZ27a/W5K2bMnKS5dmZdtO+iKZMf3jnMdsCQ0AfEWu+7E+qbdnPLyg7ZxDJzQhmeggjQy9bDd578Hsa3vKHzjgLjd/flZ2uwCu4Z1mNp0HmN3KuEP535J+IOlXJP2mpN9MksTmIXt1kiS/pYm8ZnM0EbYpSfdKuryE7wcAAAAAAGgqcpZ1r7ofC6dpuk3S0yXdpIkHYYmkYzUxckySTtJEfrIeZQ/Kbpb0jDRNd9X7/QAAAAAAAEBZShlDmabpw5KeKelSSddLOqDswdnkfwclfV/SyyWdl6bpL8v4bgAAAAAAAKAspSWKSNM0lfQFSV9IkqRP0mpN5CbrkfSopHvTNH3cXy9JkmPSNH2grHqg8UK5CSQ3T9mjj2ZlPyWJzVXQO2Y2YjfoJykKJC1i6u72YY9FrG0sXpyV/VwVdp+H9v+Ylw9t587a9Zk3z31t22GvgknGam/M4/++XWac7P79WdnmFbP7QJK2bs3KNo+Xzennf2YtGWyD9hnKSVTrdZW/HzZurL05ux/8/GykP0K3sf1nkVyOea9XeZezeSdDeSElqWfA1NvvP0NxKbF4FU5itLHK2Gj2wrTVvPeiec/tvP1B3WInd1//VNGesv49id2Ezb/qL2ev4ytWZOVFA9nvIxdWZ+DvI8wWDbkjSdN0RNIdsWWSJFku6V2S/o+kfH+dAgAAAAAAtAFylnWvpv/zXZIkyyS9Q9LvSJp3iMUBAAAAAACApin8sCxJkjmSjpe0RNIeSfekaToaWf5wSW+X9LuS5itL9p+G1kHjFRlG22tD2bxwsb6+2sOnbVia5D197zMbtGO2c4Zi+L8hGKJihs6P9/Tm2nZMvUPFO2oIcyz21omHy4bs22H1krSoL9vGqArsf1OH/u1bnI+O2bSpdn2Gh91tJKbB2lgB+/vWrMlVnVi00Z49tdex4aeStHBheHshbdFuQvEY/jnrx05WDQ25r889t/bX+OGolt0PrQrbqDccDjX4cTuheNsuV3qbtvt1LBCC7uk1J2DvgLvvc9cvECM9OhZev5fzB+0skC5kzNzX+KeVkwKi3aKMc95r25994ID7mb3UL12alaP7QeZPxpFswUrOdA5oU/5Bn3w9Tr+OzjTju7EkSZYnSfKPmshDdrek72oi5HJHkiT/mCTJkLd8T5Ikb5W0UdKbJPUre1B2i6TnFa8+AAAAAAAAUJ4ZPa5PkuRkSd+UtEzZA69J8yW9StJTkyR5Vpqm25IkWSnp85LOmNxE9f83S3pvmqbfKFhvAAAAAACAliJnWXfK/bCsGnb5GUnDCodOJpKeJOkjSZK8WdJ3JK1Q9pDsJk08JPtW4RpjSiwMollhQH4d7GhpG2I2d667np0Nr68vG7rea8PmvKHXRWYGcpYzUyZW7DhxMfvOIdkQHjt1oeTEylVWrcret6GRkrP/e22oY084tMo55vYqdMst7oJXXZWVbdjP+ee7y510Uu36rVyZlVevdtfJGbJrv9aGJNhm7EcT9O5+LHux2YSFeuGjo32LsnWaFJEQPcfsD/HOJYc95+xO8aYvXWQ+C82o6kfglTHzGNpQpH+R7V+6UCi0OBbKZPnnRLDtx8LqQyGa/nke6BennZc9tUPTQjP8StKSwfBnQKuND2TX49Cp5J+zbjRy6+/dLT8tiXOe7szKW0z2C7/bOOqorGzTTUQj53cHptD08y+EbqjQPmLXlEkpWZfQmWbS66yXdKomHpQdlPQRSV+W9EtNjDS7RNLrNBHaeYmkIUlHV9e9U9Ifpmn6zXKqDQAAAAAAAJRvJg/LXmTKv5Wm6efM642Svpskyf9I+idJcyT9qiYerH1UEw/KGJwIAAAAAAC6QpoShtmtZhJ7dlr1/z/yHpRNSdP0nyX9WFnY5X+mafoHPCgDAAAAAABAJ5jJyLKjNDFS7PpDLPffmgjXlKQPFqgTPEXyaRXJ71U2m6vAz1tQ2f1E9sKGt9tEJl5ugorNYxBJhBDK+2LzlD22092nsbrm+Z6uF8tRZT+zuQr8pDSbN2dlk3tovK/fWczuV2cfx3KRLViQlQ8ezMo210Wt15OGzCS+Xr6FSqg9eO3T5iGxVe3vM7/B5uWQ3Nxrd96Zlc87z932uc+YKrfq3M7TD1VG9rpvfNNE3p97bla+/XZ3udNOmypWTL62vr72ziU4q/qAZvH7l7wd8iwSy+VnOeesybPklD2hNj065p6LY4H8TH66Ibu9UB/Jv8ajU/X2ZO2717R9/3ppz9m8uThbdX3ZsSMrb92ale0tnV9vm5c4llbMnuu9sYSuoZXIWdae7HHxLwKTDT7x5wUEOsNM/hKZvLvaEl1KMl2r7ppZdQAAAAAAAIDWmckj+jmaGFl2qH8DnPo8TdNtRSoFAAAAAADQzshZ1r0Yz9oB2jnUx+8YQqOlp42ctmO47dhuu4GNG911VqyoWfanvQ6G8RlLBtt3n7YlO6zaH2JtOCEEq1e7H65cmZVNOGTe9u2ENSw9wvls5FnPnyrv2pW9v2ePuw3b7Ja/2NTPzonuN+pIaLBVMRvv6+utvZAfu2DCUZ02vfZ0Z7GdO2tXZ3jYHRxsq9esfsMJq/BDb+1ru49t2Kvk/kCzQRs6vVduuK5FpF4XMWG4s5k9f3u9bsd/HWL7THue2tPSP2VtqOScOdn7+/e7ywVOWaebl6Qlg1m5MjY6Ve43v2E81F8CbcAPqXSurYGTyQ/b6Tf3TXt7sjBoex5J7u2VPRdj1/NQioS86/i3PPa+ad++2nVbtsxdx2a4sNvzslo4u2tgILumL7L3936FCL3saFOpVirtnVYDCKHlAgAAAAAAAFVFHtcfnyTJM2KfTxaSJDlP2cyYQWma3lCgHgAAAAAAAECpijwsu7z6X0xa/f/1ObaXFqwH/PHNoeml8s4yY/nrBJbzgyec8JCRwHRZUriudky6H+5nwnNs6GU7h6nONsHZK2u9rmPbe0fcQbE2ws82oQMH3G3Y6L8nRrI25IQA+OdV6Bzx37frDQTCivw2bUNVzfb8Ktx7b1a24VD+5kKTfRYRm/3SCRHbaWb43LTJXdDO/vmpT2Xl973PXW7Dhqx8l5kXxuyffnuMJPfH20NByEZn4/iVJs9MlH4Ypt/3TIpFp8fet2GYoZmTKxzzWSHvzO5FQg5nso08ot9jTxJ77br11qxsp4eUpLVrp4r95rq264A7M629ZNrruT8zdJ7fFw0fjbD9w5FHZmV7yfXvNUJ9Tew2yYZ5DwyYkFP6g64yW/5GI2dZ9yrSI+WZ+3XyYRnzxAIAAAAAAKBjzORh2QPKHoIBAAAAAAAAXSf3w7I0TVc2sB4AAAAAAABAyxEY3skiOaCiOb1sULVNkGCTPRXNGWDrZMtLlzqL/Wxjlp9g1aps+ujKtddmC9l8Tp7ZEgOP2vr73OO/cmV9E/va3B6VWG41e+7E8vAFth1LhzY2lp2zfj6QM8+svU7LUnvYSlx1VVa+7jp3OXPej33721Plnre/3Vls61GnT5WX2Z1kc6DZvkpychh6yV3c5WyilcgOc9oA/QtCTNu319mYdmhPtg42/5Hf14ROEb+7O+yw2sstXhxZMdZ/lqgd8lq1wzFvB3mPRdnr19ufR9ex1xh7AtkEX/Z+WgqeWMsWjzqvH9ud9SmxU6Te/Wr5VfNu12uatn/M762Yii/x1luyNHB/NRK5makz3y3QDOQs617l9bYAAAAAAABAh+NhGQAAAAAAAFBFGGaXskOkp00fbcdcb9mSlW+7rfb7khs/ZodEr1jhLnfuudn3rjhmqnzXXe5iNqLqxKWPZS9e8pJs/b5+WYQ1IKRZbcMJu8oZgmWHZfunlY0ytMtdeGF4G/bcsZGIZfP3qdOP2D7kkkuy8qte5W7EhFL32Irfcouz2Pf1gqny+vVPy+pwy83ZQrZ/8l+vXJmV/T7JfmZCZkZ73P6F2erbhB/H0A4Hxl7/bP0Gsj5g9253FXuZ7G2Dn2DZc3vRgPdhzjjvgYHa/9Y6rS/evrP29nIe1zLDzaQZXCtC9zzoGtPujYvcR9gw/zVrsrIfhhlqQ955YKM6bRP0Uzg0skmGursDB7Ly4sXuvuu1C9rfHgtHteVYKgWrDc5FUjYAs0ub3cIBAAAAAAB0BnKWdSfCMAEAAAAAAICqrh9ZdvK1r2l1FYLmDS5oyfc+sTt7Rrpo7draC/khTzZ+zA6DXrXKXc6EPNmwFH92HTvR5XhPNl+OHdLc9sOb22JaQrQ72zT888BGKEQmf3W20cjQy0JMGMr46pOdj5xw8KVHZB+sf4Gz3PrAOs4PtyEukrRvX1ZeuDAr27BLSePDy6fKNrxkuxcS60dvokX8WU9jJ1CjREJBbXoAe1n0wzBtVQcH2zdsZ1qYY4Hwcmf1Hi+0zd4vtOCaGd3ftgP2pwUtMETA/XnNmZGzqXKGpoZCZ2O/Ne86jZxds0i9vRM9Kw948c22g7D70VsudIr4p0ss1Uq97HfZ+syfn5V75c7i6bSH0D7xNx5a3z/37P4qEMrdSMyIW4N//CbbPsOu0KFa39M02E+/sq7VVQi66E82t7oKAAAAAAAAMLr+YRkAAAAAAEDZ0pTBc92Kh2WzgD8UeNFOM6Jtuzmz7VDnBV6IqB0ibePAvNixvWNZCIcdXe6PSI/Vr2PEesU2GB4+WzVypqJY6ENwwryB2u9LbsRgG0zylJvz203oZWx/5z0WzrbXnZWtP+aGfYwHwsWmRXDsrrnYtLDLju2Huo0/Zaw9gZoVhunHVJo6VUzqgQcfzNrg3LnuKvWG9RYJrSp0jnns+RMqS24Eo+37DjvMXW5oaFGuOoWUEboX5IeIWTn+6vG/x4Ze5o44tW3NXzB0IWkVO31zky5eZYcY5uUc29gMvTZE216Tht3ZloPnkjfLpT2v5szJyosXu8s1a4Zd+1Nt3fbNc6+/CxfamcKzot80gvu1hHtmZqksX6Ew01AY5jjHBJ2JBP8AAAAAAABAFQ/LAAAAAAAAgCpixQAAAAAAAGaInGXdi4dls5FNpnLLLVn5i1/Mynfd5a5jc3s85zlZ2UtIkDd1RdPyCYQSRfj5EYrkS7C5RvwfbvKLkEdhumZNtz065n5Pb0/j9v+uXVl5z56sbJtGLEVON/CPa73H0uZI6etzc6SEzlj/VM6b6qdTztOun6reT/bVivyP/olqT2JzHTnzzNp584qqNz9TGXnObC4kW/b70nnzsrI9RH7uttAfD3adWEqomFB7L7If/Dr01tlZx36DcysykOV0q+x8zF0wcEPVsj7Anpu2biNe4q0+N1/XpDLaZ73nSCzvqMMepM3ezPW2bQTaSShtk785/xDbnH/z52flsrvBvPshbw5Da+HCyBfnvSdvAbsf8vZJXXHN9eRvD9ly/X1mP/iNejLXaBscY6AIwjABAAAAAACAKh6WAQAAAAAAAFWMiWyhVEn9U5/X6+yzs/KaNVn5c59zl9u4Mdfm7BBdO+y8qeFnthI2PGDDhqw8POyuY1/nHSqcM+a0G4dp1yvvPskdGmeO+e6RLDRqyxZ3sVWrGhdqZ8OP7Pfa5uQ3u3YelV5vuMtMtmGPhS1v3pytb0MypWxkv+Tu17x9Dedlmyoak9dIpq8vI5Qsj9BlzBcLZwwtF7102Qu3+eJeb6Vli81rs/Ei+6eRIWZ59ZZQh7xhofb32mPbN7gkuD0bBhvbXw0NJw/FtHttIxTiF4u6K7uudW/PVnDlyhl/p9+eBgcrphzeRugcjv2esvedPZx500g4dbCNeqfXeYU6Ntu2Yh1U5LPgfoh0jOM9vTUXa4fLTjvatCkr23DiXz0/stLkDfGBAw2oUfsgZ1n3YmQZAAAAAAAAUMXDMgAAAAAAAKCKgabI2GHQr361+1loBhtvSPSObQ2oVy2x8dI2XsuOGba/L+cUedHZ/Qpuo+a2ukQjZ+mKhpeYNmCbpJ1ZSnIjjAYGGheuYicNs+GCsaH9uWfp6kKhY2sjw20UteSefrnDQ7pAt/2eafyD2WbxMGX2YzGh2fP8z2wkk31fkpYty8pHH52V7S7u96Oa7AZt+gX/ONjYZyeNQXiG0Lyz6eWdVbtTxGZ0zNu8bWi/P2FsO4uFJta7vXbaVlnf1dPT/Gt/rH3m3kfbt2dle9/tn+ih+2bb79ibJqn+a4C3vv19ts/cty8rL15cbhXaQdn3lXfckZWdMEzbFqTsOrJ/f6nfDzRLF5z+AAAAAAAAzUXOsu41u4YvAAAAAAAAABE8LAMAAAAAAACqCMNEPjZg35a9JCnLhrJ8BLH4+GAer7HR7MVIZMpp+71+jhub7yCUzKjBCQj2jmS/b9eu7P2FC7PytFwxXSA2BDmUi6NQ3hD/i0x76DXHfO5c9zttOrtFA+XmK7GpOOwM2bYZ+9W2uXny5nNph9xmoWMWy/GXt66hfCknr55JDdGxui1hlSeWH8iyuyFvGjd7rZGkM8/MUSG/U7Idlq2Efz2212CTUKsSSahlrwF2c34ao67Py2fkvRU5ZkV5fWnedfKaTccrt7zxWG2YDCvX8bQ3U/5r+5v8kzt0Tx7r8OrlHYuKeT0w0F+zCn53Zz9rw0MWVPY9HuPXTwAAu6NJREFUou3eX/KSwEI2waKU7bAkKbUuQLN00CkPAAAAAADQHshZ1r0IwwQAAAAAAACqGFnWSuYp9LRhvTbEITD+Nza8tmnD4kPTQB+Cffru/PYNG7KynZdYki68cKo4vuKYmtuaeMNuO5vGvrL7icCXKhhmWjR0ob8vW29srHZI5rQwTPNDxm292yzEIRZqZ5utP4x9+XDtMJLY9oL8Yd533pmVTzhhqti34kRnMRse6Qg2yDC/njbEaGgo1ybcbTh16HWXG9mbvdi8OXt/1SpnuUaGZQbrauuzcmWu9VsVPorOFgzfb7M+ciZC54W97NvMApI0b15W3rMnK8cyF4S6tVG5fU3v8HDtDfgbD1wzY/25LS/Ke+sQCgv1FAk5bHdl/qYi11n/3qqTws+aJXgt86/hOY9fK9puoXsw/1y0fwvEwjDt6wIh97FzIviZ33eZkFEbNm7v4WJtvR36l3rvoWK/Ibbt7duzsg0Nd8Jw7d9xUha7SRgmOhR/sQAAAAAAAABV/DsRAAAAAABAAeQs6048LGuh/fuljRsnyocf7n42NLRoqlzZ/ED2QWSmKasdQhJi37tjR1a/xYuz93vt71sdnv7O3bY7QNJ2Vr1jJnzNDhP2h3+b2XfK2Hd2G3bUua2CnTFTkvo75GyM7ZPY6Hs3nKZfdfFnSzr22Kxs2pA/YdOcOeaFDeW0jSbnOebL01b84e3O61jorf0htt5+2KMX+tEUtm52jL7kxo+ZGN2K1zi6ISwzb3hISDuEdnSNQPxhoXCjskWnDK59/vqXq1D0kjc5dXAC6dDk1pLU22feiIRVlyoW4mlFZu60fUo73P8UUSRUr4y+M7SNdg9FawfdsB/yhuQ5y/mdkA3frlPZbdq/38iTPqaRkzLn/X3NbFt562Rvj519bPvmtWvdlSbThRRM2wO0Wuf/hQIAAAAAAACUhIdlAAAAAAAAQFWHBH51p4Pj2eyIs2106vz5WdkZ6h/bEXZ2TBMe0utNFdZrp8PcYsLCNm3Kyv6QcT+sb4byzsozb172vh9RMt7XghC6vGwMj19xM169z4RX9mrUXc4eCzObaYzdd6NmVtGxnkXOcv0mZPfhLdlyflSgE1XUZ9qNXdCP3ayzbVi5w/P8eKrJeG3JOUfGGxh2GW3Tofgcf5bS0HR8Xd7h+cfVTBjqdD29PZ0fwtMqbuSeu7/tLMi9RUKMGqnkKQUPHszK+/a5n9muzJ6KoYnrpGIhQoX2o62Q3+eaa/q4uaZUxvxrSiAkvRXh6E3UyNDLAhNDo0PU29/F2l3Zs7UW+Z5Qn1TG+eJOyjvz/Zh33zUrJUXR77H7wbmmLD0ie2HLs0iakrOsWzGyDAAAAAAAAKjiYRkAAAAAAABQxcMyAAAAAAAAoIqMBC1USbLcXX4KLScO3gZBOwklOjcvh82ZUtn5WPbCJvfx8x/dcktWPuOMrHzsse5yNtGGzUX14IO1KyCVvl+d42fysSwbGpwq2xxcreLnLXDqHUpOEMmn1WvnlS4h11eevCqStHckW85Wz8+5Yg/7uLLj7Ewtbtug5M4h3sD5xIPnvOTk8GlWvq9COS02bHBf2zxCJq/ctGRyHZrjIrSPIimY1Du2N3vRU397asdp6JvBntv+pWLevKw8NNT6fraI2PGyx3zOnOx9mws0xu67vF1a7nyLMaF7maKJXgJJtTq1refNaxTbdfVeoshTNgv5jcg0gmbl0yr7nI3dslolpqSd9sWNzCnbLH7TuPPOrHzKKc2tS7sjZ1n36sy7SAAAAAAAAKABeFgGAAAAAAAAVDHguoUqc7KIql55U6JvMqFgdlx8N46Rv+uurGxC+nTTTeHlbIjgwYPucnZctQ33mju39vpS3WNno+GMgTHgPYNL6vrOmdQnN7tfbCyZ/Q1+zJPdx3bf++Pb64wPsVXzd6kNRfIP7Yw37v8+W28bVlgyZ1p3f9/Z120wztuGEPfaGPJHHnEXDNW7geGs7cD/ef09pn/fvjMr2/jMbuzbG8juLv+UsK8XL669Trtwzvs86RckVUwDmzs3W99vd3Y128WVsR8KhU0FU0p4FQpV0H/fz1/RpsoIlbbbsNc//1pou9wmReyjQ9Qb6tip4c2+0HkR+319fYF+2teOF5k6+D/nyCMPvY5/D97lt3tTCMPsXowsAwAAAAAAAKp4WAYAAAAAAABUddd40Q6Tjpvhqn7oVyjmzM42mFM0RLBFnDrs2pWVbUhfLIbA7pNYDE4o1MMPcwsMnS6675zQmsDUY5EJiEo/Rtu2ZWUbtWqjwCSp146Xtm3QznLoz2Rof4idSdIfe11geHreydNCIUa5o3RsXf2dUvp0SYcWC9sZM7N4tqoDt9HSK1Ysnyr3PXt5jaUn5D387dA/heQNp5oWdrDZ9O/2HLF9nNffNXLmsU4S2g+2nfT0uMvY7sr2FatW5fuesttg7mNpr2ubNmXlSPjhwMCS4GJWKAq64edbKBY0FktoDWd9yrTrsf0hOeNfGnmcQ9+TW85ZCW1I2IED7ip3352VTzut5qambY++ZpaLdBzNOl/K1tuT1XVwMOd9fGQKzUoopURk34VSgvin+aIGhkvbbCr2FqNotKj9E7Sy87Gp8nhfdh3y7386qd0AtfCwDAAAAAAAYIbIWda9+OckAAAAAAAAoIqHZQAAAAAAAEAVYZgtNKdHOvzw6ovb7nQ/3LMnK69cWer3tlsOgvHnPn+qXDnhhOwDm3hGCucJsEH5vlDSAC8P1Xhff7yS9TA5sMZ7snxTigzXjeUQCeUayXss/ZRj1nKb4yuQa23aBmy+PZskLJaULSe7ii37m7bVszkVYnlaghvwExs1cN7rvHljbBO3qYz8nGy5c7Tl4O8rWz97yG+6KSv7u8qeZs95Tvi7OnW29dz5QOxBe/DBrGz79mk5/no1UzlTqXQHk/vtGO/HDp6d5bmy3ZVNFyeFj9/KlfXn+cybB8rZtj2x7rgjK/ttw1S2ZzCcKyZPG2h4TlNbCbuTbWP1r+H29XA4D2IwN2iLToQiub+i+zuQy63f7Mddu9zvnD8/K9vbn1gKWPKXoZtNO8fseWX73NANp7+OPZm8vyVGx7Lzx1577Lno99ONzFm2ZLDcc9vZl+aCWmlBbl+gWbr9dhoAAAAAAKAhyFnWnfgnJAAAAAAAAKCKkWXtYvFi9/Wznz1VHC8QjtNJbITS0uETp8oDq050lqvYOC47vtkPVbDjnUMhgl682rZtWdmGMcRCF2JsFXrM8bMnXGyUdygCUso3lNqPPn3ooaxsQ5Gi215xzFSxYkJJ/WHnuv76rLxrV3jjBf7JxQ757uvL6mar43+VnTI8L3uOVVoUvxYLhbHt0DbdOXMaXavabKTqS16Slf1298lPZuVbbsnK557rLtcO4eB5+GF89py1+yT6e7Zuzco23Mxr1LGwDct+18hI1m6mh+S1V/h9XsG62r7ds2htti+3Kzu37bVGco+fPa/8dtzfuEhsN5TQ9q02njwShlmvprYF27fGrinmvIjWz15TAjGH0etlu8ct5/h9/q2jzeBhm820/RjYdiXvvkNHy5vCo5OuFUF+h24v5PZviVD/5L/O2f/ay7v9mtWrc61eSGVs1H3D3HhV7DXFS++T+1y3/YZNKRHbP5P7dbwL2hJmJa6EAAAAAAAAQFUb/lMaAAAAAABAe0tTcpZ1Kx6WtVA6Lu3fP1EeXfc05zM7ZNeOaLXD6nfscLc3NJSV80YXtMPMmMetzL73+7dm9Tn6aHe53buzcJqlS7MZsga9GQArWx62K2VlMwTZzlgjSXPnZuUi0Rj+vrMhT5YdDe6HBFlTs6TWqE+ofvZYxiYXs20o70SPdrbQij+G3O7jRx6p/aWSM+y7SFuz4ZW9/ih4u2O3m+/1d5b9webEavdQA/szYhOONoutw1/8RVb227RtAuvXN7JGzeFHfNt+2kY19I55YR+2fdqDZsNB/KlM+5YoD3ved+ONWq5rlBf28fD27FqxcWP2vh+5GepL/QicY1bUXq50tp3YxuaHKZp+zO6T0HWn7fkHwh6A0Cx0UnhqZ7O9SuwiF4l1dkLzm3V9CM3eHeGnHVi6tHZ/4LcN51UgxLPo7w6FdLX7dRazRChVi+1nY6GWOf9I2LcvK9tzsaHpM/ybAPv77MXwwgvd5UzaldwefTQrh/7IsK+TZObfAbSBDr2zAgAAAAAAAMrHwzIAAAAAAACgijBMAAAAAACAGSJnWffiYVkLbd0q/fmfT5QXLnQ/s+HkNhfOqlVZ2eYok9x8EL3myHbS9N9PPTP7DbF6/93fZWU/9P7EVSb3TyBBlw3dl9z0BDlnhc7NplyxKYp8tqp2+vf5893lFg0cOu/Hci/90fBweW1gfGCR87py9tnZi899LivbgyRJr351Vl6zpr5KxJKyDQeOfwfxc7uEzoUi+fWKCuVGetWr8q3TDfx0fXfdlZWd9EeD/c5yFZsLxZ4vNueS1zn0r8ra7riy7fk3Y7YN2L7Gbxtl92stZ/qQ+7e4+/tzn8zKtmtY4eUes4fFfuanjyszt6d/DbDH7OSlpr+yF3u/QpZpENN6iWZ2ECVy+jtzvamMjboLhvLk2JMxlvQztI4kDWQ5y/Ie/7xt44nd2fYW9ZkT2j+5beOw9YvkWrPnebQ+sX0UkjcZLtBO/PPK9hv2HLPnkt++zTZi/YHNITg0lC1n8yL7f7uVyr/nfc5zsrL9DYP5cqJO60Nsv7FrV+33/eSukxdacpahQ3XOUxQAAAAAAACgwXhYBgAAAAAAAFQxjrqFhoelP/qjibI/ctafKX5SkRCQvCFdecM1mxVaFav35Zdn7/vRE84Q6cCOPHl1vn1SlB3BbasQOq5SeL9G6zYWCOGYFnrSq3pEj7ltvDYmz4aYSdMPVD38HRnbsV2g3cIZ260+MWWe2/7vPtVEE0e/Z926mstVbvtBtsyGDe46pk1XTIygDYGV3NPKRpd0S9il3efOPu7LQi/96+fLX56V7X7wo0Ps/rJdSCzCrMh10q7jd1Xz5pkX9kP7o2IH0zYAP9woFlbUifzfENpfkfBKm0agYrbnpxcIKSMk17bDRT2RMEz7OmdKgdx1Cm07dh8RivP261bn/UZM6Pxr5DUpds530rUwxP993fabph29UPx9qD+Rgn3w3hF36/192b6zKXT8a49V5j2Kv60tu7N+zZ7aKwYLfoHdLyecUPt9f99NfnGaFvzSzkDOsu7FyDIAAAAAAACgiodlAAAAAAAAQFUXjMvvXHPnplo+3IHDnSPD9MucNcwXCmuJRifYqcdsvb1YmIodYm1DMwo+T27oMPZQ3JV93/t9O5XNfBMKPar1ui5Ll5a4scYqcpy7IVShWzRrxt9YuEqsPdj1rr02e/+pTz1rqrwsFvJkQpor3nk1NpZt23Z3sSiS3g698oe6vrxpDPz37a6027OznPqWLcvKeWc1s21jYMBtQ250T0/og7AOnfHXip2/bhSlu1zf8HLziTn/csbC5O03Qrc80fC1yH1SsHqxmTvLTjVgw75tvFjsuh1K++CpDNTuYNot1UcZ6r32tOq3dtI+LsL5fX4faUMvbXu3fa7f/wbC2PNGt5cdBR/6e8g/LR98MCvv35+Vj1mR7/hPa98mxLpipwe3+yvUVzEbJjpUh94yAwAAAAAAtA45y7oXYZgAAAAAAABAFSPLMCU2CZI1nnOmo2aFZEbZ4daN/J5m6gmE6kRm8ukzoSwLFmRlf4YeG/JiR6f7M/BZbbmPcqg3fILQzeaK7e9Y31XZ/UT2ItTAZ/BdoeXyHtsX6KvZi+TsrGxDGiQ3FvDnP8/K55zjLDYwmIVYn3FG9v78+e7mOnUyxFDI/fBweJ28x6Kvr/a2/Qgc27727MnKc+dmZT/ypEjbaMVMf+0gNvN1aKJGn52Vrr/PNPYSZmHOe+44x9yu5FV8YMDcQ8VmLC1xSttpIaN2tmobv71+fb762LhlW5aCvynvPaZV9kyNRc7LvCH2aFOxWXQLzDhr9WrUfWOLOa9MmLidJXPajXeB8zzU7vyfetpppmpbZvw1cfYi3Kk3GEAO9PIAAAAAAABAFY+CAQAAAAAACiBnWXdiZBkAAAAAAABQxcgyTCkj5LxITgrMkN2xtmzzhng7v9/kZ7J5emJCs8R343G1uRw2bXI/e9rZtfOV+DkjbGqcAqkvcAj+v9jddltWXrcusmIoZ5HN2SM5B61icoiUnpPm7CxP2diyZVPlnte/3l3uVa/KymeemZVD07JLGhqqs26zjM1FNDgYPs42xYzd/SWmlEIOsWuP/czJX+YdpFD+qYbmnvIq7pzC9rrtn9t+bqM8Ao1y2u+2Har9Hpsrce1adx3bZ9oLpX/BcxOe1vzKabklW5CXL+8xj9Wt3nyEaCP2XiEyRKgS64jM+Vyx22iDi8UxK0xb9X9fkRv7bvxjAKiB3hsAAAAAAACo4rEwAAAAAADADKUpOcu6FQ/LZiE7S7gddWxnAY6NGLbDzmNDy92wtHKn/55NovvKHkwbIrFqVd3fa0dY24gLP6pt9eqZT8XeDmz0iw3DXLPGXW50LPt9sVHndr/s2pWV9+zJygsWuOfBsqHO2V+t9qlPua9tpM9112Xl5zzHXa7XHmhbXrHCXTBH+FLRUBrnvDAV73nWs8L1seFQGzdm5fPPd7dtdwRK4fdxdvcvWJCVV67MygsXuuuEQrE7qY9slSKhbfVGBPnfWW/YnF0/+nvsxcdvNKGUC6HQ8pz1kaSK7Sjz5g2w33vnnVnZngj+ckZ/GfkJbMio3SfetnPvfyMUJjpt321+oPZK9ibaq0/oOhJrZ7Oqr4iFQNp9WUboX+i8CuUekdx2FwudtnW127C/z963S+75k/N6nrdt9IZ2V879OKvaIBBAGCYAAAAAAABQxcMyAAAAAAAAoIowzFnIjiC+9tqsbKOQ/FA0M4Gb7DNWOxJfckNRYpGARYbId7vcMzONjWYvQiEJXkhZcH/nnBFn6dJsfX8SQXdEensf11DYjh357keKhCJe/Kg9+9ruo23bsrK/ezkP4uz+8WcpveKKrPzRj0Y2YkMeHnkkK/sH2h7AArNhxo6l89mGn2Yf2IbihVc6oRm2bn697Qlol+vymarseen/1GDoSU5+W7v++qzsR8tOmj/ffW2XWzJYX31QWyi0LRpCV2I/GzvPbb8/NBTpQ2IXn5AywhnNNnLfe9ibOtvv+KFjjeyHSpxV0L+2566qrYMNo43tk8DGZ/V1P2+Cp2ZdyyJhvU5dbehlzuPsiF3D7bbL+N3dPpV9GyFnWfdiZBkAAAAAAABQxcMyAAAAAAAAoIqHZQAAAAAAAEAVAcyzgJ+Pwqa5uu222u/7oe02LN/GZD/6qLuczVmG4myaJT8G/riBndkLm3TDTlueNzeBv3G7PZOXI5YmpBti9GOzltt0EnY5P3eRTUNhzxdbJmVEcTaFl+Tub3tc/Dw0vWvXZi9i+UBsoipz0CrmvCqSv0zy8pTZjvY5z8nK3g8cHTyiZlWn5bgJTXff5Y0tlrYplD8u7/GL5WVcty4rDw1lZb/fKCOtFPILHWf/uITy2eVtG3k9/nhWnjvX/WzJoDmH/ZxHeRQ4t2O5sUL77q673OVWrMg+W2L7K9uvFqxfvco4frZrtvc8vbsfcxcM3CfNppyRpbD7yJbb4abSP362Qw/VW/naYcW/oQ4lxi0i5z09ykfOsu7FyDIAAAAAAACgiodlAAAAAAAAQBXjhGehs8/Oyp/6VFa+5ZasbIejS+7oXRs1sGaNuxwjz8vhh/i5ckw1n/dA5IwVsmEaAwPd8Yzd/nQbwervkvixqI3zoHwvf7n7+sILs/LGjVnZhjBL0qpVS6bKvWsHw1/QyPHzq1fXft+GiHqNJncTKnuqeejcc93Xtk+w10bbZPxoOsIw20PeU8IPU6w3rM9eN8qMsioq9ntCIZr+/Z0rHD6aKxQtEhYaU2a4rH+OBs9ZP8y0RNNC9gvul67SjtexAvfKwbbq/z57A1qvWPgogELasEdqnjkXXKtTjl009frf3rdOm7bs1W+86zYdd2S/9u0/qPXnLNNVv3vytHU3bdmr9e+4VXdd88yp96785D0amN+jN196vP7oE/foK9/dokqS6IjFvfrk29Zq+VI6LQAAAAAAugE5y7rXrH5YNr93ju74+DOc9zZt2avzTlmia//8LO3bf1CnveYGXXzusJ5+ypLAVmp7y6XH6U/+z0mSpKv/9ef64//3M/3dm04tre4AAAAAAAAo36x+WHYo8+fN0dpVh+mh7TMfQ79oQTb90Z6Rg0qSZNoyqZLgMN1mDcW2I3TPPz8r+0/H23FUNJR7dpvQ0PC87axI6EPh8AI79Zwt+9MhFmDr0NOT1a/IJEFl77siYTKlM9OfXfmUpzgfXfmjH2Uv4vE5pQkdL8kNc8obKhvdx4FOroywn3A4Rm/d2+72zrnIbJb18qOu7LXRiu16wqnaU70zpeY9rvbeyo+EKnINbqR6z6uy911snXrrWuSYN/L3YfZp6r1el98fAM0wq8+ifaMHtfbVN0iSjj1yvr78J2c6n+/YNap7N+/RM55Se1TZfQ/vmVpfkrY8tl9vvvS4qdf/38c36P/912YdtmCuvv2hs2ttAgAAAAAAAG1kVj8sqxWGKUk33vmYTv3t7+ieB/fo7S89XsNLaucaO375Amf9Kz95j/P5n756tf701av155/eqI9+eZPee9lJ5f4AAAAAAADQMuQs606z+mFZyGTOsp89uFvnvuFmXXzesPaPjuu1H7xTkvTHl52oU49fdIitZF52wXI9/x23tuxhWZFwsUaP3HXqZKeKsj1Nkdg4yZ2uzP6QNp8Vpt5QySLfU/r2YleKIjN02u3ZaQ6LTFHpaWTIRO7wattWt2zJyjfd5C5np9pbv77O2kWY+LOneR/9sQnLfPfBg42rQ0DZYa+NDO+JKTukZzaFCNUbkll0H/ghwGhvrWrrrQgZzqvsfdJuv8+X5/e2akbObuiLAWC24GFZxIlHD+gdL1ul93/2Pn32j053RpFt2rI3uu69m3frhBUTD3u+evNWrT5mQUPrCgAAAAAAgPrxsOwQLn/Br+iqz9+nnz+yV8ce2Z97vbf/wwbd8+AeVSrSryybr7974ykNrCUAAAAAAGimNCUMs1vN6odlu7/23Gnvnb92qc5fm4U8zZ83Rw994dnTlls53K+7rnmm896Vr8rCLP/1j9eVWFMAAAAAAAA0w6x+WNZqidK2yl3QsrqUnUusaK6zNtJO7UKaQX3KSHZn28OqVfVvrwVy7y/bVu1v9XOyNWv6b/O9v/aLXzgf/ZrNr9bGip47zTrn2j0HYado5u+erft4NuG8nJl2yAvXKu1QB7Q/2gnQHdo7QycAAAAAAADQRB07suz73/++vvWtb+mXv/ylxsfdp/dXX311i2oFAAAAAABmA3KWda+OfFh21VVX6a1vfatWrVql5cuXK0mSqc9sGQA6UtmhyUX4oaAAAAAAMEt05MOyj3zkI7r66qv1ute9rtVVAQAAAAAAQBfpyJxlTzzxhJ73vOe1uhoAAAAAAADoMh05suylL32prrvuOv3e7/1eq6sCAAAAAABmIXKWda+OfFh29NFH6z3veY+++93v6tRTT9XcuXOdz9/0pje1qGYAAAAAAADoZB35sOzjH/+4BgYGdPPNN+vmm292PkuShIdlAAAAAAAAKKQjH5b9/Oc/b3UVAAAAAAAA0IU6MsE/AAAAAABAK03mLOv0/5ohSZLfSpLk9iRJ9iVJsjVJko8nSTI0w208NUmSbyZJsitJkieSJLkuSZK1NZY7PUmSq5Ik+Z8kSXZU/7s1SZLfS5Jkbo1NT9NRI8v27NmjBQsW6A1veEN0uauvvrpJNQIAAAAAAEBIkiRvlPRBSd+R9AeSVkh6k6RzkiQ5K03TPTm2cbak6yU9JOnd1bdfJ+nGJEmelqbpnWbxt0q6UNK/SfqYpDmS1kv6G0m/kSTJc9I0TWPf11EPyw4cOCBJuvPOO4PLJEnSrOoAAAAAAAAgIEmSpZLeJ+lWSRekaXqw+v6tkr6qiYdnf5ZjU1dLGpX0jDRNH6pu4/OS7pb0AUm/Zpb9a0mvStN0xLz30SRJPiXpf0t6vqRrY1/WUQ/LBgcHJUnf/va3W1sRAAAAAAAAHMoLJfVL+uvJB2WSlKbpvydJcr+kl+sQD8uSJFkl6UxJn5h8UFbdxkNJknxB0mVJkgynabql+v53A5v6F008LFujbnpYBgAAAAAA0A4mc5Yh6szq/79X47NbJL00SZKBNE1317GN/yPpDEn/cYi6rKj+f+shluvch2U/+9nP9MUvflEPPPCARkdHnc8+8YlPtKhWAAAAAAAAHWVpkiS3mdf/kKbpP5S07eXV/z9U47OHJCXVZX5WxzYk6ahYJZIkGZD0FkmPS/pKbFmpQx+W/cd//Id+8zd/U6eddpp++MMf6swzz9R9992n/fv367zzzmt19drOeBtOelrReKur0HbKPE5l7N+89emGY1nGvu+G/dDO2rEfy8u2jSK/Yza3rU497rP5mLWzettT7LgWumbaoQg9zbslr7cfatb9QdHjFfpervVoJK7v6ALb0zRdF1sgSZJBSVfMYJtXp2n6mCZCMCVpf41lJnOK9df4zKprG0mSzJH0KUnHSnpZtV5RHfmw7N3vfrfe85736B3veIcWLlyof/7nf9by5cv1ile8Quecc06rqwcAAAAAANBNBiW9ZwbLf0rSY5L2Vl/Pk7TPW6av+v+9irPb8EW3kSRJRdInJP2GpP8vTdPPHuK7JHXow7J77rlHl156qSRp7ty52rt3r/r6+vTud79bz3/+8/WmN72pxTUEAAAAAADdbrbkLEvTdJMmQiZn6uHq/4+StNH77ChJqVkmzzZ8k+9NC9FMkiSR9HFJvyXpvWma5pl1U1KHPixbuHChRkYmRtodeeSR2rhxo9asWaOxsTHt2LGjxbVrD7GhwNu2ZeWHTHOqTjYqSerrU9CImXx1xQr3syZGEcxald1PZC9szzwwkJULHohQu4ldAHo79Jjb32p/n23fkrtb827PYoh9caFjJEm2qz94MCsPDxf7rsqYyX1pzp8ywnbybGPnTve1bXdFzjH/O2mHcbZ9+bcRe/ZkZXttXLo0K/tdrt3/7PtytFtqgFJChFsUhlloH+3Oci5XbL3tzWOD5Q0Fbbfzr93aLg7Bv+EI3QT7N4yDSxpTHw/3m+hQt0r6HUnnaPrDsqdKuucQyf0nt6HqNj7ufXa2Jh64/dC+aR6UXSbpfWmaXjmTSndkMpCnPvWpuummmyRJz3/+8/WHf/iHeu9736vLLruMMEwAAAAAAID28BVNhF++rpo7TJKUJMlFko6X9Gm7cJIkS5MkWZ0kyWGT76VpulHSbZJenCTJcrPsckkvlvTfaZpuMe8nkj6miVky/yxN0z+aaaU7ckzIBz/4Qe2u/gvXlVdeqV27dulf//VfdeKJJ+qDH/xgi2sHAAAAAACANE23JUnyR5KukvTNJEk+q4nQyT+UtEHSh71VXqeJ3GiXSfqkef8PJH1b0o1Jkvx19b3Xa2IQ2B962/grSb8t6UeS7k6S5OXe5/elafq9WL078mHZcccdN1Xu7+/X3/7t37awNgAAAAAAYLZJ09mTs6weaZp+IEmSRyW9UdLVkp6Q9HlJb88Rgjm5jZuTJDlf0vuq/6WSbpb04jRNf+QtPjmz51Mk/XONzf2TpO57WGbt3LlT4+NujPaSJc2JGe9UW7dm5bvuysoXXpiV/RQU27dnZZvzzM8PRM6yctg0CP09o+6Ht92WlTdvzsorV2bl1avddWwCpN3hvqgSyHu2aVPvVNm/GJzsfVUnsrtkyxb3M7sr7XHxc0wVzZWFfPy+Zb+ZNPqRR7KyzSMlSb0y5489X/wDaBu22UjFnFdl5Ciy7cvW1fbFkns6r1iRL//OTzdky/ntccngDCrZRuxhsudfKF2jVCyFkt3e44+HP7Pbtu/7/aJtr7Gcc+2WW6mdTds/oQNgTzL/ROjLZpTPm//Kii0X+tpove3Nld/J2YadN3lmmfxGbX+gPTH9E852XnXeFMbOidhneY6nf60P5e2t93t8zvYiHQd9Qwv5uchCF6ING5zFKqbhjF/4a9n7Nieqf+/h37SUKfT0hj/W0EJpmn5S7kix0HJXSroy8Nn3JF2QYxvnz6RutXTk2fKLX/xCl19+ub797W/rwIEDU++naaokSXTQZnsGAAAAAAAAcurIh2WXXXaZdu7cqU984hNavny5JnK3AQAAAAAAAPXpyIdlP/jBD3TLLbdozZo1ra5KXVIlLZn+14b72PClOXOysh2CLrkhBXbEsL8cyuGEG/X0Op8tskO4v/nNrLxqVVb2QzbsZ5Y/FNsc0K3bardNG2HRLWz4hb9LbNjx4sVZuZEj51vGDtm/7jr3s/Xrm1uXQ7B9UiB6ePKdrGhPLD/Mwm7QlMsIvbRsu7F1nTfPXS4UdTU65tbHbmPXrvD39vVl6/X3dU5Ij73G2GuXjV7zbwXi7eHQ3+NH7oUiWWxU72GHuZ8NDeX7Xmu2hl3551ih324PYM7Ouexz21bBRmetXu39PtsobWNttxsq/+Sx+zVnWKjtr2y6A3/13p5y23ueNuTXwf7cskMvgyJJjipFQuXs9gi1K85vHPbc9O8dLLP/nTZk79vvuMNdx96f13mD7bfNMWV/P5R9jsFFzrLuVe6dQpMce+yx2m8T1gAAAAAAAAAl6MiHZR/5yEf0jne8Qxs3bmx1VQAAAAAAANBFOmqM7qJFi6bKIyMjOumkkzRv3jz1eEONn3jiiWZXrXT1hmPEZnmyo3ztkFE7S+b8+e727AjkIpECjQwpiYUlNasOZbD1GxzMfpMNA5SkRc95TvbCHkAb4+AfJLtTTCjF3hF33915a1a2bcDOCNnUkf0NDCkInSOx0fd5wzQ6VmiWNrUmRCzWj9ljkXv2Qxtft2KF+5mdxcoLfS5TqBmfckqwOqrcdMNUuXftWme58YHsurhwYb21az92f/UEImq9pupEixWZGXPfPve1nR3TbttvQiGxcyfUxu11bbaFz9jrku2S/OMi1T5PFy/Ozom8+86PrCpynxNqq85MePL6l8Hw7O2tuMbYNuhPnL0oNBVsZIbt0DnrX2dD50gpIbqB9QcG3G27bSD7LO+tR97QTee3FryvCYaCmraVe1/FwgrbLTS4SabtX7tfB8wx88Mm7blgZ663aS0OP9xdp4Ephexpettt2W962tnFzqPZmioAs1tHPSz767/+61ZXAQAAAAAAgJxlXayjHpa98pWvbHUVAAAAAAAA0MU6MmfZF77wBX3lK1+Z9v5XvvIVffGLX2xBjQAAAAAAANANOmpk2aQrr7xSH/zgB6e9v2DBAl1xxRW65JJLWlCrmdu3N5tB2M4qLEnr1mVlm1ehjBhxm2dlzpysbEPvY7OCN21K7Yj/vj77Hj/dgv0dttwvs6CfJ6LNpti2+3j+fHefjvf1Z8vZZGI2V4JNrCM5eSce25lt79573cXmzs3Kdt81NWeO/R2mPD68fKpcdq6E2PZ626tpNJbNT3Luua2rRw1F+x0nx4bJuRNbpzKyN3sRydmSt7+zfdRNN2Vl288vGXDzGumOu7LyjTdmZZt3TZJWZfmZ7HXE7wLarIvLLZBuMZo7zMn3Fsl/ZNlux+bvlNz9Gupm/f1rr6G27OfYHAlcluxv8Nfphhxm9lj41/Bdu7LywYNZ2b9PsqfCgQOH/h7JzQG6Z09W9k9zm54rb9ome5z988+yv2PTpqzspz+yuUsbmh/IxA7ZHFp+Ti9HzqSRbr1r56LzN9cqoZxzMXmPS95+yCqSH8pN8xq5xtntzdK8ZL7xSPvcsiUrb9+eLbdqlZs3cZFd8C5zDZ/8Y0+a/gfWxRfPtKq52d9h58RbvdptG0sG87VP8pRhNmqDy9PM3X///TrppJOmvb9q1Srdf//9LagRAAAAAACYTchZ1r06Mgxz8eLFutcfEiPpZz/7mRZ243RgAAAAAAAAaIqOHFn2G7/xG3rjG9+oL33pSzrxxBMlSffcc4/e9KY36YUvfGFrKzcDfX3SZBSdnWFYkjZvzso20q6MaXtt6IINFegfe8Is5Q4TzjtsvJFDdG34oA1l2r7dXc6GNtkZmvuH6g+nCv2+Ru4ff8S2sw37oY1l8f55w9bPjrg/4QR32zb0IBaK21CBkACGfzeZH+5ntEN/EPqevCGZUaYN2hC4vKE5friYDbWynO3FQsNPOSUre/Fd9rSPhYG1Q5hTvZzQ8DETKuv/c+6Y6UPMD/fbY6g9+F2QDfMMhV7mjeyPhWtatq5+OFWo3u3eR4bCnPx9snhx7fX9aD97nELb8/fJ4sW1993+/e5ru42827aW2Lpu3+l8tnP3EVNle/764aitlrc97R0J96uhe4q8kX95z9lDrZdH6JxtZtqHWH8V2oYfpp1nndjfEnn2cbv3NbkFQpD9Pte2DRuKP60d2zBM+4ed7UT8vAGB9BBl7GN7zl14YVb2+5pGhgYDna4jR5b95V/+pQ477DCdfPLJOvroo3X00UfryU9+shYtWqS/+qu/anX1AAAAAAAA0KE68t+aFy5cqO9+97v6xje+oTvuuENpmur000/XBRdcoCRJWl09AAAAAAAwC5CzrDt15MOySc9+9rP17Gc/u9XVKKxSSdXfNzGM9RnexHOxYe2Tis5YEg4dCcfdtWK4rf/7QrNG2bBLyR3h7KSwC007Jkk97ow2jVLkmEX3vY0JCk2/5rHDxttyEqRQ3IY9fn6cW5GpyxBXIA7XRiBI0pw5WXtfNtT8kMyZsOdmaKY+f5fYz/pqR/5Jklatysr2lI02VdvJmZXGB5c4i/WYm7Nly8J17VTBcEQb2ubHlIR2sndg7LZ37w6H29qI5Mlrts/v2512GLmDHjfXnuA6Oa9P0Tq0MX9/h+rdK28/bsimd+u1x9xeD2zMlKQec/7Y+4P588P1i/UBuXgrje3MypGJJJsnFhMbYNuav0poc0VnWW+Utjg/SoiPr3cTzZrFvi2F+mavz7VtN5Khwv0D5MlPzsr2RLfvS3Xfszrt2OvvbOMYHu4PLlbou4BZYhb3kAAAAAAAAICLh2UAAAAAAABAVUeHYQIAAAAAALRCmpKzrFvxsKyVDoxlSX5uucX5qH/evOzFc587VSwyvW+n8mPjV6/OfpNN5+Onqwl2Vl2Sy8qZujlnnrK8eQbard2401QbJeT5QFzetmDPvwcfdD8bGjLbGyqWY7FZbB3sb7f9id/X2BxtNlVJLDdPLLeZI3Bu+3WwbA6mvHmgOpbdEdu3u5/5ryfZC4fk5DabMyd7279U5Ll0+PvX6btsXW3yTUkV28BsMhzzpf6ZY/PWxdJNhc7hZraFUB16e0wd/OPl56ScdNdd7us77sjKa9ZkZXuc/W1d+GtTxXD+1pJ5NyWHHZaVH38832pOvr7wpp3fkfs4m7YW6vv8bcfeb+QfjF3Xj7VIZfcT2Qv/HDHXGz9HZtexjdc03IrXqPv6svPCdtO9Y3vd7dmbApsI0eYs27OnSE3zidyk2N80sPpkZzHnvAolY41813hflg+NcxTdpr3+Ms7phS98oa699lqNj3NCAgAAAAAAoDwd+bBswYIFuvTSS7VixQq9853v1L333tvqKgEAAAAAAKALdGQs06c//Wk98cQT+vSnP61rrrlGf/EXf6Fzzz1Xr371q/XiF79Y82NzgLeTkX1ZWMG//VuuVSrPelb2IjbW3Q6r9mOCzHBgO+Q+FnbVrGG1e0eyOvijf/t7RrNyX/bbxwf7neXsT7cjqWO/z06jbNcpO3LTfo+/bRtmUW/YZFcOg7Y7rEtCavPKGxLZyOMeClO058vRRzfs61vmwIGs7E+3vnlz7XVsxIX/OhTKFDvGNirCj7II9Xf+9PZF+pd2E6y3f2AeeSQr2x3k7zwTurdsaHCqPDo2839HLBzCbutnr+m20fgNyuikiHTn+Nlj5p9I9vfaEE0vhFUbN9Zex560+/cH65M32sgelkLnjncPtriNL19FQijzhmt2ar/T9fz+06gE/l7oGjk70ODfBf75YkL7gzHy/sXZyHuOBJfzrxX2e21I5s7HwuvNsvvrspCzrHt1bM+3aNEi/e7v/q5+8IMf6M4779QZZ5yh1772tRoeHtZrX/ta3X333a2uIgAAAAAAADpMxz4sm/Twww/rK1/5iq699lr19PTokksu0YMPPqhTTz211VUDAAAAAABAh+mgAfyZAwcO6Ctf+Yo+8YlP6Bvf+IZOO+00vfWtb9VLX/pSDVSHu3/+85/XpZde2uKaHkJlTjY83x8KbOMDHnooK9vh0v5wWxvOsWFDVvaH/NqQgJ7erDptMETejv6dVh8bqmFCMyre71tipqULDRv3h8ra3RqbyS4kNhOalXsmvDr53x8KoYtph/bQDnWYrWL73n5mw/tsBIIk7diRlfOGPLWbxYuzsh+tYifgs5FfeX9fZSwLLY/FMvX19dZ6e9rrffvyfW9XsI3N3yn2M3td9K+Zdp+bco+5Lk4TiLPwZ09z+lnbIPw65MkB0EknjCfYj8Rii+0+ioSIOfc29rjEjrkRC5kpEi5dRKx/ic10moc7m3T919K8IUZ59h3X9qpIv192W3P2v+1TYje9TiPM+sXYPWbHMvveD8W39zL2nJ3WN69alZVt/9TAMEfnWHjXrkroeyMdSu6/ETr4utQIhGF2r458WHbkkUcqTVO97GUv01/8xV/UHEX27Gc/uwU1AwAAAAAAQCfryIdlH/rQh/TiF79YfZGn2oudR/8AAAAAAADAoXXkw7LHHntMu3btij4s6wh986TVqyfKNp5HcsMIQsOl/WG0oeG2/hDrwPBbZ4i2DQ+KrFOG4NB8PzTDznxlP4vEJVXsbzcxDr1+vJgiYTcFhIak95awG0Pbjg2d7oZZMzspfLRsdmi3DQcYGnKXa1aYi/2eWAiz/TeLTp21z4aZRiK6irEH1u/vnH6sx7ztngehS0In7e+8nPZtf7h/LxAKz/MV2WH2OIVmr4x9j19Xey2yn9nfEKlbzkuho5H9RO5Zte3xm7wPqvWZLdsQJ0maNy8rn3BCVjapGPz9bQ+ZnWgzFolW761m3tki/Sbkdwm1lH2eF9keoUd1aFVHnXN2RrtcIGpdktTX174htkXCWf1z7/HHs/LChVl5+3Z328PDJrWNPaH9Pq5J9o5k9eu3HZl3AIvso9A6XRmii1mtIxP8f+ADH9BRRx2l5z73ufrMZz6jvXv3trpKAAAAAABgFpnMWdbp/2G6jnxY9otf/EJf//rXtWLFCr3uda/TsmXL9IpXvEJf//rXNT7OE2wAAAAAAAAU05EPy5Ik0bOe9Sx97GMf05YtW/RP//RP2rdvny6++GKtsMPvAQAAAAAAgBno+Kwmvb29Ouecc/Tzn/9cP/nJT3TPPfe0ukr5JUmWD8DPxbFrV1a2iYlMzPm0uHCbg8DGysfyEbQzm1BEkrZty8pz52Zlf751+zo0nbyXhKSvb8lU2e7GToq176S61ssfKmxf93d4KkMpnj/C5stoplCd/NPUsnmAbPv0t9WsXGtFlFGf4PHMmzPLNvCecH7FWG6ldtuvRQTzNUb2SWx/WbH8UP195nv9681M+YmpQm3AlP32E8q75feL9t8O7WetSvfqnOe2ErEK2c/8+yS7L+1nNg+cf16N1f7I5oKUgrdd0fOoSN6fmFCOqLxprhp5zofyOuLQymgnsevpjOtQoI+M5eErIzdvq/nnmO1S7G/3LwfueRro70qWty3cvyn77LiV9R+kIn0S0Ik6tnk/8cQT+td//Vd9+tOf1ne+8x0df/zxetnLXqaXv/zlra4aAAAAAACYBcj51Z068mHZJZdcov/8z//UwoULdemll+rP/uzPdNZZZ7W6WgAAAAAAAOhwHfmwrLe3V1/84hf167/+65ozZ06rq1Pc5NQZ0vRQSTvmd+XKfNsLTWPvx5fkGQ7sj6m124isHxoC7IcD5Bo27j+iP3gwK8+fH17OsvUOhWdK6jPhYgwnbn/+Meq2Y+Y3aRsiZMOD2kGsO7G/o2mhGTbc2n9t+9kmxqIFw6Fsw+WfJAsrIzQudx9SZ7uZFjI6mKUACP0O/30b3mNDnf2QoLxRvvWqOwzM4/xeey/kh7DaOFOboiISVhbKVhELwy3CHostW9zP/GjSkCLHr97Qy7znUtkhp93O7q9YV5/3OJe5/2Nt33Z3nXqfVeTvD7+bt/to48Z8y9m+uVWpJmz9Fiwod9ud2h6AmerIpv6Zz3ym1VUAAAAAAABAF+rIh2WS9Nhjj+m6667TAw88oNHRUeezd7/73S2qFQAAAAAAmA1ssBi6S0c+LLvlllv0vOc9T319fdq2bZuOOuooPfLII5o3b55WrlzZOQ/LKnOycbqxGbLsWN4YO/7Xhh5FZu8KztDiv1/neNtCQ8b9fXL44Vl58eLwcgOBmEq7nLdOX0eeCbNLN8zml5d/utmo4w0bsrKNQpLydxVlsqeSX2/b9WzYkPUBZ59dciVs37d5s/uZnS7QLueHvvv9SLPF4jlMueJ32cRCROXtN2Iz+jkhNAVCZ+36/uV4376svMyGWMemnhtYNFW0zdY//+udMa+I3P10JLVDcKa+ArP2+adHaPbQvH1nkf3oz7SZV56I30ZeF2O/lZnwimuH/WXPkV273M9CM263ahbdRgrOsOy1fXvMDhwIby90SWjW/Wss5HTu3Nrvx7bhL+dsP9AJEKKNbtORLfotb3mLXv7yl+uhhx5SX1+f/vu//1sPPPCA1q1bp7e97W2trh4AAAAAAAA6VEc+LPvxj3+s173udUqSRHPmzNH+/fu1bNkyvf/979eVV17Z6uoBAAAAAACgQ7XBYOCZ6+3NhuIvW7ZMv/jFL/SkJz1JAwMDevjhh1tYMwAAAAAAMBuQs6x7deTDstNPP1233nqrTjzxRJ1//vl617vepa1bt+pTn/qUTj311FZXL7fxNNHesYkHf/1+/pwic4bnXc4mHrDlm27KymvWhNcP5QRTsRwpNodLX59ZZ2CJs1zvaafZBWvXR+608XnzEQDtzDZx21W0KoeIPWe3bMnKfn1sfqCVK8utQzCPlP9FoR3mJ4+yuc7sOg1MMOP8htjOs4nqtm1zlzvllKy8alVW7sYEMy1S2f1E9sLmAzUJw/JeU+z5Ikm3356VTzst28aJNh9h5A7cXuN6I021kTlzCm3b/iY/z+CKY2a8OXs633FHVl671l3OHj6bq2loyF2uWSkMKzsfy/WlrbhnieU/st1ibLmQaC6kLtRu96L29LM5UaXW58prtGDdzU6peNf9gYHsOJ1wQva+7U9inGt9i/ZdIA2qpPAxL1LXTm4bQC0d+cTgT//0T7V8+XJJ0vve9z4NDQ3p9a9/vXbs2KF/+Id/aHHtAAAAAAAA0Kk6cmTZunXrpspDQ0P62te+1sLaAAAAAAAAoFt05MOySbfddpvuu+8+rV+/XgsWLNCePXs0b9489bTDvMw5JBU79NWbt9yOkTbl8djU6Rs31i7Pm+cuZ8ffLl2alR98MCv7c0nbUJ8YE0YQG4prhySHIqOmTc88Z/lUcb+NoPKiqWzImh06HWsW3T5suB2GgCO/WFhLLDyoWcfWnrN+BLllz8Wy6+2sY6ctH1jkVcJ7Pbl+LOwxoJGhQ0/sdre9yO7YG2/Myps2uSva8PQOufY1U94wp9zH0sbdmAtWxYbASsFjsXSpW58zz7SfBdb3Ug10ktD+r0R+k739sWGrx6yIHaPse2xU54oV7lLf/GZWtofS2feSXvjCrGz7rliImq23/TdcP8zNYfZDrH9pxXV7Wn3GRrMX9sd6O6VIOg5MsLfnsWws9e5je/rF8izZ+tjlFnVul5SPv1PM316x/qCRl+Aix9lmbQhl4JEK9i/cbzjIWda9OrKlb926VS94wQt06623KkkS3XvvvTruuOP0pje9SX19ffrIRz7S6ioCAAAAAACgA3XkP/m88Y1v1PDwsB599FH19/dPvf/iF79Y//Vf/9XCmgEAAAAAAKCTdeTIsm9961v61re+pcWLFzvvH3/88XrggQdaVKuS5RjeOm3YrB0vHQspOniw9vfYKV78Mbp2bKldJxKTEBsyHJrBy4ZN+pPV2XAMG4nkD3s1Ke2CoV+dHIpo92toyG+s+RQZyt3J+6sbtMP+t3Xo6cnaUCxCrNR6+x1CnaFpj+32Qtr7sjDvEdN92nPM709sf1Xvb/W77N19Wf2Wx8LgTfzYqLJ1/C6gHdpQvYIhfZHfljcdgBOqbsPNJLdDtbOthq6LEX4bspdQpz832xsdc393bwcdy1C4mLO/vXN5zNzKuBNluvvBhlja+wObUcKfHNdmqLDr+MtFJv0Ostv+5Cez8jnnuMutX29emIO+ZbvbJ9nZweu9l/HPHX82vFr8390b2hH+jYjZeMV+kf0RbRDC5e+T0OlcRt9Zdjhqvak1QjObSu5+CM32aK99RevQdgq0yVg4Y+iYN3Mm2IULs7LNrhNL9dEVxxIoUeuvVgXs27dPvb3Tc3dt27ZNfXnmPAYAAAAAAKgDOcu6V0eGYT7jGc/QJ80/2yVJooMHD+r973+/LrjggtZVDAAAAAAAAB2tI0eW/eVf/qWe+cxn6tZbb9X+/fv1h3/4h/rJT36ixx9/XN/97nedZU9++fWtqWQOvfMH8y1ohgZHh8faOIJbb83K+/e7y9l4n1CsgR+TYEfsNXBmrt6e7Pf5w7xtyIUdze8/ye+20MufbQyHT9gZvIpEOPhD7ENNY3iYIdrItKQN+HFDgVnk/DZtw7jseeH3G6FzKTQbmOSGXa1cmdXB9mN52VmrJGloyLywP+qee9wFTYzXjvSIqbINv5Ck/g4ddJ0n7Lx38yb3jdCUct4GKvYzG+brNyLbGZpZL8cHl9SukLxzxHzv9H+h7K21WDRMqtvZ32vPS78LGAmEa953X1b2snXo3nuz8p49WdmGZErutdDee9jv9AMZ7Gf2NH32sxVmfqxfB2v16vD3hsT6xVB4XShqcuK1PRezdrtowAvpMjMQV2JTOubghyCHNpH3mrR3JNuev7/t+edeD8oNm6uM7M1eeAei3+z08Z5+zVjO0PDYb+h1zr9D97+zgQ3NH++ZHtlUc50tD2cvbropKztx2NJ4X+3j7B+jPCGe049rttz3v2+r0JFjZYCW6MhbsJNPPll33nmn/vZv/1bz5s3TyMiIXvziF+v3f//3deSRRzrL/vSZn21RLQ9t/YYPtLoKAAAAAAAAMDryYZkkDQ8P673vfW+rqwEAAAAAAGap2Tz6spt11MOyvDNdHnPMMQ2uCQAAAAAAALpRRz0sW7lypZIkCX6epulUsv9OkChn7oNYkgzLJll40pOycig5hSTt25eVbXIP73tG+7IcFIqkRLC/p968Dn7en16TNmZR49KmtYXHdmb5BPxDfthhWXn+/Kzc31c7R07M4KCbe+HAgaxsTyO3CXbhlOFoT7GEYar9kZ+HJpQyx8/Hs3zQ5JHZtGmq2G+SBfn5c+y5abddZGr4uXPd1wsWmBe2D7/+enfB5zxnqrh/xXFTZds3+HXq1HPW7mO7S5b4naRNYGUbh73eSW4+z0ceqb1xyc3haa6zu3uynGXT05xl+3vJYPhWy34Surx36vHy5f0d9tpv82X69xv2td139ty2t0WSe2tkcw7aHGX+NvIKpXO1+cakcD67Hi8Xkm1TeW8DQ2xKPimcy9F+p83VJrmn0rx5dn23v7P7cng4y8fUW6Adl52vz+5H/5y1147Y/rb3QHnbtLOcPRj2QHhfXDEHwM+T5WzPVtZu26+4baB2OXO9k+Qc6F5Th15zMoVyZnWy2G+yuffsebBjh7vcwoXZNvrtPr7ttqy8bp270srjNFN5210oZWe3XFOAZuioh2W3mqT1aZrqmc98pj7zmc9ohX9FBwAAAAAAAAroqIdlZ5xxhvO6UqnolFNO0XHHzfypPAAAAAAAQFFpSs6ybtVRD8tmrSLj0Neuzcr+WPNQiEoopkHuiG0bqudPy94bCUWyGAIcZ0fV+6EdSwYDw/l3mmM5PW4gK5tjbqfDlqShod5ai5UeCtFJbDuOhWYE27RdyVcknmY2sXExw8PORzYk0oZC+G3Vhi0vXJiV+3vctq+Nm7Ky7SNNCF6PN8V7r+w26jtJ/LAvW1fNmZOV/fY0S+/OnFNnwIu1s8fP9pHOTpV7bbTlPXvCy5n9b3e9f5kN9Zn+dTEUJjyrmX28aCDSR5rlVq7sN+VsEf+8srdGtpl43UswDDPWndu+xm5v1arIRkwI3KpVJzuL+dFx9bBhk5J7X2Hv6QK3CpLc9unf+4W2XXabrvfeMfS7Jff32rJ/zN1zNl9IphMGbzfgx8faLzZhj5WByI60FbTXTD8G2f54u44fgxyog3PvONs6Kxuaan77/Pluf253a7/d3zYC6u67nXVi4bYz5V9f7KH0w8EB5NN9QecAAAAAAABAQR3/sCyW8B8AAAAAAACYiY4aR/uCF7zAeT0yMqLXvOY16u93Q2O++tWvNrNahaXKhsxGh5YXGe5sYwj8eAL7OhBrt3fMHQpsR4rbVfwZ13oGcj5/JcYvyh6i6O4JxUzEwvty7m8nxMyGY3jrd8Mse3kVaqp2XL4fz+HH/sBlTwQ/NHxnVrZRc37Tt7O62lNk1At3sLN+xb7XUWLf5TcF52vPPDMrv/nN7oIm5sxGzHR7t+rsHz8S1R7LWL9o4/VOOSUr++epXc9s+8C+2ovUej1T3d6XRuXdeaaR21PWHlY/yu2kk2p/FguvzFs1G5r4B3+QlW+6yV1uxUuye9Z+8xv6tdddbkW2XJH2ZNvQ4sXuvZmdfTf022OTKTr3B15nMzKSfde2bdn7Q0Otv1ewVT3hBPczG6Wd9xJQiN2Ra9aEl8v7xaFwv9j69gf6ccK2zwzcjBaZ8bmTTPs9gWklBwbc+wgndLlvMCuff374ywpcrPPed9tNH374jL8GM5Sm3XUeYEJH3U4f7p3pL3/5y1tUEwAAAAAAAHSjjnpYds0117S6CgAAAAAAAOhiHfWwrF5b9u3QFT/8mG597F7Nq8zVygVH6MNnvEZP+dobtHrRCo0cHNXCnvn6/ROfr1ced4Ek6ZP3f1Nvuf0aHTX/cI2Mj+q1q56jN65+4bRtX7/1Tl1195d07fnvmXrvVd/7kNYfdZYuOebp+t/fvUq3PbZRcytzdNbhJ+rvz/r9Zv1sAAAAAAAA5DRrHpalaaqLb/hTvfK4C/S5c98qSbpjx/3aOrJTxw8M6/bnfkSSdP/uLXrRDX+m8TTVZcdfKEm69Jjz9NEzL9ej+5/QSdderkuOfrqOXjA0o+//3yvP16ee9oeSpJfdfJU+ft9/KVFz4vz93AIaXHLIdca8PB922nFbLpwXpxsS6uzcmZX932NzSBQQSzURnIK8zrwH0+TcXult+H3vy8qf/WxW/uEPs3LpSUTyKdRsbV0j9W673G+bN7uvbS6UZvHzLRr2FAukE5n2WfS8GlhkNr4ovGCJ7HHu9+rmnJs2Gdn69e6CNudRTxu0m5LlOhf8E7NILsCc7Xt0LDsuB8110u/yQ5cA//dE++BZKu8+sde/PtMEzjgjK+/f765ju5Shmd3GSXKbmn8se3qyel90Ufb+hg2RDdp257XjgRIvc71e3zA4mNU1bwpZ9/eGFwz1zUUUvRaGrqe2bPeB5F4f6ry1msZ+77jNl7n0iOByudkKRq6ZwXVi/WUkT1m3yb3vzT7x1+m1baXHNCg/L1yddXDaU+Te0fZJNqciGiGVdPCQS6HzdHfPZ3x76481t9Kjy0947tR7axcfp6P7lzrLHTcwrA+e/tu6+mf/Pm0bh89bpFUDy/XIvh0z/v7nHbVOSZIoSRKddfgJ2rx3+8x/BAAAAAAAABqqC4b35HPX47/QGUuOz7Xs6UuO14YnNk97/4E9v9TIwVGdunhlzfVu3PZTrf3PN2TL792m9Ued5SxzYHxM//zzb+sjZ/yOfvzYdfl/AAAAAAAAABpu1jwsm4nUe/0vD9yob//yx7rniYf0sbNer745vTXXO2/o5Gk5y3y/d+vf6hlHrNF5RzxZf9nGD8v8EJJQ+FLR4ekNDTmz86CHyv5Q9XrD+m65xX1th1zbeexzCg2x9tW7Hwvt+91ejK4N17Nlf2h/bIp067bbpopfNPErl9jYmp/8JN+2SlBkHznHrK8/vC2zLyt2vy51R7y2JGzZni+StGlTVi7Qpstmw4p6BmqHFEnhXVdGOFwj+7HQ9sZNe4ou5/2etgjtbTNFjnko4slvZ37YWwjHZbp6r2VDQ/mOa5FsCbG62c/6+rI6rF0b3t64+oOfNbJt2G331nl58c+jPPs1du7FfndoPX+dIvsu721gvcel7OOad58E1++p/TeNvw36qgm5w8TtfXzkPrDM+/hY3boh+w3QCrPm1HnyYb+iLz5wc65lb3/sPj1pUZZHYjJn2fe2bdDzv/NePXf5Gfre9g16750T+ZQ+/tTX59rue+/8rLbtf5zk/gAAAAAAdAVylnWjWZOz7FeXnar94wf0sY1fn3rv1kd/pl/s+aWz3KbdW/Xm2z+h1594kb8JnTO0Wq9Y+Sx95J6v6uKjz9Edz7tadzzvaq07/IRDfv/HN35dX3/kf/TZp71FlWTW7HYAAAAAAICOMmtGliVJoi+f905d8T8f01/89IvqmzNXKxcs04dPf43u271Fp33tDzRycFQLe+br9SdeNDUTpu9tJ/+mTr/uCr3zyS/Wwrnh4fO+y2/9v/qVBUfonP96iyTpRUefI80t5acdUhlDp+sdpt9Uoenvyp7eyMYa+GFpdc6GabXd0Hd/34VmX8o7K5PviiumipfYmLqzzy62vRbIfczKjm8ukz87oB+W2UbKCClqu/MsoMhsWait3n3kz2CK9tAObb8d6tAszfytZX5XtxyjdgsL7XZlpzyhTQPtrQ3+Imue5f2H6/Pnvn3a+/su/dfgOq867kK96rjswdny/sO15UX/PG2585edovOXneK898lz3jhVHnvpV6atc9GGD+SqNwAAAAAAAJpjVj0sAwAAAAAAKEcqcpZ1Jx6Wdam9I1leND/SKzhM14a8tUMYWFFlh1vm+R47+2UHyzWrkt+g7KyX/gyYRZx/fu1yN7JtqMTQ3VL4x7neGWNLVmQmwyJyzyjWwJkxY9uudya0blRktrLc/OlWJ7/Tm1FuNu//VrDHfOfO8HJ2Ul+7nJ81wF7KbNe3ZDA885xtGnZy4wMH3G3Pn5+VFw3km8nOamTbytuPbd2WLffoo+5nNmLfZqiw+7hIvxpbr+hyeXT7uVx0ZtJuFtsntn3b/kRyb+NsH2Jv9crYp3nbcejPutl6XIEiyDQPAAAAAAAAVHXw8CEAAAAAAIBWYsReN2JkGQAAAAAAAFDFyLIO8NjO7Jmmzfngx8ovWJCVbU6MabHpNlGHDb63ZT+Bh/+6KpYnoh3yb3SqenNINCufE9DtGpmLLK/KzseyF17uuLGe/prr9PTky+HTjeylbMuWrOynsBwezvZRb4/ZPzbhlP/a7v+8eQZN4hg/t5k1m45R7BoVSAvnHiPJuZepmHuUwcFs2/6h3L49K+/YkZX9tKP20Npbpr6+cD5YK5Y61eYpcxprn3suh/INldEnhbYR3Z7ZecsWD06VDx5027Tzkwqkuiz79+Vl24p7/PJtK5YiN29K4HpzssWE9ol/vtnjZ8dU2GPp/4Zu67tiv6e/J9thAwNu27d/KvXuNtft2N9XDcwHa/u7pUuzci9//QO58Rc1AAAAAAAAUMWzZQAAAAAAgBlLJR1sdSXQADws6wChEbo27FKS5s4NrGPjUCTp2muzso0v2Lw5K/sxCXb+b7Pxir+cmSu5YpYjLLC46SEp2b4MTQXtDyFn/6Nj2H7I9k+rVzuLVexyMTaeyoZC+HEkNkYhFicTUHoYiv3t11+flVescBbrXbt2qrx1RxYSsnixu7nZFHYRCoHzD6vz2sar3HSTu+DGjVnZhtCsWTNVrJjjICmc4mB4ea0qS2qPkN9WiIWB2dC4pUvd61hv4DytbHl4qrzIu/9Zs+b0mt97zNK97kauu26q2Lf+RTW/x2er44Ra/vmfuwt+5ztZ+ZJLpoqVV7/a22L2e/OG8VnjgfX912Nj2XKxyOLKhg3ZC3NOLL/rLnfBww/PyvbG9Pzzs7L/Rc49pglH9bdt+z+zjUpkp4Tuf2wXK+XvN4ocC9um/e+1BgZqHwv/e4r0FaE0KbGo83nzatehwCWys9nrg2mTx/ghlW+/aqo4/tnPTpWdFvjGNzqrjF/1wZpfWe9xlZw/yQAUxF/QAAAAAAAAQBUPywAAAAAAAICqrh9Ie/K1r2l1FYLmDS449EIKD3ceGnJf5w7bOHAgK9vx1nZ6TT/2044Ht+OyvdCoImOziwwnLxJWWHpYS5Gx+Dm5dc33W8sO4WlZGJANm7FD303IE5rAi9uxs/g1tG3YvueTn8zKfoiSXS4WXmn7Llv2+rgndmfnz7592fs2nLGpM4DZ+tkQJT98yVTKzoI8m9lZE1esCIeiOez+ttc4KXzNjF0DAlPHxULk884m3akhmqGwwFgYmI388/X1Laq5zthYFup67rlu2OuD92blgya9zMiIOxPliSbMsHfz/VPl8ZXHBetjuyEb2rjohBPcBb///ax8xx3Ztr1jHurWitxuxEIJc7P9kHXbbe7re+7JyveaHW5zh5xzTvBrnPbt93c2/N6Gztuywtcru4/929y8+3jarKw52Bk17W2NO/OkGzYXm33SPX6BWX0LcttxVl64sO5Ndy57MOxB8jsvE8J/i3n7bFOeFrJfJ+caMjbqfmj+rhtfdWKp3wsfOcu6Vdc/LPvpV9a1ugpBF/1Jzpw7AAAAAAAAaArCMAEAAAAAAIAqHpYBAAAAAAAAVV0fhtkNduzIyn6eMisYt+7lctBFF2Vlmx/KJkXw4/BN/g4nb4W/XKA+viI5V0ZNDhC7Tw56IeKhFEVl5/RyEjvEkl/UKZaDIm/uto7KcWPnVbftk5xlbaOh7c72V/aY3357eB2brMufyt0yHcLo0uXBxebOjdSvScb7shxKlVWrsg+8vsYeC9vfddQ530B2P/R63bLdd+MDWf6ryplnhjdoG4dpnzZHkiRV6rwGxPKXhc6/TjrmNheSf/m0KeJiu9Ge6vayYVNoxbqDu+7Kyn761RPtOVfgWDqrnH+++6G9ru3aFdxGnrSofluwbSDWHvr6Cvxb+YoVWdn20/b3SG6iuZNOysqnnZaV/fxnfiOo8nPEVTY/UHudAsco8JUNYb/L7jqbv0xyd2UoTZbPyXtmjmuvRqcvPMn0V/5+sO0ulL+sk/qavKJ/s9j2FcqXKjkHavWDD2brf/Sj2TIvf3n4e3Lu1+D1wT8PAh1gV/7t0BbIWdaNGFkGAAAAAAAAVPGwDAAAAAAAAKgiDLMD2Aij3MxQ3GnDbVccM1XMHSpil7NjyEsMN5TCU8tL7ozhZjZkJzJACoddNHQ4sV/ZkvdLSFcOkc7RvmKhJyhJzjZsw5/8VQYG6gx9fslLsvItt7if2VirWLiuraDpLHq98PTegfa6HDr7y/4GL/S9YsOZmhlX1AWCoSz+ReTII7Oy3f+RcyRvmIsb5pSts2hg5uE4ncQ2VSdthCQtzELE7Gkau9YvW5aV7WFZu9Zdx16qbdjyUUd5Ffy+2Yg5SLHwWOc32ePyTa/vuummrGziPysje53FBgezUGw/2qteoXYTuwdzwpjthwsWuAvaPuncc2u/n9O0evqNIO96h3jfl/f8zcu28eHhrH3Pm+cut3Vrvu2FogKL8Luxww/Pyvv3Z2W/PThsA43dOzTp3rh0oR3up7l53eumikvsddumv/HU24dH1/frV6Y8ceJAF6B1AwAAAAAAzFgqcpZ1J8IwAQAAAAAAgCpGlnUAGyqQV+4h5HYYrZ1uxx+6a0NPYsvlHIqbp37+kG8baWWr4++f4JB0s0F/5jKrU8NauoY9oIGD6R+jbpgdzvJ/j41wsCHIdsI2yT396v3tefuQ2CS6NnR69eqZz47rzAi5bp37oW0n118frqDto2zf5VfWxHSVPnNuvWxn6Nc7GhuDQqbHE2flAqEnsdA9y0bt7NuXLefPgm37g127suUWL3aXi82k3Ap219m6+dfjTWbybXsJiN0L2d9uZ7aMrWNDNKeFguYI98vdN/jbsqGJkek67fYLzV5ZgP3Onp7wLKwVu2Of9CR3I6H7xcC2YnVoldLrYPsKcx74aVZsOHEsBYtbv9r7Mnafa++n7eSlknvIbOSsPX/t7PSS5HxTLGbY7odQuQR521fe+xxnXw5nM2lPayeRmS5bLe/vzrvcmDnqvXY/tCgtDdAojCwDAAAAAAAAqnjcCwAAAAAAUEjrR8WifIwsAwAAAAAAAKoYWdYBiuROyJ2zzObLOP/8rOzHmH/ve1l5x45cm3ZygHjby5MTyM+XYVMP2TwmuafNttO/e+vYfAS58xXl/OK2y3/U7vLsVy8ngs2dYNNlDAy4bahT9r+f8sHm/qp3mvgy2P1o97HfbdhjEUv1lOccGR9Y5NZhzZrshU325OdLsQlYbJ6dSB6NtmsntvPzcxy1Q4PoAtFjbtuXPRltQh+TX28m32NzUdlDG0tFZw+5Xc7mIZKk3buzbdvTwH5P2W3dv/ew9bOnZo/pN/zfan+fbfqx1Df2s0CarDh/435CyKpYXxXMnWmTo0luu7E7JXIuF8mzVK9Y23D2g5+TzR7QnP1T2/W5hr+/6z0WftpJa+HCrJw31VOor/DXt/WeMyert+3eJDcv6q5dWfnII7OynwtwyaA5zrGcZVaB/I9lyHPM2rk9lqGM32cP3/bt2T5dvjSwYJrW/Z1AKzCyDAAAAAAAAKhiZBkAAAAAAMCMpZIOtroSaAAelnWpvMPnnbHUoTmiJemUU2qv44/FDg2/LjDE2l/Fhlbs25eVY6P8g/vB+30V82W5h9UXWWcWy7uP6h0ebkMc/HCH4eHmhMTWG5phwyAkdzr5ZYuz8ObY1PD1yrt/7HL93rm4cmXtUCu/m7DncO6p3E3YW2X16vDGbR9VKH67Dfj9LJrLXnxsrKM5UStL3diTIv2dHzY+yW/S9tq4qC/rD/bNc/uD0Dm3bVtWXrjQ/U67bbu+f0sQiqCy1+aJ7ddeLvSdknsrEhPqo2xoa5H1JbnnnPmxsXXy9pnjg0vqWr/dQsSmXYcaeF1q1n1E7HtGxw59XYvd8h44kJXt+SEVuyyFwrJjhoay8rp17mcbNmTlrVuz8qOPZmU/1HlgjUnHYK7NsX6jyG8tco40q83MNvb4zZmTlf3+YGq/JkkTagWUj7/wAQAAAAAAgCoelgEAAAAAAABVhGHOQsGhxjas0B9Ga2eeM6bPEpSPGx5Xey1/GLt9vXhxeLkgu2DJM+HlnRVrNil7Hzjb89qnPZp2OPjjj5dahah6Qy/vvju83LIh074iYRYtCSPIOZubPeW2b3c/KzR7nWVnYys77gOw7cs25LyzvuUUCh2KzTI7YmYCtqFVkhuybVca7XNnli0idAmdOze8XJEJ78q4Htet5Jn6uiHcK3fIad6w+g6aNTwUemnL9j5Ecs8LWy6jadn95c8in4d//bWz5dqZMu1125+UuQi7H3t7Isc856yZRdpQu7e1Vsv7t81DD2Vl535VymaQHh1VdyNnWbfiL3oAAAAAAACgiodlAAAAAAAAQBVhmLNckSHydqj55OjaSQMDWUiIMzmYFxnlz1I4yQ5dnz/f/SwUzpF35s9KkSmDCmJod36lhNmY4zk0lLVBPySoWUK/yT/fQs3QTj4ryY2FsN9TRixEmfwfFJgVzV/M/rzQT/JnCLXbsLMILl3qhej21a4D5yiKGB9enmu5ettXLLTKXspCYWATy2Vtv7J541S51548NsRUck7AIiFd0363vdibijdyJl90nnbrj2OzKdr7T3suxkKO884EW4idrTUWshj4Mv/t0IT3tqvIe98dq0LZx7zIDJiYmTz72M4WK0m9k/G7Df67C2gUHpYBAAAAAAAUQs6ybsSjdwAAAAAAAKCKh2UAAAAAAABAFWGYmDGbF2XLFvezefOyciiXg78Nu5zNU2bf97dRZFpoJ39ZyVPBo/FyH/OxbHrqwcHG5cUpIyeGbeMnnJCV+/v8vD+tz/UQnJbdP1FzsP2ElC9n2caN7mvbh6xcGf6u4eGs3G55cdB58ubFCZ4vJbCXL5tTyM9ZZl/325Xuuisr+xdxczJV7MZj18xQElK/EjaR6dIjwusAAa3ow/3vtLn82u5WMpazzHB+k59Lyu9Iam0vkozM3oMFtxVT4J4CrbV2bVaelpps8nhWGJ+DztRu3XxTzbngWp1y7KKp1//2vnXatGWvfuNdt+m4I/u1b/9BrT9nma763ZOnrbtpy16tf8etuuuaZ069d+Un79HA/B69+dLj9Za/+6n+/eat6p1b0fHL+3XN29ZqcKBF2cYBAAAAAEDJUpGzrDvN6odl83vn6I6PP8N5b9OWvTrvlCW69s/P0r79B3Xaa27QxecO6+mnLJnRtp99xpD+/DWr1TOnorf9/d36809v1Ptf+6Qyqw8AAAAAAICSzeqHZYcyf94crV11mB7aPvNhxL925tBU+eyTB/XF7zxSZtVaKjSVtC82YnvBgqw81wy4i4Vu1jv8nhCsLmYbS87pqcsOkyqyDdvendBLP3QhdmI0SZFp2UP7ZOFCd/25OQbd+pEZNqJr2bJc1QE6RpEw72j0kj1h7IU7FoIV63dC/ay/XCCUM9ZflhHiDjRKkWt9vW06+p32nCtyr5C3DyhbzpDRRmpkuPxs1dvj7cfJa0/bxSwD+czqlrtv9KDWvvoGSdKxR87Xl//kTOfzHbtGde/mPXrGU2qPKrvv4T1T60vSlsf2682XHjdtuU987UFd+qzlJdYcAAAAAAAAjTCrH5bVCsOUpBvvfEyn/vZ3dM+De/T2lx6v4SW1/2Xl+OULnPWv/OQ905b500/dq545if73hUeVV3EAAAAAANAGGJ3YjWb1w7KQyZxlP3twt859w826+Lxh7R8d12s/eKck6Y8vO1GnHr/oEFuR/um6B3Xt97bqWx84R0mSNLraDWWHJ/eOZDNfrVx56P1QS7/2Zi+cIeDmwaQf5VHnEN56Q8cwM00Ns7FhAznbSdnHOc9w/srIXvcNOw2ktX17+Ivs9I4tmjUquO/88NHALHn9NiRMUv/IzuzFWO2wrVWr3DZjZ81k8iy0m7z9SyNDDp062HDIdeuysh+CZc658Z7GzSZs+fvKmU3P1o8TveNwP9VkRe6T/XXsxdX2B3n7KttvDDSuD/HbVr19KSGZh5ZrH/vXlMl+u8P/DsbsxcOyiBOPHtA7XrZK7//sffrsH53ujCLbtGVvZE3puh/8Uu//3H36zofPUX/fnEZXFQAAAAAAACUgi+ohXP6CX9ENP35UP38k/nDM97qP3KVde8f07Dd/X2tffYMu/+CPG1RDAAAAAAAAlGVWjyzb/bXnTnvv/LVLdf7aLERo/rw5eugLz5623Mrhft11zTOd96581UlT5Y2f/tUSawoAAAAAANpLKulgqyuBBpjVD8swg7h8G4O+eXO2vs1tILnT08dyJ9hcRrZsv8fftnndrFwqmJlYPgPb1urOB+HnxrKvTTvxF7NNsreBvV8w94Wfo2zTptob2LjRff3gg1n5Wc/Kyt45Ys+LhubcsOesza/m/z57AFauzMp+Tgu7ns1LZA6YTdUmkVMErdcObdCpg58jMJTvy3aEXh6wRuZQyy10T9DlOcuK7PtmtsFQ/drhPOhUZefdKkWBPGXO7/Cv73VuO6SR+8rf9mxt43nv6YP3hFasXQBtrA16ZQAAAAAAAKA98LAMAAAAAAAAqCIME7XFwsVsiNjate5ygSmnp7Gf2fLdd2flxYvdddasycoNnI4ajVFkWu5g2Ifftkx4zhO7s3X8qCQbJVyvQuETAwPuaxtbaEMW/eXuuy8rH310Vl692l1ucMmh61A2E5Y9rd52h9u+wY+PDYWIRRASBHj8Ds++tmHQOUOhoqFV9nXoeh5ZLtpf2nXsb/BTM+TsK7pZO4SLtUMd2l1b75MC59G035MnDE9y7hEqoeu+X59AvxHbp/WGaPrdXSPTdnQF+zejfx2aPM5p2rTqtA45y7oRI8sAAAAAAACAKh6WAQAAAAAAAFUMLJ3lnCHNI3uzD2xoleSGYdoh0n5YhBlWHQ3vsOFatuyHf1pmaG9w+LYvZwiIu9jMwwUxwe6v0bHw8a97SHtkmP6+bdnbfjSAP6NiMzjnmB+maF47y61aFd5g3lDnRrK/w4aC5g2T8mMcYiEYOXCeAopej/eOZakL+ntKmJnYnsO27PdxRdjruw3p8cO3A99VJOS/mYrMMGjXCUXANlN8wsP2ntWz1WL3RiH+Pg21jZgi+zh0nHvlfWDPzdh9fGh229DfBJ68v6GRIZqowV57/OvQZB8+Z06zatMiqQjD7E70GAAAAAAAAEAVD8sAAAAAAACAKsIwZzlnqLIdOu2HO9hZ7eysWt5w27yhAuM9WUiIUwc746XPxtSFQkBqfdkk85ucMM5qLVCu2KRo9YbJ+GEMNlJn//6s7B/mRoZ6FNm23Q/2N+zb5872Ov/CF02VF/WNZuv3NG9W2FDowqbdR0yVV3qzjQZDRfx6B36H3Sf+sbTtq93DroCQIuFUll1nRP3OZ2M95nWg/43Vx+F36DZUKh6Td8jvnfb+wCJTH2Padbu2IiFYsduIuvuUaRvP+jt7qxX7ebYORcIcyxY75KHbM7tPcx7KrmHvWfzJAkMKTBKdW6wPCE1Gaw0Outds557a/l3gNxS7XKjc4NjiPH3utL9ZuMeYZu9Itk/6nD7b2z+TO7PrwzDRrXhYBgAAAAAAMGPkLOtWrf/nKQAAAAAAAKBN8LAMAAAAAAAAqCIMcxYKxt7bnAFLveRDNrGGzUcQyS1gV/Fngi4U82/rZPMg+PnVQskwIkk2envIQVA2/xjXO518KB+eFG5rx6xo7+Nqf98iZ+Z0d1/ZdIKjynKFNLIDz5s/KW96kSLn/PbtWR0WLHA/W7w4Xx3qnSae/CRoZBsqsm27PZsLKZYeKHSOlNK+S84x5OS86sly4fjfkudbY78vlvrU6g18kX/snO+yG7QduLz8Tub3RZntVRqc02mKl7CqYurQb+vg18f8vid213fu5D0/8rbjIrmn/DrkbTfWrl1Z+dFHw+vbXXn44VnZv62tN7+h5dfBHvYtW8LLWUsGB2p/EPuBTcxTFlIkZ2S9fXa3sIc22PfZ12na+EoBDcDDMgAAAAAAgEK676EoCMMEAAAAAAAApjCybBaIDSF3wgtseKU/5jvvWPMCdSo0PNkO2fZjPENm21zlbabeYeh2/X7vUPYP17XpUoSG5hf53f46g4PN/3cNvw6h37diRePqYLsdG7oiSQsXZmXbHeQNkfC7tF6N1l6wReEhaJ1YGwqFYMWaSW+B9mnF+hCbQqA3cimsN5S0MGcn9YaXM+y+tCH2fsaFIrcBofWnpWKwsWj2N9j7pBi7/l13uZ+ZsMz+9eunyuNy948Nse1tRT/khY9q06asvH17Vp43z13OxMgvWrduqjweOf713hPG2ndoe0WvFbYd2s8OHAhvY//+2uv42963LyvbW1abdkAKnyOWf8sbCjn0om2dw27DRw+aif7873SOX5GTscvV/TdPi8TquijvYSYMEx2OkWUAAAAAAABAFf9kDgAAAAAAMGOppIOHXAqdh4dlXcoO+d22zf3MDqUeHjZDg0f2Zh+EZjMpKDYhTqcOTwZC3PCsmYeHFF2ukZpVB9sf2FCPyIRr0e4pFL3kh5GMmBCoRQOt399orryz7dowqT17ai8judF6y3OGiTfyHGtaHxK5d7CzOBaZbdcPF7P73H5m3z9uZa6vmV7vjRuzsp2JO28Ypt2eDVmU3LBME7JWOf98Z7GRERO22JftL7tPGnpc/XC6W27JyjfdlJWf+lR3ObuP7PFftSp7359xPWeYab0hlUX4VbO7JRQC6YdkhiaB9Hex38aL1C8k1Mf5dbWf2XQHtq55T4NpQhfrNkh3EJsZMxRyP6092nPdTiVq2vv48PLg9xbRdrNzhk6YOXMa951AAxGGCQAAAAAAAFTxsAwAAAAAAACoav24VwAAAAAAgI5EzrJuxMOyLmLj1m2ovE29IUkrVmRlJ0+ZzaPh5xWwSRZsrglvbuqKeT1mpj3fvDlchzZIVQDUzZ4yNo8Js6gXZ/epTXcT0zu2131jp0kCYw7G2Fi/u9jOrLxvX9Z32ZwtXnfXFrnkUA57zobyEEnS/v1Z2V5n/XVm7XnvX9ADF/hYfiBr166sHEulumlT7fLgoLvt3LmWHnkkK5sbllhdnfyr9j7p3HPdBRcsyMrXX5+V161zl+tZMlUMXVP8+pTaJ8V2lv19p5wSXs92rLbs5yzrIHYf9/e5n0zy84DZn26PpX9Nsa/nzcvKsfvkIvfQsXXseRXKrzbtWjg2WnsDeROKttkfAv551GurZ37TeE+vs1zF/rFjOyKbu284ZxLLiEbm6Cvd5LFNktbWAyiog842AAAAAAAAoLF4WAYAAAAAAABUtde41wY4+eXXt7oKQfPmD9a1fmwY7oMPmu+Z537mjAC281Tbsj/VuV3Jjr+ODNO3H9lwFSlfSAEhTs2XZ2g3x6U2G0WQNwSL9h63cmVW9qM0bHRHb4/Zd1u8visQU7dkqRtHYsO18obMWBzLzhYLw7SXvyUDWbjR4GAWguNfMv3r7iTaxqHZc3v+/Kw8d667nO0T7O2LPX5+CojcYZhDQ1m5QEytcy0dXu58VjnTVNz/UYb92lA0W1Pb0wtfmJVtZ2jzaih8HxGra97+sy3Cz+zBMI3Q7hK/DwmFM/rtMW9kYt4w5jxsqoEYWx+/PTrBiB0aehkVCC3dudsNw1xi80XkzDfDvUO3SEXOsu7UQT1VMT995mdbXYWgizZ8oNVVAAAAAAAAgNEG/0QDAAAAAAAAtIeuH1k2W9nwpVjowvjSI6bKFTtjU86pvfLOxJR3Jrsi226Z970vK69d6362fn1Tq9JoTd33Np7JxtbYRo1ZIRb95EbCmL5ixTHOckXa7pLBbJ29I/lCJJp1jsRCbtquj+wgtq3FQn57zOxndjk/nGrWzoaZU6wd2/1qw9dix2XOnNrbyh126W98zZqp4nhfv2rxz7e84XDOfdfZZweXs9t3+rgWGV914ozXccPYZ/4biu7jPNsrui07A2Koz/VD9kOZTJop9NtjM3Ja0Ukubb84cOj90+6mtQ0766X9rd5+eEKLpsp9g1m57IjT0H5tizBloMvwsAwAAAAAAKAQcpZ1Ix5BAwAAAAAAAFWMLOtgseHNy4aCH4XlnM4vNsw39JkzW90htlG30FhxW/bHmRcYI33/e94zVe71Plvxla9kLzooJDMYohAdf2+UMdORnYpw06asvHRpVm7DGKcyZ6eazex+7I00obxhSUVmmrLr9PdF1rFhwlYJ/Quay16jeiPdi20bsUsmhzwu77kY6wPsZ/aeZ2goX98Q7bNzhl7m3l7A+MCiQy90iO9tliL9pw3DbLeJEMvep3Z7/TlnTi6y7TIU2Z493/zzMvSb2j6dSkDeeg4M1N/XlLlPyg5bBsDIMgAAAAAAAGBKG/zbDgAAAAAAQKdJpQ4ZOYmZYWQZAAAAAAAAUMXIMsxYGfH1Dc1bYJNkWDa/kJ8wo0ACjePOO2+qfP+NN7of3nFHVu6gnGVW8BjFcpaVkRdu5cqsbPOUxb63zXRKXo5O1g45XByh5Dy+dkjWg8Ly5tRD6xQ5l9uuP+lg9rcvGWzctjtVN7a1dqhDK7RDX9Mu3wV0K0aWAQAAAAAAAFX8uygAAAAAAEAhB1tdATQAD8vQfQYGZvZ+UddfP1U8rtwttx8bOlb2fox91+BgY78LqIc9Fxp9XlQRVgEAAAA0HmGYAAAAAAAAQBUPywAAAAAAAICqWRWGuWXfDl3xw4/p1sfu1bzKXK1ccIQ+fMZr9JSvvUGrF63QyMFRLeyZr98/8fl65XEXSJI+ef839Zbbr9FR8w/XyPioXrvqOXrj6hdO2/b1W+/UVXd/Sdee/56p9171vQ9p/VFn6ZJjnq6P3nOtPnzPV3Xf7ke07UWf0tK+w0r/feOBZ5/TwnZCswrmnKUt9D3+d8WWy7M+0M6KtO+Y2dz2y96XVr37NW9/h/bnH8tCM/4ym2nbCJ2bsYmvLX/C5jzqvccpqhV9Tez32VMk7+kSOxah31d0H5e9vVaLHf/c9/4N1A51aKR62409R/zzoFv2EVKRs6w7zZq7vjRNdfENf6pXHneBPnfuWyVJd+y4X1tHdur4gWHd/tyPSJLu371FL7rhzzSeprrs+AslSZcec54+eublenT/Ezrp2st1ydFP19ELhmb0/U8fepLWH3Wmzv/WO8v9YQAAAAAAAChNZ/4TSwHf3vpjza306PITnjv13trFx+no/qXOcscNDOuDp/+2rv7Zv0/bxuHzFmnVwHI9sm/HjL//tCXHa+XAsplXHAAAAAAAAE0za0aW3fX4L3TGkuNzLXv6kuO14YnN095/YM8vNXJwVKcuXllzvRu3/VRr//MN2fJ7t2n9UWcVqi8AAAAAAACab9Y8LJuJ1Hv9Lw/cqG//8se654mH9LGzXq++Ob011ztv6ORpOcuayca9j45lgwZ7/aMcSjBh3y+SzEPS3pHagxULbg5qXc6kbs9BYRXJzZI3Twtt/9BCeYBi+9u+Hhiovw72e2192qG9k/+xHNF9YhvUyEh4OXtCk7+sbdg8ZZs21X5fkubMyconnJCVBwfzfU+n5ryKyfub7Cmy2fx78pYt7nJ2Hy9cmJVXrcrK/qkT6n9jdYjdsubdnhU67f26FjntQ/UuY9sheXM0dmObLluRfWePsz1H5s1zlxsamnlb5Z6gHZGzLK8kSX5L0hslrZb0hKR/l/SONE23zWAbT5X0p5Keqomdf7Okt6dpesch1jtS0t2SDpP0ljRNrzrUd82aHvLJh/2KfvjYfbmWvf2x+/SkRSumXl96zHn6yfP/r2688P36w9v/UVv27dCXH/ye1v7nG7T2P9+g2x69t1HVBgAAAAAA6FhJkrxR0j9JelzSH0j6e0kvkXR9kiQLcm7jbEnfkXSspHdLeo+kEyTdmCTJKYdY/a8lzTnEMo5Z87DsV5edqv3jB/SxjV+feu/WR3+mX+z5pbPcpt1b9ebbP6HXn3jRtG2cM7Rar1j5LH3knq/q4qPP0R3Pu1p3PO9qrTv8hGnLAgAAAAAAzGZJkiyV9D5Jt0q6IE3Tf0jT9N2SXirpZE08PMvjakmjkp6RpumH0jT9kKRnaGKE2Qci3/8CSRdL+uOZ1HvWxBAkSaIvn/dOXfE/H9Nf/PSL6pszVysXLNOHT3+N7tu9Rad97Q80cnBUC3vm6/UnXjQ1E6bvbSf/pk6/7gq988kv1sK5/bm//+p7vqq//OmXtGVkh0792hv0vOVnTAwAbJDt27Py2Jj7THR4OKt3r0ZzbS805Ncftm7DH+xnq1e7yxGall883C/f8+4iw69DoXF5h/Z3i1B0VixSq4ywwFnFiUvJwtxt6EJsn9rVe8f2hj+0vE4oeCbZuJi8sbcls22NvnOGbByed4zG+7Jr4Ziydtc74B3LQNyUTXfgNw37Vb093d1HtoPQqfngg+7rPXuy8uLFWXnJoHuM2i00LW998oS0S+HuKhYiaD+z93p33OEud+BAVj766Kw8PJyV84a9+uzpvHNn7W1LxfpJ+3vzdud5wyttvSNdkrNf7G9oZHuMpTjIefl0fkdX3hPai7DZKRXvxiR0ztlj/sgj7qbnz8/KAwMzD8kEOsgLJfVL+us0TadiVtM0/fckSe6X9HJJfxbbQJIkqySdKekTaZo+ZLbxUJIkX5B0WZIkw2mabvHWWyjpbyT9rSYe1uU2ax6WSdLy/sP1+XPfPu39fZf+a3CdVx13oV51XPbgbHn/4dryon+ettz5y07R+cvckX+fPOeNU+U3nPQCveGkFzifX7Qh+PATAAAAAAC0PR5wHsKZ1f9/r8Znt0h6aZIkA2ma7q7xed5t/B9JZ0j6D++zP9fEc6//T9JpuWusWRSGCQAAAAAAgKZaXv3/QzU+e0hSYpYpug1JOsq+Wc1x9ruSrkjT9PF8Vc3MqpFl3SbvsOzvec9ezzwzK69YYUJPRp7IPvDGXtuhxuMmTMofom3DP+0QeTsLkiRVRkyoVKfGFdlh2Q2c0sgP4Sl1OH5s/L1RMb/HHv+GyDvdVZ2Cs32OuaHJ/bt3ZmV7XJe6w+9HTRhXMCQhFgsTi+HodiZGoWLiUHbvzo7RihUKqmw3uSf9qdlC8bJLl7qvbTiFLdtj4U+tZ1/bOKCSj5/9Cf197R0u1hZC8S/ecRnrMWGYzunnhZrbbZi2sX17ds7b6523mI6JtF0UZ/vWJYPZ+4OD2fHzU0DcfntWjvYpgXDGIvKGQJYtFk7nXKPMNa/XXuu93237IXtKxLpcG+pq1ykahmnlnZ06r+B127+GmNe95r7EvTNyD3JfX/ZpIKKv5uuZKhK6F2uPde/Xsg9Ms/j1to3XHsBIfgh7y7pyZVa2M8n6my47hQehnChgaZIkt5nX/5Cm6T/YBZIkGZR0xQy2eXWapo/p/2/vzuOrqO7+gX9ONpKQhBCIJOz7JioIClRUVNxBcSu461OxWnEr1GpblVZ/1talPurTWquPVHH3UVuoUsWKdUERFQQVBBRkCyXIFsie8/vjTjLfObkzmdzMXfN5v168ODd37twzM2fOTCbn+z2hEEwAqA6zTOOJ1VKOq1atQymVCeAvABZprZ/3V12ndvYbGRERERERERERCeVa6zEtLFOI0AyUfs0D8D2AxpEyHQBUGss0Pl42Eg83I9dhCreOnwMYiFC+tIjwYRkRERERERERUatpAPUtLpUKtNYbEAqZbK2t1v89AKwz3uuB0E7cCm9yHabGn20BAKVUKUI5yv4aeqkGGst1sX62TWu9Hy4Yv0FERERERERERNHQOAvl+DDvjQWwpoXk/i2tYxxCD9w+sV53Q2i02Y8BrBX/5lnv32y9PtXrCzmyLImZsegyv0T3QnsE4qBBzvBf19RIMpDeTMAi8vGkieB7Oc0x4MxNJqdsb5ZyQCY3k7mDkil/mdxHZqKBtiYecMuzBCDNZR/5zasil0vzmhveJSdbmvn1LjlOIs6V4JYYxZwbPgKuecpkXc22v0788UPueyPhTUbXg1quAHOWheeSzGZ4XzGSerdxTshEOTIRkZyHHXDu19ra8D8HnMdTHme5nFdyHtmPBXz8igpF+5R9J5w53qKeTzBZyP3vkRxJ5ul07Lkq4/jJPkG0h9277XPezENj5umk6JJ9uzwtzcvlIWLScnlYs0uMPHXimtDW/GV+0zaZ3UZb8w3JfKdZAXRJcr9WigCa5cudy61ebZdllynzNpkpI/3e+sl95HGbFCzznkC+ltcuuRFGv5MrNji7xL4n97sN0cw9Za5btpWMPH/t3TU3q0e+Nweva6ZbDtFoMr9HHk+xfX77A0e62wjbvhRkTkWiGPobgAcBzFRKPaO1rgcApdQUAAMA3CoXVkp1BdAVoZFfewBAa73Oyql2nlLqVq31VmvZ7gDOA/AvrXXjledb62emgwHMAfAkgPkIP7Nmk3b2GxkRERERERERUVDaRxhmpLTWO5RStwK4F8AipdSzCIVEzgKwGsADxkdmIpQb7XIAc8XPrwfwNoB3lVIPWT+7FqGIyVni+/YAeMmsh1Kq8a/OK7XWzd438XE0ERERERERERFFhdb6PoQefhUhNMrsagAvADjWRwhm4zo+ADARwAYAdwK4A6EcaMdorVcEXWeOLEshjmHQYlzv4X2/dy7oFpYihzp7hBXKIb9meEH3ErsOMkSz2TDjZA29lKI5NNwtDMx47RZ25TVk32v4tgzxbMhuafZeb83W7TeMQO7LNrYNr+Hpcrd6hqi4tVWPY+6c0l7WwblP9+2wy5072++Za47L9N9muEQ8zlNZh1WrnO/t22eX68Vf87xCXWUorxFGK9+T51VaXY29TIVxHR86NPz3BMwR3mzEcDAEowVe7VaGU8nwVvP6J9uNXJ/4SKdOzo+YoTZJydmROd+T7T0BwsZlH5md7X6PIg9fW4+RVyoMt+8EnN2arJ+5XEaGj7QBEXLU1Wf4tqxrfr5dNjMkyLBMWd6wwS6PG+frK5uRXbDf8NZIOPpccwPlPbTsNyKoUG62+7FMpr7dM72HG5dUH+bvKEGnF4jo/Gljf+czM0Dg93qBpEYhCpjWei6cI8XclpuDULhkuPeWADghwu9fjFZMUJA8PTEREREREREREVGUxf/PgURERERERERESUeDOctSEx+WtQdm6JAkxwN7zTYoxhDLkdPNI7XswYqOmabM8AKXEL+kHSYcyzCUAL/LbxiJF7eQkognBA0wDNNsn25tsrBQDlX3uUKjbnJfVlSkiXL47wecISoyLCUhZtKLZoyLoaFn77A/lzM9OqZSA5zhLzIM06vhyT7O6O8O1IlQD7HpudmiPZp18BmW21ac+SpK3MKpPGaDPlAVfv/LsDQgebMLRCLRQn1kHbxC7IOYITISbpMg79rlXK5z5/Cf8dsHRJqOwU2HDuHrY946yi7YLeQs0suL27qD7n699p1MUeG4RrmFFYZ7nSQiaSeO/sC8HsuO0W1/RbnzDLK/CuIeuq0Soc/1wnsWSnZswURERERERERERBY+LCMiIiIiIiIiIrIk57jgVhi+YEa8q+CqQ2HHmHyPGeKUtvxT+4Wczc0xy5cISQEcQ6SzC4tcv8uMXvEj0YcQu4o4ztAHGbsXp+H8buG2ZmijrKrXhKq+BTjLmtmMZdjjyJF2uShPzHhofqisLHx9zMYu4koKS7o3leX+krOBAcCSJXbZK+IwLuFC0WzfHuT+2rzZ/nvOwIFGPyZfyJkyveJ7ZLyQ0bZcd7Fs4DGc4tAtVMQzPIh//4qcbO9mHyBeZ3c9qKncpYu9SL2RqiRZoq682kxags14GVPyvBf3Rn5n+nOcp8ZFM0usIyPPDv/2ypgRK47Zfw3FxXZd5eyv5sTCY8bY5dGj7fJhh9nlSCPt5Gkqu/ogmmda1QH7hUceEccZ43a98dhAxz72mGXW96ySMRLRvbrX9dhnGoO2piGI6u8YxvbJY+ZW16T9nSdC7Wt7mbMsFSVWTxwFX/5tTMsLxcmUOzbHuwpERERERERERCTwz9BEREREREREREQWPiwjIiIiIiIiIiKypHwYJoWJF5cJkWSuH5m/zExMJfI2pYnlMrILHIvJVC8DB9rlBEu9kPhkLgcz54MjUUcW2sLMqSBXvW+fXZa5trZvd65D5toaMqRN1Qmc73RvMlmMmYtMNuraWruck+P6vXI6+Wwxzby56tJSuyxzsWRltKccD06y6S9aZJfNdGFFcsHVq+2ymfhHLtehg12W+csAZIlj5jgvPHLXBNmxmeeiI69NJHmSUkTM8r7I9iCviwCwbp39vZMnN5VlDqdk5bkf5QXBvA7JPF7J2u68tk9e9GTb8Mhb6LofzGSV8jOi3+lurtsl/5Hf/e31GdfcT7Lty4s7gDRRv1Gj7Hu/zEznKsQpgv49w/djQeRXNKrXdvI6IhOcmsdF3h/LvllWyLi+ON7z6s8D36go8bovlddg83rslgfRK4md7GtEudk1028/FEmyO7ftMz/vI9drxPWmBKcBHsuUxJFlREREREREREREFj4sIyIiIiIiIiIisjA4rj2Sw7wfecQuT5hgl72GnYvh5RV5zjBMGcnpNbqZw45bIHeeGbsnhoOnySHfPqfhlkPAzWhbSUYZ5ufb5XpjZmQZbdC5s11OhGNsjoiXEciO9+SOMMMG5Hvp6e4rdwmfkIdl5EjnezJcpagw/vsrXtymhr/qKnsZMzKuqK/YsSJMvNmCUqdOdlnGwALAiBF2fWTorTzOQceTi7bV7C9XcpvESdYgwnpDn2u/7SZqNhszVcuQLNlORK6BIMLKEo5byFSqkKFVZhiYvFgE+T2AM7TfvL5L4j7M0brkNcq8DrkcJ9/tc8ECu2zuA9Hes0TdDi8x6iC3d1X43BxpRr39hltH9TyT4bKyDzDDaN1yT/gNofQKP0yW88ysp9/QRtn2Ja99J9+LJPzbPP/k+eN232x+xu0e0UfYpSnoa7bXOZEQ9weN+1Lr+NaDKEJJ0isTERERERERESUSDaC+xaUo+aTgn0KJiIiIiIiIiIgiw5Fl7Z2MC3voIbtcXOxcbtIkuyzCNc3QsZQMRfEhqsOgzZBYGWYmwwPk9KPGkPYGMWum1wRgchS6HF0uV+31mUSbxdGMcJAho3Jiy5qu3ZvKWWOMD8kwGbmx5nFxmaUpVxz/ESM4C1JL3EIyzd3dIELA5QyFniEgRxxhl0U4XTNyGs6pU92XaysZ3mc2VpdQjzRzObfZOr1mF0sBkcwO6NuYMc7XMiRLHLOGgYOD/V6KLa++Ql4AzYtea/kNtTOXk98rw9e88ie0dTZFGXopp8QGHLPC4u237bJHSLtffs9hv7MER3QvKm8Q5LZ27OhcbtgwuywvTLLNmMch1ftmt+3zSlfhNquk2b692rsfXuev3/BRt3UYxzJWvwP5/Z6oXif9YhgmJbn2+WSDiIiIiIiIiIgoDI4sIyIiIiIiIiKKCHOWpSKOLCMiIiIiIiIiIrJwZFl7N3OmXe7SxS5v2eJczszZYDHj5mVqARnK355zM0U1Z8CuXXZZ5i4y8mXIdAvyGFVWOleXk2OXZV2zRE+RkZE8z9jNHGp5eXbdZboMBzPXiM8cMPI4y32cm6zngbmDIpgiva3k/tq0ydnuZHUKZI4cmWsGAHr0sMs9e9plMz+JPH9kLseg88vIxrF6tV0282TJ3EFeiQbdzvtUzIvjwrwOtfk8M3Muyf3a1vxVlDj85rwSOT+92pbrtV7mwgKcnZfMh2e2LT95rrzyLEVC5qctK3O+J88DWW+zbjLJqdxWUdeIz1l5XQo6D9i4cXZZXgO89rHP/e+WYyqp7gkiYe4f2Ybaml8v0jq48ZvQV+anzc71tTrPKvheMMG4XQvNnzfe8zSkeFunlJU8v/USERERERERERFFWRI9wiYiIiIiIiIiShQazFmWmviwLI40lK/pf2M2TPu88+yyz6HAMgIIcI6qjtfwctdQCI+hzn6nYW7rNnl9j+91Dx1ql93Cg4yptivqstzeajO3egceGhUAGZYpQzLlPsnIi2zArdy+3FSIgEuwcICxRzjbzzcb7OOUN3BwUznt4IOdH8zPt8tduzYVzfZZl1fUVM4YUYRwIm3Djj5JNLaGy/7L/nn5f5wfysgIW65BlmOxLBlayhBBAMGHvjf07N22z7dxEH8i9J2prq3HyGt9aV4h7PI8N2+oXEIYHSGHAfTTjvYl6yBDwU1edfAZehkRn6F7bueM57kk+88IwjqDbkMUA265Y0w+z7O2XoKDvna5pQTxDDP1S4ZEe4WwNtK69d9BlADYsxMREREREREREVn4sIyIiIiIiIiIiMiSWHE2FFZUZ1OUIhiGW1QY/1BLT3IMcnm5XRbhWAAAjxltIuEWEekWSQG4H+fm4YyCDHfwCDOtFbNeeo06lx+LZliKFNHsYgEMIZcf8TvRY7sKhzIaRyTtIZr7q39fl3WfeqrjpVu9zck+5cywnTvb5UiiE5qFeIrm+t5yO8RTRlAO7mk0QvnForJyAlwAyMmxwzIzxKx9GR6nSHtqx0FcP/2GmrvxO8lagkU+x0yk15pYtePAv8fvLI6yk5L3LNEMtxZpHmrqnMclq2qv/cJrG1xCLxO+3+HMlqnJawZpeUMsbwTNNh3N2cAD7Pi9NjW7RJ6L/nimU3GbUt7cnsbXSvn81mTGnGWpiCPLiIiIiIiIiIiILHxYRkREREREREREZGmng/4Tj9+oskBmU0wSkYS4mDJEeGVFoT2jWZ0xI6QccB3BJEhh9r1d982bw6+7pMSog3jPa9sbRKhVmsvMUObnxXyAyMmxy+bIcj9tyFx3rGaAcnxPRpbrcl4hrG1dLl7iEQIZxHFNhBAct+8tyHN/7bbtke6TsjK7LKOpBg8UdSt3hjQ0dD3IflFoh25m7nau2y2ixIw09zmJXMJxO0/lz/dWuIe9yu0O+jz3G0Iu67Nvn3M5GfIb0TnieQFM7Vu8IPvFIPont7barJ7yGi5jsc2wJrdjK49rFEMyzZmzs9xujjzaWSJcP4OWituU0syGLC/I8j3zplzyCtEU/Eyo2iy8OSO49iQ3DXB2KXITCvLcz1nf/aq8+XCbuZcoBbBFExERERERERG1mgb4ID0lMQyTiIiIiIiIiIjIwodlREREREREREREFoZhxpO249t37XK+VVzc+tUlQn6gtvIbKy/TDJSXuy8n89WsWmWXN21yLjdokF0WM6f7zl9m1luG7Mv1uc207PWex6zsvsk8Cm5lAMiCy5vySz3yhUl+8/kkulidV8m0TySvlDnOWdkTOy+cHzt2OF9nZtplr5xg8j2ZosjReRknutvp59Unyf1dW+u+XLJytBOxsZs35zqWk3nBRo2yy159ZzTPc3ks9+xxvlddbZd790TreWyUnz4l0c89r/5F5vpJpv5TblOWzPVjbqzbxdpxPXYef7/7Ia2uxnUdjcycpvyVgZKSeV7JX7hk3i2pb1/39Xn0uW5vyft7816/u0eqND/kdX/dOud7Mg1b4OkN5YZ43aQ0vlYq4AoQxQavfEREREREREREEamPdwUoCpLnT3FERERERERERERRxpFlcVRX5x1C2BZeQ/ETLexC1lUOJzZH8sohxJs322UzVMA5PbK9rX37hv+ecN/VKNJ95fa5AlG3SMNG3EKRvEIlZTuTU0ubI827d3X5UrHuZtvmd2y3WC7Nb3yrT2772+/xk8slUzhPIpDD/s0QhK6iPblFEQGJF0LuXgdn22gephRinhIFGQfsF6vEDpPxmUYcp98wTPmeDL3Mzw9ft5QhwmdKSpxhmLJbdIYCR7lOgmxD2dl2uzHbviMkR1ZWhgeZFXdpEGbflSz9mtc570gN4BH+5LaOeG2317533Qyvmx6XDsFct2w2sktptn/cFvQZ1psI/TSRL+YFWbb9nTvtsrxomr8kmK8t5r1sljh95PkSSfqUSJghnjIM0ytVhO9+Uu7Lb7+1y/362WWzH4vlhZcoChL37omIiIiIiIiIiCjGOLKMiIiIiIiIiKjVNJizLDXxYVkcqTR7tGoRvne+WeEy25FH+Foih1l48Rs2UF5ub5+cUc4rrKWmzv6MDAkbM8a9Phkuw6jD1cmNI1yhSoRgyXBGv+OyvYaQu4XqlHT3tTpzyHZDiR2+6dhy+T1e9ZHvmUOvxXsNffuL7/G3T+UoeLMKbjMtNlu3W3yWaHjxCi/xGzLlFnkb7nW0uIVEd+rkXG7gQH/rS+iQHnGSdCvOc31PyjJn2Fq92i5v2GCXJ0xw/Vq/x1LOCJiT4x72kdD72CdHvyr2cVG2ESIj+hcvbjMQFwQcNeIWXQkYl3T5poxvNvtSGVsjywY/9wSRXuMCZXbo8sDIfWLmDfDK25AkHG3aPGm9OvswiwDutwQZGcZxlvvLK0aeKNmZbVpOYy3bvpxG2cyR4/Z7mEf/K9OhuN16Bs3sBovyxKy3VS5h3QCQV9D6L9u/X6w7TvkOiGIgOZ+uEBERERERERERRQEflhEREREREREREVk43pqIiIiIiIiIqNWYsyxV8WFZHDXU26k5iqo84uNlUiCPHDfJqqhQ5EgpK3NdrrsjaZWdgKwh2xlrL2P25W6UuVgyXHJcBcWR90XmnpFJ2WQSNcBZWbecLQCwfLldlnkHRoywv9/IGdCzp72PZBXM/AaOest299VXdllOrw04czvIsjlPtcwLZuaeceGWTqK62rlcZaVd7tzZLmd59XByfyd4zhbZ9FeutMulpc7lZC6/aJLNU7Yh87D6zcOW0PtfnktmspGnnrLL9eImycxjIvOUuSUsMXKIZGW3fj+49X0pSW6s0ZHJ9in3g5lKJR45/szvdE3v4pXkRnxInlfmYpGk8XLk0Ipm/jKv5JnmNc+NywGM2Tb45LsOZh4hyaXTNXeVvIXyTK2U8h0EtWfOPsCnnBy7bHaedS75vnx2uvJ0i+ap1+zr5b2HuKdvmHh8FL6MKDUxDJOIiIiIiIiIiMjCh2VERERERERERESWdj0OO/2EBTiknx2e9uqdY7Ch7ADO/NUy9C/NRWV1PSaP74Z7rx7e7LMbyg5g8i0fY9UTxzb9bM7cNcjLycDsaQPw4uKtmDP3a3z1XQWW/mkCxgwpbLaO2jpg27ZQuXcvj/gQOYx23LimYoOYlhhIjHCDNluwwC6b8QU9etjlQYOaimlDhzoWyxZTIKdVHQi7vjQjBFLuy0j2o+dnzCmoG3lNryxjKdw+DwADB4YvG+O85SszOtJBDi+X+9+tDAArVthlOSRd1idMnWLCDO+R+9ItPss8LnKfBDzs3C000YzGkVWVoZfxiqSRu7FDB7ssZ2QHWgi9lMsZfVmjhOvTzB2+caNdlv20GS7v1u681h2wRAtNazMRc7x9l7P9rFsddrFm4hFFIkPGTb0HFtovZP9pdgji+iW7XLNr9gq5b5QQbcFs+y4XKbM/SROfS7n2DXiHZVrM4ypvbXx8PPxKiFKJeU8nY5JlB+qVJkWeI26pFADX67j8uLxnCpp5y+u4jvgNb/dL7le5v8x919gRpbWH8TnMWZaK2vXDspysdCx/7BjHzzaUHcDRhxRhwW+PRGV1PUbN+DfOmlCCow4patW6R/TLx8u/GYMf3/95kFUmIiIiIiIiIqIoatcPy1qS0yEdIwd2wpZyj78iuBjWJ7/lhYiIiIiIiIiIKKG064dllTX1GHnFvwEA/Upz8ModRzje37WvBms378cxh4UfVbZ+6/6mzwNA2ffVmD2tv+/vr64G1q8PlYcN6+54ryBPhBF4DfkVUiIMQQ4TXrzY+d5VV9llt2HUANLkeGcZ/uQ2TRSANM/YxAjIsdCNsbbm95qhD3L4tnzPHEIu6ypjjFxCUlrDEY4qw1vld8rZOI3vdSwnZ9M0yePsse/lquVEReaEnLkZNfYL2R7MMenytQybGzPGvT5us2Z6VNbvueg2W6TH5HeOEe5yhtBok5suJ3iVu7HeGIEuosZTgxliIUMc5HnRpYtzObfwZq91RyDVJ7hzTIhcZ/dVb73lvtzIkf7WHc1rpqzPli3O9+S5PWJErl0fObWsR1x2nejSmoXguHyPVwaAmPGaptSnlLjn8eJjH3mFYXru1gQOvfS6f0nJ40yBc04mnOt4r0je27p1jF73gV738S7kx7sVt70NO88D9/Pl63X2e536HNlULo70i936JDP0MtxnlIr0W5OEBsMwU1OK31p7CxeGCQDvrvweh/7oHazZtB83nz8AJUXhO8MB3Ts6Pj9n7pqo1ZWIiIiIiIiIiKKvXT8sc9OYs+zrTRWYcN0HOOvoElTXNODH968EAPzm8sE4dEBBC2shIiIiIiIiIqJkw4dlHgb3ysMtFwzE755dj2dvPdwximxD2QGPTxIRERERERERUTLiw7IWXHVGH9z7wnp8u+0A+pXmtvwByyvvbsO1D36BHXtqcPotSzFyQCf8856xjmVyc+x8KsuWOT9//ETxQsbXeySlSdpcDjIfS48edlnm+gKc+cdkPgEzMYdbXimZW8Dcj/IzshxpXg/5udJSuyzratTBkS9MLueVlCTgJEWubcgr55LbPpKJrQBnEgm5DvP4uWyTXCxt9/fON2XiLK/psWW7kQm/5OeN+jTkiVGk4hiZIjr/RJKhCtjfI6sDAN262eX9+0V1YtiDu6XsePVVu2yeeiNG2GW5Wz1SMCWX6dPt8urVdnnQIOdyo0bZ5Q8/tMte+fCSdqdEj9wl8vSVKSwBZxcZdDrKSMjzRV7OAWd6O9c+xGdbMJuQ7Apl9yvPRTM/VDLdRyRTXX0xj7OPxpub7dwH2dn+8pX6yffGLomSlezv5K8OAFDUU3SA8uIhzzezsbtdq4P4nUxWNtv/75nhqiDvuQCgQwe7vGePXS6OMGnZ1jK73+guL7QJnAMxtlLsmkQA2vnDsorXT232s4kju2LiSLsDyOmQji0vnthsub4luVj1xLGOn825bEhT+ayjS3HW0aXmx4iIiIiIiIiIKIFFNmUeERERERERERFRCmrXI8virUO2HZJhhmZIDROaz9gJpFAIghxDfP75dnnnTudy771nl+VYY3PcsRwO3LNnU7GhZ++mshlekIUahH0zwjgER0ilSyxagxHS5zieHtMw+wmfCITLfsSkSc7l5D4pK7PLcmg54D7EPZLYDvO4yHH28nvT053Lyf169NF22YzjioDbdPduPweAqgw79PKrlfbP1xgT68qIZBnVazZ9eZjaymxbcjvGjbN/LkO6RFQpAOdh8YhAduW17xKi/5Mbde65dtlsT/LAyLZrhiBHUULsrzbKyrC3ISfHbhtjxjiXc9ut8doHsusLIlpFnheVlfbPzXAj2dQ6dvRXn9wEjqZJhTbsyUzNEKNrfU2d/T2yCuYlPIbdVdLwukZJKd92E4y8FzH7xcElomMU94SO+3av45Vg8ciyOn5vZZv9DpQRfntl3wAAL71kl6+7wv7FtUGEj7KtU6pJrDOeiIiIiIiIiCgpaAD18a4ERQHDMImIiIiIiIiIiCwcWRZHCtrXcNV2O6R15kz39+Q0X3IWOgDo29cui3gTOTmjOYq6Z097+HVWhstsmq3giOTMO6ipLIeDm3Xo2jV8KIR5/GPVZhzhBXKGHhHO2ux75YbL4wA4432CjueQ63abdRMAMjPtsttQeiP2JC3PZzfpMkOSV5iGrIIMr6yvd19OhmwHED0aEbm7Z8+2yz4nNg2E236NW38pY1M3b3a8tbfCrmuBjJ31OauWX+3pWlGQlzzbKo+LV5ij35AuqbraLhvNztGVye64ttYum80uZmH+1Ix5/B2T5GVH77jIWyjZTrwmvs7ibw/kh9vs9IDrNS+I0FaviS2lGtj3/nUu51trvjci4sSKZN3yM+Z5Kfdl5872z80Q6yyXW3KvGZZrMsTvBY5bGY7DodTCFk1ERERERERERGTh34aIiIiIiIiIiCLCnGWpiA/LqNUSYvYfMca6YeThzu/d/F3Yj1RUFDWVN2xwvieHaffu2fbpwORMPGvX2mUZMjNkiHsdEiH8RdbBd3iQnPVv6lTne2I8d0NhEdz42nY5xh5wxiNu2mSXt2xxLifjG2UsktQ8PtYuyzgUc4olOT5d7gePbZVfJT9izmopI/wSjaxb0O02krA08zNxOZeMAygjHBxhbgk2qxbFl9+2KtuQ7J7MWUFlWKbsInNyIqkdxZq8xMguJZJ+0Wt2Yxl6Ke+Ngpi5NRLR7LODnmE5Ee7V4sKMz3ObRd6M95Nk3oYIGpvXtV5WwZylu6arPQu57CPlLZxMdxFh9RKC3CcyPNLcHrfwe/MWRf7esnChXZb7y0zHEa90IURBYRgmERERERERERGRhQ/LiIiIiIiIiIiILIwBISIiIiIiIiJqNQ3mLEtNfFhGSa9Zzggz4ZPl8KEHmsolJblhlwGAmjp7wKUZr+83P4VbOqyBA+1ycXFk6040jnrLRBEymQ6c+7Vit/1zM3dCrnjtuk+88orJHbtzp3O5ffvscnq6XXbLtwE4E164JbgAnLk5ZE41kbMs0mOcCHkC49E+5XfK9gN4TwcvBZHfp63c1ufIE1JX43xTbKBbPhEi2X+alz63XDHy3PFKPSRz3HjlvJLYPoMjLynycmOm7IyEPE55efaxlHnSjEu4oz4ZeSnYJzkbf/zqkQzM/WN2JG5khxXFRGDyHtxMmyZv6XbssMsyp7DfzUl15mEeNMgum2l7G7ldU7QOrl5EscQwTCIiIiIiIiIiIgsflhEREREREREREVk4zpjC8pqSOZJ1JMIw/YZsO/TSDE/xEybVGjIS0Ay3bOk7E5Gsq7lPHK8zssJ+BnAOhZdD5IsKA9gPMi5l0iS7PHKkc7kNG+yyDAGQ8bHmGHI5D7aMczKXk3EyLuEFkZ5XydRWoiWWUTGx6rsc6/a5gUH0zRR90WxDbv2xV1ST7K527bLLMvQIcDZD2a1mZzvbnXuYknu4dCq0Va97gqC3T96nyMtQ0GS9J0503z4znC0eohn+2yDuX+IlknvReJxXzeqT7ZLaJK8g+pUJQ953Z2Y631u92i679WMyVBNw9mNmXyglch8n65bl837K3J6RI+1td9uP8ueAfduslL/vTG6Je/wpchxZRkREREREREREZOHDMiIiIiIiIiIiIgvDMKmJ1zBvvyElbutIhNAhr1BCP58Jug6pztzHlZV2ef9+8YZLmGogzOm8xOtIQ2wbpZlhczJmKRHiVVKAPEZy1irAPbw5aZlxH9GMu6JWSbSUApLf67HsrnJy7HK9MdP9pk12uazMLpvNsVMnuyzDnMxQUE4q2Jzfa0+i7Tu3+kRzxmG/645lmKLb5V3+3FxGnhfyXEq0Y+xF7mMzfFFur3zPnBne7G8aycnJZf8EtP1SaM4eK7Nz5GaHn3HbvBxTczJ7iTz+Xbo4l0u0ayZRayVRN01ERERERERElCg0AJenwZTUGIZJRERERERERERk4cMyIiIiIiIiIiIiC8Mw2znXXCzu88InV5IFF9GOoWeMfnMyx1S88k0FOu28mZREJrnwmWQjkXMhJRqvNuN738l+LdH6MZ9thu0kvtqa6zBeZHclc5GtW+dcbvXq8J83T5du3ezyoEF2uUcP53JmDrNkF8n557fNeOW5ikQkdfX6TFaAOcsizTEmu3BZDqKd+d1f2dnhc2muX2+Xy8udn5Hd+9ChdrmkJNi6RZPc35s3O9+T/YbsX3bvdl+f7CtKS+2ymWpW7i8vftuhW1uRfZyZ50xKhGMRL3LbMzLC58Ts3DmWNSKKvgT7bYGIiIiIiIiIKBkwZ1mqSs4/kRIREREREREREUUBR5aRbfFiu7xhg/O9Dh3s8rBhdnnECOdyGVm+vorhZ6lDRh9WVtplcyi2HMIvw02KCgOohM/YjLS6mvDLyTHkZtyAXO6zz9yXk3Oii9iKtEmTmspeYQI8J0LkfpChHWa4iiNMQvZdZoyFGdPRyCsMs2dPf8tRu+B2PiZTSKZsxjIkzAw3kpd02U+bYWV79thl2RWaYZjkLeEiw2VcrpmOQzYc0Ueai8l2I7cpiFBJuT63y765nG8yflDeAxsXnzSx7ZmZ9j2v17GU+0SeL+b5J0M8E/k+wNzf8rW85B58sHO5Xr3sstytfrfVb5/b1hDkZOrb40Xur2Rpt0SRYG9ARERERERERERkSYS/YxERERERERERJSHmLEtFfFjWzjmGy06c6L6gjMGQcXeyDCBNjCn3O4yZ4WfJxTxGeXn28SvI8zeTVm7QM6TJmAev+Au392QMgRle6Ta105o1zuVkzKBLvEnVhJMcr2Wkh4z8k/sUaL/nhdz15mSRRXkipFbG/3rNKjlwYFPRcza2ir3+1hcj7fX4JwxzmsJG2bmxrUcruc1cJkO/ZL8DOC/1shvr29e5nOwKZfcpwzOB+M18nCyyMoINP2urhoGDm8ppqz53vikPuoihq6tzpt+QXaZb+oVIQzLlLaesjhltH1EYplfcsSS+rLDQ3vYJE9w/ImfNlNd983bD7+yY8SCPpXHr79jfchvMsOz8/PDrDrp9e17f3dJxiEbJa27rcH9RKmMYJhERERERERERkYUPy4iIiIiIiIiIiCwMw2zn5FBlOaHcmDHO5QrkC7eQFABby8I/fw1kiDwlpKQdfu02rZZJxovIGAJzGiu3ab/E+ZKb7dxX5eX2+bJ5s/1zMYEmgPiEKnuGMUSxDjIsZeFCu3znncaCH35olzMz7bIZxyLizGrq7G2SIZ6AGUZSgNZK2vOAWtQgwi1lONXODXa5SxfnZxIt/FC2TxkGX1joPM+3bbPL8hwZOtS5PjlrJtt+MMw+Nx771TEj4IhD/X3IY2ZEvxkS/JIhnkGv23HtkPe5Zii+SwypI7zPqFBxcZooR1zDuJKbZIZly3BLeTk2b5Oiye9slg0ZduhsGn8ZocBoMGdZauLIMiIiIiIiIiIiIgsflhEREREREREREVn4sIyIiIiIiIiIiMjCYG1qItM1LFjgfG/o0IPEcna50EjdkF5rlzt3tstMC0BB8pvbxe905FWwcxLlmsk45BzpMnGPOU/8uHF2edcuu3zEEa7fK3MDrl7to6LtgEwVs2+fXTZzjHUYckzYz2/f7nydLdYnc+mYqRdlGhqZY5F9F0nV1XZZtk8zjVGy5CUqyHP2nYMG2X3m/v32z2UuQVO88hsmi0j3gd/rV7y5pPAC4OxnvZZzY+47uU/auj5z/8rchBg6vNXrlrmwUlFWhr3vzFyHySoe+WAplbENpaLU6O2IiIiIiIiIiIgCwIdlRERERERERERElqQJMMnKyoJSqlWf6VzYCVPu2BKlGrXd5q3bMeXEMS0vSL5tXrcXPYt7xbsarjbvXYeevZIkPidAiXBc2uu+TxXXXB7vGrRdIpwHqSjRzu3NW8vQs3tJywsSgPZ7XiRau41UKhy/VDkWFIxkbdOJ3I4/+eSzT+JdB6JIJM3DskMOOQTLli2LdzUCNeWEwzH/1h7xrkZKGX7mNsyfMCve1XA1/J3zMf/WkfGuRswlwnFpr/ueEkcinAepKNHO7eGXrMb8W0fHuxpJo72eF4nWbiOVCscvVY4FBSNZ23Qit2P1r8/iXYUo0wDq410JigKGYRIREREREREREVn4sIyIiIiIiIiIiMjCh2VERERERERERESWpMlZRkRERERERESUWJizLBVxZBkREREREREREZGFI8vaoQ1lBzBqxrs4bEA+AOD0cd1w2xNrMHZYIWrqNI4a0Rn3XDW82ecGXvgvrHv6+KbXE2/4APN+OQo9i3Nw8s8+wqdr9+D6c/rhVxcPitm2tOTzXd/i58vnorK+BjUNdTi311F46Ov56NuxG2oa6pCZlo7Zw87C5B5HAgBynj8HY7sMRk1DHY4qHoZ7Rv1Xs3UO/PuVWHfGo02vJy66BfN+MAs9c7vi5H/dhk93rcf1Q87Ar0ZMi+q2BX0cd+yuwcz/XoX0dIWMdIXHZh+K/t07BlbfWB6LHVV7MHPZn5Gu0pCRlo7Hxl4b2HakiqDbT0FuBk75+VJkZSgcqK7Hb68YhhNGd43Z9pBTLM+3gsxcnPL27chKy8CBumr8duSlOKHksJhtq5toXOsA4OtNFTj48nfw9h/GY8IhRbHZmDCC2j4AuPV/1+DJNzZjUI+OWHTfuJjUPyixaOsAcOuKeXjy239hUH53LDrhzphsmymoY15ZXY8zfvkxKqvrUVevcfulg3Hq2IOiVu9YHKPKumqc8e87UVlfjbqGBtx+yHSc2n1M1LYpGQTZR1x812fY9J9KVFTW48JJPXDjef1jsg2JKFZ9zsUf3IdNB8pRUVeFC/seixuHTm1z3YNsEwBQW9eA4ZctxqUn90qo3/+IgsKHZe3U6MGdHDfEf56/EYsf+AEA4PifLsFXG/dhWJ983+t7/KZDseiTcmzeURV4XSO1t/YALlpyP145+hcYkF8KrTXe2PYZ0lU63p50FwBg64GdOG3xrzEovzuGFPREj5wuWDzptwCA49/6Jb7aswnDOvXy/Z2Pj7sOi8qWY/OBnVHZJlOQx7G0Swcs/P1Y5Odm4LUPt+P2uV/jqV+MCqSe9bohpseiNKcIC4+bg/zMXLy2ZRlu//zpQLYj1QTZfvJyMvDv/x6PjPQ0fLN1P6b95lN8PProqNSbvMW678vLyMa/J92NjLR0fFNRhmnv/Q4fn/KHqG1fawR9rQOAO55ai2MP6xJoPSMV1Pb95Mw+uPyUnrjyvpVRq2s0xLKt/2Twabh8wCRc+dHDUd2mlgRxzDPSFf4y+1D0LclF+Z4aHHXt+1F7WBarY5SRlo6/HDkTffO6obxqD4568+ft/mEZEFwf8fjPDkNWZhrq6hsw7NLFuOL03sjPbX+/Rsayz3l87HXISs9EXUM9hi24GlcMOAn5mblt3oYgr4t/nr8RQ3vntblOyU+DYZipiWGY5FBb14CKyjpo3brPNf7FPZEs2LIUU3ocgQH5pQAApRRO7n64Y5nuuV1wzeDT8dJ37zt+XttQh4raSmi0bkf0zE2MkTSRHMeSouymG5+szDRkpKvA6lNRVx3TY1GS07nphiIrPQMZaelt3IL2JZL2k5amkJEeuqTsPVCHQ/sXRKl21JJY931p1ghOIPSLxKGF/dq4BdEX6bVu6Ve7UFLUAT2Ls6NTsYC0dvtKu2QjLS24Pj9WYtnWS3OKkIbE3UetOeaZGWnoWxK6RmZnpSFNRW+7YnWMMtMy0DevGwAgOz0rqtuUClrbR2Rlhq7vVTUN6H1QDnI7tM/7qlj2OVnpmQCAqvoa9O5YjNz0DgFsgbvWtomKyjq8/tEOnH10aVTrRRRP7e9PAgQA+OTrPZh4wwcAgF9fNgRbyqsw8YYPsGL9PlxyUg8M79v8Lwr1DbrpMwCwfN3emNU3EpsOlKNXbnGLy/XK7YrPdq0HAGyp3ImJi27Bil3f4pJ+x2N4p97Nlq/X9Zi46Jam18t3fRtcpVspGsdxf2UdfvnYGjzx8+DCqGob6uNyLPbXVeGXK57CE+Oux7nLP2rjVqSeoNvPlh2VmPabT/H15v3435viH4bXXsWj79tyYCemvf87fL13K/533HUBbEUwgm7jd85bhyduOgyz/vRl9CvvQyTbl0qi1dYTWdDH/PqHvsBN0wdEo6oA4nOMrv/kL7hp2DkR1TfVBNlezpvzCd5ZsRNXn9EH6QH+QTWZxLo9n/fu3XjnP6tw9aBTkR7QH36DahP3PLceN5zbD1vKEyeqiChofFjWTplDcHt0zcbiB36AjWUHcMGdn6GmtgGPLtiIl97ZhoE9OuKxnx2G9DTVNEwXgOOXiUTUK7crVu3+rsXlNh0oR4+cUEhN41Dpjfv/gwvevxc19bV4dN0/8dKm9zEwvxSPjb0O6Sq9aTg1AMcvj7EW9HGsrWvAtN98ilsuHBjoL1mZaen4bv+OFpcL8ljUNtRh2nu/wy3Dz026X4ZiJej206M4B+89dBQ2lB3AxBuWYPL4bjHdHgqJR9/XI7cL3jvx99hQsR0T3/pFU66WeAuyjf9jyXaMGdwJXTplxXw73ESyfakkWm09kQV5zO948mt0zs/E5af6TzfRWrE+RnesfA6dszri8gGTAtuGZBZke3lxzmgcqKrHMdd/gGnHdU/5h/HhxLo9v3j0zThQV4VjFt2CaX2ODuR+Nog28Z9d1fhs3V78+vIhmLtwU5vrRJSo+LCMHPqU5OLkI4rx2D++w8yz+mHmWYkfTuNmco8jcfeX/4cfDTixabj0m9s+cyxTVrkLf1z7Gp79wWzHz/t0PAgnl47CY+vfwMwhkzFzyOSY1TsIkRzHhgaNi/7fZ5g6oQRTJ5QEWp+8jA5YsPXjmB2LBt2Aiz64D1N7jsPUXuOD25B2IpL2U11Tjw5Zob96FuRmtMtcJoki1n1fdX0tOljhIgWZucjPSLywfFMkbXz5+r1YvGInPrjpI6z8di9Wf1eB5287HH1K2p5DJmipdC330p6v86bWHvOHX/kWazfvx19vGRnVesXyGD28ZgHW7tuKv46/MdiNSEGtaS9aa9TWaWRlpiE7Kw05HdKR007DMGPVnrXWqG2oQ1Z6JrLTs5Bj/Yum1rSJz7/Zix27q3HKTR9hS3kVqmsbcNiAAkz5QXv9IylzlqUq/jZDzVx9Zh8ce8MSXDmld1MOopbMuHcFPli1C9W1DVi2ZjdevfOIKNeyZQWZuXhq/E9xzbJHUCVmrGkMJWqcsWbOIedjaJhEm1cPOg3HLroFVw48xXfOqxkfPYQPyr9CdX0dln2/Fq8e86ugN8u31h7Hl9/dhn98+B9s31WNeW9uxiH9C/DQdSMCqUu6SovpsXh50xL8Y+sybK/ajXkbFuOQwr6BbEd70tr2s+rbfbjxj18iPU2htq4BD1xzcAxqSeHEuu9btWcjbvzkMaSrNNTqOjwwekY0NitwrW3jv7xoEH55UWi2r8vuXo4rTu+dkA/KGrltX4MGJs36sOn1Yz87FAuWbMdz/9qKr76rwKRZH+LPPz0EA3oENxtytESrrTfoBkx6y75+Pzb2WizY8jGe++7f+GrPZkx661f485HXNP2ynCj8HvO7rhiC6x/+AuOHd8ZxNy4BALx13/iohNbF6hjdddgluP7Tv2B81yE47q1fhLbp+DsDC11LRX7by59uHIEZ934OAKiubcC047qjX2ni9n3RFKv2/KcjfoIZSx8CEPqD1LQ+R6NfXrB/yA6nNdeNJf8zAQAwd+EmbN5R1Y4flFEqU7q12W3jZMyYMXrZsmXxrkagppxwOObf2iPe1Ugpw89chi8n/yXe1XA1/J3z8eW8ifGuRswlwnFpr/ueEkcinAepKNHO7eGXvIUvnzwh3tVIGu31vEi0dhupVDh+qXIsKBjJ2qYTuR2r4xZ8orVO2elpleqigdPjXY0APJXSxykSnA2TiIiIiIiIiIjIwjBMIiIiIiIiIqKIMGdZKuLIMiIiIiIiIiIiIgsflhEREREREREREVn4sIyIiIiIiIiIiMjC2TDjqKhzIXbt3hPvahAREVFAsrOzUVVVFe9qEBERJYqUnmVRqSINnBzvagTguZQ+TpFggv842rV7D5LlYSURERG1TCnFazsREZFFKRXvKhBFhGGYREQJau7cuZgwYUJEn3333XcxZMiQgGtEREQUnNZcqxYvXoyePXtGpR5z5szBRRddFNFnn376aZx00kkB14iIiOKND8uIKGX17dsXixYtcvysLQ+gksnRRx+NNWvWxLsaREREYa/HQLDXqssuuwy/+tWvAllXa1x44YV44403Yv69REQUXQzDJCIiIiIiIiKKSH28K0BRwJFlRNSubd26Feeccw6Ki4vRr18/PPjgg03vLV26FOPHj0dhYSFKS0sxc+ZM1NTUAACuuuoqzJ4927GuM888E/fffz/uuecenHPOOY73rr32Wtxwww1h67Bp0yacffbZKC4uRpcuXTBz5kzH+7Nnz0bnzp3Rr18/vP76600/f+KJJzBs2DDk5+ejf//++POf/9z0nhmu0rdvX9x777049NBD0alTJ0ybNo1JyImIKK7Ma9Wnn36KUaNGIT8/H+eddx6mTZvWbLTYfffdh4MOOgilpaV44oknAACPPvoonn76afz+979HXl4epkyZEvb7vvjiC5x44okoKipCt27dcNdddzW9V1NTg0suuQT5+fk4+OCDIScWu/vuuzFgwADk5+dj+PDheOWVV5reM0esK6XwyCOPYNCgQejcuTOuueYa5jEkIkpCfFhGRO1WQ0MDpkyZgsMOOwxbtmzBW2+9hQceeAD//Oc/AQDp6en4wx/+gPLycixZsgRvvfUW/vjHPwIALrjgAjz//PNNN8C7du3CG2+8genTp+Oiiy7CwoULsXv3bgBAXV0dnn/+eVx88cXN6lBfX4/JkyejT58+2LBhA7Zs2YLp06c3vf/RRx9hyJAhKC8vx0033YQf/ehHTd950EEHYcGCBdi7dy+eeOIJ3Hjjjfj0009dt/eFF17AwoUL8e233+Lzzz/H3Llzg9iNREREbVZTU4OzzjoLl112Gb7//nucf/75jodSAFBWVoY9e/Zgy5YtePzxx3HNNddg165duPLKK3HhhRfipptuQkVFBebPn99s/fv27cOkSZNwyimnYOvWrVi3bh1OOOGEpvf//ve/Y/r06di9ezfOOOMMxx+uBgwYgHfffRd79uzB7bffjosuugjbtm1z3ZYFCxbg448/xooVK/DCCy803VcQEVHy4MMyIkppU6dORWFhYdO/n/zkJ03vffzxx9ixYwduu+02ZGVloX///pgxYwaee+45AMDo0aMxbtw4ZGRkoG/fvvjxj3+Md955B0Aoz4pSCu+++y4A4KWXXsL48ePRvXt3lJaW4phjjsGLL74IAFi4cCG6du2K0aNHN6vf0qVLsXXrVtxzzz3o2LEjsrOzHX+h7tOnD2bMmIH09HRceuml2LZtG7Zv3w4AOP300zFgwAAopXDsscfipJNOaqpPONdddx26d++OoqIiTJkyBcuXL2/bziUiIgrIhx9+iLq6Olx33XXIzMzE2WefjSOPPNKxTGZmJm677TZkZmbitNNOQ15enu+cZwsWLEBJSQlmzZqF7Oxs5OfnY+zYsU3vT5gwAaeddhrS09Nx8cUXY8WKFU3vnXfeeejevTvS0tIwbdo0DBo0CEuXLnX9rptvvhmFhYXo3bs3jjvuOF5viYiSEB+WEVFKe/XVV7F79+6mf40jwwBg48aN2Lp1q+Nh2l133dX0MOrrr7/G5MmTUVJSgoKCAvziF79AeXk5gFCYxfTp0/Hss88CAJ555hlceOGFTeu+9NJLMW/ePADAvHnzwo4qA0IhmH369EFGRvgUkiUlJU3l3NxcAEBFRQUA4PXXX8e4ceNQVFSEwsJCvPbaa03187OuxvUQERHF29atW9GjRw8opZp+1qtXL8cyXbp0cVwvW3Mt27RpEwYMGOD6vnmNrKqqQl1dHQDgySefxMiRI5vuFVatWsXrLRFZNEI5y5L9H5n4sIyI2q1evXqhX79+jodp+/btw2uvvQYAuPrqqzF06FCsXbsWe/fuxV133eXIO3L++efjpZdewsaNG/HRRx858pRNnToVn3/+OVatWoUFCxY4HqSZdfjuu++absj9qq6uxjnnnIPZs2dj+/bt2L17N0477TTmRSEioqRUWlqKLVu2OK5jmzZt8v15+ZAtnF69emH9+vWtrtfGjRsxY8YMPPzww9i5cyd2796NESNG8HpLRJTi+LCMiNqtI488EgUFBfjd736HyspK1NfXY9WqVfj4448BhPKbFBQUIC8vD6tXr8af/vQnx+dHjRqF4uJiXHHFFTj55JNRWFjY9F52djbOPfdcXHDBBTjyyCPRu3dv1zqUlpbi5ptvxv79+1FVVYX333+/xbrX1NSguroaxcXFyMjIwOuvv86p64mIKGHV1taiqqqq6Z/5R6Lx48cjPT0dDz/8MOrq6vC3v/3NM9TR1K1bN3zzzTeu70+ePBllZWV44IEHUF1djX379uGjjz5qcb379++HUgrFxcUAQpPrrFq1yne9iIgoOfFhGRG1W+np6Zg/fz6WL1+Ofv36oWvXrrjiiiuwZ88eAMC9996LZ555Bvn5+ZgxYwamTZvWbB3nn38+Fi1ahAsuuKDZe5deeilWrlzpGoIp67Bu3Tr07t0bPXv2xPPPP99i3fPz8/Hggw/ihz/8ITp37oxnnnkGZ5xxRiu2noiIKHZOO+005OTkNP2bM2eO4/2srCy8/PLLePzxx1FYWIh58+Zh8uTJ6NChg6/1/+hHP8KXX36JwsJCTJ06tdn7+fn5ePPNNzF//nyUlJRg0KBBePvtt1tc7/DhwzFr1iyMHz8e3bp1w8qVK3HUUUf5qhMRESUvlSxDiMeMGaPlFM6pQCnFIdxEKey7777D0KFDUVZWhoKCgnhXh4higNd2ouCMHTsWV111FS6//PJ4V4WIIqSU+kRrPSbe9YgWpQo1MDHe1QjA31L6OEUiaR6WKaV2ANgY73oQEbVCLwDpADbEuR5ERETJIA9AFYA6AF0A9AGwEkBtPCtFRG3SR2tdHO9KRAsflqWu8NOvJaBUPsGIKLUopToC2I7QA/5TtNb+MxQTERG1U0qpKwHcgdBDs/UApmit/xHfWhERUXuUNA/LiIiShdZ6P0I3+kREROST1vpRAI/Gux5ERER8WEZEREREREREFJGGeFeAooCzYRIREVGglFJzlVLa+jcxgPVNFOub2+YKEhERERF54MMyIiKiGFNKbRAPf8x/dUqp75VSK5VSTyqlpiqlOBKciIiIiChG+LCMiIgosaQD6AxgBICLAbwC4BOl1MFxrRURERERUTvBv1QTERHF1yMIzfrWKANACULzkB9m/exQAG8ppcZorTfHtnpEREREFN6efwLzu8a7FgEoj3cFEg0flhEREcXX81rrxeHeUEpdAOCvCF2vuwG4A8DlsataZLTWlwG4LM7VICIiIooqrfUp8a4DRQfDMImIiBKU1voZAP8tfnSOUiozXvUhIiIiImoP+LCMiIgosb0iyvkABngtrJQ6Tin1iFLqS6XULqVUtVJqi1JqvlLqv/xMFqCUSldKXaiUelkp9a1Sar9SqkoptVkp9alS6gWl1AylVB+Xz/ueDVMpla2UulEptcSa2GC/UupraxsObamuYj2LxXf29bF847IbfCyrlFJnKqX+qpRaq5Taq5SqVEptVEq9qJQ6VymlfKwnRyn1Y6XUa9a+rFRKHbDWs8ya0OFipVQ3f1tNRERERNHAMEwiIqLE9h/jdVG4hZRSBwGYB+DEMG93t/5NBnCTUmqq1nq1y3p6AFgAYGSYt3tY/0YBOA/AJwDGtLwJ4SmlBgH4B4BBxluDrH//pZT6KYBVkX5HWymlBgJ4DsDoMG/3tv6dC+BDpdTZWuttLus5GKH92tdjPaMRmtTh/6x1EhEREVEc8GEZERFRYjNHGe03F7AecL0H+0FMBYCFAL4EUIXQg5jTAfQCMATA+0qp0VrrDcZ60gC8CvtB2T5rPaut7+1ofccYAMPasE1QSpUAeBuhh28AUIPQw6QVALIAHA3gGAAPAbivLd/VhjoeCuBfALpYP9qJ0P5YC6AOQH8AZwDoCmAcgPes/brbWE8egNcR2v9AKInuQoQmdqiEPWJwLIB+0dsiIiIiIvKDD8uIiIgS2zmiXAVgjXzTesD1LOwHZU8CuE5rvcdYLhPAbwHMQmh02lMIPZCSJsIeKbYMwCla653hKqWU6g/g+NZtisPDsB+UbQBwmtb6K+M7pgB4AcBP2/A9EVFKdQTwIuwHZb8DMEdrXRVmub8AOB+hh2cPArjEWN0PYT8o+weAH2qtD7h876EADg5iG4iIiIgoMsxZRkRElKCUUhcDuFb86HnzYQ1CD9MaH3q9rLW+1HxQBgBa61qt9WwAL1s/mqCUMh+WjRLlu90elFnr+0Zr/ZivDTEopYbDfghYB+AM80GZ9R3zEdr+FvOBRcFPAAy2yvdrrW8Os++htd6PUOjkUutHF4TJmSb36+1uD8qs9X2utX428moTERERUVtxZBkREVF8TVNKybxfGQiFXh4PQCa4Xw3g52E+/xNRvtnH990H4GyrfAaAd8V76aKc42NdkbpIlJ/VWq/0WPZxhLbLc2KDKGjcr5UAfu21oNa6Xin13wCeRmgfng7gf8QisdqvRERERBQAPiwjIiKKr6taeL8eoYTv12mtt8s3lFI5AH5gvfxWa73Wx/ctF2UzOf8KUb5TKfWV1voTH+tsraNE+RXXpQBorbVS6mUAP4tCPcKyQkz7Wi8/1Frv9fGx5aLstV8fVEpN83msiIiIiCgOGIZJRESU2N4BMMt8UGYZilAyfADop5TSLf2Dc4KAYmN9bwL4zCr3AbBMKbVCKXWvUupspVT3gLZpsCgv97H8ipYXCdRhonycz/36hfiMuV+fAbDZKo8CsEYp9aFS6v8ppSYrpbqAiIiIiBIGH5YRERHF13Faa6W1Vghdl0sATALwmvX+8QA+sEY7mdr6kKWjfKG1bgBwGoBF4seHIjQpwP8B2KKU+kopNUcpZT4Qao3OouyaF00ob8N3RSLo/boPoWP6qfUjhdDMl78AMB/ADqXUJ0qpWUqp/DZ+NxERERG1EcMwiYiIEoTWWgPYbv17Syn1IEIJ7nsBeEEp9QOtdY34iLyOrwHQ2oT74SYCKANwolJqPEKzOB6L0AOzxrxbQwHcDuCnSqlLtdaeYZQBiXWCf7lfP0ToQWFrbDJ/oLVeY+Wmm4RQzrhjAAxDaNsUgMOtf7OVUudprd+LpOJERERE1HZ8WEZERJS4ZgGYCOAQAKMB/BTA3eJ9OSqrRmt9b1BfrLVeAmAJACilChDKjXYKgAsQCjPMB/C8UmqU1voL1xWFtwuhEXRAaBRXSznB/Iz00qLs+XBNKZXbwrrkft0R1H61Hoa+af2DFX55NEKj+aYjtE9LAMxXSg3WWu8I4nuJiIiIqHUYhklERJSgtNa1CD0wa3SLEf64FqEJAABguFJKhjcGWY+9WuuFWusbAPQH8JH1ViaAKyJY5deifJjrUq1bpkKU81pYtncL768W5fFKqajcL2mtd2qtX9VaXwlgEIBvrLcKEXooSURERERxwIdlRERECUxr/SaAxpC8AgA3i/d2A1hmvUwHcEkM6lMB4A/iR0MjWM0HonyW14JKKdXSMhY5AcJg16VCTm7h/VUAyqxyVwBTfHx/m1gTODwqfhTJfiUiIiKiAPBhGRERUeL7tShfrZQqFa8fEuXbXCYCCMt6ENVWlRF85ilRPl8pNdxj2csADPSxzk9F+Wy3hZRSneAcrdeMFS75sPjR/UqpIh91aPyOeO1XIiIiIgoAH5YRERElOK31ItijsXIA3CLefla8VwTgHaXUJLd1KaWylVJTlVJvI5RQXr73gFLqXqXUwR6f7wHgV+JH//a/JSFa6y8BNE4MkIlQjq4hYb7rdAD/A2c+Mjd/gx2SOl0pNTXM+koBLEBowoSWPAhgnVXuD+DfSqnD3RZWSuUrpS5SSn0KI8eaUuo5pdRtSql+Hp8fDuA68aNW71ciIiIiCoYK/fGUiIiIYkUptQFAH+vlcVrrxT4+cxKAf1ovqwEM1Fpvtt7rBuBdhPJeNVqJ0AOXbQj9cawLgBEAxsLO6XWE1roxjBNKqbkALrVergewFMC3APYh9CBuKEJJ/jPFMiOt0Ey4rCfs9lkPrj4B0DhKrhrAfACfA8gCMAGhyQ0A4H6EJjcAgL9qrS8z12et8xEAPxY/eh2h2SwB4GAAkwHkArgT9gO/jVrrvi7rGwbgbQDdxI+XIvRw8j9WPYsRmi30SAAdrGWKtdblYj2LEZpVFAC+QCh09juERo91RSgn23Gw/4i5BMDRWuvGh39EREREFEOcDZOIiCgJaK3fUEp9CGAcQg9lfgngauu97UqpIwA8AmAaQrNBHmL9c7MFoVkppRpRHmD9c/MxgHPNB2V+aa23KaWOQ2ik10CEtulc61+jOoQekq2E/bDMyyyEHhgeb70+1fon/QHAbXCOjnOr41dKqdEAngBwovXjI61/btYi9OBPkvv1YOufm4UALuCDMiIiIqL44cgyIiKiGItkZJn1uVMQGi0FALUABmutNxjLHAzgYoRGMvVDaERYHYDvEZqFcilCI9Te0Vo3GJ9NQ+hh3AnW/0MQGlWVC+AAgM0IjQZ7EcDftctNhJ+RZWLZbADXAPghQon5OwDYitCIrj9qrT9TSk20XgMeI8us9aUDuBzARQiN+OqIULL+JQD+pLV+x1quse6uI8uM9Y4DMB3AMQiFcRYi9BBsB0KzZy4B8LrWemmYz2ZanzseoQdtAxHar1kIzeL5HUIzjD6rtf5XS3UhIiIioujiwzIiIiIiIiIiIiILE/wTERERERERERFZ+LCMiIiIiIiIiIjIwodlREREREREREREFj4sIyIiIiIiIiIisvBhGRERERERERERkYUPy4iIiIiIiIiIiCx8WEZERERERERERGThwzIiIiIiIiIiIiILH5YRERERERERERFZ+LCMiIiIiIiIiIjIwodlREREREREREREFj4sIyIiIiIiIiIisvBhGRERERERERERkeX/A/6d5XqoGkDoAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -235,29 +248,29 @@ } ], "source": [ - "contribution_germline = get_test_contribution(preprocessed_data, model)\n", - "plot_map_with_regions(preprocessed_data, contribution_germline, 'Important interactions for $K_D$ (with sign)')" + "contribution_sample = get_test_contribution(preprocessed_data, model)\n", + "plot_map_with_regions(preprocessed_data, contribution_sample, 'Important interactions for $K_D$ (with sign)')" ] }, { "cell_type": "markdown", - "id": "92180ab5", + "id": "45143cac", "metadata": {}, "source": [ - "# Obtaining $\\epsilon$" + "# UMAP" ] }, { "cell_type": "code", "execution_count": 8, - "id": "3fced97b", + "id": "071b0173", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNcAAAQ9CAYAAAB6NKvAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdf5wdVX0//tfZ3Wxuls1mk2zIEkLYQIgBAgQIASzyS1REaEGgYuuP2Fq01ipq1ar4o1qtVq34q9LaWqyKv62ffilSQUGlyI9EIgQTMECAAPlFCMmSbJLdne8fd7PzPu975+yZs2fuj+zr+Xjkwdw7M2fOnTlzZnY47/eYJElARERERERERERE+bXUuwJERERERERERETNig/XiIiIiIiIiIiIAvHhGhERERERERERUSA+XCMiIiIiIiIiIgrEh2tERERERERERESB+HCNiIiIiIiIiIgoEB+uERFR0zLGXGeMScS/2zzWOVutkxhj+oqvLRljPq/2+7J614lovIwxt6l2fZ3HOneL5TcbY7qLrykREREVhQ/XiIiIqHDGmOMA/JX46vtJktxdr/oQ1dl7xfQsAB+tV0WIiIho/PhwjYioBjJGS8X4t77ev43I05cBtI5MDwJ4fx3rQlRXSZLcCuAm8dVbRh5AExERURPiwzUiIiIqlDHmDwG8SHz1nSRJ1tWrPkQN4mNiuhXAJ+pVESIiIhofPlwjIiKiwhhjDOyHCAmAT9WpOkQNI0mSOwD8Snx1oTHm9HrVh4iIiMK11bsCREQT2BoAvxtnGZtjVKRZJUmyHMDyOleD3C4HcLz4/JMkSVbXqzJEDebTsEd1fhTAS+pUFyIiIgrEh2tERPXzvSRJPlLvShAV7G/U52vrUguixnQjgA0A5o58Ps8Yc0KSJL+tY52IiIgoJ4aFEhERUSGMMS8CcIr46kmUHyYQEYAkSYYAfE19fVUdqkJERETjwIdrREREVJS/Up+/NfIwgYhSX1efX22MmVGXmhAREVEQPlwjIiKi6IwxXQD+SH39w3rUhaiRJUnyCIBV4qvJAF5Vn9oQERFRCOZcIyIiGGPmAlgGoA9ACcAWlPMA3Z4kyc5I2ygBOBbAMQCmA5gKYBDArpHtPQrgwSRJtsfYXq0YY9pQDn3sAzALwEEAtqL8sonfJEnyRA3qsATAEgCzUX4b5xYAvwdwZ5Ikg0VvP8PlKLel/TYAuCdGwcaYdgBnAJgHoBfAEICnAayqxcsSxDGfh/Ix7wKwDeX9/pskSR4tePvTAbwQwAIAnQCeA7AJwB1JkjxZwPYa4feeCuBIANMADKN8fn0nSZJdY6w7CeX9dDTKbaUL5XNkG4BnUK7/+sIq7++HKJ/D+70OwFfqUxUiIiLKiw/XiIgOYMaYswHcqr6ev/+PSWPMKwB8AMDpGUUMGGNuBPDBJEmC3mxqjHkxgL8EcCHKIzJcEmPMgwBuA/ADALcmSTLsKPs6AK8XX/0iSZKzQ+qZlzHmZADvBfBSlP/gz1puNYBvA7hmrAcBVda9DcBZ4quvj7whdf8DprcCeDvKDz2q2WGM+Q8AH02SZFuebUdwifp8S5IkyXgKNMYcivLbFC9Fxj43xjwC4BoAX9n/YNEYsx7A4WKxvwt5mchIW34rgHNRfkiTtdw6AP8J4HNJkvTnKP9suM/XEwB8GMBFyLiHM8asAPChJEl+4rtdR33q/XvPQ/kcOxfVoy1+DmB9lXKPAnDZyHp/AGDKGPXYgPI5+rkkSZ72rX9kNwP4mPh8mjHmkDrWh4iIiHJgWCgR0QRkjJlkjPkagBuQ/WANKI88eiWAe40xV+fcxkHGmO8BuAXlhyFjPVgDAANgEYA3j6w3J882a8EY02WM+RbKo7Auh+PB2ojFAD4OYJ0x5tJIdTgSwAoAn0X2gzWg/EDk7QB+N/JgpiaMMZMBnKO+vm2cZb4BwBoAfwb3Pj8CwBcA/NoYc8h4tim2vdAYczPKbfJiOB40jViA8kPAR4wx+iFjaB3eh/IxvwTu/zm6FMCNxph/NsYE3efV+/caYyaP9E83AzgPOe5XRx5IPwTgEyPrOh+sjZgL4N0AHjXG6DyBtbISgB4l/PJ6VISIiIjy48M1IqKJx6A8SuMNOdZpB/AxY8xnvTZQHlX1U5QfPh0wRh7W/BLAn6C8H/M4BMD3jTHvGmcdFgK4A8BxOVabDeA2Y8zhYy4ZxxkAOtR3vwotzBjzVpTfqDg1x2pLAfzSGDMzdLsj2z4LwJ0oP6jJaxaAHxhj3jnOOnwO5YdFeSIO/hLlh695t1Xv39sG4EfI1z9Ji8ex7ckAvjSyv2tqZJTlr9XXL6t1PYiIiCgMw0KJiCaed6I8kmy/ewF8E8B9KOchmo1yfqPXojwKyFrXGPNEkiTXjLGNv0U5J5S0F8CPUQ4DWwdgO8q5sqai/Ef5sQBOAvBilPNINZSRnHE/RfU/3m9GOYz1IZRHnxyCcjjnn8AefWcAfMYY81ySJP8WUI2pAP4HwMEjn7cB+A7K+/RJlHPYzQNwAco5m+R1vhvAvwF4ScB28zpVfd6Jck693EZCl79YZdbTKD8kvm1kugPAfAB/iPKLFFpRHlH1HyHbHdn2mSgf83Y1awOA7wG4C8BTAJ5Hef8eN7Ltc8WyLQA+a4x5LEmSkBc6/CWAq8TnX6B8Hq1GOWfYNJQfJL4B5XyG0tuNMT9MkuR2nw01yO/9MMrtd79fo/yw7T6UcxlORzn32hUo515zeQjl/fUAyjkInwPQj3Jb6UU5x9kfAdCjOq8yxtyTJMn1AfUfj/tQDjPf77Qab5+IiIhCJUnCf/zHf/zHfwX/A3A2ykm05b+P1Gm7wyP/3Yty+KXJWHcygE9XWf95AEc6ttmKcqJzuc5KAId71rkd5QckPwUwZ4xlr1PbuS1wn/R5rPfFKus9DeAljnU6AfxrlfX6ASz02OZtGccuAfDvAKY51l2CcpJ7ve1TatDufqS2eUdgOdNQfrCjf8PXAEx1rHcSyg9W9i8/lPfcQ/kB5lNqvR0ArgTQOsa6Z6H8sFOu+xyAwwLa5v5jvgnAeY512wB8ucr6/+O5rxvl9+7/9yyAPwpoMytRziM55jkt1nlFld/+DIAOz/X1eXpdYHt/bZX9cHBIWfzHf/zHf/zHf/xX238cuUZEVD9/bIwZTwgTAPxlkiRbcq6zP5zxdUmSfCdroSRJ9gB4tzFmCOWk4vt1APgUygnDqzkZQI/4PAjglUmSPOZTuSRJ9gL475F/DcEYswiAzsX0LMoPOx7IWi8pJ3e/0hizV61/EIB/RDmfVa6qjPz3miRJ3uFaMEmSVcaY1wL4XzXrDYj01k4HHbL6+8By3gXgUPXd15Ik+XPXSkmS/MYYcy7K4bOHISwNxhdQHoG43zYAL06SZNVYKyZJ8gtjzB8AuBvlUZlAOW/ZuwG8LWc9DMoPel6YJMnDjm0OjoTPnoByEv/9XuaZGL9Rfi9QfoPwuUmS3Buw7tIkSZI8KyRJ8j8j9V+J8sg4AJiB8stSavnGzgerfHc8yrnviIiIqIEx5xoRUf0cjXJ45nj+HRS47etdD9aUD6AcriT9kTEm62UDh6nP9/s+WGtgb0NljrV3uR6sKe9AORm/dJExRofd+lgF4D0+CyZJ8lNU5nE6M2Cb3owxBpUvWdgQUE4bgDeqr5+A58OaJEk2oPymy9yMMQtQmS/wSp8HTWL762GHcwLAnxtjugOq9GbXgzWxzQTlFwtIrbAftlVowN97deCDNeR9sCbWexTA36uvrwgpaxyerPLd/BrXgYiIiALw4RoR0cSToPzAzG/hJBkC8EH1dRvKOb2qaVWf8yb+byjGmEkoh2tJD6AckuolSZJ9AN6nvm5B+c2Xef3DSHm+/kt9XmSM0S8biOkQVObseiqgnPNgj6QCgH9MkuR53wKSJPlvAL8J2PbbYd8j3Z2E5Q/7Dsqhw/t1oBwKmcfvAOTZ9s9Q+dbJk8ZYp5F+77Oo7Wgx6cfq89KRh7y1shGVeeQOr+H2iYiIKBAfrhERTTy/GhllkseNKOdRk7JGQOnRFycYY5bk3F4jOQmVL1i4LmCEzP+g/Mez9KKcZewB8P9yrvNb9bkVlQ+tYppR5bsdAeXo0VZDKD+8yeubAeucrz4HJbZPkmQY5XxcUt6Rg9/P09ZGHoavVl/r0aRaI/3eHyRJMhCy/QieUJ87UB5hXBMjx04/PK52PhEREVGD4cM1IqL6+bskScw4/60P2O7P8q6QJMkggF+qr5dlLH4P7IcpBsD/GmNeMzIKrNmcXuW7m/MWMrIPf66+zjsyZtVILrw8NlX5blrOMvKoNipud0A5+o2ja5Mk2RpQjtebMvcbCXdeoL5eEbDd/XRIbN6HNXcGbFMf88zj3YC/965xbNtijCkZY15pjPmsMeZmY8wjxpitxpg9xphE/0P5JS/arCrfFUmfK6Gh/0RERFRDfKEBEdHEs2oc610qPs80xszSL1RIkmSvMebzsENJDwbwDQCfM8b8fygn6L49SZLHA+tSS0epz3tQDgsN8RsAfyI+dwCYC2C95/pjJaWvRocIApUj8WKaXOW7ag8txqJzTem8f77uRzkU2jc8uVoI5e3lVHJRzMy5fIxj7jrejfZ71453g8aYLgAfRjlnX9c4i5s+9iJR6YfnpRpvn4iIiAJw5BoR0cQT8sc6UD1vVtYfnh8D8NMq3/eg/LbKbwF4zBizwRjzHWPMXwYm968F/Rs3jYxCC1EtsX+eP95Dwit1Dieg2Ot/tZF1Ogebj271Oe9bcQEAIyGG3nnaYL/ptgh5H9bEOOau491ov3f7eDZmjDkJ5bduvhPjf7AGFPsguhr9cDpk1CcRERHVGEeuERFNPCF/rAPAc1W+q/qHc5Ik+4wxr0B59NrfoHqoIAAcCuBVI/9gjLkbwBcAfGck/1Aj0L8xdP8B1fdhnpxKQW9CrLFdVb6bElBOt/pcbQSerx3wf0iSd6RVXnlDo4s+5o32e/M8CLUYY45FOey9O2ORfpQfcD8NYGDkn34Qean6XOsXsui+str5RERERA2GD9eIiCae0D/Wc/2ROTK668PGmC+j/GbRP0Y5BE2/TVRahnIC+ncbY16dJMmawLrGpH937IcdzfDALI9nqnwXkuNtD+z7lJDRbyHrVlv2R4h3nDZHKieWA+n3XovKB2uPAPgigJuSJHGGnJpyLGy1kZ41MZJ/UT9cq3Y+ERERUYPhwzUiooknNJl9tRCrZ8daKUmSzQA+A+AzI7mQ/gDAGSP/TkH1UU0nAPiVMeb0JEl+H1jfWLapz+N5GUC1dcfch01mI8oPxmR426EB5WyHncx9PCF+edbVxxsA3pYkiX4L7oHigPi9xpizUO5TpBsBXJ4kie/oryJf9OGjF5UhvI/VoyJERESUD3OuERFNPIcErjenyne5HgwlSbIjSZKfJEnygSRJzkI55PJlAP4dlbmFZqI8EqXe9G+cnfMNn1K1h0wH1MO1JEkSVD4QmBtQlH4zaFBOPmPMXOQbuVbtjaSNmg8whgPl9/6h+twP4LU5HqwBxeefG0u1/uHRmteCiIiIcuPDNSKiiWdJpPW26TeF5pUkyZ4kSX6aJMkbAbwAwG/VIucaYxaOZxsR6JFzkwEcE1jWyerzLlR/yUGzu199DjmGq9TnE8Oqknu9B6t8d1bgtpvBgfJ79XG+KUmSaqPyXPT5WWsvqPKdPpeIiIioAfHhGhHRxHNu3hVGRmq9SH19V5zqlCVJ8gTKudk0HepVa3dU+e68vIUYY1oBnKO+vmccbx5tZCvU52NH8lnlcaf63GOM+YOAulycZ+EkSVajHNoq/VHAdpvCAfR7D1afHwko48UxKjIOx6vPj42E1RMREVGD48M1IqKJ50xjzOE51zkflX+8/jJSfUYlSXIfKsPU9HZr7V6UQ8yk5QHlXIDKkNzo+7BB6AdjBwFYkLOM/0VlUv035SnAGDMDwGU5twsAP1Wflxpjcj9QbSIHwu/VL0rJFbptjOkG8CfRahPmBPU56v/AICIiouLw4RoR0cRjAHzMe+HyiCu9/CCA/4xZKUHnx9IPtmoqSZJ9AL6uvj7OGFNtlF1VIyP/PqG+HgbwH+OsXqO6A5XH7cw8BSRJ8ijKD9ik1+QcvfZJhL0I4XOofLD3eWPM1ICymsGB8Ht1iPpJOdf/JOwXaNTUSB9xmvr6pnrUhYiIiPLjwzUioonpNcaYP/Zc9qOozLf2/5IkearawsaYcwJGxu1f9+WofBhS77eFAsAXUfnw4Z+MMUd7rv8ZAIvVd/9v5AHSASdJkr0Afqa+PjugqM+ozwbAj4wxi8Za0RjzLgB/EbBNJEmyCsB/qa+PAfBdY0zQAxhjTJcx5rUh6xbtAPm9v1GfzzLGLPVZ0RizHDlHRRbgFACd6js+XCMiImoSfLhGRDTxJCg/pPiGMebKrIWMMe3GmE8CeL+atRvAex3l/xGAh40x3zfGXGSMKflUyhhzJoDr1NfbAPzcZ/0iJUnyIIAvqK9nArjFGJOZw84Yc5Ax5isA3q5m9QN4T9xaNhz9sOa8vHnXkiT5GSpHDR4M4B5jzDtHQvksxphjjTE/QPpg7lmEvZH1bQCeVt+9HMDdxhidOy+TMWapMeYzAB4H8OGAetRKs//e/9ZVQflB7HFZKxhjJhtjPgLgayNf1TP/oQ7DvTNJEn08iIiIqEHlykdBRERR/bExRo9mCvGpJEnuybH8VwC8BeXwy38ZecD2LQD3ofwQYhaAU1F+ucCRVdZ/f5IkD4+xjVaUc11dBqDfGPMLlEeW3I9y+Nb2kWV6ABwL4EJUJvsHgA+OhGU2gveiXEeZdHwOgJ8ZY/4XwA8BPITyg7NelMMgXzOyjPa2JEnWFVvduvshgH8G0DHyuRfACwH8X85yrkJ5VI98Q2sngM8C+KQx5j6UHwpNAXAEgPlq/b8E8CkA08V3ehRihSRJnjTGXAzgFwDkA+JjAPzcGHMvyiOL7kG5TfcDmAqgG8BRKIclngFAjuLU+QQbRrP/3iRJfm6M+TWA08XXhwFYYYz5DoAbUX7JQYJy7sMXAXgVgHli+b8H8JGaVLjSpepzUWH3REREVAA+XCMiqp+jR/6N1zdR/oPX12dRfuBz8cjnk0f++fhckiTX5NgWUH4Q8oqRf3l8LUmSf865TmGSJNljjHkZgJ+gMkz2ZSP/xiwGwDuTJDlQc62NSpKk3xjzI5QfMO53GXI+XEuSZPvIyKmfo/wgVpoEd9t9b5Ik3zXGfFp9v8tz23ePjKj8IcoPaqQTR/4dMA6A3/sGlF+m0S2+a0f5fxSMlSPxhyjnlvxIERVzMcYcAftlBnsBfLfW9SAiIqJwDAslIpp4hlEesfHNHOvsA/ChJEne6bHszqBapZ5H+aHIn4+znOiSJNmI8oi0b8Fj9JPyFIDLAh5ONrMvq8+vNsZMyltIkiSbUU72/jkAQx6rPA3gkiRJ/nHk8zQ1/7kc274H5VFZ3/LcdpbnAPxoHOvXRDP/3pHw7fMBPJlz1S8BuCJJkuH4tfKiH/x9J0mSbXWpCREREQXhwzUiogkoSZK9SZK8FuXRa3c7Fh1AOXfWiUmSeL1hNEmSDwJYCOBdAP4HwDOe1XoE5TdqLhQPRRpOkiQ7kyR5Dcqhit/H2A9qHkA5b91RSZI0/MOVmJIkuRPlkUT7zQbwh4Fl9Y883D0KwPsA/ArlvF57Uc4D+AjKo4+WA5ifJMmPgXLuQJTDF6XtObe9deSYvwDlB4ZjhUXv9xiAfwdwOYDeJEmaIs9eM//eJEnuQnlk6WfhftA/iHKo6IuSJPnrJEnqkm/NGNMC4M/U15+rR12IiIgonEmSvP/jnYiImoUx5mwAt6qv5ydJsl4tNw/AMpTzJZVQzpW0AcCvkiTZEaEefQAWjJTfjXIergEAOwA8AeC3SZLkHW3SEIwxbSjnqDsc5Xx1HSg/UNwM4DdJkjxex+rVnTHmlSg/9Nrv5iRJXlrD7Z8K+wEfAJycJIl+u2TecueiHCbZg/LLLSaj/DDnOZQf9K1JkqRhc6zl1Yy/d2SU5DKU88bNRPl/Kj8LYB2Au2L0beNljLkQwP8nvvpZkiT65QZERETU4PhwjYjoAOb7cI2oKCNvCF0JO1/XkiRJfluj7b8fwMfFV3sATG2gF2XQBGaM+SXKL1fY7w+SJLmjXvUhIiKiMHyhARERERUmSZLEGPNBADeIr98L4E+K3vbIqMI3qa9X8sEaNQJjzOmwH6zdyAdrRETNZYExiddbkhrc08D/Jklyfr3r0cz4cI2IiIgKlSTJ/xhjfgHgrJGv/tgY85EkSR4qeNMfBTBPfff1grdJ5OuDYnoI5VyCRETURHah8v/iNaOPlNM+0DjwhQZERERUC29FOYk8ALSi/PIKL8aY1xtjZuXZmDHmbwD8rfp6B4Dr85RDVISRkP2Xi6++kiTJffWpDREREY0XH64RERFR4ZIkWY3ymyf3u3TkZQM+/hrAY8aYbxhjLjLG6Ld/AgCMMSVjzCtGRsl9GoBRi7wnSZL+3JUniu9TYnor7FFsRERE1GQYFkpEREQ1kSTJVQCuClx9CoDXjPxLjDHrADyJ8tsqO1AOZzgWQHvG+j9KkuRfArdNFFWSJL4PlomIqIEZcMQSlfHhGhERETUbA+CokX8+/g3AW4qrDhERERFNZHzISkRERI3udpRzBud1H4DLkyT5C74hlIiIiIiKYpIkqXcdvBhjkpNPPjn3eitXrkTIerX02GOP4fDDDx9fIdu22Z9LpdHJ4VLH6HSL43Hqli325+nT0+k9e+x5U6ak064yyd8+x599RmQN2r49e72pKgtRR3roK4/T4GA63SYGseqDPXlydsUmIH2chobSab2rjM72VAc7d+7EQw/ZL2RcvHgxJjfpcR0etj/Ldq2PjatZP/VUOj1pUjq9ebO9XFdX9W0BQLsIPpwxo/r3uh4x2oTrdxbd5vQtQy3b+PDwMHbu3In+/n7s3r0be/bswb59+zA8PIwkSdDa2oq2tja0t7ejs7MTU6dORWdnJ4yjkvL81Vpbqy+3d6/fOuU6Z8+T1ZL7VbZHKpP7UbdB+bmtCeIxdJuT7eKxx+x54701LIK8dQDsvlWfauJWFDt2pNPPPmsvJ4+vvPcE7L7V1+7d9md5ToW2Efm79bUg9n2wbiOyjettyX3eCPccQOU5KulreCvEj9WdJB0w1q9fj61btzZIC43vUGOSN9e7EhF8CFiZJMnSetejmTXBbUhqxYoVudcxxgStV0tvuvJK/Mu1146vkG9/2/589NGjk7sWnTQ6LW90NF2FK65Ip3//e3veccel0x2l9Eo5rAZDtkBdRTP4rudaLnReo9i0JfvuTN4Y/vjH9rwNG9Lp886z5y1Zkk7L4wTAfkrX3Z1Or19vL9fXNzqp96OL7zH0WWcsssw8ZfjWRS6nH0I/80w6vWCBPa+9LW4bzNPGY3DVMcb2fOsvl9s1YC8n+zTX/yDQzfrqq9Pp3t50+ktfspd74QvTafk/FQBg7tx0+k//NJ0Wp0xFPWL88e/6nbLNxSKPjf7DOsbvCW1nMc6hfserDTo7qy+n25Iku1IAGBhIp6dNs+fJfl0+MJ09K04fJsXoW32F9sF6PTlP7kfdBuXnGd3ZZTTKPtjRb5cn29mb1V9n4701HKsuIb9N/w8+eX+oHwwvWpRO33JLOv2d79jLyeN72WX2PHkv6mv1avuz7Kv1OSq59tW27em+0vfSFfdXQkgb1G1EtnG9bdkHu/rj0PvxEPocleSxBoAupE9dhzu74KPoe/ha30/FFutvpRj2l7902bLoZTcajjUhgO2AiIiIiIiIiIgoWFONXDtQJTCj/7fA9X9unf/XQw4lAzC8+PjR6Q3r0u/1iIp7702n9f+NlP/nT8877LB0utQbf9RQyHJFl1/E//WWZc6aZc+T/3dP/t/I5cvt5Vz/h9A5qkT871s5GqjD8b91Xe1TK+L/gIVwnUOu/2OXVX8dsvL88+n0unX2vEWL/EZl+Lat0DYYOoozxoiN0HaQVWfXCIHp0+1tyXPom9/M3pYcOXLaafY8eV66RgzIUW26jfiOJnDtK3me675CcpWhR2nJ312EkNGrRfcbuk6dnX7bk/vONXpPD5SX8/TIYtdIcin2OZRnuZDRLnnK8K2j3I/6fmTr1nS6uzv+KPXY++e22+x5F16YTuuRsyH1cF3LYuyPGat+bn2e2nvu6PTtt9vLyj7m/PPTad0nXnxxOq1HgIeMXFu8OP86gLsNZt2T6fVc9xm+XH2DHvkl+Y4kLrqfddWjq1Ptj4F04ZZBEXOvCgntY0LkuV/LGtntaiPO7XkOD3ftA98+d6x6+XKNLO4q+D6DqNE0xl+/RERERERERERETYgj14iIiIiIiIiIcjLgiCUqYzsgIiIiIiIiIiIKxJFrDcAgyYyP984joBJMyPUWLEifoX7yk9lF6BwPMneGfNMSYOc86elJp9tztKiQfFe+5ekyQnMMxM7XornqkZVzQ+fbcL1Fynfbcr3hkv3ee1l+6JsIffPqxHgzoPPYOl4z16J2XlY5Ov2FPDd0TquNG+U8u7yFC6rvk9DcbEXkbfNtP0XkI8yap98WKulcRjNnptN/+7f2vGuuSadlLkqdN08eX52jTL7VTpYR+gZN17EPffOs602fIed2W1v8t/26yoiRDya0X5Hrtbam38trHmD3yfrN2pLe/7LLueD88b+xrei30T210a7XnO2/G51e13bM6PTC7s3WcsM9B2eW6dunyXuLOb32cr29cf8/cYy8lK51dE4xyXUehva5IdcN5z44+2xr3jHrHkqnr7APzt5S+vZH2S/q/L9/8zfptMxBFyrWuSD3Q2+vY8GMdTTfernaQZtnnshQRb+9uaKMUsfopLyH0tdR3zeyhtbLxTffobw+huYobnEkUh5uax+7suMQ+uZQeS3T1W+U/MtEtcIWT0REREREREREFGjCP1xrbW3FkiVLRv+tX7++Ypnly5dj/vz5o8u88IUvBABcd911aGlpwX333Te67OLFi0fL6Ovrw3HHHYfjjjsOxxxzDK6++mrs2bOnFj+LiIiIiIiIiArWcgD8o/Gb8GGhU6ZMwapVq8Zc7tOf/jQukzFAI+bOnYuPf/zj+O53v1t1vVtvvRU9PT3o7+/HlVdeiSuvvBJf//rXrWUSGK9hs3mGNmeVJ19ZD9ghTxs22PNkSJuKArCGa9uvng4bmh06DD1G+EzRQ5ZjD6PXoZ9yGH3lG7zHH7onwxO2bbd/iwwPPugge71Zs/zKDz32QfSr3cUQe12PzFejq7jcts407EUfG7k5PU+GWMkwM9c55ApHKDykNrDM0PKy6nL//dlldHfbn595Jp3+8Y/teTIs6Ykn0umrrrKXk8ft0EPteb5t3FeecDRfsowZ3f7b9ikvz3ouMUKMfenQbXm+6bAjWZdZs7J/pyzz9NN1+em0Tq/giP7JrIdWdNisnDenV9WjJ41vXGB1rXbcbGjIundI/MCu9IMjvD9G6HyMFBOLFo3/nibXcZcXat1JZsh1HjriXNszrlG33GIvt3p1Ov2a1/hvOkSea2XItdO1zg6VHkL2D7L/cV0LYvTBsVKlyPV896vug2XznDw5nX74YXu5UiktX1+LZ8/Kn2Ym9Frjve/UveI996fhr9On24vKkOOuUm3/NI9xHynX0+G8RV/TiRoNH1KO04UXXogHHngADz74oHO5zs5OXHvttfjxj3+Mbdu21ah2RERERERERERUpAn/cG337t2j4Z6XXHJJ5nLvfve7R5f70z/909HvW1pa8J73vAef+MQnxtxWV1cX5s+fj9+7Mh4TERERERERUVOod0gnw0IbA8NCxxkWCgB/8id/go9//ON49NFHxywnSZK8VSQiIiIiIiIiogY14R+uVfOGN7wB9957L+bMmYMbb7xxzOXb2trwrne9C5/61Kecy+3cuRPr16/HwoULY1XViwz7nz3bnrd4cTp98cX2PJkPRuZfA3SOqHQ6T2y9zD3R2em9mrcYcf4x8li58hmE5IPZssX+PHvoqdHpO9bPsebJ49sVYR/rdC2ybU2Zkr1ePV/FHdwO5I9buzadXrPGLv+UU0anSwvsc1sWofMr9dhpiTI1Xb4Kndix52Cv1XzzyR13nL2e3K86r53M43Pyyfa8SZOqr6fzhejPIWQ+S5lfBgCO7xMJaET+PiC7fwjNTRVDnhyYsXPGxehH8lxrfPdrZ2e63JIl9jxXTkzdXn22VbHs4N70Q2BjDT1Oe5HmrOzfnn7f3T3+XKjVPmfK2pHIbj95ck652mBWHWudM8tZnsr9VOS2fZ16qv3Zzt0btj1X/q/Y94OhbbWrtNcxN/3htb7u1zIPse6D5em7bl06rf/ukPez8voNhJ/bMWQeK9WQT52/OXMeOrtHJ3f0t1uz5P7JymEYi5W/8j/+w565aVM6/ZGPRN820YGCD9eq+A/doXhYvnw5/vEf/xE7d+6sOr+/vx9vectbcPHFF2O6zmRJRERERERERERNieG1nmTOtSVLlmDvXvv/PrW3t+Ntb3sbNm/ebH1/zjnnYPHixVi2bBnmzZuHf/mXf6lltYmIiIiIiIioAAb1z5fGnGuNwTRLDjBjTBJSV2NMw+c5u/LKN+Haa8sP3ULDffTwYBkFIIcU//jH9npyZPLSpfY8OXRbj2CWQ/hDQzpleJQuIyvUNEaYpha6j4sOM8icp99jLj7v7bHDQtvb/MJZvMPKVFyTDAtyRSTV8xiGDp3P3OcyRFR/lu9TB4AzzhidfHxrhzVLhoXKc1RH8Dginrw1Q2ipq33uHUzn6XYmw6SnTs0uv6Nk74NdA2mZrn0csu8qfsugIxTIceLIctavT7/XzUzWv2JbskGpjjZGSFiM87noPtj3d/r+tlwheZ6KTmMQui1Zpr70yHDnvr50Wp9Pcj3d3K2267lfG+paL29kdN6EAHrbWfdJeSKAi2ivIduS7rjT3q68tdCh1V2dcc9zLXY/VU+h4c0uMUJGfcuQfYXsXwC7jehTTZ4bM7rD2ns9j6mrn5W/LSREXS/r/beGzmEh/oAcXv5nmdvKsmzZUqxYscLkXrFJHGZMclW9KxHB3wArkyRZOvaSlIUPKYmIiIiIiIiIiALx4RoREREREREREVEgvtCAiIiIiIiIiCgARywRwIdrDcEgyYyVD80BIPNxuHJZZOV90mVoskyrjionl6uQ7u78uQ8qvne9v70J+OahsHIi6AR14nO7by6FMeZlUvu43XXs5WeRRKJFNbThzq6qdcpTL9dyofneMve5fB88YCf/kImxAGsfzJubXb7cVfr180f0+e0DmUMMqMwxFpt3PiqZk061keHFx49Oy9xpADBrVvU8azoNyOzpaY6x4Tb7FfbSjn67vqG5IoN45lXT+05+Xr06XU7vg5MWizxrOlGNZx4o365U5r8ba1nfPibGeV5Lrn4qNJ9ZaC6g2Dmz9PF15UtbtMivTHmu6ctEiCKuEyHLAQjKs5an/hHSuDllbds3R2secr0XLlW5IUW/tavtiKAyQ+sY8nuKyMEbQ2g9YuRjC11Hbk/2Fbp/kX1Hnn4kxvGVYuR8dAm+N3FcxIP+1tCdzxVXBFaMaGLhQ1YiIiIiIiIiIqJAfLhGREREREREREQUqPni6CawPMPQs0J1+vrCtq231T4gYkVkmF+O0EzXMOWsYcsDA/bnjpJfuJWLDLFqa4sfOuY7vNw1VN63vDxihDFYQ8j1sZefdcxxDWWFXwLu5mrtH9nwdNxmb2/2vNtuS6fPOMOe1z2jaj1Cz1H9WzZtSX/3rFnp96Hhwb7tTi83uOCYzGVllWUddV1kmRVhUlu3p+vodiaOR+eChXb5A7vSDxHap2+ohebqB+W88893bFwe/Llzs+d5FqHJeug+MrYiwnF893GMcLfQc8h3vaLDz3Q7cIUlhtSl3dUcdUizvACL/jLPPvatY+xjE9qWWvp32F+IfRCjfVZsT/62229Pv1+61C6j1DHubVnLqRD+FnHhc/XGvuWHhmf7Ci3fez0d+y9PTMeNaT3DGX3LcKU/cG23vW1YTNvLynB2nSLD9/Ieeo9Tr5Dgiu26LuLr1qXrLVhgzfL+W0P0Ab5/r1St5wHKgCOWqIztgIiIiIiIiIiIKBAfrhEREREREREREQViWGgDSGC8hiPnedtaSKiCFSYF2CFuOtzt0UfT6UmT0mn9eh8x/Hhvmx1WIEcw5xlinCXPUG25rBwyLkZOA7BfDBk6tFmHskodAdFooSExRQ9ljxE6EKNO+m13cv+7w0Kz69/ZKYbD67A7Gb6hY6hkaI1qCC2rfpN+kMP0dciHXE/HN4gf1OZ4U6avPG9B9D3eMpQjF/mGWddyMvTWVYbuw8SxiRF2FyMkzMW1H63tBbaD0DcphobS+Iodvp5nXpZYb++U/VH7oOM8D6xLiOBwt0Hx9kf5ilHA+Ra7vZ1puGe7fH25o15FvAmy6NAl7/oH5qKIEfLXIm94apzKwffN5rG31bD0/neE/G3b7kibkCHK2+NzsMrU/YO8Nos+YOPADGux7u7q9+2AvXt8s9PU8i3MsbYXmoJAhl37/p2Qpx3Uel8SNbIJ8XDtjNNPrncVnCZPnlLvKhARERERERFRTnyMSMAEebh2++eXjr1QHV35+cfqXQUiIiIiIiIiIgrAh6xERERERERERESBJsTItYnO+xXJOomBzC2l80zJ3ByuZAfic4zGpqsYmn8gq0yRlmDMMnzzEYSmLsnKgxD6yusiXsPeiHkWdBMMTGGT/dvUBoZ7Dk7X0QlP5LK6IWSdQ5qrATnWmzUrnS4i917ROca8D9yFF6bTOqmepPeV2K+NkrfKdzldvu956JvLKE8bKbod1DIXUIz8cXnyRVlNsi37PA89vr71iNEHWD/GN/ETgHa5/1Ve1pBjU3TuNNf2Yuf20+v5/rbg89Bx3KLkdCv42ITmbfO9PsbIGxl8P+6Q43Tz23YOvvmdrfL1tV3eeIt+pNex3SL6uhh9TGg7C9lenhy5cr9a+TEBYO3adHrx8V7l51HrPpmo3vhwjYiIiIiIiIgogKl3BaghMCyUiIiIiIiIiIgoEEeuNQCDZHTYbOgw3NCh7M6hyW3t2fXICNkKDSdyKWIYd9Z6+mfFGM5c9DB0X6Hbaoah4DFCo0K2VcH3HfB5l/UQ43wqettayPGo2JYjfCY0TMi5PY9t5Skj9nGLEZrWDOd8EVxtJDR0LMa1OEZYbtHtOIaiz9EixAjbDA35zhJ6DSwixDhGaG/IPiiiPw4912oZ2h4q9NhnLZvrXBZ/a/iUPZai79u1kONbRDvwvp9S+7tFpCip5d8aRAcqngFERERERERERESBOHKNiIiIiIiIiCgnA6C13pWghsCRa0RERERERERERIE4cq0BJDCZMeq1zH/iypEQI4Y+Tx6KWuYhcpUXe/+H7sd65maLkffPtZyv0Dwpvnm3YuRqK+IV8M2Wxyo051Ss7dVL0bn+QvvEovP9+GqU/FlF5KOq52/zrVc987HFPkcbJY9pqND24+J7bHz3XWhOsTz1irFO7OtLEfcnscsv4n6hlvfcRbT/ELHudbPmFfL3xOBguo4jb2/ob5Plh+YFbpTjS1QvbPFERERERERERESBOHKNiIiIiIiIiCgARywRwIdrDafWr+n2HabsG+pVRGhIaFhTjPCQRnktdWjoQ+jxDVHPsLUiwkF8Q2lilO+7XrOFiAL1DW2PIUZYsW9fGkOjlt8oYXgxQhuLbtNFpw9wKSKkJ/Y+qXWYUew+uOjQ+dD7pBj9VBEpOHzFODah9arldbpR7wNipM8oYj0p9n2dq5xCrsWBoZq+htvao5fZqO2VqCh8yEpERERERERERBSID9eIiIiIiIiIiIgCMSyUiIiIiIiIiCgnA45YojI+XGtwVh6Hwb32TM/Y+9CcaK7cBL55OlwaMlePfA01ED2/QYx8HnmWq2eugxg573zb7sBAOl0q+ZfvEjsXXH+/Pa+zc+JdhitPL8c+XrdOLphO9/Zai/UPdoxOl0r2PnWdvr55UlzzMnNPOvrqGPmQXHLt4wBF5EysJVf9Y/RZoWqZHzPPthtF0fcZUj2voxXbkie0o0NzteOQvLJ5zvMY+9hXrfufWv42l23b0zK3brXndXam03N6G78P1vdC8rO8f+vujn8eereXHH8LhBzvPOvIqsh9NaM7u69oyVHfkDx0jfS3BlGjafw7KiIiIiIiIiIiogbFh2tERERERERERESBGBY6YuMzu3DVP92Be9ZsweRJreg7ZCqueefpOOE1P8Siw7sxsHcIUzsm4a8uOxavf8VCAMB1NzyId3/xLhw66yAM7B3Emy45Gu949fEAgGt/9Dt8+QcPoLWlBZ1T2vCv7zsTxxwxveq2DRK/IbU5QhTlEHK5mg5Fiz2UV4+klkOY9+2z502fXr2OLnmGcfsOi7aGiRf9mut6Ps8ODHmVdXYVESN0MpQMJQgNvY1BbytrOD8AbNiQTnd3p9MyxEOXoc9fGQ7b1dmYw/Ll8ZAhitreQXte+9y51RdUcb+lweqLAfb+qVYzH7KNe3cPasHQcygz7DTHuSa3167qL/e5rIeuo/ysw66DKhLYz8YIRXGdo77V8g0PHmte1nKu7bVs3WzPlJ1HQJ+eR2jWhHpe9+S2t29Pv68IqfIsQx8nu/3ETSUAANv720en5bUhJOR9PELTN2TNKyJFRmgKFJeQ8zfGtl3nmsqMENSdxuiLKtaT6RD0xVdcONra2q1Zra3ptPw7Qd8zybQPoe3ft68OvUaF7ju5u+S9IQBMm5ZOT6/+Z2RZpOtqFuteAnuzFyz476hGxhFLBPDhGgAgSRJc8p6f4vWvWIjvfPw8AMCqh7Zi0zO7ceShXbj3G5cCAB55cgde+d6bMTyc4A0XvQAA8KrzjsCX3n0GnnluAC+4/Lu47NwjcNjsTvzJSxfgza88BgDw379cj3d+/te46fMX1OcHEhEREREREREFMsa0AHg7gDcB6AOwBcD3AHwoSZLnPcu4AMDVAE4AsAfAzwC8J0mSR9VyhwB4K4CTR/71APh6kiTLx1t2UfiQFcCtK5/CpLaW0YdhALBkYQ8Om20PITni0C7801Wn4QvfW11RxsxpJSyYOw1Pb90FAOjqTP/PzPO7B2GMKaj2RERERERERESF+hyAfwLwOwB/DeD7AN4G4P8befDmZIx5JYAbAEwB8G4AnwZwJoD/M8bMUYu/AMD7ARwD4J7IZReCI9cArH74WZy8qMdr2ZNe0IO1j22v+P7xjf0Y2DuE4xfMGP3uy99/AP/07fuwd98wfv7lC73Kj/UGJf3WPC8bN9qf5dv61q+3t7dqVfpBjBVunz3bWm7G6aePTg+ffW7mph0jyC2hYUEyTBbIDq8o4i1kMhRFh/y1t8V9+5GTjjOQxDB9/btk6FiesCDftzHGeBOeqwxZZ11/V4hb5vF17EcdVrx+fVoXHcoh28UNN6TT+ly47bZ0WkdKLlqUTr/lzZnVCg4Bic0VCrR2rb3s7benbwG9UHSfeh9YYZUbn7Lmteu4EkmG0/Wk/b8OT3W18djhbr7lVYTQin6kfd3v7IXF79zVbd9XZIVEyrYJ2GE7rnPGN8wmtD3GeFOgPr/ssGv/umTVwzXPNxROH1/rDXG6QUYItw0NZZKb3ro1XU7dLljLnXGGfz1C3kqu39Q7LK5t8tg735jnejO76v/bHNdOX9bvVH1Y/2B6zspquNIA5LlPytqXFevIRqhOFN9j45on24zsmgE7hLfWb04P2V6ePkzem8qQyLvusteTze600+x5+t5ivELPL9fNllxuq/pTQ779VP5pIf8EAexrz5Il9jzZrxTxllFXeVn7y9kG1b1Jhzi5r7uuw5q3fHk6PXtW/Hacdf7q+wDZ/7Tr+wDn3xd81HAgMcYci/IDtR8lSXKp+P5RAF8AcAWA6x3rTwLwRQBPAHhRkiT9I9//BMBKAB8BcKVYZSWAg5Mk2WKM6UF5lFyssgvBkWs5JYn9+bu3PIJjr/g+jnjlt/H2Vy1GaXLaifzV5cfi4R+9Gp9666n4+//4TY1rSkRERERERERFajkA/nl4NQAD4Br1/VcB7ALwmjHWPwvAHAD/tv/hFwAkSbIKwG0AXjXykGz/9zuTJMl8oDaesovCh2sAjj1iOlau3Tr2ggDufWgrju7rHv38qvOOwAPfuRy/+pc/xLu+cCc2PrOrYp0rXnIkfvyL9ZFqS0RERERERERUM6cAGAZwt/wySZIBAKtG5o+1PgD8usq8OwF0AVg4jroVVbY3PlwDcO7SOdizbwhf/fGa0e/u+d1mPLZxp7Xc+qd24m++cCf++vLFFWWcftxsvPb8o/D575Tzsf3+8edG5/3P/z2Oow6bVrEOEREREREREVGd9RhjVoh/OoxyDoCtSZLsqbLukyPrt1eZJ9ffv2y19QHg0HxVrknZ3hgIDcAYg//61Etx1ed+jU/+5yqU2tvQd0gnrnnHC/Hwkztw4mt/iIG9Q5jaMQl/ffni0TeFau993Qk46XU/wvuXL8GXvv8AbrnnSUxqa8H0qe34+ofP9qpLntwYrmU7StVj6J05TXpU3jmZ4EDPk2Rg/pFH2vNEUiidS0SWWSq5zkNPjrh+nUvHytMU8Kr1PGS+EM03n4d3Dg+dUEhuq9SROc8qQya9ANAukqG0T55sr3jccWn5c+fZZfbvSOd1do1O69eMzxM5tHxzWWg7+rPzRMh8JKGpH6x6tGW3VV1/mR9MnpPlelXPZXfnnXaZsu3qXDQXX5xZFe86+go9N1z9j2yu+tjI3y27n4ptyZ2n+ym9wzzoPIje/adnPxIjz2Jbm12+zNHVrveB2JEdq+6w5z37bDotzuWSPpcDc3LVKyedS648i7JtOZJntohC8+yPrDajzwW7GXcjNledZWqg22+3561YkU7LOp5/vr3cNMf/W8yTnyrre1n/YdU/y2XndMvro6MhqANgnecR8gc5+2B1/s7NuFfxTlSrBJ9D+iYqg863J3+OLKIit1x/mlvuoIOyyy+6Lwq9Bwm9rso8a5NEsJLe3fLw6suavNfyPU6h9PllkZVU7dH3Mi33h27iO8V4B9n3AHZ+trPPtuctWpQeQ30fJoUe66xjr9OQDQyk5XdtVdFS11wzOvmJq6+2Zu3qPLhqHfO0Odf9Sdbvdt0+DUO1gwi5J6lhbE2SZKljfgfKb+CsZkAsszdjmf1/jFYrY0Atk1eRZXvjw7URc2YdhO994ryK73f/8s8z11l+4Quw/ML0QducWQdh409eCwD4/LteGL+SRERERERERNQQDCZMOOAuAAdnzCuJZVzrA8DkKvN81ncpsmxvE6QdEBERERERERFRgKdQDv2s9gDrUJRHvmWNWtu//v5lq60PVA/r9K1bUWV748i1A1TQa8F1KET3jHQ5PdRcxrvJsc86NEF+1mOkxfZCh+L7ckZyiLiXFlV/5xB4X67YN8dQ6sx9oMfKyzhLfZwcIQKZ7cIVXjI0lDlri3qXy//8TxoKunZt+v0VV9jLzesV7ULtH9/h5b4RzOrt59Zn/Tr7QRFq5xlx46yXPp7ypy5YUP17XS+5HADM6Y07/L6I0E9XmXL/9PWNXb+qxA6r2Jbn+esb0ukSY9/5rqe/l221refg7GV1I5cni5jWXXW7bJMV/XjcfZwn/UHh5MnoGWIc41jHvv6NVaa8pGzcmD1PWyzSz8qmpfvLWbPSaVf/oFMGzM1IGaB/i2ySur6dnaJvCu3IHbLqFdxu1QVAHg+ZSsAVnhrjnAntz47oVYMCsu4BVVjc8aIrGp41ByGKPodi0PWaPr36crq7kbdy+tAPl9J7Ld/UBaGcIdme4eU6IlLatCmd1rev+v5HkpcyfS+RddrnuVfx3Xeu8P7du9PpNVuOsOadetVV6Qe1oqx/jPuw4NDngfTcfmSjHVknqzx3bgNdw6kI9wB4KYBlAH61/0tjTAnAEgC/9FgfAE4HcIuadxqAHQAeGkfdiirbW2NefYiIiIiIiIiIqBF8F0AC4Cr1/V+gnM/sW/u/MMYcYoxZZIyRT2N/AeBpAG80xnSKZU8AcDaA7ydJIrIv5lJk2d44co2IiIiIiIiIKMBEGLGUJMn9xpgvA3irMeZHAG4EcDSAt6H8cOt6sfg/AHg9gHMA3Day/j5jzNtRfkj3K2PMVwF0AXgHgC0APqy3aYzZ/5aP/Q/pjhff/TJJkl+Gll0EPlwjIiIiIiIiIiKXqwCsB3AlgFcA2ArgiwA+lCTJmHHASZJ83xizG8DVAD6D8ts9fwbgvUmSVMuJ9jH1+cSRfwDwdxChqAFlR8eHaw0ggRmNeY8Vmx7yam5nHhydV6ezeq4wZ+y+KsP3t4bkOshF5gFR+YRaHPmcvI+VzlGUUX7FvKzydVIZmZDBkXPNlWdBVrFdJy1bsgRVFwQwPHfe6PRvVXS7zMEmc2WctFjluZQJOHROKE9yN+q8ajqPj7R9e/VpwM7h4Vst37xGgP3qeHkITzjBXm6PeKF0Rc4Rd7Kh7IpmyNP/ZOXwCM2n1aHyoixalC4r21KplJ1vyZlb0aGW+XmK2JYrtaWVL00msQIy89Xp3Wgd68C8iLXO5xeynFNo44os9Le4zlFXajnZf+ouZvXqdFq2Qfk9AEyblk5fdJG9bd98mXLjLbLzBNC2+Piq5Wl7ZW5Cx+HU7ayWOYP0scncJzpHruv82r4tnVbXhV2D6X2Za9+52o+1f26/3V5R/oBFi9JpfQBEcrmWwPsAX3nyIhadvy6rHerjPlmkDne13Rh9XWjeSFcZMveh7h9uEfeOsg3qvkjeKupLmbx/0/d8nukyo7B+t7oYz54kbk77ZljzdkxJc7B1dcbvb0LaccU64ua6v9/OuSZPbeZYO/AlSTIE4LMj/1zLLQewPGPeDQBu8NyeyVk/77KLMBFGMBIRERERERERERWiMf5XLBERERERERFREzEj/4j4cK3B+b5Gu2Ioe0ZImGtItyN6sYIclr6jPy1ThxW0t4UND44yhFlwDmV3veM8BhlL44q78OUI/XTV3zs0QccjyDH1Ki6oZeNTo9OLF8+x5i1enE63tooZOv7S0fBCXiOvd7H8OSLyBIAdZuD62THon+nbFI4+Op1uhwqplQdOFRiy72K8ij4Wub3p06uHiALAXXel0zKCGbCbq97/MsTW97QvOnw0xj52hgzp8H7PesjfnWcfNGJ4SMvAruyZjnPIWaZvyFwBYpQvz5N96j1arvsCeQ7JvnTFCnu55cvTad0+XaHh1r6Ux6avL7NOrnuOtrbxn7+u4xujHejlZJ29U3Bo8pqr7h9Cbnmcv0Xfn8hj5Ypfd6QxCAkNzxNCHlK+rr783NFmX6dlCboPztqXvb1h/WysdhfCVQ95Xi5ZYs+T91pr1qTTDz9sly/bqg5RzypP870vipEio+LkEm18lpol20/RocnBYe9ixx7fqa6jbem5Xcs0G0SNiGcAERERERERERFRII5cIyIiIiIiIiIK0Dr2IjQBcOQaERERERERERFRII5cawAGyWjMu29eCMAdJ79roHoeNFc+CZ3DYPfudPq55+x5Mj+Vb8qyRsrnZPHMUxZcxwg53ax6FJAXzs4fYh+nNpEjpKXT3vZwZ9fodI/KQSKrab+evDuzHjFyNejdI/O96XxCclm9Xoz0eK56ZaVL0/lC7NeyO459hHaRJ09NcP6fADJfi8y/Bth5n3Tanjx5JH0E53WMUGbsnDi6/KK52kuUfDC+XMl6Ak/6eh6nkOuq/r6zMy3DkSaoIi9lf3/15Vxpt1y8f6e47uQpw/dcC815FJrXy8X3GDrPZXng1AHOumoE55zSBzsrl9rcufZnz3Mvxn1knuNr37ukF5SBAUf+ylL2tdi3ju0DO+wvrOPmuJlQstpdaD8V43pl39MAixen68nmMmtWdj02bLA/y/um3l57Xoy8czGula6cp775qWP3I7mIdub6LfoSG/temqjRceQaERERERERERFRII5cIyIiIiIiIiLKyYAjlqiMD9caQAIzOtQ31lBt+fp2GRo1OGif+nK47saNdpnPPptOP/OMPU+GgyxenF0PX0W8errI8nLxHROtY9gyhvq79lWe/SiPody0DktsGbRfK2/NE3VsV9XNCrPRYa2xQ9P0bps+PXtZGXagQ55i081ARs/EDl8MFaNtucKVYpyHOnxiwYLskLatW9NpHaqwdm06LY+9bv/yuMXop/LsH+vcKyAc3FdoCHDIsS88VNUVnx1BLUNtAf9wW1+6n5LRezrCb/v2dHrmzHRa3hPo9fTuruX+it0Xad79peNaH9rHOM/RrNBMXUa/CEX0XKeCvpBm/LYW3dF6apQUIl0l+75o16AjTFQeb1d/I2/C9XKOG5TY/WyMfZynfPm5tzf7ei5340EHZW87RpceJQy0gPByl3qeG3LbpRIfMdHExjOAiIiIiIiIiIgoEB+uERERERERERERBWJYaIPzHu69fr31sV0MuR/unjE6LcOkADsEat06e55cVkcxLFmSThcRreT7u2OHeRQdouIcJu7YkbFDf/TmnMewgLdQxuYqX4ZI67dPTZqUTuuwaBkOFfq2IxmKqN9uNW1a9XX0m3kXLqi+nKbbgQz77QqM8PEV/JY2RxhSVrvW25L91BNP2Mtu2pRO65fYyT5N9n06+kYee/2CO9m2Cgn58AwN94068hUjNE2X4/u7iw4rdoW7FR2OE6PvzrN/subl2a5s/3rXyf7N9WY/KdcxFA3b9XY6398W462BUdpnjpPUtx8MKQMAWrZvSz/8+Mfp9GWX2WU43tBq8fxtoWGDdeVoj/IFoRX9p2ufyJNInmA5bjpCU4PEELt97tyZfi/vYQD3m0Rjp/UIfXO6z/fjrct46jRWOTGu9eOpS7PjiCUCJsjDtZP/7If1roJTaerB9a4CEREREREREREFmBAP15b+w6X1roLT+m8+Vu8qEBERERERERFRAI5gJCIiIiIiIiIiCjQhRq6FWH3DajxwwwNoaW3B4csOx7LXL8Mjtz+Cld9eiWc3PItLPnMJZh1VDvrf/NBm/OrLvwIAJEmCk199MuafPj9KPaxYdZ0wTSYZWL3anidyQ7ScccbodKlkh6DKVBDbt9tF9Pam0zpflG86iKJz2MTOtRJrvSLLi5WTKOsY+ua4y7O90DoWnatB5vDYt8+eJ3N/yPNE52Z7+ul0es8ee548h3SOtalTq9dpyhT7c+zjm0fsHIQ6d2N7QCX3Dtp1am1Np4eG7GUXiHx18lgAwIoV1efpflDSOddChJ5frnYwMJDO6+r0z4USW2hetdDyQ8rJsz9a1j00Ov27wYWj04sWhZc5Xr5txCU0X06pZC930EHptMyPpM9zmds1l4xcVXlyovmKkbfKtR+j5w50yNPHWBeK2bPT6SKS6XrK08Zj5NHzvncM3CfymqWLaMm4BsY4z/WyoeeNq4zYuUblfZHMiQvY+073MY5Umt65J+W93Z132mXI+8PLL8/eVi3lyXHq235i3KvX8nrYaCbuLyeJD9eqGNo3hJXfXolXXfsqtHe04/o/vx4nXHoCph8+HS9530vwq3/+lbX8jMNn4JJ/ugQtrS3YtW0XfvD2H+DwZYejpZWnGRERERERERHRgYwP16rYvX03Oro7UJpawrbHy29Sau9ox+TOyVWXb5uc7sbBvYMwMDWpJxERERERERER1RcfrlWRDCeAAe79/r1Y8a0VWPTSRTAt7gdmmx/cjF984RfYuWUnznnHOblGrRkkfsNv5Su7NVcchhhLrcMz5HZbVZ1lCJQeyi6HSNvhIHYZcqi2rqIcgq1DtjoyosWKfs14PV8ZrcPdpPa2/EO6Afv35AkFKlKe4eq+Q9RDQ4Lb2rLXW78+nZavfdfn0OTqz9wB2CGerrCF0N/mKkP+tqLD9XzpfmQY7V7blvOefdb+LTKMREbKA/Y+19E3Mspe9mE6PFiWXxHW6nleSnJbuo6+56j+XtdL8g2pitFGYpRfRHi/L53+YPtAGgoqr4eu/a3JNl90H+wbJhQa2qXPX9m/yf5S7x8Znt3ZGf8aLn+bvk2S5309r+/eYXf9O+yZooPwDfvKY7jUkZZx+unpDNVhxrhGucjy71ttl7d4sf89T7Xy8mzb9x4kT/mu+4xdA9Xbrs4Cs7A3vXCs39plzZOHSt9Lxw7bDCXroe91Zb8if0uM1BZ621bn1NZuLSe3p+/zdDoQKUbIt3cZVv2z/4QPDf2PfS4TTUSMW3Q48fIT8dpvvBb9m/ux5n/XOJc9+AUH4/IvX45LPnsJVv1gFQb35rj7JiIiIiIiIqKmYlB+qNLs/2j8uB/HUJpawpFnHomtD28de2EA0w+bjrZSG5597NmCa0ZERERERERERPXGh2sZ+rf2Y/uT2wGU3wbafWh35rI7Nu7A8FB5GOzOzTvx3JPPYersjFcBEhERERERERHRAYM51zK0tLbgpx//KUyrwbRDpuHU15+KR3/9KO741zuw+7nduOmjN2HmETNxwd9dgI1rNuK3H/stWtpaAAOc8eYzUOoKSxbgzKOhEwpJOlmMjMsX065Y+Be9yP4scw7IfDNAdi4EnWvF9eZyOc/3DeeuPAJ5XksdQ4xcFq40eln7OHQfFPEK9SLyNIWIkY9t9ix73qRJ1dfTudO6OuP+tlhtNWufhObsi3GsY+TBmar+v4U8T3Q/5epjTjstnZb9lj4nd+/OLiNrn7j6QV2GnUIlbB93dxebu8ul6Lxhrm3FyO0iy9D7UV4DXTkTXXVy7R957NsHd6UfHMmGYpy/eY6ZK89UqZSWI/fP2rV2GUuWODbgSGA33OaXk1Fy3UvEyI1UBKsuvjdDMbYF1RZ0oqmM5Vz3EqG5nTZtST/r29nFizOLzFTEPV9oDljXsvIckof+zjvt5baKPGt6fxTcZCwx9qurvvL6q7uG0D44a+Ou66jus2SuVO/8iUXk2Kxx/0BE+fHhWoaO6R24/EuXW9/NP30+5p8+v2LZhecsxMJzFlZ8T0REREREREQHLoYDEsB2QEREREREREREFGxCjFy78X035l7noKkHBa0XoqfLEe4pud5LvWiR/VnGR3mOpdav8A6hRyzLId6ekasAgPbAMNGseUW/ZtzFtx6ho71D94Hv8O8YIZdFlJ+1XKxh7TO6G6/9aLF/d6yQzqz1YoSdurrBjpJ/Hfv60u25+iLZh7lDOv2W0/V3RMVZgo+vTAugKrZrIN0Hrv0a4zx3lRfaV/u2f1f58rPr2GQdaz1P/z9Luazetmxb7aW2zOVcoZlFh+W69rH8bX196fRBB6kyB/em5YlQT12Ib7vQ58yz4v1Rs2eN/3oSGvIXoz8eLnV416VIMdJBAHb99w5WD4EE7HD/k0/2Lt5ru1qe/izk/MqVnmMgDQeXZ0Zvr90O5P4KvYa46ijF6FN0egVZR/0niazLgLgmzcA2VWr36FTR92Q6QtoRMZ0ptI4xfluMbTNElCjMhHi49sTqJ+pdBac3XXllvatAREREREREREQBJsTDNSIiIiIiIiKimAyYa4vK2A6IiIiIiIiIiIgCceRagwmOcV+6NHtehFc3h+ahkJvucaSW0zkkis4j46vovA5y/+i8GTHeuB2Ss0yLnXchNF9LjPJj5A2LtZ6sZ4z8NkW0Vd996fv6+aLzReXJ5SXntbVl5wLyPQ9dedtc5cl8UZMm2fOsPC+rVmWW2SI7UL0BWYhKHNOm81+NCM17FqroPC+uOvb3p9Nbt2aX4cqbJ/OV6t3v+j2lUlqvXYPpsSipMuqZuyekPJ33bFhkkyoir6Mv7/IdF+Na57zLmufKHVhEzrgY11VXXyrPKZ07s1Fynrqu2aHHbbAtza0m949Oo+zK+RhD6D6W9dq4MZ2W/SoAzJyZTuuca3LbMzrT/IwYLGUuV0QuYGueThonGmiM3I0xxMpdGqMM5mcjSnHkGhERERERERERUSCOXCMiIiIiIiIiCmDqXQFqCHy41mhCYwP1e6LlkGZHGSFhX2PNk+Sm87zKOmuIca1D36QYw54ry8gOR4shpM6xhnfHCPWKHS6WJ5QjRvlFbiuPGGGtRYfbhp6HMUJSXfVwnZcxzlkZCqpDaWT4jBXAuWaNveCTT6bTxx5rzzvssOoFAmgrVQ/X2zvovw+anesatW9fOj00lE7rsCZZRp5zQa7n2sfbt1ef1uvNnWvPi3EdjRFq5BISiqj31fTpkSuVo8HH2D8xrnMxri926KF/f++sv4gVbFm3Lv1+yRJ7OdmwdQ6RUgcaQYxQRF1G1n7OExob2v/EkNV/6j5SfnbW0dEpxj7XNKteatsh52ieOso/2VzH3nfbecK6i07LQDTRMCyUiIiIiIiIiIgoEB+uERERERERERERBTqAgz2ayNatwE9+Up6eP9+eJ1+hJF9JpufpeCLXq80KVMQbfIog66J3naSHto93W5pv9EnosO2QkJsYbxnS5dTzbV8xxGi7sfZrVpn1fItd0evFCF8vonxJdrntbf7HQkZDbdhgz5NhNu0LFmQvuGJFOt3Xl10xzw5HZyeo0+WkJmQ4jn5BXNau6+oMPNcq0j5Uf1urJve5rqNsP5Mn2/Nmz/KrllREX+0KOV6/Pp2Wb08FKsNcq5UHuEMYC3/NYgTy92zaYv8WGfIq+5Vav80z+C2L8iZK9k26I3G98dhTjDQGMa4FMd7WWmuh+0Ry3S/HSDPjElJ/5zqqb/YtX/bH8u2pgN2sp02z58nMDkuWjD+EM3QfN/u9er211rsC1BB4FhEREREREREREQXiwzUiIiIiIiIiIqJAfLhGREREREREREQUqDETUEw0+/algfpbt9rzZB6KrAQkQGUOnoxl88TTh8Te51nHmQckI09KEXmlurAj/eBIGpEnn1MWvY7MP6Nzv2WnILHrofM7+dLpf6pvy63oPBrNoOjf5sqxEbL/i8jTEZr3zFeMMnzrFbot13noKlPmi1q92p4n06x19nal5Z12mr3gqlXptM55JDsWddK3iJNd7h99GZJkHjggTl7KepL9XatKmCL7YOt3q87aalmujlzvvAx5ct7JzW3aZM8LybnmEiMvUzv2Wp+nTUtzGz33XPx6BdHnUECiwdB+cOpU+7Nsn0XnrZU5om67zZ734hen29Z17GgTx1Qm0QOsPGvDc+eNTlfUt6cnXS7CNTX0XtF3P+bJMSuXDc3RWsv7qRj3AUVw1cP3PimULF93Dzt3ptOyD9bXc9n9z5xpz3vwwXRap03NumzEaGd6WVlmRYpQ0Re52n+tc2g3CgOOWKIytgMiIiIiIiIiIqJAfLhGREREREREREQUiGGhjSBJgKGh8rSOx3n66XR60SJ7nozH0eN3PcMYih7u7b2efH+1Jn+nilkMHSov19tbSsOtoHajDPWKMdT5oXXZddSv5pY/NSNKFgDQ7jiLXXWWQ9tl+XrIuwyVmpUjzCgkdKGWYQVFlJknFChG2LUrDCBkmH7o/okREuC7r2Idw5qGKjtOYEf3Zq0mo616eg62luuSYaLf/KZdyMtelk7rcFJxsvcPdoxOy8sOAEyalE5PnmzPyw5fbxyuc1TWecoUez15bFrWPZR+0GkY5PVrzRp73pIl6fTLX55ZR1cfLz8fdFB2HV37v5bt3bmttnbro7ym6P2fddxkOgXAvk5X9JG+jVIeAFdob8GsEEsA8jbdFbIl/195++Aue5aovys1xfLl6feu0PCLL86eh7Vr7c+9vaOTA0j7mFJJHaf+ND3HoLwng7tdh1wPan2vW3TInLw29PWF/TbXPonddwTvA3G9alHn6LC6JlrzIux/eV+s/1xZt676OrobkeGdzzyTXcbtt9vzLrzQp4b+fPeBrv++fen0ww/bbeKFpxWbGoSomTTorTARERERERERUWNjOCABbAdERERERERERETB+HCNiIiIiIiIiIgoEMNCG8HwcBrQr9/BLPJVOBNP6PUiJL8JydOU5/XY9jxFBvt7JvUJjet35WuJQeZq0OlI5M+RuXM013Iyx0ZXp/8+kLtV7m6dT0K+ZlybNcsvl0Xofo2dq6TWuSAaJc9RLV+T7trHeebVS4w2smvALqOj1JY5b/XqdFqn8pJ5j+Q8mcYLALrkdUIm4AHshGmaONlLPWk+pOeftxeTuWJ0XqxGzbMmudqWd/3lgjoHl5ynE1Medlju4ivbXFr//elZ9zvyyHRaHxu7hLD8qr7nZYycU13q2ibXc12jOjvT5fShGRDn24xuz3M5Qo614ByYqkFm7X9XfsZdIrcZAGxcn07rPEqyX7nllnQ6SeyGtnVrmnxV3xN0mO3pB52UUVRU1lEfwxmd6T5vpD7Fu/0P6lx5gsozGJvOw+ij1tdb378FnBw3wq5zKqvvy1MPV0pGeX2szIWYWrUqnZa5jPV6d95pzzv//HS66HNDnpc6/7Ksv7zlAKCShtrtvVHu7YhqpYEuYUREREREREREzcGA4YBUxnZAREREREREREQUiCPXGsHevcCWLeVpHd65dGk67RoP7IopFPKEOMV+XblzaLBvTGQBig6nc1VfDrvWw8nlLpHLuSKSQusly9QhH7/9bTq9aZM9TzbP3t7GeP12ru2KnT5cQOhGEaGysesRo4woIR+eQssLDdPy/W1yWp+Trnk6ikraty+dXrcunV6wQC0oYzRkjApgdx6yEMCKb2kXHc7cuV3WYrIv8rzUNA15PPSxsUK95EzdWctQXB0vs2hR5raz2p1u43Jzuv+fUdqVXS80xsGK0f/I363boAzT0iFbPT2eG5D7roEauW9IW1tbdh8jQz9XrLDn/f736bTsV+bOtePWFi9OpyvCjzeI+PWjjrLniQMnm65uqq7rr2/7CQ1h9r3Xtfa/DgOV8XS6/XjeW4SeJzoSfbxC71t8939wmhC5H9U+9U0/0TIg+ksV97gdM0an9WXUZfbsdPrBB9NpneZBXn7lvTNgn1+33WbPk9WUTSvPPU1WiL0uc+PGdFr/LSD7YNlvAMCCBenxaKDuk6guOHKNiIiIiIiIiIgoEEeuEREREREREREF4IglAtgOiIiIiIiIiIiIgnHkWiMYGgKef748rd9PLoPcC8g9Fpz7IHYeJZ0/QQbtF5xzzXqDtM65EyFXTHtbWkZfX3YuHZ2fISvPms4FIee5ck1ocl6plK43daq9nDwUu3fb82Rz1amGstpI0bnYnPtAv1tcfu6eAR+++7RaXYrku+08bcQl5Lfl2Xfj3VZoGXlyymTleXF1WXre0FA6feyx9jyZS0eeXzonyzGXiQ8VCdmEtWvtzxkncF+fnXOt4C64cM42LjthnQhKfpZ51e6/315OdpJLltjzxM4LzWOq86zZdcye5dsHZ+UOrAXf3IfyOtrZaddR7h/XIbxvdbqezHEEAC2OxKbO47bh8XR67tzs5XzzOv7ge/bMCy8U9erwq5Pa1gtekC6rczzK7uKQQ6p/D9h9U0VOJdk5VeQbS9t/u6iXzBGnhV4LXHm3fMvwbv9bt9qfHZ2kzM9Wca8bkE8uxrUy9F6llvcLhZQvjtOONvuer+S4zskuQd/rynmyC9D5Hm+5JZ2+7DJ7nuyP9G2qvO+W/Vl3d9i9StfgdrV09+iUzJ2srzsynaL+e0UuW8/7YKJG0OS3zERERERERERE9cHHiASwHRAREREREREREQXjyLVGkCTpWF/9fmZnPIifXQPZw3x9h9G7+JaRazh5RihNnuHwscMPQ8uX6/X1ZS+nh4LLqAP56my9nO+2fV/bvXNnduiqjviQr+3WQ+VndBcb/pml4rjInecKux6rnBF52njR51fs0MwY8pwnvue2b3l5ZJXjKl/2pYAdTh2qtTWdlmEXgB0CLqMNdVioFZKkw5PkSatP4HXr0mlxMrfrk1ncKuwdzP7NDRs+6gr9lJ2Y7g9k37FiRTqt9+PFF49ODqvwct9QaNe5LPdrRXltaZ11GfKnzel1hMeLcMNQIedyKH0IO0rp9nT7lPvA1QzaPe+1KtaTF2pHWKiLtb/0TYI4+KHXExlersk0EPLyeNpp9nLTp6fTstsAgL6+tM27+oBGDSn0JcM7K/oAV/tx7BTf0G3XsY9xvoXcz7rqZe0rqLBrvT9K2X1YluC2JMJyuzr9wxdllfV6kkz9csYZ9jyZWUD/qSebk54nyUuSThHjJDsuHdIsCpJlOiK83X+HqE6yZX+ldedJdIBqjCsWERERERERERFRE2rU/89MRERERERERNSwDDhiicr4cK0RHHxwGlaiQgJihFkW/RaX0Lc3xQ4dCS2v6FAm+TaxLjXOWoYQLVpkrydHbsvpPJHCvvtEhtLI8A/AfmuYHgouw0jkcHUAmNHtteko4UTe66lx9Jt2p29F/Je/txedOzetl3xT2imnZBdfRBuPfY4WHbLlG36sP8fo6/KUkVUv39CQULoehx2Wvb0Z2DY63b0o7SuO6b/bXnDF9nRadxDymqJfAShPYHlyO96E165egRajfRbdJrFqVfVpwI5x02ErJ5+cTsu4XHWd3tspwuLUpn3PvRhvOmzp32F9niPfCjcgjltgeI5v/xb61mrftuQ6D/U16vbb02n54k1dxnBbGhqry5BhpxVvuRTnQ0gaBm146TLrszxU7RH6Qfl2YsC+JMpwNB1yFpqaIksRb6z13f/B5E7Qb5RVbwGVZF1i1Cv0rdu+8tTJ+95CXlN0/yP7U8/96KqH73p6HVe3KN9W7CK3tWiRXf4b35hO6/NLNif9JmNZL3nu5WpLssOrSPtQvcx23UeK8p0hqapz3f9W1iHDRw40MUyIln7yqSePvVAdTUmSeleBiIiIiIiIiIgCTIiHa0uvdmSHbACPfWlVvatAREREREREREQBJsTDNSIiIiIiIiKi2Ey9K0ANgQ/XMqy+YTUeuOEBtLS24PBlh2PZ65fhzv+4E4/d/Rha21rRdUgXznrbWZjcORkb7t2Au//zbgwNDqG1rRWnLj8Vh55wqPe2ku7pGD7thQDCcxLFyFeUR+gr4aWQ9Wqdty1Kno4VK9JplUxhUOTq0TkMZHq2adPS6SlTxl8lIDu/hEonZKVn2LjRnifrrOvv+4r5osm8at/9rj3vxz9Op/X+OPvsdFruA1feOTkN2K9l16mwYudGKaTtBqhn3rnQnCy+XLmeQn+nPG9kbicAwD98JS3/sMPS77/5TXu5885Lp2ViFwCPY97o9OTd9mqz585NP8gG6krsqE8UR46cGKLkC5Sd6ZYt9jx5UHWym6OPTqdFUszhUoe1mO+NVK2v09axktOqIce4nscuI1c5Ip9T/+DB1qw770ynzz/fb1u5znOVg9B7vYxt6+XaIc+3tszlfK8FrlxP8jqnT3OZbuz4RXvtmWKHxbhPjdJ+VBLYFvFDXfnRnOTOKuAcqqU8dQz6bfokkg0vQs7HPH8r7RpIP8v7N30uuPKqhVyH9PVc5mDT95Fyd7Vs32bNaxfXr7bOtO0GtzOV+zmL616uVMqep9fbf9q0NP5pQRQFH65VMbRvCCu/vRKvuvZVaO9ox/V/fj1OuPQEzF0yF8tetwwtrS2467q7sOoHq3Dq8lNR6irhZVe/DAfNPAjbHtuGGz98I15z3Wvq/TOIiIiIiIiIiKhgfI5cxe7tu9HR3YHS1BK2P7kdANDe0Y65J85FS2t5lx38goPx/DPPAwB6juzBQTMPAgBMnzcdQ/uGMLRvqGrZRERERERERER04ODItSqS4QQwwL3fvxcrvrUCi166CKbFjqR+8JYHceQZR1as++gdj6LniB60TmqNUpdGCYcqYtuuYcS+w669X2/vKL/wMMXbb0+nVdygHO69t2eONU+OnJ8+PZ3OFbKix55LbWlokzUkXZXR1pnuOxlFpuuoR5o7opAsMdpBZvgTgEmT0t+pQ15l6KfeVTLSTv5uHdEgP69fb8+Th1u+iR4AenrS33raacjk2geh86TQPibruIWeTzH6kVjrhQjdB1YEpo4rfuCBdPqZZ7ILESfYj1bMs2bJqHTZ3gHgpQtEHJisiI6XiSx03wf3DyKkE5dcYs+TndOCBUH18hWjzTlDJ3U4b2/G8VX2DqZlqGg6y7599ufp06uHUsY6t7L6GH092daWhoLOKe2w5n3h7FvSD21ppz6MLms5ua22NkefqC4Uu5BeXxzB1JY892R7kYaBuW7YfUP3XBHfkt7H8tiHhlX61jFK+3HddORg1UWGluaov3Vt2LrZXlaecCLEeLgzu33m4Xtdiv43hLpRGu5OU6D41iO0v69crnr9KzIcOM77kLDu0LDKCrLP6Rx/GoZapvKZSAyAOH/5U7PjmeJw4uUn4rXfeC36N/djzf+uGf3+N9/7DVpaW7DgbPtGfNvj23DX1+/Ci97yolpXlYiIiIiIiIiI6oAP18ZQmlrCkWceia0Pl4edPPSzh/D4PY/j3HedC2PS0Wz9W/tx8yduxjlXnYOuQ7qyiiMiIiIiIiIiogMIH65l6N/aP5pvbfNDm9F9aDeeWPkEVv1oFV529cvQNjkdcr6nfw9u+uhNOOV1p6D3mN6MEomIiIiIiIiI6EDDnGsZWlpb8NOP/xSm1WDaIdNw6utPxQ/f/kMMDQ7hxg/dCKD8UoMXveVFeOB/HsCOp3fg3u/ei3u/ey8A4IK/uwBTuqfk3m4zxsL7vh7btV7ItsaaF5IjQYuS+2PmzHRa5wERSR9cKUKC04c4VvQt05UnInDT8Tk2JnPBnXqqPU+mWNLpro4UKRVdOe/kZ53TbefOdFqnsfJ8G7qTqx3HzoPmm7cwOC+WknWux8rnFKPP9M0h5L1dnRDpjW9Mp2Xivw0b7OVEbq0FKo+MbGe6fcoyt/WnuVw6VRntbePP1VNEG/Rl1UPmX8uxXladfNepNi/Gb7PK17mwxOfQbclcW5MmBdYrQu5YV/3tvtXuWIcvfqXXtr2PW6nDmjfoyFHny/W7sy5tec6nkHNP7w95Dcyj6Py5mdRxctXJ99i7cvXuGpA5AbPLGygdbH3enaSfZ2OHXtyrjlKee/Cs8n3zqzo57smKyKHqIi+rclrnXHMJub4H36vo+4CAm+k894NF//24v/rGuJc7EHDEEgF8uJapY3oHLv/S5dZ3V/zrFVWXPelVJ+GkV51Ui2oREREREREREVED4UNWIiIiIiIiIiKiQCZJknrXwYsxJgmpqzEGc4+dO/aCddTT1YOVt9+be72Q4dN5himHDG8ODc0MFSOsJlaYWaZ169JpHQsoXr3uO/Q71hBu63fLV33r7XmGV8QKB7S2HWGIvSxDhwHIn+0K93SFxbnKl5/1SH8pdD+GhlfEECNkruj24xK7/4mxLVe4hgxb1t2IbKstA7vsmf0ibk2vKBrlb1al21pgvwgbXZ2NEdobI5wotH3GrkcssftZTfZhrktUEfWIEc443vKKKLOI8GDfMorYBy4x+sii93GMtmuHhdrzrP654JC8ovd3EdfNrP651uluat13+4p9LxTjfmSsZautt2zZUqxYseKADQ492pjkunpXIoLTgJVJkiytdz2a2YQIC31i9RP1roLTlVe+qd5VICIiIiIiIqKcGA5IANsBERERERERERFRsAkxcq2ZxQjHlPOKGNpc9DDxkOXGWq+mdIxVgCghGSpmcS/SN8m1y5hFR4io97YaiKxXu+rx2mWUnI7pjPC6045S/lCUGG9V1NuLEVpadKhREW87jS009NA3JMm1j2e0iTfJrVhtzxRvwLxvwwxr1vbtaVi3fluofAHpoYem064Q5lprlPQBMUJLQ69zrnViXwNd3WABXaRTyD4PvUcoOuwrxnGSZWzZYs+bNat+bwOspdCQzhhtxLUt37QPoeUX3W/5irHvGqU9FrG/Q++ZrOM0uNeel/HWZ5c89W/EY0PUzHgWERERERERERERBeLINSIiIiIiIiKinAw4YonK2A6IiIiIiIiIiIgCceRaAzBIRmPeY73uPKQcVxkx8j3EWC6PWr9OPLYYx9CiEuTIT9a2Sh3wFbuduXJVhfKuo8hrEbrtPDmIim6DMfK8hCynhfYBWdvLk7MsRq6z2HnngvvqTpEg8LTTMhdb3G1/lnmyXO1z9qzx95dFnL+x+9nQ3H6h15Oi+zcX33NIcrUR17wYuZ2KzoEUY9sx2k+e35K17KxZ/us0w71Q0fk9fbftK9Y9a9HX39i5XUPLCTmmsXLjZa0Xmr9vrO35lOe8ZkS4F82zTkjfXXSfQtTMeAYQEREREREREREF4sg1IiIiIiIiIqIAHLFEAB+uNYQExnvYshQ7rMklNBQi9vDgWg83jh2WGCN8V6tlaBGHe1dy7Z8Y50mMcMyi24hLjPYT4xwqOkQxRuiYS+i+8w1VbpT2UjTfEE6XIo5hjOtorY9bSNhpnnNjolxv6nnuhRxD17Ix+udG7X9q2R5jhSzWq/wi+N5LFH2can0Nj6GeKXqIJhqeRURERERERERERIH4cI2IiIiIiIiIiCgQw0KJiIiIiIiIiHIy4IglKuPDtQYT4zXvej3ffBihOQxi5HGrdU6ZrG3nyRcS8srqWufR8NXSvyN7ZmenXxkR8uWE7h/XtgYHq0/rz1u32vMOOigtc9YsvzrlOb+ycszkOddC2k+e41J0zsGs5fKsF2PbUozcV6H72HV8dw2k83Q7lqdoyw3/bc+UDXvxYrueS5eNTm/fnn7f3Z1djxg5WWLtn6zlQtUyL18R5RchRk7JrHUAde3RDbt7hlc9nOV7XutdZcQuX4t9j+A6Tq5tu4T2Ab453YrOWRm6j7N+a9H5AfP8zlreP9dzW7J70LlEY9wrNmpesqLblm8bD61TM+TzI4qJD1mJiIiIiIiIiIgC8eEaERERERERERFRIIaFNjjfoeyNOpzZJSQcs4ihyPUcshyyD0LDEp10OE6AerZB17mgwwfGK1Zob4wQpVpqxv7Ht/+MHZYV63jKZUul7OXk6ds+d649c926dFrGfgJoGdw7Or1vX3vV8gCg3fMcKjrsvehQrNA2XsvzN3aI31hlxhajvyxiPd/9GqMdVCwnTrgWdcGKERIZIs99hq/QY1F0PxJr2fGq53no265j3KvH6C+LCA8uYr3YQvsi3xQlND6NcbdO9cZ2QEREREREREREFIgP14iIiIiIiIiIiALx4RoREREREREREVEg5lxrAAaJV8x7ETkwGlWj/J5mz/XhXUZ3d9zy6shVR507Sn4+oq+2dYm5Tp5yYuQqiVVmDLFzKxb9O4vYV1a7XrLEnqk/Z5g9q3Y5Kotu40Vsu9brxS4jRvmF5DHt7IxTzjgVnaPVuZ4jMWg9ryGxNeLxbKTtNcN1NNZ6IeX55v6Msa0i1outnrkDG2UfNBpT7wpQQ+DINSIiIiIiIiIiokB8uEZERERERERERBSIYaEHiKJfIx9DEa+vjvFKb9/y6kn+ltDf7PsK9UbdB6Hq2eZD5HlNuqtd+LaZovmeh771d+2fGMc6tIwYvzPP9kLkaVuxy2iG9hijXkWUX/Q55CrDV+jxDalLnmt70e2zlu26UfqKWp9Dscts9uNURD/uW14tj00R53mokHvwPNd6l6KvS1nbilXfIv72I2pkfLhGRERERERERJSTAdBa70pQQ+DjZCIiIiIiIiIiokAcuXaAiPGmqyKGe8dWz7fjFCFkuLTrOBUdctBsIZZjCQ23akTNOPQ+5M2cecJf5bwiwjaLbj9FhzKFlB8aftwo51CssPrxLucS2gfHUHToUhH7OMZ50ijt06VR3rbZDPtKa8a0J1nlN+NbRX01av/mKiP2G32b/V6uGetPFBPPACIiIiIiIiIiokAcuUZEREREREREFIAjlghgOyAiIiIiIiIiIgrGkWuNIEmAwcHydJt9SHzzk9Qzxj00505QnQcG7M/791u1eatXp9M33WTPO+GEdPrlL0+nu7vz1ymHbdvt3ywPd5vjbCyVAje4fn31aQAt8rcuWDA6uW2wy1puYCD7OG3fnk53d9vL9faKbQXm4wlZz7WO2gVWE5k715536KHp9OxZXtUoXIxX08fYx3q90P6n6JxlIeuF7mPf9fRyrjY4o1vUf8OGdPqWW+wFFy1Kp2WfCFgn4mDfwsx6tUOs199vz5Qnek+PPa/T7i/Gq5C8jnKfrF1rzxO/rWXJErsuGb8tVl6y0Dbju1xW+4xyLYZuamkZ7W3xc6JllZdnXtH58GKIkRtSdwGuewtXmRZ5f6VuSHzbVsuPf5TOWLzYLr+vL51ua/cuP2Q513ourjJlt6JvI+W9kO+2ZJcLAPv2pdOzp6p7Xbmw3JhDjPykecrP2pZrWb2c/Jn6EjV3rl+dZTPW+7izM3uevjZLWfsrTz/V0r9jdHqwZF93BgfTZbduTb+fNzesn9X7rqvTL7+ti6v/Wbeu/F/9JxrRgYoP14iIiIiIiIiIcjJgOCCVsR0QEREREREREREF4si1RrBrVzpuVo0nbxFDvEPDHULDQUK2lydkwhVSZa0nxxLLMdEAsGpVOi3DCgA7jErHVe7ZU738gunh2JMnp9NDQ/a81tZ02jd8tILcP3IaAM4+u+oqenfoXS6tWZNOT59uz5NNucMzrLXWr5iXYQA62m1WDUNBY4dNxSo/tH+IIaSPCQ7ZEnEMLTlOsKz9quvh2lcywlNGdwLA2Wen63XIBirCuCvoE1h8bh/YYc+T/eLGjem0jomRnYA8aQC0qM/jlSdcKcq5ImNY1O8O+W15wqFirOcsQ8TBt8jO+kUvstcTvzPPeZ216+b4RaYFC+3Diuhniw5Z9ClPc93S6Ou57O56etIy9S2Tq1V4/x55w6MvuI5+17f8Is49X8f0bks/6Bs9pDGFvueXLuLpp9PpocM6rHlzOlUcnocYKSbylpO3PL3cjO7q06H1kPfYgN2H5QkLteopOsVhFd4s6dDJwbY0FHTrRnuevJcO/XNF1rEr7iW7gv5t++s8XNvbe6K64cg1IiIiIiIiIiKiQBy5RkREREREREQUgCOWCGA7ICIiIiIiIiIiCjYhRq6dfOrJ9a6C0xQgDUp35Mtp0UkwIvDNNZEnh1DWcs5XtPu+Al7nwJGJEPQryM84I51essSeJ5MYRMhr57JpS1qmTAMH2D9H50KRh1umk9OveXfmM5ML630gPg93pvke+lW+B5mqTeb9AIApU6rXUSs6p5hvbr8j+ux58vPeQfvYy5wnMkdFaN4n13qufF2S7h5kGyk6X13svCuxRNl2rkSGY9dD5xx59tl0+vnn7Xlr11afBuzubfHiNM9Oiz6XZWPVyXpko9GJZGQDkpXW15rIedXyiJHHategyH2z4HhrXmlxOq2PW3vBubF8l/PtHyrsz+UK2A3P0UZadC4sp7Qu1nVJX8x6Dh6djNV/ZpURur9D+0/f3JCh5YXk2yuV7HVkF+DK2SRPc90FDJfsPF9BDjsscwO1zElXSJndM0YnW9RNWkhd9H2evPcSqRQBAKVF6f2bWi36fUE9r/W+dD8uL++y2enLobw/f+GCzarUtF8M3QdbtqTTzz1nz5Ndsv47QaZHlt1z8LFw/J05LNtx4D2f7jv23650ROhCiJpB0z5c27FjB2688UY8/vjjGFAdhTEGH/zgB0c/L716aa2rl8tj/3x/vatAREREREREREQBmvLh2v/93//hoosuwnb9vx1G6IdrIVbfsBoP3PAAWlpbcPiyw7Hs9ctw53/cicfufgytba3oOqQLZ73tLEzunIyBHQO4+VM3Y8vvt2DhuQtxxpvPGHsDRERERERERNTUGn9cJ9VCUz5cu+qqq9DX14evfvWrOO6449Denv264xBD+4aw8tsr8aprX4X2jnZc/+fX44RLT8DcJXOx7HXL0NLagruuuwurfrAKpy4/Fa3trTjlT0/Btse2Ydtj28begNY1tTJkb7+KV3pXFxoy4TsvBlcdndvW4+OlxYuz53mGt+zoz379vBxOHrp/Nm1Kp2+5JbuKrogt+crwXBFaWe0KyNyvOuRAhoXqbR93XDp99NH2vBhRzEWHk8ry9am2b1863dnpV488w/RDwn10CHCec6pIRYeMhpZRdPvJosM65Gc9Tw681tGpu3en07J9doowbgBokSemjomRJ7QO15PLyrhuVyfjCKEtIqw+hp070+lJk+x5rojgGG3XN2TRtZx3O9bHV3ZiruuoK1Ywox4A0NG2N/0gG7ZqgzLUNE+KiazQ+Twy/h8sZnSH9VmhYcqhfXVIyGt7m73tNnH9WrTIXlZ3Fz5CQ1ed92uO8mL0HcGh1QVr6d+RfhBh3F3q/vWww+aNTme1aSBOeHOe/eMbFu1brxjHSbf/rHrJ+2r9+aHtB1vzFojD0TK415pnHRBx4ztYsv823bMnnXZEZlack/JeOkIGi0pig9ZxUhUZbvP7Wzu4fyA6QDTlw7U1a9bge9/7Hk4+uZhcaru370ZHdwdKU0vY9nj5YVl7RzvmnpgmwDn4BQfj0TseBQBMKk1C7zG9eO7p56qWR0REREREREREB6amfLg2b9487JH/CyCyZDgBDHDv9+/Fim+twKKXLoJpMdYyD97yII4848jC6kBERERERERERI2vKcdqfvjDH8YnP/lJ7NixY+yFx+HEy0/Ea7/xWvRv7sea/10z+v1vvvcbtLS2YMHZCwrdPhERERERERE1JoPyQ5Vm/0fj15Qj12644QZs2rQJ8+fPx+mnn44ZM2ZY840x+PrXvx5lW6WpJRx55pHYtLacOOuhnz2Ex+95HBf+/YUwxoyx9vgNi9w6rpwFReejKoJvbgWZE03nG+goiS90EgOxsKv8QnIYCDJvks5nJlPk6HrIFEhTp2Yv58zX4pmgTR6L3l67vMsuS6d1ypTCc0FE4JuvSOeIc6UoylJ0romi8yJqsXPdaL55iGLkYYmdP0uT6Ul0XjV5nutTUqbW0W1uypR0evXqdFrnTZqB7dUrArgT9MjKyBPAdTKoeb77tYh8bL7rzZ6VLrd30K6H3F26D8vKR5UnT1stc5e26Dyjp5+eTstG6Di+uc4TuSPktkMSeeWhr/Xi9+j93d2d/h65Wp7jVHRu2pA+Mla7kodQlinvuwD7kM7oVnUROah0XiZZ5qYtaZmybwPcaR5j9x2NkpcMgN0o16T/Ex9HHWUt1rs0zbnW2+u9ae86heYEtK7TIn9ci87X1W3/neZTr9D7Kd/lZk/dZX2edUrH6LTuYqy66AS98reKhqwvE3PnVp/WRcp7f6CAe2vd/2clSNb9uDi385xD9cy3SlQPDfrnsNvtt98OYwy6urrwwAMPVMyP8dCrf2s/tj+5Hd2HdmPzQ5vRfWg3nlj5BFb9aBUu+sRFaJvclLuOiIiIiIiIiIgiasonRI8++mjh22hpbcFPP/5TmFaDaYdMw6mvPxU/fPsPMTQ4hBs/dCOA8ksNXvSWFwEArn/j9di3ax+GBofw2F2P4YK/uwDT500vvJ5ERERERERERFQ/TflwLa8b33djruUH9w5iaO8QOqeVh/cO7hzEzR+9GV0zu6zldj6xc7Ts7lnd1rxff+XX3tvr6eoZHcYca/isbyhco6iooxiOPDiY/fpna/h3qcOaJ8t0RanIIddFhDbKd2/o8uVobD0UfMmS6vOyRnAD1SJj033nej25pEPOXFwhVb6KDp30nddRGn/4YhFCQierffYpLzQMwzvsRa8nGnOMfVzfsNx0ng75kFGVui+S57Mj2g233JJdxpkyXNu1AR02mBEKWvE7xXo6rDJGl1nL69Wzz9qfnxMv+Z42zZ4nQ9dCrxMhvy00lLqCDPf0DMvKw6pLZ1f2grHlCDuVIYulUva9hLVOhDaY5ziF9OO7Buzy5ancsnWzXYar8YowNlkPmc4CAIaG0un7VtvbXrzYb7/Onp4eC6xbZ83bu+CY0Wl9rxLSj+e5FtT0Hll38vLi8JKXpNMF59nIE97sap9y3qbdaR8w+/lH7EIi9D+hx0nWUXYdfq22Cn1sYsTpCq57/FBB11j1O+V6FfcBjubaDH+DxsKcZQQ02cO1ffv2YdKkSXj88cfHXHbevDQ/wROrn8i1nfXr1+PCCy/EapnkpkBXXvmmmmyHiIiIiIiIiIjiaqqHa/feey+WLVuGvr6+MfOqDcn/zZZTX19fzR6sERERERERERFR82qqh2tHHnkkAOBrX/taTd7UWSsGidewWdcw7nqGTUUZ8quHyoux2zO6/d766eIbZlDE/pEhYi9+sT3vsMPSaRkGCqgwD89j7YqWafc82/MM725rq/4mNl0X+Vt0PaKFQHmUF1p+6Jvkmk0h9Zf/o8LxStwWx+tZY78lrAjyp+kQb3ku6DcGy4gS/TZe2XfIcG354kcA2IY05GZGmx0SZm1Av5JPVkbOmzvPWkyGgLhCV2NEMkV7C5/w+IbqYUGAXf9Jk+x58vf4huq4riGNEppW8RI4zz6/iPPLVX5mKJNux65X9cpt6RMzY1uuOsa4FoSGjEq6D7BC0fX/HJYxnvLV4wBw2mnptEgj4Xqbp+6qXb9bviFUBuI9OXCMtVyv+D36jeUh50Yt33Zf4c477c8yFl29BdQ6cCL8PrQfDH2brW9osqteVpsZsjtM3/u8olMEWH1dW3YdO1z9vav/ERvI8/eELDLGPXGU9u+4ULj/1pg4YaBE1TTVw7WZM2cCAJYvX17fihARERERERHRhHfgDPuh8WjuYRZERERERERERER11FQj16TNmzfj29/+Nh588EEMqDgVYwz+/d//vU41IyIiIiIiIiKiiaIpH649+OCDOO200zA0NITnn38ePT092LZtG4aGhjB9+nRMmzat3lXMJ0nSAHbHq4/zyFovNB9D4XSeFJngRky3OJLDeOdrqfI5S4x8MwcdlE6ffbY9b/r0dNo3X5Erj4NOBREiT5uQy8r8a0Blbqb98rTBGPlCXNv2nRfSXsYq3/ccDd1e0TK3rZNx6PwzksgxU5HIJ2NbsXLpxG5brrLluSFToAHA7NnptJU3STn//HRa522z8oHdvsqeKfexTNwG2Mdq48bRyRZVyTaRiyk0r1rI/o5l3bp0Wu4OADh+wa70w/bt9sxudbBGhNYxtG9y5fxy5XTL2p4+hr65OmPUX9u2PV1P57XzzXNnHbc1a+x58iLryLkmFZG3M8b2Wvp3jE7PG1RJ19AnJvvsWbfckj1PHPyBwfZqX1foGNyhvklvPPR6zz+fTst2p/tBeax1Ga58sVn9c+xcrmOReSnbb7rJnik/X321PW/BgtzbypPLK3YOM1cZ8jq3t2eONa/d9z5PHPxhcd0ZT72ylsuTx1q2Se+cYqohu/5+CRF6PL1zDTs64I5Sg/ztSNSAmjIs9N3vfjeWLVuGTZs2IUkS/OQnP8Hu3bvxb//2b+jo6MB//dd/1buKRERERERERHQAMwBaD4B/NH5NOXLtnnvuwbXXXovJkycDAIaHh9HW1oY/+7M/w9atW3HVVVfh1ltvrXMtiYiIiIiIiIjoQNeUD9f6+/sxY8YMtLS0YNq0adgq3km+dOlSfPSjH61j7QIYEx5rM6KeoXC+nCErOobQOx4kozxFDtnX2hxhL7HDB/Tr7X2Hl4cO7fdtFzGOtW7CMsovxvD10LAy31ARVzlFh4GF1jF2nVy894E+l9euTad16KcjjrmI0J2s8mO3LVfdZYgiAKxcmU5PnWrPkyGMMvJNRy9aoY6u0E99kspl5XFzXI/ydM0h4bx5rmW+x3Dp0nRaZyAYLnWIMrZ7bTv4HNXxbv39o5PbMWN0Wp8mctu6CPnZFarjqvOguD7u3GnPmz49nee6TXEda/lZt115PHTbkmHSHa52J3fC0Ufb88TODE0fELsdF2247wjr85Y/unJ0evb0vfbC4qAOps2xog1a+6CzK3Pbuo1kReK2DOyyvxAHP0aKj1j3Ab6sezmd/0O2T0f6A8lZR5UXYGMpPd5zesf/2/K0/6zLhm4Hzr81BkWbFAW26HPeMy2MbxvJk5JEhrxW7J+seuX4uy40LUDs8l3r+PaDDZNuiKhOmjIstK+vDxtH8sO84AUvwPe///3ReTfccAO6PS9eRERERERERERE49GUI9de8pKX4Oabb8bll1+Od77znbjiiitw++23o62tDWvXrsUHPvCBeleRiIiIiIiIiA5wTTliiaJryodr//AP/4A9e/YAAP74j/8YU6ZMwXe/+13s2rULb3/72/EXf/EXda4hERERERERERFNBE35cG3y5MmjLzMAgIsuuggXXXRRHWt0YIodo1+xjsxDkZWYIxKdBiorN0QReZ5mzUqnQ3MRFJHDIHaZjZJnofJYp8dU57jzzdNRz/xfsXPjhfKul04KJROCnXqqPS9C/hnffecSuo9jtIvFi9Np3Q3KlHQjmRAAACLNKACgt1d86J5nzevq9Ps9e0tpHiV9YxCak65RyP0o83gBwJ13ptOl0hxr3mLRdH3zY2rOc0MkIOtvy865JukiZH/nzEvmIHOd5Un/GtJH6jSL8rNIQVfBeT9inQDZapmvyFVGcD+e1SEAVsPQOaBmzZL5otq9ites+g+qvG3ywOkGlNW4HMkDdf1d+U9922DsPr6iDLEPhs8+15o1eEb62ff8ctZRHaitoinM8TsVgrftyvkYnL9YFiLbkr6Zkx2jZ/41rYg8xLsG/Po+eSrEuJdz5rEOLKeR6kXUrBrzTpiIiIiIiIiIiKgJNOXINQD4+te/jm9/+9t4/PHHMaD+74YxBg8//HCdakZEREREREREBzoDjliisqZ8uPaxj30MH/7wh7F48WIsWbLEChGt5ozTT65RzcJMnpwdy1H0645DQ99Cwq0qti2HdbviEQLJbfuGRrnKiGFHv12eHCYeI+woRn2bcUi3fL6uQ+Zk9yDDYzTffZcn3MH3/I1yPhV8nHzDcVp0TNtb35pOO+LdYrS7Woclhrya/qQl9rwlS7LXkxEyixal0zoKzhVttXewpepyul55wgGzuI5Z0deaUDJqWZP9SrtnyJxLS8m+1g/3HTE6Pc+zvevQz1LJETInw/ccB9huB8UeG10NGQotomQB2G1ZztNldHbmD6vPU/cYoZ/Rr9MLFtrlD+xKP6gdpPsEKei81+F6roMj+3x5n6fv+VyVFBr2fsRxD+u6twtqC6rTOr4n/3UodD/q35LVLzr7It/YUr1PPfuw0PMrdJ90tKW/bcdAGnatuvvg62NWv5LnXjR2+LRr27p7kNcooomgKR+u/fu//zve/va343Of+5zX8rd/fmnBNRqfN31+fb2rQEREREREREREAZrycfIzzzzDFxgQEREREREREVHdNeXDtbPOOgu//e1v610NIiIiIiIiIprAWg6AfzR+TRUWOjxcjvG+5ppr8MpXvhIzZ87EBRdcgBkzZlQs29Jy4DWR0HwAvq+eLkJIHoEDTdZbxjVXTp9Qrn3su/+LPk4x2qBMxaHTcuzZ41eG7z4o+pypdd4wX3nyb1hkzp3AxF617CtC84HFyOek18tKQ6R3o2u3ynm++y7WPg5py0W3f50HR+b8Cs176Ss0t2Lo8Rhua6/6fdHnUJ5cQLKN61w9krx26vYuj6krZ1zo9dB3XhG8cyWVOqquA9jt2jd3pqseFbmwxOfgvE8ZbbVi2w4heaXybCtG3khXLr6sdVz1yDPPVX5wH5Px2yrKc53osv10do27TqH7wFWG9VlfmEWH1FVK869l9b9jbXusuoxX6N+Evvdh+vDu3z1J4lc/ombXVA/XJk2aNDqdJAne8IY3VF3OGINBz+SoREREREREREREoZrq4dqHPvSheleBiIiIiIiIiIhoVFM9XPvwhz9c7yoUIoHJHIobe6h2aEhAo/Idbh86BD7GcGwZkjGnN3u5WMP0fcuodYhYkdsqeh+HDqP3DYsO3XZTcMQshoR75jmGjdinueqvf0t3d/X901VACLkUK2SlEdtuEaGfRV9HY5QZFP6Xc9mQ5WQY55zesJDLGPu/ltfKPH1WyL1hESGFvmUWfU31VUT5tbxm1zN0O8++866njN3WsfkF8/1t3n8zuO5pHKGgmeVV2Z7PvDzncox+3JfMBCIZE3UzDceAOcuorCnbwb59+/D8889Xnff8889j3759Na4RERERERERERFNRE01cm2/P//zP8fg4CCuv/76inlvetOb0N7ejq997Wt1qBkREREREREREU0kTflw7bbbbsOnP/3pqvP+8A//EO9+97trXKPayDMcO8Zbk1yKDsOQiggRqOXw/tBwihhDwV3lNXtIcIgiQi1q+SanZhAr/CD2mzhd5fuWEeNNWqH1CH4LX8ZyeeZNVL59cOj1pFHC32K/fTBGOovQekyUdlxEmFejvMG9niGRRaTnKFqM41bLcN6ir0Mx+uMY+zHP3171vB8PudeaKH8zEIVoyodrmzdvxsEHH1x13qxZs7Bp06Ya14iIiIiIiIiIJho+ciSgSdvBwQcfjPvvv7/qvPvvvx8zZ86scY2IiIiIiIiIiGgiasqHaxdeeCE+9rGP4b777rO+v//++/Hxj38cF110UZ1qRkREREREREREE0lThoV+9KMfxc0334yTTz4Zp5xyCubOnYsnn3wSd999N+bPn4+///u/r3cVg4XmZCk6/r2I17e78hvEyLfkWw+pnjm5Yvy2InI9xVbEdmPkn/HNtRIr59dEVM9jX0SOk6wy8rTHGPvEtw8oIk9TM2jU/FFZ82rdj8fOlRSaHza0XiHtv9nbe6x+xHefuI5vs+3XPPsqJPctuflei/O0cd/8xbW+zw4pP1SMPNwxts18bDTRNeUZ0NPTg3vuuQfve9/7kCQJVq1ahSRJ8IEPfAD33HMPenp66l1FIiIiIiIiIjqAGZQfqjT7Pxq/phy5BgDd3d346Ec/io9+9KP1rgoREREREREREU1QTftwjQ4sMcJHm/EV6r6KCMdpFI1ax0YMmy3i1fGxFR32GCrG/vH9bUWEpRStnqHzjSok7FeLHbJYxLkQu02GhrXGCGl2XQMbpe0WETYe+ttCQvKK6N9iH5s87aDoPjkkHL/o9BOhKQJC26PvPX4RikwB4btOLYSG1IZolL6UqBHx4RoRERERERERUYDG/F+nVGtsB0RERERERERERIH4cI2IiIiIiIiIiCgQw0IbgEmG0TK4t/xh40ZrXktvb/aKbenhq+fr513lu/IUDA6m022qJfrWs6V/R/qhVLJnyv0jlwOAdevS6e7uzDKGe+dkb9uzjqGvD/ctr57H3mXvYLpteaw7SvHr0d+fTnd2hpVRRD6kkP2fJzdJjGMa+tt8c5A46zgwkE6rTqBFdwoB9YjR/mMfQ62euYaKlrXvQvdPjDxBMXJTuYSeo/b1MP7/95T9sewvAfs0bG21582a5Vd+0TnjZB31pb6e+epil++77VjXgtj7JDQ3XtE5wHzvU33LyLP/Y+T8CuV7bsTuZ60ODWokR8a13VneOJaNcZ8dQ+ycaEXkNyzid2/fXv6vahJEB6ymHLl27rnnYu3atVXnPfTQQzj33HNrXCMiIiIiIiIimmhaDoB/NH5NOXLttttuw44dO6rO27lzJ37xi1/kLnPjM7tw1T/dgXvWbMHkSa3oO2Qqrnnn6TjhNT/EosO7MbB3CFM7JuGvLjsWr3/FQgDAdTc8iHd/8S4cOusgDOwdxJsuORrvePXxAIB/uv4+/Nv/W4u2thbM6i7ha1efhcMPmRr+o4mIiIiIiIiIqOE05cM1ADDGVP3+4YcfRmfOuLAkSXDJe36K179iIb7z8fMAAKse2opNz+zGkYd24d5vXAoAeOTJHXjle2/G8HCCN1z0AgDAq847Al969xl45rkBvODy7+Kyc4/AYbM7ceLCHqz4+ivRUWrDV374O7znS3fhuyNlVxgcTMfN3n+/Pc/1W2Q4oxIjHCeEc2j2/tDXEYOD7aPTnqPEK8cVb92aTusQWlmoCrcd3d+AHW+ilhu88JWZVWlv2rOnNmTokdzFHY5I54rjKz/rWCBUnyW3VZ5Xu5CweoYMVXDFURWoYh+46uGK583oFGKFNtYyDMNbZeP1Wi047NEVm1+gPCExwSHHAcvFENoHhO5+eQh19ymbjzzV9OVQXkb1bcVU8f8EOwK7Ed9wKFeo3fbt6byeHrt8177zvRfyDrnUO7mtHdWEhn0VEfofUg+toa5tgu/+kWHROuy6lqH5edYL2V6MkNcYy1Vcy+R5ozqZrDLzHJdmCMmO8bdYPUOMQ23YUP7vvn31rQdRrTTV44EzzzwTQPnB2pVXXompU+2RYLt378bq1avx4he/OFe5t658CpPaWvDmVx4z+t2ShT1Y/9ROa7kjDu3CP111Gt71+TtHH67tN3NaCQvmTsPTW3fhsNmdOGdpmqvrtMUH45s3/T5XnYiIiIiIiIiIqPE11cO11pFMu0mSoKWlZfTzfjNnzsRf/uVf4r3vfW+uclc//CxOXtQz9oIATnpBD9Y+tr3i+8c39mNg7xCOXzCjYt6///davPz0w3LViYiIiIiIiIgalwFzllFZUz1cu/XWWwEA55xzDr7yla9g0aJFNa9Dktifv3vLI7h15dN48PHt+Or7zkRpsr1Lv/mT32PFmq34xbUX1bCWRERERERERERUC031cG2//Q/ZYjn2iOn4wc8f8Vr23oe24ui+7tHP+3Ou/fr+TXjFO2/Cy194GHpndgAAbrl7Az5+3b34xVcuwuT21owSAUyalCYRefnLMxfLkyMktij5NlRilI62gNey6/wmfUf4bXvBQvfnEfp3thecq6eexy2rHrFyq2SlBHTmUNLJczwTEcnFfPPvVGw7MDdJ0Xncgnnm64qRt8rZZkod2YX2HJy7HnnaYIx9HJqnyZd17gXmxgv+nQXnWWuUnGgx+tki6hij/fj2fTO60211d4+/rWoxchK56JSqIdv2vc4566t2cuw2Hpp/0Devne/1PfRaWc9z3jenYdHbDt0/ofUK6TtibSvz3MuR+zqrLnn6EVcfEKP/D85r6lkP32tBEX8zFJ1/dvHi8n+nTMm9GaKm1JQP1wBgx44duPHGG/H4449jQCXONMbggx/8oHdZ5y6dg/d/5W589cdr8BcXHw0AuOd3m7FrwE5cu/6pnfibL9yJv758cUUZpx83G689/yh8/jur8Q9/tQz3PrgVb/rkr3DTNRfg4BnsUYiIiIiIiIiIDkRN+XDt//7v/3DRRRdhu3zjo5D34ZoxBv/1qZfiqs/9Gp/8z1Uotbeh75BOXPOOF+LhJ3fgxNf+EAN7hzC1YxL++vLFFS8z2O+9rzsBJ73uR3j/8iV49xfvQv+uQVz+/lsAAPN6D8J/f+b83L+ViIiIiIiIiBoTc64RAJhEJxFrUMaYZH9dTznlFAwNDeGrX/0qjjvuOLS3V38V+sh6SO66slbVDHLl5x/Dtd+4aczlingVeqO+5r1RXjEdY//U8rc06n70VcuwiDxihDyFhtnUMxQrRKxjERIyV+vwQt9wlhjqdTwPBDHC3mOEcDZqXxGqUcJ5Q/ZJrLrHCBcL2ZYW+14lT3m13AehYof1NervLFpo2HWM0NUi0peEiNEHuxSRxqAR/hZYtmwpVqxYYepdj6KcbExyZ70rEUE7sDJJkqX1rkcza8qRa2vWrMH3vvc9nHzyyfWuChERERERERERTWD1f5QdYN68edizZ0+9q0FERERERERERBNcU45c+/CHP4xPfvKTePGLX4yurq56V4ccQt+AU8s3oR5Iah2OFhK20yjhi6FCh9u71juQw3FiaJRwqwN5H1N9Q41inMu1DgUqOuTSN+y61uGwtVT0Ps673WbVKNcQ3/Ua9VrTKPVqhvZZ630V++3oLs2w/2vNoElHLFF0TfVw7XWve93o9KZNmzB//nycfvrpmDFjhrWcMQZf//rXa109IiIiIiIiIiKaYJrq4dqvfvWr0WljDLq6uvDAAw9ULGfMAZsvkYiIiIiIiIiIGkhTPVx79NFH610FIiIiIiIiIiKiUU31cO1AZZB45xbJUuvY/pBXYud5rXbsXFJFv8K+lkJzcoVyHYuQnHrNtr/H0qg56RpxnzdKPQD/XDeNuB+p9mp57Bs1L2Wtc7rFUMtr4EQxEX8z4P7d9dwnMa5RReR8bJQyYvdTvuWF9uOh9Q89hhP1fC5C418RqRaa8uHa448/njmvpaUF06ZNw9SpU2tYIyIiIiIiIiIimoia8uFaX1/fmHnVjjjiCLznPe+pUY2IiIiIiIiIiGgiasqHa9deey0+8YlPoLu7G5deeilmz56NjRs34oc//CGee+45vOUtb8Evf/lLvPnNb653Vb0kMKPDefOEmMV4vXctX2Gfp4yWwb3ph7Vr0+mBAXvB9evT6YMOsuetXJmW95Of2PPe8IZ0+rLL0unubmuxGOGkg4PpdH+/Pa9USqc7SnZ5ewfTbbd5nqm59vE4Q5HzLGtt65Zb7Jny89/+rT1PHY8sch/rJtLZmVEP2PXX68lj48t1jkYJm5U/VH/euNHedl9f7jrGUESIgW8IuasuoX2Yb8iub/nqMFntU05rO/qzy3e1cVc/IptP++AuZC7o2QGFtq2iQ29jhG67ygtJk6CX9V1P91Pys76+bN+eTm/dmpaxdKm9nDy8rkMf43rYDP2Pb18NABs2pNNz54bVIyjs9Lbb7M+iv9/Rc4Q1y9WvxBZ8fOW1f9o0e9773jfuegTVyVFOnuuQ7Gf1+ZV1DYnRl2qh6SdipLcI2ZZeTu5HfSuk75+t7cm/J8QB2LTFrqP4k8E6lwFg8eLM4oP6HL1/dN8txTh/Q68v0tatyFxO1v/mm+15kyaV/7tp01i1JDowNOXDtYceeghLly7FD37wA+v7D33oQ7j00kuxceNG3HDDDXjta1+Lb37zm3WqJREREREREREdyMaKqmsKSVLvGjS9psy9981vfhNvfOMbq8574xvfiG9961sAgMsvv7yW1SIiIiIiIiIiogmmKR+u7dy5E1u2bKk6b8uWLegfGZ/a1dVVy2oREREREREREdEE05RhoWeddRbe//7345hjjsHJJ588+v2KFSvwgQ98AOeccw4A4Pe//329qpiLQTLuPCGhr4audZmS8zfLZDEy55pOWHHDDdlliJwku554wprVcckl2WVm1DFG3jmdx8s3l5qVG8mxThH5iuzcFi2Z83QOjN270+mpU9P1OmSePABYtSqddiV8cGhvS393u8pPYR03VckW8blU6gjatlWeY/97HxudfEM2Er2TXQmXxluPHJw5p1wJZxzzgvL5Oerlq4g+Uh4ambcEsNMKuvKlyVxtC+fuspbDYLrvdg22W7NkE9G5W9ohctHI81Ln6/PsqELbVuh6Ibna9DGT+0f/TNmvuIS2Qe82PpAe7w6VtO/O9Wl+LZ2GS6YhnT49ndaHVy43a5ZXlZzy5JYLOc9j5aa1yJO00/4fs64y5s4d/31BSF7Hlle8wi7kJS8ZnRy87r+tWa4u2KdO1erlO88i97G+GfrIR9JpnXu1jjKPjeNeQv+2fpEvU9/i9PT45dZ15uXLyClWUWeHGHkvi86dad3n6X3lSrwr54kLruwTAeC009LpGd1heTWtbcuEjIDV/lt6e61ZWwfmjE7rdtDVmf/vkDz5YWX76Vi/bnT65xuPsZaTtwj6WiP33c9+Zs/bv0vkn3VEB7KmfLj25S9/Geeddx6WLVuGefPm4eCDD8bmzZvx+OOPY/78+fjiF78IAKMj2IiIiIiIiIiIojLG//9eNLJ9++pdg6bXlGGh8+fPx9q1a/GVr3wF5557LmbOnIlzzz0X1157LdasWYP58+cDAN7xjnfUuaZERERERERERHQga9pHrJMmTcKVV16JK6+8st5VGb+hoXS4sIrb8R1aHfpqa5egsCwdthb6FF/uB/kObB1TJS1YkPm5IuDvwgtHJ4dVCIgUe2i7joRwle8bkhT7led6nXakx1SHnMlR73qgqIzKlmFIpx56qL3geeel0zJGLoddA+lv0U1Q7vO2Nrv+0J8D+O5/13JWeG2b3R51m7HKlytGeF97aEiVM+TA1QeIeTIEErD3iWsfSDFCt7UYYaeu8Gnf9axQvu3qZBPnjSv0vPJQiC/kBnx3OOK0/5CwOD3Pt45WCBWAQdGn5fjZXtsC4lxD9ralV7CBniOseX1iWl8CZf8so5V0yloZFpqHFUnZGTc8MpasdlcR9ui4D4ix3Rj3cta855+3Z15zzejkjJIdNj7clj/lQZ76ex+3dWnIWcW1fu7cdFr8liJEOUd1Z+qIlBkYSPe/ylCCOdt/Nzq9Y24ahidDASvK12GP8r540aLMeviKkeol9L40tB7WfYbuyMX+kmXqQxh4+2lfqGXsoz5OcoMqRvKInnTecM/BXpvNFWIv6qjvyYbFfXCLuIiU7CpiyZJ0Wod4nn129WkgPZ3XrMmuHtGBpClHrhERERERERERETWCphq59tvf/hYnnHAC5s+fD2NM5nLGGDz88MM1rBkRERERERERTTjMuUZosodrXV3lYftnnXWW8+EaERERERERERFRLTTVw7X9Lyq47rrrcq13xptuLKA28Uxu7UxzUeikKRHyKPnmQQgt0yU8z44g94HOYfCyl6XTOmHCpEnptMzbBmC4N33ttevt8BWv+w7QDpHjR+dbivx/OXLlYBB29GfnLOvuFjmJVHV7etJp/VMOOyydnjJFzBg5j6vODEx6dP/96bRORSNPKZnWRYuRWytP7ha5n599Np3es8deTr6xXR+bDrm/8iTzyhCa88g310fFeiLXh0zHA9g5PeRr3vMI+T258rxk9GF6u21t6TwrdxrcTV7Os8qUJx7cdbb6H9clX2wsNF9OaF6p0OuSbz5Ra57KjdRWmpG7Xq7l8szzXU72rfqWYPfudFr2FQCwalU6Lc8nXcb06en0rFn2PJmjbljlqKzIC+VB71O7e7DnybyjQcd6jG37rucqI2u9IvI/Osu/6p2jky0DuzBesa4FVjkyH5ju8EVD0O0spC4xrud5ypT3n7r81tZ0Wvf/mJ7eoPSL1Gld+tZ/7dp0WiZTBOyTSOVcy6pzrD64SPrWwTsPq87NLD8vPj6z/OA8xzJnmeyEdYcs/35x5D1zCf57TmzPtZ6sxwtPy94fS5Zkl6H/TNufg+2WW9xVJDpQNNXDNR+33HIL3vnOd+K+++4b/e72e59wrFF/b3r1q+tdBSIiIiIiIiIiCnDAPVx77rnn8MADD9S7GkRERERERER0IDPmwMi5RuPGVtAIOjrS2DX9Om859lnPC3hvdIyQlWqfR8twdCx6qPD27WkZOkylTbw6vkPG8qlwKCvmT40Tl8Ob9fDvZ7ek07Ofeyj9oPap7yuxXazXXAfuf5cYYVqDg2k9XLksdXnd3el6+tXcN92UTstDs/hvj7GWa4nw6vijjkqndT1coaD1JE8VGcqq67txYzq9fr0978wzxI6tiDdpDHuRtn/dPcjfo6OE7rwznZavgC+VssOO8oS6+IZXxAj58w6fU+EsLbq/y6D7VqlUEv3P4F5rnqtvsuoR2DdlqXUIknWcVB+/VURYzQvsK2KnSchjaCid3h9+s19WFJ7OPuG8lRAnrW4/VsOTnbzjPsAVMu1ih9Hb68yeNf7UF6HXYt/t+fYjWlC7UGGDLeKiMlzqsOdFCJ337oPltkV4nhajv/EN3w0ts6V/hz3Tav92iN9zz6XT06apMsWyMoqwok0sXVZ9WonxO4to/77ryG23qzwq7YOiv1F/Dln7X8eMiuuo7MPadWim4xz13ieyo9I3o/KGR97UILsrDVXE3xOu5XYNpPtuxQp72fPPL//3H/8xqEpETafxguyJiIiIiIiIiIiaBB+uERERERERERERBWqqsNBHHnlkzGU2yhiqJjGINuxAV3m61GXNm7H1qfSD/m1yWLHvmwLVMOjYbxJ1vQlMvrkMAORLX5cvt+fJ9RYvTsuc0V3KXtARiqJfHiRX2zV34ei0azh20cOsiwgZcpUvy3SNqHeRZRzRZ89bvjzdnhwNv2WLvdxs9XY6yTdUR4YV6/rH2P8h5eUho//0qfz00+m0Dp+29o+j/ccIefING3T1ATp88eqr02n5xlTAfmthjJCJIsIeo7cF+UY4ALuWnjk63bFBhK+rEOAO8RrfvYOOduzo/+2+VL25LMIB8L3WFP4Wu9WrrY/9bWl4WkiIH6DCJdUJbC2pUxdkbE9/L6OL9O7XoeKS7FfkIdTXQ+dLyeXvybViRhkR7kH0G5VDuK6Hodfioq/h3uXp3ALWK9HtsNCQ616e3+L7RmU5r/CQzhjHQof8yXOhe4Y1S3bXMVIyFXE/6JoXkkIhmOwrdK6IRx9Np61X0MOOddf9koi3LTwlgWwXuv7yPFTXia1b02uuPn1jvCnZJUZ76hjYNjp90012+99/2dCZjQ44zLlGI5qqFRwlEytlSJIExhjru5NPPbmoKkUxuX3K2AsREREREREREVHDaaqHa1/72teC1lt69dLINYnr4eseq3cViIiIiIiIiIgoQFM9XHv9619f7yoQERERERERERGNaqqHa7W0+obVeOCGB9DS2oLDlx2OZa9fhkdufwQrv70Sz254Fpd85hLMOqqcFGjDvRtw93/ejaHBIbS2teLU5afi0BMO9d7WtmeB224rT//hebvsmTJHkU5Y5LBrMI3fl7Hw6O72LsOXjNd/ZL2dz+Cgg9Lp/b+xWlV+8AN7nsw58IIXiBk6IZUjvl0uqlMwyNV8UwjFyAMSmmvImXPBkQ/JN1dD6D7IqgaQnWtraMhvW3nI45kn5YFv/g35W9oDe03XcevqTA+AfKU5YO+vww7zr1dIbpEY+Uj07+wQbUuXf9pp6bTOx9Hamk7LY6q7AOt3qzw4LRH6u5A8SqH7cV3vmdbnhbLvFvmudvQutJaT529wyg95knaqnGtipxeRq6emuWIWL7Y+HiPzpTluiZy57CD2l8pX196WkdcOdp5E1/6Rzbhl41PWvMHBOaPT8pwBgI5Suu2+vrR83Vc724w8MV0519qy8/6p1uRN7hNZxwJuY6LkpZRc1/MY5Tu3p+8DRJ61wnMaOhSdO9b1vSunm0tmrjlHnmO9bdc9g9UuRF80rPNe1lCM/jj0WmD1Mfqm4Ljj0mndCYTc1Cuh+RQtPQen5cmkl2OYNzd+Ll9fUfINi2N1xRXVc67p69MBhznXaATfFlrF0L4hrPz2SvzRp/8Il37hUjx060PY078H0w+fjpe87yU45NhDrOVLXSW87OqX4fIvXo6zrzobt37u1jrVnIiIiIiIiIiIaomPWKvYvX03Oro7UJpawrbHyyMH2jvaMblzctXle45M/+/E9HnTMbRvCEP7htA66UB/TE9ERERERERENLHx4VoVyXACGODe79+LFd9agUUvXQTTYsZeEcCjdzyKniN6cj1YmzEdOPvs8vSOQfs16V29YnizDslwuPTSdPp970uH6MowLECFrASSQ4rXr7fnybBQPYpbDhHWL4KVkTtTp4ptqaHyrmHKzz5bvQzAjh6TkS06fNR3W76ihGTo13vLdiFfRw5YQ9R965UrZKJ/x+h0x8aN1ryFol43rH3h6PSSJXYZoeEyVj0KCGOQ2jc+nn7Q70n3pWOxZMiDGEo+OGi3cXl49flbRJhNkXR9L7ss3XZvr72sjLpZuzad1ufoEX3iQ44h+SHtzjfUyxm67bCwpPr45W9Npy++eHSyS51Ew23ZYV/WjnTtH1fn5wizCe07suQJvw85hhXlO0IzW7anYbnt4kTcNdcOy92wIZ3Wu1iGY+qQ0aB2py6kssufNCm7DFfUlLxW6mi3zm4R4tNth/tI8poqz1cAOO20sBC3rP3T5WiqWlbzzxM26BvullXeWGX4lDfWei6uMrPqpSPyutpEH6YbuWd4c0g9xuIbluuaF7RfdcifOKkqjv1Amu5lF+x7fHk7d/zidD/WOnw3Rj/uXE+ciFuetfsD2W9196Zh7oM9c6zlrFumivLTya467juXWoaej7XseFW0cXFffPy6n1vzdp12LgD770GiAxkfrjmcePmJOPr8o3HrZ2/Fmv9dg6NfdrRz+W2Pb8NdX78Lr/i7V9SohkRERERERERUF8y5RiOYc20MpaklHHnmkdj6sHvUWP/Wftz8iZtxzlXnoOuQrhrVjoiIiIiIiIioWMaYFmPMO4wxa40xA8aYJ4wxnzXGeI9PNMZcYIy5wxjzvDFmmzHm+8aY+RnLTjPGfNEY8+TI9h4wxvylMaYirNAYc5sxJsn4t3Q8v9sXH7Fm6N/aj+1Pbkf3od3Y/NBmdB/anbnsnv49uOmjN+GU152C3mN6M5cjIiIiIiIiImpCnwPwNgD/BeCzAI4e+XyiMea8JEmcccjGmFcC+AGA3wJ4N4BpAK4C8H/GmKVJkjwllm0HcDOAEwF8EcAaAC8H8M8AZgP4SJVNbAXwjirfP+L9C8fBJElSi+2MmzEmCamrMQZX/veVudbZuWknfvTOH2HKtCkwrQbTDpmGc95xDjas2oA7/vUO7H5uNyYfNBkzj5iJC/7uAvzmu7/Bqh+swrQ500bLuODvLsCU7ile23vsC7/BTe/7VPWZ+5OxAXhkvT3Q8Ig+0XZVPraHtqe5tmRqiDyvsHe8aTxo5KuO+d+2PTtX2+rV6bTMv6bzMsnflqdOsfMP+Coi94N3TiKR96OCK19I4L5qijwRAXlGguuk827Jc1YmQXK9Yl6flI5cN3JRV27FWu7/ULsG0jp2DO7IXtCVN0yJkesvswydsGjVqnRad1Ty2C9alD0vUEi7LiLvWRH5onxF2bZMKqaO4Q6ko9V377bLmDUraNPZ9VBCzl/XOrqLcd0HSKHRML59k+8+0PWVOa1kuswcXYU333PIecxEnj8AmTdtsa7TWXb02+XLrqh9UN1LRO6nQvONhfZTvudQEbnyZKpa7/y//eoa6Eqo6Fmn4Ly7Gett2WIvN0X8OaSrKG+N5KVTpfG1/i7Qt1MXXphO678TihZy7jnPX33/IBpDLdtx7Pa+bNlSrFixwi+BeRNa2t6erKh14yuAeeKJlUmSZI7wMsYcC+B+AP+VJMml4vu/BvAFAH+aJMn1jvUnAViPcqbEY5Mk6R/5fgmAlQD+PUmSK8XybwHwZQBvS5Lki+L7HwK4CMBRSZI8Jr6/DUBfkiR9/r86Lo5cy9AxvQOXf+ly67v5p8/H/NMrRyye9KqTcNKrTqpV1YiIiIiIiIiIauXVAAyAa9T3XwXwSQCvAZD5cA3AWQDmAPjQ/gdrAJAkyaqRB2OvMsb8VZIk+0Zm/QmAXSPlS9cAeCWAVwH4R70RY0wLgE4AO4NGZ40Dc64REREREREREVGWUwAMA7hbfpkkyQCAVSPzx1ofAH5dZd6dALoALARGH5CdBODekfKlu0fqUW17hwLoB/AcgH5jzI+MMYuqLFeICTFy7cb33Zh7nYOmHhS0Xoierh4r/DPLEd0qXADdohD7teALxMcYw9Wfftqed9RRohaiGo6otQozutN6zVhizztJfI4RvhVD0WEYvoK3q0KHrYMlhjK3qDH7Mfa/az0ZPhAjhEpztfEYoSje9MkgY5SkwHhsXf/2jEVjhYMUHkYrdLTtTT+U7HgZ6xgO7rXntbVn1iMkZM6biukZPuPMzEVD+uc8+7SW/ZSrbfnWo4jQeRdX+7faliOnQpcoo8sRzhX62+R6MjoVsLv1BQuy15PXc1dY1hNP2POefz6dVrcZVl1kJJPuwmS0sw53m+OIogk5R3WY6TGl9aKS4od3Zm+4rtf6PLk7AujfJo/hjLY03PCWW+wXc8lb1La2Dmueb4RtjLBZl9BwN+8+ILAPk/c4U1S2GHk+uO6X5TnV1mkfmxhh+6Gy9rnrXk6HdMo2eNNN6fS119rLrVmTTp94oj1P9mmve02EsGJXfLyelxHDG3wt0/cPGccwWqoF8XvkPZNLnmt9ra/pNG49xpgV4vO/Jknyr+LzHABbkyTZU2XdJwG80BjTniTJ3irz96+/f9lq6wPlh2MPAJgOYEq1ZZMk2WOMeWZkWelRAP8H4D4AQwBOBfBWAC82xpyRJMn9GfWKZkI8XHti9RNjL1RHb7oyX044IiIiIiIiIqozY8KTjzaWra6cawA6AFR7sAYAA2KZrIdr+//vTLUyBtQyrmX3L2/9354kSd6glvmBMea/AdwG4J8AvCSjrGj4OJmIiIiIiIiIiLLsAjA5Y15JLONaHxll6PVdy+5f3rUtAECSJL8C8EsA5xhj/N42OQ58uEZERERERERERFmeQjl0tNoDr0NRHvmWNWpt//r7l622PpCGgT4LYHe1ZUe2PxPVw0urWQ+gFeVQ00IdEOMXJ4rh7hnW56LzgMiw/74+e15WWhA9ItY3z4VLLfNJFJFrJXa+gTyvx7Y+y2QWALB2bTp92WXp9CI756Mr15CrXr65IfZkDfaNxLceMfK8ONuqZy6LFnUSxW7jefJhhGw7Vr9kbdsz15zvPs4jdj8bmgPTmQ9G0vvKStaTY55nvVxi5Iwrmu9vi9GPu84933ahu2NX9yzLlLnNXL9FlyfzIemcazLPmpx2lbl+vT2vtzd/PiTXfqy4Dumbl4zlsrZ1IHC1s898Jp33icvWjU6/8jyVwC8jr5Qu37ceoWW4+OZOC92273L6XJg6NZ3uKPldf3UZMreiPkdnqM8hfPPPhl6/JN0HrBDZnTZsSKd1muCBgX2j04ODk6x5552XXQ+Z403nm7TI66Gu5D33pNMyESUAXHFFum2VD89XSH8UnNtMJ+6Ufwuc9kKvImK0A2pa9wB4KYBlAH61/0tjTAnAEpRHiI21PgCcDuAWNe80ADsAPAQASZIMG2N+A+BEY8xkledtGcqDxFbAz1EABgHoBPbR8QwgIiIiIiIiIsprf861Zv83tu8CSABcpb7/C5Tzn30r3SXmEGPMImOMzIv2CwBPA3ijMaZTLHsCgLMBfD9Jkn1i+W+PlKsT1F+F8sOy74kyphljWisPjXkFgD8AcHOVt45Gx5FrRERERERERERUVZIk9xtjvgzgrcaYHwG4EcDRAN6G8oOz68Xi/wDg9QDOQfmFAkiSZJ8x5u0oP6T7lTHmqwC6ALwDwBYAH1ab/CqANwD4J2NMH4A1AC4AcAmAv0+S5FGx7Dkjy/1/AB5B+eHbMgCvAbAVlQ8EC8GHaw0ggfEaRusMVVBhQjKMyneIrufbpXOV0dZWbEhkjKHJtQwBKfoV1c6h5W98Y+a8pzam6w2qcIR53WHhgL4hYfPmZq8TIxzBFU7kEvvYhB772O0zT/iub0htjDJcor1yPvI6IWGPUdqVjJ0B7DCPBXY4lytMxRVuay0X2AazfmtoSF6MUL6i++A8+yqkzrn2gWfYr1xMh611OMJJZXianHZFLc+enT3PJTQ8PmS9okOA82zbNyTMVYYMi+vYavcdn/hIeoA/9bmTRqf/UkWFdkXox11CU4hkhQQXfV/n2gddnWrb8gCoMRMtGXGKnZ12+Rs3ptM6ZLS7O/t3h7Sf0GV9+ykd1rp0afV58jcDwPnnp6GgF15oz2tvy962MxRUsNJKLFhozbPSo6iwSt9QUFd4akh7Db6fUimGfENBiYSrUM5hdiWAV6D84OqLAD6UJMmYjTlJku8bY3YDuBrAZ1B+G+jPALw3SZIn1bJ7jTHnAfh7AK9GOc/awwD+GsCXVdEPAlgJ4EIAswFMArABwLUAPqHLLgofrhERERERERERUaYkSYYAfHbkn2u55QCWZ8y7AcANntvbDuCtI/9cy60BcLlPmUXiwzUiIiIiIiIiorz251yjCY+toAEYJOmQ4AE1Ztx3PLODHG68dzA7XEAPwZafdX9x5JHp9HTxUtvVq+3l5Iu6KsNM07q43jLq8/1Yy4aG4BX9Bqs8dckSGq4nybc16TfCybDNPNsOWSc0lCP2vgrddmh7scMF/OsYI2w2Rniqb/n6JVUy0qKuIdMFtzvffaf3j+z+OwbEzLnqpBQdrf6dMoSoog/OCBusqK/369biK/qtjsEhl1kqcyOEVMsi66VvEXbuTKdnzVLX98E0zKkkqqF/S7usoq6/+DzY1mHNkm/z6xXho66fPGtW9jxNtl1Zpu4jY4R/FxEKWuR6rtBJHTb4gx+k0694xTxr3uz1D41Ov/cdfWn5gW9eDn27e4zQ/1q+pdB5muuT9NZb02n56lAAWLIknXbkYpHb08XLee0F/1UX4x5HmzkznZb9mXpxvfX3hAwDHUuUEGFxYzzcc3DQtjoiXzrz3A+GnHux+jO+PZQmGrZ4IiIiIiIiIiKiQHy4RkREREREREREFIhhoUREREREREREeTHnGo1gK2g0rnw2riQPMvmJLkckNtLnvUzxsEC9el3mUNm9256XlTdF50iQ+RM22G+Atz4vXmzPc71aPIRr17lyEcTYdtE5g0K3LcljL/NfAADWr0/L6zti/JVSit4HRW8rRs670OtxSB60WucVlHnEdE7GM8/Irn9Wmq/Q3G+NmgdE1mtGtz3vqY0iL2XPjNHpPPlmHGl8/BueZ561IvZp7JxKof2xM79hRu66UK46dgzusD9PER8G7G13ZBw35z7Q9Zef1XVU5/aKravT79jHODaudubbBn3vJXQZvrkzfXWt+qX1+c+uWDo6/bXv2Hnzrrhi4eh0h+hXXPVw9qX6Rk/cf7aIzkjn/23Uv0lDjs1T2+19POfhh9MP+mbXk74/l0L2XWj+39D8trIrkn9buDz/vP3ZeS0Tan6fN7g3/SA7RZlUFoh+naioR9H30joprCR+a6PcWxHVC88AIiIiIiIiIiKiQHy4RkREREREREREFKhBB2JPLAmM1zDainAN6d577c+HHZZOi7HUugy5XR06KYdg6+HYWSEOOgpFbk6Hks6dm06vW5e9Xmfn+F/frsNX5O+RIVZ5wkF8h2CHDqP3LSO0jnLZYxY56jirL3ueQ9a2az1k3ArrkMP3AQy3tWeuF1L/PKE0Urvj1A7dXyEhAjFCLnUZMtTxzDOyt+0KI/ENy2rU0E8XVx3Xrk2nlyxJp2d02p21bMdFh8SEtvGs8sZaL3bIXGgbl2S4blm6/+f0jr98l+HOLu9lo7QFEZ/drtJPLOyRNwbd49+WEuX8DQi/Kjq8Kk/5Qe1fxtQD1g3W8uXHe2/bl1Wvnh57pswFIEIi29Vx2TWQnkP6kLmuj1lCrxO++7gde9U3aSV7e9W2L7ssnd640Z6nb7wz6xF2LmT9tjzXypDzMLSNz56Vrjf7bHu5Hf2iHo6b+tB7dRfnPYhssK7wSM/7Td/6F51ypqIeDP0cW6PGt1NN8ewgIiIiIiIiIiIKxIdrREREREREREREgfhwjYiIiIiIiIiIKNCECA4++dST610Fp9LkKVlpF6zUGYPq1eUzukVM/Ykn2ivKvBciBtwVJ69DxeW2dS61rDwOVk4EtZ5+i/MNN6TTK1bY8y6+OJ0+7TRZXlguhX377PXk/pb5PGr+Cm/PHBihuRW8c4ls2JBdxtx5fmU4th0qKN+MPplEngtXjjXXtmOsEyPXk2u9wl/D7inPb5F1rjhs4rzcK/o+mSMxT/kuRee18y1fl3fGGel6Vv+ccb2oSu5Y3QmLHCq+14kY+WxCz4UY2w4tQ6b40ddD61rsUNecgKIduHKvVpA/trfXnufZZqQY+a7yCK2Xbxm++ZCK7p+t/XjeeZnLFX6dUCfH8NJl1bf9zW9ay3XIz1/6kl3mggVemw79bSH9eIvOayfOhRbdQYjzZrh3TlA9fHMDhwrNaxpCly8vUW1t2f2BXG7TPjv35OzOgGNYQHspovys45Gn/NjHLc+1rFHuTQtnDHOuEYAJ8nBt6dVL610Fp0e/8Vi9q0BERERERERERAEmxMO1EKtvWI0HbngALa0tOHzZ4Vj2+mV45PZHsPLbK/HshmdxyWcuwayjyq+/HNgxgJs/dTO2/H4LFp67EGe82fFKPCIiIiIiIiIiOmDw4VoVQ/uGsPLbK/Gqa1+F9o52XP/n1+OES0/A9MOn4yXvewl+9c+/spZvbW/FKX96CrY9tg3bHtuWe3uukaTi7dLBYX0VoRyeOkp+w8TlPFlfwK6zDs2UbyefPNle79hj02k5wt65DxzD9KdObc+a5VT0EHLf9XyHYweHW4nQzzxcZcowKvn2ed1G5oQ1z+w65Qj9lHXcutWe19fnV4ZvOEURgsJZ1DoxwlVdy23Zkk7PmpVdhg73lGXmCQX1rVdWSHYRIdgynEWHv8p+Vsvqp5xtXG9AnnyuZcXGXCG6FXWpYThIIeEljnBJqbPT89zWobeyk5FhuAAGS2loU9FhX3n6RUtWzgoA27an9ZTXaR0VZ/cB2b+t6P6zZWBXuq1ShzXPtx3r5XYNpJ9d53IMvvcBoaH5Mfa/dx/5mtfYM9/73nRa91mOsNCQkLkYaQCGO+2wxJa1v8teUfQrGzsXWrPsDC7jv88rWhHnqOx2Xb9NdZ+ZfEMWax3+GiONhOt8LaLN+6rntokaDR+uVbF7+250dHegNLWEbY+XH5a1d7RjcufkqstPKk1C7zG9eO7p52pZTSIiIiIiIiKqF+ZcoxFsBVUkwwlggHu/fy9WfGsFFr10EUyLqXe1iIiIiIiIiIiowXCspsOJl5+I137jtejf3I81/7um3tUhIiIiIiIiIqIGw5FrYyhNLeHIM4/EprWbCtuGQTIarx4cm740+42oofH7Ia+wd60ze1Z2TP4pp9jrTZ1avfwKMh/MnXfa83bvHp3sePJJe97556fTdtILazFXDh5vP/5xOq2Ty51ySjqtE0pkbNuVZyFPDomi86uUSmn5c+em33e07bUXHBDHUCfriVwn/Zvl5mQzyCNGji4X79wfKjdSVo6lIvI5ucqYLfKsufqY0HqEtmPfXD0huYz0cjKflsyrM5asdFc6B52V90l3GzIHmG7koo+RdXakr4xxijrlaQe+7cd5nRPnSYw+crh7hv2F+Kz366D43K5yUWbVo+jzteI3i/2j26NsWnKe7O8Bd67ForUMiuuNaLyufbB3UJ+/ojy13s6dMu9c/LxYWW03NK9ajOWK2Pbwk09nrtMoOZuc9Vi0KJ2WeRaVXkdeYt9t1TLPZUX5g/b9W0guR13GrsG0jA5xfXH+zhz18N3HofdrvvlbfXMm6uYjr7ntNfyrXff3rrygUj1zAhI1Aj5cy9C/tR/bn9yO7kO7sfmhzeg+tLveVSIiIiIiIiKiRsGcazSCrSBDS2sLfvrxn8K0Gkw7ZBpOff2pePTXj+KOf70Du5/bjZs+ehNmHjETF/zdBQCA6994Pfbt2oehwSE8dtdjuODvLsD0edPr/CuIiIiIiIiIiKhIE+Lh2o3v+WGu5Qf3DmFozyA6O1vLn7fvxM0f/m8AwPRZJUyfNTJGd/fu0bK7Z0wGZqQhf7/+0s+9t9fTdfDoENtYoVFZw5Rd64WG48QYsn9EX+hwbOGGG+yZMgZn/Xp73mmnpdO9vel0Ef/XYevWdHrfPnve/PnptOM940W/Vt5VnvPV33Jovtp3maFw/So2Su4fHU/kG3Igx6/rseyOUKB2pMu2d9r1Dzk38oQBBIV76vYp5+lYAh2elne7YwhpP6HhPjJMK9YpGrIffOvvG6I4lqzf6gpvxsat9sKdIg5JFyg+b9mSfi3D8l31iCU0dUG9uNqBb6g8ALQM7Eo/bNyefi+vSfC/3rrqZXcj2WVUhK46utaDDkqnn3kmne4ohZ3nRYcDOo+T+HHtqsG7+p+QkFfnMVz/iP1FX186r4CwzRBFp5goIuw0Bu/939kVVH4Rxy0k7DSU521YRQhnB8R9pFxPLWf9FsdFqTKcMXPRmpL1evZZe//LfkSG2wP2nwbtJdmR+4fkhvQdzz5rz5s1q7mu00T10iBdTrGe+PqluZZf/9ROXPium7A653qhrvz8YzXZDhERERERERERxTUhHq7l1TdnKlZ/+/J6V4OIiIiIiIiIGhVzrtEItoIG4Pu20DyhRkWGUwD2sGXZl3R6vvEMiDOM2HrT21VX2TOvuSaddrzibsdA9tBq+XuCww9kCKoO/Qx9RWUMWW+0UiENzrdWOYalyzYio2FnP7jKXnDFinR6+XJ7XkZoYwXXBW3DhnRaxzyJkBvnm6PWrk2nb7nFLuPII9Ppl78isxrBb1eSv03HO8hj6BkWmkdIOHKekAyrfLWifFOvLENvVx5SfZrHDqMKXS76Gx71TpZtxBFS6CLDUkKvJ6G/M8Zbq53E/nK9ATpGO8h1nstzVnaY6kLa4rqwOrYtuy35Mu0rrrDXk+eN622wruMrQ4Z0PTZuTKefeMJe79Sj030QGk4nVZx74ng7+zPHW2Pbt29OP6hrdlbIaHC7/eQn7c8f+Ug6rc5tqfC+SbZVR3ss4i2CsfvxPNe1kG3H6D/rGdrre57oZWW4uX6jdda2AACrVqXT8n7t4ld619EVkpoVBu8KDa+Ma+2oWoarXrp8WY/Zs7L3z7we+z512Np2AX+2W+d22geHvuVZ77r9XdrTT1cuS3QgYmA0ERERERERERFRID5cIyIiIiIiIiIiCsSwUCIiIiIiIiKiEMy5RgBMkiT1roMXY0wSUldjDJK7riygRvG86fPr8S/f+AmA8HwVtX71cVZuiKJfi57rFe133pF+kHm9AGDmzHR6/vx0evFieznPXDdOMgFBwR1vjFxPedqg97Iy+c+6dfaCS5em046cMk7uhBvVpxXf31L0OZorD4j8rHOuhe5LIXb+nDx5F1sG96bzHPmQYmw7uI4R2oVLVt8q8zxprlw3vuW7ltNi74Mi8tXl2V6Ioq/Noftg10C6bZmbUKf+jN7GdT8l6byXgfm7QsTqO3zKzHWvUqd+JLQMLUausKLP8xiKuPbHvg55G3Dl9bLFODYh1xrnvdAB/BAj9F7FJUbewvGe58uWLcWKFStM7hWbxNKurmSFzLHdpMzNN69MkmTp2EtSFoaFEhERERERERERBeLDNSIiIiIiIiIiokAH7rjaCaaIof6NWH6uesjhuTpETg6Jd4SwRAnRCAxF9BU8xD5Anvpa25b7X8UkDffOSZcLDQPwDP2sCEmyYqVmZK7m+7sLCYlx/TZX+FUN+bYzV1hxxbyMUNA8ITEh7T9PHX3LCLV+fTo9d25aD2czUG1C7kcX1++MEfZY69QFWdvWXYDUUQr7nUWHLzrPE8c8327R97e5tm0t59tXj8E3/URIGwwtw1foMSxa0dtqlPQlRYTM1VKeNhJ0n1cqedelXudNRdmOa1kt0wfIlBUA7Gtujv2aJfSeJvRaHCNkVGZ70Zlf9v8p1iC3q8Ux5oAOVyZ/HLlGREREREREREQUiA/XiIiIiIiIiIiIAvHhGhERERERERERUSAGBzeRIuLkfXMZFZErIyQ3R3Aumr6+gBrWNk9ZrPwJRcpzzKxlVZ413zJ98xd47wP1uvkWkR/Dt22F5uGLkTOlYh/L/dPZmbleqBg5xnxzedW6/8kSmlcwxnJ6/xzR57f/263TxD5nQvqwPG28EfMVueiUODGuQ651QvqOPNd617z2tnReW+f4+60oOUgj5XoK2rZD0XllXesUfQ7F6EvruY9ja5R6AGFtvIj2E+PviZDyYik6Z6L1Wd+X1jDPVmg/GHLc8rSzhQvS6QULqq93wKcjY841GsGRa0RERERERERERIH4cI2IiIiIiIiIiCgQxy82mHq+ol2LEe4g5RkmHiMcLUY4VOyh7UW/pt7VfooOB6lnqEWMkIbQebUMyQgOy20Cvn1fEb+rnv0s1ZdvWFaM8mOUEVrH0NDt0DJDxAidb1RF1zl2CG1oeHye1B21VM97uWYPufTdduzzt+j75Vjbi5E2pGix0x+EbuuAxrBQGsG/KIiIiIiIiIiIiALx4RoREREREREREVEgPlwjIiIiIiIiIiIKxODgBpDAjMa8u17/HCNnli4jRo6H0FwEIfNC83nUMx9V0fklYuRFiJ0XyLndwb3ZMwvOV5AnF00j5uFqxrxqsfuOPPsg9LXyWXzbRD2PU2hf0Si5kYoWI4+P6/iG9iO+17k8xzd23lTfZYvIlRT7XNZi5FQaGEinS6X49XBphnutovO+usTOW5inDcbIhxfaB/iUV8R6oW3QVYZLjHZWRN5j3/Ib5dpcRBtvxHvpQjDnGo2YIC2eiP5/9t4/zo6iTvd/+mQymUwmwyTMkCEZ4xBCCDFCAgGCGzC6UQNELyCsuCJG7y7i6nVRcdX9surey3p1/bH+2nvZ1b2goqKisLuouLASkdUgQSIGCRAgQIBAQjIkQzKEyfT3j5k59anPOV2prlN95kzyvF+vvFI9VV1dXV1VXdNTz1OEEEIIIYQQQgiJDz+uEUIIIYQQQgghhBASCNcvNgAJUq+lvmMp1Sl6a/FQfJcwb9tmnzd1qknrkm/EWH7/+BaTx9NP23G9vSbc1eWVXUPhqp/BQRNuHthlDv793+2EL75owqtXZ+Yf3P6lVkeGAaCtrRzc0d9sRW3ZYsILF5pwnnIUvS17bDlvnuX8McofQwoRQ9o+HtjVb+5TKw/kGBZD8uSiCFli0c/XFbdv0OTf3FTfNhLyrKI83+3b7Ugx2A0tOjHK9SShzzBEdupbDpcFh0a2kTvusOPk8RVXBBXLm74+E9ZjQLt5leXqC1l1EirJ803nyl++ewGgpyfuGF+E/C+2rDvWuzdkDhVaP3p6JWkd7Dfl0ONPv4lDZ6dJ190dVI4i5Ish9jp5xhjfuXRTU+3SUl9KfTvsH3R0ZOYX+v4l5GCEH9cIIYQQQgghhBBC8kLPNTICZaGEEEIIIYQQQgghhATCT6wNgNwtVBN7GXesHaBCrufKI8YOaxopo9q/36+MRSBXtutV7q4/cvju4hUDe9m5HRcqEbDykTKAiRPthEcemZmH971KWcHmzXac1NJohC53ek+PFdXREVdOEUPK5MozT//yLVeMHTVDJRohEqVQOY4rj6z8DpQ2BFcZhYLZiZSwAf5jjKscrt0wXeflvW6taX3Y0ZddRtnnY1079i6CoXIc2S4G246w0rUu6qx6TixiS5Xrvfuc7ENLl2anK1paPb0jvzQtlFjjYMjcVstA6ymf9iXGbpjV0madE7pbaEibDP1dwLInGNhjp2trNwcy7GAsn6GL0N+jvPOUE3IAzRFWQwWVS8hAD4SPrDVN8xeBkPEIV64RQgghhBBCCCGEEBIIV66NsPW5PbjsC7/CXfdvw6SJE9B75FR88YOn4YSLfoj5L+/AwL79mNo6Ee89/xV4x9nzAADX3PQAPvyVOzGrawoG9g3i3ecehw+89XgAwO33PI3L/uFXuHfTDlz3v/4Y5//xnLG8PUIIIYQQQgghhMSGnmsE/LgGAEjTFOf+1X/gHWfPw3V/twIAsP7B7Xjmub04elY77vnWmwEAjzy5C+d95BYMDaV45xuPBQC8ZcUcfPXDy/Dc8wM49oLv4fzXzsHLZrRh9ow2XPM3y/G5b987ZvdFCCGEEEIIIYQQQoqFH9cA3Hb3U5jYVMKl5y0o/2zRvE5sfmq3lW7OrHZ84bKl+NCX1pY/ro1y+GEtmNtzGJ7evgcvm9GG3plTAQClUpKrLKFa/lDPsthbf8fyVQvxAtK0tVX3ggCA5iZxntw/XCeMgLxWLD+qrHR5iO6PpHwirGPpZ6Y90J5+2oT1Xu6+z0MaUmljO+n3tnevX36I4/MSwwcn1AckiyJ8w0I9R2LcW+xxKzS/GOWI4eXS1GSXQ3Yp/UfV5owZQKjfUgxfwRjvMlf+LhuZIjx+QnwFY/sgAvazz/XHdZchZ0gerjHeM/9cdSCvd+utJrxqVeYp2rfwnntM+OST7bTLlvkXxQv9fuyYXjVZrH6SdV6efl6E12hW/kWMMbGJ8Q4s2t+zcG9FNXeL/btGKCFernny9MVZB2oczGq7sdpISN9wplO/CzQ1NQMY3kyTkEMBeq4B2PDwTpw0v/PACQGceGwnNj7WV/Hzx7f2Y2Dffhw/t/pEiBBCCCGEEEIIIYQcfHDlWk70biffu/UR3Hb303jg8T587WNnoGUSq5QQQgghhBBCCDnoSRJ6rhEA/LgGAHjFnGm4/uePeKW958HtOK63o3w86rn2698/g7M/eDPOfNXL0H14ayHlzLME2NoGWyzPzrMMOsbybN8lzL73lkc2JY+1VMqSCsqwlC9CbR9+gLJkIpZI51kqqpeGl8tUwIJT1/vAW26il7KPLAUHgFLfDhOxebN94oYNJrx4sZ1H90yTh6O+d/WbMrZ3qlWoLt2O68Yz9HTyvgpBtkddDi2T1fcaQGh78pUD+kpAQiUOoWOM77W82//gPnOQY4JljWH9u+w8syRzDgl2SbWRVnGo72XPgDn2lQ3GlnnliYtBERL7GJLsGHKlKHLSrVvtYzke6fFGSzyzkO1Vj2FS0q80u1GkfPJ6y5eb8Nq1mWVsnj/fijr55CMyyyGl1VHk8aoOZJyWq0pknw29dj37Zb2lgUXLDYt+vzQqvrJW/cqSeL8u5Xjjkpe77ETku9Jx4TzPs2hZJcScM3SMKbr/WmVR9Vp03yOk0Rjfo3okXrtkJl58aT++duP95Z/d9Ydn8dhW23Nt81O7cfmX1+J/XLCwIo/TXjkDb195DL503YaKOEIIIYQQQgghhBBycMKVawCSJMENn3k9LvuHX+PT31yPluYm9B7Zhi9+4FV4+MldWPz2H2Jg335MbZ2I/3HBworNDEb5yMUn4MSLf4S/Xr0IGx/rw7l/dQt27n4R//7Lx/CJr92N+667oM53RgghhBBCCCGEEEKKhB/XRpjZNQXf/9SKip/vvf2/Z56zetWxWL3KfGib2TUFW3/6dgDAyQuOwJab3ha/oIQQQgghhBBCCBl76LlGRmAraHCCfVj6+01YeBOUlJ9HKFm6/zxeBDE8AIL9DaR3jBwM+/rs84QfTHB5pX+CHng9B+IYPguhvkASbccjb222bVdnX0/66sydayfUHmMBtLeJa7m8ODTyeety6HKOULh/hPY1kpUs+3UOivB18W1bUTxIPKm3H5jLZ8Q3TwvZTxznubxiXNfW9ZPlx1bEWB2afwxfPte1QtquziOKN1ij0N1tH2e9KzWucco1zso4z/lJsCed6z10000mrDyPStKrrd5ILzjp/RmhL7iI1Ue9ryf9JvU7O8IvrDH6aBHv0djPrZ5jqevavt6EgPIrlWOHbge+vmouAttS0fVjMQ48yxqxTIQ0CvRcI4QQQgghhBBCCCEkEH5cI4QQQgghhBBCCCEkEMpCG4AEaXmJbeiy84pl1lpa5nFe0UvlQ5ehFyG5sfMUOOotuH5aWjPjpILRpRiNIbuoKJdnPlIho1Szlkx00qTs/J5/3mwlPk9Lf2bNMuEYy+GVXMB1n4Nt0024ZboV5ys68JVa+NZ3xT3LOgmUdY/3JfwxxgDXecHPJjLBfdshF/O9XgzJUOh59ZQOxyBGWyri2lFQkkhv5DilJVtSjqmkzy55V5GSuYo50qpVJrxpU1D+hbRjz74dwzoilBDJd0UZdbuIzFjaDoTUcagst+ixtIh3wZ5BMz9sEnOy5qaxG+/z1I+vfYArrmjJbtH5E9BzjZThyjVCCCGEEEIIIYQQQgLhxzVCCCGEEEIIIYQQQgLhxzVCCCGEEEIIIYQQQgKhOLgBSJF4eTIU4aPh6wmlr+3rMeDKv2i/N1eeVpzwsXpqq51fd7dffi5c57W05Perc3lxFOErtXOnOW/9ejut3DV90SI7TqaVNj7zlnbYCV/zGlNG5U8XUud7Buz73LLFhLUdwpQpJvzii3bc7J4IfmkCbWUk/eo2bzbhp5+2r7V4sQnPmxt3O3ggfAwIyT/0PN92XZFONlCHp0+op2HRXnC7+k3+0pqqqSlHXTk8tEoZfk6hY4xvXIx2lgff95DG2y8qoByu/KUXpz7Wz16Oaa0tEeouhmeMzkN6RQbm72yDso1v3GjHiYH2P/D6cnjFCodPrfaBu+kmU45Vb7LPq6MPo7zNZuyz0zU1o1ase9m+3YobaDuiHHbY5HmPnzH8SV3n5fEsy8qvlvNCkJ62L71kX7erK+61NLHvs7Tlcev4kcHZ5bC2O7z/fhOeOtWEF8z3ulQw+p6t/tUU1g5cyHG8YqwWF9+63e7LEyaYa8/oCnuPxv59yzkGH6q+Y/RcIyNw5RohhBBCCCGEEEIIIYHw4xohhBBCCCGEEEIIIYFw/WKDE7ytttxKfu7ccjCPJCaEoiWLeSRn3sugxVrtmd223kHmEbx9tdRHSpkagNJ8s+59qPMI1EoRcispR1i1KjudVt0tW2bCljKtJVueF8yGDSb7hcdbUaL5V+DbLqxaVXIZSzvsoFktF+/uNrlKWagMA8DJJ3tlX0FW+88jewmRdNZbVuM8zyEFtXS5Il3JdY7j2qHSSdd5thQ0O4+s/ABb+ukiVO4Z8nzztJGi5Swh78BQCbMmK622C5DtIEb5NVnSQ8CtcrHK4pAf+0plgucBMv+enszzXj/wG5HHKZl5VowBK1Z4lcuXXBYcg0b+KcViuWSgnpItqw7U85TDpa5i3zYS2lZD5nnB8zXHtb3HIqnvBFCSUmU9X+jtLQc7Okz+cgoP2PMwTcgYGWuumJnP2rXW4advNbLQ5cvtpEuWmHA9VXX6PqXkPsa4Wvk+d/w+IW7cc0oZTGjfcPZlMR4V8Y4iZDzBj2uEEEIIIYQQQgghIdBzjYCyUEIIIYQQQgghhBBCguEn1gYj2i5AYql5KFZZtFZNSuMWLjRhtY1UDDmRb34unEvgi/5Lg9yucvduO048J9+l1KE7BLnwzbOtzX85ebOo1tDl9t5yhyeeMOmkfgUIl/TItiwlMi7ZYGBbkpvpTZtmx0lVsZSSAv67A8aWjgHZUrgi2mch6C3LxghXu86Ugjq0e3qnycHB6juOApU7omVRT2lvnl0Eo8hZCiZkF9ax3A3QWwbqODGW/C8oHzmYAvYNyXfxAa5t4dgeM4ZsOSs/II6sO+i9pLRpPRE2AwzdPd73nRL7Wbiu7RyLlCzUmi873jsyj97e/LsY1wPv9/vKlVbcFUtNWHfRrKmW3vk9dDdk3/qS19avWNcOub7IPJVDjCUJllJwwJaAF/HsQ/pN0bskEzKe4co1QgghhBBCCCGEEEIC4co1QgghhBBCCCGEkLwkCT3XCACuXCOEEEIIIYQQQgghJBh+Yj1I8N0W2dfzBYC997reG1obBoSU0ZNQzx1fn50hxxbSUZD7jmsjB4d/11j5BPnW6YHwLbP0iAr2tXjZy0xY+K8dqExBz9vhd6XZJ/yuNm604zZtMmHZDHSTkJaG0roFAGb3mPDB5sWRdT+xfBdjey2G+oZlpat2XMZRdh2lbR6ttG1+zzeG75kvRfuNxfABzVPGWOPpKLn6uXiHl4QP1ND8BbmvW+3avu160OHXFeMdvqvfxLW3qfzkgDp3bmYeoX5dRXt++RLiS+aK0+mkP2OMd029PdFCr+09j5TPXjfyRYtMWM+lM3D5YcZ6v/jm75uHPK9vsN2Km93yrEnXdkRmHnI+WPFrhvAlc80VXe/RHX0mDz2fksNDjOmBrkeZp6v88ncSIP7zjYIydx1qaS2H9Vy3Z2Seun9/0YUipDHgyjVCCCGEEEIIIYQQQgLhyjVCCCGEEEIIIYSQvNBzjYzAVtAAJEhrXs4bQ+pSgVy3rNcw9wg9WoTBJLT8vjIMXzms3vpb3nbwM5Jrz/U6dFmPDrlA6LWLlvKFSIH0tVpaIiygldvbK9mmlGZqRWerbNY6MusGtG7ToXmSUUKVVYE8TTYJADjsMBOeNi07D1+KkPYWga9cSaKUClb/lSp3AOjuzi/hkm0J8B/6ipZyyPx1mbq6as4+ejuIJS2NLcMLlU2Fvr9iyLScyAFId44MXH1II8slL6XlXA89ZMKnnhz4LhvYYw7UYNrWPbNqmSryEJ3DNScYD+Qpf4jcOU99yOetpzhTpph8ZnTVLp3XZPWhPPXh2w/lO0RPA6xjPZdzvShk5XnqBivKKzqflqSO1djd0WEf7xs0UlBdG1lDk66CzZtNWNd/j8MiQ1axDPf2Vr8uEMk+oH+X/YMtW8rBlhzS/KLHpiBpu3o4pcF95XCTkrWO9puXXqqhkISMI8bXbIIQQgghhBBCCCGEkAaCH9cIIYQQQgghhBBCCAmEslBCCCGEEEIIIYSQvNBzjYzAVtAApEjKOveit1KWungA7oHAZbYi4wIHk3p65Pie57rlYDZtMuHrr8++4EUX2XFLlpSDMbZGd53n9FnQXmQyD8ezb86IKsQ/QnqcKLMPuaV9f7997e3bzXFPj97+PANHI9Gefb//vQmvW2enlZ4hshoXLrTTSc8sX+9Aja9nmWsL+6IJ8QUCgAc3mfOkJwtgN13djGU9S18gl0fZhg328fz5JtzaEt+30Lf+5X1rux/ZXHUd1HMe2Ij+fYDt96OfYUiZY9xntLry9HDKOiX0Utpv6ZWvzD4vyONHemzC36/Lda0Y/qSucsi4UL+0UF8yifbDa2urnn8eD1uZh25msl2EeuT6IvPXHpuyTRYyz5Pk6UTaPCwDZ905rlfPd7irfcp5mMbXd9f1a4fr2rKKQ391CXpP62c7d27mOTH8Q0PHhKzzcnkTisrUXnaj845me4pNyEELZaGEEEIIIYQQQgghhATCj2uEEEIIIYQQQgghhARySMhCl737J2NdBCeTphiJQwyJkJM866B9ZaEOQpc6Fy0hirEE2xtZ51JHBgDHHmvCYsk4YJdRyrm0rEMuqXc9ljxSFIvI2rHgcjiw8mhpzbxeX5993k03mbCWMi1datawy23et2y208nnccstdtx//mf18gLA+95nwsuXm7DrGeapq6y0oZKkA+VTJC7Jh5RB3nBDdh7799vHUrEhJUS6Hcg2oyW7EteYYsVtfcqKs6TVa9famW7fbsJyfFDaz0HMM2El/ZRlaWpytB95ourzodLzEHJJUSIg+1uIjN6V7kBpQ9LlQsonRViXUcrZdftpb/OTOrrK7yvD8372qn2GSsp98/A9L7ZFQ548svLT54U+C9/raTuIus61BDO7a5feaiZMyL6ePS+zr+UrZ/Qlxns5zzgVIkcuQvYo6zF0nHXJU73rVQ2SQ03NVdNV5JeR7oDnZZXDEeccS6UXAmA1SnkvGt9y6TY+elw62Jfz0HONjHBItII77nlirIvg5JJL3j3WRSCEEEIIIYQQQgghARzs35EJIYQQQgghhBBCCCmMQ2Ll2njGd5lv0TuUxVjOX4TsJYYkQ1KIbEEuIV+0yI6Tx0qPJk/bsqX6zwFbIaZlj3KFcrvauEimtS6tlozvgS2zlOSRoYakC3lurnOkvBMAVqww4TVr7Lhrr62eTu8YuX69CesdyqSM8Jxz7Dj56D03DKugnjIbX+ot65N1t3q1HffCCyas26ps5jffbMK6jezda8JLl9pxWQqAijrYcK85eEKtpH7xRROWOwsDwB13mPDll5uwHBAAzOsVBdkOmyYxQGjJ9MAekS57OuDbDx0bCzvVEkWPz9Z74vrv25GyA8uODliddKhjulf+weUq4h2bIfHR13LtKCslo7474lbci+xsakvfkozTnVTbKPheT1B024o9D3PlLwkdZ2P0w9Dz9g2adC55XtGESgrlUK155hkT1nUsd0/0rf88ssGgtqsmizJH11in8bWfCCl/nvYohxGtetRWD5nlGNxnDlwPyvNdqe9Ltn+5Uz1QKWOuFbcsVyHH5LnzRLowK58irF/GDZSFEnDlGiGEEEIIIYQQQgghwfDjGiGEEEIIIYQQQgghgfDjGiGEEEIIIYQQQgghgVAc3AAkSL207b5bMANhXmTaa0VKx4v2Egn1e4uxbb2vV0CwJ86yZdlxwmNmV79dXunfJS2WOjvtLORzcnmgaaTlhvSomNlpDwst4lB7uslyad+wmd3wwtdnxBfXM3R5oWg/re3Cu0r6cD39tJ1O+nxpbw957HpuLnzroPDt2yMQmr/vvc3oUud1ZY9vEumNt115lj38sAlrLxdvZAPSHUU2Ej1WyGNXHtI3rL/fjhNpS3qAkI2wAK+QkCyL8OgrbX/WHGzcaEfKOtEFFkaMJVnnc+fa6cSzGcrwOauGfFTtA6Lh6YFElCvPuzjEr6tZVYE+zsrH+dxkHWtTQ/kS0c9GeK6F+qtmptX9RPod6ufraYoZY05j+T4BmZ2oaF+jKHVcJW1IHiHkmRv6Prdux5xG+nvqpiXfPb7PzVXGKHXlmCzm+V0jBN86yHMt1zw4K5+KnweOsz7XUtlXzAddecT4XUYe72uyvVeb9Xjncd0Yc/WDjiSh5xoBwJVrhBBCCCGEEEIIIYQEw49rhBBCCCGEEEIIIYQEwvWLDUCKJMqy6JDzXHIQSYwl/DqPGDKG0OXrUeSengy1mCXYea512GEmvHOnCe/da6eTkoPWFv/8pcTzpZdMuLPTljWtW2vCUqoKAIsWyfO8L20RQ0ojydOuZH3NmmWfJyWAUsmkFVtSMaRXhI9lP4nRruvZT1zEePau1frLl2fHrVtnwi5ZkKSivLLRaH2qaEBaUljSjW0UfTMyTyFlBGBL3LReRg4CogPvgS0bcalHXXLbhkHqtLQsccYME9bymN27TVhKFrdts9MdeWQ5WHJIRjVtbaa97mk6ohxubapvX/O1RgjJT1PSEktZP45O6vuecJXFOY7INqJ1faHeCwLntUU//O3m6VaUfMf6Svjz1M/mzSYs3+9HH23n0aUk977IcjU1RZb2Oq51oDxD8nCtR5DNWDef9hYj9R2Cv2xcEl0WrdpxjLlXKL5t12Vj09xUvZ25KPqe9wzY+UvLidk9tbdVjW+Zmwd22T+Q1hGBNiGx7V0IGc/w4xohhBBCCCGEEEJIXui5RkagLJQQQgghhBBCCCGEkED4cY0QQgghhBBCCCGEkEC4frEBSPa9iNL2Z4cPlHFVXb3BImyvronhGVf0tYrO03Uv0sZH2h8Btr/Ty15mwtr3TJ7XruxsXMimJv0rZJkA23MqywIKqFwNPVZ+XaGeQTOm7bOOpy4y3ijy3rRlkIzLc+0YbTyGb6Er/6IJ8XrK47PoWz+yr+l2PGmSCbuevRNp4KcykT5rum9r/8PyddVxSQ4C0kRJZTo0f4F9nijLvkFTV1tUFtKeR9eBPm5I5MAlTawA++bkc9LIG92/344LlILI9trSIvzXlFePHJ/z1HdW/4rxbned56pGeZ+A8mDr7fXK8/e/t/OcNs2E580NHMPkIKBvwNNnLfidJ+pAVUGQH1We5ytvW3YT3c5knvdusPOYO9ccu3xfY3inhRLqFyXjXN1cntfRoZ+T3/hQGtyXGSffE665ehHetL75xJ4vu/B9FhqrvKq+ZR0/sy3Mc1AOHVu22HFrhX/xhRfa+cu0eh7wqqXVx4Dg+vY0Sq0cBhvDg5eQRocf1wghhBBCCCGEEELyQs81MgJloYQQQgghhBBCCCGEBMJPrI3Ajh3AmjXDYSVZKc2dW7dixJCc5ZFsuYgtd9NklSXPdUOW3+tzpHzApUSRYS3NlPKNPNJeKQfZudOEN22y00nFmdxuXufh236KeLZR8lR/cWptqr4UX275ruPylCNGmWMvzc/TfkLyLFqOpvGXmGTn4SsHceKQlUmFRn+/HSf79t69Jjx5sp2u/aWXzIGyFsi61jBCCipkKVrOMmWKCUuJOmDfWsP+0VYOmq53qn5O8gHIgVDfqDyOIBHV7VG+G1xtxEXR71SJrgJPFZKz7mSUlk7K/uAcw2RB9LVkv3HpWgNxj1OG6W1aGli9TvIoV32fvZSj6XnAihUmDylvA+x5QSv8CuZ6TnnG9Kz3S548QiwaNFGsHbZvN2HV0UuyfapJ4FhZcOjrhdg8VEub91qh194zaNsubNyQfW0pPdfjmXw1yEf49a/b6WbNMmEt/ZTHruGn6Ocr7SHyjCmlrU+ZuO6Z0ctFyHiCK9cIIYQQQgghhBBCCAmkUf/OTAghhBBCCCGEENK40HONjMCVa4QQQgghhBBCCCGEBMJPrI3A7t3A+vXDYe2XU0fPNU0MHwpJHo8NXx8H3/wPlNaHUK8D13nSL0f7LMhj7c8gkb5noUjPGu3hI/1tFi6041pb/J6hz8+r5dGIFO3LV8S1G6VeixhHJL5+PK58ivCKcSH/0Kn9tKTP2sSJ1c8BADzzjAnrd4YwRHL5BW7bll3GF1804QLsqApH+sg0tbVbcc73kHwfy4FRPwBZKd4GY2Ho7F02YiFjQAxvVJclXSgyj2AfRFdBsvz1DkCUuYQsl3rAj28x+ct3vW4HoWORvLT0i3Khp6nWnGGzMmyUhmzCxCm0vDG8zVxzlaLnJ848ZEWqB7yvbXo5vF3NB+XzaPbsa6Hvyhhzmhj5u/L0fU7aU0y+Ol3jrGbzZhOWfoS6n8h3+MaNdpw8Xrky+1pR5iNqki/zlP7L//Vf9mnnnGPCeq6ypc/4rM2P8DsJIeOZxviNixBCCCGEEEIIIYSQcQhXrhFCCCGEEEIIIYSEQM81An5cawzS1Kw5lkvoI1G0rCkU36Xgoduru8hKm0daGgO5OlvLMSVyCbaWbrjUSlOmmPuZ0WXfi0wrl8e7ZKG6ecbeAr6I+g6VeWRJRfLImxux7+WRPRZxvSzy1Gs985BsUYqntraSCJufa8mHlJtIKTVgK9C0/FvmKfte6+AuO+GkSSa8bJkdJzuwAyn91EhJjEseE2NeWUSfcZVLSkY1lsRKDJIV7UzJiywCKkz/WI7PrnvxfY82Eq53iO972uecClwVmaMhZ40xwTYVTc1WnOzach7gmi/oScJdjx5RDh95pJ1UjisyLK8L2FWyfLkd17z18eqFVBT9PmyU923wO1Y+VKVZlMNIR0d2FqFzWN93pSvONdRpS4Ksa/tSxPOUbTyHMtxCdj0tO9W2KlnnuebZobjGGMn+/SY8f352fu1tdv0vgJn0DGFB7vIRcjBBWSghhBBCCCGEEEIIIYHw4xohhBBCCCGEEEIIIYFQFtoIlEpm/XCgLLTonRpDl7nHlpy5yrGjz76WXGHvWpJeT1zPacYMO07uLCTlaHq5ulxOrnfyk/KBadPs/GWdNDUJ+egMOw+545FrN7qxxCqH1iaIQudpj0XLJUN3wZU0ihQ3xnhQxL3EeIayOen+JRVQcujWu4S5VGZSOqJlJPI8K4+Nm+yEUtPpuLirPqQMTJe3aCmopN7ScDn2VUqBTJxLiuWsBNdOouIl5Xo2ul0USYzdkIvYUdmFvWNqBGuHwEZdxA7NcidvuXtwRRFl41Xt7JWv9LuW7/Szoi9IJaiWoYuChloojDdC78Ul3Wt1zGFDrldEfTs2vY1uIVIE0rKhs9OuH3lveh4gd/FdscKEtY2EPE/3tUWLql8LyN4ROtbO5vI8+XuTnkpkFgrAUx1GCjqzztYjDUOS0HONAODKNUIIIYQQQgghhBBCguHHNUIIIYQQQgghhBBCAuHHNUIIIYQQQgghhBBCAqE4uBE44ghg1arhcKC5ireHwf/9v/bx299u8lB7u4fo9+utrZfl2L7dvrasymbV0sfKA8DlkTBtmp1WSveljYn0RtJonwtZBy4rAFmuri67blyWQbpeJVl1XIjfhiyYw3OtCFxeIo3iheJ7vTzebyHPMTR/l1ePb5wLV51vNDvMV3iQSM812cxcw7i+lkyrm+7atSa8cqUJT1+/3k4ojRfVxfcNmuvpriD7dleXCcv7AmyvJ/WaiE6MdnagPLNw3ZvT19FFpnFedv6hY4B81oD9fNvbsvOXdl3aJ2jhwqCiBKHL7+uVGjTEu56h7E+AbaqkiDHGu9p4W1t1P6SKc2QlqIHK8uuquG9z3s6d5lpbt9qppEdUxbXl9eppEKiQ5dozoMdZv+cUOt64mpNsx77tZSx9WEPRXmQS2TzHgweXqxnr94R89lOm+OU5a5YdJ+f4vnP1PIR43jnHVRU5s7sxffTqCj3XyAiNP8IRQgghhBBCCCGEENKgHFIf1yZMmIBFixaV/23evLkizdq1a3Hqqadi0aJFOO644/DJT34SV199dfmc5uZmvPKVr8SiRYvw0Y9+FADwD//wD2hpacHzzz9fzmfNmjU47LDDsHjxYsyfPx+XX345fv/735fzmT59Oo466igsWrQIP16zpk41QAghhBBCCCGEEEJickitX5w8eTLWazmN4h3veAe+//3v44QTTsD+/fvxwAMPYMGCBXjnO98JAOjt7cVtt92GTrEM/rvf/S5OPvlk3HDDDVi9enX556effjpuuukm7N27F4sXL8a5555bvv7q1auxatUqnH/++Xj3n/+5vQ+zIIZkSy5Zbj75ZPtEx9rnGLIv3+XfocvE5fW0ZEtuqx1KlO3D5Vp5pbkpibXgTWrrdYmUaf3ud3acVLDoZflz55pwR4cdNzND6aLv0yWnCKofXUh5A3p/cl88pVeh+Eq28rTjrPqKIS11Eav8Wc9e5+Erm/WNc7WzPH1U5i+ln+vW2emeftqEFy+24+TYKv9Ws2SJdzEspDQEsIfn6dsfrF4owO5TSsI2kCFd1cey62mJ0+7dJjx5cnYeRRBlDPbEV4ZYcdOywiJUSJ5+YhcrW3Lsyr+/35y3YYOdVt5axjQlGrrqpExUvgP1u8xFZt25npNDBqqJ8W6Qcb7ywgp89dqO+5461YR1Oax5pM5CNDR9n3Joku3R1cZDnR1kHr//vR135JEmHDrNcCHLrKc4Utp7qKjG8ijnJTGsHOqRp0R2PfkO11Yvhx2WnYfvmBb6PvSdN8n5fp656HiQ+hJSLw6RYd6fZ599FkeOvIUnTJiABQsWONM//PDD6O/vx2c/+1l86lOfsj6ujTJ58mQsWrQITz75ZBFFJoQQQgghhBBCSL2h5xoZ4ZD61Lx3796yLPPcc8+tmuYDH/gAjj32WJx77rn4p3/6Jwy4HDoxvGrtrW99K04//XQ88MADePbZZyvS7Ny5Ew899BDOOOOMKPdBCCGEEEIIIYQQQhqDQ+rj2qgsdP369bjhhhuqpvn4xz+OdevW4fWvfz2+853vYKXcoq0K1113HS688EKUSiWcd955+MEPflCO++Uvf4njjz8e3d3dWLVqFbpzSA0IIYQQQgghhBBCSONzyK9ffOc734l77rkHM2fOxE9+8hMAwNFHH433vOc9+PM//3N0dXXhueeew+GHH15x7r333ouHHnoIr3vd6wAA+/btw5w5c/De974XgPFce/DBB7Fs2TKce+65WFTFtCRNShga8dsK9ZRxndc8uMcc6A98cmWeNkmQ/mD6PGky4Ln1eqiPzC7hB9PXZ8d1d5u46U277MhBUa7ApbqlwX0152Gdp31RRP0PKM81edqmTSasbNssLxpdROlDV+HpICtTGu2oMpY8jXa8t4d3mbk48ozhtxS6vX0MT0Df/GP5SsX2wPAtl6uf56lj37qLMWbKcWTSJDtdV5cJy34IAMuWmbDsNrqb+1pyac81Oez+Ycu8cnj76f+fle6MuU9VvxhsL0e9h8+C7h1Vy9GsBgvp5RXqpVME9fRj8yZPBYnGEKON63QV3lijyJcGgNlN5njZsplWnO4PWfiW3+XJqMl6dYZ6K3qjDVxdyBdyz+zMZK46kHHaNy+rOcUaL6WvnZzK6bFIPosdfXb+crjQY4wcw2Sz2749Ow89pYyhtIqRh6vdSa8ql7eld/56oicqpaTap+871td3K3TuIJ+baxgMnSOEEpJnHr8x6YXY1WXSTZxop5NtXIuiQuo/dAxw4WqrvmOYhn5s5FDjkP+4dvXVV1vHP/7xj3HWWWchSRI89NBDmDBhAjoynCa/+93v4pOf/CQ+9rGPlX921FFH4bHHHrPSzZs3Dx/72Mfwmc98Bt/97nej3wMhhBBCCCGEEELqDD3XyAj8nKz41re+hWOPPRaLFi3C29/+dnz729/GhAkTqqa97rrrKrzbzj33XFx33XUVaS+99FLcfvvtePTRRwspNyGEEEIIIYQQQgipP4fUJ9Z+JYWoRrUPY5LNYs17tQ9lX/jCF8rh5cuXl8OTJ0+2dgu95ppryuEEaXlJrXOp7fbt9sUc0gWZT99Aazk8XZ8jv7LrddxyPb9DzoibbjJhcc9A5fJ1X2T5XX8IsLaH1+us5Ylj+dcEeW2H7952pQLIWla/caM6TzQLl61fhXq3yTzTPUvMZhutt/3YTueQhQZJEHRBRKEbafl4jO3bfe8nhqQtVA7SSHUeG5ds8Fdrq0sd9++387jjDhPWw1lPjwmfemp2OXyHHykvAYCmNlPGjAXUAIChbiPl02oieV6Fu4Ec1x06nkYZSotoq/Zt2/nr5zGKtCoYSVkOtbfss6M8K6wIWWtWfZX0GCwqYXbH2MlrnfYWohrzSJJij616mtHq6pgRKLq/ZeWvp3wynW4+cmqtxx/Zv9atM2E9lsrjuXOrlykPU6fax7LMobJE37ak61TWgR5mZdrmAYfHhzxR/S5TEg8rdIyMYX0hqZCkSxsSVQkl0YeGlD3KWBFDcqn7kET3oVBZfVYeeeZ8Mm3oeHkwzyMJyQt7AyGEEEIIIYQQQgghgRxSK9cIIYQQQgghhBBCokDPNTICV64RQgghhBBCCCGEEBIIP7E2ACmSTL26paHP4e2hfUHK+bW0WseWvl5/ca8w6RJs2mTCV12Vfc6KFZlxvtp+eZr2FLOLrAwOXOX3JfJfIVxeB9qDZPduE9661YS1Z0dvb/UwUMVjSWL57Ymfn366lWzPgClznirN9GDQnhriuAjfIV/G8tqh3mwuj416+r2FXFdfW5+X6Relyys6hPZrceUv/dIk2idFehwuW5adVnq1aXtM2W/0MO5b/3Ls0/1Q2tlMmmTHyfFC+xDJ+iqJ8aDe/ikhfjb6vNBzmpry36tzHIzwzii6Dir6ScG+Yda18ngBDewxB6IjllxzlRiGXQ70pYda2qumc43H2pesTXgr3nKLHXfBBZ4FEx1d14/LUyzrefQrX8HpbcZLsKXFbj9yjNHzGGFTjFtvNeGFC+108hHK+Q4AnLUyfxvv7rbL7/K/CvFX1ee4xjBvz0rZMLSn8wsvmPCUKVbUvtedXQ5n+UTmIdSj1aqfwX2Z6VwPQ9rJ6WSuOo7hkeuL7zxMv1vqWcY83oH0SyMkLuxRhBBCCCGEEEIIIYQEwpVrhBBCCCGEEEIIISHQc42AH9caHmsZtEPypJFL7Fv7njIHfS3ZCbXWRa711wOGXLu9c6cJr11rp5M6KpV/yFJk55L3CPlrYmzL7nuOrn5Z5UuWmLBrC3v9mCZPNmEtFW6VbaRFlstei9+kZKhZaLmqfFb1XHaeRy7gu3W5K39fdP1IyUDIVuuxyuWbR72lBFnPo+L5ek5mdH49PdXLr7M7/3x5TnZaS2Vd8ay9iuhEll/KyPT1QtXwjSINKbqdxRjTmwd22T+QOmDtXSAfiNTvApZGOIqMW+npSuJ4aNGJXvnvG7TLId8b7W1hkrPgOpcdR7/4MtKFysVcuKReIWi5m2wir3yl40SH9NN3kKmYBzRVn+dVyOZFMpe0Wp8nFceyiHIKqY9POsmOCxkDXErnKLJrxyCfS/os08qxQ8tCZftX/h+yXkP7Wux+UlE/cmxSL6nHm+aUw/I2iy5vHkLmiqH4vgPzvCujP19Fo8wfCGkE2BsIIYQQQgghhBBCCAmEH9cIIYQQQgghhBBCCAmEstAGIEFaXm4buqy3Yqm53KnHJf10SQlcOie5LP2NbzThRYv88w+g3lK0sVzqLKtOVqveZUum27bNjpM7GFbscua5zN1X3unKv2hiLNmXu6ICtoJrZrfJ06V20FIXKU2Ru04C9jPt6ODfOWIQQ7agJVta5ed7vZBru/KXeWh5fLPoezv6snfJ07uYyvZpS8Ntiu7LYyUxPlA5suq/pN+jLm2+xKHZ9W27zjmCo/H6Ss/zbBoe8tzyjM+WFUbPbK888+yonHndgqWl0zuyrzd/viMTR9tytovB7J0+5a8BTtsB8Sz0e27vXhOWcw7A7hrnnGPCeiySG2W+7GV2XMi4HirNd11Lzgl0PbZ67tKpyyXXODTLAfm00+xknjv6+rbVXP3Qs59bfU1XuONF2tMhyiV/d1F1tWfQ1LnecVe2SX0p1zs8C9c44r1jasHy0dD35ljuBn5QkyT0XCMAuHKNEEIIIYQQQgghhJBg+HGNEEIIIYQQQgghhJBAuH6REEIIIYQQQgghJC+UhZIR2AoanGD9vuzg0odFm2VIQxU9KAxW36K94rxJk0xY+0J4DjSNssVzEVtZu55hyPNtdlTptGnZ5dc+TbWW40Bpx8PW3NIvTYaBbIsT3aRl89fIrqd9P1xeRuOBGH5jId4loV4xvn2vpaUx263zvq1xvd2KWrfOhLUll6eNT3QaddxwlcvyLGuy/ZZKbZ5TKdXps9pgsJdOm/3sKzzYqlzrQHFNTX5eQ764/MxCPU9931/SV9PlMZiHrOfm698Xmr++T+f4IOZy23babberq3qej2y2yyhtdvU0Ur87JXKMWbo0Ow/poZXRbKsSo9/4jkeu6bJsWzpOzr1cU2Lr+arB2beN+85hY7XPzHKoMRId073KVcWUrszAQLbvn2w/0htPI/1z89RB7Lpz+joODNhxotFU1GsGob+vFOGPNh5+FyAkJmzxhBBCCCGEEEIIIYQEwo9rhBBCCCGEEEIIIYQEQlnoOCLP9vCZW2JrWUpLq1d+Fch1+yefbMI9PXY6xxr4Rtyeud5bZ/suh/eV18aQ++eR7bjwlbPEwHdZvlptjwkTTLiz046zVBni2egt5qWsRj9CmXTuXDtOppXhnTvtdF1d8CJUUhWDUDl1bJmZryQMsJ+NlFo3qmWGdZ/9u+zI7dvLwek99hjf0dEswvZp8l59JWd5nnVW2hh55EHmoccA+Ur0lQ6HSpM1WfnEqgPf82KMyVKmpSVbWhJfT0qD+8RRtqQqRjtz9RNfiXohiI4+dWp2MlkO/T6UZZ7Zab/oZjb1lcP7Oo7IurTV17Qtwuymp0weLTOzC+lJEeO4a6yQaxX0tWM/+6IlnUXjqoPBJvM7iR6rX3rJhGfNsuPku02fl3WtPIRYTOT5nc1CTyTlDfnKaxVFWN4QBT3XyAiNPwoTQgghhBBCCCGEENKg8OMaIYQQQgghhBBCCCGB1GX9YpIkhwP4UwDzAewFcDuAf0/TNK3H9QkhhBBCCCGEEEIIKYKaPq4lSXIEgK+OHP4wTdPvVUnzRwD+DUCH+PEHAPwqSZJVaZo+X0sZyDAVmnm5N7owPJEea5XJlD+ASzsu4+T+6gXrzYvwKvH2rovgS+DMw7Pugn0cDpBP7Gv7+i3F8Khw3Yv0/5HtHbB9ZaZNs+OsxzEgPDCUoVBJmH00Nfn7vclspJfLc8/Z6SZPNuH2tjDPu6IpYtt3+Uxd/dC2J7HrX9a5q3v5+pGEjje+eXj7okjPS8BuQOpGpdefqw58n2GePh9Sd0V7BrnsbFqVD5Sk6DYSg3p7ecm6dFi7WmNdnjHMF9/36qB41kX4VsXwNSrkfd5kvOZaPMeAtjZXfioT8SIdUH57cqiS+Ve8K0UeeaaRIc8qxrtRX7e5qfZ3YNY7z5VOH/uOAb6+YQci5DxfX1zt3Sjbkm4j0ktQj/EuO+MYxLhvGdc32G7FST+5It41vm0klEPG042ea2SEWnvm6wGcD+DNAO7TkUmStAH4AYBpABL171UAvl3j9QkhhBBCCCGEEEIIGTNq/bj2upH/H03TdEOV+EsAdANIATwC4KMj/57C8Ae2M5MkWV5jGQghhBBCCCGEEEIIGRNqXb+4AMMfzu7MiP/Tkf93AzgtTdNtAJAkyU0A7sXwB7a3AlhTYznGNSkSr+W9ueQ4WjaUkYdc+h8q97HWam/caJ8oj+XaZsCSk2q5auxlxKX+XfYPMmRUeSRb3jKPwX3ZeQq5hjMPcS3XdZ2SgL4+O+3mzeagp8ec03lEZh55ZEdZS/HzSNN8JQeupfLyeocdZp/nkhlYzy1Lw+koh6alpaSOs68t8ZUzxpB5hG7l7sxD6jwcdVeRz4Z7zcHChZnpZP1o6e3evdn5z+gS5RQnPrPbHouef97ct1DYAwDaRft5aqtJ51JthsqHJPsGdRvPHkd8VQq+7SVU+hZDOhOK7MstLX5jLhBfglPq22H/QA6SQha3ZyB7rKjIM+BdmWccd+UvpX0uWajulxZZ2lIHobI1Vz3GtoAIzl9XVkahY0jU8+Tj+67RY19WH6p81OYHoWUsQtrrm6fss/re5HHoPMa3/oPnqQVL93yfh2te5Dt98JWF1ltG74urD/mS515CbCtivOsJOVip9eNa18j/D+uIJEmmA1iM4Y9v141+WAOANE3/kCTJbQD+GMCpNZaBEEIIIYQQQgghpP7Qc42gdlno6Me13VXiTsPwyjQA+EmV+N+N/D+7xjIQQgghhBBCCCGEEDIm1PpxbfTj2eQqcaeN/J8C+GWV+O0j/1fXLxJCCCGEEEIIIYQQ0uDUun7xOQAzARxdJe6PR/6/P03TnVXiRz/IZRtSHSIkSONr1DM817Sevr1FVn92c9iyxT7euLH6d9nXL+2xfyB9vrRhQoTlsy6vAKtOHdcK9ZsJYutWO/+enoyENr5l1F49rYPCa04/RPlsZHtRnmu+5dD4eq7F8LpxlUteb/Lk7DjniTm8wrLQXluyzLKudNd1eXSNC2+LrIaAAzz7AP8l6QEFANOmmXCF71OG19PUqdnX0h5ufX3VvYZcnjsxcOWn79NlaZXVrMfSeyaP35v32CE8E5u192cEXOV4fIuJu/XW6VbcXXeZ8P89+f+ZgwvfZaWL0c+935UR0Pm1inam/QKbZYPNmLdUyzOkLHJ8CPWtCvW29O5TyhvVKocwfYw1b8lKm6d+Qq7tSlfpKRmWj8QeB+P7km0R/VyPq9Krs9nzXRDLDyy2l2Asr7+sPOV8x7euNPr5SqR9bnuLPTcpiUaifaBDCPWGdM358vhCZ5Zl+3Y7Uvh9ugj1C9w2Ygr10ktelyFk3FPrlP9eALMArEySpCVN0wEASJJkLoBTMLxq7faMc0floM/UWAZCCCGEEEIIIYSQ+pIk9FwjAGqXhf7byP+dAL6XJMniJEleBeA6GMnojzLOXYLhj2+baiwDIYQQQgghhBBCCCFjQq2fWL8B4KMYXoW2auTfKCmA36Zp+p/6pCRJegG8YiTNb3wuVCqVkCTJgRMqWlpasGDBgtzn1ZPW1lavpdZ55AhZ+ZWu/ab9g5tuMmG9VHj16nJwdm+vFTW7I0NP1G/LHIeWvqoc1uow1wf+rPIHyzUcsr7Q7du9l9tv3mzCWvbikMzJCvItY+ume+0fbNxYDt758j+xoqaJRyWrRwtVS4MO5bYooy6XVPvIsJRIAPWVNuZSd8pn43pOAl0HLkmerJPdYksYKWWsQGoadCZKTlSaO7dquYqu74p20NReDreqa5cG9piDDRvsjAL+AuiSUzS1aUlhc9V0rSqPlhZRd5setBOvXWvCK1ea8GZ7LH2qw7yDZrapZyjGBF8plpZ+ynatVWUTJpiwlkVLfNtFHklhPeWlrmv1Nxk5ZgyT1zx9aPaNXy6Hj/jLv7TiXinCn+lNy+GPbFHtTPRljatv+0r+vAcqNYCGjCU6+30tZnzQPT4k/1DJa4z2H6W96zmCqDAtl8xIFoyvrCyKNM2BaxzPc72QPEPlmPMG/yCO9DM0s6oYbSRGHRcxNse2+ChiriL7yZ7BZhVnjpsDZeOh+Pav0Ocrj/tbbOuXrHeizkM6y+g5iIxbtsyOG513lMbObYKQulLT6zhN04EkSVYB+CkqfyffAuBPM059uwj/3OdaQ0NDSNP0wAkVSZLgD3/4w4ETjiGXXPLusS4CIYQQQgghhBBCCAmg5r91pWl6X5IkxwH4EwCLAUwA8DsA30nTtD/jtAUAfoHhzQyyPNkIIYQQQgghhBBCGhN6rpERorSCNE1fAHD1yD+f9G+Ncd2DkdKWx+0fyF1cAncstPK8+WY7UsgGsXy5HSf1e0oWiqxdLpVsrbTRrBpsXrfOTnvhheXgN6+zl2evWGHC8rantymJomMgK21/1hxoqUVAXQYvo5eSHk8ZqOvaTvmr1lyK++w9LPvScodE166NejfSQcdGb1JlLG9bF9FFDEmPa+coWS6tuJwu78exc6hvu9ByvazHXSFfkbLiTcqiUm6/pLe5zJCShcr6fGXpWrrU2iLO0zvWyvFNV4iIk+1Od93QNuL73Kzz9K5aCxeasCy/krhetcHIQi+/vN2Kaw+QlLiGL11E2Z6K3iWyiJ3kYlzbU9UdOjzbqB2h5bHef26OCD/fKw7UQ5R9SpfDWXcOSWcQehCTeXrmr8srdwR0SZlCiS0zC90xL6tMFagXqZVWtM/mwT1WOjSZ+s9TbyEys9BdEIuQ/IXUeSHWCHJOrDppbAlmvXcJjyF9ji05dvZDZWXSLJ6Haz7owlXGrHLVe9dt3+vpuXpWXer8ZLPW7yGXs0B723D+0qKCkIMZKqAJIYQQQgghhBBCCAmEH9cIIYQQQgghhBBCCAkkqjg4SZLZAM4GsARAF4ApAK5K0/QHKt3o1l0vjkhKCSGEEEIIIYQQQsYP9FwjI0RpBUmStAP4MoZ3Bx1VVScAUgA/rnLKLQAWAXgQwHExynDQoDumOM7loyH9xq680oQXLbITXnqpCS9dakUNNdk+aF7XdXmbaZ+2NWvKwVtvfb0VJYtiZan3fxb56221W+W1PQe8PL5MIV4l/QN6628TbnVsFe97rT1t9hbbEMczWlQeGSYJLl8mXY3SV+3+++04aRU2bZoJz59fUeyacT0n3WQksgoq0nWImxWNME8/lHlqu6Isj4qhLlX/Du/DXf0mbXv/U15l8vVY02l9vVCcXU37Mslj5RG3p8n2Jhtl2zb7eMbzxoduaO48x8VtfH1GrHQdHXbaRSdWz/vGG63j/znfeFvevv7jVtzSpeZ62kep1FLdR8k1TrnqvwivnhBfvnoTOt/1Pk92bjnwAVaffe0HPmDHiXfiIyebHw91TLeSyWK46lH7HaLJuLw1u+rfNf7LPuprXpeDsfKjCh3rfNt4nnHWt1yWX9QW5e0n2lmMfujKw1k/g9oXt/o8MtQXLoZ3Vy1lycRzjhDqcVo0vp5irvNCruWMU5OykvSIfvpp+8TTTjNh9Z7OQg9n9nzQvmf5e4g+L8tuMtSbMLTvhV4761outEexfO1de60dt2zZcJ4vvhhUJELGHTW/UZIk6QZwN4C3Y3gOmIz8c/EPI2nmJUmypNYyEEIIIYQQQgghhBAyFsT4k+GPAByN4Y9lvwHwNgALnWcANwIY/YZ9ZoQyEEIIIYQQQgghhBBSd2qShSZJ8mYASzEs//wugIvTNB0aics8L03T/iRJfgNgGYDTMhMeikgJGMKXCpfuuMMcCPklVq2yryf1lw4NTKjUAr1zTB5SQwgADz1UDn7zo3+wonZ1LyiH7SXXav21KPPGDerSvUZW1hEolWqUbbWtMip9oSxVq1oOL2VCFW3EU/PkkpzJpfJ33mnHbRWqlRNO8LpUMK7nJMvsWs6v703WnW66EtVlM/OfMsWO27/fhGU9lrY8bifcsqUcfOboV1lRDzxgwmcscxRE4JQ9HiBtzXR2ZscpSXlThmy2FbZ0EveZ+oFDFhpDpuUtZ7nwQjtSSPPP0GP8skvEkd0In9lmri3bS3e3/zN0sUdIX3bvNj/v6grKroJ6SptcY4B2K8jCVwZa2YccF5NWDCtX2nFCFjrHUX7femwe2GX/QMiqhjqNRYB3O1Z5OCvSJRmVA6h+fwmfgKIlT6Hkqq8RCp8vqGch31fNymIiVAqaxaZN9rF0K2hWerGSmJPUew5llWMM53K+xJDyxZD95jnPp0z6PKfMdNOD5mCDmtTLsUPMiwAAixd7lUviGu9D4ySh47jveaHt2JW/6zlNmGDCWhYq60RP80bnwaXG7HbxoOcaGaHWpv6Wkf+3A/jz0Q9rntyL4dVuBTgwEUIIIYQQQgghhBBSPLV+XDsFw6vW/i1N0705zx21pY70N3JCCCGEEEIIIYQQQupLrR/XRnUGjwScO7qlUP4tKQkhhBBCCCGEEEIIaQBqFQe/BGBSYD6jH+b6aixDTUyYMAGvfOUry8c33ngjeqWBBIDVq1fjF7/4BQ477DAAQGtrK371q1/hmmuuwbve9S6sX78exx9/PABg4cKFuOmmm9Db24ve3l5MnToVALB//36cd955+Ju/+RtMmjTJyj9BanTuykfA2np6xQr/G5PbVH/0oya8UO01EeC75cLpa7TkFDut8JuBvE8A7bIeZJmVX9GOPlMuX1+dUGJ4U+Upo+W9JQ3Mtm2zE06bZsLq+Ta1Gd+5Iry1pm+5txxeufJ4K+6rXzXhF14wYe3V0Nbmt82773bw+j6bRRNvhsMXqMn+zi99ZWTz1H4Ssknqazc1mTJPnmyfZ/msbX+2+oUBy3dkhuwzACYvmo0sQp5pET4sLj8Y6fmlt7OXVk/tbea8XYOtVrp24WmlbVhkdfn6jOQh0wtl1ZvsdNIr5tZb7bhly8yBevfMeEHckOw4HXPt67XYdeKL9K9rTUz+QzjCSuf7fIvwzIrhJ5SVX65yyUHg5pvtuLniebje07qRe5bLG+17JjuR57V0FkF//dSDvB7TPCnSWy10rKs3meVSLyI5k5NejYA9RdB+bFn5u+p+5077WI6zzYGeQ0V7ovn6F7vKFbscLurqhXoAQrzCXOdUjDHSK/Kuu0xYThwBYNYsE9YTMeU3nFUuF7Jccs5xoPyy2m6eZxg6h/IphytdnvxdXqyy+vWjGJ0jT5yYff5BAz3XCGr/uPYMgDYAxwScO+rM/USNZaiJyZMnY/369QdM99nPfhbnn39+xc97enrwd3/3d/je975X9bzbbrsNnZ2d6O/vxyWXXIJLLrkE3/jGN2otNiGEEEIIIYQQQghpAGr988evMLwpwcokSbz/wJkkyWIYv7bbayzDmLJq1Srcd999eEBu21eFtrY2XHXVVbjxxhuxY8eOOpWOEEIIIYQQQgghhBRJrSvXfgTgYgCHA/gEgP/vQCckSdIB4JviR9fVWIaa2Lt3LxaNyIqOOuoo3HDDDVXTffjDH8aVV14JAHjFK16Bb3/72wCAUqmEv/qrv8KnPvWpA65Ia29vx1FHHYWHHnoIp556avVEa9bYx5s3m/Dy5VZUSS4/1fKP0083YSEVdC1F1lICiV4O7Ls1tHOpc/dMk07rJa+5xoTlMnF5XwCmCznO9J4OO38hlZLVCABTpphwV1d+2REQSQIldWxS+gnYa9S3bzdhLS2SukTHkuTQ8jqXjIul+fOu+4IV9eWta8vhj2/+fjmspXvzxX7BocvVrbrSdZBVjyquqceWWMql7ectNNvDP4h5VjrXUnx56b1qyxdZzFYpo9JllPuf//KXVtTeFW8rh9s9Jcex5CYxpBCtTftEnP33mXYIqcg6I8lrWWTLy3GjkVnOPuccDZFOQAABAABJREFUdb3sv/kUKXmtaMcXXWzi5tqSTqxbZ8K6b3/xiyYsxv+hhbYEO/iZyutJ6WqdcbWfGHIZF87z7rjDhEfe/wCA3//eTvfhD5syKUmw97UceN+n1uPE8EoQbcQ1vllyQJc8VbczqRxYdGJmMUKle7ElVS5iSMJ843Q6Wa0u+ZXvvVWUo9+Mx8cd166TGxxtLoas25fS4D77B465UYzrhcpOQ8pRhKS5SAm2pnnr4/YP5DtQSkH1u1IeO+Z5uj7k9Er2E+Uy4yTkGTrHLN0+5Rjp6EOuPGO0A992rH8nlI/tCaVHG53CvvRSzcUjZFxQ08e1NE3/LUmS3wI4EcBHkySZCOBv0zR9oVr6JEneCOALAI7G8Kq1W9I0/U0tZaiVWmWhAPCnf/qn+Lu/+zs8+uijB8wnTdO8RSSEEEIIIYQQQkijkST0XCMAapeFAsCFAJ7DsDz0QwCeSZJEOja/OUmSG5MkeQbAjQDmjPz8GQDvjHD96Lzzne/EokWLcNZZZ3mlb2pqwoc+9CF85jOfcabbvXs3Nm/ejHnz5jnTEUIIIYQQQgghhJDxQc2fWNM03ZQkyR8D+AGGNzZoBfAaDK9MA4ClInky8v8mAG9K01Rsadk4XH311bnPWb16Nf7+7/8eu3fvrhrf39+Pv/iLv8A555yDaXLrJkIIIYQQQgghhBAybomyfjFN03tHNil4L4D3AOjNSLoVwFcBfDlN0/6MNA2J9FwDgN/8xlazNjc34/3vfz/+8i//0vr5a17zGqRpiqGhIZx77rn4m7/5m4q8UyRlLXtJ7mkO2IZUruWmOk74rEm0hn7fYKAXxIYNJiy8wkpLl1rJhtqMN4fT00F7DMh8tm0zYe0pI46lx5qmX7U2meX+/Sbc3e3v6+LrO+eKs46035K8195eE9Z15emr4+sBk8e3wfLNU35XmDSpHLz87ebH2lIsqxy5kH4V+mG7vIBEWl0/M6UfxxbzbHodPh2lgT3WsXT8mjbNbp9Wl5XPXrdxaRKitqafMU36dtQ+nId6DgZ7GUmfQeV5Z7VrEd60yU62QOahnq/0pXxks31t2aWyyqvLHMXXS42R1vPWfVl6cz5t/hZV6rM3xRnqmG7iKryG/HznKnwvPc4Bwryq8nhzhuDKP9e1pFnnQw+Z8Gmn2elWrgwqV2wq7lu0f19fr2Y9jIg+NejwMPRGj8/ShNPhueYi1I+tSHK9RyOMMfJ9ortyLJ/NUdq3/ME63jd3QWZ+IfcTmoddj/Hzd+URipy6NDWZPJub/N9D9Rw/o8zRtAmynONIXzX9+5CeG0lEB9AW1HLOKS+l+4mchmkP6ueeM2H5axkQyVNPjouqYL7+tr5xMd7TOk76WGtGPSCTJDsNIQcT0cTBaZruAfBZAJ9NkuQoACdgeKODJgzLRjemabrBkcWY0K8nelW4RprrC1avXo3Vq1eXj9///vfj/e9/f/l4s36BEEIIIYQQQggh5OCAnmtkhEJaQZqmjwI4sLs/IYQQQgghhBBCCCHjGH5ibQDS1CgvmpctsyO1jC0Lz6/lruXA2gpu506/S8MhywotS2nJkqrp8mxBLreOP75vvR3Z2VkOPjKwAEXilIkKKVyFJDj2tQKlM67l5HL5/ZbBOVZc05nvLYd7xHJ7UfUHxLdcJVf7d61O9SyMfE7NgRIMLfOwyiXlDnr7eblfvL5PqXHIU7ERCJGiVJyzdq2JO99u/9bzFTqMBVufsvOQkjzH+KOjZNXJ6i96q/uKPOeb8UdLXuedey6qRmoJuUTfqEMWaj0PR54xZC+hUhTf/F3pQqU0loT38583Ya0p1jqhDCoejejOvtKrULlhMKKQDsWofaDbkhzD9Ip+4VPrkjuHklUHYyUXPdC1QyXNbW1+0tLgNiGlat22N4J8t/m23cLrv4AVJLL8elohm7yWVsuuIafLOk6+wpva4vTzEEltIWzcaMJPPGHHLV9uwrKdaRmoeKbO8ipZaJZkWjcROZ995hk77viWB8W1szel85bQ6ou7JK+eFN2nXP23q8vE6d8lR8cHLuoihwoFj6aEEEIIIYQQQgghhBy88DsyIYQQQgghhBBCSF7ouUZGqKkVJEnySIQypGmaHh0hn4OCIS3h8ZX06Hw8FyW6lByu/EpSFuParS/CMmXfXc6c6O2DxJr+nrlVfwzAvRFniNxEnyOrS+4UFYuwXbb8n5l8j+gqlvfm2uzUrgP/clntQuwUW+pWDVnq/7QuyyGlDJJJ5JHrybTyxrU82LXbaQRiyIWD+3nWlp2ua0l5CWDLaB31o6s1pCoLkVsJdPu/d5Np18cL6eGuAfu94NrnU45psisAQE+P3+569STGLmd5yNqtDwCaZdvScm1PYrczTUidVMpTI9erHuRl59N9Xu4Wqvv20ld5XS7GjrW+RNuJtlZyyL9DcFpwKLluiFy77vLmjHKE5i+bLWCPIyf22FuiN4uBvb/frjuhirZ2XHTu+Kq0pXKn56G2dkepi8U5V7//fnPwwAP2iW98owlL6adq066xVL479TRMKi4dm3Jaz1CrNId6/KSgPj+viih0jLEpxs7mob9vuebxhBwK1PqJtRdAmiO93Ig3HTnOcz4hhBBCCCGEEEIIIQ1DjPWLyYGTWIx+TMt7HiGEEEIIIYQQQgghDUVNH9fSNPVa65kkyWQAswGsBPBBAD0A/leapp+o5fqEEEIIIYQQQgghYwI918gIdWkFaZruBfAAgAeSJLkawI8BXJEkSWuaph+uRxkamVK6H82De4YPmhyeTRG46y77+LjjstN2dZlwhdZemh9IIx9tWiaNC9SgE+K/kcdHYF+L8Z5oXrHCipPXk6Xabltl2J4M2lRM+Hw5EXXV1297SGRtEQ4UXz8xkOXX9mW6ukYpDe6zjptF/Qw1edapztPlEyHaoNNDQvsFihuI4mPi8FyzvDL0y1n2Kd2/lPeKpLRoUdX8Y3nd+LZPZ5tcsiQzj8zztBmKyyhF1Ferw0CxaJ8mX7Qd1fr11dOtWWMfn3qqCc940R7Emjpnl8O33mqfd/bZJtzVFejZZPVfvzzyjFO+7czXb2bPgJ2HbD7aq0d6kYV60YTMtfcNZpcxxntCE9qXba82hwGnnCPoG5Bjmm6gwnNNDp/NTXG9XA+ErBPtW9jWZuJ8y6XboGx3vn5g+qfevmcDe+wfZLyHco3p4uFs3mKPAVOmmHymTq162QMS4h2bB9/27/L8kk1+X8cRVlzzwK5yWI8HEydWD1fcs7zAhg12nKjM0rJlVpTvuOiqgxAvr9KmB+0f3HefCetKkJ1KvMNd402e/tvSIub74tI6D5lOe7RKnM/GNvG000lvPEc709O8LHveYA9qRcg7Vo+D0ztqfw8RcrBQ9x6QpukuAH8CYC+ADyZJcnq9y0AIIYQQQgghhBBCSAzGZP1imqZPJ0lyE4Y/sl0K4JdjUQ5CCCGEEEIIIYSQYCgLJRijj2sjjK4R9ttrvQaWnXZS0ZeoiUnNkzLjguVWGUybZh/nWZqfeeLChSastYGeA41LChG61Fku4bflKzrOhLu7HRk67sVVxn3Ilkq5qierDmItuc7KJ0/+slwdHdl1XE+C21LRL8Ui8ndp2gShsprCZcai/CXfwUjrNbI0EzmI3b9CJWcaObRKrcjevdOtdC+8II/sjtfaZGTYnZ32WLR/f/Xr+krTDkQR41bsa8nm09qS/dxCpfmx71srLls9JYUyrjnSUJRV5xV9WfZL/WKQUm7HC9jq2jqPgH4fa24lpaAxnrVrDLZkm0qCXU9LiIoyivqfM6jkgF1zTdjSu9ny4EaRkvn2X/0akk1382Y7bnDQ2EropiqtAGRX2NWvr2ssM9p1PxmryZYLXaYpU0xYes4A9iAswloeL7NsdUwX9DOTde4aKoLfV1n1r34e2sazpKy+Es4DEXvcKvodSEij0wifWF2fM6Jwx5eWHDjRGPLuf3hkrItACCGEEEIIIYQQQgIYy8/JS0f+f8GZihBCCCGEEEIIIYSQBmVMVq4lSfLfAJwJIAVw71iUgRBCCCGEEEIIISSYJKHnGgFQ48e1JElm+ybFsMHCPADnAbhQxF1bSxkOCkqlTL+kUA+ArPMOO8xOJy0B9PbPEu2nJT1VhuYvqHrdaGQZpB0Al4VTVjZOD7SmbO80F9KTZXpHUBbezz62R18eXH5FFrqSxbGrjE4/MNl4VUMuOY30HLS1HThNHjzbbsV9ynLoMrniAoixlXsuNmwwYV3++fOrn6N9HQORfi7y0WzbZqeT9jCh3nWhyLFDGvJccIGdzh7v52TGrVqVfS3fe6tI59l/6+m/5iLUZzS0jcvhyGUV1j7YVw43q0I2tbWiVnzfDS6/nODnJs2kdL+eKzy51FidVeehfmMx/Iqmd9TuJ+Rqg6WBPf6JQ8rRUntbcl577rzMdPJdlmeuUs/xwjXPkF6FTW3+ZVq71oR185ftyXWf1thhmXHqSJuQcSuGZ2hJ36h8aelfNuT4YPkz2sl8PYrrzVBb+4ETHQBZ5+2eUznf9y0Qv37kIzsQ9fSDJKQRqPUT62YMrz7LSzLy/88BXF1jGQghhBBCCCGEEEIIGRNifMpOAv7tB/BPAP5bmqYhH+cIIYQQQgghhBBCCBlzal25djv8Vq6lAPoBPAPgtwD+NU3Tp2q89iFHjKW1egdsmadra2tN1rbLodJVJ2IteBGyx6xl//Um9N5CJaMxZFqu7bd9y5FVpjxx1rJ8tUQ/Rr8JzSOkfnzzA5RkdDyyxG8nZ996zNO2siQmeoz0zd9FbFlEaD/xrTudznescElRYkhGY0gW6y1R8e+iHZkxdZdrR86jnvL1YHlzAWUJwiEDPZjkVXnupZ73HaP9aPuPs1bmv7avNBDAmPo8eT8bKf/2xLJFiFWOAvIbD/1yPJRx3EPPNTJCTa0gTdPlkcpBCCGEEEIIIYQQQsi4Y+wcIAkhhBBCCCGEEEIIGefw4xohhBBCCCGEEEIIIYFQHNwApEjKfjGNqosP3ba+cD82zzxi+JLFwJX/WG4/7yKGN1tWfrHydDGWXkxF+//E9nQbj4T27XpSz+dU9BhWRFst4h2SlUeechFCCCGEHBB6rpERGuO3d0IIIYQQQgghhBBCxiFen1iTJPl/BZYhTdP0vxeYPyGEEEIIIYQQQgghheC7fnE1gLTAcvDjWgahchlfeYuvJMYl44khE3KRp1xZ+Y+l3CdUDhWSLpRQ+aIsV4wy5mnHsetkLOWjvoTWRz3LHPoMQ8vYqH3b55xYNIq8vIjxrIhxxTddbHuCA10vJF1IGRtlrIhFyDs21n3GnmeEPhvfOii6jBpfWXeM+WzRFGGL0Sj4thHXs2mUOXcooeUPaReh1giENAJJkpQA/CWAdwPoBbANwPcBfDxN0xc88zgLwBUATgDwIoD/BPBXaZo+WiXtYQCuBHAegMMBPAzgqwCuStO04vtUnryLII84OPFIk3qk02mK/GhHCCGEEEIIIYQQEp9Dy3PtHwC8H8ANAD4P4LiR48VJkqxI09T5RThJkvMAXA/gdwA+DOAwAJcB+K8kSZakafqUSNsM4BYAiwF8BcD9AM4E8H8AzADwydC8i8K3FbzmAPGrAHwQwx/NHgbwIwzf1PaRnx2O4a+H5wKYC2AIww/mpvxFJoQQQgghhBBCCCH1IEmSVwD4HwB+lKbpm8XPHwXwZQAXAviO4/yJGP5I9gSA09M07R/5+U8B3I3hj2WXiFP+DMDJAN6fpulXRn72tSRJfgjgr5MkuTpN08cC8y4Er49raZr+IisuSZL3YvjD2gCGb/xfMpJ+B8BHkiR5J4aX8n0QwKNpmv6ffEU++EiQlpf9xloaHLJMOc9S/KLlMr64lnGPpUwrqxxjudtmEXKQEMlT0UvcY/WT8bYUf7yVtx6ESl0kjdJ/Y+fholF2Kh5rstpPEeOG77ssVFJb9Pu8CELKX4SsslGI0UZi1E8efOcBjSKvDSV0vjlWsu5YY3yItL1R+leefhIyfjbqe9T33nwlwOSQ460YXjj1RfXzrwH4NICL4Pi4BuDVAGZiWELaP/rDNE3XJ0myBsBbkiR5b5qmL41E/SmAPSP5S76IYZnoWwD8fWDehVBT70iS5JUAvjBy+CeOD2tl0jS9GsCfYPjB/EOSJCfUUgZCCCGEEEIIIYQQUhgnY1iB+Bv5wzRNBwCsH4k/0PkA8OsqcWsBtAOYB5S93U4EcM9I/pLfjJRDXs877yKp9dPzXwCYCOD2NE1/7HvSSNo1GF45954ay0AIIYQQQgghhBBSd4ZQGvf/AHQmSbJO/NMyypkAtqdp+mKVKnhy5PxmRzXNFGmrnQ8As0b+nwZgcrW0I9d/TqTNm3dh1Oq891oMb0jwy4Bz7wCwfCQPQgghhBBCCCGEEFJ/tqdpusQR34rhHTirMSDS7HOcj4w8BlQaV9rR9K3iOE/ehVHrx7XRr39ZFehi9JyZzlSHGKFbYLvyCd2iPba/UNE+baE+FEV7ZcT2/ojlfRLDJyJGG6ln/eTx5SvCX6tWYvi1FM1497MJHQdj+LvlKVdW3Fh6ofjWXdH+oaF+TqH+lfWs8xjt0xXXSGNKPb1dx7sfmyS0jRd9n2NZd43y3Ipo0/X07fRtWwebJ1dI/eR51kW3zxhtxDftwfbsSQV7AByREdci0rjOB4BJHue70o6ml9fKk3dh1NoDRr8MhvimHa/yIIQQQgghhBBCCCGNxVMYln5W+4A1C8Mr31yLrp4SaaudDxgJ504Ae6ulHbn+4bAloHnyLoxaP649gOGNCVYlSeJtEDeS9o0YlpQ+WGMZCCGEEEIIIYQQQupKmgKDg+P/nwd3Yfj70Snyh0mStABYBGCdx/kAcFqVuKUAdmHk21CapkMAfgtgcZWPeaeMlENezzvvIqn149oPRv5vBvDTJEkWHOiEJEnmA/gxzJK979dYhkMGbTsYcl6suEZBmTBauMofYvIYo/5D83DlFyPOdZ9FtwPf55TnvEbBVf4Q9POInX8MqpijZhL7GdZ7jMzCVQf16FNFEjo+hN6z7wgtydMGXdcKOS8GrjvNQ+y2O94poh5j1HGM8TIkj1hjUYw+WvSYWPS7eLzjey+uJzze6sP1DIt+t9V7nI3xbLKedS11R8Yl38Pw4qjL1M//HMN+Zt8e/UGSJEcmSTI/SRLpc/YLAE8D+LMkSdpE2hMw7MX/gzRNXxLpvzuSr95Y4TIAg7C/I+XNuxBq9Vz7Pxje7fNoAEcBuCdJku8AuBHD27E+N5LucAxLR88F8FYM7zAKAJsA/GONZSCEEEIIIYQQQgghBZCm6e+TJPlHAO9LkuRHAH4C4DgA78fwx63viOT/G8A7ALwGwJqR819KkuQvMfyR7pdJknwNQDuADwDYBuAT6pJfA/BOAF9IkqQXwP0AzsLwN6Ur0zR9VJQtb96FUNPHtTRNX0yS5GwAt2F4Y4KJAC4e+ZdFMvL/0wBWHUCXSwghhBBCCCGEEELGlssAbMbwarKzAWwH8BUAHx+RcjpJ0/QHSZLsBXAFgM9h2H//PwF8JE3TJ1XafUmSrABwJYYXaB0O4GEA/wNVFmjlybsoal25hjRNH0qS5CQM3+B5MB/PXNwA4L1pmm6t9fqEEEIIIYQQQggh9WbUc+1QIE3T/QA+P/LPlW41gNUZcTcBuMnzen0A3jfyzye9d95FUPPHNQBI0/QZAOcnSXIcgIsA/BGAeQCmjSTZiWEDuV8B+FaapvfHuO6hgEuLH6Jlr+b/UyTyenn9CHzOc8UdTHXnuq48zuPdEPJsqvmmNAKhdSCJcS+h7dE3j1rSjhWhY0BWHqHEqKsi6tu37co41wSuKcpbPZvQcbCIdpCVT6xxKiv/It4F9R47fBkPY7yMcz37Rh0vx2ouoa8doxwx2mq951ohxBgHNaH3Gfu51ftdOVZjTKzfH3zn6i5itIt6jnXjoY8SMlZEnYaPfDT7/2LmSQghhBBCCCGEEEJIo9IYf5IkhBBCCCGEEEIIIWQcUrCAhPiQIql5WXSoFMKVLvZSbdcy4rGU8hWdf+w6jrmVvE/+sZd755H0hOZZ9HlFUvTzHUvytK0QiUPs/qqvHaNvuMo4MGAfS4mnDDc3NY7kxvWcMutH61ojaFmLHjtCpYdFv0ddcY04BuRhPNg3xCa0/LHtIULziEGjSvhdxJa917v8YylNHiuK+J3Elb8v+vXYHOE39djWGnneQ4cKh5LnGnFzaPYAQgghhBBCCCGEEEIi4PU9PEmSM+Rxmqa3V/t5KKP5EUIIIYQQQgghhBAynvBdbLoGQDoSTsV58uehyPwIIYQQQgghhBBCCBk35PmoleT8OfEkQVrWshehVQ/NM8R/IM/W1mOpy/f1GRmP3h+Ncm2J9CFw2SvV2+8qdhs/0PVqpQCrqoahiPEgxNPNdU6ot6UvLS1+6fYM2HUl20V7m6fvGYr3YSltf9YcSEO5np7o5XAR49mMdx+Z2H5CY0mePppF6Pskxnui6HHEhevaRY/B9Wx3RXvv5RlXY3tzhs5BimhbB9O44kvs96bOM4+naoxrx+BQefYu6LlGRvH91ewbOX9OCCGEEEIIIYQQQshBj9fHtTRN35nn54QQQgghhBBCCCGEHAocRKKig5PQJddZy35jbZ/cKHLD2Iz35dJFl1/n79s+nfJFSzPanHltV7lkFi7ppC7HWG63HgOptNOSwnpKjVy4JMG+dVeEZLdRJN8hcjT9rPv7q6c7UP5Fy6K9da6B+ccuc9ES2lB8n1PofTaqpCdkDPNt/0VL5FyE1neMZx/aZ2LLYYuWbWpivA/HY/+qZ70eTOR5hkX3e19ilCPGu+ZgbROE+MKPa4QQQgghhBBCCCEB0HONAODnZUIIIYQQQgghhBBCQqnLyrUkSY4D8GcA5gPYC+AXAP4lTdM99bi+D1uf24PLvvAr3HX/NkyaOAG9R07FFz94Gk646IeY//IODOzbj6mtE/He81+Bd5w9DwBwzU0P4MNfuROzuqZgYN8g3n3ucfjAW48HAFz1oz/gH6+/DxNKJbRNbsI/f+wMLJgzreq1UyRey2jHUsbkvczX8dm+pDRhhe9U57m8OUteCLjljL75yzyljA+wVVO+Oz/WW/ppoW9A3Jx+vvLmXHU8OGikoK1NYXKKnTtN+MUX7bhJk0x46tTMInpTxJJ3l6xVllHHycehq79RdhKNUQ6rTbo6qevPhvWsEEcZnTsFDu7LPM+VfVubCesu2tTktwuZ97iyaVPmxUudnVbUUFu7SNeOIgkZ7+tB7J1K673boy++O0Ln+ct+SJcterdQ3zxjSQNDzit8nheBonfbrLcVwniTwoVK/hpJ8loroW1Qx4VIpvO8o+rZlkOtOlw7ro/nNkJICDX9tpEkyWwA148cXpWm6f+rkuYcANcBmCh+fC6A9yVJ8sdpmm6ppQwxSNMU5/7Vf+AdZ8/DdX+3AgCw/sHteOa5vTh6Vjvu+dabAQCPPLkL533kFgwNpXjnG48FALxlxRx89cPL8NzzAzj2gu/h/NfOwctmtOFPXz8Xl563AADwb7dvxge/9Gvc/KWzxuYGCSGEEEIIIYQQQkgh1Pqn/NcDWAIgBfBzHZkkSSeAbwBo1nEAjgHwAwCn1ViGmrnt7qcwsalU/hgGAIvmdWLzU7utdHNmteMLly3Fh760tvxxbZTDD2vB3J7D8PT2PXjZjDa0t5lbfmHvIJIkKfYmCCGEEEIIIYQQUjfSlJ5rZJhaP669buT/+9M03Vwl/r0ApmL449tvAPzDyM+vALAQwClJkrwxTdN/r7EcNbHh4Z04aX7ngRMCOPHYTmx8rK/i549v7cfAvv04fu708s/+8Qf34QvfvRf7XhrCz/9xVaziEkIIIYQQQgghhJAGodaPa3Mx/OFsXUb8W0b+3wbgj0c91pIk+S8Aj4xc/wIAY/pxLQ9pah9/79ZHcNvdT+OBx/vwtY+dgZZJpkrfe8Er8N4LXoHv/GwTrrz6t/jGJ15TNc8EqZemPo8HQIztlEPS5fFDkh5dvv4DebT8ITr/UFsmV/00izyb2+y4GNvbu/ILaQfOdMqkzNdrToa1z1kMr7mJE0059u/XcX75F42r/NIXy1Ufuu5CPOPGI9YY0N9vR7pM6WRlFuC5ltX+Q/0lh5rsRd5ZPibN+lbEfbe22JH7BuN6cmlfNWzJdnYodXfXfL0Y7y/rHO1r5xqcMq4V+t7J4/ETcu0icP0lPuSv9EVYH4bUeaiPUdHnNYo/UT094gC3Z9N4wNVHQ6xAi5jrFuFHmBWXpx34+jVmnZPnPEmeMo5lv8ycZzRQP2mUcYuQRqDW3nDEyP+bdUSSJEdieAODFMB35OYFaZo+CeBmAAmAk2osQ828Ys403L1xu1faex7cjuN6O8rHb1kxB/dddwF++U9vwoe+vBZbn6vco+HC1x2NG3+xOVJpCSGEEEIIIYQQQkijUOvHtdE/Yb9QJW6pCN9cJX7jyP89NZahZl67ZCZefGk/vnbj/eWf3fWHZ/HYVttzbfNTu3H5l9fif1ywsCKP0145A29feQy+dN0GAMBDjz9fjvvxfz2OY152WEGlJ4QQQgghhBBCSL0Z9Vwb7/9I7dS6QH9UgDWlStyrRJpfVYnfMfJ/a41lqJkkSXDDZ16Py/7h1/j0N9ejpbkJvUe24YsfeBUefnIXFr/9hxjYtx9TWyfif1ywsGIzg1E+cvEJOPHiH+GvVy/CV39wH26960lMbCph2tRmfOMTyzOvnyIpdEltlKXgusf5av4kAwP2cVtb9XQO6r30OFTGk5VH0ZKhIpaJO9tBU7W9SsKJ8Xy1aq25Ka6kSjdjb2mm463lK5HW13apHrPaXR65SSPK0Zp1JcTQHHtSRB24+1f18lfIjsSeQfoM2f59kVJSANguFnZPmDDdipsh/zzW15eZp28bDB3DQqW3vmOY7zg7HuUxskvpJihV2FqRLZFN1SVf7+jIXbxohMrnQsbIPO04pM3kaYP1lI81klStUfD9hbV5UChf1HuulDXnBlCSc2k1r44xHoW063ztwK+MrrHIUQU5SlE/6XaFPYHnHNBVjhD5rs7HV6LrGiOz2ru2VSLkYKXW3zyeBfByDMs/NaObHdybpmm1KdnUkf8rdZRjwMyuKfj+p1ZU/Hzv7f8985zVq47F6lXmQ9vMrinY+tO3AwC+9KFXZZ1GCCGEEEIIIYQQQg4Sav24dg+AXgArkyTpSNO0DwCSJDkRwPEY9lv7Rca5R438/0yNZSCEEEIIIYQQQgipK6OyUEJqXdv6o5H/pwL4WZIk5yZJ8qcArhdpvp9x7ikY/vj2QI1lIIQQQgghhBBCCCFkTKh15dp3AVwO4AQAS2B/VEsB3Jqm6Z36pCRJFgA4eiTN2hrLcFCRx0cj9tbcTr8BX8817Yck0SYJQtBfUiYtPvp9Had9Xor2xfH1o3Ldi+WxsXWrHSluyPLUcPhKuTwYXB4JTk8N+UyVp5LL66N5wDzvZmne0G9XwlBbO0KQZZ5etnAEsEnVo2xn2pDN1wBI1MHu3bZNpK/nmvZ6kp4bsdujK8/QaxXRn1xDhxwuZB1PdxmBOOJi+BD51oHzWvpGpaGZLr9or7L96HI0i9O0X1pTU36fxzvusI9lt1+61I4b6jIebCXVn0LaRZ5zfL2AxtIHLXY7i+0DCgAtLea8bdvstE88YcIvvmjHyf47RTjvTpxop3P5Ifn6+sTw5cvKWxNjrMjjr+qaS2Tb2wa2aZdZlQOnN6Qc0wr2vYxBEZ50ructq6RiDig9MfvEs5HvBcAehPU7pLfXhNXzzLq3unvjyXanyt8s3htDwj9UT4nlWKQ58kgT1k3O2xfXk1BvNuvYMR/cttOOmzrVhFtbin1ueXzWsuKaVR6j950kNRWNkHFDTTPONE2HAJwN4G4Aifq3HsDbM059pwj/Zy1lIIQQQgghhBBCCCFkrKj5T0ppmj6VJMkpAJYDWAxgAoDfAbglTTP3BmkC8A0A+9I05co1QgghhBBCCCGEjCvouUZGibJee+Qj2m0j/3zSfyDGdQ8WEqTlJbV5pAQSl5RAopf8uqQWlpyxyZbCDUh5gliFbi1x1+g13nKZu1zWDgAt9vVG2bnTPt6/34S14q95UCw911uXi3Xi+8QydFf5Y8jpmqEejFyvruog69kUIZty5iGfRXf151Itfyn3lCoA3TRbPLf+dl5v40YT1pq2WbNM+OST1cVN/Q9ltLnhdCauyyE/dvVDrcaZ3iHkqo5nI2V+FdJnuZ379j47svOIzDxDKFpap+snS2k05LgvrZbZLcaLadPsOCmXDO4bnnVipdPtrGd25nlZsu4KWVP/rnK4WcmCvMcAIUMaGLDrWKo99TjrIut6sdqS73OLIaWsp7S0CNmaC5n/1Kn2taUkSZM1z3jpJf9z5JgfKocNaQehdZzHesF1XhY6j0Ex/svxTb8rfd+doTYMVh5K0oa25uoJFU5p6aBjIhAgLS26v+aaq4t7a1J1Z43PcnDVct0tW0xYvyx97S0ElfYBJuw7HwGy39MVc+ksfbO6uGvO9NxzJpxHXp6Fr5XGgc4Lyb+yCky7kL/XDMd5Xa5wQuun7hJkQsaYsTMiIYQQQgghhBBCCCFknMOPa4QQQgghhBBCCCGEBBJ1sWmSJH8E4E0Y3jm0C8AUAJ9K0/RfVLrFGN70YGeapo/GLAMhhBBCCCGEEEJIPaDnGgEifVxLkmQ2gG8BWCZ/DCAFcFiVUz4P4NUAtgB4eYwyjGdSJGUte2lgjx0pxfZKeO+rf3dZWfiivc4eeMCEFy404ektyvRIog0UpOdaT0/mabLMEyfacdJHqeLemoQBhL62wPKGUL5wQ90zM8/zxfJZgO230Sy9CJRhVCnj2Vs+W5ocDzjLB0F7arisMiTtygOj1LejHG6VBhna90/7t2Tg9DiRniPd3XZkV5cJK8OoXYPG/2qwzz5N+oe0Npk6f3CzXd65c7N9NBzNzkaeKPsFgCbhMVbxzIRPljZki+F3FcO3RtrhzZ1rx8m+N2FCdruTHk76vmR73bTJzn/DBhNeudKOm94m+lHgwJjl4eQqo8byutHjv7wh0a439dmeaN3dxkdJdUO7LLK9APjtFpPPifffUg6f9brX2ZmIflPv9hMjf1/PSufY6jIDEjyT2s9mRldGwgOUJQaZXjeOgaqpbboVJYfu3bvt0+SQI4dZ7Q0ph+dWqDYOkdj1golgPOTtMauK0ezpR+XK39fvTcfJOpd1HOpjFMP/qCIP2R/0c9KNYRRdydJTTHvwBpDnPmN401ro8UG8BEt6fiKP5RxQG4jKetXGl1l17EDP6eXcuqMju33q85580oTlY5s+oDyW5btH14949s3i3ub12HXV02Pma7p6pnfk90zM45vne54vzYNqHNxi6quje44V1Siea6Hez4QcatTcO5IkORbA3Rj+sJaIfy6+PJKmJ0mSV9daBkIIIYQQQgghhBBCxoKaPq4lSTIBwI0ADsfwx7IfAfgjVP7xXPNTAKN/unhDLWUghBBCCCGEEEIIIWSsqHWx6cUAjsWw/PPzaZr+1WhEkmQvXkvT9MUkSe4E8McATqmxDAcVQy2tmXF5tjduthSFft9QXVtzT55sp5Wr0q0ly0rSZi1Xdy2HV+ues+6trS37Xiq3tjZpt/bb28+3iLRS9tKstjSPoVKRK+Ard1A3ZWxqsp99Vv6lOq8Rd8lCpVxPf6tvl+WU7UJJGAZbjMwy9Nb2zV1QDjfrTMQz3ackT31CuaCbrqVMEVkq5bAlddT1I6ULuvnL/uYnjK0i2e0wsmUtiTzeUyYRKnPKkgVIGSgAXHqpCV9+uR23ZInJQ9dPluR7z4B93c2bTVjXgWxqbfpPPgF6+VAphO84UjH+Lzy+HCz17yqH5/Uq+aLIRLeRDRvM8dq1tmTxQx8y4TVr3lYOn9qZ3SZ824FOO2YSSHVtqT4D7Prv7rZ7olV+IV8vaRmW6OjTtOw9guTMJVl0ty35fjE/L+UwhpH9Urs3ZD3fClklRHvdogZQmak60TUfysJVx77SzEHVh5o930sxnq9mxjRRd67H5vvy1Hq6lgxZbh4bkjYzv3KND1ac7kOiHexz2Wf4UjkhrFqmUJzPWt+bPNYTDflikoOTfk6ynyhZqKwv3Qqyymm1K1TWuUTWV5eSuc/oyrA22a4mu3LyqydR999vwvICS5ZYyVrFYNSq5upSXu7q25JK+XfY2OGLVQ5dB2LyMthpy0JlOX3HIk0eCawPLusL/TtnFKn1OCBN6blGhqn1DXPuyP9PAPhYznNH3XDm1VgGQgghhBBCCCGEEELGhFo/rp2I4VVrP07TdH/Oc58b+X+6MxUhhBBCCCGEEEIIIQ1Krfqy0bXJjwecO7pOtEH2QRl/+C7z9ZVCuL61aknV/PkZZWqzd9e08teaSCk7cGldxFLzCsmfYzdVuUz5iSfs06ZONWFrB0O1nL85wlJweSt6Jbuj+N5LqWNLHPTS+KY2P0mSLv8OIcXt6BSyEbGLKGBLhoa8BZI2118vj+zFsFJNoTchk5In3cbtY3Nzy5bZ6eQOj1raK3FJRpvaxH132tI9eZ7a7NFq13IHXwCYPz9DEpZjiX6IxOrmm+10v/zls+XwkiX2vUllxOrV9nlZbUurKa65xoS1Gkc+qwqVUIDkzIVdXrtPtrbUPo4MCemVRj4L3Q9vMZuA4qMf/aIV94//eFk5fOpRz4oYW3YUe4wZy53G1q+3j2WfWrHCjuvpqV7OiveoaHguCZs+L2uTRdfmf7r9yzz0+0Ue269Uu+1v3WqOtfSzQk4dgry4ujkpt9W7acum7HrXyDrQ1hHWGCYycdkr6Pq3JU92XOzdNyv6hpQRaqmgRBZa7yYpcFqPOOokeHfSweq7Muv7HBTvzhjOF767kAfn7yk9BGBPMvXNyefr2l5cxqkG2tSRvUYhU5a7Zo2VTu7SObToxMz8tKx+dqdpkw9uaRXp7HnYokXmePp8ew5oDVR795qwbsdZAxpg1U+FbD+j3+vfJ0J2n86FSzMoBlrdRFxyVV+Kfv/KXWTl71cA0Jp/M1tCxjW1vsL2ADgM1l7q3hw58v8OZypCCCGEEEIIIYSQBoOea2SUWj9fPz3y/wJnquqcgWFJ6aM1loEQQgghhBBCCCGEkDGh1o9rtwNIAKxMkmTqgRKPkiTJHwN45cjhL2osAyGEEEIIIYQQQgghY0KtstDvAXg3gDYAXwLwrgOdkCRJL4CrRw5TAN+qsQzjnqEhY6XhshTThGjoXdukh/pcSBsQvct4d7fwe9CGUfKC0vwKwJ5B45fR2q/Ok0hvBWUOs3OnyeOZZ+zTJk+unt2dd9n1ePLJJuyqOxeyiNJ7KRTp/wLYXgf71bYiqlotXB5RWbjap66f6R3iQDYS7RsjjkuqwCHeELqZOXawR3O/UaVP1zc3UL1DlLTpiPD6aFambjO7O8ph/dykhYq0GdF+FbL96Ocp70f7yclqjuKb5EA+++XL7ft85zuNz9qnP22fJ21fdLXK9nnYYdnXlr5q2gtS+lNt3GjHzZplwl1d1a8L+PvVNXuOn762SYA9nspn2Dywy0541VXlYOnWW62oC4Tp2ot/m1pxS5eKA+m54+nnCeh2bZ8XwyvGha/3jUz3ppX2A5bvmlBJR6avkaMcALB3rzkv652ky6XfsfLY8g9FpnVpxTiux44sKu5Njt2iAzdrYzh5cTWIyRbTrDuA8FhyvaPk+KmRHmwyhzxtfNDhuSZxtQPX9ZzvuSzPNZfBniN/besV9G5QHcXyzasYP02cq2/Yvnl2nO/YKgn1xXJ5qck4PY5bvlKbN9uR8uZ0Z5MvPtm4dCXIPNRDLLWJSY8eBLLYsME+ltdTnmvymW7aZJ82u81UxObNxnNNvYasucp0qJf900+bsBwI162z02UNaIA90dN9IcuPUKVzeQ769l9nu5P563Ygyt/a96wVNdRie9VmXSt0/LGQ440ejx1moHIORcihTk0f19I0XZMkya0AVgB4R5IkbQA+mqbpIzptkiSHAbgYwMcBHI7hD2vfS9P0/lrKQAghhBBCCCGEEFJv6LlGRomxZcjbADyGYXnomwE8lCSJ/NvGnyVJsh7ANgBfxPCHNQB4CMClEa5PCCGEEEIIIYQQQsiYUPOG12mabkuS5I8AXAdgVKBzFIZXpgHAsSP/J+K0XwE4L03T3bVe/2AgScxqYV/JAZBj2btrD/tAslZna+mVTNfZPceKa91ascCxzG7RMlrlUmSXZkvd2/PPm7BeXS6TypXhDz9spzt1sdhGXi1DL3nqKbZuNc9t0yb7GcoV/Fryl7UCWz/CadNMWEs+5HF7m91eBgZMWWS1VkoysuXH8rwK6UZGu9vXOTOzjG2Ov/q4mu6iRSa8W40qUmZZUafykWopk2wY8uIu/aKWI4jzmtrarSjZVzzVAhXIutNKlFNPrn3rdW+5g+DEHlvSsGSJkTTo7islzevX23HycUi5p66PU081YS1NkHWs+0aWZNo5RLrGH8c4K+sxz182ZV+U5Z/+1S9a6T75iU9k5vHJ172uHP74FS5Jp8ElKdFtSY4PewbsOCnlk3kGS1Yc+EpiSqqjtDrsCazxwfGu8ZUM6WcvZfyudifr+PiFdtyOvmzJnxzvXnrJhLWiamaneM/pQm5W46JESoikDkxrx+SYqQe4P/ojE1682Ira1TS96mX1O0pL6TNxVLJrfHNNQXwli1b+jnGkoi3Jm3Xpdz3vTcpkAaDULyTmvhpRx7X0rdn2BNl9tKXFxBUhJw95l2lk/9L3KaXD7bp+ZPt3eTvI+tdzCdmn9MteVrKvLHT58uwyKuTtaGsNWWYZJ+dkAHB8j7HgwNdvtiOzKlb/QiE9P3RfeMMbTFhr52W9Om8mG18bHlec693fLJ+h8jYZ7KguC9VSeVcZneXP8h1wTT4VoX2KkIORGCvXkKbpUwBeDeAtANYAeAnDH9Pkv/0A7gRwEYDT0zR9tmpmhBBCCCGEEEIIIYSME+IsYwKQpmkK4AcAfpAkSQuA+RiWgDYBeA7AQ2maPq/PS5Jkdpqmj8cqByGEEEIIIYQQQkjR0HONjBLt45okTdMBAOtdaZIkmQngCgzvMJq9BQkhhBBCCCGEEEIIIQ1KIR/XXCRJMgPAxwBcAmBSva/fiJQwhGaMeJ70ZZum7GtqtaKk14e2GJjuMq/KoNJDIjtOepBIawhtYSBtIiapp916v9goVnl9zOgSGQ1m+CUodvXbKmdZxmXL7LSHHWbCsvxHH60ydfjs+DKnw3hNzFnRYcXJMrvq3/IgUYY5zSI8vc1VRjtOerCFeh7ZNlPK40HWl/DUaG7SbdO0a13Fvn8FkjYm2nNN5qFt1bZuNZ4+bW22v4/sQt2iOZa0V4mrowgfk1KT7aOxfLnxILT8KnRnRgeykD41xx2XmSyKH4arjVj533WXFfcX559cDu8YsL1D/vVfTfg7H73XznSZeahPDZrztA2LtJ/R/XzJEhPWfnva0sYL1xjg8E1yNRFXlrKr33STCV+s/HHEbWKDzmTFisz8s/zSWrHHSleS7yHl09YMc0MtLc1WnN2UzXnTO+z2mDnWKbzboCPuQcyz4tpEu+j2/DNfaH/SzzrL968CxyA2XTZk9R7VHniZ190qxqZPfzr72trPSV57yhQT1m3O6WsnGrmaQMhmLvuvtgZrbcn/PCqeoXPCk/2OCvHy2ge7n8DR/oe6jUeprCpdDteb3+V3iA1ixJADZg5fQVld+lnoeVnVkwC0issNqfqJ8f7y9czy9d7TvoWW32Gn7S/ctMIc6/OmYwe8yPINA4KWywwtOtH+gT4WyDo5vqfPjmzqKAdPbPmDCW9VvmpfF2WU7QywX9wV8x+BHPuUL5llrLx2rR130kkmLMYfVzvQxZBVrucSvr8ayHS6HaDFePI2S5NZAM0B7T9Xn5EFEz5rQ03NVRIfOP8YHqqEjGeCP64lSTIBwNEApgN4AcADaZruc6Q/HMBHAbwHwGSYDQ7SrHMIIYQQQgghhBBCCGlkcn9cG5Fz/i8AbwYg92gaSJLkOgAfTdN0m0jfBOCDGF6t1g5719C1AP42oNyEEEIIIYQQQgghYwo91wiQ8+NakiQLANwKYAbsj2TA8Gq01QBOTZLkNWmabkuSpBfA9wGMrskdPedXAP42TdNbAst9UNG3q4Q77xlefjt1qi1NW9Bjtklvdkgf1qyxj5csMct5pQpjQKlO9+414fvuU+XqM+F+dV6WFFQrPuRu2e0tamHj3Xeb8Isv2nHnnFMOyqXJeimylL3IewGA2W1muf1sJce0pByDply9vfYyaClpaGmxZbm+naf03e+ag5e9zIprl/IZXcl9Yt241NfqdPIBaK2bXALfYbetLFzLvfNIh6UMrKnNLHkvDdiSMykR08vJfZfbS8XEkUfacVKOvH+/HffQQyb8zDN23IwZJnzuuSbcrMsk5YBqGf1gr5GgVfQheTCQ8awBQEoEVCVvtmSt9mnt6tiHPMv5s2Q2pde8xk4o5BrTn7CH/GuvfZs5uPwa+7yLLioHN/YZWahUMQHAHXeYsJZryDrR9SPblo7LIobcQZdRHpe225tot3SY+/7qV83PL7zjn610q0TjWqWle5deWg7q8su+uHWrGd96e+2xTlLZJ80P9Bggh6MKGUwAvlIX13OS7QWwy6gV39PbxDtLvBCHOm15s6zHIfWecMnRZJ3odmEhK12P8Y7GK0+bPNmEdR/avt1ID1+r85MvdV1BCxeWg1kSVEC1cf0MpbxLab4XdPeZg17VrrNw6K69JZzqYfg+w1ZPWbFT1VdRfvNOcbUROY9x+njojqi9PDwo9e+yjgcgJG0t9rXbs6wqtO5OtLu+fvs9Or0jdxELwTXfkX1KV6nssuvX23Hd3eYdLroTdK8uuWShLm8ET7zHIjU/2bfolHK4WfblW2/NzmPVKuvwC181z7tDvPP0rbSJcbet145rl5Wn34F68jWCawzo6FDvSscYECJb1mOFzLPCesFhlRADeb2NG82z0NUoJd++MnHAtC09/ybkYMX7N4URGeh3ALhcQhIAxwH40sgKt19g+MNaMvLvDgCvS9N0GT+sEUIIIYQQQgghhJDxTp6Va6sAHI9hj7T9AL4E4AYAz2J4Jdv5AN6H4Q925wPoAjC6TOf3AD6UpqnjTxmEEEIIIYQQQgghhIwv8nxcO0+EL07T9DpxvAnAfyVJ8lsA3wAwAcBrMfwh7qsY/rBGJTIhhBBCCCGEEEIOCtKUnmtkmDwf1xaP/P879WGtTJqm30qS5EMwK9x+kqbpX9ZYxoOejuY9OLXrkeEDbVrWYnwW9Jbm7W1G/y53qAaAq64yYWG5U2HnJK0arrsuO04PGFKLL60glJUCli41Ye1n1nrhheZAmzyIC5acZhAmzxkvPGJHyZuVBUG2f8WMW79t53HBBVXT5eI97zFh7UNx9dUm/PDDdpy8V2le99JLdrrf/96EjzvOjtPtKQPLM8JlrNZk+wnJNqI978ptGrANSbSnj/TpOP9PMsvl8rmQPmjd3f6+bW+5IPu+9wyatiU9L1xeE9p7Q5ZL+8ZYHhuyXoWHCQA0DwqPui1brLiBAePXIpuIzj/EE0Sfp+87qx6e2W23kRd7zyiHZ/c+bucvvKp2XPEFK042mU9+MruM8r5vvtmOk1Yr2j9E2kfJOKffjCeudtDU5PBr+drX7POE0drXf/Z0OSxt+ADgk5/8Tjks7CoB2PdT0RXE2DqnTfrS5PdhAtx9TZYj1FtRk9XGXe39Xef02T8Q45H2TMQG4QG2dq3Jf9YsO53w0tzaebwVpccjidOLTGDdpxo/XeORHLea2kw6bdtmjd2rV1txOzqNb6Q+T+Lyo7L6lI6U3ls6Tk5sdAfOQjUmWT/Wq0z1Qzi8XV2E/DKlz7E9lbI7g11+O062Xe1ZJqu/VXudedarVSfXXGPFtUtzLP1+F/lbbVX5Fsrpmue0pe7IdqzfE/I95LIt1HNw6cEm+5d+LJZvrfQXq5bYg8o27ukSpF4+O3ea8AxZCXpCIs9TeZwj6lK+96+/3s5CZrlkiR3XNte0p5L0MgbsSnd0WNdYGmM+5UtF345wbV+/WDnk6nIsEI/NXQ77WqP9YcIEryIQMu7J4848C8MfzNYcIN3PRfgLmakIIYQQQgghhBBCCBnn5Pm4Nvpnk63OVIDcc29DZipCCCGEEEIIIYQQQsY5ecQYEzC8cu1Ai+DL8Wmabgsp1CGNkn3J5d7t223Z41DbnHJYrxKXy8vltuB6R2q5tP2ii+w4mVYvc5cqS5mHXs7v3EJaFlJfQCKXcUsdIpTEQWtj5dJzHScLKq8t5D0A7P3JXWUM5Wc/M+G77rLjzjzThKXeVi9rl7JQjZTXei4n19Koklwb7lCMPvOMHbdvsWmfzTfeaCLWrbMT/tEfeZXRt/y6zTmX1MsbUJ2jVbZPkW4Qdv0427hTK9VaNUo2OQDo6DDp+nsWWHHdoshSXQsAPT0m7CsJiCEf7epyXGu70tJYN2vLSeWYtnKlCZ9/vp2FvE8t1Ykh38gjA/ahUnVt8m9Ve9VvFOPW8e9YXA5v2HBPZp66DlxD2FCHkRWXNv7BRHQqWahLjybwlTbqOpBZ+rbVUPa1TbeO7xFVOXGinfbEheId8sQTJvyf/2knFN4Loa+J0PsOaYOyzwD247593TwrbosYrqWUGrBlPrruJLINtuqXiHynf/GLdpzUOEvpoQNXPXq/zlUDrZALC0Ket56O9PTU3uZlkaXUEFAqvI6ZVpyvCt5qZ1qvJyw+drXYcs/2jPapxwAp+XPJ4nwpDe6zfxCoPZfX1u9miSy/nmfLe9V9SD4bmf8GtTRBtrPeXnsMa+7ws8+Q6HQuOwQrrZCnAsAMYU+DNUJ+qeXHstErbWyHkJ7L+tCPTGap47aJ3zYnTrTL2LbwxMzzfHGOs57vR9/8Xc/QNZ/1lY+6bCteLxS1LisQ17VD63i8Q881Mkqxs1hCCCGEEEIIIYQQQg5i+HGNEEIIIYQQQgghhJBAQhZvHp0kyRmu+NFAkiSnA0gOlGGaprcHlMObk971wyKzr5nJU7sqd9YZwVqGm5EGqFRMZC0J7uuzv6cuWmTCWloql7fqXcKyVkH7yoIAoCTWvQ8tf60VJ5d4T5tmlsA3u7Yr07jW54pCW+VaZjft2LKyil2MXGvghXR1n5COVcgQpUa3gPXYsvwuWbGWOzQP7CqH973vg+bnfc/aCbVGJuPaRex42T/QLMK21GKmlJWIMm5vmm2nk1Jo1054WlPSY/KRkk6lfLYer0uCJHcPBrKlNK7l/C5c53k/J90+xc1OH1TbqIntwKRsSu+2JjdK01UsdwR0yncdGvjYY4Bu7vLS3e/7uBU3X9oECC1fa7/dh4bUznsSb9mayL9irJYNVElGpWTOV4rlkoXmwVvq7pCsnHyyCeu29YdN5t4WHHOMidD2AWKs1vXtK/dxEUMq6yqHrBOtCJZDmNgwFYC9cfWRR5rwpEl2OhnX02PLv62dD/VLROzKGip5krS1ZdejdZ4aSEptGfOFA1wvi9k9YWNKs6OfyLFOV6Ms4w41B/TeHVnWybXXWlEP9pnxZ97m/7DPE8+3JPqJ616iSMO1LFHOHR0yX42su1ZHXT24KewdJfuUlIJqhxjZL/WO0MuWmWtXSP8DdlQOtkKQv1B87nN2nLiBXQN2/W8W9SXvW8ubf/1rE9Z1LC/t2LDWinP9OpFHcjnkudNwbIuJUGKUI8Y4SMjBSsiU9tKRfy7Skf/XeOSXBpbDmyX/+81FZl8zj127eayLQAghhBBCCCGEkBzQc42MEvJR64Ar0WA+rvmkJYQQQgghhBBCCCFkXJLn49rjMB/NCCGEEEIIIYQQQgg55PH+uJamaW+B5SAe5NLJy7WpIrx9e2tmMu31JL2AhP0RANtPy9fUR5fxtx3GZ623z077wgsmPHmyCTe15dD5R/YfC/UpcJbR4XMksfyi1q2zI6VxhPLlc3lB+PqayHag/aLkpds3/daOFOYi23tfVQ739dn+UIfPMMczcvg2hPix6XTSp2bCBJVYmqMIg4+ZPbZpyhDMNvIl3ebksVovLssy2zQDy19Mp9PPzOp6FUZWfr4y9fR9Guqwfe2waHr1hLDb3cUXCi8vR7/esiW7frq7HWOHt/GQjbcP1NanyuHZ2+1ONLToxHJYe8w0fe6fy2HpqVfhHai8ECXy1lxD4lBbe3ZklsmmxnPM1dXtauMuYngySubNdYyR0uPnl7+0T5T+Tsq3U/pl+r6SYtWBbz6yXNIGFLBeURXtTI6ZXV0m7PQr0r58sm294hV2nDTE8ySKX5ea00TJs464+oKvz1TFPW/caMKqkcyV/Xmu8pUVyL5Q6Y9pwvpV5u0bKdA+lEV7Sd1zjwnffbcdJ4cHfW/yWFjSWf5rgP3c9DxMzt21d3IWsfy/rHz0+z0Dl3ROTmG1zfQb3mDC2vZSoudy1u8Qop3pNihpafGfh0mKGCtC3nOudhzqs+vypo3xHiLkYKFQrzNCCCGEEEIIIYSQgxF6rpFR+DmZEEIIIYQQQgghhJBAuHItgw03bcB9N92H0oQSXn7Ky3HKO07BI3c8gru/ezd2btmJcz93LrqO6bLO6d/Wj++/9/s46a0n4YRzTwi6brTls3KfarFefdmZb7OStQ/uKIePb9lu59Eh1vqvU/uCS4mA1IwqucCQQ5p24sJsqdf0DhPe1W/qpEL51hR3KXIR20l7S8dc15br17V2TB5fdpkdN9dIFkOXicvV31oyVOoX8mCtGRLaL9f25y5FXsgS+Dxboctr63IMwcjkSrKNb7f7iaseS76avIz8Dhgn24WntDFPO/AtSxEyCUt18NNbTH5nnm2XQ7TBed2wserEUf+yHgMlYVYb7NthR3760yZ8zTVWVGnNmnK4s/NEK04WX+av5Swu1aYrTuYj4yqaamdn1XIciBhjcGxJSZ7xwUo7d64JS50XAFx7rTlH+Sus6b64HNaSrZltZsx0ynI9yxijrvQ7VsqR29qy83eOFVIKqutO1tf+/XaceKeUAttgZplytIMQQvPwLZceA1zDv68E0PkejbAkY+dOE9Y2JFK6p+cIIbLQPHO5GPM+KVM88kg7TvZ7PU2Sz3GLmGYvWpSdh5RqH4jYc9pQOak8Tz9fea8xyqvLKJuu41VvpdPDlPydJIaVhisPV1drFu/mWNLeTFRj/cMW847SvwtIKAMlhzrsAVXY/9J+3P3du/HfPvvf8OYvvxkP3vYgXux/EdNePg2v+9jrcOQrjqx63q++/iu87ESHEQAhhBBCCCGEEEIIOajgyrUq7O3bi9aOVrRMbcGOx4dXIDS3NmNS26TMczav3Yz27nY0TWKVEkIIIYQQQgghhwL0XCMAV65VJR1KgQS45wf34Ifv/yFefsrLkZSSzPQvDbyE9T9cj5MuPKmOpSSEEEIIIYQQQgghYw2XWTlYfMFiHLfyONz2+dtw/8/ux3FvOK5quru/czde+d9eiYmTJ9a1fE6vlfkLTDrh8TNdGwm8850mfNNNdpw0eRB+JwCAGTNM2GGI4dT9S9ONbmWWJPKU2RfhiVZPgj0SpKHKrFl2nNyzfYvtjVeSPkEOQv1nLJ+gZWdkpmsvwN8mxPMryn0qbySZZ0X+8rnlMUrJKJd6vNiypbUcftVS+9oxfEFc+cX2PXLmd+aZ2XHSA0+Pb9rkKgsxyETxC7n+evtY9tELL7TjxNiqm0hW/WhPNJd3oLsdeN6rp59fZe7Vr52njmP38yhID0bAfpd94hNW1OvPXF8Of2HDF6y4Sy81Y4msYf3X7+amsPvJ8hpyee9pL6/u7mzPU4nL/9S6oJ5LLFtmwtqQKmNukWcsCvGkGw/zjDwrJHzfe8771s/GE5m/9FU75pjsc/J4rGU939BxPHSOtnSpCVd6A5vw9A47j2e2mevJYVZ3E98h2NU3XHOVGHWXp1xZxJiP6PqXY5p7DDNh7QvnS4z3kB6fs/IpfJxSBfHtl672T8ihAJv8AWiZ2oKjzzgaz2x8JjPNsw8+i0d+9QjuvOZO7HthH5IkwYSJE7BwlecvdoQQQgghhBBCCBlXpClloWQYflzLoH97P/qe7EPHrA48++Cz6JjVkZn2TZ9+Uzm87jvrMHHyRH5YI4QQQgghhBBCCDkE4Me1DEoTSviPv/sPJBMSHHbkYTj1Hafi0V8/il/986+w9/m9uPl/3ozD5xyOs/72rJqvlSIpLyUOXebrlElICctDD9knSjnL+96XfQEtCZByw61bM0+zlkhvetCOlBIuJQutq8THQWy5SZ48MiVVZ55tpzvtNHOgNT1SR6h1BVp3UCcKkWsM7jMHqq2WxPp+3zrWyL9GuSRaofdm5Y99VlxJrKmfrWSD+rjWssToa0VsD+8aD4Z65wTlH0XWKtud1D7ofvjmN5vwW99qx4n26Sq/jJMSPH3pPNLn1hY/2ab3eOypByl6TM/zbGO0g6Hz/6QcLul7/vrXy8EPnvRtO27LyeXgvt555bBuPs0OOY6r/PJxyNetzl8WWb/O5Wti5047rqvLhKPIvpTkPgt9Ld93ccj7VqcNtRYItiTIiNMSrVhzx0wWLTJhNZfwHbfa2oqtn9Dn60rnK5eU5zWrIcCVx/PPm7B0ONDDiOyHMWR2RbTVGNeWY5brPl156PNknrKOtfTT99q+hNax7zt2qKk587zQ9m/1J9XPpW1FHlnuKGnqVQRCxj38uJZB67RWXPDVC6yfHXXaUTjqtKOc5y350yXOeEIIIYQQQgghhBBy8MCPa4QQQgghhBBCCCE5oecaGSX+ljAHAVNnTK1YtUYIIYQQQgghhBBCiIYr1xoMl04+j4beijv//Mw8XPlZ2ntlTrBvUOTTa3xSXH5Ulk+bzt/hoeJE+mtpHxBhmqDvO7a3QqhfSxT/io7pJv87brcjb73VhFetss/rPMIr/xjecln5RWPTJhNet86Ok56D8xdkZuF6NrKN5KkD6W2k25mMk35Is3sOrmF52zYTntFlx1njiCLLRyyPP1HstlaRn/SslIYkf/ZndjrtdyiIMT5Y5zl8zyqj8vdn5zskcDAt2mMzht+S9/v2nHPsSHm8caMdJzp+jPeQRuYpX5VyuASA3l4Tlk0asIfPadPsODlutbSYusry8otFqF+a7zmVHcV4GxXhGRqSLlY/8e572uQtJA/Pcmhi+PmF+uZlet86fCnzIPuemiJnkuc9UU/P4hjtwDUOhrYD+euLoxl7e7wVMY935WfNf8RYFOV9leM8Vxnl++X+++20xxwz/P/+/V5ZEzLu4co1QgghhBBCCCGEEEICObiWSBBCCCGEEEIIIYTUAXqukVEOiY9rP/nYT8a6CE462zsPnAj5llkHLQ+W63oBlOT6aaUVkRtAD/XOycxfZtnet8WO7JldtbwuKu5Fyq0cciiNU77qup4gZCm4lsFlSd/ylMlZDqnbUc/XN//Qa5cG95kDqYFUEjnXMncXVlrZVhcutBOKOihtetCOEzqMGEv7dRWvX1/1UgDs5jppkgnvGbDLUbTEKobkxoWUAug8tm83YV13sr58ZS95pDpR5M4bNlT/udT65ChHFBzjXqj0MEZdhcqyouDpA1CErExSkg0esN6rAwtPKYfb2wLHwSqx5fzFELxFvYrlkKyLKNMqdwgrrWry3rh+GclyfXCorOO0LdVGfNt/DElkjPG4CCmgfE+HXi90HPG91yIkqb6y4lBJZHPGcJSnfsZb+wwldp5yTATssUiPMS5rkJB2HcUSps4WGTIP/bvM2rUmrN8vDzww/P/zz9dcBELGBYfEx7UnNjwx1kVwcskl7x7rIhBCCCGEEEIIIYSQAOi5RgghhBBCCCGEEEJIIIfEyrXxTOxdmJyyvrZ2ZFG69trsOLlLntiZFAA2bDB5Ll0624or9e8y5XBcW1KxDFpKFZRsQd6rlpzJnc18JaKhy7hlObQEQOYZuozbSrdsmR0pjn2Xsse4zwrkGvsiJDdSFqq1Sy4NUWS0nGvZMr+6lOrdm2+24847J/s83x13Y8jdQnfE7e7OvnZ3twlrhaWUFsghxnXtUJxtyyVpPue8uNeKgdLZxdhdzEWonN03Lop8xiFp8yXGfWL+fPtY6CrXrDE/XrkybDdMnU7KNuVGpVr66dqxUPbDTuVgIdPKZufanVtLseTYp+Pke1u+NrTy35ciJG1F9+eg3U4LuG6MPlqIXDXCGObCd7fQULLKb9lqAFYHaKT2KfEtl5aCZ8kxY5VdShhd0k85/uixyDGFzXyGsfpQiDTZlUcOBx3vPLZuNWG9Kfbvfz/8/44dftcZr9BzjYzClWuEEEIIIYQQQgghhATCj2uEEEIIIYQQQgghhATCj2uEEEIIIYQQQgghhARySHiuLTvppLEugpNJLZPL4VAtvCa6z8K6dfax9I7ZtMmElZlLb6/xUrvpJjuLNy0Vpgaenmsa3/uUllwaX08637gK34Ms4xgAJWHkoM/z9RKJ7XeSx8dBttdBtTV3S0u211PItZ1+bNpnLSMPF759L0/fstLqCwgzo+miHXR3zwzLv8BzikL6dMgwAFx6qQlLP6oixkRnX7v1VhNevtyOCxy3YmO1cYe/WKivY63n5CGGn1AsP6SsPPOMx1ZabVp2zjnl4DLxmti2zU42o8u7mBby1bN5swk//bSdTva99evtuPe9z4Rd9pWufrlzpwnfd58dJ/u2rh45zZBdL0YbzOPv6e1b60kef0xf78xQYvvQFT0+1NNXDQir8zzjbObzzeET6WojmZ5ukf2/DlQOiR4rfH2PfcvhQl5b+6pJrzA9H5H+kocdZsd1ifE5tO5cyKmja5z1HUe093MI8tc+wP4VUdfrzTc/OxI6uA3J6LlGRjkkPq7dsWTJWBfBySWbHxvrIhBCCCGEEEIIIYSQACgLJYQQQgghhBBCCCEkkENi5VpMrvztb/G9hx9GU6mEr/zRH+Ez69fj31eurCnP/fuNfMMlu9inZHdyeXDoUnnvbaNXrLBPlBpPuV76jjusZDNXdZTDK1dOt+KGmo7IV9hq2LpEO05UZl+fHSXrziUZjSKbkrKynh47znNVZZTt5oUMEYBVCYOdRoroWjLuWkavFMFWs5jT61nGAnC1cSmb0uXv7fXL33upv5Z59M6pmuzoCX7Z5SFUEunb7kJlTbI9dXfbeequ4kOoZMvZp1atyp1fLGJIwlwyhRjykEbBVT9SZjmjq4A24lkuVx7tbUMi7JcfoCVDdpzsU8uWmfCvf23nKV9Dut/JcdyFq61K2dQrXmGft2FDdp5afhWTPBYEjSSFzjqnaKmsi9iyShcxyphHEhySv4sixpt6v5cksdud9+8kOciSUuax4dFzX8m0aX55uJD3pn/Xy5KFxmrHvu1H1sE112Sn02P61KnDv+u98MJBNOEgxAFbeg7WPvMMfvjoo7jnzW/G9Y88gvNvuQV/2+B+boQQQgghhBBCCCkGeq4RgLLQXPz6mWdw9uzZaCqVsPJlL8Oze/di1ctfPtbFIoQQQgghhBBCCCFjBD+u5WTShAnl/2dNmYJZU6aMcYkIIYQQQgghhBBCyFhBWWgOlnR14e/uuQcA8G+PPYan9uzBtr170TV5ck35TphgfL9cOvlNm+xvoXKb+lBvAm+vBm3EIvepfuKJ6oVSNG95xDre0WE8pzo6/IqhGRI+ViWH2YHOP2TpbrD/g/arc+RZK84yKXO5oQ7jgbdZbKs9d26234Peflt6rmm/QHlebF+vPLjqWJa5szMsvxh+M6WBPeXw3Xe3WnHLlpk8tD+gde08BiKeFO01JIcVXdwrr8yOkwSX0XN/e9+2610mafQH2I3Q4Rsp/U5c3pyaCM0gCqH93NWHfL16pCeO63oh18qDyy+tue/Z7PM6jT+pvrb0zdvVb+e/ebMJy3awfLmdv/SXdHmQuvAd6yZOtI9nzDDhf/1XO06OydK3rbc3x7tY9jdxc3m8IUO8jfK8232vHeVdU8A71pcYHpKNShRfXBcOf2E59x1S3q6+7VOmCx2Dfa57IEKulQdZLu1RKcdI+SuO5vDD7WM5ZmrvWJ9yaJqbdFyxvqC+/VI2u7177bjTTzfh9evtuMsvH/7/n/4pqHiEjDsaZNo9Pjj9yCPxis2bcdZPf4oXBgfxzeXLcd4tt+BnZ52F1kb5DYYQQgghhBBCCCGFk6b0XCPD8ItQTj5/2mnW8duOOWaMSkIIIYQQQgghhBBCxppD4uPasp/8ZKyL4GSSpx7Nd7lxHrzlCOecY58o5Z9f/KIJ33STne7880143Torqm+Jnyw0RLajz3NJaVyELEOvKIenzsb1Fw/X9tu+9dPfNN06vuNmE5ZtS6vW7r/fhO+7z47bts2EtfRK3o9MN6MLUfCVhLmQUru+Pjsu67EVIvkQlX7WxqusqL9a88Fy+KMftU+b3uLYHz5jNW0RchynJMaSX9qSFVlEfV5bW1wJSIWmWTb0hQurFwphbauijw7uMwda0ymv51gBLYuvVfpy/HTJWSreIbIDOKRFkiKkJ7GlaqHj/YDqTrLpyvEg2CJAYT1ux0vQlf+eAVMWLdWR7URKdVwKcpfkOFSWKM+b3mHHvfGN5rzjjrPjpKxVljlXfWe8WIsYx0PH1qIlkr7PLcbzjdU3fK6lCZV1y7gYz6KQOvB8T8S4VugcM3YemhiyaJlOV6Mc+3ScfHe6fhfztW+oqB9hDaInowNtM8vhUNm+hcuaQrz7HS4VFfL+X/7ShF/xCjtu9Ha4qoscKhwSH9fukJ5gDcgll7x7rItACCGEEEIIIYQQQgI4JD6uEUIIIYQQQgghhMSEnmtklINrux5CCCGEEEIIIYQQQuoIV641APJr9+Cg/b1TatyvvNI+73OfM2H9tbxITzEAtueaNPnRxlWyYIsWWVFzeowP0RD8tg/Ps0W4K52vL0UMjwcX0p9h7Vo7Tvo6yOrO40/k8pdYtsyE5WPT5ZBt8Oyz7bgHHjDhjRvtOHm9Lk+ftdBt2H39YDQtLeY8l++f61pR/Ga2b68eBnDZZY6ytLRmxvn2ISu/CP2kIg/REPJcO8vXxNXGK/KX3iLaUEs+8Ai7PXt7yqjBWvqbuepnzRoTXrHCjpPFl95aAHD44Sas/VpaRPuRVaXTxd4Mu2i/q1j5y1ebrIPe3uxra3zb/J5B0w5277bTST9L11/GZ3RlX+u1y7PPk7R0h3klhXqjynrV9rM//akJS/+4PO/eku/AHoFC/DgFRXu6hbZjV7oY/TLGe2gsieLd2yBtK4bnXSihZfQ9T44xq1bZcXL6IL0gAWDCBBOW71HtjSrn0hW/s8kfqN+jWjpnohq55nLS001PEsQvA5Y/rPq9zOUnJ39H0fOFJUuG/7/5ZhBySNA4bx9CCCGEEEIIIYQQQsYZXLlGCCGEEEIIIYQQkhN6rpFRDomPayedetJYF8HJ5EktaMbwUtzmluxHcuWV2QsNXbKdIpbHW3ne+G/lYOmnP7YTypFGL0UW66c3tZ1oRc2bKw7kWmR1o1JyVnGf4tql2LomB66l2vscst+lSz3z1KO3a1v2rU+Vw616LbvQ3bWL9evd3fZScHk5vRRcbseti7VpkwkfdpgJd3X5yx182668NS0nlNJPfS1ZdVoKlyUxCZXlOuOkfkA1hJnXfaEc/nLTB604Ke09cVGxshFNiNQoVK7hwpI7SB0fYMsrdMMQx6FyKG8ZktSKqP66ZYsJd3baebS2mPzl8DkqsxhFSj+1+vWFF0zYMQRbVbdypZ1uZuc+ZCI7vh6LMsamXLK+gPHBKanSA5WosFY1wM2b6/feiCFZl+OU63Ul24TOX79fmpvyjwmh41toP5f3qtuufL/oru0qVyYu7bMjP9/n61uOoiWLRUj/nYg+JWXuLop4F+S5nm9co8hLfduZ73jTqPccQ9qbx7rDF+nWod+jUnkupe16iJFTEOevJCrS9YrNouL5ykx+/3s7TvociBtoarH7sssaQY7den4yd+T3uUmTsstLyMHEIfFxbckVSw6caAx57FuPjnURCCGEEEIIIYQQQkgAjfEnGUIIIYQQQgghhBBCxiGHxMq1hidJvNb6akmetexX6SnkLoJSGeXaBS6GPGDoTHs7ydLn/r4c7v/IR+w4EZ73jW/YGfUvNGFZSL39jliPrTcq7ejw24VPUshOkAIt09kzkC0FstJKTYyWNekt1iRSL6kfvjwWldes8mtqyv4GL7PQj2bDBhN+5hkT9t05NA/y2cvrAsCbVgjZoO5EnpmW5Hkqjxg7sQ21tZfDgyvfZMU1bzfS3vd/9a+tuIu/+Kly+Jpram+f9Zbq+GKVS+vDPv1pE9ZbfMktrLK2H9X5K2LsomZpP1U5OjvNs9fNU15bSiqkug0Apk414XPOsePkLr7//u923DHHmPArXmHCFRssyjHHZSpSR/k9kF3nzmemy+g7JmjNomDLdvO+1eOgJPQdK4vsujdfGWi9+7Xve3TKFDtOtkMpfQ5FjrN5nkXseUAR401s6WoFetCRiL5RcsxHYuw266Lo3SqLIOS+Y8jq87Tj2HXn23ZjlSmr/es8ZBPXLipyLNLTjCy548MP28eOKYj9HlIvYDn+y9dvs3qVufuXYPJkO1LMdfd1zy6HB1SXX7u2enEBI/0EgGOPteNGp2wvvZRZvIMCeq6RURrzbUMIIYQQQgghhBBCyDiAH9cIIYQQQgghhBBCCAmEH9cIIYQQQgghhBBCCAmEnmuNwIsvGlG6U5Sfzc/XtlrHy5aZ8PSzTzMH//IvVrqh+Qu88vf1IqvwSLj88nKwTZuiSe8kuc81YAn6b99uyrhsoZ2sNLivHJ7eEdacY3uVVNTVgPD8Un4/rS0ZZgoAhmA84/rbZpbD7U17rHTWedoIQV5PewZJXwcZp9MJ/z5dB9KPbV7L41bcPS8Z7wZZLG2ZNTOsyVtkbYVecXGFbD8VBZMGExJtatXUXDVZxbU8/UO0Z0OzKFf///7fVtw3X2PK+Mjmn1txvb21++yEeJ7k8QIK8tm55x77WI4dV11lx11zjV+egjy+i5l1INsVYJsCOjyJ9LPfudOEpW/hV7+afd7SpXbcpk0m/OKLdtxCMZ7Om+toI9uF+YrLs8zTc83VRmJ4fzrR45t8Nrr88vinPzXhiROtZLNXrDAHa9bbeUgTtt7e7PwdP45SJ6KRVLRax3ML8QBz9SHXs9d+nBddZMKym1eMkZ6v/hjeq0W3XX1vWY8m1F8s1D+rJAui36mevoWF9+1xSMjzKMIb1dWOY5cxtH26+qFvHln5AUBHhzlv0aLs81zv6eefN+EJE/zzsGaReo4g0srXV1Nbjuci+6i+OWGYJsulxx45t9DTZfma08PB6Liex/J4vELPNQJw5RohhBBCCCGEEEIIIcHw4xohhBBCCCGEEEIIIYFQFtoITJqUKQf1XaqtV/lay3kvuMCEHetyi96qfOjKT1nH1v1oqc6ll5aDZwgpzXe2/E8r2cqVZjH19I6wZeJyy229DFoudXbl6VyuLurcueRdXVzKSfv7jTRz01ZbAiybTnebytOxtn1IyBkHW0RYy1KsZeKO7duV7Pcti8UzFZne+YQtRe7urr3dabVVFhVyH7n3ul7nLu9nyhQTXr/eTrfklMzr+cpgZLqWFlUfbeahtukb3bu3HJyz/kd2XI/ZL37IIV2NIZWKMXZ4S1HOPNM+fuEFE5Z6eMCqO41vmX1lKhaqLw8tOyMzDzki33qrHSf74oYNJnzZZdmX0+r7JUtMWKg/ANhjh7e8TY/VWQWB3e4aRhKmyy/7va68+fPLwT8sfls5rOtxyxYTnqP66J7uOeVwi2PGFSpz8q5XT+mnzi+GNNyFK61830jpv76V2NLM0Dx8y+EaS13KakturvtaYB14S9vFYLSr3z6nvc2UJUZbDa27ovtQqNwwJI/QchRRxyH5u86LUY95zvOVpMr3rZR6ArbcU0/Dpk2rHnZZLei5tPx1XJexucnk09wiJ+g5foWX44W+AXHjLWLKVDEGiCza59rX3jPAtTqEjMKPa4QQQgghhBBCCCE5SVN6rpFh+KmZEEIIIYQQQgghhJBA+HGNEEIIIYQQQgghhJBAKAvNYMNNG3DfTfehNKGEl5/ycpzyjlOw9uq1eOw3j2FC0wS0H9mOV7//1ZjUNglb7tmC33zzN9g/uB8Tmibg1NWnYtYJs6KUo7TpQXOgjF6kr4DcQrqCFStMWGntpY+P9vqQl3N5nPji9FRqsX3ESqtXmwNhMPSn3WutdL+d/x/l8PRF6oLCW0f7mckbuvXWUrUfAwBkMUK9MqQ/yZo1dtyb5v6hHN431/YiaxZeQDPFvXQvstNJ2zCNy/NIHu/cacq4f7+dh/Rlcj3D0sKFVty+QRPXPGj8404d2GFfoE/k1zE9s4yu+pd10D7wrB0pHmpJGveouAqkX500rlK4yhjig1NRx3Pnmbj77rMTS5MuaR4IAO97nznvqqu8rp0H33uL4rV15ZUm/NGP2nHnn595WkifdS3rdzUX13WtOtDPSYzJW7bY50kvL2mXqT2/ZPOUYzoAHHusCQsLsYpyPbOtZMVIJk8+ohzWNnZFe6mF+lhloscA0c9dz23B5l+ZiGvsSp5z4YUmj7Y5VhyExZseq9vbavdHclG0j2rW2Od8T+SIk8etov3r+9q2zYRndHkU/AA4+29gHr5pnfMkxwDkeg9JK0Hd/DNR13qqv70c3r7dTtrZaa6nLQ3l/EH6iXp7bFZJ63Oeqy3FejaxcZWxUTwrY3iv+j77PM8phgesbPIzuuwyynHF99nodLJv6H4i+4buX7M7RWLpEap+nwv2yhOTC5luH2yvXun9pq/lsPMm5JCDH9eqsP+l/bj7u3fjLVe9Bc2tzfjOf/8OTnjzCehZ1INTLj4FpQkl3HnNnVh//XqcuvpUtLS34A1XvAFTDp+CHY/twE8+8RNcdM1FY30bhBBCCCGEEEIIKQh6rpFRKAutwt6+vWjtaEXL1Bb0PdkHAGhubUbP4h6UJgxX2RHHHoEXnhvepa7z6E5MOXx4N8Fps6dh/0v7sf+l/VXzJoQQQgghhBBCCCEHD1y5VoV0KAUS4J4f3IN1316H+a+fj6SUWGkeuPUBHL3s6IpzH/3Vo+ic04kJEycEXbtiubHW/zjSWufJJcBCrve4kh1piY9Erj6WS/uBbHVCnmXJTjnd8teadO9+t4m4804r3Ykdj4g8bDlOSf4JQf05QUocLpl/ezn8hXVnZBU/GCntetOix+3ITaaSm+bbcs+KSh9B/2XEdzm269l0iSXvoduY6zjZRoaajOy3JBsWAKxfXw4OrjpP5eH3/b99u2kH+PrX7UipxXrDG+y4M880ZVxySmb+vpKDPPIVX0mVlU7Lp5cuNQfXXmtfUNSrbzmKJtf4sPUpc94VH49eFtkMpQzj8svtdFK+cd11dlx3t1/7tO671x6npKTtXavtOpDb20v164It/wEbowvdsMGWVsthZPJk+ywpRXnhhSoFH0FKxfV449tHQ/tNqJw6Bla/lDJxGQasStHjsxwHW7c+Ykdu6jNhqddTmqEh/W6IjO+45VvHed4Tvvm4rt0VQQoqCZUfx5D1uSSvXV3Z15btTsq3AGB6R3b+vuWS44ieN8px8YYb7LhzzzXh5ctNeO5c/3IEScNdHTEHMdq8K7+s+VWs8Sx2nr6SztB5pG8eeWTFWXnmGafkec5yDe4zYdXm5LtSSrUBe7qmZaGXSCGUY2mUtzTW8UuDPM/VZaJYNBBykMKPaw4WX7AYx608Drd9/jbc/7P7cdwbjgMA/Pb7v0VpQglzl9sfvnY8vgN3fuNOnP23Z49FcQkhhBBCCCGEEFInKAslo/Dz8gFomdqCo884GtsfHv5TwoP/+SAev+txvPZDr0WSmNVs/dv7ccunbsFrLnsN2o9sz8qOEEIIIYQQQgghhBxEcOVaBv3b+9H3ZB86ZnXg2QefRcesDjxx9xNY/6P1eOOn3oimSabqXux/ETf/z5tx8sUno3tBdSmfixRJzbvlVCzR3bTJhHt6ysGnn7ZlZSef7MhDYO8kF0eG4b1cXe6IIwsMZEonAWBfi/nIKTdVBGwFzsx168rhD26/2U44cEU5uAd23fnKMRd0i90xb1QFccl+hQSw1GfyGGiyyyElGvKxA7YkVW0sJJuF9/Lv0N2bLPR2ZaIgWs7ifT25xl48TwDA7t0mrGShsZevB0sJPOVEzn6i/mR260MPlcMrdFpHmbMoQnbnlDx1z/S6dmj5paRzZreJ+/Sn7fxkc9JyDanek/0pTzu2diVTbXdgrpEqW0Pd19U4JcaRtjZbFipx2QBMmWLCL76YfV6guioKwbuhbdxownrLVN88PKU0+tlbjcT1Z217W0XvcsUYw3zzCL1W6NjhK50PIc+uh75jcIwy6vNmTJNtxnQ+106ETW3F7oapxxE5zzjySDtObiIum7/eLbE1gr2FhdbdiXlHxe7xjvzHSpYeq6/57mQZu4/GsM+o527HNeUjpKCuF6SM0r+6yPm5/rXA+l3A0yooz7tMniddVHQ/p9yTED/4cS2D0oQS/uPv/gPJhASHHXkYTn3HqfjhX/4Q+wf34ycf/wmA4U0NTv+L03Hfj+/Drqd34Z7v3YN7vncPAOCsvz0Lkzsmuy5BCCGEEEIIIYQQQsY5/LiWQeu0Vlzw1Qusn134zxdWTXviW07EiW85sR7FIoQQQgghhBBCSANAzzUyCtd4EkIIIYQQQgghhBASCFeuVWHqjKkVq9bqRR4PAKf+PUOXf+rifeonfk1gcgSFa7Be/8wzvfLQddcsbm3jRvs8q3ouu8yEpXkIYJssdc52Xs+LC9XqR+F94Ny6vMP4KO3dZiXD1q3VwwDQ2WnC2nPNl+g+C7qOhTcYliyxorzrWJthSd73PhMWbUnn7+tBkmcL+KK9jKwHfOWVVtQZN9wQlmcG3h4t+k93n/50OXjH8o9bUbL4zz9vn+awFsksR55nkVV+ba21cqUJa58U2eyi+BaqTKYPPmsOhGfQ0Oe+YKW7/HITVl0Imzeb8PXX23Hnn2/C8+aaMu4ZsMsY22ctlh+VN9LgSZs9yQe+fr0dJ00sly41YdUQBgaby+EK7yiZv2sQLtjMLtQ7M0b+wV55Aek0WT5EMfKrJZ+sPEsDe+xI0X5c9ejyU3QRUv/7Bu1yLFpkwnr8lK8D2fx1c4/tqVfh7ZrDZ61mtN+bHHNUuUqezzcU33qN0Udd58Twdi3aH9ZZV7IhS2MywH43O/KQx01N2b+T6L4cMnaHjlPy2qHPUFOEXy8hjQxXrhFCCCGEEEIIIYQQEghXrhFCCCGEEEIIIYQEQM81AvDj2kGDc0l3/y5zoNfsy+XNeim70Gy1V7SU6vum51k2HCLJq8hDSij0Um1R/g0b7Cip6pESh+aeHjuhqJPWpmxJrbP+tTxB4LsUX6Z78kk7nVRZatWRPHYt8Q6V5mh5iKQ5a3RZuNB9LPAuo2y7uo1nLNkH7Bdhc1N2/bgUAdM7/NpxqKTBuw6kxhJA8wc+4HW96Cj5zdAVRgq6/qt2UimFkPLLPIT0Idd58+dnX0vXf3d37ZIb6/nqDiwbntB8l9assZJ98pMXl8Na/SQVSTfdZMfJcbGnx5RDd6HYhI73wbIgqVtzodOJY9e1W5sc5ZcDhpakqj5bJDEkZ0VLtmJILsdSWhdD7jzU0poZF9pP1q41YT2+dXTknwfod+WiRSaPFSvstFly1cKlYoEy0OByrVtnwrLCAXtA1WOMeCAlUVl1n0tHGIN9yxE6VsSWtrvKqOe2g0L63yJsWvR5oX2o2SHrzpqL+lpRHAhrHrzpD+bANRnKQRFjMiGNDFs8IYQQQgghhBBCCCGB8OMaIYQQQgghhBBCCCGBUBZKCCGEEEIIIYQQkpM0pecaGYYf18YxLv8BS5ff1l71HAAYEnGQYcW2bfbxVBEu2p/Hiby4oyBf/3p2FqVr/p85WLrUjhSeA0V4PEgLnlbssRNn3I+2xpOeJtoyLsvvBMj2ZHD5qOntw11k1Zdzi3OXiYQLaaKnb1qY1Olry/u5d4Nd3uuuM2FphaXr+KSTzHldXXacrEttt+R6NhJvL5TOI6zjgSu/UA63OjxBYm9vr/O76y4Tfv/qXXbiq64y4ZWXB+UvCfVDknlqTz35nHTfkH6HLS0mTltpeXujKH9GWa7Nm83P56hG2N7/VDn8zzfNtOLuuMOEv/WtnVbc+vXTymFprxLJasW7axftaRWDEP8+ANZ7taQ6/Z4Bc17roOobVh5+g0W9PdF8CX1uvu0ixAcqT5nGst1l8fM19j0vW2bC2s+pt9ek1RawMe5tTm/tnl/jDj0Rky8DGQbs+UkBeHt6evahIvx5fePktQrxxvPMQ7+vYry/YtRxqM+aqy4tzzVxQK80QsJgzyGEEEIIIYQQQgghJBB+XCOEEEIIIYQQQgghJJAkTdOxLoMXSZKkIWVNkgQ9r+g5cMIxpLO9E/fccXfVuBiyCBext7YOlZwdKB+f/GIsZS+C2MvtYy3VDqnj0PxjPAvvZ+8yPXCsqXdKqz3VqjGkS3nO86UIuZiv7Nf57D0rObT9hNxbvaUQIXLVdigJ4S9/acInn2xF3fmokQv/13/Zp61cacJSChprHM+iaGlyvSm6j4biLc13nDOWfSOrHJqQcjWS/DXk2lqVKOWeecbgrLiiJXl56jjkWYW28WC0n4BEWnwEWl/EmD8UPX7GeE+Hjjex58+hfciXIsbgouX31qDjsLDIqp9TTlmCdevWJUGFHAd0dS1Jzz133VgXo2a+9rXk7jRNl4x1OcYzh4Tn2hMbnhjrIjh59yWXjHURCCGEEEIIIYQQQkgAlIUSQgghhBBCCCGEEBIIP64RQgghhBBCCCGEEBLIISELbXRSJEG+ES5ieJa5yMqnCI+E0HNieDDU0+MntBwx/DZieB4V7Qni/TybmoPO0+maM0ZH323vD5R/SB6heRadhySXn02A/0wR/cQ3na8XShHek21tJo8htNvpzjwzM49TO00eJ5/sV47x3gZdFOGPFsOXrOixI0b7b1TPO19C66CIvu1LVttSlkfR83elc1Fv/8Gi57reeba11ZxnEfO8kOcWY55XxDgY47wi5rBF+72FXCu0HM52EGvQOUhJU7flMzl04Mo1QgghhBBCCCGEEEICGdcr17Zu3YrHH38cAwMDFXFnnHHGGJSIEEIIIYQQQgghhBxKjMuPa08++SQuuugi3H777RVxaZoiSRLs379/DEoWRoK05qW+MeQOoXn6nqOvVc+t3se7nMVFPWUpedLF2F49hEZ91r5yyUYtvyZEjlPkdQ907Vxy1YBrFy3ddhFbWuQ6r+jnWzRFyGpknqGywfHS72PTKFIpSZ6xIuTaoWNREbK7GLLBRpxrFVGOIsbPRqmvGBT9Don9Hi36XVb0fCSUoqXt432OQEitjMuPa+95z3uwYcMG/P3f/z1e+cpXYtKkSWNdJEIIIYQQQgghhBxC0HONjDIuP6798pe/xJe//GW8/e1vH+uiEEIIIYQQQgghhJBDmHH5cW3y5Mk44ogjxroYdcd3pzod50uepf6x8y+CGLujxS5HvXdCCjmviOfSKBLgIpbiHyqyDo2vrDX2LrJ5JHkuQmTLRUuNipDLxIAyD3/ytJ/Y9Vr0TnL1Huti7ATpuxN7Pdt4vSWLrjGmESWd45HY882id2yO1d5j2ytIxtLmIc/vWyHlKGLX0lB8740WB4T4MS5nzH/+53+Ob33rW2NdDEIIIYQQQgghhBByiDMuV67NmjUL3/rWt/Da174WZ511FqZPn16R5l3vetcYlIwQQgghhBBCCCGHCvRcI8A4/bh26aWXAgA2b96MNWvWVMQnScKPa4QQQgghhBBCCCGkcMblx7VHH310rItQN8aD1009PTsa1ZPIl7H0rBkPPg6h5RhLn4vQ8od4AdXbUymkv+U5J7avY6hPiqscvvdThA+Lry9cDM/BIryADlZ8/a1qyUfi27ZipCs6/xh1V0+f1AMRe3z2HQNivStjjPEh7bhR5mSxGEvPvpB6jeHPq6nn8y1iLlRPH7SiPfVqud54uhYhjci4/Lj28pe/fKyLQAghhBBCCCGEEELI+Py4RgghhBBCCCGEEDKWpCk918gw4+rj2u9+9zuccMIJOOqoo5AkSWa6JEnw8MMP17FktZEi8VpGO5bbt/sSS7bZKEuYY9d56DL00HL4yt1iyDbHcpvuej7DGNLPPHkWXX7fdlA0vn0jtK4aRXIcKhuM8WyKkK0ditRb0lM0MSTHvvm7iDF/KGIMK1ruFiK3LeI9VHQe46EvuCiibTVKncTuo6HSYd88Q+0PfMtUtPQ2z+88scfgUPuMkGsRcigyrj6utbe3AwBe/epXOz+uEUIIIYQQQgghhBBSD8bVx7WjjjoKAHDNNdeMbUEIIYQQQgghhBBCCME4+7hGCCGEEEIIIYQQ0gjQc42MMq4/rv3ud7/DAw88gIGBgYq4iy++eAxKVCwunXwRfj8hPlaxvNNCPABi+IEVQaP4tfgSy1cnxB+jUT2hQus4xMek3uX3pVF8NEL9rnx9WGLlHxvfPhTD66YIv5xGJcQHp971UfT1YvgohfoJFe33M5bv/ixieK/mySNGHdfTHzbPtetJEfcWY54U2x95vNd3aD0WXSe+/XAs678I39pGHIMJKZJx+XGtr68PZ599NtauXQsASNMUACwftoPx4xohhBBCCCGEEEIIaSzG5efkv/7rv8Zzzz2H22+/HWma4oYbbsDPf/5zvO1tb8OcOXPwm9/8ZqyLSAghhBBCCCGEEEIOAcblyrWf/exn+MQnPoGlS5cCAHp6enDSSSdh+fLleM973oMvfelL+OY3vznGpfQnQVpeblvEUuFQuWTspeZ58m8UOc54wLXUPIaUIFTyUU/JnKSeEs48cUXTKEvvY8mystpdPcezWq7ne07RcpOQ/nuwjbOxpXB52lkjyn9C+6iv9D+0jYeWK7asfiwl3qFpG2X8D+VgG3N8iTEmj7cxvoh3YIwxYCztS2JIh0OvHZvxPhaFQs81Msq47AFPP/005syZgwkTJqClpQW7d+8ux5133nn48Y9/PIalI4QQQgghhBBCCCGHCuPy41p3dzf6+voAAC9/+cvx61//uhy3adOmMSoVIYQQQgghhBBCCDnUGJey0GXLluHXv/41Vq1ahbe//e3427/9W2zevBlNTU34xje+gTe96U1jXURCCCGEEEIIIYQQcggwLj+ufeITn8BTTz0FAPjwhz+M5557Dt/73vewZ88evOlNb8JXvvKVMS5hMbh8CkI9U2Jcu4jtpWN7Avh6xRRB0X4Soffi65eTdc6B8PXJikHRW4S77iVGW4rhUVGE11Ajbj/vOxbFomj/kNhjt6t9+j7fWN6ZjYKvl06MZ50nj4PVSydWOULmODE8N4sYB30poo7r6a0bOsaMh3EklBi+nTH8Yn2vW7Q3bShFeysWMQ/OYix/HyraBzSW7+54g55rZJRx+XHt6KOPxtFHHw0AmDhxIj7/+c/j85///BiXihBCCCGEEEIIIYQcahwan5MJIYQQQgghhBBCCCmAcblyDQAeeeQRfP/738fjjz+OgYEBKy5JEvzLv/zLGJWsNkqbHrR/0NZmwt3dVlQ9l5MXvb23UyLw1a+a8B132CeuXGnCS5facXPnloPTu5utqI98RIR/d5E5uPVWO48tW0y4ya+7VNxL/y5zsGZNZhnR22ufJw9aWsKuXfAy9xC5Q2nDvfYP/v3fTfhjHwsqB66/vhzc8pa3WFGi9rHg2mvtsrz1reVwEZKw6P1GrznfuNGEr7jCivqDqNcF+/fHLYcDXQeyyM0XnmfF7brhhnL4NyqfFcccYw6WLTNllOMBgKGWVhNXsKTBt73HkAHFQr4e9RDWHDADCJV8NIrsThMiPfTNLw+h0v+i21M9JUkxGEtZUxH2Da5y1TOPXf2m/HJaWu9yaDLrVf1eYA1+nnO5saTw+imA0HEqZEyIYZOTBzmP0U0rqz/UW/rpW/+6/JJW8avGoSLnJCQ2jf+GqcK//uu/4oILLsDQ0BCOOOIITJo0yYpPkmSMSkYIIYQQQgghhJBDAXqukVHG5ce1K664AsuXL8e3v/1tdHV1jXVxCCGEEEIIIYQQQsghyrj8uPbII4/g85///MH5Ya2nxz7evj0zaYjkb+tWO27m1t+ag/nz7UiHFDFT8hdpBytrefPhh5sIXT9PP23CHR12nFj6v26dHWUlHfyiCUuZncrDl4o6kGvGb7wx87w9X/1/1nFrS/Xnq/NvFAma61qWNFDJm3HyyUH5W/ct5ME9P/uZfaKU+k6e7HUtwJbzDrW1V7/uAYi9k2ipr8+O/NznysFdUl4LYMF73nPA/Goply9WF1KSzvZPfrIcXnHZZfaJjz5qwlLyraTbgyvfVA7nkjn295uw7KPqT48lzzEgWAIsr6eu9chm86y6u0149247i4kTTVgq2QF7yNTDz5IlJs/ju58VZVSIAXOoqVnHltF/tZW3M5aya4sNGzKjSgsX5s9PozU38h2u3+ey3c2dl12uMZTN+u4sFzrWxd7psFFwllGP46IdlOS4BGTLGdX8rOgdAGVTLQ3uy07oGi9l+9d1IOM6O+04aZ/hwGqDnlYaufJ01aNryYqjToqwYvDJv96y0xiyTVceIZLUPNLtpiY/WbR3G6mzNFmWq6Ulu/73DJREOr/8gPExJhNSL8blx7X58+fjueeeG+tiEEIIIYQQQggh5BCGslACjNPdQv/+7/8en/rUp/DII4+MdVEIIYQQQgghhBBCyCHMuFq5dsYZZ5TDzz33HI477jgcc8wxmD59upUuSRL84he/qHfxCCGEEEIIIYQQQsghxrj6uDZhwoRy+Nhjj/U+76RTTyqiONFoaZlc1qtX+ERI7wntFSP8YUrrfmPHLVlSDt5+h1mgqJeszlwmPGYcHgAhW9ED/j4Lpb4d9g/Wrzfhl73MhE8/3U4nzdMcRghzel3+EqKOpbfTAQjynRMeUwAsg6TW/mftuDvWl4OfXvf6cviP/9i+7uLFzmKW0Y83aztu3QS3bTPh/fvtuJnCPq20/rd2pLi3nacaX6yuriOsZKVly6oXROGsV/nsly+34xzP1LU9eVOL8VmTVSc9KQC7Xpub4nsjWf42uo1ffnk52K5v4NJLq+dXsH+T04tD++3J4+uus+Ok99Add5jw9ddbyZqvuaYcvrjtR1bcFVeYsLbtKWWNFwV4odx5l6mDUxcrvyJxvR19dtuSw5u0g9SWRNOmZcfJ/ixeCwCA4xeKZ9Un7lvVzT4InzWHr1qg7ZA3vv6SFelk39D9xGUsI9ugSPf4Vtt3Tt73wECrFbdgvjC90z5T2ic0gBAvo1g+nVlpY/l/hbxjY9RBKN7l0s9dmuEqz7V9vcaLz/V+iX4/2ntSHjv6zFNb7fqX41GzHFd0HlkemIqx9G50tuvI741YHlYxfF+z8ssTF4PQ30N80/l6xgXjaCOy32hv1IsuMuH2ttrLWBrYY/9A9EXpxxbLO5N+bORQY1x9XLvtttuCzltyxZIDJxpDNl/72FgXgRBCCCGEEEIIITlIU3qukWH4OZkQQgghhBBCCCGEkEDG1cq1UT7zmc9gy5Yt+MpXvlIR9/73vx8ve9nL8OEPf3gMShZGgrS8pLZimbJcOu/ajlxIRAFgV7/JR55WIQWMIAX1pbT1KfsH8t60REDej0NK4CqjvFd9m5nyisD68F4+3dNjH0tZnL72Qw+Vg/PnG1no5Ml2MpdaQ8ZpRVJTtgrMQkrOnAgZKADgiSfKwRkrjRRuCLakaqjFllGFYEmjmuz8S23Zz1Se19qk/uQkpclCkn1Hz7usZCtWmHCMLeYr5N+vfrUJv/GNdpyQROKLX7TjtD6wQKKMFbq88liGr73WSvb4LbeUw9/82F9bcT/f8qlyWLfx7dtNmefPNz8vQtorle26n8u602WUSqkT+283B93qXdBkxpHOzmzZsh5+LMmQkKrp5zmYISHX+buQY1EByls3cmDUleBCjmm33loOztZ5CGn7nm5b9i7fxe36z9oZf+aOMo448ilaplO05HLfoF1+qarUikvZp5zlks9CSyJF+wmVFEoq8pCFVDcgx6NQiV/Q3EV3UnGs63/nThPevt0+TR7PnWve9a1a3ibHeIdcOkYbjyV3i0HWM9XXlXWuH02MNtiIxKp7X3l5bAmtC20BIaWgeirtci4IwvGLgixVxVw6sE6KrktCGo3GH12rcPXVV+P444+vGrdo0SJcffXVdS4RIYQQQgghhBBCCDkUGZcr1x5//HEcc8wxVePmzJmDxx6r3cNsw00bcN9N96E0oYSXn/JynPKOU7D26rV47DePYULTBLQf2Y5Xv//VmNQ2CQO7BnDLZ27Btoe2Yd5r52HZpX4G7YQQQgghhBBCCBmf0HONjDIuP661trbiySefrBq3ZcsWTJo0qab897+0H3d/92685aq3oLm1Gd/579/BCW8+AT2LenDKxaegNKGEO6+5E+uvX49TV5+KCc0TcPLbTsaOx3Zgx2M7DnwBQgghhBBCCCGEEHJQMC4/rp1++un47Gc/i/PPP9/6kPbiiy/i85//PE4//fSa8t/btxetHa1omdqCHY8Pfyxrbm1Gz2Ljs3LEsUfg0V89CgCY2DIR3Qu68fzTz9d03WpYHgAOvzEdN9hnwjO7hd694rO6aQIVPjueHjm+WzCXtKeSK9MAkwFdDrmltPaaa2qq7q0Qy6fDG1cdvPWt5eB5W+4thx9ssSXR8t50tVV47Al8q9jbH0kaVwG22codd5SDpeXLrWRRvD+kZ0SooZM+b+NGE77ssnLw9VsvtJINoXbPOOtBSQMhADjzTBP+wQ/suK9/3ZSje6YV1Yg+F3n8iqy0be3mHHHPADBbGpQos5LXDv5HOfwUXm/F/fSnJix9KeXYoAmtU2mt6MpzYMC+9vSmXeYgy4dS4Wr+Lm9FVz/0HStCvWFcXje+Y7L3s8lTSPkSlJX39NN2OuF92KrHwSVit3LtJSXeibL8eway38X6GbreX1lx3v2uzriuLeO0r9fmzSas/7Y6caIJt7WZPObNdbQXbVAqOnAhPk2yTXq+v2LNVXz9qCTaFlTak2pr4Cz7NKfvXMHE8M2rd/6yWYSOkb7EGB/y5JE1TtV9Pi7Ic22ZVo7V0jMVsPuN/nVI9iE9vklPw66u2t+VFQUL6Htj+WwIaXTG5ce1T37yk3jVq16FefPm4aKLLsKsWbPw5JNP4tprr8Vzzz2Ha6TJdwDpUAokwD0/uAfrvr0O818/H0kpsdI8cOsDOHrZ0TVdhxBCCCGEEEIIIYSMb8blx7UTTjgBt912Gy6//HJ85jOfwdDQEEqlEpYtW4Yf/vCHOOGEE6JcZ/EFi3HcyuNw2+dvw/0/ux/HveE4AMBvv/9blCaUMHe5Y/dOQgghhBBCCCGEHLTQc42MMi4/rgHAKaecgttvvx179+7Fzp07MW3aNEyePDn6dVqmtuDoM47GMxufAQA8+J8P4vG7HseqK1chSZIDnO1HisRrqXWepeaZq3yV5GBXv8lz7147qaxOlxTFkrGptc5Soqe3dY6Nrh+58tmlBCpaBhO8fFroKfa0TC+HO5XUUz4bvdpbPtOpU+24UPWkxJLE9PbakbItxLiYqxyibUVbki7lq9dea8KOxqRfrPZyfjsuc5m+1vJecYUJX365HSfq1fe+Q+UOB0obki4k/6Ge2dbxYLc5bl60x058ww3l4MyrPm5FfUQ8rF+t/1Q5rJuxlJxp2ebSpSbc2pJ9n751tW6dfbxkiZHDNolm17rxXjthj7Es2Dow3YqSsizddEvbn61eEDWO+46Ruun6KjBj9FlvuZLWqclOqzuw1PNKvZuWbh93nAkrWei+TiPX1uPzgJD/TJhgwvv32+nk5WbNsuOkTEiTVSehY4Dv+FDEO1XWgZYlynFW8/+zd+7hVRX3+n/XTtiEEEKAxAACBoyIiBYVFC1atKiIaMXLz17AS+vRXuxR29rWHuulta1ttbWtx2pPj8WKiq1V6q1U7ZEqFVSoqKioqFEBQa5ChBCS7N8fkL2+8917TWYNa+cC7+d5fJy1Z9asWbPmsrKY9x1Zl/LxDtf/NirnqBgyqUTaruXdSObvatVR6HcarXyWbVK/hstySrWtlsWlZZ2rm7O1QVdbj0KTxLULId2OytPWl5N4R/C2gHDEVVoaB1secm7bvNmM69MnDMv3BT2fyzFM91+Zv3QSAHL7VFQZnVHjW2NTmI901hCvFQBMywzfuZ6QPYEu+3GtlR49ehTko1r92npsXLERFXtX4MM3PkTF3hV4f9H7WHz/Ypzy41NQ3L3LVx0hhBBCCCGEEEII2UX4hSiCVFEKj/3oMQRFAXoP6I0jzj0Cf7nkL2huasajVz0KYMemBkd/dcfmCXdfcDe2b9mO5qZmvPvsu5h87WT0GdLHdglCCCGEEEIIIYQQ0sXhx7UISvuU4qybzzJ+++zvPhuRGvj87z9f6CIRQgghhBBCCCGkk0DPNdIKP651AgJkov2FPDX1UX4cOj+Zro9aaJeETdazz4fXe+UVM+7kk8Ow9qOSuHo1dNZBTfqMaF+CUg+fAp2HfE46Th7bPB5kWNvNuLYD7RuT420UQdKeKXG8PqznScMJ4b1kK6OuK92nDGSlSzMOaeQF5JrTeODrnebjJxTHs8nnWjqd9AFpKS410x5/fHiw335mRqKhH1WjvNoEA2tDo6xNJXsZcWuFZ5b0Y9O+belit3urVT5Qsj0ZbUsnFB192Twzav/98ybbgWMfldier++c4eqpFKdcUfnnYCu0HAzlQ9V9UhyvzphtZN2yMNyvX/Sl5Byo5zJZjCS8bQrhrVgIpEfd4sVhWNfBQQeFYT1/yTzkXGydJ2J4rhnjeIGNh2RTjfMM5X07z++6EYpMStW4USrmuU0N5ntA1PuPzr64xM13zpekPUl931VczyuEp5hPOZI6r9B0ZLnk/F5TE/03iRzD9t3XjJNpt28342z91wtl/in9Dvv3T0UlM14X4ng+duQcQkhH0DlHyQ6mV3WvnFVrhBBCCCGEEEIIIYRouuTHtTfeeKOji0AIIYQQQgghhBBCSNeUhY4YMQLHHnssvvzlL2Pq1KkobkOL8ugVj7ZTyfyoLK/MLqONs8247/JySSIqBimRUc/igAPC8ODB5mkffRSGtXxOLrN2vU/dDOTyab08W243LdNplVQSy5ktO8w74/qc4uTvKgv1llvJSpdhy83EkbokjfU+heQ1juwxLZ+HTbcsZX6qflxllTaSlpQklU/B5T5ybFKdW8uYI/MT2s8ypQasqwvD1dVh2Lefa7VhVFfR8leJ7MsA0NwcHVcSIcXKmYeaGiOvlxI3KyW6nQnvdiYeQGP/Idmw7sryeMUyM04+Q72xeZTMT9ejTKevvWFDGJbPGjDU7N6S7KTHYNu1NtWb1/rb38Kw7Gu9epnnyToZP96Ms9kmRBFL1hSRaaHnrjj5e72D6ISykrVeTNRBWZk5pvjI2Ar9HpCUdUQUhZbBtadMFnC/byl71E1k/PjONzfEaVc2ixWZj7xv+XcGYDoLyL+NdJwc63SekljtQPbfpUvNuFGjssGSkvDdQtpeAOYrlHQyAex/R+1JdFZ7ItK+dMmPa7fffjt+97vf4eyzz8Zee+2FL37xi/iP//gPDB06NG/695e8384ljMeFF17U0UUghBBCCCGEEEIIIR50vn9KcOC8887DM888g8WLF+OMM87ALbfcgv322w+TJk3CX//6V7S00DyREEIIIYQQQgghhBSeLrlyrZWDDz4Y//3f/42f//znuOeee3DzzTfj9NNPx4ABA3DBBRfgK1/5SkcX0QnbbqESa5pcvU/eZHGWQTtLUiPkVQBQXhLKicrLzOa2cpXbLnO+khXb8lyLktU5f4mtjGkISZUuk7i4vtaaNWFYy30kcjl2HAmGbCK2Je+SHDnF4n+HBw8/bCaW69wnTAjzGDQEXQ1XSZV1pzFbxVragSSJXf18+1MSUpQ4+bvKYZ37qKMeKqeNS22dQvY3LVWLRGstBKV60JL6CtFJc8q49NVs+ISJI4y4xqYwrZ4m5OWkvLBbNzP/iopoWXSXxzZRGJLX8Gct05G7u+29txknx27dBKOapE12qqVGCxeGYS3HGT06DA8aFN2fkt7R14Zuu/LepKwMAP73f8OwvJcBA8x0n/hEGNavPlGbLfvWgQ1bHq5xtjwlcfJIYud3q9bLUW+btPzSN/84efiUpRDlT6J9uhJnnpbzi5za5HzSFlH3U+h2ECd/uWOnHv/lxvKyK4wZY6aLeucGgPKysMw9epjlirp2WVkMebMcBPR25uLFYGNDKAvV44bMv7IyehzvSHsXQjoDXfrjWit1dXV46aWXUFdXh3Q6jVGjRuEXv/gFbrzxxo4uGiGEEEIIIYQQQnZDMhl6rpEddNnPyY2NjbjrrrtwzDHH4KCDDsJDDz2E7373u3j//fcxZ84cvPvuu5g0aVJHF5MQQgghhBBCCCGE7MZ0yY9r3/zmNzFw4ECce+656NWrFx588EG89dZb+M53voPKnRqAPn364JJLLungkhJCCCGEEEIIIYSQ3ZkuKQu988478aUvfQlf+cpXUKO144IRI0ZExnUqxFrSFot/mdXDw+J5UWifJisWsw/phVIIr4zi4vC+pX8ZYPoj+fqROJfZ8wLVfRrz/m5rI3GQxZLhnPsS65xT2mxC9r/TTou+gMUMztWzzJXcZdnR3n6JeJcI06PUzTcbUS0z/hiGtU+WKIz0LdFeJVVVu15EV+LUR9Rz832GOfUTkX9SfjPOPi+W/it3tI/ydgKALQ1hnqU6oTRC0/3LB5VHWvS9tfWpyKRyCrF5NxbCP6XQXkzWa9nGZ1FBcuzrq/ynGstCnxqbX5qr55r+XT4bbQEovcj0eVFt0rWvxTnPhq3/rl0bxs2ebZ4np5cLLgjDug6kX1FO+5eVYvMtLLAXZdI+Wb7PwpuEfdXiYGufruO4TJfEPOd6jj7Pt3460uvSdm05fdn8f2U63ZSSnt+T6K96Kl61KgxbbFitvmo2Nom5WV4LiPZ0825neqIQfsl9peKrf/RLjb43+XzbfWwipJPRJT+uLV++HOl02x8YKm1/7RBCCCGEEEIIIYR4Qs810kqXlIV+9rOfxezZs7FdbtFFCCGEEEIIIYQQQkg70yVXri1duhSnn346+vbti7PPPhvTp0/HuHHjOrpY/gRBdpluqklJAcXy3TiSmLfr8kvh5PJiTRIyiTjn+KgldR6m5Ca6/Hpr66hrxym/r0TAFR/5p1yardHLuK1S0KhMVcW9t7E8G64v7mvE1daG4XRxtCTDdQm/a33rZ+v6L0m+krOm0Ydnw+nzzjPiUl++MMz/1t9F5iHL3KePVzESkUL45u+Kr/TKtxw+ciLX/ABg3LgwT5sERMbllENGuuoGNVI/t3ZtZLLKynLjOEqy6CuV98W17XqPpb5tN0raripIjm96HvLBZnGg5Vay+Wg50cgRbpI5KUu3Sed9+6gtj40bw3BdnZnP+PFhWN63IQNtC9HI40heJa514Dq+6XTGsZ6wPN8BXa/dniTRz+O8P/iUqxD5J5GfbxuMurc45ZBpdfOMkkHqviyPtWNPR7VJ23W3bjXrR06rFjci72uXlYXXG15j/h0o/xbwriv54PREIW9o8eIwrNVfwoNAy2blOJ5rT7Dj3jIZl4IS0vXpkivXXn31VTz//POYNm0a7r//fnzyk5/Efvvthx/+8Id4++23O7p4hBBCCCGEEEIIIWQPoUt+XAOAww47DDfddBOWL1+Ohx56CGPHjsVPf/pT7Lfffjj66KM7uniEEEIIIYQQQgjZjWn1XOvq/7UHQRCcEwTBC0EQbA2CYHUQBL8PgiDW9m1BEBwRBMETQRBsDoJgUxAEc4IgGB2RtnsQBD8IguCdIAi2BUHwVhAEVwZB0C1P2hlBEGQi/jvTpWxdUhYqKSoqwuTJkzF58mQ89thj+NKXvoRnnnmmo4tFCCGEEEIIIYQQsscTBMFlAH4B4J8ALgEwCMA3ABwZBMHhmUzmY4c8xgGYC2AFgKt2/nwxgKeDIDgqk8m8rE65F8BnANwOYD6AIwH8EEAtgPMiLjM9z2/PtVU2YDf4uPbWW29h5syZuOuuu/DWW29hwIAB+OY3v9nRxYpFBkHW0yBlMbuxau2l4B1AfX3of7VkSfi7kMwDAAYNivZyScLDyebVII8bGsxr6bKE6cxjqfvX50gPg6j8NHG2b/fxnbORRP4lJbvuR5WTv6XyKkVz1duTp5cLibb0jRk0xLmMSfiduPpHufrl6HZstMHxxxlx6YoKp/wlcfyuojyz4lzPRhJeNNLeY6BlC3vXayfhWRMnne164vE6X8vq+2TxWbR6EsmHv3SpGSd8U9LK7Ka4pDTyep0Fn3koCX89AHYjPQ+SmBu0p5scd3v3Ns9z9dqyjTmuebj2Sz1+bt4chqurzTjp2+m8+bujb2ES92I7z+qrZuPPfzaPP/e52NfW+Iyfrt5dccphyz8JOtJPTuLrC+qaR5z7jEobJw9ZFttYIfurzRvSlr/vPB2VX5w8bSTtSWptI+oCPuXPyV/6tumHIycRaS43d66ZTph2l1TsZUTJ8Vn9OZp9JbF5QpM9gyAIKgFcB+B5AJ/OZDLNO39/HsCD2PGx7ccOWf0aQCOAYzKZzIqdefwJwGsAbgRwgrjmZOz4sPaLTCbT+oHo90EQbATwjSAIfpfJZHJWZWUymZleN4kuKgvdsGEDbr31Vnzyk5/E8OHDccMNN2DcuHGYM2cO3n//ffzsZz/r6CISQgghhBBCCCGE7OmcBqAUwG9aP6wBQCaTeQjA2wCmtZVBEAS1AMYC+HPrh7WdeawA8GcAE4MgkP+U//md/79JZdV6nPeawQ7KgyCI/a2sS65c69+/P5qbm3HcccdhxowZOOOMM1Ba2vn/BZ4QQgghhBBCCCG7B62ea8TK2J3/n58nbgGAzwVBUJbJZOrzxLvm8UUAhwF4RKRfkclk3pcJM5nM+0EQrBT5aT4C0AtAYxAETwG4MpPJPGspV5Yu+XHtuuuuw7Rp0zBgwICOLkrieC8nV8t8pVxp0qQwrJczu6peCrHcXq4+1suFt28Pw83NiESWXw9qUo6m5VtJqH18pBZxlvqnGraEB8uWhWFZcYBxcymt+3XEV+Yh6zE19//MyBkzwvCYMWG6aeofCUT523ubeitCT52aPTsbTp92mpGsbMTB0Xl4PI+cMorO8dg88x8RJkywnJcASeRZV2fmKBnYPzr/SNnyvKfMhOPGhWE1wCXWFnYRo/yrVpqR4vnWYZgRJdUapa5jlh7kxdzQWGy2nwXz8l+rpsbMYsOGMNyrlxlnG0t97ANseMttPWRHtjyl1QJgymB0lzemZpumXD43S6Vq6wib/YGrJMy3flyuBQCNTWH+eq5fvToMj1WvuOPHh+E0GsODBks96gtov4KdFEI65pq/9drr1iVaDn0932dvxKl2LOXsrvknJe93trfwJIkyR+Wn87RK/xMm1ruos6VFmKeWccthSw+DPjLLJJ6FLY8ePcxjOYwkIQttb4xnqB+OfEmTk/+oUWa6xx/PBhtO+YIRJecenX1R0Y7/d8V620OpDIJgoTj+XSaT+V1CeQ/c+f8VeeJWAAh2pnljF/IAgL1V+lcj8lqBHZ5vklUAfglgEYCPAXwCwKXY4ec2OZPJPGEpG4Au+nHt8ssv7+giEEIIIYQQQgghhOwOrM1kMmNsCYIgqMCOD06u/DqTyazHDkkoAGzLk6b1X8bakiLGzaM0Im1reuN6mUzmuyrN7CAI7gawGMBvAezXRvm65se1Vl588UW8/vrraMjjknjOOed0QIkIIYQQQgghhBBCdjsqAFwdI/1MAOsBtEqyugPYqtK0LtnfAjsyD02+PLZEpG1N39b1kMlk3ty5YcJ5QRAMz2QytpV1XfPj2saNG3HyySdjwYIFAIBMJgMACIIgm0Z+XDvsiMPat4AxKSnp0XYiQgghhBBCCCGEdCr2FM+1TCZThx0Szri0+qLsDWCZitsbQEakcclD0/qblIyujEjbmj6fvDQfdTv/Xwm7bLVrflz73ve+h3Xr1uGpp57C0UcfjQceeAC9e/fG7bffjvnz52PWrFlG+jFXWlc3djh1M9/NhtesMeOqqqLPM7wahCcUAAyRZkz1YmXfIFNavKXBbYttX38SmU76MQCmTUq/fuZ53bqF4ddfD8N64DrwwPznAKbnmrawMbzC2tFrJdZ58gZkWO9zLStSPd+WSnO77CicvVYURpm3qn+E0OVsRRsDiYeq/YQir1UAVq4y8y+qDr3UqpdeH0bcd5+RrviaMJ3NT8VGqkn4CQlfCwDABRdkgyf86Edm/sVfdMrfVqZCe7u8LyxEbRZ0zm2wdV/3VqQHoTSYBICS6NXlUc8mifqQ4yqgxh9tALkwtLYYVqE9XGtlLtlQTtml55GuZHHxdLF5b8eMEwOq6Hs6/+pe4T/stVjq1Lf9++Lj5+Tt9bQ0tOw4GOZEdPfycAxQQ7A53OlV9k35698Y04HcNuOIl5+WJQ8btvqXt6aHeNlcTX9GfduWFxRZyXp+8SBOXSXexpWnpw++ZXR+1tr3tf/A/Anh3i9d22AhfDTb03/TRmfxCPVF9m091Mn3AP2ufuhoN9+8JOrHtY3rYSQJn2ZffLwErf1JzeEp6bMmb1R7rokHrOvD9rde69+x+rmTPZLnAVwI4Ejkflw7AsDrbWxm0JoHdubxexU3Djs+0C1S6b8QBMFgualBEASDscOP7UHHsrfKQVdbU0G7S3cR/v73v+N73/sexu00sh40aBAmTJiAP/7xj5g4cSJ+9atfdXAJCSGEEEIIIYQQQvZ4/oodctCLgyAoav0xCIJTAOwL4C6ZOAiCyiAIRgRB0Lv1t0wmswzAQgBnBUEwUKQdCOAsAP+XyWTEihTcs/P/l6qytB5nrxkEQc8gCHI+pQdBcMjOvF/LZDJvtXWTXXLl2gcffIBhw4ahqKgIJSUl2Lx5czbu9NNPx2c/+9kOLB0hhBBCCCGEEEIIyWQya4Ig+D6AGwA8EQTBPdghzfwmgKUAblKnXIwd3m7nA5ghfr8EwJPYsYPnb3b+9nXsWDT2TXXNR4IgeBjAN3Z+pJuPHavevgRgZiaTmSeS7wfgb0EQzAbwJsLdQr8IoBk7Vt21SZf8uNa/f39s3Ck522effTB//nxM2CmDXLZMrzL0Y8nDS/DKw68gVZTCPofvg8PPPRxvz3sbi+5ZhA3LN2DqDVNRtd+Ota4fvvEhnv7vpwHs8H877HOHYeiRQ72u26tXdJx1ifQYJX2Va5rF+t33lpuLFefPD8Njx5pZyJXCGtel1VGqFwAYMSJ/On0syzh4sJlO3nZ5w4dG3MYKN0mkvJc4W4RHbZseZ+m6tR6jKq+21kwn9whXe2D7SAlsskFreY880jweMCAMy/YoJa6AKfObONG1mJHY6liXX8qQrr/eiIIcSmbOvDsbHrj2pcjreUuE5PM96CAz7oYbIuNkE0krqVqLkApKbPUTp71EpW1sMuvgxRfD8FlnRedn7Tez7w8PtB5BaseUFiVVYpFSepTDFZuEJEeSocfuiIyk1HTOHDPZzkXcAICBtmure6tvCNuIbII55XfUxBRaBuqKtR1bpJktZeXR+YgJS8+j++4bhrWC08jD5k9gQdarLr5U3+vs+lbEl0olMQbo3+WYsHhxdH5PqA3uZZscN06UUVeCTQrqY4JjeRHQbfz558PwEWOj5wJnqfKgITEKGh/X+d0qK7PIQG352+bKJMYO33bsShLyaVueMo/ly8103buHcfrvBDkGyNdBnX/UOZqKCr932A0bwt+1e8PDD4fh6moz7tDR+a8Vp0596l/fy/qNYR5vvmmmlRY9eoyXx3Lo0MOIrHOdR2lJfFsDXX7XNq+ffd+KiHlIj6tCJqotJrq6pDkJMpk9x3NtV8hkMjcGQbAOwGUAfg1gE4A/AfiugyS0NY9ngiCYAOC6nf9lADwD4KxMJvNinlPOAnAlgGkApmOHz9pVANRfflgF4AkAxwL4AoAeAD4AcC+An2QyGTWy5adLflwbP3485s+fjylTpmD69Om49tprUVdXh+LiYtxxxx049dRTdyn/5u3NWHTPIpx969lIl6Zx95fuxifO+AT67NMHx19xPJ6+5Wkjfd99+mLqL6YiVZTClvVbcN8l92Gfw/dBqqhz/KFBCCGEEEIIIYQQ0lFkMpkZMFeiRaW7BsA1EXHzAXza8XoN2PFx7co20q3Cjo9vu0SX/Lh29dVXY+XKHZtFXH755Vi3bh3uvfdebNmyBaeeeip+85vftJGDna0bt6K0ohQlvUqw/r31AIB0aRrdy/Lv5FrcPazGpsYmBF4baBBCCCGEEEIIIYSQrkaX/Li27777Yt+dOoxu3brhxhtvxI033phY/pmWDBAAL/z5BSy8ayFGnDACQcr+wezD1z/EP3/9T2xesxnHXnas96o1uTS4LYzl5DXDjDipmlglNnbSu3G98koY/vhjM05a12l5pE0u6ZrOtruMPO+jj8Kw3j1VLm8u719hxA0yD53Kka5TsmIhwfRd9m8s477vT+a1xdZyLeOOMk+U285JuaentMi1jLY4q+Syoq954ujwOLX43+Hvt94aXZAYslBXOUtqldjVeckSI26YkOSNH2+WP3J5v95BybGMmii5akpvN/i5z+VNt6NgIr8IGWh7o/v8mWdGp3XuU7L9a1m00K9rWZ9EK8mEVachs9GqZfk4XMezOGPFyo3Ru28OLA6l7qVCR7J8ufmsjc0lGzaamYi603IQKT2S99mRO6PZSER2qm9O7lbsKF/RXVQ2T91GNtXLMpvPrbzMTVrdIJ6v3qhRPntptaAphGTXVYaXRrgb8ogR0W13/HjzvMh2aHmGOWUU46Js78pBAaV1Qu1hqUh9nzU1EeN4QruKRo0r2gFFD4uuOEtB21Hy3d67Dtvw2VXat/xyjuqu/i1fzlH6PV42fy0LjSKpMV6WWf4NMW+emW727DB83nlmXEe2LYmU0ct+DQDNzWFYvyPIMV+Oz/qdQx7r8cenDuLs/C7T6jnKedftGDuF28pJyO5Ol/y4Jqmvr8e6deswcOBAdEt4n99DzjoEB0w6AE/e+CRe+/trOODEAyLT7rX/Xjjrv8/Chvc3YO5NczH4sMEoTnf56iWEEEIIIYQQQkge6LlGWumyn5MffvhhHHrooejduzeGDRuGl19+GQBwwQUX4O67727jbHdKepVg32P2xdq31radGECfwX1QXFKMDe9uaDsxIYQQQgghhBBCCOnSdMmPa7Nnz8ZnPvMZVFZW4qc//SkymUw2bujQobjjjjt2+Rr1a+uxccVGADt2A63YuyIy7aZVm9DSvGNJ7OYPN+OjFR+hV7Vl209CCCGEEEIIIYQQslvQJXWL1157Lc4//3z8/ve/R1NTE7797W9n40aNGoVbbrlll6+RKkrhsR89hqAoQO8BvXHEuUfgnfnv4JnfPYOtH23FnB/MQb9h/TD52slY9doqvPjDF5EqTgEBMP7L41FS7m5oECDj5vWiBfzCNEGfX1ISfjeV3gdaaz96dN7sAJjeAdrjQXqXSI8HYWEFIHcnZ8nqNWEZ+/Qx4+StXnxxdB5z58pymF4usiy6HNJ7aPv2sBzV2ghB+vGo9b4twn8garv5HNasMY/F9bSPQ4nIP3KrbLj7vPhuh23zYHD2WRC+WDl+NrpOIvJwLr82JZo2LRuc9eSTRtQ4ET5n9Wozbtxe2fCQQW7XjlPHUWnj1LHsz53V80KOMXrJvKt3o5GJxjbIWJAeNrIceghwrWNJnGchrNRyJQXF4t5EQXQZDc+1mgozUmSqq0peW47/qYYtZsIEDHp8xx9XvMc6WyOUY4kIp2TFASgVD0R7H9qqLqpf6nYgj3v2NONk/q79yeqdWYixQhRM+hoBQEVF9PXk/L733mG4usrv1VX6WOXUle5UEvnCoN7DqsULkK3ujDrX5oeyPam4HC/TndiKa5tDkvB+i0NUv/SdKws9l7nmH2eeds1f9mU9bsj8ly+PzsPVEjaGbaEz8lXugw/MOOlTedFFZlxqbegtahRMTVhJvM+6Pt/qKjN/6YNp+1tJeiHqd3r5GqNfU1298pLANk949y/ZgNQFCj33dxYoCyWtdMmPa6+99hp+9rOfAQCCwNxooE+fPli3bt0uX6O0TynOuvks47ehRw7F0COH5qQdfuxwDD92+C5fkxBCCCGEEEIIIYR0LbqkLLS8vBxr9Wf/ndTV1aFKbylJCCGEEEIIIYQQQkgB6JIr144//nj85Cc/wUknnYReO7U9QRBg27ZtuPnmm3HSSScZ6R/99l9iX6NnacrrPB8qy6M/BhrLoC36ErlkGTBX5cot2vU3SblM2ZAWqeObbjLjFiwIw0J1hwMPNNPJVd16aXC15RtocVl4P+UljSLCbLJFRdFLtW3I8sv66VNjSjDSG8Vydb2WOmJbaqs05JRTjONnPxiSDW9bZqaVslZfqYItLtUk6zWNKBKRkUjZy2mnmQlFQ9PtWOK8+a5uCGeckQ2OVLLQxSJcs3ixEVc78QTHC4Y4y4IsxJLLSPneww+bkUuWhOmuucbrej73Y5exWqQ0M2eaifv1C8NiTLfJcYw2veOC2aCUytsoL7PUv17zLzQgLSNGRp5mqxO7bDC/9HzCBMs5SkYmiyzl/IApRSltWB8eaD2LTKjy124FEtcxOYl+44pVzqXvW06CUoen5wJxrBV/sn4G9jfvZUtDWBb5nGxzsZRXAUBpiVv/TaIebXJSl9/bQkujxgndvpRx6/xlHev6kGXu0yc8zyoL1f1czg26UYu5zfaOZqAvLq+nJMdR2JLZxkHXdiDbJqBk4+0s8+pIWwNXXPuaax+y5aHHAFeZXyGem7z24MFh+PjjzXQHHRSGq3sp2wE53nlaEBR6DkkXh3loKfv27WFYDiP6VmzjuE1OGGVNEed93/YeMLzWLU9rPTp7fBCy+9Mle8OPfvQjHH744dh///0xefJkBEGA66+/Hi+99BI++ugjzJ4920j//h1n5M+ok3DRr+o6ugiEEEIIIYQQQgiJAT3XSCud/5+D8lBTU4N///vfmDJlCh5//HEUFRXhqaeewrhx4/Dss89i4MCBHV1EQgghhBBCCCGEELIH0CVXrgHAoEGD8L//+78dXQxCCCGEEEIIIYQQsgfTZT+u7U5kEGR17r7eAFruLn1f5Nbc2nNN+gNoDw+5vFXbZMl8pGdZjx5tFDQCq3eAxQ9M2utpfwPpkaDzr6nJH05DeZVIkwS1LbhRRptPgfTFUqYyqxeH4epq8zwfj5NYfgkRHgnaQ0km893CO9J/DTDqWOcvq1/68Ok8U8veCCO0d5fg4BtvNI/nzg0PHPewb2//F+frvfmmcfjvH/4wGz5UeK5ZPacKwYwZ4bXkgAMAmzeH4Z/8xIyT/oTHHhvmYfNk0WvyC+0DIgbaVN3b4e9yUIG/7408T4aLisx0q1fnLVLOsfbyGlYhfNYWLgzDa9aYCceOzQZTqv82CG8m6T0DmNXv7JkYg8T7om5bUYZylrlAZ2FrglFjqz5HXs7TksiKq+9iHI8fH/R9y3cLG9Y6EWPCsmXhu8SIEZ4F053IcYyx+ufqTiuQ/c32LmRcS6XzGeN9h07fdpC0N1ghPLikJaMeAixDQuJ+q7Z+4erppvF93vI8+Xo7caKZbutWcaDHVdkfPPpTkml9zunTJwzLv4H031vCBtfaXnzxfdZRfS+Wh7PlvPb2aCSko+lSH9d+8IMfOKULggDf//73C1waQgghhBBCCCGE7MnQc40AXezj2jVqx7sgCJDJZHLS8eMaIYQQQgghhBBCCGkPutTHte1Cc9LU1IQePXrg2WefxaGHHtqBpdp1Nn4ELFiwIzxunN+Ser3stqQkzEduTS9/B+wrsOUXeL2E+emn3xHhUA71wAOfNtL99KdheMQI89pStulLeZlfHnJZffrxR8IDrWuV69yVHCpqqXPOUur77gvDqiInTjo9G9ZKESN/uYzetqS+pDQyD9tSbRkuLi6w7FGujQeA668Pw7P+ZEQ5SxWEvLNJyCEBoFh+aD/vPPO8adOywZbKvYwo1+XxrrjmoduVdUm9fPZHHmlEJa06cJWOpZqUtFrKDaWuBjD7wwEHmHHy3kSbb1FtXG4r/8QTZpx4vDltyUuqoCVhsvzz5oVhPVZoKbQjsoyNTWEdb9tmpjMkN4rWuSVPsYAaoVuRUtAVK8x0hxyStxyAKQXV5ZJziO+44iMXyxnr1n4YhpU0eVN9mLakrK8Rl44ady3yYznf5iuLkX+EdUFSkrwk5DiGrYEqmKtM0fvasvyyzpctMxO+E76P5Mzh48dng3I6z6kb+Xz1ZCxfGOSAA7MOnOtbP2B5b46635xrmZ3NrRyIbp+29zNbm9avJ/K4XvQ1/U7ZtyL/WAcUXt0vsckqbUOAqWxMXpIqifPuHHW9OPJRW5mj3lPLtbS9Ss7NFZH5dSS+73yyfcp2rdutbCO6/UgJ6aBB0dfyfY+UbVK50zjnkbR0m5DdlS71ca1IG83s/C3f74QQQgghhBBCCCGEFJou9XGNEEIIIYQQQgghpDOQydBzjeygfbe9I4QQQgghhBBCCCFkN4Ir1zoBfXpncNS4+Pp1m/49yrbD5juktfwyrd62fvr0odnwqlVheOpUM530EdBWW9IDQOfv6rHh6hORqnvbiEtL35399gvDuuKkSZGvF8ro0WFY3VhpsfCnUv/iYXi5yPN0OURcHB8NV68VWx7Sr6i8ab0ZKerOaKva8EEYY9m8A63+D8JXp/i228z8J0wIz6kwPZUkrnXn6j3mS45vkvQw055Hsg7GjDHiht9xR+zr2fzeXD37cjqvND7TnmsWT0PZzjcVh89Ne8nJfynU44i0Zqqp0dl7+Ifoe5NllvWv+uiWhlRUlPO1Zb/s3998FrIYdXXmeXKo08VvrBke5i8rcuhQM6F4Ttp2rlu3/OF81/PB1e/H2ve0wVNEVM6/OsuK9fwn6aS9aeL44PiMYTnIh+j5QF2fk7Vc8trKN894NnqMES8efeVcrBEdU/ZXACiV17O0JW8c3zOc60dRaK8km2ervJ2NGyHSJV4MK/LaFRXu3oQyTo+7kiTeWQuB67NPpF1YKqHQ702dBXmf2uN6YP9oX0HXYcXVWtH2vlZaYk/rkoctbZy/QwjZHelSH9fefjv8QNLc3AwAWLFiBSrymEUPGzYsVt6r1m3Bpb94Bs+/tgbduxWhZkAv3PSNI/GJaX/BiH0q0NDYjF6l3fC1Mw/EuSfv+INkxsOv4/LfPIu9q3qiobEJF009AJd97mAAwC/ufgm//+tSFBenUFVRgtuv/BT2GdDL884JIYQQQgghhBBCSGekS31c20+uMNrJaaedljdt68c3FzKZDKZ++zGce/JwzPrRRADA4jfWYvW6rdh373K8cOcZAIC3V2zC6d95HC0tGZx/yv4AgLMnDsPNl4/Huo8asP9Z9+LM44ZhcHUZDhleiYV3nI7SkmL89i+v4ts3P4t7d+ZNCCGEEEIIIYSQrk8mw11USRf7uHb77bcXJN8nF61Et+IUvnz6yOxvo4dXom7lZiPdsL3L8YtLx+Gbv1qQ/bjWSr/eJagd1BsfrN2CwdVlOHbMwGzcuFF7YeacN53KYluGGycuKk/fZeEjRpj5z5gRmbSgxFlabhzXWFYy1pY75e/NqFFep0VJ7aRctBDEke2UlYVpW9A3Mq1xnpaFTpniUUqTlhFh34UMK5J4vu0u65DyYItsM0dXIOWYUefEwPW8nHFq3DjntFHYFBNS7qmln4mj6rilrDxvMl1XpR5jdb58WtFyEFksPdy4Dj+yD9medV9PeU8hxlZnuZuj1C6t6rWluNQt/wQoRL/sSKlXkufkoGWh8thzvpWUlugyijpQY4Dr/fi2zyRIuo3YztG2ErJPDatxy1/nkQR9K3Y9j9x20fkp9LhlkIBsvLOQRJni9BPX9qnnqCSIKmecOij4PERIF6JLfVw799xzC5Lvkrc24LARlW0nBHDo/pVY+u7GnN/fW1WPhsZmHFyb6+n0vw8uxUlHDt7VYhJCCCGEEEIIIYSQTkaX+rjWGchkzON7n3gbTy76AK+/txH/c8UxKOluVunMv72Jha+txT9vPaUdS0kIIYQQQgghhBBC2gN+XANw4LA+uO//3m47IYAX3liLA2oqssetnmvzX16Nk78xBycdNRj9++2Qkjzx3HL8aMYL+OdvT0H3dJFT/kktn42SjLa3bKc96erl7yzPJs5OP0mXy2d3013J33m3wS5AnJ2dOgsdWf9Jyz5s42ykRDoGu1P7jLPjZUfSmcpCCCGEkM5KBoC73zvZfenab+sJcdyYgdi2vRn/M/u17G/Pv/oh3l1leq7VrdyMb/16Ab5+Vq6nx5EHVWP6pP3wq1k7tn1/4fW1uOj6p/Hgz0/EXn17FPYGCCGEEEIIIYQQQkiHwJVrAIIgwAM/PQGX/nI+rv/jYpSki1EzoAw3XXYU3lqxCYdM/wsaGpvRq7Qbvn7WqJzNDFr5zjmfwKHn3I/vnTcal//mWdRvacJZ33sCADCkf088eMOk9rwtQgghhBBCCCGEEFJggow2EeukBEGQ8SlrEATIPHthAUqUHBf9qg633fm3NtMVYifRqHPaunZHsTvLdFzll4V+Fh0p2epIaWBnaeM24vTRjuorvuXoirJQSRLy6c4iWy60dDWpMaazykkJIYQQEjLm8MOxcOHCoKPLUSiC4LAMsKCji5EA6UWZTGZMR5eiK8OVa7sJhf4gEseHqz3x/YNWnrdqVfh7kbLGq67a9bprbAqv1dBgxpWUhGG9NberV54kCb+0Qj9bnX9TUxiurzfTbt8ehquq3PKX+QFmnZeVRZ+XRBv3rf8k6ryzfFzwrYNCf9x3zT+Jcvh+IHLN09aHNMUes3whxoBCfCj0afNJzBntTXuWqzN5AiYxRyXxcT/xsVV3WNFJk5gzOvIfwZIYZxPB9rLliW8bT2Ls6yz/GOTbPpMew9r7Xden/HH+Lku6DpJoLx05T3dd6LlG6LlGCCGEEEIIIYQQQog3/LhGCCGEEEIIIYQQQognlIV2AjIInJbfxllam7TnWhL5++LrLee6RLqiIvraSSyzlrIsrUzQUtBdJc6z6CiZk67HtFE/u75MP61GteKy6Dxtz9dHSlBoKURn8VWLg+9YIeXUNmlje8o4Xa8V5zklIVuT9aMVZ4Ueq33rJCqPjmzjhfDNs+GTp+s4FadcSXgC+lJoyWukZGvth+axTVstXxISkBfaBjRdLuPa4rwkpHttpXXNw+s8LdvcuDEM6zq2vaRF4aOHb4MkJK++9d9Z/SU7U1micJVtuubhOwYXerxMgiTaWWexDSKko+DHNUIIIYQQQgghhJDYZEDPNQJQFkoIIYQQQgghhBBCiDf8uEYIIYQQQgghhBBCiCeUhXYCAmSy2vaktOo+XkOdaevsqHSpurfNyP79w3BJqfV6kocfDsOnThHpbrjBTHjppdEFi/D0yKnHBc+EB5/8pBG3SYTLf/pT87zx48N0o47KhsvKoouUhJ+KjVieO2vXhuFbb80Gl199tZHs3yJ8arO5pLq42NH/QT7QmTPNMn73u+GB9nKZMycMr1plxk2aFIbFs0BxOrocMXD1dLPet/StmTfPjJP3Jtp1e28/L03AUrrP/O1vYXjsWCMqvWRJeDBqVHjdyr0iy9RmWQRJ+LD4nKevu2ZNGK5e96qZ+Mknw/wHDAh/P+00I9n6jdHPtG/98jAPOV4CaETYlm2+bTb7Ink/2kaptLgxbyZJeUL59KFUw5bI/LbAnENc7bWS8DOz4ev1FNnGdR0sD9tIzsOuqXEqRyGQ7VD6k+r7qq8Pw7r4pSUt+RMuXmwmrKsLw7JTAsCRR0YXUp43bVpYRjVPWOtOzj333WfGTZwYhmtrw3AMTzFX30V925KqqjDsPYfIeXrpUjOhnK/GjDHjrr8+9rV933zi+Pq2J0n4vblS6PHMlmd7XjvOs3au/yYx58l3YMAc0Corzfwtk01UnRTaYzmpvwnpwUb2NPhxjRBCCCGEEEIIIcSLzr/BByk8/JxMCCGEEEIIIYQQQogne8TKtfEXPdrRRbDSvWdldtmsVdahtDpSdqDlOHKFscxzU735PbWszG0pr9wlHTCVEFJpoSWLI0aE4VK16tlrKbjWK3kyaFAYfmNZeO3hUoIBJLOdu5Bipb/yFSMqLStSyG8AAO+8kw2Wiwe8ZdxxRjJZRCmjTArvpfgVFWFY3JsWVY5ANM7VL2UkSvpmNEK9TF82WN2J5PMQ56VUI28pKw/jLP03ie3ac/qJkEKnhHQSgF0/HHE936X91nuzPcShQ8OwLq++n50sWGAe77tvWC4pXdLlam+pSxS6ma1eHYarB6m2u2hRGL744shM+oqxtbHYlDaiQdS/HKwBpOWzEZNGQ4PZS8uFgF22d41+1Foa54PtGSYth9LKHFnNq1ZFz4dyqFNqH+scK5FTm63L6Pv0kq3pC8hCu2phLeXylQHp86LqQdeBrGNrO5CVPELNPHLekPMyYNaPljNGjLPWcixbZh4//3wY1uOebFyiQrQUXCbTuI59VVVu6VauMtMVFYXhbt3M8+SzScsXL3kSEPm+4I3nu1uhbQGSOm9X89DzkMSQUnuSRH3Yxvskrl1wuaIeS8VY8e8l5twohx/9CivxsQFoCyMfyx90lHcS4sYe8XFt3gvvd3QRrFx44UUdXQRCCCGEEEIIIYQQ4sEe8XGNEEIIIYQQQgghJFkyAJrbTEV2f7jGkxBCCCGEEEIIIYQQT7hyrbOhPaEq98oGbf41Cxeax9IypLIy/Iaq7UKkJYC2B5D2JNoD4LXXwrD0DJo3z0w3c2YYHl5rxnl5B6iCbEHoLxTHKWb06DAs/XMaaw410skO4uuZ1VIzLIy76SYz8apVYVibpkhzKVHhpcuXm+lOOy0Mx/BIiLofb1+jxYvNY1GW9VPOyYb3us00+9hL+884lFHT0n9geI7FsKJl0BAzf1l348ZFX+Dmm8Pw3nubeZxySnT+9aFXVY5RU5TPkfLFkp07pcoo/bWKRR0A9nqIIgn/l1htTvseyXykn9zy97LhoypeNdK9tHpkNrxunZnHoEFhWbQ1knwcFRWObVwb1chBUlzAVgfaNlJ2+8ayvkZcevz48EAUWNYNYLazdHFj5AVyzlv7YXggPIqKc+aaMM7m1WOz67J5iiXt5WL1LVR1YEOWU3YnOa8BZlfu18+M69MnDH/iE9FxNlx9GF3n0Zx3iYq+edPFwVbGJLwPXfuU9h2V7XXB4vA+a2vNex5SKx6i9AYDzMFDz9Oyf4l6tY4jejA64IAwrD3XRCOUnrk237+kvJiiuO8+81hWl64eaSc3dmz4flV7kJmu//FhOF3s7l0adW+r15i/9+oVhpPwFIvDloawLHrsc7WGk+1Yj7M+83ZC9sUG8lno/OV9Frp9+uL6rmv1phVjwKoGc4yZNSMM67/Fbr01DPvWTxK+l7Kh2fxVfeuHkD0B9gBCCCGEEEIIIYQQQjzhyjVCCCGEEEIIIYSQ2NBzjexgj/i4dtgRh3V0Eaz0KCkJl9iqtdTG0luLDqCpKXpbdpnl9u3R5dC7n8vz9BLvAQPCsFQ0aMWibcm7IUlSUriUOF4/6OBsuKLCXKZcbFnaLiUUehm9LJdtC3uJXursJaFTFSJlhLqO01IeIuWjWkY5d24YnjTJLKO4XhLbmss61ZR/8IH5w7PPZoN9P/vZ8PfzzjPTaRmkB96yKSG7lhJsAEgteSk8WLIkDOtGftJJ2aCWzJXK5yb1MQAwdWr+MupM5LVVHad79AjzOO10uGCTHLhKuzSF3h5e9pNU3dtGumWLw7CsbsBUWGmll5TO1wrJer1q4zIubdH0uN5n+dLnzGMpEWuqMeLenvDFbHhYycowmR4rbHpMEaenkL7yPNHuSiqUdLI+vGCx5VK2Z+8qf4pDlAzG1lZ1HchjPRTJuWHI03dlw1fV/cNI972G27Nh3X27dYssilEnNplWEnIlSSH6qMvvhcLWtmScDGtlpvWlQEqllPTfFaOOlYQ/5zgCWUQpRd4VotqW7X3hP8c8Y8S9WnFU3jIC5rQn27h2QJGya6vszrGtiqkxb7l8cG3XUgYKAJs3h2FdLtkObfVvex9Pe9xbTvsX+Eq3bcgy6/L65BlnzIpq44WWp+q5QM4vWv1tWIjYHk6hcbx2nLpq7/mAkI5mj/i4NubKMR1dBCvvzqzr6CIQQgghhBBCCCGEEA/ouUYIIYQQQgghhBBCiCd7xMq1LoVtrb9Fv6ijojYfHDs2+jy9hLmoKAzrXc1k/nI5vy6HVbog5Y1Se6WQsh2tfpLHeunx8uXht2O9cWJUVcZZJu4rwYkiR7Ygl2ePEasvbZWgHqLvbj9GHhZplyFPOOQQM7JZeA+IRqh3qks56nKtUoWN68MDS36x5A5SR3jxxWFY1X/joHA32KVLjCgcWiIqaMUKsyxRuxbq8k+YEIZzdhMOO1gScjFfOYhNziKbpN7Jz1WqY1xbafdOHxfKJZ9935RXyZ2M9fimd+uKQsrl0yVK1u3z71OWbdRWbzbbhNwweM2+4b0dosZV110KteJjS1M4PpSWRctl5InWR5Zzb9E7XPuQhLxEtznL8GnezrHHhuFt24x0F0wIw088YeYh5x5XiWgcZJ00NkVLyeR9FkL25SoN101EyrD7VvjJ0g3UBaSUe9So8Fo5Fhmu2lILhZA/yTxLLc/Qd3z22slVvdgNEm28vMwsx/TpYZ7ynbLQ6HK0J7qNy51KXdESdekOoetxv/3COtavD67SbV9JZNR5ususWROGP/rIPKd37zBcXeX33HzeZ32xXUuOwfpVXW72rneOtskxfe7N+31QPDjdjuX8qF9F5etyoXcD79zQc41w5RohhBBCCCGEEEIIId7w4xohhBBCCCGEEEIIIZ7w4xohhBBCCCGEEEIIIZ7Qcy2CJQ8vwSsPv4JUUQr7HL4PDj/3cLw9720sumcRNizfgKk3TEXVflUAgOUvLMdzf3wOzU3NKCouwhHnHYG9P7G313UbYXrUpB219nury82dG4YPOigMaw29tD3TeXz8cRg+4AAzLsoeQHus2axKGsccFRlXXLlXNjxM1oG+AdGE9fbn8tqufjZxfExc87D5IFj9TmQljxgRhrWphuVGU02NYf6O/kfrN0Z/c9eeOLLMm2D6XTWNPzXyvKg8fD1rNhX3zYbLY9Sx1ZeiIswTE0+ITNcgvFFy7N4qhBnNlCmReRjX1c9p1MHZYJz6ifK5iOO1krTHla+vlFFGUR8a7UVWVxeGtZ+W9AyRvo7a/lGWORG/olGjjLiV9aHv2SrTls/o9jZvMLOOo8dBPXxu3izjwvP0+J6q3xQeWHwcdcFSZeHFXesnjj9LVFrbc9JeTGVlYVo9f8n6aikJx7fUmWca6YateiMbPvPM4UacbFuuJOWH5NPf4owHUWm199vy5dHX69kzOr8kxh/5XnDffeHvup9vqw3TSf8gAEj5DlwyD5+xIiF8/GGt56gBwubnN7B/mKd8FrpN9OgRmX0iJPGe4Yr22pLoMVgey7F78WIznTyWPqCA6emm30GSvm/XtrRqlXn8/vthWP5tAZhtoa5nmL++z6qqXS+XJKlxViKHioEl6424ygnhO2V67UojDhvDRtNY1teIknm6eivGwWgj0nNNvWfIZ6rfQWwUur91HjKg5xoBuHItL83bm7HonkX4zM8/gzN+fQbeePINbKvfhj779MHxVxyPAQcOMNKXlJfgxCtPxFm/OQsTLp2AJ3/5ZAeVnBBCCCGEEEIIIYS0J1y5loetG7eitKIUJb1KsP69Hf/ykC5No3tZ97zpK/cN/7m7z5A+aN7ejObtzSjq1o5bIxFCCCGEEEIIIYSQdocf1/KQackAAfDCn1/AwrsWYsQJIxCkAqdz33nmHVQOq0zsw9omsU29ViaUloRLbfVyaSnjlNIivb23lEb16WPGyeMcmVDEMt9Bg8zFkDa5gJfSQt+AuMDmzaWRp9muJZc66y3Oq6raT77hunV2qn//6LiGLeaJQnPgKm15803zeNu2MHzMeDNOllnL0SLLaFmKb5MF2eqnXLRPX1mZ7/OUMrNyqPYpZWUjRnrlL9FyK9l/VbPwIok2rfOwtQufPG3PVzdxKSvRW8dL+YyUgWlJmK3buLY1I52SVdaL8UdL8/WY7FImG/q8bt0cTxTjbkprnhx1v65tK874kDS6+FFynBYtja0NjytUnjlScUGUbN9XHunbLmz9S8p/SkrMODkdy3l06VIz/61bw/AAc+E/xo2LVdS2UZUgpU29e4fhOP3cRtJjZhKS0STysKZTjTpd7PbuIocOXf++ZSn0mOCDrT5sgiEpEV240Izbvj0M67pLQkbrK82PQr9Ly7lMylgB055Gjh1vvWWmGy/eP3Ok2x72H4nJ0KPes9VcmV72anigddFSjjnuuMhLpRP4q91VDlvatMk4rhXz3Jo1ZlpX6eruz55876SVzjcrdSIOOesQTL9zOuo/rMdrf3+tzfTr31uPZ+94Fkd/9eh2KB0hhBBCCCGEEEII6Wj4ca0NSnqVYN9j9sXat9Za09WvrcfjP34cx156LMoHWAyfCSGEEEIIIYQQQshuAz+uRVC/th4bV2wEAHz4xoeo2LsiMu22+m2Y84M5GHvOWPQfmYA2ixBCCCGEEEIIIYR0Cei5FkGqKIXHfvQYgqIAvQf0xhHnHoF35r+DZ373DLZ+tBVzfjAH/Yb1w+RrJ+OVR17Bpg824YV7X8AL974AAJh87WT0qOjRxlVySWDHdwCmH4H0TPnb38x0dXX50wGmrYbeEjtK9y/9pzTePg6yYHofc0EPS3XrepWeAO+/H5ZL+8EkTRJeKDnnbVwfHSnMOKzXXvZGNnzE2Foj7sGHw/OemmfmMWpUGLZ5CyWBa91Zmoi1Hdjw9iMR9V9o3xhXH41Ce9TYPZuiz3P12tLP1zZmyjjpCQWYY1qtaPJJjcGuSK88q7elvHHdxh0Lrf3vHO3SzM6tEhq+heoBJ+FpaCOqX8a5lmvf9u03kc8wBq73ZutD8tK+bVxbnkqvpCVLwrD2XJN9Tc/T0gtxYH91b46Ftj0b2acmTAjD2s9Q+mQVYp5Oom25epfmlFG+6OmXOcdyGP2kpDQ6zuJjJeNKYfrDbmqK9sy1kbRfnSu+fl3aj036qMp+o/uabY7qLH5X8tq9epn1I/09N240z5OejHI80LZkcq6srDTj5Nym68d1/Eza7zDH59g28Iobj3OaK17zo7qw9HSurrK8zO2xZAA0d3QhSCeAH9ciKO1TirNuPsv4beiRQzH0yKE5aQ89+1Acevah7VU0QgghhBBCCCGEENJJoCyUEEIIIYQQQgghhBBPuHItD72qe+WsWiskGQSRy5F9t9iW23bLPF5/3Uwnl6EfcogZJ5dnazWLIQuVkVpbapHFeclsdIUIGZKuKptEVSKloIWWNvrivdTfsp48Mk+lHT51yknZ8DML/JbNO8tNCvC936Ys8rme9T7LzM1MbPcWpRBzlTkCpkzC9V6Sko0kIflzPU/LSCR9S4S8yCJLlMoowJSIucpqXKVArtIowD7Gm3UssEgzc8fq8Nq6vCUl+dtMzn2JevXto0lIbnykOXHyLET+xnnFaa/zbNd2lYmmG4TObOFCM6HQWKWk1h9mG9HTu+xu++8fhqUthco+ZwwrKhIHlgvYxhtXWWJ1FSLT2fAZW9tbfp9a/l4YN2iIEbem57Bs+JW5Zj4HHhiGq7sJiwn1MuQqa9WPcPPmME5KA/uWmQ3B9sdI0nNbIhLvAiD708SJZpzsU7oPyfOcxwfbpFrRNzIqVb8p+jwxmdmkjT17mnFSqazl2hItBY0i6flEk9N+xLgu5bwlJeZ4n5YvbLqCRMexvQP6zqNecdrHw9XWQP7xCIRtTQ8OhOym8OMaIYQQQgghhBBCSGzouUZ2QFkoIYQQQgghhBBCCCGe7BEr1x694tGOLoKVynLHtc6EEEIIIYQQQgghpFOxR3xce3/J+x1dBCsXXnhRNuzrW6X5+OMwLD0Mxo0z00mfFGW1glWrwnBpcaMRt35j6CWwfXsYrq6K9gJasya6vNKLAzDtPuS273F821zrS/vDSJJ6Hi74bu1uM4pbvzG6jH0bxAOW3gr77WcmXLYsGxw3brgR5eNtUQgvGpmn3upebtEeB6+t1y3tM9eLJgz36BGG4/gs2vzkXEniedjqoNSyY7vPtbUNiOEdoyovJY5rasxrvflmGJZjpE7n638Sha2NWNucKIjtutLzBQAqKqLz133FJX8bhfBW7FAfq4hr+84L2rJGzrFDGt4ID7TfVeVekXm60lgi/CDHH2fEpRc/F3mevFc9lvbrF4blPKrHMHmfun02CxVNY3GpEZf28MOzkUT70c/Qddx1Lr/2whJtwVp+S0FWrAjDtvcwzJ8fho891ohK5Qy8IbZyyXc7W12VlrTfu1YckngPsCHH4OG14e+1tZb3QYtfWgv6quP484sV3Q7Ei43tOcnT9PhQJbwQbRbOcuywdJOccSrpOUSXSx7L+8yxKBNjcHFNtD9vIv7UntjHGDfP0PoSc74qr925gMQyhhCyO7FHfFwjhBBCCCGEEEIISR56rhF6rhFCCCGEEEIIIYQQ4g1XrnUh4mylLKVAcrW3loWa20abcXLb6/X15nLgurowLJdnf6wkVXLnaY2Wgkqi5G6FXh6tl3uXlEQvqW9PqaOvJGbx4jCsnz0WLgnDo0eHYaWT9S1HEuVPgqTlRHHagW3ncle5jE0mIc/zlYW64iOPiUNu3wvDfSssfc1242JwGjXKlMvMnRuGx44Nw6nl75l5iP6QhGxQk3TfiCNjTfravvn5tpkk2qRrnK2f2yQ9Ei2JNMYHqZ3UA4eQhfrWsSEB1vkLT4g4bUTK2WW7yz0nuo5lv48jaY6iEG1Q5plW/SvqvCTk33Fo6T8wMk5O7zKcwyOPhOFDDjHjpJZPy+/F/WgbAHks66AF5jtlEu9TrhYNvrjm79qWbOSkk51DvtgB5mQ57iin/FsqzPnQtVyN6rkVl+WXCtrk07ZrGf2rJPp9avt2azENXMdxX+S9+SofjTI2mTY8qYgxoRB/dyRhhVNepvJoHeRbOu7vAELaE65cI4QQQgghhBBCCCHEE65cI4QQQgghhBBCCIlNBvRcIwA/rnUp4sg15M45Ml252qWnHGKp+dKlRlxfuQZ7+XIzTh7UhlsctdQcGlkm225QNlyX4vtKFn0ptETVa5eqG35mxB0nl5OPmmbENU44IRvesCH8vQomSezy54tPHbtK93RcIcpkk21GyQe0PFJ2Qy21kOoc174RR7KSRBt3vbYaYuSwYpVMGHI6C8VKFipl0qmN68MD/QAEOe3liSfCOPkwamrMdDZ9fALIcpWVFXantCQoxFjdnvcWRzoj02opk9y5cZhsP6q9OEu2msxry6ZsjBVqMNrUEEq71taZecrdc21jmCE7VX1oYKU4sX/0a2eh7RUkSe08nrScEWXl0QkjrhsrfxtyUPTUtyU9Z/jmWYgdiV2tWbzrQE7wejvMBQvC8MKFZtz48XnLYSOOzYwkDfMlRMp75dxcCq0LdWxPog604LRvRWHHDtdxveCbXuoXPXnsuWuv63uwqwVKLFrLnOoc7x+EFBq2dEIIIYQQQgghhBBCPOHHNUIIIYQQQgghhBBCPKEslBBCCCGEEEIIIcQL7ohK+HGt02HTwvtukbypPoxTO6ib3ivaa2jz5mxw5fj/Z0QN/MOPwgOxRXhq0CAzj8rKyHK54qvz9/FgsHkp+Ho6JO15ZM3jD38wDhcIH71xKumCMd/IhkeNcrt2jt+VaD/t7bXi6hORNLYyiq4AwNyS3HYv0lJDdDsAQK9eYVi3T3lecbGf11ahvfFs9SN91myea9YyyjFMX0CPRwLz2YR+bClpWNkWc+aEYXneNNPf0LVv5Nzn2rVhWNyn9sySDaO+wXSq0R5su0oh+ldH9t+ocsSJk+Ta5YTnVW97z4irfn1ueDBxYnitCtMf0NaX5fVkcwFMO0I5va9dG30vOo8JE/LnAQD9+oXhamnWGcOUSPrE6e4ru5Sr96omqu6S8nfz6duFfg+weSVZr63GrSTKEkWh+3khrp3EOKV9EeVQbq1F2adGjzbjRoyIPM21zM73puceiR78fJD5N2l/Nz8/sKh+H8fDOZG6k/ejBzv5fAtu6mbi2n/l35Ly/amtPFpvtZle/2QPgbJQQgghhBBCCCGEEEI84cc1QgghhBBCCCGEEEI8oSy0ExAgk11KrJfW+kohJHIlspZ1lJSUhvmL7bw1A7Uc8HOfC8NSaxpDBirLn1uu/Od4yx0KgOu1vSVhEqHvSSnpJw44IAxffrkRNe7nPw8P1BL7Y8ZHXE9qiTT6+Yo8U3qZu2gXLcV6U/UQny3C8x239Xtbaa1b09dvCg+0ttoxf1e6dTOPS0vcJGGuMpU4chYfKYQu48aNYbiuzsxD9nuLgtO8lpalSP2olqWIgcRVAhJLQvvZz4ZhWS5VxtQTj4UHWoMt+5S+twUL8hdE5yEqT1eB7M79++fPbldoT0mn7dqFzsO4Nz1hieO0nryKwzkWWnIs5FyriwZmw9W2sSgnLix/UVFksTB3bhhetsxMJ9uFLr7sv9u3R59XaKzjs8c8kRQ+7yBJyFrbytM1fy9ko4BdSu8zPsR5D0j6HdD12djKEQc5Xqfl+K/ftYRsPA5JvxdY61gMHolYUeh5NIE27jqOxMH5PPmObJGFdhYLGi1hXrIkDO+7rxnXo0cY1q8xredt3brLRerkZABQ+0q4co0QQgghhBBCCCGEEG/4cY0QQgghhBBCCCGEEE/4cY0QQgghhBBCCCGEEE/oubYH0Lci1OFvaXD3Bks1bAkPli83Ey9dGoal55H2o7JsKS39AdauNa89pH/o8Wbz65JYbHByihW1m3gcT4cktjh39kV44YVs8L0rrzSiZA3v9fDD5nmvvOKWv8Synbp+Fqm1H4YH0tQHMB5A6rTTsuHGknIjWXFxAj4p0hPQ4rsVyydF+spIkyLtAzJ6dDZcVtb2duStyK3MZR3otrp6TXSe1VXxPUIK4UFky3Px4jCsrHoM6zA5jADRzXDVKjVWVIiOHmML+0T8ScaMyf+79i2cNSsMa3O5iy8Ow9q7aPPmMLx6dXQe4li3Hz0uGkRVsu7nnj41UfVaaG+bJDwwrddbu9Y8luODejZp0bBbysyxLyXaT7WlPdruO10cxvXpE+3JKJukHotkOpul5ODB5rFsW5vqw2vr+VU24z59zDhZlba2W2rp2q5zrKt3ly1/V1zL0RZJeJbZyuV1Ld3+5YNz9MkqhDeqy3XbunYSY50tXRLvO4UmTt/wmUd9/KI1ctxrD7w83fQNyH6jJ2aLb6EPccafqLj0WvM95qiaMPz2xwMRRa9e5vHTT+/4v553dk/ouUa4co0QQgghhBBCCCGEEG/4cY0QQgghhBBCCCGEEE/2CFnoYUcc1tFFsNJDSJlS9ZvMSItGwypxkJJOkX9piWU5sJT4AdHaSQCoqQnDestwR+S1tcoJ9VLTGS0LXb8xzEMrFSRaLWa7tSgKIWVyznPAgGxwSLduRtTK7dvDg9dfN+JaTjo59rVaBg2JjLPmsWaNeSwlqbIdTzndqRxtXdto83L5vV5uL/uXrfz6PCmFlpoqz+X7uUqasPzy0roYUg2oZZXNzWEeA/vvejuzyUF8pZM9e4ZhPVTIZqElA7KPyv6bIxWJ0r4BQP/++TNE8pJFYyyV1wUAIYvOaQjygeuB6ZBDwrCQhtsGO52FrPOce5OJbRocEZcjDfeor6Rkm1FyFm/5vS1/OTdrm4StW8OwoxWC9VqekkL9COV4IfuXbiP9+oVhPbzV1YVh3b3k9UaMiCyW0VylFFzH6TGgd+8wbJOFSlzHsKTm86i2FWcsTVruGUcS6SPbTOlG4vFCFaePJiEF9T3Pp358xxtp22J5jYnjfuBcfl8Zreu9yvvR7zFRckH9u7zvESMKLH225OltIyH7jX6I4mUoqfkrCuf8VD9fvbk0G9avOLYhoFUmWlTkdllCujp7xMe1MVdG+OJ0Et6dWdfRRSCEEEIIIYQQQkgsMqDnGgEoCyWEEEIIIYQQQgghxBt+XCOEEEIIIYQQQgghxJM9QhbapXjoIfN46NAwXFtrxgkznVRToxknzVGEP5rVZ0GbPEhRvfZ+8zEts5DjfSDMXFLL38v7OwBsxLCoKKPI+tZk8V1vxdf3IBH/h9Gjw/C8eUbUQPmsx0RLoL22Em/rPGnodPzxZlyPHmH4gw+ywfTi54xkm0Ycng1bLAbt5Ywy6FJYfV20wYc0G5KNS/oN2soEGA2vvr4ULujiH4yXsuHHGg424h5+OAxfeIFT9u3OEWPdvEpSG9ebP5SIxrBwcTY4TLXxxqa+2XA6jhlNBHH6uavPEaZM8bp2ZEmUF4r2QZM4D9Uioa0daw9MV6+kJMafpL1nYpVFjg96rBCemNqzMgmvLdc5RD9rOVRNmBCGu3ePTieHbcC8Ve25Jrubbb6V04RtntbdV5YlCb80G+2ZfyFwLX8Sfk4tlXs55x91LZ1Otgvdjn3HDldc6863jdjOa2wK4+Qrh+5De+8dnb/P+2wh2rhE93N5P9oyVI4rNh9WOT7ouDjvjruK6xyVshmgKnzaVhxvTte52IgrMd9Zqzxfr1pff2691e98Qroa/LhGCCGEEEIIIYQQEht6rpEdUBZKCCGEEEIIIYQQQognXLkWwZKHl+CVh19BqiiFfQ7fB4efezjenvc2Ft2zCBuWb8DUG6aiar8qAEDDpgY8/tPHsebNNRh+3HCM//L4eBfbti1cF33vvWac3N/+vPPMOMsS4yjsch/3ddVy6bDMQss6XJciv11nxg2rqQgP5JrxBQuMdMUTQ1lov35mnlJSopehy1v13YLcB1t+cht2wFzeny4WZYwh/UxC4uCch5ZLykqWUtYlS4xk5WJf9paJJ0TmbyuXlMXppfhRbVUf99WNV96PzHPQoMgy5SDOU0o+o/yltuX24nonvHyXKmNVGG6aYMZF9G3XOm0rrU8eVrmDriCJqANbmd5ba8oYpPzt44/NtBZ1bySFltLk5D9rVhiWN3PssUYy1zHYitDxaJlpSlwgpeYJZ4mJJ66ySl95qo90NaetSgsFC67jrHUcV3orOd6l1RvdiBFhPtXV4e/N6h/X5SPVSibZntasMeNWrAjDYhjPeZWQeWzfbsbJ69mqMYk5ykah+7Yrtmfvep++8uMkcL227bloSaGPdUcSElGdTxL1qPOXr0OPPx6Ge/Uyz5POIPoVRP4pYJPUJiE3tCGfm37XkmOC/tNFjh1FRWG4d28z3bZtYXjrVjNOjjHFxX7zTpx3I9c41/x9iDP3JtF2XedK3X9bX12CYJeLQEiXgCvX8tC8vRmL7lmEz/z8Mzjj12fgjSffwLb6beizTx8cf8XxGHDgACN9UboIY78wFuPOH9dBJSaEEEIIIYQQQgghHQFXruVh68atKK0oRUmvEqx/b4fJdro0je5l3fOm71bSDf1H9sdHH3zUnsUkhBBCCCGEEEJIh9I5VkCTjoUf1/KQackAAfDCn1/AwrsWYsQJIxCkCrietbk53PrmiCPMOLELmVUGuny5eSw0T3I3IkNeCNjXcdu2IBKyIZlF7nL+6CXpclmx3vlnU30YVy6lsS+8YKQbUrklG94CUxIml4mX1680r108MBu21U8SchPXpeZNTdHptNzHJb+2ru2aznnJu5KSNVWGdZweL6TSM2eaJy5eHF5r4kS/MordcnU5pJJYN3G5AW/FoHIzcpS5M2f2WnEmT9FvhgzynHSlBO2UU8w4cUONMO873aQ61U7i7MboJZnT12sI+6htJ1eNvJ7RllT5Zd8oKzPLKOUmMgzYd6fzIYk+lFPIP/85DMtnrwpsG8al5FiXUZ6Xljs06wrRmSZM0rv8xWmrzmm1t4BE6BljyaItUtxIYmjmZJSUmW3eHJ29rS9062Yey+4sq8fWXLQcW9o35Ox6Ll8Mli4Nw+N2XSXQqOZbY+7PqePw2fj28yRsGGx47Qboie97ka2MCW9AbyXOe1LSsmLdN6RjhtwttE8fM52UTGv5tG6uLsSRDdpk6SZhP8n5k8GYp8046Xjw0UfR6WQeeiyyOdxEFzl6PtTld30Ht5HE+1QSJC0RBey7Vrc+K8pCyZ4CZaEWDjnrEEy/czrqP6zHa39/raOLQwghhBBCCCGEEEI6Gfy41gYlvUqw7zH7Yu1bln+1JoQQQgghhBBCCCF7JJSFRlC/th4bV2xExd4V+PCND1Gxd0VHF4kQQgghhBBCCCGdhgyA5jZTkd0fflyLIFWUwmM/egxBUYDeA3rjiHOPwDvz38Ezv3sGWz/aijk/mIN+w/ph8rWTAQB3X3A3tm/ZjuamZrz77LuYfO1k9BnSp42r7KS0NGv+1HLFf5nl2Lg+PJDeS1AeHsrI4f7ZYZy0sapXPiN9K4Q5gc2oQInopTfK2rWhz4L2TpN2adqzQGr2R41y9H8YO9Y8FvuYl0oDLQAoqQjDqvy6nK2srTfLMbBE1L+q45QwvrD5J8jTtNdNr17CW65s1/3SkvBSiIPtesZ26LIS7rvPSLfq+eez4f433WTEbWkI8ygtsXgZibbapLzH3n8/DA8wN/rFkOXPiIKYbaRlzOHIRxxfssSfh/YsE+0/PfMaM+5b3wrDauwoJLoOGoQXYqmtPoT3HgCkRCdNi/K3KC88Wcfa60N602ivJx98fVKc+6g25Bk6NAxLz02Ld92qVebxsJowrL1njCG+JHxOOWUU17bVgasdWJx+4VPntvx1Fcsy62o15qyy6LlS+nfZLIlKi6MjnetEFdK1fuRpeiw1JsRi9R4gqKhIqeP8Wej5tagoDPetsPi+6sb78sth+JFHwvCgQWY62dFVHtI/sKV/6N2on5Orp5I+b8OGMFxd5ZZHLKTXnBzELGNAod8D4sxzUWOfrZ/o9lPo6ct1Dl+/MYzT1V8a/TiMe1240IyL8lnT85Vs4jGsS909c13nKMskIn1ecxwkxft4SYlZx/K9THqp6XYgx25tT6p96HaV9vQATIokfBdd84gzxrT2365Yp4T4wKYeQWmfUpx181nGb0OPHIqhRw7Nm/7zv/98exSLEEIIIYQQQgghhHQi6LlGCCGEEEIIIYQQQognXLmWh17VvXJWrbUXOUttLevhjeW7I0YacZNqwrBcQr58uZlHWVn09smGnEIvlRdxWskhkcu6taTEyE/ITAGY679lWEqjAHPtvG3NsVpHLyWYb9eF5Zo92zztG+OEJMOmObNQOu+xMDx+vBG3erOQzMVY6i9pbwmI67WNOCnjGT3aSFciZKH6WjbpiJG/kM6khVQSAM7+7GfDg7VqY5InloVh1dd8tk2PI6dotGxbH5mnTijrVeskXgt3OG6pGRZZRt/243qeloAYyDJLfQwAjBmTDd47f0g2fNao6Oy0tNoZOVBJGRYAjBIXtEjyEpEH6zHl0kvzX3vuXCNZ+ZQp2fCCBea1bbJQWf1yaE1DtdXicJzSTVXeW0ODeW3tNNBKweXTFrQsdPv2MKzLa5TT0odknej8TdQDkOORfDi6HXhKACPHLd0QbJpOURbbtcrL8ofbRFaYkoYbslBZZj1WyAen+oZRfhG2jksW9POVRamq2nVpXc4L1QMPhOGjjw7D6l3CJuvzmcPjnOOaVsqndT3KJm7vQ274SvhtyHLZ5uxNyl5k69YwrJuuHALkdN67d3T+NtlsoefznLFIttcFC8KwLqR470uPMifx7t3D+pL3ol/XJLoL2aSy6WK3e5PScN1+vGSzug7EOJXTOkWDalT2PbKt+co2ZVpLsZzzSGp82P2g5xrhyjVCCCGEEEIIIYQQQrzhxzVCCCGEEEIIIYQQQjzZI2Shj377Lx1dBCuV5YXYYooQQgghhBBCCCGFIwPKQgmwh3xce/+OMzq6CFYu/NW7kZp0X/+EKP8BbeFm87RKR+j8NcIaKQep7dfXMjwrbB4wMk7fmM0XTpbZcqO2OjDMCBx9b3Ke5RNPRJ7Xa/wJkedF5enlsVMgnL3I5MO+5hojruLii0V+JnG2nM+iDVvEA27pP9CMm3ZOZDaynhPxhFImLU2O/i1WpEnLzJlmnOhDSWyv7uqjEcvTTfbziRONqFeXl2fDJ53kmJ91kLFg8zwaMSLyNB9fPo31eYg6McaA3/63mVCYp40Y0deI2iJ80DZvNk+Tw5tZVWa9ySNb/dv6axJ9yHXss6XT/jJpSL9P876dfXYs+RtNUs810lRIelGqdpxUn82i+4U03LMYXiXhlWfzb0VRkZl47Nj8Yem1Cpj3o19yInxrc8pufRHIfykA6NPHkmcUtmvp8adXrzCsfTUjskyrMrqOUz7tXWObJxxf5XKsdZPG9x3K0WbX8FjT6Pfl2tr8+ffsaabr0SMM6zZYWhw9hkURpw6sbUG2SemZqNuxHBjlewuA6qqK8NrCt1AlM/B+Zyo0spHbjAX1DYjz6uvTRpQcwpJ4x8/x125Hz1NC9gQoCyWEEEIIIYQQQgghxBN+XCOEEEIIIYQQQgghxJMgk8l0dBmcCIIg41PWIAiQefbCApQoOS76VR1uu/NvieaZxPL+3bUcQDLbz7teyzWPQkhuksBXQtFRz7vQ0tjOtITe1r86qu/51n8hyljo9hlVx0n0ZdfrtpV/e/aHQt93e5NE3XX1OiCEEEJ2lTGHH46FCxcGHV2OQhEE+2eAWzq6GAkwcVEmk7EYPpG24Mo1QgghhBBCCCGEEEI84cc1QgghhBBCCCGEEEI84cc1QgghhBBCCCGEEEI86aybGZNdxHXrdV8/GFc/p87ksxYVJ8sYp7w+ecTx8Okoz6w417K1s85S/iR8yVyfW2fyoNsTvZ58PbIK7V3XmdrFnk6cNuI6j/pej8+eEEII2R3IAJzTCbhyjRBCCCGEEEIIIYQQb/hxjRBCCCGEEEIIIYQQTygL7QRkEHhJTlxlbL5yNx9JjE7XWWUvUeWKU/6o+vGVyfrKjlxxvbavjMkmp3Ol0O2n0HXsS9L9sCMphPTWtx34XC+JOi6EtLQrsKfcW1eZ5wghhBBCSPvBj2uEEEIIIYQQQgghXjR3dAFIJ6DzL4MghBBCCCGEEEIIIaSTwpVrnYAAmayspNA7i/nKWZJO1xZJ7+Lomn+qYYuZcPHiMLxhgxl30klOZcSyZWF440YzbtCgMI/+/SPLaCPpdHHySOR5NzWF4eL0rudRX29EpYz81ZBXUpINtpSUmud57CJrkwMWYifLLod8FgC2NIXPWz8afeyCrzTZtV5ddyBOKv+o81Q1It3UEBmZKiuLzN/WNVzKkS9P1/Nc8/DJz5Z/qqnRjJSVIMYDW7kKMSe5yk6TyN9GnGt31HhUiHK0566uncn+wOfa7W1P4FPGxiazjHJ8K8Suz5JExqkYeRT6HcGnb8Q5J4l6TXpX+M5Sj7Y82ntnc0mXfxclpIBw5RohhBBCCCGEEEIIIZ5w5RohhBBCCCGEEEJIbDKg5xoBuHKNEEIIIYQQQgghhBBvuHJtJ6vWbcGlv3gGz7+2Bt27FaFmQC/c9I0j8Ylpf8GIfSrQ0NiMXqXd8LUzD8S5Jw8HAMx4+HVc/ptnsXdVTzQ0NuGiqQfgss8dDAB46oUPcOkvn8FLy9Zj1g8/jTM/PcypHL5eBL5eQL55Sgqt7bf5CCRxbSP/5cvNhAsXhuHRo2PnDSjPL430/CqAV0975uFNEp5rDcJzau1aM076KClPJUkh/Ct88B0DcnA11Cowxv0oP7xS6UEo/AcBoNHwY/MbiwrtxZQ0OeWV9SO80xoazH6SLhPtWo039nYc31MsCTrSu6tFjzEeY05Snlbt6ZdpYJuTVH0k/W4RZ5wthE9o1LV858BC+xz55NlZ5rKOuF5nIInxrdDzTqG9G9s7z0J7Vkp8/zaylSOJv7eSmGv2xP5KSNLw4xqATCaDqd9+DOeePByzfjQRALD4jbVYvW4r9t27HC/ceQYA4O0Vm3D6dx5HS0sG55+yPwDg7InDcPPl47Huowbsf9a9OPO4YRhcXYYh1WWY8f0JuOGulzrsvgghhBBCCCGEEEJIYaEsFMCTi1aiW3EKXz59ZPa30cMrMbi6zEg3bO9y/OLScfj1n5bk5NGvdwlqB/XGB2t37DZZM7AXDt6vH1KpoLCFJ4QQQgghhBBCSAfQ6rnW1f8juwpXrgFY8tYGHDai0intoftXYum7G3N+f29VPRoam3Fwbd/4BaivB5bs/GA3YoQRlRJyty3F5UZcaUm4fPfWW80sJ04Mw7W1bsVIROqi5SZCjua9DL1hS3iwRH3YlFKySvUMLVK4NWvC8LZtYXhI//5mwkmT8l8L7lKLq2aFH2119ueNCsOlBZDESKRyUlMqVGVKuWcca1VlRYVbHTQ2henSC54yIx9+OCzjNT8zojZvDs+rrrIsV5fyOS0LHTcubzkAIL12ZXiwapUR1zDi0GxY1k/SEh5NHBlWqqkxPJg3z4ir//Sns+Gy5nDCTEoO4iq3wuLFYVhLq++7LwwrSfa3Nv4gGxaPEOPHm1mobpk4PnKTOO3Aet78+WH444+zwaaJ/89I9u/FYR5Ll5qyPjmlHDrKHJ/TcrxeuzEMq4EqaSmNb/24ovOXt6mnKNnt9RQilLjtKp1Pqv1E2h+ouTHpMS2OLM4nfz2XlUar/Q3kEDOkUmUi5o1URYUZV2b+Q2sUrvWYWvthZP6bmkqNqHJ5aUepf5z6j2o/ibVx0cEaKwdmw7r4ru3A9d7Scx40fxgzJsyj/0AjyvXahZDMyfuxqrVFfcWR/0WlTUJCaKPQ+eu6SheH19PvsOWO43jBZZWi0Dq3HLuCqDw9xwBZJ9r9Rr5DlVuGOtfxrd2tZQjpZPDjWkwyGfP43ifexpOLPsDr723E/1xxDEq6s0oJIYQQQgghhBBC9hT4eRnAgcP6YNHStW0nBPDCG2txQE1F9vjsicPwyqyz8PRtp+Kbv16AVeu2RJ9MCCGEEEIIIYQQQnYr+HENwHFjBmLb9mb8z+zXsr89/+qHeHfVZiNd3crN+NavF+DrZ43SWeDIg6oxfdJ++NWsXD82QgghhBBCCCGE7I607Ab/kV2FGkYAQRDggZ+egEt/OR/X/3ExStLFqBlQhpsuOwpvrdiEQ6b/BQ2NzehV2g1fP2tUdqdQzXfO+QQOPed+fO+80Vj67kZM/fbj2LB5Gx56+l1c/T+L8Mqss6IKEGrntZlIXV02WDoq96NeK9rKqKYmDPv6RHhtG+3qG6CwavSln5bypDOMBCx+b5oVK8KwtFdpKTN97VK10QYErl4W550X3pv2LJPk+IEVJzvI2a4t61/7VUhPIu0Z54ps1ssqjzEjzwuPB6lH2Gzx1jS8YuQFlOearFfRnQAAvXuH3ivVo0zDpdKE6183T1nP2uLHGdnGZacHUKaOOwzhBbdF+NgBQKk0h7znHiPu16Nvz4bvxhezYZsvTRwPFdt5zhj+J+HY55tfTvlPOilvur7qvoprw/O0b5jss41Q47Moc7p/OEDoscgylBok7a2lz/P1BpPl1/ciu4luW3K8kP6Stv5q8z3TcUl49tmIyj8pj7WoMhei/BLtsWatY+HZOqS/ePj16l1L+qppUyLZSGwTqSvShxIwOmnJiIOjz3P0W3L1x8yXtq3fAWD9RjM/2R9y/PDEfNxQFs63uhrT9RvDA90R9aAmiPT+1OdYTGcL7SVly8PmBykx3geVP6ysTO0X6DqudKRPVtR92335VHmNF1fzPd5nbE3Ej8320qduLlUW7U9t88t0KgfM4c3Vp5beaYT4wY9rOxlY1RN/+vHEnN+3PvWlyHPOm7I/zpsSfmgbWNUTq/42HQAwduReWP7wF5IvKCGEEEIIIYQQQgjpNPCzNCGEEEIIIYQQQgghnnDlWiegpbQMjbUjAeQug24SEgH9sOQy5aPGRcsAfOUmti3CI7cF10vvPSUUxjJ6tW26gZJxSuQK7DKl7pTHcoV9z55muqqq+HIBXcfDBjVG5rGpIZRl6arS0qxWXCVaGle5Uv/+5nUH9ndbDm9bQl5eFuaxUUlKli0LwyNHmNcqK3P8/i8kIFsmnmrmvzQMa7XPuHFh2LYVuitRzwzI7UMWlUokVqlOxTDj+Nb/eCcb/q5n/j6ygJxzLv7PbPChP5tR69aFZR519H8ZcfsL9f3nq6JlNUnIduSz0bJoqbLRzzAtOqOjYstKzvONGMT0fS4RVp9SRa+PdbmkZLRvWXgDaZXQtV6TkE3FSRd1vTjSKznuphc/Z8QNE3X+0vKRkeXylnULjHuLYXEgSULGE0cO5ToHusb5YhsDUhHvIC0VfSPzsDWSLQ3RbUu+V1jbtNZliQ6ctg1AYp5rKSk1ksn5RDcXW/PxeT/UY4ysYuXKgMra8B22vFi8C+nJeObM/BkCaPnWt53KZaCfoSxYjTlXumKrHzn3xxn/o+aNHFsQqVF/4gkzTtbXtGnuFxckbaEQxyIg7TFf6vqRli7lnrL0pKX5Oe+UasyJwjb8J1H/ru/VvmN1Icb4rkEGgMXLhuwx7CktnhBCCCGEEEIIIYSQxOHHNUIIIYQQQgghhBBCPKEstBPQ3Byqf/qWmRLCpqZwWbHr0n7Ab0mzPkcuc3feuVJpAjZVDMmGtTojUlraRrkikdooAOVCTtFYMsSIq60Nw8Nr3SRnGuelzpYdgsobNoYHSia4qmGvbFjKTWz16CtHsy2Hl+1AL1e3ya1kmeWyfynF1Mfe7Vi0u5Jac+m93GT34FHRy9VtGztJtMTYdo58Hvq5SUme645hJSXR9aOlOjfcEIa/910/6WRSu/618sgj5rHc5ViXv7rHpvCgIazIKJkX4F9e+Zy2b49Ol6vYyi8FiiOLM9BaYa2xas1DNcL6+jD/BQvMtGPGhOHqajPOkDMWR+uUUxZJatIUYsdX2xhp5K8fsKH5C4N6s76+FY7zl03vI5+9bTD1JBGZk+cuo0nvFJv0uKTzR+VeRpx8HJaNGt0fkx7D1qwJwzNmmHEffBCGL7ssDE87x0i2eXMY7tbNzCIJ2bKsH52frB8dZ9zqKjGeqd2ht1x9dTZcetBBZiY+slC9tbnjVudJzCEa37HJQDY89a5rnOgpC02a9n7P6MidUJMov234l7YqvmOwszQ/AX+LPUcGSkh++HGNEEIIIYQQQgghxAt6rhHKQgkhhBBCCCGEEEII8YYf1wghhBBCCCGEEEII8YSy0E5AEAhpu/LcKS2LfkSuGnpfPwDps2b1wZFlVoYb0iZC7CKfL6kbyoygEaEnXVqbNgnvifTDDxtR0guuXPikJOENo2kR22/npLN4GVWKapXWSzlb3Yt6TcJbRbNhQxj++GMzTj4ObRdVUxOG05Y69m2rhh9P7XCnPLY0mHVss5eQ9SzrQN4XAFRVhWFb/du81GT+Gpm/rmPpwTasxrzv9avkBYVnmac3ieuzsaX744zo83KuHeF5Z0P6AwLuXpGyzNVV0emkxxoApJqER6ZoQLZ6tI6luhHKRrNwYRiWZnUARowIx5hBg8ws+vULw336mHHm5UQn1Q3NEde+3ZGeLPrWiouFt6g0qFOMEtWj+/L6jfm99wCgvES0EXXxlrLy8KCkNPLaiWMbjNQNyDFT35uzF6sjhfBti2qDccZBed/6PabM8f3BKIeeRI49Ngy/8ooZJzu0mGCMsQdAdVX0+GPrez71qr3lbNZMRv7yhfCtt4x0pXLynDQpMg/nsUMa69rK1Aau1/P3ahPtQj1TA9kOxo834xz95FzxHZ993y2i4trbRy2JfuLbXkqjrWS98KlvAM7vMbY8rZ5uhOwB8OMaIYQQQgghhBBCSGwyoOcaASgLJYQQQgghhBBCCCHEG65c6wSsWQv87W87wlOnlhtx8gFZlyUrrWBKyg0TkJvkXFvKSqQcU8lehteEa51bitNGnM8y65S6z7S43lfuOcaI++3NN+cvI4ByucRellnrGzy3onZGlKuhpK8RtXlz3mTm1vbIlWhE4Sv569EjDDerf5SRSg5drqhr62slsY25DSkVXLzYjKsX0sMTJpiSjOGVYeT6SvPZROVhexa2ptSrVxguLYmuDykDBSySG8BsNCNGRF/ck6jnZpVTaE2zbEBqfJCSOatcRqDltVVVHhINLZmzPbgIeV3Kco5VrqHHyCVLwgMhBV293WyPshqHDLKM1apcsm9IeVJTsTlnuI6CScg/4kiBfMYOm/zGkGlaypXeaLbjuuV7ZcN6HKytDZ9pcVn0HFhomVPknA0YhV7fZNaBTKpl71Im7SqpSuIZ+uJqQWCLK3ecb+PQMmJkeO1vfcuMlO8xEss45Xtvru8I6TivRfL96rXXwvC++5rppLRxn31iXCCCOON4AiRhqWCVa8vON2pUdJzvtRMgife8ziohTGLscMbSDlKess2OHIPbsw0S0hnonKMYIYQQQgghhBBCCCFdAK5cI4QQQgghhBBCCPGCnmtkD/m4Nv6iRzu6CFa2NVe2nYgQQgghhBBCCCGEdDr2iI9r8154v6OLYGXKlIuwbduOsLYkktu+S08cQOnYly+PPnHQkPznKKz6fZsXhPSySMqzTFwvJU2tKtWHyC9/ORv87Xe/a0Q11oQebOlid786A+HNVojtybFsWTZYqnw0NjaHvkfSy0vba1jvzYK8H8NPQvlblReHz6JcXVt69ej6kU1GhkuLVVsSkTZ/QF/fBmn58r4aCqSH3Mq1ph9SWVnoa7V9a/h7t25mHrJ5ar8l2fx1F5LPTXqpxWpn8uIzZ5pxNTVhWHiu+fp0JHKONqWTPkHaV02YPf1beFrpIWBI//C86ipzvHG9VyOd8j2zIh+4zbtREKtORWff0n9YNtxLJTN8+mSbAMyGp+q/WNyrTKa966QnoM1bUZO0p5ivb08ifjPSfEzNt2VlYfuUdp6A+/hcaF8a6efXIMqrqVBdtG9F/LorhOeXKzr/zuLh5NwX5LgNANddF4bjdD4PbGWU/oyx3jnkeDRgQBiuqzPTDR4chvUk64MeB6UPcZwxXuA7ntnSGpaY4v0np58sXRqGxXsjAGD8eOeyRJXJd/yJqhPf/JMohw2bd5qrr1oSWOvH8e+mOOOs870ZDTK6n8QZZzvLGExIe8EWTwghhBBCCCGEEEKIJ3vEyjVCCCGEEEIIIYSQZMkA3BmVgB/XOgUDBwLTpu0Ipxq2mJENQjJXVm5EGct8tVZQyipFnjbZnRW9TFkuuZdL1GtrI7OItUx5wYIwPGdOGL70UjPd738fhletMqLSkDKzaLlYSurM5NJ7wND4eC8Tl7JTXY/yuT3xhBE1UMqQxo3LBlsqhnsVw3mreClvA0w5lEX32NBkLiGXSdMNm8KDVUqGKxP2N9unT53r+5RKuLPPMvNbvSZM+49/mPnI1fH9+4dhobAEAHTvHoZtq/ltcd6yNdkPt28342R7OvPM6DwsJCGTMO6nxPJ8Fy82T3z++Wzw0DvuyIZ/MOU5I9lVUg2u2m7KJlmPKqMvjpItKa8C2lCAiPGhtFiMZ7aTdP+VDVmVUfZZV+W/Jmn5jPM4FeM8Wx7Oz17K2JTkbPhoy/jZFFaeTY7mOgb41o8slnaRkAyv9ZN0dlaSlq0V4tlYr+04riQ9Vus8NmwI46qqYtSdnIDl+6HW90tZqLLI8MJiQRAHH+mzxtYuomwlSvVjl/ejX0IsbSTqmRZaPl3osaIQ8tFC9BufPDRJ16V+BzFsW0rc+glloIREwx5ACCGEEEIIIYQQQogn/LhGCCGEEEIIIYQQQognlIUSQgghhBBCCCGExCYDoLmjC0E6Afy41gkIkAk19fPmRaZLCd8tAKYHg96+XZqqLFmSDdaPONxIVl4Wavm1Dj/dJPzftI+M9J958skwbPFc08gsS0qUh8fLL2fD63/yk2y4b8+eZiZf/3o22NJ/oJmHq0+BNByI4fXh7LNg3qgZJ+tL152sY0ffFRs2jw3jXvS1pOGYxbdklfLxkXZyfSvCtqq9A13LmAjKWKq5OfRAEt0EANC7dxiW3UtXQY8eYTgJbwzntgSY/Vx61gDAunW7XJYkcK4T5WOFXr2ywRbhv3bV6AuNZP9e8rts+NCyOjMP2XaVB097+oLIa+lHaLOFS8uGJ9qu9u5KNVn82GSbVxcvrQj7uixjnOHGx+ssKV+1KA+hnPxlHaj6cb6e7GvSZxQARo8Ow6qdbWkI82hSz14mLbRvj2Ft2T8ymbcXmSuuzzBfWp/8o64VJ2+fcvh6O/nWv/V9yjEPW7oVK8KwnPNaz4yivMny/iOxjNU2Ij31HP0N9XmxvIElFtNKo3Zy3qEi6k7nJ+tO+dV5eyknQFT9JDKO6DqwGYMm8I7sS1fwopRlLC6O9n117Quu1yJkT4SyUEIIIYQQQgghhBBCPOHHNUIIIYQQQgghhBBCPKEstLMxfrx5fN99YXjtWjNOLJ3Xks6GiiHZcPncuWF440YjXeOEE7LhdLFaylsnZDDLleZv8eIwvG0borAtI5aqRy1TqfjK17LhvgMGhBF6+3axntlXahFHpuiFXHNtWbq+qd4sY7mUhAnNhyEBU+TIxTxkMDY5hY1hJSvNHzYKOUhFjdu1C/y9X9+blK5ed52ZNkpNpx+hRSkbnaE60VkmpzWFgpZp55jnTZvWdn5xrl1oJkyILke/fuHBK68YcYc2PBMelKnxQT4sVf+piAfnKxdzlcSUK8XTylXRcsy+coxH2HZzSi7uZfX2vkZUH1ElaUSPHRHZtQu+sqykxzSdv3Es5x45eQHGfLhlzDFGlJw6pdQcMNVvceavyDJakHlIO4i2rpWEXFUSJw+fe/PNu6Nk4vnKEoV8z9Ovg9LWINdBJP4z1GVcuDAM6/FBdgf9ijZ6dDgelZaIa+tM5OA3aFBkWQrx3Fzfk4xy6PcwOTer92zjXuVLB4C+FVHvhKp+dMUKvN7zbO/EnnWauLxWv+/oRi/R1jgFJClbg86Ir5zdRle47+Sg5xrhyjVCCCGEEEIIIYQQQrzhxzVCCCGEEEIIIYQQQjyhLLSzoXVBEdIuwFxqu2GDGdcsVqaWy6XUUmYKoH5MKAutqFDLxOUydK3blDtbirgcWeLaD8MDJQOoqQnlAps3m9mvWROG+0w5PRvOka5aSHr3NatkyIaUAag6kPlr5a2UcgwZlH9XPwBYtSoMa+VA2tLDtXKhFaVaMND3LGUqaS3zcJQ9JoFlM0ADXX69a1IUW7eGYb2ppZR2acmfRPcN1zJHXgyw7m7r2v6TkDEUQj5qXPukk8NrHXSQmfDLXw7DJ59sRL19Uigv16qRqDInUh8NW8wfpLzF0sFyokQbSa96LzyQsnzAsBOorlKZ2GQ2UlZva5Al0eOPK77jcRI7Hdo6W9SuyTn5S62d3tlZ7PJduuwlI+q6Gw7OhlXzxFln5S9HzrUd22QSkp5CyO588yjkTqVJyZ98ZXiu15bnyVe5J54wzxPuHzljnbkRp5skVf8+Zkx4nlZFv/ZaGNbDcyR6sLO9eAgK0R692pmvdt4y/thIZBz0SOeLq7w2pyyyfmy7xiqbB9e+Ld9ZLU4dOci/PXzrrj0lo767MsuwbXPW9raO6BpkQFkoAbhyjRBCCCGEEEIIIYQQb/hxjRBCCCGEEEIIIYQQT/hxjRBCCCGEEEIIIYQQT6ia7mT4+q5UV5lxbywT+UyaFIaVV0/f4k3hwVrlx2PxO2jsPyQbtmrvH344DKuEpcK3pnjMUUbcCy+E4R49RBaOfiGaRDw2LHlavRRKSiPj5HkjRjhuAa+uNbB//nS2a7X+EherL8TSpebxiBGWa3vkb2HJkjB86Gj3Zyu9CnUfkn5s0sPQ5tOhyy/T6l3kpf1Vz55huKpKFVJmoozyWir3QhSFrnMf4vRDGWd4ggwaYqYTg8WWv/3NiBv2jwPCg/7jjLjVm8N+2adP+Lsez6RvZEp5YjaWlIvzRB+VDRIwvTRVHmvXhuUYuOwp8zzpqScbjPZcKyoKw2PHIhLtayQNG2X/HTTITCeOU5Z5oT3bku3aOe3KMklFtTPrtVS/S40ZEx489JAR98ez3w8Pjj/ezAehD2OOT59Ee7HKa3v4scV5Tu2ZfxLebLYxJml/NJ2/azqdv+u7hPROO/FEM076reru+/LLYfiQQ8w4my+rRNoMytc6wByaVPPH6NFhuKS/4ztTAvW/qd7MQ3YhPRw4v8vZyiUvoB+Ahajr+bYR378hXPH1f3SNs17bMve43pv0zNU+x9qzWDKwf3RcFLHed5oaw/OUP6/0iYvjKbyraH9hiX6VKLSHX9eBnmuEK9cIIYQQQgghhBBCCPGGH9cIIYQQQgghhBBCCPGEstBOQEsmyC77lds9A+5LvHU6uRV7S/HI8By9znfGjDC8cKER1fj7P2bDDUoxukosp7YoVjBk4sTwQOvi5s3LBtNScwBg7NhQduO7BH7NmjDcq5cZVyrK7Cop8UWq+uIs6faRAcRZbh/13OLkYUgixx9jzccFX7mAbJ9yCT2Q26ckUoJpu5aU49i2J9fIa2tZwcpV4fX++tfw9wsuUJnISo5z8YRxfTZxJD2ubdwq7Tr//Gww/ZOfmHFSnqk6X7VsNONCyWhLWbmR7v554Vh02mlm9ullb4QHcgzT+hIxIOvyHzxK3vd4RNFY1je87sUXG3ErG8K4CqWcKV31dnigO72sE1lmPVApObKByDOlznNtI0lImJMYx33TSalySstyZTv785+NqKazvpANp2Vb1fP0hAlO5bLhKxfzkVLGGccLIdV0OS8J+ahO69sGfa69erV5LBVzuvsOGBCdj+sYXF4WxkkJPGAMnzlyMYuSz6scrueVlzSa6ZTUziW/OOn02BeV1vU9r9Ayu0LIR13bsWvfS6Id2Mqip8P+HtJPWzlscVIGCsC0aFDWF9K+RL6zJtVGovLpW2Ee+z4bQvY0+HGNEEIIIYQQQgghJDYZgB8dCSgLJYQQQgghhBBCCCHEG35cI4QQQgghhBBCCCHEE8pCOwHNzaHFSkVFMl4xcnt1qZNvue9+87wnHgsPlAFBumFTNrxwielDJJPOmROGtSXUlCmhd8Dw/qq5ORoc2HT+xrG6+OrVocdGt25mniUl+b8rJ+EjoD0XpOWOrp+ysugttpPwCbJ5YMjr2bzgJLr88ljHrV2byhund6m3efa5Iu38li4140aN8vs3hCivPO+t0FUFlZSE7XPEiOjTjOfWf6D79aLyULj6BLl60dj8TnQbKY4Yp2x55tzzddeF+WnDn9Gjw7BueDpta/4b16ssQj+z558309bUDM+G+8j2UjPMzNPTM1GybFkYHjSorxEn7bqUfSVqRFly8pcPRDZC3SmlB5itw6oHLH2InL1oPH0XfT25bKaYPm2+ZczhZlyd8LyzzXlyovjgg+gyaiyDcEoey+emnqFv347KI86z8PF7K7Tfj28btOHrVxQ1BptejfYyyqal7fwihsEcZP5f+lJ0OukJBfh72e0yqi8n4Stoy8/Xw8y1fnZnj6ukvbxs7zHybyw9ldmG2bTjO7Jze7e8SKbmPWX+sP8xedN59ydtoi0qIglvy925rRLiAj+uEUIIIYQQQgghhHjR3NEFIJ0AykIJIYQQQgghhBBCCPGEK9c6Ad2KM+hb0fYy2jiSLdctvVsmnuBUxqPGqG2jFy/OBg8tElqpKScZye5fHEqSKieYkraKM/9f5PVSaz90KpexvFmt8T54REV4oLUQTeH+8Elv0a7rW0o/FyyAigvDWs5VGqW+smkz9Tp3sb13SkmSNmwIy1VdFS2vldKu+nqzDpYvD8MbN5qXvvnmMCwlbb/9rZlu7FjsMnV10fnfe28Y3rrVjOvRIwzLZwGYq/Z9l7kbS+WVDED2+WPGyTqPHpZ1G/SRUvou+09iqb+r/NiXlm992zhOLX8vPLj0UjPxqFFhWLZ5KSUFMGzcuDC8n9lIGstCeWa6WNSPll2IG8+pfUulNDaFqWfPDn8/7TQznezasq8BQM+eYbhaSbaixs/c+cSCRVZZaLzapJ4LpKZcDQKpKD24SmeVxNTUhGE1tqabtoQHUrZs0yvJQRcwBz99b1IvfNhhYfjII41kKYs20FXu6Su7c5UTJTIGJyCBt8kBCyF7jMrT91qySQCAGN5QXOwm4X/9dTNOdoc+fcw4KadLNYn3SMtYYXs2NtpTmpmUhDPpNlNoWWUhypF0H3K9tm6CcjrMbZ5huYy53hc9Vi9cGIZVJ+01Jr8sNJZ8XXZoOWcAhiWETRrrauNByJ4OewchhBBCCCGEEEIIIZ5w5RohhBBCCCGEEEJIbDKg5xoBuHKNEEIIIYQQQgghhBBvuHKtC5HE9vDePhFao/+pT2WDm4RRQfn3v28ke7PnD7JhZWVkbAGfc+3/+Z8w3Cz+JUD6xgB2wy5pHqA8ZZLYNtr1POnjoH29KivDsPY62NIQlrG0RFxL+KgBMD2DlK8a5swJw2PGGFEflRycDed4MUlEwfpWmEOG3NZcW0hMmRKGn3giDH/8seVantx3Xxh++ulHjLiZM0/OhnUznjQpDE+YkHy5rG1EPnBpWCcbRRfB148wKd+aKFoGDQnz0yYqsjE8/XQY1p5W0gtFGSMWX3BhNmz0V52HvLbuKCLPlpJSI0p2demlpi3d5NhaXW3G9eoVhnV9N1SEPpjGOKWqKq0vKNGDmqA9/XNsY7oRJ8dLIHdQkMhKl95pEyc6lSnn2roNivz/3TAyGz50hBoDZP3r8mojT8nDD4dhOQhfcIGZbtq0yCxcfcokvv6wtmsb2IyBtGeo9q9zwNc/zjcPmdbmdeab//DaMG1trVv5bfaJ48dHl8XmC5rT/iOIM/ZHXTuJ+UOTxHxV6Pbji+v1ClGvPiTx3i49BgFzKtP9UPqs6fqXU7ps4nroMcqsLyDHdfWOb7z/+yKvp41ZheeaxNZd9SuBvFfpFdtWPoTsjnDlGiGEEEIIIYQQQgghnvB7MiGEEEIIIYQQQkhs6LlGdsCPa50NKQ8DDDmjXmorlylLSRIAlJTkX8btuz12SsGdHK0AAETjSURBVMkqcfzx2WC5lB4qbd3x4jS9jFiuUk6vVVLHbt3C8LHHhmG9fNm2jtuyFjmJJfxRcba8Dx7RaP4gytxYXAondBuRy8m1ROuDD8KwXgo+6mDkxSa5UTQ0pbNhrVaVS+Wloko3pSQYNEgeDTHiZs8Ow1oRNmpUsuWIJYeS7dMirZP93nd5fRKyTVf5lr6W0c9jlN+nf1nTzpplRi5eHIbnzg3Dun/JxislogBSQmpdPOrQMEJLe5csCcO6f4kxTY+Rsg/Jbq7bscyyTx8zztZmovLUEv50F9B1OLcL/Wxk39P9UMrsHevA2tf0sxdtbbmo/9raciNZeYW4t3HjzDzkw9Jl/Oxnw7BsxxrZ8DxklBrv9wzbebKMuqPIxqs7h66vXS2HI76SaH1rUVNDHImiTKsV6+bcGV0O32bRnjJCX/mxLV0S0nYf2vu6rtdrz3L5yrN9Ja6b6sM4PYxUVkZboLz/fhiW869ykbBLpOWLcQLzrfNYqpCX1g4EcgzQcXIc0cVvHcOa+d2J7CFQFkoIIYQQQgghhBBCiCf8uEYIIYQQQgghhBBCiCedX+uRIEVFRTjooIOyx7Nnz0aNkkosWLAAl1xyCbZt24Zt27bh7LPPxj777INf/epXAIBXX30V+++/P4qKijBp0iRcf/31+OUvf4krrrgCq1evRu/evQEAc+fOxWc+8xkMGzYMW7duxZQpU3Duuedi+vTpAID33nsPvXv3Ru/evbF2zZqwABZ52AsvmMdHiI0y9VJ/vRw5Cucl3rpct94ahqP0fwDqxUZmukzppi3hgdYc7L13/jxtmkLLUmrX3Wvi7FzmKiMxd/qJLmN61XvmD7KQUsqk60DKgpTGY+X5/5UND5xzuxEnq1zKiktKouWpNjWOjpPFlM3Hpk6KU8cy7lvfCn8fN+4gI528do4yVshCbapiH3lkWxh9z1LnrvjKXpJKG4VsF2k1jMihr0cPM85HDmUj57zRoYwzdfPN4e+6kUhJp5ali5tLQ0i+tW5Eaij69TOiVm8IpdVyZ099mqzHDRvMdLLtxpFvyeFCFisnjybxg2WcjSOL9skjEXTDEsc51xbPO5EdcZcuNRMLLf1osZmzrn9j/NHltz1w+axkWA/WjrJQV8lcQaR1sly6jAlIdttTNmi7luUV0Ir5CFORcboJSuWznM/1ECbnbV3dPvYZ7U177iTa3jtqFqJdR+Xva6niI/H0lT4nUR/6byq5KbPtXVe/x0SixzApX09AFmq1IYnSgsN8l3j+eTNu8OAwLF01AOCmm8Kw3ny61f1AO27snlD7Svawj2s9evTAYj0iKM4991z86U9/wic+8Qk0Nzfj9ddfx8iRI3H++ecDAGpqavDkk0+iUnzsuOeeezB27Fg88MADOO+887K/H3300Xj44YexdetWHHLIIZg6dWr2+ueddx6mTJmCM888ExddeGHSt0oIIYQQQgghhBBC2oHO8U9KnYgPP/wQAwYMALBjpdvIkSOt6d966y3U19fjuuuuwz333JM3TY8ePTB69GisWLEi8fISQgghhBBCCCGEkI5jj/q4tnXrVowePRqjR4/G1KlT86a57LLLsP/++2Pq1Km47bbb0GDZVQXYsWrtc5/7HI4++mi8/vrr+PDDD3PSbNiwAW+++SaOOeaYRO6DEEIIIYQQQgghhHQOKAtVXHXVVfjCF76Axx57DHfffTfuuecezJ07NzL9rFmz8MADDyCVSuH000/Hn//8Z3zta18DADz99NM4+OCD8frrr+O73/0u+ktziyiU1l56hb34opl07NgwTvtFSZLwH2jRnlD9w2Obr84xozeFcWXlZh5NEX4wAHDssWFYGBr4+ne4WhjE8Qzy9Z4w8xDYvHRsZgWyXakbHbjksfBgzBgjTn43lu1HW07JdAePMu950KDwDrQVnLATMvLX6Xx8mfR5o0eH50kfNX1tWzVqHyu5pXqU/5qtTHGQZdTlkD5c6eL29XJJAqNZq4Gquqo4Mm7lqtCLTFoO6r7s234MpkyJjHJ93oYvjR7rpaHZQaYnoPRo0fcmq0T2w27dIosUC/lsrF5PxW5GboXwo0qiv0lvv6oq9zLJa2sPHom0sLHesx6Atm7Nm0csbJNb1EPVLwyWf0T0qX9fvyXreVETFmDWqzJ39fH68/GHioOvl5QNWzOQbdeWTr5yaM81X9rTd9F3rEjaN68r4vtsovD1dvWZb+Nc23aeGI6tf1PpYVyO3dXV0ecZ5ShOG8cpmYk0P4Sf511OOtnxlfFxVJ1UVZnHd94Zhvfbz4yTr1BPPJE/Lqn3ls5LBvRcI8AetnItH+effz5Gjx6NyZMnZ3/bd9998ZWvfAX/+Mc/8OKLL2LdunV5z33ppZfw5ptv4vjjj0dNTQ1mzZplSEOPPvpovPTSS3j55Zfx29/+ts0Pe4QQQgghhBBCCCGka7HHf1z7wx/+gMWLF+PRRx8FADzyyCPIZDIAgDfffBNFRUWoiNih8p577sE111yDuro61NXVYeXKlVixYgXeffddI93w4cNxxRVX4Kc//WlB74UQQgghhBBCCCGEtC97lCzUhTvvvBOXXXYZSktLUVxcjLvuugtFRUV5086aNQt/+9vfjN+mTp2KWbNm4YgjjjB+//KXv4wbbrgB77zzDoYOHWrEtWSCrPxTL9mvqwvDNtnOiBHRcZHSCn0c8RGxrTyty8RvvTU8Z84cM+6GG7LBLSMONaJKK4U+wXNbah8pge0cm1zD9VpaalFSEi4NT6u0xrp0GVZbeEvJbk45LDqPSrEKXS6HVyvSDdZvNJ+1TakjpSi2JfZJo5uLLKO+t9deC8Pbtplxo0eHYS01jcJXziLR5ZCyUCu6kkVFuMok4pTXq9/oByDkk1omIWXFsukq1Vf0tZC81CUHUbCUbYB+660wrGShcgqZMME8TcpPpJJDymQBs837SmIKIXNKQrKbRB5SeuuLfLzbt5tx1rqT/XLmTDNOrGZPfe5zkVkkIUU00G3Vc45NAjk+l9jUx7ZIcT++sjJfyVniz8aCrYy2MaC21q2M8hUwxuug19jR3vXoO8/t6rXaup6PtLq9x3EbUeXytfiwUWhZcbNQ9Gnppxwy9d9b8p1ESh8tr2S5yPFNyTZ9nqm1DlTnlnHFxeF5+l3r6KPD8MMPm3HyfX/aNDOu9V1Oz5uE7K7sUR/X6h1MJGbNmmWNrxNfu955552c+F/84hfZ8ATxl1KPHj2M3UJnzJjRZlkIIYQQQgghhBDSmdm9vBiJH3u8LJQQQgghhBBCCCGEEF/4cY0QQgghhBBCCCGEEE/2KFloZyUIorX4cndmm6WPVZMv5bCzZ5tx0gft5puNqJaKvtF5uiLNCXr2jIzbvNmMKu4jvcg8l9lKMxddwR3kMePsuaCR3lSWb+I5PgtjxoQHygCifmMYls1AeylI34XTTossVo6d37JlYdi1ugvhFyKvrbdJl74aCxeacXJzX1kHNk833UddPULko+ne3YwrLWnJn1BfXJqUAXZzMoGvD5Gfp6FClL+puNSIknWp21ZU/nFIxOclwusppS0ILrggDKtneMopYVi3LfkIJ00Kw/vvb6aT59mek83nyOZJlLQvX5xnloRXkqwf3YU2bAjD2ptNtkFpU2Mth26sCxaEYb1juDRzFG1mE8qNZLI5DewPREbqAUjerKwEXUaZh2qEKYvfZxRx2o/MMmnvpULk2Z4eazZc+7JGvlMChX8V8qkv336ehD+jK3HG2Y7ExxvVd3z2JSoP37nGFmfLU46tp50W7S+srWPl3OD9d5rsiKqTJu0XKH2aNfI+pY8aADz9dBieONGMk+/S2pOudXrpQGtPQtoVNnVCCCGEEEIIIYSQ2GQANLeZiuz+dI5/giOEEEIIIYQQQgghpAvClWudHCmZ6K/kINblwVKTd8MNYXiffcx0J5+c/2IK16XIOVKFKaeGcaedaia+995ssFrv0XzFFdngpgnheXrJtXUpu7ifQi/hty3blsus5WMBzOXkQwZF17+rZCsHUQeNTWY6qfaJkp/pMkoVEwCIzXPx5ptmXGVl3mJAK+bKxTP1lfvIsL5PqZaU5QXMZ6NVlHLZu5Rmbqo385dL5/VyeFdk/diUVy8tTRvHa9eGx7W1ppRsSETfSEqy4iUHkY0CMB7AvAVmlNyN/uARjeFBndIqiDwaa0caUVKG4NpvdDqv+vrb38zj1auzwfXnfcOIelwkHTzYPE22T6kU6dbNTFdo6ZurZMhWjkLI7lzTStuBjz8249asCcNjx0bnYZVI170dHsybZ564dGkY1oPMuHFhnmVh/9XKovIyUa96ALXZH8i0su9pbaxMJ/U9gClrnTbNiPKRnMWJMzAkrunodAofyVmcNl5o+WHSEkPb/OJaJ7r5pC1/SfjIDQsx/tjyt1FoiadP+2zvNuh6bd/n5DqOtKcFhFbO62FRYnvP8KEQz9PWf2X55fusfl/eti0M6/qRU5u2Nmmd5srNV1RCdlu4co0QQgghhBBCCCGEEE+4co0QQgghhBBCCCHEC3quEa5cI4QQQgghhBBCCCHEG65c6+S4+g9o/Xvj/vtnw+vF78POP99M+PWvh2GbGYcFZz+D2Q+a5817Kjy47z4zsTDKKl/1Rvi73qLasqW0rYw+PhG+yGrVllPS+0B7haWL4/vCaTse+f3c8O0BUFOTEuHw9/Hjo8uom4j0wOvRw4yT/mP9+uU/py18/Cu07ZD0jLNtBV5dbR6XYkt4sDzce724coiRTvro6fy1xVIUrvcp7wUw/TFU10jEZ83V68/Wh6RXSd9iNVCJxnDcuC1mnGxs983OnyEAPPxwNlg/wxxjdH1F4evVE3les/rXSzGe9Z1nlvHsqcLkUDWgLQ3h9eSzzhmqtYmKRORpe4Y2667iYj/Px6h2kZSPkevYXVWVPwyYY58tf+P3pkbzh4ULw/CMGWbc6NFh+JprjKiW2uFtXisHPYDKxrB2rRknHur64r3EKab5TWlNmGdOPfqU0RPr/Ovos+bt2STGlZTrwGG5nq/nlPMY41gOAMqvzuzcxvUs6eT4sHixmf1Ro6MHjxbx3Ardfmwk8Z7nM9bZ0tnStqeP2q5cLwlPPZ9rJYL6wykljkvVOFvaP/rlUb67JzHP6b/nZLcst7w/uz4L23uwnA/1++uZZ7rloefHlTu9gW2vKYTsTnDlGiGEEEIIIYQQQgghnvDjGiGEEEIIIYQQQkhsMtjhudbV/ys8QRCcEwTBC0EQbA2CYHUQBL8PgqCq7TONPI4IguCJIAg2B0GwKQiCOUEQjM6TriwIgquDIHgwCILlQRBkgiCYm0TeUVAW2gkIkIlePiw1Z2qNrjzn1lvN76TfuOyybLjil78MI6680sy/zCIHEfhufy7jtOxxVc0x2XDxd48x4uSK7PL6leHBk0+a+e+3X3ig6sdne2+99bRcIp3EFuFa0bNgQRgeMkjlL+VvUu+ptaVCGmuTXNrkejLcs6d5XrduYXjpUjNOqqFGjYq+tqzXgw4y40qFqinOMvqorcVzpbEhrVuC5zsvR2pX35Q3oV7aLpudziPpLeD18508qbCSZhuu92aUudjSQLWkTepcpR5BsWXahdlwha5/KU9QOgYfyYbrWNcy7ZzodEtfdb6eVBjKPnTxxWa6If3FgU2vocsiyiyln3HwGRfjSN98pMlx8Oo3S5aYx7aHMymU/braGOQMYmLQaanoa0Sl5PPWc4OI6yvrR0urRb9MebafQuPczvQALSTZKa2dl9gmkTheBq3XKkDdGO197YdmpE0e3F8MELZxUMTpfiFfRW++2cx+xM1hu+5bYd53R0lBfa/rOsZrkpY6JiEt7Sp4Pas4L0qyzcu+LcYGAMDcuWFYS8PlHwNS6g8AQmYvi1Wa804prh1jTGlPOaW8lq5iW5GNZygHCwADd45N3Vq27WrxyG5AEASXAfgFgH8CuATAIADfAHBkEASHZzKZjx3yGAdgLoAVAK7a+fPFAJ4OguCoTCbzskheCeAaAKsBLAKgTIB2Ke+88OMaIYQQQgghhBBCCEmcIAgqAVwH4HkAn85kMs07f38ewIPY8bHtxw5Z/RpAI4BjMpnMip15/AnAawBuBHCCSPsBgMGZTGb5znSWJRix885L1/7nDkIIIYQQQgghhBDSWTkNQCmA37R+WAOATCbzEIC3AUxrK4MgCGoBjAXw59aPXzvzWAHgzwAmBkHQX/y+rfXDWtJ5R8GVa52ADILssu7U8vfMSCnz0FIOsWz5tNPMqNvn/iIbnrYtDMsdKNtCrew1kOqKkhK35etabSJlkO8tN/PYulXkXzkwG04P3WhmIqUQaol3StRdi9ppTJbr2efDay9aZGb/5S+HYV9prEQvqz6hRuyEWqcqSEo5pHzXcdc0jS5jRUVKhN3y0Kvh5Ur55Wroks/wkEPCcJxNaW2yL/M4TKfzl+3Otsw95xnK/iZurqlimJFs5KBN+TPUqItLiZi8tpYSlPQXddCgdtRcLHS6ow81onx2aiyEtE7Wv1UOqHcCjiiz3EETMNvd8EFm/cg61tKKKPVbEjImq2xHbqMLJZdXZZT9S5ZXyrEBoPsnwzFB74bpWk5XNWCccdBHFl2IPGw4p5X9V1sQqL4Xlb+z/DWGZMh4HpZ5ziDGbpiFJol51Rjr9Pw4aAjykZO3fF/w3LHTF6/8bR4WObJf0bm1NNayQ6jk4EHhvvN3z7DI7hxJ4rnb8vQdAwr97JOQcCZRxnaV0XteO+c+5fuPlm7LFz/9oieRkmmbfHrWLDNu/PgwrPpQcU0oC7W976DM3KVZYr4DmvUj3wkLIQGW17b9PRd1Tg66XlufzR6xXWjH7YjcRRi78//z88QtAPC5IAjKMpmMbXVZW3l8EcBhAB4pQPmc8ubKNUIIIYQQQgghhJA9l8ogCBaK/y5s+xRnWlfLrMgTtwJAINL45gEAe8cvWnJ5c+UaIYQQQgghhBBCyJ7L2kwmM8aWIAiCCgCXxsjz15lMZj12SEIBIN/uFq1LTtva+SmJPAqaNz+uEUIIIYQQQgghhMQmA6C5zVS7CRUAro6RfiaA9QBatd3dAWxVaVoF0Mr/JgeZh8Y1j4LmzY9rnYAAmVC/btsq3sKwGlPnPey8MGzT6NvipK2Ms1dMDD8neZ6+7cjtyUeMjMzfhq1cR4xtEWGv7L2v3VI73CldIa7tcz3dXvpWhHlIDzedf6H9kKSXYHFxdDnS7lZGaJFePSLcN6cdhz4a1vLGMZtzzUOY4BXCS80VX88aH/8Q7UcyXIxTLZZ/UErCU0zj5Qml8reVa9Kk+Ney4XpvhW4vSV2v0H5sBqLvxWkjrt5SPm1pdyDp+ymEZ2JnwSjXGMvCAunV2xYRA1BOHSTs01foPu+bR0eWqxB0xv7lfS35/uP7PiX7hvI/NTjzTOcsO7ROOmP+0p9O0rPnrudNOgWZTKYOOySccVm58/97A9DO7ntjxxfKlbAj89C0/pZP1ulCInnTc40QQgghhBBCCCGEFILnd/7/yDxxRwB4vY3NDNrKYxx2fKBblCfOhUTy5sc1QgghhBBCCCGEEFII/oodctCLgyAoav0xCIJTAOwL4C6ZOAiCyiAIRgRB0Lv1t0wmswzAQgBnBUEwUKQdCOAsAP+XyWRW+RQuqbwpC+0EZBBkpSNxluQaUpe1H5qRYumzTZK0fHkYXrjQzGL79jBcU2Oed8ghYdhjF/Y2y2UUTN5LEtI6C41NZjmk3LAQGM9bb1+9cWMYlnWQsDwDsEuX1qyJPq+6KgzntF1Z/oq+YVhvxy0aUCG2GXeVhLleO47s0RVX6VjOFvPLxKrqUaN2uRw2XO/bJv+2pXWuV9V+tjSls2E9PMjquv56M+5rXwvDH38chrVE3UdOGqcOZBl1+VN1b2fDmyqHZcNlMeTNrtLDJPpGnPuOOs+5L8C9b/vIR23npZoazR8cxzDfcrjiPBbpcaTA86orhRhbfa6VRDkKMZdJdJlWrgqvN7C/X70Z/al+kxG3vim0P+i75CnzRDkm6/cTOaDGkavuKpY2XogxJunnHedaSbfPQrzTeOWp3xUltjFMTdpetgD1lsUzlgnY933HhlFmUSctxenodAUgEXuF3Zo9ynPNi0wmsyYIgu8DuAHAE0EQ3IMdcstvAlgK4CZ1ysXY4e12PoAZ4vdLADwJ4OkgCH6z87evY8eisW/q6wZBcDF2+MQBQDcA+wRBcOXO4xczmcxDvnnngx/XCCGEEEIIIYQQQkhByGQyNwZBsA7AZQB+DWATgD8B+K6DJLQ1j2eCIJgA4Lqd/2UAPAPgrEwm82KeU74FYB9xXAPghzvDdwDIflzzyDsHflwjhBBCCCGEEEIIIQUjk8nMgLkSLSrdNQCuiYibD+DTjtercS1b3LzzQc81QgghhBBCCCGEEEI84cq1zob23ZK6/5oaI8rQvEt/K8D0LJNeTEqjLy0wRo82s5BWGYX2Hsth6dIwLL0V1BbPLdLLS+Hs47PwuWw4XVsbmb+vF4cV+ZzuvNOM++ijMPzZz4Zh9aAK7YfUrVsYlj58Oo+cOojwhtM+EbYyJoEso80HxLV+kiqja/s06lh7I8kxYd48My5iy/mC+zklhHHfi/+dDW8ZcaiRTlaJLmOpiLvmmuj7rq7y80KRuNaPrYw51xbeLuUlwudro1o5L/2ESkqNKGdvHUcvF1+vGOc2HqOdReXv612ag/T8WbAgDD/9tJnu2GPD8LijzDJK7yrtIZS0f6bFo8h4pqqNuPo7FXoMKMQc69OfC32tJHwp9Tny0cfxu4qsY+Ur1VfGqfcw4x1N+oDmycelHL5EjWf6OBXDKDgyT5VH4n1De4rJa6n3gCT6SXv2L2v7lPet62CV8BHX7Uz+waLqJyXf612ffRxjU0d8/fuM80T5fccRVwrtG7l7Qs81wpVrhBBCCCGEEEIIIYR4w49rhBBCCCGEEEIIIYR4QlloJyBAJlyyq5ey/+1vYfg//sOMk8ublZzRFXk5pTpFqknIkNZuNCPlkmktVRO4LoPOiZOyg7q6/NeFqYbVq7jTTeGSctsyelM2G73UP4kl0jnL4eVS9m3bzMRSGivrQD/rsvLI67nWue3enJVLuu2KJfyGDKN/fyOZTeoicZUMJbWUXSoSZDvr3z8ByY3CRz4HACnZ6LVUJ0Ii5isPtuHbz53lUKNDKagebWx1Z5P9RpXDoibKGep85Dix6luOAWKcemOtKYcfXrleFNKU/FmUTKr80biWudAykkLk7zV2HHmkeTxuXN78ALjLkJLAci3fcco4rldyZCnTknFyXgMMibqtj/o+3/aUL/mOMTaSkBSqaTUaPcAJubB1PHviiWywccIJRlRaDIzvVRxsxA2p/zD/tROS3UXWnZYNyhdc9VLj/N5h68vyhUGn8xkD9GQjLUS07FFaQDhSaElhrPd9+X47f34Y1i+fQ4eGYcvfHdD1kcAY7DPXJ/WuFXU937E0Cfl6HOk5IXsa/LhGCCGEEEIIIYQQEpsM6LlGAMpCCSGEEEIIIYQQQgjxhh/XCCGEEEIIIYQQQgjxhLLQzsCGDcC8eQCAlvHHmHFf+VrkaT4eP9puQ9peWPPz9CwwPdHMb7kyy5xrSz+FESOyQa3znzMnDBcVmVmcdVboPRRhPwUASEtvDu3xILxjkvBPsNbxeeeZx7IOLIYqcbb0ThqrH4moO6unj/D2axH+L/nSusQJaxgAwMSJkVkY6LpyrH4rrh4YSfj25HhgOPZZ1/aThMeGLY/GJj0+OLZd4UWT4z0j6sDWtmR4wwbzulVV+c8BouvH6lsVB+kTJDx9pNUVAAyvCQdym2ecrUnI+vH2xkvYU8Y3nRXpjaRRfnVGnUhPQ8uEklMHKs8oCl0Hzp5B+t7k/KgHVznBr10bhrWB62c/G4b7D4y8dBK+ha5tNyk/JB8vpg7F139KvCzqLjRnblgHEyao8zaKxLItSa9bKP9QC/o5Rda/yt/Xj9AZ20umnId8vc2k55quK/neWmCPx0T6ycLnzMiZM8OwrEfx7g8AeP31MCzrAwCmTAnDevxJmCQ8SNt7vPH1WYuKi+UN3BXGRUIShB/XCCGEEEIIIYQQQrzgh0RCWSghhBBCCCGEEEIIId4EmUymo8vgRPfu3TONjY1tJ1T069cPZ5xxRgFKlBzLli1DbW1tRxejy7Ps1edQu091RxfDynPL3kP1PkMSzbN+dT0O3P/AxPJ7bslzqB6UbD3aytiRz83neSRd30AydV6IciVBIdqTD9Y2+NxzqK1uu4zL6utRe2D+PJK+z/r33sOB+yY7VhCTZcvrUdtJ+syiRYtw2GGHdXQxOiVdYW4vNHHmqs7yTtBZ5/2kSWIciVPHnXGuL0QbaU+8y9/F5+n2nAN/97vfLcpkMmPa5WIdQBDslQHO7OhiJMBvd+vn1B50mY9rY8aMySxcuLCji1EQLrroItx2220dXYwuz/hDBmPebZM7uhhWBp/7F0z+WbIfexdetxCLnl2UWH6DRw3G5J8kW4+2Mnbkc/N5HknXN5BMnReiXElQiPbkg7UNDh6MeZPbLuP4hQsxb1H+PJK+z4VX/AWLbu/c/zDU1Rl/yULMm985+szIkSPx6quvdnQxOiVdYW4vNHHmqs7yTtBZ5/2kSWIciVPHnXGuL0QbaU+8y9/F5+n2nAODINitP9rw4xpphZ5rhBBCCCGEEEIIIbHJAGju6EKQTgA91wghhBBCCCGEEEII8YQf1wghhBBCCCGEEEII8YQf1wghhBBCCCGEEEII8YSea3sQc+fOxbnnnouhQ4cCAP7617+id+/eAIAbbrgBf/nLX1BUVISJEyeiT58+eOCBB1BXV4fevXujT58+uPbaa5FKpXDKKafgww8/RDqdRl1dHY444giMHDkSzc3N+M1vfoNLLrkEAPDCCy/gkEMOwdChQ/GHP/yhw+47H/94fgV+8L//RiaTQb/eJWhqbsGaDQ0oK+2G8p7d8LOLj0Dt4N645n8W4oG5dajo1R37DS7H7//rUwCAz3zr7/jnCx/gvp9MxMTDB3mXI5PJ4PHrH8eWdVvQe+/e+NTXP4UHr3gQ699djzNuOgO9B+54Pn+/7u/44JUPMPE7EzFotP/1ClXGxi2NeOzHj6GlqQXp0jSO+9ZxSJemva+5K89n88eNOO3bj2F7UwvKe6Zxzw+PQ6+euWXJZDJYt3wzZn9rtrXuH/zugwiCAEFRgE9/69Pe99QWup4P+9xhmHvTXABAz8qeOPayY5EqSnVoWygkLvfftK0p0XZWKFz7NQCsfWst7r/sflzwwAVIFXXOf+/a1fHymIt29KHiogD3/PDT2Ktvjw6+Izu2uXL//ffHgAEDAOzYhOCWW25BTU0Nvv/97+NLX/oS5s6diyeeeALXXXcdevfujcMOOwyZTAaf/OQncfXVV6Nbt24dfg972nxvo7O8C9hwnata54Yhg5LdvTCTyeCxnzwW+x2gkLTHO0J7kclksO69ddnn29bcn/TzTQLdRlzn786CSxsHknsf7KxzaiHnvj0Deq4Rrlzb45g+fTrmzp2LuXPnZgfMTZs24eGHH8b8+fMxb948XHLJJbjkkkswd+5cnHfeebjxxhsxd+5cfOpTn8L999+PM888E//4xz+yeR5//PF48skn8eMf/xh33nlnNv+DDjoIc+fO7XQv2ms3NuAH//tvPHzjiXjqtlPx04sPR+P2Fsy89lg8cfPJ+OFFY/DF6/6J1p10b7xkHP556ykAgCVvrQcA3Prdo3HpZ0ftclnW161HujSN0244DQ2bG9CwqQEnfO8EDDtqmJHu6K8ejVGn7Pr1ClXGVHEKx33jOJx6/anY54h98Mb/veF9vV19Pt2KU5h57XF46rZT8Zlj9sGMR/KX5eVl6xEUBW3W/ZTrpuCUn5yC4ccO36X7agtdz8XpYpx45Yk49fpT0au6F95f9D6Ajm0LhcTl/pNsZ4XEtV8DwCuPvILKfSs7oJRuJDFe/uO/p+Cft56CcyYPxx0R/bGzkW+uBICqqqrs77fcckv2t5kzZ+bkcdBBB+H//u//8OSTT6Jbt2747//+73YrP8D5vi0607uADde5qlBzw/Zt29v1HaAt2usdob14+eWXjefbFed+3Ua62vzt0saBZN4HO/ucujvMfYR0JPy4RlBUVIRVq1bhxRdfBAD06dMnMu0bb7yBq6++GrNnz86J27hxY4FKmCyP/Os9TD9pv+y/VA4fUoEBlaXZ+AOH9cXQgb3w3qp647yP6huzYZl+V9j28Tb07NcTTY1NaNjYgO69uqO0T27epX2TuZ4PLmUsThdny5gqSiFIBd7X29XnU9K9OJu+uCiFooiybNi8DUXFqTbrPlW8Y5hsamxCnyHRfWNXyVfP3cu67yiDqNOObAuFxOX+k2xnkeVobsYZjz2Gwx94ALe88gq+9M9/xs/DsV+vf289elb2RLce7bOayYckxstuO/vQ1m1NOHBY4fpQR9G9e3d88pOfxOOPPx6Z5oorrsCjjz7ajqXKz54239voTO8CNlznqkLNDZnmTLu+A7RFe70jtBcbNmxAUXFRl57787WRjpi/fXFp40Ay74O705zaleY+QtoLflzbw7jzzjsxYcIEnH/++dnfevbsiV/96le4/PLLMXz48Lwv0gDw73//G2PGjMHgwYOxevVqtLS0AAAef/xxjB07Fl/96lfxn//5n+1xG7vEB2u3YEA/+0vKwMqeWLVuKwDgm79agJrT7kb3dBFG7ds32cLs+Icp/Omrf0K6LI0g6DwvG1lilHH71u147e+vofaYWu/LJfV86rdsx+9mv4bPn5i/LBnH+6pfU4/Zl8/GK4+8gr77JPz8jQLlL8/H6z7GisUrMOiQ3UcCmpcY959EO4viL++8g8OqqjD/M5/BDS+9hE/tlEHEwrFtvfzXlzFqSudcidBKEv3xvVX1OPJLs3Hzn1/BQbUF7EMJkm+uBIA1a9ZgwoQJmDBhAn7wgx9kf//a176W/df8fKTTaWzfvr1g5c0H53s7nepdwILrXFWw6+8c0NrrHaAt2usdob1oXaHUlef+qDbS3vO3L65tPIn3wc4+p+4Ocx8hHQk/ru1htC73/dnPfpYdJAHgxBNPxGOPPYb58+fjhz/8Yd5z77//fvzjH//ApEmT8Prrr+OZZ54BsEMm8vzzz2P69OlYsmRJe92KNwMqS7Fy7cfWNCvWfJz9l6QbLxmHl+86Ex+u34qGbU0FKdPnf/957H3w3njtsdcKkn8StFXGTCaDf/76nxg7bWz2Xyx9SOL5ZDIZfPG6f+JHXxmLil72srR1X2VVZTjt56fhsM8fhpdmv+RxR/GQ5Wne3oy5N83FMRcf02n9uJKmrftPqp1F8e7mzRjdrx+KUikc2KcPThzk/4eNrW19tPIjpEvTKCkv2ZXiFpwk+uOQ/mWY/7+n4dr/OAw3zCx8H0qCqLlSSmOuuuqqbPoBAwagV69eWLp0ad78Ghsb281vrRXO93Y647uAjY5+T2ivd4C2aO93hPZid5j7O3r+3lXa432ws8+pu8Pc1zFksMNzrav/R3aVrjNik0SRg+TWrVuxYsUKAEB5eXnkIPj8889j3rx5mDNnDh544AE88MADRvzll1+On//85wUv+64y+ajBmDlnGTZ/vGOJ9bL3P8IHa7dk4197ZwPeXVWPwdU9s7/16pnGGccOLYg3x5YNO67ds7Inmrd3zoHNpYwL71qI6gOqsfcn9t6layXxfK66bSE+eXA1jhtjL0tzU4v1vlqaWrL/qpzukUZRumiX7q0tdD0/dfNTGDl5ZEHlqJ0Jl/tPqp1FMahnT6zcsgUtmQyWbNiA7TtX7MSlrT6zvm491ry5Bo9e/SjW163H07c8vUvlLhS72h+3iz5U3jONHiWF7UNJI+fKtvjP//xP/PrXv84b97Of/QxTpkxJuHRu7MnzvY3O9i5go625qtC05ztAW7TnO0J70dy0o0678tzfGebvXaGtNp7U+2BXmVN3h7mPkI6Au4USbNu2Deeccw62bduGlpYWXHrppTlpXn/9dey1117Z4xEjRmD+/Pn4+te/nv2toqICgwcPxr///W8ceuih7VF0L6r69MD3v3gIpnzz78hkMuhb3h3pbil84er/Q6/SNHqVdsP//tcxOcvCP39iLU685G/48ukj8Z83/gsPz3sPDz79Lr48dTMunHqAd3lWvrgSf/32X5EqTuHTl38aT/z0Cax6bRU+WvkRPnH6J1Azrgb/+t2/8N7z7+Hd597F5kmbccAk/+sVooxV+1XhxftfRPWIatQtqMO+4/fFyMkjva61q8/n1KP3wU/vfBFHHVyNB/5Zh7Mn7ouvnJG/LNu2bLfeV+W+lXjyF08CKaCouAgTLp2AV//7Va/7ckHW8+HnHI5Fdy9C/Zp6LHloCUadMgpDjxza4W2hkLR1/3sN3yuxdhbF6UOH4oKnnsLjy5fjvOHD8e1nn8Xdn46/K1hbfWboUUMx9KgdO3I99L2HcPRXj070PpJiV/vj5KOGYPo1TyIVAN3TRZhx1YSOuZGEaJXGAMDee++Nu+66Kxs3ZswY9O0bSnRefvllHHfccdkd077zne+0d3Fz2NPmexud7V3ARltzlXxPaNrchN/97ne48MILE7u+zztAoWjPd4T2YtvH25zn/kI83yTwmb87E2218bzvg0uXx75OV51Td3Xua91ZmpDdnaD163dnZ8yYMZmFCxd2dDEKwkUXXYTbbruto4vR5Rl/yGDMu21yRxfDyuBz/4LJPzsje7zy5ZVY8eIKjJ021jvPhdctxKJnFyVRPADA4FGDMfknYT0Wuowd9dzmLlqJU7//D3zuD9NjnZd0fQM76nz050fvUj0XolxJoNtTFEm0MxvWNjh4MOZNbruM4xcuxLxF+fOQ95lIn7niL1h0+xltJyTejL9kIebN7xx9ZuTIkXj11cJ9uO/KdIW5vZDEnauSnguqhlZh8OGDY49nnXHeLwS7Oo7MnTsXp551Kj53++ec0nfGub4QbaQ98S5/F5+n23MODIJgUSaTGdMuF+sAgqAyA5zS0cVIgBm79XNqD7hyjRBCCCGEEEIIISQ2rZ5rZE+HH9cI6UAGHjQQAw8a2NHFsNIVyujDhMMGondV59nafnetZ1d2p/vfne6FENKxdPRcVdKzpGArigkwYcIE9K7u3dHF2CW6ehvp6uUnhHQeuKEBIYQQQgghhBBCCCGe8OMaIYQQQgghhBBCCCGeUBZKCCGEEEIIIYQQ4gU91whXrhFCCCGEEEIIIYQQ4k2QyWQ6ugxOjBkzJrNw4cKOLkZBqKysxLp16zq6GIQQQgjpAEpKStDQ0NDRxSCEEEIKwaJMJjOmowtRKIKgXwaY1NHFSIC7d+vn1B5QFtoJWLduHbrKR05COiszZszA+eefjzfffBO1tbVGXFNTE7p164arr74a11xzTccUsB2YMGECmpqaMG/evETyO++88zB37lzU1dUlkh8hJD9BEPA9gOw22ObjVnZlfqmpqcH48eMxc+bMNsvR0tKCL37xi7GvkY9rrrkG1157LbZv347i4l3/E6q1nt555x3U1NTsegEJ6aQEQdDRRSCkXaAslBBCSF6+//3v44EHHujoYhBCCNnNaI/5ZcaMGbj99tsLeo1d4eSTT8b8+fMxYMCAji4KIWSXyABo2Q3+I7sKV64RQgjJy7777tvRRSCEELIbwvkFqKqqQlVVVUcXgxBCSEJw5RohZI/lnXfewRe+8AVUVVWhe/fuGD16dM6/pC9btgzTp0/H0KFD0aNHDwwbNgxf+cpXsGHDhmyan/3sZ0in03m9E0eOHInTTjsN27ZtQ1VVFS677LKcNDNmzEAQBFi6dKm1vC+++CKmTp2Kfv36oUePHth///3xk5/8JCfdE088gUMPPRSlpaUYNWoUZs+eHfuegB2yHSlVqaurQxAEuO2223DVVVdhwIABqKiowCmnnILly5dby04IIYS0oucXAHj77bcxefJklJaWYq+99sI3v/lN/O53v0MQBHnlo7NmzcIBBxyAnj17YsyYMYYlwoQJE/DPf/4T//rXvxAEAYIgwIQJE6xlWrNmDb761a9i8ODB6N69OwYPHozp06dj27ZtRrp33nkHJ598MsrKyrDPPvvgBz/4AVpawlUfDQ0NuOyyyzBq1CiUlZWhf//+OOWUU3Lm+Na5X95bTU0Npk2bZr03QgghnRN+XCOE7FY0NzejqanJ+K+5OXd77Pfffx9HHHEEXnzxRfzyl7/Egw8+iEMPPRRnnHEGHnzwwWy6lStXYtCgQbjpppvw97//HVdddRX+8Y9/YPLkydk006ZNQ3NzM+69917jGosWLcJrr72G6dOno3v37jj//PNxxx135BiX33bbbfjUpz6FESNGRN7Xc889hyOPPBJvvfUWfvnLX+KRRx7BN77xjZyPWm+99RYuueQSfOMb38D999+PAQMG4Mwzz8SyZcti3ZONn/zkJ1i2bBluv/12/OpXv8L8+fPxhS98welcQgghRNPY2Ijjjz8eL774Im655RbMmDED77zzDn70ox/lTf/000/jxhtvxA9/+EPce++9aG5uxpQpU7Bx40YAwC233IJDDjkEBx98MObPn4/58+fjlltuibz+hg0bcNRRR+Hee+/FN77xDTz66KP42c9+hu3bt6OxsdFIO3XqVBx33HGYPXs2TjvtNFx99dW44447svHbtm3D5s2bceWVV+KRRx7Bb3/7WzQ0NGDcuHFYtWpVm3XR1r0RQgjpnFAWSgjZrbB9oJJcc801yGQy+Oc//4l+/foBAE488US8//77uOqqq3DqqacCAI455hgcc8wx2fOOOuoo1NbW4uijj8YLL7yAQw45BAMHDsRxxx2HO++8E1/96lezae+880706dMHU6ZMAQB85StfwY033og///nPmD59OgDgpZdewoIFC3DPPfdYy/utb30L/fr1w4IFC1BaWgoAOO6443LSrV27Fk899RT2228/AMChhx6KAQMG4E9/+hO+973vOd+TjX322Qd333139njNmjW4/PLLsXLlSgwcONB6LiGEEKKZMWMG3n77bTz77LM4/PDDAQAnnXQSRo8ejffeey8n/aZNm7B48WL06dMHANC/f3+MHTsWjz76KD7/+c9j5MiRKC8vR1NTE8aNG9fm9X/5y1/i7bffxsKFC4058HOf+1xO2m9+85s4//zzAQATJ07E//3f/+Gee+7J/ta7d2/8/ve/z6Zvbm7GiSeeiOrqatxzzz15V7DHuTdCSGck9x/yyZ4HV64RQnYrHnjgATz//PPGfwsWLMhJN2fOHEyePBm9e/c2VrmdeOKJePHFF7Fp0yYAO/41/cc//jFGjBiBHj16oFu3bjj66KMBAK+//no2v+nTp2PBggV48803AezYoXTWrFn4f//v/6F79+4AgKFDh+LEE0/Ebbfdlj3vtttuQ1VVFU4//fTIe9qyZQv+9a9/4Qtf+EL2w1oU++23X/bDGgDstdde2GuvvYw/TlzvKYqTTz7ZOD7ooIMAIO8fQIQQQkhbLFiwAEOGDMl+WAN27DB4xhln5E1/5JFHZj8+Abs+Dz322GMYO3Zsm/+4BOTOgaNGjcq57p/+9CccccQRqKioQHFxMXr27In6+nqnOTbpeyOEENI+8OMaIWS3YtSoURgzZozx32GHHZaT7sMPP8Qf//hHdOvWzfjv8ssvB4Csf9oVV1yBa665BtOmTcMjjzyC5557Dvfffz8AGPLOM844Az179sTMmTMB7HhRX716dXaFWitf/epX8a9//QtLlizBxx9/jJkzZ+L8889HOp2OvKcNGzagpaUFgwYNavP++/btm/Nb9+7djbK63pPrNVo/HrqcSwghhGg++OAD7LXXXjm/V1dX502f9Dy0bt06pzk26tryug899BDOPvtsHHDAAbj77rvx7LPP4vnnn0dVVRXnWEII2Y2hLJQQskfSr18/HH300fjOd76TN75V3jhr1iycc845uPLKK7Nx9fX1Oel79uyJqVOn4q677sK1116LmTNnYtiwYfjkJz9ppJs8eTJqampw22234ROf+AQ2b96MCy+80FrWPn36IJVKYcWKFXFvMy+u90QIIYS0BwMGDMCrr76a8/vq1avb5fqVlZWJzrG1tbWYMWNG9rft27dj/fr1ieRPCCGkc8KVa4SQPZJJkybhpZdewoEHHpiz0m3MmDHZfynesmULunXrZpz7hz/8IW+e06dPx1tvvYW///3v+Otf/5qzag0AUqkULrroItx55524+eabMXHiROy7777WspaWlmL8+PGYOXMmtm7d6nnHIXHuiRBCCCk048aNw3vvvYfnnnsu+1smk8Ff/vIX7zy7d+/uPGeecMIJeO655/Diiy96X6+VLVu2oLjYXL9w55135t1ciRCyO5DBDs+1rv4f2VW4co0Qskfygx/8AIcffjiOOeYYXHzxxaipqcGGDRuwZMkSvP3227j99tsB7PgId8cdd+Cggw5CbW0t7r//fjzzzDN585w4cSIGDhyIL33pS9iyZQumTZuWN92XvvQlXHPNNXjxxRed/3C44YYb8KlPfQpHHnkkvvnNb2LQoEF4++23sXjxYvzmN7+Jde9x7okQQgjxYc6cOejfv7/xW+/evXH88cfnpD3vvPPw05/+FKeffjp+9KMfoaqqCr///e+xYcMGADv+YSouI0eOxC233IJ7770X++67L3r16oX9998/b9rLLrsMd999NyZOnIgrr7wSBx10ENauXYu//vWvuPXWW9GrVy/n606aNAmzZ8/GZZddhilTpmDRokX49a9/jYqKitj3QAghpOvAj2uEkD2SIUOGYOHChbjmmmvwve99D2vWrEG/fv0watQonHvuudl0v/nNb5DJZPBf//VfAHbIOu+55x7DdLmVVCqFz3/+87jhhhtw5JFHora2Nu+1q6qq8KlPfQovv/xydlfSthg7diz+9a9/4aqrrsLXv/51bNu2Dfvss092d7I4xLknQgghxIevf/3rOb8deOCBWLJkSc7v6XQajz32GL7+9a/jy1/+MsrKyvD5z38eRxxxBL773e+id+/esa//ne98B6+//jouuOAC1NfX41Of+hTmzp2bN21FRQX+9a9/4corr8T111+PdevWobq6Gscdd5zVEzUf//Ef/4H3338ft99+O2677TaMHTsWDz30EKZOnRr7HgghhHQdgkwm09FlcGLMmDGZhQsXdnQxCkIQBOgqz4EQsuts2LABQ4YMwaWXXoof/vCHHV0cQkgHw/cAQvIzZcoUvPbaa3jrrbc6uiiEEE+CIFiUyWTGdHQ5CkUQVGSACR1djAT46279nNqDLvNxLQiCNQDe7ehyEELILlAMoATAXgB6A1gCYHuHlogQQgjpHFRjh/HPNuzwhe6787/3AKzpwHIRQnaNfTKZTFVHF6JQ8OMaaaXLyEJ35w5JCNkzCILgPAB/wI4/FC7MZDL3dWyJCCGEkM5BEARfA3AxgCEAigC8DuDbmUzmfzu0YIQQQogDXWblGiGEEEIIIYQQQkhngSvXSCtdZuUaIYQQQgghhBBCSOeipaMLQDoB8fe1JoQQQgghhBBCCCGEAODHNUIIIYQkTBAEM4IgyOz8b0IC+U0Q+c3Y5QISQgghhBCSIPy4RgghhLQzQRDUiY9F+r+mIAjWB0HwchAEfwyC4LQgCGjjQAghhBBCSCeFL+uEEEJI56IIQJ+d/40CMB3AS0EQfD6TybzSoSUjhBBCCCGCj/4OPFTZ0aVIgLUdXYCuDj+uEUIIIR3LrQDeEsfFAPpjx9ZTn9j528EA/hEEwZhMJrO8fYtHCCGEEELykclkJnV0GUjngB/XCCGEkI7l3kwmMzdfRBAEnwdwB3bM19UAfgjg/PYrmh+ZTOY8AOd1cDEIIYQQQghpF+i5RgghhHRSMpnM3QB+JX46IwiCbh1VHkIIIYQQQkgu/LhGCCGEdG4eEOFeAPa1JQ6C4NggCG4NguDVIAg2BEGwLQiCFUEQPBQEwRddNkcIgqAoCIIvBEFwfxAE7wRB8HEQBA1BECwPguDfQRD8KQiC/wiCYJ+I8513Cw2CoCQIgsuCIJi/cyOHj4MgeGPnPRzcVllFPnPFNWsc0remrXNIGwRB8JkgCO4IguDNIAg2BUGwNQiCd4Mg+HMQBGcGQRA45NMjCIKLgiB4dGddbg2CYMvOfBbu3MBiehAE1W53TQghhBBCOgOUhRJCCCGdmw/Vcd98iYIg2AvATADH54keuPO/KQC+HQTBaZlMZmlEPnsDeBjA6DzRe+/87xAAZwFYBGBM27eQnyAI9gPwCID9VNR+O//7YhAE3wCwxPcau0oQBLUAZgE4LE/0kJ3/nQlgQRAEp2cymQ8i8jkQO+q1xpLPYdixgcVfduZJCCGEEEK6APy4RgghhHRu9Cqmj3WCnR/E5iH8cFMPYA6AVwE0YMeHm5MBDAawP4B/BUHw/9u70xi9qjKA4/8HLFtBkSWARqG1ltIKCMgqIK2gyBZEZAubiVHBSAzFCGpYEoyYsGgBJS5xIVqBiGhVUBAoEForW0EstQoVQcCCIiBLKTx+OHcyp6/zzrzzztrk/0tueu69555z7+mHmTxzznl2yczlLe2sBVxHb2Dt+aadh5p+JzZ9vAfYbgjfRERsCdxCCdYBrKQEnxYD6wD7APsClwIXDaWvIbzjDsDNwKbNpWco47EMWAVMBg4DNgP2AO5oxvXZlnY2BK6njD+UjFw3UBJZvETvjMTdgUkj90WSJEkaCQbXJEka3z5SlV8GltY3m4DYXHoDaz8ETsvM/7TUmwB8BZhNmf12JSWAVduP3plodwEHZuYzfb1UREwGZg3uU1ZzGb2BteXAQZm5pKWPQ4GrgdOH0E9XImIicA29gbWvAudm5st91Ps2cCwl2DYHOLGluaPoDaz9CjgqM19s0+8OwIzh+AZJkiSNDvdckyRpnIqIE4DPVJeuag3uUIJvPUGyazPzpNbAGkBmvpqZZwDXNpf2jojW4NpOVfmCdoG1pr2HM/M7HX1Ii4iYTm/QcBVwWGtgreljHuX7B9zPbAScCkxtyhdn5pl9jD2Z+V/KUs5FzaXj+tjzrR7Xc9oF1pr27s/Mud2/tiRJkkabM9ckSRpbR0dEvW/ZGyhLQWcB9Yb+DwGf7+P5U6vymR30dxFwRFM+DLi9urd2VV6/g7a6dXxVnpuZD/RT97uU7+o3kcMI6BnXl4Dz+quYma9FxNeBH1HG8GDg8qrKaI2rJEmSxoDBNUmSxtanBrj/GmWD+9My86n6RkSsD+zVnD6Smcs66O++qtyajGBxVT4/IpZk5t0dtDlY763KP2tbC8jMjIhrgc+NwHv0qVnyuk1zujAzn+vgsfuqcn/jOiciju7w/0qSJElrAJeFSpI0vs0HZrcG1hrTKJv/A0yKiBzoYPWECJu3tHcjcG9T3hq4KyIWR8SFEXFERLxlmL5palW+r4P6iweuMqx2rMozOxzXB6tnWsf1x8BjTXknYGlELIyIL0fEIRGxKZIkSVpjGVyTJGlszczMyMyg/FzeEtgf+HVzfxZwZzObqtVQgzIT65PMfB04CLipurwDJQnCT4HHI2JJRJwbEa0BpMF4c1Vuu69b5ekh9NWN4R7X5yn/p/c0l4KSGfQLwDxgRUTcHRGzI2KjIfYtSZKkUeayUEmSxonMTOCp5vhdRMyhbOj/NuDqiNgrM1dWj9Q/x5cCg00w0FfigyeBAyJiT0qWy/dRAmw9+4ZNA84BTo+IkzKz32Wdw2S0ExrU47qQElgcjL+3XsjMpc3eevtT9rzbF9iO8m0B7NwcZ0TERzPzjm5eXJIkSaPP4JokSePXbGA/YHtgF+B04ILqfj3ra2VmXjhcHWfmAmABQES8kbK324HAcZRljxsBV0XETpn5YNuG+vZvygw9KLPEBtrTrJOZZFmV+w3GRcQGA7RVj+uK4RrXJnh6Y3PQLAfdhzJb8BjKmG4JzIuIqZm5Yjj6lSRJ0shyWagkSeNUZr5KCbD1OKtlOeYySsIDgOkRUS+3HM73eC4zb8jMzwKTgd83tyYAH++iyT9X5R3b1hpcnReq8oYD1H37APcfqsp7RsSI/L6Umc9k5nWZ+QngncDDza2NKUFMSZIkrQEMrkmSNI5l5o1AzxLBNwJnVveeBe5qTtcGThyF93kBuKS6NK2LZu6syh/ur2JExEB1GnXCh6ltaxUfHOD+H4Enm/JmwKEd9D8kTcKKb1WXuhlXSZIkjQGDa5IkjX/nVeVTImKr6vzSqnx2m8QHfWoCV0P1UhfPXFmVj42I6f3UPRmY0kGb91TlI9pViog3sfpswP/TLN+8rLp0cURs0sE79PQxVuMqSZKkMWBwTZKkcS4zb6J3ttf6wFnV7bnVvU2A+RGxf7u2ImK9iDg8Im6hbKBf3/taRFwYETP6ef6twJeqS7d1/iVFZv4J6EmEMIGyx9i2ffR1MHA5q++n1s7P6V0ie0xEHN5He1sBv6QkiBjIHOAvTXkycFtE7NyuckRsFBHHR8Q9tOwRFxE/iYizI2JSP89PB06rLg16XCVJkjQ2ovxxVpIkjZaIWA5s3ZzOzMxbO3jmA8BvmtNXgCmZ+Vhzbwvgdsq+XT0eoARonqD8MW1T4F3A7vTuSbZrZvYsKyUivg+c1Jz+FVgEPAI8TwncTaMkNZhQ1Xl3s1SUNu30+X1NoOtuoGcW3ivAPOB+YB1gb0oyB4CLKckcAH6QmSe3tte0eQXwyerS9ZRsnwAzgEOADYDz6Q0Q/i0zt2nT3nbALcAW1eVFlGDmP5v33JySTXU3YN2mzuaZ+XTVzq2UrKsAD1KW8j5KmZ22GWVPuZn0/tFzAbBPZvYECyVJkjSOmS1UkqQ1QGb+NiIWAntQgjhfBE5p7j0VEbsCVwBHU7Jlbt8c7TxOydpZW1mV39Ec7fwBOLI1sNapzHwiImZSZpJNoXzTkc3RYxUlqPYAvcG1/symBBhnNecfao7aJcDZrD77rt07LomIXYDvAQc0l3drjnaWUQKFtXpcZzRHOzcAxxlYkyRJWnM4c02SpFHWzcy15rkDKbOxAF4Fpmbm8pY6M4ATKDOlJlFmnK0C/kXJ0rmIMgNufma+3vLsWpTg3fubf7elzNraAHgReIwy2+wa4BfZ5peITmauVXXXAz4NHEVJRLAu8A/KjLFvZOa9EbFfcw79zFxr2lsb+BhwPGVG2URKcoIFwDczc35Tr+fd285ca2l3D+AYYF/KstKNKUGzFZTsoguA6zNzUR/PTmiem0UJzE2hjOs6lCynj1IysM7NzJsHehdJkiSNLwbXJEmSJEmSpC6Z0ECSJEmSJEnqksE1SZIkSZIkqUsG1yRJkiRJkqQuGVyTJEmSJEmSumRwTZIkSZIkSeqSwTVJkiRJkiSpSwbXJEmSJEmSpC4ZXJMkSZIkSZK6ZHBNkiRJkiRJ6pLBNUmSJEmSJKlLBtckSZIkSZKkLhlckyRJkiRJkrr0P32ReC9PS8eaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAASFCAYAAAAfCU0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3wU1RbA8d/sbjopkITQkhB6Db0FAqF3lKLSm4AVsYtSRAUEC6AC0gUEAeldeui9lxBKCIH03pNt8/5YWAkEQUSK73w/Hz/Jzty5c+5skvf2cO+5iqqqCCGEEEIIIYQQQgjxVzRPOwAhhBBCCCGEEEII8eyTJJIQQgghhBBCCCGEeCBJIgkhhBBCCCGEEEKIB5IkkhBCCCGEEEIIIYR4IEkiCSGEEEIIIYQQQogHkiSSEEIIIYQQQgghhHggSSIJIYQQQgCKomgURRmjKEqYoihGRVHUB7QPVxQl+K5jwYqihP+DGPoriqIqihL0qH08Dv9mHP/0GQkhhBDi6dE97QCEEEII8Wx6UBLlLn6qqob/W7E8If2Az4F5wB7A9HTDeTBFUcYAp1RVXfOUQxFCCCHE/wFJIgkhhBDifvrc9ToQGALMAvbedS7+iUT072oJpAKDVFX9Owm0O7UClMcX0gN9DiwA1jzBe/5TT/oZCSGEEOIxkSSSEEIIIfKlquqiO18riqLDkkQ6ePe5/4giQMo/SCChqqr+McbznyTPSAghhHh+SU0kIYQQQjwSRVFsFUWJVxRl333Of3yrrk7grde36+y0uFV76LqiKLmKopxRFKX7ffqorSjKakVREm61DVUUZcSthNbDxjlIUZQTiqJkK4qSqijKVkVRGt1xPujW0r2mgO+tGFVFUeb/rQfC/ev9KIrSVVGU04qi5CiKEqEoyue3noOqKEr/fLrSKIryoaIoV2+N+5KiKP3u6K/kHcsN+90R8wMTYIrFYEVRDiuKknHrv7OKonz5d+O4o89XFEVZd2tsubferzWKovg/zDO6fUxRlGKKoixRFCVZUZRMRVG2KIpS7kFjEkIIIcSTITORhBBCCPFIVFXVK4qyAPhAUZQKqqpevKvJAOCSqqp3L32bCDgBPwPqrXZLFEWxV1V1/u1GiqK0A1YDV4DvgSSgAfAlUB146UExKooyEfgYOAJ8BjhjmU21S1GUF1RV3QSEYFm6NwLwAN67dfnVh3gMD6QoyivAklv9fQEYsdRf6vgXl40HHICZQC7wBjBfUZQrqqrux7J8sA/wK5alhbP+Rki/Ar2Aw8A4IAWoAHQDRv/NOG57G8v7MwuIAUpjec77FUWpqarq5YeIywlLLapDWN4rP2AYsFZRlCqqqj7zNaqEEEKI/zpJIgkhhBDin5gFfAAMxJKsAUBRlIZYEhOf5HONB+CvqmrqrbYzgDPAJEVRlqmqmq0oij2WAteHgWaqqhpvXTtTUZTTt9oGqaoafL/AFEUpD3wE7L/Vh/7W8TnABWC6oiilVVWNBRYpijIIcHicS/VuzZiahCXpU1dV1eRbx3++Neb7sQPq3BHzCiAMS7Jmv6qqmbdi/hUIe9iYFUV5GUsCaRHQT1VV8x3n8puh/pdx3NGuza2Y7rzXQuAUlqTcmw8Rngfwraqq39zRRzzwDdAC2PIQfQghhBDiXyTL2YQQQgjxyFRVvQTsBvretcTsVSwzbhbkc9nPtxNIt/pIBWYABYGgW4dbAl7AL4Cboiget/8DNt1q0+oB4b2ApYDzN3fW4VFVNQqYD/gCNR5imP9ELaAYMP92AulWDBlYxnw/0++KORK4BJT9h/H0uvX1wzsTSLfuYc6n/UPFcTuBdGupnMut9ykeCAXqPWRsZuDHu47tvPX1n45bCCGEEI+BJJGEEEII8U/NwpLw6QCgKEoB4GVgw61ZPncLyefYhVtfS936WvHW13lYkhF3/nd72ZzXA+Lyu/X1fD7nzt11v3/L7RhC8zmX37HbwvI5lgi4/8N4ygLR93lfHjkORVFqKIqyAUjHssPd7feqKpbk4MOIUlU1J597cff9hBBCCPF0yHI2IYQQQvxTK7HMIHkVy1bz3bHUt5lzn/b5FX++e8v3268/wrIkKj9RD4jrWdhG/lFjuF/9n386JoX8n/8jx6Eoig+WWkZpwFdYkmOZt+4zBSjwD++V535CCCGEeHokiSSEEEKIf0RV1dxb9W/eURSlGJZkUiTwx30uqQSsu+vY7ZlHt2e+3C7EnKmq6vZHDO12YezK3Fsku9Jd9/u3XLv1tXw+5/I79m8LBV5QFMXrb8xGepDOWBJFnVRV3XXnCUVR3LEU5BZCCCHEf4AsZxNCCCHE4zAb0GLZea0+lhpA95tZ8oaiKK63X9z6/nUsu4TtvnV4CxAHDFcUpdDdHSiK4qAoivMDYlqHZTbMR4qi2NxxbVEsO8JdB04+eGj/yDEgGuivKIp1WdetJX+vP4b+M4B7ns9fWHzr6zd3F9JWFOWfzprKc72iKIOBIo/YpxBCCCGeQTITSQghhBD/mKqqIYqi7AN6Y0nczPuL5gnAYUVR5mFJPAwAfIBBqqpm3eovU1GUvliWx4XeansFcMOy61sXLDNggv8iplBFUb7FsmvcHkVRlgHOWLaeLwD0+re3jVdV1agoyodYkjdHFEWZi6XgeH8s9X78+HvLy+52CGihKMonQITllurSv4hn+a3n0BcoqyjKOiAZKAe0Bqo8QgybgSzgV0VRpt7qryHQDssMMPn/m0IIIcR/hPyPuhBCCCEel1lAI2CXqqp/tUzsEyAQyzbxXliWrvVSVfW3OxupqrpFUZQ6wHAsySlPLAmKq8Ak4MyDAlJV9RNFUa5g2WJ+AqAHDgM9VVXd+/eG92hUVf1NURQjMBL4AogF5mKJfxWQ/Q+6fxOYBozAkiADuG8S6ZaewF4syw5HY5lJdA1Y/igBqKp6VVGUtsB44LNb/e0HmgBTgZKP0q8QQgghnj2Kqv6Tf/wSQgghhLBQFOVlYBmWBM2SfM73B34BmqqqGvxko3v2KIryAfAd0EBV1UNPOx4hhBBCiAeRmkhCCCGEeFzewrJUbdXTDuRZoiiKraIo2ruOFcDyvBKBE08lMCGEEEKIv0mWswkhhBDikSmKUhhojmV5WmPgU1VVZTeuvEoBmxVFWYpl2VhRoB+WekhvqKqqf5rBCSGEEEI8LEkiCSGEEOKfqAT8hmVntRnA9081mmdTPJYC2L2AwlgKa58Fhquq+vvTDEwIIYQQ4u+QmkhCCCGEEEIIIYQQ4oGkJpIQQgghhBBCCCGEeKDndjmbh4eHWrJkyacdhhBCCCGEEEIIIcR/xvHjxxNUVfXM79xzm0QqWbIkx44de9phCCGEEEIIIYQQQvxnKIpy/X7nZDmbEEIIIYQQQgghhHggSSIJIYQQQgghhBBCiAeSJJIQQgghhBBCCCGEeKDntiaSEEIIIYQQQggh/n9lZ2cTFhaGyWR62qE8l7RaLaVKlcLBweGhr5EkkhBCCCGEEEIIIZ47YWFheHh44OnpiUYjC63+DrPZTHx8PGFhYVSuXPmhr5OnLIQQQgghhBBCiOeOyWSSBNIj0mg0eHp6/u1ZXPKkhRBCCCGEEEII8VySBNKje5RnJ09bCCGEEEIIIYQQ4hE4Ojpav1++fDm+vr5cvnz5KUb075KaSEIIIYQQQgghhHjuVf9yKylZhsfWn5ujDadGt3qotuvWreP9999ny5YtlC1b9rHF8KyRmUhCCCGEEEIIIYR47j3OBNLf6W/Lli28+eabrF+/nkqVKgEwadIkqlSpQvny5WndujXp6ekAdOvWjV69elG7dm1KlizJ0qVLAfjpp59o0aIFgYGB+Pn58eGHH1r7b9myJZUrV6ZMmTJ8//33j3WMf5ckkYQQQgghhBBCCCEegV6v5+WXX2blypVUr17derxXr16cO3eO0NBQKlSowI8//mg9FxERweHDh9mwYQPDhg0jKysLgNOnT7NixQrOnTvH2rVr2bt3LwCLFy/m/PnznD59mhkzZhAbG/tEx3gnSSIJIYQQQgghhBBCPAKdTkfNmjWZOXNmnuMnTpygdu3alCtXjhUrVnDhwgXruW7duqHVaqlSpQre3t6cPn0agMDAQLy8vHBycqJ9+/YEBwcDMHHiRMqXL0/NmjWJiYnh/PnzT2x8d5MkkhBCCCGEEEIIIcQj0Gg0rFu3jpMnT/Lpp59ajw8aNIipU6dy6dIlhg8fTm5urvWcoih5+rj9Or/jmzZtIjg4mGPHjhEaGkrFihXJycn5F0f01ySJJIQQQgghhBBCCPGInJ2d2bJlC8uXL2fKlCkAZGVl4e3tTW5urrXu0W0rV67EZDJx4cIFbty4gb+/PwB79+4lLi6OzMxMNm3aRJMmTUhJScHV1RVnZ2dOnTplnbX0tMjubEIIIYQQQgghhBD/QOHChdmyZQuNGzemcOHCfPrpp9StW5fixYtTqVIlMjIyrG3Lli1LvXr1SEhI4IcffsDR0RGA2rVr8/LLL3P9+nW6du1KYGAg2dnZzJgxg3LlylG6dGmqVav2tIYISBJJCCGEEEIIIYQQ/wFujjaPdYc2N0ebB7a5XRQboHTp0kRGRlpff/zxx/le06hRI+bMmXPPcU9PTxYsWJDnmIODA3v27HnYkP91kkQSQgghhBBCCCHEc+/U6FZPO4T/PEkiCSGEEEIIIYQQQjwBK1asyPf40KFDn3Akj0YKawshhBBCCCGEEEKIB5IkkhBCCCGEEEIIIYR4IEkiCSGEEEIIIYQQQogHkiSSEEIIIYQQQgghhHggSSIJIYQQQgghhBBCPAJHR8fH3mfx4sWJjo5+Kvd+ENmdTQghhBBCCCGEEM+9aa/2ICcj/bH1Z1/AmbfmLnls/f0XyEwkIYQQQgghhBBCPPceZwLpn/S3ZMkS/P39qVixIgEBAdy8eROADz74gK5du9KoUSOKFy/OwoULeeONNyhXrhyBgYHk5uZa+/jqq6/w9/fH39+f8+fPA3Dx4kWqV69OlSpVePfdd61tU1NTadCgAZUqVaJcuXL89ttvjz7oB5AkkhBCCCGEEEIIIcRj0qJFC06dOkVISAgvvfQSX375pfVceHg4O3bsYOXKlQwZMoTmzZtz6dIlHBwcWL58ubWdi4sLZ86c4bXXXuPtt98G4K233mLw4MGcO3eOIkWKWNs6OjqyadMmLly4wO7duxk+fDhms/lfGZskkYQQQgghhBBCCCEek2vXrtG4cWPKlSvHjz/+SEhIiPVcy5YtsbOzo06dOpjNZrp06QJApUqVuHbtmrVdv379ABg0aBAnT54E4Pjx4wwaNAiA1157zdrWbDbz7rvvUq5cOZo2bUpcXByRkZH/ytgkiSSEEEIIIYQQQgjxmLz99tu8+eabXLp0iWnTpuVZpmZnZweAVqtFp9Oh0Wisr41Go7Wdoij5fn+7/Z1mzZpFQkICZ8+e5eLFi7i7u5OVlfXYxwWSRBJCCCGEEEIIIYR4bNLT0/Hx8QFg3rx5j9THwoULrdfXqFEDgFq1ajFnzhwAZs+ebW2bmpqKp6cndnZ2bNiwgaioqH8S/l+S3dmEEEIIIYQQQgghHkFOTg5eXl7W12+88QajRo2ie/fuFClShNq1axMREfG3+9Xr9fj7+2M2m1m2bBkA06ZNo3v37kybNo1OnTpZ27766qu0bduWKlWqULlyZfz8/P75wO5DUVX1X+v831S7dm312LFjTzsMIYQQQgghhBBCPAVnzpzB39/f+nraqz0e6w5t9gWceWvuksfW37Po7mcIoCjKcVVVa+fXXmYiCSGEEEIIIYQQ4rn3X0/4PAukJpIQQgghhBBCCCGEeCBJIgkhhBBCCCGEEEKIB5IkkhBCCCGEEEIIIYR4IEkiCSGEEEIIIYQQQogHkiSSEEIIIYQQQgghhHggSSIJIYQQQgghhBBC/Mt++ukn+vXr97TD+Ed0TzsAIYQQQgghhBBCiH+q4t6zJBtNj62/gjotIYFVH1t//wUyE0kIIYQQQgghhBDPvceZQHqY/kJDQylbtqz19eeff84HH3xA3bp1efPNN/H396dkyZJs2bLlnmuXLVtG9erViY6Oplu3bgwYMIAaNWpQokQJ5s+fD4DZbOb111+nbNmylCtXjrlz5wLQp08ffvvtNwBatWrFyy+/DMCUKVMYNmwYoaGhlCpViu7du1OmTBkaNWpEZmbm43gkkkQSQgghhBBCCCGEeJyMRiNnzpzh22+/5Ysvvshz7tdff+Xbb79l27ZtFC1aFICYmBiOHTvGunXrGD16tLXd2bNnCQkJYefOnYwcOZLr16/TpEkT9uzZY70uNDQUgH379tGkSRMAIiIiGDZsGFeuXMHFxYWFCxc+lnFJEkkIIZ5B586dIyAggMDAQAYMGICqqk87JCGEEEIIIcRDeumllwBo0KABN2/etB7fv38/3333Hdu2bcPT09N6/IUXXkCr1VKzZk0SExMB2Lt3Ly+//DI6nY4SJUpQv3599u/fT/PmzTl48CAnTpygXLlyeHp6cv36dY4fP06zZs0AKF68OA0aNACgRo0aXLt27bGMS5JIQgjxjDGbVcqXL8+BAwfYu3cvAMeOHXvKUQkhhBBCCCHuZGNjg9lstr7Ozs62fm9vbw+AVqvFZPpzWZyPjw+ZmZmcO3cuT1+32wPWf0C+3z8k+/n5kZaWxrp16wgMDKRhw4b8+uuvODk54ebmBoCtra21vU6nyxPDPyFJJCGEeAakZOn5bNVZKo76g1KfbaLVD/vZeCYaADs7O7y9vfnyyy8JCgqiWbNmhIeHM3HiRDZu3AjAmjVr+P777xkzZgzbt28HoH///oSHhz+tIQkhhBBCCPGfVrx4cZKSkoiNjSU7Ozvf2kd38/b2ZtWqVfTv35/jx4//ZdsmTZqwYsUKjEYjUVFRHD58mMDAQABq1arFzJkzadGiBUFBQUydOpX69es/lnH9FUkiCSHEU5alN/LitP0sP36DbIPlXwiuJWTy2riZlChVnri4OOLj44mMjCQ4OJhp06bx9ddf07NnT5YtWwbA8uXLeeWVV57mMIQQQgghhPi/Ymdnx4cffkidOnVo0aJFniLbf8Xf359ff/2Vl19+mQsXLty3Xe/evalcuTIVK1YkKCiIr776Cm9vbwAaNWqEyWSicuXKBAQEkJqaSuPGjR/LuP6K8rzW2ahdu7Yqyzv+mcOHD/Pee++h1WqpXbs2kydPznP+tdde49y5cyiKwvTp0/H396d///6MHDmSMmXKPKWohfjvWXggnK83X7QmkO7kYKMlKHEDQU0CGT16NEWLFiUtLY2IiAgqVqxIZGQkR48epW/fvmzcuJEvvviCYsWKsWDBAi5dusSCBQto27btUxiVEEIIIYQQ/64zZ87g7+9vfV1x79nHukNbQZ2WkMCqj62/Z9HdzxBAUZTjqqrWzq+97olEJZ5Jvr6+7Ny5E3t7e3r16sXZs2epWtXyC2I2mxk+fDh+fn5cvnyZ4cOHs3LlyqccsRD/TWtORd2TQFKNBhSdDTqNQoZqQ0xMDK1ateKnn34iJiYGJycnnJ2dqVevHj169KBLly4AuLi4MGPGDFavXk3Hjh2ZNGmSJJGEEEIIIcT/hf96wudZIEmk/zN7L8fz447LhMakU8jJlv4BJeld3xedTodWq6Vp06a4u7vTrl07Bg4cCFiKhWm1WmsfkyZN4ty5cwQFBfHll18+raEI8Z+hcu+M0PRTm0nZ+yuKopBcpAiffbCDBX36Uq1uANkpieTm5jB9+nT8/PxYt24dmZmZbN++nXr16nHp0iU++OADChcuTHp6OgBdunQhKSmJqKgo+vTpw6hRo570MIUQQgghhBDPOUki/R9ZdDCccZv+XDKTlmNk4h+hrNp+AGN8Ao6OjsTFxbF9+/Y8SaNPP/2Ud955x/q6YcOGTJ8+nQ4dOhAZGUnx4sWf+FiE+C/p6F+Mi9FpZBv+3NnBuUY7XGp3wsFGi+OhmbQZvxbnViMAiPz1U76buwbvwgaSkpJo0qQJERER7NmzB61Wy7p161i+fDmAdV30qlWrSEtLo3PnzgwZMuTJD1IIIYQQQgjx3JPC2v8n0nMMjN0UkmfJTG5UKGFz3mHj10PQOBcCoFq1atYE0rhx43B1dSUqKopGjRpZr6tRowYAVatW5dq1a09wFEL8N71cx5tCTnboNIr1mKLVYa/TEFjWnbAkPXqDkfAVE4g9HUx21CU+GNCVjl1fZt++faSlpREdHc2JEycA0Gj+/NN++3tVVRk8eDDjx4/Hy8vryQ5QCCGEEEKIf4nZbH5wI5GvR3l2kkT6P7H7UjzaOz6gAmgLuKNxcKbwy19x6WYCFy9etH7gNJvNlClThho1auRJIAGcPn0agHPnzlGyZMknEr8Q/2UF7HT8Nrge7k621mMKkHZ8PXNeDSTtwl5SD6/CbNRjTIrEtrAf+uxMEtKy0Wq1zJo1i6CgIL744gsAChUqxM2bN4mKisLV1RWwJIWbNWuGk5MTAQEBBAYGMmDAAKKjoxk3bly+caWkpLBq1ap/ffxCCCGEEEI8Cq1WS3x8vCSSHoHZbCY+Pj7PKqSHIcvZ/k/kGszcvRFf7s3z6GOukBz8CympUSQlJbFt2za6detGu3btmDhxIoqiMHfuXObMmUOZMmU4ffo09vb2TJ8+nRs3buDl5cW4ceOYNm0aAwcOZOzYsU9ngEI850asPkdylt76WgVsqrTGp1p7krbNIDcqFI2DM64Br5BxIRhTUiSm4hXQZieTlpaGo6Mj8fHxAHzxxRd0794dVVWZNm0aYEki1atXj8WLFzNkyBD69+/PgAEDuHnzJiNGjMg3pttJpNtFu4UQQgghhHiWlCpVirCwMGJjY592KM8lrVZLqVKl/tY1kkT6jzl8+DDvvfceWq2W2rVrM3nyZADqlSqEwWQm8Y+pGBKuAwqFWr2B9zu/kbpzFobUG0ycOBFbW1uWLVuGVqtl4MCBBAcHs2bNGiZMmIC9vT1lypShY8eOvPfee3z//fdotVoGDRpEQEAAO3bseLqDF+I5dTU+g2PhSehNf2Z6VaMBQ3IkSX9MxZiegGoyYmtfgIT131ka2Nij1WrRaDRs376d0NBQwsLCiIiIwN/fn3379gGQYzDx2+HrtJ+0A5Oq0q5KUbrU9QbAzs4Ok8lE7969mTFjBh07dmT9+vUsWrSInJwc4uLi2LZtG0FBQSxfvhxPT88n/myEEEIIIYS4HwcHBypXrvy0w/i/IsvZ/mN8fX3ZuXMne/fuJS4ujrNnzwJgNKkYTSZc6nejSO9vcW83jNT9SzBlp5MdfYUzZ8/x22+/kZ2djUajYf+VBEauOcucvWEk6TXY2toBULp0abZs2UKbNm24ePEi8+fPx8vLC0XJu1SuR48enDp1irNnz/LSSy898ecgxPPkfFQaWm3e36Hsa8dJ2vozZn0WZn02aDSoRstMJa2jK/Zepfj4h0UUL16cadOmYTabGT9+PF9//bW1j/QcAx1/2sdXG0I4dj2ZkxEpTNp2idqDv6ZCpcrExcXh7u4OQIECBfjss88YPHgwq1ev5p133mHIkCG0bNmS4OBgSSAJIYQQQgghZCbSf0GOwcTmc9FcjE6nmJsDnappsAd0Oh1arZamTZsSm2tDhltFnPxbAZaivSgKCRu+o3CLVzHauZITH4urqxs9Zx/i9M1UsvQmciJiMd6I5pVZB/m4jgNarZZTp04RHx/PpUuXsLGxyTemKVOm0LNnTzQaDQsWLHiCT0OI509BRxuMprzrTR3L1sexbH0ANApEzn0Le99qZF06gI2jM/rYa7xYxpYZSUk0bNiQlStX8vvvv7Njxw5Wr17N119/TUKuQm6F9tj41bL2m20wofWuRfPW7dEdns+GDRus51q0aMFbb73FF198kac4txBCCCGEEEKAJJGee6Ex6XSfdRC90Uym3oS9jYavN4cwrLotCQkJODo6EhcXR4U3ZpB1M816XfLuBdi4+5B+ciOJu+bToOo3KGYjBbx8OBmRQo7RTPrprWSc3IgpJ4OtM5I4NjWRg9s3MHr0aOLi4u6bQALw8vKiVKlSaDQaihUr9iQehXiMoqKi6NChAxcuXCAjIwOd7v5/KlauXMm7777LjRs3AGjUqJF1KZV4OA1KuWMw3VsMUDUayL52gpQ9CyjkoKWQqy03MDJvxUYmvtGFqVO+x8vLi4MHDwIwe/Zs6tWrZ00odZofiinbcE+fJp0N20Ni6eJUAAcHB+u5GTNm0KdPH2bPnk2XLl2wsbHBZDIhhBBCCCGEECDL2Z5rJrNK77mHSc4ykKm3fNDLMZjJTEvlg/eGMW7SVACqVatGCfcC3F5xlnZ0LTbu3rgF9sKrx3hUkxEfXz9at25NdEwcsXuWkBsVSvrR1RiSo8BkJDc5Gur1ZvTo0axbt47r16/j6enJyJEj843tzJkzpKenExcXR2ho6BN5HuLxKVSoEDt27KB+/foPbLtixQq8vb2fQFT/XTqtBgfbe3dFyL52nLSjq9E4uKDRaHm9dQ2UnFSmfdiHK5cvk5aWxqlTp3BxcaFu3bqcOHGCsWPHMnLkSMaOHUv4qm8xJkfd02fMb8OJ/PUTomJiadXKMjvxxo0brFu3jhEjRvD222/z5ZdfUqRIEZKSkujWrRtJSUlP5FkIIYQQQgghnl0yE+kZcO7cOYYMGYJWq6VMmTKMHj2aUaNGsWjRor+8bs+leLL0xjzHVLOJhA3f4dnsVXZc19O1nB0ajYZ+ASXZdiGWpEtHyY0MweOFT9DHh5O4+SfsbHVUr1KBlNRUDJnJuAa8gikjGY2jKyX6fE/04o/JjbxIzLa5bDAlUblyZXQ6HdnZ2QDMnTuX6dOnk5SURHJyMj/++CMffPABv/76K3q9ntdff52NGzfeUzdJPFv0RjPbLsRyOS6dIi72tPcvaj1nMBho06YNBoMBT09Pfv/9d7RaLRs3bqRly5bMmzfvnv7eeecdAgIC6N69+5McxnOrlEcBzkam5jnm4FfLuqTN5uQyVFWlX79+/PTTT4DlfQF4//332bZtGwMHDsTX15fs7GzmzJnDuWHTOb9nDe6t37L2eXuZnEcBWxZ81gKNRrH+rdm8eTMAXbp0se7ItmXLln934EIIIYQQQojnhsxEegaUL1+eAwcOsHfvXgASEhIe6robyVn31FHJurgPffRl4nbO4/thPYmOjgaglm9BXmtciuTtMzGmxhK75FMyjq+j9KuTaRNYl/UbN7Fhy3Z0Ll4krP8Oxc4BxcYOjZ0jdl6lsC1cEp1WQ0CDBvTq1YuZM2daa6a8+uqrHD9+nAoVKjBt2jT69u1L+/btcXNzY9iwYWzatOm5SiBFRUVRs2ZN7O3tMRqND2x/6tQpgoKCCAoKws/PjylTpuQ5Hx4eTv/+/f+dYB+Ty7HpBEzYwccrTjNl+2W+3HCBeuN3kJJlSVLodDo2bNjAnj17qFixIjt37gRgwYIF9O7d+57+hg0bRoMGDSSB9Dd0qVH8nmO3Zw3F/Dac5MR4hg4dSpEiRQgKCqJp06b88ssvALz00kts3ryZbt26ATBmzBiaNGlC0vaZFKzS5J5+HWy0DGteFo3m+fm9FEIIIYQQQjx9MhPpKbmRlMUv+69xIiIFT2c7+jUoScMy7tYtt6OioujWrRvXrl1j7dq1nDhxgkmTJgFw6NAhypYtS0x8IoYiVbCv1o6E1eMo8eZ8nCo1walSE2x1Gl5rXIoGDcrToEEDAN5tWQ77lcF8t/USRrMl+ZRrUjlk8CE5PQsbz5KYjXpyIs4Ss+hjtM7u6OOukXXpIIpGh9ms58MlM6lfvz6BgYHcuHGD8PBwWrZsSZMmTXByciIzMxOz2czZs2c5duwYtWrVyjPuh6m1ExMTY00+xMbG0rp1a6ZMmULHjh1JSUnB1taWBQsWUKJEicfyXtwd0+2lXJ07d863/alTp3j33XcBuH79OsOGDSM4OJihQ4fi6upKhw4dHktcT4rJrNJ7zmESM/TcTklm3VoeGR6bTlx6Di42MGTIECIjI4mNjaVs2bLs3LmTgIAAbG1t8/R36dIl7O3t70mmib/2Yo3ijN14gTvzwncW165TsiAajYYRI0YwYsSIe65v3bo1Hh4eAEycONF6fPGh64zbFIJWUVABo9nMa41L0bu+7786HiGEEEIIIcR/j8xEegoOXk2k1eQ9/HroOqdupLDtQiw9Rk7Fy7esdcvt5ORkfv/9d95//31WrlxJp06dCA4Opnv37nz22WecPXuWKpUqoFMg+9J+dC55t9/WKNCznk+eYyuP3+TbLaHWBBJAeughYnb8gp1PVXTOHphSY7HzrkKh5oMxxIaRtG0GiqLBs5g37dq0YezYsUyePJmwsDBmzpxJ7969CQwMBKBu3bqsWbMGX19fTCYTBw4coGHDhnlieJhaO0WKFCE4OJjg4GBatWplTcr8+OOP7N27l+HDhzN58uR/9B7kF1OtOnU5Fp5EfJaZggULWs+Hh4fTrFkzXn75ZWrUqEFYWBi2trYYjUYqV65sjW/ChAnExMRQpkwZAEaPHk1gYKA1+fes2nMpngy9EfU+538/doMtW7ZQrlw5du/eTdeuXVFVlXPnzrFu3TratGnD+fPnrfWxypUrR48ePfjoo4+e3CD+Awo62dK6SlFs8vmr7GCj5c2gMvled/HiRTp27MiwYcPyPd+rvi8nRrVkWq+a/NSjBkdHtODdluWeq9mBQgghhBBCiGeDJJGeMKPJzBuLj5NtMGG4Y8qB1q8O7v2moilQiA0bNlCpUiU0Gg3FixcnJSUFVVWZteIP5i3fQLVOr5KtN9E4MJBqXjaYIi+g0WqJXz2emAXvos1OortXHD1eaEtQUBAODg4YTWb6vNiS+K0ziJr3NpkXdhO3ehzJexbi0fFDdAXcMWUmo3X2QFEUbIuUxZSVgltgL3x9StAyoCbOzgUIDw9n165d1K9fHzs7OwDrsraAgAC+/fZbGjZsSMmSJfn999+pW7cuqqpyIiKZ34/e4ND1NJxdXPM8k4EDB9KiRQteffVVxowZk+fcnj17CAoKAsDPzw+wLK3Sau8tQvx3XI5NZ96+a/x66Do30wx8suEqJyNSGLTwGE1G/45n+VqcO3ee2rVr88cff3Ds2DGioqIYOnQoCxYsYOvWrbRo0YJLly5Zk0a1atWiTZs2AERHR3PkyBH27t37UMWp/4m/u/zubuGJmfcsi1RNRmKXjiA3Nozv3uuHh4cH69ato0OHDoSHhwOWmkc7d+7kjz/+oHLlyowdO9Z6/auvvoq7u3ueGTH/1OHDhwkICCAwMJD33nsv3zbz5s3Dz88v3yV2z4OJXatSpbgbjrZaNArY6TTY6TS8EVSaphUK53tNhQoV2LdvH40bN75vv/Y2WhqX86RphcI4299/V0UhhBBCCCGE+CuynO0JOxSWdM9W3qrRgKKzIcdg4lqqSgsHB+ssgWvXrjFz1my+n7eUrKQ4inf/in59+uBSqTHq4UWYDTkE1ajJhSvXGDJpNtePbMXXKY7hb38Ab/djxowZtGzZktDYdIxZabgHvIKL+SWiFwyj+KCZpJ3cRNzyMaBo0bl4oOZmoaoqaUfXABC38isw5DDui89Zvnw54eHhODg4cPbsWXbv3o2zszNJSUlMnz6d2rVrc/HiRRo2bIi9vT3r168n3ail85Q93EzOBhUUDdjptGhyLcmOI0eOoNVq2b59O+PHj0ev11ufy7Fjx/D398+z5M1kMjFu3Dhmzpz5SM9fbzQzdMkJdl+KR1VBUSDXYEZRwKyqpOcYMZnMpKWmYOtclHfefY8lixfRsWNHKleuzM2bN6lSpQoA8fHxVKhQwdp3UlKStRjx9evX8ff3ByzJpa1btz5SvPejqiqp2QbsbbQPXH73ICUKOqLTKuTekX9StDrc279Pwsovib10moYNG3LixAnr+eDgYMaMGcOYMWNo1KgR+/bts57bt2/fPcf+CaPJTJbBhI+PDzt37sTe3p5evXpx9uxZqlatmqdtp06daNy48T3JyOeFs70Nq94M4Nj1ZA6HJeJoq6Nt1SIUdXV42qEJIYQQQgghhCSRnrSkLD13rxuybOO9BgDFx49WrVpZP4CXKFEC+yotyMk2YY5ZRfT6SZjSE3Br/wEO5eqTMKMvXl6FcXV1YXi7SgQ7xrF7927AUjtp165dLF26lJDodLSOrmidLMu0bNyKknPjLNmXD6KaTTiWqY1Lg5dJ3DQFVZ9F9tWjFBs0g3rVKnJ15pusWbOG69evs2PHDurVq8fq1auZMGECTk5OvPLKKwDY29uTk5MDQMuWLWnRogUtJ+3mWmIWpjuW0GXmmoiPTiM5U09YWBg1atQALMmWgwcPWtutXr3ampS57YMPPqBv376ULl36nmd79y538+bNu2fJzjd/XGT3pXhyDHcl8u56T3Tu3pgzk4jItqNcuXKkpqZSrFgxzp8/b52BdeLECev26AaDgaysLKpVqwaAr68vZ8+eBeDkyZP3xPpPrDp+k2+2hpKYkQtAozIefPlCFev5devWWZfQHT58mOzsbDZs2MA333yD0Whk9OjRtGnThmHDhnHq1ClMJjNKvdfBxi3PfbQOznj3Ho/noamPNf6HlZZjYNyGENacisSsqjjb2/B6k1IMDixlnY02cuRIdu3ahZ2dHatWrcLDw4OMjIw8/YwZM4bw8HBu3ryJj49PvjvJPUsURaFOyULUKVnoaYcihBBCCCGEEHlIEukJq1LMJU9NIvizeK6dTsPgwFKk6gri2u592v6wh0JOztjUeQUXoxlDegIFqrQgefd84lePx5QWh72is87kCQoK4uDBg/Tq1Yu3336bkJAQ5s6dS+fOnVm5ajVazZ2rFxUcy9bHtrAfKXt+xb3tOyhAkZ4Tbp0FB1stX75Qhdd/c2bZsmV5Yu7cufMDZ74cuZZEdGpOngTSbaoKK47foKafH7t27QLuTbZs3brVWmcHYO7cuSiKQt++fe/qSyVLb6JM2XIcOHAAgAEDBnDs2DHq1KljbZdrNPHbkYh7Ekj3xGYyknP9NBgNTP/mC9oH3bsczWAwEBUVhbe3NwA7d+7E1fXPZXpFixalVq1aBAYGWhNLj8OCA+FM2HyRbIPJemz3pXg6Td2H460Zbp06daJTp07WWWhms5nvvvuOnTt3Yjabadu2LW3atOHrr7/G0dGR7du38/u6Pzjk3BK90UyO0TIzS2try5cv1mTmsenWew0cOJCIiAh8fX2tY09PT6dHjx5cunSJGTNmUKdOHYxGI0OGDOHEiROMGTPmbxcb1xvNdJ1+gPDETOuyz6RMPZO3XebEyVMkJCSQm5tLWFgY+/fvR707C3iXsmXLMn/+fN544w0OHTr0ry8xFEIIIYQQQoj/IkkiPWGlPAtQ168Qh8MS0d9Vh0anVbDVKfSYfYhcoxlVBUN8OHFrvsaUloDG0QXHCoHkRl9C0WhRDTkYbewYOHAgR44coXv37sTHx+Pt7c3EiRPx8fGx1ujRahR83R0x6BT0xns/cAeUdqewsx1bL8RiVlUalfHgo9YVKF/E+ZHHejEm/Z6EmWoyErf8c/SxYYwb2oeV834iNzeX5s2b4+vri4+PpRh4aGgovr6+ODj8uYznzTffpG7dugQFBdGkSRPGjBnDrwev89POKyRn6dFqFDpVK8bI9pWws7PD29ubAQMGcOPGDXx8fChYuCiqTSDJe34l98Y5bAv7YdZn41z7BeJXfYWam0XEpK64t3kHWw9fHPxq0K5FY4pnX2Xs2LHMnz+f8uXLM2jQILZs2cJLL73EoEGDAMvOWLdrNt12Z42gxyHXaOLbLaF5EkgAZhUy9SbSUnOsx+6chRYfH09ISAgtWrQAIC4uDlVV+eabb9ixYwcGg4GKFSvyWufSTNl+CQVLkk+r1fDVhhDscwzA/Zce3rhxg/3795Oamsprr73Ghg0biI+PZ+TIkbi7u+cpjv6wNp+LJjIlO0/dMICMtBQWLBjL0R0bOH/CUiMJeGCR6Nuz3apXr86VK1ckiSSEEEIIIYQQj0CSSE/Bz71r8fZvJzh4NREbrQZVVXGy0zG+cxXe+u0kucY/Z8roCpWg+GBL/Z/I2a+TfeUIGgdXvN/8BX3EGcyHFqDVapkxYwaTJ0/m3LlzKIrC7NmzWbZsGV999RVz5swB4PyJI+y5FM/YjReg9zcoQAlvH35YuJDONUqg0eT/QfxRa9t4Ottho9XkGY+i1eHVfRw6jUL/gJLUq1eJevXqAVh3ZAMoX748K1asyNNfbm5untcTN19k/oFwa1LFaFZZ/PtKpg99kRb1q3P9+nXs7OzYvn07EydOJC0jE31aIvrYKxTpNZHMkD1khx3HtrAfNh4+uLd6k8Q/pqLqs7DzqYqzT2U+7N+FKsUtM4z69+9vvXfr1q1p3br1Y3lOD+t8VNp9z+mNZlIyLUmd2NhYRowYwerVq1EUBQ8PD6pWrcqWLVvQarUYDAaSkpIIDg5m7969bNu2jZ/nzOennZfzJG30RjN6ICImHb3RfN+lh2XKlKFAgQIUKFCA1NRUANzd3a0JwUcpgr7xTDRZ+j+TZcb0ROJWfIEh7hq+/b8jNE1H+fLlWb9+PW+//TZgmZGmKAonT55k8+bNlCxZks6dO7N//37s7Oxo164dp0+fpk+fPqSnp/Piiy9iMBhwcXFhyZIlODs/esJUCCGEEEIIIf4fSBLpKShgp2P+gLpEJGZxIToN9wK21PIpyJx9Yfdus37HMh3FxhZFowWTgfjV4zHEh+NXpCDr169nwoQJ1K1bF61WS3Z2Nmlpafzyyy+EhoZSt25dQkJCsLGxoXE5T7aWa2L9wP1vanaf3aQAdBqF7nV9HrnvpEw98/Zfy5OgArAtXQ/figHoQ5cRFhZmLW5dvXp1Dh48SC0PI8mFS1raFi5FdthxFEVB0dqQc/00zrU6kH35MOSm02vou9YE0rNAqyj3/nzw5+wuY9xVWrduTePGjblx4wadOnUCLMm5999/n+bNm6MoCu7u7kRFRXHx4kW8vb3p2rUrYQmZGErnv8xPBXaHxuF3n6WHV65cITMzk9TUVFxcXABLkfGbN29SqFAhTCZTft3+9VjvSmhqHZxxrtmepK3Tid/5C5+fXc7snybh6+tLw4YNrTWR9u3bx9dff42NjQ21atUiLi6OWrVqERISQvPmzfH29qZBgwbk5OSwaNEiihYtyuzZs5k/fz5Dhw613s9sNlt3HRRCCCGEEEIIYSFJpKfIx90RH3dH6+ukTD36u5Ii2deOk7JnIcaUWDSOrtj71ST99FYcKzcla8d0UhKNpKWlYW9vT1xcHLa2ttjZ2eHk5MQvv/xCgwYNKFmyJDY2ebf1/rcTSGDZVnxmn1oMWngMk1lFbzSjVcBGp+Gj1hUoU7hAnvZBQUEEBQU9VN8HribcM8tJNRpIP7GBmEsH0Vavy7fffkt0dDQvvPACZ86cAWBs76bsWjoTos6TfHgtGlsHHG21lKpQlejTWyg18BtiIo9R2NWBcd1qPrZn8ThULuaCjfbe903R6vDp/TXvtijLG0FlAPj888/ztGnXrh31GjfHYFJRs5IpWLCgdZezV199lcwTuWwLic1zzZ9LD6/x4aBXmDd1Erm5uTRr1gxfX198fX0B8Pb2ZuDAgVy5coXp0y31kzw8PBgzZgynTp1i9OjRf3usQeULs+1CrHU5pKKzxblaazLP76J4r69Z1Lsc77/9Oh4eHmRlZTHw9bep27w9aemZvDFhLi38HPn5+3FotVrWrFmDv78/iqKg0Wisu8oVLVoUwFqkG6B+/frUqFEDBwcHa3FyIYQQQgghhBAWkkR6htTwKYhGsdS4ue120W2ApG0zMMSH41C6Fk7lGlDQzQ23c7/j6+tLQEAArq6uFC5cmHPnzpGamorZbCYuLo4hQ4Ywbtw4RowY8Vi3Xn8YDct4sOuDIBYfvs7ZyFS8CzrSq74PFYq4/K1+oqKi6NChAxcuXCAjIwONohC5fjLZcTcoUKMthsSb2Bb2I/XwSlSjnty0Mrg5OdGmTRv69u1LsWLFqFChAuX8fBj8QlOWrPgFZwMU86nMrIF1SQ+z5b33DnPo806M0B8mJyfniSTa/g6dVsO4F6vwwfLTeYqD22gVPJ3t6FXfN9/rTt1I4bNVZ7kSl46iKBRysmVUh4q0q1rMmkC5sW0esbuDUTU2FO78GYakSJK2Tkfr7IFq1HPlzHE2btxITk4OERERLFu2DE9PTwBOnz5tvde7775L7dq1OXTo0COPMzYth4l/hORbkF2jKAwK9MPN0Zbk5GS2b9/OqEkzeXfsjxTtNprcfUuZsXgVC4uWxS08miKu9pjNZmxsbNiyZQsTJ04kOzvb2l9GRgazZs1i8+bNACQkJDBixAhKlCjxyPELIYQQQgghxH+VJJGeISUKOnD352bVaEDRWWYRKXaOKDpba5bJYDKTa9ZgMBg4deoUly5dol27dpQvX55atWqRk5PDhQsXKF68ON26dXvSw7Eq4mrPB63K/+3rVFUlPiMXjaJQqFAhduzYYd0RrmFpD3ITblKk9zfkRJzBkHgTc1YKHp0+In3/YqqV82Xr8mBcXFz49ddfCQwM5MiRI0RGRvLjjz/SqlVLPvjgAzIizvLJwG6sWLHCmgwZN27cYx3/49TevxhujrZ8s+Ui5yPTsLfR0rlGcd5vWQ4Xe5t72ofGpNNz9qE76gupRKfm8P7vpwkLvWDd5cxJn0ipAZPIyDUCkHpgKZ5dRqG1tSNq9hAa1LHMyqpWrRpLly69b3xTpkz5x2P85o+LpGYb8l26Z2ej4b0W5YiMjKRSpUpk6E38ejodjbsPepMZbYFC6LMyUDLTuH7yOAtOnaJrh9a0a9cO+HNZI1h+vgYOHMi4ceNwc3MDoHDhwpJAEkIIIYQQQoj7kCTSM+TUjRTsdAq5d+yeln3tOGlH1wBgU7AY9v6tyAzZQ8xvwyE3E6WgE9HR0WRmZtKoeRuuXjyHQVVQFIVmzZoRHx/P6NGjOXXqFBUqVODy5ctER0czYMAAWrRowfXr13F1dWXWrFmULl2azZs3Wz9QP027QuMYs/Y80Wk5oIKvuyNjX6xiPf/12M8tO9et+AKXup1RzWZyIs5hPL0FNTOZ6qWKEl21Kh4eHrz88suUL1+eVatWMWjQIN544w0OHz7MzZs3CQ0NZefOncyaNYvhw4c/xRE/vIZlPFhbptFDtf1+2727uQFkpqXy2UfjCT2whT179tC0cSCfdazLqwuOoTeaiMvNwtbVA2d7HS7l/0wAFi9enN69e7No0SJmzJjB/PnzadKkCYcPHyY4OJigoCC2b9+OTvfof1o2nY3BlH95JnIMZusSRkVR2Hw2GsuEsT9njalmE0k75mBXpDT7o0zY29tz9uxZAOuyRoDRo0fTsGFDmjVrZj0mdZCEEEIIIYQQ4v7kE9MzpICdDt1dH2Idy9anSM8JFOk5Afe272DjVsT62m/IdNZs24tHi8EUHfY75nafQ0Efan21nTqd+jF//nxKly7NDz/8QOvWrdm7dy8AX3/9Nc2aNePDDz9k4MCBhIWF0a5dOxYuXIir69MvJL33cjxvLDrO9aQsyw5hJjOX4zLo/8uRP2fKVOqKjYcvhbtZav8YEsJxqtQEY3oC/pXKM+KzTwFYsGABy5cvx9bWljZt2rBv3z569+7Njz/+yKBBg/D09LRu+/5ftP9Kwp212QFLkiVhw3e4BQ1AcSxI+fLlOXToELV8C/H9S9UwmFQ0do7o0xJJy8ggJPQSsWk5wJ9JFqPRyPz589m/fz9dunR5rDEb8skgpR5eScSUl8mNuUIhV2e6dOnCjh07iE3LJdeYN0mWE3GG3JvnyQo7yZvNK5Cbm0tOTg7NmzfnzJkz2NjYEBUVxcSJE1m9ejVBQUH8/PPPj3UMQgghhBBCCPFfJDORniHNKhTGdPcn/vvQaqCUpxMHwhJYdCgCvdFMzJaZ2Pj4k20wsXD9Lhx8/LmQ48wLn07DIzuDXKMJo9HIli1bqFnTsjype/fuDB06lGPHjjF16lSOHz9Oy5Yt7ynM/CR9teFCnpo/t2UbzCQmZrFt31HmD3+V3PhwEjZOwaFMbQxx10g/uQnMZkJCQvjpp5+s17377ru8+OKL9O/fn169eqHeesa3l6+dPn2a0qVLP5nBPUFRUVGEzRpKTvx1fN5fgaLRkrj5R3JunMeUmUT0qq/pemU1melpJCUl4erqisG1BB5dRuMS0J34lV+iK1gMrbMn1xOzSM02WPtOSEjAx8cHrVZL9erVH2vcNXzcOBqebH2tGg0YEq5j61GS6n1GUubGRhYtWgTAH+dicC9bg0wfyy58Baq2wKFsfYx1OhO/6is6vdSLi4d3MHv2bOLi4qhTpw5Lly7lk08+Qa/X33Pv/OqF/fHHH5hMJtq3b/9YxymEEEIIIYQQzxuZifQMcba3YfyLVXGw0XJnTWc7nQYbrYKTnRYHGw2OtlrKFnZmTr/a/BwcZl2uVKj5YNwa9UI1GnBu2Atdy/fJUexIyoHToWF4+pQF4JNPPuHQoUOYzWYcHBysRZCDgoLYu3cvmzZteuJjvy1Lb+RqfOZ9z6fnGEm28cBv4CRsPf0AMGel4VSlOV6vfIWNhy9ORUrm2a49NDSU77//nhdffJHMzD/7trGxoU2bNkyfPp0hQ4b8e4N6SgoVKsQb38zHvngF6zFD0k2KD5lJ4a6j8K3Xhv1793D06FEiIiLo98EXOJdrgMa+ALZFylC0/w+4tx2GorNFBYo17UWjRpZldB4eHty4cQOz2Zxnidjj8EmbCtjp/vwFyDizBacqzVEU6FXfhzVr1uDq6kqlSpWoXcyOxO2ziZjyCjd+7EnU3Dcx52QQv2Y8Zn0WO1f/So0aNWjatCmBgYFUqVIFf3//PD8fD9KmTRtJIAkhhBBCCCEEMhPpmdOlVgn8PJ34efdVQqLSKOJqz6uN/Agq78nuSwkkZORSsagLNbzdiM/IJSefejf51VHKvXmB4l2+IWZGP1JTUylWrBjvvPMOBQoUwNfXl9mzZxMaGkrTpk1xcHB4wqP+k1aT/45o1u3m48L4cHBPKN0Iffw1DCnRGNPiMKUnYkqNxZSdjq6ABwEBAbz22msEBQVx7do1atSowVtvvUVAQACtWrWiWLFibNiw4QmP7t938Gois/aEcS0hAz+PAnSr7cdsjYJOo5Cw51f0cZY6Uh4NuhFUvjBgSaYBJKVmoHX3BiD35gVS9i3GnJsFqhlTWjzTPnmVoDk/AqDT6ejXrx8BAQE0aNDA2sfjcCgsEbNqqXJkNhnJiTiHZ80OpO9bzLerDlHYvzGHN6+gZZMAvvpiDHW9tOwsVASvFz4kZvPPmMKPUv3j38j+/ROyTQrXK/cnp3QW6obvmLl4FUG1K9O1a1cmTpxIlSpVaN++PWvWrOHq1au8+eabDBw4kNjYWDw9PVm0aBGLFy/GaDQyaNCgxzZGIYQQQgghhHgeSRLpGVTDpyCz+tS+53jrykXyvC5gp8Ocz/I3x7L1cSxb3/paNRrw6Pgh2QYThWu1xsHBAT8/P6ZOnUqjRo0YN24ckZGRjBw58qkX1bbTaalbshAHwxLzHFe0Ory6W3ZN0yqQemYHOmcPdO4lUE1GdIWKoaoqts5uLFq1kUZl3GnatCl+fn4YjUaCg4MBOHDgAIGBgUyYMOGRY4yKiqJDhw5cuHCBjIyMhy4i3b9/f0JCQnBwcGDIkCH07NnzkWPIz/TgK/y044p1Zlp4YhaHwhLxdLbjlTol2OgwkMs3z9Ln8+k0dIrj0okDAERERPDKK68Qm5hCgbafoQfsfapSpOefz8jBVsvwNhWoV68k9erVA2DQoEG8/vrrHD58mHnz5gFgNpvRarWPPIat52OYtusqBpPl5zrz/E6cKjWx9K1CdnIsJl0hSpQoQVF3y857bm5uOJkycTnxK/YeTtQt68IbHYpQb/Rp7LxKEbtoHB4d3ichw0irCRtISk4hMDCQ8uXLM2LECNq3b8/y5cuZOHEic+bMoVOnTvTo0YOff/6ZFStWPPJYhBBCCCGEEOK/RpJIz6Hw8HDq1atHxYoVyU7Iwa7TKOtuVjkRZ8iJOItbo17W9nfOTPIo5kurVq3yrf3yrBjTqTJdft5Ptt6EOZ8SUSYVClRtToGqzUnaNoPcqItonAqipseTG3OZF+qVo0qVKiQkJFCyZElUVaVnz5689tprjBgxghs3bqDT6Rg7duwjxVeoUCF27NhB586d//a1ixcvpkyZMo90378SmZLND9svW3cuuy3bYCIuNYchjUszvmsNGm0ryMw+tQkODubSrTY+Pj4cPHiQ5ctX8O4PS7APfPWe2lw6jUKXmsXzHPvpp59Ys2YNer2eBQsW8O2331KhQgUUJf/ZZA9j6q4reXaTMyRFoo8NI/3UZgwJ19HHhWNIicKhZHWcbTJo1aoVubm5mEwmFi1axPbt29m3bx9D3v0EnVsRivSbQvKehWSHHcOhbANi9/5OLjq0Wi3e3t4kJSWRmJhISkoKJUqUICQkhOPHjzNz5kxycnLo0aPHM1FsXgghhBBCCCGeBZJEek61bNmSRYsWEZeWQ6dp+0nN0pOdTzFqAIcydXEsWx8brcLAhn6UKlXKWpj49gf++fPnW9vfnrXztJQv4sy6txsxedsltl2IvScxohoNKDrL8ilbxYjBbMTFwQ4HTSalGwfSv39/kpKSaNeuHSNHjuTy5cuMGzeOJk2aMHbsWLZv3/63Ekjx6bl8vzWUdaejyDWa8S/uysdt/qwzFB4ezoABA3BxcSE2NpYlS5YQHx/Pxx9/DMCJEyc4f/48iqLQt29f3N3dmTp1Kr6+vo/haVlsOB2V76w0ABV4f/R44s7uIycnh969e1uXZhkMBhISEpg3bx5169blxdp+XPRwJDrVshubooCDjZb5A+ribJ93ydp7773He++9Z30G3333HRUrVqRVq1ZMmjSJIUOGoNVqKVOmDPPmzcs3ubRt2za+/vprzGYz33//PdfuqodVMGiA9fuYRR9j712J9FObyc7NINPGlh7dXiQpKYkZM2bg5uaGi4sL9evX5+zBYFQUYn4bjtbJDfviFVF0NqQdW4dNoWI4OTkRHR2Nu7s7LVu2JCEhAXt7e8aPH0/z5s3p2rWr9fksXrw43+cqBbeFEEIIIYQQ/28kifScMJjMbL8Qy5mbqajpcezYuZPAwEC6dOnC9veH0rZLDy6FhePsXhQvdy9ydRrCZr2JrWdJbDx9yY2+hJKbwZxl2RiP92XUqFG89957NG/e/GkPLV+lPQswtWdNFh4MZ9zGkDyJpNszq1STEWNKDIt/X8HS2T/h5ORDr169+Oyzz0hNTeXYsWPs2bMHT09PpkyZ8kjLrJIz9XT4aS+JGXqMt6ZFnbyRwoD5R7DL/HN3r5iYGLZt28bx48eZOHEiM2bMIDg4mM2bN7NmzRq8vb35/vvvKVSoEPv27eODDz54rEulUrMN1iVgt92uI5Ubc5Vty+ZSyrvYPbWLoqOj6dOnDxqNhr179zJ//ny8vLw4EZHM1bhMirrZE1Da4761qu50O7EJluTLgQOW5XIDBgzg2LFj1KlTJ0/77OxsZs6cybZt26zvjeeuYNJzjfn2X6T3NwB4v/0rqtnEB20qsfWHDxk/fjzp6enMnDmTkJAQpkyZQtXP1pCSbcCYnkjC2gnY+9XEnJ2Oxr4AxtQ4XJycmD9/PqqqcvHiRc6cOcOgQYMYPHgwb7zxBtOnT0dVVb7++uv7jrdNmzYPfCZCCCGEEEII8V8iSaTnwI2kLF6aeZD0HAOZuSZsMFGg9zRef7Eav40bSq1atahQzI29G48yfvx4cnJzKdDAj08nJeLz6hRMWltKeTrxVbtSfPJ6P+tOZJMnT37KI3uwsoWd0dw1g8WxbH0cStchbuWXeHUdxcH0QkyZMoWRI0fSrl07HB0dCQ4Opn///qiqSqlSpfD09CQwMPBvz7Kasy+M5Mw/E0i35RjMRCZkYr51vGrVquh0OqpXr86VK1cACAsLY8qUKaxbtw6wLIMDaNSoEcOHD3+Ux3FftUsWxMlWS6b+z6Vgt+tI5ZzeyEevNGf1nMksWrSIgQMHMnXqVK5du8brr7/OggULGDlyJDNmzKBjx46sX7+eo5t/Jycnh5fffTff+6mqyuyVWxn16UcYzAo+fqWIPHeI8tXrUr9pW4o7awhsUJe2bdsSHR3N+vXrGTp0KBcvXgSgWrVqlCtXjtjYWNq2bYter6d169a82qwnr77QDJ2nH/qYK7gF9iLj9FZMmcl4dhmFzsUDRWeDgg1R6QY6dOjA6dOnCQ4OJigoCICiRYtSv5E7W87cIHHjZAq1GYqi0aJ1csPWqxRufv7M/6QHazZtIzTsOq3btLEuMXRwcKBq1ar06NHDWnB7w4YNtG/fnh49ekjBbSGEEEIIIcT/Nc3TDkD8NVVVGTD/KHFpOWTmWhIEBrQYNLZ8tTmU2oHNuXnzJjVq1ACgVq1aaBSFj9tUoE61yiwfGsT295uw6Z1Avh35AePHj8fLy+tpDulvqV+qEK4O9+78lXVxH/royyQF/8LCEQOIjo6+bx9ffvklISEhLF269G/ff/3pKPSm/JeJmVWVS3HpAJw7dw6TycTp06cpXbo0WVlZvPbaa8yZMwc7OzsA0tLSAAgNDX3sBcyblCtMYRd7tHdNGFJNRtKvnaVk1XrWY8nJyfz++++8//77rFy50nq8QIECfPbZZwwePJjVq1fzzjvv3Pd+X264wLf7E7F/4QtcXhrP5chEtK0+wtx2NCs3bOa3aE+GjRhLlSpVCAkJoWbNmlSuXJmUlBSqVKlChQoVqFatGqGhoWzevJmsrCyys7PpXscHTXYKxTu+Q6HWb5N6YBme3UbjUrczWRf3Alh2jAM2nY1m//79+Ppa6nwFBwcTHBzMwoULGdaiLElbpuJcsx22Hj7WuO1cC+OQEMKYYxoWrt3G8ZOnOOkSwKw9V61tevbsybJlywCYOXMmERERREZG0qlTJ3bu3ElQUJAU3BZCCCGEEEL8X5KZSM+4c5FpRKVk5ykwbc7NQmPniMGksmLTDuZ9O9q6O9bJkyet7XRaLZWLWYoCjx07lmbNmll31npeKIrC9y/503vuEe5M5ThVamLdtaueXyEaNGhAgwYNAAgKCrLOSrm9vGr69OnWa2+feximfMpM3V4mpo+9xqDunfnh+28oXLgwL774IvHx8SxevJiVK1cSGhpKnz59AFi6dCmDBw8mOTkZRVH4+eefH/4hPAStRuH31xrQ4ae9xKblWo/f3t1s5Jqz2N1aJlapUiU0Gg3Fixe3zpq6rUWLFrz11lt88cUXaDT35piz9Eam7bzCrwevY7Rz5XbOStHZoLF14MZvn2HOTufmirHYOLmycOUGhrSpzYcffohGo7HOwNq1axeHDx8mJyeHlJQUHB0diY6ORqtRqFGlAlOGNGLWBh1LTpZAUTRoCxTCkHADgNyb50nZu4hoRSHOnMaKFSsYMWIEQUFBKIpCjx49qFq1KsawQyiZCWQcX497/RdwLFoGl+xo4s32mNNywdENl4AeRCz5nHd3LYTEcJKSkvIU3NZoNBw5coQ333yT9evXS8FtIYQQQgghxP81SSI94yKSsri7HM3tD9GK1gafSjWpV68eP//8M82bN8fX1xcfH597+hk3bhz16tVjyZIl9O/fn/79+z+ZATwGDct6UsrTiat3FV0GcLTVMqBhyX/t3q0qe7Ho0PU89YZuLxNzc7Bh38gW3LwRQYkSJawJK4DSpUtbE0i3rV+//l+LEyzPIjXbkOfYnbubmWMvs379+jwFrtW7inHPmDGDPn36MHv2bLp06WKdRQVwIiKZfvOOkKU35kmu6eOukRN5EcPGSZj1Odh6lcbeuwoZZ7bw3vsfoNfrqVSpEkajkcjISAoXLoyjoyOLFy+mYsWKvPTSS5QpUwY/Pz/AkjisU7IQHu0rsmrOn3+ibkfqULoODqXr4Odmw6rX6tC5c2c+/fRTRo0alWcsmRkZqKpKeGIWOQYT2swE2h1Zikfjt1EBz44fAZAVspfCPb4mYelnuLi6AdCpUydef/11OnbsCED58uUfuuC2EEIIIYQQQvxXSRLpGedTyPGebe5vf4jWahQ61ywB5N1d7bZ9+/ZZv8/Ozv43w/zXzehdi24zDpJrNJFzaxc6R1stbSoXoXXlIv/afV9vUppVJyJJzzHkeR/sbTR81r4iOu2zsyL0emIWOo0G+DPDc+fuZglLPqFjx44cPnw43+tv3LjBunXr2LhxI5UrV+bLL79k3LhxAGTrTfSbd4T0nLxFr03Z6SRunY7O0Q197FUUnS06Z3c0Ds7oEyOJjLmCl5cXHTp04MsvvyQ1NRWj0UjTpk3x9PSkYcOG1uTaN998k6dvRVGoUMSZJBstOfnEezPNyPjtEZhuvTHh4eEMHDgQDw8PLl++zKhRo5gxYwZZWVls2bKF+FwNMdHRqKvHY0yNtdZY0idEEDHlFTDqadayFZO/nchLL73E+++/b50xNmTIEAYPHsz06dNJSUnBYDCQk5ODr6+v1EQSQgghhBBC/N9Q7p6J8LyoXbu2euzYsacdxr9OVVVaTt5DWHzGPckkexsNq99sSMWiLk8nuCcsJUvP0qM32Hc5gYJONvSo40OD0u75bh3/OF1PzOTztefZdyUBRQEvF3uGt61AB/9i/+p9/67YtBwaf7Mrz052dyrrVYBt7zV5pL5XHr/JqLXnyLqjcLdqNhG38ktsPHxwKFWblOBfMKbF497mHbRObqTsXUSh0lVxjTqKv78/aWlpqKpK3bp1ATh+/DjHjh1Dp9Nx8+bNfO+rqio/7rjM9OCrGM2qNWF0m61OQ+Kyz4g+f4SoqEg6d+7M8ePHWbp0KcuWLWPt2rWMHz+eChUqWOoyBbTAo89kMi/sxpydhkvtFzDd2rUtZdt0fvpkIH1f6UZycjKDBg3KUzPqtpiYGNzc3LC3t6dXr14MHz6cqlWrPtJzFUIIIYQQQohnjaIox1VVrZ3fuWdnGoXIl6Io/NK/DoWd7XGys2yDbqfTYKfT8HmHSv+ZBFJUVBQ1a9bE3t4eo9Ey22XQoEE0atSIxYsXM3LkSNwcbannkkbsspGcm/UByaGH//UEEoCvuxPzB9bl3BetOTayJXs/bvrMJZDAktyqUsz1nuWPAA42WvoHlHzkviOSMvMkkMBS3Dw36hKZZ3eQun8JqsmIztWLpK3TSdo+C62NLW+/NohatWoRHBxMdnY2zs7OxMbGsmHDBkJCQlBVlWrVqt13dpSiKAxrUY6FA+uizee91hvN5BhM7L2SAPxZ76lYsWJUqVIFgGLFipGcnAxA+QoVsbfRoXN2x5xjWR6pdXBGURTK12vKzauXuHjxIh07dmTYsGF57pWelMCVo4cwJMZha2Mp9q7T6UhLS6Nnz54A9O7dm2PHjvHll18SFBRE3bp1ad68OQAjR46kYcOGNGvWjJSUlEd5G4QQQgghhBDiqZLlbM8B70KO7P2kKdsuxHL2ZiruBWzpVL0YhZ3tn3Zoj02hQoXYsWMHnTt3th4LDQ1l3759BAcHExISAlgKhK9duxZHR8cnHqO9jRZ7G+0Tv+/fMaV7dV6ctp9MvTHPsr+6JQvxSm1vzp07x5AhQ9BqtZQpU4Z58+Y9VCLOu5ATjrbaPIkkp0pNUI25aOydcSzXgOgF72JTsBhaR1dKvPghmVt/4MMuDVmceZXGjRszePBgxowZQ3h4OEWLFmXhwoVUrlyZGTNmcOXKlb8s+n7yRgrm+8yaNJlVgi/GUrqmW56x5Ff7qayXM3FuDmRpNeSgYtbnYGNri72dDTVs4yhdujYVKlTIsxTUaDCw5ecpXD5yAK3OBlDR6HSUav0iCQkJNGzYkE2bNvHaa69RrFgxateuTe3atRk9ejR9+/bl1Vdf5eTJk4SFhbF///576lAJIYQQQgghxPNCkkjPCRuthnZVi9KuatGnHcpjYTSZWXo0gnn7w0nK1FOhiDNDm5W1nh85ciRnzpyhQ4cOfPjhhwCEhYWRk5NDt27dsLW1ZebMmXh5eT2tITyTvAs5svPDIJYfu8HOi3E42el4pbY3zSoURqNRKF++PAcOHABgwIABHDt2jDp16jyw33ZVizBm3XkAVNWMolgmMd5ZuNuYHIWrgw3VW3bFcH4RL73eG5tbNaPuTlQVLVqU48ePU7lyZY4dO/bAukI6jYJGo3Dnms7bu+QZ4q7x2xev02HWDw8ch41Ww/qhjRj1cyRrYkNwNSYSs2Yy7l6FyClXhm7dut1zzfbZU7ly9CAmgwGTwVK4PCtXz6S332L95i0AvP766/j5+XH9+nXrdZMmTaJGjRo0adKEZcuWERAQkO+zEEIIIYQQQojnhdREEk+c2azy6oKjHApLItvw58wWBxstbBzD2SP70Ol0NGrUyDoTafv27bRv354+ffpw5swZdu/ezebNm/nxxx+f4kieD/Hpuaw4foPLsRmUKVyAl2p74+lsx+uvv05QUBDnzp1j7Nix1uLssbGxVKlShfbt27NmzRquXr2Ku7s7i1esZX/ITdwa98XWq9Q994ld/DExoacw52bg7e1NeHg4Hh4ezJ8/H6PRyKBBgxgzZgxBQUFUr16dnj17kp6ejr+/P9OmTfvLMUQkZtFy8u586z052GhZOqQ+1bzdHsfjyiMrLZVZb/a3Jo8ATGYzv+w7Rquq5WnbuStt3niXXr16ERAQwIkTJ5g7dy67d+9m7ty5LFy4EIBTp07x3XffWXfwU1VVkklCCCGEEEKIZ9Jf1USSmUjiidt9OZ7D1/ImkACyDSbiErPIyDXiprv3R9PV1ZU6derg6OhIs2bNmDRp0pMK+bkVHBrHG4tOYFZVco1m7HQaxs9YhM2JpdSoWgl3d/d7runZsycjRoygffv2LF++nIkTJ7J9+3ZKFS9MWsBbxKbl5nuv0gMnUcBeR1outG7dGg8PDwD69+9vbTNmzBjr95s2bXrocfi4O9Krng9Ljty4J/HYvGLhfyWBBJB44zo6G9s8SaQzN6O5kZzKhlMX2HLhKv1SsvH19eWtt95i2LBhbNu2jQkTJpCenm5NmE2ZMgVfX18aNmyInZ0dq1atws3t34lZCCGEEEIIIf4tUlhbPHErjt28p0jzbYoCe0Lj8z1XtmxZbty4Qc2aNXFxccHX15fw8HB69+79wHv279+fK1eu/KO4nzep2QbeWHSCbIPJOoMn12hG51cH++5T8PAqal3aBn/WDfL29iYpKYmvvvqKzZs3U6JECQBq1arFG01KW2aM3ZKwcTKG5CjsbTT0aeDL5UuhdOzYkSJFitCoUaO/jC+/92TNmjUkJSXl235Uh0qM61yF0p5O2Ok0eBd0YHjbCvzYvcbffzgPyd7ZBbPJmOdYDZ/ifPFCS95s2oDPB/Ti008/Zfz48QD88MMPtGzZkh07dnDkyBGCg4OZMmUKAOPGjWP//v3s3LnzmU0g5Vfg/q+O32nMmDFUq1aNoKAgSfAKIYQQQgjxHyVJJPHEZenv/RCqmozELh1BTuw1RrzeI9/dumxsbBgyZAh2dnY4ODjwySefPIlwn1vrT0fdc0w1/jmjJiZbwc7OjujoaADOnj1rPde2bVvmzp1LoUKFrMc0Gg19G5SkvX9R7G006DQKCmCv09KwjAfvtyxHhQoV2LFjBxkZGY8U818lkRRFoUvNEuz4IIjQsW3Z+0kz+gWUtNRK+pd4ePviVLBQvuds7Oyp3qbDv3bvJykj10h8ei5ubgXZsWMH9evXz3P+duH7u4/f7fvvvyc4OJj333//3wxXCCGEEEII8ZRIEkk8cS0qeuWZzQKgaHV4dR9HmQ9+Z9MfW6lXr551h6ygoCB6vPkRW87HULfVixw8eJDq1avj5+dnvd5gMNCzZ092797NlStXaNWqFU2aNGHs2LEPFdPDzLQA2LZtG82aNSMoKIjjx49bj584cQJFUf7y2ictMiX73iWD144T89twri34iOjoGD7++GOioqJo27Yd56/eZM3JSMZuuMClqARiY2Nxd3dn2rRpnDp1ipiYGDw83Pm2mz8tsoLp4p1NpWIu1M85wtEf3+bFQe+xYO9lqvr7069fPwDKly/PmjVruHTpEoUKFUJVVUaPHs2RI0cA+Omnn2jUqBFffPEFERER/PHHH/Tq1Ytvv/32iT+v/CiKQod3h2Pr4HhrZzYLG3t7fKpWp0KDwKcY3T8XnpBJr9mHqPHlVhpN3EmTyfvZesWSAEzJ0rNu3ykaBDahd+/etGjRgtxcy1LGAQMG4Ofnh5eXF35+fixbtowjR47w0UcfodFo2L17N/PmzWPWrFm0bduWoKAgPv3006c5VCGEEEIIIcRjIDWRxBP3Yo3i/LjzMnqTGdMdu23Z22hoWckL70KO1mM3krIYtOAYEUlZaDUKJrNKKU8n9HcUWDYYDPTv358hQ4bQpEkTXnnlFebOnYu3tzc9evTg5s2bD4zp9kyLzp0737dNdnY2M2fOZNu2bWi1eZNg06ZNo2bNmn/nMfzryhYugCblBlHrfwCNBp1bMdzbDcOxbH0cbbUMf6EKGo2GVWs30PKDnzi5YT6mkyEcTnYg4/AfqFo7dDobAgICuHnzJiVKlKBOnTpcuHCBiMshrJwwlj771nDGVBxz+xfZMWcYV4u25FpsKiHpNmRlZVG5cmUOHz5MSkqK9dpTp04xatQowJIg/OGHH6hXrx6ff/45bdq0YeTIkZQpU4bw8HDq1atHxYoVsbW1ZevWrU/lOXr5lWbA5Bmc/GMDEedOYV/AGf8WbShTqx6K5vnNw8el5fDCtP2k5xhubXqnEp+ey5h154mPTCVgwk6UrESuX76J0wtj6NH0KjMmT+Dw4cOkp6fToEEDqlWrRlZWFi1btmTFihVMnjyZUaNG8eabbxIQEIDJZOK9996jVatWmM33FkUXQgghhBBCPF+e309A4rnlZKdjzVsNqedXCFudhgJ2WhxstHSv48Okl6tb2+mNZl6acYDLcelkG0xk5BrJNpi4GJPO+ag0awJqz5492NjYEBQUBEBoaCh9+vQhKCiIkJAQIiMj843DbFY5ezOVo+FJmBQdBQsWtJ4LDw+nWbNmdOvWjVq1anHz5k0OHjyIRqOhbdu29OnTh8zMTADOnz+Pt7c3zs7Oj/1ZHT58mICAAAIDA3nvvffybZNfXSiz2czy7z4hdvM0FBs7PDuPAEAfcxmwbHXf3r8oAGNWn+T09hV4vPQlRXpOICf8FDkJN1Ed3YhNz8Hf35+zZ89y5MgR3n//ffbu3YvZbMbGxoYDVxNItfciU28CnS0Jp7bhVLUFYybPJiY2njfffPO+1wJUqVIFAAcHh3zH1rJlS4KDg59aAum2AgULEdijL73GTaLrp19Qtk6D5zqBBDBn7zWy9EbMd23Qeft3LddoJjPXhNbdm6sJWUw/moTeYCA8PBxXV1cCAgKoXr06iqJQqFAh0tPTOXDgAGPGjCEtLY0bN24QHh7ORx99hL29/X2TSDExMYwbNw6wJBWDgoKoUaMGL7744r/8BIQQQgghhBB/l8xEEk9FUVcHfhtcn4SMXJIz9RQv6ICjbd4fx60XYkjPufdDrsmsYjSbCb4YR3kXaN68OT4+Pvz0008MHTqU8uXLM2XKFIoWLYrJZEJRFH7++ec8fey+FM+Hv58mS29EoygYzGaGNM67bX1ycjLbt29nyZIlrFy5ksKFCxMdHU1wcDCzZs1i5syZvP/++0yePJkJEyYQHBz82J+Tr68vO3fuxN7enl69enH27FmqVq36l9dcjk1n7pqdhCXlsGDVZj74eiq5l/agtbHBxcOLpODZuBNHt6M/8suCX/lt/TbMqkLc8jFondzQOLigc/EkN/oS4emJTJ8+HY1GQ0pKCkFBQYwePZpmzZpxOTad1GwjBVTFmo02JEWSG3OV9LirqLlZnD9/Pt9rb7t7m3utTse+S7EcTbKlgD6FXbt2ERgYSJcuXejcuTMDBw7Ew8ODy5cvM2rUKGbMmEFWVhZbtmxh6tSpVKlShfbt27NmzRquXr3KoEGD6NWrF2lpaVSvXp0ff/zxcb9Fz62tF2IwmNQHtlNQUAGjSSUzx0jJkiVJS0vj0KFDZGdnA5ai7F5eXuzcuZPBgweTmZmJu7s7BQsWpHnz5vzwww/3TSIVKVKEESMsSc7bv0OTJ0/+V5KyQgghhBBCiH/m+f6ndPHc8yhgR1kv53sSSACnIlIsM1zuYC3AHRPG0H7diI2NBeDLL78kJCSEpUuXMm7cOAYOHEizZs1o164dWVlZefo4F5nKa78eIz4jl0y9ifRcIzkGM7P3XCMyJdvarlKlSmg0GooXL05KSgqurq40atQIrVZLs2bNCAkJ4fLly7i6ulq3s38cjCYzuy7GseRIBDdzbLGzswNAp9Oh1Wr58ssvCQoKolmzZoSHhwOWmk7dunWjSKlKtBm3hiUXMrgQlc6otefQxV3EeHIdpQqYeLNOITpUKsTxQwfo3r07U6dNx5iZgikzicIvjcGueEV0zh54vfIVth6+2Hj4MHToUGrUqIGnpyd2dnbodDoCAgIIS8jk7prWBYMGUKT7WApUbYltATeGDRuW77X5ORaexI60orz91tu8N+ZbPtoUQfm357J07Wa2b99OWloaycnJLF26lI8++ogFCxawdetW2rVrx5YtW+jZsyfLli0DYPny5bzyyivMmjWLV155hT179pCVlZVvwfb/VzrtvX/+b/9+GeKuEff7KEyZKX8e3zab1KQERo8eTXZ2Nvv27ePbb79l4cKFpKamcv36dU6cOEFAs9YoHqXYk+zGDZ82TJj0I6dOnWL06NEYDAaaN29O48aN6dq1KyaTKd+ZdOvWreOFF154Eo9BCCGEEEII8TfITCTxzHIvYIutVoPe9OcMhtsFuO10Gj5tW4F69fyoV68eANOnT7e227x5c56+5s+fb/3+hx2XyTXcOysi22AiPiXbWm/pzlkyqqpSp04dZs2aBcCpU6fw8/Pj7NmzHD16lDZt2nDmzBlef/115syZ88hjPnUjhYHzj6I3WupFKQoUdbXn03qOJCQkYDKZiIyMJDg4mJCQEL7++ms+/fRTkpOTGThuLgcm/kzyhb041+yAajJwZdpgNFotH0xbS/qehRRWk6ldqxYAtWvXZldwMDb2PtiVqISi0WLv40/akVXWeGq//RMAX3zxhfXY/v37AUsyrkinD8i+legr0nPCnwNRoNNHk+97LeR9T1Zs2EKTb3ZBqfp4lLLsAJZjhuvpZvrPP07n9u3ZsGGDNbFXrFgx61K4YsWKkZycjLe3N0lJSSQmJpKSkkKJEiW4evUq7dq1s473ypUr1p+X+5k0aRKrVq2yFna/U0xMDHPnzrXOnHmedalR3PK7YLz39+tOdsXKA1Cs/w/U94JLv45i3759ZGZm8v333+Pj44Obmxu7du3ijUUn2LLnEJlbZpB5bg8bD6zEve4LFC2VzdixY9FqtWzYsAEHBwdGjhzJzp07KVu2bJ77xcXFoSgKnp6e//5DEEIIIYQQQvwtMhNJPLNeqF4c5S92b+9Qrdgj9Xs8PJm7F/FYZzjFXqNFy1bWGU538vT0pEmTJjRu3JhffvmFdu3a8cYbb6DRaDCbzfj7+zNjxow81wwdOvSh40rJ0tN7zmGSMvXW+k9ZehNXb8TSre9g5syZQ0hICMHBwQQFBfHGG2+QlpYGWGZNzdobjtmxIOacTHKunUSxc6LYgJ9wCejB7Kk/4lTAmcuXL1t3lTt27Bhly5ShT6fmmJMsxcf1cWHo3IoAoFHgjaDS9423cjEXirna3zMbKWXvItT0BD7t2+Ghx770aATGu9YtmnOzMJlVIlOy2bBtF82bN8+T2Ls7yQfQqVMnXn/9dTp27AhAqVKl8oy3dOn7jwcgNzeX06dP3/f8nUuvnnd9GvhS2MUOG+1f/JLdwdFWS5+gKuzYsYOCBQvStGlT9u7day1Gf+BqInsux6O6l6RIzwkU6TkBW8+S6Pxqcz0xi7QcA5mZmbz66qs0adKEFStWEBUVdc991q5dK7OQhBBCCCGEeEbJTCTxzCrm5sCn7SowYfNF9EYzZhW0ioKNTmFMx8p4FLB7pH4d7bQk5V3hlmeG06qPmlLE1d46Y+V2sV+A9957z1rgOjw8nJYtW7Jo0aL73uunn3566LiWH7uJ6a66MarZRNz6bynSdADXsmwoX748rVq1svZrMBiIjIwkMzOTA190QVOgIKo+Gxt3b8yZKWRfO07qgaWYM5NZcMmRChXK4+joSGBgIM7Ozvz22284ObuwY30Dzvz2CejsKPriJ+h0GtwL2NGjrs9941UUhbn96tBtxgGy9JaEl41WwatpX95vWY4aPgXve+3dTkek5pkRA5B78zwpexehsbGlVJPGeHl5PbCfl156iffff99aA2vIkCH07NmT2bNn4+/vT/369e+5JiY1h5RsPT6FHPllzhz69evH6NGjCQ8PZ+DAgRQqVIhr166xdu1ajEYjI0eOZNGiRQwbNoxTp05hNptZvHgxPj73f1bPImd7G9a/3Ygfdlxm9YlIsg0m/Eu40rR8Ycvuibd+5wBstQreBR3xcC2Am5sbFSpUYPv27dy8eZN27dpRqFAh9p64gE2bT9C5WJZ2mvU5mDKTsSlYDEWBWjVrUbK4FxcuXGDGjBl89NFHfP755yxZsiRPXGvWrMkzq1AIIYQQQgjx7FBu/wv+86Z27drqsWPHnnYY4gk4czOFefvCCUvIoGzhAgxs5EflYq6P3N+0XVf4acdlcoz3LmmrUsyFDe8E3vdaVVU5fTOVxIxcnAzJdG3bnFKlStGlSxdKly7NpEmTAMuuatnZ2TRq1Ih9+/bxyy+/sGDBAjIyMhg/fjytWrW6p++3fjvBxjPReY5lXthN0vaZ2Hn6WpIc0yezc+dOtm3bhqIo9OjRg1atWvHuu+9y4HoGmorNyYk4i1PlpsQu+cwyq0hV0dracfNkMAVd7l+sOCQ6jVFjJ3B671a279qNr7tTnvPz58/HaDQyaNCgPMdzDCY2nonm+PVkPArY0rVWiXuufZAx687z66FwTPnUXi5gp2XyKzVoWenBSaTk5GQGDRrEypUr7zl39zK18IRM3vv9FBei0iA7hcRjmyhiiufDwT1451YdqKSkJE6fPs2SJUtISEjghRdesCaRsrKycHR0ZPv27ezatcu6w9jjFhUVRYcOHbhw4QIZGRnodH/m/oODgwkODmbMmDGcPHmSjz/+GKPRyIcffkj79u0f+Z4h0WlMD77CwauJJGXqsblVP0mrUShR0IHMVaPYvWsnN2/epHPnzhw/fpwWb43j1OUbuNS2zCLKvLgPfdw19FEX0cdeRTHmsmnjBt5++21iY2Np3749zs7OeHp6Eh4ezqJFi0hLS6Nt27Z5lj0KIYQQQgghnixFUY6rqlo7v3MyE0k88/xLuDGle/XH1t/Ahn5sOBNNeEIG2bdqI9loFex0Wr5/+f73OXszldcWHSMly4BWUcjJzaXF50v4sVdder7clebNmxMcHMyMGTNo2bJlnmtfeeUVBgwYQGpqKi+99FK+SaQSbg7oNEqeZV1OlZpY/rPT8k3XajTwL0qDBg0YMWIEqqpyKCyJjdeSadz3Q4Jf64Y+MQb7sg3IOLMN1WQEoHCLV7E9u5pe3V/B1taWmTNn4uXlRf369fH39+fEiROMGTOGli1b4pQRiZeL/d9KAtnbaOlaqwRda5V46Gvu1queD0uPRtwzEwtAo1FoUu7B9XEuXrzIoEGDGD9+/D3n7l6mlpKlp/P0/aRmGyyzbWxcwKkQyY4+jBg/iapVq/Lhhx/y0UcfWYurX7lyJU+f33zzDTt27MBgMFCxYsW/P+iHVKhQIXbs2GFdNnY/Y8eOZe3atTg6Ov7je1Ys6sLHrSvQavIesiNDidoxGzQabIuURd9yCMkx6da2lSpV4vr161zZtpj0+GRyoy7h0eF9MkN2Y0qLR7GxR+dUEDedgVatWrF161ZGjBjB4sWLCQ4O5vfff8fBwQEAFxcXSSAJIYQQQgjxDJMkkvi/42CrZfWbAfx+9AZLj94gx2AiqLwngwJLUczNId9r4tNz6TH7EBm5xjuOajkUkck7y87QoUMHzp07R1ZWFrt27WLp0qV5rt+yZQs//PADqqoSFxeX7z261/VhwYHwe2oDgWWb9eYVC1tfJ2fq6TnnENcTs8gxmNBhwnPAz1QoXpBdUz/GrXFfTGnx+HT9hCI5EVxPjmLFnjPs3r2bcePG8eOPPxIfH8/Atz/AZe0GevbshZdXYYYOHcrmzZuZOHEiVapUoX379qxZs4Y5c+Zw6dIl9Ho9K1asQKPRsHHjRusOaampqWi1Wtq2bcuSJUsoWrQowcHBVKxYEVtbW37//Xd27txJly5diImJoXv37gDExsbSunVrpkyZQvXUA6xd+TsqCgWbDcLFtzJajcLsPrWx1eVfvu3O2UUVKlTIUwz7ZnIW1xIyKepqz5blC+nXrx8jRoygWbNmHDp6DD02aBzdKNx1NKgm0o6sRuPohjHpBplxcPXqVRITE6393TlrMzExkeDgYPbu3cu2bdtYvHhxvvE9ClVVOXItiVUnI0nPMdC0fGE63lX/a+DAgURERODr64u3tzdhYWHk5OTQrVs3a6LwypUrrFu3jokTJ5KUlMTAgQNZs2bNQ8cx/0A4RrMZnUthvHqMR9HZEr/+W7Jir5GtN3EhKg0XLMsa3dzcmPztRIZNXUlmdi5ZVw5jSo2jaP8fsNdpsDm6ADXynLXv2/WsjEYjGzZssBasF0IIIYQQQjzbpLC2+L9kb6Olb0BJNg0LZOeHQYzuWPm+CSSARYeuY7hrrZU5N4tco5lDYYls2bmb0qVLM2LECGbPnp2n6DPA119/zebNm1m7di0aTf6/dnb6VHKWf0TEd53RYMKck4H+ykEcbbXM6lMLexutte3QJSe5EpdB3LHNmFXQq1oMGlsuJ2TTo9uLVFPDKOvlzPwBdfmpX0Pq1q2Do6MjzZo1IyQkhORMPSlmO3rOOcLcVVsxunmTUaAEtQItM6h69uzJsmXLAPj111/Jysris88+o3jx4rz66qsUL16cM2fOAJaC4xs3bqRIkSLk5OSwZ88eoqKiaNy4McHBwWzdupWUlBRWrbLs+lakSBHrMqxWrVrRoYOlAHfo3g2cPHaEN8ZOx+7CBt4MKkPwR0HUK+We5zlFRUVRs2ZN7OzsOHnyJACDBg2iUaNGXL9+nS4vvUyRCrXwb9eXNxefoP2UYD4dP4lPPhvJhQsXqFq1KrZuRShQox32PlXJumSZ+WLrVRqv7mOxcfGkqE9p3N3dyc3Nzfe9KliwIAUKFKBZs2Zs3Ljxvj83f5fZrDJs6SkGzD/K70dvsOlsDJ+vO0/T74KtuxQeOXIErVbL9u3brYXCY2NjCQ0NZcWKFbz22muMGzeOgIAADh06BMC6dev+VrHqY+FJ/H70BgaTirZAQRSdLQAKGhI3/0ROVCgBVfzo1q0bGRkZFCxYEPeCrnSv40MJ9wKYE2/g7FcNO52GrrVKoI0NxdX13iWoOp2Ovn370qZNm3/66IQQQgghhBBPgMxEEuIhHA5LvG/hZ62NLZWaN2Hr1q3cuHGDTp06AZZ6Nbd16NCBxo0bU7duXdzc3PK9R6FChTh5aC9tOnSidT1fQq6GE3b2DJs+HImXi721XVRKNkfDkzCYVDLObKeAfyvMuVlo7BzJNZjZtWcvc78ezowZM6jrVwiDwZm4uDhMJhOnTp2iZMmS9Jh9iLSUFMxng9Hr9eREXwYbB17/9Si5ubm89957bNu2jVWrVrFlyxY8PT2ZM2cOQUFBHDp0iOLFi7No0SLWrl2Lqqr069cPj8JFiNV68vZvJ0gw2hMSvBtPT09cXFzQ6/VkZ2cTFBTE8uXLrdu379mzhw8++ICaNWty5swZihfQ8GIpLXuVDIa1KGstaJ6amkoJbx8GfTmdmMR0Jsxdzlsvt6Fv37588cUXhIaGUq5cOTp06MCNVAMa31pk37xIxJY5KFo70mMjOBYdjpdXYU6ePIkxOwNtbhY6Ny/M2RkY0xLIibyAotHi2bgndmFb2b17Nzk5OWg0Gvr27cuoUaN455138PLyQqPRsGHDBsLDw601ku60bds2vv76a8xmM99//z21atV6qJ+z1Scj2RYSS7beZD2WpTeRazCRdD2WwMBAkpOTKVbMMjOpVq1aHDx4EFdXV+rUqcPKlSuZNm0aV65c4bPPPsPf35+uXbsSHBxM2bJlqVWrFv7+/n8ZQ3BoHK8vOk6OIe/Puz7uGuacdNzbDiX71Eb+WP4rLrlxTJkyBbAUoC9XrhwHX3qJbRu3kpZrpribAyFnT3Gzmj8LFiwAoGTJktbndWfReiGEEEIIIcSzT5JIQjwEd+d7d4JzKF0Hh9J1KGCn491eNWlSzpNRo0blaXN7edXo0aMZPXr0PX1MmjSJZctXMH3pBrxc7ClRsCAONlpGd6zMqFFLWb9/K+V9iuDv70/nzp1ZtWoV6TlGTDV7kX49FH18ODG/DcexQiCZZ7aiaG3wLFuNRo0aMX78eLp168asWbMYPHgwQUFBmFRwaTWMizHpaBxcyLq4B2NKDPalaqGPucqlhSMwZmQQGBiIq6srX3zxBS+//DJ169Zl0aJFJCUlkZubi1ar5cCBA3z66aekpaUxfOTnnM12w7a4A0qJgiSkmfDoPIa+retxfN5ounbtyoQJE/Ik1o4dO4a/vz+FCxdmx44d1KtXjypVqmA0Gtm8eTNgScSpqkqHIZ9yMDKLs0tPAWCrmLkeHU/lWg24fv06ycnJXL9+nRd6DmDhpv2YVRWHsvXJOLkBXcHiKDo7UM2kpKZx+vRpcrKysIu9gn2pmuTeOJ/nPXEp34DDi0Yx6+fp+Pv7U6BAASpXrszWrVs5dOgQCxcu/MuflezsbGbOnMm2bdvQarV/2fZuc/eF5Ukg3WZSIcesYfGq9cRHXKV3796cPXvWOhOrbNmyxMTEMG3aNCZNmsS3337LxIkT6datG/PmzaNRo0Z89913DB8+PN+i47epqspnq87ek0AyZaeTtG0Gni8MJ+fGOXIizvLJwK4AFC1aFIBr165RrVo1cnJyLDsn5iQw5bsfycrKwsbGhnr16qHRaJg0aRINGjT4W89FCCGEEEII8WyQJJIQD6FXXR92XYwjK58P+FqNQkBp93yu+msJqRnMWLWTGzdT6f/LUfRGM1WKuaK/NeOpYcOG/P7771y9epUZM2YwdepUzp49y9mrkQS0fwmPziPJPLeTIj0nAOBS07IbV+OyHmi1WrZs2WK9V/fu3Xmx60u0mLSbSynZACgaLU6VmoFGg3P1tmSHHUcfc4WcU+tJ8G3O2Qs5nDu/kK4D3iItLQUbGxsuXryIm5sbWq2W8+fP88knn5CdnY3O049cTSymy8cp2vtbciLOoA94heWn4mlTpwm7d++mYMGCecb/27IVNG7VHhtbO/R6PTExMcTExHD69Gnatm1LZGQkAB8uP82OrZvwfGE4qslA7LJRmDKSMWZn0Obtcfj6+uLo6MiwYcM4n6LBbMhBC+gjL4DWBjufKhgSItA4uWGTlUBRTzeSU1LINWaSuO47HCs1AUA16IlfM54bEeco9EsJPF0dGdL7FbZu3ki1atVYvXo1VapUYc6cOYwYMYK1a9cCluV13bp149q1a6xdu5ZLly6h0Who27YtXl5ezJgxAyenhytUHpd+7/I51WQkbvnn6BNv0vOlrvzw/TeoqkrXrl1JT0/Hzs6OiRMnMnnyZEaOHMmnn37KnDlz6Nu3L99//z29evXi888/x8bG5oFJrbCETJKzDHnvbzaRsOE7CjYdiK5AQdyK+tKqY1sWz7PUMTIYDERFRVGrVi2ys7MJCAgALMsWR4wYQZ06ddDr9Zw8eZLo6GjefvttVq9ebe3/888/Z+vWrUydOvWhZ2wJIYQQQgghng5JIgnxEBqUdqdjtWKsPx1lTSTpNAo2Wg1Te9awboH+V67GZ/DL/mucj0rDu6Aj21YuJMu3IWr4NZJjI0nY9AORDs5kXzvB1WvX8fLystZWunr1KjExMTRt2pSoqChyb0QSu+RTzIa8SQcHGy2DG5fK9/4bz0STlKnnzrrddsUrkn7akmzSx11DURR0PtVZciSC1MRMNK5F+HnXZZK2Tad9m9aULl2a48ePM2vWLLZt28auXbuY8+tSFlwwYLx4AEVnh2oyYlO4JLbuJcjKyeHnGV9TsIA91atXB+BKXDofrzjDpsWr8NU2YOrVbbzRsDgajQZbW1ucnZ0xGo3WZ7Zy33lAQetoqalTpOcEErdMI+N0DFcPbkabHI6biwunT58maMBw5k77gezoy9j7VMPeuwpZF/db6voA1Zu0h/hLODg48Obbb7NgxUbi7Iph0JnBbMLjheFkXtiNOTsNc8mqTF68kgpuKrt27SI1NZXk5GS2b9/OkiVLWLlyJS+88MI9xwoXLkx0dDTBwcHMmjWLmTNn8v777z/Uz1lZL2cSMhLzHFO0Ory6jwNAW9CB6AwT5cuXt9ZimjFjBomJiQwePJg5c+awadMmDhw4QFJSEhqNhps3bwLQo0cP3nnnnb+8v8msclc5L7Iu7kMffZnk4F/QahTWzJ/Gkf1JNGrchPj0XDyqNcPbrzQ5uXqcnJw4ffo0a9asoXbt2rzzzjv4+vqiKAq5ubmkpKTg7m5JuAYFBdGwYUN+/PFHJk2axOTJkzl79izffPMNrVu3fqjnJYQQQgghhHiyJIkkxENQFIUJXarSpkoRFh4IJy49l5o+BXm1kR8lPR48y2TLuWiGLTuF0aRiNKucvJZA/LljeL443NrGnJOBe/exxMx9kwk/L+SLd1/FaDRat49v1KgRs2bNonv37mzde4RevxznxDRLUkCnUdBpFQYF+hFY1jPfGLaFxOaZSVWk9zcAqIZsIia/hKLVYVeiCoqNHdnxEaTuXohdsfLYVQzCJSORrduWo92xAzs7O+zs7HBycqJ169Yotg4kZ4BSwB3bwn5kXtyLxq4A0fOHoWht8KrdhuUT36NDhw50eKEzVyv0Ij0pEa2zJ7noyM0yMDn4BjpHZxo1akR2drZ1zJvPRpN+6RCOZetZ41aNBowpMdgWKU3R7l9h88dXuDvZkpuby/ihvdG5l8DerwamjCSca71A5q/vYVOw+P/Yu++4rKv2geOfe3Kz9xCQoSiKW3EhIIKa5R6Zqbk1y1FWaqU50jTLHE1zZebMNFfugThwgCIobkVk7w33/v1B3klo2S+z8Zz369XrofMdZ9zIE5fXuQ5GqZRGPk4cvVIZYPl+0yamTJjA2XPnWPzNGhQuPkgkUuTWjlTkpyN1qoXRviaxsTto3KghTk5OBAQEIJVK8fDw4ObNmwDV2urUqUNwcDAymYzw8HAWLlz42N9nEzr4EZdcQLm2esYbQHJaFoNGfMD5o5UBpNOnT5tOA5RIJMyYMYPnnnuOZs2aUbduXdNzS5YsISAggODg4N/sv7azFWZyaZXvE8uA9lgGtEculfBCy5p0CmuEV72mbNIGotfoSTUYSSsH7zd+oHz7e3g7WNCrVy8GDBjAuXPnePbZZ8nKyqJevXpkZWUREBBA586d0ev16HQ6JBIJr776KteuXUOlUjF27FgRRBIEQRAEQRCEfyhxOpsgPCaJREIHfxe+Gd6KnyaGMKdXw8cKIJWqdby++SIVWgO6n9OASi4fwfLnbVT3KRw9ydr8HtqiHLatW8XWrVsxGAw0aNCAqVOnIpFIaNiwIUePHqVDm2aYH/6QVo3qojq2mL61JPw0MYQ3O/sDEBcXZypa7Ovry5IlS7BQyMg7uKza+By7TMSh01iULrXQpF3BMiAUhWNN3Ed+geMz4wGwbNgJhaUdmzdvRqvVMnjwYAYPHoyLiwsHjh7HoNMgs7DDzLM+RWe3YdUwHLehS6gx6EN6jJmMvb094eHhBI6ci05ugdzRE+fe75rGUK7VU66053DkMXbs2IGnpycAaq2B8hunsajzSw2dvINfoS8rQJeXStrG93hz+lwA1qxZg2+/qWgyblKScBgzj/rIbRxROvti7tcKTeZtbt+8yY4dO+jUqRMHDx7ExsaGvFIt7n3eQW714JbEys/Jqu0AzFxr4ejoSIcOHaqcumc0Gk3fFw+2tWzZkitXrpg+B19f39/9HrkvyM+Jt5+th0ImqXbt/rYyp4gRRN7TkpmZWe00wB49enDs2DF69epFSEgIAAcOHODUqVNMnz79d/uXSSW8+1x9VIqq/9cgkYC5UsYrYbUxGo0MWB5NcYXO9P1spPIzzCpSU1Cu5cyZM5iZmREREYG3tzcXLlzgxo0bxMfH4+rqSv/+/cnKymLu3Lk0btyYVq1aUatWLdzd3cnPz3/s9RIEQRAEQRAE4ekSmUiC8AekpaXRrVs3EhMTKSkpQS6v/kcoNDQUiURCdnY2jo6O5JfruH0vA4WTD07d3wJAm5eKJvM2ObsXYtRpydw0HYWjJ64DPkCdHI+/8R7+/v4MHTqUOXPmEBkZibe3N1qtlgMHDnDr1i2kUikGgwGptHosuGnTpqYi1j179qRbt25kGO3Y13VctbpO+rIC1Pcu8ebi7/hi7tsY1eXkR32HfehL5EeupvzOeSRSObbWNnTu3Bl3d3d2795Ny5YtSUhIYOjzPbCUg8IrAEWNumhzUzDzqAd6LZlbZnLmhC0vqxR88cUXjNmVjlZvrNK/qeZP5h3CIzrz6aKPfpmHmxlGTSlyWxcAdEXZlF49jtK1NlIXX2qEPM+I3p0Y1bczAOUKWxw6jqEiOQFzv9Zkbp6OVePOlCYcQiKVkp2dXS1IYTBSbQsXgEGnIeXzl0Bbwfr1xXTt2vV3vjsqOTs70759e0JDQ7GwsGDDhg2P9dx9Q4N8MBph3p5ENA+s1f1tZZmHVjPz1DqyBvWqdhrghAkTuHz5Mt7e3nz55ZcATJgwARsbGzp06IC/vz9ff/31b/b/fGBNVAoZH+69SlZxBUYjtPRxYE6vhnjaW7DxbHK1ukn3GYxGMgsrSEpKol69ely7do0mTZqY6jF99NFHnDx5snJLplptCn49LDgnCIIgCIIgCMI/j+Tf+h/sgYGBxpiYmL97GML/mIqKCsrLy+nduzeHDh2qFkTS6Ayk5hWjLSlg1LCX6N69O45t+/HK851ROHiagkj3ZaybAoBT9zcpiPoOp+5vYUi9RDfnfF6f/Da9+vYnMzsbo8FA/RZBdA1pzoxJr6BSqdDr9bRq1Yrz58/TqFEjLl26hIeHB+7u7qjVavbv38+iRYtYt24d165d48cff2TImHGYN++J3giWjTqStWUWFvWC0d6MRpdxA72ZDXYdX6EwejMSjOgrirFu3g2pugTD1cN0iQjj4sWLtG7dGi8vL7766isaNWqEm7snZW1GcyW9GIPRiFwqQW8wMr9PI3o39zTNN+KTSG5llz50bS2UMn4YG0SAu42pzWg00ufLU1xMKahSywlAJoGd44Np4GFrantnWwLfxySjr3q4GABmciknpobj/KuT9tQ6PS3mHKJErav2jEImYXiQL+92rf/QMf9V9l/O4M3v4yhRV9/WJpVA3+aefPx8k790DEajkYIyLUq5FEuzX77Pe3x+gviUwur363Xc+2wQMqmEpg3qUbNmTSwsLGjSpAn79u0jOzubtLQ01qxZQ3p6Oh988AE3b94kLCwM+OUkw+DgYNPXgiAIgiAIgiA8fRKJJNZoNAY+7JrYziYIv+PUrRwGrjhN4NyD9Pn6LEdu/xIEuXnzJkFBQYR16MCzwyfR7P0DPPdZNCETl3AtLZ9v137HvhXzkEhAV5JL6spXSPlyONqCDAAMFcUgkVAYvQXHZydioZTR3NHA4YMHaNIqiIJ63bHuOxfrPu8TF3+J1SkuOPrUJyb2PEqlkqVLl+Lo6IiTkxPLllVuVRs3bhzPPfcc+/fvx9nZGZVKBcAPP/yAX80aWDTtStnNc+Tu+wyb1n0xqsswqOxoMn0HFlY2lMTuwFBRgtvgj7Fp2QeJ3Iyym2cZ9tJLLF++nNTUVOzs7ABQqVQcOnQIa0tzpjSXsfnlNrz7XH3m9m7IuekdqwSQAPq18EQlf/iPHSszOfXcrKu0SSQS1o1qTc+mHihkEkpifiRj/RQaedhy4u3wKgEkgNEhvigfcgKZmVxKl4Zu1QJIlddkvNm5Lua/2sIllYCFUs7IkMffjvZnpKWl0bx5c1QqFe1q2fOo8L6ZXMaLrb0eem3t2rVEREQQFhbGyZMnGTx4cLV7HlUXKS0tDZVKZar1JJFIsLdUVgkgAeSWPPoEOQng7FOPzz//HFtbW9LT04mPjyc8PJxTp05Rr17ltbNnzzJs2DBTEPbBoJEIIAmCIAiCIAjCP5fYziYIv2FtdBLz91w1FTrOKdEwffslirJKMBqNREZGMmbMGC5bNmPnxVTUGj26oixyo9Zh0JThNWkVNbWxSNQlaAqzsQ7sibl3E4rO/IDTM+OpNWIRrfxrcmzLcuyTo5g3/S2mj3gPus/GMT+bvIPLcOk3k9KfayjpJHKK1Qa2XkjH39+fPXv24OfnR6NGjXB3d8fPz4/8/HxTbZnjx49ja2tLbm4uBQUFZJTqMZNIsGwQRuGpTTh3n0xRfjoqr4ZkFatp3LAe15PSKFRZYGUmpzj/Hg41/bBwteHalUtYWVlha2tLmzZtSExMxMrKCqjcPnfz5k0Gt2lDY0+7R67nS219+D4mhdSCcjS6X9KFVAopC/o1Riqtvq/M0kzO4heaMv3ZOowZvZ60mnbsmvDwQEgtZytWDg1kwoYLqPV6JEjQ6g10CnBlQd/GjxzX8Ha+WCjlfHLgGoXlWgxGI618HJjbuxGuNqrH+Vb50xwcHDh8+DC9e/dGpZDx2YvNeHX9ebR6gymzylwh44WWNWnuZW96rkKrp0yjpzQvi2PHjnH48GEAkpKS/lD/S5YsoU2bNr97X21nK1ILKqq0PXiC3NoRrWhd15kWLVogl8tZsGABXl5eWFlZPTRAJIJGgiAIgiAIgvDvIYJIgvAIheVaPvjpCmpd1b1R5Vo9+WUazt7Jo3///rz1znQ2HfsW8/phmNcORG7jgm2b51Fn3eHWkU10HtwPa/laCox6XNv1RSaRUHziOzztzVk5NBR/N2uuBNmwePFimrvIkNk4g1SG3NYVg7oy6+l+DaWi87vRZt9l+botSLOziYiI4OjRow+tKaPT6bhy5Qpjx45l7NixdO/enaPzPsNJU0FJ/AEs/YMpSTgMRgMFJzdSmngMrQomDB3Ap599jsXRj2jj7kTfZ+uxbVsijRs3pm3btmRkZNCrVy8SExORy+X07dsXpVL5u8fHQ2W20Y7x7Zi3OYpPxvVD6VQTW0tzfty7j2YPBEYArmYU8dHea+z7aSeW3o2okRtLaMOG3L11DYARI0aQnJyMt7c3NWvWpH79+uTk5DBu3DhWdHPiwyVfMuLNmXw95w3iozIYvsuD77777qF1rABeaFmT51t4kluqwVwpw8rsr/3xeDmtkK8ibxF3rwB7CyXDgnzo1czDdD2ktgMOxxaQklOMRmHFs68tINixjMObPoAeG+j3wovQ8DlOXrxG/qktoC2jlrcXERERBAQE8Prrr5OamkrPnj3JzMxk48aN+Pr6UlxczIsvvsj169dZtmwZLVu2JDs7m+LiYnx8fH533KNDa3H2Th4Vuup7Bv1cLAmtW3k64MiRI7lz5w42Njb88MMPT2zdBEEQBEEQBEH4+4jtbILwCIevZCJ7SGYMgMFg5McLKSgUCp4ZMQWPnm9QcGI9Rr0Oo9GImUd9DCV56CUKDkSdxlylooazA3Wufseo+hKeaduEQ6+3w8deCcDJkyepXbs2zs7OZKTco0KtRVeYidSs8vQ3+7DhuL4wB9uWvTAa9GTE7MPc3BxXV9dHjv/KlSuEh4fz/PPPs3fvXvr16wdGKIhai23rftgGD6T08lEsA9pjVb/ypDgnNw8mT57MqJEjUOgrKC/Ipk+fPrz33nvs27cPb29vGjRogFJZOe4mTZpQUFCAmZkZbdu2feRYHmSjUjC2fW1e6NWV0qR40i6fqRZAupRaSJ8vT3H0WhZF16IpLczj/JlTLD98maKSMs6ePYtMJuPQoUPUrl0bqDyZ7KeffgLghy3fM2nscEquR9OiSSOioqJo0KABW7du/c2xSaUSnK3N/vIA0qHETPp9Fc2ehHRS8stJSC1k+vZLjP3ulzpvcrmcw/v3kpwYy6juIQysWczInuH4+voyYtRoojMMxJU7UnzlJE49p2IeEE5KhYJOb32OhYUFO3bsICMjg61bt7J06VIWLFgAwL1791ixYgU7d+5k9uzZQGUW0vjx4x9r7CF1nBnbvjZmcin3D5Ezk0vxsFexYdQvmUzffvstUVFR7N6927SlUhAEQRAEQRCEfzeRiSQIj1Cm0WMwPvwkMW3WHTa9/wrOSX1Zu3kbSRl5WAaEoS/NI2f3IpBI0BVkoi8vIs+Qj5OTE9bW1qQl3eKjt0Zx8uRJCgoKePbZZ7GyssLe3p5169Yhk8noP2QUXy6bitEowaHzK6jTrpF/eAVIpSjd6uD1xg/UsFUR/U4EAAcPHjSN736R4gfl5+fzzDPPYG1tjY2VJaqOY0zXXAfMBcA+fCQAh6Z3RKlU8sEHH1R5R+vWrTl//ny1dw8ZMoSOHTs+1noajUbOJ+dz+nYeZbnpHD5yhJCQEPr06YNSqcTb25u6devSpk0bwubuIu3wt6h8mlJ+Jxb1vUuYeQaQf+Eg+RVFzJ4923RaWosWLYiOjsbc3BwXFxeSk5M5c+YM8+bNY8GCBTRv3hyAwMBAYmNjH2us/19r167l22+/Ra/Xs379embOnMnVq1d55ZVXWLFiBQDXrl1D2X4MRrcAKu7GY+EfBFRmuJ28lYuiTANAaWkpY8aMITU1lczMTOrUqQPA2LFj8fH1xXfcGnQGI7ZBL1B4ajOa7LuY1w7km5NJzAsK4eqlizRq1Ai5XG7abgjg5+eHlZUVVlZWFBYWUlBQwL1792jQoMFjz/P1TnXp1cyDHXFpFJZraOXrSMf6Lshl4u8lBEEQBEEQBOG/TASRBOER2tRy4NfVje/XfrFQypjVowH9A2syduIbtPrgkGnbm9vAD033Wygra9tE1H94xtDDAjMfvjOBE9IGZBZVFjDWl+Tj+uI8JHIl2bs+RpJ/l5e7P/tYc7h69SqjRo1i3rx5DBo0iNHDB7OpUIJWX71sc7dGNXC0ql54+kkoUesYsuoMVzOKUWv1SI16rAZ/Qb9O9Tiw5C2mTJnCvn37yMnJoUWLQM5diEeTdRvboAGY+7ZAIpOjK8zCKJViMEKrVq24ePEiABcuXDD1M3DgQN58801atWqFRCKhVq1axMbG0rVrV2JiYvDz8/tL5geQmppapSYRVAaM7tf8GTRoEAABTVpg9G1GcUEeZddPmYJIUBm4VP/8ue/fv5+6deuyYcMGpk2bZtqm+Pbbb+PfaTDXVo5H4eCBzNYV+7Dh5B5cRtnV45Q61eCVVRuxs7YAQK/Xc/HiRVPG1s2bNyktLaWwsBAbGxuuXbvGjRs36NKlCwkJCaSkpHDo0KHfna+PkyWvdazzBFZOEARBEARBEIR/C/HXxoLwCH4u1gT5OWH2q9PEZFIJNuYKejRxB8DWXMHkZ/wxV1Q9FUylkNK0ph1h/i5/qF+FTMo3w1vhaKlAAsis7JHIK7ePyWRywuq5sfa9kfTv359mzZqxbds2OnfuTHBwMKWlpSQlJdGhQwd69uzJsGHD+O677wgNDUUqlRL101asjy5ARQUKmQSZpPKffi08+PTFZlXGkZSUhKurK2FhYXTu3JmCggK2bdtmun7o0KEqWUhxcXGsWrXqoXOaujWeS2lFlGn06I2gRYZWqmRZ1F3qtGxPSkoKCQkJnD17lvGvvU7FvctgNCKRVca5bVr3xfWFOVg16IDc1oWZM2eiVquJiIjg+vXrpn4iIiI4ceIEL774IgC9e/fm8uXLhIaGkpCQQN++ff/QZ/F7SvLziP1pBye/X8e65cvQ6XREREQwYcIE3nnnHeLj4+nWrZvp/tu3b2Nj74hMaU5x3D7Kk+LI2PA2+rJCjHodmZumkZt8g2eeeQYnJyd27txJQECAKYtp+/bteHt706TnKCzrh2LVrBsVdy6QtWUWhsJM5I41Sd/zBf4Nm/Dhhx9SVlZGr169mDhxIlOmTAGgZs2ajBgxgu7duzNjxgxat25NdHQ0+/bto1OnTqZT/gRBEARBEARBEH5NZCIJwm/4clBzZuy4zI64VBQyKRq9geZedix5oRmqB4JGo0Jq4eNoydLD17mVXYqduYIhQT6MaOf7yLpKj7L53D1m7ryEVFIZUNIbDLjZqghxLOW0q4yZvZvTe20+hw4dYtOmTXz77bccOHCAefPmsX//fpo3b05GRgYHDx4kNjaWBQsWsGzZMtasWYOFhQUrV65Ep8+hcce+qLUGmta0w95SWWUMWr0Bg8FIp06dWLduHVAZVNq2bRt9+vR56LjVajWrVq1izZo1BAYGsnjxYgDySzUcTMw0ncZWePoHym9X1v5xfXEeP0Ye5sVn30cqlVJQUECXThFox72Fwr1ye5VEKgOD4eev5YQMfgOANWvWABAZGUlkZKRpHA0bNqRJkyYAKBQKNm/e/IfW/3Gd37eLqHXfAEb0Wi0nbiSRVVrBkTPneH/+h7Rs2ZJGjRqxe/du0zPbtm1jwPP9+CrdgHXTLuiLsnHq/pbputfg+YwP92NCeGWGT3R0NGPGjOHWrVsMGzaMUrUOz6ahRN/K5eJzr1ZmLt2Lx6phR4rP78Y+fCSFh79m3+4dmMng448/ZteuXezcuZP+/fvTokULrK2tH7kma9asYdGiRWzbtu2hp6ZlZGSwatUqpk2bRnBwsDhZTRAEQRAEQRD+x4ggkiD8BpVCxkf9GjO9W31S8spxslbiYv3wIsEdA1zpGPDoQteP4+ydPGbtvEyFturJV1nZuaxfu4BzR36ioqKCgIAApFIp7u7uNGzYEAB3d3fy8/MBqtXC0ev1TJ48mYSEBIqKiujduzdBtZ2q9X/0ahbz917hRlYJhsIscvccoHXbdgzo34/s7GwOHjxIWFgYW7ZsMT0zceJEgoKCUCqVhIaGMnjwYDp06MCxY8do0qQJb8xZjFImRaMzoE6/jlFTjk2rPuT+tIh7S15Abm5N7dq1adasmalIt5eTFXlelUEklW9z8g5+iYV/MDa1mlAY/T3vv1/IjBkzqow9Ly+Pvn378vLLL/+pz+BxpF2/yvH1a9BrNaY2hQS8bCzZ+ck8wsM7EhMTU+25Xbt2sW3bNu4cTGb3ycwq1yRUBg1zitXM3HGJkDrOXDmyhaFDhzJjxgzGfrSWLTv34B4xnJwL+ylLv0X5rVgMOjU2LXtTfuc8imhLKm7HcHDvbiwtLcnLywNgwYIFREVFUVBQ8NC6Wfep1WrTNsGHcXNzY9q0aX9ssQRBEARBEARB+M8QQSRBeAw2KgUB7oq/vJ/Pj9ygXKuv0mY06EnZ/hHOoYOxsHOkIiMVieSX7KYHv75fN+fSpUtVauHExcVRWlpKVFQUK1asIDU1tVrfO+NSmbI1/pcAloU9TsO/QmttyZ59S/nk4wUkJyfTuXNnBgwYQEJCAuHP9SDh+l1OOneH9Mu4l5Xg51cHLy8vsrOz2bdvH/0HDyMv8QQlSQmU3ziNUa+FK1HIbFxwH/4pqvittGjRgtq1azN48GAA4mPPcupWDrN3JXJLGoJtQAgN3G2Y3bMhTWu+WWXcYWFhpsDI0aNH//Rn8Dhidv+I7oEAEoCPoz1nbt8jK+kW14xK6gZULVSdkZGBUqnE0dGRj/vZoyvK4bsjRqxVcjQ6PSqFnAqtnu9O38VghC1nk8j9aSvXTo0htaCc5IQMdAYoVuvQ6o0oXGphG9iTzO9noL59DolBx9eLPqT01jlGjRrF4MGDqVu3LgAymQxLS0ssLS1xcqoMHhqNRraeT+HTwze5l1+GrUqBb9ZxXh40mLnvzyYyMpJDhw4xd+5cU9ZXWFgY06dPN2WnCYIgCIIgCILwv0XURBKEf5ArGcXV2squnkCTfoPco98Q0aED6enpv/seFxeXKrVw/P39uXnzJl26dOHs2bPV7tcbjMzalVglA0oiV4BCRbHWgIVfK3bv3k1ZWZmpeLRRqiA6/iZlZg7klmpILSgn6noO/mOWcuvOXU6ePIlWqyXl9nXKT2+k9NJhDDoN5n5tqDH4IwzqUiQ5d7AsvMPgwYNZvXo1R44cASq3qB347nP2vx7K+RmdiJvZmR3jg2la0+7/v7hPUF7qPfjVyX0e9rYoZFI+P3iCM6dP069fvyrXd+zYQc+ePQFQyqV8OjKcljWUuJz9grFt3NDoDah1Bgw/vzbrwkGkfsG8teUimYUVaPS/fDZGve7nryRYWaiY268F9tYW9A9tyPDhw2nUqBG9evUiJCQEAIPBQFlZGWlpaeTk5ADwyYFrvLf9Msl5ZRiNkF9SzqGjkay4ZfnrevKCIAiCIAiCIAiAyEQShH8UZysl2cXqKm2WAe2xDGiPmVzKrskdcLNV0bZtW6BqFs6wYcOAytpFnp6e1bJFfqt+zfXMylPTHmRQlyE1s0CrN3L4WBSXW3al6OJ12gU2oX2HcMq0Bqxqt6Tkwh6yf5yHJjsJM69GpO35AjPX+oR06ITRaOTQoUOY6Uqx82lAUeotyq6fxKHdCygsbcn58X3MnB3Iyspi0qRJVFRUVBubjeqvzwD7o+xruJObco9fH9/XvWkAcqWSlxZ8ilKprLLmv95mJ5PJOHzoAABdlkRRrqm6/tq8VEqvHGfjhT2oc5KpuHcJfUnl9rTyW+fQ5qVQfGEPEnU5nTt3Nm3vmzBhAnFxcXz77bd8+eWXAEyZMoXQ0FCaNm2Kq6sr2cVqVhy/YzpREKD08hHM67XnSnoR0jJttQy3B/9dEARBEARBEIT/TSITSRD+QUYE18JCKavWLpNIaOxpi5vtw+sx/RFr164lIiKCsLCwh25ru0+dcpnkRf3I+O4tZJYOaJ3rkp+fx+59B+g4bj4SqRSpTAEGPQq3OljUDaLs+iks6wVj5tWYGiO/wM/Pj6NHj6JRqylLukgNZ3tsrKywjFmDp7WU/bu2M2PGDGrWrMk777xjqsdjND75XJhHzTsyMpJZs2YBMHPmTNq2bUtsbCwhISGEhoYycOBA9PqqAZ4W3XojN6ssRh6TlMKyyNN8eTSaogo1TjW9cXD3fOh7z5w5Q9u2bbGysuLmzZum92UUVg+e2YcNx/WFOXgP+gClkxe2QS+gL8kjc8tMpGYW2LZ5HueeU7H3CaBWrVqmrWufffYZTZo04ZtvvsHc3ByA5557jpiYGGbPno2trS3HrmdXK/iuzUul+MIe7qybxs1rV4iKijJlvSUkJPyJlRcEQRAEQRAE4b9CZCIJwj9In2YeHLmaSeS1bMp+zkyxUMqwNJOzZECzx3qHj4/PI2vWpKammrajPaiuqzVmChmlD2TDmNduidLND7eBH5rabAJ7gVTK9itFuHV9jZLUG5h5N8au7fNk7/wIo7qM0qvHMeo0pLnXpoW3LzExMfTq1QulUsl3333HsGHD2L59O3Xr1iUoKIgNGzawfft2fvjhBxwdHYEnH7R41Lx/7ciRI0RHR5Ofn8+uXbuws7Nj2rRp7Nmzh+7du5vu86zXgLb9BrJnzQpu5+QzNqwNCpU55tbW9HizeuHp++81Go1s376dqVOnVrnu7WhBQUrhQ8ekNxhpM/Fz7uSW4dp/dpVrKoWUKUuXA1UzzR48rQ7ghx9+4KuvvqK0tJRPP/2UFIOx2pY1+7Dhpq/VP05j2rRpdO3aleeee870uQiCIAiCIAiC8L9NBJEE4R9EKpXwxcDmnLqVy5aYFIortITXc6FXMw8szf7/f1yLK7TcyyvnwI7d6PV6IiIiCAgIYMmSJcycOZOjR4+i04Ki/euUZKWQt/8L5A6eGDXlABScWI++OBdNdhJGbQV3ywspOL8Hg7oMo06NNnQo2uy7WDXuhJl7ffKPrCD7yDfcsJPRokULmjRpwuLFi+nYsSNt27ZlwIABppPCDAYDx44do3bt2owYMYKOHTvi5+eHm5vbn1pLvcHIlfQiNHoD5/bvrTbv0aNHk5ycjLe3N9bW1lhbW1NeXo6DgwPJyclYWVkBIJfLkcmqZodlF6vJ8Q0iv14iDnnlrL90C5WFJUNGjuK1yVNM761Zsyaff/458fHxhIWFsXv3blxdq5/g92oHP17fFFetqLqZXMpzjWowop0vLyyPRqMzoPu5aJK5QkZdVysGtvb63bUYMGAAAwYMMP17emE5esPDs70slDI+37IHqVTK3r17q12/H6C8H7RKS0ujW7duJCYmUlJSQk5ODqtWrWLatGksXbqUDRs2IJVKWbRoEW3btuX111/nk08+qbamgiAIgiAIgiD880n+im0jT0NgYKDxYUdoC4Lwiwqtnpk7L7P9QioKmZSMqI1YlqZx5uBOFs+biYuLC7GxsWzYsAGj0cjRq1m80K83qvajkaisSf1qBDVf20jBifVIzSyxadmLlK9GIDNT4ezhQ1bybfQVxXiOW4s65TIVyQnYBQ+i8PQP6G6eRKXOZ9OmTURERLBp0ya++OILpFIpa9aswdfX9y+b96HETKZui6dCo0cikZB9fBM+slzOHNzJ1KlTcXR05MaNG3y57GvmzP2AwrwccnNzSUpKqpLRk5aWxvPPP8+xY8eQy+UYDEZm7bzM5ph7KGRSsk9soiIzia9WrWHd7FewsLDA3t6eFStWMG/ePDQaDbNmzSI4OLjKe4cNG8b06dPx8/MztX1y4BrLo24DoNMbUMplNPKwYc2IVlgo5dzLK+PrqFscv5GDpVLGi628eD6wJirF/y8YM/3HBLaeT60SuFLKJPg6WbF7YjAKWdXdzmfOnGHSpEnIZDICAwNZvHgxo0aNIjExkRUrVjBu3DgOHTqEXC43rZ2npydXr17F0tKS8ePH8+OPP/6/xioIgiAIgiAIwtMjkUhijUZj4MOuiZpIgvAfNm7DeXZcSEWtM1Ci1mFUWFDmUJdeX56kXUh7SkpKCAoKAkAikRBe35V6DjJufzaU59v4oXBwN71L4eQNgMqrETWfn8HZo3txcXVF7uAJgNzWlYp7l8ne/iHlV6N4991pNGvWjJkzZ1JaWkqbNm2Qy+XY2dnx4osvcufOHQD69+9P+/bt6dy5M0VFRX96zjFJeYzfeJ7cEg2lGj0lah06uTl3FT6sP32X8PBwissrSMKZhjP3s/IqbDiTzO79h0hISGDx4sUkJSURFhZGs2bNyMvLY+fOnXTu3Bm/xoFsjr5J1onvyUqMRiczx6Aw5/Xpc7F280Gv1+Pr68tzzz2Hj4/PHxr3m539OfpWGFO71OONzv6sH92azS+3xUJZGZSp6WDB3F6NODa5A3teC+Wltj7/7wASwPs9G/JaxzrYWShQyCSYyaX0ae7JllfaVgsgAXh7e3PkyBGOHz/OnXtpvLtyN4dPX+CD1dupXz/AdN/t27cZPHgwS5YswdHREY1GQ0FBgWlLXFhYGDqdrtr7BUEQBEEQBEH45xPb2QThP+pmVgknb+RQ8cAJXGYe9Sm+uJ+ici2b9x2ngbs1p0+fZvz48UBlQWtbW1sy09MY0dqdpfnpv7zwgdO5dAYjHRYeQymX0sTTjob1nDl2IR+juoQe735FY81lTu/fxoEDB5g3bx779++nefPmZGRkcPDgQWJjY1mwYAHLli1jzZo1WFhYsHLlSjZv3szo0aP/1Lw/OXCdCq2hStv9eS86eJ3esvNsiL5DTmYG9s+0ozz9FgapGW4jllG2YzaHDh0iIiKC+Ph4VqxYgVqt5ttvv+Wnvfvw7DQS4/VzWAa0pyBqLTYte1MUswPbti9w4vS31LU1smzZMqKjo/nuu+/+8Njd7cwZEfzXZWg9SCqVMLZ9bcaE1KJEo8NCIUP+q+BRYZmWnfFpZBRWUNfVii5OCj45cI2j13M5lDCPsqSr9OjRnbodX+ROQgK9evWiX79+VFRUUFxcjJ+fH507d0YikTx0a5wgCIIgCIIgCP8uIogkCP9RZ+7kVjuWXelaC6lcye01k1G7ufDNib3Mnj2bdu3aYWZmxrZt23jvvffo0aMHdevWpU5tH3xqWHPmV+/RGoygM5BVWIFMAsuHtCQlvAbT8tqw/uUgIiM1lGQ0BMDd3Z38/HwAGjVqhFwup2nTpty8eRO9Xs/kyZNJSEigqKiI3r17/+l5x90rqNZ2f95XVr6JrJYHyqBX0e9cSuamd5HZuCC3cUYtUZBTqiEkojNffvklxcXFfPbZZxQUFODn50dmUQVSKwc0FSXIbZwxVJQgs3ECg56c3QuR6NRcTS+mdu3aDBkyBG9vb7y8qtcr6t+/PydOnODGjRtMmTKFnj17/uk5/xlSqQQblaJa+8HETCZsPI8ECeVaPZZKGdN/vERx2i20pYW4PD+LjHVTcOwzg4yUBEordGzfvp2UlBQWLlzI5MmT6dq1K1FRUdjY2DBmzBj27NnzN8xQEARBEARBEIQnRQSRBOE/ykIp41enuANgHz4SCdCnhSdKpZIPPvigyvXWrVtz/vz5Km3dpVISUitPD7MLHkj62jdROHoikSlIL1Sj01dm/jwYtHrw6/u11y5duoRer+fixYvUrl2buLg4SktLiYqKYsWKFaSmpv7peZsrpNUKVN+ft0ImoVFdZw5fycKp6yTTNYO6DADf4Z/w08HlLJw1lZKSEtatW0dkZCSHDh3Cxlzx8zx+Lmzt15q8/V9g07ov1s2eQ3bzGG+G+7B//37eeecd2rRpY3r/g/WQvv/++z89x79aemE5Ezaer5LRVarRoy8vJnvflzj3fLvK/XqDEYPcjKyiCoqKiigrK6NBgwbI5XKUSiW2traUlpY+7WkIgiAIgiAIgvCEiZpIgvAfFV7P1XSS16+ZK2X0beH52O+6lV1S9Xmfpri+MBeMBsozb9Ox8zNkZmb+7ntcXFzo1asXEydOZMqUKfj7+3Pz5k26dOnC+vXrWbt2LWFhYb8bTAoLC3vktX4taqKUVY+eSSTQwtse84fUEVKnXCZ9zWskffMGjs6uDz1BzUalwM/FyhSYs6gXTPntWCz826FSSGlb2xGlUsn69euZNWsWV65c+e3F+AfbeDaZX3/rGH/OuLLvMAKZlf0v7XodeUdWoSstoFf3rpw7d47i4mL69etHWVkZLVq0ICIigsmTJz/lWQiCIAiCIAiC8KSJTCRB+I+yNVcwrWt95u+5WiUzx1who0M9F1r7OjzWe4xGI/JfpTRVJMeTueldLOoG4TloHu1lZ5g6dSpSqdRUlHrbtm2EhoZiY2PD+vXryc/PJycnB61Wi4WFBY6OjlhZWXHixAlSU1OZMWMGkZGRf3re48L9OJCYQUZhhakelEImwUIpZ36fxtzILObI1SzKNA+sSe2WmNduiZlcysq3w3GyMjMdZR8WFmYKWv2w6F16fnGConItJRVg7tscazsH6tewYdXotzCTVwao9u3b96fn8Xe6kVmCRle1rlTZ1RNo0m+QH/kNAPbthwIgkclxCB+JNvkiu/euwcVaxciRI4GHn0L3JD5jQRAEQRAEQRD+HiKIJAj/YUPa+uDnbMVnR29yI7MYZ2szRgbXok8zj2r1kh7l4/3XqgRcZJYOuI9ejkSuIHvbHPxD2pOTnkFkZCRXrlxh/vz5jBo1yrRNbd26dSxbtoyGDRtSUlLCpUuXMBqN3M0t5eMfE4i+lUt+3H5sC4sID4+gQYMAlixZwsyZMzl69KipVtONGzd4+eWXqVevnukUt+TkZIYNG4ZaraZHjx5MnToVW3MFuyeGsP70XX6ITUGrN/BMAzdGBPviaqPCy8GCem7WXE4rQv1AoMRcIWNUiC9OVmaPXAs3WxWH3wzjs62RLJoxj5C+rzK+X2O6NHCrVpT638zPxQqlTIpG/8v6WAa0xzKgfZX73AZ/BIC1bxOCO0XgYq2qcn3NmjV/+VgFQRAEQRAEQXh6JPdrlfzbBAYGGmNiYv7uYQjCf9q9vDI6LjpWJdjyIF3CPiZ3b8KXiz+mRo0aANSoUYOePXuSm5vLuHHjuHr1Kp988gkdO3YkOzub8ePHE3s3j5dWnUWjM6AzGCmM/h5DbjJdX5uPx/VtuLm5Ehsby4YNG0z1lHr06MEXX3yBg4MD3t7epvcPGDCAkJAQnnnmGb755hvc3d1/d14VWj2fH7nJujN3KSrXUtPeggkRfvRt7vnYwTWAM2fOMGnSJGQyGYGBgSxevPih9x08eJD58+djMBj45JNPaNGiBcHBwVVqJf1Rv9f3li1b+Pjjj5FIJLz77rt/qIB3akE5EZ9EVjvlDiprben0BoyAVm/EUinD08GCzWPaYGeh/H/PRxAEQRAEQRCEfwaJRBJrNBoDH3btv/NX54IgPHEHEqvXObpfhFoCOJTeoWn9OnTu3JnIyEgiIyNZu3YttWrVIjY2FoCYmBhq166Nv78/p0+fxmg0MmFjHKVqnalmk9TMErlnAy4kF2Dm3ZiSkhKCgoIq+5FIkEgkFBQU4OXlhZWVFXXr1gXg1q1bNG/eHIBmzZpx586dx5qXSiHjrWf8iZvRmdvzu3JsSgf6taj5hwJIAN7e3hw5coTjx4+TlZVFQkJCtXvKy8v5+uuvOXjwIJGRkbRo0eIP9fEoUqmUW7duIZPJ2LRpU5W+DQYDixcvNn0mixYt+kPv9rAzZ3H/psgr8sn49jXuLuyNuRwsdcV00pzkyFthNCuKxrD9XSS7pjOjpRw7CyVhYWHodLonMj9BEARBEARBEP55RBBJEIRHUuv06H9VYfl+Eer0797Cyt6F9u3b4+bmRlhYGB06dOCbb76hVatWmJubExISwoYNGxg7dixNmzbF29ub5q3acvHrNzCqfzmty8yjPpqsJMq1en48dBKFQsHp06dN141GI7a2tqSkpFBaWsqNGzcAqgSrLly4gI+Pz1++Jtcyipm98zKvro9lz81y1MbKOkhyuRyDwUBERAShoaH07dsXvV5PdHQ0UqmUZ599lpdeeqnaKWUTJ05k06ZNj91/drGa2Lt56JRWdOrUicjISDp37oxMJqNDhw7069ePNWvW4O/vT2lpKSUlJdjY2ADw7rvv0q5dOzp06EBaWtoj+zAYjETUdyXqvR58svoHfAOa8n6PBsTOf56lH87B096CGyd2k5R4gf27d7Bw4cdVnl+0aBHBwcFkZGSYTv9bunQprVu3pm3btkRHRz/2fAVBEARBEARB+OcQ29kEQXikuHsFvLj8dJXC3PdZKmV8NrAZ4fWqn2T2W6Jv5TLmuxiKK6pmrOQfWUVF6hX0eSnIDBreeOMNDh8+TE5ODufPn+fatWu88sor1K1bl+vXr3P+/HnatGmDmZkZWq2W7t2788477/yp+f6ezw7f4IvIm2h1BvTGyjpKCpmE2cHWrFz8Abt376aiogJzc3OmT59O+/btycnJYdq0adSoUYPBgwdTXl7OG2+8QXBwMC1atECtVhMYGMioUaN+s++sogqGrD7DtYwSJBLQFWSSvXEqft4e6LUa9uzZQ8uWLalTpw4qlYrRo0fz8ssvU1FRQf369dm7dy+BgYHUrVuXvLw8AgMDWb16dZU+ckvUzN97lZ0X09DpDXjaW/BW57osen0Qhw4dIiUlhenTpzN37lzq1atHq1at0Ol0+Pj40KBBAw4ePMhzzz3H3Llzqaio4NixY7Rt2xaozBSLjY0lPT2d8ePH8+OPP5r6NRgMSKXi7zQEQRAEQRAE4Z/gt7azicLagiA8UhNPW5rUtOVCckGVukgKmQRPBwva13X5w+8MqGFT7eQvAPvwkUgNWno2cubCqmnMmTOH+fPnm663bt2a8+fPV3lGpVJx6NAh5PK//kdZ3L0Cvoy8VaVOULlWT0lRMUNHT+baqf2UlpYyZswYUlNTyczMpE6dOtjZ2WFpaYlEIiE8PJyFCxcCcP36dVQqFYMGDUKvrx6ke1CJWkfoR0dNp80ZjSCxdMBh4Mfc+WkhrfxqcPr0aSwtLTl16hRGo5GmTZvSuHFjdu/eTbdu3ahRowYrVqxgw4YN3L17l/Hjx1fro8fnJ8ksqjBtM0zOK2Pq1gQMhRXVxtSkSRPu3r2LWqOlQf832ae253LKFs7NnUd4WDgZ6anMmjULZ2dn1q1bh5+fH2q1moKCAhwdHYHKk+9atWpFWlqa6TQ8QRAEQRAEQRD+ucRf/QqC8EgSiYRvhrWiVzMPzORSLJUyzORSOjdw4/uX2yKTPl4NoaSkJFxdXQkLC+P5Xl15IbAm5oqqP350hZlk7VlKt0C/Ks8NHjwYgGXLltGmTRumTp1KWFjYE5vj41pzMgm1rmqwx2jQk7N7IY7hI0hRm7F//37q+Pmx8qP5NPJ0I/anHRzb+xPW1tYAzJ49G7VaDYCjoyMODg5s3ryZw4cP89xzz/Hcc89hNBpZs2YN/fv355lnnqFnz55M23rBFEAykUrJ2/85NmEjqNM6gtTUVJydnYHKz02lUjFlyhTGjx/PzZs3KSsrIzw8HCcnJ4KCgkxbAu/bdDaZ3FK1KYB0X7lWz728MvZfymDixgscTMzkrQ2nOX/+Ag4uNdDX7cC6RbO5sHYOpWodZSUlFLUYglanw87ODoCTJ09y/vx57O3tCQkJYeLEiab39+7dWwSQBEEQBEEQBOFfQgSRBEH4TeZKGQv6Nub8e53YNSGYmOkd+WJgc2zNFX/oPffr9xw4cIAZ3QNo6eNQ/SYjTNx0gYpfbZ/T6XSsWbOGkydP0qdPnz8znf+3lPwyfhVfoezqCTTpN8g6vJoRz3fDwd6Otcu/plffvty6cYOM2zc5um8P3gqIj48nNTXVFETKyclh0aJFWFlZkZyczJ49e/Dw8CA+Ph4AW1tb9u/fT1BQED/8sLXaeEouHUGTfoO8o9/w3RefYGtrS05Ojun62LFjmTNnDjdu3KBt27bs3r2b1q1bs23bNpKTk2nfvn2V9+28mPbQ09gAjMCk7+M4n5xPqVrH2Uwjcre6KHrMpiT5CnpNOQCG0gLM/VpzfO6LXLp0mWHDhgEwefJkbGxsKCoqIi4ujrffftv07idVaFwQBEEQBEEQhL+e2M4mCMJjsTSTU8vZ6rHuLSsq5MyP33P1RCR6vR6VhzeHDx0iJCSEPn36MG7cOHbMG4tao0VmYYtTz6mmZys0BjKS02nXrh1SqRQrKytycnLw8vJCJpPRtGnTv2iGv62Rpy0X7xWgfSCSZBnQHsuA9qgUUraMa0f20R95rWM79FoNAGdv36OppxuNPV2IT3Hi2LFjdOvWjdzcXFq1aoWnpyfdunVDq9UC4OHhQUFBAVBZQwigadOmVOxZz69DdnJLO+Q2zqDX0TCsO6NGjeLOnTu0a9cOMzMztm3bxqZNmygrKyMnJ4f27dszbdo0fH19kUqlrFmzpkow52GMeh1ZW2aiybzNvQ3TsAsdCoDU3AZVrRZcXPYa+pI8zGo2BKMRg7acirtxyB290Gbd4c033zSdnmdra4tSqcTe3r5KcXFRC0kQBEEQBEEQ/j1EEEkQhCeqrLCAtVMmUl5ShOHn497LribwRoc2vDhzHi+/OZmAFm1xfX4mGhTkR31Hxd14FA7uAOgMegqy0jiUeIHc3FymTZuGk5MT9+7dw2AwmDJ1nrZhQT5sOnsPraFqlpRcKqGemw313Gw4fGifKYAEkFVcQtq9IqJvJZOcV8DSJUvo0aMHY8eOpXv37qb7JJJftgXeP+zg4sWLpv+tVasW2b8aj3ntlpjXbgnAxCAzgoKCkMlktGrVisWLFwOwf//+Ks989dVXzJ8/H4PBQKdOnQCYMGECn332Gb2aenA9s7hKNpJEJsd1wAdV3mHm7o9BXYZt2/7Ytu1Pzq6FWDfvRnHsLjxGf03WD7NxG/gh2evfMm3jk8vlBAcH07ZtW3Q6HTNnzny8RRcEQRAEQRAE4R9FBJEEQXiiTm/bTHlxEQb9L6evyaRSMOg4+s0yunXrxrXES2TsXoemKBd9aQEKe3cUDu4YjUYyN7yNQaehV69ezJs3D4lEglwuZ+jQoQQFBdG2bVsUij+2le5J8Ha05ItBzRi/4QISCej1RqRSCd6OFqwcWnlwgbqstMoz3ZrUN339xdFoXh41inKtljfeeIOvvvrqN/vLzc2lc+fOqFQqPlmwjJHr4tDqq5+m2dLHno6tatHvyBFToe6EhAQaNWpU5b7y8nK+/vprDh48iEwmM7V/9tlnAPRvWZPVJ++QWVhRJdtKJoFfd6tOuUzB8XVIZArMPAOQWdoBIFWaY+7bnIzv3sRWJWP48OHExsYyf/58Jk+ejEqlYuzYsXTr1g2AyMjI31wDQRAEQRAEQRD+WUQQSRCEJ+rqqWNVAkgAFVodKoWc3NR7nL6TQbMWLXB098HYbTL5UWuprLpTmZHjMXgBFVvf4aeffuLu3buoVCoARo0axdixYzlz5ozpaPqnHYQIr+dK7PROHLqSSX6ZhgbuNjT3sjdlEtm6uFGQkWa6/25uPjvjEpFKJPi4OmNmYcHooUNRqVTs37+fK1euMHfuXPz9/U3Fpfv3709SUhJdunRh1KhRpnctfgGmbo2nQmvA8HOQx85CwdX0Igauv8rIdr4MaOWFXC7HYDAQERGBVqvF2dmZ77//nujoaKRSKc8++yyurq4sW7YMS0tLgoODOXHiBFZmcnaOD+bDvVfYEZeGRmfA29GC4DpObDufSpnmlwws89otkZrbUHBkBdq0axQZ9Dh1f6tyDdr2xy30RTaPbsn4wb3Jzc1lxYoVnDp16i//fARBEARBEARB+GuJYhSCIDxReq2uWtudnDwWHzzO0v1RuLq4MGjQIJRp58nZ+j66wkzTfRIJ2FmY8cHM6YSGhtK6dWvq1q0LVGbM1K5dm06dOvHCCy+YTm37LVOmTKFdu3aEhIRUO43sj7p/wtyznSP4bPIwetS3425spCmAFBwcTFC/F5GbmQFwMyuXC8lpjA1rw2vPdkDp5MKu3bvZuXMn27Ztw8PDw/RuZ2dnIiMjiYyMJCAg4KH9d2vszsUZnfn+5TYMaeuNmVxKfpmWYrWe29mlzP3pCs/P20hOTg6NGzdm9+7dREVFUb9+fY4cOUJmZibp6ens3buXoKAgvv7662p9OFgq+ahfE67O6cKND54lcnIHpncNwNpMjkxS9SQ+c3tXOr71BfNXb0NSUYi84B4WShk1bFWsGhpIYy9HoqKisLe3f+SaGgwPL+QtCIIgCIIgCMI/k8hEEgThifJq2JibMWfA+MseqPo1XKhfwwVLewde/vRTJFIp1y7FE59SwEf7rnE2KQ+FTMLAWUt4s7M/rjYqhg16ocp7X331VeLi4rh16xa1atX63XHk5eURExPDyZMnOXnyJF9++aWpVtAfYTQaKSzXUq7R0alTJ1PGUFJSEtu2batyWlz9kA6k37rOxQN7kMlkmJuZoVKpaBjWkfOR0axZswaAjz76iLfeeqvKWENDQ6lfvz5Lly41nWr2a3KZFD9nazadu4daVzUAU1JUwL7t89m0aROlpaWMGTOG1NRUMjMzqVOnDs7OzgQHByOTyQgPD2fhwoWPnLNEIkEuqwwaqRQytr4axKvrz3M9sxi5BDR6I8FN67DkxWbYqBSca1qT3v2asGHVlxRmp7PqpjcHatZk1qxZFBcXM2TIEC5evMi3335L06ZNadKkCY0aNaJhw4a/W9xbEARBEARBEIR/DhFEEgThiQrqP5ik+Avofj7K/j650ozQQcORPHAaV2NPO9aNav3Id+n0Bq5mFCOVSDi8bS1Dhw5lxowZAKSlpdGvXz/u3LnDjh07qKioYMiQIZiZmdGpUyfeeustHB0d0ev1FBQU4Ojo+IfnsutiGh/uvUpWcQWa/Eyyf9pPyzZBDHzhebKzszl48CBhYWFs2bIFgH1fLWHe0s/wcXTASqXEaDTg3qgZc77dhMFoJCoqiuDgYHbv3l1lK96JEydwcHBg3rx5LF++nIkTJz5yTEeuZSKXSnhwdY0GPTm7F2LXfjhHk7Vo0/ZTt25dNmzYwLRp0zAajbRs2ZLly5cDEBcXh6+v72Ovg6e9BZ+1t2LT15vJqTBgpy/BNl3NbY8hSN08yc/LpaaNDAcrFVs3HmLevHloNJUFxjMyMjhz5gyxsbGmIFJKSgqnTp3C0tLy8T8MQRAEQRAEQRD+dk81iCSRSFYD3YAso9HY8FfX3gI+BpyNRmPO0xyXIAhPjrOXD89Pn8uB5Z9TkJGGRCLFzMKC0MHDCQjp8Njv+SE2hbm7E9EaDBh1OtJ3bGHdho2m6/n5+Rw6dIiNGzeydetWLC0tGTNmDMOGDcNoNCKRSPDz88Pf3x+dTkd0dPQfmscPsSlM357wy2llFvY4j1hGhaU5u/d+yuKFH5GcnGzKTCrJy2X+p5/jZW9DE09XbmblUqHRMvPTL8HckqMnTj6yLwcHBwB69+5dJVvq0qVLjBkzBplMhp+fH6tXr0atNWAwVq10nfrlMPTlRWSmXmHdiZX0+fZrdu7cSUxMDLa2tqZMpPbt2xMaGoqFhQUbNmx47LXIuHWD7R/NQa5R4/ZzmxrYs/Irtl5N4qcDB4mMjKRZs2YAtGjRwrTefn5+qFQqPDw8KCgoAMDf318EkARBEARBEAThX+hpZyKtAT4H1j7YKJFIagKdgOSnPB5BEP4C7nXrM2zhF5Tk5aLXabFxcqmSgfR79iakVwnglMQfRFE3hDe3XERZrgUgICAAqVSKh4cHN2/eZPjw4cyaNYtBgwYxePBgfHx8uHTpEtevX+f8+fNMmzbNVJD79+j0Bub+lFj1uHu5AlBQrgOzWi3ZvXu36ZrRaOTWnTvUsLGieyN/U/vFe+koZTJGtGyKm5sbD6PRaDAajZiZmXHy5Elq165tuubv728qSD18+HBiYmJoXSsAw69OS5Pb1cBz/HdYKGXM7tGAkMCanD9/vlpfkyZNYtKkSVXaTpw48bvrcXLzOnSaqplleoOB707E0L11c1xdXPD19eXo0aMAXLhwwXSf5IFaSsafg1/SP/C9IAiCIAiCIAjCP8dT/S95o9EYBeQ95NJiYAr3j2gSBOFfYe3atURERBAWFsbJkyerFbu2cnCkVUh7OoSHExYWRmJiIsDvBnM+3He1SgBHm5dK8YU93F0/nStXEnnvvfc4fPgwYWFhZGdnYzQaUSgULFq0iG+++YYZM2ZgNBqxs7NDKpXi5OREfHw8K1eufKx53couRfurmkMGdRkAOoORs6ejadeuHXp95Yllep0OJysLmnq5s/viFdMzXg52FJZXsPboSdq3b//QbKj8/Hzatm1LaGgoO3fuwr1tT55ZEkXT9w8wYMU5jl7NAsDMzIyaNWvy/uTxlG6fRf6+pRScWF85topiMjdMJW//53Tyd+DMmTNMnjwZgJycnCp1m/4/Uq8lVmuLT0nnXn4h26JjCQ0JwWAwoFariYiI4Pr163+qP0EQBEEQBEEQ/pn+9ppIEomkB5BqNBovSn51+s9D7h0DjAHw8vJ6CqMTBOFh1GWlpGdkcOzYMQ4fPgxUFpp+mPsnjz1o9erVjBgx4qH3l2l0pOSXV2mzDxtu+jp97STUajUdO3Zk3bp1pnfv3LmTzz//nLKyMgYPHkxAQADW1taEhISg0+l47rnnHnt+MinVsn3UKZcpOL4OiUyBo19jgoODmTdvHv369ePrr79GIpHSupYXh6/c5MiVW3g52uFma82QoOZsOBfP7Nmzadu2LSdOnGDt2rV8++236PV6XnnlFc6fP4/RaGTS5jjmHUyiXFsZnIpNzuelmV9iOLuBGg7WfPrpp5iZmXE7LprnRr5F3J0sLJUyag5ZSEgjH9yT9rH2m1VMnDiRd955B6PRyNatW+nXr99jz/1h5AoF2oqqn0kzLw+aeXkglcsZu2wt5tY2tG3bFsB00hz8kunk4+NjKiz+ONlPgiAIgiAIgiD88/ytQSSJRGIBTAM6P879RqNxObAcIDAwUGQtCcJTdvvCOY6tXUVBZjpnbiWTrtYR2q4dTZo35/XXXyc1NZWePXuSmZnJxo0b8fX1rXby2IEDB0hISCAsLIxp06bRqVOnKn3IpVJ+HU52rcikWWEcTpo8ztTywKCuID03lwkTJrBw4ULmzJnDkSNHcHFx4fvvvyc+Pp6BAweyYcMGBg8ezOuvv86lS5fQ6XSkpqYyevRoVq5cibu7+0PnWdvZCltzhSmYA2BeuyXmtVuilEkYFVILmUzG/v37Tde/WfQRF/btJqK+n6nNz8URuULJZ/PmEhIWBkBqamqV4Nt955ML2H85s0qfAHLflijrtMby5Mfk5OTQtGlTlHIpkwc+Q9SJk4yYEIyDhRJ7SyVXrlibaiqFhIRw8uRJdu3axebNmx/r832U+qEdiNv/Ewadrto1V9/amFvb/Kn3C4IgCIIgCILw7/B3F6aoDfgCFyUSSRLgCZyXSCQPLx4iCMLf5ua50+xaNJ+8tBQMej1F5eUU5+fRz88dqUHPjh07yMjIYOvWrSxdupQFCxYAlVknUVFReHt7s3z5cnr06EGjRo2IjIysFkACUMqldKjngvTnSFJAUSK9M3ZSu+w29roCFEXp3Im/wKxRQ7GwsGD37t3s3r2bqKgo6tevz5EjR2jWrBm+vr68/PLLuLu7ExgYCFSe6DZ69GhWrFjxyAASVNbxmd+nESpF1R+RcqkEe0slo0JqVXumXf/BuNX2Q6FSmdoUKhVufnVp0vMFtsam8PmRGyxcvRmtTkdERAQTJkwwbQHr/VxHkr+fg9GgR5N5i+ydH2PUacnZtRBN+g1KtBIyMjJISEgAID4+HoVMSk1bJRbyypj6gzWVBg0axOLFi7G1tf3TRazb9BmAlb0DMoXilzWSylCam9NpzIRq94eFhTFr1qw/1acgCIIgCIIgCP88f2smktFoTABc7v/7z4GkQHE6myD8sxiNRo6s+Rrdz8e2A6gUcmo5O6DTqHE0aCgvL6dRo0bI5XLs7OxYuXIlGzdupHHjxnh7ezNt2rQqJ48BBAcHm7Y2XbhwgSlTpqDT6Rg2dgIx5lZoy0pon3cCuVFfpV9fRzvO79lO4DO9uXTpElu3biU1NZXMzEzq1KkDwNixY/H19eXu3bumZ5ctW8YHH3yAh4fH7865Qz0X1o5ozUf7r3LxXgFKuZTujd15s7M/DpbKavfLlUpemPkhdy9d5MaZk4CEum3akWLuQdsFxzACFVo9pWcT0Gbf48zBHaxcNNcUBJu+6xorl3xIxd14zH2bIbdzJWvr+2hz75FVkoOZvTndhrxAdHQ0ERERuLu7U69ePfLz83n22WexsrLC3t7edFpc3bp1SU5OZvr06Y/9OT+KuZU1L334KbF7dpB4/AgGrY5azVvSqlc/bF1+ifk/uE1v/fr1j7XOD8rJyaFHjx4oFApsbW3ZvHkz5ubmf3r8giAIgiAIgiA8GU81iCSRSDYCYYCTRCJJAWYajcZVT3MMgiD8cSV5uZQVFlZp83G058ztexgNBmLPnaV1zVpcunQJvV5PfHw8FhYWNGjQgJUrVzJnzpwqWTIPq382d+5cduzYgYWFBQDPFJbx7Tffw11JlZL79/vV6/Qc3r2TkO69MBqNbNiwgWnTpplOAHv77bdZunQpM2bMYNWqyh8z06dPZ/v27dSvX582bdr87rxb+Trww9igx14niVSKT+Nm+DSuPOo+t0TNqAVHq2xR08nMkbgHMHDlGWa3D+PcubNs3bqV+Ot3qEhKQWFfmSFl3fRZUk//gMcrq7FycGGIYxJSqZQVK1Ygl8tZsGABXl5euLq6PvQkNgBHR0eeffbZxx7/b1FZWdGu/yDa9R/00OuP2qb3R9jb23PixAmkUimzZ89m9+7dPP/88//v9wmCIAiCIAiC8GQ91SCS0Wh88Xeu+zyloQiC8AdIpFJ+fXiih70tClkqXx6NxsbSgmcahKBX/Ehw+wjuJd1EJpOZah+Vl5ezbds2ZDIZ58+fp6SkBAcHB9RqNfPmzePatWvcvn2bDh06kJycTKNGjZg0aRLhtaw5cdaI4SH9fnH4BO6eNXk3JIRPPvmEmJgYbG1tqVOnDtu3b8fb25tx48bx2muvcfDgQQCUSiXr16+nX79+LF68mPr16/+l67Yl5h4GY9V1M/OoT/HF/ZRpdPx4+CRhzetjNBpZs3Ydfs8MoUJSeX/+sTU4dBxD8ckNREycg7s0E51Ox8iRI7lz5w42Njb88MMPj+y7a9euREREoFRWz5p6klILyjl2LZtjuzZTUq4hIiKCgIAAXn/9dUaPHo2TkxM3btzgvffeY9myZZSVlbF//37OnTvHoUOHmDt3rqng9rBhw0zv1ev1pqwyQRAEQRAEQRD+GSRG47+zPnVgYKAxJibm7x6GIPzP+GbSWPLSUqpfkEq5aVkbC10ZKVfOEpOUQkZBEe9Neo1PVn1Do0aNuHfvHuHh4YSGhvLyyy+jUqlwcnLCwsKC4OBgHB0d+e677/j888+ZPn06QUFBfPrpp6RcucS2+bPQqiuqdatQqeg4ahwBIR2ewuz/fyZtvsCPF9KqtecfWYUm8yYBvh78uPZrevXqhbu7OypLKzKt/LldZECdfgPHsKFYX1jH7PEvkZ2ZgU6nY9SoUX/DTKozGIz0fH0eh3dtAYMBc496aIuyeGv+F5Qc/xY3Nze+++47YmNj2bRpE5s3b2bHjh3MmzePjIwMTpw4QW5uLqdOnTIF+YYNG8bZs2d59dVXUalU/PTTT9ja2j60/1GjRnH16lU2b978h7fNCYIgCIIgCILwaBKJJNZoNAY+7NrfWhNJEIR/j46jXmXbh7PRadS/NEqkVKDAoySZitJCkrJzCPRyx6KON/mX49BWVBAeHs7evXtp0qQJHh4eWFhYMHLkSNRqNV9++SVGo5F169Zx9epVlEol4eHhXLhwAQCPeg2wd/cgJ/kuBr3ugW6lmFlYUrdN8NNehj/Ex9EKpVyKRmeo0m4fPhJLMxlz+zXBy6tGte1o+aUackrU1LAzx8rsyWxHe9I+/vEUx6OicHnhAwBydi9CnX6TD8e/yLDhIygvLyUgIACpVIq7uzsNGzYEwNzcnAsXLrB48WIOHjyIh4cHRqOR3NxcBg8ezLp164iJieGTTz5h9erVTJo06aH9X7t2zVRPSxAEQRAEQRCEp0NkIgn/GWlpaXTr1o3ExERKSkqQy+XVshUWLVrEtm3bxC+f/0/pN65xfOMaUq8mIpXJUHs04HKuhoCiRM7fTuZ2Th43s3IwGow4WFlyNzcfa5vK49+7du3K6NGj6datGw4ODjz77LPEx8eTnp6OWq1GJpPRpk0brK2tUSgULF++HIDykmJ+WvoRKVcuIVco0eu0OHp60ePNd7Fxcvmt4f7tMgorCFt4lAqtodo1W3MF56Z1RCn/uw/JfDxavYH1p++yNvou+WUa0s7uofTuJfTF2cisndEX56LJvYfKoz7atESe796FI0eOULt2bca9MZmlqzdx5VI8FXkZWJqbYWtlTnlpKSdPnqRdu3bodDr0ej2rVq1i2bJl3L59mwkTJtCzZ09GjBiBg4MDd+7cYceOHSxbtozPPvuMkJAQdu/e/XcvjSAIgiAIgiD8p/xWJtK/47cXQXgMDg4OHD58uErB5PvZCh4eHqjVai5evFjtubS0NJo3b45KpUKn05GRkcEHH3zwWH2GhYU9qeH/K9So40//GfOZtGEHE77dQr5GQqOiy8gxUqxWozcYmN4tAi8ne3JLSzEajXRu3542bdoQExPDG2+8gbe3N0FBQezfv5/z58/z2muvodFoCAwM5Nq1axw+fJh33nnH1Ke5lTX9ps2hzcuv882Fq2y6nsrhjEKsHZ0fOkZ/f3/CwsIICwsjMTHxaS3NQ7nZqljUvwkquRSzn4NF5goZVmZy1gxv+a8JIOn0BoasPsuH+65yO6eU/DItmuJ8jHodrgPmoS8twKAuxVBWQEVqIqis2bNnD0qlkhs3b/HKzMWcO7KHsqICpK51KNFJ0Xi2pLCoiODgYHJzc+nfvz92dnYMGDCA06dPI5VKcXGpDBLm5+fz/fff88Ybb7B161bmzp1Lo0aNRABJEARBEARBEJ6yf8dvMILwG/LSUkm6eJ7ygjzs7e1N7dOnTyc+Pp5u3boBsHLlSoYOHWq6PnfO+2zbsgV7e3veeOMNU10VNzc3pk2b9nQn8S8UvWUDjhkJ3D9nTaWQU8vZAYA2tbwIqu1NY28PPpo9gx07duDp6cn58+cZMmQIPXv2ZO/evQwdOpRJkybh7+/P9u3bSUhIIDk5GV9f32r9tWgTRGzcRaLPnAHgUZmIzs7OREZGEhkZSUBAwF8y9z/iuUbuHJ8azqROdRnU2otpXesR/U44zbzsf//hf4j9lzO5eK+gSkaV1MwSlVflFjWZpR1GvRaLesFYNeiAtXdDzMzMuHPnDrb+bSjPSsbj5ZVILWzR5SQjc6xJuQ5q1G1K06ZNsbCwYPLkyRgMBt58803TNreysjIA07Y4Dw8PCgoK/o4lEARBEARBEAQBURNJ+Bcrzsth5yfzyUm+g1SuwKDT4uLrh15XWTtn7ty5REZGsnv3brRaLceOHWPcuHG8PWUy69+dhObyZeavXkH+iYPsvJFsynpISkpi+vTprFu3jrZt29KiRQtOnDjBhx9+SJcuXVi+fDmrV6/+n8tCepBepyV2z04keq2pzcfRnjO37wGQml+EBAkZBUXUqNeAixcvcu/ePYKDg7G2tubHH39k3bp11K5dGwCptHo8u6BMw+qTd9gZl4bBCM82dGNkiC8u1irMzMyoWbMmw4cP5969e3h5eeHl5cWsWbPIy8sjNDSU+vXrs3TpUmJjY9m5cycLFiwgLy+PESNGsH379qeyTvc5W5sxtn3tp9rnk7Q5Jpkyjb5K2/1T5gAMFaXIbd2QIMHcuzE1C+MpL3eiQmcgWyNDauUIUhnWTZ5Bm5dG8YWfUDp5UyCxISEhASsrKyQSCb6+vshkMpo2bUpWVhb3t1tLJBJTv//WLdiCIAiCIAiC8F8gMpGEfyWDXs+mGVPJun0TnUaDpqwUnUZD+s1rZCXdxmioWoPmu+++Y+DAgeQkJ5GTfJeMWzewVSkpVWtIvZvEzYtxGLWaav3k5uYyY8YMfvrpJ77++mt0Oh2rVq3ixIkT9OjR42lN9x+nJC8XfvXLvIe9LQqZlC+PRnMvv4AmvjXx8q1Fv+efZ+LEiezdu5etW7eSmZlJ586d2bVrF6+++upD359drKbLkii+PnabpNwykvPKWH3yDm1eXoB//QCysrK4e/cuZmZmHDp0CH9/f9OzJ06cICoqCm9vb5YvX05QUBCnT58GYOfOnfTs2fOvW5j/qDK1vlqb0rUWUrmSjA1vY9SUI1GaAaDJvENDd1skEgkVWgOSn3PVym+eoTD6e0ovH0VuV4OS+P2oy4rJy8vDyckJqAzgGgwGLl68iLPzw7crCoIgCIIgCILw9xGZSMK/0q3YM5QXF2EwVP3l1qjXY9BpSbp4njotq9ZGiouL4/2k22QUFHHixh2C6/jSwN2VrbEJ1HNz5lJGWrUsB2dnZ1OGUkFBATk5OXh7eyOXy2nRosVfP9En5MyZM0yaNAmZTIaHhwe3bt0iOzub3r17c+7cuWqFxj///HPWrFmDjY0NERERTJs2jdWrVzNnzhzatWvHyq+XYdBXDyx0b1q5fUwqV9Bv2vvMD2hU7Z5fn0QGVOv/4/1XySnRoDP88nlo9Uak3oEEd34Oi9i13L59m8aNGwPQtGlToqOjgcraWAC9e/dm8eLFSCQSGjduzIULF9i5cycrV678I0v3/3K/gPu6detMWW3/ZhH1XbiUWkjFQ06Zuy//yCrUGTcw6jRMWbaaD+bOwd5CgWuDNqRJZFjWD8Wo02A06LFq3ImsLbOxluuR2NqaTmDz8fEhISGBI0eOsH79elOm2v31u1/rCqp/zwiCIAiCIAiC8NcTmUjCv1LqtStoK8qrtOkNBr6OPE1qXgEvjhjJmZ9r5wAsWLCA/fv3M7R1Y1xtrQiuU1lzp3HNGlzNyKZJzRrotVrKiwqrvPPX22icnJy4e/cuer3edAz9v4G3tzdHjhzh+PHjaDQavvrqK5KSksjKyqK0tLTa/Tt27KBnz54cOXLEVB+qR48eHDx4EACVpRU1GzRG8pBtaHKlknb9B1HzIQGkx7XrYnqVABKAUafFYIRj17OxsLLi+vXrJCQkABAfHw+ARqNBrVYDcPLkSVMQol+/fnzzzTfo9XpTkOmv8qgC7v9mL7bywlwpQyp59D324SNxG/ghwa/Mp349f9atW4dEIuH9sf1xjxgGgFWjjlg3eQaJRErNPlNwt5azePFihg0bho+PD5GRkezatYvTp0+bPjtBEARBEARBEP45RCaS8K9kbmWNVC7H8HP9IwCZVMrLYW2QKRSEvDiMFq1bV8lWSEtLY+FPR8goKEJvMCCTStl+/jIyiYQ1J2PIKCyheavWWFpZ0ajRwwMgcrmc4cOHExQURPv27f/yef4ZBr2euwlxlBbk4+zlg8HCnMKiQqysrLCwsGDw4MHI5XKys7Pp0qULOTk5PPPMMzg4OJCamsqePXvYu3cvAD/88APu7u6UlJSY3v/M2Imse3cS6rJSdD8HbhRmKlx8a9Oi65/bMqbWVc9yKr8TS9G57UiAjIiWfLNqJSNHjiQiIgJ3d3fq1atHfn4+zz77LFZWVtjb25syWEJCQhg0aBAzZ878U+N6mIqSEhKjjpCTkoy9Ww1O3LjD0KFDGTt2LIMGDSIxMZGwsDDi4+OJj49Hp9MxfPhwbGxsiIqKQq/XM3HiRGrUqMG4ceOIi4tj6dKlbNy4kUuXLuHn5/fEx/xH2Vko2T6uHZM2x3E5rQgJVMtKAlAppLzdpV6VtucDa1Kq0bFw/3WgMhhrppAxt1cznlvY/2kMXxAEQRAEQRCEJ0QEkYR/pfrBYURv3fTI6/5tg6u1OTg4sOidt3jno8UAZBWVcDktgxEhLant7IhDTW8is0u4deuWKfjwYBAqMjISgLFjxzJ27NgnOJsn48Eta/Vq+VJLU8TJazfpFFCXJfsjGR8eRFZpObEXr3ArLJjIyEhKSkqoqKggLy+PY8eO4ePjw4ULF3j77bcZO3YsiYmJFBUV4e7uXq0/KwdHRixeRmLUUW6cPYVcqaRhWCdqB7ZGKpP9qbk0cLclIbVqVphFnTZY1GlDTXtz1kzpgEQiYcWKFcjlchYsWICXlxeurq4P3S4nlUpJSUn5U2N6mJTES2xbMBujwYBOowa5nLUnYvniqy8pLCzkwIED9O7dm9WrV/PSSy+xdetWevbsSUZGBgcPHmT//v3MnDmTtm3b8sUXXzBu3Dg2b96MRqOhTZs2vz+Ap8jb0ZJtr7Yjs6iCgjItF+8VMH/vFTQ6A0ZApZAxq3sAHeq5VHt2WJAvL7by4nJaEQqplAB3G2S/ldYkCIIgCIIgCMI/ktjOJvwr2Ti7EPT8IORKM7h/yLxEglxpRujA4Vg5OAI/Z+PEx3H99AnURYU8M2w0EpkUiVRK7N1UJBIJkVdvIzczI93SkaFDh5r6uHDhAgMHDgRg8ODBjzxS/p/i/pa1fbt2cuF4JLl5eXSo44Pu54LhZWoNW87E0a9ZAFHbNpGdlcXevXtp3LgxLi4uVFRUoNfr8fT0xM3Nja1btzJ48GDMzc0f2afS3IKmz3Tl+fc+oPfUmdRpHfSnA0gAU7r4o1JU//GkUkiZ+mw90zbDkSNHEhoayvHjx+ndu/ef7veP0Kor+PGj99FWlKPRaDhn24yFue6ktxhC38/2UarW8uLAgZSVlWE0GikrK+Orr76id+/e1KpVC7lcTseOHcnLy8PMzAwXFxeSk5M5fvw41tbW+Pj4PNX5PC5XGxX+btb0b1mTmOmd2DI2iB/GBnFuWkd6NPV45HNmchnNvexp5GkrAkiCIAiCIAiC8C8lMpGEf61WPfviXtefmN3byU9PxdGjJoHde+Netz4ASRfP89PSj0zFt/U6Hba+dUgvLmXatv0sGNCd2zl5zJ34Cq37vsikae/x7uz3mTFjBgDNmjXD19eXl19+GXd3dwIDAwEIDQ1FIpEgl8vZuHGjqfD23yHz9k3O7dpK9t0kbJ1daN61F+nXryChsp7ThtMXGNimGXq9gU8OHEcpl5GcV8Dx63dQyWW88cYkLl++THh4OKNHj8be3h4ANzc3+vTpw9atW8nPz3/q8wqp48wnzzdhxo7LVGj1IAGZRMK7z9WnW+NfsqK+/fbbpz62+26cOYXRWLml64BzBHcsfCiLX4fm2ml0hZnoiovQebdFXriPHTt2kJeXx9ChQ2nWrBkjRoxAr9dz8eJF05oPHDiQN998E4PBwIQJE/j444//trk9LplUQoC7zd89DEEQBEEQBEEQnhIRRBL+1TzrN8SzfsNq7XlpKexY+EHlFqMH5Ny4ipezE85ePkz45nu2hoXR5+1ZrF692pR19KCxY8fi6+vL3bt3TW2HDx9GoVDw7bff8u233zJ58uQnP7HHcPnYYQ6t/BK9VoPRaCQv9R4pVy6RqzVQUlGBUv5LRlB+WTkGoxEHS3PWRV9ALpMik0pBr8fFxYUNGzaQmppqCsr06tWLNWvWYG1tjVKp5MqVK9y6dYsPP/yQW7du0bdvX7Zu3fqXzq9rY3e6NKzB1YwiDAaoV8MaheyfkzxZlJ2FVq0mV+FA/O07FCV+g9FgwKn7W5TfOEPRue2kqRUYi4opLy+noKAAqVRKQEDlCXa9evUiMTGRsrIy3nnnHbZv305UVBStWrWiQYMGf/PsBEEQBEEQBEEQqhNBJOE/KWbXNvQ6bbV2qdGAprQUvU5LWloa58+fRyqV4unpiZmZGcuWLSM6Opr69euTl5eHv78/SqWSJk2aEBQURFFREWq1mvLycsaOHfu3/bJfUVrCoZVfoNNoqrQXFhWz7lQsL7VtgVb/S9Fxe0tzXutYWSfqiyPRPB/YiOM3k9m2YT1ufnVp06YNLVu2ZPDgwQBMmzbNdCrbffXr16dbt25/8cyqkkklNHC3fap9Pi57dw8UZioSdXaUpSTiOmCe6ZqZR31UOcnoVbZYOnogkUjQarW899577Nq1C6VSSUlJCdnZ2fTp04fExEQ++ugjvL29ycnJoUuXLhw9epTvv/8epVLJ9evXcXFxITg4WBxtLwiCIAiCIAjC3+af89f6gvAEpV2/itFQ9fQovcHA15GnSSsoJO5CHDdv3sTNzY26dety+/Ztrl+/zr59+5DJZCxdupRGjRpx/fp1mjVrRmBgIDVq1CAyMpLhw4eTk5PD559//shT3P5qN8+dRiKt+sdXbzCw4UwcXZvUx8aiah2jMo2WgrJyNDo9BoOBLTEJNPT2xKVWbfbu3cv169d57bXXnuYU/tVuZZew8p41a5x7E5Ojxmg0kLnpXfIOLsNo0FMUu5PyW2fJ3vkRxblZ9OvXD6lUipeXFy+++CISiYRNmzbh6urK4cOHuX79OsuXL+eNN94gOjqaffv20a9fP5555hlcXFz+1m17giAIgiAIgiAI94lMJOE/ycLWjtyU5CptMqmUl8MqT7z68mg0177/ltUfzmHwG1N56aWXGDJkCFu2bMHCwoLNmzfTsGFDXF1duXv3Lm+//TaHDx8GKk9s27lzJ3fu3GHhwoUsXbr0qc9PXVqCQaer0hafks69/EJ+ungFhZmKLg38uF903FKp5MDlG6QVFNEpoA5NfL3YcTeT0ND2SCQSoqKiaNiw+rbA/wVpaWl069aNxMRESkpKkMur/1hcvXo1c+bMoV27drw8czFj1saSE/MTRRcPoi/JRW7thNtLC8mP/Iaicz8ikUjxfOUbys5uoVdjVxQOHhikcoYt3k7Wud3s3biKF198kcLCQg4fPszgwYMrtwsu/AQrz3qEtWxIUFAQ9evXZ/To0ahUqipF3h0cHHB0dCQyMhJzc3MUCgWTJk3i+vXrbNiwAYPBQFpaGjdv3nzayykIgiAIgiAIwn+YCCIJ/0nNnunGvcQEMBofeU9xbjbnftyCnVLOyhUraNmqFe3ataNhw4bUrl2brKws0ylgAEajkfLycuLj42nevDm5ubm/eXLZX6lGHX+kMjn6BwJJzbw8aOblgUKlInz4WAp1Bq7NmoVXwyYsqNeA/PRUdBoNNerUJej5Qbz2cwHy/3UODg4cPnz4N09369GjB6GhocyYOZOJGy9QrtVj5tOMGk26UBSzk6Kz2wAjKq/GaDJuonStjUohxa9JM5Kyb9BlSRQGK1fWn8+iPDaZvIISzu/Yw9ihA+nVqxc5uXmY1WxEQeMXGPL6NJw7j8V48Hsc5BoyMjLo1asXGRkZHDlyBLlcTuPGjTEajbz88ssMGDCAZ599FoAxY8YwZswY3nnnnf/ZoKAgCIIgCIIgCH8dEUQS/pP8WrXFzMICdWlplXa9wcDKqLOkFxSxIuosdV2duZWSSuuWLQls2ZJmzZpx5coVWrRowd69e6u9d9u2beTk5NChQwfMzMxYs2bNU5pRVTXq1MPBw5Ps5KQqGUkSiQSFmYpaLdvQ5dnneHf6DLp06fK3jPGfzGg0EnM3n6ScUjztLWjt61Dl+vTp0zl69ChmZmZs27YNJycnSkpKyC3RoNVXBibltq4AmHk2wBi9GZBQcn436qwkbOsGMiakFon7TrI9uQArTwOanLsUxe7GqDMgsbBjwoYLNGnShNNnzlJSrsZMo8PKwYfynFRy4w6h8g1l4OABFEzpy8KFC3nrrbeYN28ezs7OvP7660ycOJHu3bsD0LRpU9PYt23bRnl5OYMGDXoqaykIgiAIgiAIwv8OEUQS/pMkEglt+77I8Q1rqmTrPLil7b6rGVl8+MoInFuHsnr1ak6cOMGHH36InZ0dS5YsITg4mLCwMMLCwnj11VfZsGEDoaGhT3tKVUgkEvpNm8vupQtIuXIZmUKOQafHvoY7Pd6choWlFVFRUX/rGP+pTl64QofQdigcPZHI5HgPmoetuQK9Rg/AhQsXiI+Px9fXl++++46QkBBTMWut3lDtfZr0aygcPMhYPxVpaQ4tG/jh7+/CTwteJUltjg4bAKQqa0ovHcKgrUDh6EXcvQKu7N5OuV6CUSJBpy6lIjURuV0NNDn3KEm8w8exeyEzhcTERN5++21q1aqFu7s7w4cPp2HDhiQkJBAQEEB8fDzPPPMMV69eZdWqVezYseMPr8uZM2eYNGkSMpmMwMBAFi9e/NjPTpgwgc8+++wP9ykIgiAIgiAIwr+LKKwt/Gc1juiCjbMrMrniodfvF9pOLyhi2udfA6BWq4mIiOD69evV7jcajURHRxMcHGxqO3PmDEFBQYSEhDBp0qTHHltYWBi6X9U0+qNUVlb0mzaHEYuX0X3SOwyev4QhH32Gnavbn3rvf5lOb2D8xvMovZvgPGA+Ts/PoVSjJ72wgsvpRVRo9Vy/fp0WLVoAVNnOCGBvoUTzQCBJnXaN8lvncH1xPpb1Q+j48kxkMimvvfYarq6uuHd/A11+Our0G9iFDEZu747c1hVN5i1S1k3FqUZN6g+fj9KlFvrcFAoi12DTui82gd3BoEOi1yKVyRk4cCDe3t7UqFGDevXq4eXlxa1bt/jqq6/o0qULRqMRhULBxx9/zL179+jYsSMDBgz4Q2vj7e3NkSNHOH78OFlZWSQkJDz2syKAJAiCIAiCIAj/G0QmkvCfpVCpGDRvEdE/bCLh6AE0ZVW3tt3PSlKoVHQaM4H6rVvTunXrau+5n4UikUi4cOFClWv3f/FWqVQMGjSIhISEp35im42zCzbOLk+1z3+b62dOcmbb9+SkpxFcpOVK0nky1k/Bom4Q1s27kbllBpqMm0Q814svF85l48aNWFlZAaDT6RgzZgynT5/GwcGBTr1cOZSYSWl+FvlHVuHc9z0wGqlIvsS1Vt2Rl2po1qwZvr6+xOz9DJmVA2Y16lB0dhvqe5dxe+ljMjdNx7nTy2xYOJJX1sVi27ofZTeicewywTRmt4EfYqmUsWF0G5rUtKs2J8PPpw9KpVK6du2Kj48Pq1at+kPrcvZOHl9F3uJGVjEeduaMCqlFx/pmyOVyZDIZEydOJC4uDhsbG9avX4+trS0jRowgOTkZb29vatasyaxZswgODjb9OREEQRAEQRAE4b9LZCIJ/2lmFpaEDRnJhG82U69dKHKlssp1qUyGpZ0DdVsH/eZ7Hsw4Gty3N6teG8PSIX3Zs2AWt86cxGg0IpfLOXr0qGnr2/2i223atGHMmDEEBgaye/fuKu/dsGEDr7322mPN5XGyng4cOEBwcDBt27Zl2rRppva1a9cSERFBWFgYqampj9Xff8WpLevZ+8UispJuYVCX4ylX826XEAZHRFCRFIcm6w5GgxGQcC0xnpMnT+Lh4cH+/fsJDw8nMzOTNm3aYGlpyalTp0jdMhcnKyWFJzehL8sn+8cPSFs1DnP/INQ6I8n5ZRiNRsaOHcvtE7twbtMbo06LrjgHicIMAIlCib+9DDdbFREeRkrObcM+fHS1sVuayWnkYfvQeZWUlNC+fXtat25N06ZN8fDw+EPr8u2pJIauPsvRa1mk5Jdz5k4er226wLjPfiQnJ4fS0lJKS0uJiopiwIABLFu2jLNnzyKTyTh06BC1a9f+w5+FIAiCIAiCIAj/biITSfif8ey4NzmxeS1x+3/CaDRiNBio3bwVHUePe+SWN6g8An7UqFFcv36drQs/YNaiT3Er8aGGnQ35aSkcWvUlpyKPkJOTw8SJE5k4cSLt2rXDxcWF1NRUsrOzmT59Onv37mXSpEl069YNgE2bNnH27Fk+/fTTxxr/42Q9dejQgc6dO5u+zs7ORqPRcOzYMQ4fPvz/XLl/r5K8XM7u+AG9Vmtqk8tkyAG/imRcvOtRkpuMzMoBqcSIyliGra0tkydPprCwkHXr1tGqVStGjBjBiBEjCA0NZfuP22gy+wCOXcab3pkf+Q2l8QcpTTiEJvMucz9aRGJcLO/N/Yg9kdtJwgXLmgEUXz2FuUKGmVzGK6HePP/881y7dg2PWvVJ2TobvbYCqdIc9xfnU3RqI7qK23Q8PI/Vq1fj4+NTZW42NjYcP378/7UueaUa5u25glpXtcZTcWEBa9bMZd+uH7l1JZbmzZsDEBgYyLFjx/D29qZZs2YAtGjRgujo6P9X/4IgCIIgCIIg/DuJIJLwP0MqkxE6cDjt+g+mtKAAlZUVSpX5Q+81Go3cjDlNzM5t5Kan8XrXCL6SwPXTJ8FooEKnY/3pCwxq04zVR06Ru/swvQe8SFhYGFlZWdy8eRO1Ws3IkSPJyclh9uzZ5ObmIpX+kvw3f/78390CpKko58rxSFKuXMLSzp6GYR1Refkgl8vZtm0bycnJdO3ale3bt3Pr1i3efPNNAPR6PW5ubqZtSHq9noiICAICAliyZAkymeyJres/2c1zp6vVNarQ6lAp5MiMeiTJF9B7tkTh4I5rn6l0qYjEaDRWuT8vL4+UlBQcHBzQ6yuLb8ukv6qVFDbc9HXm+ilcL1Fy6J6Bi3UCSMuJRFZwik49X+BI8jk+7NOIGYdVfL7kE3x9fcnPz6eWfSYyRwvydLY4t+lDM4dStN4KNq09yZUrV5g/fz5ff/31E1uXfZcykP5qXYwGPTm7F2LfYQTHU7R0qlWLAwcOABATE0Pt2rXx9fXl6NGjANW2dgqCIAiCIAiC8N8ngkjC/xyZXIGNk/Mjrxv0en74YAb3EuPh54CCuriQgox07rnaUlBWzr5L1ykur+C9H/cjk0qxt7QgKvIoP+7eQ+PGjZHL5YSEhODv749Op+PIkSOYm5ub6tgAfPvttwwePJgffvgBc3PzaqdjTX/rDTbPnIpOo0GrrkAilRL903bSVbbk5BQwd+5cunXrxty5c7Gzs2PFihUALF++nI8++oguXbpgZmZGZmYmGo2Gw4cPM3XqVHbs2EGfPn3+2kX+h9DrtFXWHOBOTh77Ll1DLpVi7e6HsWEHMra+j5UkkxwvN2hYv8r9Tk5OzJo1i7i4OGbMmAFA10Y12Hg2GZ2hasAJoN7oxcRoDVgG16JMo0fu4ovUuzFXbVpQy8uDFj4O5OXl0bJlS9NnBrBo0SIkEgmTJk3i+++/572VJwkLCwOgRo0aT3RdStU6dL9al7KrJ9Ck3yDv6Dd8HbOB8JWfYW5uTkhICNbW1mzYsAE7Ozu++uorIiIi8Pb2xsvL64mOSxAEQRAEQRCEfzYRRBKEBxgMejbPfpu0a1eqXdMZ9OyIS6R7k/r8EHuJUaGtmPfTUWQSCS42UrJz8+jbty8WFhao1Wry8vIAsLKyIj8/n+TkZBo3bkxSUhJXrlyhadOmTJ48mSFDhrBx40a+/vrrKtvVPp86CSutGqgMVBgNBrLzC/km6hDHDuyjZs2a3Lt3jxs3bjBkyBA8PT0BGDNmDCNHjqRv375cuHABW1tb2rdvD0B4eDgxMTFPZzH/AWo2aIxUKsPALyfh1a/hQv0aLhjlSpIa9MSxQXOGzIyjtrNVlWfXrVsHwOnTp6u9d0K4H3supVNYpq0SSFIppJSodWj1v7Rp81LRZN6mNG4fxqwb7Nq1i4iICLy8vPjss8+YMGECx44dIy4ujrVr1wLg7+9P586dTaeeaR/YjvcktPCxRy6Tov05swrAMqB95T9KGfP6NKJtUw/atm1b7dk1a9YAEBkZSWRkJGq12lT/SxAEQRAEQRCE/zYRRBKEB9w+H0P6jevV2vUGA1nFpYxoF4iVygxXGyv2JlwjuI4Pt7Jyea1LGNfNHTifcJmsrCyCg4P55JNPmDhxInZ2dgwePJgzZ86QlJREr169MBqNTJ48mQ9mz8LypQHs/3IxI54JR1NchFwu58Tx40SVFFOm0eBhb0NaQREWCgXphcXoDAZ6v/ACo14dT3l5OfXq1WP69OkAqNVqzMzMkMlkWFpaYm5uTlBQkCnjJS4uDl9f36e6pn8nF59aeAY05F5iAnqNxtQulcuxc3XljamDkf4/tva52KjYMzGExQevszs+Ha3eQJtajnSs78pH+66i1f8StHpwq1vh9+/QvXt3zpw5w/vvv8+rr77Kpk2bWLFiBcXFxYSFhdG0aVOWLFmCm5sbYWFhSCQSXnzxRcaMGfPnFuMBzWraUc/VmstpRWj0v2QkyaQSbM0VdGno9tjvGjRoEAMGDHhiYxMEQRAEQRAE4Z9L8uv6H/8WgYGBxv+ljArh6dj+8RxuxZyp1n4hOZWNZy7i42iPzmBAp9dTr4YLdd2c+Sn+KkO6PsO2mHjKy8vx9vbm2rVrHN68nr4jx3Dt1m1cXFwwGo14eXmxfPly3njjDa5eSUSirmBEaCv2XrzC5dRMOjWsS1xWPsUlpaDTUFRWgblSgVwqxdXGipSCItRaHX4ebqz5fiuTJk3i0qVLJCUl4eTkxLJly9i0aRM6nY4OHTowZ84cAN566y1iYmJwcnJiw4YNKH91St1/mU6jIXLtCi4fO4xEKsWg01OrRSs6j5mAysrq91/wB5xLymP4N+coUeseer1ZTTt+HNfuifb5/1VUoeXN7y8SdT0bpVyKRmegkYctnw9sjput6u8eniAIgiAIgiAIfxOJRBJrNBoDH3pNBJEE4Rdb5kwj+dLFKm16g4GVUWdJyS/E08GO4X16sHXvQV4KacmN9GzylBZ8++MO1m/YiE6no7GzHQNGv8zrz3Ygp7CYLWfjqDAYySwsokYNdw4fOcKzXbpgpS1HajSSkl9IE88axNxNwWg0kl9azmvjXuHwju3Ep6TxQssmKGQy9l26Rr/ARmw4HcfmRR/yzNjXaNOmDR4eHmzduvVvWrF/D626gtL8fMxtbDGzsPhL+tDpDQTOPURBefXtZ+YKGbN6BPBCy39WHaGs4gqSc8twtVFR0+GvWRdBEARBEARBEP49fiuIJLazCcIDfJu3JPXaFfTaX7Y+yaRSXg5rA4CTlw9DPvqMtzRqyouLMLexRaE0A2DYsGHcPHea3Z9+xLgObdFWVGBrpmBUSEsup2aw7vQFvFUyPp/9Ho621ty9mUkdZweyi0uo4+rEseu3USnkyGVSCrMyMLOyAiPEJqXQob4fWp2eGxk52FqY06JrL65evUpiYiIfffTR37JW/zYKMxV2bk+2QPWvyWVSFvRrzGubLlCh/WWbmEouxc/Fkp5NPf7S/v8/XKxVuFiLzCNBEARBEARBEH6f9PdvEYT/HY06dEJpbg5Iql2zdnTihVkfIpFIUJipsHFyMQWQ7ova8E2V2jtQmcl09Opt3O1saFfbiz0HDhFz4SJ25ip8nByQIMFoNKLVGyhRa9Dq9fy47yBWbh4o5XLMzcxIzi8EiYTbufm4efkwdtKbuLi40LhxY0JDQ//KJRH+oGcauLFhdBtC6zhha67Aw86c8RF+bBkbhErxx+svCYIgCIIgCIIg/FOI7WyC8CuFWZns/fwTMm7fQCqTYdDpqB8aTseRryKTPzp5z2g0sujFHvCrP1Onb99lW+xlPB1skUkkpBcW42htRWFZOQ4W5kglEuQyKXml5bTz8+b4jTs0atCQQSNH8c477/D+u+9wJf4iUedicHF35/DhI3/1EgiCIAiCIAiCIAj/o8R2NkH4A2xdXBnw/keU5OdRUVyErYsbCtXvb/fJS0upFkDSGwxcSslkXHhbvB3tuZCcypaYBApKy7BUmdGjWQNyiovZEpOAt6M9N7Nyea1LB6KLdcyaNYu33nqLUr2Bdl2eo3G7kCd+1LsgCIIgCIIgCIIgPC6xnU0QHsHK3gEnL5/HCiABaMrKkCkUVdriU9K5l1/IT/FX+fJoNPYWFkzvFoHOYODkiZM0qutHQ28vpBIJRRVqatdwYfQHC9l/4ACDBg3iwIEDnDt3jn79+vHyyy8zfvz4v2Kqwj9AUlISrq6uhIWF0blz50fe9/HHHxMcHMygQYNMQcUpU6bQrl07QkJCuHHjxtMasiAIgiAIgiAI/2NEJpIgPCGOnjWRSKrWUmrm5UEzr6rFlDVICGnTBr+GjdCMn8yQQYP44oM5tG8fSq0WrZH/HIhauHDhUxu78M/QqVMn1q1b98jr2dnZHD16lBMnTrBgwQK2b99OREQEMTExnDx5kpMnT/Lll1+yePHihz5/6dIlxowZg0wmw8/Pj9WrV1f7nn2Y0tJSOnfujLu7O1u2bPl/z08QBEEQBEEQhH83kYkkCE+I0tyCpp27ITcze+h1iVRKbrma9bGJTJ8zF4CAgAbEXIhj9NR3qdsm2BRAEv43VGj1bI1NYc7uRDadTebwkaOEhISYgkDvv/8+YWFhhIeHk5SUxNmzZwkLCwOgY8eOnD59GisrKxwdHdHr9RQUFODo6PjI/vz9/Tl16hTHjx8H4HHryl28eJGQkBARQBIEQRAEQRCE/3EiE0kQnqCQQUMxGPRcPLgXmUKOQW9ArlDi06QZDu4e1G0TzDxPr797mMI/wLWMYgYsj0atM1Cm0aNAj/Xgz3mzfwtWzHyF8PBwUlNTiYyM5MqVK8yfP5/Q0FBsbGwAsLW1JT8/H6VSiZ+fH/7+/uh0OqKjo6v0k5RTyk8JaZSq9bSp5UiwnxNSqQQzMzNq1qzJ+++/z5EjR5BKpaxevZrNmzfTsGFDunbtyvbt27l16xY//vgj/8fefYdZUd8LGH9nz9lG7yAdAUFEAUFEBFlB0ajYe69YEmtiuyAxduwlMTYIKALWiGIstKUIglhAlCogvSywLLCw5ezcP9BVpAwqZdX38zz3EebMmfM9Q7JX3sz8ZuHChcTjce655569cbokSZIklQBGJGkXSkqKceRFV9D+jHNZMe8bUtJLUa1Bw526ZUh/HImikAv7TGRN7g8LpRcQg6QYtw35iguP7MqUKVPIzMwsvvJon332oUKFCixevBiAnJwcKlSowPTp05k2bRqzZs3is88+o0ePHvTt2xeAB9+fQZ9x8ygKQwoSIf3Hzydt6eds/GgATZs2YeXKlVuFqp49e9KjRw+OP/54XnvtNXr37k3r1q0ZPny4AUmSJEn6g/N2Nmk3SC1VmjoHHET1fRv9pgPSkiVLOPjgg0lLS6OwsHCb+2RnZ/Pmm2/u4cl+2z6ak8X6/C3PZ1FeLrA5ML327nDq1atH165dyczMJDMzkxdffJFDDjmE0aNHAzB8+HDatWtHGIZUqFCBpKQkqlSpwtq1awEY9vVy/jN+PnmFRRQkNj81cEN+gpxqLTj8tv7UqlWLr7/+ujhUXX311eTk5FCnTh1Wr17NqlWryM7Opnbt2nvwzEiSJEkqybwSSdJ2VapUiREjRnDKKadsd5/vI9Kpp566Byf7bVu4JpdEUbjFtrxFX5E9dgBBLJn9WrShU6dOjBs3joyMDIIg4JxzzqF79+4cccQRdOjQgbp163LDDTeQkpJC2bJl6dixI4WFhTzxxBMAPJP5DRvzE1t8RlhYQAHJjJ61khPSSrFs2TK6du3KU089BVD8tLcTTzyRq666im7duu2BsyFJkiTptyIIwzB6rxKoTZs24c4uCitp54RhyNTh7zFpyOusW5VFetlyHHzcSdz62D8ZPmIE8Xh8qzV0nnvuOfr06cP+++9P7969ufXWWwH47LPP+Oqrr6hTp85e/lYlz0dzsuj+0mQ25CW2ei0lFnB5x3255dimv+ozDrl3OCvX5W2xLXf2x+R88haxIODY9i157eV+3H///QwbNmyLULVmzRrq1KnD/PnzqVKlCpmZmd7OJkmSJP1BBEHwaRiGbbb1mlciSSo2os+/+WrMCArzNseH3LXZfPzGILIWfksYhnz55ZdbraFz++23s2DBguJH02dmZvLee+/x1ltvGZC247B9K1M+LZncvAQ/zfhJSQHntav3qz+jbsVSW0WkUo3bUapxO1LiSTx3W2eSkpLo0aMHPXr02Or9xxxzDFWqVAEgIyOjeG0mSZIkSX9crokkCYDsZUuZljm8OCB9rzA/n7zcDSyZOZ3p06dvtYbOT82dO5fHH3+cJ598ck+N/puTlBTw0uWHUrlMCqVTYwCkJ8dIS07iibNbUatC+q/+jKsyGpKeEttqe3IsoNN+ValcJnWb75sxYwbdunXj+uuv/9UzSJIkSfp98UokSQB88+kk2Oq6mM2KioqY9fE4mhxy+FZr6KxYsYJEYvNtWbm5uVx55ZX07duX1NRtRwpt1rBqGcbf1oVhXy9n5rIcqpVLo9tBNSlfKnmXHP/oZtW59PD6vDB2HkVFIQVFIaVTYtStXIqHT2+x3fc1bdqUcePG7ZIZJEmSJP2+GJEkARAWJfjpGmmJoiJeGDOJpdk53PrIE/y7X2tq1KixxWLPl112GatXr+b000+nW7duzJw5kwsuuACAwYMHU6NGjb3xdX4TUuJJHH/QPhx/0D675fg3H9OUM9vU4d2pS1mfV8hhDStzeMMqJCX9dp8YKEmSJGnvcWFtSQBkLfyWl//vRgrz87d6LTktjRP/2oP6B7XaC5Nt37Rp0+jevTuxWIxGjRrRq1cv7rjjjuL1mb7XoUMHr66RJEmSpJ2wo4W1XRNJEgBV6tRj31aHEE9J2WJ7LDmZKnXqUa/59m+B2luaNGnC+PHjGTt2LABZWVl7eSJJkiRJ+v0yIkkqdvz1t9D6hFNISS9FLB4nnpLKgZ27csYd9xIklYwfF/OzNvB/b35Jl0cyOfv5T3jr88UkikJSU1NJJBIsXryYk046iXbt2jFv3rwt3nvdddcxePBgjjzyyOJ1nE477TRWrFixN76KJEmSJP2muCaSpGJJsRgdzrqA9mecS15uLqnppUiKbf2Er71l4txVXPyfTyhIFFFYFAIbmDT6Qy756CUyDmlB5cqVWbZsGcOGDePTTz+ld+/ePPPMMwBcf/31HHbYYZx99tnMmTOHUaNG0bZtWwoKCqhWrdoumW/+/Pkceuih7L///qSkpPDhhx9GvmfYsGHcf//9FBUV8cgjj9C6dWuOOOIIgiAgHo8zaNCgXTafJEmSJP0aRiRJW0lKipFepuzeHmMLRUUh1w76nI0FiS22xxocwj5N2lEw+1WGDh3KgQceSDwep2XLlsyZMweAWbNmkZaWxuOPPw7Aueeey/3338/ixYs55ZRTdsl8368vd/TRR2+1JtP2bNy4kWeffZZhw4YR+1GsGzFiBMnJyfTv35/+/ftz8803/+K5frpuVN++fbniiiuYMWMGr7zyCrVq1drqPTfeeCOTJ0/m4IMP5oknnvjFny1JkiTp96Vk3J8iSRGmLMpmQ17hFtvCwgIAcvMTzM1OkJ6ezrRp00gkEkyZMoWGDRsCsN9++3HOOecUx5h9992XJUuW8Oqrr3Lqqaf+4pnyChM88uFMWv7jQ2pe9BgHHH40g195lVq1avHYY48xf/58OnfuzJlnnkmrVq1488036dq1Kx06dGDDhg089dRTjBo1iqpVq3LiiSeyYcMGAJKTk4HNkemAAw74xfPB1utGTZ48mZkzZzJu3LhtBqTPPvuMDRs2MHbsWPLz8/nkk09+1edLkiRJ+v0wIkn6TcjZVLjVo+k3zvuUZQNvY9nA28hZs4quXbtSrVo1Tj75ZK677jpuueWW4n0vu+wyKleuTO/evQE47rjjSElJoXz58r9onqKikIv6TOL5MXPJ3lhAvFw1Kp9xLw1vepVKDVvw3//+l5ycHNasWcPgwYO5+eab6d+/Px9++CHHHXcc7733Hn379qVJkyZMnTqVxYsX8+yzzwKwYMECDjvsMP75z39y4IEH/uzZwjDkozlZPPDedP6VOY9Zy9cBkJqayrPPPsvUqVM54YQTyMzM5KSTTqJbt24cfvjhrF+/ngkTJnDUUUcBcNRRR/Hxxx//ovMjSZIk6ffH29kk/SYcULMc+YVFW2wr1bgdpRq3IzkWcH67euy7775kZmZu9d5x48YBcPvttxdvC4KAc8899xfP8+Zni/jk2zUkijbfxhYrUxGAPGBZdj5djj2cK6+8ksWLF3PiiSdy1VVXUbt2bY488kjWrVvHgQceSCwWo1OnTtSuXZu8vDymT58OQN26dZkwYQJvvPEGDz/88M+6pWx9XiHnPv8xc1asJzc/QSwJHn7hZfImvEzHNgfxyiuvMGPGDIYOHVp8rt555x3uvfdeRowYQXZ2dvEVXOXLl+err776xedIkiRJ0u+LVyJJ+k2oUiaVk1rWJC156x9bybEkLuvQYKeP9fTTT/Pf//6Xk08++RfNMj9rA7e/+WVxQPpeUV4u+SvmkdiYw8ixE6hSpQpdu3bl7LPP5u233yYIAlasWME111zD4YcfTtmyZfniiy+YMWMGs2fPpkGDBhQUFBSvr1SuXDnS09N/1mx3vDWNGcvWkZu/ee2oRBHEG7SlysX/ZFNKeYYOHbrF/s2bNwegVq1aZGdnU6FCBXJycgDIycmhQoUKv+QUSZIkSfodMiJJ+s2495QDObllLVLjSZRNi1MqJUatCum8fPmh1K5YaqePc8011zBs2LDitYd+rt7vz6DgJwEJIHfuZJYNuJnCDdnEYnEOOeQQANq0acPixYsBaNGiBUlJm3/0PvbYY8yePZtOnTpRtmxZrrrqKpYuXUpGRgZHHnkkjzzyCDfccMNOz7U+r5D/fbl0iyu2vl83amN+gulZhVtFqSD44RbBMAw57LDDGDFiBADDhw+nXbt2O/35kiRJkn7fvJ1N0m9GciyJB047iFuPbcr0pTmUS0/mgJrltgghe8KI6Su22hYWJdgwbQTVz76XcnX35x+dSvPWoH4MGDCAAQMG0LFjR84++2x69uzJxRdfXPy+OXPmMHv2bP75z39SqVIlKlWqxOjRo3/RXFnr8ognBeT9aNvGeZ+S88lbAKRXqUXXrl255557tnuMgw8+mLS0NDp27EiLFi1o27btL5pFkiRJ0u+PEUnSb07F0im0b1Rlr31+UbiNq5BmjCN/6WzWZP6HWJlUqh7/FOnp6XTs2JGyZcsycOBAsrOzt3jPvffey/Dhw6lcuXLxotq/RtWyqRT+5Aqp79eNAmhSvSxJSUnFa0RlZGSQkZEBsEXY+jlrMEmSJEn64/B2Nkn6mQ5tUGmrbaWbdaLOdQM5sPujLJj2CYcddhj/+te/GDt2LGeffTannXYaF198cfHT4QAOP/xwOnXqxOuvv877779P+/btOeGEE4rXJLrmmmuoWrUqL7zwwk7NVTo1TrcWNUmNb/2jPT05xjVHNvyF31iSJEmSjEiS9LPd9qf9SU+ObbU9NR7wxNmtSEr64fa6xYsXM3r0aEaMGEFmZia1atXa6n0FBQU888wzjBkzhgsuuKD4qqQ77riDhx566GfNdtdJB9C8VnlKpcQIgHhSQGo8ibPb1uHEFjV/3heVJEmSpB/xdjZJ+pkOrF2el684lDuHfMXXS3MIAqhfpTR3djuA9o2qUJgoYvj0FYyYvpyvM4dAdi5dunShWbNmPP7441xxxRUsWLCAevXqUadOHWbNmsWBBx5IPB7nqKOOonv37gDss88+P3u2UilxXr/qMCZ/u4Zxs1eSmhzjT833oUGV0rv6NEiSJEn6gzEiSdIvcHDdirx9bQdyNhUQFkH5Upuf9LZ2YwFnPjOBRWty2ZCfYO20byhatYzT//YgaV+9xiOPPEIsFmP48OHcd9995Ofnk52dTbly5QAoX748a9as+VWzBUHAIfUrcUj9rW+7kyRJkqRfytvZJOlXKJeWXByQAO58+yvmZq1nQ34CgKTU0sRrH8BH32RRUKMZBQUFtGrVCoDWrVsDUKFCheJ1kHJycqhQocKe/RKSJEmStBOMSJJ+Vx599FE6dOiwzdf69eu304tU/xIb8xO8++VSChI/PCEttdb+5K+Yz6aCIv47/CMKCwuZMmUKAJ9//jkA++23H9OmTSORSDB8+HDatWu322aUJEmSpF/K29kk/W7k5eUVB5q9Ye3GAn60pjYAKdX3JSmewrKBt5Fcujy3D/kX3bt3p0uXLtSrV4+6deuSnJzMFVdcQceOHalYsSIDBw5k/vz5NG/enDAMCYKAJUuW0KtXry2O/cADD3DBBRdsc7FuSZIkSdrVgjAMo/cqgdq0aRNOnjx5b48haS8Jw5BZH3/EZ/8bwvo1q6neoCFfrcvj0CM60atXL7p160bz5s05/vjjeeutt/jmm2+oXLkyH3zwAWvXrgXg3Xff5e6772bkyJHk5uZStmxZRowY8YvmmThxIjfccCNTFucQr96Icm1OJHvMS1Tp9rfifRpXK8Owmzrt1PHmz59Pz549GTBgwC+aR5IkSZJ+iSAIPg3DsM22XvN2Nkm/OWEY8v7Tj/HBvx9nyazp5KxcnJlkTAABAABJREFUzoyJH/Hqf/qwT8rmH2vnnnsur7zyCgCvvfYaZ511FgDVqlXjf//7H7Vq1WLq1Kn06tWLzMxMmjZtutWVPjszx8p1eaxan0e9evUYNWokPZ95DTaupSh/4xb7pifH+EvnRsW/Lyoq2up4qzfk869Rc2h95vW07XwcHwwfQceOHXnssccAaNu2Le3bt6dz585kZ2dz8cUXM2fOHPr168c555zDcccdx3HHHcdv9X8ckCRJklSyeTubpN+cRdOnMXvieAryNhVv+3TeIlrWqcGHzz1FWFREnTp1WL16NatWrSI7O5vatWsD0Lx5cwBq1apFdnY2sHkdpVatWtGp085dJQQwetZK/j5kGkuyNxES0qBKae4+qTk3H9OE/veXJj8ep2jDalYNuZ+C7OXc9ODzHFQ+nyOPPJLKlStz3HHH8eKLL9KmTRvGjRvHn047hzc2NGXTpjyWTJ9GQV5I/Yv+TbvWdRne/w5atmxJo0aNGDhw4DYjUbVq1Rg0aBBXXHEFU6dOpUWLFr/iDEuSJEnS1oxIkn5zpo0aRkFe3hbbVqxbz5KFOXw8bxFL1m3gqaee4sQTT+Sqq66iW7duxfsFwQ+LFoVhyOjRo/niiy948cUXd/rzP5qTxZUvTWZTwQ9XE81avp6L/zOJOzuUpVG5kJuvOJyLRj3J3X1eYt1XmRSunkIQ1GfFihUMHz6cWCzGiy++yEknnciVZ5/BwadcTKWz72f9lA8o3bwLa8e+zIac1Tx9y9/Zp1QRAwYM4JNPPqGwsJBnn32Wl156ifnz53PKKacA245jkiRJkrQreTubpN+cTevXAVtejXNCi/3p3ulQru7SgYb16nHttddyxhln8N5773H66adv91h33XUXM2bMICMjgxtuuGGnPv/uoV8XB6S8JTNZ9tLfWPbyLSwa+hTXXNmdtLQ06lcpQ4dDWnJh+wYc0LgB/fv35/TTT6dx48bEYjEACvI28Xm/f9P/332hTBUKc1axacE00uu1ICxKbN5nfTaJcjXp3r07y5cvp2vXrtxxxx3ce++9lC5dmmbNmgE/xLG+ffsShiE33HADiUTi55xWSZIkSdohr0SS9JtTv8XBLPxq6lZXIwGEYRHD3n+v+PfHHHMMVapUAeDiiy8u3n7nnXcCkJGR8bM+e2N+gtkr1hf/Pl6uGtXPuQ+SYiz69yWkZ1xKevpSYMurnrKyshgzZgw9e/YEoCA/jxXz5zK7VIywVnMKc1ay6dvPKd1s8y11Rfm5rHj9LhK52VCqErVr16aoqIhNmzbRoEEDnnjiCVauXMmqVau2Oefjjz/+s76XJEmSJEUxIkn6zWl2RBcmvD6Iwvz8LdYHiiUnU6fZgVSuVYcZM2Zw+eWXc9999+3Sz/5RF9r8mWUqArDh69EUbVxHzqdDeHfjShYvXsyUKVNYtGgRffr0Yfny5Vx66aVUr16dE088kdXLlrJszVo+/GoWG6bMoMzBZ5KfvYzcmeNZ98V7FK1fTfmO55O/ZCYHnfpn+g7+L2XKlCEtLY0WLVrwt7/9jW7dunHppZdSrlw5Bg0aBEDdunXJyMggIyOD4cOHE4/7Y16SJEnSruHfLiT95qSWKsW59zzCO48/wOrFC4nFkyksyKdx2/Z0vfJaAJo2bcq4ceN2+We/OGH+Nhe2Tq5Sl/T6LTjlz734+sVejBgxgkGDBvHGG2/w0ksvMW/ePEaOHMkrr7zCvHnzaFezCidd+Rda1NmHQ/ety7vVDuDb9Dokkjb/WF424BZKNWpL/pKZfLUkh/Eff8q63Hzefvc92h3Smg8++IClS5cyceJENm7cSO/evXnmmWd2+feVJEmSpO8ZkST9JlWosQ8XPPAEa5YtITc7m4o1a1GqXPnd+pmvfLKQx4bNpugnDSmxcR2rhz1Dg7N6cE1GI56e3IykpCRq1arFnDlztth33rx5HHTQQZQNC0hN/uFH8NErh/NetWNYnFYTCKlx/oMAVOn2NwqLQori6ZTvcB7/GDqDRx55hMmTJzNlyhQOOugg8vLytvocSZIkSdrVXFhb0m9axRo1qdW02W4PSGEY8uiwmWws2HKx6rAoQdbQh6l9zBV8+H8nUati+lZPgPuxBg0a8OWXX7J/xwya7FONpO/2TQkLOWn5u5y95DXKJHK3+vzUWvuTu2web09ZwsTJnxEEAdOmTSORSDBlyhQaNmy4G761JEmSJP3AiCRJOyFnUyGrN+RvtT13xjjyl85m8YcvcMGpx7F06dIdHufkk0/mo48+4pQzziS9Zh2SU1KIfbduUSyeTLVgI2HpClu9L6X6viTFU1g04FbGT5jI6aefTrVq1Tj55JO57rrruOWWW7acNyeHjh070rFjR2688UYALr/8cjp06MDixYu3Ov4DDzxQvJZS6dKlWb169c6eGkmSJEl/EMG21vb4LWjTpk04efLkvT2GpD+IvMIEzf/+AQWJbf/MLJMaZ9o/jtmpYxUWFhKPx7n66qs59YQTSMtZyerFi6hcuy4HHfUnzhgwnZnL1m3zvanxJD6+vQsVS6fs8DOWLVtGhQoVSEtL47zzzuO2227jpJNOombNmjtcKyorK4vTTz+dzMzM4m3fP8Fu7dq11KtXj7feemunvqckSZKk354gCD4Nw7DNtl7zSiRJ2gmp8RhdmlYjFmz9WnIs4NSDa+30sY4//ngOP/xwcnNzOfr44+l4zsWc9LeedDj7QspVqcoVHfclPTm2zc/p0KjKdgPSqvV5/GvUHC7t9wlPjF/J7Kw8AOLxODfddBPz5s1j4sSJtGrViptvvpmioiKOPfZYXn31Ve68804A3n77bU488UTmz5/PxRdfDECvXr3Iy8tj3bp1tG/ffqe/pyRJkqTfFxfWlqSd9I+TmvPZgmzWbiwgr7AIgLTkJGqUS+OvRzfZ6eN88MEHO3z91Fa1GP9NFu99uYy8wgRFIZROiVGtXBoPndFim++ZsjCb816YSGGiiE2FRSQF8MZnC9k3WMW30+dzePt2lP/kE5o3b84555zDG2+8wVlnncXYsWO59dZbGTVqFH/605+49dZbmTRpUvGcBQUF3H333Xz44YdkZGQwY8aMnf6ekiRJkn5fvJ1Nkn6GtbkFDJz0Le9MWUosKeC0g2txRps6lE7d9U1+ysJs3vpiMbn5CTrtV5Wjm1UnObb1BaRFRSHt7h/BwplTWTPieUhKIqVGY8q3P5slL1xNrFxV4qml2LToK0qlpRKGIWXKlGHFihXA5iuVUlJSWLRoEVWrViUWi9GlSxc+++wz7rjjDt5991369etHt27dmDFjBs2bN6dz587cfffdu/w7S5IkSdq7dnQ7m1ciSdLPUL5UMldnNOLqjEa7/bNa1KlAizoVIvf7aE4W6/MKiJerRvVz7iOIp7Dy7QdZ8ebdxMpUpFyrPxEkp5PIzyM9FVLyc9iwYQNpaWl06NCB9PR0/ve///Hwww8Ti8W44447+Pzzz6latSq5ubmUK1eOIUOGkJqaSv369fnoo484+uijyc7OpkKF6PkkSZIk/T4YkST9oUycOJEbb7yRWCxGmzZtuPXWW+nTpw89evQgIyODMAwJgoBevXrRuXNnMjIyGD58OPF4yftx+dGcLO7933SmL8khBGJlKha/lli3ivwlsyAsYtWHzxAvV4XCnJVkxeKQv5EgFicpKYmCMMYnY8ZQVFRE7969CYKAe+65h5o1a5KXl0d6ejojRoxg5cqVHHvssQwaNIhEIgFAamrqXvrmkiRJkvYGF9aW9IdSr149Ro4cydixY1mxYgUrV66kR48exa+PGDGCzMxMOnfuvBenjDZq5gou6/8JX38XkH4sf8U8klLSqXfzW6TWbEq9v73JPhc9TummHQhiKaRUb0j6/hkkEgm+DmuyIXcjQRDw5ptvUqZMGRo1akSdOnUoKCjglVdeoXz58mzYsIH99tuPhQsX0qRJEw477DDS09P3yneXJEmStHcYkST9IWzIK2TW8nWklK1EWloasHktoFgsxvnnnw9AUlISRx11FGeffTarV6/erfNMmzaN9u3b07FjRy655BK2tz5dhw4dttoWhiG93prGpoKirV5LbFzH6mHPUPlP12+xPW/RV+QtnUW4aR2pdQ6k6vE3kFy1PlljB1FYWEiNWnVo3rw5ZcqUYd68eZQqVYoaNWrwySef8OSTTxIEAddccw0vvfQSs2bN4ssvv2T+/Pm75FxIkiRJ+m0oefdnSNIulFeY4B9vf80bny0iHgsoSIQctm9lLt4/ICsri1KlShXv+/rrr1OpUiUGDhzIPffcw6OPPrrb5mrSpAnjx48H4JJLLmHy5MkccsghO/XeJWs3sXJ93lbbw6IEWUMfpuKRl25xaxtA2r6tiX/6DmUO6ExYtPl2tORKtQliySQlp5FarRINGjQgDEOqVavGE088wWmnncaJJ57IJ598woQJEzjzzDNp1qwZSUlJlC9fnnXr1v3KsyBJkiTpt8SIJOl37c8vf8a42VnkFRaRV7h525gv5/HW3fcydex7hIUFxftWqlQJgFNOOYV+/frt0jnycnP5ctSHzBw/hiAI2L9DBs0zjiY5LY3U1FTq1KnDJZdcwsKFC6lbty5169blzjvvZN26dVx44YVMmTKF/v3707JlSwa9+B8W9H+aojCkYpfupNbYvMh37oxx5C+dzdrR/QjDkAqdLir+/HWT36HUfocRL1uFle88TO7sCQRJcfJXzIUgiW+XJFG2bFmSkpKKI9KGDRvo2rUr77//Pl999RVXXnklLVu2JCkpiQoVKvDvf/97l54jSZIkSSWbEUnS79acFesYNzuLTYU/3PYVFiVY/vZD1Oh8KZ+tDGn1owt2cnJyKFeuHB999BENGzbcZXPkrs1mwO03snFdDoX5m68gWvntfPr+8ylGzl1Ek6ZN+fbbb0lNTWX48OH07t2bjRs3ArBs2TImTpzIp59+Sv/+/alduzZjhr9P6z8/yfwlK1j13hNUO7UnAKWbdaJc806c0boOBYki3vxsMTXOfxCAcoecVDxP3Rte2WK+eFLA6a1q8MAZBwObr4y6+OKLWbt2LZdffjmXX345AE2bNmXt2rUkJSXxj3/8g6FDh3LGGWfssvMkSZIkqWQzIkn63ZowdzUEW277/mqdpcP68JcJA3i9z1PFr3Xu3Jn09HTS0tJ26ZVIo/o/z4bs1RR991QzgML8PPYtX4qTbvozQ6bMYO7cuRx00EEAtGzZkgkTJgDQqFEj0tLSqFWrFtnZ2cydO5cpU6ZQcfkdrFq2jqIfraWUFECZ1GSu7dKYfcqlUb1cKv/OnLvVwts/VRSGFIYxFq7OpU6lUqSmppJIJFiyZAmnn3468+bNY8iQIdSuXbv4PYlEgsaNGwPQokULmjVrxqxZs3jmmWd2+rY8SZIkSb8tRiRJv1tp8SSSgi0rUulmnSjdrBMBcOYhdahUKbX4KWOTJ0/e6hiZmZm/aoaiogSzJ360RUACKEwkiANfjxlJuTpNmTVrFsuWLQNg6tSpxfsFP5o/DEMaNGjAIYccwuuvv87Hc1dxzztf8tWyDSQFAUftX40exzWjVoXN3+eWY/fnuANr0vv9GUz4ZhVBAKVT4uQWJCgqCiks2pyXikIYMmUxg9/4L8mfv0Kr5vtTuXJl1qxZw/Dhwxk0aBBvvPEG119/PZMmTeKaa64hLS2Nv/71rwAsXLiQjz76iLVr13LllVcydOjQX3XOJEmSJJVMRiRJv1tH7V+dnm9N2+Zr6SkxTjqwOldcfgb/93//t9tmSBQUUFS09VPUZixbyZhZ8wDI6FaB559/nssuu4wuXbpQs2ZNmjZtus3jVa1aleOPP54jjjiCWCxG586dGXJvT5KCLYPT95rXKs9Llx26xba3v1jMX1+bssW2gkRIvMEhlGrajupZQxk6dGjxItq1atVizpw5ALRt25bJkyfzyCOP0LdvX2688UYaNWpEmTJlKFOmDGvXrv1F50mSJElSyWdEkvS7VbF0Cjcf04RHPpzFxoIfrgRKT46R0aQqhzWuxpgxY3brDPGUVMpUrMy6VSu32N68Vg2a16pBpZq1ueSxZwB4/vnnicfj9O7dm7p16wIwbtw4AOrXr198i90ll1zCJZdc8otnmjR/NT/tWmFhAUE8mQBYUxAjPT19q6ug8vPzSUlJAaBcuXIkvru6as6cOWzYsIG1a9dSrly5XzyXJEmSpJLNiCTpd+3yjvvSuHpZ/jlyNnNWrKdq2VQu77Avp7euvc0rd3a1IAg4/MzzGN733xTm5W3xWjwllcPPvqD495dddhnz5s2jXLlyvP7667ttpuU5eSTCLVdK2jjvU3I+eYukAKq2OICuXa8vDljf++KLL7j55ptJSkqiUqVKvPTSSwDUqVOHSy+9lDlz5vD000/vtrklSZIk7V1BGEYtuVoytWnTJtzW+iWStDc9+uijvPnmm1sFmElD3mDC6wNJisUAKCws5D+ffs3chYv44osvaNSo0Rb7z58/nzvvvHOXLvD9vWdHf8Njw2exqWDr2+zSk2MM7t6OFnUq7PTxOnTosNX3lSRJkvTbFATBp2EYttnWa16JJEm7SF5eHlOmTNnma21POo2WxxzHkpnTIQio2WR/zs1ey6233rqHp4SzDqnDUyPnAFtGpHhSQKNqZX5WQJIkSZL0x2FEkqRfaN2qLKaN+pA1S5dQpW59Ppozn4suuohevXoxf/58Lr30UqpUqcLs2bO54447eOaZZ8jNzeWDDz4gJTWN6tXTtjpmr169GDVqFK1atdptc1colcLg7u24vP9k1m0qIAigsCjkgJrlef7Cbf4PDjvkVUiSJEnSH4MRSZJ+gZkTxvH+048ShiGJggKCeJyXPprMkKH/K95nzZo1DB8+nMGDB9O/f38+/PBD7rvvPj744ANOPfXUrY65dOlSJk2axNixYxk4cCAffvjhbpu/ea3yjL+tM5O/XcOKdZvYr3pZ9qtedrd9niRJkqTfvqS9PYAk7W0TJ06kffv2dOzYkRtvvJFly5Zx7733Fr++ZMkS0tLSih9zv37Nat5/+lEK8/NJFBRsPsasebSsXYO3Hrqb8LtHnzVr1oykpCRq1qxJ8+bNAahZsyZr1qzZ5hzffvstBx10EACtW7febd/3e0lJAW0bVOKEg2oakCRJkiRF8kokSX949erVY+TIkaSlpXHeeeexcuVKevToUfz6448/Trt27Yp//9XoEfz0oQQr1q1nycIcPp63iCU5G3jnnXe2ePrbj3+9vQca1KtXjy+//BKAzz//fJd8N0mSJEnaVbwSSdIfUkGiiPe+XMq9737NWzM3sCZvc9iJx+PEYjHOP/98AFauXMm6deuoX78+ADk5Odxyz/0kCgr454jxTFu8jFXrc8krLKR7p0O54oi21K9di27dukXOcOaZZ/Lhhx9y0UUXMWTIEPbZZx9at25Nx44dXWdIkiRJUonjlUiS/nAWrcnljGcmkLOpgA15CVJiSTw2bBbnNw7JysqiVKlSxfs+/vjj/OUvf+Ghhx4CoFy5chQQEMTjlEpNZn7WGvIKC6lfpSIAySmpvN6/L/Xr12fAgAEAZGRkkJGRAcDFF19cfOxXX311q9nuueee3fStJUmSJOnX8UokSX84V7z4KSty8tiQlwAgP1FE7rq13H/HLdx016PF+2VnZ7Nw4UIOOOCALd5/4MGt+WLBEprWqMb6vHzmZ62hfuVKQEA8NZV9D267J7+OJEmSJO0RRiRJfygzluUwP2sDiR+tSxQWJcga+jAVjryUIbNyi7fPnDmT2bNnc+yxxzJs2DCuuuoqADoecQSfZq2jSZ1apCQns3J9LjWqVKZ0hYqc2et+YnEv8pQkSZL0++PfdCT9oSxcvZF4LICCH7blzhhH/tLZrB71H14e/xLnvPg0AIceeigTJkwANt+G1rNnTwAOP/xwlixbxj+mTKH33+9g5OgxHH/dzTRo2ZqkWGyPfydJkiRJ2hOMSJL+UOpVLkVhYsuno5Vu1onSzTqRFMCJLWpRqVI66enpW+zTr1+/4l83aNCANWvWANDz/t703O1TS5IkSdLe5+1skv5Q9qteloZVSxNLCrZ6LSWexEXtanPFFVdw2mmn7YXpJEmSJKnkMiJJ+sN5/qI21CyfRumUzbeepcaTSI0nccfxzWhVvwpjxozh2GOP3ctTSpIkSVLJ4u1skv5w9imfTubNRzJqxgqmLMymYukUTmixD9XKpu3t0SRJkiSpxDIiSfpDiiUFHNWsOkc1q763R5EkSZKk3wRvZ5MkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVKkPRqRgiDoGwTBiiAIpv1o20NBEMwIgmBqEAT/DYKgwp6cSZIkSZIkSdH29JVI/YBjf7JtGNA8DMODgFnA7Xt4JkmSJEmSJEXYoxEpDMMxwOqfbPswDMPC7377MVB7T84kSZIkSZKkaCVtTaRLgfe292IQBN2DIJgcBMHklStX7sGxJEmSJEmS/thKTEQKgqAHUAi8vL19wjB8LgzDNmEYtqlateqeG06SJEmSJOkPLr63BwAIguAi4ASgSxiG4d6eR5IkSZIkSVva6xEpCIJjgVuBTmEY5u7teSRJkiRJkrS1PXo7WxAEg4AJQJMgCBYFQXAZ8E+gLDAsCIIvgiB4Zk/OJEmSJEmSpGh79EqkMAzP2cbmPntyBkmSJEmSJP18JWZhbUmSJEmSJJVcRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkfZoRAqCoG8QBCuCIJj2o22VgiAYFgTB7O/+WXFPziRJkiRJkqRoe/pKpH7AsT/ZdhswIgzDxsCI734vSZIkSZKkEmSPRqQwDMcAq3+y+SSg/3e/7g+cvCdnkiRJkiRJUrSSsCZS9TAMlwJ8989qe3keSZIkSZIk/URJiEg7LQiC7kEQTA6CYPLKlSv39jiSJEmSJEl/GCUhIi0PgmAfgO/+uWJ7O4Zh+FwYhm3CMGxTtWrVPTagJEmSJEnSH11JiEhvAxd99+uLgCF7cRZJkiRJkiRtwx6NSEEQDAImAE2CIFgUBMFlwAPA0UEQzAaO/u73kiRJkiRJKkHie/LDwjA8ZzsvddmTc0iSJEmSJOnnKQm3s0mSJEmSJKmEMyJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhRphxEpCIJaQRDcGQTB80EQ3BgEQflt7LN/EAQjd9+IkiRJkiRJ2tvi23shCIL6wGSgIrASuAy4NQiC88IwHPGjXcsBnXbnkJIkSZIkSdq7dnQl0j3ACqBBGIY1gAOAmcD/giA4d08MJ0mSJEmSpJJhRxGpI3BXGIYLAMIwnA50Bv4DvBgEwTV7YD5JkiRJkiSVANu9nQ2oAiz+8YYwDBPAVUEQrAGeCoKgLJC5+8aTJEmSJElSSbCjiLSAzbewjf3pC2EY3h4EwXrgfuC93TSbJEmSJEmSSogd3c42Bjhvey+GYXgvcANw7C6eSZIkSZIkSSXMjq5Eeg44OwiCymEYrtrWDmEYPhkEwQrgmN0ynSRJkiRJkkqE7UakMAw/BT6NOkAYhoOBwbtyKEmSJEmSJJUsO7qdTZIkSZIkSQKMSJIkSZIkSdoJRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkbb7dDaAIAiqAOcDjYBs4PUwDL/Y/WNJkiRJkiSpJNluRAqCoAkwBqj6o823BkFwehiGQ3b7ZJIkSZIkSSoxdnQ72z3AJiADKA0cCEwCHt39Y0mSJEmSJKkk2VFEOhToFYbhmDAMN4Zh+BVwJVA/CIKqO3ifJEmSJEmSfmd2FJFqATN/sm0mEAA1d9tEkiRJkiRJKnF2FJECIPGTbUU78T5JkiRJkiT9zuzw6WzAP4IgyPrR74Pv/nl3EASrf7Q9DMPwol07miRJkiRJkkqKHUWkBcD+29j+LXDAT7aFu2wiSZIkSZIklTjbjUhhGNbfg3NIkiRJkiSpBNslaxsFQVBvVxxHkiRJkiRJJdMvjkhBEJQOguDiIAhGAd/swpkkSZIkSZJUwkQtrL2VIAiOAi4CTgHSgaXAA7t4LkmSJEmSJJUgOxWRgiDYH7gQOB+oCRR+994bgH+FYVi0uwaUJEmSJEnS3rfd29mCIKgUBMGfgyCYBEwDbgUWAtcATYEAmGJAkiRJkiRJ+v3b0ZVIS4BkYAFwH/BiGIazAYIgKL8HZpMkSZIkSVIJsaOFtZPZfLVRDpANrNsTA0mSJEmSJKnk2VFEqgfcAaQCDwELgyD4XxAEZwOl9sRwkiRJkiRJKhm2G5HCMFwUhuG9YRg2BQ4H+gDtgJeBWUAINNkjU0qSJEmSJGmv2tGVSMXCMJwQhuFVQA3gHGAMkACeCYJgThAE/7cbZ5QkSZIkSdJetlMR6XthGOaHYfhqGIbHA7WBW4ANwN27YzhJkiRJkiSVDD8rIv1YGIYrwjB8JAzDFkDrXTiTJEmSJEmSSphfHJF+LAzDL3bFcSRJkiRJklQyxbf3QhAEC37GccIwDOvtgnkkSZIkSZJUAm03IrF5zaMc4AMgd8+MI0mSJEmSpJJoRxHpReAU4FjgTeDFMAxH7ZGpJEmSJEmSVKJsd02kMAwvBmoAfwZqAsOCIPg2CIJ7giDYbw/NJ0mSJEmSpBJghwtrh2G4MQzDAWEYHgPUBf4FnAhMD4Lg4yAITtsTQ0qSJEmSJGnv2umns4VhuCQMwweBNsD93/3zvN01mCRJkiRJkkqOHa2JtIUgCNoBFwJnAunAa8A/d9NckiRJkiRJKkF2GJGCINgXOP+7/2sIjANuBV4Nw3Dd7h9PkiRJkiRJJcF2I1IQBOOAw4A5bH5S24AwDOfvobkkSZIkSZJUguzoSqT2QA6wHOgKdA2CYHv7hmEYdtrFs0mSJEmSJKmE2FFEGgOEe2oQSZIkSZIklVzbjUhhGGbswTkkSZIkSZJUgiXt7QEkSZIkSZJU8u1oYe3OO3hfIbA8DMOZu34kSZIkSZIklTQ7WhNpOJvXRPrpatrF6yQFQbAUuD0Mw5d2w2ySJEmSJEkqIXYUkY7cwWsxoCZwOtAvCII1YRgO3aWTSZIkSZIkqcTY0cLao3fi/QOCIHgVuBkwIkmSJEmSJP1O7YqFtQcBLXfBcSRJkiRJklRC7YqItA5I2QXHkSRJkiRJUgm1KyLSocC3u+A4kiRJkiRJKqF+cUQKgiAeBMGpwK3Aq7tuJEmSJEmSJJU0211YOwiChUC4nZdjQJXv3j8cuGfXjyZJkiRJkqSSYrsRCRjB9iNSIbACGBWG4fBdPpUkSZIkSZJKlO1GpDAML96Dc0iSJEmSJKkE2xULa0uSJEmSJOl3zogkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSCUmIgVBcGMQBF8FQTAtCIJBQRCk7e2ZJEmSJEmStFmJiEhBENQCrgPahGHYHIgBZ+/dqSRJkiRJkvS9EhGRvhMH0oMgiAOlgCV7eR5JkiRJkiR9p0REpDAMFwMPAwuApcDaMAw/3LtTSZIkSZIk6XslIiIFQVAROAloANQESgdBcP429useBMHkIAgmr1y5ck+PKUmSJEmS9IdVIiIScBQwLwzDlWEYFgBvAu1/ulMYhs+FYdgmDMM2VatW3eNDSpIkSZIk/VGVlIi0AGgXBEGpIAgCoAswfS/PJEmSJEmSpO+UiIgUhuFE4HXgM+BLNs/13F4dSpIkSZIkScXie3uA74Vh+Hfg73t7DkmSJEmSJG2tRFyJJEmSJEmSpJLNiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJv3vTpk2jffv2dOzYkUsuuYR58+Zx/vnn7/A9RxxxBJ06daJLly6sWLFiD00qSZIkSSWXEUnS716TJk0YP348Y8eOBSArK2uH+xcVFTFixAhGjx7NhRdeSP/+/be776OPPkqHDh222JaZmcmdd94JQN++fX/d8JIkSZJUQhiRJP0uzc/awO1vfknGw6M4/dmJvDZ5IYWJIlJTU0kkEgAUFBRw7rnnMnr0aPr168dZZ53F8ccfz9SpU0lOTgZg48aNHHDAAdv8jLy8PKZMmbLDOYxIkiRJkn4v4nt7AEna1SbPX80FfSaRn0iQKNq87dOH+nDFuJc4su1BVK5cmYKCAi6++GK6d+9Op06dmDdvHhUqVOCVV14BYMGCBZx11lmsWrWKNWvWcMABB5CcnMJ1f3+Qpx66h9cGD2JA3xe46KKL6NWrFwCXXnopCxYsoF69eiQSCSpXrszatWupUaMGw4YN46OPPqJfv3506tSJiRMnkpmZuZfOkCRJkiT9fF6JJOl3JQxDrhv0ORsLfghIAPEGh7DPpf9iU0oFhg4dypgxY0hOTiYjI6N4n9atWxf/um7dukyYMIEbb7yRypUr0+uZV8jq+Dduem0Kk+at5pC73uffg94hI+NIACZNmkQsFmP48OE0bNgQgKuvvpp27dqxbNky9t9/f/r168dHH33EqaeeukfOhSRJkiTtSkYkSb8rXy3JIXtjwRbbwsLNv99YkGBudoL09HS6dOlC3bp1eeqpp4r3S0ra/COxoKCA3LxCFq7OJTm1FAsXLeKErl34dvRrbMxPUJgIWfX5B8xdsIhrHnmJ5cuXc8MNNzB+/HiOO+44Dj74YAAGDRrEl19+yaBBg8jKyqJu3brEYjFatmy5Z06GJEmSJO1CRiRJvyvrNhUSSwq22LZx3qcsG3gbywbexrrsVXTt2hWAu+66i+nTpzN48ODifTcVJLjhP6Oosl8rmh58GNfd8wSNrnyaqmffx6b5X1CUl0tYlCBn8tsU5ucx4NknWbx4MUVFRXTo0IFatWrx3nvvUbNmTWbMmMEBBxzAk08+SRiGLFy4kKKiIqZOnbpHz4kkSZIk7QquiSTpd6XZPuXILyzaYlupxu0o1bgd8aSAc9rWZd9992XAgAEAPP3001vse94LE5m8IEG1cx4o3rYWCID0Rm3Z+M0n5C2cRlqDg6ly/I2USY2z/qVruOyyy/joo48YPXo0+++/P23btiU5OZn69evz6aefkpmZyUUXXUT79u057LDDihfuliRJkqTfCq9EkvS7Ur5UMme1qUNa8tY/3lLiSVzRcd/tvnfKwmw++3YNeT+KUEV5ucW/zlv0NWn1WpBWrwXxclXJ+fQdChJFXP+3WwmCgH79+nHRRRdxyy23cNNNNwHw0ksvUatWLTp16sTll1/Oxx9/zNlnn82++25/DkmSJEkqibwSSdLvTq9uzQgCGPzJQlLiSSSKQiqVTuHJc1pRt3Kp7b5v3Jws8hOJ4t/nTPov66Z+SFI8hcJ1WQRJcdIbtmXjvM9IrlybRG4OdWtWp2KjBvTp04d+/frRtm1bAF599VWee+45kpKSOOecc6hZsyaPPfYYb731Fvn5+fTv33+3nwdJkiRJ2pWCMAz39gy/SJs2bcLJkyfv7TEklWBrNxYwY2kOZdOS2X+fsgRBsMP9Xxg7lwc/mEl+YRFhYQGrPniKwjXLqHH+gyx7+RZqnf8ghYWFBLE4KbEkVv7vMZ6///84/dgMOnbsyNixY3fZ7BMnTuTGG28kFovRpk0bbr31Vvr06UOPHj22uX+HDh0YN27cLvt8SZIkSX9MQRB8GoZhm2295u1skn63yqcnc+i+lWlWs1xkQFqbW0CiKKSoaHNYXz/1A0o37wLAmjEvUbByPmmjHqJ1g6o0rVGWyzs24MRW9ejQsik9e/Zk6tSpnHDCCb965rW5BazNLaBevXqMHDmSsWPHsmLFClauXLndgCRJkiRJe4IRSdIf3uBJC2h733CeGDGbojAkTBSyacE00uu1AKBml4upUX8/vvo4kzevac81+2bz4t9OZ132KipXrsw999zDgQceyNChQ3/xDB/PXcUxj42mzb3DaHPvMC55ZRZfLtu8HlM8HicWi3H++ecDMHToUI444gjat2/P+++//+tPgCRJkiTtBCOSpD+0T79dwz/e+Zq8wiJy8xMUhbDhq5GUbtaJWBCQlpxEr27NaFCldPF7TjzxRKZNm0atWrV+VTj63qR5q7n4P5OYuXw9BYmQgkTI9KXruLDPRF75YBxZWVmUKrV5LaeioiIefvhhRo4cSWZmJg899NCv/nxJkiRJ2hkurC1pj5g/fz6HHnoo+++/PykpKXz44Ydb7VNUVMSFF17IwoULSU5OZvDgwVSpUmWLY9x5553069dvl831zOhv2FSQ2GJbwerF5C+fy4Yp75OcvYisiUOKX8vLyyM1NRWAcuXKkZ6e/qtnuOfdr9lUULTV9vU5a/nLX27ny7Hvs2nTJgCysrKYPn06Rx11FAArVqygpKxttzN/xpIkSZJ+u7wSSdIec/TRR5OZmbnNuPDiiy/Srl07RowYwX333cfGjRt5+eWXt9jnjDPOACAjI4PCwsJdMtOMpTn8NMFUzLiE6mfdzb4X3Ev9Rk249tpri197//336dSpE506dWL58uV07dr1V31+fmER0xav3Wp7WJQga+jDJLe/kGrVqhdvr1KlCgceeCAjRoygX79+rFq1iiOPPJKvvvrqV83xa4RhSG5+IYWJoh3+Gf+RzZ8/n+rVq5ORkbHd/8xkZ2fz5ptv7uHJJEmSpJ1nRJK0Wy3O3sg3K9dTmChi1KhRdOzYkcceewyAu+66i4yMDA4//HDeffdd3nnnHY477jhq1apFQUEBlStXBqBXr1507NiRxYsX7/L5albY/pVE+YVFvP3+SIDiJ5+ddNJJjB49mtGjR/PCCy+QlJS0xevbs72IkBRAwOZFv4s2rSd35ngAcmeMY9O3U1kzqh+dOx/J0qVLN++flMRNN91Ely5dOPvssylfvjyZmZkccMABv/AM/DqvTV5I+wdGcuCdH3LUo6N5638f0q794Tz22GN8/vnnnHvuuQCcf/75TJ48maeeeop//etf5ObmkpGRwdq1azn66KOLj9e5c2cKCgr2ynf5JV588UW6dOlCRkbGdv/zOWzYsOLz8Mgjj/DGG2/QpUsXjjjiCE444QTWrVsHGJEkSZJU8nk7m6Td4ouF2dzy+hS+XZVLLCkgHhZy50vDuOSI/TjppJPo3LkzCxcs4I0BL/HEv5/hlddf55xzzmHx4sV06dKFZcuWMXjwYB577DFKly7N2LFjadKkSfHx77jjDoYPH85VV13FZZdd9ovnvLzjvkxdvJaN+Vve0hYLAprWKEvdyqV+8bF/6uijj2bAgAFbbIvHkjisYWXGzcmiKG8DubPGU6pJe0o360SZAzpx5H7V6HvJIcycOZOU5DhjBvbj28zhnFa/GsnVa/KP/oPo2LEjp512GvPnz+fSSy+lUqVKzJs3jyFDhlC7dm0uueQSFi5cSN26dalbty6NGzcmJyeHq6++mqlTp/Lss8/yr3/962d/n39nzuHJEXPY+N3tgGF6Rapd+gxUKMP7Hz5Oly5daNCgAVdeeSU1a9akTZs2tG7dmuOOO47x48dz8803U758eerVq8ecOXNIJBI0atSI5OTkXXK+d7fFixczevRoRowYsc3XF341lfFD3uDhfi9z9Tln0GPuXG644Qa6devGNddcw+eff069evW4+uqrOeqoo5g1axbDhg0jIyOD3r17c+uttwLw2Wef8dVXX1GnTp09+fUkSZKkrXglkqRdbs6K9Zz7/MfMWr6+eMHqnIKAR0ct4OVJizj+uON47bl/8/Zrr9CuzcH864nHWbVsKVdddgmlS5fmz3/+MxUrVqR169Zcc8015OTkAFCmTJnizzjzzDMZN24c/fv3/1WzHrV/Nc5oXZv05CSSNl8QRKmUGJXLpPCv8w7+VcfekL2Gj14dwIDbb2DoEw8y7IMP6NihQ/GVWNdddx1HHHEEi1/5O2nhJtZPeZ+N879g2cDbCDeuZcXLt9DjhP0pKCjgsssuo9zqZXz67hBy12aTvzGXtd/M4sYj2/GfJx5l+PDh5OTksGbNGl599VVuuukm3njjDSZOnEhqairDhw8vjnDdunUrXhD8zTff5PTTT//53y2vkCdGzC4OSABBPJmieCrZeQmqNTuMadOmcdVVV9GnTx+uv/76zfsEQfFVSccffzwA5513HoMHD2bw4MGcc845v+qc726b1q/nk3fe5LW7e9D7putYu3IFXbp04dprryWRSBRfXde6eTOev+MWRn34Afkbc3ngmRfYJy2Zh26/hdGjRxdftRSPx4uvZuvevXvx7YCHHnoomZmZ3HrrrZxzzjnbDEgTJ06kffv2dOzYkSuuuIKDDz6YtLS0nbrVc/78+cVP+5MkSZJ2lhFJ0i731IjZWy1WXZSXy8aCBI8Om8WbA15k7eyvaVytMld1OpROTRpwRKN6ZPZ/nkYN92Xjxo00atSI9evX06VLFxYtWgTAhg0bio/XvHlzUlNTi/8C/ksFQcBdJzXn1Svbc8Fh9Tm5ZU3+ceIBjLnlSGpX/OVXIa1atJD/3HgVn7z9BsvnzmHDwnn87ajDuaZLB4YNG8bo0aPZsGEDY8aM4bKLzqdbylccf8YFlN63FQ0ueogT2jZl/33K07BqGZKTk3n4pmupXzadosIfbvWKx5KIFSUY+cK/OP744xk6dCjNmjUjKSmJWrVqkZ2dzbx58zjooIMAaNmyJbB5QfCUlBSysrIYO3YsRxxxxM/+fpO/XUP8J+e+KC8XgE0FRYwaM5aGDRty22238cQTT9CrVy9g85/hCy+8wJlnnlkcADt16sTYsWMZO3YsnTp1+tmz7Cmrlyymz/VXMP7VASyYNoU5079i3pdTuOGEo0hPT+eee+5h8eLFvDHgRbruW5NhU6azPi+PdZs2ccURbWlQuQIP3PF/HNv1aNasWUN+fj7PPfcchx566DY/b+7cuTz++OM8+eST23y9Xr16jBw5krFjx7Ju3Tqeeuop2rVrtztPgSRJkv7gvJ1N0i730TdZFP1kteq8RV+RPXYAK+NxKpdLUL9uE+YsTeXpURPILywkNR7n8CYN+WDcRD6Z/CnLly/nueeeY8WKFdStW5eOHTsWX5EEm+PPrnRg7fIcWLv8Tu376KOP8uabb+5wHaR3n3qIvNxcICRn4yYmzVvIUc0as2LebFo1asDixYs5+ODNVzq1adOG0aNHc+9lFxJ8WpMBdx8LQId//xBpvho9gsRP1graVFBIWnKcTevXM3b4MP526218/fXXxa+HYUiDBg0YPXo0AFOnTi1+7eSTT+bBBx+kcePGxGKxnfreP5a0jdP//Z9xEEumTrODWbp0KfXq1ePPf/4z119/PcOGDePdd9/ltttuo0uXLvzpT3/i2GOPpXr16hx00EEUFhb+6ii4Ow19/AE2bVgP3z0NLy05ToPK5Zn3+ac0btGWJes3kpmZSZcxo1m/KouyaamkJSfToEol8hMJGlWrzNg53/LB0KH0vPsezjnnHPr06cPQoUM56KCDSE5OJpHYHF9zc3O58sor6du3b/HTAL+XtWA+S2bPoDAphcllG5CUmkYQSyYzM5NVq1YB8Pzzz9O7d2/Kli3LypUreeihh/jzn//MfvvtR8eOHRk1ahSLFi1iyZIlTJo0iQceeID09HTuvPPOEh3yJEmStHcZkSTtcimxrUNAesNDSG94CI3yFtJt9QgKN23kqGaNOapZYwDe+eJrnh4+lsqVKjHg7Xfp3r07f/3rX1m5ciWvvfYaDRs2pEOHDvTr14+MjIyfNc+0adPo3r07sViMRo0a0bdv358dodbnFRIAcRJMmTJlh/uuXbGcNYsXwXfPfSuXnkaHxg0AKMzLY+TwYZx43oU8++yzAEyePJmGDRtuERF+KlGQv9W2eVmreX/aTJLjcY47+VSqV6++1T6HHnoozzzzDF26dKFmzZo0bdoU2LxA+NVXX82QIUN29hRsoU29ShSFW5bC7/+M05Nj/N9xTTn5sPqcfPLJADzxxBMAWyyiPWzYsOJfB0FQvPh0SZS9bClrli4uDkgA9StXZOLchRTkbWL8u++wf6ej6Nq1K8c1bcDXY0aSKCpiY34BH3+zgHlZq3nzs2mEYUi3g1oydOhQ0tLSePjhh4sXkK9RowarV6/m9NNPp1u3bsycOZMLLrgAgMGDB1OpQnmGPHQPS2ZNpzARkl8ESYS8F2vC5IkzqX/U+WRl/ROADz74gJSUFCZPnszBBx/MzTffzEsvvcSUKVN4+eWXeeedd+jVqxfVq1fn3nvvZcyYMaSnp1NUVLTnT64kSZJ+M4xIkna501rX5tnRc8lPbP0X0orlSpG0Zuv3dGvZDIDa+zdnv/32IzMzc6t9vr/y58QTTyQjI4Nx48Ztc79rr72WL7/8ktp163PfY/+kYaPGjB+/+alnl1xyCZMnT+aQQw7Zqe8yef5q/v72V8xctvkJWumzh/PnU0/lm389REFBAcceeywFBQVUrVqVV199lVgsxr3338d/h48jDIs465DNt5K9MmkKmwoLiSclsV/tmhx66KG8+OKLdOzYkbJlyzJw4EDKli1bHBGee+65LebYt3Vbpo74gPBHkWn/faqx/z7VSClVimuefppYPLl44e6MjIzi2Pb8888Tj8fp3bs3devWZf78+Rx66KG0bduWhx56aIuw87358+fTs2fPLRYCz8rK4sQTTyQ5OZny5ctz440P8ujI+Vusi5QcC6heLpXTWtfeqfMLm5++9+233+70n8nesGFtNknxOOT/EPNqVSxPcmwxvd/LZFNhgqWJJNq1a0ev5/uTvWwpLWvXoF3DujSsWol3p8wgr6CQ6uXL0fXYY7n0z9dSqlQpli5dSo0aNXjkkUeIxWJ88MEHxce/6KKLtpjh7UfvZ/HMr4uvSEsBcvPy+XZ8Hxqf3JO35obkrM9l48aNLFu2jFatWhGLxTjhhBN45plnOP7441m5ciVHHXUUf/3rX5k+fTrffvst9erVIz1981MKS/KVYJIkSdr7jEiSdrnLO+7LkC+WsCxnE/mFm0NSUgCp8Ri3XHQsE+9+d5vvS05N5cDOXXd47Ly8vB1eCfTJJ5+wel0utc/vzfuDnyfz6oeo1Kw91xzZkCuPaEhqaip16tTh0ksvZcGCBdSrV486depwyCGHMG/ePC699FIqVqzI0qVLebzPy/T5eAlB9f3IevdxwsJ8woJNPN60K+l5hcTjcYYOHUp6ejo9e/Zk5MiRm68mWbeevxzdgcVZqxg5/Rs679+Q8ulpXN2uFUEQ0PCQzevWbOuJaN9HhLy8vOK/2AMc0u00po/NJH9j7hb7x1NTOfyM84jFt/9Es8suu4x58+ZRtmxZBvTvx+rstdt8UlyUihUrMm7cOJKSkvjHP/5BhawveeysDjz0wUy+WbmB9OQYp7Wuxc1dm1IqZef/38tdd931s+bYGyrVqr3V7YQAR+y3LxsLCunxl6s58abbASi46x+8cO3lbMxZSxiGHNawHvNWreFvf8qgWr36nHd5d86/4koKCgpITk6mf//+9O/fn5tvvnm7n78hew1zP5u0xQyJoiIGTvyCEw5qQmHBXN4raExhfPMtae3bt2fJkiVs2LCBIUOGkJeXR3JyMs888wxNmjThxhtv5OSTT2bixIksWLCAlStXcvbZZ1NQUEC5cuUYNGgQZcuW3fUnUpIkSb9pRiRJu1z59GTeubYDz4+ZyxufLSKvsIj2DStzXZfG7Fe9LOWvuo73/vkohfl5xe+Jp6RQpV4DmrTvuNXx1mzIZ8zslRQmQmaNep2LLrqIXr16bfOR9l9On8XYrFLEv8kiVqUB6+Z/QXzfttxy9aVcN/cT6tSqycKFC6lZsybDhw/nvvvuIz8/n/bt2zNw4ECaN29ORkYGEyZM4MW3hhG0OI21H79GhQ7nUrhmCTmT32H96hVkrdnIhg0b6N69O4sXL2b58uU0btyYNWvWMHbsOCYnwfrVqymbmrLFd4klp9DulLMiz+F5553H2Wef/cM5rVads+96kA+ffZKV8+cSJMVITk3l8LMuoMXRf9rhsf7Tty8fv/kKn/7vLfpffwWrczfyfuZEOhx+OKedfjqnnHLKVucRYMmSJZx++unF22rX/uHqokQiQePGjWnZfB+Obb4PYRju8nWqSpL0MmVpengnZo4fQ+GPrkaauWwlYRDw0OvvMGzeEh5//HHu7/0gH06by6pF33JGmwNZk7uJWFKM/p98SXNKcWpuLqVLlyY5eXP427hxIwcccMAOP3/N0sXEkpO3iEhTFy1l4Zq1/G/qDAqnzmZZ7D0KNuTw6GOP8eorrzBkyBB69OjBueeey8qVK+nXrx9r166lT58+/Oc//2HJkiUceeSRpKWlcdxxx5GSksJ9993HrFmz6NevH9dee+3uOZmSJEn6zTIiSdotyqcn87djmvC3Y5ps9dp+hx5OmYqVmfDGIJbNmUVq6dK07HocLY/pttUVNU+NmM0/R80hnhRQlChk0X/f4PqGRxW/vmbNGoYPH86gQYN44403WFqqPmvmfkHl5seyacFUijatp3D9agrycmnwtzepM/Ex1q9fT6tWrQBo3bo1EyZMoGLFiqxatYrx48dzyy23MGz4CFYsXUy1jlUozF5KSvVGbPzmE4ryc1n533spXL2Yhx9+mP3224+BAwfSo0cPwjCkSZMmdO3alScef5wRff/N1FHDWJdfSFI8TmrpMvzpzzdSfd9Gkefv9ddf32pb1br1Oe/eR8nNWUvBpk2UrVKFpKToRbHff/oxZk+aUBztSseSuPmYjlSvW59Xhw2jS5cuW53Hk046aatt119/PZMmTeKaa64hLS2Nv/71r8Wf8XsOSN876rJr2LRhA99M/rh4baR1eXmESUm8OXggD//r39xzzz0sWbKEcePHM336dO6/+25aH3IAk9dsZNz48Tz33HM8++yz3HTTTSxYsICzzjqLdevW8d577+3ws0tXrERRYeEW21rVrUWrurUAWJy6D2/WPJm0eBLT7z6WvMIimh7WlbTkJBpVK0MQBHz++edcd911nHrqqVxyySUcdthhnHzyyQwaNIhPPvmk+Lhz584tXmz9rbfe+tWLbn+/EP3rr79Onz596NGjxzb3y8jIYPjw4cTj/quJJElSSeW/qUnaK2ru15TTbv/HDvd5e8oSns78hrzCIvKA9VOHkd60E298toj8tZsAtnik/Zw5c/g6VplY5XosG3Q7KVXqEStdgcLVS0ipUo/kWBKlKu/DghlTim+J+/zzz4s/r06dOowcOZLbb7+dJ554glh6OQDiFWqQv3wOFTMuIX/5XCofdz1Zbz/IpZdexsknn8TkyZMpX748jRs3pkWLFtSoUYPOXboQBAGnnXwSbfatz9RNz3P1cwOI7YK/IJcqVx7K7dyT5NYsXczsieMp/NHC3PFYDMKQnOVLadeiOUOHDt3qPG7r3AK0bduWyZMn88gjj9C3b19uvPHGX/19fiviKSnE4jFi8XjxFUFpyXHqpSTzyt9voX23s/jiy2lkZmYWr0e1zz770LhFKzJy1hOLxejcuTMPP/wwAHXr1mXChAm88cYbPPzww8WLj29LxRo1qVSrDivnzyX8yYLm+UGcKeUPIjkWcEqrWjw7Zi5PjZhNEAQkikIqlU7h4TNabPGeZcuWMWzYMD799FN69+7NM888A8D69et57rnneO+99ygqKvrVi27/+PbTGjVqbDcgSZIk6behxESkIAgqAC8Azdn8SKNLwzCcsFeHkrRXPTF81haLNhesXkz+8rms++I9CpbOYsjbb29xBUwYhqTEkqhw+Dlw+Dlkj3uZ9H3bkJ+1gPVThzFv2WxSa5anRYsW5OXl0aVLF+rVq0fdunUBaN++PStWrCAIAsqWLUuTgxqTBZQ/9HSy3n0UEoWkN2pLctkqnPWP/1C3bh0+++yzrebu0aPHVn9Z7tTt5N1yjqLMn/IZ4U+2bSooJC05zoQZc3j/vx/SoFEj6tevX/z6vHnzePzxx7c4t2vWrOHCCy/kxRdfBKBcuXLbfZLc71VO1gq+mTyRREEBo2fO5cvFyzil1QFMnLuQwoJCPnjzdao3bkq7du1IJBIMGDCARx99lJ49ezJ//nxOPPFEFixYQIMGDSgoKCAejxMEAeXKldti/avt6XbDbQy8428U5G2iMC+PIiARxJlduhFLKzSiboV0alZM54nhs7f4783i7I1c2u8Tyub/sO3AAw8kHo/TsmXL4kAYhiGXXnop9957LxUqVGD58uU/e9Htj+Zk8fAHM/lqSQ7pKTFqLx3DlWefx4P33rXFYu3t2rXjoIMO4rPPPuPOO+/khBNOKD7GwIEDmThx4g6jmiRJkvaOEhORgCeA98MwPD0IghSg1N4eSNLe9e2qLReRrphxSfGvl798CxlHHcsnkyZtsc9pB9fkfw9cRRgEpNVrSWrNJqTWbEJh9jIKF02jVfP9CQh5/vnnAcjMzCx+wtsll1zCJZds/oyXX36ZGctyOPXp8WwsX40a5z4AQBBAqZQYPY7ff3d97V0qSIrx0zvN5mWt5t2p01m3KZ/jOnXkwWdfoGfPnpHHWr16NZ06dSIpKYlKlSrRv3//3TR1ybRszixi8Th5mzaxJDsH+OEJbU99OJoqlaswtm9//u///o+XXnqJI488kjlz5vDtt99y11130a1bN9q0acPAgQNZunQpF1xwAUlJSaSmptKvX7/Iz69QYx8uf/J5vh6bybwpn7EiL4nP0/ejoHxt/tGyFsc2r0H7B0ZuEZC+l1eYYO2aH/77NG3aNBKJBFOmTKFhw4bA5qfkHX744XTu3Ln4FrT8/Hw2bdpEWloaRUVFOwxJ70xZwi2vT2FjQRFrJ75B7qyP+Xp9FuvqdyJRtGXKXLlyJT179qRy5cp07dq1OCINHjyYSZMm8eSTT0aeD0mSJO15JSIiBUFQDjgCuBggDMN8IH9H75H0+1cuPZnVG7b9o6DuRQ/TdL+GWz3SflNBgpdu+hffrFxPXuEPt9/UOPJ8HjitJfmzP2Lu3Lk79flNa5RjyJ8P54H3ZzBm1koCAjo1qcqtxzahUbXfxpOr9j34EDJffL7497lJ6dSu3YCOG/P4ds1aFmev45FHHqF///5bPLGuQoUKPP744/Tq1YtRo0bRqlUrqlSpwtChQ2nXrh3VqlWjV69ePProo3vx2+0ZBYkiMmeuZMG360kUwcS5C2lTvzYffDWLRFERi7NzCENIiseJxWL85S9/YdmyZQwYMIAzzjiDvLw8zjjjDBYtWsQLL7wAQKVKlRg9evTPniUlvdTm9cO6HrfVa3NWrKOo6KfXnUGYKGTpa3+nYPk3HHPMMdx3331Uq1aNk08+mZUrV/Lyyy+zZMkSevfuTfv27XnjjTfIz88nHo9z++2306lTJ0qXLs3f//737a6JVJAooudb09hYUEQidy2bFkylbIuj2bjgS775ZBSl1udtsX/lypWLrwD8fv0lgPvvv59x48b97PMiSZKkPaNERCRgX2Al8J8gCFoAnwLXh2G44cc7BUHQHegOFP/Lp6Tfr/Pb1eW50XPZVLjlWizJsYDjDtyH1PjWi0qnJcd4/erDeHb0XAZNWsD6vEIOqFmO1M8H89gNDxKLxXj11VeL9/8+Pm1P4+pl6XPRIbvsO+1p5apUpcXRx/PBmMkMK3cY2ckVAFi/aDBVN83ky48/5rbbbuORRx4hFott8cS6pUuXMmnSJMaOHcvAgQP58MMPAcjKyqJHjx5bPK3t9+rTb1dzWb/JFBYVkUgUcm5eAd+sXM3hjevzwVezSAoCLutwCKVKl2ZmcjlGjhxJ48aNi9/fpUsXmjZtSmFhYeTi2b9WqZQ4hduISEEsTvWz76VWhXRG3NaZ+fPnk5aWxqpVq0hOTubxJ5+k7UmX0O3i67jlttt5oue1TJ48meTkZD799FNmzJhBw4YNefLJJ+nQoQMLFy7k0ksvpUqVKsyePZs77riDBx9/ijnzV1D59LvIWzqLtLoHUrB6MYVrlrB8eB+Cglzeeeed4plWr17NokWLqFSp0ha3Rfbv35/zzz+f119/fadu8ZMkSdKeVVIiUhw4GLg2DMOJQRA8AdwG3PHjncIwfA54DqBNmzZb/5uypN+VazIaMW52FjOWrSP3u/VcSqXEqF4ujTu7bf+R6KVS4tx49H7cePR+P9rafjdPW3JVP/oM/jtzH/J+1OIK0yqSVedw3p26lM6dOzN58uStnlj37bffctBBBxVv+z4iVatW7Q8RkFZvyOfCPpPYULyWUMCAVWVoW68ORWy+RzC/MMEbn39NXlKMwuRU2h7RqTgi5eTk0LdvX2bPns2KFSvo3r07//vf/3bbvDUrpNOgSmlmLFu31Wup8STObPPDn1np0qV56623mLhgHSeedib/y5tAvFoXLu4zgbnvvM/sb+Zy7qknkJmZybJly0hPT6dnz57Fkez7J/cNHjyY/v3782T/N+h22V/ZNO8zigrzSEopRflDT6dgzRLWTniV+LpldOvWjYkTJwJQpUoV7rzzTr744gt69epVPFfLli25+eabufDCCxk0aJBPapMkSSphSsq/nS0CFoVhOPG737/O5ogk6Q8sLTnGq1cexogZKxjy+WIKEiHHHVRju1ch6Qffr2kzYMAATjz3ahKd/rLF66m19mfdlA8495Q/UYV1FBUV0bx5c6655priJ9bVq1ePL7/8EtjyKXY7s8Dy78GrkxeS+MmT0Jat38SQZbmMnv8lWTkb+HRVDu2O7Mw/X+hLzzvu2OLJaUlJSZQqVYqUlBTKly/Phg0bfvoRu9zDZ7TgrGcnsKkwQeK7aJgWT6JWxXQ67leVf42aQ1FRyD+e7EvWxiKueulTEiSxsRBy/vsgQUo6BZtyadk+g4rhOlauXEn9+vVp3LgxWVlZNG7cmMaNGxc/ua9mzZo0b96cg2qXJ1a2Enmb1hMrU5GC9asAKMrLJTm9DD0ffp28vLziq4vi/8/eeQZEcXVh+NlO71UQrNgrVkRFsUWxl9h7S6Ix5kuMxm4sMTFGTWIsUbH3hkSjoGIXe8GCDQTpvS7Ltu8HYeMKJmrUtHn+KNPuubO7szvvnPMeqdRQ2ldMsTfZH2UHCggICAgICAgI/HX8Le4E9Hp9IhArEomq/LrIH7j9F4YkICDwN0EqEdO+hgvLB3qzekgDutdzf2MC0uLFi/H19SU6OpqBAwe+kTHeBk+3VQdIzVHxjBaC3LkCYqmcvPiHVKtZm3v37uHg4IC/vz/37t0DitrTe3t707x58/+kT83NJ1kUqHUUpkSTuPETEjdPQpuXhe27CzAd+iPuVWqxdPMOzl27QecuXYiOjjbaPzs7m5iYGCwtLWnYsCGffvrpG4+5pps1hya0oE8DD8rYmFDBwZwP21Smiosl/VefZ3FIJN+G3qP3inMM+CmcvMSH6PKzEcsUAIgVZiCVodJLSElLw8bGhvfee4/Tp0/Ts2dPg0j2dOc+kUiEiUxC2+rOyCUiFC6VUcVEAKB6fA1rz+r0b+jGqFGj6Nmz5xs/BwICAgICAgICAm+Ov0smEsB4YPOvndkeAcP+YHsBAQGB18azwss/jax8NSm5BThbmbBhzU8MGTLEUCZUfMOfuGkSLgO/QpOVRObpLTh0mog6+SGZGekMHjyY5cuXY2dnZ3TcuXPnlhjrvyIolbUzRSYWobdzx2XQIgBSf15CYeJ9LMpVY9HmA7i7u3LlypUS+27atIkPP/yQTZs2Ubt2bQICAoza2L9JPOzNWNCjluHvVScfcvxuMgXq3+oZlWotUXFJJP/yI45dJ6PXFhnY2/oNQxUfiWe/OeiDZ2Mh0xMUFMSlS5ewtrY28nt6llZVnFCI9Vw1dUbpWYukzZNwcXMndNm3uNpacPLkScO2/5X3kICAgICAgIDAv42/jYik1+uvAQ3+6jgEBAT+OzxMyeVCVDomMjEPw/YYCS/FNG3alAYNGnDy5EmmTJnCjh07ePDgARs3bqROnTqsWrWKtWvX4ufnx/nz5w0lOW+LrHw1n+2+zrHIFGQSEepCNYTt59qJMcTFxdGrVy8cTa1ICF5U6v6+Y+bzUR0R77//Pn379jX4Hv3X0en0lLM3R0+RMXUxIqkUTUYCKVEXaD19E4GBgQAMHTqUadOmcfz4cRQKBXv27OHGjRssXboUkUiEpaUlOTk5WFq+/a5+q09GoVQbm9PrdVpSDizCttVwJBa2aLKSjHcSwU+7DvLZ0G6lCj7PdkWEonMwlKJzl/FRc0zlEszkf5ufGQICAgICAgICAq8B4dedgIDAfw6VRsu4LVc5eS8FsUgEOg1P9u7ku586l9g2LS2NadOmodVqqV+/PtHR0Vy5coU1a9awePFi1qxZw5kzZ7hw4QLnz59/q/PQ6vT0WXmOR6m5qLV6CjWQeyMUuVtjBq48TV5eHvb29lR0tCCtIA/NrxVIer0eEUUm5YsGNeH7OZPYt28fkyZNeqvx/115kpFP31XnycgrRPtrt7P8++FknlyPwt4dUysbWpfVGpVVXr16lUePHnHmzBlDyZdWq+Xbb79lz549lCtXjoyMDCMRKTo6mmnTphkEmTeBXq8nJVdVYnn+3dMUJtwnI2wdALYthxitN5dJaVLB/pXGFItF2FsoXmlfAQEBAQEBAQGBvzeCiCQgIPCfY/aB25y6l4JKU5SdkXsjBNOqLVl4KBKZUm20raOjI87OzgBUrFgRExMTypQpQ0ZGBqmpqXh6eiKVSvH29n4tsUVHR9O4cWOqVauGXC43ygwKCwsjLCyMWbNmMXPmTHbu/5mChkPQ2VcwbKNOjyPvzimCw9YjVeaTnp6Ou7s7rao6cfZyItrbIaSe2YWFmQmWofNIaDaNoKAgTp48SdWqVV/LHP7J6PV6Bq25QHymEt1TPlJmlRtj4dUY54gtNPdQIhebGrYXiUTcu3cPH5+iDoBqrR6JWIRIJDKUSGZnZ2NjY/O2p4NIJMLeXE5aXqHRcvPqLTGv3hK5RIRYJEKj06Nwq4apTELlYYtYN6IJErFIKDsTEBAQEBAQEBAwQhCRBAQE/lPkqjTsvvzEICBBkfBSmPSInGuH0Cbd58CBA4Z1zxoIF6PX63FwcODx48dotVqj7mV/lrZt2/5hdsqxY8foM2c9gWejjZbb+g1Dr9WQemARphpb7GxkQFGnuxH9erBkyRLeHzmSyMhI8vPzmTp1Knq9Hnt7e3744YfXNod/KpcfZ5CUXWAkIOk1akRSGVKxCFNzS+yszLl//z4AN2/epHbt2lSpUoW1W3ZxSFeHOwnZAOQn5dLqnVrcv3+fzMxMunfvjlqtxtHRkR07dhiNO2HCBK5du4ZOp2Pz5s14eHi8tjkN9y3P98fulyhpM5GKGdasPD293dl2MYbErALqlrWht3dZrM1kr218AQEBAQEBAQGBfw+CiCQgIPCPJDw8nIkTJyKRSGjQoAHffvvtC+0Xl6FEJhEbiUi2fr/5+Kdu/YzOnTsTHh7+h8eSSqUMGzYMHx8fWrZs+fKT+JWELCWn7qciFokor1Bx/PhxmjdvTo8ePZg4cSLDhw8nJiYGT09PypYty/fff8+NGzeImzaMLKvKyF29MK3YgPz74ajTnyAxtcS8ekssq/ogDZvHkiVLmDZtGh988AGRkZF8++23rFmzhk8++YQ6derQokULRCIR7777Lu+99x537txh7ty5+Pr6/ucyUR6l5JVYpoy6TPbFfUV/lKvApC3L6dSpEx07dsTevqjkK9O0DJfSJOR9NQYkMhy7TCJbK+WbVZsg9SG7d+2iRYsWmJqaMm3aNI4dO2ZkUr1gwQLMzMwIDQ1l5cqVzJs377XNaUyLClyPzeTU/VRUGi16PZjKJXh72jKxrRdyqZhpnaq/tvEEBAQEBAQEBAT+vQgikoCAwD+KArWWbKWaMu5lOXbsGCYmJgwYMICbN29Sq1atP9zf3kJOoVb33PU+H/1AuXLlDJlAT4soxf9/ev3YsWMZO3YsgMFg+EXR6fTMDLrFjkuxSMRFWU7qwkLG/nCAyZ1q0a1bN7y9vZFIJISGhjJ//nwKCwsZN24c27ZtY9WOg7SfvY3M87uLRKR7Z7Fu1o/ca4coTHpE/o1fSE5+YMisKs6ciomJYd++fdSpU4ewsDCGDh3KrVu3uHjxImFhYdy5c+el5vFvwtXGhKcSzgAwq9wEs8pNkIihX2NPxGIxhw4dMqzX6/W0/DoMS99BWPoWLcu9cQSL2u2wqNIU1d5pNGvWjBEjRhAXF0dSUhKVK1c2EpG++uorDhw4wL179zAzMyM+Pp61a9caZb8VM3LkSO7evcv27dtxc3P7wzlJJWJWDW7A9dhMjtxKRAe0qeZMfQ+bUo8vICAgICAgICAg8DwEEUlAQOAfQZZSzaygW/x8MwExRTfGQ33K8VGbykilUoKCgnjy5AnvvPMOQUFBREZGYmJiglgsZtiwYXTs2JEDBw4QdfcuqRs/otDCFXXaE1yHLjWMYSqTMNK3wvODeM38dPoRu54prQMJWy4nU8UtgYCAAJ48eUK9evUA8Pb25ty5c4Ytq5exws2zAim/JKBTq9DmpCGzcTFkVlkopOgPTKdz584EhZygx4/nibJrSKU6jbG1skCVlcr48eO5fPky0dHRBAQE8MknnxiOn5OTQ79+/bh37x4rVqygYcOGvzufxYsXs2fPnlKzl/z8/Az+QTNmzKB169Z/4sy9OXwqOmAml5Kn0pZYJ5OIGdTUs8TypGwVSdkFRsueLpFUJzzgm2++wcvLiy1bthhKCItJS0sjLCzM0N1v8+bNAFy6dKnUcx4ZGflKGWJ1ytpQp6zNS+8nICAgICAgICAgUIz4rw5AQEBA4I9Qa3X0+vEswTfiKdToKNDoyFVpWHP6EUMW7SI1NZXevXuze/duAPbs2UOvXr0YN24cwcHBjBo1ik8//RRLS0vmzJlDyMEDVO/9CdrsZABDpzK/Ko708nZ/5TjDwsJeeFu9Xs+KE49Qqo3FCp0qH6Vay7JjDzhz5gwVK1Y0mDOX5rs0qUMVzD1rk3V6MyaetY3WaXQ6zp89w5V0KU/qjORGXBZmdd7BvHY78i3cENl7IlOYMHv2bOrUqUNwcLDR/rGxsaxevZqgoCBmz579u/NRqVSGOJ/H0aNHCQsLKyEg6XTPzwx720jEItYNbYiViRRTWVH3NZlEhEIqZnqn6lRysiyxT2nJPLZ+w3B+9wuc+8xB4ejJiBEjCAoKIiAggOjoaMN2aq2OfbcyicrS4uXty4btewBQKBRotVpat25Nr1698Pb25smTJ0ybNo0bN24QEBBAWFgYnTt35p133qF169akp6e/kXMiICAgICAgICAgUIyQiSQgIPC358itJOIzlai1eqPludlZ7F0/lxO/BOHlVYGHDx+iVCqJi4ujfPnyAAwcOJA5c+YYsjsyMzPxruHFSa+K1N5TGf+aLlgopPSo706TCnZvrbwnV6Uh+5lOcACqJ7fIPLWJRImMpv0DaNy4MT/++CP+/v54enqWMFwOqO1G9WbtOb1wKGVG/mhYbiqTMLFtZRRSCTODbhmJVWKFOfKyNVHeOYnYreZzy9cqVaqEhYUFFhYWZGVlGa3T6fSE3Utm79U4CjU69LcO02/gQObOnk1QUBCLFy8GiryrlEolYrGYNm3a4OLiwvLly7Gzs8PPz49GjRoRHx//Rtvcvyw13aw5O8WffVefcD02C1drE3o3KEtZO7NSt3eyVOBqbUJ0Wn6JdWIRvP/NZtzd3bly5YrRusjEHO5WHcqNkPuI2k9GJILjjy6gCd+CT/1a2Nvbk5GRQWhoKFu3bmX37t3MnTuXsLAwgoODCQsLo6CggJCQELZv386qVauYPHnyGzknAgICAgICAgICAiCISAICAv8ADt9KJK/QOGNHr9OSGrwIpzYjiMyW0JCikqmnS6Xy8vL46aef6NOnD+vXr2fIkCFYW1vz5MkTbG1tSY9/zI8Dvf+CGRWJPFJJUWt1o+UVG2JasSFWplK+ntkegMDAwBL7F5czyaVifpnVj2XNG7DtYiy5BRrKO5jxcbsqdKzlSvijNPTGQ6Bwq0bO9cM49VvAwbBgpr3bvNQYHzx4QF5eHllZWVhZWRmWF2p0DFkbzvUnWeQXatFrNWT8fJj7Ds3Q6PR06dKFLl26sGLFCtq2bQvArl27sLOzY8uWLcydO9cgMnXv3p2mTZu+0jksJiIigtGjRyORSKhUqVIJLyE/Pz9CQ0ORSkt+5UVHRzNr1qwS59hCIWVgk3IMbPLH44tEIr7oVpNRGy5R8FQHNLGo6Dgf+lcusY9er2fkhotkPSUk6vQgLd8IS6+mSGN2ExwcTPXq1RGLxbi5ufHgwYMSxykudaxbty4hISF/HKyAgICAgICAgIDAn0AQkQQEBP72yKUlK2/z756mMOE+qcfWMf/6Dip+v5jevXtTu3ZtQ2bN1KlTmTx5Mv7+/rzzzjt06NCB6dOn06VLF7y8vF5rG/WXRSoR072eO7svx1L4TIaVQipmYOOS3jvPw1whZUrHakzpWK3EOq1Oz7O5VXLnCoilchK3TMbGzp5evZayfPnyEvuWLVuW4cOH8+DBA6P1q0495GpspkEwybt1DJOqLXiSnk9eWlF3s/Pnz3P8+HG2bdsGgJ2dHVAkGj0t2Hh7/3kRr0qVKpw9exaAYcOGGXkJva1SueaVHVk/rBELDt3l+pNMxCIR/lWd+LxjtVIzmK4/ySItt9BomV6jRiSVUaDW8iBTS2tTUyMxTP+sGgiGEsLr169TsWLF1zwrAQEBAQEBAQEBAWMEEUlA4D/I7xkgQ5H3zqRJk9BoNHzyySd06tSJn376iRUrVjB79mw6der0VuPtWrcMB28mkP9UNpJ59ZaYV2+JQirmxGetcbRUAKDRaAzbLFmyxPD/4iwNZ2dnQ1nRy3ZTe9183rEqV2IyiE3PN8zNTC6hirNlqdkrr0JdD5sS2U4Atq1HoJCKGd+6EnK53PBe8PPzM5yX53kcbTj72Cjj5mkT6cKEh0yfMZOzZ06zd+9egwiSnZ2NlZWVweepGLH41a35nmTkk6fSUs7hN5Gm2EuoVatW2Nvb07FjR8O6LVu2EB4eztKlS5kxYwbHjx83ZPK8DhpXsGffB83Q6vSIRfxuaWRSdgHiZ9Yroy6TfXEfADp3T9q1a/eHBtoymYwOHTpQUFBg8AQTePuUdk0NCwsjLCyMWbNmlbrP+PHj+e67795ShAICAgICAgICrwdBRBIQ+I/xIgbIc+fOZf/+/ZiZ/XZzvmPHDk6fPo2JicmbDrEEzSo64O1py8XodCPxwlQmYVTzCgYB6Z+GpYmM4PG+HLmVxM834hGLRXSpUwb/as5IxK/Hm8lMLmW8fyW+O/rA2BdJBJYmUgY2efGMp2Iyn/FyKu4GB5C8eRJqXZEpd5cuXQAMZtqmpqaYmJiUWp73MkTEZfG/HdeJTstDKhGBHnzl0ZzZ9j1eXl7Y29uTnJxMaGgoEomEDRs2sG3bNi5cuMCyZctISEjgwoULnDp1ii1btnDkyJE/Fc+zvMhrV9nJAo3WOEvKrHITzCo3QSKGvg09qFChgsEr6mlx72mhom7dusydO/f1BS/w0rzINbU0BAFJQEBAQEBA4J+IICIJCPzL0ev1JNy/S0ZCPFaOTuw/doIhQ4YwY8YMoqOjqVatGiYmJpiZmTFq1CgGDx5MQUEBvXr1Qi6Xs3LlSlq2bEliYiLt27dnzZo1VKpU6a3OQSwWsXZoQ9acesS6s9Fk5KvxsDPjQ//KdKlT5pWP+zLd1N4UMomYTrVd6VTb9Y2N8V7LilibyPg29B7ZSg169LSo7MgX3WpiYyZ/6eOVszfjXlJuqesqDF/M3Blt+XKucTe3S5culdj2Vc5/bHo+7646R56qSBBT/Zp4dlJfjrFL9vBg/3cEBwdTp04dJBKJYb8FCxYYxJfHjx9Tu3ZRJztvb+/XLiK9CBUcLajtbsPV2IwShvFyiYThvuXfekwCL87jtDzCo9JRSMU8CNttuKYCDB8+nJiYGDw9PSlbtiwA06ZN4+TJk9SpU4ecnBwCAwPx9fX9w0wzAQEBAQEBAYG/G4KIJCDwLyYrOYk9C2aSk54KFPnjbD53hcNhJ4CisjV3d3fu37/PwoULUSqVJCUlERkZyY0bNzhx4gTz5s3DwcEBFxeX55oTvw1kEjFj/Sox1u/tClh/JzZs2MD69evRarVs3rwZNzc3oPSymacNo0UiEQOaeNKvkQcZ+YWYyaWYyiXPGeWPmeDvxSc7rxtlNgGYysSM9C2PVPLqJWp/xMqTD1GpjTN49Bo1SmDFiUd0NrfA1NS0RJnc+vXrGThwILt27cLT05ObN28CRZ+Bl+GPSkGL0el0DB48mNjYWGQyGdu2bcPBwcF4LoO8Gbz2Ag9TctHp9EgkIvR6WPJuXSo6WvxhLE9nJ71MbH9UZvV35EXnBtC3b18SExNRqVQolUquXbv22uIo1OiYuP0aoXeSEItEiHQaYvfu5PufirLuLly4gEQiITQ0lPnz51NYWEhCQgJXrlzh5MmTbN++nUOHDr22eAQEBAQEBAQE3jZv7pe+gIDAX4pOp2XH7MlkJMSjLihAXVDA+bsPqOViz5Zpn6DKzyM66hEpKSk0b96cR48eAfDVV1+Rm5vLuHHjOHPmDHfu3CEnJ4e7d+9Sv359rl27xs8//8z3339Pfn4+CoWC9PR01q5dy44dO/7iWf97iYuL48SJExw9epSwsDCDgPQyiMUi7C0Uf0pAAuhU25UPWlVEIRVjJpdgJpegkIoJqFOG8a/Jy+l5nLiXUsLjSRl1mcQtk4nZMIl70U9o165dif3q1q3Lp59+yuDBg3F0dMTb25vmzZu/VCbIy5QtXbt2DblczokTJxg2bBibN28usY2tuZygcc3YMqoJUztV48setbk8rS3tari80Bh6vd5QEvdHsW3YsAF/f3/8/Py4efMme/bsKbGNr6/vC437NtDrdBTk5aLTal+6XGzbtm2EhYUxadIkAgICXmtc836+zdG7Sag0OpRqLclXQzCt2pIvD90lW6nm0aNHBp+tYtP4x48fU7NmTaDoffg0ixcvxtfXl8TERObNmwdAnz59aNmyJb6+vkRGRr7W+AUEBAQEBAQE/ixCJpKAwL+UqKuXUebmotf/lrWRnJNLfGw25x7GEJOeyS/rVtOiQX12HzpM7dq1ady4MY6OjtSoUYPKlSvz8OFDypcvz40bN6hSpQpffPEF69evZ8aMGWzZsoWaNWvi5+fHuXPnOHfuHDNnzvwLZ/zv41FKLoFno7kVn03O9SOYZCvx9/enevXqLFmyhFGjRpUomynNMLpp06Y0aNCAkydPMmXKFHbs2MGDBw/YuHEjderUeaXYxrWuzIDGnhyPTEaj1dOssgNuNqavZd6/h5ms5NdWsZeQmVzCgvd8qOBqZfASgt/K5p7O3HkRH6H0vEKCb8STmqOiehlr7h3fZVQKOnz4cBwcHLh//z7Tp09nxYoV5Ofnc/jwYdzc3AzG2pmZmdjb2wPGr092djaBgYHULWtD3bI2L3wOlIVaFodEsuVCDPkqLY6WCqqkn2Xo4MGGz+CHH37ItWvXMLOw5KuvvuLEiRN4enoSExPDqVOngCJhcvjw4Rw8eJBp06aRlpb2wjG8KXQ6LeF7d3L5572oVSrEYjEPtFL6Dx7GF3PnERQUxOLFiwEIDw8nKyuLHj16kJeXh6Ojo5GQvXfvXj766KPXFlt+oYbtl2KfayqvTbxPZGQk8fHxwG9Zbp6engQHB3P27FkmTJjw1Fx1BnHs5s2bHD16lJCQEBYuXEjjxo2pVasWy5Yt44cffjDa58+Y0QsICAgICAgI/FkEEUlA4F9KyuMoNKoCo2UBdX5rAf/9sbO0q16JHZdv0qyBN1ZWVuTn59OoUSNat27N3LlzycnJISwsjFu3biEWi3FzcyMzMxNbW1vS0tI4e/YskyZN4tixY8TGxuLu7v62p/mv5ZeIBD7afg2NVo9Gpyf7bhSa1HgWfv8T0YdW880335RaNlOaYXRaWhrTpk1Dq9VSv359oqOjuXLlCmvWrGHZsmWvHKOtuZwe9d/ua/5uw7J8dfiu0Y18MTamMqq6WL6WcfZfjWPS7huIRFCg1mEm1ZO0fyfXTvxWipSRkUFoaCjbtm1j/fr1HDlyhPnz53P48GG6du2KSqXC2dmZ3NxcUlJS/tDQOyQkhAULFqDT6fjmm2/w8vKiW7duqNVqrKys2Lp1K2bmFvT/6Ty347NRaYrOQVJmHncPhVKhZQ8ALl68SER0MoUdZhJ5/hA+vcdgrwBV0iN69+qJXC7n4sWLvP/++9y/f59+/fohlUoNQteHH36Ij48Pffr0YfTo0dy/fx8zM7O3UoZ1eMUy7p07jaZQBYBap+PUhes08nAF9HTp0oUuXbqwYsUK2rZtS0xMDA4ODgQHB6PX/5ahptFouHnzJvXr139tscVnKpE801HvaVP5lK2fMXPmTIYOHYq/vz+enp54eHhgZ2eHVCrl+o0bLN17gDyNht2J6SQmJjF37lymTp3K4sWLcXFxYcuWLYbj6XQ6g3eXn58fjRo1Ij4+3kggFRAQEBAQEBB42wiPswQE/qWYWdsglT/fNHlcax8K1Bp61qvBYO9qFBYWUqtWLW7evEnfvn0ZMmQIw4YNo3z58ohEIsLCwpBKpYYbtbJly3Ls2DFat25NRESE4QZUAOLj46lfvz4mJiZoNJqX3j9XpWHi9usUqHWG0i2R3ByZe02Wht6nav2mqNXqUstmnjaMLsbR0RFnZ2fKlClDxYoVMTExoUyZMmRkZPzZqb51+jf2oLyDOSbS376+xCIwkUlY1KeOIfvnz/AwJZfP9txApdEZxKrkKyFIvZozZO0Fw3bVq1dHLBZTpkwZQ7lS8Xk9cuQIFhYWdOjQgbJly7Jo0aLnvj4ASqWSlStXEhISQlhYGN7e3shkMjZt2sTJkyfp2rUrgYGBhEUmE5mYYxCQAPJuHcOkagu2XYilUKtjZfBZbqvtScwuQOpcCXVmEkmp6Zg07IVEpiAnJ4fc3Fx2797NunXr2LdvH+PHjwdgwoQJNG3alL59+7J//36cnJw4ceIEP//8858+r39EZmICkWdPGQQkgMvRcdQr60pGQhwFuUVm7ufPn+f48eN8/vnnVKpUiVq1ajFgwAC+/fZbw37Hjx838ot6HdiZK4xM0AtToknc+AmJmyeR+vMSGo8v6rYWGBjI4SMhTFmwlOHjJ1GjRg0y1BrydHqua+DW/ft8ejuKBIUpF+8/JCcnB7FYzPHjxxk0aBAZGRn4+vry4MEDg0l8bm4u3bt3FwQkAQEBAQEBgb8cQUQSEPiX4tWkGXr9728TlZrO7KBQPtm4h8yMDD799FMKCgrw9/fnxo0byGSy5+7r4+ODubk5IpEICwsLmjRp8sKxhYeH4+PjQ/PmzZk4cSLR0dEMHDjwudtHR0czdOjQFz7+X42dnR1Hjx59qXPyNEduJfKsFqJwq0ZhcjQanZ4dh0+h0WgMpTBPl82UZhj9tLDy9P/1f/QG+RtiIpOw571mTGhTGQ87Mxws5LxT05V9H/jgU9Hhjw/wAqw/G43mmY5p6vQ4sq8c5MKKT7hxM4IDBw6UEKwOXI/nmyORTNt3k0k7r3H2+h0GDRqMTCYjJiaG//3vf2zcuJF69eqxcuVKjhw5gq+vL3l5eZw7dw6xWMw777zDoEGDyMvLw8TEBFfXoq59UqkUiURC8I0E8gu1JWLLuXqQuK3TuRVxi/1hl8iNuweAKvEBEgt7FO41yHzyAK1LDR4/foyTkxNSqZSgoCDKly/P/PnzuXfvHrdu3aJv374A3Lt3Dx8fH4C3UkIVff1Kifd9ck4uZx88ZvmRk0Teu8/s2bOZOnUqq1evRiQSoVKpmDhxIps3b+aXX34hKSkJKCpl6969+2uNz85cTqPydkhERQJS2qHvQCxGalMGiRj87LIB2HguGu+5oXT94QyNh00nOj6ZxIxs9AVKcvdsReLqRuy4YYiq1WJFbDJqtZrk5GQUCgXnz5+ncePG7Nu3DwsLC27fvo1Op+PmzZtYWVm91vkICAgICAgICLwKgogkIPAvxcTcgnfGfYxUrkD8nI5q1VydmNOtHV/2CeDW9WuYmJiwevVqjh49Ss2aNalQoQKAwXy4XLlyBAYGAjBs2DD2798PwObNmw2ZDC+Cp6cnx44d49SpUyQnJ5OTk/MnZvrXk6fSsDn8MRO2XWXOgVtEZxZia2trWB8dHU3r1q3p1asX3t7ePHnyhAcPHuDj40OrVq2YP38+AHXq1GHw4MFM6NOW3Pj7RmPInSsglsp5sukzHty6zpQpU1CpVPj7+3PvXpFg4OrqWqphdHFZlZ+fH7du3QLgs88+48iRI8TFxb3p0/PaMZVLeM+vEicnteLStLb8MKA+VV1e3w32vaTcEubdtn7DcH73CzwHzMWtghedO3c2Wn/uYRqTdt0gIauAQo2OLNsq3Ll1iyEffkZMTAyDBg0iPz+f4cOHo1Qq2bt3L+3ataNjx44cPnyYpKQkEhISOHToED4+PqxcudJw7NzcXFatWkX//v1Ljbc4trL9v8ChbEWc/QYikipI3DyJvNthWDXqjq5QiUZdyNqvppGamkpycjLh4eHcvn0bPz8/WrVqhZWVFf369ePTTz8FoEqVKpw/fx4oKq1604jEYp5VkQLqVGN0y8aMatEIjzIuiMViYmNj6dKlC35+fjx+/JiWLVvStGlTHB0dcXJyQq/Xc+7cudduFK7T6endwB25VIyJQ1lcB3+Dy4CvkEpE2Mo0jOjQiJYBfRjbvzsPdy8iLjSQ1NNbsW0/DquGfUEkRuzgiEhhgjYpHuXPe4n5bhEPHjxAIpEgkUg4cOAArq6ubN68GXd3d3Jzczlw4AAWFhasWrXqtc5HQEBAQEBAQOBVEDyRBAT+xXg1boZTuYpcPXyABxfOkZOWir7EzaAIp/IVMLO2AWDEiBFERUVhZWXFrl27Xlssabkqtl6M4WJUBi5WJvRvbEKdsiaGDIu4uDi6du1KUlISW7dupXz58s81ifb29ub06dN8+eWXdOjQ4bXF+Co8TMml149nUWl05BdqEYtgy4UYRviWN9qu2D9n69at7N69G3Nzc0aPHs3QoUMNGUGJiYmEh4ezPugYny9ejaVfBaNj2LYegZlMwtRO1ZDL5QZB72lKM4zeuXMn06ZNMyqFiY+PJzk5+YXnGRERwejRo5FIJFSqVIn58+ezdu1apk6dWur2ffr0ISkpCa1Wy5o1a6hSpcoLj/UixMfHExAQwO3bt8nNzUVailAaHR1tmPexY8eYOnUqJiYmbNy48Xf9uyo5mnMxKg1taYlaeti49xfKlbMznE+vuo2Jq6REpdZiUasNALk3jmDbZixWNXxx+mUWnp6eVK9enXnz5tG2bVt27txJXl6eofzN1dUVX19fJBIJrVu3ZtGiRUXD6fUMHz6cefPmYWNjQ8darhy5lUjeM9lIADo9/LA1mMl7bmLf7j3DclV8JMp759CpCzC1smXr1q2MHj2auXPnkpGRwffff0/FihXZs2cP3t7ezJkzh927dxMYGEhCQgItWrTAwsKCgwcPvsxL9NJUqN+Q4+tLF0pkJib8vGc35WrXY/r06Ubrio3Cn+bpTLzXQaFGS8dlp3mYnIseQCRBBGijL6KNuoBn3bp07hxAxMMniMxsUThaoFPmIJKZknM5CFX8PdCq0RcoUV06BwUFiO0c0KWloDAxRaFQIBKJivysIiJISUkhLi6OJk2aoNVq0el02NnZvdY5CQgICAgICAi8CoKIJCDwL8fG2YVWg0fRrPcAtkz7hKzkJIPniEQqRSKX037sR4bt169f/9pjuPEkk/6rw1Frdag0OsQiCLoeT4cyKlJTUzEzMyMxMZGQkBAuX77MwoULmTlz5nNNomfMmIFarWbcuHF/qYik1+sZveESmUq1oXRQpy8yYl57OhpTpdqwbbF/jpubGw8ePGDYsGHMmjWLAQMGMHDgQN555x0qVaqEiYkJ7RpWY7auAIkYtE9pfiJALhXTrZ7b78el0/H4xlXuhZ8FwKxsOY4fP07z5s3p0aMHaWlp3Lhxg4CAAIKCgkqYJ/v6+hoymfz8/AgLC6NKlSqcPVt0vGHDhvHkyZPnCkhQlJ0mk8k4ceJEiQ5Tr4PiksEXLVn64osvOHLkCLdv32bBggW/G88Qn3LsuvIE7TPm3SIR2Fso8Pa0NVoecjupxDGKu3blXjuEPvlBifK3Z8sKGzZsaMg0uXbtGuXLF4mQM2bMoFmzZrRu3RqA1lWdqORswd0EY18kU5mEXt7utK3hzOQ9N41ikVo54Tb2J8xMTbAJX4FKpTJ0rHua06dP06VLF86cOYOdnR09evTgl19+ee55et1Y2jtQp20nbhw9hEb1my+SVC7HpaIXnjVfrZPg62DQmgs8SM41WpZ3P5zMk+vxqFIfDw83joSGYtukJ2KnSmSe2YLE3BbT8vWxaT6Q1ANfk//wEkgk6NLTQFWAxMYWuYsrDllpdOnShYULF/Lee+/h7u7OpUuXaNeuHfXr16d169ao1WpGjx79F81eQEBAQEBAQOA3hHI2AYH/CHJTMwbMW4xvv8E4eJTDxqUMddsHMPSb5di7l31j4+p0ekauv0SuSmO46dXpITc7k5ULpjF+VlHGRa1atZBKpdStW5cHDx78rkm0k5OToVPcX8nthGziMwtK9Z4qUGtJzP6tO96zooFMJmPx4sWsW7eOGTNmGG0jEoloUdmBGq7WmMokWCgkmMsluNuasnNsU8wVz9f/NYWFbJ89maBvF3Dz2GFuHjvMhS1rmTe4NyGHDxMaGkqfPn2oVasWwcHBv2ue/Cgll+jUPPquOs/s4LvcTyoqO1QoFGi1WoOPVXHZ0NPeVcV+Wrm5uYbX8c+Sm5HOlYP7ObtzMwl3b2FjbW1YV1rJYDH5+fmYmppiaWlJ48aNuX379u+OU9nZkjlda6KQilH8auBtLpdgby4ncFjDEl5IhRodOn3p5W9OfebgULZiifI3Gxsbo0wyR0dHWrZsSYsWLVi3bh1jx44lPj6ehQsXsnfvXvz8/Pjxxx+RiEVsG9WUAY09MJNLEIvAwULOp+29mNO1BgqphOkB1YyMxyUWtsgVCpysTKjgZMXJkycJDg7m3r172NnZodfrmTFjBhcuXCAjIwN3d3fMzMzIy8tDqVSSkpJCly5daNWqFe+///6LvViviN/gEbQaMhorR2dEIhGmllY07NqLnp/PLip3+wtIyVERHpVeYrlp+fqUGbGcFJ05cfEJ2NjYUpAUjdypApr0OEQSOQUJkcSvHUdhymOkdq7o83IxaReAyMQUsbUNzn5tyM3IYO3atVhaWpKUVNSxrVWrVqxevZqIiAiioqIICwv7XdH2RXjWi+5ZIiIi8PX1pVmzZty4cQOAoUOH8uDBgz81roCAgICAgMC/CyETSUDgP4TMxATvjl3x7tj1rY15ITqdvMLfOpQVpkST9st3qNPjMHGrxs/3lVR1NCUiIgKtVsv169epWLEinp6e7N+/nwkTJrBkyRKD78/fyRg6KbsAqbhkNzC9VkPSzplokh/Svn17g+fR0wQFBfH999+Tn59fqqm4iUzCtvG+3E3M5mFyHi7WJtT3sPnD7mNnd2wm8eEDtOrC3+JRq8mMjeHC3u0EBAQQERFhWPc88+Sga3F8uus6STkqzj9K42JUGoHbdiG6tI2GdWr8YTe+wsJCWrduTXx8PHv37v3dbV+EK78c4OSmdQBo1YXITEyxsLND+1T3u2dLBrt27WpY/rQpsVZbshTsWfo0KIuflyP7rsWRnK2ilrs1HWq6oJBKSmzrU8keaYjIqHNXMeZyCUt3H6JcOWdD+Zufn5+hc9jThvETJ04scXNfWFjIs5jKJczoXIPpAdUp1OpKxGRrJker1yMCiiMSAaNqSNgalo6Pjw87duwgNTWVhg0bcvv2ba5du8b06dNxdHQkIiICZ2dnIiIiyMzMZNGiRUyZMoWmTZvy2Wefce7cOZo2bfqH57A0oqOjady4MdWqFZVkFmcYFiMSiajt357a/u1Zu3YtX3zxBc0KxPj0Kt0PCmDx4sXs2bPHyAesmMzMTI4dO0aPHj1eKV6Ak/dSSizTa9Qooy6TfXEfmswkcqtXQoweGWoSN38KIgmIJWhSHiOSyNCp8tCjA50OsYUlIpEI7d0IKthacl6l4uuvv2bt2rX89NNP1KlTB19fX/R6PTY2NojFYhwcHMjKynrp2J8+33q9nnXr1vHFF1+QnJzMzZs3qVWrFtHR0UydOpX8/Hy2bt2KWCzm/fffN3jeCQgICAiUJDw8nIkTJyKRSGjQoIFRh9DfQ6PRMGzYMKKioggICGDy5MlvOFIBgdePICIJCAi8UVJyVDwte8js3LHy7kJ66EpUCffZOLkf/bcH4uTkRLdu3UhJSWHz5s24urrSu3dv+vbti1wu/8vi/z0qOFhQqC1pOCySSCnTfz7d67mxqHdRCU7jxo0BYwHh3XffNdqvNAPzqi5WL2wardfruRZy0EhAAihQazABroccJFyjMDJBLzZPDggIQKfTIRaLUWt1fLL9MrlJMQahTqsHaflGKCo3wTYliODg4FLHL0Yul3P69GkuX77MjBkz/tQNafy9O5zaHGg0L3WBksykRNKexBiWPVsyWIytrS3Z2dmGv1+005iTlQmjW1T8w+1qlLGmcQV7zj9Mo+CpEjO5RIy7nRmtqjq90Hgvi0gkKiEgJWYV8OG2qyUELWVuNu+9/xl3zhzG1cWZ6dOnk5WVxccff8ypU6fQ6XTIZDK+/PJLxo0bh6WlJbVr18bBwYE7d+4wefJkRCIRubm5NGrU6E/F3bZt2xdqVd+lSxdatGjBrFmznruNSqUydCksjczMTPbs2fOnRCQ9GAlygEFAAjCrUI9NG39g5MgRZKTlg0iCdbN+5N89iczencLkaMSmVjj1nkbq1s8pExXJI2U+333/A48ePuDWlcu0a9eOZcuWMW/ePKpWrUp+fj7ffPMNlpaWNG/eHI1Gw9KlS1869tvx2ThXa4j3+3Np4eUIkqLsyGIvulatWmFiYkJmZiZyuZyyZYuyUp8VrI4fP85PP/1EYGDg73btFBAQEPivUNwkxsTEhAEDBhiE+T8iKCiIatWqsXHjRgICAkhMTMTFxeUtRCwg8PoQRCQBAYE3SjVXSyOhRSSRYl69JebVW5Jx5Aca1qxMWloaq1atokmTJqSlpTFz5kwCAgJ48uQJ69at4/Tp0xw+fJiOHTtiZWWFXq9HJBKV6uvyNinnYE5dDxuuPM4omYWSk0zg+0O59EN15HI5GzZsYM2aNUydOtXIc+h1otNqUKsKSiyPSk3nl4hIpGIJvYYONwhaUHSjfuDAASPz5BotO7N1/ScoytU3bKfXqBFJi24e4/NFNDQ1NawrKCga8+bNIi8evV6PRqNBJpNhZWWF6VPbvgoXD+xFU0pGjl6rpVCpJDMxAXh+lpqZmRlKpZLc3Fxu375N9erV/1Q8pbFykDfzf77DjktFZXQ6vZ4ONV34oltNJKVkq70ptl2IKVFeqddpSQ1ehIv/CCKzJbi7SRCLxWRmZuLn58eMGTMMnkteXl4cOXKE1NRUJk6ciEwmo0qVKgwcONBQVqp5KvvrRVBrdTxKyUMuFYNeb+TPJZfL8fT0xMvLq8Tnv1GjRuTmGvsQzZo1i8iHj7l25x72ZTwQ5aWTGh9DXl4eAHPmzOHYsWOIxWLWrl3LqlWrCAkJwc/Pj507d/Ldd98ZzPqzs7NLNad/luaVHRCLRWif6thnVrkJZpWbAPBODRf0iHiUr8Cq62eYaPUUxNxApy5AYumIx4CvyAhbhy7mJs7OLtwJO0bFihWZM3sWbm5ueHp6AtCzZ0/0ej2HDx82lIguX778pc51MZlJCXy97zJ7r8dx7/I57v1vAJur+eJeryXaO3dJjI/jypUrqFQqDh06xKhRo7hx4wbe3t7s37+f7Oxs+vfvj1wuZ+DAgVhbWxMcHCwISAICAv9p4jKV7LoUS0JWAbXdrelqW3QrXSzMt27dGjs7O6Kioti/fz+bN2+mZs2adOrUiX379vHw4UMSExPp3bs3AK1ateLixYslSt4FBP7uCCKSgMB/lN8rAfnpp59YsWIFs2fPplOnTq88hl6vZ+uF2BICS/6vhrQKe3cmDOnFmdCDpZbWPI2TkxNbt2413OzUqfPXmew+zYoB3gxaE87D1Dy0Oj0ysQitXs8n71QjLKOdUcbFn/U0+SMkUhlmllbkZxtnEVRzdaKaqxNm1ja892vXr+LXXSwWs2bNGqPta7bugTPGPkZPZ15YVK1Cu3btDMfo1KkTvr6+BnFKpVLRoUMHRCIRIpHoT5tqp8fFYpwHAlqdjp9OXiA+M5uuPXuyeNl3v3uMqVOn0rZtW0xMTF7aPP7ZEqxVq1aV6HaXkZrCiW/H4ajXk5CQRLv27Vjadxnvv/8+O3fuZMGCBYwcOfKlxn0VHqTkGhluA+TfPU1hwn2SQtfywZVtrFv+LfXq1SMzMxOFQoFUKjWUNK5Zs4ZNmzZhZmbG999/D8Dnn3/O6NGjycrKQiwWs3r1aoPx9x+x8Vw0Xx+ORKvTo9ODvamIjb+co0W1MnTt2pVJkybxyy+//OHnH4quJ2GRydxOlWHdfiqXN38OmkK6z1xH0MQ23Lx5k7i4OMLCwrhz5w4LFixgypQpxMTEsGnTJhISEko16/8jnK1MGNTEg03nY9DojN+HViZSFr9bh692nyK7QIP012udiUdtzFNj4desN1OP2kjSo2jsXZeuXbsyduxYjh49SmhoKKtXr6ZNmzY0atQIZ2fnF4rpeWQmJRK85EuSYx5joRMxQFPIg279OOncioS9XxLvVIGUW7dZtLDIXD4hIYGrV69y7do1atasyZgxY9i9ezdWVlacOnUKMzMzEhISuHz5spGAVCy+PV2OKSAgIPBvZmv4Y2YduI1Or0et1RN0PZ6Fv0Qyq5mFoUnMs2X1/fv3Z+rUqXTq1ImdO3eycOFCZs+ebSixt7a2JiMj4y+emYDAyyOISAIC/xFyCtRkKdU4W5mg06h/twRkx44dnD59GhMTkz815p4rcWwJL5kZYVa5MTZVm1A7dg+qzCJvjtJKa56mZs2aAH8LQ+2nsTWXc2C8L1diMgm+Ec+NJ5nIJGJi0vI4euwYjRs3Ji4ujpSUFHr27MmWLVsM+3711VeIxWI++eQTpk2bxvHjx1EoFOzZswcbGxsAvvzySwYNGoSb2+93ZCumYddenNmxyai7FYBUoaBhl14vdIzqZawxV0jIU/3mHVSceWEulzC9ey0qVHAziCizZ89m9uzZRsd4nVlitq5upMc94WkhSSIWM8avCVK5nEELv8OujFupJYPFMbZp04Y2bdq8cgxPl2BFR0eXWO/i4mKY84QJEwxPFadPn06jRo1eOnvnVansZIFcKqbwKSGpOPPPXCHhu371aFrV2cjT6MyZM4b/jxgxghEjRhgd09HR8ZV8rbaGP2b+wbso1b+9j56o4f0dt9k11tqQbfgin3+AfdfiiIjLRuJaFbVWj15TiFl1Py4/zkCtE3Hr1i3CwsIMr72rq6vR/s+a9b+oiAQws3MNPOzM+f7YfTKUaiQiEZ1quzKvey1M5VKOPNZj1+l/Rvso3KqRc/0wANLMGN5t5MGhfTu5efMmly9fNryPRo0axahRowgMDDRqIvCyFCrz2Tr9E5TZWej1euQAYqiijsU89ShbKjQg5eAypM4VCb98lTlz5jB//nxcXFywtrbG3t4euVxObGws1tbWuLi4cPnyZbZu3cp7773Htm3bcHBwIDw8nLlz5yIWi7l+/XqpPiDXrl1Dp9NRv359rl27xuXLl0u8rwQEBAT+KTxIzmV28G2jhzT5hVq0ykyGjPyEu2cPU1ioKlFWX7ZsWdLT00lLSyMzMxN3d3dsbGwMJfbZ2dlUqlTpr5qWgMArI4hIAgL/cpKyC5i8+wanH6QiFYuRiEVUTT/L2EGDmTVrJkFBQSxevBgoMgncuHEjFy5coH379qxZs4bdu3cTFBSEQqEgMDAQDw+PFx77h+MPjG4g4beyKIlYTEU3R8zNzZ9bWvM0fydD7WcRiUQcvJnAtguxFGi06PVwGS02g5fzzWBv5nw0gvR04+5OX3/9NQCffPIJV69e5dGjR5w5c6bE3F7WcNG7Y1fS42K5feo4GNyo9FRr5od3xy4vdIw21ZywNJGhLNTydOKFSFRk6vxOrbdbu98goBuPb14tIYyJxRIcPMphV+bFBLaX4XZ8NscjkwGoaqE0KsHq3r07cXFxdO3alaSkJLZu3WqUmXPy5Em++eYboKSQ8abp28iDH088LHWdqUxCi8qObyUOrU7P10fulfj861T5qDDj29B7qM6cYfz48S/0+QdYfvwhGp0Oya/XAp0qn7zbJ1A+CKewIJ/HsU9o164d331XlJWmVqtJTk42GKl7enoaSi6vXr36UvMRiUQM9y3PsGblKFDrUEjFiJ8qU8xRqUvsI3eugFgqJ3nrFFrUrsCYoZO4fPaEkfcbQO/evUlPT6d27dqG982rcPvkcQoLlEbXkAK1BhMZuBfEobp9F21+Jtq8DI4cSuZy+DnS0tLQarUolUoyMzMZMmQI1tbWHDp0iHbt2tGoUSOmTZvGmDFj6N+/PzKZjPz8fOrXr0/Hjh0JCQkp1Qfk2rVraDQa6tevT926dalbt+4rz0tAQEDgr2bT+WjUz3hg/lYqPpxHeTLcZapSf6t26dKFsWPHGh4uNW3alKNHj9KoUSOOHz9Ov3793t5EBAReE39Nv1wBAYG3Qq5KQ9fvT3PyXgpqrR6lWktOfgFHjh4nLKfI7LdLly6EhYXRt29fpk2bRq9evahbty5Hjx7FwsKCY8eOcebMGebMmcOCBQteavy4TGWJZcqoyyRumczjDZ/yJC6Rdu3aUa9ePRwdHUuU1vxTOP8ojS3hMSjVWkPWlRoJSmQM23yTKo39SUtLA+CHH34gLi6OwMBAFixYgF6vZ+7cuYanVu3bt8fPz4+5c+cCL99iWyQW027Mhwz95kdaDhxGy4HDGPrNj7QbM/6FW6RLJWJ2jmlKOXtzzOQSzBUSzOUSytqasWNM01I7lL1J3KvVpGnPfkhkcsTSomcfMhNTLOzt6fK/z1/rWBqtjrGbLtPjxzMsDolkccg93tsTRcAXOwg9eozQ0FCys7NJTExk9+7dLF26lIULFxr2v3TpErVr10Yq/Wue0ThbmfBD//qYyiSYyopeJ3O5BFszGZtGNkYqeTtf+/GZSpSFJbvgqZ7cIj5wAlunDaFMmTI0btz4uZ//4OBgBg4cyNGjR+nZs2eJ64ncpRIOnT7Cuc8cxDIT+gwZjYuLC/Xr18fa2prq1avz1VdfkZ6eTq9evVAoFHh7e9O8efPf9ST7vc+cSCTCVC4xEpAAarvZlLq9besRVBj6NUF79+Dl5UVYWBgHDhzg/PnzVKxYZNq+c+dOjh49yrfffmswff+jLoylEX39cgmhNSo1nW9CzjL35C2k7jUoM+w7pDYuSMvW4ouvl1KlShVCQkJQKpWEhISwaNEi3NzciI6ORqFQ0LhxYypWrIhd2cpY1W1PkoknfWauxtTcEijyASn2TwIYOHAgly5dYtWqVXz99dcMGDCAsLAwpk2b9tLzERAQEPirCA8Px8fHh+bNmzNx4kQepebzbB+V4lLx5NC1jOnbmYSEBMO6ZcuWsWfPHqDoQcGhQ4fo1asoG7xz585ERETg6+tL06ZN3/rDJgGB14GQiSQg8C9mz+UnZCk1PG1JlHfrGCZVW7Dz8hNsfv1GPH/+PMePH2fbtm1G+0dHRxvKPxo0aFCiZOmPcLRU8CTD+MavuCxKIRWzZmY7xGKx0XGfLq0p9t14OtX39zo1/VVsPPeYglIyLsQKM9RaPeuDDmNKUWmgj48PGo2GDh06sGXLFiIiIkhNTUWhUDB16lTWrFmDu7s7/fv358mTJ68ck42zC/U6vLpRY1k7M47+ryVXYzN5nJZHWVszvD1tX+nm9nXQqGsvqjRtzt3TYShzcnCrWp2KDRojlrxeQeuH4w84EZlMgbr416IeLRJORuWw9uxjAgICCA4OplatWkilUurWrWskOOzdu/dPdQJ7HfhXc+b8FH+CbsSTkKmkiosl7Wu4YCJ7e+KfiUxiZERdjGnFhphWbIiDhZyvprUFeO7nPyAggICAAMPfrRaFke87wPC3Q6eJhv9X+nQXzjZmTJ06lREjRmBjY2PomLNo0SJDpkyxOBsdHf1aryUftanMpcfpT71vfp2vTMyYFhWKTMVfkIkTJ+Lv7//SMSjMLXi2j1wVV2cuNPwIhdQCvajo9bes0wGNWMziCCnTpk7j+tUrtG/fHqlUyogRI9izZw/dunVj9OjR3Lp1ix5Tf+SrYw9IuXATqWM5lobeJzvFHLOb90hNTaVZs2YcPHiQMWPGUKZMGRo0aMDo0aPRaDSMHDnyL2+AICAgIPCyPNt5zbEgEZlEauTxWVwqbiaXEDi8EQ3L2dG0aVOSkpLQaDSG388A7du3x8HBAQCZTGbIRBUQ+KciZCIJCPyLOXwrsUQ5iTo9jpyrB4nbNp1bt24ze/Zspk6dyurVq0sIBOXKlTN4J126dMnw5PxFGelb3pAN8TRyqZgudcu81ZvaN0liVgHP3i6rntwiIXACiRs/QWRmS5ZaT1puIbVr1yYvLw+lUsmQIUMYP348lpaWlC9fnuDgYGrXrk3z5s25c+cOcXFxf8l8ihGJRNT3sKV7PXcalLP7ywSkYqydnGnc4138hoykcmOf1y4g6fV61p6JRvmMEKBT5aNUa/npVBRnzpzB39+fiIgItFot169fN/pcHDlyhHbt2r3WuF4FazMZg5p4MqlDVbrWdXvrnzVHSwVVXCxLXSeXiOhZ3/2ljzm6RYXnXk8Carui0el5lJKLpa2Dwc9NKpVy8uRJgoODuXfvHnZ2duj1ehYvXkxqaip+fn4Gv6piLyUoajzQokULZsyY8UKxNShnx+I+dbAylWKhkGKpkKKQihnctBwftHo5v4tvv/32lQSuWq3aIVMojJY9NvVAKTE1CEhQ5NWkSo4mR6Vh15HTiESiUt/PXl5etHinK9M+n0yBWofY2pnC5CgKNDqyH99m3foNrFr9EwBjx45lzZo1TJgw4aXjFhAQEPgzbNiwAX9/f/z8/P7U76bb8dnMDrrF+C1XOBqtQiv6rfNal3puxG+eQsre+SQETkCTnUrW+V0UPLyIs5UJT66eMJQjf/vtt4wfPx6Au3fv0rlzZ+HaKPCvQ8hEEhD4F6OQldSJbf2GAWChkMKB6YjFYmJjY+nSpcgv5+mnxi4uLrRq1QofHx/kcvlLd7Ua1LQcF6LTOX43hQK1Fj1FpTUVHM2Z1bnGK8+rNOLj4wkICOD27dvk5uYalROFhYURFhb23Buz8ePHG3xUXoV6njbciMs0ekJVnHFRTOKWyVTtOxmJRIKvry+ZmZl8++23tGjRgqZNmzJv3jwePHjAkiVLcHV1RavVIhKJ+PHHH185LoGXQ6XRkVtQ0gBb9eQWmac2kSiR0ap/AM7Ozjg5OZXwtomMjMTT0xNTU1PDvvPmzWPLli3o9Xri4+NfWJT4N/Blz1r0WXGOArXWkA0pl4pxslTwnt/LCdIA7zYoy6XodA7eTECl0aHTg5lcQjl7c3KUahp8EYpMIkKj09O1rhu9ymtJTU3Fx8eHHTt2GHWAi46OZu/evbRt27bUsZo1a8by5csJCAggLi7uhYztO9YqQ9vqLlx+nIFKo6NuWRusTUsahL8p3KrVoFKjpjy4cA61qgCAJBMn1CLjGIq9mh6u+xTKuvL5uu85cuRIifczgLK8Hyguk3V+F1YNupKybz5J26dRmPIY2/odeJgrxY0i77alS5cyY8YM1qxZg0wmQ/VMaZ2AgIDA6yYuLo4TJ05w9OjR390uPDycUaNGER0djaWlJX369DFqCvDVL3dZeyaKwl+/W47eTWbRkUh6mt7hwIED3LhxA0VuAk4DA8m5FUbBvTM41mlN5qkNbFg5icnjR7Fw4ULS09NJSUmhcuXKAFStWvV3y6cFBP6pCCKSgMC/mJ71y3L+UTr5pXiTaHV6Lp8/i5lcWqKd9tNC0pQpU5gyZcorjS8Ri/ihf32uxWby842iGz//ak60qOxYwlPkz2JnZ8fRo0fp3r37S+/7ZwQkgCFNy7H5fAxqbcnzrNdqSN45E3VyFDu+eI/+Fb9/bnv1efPmMXz4cFQqFTKZjN27d/+puAReDoVUjJlCQs4zQlKxIGhjKmPRzKIso9JKdKpUqcKuXbuMlk2dOpWpU6e+sZj/ztQoY83BCc35/tgDTtxLQSYR09PbjRG+FV5JXBGLRXzTpy7DfcsbrictKjsw7+c7HP/V9634Urfn3F0CpyzgxqlDODo6Mn369FI7wD3PsL9evXoA1KpVi6ioqBfujiiTiGlSwf6l5/Y6EIlEvPPBx0TWP8WVg/vJy8ygrJMzN1RiVFrjXEnb1iOQS8R80KYyXl6VSn0/nz59mkFrwrFq0tuwzKnXTPJunyA9dCXKmAje69eFgb264OnpyQcffMCECRMICQmhSZMmDB06lIiICHr27Pmmpy4gIPAfQq/XcyUmg9vx2VwO2UOhWoO/vz/Vq1dnyZIlzJxZ1DTm8ePHVK9enaysLJo1a4ZcLud///sfmzdvZu3atdja2jJjxgxW7z7MjHEfILF1ozDhHmJTaxCBaYUGLIq7wZ1bt1CpVDRu3JhDY+ux/udcLp0/w//ea8+iB9sx0ysNnddmzpzJuHHj/upTJCDwxhFEJAGBfzHtaziz9owVt+KzjLw6TGUSpnasipn8zV8CRCIR9Txsqedh+9qPrdfruZuYQ1J2AZWcLHC3NR5j+PDhxMTEYGVlxcWLFzl69Cg5OTlYWFhQv359srOzCQwMxNfXl9OnTxMSEsKCBQvQ6XR88803uLm50bdvXwCSkpJo3749S5YsKRFHWTsz1gxtwOgNl8lVGQsQIokU577zMJGJ+aiNF40bVzS0ogdjD5hKlSpx6NAho/1VKpVRZovAm0MkEjG4qSc/nYoyauMLYCITM6xZub8msH8wnvbmfN27zms9Zo0y1tQoYw3A0TtJxGUqjbIA9Totcfu+wrnlEJLUJrhIJM/tAGdtbU1CQgKmpqYkJiYajnH9+nWqV69OREQEH3zwwWuN/00iEomo6tOCqj4tAEjNVfHzl8egRMFtUbfFbvV+Xxyr425DeFQ6hU99Hop9QExlEraOaUJtdxvDuqVLlxr+f+rUKQAOHz4sXMMEBAReCyk5KgatCScmPR+dTk/GuZsUJMcQtHsHB9csYsmSJTx69IgjR46AzIxzj7MZ09kHhaMHe48sxbdeNdLT01EqlcyaNYsvv/ySAlUhEmsXpHIzNJlJkJmIXedJpAcvwqn9WOYt/p6LJ0NJS0ujfq3qeHp60rVrV1pVdeJ+1y54e3szfPhwAKKiopgyZQpKpZL79++zY8cO+vTp8xefNQGB148gIgkI/IuRSsRsGdWYNaei2Hj+MVlKNV7OlnzUpjJ+VZxeyxjh4eFMnDgRiURCgwYNjNKDf4+wsDBCQ0MNRrcvSkREBKNHj0atgydaa6w7fIhMIqZQo6NJBXs0v5r5fvfdd/zyyy94eXnh7OzMiBEjOHjwICkpKaxevZr79+8X/cj4FaVSycqVKwkJCUHylNdO8RP6CRMmGJn8PotPRQeuzmhLtx/OEJmYY4gDiqxu5RIxfRuWfam5btiwAaVS+cJZEAJ/ngn+Xtx8ksWlxxmG7mImMglNK9rz/kt62wi8ecIiU8h7JtOyuGNO0tG19L6ylfU/Lnlu9t/o0aPp3Lkzvr6+ODo6Go5x4sQJli9fTsuWLXF3f3n/pr8LDhYKZnWuzuzg24YyDbGoqKxwUvuqlLH5fXFnYBPPohKPZ5ZLxFDewdxIQCqNuLg4vvjiC3744Yc/NxEBAQEBYNi6C9xPzjF0StNITJG61WD0hku4qly5FXQZmbktY3Y/4E5CDgVP7pCSlMjKVatZ8f0y9Ko80Kho2LAhFy5cQKlUIpLK0AOazHhECjP0ahXpwd+AXk/urRPsv6tElZeDRCJh37596PV6w2/D3r1788EHH9ChQweg6HcbFDVvmDZtmiAgCfxrET2dvv1PokGDBvpLly791WEICPznSUxMNOqENHnyZEMnpN/jVUUktVqNUgstFh7n4a6vsajfEYWrF1Ak1GTsnMqjyyfw929Dh269GTRiDA+unCE8/Dx79+5FJBJx4MAB+vTpw6NHj/D19SUxMZEvvviCFStWkJmZibOzMytWrMDc3Nwwbr169bh48eIftm7PU2mYuP0aJ+6lIJeK0Wj1uFibsGKg93ONht820dHRNG7cmGrVqiGXy9mxYwfHjh17blexMWPGEBERgUgkYvny5UYdR/6NFKXKZ3LkViJikYh2NZypW9bmLzcWFyjJvJ9vs+Z0FKU0gkMhFfNZh6oM9y3/9gP7mxERl8XaM1HcT8qlgqM5w5uVp05Zmxfa9+yDVMZsuoxeD1qdDpFIRFlbMzaOaISTlcmbDVxAQEDgVyLisui94pxRw5jCpEfkXD+Mfbv3yDq/C/Q61KkxOHT+BID8qGukHVyMY+dPSNozD5FOg8jMhmatOnB6/wYkUjlavR695jepXGRqiV6ZAyIJtj69cEq/SdTDBxQWFmJlZcX777+PUqnkxo0b3Lp1i6ysLN555x327t371s+JgMCbRCQSXdbr9Q1KWydkIgkICLw08ffucDFoN2lPYrF2dqFBp+541q6LVColOzub/v37s2XLFgYOHMhHH31EhQoV6NmzJ6ampsjlcj766COgqGTknXfeQaVSsWvXLuzs7Eod735SDvuvxZOr0tCskgOx6XlF5UZSKRJzW5K2fY5eq0ViZo2uQM3Ulbu5m1bI1S+/ZOm2Q5g7ulNZnkVkZCQAXbt2pUuXLkRHR+Pu7k5kZCRJSUkkJCQQFhbGqlWrWLlyJR9//DFQ1Jmudu3afyggAZgrpKwa3IDErALuJ+fgYKGgqovl306AaNu2LZs2bQKKRKU9e/Y8V0SaPHky5cuX5/79+0yePPmtejUtXryYPXv2PNeY8urVq0yaNAmNRsMnn3xCp06d/rRRukgkwtvTFm/P11+CKfB66VrXjU3nY0p0oSymQ02X5+5bnNUokUioVKkSM2bMYPr06YbPBcCBAweYN28eIpGIXr168b///e+1z+FtUNPNmsV96r7Svj6VHLg0rQ1hkSmk5qqo6mJFfQ9BVBUQEHi7PEjO5Vk7zeJGAYlbJiMxtcKhy6dkntlK4qZPQSRCr9Nh4l4dvU4HWjWIxIgVlly+G4Ver0ejVsGv3SslFnZoc9OLBCRJkW9f9qUgfNq0Ji42Br1ej7+/P6Ghoej1enJzc5HL5fj5+fH111+/7dMhIPCXIohIAgICL8W1Iwc5sXENGnUh6PVkJMQRdycC61repKam0qxZMw4ePMiYMWMoU6YMDRo04KuvvmLkyJEMGDCA9u3bG45VUFBASEgI27dvZ9WqVUyePNloLL1ez5zg22wNj0Gt06HVwc5LsWRHnifp2Dqkdm5IzG1x7DkTkVhC3KrR6JTZrFg4E8QS5B51yI+LpCAllsLKDZGbmFKpQnkyMzP5+uuvsbS0xMbGBp1Oh7W1Nb6+vkgkElq3bs2iRYsMcezdu/e5AsvzcLE2wcX67/OU/lZ8FlsvxJCYVUA5RR5Hjx2nefPm9OjRg5SUFEJCQvDz82PhwoV89tlnAFy5coVbt25RvnxRJodMJjMq9XvTqFQqrl+//rvbzJ07l/3792NmZmZY9meN0v/LPFueOmHCBKZNm2YkrOTk5NCtWzfUajVWVlZs3boVS8u/Jsuupps1AbVdCb6RYCQkmcokDPct97vlWlWqVOHs2bMADBs2jNTU1BLb1KlThzNnziAWi/Hz82PkyJFYW1u//on8zVFIJbSv8XxBTkBAQOBN42SlKPIHeAbb1iMM/1fFR6J6fAO9SIQ2OxXHrp+hKFOF9OPrQFOIXiRGk/wQTUoUABI7N7S5GaAuQFtYYDiOWCpDpy5Eq1Jy9NhxCpT5iMVirly5QmpqKhYWFrRv357Dhw9z5swZunXrxqlTp7C1teWjjz5i0KBBfPfdd9jY2HDx4kU6duxIQkIC586d44MPPjB4KAkI/FMp2f9bQEBA4DnkZ2UStuEnNIUqeKoUNis7hzmLFrNo3hcAjB07ljVr1jBhwgQAHj16ZOh2VL9+fcN+xcvq1q3LgwcPSox3+FYi2y/GUqDRGerf8wq1SMs3pMyI5Ugt7Mm7c5K0Q8tI2j4NkVSOfbv3sPUbhmkFbxwDPsapx3Rkjp5Y+PQHczsiIyNRKBRotVpat25NjRo1AGjYsCF37twB4Nq1awbhBODIkSO0a9fudZ3Gt87S0Hv0/PEsW8NjCb2TzIZr2dgOWc7SjXsJDQ2lb9++tG3blrCwMBo3bkxYWBifffYZ/fr1o2zZ33ycpkyZwocffvjG4lQWajlyK5H91+J4kpHPTz/9xJAhQwzrhw0bRps2bRg+fDizZs3i0aNHFBQU0KtXL7p160ZSUhIAvr6+byzGfzuenp4cO3aMU6dOkZycTE5OToltZDIZmzZt4uTJk3Tt2pXAwMC3Ft/ixYtLvL5f9arNnK41qOxsQcrWyeTsmoriyDyG1CuZ2ajT6XmUkktser5RZmHxNQGKSmb79+/PiRMn8PDwQCKRIBKJkPxq0B0YGMhPP/0EwKxZs0rtbCYgICAg8HppUt4e8z9oCCO1csK533ys6gegzcsgPeRHEjZ9SkHUFcy8fCgzagViEwvEZtZIHTxw7PoZFCoBkCh+exil1xSCToPU0oFCvQTHem0wMTWlWbNmFBQUoFKp+PDDD2nVqhVt2rQhNzeXwMBAdDod169fx9vbG4CWLVty5swZNmzYwIgRIzh79ixr1qx5cydJQOAtIYhIAgICL8y98LMlShi0Oh1bwq/RuU510u5GAEXlT0uXLmXGjBkAlC9f3pBRcvXqVcO+xcuuX79OxYoVS4y38sQj8p8xzdVr1IY+QyKFGYhEyOzK4NL/S8yq+KDX65G7eqFOewJAYfIj9FoNiVsmk5MQjZOzMxs2bEAmk3H8+HFCQkKoXr06jo6OtGzZkhYtWrB27VrGjh0LQGRkJJ6env/Y7kLXYjP58cRDCtQ6tL8Kf4VIyNdLGbPpGh07diI4ONhon0ePHrFkyRKWLVtmWLZkyRKqV6/+xgSafVfj8J4bwsc7rvP53pu0/uooSzbux7eFH1CUIaNQKAgNDaVKlSpAUce8yMhIdu3axZgxY5g3b94bie3fTK5Kw4az0QxYfZ7hgRe4nKxHKpMDIJVKkUgkxMXF0bVrV5o0aUJUVBQmJia4uroabZObm0urVq3Izc1lxYoVpXYx/LM8LzNNJBLRu0FZQia2JPPBFdIeXGPi+yNZv3690XZ7rzyh4fxQAr47TdtvT9Dy6zAWrtxEzZo1SU5Oxt7eHrVazdChQxk9ejQtW7Y07Hvo0CEqVar0l2VcCQgICPzXEYtFrBnSEAuFFBNZ0S2s5JnMJImFLSKpvKiLZLXm2L8zAU3aE8Smlmiyksi7FYZOlYsuPxNN2hOSd81BJJMjNrNCJJUXj4ReXCRWWbUcgk6Vi75sfZQFKi5fvgyATqejXLlyZGdnY21tTatWrdizZw+nTp2iRYsWhnhq1qwJgKurKzVr1kShUAilwAL/CoRyNgEBgRdGlZeLVqM2WnbjSQKxGVkcuHaL4zO/oG9UHJ6ennTv3p3Zs2cjl8uJjY3l3XffZcOGDSgUCsO+Go2GMmXK4OXlVarPTlymssQyZdRlsi/uK+p4ZlcGk7odSLm4D3XiAyQm5ohtyyAxs0buVJ6Yxb3Qq1W4jduI1NyG+NVjSIiPp0mTJri4uGBpaUlmZiaZmZmkpKQQGBhIrVq1qFmzJq1atcLWtsgTp7RsjH8KG85FG7XnBtCp8hErzMhXawg6cpzPPx7HzZs3AcjPz2fMmDGsXbvW8FodOXKEs2fPsn379jcS4+XHGUzZc9OoHCn3RigKj8bMOXALKGqbW2zoXbduXc6dO4e1tTUNGzbEzMyM1q1bs3jx4jcS37+VpOwCun5/miylxnDuzz9KZ90ZKyY3NiU1NRUzMzMSExMJCQnh8uXLLFy4kBUrVgCQm5vLqlWrOHToEBYWFnz++eeMGjWK9PR0Dh069Kfj0+r0nLqfwr2kHJytTHh0Yg9DhgwxiNPDhg0jNjYWDw8PPDw8mDVrFjJZkY+FUqmkRo0ahIeHs2vXLloOmsikzWeIC16KU/epAMSk57Mux55th06z5qvpBAcHc/LkSdq3b4+fn58hjkePHvHVV18ZxNanbwD+qc1JBAQEBP6J1HK35vRnrdh56QmXYzKITs3jflIO2mcuxYXJUejysymIuYlOlYdep0WnVqFT5WJaqTFiuSkm5eqSdmgZYitHpOa22LUeSdrhHxCJxagzk1CUqYJYYYbU1g3zai3IPr0ZiakVjRs3xsXFhREjRtC5c2dGjRpF27ZtcXJyYunSpcyfP98Qx9PfF4J4JPBvQhCRBAQEXpgyXlWRyuWoC36rG6/n4UY9DzdkJqa0Gz2Oqs2Knt4XFBQQGRlJ9+7dsbe3N5R8zJo1CwA/Pz/KlStXwm/laco7mJOcozJaZla5CWaVm6CQilncpw67Lj8hwWstNcpYMapFBZaG3ufwrUSsm/TGskFXUvbMRWJalD3gNvx7BjZ0YUZ3b7p160ZhYSHZ2dmG2J48ecLZs2cRi8V88803XLhwAYVCYXRD+Xfm2a5rq1atYvc3nyFqZVyCpnpyi8xTm5DI5Hj5t8TMzIyff/6ZmjVr8umnnxIZGcmgQYMA2LZtG+PHj8fKyopWrVpRpUoVVq5c+Vrj/v7YfQqeMUZWp8eRd+cU314+hDz9IZGRkSQmJgJw48YNACpXrkxycjJarbZECaLAHzN59w1SclRGP77zC7Vcf/iEvj9+zekjBygoKKBWrVpIpVKjslO9Xs/w4cOZN28eNjY2ALRp04YPPviA2bNnIxb/uUTnmLR8+q0+R6ZSTaFGh0ykI27vTn7e1w8wzkxbuHAhSmWR4BwTE8O7775LTk4Ohw4domzZskyZMoXTdrdJv3UK8yrNUMVHknF0NXoRKFyr8LWHLeWsrDA1NcXf3x8PDw++++47xo8fT05ODkOHDiUwMNDQrdHa2togut68eZNWrVr9qbkKCAgICLw4NmZyRrWogN3lJ0zbF1FCQNIqc0gPWYFj18notYWoEiJx7PwpBTE3KIiJwKnHaJJ3zca0YkNMy9XDvEYr0kNXkhG2Dk1mIvbtPyA9dCXmNf3JOrEBuasXSdumUpiVwu1rcXh5ebFhwwaqV69OTEwMgYGB9OvXj0qVKjFt2jSqVq3615wYAYG3iCAiCQgIvDDu1Wth4+xK2pMYdNrfbvpFYjEm5ubEWFVi6o9niUnPx93WlLEtfytRi46OZvjw4SQmJrJlyxaOHTsGYCiVSUpKYuvWraSkpDBp0iQALl66jOvw5WjMjL1N5BIRrao60al2GTrVLmNYfvhWIveTctDpQSSVIzGkJoMmK4nUg0tZEmzJ5plZjBzUjx07dqBWq3F0dESlUiGRSAgKCuLcuXOIRCJatmxJZmYmDg4OAPz444+sX78eU1NTVqxYYSir+jvxbNc1WzM5eRIR6qd+ZZlWbIhpxYaYyMTMf78Ze9d9z44dO+jQoQOAkQ8RYOhq96aIiM/m2XwOW79hAFgopMgPzWLmzJkMGzYMf39/ypQpQ9WqVZHJZIwaNQo/Pz+DV43Ai5FToOb0g9QSP771Oi1P9n5FxfZDcXFxITo6moiICLRarVHZ6YwZM2jWrBmtW7c27LtixQoGDRrE6tWr6dGjh1HW4cug0+kZ8NN5ErIK0P0aX8aNEBRVWjB64yUstbpSM9MAPDw8OHfuHLt372bRokUsXboU78ZN2XbnGsoHF3Do8hn6QiXO/eajjLpC2i/fsXvGLQZ2asmIESM4ffo0c+bM4f3332fbtm1ERUURFRVlMEFdt24d/v7+fP3111y8ePGFOjYKCPwRT3ehHDlyJHfv3mX79u24ubkZbZeYmMiaNWuYOnXqXxSpgMDfhxUnHpbozKnXaUkNXoRtq+FILGzRZCUhMnLjLvpSMa3UmPTDP2BaqVFR6Vv1ogeg6ds+w7Z2K8PfFjV/+46Ta/KxvryWi8cPkZGRQUBAgFEW/cGDB+nfv7/h76d/kzztnfe8brMCAv8kBE8kAQGBF0YkEtF7+jzcq9VEIpOjMDNHKpfjXKES2W3GMmHHTS4/ziAlR8XVmEw+2n6NmPR8w/4ZGRlEREQwc+ZMwxdvYmIiu3fvZunSpSxcuJBGjRoZjJ0HDujPh12Lso4UUjFiEZjJJVQrY8XXvWobxbbq5EM+2naNByl5z41fm5+NXZfPyLSqzBdffIFcLkelUvHo0SNCQkJQq9VYWlpy8uRJtFot9erVw9/fn3v37pGcnMzOnTs5c+YMx48fp3Llym/mJL8kuSoN2y/GsODgHYKuxXHs165r3377LQAVHM2R6HWkBH1NQcxNknfNRqfKQyoWoTkTSO6TSFatWsVnn33Grl27/pI52JvLn7tOrdXxc0iR4Lh69WqOHj1KzZo1qVChAgB9+/bl1KlTnDhxwpCJJKSM/zFZSjXSUrKF8u+epjDhPlEHV+Hn50dCQgJOTk5069aNDz/8kEmTJhEfH8/ChQvZu3cvfn5+/Pjjj8TGxhIUFMTUqVMZN24cc+bMeeXYzkelkZZXaBCQoCgzLefqQR5vnsbNiFscPXqUOXPm0Lx5c+bOnVu0jVptKC9LS0tj9+7dNGvWDG9vb9Iv7KUwNQZtXrrBM8OschNMK3hjV68d3bp1Q6PRcPDgQfR6PQ4ODlSoUIHDhw8TFRVluAEoX748cXFxyGQysrOzadmy5T8mU1HAmGKT9ujoaAYOHPjC+w0dOrTURhCvyrNeX5GRkZw+fbqEgATg4uIiCEgCAr8Sn1XS8qD4OywjbB3JW6cgU2Uhl4r5oX893mtZic61y+Bf1Qmb6r4oH13GrEozADTZKaRsn4YuPZa4zZ+jyUoyOq46LZYn22cxa8on3L17l86dOxuaxwDs3r2b+fPnC13XBP4zCI/QBAQEXgpTSyt6T59HdkoyGYnxWDk6kSu3oc3iE6ie8d5RFmpJziogKjUPGVC9enXEYjFubm6GH+GllcoUGzsHBQWhUCjo3cCdQzcTyS/U0Ki8PQ3L2RoJBVlKNd8cuVdi/GeRmFqQuH4ieq0a53JVqVKlCpGRkdSoUYMyZcqgVCpJS0vDwcEBd3d3Nm3aRJcuXRCLxURFRVG/fn1Di/s/W67zOrgYnc7QdRfQ6yBfrUUh0mI9+AcWDG/KgonD8ff3pzA/l6hveiGyLUNu+E7MPWqRsnMWrSetJFOdQMOGDRk6dCi+vr60adPmhcYtrWzu98oS/4hhzcoxK+h2iSeKYhHUKGOFq3WRqfmIESOIiorCysrquYLXxIkT8ff3f6U4/ks4W5kgEZcU24qfyNYta8O+D4p+XJfWfaywsLDEsmIfpB49etCjR49Xju1hSh46nXGKVHFmGoBqz1S++OILVCoVcXFxPHr0iLS0NBISEhg0aBBisZjbt29z8OBBnJ2d8es+CE1WClJrZ+M5JEehV2bToXVR95zU1FQaNmzI7du3uXbtGtOnTy81vilTprBixQqqVq2KTvf71xyBvyfPM2l/G+i0Wh5duUjs7ZsozM05cy/K4PU1bdo0bty4QUBAAHv27KF3796oVCpsbW0NXl1/5lorIPBvooy1KfeTc42WFX+HySUipgdUx8PenGYVJyCViOlUuzfQm5wCNQPT0kiu6I2ZlS2FCZGkHV5FOUcLOnQbTrX2A5m6cBmKpn2I2zQZEUUPp6bOmEmndkW/L57NJurZsyc9e/Z8SzMXEPjrEUQkAQGBV8LK0QkrRycAtp94iO45BrN64Ocb8XTzMi3VkPbZUpnSjJ1drU0Z7vt8v5tT91OQSkSoNL8fs9TSAft3JqCKv4PySQTmFpZYWFgwdOhQAgICGDNmDHq9ntGjRzNx4kQ++OAD6tWrR40aNahQoQJXr15Fp9MhFosN//5V5Kk0DFt3kTzVb8KLSi8BJIzedJVR7d8hODiYCxcu4O7uxu3Ie4RFpnD50iWWfR7KbB9Ttj5u+MrjP1s292fo5V2WkNtJnH2YZujGZyqTYCaXsOTdeobtnu22VRrFGVh/NRs2bGD9+vVotVrmzZvHjz/+WOLGr0WLFohEIqRSKVu3bsXJyemtxSeTiBnpW56VJx+VEO9MZRI+avPXZdqVsTZBIhHBcz7PJj3m8cHeR3w87WuaeTnj7e2Nh4cHQ4YMwdHRkY4dO7J+/XpcXV3xa9uBh7cjMClXF7GZDZknNqDNTceu/fukh6ygav8ZzBvZiYE9V7J7926+++47Tp06hU6nQyaTlXrNSk1NNXhe/B3EZIE/JqdAzf5rcdyKz8HNxoScKz8bmbTHx8fTq1cvoqKi2L9/P/v378fT0xMvLy+aNGlCWloaM2fOJCAgACjKYoqIiMDPz++lsu7yMjPYNnMSeZmZqAuU6EUitpy7StPyZQGYO3cuYWFhBAcHs2PHDho1asTUqVMZPXr06z8pAgL/cMa2rMi0/REon+niK5eK6VzblUFNy5W6X1z0Q9L2zuW7uZ8jLlMNdY4znb8ZgZONJQMGDGC4m5xz239gw7loVu6WMXbhOob5VqKcg/lbmJWAwD8D4dePgIDAnyZfpTHy3AHQazVFRoRJj/hu0jCSkpJK3ffZUpndu3cbjJ39/PwMZsq/h0ar51lTneLx1clRJO+YjjYvEyjq7pYeuoqsG6HEJSZTtmxZli5dSvv27fHw8ACKnijl5OQQEhLCunXrGDt2LI6OjvTs2RMfHx9atWrF/fv3X/5EvUZ+vplQQrjTqYpKB7U6PV+t38+OeBsUbtVISEyiehUvbh/ZSv+WNZGgZ926ddy8eZMTJ06wZcsW8vKKygA//vhjLl68yIMHD2jXrh0tW7Zk7ty5FKi1HI9M5uDNBFKyVRw/blw292wb+M2bN/Pjjz8CRUbYH3zwAWFhYXTu3Jl33nmH1q1bk56eDoBELGLVoAZ8378eHWq40KyiPZ+08+L4p3542Ju9rVP62oiLi+PEiRMcPXqUsLCwUstSAI4ePcqJEycYPHjwCwlkr5sP/SvTs74bCqkYc4UEC4UUU5mEqR2r4lfl7Qlaz9LCyxG55Pk/T/QUdfTr2GsAXjVqExsbS5cuXUhOTmb79u0MHz4cnU6HnZ0djd7/FsQiTDxrIxKL0WQl4tx/ARlh63BoPZxFQ1viamOOSCSisLAQPz8/1q1bR61atYAiE+2EhARSU1MN1yJHR0fu3bsHIGQi/QO4+SQLny+PMf/gXbZeiGFpyF3mr91Nlo2XYZuMjAx27NjBxx9/zO7du/Hx8eHMmTOcPXvWKDutXr0iUbtZs2acPHmSK1eucODAAXx8fGjevDkTJ0783Vh+XvY1WSnJqAuUXIyKZeHPx0nIzKLd0JFkpKYYbfvo0SPDeN7e3q/5rAgI/PPpUd+NnvXcMJGJDZm1ZnIJNcpYMadrzefuV6VKFb4K3MflQhdCbiWhUVgjlxc9tJRKpUgkEmZ9PJY5XWtSw82GE0smMHncCNLT00lISKBv375AUYfhp30BBQT+SwiZSAICAn+aJhXsWXM6irynngaJJFKc+87DXCHhh/71aVzFicaNGwNFndmKfUSeLZWpWLGioTPYi9K0oj2aZ8pfisd/GkWZIiNss8pNkEvEbJneBksTWYnjabVaGjduTEhIiNHy999/n/fff/+lYntTxKTlG7J2iinuuiaSyFC4VydVa0KGCsqO24TD7e1s2LABf39/XFxcCAwMJDg4mJYtW+Ll5cXZs2fp2rUrV65cYfHixbz77rusWbOGsmXL0vKdbmyYtAW5VZGwUKBS0XPBLha+602vHt3x9/cv0Qb+q6++ol+/frz33nvs2bOHXr16Fe1bUEBISAjbt29n1apVTJ48GQCxWETrqs60rmpccvRPIStfTdD1OGIzlDw5/zOFag3+/v5Ur16djz76qISBfPny5Uu0oy8sLKRHjx7k5eXh6OjIjh073kisz2ZJ3b2/gaFTv0EuEeNb2QEzuRRfX1+jdP2wsDBCQ0MN/kNvEplEzLphjRj4Uzhanb5EplQxVq1Gkhg0n8jr11GpVNSpU4esAi07L0XzKDWfZWHRpKpliGQmWDXqQULgBNRpT4hd0ge9SEz85s/otnc2H477gBo1avDkyRPEYjGPHj2iW7duAIwePZrOnTvj6+uLo6MjAPPnz2fUqFGIRCK6d+9u5IvxTyE8PJyJEycikUho0KCBUQZfWFgYYWFhhk6aUJRtOGvWLAIDA1m6dClbtmxBLBazePFimjZt+sbjfdp4+mXQaHUMWXeBnILf0toyrodiWrUlU/bcxPLXEuhnS61r167N9OnTycrK4uOPPzbKTgMM4k6tWrXQ6XQcO3YMExMTBgwYwM2bNw0i5NPkpKUSf+8O+l+bUjQsX5ak7FziMrPJzFfy+PFjvvvuO8P25cuX5/r163Ts2JGrV6/SpEmTlztpAgL/ckQiEXO712Jos3IcikikQK3Dt5IDTSrYPdcbUa/X878d1/nlVqLhN9Slx+ksD3vI3BaWpKamYmb228OrXbt2YWdnx5YtW5g7dy6LFy8mLy+PnJwczp49+8I2AAIC/zYEEUlAQOBP07SiPeUczLmXlGOUkSSTiHC3MaNFZcc3Or6zlQm9vN3ZcyXuuTecTyOTiGhT3alUASk9PZ2ePXsyZsyYNxHqa8PD3gwzucRISCruuvY0jl0moQJS6wxmSMt7BAcHEx8fT+/evQ2tyYuzrS5fvmx44l2cDZar0hARlYCtYwsUiuIueRKO3M/E7vB9AgICCA4OLuFtZWVlhVwuJzU1lVOnTjF9+nROnTpluPmqW7duCZHun8qxu0l8sPkqevQUqHXkX7hFYUoMp3/Zx8Zl89m/f38JkW3FihUl2tHHxMTg4OBAcHCwoXTqdaHT6dHo9KQkJRiypKBIHDCRSQh4qsvh34G6ZW04M7k1ey4/4esjkSUE0+IOPC6th5MrtkCGiox8Nc0XHkOr15OhlfPjzxeKOjWKinzMZI7l0eakIbMvi8KjFlYV63Fu2XjcbEx5/PgxiYmJDB06lJ07dxpE7o4dO9KxY0ejsatWrcqJEyfeynl4U3h6er6Q8FEagYGBXL58mYSEBMaNG8fevXvfaKzP8y96kZLiE/dSKNQYv3fU6XEUJj0i7/ohdMkPOHDgQImyRYlEglgsJjMzEz8/P2bMmGGUcfDLyfOEJsjYf/w8PgH9DaXXxVkMrVu3xs7OzlAet3nzZlxtrJHIZFyPjiU1Nx+/KhUIqFON+0mp3IpLIiEvn/Hjx7N9+3YAunXrRq9evWjfvj22travfP4EBP7tVHKyZHxryxfa9vCtRCMBCUCp1pGXncXgkZ9y58xhCgoKDOvs7Ip+93Tv3t3Qba1Hjx7s37+fY8eOMW3atNc3EQGBfxBCOZuAgMCfRiQSsWVUE1pVdUIhFRe1ZZeKaeHlyPYxTRCXYuD7uvmia03e86uIlYkUE5mYgtvH0RyYhWrfDPSJd0kNXgSAuVyCp705C7rXZvz48UDRTVFxWYqdnR3Hjx83pCv/XQmo7Yr4BbqQFZe46XR69h0+hr+/P/7+/nh4eBieejs6OqJUKgkMDDRkDFWpUoWtW7dSe8y3uAz+FrlrZaNjFqh1bLsYw4mTp/D39y+1DXy3bt346quvqFy5ssGQvPhm8Ont/smk5Kh4f/MVlGotBeqi95BWaorErQaD1oTTvKUfSqWyVAP54nb0s2fPZtGiRVSqVIlatWoxYMCA1+btlJqr4uPt16g6/ReqTj9E64+WEp2Sg7+/P+PHj0er1ZYoRXyaDz/8kG3btgFFr9mzpYhvEmtTGcN8y2NjWlLsLe7Ak3x0LQO6dyQmNo7zj9LIKyx6HWyb9SNr1wx02/+Hi6mEXnF7kKQ9QmxadKNhXaUx2SE/MOXDMfTt25d3332XvXv3olKp8PPzo2nTpowbN466devyyy+/vLE5RkREGEqhhg0b9sLiYbHIFRgYSJUqVfDz82PSpEm/u0/ig3scXrmM3QtmEn32BDpV0Y1SsfAxfPhw2rRpw8aNGw37zJgxg+bNm7N48WLDskqVKqFSqcjMzMTe3v4lZ/zHxKTlMyvoFp2/O83I9ReZPP9bBg8eDBSJnq1ataJXr14EBgayYsUKmjRpwmeffWY4J35+fkydOpUGDRqwef1aYvZ8RfzacSgfXQaKTNqd3/0Cx95zsHYtT+fOnUuNo169ejg6OqJQKJBKpfj4+KDX67n8OIM5q3fx2dBuxIud+exwHH1WnuPC5auGLIZny+P69+/PL8eOo1WruR6bQN2yroZxbsYlUtPdmS8/KPI9Ks62UigUHDhwgMOHD9OhQwegSFAzNTV97edcQOC/wroz0aU+lEgJXoR1y2HkiIx9j7KzswE4c+aM4TdLz5492b59O/Hx8YZOsQIC/zWETCQBAYEXJiIigtGjRyORSKhUqRJr1641PMG1NpWxalADrt2+x7Rp01m/YQP2FkVPZ69du8ZHH30EwOPHj5kwYYLh7xehuJRh06ZNJTrTJCYmsmbNGqZOnUpNUSxmv8xCrtdTy9OTnbcuotfr+fnsDT6PPk6HBu60rupMm2pOSCVig4gSGBjIwIED/1EmuWZyKYHDGjJ03UV0ej35hVqkYlGJsr6nS9xcm/rg7FxULjZnzhzef/99tm3bRt++fQkICGDhwoUsW7YMgHnz5jF8+HDORCai1otw7P45Irmp0TElMjk+AW1xdnY2eFulpKSwefNmALp27cp7773H/v37DfHIZDI6dOhAQUEBu3fvfhun6o2y81Isz973K9yqkXP9MIVaHXtCTlPJ0byEyKZWq5FKpYhEIqysrDA1NUWlUjFx4kTEYjE+Pj5s2bIFU1NTKlWqxIwZM5g+fbrRez8nJ4du3bqhVquxsrJi69atWFr+9jQ2u0BNl+9Ok5yjMrwvkpOTSExLYemqtdzZv+K5WVIAEyZMoGnTpvTt25ewsLDnliK+adpUd2ZLeIzRe7u4A4+NmYyzU9sQeicZt+6fkavSgF5PV+7h0bIuMr2G5cfP4VCQSDm5mgSxjFwRNPJyQ6ryZeHChQwdOpTt27czYsQIEhMT+e6770hLS2PGjBmo1WrGjRtnuIl/3VSpUoWzZ88CMGzYMC5dukTDhi9neP/pp58ycuTI393m1Nb1XDkYhFZdiF6vJ/bWTS4G7aJGr0GkpqaSm5uLRCIhNDSU+fPnU1hYSEJCAhcuXODUqVNs2bKFI0eOAODv70/VqlXRaDSGjnyvi7MPUhmx/hIarQ61Ts+NGA0ZPx/EvG4nwzbJycmEhoai1+vx9fXlzJkzXLp0ifDwcMM2vXr1YsaMGTi5uOI6/AfyCtSkH/kB0wq/eQsppGImLt9BuXLlDJ+rp0utZ8+ebdj2zJkzAGy7EIPG9z1snsp4zS/UcvX+E3ouW8jFYz9TUFBQojyubNmyZOflYVuvGgXHz2FjVnQt1ev1RKdm0KtRfRp2+f3OTmq1mlGjRvH555+/4tkVEBBIzlGVWFb8UCLl2Fre7bKTH5YsMqxr3bo1pqammJiYGDKRrKysMDExEUrZBP7TCCKSgIDAC/MiNzw2ZnJszGQGAQmKSpeKvY+6du1q6HDzIvxRK2YXFxemTp1Kck4BYz6eQoNRX/L42BYuXTlh5EljL8ojcuMMDj58iFwux9zcnEePHrF3716uXbuGv78/I0eOfK4f0759+2jRooUhtfnvQINydoR/7s/PNxKISs2jQKNl+4UY8tW/mf0Wl7iZKyTM7FuPcuWcDTdMy5cvN2z3rN9TpUqVOHToEO2+PcG9JOMWusXHVEjFzP3EjzI2pqW2gbexsSE/P99oWd26dd+Kr87r5nmeLA+Sc1FpdBQmPSTj+Dr0ei1WjXoglsp5FDgJk/JlmLxqGUeOHDGIbAsXLsTV1RWNRoNYLKZRo0YEBgby+PFjRowYgUajoVy5cmzZsgWRSMSwYcNITU0tEYdMJmPTpk24urqyevVqAgMDDdl1UHTDm55faCS+iBXmiN1r8NUvkSxs0ZIb166WmiV17949TExMWLJkiWHfv6oU8T2/iuy7GkeOSmMk2JnIxEztWA2pRExilhK1tuh971YQT1nlE8TaQlaevEBCZjZLQk7ToLw7OQkpeLo5U10ZwYrQUAICAqhQoQK9e/cmKiqKzp07c+fOHUQikaFbXmZm5mubi16v5/SDVNadiSY+U0ltd2tGNq+Al7MlCoWCI0eOkJSUVGpXMJFIxJgxY6hatarh6TjAkiVL2LBhAzNnzsTf37/EmHF3b3PlYBCawt9unrTqQnJyCxkzahQnL1/lxMmTRibO586d4/Hjx9SuXduw7MiRI2RnZ7N27Vru379PcnIyo0eP5uDBg6/l3Gi0OkNWXzF5t45hUrUFu6/EIf/V16hOnTpIJBISExPx8PBAIpFQt25do2PVrFkTmUxGzerVwNGJwqwCdAXG1zGxSETfRh6Gv599SFKacLss+BKJJ/Zh7fMuaUeWk3/3NDYtBpF//zxOLQdiY+9IYlxsqV39unTpwra9e0jKyWPyrkPM69GehJx83O1saNanP561jOfwNAcPHiQpKQmdTkf58s/vVCogIPD71Haz5nFaHk8/byt+KCGXivnls1Y4WZoYvN4uXbpU6nFkMhl9+vR5GyELCPwtEUQkAQGB55KdmsyFfTt5ePkCIrGYar4t8e7UHTMraxQKBVqttoT3A5Rsl+zu7g5AXl4eiYmJVKpU6XfHzUiMJys5CRsnFzbv3vO7rZg1Gg3vffQp0dUGEJ+r41xsPtlparITUvhoRTDxIWuMsi2OHDnC3r17Wb16NU5OTpiamlK3bl1CQ0ORSp9/Sdy3bx81a9b8W4lIAOYKKX0aFrWH1un0nL6fSlRqnpFwIBWLcLI0eaWOW0N9yvFF8J0SXlNiEVR1saSMzb+ztEKv11Oo1SGXiCksLHyukFnZ2QKFVEzK2e049pyGWGYCgNmvwt283nXx8nIxEtmio6Pp0KGD0c0pQIHUkndnryVXpaFxBXv0ehCJMHzWYmNjOXHiBJmZmURFRVG+fHlcXYvKYopLkqKjo/Hy8sLHx4cbsRkUmjni0Om3jlHFWVJikYhDJ87jbmPC1atXcXJywt3dneTkZAC8vLzo168fn376KYsWFT2V/atKEV2tTdk/zpfp+yI4/ygNkajIB23yO1UNXk6VnS2RSkSoNFA19x5SfZFAN8avyIw4+PodHiSlYSKTcf/ubRwHD6Rdu3YsXbqUnj17cvHiRUJCQti8eTPLly/H19fXMP7r9Kf6Ivg2Wy/EGj5P95Nz2bJzD9Ir26lfqzojRoxgz549pKamGnUFmz59Oj169GDfvn3Y2dnh6ekJFJWMDh48mLS0NNq1a8elS5cMpaPFXDvyMxp1odEyrU7HlvBrdK5XE01mGuXLl+f48eMAXL16FSjyTbp586bRMrFYjJmZGXK5HGtra0NXx9fB2YdpaJ7pdlfsX5Rz7RD6pPscOHDAkDHq4OBAbGwsOp2OGzduGO1XLOKIRCI2jmxC31XnSBIVXbdMZEXn58eB3jhbmRj2efYhSbFw+zTpelOsfd4FwNqnLwpXL1RP7hRlMRxdR+tWe/nm64Wlzq937958/PHHXL16lcH9+9G0V3/W7trL/+aOplHXXr97bjZv3oxMJuPEiRMsW7aMH3744Xe3FxAQKJ2xfhU5fDvRUH5ejEIqpk11Z5wsTZ6z52+MHj0aJycnw/evgMB/EUFEEhAQKJX0+CdsmfoxapUK3a/dZC4H72fL+vWceJxI1WrVsLe3JyMjg9DQULZu3cru3bvp2rVriWXF3YsOHTr0u2UhuRnpHFi8gOToh4ilMtSFKnZcvcvRs+cM2zx77E4BnQmPSsfMLQtkRYKGSG6GSG7Kjyce8lGtxty7dQ2xvSdjN1+lmqMHkfcfGo4XFBRk8HcJCgoiMjISExMTxGIxw4YNo2PHjqxfv55ffvmFO3fu0KtXLz799NPXfr5fB2KxiO1jmjJ+6xUuRWcgl4op1Oio52HDd/3qG1rgvgx9GpTl8K0kLkanG3wETGRiTGQSlvSt91LHerpU5O+KRqvjh+MPWHsmmpwCNZYmUiqnnmX0wEHMmT0LKLrBjI2NxcPDAweXMmiyK6LXFJKybwEiiQz79h8gMbcleu3HHEhrzWenTvH+hP/x/ZpNxD5+RMsBEzgXepTmzZvTo0cPOnfuTJsuvUnO12Fari6mNVoz95dlVGzRnScHllC5UiXs7e2JjIxk48aNfPLJJ0ZlZ7m5uaxatYpDhw6RmZmJjY0NYWFhtJ65gwt7VhnNT+5cAbFUTtT6T3Gs6slHy74hKCgIpVKJXC43MoweMWIECxYsYOHChTRu3PgvLUUs72DOppGNURZqUWm0WJvKjLI9mlawx85MjrJQiVSvLmH4GFCnGgBSuZzAq5F07tyZ8PBwbG1tsbCwoHXr1oasmzfF9dhMIwEJQKvTIy3fCLMqTXFODSYmJoabN2+W2hUsMzMTD4+izBkvr6L29DY2NkCRr5mXlxdJSUmUKWNskp6TmsKzNZc3niQQm5HFgSs3OT1wMEt/WI5KpcLf3x9PT088PDxwdXXF29ub5s2bU6dOHQAsLCxo164dTZs2RavVGsT910FGfiHPynW2fsMM/8/b9bnhdYMi4XTIkCH4+PjQtGlTQ+e0ZynvYM6Zz1pTd5cF77WrgrOVCe/UdMFcISUyMYdVJx9yPTYTZysThjUrj381J4Nw++xDCxttFhEHVuLQ+ROkFkUPFORlvLB/ZzwmMjHHZrTDRCYxZDE0a96CbFsvhgdeJD8nixqNWlC2XAUU5hY07dmXDFMrFi9ezPKVqwgPD0epVDJhwgSuXbuGTqdj8+bNeHh4GOaWm5v7xt+nAgL/Zqq5WrH03bp8vPM6IkTo9Hq0Oj0+Fe1Z1KvOCx1j1apVf7yRgMC/HEFEEhAQKJXQNctRKZVGNx9ajRovOyt69OxJ0I1IgoODS3g/QMl2ycXs3bv3ueavOq2WbTMnkZ2Sgl6nhcJCLjyKpZq9Fdtmfga/3l48e+xLjzPQ6fWITSzQFRaVTincqqE7t51CjY7vdoWQnKUk6+5tcm8lcCTlETk5Jmz8+SQajYbevXuzfPlytFote/bsYebMmZQrV46OHTty9uxZPv30Uzw9PenQoQPTpk37wyyqvxo7czmbRzYhPlNJbHo+7nZmuP2JbCGpRMzaoQ0JuZ3Ejksx5BRoaF3ViX6NPLAxk7/GyP8evL/5CifvpxieUmbmFnDk6DFsGxSVYIaHh6NQKAgNDWXhwoUolUo+9nVi4pY4yo9eTubD6+SH78S90wcgK2TG9OlciU6ls39zyo1bh0n5+xwL+YUyQ36kbbMKhK6cwsOUfFSVWuNUvTV6vR6RSISisg9RV0/iUMmbhg292L9/PzKZjLZt22Jubm74XKXmFNAmoDeK+u8ydPMt/MroyczKonnz5liVr4NIrSRx4ycglWFarh7mNf/P3nkGRHG1bfjaxgLSpaioKIodGyqIqAj23jufJWqMiUZNoibWGEs0iSXGlkRj773EhoDYFTuCiggqvfey9ftBWFlBo8b+zvULZmfOnDM7M3Du8zz344UiMZLKg+fTSBFISEgI27Zto1mzZshkMg4cOMCECRN0aXvffvut7tq8DwKgkYEEIwNJse1icYG5/4A/LhCb40ilnEcYaJXFG9DCyePHSczMwsjICLFYzKFDh4rtVjRtsaRUzVdh2+XH5D9VKUyrUiKSyhABKUoJpUqVemZVMHNzc6KiorC0tCQsLAwoMH01MzMjNzeXsLAwbGyKV8Is61Sd2Pv30KiflLlvUNGeBhXtkRoYMHj+EkqXr6gTPopSUurpd99990Z8eZztzVGrS476kkvFjFup718EMGLECEaPHs3FixdZu3YtoP99FX6PUomY4KsX9do8djuOL7ddQ6nSotZquZ+YTaDvUfLOb6J5o7olLpIMatKIaQeLi/FyqZgeDex1UU4AuQo1/Vaf535iFumxkSQfWUYZ76G0XxKISv0kxa1r166sWrWKNm3aADB//nyMjY3x9fVl9erVzJ07F4VCgZeXFzExMW+8Gp6AwMdOuzpluVLdltNhSWTmKWlQ0ZLK1qX+/UABAQEdgogkICBQDEVeLtGhIcVWr1VqNVLgztlTmNlXw8jIqETvh5K2KZVKQkNDdSvaT/Pg6mVy0tMLBKR/SMjMIuZxDBcePCImM6fEUswp2Qq0WhDLDNGqFGgUuWjVSiTG5sRsnoLEyAyLlkMQh18hcc8c1DkZWLX5jNFjPqdW1apUq1Ywji5duhAXF6fzmxg8eDCzZ8/WmUR/aJSzMHptqWYSsYj2dcrQvk6Z19Le+8qtqHROhyXphbkXeLK05Mz9ZAwVKiIiInSRAPXr1+f8+fO0qluZrq2b06NHAx4lVGHb3JNc/M4b7+N2WNvYMu33m0gtyqBCitTUCq0il3yRjK2XY+jWtBV+99PJjg0nI/wKJrVaYVSlEcbVPYj2X4PFgDlIDON16TpqtZrs7GycnZ15lJxDk54j0cgrYmzqRPzjNEKj1BhaO3D42Ak8PZqhzc7GrEEHjOu01glUFrWaY31jA9GmErp3X0B+fj737t1DLpfTrVs3vL29P8hohwpWxgR+04rTd2twddFVNFlpUOR9IjUwoFJ9F0xtbOnef8BbNyhOzsrnKd97ciOukHF5H2IR2NarTdu2bTl//jxpaWl6VcEApk+fTteuXalWrZouImnx4sUcPXoUjUbDlClTSozGqd+uM9dP/K0nIgGIJVLsHKtSunzFYse8CxxtTGhUyYpLkSkoVPqpJlKJiMFuDsWOWbZsGfv27UOhULB+/foXPleeUs3EHdeLpbRIKjfGurob0oe7S1wk+b+u5VhtZYRKJtZ5cBlIxdQtb86MzrX1++YXxt34TPJVGmSlK1Bm8EIAolNzyU1+kgZ44cIF/P39dVUQFy5cyMmTJ1EqldSsWRBBZ2BgwJkzZ7hy5QozZszQK1YgICDw8hjKJLSpZfeuuyEg8MEiiEgCAgLFUCkUlFQ9/k5cIoH3IkAkolUXcz755JNiRsPPws/PT7eiXhIx9+6gzMvV21aYggKw/vo9vVSGQqrYPFk9Mm/aj/jt0xBJDbDtNR0Dc1u02oIYpjIDfwQKSrkm7J5N2daf8MOEAm8LHx8fsrKyaNWqFVDg3fTnn3/St29f1q9fz5AhQ5DJZKjV+lEEAh8XJ0Pji0WKFHqyZF0/Aon3uXv3LnFxcQA6YcfJyYnU5CT6NypPUFAQEXVrYCiTIBKJuPAg+Z82i4ifqoIImTyVmn3+fohqemPlPRKtWkncpkkYVWlE8tGliI3Nid4+i0fdu2NjZkR2djZly5YlJSWF7t27M27NSeLP7EBuX4OMO+coVbMFNOiIzLEx9Zo0o0oZS+rIDVGRxL1DP2NU05OaTVowbuaXDG1dnwXHjgEFnktyeYERfufOnQkODv4gRSQoiEhqWbMcjX9eyrFVv/Lw1jXEEglajRZnr7a09BmORCojMDDwrffNzbE0p8OS9NLZjJ3cMHZyw0gm4bfPmiIWi0usCgbg6urK1atX9dqcOXMmM2fOfO55zW3t6P7NdA4umo9Wq0Gr0aLVarFxqEy3b6a/ptG9Hlb5uDB2y1XOhSdjIBWj0WgxNZSx2selRK+SCRMmMGHChBJaej6n7iXy9J+4wqiwPIWayAwtXiUskohEIupXsGTmFx4cCY7jbP5NqtoYM+fTpnr7Amy5+Ij8p8QwAKWmYPFDodKQnBzP1KlT2bt3LyKRiOTkZAICAjh9+rTOo0ur1aJSqZDJZLpKjgICAgICAu8SQUQSEBAohpGpGcYWlgVeGkWoY1+GOvZlKF+zDv1mFYgyJZVGLmlbu3btaNeu3TPPaWhiglgqRaNSFftMIpWx9ucfSyzFfPfuXSxMSyEViwr8ZCrV1x0nQoTmKZeNwlKucb5rmXBtG+bLF9OnTx/q1q1LaGgoAFOnTmXKlCl4e3vToUMH2rdvT7t27RgzZgx9+vRh9OjRL3glBT4kShJOCz1ZxCLQHpzBzJkzGTZsGN7e3pQrV44aNWogk8kYOXIknp6eiMViXRlggKSs/GI+L+qcdGLXfYlIIqNSbRcsyCFi8yS0ynxK1W5FfmwYYpkh5T/9k+wr+/Bwb8DEsWNYvXo1AB4eHkycPI1Gc0/g8M0+vbY1+TmYNhuIjamcMqHrGDlyJC1btiQ/P59mHh4E7JzJ5MmT+eGHH5g3bx4HDx4kMzMTU1NToEC0KFrh7UPF2NyCHpNnkJeVRW5mOiZWpZHJ/90w9U3Sy6U8S0+GkadU690TBhIxtcuZUbuc+Rs7t4NzfT77YxORN66Rm5GObeUq2FZyfGPne1VM5FL+GtaExyk5hMZmUNrEgAYVLBE/x8/t6apqa9euRSQSERkZiaurKzVr1sTAwIDjx4/rjsnIVT4zKkyTl0W6oYy2v3z3zEUSJztTdvz5K8FHt3BLq0WuSC/mD5WRVzydUqtWkbBzJoqEB3Ro3x6vVi15/PgxXbt2BQoWW5726MrPz6d9+/aIRCJEIpFgqi3w2nnes/I0MTExDB48mLy8PGbPnk3r1q0JCQlh5MiRAHh5efHDDz+8ra4LCAi8I0Svs+rI26RRo0baZ5VdFBAQ+O/cORfIsZVL9cpCQ0FKSO+pc7CvUeu1ni8jKYG140ejfqqKEIBEJuOTpX9gWtpab7tSqcTb25svJnzDxihL7idkIfqnAo9ULKaTcxl2X4sulrIAYGwgYe3Qxrg5ln6t4xD4cAmOTqfPqvPFKtEBGMkk7BzdlDr25qhUKqRSKQsWLKBixYoMGDDgmW2GxWfS5bczJd6DBhIxI5pXpnElq2KlzQFkEhEtnGxYM7RxsWOjUnNosyiw2DG54ZdJO70JicyALwZ0xsXFhd9++42cnBwGDx5M8+bNWbp0KRs3bmTRokWYmppib2/P9OnTkcvleHh4sHDhwhe9ZAIvSVh8JqM2XiE+Iw+JWIRCpcG1shXLBjbE3KhkY2iB56NUKnVpfMOGDWPMmDE0btyYyMhIpk6dWmJK8v2ETDr/eoa8EiKFNNHBOIsecXjDfxNrvH8JIDyx5Op1VqUMCJra+rnimIDAm0alUJCXnUV8cjIzZ31frGJoSYwbN47+/ftTt25dOnfuTEBAAOPGjaN37960aNGCNm3asHPnTp3pv4CAwIeLSCS6otVqG5X0mRCJJCAgUCI13FugUuRzauNa1CoVaDUYmpjSZuQXr11AAjCztqVZv8Gc27kZVb6CgiQ0EVIDAzz6+xQTkABksidpKX0p8LQJjcvAxkSOh5M1mXkq9l2PKXacRCyijJkhrpWtXvs4BD5c6tib06KaDafuJeiJPoYyMR5O1tSxL4gU+eSTT4iIiMDMzIxdu3Y9t00nO1Pqlrfg2qNUlE+ZBkslInyaOlDW3IhRLRxZdSocjVaLUq2llIGEClbGLOpbv8R2y5gZIpOIyH0q2MGoSmOMqjTGzdGKhaMKjJL79eunt8/GjRsBmDhxom5bx44dnzsOgdeDk50pfl+15HZMBomZ+VS1NaGClfG77tYHhVarJehhKjsuPyY9V0mLatb0aFCeUnIpcrmcqOQsRrl6YGZizLXLF7CxseG7774jKyuLnTt3MnnyZM6cOYNxkpSkhDTSb55EalEGkdQAy1bDidv1A1obK9q2DXtuRMa/MaFNNb7ZebOY0GskkzDGs4ogIAm8MxR5uQSs/4PQMwEApOTkcszvAh4eHvTq1QsDAwMcHByoVq0abm5uJCcnM3PmTDp37szNmzdZunQpIpEIU1NTMjMzqV27Nunp6bqU/8L0aAEBgY8XIRJJQEDguWg0alKiHiOSSLAqV76Y78PrJurOba4c2ktKTDRW5exp1LnnfxKtrjxMZcT6yyjUGtQaLWKRiHLmhmwc4UpZc8FbQkAflVrDyoBw1pyNID1HibmxjOHNKjHGsypSydOF41+M9BwlIzcEcTM6DYlIBKKCKKTVPo1oUkTIfJySw9+3YsnKU+HqWJpmVUs/93lbfSqcJb5hJUxSxawb1gRXIcpO4CNDq9UyaddNDt2KLUgL1BZElSrCL0HQVnKNbJE38yFm5w9UGLaE6namZOyfi7GRnD59+rB8+XICAgKoVasWx3z96TRwJEkZOTgO/oG409uxMDXBJvUWrZo3K7Ey3cuyIuA+S33DkEpEoAWVRouPmwNTO9V8439LBQRKQqvRsGXaVyQ+ikStLFiFUKnViGQyHJ3r89fZK0yaNImjR49SvXp1tm7dyqJFi/j222/ZvXs3Xl5enD59GigoQDJv3jzy8/Pp3LkzarWagQMHMnv27Hc5RAEBgdeEEIkkICDwyojFEqwrVnpr5ytfozbla9T+9x1fEBcHSy5Nbc3psETiM/JxsjXBxcFS+AdeoESkEjFjvZ0Y6+2EUq1B9orCUVHMjWXsGN2Ue/GZhMZmYFXKgKaOpYuJUhWsjPm0ZZUXbndUC0ey8lX8EfgAmUSMloJUzrk9nAUBSeCj5O9bcRy6FUuu4olwmqNQI6rggqxSY7KOrSD3zkUk1pVRigwITVKgMalOa3sN27dvRyqVIpPJUCgU2FlbYpyXwDcjPsGqsSPhpi1QRF5nx5lbPI4Ip3Tp0uTk5NCwYUM6dOjAgQMHuHv3LjY2Nvz999+kp6djaGjIzp070Wq19OnTB4VCgYWFBe3bt2fo0KGM8azKIFcHzoQlodZqca9SGmsTIUpD4N3x8OY1kqMf6wQkAKlEAhoN0aG3adnUjaioKG7dukV6ejoTJ07k9OnTaDQaZDIZEolEd1xGRgYWFhaMHDmSTZs24eLiQq9evYiMjKRSpUrvYHQCAgJvi//+37GAgIDAe45MIsarhh0DmlSkUSUrQUB6j1m0aBEeHh4vdUxMTAyGhobcv3//tfbldQhIRalmZ0q3+vY0d7J55aimoohEIr5qW53L01qzcrALa4Y04sr0NnSpV+419FZA4P1jzZkHegISFFRV0wIKtQYMjBFJDRCJRGjyc1BrtEirNOXg4aMkJyfTuHFjqlSpglarpVWrVmgNzViy4ySrAx+w7cgZdj+U0u7zOQwaNAhfX1+6dOnC7t27AdizZw+9e/cGwNzcnGPHjuHu7s6ePXvYt28f7u7uHD16FEtLS73+mRvJ6FS3LF3rlRMEJIF3zoNrQSjz8vS25SkLCppo1Cr8fU9QtWpVxGIxaWlpeHp68tdff+Hs7AxA3bp1OX/+PNnZ2WRkZGBmZoZWq8XKygqxWIy5uTmZmZlvfVwCAgJvFyESSUBAQEDgnaHVaknLUWJkIEGkUXHjxo2XbmPJkiW4ubm9gd59GJgayvBwKu4ZJiDwPrJhwwbWr1+PWq1m7ty5rFy5spih7+bNm1m+fDlWVlZs2bIFMzMzABIy84u1V1hVDUBmWQ7Dum3JjwohP+o2aac3IZLIMMjNo3379vTt25fVq1dz8eJFmri6UqpmC9SKdMI3fItIIsOm+7ecfnCPmpp0unfuTHBwMOHh4eTm5hIdHU3lypU5deoUDRo0AKB+/fpcvnwZqVSqq6ZWv379N3fxBAT+I2KppKAUaRE7k4ikFI4G30UmkdK8RQtcXV1p0KABaWlpyOVypFIp7u7uAEyaNIn/+7//Izc3l++//x6AyZMn4+Pjg0QioWbNmjrBSUBA4ONFEJEEBAQEPhIWLVrEnj179MpSBwQEEBAQwKxZs5553NWrV3FxcUGpVCKVvr0/C9svP2bRibukZBdU5LN+FMCEPv35deFcIiMjGTZsGGZmZsTHx7N161bMzc3p2bMnIpEIZ2dnfv31VxITE8nMzBRC598Qzyv9XPTe6tatG6dOnWLXrl20bt36HfZY4H0mOjqaU6dOcfLkSaDg/noapVLJqlWrCAwMZPfu3axevZpvvvkGgFrlzIhOzaWom6exkxvGTvoisnWXr4ECo3mZREQn57I0rWVHecfSqFQFURcV3TqTojFEcfcMBtYOyGwrk3jwJ2x7fEe0QR1mzRrG5MmTMTIy4ttvv8Xf35+UlBQCAwN59OgRY8aM4caNG1SpUgWxWMytW7fo2LEjN2/epHHj4hUVBQTeB6q7NefmiSMo858IsjXL2lKzrC0SmYyhv6wE0AlEAGfPntX9XL58efz8/PTadHFx4dy5c2+45wICAu8TgogkICAg8BGQn5//SlE8AMuXL6dhw4avuUfP54/T4Sw6/sQUWqtWcSvoPAuqtUGmKZgixsXFceLECa5cucKCBQvo3bs3np6ezJo1i8KiEEuWLOGLL77gp59+eqv9/1+iTZs2/1r6edWqVaxevfot9UjgQyIkJoN916PJzleRE+yLUqXC29ubWrVqMX78eKKjo+nWrZtOLM7JycHZ2RmpVErr1q0ZNWoUAF9++SVXLgYRH5OOVeevkJrZ6s5hIBGh0mjRlFArRqnWcjwkHt/QBJRqDY1E4dzYu4oklTnSMk5o83Ox7jYZkVhCzF/jiPlrHCKNCmfHygwbNgw/Pz+WLVtG06ZNOX/+POHh4ZiYmNC2bVudJxJAnz59aNeuHSYmJshksrdybQUEXpYyVatRqX4jIq4HoSoiJEnlcpxbtcXCrsw77J2AgMCHgiAiCQgICHxgqDVatl1+xF9nI0nKyqeanSn2MacYMmQIM2bMAGD48OE8evQIBwcHKlSoAEC9evWoV68eN27cYP369dSvX5/bt29ToUIFwsPD31r/85RqFp/QryqWfdsP45otycpXocwo8GsonEjWr1+f+/fv07JlSwIDAxk4cCAdOnSgS5cuPH78mNq1X58RuwDcicsg8F4iYpGIGiZ5+Pv707x5c3r27MmECRNKvLfKli2r10ZWVhZdunTh4MGDbNq0iby8PMaPH/8ORiPwrtBqtUzfF8yuq1EoVBo0Wsi9dBNSowg9c4QFs6ezf//+YmKxj4+PLn3N3Nyc1NRUAObPn4+xsTEzV2zlty37KeM9FI0GtGhpXMmKZlWsWXoyjDyVmqcLD+cU8VG6KqvKxBUHmDZ5IkqJDHlFZ0TiArNgk9qeSC3KoHh0i9+Wz8LS0hKVSsUPP/yAq6srfn5+pKSk4OPjw4gRI/TOsWfPHqRSKZ999hmOjo5v8MoKCLw6IpGIzuMnce3oIa4c3kdOWhqm1jY06d6HOp5CFKmAgMCLIYhIAgICAh8QWq2W0RuvcOZ+kk6EuXg/gdTDf1O/XX8ALl26hEQiwdfXl3nz5qFQFKSLxcXFcfHiRa5cuaITkRYvXsyPP/5IQEDAWxvDzah0xE+ZmytTolHEPyDz+hFUcfc4ePAgwcHBqNVqXcqIWq3WlQ6uX78+1apVIywsjPbt23Pr1i2ioqLw9fV9a+N43cTExNC5c2dCQkLIysoqMbUwMjKSadOmFYsMeh3pZEq1hi+2XOPUvQTUGi0iRGjVSgb9vIe5vRvSvXt3XFxcSry3nsbExITvvvuOkSNHkpKSwpEjR16pTwIfLoduxrL7WjR5So1um0pqhLhMLb7acZ3+Xl4EBQUVE4stLCzIyMgAnlR/Ali4cCEnT55EqVTSoVp1+vasS3a+ChcHS6rZmQLQuLIVf5x+QHhCFjFpuWSXYMKdC6wIuE+9ymW5mSpBUeRdZFzdg/TA9ZhosnBrVBCdWaFCBfz8/Pj222/59ddfMTExKXG8nTp1Iisri6pVq9K0adPXdRnfCk+nrf7+++8lvmcKeZE0aYH3F7FYgkvHbrh07PauuyIgIPCBIohIAgICAh8QZ+8nczY8qVgUj2GNFsz7OxQrjZYHDx7ojF9dXFw4f/48AFWrVsXQ0BB7e3vS0tIICwvD3Nwca+u3a8pcUmEyS89hup/Td3yrq4rUvXt3EhMT2bx5M5cuXeK7775DqVTSunVrXF1ddWMbOnQo06ZNe1tDeCNYWVlx8uRJevTo8dLHvo50ssUn7nHqXkKRSb8WkHAwJJV6VwoErqioqBLvrZJo3bo1n3/+Od9//z1isVAM9n+N3wOLV1KT29ck88YxzoYnU/HxVeRSUTGxuFq1arptvr6+uLm5kZycTEBAAKdPn+bEiRNs3ryZriVUIXRxsMTFwQWAKt/9XezzQhPuBKCWpwt13TpyMSpE97mpdRnSMhPo17eLbpu7uzsJCQmIRCJMTExo3bp1sSgkgGPHjr3qpXovKJq2WpJXlYCAgICAQCGCiCQgICDwAbH7apReagY8ieLJuXmU6IT73L17l5iYGACuXbum209UZMVdq9Vy69YtLl++TPv27bl58yajR4/mzz//fOa5X9RkedKkSZw9exaxWMzatWtxcnJi7NixLFu2DIC65S0Qi0o+h6FMzLT1+4ACA8+iK+FVqlTRMw0vyrp1657Z7/eZm1Fp3IxKx8JYhncNOywtDfU+HzduHNevX8fMzIzNmzcDFPOQqVy5crF0spdFpdaw4fxDvagRAE1+DrkYs/JUOJVunWXs2LGsXbsW0L+3SmLVqlX4+Pjwxx9/0LNnT+Ty55c3v3jxIhMmTEAikdCoUSMWL178Qn0vem8JvD/EpucW22Zg54hYakD0psmcr12Z3xb/xPHjx/XEYplMxsiRI2nevDmWlpZs2bIFU1NTTExM8PLy0lVB+zdMDaWk5Sj1thWacBtIxKz9vi1ikYgj3T3YdeUxCqWG9nXK0GvqDUwNn3gaDRs2jGHDCkTuwmfwY+BBYha/Bz7gYkQKspwkrhz3xcOjOb169aRHjx7ExMTQu3dvIiIi2L9/P+XLly8xlXXGjBn4+/vToEEDMjIyPth3sYCAgIDAiyOISAICAh8VzxM6Chk/fjzXr18H4MaNGzrPjQ+B7HxVsW2FUTxGMgnag9OZOXMmQ4cOxdvbGwcHBypWrFhiWz179qRnz54AeHp6smrVqn89/7+ZLKekpBAUFMTZs2c5e/YsK1asYPHixXqTfJlEzPdda/Pt3lt6ooVMIsLW1JD+TSqSFBv1r315HwkODmbUqFFIJBKqVq3KjBkzmD59Ops2bcLT0xOtVotIJGLipO/4K6IUd+Iy0aJFIhKhBRb3q69r6/Lly2RnZxMYGMimTZtYtWoV/fr1K+Yh8yLf27+RmadCodIU215YJj1OKsN9YBdcXV1ZuXJlsXtr3LhxHDp0iAMHDjB69Gg6dOjAgQMHOHz4MLVr12b27NnMnTv3uX1wcHDAz88PQ0NDBg0axK1bt16oVPSHLCA9ncKYlJTEmjVrmDp1qt5+hZF2VatWfUc9fXkqW5ciKat4uqOl1yfIpWJ2ftcac2NZiam0Pj4++Pj46G07dOjQS51/YJOKrDkTQf5T97VMIqJdHTvk0gIfpK71ypUY1fQxc+FBMsP+uoxCrUatAa1KivWwVThUseHEvrl4e3uTmpqKr68vW7duZffu3TRt2rRYKmtsbCyXLl3i9OnTbNmypcS/twICAgICHx+CiCQgIPBRER8fj1Kp5MKFC2RlZZXoIbNkyRKgIJLil19+eUc9fTW8a9py5n5SsWgkAI1Wy/GTAUDJkTmFUTyVKlUq9vmzPJH87ybw87G73I3LRJqTSMyRE7g386BP714lmiybmJhQunRp1Go1aWlplC5dGgAPDw+9KKIeDctT2kTOz8fvEhKTgZGBhJ4NyzOhtRMmcikmlSr9a0Ww9wmtVktWvorKVZx0pY6HDRtGUlKS3n4nT55EKpUy8I8LBMekoFTrOwB/ue0a5v+kKoaHh+uq5jVq1IhTp04BxQ3HXwcmhlIkYhE8dVsZVWmMUZXG2JrKWTi1wGuppHvr119/5ddff9XbVuiDVFSsfBqtVsvVR6k8TsmlgpURdv9EK0mlUk6fPs327duZM2eO7pxWVlYsWrQIKIhcys3NLXZvfUg8ncJYpkyZYgKSRlNc3PsQGONZlTGbr+ql3gLIpWLa1rbD3PjNVjAb6+XE6bAkwhOzdO9LYwMJ1iZyvu9a542e+31Go9Hy5bZret+LSCojH7gWlUmL+s05dOgQtWrVQiwWY29vz/3790tMk3748KEuMszFxUUQkQQEBAT+RxBEJAEBgQ+e7LRUrh//m5h7oaQqVMikUuRyOUuWLKF3795cv36dZs2aIZfL2bNnj86ode/evbrJ7ddff02rVq1wcXHBx8eHo0ePIpFI3uGoSqZrPXsW+4aRr1RTVH8wlInxqm6LQ+lSr+1cO4IeM3P/bd1kQyk1x3b4SmTW5hw7/kuJJssGBgZUrVqV6tWro1KpnuuZ06KaDS2q2by2/r4rdgU95pcT90jMzEckAu8adnzfrTZyuRy1+slETSwW07p1a0wtrbnj2Jd8jYjko8uw6TaZuE3fYNakJxq7ykSF3gXA0dFRNykLCgqiSpUqAMU8ZF4HMomYXi7l2RH0uFhEkqFMzHCPyq/lPEWJTMpm6F+XSMjMR0SBA5OtqZzJTYxJSkqiVq1aurTMQrp27UrXrl1ZtWoVbdq0ee19els8TskhPVdJZetSWFpa6rYXFb3d3Nxo0KABRkZGQEHE1ZUrV2jTpg0zZ858V11/YVrVsOXzVlX41e8+IkCl0WIgEVO7nBk/9nyxlLT/gpGBhD1j3DkaHMeeq1GoNFo61y1L13r2GBm8f+/2t8XN6HSy8vQjWjX5OYjlxuQo1BzxD2DHr7MJCXniFaXVaqlcuTL+/v7Ak1RWBwcHbt26pbdNQEBAQODjRxCRBAQEPmii74aya+501GoVWpUKtUbDV95N2XL9Ln5+fpQvX57ExERq1KjBgwcPyMzMxMLCgvbt23PixAk8PDxo2LAhrq6uDBo0CKlUSmZmZokC0tixY7l16xaOjo788ccf70RkMjKQsP/zZny14waXIlOQSUSoNVr6ulRgWudar+08+So1sw+GFFutVgHxWQpc67iXaLIcGhpKcHAw9+7d4+rVq0ydOlXnofMx8ufpB/xy/J7eddq3fz/rv+5Na7d6ukgsgF27dmFlZcV3C1dyfu82TFp+giY/G61KidjIlLyo26QFbkSdlUG7du2YN28eRkZGNG/eHFNTU7Zs2UJaWhq2trZ6HjJQPJ1s1KhRLz2WqR1rcjsmnbtxmeQo1IhEYCiV0KxqaUa8ZhFJodLQd/V5ErPy9cqxR0TH03fIPELOHuXB/TDd9sI0QIALFy7g7+/Ptm3bXmuf3gZh8Zl8ue064YlZyCRiVBoNA5tULFaSHiApKYmpU6dSvnx5hg4diqenJ0uXLsXV1fWDEJEAvvByok+jChwNjiNHocbV0YoGFSz0/NneJDKJmC71ytHlfyxd7Xlk5ikRP2VKV5i2KpLIKFO9PnZ2dsWOKymVtWzZsri4uNC8eXPq1av3QuffsGED69evR61WM3fuXFauXFks6nTmzJkcP36c3377DRcXF3bv3s348eN5/Pjxqw9cQEBAQOC1IYhIAgICHyw5+Qo2zZmJVJGn2yYRi0GjJis1mWZ9+hAdHY1MJmPHjh1s3bqVPXv24OHhwZ07d7CwsGDVqlXMnz+f1atXc+/ePTZv3syECROKnevy5csoFAoCAgL45ZdfOHToEN26vZvyuHZmhmwa4UpyVj4p2QrsLY0wNni9r/OrD9OKbStcrc5TajgZEMiY3m2KmSxrtVosLCwQi8VYW1uTnp7+Wvv1PpGrULPoxL1i6TqGVV0xr9GUjNtb9HxcrKysAOjRowe/rv4DE0BqUYbsu2cwcmxEfsxd5BXr0GnQr2z7quDecnV11WvbwsKixNTDktLJXhYjAwm7R7tzNjyJEyHxSMViOtUtQ8OKlq990n8iJJ5shUpPPNFq1CQc/Jky3sO5mSzC3tyc2NhYAG7dukXdunWJj49n6tSp7N27960JEa+LxMx8eq08R2aeCi3ovHq2XHpEbnJ2sf1tbW0pX7687vc6dQpSsAojkz4U7MwMGeJe6V13Q+AfapczLxZtWJi2KpOIGOzmQKUi6cSenp54enoCJaeyzpkzByiIops1a9Zzzx0dHc2pU6c4efKk7piS8PPz04ti3bVrl87IW0BAQEDg3SPU3BUQEPhgmbpiHxqlfvWdPGVBmL5Wo8H378M4Ojoik8lIjHwAWenEPHrIihUrSEtLIycnhwEDBnDmzBliY2NZs2YNSUlJGBsb68rFr1u3jnXr1vHgwQOd90P9+vWfm6b1tihtIsfJzvS1C0hQ4K/0NPlRt4ld9yVxG79GbmaNq6sr+fn5eHt7c+/ePQBq1aqFqakpzZs3Z8CAAUyePPm19+194frjNCRPCRlaVcH9mK/SEJWlP+HPyMgAIC3yFma25RFRUPI849Ie5OVrIZLI0KREM657s7c2hqcRi0U0d7Jhdrc6zOhSCxcHqzci1tyKTiM7X198y7lzBkVsGLEn1jB2cDeys7OJiYmhY8eOJCYmAvD777/z+PFjunbtqpvYfihsOB9JvkrD009WnlJDYmY+SVn5etvFYv1/0d6kaBYZGYmdnR2enp60bdtW77PCqosvwtixY99A7wReJ1alDOjZ0B4jWfFIWplEzCcvGHX49D0TFRXF6dOnS9w3LD6TM2FJbN97ELVajbe3N23atKFHjx78/ffftG/fHjc3NyIiIvjtt9+4efMmnp6eZGVlcfjwYdq0aVPseRAQEBAQeHcIkUgCAgIfJDFpudyLiMH2qe0RSSkcDb5LUmYONavKkAOPHj6kUo2aaLXQ1KkSyXlKjI2MKFeuHPXr18fU1BRnZ2eys7MxMzNj3rx5DB8+nC5dunD37l2kUimLFy9m9+7dfP755/j5+X1QFd1ehfoVLFBpSl6tlkvFfOntBJS8Mr1ixYpi2z60qJEXQSyimCCQG3GFjMv7ALCxd6Bt27Y602cvLy+MjIwwNDRk+8rfGLv/IWKHOqSeWIWhTSU09tWwLqXGvYr12x3IO8DW1BC5VKxXOatUrZaUqtUSuVTM5PY1aNasss6cuyjTp0/X+/1DMdU+dS+xWKUwrVpFws6ZKBIi6Ni+PSuX/vyOevfvlRdfhA+5Ut7/ErO71UEsErHrShQGUjFqjRarUgYsG9CA8pbG/3q8Uq1Bq9Xq3TORkZE0bdpUb7+IpGw+3RjE45RcpBIRcacuYJYbS5DvIWpXq8LEiRNZvnw51atXZ+DAgbpqk9u2bdNFXK5fv55Nmza9kbTop6sjSqUvNi1aunQpW7ZsQSwWs2jRomLjFhAQEPjYEWR9AQGBD5Lg6HQyjG0RPTWNr2ZnjbFMhlgkIjY9g33LF2FubMicHu0Y5tGIhLQMGpW3o2lVBx4+fMjRo0cJDw/nyy+/xMzMDIVCgZmZGTKZjF9//ZVvv/2WTp06cfz4cerUqUOrVq3IyMgo0TPiY6KUXMpYL6diq9USEZgZyRjk6vDCbU2YMAFvb+/X3cXXRnBwMO7u7jRv3pxhw4YRERHB4MGDgYJUjpYtW+Lp6Ymfn5/ecfUrWhRry9jJjTIDf6TSkIXMXPgrjo6OuklWUFAQp0+f5sSJEzSvX53Aya2YPqAlI/84xUC3ivj+Ppvgs/8b1Y261n++R82/ff4hUkpefIIqkkix6z+XmpN2sXzzPiwsLHTRa0XFsXXr1lG1alXg2ZUUXwWNRktUag7JWfn4+/vTvHlzFi9eDMDw4cNp3bo1Gzdu1O1fv359hg4dirOzM3v37qVTp064uLgQFRUFFFRhFHj/uRsagv9Pn2LlPxeH4PXsGt2U05Na0aCi5XOP23UpAjOHWsiNStF8+g72HzlO02YeunsGQKlUMnDgQI6e8KNhq07cfRRPwuXDhG+ZhUZmzOPwuwxd6UeVKlXIz8+nUaNGXLp0qcRqk35+fri7u2NgYKDb9nQEVGRkpO59/bIUVkd0c3N7qePWrVvH+fPn2bVrFwsXLnylcwsICAh8yAgikoCAwAeJhbEBKXIrEg2sURV5lUnEYj71dGNWrw5M7g58CKEAAQAASURBVNcdO2Mj1BoNy/3OEZOajq2ZCbsv3+DopWsolUpq1qxJ2bJlmT59OoMGDcLMzIzt27cTGxtL5cqVuXXrFmKxGIlEwowZM/D396d06dJ06tTpHY7+7TDGswrTO9fCxlSOTCJCJhHhVdOOA180e6ny3IsXL37hdJh3QfXq1Tl37pwuFSMpKUnv85MnTxIQEICXl5fe9rA7oSj3TiVhy2SSDi9BmRZH0sGfkUlExG75lnXfDS1RfCrEzFDG0GaVWeXjwpzuztSxN38zA3xFXjTFqVu3bpiZmWFpaVnivkVZtGgRHh4eWJvImdfDmYTNk1A8vknamc1IxJCweRLzezhjbSIHCjy2OnXqRIsWLfQq3b2PPC1Gap9KCR3QpCLGz6gKFvHXV9S3N2HkyJH06tXrbXSXXVeicJ13ktaLTtFv411qf/kXSzfuxdfXl8DAQF3lxaIVAGNjY1m1ahWrV6/mhx9+4ODBg3z11Vfs2LHjrfRZ4PVQ+M47f/YMNqZysqPv/Wu06OrAcKYduIN51+8wrt4MjaEptsNWIe08i2PHT5CRkYFSqWTo0KGMGjWKhFKOGJStTl70HRRxYYjEUgzKOqFR5nI3Tcu9++EolUouXbpEcnJyidUmg4ODOXDgAO3bt+f27du6NPM2bdoQEBCgq175ojxKzmHslqvUmH6EatOO8NnWm8TlPXkmAwICiqWyHzhwQOcLVSjwVq1alfz8fNLS0vSKJwgICAj8ryCkswkICHyQuDhYYiSTcNiuA53i/8ZGkYwWEVqtFhlqpGIxj2/fwsRAwuQOnkjFYv46G0SrGlXIVSjp37QhC06cpUWLFly6dImOHTsCUL58eRo2bKjzYrG0tOT69evs27cPT09PJBIJ3t7exQyPP0ZEIhEDXSsyoEkF0nKUGBlIMCzBR+NDJDNPyeGbsTxOyaGSdSk61S2LsYEUuVyuJ1aIxWJat25NmTJlWLFiBfn5+UyYMIFt27ZRpUoV7K3NWLH9MEOGDkWbl4FULKJf4woEnDYnwO/kC6dHvK/8W4qTRqPm1yWLWbRkKbdv38bX1/eZ++bn53Pjxg3d771cyjO/nBk1a5bhWkY4PZo4cOSkGT1dnphJx8bGYmpqyuHDh1/PgN4ghRNzgGHDhhEUFETjxo11n3esU4Ztlx5x7VGazoxdJAK5VExl61IYGcoJDAx8K33dGfSYGftvPzGFF0m4l6Jk8Nog+rVsU2LlRSiYPBsaGlKuXDlq1qyJWCymXLlyhIaGvpV+C7w6ao2W4Oh0VBoNtcuZU7gMIJfLqVChArNnz8bPzw+xWMzatWupVKkS48aN4/r165QyMeV+7WEoJUZIShVEK4kkMtRSOUk5KqrUcefQoUMEBgbSrl07PD09+XRjEOIy1ckND0KrUmBgWxllSjSSUlY82vQd9jZlOXz4MGq1mvT0dMaNG6erNlnIuHHjGDduHADu7s3oO/prohNjdVFzPXv2pEePHsTExNC7d28iIiLYv38/mzdvpk6dOnTq1Il9+/YRHh6OqY0947+diVZqiFmTHhhVaUzA3UQuPEjBJF/1zOvWtWtXunbtyqpVq2jTpg0A3t7e1KhRA5VKVWLKrYCAgMDHzof9362AgMD/LBKxiBWDXBjy1yUOVOiFWW4SNvlJNMi8SWlFis7gWCqR6F50tcrakZ6TRzlLM8QSKbO+nkhsTr7un8CpU6fSpEkTxGKxbtv48eOZPHkyTk5OrzWN5ENCJBJhWcrg33f8QDgXnsTI9UFogRyFGmMDCV//sgbZ1e3UrV1Tb2V5165dWFlZsWXLFmbP/oEmA8bjd+sRjWcexDonkjqNPfCuaUfnBg4MHdqU3367wpzuznj9KtETn8zNzenYsSNr164lODiYI0eOsGTJknd2DZ6FQqUh6GEKSrUWK61Sb7I2YcIEhg8fzqNHj6hQ3h51ShLLhvRFo1Jx8+Ydrj2O1e0bFRXFtm3b6NFnAIcP7mfylCnERT8mKCiIqKgo5s2bx/3797kbEkxa8lyysrLo9cMX+P8jUo4bNw5394KJqb+/PyNGjODPP/98x1enOFqtltsxGSRk5uFka0oFq4KpeaEY6eXlhZWVlW5yu354E7y79eP2vQeITW1wqFiRdb/9xKADeQwYMIB79+6xatUqPfHpdaPWaPnxyB29qoJPKi+qWbdtNybKNJKSkrh8+TLVqlXT7VcYrRIfH8/Jkydxd3enV69eaLVaHj16RHBwMC1atOCLL76gb9++b2wM/0bRMvKbN2/G3t7+mftGRkYybdo0Nm3ahIeHxwfjsfUyHAuO5du9weSr1Ij+WWzxNHrIqc3LqFatGomJiURHRxMQEEBoaCjz589nxIgRZGdnExgYyHc/reDqsSMYNeqpa1PzT1XUXKUav1On+WzZbEJCQqhYsSLLli3Dyt4TwzJVSDn5O4b2tZCXr0nKyT+wbDkU65pN+LFnXbrUK0dAQACXLl2ib9++uLq6UrNmTYyNjUlLS8PPz4+u3boz/8gdgu4+pKlHC7QaLfX6z2TVhD4M6NiSP//8k9zcXHx9fdm6dSu7d+9m4MCBTJ06lU6dOrFz504WLFiAd/9RlO46GYm5nS5KUPtP/xOTCqojFo3G0mq1ut8vXLiAv78/27ZtIyMjg7Vr1xIWFkZCQgKjRo3i77//fkvfpICAgMD7gSAiCQgIfLA0qWzF8fEtWHMmgsuRppSVlsPm7Gm02ifmtXlKFYayglddZFIKzZwqcTkiCq1WS2KefmW348eP60LZAdasWYNIJOL//u//3s6ABN446blKRqwPIkfxZAKdo1AjcmiMcfWm2CUe5NChQ7rPrKysAOjarTtfz13KMdN2aByaEHH1FHce3uBahZoccKpBQ+dazxSf5syZw6JFi1i0aBGfffYZGRkZ72VkzcEb0Xy3NxitFkRAXn4+Y5YfZFInZ7p3746LiwsSiYTjx47Rz6s5makpqGoW+PRINGr6NKpDzz69WXbwGDdvBVOqjhcH0soSn57HrH23EN09wQ/ffsW6v9bi7e1NREQExsbG+Pj48PDhQ9avXw/Al19+SdOmTenfv7/Oq+R9FJDuJ2QycsMV4jPykIhFKFQayqYFk+C/jhrVq1O6dGlSU1P1Jrdubm7UKl+awEMFE9vc3Fzq2Jvz+PFjzp49S3p6Op9++qnePfi6eZySo3f/Q0HlxbTTmxBJZJg51Cbi6mmGDh3KsWPHSE5OpmHDhnr7r1y5knr16rF79248PDzo3LkzCxYswMHBAX9/fzp06EDPnj3fSSTe02Xk/9e5+CCZL7dfJ0+pb+rup3Vg+prDnN/0MyEhIQQEBOgqHpYtW5bw8HDd9169Tj0UWw9iVOR4RVwYKUeWIpLIqFiroc4ncPbs2YwZM4aKIiMM5eURSWTIy9fEoGw1lMlRyO1roNHA36vnsvhOKA4ODqxYsYL4+PhiRt179uzhisiJPVejEBuZY9N/PgBxQP8/L5Gfr2DQwALxVSwWY29vz/3796lQoQIpKSkkJyeTlpZG+fLlUTh3J+3cdrQaNeZN+yKzeiIsZivUZOWrMDc3JzY2FoBbt25Rt25d4uPjmTp1Knv37kUkEiEWizE2NsbAwABzc3Oys7PfwLcmICAg8H4jiEgCAgIfNBWsjJnVtTYAUXdus/eyAQrVE3GosFqbVCymsrUVlWxKcyEiim2hkdSUmVOxYkUWLVrEpk2bcHR01CvJPmbMGJo0aaIzV542bRotWrTg1q1bXL9+XWd0K/DhsO9aFE9Z1aBVKRFJZag1WhLzRNQrcg9kZGRgZmbGr1sOkmtkjYFSjXH1ZiQd/AmtRo2hczvMGneibFLJ4lOPHj10Fexq165Nbm4u7dq1o1SpUm98rC/D+fBkvtl186mJpoRNVxKwtnxE586ddSlOD65exlomJl39ZF+xWIxYo+Hu2VPUr18f/6AQsrKUmFtXQaPRkvX4NqbOnfhttx/Rd++yd+9eGjRoQEhICG5ubqSmppKWlsa9e/cwNDR8L6O0ipKRp6T3qvOk5yj1rP2jzWvj/Pnv2Idu49ChQ9SqVUtvcvvbb79x7tw54uLiCA0NpVKlSnh4eFC1alVMTEwwMTEhPT39hfqwaNEi9uzZ88KRMz/++CM+Pj4YlLJC89RDUFh5EcDCqOBZWLduHaNHj2bWrFn89ttvNGvWDLlcTlpaGpGRkfj7+yMSiahQoQKTJ0+mb9++nDt3DolEgp2dHffv36dGjRov1Lf/glarZd/1aJb53edxSg7qUD/sctLw8vKmdu1ajB8/npEjR2JtbU1YWBjTp09n1apV5OTkcOzYsRLbXLhwIWKxmK+//vqN9x+efJebNm3SRUW9Ln45ca+YgKRVKckFFp24R1tTU+Li4mjbtq2uup5SqeTatWs6zyFV3H2kFmX02jCs6IxpvXYYySR817EGlSpV0vW7sEJn9r5gdot+0omWlb/Zi1wqZmFvZ7rUa8/jlBy2XnrExN0h2JDBST8/XTRjYmIix4+fIOv0TUp3m4ImL5O4zZORWpSldLsxJN06R+KDcPbv30+FChWejO2fe7tr166MHj2aLl26ACAxtaV0h3HkRYWScXkfpdt9XqQ64gO6de7Iwh/n61LZCxcFfv/9dx4/fkzXrl2BAt+ktm3b0rRpU9RqNTNmzHht35WAgIDAh4IgIgkICHw0mFnbolYq9LbVLGtLzbK2AMiMjKju5sHfC37FumIloMCnZdSoURgbG7Nr1y69Y/Pz8/V+12q17Nu3j8mTJ7+5QQi8UR4kZuul8QDkRlwh4/I+AExr16Bt2wm6ibmXlxdGRkbcT8mnlOfnAIjlxoikBsjLVQdAo4VMtUxPgCwUn86ePasziz1y5Ag1a9bE19dXN6l9X1jsW3yiqcnPIRdjlvvfp07YGb4cN67AK0Wdw6MEffNx1T+Ckkgs4sQJfzRaLarMZBTx4WiVeaizU0m9epwMqRSpQsnGjRvp3LkzIpGIa9euAQXPV7Vq1RgwYADffPMNP//87srd/xt7rkSRr9ToCUhalRIlMkJjM7EWyTEyMtJLj1EqlaSkpJCTk0OZMmWoXbu2Lorh/v37ZGdnk56ejpmZ2b+e/2l/qRdhypQpup8rWBlzPyGrxP2y8pXU+L8fIGgbzrVq8PjxYx48eMDZs2d1E3S1Wq0bm7m5OampqVSvXp1Tp07h6enJhQsXSE1Nfan+vSoLj95l3blI3XOdnpxIUnIyPSYuxOjOLvbv36+LCNu2bRvr16/n+PHjzJs3j2PHjhWLsvrpp58A3pqA9Crf5ctwMyqt2LbCd16CCKq3bMScOXOYP38+np6eiEQiBgwYwKhRo1i/fj3NmzfH1NSU776ay+8X4nm0cy750SGoUmOwdOtFxSZe9CriY1aU2d1q06qGDWvPRBKbnkutcmZ82qIKdezN2Xs1im/33kKt0aJUF3gZmvmsYPZQV37+egTz58/ncvA9YhuMJCtfhd2ghUiMTEk6tIjo30ciNbVBZmLFjh07Sizc0KdPHyZOnMjKlSsBMLq1h7Db19AqcrH0+gR4Uh3Ryc6EExNaApTocTR9+nS937/77ju+++67l/kaBAQEBD4qBBFJQEDgo8HM2gb76rWICr2NRq1vlCmVy+k2cSoOdeuTmafkZGg8YpGI68e2MWTIEGbMmEFkZCTDhw9/5op1qVKldCH7RZk2bRqBgYHUq1ePzMxMXeSJwPtHZetSGMkkekKSsZMbxk5ulDKQMKl7HRwdy+tW1IOCggDoueIsVx+lPWlILEVsaErclilIRCLKN3KmbduxxcQnQ0ND1q1bR2ZmJgsXLuTw4cPcvn2br776Spe+9T5wO7p49EthilOCzAD3Hu1wdXVl5cqVfPfbagwUeVgYF4hm+67e5vrjGM7cj8DMKBiHuk0p1aATaYHryX90C61GRakazRFJDci+dph8pZJZX3/NjRs3CA4Oplq1anrCySeffML8+fNZsGAB/fr1e2vX4GU4/yD5mWKkWAR29Wrz+WcjWbfnKL1WniP1fghpF84xb9a3DBk8GHd3d2JjYxkxYgQAFSpUwN3dneTkZJYtW0arVq0wMzMjPj6eLVu2cC/HiFWnHvA4JYeKVsaUiw3Uvbeg4B3k7++PXC5nz549jB8/HnNzc65cuUKbNm2YOXMmQ4cOZdq0aVStWpUfezrjs+YSeSp1scg8lQYo74JpVVes4w/w4MED3N3dgSeeMRLJE4P9jIwMLCws+Pbbb/n0009Zvnw5NWrUKPFd+bqJz8hj7dkI8lVFouLkpRCXr8PlyBRG1mxETkyYLiKsXLly1KlTB4By5coVE7oyMjLYunUrFy5ceGN9zlOqOR2WREauknoVLDi2c73edwkFguOQIUP49NNPuXnzJmKxmGHDhtGxY0cOHjzIkCFDSElJISYmBh8fn2IiR1GMZJJiAnHhO08mEbFqehvEYjFTp05l6tSpevstX75c7/fK5aL4xeR7otJyMZCI6d7Aninta2BsUPJ0QiQS4VXDDq8a+vdCbHouU/bc0vvelEhAJOGLrTcY1b4Dhw4dQiIWwT9SrcTIFABztz6IpDJKtx9Lzt7pehFQhVXUCmnXrp1OrN++5jd6rTxX7Lk1lImZ0bnWM6+fgICAgEBxBBFJQEDgo6LTl5PYPnMymSnJKPNyEUuliEQimnTvQ0Xneiw7GcbygPtIxWK0ahWP9+xi6R9ddMc/b8W6Z8+exc4XGxvL1atXCQwMZPv27f9TlVqeZV4bEBCgVwIeCvwtZs2a9c4Fth4NyrPw2N0SPxOLRXSoU7bEz1pWs+V2TAb5Kg3JR5chMTbHtG4bTOu2QS4Vs2FyK2xNDYuJT0Xx9/cHoHHjxu+VgARgIpeS/ZRPTmGKk4FEzIKprYGCstcPrl3m0JIFKPMKjHW7N6xN94YFKaUSmYywluNIDs/BrGEnAOK2TMHEueB4u/qtWNS3Pm1r66fGPM23336r+/l1pva8LqxN5IhFBVFohejESLmEER1qMHLPfTJdRxP3MBWt2J7UVBXLQg1xrFKFLVu20KNHDxwdHQEYPHgwWq2WSZMmERkZSVxcHCdOnODKlSv0//xbshoP06UEJWXkcPLwERw8egBw7dq1YpFCUDChXrp0Ka6ursycOVOv/40qWbFnjDvjVhzg9Nq5IBYjtSiHebP+pAVuwKbrJMLXTMShlScREREEBwfzxRdf0KVLF1062/79+2ndurUu6u7Ro0ckJCQgEomIjo7WjetNfn8nQxMQP1WZXm5fk8wbx8hRqNl/8hxta9nqRYQ9bZ5cFDMzM6ZPn86wYcPYuHEjYrH4Nfc3ni+3XQdAo9WiVirJ891LyJlPdfsolUqGDh3KqFGjaNmyJS1atKBjx46cO3eOb775BlNTU/bs2UNGRgY9evRg1KhRzz1nL5fybDgXiUKtP1axCBpXssLUUPaMI4vTvUF5ujcoj1KtQSoW6V3Ll2HXlSie0i515u5aYPcRP36Y/CU3b94kTiJGq84DLYikMvKiQ5BalMXYQIKJqbzE9u/cucOIESOYN2+eblutcmZsG+XGjP3B3I7JQCSCSqVLMaNLLZo72bzSOAQEBAT+V3m9fx0FBAQE3jHGZuYM+WU5ncdPokn3PjTrO5hhi1bRtGd/tl1+zIqAcPKUGrLyVcRfPY5hjRYsPHqX1JyCNLhnrViHhYVhZ2eHp6enzicC4OHDh5iZmTFr1izs7e05evQonp6e1KxZk/HjxwPg5+dH06ZNadWqFVFRUW/9mrwJiprXBgQEPLf60fuEubGMP/6vEcYGEoz+qQRmbCDBRC5l3bAmGBlISjxusFtFDGUSREDp9mOxal0wcTOUielarxy2poZvawhvhAFNKiKXFv+XQCyCRpUsMTd+MtGsVK8hNg6OSGT6Ffukcjn12nSid/PaGD/jOmq0fBQTtv6NKyKXljxGrRZ8QxJIzsrXRT1k3/bDsEYL7idkcSvkLn379iUhIYEePXrool8K3xcAzs7OSKVSTO2rcvvOPT0j7MK21pwpiMC5d++eXqRQ4cS+8P1VNM2yKDXLmtG3dRMchi2izKCFAGhyM1BnpRC3ZQp5CZE8eBzNpEmTcHBwoFmzZiQlJXHw4EEWLFjA2LFjad26tS6tJzw8HLm8II2vbt26JCcn/4cr/GKoNBo9IQ/AwM4RsdSAuC1TiL4fTO/evV+qzXbt2tGpUyddafnXRVh8Jl9suUpWvoqsfBU5CjXJN3xRVWrK+O3XdfsFBgYik8l0ETUikYjBgwcTFBREp04FwqxWq2XkyJHMmzfvXyO+xno5UdbCCMMiz7eBRIypoYx5PZxfaSwyifiVBSSA6NRcFCr96Kj8qNvErvuSB2snIDcrjYeHB6mpqZifXYZMlUPcpq+J2zyZ3PuXsGnShXoVLChdSk5kZKTub3Pbtm0BqFGjBmfOnEGj0egtZtSrYMH+Lzy4NqMNQdPacGJiy4/ifSQgICDwthEikQQEBD46xGIJjg0a49jgSZlsrVbLEt97eqHsypRoFPEPyLx+BFXcPQ4ePPjcFevCyjFDhw7VbXdwcODhw4fUqFGD2NhY2rdvz7p16/jyyy/p3LkzAD/88APHjx8nJCSE+fPnF0sR+FCITc9l4/mHBD1MJeXqUQzTc/D29qZWrVosWbKEkSNH8ujRIxwcHHRGpzNmzMDf358GDRoAcPbsWQ4cOMCCBQtISUlh+PDh7Nu3762Oo1lVay58583BGzFEJuVQ1bYUneuWo5T82X8SS5vI2f2ZO19uu8b9hCxkEjFKtYZ+jSow7SNIhRjV0pHjIfFEJD3xjJJLxRgbSFjQq67evmKxhD7T5nB+91ZunPib/OxsTEvb4NqjL3Vbt0erhWZVSnPmfkHKV5mBPyICDGUS5nav80yh7kPCubw5g90qsunCI931kohFyCQi5navw6TdNyka+FH0XaPMV+Dj48PFixcxNDQsFv0CEBwcjFqtZu1+/2KGxoVtZV8/gjbxPvfu3ePu3bt88cUXwJPommdN8hUqDcdux3EiJJ6EjDwKdxNJpaDRIDW1xrrL18Rt/BqzUqVo2LAhP/74I3PnztW1UbZsWfr07UfNbp/xw/lIJp49RjU7a2at3kHLajaMHj0atfrJu/bQoUMsXLgQlUrFjBkzMDU1fS3vAY+qJfuKWXp9QikDCYv61adatTIlpjsVfY8Xfl6Yjjpw4EAGDhz40v15Hr8HPigWDaRMiSY79DRbrh5BlhzOwYMH8fb2pmLFiixbtoyxY8eSnZ3Nn3/+Sd++fVm/viD1be7cuXh5eeHq6vqv5zU3knF4XHO2XHzIritRKNVa2tW2Y7hH5XcmftcuZ1Ysrbgw8rGUXMKkfg2QSCQ64/PbMemsaFSDKw9TMTeW8X9NHejbqAKykQFERkbqVXV7EV4m+kpAQEBAoDiCiCQgIPA/QbZCTXKWvum2pecw3c9xmybRuXNnLl68CIBaqSTmXih/fDGcU9eD0Rgb43cjFBsbG/Lz8wkLC9Ot8Ofm5rJ27Vo6dOiATFbwz2lgYCC//PILOTk5GBkZYWpqiqurq5657ftGTEwMnTt3JiQkhKysLL3y3JciUhj61yUUublEbZ2KJj8HkQgGfzkd44x7/PLLL0gkEnx9fZk3bx4KhYLY2FguXbrE6dOn2bJlC8ePH8fd3V0XuXDgwAG6deumO8fzqk2tW7cOlUql85CBgrQ5X19f5syZ89JjNTOUMcjV4aWOqWprwuFxzXmckkNajpJK1sYfzWTE2EDKnjHu7L8ezY7LUeSr1LSrU4bBrg5YljIotr/UwIDmA4bQfMAQtFrtU+IrrPJpxO4rUaw9G0FKtoLa5cz5wqsqLg6Wb3NYb5SpnWrRspotf52NICY9F2d7c0Y0d8TcSIZELEJZRDAo+q6J3zyJLl266N41UBD9kpyczLhx4/j666+xtbWle/fu3Ah7hEnLsXrnLdqW6NAMpk+fztSpU3XV0/bs2fPMPqfnKGi3JJCEjDxd+mJO2EXSAtcjtbJH/I/vDIAmL4OlC+ZQ3sKAL774gvbt2wMFptpz586llNdn/H38Lrn/+O1cfZTGoOnL4fJWmtSvratupdFo+Pnnn/Hz80Oj0dChQwd8fX2f+R54GRxtTGhby44TofF6vj8GEhHlrYzxrmH7Su2+CW5EpaF+Kmyq8Ls0NZQiOjhDd1/Mnj2bMWPGsG3bNi5cuMCUKVPw9vamQ4cOtG/fnrlz5+Lq6srWrVsZOnSoniBWEiZyKaNaVGFUiypvangvRfcG9iw8WjytWCQq6Gur6vrRQbXLmbN8UIEBulKt4fjteL7acQOpWERjaxX+/v66qm4TJkxg+PDhegsa27dvJykpic8//5zr16+zZs0aFi9ejI+PD9HR0djb27Nx40a9v3kCAgICAs9GeFsKCAj8TyCXihGLnph0Pk2VT36hcuXKbNq0CbVKSfypo9STa8lITKCBvS0qtZr6Xm50GD2OKQsXMXnyZDZu3Mgff/zBnDlzUKlU1KxZkwcPHnDgwAHu3LlD69at0Wq1lC37xGcnOTmZWbNmMXr0aPr37w9AfHw87dq1Y8mSJYwZM4adO3cyf/58PcHkbWBlZcXJkyfp0aOH3naVWsOnG4PIUajJiw1HXr42UjMbch4EcSIkgUntGpP++K4u2sjFxYXz58/z8OFD6tatq9t2/PhxRCIRdevW5dq1axw4cIA///wTePMVil4nFayMqWD1rnvx+jGUSejXuCL9Gld8qeNKiniRiEX0bVyBvo0LItIiIyNxbVKDmjVrYmBgoJcS+iHj4WSNh5N+NIxKrUEuLW5mXEjbyavJz8/XidBPR79ERkZSvnyBufupe4mM2XSlmF8VFKRh/rmvIFKjaJQQoOc9FhAQoNv2+earRKXkoCwiZhg7uWLs5ErqiVXkhl9GJCpI06xYrgyutSsDkJaWptv/q6++wqV1Nw7mlCpmUiyt3BjDaq7YJB3i0KFDACQlJREaGkrr1gW+WAkJCQAlvgdehcX96rP4xD3Wn3+I8p8qgZ3rlmVm19pIJe+Pa4OdmSH34kuuiKfSaNl18DiVypnrImpWrFgBoPs7AXDixAmgYOHiaZ63CPC+YWooY/NIV4asvYRSrS3wWJKIMDeUsXmk2zO/t4w8Jb1XniMqNVeX4vm3WI37lI2sH+lBn149cHFxKbag0bVrV3r16sXnn3/O9u3bGTBgAHv37qVWrVps3bqVOXPmsHv37vfWyF9AQEDgfeP9/QsjICAg8BqRScR0qFOGw7diUT21GmwgEdHbpYLu97vnTpP06CEqxZPIJalEAho1AX+tpkOHDkRFRelEk5s3b3Lx4kUcHR115YZdXV0JCAggJydHz5Oj0Ki1TJkyusld0dS36dOn06RJE1Qq/epyb4q7cZmsPhXOjag0bE0NGdqsku6zuXPn0rBhQ0pVaURyyDky4x+RG3YRVWYihpUaoMlOI+XmSaadXEHlstY0adIEQFey3cHBgVu3bultA+jduzdr164lNzsbZXoqKlNT/vzzT12FogULFlCnTh06derEvn37CA8Pp3Tp0hw/fpydO3diaGjIzp0738r1EfhvqJRKtP+kNb1sysmHilQiZoxnFZb4hpVQCUrCuFaOjBzZ/4VKhDevak0FK2PCE7P0IpsMJGIcrUvRtErpF+5Xdr6KE6HxegKSVqVEJC2IppMbm1CprCXZSmN2fObOp/5PvJQKU+TWrFmDSCQio7w7OcFxeu0XtiURi0lTSXUimbW1Nc7Ozhw7dgyJRIJSqUQkEtG7d2/++usv1Go1VlavrspKJWK+aV+D8W2qkZajxNRQiqHs/UuZHOpeiSsPU/X8rQqxM5VTq6xZCUe9OM9aBHhfqVvegktTW3PqbiLRabk42pSiWRVrxE87pRdh9sEQIpOy9dIC8zQSbsXn8+fZh3Tu3Fnvb3PhgoaRkRG2trY8evSIixcvMm/ePBYsWEDDhgXRTY0aNeLKlStvdsACAgICHxHvzxKNgICAwBtmRpda2JkZYiR78uozkkmoYGXMV22r6bYF+59AmZ+nd2ye8omoc/LIEapUqaKLnMnOzkar1XL08GG02Zmc8vfn3r17NG/enNWrV5Obm4uPjw9NmjQhPz+/WL8CAwN1Ph1Fo5beNCdC4um2/Az7r8cQnpjN+QfJTNh+nfDELLRaLX369GH37t0kZ+eTcecsxtWbYdFiMKVqe2HdYRyIJeQ9DsbM3onGjRsTFRWFt7c39+7d043FxcWF5s2b66WoVbGzZvNff2GensiO76ewbHh/9m7ZRKtWrYCCiIzt27cDsHPnTt3qsLm5OceOHcPd3f25KTsC757k6MfsmjuNZf/Xm2XD+rJrzjR8jx+nefPmLF68mMjISLy8vOjbty8NGjRgz549tG3bFg8PD7KzswGYPXs2np6eeHl5ERkZydy5c3XVDw8cOMBPP/30Vse0YcMGvL298fT05OzZswwePPiZ+45q4cgQdwcyz22B6JuYyKUYG0j4vmstvGuXIzAwUJce9jRFS5aLxSK2j2pKqxq2yKViTORS5FIxrWvasmWU20uZG6fmKJA8tX9uxBXitkwhbssUFFmpbJs9mgYVLaldzrzENsaMGUNQUBB754wi7fTmEtuKXPc1yYkJOpNjsVjMxIkT8fb2plWrVjoD8ebNm7Nnzx6dgP5fkUnE2JjK30sBCcCrhi3d6pfD6B+DfiiI+DIzlLLKx+WVjKrzlGpux6QTmZSNoaEhlpZP0kULn7HevXvj4uJCVFTUvz53SqUSb29vWrRoQa9evfR8rd4EMomY1rXsGOJeieZONs8VkBQqDQdvxBTzldLk55Cn0rDhfCRnz57V+9tcdPFi4MCBfPXVVzRp0gSRSISjo6NOOAoKCqJKlfcj1U9AQEDgQ0CIRBIQEPifobSJnOMTWrDrShQHbsQgEYno2dCe7g3s9SYeSkVxoSciKYWjwXeRSWW0ad8BV1dXVq5cSatWrXj8+DF5WZmsGjWYxOxcRJlpzBvSl67jJuEzYiRdunRhwYIF1KpVSycWFRIUFETFihVp0aIFEomEqlWr0qJFizd9KchTqhm//VqxlJschZqUbAXnHyTTono1wsPDcbQwQJmRhMyiDOqMBN2+RpUbUKp8DcYN64dpZAAtWrQoNrF+2q8oOfoxe+bNZGonTwAUublcevAYh1LGXN6/C4AKFSqQkpJCcnIyaWlplC9fHkC3uly/fn0uX75MmTLPLxMv8G5Ii49jy9SvUOTmUpg+qk5LZqJ3U7p+OYmvfpiHt7c3qamp+Pr6sm3bNtavX8/x48eZN28ex44dw8nJiejoaAICAggNDWX+/Pl89dVXLFy4kA4dOrBnz55iZevfJEWrEULBBP15iEQipnSoSdoZRywdq+Lq0QA3x9KvJHCYG8v43acRqdkKYtPzKGdhiIVxcZ+qf8PGVM7TOoWxkxvGTm4A1CxriqOjYzGTaXiSElcogm+5+JA5h0P1omoK25JLxWz42pNyFka6tjp27EjHjh31zi0Wi9/7apWRkZG4urr+pzTMon5u83o4062+PVsvPSIlS0GzqqXp17hiib5jz0Or1bLc/z4rA8IRiQrS4cpZGLGob329/Qqfsa1bt7J79266dev23OeuR48eHDp0CCMjI6ZNm4afnx9t2rR56TG/CbLyVWhLyEbPj7pN2ulNxElleA3sovvb7O3tjYODAxUrFqTnent7M2TIEKZNmwZAjx49GDx4MC1atKBs2bJMnjz5bQ5HQEBA4INGEJEEBAT+pygllzLEvRJD3Cs9c58qjdxIehSpl85Ws6wtNcvaIpHJqD3+e47cimXhslXs3LCG1NvXWbtrD8dvhlLG3ISh7g05deYsB/27YFmlOjt27MDKygozMzNatGjBhQsX6Nq1KwqFgkePHuHl5cX+/fsBGDZsGJGRkbrqZm+KM2FJiCh51Vet0bLj8mNaVC+Dp6cnm1b8hGNdV/IkIvKe2leZEIFPUwe+338DHx+ffz3vxb07UCn1Dc4TMrO4/jiGc5+PJS4nn2XLltG1a1dGjx5Nly5ddPsVri7fuHFDWDV+jzm/a8s/kXxPZnyF6aCnN/5Jp06dOHToELVq1UIsFlOuXDldOfpy5cqRmppKaGgoAQEBehF61aoViJq5ublER0dTuXLlNzqOjMQErvy9n6jQYM7fiyBVodZVIxw/fjzR0dF069aN+Ph4tm7dSuXKlVm5ciXr16/HyMiIVatWYSiT4OJgibUygX69R7Jp0yZMTU3//eQlYFnK4KXFhqLIpRIGuzmw4XxkMfHYSCZhnJfTC7fVvYE9y/zuk69Soy7SlJFMTEfnspSzMHr2we+QlxGFYmJiGDBgABqNhmnTptG6dWs0Gg2TJk3i2rVrWFlZvXRarUgkws2xNG6OL56GWBLL/e+z3D9cL13yQWI2A/+4gFmRbYXPmL29Pffv39fbVtJzl52dzahRo4iOjiY+Ph4npxe/J9405kYyDGViFOqn7t1/qrpVti7Fwq89AX1PsKLUqVOHevXqASCTyXQRrwICAgICL4eQziYgICDwFPVat0cmN0Qk0n9FimQG3ChViwn7w/hm102azTvBb+t3YpKRjFarpaFDOW48jiVPqeLGoxjq2dtx8+pV7OzsaNGiBe7u7mzevJnQ0FBMKtZC0nEqYY9iCM4153ZMOgByuVxXzehZKQfXrl3TlZ8ePHgwQUFB9OvXj/T0dH7//XedJ0anTp2emY6QkadE89SyrlatIn7bVJQJEeyaO4aLFy/Sp08fFi9ezPrZ46hfwQIDiRgDiYhScglGMgmNLXIY2KMTOTk5NG3a9F+v7aPgG2g1+pOAzvVqMqqlK2PaNKda1SqMHTuWPn36cOTIET0/qeTkZNq2bcuZM2fo2bPnv55L4N3w4OrlYt9xYTpoTkY6p/z88Pb2fqqi25OftVot1atXp23btgQEBBAQEMCGDRuAghLtM2bMwMvL642OIfpOCOu+GsP144dJiAgn8v49Ht6+xYSu7TAyMmL//v3ExcWxe/duli5dyoIFC0hISGDnzp2cPXsWf39/3QT89u3bfPfdd2zcuPGVBaTXxTftquNdww65VIyhTIyRgQQDqZjPPKvQwfnFU2mNDaTs/7wZzZ1sMJCIMTaQYGwgYYh7JRb0qvsGR/DfadOmDQEBAc8VkDLylEz4bhYDPhmDTCajV69eLF68mJ9++onTp09z8uRJ5HI5QUFBrFu3joEDB9KpUye6du3KypUradGihV5hhJMnT+qisbQlhdO8BHlKNSsCwov5bQHkK9XEpD0x3X76uXp629OfHzt2jGrVqnHq1Cl69er1n/v6OpGIRQz3qKyXjl6IkUzCOO+qzzw2JSWF1q1b88knn7zJLgoICAj8zyBEIgkICAg8hZGpGYPmLeLoyiXE3ruLWCpBo4VLpZw5Z+YC+QUT4qybvlS2cUSlTQPAwtiIHIWS0Nh4QmISSDl1HqvSpWnXrh2XLl1i27ZtiEQiYvMkSA3qobkVgsjEmttxObSbsAjZ1e0YG0hQKBQ8fvyYAQMG0L1792IpBz179qRy5cp8+umnlCtXjkaNGuHm5saFCxcICgpCJpOhVCqRSCRIJCWnz9SrYFGs3LRIIsWu/1wMZWLGezvh6lrwT3mhyffOunCvhzOhsRlYm8hxm9kOyXM8LEpCJjd85mcatYajBw/ofm/Xrh3W1gWVr0oqY+3p6VksPVDg3VOSt4suHVQipWv/AdjZ2T23jXr16lGmTEEknEgkYsCAAYwaNYo+ffpQt25dQkND31T30Wo0HFw8X88XzVAmpXJpcx5cuUTNxs2JycjC2dkZqVRK/fr1uX//PhERETRs2FD3zBWa6C9YsIDNmzdjZvbfjJNfBzKJmOWDGhKRlM3Z+0kYSMR41bTF2kT+0m3ZmhmyblgT0nOUpOUqsDMzfC/9iNJyFGy79IjTYUmIc5I4duKkrhy8gYEBDg4OVKtWDTc3N+ITEmk96AsijKuTHHCB62U7U+mzP5D4L+Xo0aMYGBREgpUrVw5nZ2caNWpEcHAwNjY2bNmyhVGjRpGXl0dgYCBt27YlJSUFAFtbW7Zu3crIkSO5efOmLhrmVbgXn/lPpVF9tGoVMTtnoowPp127dsybN++l23Z1dWXu3LkEBQVhbm7+XkUiAYz1ciIqNZeDN2IQiwreNWqNluEelehe3/6Zx1lZWeHv7/8WeyogICDwcSOISAICAgIlYG5bhn4zfyQnI5387Cy+OBDBuYh0vX2UKdE8iLnN78oU4tMzORMWQe1ydtyKiqNT3Rq4V3XgscSIGzdusG7dOhYuXEiy1oTNlx6TFRuBuZsL8nI10ALSyk0wq9UMj8QDVK1ShaCgIGbOnElAQECxlAOA0aNHU7lyZR4+fAhAs2bNOHz4MLm5udSrV4/t27frPIRKooqNCW6OpbnwIJl81ZOoEREFaS/PKvNezc6UanavHk3h7NWW87u26KUKFmJa2hrLMuW4c+dOgX/IK0yCSmLDhg2sX78etVrN3LlzWblyZbEqYZs3b2b58uVYWVmxZcuW92LC/6FStYk7wQEndFXZ4Ek6qEWZsgxfsgyRSKT7DoqKgUWFwqlTpzJ16lS9tmvVqvXGKxfGhN1FkaefuFmptCUXHzxGmZ/HycMHqNXCm+DgYNRqtS690tHRkWvXrqHRaBCLxWj+icb69ddfmTdvHhUqVKBq1WdHS7xNRFmJfNWtIK3rz1f0+inE3FiGubHsNfbu9REWn0nvVefJV6nJU2rQqlSUHraS+s72+G6ZxaRJkzh69ChJSUk0btyYcSsPcvXaNay6tUetVpOvlRCTDamJKkZ1bcGxg3sYOHAg06ZNIyMjg/j4eAC9d3TZsmVp2LAhN27cIDExkZycHBT/vO/s7e1JS0vT66Onpye+vr5IpS/2L7mxgaTYAgA8WQSoYlOKk195AgWiUOE5Cp+xf3vurl69+kL9eBdIxCJ+7lOPL72dOB2WhFQswrOGDbamz16cEBAQEBB4/QjpbAICAgLPwdjMHMuy9tyOzyn2maXnMKz6z2d4y6bYmZvi4VSZuhXKcicukXoVyiKTG1K+Rm29NKzH5s5IKruSHx1C/PbpaLJTde2pNRqyNDKMjIyem3IAMGXKFJYuXcqMGTOAAtPp48ePY2dnR7Nmzfj5559xd3d/7thWDm6I1z9Vn0wNpRjJJDjalGLn6Kb/yXvleTRo1xkLu7JIZU/aF4nFyOSGtB8zAYAaNWpw5syZ12IwXtQQOSAgAHv74qvVSqWSVatWERgYiI+PD6tXr/7P5/1fpmmv/siNjItFJEkNDGj9yeevVIXqbZKXlVmsj/aW5sgkYlb4n+dexEN69+6Nra0t3bt3Z9y4cUyaNAkbGxt69eqFu7s7rVq1IiwsDAALCws2bNjAp59+Slxc3LsYUom8SFrXh86YzVfJyFXqPKBEUhl5yDh5N5lKDZoTFRXFrVu3uHTpEp9+Po49f/ui1mgQSaQgEqPJL3jvq/KyOXzqPDY2Npw9e5alS5eSk5Oj8xkSiUQo1RpUag1mZmacPHkSGxsbtFotOTk5elXC/muKWBUbE2xMS44cM5SJ6f+MBYCPiQpWxgx0rUjfxhUEAUlAQEDgHSBEIgkICAi8AOZGMtJylMW2K8Uyzlg358v2EtT/VHWrbmeDhZkZDnXrk1Lanvblyuv8MbovP4tIKsOmx1REYgnJx5ajzk4jbssUJCIRFRo507btWL3KSE+zb98+HBwc+Pzzz/nyyy85ceIEbdq0wcDAgGbNmtGkSRPu3LmDm5vbc8dkbCBl5WAXEjLyCEvIwtpETvUyb9azRWZoyMA5v3Dt2CGC/Y+TmJzKHwHniUpMYszabQCMGDGCO3fusH379mKiT05ODn369CE7Oxtzc3N27NiBXK4/oboTl8HWS49JyMgjN9gXRb7yuYbIOTk5utSk1q1bM2rUKAAOHTrEwoULUalUzJgx45kl2QX0MS1tjc+PSzm9dR1hF8+jUasoV60mzQcOxb5GrXfdvX/FtpIjalXxZ71L/VqIpVLqt+tEtWrVdBXLijJmzBjGjBmj+33WrFm6nwsru70rAu8lsvRkGPfiMjHMS+b+MV88PJrTq1dPFAoFderUoVOnTuzbt4/w8HBGjBjBoEGDyMjIoH79+vz6669069aNdevWYWlpyfjx4/Hx8cHFxeWdjutZhMVnEpWaS1HJRpOfg1huTI5CzSF/f/6vy2zEYjFpaWlYOzUg8+ZXyCo6A2BgW5msG0fJuh2AKi2WrPJdqVSpFCkpKXz++ef8/PPPPHz4kITMPPZdecz8B0dJCbzPkSRzFlVtrDtnQEAAISEheHp6UrVqVcaPH4+FhQVXr17l9u3bAEyfPh1fX19Gjx79r749IpGIX/rW4//WXEKh0qD+R5QylIpxKF2KwW4Or/dCCggICAgIPIXofTLNexkaNWqkDQoKetfdEBAQ+B9hzekH/Hz8LrlPVTUSi6BRJSsWtTBl9+rlLNu2m76eHgz4dDS1W3qzYcNGXXlngEUn7rL61AMi132NIvYuYkNTDGwrY9fvBwykYs5MbvVBrqw+XfVox44d+Pn5PdMAe926dfzf//0fCoWC3NxcevTooUvpaN68OadPny7xuD179hAcHMyMGTOYO3cuderUoVu3brrPl50MY3nAfZQqDWot5FzahSIxkrPH9rFh6Tzs7Oz4448/uHXrFleuXOGvv/7Cx8eHgwcP8uOPP6JSqWjbti2+vr54eXnh6+uLRqOhQ4cO71wE+FDRarXvffTR0xxcNJ8H1y4XS7uUyQ0Z+ssKzGxs31HPXo1NFx4y53Aoef+YMWtVSuQSLQ0r25BxYD6TJ09izZo1bNiwgUGDBrFgwQK2bt1KmTJl8PHxYcSIEYwcOZKwsDDy8vIYPnw43t7e77XPzPnwZEZtDCIz70n6Y274ZdJOb0IkkWHjVI/HAduYOXMmaWlpjJw0myZu7pi49sK4qiuqjCSSDi9Cq8rHwmMQTVt4sfH/6jJkyBDi4+Np164dw774mo6/ni5Wft5QJkZ+7AeunAskKiqKadOm6aXQHjlyhH379rF69Wo8PT1ZvHgxtWrVok2bNgQGBr7Q+O4nZPKb333OP0jGSCZhQJOK/F/TShgZvH++VAICAgICHx4ikeiKVqttVNJnQiSSgICAwAvg07QSJ0LjuRmVTo6iYCJmJBNjbCDllz71KG9lzJdLVvLlkpV6xxX1mtBqtXSvb89fZyKw6fIVaYEbse7yta6tTnXLfZACUiFt2rTRTZQiIyPZs2dPiSJSrkLNkhV/UM6lDa5VbbG0tNR9Nm3aNG7evEnnzp05ePAgY8aM4e7duxgZGbFp0yaqVKnClStXAEhLS6N06Selsq89SmVFQLhe+XK11AiJfW1GrA9ihmcrrl69UswQ2cLCgoyMDAAyMjKwsLAgKSmJ0NBQWrduDUBCQsIHKYa8DEW9ozZv3lxi6t+JEyeYP38+Go2GX375BXt7e/r37w+gm1gvWbJE75iXvWbBwcGMGjUKiURC1apVWbt2ra6NwmptRSN83gTtv5jI0eWLCL9yCYlUhlarxcDQiC4TpnxwAlJ2voo5h0P0nguRVIYCuBmThbdLC6Kjo0lJSSE5OZm0tDTKly9PeHg4HTt2BKBRo0bcv3+f7t27M2jQIJycnF5LuumbxMnOBIWq5HLwYhF0qVcOgO+//x4oeD/XG/MrsekFflhSM2vKDCjwZTOSSRjoWhFTU1P27Nmja++bnTfIeUpAAshTaohNyikxde3BgwcsWbKEAweeFBGoU6cOMplMZ8b+IlS1NWVJ/2f73gkICAgICLwpBBFJQEDgf45XNVre9Ikrx0Pi2X75MTkKFW1q2dGvcUXMjf7dVNY3JJ45h0OITstFowW5VEzeo1skbp1MqWru1Khsg4eBK/fuGeHm5kZycjIzZ86kc+fOTJo0SRel4+npSUBAAAMGDGDy5MlIJBJmz57Nzp0739TlKhGNRsuea9GsOfOApCwF5aWZnPF9UvUoMTGREydO4OnpyYIFC5g8eTIAFy9fwbbXdKJu3qBH5w6Y1W/L15+P1LU7Z84cAgICOHToEAcPHqRixYqsXLmSI0eOMGrUKBITE7lx4wY7d+4kMzOT8+fP89lnnxEaGkq2c2/yVfplr+X2Ncm8cYyMXCWHA85TzlxezBC5WrVqum2+vr64ublhbW2Ns7Mzx44dQyKRoFQqP2oBqah31LPIzc1l9erVnDhxQq/qX2Fa15dffknnzp1fuQ8qtYZshRonp2qcO3cOgGHDhhEUFETjxo3/5ejXi8xATpcJ35KZnERC5AMMTUwp51Qd0UtM8t8UT0f9/Zun0emwRKRPVVEsmtZ1JDCAwZ1n0bVrV0aPHk2XLl0AcHR05MqVK9SuXZugoCBGjBiBiYkJZmZmLF269LUZ378prE3ktK1tx/Hb8XrFA6CgeIDhnSN4eDxJHRaJRCzt34Ahay+RdOVvMq4dwdxjEJr4MLKibuDQ5S+ggl47vqHxqJ8R0K9Ua4hKzcVAJkP9j8l8Tk4On376KWvXrtVLw/2Y3y0CAgICAh8fgogkICDwP4FapSI7NYWk9Ay9yXJkZGSxfYsaLe/evZvVq1fzzTffIJWI6ehclo7OZV/q3EduxTJhx3W9SADkFlT9/E9+6ufCb999yreDBnH06FHSUlNo3LgxISEhXL9+nenTp5fY5pIlSxg4cCBisZj169e/VH9KIiYmhs6dOxMSEkJWVhZJSUmsWbOmWHUsKFixH7vtGn6hCeQq1cRtmUJC3x+wHLKCUV3rsm3eOObPn8+jR4904lxAQABzV2/hRsYmROVqI7OtjHW/OYjEEv48HYE2Pa/YeUJDQ9m2bRvHjh0jOzubvLw8xowZQ6dOnfjmm29wdHRk1KhR2NvbExoaSlRqDk8XLTKwc0QsNSBywySuOVVg3PLFHD9+nO7du5OYmMjmzZuRyWSMHDmS5s2bY2lpyZYtWxCLxUycOBFvb29EIhG1atVi+fLl//k6v0/EP7hPeNBFAC5GPEKtVuu8o37++Wc6duyIUqnExsaGHTt2cP78ecRiMR06dMDOzo5Vq1ZRqlQpXXuBgYH88ssvL92P7HwV8/8OZdfVKNQaLUYyCZ94VOYLLyfkcjkVKlRg+PDhPHr0CAcHBypUqMDmzZvJyMjgs88+4+bNm6xevZpFixbRp08fFAoFFhYWtG/fXi8S8FUwLW2NaWlr3e/Pi5IqSrdu3Th16hS7du3SRbO9TopG/f0b+SpNsUiZ/KjburSuKs4uuLq6Uq1aNSZOnMjKlQXRlKNGjWLgwIH88ccf1K1bV+ex1r9/f6ZNm0aNGjVe65jeBAt71SNXcVVXyavgqxLxY/ca7Fyytdj+TSpbcXicB96tv6fG2N+wMC1F2Jq/uRV2E5mkuIBY0nevVatI2DkTRUIEPn268svCBaSkpNC7d2/c3Nzw8/PD2dkZsVhMSEhIseN//PFHfHx8SowEFBAQEBAQeB8QRCQBAYGPGq1Gw/k927hyaB8ajZoL9x4Qp9Ti2aIFzvXqvbDRskKhoGfPnmRnZ+sm1S90fq2W7w/qp5IAIJWhEEFAWDLdu3bRVQlKT09n4sSJnD59Go1Gg0wmK7E6m52dHY6OjojFYsqVK/efr5OVlRUnT56kR48eAJQpU6ZEAQng/INk/O8UCEiFFKbHzD1yj0/bdeDQoUN6xzx48IDFi5dg1vm7Yu3lKtUkp+WieUoBql69Or37D6TXkM/w27+NS+fPsGTJEsqXL09KSgpxcXEsXLiQ3377DQBne3NO7dtM+s2TiGQGlG77ObLS5bH0+gRDmZg1nzejWhmzEg2RfXx88PHx0dvWsWNHXTrPx4RGrebAovk8vHkNtVKBFvC/G0EGYvwvX+W7qVM5dOgQhw4dwsjIiGnTpuHn50dSUhKxsbEEBATw+++/s3r1aiZOnAhAUFAQdevWfeEy5YWoNVr6/36eu3FZKNQFz4hSreKnP7bww7BNtGhcl4cPHyKRSPD19WXevHkoFAq6dOnCgAED+Oyzz9izZw+9e/dm3759uLu7M2XKFD777LPXfdmAgnvyRaKkVq1a9dqq/Gm1WgLDkth15TFZeSqczRX4+fvrov4mTJjAtGnT8Pf3Ry6Xs2fPHoYPH05KSgoxMTF07zOAxKAE1Foo5dyahJ2zsO01g7JDl2IskzCl4xMxqF27dlhbF4hmFhYW/P3338X6IxKJGDhw4GsZ25vGyEDCn0Ma8zA5m8O3YolMzMbJzoTrJ/YwZMgQZsyYwYEDB1i0aBEAFy9eZOPGjaQ+DKXisXm069OHwIi7tPH24tChQ5iYmOi13652GXYGPUZV5N0lkkix6z+XilbGnPrGE5FIxLFjx4CCRYvr16/rCYBF30clvZsEBAQEBATeNwQRSUBA4KPm5F+ruX3KF1V+QeW09Jxc0tOz+LRJPcIMZOzfv5+4uDhOnDjBlStXWLBgAT4+PpiZmQFgbm5Oamoqjx49wtramkOHDj2zRPPTaSa///47E7+ZQlqNIcX21eTngNwYvzsJxN87y9ixY3VVgjw9PZkxYwZeXl66PsTGxmJkZKQrEX7z5k0yMzPJz8/n7t27VK9e/aWui1ar5WRoApsvPiQlW4F7FWuGuFfSG0uhGezvv//O2rVr8fT05MKFCzT4bAlJIedJP7MZgzJOoNHo0mMkYhH7j/nx/aQvuXXrFvAkhcOk9ecgLUj9E4mloNGg1WoLVu3jH9CmbVsWLvgRgLQcBftTy7JnzxoW/L6V/LR4bOzKcvHUGVo0bUJcXBwGBgYEBgZy8+ZNADo7lWLBnbOUGbwQkViCVlsgSkjFImqUMaNGGbOXukYfKxf27uDhzat6ptEGYigjlXBx3068vLy4cOECu3fvJjo6mvj4eJycnLCxscHDwwOJRIKXlxc///yz7vi9e/c+00T9eQTcTeBBYrZOQCpEWrkxpZ1cMY3bz4MHD2jQoMD7xcXFhfPnz2NmZoaBgQFJSUmcPn2a6dOn89NPP1G3bl0A6tev/wpXpjhqjZZ916L561wEKdkK6pW34PNWValjb/7MKKlZs2ZRtqx+tOKritBqjZbPNl3hzP0knRfbeZGasiNWsXmsJ58N6U/Dhg158OABZ8+e1b2b9uzZQ0ZGBj169OCrcWPQBsax8ttPyIsOxcy1V8GzKgJTIyk9Gpbnzp07jBgx4l9T1Hbv3s3ixYvZv3//K1zNd4NCpWHO4VBOhyWi1mgRadTE7t/D1zXbAtC1a1e6du3KqlWraNOmDb179+a3337TpRBv27btmeLOOO+qHLkVS0aeUi8K0lAm5ofudVDm5XLjxBFunzqJWqWilEMV/E6efK4AOH78eKZNm4aVlRW9evXCyMgIAwMDxo8fj6en55u/YAICAgICAv+CICIJCAh8tGSnpRLsfxy18km5bkOZFEcbS/Kzs3AsX4XU3NwXMlquWrUqzs7ODBo0CBcXF10ExtM8bS6NSFQslQSepJMkGchp078Trq6uNGjQgLS0NORyOVKpFHd3d6AgraRLly54eHhgY2ODWq3mq6++YuPGjSgUCkaPHs3hw4df2FdDoylIR/O/k6CbmIbGZrLhQiRG+Sq9fVUqFWvWrOHs2bNcunSJCxcukJWnIuPCTuwG/ogmL4v4rd/pxiORGeDo2QIPDw/mzZtH79696dKlC3fv3iUlbBEqjQabrpMxqtKYhD1zMKnXFrv+c5FJRByb1Q5DmYRTgafpsDSQiKRsLLw/BSDz6mHUEglf7L7LypUruXLlCkeOHMHKykrXV2V6PJ283LltaAAiUKvFiMUiKpUuxZ9DSiwu8T+HVqvl2pH9xaqOVSptycUHj7n2936yqjegatWqaLVatmzZwtSpU9FqtTRu3Jjff/8dgOvXr1O5cmXd8cePH2fatGkv3Z+jwXFkK/R9rLQqJaJ/xMYUpYR79+4RExMDwLVr13T7de/enYULF+Lk5IREIqFy5crcunWLjh07cvPmzf/so6TRaBm9MYgz95N1UXex6XEcPHgA6dXtNHSuxcOHDwkJCUEqlWJlZcWePXuKmX57eHiwbt06nQjt7+/PtGnTmDNnzr/2YWfQY06HJelF/eVpJSgVIr7eHUznzp2JjIzUvSsK3wFarZaRI0cyb15BRcIfe9ny+HI/9q5ZinWvKajUWtwcS7Owd11M5FJq1Kih8wZ6Hr169aJXr14vegnfC34+fhf/q3d4vG0WiqRHWLUZjbyKK39s2IZJVsHiwoULF/D392fbtm0A3L9/H7Va/a+RdWXNjTg41oMfj9zheEgcKo2WeuUt+LZDDerZydk45UsyU5JR//O8pcbH8lXrZvjM/YVhn40pUQAs5M8//2TEiBEMGjSIdu3avYErIyAgICAg8GoIIpKAgMBHS1TobcQSqZ6IVDhZVubnc/FUALU9W7+Q0XJ+fj4TJkxALBbTtm1bBg0ahJ2dHQAhMRlce5xKbnK8XppJjx49MDaQYGci5cqGuZjWb0/GpT1Yd/kaoyqNyX94g959+9GreWUaNmxI9erVuXv3LgBnz57V9bmktKoTJ07ofi4p5eR5HLsdpycgASjUGhRqiIrP0pvMJCUl4eDggFQqxcXFBYBWNWzYLBajyc8hcc8cVGlxGFZuiI11RTLObGLpop+RSCS6FA6AIUOGMO9wKOvORZIRcR11bgZ2fQuqIknFItrUssNQVmDWfOpeAtGpuSiLONYWGmSHxWdx6NF53OsVj7xydHQk+eFdLq/0xv9uEkmZudQpb0nDihaCce0/aNQq8rOzi223tzRHJolm0aET1E9XMGDAAH755ReCgoIwNzfXRSK1bNmSFi1aYGxszJYtWwC4e/cuDg4OGBkZvXR/JOLi30tuxBUyLu9DLIKy9WozffoyXUl5BwcHKlasCBT4Dn322We6qJju3bvTp08f2rVrh4mJCTLZvxvePw//uwmcDU/WE3C0WpBWboJJDXfKJB3UPa9QUGGr6D1flKIitLm5uZ74+TzWno3QOz88iWK8/jgNTVgg30wcz7Jly/jiiy/+6aOWuXPn4uXlhaurKwB5uTnEX/6biaOHYG33iBHDhmFu/N+uz4fA2XPnmfPpJ2i0YFC2GiIDIzKDDqDKSCiIhlQr+P777wkMDGTv3r2690TVqlX1zOOfRwUrY5YPaqh7bxa2cWrTWjKTklCrnvz9EWm1oMzH/69VzxQAC3nw4IHOqL5hw4b/7UJ8YLyseXxcXJzOw8/Pz4+pU6diaGjIxo0bKV++/FvqtYCAgMD/DoKIJCAg8NEikUqL/WNeOFle4X8eWzs7Zvbu/UJGyw8fPuSTTz5BpVLh6OiIra0tmXlKPlkfxK2oNLSASKPEdPByvurbgD9mjMHb2xulUonhudWUdumA2L4OypQocsIuYu7shTrxAfNGdWf4wN4cOHAAS0tLHBwc3vh12XjhoZ6AVBSVRkNwdAaW//xubW3Nw4cPUavVuiiQ7g3s+VSkRSIzwKrTROI2TABALhFjayrH0cakxLbHtXbi1L1EQh9JyP1nm5FMjIWxAbO61tbtdyYsqVh0SqFBdsS6bzhTyZ5FP0xlxYoVevvY2NjQq1cvvFo2x8jIiFWrVlHdwRKBJ4glUuTGpcjLzir2WZf6tTAsZcKYNVsRiURcvXq12D4TJkxgwoQJetuqV6/Orl27Xqk/neuW48CNGL37UZOfXVAFTavllx/nIBaLWbduXbFjLSwsyMnJ0f1emA505swZvv76axwdHV+pT4Vsu/S42HNSGCWVrVBxOjKLkLubsba2Ji0tjZCQEDIzM3X+aoUCDkB+fj6RkZF06dKFn3/+mebNm79QH5KzFMW2FY36a96lDa6urhw4cIBmzZrprsHcuXNxdXVl69atDB06lOvXrzNlyhS8vb3p0KEDg3t3w9zY7j9dn/ed2PRcLiaIKTNgHhqxjMSDP6FR5CGWl8K0YWeybp5Aq5UQExPD+fPnqVixIllZWURERHD9+nVUKtVLeXw9/bfm9ilfPQEJIE+pwlAmJeZeKJdCIxg/YUIxAbCQypUrc+PGDWrVqsW1a9f+J6KRFCoNOQoVGo32pczji3r4/fDDDxw/fpyQkBDmz5//0RVEEBAQEHgfEEQkAQGBj5aKzvXQqIuLJV3q10ImN6TdZ+OpVq3aCxktm5ubc/r0ab19Jmy/zvVHqSh0ETMSEEmYsi+EPh7eHDp0iMDAQNq1a8ePs0ex8OgdLuY1I+nYcpp6uGDSyRNbM0MyMjJ0q6VOTk6vbfzPoqSJqa6iUHwEIwb0YMWSnwCQSqUMGzYMd3d3nBs1JSw+i2Y/+lGmeT9id85AYutYIExIxXjVtiM0OFfPpPzcuXO6KloP7oZQ+d423Dw82ZkcgpOtAY/2LODXZb9ga2qo60t+ahxRywYjLV0ekUSGdaeJZN08jqXXJ6SdWEn4zfNs2LBBl36zd+9erl+/jqurK4sWLeLChQu6tjZs2MD69etRq9XMnTuXlStXFpuYbN68meXLl2NlZcWWLVt0flgfIyKRiAYdu3F5/85iKW1SAwMadOz6VqO23KuUpkFFS648TCFPqUGVmUTeo2Aq+Sygf5MKuNSqCjy/KlpAQAABAQHMmjWLTp06ER0djUQioWnTpv+pb+l5ymLbCqOkAKQWZXioyqNZDXuCg89QtmxZsrKy2L17NwMHDuSvv/7i9OnTZGRkMHLkSC5dukRQUBAWFhYYGxu/UB9qlDXl7P1kvW1GVRpjVKUxcqmYpdPbADB37lz9fubm8iyKRjG+LRYtWqQT+P6NlJQURo8eTVJSEt7e3s80+H8WR27FMmXPTdJz/0nNFRf6sElQZySgUqtAIsXAxoHSlWuzevVqbGxs2LdvHwDTp0+nfv36OgHpRfpcEsp/fPiKEpGUwtHgu8gkUroNGFiiAFjIiBEj6NWrFxs2bEAul79SHz4UUrIVfH/gNkeC4wAt0pwkYo/56kX1Dh8+HGtra8LCwpg+fTqrVq0iJyeHY8eOkZiYyLRp0/j9998xMjLC1NQUV1dXpkyZ8q6HJiAgIPBRIohIAgICHy0Ghka09PmEUxvXoFI8+YdeamCAjUNlnJq8+iQzLj2P02FJRQQkdObSCpWGnYd9Wf/LTEJCQqhYsSJn929i29ixQFM6dtyIZfR5Bg4qqHBkZmZGTEwMFhYW3L9//5X79KI0qmRJeGJWiRWFDKRijkxuha2poS6SYvTo0TRq3xefNZdIyT6JLEcJ5V0oN6wxNqYG5O3N5MR33mQkxdPh13hO+vrqTMoXLlyoV0WrX98+iEQi0pzMiTz1G5tWL6V27YIoJK1Wi1aroXVNO5Y5NsCq01e6/pm79wOgtMcAvvikq954fv75Z2QyGQ8fPmTMmDEcPHgIpUZDUnwcp06d4uTJk8A/HlVPoVQqWbVqFYGBgezevZvVq1fzzTffvNbr/b7h2r0PCRH3eXjzOiplgZAkNTDAwbk+rt37vtW+iMUiZnWpxbit17gTl0lexFWkYi3av2eTmNqQ/La/0LFjRxQKBWXLlmXHjh2MGDGC/v37Exsbi5mZGaNHjwZg+PDhqNVqXF1dqVChwn/um2c1G24+TiNP9cT029jJDWOnglL3WTePIzY0Ja5+C2rHR9GrVy+dP9LGjRvp1KkTvr6+2NraEhMTQ2hoKCKRiICAAHx9fV+oD+O8nLj6MK1YSpuhTEzvhuUxkb///8bl5+dz48aNF97/+++/Z/bs2dSoUePfd36KjecjmX0oRC8VFkCREIEmJwOZdUXQqLHu+CWpR5dRr4IFsbGxnDlzBnt7e3x8fF74u/k3ylSpRlTILb1tNcvaUrOsLcZm5oxeshQoLgDm5+djZGRE6dKldQscT/tsfUzkKdV0X36W2PQnKcz5EjNsh6+iTTNHfFd/i7e3N6mpqfj6+rJt2zbWr1/P8ePHmTdvHseOHdOl+6WmpuotAqhLWEQSEBAQEPjviN91BwQEBATeJPXbdqTrV99Rpmo1ZHJDTKyscevZnz4z5iF+Qc+LkghPzMJAqv8KzY+6Tey6L4nZ8DW5MjOdZ9Ls2bMJDQ3VmbY2bdqUFStW8O2339K2bVs++eQT6tSpw7Bhw7Czs6Nz5860atWKNWvWvPrAn8OI5o7IJMVf/3KpmHa17fSigqBA3Plm101ylWqKTs0UKg1JmQrSc1WYGRas9j9tUv50Fa0WLVoAsHPnTurXr0/t2rXJSU/jyIrFLPXpyeIB3QlaOR9N1E0Stkwm4/I+VOnxJB38GSOZhM87NcbS2ECvf4XeNzGJqSTLy1BjxlFqTj9Kyy8XEx6fgbe3N2PHjkWtVhMdHU23bt1wc3MjIiKCe/fu6frcunVrXRTTqlWrcHNzY/LkyR9dRSSJVEr3b6bTb9aPuPXsh1vPfvSb+SPdv5mO5CXSd14Hd+Iy6L7iLHfjM9EC6uw01EolJj2+RySVs3nnXn76fQt/n/CjZs2a+Pn5kZ6erotIioiI4Pvvvyc6OpqIiAh69epFlSpViI+P5/PPPycgIIBu3brRpUsXmjVrRlZW8TS+ZzGgSUXkMgnPCsxSpkSTee1v7m/4jlvBwZw7d46EhAQ9fzWAatWqMWDAgFcSJ10dSzOra20MZWJKyaUYG0iQS8V417BjRpfa/97AOyA4Op3PN1/FY4EfXX87wxczf2Kwz/8BcODAATw9PfH09MTIyAiFQqF73/XtWyBgBgcHM2/ePFq1asX58//P3nkH1nT+f/x1V26G7CFLhhHE3iRBiL2VonZs31aLllatahujWh0UVbv2nrUiYsQmBImZRJbsPe/8/ZHmypVQNHT8zusvzjn3nOc8d+V538/n/b7w0tctVKpZcORuGQFJXZBD+omVWHf9SLfNUG6AhZGUBlUsuHfvHtHR0axevfovm7GXxmfgMKQGZSuIpHI5XgOGFrdsPsPGjRspKCjAycmpwsbxT2f/jXhScov0njeRVEaRSMbmy/H4duzCoUOH8PT0RCwW4+joSN26dQFwdHQkIyND9zhLS0tdKAaAuJw5fhUuXbqEl5cXrVu3ZsqUKSQmJupEv8ePH7/x72oBAQGBfyr//J+wBAQEBP4i7g2b4N6wSYWes7KZHNUzi5WSNhMAn+o2uLm56VqnSvv3DBs2jHv37un2PXz4kG7duvHLL7/g5ubGqVOnsLW1rdDxlsbdxoQ1I5rywdZQFH9UWSjUGvxqV2Zx/wZljo9NL+BJVnF7jP3ghXr7ilQaMnKeVnk9a1IOZVO0APz9/YmLi2PHtq1knjlGXmaGrvVQk53O7C7emHQdy1eLAjCt1RSxiQFL32tEB8/KrF9/vswYe/Xuw7Hgc9j0+BjZH/eUkZJCSloqX/+4irjjq9m/fz+JiYmcOHFCVyk1bNgw3S/X5ubmZGRkoFKpWL9+PSEhIVy9epVLly79pfn+p2JfrQb21d58++SLmLn3NnlFT6sFxHITDKrUJSNfyfFMG7auOoRq0S8oslOR5Cazbt16nJwcadu2LZmZmezevZthw4aRkZFBjx49OHToEB9++CHHjx9n7ty5uvMePHiQgIAATp48Se/evV9qbJYmBuz5nxeTtoYSkZDNsyGLlr7+AFSSS9EenM3UqVMJCwvT81crYfTo0SxYsIBFixbpeSW9DAObVaFHfQeC76VQoFTT3M0KF+uXa4d720yb/xPLf12LRq3GuucnxBpbkHH4OCLPLgD06tWLXr16sXLlSjp27MjQoUO5cuUKe/bswdCwWLw+f/48169f10Xcv2w72bXHGYifUfy0GjWph77Fou0IUg99izI5CplExGzfyiwLgb179lDZzo6kpCSGDRtGSkqKTqD4qzjV8qT7R9M5sWopyqIiRKJiY3avdwfToGPXch8zfPhwhg8fXmb7f7kS6VDYEwoUZc3jxXJjZBIxv58IZuGc6YSHh+v2l265Le0jZWxsTEFBAbm5uYSHh+Pp6fmXxubq6kpQUBCGhoYMGTKElJQUXXvlzJkzWbdu3Rv9rhYQEBD4pyKISAICAgLP4UU+LNXtTHGxMuZ+cg5FiY/IOLUOrVaNWfN3sK7dklE+brrz+Pr6EhwcTG5GOvF3w0lMTeHUqSCd34ODgwMnTpzAx8cHW1tbxo8fT15eHkuXLsXU1JQpU6awbds2VCoVnTp1Iigo6C/fm1d1G67M7MCV6HSyCpTUczLH0aL8dK1ClRpJOeUYJT5KyqRHdO7cmfnz52NnZ1dmEf1sihYULwJ++eUXOrXxoY6JAW5WT1sQpBIJaNRogzYye+IQsrPTCM+ypYPn842AB37+I+GuZ4jdFYDD8O+AYkFC7FyHZacessCnDRFhN8pUSllYWOh+uc7OzsbCwoLU1FRcXFyQSCQ0bNjwlee2InjVdKJ/I9mFSm7GZuptK0nhU2u0pEffR2JuDxoNdt0/Iefsb7jX8sAx5y5XrlxhwIABXL16lXr16iEWi7l//z4GBgacO3eOx48f06ZNG86ePasTBZycnMjMzCw7kBdQzbYSv3/Ymll7b7H9SixKzbNSEijVGoJPncbB3Khcf7USEWTGjBl6nyn+/v7MmTOH2bNn/6mBsIlcypPLh1m5ciXz5s3DpXv3V7qPt0Hk4xhW7zyM7cCn7Vm5YccxrNWGcw9TERcUe0xdvHiRU6dOsW3bNtq0acP06dP55JNPqFKlCjt27MDDw4PatWsDr1ZJoi371JB/9xyKJw/IPLMRAJfBX+F0fzcj+nTE1UJGYGAgH330ESkpKZw+fRofHx80Gg3bt2//CzPxlOpNW1C1cVNSoqNQq1TYuVVFamDw5w/8f0R5CY2lzeNrdfDVVfW+DDNnzqRjx44YGhqyYcOGVx6PRqMmKvQa0WHXkRnIqeXdFkO3qkilUiQSCUOHDmXdunU8fvxY77vaw8ODS5cu8emnn6JUKhkzZgz+/v6vfH0BAQGBfwOCiCQgICDwHGrWrMn588VVL/7+/ly9elWv3WHF0Mb0W3Gehxd3YNtvFlIDQ+RSCf0bO9Oupl2pM2k5/stSws8GIZFKUao1TG7TnI6jJzDz+6UsWLAAZ2dnJBIJkZGRnD59muTkZKZPn86+ffvIy8sjJyeH8+fP06FDB70x/u9//2Pnzp0sWLCAMWPGvNL9ScQiWla1/tPj3G1Myv1DXySR4jh4Pr0aOPL9wIYA5S6in03RKmlnARjp04yUx1F6x5ckGIGWoONH+XTmbL1foZ+lqKiIAzcSUIgNEJdqHykRJGQSMb+fCqGqjXGZSikPDw/dtsDAQFq2bImNjQ2xsbFoNBrCwsL+dH7eFK+STvRvRKHS/FE58nT1X5LCl7jlMyRGZlh6jiHlyj6KntxHbFiJR8mO1KvmSnR0NF999RWNGjWiWbNmiEQioqOjuXfvHg8fPsTa2lpX9fa8qoVX4UO/Guy7kYCySKW33VAqpqNnZRzMyxdgn+XZz5TU1NSXHsOOHTs4d+6crmLnn0BqbvF7LzG7kKvHd6PVaEja9jkyaxdMm/YmM2QrWpWS1MNLkKClWrVqpKWlERERwezZswkLC8PMzAyRSMThw4fp168fHh4eOr8rlUr154P4gyaulqifEflMPNti4tkWALEI/L3dmd2jOF2wxHsIiit9pFIp27dvJzIysoJmpxixWELlqtUr9Jz/Bl5GCA8NDeXU/OE8ScnAccJaAFQ5aWSe3YQiNYYa0/ewdk5nzAxlus9Cve+PkSN15yrZ36FDhzLfky9LYW4u27/4lKyUZJSFBYhEIkKPHsLAtTqpqak6Q/zU1FTCwsJ4+PCh3nf1nDlzOHDgAKampnTs2JEhQ4ZgIIiGAgIC/0EEEUlAQECgFBq1mvh74SgK8rGv5oHMojgiXi6XU6VKFfz9/YmNjcXFxQUXFxc2DhzMsKMGpAcuQSqXs3TFCjo0qcmqVatYu3Ytvr6+ZCUlEXEuGLVSiVpZ/Gu8GDi94Ve8Gzdi3759ZGRkULlyZTw9PbG1tcXW1pa0tOJUpnfeeYf9+/cTFBTErFmz9MY7e/Zsmjdv/kqLrVdFJhHzcaeaLDxyt4zBr1wqZlL7118glbeo1yUYSWV06dlL71fogIAAtmzZglarJSEhgTlz5jBw4EAuRMSSlV+IRdsRumNLBImoDdOw8nBh+rIlHD9+XK9SSiaTMXbsWFq3bo2lpSVbtmxBKpUyYsQIvLy8aNWqlc5z6W0QlZrHhUdpZKc8ISjolK5abcqUKcyaNYtTp07pUpxGjRpFeno6d+7cwdjYGA8PD1q2bMlXX32Fk5MT+/btq1CPl4rG2sQAW1M58Zn6SWKW7Ufr/d9h5I/kP7hI9pV9ZIWdIEJUh4sXLzJq1ChiY2N178f169eTmZmJo6Mj+/fvJzo6mnfeeQdTU1MuX77M4MGDdecsnej2LDk5OfTp0welUomZmRlbt27FzsyUbeNa8r/N10nJLUIqFqFQaehaz4EF79T703tVqjU8ySzE1FCK5R8vJ7lcrufTVZJo6O7uzqxZszhz5gwNGjQgJyeHHj16cPnyZTp37syaNWuoXr3iRIlnF/s7duwgKCiId955p9zjExMTGTRoEGm5RdyPjse4amPM248l7+ZDlEollQfNJyN4HQUPLiI2NMVh5A/kR5wh6+QqRo4cyY8//kiHDh2wtbWlevXqZGdnk5SURN26ddm1axcRERG89957FBQU6LUk/hlGBhKmdqrBd8fvU6jU6O0TAbUdzPikU00A4uPj+eqrr3Tx7zNnzuTChQtIJBJ27NjxehMpUIY/E8KrV6/OjatXqNbYG7lUTJFKg8TIFLtBAaTtDWCyXw2d397b4Piqn0h/Eo/mj+9TrVZLdk4O639dw9qVK3XHWVhYlPtdffPmTXr1Kg5+SE1NJSUl5f+Vv5WAgMD/HwQRSUBAQOAPom9e5/DSxX/8ASlCrVKSYWLJ7pBLeHjU5PHjx8jlcgIDA1m0aFGx90JmGrnJMdwNC+P06dMc2PAzvg2WsGbNGkJCQjgfEsLu9frpcCWVNipFEdu27aCmTweqVq1KYWEhqamp7Nq1i8qVK3Px4kW0Wi13794lJCSEu3fvsnZt8a+1fn5+HD16FAcHh7cyNyO83BCJYMnx+yjUGtQaLe42JizqV5+qtpVe+7w1vdqQ8SQBtfJp3HxJgpGBkRETV/7Co8hIXcXAzJkzy0R+79u3j22XY5h3MLyMyGXZfjSGUjGHZ3XA1FBWbqXUsGHDGDZsmN62MWPGMGHCBC5duqSb8zeJQqXhw62hnLqXjFgkQqtWYDJ0GcO61WX/4sk0btyYyMhIQkJCdMLbnj17SElJoX79+lSuXJn+/fvrfinPzc3VE5A0Gs1fNpl9WZ5tAy3dsvXbb7+xfPlyzM3NWb9+PTO71+K9oSMoTIlBJDXAtGEXTDx9y5yzJBXN2EDCpN51EYvFrF+/vsxxpaveoqOj6dat2ytXc8lkxVUPDg4O/Prrr6xfv55JkyZR18mc09N8iXiSQ2a+Ag97U2wqvTh6XavVsjz4EStPP0Kt0aJSa7HPvE1S0Drq1K6FtbV1GZ+uuXPncv36dc6cOcP27ds5cuQI/fv3Z9myZQQGBuqi5yuS0ov96Oho9uzZ81wRyd7eng27D9P5hzPIj6zAoGrx60wjM8bQpbh10NClPoXRN1CmxZK09XNQFtKu72Bmz55NlSpVUKvVjB49Gh8fH86ePcv69etZsGABIpGIy5cv8+TJExwcHAgODqZbt24vfR9jW1fD2kTOt8fvkZhViBZwNDdkSgcP+jRyQvpHoICTk5Oe19KiRYteZ9oEShEdHU3zFi2wcnQnW6HFb+xsjp04qRPCFQoFxsbG7N69m9TUVN2PAJMnT6aWvSm9vd3ZejmGnEIR7g6WJNlVYlzbam9t/IV5uURev6ITkADUGg1bLt2ge72aRJ8PxrVRUwCMjIyoVKkS+fn5eolwjRo1YteuXZiYmKBUKt/qDxACAgICbxNBRBIQEBAA0uJi2P9tgJ7YA2CVn8mSSeM5ePsBkZGR1K9fH4CGDRty4cIFzM3NadasGcbGxrRv354lS5aQmpqKq6srUqmUGi7OZa5VUmkjFYtxtrHhyNmruDjaYkUhn3zyCVOmTEEul9OkSRPCw8OJiIigcuXKFBQUEBMTg0ajoUqVKuX+gXrp0iWmTJmCRCKhadOmfP/993r7R44cSUREBEZGRowbN47BgwdTWFjI+++/T1RUFHXq1GHp0qXlztHwVm4Mbu5CTHo+RgaSl27heRENO3bj5vHD5GVloi0Vxyw1kNN6sD9aYOzYsXz++ecvPE+fRk6sOhtJbHq+XsqPkUzCh37VMX3FX7OXLl3Kvn37UCgUr+Wr8ap8dSic4PvJFOni5CUglvD9yUd0adaW6OhovLy8CI3JYF1INLHp+dR2MOXAF8OZNWsWW7dupWnTpvTt2xdPT08qVSoW9kaOHEmlSpW4f//+W/NVel7LlkqlYvny5Zw7d44bN26waNEivv/+e5q6WpLsNxSVSWW0aLE0NiAtT6EzfS+NWqOlQ+3n+6PcTcxm+5VYUnKKqGqYT9Ap/WquUaNGERMTg6urK1WqVAGKBYQDBw4gl8tZv349Li4uOnG2xAelBJFIhKejWbnXLo8FR+7y24XHeuJmnJkn5u/9gE3CPg4dOlTGp+vx48c6H6eGDRty5MiRl77ey5KrUhOanY9cLMJKo+VUqXlKSUnhxIkT+Pr6snPnTvbv3697D/z44480btyY3y4+Rq3RUhh7B8v2xW20Je2jAIrkKBCJkFSyxGHwQsSJ4dS1S9dd/9kKRJlMprdt2rRpr9yeW8I7jZ3p28iJQqUGA6m43FZcgYonPqMAlX1dRD2mYaBUcyZOibX/CmrVsufEjq/49NPprFmzhuDgYIYMGYKjoyM9evQAQCwS8WnXWnzatZbufL4H324bWF5mBmKJVFctDBAW94TYjCwOh93lyJ0HeLwzRLdv1qxZdO7cGZVKpfvOnDdvHr169UKj0WBlZcXu3bvf6j0ICAgIvC0EEUlAQEAAuLx/F2qVUm+bSq0GhYLws6cwcqjO/fv3SUxMBNB55dSoUUMX633jxg3c3d2xsbHh8ePHqNVq7kVGlVkwlVTaAAQ/TsHYsSPU9SHn97n4+/uzb98+XFxc6N27N2fPnkWj0SCXy5k4cSK7d+9Go9HQr1+/cu/j2TSZW7duUa9ecbuNRlO8KN+8ebNeO8xPP/3E4MGD8fPz+9N5kkrEf6ny6FkMK1Vi6IIfCN64mvuXQtCq1ZhXtsdn0AhqtvIB4MyZM39+HpmEvf/z5pujd9lzPZ4CpRoXK2OmdKhB38ZlhTx4cRvPlClTyMzM5Pjx4+Tk5FTY/ZZHvkLFzmuxei04JelEBUo1u4+dZNDSL5k0az7LkqqhUBVXggVvW05BSi5urfvC1q1YW1ujVqtZv3491tZPva68vb1ZtmzZG70HgPCEbK5Ep2NsIKGjZ2UsjA10LVsAaWlpOu+vBg0a8MEHHwDgYm1CwcVfMDK1IGDxEprX9eCjbTcIjEjWE1+MZBI+7VITc+OnguCSJUvYs2cP586dY8nxe6w6G4lCpUGjBUOxGmv/Ffz6v9Z8PHYoTZo04dGjR5w6dYqFCxeiUChITEwkKCiIkJAQzp07x4IFC1ixYgVQXM21atWq1xZxsvKVbDgfXUoYBK1KiUYqI1+h5nGOlsZGRmV8ulxdXXUeYBXtyaXValkU9YSVsSnIRCK0gFip5Kdzl+ldpTK9e/dmwYIFxMTEsGnTJlJTUzlw4ABnzpwhIyODUaNGsW/fPh4m55Ibdx8DOzdE4mKRraR9NGnLZ4iNzbBp1ouc64fI3DGD7m1bYGRQmVmzZrF9+3YkEgn9+/cnNzeXxo0b4+TkREJCApMmTaJJkyb88MMPbNy4kblz577U59KziEQijAwkf34gLw5QeBEqlYqhQ4eSlJREs2bN+Oabb155nP8FnmQVkJxdxJz9t8mOvEH++o8x9vDC2KMV0b//SIKxKQYZkYSFhZGenk5aWhppaWlkZWVRvXp1Dh8+zJMnT8jPz8fS0pInT56wb98+UlJS3up9mFpZo1Hrt4U3cnGikUtxO1rlqtWxsrLSVcW2bduWs2fP6h3fvHlzTp48+XYGLCAgIPA3IohIAgICAkDC/Qi0Gv3Kh7uJKZy5H4VILKaZj5jNO3YyevRo/Pz8cHR0pFatWjpPHV9fX12LjVQqxd/fHy8vL9q2bYvc2ASRWFzm/EqRlLtFcnJCfyfnxhG0SQ9Yvnw5YrGYzMxMfH19mTNnDkVFRfj6+jJkyBD69OmDSCTSLcBL0Gi0xKTlY2RiiaFhcYtNSRVFu3btsLa2plu3bohEIoYPH461tTXLli3D1dWV4OBgnUfI1KlTdZ4ObwsTC0u6fziNbpqPUavVSF+zBcDcSEZA33p83acuGm35qT/P8qI2nqCgIC5cuPBaY3kVEjILy6TflaQTiSQyzNzqYVO1Do/yjchb9zFIZNj1/ZzM89uRWTnxbs8uOMiKfYWcnJw4cOAAzs5PhbMmTZq80fHnK1SM3XiV648zdPM++ZvViK5uo3nDOjpBy8bGhqioKPLy8jh//jzp6cWVKd999x1WVlacO3eOb7+cxa5du/hxUCP2hMaz5lwkKTlF1LCrxPvtauBTw+bpHBUVcfPmTQAuR6Xz69koPSGuUCOhSAMTNt9gQPfuxMXFkZCQgEajoUmTJly4cIHo6GhddWHTpk2ZN28eUCy2jBo1ioCAACwsLF5rXq7HZGDwh89LCQVR18i+sq/4306urPhqGtu2bdPz6XJwcKBhw4a0bt0aT0/PCm2J+TkmmVWxqRRqtBSWGJqLJXwSk4qLlQU9evTg0KFDuuMjIyO5efMm7dq10zuPh50pBx5ewNjDS297iZ+VTCJCq1LS//ujrB3txcD+7zB25FB++eUXHjx4oBPWq1Spws8//4yVlRWurq4sXbqUzMxMhg8fTlpaGp06deLq1at61WAVzZ8FKDyPvXv30qBBA2bMmMGkSZO4efMmDRo0eGPj/KfxJKuAj7aGcjMuC6lYRG6+DMexqxBJZaTs/goDx5poCnOxHPQ12Ts+JzIykl69ejFhwgRcXFxo0aIFAF5eXuTk5HD58mV8fX25cOECFy5c0LWIvS0MjIyp6dWGe+fP6FUjAUjlchr3eOelqmIFBAQE/j8giEgCAgICgGElU+CJ3ra6TvbUdbJHKpczJGAJYrGYX3/9FalUyqJFi3BxcQFg0KBBDBo0SO+xEyZMYMKECQDMmv4Jmz+fSkFePlpVsfePQiQlSW6HutMoKouKF0j5uz5n0qRJpKamkpmZiVwuRyqVMmvWLHr27AmApaUlMpkMubxYKAoICGDFmg2k5hZhuvkMlj6DqeVgyqjaYl2aTHJyMoGBgUgkEvr06aNbsH/88cfs2rWLR48eMXnyZObPn4+vry/dunV7I74rf4ZILEZaAb49IpEIyQv0o7zMDDKTEsnJzXtuG4+fnx9hYWH4+vrSqFEjRo8eTUJCAp9++imhoaGMGDGCxYsXY2dn9/wLvSTWJgZ6LXgARtWaYVSteCFbzdaEnVdjsWw7HNNS6VNmzfqgSIpELBGTlBzDwYMH8fDw4PLly/j4+OiOe9NeSJ/tvsXV6Aw9sURWtTlGNVsiebxHJ0pIJBLmzJlDt27daNSoER4eHgBYWVkB4OPjw2efffbHmEX0b+JM/yZPxTCFSsPBmwlciEzDzFBK/o3fGTFiBHPmzGHu0vVE7VpXfNyT+7h8vIeE9VOQ21clMTmSPNfKTBzrT0xMDH5+fjoTezc3N50QdfXqVapVK/ZgmTNnDt7e3rRv3/6150UuFZeJnS/xdgJo5mZF1apVy/XpKi8trLzjXgWlRsuPj5PIf0bM1uTnUWBswuKoJxiEhDB27Fhu3boFgLu7O82aNWPXrl3F5/hjcT20pStfRYVi23Jg+ddSa0Ek5drdx1R26I+TnTXvv/8+gwcPJiAgQOdrlpmZqfscLXk9lIh2tra2eHh4kJSUhKOj41+69/LILlSSlqugspmcEplOLpdz/PhxUlNT6dq1KwcOHODevXuMGjWK/v37Y2RkhEwmY8qUKeW2N/9/EZEKlWr6Lj9PSk4Rao2WIkAklSH6YyaNqjcn98YRVNnJJG2ajom1PRYWFrz77rtMnTqVzp078/777xMbG4u/vz8ZGRmMGTOGefPmcfbsWfbs2YNGo6Fz587Mnz9fJzi9aar7dWPQ9FnYVjJGAkzsUPw52qRbHzy92+hVxY4cOZJZs2bpVfWWt01AQEDgv4ggIgkICAgAjTr3IDB2OcqiwjL7TK1ssHYuXuiMHj2aqKgozMzMdAurP8PMxo5RP/zC6YOHOHbkJEVIiTCtTaSxG1pR8QLfUCrmk1+Lz1dSDQEQEhKid65t27bp/d/RdzCmhU2Q/tH2o1BrCH0Qx5DFAZw5uh+ABg0a6H7JL2/Bbm5uXlwxJZdTvXp1kpKS/pOJMkX5+RxdvoSoG9eQyGQUFRby9dD+9Jk6g6GjRuu18QAcO3aM4OBg9u7dS0hIiM7sNycnh6SkpAoRkAAsTQxoVc2akIepqJ6JKDeSSRjl4871xxll9ln6+gPFVR8cnEPPnj25dOlShYzpZcnMV3D0TqKef5FWpUQklVGg1HA3TYmf0VPvrF69etGrVy+Cg4O5fPkyANnZ2ZiZmXHv3r3nVv0kZRfSb8V5MvIU5CnUiDUqUg/tQ16/2HRZ4t4M+8E1yQn9HSO3RgCoc1MpilcglRsSFfmQUaNG8fnnnyORSHSeUfb29rRr1w4vLy8MDAzYsGEDCQkJLFq0CC8vL/bu3cvAgQOZOHHiK89NUzer5+4zlkkY0LT8Nkt4M2lh8UUKSrRKdWIC6e8PQ+LijjYvF7Ra9imKmDxoAD4+PsyfP5/+/fuzatUqunfvTps2bZBIJNSqVYuVK1dy+/ZtGtepQaqRESIRZdLQoLglU6XWIKnSgEZ17Zk6+SOWLl2qe39ptVrMzc2Ji4vD0tKSBw8eAE9fDwUFBTx48ABbW9sKuf8SsvKVfL73FicikpCJRag1WjxVD7h3cBU1a3owZcoUFi9eTNeuXdmzZw9z585l9erVjB8/nkGDBtG1a1eguILp9OnTdO/enVOnTlGnTp0/vXbp9ssxY8Zw9+5dAgICmDFjhl473c2bN5k8eTIAjx8/5qOPPtL9/5/AwZsJZBcoUZf6TCppwQUoigvHtElP0Giw7fkJtbSxaLXFreAdO3YkKipKJ7gFBgYyduxYoqKiGDx4MH369KFLly5s3rz5rd+XTC6nZ5++LJ47m5g7YcgMDKjevBVmNhXzWS8gICDwX0EQkQQEBASAWj5tuXv+LHHht3RCkkQmQyKV0f2j6TqPjNc1WZYbm9Bp4EA257lzMTJNr2oDQCYVM7i56yudU6HSsOTEfT3fGK1GTeqhb7Hy9WdXRB7jG5vqVaKUt2D38vIiLCyMxo0bEx0dXeGLtn8Kv3w2mZm/bsTO1ASpWMywVo05HXIeRfZndO3ShVWrVnHy5EnatWvHJ598AhSLbXv27GHatGloNBqGDBnC/v37qVz5+ebOr8Pid+vT9+fzZOQryFcUP5/GBhJ8qtswqJkLIuDI7UTdvtLIJGLW7D1GUVGqzq+jJHmqvASziiQmPR+5RKwnIpVu2cq3q0KnTp1045k0aRJ37tzB1dWV5cuXAzBkyBAyMjIQiUQ6P6JnmbTlOk8yC3QiSPbtIAxrtWXzpceIC5T4OJoTevUKhTG3sOk1HQCpmQ0Ow7/HUCrG7OTXANSqVYvjx4/rVdrNmDGDGTNm6F1PoVDwVzGQilnwTl2m7QrTE1kMpWKq2VWiV8PnV9e8ibSwShIJqlKlUQZNWmL+eQBQLCqp1y/X+focO3ZMd5y/vz/+/sWC5ejRo2ncuDE1a9Yk5MRhMvIUHAxLYOHvEeQ/IyQVxd0hI3gdyvQETqfa0bJ5M8zNzbG1taVevXr06NGD6OhomjRpglarpUqVKnTu3Jm6devy+++/k5GRwU8//VSh7XxqjZYBv1wgMjUXpVpLybN8R1qDJpNXYx22mfDwcB49ekRBQQHx8fG4u7sTFRWlqwZt2LAhAD179uTkyZP4+fnh5ub2p58JpdsvAe7du8e5c+dQKpXlttOVVJ717t1bZ0D9T+HM/ZQyn0WlW3Dlzp5ITCwAyL+2nwcx56jWsT09e/akT58+uoo/gLVr1+Ll5UVycjIffvghlSpVomXLlm/zdsjPziIjIZ6snBxOnTrFgMePeeeddzAwMCBBcxkPDw9atmxJWloac+fO1T0fS5cu5dq1a3Ts2JG5c+fqznfq1ClWr17N+vXrhYQ2AQGB/ySCiCQgICAAiMUS+kyfxcMrFwk7cYTCvDxc6zegUeeeVLKy/vMTvCQrhjZmyvYbBN9LwUAqRq3RYmcqZ8XQJliZvFoazYPknDLtMvl3z6F48oC0U+v4+ewGem1eqbe/vAX7p59+yogRI8jOzmbs2LEYGLzdVJyK5Fmz7JJEssSH90mLi8HDzprBLYsrVc7cjyQ6JYPG1Vw5sGMHV2/dQiaTMXHiRLp3786CBQsAsLOz48mTJzg7O+Pt7U2fPn1eqzLlRdiZGnLy47YcCnvCyYgkTORS3mnkRKtq1ohEIno3dGLxsXsUKNSUfsqlYhFOFkY0qWJKhw5937pfh52pIQq1vnhQumWrvrM5VatWZdOmTSxZsoTQ0FC9aHWAgwcPvvAa8ZkF3IzLonTHnzI9HkVSJDk3jqBOekD+xW1knvkd6z4zdYKvpiAXUV4anh5VSPpDR5XJZMW+W2+pXbNnAyfsTA35IfA+t+KzMTWUMqSFC2NaV0UufXM+P6UrXqC46ic0Ow9jiZisQ3tRp6eiCL1C+kejkPu0R5ydgebaJSpVqsRXX32FqalpmUS2O3fuUKVKFR49eqS7jqWJAcNbubH9Six3ErL1xmBUrRmGrg1Bo+bUpx2ZNOo9FixYQFZWFuvXr8fHx4ebN29y9epVPv30U4KDg7lz5w4zZsygcuXKXL16FRMTkwqdl1N3k4nL0E9w1KqUFCEjNCYTHwwwMjLS+dGVtDO6u7tz69YtPD09CQsLo3PnzkgkEl0q17hx4+jUqVOZ6xUq1SRkFmBpbMCW9at17ZezZs0iLCysjAeVXC7XpQYC5OXlkZiY+I9rjzI1kiEWQeniyNItuAZSMQYSMSa9puB46zeUtlbPNfdfu3Yt586d0wmVbxOloojjvyzlwaUQJDIZiqIi5g3oRe+pnzFywv+YPn06R48eJTU1lWbNmhEeHs6NGzeYPXs2AL6+vvz444+0aNFCJyKdPn2akydPsmHDBkFAEhAQ+M8iiEgCAgICfyAWS/Bo4Y1HC+83dg1jAym/DGtKYlYh95NysK5kgKeD2UulAT2LXCrRaycAMPFsi4lnWwBcrIxp1aoVrVq10u0vb8Hu4ODw1uLf3walzbJjbodxcc82Eh/eR6VQ8DAljZ+DzlPPyZ6zD6LIzC9k+pb92FhZULt2bR48eMCwYcPw9PTUO6eDgwP16tXDzc2NlJQUvLy8yrv0X8JQJinjA1SCiVzKzgmtGLX+Kqm5RYhFIlQaDTUrm/LriKYYGBi8VIpdRWNvbkiDKhZce5xR5rVoJJMwpnVVoGwVxqvwJLOgjEF1SSsfQPq2z7A1M8JCm03qnq8QicB56CKkJmaoru4gMuQJX35RvMDr3r07ffr0YcyYMc9NOKxoWlS1Zuu4Vn9+YAXx7FxrtFrG34nmZFqOzg9JZFIJm437wUBGzuwpeE6ahkHsQwz/EJDLS2T7/vvvWbhwYbneTKO83Zm26ybPvASKfXJEMo6GJ+sJJqmpqbi4uCCRSHSVPQB16tShoKCAzp07V7iABBB8L5m8ZypoSirnRIBVvdr80qkTLi4u1K9fn4iICADd62XdunWIxWJkMhnx8fEMGTIEsVjM8OHD9czs1Rot3x2/x/rz0QAoFUoUgXu4eLL4/r/++muCg4N183HgwAE+//xzPDw89JIVjxw5QpcuXSp8Hp4ntpfmxo0bz22p69fYmb1/pGA+i1QMrapaYWdqiFnUSbynTmTOnDkAjBo1ipiYGFxdXalSpQqOjo7cunULX19fli5dysSJE8uIzG+SQ98v5PGtm6iVSp2ZdtaTOHbMm0GXTh2Ji4vj1q1bZGVlMXXqVF1aaok4VLduXQBdBSgUt6OfPHlSEJAEBAT+0wgikoCAgMDfgL25Ifbmhn/pHNVsTbAyMSA+s6DMPrlU/ELPlf8SKrWGy1HpZBUoMVcX6MyyW9SpTXToZcwNZNiamvBT4Hlm9mjHqbuPuBGbQJFKjZGBjPa1q/Mop5CkpCRiYmLo0aMHCxcu5Ny5czqD6tJtjPHx8X/LfVa3M+X0NF9uxmWRmFVAVdtKeFQ2/VvGUpqfBjWi7/IQsguUxX5FomKBs081OVUSr3Mj6QYnr4fpqjBCQ0NZvHgxW7ZsYejQoUyePJnbt29z7NgxsrKyADh8+DAbNmzg+PHjpKRlEBWVgdy9CXnhp5FZOWHd9UPd9fvOWcPsUc2ZPXs2eUUqToQnkZmv4IdjFoSeP6gn0E6ePPkf5S1TUaTnKbgVn4WJgYQLh7bo5nrRokXkOrtx0rk26WdOok6IRWxmgUgqRRn5gIwpY7B1cCBtzlQUCgU9evQgNTW1TCLbgwcPMDc3JzY2lps3b9KhQwemTZtG9+7dAfCrVb5nTIlPzm8XH1PtTgiTJk0iPDwcGxsbYmNj0Wg0hIWF6Y4/cuQItWvX1vnk2NjYlHve18XIQFKmgqakck4uFTOmay3EYjGenp6oVE/j3i0tLQkKCkIsFtO9e3fc3NxwcnJ6rtn5zL232H8jQSey5IYFInXzoveyECTPKm089QqbNGkShw4dom/fvkBxAtz06dMrbgJKUVpsL4+GDRs+t6WusYsFPeo7cPjWE722NhEgFok4fT8VA5GGJ/v3srJNsVh7+fJlJBIJgYGBzJ8/H4VCwbhx49i4ceNfNo1/HdIT4om5dRO18mnraqFShaFMikpRxLF9+5i7cFGZtNTSZvvl/fizfv16Jk6cyLZt2yr89SsgICDwT0EQkQQEBAT+pYhEIhb3r8/oDVcpVD5tczKQirE3N2S4l9vfOby3QsjDVN7fch2VWgOIKCoqotMX21j8Th3a1vekrYc79xJTyCtSUMXKnMz8Qp5k5dDY1ZkrUbGYGxnSoV5tDHPVJKdnABATE0NOTs7fe2PPQSQS0bCKBVSx+LuHosPe3JBTn/hyOOwJp++nYCYXUzvyGCmBFzkNaLQafjt3hQa2swBo1KgR7u7ujB8/HkdHR5o2bcrt27exs7Nj69atjB07Vics2NrasmXLFmr69iVdo8B+yCKSts9GXZCDxMgUI5mEib5P/VVM5FL6NCo2hV8tl75Whd+/CZVaw9wDd9h5LQ65RIxareTJvp3s21Ns0j948GC8Jk5C+fEXFJ0+QaVxH6G4dgl1YjyFgb9j3Ko1LRztaNOkMb/99huhoaEMGDCgTCLbwYMHuXLlik50qF69uk5AAsgpUiGXSspUppT45CTLDGj9Xg+db5BUKmXEiBF4eXnRqlUrZDIZOTk5fPPNNxw+fJg7d+7w8ccfv7YH3fPo1cCJTRdjyq2gAehcx77c7bm5uXTv3h2FQkGHDh1eGDyQlF3I3tB4vco5ZXo8eRFnCQ89gjb5ga4NDoorx0rSNs3MzHRVLUqlkoiIiApNfAvPLeByVh55KZkElUqmbNSoEYGBgXz99dc6H7WRI0cCZVvqFi1axIEDB5DL5Xw8fREHHhaRlF1ETqGSAoUaxR+tguk3AzGq1ZavDodjrFATGRlJo0bFrcRNmjThwoULFXZfr8OTB3cRPZNcGZWaztHb95CKxTSs40mLFi1o1KiRXlrqn1Whuri48NNPPzF06FB27dqlM/EXEBAQ+C8hiEgCAgIC/2K8qtuwc0Irvj9xn8vR6Rj90RI1vm01zAz/2+X0Ual5jNlw9ZkFoYTzj3OZvOkydao4klVQLBoVKJW0quZKZEo6Wi3EpGVQSW4AYjF123WgX6eeNGrUiP79+2Nvb6/XmvL/mdu3bzNu3Di95KjyhBlDmYR+TZzp18SZy/t3cigkiMPXbzG4ZSMuR8bSqIoDd04HkpeRDsCECRNwd3fn8ePHunOUtIY4OTmRmZmpt62vd11OZ1mRZSBBZmqFTJWPTGrOtM41aVm1fM+yF7XFlHgG7dq1izVr1jBz5kz+97//sXPnThYsWMCYMWMA2LlzJ4sXL0YkEvH555/Tu3fvV5/EN0jA7xHsuR6HQqVBodKQG3YCmUdrJvx2DWOFmipVqpCXkYk0KxNNbg4S22IRp+DALpDLUd7J4IKtLTER4eTk5BAREUFKSgqTJk3Cw8OD5ORkzM3N2bt3L+vXr2fSpElcvHiRlJQUkpKSdKJQZTNDJOKyr4sSn5zGLhZ887/iNuESIWrMmDFMmDCBS5cusXbtWkxNTTl16hQAzZo1q3ABCaCesznd6tnz+61Evc+N4hRENxwtjMp9nJmZGWfPnn2pa1yOSkcmEVH0tJBJr/0yb9fnTJo0ie3btwNw9OhRlixZAkCNGjV03kpBQUF6VS9/hTy1mpG3orialYcWECtVSNfsZpynO9smjtKld5ZH6Za6xMREgoKCCAkJ4dy5c2zevJb9K1YQ8SSbd5afp7Q7WolvWe6NI2iSH3Dv3j0SEhIACA0N1R33dwm9BoZG8My1azvYUdvBDhBRy6e4Ldzf358WLVpw8+ZNTExMaNasGQEBAXqhBSWVVOvXryc9PZ0JEyagUCj48ccfmTlz5hsZ/8aNG9mwYQNqtZrNmzczd+5c7t69y/bt28uInNHR0cyaNeuFlWcCAgICr4IgIgkICAj8y6nrZM6akc3+7mG8ddacjUT5jKmzpiifIoy5lAQmKRm0cXf8I4JchUgEB2+GYyST0bSqC2ZW1mRrYMXvJ1nVZyBLly7lp59+4sGDB2zcuPFvuqt/BlkFSlRqDR4eHuUmRz0PrVbLlQN79FpEknNySYjN5sKjGGLTs1i6dCkXL17kxx9/ZM6cOaxZswbQX0xq/3CML9lmKJPwZe+6WNZowqTL5vTzrcrIrq2wqSR/5Xsr7Rlkb2+vW+TNnj2b5s2b67Uxff/99wQHByMSiejSpcs/SkTKLVKx5VJMmYoX3cI9qbjipVGnLpz/IQB5qza64yqNep+iS+cwfncYlRs3I7JXG+rXq0dGRgaGhoY0b96ckydPcu/ePZ0v0qeffsq9e/eIjY3l9OnTBAQE8NNPPwHF1Y9jfNz55UxkmSofI5mEKR09yox/6dKl7Nu3D4VC8UYEo+exuH8DWlS1ZtWZSJKyC3GxMub9dtXpVs+hQs4vl4opbuwqn96zVwNPRc7evXuX+7rq3LkznTt3rpAxTb0by+XMPIpKkhgkUpBImROVyAC/jmRkZOiO1Wq1eu/F0i110dHR1K9fH4CmTZsyb948AB6n5ZcREUsLZ9k7ZzB37lxGjhyJn58frq6uuLi4AFClShX69etHQEBAhdzry+LWsDFarabcfTK5nHrtOur+/2zr34uEoXnz5vHll19Sq1atihvsM8THx+sMvEsoSfsTEBAQeBsIIpKAgICAwL+Sq48zUD3jL1LSPiORGeBpaYmrtSVOFuYUKJXUdbLHycKcjvVq8cGsudzPyGHFihV06NCBCxcu8Msvv2BsbMzRo0epWrXYEPr/2x/lt+KymLnvFhFPshEhorKZnFk9POlcx16XHPXll1/q/GHWrl2Lm5sbH374ITdu3MC0UiW8jIqfk6yCQtadu0pOYRFDWjbCupIxy4LO4+zsjKurK++//z4fffQRJ06ceKmxiUQimrpZUdPelD6NnF9aQDp2J5EVwY+IScvHwcIQ5ydnGT58OHPnztX7hd7BoayIULNmTfLy8oDiapR/Eg+Tc5FJXmQ4/imTJk2iRdwTWi78EtPJpZL7pFLMZy8k64tpZNrY0GX6TBqJ1Wg0GkaPHo1EIinji2Rubk6zZs0wNjamffv2uuqZEj70q0FGvoJtV2KRSUSACI1Wy5wenrSuYVtm/FOmTGHKlCkVNyEviVgsYkDTKgxoWuXPD34NfGrYlDGZL8HYQEL/Jm/mus8jVaHiaGrWUwEJ0OTnITY2oVCjZcfJYLbNmcGqVasAuHXrlk4oeralzs3NTSfAXr16lWrViltJXayMn3vPYhGMmF8sypdU7wQHB+uqd7Zs2aI79m1+3srkhnQe/xHHVv6ISqmgJOpUJjfEvn5T1kVKuBNyAQtVBicCg3Stf3379tV9ZqxatYq1a9fi6+vLxYsXCQ4O5vbt28yfP5/Y2Fjmz5+vF2zxV9BqtVyITOP64wyun9hDfqECPz8/PD09qVSpki7tb/fu3bz77rsoFAosLCzo0qULvr6+xMfH07t3b5KSkti6dSvu7u4VMi4BAYH/nwgikoCAgIDAvxKbSnIUKbdIP7oMxGKkFo6Yew9CZl0Fl36fMsI4HM2dc7Sq5sLlqFgAhng15sDNu9z/cj7Dhg/X+yW3tMfL/0fuJ+UwcNWFUka5WmIzChj95Qqk17fTuJ4nKSkpxMfHExwcTEREhK71Ky8vjzNnzvDbxo3s/OEb6jnakVNYxLi2LYjLyOLU3Uf0b1qPj3t2om/fvjrj4B9//LHMOL744osXbivdRvJnfHf8HqvPRumqY9Jy8jl7+Ch2LXq91OPfeecdGjdujEajYd26dS993beBuZEMlab8SgoA7ynLAahhYkh93/YkmlsCYNSl+N41+XlYLvoZNXBm6zo++Oxjbt26xZgxY0hJSSnjiwSQnJyMWq3mxo0bZRahYrGIeb3rMsmvBlei0jGQivGqZoORwfNbpf6LGBtI+aKXJ18cCNeryjKUiWngbE5Hz8qvdL6XSVJ74eMLijAQiSjiqcijDLtO7roViGQyrBo2oVmzZnzxxRd069ZNLx3u2ZY6e3t72rVrh5eXFwYGBroKMk9HM1ytjbmflFMmoc9AKma0zz9TsKjl3QYLewcu79tJcvQjjC0skdVry+wwKeqLMSg1WkRqJeYjfmZIF08OfjsVPz8/AFQqFWvWrCEkJITLly9z8eJFAM6fP8/169exsrKiX79+ZYSxl20RLk1mvoJBK0O4sP5rijISkRgYIjEy5bvla3l4+BeaNWtGvXr1OHToENu3b8fLy4vPPvuMiRMn6s6RmJjIiRMnuHbtGosWLWLlypUVPJsCAgL/nxBEJAEBAQGBfx05hUq617fnWqQrBsO+BSD18A9oCrIBsDQ2YMLUDwjeKCc8+CTdmtRHrVJx+m40+48H4l7zzbUa/FtZcvx++ZHd7s1xatQWx7g9hIeHExwcjK+vLwAODg48evSIxo0bA9CseXO2mVogkUqxNzdDIhbjZGHG0dw8pDIDGnTq9tbuJy4jn1VnIvUqdfLuBGFYqw07r8VioijfXLk0s2fP5s6dOwB069ZN51fzT8DdxgRnS2MeJueW2WckEzO0pSt3795lzJgxjJ8xi+8kYnJLtX+WFhIcGjfFx8eH+fPn079/f1atWkX37t1p06YNEomE9u3bM3v2bMaOHYuvry9isfi5Yp5NJTldK6g17N/KwGYuVLE05oeTD7j7JBtzYxkjWrkxwsutXO+oP+PPktReRGW5DKVWX9mRt2yNvGVrAJqaGSMWizly5EiZx5bXUjdjxgxmzJhR5tjVI5ry7soLZBcqyStSYyARIRKJmNmtNnWdzPWO9fX11X2G/N3YV6tBr4+Lq/TyilQ0/TqQQtXTzwatRIYC+OFkJEN8O3Lo0CEAUlNTcXV1RSqV0qRJE93xHh4e1K5dGwDxM8bdUFzd+CotwgCTt9/gZkggYktn7LtNJWHN+xhUacCSE/cZV6spERERumOjoqJ0lWQNGzbUba9Xrx5SqZSGDRvy8OHDV5ghAQEBgbIIIpKAgICAwL+GpOxCZuy+xdmHKUhEIpSIkYpBpdEikkqRiUGbn4Hx2R9puXMa+/fvx9WnPZ/PmMHqVavY/U4/Pp7xOXl5eSxduhQPj7JeLf9fOfswhWfWmmhVSkRSGam5RUgNTUhMTKRTp066dCmlUkloaKiuOuLq1at4deyMyZNokoIvotFoScjMwdbcDPvqHrTq916Z677OL/Mvw9HbiTzbYFPaM4iUhxw8ePCF55DL5RgbGyMSiVAoFC889u/gp0GNGPDLBYpUapR/pGIZGUho6GzOgKZVkEnEnDt3DoVGw5Jzt/UeWyIkGIpFfObugEQi4dixY7r9/v7++Pv76z1m0KBBDBo06M3f2H8Ar+o2eFV/vYj3G7GZ7LwaS3aBkpomhXpJagqFgrp169K9e3f27dvHo0ePuHz5MqtWrWL79u0cOXKEvXv30r17d+bMmcOuXbuoM2gs12Ljyfzuayy+/E53HWOxmPFV7Crkfp0tjTkzvR2B4UncjMvE2kROr4aOVDYzrJDzvw2OhyfyrManKcpHLDdGpdGy50gQKxfMJDw8HBsbGx4/foxardYzCvfw8ODJkyeYmZmhUqnIyleyJiSSfaEJqDQaOnnaM75tVRzMjZDL5Rw/fpzU1FS6du3KgQMHuHfvHh988AGjRo0iKSkJUwsrImqOID/uLsY1i83pDd0aUhh7iwJlPzYdPs3H7zxNjHN3d+fWrVt069aNsLAwnUB1+/Zt1Go1N2/e1LUhCggICLwugogkICAgIPCvIK9IRe+fQ0jJKUStAeUfEoHi0SUyz/6Gpb0Lg1rX5sg1OHZwL1u3bmX37t307t0bQ5NKFKjUhIWF8fDhQ5KTk5k+fTr79u37e2/qH4RULAb0q3MKoq6RfWUfIiC1XVOWfLOABQsW4Ovri0gk4r333mPcuHFs2LCB1q1bY2pqypYtW0hPT2PbpRvsvveYrNxcVv70I2269SwTqQ2v98v8y1CoVKN6xni9tGeQ9sBsevbsyaVLlwAICAhgy5YtaLVaEhISmDNnDhMnTsTbu3jhNm7cuL88porG09GMwKltWRcSxZkHKZjKZQxu4UKP+g5IJU/n2kAs5qsaTsy4H0dBqX4jmQhsDWQMdSw/4U7gzfNsu1rTid+x93o8RSo1Gi2cEKsxaNqf7m2rExh4lOnTp7NmzRpSUlJYsWIFu3fvRiwWc/HiRa5evYpMJkOpVCKRSGjRogUzZsxg/Zdf47VtE2a+xWbRYkAuFtOnsgU9bM1fPMBXQCYR07Wew7+2Ei0tV4Himc+MEp89kURG3SYtdImEUqkUf39/vLy8aNu2re74efPm8d5771FQUMCU6Z/T5cczpOcpdBWRmy89Zv3Wnchv7KBO7VpMmTKFxYsX07VrV/bs2cPcuXNZvXo1vXr14r333uOzr7/lemgImsJcxHJjAGQ2LijT4kjc8hm55pb077+E5cuL21f79OnDu+++S+fOnalUqRIyWXFKq52dHX369CElJYXNmze/8bkUEBD4byOISAICAgIC/wr2hsaRla/kmb/xMajWAuearWidcgCHrAjq16uDWCzGyclJr2zfwsICT09PfvvtN/bs2UNRURFDhw7VaxP5/xyF3LWuPbuuxemZlRvXaIlxjZbUdjBl00fF6V4zZ84sk070888/6/3fwsKCi1evPfdaWq2Wm3FZZOYr8HQ0w+6Phc7LmHebmZmxefNmjI2N6dKlC0qlEltbW3bs2KEXVd6yqjWGMkkpj6enmBhIWLrnCG5ulXXPdXn3NXLkSEaOHPkSs/f3YW9uiPzuEXL27OFIKf+VEvPiL774goULF3Lo0CGcLKyQTPuC+xoxRhIx/Stb8llVBypJ/9y36NmKsTlz5jB79uznvleio6P54osvXsnD6v8rJe1qR28nMnXHDb220kKNhHyVmO3X4hnXowfx8fGkp6eTm5tLQUEBzs7OeHt7c/jwYQoKCmjQoAHbt2+nUaNGALRu3ZqYa1eoF36Nd39cwcVCDeZSCQMdrGhiZlwhVX//FTwdzDCQiFGqn86/UbVmGFVrhrGBhMndalFUVISRkREAEyZMYMKECQC69jxPT0+dafisfbdIzYlFWeozVanWInJrRtP2XbAK20x4eDiPHj2ioKCA+Ph43N3diYiI4Nq1a/zyyy9k5+VTZNkIsWElNEX5AGiL8jFt1A3jGi1oVc0aAwMDnfeSXC5nz549SKVSJk6cSNWqVXFzc9ONSUBAQKAiKPuToICAgICAwD+QY7eTynj2aFXFhr8yiYhstQwjI6Nyo+IBjIyMMDY25tq1aygUCipVqvR2Bv4vYXIHD8yMZJQqYEFEcUT7133qVdh1rj1Op9XCIIb8epFJW0PxWXSKXp/8QJ26dUlOTtYz7/75559ZsGABV65c0Zl3Dxo0iJUrVyKVSjl06BBnzpyhdu3aBAUF6V2niasltexNMZDq/6kjk4hwsjSirUfFtPH83RQVFekSs8rjyZMnnD17lnPnzjHFfwTv3DjLk3YNiWxTn29qVsFC8nJ/CpZUjJ09exYo9oT5JxMdHU3lypXx9fXVeVmNGTMGHx8fTp8+jZeXF61bt8bf3x+tVkt0dDRDhw59K2N7nJbH7H236fLDGT7cGsrB349gZmZGP9/GPFr7MfmPrgCQf/8CWee3owEe3bjIvC+/YtmyZfTs2ZPVq1eTnJyMl5cX6enpHD9+nMqVK+Pt7c23336Ll1dxi9OQIUP4/vvvsbKwYFR1F1bVdWNxrSrYZKRgb2+vm5/ExEQCAgIAGDBgAG3btsXHx4d79+4BxSKJSqV6K/Pzd9GqmjWVzQ3L9a2SScR0r1uZsWPH0q9fv5c63/4bCXoCEhR/Z2m1cDk6HUPjShgZGeHr68ucOXN0JuY1a9Zk+vTpBAcHc/3KZdr0GYqRcy0KHxe/zwtjwjBwqIGRTMK4NlXLXLd79+54e3uTn59fYelwAgICAqURRCQBAQEBgX8FclnZr6yCqGskbvmM6PXTyMlIK2N8rNVqiLl9kycP7xO07hfcnZ0ICwvj7t27TJkyhYSEBPr370+TJk2Ii4vTPU6pVDJ48GBOnz7N0qVL+fnnn8nPz8fX15ecnJw3fq9/B/bmhhz+0Id+jZ2pJJdiJJPQrqYduya2oomrZYVcIzY9n2FrLpOYVUieQk1OoQqFSsN9w5p0mPUbTk5OeubdEydOJDs7W8+8u2nTpjx8+JC8vDxGjx5N27Zt2bVrFwkJCXrXEolE/Da6BV3q2GMgFVNJLsFAKqZdTTt2jG/1WgbHf4UlS5bg4+Ojt62kUghg4cKF+Pj40K9fP/Ly8l54ridZBYTGZJCaW8Tq1asZMWKEbt+oUaPo0KEDv/32GwAxMTF4enoCxUa7Fy5cAKBly5ZMnDiRTz755IXXSs4pJDY9H4nkafG6XC5HrVbrYsNbtmxJVFQUAHPmzKF169YsWbIEgEuXLjFt2jSgWHh65513Xni9iqRjx44EBwfrPLvu3bvHuXPn8PLy0hPErl69+tbGdDEyjS4/nGXr5RjuJuZwM02E7ZDFDFhyCLmNCyKpjNzQYpPrvHvnkJjakHluCwUxYXTq3Z86depQq1Ytbt++zYABAzh+/DgLFy7EwMAAb29vmjdvzt27d2nZsiVQ7NETExPDgAEDdGMoVKpRa7R682Nvb4+/vz+NGzdm//79nDx5koCAAH766Se98e/bt4/09HQAwsPD8fb2xtvbm9mzZ7+lGXxziEQito5tSc3KphgZSDCRSzAxkOBobsj28S2xrGTEmTNn6NKlS5nHllfpU6Qsm55Y8p0V/9unPPnDY+7dd9/l+++/p3///kBx6+zevXvx8/Ojffv2jK6lpXpTXzTpMSRumo6Rc20qWdjg7+1Gu5plxfBjx44REhKiS88TEBAQqGiEdjYBAQEBgX8F/Ro7c/5Rml57Ukm7laFMzO5ZHTGRS3XtNa2aNyfmyB5u7NxEN1c7rh05wLXLNwn48H2+2XOI+vXrk5GRQWBgoJ5/klKpZOTIkYwbN462bdvSpk0bunXrxvnz55k2bRqmpqZ/1xS8cRzMjfimfwO+6d/gjZx/bUgUymf6EbUqJYXIOHI7kW5y45cy765WrRrHjh3Dw8ODLVu2MHPmTL2qsxJM5FJ+eq8RWQVKErMKqWwmx8LY4I3c24t4lWqh3bt3s3r1aj766KMyxyVnFzJpWyg3YjIxkIopKlKgDtrHjdPFfk2XL19GIpEQGBjI/PnzUSgUVK1alcuXL6NSqQgKCiIjIwMoFnRmzpyJs7NzuWO6EZvJZ7vDiEzJQyIunssOxrEcWrsEDw8PrK2ty8SGz507l8uXL3P27Fm2bNnC8ePHdb48Wq2W3bt36xbKbwKlWsON2EyUag2WahWnShlSp6WlERYWRo8ePXQJW/C0hbKwsFAniiUlJbF161bc3Ss2ml6t0fLBlut6FZUiqQyVtDLnY/JxbuDN/fNH0WjUpBz4hsLoUEQSAwzs3DH1aMH1kFOIRaBQKDAyMqJevXpUqlRJ50VW8tlUWFiod11ra2u6du3KwZsJLD52j7iMfDTZyaT+fpyWXt4MfLc/ffv2ZcaMGZw8eZK+ffsCkJubq0v6guK0wl9//ZWPP/6YGTNmsHLlShYsWECbNm3o2LEjmZmZWFhYVOicvW0qmxny+0etuR2fxaOUXBzMjWjmZvlabX8NqphzJTpDb1vJd5aDuSG/fdYekUiEp6enXpWXkZFRmTbRjm01BPasx4XIVMwNZfRp5ERVW6GaVkBA4O9BqEQSEBAQEPhX0NGzMnUczTB8piLJSCZhZrfamMj1fxcJWreS9PhYlIUFAFyNiqOhsz1RN66S98dC2tPTU+eflJmZCcCZM2eQyWQ6jwuRSMTQoUO5evUq3bt3f7M3+R/nUmSaLkWsBN0v85s+5UF0HJMmTdK12bRr145169bRvHlzjIyMaN26NVu2bGHChAm0aNGCAwcO0KNHD6Kjo194XXMjGTXtTd+KgKTRaAkMT2L8b1cZvuYSv12I5ueVv7xWtdCqVato2bIln332GW3b+vLOivNcjU6nSKUhp1BF+s1ACqq0ZOS6ywBERkbqvHBKYsdtbW0ZOnQoHTp04MGDBzpjYDs7u+cKSA+Tcxj860XuJuagUGsoUGpIzVWwP8ORLzYcxcnJiUOHDpWJDX/8+LFOdCgde966dWtCQkI4ePAgvXv3rrC5Ls3Bm/E0+eoE/uuuMH7jNfqsC+fjX48QFBREYGAgAwYMoF69ejoB6cCBA9T9o4XS2rrYWDwxMZHdu3fz448/smjRogof4/WYDAqe8egq8bnJV6hJunMeEVrkjrUoSriHRethyCwdEItF1HYw40lCPK1ateL69etYWFjohA1zc3OdOPgs3bt3x8/Pj+3XEpi+6yYx6flotKA1ssR21Ao0Xeew//ejXLwbh0IDlpaWaDQa2rZty6RJk7h69Sre3t7cvHmT1q1bI5FIWLBgAYsXL6ZOnTpkZWWh/sNDSC6Xv9a8lFTplddSePDgQVq2bEmrVq347rvvnnOGiqeukzm9GzrR3N3qtX2jpnWuVeb7CsBIJmZ655qvdF6pREyXuvbM61WXqZ1qCgKSgIDA34pQiSQgICAg8K9AKhGzaUwL1p6LYuOFx2QVKKlhV4nJHT3KlPQriwq5d+EsaqVSty05J5eE2GwuPIohNiOLgwcPluuf5Ofnh4uLC0uXLmXSpEnk5eWxevVqBgwYwIYNG/TEgBKeTVgqqZopTUJCAkOHDqWwsJAvv/ySDh06VNTU/GuwLEfEMbBzR5kWh8S2CmnJCcTExBAREVGmPeTmzZs681iA/PzixXdgYCC5ublIpX//nzRKtYZR669w7XGGrmLucmQKKQd2c/vc2OL/v2S1kEqlYs2aNYSEhHD58mUOB55Bk6fQM5ZXpseTF3GWY6FHEKc+5N69e7q2vtKx42PHjmXs2LGsX79eJ+6Iy0nKK+H7Ew8oLMd/rABYeCSCTqamGBkZlYkNd3V15datW2WuP2TIEGbMmIG5uTkmJiavP8HP4fzDVKbtCqNQr31Iwq8XErC1NKNHjx7cvn1b7zG9evWiV69eTJo0iUOHDtGoUaMyolhFUxwMoC+ilqR/IRKjzc9g6bYjzF22iZzcNCzrtKYo8RGarCjebeKMIrwmDg4OLF26VGfoDJCdnf3cCqDDhw9TqFTT5KsTFJSaH5FUhhYZqfkqcsTV+WjxGgqSkxi06gJqLZw+fZrt27fz6aefEhcXh6+vLx06dKBr165EREQwbdo0Hjx4QI8ePZgyZQqDBw/WGU6/Cn9WpdegQQNCQkIQi8X4+voyZswYzM0rLlHuTdLc3YqfBzdmxp5b5BapEIlAIhYxo0st+jYuX8AVEBAQ+Dfw9//FJSAgICAg8JLIpRIm+lZnom/1Fx5XmJuLSKS/SO7RoLbu3z+fuqAX7/4sX375Jf/73//Ytm0bFy9e5LPPPsPPz4+uXbvSpUsXXTVHaUoSlp7HwoUL+frrr6lfvz49evT4fykiDW3pSmhsZpnENCO3htQZMpPzn/kRE/P4pc5lZWWl13rzT2DzxcdcjU7XW6ynhp5AVrMN03aGAWWrhS5cuKBXLdS8eXMqV65Mamoqrq6uSKVSmjRpQlaBEvEz82bp6w8Um4VrD85h7ty5jBw5Ej8/P1xdXXFxcQHg3XffJT09nfr1679UNce5h6k8o3VQEHWN7Cv7SBZB9dZNGDNmDNu2bdOLDXdwcKBJkya0bt2aBg2etkSW+PLMmjXr1Sf1Jfj2+L1nBKTiCp8CjPkh8AG17obw4YeTdPuKiop0VTNmZmY68eNZUayiqetkTqFKf5xG1Zph6N6Y5N1fYtNpAqM7NcZek8K4G3uY825LQg/exdyjPe9PHM/Wzb/pPLQ6depEnTp1yMvLIzs7GzMzs+deNywuq0zVi6YoH7HcGI0WCuLCMW3SE01iNFei0kmNz0Kl1pCSkqL3Wfes8FiSZNmkSRP69etHdHQ0bm5ufzoPeUUqkrILsTWVs3FNsafXnDlzdPuVSiUjRoxg/PjxtG3bVrddIpEgFotZv349KpWKMWPG8MUXX+Dr66urHP2n4Ve7Mhdn2PEgORelWkNNe1NkL2lmLyAgIPBPRRCRBAQEBAT+cxiZmRdHiz2H2UMH4ObmphN9Si9CSrYtX74cgEGDBuked+LECV3qU+3atVEhZt6KrZCbq+e/MmXKFGbNmsWpU6d0kcsbNmzgxx9/RCQSYWpqSk5ODt999x1xcXG6xdfq1avfzIT8Q+hcx569ofEE309B8cdiWgwUxd6iaO9sfjS6Rd++fV/oTfPhhx/i5eXFoEGDMDQ0/JvupHzWn4/WE5DgabXQ3tAjyNIfvXS1kI2NDY8fP0atVhMaGopELEIkooy4AyAVi5n16+7iMaxfX2b/zp07y2wrXdX1LAblLHJLvFzkUjE/TGuHvblhuWbCX3/9dbnnLPHleRPcScgus62kwidJakCrfl1o0aKFbt/Ro0d1xt81atSgU6dOxMTEYGdnpyeKVTT25oaIgGefwvy751A8eUBa8HqaNd+CRqWkUT1PNswajaurK+Z/iIGlmT59OsOHD6egoIB58+a98LrldU2VzI9IIkPu7InExAIAlVJBbsIjmvv4YihS4ejoqHuMVqtFJpPpqja1Wi1WVlaIxWLMzc3/NHSgQKFm9v7bHLyZgFQsQqlUoj21j2vB43THPOtJV8KRI0eoXr36v9KTTiwWUdP+3zduAQEBgechiEgCAgICAv85pDIZ9dt3JuzkUVQKhd4+mVxOy74DnvPIl6O1b3uUrd/nXlIOk7ffQFFURJ2P1rHKvyXvj3yPxo0bExkZSUhIiJ7hc3keJnXq1GH16tV06tTpP2FM+yJyilREp+Xp6XsyU2veWbCTjWN9eKdvH/z8/MoYNq9cuRKAjz76iFatWukJe/8kMvKVev/PvryXorgI7Id+g4mBBKNj83TVQrVr1yYlJUWXKPhstZBYLMbf3x8vLy/atm2LramcbKm4TMUNgEarpUsd+wq7j96NHNlwPrqMfxWAm7Ux9uavJt6V+PIYGLwZTypjAwlF5VT4GFVrhkwiYuGc4jkuEc569+5dxpvJzc2tXFGsorGtZEByrv5nkolnW0w822IoFXPxi07IpRLdvuDgYN24Sgt/zs7OBAUFvdQ1GzhbAMWvx/z7F7Dp+TF54adxGPmj7pjs0MMURF0ndulQUKvIUWj4ddVSDhw4gLu7OxkZGeTl5dG5c2ciIyNZuXIln376KcOGDUMikVC7dm3q1av33DFotVpGrLvMzdhMilQaioDcsEAMnFsy6JeLuuPOnDlD586d9SqLIiMj+eabb3R+VuW1IQsICAgIvD0EEUlAQEBA4D9Jm6H+ZCYnEnPrJhqN+o/2Ni0NOnWnlo/vK51Lq9Hw+NYNMp7Ek1mk4uDRE4jPh2Hk4YVB5aoURN9E1XY4fhO/ppWVFZcuXeLixYu0a9eOjh078vnnn+udr7SHSd26dQFwdHQkKyvrXy8iLVmyhD179pRb6TJn/22iUvP0xAm1WMrNxEI2XY4jLS2NDRs2lOtNc//+fQwNDfnhhx/+8hhfxsOqhIULFzJs2DAqVarEkCFDyM3NpU+fPkyePLnMsTXtTbkcVRx/rlUpUaRE6fZptE9FgPXr19OpUydCQ0N11VTlVQtNmDBB533j6+tL16ZV2HktTq8d0Egm4ZPONbGu9HqmxgCXLl1iypQpSCQSmjZtyuyvF3Eo7AlpuUW650okAkOphAX96v/J2cpy+PDh1x7byzCgaRXWnY/WVbeVIBZBq6rWVJL/c/7cHeXjzo8nH5SpWDOQiOjV0FFPQKooDKRiPutUlff3Rpe7X6tWkXfrJNbdp2BUtSnJW2cw+otltGjRlIYNGxIXF8ejR4+wsLCgf//+egl758+ff6kxhMZmcjs+S0/sK6nSO3PjCKKUhxw8eLCMJ11OTg7vvvsuWq2WLl26UL16dfz8/Dh69ChjxowhNDSUgwcPUqlSJczMzNi6deu/slpJQEBA4N+E0JQrICAgIPCfRCKV0Xf6HAYHfEfrQcNpM8SfUT/8Qtuho14pFSc9IZ5fPxjNgSULOL1pHVe3b+TTzj7UeWcqhdE3UCRHg1qJWqulUKnmalgEmZmZVK5cmVOnTunizU1MTLhw4UIZD5P/0q/qLzLJLVCoOXI7sUx1i6Yon0KlhrXnokhJSaFVq1bletN4eHjw3nvvMW3atAoZa8eOHQkODn6hgATw2Wef4eTkxKpVqxgyZAjBwcGcOXOG1NRUveO0Wi29GjjqWsFyw45hUtcPAFXUZQr3zaFLRz+MjIzYtWsXly9fpnPnzjx8+JBZs2bRpk0bJk2axMiRI587li961WHJgIY0cbXEwdyQ1jVsWDOyKaN9Xi2K/tKlS3h5edG6dWumTJmCq6srQUFBnD17luTkZOIj7/H7h60Z3soN60oGmBlK6expz773vWnsYvlK13obfNC+OlUsjTCSPRVg5FIxFsYGBPR9fnXMn5GQkEDjxo0xNDTUi2B/EYmJifj6+tK2bVtGjRpVZv/o1lVpWdUaYwOJriLPxEBCdTtT5vSsU+Z4X19fnQ/Sq6BUazh6+wnfn7jPpouPSbx8hJmTJ+jSwsRiESKNipQDiymKj8Bh+BKMqzVDJBIhFovp2dAJgNWrV5cbJvCqnH+YWsas3dLXn8oDv8Km/zysnKrSs2dPoNiTLiIigk0bN7Jk8WKSk5IwMzNDIpGQk5ODs7MzgYGB9OrVC5FIxMyZMzlz5gy9e/cut51TQEBAQKBi+ef8NCMgICAgIPAGsHVxw9bF7bUeq1Gr2fHlDPIyMihxMhED5iJ4J+kwMVUboyjIRZWdwpP1H6EpysO4WnU+++wzTp48ia2tLY6Ojpw+fRpnZ2dmzpz5Uh4m/wYKFGo2Xohmy+UY8hVqWrhbYfn4lJ5JbmlfqOXrNpN0cAlamTGKxAcYVW2KOi+dgshraDVqksxsqGZuxOHDh4mPj8fT0xNLS0s9b5rRo0ezYMECFi1axNSpU+natSs3b96kc+fOzJ8/X8/3pjRarZZzD1PZfDGGtLwiPIwLOBkUpPOwMjAwwNXVFQ8PD1q2bElaWhpz586lR48eLF++nFmzZhEZGUm3bt2A4hbEq1ev0qVLFwBi0/PxX3+FhMwCRKLiyo7C2Nu4tOhF9rnNDOzXl0Vb5rL611V07NiR/v37s2zZMgIDA0lJSeH69eucOXOG7du3c+TIkXLvoaSlqUtde7rU/Wuta66urhw+eoILj7MJ+GQiF+5E0tfPCwCpVIpGo+HdXl1RKpW42dqyY8cOJBIJX375JUFBQYjFYtauXQuAv78/ZmZm5fpXvS1MDWUcnOTDjiux7LoWh1KtpVs9e4a1csPK5PVb6F7HvH3Lli2MGjWK4cOHM3bsWG7evKlnMi6TiFk7shmXotI5cDMBlVpDJ0972tWyQyJ+vSj5Z4lOzWPgqgvkFqnIK1JjKNaSsG8n27fvoK6TORuntWNG+jGiQteibtINsdNT8Ur9+Dp1atekgbsDSqWS06dP8/777+sZX78OcqkEqViMQl22HVMsgonfb9H51GWnJuNXxZaYY3swF4mY0aUNLfsNolGXnkycOJGNGzciFovJzs5m586d2NraAsWvXYmkWEhs1aoVTZo04dy5cyxcuFD3XhUQEBAQ+OsIIpKAgICAgMBziLx+BUVBAaWtcAuVKgxlUkRokD2+gqTlUFTZKTiM/JHMU6tp0bYlMpmMS5cuoVAo8Pb2xsLCAgMDgzIeJqUrDCrqF/Tbt28zbtw4JBIJ1atXZ+3ata9UefUyFCrV9F95nkfJubq0qcM3Ykk7tJ+uA4qrFkJDQ/V8oRQqDSJA7lIXqw7jiP91PLa9pmPZbgxJ2z7HZ8oKnMLW0atXL9atW0eLFi24ePGpV0pJK9iMGTN02wIDA/90rFqtlk923uTI7URdG9gN1FiMWMFP432Y9f5wpk+fztGjR0lNTaVZs2aEh4dz48YNZs+erTtPzZo1OX36NLVq1eLMmTN4enoCxRUf7/5ygeTsQp3pdd6dIEw822IglVDXyZzvBjTk4sWLnDp1im3btumN7/Hjx7qWxoYNGz5XRPorJGYV8tPJB/x+6wkarZaa9qbcis9CKhYR+ySXqdtvMP79D3E00pD4JIE1a9Zw6NAhFi9ezJo1a2jSpAkLFy4kPj6eqlWrEhERQZcuXejSpctz/aveNsYGUkZ6uzPS+6+JWMnZhfx+6wl5CjVNXC1p4W6lt/9Zw/xRo0aRnp5OQkICw4YNo0mTJkRFFbcx5uTklNueKhKJaFnVmpZVrf/SWMtDq9UyfO1lknOKKClsTL1xAsNabZmy4wamKg1isUjnPfTDrFGsOP2IyJQ8LFTpxEce5VRQcXXeb7/9xuDBgytkXF3q2vPt8Xvl7jOQiulRv9jAuyAnm00zplCYm4NWU/zZUqBUsuKbBZwc/z4NmzZj0aJFKBQKvTTM3NxcVq1apXv/pKWlMWfOHJRKJR988MHfLiI920K7atUqXbpdCcHBwYwYMQJ3d3dcXFzYuHEjKpWKoUOHkpSURLNmzfjmm2+ee42SVuJdu3axZs0aZs6cWeaYkvZcJyenN3KfAgIC/z8QRCQBAQEBAYHnkBYXg0pRpLctKjWdo7fvIRWLsXSsQY5DDdTntpC0cy4yYzMau1pw4MABli1bRn5+PkOHDn2rY65Zs6bOp8Tf35+rV6/SrFmzCr3GtssxRKbk6sWV59wOwrBWGz7ecRMJxR5GXl7F1S0ikQi5TEJVWxMyHdzRABITS2Q2rogkUsQiER+0r87esKceUSWx63+VkxHJegISgBIJSi18sO0mQ7p3Jy4ujlu3bpGVlcXUqVM5e/YsGo0GmUyme8zYsWMZP348+/btw9HRURd9HhieRE6hUi81TZkejyIpkvybRyH5IfPmzePMmTPs3bu3jKDn6upKeHg4AGFhYRVyz6VJyCyg+09nySlUofpjkFeii03dFclRKPOy0Fi6YNJpMk+Ofsd7gwbx+++/s3LlSkJDQzE3N2fgwIF8++233L9/H6VSSc2aNXUm2eX5V/1TSUhIoEePHoSHh5Obm0tcXJzeQn7VmUd8d/w+ycdWYNlhPLkXd5B9/TC25sZAWWEUYM+ePWRnZ9O3b1/GjRuHSCRi9uzZLFu2jGbNmuHq6vpW7/FyVDppuU8FJHj6esy7eQRNkr730LUjW/ntD++h7t27s2frb5iYmABw7949bty4wcqVK7lz547Op+h1qGJlzEgvNzZeeEyBUt/Tq3dDR2o7FLf33jj+O4qCfJ2AVEItO2vqOjtwr1JlncF2CVqtllGjRhEQEKAT7WxtbbGzswMgMzPztcZc0XTs2FH3WouOji73mGHDhuklHO7du5cGDRowY8YMJk2aVKayrYTSrcT29vblCkhQ3J4rICAg8FcRPJEEBAQEBASeQyUra6TPJErVdrBjSsfWTOzQhlpePRGJxNgPnIfb4K/5bvmvTH1/PAMHDuTs2bNcu3aNKVOmAC+OVK8IUmMf8+DKBdLjYnQLXLlcjlqtpn379gwYMIBGjRqxZ88eOnXqhI+PD3l5eSiVSvz8/GjTpg39+vVDrS5e4M2aNQtvb2/at29fZhG27UpsuVH2OaG/c2vNp9y6fZv79+/rVRJptVrqOprT3N0GQ6kYsUiEoYEEA6mYymaG9GpQXIlQ0VVTGy9E6wlIUOzDBJCRr+BwYDDVq1dHLBaTmZmJr68v69atK5M0ZWJiwqZNmzhy5AgajYaWLVsCEBaXRV7R871ebKpUQywWExsbS69evfRSpwAcHBxo2LAhrVu3JjAwUE+4qggWH7tHdoFSJyCVoC7IIf3ESqy7Frdhxqz9kKzsbA4dPsKJEycwMTHBzMyMgoICNmzYgEwmo3bt2syePZvg4GAWLFgAUK5/1T+Vkva0kueuNOcfpfL9iQcUqTSY+41HowV53Y5Y9/iYjLzi1L1nhVGRSIRWq2Xs2LHMnz+fypUr89133/HZZ58RERGBubk5Z86ceav3+Dgtn2ed1Upej7bvfompg1sZ76Ft27axbNkyoqKiGDVqFL6+vkRFRbFo0SKOHTvG0aNHqVOnzmsLSCV81rUW377bAE9HM0wNpXhUrsTXfeqy4J2n77WHl8+jVuqnHKr++EwSS6SIVUrs7Ox0n1MAc+bM0X1WlfBP8ZqLTs3jTkIWRUo1p06donXr1nz//fe6/UqlksGDB3P69GkAtm7dSuvWrdm6dStQnExXv36xmX3Dhg25cOGC7rGx6fnsvxFPYHgSK35ZpfOuio6OZujQocTExODr64uvry92dnacPXuWkSNH/uPFXgEBgX8+QiWSgICAgIDAc6jRwouTa1aUu89AIsalRRvys8W425ow2sf9bzEdzk1PY9/ir0iLi0UskaDVaHiYlceJe1HU9vQkNjaWS5cu0ahRI+zt7dmwYQPHjx9n/vz5HDt2jL59+3Lo0CGMjIyYNWsWQUFB2NjYlKm4KM2zogwUL1QBTOVSJL/PZfbs2cycORNvb29d649YLOLrPnXRmlam52FjPutamy71nOgfbFTh4lEJyTlFZbYVxd0h8+wmJDID6nduT4sWLWjUqBGZmZnI5XKkUqlOLCjh2rVrfPLJJ4hEIqZPn46xcXF1inUlA+RScZmIeSg2d562cidjWlfVa40D9OLkv/jiC6RSKdu3bycyMrIC7vopR28n8oyXOVqNmtRD32LZbhSSSpakB65CU5SHxMaZnLx0TE1NOXHiBEVFRfj4+NCxY0eGDBnCpEmT+Prrr9m5cyeWlpa4uLhgZ2dHnz59SElJ0fOv+jt4tpVzzpw5TJk2g+b+c1k69T1ad+hOTGgwhgZPhbr4+Hh69+7N+duPMOg4BZmFPYmbpmM/9Jtivy61kiKVmuTsQmrWrMnBgwf54IMPgGJxIiAggPbt2+v8uLRaLVZWxS1w1tbWZGVl/em4XyYt8MaNG7pEwMePH/PRRx+VmxDobGXE895JUrGI95c89R4CWL58uW5/6VbRZ3meCP5n7bMBAQH8/PPPjBo1iq+//pru9R3oXt/hudcRS8suTe4mpnDmfhQisZhmPq0ZNGgQGzdupH///vz0008sWrQILy8v9u7dy8CBA5k4ceJzz/+2uBGbydQdN0jILEAqFqFWKpi66nc+7ORJnz598PPzQ6lUMnLkSCwsLJg5cyZHjx7l7t27KBQKOnToQIcOHXRttN27d+fUqVPUqVOHIpWaqdtvEhiRhFQsAo2a2D072by1n94YXFxcCA4OJjQ0lC+//BJvb2/WrFnzN82IgIDAfwlBRBIQEBAQEHgOBoZG9Pr4c/Z/F4BWo0WtVCCRShGJxXQa/yG1fdr+rePTajRsnzeDrOREvfYPNyMpH7Vtxi2pGeHh4fTs2ZNt27bRoUMHnJ2dAXB0dCQjI4O8vDzGjRtHfHw8SUlJ1KhRg/T0dL2KixI0Gg1isZg2HjZsuxxbproFQKXRcimkeMEZEBCgt6+079Pd0LJ+R6X3lxZZ/gpNXC15mJyrN1ajas0wqtYMuVTM99N8AfTMzkNCQsod86lTp8qcv1dDRxYfK9/rpWT/nzFz5kwuXLiARCJhx44df3r8q6DSlBW38u+eQ/HkARnB6wCwaD2Uorg7iA2MaNrICw8PD+7evUtAQAAnTpxgw4YNKBQKVq5cSWFhIbGxsbq2IWdnZz1fl7+TZ1s51wbe5NTdRG6fiyQ9t4hjZy+hysykttNTsbfE06nJR78QeX4X1p0/0O0z8fQl8bePUedn0qdnN5YuWYyrq6ueMBoQEECLFi3YunUrI0eO5H//+x8jRozgyy+/xNrams8///ylxv5sq9OzolLDhg1174nevXvTrVs3hg4dSmxsLDKZjG3btmFjY0NLd2vMjGTkK9RlKpKkEhHDW7m99vyWx4vaZzUaDWPGjMHLy4uTJ0++1PnqtPEjNfYxqqKn4m9dJ3vqOtljYGzM/37djEQi4dixY7r9CoWizHlKi14V9VnyskSl5jH414vPiO0SVl98goGhMT169ODQoUOcOXOGDh06kJeXB0ClSpUAkMlktGnThgcPHtCzZ09OnjyJn58fbm5uVK5cmbn773AyIokilYYiIDfsOIa12jBt102MivRTBNPT0/nkk0/YuXMnYrHQgCIgIFAxCCKSgICAgIDAC3Br0JgxP60m7OQxUh5HYengRH2/zpjbVX7uY5YsWcKmTZswNDTU/UI/fPhwTp8+zRdffIGPj89Lt7dNmjSJW7duUbVqVX799Vdd+hDAkoCv+GXHPtRqNUNaNMLc2BCVWo1UIiEzO5fjj5IwqWqMbX7xwkIikSAWi/nkk0/YvHkz5ubmyGQywsPD8fX1ZdeuXRw4cACpVMqJEycwNjZm1KhRjBgxAlNTU+7fv8/x48cZ36Yae0PjUT3TxmUkkzC2jTvGBv+cPy/GtK7KnuvxqDT6Y5VLxfjWtMXB/K95L9mZGjKvVx2+OHgHpVqLWqNFIhYhk4iY28MTO1PDPz3HokWL/tIYXkQzNyvOP0rT22bi2RYTT30B1HHkj7jZmHDo47Y64XDmzJllvFVKRLXg4GD27dv3xsb9Mmi1WoLvpbDp4mNSc4to7m6Fv7c7DuaGpCQkINm1jGo5DxkQ9SsB2QmojU0pSHzEnSJHRo8ew549u4Hiig33XpMojLnFk40fo0yLRZkWR17EaYw92yJW5LHv0DocLYzKJAAWFBSUGVdJa9LzKMrPIyzwKBEhxceZVavFqVJpgQ4ODtja2hIcHMz69etZv349I0eOBCAvL4/ExERyc3MxMDAgKysLMzMz6tevz88//8zq1avJiUvApOM0tMZW5CnUyKXF4kFAn3q425j8pTkvUqk5HPaEPdfjUWuKU/DeaeyMiVyqa59t164d1tbWdOvWjVGjRhEREaF3jkuXLjFx4kRq1qzJvXv3uH79um5fHV8/bhw7RGZyol5bm9RAjp//BCTSim33fBOsCH5IkbJsC20Bxiw/9QDrg8tpW6saHg52xD2Opm6DhgB8++231KpVi2rVqrFkyRI+/PBD5s2bx7Bhw5g+fXqxIXvrdnzQoTd27y0gcctnVB4UUNxKfOMYOTeOoEl6wMGDB4uvqdEwevRovvvuO111nICAgEBF8M/5K09AQEBAQOAfiomFJa36DXqpY0sMTo2MjHQVLf7+/ty79/xqledx5coVFAoFwcHBfPfddxw6dIjevXsDxW04wcHBjG/bgtIuuiWtHwBiSydSLAYSdecaX/92hKysLNRqNffv38fNzY1Ro0bRrl07pkyZwrlz52jbti0nT57kyJEjuLm5MXnyZDZt2oS9vT3e3t4sW7YMKDbJ3T6uFR/vuMnj9DykYjFarZYJbavxQfvqr3yfbxJ3GxNWDW/CpC2hqDRatGhRqbX4VLfh+4ENK+Qag5q70KCKBetDonmYnEt1u0qM9HbTmQX/nUzvUov3Vl3UMzMuQURx7qCRrNibatWwJq/UVmhhYcEPP/xQYWN9FUpS936/nUjBHxUf4U+yWblxB6Jzv2Iu1lK3Xk1EaBGrFSgK85jQwJWVuRkoMp6QkqfEysqK3NxcRowYwdYd60BRgP3o5SRtmYHUqriCTCISYWdmiKNFxRi952dnsemzyRTkZKH6o4ImJfYx07v5UmfCXOZOm0T71i15/PgxrVu3xtnZmc6dO/Pll18SFBREamoqfn5+ODk5IRKJePLkCSNHjiQ9PZ2vvvqKCRMm8N1336HYPZP/fb2cAjM3KpsZ0rex00sJmi8ir0hF/5UXeJyW9zTpMDaT+Ss2wdWt1K5VE2tra5KTkwkMDNQTvEvz1VdfceDAASwtLcsYj8vkhrz39Xdc2rud26dOoCgswNa1Kt4Dh+JWv9FfGv/b4tyD1DItpCUttGKJFFMLGeRlk5OWijYtjSRzM1JSUsjOzmbcuHEYGRlRrVo1MjMzuXDhAqdPnyYsLIxhw4ahMLTk2beopa8/RQn3qDzgS9K3fUrPnj25dOkSISEhhISE6Noe/6736n+NjRs3smHDBtRqNZs3bxaS7gT+XyKISAICAgICAn+R2PR8sgqUaKJvs3ju55iJNCRFPuTy/l2s2HuIE4GBpKamcvv2bV18/J49e5g8eTJGRkYcO3aMDz74gJCQEIyMjGjVqhU7duwoY6p64sQJWrXvTF6RmsAjRxBJJPxy+hJ2lYzp3bAOx+7c51FyGhKJmKFezVh57SGGFvYolQq+/HAUNy6eZeSwwVhYWBAZGcnmzZvp06cPPXv2ZObMmdSoUQNfX1/q1q3LokWLCAkJISgoiJEjR9KkSRO9e67rZM6xKW2ITc8nt0iFu40JhrLyF41/N61r2HJlVgcuRaaTWaCgvpMFLtbGFXqN2g5mLOpfv0LPWRE0rGLBOv9mzNp3m9j0fEQisDIxYHhLVx6nF5CaU0Sratb0b+qMmeHLV3mUGPb+XZy6V5y6V1A6dU+txcSlHqNaN+XAtZtEJCQBcC06HhMDGXuDT6JIzwStlhtXLmBZqRLm5ubs3r2blMR4Gvp0JdtAhkgEIpEYdUokRWlx5FaS8v777/Pzzz//5XGf3rSWvMx0NKWMoVGrKcrJYc8vq4gyrskvpx/Sqf8wtv/6E40bN6Z27do60bhHjx7Ex8djY2NDUVEROTk5rF69mp07dxIeHs6hQ4dYuXIlhw8fJmTnLxVaLfbTyQc8SslFUcr/q0CpRurcmC5duiG6sI5Dhw7RoEGD5wpIANnZ2bq22ho1apTZLzc2ps0Qf9oM8a+wsb9NjAzK3ntJC61Uo6Rjwi6slJnUsLPBWC6jgbkBcVZWzJ07l+vXr+Pi4kLv3r05e/YscrmcEydO0K5dO0aMGMGTbMVTn7pyBN82U1dQVFSEkZERrVu3Jjk5WW9/yT6B1yM+Pp7Tp0+/dHumgMB/FUFEEhAQEBAQeE3uJ+Xw0bZQIlPyEGvUKIqKKIxKZ3JTN9QqJQHz5nEy4iGdunTBzd2dK1eusG3bNmrXrs0nn3zCokWLiIqK4sMPP+Tzzz+nUaNGfPHFFyQlJREUFETNmjXZvXs377//PrsOHuX3q/fZs+gUUrGI9JAQnDVyJvr5cODqTc48iCI9L58P/LzQarWoRBIKDK2QFeZRFBeOsaMHv1+8TbNmzYiPj9d5sJQsSEpXoJRXjfI8P40qVhUrxrwpZBIxPjVsuHTpEoN69kcikdC0aVO9pKT/Ki2rWhM4tS1J2YWoNVoczA3fmJH52+K3C4/LGLxrVUqcC+NQi8QYyqRI/xAyknNyKVCosDGVIJfJUGhFeNapR/T9O7z77ruIxWJOnDiBqSqDtWOb0u93Cwa2qEJUtjfDenemc+dOFTJmrVbLvfNn9AUkoFCpwlAmxS37AdnROZg26cnJ0GNci8nC1taW2NhYzpw5Q5s2bQgNDaVHjx4cP34cc3NzGjduzOTJk1m1ahV5eXmEh4czZcoUMjIycHd3r5Bxl7D9SqyegATFc66Syjh+J4m+JpUwMjL6U+8dMzMzEhISsLCw+E8mhQ1q5sJ3x+9RWI7ZvrE6H0tlJlD8ukyIzeZiVCzx2XksX75cLyVyzpw5usQ5c3Nznjx5Ujy/hVmIRCCWm6DOTUckNUCdl4GxgYShLZwZO3ZEuV5cGzdupKCg4C9XzixZsoQ9e/awadMmZs2apeeJdvz4cb788ktdKmhAQAA3btzg2rVrjB49+i9d9+/iUmQaP518QPiTbApuB2KTm0X79n7UqePJDz/8QEBAAEFBQYjFYtauXcv27dupW7cu3bt3Z9++fTx69IgxY8YwZMgQsrOzadiwIT/99NPffVsCAn8JwWFNQEBAQEDgNUjOKaTfivPcfZJDkUpDgUZEVsQZNPV7cNraBwBTuYyu9WthKjcgLy8PW1tbxGIxycnJaLVaBg0ahKOjI1FRUUyfPh03NzeWL1/OiRMnSEhIoGHDhtStWxfv1m3Zcf4+WVpjFCoN+Qo1SokRcUbVSGs3jppO9ijUalytLdEgQiWWcdGqJWInTzLPbERTlEdBwj2+nfkRtWvXxsnJiWPHjtG+ffuXSo/6L+Hq6kpQUBBnz54lOTmZW7du/d1DemtU/qMt698uIAGk5pY1Uy6Iusa1vUtZdfIsOYUKatrbAtCjQW3sLUwZ37YFVhZWSOXGpCfG8uTJE3bv3s2KFSvw9PQkMzOTto1qkp3wiAs/T6W6nSlz5sxGrVZz6NAh2rRpg5eXF0ePHn2tMWs1GtRKVZntUanpfH/iLMtPnkVayRKplRNF2Wn06dWTyMhIrK2t6dSpEzNnzmT8+PFs3LhRLwXOxsaGnJwcTExMaNasGT/88APDhg3jxIkTLxzPxo0b8fPzw9fXl/j4+BceGx0dzaOdC8psL4i6RuKWz4j7bToJiUl06qQvuK1Zs4aPP/6YzZs38/777wMwe/Zsevbsib+/P1WqVHnhdf+NDG3pipuNCYbSp8ssMdriKqSUIF16Xo8GtRnXtgVj27bEvYozkyZNolGjRtja2pZJiRw3bhw9e/bkiy++oJabM+ZGMqyadCV595dkhWxBZmKOT3Ub3m3mxpkzZ+jSpUuZcQ0fPvwvV6aVtGs/j3bt2nHu3DkuXLjA+fPnSUlJoWHDhv9aAWnPtThGrrtCyKM0MvKVJCUlcSsmFfv3AjA0MuLrr7/WVQn+/PPPLFiwgMGDB7N9+3YAdu7cycCBA1m1ahUDBw7kzJkz5Ofnc+nSpb/5zgQE/hpCJZKAgICAgMBrsOF8NEUqjV4CkjI9nrykSIJugDYrl5ScXLILinCxSCW7SKFbvDs7O+Pq6sq0adOoW7cu9vb2dOzYkfz8fL744gtmzJihqxCaM2cONOpHxDfzMXJ/2lImd6pNzs1j7I6GPo29Kbx/h9v3HhBpWp3rpvVINLBD7iQlL/w0tr0/RZ38iMo5d/H39yczM5P09HS2bt0KQP369Rk5ciTnzp3TSzIqLzXN3NycRo2KvUn27NnzrzBszSpQcjU6HalETAt3WwxlEm7fvs2JEyc4d+4cHh4eHD9+nP379/Po0SOsra35/fffycrKIjY2Fnt7eyIiIggMDKROnTr89NNPODg48O677/7dt/b/lubuVtxNzEZZynzGuEZL5FUbMip2I1JtcbXP4JbFr9UP2nuhEEmp02UE2sQbLF/6E23atGHVqlVMnjyZuXPnsm/fPjw9Pdm9ezeZmZnMnDmT69evIxKJ+PbbbwkKCkKj0dC1a9dyF+l/hlgiwdLBkYwn+oJNbQc7ajvYkSk147cqQyh4dAVNfiZZSgOGvfcuCxcuJCAggAULFiASiVi3bh2jRo1i7dq1SKVS5syZw7p166hWrRrr1q1jzpw5SCQSFi5cyOzZs8sdy+u05VSSl102GNdoiXGNllgaSdkwuxNisUivMmX06NFlBIQmTZpw7do18vLyyohO/wWMDCTs/Z83Gy5Es/1KLPkKFZ6mKlxu7MOsKLHM8VKpjMO7dwHPT4ns1q0b3bp10/0/K1/J9qvVCG7fCTNDGQObVaGthy1i8YsF4tu3bzNu3Dhd4MP8+fNZu3atzkC/ZP+dO3d45513mD9/Pt8v+4U+oz7A2cKYg9vWMWLECPr27as7p1KpZMSIEYwfP562bYsN+9VqNfb29piZmREcHExgYCBff/31a8zm30ehUs2s/bf1/OTEchPEznW5EZtJnWqNUCXeJzg4WNfa6+DgQJUqVUhPTyctLY3MzEycnZ159OiR7vlr2rQpDx8+LGPSLyDwb+IfJSKJRCIJcBWI12q1Pf7u8QgICAgICDyP0/dTyrR2WPoWe3gYqItI/XU0D5PTSM7O5V5qBn6dOusd27BhQ0xMTDh8+DDdunXj2LFjhISEsGzZMry9valZsyYajYb27dtzMz4bHOshd6ype7xB5aqIpQbE/Dady7XdOLJ/L7PmzGXF1oOoREHY9vkcuX0NlGlxWLjVo5GnEw8P38XExARDQ0PS09Pp378/S5cufeEvy89Sr169tx6Z/bpotVq+O36PX89GIZMUVwWoNRo+61qLuvIimjVrxsqVK2nXrh1Xr15l586dLFq0iMDAQMzNzZk2bRqfffYZY8eOxdLSkj179lCnTh2OHj3Kzp07/+a7+/+Nv7cbWy/HoHymNQy5MRnVfbB8GIJU+7TqR4WYJLWckFOHuHzyEB413CgoKKCoqIjs7Gzc3d3x9vbm8OHDFBQU0KBBA7Zv306jRo1ITU0lIiKCDh06AOgqCV+nosvnveEcWbYElaJIb7tSJOWCZXPgqX+Onamcb2YWX7O8pLxdu3aVnRd/f/z9n+8llFek4n5SDkd270etVuPn54enpyeTJ09m7Nix2NjY8ODBA2bPns3KlSvJz8/n2LFjAFSWFhC5fwFFGYnYvjMbtGpSf/8BA2Mz2vXpiVjc+bnXLU1ISAhz5swhJyenWCT/D2JkIGFC22pMaFsNAJVSydqPtpGbL0arefq9IZFKsXRwxKlWnVc6v7mxjHFtqjGuTbVXelzNmjU5f/48UPxaiYuLY+bMmRQq1eQWqahew4Pz58/j6+tLoVLN8J9+J0bSgiO/XaOoSEHB8T1cO3VYdz6lUsnIkSMZN26cTkBatWoV33zzDV26dEEul7/S+N40Ja14u3btYs2aNWXeUyWsXr2axT8spbBeP0SuZX+8yVeo2RsYQs+6tnTq1ImlS5cCxfMB0KtXLyZMmEDPnj0BqFq1KteuXaNOnTpcvXqVMWPGvOE7FRB4s4i0Wu2fH/WWEIlEU4GmgNmfiUhNmzbVXr169e0MTEBAQEBA4BkGrrrApcj0cvcZqIvokXwEp8InyAwN6TjmfWq3bvfa1+rywxnuJuaUu8/EQML28a2o62QOQFJ2IZ/uDuP8wzSkEhEiYKS3G1M71kQsgsdhodw4dpjczHScPGpzLTGNxs1bMGfOHDZt2sSoUaOeu5A0MTHB2toaT09PvL29WbBgAVeuXGH69OkAXL9+nTt37vxjWlTWnIvk22P3yySTqQtyyD20gAN7d9G6fg1cXV0ZOnQox48f58qVK3z00UfExMRQr149QkNDuXPnDsOHD+fMmTN069aNb775hlq1apGQkPCf9HT5t3A5Kp3/bb5GgVKNCBFKtYa2HrZ0r+fA2vXbaZhyGVN1LiqRlNvGHuwNPol126FMH9aDD9rXYN68eeTm5mJlZcWMGTNQKpW0adMGb29vevToweTJk1m0aBEdO3akU6dOHDt2DIlEglKpRCZ7/aj5myeOcGbTWhCJyFeo0Gi0nLdqwS2zerpj5FIx49pU5eNONV9wppdHo9Hy7fF7rA2JQioWk3x2G6THcGT/TnYsX0TlypX57bffuHbtGtu2bWP79u3s37+f+fPnU6tWLRo3bkzfvn3534+7mLvkF7SFOZjWbMnjLXOYu+4wM7rX+U+0Sb5JctJSObBkAakxUUikUlRKJVU869Htw2kYVTJ95fM9W1W0du3acp+DDz74gL7vz2bH3gMc2/ADH0/+iEkTxzFhwgT6DBjMh7MXgu8k0i/uJP3sFlAr8fH24X6enOz0FMTGFlh3n0Lc8hGIDYyxb9CG5PN7aNiwIVeuXEEqlXLw4EEWL15Mbm6u7pq7du1i7ty5ZGVl/a2VSLlFKrRaLQYiDePGjePRo0e6Ktvn0alTJyYG/MLsQ/fJLdJvQc0IWkNR4gNsbWx4dPEYixcv5sSJE4hEIt577z3GjRtHRkYGVapUITo6GhsbGzIzMxk8eDA5OTnUr1+/Qkz6BSqGhIQEevToQXh4OLm5uUil5dfYzJ07l+PHj7Ns2bIyQSP/VUQi0TWtVtu0vH3/mEokkUjkDHQHAoCpf/NwBAQEBAQEXsjg5i7cissqY+4Lxf4XDoWJiCVSTCwsqdHS5y9da2DTKiw6dpdCZVmjVhO5FM9SUfKVzQxZ79+crAIl2QVK7MzkyKUStFotgauXE3H2FMqiQgASox6x+cJ1BvTornt8RkYGgYGBbNu2jQ0bNnD8+HHmz5/PsWPHeOedd3jw4AGWlpZMmDCBgwcP0qtXL4KDgzly5Aj79u37xwhIGo2WZUEPywhIWo2a1EPfYuE9gsEBmzG6uQMrKyt2795NQkICANeuXaNKlSokJSWRl5dHQEAA+/fvp1KlSiQlJfHjjz8SFhZG3bp1/45bE/iD5u5WXPq8A1ej08ksUFLH0QxnS2NWn40kvFItbhrVRKTVoEVEXsQZChMfknxyLQsvbabJmqW8++671K9fn4iICABkMhkGBgZ4e3vTvHlz7t69S8uWLRGLxUydOhU/Pz9EIhGenp5/aRHYoGNX6vh24MmDuyRlFTL+WAq5KhH8UdloJJPgam3MRN9XqzJ5Ed8dv8e6kOg/PkM0qKVGYF+bYWsu82kTL+Ie3MbT0xOxWIyjo6Pute3o6EhGRgYAnp6ejG1TDefCzmw9cBS/bp4cfNKKz3v8O94HJVUoLxIQfH1931ilpam1DUMCviMz8Qk5aSmYV3bAzMb2tc/3bFXR1atXadasmd4xcRn5hDr35dS2UGL278a2/WQWBcfx7Xe1aFi3NjOPRPMkqwArpZKc8HM4TlhL0sapXLh0GSP3xmg0akRqFQVR19EqC5HaupF6PxS1Ws3QoUORy+XcuHGDDz74gP3791OtWjXEYjEtW7akVq1aGBkZ/W2+e6ExGcw9cIfwhGwAZPdP8L8+fXj06Duio6N1puCbNm1i2bJlSCQSli9fzoMHD7h8+TI5U4aTW38kmNnrndey/WiMZBI+7vR/7J13YE33+8dfd2dPmTLFnjETGYTYu0rVFtRWurRFUTWqrdGlSq3aexMEscXOMEJIQrbIXjd3/f5Ic4lEa5Z+f+f1173nnvMZ55zcm8/7PM/7qY5cLq8wShCgffv2VKpUCQALCwv279//2udcEU+LvkpKSqJKlSpERUVRtWrVNzK2twErKyuOHDlSJkWzIo4ePcrZs2f/pVG9/bw1IhKwCJgEPFWKF4lEI4ARAC4uLv/OqAQEBAQEBCqgcz0HNpy/R/j9bL1QIUKHRKuhfdZJZFIpHk28aDN8DNKXiFoAeL+ZCxsv3CfuYT7KvxaaIoDMexQcXEHLYINyT6LNDWWYG8rw8/Pj1KlT3L8WyY2Tx4hLSSUhMxuvKi5ciInH08mePQvnwl+Ryf+0kCz1QOrRowdXrlyhW7du3L17l0WLFrF79+6XmuerJKOguEKBr+DmKYqTb5MZuhKAjkGfYZVwilWrVmFsbExhYSGZmZnY29sTHByMg4MDPXv25N69e8yfP589e/awevVqCgsL6d+//789LYEnkIhFeFWxLrPNxcoIuVSMSqNBJypJYzSu3RLj2i1RSMVMCKxG8+Yliya1umyUwfHjx/Wvi4qK9K+f9KR5HipaxEllMpxr18MZMJjUgoHT/mDRrCnU7zWePs1cebeREway8qXiX4R8pZoVp+PKCKqlaTlKlYYVu4/RvrbtUys0PlnB0VAuoUolY1rWsOGw/G1aSjydpxlCa7Xaf6wm96qxsHfAwt7hhY4tLizgxqlQ0uJiMbOxpU7LQEwsrVAoFDg7OxMUFMT9+/dxcXHB2dmZ02atuPTrh1i0HExBTBiJabFYth6GSd+FZESu4/7Vk+h0oC3IQWpuh9TIHLGpNSIzG4oLctDpdKiykniwfRYGrp4oHKph4NaQrJ3f0LVrV5YuXYq7uzuGhoZERERw4sQJNm7cyK1bt+jUqRM1a9YkJaW8D9TrJioxm37LwvT3vE6jJjnqIr/Waoei6NHfvEaj4aeffuL06dMkJiYybtw49u7dyy+//EJISAiTd15nT3gihY89wBGLwEghoXeTih+Y3Lx5k+HDhzNnzpzXO8mn8HiEmru7O/n5+dy6dQt7e/syYteiRYvw9vZ+I2N8k+h0OnZdTWJxaAyJmYXYmRswskWVMvsMHTqUe/fu4erqirOzM5UqVSIiIoKAgAA+/fRTzp07x6xZs/R+kUOGDPn3J/KGeSuqs4lEoi5Amk6nu/R3++l0uqU6na6JTqdrYmPz4sq9gICAgIDAyyKViFkzzIspnWtS3c4EOzMFHeo6sH2cP7PmTWXs8g10/egLDE3N/rmxf8BQLmH7GB/GBHjgaG6AhaGMVjVs2fpFL6KuXODkyZMA/F2ad3jIflTKIipbmuNVpeRBTFpuHmdi4vkl+BiRkZHs2bPnbxeS+fn5aP7yoDl9+jQeHh4UFBQwcuRI/vjjjzfmfxEVFYWPjw/+/v4EBQWh0+kwlkvRVpCyb1y7JY5Df8XApT72/b7lzOVrbN6yBUNDQ8zMzJgwYQIpKSns37+fhIQEHBwcaNmyJevXr8fe3p6mTZvyyy+/cPbsWby9vQkJCdG3/TzVrv5NHh/X6dOnGTBgQLl91q1bh4+PD126dCEnp+TJ/Y8//oiXlxfNmzf/Tz2BbVXTFgNpxQKMWCR66uLvVaHV6kjKKiQzv7iMePHkIq4UmUTMxLbViTu+hd3jW9Dfy/WVCUgAt1JzkT5huFzqqZa47guuhV+mV69er6y/twGdTsel+Ex2hycRmZDNsmXLGDx4MFBSaa5Vq1b06tWLVatWsXTpUry9vfniiy/0x+/du5fGjRszcuRI/PxeLpL0VZFy5zZLxwRxfM0KIkIOcHbrej56pzPVqlQhLS2N+Ph4FAoFISEh1KhRg9QcJUnZRaADA6c6GLo3xrrTBAyc6qDW6LiVVoBGLAdAbGSGOicNbXERuuIiRIDc0hGRRII6KxWR3AhNbjrK1DtIxSJcqtXGzc0NpVKJr68vxsbGtGnThlGjRtGnTx++/PJLvvnmG6BEwDM0NPxXz9XcAzfKiKb5145iXLslRSot9zMK9NsfPHiAq6srMpkMNze3clFTc96pywBvVwxlEozlEuQSMU3crNg5xhdzw4ofDtWsWZNTp07RokWLCj9/8vcqNja2wu9kgG3btumje3NzcwkMDKRFixZ06dKF3NzyKe7p9+JID7/AnFFDWfPzIm7dukVgYCBQct+X9vPgwQNyc3Nxc3PTH1sqkHh7e7N06dIKx/O/wDd7r/Pl9khupeaRX6zh7oN8Zuy+zt0HJamY58+fRyKREBISgodHSTTouHHj9H6QJiYmb3L4bw1vy+MDX6CbSCTqBBgAZiKRaK1Op6v4L0pAQEBAQOAtQCYRM8DbjQHebq+9L2OFlA8Dq9HM3Zr15+N5kFvM8ZgMnCuZYmtqgEKhQKlU4uPjg0KhoG3btkyePFl//OINW7EWazE1UHA7NZ2O9WrQpUEtAOSGhqy6fJOuXbv+benh27dvM3ToUIyNjalSpQpff/0169evJzo6moEDBwKwceNG7O3tn9rG6+BpaR0BNWw5cj2VJ5MAJSaWyO2qkLLuc5QpMaDT0mnEl1zY+hvLly/H2tqa2bNns337Do4eP4GNUxWsrBxQaAuJuX2LnJwcatWqRXx8PH369MHNzY0lS5Zw/PhxmjdvzrFjxxg4cCDbt29nx44drF69mry8PObMmfOvVaNSFRVRVJBHVl5BmSpccXFx5fdVqViyZAknTpxg27Zt/P7773z22WesWrWKS5cukZyczLhx49ixY8e/MvaXRSYRM93PlL6Dh6JDjNjcAafuHyESifltQCNsTMuKnV9//TXBwcEAzJo1S7/oKmXIkCHMmDGjzILraWy+eJ/vg6PJVarQaHUY3Q7h4/d6c2fRt2VSaJYuXcqKFSv0VZ2gZBEXEhLyVE+OF8VEIUWtLS+oWrYuqZpWw86U6tWr66uqBQQE6Mf1+BP2ij5/vBLb28KdB3kErbxAep4SkQg0KjVZ+7dxKfRRlbi0tDRCQkLQ6XT4+vpy+vRpzp8/z7lz5wCYO3cux48fJzMzk1atXtzP7lWhUavZPnc6yoL8R9tUKmraWVPX2YHrCkvu3r1L/fr1gZLCDVe2H0T0RH5H0f1rZBz6DQCFhR0m9TujTLiOSCzBpF4bkld9iDonDY1UjszSoSRCVavBuI4/WmUBhXcvURAThrOJgitXrpCZmckPP/zAtWvX+OSTTxgzZgz79+9n586dQEkVwG+++eZf9wA694RfoSojkeLUu+RePUBx8l227SgZn42NDXFxcahUKhITEzE3Ny9znFQiZkrn2nzSrgYJmQWYG8rLfX88L0/+XqWnpz91361bt+pFJJlMxtq1a3FwcGDZsmWsWrWK8ePHoypWEn5oP2e3baT4sfvjyuH93L15g7q1a+m33b59W5+iq1KpqFOnDkuWLOHChQtcuXKFwYMHM2/ePPz9/RkyZAhyufyl5vq2Ef8wn3Vh9/QR3aUUqjSk5xVzIzmHu3fv6ivQNm7cuNwDlCcfrv1/9YJ7K0QknU73JfAlgEgkCgA+FQQkAQEBAQGBR+h0Or7aeY1tlxMoUmnQUeL5sGj5BuRXNlG/Ti1u3LjBiBEjGDJkCI8XzpgwYQJe3l5YPEwiOrF8aoFWreFwcDBWjpX/cSF5+fLlMscOHDhQLyD92+RmpFNcWIiF3SPRSqFQoNFoaN26NSbmlqSGhWPs1YfcqwfQqZTYvjcTbWE2BTdPYdPjC9K2fo158z7cMm9KZs4PjPttP9H7ltG57zCmLliGxL42Sp9BRO6dT3F6AnY21jg7O9OtWze9qGJtbc2CBQvIz89n37599O7dm4ULFyKRSOjTpw9BQUFkZ2fTu3fv1y4iFWRnEfLHYu5ePo9ILCEs9h5ZUqMyVbgSExPp3r07qampbNiwgYKCAurVq4dUKqVNmzaMGDECgKpVq6JUKsnKysLa2vofen676OjXmId3Ijl4LYVZk8bTzUPDhL5tMTMoHz0waNAgpk+fTlZWFt26dSsnIj0r68Pi+WbvdX3qi06jJiniAt/VaofRY4sWtVrN8uXLywkXr4uqtibYmCq491gERimGMgn9vf53LCKKVBreW3KWjILi0gxd8iIOI/Xwo8/vZyn9VmzQoAESiYSUlBRcXV2RSqVlzHLFYjEmJiaYmJjwNmQ/xF65iOavyl+lqDUapBIJOq2Wwofp3Lp1S586FhERgWkFkTKGbp6YNeyESKelcmEiKQbWyLp+CoBpw06YNuxEyvovcB04l/GBNfly1ADUhmaYe/Xmwe55WDbuzNffzGJc62p89913zJ8/n7t37zJhwgQ0Gg3dunXj+vXrSCQlkXSVK1fm1KlT+iiYf0t0FIvg8WTm0sqpACnrJtGlS1euXLqIRCJh3Lhx+Pv7IxaLnyp2GcgkVLV9fvPzUnQ6HZnJiaiLi7F2ehQJWfp7lZSURK9evYiNjWXXrl04OTmxb98+2rZty4oVK0rGYGCAg0NJGqRUKi0x+S9WsuGrz3h4/x5azaM0vWuJqWy7FImFsRE3Q0q8mNRqNXfu3OHmzZsMHDiQwsJCAAYPHswPP/yAl5cXwcHBBAUF4erqSlpaGk5OTi8857eR4KgUtE8I6jnnd1Bw6ywisZj9kckEuLtz7NgxAK5cuaLfr6ioiAEDBvDpp5+SnJwMwLlz50hPT/9/mc72VohIAgICAgICAn/PqZh0tl1OKBOir1RrEbs1pVJ9fxyTdiCXywkPD6d///4MGDCAjh07cuvWLQwMDNixeRMrPxpVrl2JVEblWnWwcqz8b07npUi/F0fwb4tIvx+PWCJBJBKjdHRn1e59VK9eHWtra71B+Mo/1/Ldbysxfv8bss5spij2MnL7khB1saEZ6tx0ci/vJfvsJtTFhazdsgN1SgZdfzmNGjHqrAfkx0WgcG2ITiwjE3A0NeTw4cNUq1aNM2fOMGzYMHbu3ElhYSFTp07l/v377N69m549e3Lw4EF+/PFHdDodaWlpr/W8qJRFrJvyCXkZ6Wg1GkDNtfgE7qZnUsXFGU2NGuzatYuUlBQOHz7MpUuXmDdvHgMHDsTMrCTt0tzcXO9/FRgYSM2aNVGr1Rw4cOC1jv1VoNPpuHwvk4txmRgrpHSoa093z8ocqGKLOCmCEyEiqlevjre3Nw8fPmT69Ol06dKFZs2aASULutKnyrGxsfTt2xd7e3t9xam/Q63RMi84uox3Sv61oxi4NiD6h75IdGoGDhyIq6sr6enpFQoXrwuRSMTCPg0Y8Md5itUaNH+toQxlEqrbmfBe09eX3hcWFsZHH32ERCKhSZMmLFy4sNw+wcHBaDQaOnfuXEELz8e+iOQSkf2xdaIqI5H81JNcDT+A6EEMe/bs0fsgVapUifj4eDQaTZkFo1arJT8/n8zMTB48ePDS43pZctLT0GjK+nfdTHnAiVuxAHhUqcKqbTsYNmwYgYGBODo6UqNGDW7ISiJJih/EUXjnIqr0eGSV3LD26U3moe+w6vEVD2VWaMRSdBo1aVumo0qLRRw8h6bdFlJZXsgDc3OqVa2CytiATwZ3Y1zragDs2bOXles342hjyZkzZxg5ciQ3btygbdu2mJmZceDAgX89ja2UVjVtOXw9lYqKkHedsowa1Tz0gtbgwYP1qY6lvEpz9fvXIzn424/kZ2WW3HdiESrnqqzYvrvc79WGDRvYtm0bEyZMYPXq1axdu1YvIpWSl5fH0qVLOXDgAOGH9pGZlFBGQAKoU9mO2PQMrt5L4qufl5BVqGTTpk0YGxtz584dMjMzuXXrFrdv3yYsLAwbGxuio6NRqVRoNBri4+OxtbV9ZefgbaFYrUXz2E2hU6soTr1L8YNYdColX3apx8mTJ1EqlQQGBuLq6lrOh7l+/fokJSXRqVMnrKysSEpKomXLlshkMjZu3Kg3U/9f563wRHocnU4XqtPpurzpcQgICAgICLxN/Hk2vnylMXXJk+ncIhUFyLG1tWXBggWsXLmSadOmAVC9enX69u3L13Pm0vurWRiamiKRSpEbGiGRyXCpW59uH3/5r8/nRcl9mM6GaZNIvRuDRqVCVVREcWEBsoQYlk7/ksqVK7N37169QbiHmwu92viwc4wv7i5OaIoeCQIisQTr9uPRaTUoKtdGrDDGsGozNFodSrUWkUiEcd1W5IcfpCDmPKqMBLRFeTTrOYLr168TEhKCtbU1derUQaFQ0KpVK86dO0fr1q25ceMGOp2OuXPncuDAAXbt2vXaDXxvnj5BYU72XwISZBcUkV1YRPs61QhqWpd2rVtRWFiojzry9PQkJiYGCwsLvQ9STk6O/v2KFSv0i4zH/WLeNsLCwvDybk6lap606zOM7w9GM270CBzdqmHj6ML58+dp164do0aN4syZMzRt2pTr169z9epVfdrCn3/+Sc2aNXnw4AGJiYl8//33zJ8/n61bt+qfOn///ff4+fnRv39/VE9Ehdx5kI9aUzZFQpWRSN61Y+hEIjQ6eO+994CnCxevk8auVuyf4M+7jZ1wsjSkpr0pX3SswaaRzV+p/9KTuLq6cvToUU6ePElaWhqRkZHl9unQocMrEZAAwhOyyH/CUN8yIAi7Pt9g2/trbJ096Nq1q/4zqVRKUFAQPj4+bN++Xb/9888/p0WLFnz99df/enpuRVg6VEYiKfvsv25le8a0as74di2ZOelTxGIxy5Yt48iRI9StWxcPDw9+79cAuUKBhb0rzh+uw3XYT0jE0CDtNAZaJT2Td9EwJxwDTSESsYjaPT/m84+ncOPSGby8vLgZFc7De7c49mkAqbfDmTSiP4XFGqbuiORBwJd0/v0KTeYcY86+G/z862/069ePSZMm4efnh6GhIatWrdKbD5dGQHp7exMbG0tiYiLt27dHo9Hw5Zdf6lPgXgVfdKiJsVzK41ZgIkr8Bad3rfPK+vknHsTHsn3uDLLTUlAXKykuKqS4oABJXDR//jC33O9V5cqVycrK4ujRo/j4+JRLJ9PpdAwdOpTZs2djYWFBxJFDqIuLy+yj/uv7v0uDWjR2q0zLWtUwMzOlT58+5Ofn06RJExYtWkT9+vVp27YtOp2O0NBQatSoQVpaGj4+PgwaNOh/LpUNoJajGY9nn+VFHMS4fhvklVxxH/4TxiamLFq0iPDwcMaOHUtkZCQrVqwgPz+frVu3kpSUxHvvvUdaWhpLly7l/fffJy0tjePHjxMUFMS6deve3OT+ZYRIJAEBAQEBgf8AqTlF5bYVxl4i58JOJCIRzk3qkZOTg7+/PwUFBWWMOocNG8bcuXP5c9tOuk78As2WzXQcOgQbVzfMbd/8Aul5uLh3B+piZZltao0GlEou7N6OsWNVDA0NyxmEN3C2YFRLD6btKFuhyaiaF0bVvCi6F4HE1AqpuR2V/krvADCp3w6Tem0pTr3Dg13fUpx+jz3rljJ9+nTmz59Px44dEYlEODs7k5mZiaurKyNGjMDExISxY8fSpUsXWrRoQbNmzbCwsHit5+bm6eOolI/uk+iUBxjL5YRcv01aXiGNDIPZczSU5ORkevbsyWeffYZUKmX06NFERESwYsUKFixYwNWrV+ncuTNXr14lLCwMT09P8vPz/6bnN4urqys1h31PZlwuiTvnUZAaS1F6Ao7Df8NQJsEjfhv37t2joKCA8+fP8/HHH3Py5Em0Wi0ymYzExET+/PNP2rZtyx9//AGg98WQSqXUr1+fhw8fcuzYMU6dOsW8efPYuXMnvXv31o9BJhFRmiWh0CipnXsDp5q2pLpYsHP/NrQ6LWlpaWi1Wtq3b09GRgY2NjYMHTqUoqIiWrduzbVr12jWrBm7d+9GrVYzdOhQKlWqxO3bt/nqq69YsmQJBQUFHDx4EGNj4+c+T+6VjPmuV4NXcs6fhlar4XbYGSJCglEW5OPWoBGe7buAgQFSqZTdu3eTkJBAx44d2b17N9HR0djY2KBWqwkICGDQoEEVero9KzamCuQSMcWaJ53QQCGVMHX5dtzcXMukVY0aNYpRo8pGaXbr1o1u3boBlPGtelO41vdEbmREcVERUDa8RiQWUa91SZrssGHDiI2NxczMjCUL5tOnawBdXcyxKY5A6VKf2rWqcCHJlRoyNauKill/OoyM/GME+TbB1EDBH6cuctjekejoi2zevBmJRMLMmTM5evQoYrGYP/5YzqfBSVxLyinjK7P4z418P3ItrZo1eGrq65MRkEuWLKFXr16MGDGCwsJC5s6d+8rOVxUbE/aM9+P74JscuZmGVqfDv6oNkzrWoKb9yxe7eFbObF2PWlWByKNUcmbzOkzt3Mv9Xul0OqKioti9ezfBwcFcu3aNqVOnMmvWLKZNm4avry+tW7cGSrzvnuTxCLVKJsZ4V7NB6l4djUZDzZo18fHxoWXLlgCsWrWKDz74gBYtWpCSkoKHh0eZCpX/S4Tfz2LCxito/7ptdRo1RfeisGnUhWzxOlwdbHig07Ju3Tq2bt3KqFGjyM/PRy6Xs2bNGjp06EBkZCQ1a9ZEq9Wydu1aAgMDUavVDBgwgObNm+vv/cf97/5XEUQkAQEBAQGB/wCNXS25kZSD6rF8fqNq3hhV80YhFbP0o5a4WBvRp0+fMsedOnUKgC+/LIk2OnjwILZOzlRt+t8s7Rt75aI+0qaU0n+aRWIxTf1gxMiR+nk/jlwqpr6zBTGSRxFBGYeXUJx+D6mZLVbtRgOUSetIXjEWnVaLtjAHqWklrLzf5ZNJnzK2tQdz586lb9++NGjQQF/Z5vTp0zRt2pT169cjl8uZNm2aPirsdVKUn0di9I0y23KVShQyKZ7OjoTfTyLn7Dl27NjBhx9+SGRkJEOHDmXv3r14eHgQFBTEkSNH2LdvH1euXOHu3bv079+fSZMmodFo/pU5PCv5SjWLQ2PYdOE+BcUaqtuacC05B5VGh0gsIevUOpSpsaRt/RqzZu9w/MJ5hvV7V5+Wd/LkSfKVagw8mtJk1mFyTm8gPTwSjUbD+PHj+eGHH/QVlKpUqUJ0dDTh4eF6MaFNmzasX78eV1dXJk2aBJR4hdUYuxTDYhXvJu9EolMj02lw1Gqo28EXg1rNOH45jDlz5lC9enUMDQ2ZOnUqLVu2ZNy4cbzzzjvUrFmTkSNHsm3bNrp3765Pcdm4cSOrV6/m0KFDzJkzh4MHD9KzZ883eAUqRqvRsP3bGSRF39CLmen347lycC/1+gwhPT2dKVOm8N1339GxY0e2b9/O9OnT9YvW0NDQCj3dnoeejZz45WhMhZ/pdDq61HN8scm9YcRiCb2mzmLLzMkUFxWhVhYhVShAB90+mYyxhSUAq1evBiA+4irbZk3m3Zru6HRauHeGmxf28N31GJr4+tJl6lR+376Hsa18uHDrLpGJqQTUrsbCaVPoNOpDvvrqK44ePYq9vT2JiYmEhoZy48YNPpo8g9vV+5YzJpa6N8O+ujcGCTv0ptFQ1nj4yQhIgAEDBvDJJ59w8ODBV37O3CsZs3jA608X/TsSrkfxZE6d/vdKJKZ5YBuGf/BBud+rDz/8kA8//BAAPz8/Zs2aRVJSEvPmzcPHx4cdO3aUFHWoW58bp0LRaR9dj7qV7albueThkEQmo0Zzf6aPGE9gYCBTp06lQ4cOwCNxdNmyZfr3j1cb/V9Cp9Mxet0l8pXlK/aVkpBZiExhgFgsJjc3F7VaTcOGDenUqRMbNmzAwcEBMzMzTp48yZQpUzhy5Ai9e/dGq9WyZ88erl69yvnz59/E9N4IgogkICAgICDwH2Corzsbz99HpS0roMglIryrWONibfSPbbypSjmvEmkFIfal/zTLDAzoM/1b7KpUeapBeO++arrN3kymwgAAq7blfaJEEil278+usH8DmZg+zUo8ZOrWrUuDBo8iO3744YeXmtvLcCV4L7on7g0DmZQqNlY093ClZmUHbHwC+Pbbb9HpdEgkEr744gs8PDw4d+4cBQUFxMfHIxKJyMjI4NNPP+XUqVNYWVm9oRlVTJFKQ8/FZ4h9mE/xXwvZqwklZbmL02LRFuRg23sGictGoy0uJCNkKTKphHbt2qHRaOjUqRNmdQL4/vNRWNV3wyivmMRzwWgL84lJyyUhOJiAgAAOHjzI0KFDiYqKwtjYmJycnHK+Uc2aNSM0NJQDBw6wc+dOBg0NJPjrj5BrlXq/CLlEghyQxofj3aAu4eHhzJs3j8TERFJTU6lWrRrVqpV4zNSqVQsnJyfu3LkDQO3atVm0aBErV66kRYsWDBgwgDZt2ug9q1atWoVarWb48OH/3gX4G66dOEJi9HXUykeRghqVity8fEYOH87xi5ext7fnzp07FBYWkpiYiLu7u15Eeu+995gxY0YZT7fnpbKFIVM612LO/huoNDo0Wh0ScUnFvu/erY+5UcVl2f+OV+mP8zJYV3bmg19XcvfyeTISEzC2tKK6ty9yg7K+Qzqtlv2//FDmOgDUtLOmnosj53I1HD1xEr827eg4eiyqLZu5HhdP9y9nMmX2XL7bGKC/NzMzMwkNDdV/hz7UGlHgVj6tWiSVUazRkaGSolAouHfvHgCRkZH6inFRUVFoNBrCw8P1pdNnzJjBN998w5w5c9izZ8/rOG1vlL/7vZLIZAz76WdMrSpV+HtVSqnA5OjoyK1bt/Dy8qJWrVrs2LGDDSuXcyvsdLlrDZCrVLElLAKzmGRkNepz4sQJZsyYoS+g8CRvy33+OghPyCa7oGwK8uMV+1QP4nl44yw5hWrWnIlj6/YdqNVqIiMjSU5O5sGDB8yYMYOUlBS2b9/Orl27iIuL01fTbNy4MQUFBVStWlUvJFVklv6/xFvniSQgICAgICBQHmcrI5YPboKFoQxjhQRjhQSFVEwzdyt+6dfwmdoorZTzuPDxX6Ne63ZI5RWXWJYbGGLrVuVvj5eLdahCl/DVuCGMbFGF2g6myCTlS/QqpGIMpWKM5BL9ewOpmPm9G6DQFNKmTRuGDRtW7rg3xY2Tx8pFaLlZW5KclQuAzsaemrVqU716dY4fP867776LTqcjNTWVKVOmsGzZMkQiEVqtlmHDhjF//vy3TkAC2HrpPvcyCvQCUimawlwyDi/BuuMEACSGptj3+xarNiNw9fRDLBbj6enJN98tZNP1fAzcGmFU1QsAs6Y9sAgYgknPWUyYNpeoqChmz56NgUHJU+mJEydSrVq1cr5RUJL2tmjRIn766SeqyXKxFhWW+ee6SFVieKtWKjm8fz/JycnlrgFAnTp1WLp0KYB+m1arJTy8JP3yyXSXt5GrwXvLLWY1Wi3rw67SqV4N5H+JnAEBAUybNk2fklOKTCYr5+n2Igxq7sb20b70auREUzdL+jVzZe94f7p5/neKBzwNiVRKtWY+eL3zHnUD2pQTkABS7t5Gpawg5RdQKZUUpCVjaGiIWCKhRnM/mnbriWv9hly+eavcvVmjRg3atWtHaGgooaGh9P5kLk9+WxbGXiJl/Rckrf2c/KyHTJo0SW88/Lgpua2tLT169ODDDz9k0qRJXLx4kaSkJCZMmECrVq30ETFvkrCwMHx8fPD39+ejjz4iJSWF2bNLHiiMHz/+udurE9AWiaxi4dLKoTKmVs9vwty2bVtCQ0M5dOgQ1pWd6TX5G8xt7ZAqFCWRNBIpzrXrcc+0EkvXbeBwSAizZs0CIDw8nM8++4yAgIB/9O95fO5du3bF39+fwMBAEhISnnvMb5rM/GLE4rJ3bqlXmt17M5FVcsWoajN06Ji1N5KTEXewcnSlXr16jB49GnNzc6ZNm4aJiQmrV6+me/fu2NnZERERgVwuJzMzkzlz5uDp6cm2bdtK+szMZPPmzXz88cf6bf9LCJFIAgICAgIC/xF8qlbiwtQ2nL3zkMyCYupWNsfDxuRNDwt4tipMr4K6rdsReeQgGSlJaEoNRUUipDI5HUZPRPQP5tUymYwTJ07o33+kqs7INZc4H/sQtVaHVFzibTOuVVWC/NzZdSWRGyk5OFka0bNRZWxNSyKYSksAvy08ns5QSmVLc2SSRH4LDaNmw8b4+/szf/58Ll68iLm5OdWqVWPp0qXcv39f7//yzTffcPr0aSZOnAjAokWL8PT0/Bdn8vdsuZRY3mBeqyF97w9YthqKxMSyzGcKqYSGziXbRCIRIddTEYlFPO4ro6hci9zwgyjVGrYfPs2w9k3Q6XSsX7+eKVOmoNPpaNq0KYsXL2bSpEmEhITg7e1NQUEBI0eOZMWKFSgUCvKzMpFIJWges0CJTc8gOCoaqVhMbXc3+vfvT7du3cpcg1LS4u5yYfd2rl25wjlzI6Jv3uSH+fO5fPmyfh+NRsOyZcv0xx05ckRvCL1v3z5++eUXxGIxQUFBdOrUiT179mBq+uKlyZ+Hwgqq2EUkJHM/M5u9V64R9s47zF/0I71796Z+/frcuFE2/XL37t388ssv5TzdXoTajmbM61X/pdr4r6IqKiojOkJZn5zKdra0a9euXAqVl5cXs2fPLnNvNmjQAHt7ewICAhCJRPi1746BrGaZv8HH06rXTGyBWCyusJpjRZEua9asAeDjjz9+2Wm/EkqN4A0MDOjfvz8PHjxgypQpAPz888/P3V7Tru8QfeYEuQ/T0fzljSQSi5HK5bQfPfGZ2tDpdEQmZpNZoMK4WMmxY8fw9/enZ8+eyOVyXF1d8R83CW8vL65fCOOXlavx7diDu5Mm4ePjg0gkwtTUlOjoaOLi4vj++++xt7dnzJgxrF279qnfD/b29vq5//TTT7i7u3P48GEWLlzI/Pnzn/tcvElqOpiWe/DwOHZ955C2ZTpo1Nxb8SEmdduQL9Jy5WJJRJKjoyPvvPMOq1ev5tKlS6hUKj755BPS09MpKCggKyuLGTNmMHLkSH2q5uNm6aXb/pcQRCQBAQEBAYH/EDKJmBbVbd70MMrx5D/fkZGR1KtX76n7a7XaF6pWJpMr6PvND1w6sJvII8EUFxVRuXpNmvfqh12Vqs/dnoFMwuqhzZg0fQ47dm1nytJttKtjpxeL+nu7ltm/9In8J598Qo8ePVCpVJiZmbFhw4Z/bbFeEVWbNefygd1o1WVLPXf1rI3cyIgxy9YhkcrKCBKlfPXVV2Xep6WlvdaxvgzFak25bQU3T1GcfJvM0JWIRSLMWwwCUUnqoU8tWxzysh/tW6xGqy0bySO3q4JYKidp3RdIHOzwn/VRObHN1taWFi1a4Ofnh4uLCxMnTmTTpk1ER0czcOBAAJb9+gsaVdnzX8vBlloOtojEYmq3aI2Tk1OF12Di+++y4avPkKhVeNuak3j+FLqMB7hbmmFubs6nn37K559/ztGjR5k3bx4tW7YkNjYWW1tbNmzYwAcffEBERATjxo2jU6dOnDlzhs8+++xfvScr16hJ9MP0Eg+ev2joUpmGLpWRyOSMXroGhVGJIbj6sft0yJAh+tdPeroJPD+27h5o1GVTd0pTqMQSKQ07dKHKU1J+K7o3p0yZohcTdDod6esuExqdRqHq0XU2lEl4t1Fl3Co9v+H720BOkYrkrCJsTa0wMChJQZNKpUgkEgYMGMDatWvx8/Pj1KlT9O3bl88//1xvOr5ly5antqswMmbA3EVcCd5DVOhhNMUq3Dwb0axHbyzt/9mf6+r9LMasu0R2gQqxWERRkZJus7bw/fuN6dOrJ5MmTSI4OJj09HSaeXmRUawmMiqKGV9/jUajAZ2OuPDLqHOzWbrgB7QaDWPGjEGlUrFjxw66d+/+VPP+Bw8e6M2h3d3dWbBgAStWrKBTp05lxrhlyxa+//57RCIRkydPpnv37i93MV4DDuaGtKphw7HoB+X8vKBsCntm6EqK4sNBJEKjgf79+xMWFgbAxIkTCfkrsuuPP/5g7dq1zJo1i8OHD7N27VpCQ0O5fft2SZv/gejRl0EQkQQEBAQEBASeG5VGy6FrqRy8loJMIqKbZ2X8bUvSzKRSKTk5OfTr14/169czYMAAJk6cSFRUFAcOHCAvL4/Zs2czZ84cUlNTUSgUbN26Ve8580/IDAzwfuc9vN9575XMRalUkhoXjZ2ZAQOeEI2eOgaZjLVr1+Lg4MCyZctYtWrVC6U7vCqadHmHqGOHUebnl1nESxUK/PsOQSJ9fi+Yt5H2te25+yC/zELAuHZLjGu3RCEV8U2PelyOz8Ssb2d6NqpMfPhZLl5MBEq8Ra4n5aCwtKNS54/KtGvZehjGcgmz3qmLi0vFQs/nn3/O559/rn8/cOBAvYBUims9T+Ijr6BRlV3ES6QymnR5p8I5ZSQlcHrTmjKlus/HxOPpbM+eRd/qo8xOnDhB+/bty3im1K1bF0BfGlwkEjFgwABmzpz5r5ebbta9NzEXwspVT5TKFdQJaKMXkAReLwbGJjRo05GIowfLpRdKZTIadXrxRb5IJOKXfo1YeTqW5adieZCrxNHCkNEBHrzf1Pllh/7aiYuL03sKyeVydu7dz+TtURyISkYmEVGs1lGl6DatK+tIT0/HyKi81+CiRYvo168fYrFYb2T+T/0cOnQI757/LJA+7nOWnF1I/2XnyC9+XDiXcOxONp/vuEaXLl1ISEggMjKS7OzsclUn0WpZPnEkBdmZ3Lt9CzLSSbuXiEYmI7BNW44ePfq35v2NGjXS96pUKrly5QoJCQmMHDlSv12r1bJw4UJCQ0MRiUR06NDhrRSRABb2aci4DZc5dTu9QiGpFMuAIP3rB+s/p2vXrnoR6XGkUimTJk2iZcuWHD58+LWM+W1GEJEEBAQEBAQEnovsQhW9l5whIbOQgr/+wT0QlYKnswWfNDYgPT0dX19f9u/fz8iRI3F0dKRJkyZERUVhYWHBpk2bgJJ/mI2MjPjjjz/YtGkTH3zwwb8y/tthZzizdT2ZyYkYmJgSo5UxoH9/vp45EyipjHP16lXMzMxYt24d5ubmDB06lHv37uHq6oqzszMGBgY4ODgAj55Yv0mMLSwZMHchIct/417kVRCJMDa3xK/vIGr7t3qjY3uVDGzuyuqzcag0Wh4PKDKUSfighTvvNXHmvSYli9mKjORrO5rRxNWKC3EZZRYSEjFYGMnpVM/hpcbX+cNP2fn9LJJv30QkEiMSi9DpoNO4T6jkXLFAGXn0UEnUwGOk5eaRdD+Hc7EJJOXks2fPHgIDA3FxceHnn3/WC5ZPPu3Oz8/njz/+4L333mP16tUMHjz4pebzPNi4utPt4y/Z/8t8tBo1IEKjVlHTtwWtBv87f9sCJbQcNAyxVMrVg/sQSyRoNRrMbGzpNP5TzCq9XCSrRCxiuH8Vhvv/vf/c20rbtm1Zu3YtOp2O934/S0RCNkq1FuVfwXG3dHac+2UOUScPoFYVlzvezs6OKlWqIBaLcXR8ejRRaT8vyqrTcRRryoodWmUBRRgRcj2VlNsnmPTxRMRiMVlZWWW8xnQ6HQaFuUTcuIG9mQlFKhWGMjGWRgZ4VXXnUlQUDg4O+pQrR0dHvSDt6OhIRkYGt1NzScku4u6DPA5sXk1BQQG2trZIJBJatWqFtbU1nTplIbwrAABdP0lEQVR1okaNGuTn5wPoHwR17NiRAwcO0L9/f5o2bcqoUaPo27cvO3bseOHz8bIYyiUsH9yU+xkF7LqayC/HYtBpdSg1T48S8prwC25ubk8t1FFKRZ//nVn6/wKCiCQgICAgICDwXMzYfY3Y9HxUj/3zVVCs4UL0Pfr8/D2nDpVU2Rk1ahTu7u7Ex8fr92vcuKTkskaj4bPPPiMyMpKcnBzeeafiKI1XzfldWzm7bYP+CX3Ow3SOnI+gqaMNoOPChQvk5+dz4sQJ1q5dy5IlS2jVqhUSiYSQkBDmzJlD8WMRI3l5eSxdurRCD5B/G3Nbe9798mtUyiLUKhUGxiblvFH+61ibKNg9zo/Pt0VwIS4DiViEgVTCuNZVGebnXmbfUiP5J1k2qAlTdkayLyIZmUSMSqOliZslC9/zRCF9OTFQbmjEe9PmkH4/nuSYaAyMTXD3bFJhlaZSch+mo3tCROrSoBZQEsG06mq0/mn4zJkzGTNmDBs3bqywrSlTpvDFF18QGBhIx44d6dChA3Z2di81p+fBvWETRi9dS2L0dYoLC7H3qKYvP/84z+KhFhwcjEajoXPnzs81hgULFrB9+3bWrl2rT8cpJTs7m/79+5OXl0ePHj303l+PH1fRPfNfQyyW0HLAUHx69eNhwj0UJibPlD71v0i+Us2BqBTScouw0GTqPYWaterAxWRz0k5vxabbZ6Tv+QGTxl14GPwz5tW9OXotkSUzJpCYmEjDhg0pKiqiXbt2PHjwAA8PDzQaDdHR0dSoUQMoEXEv38skLDaDgocpHDl6VO9dVFBQQKNGjejYsSO7d+8mOjqaESNG0L9/f3JycvD09OSnn34C4NChQ2zZsoXw5AIU7T9BJHkURapMuEbWybVIZHIatG2Fl5cXDRs2JCsrC4VCgVQqxcfHh9S7Mfi7O/HnqfOoNRra1amOiULOhdgEDKRi6rs5s2vXrjJ+d6W/Fem5SpafjKE4XMbD+Aw6LjjGg/W/8F7XttimpgIlKc8hISFIJBJsbGxo1KgRWq2WlStXAmBsbEx+fj5arZbIyEguXryo/+1/0zhbGTGudTUGNndj+6UElpy4Q1qOkielJEOZhGG+7hW2ISCISAICAgICAgLPQZFKw/7I5DICEpSYGyfs+A73toOxt7cH4IsvvuDHH39k2rRpLF++HEDvg3T16lW9WLNs2TISExNf+9gL83I5s2VdmVSjS3GJeDrbkxobQ1FeHnfu3NGH8Tdp0oTjx4/j6upKw4YlFfAaN27M2bNnS+as0zF06FBmz56tr9b1NiBTGCBTGLzpYbw2nK2MWP+BN9mFKvKVauzMDJCIn10sM5RLWPCeJ9O71CEhqwAbU4XeA+tVUcnZ9amRR0/iWK0mdy6FVVimWyyVsGfLJpwfexq+ePHicvvNmDEDoMwT7zeVYiGWSHCu/XQ/NHg2D7UOHTqUO+6fvNSUSqW+ol1FLF26lP79+9O3b1969uzJgAEDqFSp0j8e919FZmCAfdXqb3oYb4xjN9MYu74kNVWp1iAXaXAa8TurR7WgW/fuqOv2Qmphx8PgX5CYWKHJSkWTlUr29ZN8Oe46xhTh5+dH586dGT9+PFFRUdSoUYOOHTvStm1bRo0axb59+8hTqhm0/DzRqbko1RokWg0mA37l/fa12L/gE+bOnctPP/1Ex44d2b59O9OnT2fp0qX06dOHgQMHMnz4cH3KlLm5OZs3b6Zxr3Hciz6Dce2W+vkYejTF0KMpxgoJnw5pBsDXX3+t//z06dNASbVOCxNjRgd4lzkfHjZWHIqKplKlShw4cICZf0XfllJYrOGXYzHkFylRWGtQa3Q8DA8hM+E2m/bL0D6MZ+HChTRo0EAfffvVV19x7do1ADp16kS7du1o1qwZO3fuxNXVlZSUFM6cOYOvr++rvLQvjbmhjCA/dzo3cOCdX8+QWVCsj6w2kkvw9ajE+81c3vAo314EEUlAQEBAQEDgmcktUle4vdTcOPbAMgICttG+fXtcXV0ZO3YsEyZMKLegrVGjBjExMXTo0AFnZ2cqV3795bfjrl5CLJGWEZFK04bO3rlHQnYu0dHR+sipixcv4uHhgbu7u74a25UrV/THTps2DV9f33KlygX+HcwNZZgbvrjXk7mRDHMj81c4ohejdsvWnNmyDjVlRSSxWIKpVSWcatV9QyN7deh0OhJvXiPmwjkAqjb1RvFXhJRUKmX37t0kJCSUidSwsbFBrVbTpk0bgoKC9OkzQ4cO1bd7P6OAP07FEnb3IZZGcizijjJw4CBmzJiu30elUjF48GBGjhzJ3bt39cbAderU4eLFi3To0IE//viDwYMHM23atH/xrAi8TpKyChmz7nKZSnKFSFAWQdDqSzTybc3hO/GYenYkcckwKo9egdS0EjqNCpFOw4D3unF9248YGRnh6OjIqFGjkEgkTJ06FY1Gg4uLC/v37wfgs60RXEvKpvivhysaJCCW8EtoHJ2atSQqKoo7d+5QWFhIYmIi7u7u3LlzR38vNmnSRF/Bq/SBxbvtfFm0IbjCuRlIJTR2LR/hV4rpU1IWu3rWRiQWU7dVW6pXr14u5WrzxfsY1Q2Ev8SUSl0/JTN0JQYu9VGJxYgRUbVqVR4+fKhvU6FQYGRkhEgk0kfp+vj4MG7cOL755hsuXbrE5s2bGTt27D9csTeDrakBRz5pyd6IZEJupGIsl/BuIyeae1j/z0XyvkoEEUlAQEBAQEDgmbE0kiGXissZU5aaG3vYGHPkk4Ayn/3444/l2jExMfnX00a0f1WreZzStCGAP85HMn36dMaOHYu/vz+mpqasX78eCwsLfvvtNwIDA3F1dcXFxYWkpCTmzZuHj48PO3bsoE+fPowePfpfnc+LUJHhq8CbxcDYhN7T5rBj3teoCgvRoQOdDgt7R3p+MeM/v5DRqFXsmDeTpOgbqP6KtooICcaxek08Or1Deno6U6ZM4bvvvisTqXH8+HF9G4+nz5RyMS6DQSvOo1JrUWl16DRqMvcFo6nZTr+PSqWiT58+REZGsn37dmbPns3x48epWbMmJ06coHbt2qhUKo4fP0716tWJiooiICCA+fPn07hxY8aPH68v7R4VFcWIESOQSCRUrVqVFStW/Oevzf8y68Li0TxRiVGrLACFEQ/ylIijryKz8ePh8VVYtRlB1sl1VOo0ASjxfWpZ1ZqVYWH8+eefwNOrbT3MU3LsZppeQCrtR6wwolClYdvho7zX4esynkUAVapU4dKlS3oxc/jw4dy8eVMfESfJvEeD2tVJlEv0ETJSsQiZRMzP/Rr+bfRl5Zp1MDQxRVVUBE8kakmkUhq271LhcRdiM/R9lVJqNC2TiNDtmVbOaHr06NH6KKMRI0YAJaLYzZs38fX1xcDAgD179mBs/PYa6xvIJPRq7ESvxk5veij/GQQRSUBAQEBAQOCZkUrEBPm4s/TkHYpUZYUkQ5mE8a2rvaGR/TMudRug1ZYvEQ8laR9bV60AKGPEXMqqVavKbXvcG+m/gE6rRafTvbThq8Crx87dg5GLV3H/eiR5GQ+xquyMvcfr+1v6J/+fw4cPM3fuXLRarV5QeVHObttI4s1rZarPqZRF3Iq4yjfrtnDw2HHs7e3LRWo8LiI9nj4DoNXqGLf+SpkFb/61oxjUbMGpmHRE+SV9nThxgjZt2nD+/Hneeecdhg8fztixY9m5cyeOjo7Y2dmxZs0a3n33XX7//Xfq1KlDaGiovs1SAQlKoifPnDkDQFBQEBcvXqRp06YvfF4EXi83knPLGVM/7inkEdCCtm4Kdt2yx6RRF1Qhv1MYewWZRExDJ3NqO1nSrl07OnToUOaeeJLErELkkrIPVkr7EUlkWHrUx8vLC1NTU+rXr8+NGzeAEsGlX79+LFu2jPr16+Pt7c3Nmzd5+PAh7dq1w8DAgN2bNhMak8mac/E8zCumqbslw/2q4Fbp7wUZkUjEO19MZ9OML9CoVKiURYglUkRiMf79g7Bxrdjrx9pEjlQsQq0tbzYtk4iZsXwHbm7OZX4/hgwZUsZkGsDAwICioiKgxGC8bdu2fztegf8egogkICAgICAg8FxMaFON+5kF7I9MRiQCsUiERqtjmJ873T3fXvNWU+tK1PZvxY1Tx8uUIRdLJBiZW1Cjuf8bHN3r49a5U5zauIbM5ESyi9UEh57D18eHXr174+HhwYIFC4ASs+MHDx7QtWtX9uzZw9q1aykqKiI/P7+cKexnn332hmf136Yi82eRWIxL3QYlZb5v3WX4YyLS1atX0Wq1Zcpuvyj/5P9TWFjI77//zuHDh1+66qBOp+Pqwb1lBCQAjVbLmlMX6dy4nt74+8lIjcd50gcpPCGL3CJVmW2qjESKU++Se/UAmtTbzP9jPbUa+2BX+dGi19jYmLVr1zJjxgwWL15MUlIStWrV4tKlS9y/f5+HDx/StGlTQkNDMTY2xs/Pj1Xbg8kuLKaqrSnmf2VPKhQKlEolPj4+KBQK2rZty+TJk5k2bRrHjh2jYcOG5OTksGrVKtauXcsvv/yCRCJh8eLFNGjQ4KXOqcCz4V7JuJwgUsZTqH9jWla3oW/vd/k1NIb4buNxsDDANe0MPjUrP1NVLgB7M4NyYlVpPwCNXCwAqF27Nmr1o3RwCwsLfTpcKRUJMh3rOdDxBapGVnJ2ZcSvK7lxOpSUmFsYW1pTNyAQc1v7px7Tq7Ezq87EVSgiabU62td9+rEC/78QRCQBAQEBAQGB50IiFrGwjycftanOyZgHyMRiAmravHJz4tdBmw/GYmJlzaX9u9Cq1ei0OjyaeBE4bPTfVtD6r3I5eA8n163Si2bGEhGftvPD0saWnYcOMm/ed4SGhrJkyRLatm2LiYkJkydP5oMPPiAjI4MDBw4QExNTLtVI4MV5ERPnq1evolarX1hESsku4ujNNDQ6HbHHt+n9f0JDQwkJCWHWrFn6aDsXFxfEYjEdO3bEzs6OJUuWsHPnTnJychg9ejQRERH8/vvvFUbsPYlWo0GZX1Bue0RCMvczs9l5/ioXAgL49ttv6d27d5lIjb8ju1CF+Il0ntK0G4CUtZM4mFuZtHshJHr6Y3ZgNflpaVy6dInx48eTmJjIn3/+iaurK4sWLeLjjz9m8eLFeHh4MGDAAH7//Xc6vD+cqMRsuv58CqlERLFai6f2NlG7l1KjenVu3LjBiBEjGDJkCDqdjuTkZM6fP8/JkydZv349hw4dQqPR8NNPP3H69GkSExMZN24ce/fu/cf5Cbw8/b1cWHcuvkJBxFAmwa9qJQDa1LajTe0SIfPKlSt8+OFepo7Z9Mz92JoZ0NTNinN3H5bry0guYUSLKi8xi5dDZmBA/cAO1A8sb1JfEVVtTRjTsiq/Hb9DkUqDDpCIRMikIua+U++lPOgE/rcQRCQBAQEBAQGBF8LF2oj+1s9WgeptQSyW4NO7P94936cgJxuFkdH/bCUzlbKIU+tXl4m6kv4VWVKUnU1DD3eioqIoKCjg2LFj+rLxbdq0YezYsXz99deIxWKqV69eLtVI4NnQ6XRcCw3h3PZN5KSnYWBiyh2djAED+vP1148qIz1u/gxw5MgRtm/fDsC+fftYunQpDx8+5NixY6xbt+65+v/2wE1WnolDIgKtRk3Szh1kurUuV9K6lNTUVJKTkwkNDWXp0qX8/vvvDB8+nL59+zJ69Gi2b99Or169ntrnk75bPVwqUZibU2afhi6VaehSGQMTU8b8sZ558+YxcODAMpEaj0dkPJl+WcfRvJwv2+PYD/iOYsCi0yco1VryGg9BlTidxo0b8+mnn/LVV1/x7bffAuDg4IC5uTl+fn7MnTuX6OhovpkzjxXZZylSaUuMmf8KegqXVaP7jHUUHP8DuVxOeHg4/fv3Z8CAAVhaWlK/fn2gpIrjoUOHePDgAa6urshkMtzc3MjOzn7qmAVeLVVsTJjZoy5f7YxCp4NijRYjuQSpWMSqoGYVego1bNiQkydPPndfi973pNdvZ3iQpyRfqUEiAplUTJ+mzrSv89+K3vmwTTW8PaxZcSqWexkF1HIwZbh/FWo5mL3poQm8RQgikoCAgICAgMD/O8QSCSaWVm96GK+VxOgbiJ5IAypSqTGQSVEXKzkeGkr3gUOYPHkyO3bs0BvHLlmyhIEDB7Js2TJ69uyJQqH421Qjgadzct1Krhzah/ovQ+m8rEyOno/Ay/lReopKpWLIkCGMGDGCli1bEhsbi62tLRs2bOCDDz4gIiKCESNGoFarGT58+HP1v+1SAn+ejaf4L8ElLyIEw5otORCVTHFWYTmzYJFIpBdUJBIJrVu35ocffsDMzAy5XE56ejonT57kq6+++tt+H/fdOr9rK2e3bigjZgJI5QqadH0HnU7HF1988VzzsjFV0LmeAwcikyn6GzGplEKVhgfZhRSrtdSoUYN27drp/Y5UKhVZWVksXboUKIn6SheZ689ZKTq1iiJk7LyaRCcDI2xtbVmwYAHFxcX4+vqye/duIiMjgUdVHG1sbIiLi0OlUpGYmIi5+ZuvBvj/ifeaOONXtRJbLyWQlFVIPSdzuntWxkTxapfAlUwUhHzckpAbqZy6nY6JgZSejZyobmf6Svv5t2jmbkUz9//t30eBl0MQkQQEBAQEBAQE/hfRlY81iU3PIDgqGqlYTN2qHhw6dIj79+/TrVs3ANasWcPu3bvZt28fderUYebMmcyePfu5Uo3eFGFhYXz00UdIJBKaNGnChAkT9H5DjzN+/HgiIyOpUqUKy5Yte2nfn6eRl/GQy8F70KgeefdcikvE09melLu3UebnASXmz+3bt9d7rgDUrVsXgMqVK5OVlfXCY/j5WEyZEueP+wYVJ98i9PhxkpOTAYiMjKR+/fo0bdq0jKBSGnnWo0cPvvvuO6pVq1bunGnUKmIuhJGZlECOSsOxo0fx9/enZ8+eTJjwIVPmzOPevXgsDA2wMDakk2cdFh09i4/WgHo373Lz5k2mTp1K1apVn3lu375bD4D9kcnIpWK0Wh0FxZpyEVY6jZq0LdMpTo2lbbt2LPh+Hvb29gQEBCASiejbt69ewGvRogVGRkZoA8ZTnFVWRCqMvUTOhZ1IxCKim9TDOycHf39/CgoKGDBgAA4ODjRu3Bh/f3+975FEImHcuHH4+/sjFoufKQXwf4XHI9I0Gg23bt3626qQSUlJDBgwgKKiImbOnEmbNm30nwUEBPytufXf4WhhyIeBr7/gg1QipkNdBzrUfX7/IgGB/xqCiCQgICAgICAg8D9I5Rq1y1Wjq+VgSy0HW6RyBX7vD6Rx5x7lokoOHDgAQM+ePenZsydQ3hT2bcTV1ZWjR49iYGBA//79yc3NLbfPhQsXKC4uJjQ0lPnz57N37166d+/+WsZz98qFcpFgabl5JN3P4eydeyRm57Fnzx4CAwNxcXHh559/Zvz48UD5cuIymQylsmwkz7OQmFlY5v3jvkGp6yYx7qNJDHjvHTp16oS1tTVQEj3zuKCyfv16ALp3787o0aPZtWtXmTYf3Itjy8zJqP+qAiWSSpkY4MW7k75i/JSvaNSoER4NG7Nx2zamT5mMUlnMgLk/MLNBQ5YuXYqxsXE5M+FnQSGVsLCPJ5M71eJaUjYWRnJGr71IcnbZ8ySSSLF7fzZyiZh9UwKxMJLj5eXFlClTyuz30Ucf8dFHHwHQb9k5otNTEEkf+aQZVfPGqJo3JgopM4Y0pZm7FX369CnTxqxZs4ASAWXGjBkADB48mMGDBz/3/P4XKI1Ii4uLq1DQfZxvv/2WWbNmUb9+fbp06VJGRBIQEHi7EEQkAQEBAQEBAYH/QWQGBvj07s+ZzevKVaMzNDOjbqt2b3B0L49aoyXkRirBUanIpSK6NaiMr50CAKlUikQiISkpiV69ehEbG8uuXbu4e/eu3rfG09OTw4cP0717d6ZOncqJEydo0KABubm5epPpl0Gn1ZaLBuvSoJb+9YqL1+jatSthYWHMnDmTMWPG6H2pnsTb25shQ4YQFRVVpuz8P2FhJCc9r2LxyWXwD5gayvWi4eM8Lqjo27KwoKCgrEm2Rq1myzdTynge6VQqxMDehXNo1yaQxMRE6tevj7WTC137DeTs2bNYO7lQo0YNjI3/vlT535GUlESXLl24fv06eXl5pKenY3NnP5kObSlSlY0ikohENHO3wsLo2czz+3m5sHfBpxjValHuM5lETGNXyxce9/8yOQ/SuH3+TEk1PnNrjh49SnMvL1q1asWhQ4ewtbXlyy+/5NKlS8jlcnbv3k3t2rXp2bMn69ev58cff6RLly6YmJjw008/sXDhQpRKJQUFBVy+fPmVVCcspbRC4qlTp15ZmwL/DlFRUYwYMQKJRELVqlVZsWJFGeH9cUoF3VfxnS7wCEFEEhAQEBAQEBD4H6Vp154YW1hyetMach+mIxZLqOHjT8uBw1AYGb3p4b0wOUUqev92loTMAvKLS6Kt9kYk09jVkomNFKSnp2NkZERmZiYhISFs2LCBbdu20bJlS7Zt28bYsWM5evQomZmZJCcnc/nyZU6cOMGmTZsqFFVeBNf6jdBVkFIIJQLfzg3rypQRX7x4cbn9SqNZgBcy/B3c3JVfQ2PKiSpyiYjuno7IpeKnHPls3L18Hk1xcZltpb5bOq2W4N27mPHtd/oFXEREhH4/sfjl+raysuLIkSO88847ANjb27P5t+/pt+wcN1NyKfjrvjCUiTFWSJnXq/4ztbtgwQK2bd9O26BPCVnzEzQoEVslIhESdSGGx34k8OhsevTowcSJEytsw83N7f/dovXkhtVc2rcTAK1ag1qrYZxPAwwMDFn250q+HPQ+ySIFCxcuxNfXl6KiIqZMmUKtWrXYtm0bIpEItVqNRCLBxMSElStX4uHhwZQpU/j6669p2LDhKxvri1RI/F/mSTP8x9MNQ0NDCQ0NLfNd9KapUaMGZ86cASAoKIiLFy/StGnTNzyq/1+83Le3gICAgICAgIDAW01t/1YM/3k541dv4cM1W+k49mOMzP7bBr9f777G3fQ8vYAEUFCs4dyNePoM+YDly5cDJWl4YrFY7y3k6elJ3bp1adWqFTk5OdjZ2REfH6/3IPL09HxlY7Sws6emb0ukckWZ7RKpDAs7Bzwae72yvp7GyJYeNHG1wkj+yMPIWC6hio0JX3Wp/dLtZyYnoVaVFZFi0zNYePgkCw8cw0QqwcvLi6KiIgIDA4mIiEAme/Ey4TqdjtupuVy9n4VOLMPS8lFEUFxcHMODBrNpZHM0OycjO7OM7A2f0MY4kSOfBDB5wihatmxJq1at0GrLimrav0qzl4oLImDeu/Wp72RBvcrmOFka0s3TkR6GNxg/IojQ0FBOnDhBenp6uTHGxcVhZ2dHQEAA7dq1IyUlhdmzZwPg5+dXbv+Ktv3XuBV2mssHdqNRqdCoVOh0WiQiEQqJBJ2qmNoOtlw+ewaX4lwSExPx8vLCx8cHX19fzp49S1FRESYmJmzatImGDRuSnp6Om5sb33zzDStWrODWrVukpaW98PjC7j5k3PrL9PrtDHP33+CHnxaXSTEMCgqiTZs2DB06VC+WeHp6MmTIEOrVq8eOHTvo3LkzjRs3JiEhgYyMDAICAmjVqhUffvjhC4/rzz//JDAwkICAABITE/X3SWlaK5Tc8w0aNOCPP/544X6ehbZt2xIaGlqhX9XbQHahitVnYpm8PZLlZ+7xILckwlKhUKBUKvHx8aFVq1bMmTMHgGnTpuHv78+CBQuAEs+8zz77DID09HR9qrbAiyFEIgkICAgICAgI/I8jEomQPSFm/FcpUmnYG5GMSlM2yken1ZCw4zuqtB2Mvb09cXFx5byFoGRxMW3aNGbMmEHHjh1xcXHh+vXrQNlImVdBu5HjMbe159K+HaiVSkRiMbX8WxEwcBji12To/ThyqZg/hzbjzJ2H7A5PRKXR0aGuPYE1bZFKXv5ZspmNLRKZHK3mkfdSqe+WRCajea9+ACxbtgypVMq8efNwcXEBKJNGpFQqMTQ0/Nu+LsZl8NGmq6TnFSMRi9BodQz3dy+3n0wiRp2fzbG9P2FtbU27du0w+mQwCQkJHD9+XF+FTqfTseZsPL+GxpCao8TUQIp72inG9B/ArJlfI5WIcbU2YuUoLwYPHkwP75FsDE2kfp+SyKc6depw8eJF2rdvz5gxY4iOjsbQ0JA5c+aUqU4HlPNf+l/j/M4t+gqEpZRGpAHcefCQFtXdWbV7P/Vq1+bo0aOYmZkxcuRIJkyYgI+PDw0bNmTmzJl8//33hIaGkp2dTb169Rg7diyXLl1i1apVfP755889tll7r7Mu7B5FqhLT9avx6aTt3sGhdwcBJeKCQqEgJCSEefPmUVhYci8nJydz7tw5Ll++zLhx47h48SIbN25k8+bN1K9fn4CAAGbMmPHUaMN/IjExkePHj3PkyBH9ttL75PGU1d27d2Nra/tCffwdwVEpLA6N4d7DAsw1mUQdCtGb4X/00UcMHTqUe/fu4erqirOzM/v27SM2NpahQ4diaWlJcnIyO3fuxMTEhP379+uN8V/GBP1pXIrPYNCK82i1JZUWFVIxs379E+mVTTSqV5sbN24wYsQIhgwZgk6nIzk5mfPnz3Py5EnWr1/PoUOH8PLy4ssvv0Sn07Ft2zZ69er1Ssf4/w0hEklAQEBAQEBAQOA/Q25RxQbfBTdPUZx8m7sHlhEQEKCvOvY4Wq2WgIAAAgMDkctLDJYdHBzw9PTE39+fkJCQl4qUeRKxWELzd99n7B8bGPX7Wsat3Ey7EeORG/57qYRisQi/apX4rlcDFvbxpH0d+1ciIAFUbeKN+CltiURi6gaUmCMPGzaMFi1acPLkSX36WSl//vknhYWFVK5c+an93HmQx8Dl57mfWUihSkOeUk2hSsMfJ2NJyCwot7+1tTUuLi4YGxsjkUiQyWQMHjyYAQMGMHXqVLRaLV/vuc7cAzdJzSkRP3LyizgWGsrSGCN9hTeVSsWQIUP01dtq1KjB8ePH0Wg0nDhxgszMTPbs2UOh3BLTnjO5Ze1D70+/I/jwEfz9/Vm4cCFxcXEMGDAAAI1Gw7hx4/D09CQ4OPh5T/dbS1ZqSrltpRFpPx85jVanY925K9xOfUBdDzfc3d31f4s3btygYcOGzJs3jzt37jBr1iymTJlCUFAQ7u7u9O7dm4SEBLp27frc47oYl8G6sHsUqh5V7cuKOIJBzRaMWnsJnQ5iY2PL+KSVUrVqVQwMDHB0dKRWrVqIxWIcHR3JzMykZcuWaLVa+vXr97dm4RWh02rJSU9j947taDQaAgMDGT9+PHfu3NHfJ49Hp23YsKGcgfvL8v3Bm3y06SoRCdlkFaqIK1BQKWgJfhN+IiQkhBMnTiCRSAgJCcHDwwMAHx8fzp49y/nz5wkICODs2bOcPXsWHx+fVzq2JylSaRiy8gL5So2+0qRSrUVapRkGfRZiaWOHXC4nIiKC/v37ExwcTHx8vP6aNm7cWN+Wv78/p0+fZs+ePa+toML/F4RIJAEBAQEBAQEBgf8MlkYyZBIxSnXZlCTj2i0xrt2SKjbGHP0kAIDmzZsDJSXCAwJKtlX0lHzGjBlIpVI2bdrE3bt3X/mYRWIxBiYmr7zdN41ULqfnF1+zbc5X6LRaVEolUrkcENHpw08xtihJN1u9evVT2xg0aBCDBg36234WH4uhWKMtt71QpSEtq4jC4rJVCDMyMkhISMDKygqNRoNGo6Fv374MGjSIESNGcODYSTacLyhzD+VfO4phzZbcTMlFUqgC4MSJE7Rv315/73zwwQeMHDmSnTt34ujoiJ2dHd/+uY8TB3aAYg9otcgdquEw5De6BlQj5JdJBAYG6vt4+PAh06ZNQ6VSMW7cODp06PC3836SFzWDvnz5Mo0bN0alUiGVvvrln6l1JZT5eWW2lUakPY5YKsWvz0Cadnu3wnY0mrLXcdSoUS81rrXn7lGkLtumKiOR4tS7xEQEI3oQQ3R0NCkpJSLY45GIj0cxPhnRqNFomDlzJlAiPA0cOPCZxnPz9HFC1yxHmZ/H4choHipVbN+9h0V/rChX9RDg4MGDtGzZEqlU+sqqY97PKOCPk7Fl7n2RVIYS2BGeQp8WgSQkJOg9qBo3bszZs2extLTk4cOHnDlzhkmTJnH06FHu37+Pk5NThRGfr4pD11P16ab6PtQqRFIZOiAxX4StrS0LFiyguLgYX19fdu/eTWRkJABXrlzRH9e/f3++/PJLzM3NX8rUX0CIRBIQEBAQEBAQEPgPIZWIGeLjhqGs/L+xhjIJH7au9txtTpkyhRYtWrBkyRKGDx/+Kob5/wbH6jUZsXg1LQYMo0G7Tvi+N4APfl1BtabNX1kfZ+88RPPkQlKjJnXjFJRpsbRp147U1FT9Z5UqVWLGjBm0aNGCzz//nNzcXAIDA/H19eX+/fukSe0RP1HMSZWRSO6V/cSuncLt6Bvs2bOHwMBAXFxc9OlFxsbGrF27lgMHDqDVarGpUodrBcYY1WmFfb9vsR/wHZYBQShFMpafvodvq3bs3btX34eNjQ22trZ6j67n4WXMoH/99ddXWtnsSZp27YlU8c/psiKRmGpevq9tHE+Sllv0ZIFELAOCsOvzDa79ZuFUpTrTp09/bs+u8+fP4+fnh5eXF23atHmmsdw8fZyDS34iPzMDdXExcomIysYKNn8zmUZ1a+vT6B7njz/+ICgo6Jnaf1YOXkvhSZlHqyyJ5lOptew5GIqHh4f+XntchHF2dubo0aO0bt2aqKgorK2tATA3Nyc5ORmlUsnt27df6XiTsgrLPTAojL1EyvoviP9zEknJKeTk5ODv70/z5s3p168fDg4ONG7cGH9//zKCa/Xq1bl37x7vvffe3/YZFhaGj48P/v7+5apU/h1r1qyhefPm+Pr60rRpU/z9/QkKCnqqsHblyhXatm1Lq1at2LdvH1DWD+ttRohEEhAQEBAQEBAQ+E8xsU017mcUEHwtBZEIRIjQ6HQE+brR3dPxudubN2/eaxjl/x8URkZ4tuv02to3UpRfsogkUuzen42hTML6D/1QZyTqfZWkUmk5I+ITJ07oX68Liy+3kLYMeLRYV+2cSteuXQkLC2PmzJmMGTOGjRs3Uq1aNT799FNEIhGTJk3iyO1sDDy8yL2zhJQNkwEwadABk9ot0Olg16Gj/PTNZL3nlkgk0lfCUiqVtGvXDqVSyYABAypMi0rLLeJ+RgEO5obsWLeCmJgYwsLCWLt2LStWrMDKyorY2Fh27dqFWq0mKCgIMzMzUlNT2bBhA+7u7ly7dg1nZ2fu3LnzQuf+Wajl34qEm9e4cfIYGrUanbZ81JhUocCzbScs7Oxf2ziepImbJZfiM8uJEAAanY49wSV+RH/n2fV4BcXHIxqfJxpMp9MRumY56uJHvlFu1paE3b2PuriY/RvXU8O3Zbnjbt++TY8ePUhMTESn0+Hn50fNmjWfud+KUKq1qJ+I6lMmXCPr5FpEEhkOXs3x8vLit99+IzAwEFdXV/058fHxIS0tDZFIhImJCd7e3kBJNGFQUBCenp7Y25dc36lTp/Ldd9/RqFEj4uPjOXv2LFOnTmXt2rXExcXpX/8TbtbGKGRi1MpHEWVG1bwxquaNgUzMhHY16ONfpVzK36xZsypsz9ramo4dO/5tn66urhw9ehQDAwP69+9PZGQk9erV+9tj1Go1ixcv5tSpU3r/rIULF/5t9bhZs2axa9cujB6rlPq4H9bbjCAiCQgICAgICAgI/KeQSsT82Lchcen5nLz9AKlETGBNW2zNDN700AReA/2aufDdwZsUqcqLAbZmCpzN5bR59wMmT578TO21rG7DzKdk3RjLJfy4PRg3Nzv9Infx4sX6z48dO6Z/fXHfdTQ6sGr7KO2q8M4FkldNQCSR4eznh52dXbk+2rZtS0JCAocOHapwcZlTpOKTzeGcuPUAuVSMUllM4aHt7Nuwli5tSsSGzMxMQkJC2LBhA9u2baN79+6kpKRw+PBhLl26xLx581iyZAkLFy5k8ODBLFy4kICAAKpVq8a0adP46quvyizic3Nz6dGjByqVCjMzMzZs2ICpqekznU+RSES7EeNp2L4LN8+cQFVUhFgqJfbqJfIzHmJma4dXj95U9/53K9EN8HJl+clYlE9sl0lE1HeyoJpdyfyGDRtGbGwsZmZmbN269ZWPI/dherl0v8qW5sgkiSw+egZTI0OmLPxZnyJXytWrVwFYtWoVarX6pQUkAO8qVihkkjIpoIYeTTH0aIqxXMLMfg31fT5JUFCQPjJq3bp1+u2NGjUqEyWnVCq5ceMGFhYWbNy4kalTp77weANr2WIglZCv1JT7TCwS8W5jJ+CfUz1r1KhBeno6FhYWxMTEULt2bdasWcPixYsxNzdn1apVmFhWIiYtDwtDUwwMSn5LpFIpEomE1q1blxFtL1++XKby24RlB7mRI6P29EPUdTDm1vGScSgUCpydnQkKCuL+/fu4uLjg4uLCoEGDKCoqolevXsjlcn7//Xfs7Ozw8/N77nTVN4EgIgkICAgICAgICPwncatkjFslwdvif51+Xi5sv5JATFqeXkiSiEEhlbCwjydyubxMpNE/LcKcLI14t7ETOy4n6s16oaSanYetCa1qPls1LF+PSmwIu0d+BQtyI7mE2UOaolSmY2hoSExaLqPnr+NAZBJHjx7Dw6MKCxcuZMuWLQQFBdG9e3dSU1NZv349H+1P4vT2FeTdOgcSGYZVGqNwa86YHbH69KzatWsjFoupXLkyMTExANSrVw+pVIqnpycxMTHcvn0bc3NzvL29adiwISEhIXzwwQekp6eXm4tMJmPt2rU4ODiwbNkyVq1a9dypNTau7ti4PqqYFzBw2HMd/6qxNTPgz2FejFxzkUKVBhGg1ujwdLHg9wFN9Pv9nWfXq0Aqk6HTllctu3rWBsDQ1Izq1avrRb0n798hQ4a8srE0crGktoMZkYnZFD8WoSWTiHCyNKJl9RerBKdRqzkdfIjbx4M5cv4CHm5V2JOVRe/evcnKymL06NGEhYXpxdPg4GCaN29OYWEh9+/fRyQSsWPHDnbs2EHfvn314qpMImb9B970W3aOIlWJubahTAIiWD64KRZG8mdK9bSxsSE6Olr/vkzk0KXL9BgxiawGfZFJxKg0WlysjBjbQEZ6ejoZGRmcPHkSX19fiouL2bZtGxMmTKBbt278+MuvxBt4sDUqk9y7Vyha9SmxqiI0+Rm4Va1Jo/q1iY+PL1cBMDU1lejoaCIiIjh+/DizZ8/mp59+eqFz/yYQPJEEBAQEBAQEBAQEBN5aDGQSto7y4fP2NaluZ4KTpSG9Gjuz70N/GrlYvlCbs7rX5eN21bE2liMWgZFcQn8vFzaO8EbypGHSU2hR3YbKlobIJGX3l0tEVLU1oZGTKcOGD+e+WT26/HSKb/Ze58ezDzAe8AuDZ60gJCSEnJwcUlJS2LZtGz/++COfffUNN+7eIz/2KvYDvsfCvz/510PJvryfq8smkZqWxrlz5yo0M46KikKj0RAeHo6zmzu/bDvK9oPHadqiLREREYwaNQqFQoFGoyExMZHu3bvj7e1NbGwsBgYGODg4AI+iL06fPs3nn38OlJiV9+jR44XO9ZuksaslYZPb8Megpnz7bn32fujPxhHNMTd68SqMf/75J4GBgQQEBJCYmMjs2bOBR342x48fx8vLC29vb5YsWYKRuQVWTs4VtiWWSKjh0+KFx/K8iEQi/hzajM71HFBIxRgrJCikYgJr2bF5ZPNy9/6CBQvKVIuriFO30vhy9ETOrF3Kw7gYrt2Nx7ogCwczE8yNjIiNjSUjI4Nq1aqxZcsWfv31V9q0acPZs2e5fPkyo0aNwtXVFV9fXy5fvlwuOq+GvSlnvwzkh94N+KRdDYb4utHYxZIvtkUwdOUFpnz7I4MHDwYgLi6OVq1albm3oeT+bdGiBSNHjqSoqIiHDx/i5OSERCJhR7yU8MsXKFJpyS1SU6TSciMumX5BI5m36FeuXbuGRCJBo9FQo0YNvZ/ZuXPnWLN9P/LG75KfEofczgPEYiRGFkgMTLEc9BOOjo7cvXu3XAVAc3NzmjZtipGREa1bt+bGjRsve2n/VYRIJAEBAQEBAQEBAQGBtxoDmYQgP3eC/Nz/eednQCwW8YF/FYb7uaNUa5FLxIifUTwqRSIWsXlkcz7bGsGJWw/0UQyBNW2Z16s+crmMFh8tZvvlBIr0UR8SEEuYH3KHTs1asnfv3jIRRNdv3qJAWg+5bck8FfbVkBiaY9fnGwAy/hiOt7c3wcHB5cZja2tLjx49uHs/GaXfGGT5jui6fE2xXELBnVEcO3GKBnVrY21tXWHqG0BeXh5Lly7lwIEDmJub61MEd+/e/Z8tiy4Ri2juYf1K2kpMTOT48eMcOXJEv23KlCnAIz+b+fPns2XLFpycnGjevDmjRo2i7Qdj2TJzMuriYr3oJ5ZIMDQ1w7tnn/IdvUaMFVIW9vFkZvc6pGQXYWtqUKGo9iwRPpfvZTJ78SZa5CYg06k5H5dII1dHpGIRKo2ajHuxNGzYEFdXV8LDw0lKSsLR0VFfJTArK4sTJ07g6OjIlStXaNy4cYX9yKViOtZzYHFoDCtOxekjCGPTcsjct5eqAT31+1Z0b586dQorKyvmzJnD0qVLGTt2LLGxsdxLzWDtjv2oC3P1x+u0GtL3/oBlQBDvr41GkfQQHSJ0lFTwKy4u5qOPPiIiIoICqwY8vHoYwyqNkZjZUqnTBB4e+g2xgTHFGi2nz19kz549mJmZcf78eerUqQNAtWrVSEtLQ6PRcPXqVdzdX8332r+FICIJCAgICAgICAgICPy/RCQSYSCTvPDxFkZylg1qQkZ+McnZhVS2MMTCSA5AnlLN9iuPC0gllbDECiMKVRq2HjrC5p9msnbtWn0EkYOzK2orOx6mlURQKFNuI7UsMSuWiKBp+57Y29uXM3uOi4vDycmJX5eupPm3R1AXa1D/tdAuKNZgP/RXjA2k2D3YU064Kk2H0+l0DB06lNmzZ2NhYQFA/fr1uXLlCrt37y5nVv7/Ca1WQ0ZiAtu3bEGj0RAYGEjt2rWZOHEi06dPZ+3atXo/mzp16pCdnY2NjY2+lLxD1Rr0m72AM1vWER8ZjkQioaZvC7ze6YOxxYtF070spgYyTA0eiUcxabksPnaHc7EPMVFIsUs4Tv8BA5j19dfExcUxdOjQcmbuHTu8i1lRFhHZ6bStXZXD129TqFJR2TyWzLwCFFIZGlUSAQEBXL9+HSMjI5KSkrCwsECr1TJ06FB+/vlnJk+ezKpVq+jXr99Tx5uQWcCPIbfLGKXnXzuKQc0WLDx8G/O/tld0b1tZWQHwzjvvsHDhQiQSCdOmTaNrly4USeyQWT4qyFBw8xTFybfJOLaSDMDCrz8Kj2bUCJpH9OddyczMZOXKlWg0GvILTyI2tUadl0HhnfPEz+ta0ohUzo1572JtbkZqciLOzs7s3bsXtVpNVFQUx44dIyMjA19fXxQKBffv3ycgIIDIyEiuX79O7dq1X9Vlfi0IIpKAgICAgICAgICAgMBLYGUsx8pYXmZbYmYhUrEYeLTofbwSlrl7Pezs7PQRRA8ePODnpSsYsDkeA5d6pKz5FCRSKnX+GICMI0spTo1g0o2zjBo1ihEjRpQbx/YrCWifKCmuU6sQSWVotDoeFIl5cPo0+/fv586dO4wbNw4PDw8Apk2bhq+vL61bt9Yf26tXL/2CuXQh/v+NqOMhHF+zAo2qmEMRN0nLK2DTli0s2bCZXbt2ldu/R48edOnSBSg5p6VUcnal28fPZv7+b3Pu7kOCVl6gWK1Fo9Oh06g5d+AweR6B+vupIjP37KwsBrXxJykmnItxiUzp0poj12Mo1qi5n5lNWk4uKl0uu3btwsnJCZFIxJgxY5gyZQpNmjTh7t27TJw4kcTERK5cufK3vkB7wpPK3duqjESKU++SHx5MQtpt9uzZUyat08PDg+K/or8UCgWnT5/W3+/dunXDrq4v73+9HI3ho3Qy49ot0eRlUHDrLJW6fkLWiTVU6jqJrQu+wNLCmiZNmnD79m2SkpJo3vl9rt9LQ2pijVhhjPP4dSSvm4SuMA8j51p42pSM19HRkTp16mBmZoaFhQWhoaGsW7eO9PR0JkyYgJ+fH6Ghofj7+7/1AhIIIpKAgICAgICAgICAgMArp5KJnOInyqmXGm8DVLczwc3NjdDQ0DL7fJ5jyPeivhQ2f0+/zUguYdi0uXzVpeIFZmkp+q92RpWrYlcYe4mcCzsBMKlVjcrGJUbaI0aMIDw8nF9++YWkpCTmzZuHj48PO3bsoE+fPowcORJ/f3/69+/P9OnTX/JsvBni4uLw8vKiVq1ayOVyDh06xJ9//snq1avRaDSsW7eOVatWMWXKFEaPHk1xcTEREREkJCRQtWpVRvZ9j4dnQ1EXl9R4k4vBxdyY3fPnUL9le+JSH5Tr87PPPuPUqVPY2dnRtm1b+vbtW6aM+6smKiqKESNGIJFIqFq1KitWrCjjmfU0UlJSWL58OZMnT2bixqtlTOZLInxacjM5F21eMVCxmbvCxoX7Ri6YGd7C3twEADNDBVqdnIE+jbiZks7B85c4EHKE69ev60W1kSNHPvc8swtVqDRlRSTLgCD9a9GeaXTt2pVt27bpRdl169aRmZlJx44dMTExwdLSUh/FN378eKKirpGTJcW09aMKizq1iuIHsY/ea9RoCnNRZqcjsnOkRYsW7N69G7FYjJ2BhpuaYiRGZoAOTWEOaNSIJRLe69GFVbM/plWrVoSHhxMXF4enpydubm5ASSqftXVJmmVGRgZOTk7Y2dlRVFSkrw73tiIYawsICAgICAgICAgICLxirE0UeLlbIalgxWUokzDcv0qFxw31c2dlUFNaVrehsoUhzdyt+On9hkztXKvMfqWmx3FxcQwYMAAADxtjDGVlOzSq5o19v2+x7/ctcvtqjB4zlnr16rF8+XI6dOiAi4sLn376KYcPH2bIkCHY2dmxd+9eIiIimDhxIlWqVGHXrl1kZ2e/mhPzL9O2bVtCQ0M5dOhQGU+j0NBQKleurPc0cnd3p1+/fjg4OHDhwgWCg4OZ++23egEJwM3akuSsXNTFSvZtXF+hWCORSLCwsEAulyMWi1GpVE8d2+PG1cOHD8fPz4/ExMTnml+NGjU4c+YMJ0+eBODixYvPdJy9vT1TpkzhWlIOOUVlx6jKSCT3yn7i1k3h7u2b7NmzB5FIRFxcHD179mTlypUMHDiQypZGXLeoh1YkBsqeC61IgrOHBz4tAwgLCyM7O5tly5bh7e2Nt7c369evf655NnWzwlheceqpsULC8m37AXBycmLPnj2cO3cODw8P7OzsuHz5MidOnGDXrl2YmpoCJR5Wx44dZdvGtRgaGuhHnxdxEOO6gfq2NQVZJC4ZRnFKDAZWJWlv9+7dw9HRkYMHg9HodBhXaYRIblSyX9pdqrk58Vm/9kgkEq5du0bTpk1xd3cnODgYtVpNrVq1+O233+jZs8TL6dSpUyQkJPDuu++ydOnS5zovbwJBRBIQEBAQEBAQEBAQEHgNzO/dAHszA4z+WvyKKIkqal3Lll6NnJ56nHcVa1YPbcbpL1qzeWRz2tS2KyNYPM30+J2GTuWEDZ2uJDJJp1ETfuEMex88SktTqVQMGTKEESNG0LJlSwAsLCzYt28fKpWK/Px8Tpw4wfvvv683336b0ajVXD95jI3TP2fN5x9yfvdWjoQcpkHN6gR16cDg3u8Scyua5s2bY2BgQExMDPXq1eP8+fN8++237N69m+PHj3P58mVEGjW5+QUsPHyKlacusiT0HBEJyUQlpfDzkdMcvXiZXr166dOQoqKiSEhI4PPPP6dNmzY0b96cVq1aYW5uDpREDPn4+ODv709QUBA3b97kl19+0Y89OjqaU6dOUbly5XLz6t69OxYWFoSEhAAl/lWnY9L5/mA0S0/FEZueD4BCoeDOnTtMnToVgFWrVrFq1SpUKhWBgYG0aNGCd999F41GoxcfC4o1SJ64ZywDgrDr8w12783EyM6NTp27UJpJ1rhxY4YMGcKaNWuo7WCG3MyCMzb+FIoVqERS1CIpGsS079GLuKw87t27x65duxgzZgxt27bl3LlznDx5kvnz5z/XtQ2oYYutmQLpEwb4UrEIW1MDWla3fa72AO4+yOO74GhAhFgsQqdRU3QvCkPXBo920moQSaQglqBJu838+fPp0qULPeZsRa0BqY07WpEEu/dng05HnY/X07xhXfbu3YuXlxfOzs6MHz+e4uJiDh06hLm5OTdu3GDGjBn88MMPQFnPpqioqOeex7+NkM4mICAgICAgICAgICDwGrA1M+DIJwHsjUjm6M1UTBRS3m3kRDN3q2dKOSpFp9MRFpvB0ZupSMRici7uZfDgwWU8d1QqFaOHD2Zs5z58s/E4uTEX0RUXYtFiEOn7FiCSytEW5rDz8Als/kpdOnHiBO3btycgIEDfTmmFrDt37tCoUSMAmjRpwvHjx1/BGXl9aNQqts76itS7MaiURQBo4+4y3rchcpmM5SfCMDcyIi49g/GjRpGSksLSpUvJzMykYcOGFBYW0rlzZ2JjY5k8eTIN9uwhKSuHwT6NqGlvy/xDJ0jNycPK2IhxrX2QGxpSvXp1Tp48ibu7O4cPH2bhwoXMnz+fDh06lBufLiONYU3qkJWazOYTR5mWdB83V1eKVSqmTp1KREQEXbp0Yfv27fTu3RulUomlpSXt27enbt26epPu9Zu3Mmv9MajflZRTWym8fZY5zXuRcWARRnKpXgx8nPT0dPz9/ZkxYwZTp07l6NGjVKtWDYBaDqbl0i5LkYig+rCFtFl2HbFLPz7ZfJWIqGsUFRVhbm5OqxZ+WNrmcd7Wn1/2/Iqs+1TUuTv4eNRQenZtz46wCwwbNgxA70UEIJVKkUiez9C+pBqiD2PXXyb8fhZyqZhitRZPFwt+6dsIiVikT+uEkiiv7du3s3btWqZOnarfXkp2gYqev50hu1ClF8jyrx3FuHbZ8yc1t8N+wPekrJtE2OmTdOsQyOJV6wn4PhRpJWcs/PqXXF+1CkP3RqgVJtzLg0aGhohEojJm4TqdTi8YVapUiezs7Kd6Nr3NCCKSgICAgICAgICAgIDAa8JAJqFXYyd6NX565NHfUaTSMHjFeSITsyks1oBWzcO9u8l0b0WpQ8zjEUUBAQHsORPO6fvGWHf/HABNbjrGdQMpTokhYdN00sU69uzZQ2BgIC4uLvz888+MHz8eALG4JFmlSpUqHDp0CChJkXrbF7eRRw6Rcud2mfQzMaCQSkGno7aDHfcyshDp4MD2rQzq34+rkVHodDpkMhlSaYkA4+bmRosWLRg4fCQyqQzXSlaIxSJkYjH1nRw4cyeerEIlZ+JSGQ/68uylwohGo6FTp06sWLGCyMhI1m3dRc+W/tw7tO3R2HQ6roSHI5HKSCsoQq1WU61aNfbu3cvIkSMJDw/H2dlZ76U0atQovVn3jEXLUTXuh7agiOIHseh0IKvSDJGlM75+zbh165Z+/jqdDpFIhKmpKbdu3aJly5akpqZSrVo1vYhkaiBjUHNX1p67V8YXCSAzbAeJt85iP+A7NOi4lAZWQxbzx4cBfDy8P5MmTSI4OBjPGjUI9G/O7Heq0vmPUBZ9n8z3c2bQr18/pFIparW6TLtLliyhR48ez32NbUwVbB7ZnPsZBdzPLMDZ0ghnq/J+U0+L1HuczRfvU6TS8LhXd6lRd+7VA6jS4ymIOQ+URBA6mhtgaSzH3NycQ+evI9EUo85MLjnu4X3Sts9BJJUSt3oSSmc3tD51uXbtGlu3biUyMpIePXrQrl07VqxYQUBAAFqtlpUrVz7Vs+ltRhCRBAQEBAQEBAQEBAQE3lLmHrjB1ftZ+tLmeVElZc2P3UxDnVMScfNkRJFMLEZhX1XfhtTSAavADwBIW/85jhYGdO3albCwMGbOnMmYMWPYuHFjmX6bNWvG6tWr8ff3x9TU9G89bJKSkujSpQvXr18nLy8PqfTZlplXr15l7NixiMVi5syZg7+//zOfl3JtHdpXRkACKFKpMZCVjCUuPYPq9jbcSXtIYbGK1Ng7XL58GUtLSwBMTU2JiIigUaNG2Du5kFx/MNrLESTnKXEyl5CeX4BbJUvO3LmHgakpNgaW+n40Gg2zZ8/m999/RyKRsGDBAvoMGkZEbDIuvaZQd996pDo11xJT2R95E6lYTLMqzhy+FoNWLObHH3+kVatWeHl5kZGRwa+//krz5s31lfKcnZ0pLCggIiyMrKR4HJuLuf+Xd0/2iTVknlhDUWosRw5n0az2KFasWMHFixeJi4vDz8+PwsJCoqKiiIiIYMqUKeieqHL2ZcdayCRiVp6OQyIWodHqUBUryxhMAyCVUQQsDImhS5cuJCQkEBkZSXZ2Nh9//DHLli3DwsKCEydOULduXezt7cnPzy/TRFhYGPv372fnzp0vfK2drcqLR6k5RVyOz8RIIeVq8KZykXoAe/fu5bvvvkOtVmPY7D2KDKqRd+0YuZf2IhKLsWo3Wm/WnbJ2EkZVm6FOuUW3Bo5cOmUIwFdffcWAoUGkiayQmtkAILN2pvIHv+n7Caxly5jBTRkzZgwAAQEB+r/NrVu3lpvP5cuXX/hcvAkEEUlAQEBAQEBAQEBAQOAtRKXRsvlCgl5AgieiJZJvVRhRVN/ZnItx6fpj1JnJaIuL0CrzEcuNOHIsFBdrI33Uw+LFiyvs/9dff32mcVpZWXHkyBHeeeed55rftGnT2LRpE1ZWVvTs2ZPg4ODnOv5xlPn5JGfnsvViBGKRCGsTY+o72XPw2i2kYjHulaxo4ubE2Zh4Iu4nEb5xC27u7lSqVAkAtVqNr68v5ubmFEuNUe1ehEWHCaw+vgIDZTamhkYUSE1Qyk3o+cUMbsz7Tt/3J598wqBBg/TRWlJrF67EpiF39sS6KB0NYqRAncp21Klsx8JDJzl5K5YilQqtTseZM2coLi7m559/plOnTowfPx4XFxfS0tIAuBV2BnlhHr/+tAhf58o0vb+RFbduwHs/kKHMQ5lwDQBDl3pUrVoVhUJBUVERMTExZGdn6yvOdenSBXNzc30UUilisYhJHWrSub4D52MzcDQ3YMAn35SIVCfXoc5OJX3/IkRSBdrCXA71/Jxr4evx9vZGLBYTGxvLrl27OHPmjL7iWFpaGj/88AMFBQXodDr8/PwwNTXlk08+Yffu3c+dzvY0itVaPt8Wwf7IZGQSMTqNmoQdm9m8eXOZ/bRaLT/88ANHjx5Fq9VSpZEfkk5Tyb20G/v+36PJe0jG4SXY9pqOgUzM+9+spJqtCV2n9KS+kwX0PQWAl5cXUeFXaPxNCDErPy03HiO5hD5NXV7J3N5WBBFJQEBAQEBAQEBAQEDgLSS3SI1W9/Sy5inrJlUYUVTVxgRXKyOyZGKKVFokppV4eOBHNFnJ9J04AxfrV1NyPqdIRXx6AdYmchwtH0XmzJs3j7p169K5c2d27tzJnTt3OHHiBKtWrcLS0pKJEycycOBAMjMzcXIqSfPLz8+nsLAQQ0PDFxqLQ/Ua5GSkMz7QF4CN58MxMVDwUduy0U3j2/hSoNWRZGTFuwMH06ZNGwDCw8M5ePAgarWab+86otbq0Gk1GA5aRMaxFWRdDea38ARUGQ85EHJM397y5csRiUQMGjRIv+3TBauQWjlRFH8VVfU6AKg1GqR/CSc1HWxIzytArdVSpNYSGRmJVqtl6tSp+Pr6EhYWRlRUFEZGRhw+sJ8ti75HDNxLz8DLrTKbzl7Ex9UZw/RjrDYww77ft6SsnYRv0BTi4k6xaNEiateuTZ8+fRg9ejQBAQHlfIGio6P15zo5u5BRay4RnZqLTCJGWaSkID4Sm4adyT65DgBNXiaWrYLIPLaSe6s+pseIIH3lsX379vHVV19x5coV8vPzqVOnDnXq1OHIkSP8+eefqNVqatasyciRI0lNTdVXJTtw4MALX+9SZu65xoGoZJRqLUq1lryIQyhqtGDCxisYFT9Kz0tPT+fGjRv66y0tykamykNqZotIIkVqbodWWRI1JRaJWDKgMQayioUuhVTC973q8+4qESIR+pQ4Q5kE7yrWBNZ8fpPv/xKCiCQgICAgICAgICAgIPAWYmYgRSoWoXzK543H/lzGTPjxiKL+A7X8FhrD6rPxpMiNqD9oOmMCPBjg7frS41KqNUzfdY0dVxKRScSoNFpqO5qhVJVETPXr148pU6bQuXNntmzZwrx587Czs2Pbtm0MHTqU8PBwFi1ahI2NDVFRUdjZ2REVFUVWVtZziQo6nY7QWw9YczaeQmUNGksvgKakXL1ULEan0/HbsbMYyGTkFinp790QaxMjrMxMKXYoex4cHBzKta/OSuHhgZ/QqYqwbDkY00adSVk3iU6du3D50gUAxowZQ7NmzQgICKBly5Z8+umnHN+6HIt3vkKVfo+os7vpXseUmykPOHGrJD3MytgIpUqNtYkJDwqKuH79Oo0aNeLQoUOMHj0aAwMD3N3diY2N5cG9ODKycohOSUMqEXPmTjz2ZqaExcTCnThUmQXkXNqDWAyjWnpw72Ismw6epK2s5NzOmTOHO3fuABAUFMT9+/dxcnLi2LFjfPzxx7RsGcDV+1nkJt7CcdhiVBmJZAT/DGIJhXFX9edCbuOGUVUvjNwbod4/hwULFjBkyBCGDRvGyZMnad68OYMGDSIvL4/PPvuMH374gbVr1zJkyBB9G7///rv+9YIFC2jbti2nTp0qd96Dg4PRaDR07twZc3NzGjZsCMD27dv1xtRQImJuufT0SD1t6m327NkDlBhZ16tXj4MHDyKRSCguLuajzeGs2JSGTqNGk/cQscIYQ5mY73vVf6qAVErHeg6cO32CX47FEJmQjaWRjCG+7rzbyAmx+NlN8/+LCCKSgICAgICAgICAgIDAW4hUIqa/tyt/nomjSF22gpahTMLIFlWeeqxcKmZCm+pMaFMdv4OWnPoy8JWNa+LGqxy7maaP/gAIv5/Fg6RscotUODs7k5GRwcOHD8nKysLJyYkePXrQv39/qlWrRosWLQD49ttvGTduHKamptSvX1+fWvYs6HQ6Jm2NYF9kMgXFGsCANNt2OFxew5GIa9iam2JiaEhesYqx7VtyLz2TEzHxDAjw4d3JM/l15eqntu1frRKh0Q+QWVXGvv+8Mp+1//x3alb30At3SmV5ia/xmEXEpuejcKiOXfvhiBI2UreyPXUr2wNw/u59jBQyGlZxY1NMEqfPnMHPzw8AV1dXFi9eTKdOnRg8eDB3L4YRWMuDa4kpDGreiGPRd+ndtH5J3yI5805GYOPVnaLE8xy9mcrOaHNSDhxl655gJC4NadO7O6dPHUAikeDh4UFISAjz5s3Dzc2NCRMmUL31e4yc+wfa62eQmtmQvvt7DKt6Ufwgjgc75yICCmLOo0qPR6fVIMmMx69xXaBELPzkk09o1qwZIpGowupjFfFPxtePV7erV68eoaGhFe4X+yAfuURcRkR6PFIvY+Pn+kg9sVjMxx9/TGBgICKRiNq1a/Pzz78gix3Dnysmo9ZC5w8mMz3Ih7qVzZ86tsep72TB0oFNnmnf/yUEEUlAQEBAQEBAQEBAQOAt5dN2NbiVmkvY3QyUag1ikQipWETXBg7PHFVUUbTHi3LvYQFH/xKQHkerA41Wx/ZLCQxrWY1u3boxatQounbtCoCJiQlmZmb8+OOPzJkzB4Dq1atz6NAh0tPT+eijj5DJZM88jhO30x8TkEq4Y+DC3eZfUt/nIXZxB7Bo4EkLQyt6ffkVqfGxXPh6NiN+W4VY/PdRJl92qkVYbEaZtqFEuJverc4/jq1fMxfmH46mSKWlYVZ5sSQtN4+k+zmcvXuf1AIlP//8s/4zd3d3wsPD6dSpE4aGhtStVgVbhZgWNdyJTk2nqq21fl+5WMesn1fRpUVD1nmvZV1YPCokWPcsMZTOiwxhx9VkBrXqRAMPR7KysgDw9PTk7NmzABwKi+DB2R3YvvuXCbUIrNqMAErSJWUSEcZVm1EYfRrNwe+wlCqZvbnEhD0wMJDBgwczderUknn360efPn1Ys2YNMpmMTZs2ARCbns+6sHji0wuo6WBKccQBvfH1lStX+P7771m/fj0DBgxg4sSJREVFoVarGT58ODdu3MDf3x9fX1/mzp2LSPQoysfSSI5KU/Y+fBz/j38rE6nXqVMnOnXqVGafRV9NZNFXE//+ggqUQfymByAgICAgICAgICAgICBQMXKpmFVBzdg8sjkft63OJ+1qsPdDf77r1eCNpM1cjM9A8kS/Oo2a1I1TUKbeZeqofoSFhdG7d28OHDhAr1699Pu9//77xMbGUrNmTaDET6hVq1YMHjyYmTNnPtc41p2LLyfy6NQqdCIxiQp7RFaVMbO0JCoqCscatdFa21Ongec/CkgA1e1M2T7GB/9qlRCLQCyCpm6WbBjhTSMXy388fmBzV6rammAoE+OgTEZCWV+rLg1qMaKlF2Pbt6RqFXfGjx+v/6xHjx6cOXOG9u3bk5WVhWu9hsgUBtR3cuDkrVjqO5Wm3Ymo5ODA+J5+2JsZsC7sHoWqR4KKVlkAgEqjY/O+EDw8PIiMjAQgIiICgIKCAg78NhO7LhMQSf8S8HQ6tMoCtMoCRDodP67dw9FPA3jHvz4J4ae4eumC3kAcoG7dujRo0AAACwsLDh48SGhoKIcPH8bKyorNF+/T8ccTrD4dx+Ebqfx+7BZzV2xH4lQPgIYNG+Lu7s7IkSNxdHSkSZOykT23b9/mxIkTZGZm6lPTSnGxNqKKjQmiCv4MDGUSBvu4/eO1Enh+hEgkAQEBAQEBAQEBAQGBt5x6TubUc3q2NJvXiZFcUm7RLpJIsXt/NgBd6jvg5dWIzMxM2rdvXyZFTSQS0a9fP/37YcOGMWzYsBcaR3pe+TSywtj/a+/eg6ys7zuOv7/schG8oIISFBQaDDZA8K7USxRj04sEZbzQqsRLFUejaceJNSqtw2DUJGOT2GrTqtRb1QHrhdREiJpgFSuoEa0XVEAQoygqRG57+faPc0IWWPYBdtnjHt6vmTPLeZ7feZ7v2f3Nmed8+P1+zxyWP/cgNRHsddAQTrjsYu69915Gjx7N0qVLufvu0iLRl1xyCdOmTePhhx9m/PjxnH/++UyaNIl77rmHzGTJkiVMmDCBO889jIbGUgC0YXDWkm6da5gyfgT3PfcO827rAXUfN9suGxqZNrV0y/ffjxbr2rXrurBk8uTJZCZ9+uwOzz7NDaf8BZDUdulKbefOnPi3VwCw+OOVdNpgeMiaxa+wYs4jRE1nagYM5bDDDuOWW25h5MiR9O3bl8GDBzN16lRWvP8OHz/8Qxoz6T3qcnYZcTrv33c1kPQ+5kz+8itfYOVHv6XTBn/0ZcuWMWbMGC644IJN/h7e/WQVVz/48nqj1pb9ZgbdBh/NhXfNoWd5Rerx48czYMAAFi5cuNExfj89bvTo0bzwwguMGjVqvf0/HjucMTc/w+q6hnXn6d6lhsMG7MbJB+y1ydq09SI3WO2/ozj44INz9uzZlS5DkiRJkrYbK9fWc9DEGayqa9hoX/cuNdx8xkHs2fgR5513Htdee+269Y+mTp3KjTfeyEMPPbTuNvCtcf2jr3HrU2+ztmHj77Ndazsx4++OoWH5Bxvdlay9vfb0r3nslh9Tt2b1Rvt27r0n5/3k39ebotXU5MmTARg3bhyLXpnL3Md/waoVy9ln2AEMPfYEuu24IwBLV6zhT65/nLX1zU/tGtCrB09c9lXq6+upra3l+uuvp3///owdOxaAW371Fj+aMY/VdQ0kEFH6HV7xZ/u3ajTPP814g39+4k3qmvyNPn7ydta+/zY1NZ3ggzf53qSJzJo1ixEjRvD8889z6623MnnyZOrr6xk7dizdunWjpqaGq666iqFDh3LaaadtdJ5ln63lnmcX8uTrS9mpWy2nH9qfr+2/Z9UvcL0tRcSczGx2wSdHIkmSJEmSNkv3LrVMGj2EKx+cy+q6xnUTtXboXMPRg3pz9KBeRPTeaB2mMWPGMGbMmDarY9yIfbnjmQWsbVg/zOpa24kjB/Wi327dWbC8zU631b50+JG8/vRMFs59gbrVpSCpprYznWprOfHbl28yQALWu7NZ/yHD6D9kWLPteu/UleH9ejJ7wTIaN8jUdujciXFHlNbOOvfcc5k/fz4777wzU6ZMWddm/DF/xEH77Mq/zXyb+Us/Y9AeO/I3Rw/kgM2YuteSJZ+sWi9Agj8sfF3bKeCRCfTr14/33nuPiy66iEsvvZTp06evaztv3jzOOeccevTowcCBA7nmmmuaPc9uPbpw8XGDuPi4Qa2qV5vHkUiSJEmSpC0yZ+Eybnr8Lf7vvU/ZvUcXzq7A7c2ff+djLrxrDr9bU08ngrUNjRy9X29+dPpwunf5/IyXyMZG3pw9i5dm/JxVK5bTf8hXOODrJ7LT7pt/N7oii5atZPS//A8r1zSsGyXWvUsNB/bfldvPPoTONe2/HPKdzyzge4++ttHaVQA9utZw09gDOXbwHu1el4q1NBLJEEmSJEmS1CE1NiYvLPqYZZ/V8cd9d2avnjtUuqSKWb66jvufW8QvX/2A7l1qOPWQfhy//55btJ5TW1qxuo4R1z3OitX1623vFNBn527MvPy4itWmlhkiSZIkSZKkdjV38ad88/b/ZU19I/WNjdREsPuOXbnr3MPov3v3SpenTXBNJEmSJEmS1K6G7r0Lz353JDPnfciST1cxsNeOHD5wtxbXgtLnmyGSJEmSJEnaJmprOrn2URVp/9W1JEmSJEmS1OEYIkmSJEmSJKmQIZIkSZIkSZIKGSJJkiRJkiSpkCGSJEmSJEmSChkiSZIkSZIkqZAhkiRJkiRJkgoZIkmSJEmSJKmQIZIkSZIkSZIKGSJJkiRJkiSpkCGSJEmSJEmSChkiSZIkSZIkqZAhkiRJkiRJkgoZIkmSJEmSJKmQIZIkSZIkSZIKGSJJkiRJkiSpkCGSJEmSJEmSChkiSZIkSZIkqZAhkiRJkiRJkgoZIkmSJEmSJKmQIZIkSZIkSZIKGSJJkiRJkiSpkCGSJEmSJEmSChkiSZIkSZIkqZAhkiRJkiRJkgoZIkmSJEmSJKmQIZIkSZIkSZIKGSJJkiRJkiSpkCGSJEmSJEmSChkiSZIkSZIkqZAhkiRJkiRJkgoZIkmSJEmSJKmQIZIkSZIkSZIKGSJJkiRJkiSpkCGSJEmSJEmSChkiSZIkSZIkqZAhkiRJkiRJkgoZIkmSJEmSJKmQIZIkSZIkSZIKGSJJkiRJkiSpkCGSJEmSJEmSChkiSZIkSZIkqZAhkiRJkiRJkgoZIkmSJEmSJKlQZGala9gqEbEUWFjpOvS50gv4sNJFqKrYp7Qt2K/U1uxTamv2KW0L9iu1NfvUtrNPZvZubkeHDZGkDUXE7Mw8uNJ1qHrYp7Qt2K/U1uxTamv2KW0L9iu1NftUZTidTZIkSZIkSYUMkSRJkiRJklTIEEnV5KeVLkBVxz6lbcF+pbZmn1Jbs09pW7Bfqa3ZpyrANZEkSZIkSZJUyJFIkiRJkiRJKmSIpKoREfdFxIvlx4KIeLHSNak6RMS3IuL1iHglIm6odD3q2CLiHyPi3SafV39e6ZpUPSLisojIiOhV6VrUsUXExIh4qfw59VhE9K10TerYIuL7EfFauV/9V0T0rHRN6vgi4pTyNXpjRHintnZgiKSqkZmnZebwzBwOTAUeqHBJqgIRcSzwDWBYZn4Z+EGFS1J1uPH3n1eZ+d+VLkbVISL6AV8D3ql0LaoK38/MYeXrqmnAhArXo45vOjAkM4cBbwBXVLgeVYeXgZOBX1e6kO2FIZKqTkQEcCrwn5WuRVXhQuC6zFwDkJkfVLgeSdqUG4HvAC54qVbLzOVNnvbAfqVWyszHMrO+/HQWsHcl61F1yMxXM/P1StexPTFEUjU6Cng/M+dVuhBVhf2AoyLi2Yj4VUQcUumCVBUuLg/nvy0idq10Mer4ImIU8G5m/qbStah6RMSkiFgE/DWORFLbOgd4tNJFSNpytZUuQNoSETED6NPMrisz86Hyv8fiKCRtgZb6FaXPyV2Bw4FDgPsjYmB6a0u1oKBP3QxMpPS/+hOBH1K6mJZaVNCvvguc0L4VqaMruq7KzCuBKyPiCuBi4B/atUB1OJtzrR4RVwL1wN3tWZs6rs38Dqh2En4PUjWJiFrgXeCgzFxc6XrU8UXEzylNZ3uy/Pwt4PDMXFrRwlQVImJfYFpmDql0Leq4ImIo8EtgZXnT3sAS4NDM/G3FClPViIh9gJ/5WaXWiohxwHhgZGauLGovba6IeBK4LDNnV7qWaud0NlWb44HXDJDUhh4EjgOIiP2ALsCHlSxIHVtEfKHJ05MoLQgpbbXMnJuZe2Tmvpm5L7AYONAASa0REYOaPB0FvFapWlQdIuLrwOXAKAMkqeNyOpuqzek4lU1t6zbgtoh4GVgLjHMqm1rphogYTmk62wLggopWI0nNuy4ivgQ0AgspjR6RWuMmoCswvXQfHGZlpv1KrRIRJwE/AXoDP4uIFzPzTytcVlVzOpskSZIkSZIKOZ1NkiRJkiRJhQyRJEmSJEmSVMgQSZIkSZIkSYUMkSRJkiRJklTIEEmSJEmSJEmFDJEkSdJ2IyImR8TiTez7akRkRBzfZNuT5W1Pt3C8bOGY/SKiISLWRkSvTbRZUD5GRkRjRCyKiCkRMXgz3s+1EfFYRHxUfv03i14jSZK0tQyRJEmSWrYCOCIivth0Y0R0B04u79+Usyhdb3UGxrbQ7hfAEcCRwATgUGBmROxRUNu3gB2AaQXtJEmSWs0QSZIkqWUvAW8CZ2yw/WQgKAVAm3IW8DLwDjCuhXYfZuaszHw6M28HzgR6NXPODe2SmUcBEwvaSZIktZohkiRJUrE72TjQOQt4APisuRdExBHAfsAd5dcfFBFf3szzPVf++cWWGmVm42YeT5IkqdUMkSRJkordCQyMiBEAEdEXGEkpINqUcUAjcHeTdmdt5vkGlH9+ssWVSpIkbSOGSJIkSQUycz7wFH8Igc4AlgBPNNc+IroCpwEzMnNJZr4BzALOiIjmrr8iImojoktEDAF+SimAmtLGb0WSJGmrGSJJkiRtnjuAU8sB0ZnAXS1MJ/sG0JP1Ryr9B9AXOL6Z9n8F1AFrgLnldqdk5vNtU7okSVLrGSJJkqTtST1Qs4l9NU3aNOd+oBulu6cNoXgq20rgiYjoGRE9KS3AXUfzC2w/ChwCHAj0ycwBmflAC8eXJElqd7WVLkCSJKkdfQD0iogumbl2g319yz/fb+6Fmbk8Ih4G/h6YnZmvNtcuIvYETqB0nfVuM01OioidMnNFk23LMnP2lrwRSZKk9uZIJEmStD15glK4M6qZfWOA94DXW3j9TcAjwA0ttDmjfI4LgWM3eHwb2AE4ZQvrliRJqjhHIkmSpO3JDGA6MDkiBgPPAjsBp1Nax+jsFtY5IjOforTAdkvOAuYD/5qZ2XRHRMwEvkNpStttW/smmhzvGKA30Ke86eCI+F25VhflliRJbcoQSZIkbTcyMyNiFHAVpbDnamAt8CIwOjMfas3xI+IAYBgwYcMAqXz+hoiYDFwREQPKd31rjWuAY5o8v6j8AIhWHluSJGk90cz1jSRJkiRJkrQe10SSJEmSJElSIUMkSZIkSZIkFTJEkiRJkiRJUiFDJEmSJEmSJBUyRJIkSZIkSVIhQyRJkiRJkiQVMkSSJEmSJElSIUMkSZIkSZIkFTJEkiRJkiRJUqH/B/FPYORp+08wAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -267,22 +280,20 @@ } ], "source": [ - "epsilon_gen = get_epsilon(preprocessed_data, model, mode='general')\n", - "\n", - "plot_map_with_regions(preprocessed_data, epsilon_gen, 'Epsilon (general)')" + "colours, pdb_files = compute_umap(preprocessed_data, model, scheme='light_ctype', categorical=True, include_ellipses=False, exclude_nanobodies=True)" ] }, { "cell_type": "code", "execution_count": 9, - "id": "2428697d", + "id": "396c1975", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyde5wdRZ32n5pMJpNhMkySCRnCGALEEDBAgBDARQTEG4KLIiuuN3Z10Vd3EXXVV8UbXlZ3Xe+urFdYFbyg67uLiMIuKKgoQaIGCcglhIAhGUNIhmQymUy/f/TJ9K9+53RNdU31uUye7+dzPtN9qruqurqquk5PPU+ZJElACCGEEEIIIYQQQggB2hqdAUIIIYQQQgghhBBCmgW+LCOEEEIIIYQQQgghpAJflhFCCCGEEEIIIYQQUoEvywghhBBCCCGEEEIIqcCXZYQQQgghhBBCCCGEVODLMkIIIYQQQgghhBBCKvBlGSGE1BFjzBXGmER8bvY45zR1TmKMWVR+bokx5tOq3Fc2Ok+EEEJsjDFvVH31yxudJ0IIIa0NX5YRQgghNTDGHAXgjeKr7yZJ8utG5YcQQkguXwRwn9j/Z2NMd6MyQwghpPXhyzJCSE1yZjPF+Kxr9LUR4snnAUyrbI8CeFcD80IIISSHJEl2A7hUfLUAwHsalB1CCCFTAL4sI4QQQhTGmBcCeIb46ltJktyXd/y+BGXBhJAm5bsA7hH7FxtjDmpUZgghhLQ2fFlGCCGECIwxBsAHxVcJgI81KDuEEEI8SJJkDMA/i686wdllhBBCAmlvdAYIIS3F3QD+MMk4NsXISKuSJMmFAC5scDaIm/MBHC32f5QkyZpGZYYQQog3XwfwYQD9lf2/NcZ8NEmSdY3LEiGEkFaEL8sIIUX4TpIk7290JggpmX9U+5c3JBeEEEIKkSTJbmPM1wC8s/LVdAAXA3hL43JFCCGkFaEMkxBCCKlgjHkGgBPEV48AuK5B2SGEEFKcLyOVz+/lNcaYnkZlhhBCSGvCl2WEEEJIxhvV/jeTJNnTkJwQQggpTJIkDwC4VXzVA+AVDcoOIYSQFoUvywghhBAAlZkHf6m+/l4j8kIIIWRS6L771Q3JBSGEkJaFnmWEkJbEGDMAYCWARUhXvNoMYAOAW5Mk2R4pjU4ATwNwJIDZAGYBGAWwo5LegwDuSZJka4z06oUxph2p1HARgHkA9gMwiHTxhd8kSfJwHfKwHMByAPORymU2A/gjgNuSJBktO/0czkdal/ayAcDtMRMwxhwE4Fik5T4PaX3aDOBhAL9MkmRXzPSmCsaYRQCOA7AQQDeAXQDuS5LkPz3Pb0Na3w5FWu6zAWxFWvZ3JUky2YVLJkq/F8DJABYjneWyA8ADSPurP3vGsT+AEwEsqcSxDWkdvbmMPqgV66ox5lAARwHoq3wM0nJ6GMDdSZLcN4m4DdL6txTAwQD2R+qHtRXAFqQL4Py+siJjFIwx0yvpLUN6PbOQ9pdPVtJ8EMC9SZJsjpRe3dqJMeYAAMcAOARpfe4EsBPAENJ6vffaQp8H3wfwKbG/0hhzeJIk9wRnmhBCyL5FkiT88MMPP1UfAKchHZTLz/sblO4iEf4CAL+occzez06k/1E+chJ5eBaAawAMO9LZ+xlD+iPpC5Xz2iaI+wp1/s2TLZMC13U8gO8g/fHjuqbfA3gXgK6ANG5WcV0hwjqQmiw/5Ej7CaQ/cOY0oM5fq/LytUjx9gL4QKVcXeW+A8B/A/gLz3gvrBHHdQBMwfwtRfoDVcbzMIC+CdIq9MlJ+/3quHUibBqAixzlts7j2o4H8E2kP/Zd+XsYwMcBzCtYdotqxHWaCD8a6Y/23TnpjgD4BoCDHGk8DWm73ZUTx24A3wWwsFnrasnt9jAAn0f6cmWievgo0j74DJ92AmAugL+rlO9EdShB2rdeBWD5JK/peABXIn3R59O+Hqhc1zkApgemV1o7Eel0ArgEwJ2e1/UkgJ8B+L8ADg1I724V3/9tdH3lhx9++OGndT4NzwA//PDTnB802csypP/B/6rnADtB+sPy0oJp74f0R2mhlwDqMzBBGleo428OLZMC19VT+SE0VvBaHgVwXsEyvFnFcUXl+8MA/K5A2hsBHFPH+j6j8sNM5uHVEeJ9C4DHA+rR9wD0eMT/tRrnev8gBDAT1S9GdgM4RR134STbRZKT/vvVcesq3w8A+PUEca5zXFc/0rZctM5vB/D6AuW3qEYcp1XC/hH5L8n0ZxDA03Pqz4hnHNv0fWumulpCm90fwFcKlLH+vHOC+D80ibgTpCbzMwpeUzuAzwHYM4l0vetAvdpJJa2TkL7UC72uGwPqyBdUHD+rdz3lhx9++OGndT/0LCOEtAIGwNUA/qbAOR0APmiM+VevBIzpAPATpFK8KYMx5kCk/5n/a6TlWIQDAXzXGPPWSeZhCdLZgEcVOG0+gJuNMQdPJu0CnAKgS313S2hkxpgZxpirAPwr0tk6RXkxgJ9X5MYu3gjgLvXdB40xf+GZzueRSrwk70mS5NZaB9eDSp29FfaqpEXOXwbgV0jbctE63w3gC8aYT4WkLfLwfgD/An+7i7kAfmiMeaqI40NI6890zzhmAfhRpb15U8e6Go1KOd0G4G8RbikyY4LwpZOIGwBeA+Cmipzfl6uRtunSx+f1bCfGmBMB3IBUcllPfqb2T+aqmIQQQnyhZxkhpBV4C4DzxP6dSKVLv0Pq2zIfqZfPK5F6rVjnGmMeTpLkUxOk8X8BPF19NwLgBwBuAnAfUonNHqQ/SuchlUcdh1R+2V3geupC5UfaT1D9MgRIf7hcA+BepLMEDgTwTKQv1RbIaAB83BjzRJIkXw7IxiwAPwRwQGV/C4BvIS3TR5D6IC0EcBaAV8F+LvUinZ3x7IB0i3Ki2t+OVNZVmIq30X8CeL4K2gPgegD/A2AN0rKYjrS8n4G0/s4Vxy8D8ANjzF8kOf5QSZLsMMacj9Rbbb/K1+0AvmWMOTZJkkFHPl+F6hfQPwLwsRqHr0NmmD0PwKk1ztuRl1YB2pC+MNj7knQPgP9CKi+9H+nsqflIX7w+U59sjDkc6Yu2/VXQIFIp3S8ArK/Esz+Aw5HWvXNgv6B4U6Xf8HrZrvhLpFKzvdyMtOzuQtqHzEM6W/T/wH451QvgcgDPMsa8HMC7VRzfF3HMrcTxBhVHdyWOM3wyWs+6GgtjzEKk97GvRvBqpP3N7Ug9GEeQ+m4dBmAFgOchnbVYlE0A/hfpLMy7kZbHNqRlMgfps+C5SMt9mjjvZACfRSrldFJpjy9RX48hbVs/AXBPJd3dSPvVOQCOQOox9uzKvhf1bCeVf0Rdgepn5Hqk7eLXSOWdQ0hfYM5COmPzaUjr2vEo/jJvL79T++2V+G4KjI8QQsi+RKOntvHDDz/N+UFzyTD3SkRGALweOV4zSAfa/1Lj/CcBHOZIcxqqvVruAHCwZ547ALwQ6Q+aBRMce4VK5+bAMlnkcd5na5z3JwDPdpzTDeCLNc4bArDEI82bc+5dglQytb/j3OUAHquR9gl1qHffV2n+YhJxvafGNfwEwCETnLf3RYc+9xMeab6yxnm5/mVIf2Rrn7INED5lsetjTlzvrxHX3s/vABxVIK6ZqJb67kLqv+eUwyF9+fYHde5uAMdPcN6iGvneW+e3AHie49z+GmkmSP8xsLWy/WcAz3XEcSCqfZkSACc1a12dzAdpH397jXQfBHC2x/kG6T9FvoMJZPpI+6t/Q/qSzcsHEOliMLU8NSe8H6j28XrAt/4jfYadjvQfIM606t1OkL481uXxTwDaPa9tPoC3A/hyQH1pR7X36NvLrKP88MMPP/xMnU/DM8APP/w05we1fxD/oTIYn8zHaQyck+7ezwWeef9ojXOvcRy/ssbg/+CSyvUKldbNgfdi0QTnLEW1D80WAE/zzOfnaqT5A4/zbs65d5/0TPc5Nc79tzrU9z+qNK8MjOdpSGfLybi+jAKm+6h+4TsM4ECP875co+yq/MuQyk3X1KjzXl5HIfXREdf7c+rLXSi4yEONdj8M4DkFzp+NdKaljOO/JjhnUU7+nwRwtEeaR9WoL3s9yoYALPOI4xhUe1xN2GYaWVdDPwDeWaOsVwOYHxCX82VNkXJQ580E8EuVx29PcM4BNa6rlMUT6t1OkL5wlMf+pKz6kZO+frn3jXqmzw8//PDDT+t+Gp4Bfvjhpzk/OT+IY3wWBab7zQJ5nwbgt+r83ciZ9YV0Joc89jcllusVKq2bA+/FROWof6AkAP6mQD6n1/iRsQcTrEiG2i/L7kSBFdpQPTNjTcl13aB6pcEPB8Z1ZY1r95pBoeqvni30EY/zas0YqWXWr+tggmKLAhSuj4643l8jrj0AVhSMZ3+kK6nKeN4akJ+nqzjGABzuOH5RjfwnAP6hQJo/yonjjZOI465mrquBdWUmUjmkTOsJTDALrhEfpPJ8mc9dADodxx+vjt9SUr7q3k6Qrpoqj724zvfiBpX+zxtdP/jhhx9++GmNDw3+CSGtQALbv8d9cJLsQSovkrQj9cSqxTS1H+qP0hQYY6YjleVJ7kL6ksSLJEl2I53FIWlDaqhdlH+qxOfLf6r9pcYYbb4fkwORSmkljxaNxBjTD+Bl6ut3JUkyWiSeSv39tPr6LI/zdiI16x4SX7cDuNoY01fJ44UAXq1OvR61fcoaxY+TJFlV8JzXIl31dS+PoroMJyRJkl8gNT3fi0G1n9dEbEYqZfbluhrfbUI6yys0jsNdbabRdTWQlyH1e5N8KEmSB0tKL5gkSX6D1IdrLx1IX6DloZ9BZdGIdtLo5+sjav/gOqdPCCGkReHLMkJIK3BLkiTrCp5zHdIfrRJtSr4XPZg+xhizvGB6zcRxqDZTviJJkqRgPD8EsFF994yCcewC8P8KnvNbtT8N6QutsqhljL0tIJ5nwV658M9I/Z9C+F+1f5QxZvZEJyVJcg+A16mvBwD8R2X1u8+rsEcAvDKgbpTJNwLOeZ7a/07RFz8CXfZ5/UYe1ybFTO71aqYx4pgGe6EOTcPragB6oY8dKPZCsd48rPaPdxyrn0GzjTEvjJwfoDHtRF/by40x9VxgTPfl3gshEEII2bfhyzJCSBE+kCSJmeRnXUC6/1P0hMoPAL1s/Mqcw2+HPaA2AH5sjHlFZZZWq3Fyje9uKBpJpQz1D6IVBX/orC74ox9ITf41+xeMowi1ZuDsDIjnmWr/zsrMmxA2qP02AEt8TkyS5CpUz2x6PlJ5q7zWPQBeljhWzGwQv5r4kIxKG9Ur2RadmSbRZX9EwfML5R/VL/VjxdFT47u9NEVdLYjO88+TJHm8hHSqMCnPMMZcZoz5gTFmrTFmozFmhzEmqfVBdZ3Us+LGSZLkEaSrXUquMsb8Q6xZtQ1sJ/r5fQKA640xx0wi7SLovnxmZRVYQgghxAlflhFCWoHVkc6ba4yp+sGSJMkIqqUoBwD4OoBHjTFfNcb8tTFmYWA+6s1T1f4u1J694sNv1H4X0plKvvwpIM3tNb7TM+ViMqPGdyMB8WiZ1Zl5P6Qn+iA1iNfMLZCXN6F6ht4stf+eJEluKRBnPdidJMn9Bc85HNUvPL8xibLXs++KlDtQvM4P1fhOz+gMicPVZpqprk5IZaaanl16W8w0ctJtM8a8HsA6pP98eQ/S1R0PR7pK48wC0U002+6f1f5+AD4D4E/GmG8ZY/7WGKP79iI0qp18D4Bu088CsNoYc6cx5oPGmGcZY/abxLW5qPXPms6S0iKEEDKF4MsyQkgrEPLCBajtO5X3g+WDqC1D6gPwNwC+CeAhY8yGyg+X/2OMOTQwX2Wjr/GxSUht9OyBWvG7CJEzjtX4rsznVa0fU9rDzIe+yWZkArzLPUmSYaT+ZbVePAKpT9lHY2QqMk8EnNM05V4hr8zzqCWBjRGHq800W5lNRK0XMesjp2FhjJkD4OcAvgAgxj9KnC/8kyT5KoCv1QjqAfBSAF8BcK8xZnNldtubjTFPK5B+Q+55xa/yJQBqzQJcDuBSADcCeKLy8uzTxpgXRXx5VuufIcOR4iaEEDKF4csyQkgrEPLCBaj9w9s1oH8BgMuQeuHkcRDSHy7/BuB+Y8yvjDEvN8bUy6DZB32NoeUH1C7DIp4vzeSFlUet+11kxsheos6mqUEhSXCSJH8EcE2NoBEAFzaZT9leas1Smoiyy72ov1KMci373jRVXfWgVn63Rk5jnIr08X8BnJRzyAiABwHcCuDHAH6AdAaV/Gh584TSvyRJ/hbAxQC2OA7rQzq77RMA1hhj1hhj3miMqfVSSNKwdpIkyWqknm0uX7xpSF+eXQzg+wA2GWO+YYw5apL50rPpdjZp30cIIaTJqKfBJiGEhBI6sC3kS1KZffU+Y8znka6c+VdI5UquF2ErkRqSv80Y87IkSe4OzGtM9HXH/mEw1X5o/LnGdyEeaXo22lqEy19rsa7IwcaYZ6F65UsgzedFSGdTTgVqzQL8MWpLE0lKU9XVQMrsh94FQHtqPQHg35G+yPnNRCv8GmN+iuKLQyBJks8aY64E8NcALkDqQema6fo0AJ8D8I/GmJdXVqqsRUPbSWXV0ucaY05E2i+dA7ekvwvAywH8deWZ/I8B/pdAtXdfrf6eEEIIqYIvywghrUCouXstg+sJDaGTJNkE4OMAPm6M6QHwFwBOqXxOQO1ZR8cAuMUYc3JlRk8j0bMSJmOOX+vcuphq15GNSKWYcmbGQQHxbAHQL/ZvTZLk7yaTsVCMMf1IpcN5M8jfZ4z5WZIkP61jtsqi1iycDyZJ8vO656R1aJq66kmtFxxlrLgJY8xMAG9WXz8I4FmVFz6+BPe7SZJsA3A5gMsr+TkJ6UrEp1S2tf8gACwC8D/GmGflvDBrinaSJMmvkC5g8YaKlcGpSK/rL5D6qul/9hgAfw9gwBhzXpIktWT6LnRf/lDxXBNCCNkXoQyTENIKaGNnXxbU+K7Qi54kSbYlSfKjJEnenSTJM5H+QHsuUv8YvcrWXKQ/cBqNvsb5ptgKlpJaL42m1MuyiiRH/4AqsojBXrTsqiGedsaYNqQvyuarIOnTMw3A1caYA+qWsfKotZpns/oJNgtNUVcLUOtlWVkLrpyJaune6wu+KAMieYQlSbIzSZKbkiS5LEmS5yB9Bp2KdFGarerwTgBfy+nvm66dJEnyQJIkVyRJ8tokSY5A+sx+LVJ5q+ZcpDPNiqKfYUXvIyGEkH0UviwjhLQCyyOdtyVJks2TyUiSJLuSJPlJkiSvRfpfcL3i4BnGmCWTSSMCembbDABHBsZ1vNrfgdqm/63O79V+yD28R+2f6OEjVAbvBXCG+u6zAF6jvjsQwNcrL9damfsA7FHfPbMRGWkhmqWuepEkyeOoXrAlz09sshyr9jcDuKFIBMaY+QibnTohSZLsSZLkliRJLgFwWI28LUF1+wdaoJ0kSbIxSZKvJEnyDKQLlOhVif9PkfgqLw31C8HfTSKLhBBC9iFafYBMCNk3qDXwd1IZJD9Dff2rONlJSZLkYaTeZppTYqYTQC0JzplFI6ksWnC6+vr2Says2cysUvtPM8YU8rxDuqKbZD8ElPtkMMacDuA96us7kPr9XAXgyyrsOQDeWTCZWjKoomUVjSRJnkD1/XvBJGZT7gs0vK4GoCXDf2GMKUOKqWdbPhhgCP+sWJlxkSTJFqSzrfRLpapnUKu1kyRJrgHwefX1SmNMkcUjlqLaq+32SWWMEELIPgNflhFCWoFTjTEHFzzneaj+0fOzSPkZJ0mS36Fa3tJoadudqDZtvjAgnrNQLYGNXoZNwm1qfz8AiwvGUWult6IvooKpzGa5Cvaz/QkAf5Ukyd4f0xejehbdB4wxRYzIY60eGpMfq/1+hNX5fYWG1tVAdJ67kEr2YqMXdAl5mfTGGBnxoTJbWs+WynsGtVo7+R+1Pw3FVvXUizSMIv3nASGEEDIhfFlGCGkFDAqs3FeZEaWPHwXwHzEzJdD/uW7oKnyVVdquVF8fZYypNQuuJpXZBh9RX48B+Noks9es/ALV963QSnZJkjwA4Afq678wxvztJPLlhfAp61dBr63kC0Dqf4R0ldcnxTF7/cvmeSb3RI3vavkD1pMvoNpD8IPGmEbnqylpZF2dBN8C8Jj67lJjzCGR09FS/SMqJvteGGMuAPD0uFmaEC2hzXsGtVo7qSUNLvJ81X34L5Ik2T6J/BBCCNmH4MsyQkir8ApjzF95HnsZqv3K/l+SJNrzBkAqXQuYubb33OejetXNRq+GCaQeVVo69AljzBGe538cwDL13f8LMLluCSozr/QshtMCono/qsv9C5V6EoQx5unGGO2jpLkU1dKvz1ekTBZJkqxFtffPAqT+ZT5yynXwkH3VkyRJNiJ9ESDpB/BfoYsYGGNmGGO0z9tU4v1oTF0NIkmSYQCfVF/3APh+ZVZlIRzyw9+o/Znw9MoyxiwH8G8BeTnBGBPkK1k5T/fVNZ9BjWgnxpgLJuGH91K1vzFJkiIvy05T+z8KzAchhJB9EL4sI4S0AgnS2WVfN8ZclHeQMabDGPNRAO9SQTsBvMMR/18CuN8Y811jzDnGmE6fTFWka1eor7cA+F+f88skSZJ7AHxGfT0XwI3GmFwPOGPMfsaYLwB4kwoaAvD2uLlsOv5T7Z9Z1LcsSZLfAviQ+roDwLXGmH/y9VgyxvQaY15ljLkFwM8BPM1x7GlITf0lvwHwVkc+v47qWYLPBfB/J8pbZebinerri40xfzHRuSXzfgB3qe+OB/AbY8yLfO+lMeZIY8z7kb4U/PeYGWwmGlFXI/BJAL9W3y0HcJsx5gU+ERhjTjTGXI38uv6/sGdeAsA/TfTPmkr4TUhXqwTS2cy+/AWAu4wx11deLs3yOckYcxSA/wfbM3AU1X2Z5P2obzu5HMB6Y8yHjDFHe8Y93RhzGdJZsJLv+pxfiWMhqhdqcZULIYQQYtGUpp6EkKblr4wx+j/YIXwsSZIiJrtfAPAGpD/k/r3ywuybSH1aHgcwD8CJSM32D6tx/ruSJLl/gjSmAXhJ5TNkjPkp0hcOv0cqy9laOaYP6Y/Bs1Ftfg8A76m8TGgG3oE0j/IHygIA/2OM+TGA7wG4F+mLsH6kkpVXoLak7uIkSe4rN7sN53tIZ4V0Vfb7kcqpfl4wnvchXX30PPFdG9If539vjPlvpGblDyB9udoGoBfAfKQeO8cj/fGs5b1VVGaDXAXbZ2kbgJcmSbJrgtP/HsBK2C83PmiMuSVJklsnOPcbSNvcXmYDuNUYsw5ZnbJmLSVJ8pIJ4pwUSZJsN8acg/RlSp8IOgjA9wHca4z5IYBfIpXzbUPqTdcL4BAAxwE4Gakp+F706oFTjbrV1RgkSTJijDkfqe+UvMeLkL7kuxPAtUiN7DchnQHZi3RFxOMBPB/A3lnEH8hJY5sx5jOwPdw6AHzbGPN3AL6D9GXTTqTPnuVIV25cIY7/X6Rj7EJSbqQvrJ8LYFfl5eMdSFdc3oT0WQekbW1p5bgXoPof359MkmRTXgINaicHAHg3gHcbYx4AcCvS5+t9let6EukMvqcAOAHpjLKFKo7HAXxsgnQkL1b7v678E4kQQgjxgi/LCCFFOKLymSzfQLEVqf4V6Quccyv7x1c+PnwySZJPFUgLALqR/gjxmqkg+GqSJIUlOGWRJMkuY8xzkUpPlqvgvT/KJowGwFuSJJmqXmXjJEkyZIz5PtIXhnt5CQq+LEuSJDHGvAxpvf0HFdwN4GWVz6QQPmV6EYa/83mxmSTJjsqLh9uR/hgG0pdu3zLGLE+SRC9cIfkqgNejehbRosqnISRJ8qAx5mSkP/qPUsFLKp831z1jTUq96mpMkiRZX5nFeC2Ap6rgYyufyfIhpCvF6ufMmZh41dB7AVyAArOgajDDMy3N9aheDbeKBreTQysfbw9NpC8m/zpJkkcKnHOe2v96gXMJIYQQyjAJIS3BGNL/NH+jwDm7Abw3SZK3eBw7WcPfJwG8I0mSpvM3qnjUnIr0pYr2J5qIRwG8JOBlYyvzebX/MmPM9KKRJEmyO0mSi5HW28n6vN2OatkUkM7U0D+mv5AkyXd8I06S5G5Ur9x3EID/cMmxkiTZgXS11IlmoNWdyovCk5D69k00u87FTqSm8lOaOtXVqCRJci/Se/xNpM+HEHK9ryr1+wUoPqv0pwCeUVmhMkpePNmN9IXnOR4zSgHUtZ1M9vl6F4DTkiS53veEyqIPUha+HeUt8EMIIWSKwpdlhJCWIEmSkSRJXol0dpn2rJEMI/UlOTZJEq8VNJMkeQ/S/6S/FcAPAfzZM1sPIF0xckmSJP/seU7dSZJke5Ikr0Aqb/kuaq9mKLkLqe/bU5Mk+X7Z+WsmkiS5DcBt4qv5AF44ifi+g7RuvRrAjQB2eJy2C6n30bsBHJEkycokSSyPMGPMM5FK6CSrAfi8HNZ5vBLVq6c+H26fPyRJsh7pi9hTkfrj/QzpC9YqCWa9SZJkR+UF0CEAPoq0TvvkaSNSWeurAfRX2s0+QVl1tSySJNlSuT9HI/WO3Ohx2kNIPbROSpLk4xPE/xhSGfvFlfNc/AZpuZ3ukkA60voyUgniG5DKwWsuRlODPwH4NIBlSZL8Y5IkRXzS6tVODkW6+Mi/In12+9gUjCGVsl4I4JgkSVzP/Fr8HWwft68kSbKtYByEEEL2cUySNHQ8SwghFhWz8pvU14ckSbJOHbcQqd/SwQA6AQwC2ADglhiDYmPMIgCLK/H3IvWxGkbq3/IwgN8WlIQ0DZVV4E5Eem3zkF7bn5H64vym8hJkn8UY82KkP1j3ckOSJM+JFHcHUm+jpyBdcGE2Ul+l7Uh/gK4FcF/RH71kYowx85CW/TykZb8f0hd725CalN+dJMmfGpbBJqMV62rF8P5wpF5cc5HmdxvSl11/mEzfZox5GtLy6EPqr7Udab1ZVcazwBizAKnM9BCkZb8fsvJ/FMDvyliduOx2UllAZwlSf9EDAcwCML2SxuMA7gHw+yRJ9CILvvFPR3q/98rTR5H+Q2tKruRMCCGkPPiyjBDSVPi+LCOkLCrywztgex8tr6weSAghpEkxxvwtgK+Ir76UJEnuKtqEEEJIHjT4J4QQQgQV0/P3IDUQ38s7APx1g7JECCFkAir/6Hib+GoXAC87BkIICWWxMYmPb0Gz8yfgx0mSPK/R+Wgm+LKMEEIIUSRJ8kNjzE8BPLPy1V8ZY95fMRYnhBDSfJwPYKnY/0ySJA83KjOEkH2DHQBe1+hMROD9qc0AEdDgnxBCCKnN3yP1uwGAaUgXcyCEENJkVLzKPiy++hM4q4wQQsgk4MsyQgghpAZJkqwB8Hnx1XnGmBMblR9CCCG5XIR0UZ69vC1Jku2NygwhhJDWhzJMQgghJIckSS4BcEmDs0EIIcRBkiSfh/3PDUIIqQsGnIE0VeF9JYQQQgghhBBCCCGkAl+WEUIIIYQQQgghhBBSoWVkmMaY5Pjjjy983h133IGQ8+rJQw89hIMPPnhykQwP2/vt7bW3HezaZe93dGTbo6N22PTpBfJGvBgbyw8zJtvW90neG32r5X2aNi0/vbYRVX8knZ35YSWwZMkS3HuvveDgsmXLHlyxYkVd85HH7t32vrwfM2faYbrMSbnoNtQm/h20Z48dtnNnti3vk25fsk3Jdqjjl22trS3/uBjo/tizi3eTJNm2vlCBrv+u8mkF5GVr5PXI43z76onCZJxym/1GMTyrbvS0QtNzxfHEE3bY/vsXj79sdP5d7UHW5R07sm3dH8sy0P3ZH/6QbR92mB2WVz5bt9r7XV3ZthzbFkFep77vseudb79UBjHSdtXxGG2ItB7r1q3D4OAg7zZpOVrmZRkArFq1qvA5xpig8+rJ6y66CP9++eWTi+S+++z9vmzl17HeOV5RrFtn7w8MZNuPP26HzZuXbbchG0GMqcmKMkyjj807Tx4XGp8r/kYi86zfd0rk4FHfp8HBbLu31w6T97Cn277mHcNZ2l0b7JdTFoszv9wYZVzGffKtI0XyklcHN260j5NNb/lyO0yWeZG2kYcrjiLl6kus9hYzbVe6ug3J97xDQ3bYmjXZdnd3tq270v7+bFu/xJAvR2Vb0++XY79v1j8EZbsP7tscb91lmW/ebJ82e3buad7EeE74ouPTLx4l8nrkcb599URhMk65LeujRl9zSDuM1UfGiD9G2rLsOtrzyyc0XzIO3xfVrrRGRu3rknFcf7197POe5xd/aDsJub+6DFztQdbl1auzbd2HyTIQw1cAgPx/96c/bYfllc+119r78tks+2qNq6zkmEnfd9++z7cO6joSklYj03a1Ex2m2+xeYvf9Raj3eCo2RcaK9RpHrli5MnrczQblelMT3ldCCCGEEEIIIYQQQiq01MyyqUoCM/423/XfQud/JdS/4uRsMvlfPz3DQf53T/+3R87E0FPm7Tgn/59bF77/9Yjx39My/pPluodyX5YjkD/RQ0z0qrnvi6wLI4uWjG93YMQ+UGSkzTHjRBPyH/3QMg6tIyF1Rv/XW8420rOXurtdMxKao3xizzoInfGgj8s7z5VfVxvasME+Vt4316wG2U58/6teZCZZyH919QxS3zhcs8I6PC9OS/Bdp3nPDhQPIt+Z0EVw9UWyHcZAz5iR9UzOyE7Trh2Hqw2Fzsx1xRHaP/jmMfa4wDWzqb07ftoyDl1fQspn7Vo7bNmybDtvppROq8g9jPEslnF0rLNnoq9DNn5w9QdydpeeIf+DH2Tbun/77W+z7UWL8uOXnH2233Ea35nLuo+X1x2jzrnK0Xc2rAvXdcaQ9bviyJtJVoSy+5gYM3g13u3Q1cGJqZpVZTCc6ZzbHIMQ32sLLYPqmYNepxHStHBmGSGEEEIIIYQQQgghFfi+lxBCCCGEEEIIIaQgBpyBNFXhfSWEEEIIIYQQQgghpAJnljUBBkmuft1bh69MHvK8sLRXhvQV0B4DcpVFLX93eSbEwFcb7+u3FKq9j+13oonhG+FYxM47//Z5+b5kjVyBKIq3lq64Yn+ssws+6DKWPkQuqwkdlrdSZqhvYRm+Z6Hty5cQH5AinlzSX2vpUjtMrnopV2zbvt0+zuU/JldVc61gGIMYXkNPPGEfO2tWtu3yFZFx9vZO/n9sOo9bkPmUzSnBKya03ci0ZX3Rq/9JHyXXKn+7dtlhsk84dNHkVyQru3/eNmTnq+e+32RpS7M/1WjG+g7IjTPEb1LX1Q5kZpFj6MmNowxC+kFXn1JGnxtS/52eUMoodcnWLePbOzptz8G8a9XekHJf+5LJFYlj+GmFrgarvdR8zglN23VcbJ/FImmHepD6tnNfP7ZYq8H6EnJtRfJonacK4dGhrE/rL3mcIQl9Duk2WvbK6YSUDWswIYQQQgghhBBCCCEV9vmXZdOmTcPy5cvHP+v0Ej0ALrzwQhxyyCHjxzz96U8HAFxxxRVoa2vD7373u/Fjly1bNh7HokWLcNRRR+Goo47CkUceiUsvvRS79L+WCSGEEEIIIYQQ0pK0TYEPqWafl2HOnDkTq1evnvC4f/mXf8FLXvKSqu8HBgbw4Q9/GN/+9rdrnnfTTTehr68PQ0NDuOiii3DRRRfhyiuvzE0n1lTivHi0xGj27GxbS0vkvp4yXzRdoDr/IUuuFwlrFmLc0zKWbM6bOu6aYj4yaoe5JKByv3R5pS8qk2PtHV75sFCFLONwSUR02I7h7NqkVKVIfQ+RMLkoUt6NWqpdy9wkUnYJALt3Z9sbN9phUjY5lKm48NSn5sevJUUuOVVsZH3p6vSX6sr9Jb2DVhjae0UcHchDxhEqE3Yd5ytvCkWmXdVHYiTbUY1U5nPp0vy2IZ+V+lqmTcu29f/K9DO3VroTEaOP9O1zpHQcALB8ec3jQvuGULsEV0OMbSPgyqNvO1y8ePJjmkL3XVY0LZHNiadQWYlK79sl3nabvS/HmMuW2WEhEvcYUsKJ4smLs2wZY3A7yYlvMue5xo55xzncMKwuWD6XdZi0l9FhvuVTRhlYYepCNw5mz9gFnVutsGEhX25vty1BFoyuF2ktzIseHXJwJLXLExBjHFm2DJaQRtL8bxqanLPPPht33XUX7rnnHudx3d3duPzyy/GDH/wAW7ZscR5LCCGEEEIIIYQQQhrDPv+ybOfOnePyyhe96EW5x73tbW8bP+7lL3/5+PdtbW14+9vfjo985CMTptXT04NDDjkEf/zjH6PknRBCCCGEEEIIIY2j0RJKyjDLgTLMScowAeCv//qv8eEPfxgPPvjghPEkSVI0i4QQQgghhBBCCCGkTuzzL8tq8Td/8ze48847sWDBAlx33XUTHt/e3o63vvWt+NjHPuY8bvv27Vi3bh2WLFninZcYWm/XUszSC8LlG6O9VfIsQorkV/pfubyeytDJ+y717EorZAlwHUeIn4r2bJL7uhz7+vx8jkIJWcY91PMoRvwTHWshG440vBq0fZ/aFi/O0uruscJk+eh26Ot31XJ+D/pC2/28sFxh8h7qfsrlmyc9T1zlXcDeIwjZRnX7HRjw6wd1+w3CYT7p20+58PXZCfXGK6PPCvVqk0j/HFf93LNHn5cbpTexyyfUL81uh/59rq/PlxNxU0N985y+du1+XlJ58enjyvacKtvHzrffdiH7PcD209VtNMQ3LHS85ht/aF2NfVwZhHq6+Z6n+4c8nzLpOQqE95ex+0hX/BaqIi/o3SH27IuR16Z/b63dmvmUHd0vPDb1s8v1Y8+TtlER/w9+YAeuWZNtv//93nG2grc0IS74sqwGX/va1wqfc+GFF+Kf//mfsV076FcYGhrCG97wBpx77rmYLV31CSGEEEIIIYQQQkjTwNe9nkjPsuXLl2NkZMQK7+jowMUXX4xNmzZZ359++ulYtmwZVq5ciYULF+Lf//3f65ltQgghhBBCCCGElIBB4/3G6FlWDvv8zLIhvTZxDa644oqa31944YW48MILx/cvvvhiXHzxxeP769at88pDAjM+TTVUBqjDNmzItgcGsu3p0+0485auB+wZxC6JpiuPLlzyqdA4m5FQmWHeed3ddnnI6du6HH3lrb55lHIUfZ6LWEt0T5ZC8i9ZeFK+pvsM0c7bdEMRjW90ND/tGPW/kcvJW6iLCZHQxMqLlJmHlk+MfMzprb2tceXp3vuyMC0blddZVT+l7lPJMMc67SXq9xLaT/nivBf6oSTrk0PSGwNfiaCrrkpJpsa6T02E77hDq3zkvksiZZ+XL8FyEVuur3HJxPKOA2BL9EXDLJJHV93Kk5K78lhFDL2voIhMz/e+LVqUbZfRToLtGFqAEJlhI6XwLuS9132Dr8qwI6BPAepQD0Q7LFKOR+N3Ym/p+FZV3yl/c8offnC3QytMRvq859nxB+afkFaHtZ0QQgghhBBCCCGEkAp8WUYIIYQQQgghhBBCSIV9XoZJCCGEEEIIIYQQEgJnIE1N+LKsCTBIomvlpc+Fw7LG8r7x9Q7RhObd5e3i7afla3zWQGIvWa59w3z9GVxx+vrxaLyvTfoQaU+rCPfNN4/BXivS82XxYvvEwcFsWzY2wKqfXZ32deblRVs2dXX6+Qk9utGOb0F/uf4befmvuheyfNTFjQ0szAvK7R+0b4lsD677O6I847yrnWcfE9ubUHPjjdlxyo4ELzxTLEn/oQ/ZgSedlG2fdpodJjzLZPm7+ubNm+19ubizLh7fa7PCHP5KzeItFKVPVIR6KsXwjnHF4ar+vm3I1zvTl1CvIes43ZGITBbJ00jfgvHtjhL8Gcv2uctLu4hHruu8PJYutfdlv1Ldx+fH4zuOcRHShurud+VJjHxUlT9kJ2D7RoZ6kvoQy2ovto9bKX38aLZoXGen8uaUY075oO5Wx23fnh9/QPtt052P9jAjZB+BL0EJIYQQQgghhBBCCKnAl2WEEEIIIYQQQgghhFRoTt3aPoxraneRqb9y1q6UQPT2huWrDPmja1pw3jThailVR83jihBjWXsXofKavPIJld3otPLSDpWQOeNxzKcve0n3KOUlp75LWSFga5u1fmHDhmxba+dy6m4R6YHMY1+ffZ26rexFy3h9pXLBUoa+A7zO09edV/+r2qS4N1WSXhHW3t1jxy9kD86GHkF66VvHXf3/hRfmZ9EqvEsvtcNk/h2VSwa5JMnz5uVnw3Wei7LlLzEkZDHy2EipZWhasSWUrvTahnfYgTJx0V9GKeN2P1n8ROnllU/wc2frFvsLMWgLjdP72jZuzL6XHh2TSNs3Dle/IvGV0zttFQL7qVCCJPrSSwXw7sdjjDfb2/V4PL/txbDzyKNIHDHGyL6UIcEdc/2WybnfVek++9n5cchxkoovr7yqvnf0wWWP41sBA85AmqrwvhJCCCGEEEIIIYQQUoEvywghhBBCCCGEEEIIqUAZZhOQwPhPgxW4JJp6GrUPVdP/xZT8qlX+Hnww254+PdvWUrNly8Y3x5QMykq7hGnxvlO25ex2fZlyMRgtX/NFK/MkQfcpUIJSxtTxGCshxZ6irdNylb/OSd55nWLVQC1PeezxbGr6fC2dkHpoFdYmJZryOD3l3l6mMDesXeQRCFNKF5GBly2dk+VlpaQv5rbb8uMQktmq3Iq+KVe3HkgsqbSMx3dVVL2CVez7VOR+hq5OF5peHmXLcuqZVpH+31fKH2r3kCsv00vb6n1J75zxzR2w+7Cu9tr5Cl3VuIznUEi7cdaRQK+MKM/RUJ+OyLjuYYxV2xvZFwXjGMhIaapuarK8uhxSe0loH+ONHmhLawtZB5WFQz371jLSijF2d5a3uNlV90mMHX2fE6HPek09n7+ElME+8bLslJOPb3QWnMyYMbPRWSCEEEIIIYQQQkhB+FpwarJPvCy79dMrGp0FJxd9+qFGZ4EQQgghhBBCCCGEgC9BCSGEEEIIIYQQQggZZ5+YWdbsGCRe2vDSdd/ar0J632i/BOn34zKRcCxxHULoMva+Zafsfqz0Qr0aYntshPq1hPptlO03FiOPLkLLP8+jTi/xLZe8H5l9ZH4crvYV2oYcYTLK2Eu6TxRnFHRjzOOkk8LilwUUWEnyyq7e3jb1TK8M70Pf9MpIK3Y9bqT/Zhlpu8jNl+6XHP2UjKOz099z0ysfE4TVk9B7EVL/g8cInvepSB/gm/8YdTVGHSnbz8k7j77PP9iPrwKnRSGoTELHQoLQuuS6FzH8PUPTDkkv1HuyKszyxc18I8sYKxLSivBlGSGEEEIIIYQQQkgAptEZIKVAGSYhhBBCCCGEEEIIIRU4s6zJCJ1W6zt1vEjaEHKzNs+p0UWm7YYsuT5Rer5x5J2nLzPG9OHSl4v2TDu0rMougxjUU+qhkQrljuFtdqCc3q4rl5YiTJIY7anstDUh96MqLYd0KIZErQzpky8h59V7yft6xlE2vjL2Is9b3z64DAmZbxwx8hGDestIY5BXR4o8h1z9VEiZ13vM4Zv/0PsZox/0vbYy2lo9peShxJCYur533ntlbRGSj5DzYt2nkPPKqAePbc7ycf/9dpjLrULKr2PXJUKmAqzRhBBCCCGEEEIIIYRU4MwyQgghhBBCCCGEkIIYANManQlSCpxZRgghhBBCCCGEEEJIBc4sayFiLeObh0u/H0ODXsQfILbuP8ay7aFpx6CRXh9WHNKgC7B8uKrOGx2ped6YWJq6CGV47sTwOpNWZCOdPVbYaHu23zW0yT5xcDCLv++A3PhbwetJEsM/cTLp+RLiJRXD46SUtizal/aXdObxxhuz7dtvz7bnzbOPW7Ys2+7utsP6+rJt7cMn+wfhS7N5s33YE09k20sW19cXSxKjHoSmbbF1a/6+KuNt7XPGt/WtkTTSzyx2uw8tf8tfsr1x/aqzvH/0I3t/1qxsu78/21682DqsbM873/of2ha2DbVZoRJXvY79fIlRjqHxx6DePl95hI7DXN/HHguFxl/354QYK+K7382OO+II67D5ok+YvnShO06J7Bivvz7b1s/zgYFs2+HBWzUGCRzzE9IscGYZIYQQQgghhBBCCCEVOLOMEEIIIYQQQgghJADOQJqa8GVZE5DAjE/PjTHNu8h5vlOlfaVVZUgxQpdzHhn1k85ZcQ4P2weKJZVDibFseIwly33RRdAF8YWeeu1I2zpWbJexrLqcRe7IohNXHffNVwdsmWqHlGj2HqDCik/5r8rHsOPehBbEJNFK3eHhLP87d9phUu3XNqhkqlJ6Jqf/O9pk6HLvzYLz/g4NZdu6kIUUcstW+7rmDD9a8zgAwCmnZNtLl9ZOF7DkX2PdttTYV6Ytj5uvVJ56Pzah/afEV2oWQyo01jvH/kLsVxWx2HcUvzu9CNIhF94SoI0b7TDR7mPYQshq3eGQ9mnkWCKGfNM5nnr+C6ywm2/OtpeKPPcjnyLjyBgSOFmuUjEG2BJKreqSRBhqRWl7oRLTGOMY73yFNvSS2SGe9TqLsh6EyhFj90Wx7lNePNFkpPK5ff752bbsHBS9py3MDatC2iWc/cLcw/Q9zYmiilazEiFE03y/FgghhBBCCCGEEEIIaRB8WUYIIYQQQgghhBBCSIXmmLtLCCGEEEIIIYQQ0kIYcAbSVIUvy5oAg8RL8962dYsd6DKAyIujgKeYS9ufF2cRT4HYS1VrQX2H1OG78iXP27DBDvP0SnLRNjqS5aO9I/c4bRMk6RLGNFVX4rhOaXPUg232ecJEQp5XfZniCxlh1WH2iTtGs2uVPia6iKUdw5IBuxDkktOuetCxcX12zoD/ktnSFmvtWjusuzsrk6OXOXztZJlo44Z168Y3r1l7nBV0yilZ/LIMClWzHF+4RqKzIb1KtGeZhe7P8pYwP+kk67Cb12RecEuX2vW/32Hs49tv2X54nt6NGx+1jpM3WC+rLqnKh6z/ohH9ZtCu48d1Z217cNDuYzaOLhjfXtRrR9+16rZsR94osQR9mo+sUjqfBbp/kA1MdgK6kku/tJLrcRm+RjHwfU7rOhi7uGJ4i7pwels6GmyMcUYPZP1UpmWioY/AbkNOP541v8t2li3zzldufKp8zuhbk+10LxIhdv5d3lpODzMxPnFdqKt+yua8sH/ECnONeSS+9bgMz9Mi6dVKVx9Xhh/mV6/I4rzxRrtM5TD1nz/aOH8o13BEDpv0WOvaa7Nt+Ri64AK7HBf0+/kou3DVF+lN+Pjj9nnzZ+3IznMM0srwcN68Odv++c+z8c6LzzzTPvAb38jSPu0077St33pD4neCuk5Z63S7pi8ZmcrwJSghhBBCCCGEEEIIIRX4sowQQgghhBBCCCGEkArNodtpAjb+eQcu+cQvcPvdmzFj+jQsOnAWPvWWk3HMK76HpQf3YnhkD2Z1TccbX/I0vPoFSwAAV1x7D9722V/hoHn7YXhkFK970RF488uOBgBc/v0/4PPX3IVpbW3ontmOL77zVBx56OyaaScw49NinVNZPWWXAPCL27L3oFLZsGhRnKWM886TqhugWnInWbzYJf0rli6AanmclA6pOeFyGrKUXIwOLLGO6+qMO7XYkjwA1lz1zk773kj5l8yjnt4u42xTZdAjC3bjVvtEeWzfAchl48ZsW8msRhZl5dXRbpeVzObCvmwKe29vl32cOFDKLosw0p/J0jocMg299LVsUt4KGh2JKONHh3qsoCuunzO+fc019mkvf3lW/s94RhbHJZfkJ33aaXYd2bAhqxdH9ynpn0uDWEdkm503L///M9uG7Wn9Peeem+3IMu+25UfLl2fbuh/R/ZFkWCxzL6N03F7/5dGlrha2ZKFt3QP2iSLBNqmngWoPIpND6/LzseSKd9lfLFo0vvmRH1xkBa1ader49vOel32/TtVVed2XnfkzK2z0pCyODnVv8MtfikjXZdvPfrZ9nK11RR6h0hvJA+vsOGQ3KIoKgN3/h8h89Hku6U3bcNZHWn0uYD1Iq2S8UsIaYM0wEfLW6EesvN2+kiOdtoxz40a7Dzi0PV9e78sO0c6vvzHrn198Un5/ObTVDrKKVcqJAeuZGCoJdJ33q51Hj2/PFtVCK6UlhaSKnvpH33rskl3GkCpKqRygxg+e5S/rhI6janwVkOcY8jvZXQL2/V6xwg7T3a4P24byy8A17nXlv2NYSPjUWFE+Gw46yB4nScWg7G+0ql/eN/2s9733rvspx7DzZ6uBQLvfjxTfe6+7+M99Ltu+7z47TN77f/xHEaD7+wsu8MqjK1+WxFTpZX+HrC86une9FfZoe9Y/LxC2EADCKmiLwhlIUxO+LAOQJAle9Paf4NUvWIJvfTjVgK++dxCP/XknDjuoB3d+/TwAwAOPbMOL33EDxsYS/M05hwMAXnrmofjc207Bn58YxuHnfxsvOeNQPGV+N/76OYvx+hcfCQD4r5+tw1s+/Utc/+mzGnOBhBBCCCGEEEIIIcQLvgQFcNMdj2J6e9v4yy0AWL6kD0+Zb78NP/SgHnzikpPwme+s0VFg7v6dWDywP/40mP53uKc7++/akztHYYwpKfeEEEIIIYQQQgghJBacWQZgzf2P4/ilfRMfCOC4w/uw9qGtVd+v3ziE4ZE9OHpxJrv6/Hfvwieu/h1Gdo/hfz9/tlf8oVPT9dTfZcuyeLxXy7r0Unv/Rz/KtvWc5z17sm0xFXjOKadYh82RK9fplVvk6lOjfqtPOWU4jqm+etq9vBw59XpwUE1N78svR2+ZhdSi6nJ0rJLX4VkGlsSr23GzlTQsr5CrVgjqy1bTG+21j+0UUWh5hJxOP4pMTqaLQJa/vjYZR155APlSDABoG9yUxaEkNGNLsxfkrpnisv5sVVJLWazDSqEzbVq2LRYqAgBs2JAVhJztrqVOckq+DrNkY44+zCn/quMqRi55kJZcXHN9Vs5SItjfax8nlQh6xeAueb9dq5gKDe5It31/fftPS8rgOGlk4FBrv2NUyO8cevSR7uzZcuqAknJC3Hut3xHyste8xg6S5SrLUa5OBtgS5S3LTrXCrGajNazPeEa2fcIJ45vrh23Z98KhTchFlKVLTu8rf9HqZJllLT+KsaqdtzRP3nslx63qu/POC8S50rAo8g7VR8pr27JV9JFb89PSUlfXZY8gX15vIW+ikg51LsukQ9YCcZ29dlri+aVX65PDmEdH7brbvSzb74lha6E6wiOOyPojXxl4EblyXh2vOkfc1DYt/xL97GOJXT7z5k2cFmDL0nR1l2MEvRpsHq4yKNJkfPuAEBkgYNc7WY21TE+GzZ9vh8ky9sU13tFjOYm227DKR0bqqKyzZtn7hx+ebT/ySLa9Rs1LuE0s3qzriLRj6O+PMN6JsMywqw4u6Lbb+Ufen1XKb/+n/Xvohz/Mtp1Ke8dzwrsei98Tw4uPtsKk8ntEyC4BYAHkqrr7juyS7BvwZVlBksTe//aND+CmO/6Ee9ZvxZfeeSo6Z2RF+sbzn4Y3nv80XPXj+/Chr/0GV77v9DrnlhBCCCGEEEIIIWVBud7UhPcVwNMOnY071g5OfCCAO+8dxBGLesf3X3rmobjrW+fjln9/Id76mduw8c87qs654NmH4Qc/XRcpt4QQQgghhBBCCCGkLPiyDMAZKxZg1+49+NIP7h7/7vY/bMJDG7dbx617dDv+8TO34R/Or1427+Sj5uOVz3sqPv2tdN7wH9c/MR72w5+vx1Ofsn9JuSeEEEIIIYQQQgghsaAME4AxBv/5sefgkk/+Eh/9j9Xo7GjHogO78ak3Px33P7INx77yexge2YNZXdPxD+cvG18JU/OOVx2D4171fbzrwuX43Hfvwo23P4Lp7W2YPasDV77vtEnnU/sIaO8ASU93bf8K55Lir32tHclLXpJtax8cvbbxXqS5B2CveaxNiYRxRAR7ACdOjwphDtHdvSD3sGBvJ2kyoA0HtMePIGSZcpfXRHtnV26Y5Q22YZ0V1iG8njZ0HmmFuS5NWrVJDxjtWXPk0mxbl7GvP4m0o9LWVJ3dmYfKdu2n4ojT9jjJ8uHyUzl0kR124YXZefPn2de2aFEWtr94ly49OwB7mXjtMyK9pHwbUWg9DvU98/Vykf5ugF1PZJlXxSErry4g2fAdbU0e5/JkCV2SXqJv01h71i51/HJfekdp3zPZ1g59/evtBIRJ1/z3XGQFzZfGOKK/f8UrXmUdN6db+pHYF2D1OdpTTPY5wguuT7VRy/nM0VnH8BAr4lfUNppd97bhzMtF30PfOF0eNk7PO5fBUGR0HmV/qr28ZPWZOzfbfupT7eNc5ZNXx4vk0SovOeZQ8c/B1iyOzjnWcR3iXvf3255BEu15F4K3dx0AaUNqnaf7M8/+P7gNucySRNiTG+ygJ55ATfRwUFbxKuslUQmrci/Ky3VtIeOpyZznS95jSRe3vL2zZ6u0h3fUPrDWfkCerP1Ouzxy/YUd403dHcg4pB2yjlvWGV1/brkl29b9j+wSehxdaex7rcvx8cfFeHCPNmm9ZnzzpfK3F4Df/tb2UQ3Bd3ySN+6dKI4xdNQ8jpCpAF+WVVgwbz985yNnVn2/82evqXF0yoVnH44Lz85enC2Ytx82/uiVAIBPv/Xp8TNJCCGEEEIIIYSQpsCAcr2pCu8rIYQQQgghhBBCCCEVOLOsCTBIxqetFpHvhOCcZqz1cZKlS+19rXXbi9ZbeOpTQqe+R0FISnuWKhmRkPAVWY7dQs7FrtIIFi+fHcN2PrZvz/anT7fPk/IpOU1ax2nJX/T8fzHf/VCst4K2IFs+Wkt0br012+52qaxk+ahK7lvGMk6XCkFPi9+8OdvWy5mPCnmZa0V0l0xPLumu64+M58ADs20tsZBpazWWlFvHoAyppW9b1tf9tKdl286+TwRWpdWeL6cKIbR8JFo+Iu+hllG350iwtFR0WPQJW5adaoXN6RXHnnKKnbjUzh111PimlNcBQPfirBw77rvXDly0ZHxzzLO8q7u9fClVDEmHrwSlCnEDejpFXxq5XgHlS1dc1y3rnX5EyT5TPxrk/n77ZduuYYC+Tpn2oFpnaUG/X5ls2ZrFMWedehAtX55tW3I+Fbe414cOjFhB+tmZh69k24nq7G6/Pds+4YR8qW6UtHPimwiZl0NH7f7h4s9l/cPf/332/Zo1dhynnZZtV/X36zbkBw4M1MxHXceQBdD5yhsC6rYmj9PtpLs7kzz2dPrZCLie076yaX2eq8zlWGvXLjtMXqvLVUHKc10qZH1enoq9yFjFt03JOFzjll+ssy1fnn722dmOujjZbmKMw0LvocxXm35QyIst4nVASAvQnE8TQgghhBBCCCGEEEIaAGeWEUIIIYQQQgghhATAGUhTE95XQgghhBBCCCGEEEIqcGZZE5DAjOvEi+jM844DbH8A6ZvkwqlV18tAi/1QP5hGerRYSO290uEHe91IXKZZDvLKpws77P2ZWZwjnWqJaYdpQt71jHbPsfY7HHEMC/8lbWEgrEQsa6RD+7bZB24QBhwu37xAtm7NtnfvtsOefDLb1kvcuzww8nDVEX3rpXfVjBl+aTnz4TLx8KRIm8zrm1xl4PKj6lDZnTcvO9a2tWvO//GE9g++HicuZFvbsMEOm9MpGua559qBIsFto1mffuTgb6zDtgwdl8UnE4Pd7qWvl47ft3xCvVZcxLg32iOqTIp454SUq8s/UdvNyPurw7T/3l60p5KMv78/P23pSaTzKfuAxx+3j5N+h9sWH2eFyS5zqDvzCepU3aX0AdSedG2Dm7KwvgNQJvreHHHE5ONoGxXtUl2bwzLUjsN3LKQqhXyky+fX4sX2afI5retBl6yEng/j0PFlGZ6JIejL9B2PhPZ1zuuUlUQ3+t5svOiKY/bsLF/r1tlhq1dn2/Leu6yvdBnosV2jsMpAjcnmS1/Ww+x2+FiS9Svze+1y7I+dr9BzRDt8bKf9W0P+zmxUmyGkLJrzVwchhBBCCCGEEEIIIQ2AM8sIIYQQQgghhBBCCmIqHzL14MuyJsAgGZ+2GjoFXB/35JNZPL4yzFAV147h/CWnQ6fjxpjG6y0bkLIiX71dEaS+QBdQSHqOuekdgRIdK452VfYyj6qSyNxrBaWUWVh1aXCrfWCelgf+MmSJrreyuPRUfZm0XqpdS0FiI/Ppamuy+J1l4IgkZNnz0DhiIdOT0kst95WSL30PZXXV9963X3Th28fI47q7I5SxbofdmaRDt8MxLaHPoV2Wq9JIdYs2NNZux7dVyD5Hu21pyZze5pBjWOWqK5DE0bcGy/AjU4ZMzNcdYNo0e1/2TXv2ZNu6S+936IhcUmx5rfK5NH+2nWEpm+zpzi8PV9tz21Dk14u88o81lpN5DraFEDdYy4lDZO3Oa1FldcEF2bZ8pmqprtzXfdiWgaPHt+d02jYUWjLrlUeFr9Rb1mvdZmRbqBpDBeTLVVeLEOW5LerMjk7bpqPLs/7LMhkYsMNk2cnuuYBriYVrPOW619HHODoj4oL0+ENeq6vvCBkTT3SedzziRs3XlgvidUKzPCsJiQVrNCGEEEIIIYQQQgghFTizjBBCCCGEEEIIISSAaRMfQloQziwjhBBCCCGEEEIIIaQCZ5Y1GS6/BJeuXGvE167NtqUll/YAcC3NLL0DtM2LPM8VhyuPkkb6IVkGGepiQv0BLKRRh68RnCI0HyEeJ877pPIv/WG87682sBHlU4bXQWCRe9fr2Oj8hta7kDrj6n9cx5btUSHT6uy005I+ZfqeueypJpuPRsahK4m0RdQ2iL7PDbvs7EhcTShC91ZfHxlVKbYg8+CZ01luO/GlSPwx0nbdNxk2fXr+cTJs7lw7LMYYwQrL8amaKA7ftlB1nKe3qG/+Q5/hru+dfXBAwwz2Q5IDTgALcsYI2pfM1zp2DPkejKHenK7zZNjgYHaeLtLYdrdtg5vsL0SCI922b5j0A9PXFmUMK+hy9JG+4wAdR2d/bU9S1/Nbh0k/xVjeyRLfa3P2MY5+y+VzF4Oy/djoU0amMqzdhBBCCCGEEEIIIYRU4MwyQgghhBBCCCGEkIIYcAbSVIUvy5qABGZ8CmvoVFl93vHHZ01WSi9dckodtnNntv3kk3bYfvvVjiOGZGwy8eRRZKnz6MjpyoE6JZfkzTdMI5dBlxSRcbmOk3mxpAB6+rZjanoMZHIzZ9ph8+fnh5WZDyC+bCMGMepWqJTcFx1Hd3fY8ERKF31l5a4yKENKvm0oS89VX2SeXV2Mzn+efLOjQDflW16+st3S5RyqgGIMgopYJPieF5J2GRIsV92SYwtfKaemnvIdX7lvkXYeQ57lii/k+VuVJ89xR9vwjmwndFzk6KhkHnsKPP9iP0NCkQ4S27fbYbItFOk/LWSHrBHlqm9nSPnU2xbFt+1pm4U8QiX/vpTRL5Vdd+vZNoqMFQlpdVijCSGEEEIIIYQQQgipwJdlhBBCCCGEEEIIIYRUoAyzCTBIJj99Vk3fnj8rm0I/1pmtHuSaOq5leVKWqVfRnDUrJJP+NGrafSnThyPLPGOVR0i2YkhEysBXBqUVInIqv67jMXC1r7zy13LoOb1+aTVy6nvw/ZUX61iJ1pWWa/UsWeYuGaPsF3U9kHVE37MY/ZQrDt86IvOv5SlSEuSSsJYha4kh1Y1exqoi9HjGabdfu27KVYE1vjJJX0LLLkb/ECrDdBFbNhZ6nc0i9dP49oMhcQB2X9K1Zk22s3y5HUegXUJI/su25QhF1vHZs/PDCuVfNiKX5lnsl1F2sSxUQuKTccjicD2LHcUThbJXPHYRo68LXs02gu3KZPLS6nAG0tRkn3hZdvzffq/RWXAyc9a8RmeBEEIIIYQQQgghhGAfeVm24p/Oa3QWnDz0jXWNzgIhhBBCCCGEEEIIAWcMEkIIIYQQQgghhBAyzj4xsyyENdeuwV3X3oW2aW04eOXBWPnqlXjg1gdwx9V34PENj+NFH38R5j01lU9uuncTbvn8LQCAJElw/MuOxyEnHxIlH5bWWxvVSH8DbYgk9tvEetczZ9q+Ey7PJhm9TtrXHyDUPyRE416GZr7VtPau/Oqw9nY/r4myfZlclF3+so7r+i/3Zf2/+277uMceqx0fACxenG339dlhef4bMZaFj0VsH7QqP5UA4zwdhyyv3bvtY3t7s22d1OOPZ9szZ2bbrnoQ2X4QgNuDpKO9dlhX+4h13Lo/Z/269pPscHjp5MVfpC/1rSOuehzqW1X2c+IHP8i25SP2ggv84/TF14vGVQa++Qj1m3G1PYnLaygGRZ5zecTwNgs9r1k8PAGgq1McKzvMEvISo5349gGu40Lrv2891sNxOdbSz5C2nId/rGdv2eO32O3N5REqKdLH5OVf50neN30PZXoDA37xx8KKU/62U/6brmd4yPMldKzeSP/cRrPvXvnUhi/LarBn9x7ccfUdeOnlL0VHVweues1VOOa8YzD74Nl49jufjVv+7Rbr+DkHz8GLPvEitE1rw44tO3DNm67BwSsPRts0NhtCCCGEEEIIIYSQVoIvy2qwc+tOdPV2oXNWJ7as3wIA6OjqwIzuGTWPb5+RFePoyCgMTF3ySQghhBBCCCGEEELiwpdlNUjGEsAAd373Tqz65iosfc5SmDb3C7BN92zCTz/zU2zfvB2nv/n0xs8qy5m/rGbtqinmbbnHTpuWn5Q9HTpfpqGnTUtpm85XHrGm1ucdV4YE0Tdtl9Q1Ty41Ea6p0SFLUBeRQeWdV8ay8KESXNd5chq+rJ+LFtnHHXhgtq2lAPI8Vx2XeexwyDBduOpuaBwhlDEFX+Zrx3B+HyPllDpM35tdu7LtPXuybd1Pzaj9P5KqfPle9+bN9v7s2dm2bOdO1MUc2b1e7Cm9L7JnQdvgJjtIVsrOLq+kQ9tvDJlG2fK19RvsfEnp9PLl2XaorDBGGw2Nv8h5IWjZkkQOR2JLMgFgZDS7Tp0PqSx0jRckZYwzvJ+3Q9vsL0QbLeM5ao1x5MPNcaOKlEFemEsCd+ml9rGvf3127NKlfvG70nNJCXV8efG7ykAPv2VR6vNk3ZW47ABcEkTXGN9FSDkWwZX/PLmlq68o0o/4loHMx86ddpjOc2ycvzVE4o/t7Bnfnt/tL0cPHeOH0Gr2NYRMBHWCDo49/1i88uuvxNCmIdz947udxx5w+AE4//Pn40X/+iKsvmY1RkdK7lkJIYQQQgghhBDSMAzSlyqt/iHVsFwmoHNWJw479TAM3j/odfzsp8xGe2c7Hn/o8YkPJoQQQgghhBBCCCFNBV+W5TA0OIStj2wFkK522XtQb+6x2zZuw9iedNrp9k3b8cQjT2DW/Fm5xxNCCCGEEEIIIYSQ5oSeZTm0TWvDTz78E5hpBvsfuD9OfPWJePCXD+IXX/wFdj6xE9dfdj3mHjoXZ33gLGy8eyN++8Hfoq29DTDAKa8/BZ09jjWPQymyjnKOQUCbQ+ivVw2Xybk8GHyJ4VVStg6/iPdGDC+IrVvzz8tbxT2Wr1psj4oyfMN844gRv8tvTIbNmxc/7cmeU+u8vHyF1vEY9ylG2vo+uZaad/U5ee2riDdJyL2apf6PItPTvpG+6Y72LxRx2Mda90MV0Eh75lMW2j37ej66CO1LY3uj9Cm7N1lHfH01610GrjBf30hfdB5lfZX1bvt2+7ye9h1Z2u353nihz3OXZ1Ne/I301XGlvaO9x9rvipxPZ/0MHKTF8D+VaF8y6eeqvV1dw+I8yvbV1P24637nFfnjSpwyfXq27dsXuYg9bpkIl3+oJMTbTBPio5nmK7tu6SUK2PWu3mUnC0znixBSPnxZlkPX7C6c/7nzre8OOfkQHHLyIVXHLjl9CZacvqReWSOEEEIIIYQQQkgTQLne1IT3lRBCCCGEEEIIIYSQCvvEzLLr3nld4XP2m7Vf0Hkh9PVk2o9gmYmel+3SUObgOixUQimnUbuWlg8ltpQiVELjG6eOT5Z5aBmHTjmPHb8L32XbXeeFxu/CLY9ojv8lhN7fkDIJlbqWQd69L7KcvCvP3d214y97iXjdz/qm51tXXcvO68SltEQGdbSH9YNlSFB8ZYe+ddcVX4iky5WnImEjo1mYq/zLeEZJXPH7ll1VG20PK1jf+ybrcVdnuZJ/X6lraH+p62Apsi4PQuuxRpaDrOMu24MLLrDD/vjHbFtLfPPabOi4IpbNhW8cbaMjNc+ZObMjN74Yliax8G2jtt1Afhyjoo7oZ6NvWqGWIBJX/SwbV/5lvmK1UUKImybqcsvj4TUPNzoLTl530UWNzgIhhBBCCCGEEEIIwT7ysowQQgghhBBCCCEkJgb0tpqq8L4SQgghhBBCCCGEEFKBM8uajGBfILnGfQmE+qRIfb32lnD5LtTThyWG140LX/+BMoixjHsMr6rQcgxJO1bdie1FU4bnV9leUiH1pwzPlxj4eg3V2w9G+rJojxarz7z22mx761brOOvKtKnPM56RbS9dmhu/vG7pLaTDyiDU0zAkfo2r/PPQ5eEqH1/vpDK8aBrlW1PEc01Sdv/gHb80QQOcZnZlj1V80/Ut41APwOAxgmhUHaKSu+Kb02vH99SnZsfG8BUsQoxxkjOO9o6ax9XTI2syyOvRzUbiO963PAdVhzyG2mXlis8VFvqsieF9WCT+vHh8xzRFqOdYnZBWgTPLCCGEEEIIIYQQQgipwJllhBBCCCGEEEIIIQGYRmeAlAJflk0VStDJuKbjhkzVLTJ93nfacSghU+vLkd+VO7mzWaZGx5ABNsu1aMq+trKn/PvGGUPSWwa+ZecrD613/mXX7ZKxWLqc226zw370o2z79NPtsKc8JdseGLCCOnLk+6Oj+WVQb5lq2YRcT6jsMhSpRnLVES3divEcLbtthEr/JNGleY4bHJpHF80o849mzTA0VHO7rb/fPk5WcnVDS3YZCSJUTuyqPzGkc6HEqMeuflGGeedXRRi7L/KVO+pjY8s1Abtf1/1ZSNpF+ql62tIQ0oqwthNCCCGEEEIIIYQQUoEvywghhBBCCCGEEEIIqTDFBBUtyq5dwMaN6bbWUbiWk5S4lvEqQTeTNwU3VE5Wb4ld3go+uqg6HCuUxZiK7XtrQmUaMSQuoTLVqTpNO1SSHBpWxqpPIZQx/d83nhhlV3YceedMdJ7sf6RiCbC7/I4VK7KdDRvsA7/85Wx77lw7TD5T1DMkr47oBTWnT68dHdD6skzXo1OGuWREZfd1rjLeuTP/uK4AeWIZ1+LqO+znr98qrKWXf4FKHXsFuh3D+WUQWgdjSKu8nyGuJX3zLiYSMa6l7HFqGSsYli3j9c2Xrzy97FUcNSFxhko0fSXzupnIR/qyZX75KnLNscepzWqL0mimNToDpBSm5q9ZQgghhBBCCCGEEEIC4MsyQgghhBBCCCGEEEIq8GUZIYQQQgghhBBCCCEVWtxtZIqQJJmAXQvZHctpW2izG20sk0Oodt2X2P4PZXiVSH+eWbPssI6Q5a4LIG+vvvV59h6h3mmtSLNcWyOXzHb5RIT4gJThc+HriRNKPT1NyvB8cYVJn6atW+2w3l5xXHdPFt+ZZ9oHvuIVtU/S+8pEpU08U2QZ3HOPHYV8nGhfmoGB/KTz0F4uMs6OOo9KZNq+fbCmbXRk8pE4yPNOA4A9e7Jt7TUnPcti9Fu+bajIM8pV/h3txfufKM9HV0P0JDQf+v7mVZkyxgHSN6m6CLL0+vvtMHmfqsaiouyc/ay4UO3b5hr65hE6Vix7zBHq/SkpewxSxjO2bHzHSTHi1+T5lOmmME0YWu3aZYfJttfXZ4fp9paXJ5eHsIuQ8VUzeVA3CwacgTRV4X0lhBBCCCGEEEIIIaQCX5YRQgghhBBCCCGEEFKBMsxmQ+tT5DxeLa301Y8IisisfKfS+sovnNN79XxlmX/HHPxQeZZ9bWFS1JCpxuvW2fvyMvXUa4lLhuPCN48uOahE34oQ+ZpLHtEsEohmpci0+xj3JiRfZcgYfY+rt0Q2Br4qPSmL6u5bYIV1nH12tnPttfaJRxyRbesGLJ43W4e7xrfvu88+TEotdRTz5+flOB/9mJNxliHD9H1OOKWWwzuyHddzeuNGO0xK+BYvduQyH9ejXkp7pk/Pj6NZpOSaEJVqKVYEeVqqOmNJGhW+thmu4aC+tNHR7LxvfCP7ftEi+7iTTqodXxVav2lpuDvyzxMZGx3tsoJc45+Qe19vCVnI87FIHbfvab6EtYxnZww7Fe/zpNxdMeaoWzHGJ64xcl534eqrNfI+rV5thz3veRNmrxAhvws0+ifbnN7IUnhCmgi+LCOEEEIIIYQQQggJoPX+XUt84H0lhBBCCCGEEEIIIaQCX5YRQgghhBBCCCGEEFKBMsxmIEkycbg2hJF+Jy6jCM+lzYtox311/i4vlGCvAGkC4GlqEqqLnzUrP/rYWnttZyNvt047z4tGH9fZmZWxy+/EF+1TsHNnfpi20ZPk1Ysifgax/cxieCk0q/+Cr59N2fmP5YuYl+cY3oqu82LUkSJl8Pjj2bb2PpH70gpI9wEd0lTMZVikTxSRdvdmPkEuTzHtZTRzpl/SMkw/5or4MIZQukeXy2PT0Unm1QuX/6DG9fwKoUjarvPy4ijirZiXdrWXTnacLoORUc/nozzR9WDzJJY3Z4y6Kz2QdNuW44zBwWxbe6i6PJs6RofzA3OQ9wUAOkS7mXzpVxPq2RdS/mX7nmlC2n2sPtG3Xof2bxYO88aQ3yjB+XBky/X9k09m2y5bRP07wWVdHRtX85VjFfncB/zHn4S0InxZRgghhBBCCCGEEFIQA8r1piq8r4QQQgghhBBCCCGEVODMsmZgbCybk+uSYRaR10SmbGlS1dziPBlmKA5dkWtZ8ti41LKuZaZ37862dR5j5Nkxux1PPFF7GwD6+7Pt7m6/5djLnpIdKoHwXU6+SFsoY6n2EGLIQkKvJcZ1xojfVxZVRErukhf75lFKrF1IGeZ++9lhPbIhav2U7Pu0vkNE2iH64OXLu6zDpMpTJgW4+46848ruZ2ORW+f1hcpy1Ren74dHWrq+uJ5RHRhxxFq7oGPJj3wpW/rtGi7oIZVXJGVrnQoQIiFzjRGk1BKwq66UWMs2DwD77187PgDAkCg7zwLXcfg+f134xlGk/ueVv+5KZZXpCaw+odcZuz8t+1kf2t9Y57V3WGG+Y7S20ay/3DZsx+FS00t09y+PlZJJ+cwG3F2MfK46HtNW/Av640i9JS65tRyr6GtzWcoQ0upwZhkhhBBCCCGEEEIIIRX4/pcQQgghhBBCCCEkAM5AmprwvhJCCCGEEEIIIYQQUoEzy5oB6VkmBemA7XfSRELw0v2WvI1GPGlg2UnvgP7+/HJzLSUtvQJclxLqp+XyO5G3QufRc5V4b5+LGN42zjLQGZb7nbZPU16cRfIYo534+r35+rDE8B+cKC8h8bvyFeon54rfJz59XmgefdH2VrLtye116+zj5h8lGu3cuXagNDxcu9YOk8YjwlBx+fKFufnQjyhJE1k9WQT3K7J/kBeujZ9kp+kydVP49ivux1e+aVxInaynl2IRZPm0t9t59PUXGhzMztO3qW0433fL2f8Mbsq2Hf503nXwU5+y9y+8MItDtNEiz4KBgfxj82xxpX8ZAMyenRtFfkcFWJU3Rn8Z+iyI7aflGkrogVKbKIMxh9eWb75ieA6GxlH2eCEU7/jFvSji/+vyM/P145SPW91VyGfnYYfZYffdl23ffnu2/ba3+Y93rPumn18iM678u/pZeV69PTEJKZvmeftCCCGEEEIIIYQQ0kLwteDUhPeVEEIIIYQQQgghhJAKnFnWDAwPAxs2pNunnGKHRZAPxliSOwYxlususqS1dayjHH2LOFS+Js8rIlOS6ik5q79IlfCdui/DRkfz74vOv8yjliV0tNevbkmq7kuelArIlYhUnSdlFIHtqYyp6DHkF43Et237lmuRa/M9Vh43otqGloNNFpe8Q8rGXJLtqjXd9+zJtmfOtMP2PncAS5rRpTVqw1lb2LnTlitLibhuXi2xnLyrc5VhGzfmx7F4cbYdaCEQQwalJV4y+7I76+mOL5OJLacvgnzW6GuRdXLatGy76nnled+qzpNtyCHD9Obww+39CJYU8rktZZc6+scfz7b1pcimofufTmFh4DvOKEKzyLhkXdJjIXvfX9+Xd226rGJL/idKLwTXvW4bHcl2AspDE6MudXWG9YM6+zIv3d1ZHLqtSfWjq31pCfQ992TbTz7plcVqZMelxwg5MsxQSaZm/N4nif9JhDQRzfEEIoQQQgghhBBCCCGkCWjW//USQgghhBBCCCGENC0GnIE0VeHLsmZgv/2ApUvTbTVvt1kklKG4po7HnlYeWh6+045DaRveMb7doRKQshk9rV/Omg6VYYZIRV3Tq6XsErAVXtUyTK+ko8g03PVMoPQjf9i6IC8I3d3Zvdl//+z7efPy8xFrpUlXnJONo979hlOaEbjSZ+w4QuUXIeh8dHbmp92BTLrS25vVx+Paf2cfuFrog554wg6TzxQtr/zTn7Jt2QDk8luAJduYf9JJVtCO4fyVdH0pvU5K/YteCUxKUnQnJrUyDi3bmGMlXYmr/lvxBa7qakmdAAwPZ3VG3hstJ3bJGF1p++Y/Rvv1Rffja9Zk2ytWOE4UD75tQ3Y+pGy1Snqds0JlqBxx7PkvyA2L0U50FZfPNlnF9ThAnue7Cram7P7Zt/x1/n37LZcM07adUOO8kleyjE1oO3Tmy1WBPDV9oXXEt59y1WvXao95afX15cevlZDy0Tx/tt2PT1+W9eMzZuTnw3nfXCs25+CKv8izfgRp/hMY/5MIaSL2iZdlx594fKOz4GRm27SJDyKEEEIIIYQQQgghpbNPvCxbcanr34mN56Ev/qHRWSCEEEIIIYQQQggh2EdelhFCCCGEEEIIIYTEhkLTqQlfluWw5to1uOvau9A2rQ0HrzwYK1+9Erd97TY89OuHMK19GnoO7MEzL34mZnTPwIY7N+DX//Fr7Bndg2nt03DihSfioGMO8k4r6doPY4uXAAj39InhlVTEDyDECytGWBmeULbXhF8+CrFxY7at14vuru0po/fL8FLLQ9tHuJaMlx4MOo++S6LHRse/YzQr43XCowwANmzIj0dejywT7Wshy2TnTjts9ux8j4dm8TOLTQxPFo2vH0kM35tQQu+nrFtVcdx8axYmD/zWt+zjTjwx2z73XDts8eLxzbG+A6ygNll5ZcXWnYA06FGdQKenX5eVboGyiuK3Jxuf7I8B+7oHBuww6U0m++7ADjm0HofW3Tnt27Idhy/QGDpyw1zk3ZtYnkd58VT5Y27NfOi2J3Ydv/nmbFt6lunnvsuPx1kHRdvw9TLShNTxIm1BXk/VEER5b+Uhm72uSrF952LUH+07J/McOp6S3UE9x2RlUKSMo9zfCAUW6n+a51fnGnMX8eXLy5fuY/r7s+Ok/10VKnCOyNhRR/XUTLcQno3e9XtLeze6yn9v9g3fJJEWpcW7+3LYs3sP7rj6Drz08peio6sDV73mKhxz3jEYWD6Ala9aibZpbfjVFb/C6mtW48QLT0RnTyeee+lzsd/c/bDloS247n3X4RVXvKLRl0EIIYQQQgghhBBCCtJ80xKagJ1bd6Krtwudszqx9ZGtAICOrg4MHDuAtmlpkR1w+AF48s9PAgD6DuvDfnP3AwDMXjgbe3bvwZ7de2rGTQghhBBCCCGEEEKaF84sq0EylgAGuPO7d2LVN1dh6XOWwrTZ80fvufEeHHbKYVXnPviLB9F3aB+mTY+zwqXvNNtQeYrv9P/QZdBdU3NDpnbHuM5YcXojtX5qbnfbQNYEx5ScyTVdvEx0ecjp1nr2dtl5DLo3VfPnM4mRzr9WXUnmzs22Z870S3rXLnv/8cez7SeftMNkubryEVo/Y0ilXfH5tt9Q+VGIjLeMJe9944wiF9Q65zVrsm1Zr/VxooL+rvvpVtB9mZITixbZpx3X15vtSJ1SCQ29DNmxd5xSP7V0qR3m0qh55iMoT5Hit47V90bcR996XER+JJOLUv8Vvn3Mts5Mejkf26ywd52yenx7BKd6pdXZ6SirwUFrd/1wlrbsxmP1U7Hl476yS42vLUQMCXGM+uOS2IXmpUt0kcH3RfXdbTny97F2Wxpd7zF+XhyhyOuJ8ZvBRYw6GGqb4UpLyjJ7ex150jrnrVuzfPVlMkwt5fSVGoeO+ULrwd4qniRBp7cMBkCcX/6k2eDMMgfHnn8sXvn1V2Jo0xDu/vHd49//5ju/Qdu0Niw+bbF1/Jb1W/CrK3+FZ7zhGfXOKiGEEEIIIYQQQgiJAF+WTUDnrE4cduphGLw//W/ivf9zL9bfvh5nvPUMGOFWODQ4hBs+cgNOv+R09BzYkxcdIYQQQgghhBBCCGli+LIsh6HBoXG/sk33bkLvQb14+I6Hsfr7q/HcS5+L9hnZHNddQ7tw/WXX44RXnYD+I/sblGNCCCGEEEIIIYQQMlnoWZZD27Q2/OTDP4GZZrD/gfvjxFefiO+96XvYM7oH1733OgCpyf8z3vAM3PXDu7DtT9tw57fvxJ3fvhMAcNYHzsLMXj+jI4PESw9fxFOgbB+uvPhDvVxi+AGEeq65KN3PzEGIx0YZ+fVZEjpW/GUgfRz61btsaR+ivXqkt4vrOl1WT7t31z4OAKZFNjcI9RX0jdPVx4R6E0ZZkj4nviJxhpZVjPxb6emKdtJJ2basoPJ7wDK961b1WPqUVVlyiS+2DGeeiaqqoqtzJDeP9XzWhJaxdX91J+B7XqDPTt5xrrSKnOdL7LbmogzvQBkm/R4B3e+qTviUU7LzxNfBZaA68u4GPQPL9m6M9az3HSv6tjXfa+vq9H8euuL09c7csjU7Tj/r5f4OKG9asd2DEeQRw1vUhat8YvcdMfq60HyE1uO6eu/pCpRjNKgPk9cWw28s1nNib76McR83FeAMpKkJX5bl0DW7C+d/7nzruwu+eEHNY4976XE47qXH1SNbhBBCCCGEEEIIIXXFGNMG4E0AXgdgEYDNAL4D4L1JkjzpOFXGcRaASwEcA2AXgP8B8PYkSR6c4LyjAdyB9B3W+UmSXBN4Gd7wJSghhBBCCCGEEEIIcfFJAJ8A8AcA/wDguwAuBvDflRdpTowxLwZwLYCZAN4G4F8AnArg58aYBY7z2gB8CcBw3jFlsE/MLLvundcVPme/WfsFnRdCX0+f13RXXxlUEWIs0+xLGdKP0PzXVV65dGm27ZifH2P6eZEyji19LUNGFCSPc8yz10G+S2270paSID1bPmdVeGecsdpJ6DLrvsfFbs9ly0g1efkvQ0LmLaFRlXBsxcrxbVmXXHX10FEl5ekTY4oq3Ua2v25t9vVBB9mHdc0LGyr4SphC4tBh9ezTQ58tMWSkRdLzPUfG30hpve8zvAw5q69Mb6zbXsCpNzfGMEKk40Bj+/sQiaCzjFt8rOvCJQ9t9Z9kzSrv9qWMvjskjqr6KQaWHSXUf59zNEX62bLvG6kvxpinIX1B9v0kSc4T3z8I4DMALgBwleP86QA+C+BhAM9IkmSo8v2PkM4Yez+Ai3JO/wcATwPwzwA+MNlr8aW1e2ZPHl7zcKOz4OSii17X6CwQQgghhBBCCCGkIPvIa8GXATAAPqW+/xKAjwJ4BRwvywA8E8ACpJLNob1fJkmy2hhzM4CXGmPemCTJbnmSMeYpAD6E9GXa4OQuoRj7yH0lhBBCCCGEEEIIIQGcAGAMwK/ll0mSDANYXQmf6HwA+GWNsNsA9ABYUiPs3wA8gOqXdKWzT8wsa2VCpXKNXMWxnrTE9N6qJeiKU7Y0rG00f7W7GGk1Ele+OiL3gLroOtrzp77nyX7qXY4tJ7NtAWLJoWXY8HAWZ8/qn9kHLls2vnndbXOsoLNWfTTbOfts+7zly8c35SKRs2Y5MtyCRF9RswS5TmgeY7dLvSqw7+OgjPYbUuYx8hEqMQqtFyFxVN+n+pVBEUJkn0Ukn7FlyEXOk/T2hp3ne07Z/VbZ1HM1Xl+KtNeQsdCOYfu4rtFt2Y7y7PCVgcf4Tehbt/bV35UEfcaYVWL/i0mSfFHsLwAwmCTJrhrnPgLg6caYjiRJ8pb3XSCOrXU+ABwE4K69XxpjXgrgBQD+IkmSUVPnpVX5sowQQgghhBBCCCFk32UwSZIVjvAupKtX1mJYHJP3sqyr8rdWHMPqGBhjepHOJvtSkiS1ZqOVDl+WEUIIIYQQQgghhBTEYJ/xttoB4ICcsE5xjOt8AJjhef7HkRbt//XNYGz2kftKCCGEEEIIIYQQQgJ4FKlUs9bLroOQzkzLm1W29/y9x9Y6H6jIMY0xxwH4WwCfAzDXGLPYGLMY2cu6/sp3tfISDc4sawIMknEteCxvqpAlilthud8yfBxi5SU2IXkskqfhYbnXMb7VWaBXGBnN8hjqbeOqg7G9V+xrdudZ+o2VTRmedLHjiOFLVuS4vPSKeImEhvkeF+IlEtqH9bSLf7QNDNiBnZ3jm7pOP/36945vv36RHXbu4mx7Qf/kfbjKaL+x+9kYfjCaGJ5HvsfFeHbpOKT/1dCQfay01nH1lzHKMdyvKyi5oLQ1Gzdm2wv6cw/z7otcacvrdpVBaPyhRG+jo+p3lri4UM8mK/4I/VQjPd1ixF9GG3UR4q1YhrecjCNWO8k7r6tTfT+aPad1fHJsKv0HgbCxaPD9dfgXh/oz7u2rkiQoS6T5uB3AcwCsBHDL3i+NMZ0AlgP4We3TrPMB4GQAN6qwkwBsA3BvZX8h0kl7l1U+ms9W/p4AYFWN8Cg039sQQgghhBBCCCGEENIsfBtAAuAS9f3fIfUa++beL4wxBxpjlhpjusRxPwXwJwCvNcZ0i2OPAXAagO8mSbK78vWvAZxf4/P5Svi/Vvbvj3FheXBmGSGEEEIIIYQQQkgA+8IMpCRJfm+M+TyAvzfGfB/AdQCOAHAx0hdhV4nD/wnAqwGcDuDmyvm7jTFvQvrS7RZjzJcA9AB4M4DNAN4n0noUwDU6D+Il221JklSFx4Yvy5qABMZ76V5JDBmRL2Uslx5CvaWhsWWAZUhdQ/MYIpvU+Y0hfykbLVfJCwu9lhgyvZAp/hMxlZaMd50XWwIXGkfZfdNIe/aPudH+Q60wocLEmWfa561bl20vWmSHyfrfLPWlbBpZl0Lbedn5kn2frEs6zDe9ItfZalYQZRDS9mI9e2PIGmPcw1boc+pZH4tIBJsx/jLwHUuUfZ+C+//2jokPKgnfMhkRliwtMLwnjeMSAOsAXATgBQAGkUoi35skyYQNJEmS7xpjdgK4FKmB/y4A/wPgHUmSPFJSnoNhWyCEEEIIIYQQQgghuSRJsgepBPJfJzjuQgAX5oRdC+DawPSvAHBFyLkh7Bv/tiOEEEIIIYQQQgghxAPOLCOEEEIIIYQQQggpiAFnIE1V+LKsyQj1BnOd5+snUYaHQYzl0ssgL19F/DZClvyutw+FC+l5Yi0XrT2+PM1RYvjNxCifUF+1am+zLB6rrCK0Q31sqBdH2UveN9LHpFG+iEXSin0P3ffX0/tn1a+t/Yt612U7nYussB2dK8e3N27Mvu/ttdPq6py875wktA6W4e3XjHGUnZ6rn9KeZTE8GfPOAdSzZ3jYPri7p2Ycrj7dt32FtnMd1t9f+7wi98W3D+jwfJa57pMrbRcxvCddWHE6vJ1C21eMsWizPIdC047twRuaVhnlGNt7LzQO3+vWceh+V7JjODs29FnsWz6hfYw7zjRtY7xPIaSp4EtQQgghhBBCCCGEEEIq8GUZIYQQQgghhBBCCCEVKMNsAgyS8SmyoRKdGNOHXcc2i7SkjOn/zSo1a2T5h1BGHYyNS75TLcMsl0bJO0KJIW8qmzJkJnlSy1BC5cqy7jqlxb299r6Utg0NWUFd7ZkEbnA0kz6FtoV6yyRjtw1feVYZlgKh5dMsbc+Xeuexns+lGHK+ViCWxLSM9HzOiZH/su9hvZ/7sfvuGPe6jOdJaH0MsVkItezQhDyPQ5+Vrd43NZrmGK2T2PC+EkIIIYQQQgghhBBSgS/LCCGEEEIIIYQQQgipwJdlhBBCCCGEEEIIIYRUoGdZkxHqs9AsnmKxzykjjkamF+qVUeY5ACYwQYoQfx0JzWOXY+nuUBrVTlzxxPD6CI2zjPrTjP1KGe3cO87Fi937OSwcqN89LLuOl5122f14GXHEiL+Udi6fPd3d4fFMkrL7sHr2kc36nG7WfPlSzzF4s7T5WOc1Y1rNVAauOHu6a39f7+dQmfFNFUyjM0BKgTPLCCGEEEIIIYQQQgipwJdlhBBCCCGEEEIIIYRUoAyz2ZFrBjukcr5LLJexFLMvZSyF7btUe4z4ghkayrb1Pez00/6FLlnuOm/HcO3y6eqcWtOrG1nnQ9D5jVHHG3mdoXnMq7uu8iljKXjfPPoeV2RJ99z7Njxs78t+ZeNGO6y/f3xz23CHFdTTXbxeFKmfeec1a32Mka8y4nfFKYcIHRixz2vP7nfZ44AYzyjfvOhzZHPQj9Sy6+f6Ddl5vlLmUJql7tY7H7HjbORYt+7lk9M4QvNYz3sT+jxvJKHPehexy1g+MwB7+BBa/pJY101Is8CXZYQQQgghhBBCCCEFMQCmNToTpBT4upcQQgghhBBCCCGEkAqcWdbsRF6lsN7Tq2NTaPWXUSFJ0dKk3t5suztnqZlYOKS0IdOTi9wnK0zNve7s7MgL8k7bNx/Nysio39T0jvbWu7ZWIGR1sSLnuOpriISySF5CjtNYko6hbVnAmjX2gQMD2faGDXaYtdrgAitISrGd8uutW7N8KJ3bWGdXFlbH1eJCCZU113M1wyJSY/uRMvkhXdlSoTLKuLNz8hK70PNk0yubZlkdMDgf0pJC62U9x7qhtKLNSF78wavNRqCR5egap3Z4Xma97WC8zxEXJ+XzZeAa64YSQ75JSLPCGk0IIYQQQgghhBBCSAXOLCOEEEIIIYQQQggJgDOQpia8r4QQQgghhBBCCCGEVODMsmZgZAQYHEy3+/qsoBhLebciuR4AchlswPbA0MJ76d2zerUdtnhxtr1sWbat/MuiLDcu/NGkRxYAIN/OLIgqr5sN67OdvXVsb5ioax39/ePb24ZsvwRXvmw7NjttaUkS6mcTcp7rHFldAMuKCTNm2GGzZmXbvn4YZRNjKfUYZazPC+2nQvotl6dYGX5RMeJwlYGsg9rGx/IRk33fnXfaB4q+7ie9f2UFPWfwd+PbPbr/FO0eg6JxrFtnH/e5z2XbL32pHfb8FyAmpfsiav9KUSZtsjyA6huSQ2ieY9fdqrSlz530nVNGW6F1Pq//L+QtGnDdRfLrW8bOeyj8T7WfUOz75nttRbwVY9A2vCPb0b6FjjK2wuSYTPrGAhjpy/wU9Zgj5B66PKFCvWNdaW/enG1Pn26HyUv1fTY4/bmgAuXBnl5wrvsUoy6FtjVfqn23isfpKmP9qHRZG+ddj/5epjc0ZIfN6cwCR2H3MRs2ZMfKR/EnPh42FtJVogzPa8necfeePV7JENJ0NMlPQEIIIYQQQgghhJDWwYByvakK7yshhBBCCCGEEEIIIRU4s6wZGBnJpCFqfmybmqqeR+jUdNfUWe+p9aHSBl8ZqZwPredGS0mNLis551mv7+4pr4mNa8lmfWkyzFeiWXUvpJxKy49y6pZOS+ZLh0kJmQ6TimJfGWPZy5K7mDnT3m9QFSmlDELlXr79gwspPQ6VGodKRcsmRj/oUCZhYEDELwNPOME+UGiAntP9CzusUzRE1/NkzZps+5e/tMOkjP3cc62g2PW1iDzIO22HBMvad+lyHMSun9HKdO3abPvmm7Ptv/97Oz3R2RVpQ3nPry7Vd8aWm5Yh8QqRlRehbMmtRFdjue8agzifeY624X09sv9RliMd7fnlH0MmJi80uB9xsGtXtj3fbLIDR3uztJWMN6+u6eKW7auz046jK+C5GmrpUE+Jpj5OjiP1mDK2tHPnTjvMJcPMi8M13tGWIJ2dXePbWwfzj5XjherGbNcLiSzLKhlvzquAWP3U3mwmSZToCKk7nFlGCCGEEEIIIYQQQkgFziwjhBBCCCGEEEIICYAzkKYmvK+EEEIIIYQQQgghhFTYJ2aWHX/i8Y3OgpOZ7e2Zl4M2rnIZRoUaAAlieK2U7hMkr1MbB/T354dJfwxdrsKcY0d7jzgu97BgpGeTzoZk9257Xy4/LvNRKE99Dr8iUXbSR2NU5VH6kmmfhbykNGX7tbjilGE9qorIfdcy39Ifowy/Exd19zkKiN+VR5eHhyssxKemyL0J6bdC+0GXZ5D0RtHtS3Zpvb1ZG21butQ+UHoy6k5mUBiguDy5ZOJPeYodtnhx7UzVgVB/G8kIsrJr7ztg0mmXUc9CfbKsMNlZA7ZnpWxg+jhRL9q0v6cD+WyzqpbDSye0/wx9hthtL4ujq9OzTAFvv6sy/Jzy4nSXY/6zTJPXN+n+eKy7B3l4l4HsO1QCZY8Ryh6nLhyQeXYMhjzR4zx5b6r8bbtF/6biaaQPbGzKriOyjLWHrYu20ZHx7Q7xHB3rnZMbv36MSkthy5dMceaZ2bb2v/PGYZA8JrzTNKF93d6fHhF+shLSEFq26m7btg3XXXcd1q9fj2HV8I0xeM973jO+v+LSFfXOXiEe+vI9jc4CIYQQQgghhBBCCEGLviz7+c9/jnPOOQdb9X9HK+iXZSGsuXYN7rr2LrRNa8PBKw/GylevxG1fuw0P/fohTGufhp4De/DMi5+JGd0zMLxtGDd87AZs/uNmLDljCU55/SmTSpsQQgghhBBCCCHND72tpiYt+bLskksuwaJFi/ClL30JRx11FDo6Aqei5rBn9x7ccfUdeOnlL0VHVweues1VOOa8YzCwfAArX7USbdPa8KsrfoXV16zGiReeiGkd03DCy0/Aloe2YMtDW4on2DnDltFIpDTGMYfVNSU/VGrZLPIy59xdl/ZP4pAOrVubbTuUisHlk7vsM+yp9q4l3eVl6uLQS2hbuCQ1OXpOLQXbvDk/innzsm19K2JMua6nNMMlVYkhpYqBq47UOy8S1/R8l2w4pI4UuS5X/fGV2IWgVQ7bt2fbu3b5xyOl2ZZESkmi2mT/piuJbND6H0xS+yGllrLjA2w5XwEZZtntN4Qy2lCM63S1Ie/49cXtt1+2vcIxw96lr8/JBwB0tGd56YCIQ9X/tu58GaPvtYWWa558rcvRL4VKYl3HyTiL9DEh0id5XwCgvTvusyD0XriknNZxJYxFY8hlQ+uF87zhHdmOHCCqwWh7t598vIz+JyS90Hvom4+yxzeu54KUXQKw+0/HQNIlpXWNP+XY+rWvzT8uGCnDD7Q98A0jpBVpyZdld999N77zne/g+OPL8SLbuXUnunq70DmrE1vWpy+/Oro6MHBs9uLhgMMPwIO/eBAAML1zOvqP7McTf3qilPwQQgghhBBCCCGEkPrQki/LFi5ciF1F/j1fkGQsAQxw53fvxKpvrsLS5yyFaTPWMffceA8OO+Ww0vJACCGEEEIIIYQQQupPS86NfN/73oePfvSj2LZtW6npHHv+sXjl11+JoU1DuPvHd49//5vv/AZt09qw+LTFjrMJIYQQQgghhBAyVTFIX6q0+odU05Izy6699lo89thjOOSQQ3DyySdjzhx7eV5jDK688sooaXXO6sRhpx6Gx9Y+BgC493/uxfrb1+PsD50NY8wEZ08e6fEQw8+jiLdZGcug++ZLIpen11jeHA4zGlf80ptg2rT8PIYifYe0ZZAr7Vmzah+ncfphePoLyfvU2WnH95SnZNsuX7Kp5lMQ4qcV6lvii/aiKZvYXjGaEE+S0Hrme1yRa86LU/uR7NmTbet6JZeo12HTp2fb0l5Mt8OudtH3af+pwcGaeQRge5PJSHUCp4hFa5QPYozyj+Gz40K2m1bvl5zlqO/b6adn27Je6OeC9qjzTM/CZcDpibfPkeNZr8/Rz7PCaamwsv20fI+rtz+m7EaGhuy0lywSHk7t+R7Csl/UfV3wGCfAM6vevoLePoOyk1d09vl5lvlS5DnqXdcs7ysVh6Ne5OWr7N8kHbAreXt3fh6tvPgajClkt6u7YNk2dHdcwCbUD20kG8FguAy/SUKahZZ8WXbrrbfCGIOenh7cddddVeExXmINDQ5h6yNb0XtQLzbduwm9B/Xi4Tsexurvr8Y5HzkH7TNasugIIYQQQgghhBBCiIOWfOPz4IMPlp5G27Q2/OTDP4GZZrD/gfvjxFefiO+96XvYM7oH1733OgCpyf8z3vAMAMBVr70Ku3fsxp7RPXjoVw/hrA+chdkLZ5eeT0IIIYQQQgghhBASD5MkSaPz4IUxJgnJqzEGA08bmPhAwejIKAbXD6J/cb40ISZ9PX2449Y7ARRbjtdF3nmuqen1lqf4Xs+O4fx86dnEefHraxvNUS3p+Hzjd7F+Q5b2mjV2mJxerWdvy5XDZVjojOkYktgYBC+xXsJU7pBrbVa5aYz7G3pt3jITnRdPaUazktfHuJaF18WxYUN+/IsWZdu33ZZtL1Z2mYcOCBmU1nqvXVs7QsDuZERnNwL7vnQgi3/HaP49c/WXvpQt2dDPE3k/XPmPoFSJcm2hfaTveY3sz7zLRzewgIoXKqeMMYaKMc5z3s/RkdywKnLsKrQiUHYruotZvjzb7up05F8OtlRHONY7ByGU8dwrNT6XhM8xGB3r7ApLLwKu+inDZPZ7YHtKS0sZF/Uc5+l24hqPOGWYOQ+HIn1pqEQ5j1i/JfMocm1701uxciVWrVpVvn9RgzjamOSHjc5EBBYCdyRJsqLR+WgmWmpm2e7duzF9+nSsX79+wmMXLlw4vv3wmocLpbNu3TqcffbZWKPfbJTERRe9ri7pEEIIIYQQQgghhBA3LfWy7M4778TKlSuxaNGiCX3J9khH5YIsWrSobi/KCCGEEEIIIYQQQkjz0FIvyw477DAAwFe/+tW6rERZLwyS3GmxoRLKekruSpkCLqY5d3X6rWrpQuexvT2LRyqRykBKLfUqN1JeqcPyVpp0lYFrhn9HCTIi37z4TiOvt8QxtoSjWSSZoUTJv2sZNUVbjgxQ02rl6lKFaQmTLC4txZbxyDCtQpOyyaF2e9W0OctE49PLat13X+3EBg7NjV/fztj9Z4i8YyIe25wfp1xxVBNb/lJvmbkvvjKrMvDtP6186QbmWlFQhgkZcpHr9F1J0fdaQstUrgyu+wCrabs6GV2pc1bv01FI6ffjj9thMkp9bTKfXfJAtWpv2/COLA4lOYwtk4yBM0+6k5TlrztMWSYirEj+Y6wW6jrHt15bVUsNA3wl4rHlgk5UW/BOz/PBUKSPkV1ajFXVi/Q/IasOu+Dql2Sq0VIvy+bOnQsAuPDCCxubEUIIIYQQQgghhOzzTJ1pPETSWv+uJ4QQQgghhBBCCCGkRFpqZplk06ZNuPrqq3HPPfdgWM1HN8bgK1/5SoNyRgghhBBCCCGEEEJalZZ8WXbPPffgpJNOwp49e/Dkk0+ir68PW7ZswZ49ezB79mzsv//+jc5iKTRSB166j4nyr7C08WK7iJbf5X1QT58peSnCMgWA7TPisgPw9ZQJ8djRFKln8ljppxKLEE+x0LoaY6ntIvUzhpdII/H2uZAeQjpMe2h5pFVGe/W9b6H1QMahL1l6lWifIMmyZdm29gySXH+9vf/Xi9ZmO8uXW2HXrTtyfHvVquz7916yzTpupLNnfHth+6NW2DYsGN/WPkq+PiySMu7v/fdn2/pRMzCQbR85YF93Xv2M5Z3pG6fLM8vliRbSX+h+vKN98v45Vj5UH7BjNPPD27DBPk8+L52em7Lh/P73dphc7Ek/gHMI7WfLqBcS2b56hjfZgd2Z99gW7Vu49V5xXH6fK+N3jSWeeMLenz0729ZdvNzf0Z55kXW1q4YYSF7/HMP3qQiy3XRo3zy5LztyoNqs1oO20RFrf6y9I+fI+B5grjg6O7O0RkZ7rDBX883rH1zXVSRfeeOHIj7QlvdeZ1g5xh6/ld5POTqBZhqLElI2LSnDfNvb3oaVK1fiscceQ5Ik+NGPfoSdO3fiy1/+Mrq6uvCf//mfjc4iIYQQQgghhBBCpjAGwLQp8CHVtOTMsttvvx2XX345ZsyYAQAYGxtDe3s7/vZv/xaDg4O45JJLcNNNNzU4l4QQQgghhBBCCCGk1WjJl2VDQ0OYM2cO2trasP/++2NQLNO8YsUKXHbZZQ3MXWOIMeU8VH7nop6SsiJl4FpJPTYyLb3ivUviIokh7yj7XrjKMcZ08dA6F+PaypZd+cpHYlD61H2tw5ESKd0AHJWmrkvIR8C3rWmp2X//d7a9bp0ddv752faf/pRtn/jI9+0DTzllfPOaa2wJ1ui5Tx/fPlcpgCoLTKfHidu2RUlo5rTXlskAbunown4hFxL3OlZf5FtHpNLpjW+0w57ylGz7i5fnS9RC66PzWFGWo8gkR7pZxHiG+/ZFuvlKAYJ+XvnWeavslFb3vnXZdd98s33e2Wdn24cuyo3eRt5QoLrP8aCIPCuvXGP1Wbk2C46+s7fX3n9s95Lx7fmzbQmfRN6axYvtMHk9ixf7Pw97unPKob1X7Yc9C3ztDMp+xnYMCnl6X58dGDDgdOZR/OYBgK2dmRR+Tm/88Y6vPFGim51vPyi328oenCtc/aAtw8w/r4zxVYy6G1t6XOQZXrbVDSFl05I1eNGiRdhY8QA4/PDD8d3vfnc87Nprr0WvHikQQgghhBBCCCGEEOJBS84se/azn40bbrgB559/Pt7ylrfgggsuwK233or29nasXbsW7373uxudRUIIIYQQQgghhExxWnIGEpmQlnxZ9k//9E/YtWsXAOCv/uqvMHPmTHz729/Gjh078KY3vQl/93d/1+AcEkIIIYQQQgghhJBWpCVfls2YMWPc3B8AzjnnHJxzzjkNzNHUoIiuPLoXVoCvSBFc/gMy6TIsEqQqONRvwLe8feMog2b1lfL1k2ikr4Irj83i3eWdL93YuoUPlDSPArzbfahnk+95oWUcUme0x1fl/z4AgFmz7DDpG7RqlQhQ5mYPLH/x+Pa559pxDAxk2z3tO6ywE0/Iyv/YY3O8kTQqcFT0pYd2b7LCxtpt/7Q8yq7Xhy7K4j/qKPuerV2bbf9mtR22fHmZuYK3Z1nOKVV0RHh+6bRtu6XJ95EjnT25YbKuAvZz2tlGpUeU9osKQJexb7mGeFQWweouR1Wmhoay+JWR1PyZ2YkjsMtfxtKdb9lnofO/Yzi7Nu1hNSzC5K3pEPkFgMd2zxnfnj3bjkPWySJ+WjHIi7PqHt53X7a9dKkVNLLsuPFt3zGmq448MLzA2o89ei5SP/M8y7o6/ccxI6LvGxoW/aBjKBFjLO1C93XSC87l2+bqI6XnY4y6WoY/r2/8rrEWPcrIVIM1mhBCCCGEEEIIIYSQCi05swwArrzySlx99dVYv349htW/NowxuP/++xuUM0IIIYQQQgghhEx1DDgDaapikiRpdB68MMYke/P6wQ9+EO973/uwbNkyLFu2zJJk7uVrX/va3vPwFycdVxXeTMyY0Yn/+d9baobFkDg2ckps2dOCXWmFyB50/DkrWgOonmbuE6eOQ07Jb6TEzrdcQ6W6oYRIKLUsQJZxqMy2nvLN0LTKrj++8peqfEi5jUPnE0NSUO++LoYc3XVenlx8wwa//AF2kUspiWbbUJYPrY6V8pEixJCehUpw8+KQskvAlsUedpgdJuVgMcrARYzyid3n1ps8SddEyPrqOw4o41kWKvmPEv/gYLattd6iE9jWvSAvyFk+Lqn9NiGdqyxUP47s/qU6sWt0m32gyP/IwKFWkO84qYy25i3DdJxTzzw3cozgYmQ0f4wmkVVXj9cW9DfHGFnnf/v2bHvPnmxbD3d6upvTBiSP0HaS9ztn5coVWLVqlYmRt2ZkuTHJDY3ORAQOAO5IkmRFo/PRTLTkzLKvfOUreNOb3oRPfvKTXsff+unmvuev+/S6RmeBEEIIIYQQQgghhKBFZwz++c9/pqE/IYQQQgghhBBCCIlOS74se+Yzn4nf/va3jc4GIYQQQgghhBBC9mHapsCHVNNSMsyxsVQ//alPfQovfvGLMXfuXJx11lmYM2dO1bFtbVPvlpe9VLImtoY+hpdC2Z4LOv5R4bOgdfghuOLwXZ6+bFq9nmlkmbs8y8qoW63gu+WL61qc1+nwKfMlti9TLGL7IbmXpM+PQxax9lPR/mM+ccQq47x4GlnHdR8sr3v+vHL7AN/rjuFp5ZunMnD5hrnQ98b3mSvruCstVz/ie55GxlNP37mqPPUdkMXR15d73uR7Y2CsvcPal21o8eL88+y20KMylu3rri5kfBjjfobG70pPxx+7j6z38zGkbe/caYfNmpVtLxxoDl8yF/pZLPMvrQNdQ58YY4QifVho3c2L31XP9BgkwhCQkIbSJD/P/Zg+ffr4dpIk+Ju/+ZuaxxljMBrjzQYhhBBCCCGEEEII2adoqZdl733vexudBUIIIYQQQgghhBAyhWmpl2Xve9/7Gp2FUkhggpanduErD4oxNbeR+E5vD5W1dHVOfkq4TKvLIYkKzWOMOHzLqt7ynZDzyi7jUFpFVlFPYsiPXPWzGfu0Ivnv7a1dPgsHSspchVCJSJnnxOLoZeWmXUadixGn77M+VNrjm7ZGxt/THdZ+Y4xj6imh9C2PMuIIzWOMOH3PiV3fY8VfT5lzI+WURcrOfyxdezs0H0WI8XtIhmnLFLk/MBBWR0JlwzHij/07cF+VXRrQ82uq0pL3dffu3XjyySdrhj355JPYvXt3nXNECCGEEEIIIYQQQqYCLTWzbC+vec1rMDo6iquuuqoq7HWvex06Ojrw1a9+tQE5I4QQQgghhBBCCCGtTEu+LLv55pvxL//yLzXDXvjCF+Jtb3tbnXNUH4pMf46xKpCLesoeypiSX8/p9KEraYVIc0OnzzejXK0MmmXFy3rGV29iyXVirzTpit83jtCV9lyErpAokemNjNrHyZW7glc03Ufx7YNDnyfNIjeLUS9iyKdaYcXsZiG2LFLH2chybORqrY20agglxn1rFglx2WNuV1qxy7HIb69GjsdDxlr7ym8GQoAWfVm2adMmHHDAATXD5s2bh8cee6zOOSKEEEIIIYQQQsi+Bl8hTk1a8r4ecMAB+P3vf18z7Pe//z3mzp1b5xwRQgghhBBCCCGEkKlAS74sO/vss/HBD34Qv/vd76zvf//73+PDH/4wzjnnnAbljBBCCCGEEEIIIYS0Mi0pw7zssstwww034Pjjj8cJJ5yAgYEBPPLII/j1r3+NQw45BB/60IcancVgQj1NytaPx/LJygvz9Q4Ivc4tW+3zOjtrbzfS0yrGcuZleCVFYXQ0S7e9I3r03v4tIh8ALEMnX6+SWJ5Z+yI7hvPbYSihS6LH9l10+d7knROadnU1zuLoGNpiB4p13F1tz7edtCLN6r+UF1bvfjy211Cov2povnyfgWV4cg0PZ9tdEfozX2L53/mWiev+NovXmS9FyirEO5a48X0WF6njvv6/9R5nh8SvkY9j16M4ho91KPuiBzLZd2jJGt3X14fbb78d73znO5EkCVavXo0kSfDud78bt99+O/r6+hqdRUIIIYQQQgghhExhDNKXKq3+IdW07L+Le3t7cdlll+Gyyy5rdFYIIYQQQgghhBBCyBShZV+WkalFDLmma2r3hg12nAMD2XYMKVjZlCF/KR05d9yaR25LwUrPY14+AOec9kZNJQ+V8DWLLMSVx61b7WP7+/3ijHEvYpSPryykDBmIREq/ALsP6wiUTMp8jcJuozLGZqln9SBEZquJLREsoy2MjIp7r7rIkOdjqIw09Lp9n4Fl1N3t27NtXxlmGTLt0GsLkcCV0b/FvjdF6kHZz/oi99vnHN84YudpovNccVjPF4eNQBmUabnge85k8JVhhkpYQ9iXxgGE8GUZIYQQQgghhBBCSACUMU5NeF8JIYQQQgghhBBCCKnAl2WEEEIIIYQQQgghhFSgDLMJMEgy/bcyo2nzNAyp93LpvvHL/R3D9rtZqb3XOnzffPoed/TSEUeoSFyZKYwI7x7ts9DV6Zd26HLXvvH5enGE3vvQOHaMyrLLtntccWgzJlno3d1ep1U1GVdFE8TwePD1lnOh07X9KuL/fyPUM8jXw0Met8DTo8yVlyL5KLv+x/C0yovPRU9+U3C2k6r4c8xQOho4MohRz8ogRv9cxeDg+OZ9Ww8Y3168OKz+uCwZZb50Nyv3h4bsMLm4uMuTK9TvyrdcXX18bL+3IvmfP69cz6mQfrAIefmst2dWaF9dTz9LX49cV/z19t/0LdfQPOadJ30QNR3tcf31au3nnVfGcyIkziLjzbyfgbHaaIyxi+u8vZ7RI66fYYQ0MS05s+yMM87A2rVra4bde++9OOOMM+qcI0IIIYQQQgghhOxrtE2BD6mmJWeW3Xzzzdi2bVvNsO3bt+OnP/1p4Tg3/nkHLvnEL3D73ZsxY/o0LDpwFj71lpNxzCu+h6UH92J4ZA9mdU3HG1/yNLz6BUsAAFdcew/e9tlf4aB5+2F4ZBSve9ERePPLjgYAfOKq3+HL/28t2tvbMK+3E1+99Jk4+MBZ4RdNCCGEEEIIIYQQQkqnJV+WAYAxpub3999/P7odMpRaJEmCF739J3j1C5bgWx8+EwCw+t5BPPbnnTjsoB7c+fXzAAAPPLINL37HDRgbS/A35xwOAHjpmYfic287BX9+YhiHn/9tvOSMQ/GU+d04dkkfVl35YnR1tuML3/sD3v65X+HblbhrZCDTT2gNhGudYFdYDmUvke2ia3C9tb+td+H4dsFbluHQZtjTz23G2jtEmJierMp/CHPygrBwwC+Lmzdn29On22G9veVKZCWhsg3X1HdX2MaN2bYsu6OXORLbujV/f+nS3NM81cqFiLGkuwtfeYSrmXvXGadOtYH4roleAmUupV7vfjZYbiobpuyEI92L2DJYTYh8KkY/G5qnqv5TaBwX9+mj/dCSSkl7jsOA7mZlNXj8cTtsxoxs2yXDdBFa5nl57u21j/Pt0nzbqLP9urSuOWkVSS+GHYCLRo4BfQmVOBaJMyQOX0LHWr73psi15KUdWs9878WokmFaj/ruydsUlN1ONPV8hkw1Vq9O/+7Y0dBsEBJMS70sO/XUUwGkL8ouuugizJplz9TauXMn1qxZg2c961mF4r3pjkcxvb0Nr3/xkePfLV/Sh3WPbreOO/SgHnzikpPw1k/fNv6ybC9z9+/E4oH98afBHXjK/G6cvmLBeNhJyw7AN67/Y6E8EUIIIYQQQgghhJD601Ivy6ZNmwYgnQnW1tY2vr+XuXPn4v/8n/+Dd7zjHYXiXXP/4zh+qd+/dY87vA9rH9pa9f36jUMYHtmDoxfPqQr7yn+txfNPfkqhPBFCCCGEEEIIIaR5MaDn11SlpV6W3XTTTQCA008/HV/4whew1CHLKosksfe/feMDuOmOP+Ge9VvxpXeeis4ZdpF+40d/xKq7B/HTy8+pYy4JIYQQQgghhBBCSAgt9bJsL3tfmsXiaYfOxjX/+4DXsXfeO4gjFvWO7+/1LPvl7x/DC95yPZ7/9Kegf24XAODGX2/Ah6+4Ez/9wjmY0TEtJ0YAxmS+F335M9yK+EWFHOcixrLDbQO2yVdP4DLQFp1dXoc9sKHD2pfF3C38E9qUGcockcc5dpA3v/1ttr3//nbYscdm2+3tk/+fRAyvjLKXbXfWkf5++wu9H0AML44Y5/nem1K86xymPiHedUXCnOWf5x1YgLK9aEI9++pJ8HVq86fIhOSr3t6Nvrj8chqJr19XR3uW5/7+sDIIHWeE9g++eQ5po8H3MNDPL8ZzIobvWXBf7SCkXMtoQ2U/633TDn1WlvEM9CV2/ezqrK+vl6udNIs/WNm/03zTrrfn2tlnp38vu2zSyRLSEFryZRkAbNu2Dddddx3Wr1+PYeVwa4zBe97zHu+4zlixAO/6wq/xpR/cjb879wgAwO1/2IQdw7aR67pHt+MfP3Mb/uH8aofyk4+aj1c+76n49LfW4J/euBJ33jOI1330Flz/qbNwwJyZAVdICCGEEEIIIYQQQupNS74s+/nPf45zzjkHW/WSThWKviwzxuA/P/YcXPLJX+Kj/7EanR3tWHRgNz715qfj/ke24dhXfg/DI3swq2s6/uH8ZVXm/nt5x6uOwXGv+j7edeFyvO2zv8LQjlGc/64bAQAL+/fDf338eYWvlRBCCCGEEEIIIc1Jc8xhJLExiTbhalKMMcnevJ5wwgnYs2cPvvSlL+Goo45CR0eH6zwkv7qoXtkM4qJPP4TLv379hMeVMX2+7CWzQ/MRexry0JC9L6UrLlVFjPL5zer8a1m8ONvu7p50UoXKcXS09veBKpMqNm6snZZS41qULUPQ1+x7raESI0moXLAM6VOZxGq7IbKEekv48tIr0u5k36T7AFk/m0n612rEkKGVbWcQko/Q88poo2UQo93nxREr77HlTb5paWJLq0LtGJq1n4qRx1a4zrIJlTmH9Dn1lhP7EtwHj45kO3ogIH6UlCGrbQYp6sqVK7Bq1SrT6HyUxfHGJLc1OhMR6ADuSJJkRaPz0Uy05Myyu+++G9/5zndw/PHHNzorhBBCCCGEEEIIIWQK0fhXzQEsXLgQu3btanQ2CCGEEEIIIYQQQsgUoyVnlr3vfe/DRz/6UTzrWc9CT09Po7NDHISs5FTkPF927rT3pbwpluwwj+XLs+0NG+wwma8YMswiZSXlX3KNDL1AnmtVI5meWmfDWnFUrmpWb7mgzNf27XbYvHnF4wud3u46byrLX2LQLPKmGPnQkvA//jHbPuIIOyxGn0DsPqCrPUd/DqDN8TAoW8bi3Zbz9POozv/IaBZnh+M5J6N0qIOqKFvi6CtzbuQqc7K8XGUcFCGAMbFisJXW6A7/OAMGPM0g24pJszxDfM9r1ud5s+QrtH66xoOzZmXbvqsMu2gbVm00z5sEsFd+77Z/18pDy7CNsfuwyVsF6Eu7vuIylGMzPmUwaNEZSGRCWupl2ate9arx7cceewyHHHIITj75ZMyZM8c6zhiDK6+8st7ZI4QQQgghhBBCCCEtTku9LLvlllvGt40x6OnpwV133VV1nDFT1j+QEEIIIYQQQgghhJRIS70se/DBBxudBUIIIYQQQgghhBAyhWmpl2VTFYPE25sjj3r7CIQs4VxkGegg/xYt5hfmBHv2dOVGUc+y0x5E0hfBYUVjXVqR/ErPGl08Mi8uH4fOzvx7IfflcRrrfsrlswH7wmMYRShklCVEH2UJc5evzlRa5r5Z8gH4e8XEKEdXFT/22Gy7bP9EAv+OVhGl7uq0Rcc73J751Oi+1OozdRwyz8o4cng0e+51iP7ekY0qX5mBAZEPR9uI7t1VALfn2uRdZFx9gK/HjzeOOijvUwcc9cB1oqcRoquaNVM/Xk9c193IMonxjIoRR4wy8I2jSP2U1ybHt/ffb8chm4ZuTkuX1o7PxZZh+3fHHGlYqhMQ+zr/7e1+6YXewxh9mOxipDUbAJx7bvo3SSadTNNDz7KpSUsOzdevX58b1tbWhv333x+zpFMjIYQQQgghhBBCCCEetOTLskWLFk3oS3booYfi7W9/e51yRAghhBBCCCGEEEKmAi35suzyyy/HRz7yEfT29uK8887D/PnzsXHjRnzve9/DE088gTe84Q342c9+hte//vWNzqoXCcz49Nkikq4Yy1E3csl1b+nZ4GB+JDJM65uEnmSBjmPRotrbamp06HLgEpcESyanp0LvGK4tcamS6Djy4VJmyPQWiFWri9zrIJnwqlV24A9+kG2vWGHH/5K/qh2Hg9Dp+a7z8s6ZiBBZQrCUQU7xB9CWI7eJJfPMo2w5Smj5x+jDXGXnG/+6dfb+3LnZ9rx5+efJ/qDr7DPswGuuGd/cAnt1aJneH/9on3baadn2/N/+JNuR2jvA1qCoeoYNG7Jt3cHJvlVQdh3UdHXK+O08xn62OZ/L7R32sd1ZJyNzVdVPyfNUHLLfGh7ND3t0Y3adfX12vmRX4VLpucrKV8pTxr13PUe976/L0sER3333ZduLF2fbRa7LJZ+S+z3i3vxhbY91XG9vtq3vb3uA/UARSXjQOEk/cC+8MNt+3vPssFe8wj8zk8lTgXh8xwsTkfcMKdJOfJ9DMZ6HvvkKLX/XebLM9WNIPnq6VH2X6c2bl8U/fbp93Le+lW3//vd22Oc/n5stK36X9cmOxUfXzC+g6pOjbnk6zzjLQJM3DnbFr+v/3Xdn21reunfIH9CMCWkKWvJl2b333osVK1bgGvEDAQDe+9734rzzzsPGjRtx7bXX4pWvfCW+8Y1vNCiXhBBCCCGEEEIImcpMpHprCfYFc7mCtKQX3Te+8Q289rWvrRn22te+Ft/85jcBAOeff349s0UIIYQQQgghhBBCWpyWfFm2fft2bN68uWbY5s2bMVSZn9vT01PzGEIIIYQQQgghhBBCatGSMsxnPvOZeNe73oUjjzwSxx9//Pj3q1atwrvf/W6cfvrpAIA/aoOWJsUgqduy07H8qEK8Dwp5GEhxvDYnkEi/HC2wlz5lMj6g2pPHI1+hHg8yW0V8LfK8A0L9HmLUMV8/Cb0vl77ukPcMAG64Idvef38ryDfP8rgOVcbOMhkdEXnsyD0uJE/B8bjMUHSY67yi6U6CGMvOu+KUFKn/QZ56k0gvD7mUurBSBGDbeum0pE+Z9EY6+tJL7UhEHzk4bHuWSYvAM8+0T5v/5z9kO7femm3r/tHVX/YLw0NtxJJDGXXEN84YHmUxPI90mOtZY3nRDG+xwjYOZfdbd63Sf0x2I9LfShPqvSRx+Rq5fCPL6Ju84xTjhbH+BVaQ7Fp1NxvqUybx9m8VfOpT9v6yZdm29gZy3e96thur81u92gracfXV49tderzWQLOjvHvTsXG9ddyW7oXj23N6HeNZxVhnl1c+XO1E+mQFe/YFph3DH9k3j/La5vQ6DnSMhdpEB9fba6frqma+7eTxx7Ptu+6yw6SXoG6Tst+dNs0Omz9vTByX77Mrq5n2NvZFjlVmzLDDHnss29Y20HL+iq7ue4/1HKIS0nS05Muyz3/+8zjzzDOxcuVKLFy4EAcccAA2bdqE9evX45BDDsFnP/tZABifYUYIIYQQQgghhBASFWPi/Lep0eze3egcNB0tKcM85JBDsHbtWnzhC1/AGWecgblz5+KMM87A5ZdfjrvvvhuHHHIIAODNb35zg3NKCCGEEEIIIYQQQlqJln0FOn36dFx00UW46KKLGp2VyTM2ls1bVTKW2FPkQ2UCLnlTiIRgQmQ5yLnLrtmCes17eZ5+2y9kRWMO+V3Z8lhX/D3dxdN2TX33vTeuPMnp/oB7KWl5q+R07vl6XfvnPz/bfvazc9N2ofMlkbe+qp14Si9dRF8i3ZUnFSZlpL4SOBeh7TdGHxBF5qMISbuMNi/bgpQ5AO7l3qWsbv58EbAuvx+Usk4AOOWUbFs3PQyLL1asyLalpguw+lYpDQWATtHtxpCIu+pPjOeLQxHl3YTKzqM+Z1T0b4/ttmW2Us6jH4/bt2fbM2dm27oM9KPTlzypfShFyjUkTmf9VNJLiZQcLej3f8ZKQvpSF1+8XB13883ZdvcpVtAYsudGGTYO3nX8l7/Mtj/0ISuo68c/znZOO80vvkCijFOVjm7O8KZsZ9QOsxqmGii1dWaNcaQ7a9taTunSAndIeavu5APGOKGSSd/2GtrOvZ/TerwvyssVf3fgs0weO3169r2+FbIarFljh8lHrn785l23thyR0tQidVweKx0X1q61j5PPRz3el8N4bTWxbl0lDy05PYeQFp1ZRgghhBBCCCGEEEJIGbTUzLLf/va3OOaYY3DIIYfAGJN7nDEG999/fx1zRgghhBBCCCGEkH0OepZNSVrqrvb09ABIV8N0vSwjhBBCCCGEEEIIISSElnpZtte4/4orrih03imvu66E3MRjxoz9M1OM/n470PMtdSwvssnGoXXsLh8Tb58XWQbaVEYa9OgweZ7yl5DLdUsfAR2F9gQIoWzfuSheLtL7St9EUSi6Osry0j44uVVXG+RIryS5XQC5XPeePXaYvPUuT6JQL5cYcTjsSNw+SrKQI6zLXe9+RJ6n/Zbk5ehl1ieblqbsNtrdnZ23dKl9rOv+yu7Nak9nn20fKExCdDU4svdREUmvHSgLVsTpus6uwfXW/rbehePb8joBuxxitC/Xeb730NVMQvMY2/NOpyW7TN19ynaj+9wnn8y2d+3Kj0PWwSqvJEe+XMf6xmH7nuWfF+oLl3deEQ+uvr7ifUcZHozO+E87Y3yzahzmGWfZHq2WJ6k00QOA5cvHN7WPbAzfP0novZFx7mjvscLae7N93S5Geg/IwkZ32JGKgZO8b1VjT9nQ9WBLmuqpxt3WXfvuxxpHll5ncnD2Abp8ZNn1HYAQfPsO+UjV/ay8Tfqnnrz3ZdRd3zhk2kcuzT0Mixfnx6HHNNJ7lZBWpKVelvlw44034i1veQt+97vfjX93650PNzBHE/O6V72q0VkghBBCCCGEEEIIIZiCL8ueeOIJ3HXXXY3OBiGEEEIIIYQQQqYyxkwNzzJSBe9qM9DRUb3GcC2qNY6TTjrKFGqRrw6VJ9d03x3DWZi+FCnfbJNzevX8XjnPuUDaclZ2z+iWbGfUjn+svQuTxTV9O4Z8J4Z0bseolD3YEghZIjotKRUYGrXLWy47LW/bvJNWWse1BUovJbNmZdt6Br5TxuiJ79LmheIU0tfh4azM9dR9eT362uRS4VEutARc5SWvZ+dOO+zPf862pbTBJb8oIq2KjauOyOXYXedpLWqHrAyisKSMHABuXTNnfPvUgQessJ9tODQLW7bFChvrzc7zLjtVQa2+FNvsE8WxvvWgjGocQ+YpqWdd0vlwDQMWL7bD5LBi48ba3+s4QtuXL65niE477/nYttWux7KDiCG31vjKTUOlurHz3HHfH+wvRMXQEseQtIrIYK1jZdpCNhqaj3ojr0WObwBbVrdASexk/zaqxpSdvdm+7Pqq6oToq6voXzC+We9xZAxy20YRawnX7yERZlmOFPjN4CsDl9sbNtjHSQchfWlvelN+PmSc8jxpPwIA8+bVPqdWnHnE6It0vvYO8ffbz+t0QpqOck0VCCGEEEIIIYQQQghpIfiyjBBCCCGEEEIIIYSQCi0lw3zggQcmPGaj1Bq0CE8OT8O9G9Kp2HomsVwNrU1rsLReq1GITLum8IoF2wAA69Zl2/I6AWD37mx79uwszio5hKcUVRednMo80p1Nb3fJLcqe3l6GfMQVv4yzqzP/OF/m9Np5XLGi9kqH+l50OWRXvjJV14KpZa906EvVeSLTLumZLi+Jb/mEyn1DVo/zXfUTsKUs+jqnTat9XiMtIXzLLri96ueX1G+KDrNN6e1OPUUUyn12IVt9q+uZIdIe7l1gBXUNDeqjx5F1d6TTXiGuI0ee4loRMdYqbXnoVVclejXPPIrI0FyVN699ucrH9SzT5PWLugy8pa+uJY9LbpiyTLbClqTNCejj9T3z7cN8rRQK1ZEAnPFp3bdVB/NXmixjDBLy/G1o2Xmi24x8Xun8y2N1MwmxeChjPOibnm8dCbYckX2Mfh7KeqyfZQ5LFl+Zti/O/IvO9dBhexnIy84V16byv37XkvHtzZvtKOcLeWUHMhnpnj35kmpN2X2TvG3SQkMSYcH25oaeZVOWlrqrT33qUyc8JkkSGGOs744/8fiyshSFaW0zJz6IEEIIIYQQQgghhJROS70s++pXvxp03opLJ28gXiZ/+OJDjc4CIYQQQgghhBBCCEGLvSx79atf3egsEEIIIYQQQgghhJApTEu9LKsna65dg7uuvQtt09pw8MqDsfLVK/HArQ/gjqvvwOMbHseLPv4izHtqKiTfcOcG/Po/fo09o3swrX0aTrzwRBx0zEHeaf3+98CFF6bbN95oh916a7Z96jJ/wffIqPD5GhLLrAvtviaGT4fL0mQw3/bG8i/TzJqVbXcE1lgtI8+zN/Bd+h0I0/nH9t8pkp738u6e8U1EPf0JQq1zQpcKj4JoLB3C1MSVlre30ATxxDxH4/aWs+OX7VBfW9A91WZMEXwdQ/zeXH2Fq4w377/E2p/fXnuZ+0cHba+SBb07sh3Vx7f7tsM1a8Y3ty5TnmXDWblu6zvUCpvTnX9tvvWpp7tcPyTJgv7J94NFzmtzVF7feiG9NDva7YfsYzu7xrddzzm5XahvlgfrE3OurWzPqSL9YEg+iuQ379hgzyZFkI+V6vdcaefF7/IWDb2foWWQF0doPKF+XZL+fnu/01k++entGM7CunL6+3oTu73qON3jLoFu6K4Bg8Sz7Mpoh+jOfDvbli71jn/hqLj32uAZfVk+hOeg/jkXq03l4fKk6xqVYy/bu3T69PSvckiaetCzbMrC1TBrsGf3Htxx9R34y3/5S5z3mfNw7033YtfQLsw+eDae/c5n48CnHWgd39nTiede+lyc/9nzcdolp+GmT97UoJwTQgghhBBCCCGEkMnAV6A12Ll1J7p6u9A5qxNb1qezsjq6OjCje0bN4/sOy976z144G3t278Ge3Xswbfq0mscTQgghhBBCCCGEkOaEL8tqkIwlgAHu/O6dWPXNVVj6nKUwbX7zRx/8xYPoO7Sv0Iuyk456Etf/670AgB2wZTinniKmum51RKLkETffnE3Vfc6yYX10YXzlidu322F7p98C1QoOqZjq67PD5s7Ntl0ySde0Yykj0DO2ZdoyftfM7npOcdbnWfKFoW32ia7ltNv9lpYOlRy2OaaOb9h4QJYNUcY6izGkGc7zHJojl0RKntc2nL/ktzc6Hzn50l/LpGNNu5fUUxqs8zswkKXtantaXSnpkbcjVJ/lIKRtuO6L1WYU82eqvvpaocsXup/eAfs5YV23KoNRuXq9qlxW/V+RLYTTp6v4UG9e9E5Cyq5IHx9bIqux7pVoiNuUzESiu5TOTj+pt3f+O7us/Vk5xxXBJctsl8+Q7vzniYxDt9fe3rA+Jq9MugKbeYgcUR8belxIHJrQvtpZx3PytWqVfdypJ4kb7Hhuhl5b6Bgk79giMtiQcp3TrfpxUSY6Pmkzsv/+yA2bPTtrX0sWx5dCuohhO+F7nrO/kf1bv93X+crHO0p4FrgIffZYiH62Tf0gyjuvqzOsD4tBVdmJcfGR7fdaYSPd6XhlGuePkBaFL8scHHv+sTjieUfgpn+9CXf/+G4c8dwjnMdvWb8Fv7ryV3jBB15QpxwSQgghhBBCCCGkIdCzbMpCz7IJ6JzVicNOPQyD9zvc6QEMDQ7hho/cgNMvOR09B+b/15kQQgghhBBCCCGENC98WZbD0OAQtj6yFQCw6d5N6D2oN/fYXUO7cP1l1+OEV52A/iP7c48jhBBCCCGEEEIIIc0N5wvm0DatDT/58E9gphnsf+D+OPHVJ+LBXz6IX3zxF9j5xE5cf9n1mHvoXJz1gbNw1w/vwrY/bcOd374Td377TgDAWR84CzN7Z/omNm4Es3GjHXRov/BJaZ9jhfVIDfqGDVbYc07KNO8jnQvGt8u+4fPm5YfN6bU18yOj2btavUy5tL+S/ifaL8flB+Py1unprp8fRBQ/A3lctz1z0duLwG1Mkxvk9FCRfjZ9B1hhy5QPXV58ed5sE6XtjcNLxOnTIT0kuiO0HJdnmWgAHariLvB8/16GX0UZS8hLtOdGHt3dwm9Ge37JYi0wBT7E7yq4rQ06ZibLY/vVzT733PFNmd+uAvdlYCDbHoPtAWPV/97s+aJL0RWWF18RyvBiipJ2jqFlLGe8EA88fc2+nmgyLd1MYihHZBzaW9FF2fdQjiWk3WR7++R9sUJxembpwVAJPox5yHyddJJ9zfJZ7+s9VoQYnmIxfLd84y/SaBYtyg974olsW9ZP5/Nc+9b6Gu+WQF6Zu4Y7Oos5QyHn7wIdJotgyWI7LNQvMza+noba9FH6gTUyj75jprHFtqfq3ltj/Ky/WxvKMKckvKs5dM3uwvmfO9/67pCTD8EhJx9SdexxLz0Ox730uHpljRBCCCGEEEIIIYSUBGWYhBBCCCGEEEIIIYRU2Cdmll33zusKn7PfrP2Czguhr6dvXCuzqCo0m6/cPlwVOM7YokNzw6xllNXcaEtGp5AzgXfutMNmz862Q2edyvO0LFLKrlyULROTlCERjCE9cMXhmtpt1QWhm2lTN9Q3/lAZoMyGnrrfFUFR4MpXiBQvmGoNcdToQ+W+odKVvGPLKMdQ+Yt3nBGw6pJuQ/0L9OFe+ain/Ms3H0X6KZd8MCQfZeAtOxH3tCOwDILvp+gYtwzZz+zdu7Pt+fP8rA5cinwtb5JImRhQPS7Yy549+efp5itlpL71M7QPk9fmsmIIfdZHkXuVLKPTacu60DG6Y3x746At2ZYK8dtus+NYsSLbdmU/9B7KPLq6/5D+bKK0Q+LU7Wvt2tzTMH9+ti3H1S6KWHHE7uN9+3+X1FuXj2yX0opGl5t0M9hvPzvsiCMmzpOm0LMmwMYkuL9XHW3sfjDGmMOVduhvGUKalX3iZdnDax5udBacvO6iixqdBUIIIYQQQgghhBTBGHqWTVH4upcQQgghhBBCCCGEkAp8WUYIIYQQQgghhBBCSAXOF2wCEphcTbf83tcLQp/nbfjgYOZMe983Gu+lkh3nSUL9JHypty+Zb9qh/gMWa9bY+w8LefKxx2bb0pwEQJvwM9OEXpvEZQXRSC+jPMr2ggj1lfKliJ+Eb9rScySGz1woMdpJGX2Ab3ze+S/gn9I2OpIfNrQt2xEPGJeXZQxfuyLnlN3uY/hG+sbvwumbJO6HozuuoqM9i7ND2OAU6Y+l1aX2LAsZTkjfIWDcrnXCfPmi72Fvb3G/nyJ1ztdPyJXHsj19XHX8zjuzsBMPyW72wj4VSXvWP5x6Sn78ZRBjvOkiRv5lu9H2sIsXZ9tdnX73XrdD1zC+w1E+ZfefIWWu+wA5FH3yyWz77rvt49aty7bnzbPDTj7ZK2kL57Nm61b74A0bsm19g5cvz7YDPQfLGLvkoo0p5bU6/FV980SPMjLV4MsyQgghhBBCCCGEkKLQs2zKwte/hBBCCCGEEEIIIYRU4CvQJsAgmfxUaTVnWy5z75LUuNCSixDKno5bhuwtNrGlAaESjrZTTskN2zaUH0dPgFy2SL7krPXQa4siUy0Z32srW4ZWRO7rW3eltCQ0jjIIKbvQ8q6rzPO+++x9KauQmh8AY909udG05XTysepcyP2OIlMtEL+MM1SS3CxSXad2y1MeJKWbADCnNz/tvChdKuEZM7yyUUWoXLZR/WcZcvoociwlITvxhKwP+M3qA8a3ly2zT+uI3I/Huod57beM574rj3JCyZxe/7Tz8tnebqellXN5x4b2g7GO9WHaNHt/9uxse9eu2t8DwGmnZdtHHGGH9XQXl0C7bF3QO8c+TzwrH3vc/k013zH+kfg64pQ+ZlUd95in9JKQfRXOLCOEEEIIIYQQQgghpAJnlhFCCCGEEEIIIYQUhZ5lUxbe1WZDz7X2XVnF0UBd045dK/jIrOhp07Nm1c7i5s1+x9XKiyRvGnLo1PFQeU09ZWNlSDN8JUZyMRwtoenujit/KVKmIZIC59T6wLTKlne4pufHSNu3/rsIlYbJMF235LWW3fYaKdX1LTu52hcA9IkV6XogOuilS73iA2zF5qJF9rHDw9mxUpFZld+NG1HzwFr7kSn7vjWy3YfQNrzD2t8y3DW+3d1ty4NGke13ifzHuhY5RpDPd9fvBb2KnYu8fjGGlLkMGaAvMfLvikP3s7L59vfbsuyOrVvGt49b3psbvy/1bif1lPnLtLR1haz/HaOO1QZ145DL23r+0HbJnMsmtIzl7wu54iVgl5185qmF2S2JZox3EoXqqkhQ92G+z4kQuayLeq+cHnoeV8ckrQ5rMCGEEEIIIYQQQgghFfiyjBBCCCGEEEIIIYSQCpRhEkIIIYQQQgghhBSFnmVTFt7VZsPXo0yjvc5kg3U0XhkkrRMA2xdBeyTkZVNr+WW2tCeatHGQPgVp/M3hFRMj7bI9d2L4FEjbIW1B1Da0bXx7pNP2O3F5TtWTsr2FYvga+S4776LeXj0hcbp8ER9/3D7P5V+U51cUmv96eqKFeisODNh5GhzMtjv7srbXUSD+xYvzw3q6PeOR5jEyU4DVYZThTRLbk6hIfxySdunPDNVZzOnMPMzG2russI52v7z41l09DijbO0nmP9R31GkIKYjhe+nCN/4Y9adjaIu1v3Cgd3x7/QY77YGBOTXTduXD2Zc6xqJj7bannjdysKgHn6FjZk/y7k3P0KPqyKwfXL/VHictHFqX7ejBbgAxfo+HeseGPkfluNJ1y+TvBF2Vdu/2i6OMMaD3c8PR38TwnC3SLkPicOLq8GU7p2iNTDFYowkhhBBCCCGEEEIIqcCXZYQQQgghhBBCCCGEVKAMswkYSwxGRtP3lq7p1c6ps3KaOmDPURb6yiJTqD2VnE5cU6XltGy5tDlgS0Jdkkzf6b56OrfMl++U5FAJXGj8MeLwnZY9p9cRv7hRWv4l4/BNu94ySXnztwzbMiVZz8qWkZY9BT9G2qEyUpdMo0P0HfMdsksdf570skg7aZQcILSv0P3sgrX/m+0sX5573kh3JqXyld4VwaqDDhlR2f1U2fXfVV+kAkU/r+R9W9CPXKL08VrKFiBtK9QuxIV3qAdph/WADxsklC2hz5MHxZAzhVLkOoPKR8ulhLZt4YDtsxD9enTaq1ePbw4vf/r4dlenfS07hrN8VI0bAwagoc8J7zLWY26Rx4EBW4a5bejI8e0ebIMPOh/d3WH3Ke/aijwrQ+qIqxw71O3MG4vOWW4ft/d3ElA9pu8SdSaGXYXGW5IfKEd0xZ+X/3pavAC2BQClljnQs2xKwtpOCCGEEEIIIYQQQkgFviwjhBBCCCGEEEIIIaQCX5YRQgghhBBCCCGEEFJhnxDXHn/i8Y3OgpOO6TPHLSWkhxKg7R/sd5uWN0237UORZxZWRGfuueK6pY2XngL6PG1lsW5dtn3ffXbYokXZ9uLFMr5QL4IGvhcWF679Znw9JHy9CYKXpJc3Q92oscVLcuOI4e0SxadG5lmZWYx1Z/4hvQ4PvRgeDKEeEqFpl+73E0CoT4dvnEWuM4ZXVUj80bzTVqzItmUfr/xyZJXvUI8C61jd0crOVTx8ivjXhNS70LYQmnZsbxdt26b9l3zT8u3jY1OofsqHuB5n+MbhSNsVRxm+OyFpyWP1OCbPI7CMa3Hh6yuoiZ4vVUfGThI+ZTKtVaus4y6/deX49gUX2FEuyK92FvX0NGzTbUG0Ex1fjzh0DLafmW8+QjytihDqC5qHK49l9HW+cZbtgVnGmCzv2soYC4Xkox5ptwTG0LNsirJP3NUVl66Y+KAGct/XHmp0FgghhBBCCCGEEEII9pGXZSGsuXYN7rr2LrRNa8PBKw/GylevxAO3PoA7rr4Dj294HC/6+Isw76np0m7D24Zxw8duwOY/bsaSM5bglNef0uDcE0IIIYQQQgghhJAQ+LKsBnt278EdV9+Bl17+UnR0deCq11yFY847BrMPno1nv/PZuOXfbrGOn9YxDSe8/ARseWgLtjy0pXB67dOr5ZfjYeIOOaey6rXsZYRiSn4R+YXvbFIZhz5HpjeqJJpSAaQZGKidD2cZaH2EODF0ZmyUKdWO6fku6ipvWnRo4bQmil9Kw7Zvz7ZnzrTP63FILLzLXy5p3Z0vc9DIKrNXCr2XvDbZTMSQMcaQh7qOk/UgRx1eMx8x2p6vnKRsiYtk82Z7f/bsbFtLuvLqcpuqnLden20ff7yd//k/vzk/M1Lv7sjjrFnZtr6H3pIdWRF0h+zZQZci5xCdgL4SKZuXWazKruxIBgftMCmD7e+3w3rniLTrVwdjyaCk7YLrFtqWDv5ph+TT9Rzqah8Z394xalsidHb6Ss/s47YNZfs93XWUWkaS9MaWx3k/T1astMI2fCvb1s9idOZ7goRI1KLIyeQgFbAzrfsA0QCGuhdYQQ5ls0U9ZdrKycJCtxPf+hMj/64+OKSPjC3Pnyj+GH18aByx688+I60kBHxZVpOdW3eiq7cLnbM6sWV9+vKro6sDM7pn1Dx+eud09B/Zjyf+9EQ9s0kIIYQQQgghhJBGQc+yKQvvag2SsQQwwJ3fvROrvrkKS5+zFKbNNDpbhBBCCCGEEEIIIaRkGrhEYPNz7PnH4pVffyWGNg3h7h/f3ejsEEIIIYQQQgghhJCS4cyyCeic1YnDTj0Mj619rNFZceMwAPP1K4rh4+CKo6szX+Pe12efF+RTtmGDHSaMFzq0CYMsLxHHmPCQicaNN2bb2vBn2bJs27EUuSTW8s1le2DIS5WX0oER+8BhcQ9dplaeFPFtkPny9Q4pKy8hcYTEV/ay85oucUt12mX7ksU4L4Zvkry2efP8y1/a4MjtBb12f7ZuXdf49llLH7DCLlvz4vHt9y79jp2A9PoTeb7rLvsw2V1qqx5vPNt2kXoQ21OyiMdMbhz9ticRxL621RyVflqO4ondTmJ528jrGXV04y5lSnTPrHV2/T/lJZkf529WZRnp0v6AIm3tmSV9NbWv4OM7s/O6uyPUR0Ve+YT6ktUb37Q//vH8stsxnD8uy2s2ZTznnG1IDCB2tOf7pnarDOflq8j9jdIPCnzbq07bF984iniKle1PGiN+37LSP1fWrcu2j1yUBW7e3mUdN/+J+7Idlyl0IL59db1/axBSNnxZlsPQ4BC2PrIVvQf1YtO9m9B7UG+js0QIIYQQQgghhJBmgZ5lUxbe1RzaprXhJx/+Ccw0g/0P3B8nvvpEPPjLB/GLL/4CO5/Yiesvux5zD52Lsz5wFgDgqtdehd07dmPP6B489KuHcNYHzsLshbMnSIUQQgghhBBCCCGENBP7xMuy697+vULHj47swZ5do+junpbub92OG973XwCA2fM6MXteZR71zp3jcffOmQHMyVbL/OXn/tc7vb6eA8a3y5AihSxJXCQ93+WiXfHP6Q2d/iy47z47cPfubPvJJ62gkWXHjW9v3Jh9f/01dhR/+ZfZ9vx5udkIZkdnJi8YVtIPV5lIQmV6vtP/faetu/LR3i7OG1JzzOUN0FpILWmaJHp6u9zv7c0/L7SMfSXQvuj4ZdGtWmUfe9pp2baUSPnWq4kIkY8UmZ5vS9ay42L94y62vLWMflY2B6tpjNqFcOaZYueKK6yw94oT/6vz7VbYC0c3jW/ffnv2/X772fmYUXsh6ImRN9Fx43zrTKicwzMbznsTen/HHHW3Y2hLtjOUZbKtry83jmCpaE58E6GloxJ5Pa7jfPMSRb6jCvk3b/2miO/luWm1jWb2AN3dHXac4kEx1mlLn+aJcYEsgw5HPXPW961b7C/EgymWfDY37TpL4fPS1vG5FNyNlJhKZJ51fltBBivR/VRo286jqg8b3lE7sW5bztos9zoUKe/WP1eWL8/KxFneQpN518YjraD5nYPZjpJhhox3tBxdysw1seX0hDQT+8TLsoevPK/Q8ese3Y6z33o91hQ8L5SLPv1QXdIhhBBCCCGEEEIIIW72iZdlRVm0YBbWXH1+o7NBCCGEEEIIIYSQZoWeZVMW3tUmwCAZn8IaKoHzJdb0WClfk32D7ifKnpo71p7JJdpOOskOvOWW3Ix1DG8b3x4czKZ6L11qRzFz5uTz6Frxsqs9k350Va3GWLt5xlixB0D+XO92W4LiK7PV5K2U1qXnn8vVQpcvt8NiyDBFZe1SQV29mV7C2b7Wrs22r7/ejkTWu5OenpuNMqTSC/qygn3hmfb9lHKhUBlFI2U/etW5vHSlVMC1omnZ1xJ7RTJnPHJ5LABLxBKVY++/LDe+s9X+juHMAuCoo7Lvu7DDOm6kXbec2lTl13PgGGMFMRe2PC7MbkDikgsWklvL8pEPVdVg2wIlrFKm/fDD2fYJJ+RnSeMrW7Wk9grZRmWeAGDJ1l+Pb4+tWOmfsRzGBhZa+20ve1m27eoDxHNP95d3/j6r/wceaIfJ1WGtcZFDsuTk6qvt/Ve+MtsWHVysVYC9+6rIkuoiWOfpm5Ozmm2opDpU5hx7tc2yKXItUlIcw5agKo6bbsq277kn277kLbnnueKvriJ+/fjIaHZcx6j9DERn/jMwL186filjPG55fv57Ou0LOHKpbG/Zj5TT1O8VXDuIPJxlt3Vrtt2bWcPEWiH+1lvTv1rWSUirQGExIYQQQgghhBBCCCEV+LKMEEIIIYQQQgghhJAKlGESQgghhBBCCCGEhEDPsimJSZKk0XnwwhiThOTVGIPkVxeVkKN4vO7T6/DvX/8RgOb1LGuWJZsLlc+6B7IdLZYXy7Fbwnwt0m+xji+G30ZoHK44MSi8FPYaGOxlxoxs+/nP944/NqHl4yLkvEJtzWVGFqHuxvZoCe3fYviBle1FU4ZnWV6cD6yz8yu9khYtsuPo6szPyx/WZvH092ffz+nN9+TSxC6fGM8533xoXF5kLkLKoAihZSA9eGRX0dlpHxej/3fmMc/AslZmBLE9nGL1HT5xlvGcqGf+XXGEthMXzTLGdBHax8cYW8T+LaAp+1nvG18Zz9GyaVSey/i9WMY4eC8rV67AqlWrTOETW4QVPT3JKu2d3YKYG264I0mSFc5jjGkD8CYArwOwCMBmAN8B8N4kSZ70SseYswBcCuAYALsA/A+AtydJ8qA67pkA/grAqZW0hgHcC+BzAL4V9HKoIJRhEkIIIYQQQgghhBAXnwTwCQB/APAPAL4L4GIA/115kebEGPNiANcCmAngbQD+BenLsJ8bY/TKbh8D8JcAbgbwVgAfATANwFUAvhjhWiaktabNEEIIIYQQQgghhJC6YYx5GtIXZN9PkuQ88f2DAD4D4AKkL7Lyzp8O4LMAHgbwjCRJhirf/wjAHQDeD0BKAt8B4NYkSfaIOD4N4CYArzXGfDpJkjVxrq42fFk2RQiVi8RYfrx0CYfncVVhUo8UuGZxqy0V7rq/ZUg4fM9rk1KbU06xj+s7IDtuWC3XLfVlUjobCykJau/IPSxGGbgIrktSaumSZJaMbz0rUj9D+hhXvnzDypAYhbJxY7b9/9n7//g+q/r+H39cr6avpuHVkJaEhhJqKLGUWjBggYqVISJDrA4QJipi3RR1Oqebbrg590udzs1f08/c9D1x8wcqKt+JypQpAkPQAh1WKFAh1lJSGkpoQxvSNNf3jySv8zzPV66Tc53XufKrj/vt1lvPlXOuc53r/LquXDmPx2lpMeXQUks5vTXBHkP7B82W91rxtkpsPZ9rbhWEtP101umOHdlxHR1hz6/Yz99Y87ivEtv33lzlcpZRFkTO6ZOUw1eK7Vv/RUsJJaFz3XRStAxwKu8z2DIiMP+i5XehY7Toa0tiXDv0eT6V9a+vVRoeMgcFWLf4PidC84sxfnt6TFj/ujX+njFLXJ/CSZJZZ90TyKsBJAA+oX7+OQAfBnAFHB/LAPwWgGUYlWxWe0uappuTJLkZwKuSJHlbmqYHx37+E51BmqYjSZJch9HVaGsAFPqxbGY8oQkhhBBCCCGEEELITOR0ACMAfiZ/mKbpIIDNY/GTnQ8AP50g7g4AzQBWepSjY+z/XR5p64IfywghhBBCCCGEEEIOX1qTJNkk/uldEpcB6EvT9JkJzn107Pxsqc7o+eNpJzofAI51FXDM1+zNAB4GcJsrbQwOi/WChBBCCCGEEEIIIWRC+ibZDbMJo7tXTsSgSDOUkWbcG2SiPAZVmhqSJGkC8G0ARwB4+bhcs0j4sWyGE8MrIMtXRJ8X6jcW6sUR4k0Q7HlUqWRey8VU+pLF8DEp2hMkT5tZaWX9q7aw0mlTJX3seW1fSsJfINQzy8ovgn9WcB0X4JUQw0vQ6fURYf7xJfbW6ZOlDUmn81/W7lfmZmtI2WOmyXXf0sBLeAKOVJozT3G1oS9F+8toZP13dNhxMZ5DrnNC5o5YfkjyvIaG+uetKJ5BjmdxqFdb0V5JLmI8p4seD66+FVL+GP1xOpkp5QDC/MaK6D8xno+xvdPy9M2iPQed91OwT1WMZ2zIO0iefraiM/ta4+cliVcRZi+Hj2fZfgBHZ8Q1ijSu8wFgQd7zkyRpBHA9gLUAXp+m6a3OkkaCMkxCCCGEEEIIIYQQksVOjEotJ/rYdSxGV6ZlrSobP3887UTnAxNINMWHsvMAvClN0y95l7hO+LGMEEIIIYQQQgghhGTxc4x+PzpD/nDsY1Y3gE0e5wPA8yeIWwdgL4AHVd4LMCq9PB/AVWma/nvuUtfBYbFecDYxk7YUjy0DrFnCOzxswmrpagz510zcDjxUpheav6+EJk+e9aYrgtgSgjxxUymBCJZozgJ8574i7ms659ko9Peb8NatdlxXlwm3ttpxWpM4R+ntNeH2djsutnRIE6NvxShjqFQ6NM8QplLiVQSyn+lheO45xZY5tmQ1VAIXKqUtmul8l4td5zO1HmOP36Lfl2NdL4ZNR9HEthsIvdac5vCRYX4NwJ8DeCcAKYN8E0a9xr48/oMkSY4BcCSA7WmajksrfwLgMQBvTJLk42maDoylfS6AcwB8QfqQjX0oux7AbwN4S5qmny/krhwcFq1KCCGEEEIIIYQQQvKTpukvkiT5DIC3J0nyLQDfA3ASgHdg9EPYV0TyvwfwegAvAnDz2PkHkyT5I4x+dLs1SZLPAWgG8C4AuwH8lbrklwFcAOAmAPuTJLlCxd+bpum98e6wFn4sI4QQQgghhBBCCCEu3gmgB8BVAF4GoA/APwN4f5qmky4tTNP0G0mSHADwPgD/iNGdMf8HwJ+laar9ysZ35jxv7J/mbwDwYxkhhBBCCCGEEEIImR7SND0E4J/G/rnSbQSwMSPuBgA3eFyrM3cBI8OPZTOAFElVM+7arjiG51TotuFFaPlLQtvt8niI4YcxnX5OU+274EuMviXx7ktb77N/0NdnwuvX110O57VnkJdCDE+92UDsuSOPJ0joNuhZ+NZ/IfON9HjUtLSYa687yzvLUu9OcyDyKDU21ib2YKb65kmfshjzses+Q31HfZ9zeeo4tu+ob9pYZcrKJ88cEPqOkJWnTjc4aMLyUdbZmZmdk6Hh7HK47HBizHWhnlO+HmnB74oB80jRc0/oOAz1kwt9BvrkV895vnkU/b4T4302xnkx5pjQ/GMQOg59n19zmsPHs+yw4zDpwYQQQgghhBBCCCGETA4/lhFCCCGEEEIIIYQQMgbXC84AEqR1L631lTG6yLN0NsY20DGW5vouGd682T7v2GNN2ra2sDL63ve9W0weO3bYcWvWmHBHh1d2Toretlrn71KGScqDe83BW95iR94qdh7etcu+XuvR1XBw+aVOZmDAjhPSs8HhshW1b58Ju/qIi9mw/Dx0+XyM/hRDehBDnhK69XvsLdddbO81/bNSsePkcbnBcW09YKU+0ZOprp8YVgEyziVzc9adJ0VLUUPzs86TcyJgzYtyzq3nepLpnEd8LR1cecg+8+lP23HykXL11SYcqsZxndffb8K6CZd5So2LILadx9atdtyqVSZOT2Gyvnzve9duu7yLFpmwS4Ee+3mVJ/+QdACwfYe53vIOv/N29maX0fXI2DtgzpN9FQCWDz9sDnTnlY0qLlBqbXUVM5PQ51CMfuyLKw9ZjwDQvPkWcyAtF9acEr1c+wfNtZv6d9qRom3yPOdmih0DIaHwYxkhhBBCCCGEEEJIXuhZNmeZ+cseCCGEEEIIIYQQQgiZIvgJdAYgd8PUhC5fjbHs2FeaVMQOR6G7kkke7jFxBw/acfPni3Ls2G4OxBJnAChpvVMAq1aZcFeXHReyu1WohEnXlVYkjqNv2bctnH9Q6ekxYd0YsoJUJt73Ktf8a82tvLbWcKxdWw02dXdbUY2N+evcJVMNlXiFjq8YO3DF2MEqVLoSYyc8FyGSi6Ildq4ySZm2lrhIVcvWHjuP++834Re+0JYaL2vPKL/WQQk5jEsaoyWOcndAKW9a0pKZRQ2x61hL4SWdnVO7C1/IGA2Vv8i2GUaTla6ptXHCc2JRuBRVDICRxiZkIcdJk2vDV9lxATQIaeob32gn/Zd/MWHfOd41znX/lON+SUu2nFjKpwI3sw1+zoXkoZHPSvlKoPMs+/7W4tBrLm2b2mdxjN1yfcul8/eVXso8Mp8Lk5zXDGO30Vyx63+kZYV3nuPEmjd8d9aeyp3rXe+K+vneLAeEfBYXUD/WvJjDpsFVP+P3lqZ5S0bIzIArywghhBBCCCGEEEIIGYMry8bofWI/3vmx2/Hz+3djwfx56DxmET7xx8/Hc6/4JlY9qwWDQ4ewqGk+3nbpc/D6l60EAFxzwwN4zz/fiWPbjsDg0DDefPFJeNerRw0Xb7nnMbzz47fj3m17cO3fvRiXvjj/X1UIIYQQQgghhBAyg6Fn2ZyErQogTVNc/Kc/wOtfthLXfvA8AMDmB/uw64kDOOHYZtzzn68EADz86F5c8mc/xMhIije8/EQAwKvOW4FPv2c9nnhqECde9jVceu4KHLe0guVLK7jmL8/BP3753mm7L0IIIYQQQgghhBCSD34sA/Dju3ZifkMJb7lkdfVn3Stb0bNzn5VuxbHN+Ng71+FPPnlH9WPZOEcd2YiujiPxWN9+HLe0gs5lo3tRl0rJpNdPkHr58+TxForhx+NLqG9SDL8iV51I/xktvbc8PbYKkxD9V4EInmXSx8TbbwNxtiKX6Dwqlezt2F3nSaz70ZlkmZC84Q12uuuvN+EtW+y49euzCyaRXnNr1thxsk31luUO/6WQPqjPaWioX+keezv5Iny3Qj31YnhCFTFvheQfw8fHN92SSrYfzymr7LgtW4xPme7+WQx1rbaO5RBy1b/2bFrmaXni+5xw4ao76efU2RmWRyixfflCkW2Y64/fch4P/au57Hi6E8qHsa/Zln7WiPNKg/vtOGHO2fTud5ufX3NNZhn3V462ov75oyb8nvfYp73rXZOWNhfar0i+u8jnrR5rrmdNbO9J1xh1nbd3wMQdOGBfb/Fiv7J4P+cayplxoePc95kR4xnofE6r/m+l9ByjsfyQrTqpNFfDeoiWI/yuEYMYv/N4o4yBS+J4pH2ZFSebTfoUAsAI7PlonJo6DvTFDSFP/xmft5LJfx0mZEZCzzIAW371JJ63KvuXZslpJ7Zi66/7a36+vXcAg0OHcErXksilI4QQQgghhBBCCCFTBVeW5UTv5vG1mx7Gj+96DA9s78fn3ns2GhewSgkhhBBCCCGEkDlPktCzbI7CVgXwnBWLcd2PHvZKe8+DfTips6V6PO5Z9tNf7MLL/vhGvPSs49B+VPbW5fWQa8v4HdvNgVjTm2fZcda280DYfOBcvu15b6FSzsZGlf+2B83BI4+YsNJrStmAXvIst3F34tI4OuJKGZKU0KXjrvNc7emzJTQAlFUmUgZR6hHj6+abrXT3ff/71bAt/gJuufp71fDZ67Pre9duU8albWqV6Lp1medZN67bQi6ht6RC9viOspRfXru3N7scWhas1+sHEEPGGCoTjiF7851HQuV8rvPkvFjGkInQY8FXjt6/x76A7HcyT63VElLmu9deZUW9ZsPeavjB3mYr7ns3mmvLrtTVZWfvmh9iSLx840KR1VgaHspM55JuuShayuxbX3msGixc809PjwlrPwNfiaacw1xWB0ojm3lvrmvp56Y8/sd/NOF/+Rc7nZDyN73whVbUe96z3JSj73Erriyk/DHk6KtW2W1tKVhF/roKrD6e49oxZOa+NFdMuaQNxGTEkOsXjXwW6LaJYaNhpStAYhoDeW0tC5ZSeI1335WDQT8DZSYu+xQxZ2W9YwP5ft/KGvdSljpaLnOsn0Pbe02b7thhReGEE0x40SITbmqMP86n086DkJkKZZgAzl27DM8cPITPXX9/9Wc/v+9x/LrX9izr2bkP7/7UHfjDy9boLPD8k5fidRc8G5+8dktNHCGEEEIIIYQQQgiZHXBlGYAkSfDtj5yPd378p/jwf2xGY7kBncdU8Il3nYVfPboXp77umxgcOoRFTfPxh5etqTH3H+fPrnwuTrvyW/jzjd3Y+ut+XPynP8ST+57Bd279Nf7qc3fhl9deNsV3RgghhBBCCCGEEELywI9lYyxrOwJf/9B5NT8/cMvvZ56zccOJ2LjBfDhb1nYEer//OgDA6auPxo4bXhu/oIQQQgghhBBCCJl+6Fk2Z2GrzgBSJFX9t8t3K5dnhNDzb4fx28hjcTTi8MfIogivjBjXq0knvVF++EMTVmYBzcKjZaQS6EXn8nVxeCZIQr1QQnC1y9at9rG0kDit246zyik73jnnWOlWfvWr5kDVh8tuTLJ0sfB/GFTeY646lv482ihi7doJTymk/l37hstKVluR+1KED1QUr6QYiDYsKU8lb6+wwHnWHs7mINiTS/gmudJqr5UfdBqfsvNX7bfi9sP4pOjp58J1xiNtqGJ2ctZb0MfoP6GeXCHelk5yvMxm5a/LETo/+/bB4PcAX1zzj/Yp88E1T0kPNAA4eNCElWdZFsE+i8JfDC95iR352c+a8KFD9nmXX24OZB6BuPqIHnvlBjP/jzRmv4PMFK8q19jIOgeA/SzWdRzwC2gRXpmhvq8uYvsdTulc6iiHzq+pceJ0AFAaFM8s+b7j8h8MmZeA4IYKmeOdzzlVjuUdJm17u10/1pxgeeuG3Uue569vHoTMZehZRgghhBBCCCGEEELIGPxYRgghhBBCCCGEEELIGJRhzgASpNUlraHygpplzatWVcPLG7KXy8aQ9/nmMeXSEgcjYuvt0p13mojjjrMTimXfwfXjkE7s3m3CCxfacXL3a9+68pWa6TiXUlQqau64w46T5W9ttcsl89y929T3mfIkAP0i3KqW1pcht9d2TFey0OoGXPU1UFlmDlYts+Lk5uOu+gmVT7nytPKQ0gNP2W5NHlO4ZH7KtxSX0kUp4YB7a/iQck21BDqzj6j7On+9kbE8uMOeb+SYXb9eXVDkY401JWUebjB5lgPfGuS96DyC5fTTRJ7nnCvO936seXx4yI6M7ZEyPJx97Jp/XBOaPO7q8i5KVv3kkRHJ51dDg0nXpCWfb3mLCd98sx3nWceF9M+MOldTHRob41o16H4m35mc54VKvEJldZ7liJ1nnrEcW+YW4xkbWj8x6lVPMYPD5vnSWJHPGse1dCaR58E89+kr17enyOw+Yb/3AujtM+HAcVK0BJeAnmVzGK4sI4QQQgghhBBCCCFkDH4sI4QQQgghhBBCCCFkDH4sI4QQQgghhBBCCCFkDIprZwApEi9Pg1xb0gf6S2Tm59C4F+Hj4OvxEOy7IP04rr66GtzTvtpK1yh8QZoa43s8tLX53WcMbzkXLm+ILVvMtbVnWXe3Cevd3nfsMOFFi0TExRdb6Vpf+tJqeG/XaVZc8+BecyBN3BwMDdt1Kj1rNNIORltgyHp2+UtknTMZ0nOmT1hS6PIuXWquvbQt7vbuQLgfXmyCfTRcPkqyYnUH9cR3DsuaE3U6V/46nSy+vM2WFnt+LwmfjJUd+624lRtMR3u4f4kV960bjT/MJQ3/VQ1v736Flc7XJqWmDcU8WxZlnEn9LCRtEWXM8pCsRT3bLS+4COVy+Y35nqfnatl5Az1dnH1mQDwnbrzRimsWE+qul/1eNTy80K7HZumlJn0QAeCNb6wGhz7771ZUlDp3kHXfoe8jLmS/3j9s149sNd2EscdznjEa2/s22HMtR55Z+ctn/4ED9nUXLzbhIvpc7Hfu/YPZfl36kX3gwMThpW2OC0Twhgr1/w1FvvM192+3I8Wcueug/Zz+75uMn+6VG/ZUw3tgp5PTru4jIb9DTOdzelZCz7I5C1eWEUIIIYQQQgghhBAyBj+WEUIIIYQQQgghhBAyBtcLzgASpNUlrXkkUi7Zz85ekzZ0R27nsl25nlisqXYtzc0lIy36O27GVvZLHEuXg2ViPT0mrPQ1pY4Ok39jE+olVL7gQkot/+7v7LiFC01YL63v7MzIsGFV5rVqhZZ+0kup+WzoWG5FaUVNFs6+K2W7su8D3vJQnX+lYtpKSg909rKO8xBbIuh7rVAKWdbvkl5KjaNow5JL1qnImp/zzIOu81pbTZycsqz+qCJr5hFx3KG6qv1sOM+k868Ci5r7zpAkhD4LYvSRUHlNqN1ASLm07NtXxhVartDx633fntKU4HlEjuUrrrCith88WA0v/2ZLNbz3vEuy89Pzxoc/XA26bsW3r+Z6Tn/pP6rhlR+4shrevNnOQ05bNdeW7x2OG3BJgeWx5yPPSZ6+GiKFj0XIHI+tW+3jbdtMeM0aO3/xopT1TgDY7wUNlWKf2TH6btMdP7KO//a2c6vh886z08oqcUvQ4+J6FoTaVbjyl+2LRvWLmRiXWn160UUyk5ZqsAVh+LZ9aD8oQsJKyHTCj2WEEEIIIYQQQgghIdCzbE7Cz72EEEIIIYQQQgghhIzBT6AzALkbZiwZ47JWKdMJk0CUBsWuanIZOQD84hcm/PKXm3Dg+vwilul6L5kv+i8BcltIjdBB+S5dziPH9clvMuSuW42N/tKJsqhW1/J2F95tKGQ4Jb2OP1MPmgPZR3LI9HyZP3/iSwFAb6+I67DrTrZNDNmAiyL63bTuqBS4O2ZsXHVgSS9lOt3HRcL+fjtK7rCmb9neUS9bTh9Fju7ANc5jyB9jlzHWtXyl0r4UMf/75h/jWsHyHaknFrtbA8DyT3xiwlNyvao4EhcuMTrnnGrwwfUPm+s2rrCSxXjHkXlUHFK/GOR515U7K+rHb5BMMgch72GhyDxcO6XPip0I1661Dt/8HBO2dkdH9q7kserYd4zKa9e6bdQ/HuSzuHnrZjtSaFFL6vetyppTquHZuOMrIbMdriwjhBBCCCGEEEIIIWQMriwjhBBCCCGEEEIIyUuS0LNsjsKVZYQQQgghhBBCCCGEjMFPoHOEGs15Q7kaDN52W27Hrn2frH2si90WPtR7KYbXTRS6u7PjHF4ovvft69MRY/v1UD8eVx5Dw9n35v1HGmnGJPvtJGUquh/I60m/iomOs5BdRO9If1q337VDieEBE9tnJFZ+IfmE+rb5jmVfv66SwzdPR8l+tm+fHdfQYPIsN8QZ91lM5/bxoZ5o9V5rouv5xvnm70Q8p0siPNKyJPd1J7p2jLoLqR/pYQUAPT1N1fBq5VmGjRtNWHqbKbyfgdLLFcBIY1NGykh0dHgliz2+YvnfZdVrnnnQ9R7g6ynmyt9FUB/X73XSv8vTKzNP/bvKaPlkVer3HPQt1140W3FLk8dNusajvcqhfcO0Z24Wrjlezh06/5YWeS2vSznR9Sjz3PWsM6y4pdI/tKvLios9z0bxKBsesn8gKnN/g932Bdj8EjKlcGUZIYQQQgghhBBCCCFjcGUZIYQQQgghhBBCSF7oWTZnYavOABKkdctcXFsBB0up5FJyvaxcLROul9Al/6Hywczz5N7RgLec1YmUBer8pSzEU5LpIlQmU/SW3C6iPFtk3am19dHlX4EFPnDAL53uBvJ41aqgS1vEkNLGIkQeF1oml6TDt05qpocGvzxiyFp889OSBznFTOd7XBGS56mUoGedM9m1iph3g9CdNwJZ96bHWm+vCa/oDLxnUf4m2PfS1WWkkCMNShbZuWLC7PK0kzVw1CCKLW/yJbSf+cqE88iJZXvrtl+CPSZPT/mvvrZr3soql7Z3kHmESvKlpFHPs2VZRi33dd1A1rh0nJNnrqtU4vZJ37rT9TMkpJeux5CrqlzuL672zapiKbvUuGwJfMe5lioODJjfJxYvduRZgLQ7ZH5wjgvdALLBVX2Pt9vIFD7uCIkJZZiEEEIIIYQQQgghhIzBj2WEEEIIIYQQQgghhIxBGSYhhBBCCCGEEEJIXuhZNmdhq84AUiRVnbi3t9YkZHpUODy5avD1WQicHHzvJ8RvI/Ta+4ft+miMMUKkZ9lDD9lxbW0mvGaNHSd8L3z9BmL4mIT2M19CfdWcSPMJZfol89c+JsPiWHtsxPAv6u834aeeys5DDiHtoyFvJ4YvUx4PpSn1VFL49gVZxzI8Ga2tJiy9x1zbnG/dah9LD7lygK8OkMP/xJHH9h0mD3lfANAktqTfP5i9lb2LYN/LyHmEIq/tsu7SbRjDgyrGHBmFKXyJ1/2qoyM7bZBHjrqXcoRnSC5/HkFW+V3PuTzPad/8Xbj6f5bvYp5njfR/rJ1TWiY8L9a7nETmKV+7APu56jvvhV67lGeseaadyne0UOS1ZL+arBxZfdnlS+a6tsvzzrdp8oyvzHtTF5N9MNQ7NsZ7nus8n59PWA5xr1m/N5WoZSOzFHZdQgghhBBCCCGEEELG4McyQgghhBBCCCGEEELGOCxkmOvf/L3pLoKTBUcY3Uws+UXmst08y8OVnM1CricOkChMRox6cF07K64QpYpc83/ccXac1Kco/V1WHdTKiEy62SCXzyNB8cXKQ0mL5fXk1u8AsGOHCWv5Y0vLxNISuX05ABw4YMK7dmXnr9tNSvhkN3C1YR7pSla9hkqAJsunSFwSCzlNbdpknyfrUktvstpU17+M0xJHifd8M7DXirMkO9u22Zn29k58cV3IllOyCyZwyo/k4FAJXbKi6ONXEaOfueRBvudJYkhcdP6+/SfPtUqyHUXYlb+ep8oNftI5VxlDpU8xpPAx8ostEdT41mPoOJHnxWiL0OfQVD4z9Fzt+1z1LaMeJz098lp2/QhHjWC7B8lUP5dD8sxjKRMiL479XNDXjiGTDH02aruQcu92c+DQtMeQOYc+awjoWTaHOSxa9bZ7fjPdRXBy1VVvnu4iEEIIIYQQQgghhBBQhkkIIYQQQgghhBBCSJXDYmXZbCZ0WW2MnSad+XkuNY2y06GDkF1iXOjbir6kXa7HB7z1d1o+KHFJBF27AOml3iZdnHYK6YNFo6WWEql4A2wJZWdndjopv9C7Mcq20Zudyjx9V25P5+6UvoTOU6Hzg6y7devsONmGWr0gZTRS/ajV5wcPmrAevlntVlMHUnqpB7MsiNb2yA7V1ZWZx/KGneIcVRhrG7gmu1yD+82BY7JwtY2cc/T8I7EVgQXsWOjAek5svc+OlANadxJxPKLqLiv/4HIFjhNXnK8UW6L7dIg0yZlO9V1nzbmsIDyvF9I2UXYeLyB/SdHvU7HiJPKdo2i1kpQPT0aMupTvAVpNf955Jiyn8TzE3klU2wFIRirN2XGBfTxkp9hYO75m9YWp/p1E9v++Pvvay9qz2/DBweXV8MrhIROhX0bF88olMdXP6SaI9wDxnJtq65w5AWWYcxL2bkIIIYQQQgghhBBCxuDHMkIIIYQQQgghhBBCxuDHMkIIIYQQQgghhBBCxqC4dgaQIPXShk+nX1ERevRgvzRBjPMK19qvWpUdJ/Tt2kNM+gocOGDCCxdmZuGUy+v6GM7wLNP+Di4vCGk/o6/d7Gc34/R4CPH0yZN/S0t221tWT8JvSXpYAbb3mPZEk8fafierrVx14CJ0LMT2QgklxjjXfa6ry5ynrcJke8h2kmMNAJ56yoR1//dGdiDd8PK4tdWOkyZprnRbtmRfW8w/JVkOnWeg14YrC3msL51FEX3O8mbThi2uQSo8YUryZnQ6kUee54nsT2WIg0i+JyF+V6Hzj3e76Y4g28MxSEP9STPTSpMpANi82YS1+aEcb462ieHBWOOpJ8avr29YjDGUpx/E9owrmjy+fxKXhZ6cql3WtJOVJYssX69gHBNyDD9kF759K/RaodNnlPHr6QepH+FZ6QD7HdOKVB3NNQfIY+0ZOoKJ/TjzjPnZ4KdbOElCz7I5ysx7ihFCCCGEEEIIIYQQMk3wYxkhhBBCCCGEEEIIIWNwveAMIEVSXe46U5eyhkozXITkUYRMrOg6H2koB11LrpKXch0tBbOkPDm2S8+SlOk67u83Ya2ScSmYfImx9D1UoiPR8srf/MaETz/dhE8+ObscWtkQInH0ldpMRox+HVvaEzp+Q9tUjodKxU6XJYlwKPG8+3hNeV1L80WcnCsAoNSeMQno/KSUTUsys6ScgD2gxWDeM2jLMuR9u6SoLqnrtCILrbXSctDqODn5ybCWcoobL+k8HJXQ0CDtAMqZ6VwSrKLHqG+ct62C7oOe+twYzwnv68q2Buw2DOzUVtvo/iP658ONq62ozow8QqWEmh07Ji5WR4edh6yuPP1Mpi17/sZRxHPCl9BnTVeXCTcN7lGxpvKyJG+TEV2GrMZhqMw2Br59N7ok3JF/EXOpHF9Njf6/U2W+16s29B4n/ap/6mdWRpliWOcQMhvhxzJCCCGEEEIIIYSQvNCzbM5CGSYhhBBCCCGEEEIIIWPwYxkhhBBCCCGEEEIIIWNwveAMIDk0jNLA3tED5YcRW0Ofh9h+S3ny980ztH6msi5d97l7twkfOmSfl2WT4rA78fYEAbJXC2vfob6+ia8FAAsWmHBzpdjtwItAlmXRIru8z372xOe4rG5Cvf1CvTiiePc48i8a1/gN6T++27ZrpGeZTtfR4ZeHNw6vGD22rS3eGxyeVnKQbt1qR65bZ67VucI+T0ws+wfNtTZtsrNw1c/SpSas7Zw87aiKRxZE3sxkyJt13Uxgx8h6NtTO8SbOZZnl6yMT6svkQp7n8rWTPm2A8jBzvP/IPKXPFmA3qX4OOQpiH69aZcL6Bjw7svf7iM5PXE93z5D3pDzPiazh4PLf3Dtg5yebbTb4yObx/fMdD7K+RhqXZF4v1HNQpovhFxXr3SH27yiheYTctz5HPgP1POU7xbv8heVjWnsCyvdubZm4XLyDRKnvwOdV7PdNQmYL/FhGCCGEEEIIIYQQkhd6ls1Z+JmYEEIIIYQQQgghhJAx+Al0JvDMM0Bv72hYrYmv2Ya+QPIs6S1aYheyDXroduN58qw3f33OwoUmfy1/zPoDhf65PM5TB1I2IJeL79tnp3vySRNeuNCOW7w4M/tpI3SpuN7K25LACWJJIWMsaY8tVyl6DLnqLnSb8qz8dB6ua7v+GDiVUkIt25DHUpqny1Q+eNAcaJ2eQxMn66Cnx/xcyzBPOMGE9ZiXj6j587MvLetYywxlXB4puTehckqHRDA2sn9qCZBEN6fvH7KnUkKjy+SSZYbk2d6eHec9h+l+IDPVOqgIqwWc8imRv7eMtADkuNRV0N5eyoyTVek7fvM8a3yfIb7PDJ1HyLMmD955ygZQg6YkK9kh5Z9qsuouz3uS73uGq51Crq1/7pJQuqb/rOf0+K9147iegfL9X/8uEB3HfBbal0p9j5s8Wo8OyoOQmQpXlhFCCCGEEEIIIYQQMgZXlhFCCCGEEEIIIYTkhZ5lcxauLCOEEEIIIYQQQgghZAx+Ap0JDA8bEwjtozGFnmUuYvg05fETcl273nKEnlfEdubyjxDaI0F6GhTtqeTKX/qU6e5Ybsj2kCh6+/eiySp/nr4Tu++GXnumbPkd6lPj8/OJ8nP5mEyl14ovBw7Yx95/pJSGY8r3Uh677k1moT1TnnrKhJ95xo7rENva+9p6OT3LCrAGs9qwoWzFucZJSRbM1RgxTLkEsf44HTIHxPAu1cT+Y3sUH0FXJn193tkUPbfuHzT5u4ocOhfJtpHWh/Pm+Z1Tc6wnj4xJIU95be/DsH7s649ZxPum9zh0DJS9g+XMZCHjIc+zMva7Sp5r+xLjfUd21TxTepbXn2ve075/v/mNCR9zjB3n+y7kXXeqw8h85H1Lv2IAaGtz5Kkf6oTMIWbGb1CEEEIIIYQQQgghhMwAuLKMEEIIIYQQQgghJAR6ls1J2KozgZERs/a1gO3pY8iIipA7hiy9LkISNZ1yQcdu4BZyabSUSujz9NJxKVloavS7z/nz7WMpvdQyzBjL5yVFtEWorCKkLDFkkjEkEL7XLSJ/1/Vc273nOS8LlywhNA9JrXywJMLm5y4lkq5/OWaffjq7XIsWmXB5YE92wvXr7WOpk3QgZSH6Pnt7TVjPU93dJqwfXyHvjVMpe53ser7nlHxvtHaC9jrNN/tQO4OZSogU3vs+daUGSmmz5pgYknMg+/nu7BNqAO/e11QNy3kEsN9BpOWCqzq00rs0uN9RGEPofO/b/4uQGsfAe45xyL5dvxm4ZKq+9zqdtg0h7VF0G4Yq613nHXGECWs7gyeeMOFTTw27touQNtVzhaSm/qV0vWN57msRMpOhDJMQQgghhBBCCCGEkDH4sYwQQgghhBBCCCGEkDEow5wJlEpmyXWgDNN3yX8eKYBrh6CQ3VmmctcowJYXuHbCk8Ta6TAkj0olW3ogVRV6+baUTWqJpoxrbPRrG5eUSu+6NFOkPVY5HFKnPO1bdH+dKRLWGNcOlb8UXQexZZ66a8ljOTai7NansFQ5mzfbkbt2mbAewKIwrvv0Lb9LSegrl3I95oqQCfs+92olNBPLbHPhqeeZqTvWuojxHI1N8A5xIR1ZUcT7jstmwUJGqoSLF0+cn0aOSy0lzyrT6PVE2DF5hEryQ5gp7yaAf78IlRf77hDqe63DFVnH+n3ZhRwP0qrEtUGkHkNHHZUdJ8eiy9IhtP9knZfnPWZv12nVcPMUW33MGJKEnmVzlMOkBxNCCCGEEEIIIYQQMjn8WEYIIYQQQgghhBBCyBj8WEYIIYQQQgghhBBCyBgU184EFiwAOjpGwxG8Mpxs2mQfd3ebPNS1XX5Csb1KYniu9ffbeSxrEduZK/H9TNli3OUVFsKhQ/ax3ArehbxP7X8R6r+UVceF1KnDr2UqPQRi+C1Ntb+Dr29YsBeQA5eXS5ZnYizPF9967u83YddY8PUW0teV5+3ebae99loT3rjRhJd9/vN2wvvvN+HLL3deTyK9UNrbJw7rdJ2ddpz0aPHFNSSL6Ge+be0qV3A5POefGH5XQ8P2edIzp7mSnb9Mt2+fnWdbW1BRvIntK+iNNhSS7bRjhx03/n42EQGemHn6uEwri+jsj+plouzZd/eIdyhdPS6vpEJMGgOQ5ZL3AtjlL2Kcy/rS+ZcDXkFCPKYmO88X1/MrxuvUTPWwcr0LucocYneon5uu9/8Ywyu2P6xGPl8OW+hZNmeZmTMWIYQQQgghhBBCCCHTwGH1sWzevHno7u6u/uvp6alJc8cdd+DMM89Ed3c3TjrpJPz1X/81vvCFL1TPKZfLOPnkk9Hd3Y2rr74aAPDxj38cjY2NeOqpp6r53HzzzTjyyCNx6qmnYtWqVXj3u9+NX/ziF9V8lixZguOPPx7d3d347g9+MFVVQAghhBBCCCGEEEIcHFbrBRcuXIjNmzc707z+9a/H17/+dTz3uc/FoUOH8MADD2D16tV4wxveAADo7OzEj3/8Y7S2tlbP+epXv4rTTz8d3/72t7FRaGVe+MIX4oYbbsCBAwdw6qmn4uKLL65ef+PGjdiwYQMuvfRSvPlNbwJEfpLoEiktJ3AsGfW9XpZcajJCpFWupdHLsFOd2eJdlpBrB6H2Yx9ubK6GXat35bJ4KQsD7OX/evm8TKubvjlj2be+T9e25EH1owvpWvPvu/48ZB18DmLIAF15un4eW7IQq/xZba/z8B2/vnGxtkuXyHHiGl9ye3eNlK8tXux12Rpc5y274d+q4aGvftWKkz2+1NtrxbnmBzm81qwxYT1XyL8raYlmxqPLSR6ldNHyEUnR+fsSOk50PWZNnzqPYSHfFH/zA2BL+3Xbx8B37pB9Js8Un1l3OhN5rLXGEZ4pMeZdZ/+MUEYpBVOvKlb9u2SFvvNxnnlcqmL1fCP7uMxDv+rLJnXlESKZBNwyfPkOVfTzvQjkM0TPKb72A+UGv3co3zk4xrtWPXlKZB3I+skzJF0yZ9c7uC+uOsiyYcnzPJwN/ZiQUA6rj2U+PP744zjmmGMAjK5EW716tTP9r371KwwMDOCjH/0oPvShD1kfy8ZZuHAhuru78eijjxZRZEIIIYQQQgghhEw19CybsxxWn4IPHDhQlUFefPHFE6Z517vehRNPPBEXX3wx/vVf/xWD2uVU8dWvfhWvfvWr8cIXvhAPPPAAHn/88Zo0Tz75JB566CGcffbZUe6DEEIIIYQQQgghhBTDYfWxbFyGuXnzZnz729+eMM373/9+bNq0Ceeffz6+8pWv4IILLnDmee211+Lyyy9HqVTCJZdcgm984xvVuFtvvRWnnHIK2tvbsWHDBrQXoWEghBBCCCGEEEIIIdE47NcLvuENb8A999yDZcuW4Xvf+x4A4IQTTsBb3/pWvOlNb0JbWxueeOIJHDWBWc29996Lhx56CC95yUsAAENDQ1ixYgXe9ra3ATCeZQ8++CDWr1+Piy++GN3d3TX5pEkJIw1lAOGeKU49+vCQOdD7E0uTAZfhlTqvlCXSz4Gvxl0Wa3AwezvwmnuLsBy21Ct80HT+rr2eswgsk/QP0Ysd5bGOk99na5pJJpZtrRKW9B7XAtmG3p4FLs8yVaex/YpCff9i+DHk8SGKQWwPCd8yuu4zj29PVv3r/GPUncurRw6HZ56x4+TQcNnm+fotaa+wK64w4ZGOq6rh8uWX2wlvusmEpfmY4vvft49fdbF5NpSHzY03d7RY6VpaTP0fOGDnEeolFSOPqfQzK5pQHx9XXKb/kpqDmysiYbtdDt/28C2/y5fMhSxHqKdbZoaaPH/YlBNGpTkzmasOQp41oXn4et4tWGCfJ+P2q/cwOUfq+VPOrUPCG8/lW6ibJmuedaGb8IgjTNjlu+XCNdak15OvB6Mz/61b7UhRkSX1oPB9xvrOkS7vQ9e9hd53SLo8hOQZ6okm+4HLI1THhTy/in5nDb32ZGkJmW0c9h/LvvCFL1jH3/3ud3HhhRciSRI89NBDmDdvHloyPhZ89atfxV//9V/jve99b/Vnxx9/PH79619b6VauXIn3vve9+MhHPoKvKmNmQgghhBBCCCGEzELoWTZn4edexX/+53/ixBNPRHd3N173utfhy1/+MubNmzdh2muvvbbG++ziiy/GtddeW5P2LW95C2655RY88sgjhZSbEEIIIYQQQgghhNTPYfUJdECvD5+AiT50SXp6eqrhiT58fexjH6uGzznnnGp44cKF1m6Y11xzTTWcIK0uYXUubdUaO4f80dpyHeVquKxPcX0Fd619l2uIN20y4VWr7HRy6XgB2xBb25lLKSFg7w8+U772qzaTpdLNm7UNd1+ffSy79b59dpyUQOgqGEJTNVzu2zbxxQC7H+Qgc0m47rfiRqdzuXao1CmGbCYkv8nK5Ztuti2RD13+r9PJ6eLgwezryfGlx5CUKi1enJ2H7/Sjh4ZU28hy9Pfbcq/l4lmzc3CJFdciwqee6iiY43ki55FQCVO95wAzR1oi5WSackN8uXio3NR6D5DPSsfz3JJkTjG+YznPHBAkz1X1I6+nn9NNgTYUM53587PjXK+D+jVMxsk5TMs8Fy40YV2lvjLArHN0/nqMxpYxBiM7l+u9S3XCkrjZIuZIV537vseUBvdnZ+jZqDPl/dC3HK6pQd9yqIw9Kw9vOfoEaUOYbe+RhOSBvZsQQgghhBBCCCGEkDFmyHIbQgghhBBCCCGEkFkEPcvmLFxZRgghhBBCCCGEEELIGPwEOgNIkWTqvS0NegRvjJGGsnVsadXz+AhIY4o77jBh7Qu3bp0JB5bfZatjFVF6lNVEBhKyZ7kDl9eK3HJaI33KtGeZL9qXoCxvR5ojqfuU/jx5qsCnT49mWp4wHTAFHiGzjDz1EcPPLIRQbwx9XlY+efJweX3IuUSGtVePnOpcNjLSm0f7Gkmk/5cuo0aWubli0vX1qbpxXFCWv709O3/5fNk/aOcvx30RfzgN3fI+pO/m8XLJYjrrII9fVxbac63Gw6xAQsdvqe9xE+HrtVoANZfOKIurn+nXJPns37rVjuvuzlvCOH5FrvcRV/XrqUjeq7D8rZmL5Bys58jlHfn7eEdH9hym8R1DLk+o0DnMQk7WuiNs3px93uWXm3Loig0g1OPUed+iAfYOZr/zyX6gveVC/Um9y+iJr6dk6Fwdo4x58vB+VyfkMIUjgRBCCCGEEEIIIYSQMbiyjBBCCCGEEEIIISQEepbNSdiqM5xQiZTcprks18Hr9e0xtj2XsocdO+w4uSY/wrX0smwLlX/IEuKa5dWNTd5pg/IXZXSpYKVKUjehTKflHZZkc9s2O7Kz04Tl8n91gYZKM7KQ0jONbCvftgjt7zG2xfZdMh9rabqvbCDGtWPkH0O+lkeW4L0lfaDctLFx4vLrcSiHie9W8K5xkYese9OKc8CM2WXY612woeFmkcxvLiqaGP3MlWeMuaI0PGT/wPWcc3UMERdljlQa/ZI4bli12it/LdGUtyalwHmIUec1D74pxGWXENI/XfOIU0Un+k8pcFDuHbDL29xg3hVlwXQZfaVtuvyyy0sZ5sGD2WU86ij7WJbZtxu4qmeqpd7eyHfpAwfsOPkgki+EgFUpoWMthm2DFafnOjGRDA/bMswYMv+iLTtC3tdCKeIZGDv/ostIyEyCvZsQQgghhBBCCCGEkDH4sYwQQgghhBBCCCGEkDEow5wBJEirS1oL2QVLrqePpaeRa+FdOiWH3sB3ubhMN9eW+vrKg+TqfNdmX6X+PfYPGvvFiY7dQh1SIVc/c+2YNV1tFbrbmlYNDAs5kks2I2VKDpWVpXQF7HbMkgSSfBSxC5ZL9pN1vbKaZn3ndV9pQ22ZzA/29NvnVETffXKffdYiUU4pm85T/hhM5VzhqmPf3VRrJHC+z1hHnG/fdb4HODqr77PGdWuuchWBlb+nJcJUSvLzIPNwjS+nDDNAtquvXfusmbhPassLeT2946V87un+k/WqqNkn5qaFC+04SyoKP7sNXUZfqZ+rre37jL/TobXj/emn25Gy0I6XwFA5ZchzSKf1nSOXwJaxj4gd0V3llxJxbTkiZb26/4QouPM8J7LSzdTd3Kf63Xym1kN0koSeZXMU/oZGCCGEEEIIIYQQQsgY/FhGCCGEEEIIIYQQQsgYXC9ICCGEEEIIIYQQkhfKMOcsbNUZTrC2XHofaHF/DOSEsG9fdrpZRhFeJb5tGOVaLUvsH4hjZ/5Oo5RsivCIysojhieIZv+gSau7sfS9cHni+FoUae+f2f5MjdEeMbYsDz0vq2+5fPimGu97FYZ4Bw/ac8CmTSasrW4WLQor12zDNY+E+F3VPCcCB3NWufKMC6evlziW+ecZQ/LWiva6yeOVlJXOlYf0PNKeXKFk1aWv/11oXK55UJhtDQyUraiWlon9onbttsvR1uaVfY1vp3zudXRk5yFfU2t88mSe2lM10MfNysPzPcY1zGN75ZVaWx0p/a8tq0v2+Tx9MISaPBrKEydU167pQBbZeTzzjAkfOqQuLdqtqTHuOMyDdx/RfVw830daj85KZh3L+wwuRyTmmtc0OfxgDyaEEEIIIYQQQgghZAx+LCOEEEIIIYQQQgghZIxZLgQ6vMizPNZazu3Y1j54Wb/M5/jjTTiH1mymbCc8leVwXkvvdS6p0SX45e8tY/FdIh9I0XJNX1wr/PV241lVru9FyvZcMg3Hbu8WWjXtu+15aNvHwHceydMPfPMM3fI+i6mux5DxJeXDANDU21sNL+2yO8wTQmal+6CvejCGBCVE7qjTxpiLpBQPAMoYMgeOeVAS+iz2zaeIPuhbjtBr+0rxXBQx1krDpn0bHO1b9DiPPU/lQgz0JY371bWbRNiUY/58OwtZ5sZGNf80mDreP5xdx/JZtnu3HbessteUo6FZnSkmKs9Jy7fPTQUx2j5UIj4b7B6sMosx6npf0+9Fsr1d58WQUPo+o0KvtXfQHkPNPT3mQMgwNU39O82BslahFHIKoGfZnIWjhxBCCCGEEEIIIYSQMfixjBBCCCGEEEIIIYSQMaZkvWCSJEcBeA2AVQAOALgFwHfSNE2n4vqEEEIIIYQQQgghhPhQ18eyJEmOBvDpscNvpmn6tQnSvADAfwFoET9+F4DbkyTZkKbpU/WUYS6QIvHSk7u2MtaUBoT/Q0X7PxjEjsRoaQnbRhldXZn5qwvYcQHa7ljeVyFbeYfm4U0ErXuePjJdnlaaUI8rX6QV3L59dtzixSbs7XGSY+t6WX7tleSZvVV+13bg00nRvn8h/mWAXZeu4RXaP0P8tPKUPyuttjfcd9TqanjpsO1JtLpdmOCpTj7S0IS8FOG3FDofz5R+l3VOjOvqa+eJm0rk+NJzmPRhbK74z/dZ9xPqr2rPB/71GNtXykVon/YtY8nxoJPXXtKS4+Kijl1vMTL/hQvt8g41mvfUmjwck3cMX8oYhOYZ4uWYx98zpO8W4S3qWyaX92GDw7rONf9kEasfhOTjOqcZe+0fiBuyz1P16PI99iS2R+hhBT3L5iz1vlmdD+BSAK8E8EsdmSRJBcA3ACwGkKh/ZwH4cp3XJ4QQQgghhBBCCCEkGvV+LHvJ2P+PpGm6ZYL4qwC0A0gBPAzg6rF/OzH6weylSZKcU2cZCCGEEEIIIYQQQgiJQr3rBVdj9EPYnRnxrxn7fx+A56dpuhsAkiS5AcC9GP1g9moAN9dZjllNgrS63DWa7M9TUyaT6fz3D2aXRW4dLmVoNcuApQxT09paDRYtryl9/7v2D04+2Vy7Y3nUa9Vce1DIotQS3RG5lb1jW/sYEo69A3YdNw8+bg5kR9B7cjsoWvbjuyTcd+v0hQuRGefK0+rXjpNcZfS9VqUyfVKqGLJdnYfV/z0lQADcEu4MbrrJPhZTDOTu6wBw3nkmLKVhWi47LI51G5YbMvqIptHIHfPM8Vlp9RCV5do/qKSV4tpNw7a8I0uu72wL1YZS1qXnGJm0PGi0eCWtk5E3VICMoTQ8JLK359kRmOPYktuacujzPHXCoWPPV8YYQ4Ys0cNcDo3plNKGSrFjl8N5zy7tWUZ+U42r/+jiZj2bXa8ZoVLCGJLkUJlz6BgNuVYMKb+cE2soYA72rR+X1NIX7/c6xXSOKQt9A/JFxpHM9TuVi5A+nsc+ZcbUKyGB1Dsjto39/ysdkSTJEgCnYvRj2rXjH8oAIE3T+5Ik+TGAFwM4s84yEEIIIYQQQgghhEw99Cybk9T7uXf8Y9m+CeKej9GVYwDwvQni/2/s/2KX9RBCCCGEEEIIIYQQ4km9H8vGP4YtnCDu+WP/pwBunSC+b+x/f80XIYQQQgghhBBCCCEFUu96wScALANwwgRxLx77//40TZ+cIH78A5tDOH/4EW3bcOHLYnkTqCWiTQ5rM18rsoMHzbWXtqkMM7T2kxFD427V5eLFdqSnp1sUP5UB49VTc91K/T5lsq603Ym8tG7D3oGjq+GVjdtNfsK7CJjM2yK7/BKXNU8MLyBXf5HX82x2dyaBuHwcfD1fZiU7dpiwvrnOzuzzAuq8vd0+dlmdZfWFPJeVvo4NDU0ibKcLGcsunlRPVDm99fbacXIOOKXSZ8XtbV1RDTv/aiUrS/suOvpun7jcskYxCTgGYh7PoBAfqFKEsZzHT2hPv0m7Y4f2UzTz5+qWnSaifZkzzxDyeMzEvpZ8z6ipO0/fthg+ca7+EsMvNoofkhywgPXgLokJLs84CWn70PoIjct6HgL2u4ueOnzbZts2E+7qCvPN8/WE1d045L0jlu9TZp+fYrlY0X6QWfnliYvheZeV32RYdaA7TEeHV7n0u3tmWTx9EZ15OOJ0GcentEOHvC5DyIyj3tnyXgDHArggSZLGNE0HASBJki4AZ2B0VdktGeeOyy931VkGQgghhBBCCCGEkKklSehZNkep99P5f4393wrga0mSnJokyVkAroWRaH4r49y1GP2Yti0jnhBCCCGEEEIIIYSQKaXeT6BfBHA1RleJbRj7N04K4O40Tf9Hn5QkSSeA54yl+ZnPhUqlEpIkmTyhorGxEatXr8593lTS1NRU95Jf15LtIRipR3nz3faJUk+plv6WhUSqrJcFW/s7i58P2+lGWpZkljkEl7zAueR5zRr7WC9DrrMsoUucXRJZX+S1y4O2hGNJv9BB1UhATXDXPLPPRhviIKvBpbQpWh5k1Q/sthmBn4zU2V8c7eaSyEq5XEW0hUs66CrXiJLE+sqPCkdoaHa2nmJFLZNl6bMlghaVbJGgvJ9T1mQmw/IO+zhL9qPrp6FBxA3ut+LKQjI11GJkzXJaBYBKxeRR1s4Dov/4SlW0nCFrrI1e24R3HbHCilsspgRnvxBzh2sO1rL+poqon0bzLMgz1fk+G13phqVE1v/SmeQZQ0v6HjTh73zDjpw/vxp8+NI/rYZXqH7mK1vV5Sp6rEeRTDmk/CH555EgxrhuDLmWhW5rMaCHhrOlfkXbGfhK1ELr35WuaVi+19jPgqyy6PxWVqQ+Xen1Hef5tm8z9oojPctkz59Z144hJXSRR8ZbNDPlXcVXph1jjtE467+xacJ0LlyWBcPqvTfrmajzkFJm13tGh3rXGp+rAn6FJ2RGUNd7Y5qmg0mSbADwfQBqeGAHgNdknPo6Ef6Rz7VGRkaQpmnuMiZJgvvuuy/3eVPJVVe9ebqLQAghhBBCCCGEEEIQ4Y+saZr+MkmSkwD8LoBTAcwD8H8AvpKm6UDGaasB/ASj5v5ZnmaEEEIIIYQQQgghMxN6ls1ZorRqmqZPA/jC2D+f9K+Ocd25iJb5uOQvznzEUt3eXnPe8p/+1E74xS+a8B/9kR0nt5bTMqgsWZRam1vqebgavr3XlgDppbpZl5ZZNjXmWO7s2oVS7o7muduaN3qylHVVwE5s1rJsfZ9yN1K9HaZI65RjiTLL3f8AYFhkqbuEvJxsw+AdKR1470LmkPzo6sncKdZTdgnYXVDvUijrRCoQu7tVpjIThxy0pqdm6DnzSAh8ZQnOndiEBHqZnt/g6Ayio+zabfJsUzph2W655gdPfCXWUl7Z25vdz7q67LhygIRDbzIsu6SOW9Jo6nxEyDnyECqFLIlJwTXzxd4BzbUrsB4WrjEq5zS902omWoO7eXM1uP1977Oiln/gAxOWw7XjqGZKpUqBcnRJnh0jfftdDKlfKCG7STpRD0g5ZmUNlwb2WulkZw19V3QRsvMsAO9+4czf8dKQ9eypmYu8B3AgnjsGx6Do3XGLwLf/FH1voW0RsivzVMtZfa/na4Wi85PPQ/2+7Brm4+9lpamtDkKiwa5LCCGEEEIIIYQQQsgY/FhGCCGEEEIIIYQQQsgYUcW1SZIsB/AyAGsxuqneEQA+m6bpN1S68W2xnhmTcBJCCCGEEEIIIYTMHuhZNmeJ0qpJkjQD+BRGd7+cN/5jACmA705wyg8BdAN4EMBJMcpAFMI3Zfl3vmp+/uxn2+ne8hYTvvhiKyrE36bk8Ou6+WY7at06E9anSV8ZX48rua06AJQdHhJZE1qebcO9vRXEtXb22vnJIi5pCfNdcXpyVcxxTdsIyg31ezxYnjuwrXuKfn74ltFlueOK8/UOdHkl7dhhx0nPB6edirj2/mG7ffftM+Gli7Qf2MTk8fOIsZW9hasjKDOp7cL3S3pl6H4mtzPv7LTLkWHbBiCH142sL2XMl+VVsrrX3uT5B8PnVsNHHWWXo63N0wvIk9p7Nv0nNH953t4BPYeZYz2PePscFYzrxcc/0AABAABJREFUGSK7pPZd9PZXlINZe5YdcUQ1uPxLX7LjTj+9Glx6pPnxiMNbMdSPJ8SbKs95ocTw9QnJI3Q+i+GPlqeOM+fgnh47ofCG9PWXdOHKw10/2QS3tRikvm2T51pRvPEK8OzzvnYARYzz6OXXL1TSVFK/CHR2mnAEY1z9+4TvO2yM+Sx07PnmofHNUz4fdRXLx572/mxpGc1/ZPpeAQipi7pHdZIk7QDuAvA6jH58S8b+ufj4WJqVSZKsrbcMhBBCCCGEEEIIIYTEIIZn2bcAnIDRj18/A/BaAGucZwDXA3hmLPzSCGUghBBCCCGEEEIIIaRu6hJHJUnySgDrMCq3/CqAK9M0HRmLyzwvTdOBJEl+BmA9gOfXU4a5Roj0EZhgSbXUfO3aZcKnnmqfeMUVJo9A6YerHGg9uhr88/W3ZJ53C862jg8cMGEtjclCr8quCAmiq6MHSSByIM/TS5eD5IlqabpVKpWhXEreoPpWyL3p8kv1UV9fdjGLlmH63ourHPreZD56m+ys8xwqZEslANj9taPDhEuDSk4pKrKv3x6jslxL2/ykB3nkF9G3Pnc1gIpbsMCEpbRQt4Wsx4cesuOEyi2YICmh0kKev+nfquE7j7zKilu0yISbVBPK8SvvW8+JoRKaPf0mfymd0LJgeTtOubLCu1y+A8zzWg0N/hIamb1TDi2oHUMZGQLAScJpQjdca2s1uNQxh3lL54aH7B+IxpLvFr7PvBpCJ3I5SHVbi3cEF6HzVBGyqKz8Y7wveKPmGNc8FSK9dJVfN6Gv6s2Vv29cDIpum9D8Q+9zKuXuReRvlb/vcROh9XwS1zNjiok97n37f55rhY49iZz+9e9bknnz7OPx8xyfBeYG9Cybs9Q7ql819n8fgDeNfyjz5F6MrkZbVWcZCCGEEEIIIYQQQgiJQr0fy87A6Kqy/0rT9MBkiRW7x/5vq7MMhBBCCCGEEEIIIYREod6PZePr5x8OOHdcL5Ct/SOEEEIIIYQQQgghZAqpV1x7EMCCwHzGP7T111mGupg3bx5OPvnk6vH111+PTmUutHHjRvzkJz/BkUeO7u3e1NSE22+/Hddccw1+7/d+D5s3b8Ypp5wCAFizZg1uuOEGdHZ2orOzE4vGDGkOHTqESy65BH/5l3+JBdKMB0CC1GjGlQ5/1z7jM7K0zX8rYGsf3w0bTFiaIwGWvjp8q/CRCcOakfW2L5n0JuhQ+vennzbhQ4dMuFKxyyG9MpZgjxU3hCWZZQkhhreTshlx+v/s2m3yXPq043u0zFRdQMrn82wl7UvT8N5qePmg8pcQN7e9YbUph/bV8dT4x+iDLrTPkRxC0p9BDV80NWb7Pbi22rbaRvqUyQsDlhlcx5pTrKjSju3iyB7bIe0b2kdCPH0my3/x4ol/rrtLV5cJh9qYhPaZTC+R7tNUOsOZfT+w4rb3nV8Nt7fb9SGtJ1cMP1gN7+9YaaVrbAwby3LOXLLttmp4T/srrHSyf1YqYb6aTmTDqQYO8eOJ5cNn5SMbY9s2O6F8rmpzQoljroviO6QfKBkPmOA6CC2HnEBzmN7FaG9fptpnKuva3vk5DPbkuwNgz6XlhvrnaqdnmefzPNg3zxNX+fM8h6bLL20meY+FeBbnmYOtd0JtfisRHo81OIzzQsa27zhxEasP+hLqnebruyirWNtvSp8y/e522HiWAfQsm6PU26q7AFQAPDvg3LPG/v9NnWWoi4ULF2Lz5s2TpvvoRz+KSy+9tObnHR0d+OAHP4ivfe1rE5734x//GK2trRgYGMBVV12Fq666Cl/84hfrLTYhhBBCCCGEEEIIKYB6P2XfjlGT/guSJPGWUyZJciqM31n2FomzgA0bNuCXv/wlHnjgAWe6SqWCz372s7j++uuxZ88eZ1pCCCGEEEIIIYQQMj3Uu7LsWwCuBHAUgL8C8BeTnZAkSQuA/xA/urbOMtTFgQMH0N3dDQA4/vjj8e1vf3vCdO95z3vwgQ98AADwnOc8B1/+8pcBAKVSCX/6p3+KD33oQ5OuGGtubsbxxx+Phx56CGeeeebEiZQEa6mUtrV1WnHWMl4t3ZJSECERcW0ZfOfP7bg2sfWCVm9mLVHOs+X3iNgyfkVlvx15ww0mLJe1rrI3T93bYeR9ZbUuWJZx/6BdLpmllN/lWZoeYzl9uUfIedTy86XyWK5/1jIfx7LfkGXZeZaOW+XS5RDbfj+2z/y4UrG/q0vlaK5rh6D3uxZ6kpLWyAo7RakcqkkWiMyzLA8cWsLSpp/ZP3BJvrLyKECiFiq/cFGGkGb0m3brG7Tl1csGjDzR0mRiMulQcRLTmn4sZJmlHltSvbzXtOnOhjOsOEuG2dhvDtR8bJW3d6d1PNS6rBqumSrknCkkLg5Fi90uAEYasv9OltXeueYRBzHmB+d5ctW5fCb1Ksn5RReZMnXZElnvawnyPEctXA0XgShyNSXDlP11pH2ZTu11bVc5fPtIqIQp5Fqu9vVtez3ufNWtrvxd5ZD5hyqNYtRPKEXLPmNI7AqZwyLn59t/nPkP7LV/IOdT2bm07FJr/zzLKJHvAXmmy6Hh7HeJZlGs0Dlevpp63uakeRaJLuP995vwwoV23Hg9p2mxZSKkKOr6WJam6X8lSXI3gNMAXJ0kyXwAf5Om6dMTpU+S5OUAPgbgBIyuKvthmqY/myjtVFGvDBMAXvOa1+CDH/wgHnnkkUnzSTlbEEIIIYQQQgghs58koWfZHCXGZ+jLATyBUTnmnwDYlSTJTSL+lUmSXJ8kyS4A1wNYMfbzXQDeEOH60XnDG96A7u5uXHjhhV7pGxoa8Cd/8if4yEc+4ky3b98+9PT0YOXK7L88E0IIIYQQQgghhJDpo+5PoGmabkuS5MUAvoFRo/8mAC/C6MoxAFgnko/vhbENwCvSNH2s3usXwRe+8IXc52zcuBH/8A//gH379k0YPzAwgD/4gz/ARRddhMVZ27wRQgghhBBCCCGEkGklynrBNE3vHTPtfxuAtwLozEjaC+DTAD6VpulARpoZifQsA4Cf/cxWj5bLZbzjHe/AH/3RH1k/f9GLXoQ0TTEyMoKLL74Yf/mXf1mTd4qkqjUv6SWcoQZJ2mRsDK2nl1uMz59vp7V9vVRG0iNt61aT/5j/2zgjjU2Z17bQ5gEZ5df14btluf6GeejQxFm6fIx0+TO9RPIs2JQ3oOtAbg0vDQL0lvGeBge+PhS5tpwWviklx7beZ8L4NO2pLi51lyMX0lDFZd6iPcukV4aqxyXicEmDMakYqTRnZm9tgQ5YfVJ649XgGmwOP7OhFuP7Vy7Y10UTwwtITiM1U11GndT4jPRnt7e8dl+ffe2sKSaW51pmng7PQT2UZZ3cJ/zMVA42PT3W4XBLtmeZNX5FhdRMpQ3Z5i7Sf2ao0R4bWVNyje+NaFTpDQOEvaTE8NUBANwkFsl/6Usm/MY32umUl6ZvuaaSEF+saMiOoOdnMSfH9o6KlWeMcvimDfW7kui/x8rqD/V0k16FZdjPoRE0i7Cn51oBY2EqPdGmuvzR/Vs9yxHtenLca49liXzo6QdioCejfG1yvSrKcfJwj10Ht91mwsKiEkCgJ526+IED5lnseqUP7SOxPfX0OYsWmTCViGSuEa1Lp2m6H8BHAXw0SZLjATwXo8b/DRiVaW5N03RLrOvFYkD/8jwB11xzzYQ/37hxIzZu3Fg9fsc73oF3vOMd1eMe9UsLIYQQQgghhBBC5gj0LJuzFNKqaZo+AmByt3tCCCGEEEIIIYQQQmYQ/AQ6A0hGDqE0uH/0wCFlc+KQa7qW2Erp5Zo1dpxcJexchu27Z3mOcpXWrcuMkzg7sFg1+H//Z8uDzm+92xw0dopwi5UuxlJ75/LnjuUmLksXliN/ja/0xpXOdS25vH1w2K7jxnZz3NRgJBx5dsX2lVKUXDIfq5Bqz2+53t21xF+kyyVJEGWpkVjLcso4PZZludS9lYf3izyyyy9PK0ea9WNIM/r6THhJi0M2IOp/yeB+K12mnlKhq18qcKWyeaqlcnIOaN72oBV3Spe5t137jKRd34vVFtu2WXGDq86qhvXQaG4UsmGH9kPWiVbQLIHJ1OqPgNUnp7Jeg+UpWkYtbQXe/nYTPu88O52jD8rF6wcO2HFtbZmnZZexAHlNdHQHlXOY6y/ven4W5/k+ozRZaadLnjnZtV3Padd9u6rV916d9SovECiHC23DmYIss0vC50J3cYms1hh9HJhayabzWvJhrxU9cv70nCtC+4+rnWSxduyw4+TjsbniNwfrMma+swJYumi/SNeELHwtL1wEyUYniVu1avI+mCSZSQiZ0cy+pxUhhBBCCCGEEEIIIQXBlWWEEEIIIYQQQggheaFn2ZylrlZNkuThyVNNSpqm6QkR8pm1HMI87B9bdptncXvIrm033GAfn3OOCbtUYjXSALkmuatr4pMmKWPIkvzQXXqk5AoA7m49rRo+rcHs5qbXyA83mOXQ5T47k5H2ZZiIPMve5eX0bonlhriSBW9JY45+JfvMwYPZ125sMTv96F0b3dKG7HJl9Z+SlojITHWcp3zZu03zPCiz0mo5nOdup6GESjhi7M61srJTHLVnprPQOkDZhg5tjFa4S1VI0fiO34cbVlrHK3ruq4aXyl00B+373DlgJM/LNm2y4gbOubIa/uxn7et96II7zIGQvud635PtEWojIJDzHhC+U68vUnrT2Fi24sryAamllwJXuaT08umn7Tgpw4yxW3Fo/RQuiZPzrp7PZP/RD2rR50PtBrIIfZeIsdNqjDy0ZNja2TaC9M4p953iXwhj988YcuUnn7SPd+0y4VOUpUlJWAcMDmZL7FybYltlVjJG2R5yB/o8RNnp2ZFfSY5z/QyXv0PIe4nU7lndVf9cHssiAcDZ6/PvJpxrHGZIzgFg74C5npaASmLvmBpL3jsbJdeESOp94nUCSHOkl4rldOw4z/mEEEIIIYQQQgghhBRGjD8P5bXsG/84Rqs/QgghhBBCCCGEEDKjqOtjWZqmXmsrkyRZCGA5gAsA/DGADgB/l6bpX9VzfUIIIYQQQgghhJBpgZ5lc5YpadU0TQ8AeADAA0mSfAHAdwG8L0mSpjRN3zMVZZjJzNv7JJo23z56IHxjYuGyBNEWPxJpM1L09tPePh0uHw1HHlees906vvOx5dXwrgPNOnmVRYtMuKwqb6BiPMuctlJiD+ofbVtuRckds6UlkcbXk6UInwJXnvK5sHChHZfZt7SvneigAw1HW3FLKsKXxfEQct63aJyRit3W1nm6XMJQTp4XXMcOPy1nP5bn6Tyk6Z0uv/CPkt5vRWxJ75uuZvwK3z+XJ52Fy5POYbxYVnHLhEVaDE+NGHnoOeDuzaur4dMaTX1870b7Wheu22MO1J73y7f9qBr++79vseI+NHBdNby3++xqWM9nsoprbP62iOu1275zQ8OmnLL684wh337m+yyQZQLse1NWQKhUJvZadM2ROk4+Q/QcmUVN/sqfyiKCx0/o88X7eq4xKucw5WU00rnCK4uQ+3b6qTr8wHp67LQdHeba2m8vC/0e1t7u13dD4yz0cyKj/+SpU3ntXbt1/584Hz2NO/OfIf1/yxYT1rZbf//3JtzWZudx9dXGR+yoo+zz5s+fvEw1OAw3S+oh4jsvuuogxAur1LvT/oF8LumHSMbgDn3f12g/4Kw8mkSfbGz3rwPpKSZvZUnjfiud7PSufqafQ7LqVq+auEwTlcuXEM9H7e9c8rw3QmYjU96j0zTdC+B3ARwA8MdJkrxwqstACCGEEEIIIYQQQshETMt6wTRNH0uS5AaMfjR7C4Bbp6MchBBCCCGEEEIIIcFQhjknmc5W/eXY/2cVfaH1z39e0ZeoiwWHRjI1a7Eld+edZx875YMu5IQgM3Gsrc+zZDhkubXOv3/YSOeWdNg3urB/4jy0TEbe5vbW06y4Vk9Z0b39Rnqpm1lWl0taMtXySt9yyDjXNtzTyYxZEl5Ehbh01ILQMVS4/HpQyBR8dTmuScshw3SWI0SG4MgjD67rWYoaIXtobGyyE0pN0AUX2HFC8tLWZs9hOPP+ajC4ewq574gq16CQk7i2vI9BaBvK7uQro/MtBwA0NtY//wyhnBkn5aGxZEu+ZNW581quh6CS8WZeV8vyIkjxYlDEtTPzbLD7RNFztWSqnxMhhJbRV2qslYQnnWTCmzfbcVJGp2WYWe+A+rpy2JT1M1BJ4ookuO3ljeryZzx8QsfTVM8BzdhrDqxbse/Lt1y6OvJIlvNeK2/acfbDftY3iTm51BB234TMVGbCr7N+b0d1cNsn1xZ9ibp481/fM91FIIQQQgghhBBCCCGYBs8ywbiT/dPTWAZCCCGEEEIIIYQQQqpMy8qyJEl+B8BLAaQA7p2OMhBCCCGEEEIIIYQEkyQzx3+GRCVJ0zT85CRZPnmq0aQAKgBWArgEwOUA5mH0Y9mb0jT9d49rpSFlTZIE6Z1X5T5vKnnzJ3vwr//5/UnTxfCc0tYGrnEtPRK0Zj7IqyQU157xDvYPmnLp8st6kHG7d9vpFi2aOJ3Gdd87e7PLoX0vsvIsQvM/nT5NITj7v+wjupMHG/NNfO0i7jnYm9B3bASOocLp7TXhPIMjAll1rruPLJavn43GNdZC+pPrui6btr4++1hanXV0mLDLXyzPXGH57MB4mow0ZHtwhTJT5zP5HHJNTeVh4d+nPV8c9RXqR+ibX0hd1pTJ1SldLxoRiPHslO3W1OhXP/pdoq3NhF117HpHm0lTd2xc/ViOoVBv1KJ9O+V5PT12nPQs6+qy45a1+81b1lyqvRWn8fnu/W4kHzaajGd9nveiKPNU4LV98a2rIjwBi/YN83nHWXvGGdi0aVNSaEGmkbWnnppu+slPprsYdZMceeRdaZrObP+qKabeWbUHox+88jI+WH4E4At1loEQQgghhBBCCCGEkCjE+NScBPw7BOBfAfxO0HIxQgghhBBCCCGEEEIKoN6VZbfAb2VZCmAAwC4AdwP4/6VpurPOax92xFiKq1do1yzntuKy88laTpxnqa/vMuSS57bwOj+XoiNLWrU0UTqlxtbsTDyRy+xd6HsLXbIdgmvncVc9hsgTQ5e3u+KGYGRKw0qy1BRh3BS97D4kP6B2i+5MZqp+p1WML0cZY4wF3/r37e+hxOgHrjxc8/ay9uzjvQPi3rRszrP/6HI1NMj6ys7D9xnikt6EygyLRladVoRb1dqQ3fGK7jNFnGfh6j8Fz00xyt8UYMGwtG3CH0+ah+tahyta+lokMcbJik47Th+HXNs1r0/n8927vgJsFfK0Rex5vYjnhG+e03nt2XatGQU9y+YsdbVqmqbnRCoHIYQQQgghhBBCCCHTTrGOf4QQQgghhBBCCCGEzCL4sYwQQgghhBBCCCGEkDEorp0BpEiqfitFa71D5dQuPxhfj5lYfmYhefhee6T16OjlsPJ3bAkdYyvsIghtQ5/8YuUp+7Xu49PpZVS0R0VsT7QpJ4K/g/fYnsbxNJXtFLrtvNUU2rNM5hfYZq46CH2GyGK6iuXtj1lA29DChBBCCJnj0LNszjIzfhsnhBBCCCGEEEIIIWQG4PUJNEmSfy+wDGmapr9fYP6EEEIIIYQQQgghhHjhu15wI4C0wHLwY1kGofKULHmfTucrQfGVzeSRsRQh6cvKf6ZI1EIliEVLyOTW7K4+4iJGGfNIyLLaN7Qc0ynX9MW3PvKcF5sYbThZnG/+RRMyxxQxll1ybt9rNzZaR5nnheYfkm6ytFlq0VApdqiE1UXR9RVSxpkyV8QiROIb6z5jv2eEtk2MudSXUEuNGO+z00nR76zTSegcn9VuM/U+XYSWP6Rf5LIiGB4yB5T5kRlAkiQlAH8E4M0AOgHsBvB1AO9P0/RpzzwuBPA+AM8F8AyA/wHwp2maPjJB2iMBfADAJQCOAvArAJ8G8Nk0TYv8PgUgn2dZ4pEm9Uin0xR+k4QQQgghhBBCCCFRObw8yz4O4B0Avg3gnwCcNHZ8apIk56Vp6vzanCTJJQCuA/B/AN4D4EgA7wTwv0mSrE3TdKdIWwbwQwCnAvhnAPcDeCmA/w/AUgB/HfPGJsK3VV80SfwGAH+M0Y9gvwLwLYxWQN/Yz47C6JfDiwF0ARjBaEXfkL/IhBBCCCGEEEIIIWQqSJLkOQD+EMC30jR9pfj5IwA+BeByAF9xnD8fox+9fgPghWmaDoz9/PsA7sLox6+rxClvBHA6gHekafrPYz/7XJIk3wTw50mSfCFN019Hur0J8fpYlqbpT7LikiR5G0Y/lA1i9Eb+X0bSrwD4syRJ3oDRpXN/DOCRNE3/v3xFnnskSKtLcmPJI4peDh2SZ+gOaK5zYtTXVO6SN5XS0zznhaTLc+0Y+Rd9bV/px0yVMM1G2YML3/qfallRvcSQ5cU6LyS/mbJLL6Clo/EJkXoXsbNt0bvlztS5I6T8RcgYZwq+fSTG7uV5znPhK4OdKXLWUELfN6dLRh3anjGsRGbK+MozTkLmz2jPysirlULfdWPYnZA5wasxuhDqE+rnnwPwYQBXwPGxDMBvAViGUcnmwPgP0zTdnCTJzQBelSTJ29I0PTgW9RoA+8fyl3wCo7LMVwH4h5Ab8aWu3p4kyckAPjZ2+LuOD2VV0jT9AoDfxWhFfzxJkufWUwZCCCGEEEIIIYQQUhinY1Qh+DP5wzRNBwFsHouf7HwA+OkEcXcAaAawEqh6o50G4J6x/CU/GyvHZNerm3o/Df8BgPkAbknT9Lu+J42lvRmjK9veWmcZCCGEEEIIIYQQQqacEZRm/T8ArUmSbBL/rlK3uQxAX5qmz0xQBY+OnV92VNMykXai8wHg2LH/FwNYOFHases/IdIWRr1rO8/FqEH/rQHn3gbgnLE8CCGEEEIIIYQQQsjU05em6VpHfBNGd6+ciEGRZigjTdPY/xPlMajSuNKOp2/KiItGvR/Lxr/mZVWIi/FzljlTHWbE8FTScSHbqk8W50sMn5HQLa1jb6Uew2tiOv2VivDkitFHZooHWAy/lqK3vC86/9lArDnSN/+iPVmC/Pb6+uzIQbM6fU9luRVVqZhw0Rs1+dZdTf3I+1FGZCOV5qjlCB3nQ8MmbiZteBU6N2XFzaQ5ZSbO/zOpfrIInX9motftXCNGHcR4DyviXa7I/KabkOd0nra20g4qtVkEc84YfcQ37Vxre1LDfgBHZ8Q1ijSu8wFggcf5rrTj6V3XikK9PXr8S1+I79gpKg9CCCGEEEIIIYQQMrPYiVGp5UQfsI7F6Mo01yKqnSLtROcDRnb5JIADE6Udu/5RmFjOGZV6/z76AIB1ADYkSbIyTdMHfU5KkmQlgJdjVMLpdQ4hhBBCCCGEEELITCFNgeHh6S7FlPBzAOcDOAPChitJkkYA3QBu8TgfAJ4P4CYVtw7AXox9G0rTdCRJkrsBnJokyQLlk3YGRhd9bQq7DX/q/Vj2DYzeWBnA95MkeXmapve5TkiSZBWA72B0SV0K4Ot1luGwIXT5duiW8VO5rLYI2UzsLbRnioQgVGIx1TKT/v6Jf76kxT529TNXuWL0z1CJcoz8Q5gpfTAWM+V+pnMe9M5fSzMkQhd48KAdJV/etHxwYMCEpdLDJTMs4jlk3ZuaOErt4kBqShVZcrI86DJK6aWVblj90dRVydOo2Qzpu3NN6u1rSeGbR564LGL1z6w8p1o+FaMOZls/m23ljYXvO/dskOLFeueL3v8L+OIS+33Z91r1XI/MWL4G4M8BvBO2Z/2bMOof9uXxHyRJcgyAIwFsT9N0XC75EwCPAXhjkiQfT9N0YCztczHqZf+FNE3lm+xXAbwAwFUA/ln8/J0AhjEF35HqfYv7/zC6m+UJAI4HcE+SJF8BcD1Gtw99YizdURiVal4M4NUY3UETALYB+EydZSCEEEIIIYQQQgghBZCm6S+SJPkMgLcnSfItAN8DcBKAd2D0Q9hXRPK/B/B6AC8CcPPY+QeTJPkjjH50uzVJks8BaAbwLgC7AfyVuuTnALwBwMeSJOkEcD+ACzH6TekDaZo+UsBtWtT1sSxN02eSJHkZgB9j1Kh/PoArx/5lkYz9/xiADZPoWgkhhBBCCCGEEELI9PJOAD0YXe31MgB9GF319f40TSddapmm6TeSJDkA4H0A/hGj/vX/A+DP0jR9VKUdSpLkPAAfwOiCq6MA/ArAH2KKFlzVrQ9I0/ShJEmeh9ECXwLzMczFtwG8LU3T3nqvTwghhBBCCCGEEDLVHEaeZUjT9BCAfxr750q3EcDGjLgbANzgeb1+AG8f+zflRDHTSNN0F4BLkyQ5CcAVGNWWrgSweCzJkxg1a7sdwH+maXp/jOseDsTw5HLl55uHngB8bVhieI+5CPXwmG0eG0X7qkXx01I+PgMD5QnTac+ymeJnEKMcMfr44eqF4qIIT7oQCmkb4ddVUr5kQ5Ul1XDPjqZq+MYbm6x0XV0mfOH6vVbcSGNzNbx1q33pvj4TPvFEE25ryy5unnnQtvISbdG/x07Y0mLC0khNZeJ77VieKeWGjHsbVA9E2W4OXzUXNT5oGYw0TDyv1oPLcs1Vd1k2ekXYtrk8d6bajzM2RZcr9nuki/2D2deSvohT3Rax5//Q98Ei2mIm9utQb10Xcp7Sv5PIvlU0Meabmjg5meqJNevm1MT64DZz7ZVdU9sn9vSbay+Bfr4vASGzmajOs2Mfwf4iZp6EEEIIIYQQQgghhEwVM2NJByGEEEIIIYQQQgghM4Dp29OcVEmR1C0BC12G7VoyHFse51q2HmMZeRFyvhh5xq7jGG2dJ3/f87Q8aHnFLMXeddAsw9YyjabGuMvF89SPS1Yhl/nLVfHNFf/6CWlffY68dq9yeezsNOGZKMUAwmUnWeeVBvfbPxAShamW9EaReImO9qPNtlyhtdWEV60y4XdstKWWlhyj0ZYB9veb8Ootaodt2bk61leDI20rnEWWuOqg3Ldz4jJqDY2ULra3e19bMqXzopbFODRA3n3EIcMZaT3aq4yua7twyTCz0uljGdbVESrD9JXZ+saF2kLEnluLuLbrWRZSrjx5yLQx5HAx6r+I5+FskPSGMp1SYF/ktOiyhok93wB2+b3fiXPc8yCMtULvgG2zsGLgYXMgbQrWrLHSuRwAfN9TQ+fWlhZZP4en7PJw8iw73ODKMkIIIYQQQgghhBBCxvD6/p4kydnyOE3TWyb6eSjj+RFCCCGEEEIIIYQQMp34Lla9GUA6Fk7FefLnocj8CCGEEEIIIYQQQgiZNvJ8pEpy/px4kiCtasFnku+W1Kc3NNTvdyWl9jpP7XMRe5vvoWG7/NLTIFSj710O4bE00tiUna4Az7gQDxKnX4jy0tkvfBZ0G+5tML4Fz6i2lzQ2+nla+fqY5Kk3V/tK74EDB0y4WflCxPCKceHyLOvoMGE9RmeKp4oc96GeGvJe9g7bY6i54PHrjd7uXeLyVas0V4PnnpM9B8jst2xrttLJfqHr+OwO4Xcijc8A3NJ/SjV84hHm5212Ft59vGaM3nSTOZA3cNFF9nkV+35iUxoeMgeBhjah3nuuPOQcU5b1E2q6o/CdI319pnSxXOM5BO33Ug6oBl9vVP1OUG7w81Dd02+ft6Rl4rGRZ+4JOs9l2uQgxAMNiPMeWeQ5miJ850LHeeh5IXm48izieVj0+49EzlORpkhvQrwQ87SnfA9eUXncTnzDzSasfMokvnafRY+vqfaOnSnQs2zu4jvdfDHnzwkhhBBCCCGEEEIImXV4fSxL0/QNeX5OCCGEEEIIIYQQQshshF5hM4w8W4rHyDOUkKX8Bw7Y5Z8/34S1DCTGMl6ZR1+fHdfSIq+dLRVtrtRfd/f1GNmYlq3IclQqYXLErHSFoHSAd/SsqIZbW+2kp3TsqYYb240kc8cOO90DD5jwunV23OCgqw1N3EMPmZ//93/b6WS51q9XZewy0qcBJe+TbeWSKRW9Jbosh5RdAnZdyr40ejwztrl3yTD3i/b1rWOdR9EyE1+kJLmnx4476igTbtMaR5nHoN2XZJ00De+thru6bNmivN62bXaera1mjK5eNWTFtYvzFi7MLpdVx/177EgpMdUyc3njTz9twqqTW3LEhmz5V6g0bHC4bK6l1LKyjvW1fcvhwpW2PGgGx6706Gp4serjvi9qUy2xk/jKT3Q6eazjlrTkL4ezDsQFyoE6Lpfaekpleg1lKy6G1M83P1f/mSny/yLK4V13w/Y8O6Laqt5rx5p/Qogxd7jmCtewnGrppS9ZdRxc9/plSL74ObSWsdv6cJVTEqKZoVMPIYQQQgghhBBCyMyGnmVzE342JoQQQgghhBBCCCFkjClZWZYkyUkA3ghgFYADAH4C4P+labrfeeIU0vvEfrzzY7fj5/fvxoL589B5zCJ84o+fj+de8U2selYLBocOYVHTfLzt0ufg9S9bCQC45oYH8J5/vhPHth2BwaFhvPnik/CuV4/uLvbZb92Hz1z3S8wrlVBZ2IB/e+/ZWL1i8YTXTpFkLneVy7lLedYgS+2TPM9326tQtFZOXG9pm60tKXqJr6y74WF7GXzW138twwyRRuq89+2bOAzYTeO7s5he4p+ZISLVsdSdqAo697Evm4N+peNqWVsN9g4YGebu3XayTZtM+OzuvVZcWVxvS++yzCJ+7Wsm/PGP/0LFGhnau951hBXzsQ+YcG3bm3DR0hLZL555xo6Tq+61BEgONz09aFnmdOHaoUnej2tqsuq/v9+OlCfqCpKDUQ+wrAvm2GUua8dgXQypQFysHgMyey1RlhLixkYjvRzot9PJzSW3brXjrOravNmKWyl2x5Q7Ujr7uxywAHDwoDnv9NOtqJGXviw7H4HryRYiLXTt9liTn6WBVpmKvjAs6j/azrOiTy4WZQzc6HDKZTOynFmvHPpYjw3RfSxrBqAAeZ8oSKgUUtsNZL67RZIqhrRpjJ0TXXm60tXsMjponumuXW+t9xqtY+/qyjxvKnHWq5hodw4usaJs24+4ZQol1M6jCMm2PA7dmXc6yXr/1++USyqmj7ukuUON9jgpn3NOdqYSx7Im1++PsW1vipD5EzKd1DXdJEmyHMB1Y4efTdP03ydIcxGAawHI16CLAbw9SZIXp2m6Q58z1aRpiov/9Ad4/ctW4toPngcA2PxgH3Y9cQAnHNuMe/7zlQCAhx/di0v+7IcYGUnxhpefCAB41Xkr8On3rMcTTw3ixMu+hkvPXYHjllbwmvO78JZLVgMA/uuWHvzxJ3+KGz954fTcICGEEEIIIYQQQgjxot5v8+cDWAsgBfAjHZkkSSuALwKY6BP6swF8A8Dz6yxD3fz4rp2Y31CqftwCgO6VrejZaS8DWnFsMz72znX4k0/eUf1YNs5RRzaiq+NIPNa3H8ctraC5Ym756QPDSJKk2JsghBBCCCGEEELIlJGm9Cybq9T7sewlY//fn6ZpzwTxbwOwCKMf034G4ONjP38fgDUAzkiS5OVpmn6nznLUxZZfPYnnrWqdPCGA005sxdZf99f8fHvvAAaHDuGULrP8+jPf+CU+9tV7MXRwBD/6zIZYxSWEEEIIIYQQQgghBVHvx7IujH4I25QR/6qx/3cDePG4R1mSJP8L4OGx618GYFo/luUhTe3jr930MH5812N4YHs/Pvfes9G4wFTp2y57Dt522XPwlf/ehg984W588a9eNGGeSTpS9Wuo0bF7emzUxElduzABGGlsyszDhe927DWeZdKsQX1yL4k4XX7psyOthvL4FMi61D4jWbj8lVzI+imrMh5zjLm35a22Td9Qg2kPl0+N7QeAzIRRtqRXyDJi1Sl2pDjWTX/ddSZ8//0m/LrX2ele+1pxoHylpMfJWe3qXsQFu7qOroZPP/1ku4jGlgmdnXYW+2HubVmr8oLrN2NIepBoTw1fb7CathAN3tZm+qq2pJD9QJd/hli5BONbd9IHp9zba0fKPqP9zCSyIwDZfwLUk4xM5xikZRE+rdtOJseXbt/m3ger4ZXaV23Y5DnUYPp4TV/tNWNhdYedx30wY+i/tp1hxb2iY6c5EGNNzwfSZ6pJ34Ac6IrSi8wzTz57Ynk2BXkzbdliH8uJSw8o0R4u7yXt0yRxPbNszzu/c4pAtq++tqwePbzkcJDn6XEt50w9f/p6dcYmtA+WG8K8yGI8i0PyC8X1LuHyJHrySTufZ54xY6VF/Fz3g7LDG3U2sF34sro8uVzPd5e3oqtfxO4zedq+3jIB2Y9YPRe5uoisu1C/1th+bLVtbd7zXN5sNa8m4ryGFtPPatpCTtC+v/Q4rh36HNL1OJ6n/v2ZkNlCvTPD+Nt7j45IkuQYjBr6pwC+Is380zR9FMCNABIAz6uzDHXznBWLcdfWvskTArjnwT6c1NlSPX7VeSvwy2svw63/+gr8yafuQO8TtXsWXP6SE3D9T3oilZYQQgghhBBCCCGEFEW9H8vGP10/PUHcOhG+cYL48T27OuosQ92cu3YZnjl4CJ+73ix/+fl9j+PXvbZnWc/OfXj3p+7AH162piaP55+8FK+74Nn45LWjf7V+aPtT1bjv/u92PPu4IwsqPSGEEEIIIYQQQqaacc+y2f6P1FLvYv9DY/8fMUHcWSLN7RPE7xn7v2mCuCklSRJ8+yPn450f/yk+/B+b0VhuQOcxFXziXWfhV4/uxamv+yYGhw5hUdN8/OFla2rM/cf5syufi9Ou/Bb+fGM3Pv2NX+Kmnz+K+Q0lLF5Uxhf/6pzM6x88VMKegdFltnr5cNaWxECt3M/CU0/oLXHR64nlemhZMNd19XbgUhal5KFSadUhPqeGSjb0kme5Wtklfyn17zEHKhMtac1i61YT/umT9jmLF5uwvE8guyqXQLWF6DSuPhK6xLzc/7g50G0olnr3D66woqTaaZMQap9+up3FWatMHY/A3nLdiWisP1j7MxNuVWXcYPwCdZvJbozNm+3zbr65Glx28GA1/KPn/4WVTO7qXVv/YgxZF7MTlyrmXiqViZewA7USl4ULTVj38WwZr7+8wyX1LhpZXTK8RM9FGZJzALYUwaXp8C2IbmCpUZMaWYd+QatIm3/+82r49uNfa8Wd1WXGnuxLI2rPnB3Dy6rh5dhrxa1eNSLCujRmkpFtvXfAbusdYs/qytpLrLjl8kB2SMCqu5JDd+IrZXPh2z9H1pySGedS8S6pCCnSsC2DHR427aG7lUuCKLHy1P1MWilEGIe6jPvE3wWfeMKOk9Oinv4l8vmln2VyGGo1dGzJqa8VQR7LAqflRQQ5ZOy5taaMfeIZris8QLOmZceyPy09tNNOLC/Xb/r13hZr5kBZ9nntNzALWN4g71uN30EzfnelR1tR8h2wtGO7OVCDrSQH6dP2+gRrbr3gAiuuxtolgJD5uSad6CRNaiIcHJz49xzdVeWzU89F8n1Z/54QMse47tM1XuWt6XmwNCiURzvUi4BIPDBot9mSLbeYg/XrM8tRkg9qJcP0bUP5jrm0zV9yLuP0c3T89ZkfYshspd7XlMcBPAujckvNuPn/vWmaTmRAsGjs/1rd4jSwrO0IfP1D59X8/MAtv595zsYNJ2LjBvPhbFnbEej9/qgh0yf/5Kys0wghhBBCCCGEEELIDKXej2X3AOgEcEGSJC1pmvYDQJIkpwE4BaN+ZT/JOPf4sf931VkGQgghhBBCCCGEkCllXIZJ5h71rv3+1tj/iwD8d5IkFydJ8hoAcnusr2ecewZGP6Y9UGcZCCGEEEIIIYQQQgiJQr0ry74K4N0AngtgLeyPZCmAm9I0vVOflCTJagAnjKW5o84yzHoaGvxsI0K3LA/dVlqet6O/2YpbPmC08XfuW10Nn9n2sJ2p/Mz+2GN2nNDUl5RBV0fHxD4L2u8nIzsAtpWRy8OgDOMVo72AXIZmvn5O0tbohhvsOHnbwooAALB68O5q+OGW00yE2DoaAJaIcug+klVeIIcPhbxvh6nP6rWd1vG/vU/4Jwj/r5rG2GIabnDt2VaUy+NnRG6hfdttJuLDH7YT3mGmmJLy82iSnUaaywGAzHNN7aYe1TxF3TU0OMZaBHOe+fPtYzm8XPODz88nI8Yco8naMh6wx7rVD3T/kSfqiVTUeU0ZhX+ds/+7jBJln3GZpsjL6j69aFE1eFbLferandWga7wur/RXw0ON9vwwLPyE9LUtnyxRV3qekufpobD/AuNh1tTo1wdj9aUQLx1X/t72TaqzNsnHRMV+hrjm5Mw8HX+eDq07maXuBzJOP2NdPmVZxdSPCdc87iLrGRvqE6a9tiS+/p6WjylgdZrQdy2JrlPpIfTMMybc2mpfy1nH8jnneolyIO+tPGDXQVm+5OgXsYz6qZkh+xzzeGSK8J1z+fXK6y3WvqbDwolm2zYTlu8fgG38qt9VurtNWL1IljLqMso9u9DGiHIiURPEEvFQGamY3zWkBZfOQo8TeaxtTUO6k7efsyOtLuPAoHnnaGy3PX6bRD/YtMl+htx0k3kv/od15pld0nWsbzwD1721tWWf5+vruKRl4uvp91dCZgt1rSxL03QEwMsA3AUgUf82A3hdxqlvEOH/qacMhBBCCCGEEEIIIYTEou6lDmma7kyS5AwA5wA4FcA8AP8H4IdpmqaO634RwFCapof9yjJCCCGEEEIIIYTMLuhZNneJsmn32EexH4/980n/rhjXnSskSKtLWLVMwFJuqVFYEpH7B+3z5Kp4mYdeKe4rJdSre3/Ua6SXcgU4Wjoz88CWLfbx9deb8OWXW1GVVrO9try2XIkO2Cv+tfJJL+GWdHWJAyERLGktg9jOeU+LvWzad2n3a1YZOeVrOuyKvAVmefWCBfZ5u4410ssVYgtn3dayz2iln/dSe8d+3dsHjKxruOt8K07Wf7OUdAF2g4jK+sj9r7CS/dmBL1fD/V1WlEvZYN/bRz9aDd6we7eVrvvjH6+GO3SneMtbTFj1QWzYYMJiufta1c9c40a2zcCA2g68ZeLp1/Ww1X28PLjXHGzpseIGu06phkNlUBJfiVcetalL/iWb8bjjRESX3UlGGky96ubdLP4Uo+WDnZ3+5cxETn5SEqEaUW4Fr7eTH+kw40HL15b0ba+G5dy0Kz3aSrf0TiPZKa9da8UNtywzeQzsteKsjiEqb2BguZVs3jwT1mMypG+FynY11hzgGjiBEmg7S1PmYTRZ6fYJqZyWmmhJShYjvrLgHGQpO7U0tFnMK11ddttIxZfun/LZLOP0+4Kct1wSqZr7FmOq5tmcgUsiJeeY5a32RuwjDab+XV3JkhwC1g2ESmTleeVBu4J6eows7emnzc/1s0BWj7Mc7cus46y0rjyGKrbUu2/QHLeoZpKHVp5ScgjYVg3nnGPHqTnfB5fUUrdvGfkfYK539Zp5HEK2qupuSPS7srxv/cC68UYT1nV33nkm7Pliuncgu/xaTi/R75/79pmwcBRAk65H2UF1GUWcy7nlnnsmvpbO8uBBOy5rPPtaV2hCx/KSHT3V8H0Np1hxRx1l+oH+Vckqv5xA9Vz0i1+YsJbjBtgUxLLsKFzyS0jBxHljJYQQQgghhBBCCCFkDsCPZYQQQgghhBBCCCGEjBFFhjlOkiQvAPAKjO6M2QbgCAAfStP0/6l0p2J0E4An0zR9JGYZCCGEEEIIIYQQQqYCepbNTaJ8LEuSZDmA/wQgRdIJgBTAkROc8k8AfgvADgDPilGG2UyKpKoNL/fttCOFMcVeNFtR0gJA7yC8/I6vV8Pfq/xuNXzhebavlPT7cXHTTfaxtBt73/tMeO1ae7Fic4PwBdFmJdKDQXouAIDwLGuuGL17S4ud/wknmLC2NJF+WtoDQMY1ff7z5kAZgXyo69+rYWUFZFkCSHuGGsuLVauqwV37bK+bsxcaD6GH++z2PXRIHIgZuEn5IOyB8AtpsS/t6zMFmH5wh9qxXLa99uKQthrnnGP3pZV9wuzmDmMe9WfbvmRn8vy3V4Pah8XXU6/0pjdVwxt0Y8tM3/lOK+reBuML13OjFYVXQFSEMO65qetPrXTS2sy1nbnTCkUkLKtxMtJi2rfG+0GmVY2f5TuSx4fClVbPOePo+5TNoa1nmhrMfHTEEXb/kf5CVr2qC8i4n/7Uzv+v/9qEP/MZO25Fu5ibnAPYgZx0RFj7usgt75cutbOQ3itLttxiR8qJ9tJLq8H/7bU9y9auNb5nHcpTrGlQ3Kcyhrt3cGU1fEq/KeRVF9h5WEZlqn5cHidyvpA+MksP2c+5PY3GR0nPAa7mkNcbHDb9J499mUxrPa8AlDN86MqyQQE0CYO9+45/mRXn8iyT5XfNdaGeL9KTpyzvWw9ecdzSYnsqrVtnwuq2rTZ99rNNWD+HZPdpgl3HlquVo1yhxosl0f+XbxKTvJy4YfcDbQm1epWof5d/lqO8shw6bk+/ae8ljv4uLa1C+0SNX5e4Xkn6jjoGXnlgj3W8bIswk9WmjLK+ZJ4//7mdbvNmExbvTDV5eGLVN2DVea1XlZk7fOvVNcd84hP2cUODGVPvv/xBO1Lem/Sg0n5URx1lwto4MqB+9Luc9QhstecfWV/6PPlIkT6gTcMqoXxX0b8LiJeEsng5P/PkVivZSSeZ9+cDB+wslrbF9eRyeR9q7Pc84W3ZaL/TY5XxKVvdu92O+6550b7oot+zoqzfv+Qk3GrXD3btyiyjC3lvrnfW4GfU+Lw4Qu8yMjupW4aZJMmJAO7C6IeyRPxz8amxNB1JkvxWvWUghBBCCCGEEEIIISQGdX0sS5JkHoDrARyF0Y9f3wLwAgAVx2kA8H0A439a+O16ykAIIYQQQgghhBBCSCzqlWFeCeBEjMot/ylN06o+KUmyF5elafpMkiR3AngxgDPqLMOcQm/rLdFfIOWy1xqph9DHXbjjByLinMz8tQJCLsHVEkS9BHqc5n61tFhqaqSeA7CXlavlxFlLevVq84ULTbhGGiD2MF/WutWKw2CLCb/+9Sa8eLGV7Na/M2GtLpDL0efNy8wCt91hlo7rOr5wnVnzLJewayyZgNIpLRmWcgNb3uG7dFxu/71jh51OyuiUistKq+tnZYco57HHmrDjRvXq/GbHZ3dZl7et/9tq+CZVx7K63tdtx932WRO+9lo77hVvFpUilr5f0v/nVro953wou5ACLU2SW8/7iaFrt6sfrJj5QkuHukV72PIa+2qu5fNZMjEAaGycuG9JNQ0A/MVfmPB73mPHrV1rytLWZsfJcSTnIi1xlH3Qki4DeMlLTLi7WxVUdmY5/2gdoC9iQPX3Z7foE0/Yx7LMDevOtuIa1pvj0jYj37lkzV4r3UjFyD2EIhAA8OijZv7ZunWlFXfDDSZ89dXmWqe023J9lzaj1Csklaru+oS0XFb30r47rHQ9nZdUw1qB5auKzZIdA8CD20yfWXnHf9iRQiKOyy+344TW3hoLejCLiavDUzYK2NU6KPp1c2O2XYJL/qXjpCRI1mNJSxrFcaPKQ7aHHkNZspwaqR/E/fQqeZmWlAlGlCQ0C3k9LbHbO2z6/w2Dpp+9ZtAeQ+Vh04Y7dtjXXbUqex60Li4fYLqOxQuDfs+TirvGDlu6deZxYnz1OTqXbGDdPwVPPmkfL11sdUJTxoqSkEl0u5x3fnZagfUcuvhiO/KYY6rBnV32PLgsRHKqXyYEI41NmXG+uOabiy6yx7n13qRfAmU55cuWlmHKgajfoUTb6+djVjmXqzl+76CZY3QfWbjQ5Lms3c5vmRy+8t76MnwagNoXSfnyIt8VTz7ZStYsntPNNX3cjDdfiaBuCmkLoScxOWfWvIeJfOQjsEbGKKXBv/iFHSlsaQbW/l5WFK5aJfqLflieeSay8JWclj2ft9ZYBrBf2CDo+y6P111pbu8pmKb0LJur1Ntzx592vwHw3pznjj8VVjpTEUIIIYQQQgghhBAyRdT7sew0jK4q+26apocmS6wY//u6358OCSGEEEIIIYQQQggpmHplmONrYrc7U03M+LrPKDtyHo44l9XKHRiPWl0Ntzl2N9m3z85v6SKzZHjtWnvZulZUmjItz8y/RpYgl5K7thEUS7aX6TzkMuqaOBGpt/FasMCE5883YSUJuewyE5Y7P+rLuTb6kcXQMtK7e8y3Yr2xzfKOiSUucrk8ADT3iyXtSgZVIxcSNFnVZfLXklu546iWkMl70yvC/2uL2flnR2LCf9D6LTuh2Drqjits+YWUM+gl81KlsElsxqWbWnYzuZwdAF75ShPWbfNw12ur4RUvepGJ0DJYJZmS7BnIluPJ+2moiHRK4pKl8gFsCaJUkwH2/VQq+Xf7mixtlgTruuvsdA88YMK3qZ1WZVtt3GjHZSn/tDrl29824WeeseOkbExLA0Y6VyAvXjs+AVjWaDfUsjUt1fB9W7PnbV1GSynauTIznawrLUWVstjf/317B7ovf/n0aviURrFL26A9D7okWTduNpKyC9vvtuJWiklzJXpMxL4FVjo5TQVueuhEDtkl77zSinvyyedWw3/Z+lwr7t3dE+ehd5GW82xzjvEl5U5Ln37YHGhbggbTwL199rNYziNHqr3Hl4rdluVu2n19dh+UGxO+9KV2Hr6qZHtsqD4uO6hqYEtiqgTpWRt46j4i63HRIvvaMq18b9G7T0u0pYBUiWn5+XI5VPRDXOKQm67syt5l7lt3mPF1yYCQEOtKkBN+jebcoG0iZP2XKtmv41b7ujw7NBnS1P2w+3Fv57nV8I3X21n8wVuys89iROyoPiWIOunqsu/ttFVyJ1T1IqkliePovuR6ERDXHm61n2t7B4S8W+wsrx/GzWKgbxm23XFk/79y1SYrTva17WJu6uuzfxc4TfpC6L6b9Z6qx4w8T//OIGTONTJzUT8yrkmnGxD9Wu9KLqTTWupd9nVukGXW24qKOtA7ZsvhvH+teUe2ZKNA7eQdgiyXa2tq9SK2Y8DUj2427/ohZIZS74eq/QCOhDZK8mPcoGCPMxUhhBBCCCGEEELIDIOeZXOXemWYj439v9qZamLOxqiE85E6y0AIIYQQQgghhBBCSBTq/Vh2C4AEwAVJkizyPSlJkhcDGN/m5Cd1loEQQgghhBBCCCGEkCjUK8P8GoA3A6gA+CSA33MnB5Ik6QTwhbHDFMB/1lmGWc/wsJGJa+sHl19IlmeQpq0tOw95Xm06o64tKx8WeZ6U9uslqC0tYst1l5mXErnLbYibpAmS3jJbVpCOE4ZOXxFbxgPAax77TDU88ta3VcNve5uVDJ8xyVDaep8Vt0csqJTF13Ug/U+kxxRgt7cuvqxj2dY7dthtvXmz8YaQ/mIAcOapxtOgxmdnwPjZNIm2WdnRYqXb32F8KFx+QtrPacWA2Qb9RxXjWYYDtl+R9Fq5pOteK+rhHnOe9kGQtnMuKwjppaZ9yZY+s12ksz02ZP47Dxk/hmGV//KGneZAeW8saTENrMeobHvLv0zNAfJYW3vIY91/mgdMuUYqy1Aksu03bLDvU9b/5Zfb5918s8hj24NWXH/FeHTJfqfr59nPNmFt1SPrVfquALYljGv8ymvrLeNlWSyfFG2cJ+I+/3nbz0b2SV0/0mPvnHNMeMWOW6x05c9/vhpepjrC733uc9Xw4Gces+Isn0ExUWk/IekN2dRoj/OuLlMndz55mhW3SNT56kZRWaefbqWTU47LDkm3va//nmzrPTfZvmpywtiu5gfZF9xjdOK5WlMa3G8dP/20qed7B4zXUJea65oGjVtFf7/dNvKxqucADJuCDvSbH+u59OUvN2GX/VTNvclKEQ+3sp6EZUXW+LGZC5YdL0DSK0yP0aefNmHtWyifvytaTD3+xw22N6Qce+XBvVbcf1yf7W92xRUT+1KW+h63jqWHlu7j2gdNcsmWv62G3z/8/mr4b7uV96c2WpPXFs8ePTVZz0TLKDLbb3O78s2TzTZvnp32gQdMPZ/dZZ5JvYN2HvJZ8Afr1BhFd2ZZsnDODQ6tVM17kshn/2C2h+rmzeZ+9LPmKunzpR9SMrEslx6kcqA7xldzg7KQtvIRDaVfRsUzaku/7VkmHi+4coMyfhUPkb4+U3cPPWQnO61TlFlfW96PfKnRFSkrvfaXjYnT6fzlONFGxPL3Ce3/m8OLchz9zifnuqHLXmvFlV/4wmp46XWfseLe3258le/ddlU1fEqr7RsmfdVylVfW1003mbB86QCyX5oAqEcnIXOKuj6WpWl6c5IkNwE4D8DrkySpALg6TdOHddokSY4EcCWA9wM4CqMfyr6Wpun99ZSBEEIIIYQQQgghZKqhZ9ncpV4ZJgC8FsCvMSrHfCWAh5IkkX8OeGOSJJsB7AbwCYx+KAOAhwAE7HFDCCGEEEIIIYQQQkgx1CvDRJqmu5MkeQGAawGsH/vx8RhdOQYAJ479n4jTbgdwSZqm++q9/lxg/tNPYsnW20cP9Gfp9eurQZfU0kVpWGwvrGQOrjxdcTLP5sF+E6HX+Islz0OtthSsvOl2c6CW9DZtFnFSJ6DX+Ms4vWz9hhuqwdf88+/bcWLJ8w3HGe3l//6vnax0m5A7SZ0AgCUXXGAOxHLustpS+frrjbzvr/7q11ZcW9uzquFPfMK+tmh6tLebtrCkU7BXlR84YMftHTTL4mskvXLLcrksXml5GjqMPEhKNwFgz7CRp0jJLQCURJ2sFQqCXQdeZqV74nhzrNUFN5smxNVX23GyK190kQmfeKKd7rjjTFh3kft2mLbZutWOkyvO5bA8t0VJRGTFap2q3M5cNUBf/8TSHt1OWbuqA/bqedXt0NypbjaALCmwi7M6d6qfZEtArelObWW/tdPIMGUd6Pp4wQtMWEvJpYxRdncAeM5zTFj2C5fUWMuzrMSyMdQY2inkKZs2WVG4/noTlmNel1FOrSte+yor3afEzWkx1iXvfW81/MpXIhtxL029dhtac7eSuKxsN41437Ddp+WU2bfGzCNnr7O3vJf1OjCcLXnTbZ/1jHL2Vd0AQua/vONLdpyUociJV0ve9MSSwa59tvRM9n857mv+Oi0iT1ll192uJ03f0k4HS4R+dnjYXHufevNa+rQQA2zZYke6Bp/sC1Zjq8lITuz6ASZlaUonv79h4r6gx6icq/UzMOvEdevsKPk8ubfHvu6Vl5s6v/OebJme1R+VhKwkCtkEewztH3RYHYjO8LcbTTvtOsK2llja6pD/ijJK2TSgnumin7nG0PIOFSfbV0nslrabG9rfYub0DvXbhxxqe1ttOXdzgAROYz3LtExP1PFwxZbnlkU5dbeWyNuWzx0AaGw8uxreoJR/S2Sfl42vx5p8AKg6/sGgyf/8gduRiZy39AAQbfjGtXaUfJz9AO+34s6vmLZxuaJYD2D1rM+UP+qHtjzWA0VKKnVDyeNnmXduLYm1+4gtma+xJhDIomRJ9wGgp8fkod/zVvSLMt51lx0pKlNea0+j/W61xNOapwZZ6DvuMGH5O84khMhUCZktxFhZhjRNdwL4LQCvAnAzgIMY/Tgm/x0CcCeAKwC8ME3TxyfMjBBCCCGEEEIIIYSQaaLulWXjpGmaAvgGgG8kSdIIYBVGJZcNAJ4A8FCapk/p85IkWZ6m6Xb9c0IIIYQQQgghhJCZCj3L5i7RPpZJ0jQdBLDZlSZJkmUA3ofRHTQdwhdCCCGEEEIIIYQQQqaGQj6WuUiSZCmA9wK4CsCCqb7+jKSyqKq33zlge2Uss/zGsrfy1l4lzQ1CLC+F8w4DpN277WO5Hbve0b2lRXhhiS3RdwwebaXrExYDneqT6BLp6aHF/dLwQHo66PKLgt27xVYVnyJ9Ch591D5PCP+lB8C7320ns0yEtH+C9H/I0vwD2LZtuThaaMXt3v1kNXzddYutOOlpIIuhrRrksW4nfSwZ6TL+IZBhRVl4Eew6YPfPJ54wYe3TsXWraY+XCZuyMw/ZnhpLr7mmGv7ai//NinP5dcl7k541C+0qtuxUtCeazENbeMh6XdIi/Ri6swulL3DPPSasDLU61prt2S2/Bz0WxN8StA9FVh3otDH8JJwehjJ/1f/PEmY0P7jZ9oMRTY8LP2H7Y5xbMV46e2H6nd5NXg7LRYvsOGlJoudIOcW4xolkpGL3f8uvqJLttSXsE3Hrrb9WsdJz6hgr5oQTTFhYj+Hc173OSnfKRz9aDT+oLy4qaGlbdj/YvsO07/Kttm9VeZ2ZjGqfUWZh+KpVdpy0B7OGhurjP9pkzjt3jXJoEHPriPK/8+3XVvtKcyQA2LChGqzxgGnJ7wGjyyTP0556sr/KMur+uKff9JEl/fZm40vlwNdGOAMTd+ylC5X33p2mvYd/53esqAbpx3bZZfZ5NcZEY6xVpkfyhrTfm+P9RD9ysy7bLHyTmrU3p0RM6is7bE+i791o/IQu7P13+7w1G6vBk06yo4aGTfuWG0TbK/81ifY/kve5otVum51v+dtqWM4j2ibvvPNMOXT/scqlkWadcsJ0+NvWjDvR70bWnGJF3XSTCZ/fLu6tr99KtwLiHWq4RRVSH+dHlnmo0Z6n5K2WHXOK7J76eSLf0X77t+24xeLVrtaPMMMcVSMLqTy5zh/+ujlYo4wv9YvBGCOOdz7N+evFWFFz9wjMM31loxAJPaq8IaWZoJhzAdj9bjDjdxfAvm89OcjBIV8sAHuwvPOdyEJWv/Ye3tZv3uN1lcpj2S/0+6uct7S988Mtxqdvxac/nVmwlRBjSP8yIMpfyuFPbT03Pvxhc47jd05NpncjIXOA4I9lSZLMA3ACgCUAngbwQJqmQ470RwG4GsBbMfrFYNzwP806hxBCCCGEEEIIIYSQqST3x7Ix+eTfAXglAPl3/MEkSa4FcHWaprtF+gYAf4zR1WTNsHfFvAPA3wSUmxBCCCGEEEIIIWRaoWfZ3CTXx7IkSVYDuAnAUtgfvYDR1WIbAZyZJMmL0jTdnSRJJ4CvA3jeeBZj/98O4G/SNP1hYLnnFAODDbhvR9YW6WYZrEuSpqVJra1mmX9DgwlvUzs2yx2or73WjpOr8+WuzABw6aUmLFdQa2mAPK6RAsgt6uW28wCwcaMJS0mHWlq8p98s9z3l7WdbcYO33loNN2rdhli+fH6/WcJ+b/fvWsn+6waT/5q1dlynutcql9rp/mOrkVH8x5dOsOJuOe611bBW0MgiW9IbvTRdnNgzuDwrqqZtsqiRWIjZv6fHXpb9v/9rwlqBKFUolnRloNNOKJbT69Xz+jiLZY17quFXdNrbqsuB8/CwXT9SJak57jgTPmutkIKppenW8vMWW2aIlxr9qX6IWj1ZRuptz0XDlVQmUiqwQ92blCb5kmf5fNay+5KWuYn2PX/H9VbUedf+njm4Tk1OQhc70GDmx4MH7WRimNeMIan80ErsJ40CGs9+tgm75lmNb33J+fPii59lxX3gA9nXllJ4GTfy4X+w0p0jBt853/mOnYmYS3V5S707q+EtW4wEccHzzrfStcl5RMvchk3/1MqYiy4y4fvvRyaWJKU7W0vuK7t0tcv3ttnyIzmdnndedj416ugMGhvta7tenuVQXyBMKRbbinzrsbe/fYUV19SYLX8ZbJj4veLhPvvnK8SN69usnHyyOZAPfsAao0PIluzI8te0odQtKW3SCnniqlXVoHPc6YYSecgyltW7xIXr9oiji7LzV8jiL6mIxs6QvwG16imrKDvs59cycd9XXSHuTWciO5PudNYzRAlAdD5juOp4/6Adt2+fqdeli+38zztP9gsxeSi5vsUnPmEfS4ldBHQXkVVQdvxWJNta57HiOjEnKwnurhdcUg1L6woAqFRM/bS2mrBulZLsT/plTr6s60lYPjgcfgOueaos81T9E+vPnjhO+3LISj79dCvq9jtKIpn5faWz05YrN3aY96uGTnseL8s6F2MGgF0/C7Ldf6zqUXLxU1qNFHXvsF0ueZ5l2aEqtbliEp6ifqeScm702u+At+8w73ayGk9r32mlc73ku2SS8to332z6oLYmcb1Tyjx1XxofK4cOZZ5OyIzG+zejMdnlVwC4fuVOAJwE4JNjK9B+gtEPZcnYv9sAvCRN0/X8UEYIIYQQQgghhBBCZhp5VpZtAHAKRj3GDgH4JIBvA3gcoyvNLgXwdox+gLsUQBuA8bUZvwDwJ2ma3gRCCCGEEEIIIYQQQmYoeT6WXSLCV6ZpKkV72wD8b5IkdwP4IoB5AM7F6Ie1T2P0QxmVvIQQQgghhBBCCJkTpCk9y+YqSZr6bUaZJMm9ANYA2Jym6WmOdJthVqB9L03Tl0coJ5IkSX3Lqs5DeudVMYpQGG/+4Bb869/9CwBgaJW97bbUwutBKD3A7t5sK2qlHVjGrsAAgJ//XPoP/FyVTHpPvMiKufjio6thuWX2C15g5yB9t7QPS3nL3eZA35w8UfoNKC+IHwifnfP/yN7TfUScV/rlL624oa7VphzSS23zZrscsgH0VvAZXh9Ovv996/BrA8bTSuv5pdXEhR33ZucpjTRUmXYda4ZqW1t2FpaPjDbjEG2jvfWkV56untXtwgNG+Kk8CNtrYuUPP2MOfv1rO5Pf+q1qcET4f9WUWfYfvbV5ZWLfHgDYvduEVRfBuauEH4TwgqjxffL0UdL4+l2VBsW27XJgA9j1rDOqYZfPUajXU8h24Lr77Ntnwl/+sh33x1c8Xg0PtRxtxUlPsbvuMmE9VUhfsqeesuM2id3rb1Lrmn/7t034TW8yYe3P6LB5ycRV3656LF33dfsH4ga2v9144kifMwCYN8+EL7vMjpNTqbJhQXnzz8yBrFjl+SK9+PS9WV4rivLwxD4vuk6lVdXqjr12pJzT1ImWV57vOHQZFqm4XftMmaXX0OphNR+LPPa22/Ob9tGrF32fIXWwd8BuM1mtTV/6Nytu1++Y9yfXM8Tl6SaruMYzS3pt6UykEaYwR80zB8u0cr53Pg91GUUF6WtLO6dlreI8x8Shx4xrrpbXk9fS9kRWmeU7AYChihm/5YE9VpyvSaPVz267xY6UE4tuQ/FiIP0+tceptLvS7xLSly8Gzjk4cO6Wtmp6npW+vvoVU9aDnHZdHrPWOwFg17l+L/V8Tw2ZxwE1d2y+3RxoTzpZCcrXVM5HcjqQ4xWw33G0JaDsxqUB9QyRlS5fSF76UitZHs/WLLyfQ+pFRo4NPYSaBsx7krOtHT6JLqQH4XXXmZ/rd6HTus29ad9Cl3fmOGecsRabNm3SfudzhhNPXJv+y79smjzhDOfFL07uStN07eQpDx/yzAzHYvQD2M2TpPuRCH8sb4EIIYQQQgghhBBCCJku8nwsG1+e0etMBewS4S2ZqQghhBBCCCGEEEIImWHkEZjMw+jKsskUudX4NE13uxKSMRobq+u2y4Nq+bDQcJQH+q0oKY3Rq2/llr9ySbtcCQ0Au3eb9eJPPKHWjgv0Sv0TTjDhpcnj2QldGiaZVq85l/o+odEZWne2lcySuLzcVvyW3vc+c6C20y7LCpNhXf7bbsuO02vtfZB6IwCv+h9hBai3u15rVsFubzHpljeo7aIFdw/bMt52Ie30Xh6ulnbLJdWru2x5yuphIZHtt6UfWCU6objvlfcrLd6zn23Cb31rZrGc5Zf9LIfuSW5zv3Stlm8u08nz4zIwyFh2r0+pVIzsYbj7DCtuvqhypbyxuqu35DNQUirPa2y0ryW70x9fcJ994majvelbc74VJcsvh5qUFQLu5r7qjfXLd0IlO1moqcgqf7OWVXznO9XgcpHw3e9+v5VMTmEPPWRnIaew886z49rXmv5UuvpPTcTb326lKzmkimUR3tuwxIprEH1XNpNSE+OUVWYcjjTYsukQKbALKa0EgJ5fmPCZC7dZcUvFw/Opp8x5t/SpeVY8vjodqqdgea7jPFf9ZMXpMSMlcNcN2LYVB68xYT09y2k3RK4MwJ7wNikJi5gEXPXjipPZS6sDPc+6yu/Kf1m7bBu/SpBSM8Buj0ol+1pORZ0cl0rr17fq3Gq4pcUeo75mElYf/M1v7Ej5wqk1ZKJiHW4J1uuPbouQcR/6LNPIa8sy6zLKd+vHHrPjpJxQv4NnPfu1TNV+xbHnMDk/+0qUdTpn/28w12v2fQ/TGTpurrEy8e8yur+76t+Ka7SfIQ3r7d8bfHD1Hy1ZlbfW5BhQVp03lK041zvUSKNtUVE9R8lxg2wJYNfzlVdkP0/ksW6bGM/m2Q49y+Yu7N2EEEIIIYQQQgghhIzBj2WEEEIIIYQQQgghhIwRsnD+hCRJXGtaqwK9JEleCGDSnS/SNL1lsjT18Lzf+2aR2dfNwkVtmTsSWUtb1fJ5iVYEZi3BHVC7YJ16qlcRJ5EomCXCeWQmJakbU2vy93cZmUuT2JKlrPI/S6z+xzq11eeAQ6MmdA9WuTpX2GXUmq8ArKXRWsdy3HEm7NDS2s1rS1ZH2o1csDtPweR6YcduX7JNt/faS8f7YdqpQ6lIl4jduUa6za6cJb3VldYbCEKXlUtcMqVdT5r7eeIJ+95WrxLXE2XcA3scLmlxXNyhrxwW0gMpy9HV4ZKnSFybmslLW7u/IlyiKc/zbiep9wJwe8VIL89qeNxO22jGg5y3dP24ZJje5XLsMBVDziPLceutdpxUIXeuf4UVt+S9/eZAbHmp71luGKzlERs2mLDuI1a/EBrNPZXldjl6jHz29v7VVtxZnUYW3ufYaFL2XS1FPaVDzM/qORdbBqt3QZTHD26z5ZUrxX0feZS5bz0OpQxTx/nKJF3pfPtxqFxTPnq0VFc+OtXwtZB9S+7OCgCLFplwY6OSH8mL62dDxoSXp90bGsy9OncYxMTzPWCXMYbcqGYnS8/7cT1r5K7PJbXboLyccoKokbVnIicLZXkhn6NLn7ClzPLltCwmrmWOtnDVsX6Vy9wsN4/O1oFsG5fE7vOfz35GbdxowvPn23EyrQzr+5TF1+/77e2lCdMB2XNHqCTcidw+UduKiLbXMsasXwV0Pcrnhst2QiPjXEpRXym2focqB3Qt3T1lHjVtIyplpFFIcD13Op1qYkmgCZkphDw93jL2z0U69v/NHvmlgeXwZu3fv7LI7Ovm11/qme4iEEIIIYQQQgghJAf0LJu7hHykmnSlGMzHMp+0hBBCCCGEEEIIIYTMCPJ8LNsO8xGMEEIIIYQQQgghhJA5h/fHsjRNOwssB6kTl59QhjVVDdoD4OBBE9Y+LyXhR+XK1OW1smup8YdZrDx4hoVvgfQ30F4BTuz92P3PyyC2dw4Ay1DIO3+17/zu1HjGLV5sn+eqrxG1dfWE1wKwf9CUS295Ly0TlgxstyOFgVF/60qRh72td0V4rSzLUY9Z9ZXH02f+fIc3hxw4YnAsgTbLUAYinsi2WS6y6Ojw9wtx+XRIXOPet+9G2RpcGSJJy0HpfQjY1b92rQm7PKFkX9VppXeRPi/Uz8bbS6rP+LG96tR+O48uMzbuuMM+b81FV1bDcgrr32qne8ELjJlUW5vdHz/wARP+nd+xzzt0yIQr64x/XIueLm82FzzrwD12XOvp1WCnspzK8sk6f91eO2GDmUhczzJNiKehK39tmTUC41O2tNd4s6G3x0p33+BZ1bD2E6pUpm8fJd8xK+dxaTsE2OPQJTGRebjq2NlO2rdTH2cQY26yyqiuG2XuE8Tw9NG+T75z/IpOv/xr7lkaRinTtTY5X7QpryqBnJ+VTa1Vft3P5Nx3//12nPR8lM/DrPebyXD5CrrSyWvr57IcG9qvUd63Ncf32+kWLDBhXXfy3d33nSDW+6w1bsSN5hkzWXWgX9tlt8tj15U1NnQ/s61L7fLL97XQPmJ5hGJIpTX9tTS4385ImEVKz1/fZ2Mo+r5cv4sVXRZCppNCvcIIIYQQQgghhBBC5iL0LJu78HMvIYQQQgghhBBCCCFjcGVZBltu2IJf3vBLlOaV8KwznoUzXn8GHr7tYdz11bvw5I4ncfE/Xoy2Z9vaxIHdA/j6276O5736eXjuxc8Num6s5aqlASNzKQvtXHv7Citdedgs910CtbZ7kVjn3KekZ3Ldt5QsOOSO+t6WtmUv9S6LbOTSX9/lzxOlnek4l77L9eFiSTYALB0wEqldJ55txbW1ZctffJeOy+Xu3d12Wmu5eK/6k0rGOnnX0npN7C2o80gnrGXxspBaH+FC1oHWOWeQp0/LbtHU6Lcs3jWG8owv13k+5ZgsDymdkDLGkVZbrin/lNekn2i+8krZpoESLEuOIuZfAMD115vwjTdaUaUPf7ga7u1dacWdcIIJy3Fz9dX66kYzv0qpoO4Rqsn16/V5E6OH7o7uS6phLQFql9O/mgK09NUkrF8WnweXDNC7/8s5QP35ePW2H1XDdw+ea8XJ0/Qc09Rg8vGVjeUZvzGQcpvM9oT/XFHzp3fXvCg6W6jEy6tMitiyzjz4luvJJ+04bZXhW5as/lNTDjkp5JCtyzy3Cvm4DAO2fFmrbzs7TVjKLoE4U0mM94xzzjFhXSZZfj1/Sg4cyM5Dzh15JIhFv0P5Xleep7uPvNcY5XWVUU4/uh5l22i5rLTHCC2jPdXZ871s36GGJiuuHGATETq/ZVn4AHaduOxCZtvvXoRMBnv0BBw6eAh3ffUu/M5Hfwev/NQr8eCPH8QzA89g8bMW4yXvfQmOec4xE553++dvx3GnHTfFpSWEEEIIIYQQQgghseDKsgk40H8ATS1NaFzUiD3b9wAAyk1lLKgsyDyn544eNLc3o2EBq5QQQgghhBBCCDkcoGfZ3IQryyYgHUmBBLjnG/fgm+/4Jp51xrOQlJLM9AcHD2LzNzfjeZc/bwpLSQghhBBCCCGEEEJiw2VQDk697FScdMFJ+PE//Rj3//f9OOm3T5ow3V1fuQsn/87JmL9w/pSWz+lVUmk26Xp6quEleNhOJz+DKy8siC2Ka8T9UkMvhf7KaMHbq0QbNIj8Le+iyP4LmqLzD96uW9a/ritRj4cO1V8Wl9dETR6Nwluhc0VmuiUF+MOEeGYF+zgIP6GSNlRxITuvMiwKKZe29xF2hFjRacf59uUYHiSFI+q85r7k/KMNYVxtJecjkS7KfW3aZB/v3m3C0twGsPrFRRfZUVl9/C/+wk53wQXHV8MbNthxy9vFFvXK++S+rSZP6Ufi8txxIR41AIAjjjBh6alUtDde0fO4ZbAEWAPxtJ9+xor6r+PeVg1rP7muLj+fstD7kV3c5dWTlW40bYBnn6u82n9HjlF98QyvnjxzUYx5sPD+FMDixf5pfZ8vzvt0dJKSp6eSfASuXWvHySz08JJxuu/G9uzz7Qe6rrq7/a7dXLHPk568rvv0xTU2QsdCjP4/ne8jvqt9ZJ3rPhiCLmNLi9+91Qwn+QAWN+M77vJgl9ku74JscZWFfg0L7cuEzBT4sWwSGhc14oSzT8Curbsy0zz+4ON4+PaHcec1d2Lo6SEkSYJ58+dhzYY1U1hSQgghhBBCCCGETBVpShnmXIUfyzIY6BtA/6P9aDm2BY8/+Dhajm3JTPuKD7+iGt70lU2Yv3A+P5QRQgghhBBCCCGEzEL4sSyD0rwSfvDBHyCZl+DIY47Ema8/E4/89BHc/m+348BTB3Dj396Io1YchQv/5sK41w1c7uxckiyX6urP3lICoSVLcs281n/JuM2bTVjpd6RMr6TzkLofpfOxZG/TKIEI2XI9D648su57pGulnU6sF1+G/XbiAdHeesl2o7099UzH2RbDQmpWoyMy97l3wM5DSyIkMhtbaewvUfDtF75SCV3e5kpGwhzXlhS9bXsR1x6RknOtH3Sd1+AngXORWWY91k4/3YTXrbPjRJl95Yinn27Xscy+Jo8dYp5VUuCODlN3UipRxhBs/F4Vdu+2yyWn/EWLTLipcfrk7kXIh0e6T6uGde6v6PtBNXzv4PlWXJYTQWlgr52Jo1/73o+cz/SjOMtVAbD7hUslGUVm5RiTsecm51gbtvu/630kVDaWhW9+eoqJ8e7orB/5fhgo//KVc+eygsgoc6iU0HXtUKmuKw853lyrUqZTyhZ7zixaLuti2PFK7KJoGakTWej+fhN22EyEWh1IdP1IKwXXOKHsksw1+LEsg6bFTbjs05dZPzv++cfj+Ocfn3HGKGtfs9YZTwghhBBCCCGEEEJmLvxYRgghhBBCCCGEEJITepbNXaZwO7PZw6Kli2pWlRFCCCGEEEIIIYSQuQ9Xls0AUiRVvXcsfy4rH7FffZ7tlWXn0F5AVj5rz5j4uhrllzPSsiTzPO96kIYPSmAvt1V2+UT46utDNP8TXds3zhfLF67vcTtS+huo+vf1LAv1Zgv1CJF4X0/e544ddv6igZu1CUNXV2Y5GhrMtX2tsHR5Xf4YMu7JJ014aZudbjo9+2Igx5r2qpL1pX2ULA8nzz4Y6tMR7DMi+50ssPYlc5ijuHyCguYHWSYAaG83YTXJNzcIbyZZxj6Vh4zTg0HEnXqqHWW1veWnOHNMTVz9wNvjSsZ1d2emO0V5ke0ZFn57Mo9Ipi9ZdqXal0w2qcue1DWHyfmyiDnL1Ra+begitidRrPN8PcVC/bSyqJlLA+ewkHk21G/Mt37yvHNkescG9jNNDpvNTEK82oI9QgPbJgahY1R23UC7velF/i7TenQ1HNrHXfiOIde7rnyfBYDFi0f/T9OgIhEy7XBlGSGEEEIIIYQQQgghY8zGb+yEEEIIIYQQQggh0wo9y+Yuh8XHsu+993vTXQQnrc3Z2//6EroEX8b19tp5SPXO4KCffLOlJXtpbnnY1n6UHFIT7+XEIo+hYbX0OvssNPU+bA7k9stqTXwMiWBpUMiP1Bpw15b0mfnlkWpJTY1efy6Wc/uS69pS6yPDWtLrqANveYG8t44OuxxSluZ4ksWQ12h5k1SEyvEE2EWePz+7HKHL6eV5cmzoblD0luhNkJVij3nZPW++2c5nwwa/axch0fRGa9bG0ZLzqVzE7RpfvhoUPTdv2WLCerv6zs5qsEFcSxdlBNmy71CpdwxC+lboc6GkJoglYmyMQMhrArVCvvOznqfmzTNhPUU6nA6cMvMQ9LWz8peSz8kImh9UP/bNowjpk8859Vw7K488kuQo70mBUlp53lRaZRQhg40hGZ5qaZ7PObEo+tngms9i9EGXjDErPxdFvO+EWlf09ZmwnsfH4/ghicxWDouPZb/Z8pvpLoKTq65683QXgRBCCCGEEEIIIYSAnmWEEEIIIYQQQgghhFQ5LFaWzSameom/jNPqNUnzjvvsH2RsszVUWW0lk7uiPPGELcNZ3WnkiSOOnRl966TckF0/+5WMtKFjhdd5vuVw4rmzWZRl01oipY8zzvNdHu5dDsC+b8d2RFEkLlnXApx1EBvd1HJM6Th5P1JW1Ntrp1um5JsSX3mESyIVtOOfI4+aOMfYljI9XT+7d5twm9oh1PvaAX255j4dW+eOdCzPnf+k16sXpbEbbjSSsrLvE19v0SZ399S7bYr5P1Q+KImyI2gkQuRH3vMUYLWV3d/jSOyk7MVTje4qYk23yHq05dl1W+av46TKWYbFJsYA7PktdA6byl398jzrfWWAMcoSIifTaUN3kwwlhszQRch7Uh4pZFZc6HMteGf5CPi2qWv+8R3LefAtV9buwTrOlX+M99lQOW7sd6E8ecj60u4U48+eZ56puwgzGnqWzV24sowQQgghhBBCCCGEkDH4sYwQQgghhBBCCCGEkDH4sYwQQgghhBBCCCGEkDEOC8+y9c973nQXwcmCxoXVsNZ6a4+QLAr3Jdi61T5uF0ZKwrikPLjXSrZwYXM1XHMvAf42offp8ouSxPDrqslDmrLoe1Zb1GeVJdTfwNc/Ieucyc6z9fnKF056T3i2tevazvt0+ML53reyevK1mnPWscyjpg3FYO8bMOPk1lvtZK+6zO/avkylh8lkyDpftcqO+8hHTPjDHzbhUFus4Pv+8Y9N+EUvsuMcfmzRy+HJSKXZOpbVFeqLaGeo57C4rxF55uCi/ZCy8gz1c6p5CIrjxWIu1b4n3l5zCpePjETOU319dpz0BwttajnOdf47dkxcDsC2m5TzQ4wxVITnVOgz1lWukGd4HnzrMva9hbZhaHmL8OMs8toxPIpD84zhl+ZK5zuPTPVYkL6O+n3Q5a8q78e3XHnKn/UrhH4uhHgH1iAfGo6GyvIl01kAQE/P6P9DQ35FmK3Qs2zuclh8LLtt7drpLoKTq3p+Pd1FIIQQQgghhBBCCCGgDJMQQgghhBBCCCGEkCqHxcqymHzg7rvxtV/9Cg2lEv75BS/ARzZvxncuuKCuPEdGzDJb1/LkoWGHzG1wv53YU0PmvWx3wQL7xHvuMeFjjjFhvQZ11RnVYEeHHTWCbAliFqFLi2tkLZh4qXEeCWIWNWWSElapKwFQEpXiu/Q9z/J867z+PVbcroNLquHFi83PGxqyy7F7t308vrx6Ip79bBNe0uJXxiJw9XF5P/peTj998vzyUHOfQi7XIsbyqacGZe8kVBrj2+985xEd51rxH7KcPXT8Otv0pS/NnV8sZLnk/J9HDiflEvqxECTvcz1bdKNFkNrHkLVIGUtTY/1zfB58x1C5Ib5ESjbV0qUm/NRT9nlSYqSbzNcKwoUsR0uLHffYY9nn6deOegmVUxYt/ypa6heSZ6hssWhi1H8MqWLoeVPdt6aSQmxMIhAiD503Lzu/CI+5GrKe9YD9/JLzZxH9eMRhDSNxvftn2QmVZnf3Jocx/FiWgzt27cI3H3kE97zylbju4Ydx6Q9/iL+Z4X5ohBBCCCGEEEIIKQZ6ls1N+J03Bz/dtQsvW74cDaUSLjjuODx+4AA2POtZ010sQgghhBBCCCGEEBIJfizLyYKxtbkL5s3DsUccgWOPOGKaS0QIIYQQQgghhBBCYkEZZg7WtrXhg2NeXf/1619j5/792H3gANoWLqwr31LJeHq4dOY7dtjfNqUHWENjk51n5O3ALV8yAPjVryZOpwxJpFeJ9swaqhjPrFDNv6/HRk3+gxlrZXMUJPN6Nb5tYs97lX8MrxKvMgHY27DEOn6634QPHTLh9nb7POmXoH0Kdu0yYe1Jd/CgCYd6oYR4teWp00WLTLiz0+8cl+dIaPmlT9yRR7qvl3XtIig6f+mHpL2RXvtaE3YNy+Ayem6R7utz5F0mucc6YN+4njvEBCptIqUfIGBPu44sam9TlsVlXOVLDPOWHGS1jcu7azpxjuXhoezzhI+Mq2+5vG4kyjozStP7cuCAfSxfn3bssONkv5bpKpUcfl2iEkqiIxTh+eXrjRTD2yk0z1AvsqLrZzp90GIQw1dW4nrWFOGZ5XvtovOI0cdd5/mO0WeesY/lO7LreeL7rKm5T9GoZTVxNzQ0wwfvfhfYgVwSQzlX61ecrq7R/2fKc5iQvPBjWQ5eeMwxeE5PDy78/vfx9PAw/uOcc3DJD3+I/77wQjRN8S8JhBBCCCGEEEIImT7SlJ5lcxV+4cnJPz3/+dbxa/Wf+AkhhBBCCCGEEELIrOWw+Fi2/nvfm+4iOFkgNBGupel6y3W5Pa+WMJVFy7qWh7uWJFvndXfbF5CF2bbNhHt77XJIbZ5aWjzskgd5llGSRx5X5HpgvfVyKXCJs+9ixVD5gqwCGdZLqKX0Ussw5883YS35yYprUlUfvMV1oOxBIsv1xBN2XFvbxOfEKK+mPLy/Gn70UVtS/dRTJqylonKc+3agIrZmj9EW+rxDh+ovp5VnX58dKTVfa9aYsKo33/nHKTEaNO1bM5FLHIP+//0/E9640Y5bu9aEN22y46SsWkuly3KwS4maY/v4UtEaIH29gP4U2gd377aPs+TpRUjIhmDqXM+lzZUwaZKc1+X7QhH4Suza2uy4xYtNeOlSO8+nnzZh2e1y1XfGn/pjyb1854fpxPdeQ60OQs6bapme77VnahtKCrElELja17d+Qu0jYpwX2r6ues16Xw6lpo7lBL1lixU30HV2Nax/1/NGzoPydzbAtopxIOtH15V8ldCvOOOXTlOvyxAy4zgsPpbd9pvfTHcRnFx11ZunuwiEEEIIIYQQQgghBIfJxzJCCCGEEEIIIYSQmNCzbO4y89cbE0IIIYQQQgghhBAyRXBl2QxDe5U0NprvmdddZ8dJnxptKSYpYitmyzzp5ptNWJuOSJSQ3aX7zypzqM9FqMeGr6dbDLSNgPQmWN4R6EMh/szRXLGHe6Viyi/9BpTtnFWOl77UjpNptSeO9DTw9XjI40nnG+ciRhmjeHSJdtJzgMtHwyqL9srzHEOZ+U2SNitdLu9Ax7XXrZv8Wvq80vCQndj1Zz45hwX6bnm3vaNz+Xq03Hij+fk559jp5K1s3Zp9aem7BQADLSuq4TtuNj8f3+p9wmN9L7KOax9gmCpCffNk2sWL7bZ48kkTlhZ3wmYUgP2cduWvkWWWNjXaG/Kii/zmt3JD9rWWtWdGWTRU6vcrcqGHpOwyCxfacb/6lQkfcYQJ5/IUCzb5ycjP0Z6hnl++FHFeVvvGuM+pPm+m+MfFuHYM3zCdNoafWYzfJ6ayH+fB9ayU89a+fdl5yPlMTz3yNUPPg2XHy2jWFJbrXU4W7J577MTCs8xVj67XKfnrnU43Hid9jAmZTXBlGSGEEEIIIYQQQgghY3BlGSGEEEIIIYQQQkhO6Fk2dzksPpY978znTXcRnCxsbKwufW1yqFY2bsxeEqvVL00wPxhqaKqGA9VGNVjLczf+XjVYuuN2O6EsmCpkL0y59FbDrnqQ+C69jrH83JfQZepa+mShG1jikjpJbY/Ko7RmTTW8pMWs825p8V9w2tFhwn19dpyUZcoilnNse+6qL9n/5bVcS981Mq2vWidU4qWx5BGigs5qf9hKd3e/kcpJKRhgy8GaK1PXx4EwyUWojNqFJb389KftSKlVF/0dgDXpxJg7nPcix57qkIPDRj7rGspSlirHnUbLR+Tlrr/ejtu82YSvvdaEP/pRO93K1j3mQOutpYZbXzzjhnLJ6ALm01xyYjGRlFXbLG3zKKCjHJPFSWTV5bEokPnHkojHuHYWNVJRIWHV8lM5xz/9tAm3qXbxvk/5kNJaWkd+vu1bxHtGyBwZ+g4SXH7ZUI4HbtF15SJUVjqdck5J0RLEoim6jLHzdMnFn3rKjpNd3mXtkZWu5gfqF6IDB0w4ynvqoUP2sesFWiCLqJPJ+pKSeZl23rzsIhEykzksPpatfd/ayRNNI7/+Us90F4EQQgghhBBCCCGEgJ5lhBBCCCGEEEIIIYRUOSxWls0V9LJdS86g1gwPCYmjlNeceKKdx6mnZuQXyMi6s6zj0m23mAO13eMysY734bW/a8WtaOmf+AIOjZ1eNt3Q4Lfk33d5exE7CQ0NZ1/bao++fhOWsifA1u/oTiIrRWtd5RpxS0Zh76rowrUsW67stlRolTAZiMsLQO7KqaWK558jZHqqflxtL8sv1TudnQVICGSdd66w4k4b3F8N3/mLJitOlnHNmvolWDFkkkVILS203veGG0xYbxN5//0mvH59ZpbectnQHeLkAFDajMbG7PEmry1lmAsW2Onk0L7gAjtOStt+8xs7TipTP/ABE37+81VB5JzjkoTH0vl7klXnufpchDLLOeexx+w4uVPp0rbsPtLXZ8qsdyQWm5UVIhmOLUPLk598zrW323FyqEfZWFVKL3Ps3Oq7268vMep7yqWirgewnB8c8tasMgFxZHpF7JhdNCFWInl2Zo/x3hq77pw7WsewPfC8ts5DTgl6x0u5U6/LBkE+TuRuysAkc5g8UY2hReI8+WzQOxw7+4HM/6ij7EgxtmUeesjr+5FI6eXixXbc+HuqVn/ONehZNneZmU8PQgghhBBCCCGEEEKmAX4sI4QQQgghhBBCCCFkDH4sI4QQQgghhBBCCCFkDHqWzQQOjRixfKAxx64nbd8bubX61q0m/L732eddf70Jn9adnb+vv0SN34DDJ+jOBWdXw2fiYTty0NTDnsZl1XCL6rHyeqGea65dz0O8IPJ4mrjKbHkHtJo6KLv2jtZx0lxB35w8FpWQxwtFZqEtYLKsjfTPmxr92s21lbfTJ8DhSSTP034MS582fbJZGkV02Lvrjnh6vPn61Oh7KYsbPXPTF6y4f5v/tmpYeiMBQKVSv09NbC8jV/7eY01OaIBtyqX9/N7yltxliuGlU1NvDs8yF/I0aWPyP/9jp3v6aRPu7rbjNm82Yem7AtjT84pORx/Z3G/CejzJgnneWwzPmmD0AHM9ACTSmEzl0VBZWQ0/84x92qOPmvDChXb/aa6Ye5X+cTIMRKoTa45XOO47pP+HeqLpx5f06XNZ5UVBzvHt7ZnJfJ+PoW3ma6UW6s8V7vUkcM0BzjwKHtsFU8TzsGg/sJDr5nkHDLle0Z59of1MjrU8v4rJx4Ecv/PnBxWjxl94sN+E5euP9nh0Isfsccc5rzfRKYDtRaYfo676Gs9+ii1NpwV6ls1NuLKMEEIIIYQQQgghhJAx+LGMEEIIIYQQQgghhJAxDoNFkbOAeaXMNayupcUyTm/VK/nQeT8y4cvt5fL7u06phoeG7W+nsZfMjqw/2zo+07qfTjvxtm3VYL9Y1nzwoJ1s8WJTZl9Jo0ZuT6+RagzfZd95lrC7sCSm/aaQQy1HW+nksl/di0oOOYlVLiEldMlddDeVZVyGXpV6wAQHW6rBXald/sZGv/rR/VFKdlwSJl/0ttYPY0U1vKIi7kXLANeYMRRD7tjQ4KgPta5fqmwHBpCJlGS6ru0ihjzRhfe40dJu2WG1BtGhDQiVlEm821uMQ1d+UukHAAsWTBy+4AI7nZwXdT94wQtMWMo1VbHcyMHmmjCVjk7eqyxXc8N++7zGJq9i5JH3eSP7j578hDxlT4uZD/RzqFEMyxNPtOPks9kl8w+VJnnXgeOB7luOGPWdJw9ZLpfMJ0iCpTP0Hgz14+rHrvv07SOhdex7Lf2uKN+9vPuq1it5vnC66i70mRRDuuibn2/96HS+vwv4kqeMscd9jHrMk3/ItfWjQHZXLReXXVfG5eoHIhMdt6QyVA2f2y0f8C2Z+dcgC6k9OywrAvO7gC5/uWHiMBBfTkzITIIfywghhBBCCCGEEEJykqb0LJur8FMwIYQQQgghhBBCCCFj8GMZIYQQQgghhBBCCCFjUIaZwZYbtuCXN/wSpXklPOuMZ+GM15+BO75wB379s19jXsM8NB/TjN96x29hQWUBdtyzAz/7j5/h0PAhzGuYhzM3noljn3tslHKUBoW3izKz8PY5EiZO2u/qs582YW0ZsXGjCWuNfgyPBKd3g9iKfMXW202EKuTehWdUw2VVRte1Jf39phyrB++24va3nFYN+3pr1Vz7uq9Xw19Lf9eKe9ULd1bDI+3L7BOlaYJogDKG7HTCY0Dj8rmQx3v6s+9N7irt9G1Tni9Z1146sNe+QJ+5zz0Ndv9c0uLXx0v9e6rhB/uWWHErO0Q9qjEkvVaWVZTZU6NYT91pxlCoH4av/0ZNHbeY+ynJQQngwp4HzcGwMrvp6Tdh2Tattm9hKFPpc2T5xK1aZcedd96EZQrFtYw+ho+jNacDGBF+XdqzTI49aVenm1AeC7tHALavnbYqkW3zcI+pO32fC45cWQ0v1d5O+uGQQXNF9gOHMZMihq+Xhb45WckOlgyaOQZP91txe1uNn5nObvduE37mGTtueUfYnOBLEd5APtfy9fecLC6rXPq+5JjVXjrTRZ65yFUH0h/MdW+u55BlSRRYP0PI9jUdFs9mPX/K6cG6T1WQ0Lk7xHMtVtuE5BGarvBnrINQnzWfc1zXiuWdFtK3mhrr93RzXVePk2Exzvv77bhljeLd9OabTVi8+wDASKU583q+foGxvd8ImQvMkNeKmcWhg4dw11fvwqs++yqUm8r4yu9/Bc995XPR0d2BM648A6V5Jdx5zZ3YfN1mnLnxTDQ2N+K33/fbOOKoI7Dn13vwvb/6Hq645orpvg1CCCGEEEIIIYQUBD3L5i78NDwBB/oPoKmlCY2LGtH/aD8AoNxURsepHSjNG62yo088Gk8/Mbq1WOsJrTjiqCMAAIuXL8ahg4dw6OChCfMmhBBCCCGEEEIIITMXriybgHQkBRLgnm/cg01f3oRV569CUkqsNA/c9ABOWH9CzbmP3P4IWle0Yt78eUHXrln26thH3HtpdKuRtt14g51Oy3Ik3/++Cb/0pXZclvImzzJy5zbZUnomZT8DtlSuucFImkbQZMVt3mzCWnog73t1ZbuI8ZcHebN2bTX4qh23qMiu7PMy2l7Xle8gdrWNpxIpOH9byqDo66sGl7TYf5YZwTKdemLEuvWVW26243qFRk13eKFR817CrgiViWX1f+c4UZLbkrwfKVUEasaKTzmKJtf8IOWKQnqZJw9X2ttum/jn11xjH8ux8Wd/Zse1tflJgKxyNNrzlPxL5Fnr7PP2D5rzpJyyecd9qpAmsq/P7sdSoqnlU1LaLOWCmsWLTXjhQjt/PxFmMRKjGBKprPxqyiE7gpowm8W1d+2285DSy+WVPVYceieW2us/T1vPwxx9PAYhdez7LAi9ti7HVEovQyVpoXUnx2xDJUzmJusnVFol36H0q4mUj2spuZy35FxUqfjXT3Qpdg5i9HlXfjFkpFM5RwbbSTjklSF5hN5LDAmob7lc6Z580r72r35lwtpK4coN4kC+1/X22mXsMs8QZx07tNixpbSEzAX4sczBqZedipMuOAk//qcf4/7/vh8n/fZJAIC7v343SvNK6DrH/tCxZ/se3PnFO/Gyv3nZdBSXEEIIIYQQQgghUwRlmHMXfv6dhMZFjTjh7BPQ96vR1S8P/s+D2P7z7Tj3T85FkpjVZgN9A/jhh36IF73zRWg+JnuFCiGEEEIIIYQQQgiZuXBlWQYDfQPof7QfLce24PEHH0fLsS34zV2/weZvbcbLP/RyNCwwVffMwDO48W9vxOlXno721e2OXCcmRZK5bDV4SayQpV17o5Fw6I3MzjnHkYfgwW12OaT6K3R3Je8l1fJTvd5xUUiadB6nrTL6hft6bOlT8+Dj5iBDrgYATVt+Vg3fmZ5hxT372Sa8pCUzC1uHoPFcDi0laYNKbiolEWpVNn7zGxNua7PjZFXKPHLtWhoiO9H3bGszvPO3kOfprQItHUvYDlyh6UKW7ufJwxobPT12nOwM3d3eZc6iCLnmoLVRqSpHxtgOlXfo89avn7j+u7rsPIRKGL/8ZWb2WLfOhPPsnCt3ZLUuBqB/2EjorW69ZYudiRjM5275lIoTu4W2r84sh5zTn3oqM3vfzS8LIVjeIbcXc2jOQ+VMMm5pm2OMDqq5T068joqdzt3ufNPFkCBOJaFlLFryps9r9rS8sHe8LHa3R/0Il69QuhvHsHiQeM8Bnjv+TZZ/jH4RQiwpm+9OjVNZ/iIkfDHqqwhpZxbS2gCwn7/aLWSoYn6HK19+uYlQ22Z6j2U1SOV5rp1zKa8khyv8WJZBaV4JP/jgD5DMS3DkMUfizNefiW/+0TdxaPgQvvf+7wEYNfl/4R+8EL/87i+x97G9uOdr9+Cer90DALjwby7EwpaF03kLhBBCCCGEEEIIISQn/FiWQdPiJlz26cusn13+b5dPmPa0V52G01512lQUixBCCCGEEEIIITMAepbNXbimkhBCCCGEEEIIIYSQMbiybAIWLV1Us6psqsijfXduzy62mn/N5fV7EWgNfYhPWbDevcvsOurMQxogAZYfzNatdtRwl/ECOmVVi4hQfxb4+MerwTMX3mbHHXOpCbc4fMlEnkMdK6wo6Vfk9GIS/k1QtyltC/R9Sk46yT6WbShvu6zaNrq/hPJZsI614YkwQynpTifad/ugac/N/UdbyV6x6sFqeKR9Wa6iVq8dWAexPdFqkJ5H551nx/34xxOnC8Tb40SPoU98ohrcdtGfWlHSh0sPX1+vG19fO1f5ZZzLc2fNGjtOevW4fP98ufMRu++e2fddc/D851eDI5f+rpXune804Q0b3mHFNQjrup9/x77eq19twss7TJkXLbLryne+1/aP8rwY9eN9nu6DsmDat7BiNuQp9T1uxT3YP7FnXEtLtl+Unj+t602j4Zu3/6NnHpoY86DO37e9Q/yRQn2rivB6sryGhofsSNF/XPfpO0ZjjD1dDjk2HBawzu4fw+/NwuFPmseXNQj9MJMThHoWlzzb14XvvYWO35D2CK3jGG1fiEei5T2p2ld0bFd9y2PtKyjHkB7L9tgri5Ps9wVJ6Dwlr12EtxwhsxH2dkIIIYQQQgghhBBCxuDKMkIIIYQQQgghhJAA6Fk2N+HHssMBuWTYtVZfj3KxXLwMJQ2A39JxqbDTsqoY0obSwF5zcOutduSpp1aDfX22/E7KSkcazLLmGqmfZOlS63Bnw3JzIKRO+j6bRD3q3H2Xvst0+/bZ6Z56Kvvacml3qALItaxcSi5091miylKlvd197HltyfI7vl4NX/FpW6LW+uGV1XC3UsvKulzalp3/0LAph5aZuOSCIdKnUBlFzdg+/niv60Xn5putw5F3G+nljZ+2k0rl6KpVYZcLGUOu81zjRNd/s+eY8i3jmU/9wI487rhq8FNfMtL6dzT+m5XsoouuqobXr7ezkNO/ahps2WLCra2mjFq1q1UnkhCVYeh87z2G9FjoyJbJW31EyVq6WnXq2nOACaSXEsfb864nzbNn6TPbTYSjvKHEkM3EkCCGyh9D84yB7xwcReIo3kdC89f1aDsdZEusQ+tbypJb1ZjJeqWayjbT7Nptxy1aZMJNjYHl6usz4R07stPp9x3xAlESE28smVvsMRT6vI3xLhRDSi7JU8ZhIX9sqNhjVJ4XWt+uZ4gsixzL+rksu1bwXNS7c+IMEa9PEjLbYM8nhBBCCCGEEEIIIWQMfiwjhBBCCCGEEEIIIWQMyjAJIYQQQgghhBBCcpKm9Cybq/Bj2SzGpa+3vcKaJjyn5jyHV8bgsB3X6NlzXH5OUZAmOS99qRUl7+2Nb8zOorT1PnOg/STe+97M87KdtmycHg+D+7NP1MZBYxw6ZB+vHBblb1WmQZG9b/S9uCzesu67xktBPF1cfi1OhJHYLVvVdtrb/tHkv+5KK0pW8c5eu7zSzynrHADo6jJh3X1kHeiHqKvuJN5eIrruVq2eMI+it3QfOud86/iv32fCH7p6r534mmtMeNXbvfIP3eLe1yvJ1U41HifCM3F/Q3M1nDF0J0eauKnrvUpaJj5hG5Od276nGr7zniVW3F13mfA3vmFf7uc/N2E5VaxZY6cLvR9p3SOn6tDnQtE+R7G90wBYz1Wd/9Jd95oDWcnKGHGk0gwf8viBTVceefD1CnOl834OOSi634Vce/sO+77k+NXnNDaatPq5E+PepM9XDF+7GLiu29YWQVSjDaPkmNXGpsEPhIkvp9vQ9YyS+HprhT5jXelC8oxRDhd5yuj7rhtjnnLlIZ+dupvFmLu9X0wJOYygDJMQQgghhBBCCCGEkDH4sYwQQgghhBBCCCGEkDGSNE2nuwxeJEmShpQ1SRJ0PCf+NuwxaW1uxV233TNpuihLbB15xtgWOHTpdYx0k5VluogtXckjcyh6GXvR+Q8Nm/y16kHKuqxrheodFbHHQ4wt1zXTKa3ylTfJNizf9iM78TnneF07lJB7i9GnY81Tsu5kt24a3GMnvPlmE163zoq6ZduyavjGG+3TLr3UhLu7Jyvp9DNT5nQXM+kZFSJBjDHvTTUx3mNi5xGK77Vdj7kYUvuin+2a0OvF6ONR7kd6n2hk42hJpogrot9lyfti1cFUzhcxfhcIkWy78stblqw8XPlllV/PAeWG+tvQ2Q/kBdV7tU+9nnHGWmzatCkJKuQsoK1tbXrxxZumuxh187nPJXelabp2ussxkzgsxMm/2fKb6S6Ck6uuevN0F4EQQgghhBBCCCGEgDJMQgghhBBCCCGEEEKq8GMZIYQQQgghhBBCCCFjHBYyzNlMqI9A0VsxZ+VTtNfHTPLKCEHnt3dAbulul0NaWxSxTbYk1Kshhs+Ly+tAejCUK/BipKFsHU/lGNK+ao2Nnl4QDqZ6+/R60eW1fDQCPcpieLPFmGN8vURieJoAdt3J+WGkcYldjosuMgfKyOTsdpPH+vXZ5ZDb0DtsdWqYDT5ikiK8OUMp2s8yJI/Z1p5A/Hp0jd9YY9uXrDkm0IrT2yNR51+EX2MWefpg0e+63nm2tNSdZ4xyud7RXD/3LUcR/sK+FPGOmUWMPugqR2h+Mq4cOAe4yuGsq9BJ5zAhTWt95MjcgCvLCCGEEEIIIYQQQggZY1Z/Ju7t7cX27dsxqJdzADj77LOnoUSEEEIIIYQQQgghZDYzKz+WPfroo7jiiitwyy231MSlaYokSXDo0KFpKFkYCdK6pQ8x5AWhefqeo69VtLwsxvL2oql4SgtdTKUMJE863y3LoyDWPpemcam4lq9JfLdqn6l9VRMifynyupNd27f+Q68dGhddhuPo/678pczTJcEqun2LJvazRecZKtObLeM+NlMpsfYlz1wRcu3QuSi27YHO0/Xo9JWizpR+XEQ5ipAnzpT6ikHREs3Yz9Gin2VFv4+EUrSUfLa/IxCimZUfy9761rdiy5Yt+Id/+AecfPLJWLBgwXQXiRBCCCGEEEIIIYcR9Cybu8zKj2W33norPvWpT+F1r3vddBeFEEIIIYQQQgghhMwhZuXHsoULF+Loo4+e7mJMOb47sek4X/IsrY+dfxHMlN2/ipBO+Fwr9Lyp3sUoiixK7IAZupthKIeLjEITssuWbx76PN+5LnRHX9/+X7S0p+jdhF3kkRCTbPL0n9j1+v9n79zDqyru9f/unc0mhBASTCQgYMCISFFRUdCDllrbWrXW6+lNK2091Z6eU+2v2ttpq7b2Yqs9bbU9vZcer71qW9tatZVajpeKioqKiBoREOQWIYYQQvbvD8Ke73x31mTWsFaSHd7P8/g4a8+sWbNmzWVlMe87aUhMk84/DknsdBiVtr/fR1zXTjtP1xgzGCWU5UjS75tJzMVJ5Z/0tZOog7RtFeL8vRVSjiQkvUnhe2+0FCB7K2X5Bvxv//ZvuOGGGwa6GIQQQgghhBBCCCFkiFGWK8v2228/3HDDDTjhhBNw8sknY8yYMSVpPvjBDw5AyQghhBBCCCGEELK3QM+yoUlZfiy76KKLAAAtLS1YuHBhSXwmk+HHMkIIIYQQQgghhBASm7L8WPbiiy8OdBH6jXLwiulPz4uB9PRJgoH0fCkHH4TQcgykT0Ro+UO8dPrbkyikv8U5J2lfxFCfEVc5fO8nDR8TX1813zaShN9bOcxJaePrD7Un+Uh821YS6dLOP4m660+f0b5Ienz2HQOSmiuTGOND2vFgeSdLioH0vAup1yT8bTX9+XzTeBfqTx+xtD3p9uR65XQtQvqDsvxYtv/++w90EQghhBBCCCGEEELIEKQsP5YRQgghhBBCCCGEDCSFAj3Lhipl9bHs8ccfx2GHHYbJkycjk8lEpstkMnj++ef7sWR7RgEZr2WrA7nduC9JySQHy5LhpOs8dNl3aDl85WVJyCQHclvp/nyGSUgt4+SZdvl920Ha+PaN0LoaLBLfUJleEs8mDZnY3kh/S2jSJgmJr2/+LpJ4f0hjDEtbXhYib01jHko7j3LoCy7SaFuDpU6S7qOhUl3fPEPtBnzLlLbUNc7fPEmPwaF2FSHXImQoUFYfy2pqagAAb3zjG50fywghhBBCCCGEEEIICaGsPpZNnjwZALBgwYKBLQghhBBCCCGEEEIIGZKU1ccyQgghhBBCCCGEkMEAPcuGLmX9sezxxx/Hs88+i46OjpK497///QNQonRx6czT8MsJ8YFKynssREOfhJ9WGgwWvxNf0tiSvj+3Gx9MdRziA9Lf5fdlsPhQhPpF+fqYJJV/0vj2oSS8YtLwmxmshPjI9Hd9pH29JHyIQv140vbLGci5P4okvEvj5JFEHfenv2qca/cnadxbEu9JSfsLl3t9h9Zj2nXi2w8Hsv7T8H0djGMwIXEoy49lra2tOOWUU/Dggw8CAAqFAgBYPmZD8WMZIYQQQgghhBBCCEmXsvzc+9nPfhYbN27Efffdh0KhgNtuuw1/+9vf8L73vQ9TpkzBP//5z4EuIiGEEEIIIYQQQggpQ8pyZdlf/vIXXH755ZgzZw4AYMKECTjyyCMxb948fOQjH8G3v/1t/O///u8Al9KfDArF5a1pLM0NlScmvbQ7Tv6DRf5SDriWdiexdD9UYtGfEjVJf0om48SlzWBZ6p6UDCqq3fXneLYn1/M9J215RxJb3pc7SUvP4rSzwSi3Ce2jvlL70DYeWq6kZewDKakOTTtYxv9QhtqY40sSY3K5jfFpzIFJjAEDaReShFQ39NpJU+5jUSj0LPMnk8m8H8DHAUwDsAXAHwB8plAorI+Rx2wAXwYwG0ABwP0APl0oFJaodEcAeC+AEwBM7vl5BYCfAfhRoVDY0de1yrJFv/LKK5gyZQoqKipQWVmJrVu3FuPOPPNM/PGPfxzA0hFCCCGEEEIIIYQQAMhkMh8H8HMArwG4GMAPALwbwMJMJjPSM485AP6OXR+/vgDgcgAHAvhHJpM5RCX/JID5AB4F8FkAnwewEcB3AdyRkR5eEZTlyrLGxka0trYCAPbff3888MADmDdvHgBgxYoVA1cwQgghhBBCCCGEEAIAyGQy9QCuAvAwgDcXCoWdPb8/DOD32PXx7CseWX0HQCeA4wuFwuqePH4J4BkA1wJ4q0h7HYD5hUJB7gZ5fSaTuRHA+wCcAuAO18XKcmXZ3Llz8cADDwAAzjvvPFx55ZW48MIL8dGPfhSXXXYZ3va2tw1wCQkhhBBCCCGEEEL2ek4HUAXgut0fygCgUCj8AcALAM7tK4NMJtMM4CgAv9r9oawnj9UAfgXgxEwm0yh+/z/1oWw3v+j5/4y+rlmWK8suv/xyrFmzBgBw2WWXYePGjfjFL36B9vZ2nHbaabjuuusGuITp4Lttu4uktv6N8hBKyp8l29VpDnKimWpBeM6vCTu9Vlo3RedXXe2Vf5xrh+C73XWca/n6zUSd0xeRPlNtbXZCedzYiBCyHe3moKXFjpTPtLnZipL342paLs+sJPwkkvB4KLl2h5gb5M04+kx/+2lZ6eQzBICe1cMArH7YXV0TmX8aXhxp+2+EtEEXrvbp+3w7u+x0rmG2HLyGIucT2HWi71s+j8pKv2vFaS9D1YsmqXKEvOMk4VmZxjjoi762HAZra004dK7XJO1N61t3qddxh/rbyLcDp0ASvpdJ+K36Xjdtb9dQ0vYmTOM9OIo0fAt9SdtHMynf2nKDnmVeHNXz/wd6iXsQwHsymUx1oVBo6yXeN48PAjgSQF+eXBN6/r+uj3Tl+bHsgAMOwAEHHAAAGDZsGK699lpce+21A1wqQgghhBBCCCGEkLKjPpPJLBbHPywUCj9MKO/xPf9f3UvcagCZnjTL9yAPANjPVYhMJlMN4DLs8k37nSstUKYfywghhBBCCCGEEEJIImwoFAqzXAkymUwtgEti5PmdQqGwCbskmACwvZc0u5cDV/USJ9mjPDKZTAWAG7Frc4D39pTLSdl+LHvhhRfwy1/+EitXrkSHWm6dyWTwk5/8ZIBKtmdk27bYP0jJiFpG7ruUNoklt2lvR12yHFre96pVJqwlfGJDhzXvfKcVNf4HPyiGP7z4w1bc2Web8FvrW8zBM8/Y+b/lLSZcX19a8F4ouRcpL1u71k4sdBWd1WOsqDyMdKg7l4/M33XtEOJIBkKW5Gf1OmWpM9F6L886t+r117+24+T4cNFFVlR2woRiOJfbc1lIaP0EL32Xdafbluw3c+easENTl4a0wcp/yaP2D7KMuvwzhI2AkGG2TjjUSlZbOzikbEmMx56qcue1dfmzG14thjtr97Xi8gm8AaQt6UgEzzavxwDf55G21D4qXX/QnxKgUJKWUIZK7dOwSwgdEyRJPEMpUR4sZQIc9ZqC7DJpGaDOJ43808gzKn9JHCleyJgQR0KZ9H37usH0t9TSd/wJyY8QRS127UDpy40ANgHY/QfxcADbVJrdg7byZClB5qFx5pHJZLIAfgrgnQD+q1Ao3NLHtQCU6cey3/3udzjnnHPQ3d2NfffdF8OH2/XlsQsoIYQQQgghhBBCSDB7k2dZoVBowS7JZFzW9Px/PwArVNx+AAoijU8emt2/lUg0M7s+Dv0YwPsBXFkoFHx23QRQph/LPve5z2HevHm46aab0NDQMNDFIYQQQgghhBBCCCGlPAzgwwCOQenHstkAnu3D3H93HujJ48cqbg52fXB7RP4oPpR9AMBVhULhijiFLsuPZS+88AKuvfbaofmhTO++qHf0EbiWHUctn93Uav8+BkKqK7da6gPfpdehWMuJ5RpnXR9i58Px//d/dty0acXgl2yFJkaNEge53uVevR57UFIHUg5w++12nJABdp36r1ZUrjKP3khqF6yQdKF5yH9tyes6lVLL0J0aRT1i/nz7xA0bvPIvQRRaymCT2HE0DlYeesfIRYtM+MEH7bgLLjBh0QYHcqc3S1oJ2LuT3nmnHScbjWgjYzrsf3TqLnp9xkTmn4CuKIndKjX2hqAmnVasysXV27fb+dXXG+nlj79vnzd7tkk7u+GFYjgvLwxYz60T9rgkq06XS5bZNZT2axuU44Euh6/sOw6OOby70thqpNF+fPNw5RciL05bfpS69LdEZ+VngyBxpnPouKydWwEsXGiufdqpYRLQJAjZmbcEed+6X8hjLaH0fA/rTxlj2jtHxyHpMSA0n9D3yBDbGNc4lcRY6opLfXdoPT7IOUvuGO8Yp1zlctXxuvUmzvUn9t664yXZY34H4DsA/iOTydxcKBR2AkAmk3kHgAMAfF4mzmQy9QDqAbxSKBReA4BCobCiZwOCczKZzOcLhcKanrTjAZwD4G+FQmGtyCMD4EfYtUvmVwqFgnUNH8ryY9m0adOwcePGgS4GIYQQQgghhBBC9mL2FhlmKIVCYX0mk/k8gGsA3JPJZG7BLunkJwAsA/Atdcp/YJc32gcALBC/XwzgXgD/yGQy1/X89p8Asj15Sb4B4EMAHgfwTCaTOVfFP18oFB5wlbssP5Z9/etfxyWXXILZs2djypQpA10cQgghhBBCCCGEENILhULh2kwmsxHAx7FrldkWAL8E8GkPCebuPO7PZDLzAFzV818BwP0AzikUCo+r5Lt39jwMwA29ZPdzAEPnY9nxxx9fDG/cuBEHH3wwDjzwQIwZY+8imMlk8Pe//72/i0cIIYQQQgghhBBCFIVCYQHslWJR6a4AcEVE3AMA3uyRx7w4ZeuNsvpYVlFRUQwfdNBB3ucdOfvINIqTGJWVI4p67xK9u1zTuXixHTdrVjGYXas2j5C69hXGQ6+lbaqVrHam+dCYxHb1cXwcLH8A5dNhmd9I/5ymJjudOO6stj+a5nPm2mN1/pbpgAjr/GN4aO3G6Vmg/bSET0eV3ul2bWsx+EKH8WWqr7evK+08XEuA9a1IixAZp9PJR6HznySswqR9FgAc3/p7c96JpxXD+Up1AU+fIGe9ykJL/zLA7gsxkN5MssSdXXb9yzqpqvTvQ1H3o/PPbxB9W9eVGANKHk6EB2Ha/lBOLwvduGTjPekkO06mXbasGLyv7QgrWcs9Jjxzpl130hJN2+BkE/Ap82XlKlMu3RxlMdavt+Okt+LmzSY8qfJVK11nrfEla1P/Lifz11Us6wettSasCrmlI9oLRdartjqLSqfJJ/AonJ41cQZGiRgkO3PGX8zqkyrdypy92r221pxXU2nPQ9a8F9gek/AMCiXqeml4ivl6EvnWgfd8EgPvcrkmY9VWZ86M7nu+104C3/zbO+z6l/3eGnP1gODpIZmGv6rvvfXntQerB1TaPrghXsxJ4WoHafevLW3m3pYutft8ba15/59eL+YMNVb4vtNkWzfZP4h3xYaG/vOeJKRcKKuPZffee2/QebM+N6vvRANIy40vDXQRCCGEEEIIIYQQEoNCgZ5lQ5XB+U8XhBBCCCGEEEIIIYQMAGW1smw3V199NVatWoXrrruuJO5jH/sYJk6ciMsuu2wAShZGBoXiEtaSJdpSpjRjRnQmSp4ll8JXieXuR2y430rXjWNFOOVvp0oflHXpcuT9yLA6x9rOWWUhpU/19fay5qpc70u9XcuYE5GWREjjkkIXX1b5tm123LBhJuwqloxzrfI+vvYJfWYxJOWJabQz55buvkvT1TPMt7WaA6FFXVs93UqnVZ8S363IZVyJxOtnPzPhmTPtuLe/3YS1xs7VvxImZNv2EuRYpxFj3/G3/9KKOv7l54rhhw76Lytu61YTLlU+mTLLS8fZTt4XOYS5mmNdXXTc2MV/NAfHHWfFScl5dbXd/uX1nIpkUQndagv6GiHbWLfDlrv7KtaEkrZETTw+TCntjyykq51pNmwoBvPCzkDn0Tnz6GJ4+GZEo//ZWZQriXHRKYH2+D0pkpLkRJVTS/1k25o2zU5ryQBd5ZLPRr+riEnQJaMLlYq65IkTRFMLHYsSGZ8j8gPsqtNNXFalHJtK5mV53465K4k23t/yMldZ0uj3PgzkGOArr0x7HHGlS1tWqO025PQirU8A9drn8kzxxTEHOt+lKbUkeyllubLsZz/7GQ499NBe42bOnImfyT8uCSGEEEIIIYQQQgjxpCxXlq1cuRIHHnhgr3FTpkzBSy/tuQfY0juW4qk7nkK2Iov9j94fR59/NB782YN46Z8voSJXgZpxNXjjx96I4dXD0bGlA3dffTfWP7ceU0+YirkXzd3j6xNCCCGEEEIIIWTwQs+yoUtZfiyrqqrC6tWre41btWoVhg8fvkf579yxE4/c8gje9f13IV+Vx80fuhmHnXUYJsycgKPffzSyFVk8tOAhLPn1EsyePxsV+Qoc9b6jsOmlTdj00qa+L0AIIYQQQgghhBBCBiVl+bHsuOOOwze+8Q2cffbZ1oex7du349prr8Vxys8lLttat6GqtgqVoyqxaeWuj1/5qjwmHG7MifY9aF+8eP+LAIBhlcPQOL0Rr73y2h5dF+jDL8fh16X9H7rETuSWqZLcolxdT2voba8Ju5zycvJLuvTOKSljHK+YAC2+rrvGRnNtZUGCXE54nYlLpbHlfTDC2GdKx5ZieAtqrGSeO65bHmWAv3WPt/VVU5N9LE0YLFMZ2/PL5ZEg0f9iY/ukmPNqqhN6TqtWmfA99xSDjf8RXX4XwR4h0rDikUfsuMMPN/k3jreiBqO/RBwPDCut8NDKam+2efOKwXH28Ibt201YNkHAbv/VEb5ASeHyTXJdLy/6PY45pvcMFa4xwNWXpU9Zyb+OVhufMm2rJq/X3Bydv6/3YUm5PMdk7/Ye5+KywrTRmiC/9NFieKw2McyJxqUrVuTvmovlafoZ+nrM+NZj6t6lipDr6WqU/be11Y6rqJBH5lpjGxztRWciGm8anoYu77qoZxP6ruJb3648dPXI45Ej7bgRI/zK4estGor9npSuF1PwPOdJnDnE996SeI8Jrcek23gSxLl2VFqXf59u7sIeE0uX2nE7dpjwOef4+eBqrLTq78BYPp5xr0XIEKAsP5ZdccUVOPbYYzF16lSce+652G+//bB69WrceOON2LhxIxYsWLBH+Re6C0AGeOxXj2HxTYsx7a3TkMlmrDTP3vMsDph7wB5dhxBCCCGEEEIIIYQMLsryY9lhhx2Ge++9F5deeimuvvpqdHd3I5vNYu7cufjNb36Dww47LJHrHH7O4Tj4pINx77X34pm/PIOD33YwAODRXz6KbEUWzfMc/4xOCCGEEEIIIYSQIQs9y4YuZfmxDACOPvpo3Hfffdi2bRs2b96Muro6jIha770HVI6qxAHHH4B1y9YBAJb/dTlWPrwSp151KjKZTB9n+1FAprikNdZ24460UdLCrJLKvdBi4vTS+iiZkkau6M1Vh8lAXPjm4YrzlZGmoQQIXq4sCtOeM9JLXURZZi033bbNhEeNij4vFKfMdtq0Xs+Js3RcoleOy+cmJV6JIWVXQgrpkhrrMso+1djouJZrhpXyOyG7BIDOeiO9zKcgo0hb3hGSf3e1kiFXmuNJ6tlIKfAr26ZaUbKvyPbz3HN2Fi0tJjxvnl3ehoa+yxsnbulSO/9p00S/F/K7/NqVdiairbZ1VVlRUran+3y2NcJjU8gueztPItu83vJe1msqfVTgLS+LM/DJMU2OB7qjy0pWN9oJI2/t0CrMiG6vh4OtW6OLWFkZNidGpYsjM4zKPw0pp+yv+l1FPlL9aCTyvLENKlJmEqOxJiE5Srq+4uQX8o6mq8f1fhj1bEok4Y5+6WqDvuVPWeWZ+DNMSrrpKxMOlef2pzTYdU6I5NwV58qjvcOOk21ZtnE9TskxzCXR1Er+KELrQHfYqHdY3UdlOl3+tPsXIQNJ2TfvESNGpPKRrG1DG1pXt6J2v1q8uvxV1O5Xi5cfeRlLfrsE7/jKO5AbXvZVRwghhBBCCCGEEEIU/OITQbYii7u+fBcyFRmMHjcas8+fjd9c/Bvs7NqJP33hTwB2mfwf9++7NhO4+YKbsaN9B3Z27cRLD72Ek688GXWTtBUyIYQQQgghhBBCCBnM8GNZBFV1VTjn+nOs3979w3dHpn/vj9+bdpEIIYQQQgghhBAySKBn2dCFH8sGARkUvHwv4mj+pdbc0rHn8lY66T0hLVkAW4Ne4nUj8pTbcOsybmo1cdoL6OCDTVh7XkTda6jfla/njtboR3m/ucroyl+XI59wD9Tld/kVyXJJTxztbVbiLRJBSf14nujrs6Czi5qUQp9TyXnSZEx0lDhl1H3Kyr+r0xxIcwtXR1Sk4VPmG+eLr2dKqAeaHH9KnqHwaJxdH+HPBaBTeHQpW0fruE4tFl6/3i7ZbhqUH5Lvvbnai9UMtAGeiGxdFZ1nSVOKMBtyjZf6XqRn1siR/vn4krY3npMoLzKHYcuaDfYcKz3vKirs0yZONGH5SHW9uebiEOL06yTGAFd+rmcjq1kOkboOZDN2zRPe83kcg720TU8jCK1HXUTvviFeGPTcnoe5gPToU6cFV08SbTD0PSAqj9AxJcRH0FWOPSlLCP15rTgk4a8aisxfzod6epX9cPhwO07O00uX2nF33GHCZ5xhwsF9WZkbS79hWX6XL5mrL4e+gxMyWBmco94AM2rsqJJVZYQQQgghhBBCCCFk6FOWH8uWL18+0EUghBBCCCGEEEIIIUOQspRhTps2DW9605tw0UUX4YwzzkCuj7Xdf/rMn/qpZGHU19QXl61mV6204rJiD2G9tNV39b9raa5LbeC75LyqMnqJrVyGLGWXALBtmwnXVHbakeKGQpd9u+pEyqd27jRhl3IwdCmxr4wxiTziyBykPELWgSZY3rRihQnLZd8zZ3pfy7VVtXMb+gCc91lZFZnOJTOU8hSsWmtnKjuH7IjqIfrKGF0kIR/RJJGPb9sKlW9K2XlWDXYyfylnbWhQEoK2LSK/Gitu2DATTqINOtSVFlpO74vsMwBQWdl7PiV1Kk9UHVFKsurq7Px8x6Mk2riLROTEYgzQY5E8XrbMjpNzzeGHR5/n6qO+NgKaKDsGjav+05Zdyet1dtnXklOIxNXX9DuNrJ8I1XEJsWREEQ8n7XqLIzuTUvVgZGNVMi5ZB/nKnIqKf+3+rru0pcZp5xlyvTjn+D4POdZt327HTZgwcGszosa30Hamx5+o91T5Nw5gSy+1pYN8Ld6wwY67/PLXi+G1a43XwaQJ6hnKE7WngyyYHlgj3sldMkw97yRtFVCu0LNsaFKWTfqnP/0pfvjDH+Jd73oX9t13X3zwgx/Ev/3bv2Hy5Mm9pn956cv9XMJ4fPjDFw50EQghhBBCCCGEEEIIylSGOX/+fNx///1YsmQJzjrrLHzve9/DgQceiJNOOgm/+93v0N1NM0FCCCGEEEIIIYQQEp+yXFm2m0MPPRTf/e538Y1vfAO33HILrr/+epx55pkYN24cLrjgAnzkIx8Z6CJ6Ye2G6dgOrUTiJZ+e3CoKiNRXhi47DpVm5Lvai+FcdZUjpf+1Q8qh0UugdxMqZ3UukZe7Hmr5gljPLWU+QNhy3jjLn+VS8qhwX2TXrjEHemm3LIzeYjAC3x29AGDHDq8svUlix8gtbXYeLS1GlnZoU619ouyznrttxmnvvjvK+uaf9M6YSeWfxO5iThzaLdkGfSVeLt1cXjfyiO1sS2REi+4rhicpSUV3pZGO6ktHKat27LDzH9sgyuHQX/T3C0Xa8s0QhHMCAPfY6tr9VOJSwEnljc5fvgZUVydfVyH5uOwktIRV7iQqpxA9z7nqMar+48jpffGVs8Z5n4qKc+UROk84z5OV5xqnPK8VJ53v/SQhsUtChpyGRUF/jnVxyi+bgpReuqTquv9G3U9SzzAJ9LgrkXO/vLeovzN0OgCoqTZlbm627/vww430cuFC8/u7322ny8tMXX8T6vdx8XC6EG3xELXrp8qiF/lmWa7LIaRIWX8s201LSwueeOIJtLS0IJ/PY8aMGfjmN7+Ja6+9dqCLRgghhBBCCCGEkCFIoUDPsqFK2X7u7ezsxE033YTjjz8ehxxyCP7whz/g05/+NF5++WXceeedeOmll3DSSScNdDEJIYQQQgghhBBCSBlRlh/LPvGJT2D8+PE4//zzMWrUKPz+97/H888/j0996lOo71mPX1dXh4svvniAS0oIIYQQQgghhBBCyomylGHecMMN+NCHPoSPfOQjaHJ4IU2bNq3/CpUQ2rdK4vQwcBjmpOET5H2ew8vCLvKeN0Vn/UjfMAC5nNHlh/pceNeB9BHQz0nEOT3pPIlT/qitnkvuS3oU6TXG0izG5Vvibejkn0XU5bSlUkeHqRNt5SfvNdjnQpgG1SjTnfrm44vhp1fVWHHTm80NdHaZMuptwxsboy89kFveR/WbJPxaXPknUcY4+cjztG/JunUmPGqUCWs/Eqv8uuG6+pcv0p9Ee5VUR3uWSWSZdRFd5U/DnyeKUD+/4H4inkdWhPOqDqQni/bPkvWqxx9ff0jXFBKVzpV/Ur6Ivv3Sla5N+DwuXWqfJ/3f5Kuevq98TuRZapjTZ5l6K5crre95Iel8CR3PXDjziHph2JM8I3Ddm+99+/qM9kVI+dPwGxtIT0bXtbvEu4tsFsOH++eftB9bEv3V5Q2pfSmjiOMhvG69KfMdd9hxp59uwu+f9bSIabbStVeOKYar2l6NvpieRITfcF4MtHqecxHnXgkpN8qyea9atQr5fLQJ4W7qfd1zCSGEEEIIIYQQQmJAz7KhS1nKMN/97nfj9ttvx46kt8MjhBBCCCGEEEIIIXs1ZbmybNmyZTjzzDMxZswYvOtd78J5552HOXPmDHSxEiF4O3C1BlYu6R0xwvyuV9+GLlf23c48aVzbzuvtia2l+7nolYghUpLejqOw8nSsVU5CzuT6Vw19aaf00jOTTrHNdJdYAg7YUpkkJC46XVRV6pXjvsvDfetfS9m2FvYthsc22ZHjV9xXDFfPPN6KkwWTRdRSLUnaUiEXrvxd28K7CJVADxS6bUVJw1zjuDPTGLIHi7lzI6OkBH2MGv83tZn+65JhyvuRkmF9nqcCroSgsXSQovuvnHN1ffhKyGT9uMbxbdvsuJrq3vN3z6PRZfGVb+ryu/KQqmE9tsq6lOWyZJd9IW7O9z1A41sHoVJU69jRicphjHThW3dxJJRJvIu6nk3SdR6aX2gbjLq3ULm1Jmre0G4AkoYG+3igxnXXdaU8HABaWkzYV4YZ59oNDeZ6Z59tp7Xm40qhmFKDtXWkJnE5b+flzQD2JCXjtDpLHOthSh5H/R2yc2fvvxMy2CnLmffpp5/Gww8/jHPPPRe//e1v8S//8i848MAD8aUvfQkvvPDCQBePEEIIIYQQQgghhJQpZfmxDACOPPJIfOtb38KqVavwhz/8AUcddRSuvvpqHHjggTjuuOMGuniEEEIIIYQQQggZwuz2LCv3/0gpZfuxbDcVFRU4+eSTcfPNN+O3v/0txo8fj/vvv3+gi0UIIYQQQgghhBBCypCy9CyTPP/887jxxhtx00034fnnn8e4cePwiU98YqCLFYsCMkVPAKeXhQtt9oGqYmjVKvPrPvvYqXz9zHw9SFxeKK4ia7+xKOse7YMgt3MePdqOq6uL9nmJIgl/iqS2Bg8pi8vLJc527FY6h4+SrNYSr5vWTb2Xo9b2NvP1edHPXu7vMbYhOg/dtqLwLceSJXbcNdeY8PXXT7Lixs8wnSrKP0jj8ovSz0n2Idd5ofh6ubj6l7TAmNK0530jCc+X0PN0W5JjZhyfnSiCPX2kuZPYBh6A3UgcO0T7jpGudINl+3jXWBcLeUOOm/P1VkyiDer8XZZ3vn6cvs/Nd45y1b9+VZHjum6esn952/l53kyo/6MLb18yFwsX2scnnrjH145K58LX+ypOuVz5u87xvV4S3nJJkPa14+Th64vowtezTP8NEZXOlX/Is3blF4r+20WOU0nMc6423tys4tq2mAP9p55AlquzsiYybk31VCtufG177wnlH4+A9YBzlVVWlDytrc0+bfc7s/bUJKRcGCSvtvHYvHkzfvGLX+CGG27Agw8+iKqqKpxxxhn47ne/ixNPPBGZTGagi0gIIYQQQgghhBBCypCy/FjW2NiInTt34oQTTsCCBQtw1llnoaqqqu8TCSGEEEIIIYQQQhJgt2cZGXqU5ceyq666Cueeey7GjRs30EVJnDhSOWsZsloXLOWVzc3Jla83XMuh83JZcFf00mjXNsRySa+W4sll36+/bscNG9Z7OiBcdhJFKrKNrk5zIG78hbZ9rXQjR5rw2LrobedDl/97yzY2vGr/IPR3y2uPLoanVndaybpzea/8tQzHW5YjiFUHQm+Zvf32YvjYuXOtZJde+tZiWKrhAACV+oe+0WVs7zD1L2XHANDYGH1eEiSR5/r1JjxypN2WpHzWJfux+snif9oXmDHDpFPSgKTlHS68r6U1CqJvr83ZMl4pS5MS0Dj5r6w0kotJrXYfHXP99cXwb2d+sRjWyq/Fi6PHgJkzTVi3/6THz1ApeaiELCoPlyS8rs6Os+Ya10QXIPnclTS+5CuO5D9EWqjz85VxNTXZcRMm9H0tAHY96jqOmCiSkuqGSFGd11661M7IU4YZSpB0UdWxnMN95ehxpIohliB95emLbxsPJereEpOSe1xXEyohlmORS5IZSqgdQ8h5w4fbx/JdKw3k30f6PW98rafWVeD6G8eSXQLA2rUmLAddPdEtW1YMds04IvJ6esjdPa7n/V71CRl0lOXHsssuu2ygi0AIIYQQQgghhBBChiBl+bFsN48//jieffZZdJSY2wPvf//7B6BEhBBCCCGEEEIIIaScKcuPZa2trTjllFPw4IMPAgAKhQIAWMb+8mPZkbOP7N8CxqSyckTfiQghhBBCCCGEEDKooGfZ0KQsP5Z99rOfxcaNG3HffffhuOOOw2233YbRo0fjpz/9KR544AHceuutVvpZn5s1QCX1o+XGl4pha4tgwKlPt7wOhL8SANRIozJpYaNMZdatN3k0NESXMQn/BK2hr4G51/ZcDaKQsnnpfwTYHieurZ61hl6WJXQLal8vixBfHQDIyhWT4uam5FbaJ+4UN9NVa+cZ4CXiQpdR1nler/AUD2Bq7XLze8420bO82VQjkdcL8SiLw5Y2+95qpBnTwoW9hwHMucp4lsXxApJkO4SHxOLFVlyV6NuTlH9Nd266V/6uMqXhdSbZudOER42KThdcLuHx01J/tBUlx4dQP5sQbxrdluQwnnUMRuOxxorqxPjYZVzUZnuJNLu8VoRXyZkt3zS/d5xrJTvhnm+ZA2mSCGBl838Vw2Nqo9u/HLtHqH8fctmw+N536Djre61s66ZieO3aMVacfKT63mqqo72eIj3LdDoRF6c9+nq1+dZxEj5N+j1AWuRoOz9fb1FfvzdfrDlJ5Rk6xntz+unJ5tcHQX5+eq6vjjYjiuqXaXioJu1LFueccvBdjLpuGughbOvW6LTSu1QSx7vOF9/61t6Twho1FeSwVep9G//l1zmmK2/XrDRkc5lIivcFPczK62kfzd1jPD3LSLmS8CzfP/zlL3/BZz/7WcyZMwcAMGHCBMybNw//+7//ixNPPBHf/va3B7iEhBBCCCGEEEIIIaQcKcuPZa+88gqmTJmCiooKVFZWYqv4J4szzzwTf/zjHwewdIQQQgghhBBCCCGkXClLGWZjYyNaeyRe+++/Px544AHMmzcPALBixYpErrH0jqV46o6nkK3IYv+j98fR5x+NFxa9gEdueQSbV23GGdecgYYDd+kWX13+Kv7x3X8A2OWfduR7jsTkYyaHXdix3Na57Fsvl43QtWh50OrVJvz663ZaKY/QS259l5xLWYW+tbz4oSoXvWR42bLo7ailxGtqs8pDtIUtXVMj87eWdiv5RdZT/uJa2p2ITCNKrgPYa7ZVJYcsVY8jh7OKUl9vR0oZoyyXQ65Zsv5cLRePIrSOpQz58cftuI4OE3fqJf+vGM4uedRK57vdu7OMsn6mTbPjZL3KThkDuS15PpeMtMFXhuwaA7xlJ2uNPHFloy21nAQjS66vjczOSdJSKpdqQkqjASArnm8n7DirfwkJxP0t4610ssno4aGiwoRfaNvXipvyxjeaA5dGVkhdMcu2NZhU+Wox3A07f4mWtfgS0j6d6XrZEKiI68GJyWeffcKyCNWSu9qn63aqKtOVWvmOAXKIf+45O618dXnlFTtu+HATbmiInqeTkF5alMgMzbPX9ya6JcY3hr0H2O9yU2IUND5JyB+1lNx3Dkxa7u7KI22ZYSi+8k3dBO0mHm2HobuCnu93I98JNK7u5Cq/LIeWXba0mLCWqo+tMyfq+TGKOO0lqi3o32WdaEm4bPK+vlQ6nRwr9OuylOtXVtr3Jv9uk/V46Ay7/L5tXretqqh5Sf8u3j/jyJAHa19MmkKBnmVDlbL8WDZ37lw88MADOPXUU3HeeefhyiuvREtLC3K5HH7+85/jtNNO26P8d+7YiUdueQTv+v67kK/K4+YP3YzDzjoMdfvX4S2feQv+8b1/WOnH7D8GZ3zzDGQrsmjf1I5fX/xr7H/0/shWlOXCPUIIIYQQQgghhJC9lrL8WHb55ZdjzZpdKw0uu+wybNy4Eb/4xS/Q3t6O0047Ddddd90e5b+tdRuqaqtQOaoSm1buMvXNV+UxvHp4r+lzw001dnV2IYNMr+kIIYQQQgghhBBCyOCmLD+WHXDAATjggAMAAMOGDcO1116La6+9NrH8C90FIAM89qvHsPimxZj21mnIZN0fwF599lX8/Tt/x9b1W/Gmj7+pX1aVWUvf66PlL3LJrV5aLI83bLDj5AYpemmpr5pEpiuVcvrt1CiXc2uVnixXyfJ/cQOu8lrXlnoRwNZ9ekoCnfmrnQ7lWuxuLb+Q13bt9pW0BEXhkjZYO6Xp+hHH1i6vWirt2AbIV97hxNHIx4pl5Y2N9vJ/uWReNosxUl6aEFYd6/X5so0E7vJn7Vraz6N+IrtIiQ48fIcd1T5qUjFc7ejneifdjRtNWI51y5bZ6aLUxBrXblAunlhm2p3uytMbzQ6Mf1tmpJeuXYH1OC6Vu1LCAQBnX/u+YvhznzO/n1mrZG5nn23CcqdlwOqzss8A9hDm2vHSl0TksgmMn2NHtVvHnTkz1unsXHKnKImUa9dhLaHZts2EXTtauwiVr0Wdp/OorjbptGOEVP+OG2fHDRsWceEYz0yWUb//SGqWPmgOejaP6g19b7W1ve8WmvaumXoMiLObuQ/OduDYtdqXOLKtxHccjUHUtXUZk5CaueSU8li/pu4Qc6Kv3N3VhVxSMtf7gzzvtdfsuHXrTLjETSKJHWw9rVB8bUVc85VL+i7HGF2P8rwkrG3ivBPLtK5rO61DPCWyg6n/EpIEZfmxTNLW1oaNGzdi/PjxGBb5ZhXG4eccjoNPOhj3XnsvnvnLMzj4bQdHpt33oH1xznfPweaXN2PhtxZi4pETkevvv0oJIYQQQgghhBDSL9CzbOhStp9777jjDhxxxBEYPXo0pkyZgieffBIAcMEFF+Dmm29O7DqVoypxwPEHYMPzG/pODKBuYh1ylTlsfmlzYmUghBBCCCGEEEIIIf1DWX4su/322/HOd74T9fX1uPrqq1EoFIpxkydPxs9//vM9vkbbhja0rm4FsGu3y9r9aiPTblm7Bd07dy073frqVry2+jWMGuvYWYwQQgghhBBCCCGEDErKUid45ZVX4gMf+AB+/OMfo6urC5/85CeLcTNmzMD3vve9Pb5GtiKLu758FzIVGYweNxqzz5+NFx94Eff/8H5se20b7vzindhnyj44+cqTsfaZtXj8S48jm8sCGWDuRXNRWeO/RXwGBaPxDtTuuzTi2sNGIr0DtJ+HXE6qPRLkFu/SK0N6/wC2x48uY3uHKWOVqi4ZN2+e+V0rbZcuNWHtxzNzZk0xXK2qVd6P3Ka5SpuiiUrJKjOj9mlHmPMq/bZHd6HrWPoeVVcL/y/Hs46zNbtvOUN9w6y0siFoMwjZ0JQpVMi9Wf5oAHDPPSb8rW/ZcaJxHfrpT1tRY8eaOh9TG7+u4sRJXHUc+uz1VuRpostRX2+urdu4rFenr4VoM9qSxXfI1GOHHKtkk9SeSjL/kD6j0fcpx+Adyo9NFmzaNPOz9gaT9aotxSZhpYicZMVdcIEJy/yxZImdyaxZxWB703Q7TnTf8fXK60wgPSpdhI6f3r5brgajzWhWrTJhOUEq0518vRm39PN1XS6qzWsph8vLaMSI6PxDSMNfRnqzjVXeWvJ6evqVc7rso6EOF86xosRISSA7mGwTAKqEKaO3D5d+wLJgKm7dZtNv5LvWKMe/x4bO06HzV0ifjXOO00fJk9D3JN90SdSxq33K89raosuYhIWtq3m60rr8keWrXYn3p3zPlhcLfB9M4lloP0mX55ccHmRYTyfynUPHufxQ5dhnzdOBhMxJfZHtEnO/ukASfn7lAGWYQ5ey/Fj2zDPP4Otf/zoAIJOxjffr6uqwUTo3B1JVV4Vzrj/H+m3yMZMx+ZjJJWmnvmkqpr5p6h5fkxBCCCGEEEIIIYQMLGUpw6ypqcGGiOVSLS0taAjdEooQQgghhBBCCCGE7NWU5cqyt7zlLfjqV7+Kt7/97RjVsxY9k8lg+/btuP766/H2t7/dSv+nT/4m9jVGVmWDzguhvib6414SS8eHDzfhnTvVtetNeOtWO04uJ5VKNgBYuNCEhUIH555rp3MtLa7KmWW7nV22REeu4h3bEH3fckv6I9rusyO7pDxijBUlv7XKOqistcuRXbzYHCj5RVfzEegNpxRDaaTWdJhydall61rS6pO/K04vD87Doe3xzNOF1V5l/lruIgq2RckLtm0zYS3fiUTfi9TV6WsvWmTCStvW0DTF84KGUKlr6DnW0neHNi8r1+7HWCLvLSty4FBV2Pm1vBB9onhu+cAl/XKs0NlLdL9zyqdWrOg1w0319kpjl4zXLUU1eY5vNOnmzIm+Fy1lW9NmpJcP/MOOkzLM/NJHzcE110QmrJxmyzClsvm55+zxc/58Ez7qKBN2yYmT6EMunPlrnbBEjh1aSi5wSSilXF9HdgqZqpboyHGwTumQXTJhb2mqJ3GeW0ieuo/KKpf3GWdcksdOObq8mH6I0u9B9nnA0j1nXQOcJ51Krhwlt3Rdav16+9g1d0a1C2cddym5tef7QxISa91FZVf0lTGWdDB5Ys5PLp4UIXUi3+mBUosBSRL1L7uDlkBHze/yvRqwn9PU6jXqCiLSsw/FGW9C2rgrDz2OyHurqDDh7duj83NJOcdsWG7FdTeb9wlf6wpXnJbI1lT75Rlsb0BImVOWrfvLX/4yjj76aBx00EE4+eSTkclk8LWvfQ1PPPEEXnvtNdx+++1W+pd/ftbAFNSTC7/dMtBFIIQQQgghhBBCSAzoWTZ0KUsZZlNTEx599FGceuqpuPvuu1FRUYH77rsPc+bMwUMPPYTx48cPdBEJIYQQQgghhBBCSBlSlivLAGDChAn4yU9+MtDFIIQQQgghhBBCCCFDiLL9WDaUKCBT1Ikn5c8iLRmkx4leIirtAVyS85kz7WO5pfvYsXFLV3pBV0N0eS4c0bxFFKo2Mn+N9FOQHj8l9b9smQkrLwVvDxXp76G8bto2REY5vWiicJWjtDp6364+q/w82nM1xbDLTsLb60AXRFxPRz3/vAk3NER7DWV//UsT8bnP2ZlIL5qrrrLjoszrFL7eFrp/dXSY86QvRBzc9SrQRhQ33mjCwnNK+l/syiPdbb3ls1nc+K9W3PETWsyB9AUC7OchjcR897EH0C38Z3wtNWL5ckRkqvty0lveT8mttOL+tNT4kulrS4ulJUvsuGefNeEvtFxfDK/61a+sdBOE71923jwrbskSU8c33PC6FXfIISOLYelZppGPLY71SahPViSuQbjaz1cnlnVLxByos7cslVT+aXiRSZLwJXPhylP77+0p0hcoVt6y0qWBnI5zYI0B+hzRAbRjVr7SpPWt/7Gj2tUve+6lZpGCx6nvGOnqoq5yON9BPJ+hfDUqzSK6/EnPsa49zFy+gr6EWu/J87T3pxzj22Grf6R/sSSp8SYknzjnRE0N2hpPjj+6jq1Xl6QHPoVuuyG+dq7+lbbvKCH9TVl9LPviF7/olS6TyeDzn/98yqUhhBBCCCGEEELI3gw9y4YmZfWx7IorrrCOM5kMCoVCSTp+LCOEEEIIIYQQQgghIZTVx7IdO3YUw11dXRgxYgQeeughHHHEEQNYqj2nq8ssz62tTWb5qlziK/PQ2z5L5DJyjV4VLL+e/+IXJvzQQ3a6GTNM+PTT7fzlFsi+lCzvleufhVQIgHMtuSW93PBq9AWlTE9sEQ/opeMOqYRDytksJHF6S3S5hLsK4kDL7UQd6K3rvZeSi3XZnZU1dpRfDv6sXWsfP/ZYMVh18MFWVGPjFL88Fy0qBu967jkr6q3yQOuJRUPurrbvW+IrU9LL2+Xj8H0WsSQc8oK6k8q4BP65y7cOLNkxAFx+eTF41URbhnnppeb5vrVetQvRTpa3GHGS6oa45x4T3rzZFjGdcYYJu+Rr3v1E16Os81WrisF8l5JB5fZcBpVtE5JzOS4BAIwMUxQDALBggQnrJmINF2JceULlPuFHPzIHhx1mxS1b9j5x9JIV19o6HT64VFAhEpH2Dvt5VkE8j8oqK66zS/RfNQaUyOU80GV0zatRxFGJecvfA8l2iLpTBZEyZ2ceIX1NnWf1Pd3IXfpK8V4Q9V4EwJ5w9buDHHRU35N1EFzfnjpkZ/6u8juIeh6h96KHSHncJfqaLmI+59dGArpkSZ6ufu0rY9T36W3LkbJs2jet6z6D83fIiXOVrrFiYP4U9X2niUOUcl/HaazuW7/vHpfL9XxDZbau/AkZypTVx7KKiopef+vtd0IIIYQQQgghhBBC4lJWH8sIIYQQQgghhBBCBgOFAj3LhirJb21ECCGEEEIIIYQQQkiZwpVlg4Bh2Z0YU7nbFyTMa8LXZyF0S9+RI+1j6UU2erQJH3igna6+3oSF5RwAYFOrKUscbX8kKhN5r+vX20lHjTLhKn1xydlnm7DLE0pQUqdyD211jkw7ptr+J4lOy/Uh0AjBQVQbkd4hrnSA7feTh+1VFelno8svfcpUHU8QSZ0eG+eeWwxbHmUAMHeuOUf5FUlc+bv6msuPJ+TR6DykRV1NtaO/ys4GAPPnm7Dexz3ienHuTXqTWR4w+qY/97li8K4Rv7Wi1sw40xxUTrPPE/cztX6TKMcYK5m8NX2bmzebcF2dHefyb4zEZVQzYULvvyPcD8Y6TxqNKH/GI/cz4dWr7TxE87fGagA4/HBxsMjU/8m6Ij/+cRNWvoIXXGDC8+bZHmVvfjN6JdQPRhPVPkv7nflB13/e5TUUapAk6E9vF9/3gFhlcvXthEnEn1Gbfwp/syrZRx35b2mz661GXm/OnOg8QknCRMjz2STV90KKMZCrLmxLN//3YBknzwu9l9B38LRJpByeXnC6DtJuk1Gk8Sxc91lVGR3nGgJkW8tvWFMMd9aPt9K55rKQe3PlEceXb6CeLyFJUVYfy1544YVieOfOnQCA1atXo1a/OAGYMsXTGLyHtRvbcck378fDz6zH8GEVaBo3Ct/6f8fgsHN/g2n716KjcydGVQ3DR89+A84/ZZcp+4I7nsVl1z2E/RpGoqOzCxeecTA+/p5DAQDfvPkJ/Ph3y5DLZdFQW4mffu6N2H/cKFcRCCGEEEIIIYQQQsgAU1Yfyw7Uy5YAnH766b2m3f0xzYdCoYAzPnkXzj9lKm798okAgCXLN2Ddxm04YL8aPHbDWQCAF1ZvwZmfuhvd3QV84B0HAQDedeIUXH/ZXGx8rQMHnfMLnH3CFEwcW43Dp9Zj8c/PRFVlDv/zm6fxyesfwi968iaEEEIIIYQQQkj5UygMjpWiJFnK6mPZT3/601TyvfeRNRiWy+KiM42EZObUerSs2Wqlm7JfDb55yRx84tsPFj+W7Waf0ZVonjAar2xox8Sx1XjTLLM8ds6MfXHjnc9FFyCbLa7BjbPs1XdJrK8EyBXX0GDnHyWvGTbMPpYSMv398vXXTVgvQY5azR261XNDQ2QUumGkeSX5S71pKFoeF4W66bxVFhMXKW9MiDjLq3M5KVXMO9MW0TJMhwzWd4DqnnW0OZBhRRLL7Ns77PrZKoYJ3c7k8vkNG+w4eduy/cs+o+Oc6E7T3NxrstA6KDkvopOWjFPveU9knlLsp+WVqFXHPWj5i1RWuRTVurhB0kj1MKJkvbHkrJ5x8ga6Vd3IZqflpvsJiaYeg+Wi7O4Tv2iue8UViEQ10A83GYnsC612uWT+aciNop5hqcTWbyQpkY+IsTZtuVQa+fentMqXRMqk1QTy2CW1dCHus1TuLupAzee+95O63M5Thtnf7Vj2xbxjfHblkQRVCShd3WMM8WWwSE9dJC3J7CvO1T6ttiYsEvIx8g8h9O/FNMpCyEBSVsP9+eefn0q+S5/fjCOn+X3QOOKgeix7qbXk95Vr29DRuROHNpf+gfeT3y/D24+ZuKfFJIQQQgghhBBCCCEpU1YfywYDhYJ9/It7XsC9j7yCZ1e24kefOR6Vw+0qvfHPz2HxMxvw9++/ox9LSQghhBBCCCGEEEJC4McyAG+YUodf/+2FvhMCeGz5BhzcVFs83u1Z9sCT63DK/7sTbz92Ihr32SXNueefq/DlBY/h7//zDgzPV3jln9Ry1ShpTxyJnYsoWaNrszitEtCytD0luO7kNkm6kEns/iUrRV4LsGRdLnnlYNxRrbe0e4qvnDip/H2lzC609DgKX6lxaBMcLLtsaRlpjUN6k+1oL4ZdO5W6cMlUXXWX5s5XrmcRel3f9qnveZRjX5kkdh2WrFoafVptrd/uzYNJsjGYykIIIYSQwUoBgL9fOikfuJ8rgBNmjcf2HTvxo9ufKf728NOv4qW1tmdZy5qtuPQ7D+I/zyn1sTrmkLE476QD8e1bd/218NizG3Dh1/6B33/jbdh3zIh0b4AQQgghhBBCCCGEJAJXlgHIZDK47eq34pL/fgBf+98lqMzn0DSuGt/6+LF4fvUWHH7eb9DRuROjqobhP8+ZUWLuv5tPvf8wHPH+3+Kz82fisuseQlt7F8757D0AgEmNI/H7a07qz9sihBBCCCGEEEIIITHhx7IexjeMxC+/cmLJ79vu+1DkOfNPPQjzTzUfzsY3jMTaP58HALjn+lOSLyQhhBBCCCGEEEIISRV+LBtkhPoOJeEBk4TnkfbAcdjbyB2Qg32ZJHHK295h8rn1VuOVpHaFx2mn7rlnzbrNxovs2WdtXzK5y/2Upuhn6OtXNJB+Y77oMrW2mvBS5Xkk7d7mzYvOU97LmrV2/i+/bMKHHGKfJ7fr9q2PysqsOo7OI5czaWtrvbJ39hkXg8VfSXuIudugDPu13VBPt9Bx0Jc0vMiscfzPfyyG182y/zHmN78x4a22ewDe8x4TluMNEF3mOHUg8zi+aaUVt6l6Uq/pkvAf1Hl6o401JY7GlFSZJb514rpP11wfUua0PfWSuHZo+7QMFdVA1QkzNz/2mJ3H7KMSHltXrbKPRcf0bQdpzO2+741ptFVX/kH3s2KFfSxfOAMn2STmhv6eX6JI4hm6zovzDJMYp0LuJ3gc8cwnzt9lMk5PUflc7/WatvdnUh6/g+XdtH+gZ9lQhJ5lhBBCCCGEEEIIIYT0wI9lhBBCCCGEEEIIIYT0QBnmICd0WW3IcllX/kkvoQb85VMuQmUJUoHhkvd1dpk85VLoOIwaZcIz1EaqYyrbzUGHHSfvph1GKqplbpI4zyKqbaUhN5JkWzdZx2M2bCiGJ0yYasWtXevIRz5ToeUc37bBStd4lMmzQ9WxVQddnXakXAvvqPT+lB4489c3JyVHWl+cIq5+UnLPrnrd8GoxvCm3bzGs5axJL/Hvb8mA9/X+7/+KwfO+bcsw58834SOPtE+b1PpEMfzbxYdacXPmmOchH4VuSrL5OMdt9XCqRZ5pyHeCkP0CwLodY4rhujo7qbzXNCSCSchmfOdtZ/3LsU9rgETDSOPZJDFGyvZaKtM2ebShphiuufRjVrq8mGxm6w5w6aUmrCdxWV++46xDk5+94/f2D3Pm9Jp/UjLJKPlXV5edh8tuwBfrvCVL7Mg77jDpDjjAjpNacl+01DKBF8402rtvG09aYpcU/VmWpCXicfJz1X+oXU4Uuqla1+4QfzO4/hhIgP7+m5CQwQo/lhFCCCGEEEIIIYTEpgB6lg1N+PmXEEIIIYQQQgghhJAe+LGMEEIIIYQQQgghhJAeKMMsJ7SXSALb3A/WrZ4j82jbYv8gNfu5vJ3WUf5ly0x42jRxzorlKqHwLlFeN5g5s9dy6Puqal1jwosW2XnIZyjzAyzPjSrLfsP2KUjCHyDENwPow4NB+r5I87HFi+1069cXg1PeZLfx+hnT/a4lPMvw3HN2GYU/TJX2eGgR/mYuoyaHN0TSW8GHbule0j5Xreo9//p9e/097vW8fUDEuJXVY1ZLiwk3Ntpx4nmMyZk+1I3xkWUKJbjOE8hfdo3xXSvtSDlQNTcXg3ctPc1Od49pq0/P/Kkd9+MFxeCZsr4BoFF4Mcn55eWX7XTjxpmw8mxa02Xa06231lhx0m5Jhl3EmSd8+5CVTs2jY3eattXp2bbi9PkQr7OkvHQiy6T9GeXY4XivSMOfyLf8rncVWWRdfHlezTIz92y67jornWy5euRskuP/k0/akc8/b8ILF5oyzjk2shwlflp//rMJyz4PAE1NJiy9zgKfU9rvC842csstJvzUU3acrIO3vMWOO+MMc+3KKviQ1fOJJ66xIwn/31D60xssifkwbY/lJEjiWeu0lqeYnm9ln50wwb624x2zvcPkv3ataf9yaIhVRsccG+oD7UpLDzNS7vBjGSGEEEIIIYQQQkgQg2fzDZIc/NxLCCGEEEIIIYQQQkgPe8XKsrkX/mmgi+Bk+EgjoXEqLdWy+6gtv3VSuVxWLucFgMpKv6WzWqEmpUMyTqrhAFtZWKVWGftKQK04fQG5lXqMrcGlCkKoADFWL93X1wtBLq8WUioAduXpZdjyobpkMkp+mjTBy/8tiaxDJzNqlAmr+tdqlUikZPLww6PjdEOW6E4kyi/7TVXOljB1i/pPY2t561oueZmuLLnM37HE33fZfSpSRVlmXUbx3DZ1GOnBjvV2sro6Uy6XBCuV8ss24ymLWrfeLoelnp1Qb8XJ8WfliR8shieddJKdTsg99tlHXXzevN7LCwArVpjwHXcUg1+Z+Usr2WdxUzH8vWUnWHFyjJeXAmzVmBxK9aPWc4PE9QyDpIuOQSWfs/Po7DL5t7WZ8I4d9nljh20y51SPseJyufj/JhmnrQZJh3RbjRqr+4EkZG6yjl0ycHmfY66+2k43cmQx2KQlglJDLF9+AGDiRBOW7yOu9qgl8rJznHiiHSfnRPFsSt/lTNhXZqWR9egaS7e02de2p/fouKysq4YG+wJyINH6sn5sk2nI7n3lxf2J798M/Y3veO+bh4uk5PRWnKxIPdeI4xfW2nJi+Wqq/0yQz0oOP1OawqxtvG0KHNY2lFaSvYm94mPZosde7jvRAHLhhz880EUghBBCCCGEEEIIIdhLPpYRQgghhBBCCCGEJEsBwM6BLgRJAa6jJIQQQgghhBBCCCGkB64sGwQUkCnqv/Otr1px3fX7FsMuj4rNm+08X3vNhKurzXnagkvK67WPjNTQa8sIabkhPXd+/GM73TXXmPCUJjsuZMt4Xch1W43uv8HhiaaZNKF3H7fuyho7YbU5LtmKPMJHo8QvpNZ42GRnKA8Dl+eRrFiHMVzW4fsU4tMU7Au0YYN9LO5nS+2kYrhmljpP3ps0OerrerKM8jm5jM50I5e+XpZ5FKzyV7U8XQwvz023kk2tN35FuvzW89X1I80npF+L9lUTflTZadOsKOtZVdoeGPI4je3eoyhpcy5Pt3rl0SXzEeUfA7Ede5f9nDa1mTGy1Iop2oPH7nqebVwbvcg2I569q98NG2YfyyroVs8wO2NGMTwJK8W17Hp7qOLYYvhAlf99tacVw0uX2nH/XvlTcyD6wmen/dZO2Lq9GLzuOjvqmGNM+Ior7Dg5ZMo5Q3fDtWIM1l1IH/vg9P3T/cRBHsafcEyb6a+PbphkpXtdjPG56GGk5F4cVoIWvj6GLq8q5+8x6iSKJHyC4vg1+qbrghl/WioPNb+feqiVbnqTGGO0L5mcJ2bNioyz5iFXfeg56k1vMmH9niGQHnpbt9pxrraURL1KtOWaq4+K6QsTmo4vhvXQ7+251mV7hr6wyjxf2xfRvi9pg1Yl5xPA7anqSdJ1nNS1fZFTWz7wL8NQT7G06yfE2zL4eYr3nbZae55YssSEly2zT5NDjAwDQE2uXcRFj9XZDpMuzjxn4fAsG6zPl5C0YQsmhBBCCCGEEEIIIaQHriwjhBBCCCGEEEIIiQ09y4Yqe8XHsiNnHznQRXBSWTnCHKgl4HI5axWUPAtm3frOndESTV9cu8lrZZhcdi9VA3Gum90gJKcOjdTyViOzmjBhXyvZCKWKkqxZGy3tqars7jXsWi7c7dhG2Rt1nzpPK39ZmVGSTJ2nbj/iOIltuLUUWFKlNb7PPVcM1kitll5jru8nYZxL8GX9CCkVAGRbhbxSyHKmViudVb3Z57tkS255bw7til1GhXz2ixfb+YtydZ96GnxwSlwCt7gPkYL1hbVNuZSUqnpszZkxQaskR4824REj7DipipWSoG3b7PI2NMgyKQIkO2PaVkZHVtsSrPYmI/mt6jDt8XsLbImF7Hqzj7Lr//hao71snWBLz9A8x4SlTknKggGrDR6zyI4SSlFbKgoAbUZuViv61xhsspKt7LL7ni9RW9m72qoeblx2AzkxPssaP6Lrn1a6pzuOLoZdc2Cgwsv73hLpazHyCKn/gUTWf4laX0bKvgBYA0v3NFuG74tVr7Vh7V0yapR9nESdh7atkPdN3Q998+iE/c4U9Uyd+ZV2dK9rh0qN3WNM7/mXyIkdjh0huPKII5VOQmLnawmShkw7BN860O8jcp7Wrh/KYcOiM2dmH4dzRTLtOIHGFee5EVIO7BUfy2Z9TpskDS5abnxpoItACCGEEEIIIYQQQkDPMkIIIYQQQgghhBBCiuwVK8vKijg7+QnGd7xgHa8bOaUYlruvuTZ03LbNjquoiC5W1NL3d77TTufcyUzqoBwFm1pppD3tsHeXqamOXt7b2mq+BevyR0lG4iwXDt0ZxpuobdT0+m0HSUhjZB6uHQVLnqGM1OvRJZ76C6c0QO6Q5VhGHmsnNtlo5Bp5LaUVkhr9aGpcddDcjF7R9SHTqR017xPyr+NTlij4SjR1HlJ6IHedBNzDXeS11UkjxTi1U9lFyF2BX3/djpMb3kmZjH5MdXUmnNdtS5TFW96hLyCe97rNtsRo7LP3FcNP15ud5OQOcwBwpHAakDvmAUBe6CSnqaZ131ojKZsgJJ9NtXY6ucPspZfacdYYv3iJFfdEk5EGS7lmp5JdTqo2/dcpTU9BziEfqX408rjKoX+Z3mXm3zWVU6y4EIlaHGSd6Gcvy+8qR9oSSlffkNJ+aYmgCS2X3NmvsdFcS294GSo/sncRTL7u5H3Le9FjqS+hEimZbnq9PQ91VhspvK6DGTOi3x98y+hCvnZESRpLSVdqpseRkM02tUxVzqPy3RwA6uqi6ziqHkLllKEyRlknHcrOQ5ZZjgH9vcNo6DjoK2OXDiRa6S2P9bOXfSoP2biibV1C/5bJejbQODLqvWs3THqWDUX2phZMCCGEEEIIIYQQQogTfiwjhBBCCCGEEEIIIaQHfiwjhBBCCCGEEEIIIaQHepZFsPSOpXjqjqeQrchi/6P3x9HnH40XFr2AR255BJtXbcYZ15yBhgMbAACrHluFf/7vP7GzaycqchWYPX829jtsv6Drar8Wlxbe0qQrc7B1q0xYa+Ml0gJJ+4tJTbr07QGifRcOPNA+ljp2Xf71+xiPnDqHJ1pWFKwqhofBPvv0Xd7ezpP4+jS58nP5IDi9DkL2RFc36t1+BFvaoutDe8RJ35T2jho7sfBAkj4UofXtQm4nn49Rx05PDNEXu+rHF8OutlQSVymem/Ioi6qHkt+FJ1pWddLjm+N7esTxKknCv8jXr8VVLquMjeOtdA0irL1ipLfL9u12nEy7YoUJjx0bnU77BIX4/VjGJQCeXmHamfYBGSuetyyjygKHHGLC2jevttaUedkyO+7WW0147lwTPvdcO13N0sXF8HTlTdjdKDy61A3I+UVGlQ5hyb6KuPq5a/h0WSt256pMftqfUdxcreNWXF5Gvr43cQix4YozHkSl1d5psk3qMsnjUD8tF9ITbcEC87vua/PmmXTSXw/oxaswAN/n29+ecUHeq8o30lU98p1Btgtd//Y4G51fAo8iGN+6Ci2jzF/Zk1p9yPWursc3OWel0bai0GOdLP+OHXac9BptFXWgPU1dHqdBc3EKyPz1+4K0vdT34nqGst/kHQ0h9N58z3N5uyaRf/lTAD3LhiZcWdYLO3fsxCO3PIJ3fuOdOOs7Z2H5vcuxvW076vavw1s+8xaMe8M4K31lTSXe9rm34ZzrzsG8S+bh3v++d4BKTgghhBBCCCGEEEL2BK4s64VtrdtQVVuFylGV2LRyEwAgX5XH8OrhvaavP8D8c0HdpDrs3LETO3fsRMWwil7TE0IIIYQQQgghhJDBCT+W9UKhuwBkgMd+9RgW37QY0946DZlsxuvcF+9/EfVT6mN9KMugUFymqpd5y+W3TimhkGoBQFeLCfuq9nT+cpmw73bUzc12+V3XbhD6KV8JVraj3c5EXEAvCx4xwoRddSelSXp5e3W1uba+l6S3iffeJltJdX3z8F0KrWVcsl5r1NJx15JzeZ5Lihopt1NpXeWX144jYfLdKtxXPlgFpS3pEJUg1+AjTHal5U1r15rwpAl73h6TWC6v85B9yJXW9exD5S9yjGltteOkpEDKGrXCLgnZj6v/dkU3EaBxWjHYLMqhZZhy3BqT26KureTRAintlNfWEqAaOSioAUKWP6+kxidULxcJTcW6ytSfMpldZfGbY61z9BhcbY71lOeSq2S7Onv/PbDR6TkpRGKnz5H9RI/xMk42C93XohwFgNL+ljRbt5rwkiUmPG+enU7O73GqP+n3gP4mqL+pl6EQqwOXHFfj/W7k8Xtf+blIQurn2yd1H5KUSi17D8chDRm4xNW/5L1GhQF73nNJMtOQc4e0J21bUoPoeXRlm7GX0O8BVavEPCoHTNfkEqMhRL0H6/kpJ+Y9378J9z5YD0MRyjAdHH7O4TjvhvPQ9mobnvnLM32m37RyEx76+UM47t+P64fSEUIIIYQQQgghhJCk4ceyPqgcVYkDjj8AG57f4EzXtqENd3/lbrzpkjehZlz0v5oTQgghhBBCCCGEkMELP5ZF0LahDa2rWwEAry5/FbX71Uam3d62HXd+8U4c9f6j0Dg9ZU0BIYQQQgghhBBCCEkNepZFkK3I4q4v34VMRQajx43G7PNn48UHXsT9P7wf217bhju/eCf2mbIPTr7yZDz1x6ew5ZUteOwXj+GxXzwGADj5ypMxonZEH1fpH6Q0ftUqO84leXd5AkShNfqSJLYvj4Ovj4OuE0lIHbhIwkejJJ14iJ2wvXSkn4rz2i0vFMPjlWHCoyvkSkk7D+mVpOsq6S3efduIbtPyWHt9hNR5rLYqKiEJHw19b7KOfT2/0uhrEp2/LLNuE75edpIOZQvn8kWUuPxPpNVWnHabRF3Ka1dV6jow/Xl6k/BrdBj+dHbZK5u7RH1pT0ZpfyK7vU6HmTMjr20dKs8y74fjIKSO4/StJPyFXMj6KR279zh7b1z9MCQPwH63kD5327bZ6aR3oCvPNPy/Ro0y4fnzTXjGDDudfHdJw+8qNM+o81zjpY7Lthkfw+7qaOVDaHv3rRP5fPOq8Xd2Rfsh+V7b14M0lDTe32SeLp8yl4dwSDnSJs4zjHpX13O9HG9Kfdv8/r7wfZcr6UOe9RraBie1PV0MdzZOtyPlw5fhGC9DQeVSDzHv+x4c9YdloeB33bKlAGDnQBeCpAA/lkVQVVeFc64/x/pt8jGTMfmYySVpj3jXETjiXUf0V9EIIYQQQgghhBBCSEpQhkkIIYQQQgghhBBCSA9cWdYLo8aOKllVNlCEyiXkcu4dO3r/XbPffvaxPM8bl07MQeiyYImWcMhl2a78m5tNOi0/SlqGGYqzfkSda2kDctHLsiPzXLzYOjxizpxieE1rVVAZfeUdvlI893n2OVVdQoICW4KShMzKWt4eQ3bW3mHO85UM6+wbAywSk5JpRG43rvKXbbJbyYR9y6J2WY/Mw/U8tWJB1p1TKifwlW34SmIBW3rp3R5VI5Hn5deutOLyQl85YYLdf9/9bog4Ex5Tq+WCteZaOfsZWuVwSLySwDU+2M/XrkdXt3Q97xD5daz2E1GXccbBbFenOdhgb0Qkz8rLSmhpsTNpajLnqEmwsjL62nJ+rKiITIYRno4Uvv0mTh3L/nWsmcrQ2eU/9ofI7+LMLSHzUEldCSuF7qYpVlxXpemXLSvsfCZMMPnIuVK//ITaaMh5rgpCSq46petNcd16k4eU1epsQqRygwk5rI8da8fp+5bI125vuweXB4tjjLfGm5Lzom0nIpIBSH4cCX3HSaL92HJ3ZUkh+qGu4TUYXwyPV3/LdDeOR2905ez5XFZrHBlp6lLmFT2DzvbtyeRHSD/Dj2WEEEIIIYQQQgghsaFn2VBlcP7zCiGEEEIIIYQQQgghA8BesbLsT5/500AXwUl9TX3fiQghhBBCCCGEEEJI6uwVH8teXvryQBfByYc/fGFRJ56URnztWhMWllPSmgSA7R2gPRGk9l6XS/p9yHRVldFeOtoiwT729JhxeClofOtS1kmc7dhDfC/ieK14twWHIc+Wtugy1lSKBxBl4ARYjalReaGEbpfuS4hnkPaucxnPpb3NerSnErB1qwkPG2bC2jfPhe2PEa9su0nat60El8eVY3yIup+S5i4qNqu9vMS199knuohyvKyvt+/FVa9JeFp5ezFVRvsFWqxaZR+LCtOeZSedZMJWN4nhPZm0r1cS+cfpC0l4tISet369CY/dLrzmSswzjdeNr39lyXHgAOGqf9kXZVhfShbD/R5g4+s72p9o/8Tqar8yepdfTxSiYkPHallmZzNYIQzNZsyworKeflSl97nnY8LOnSYPOW8C9v3kU/iLxteTLnQckWlrxBgs21VJniXjswl2dtnzbZd4V5f+fS5cfbTKUcdxfMok1dW9h+OMFa5y+Hpy+fYvXQ7ZZV3+mFYdqPfSxgB/ZF2nSYyRIfOtTtulHNnyoS+nhAwS2IIJIYQQQgghhBBCgqBn2VCEnmWEEEIIIYQQQgghhPTAlWVlRByZXpSqTv4O+Ks09DbrctlxkJwyBnGki77povLU9ynrxHdptya0/EnIg6Qia8IEFdnaasJS9qMShpYj6jzXPev6L5FUxryWJrQevaVy6t5csgG5Dbqr78k8tEJHnqfzSEJeKUliW3UX+t6kSqGm2tF+HHWc7WgvhhsabAmilF7Ka2/ebOfR0CDyS0CKXVJGp7wm12s653X1IC8GYd2fKitNPvZY5y93T4Ik6tFXYuS6tu847pJglZzX1WnCqpGPzZjj5R2TiuGpHa/aeTik5NaD04N8xATfXb9vZBlD7QBkMUKleKGEvAf093jpK/9ylcI59yiLBImc3p0y/yVLTFh7dohxJBvjxU4m7YYZg+PMxfXC1lfPE5KkbTNcuPIPfR90ppN9WUvtBTnVDqLeQbqVPYI9D0WXS58Xgv+YkswzS+Jd2oXrPSwKZ3tUDy0r39VlZ0iZ0DFM10Fn01QAQGF4An8QEjIAcGUZIYQQQgghhBBCCCE9cGUZIYQQQgghhBBCSGwKoGfZ0IQfy4YIekns3Llm0aAlvVHLt/OLF5sDudQXQF4uw3/mGTtOruU//HATbm620kk5j5YAJbFzUag0JomdLEPyiHNOiOwtu+CnVtx0uZx7/nwrbguEFEdIG1yKnzjygrR3sYsiVG7hK9+Mk3/I8nwtM5HHO3bYcVIi6CJUMpy0zFDnJ3dpk7JIoGQo6TU/AHYFbdhgx4kxLTtzphVVW2vGJtlNaro2Wem6Mab3ggDItrxgDqTeSGudHDvaWfeTRAfQ8ikHUWqqJKTvcQjtX2nvxBmSRxx5jTyW4+6WSlsmWeNbZjWHy/7Q3Ty1GC7Z3VrM020qi9pavx3uXHUi537XvJ/G2O17ju+4qHcp9M3Dtyy+u9665tvgck2bZsKBHhpJSBBduN5PXLjGitDxJ+k8nJ4LLS0mLHctBawxX0qqgdId6ovpPPvrruPIpKlKHHV+aYwdIWXR5UhKLlpEzxPyRUm+S4hdkvsiifYfanGyu74ymb5KScjghDJMQgghhBBCCCGEEEJ64McyQgghhBBCCCGEEEJ6oAyTEEIIIYQQQgghJIjkd1slAw8/lg0CMigU9d4uLXkcTwrpOdDZJfzLHJ4pli5eH+90mBZKnyC1dX22enA2sSiNvssyKGn/ptA8ned8+tPW4cL164vheSrp2nkfLobVY7PwbXdpeEb4+iek7XXjWw7Z1wC7H7rykN1w61Y7bsQIE9btU56n45LwofDF1x9Q73gvbVh0+aM8y0qQlaA9mxwduqoyqn5qrXROrw95PWmmo4x1QtvnmrXmvIqK6HR1dSbc0WFfq6ZSeNgk4IkWp70E+S7GGCPT9tTzva7MQ0+xkL6d2gdKzJ1dIqqmOsx/Kqva/99WGZ+yemGB1KXGKdlcdfllk9Fx8naqwiyurPvRNk0y/1BvpKj6itN2Bqqduc5zeh+GMmdO0Gkh/SZOP3fNcyFlStpbKw7OcvneXGNj9LHKI01Psf7GdS8h76mhHlwuvM9Tg11nzngV5pRvYUfjlGJY9oU49n2+86hrnGoX7xby/amv/HdPS6VzIyHlAWWYhBBCCCGEEEIIIYT0wI9lhBBCCCGEEEIIIYT0MDg1cqRI0vKU7qYp1nFWbDntREs0PeVHLkKkDYNpGbmvrML3Pp33Juo7u2yZHVdfb8L//d9W1LxLLzUHann+1OaI66nl4e0wS8L10murzI411t25fGScC1cdJyGN8V6Sr7Zjt3BIJ0LKOGyYfSwlWTo/WeW+fSMpGZ23vENoL195ZZIVJcvvkl06r1Vba8LTptlxjvHIV3ogKbm21C872oGUn8ri7ipi9PXWrjXhI3JPFMMraw+NPGfbNvv4mWdM35t94CYrLivqp1PIBXO55LeWH6wkMg+Jhpx3yKCQU1pFMXbXer6NOd8DVOOS6qwnnzRhPcbst58JS9k3YPfRHTvsuBjT/R6TtGQ+DklbDCRhx7An19tj1Fzvkg8mcW/RkvnosSkpGZ3vPJF4HevONWNGUDZJSOGj0vnmF1qmOOelYZOS9HlSxtjRYUstpeRc2ncAQBXEO3m1SejbF/qKk8g4/UovHXfq6+085BCgh4Pd7zFDX4ZZAOCwLCJlC1eWEUIIIYQQQgghhBDSAz+WEUIIIYQQQgghhBDSAz+WEUIIIYQQQgghhBDSAz3L9gKk/j2Ot1Z2w6vmQJruALaHmTQbcu39rpAaeqnlB6I9KuL4RLi2G+9Pv6tQ3zkLaRZwxx12nKzjc8+181/9ilcZXVSh3eQH22fB8vKSPnYK6Y3UrbbFTgKrHLoNymvH8RmRDUi093U7xljJGhpMWLczmX9nl31t2S+lR5T2tJLnac8H7SHnQxr+OM6+IOpu1Cg76sADTVjfd1T/LRkrutTz9sTXw8OJ9AuUKI/HScvuMgfqRrdMO7oY1jY1R1QvNwet5j4n5dZY6ToxvhjWflTPPmvCsxta7UhRsZu3Gc+yujo7WR7mYbj8iXQDlV6FTk/ABPx+kvaQdKLHGPm81UPMOuZA2RbkWXHGKeu+a+2xqVoUS/Y9XSTpU6bj5ON2eZS56tU1F8uq1HHyvLyj2SXhtxTq+RiVZ+hc39++f0E+X445VpPEOJuEF1lUfpok2kHa3lppEOrHFvJ8y8FfLA6+z76qw3iGblXvkWMqHe/Zrjk3gjjtMyquS72zyvFYv4u6irh1667/79wr7Lz2ipvc6xicozYhhBBCCCGEEEIIIQMAP5YRQgghhBBCCCGEENLDXiHDPHL2kQNdBCcjhO7BkpMBzrWtSW9jnV21MvraWpshpUSB+8fLMlfl1H3LJb5CyqOREjWtDJD4FjGNJdqJyI9kfTc12XFSIuuQQvrikkk6y+uSJsk8VJvudjxf17WtNi/XhMeQiFi49skWcdthL5/3pXTZul/bdcXJPPR245KQ7eP1eaESi/X7TC+G91Fp5bCi71M2k2yHkShU6bGoVVTs7j3KdyP7ijrPVz7liyVl0G1uwgQTVg2hBltEHjX2eVLmGSELBoCuWhPWctaZM014S/0U+9o5U69jM0Z23961r5Uu39F7XwZg9y91b10wfdtXRucibQmcE1nnrnHWMd4kIf9KAt2F5LGOk7e9bVt0nlpiLZF9W1ePr7RHtp9YdhIR9Zp2fccZS/tTtudbLqdUyyUtdpC2dC6N/KPi0pB6a6uGKOKo8nzLH9oGfe/V1c99ztFUV4eNpUlLemMh+s0I9QzbhfRS9y7LzkD+jej57hyKbmehf/bttnWoqNjjIhEyIOwVH8tmfW7WQBfByUs3tgx0EQghhBBCCCGEEBKLAuhZNjShDJMQQgghhBBCCCGEkB74sYwQQgghhBBCCCGEkB72ChlmWSF9kgDbQEQL+IWfTYn23rGVfSTaNEj6/TQ2+uURimPPeOlXtKWrKioZduywsxgxwoT1rUVZbqSxrXci/gnSu+j00+046Z8j0zmu5SKW3498btosSeLwW5L+Jy6/NI1VTlmOGGYKVv3r/iUbjch/Uu0WK5n0mSp5hiLPrq4wf4kxOXO9NW22p5WsykkTMCjQdTC2wYSdnk2inwMActLQTDwb5RfVXWs85JLovXHGAHmvzv47bVpQWdaJ7eXHQvixqQFs99bsQOlQOmOGCZeWUeQjTqxS/ncrN5hy6O5VK73l1MXzAZ53rvEnjfHZuyzSD0/6RAJAc7MJe3rjleQfiCt/+azkdK6foTx2TMUlc6xEnqeHUpfFlct/KRfhU5aGJ13aXkZJlDHUV8o1TkXdt9OnSnklhXhi6nNc3pyVlWFjhy++zz60jfi2XVkHSfWhKPrdr0ug7016IQ4bZsJ6vJFxLn/DNHA9Q2/fP/F+W+PZDwHby072PN++rPH1oHN5lsVht2VrPl2LNUJSgx/LCCGEEEIIIYQQQmJDz7KhCmWYhBBCCCGEEEIIIYT0wJVlESy9YymeuuMpZCuy2P/o/XH0+UfjhUUv4JFbHsHmVZtxxjVnoOHAXfqiji0duPvqu7H+ufWYesJUzL1obryL7egy0iIt73DpIxySO4lzaa5cyyx1Gr1dLyJPmUU+F7b0d0ubHVdTLa4t1qbXrHjUSrem8YhieHzuVZWrWbe+coMtXwvdAnlPcdWB3jZcVr/13PRzF8eh24GHbJ1ekoeuSHkDUi+oZJjy+WZrVf4OWaYsV6dcnK4kIrIVu5SWNZWea87VfTrlDKIOdHeS51U5JBboMpHjO3QbNzfUjfF2/tYW4zmRzl8Wlra8ycrfpTORUl3HduntlWMi41rX2schyvK0pSslEtanFhbDf8MJxfAstcHzX+8w4Tlz7Dg9rEtk/a/fbOpVStgBYFLb08XwpurpXvklhUsa5isb803nRI5baiDZVD2pGB7jkOj4UnKfsi+ra2cd/aa21uTjK+NyyZm0VE7Kf2X1uK7lwnVeEnOUCyuPEo3X3qEfCu0bIVJjfY6scpcU2NU+k5DSusaYNGTT69eb8MaNJqz7gnwd0XFJ10kS7wEumaQuv067Gym7BGxZpiv/JNpxqMwz7XeEdmHnoV9ZJXHmSt8+msQ4S0g5wtbdCzt37MQjtzyCd37jnTjrO2dh+b3Lsb1tO+r2r8NbPvMWjHvDOCt9Rb4CR73vKMz5wJyIHAkhhBBCCCGEEEJIOcCVZb2wrXUbqmqrUDmqEptWbgIA5KvyGF49vNf0wyqHoXF6I1575bX+LCYhhBBCCCGEEEIGlIHbOIOkBz+W9UKhuwBkgMd+9RgW37QY0946DZlsJr0Ldu80+gbXNlWurUj0LpriuKvZyGbyricetRa6N4QswT7NU0oIe9mu3A0HsHc/yss6UDqQZctMeHzXEjuTmTOLwUktKk7omLphpH7O3WVaN1lxndVG8uW7DF5jXy9aluB8bpH5hS2NjrP02nktIaG0dsnTUmPHzq2+8qk8jExpU5stmXGop6wuVSLvs3ZZ3PPl51WVgZOoa8dR0R/0vcndN+XuhnF2G/Stf9kttaTU2uVS6S+869Uhg5J55HJ2GWW5tITMV9rjSyK7Hi5ZYh8vWlQMrj/IyDBXrLCT3X67CVdU2HFStd2m5O5SirpT+NLq/FetMnPINFVXLqcASdo7DLraquvZuKa9yHFXjVNjatPd1dIizjwtcO1WGYpsM6+/bsJaZiXbZF1ddLmcNhFyN9Ld26vtAe0ddn1b47MeLKrN+JPE/BinL8jbbmyMvyNfX4Scl4Ycy2WHkVR73U2c96Qk6kSi72XdOhN2bWIv+1SoTFUSpx0HvwMG4Npxd6fDO112WV+Zp37ndtV/EiRRx6GEPJukyrS7TWZS/DOakDShDNPB4eccjvNuOA9tr7bhmb88M9DFIYQQQgghhBBCCCEpw49lfVA5qhIHHH8ANjy/oe/EhBBCCCGEEEIIIaSsoQwzgrYNbWhd3Yra/Wrx6vJXUbtf7UAXiRBCCCGEEEIIIYOGAgCHVpiULfxYFkG2Iou7vnwXMhUZjB43GrPPn40XH3gR9//wfmx7bRvu/OKd2GfKPjj5ypMBADdfcDN2tO/Azq6deOmhl3DylSejblJdH1fpYfjwonlMd+N4uxxyy3hlRmB5YEixPYCblxiPmdObrBytdDnhBZSNYdwT5bUl/TUAt7WIzKOhweGfIM0IpMkOgJy0v9rmMDtw7APt8lzLL77fHDz2mB33lrcUw93NU70uXVoM4c2WC/MbC/VCCfU4icrDVS7rGba02AlfecWEm5qsqBdaTB5TJnRacdJjTJZe+wetXWtitQ/FmLaV5qDVfjjdTVNMOAk/Ku2Do401fNB9VPT7/J13WlH5k04SRykYcAhkuy71QvGktdU+T2Yq6q57wiTvcsnnnYQHSRJb0jvbi/aeXLq0GNzZbH5WVYVf/cqMfQsXDrPipJ+Ztrwbn3vVhKtNe1zWWmOlu+ceE9bNVnbZ9evtuBEjTLgmsP6T8FqReWjLRNkt9XxleZZJ8zfVlzu7slFRVt8o8TazzIaiffmsfq8asm/9yPlFe/u5PKFkXUovUcCejl3+gLL4ep6zUO8xVn94Rlhh6M4sG7bKQ5a4u9q0a11Gy2vR8S6kz9uwwVxh0oTkfYfkrbreByVp+B/5vi84fV8DPDA1uonIarB9vfzL6CqXjJP9PI7PpexfevyRY/lwsYdYHM8yF2l76smbkzWnR7Nu8Ysuf9SrkJ7nXP6zcnjWyOu52pb0S9NlTNtTzDUI50VhfNt1HJ9OmWdoP3dBzzJS7vBjWQRVdVU45/pzrN8mHzMZk4+Z3Gv69/74vf1RLEIIIYQQQgghhBCSIvQsI4QQQgghhBBCCCGkB64s64VRY0eVrCrrL0qWsFtSs+il43oNsjx0bRkv41zLz13LceVSab3EWcbV1jqW9K5Ybv/w3HO9ZyL3pwdw/KmnmoPGt0fmX3LjoqBdoo61jHTKt75lDhYutCOl/sghw8yveNqElcywvavKxAX2Rl8JQRISMte1nXFynb1DD9ddWWUdS8nClFolr5HSG9lG1EOcPm2aOdANdEX8jTtCJQr62vpeg64nO7CWtwoJk5QfOceRGMjzXBI7eZ/6Wu0dpm1VaX2NuJ+bVx1fDL/73dHXckq8XMjnpAcBqTVz6F8SkSyceKJ9LOrgvfV3md9fUXpHnFAMrV9vt7OOjt5XQwPAXUv2LYYPO0zklrvPSreg1dT/5s12Hvmu9mJ49Wq7Tct5qLo6GUlHCHJ4WLbMjpND09QmJfUW0qGs0GjqZy1bxbZtdv7bt5vwmFpVMDEmZCGem9YleequXBI4l8wq3yWurdVADrm4zEfKGLVc0/l8XRo12RflQ9TpZP0sWWLHiUaYFXNByfuIJYn1l2HKy02YsOdSNq0zrHngAXPQ0GDCs2ZZ6aREMNTSQZJUn4x6B3G9i7pkwbr+5bRXUWHCBx5op5OvC6HvQq5yyfc3Oa8Bdpm1tFAejx1rwq4ur8shu2i2bYsdGaVTVQQ/b3lzUjatCpmVk4HyA5AyQFc7kGOrS6bqwpWuqjLwfVnWgaMvl/ggSOSN60YSoTH1lTzrOFffc+UflV9fafcu6Fk2FOHKMkIIIYQQQgghhBBCeuDHMkIIIYQQQgghhBBCetgrZJh/+uRvBroITuprGvpORAghhBBCCCGEkEFEAZRhDk32io9lL//8rIEugpMLv90SGeetA1cidG19s5s8oj1ZXLj071JOL+19AGC9sNbROnnLV0P7LT3ySO8nag+AuXNNmRrHR5dZ+xBZ/iSIRvjUYOZMO074hzi9wVasiMw+1zw98ryoPON4A/ieF+pt5ps2K00RpIcYYHm/6TYyY4Y4cHidWSc6jEWkdxcAYOYRpoy+/mtxkPftKn8osvNdeqkdZ/kh7fl24K4xwDcPTVWX8FfRg4d4ju9d+0tx3X/1zt8b2WZcfiGe3lFxcD6PCy7oNV32qi9a6d7znvcVw7p7yWrVQ5FskmNHtfceAeCUU0y4Qf3bzsoNxqdsxw47Tg7X2Q6Rv6/BDPzbk2usk5YyckgHgOm1a8xBTrXBAHT9WGVxeGdaqPpx3Vsi45a8nsuYyZN4XjcCfW3b9M6EXd4/mog+Gzqm6+ykz1Qivj36HUeixyaB9A5Ezm4/SXiXRuXXV55RXkmuodQ1Veq4l1824ddeM2E9FknitE+Ja9iS5+luLe91v/3sODk+y3tzXUvXnXU/+uIRGSXmRyWvJ70EXZWgHmJexOWEt2Vzc/Rl47TB/nyXdv69Iu/bNRfoOHEs71J6WvdZLoGz/QSSiGcrIYMUyjAJIYQQQgghhBBCCOmBH8sIIYQQQgghhBBCCOkhUygUBroMXmQymUJIWTOZDAoPfTiFEiXHhd9uwQ9u+HOieYYuNU4a73JoGWaU5CJQBuW7rDyJpcSheSSxFXMSEgtNqGRhoNpdGnUgGUxLyn23Cu/PMrvq36UQSaOMabfPqDpOe1v1kvx/bWSqmDPHimuvn1QM6/qXw2yowlTeW2eXXS5Lal+GpCFZI4QQQvY2Zh19NBYvXpwZ6HKkRSZzUAH43kAXIwFOfKRQKMwa6FIMJriyjBBCCCGEEEIIIYSQHvixjBBCCCGEEEIIIYSQHvixjBBCCCGEEEIIIYSQHgJdSshgx3er8FA/FV8/JO/89X7gKfiURcXJMiaxlXSox5dv/mkT51qudjZYyp+Er5fvcxtMHm6D0Stp61b7OGJX+2BCPabS9n5LvV2cdFJklBw+9U72O3aYcF1d7+fEIfS8/iROG/GdR0OvNxj7KCGEEELiUgA4pw9JuLKMEEIIIYQQQgghhJAe+LGMEEIIIYQQQgghhJAeykA0MfQpIBMk8fCVjYXKy0IkKMGSk/p6r/yTIqosuvzZFcvNwd1323HHHWfOm3FodN6LF5u49evtuAMPLAY7m6ZaUUlLmnzbQegzdMnXLDo67OOuLnNOdY339SJR+bd1VVk5SmQdVzkkgWnLpZLuhwOJqx0MG6bStrxQDG+pn2LFSWV2aP2HjH1J1HEaUk4nUl/Z0mJHTTu2GJbqdn2a6IbBY89glRXK+ncMPyVuABJXPxys900IIYQQQsLhxzJCCCGEEEIIIYSQIHYOdAFICgz+ZQqEEEIIIYQQQgghpGzJZDLvz2Qyj2UymW2ZTGZdJpP5cSaTaYiZx+xMJnNPJpPZmslktmQymTszmcxMj/PGZTKZ1kwmU8hkMpf6XIsrywYBGRSKMo60ZVahuzH64i3FC7x2GvlbO1lK2SUAvO1txWCHkjdVfvvb5rwZM6Iv9rnPmfCyZZFx+bNtKWp37ZjoPGW6hCWyOp2UKenv6/mcp/xIZqLroLXVhOed4JefZtUqE/7HP6yomu3bey8HAMycWQx2zzra61KhUtS0d2ocrMgyj1l4ux35zDPF4Koz/suKmjbNL//+rIPQa/nK9ErkfUKmisbGYnDVhior3aR/3GsOnn/eihsjtJePdky34pYuNeEJE0x41iy7XDW59ugyV1ZFxoXe957m52LDBvt40oZHzYGsBADd9fvGLkccGXtU33bJPBNpg3pbVFkmhxTet1z9LVtP4noyTzklAcCY2mTvJ7T8Se/eHOfaofkPlLx7+Qq7jGL4RE112PPc0mby1Ds5y3tLe5f5pM4LyV/ja2niOifpvzWS2PV8sNSjK4/+3rlbQusBEkomk/k4gG8C+DuAiwFMAPD/AByTyWSOLhQKr3vkMQfAQgCrAXyh5+f/APCPTCZzbKFQeNJx+nUAKuKUmR/LCCGEEEIIIYQQQkjiZDKZegBXAXgYwJsLhcLOnt8fBvB77Pp49hWPrL4DoBPA8YVCYXVPHr8E8AyAawG8NeL6pwE4A8CnAXzdt9yDf1kCIYQQQgghhBBCyKCjgF2eZeX+X6qcDqAKwHW7P5QBQKFQ+AOAFwCc21cGmUymGcBRAH61+0NZTx6rAfwKwImZTKaxl/NGAfgugP/Bro913vBjGSGEEEIIIYQQQghJg6N6/v9AL3EPApiWyWQc+5J75ZEBcGQvcV/FLkXlf/US54QyzB7WbmzHJd+8Hw8/sx7Dh1WgadwofOv/HYPDzv0Npu1fi47OnRhVNQwfPfsNOP+UqQCABXc8i8uuewj7NYxER2cXLjzjYHz8PYcCAO577BVc8t/344kVm3Drl96Ms988Jahcvrpw6aWgqa7uX58d3zyCtPHKayUrjSMchhiua1k6/zvvtOLahU9ZlfD+AQDMm+d1LcvPTHniSHMgl0dZf/rBaDo6ouPyfQ1pu5HPplqd5LqAL9JkRnnLYdw4E663feGkkUm2bYsdJ8rp3X4SeDZx/DystLoeZZ00lvwjS2o4/XiERxkA4HVjTTA9Z/sFbmmbWgznctFeMWnj6xeVhB9JCQsXmrAYK5atPdRKNumMM8yB8gTsbDY+ZUtutLP/1a9MWA5nJzSvtBPqPitxeJZFkYbnlAvZNXRXaK8/ohjWU0jUjJK2J9SeXC8SaR7l8CyD8ixL2jMxzrNP4r5lHrIdVFXa1812SF8+/zadtE+QHsa3bjXhBmF/HNqH+vv9wdvXNGH0VN+f80bS7TYN0vbfDCU0/6T9MZPwjdRlcuXR2RWdp+WHJ8cp1ah9x1Jt3evrt1cOHrkkEeozmcxicfzDQqHww4TyHt/z/9W9xK3Grg9d4wEs7yXeNw8A2E/+2ONx9hEA7y0UCq9lMhnvAgP8WAYAKBQKOOOTd+H8U6bi1i+fCABYsnwD1m3chgP2q8FjN5wFAHhh9Rac+am70d1dwAfecRAA4F0nTsH1l83Fxtc6cNA5v8DZJ0zBxLHVmDS2Ggs+Pw/X3PTEgN0XIYQQQgghhBBCSB9sKBQKs1wJMplMLYBLYuT5nUKhsAnmX6K295Jm9z8V9fWvVbHyyGQywwD8CMA9hULhF37FteHHMgD3PrIGw3JZXHSm+Rf4mVPr0bJmq5Vuyn41+OYlc/CJbz9Y/Fi2m31GV6J5wmi8sqEdE8dWo2n8KABANhvv6yUhhBBCCCGEEELKgd2eZXsFtQAuj5H+RgCbAOxeGjkcwDaVZvdSyejt1+344b3E9ZbHpwA0Y5dfWhD8WAZg6fObceS0+r4TAjjioHose6m15PeVa9vQ0bkThzZHS+ki6eoqSqayWuon5BKuLd1r7vylFbd85r8Ww83N0Zd2LQv2lRfIJb16eW+VWCUcvIRXZqoldlIepCWOYm2xLn/Ukuf8RRdZx1VSE3HqqVZc9zTzcdVVP09f8M1ei6uLHCpx8V0erp+NRMrctEJn7VoT1uWXEl/vLbl1GxcF04/34YfNee86o1MX2oRlI//IR+x04nolS+vlkvYNGyLzl3LfpJaiRz0P+Sw0JeXvEnWyapWd+O67Tfg97zF5OOS+LnzbZ0k7kPX6mc/YcfKBK/1RzbJ/mgNR/2vqbQliqMI0qt/EkYEkkUdUfgCAuXNNWNRPU5Od7Bd/MP8Q9+UvH2HFSXnldy55wYr74DTRuX/8YxNumW+l6557fFSRLaTyFwAqK/dcPuvb32R/yre+apera99iWI9h28Tr2tgRthRbz7k+JG490AfesqJc3hw0jo9OGFiWJNL5zl/5LvUu7dm4LBnmvX+2I0eNKgbH6HeJDpF/ySRo2oivFNsatwFrrlmyxM5Dqqrnz+89P9e1+iJq3EpMciUqvTNnxikteQ6V0UWdNwab1C/SViFvxfheu6Y6WakfYLfrzZuj09XVmbBL2upbP2nL7eLkb78LxR/v9bEeDkKkwK6/h1xY960nRPFynVWF7Kg0c9Q29QlByq+t9zw1TnU7LBFk/WiptyxK3vOrACWZezeFQqEFuySTcVnT8//9AKxQcfth1xfHNXAj89Ds/m33DpnjsMuj7Oe7DjPNKt0+Pb+9UigUXkcEbO0xKRTs41/c8wLe8O5fYcqZt+Did81A5XB+fySEEEIIIYQQQgiB2YXymF7iZgN4tlAoOExV+8xjDnZ9cHuk53gsdq02uxDAc+K/3Q6+n+45frvrgvxYBuANU+rwyLINfScE8NjyDTi4qbZ4/K4Tp+CpW8/BP35wGj7xnQexdmNfqwcJIYQQQgghhBBC9gp+h13yy//IZDIVu3/MZDLvAHAAgJtk4kwmU5/JZKZlMpnRu38rFAorACwGcE4mkxkv0o4HcA6AvxUKhd2yiRd7ftP/XdET/789x73trFmEH8sAnDBrPLbv2Ikf3W52anv46Vfx0lrbs6xlzVZc+p0H8Z/nzNBZ4JhDxuK8kw7Et29dmnp5CSGEEEIIIYQQMhjoHgL/pUehUFgP4PMAjgZwTyaT+XAmk7kSwC0AlgH4ljrlPwA8A+AM9fvF2OVZ9o9MJnNJJpO5BMA/sOu71ifE9V4rFAq/1v8B+HtPkid7futtZ80i1AwCyGQyuO3qt+KS/34AX/vfJajM59A0rhrf+vixeH71Fhx+3m/Q0bkTo6qG4T/PmVFi7r+bT73/MBzx/t/is/NnYtlLrTjjk3dj89bt+MM/XsLlP3oET916Tt+F0UJ8oXnvyNn+KdIPDDPsD3hTm3tv8GnozKUfgNa7+/r4OMslBfbTptlxDs8jqy6Vz8jmzcazYsQI83u+Wt3ApZdGFsvXC6Kpydyb9umQpO0B4Lq2RFt3OSwSvLF8OQr72pH7mOO2dXbUxo0RmcD24Mk6jPOkP532Y6sUHg9Vnjfn8u6K4xkn61k2T+234XxuMlKX/+CDHSf2I8L0rrvefvaWf500xwOse1teaXzKlGNQIgT7LYnxuavaeMG5fOfikJVefKIBTb37j1a6VQ2nFMNXXGHnMUvuabRMWUTIMVN2DjWWSo+lTuX3I5ugtiO08kjAx83Vvyxfmnrbg7Te0xeo5Nqtxveo03q+/nlY+XmOHYl53kVcKzSPPUm7p/lZ7xY5fwM82XbHrBXt/xdqU6zZs0345ZftuAMPNGFtkhjga9eLuV8xWFtr53fSSSacbROeeto7zYGrbYV4WrV32G1Jzll6nsuLcaVDzLclvlJd6v0t6gKKSO9Mhzeqbx5AmCdsnPFBDruvvRadTljqId8RrVLKqnaRyDt4ykT5ael6lMdb7bUM2Cl81XVz8fXlS8QHUN6AfqeRL9OqkDXNphJq1Bgj32HzLhNqB7LuXBaPoe0gFb9DMiQpFArXZjKZjQA+DuA7ALYA+CWAT3tIMHfncX8mk5kH4Kqe/woA7gdwTqFQeDzpMvNjWQ/jG0bil185seT3bfd9KPKc+acehPmnmg9n4xtGYu2fzwMAHDV9X6y6433JF5QQQgghhBBCCCGkjCgUCgsALPBIdwWMZFLHPQDgzYHXX4gYGxTw8y8hhBBCCCGEEEIIIT1wZdkgoLtiWFHiUbJ8e8KkYrDKtQxYyRMjl6aHyib0EvaodeYl6fK9p+sDa0mvS+bQPDUyytomHp2R6eQ2zZWVdr25ltNHLTvWdVzVIbYwd60rV7Sjd8lCEsukdT4yTspGdx375e9a0i4lNK+/bqdbv96EZx9ll7G5WaR1rB1vFxLlnJKxSNmVljmMHm3C+tmnvay8osKEXYoaqx1XOqQxsLcNX9R1QjE8T+TvGvRdbSSU7hlGQrlkiR23Y4eRts2eaMtwtlQXfTsxtdpPOhFcXi3hFsjt2EskRkJL21WZgEyvQ20QIzQ6nbVGwpr/oy3DPKHjN+ZAF/IVIS/TnVnI99dd98tiWEp+AEAqpHT2su06lE5W/4ozD7nG1qjnrX+X5VqnpN5y/F89zB47jsCjxfDm/czzrauz8/CV10tJIABkZbuLCgPe+vdE+msMaVLItZMYY3znMgD2wxHtv3vB/0bnuULJlYX0ad16u7w7hdJKqqec9abnMiHLnN6obASE/Bdd5l5Cn7Wv5NCF7ufyWFsdVItxq0ZKpXUbl3WuOlRn8/TIa8ukMsuaXLQtx/pt9nuptOJwzcWu+ukQ0tQSiYh0Y9EAAFjzSURBVGkueo6S15PK0ZJryYrV7VPeuLJk8ZUJJyGp9pV8lrwjV/YedqHTJSE3TUIKLx9+97Tpdpw+9kS28STk9C6biDSk/HuPLLMAYGefqUj5sbe0YEIIIYQQQgghhBBC+oQfywghhBBCCCGEEEII6YEyzEFAoWBWiOeVXLDbU8aYxNJ659JZX12RWiPf0WXKr5f+yix9l2w7JSLLltnXbjRLnte22vU4ZUKELDOGfsp7afEdd5iw3qFJrtdX6/9bm47t9TTXTjYu0lhC7VIOSdmVlA9qJZg81tdyyQ4lcnMxvVlZQ4MJj22Ivjct75CyCtksXEraEpme6M95deJYUS5XOexdn1T95DpFOruN//rXJvzWE8Okiknvdvfgg/axfFZPjBhvR4rdQg+dZiol6+ijoeWVUsuSdizCOi4nZOC+3dJZRsfuWfnGVvP7LbfY6WQHUB3s5pOM3Oy9239rnydkpE+1TCmGdR+SG3Dp6pd1onfSlWnlBpV612RJGjJAWQ6tUsquXVMM/+IfdhvcUHdEMXzYfuZ33Q5qqj0lR675RUqrtJYtdBviqHIEksR7huu8UIm197V9d1VU9g5yTH72Wfu84cNNWPcbb2T/VYNkXja2mTNNWMjbAaeSPPidQSLrx5WfljFaTV4WUu5kDtga/X32saI27xMtX5MSSjn+1EyInqg3rrKjvOWzDlzyTd+xyYkcE155xY6T24brsSJkt1YHvu8Pwf3VsbO5q+ElvdNn6DyUBCXvkREyXlc6TYidQSgDWXeEpAE/lhFCCCGEEEIIIYQEQc+yoQhlmIQQQgghhBBCCCGE9MCPZYQQQgghhBBCCCGE9EAZ5iBAepYBtghd+vPE8QBIQoPu7RUm6MxVWcdVG4wfzLoK2w9Gekl5l2nRffYPc+aYsPQGAzBm0afNwYLfW3HtwkutqmuLiXAZT7jK5dLkn3tudJw02VAGBOOrTbm2dBnfCW1nI20cYliuefsISJsR7ZGwbZsJS9sMwPZZq3J4goS2VZlPY6PwY+hSfnSOG2jFmGJ4TGW7FZdfa4xNlsN42EjvJcBuMrr+u+HnOejym6mrM2HtCVXVaC44dtgmK+6Hs4RpGS4ohkK9PZLwJPr305Unl6xM9WweXSbGEs+GnYRXhssnr0YND1E+IL7b0+vzSjwNpY/P295WDHaqBpP/zGfMwciRVtx7G/9mDmbOs/MXg8cbhDfeunV2MjnmuGwXJ9XbfUjOBy4/FRcurxVfXGPYGNGB3/X2LVbcFphx1+VL1tkV/byt+9YXF9funnMsUsXlBeQyXpRZqPk99JlKfJ9vqHdd1HlxxkFZPdoSSloE+uaZ1e8ZchzUvkyyP4uC6HmuqjL6XTHkXc5F8HuG7IjSpw0AKipMWL0cjh1lxhXpL6mxqzW6kNOn+d9zqNdrSP7OPOTNTZxox02ebMLBxnm9l6kvQvql8z3DZRAbkV8aJPE8Q/Mv8fSUY3ICPtZJ+M650tKjjAw1+LGMEEIIIYQQQgghJDYF0LNsaEIZJiGEEEIIIYQQQgghPXBl2SBgaxuwdOmu8Jw50UvMnShZjiXf9Fy2G4y4dl5JODrrjfSyQbW2EDlY9ppr7B8uMPKyqwuftKI+Nc9ccMzap+3zpk0zYSlr1Hq4BPZcdy5PfvhhE96p/kVi1qxicFuFkQPJrdIBtyTCJb/wXTbtWhUvlQEuWa2vvC+RpfX6Ga4S+8SvtWWAS3BCMTxvnt33ss3N5mCFCWr1yI4dJhwiLQbsenVJm6TcFLDlX/lly6y4Vy+8sBjeV/STpAhaar94sX08b54JK2nSzJnxsy9Vl6UroZHXk9KJYBmC1jguWmTCQu+VHzfOSvbEu79SDB86TcmQW1pMWHdgoa+sqzPtX48xvsOglkhFDU0uKVicecG3nqV8tnSMiZbe10SMTdkOJdkW9bilcl8rLlctrqfm4rTlKlb+srHqQUz2PaXzXwMzh+vmKfuXr9QvCRlgHELkQa50U5r2tESldDeaOs7KMRGwpdguuayUaMaQs6YtM7SQPgKuQUXHxdF9DhBpWBhYyDrRXhAOL46oayclY0xTRj2Qcr7Q55lImXXfFmNyVgzCvu83QArv2Q76e4wnJG24sowQQgghhBBCCCGEkB4G/z/XEEIIIYQQQgghhAxK6Fk2FNkrPpbNvfBPA10EJ93Z+r4TEUIIIYQQQgghhJDU2Ss+li167OWBLoKTc865sChRj2OZFbkltzrR8i9LW3mrytGVM15bsbYbl54wUr9/4412wquuKgY/NUfp/E+6yIRdFSk9rXQhhU9QqPdbdpnwS1OmL/eNOqUY1jYFwlUN1cJDSN9KiPebK53OLw/hgRRjK29pfbNtmwnLbeABOJ9NkB+G8r7aMmF6MfzM1ulWXG67CSs7M0iV+ujR5tft2+1UGzea8KhRdpxv/5XeE3H6aL5tkzl48EErbt+//KXXc9LYFt4b7ccjnlWJz0WXaXdbOkzf03Uq22detc+kt0gv6Ru5CE+ohDx2/nbqN82BCAs7QwDAodWiHC2r7Eg5vqnxR/prdYn++txzdhZiGHT68iXhCZUEcTxTfMcYObVt3Wp7s40dYZ69Gn76tU5c7Vj6yXXVR3uj5tUNjPf0uknC+yqJ95NQT6608X6+ugHNmdN7uoTGGF8vo2AvKdlx5OCtffP05LmnODzdQttEqO9TEu9h1guVfllpbPQuSxSh9xZ1Xuh4Fjo+hHiihZYjCZxzlO7b2iyyt3P6iAtp86484uQ/WMZgQkJhCyaEEEIIIYQQQgghpIe9YmUZIYQQQgghhBBCSLIUAO78OSThx7JBQF0dMHfurrCUHgEAxEpyLQO0lsQ69F6dXSZd6Mr9kuW+UdvQKwlBVWWg/GXRIhNeuNCEL7nETve5z5nw2WfbcWLpcve8EyLLkW1uNgcrVtiRQkKQrQ6svO9/34RnzrSijpeyNLmtOgBsMM90U+WhxbAl/YK7HoOWpmv5gpRR6AYk2p1WAsukY4cJuWCrSiiXmFdGy4N80Uu+a4REbfZRdtpNrSatlp69/roolmPX9n326T1dHHwlECXPU1bySSdFx1kSQX85cRKyCut+qmusOJlndsOr9omiQdUIKeHKCcdaySZJBYpqu1nPAc+3zmNJJzyv5apXKbesaV1pDqon2AnlfS9dasfpjimQyp6WFhPWCqlx4yKzsEhbipe2tMSVX9UGU/9VsuIAdDYbeXc+gXtztZFQKZJsIqr4FrW10ddOQs46WIjTD33PC32+TgLGlTTq31aZx6i7qMlTy03le4CWnYW8uKYgUw1N53re+nVrN3ldfHk/E9T4r+sy4tq+fTmUtPt9EvmnUcbE35MUSZc5qs0BdrsLHes05TAfEOKCMkxCCCGEEEIIIYQQQnrgxzJCCCGEEEIIIYQQQnqgDJMQQgghhBBCCCEkNgUAOwe6ECQF+LFsEJBBwWi6pXEMYPk9ZLX3jPTa0mZJIq20wtJ+S9L/yunhoUXu0vTkwQdN+MQT4YvTA2PHjmJ4y1e/WgzX6Pu89NJisPvOu+w8HP4MkR5d06ZFltfbU0DXlfST0D4acsvvpiY7TtTxmFy7iAg0xnLg8l7qVj5TUedJTx8AeLptUjE8fVqtyS9wQWsS5+l2IJpZSdcbMcKE5aPRTVDueJ+6D4huW3ILee3zIvtoQv4tIXjXiTZSkmUWcTrZlg7jwVaDLXakfFi6XXu2pyS2PZd5lHr7mTjtR1jz65+aAzney3EDKDUZk8iGrS4+vtF4ZDY25qOSWcf6Uq7hTZK294/TT8WebMKuJ+tR+Uu2NRrPMu35JS+tu69snmn73sjbdlgcBZOGn1BUnbju0zcuTnmT8MbzjQv1Ugv2FPNM19Zm8ixtP9H1k4fw4XUNEL4DScmVe28Xod6Hvr6IcdqP20vQ01NYRjo83ZKYr+Lg20cTeTdymW314ztOGp6SaSOvrccHSRLzED3KyFCDMkxCCCGEEEIIIYQQQnrgxzJCCCGEEEIIIYQQQnqgDHOwoeU1q1aZ8K232nGf+1wx2J3LW1FduapieHzHC8Xw8pYpVrrmZseSW6l30rocKf9auNCE58yxkrkkfJs3m3BdnR2Xe/spxXDNQw/1fl3AWpYdKm3orqzSyXtN5y3lVBIda3n4PvvYcUKH09lllzHvqZXxXfruuzw/VJ6SVdKA6dWbxJEdN1DoOpbt7pxz7LSyHjp9pRKBBEsnRBvpbhxvRUXJN7Mx5Ighy+mD5RdahiwR/WR6hy33xVoxNk2YYMc5HlZUuZKWXeprVSkZb3uHSdul2mfVzJnmQErEFy+2M5H6ejWHtJ94mskv12nFRdWPQ9VfMgTLy2l1kC+hY5Ov7Cq000a2XSUHcqlg5aV1vSYhLfTtXzKPOHLZpOWhScjXfKVyca7nKmPIPOp7rd6u53OelqPLV0Wp2AZs2VXoM5Rt3CXTHjnSjmtoMO+m1rX1+41DJxwik4xDIs/XpbeWqEGgqtLzeejBYw9JRSbpeT3va7nsXzShk08C+Ep1+1siG4Lv3xNpy9jLF3qWDUX2phZMCCGEEEIIIYQQQogTfiwjhBBCCCGEEEIIIaQHyjAHG3ppupTeXHGFFeXaYU2uXs6LpctTl/3SSvd017+KS+klt45ySdnPNdeYMik5aLZD7OKotB91dSatXm0tjytnHS3K1L+7s/hKMyzppX4Ys2eb8IEHRuZfuhmgiaupjt4Rsb3L1KNeqe9a/qyLafLw/4ZutTOX9CABXG3csemhE9dusFHX0rcpr5ePM6Ja25flo9NFXQwolW0LrLYbIEfUebhIQ8JhXbt+X3MtOaYAwNKlxeByTLWipCrTJYHz+b2kTA5Kyijr3/Esqjo22T/I8V/cJxYssNOdfbYJqx2Jq7qE9NKhn8pKfaXaNnmMOK6d5tlWFb4ynFCpZRJt0ClNmjvXhNVg3dZiwitW2HnKdqeVxhMm9H4/aUikfNt12pKZOPknLZVOY6e3pHfVdeUvm52UXQJ2u9NuD9JuIHSnTDkk6GtLvNWCehz0tJ0YSBlsGiQ9xyadLg6huxVHlkW3EUfj8u3bMp3rXU4TKkGMysNVriSII6H0Hf/TlkOXPwVQhjk0YesmhBBCCCGEEEIIIaQHfiwjhBBCCCGEEEIIIaQHfiwjhBBCCCGEEEIIIaQHepYNMkI9WfT202vWCr8r6WvU0mKl+8QnTPjqq+08D50gPZXsprIG44th6W5T0qCkkYbyG8iLrZ5zwpMIAKLsc+L4bXR2mbTSmyopLP2+yzuqaUpknCx/ba2nV4B6FlUO3y23t8KefyvfvNmEx25ca0cq36OoMvl6hcmt6wHbv2X0aFGOhuh7zsM2qdjSZvyXXJYpVTAeVO2osuKkDVSuOvpetCfdtm3m2iNGmN+d1i3Kc6q70pQlCV++tInTPqM8TuQ9A8CdG4yn4ckttifjCznjySj9y3ZfYTdOrxLh+ZXVJidRHira1Edua6/6xdatJly1znGevJb8HbAHTG2aJdPq8x580ISF9yROOslOd/rpxWDJWCfKpZ+v7LOy+FWe/nF9xUV5raThR2W1x+oaK92h9WtM+OXHrLg/dZ0SdO00Sdv7zZWnawzw9ctx5e9LGtcKGc/iIOcG7X8n4xoa7Dg5PDheVZzlkv13rZrq5bDiipN+qEm1s6h8NrXa9yLL7/J2DS6Xpy+lJk1fPt9rJYXvWO07zpbg8CzzvTc5het3Mpffnp6zfIj1viO9RVX7ae8w+bjKmMS85/LCtpt42Dg+9KFn2VBkb27RhBBCCCGEEEIIIYRY8GMZIYQQQgghhBBCCCE9UIY5COjamcGWtl3fLT13zwbgXvYqlT7dOSNxzC5caKX789rLzcHtZ1hx9837QjE8c2Z0OSwZmmpRVc3N5kBLmIRUKatuvLGxd3mZvk/Xct8NG0y4vt5OJ2WZQVtax6ArWs3qvFaINCCOxNF7i3cHUu7R3TDdWZYoXOnkUm/dN2S97hQrn7X8YkytyF89gJpqz7YlpH85x3bjrvp39e2lS014zpzodBrfpe9JtOPQrcLdW7X7tXHXfZ5ce7852LzDipuSW2kOOmrtTOXAJR6OlnmuXGvksq2teSvu0KYtveZRIkEWWiRdfks23DADUXRPmFQMZ6+4wopbt9WUedQo+7yqtlfNgX4AUpv67nf3Wl4AwDPPmLDWQws9WFadt2NH71LX0HHWt42nMY678utuNLYE2VG2DPbJB0x4n33sfCxpsKxX/ZxkvcaQeEXVl69cqi+i6jzOWBEi2YnzPJOuA9+2lUYbl+gmMnx4dFrX3OP7npEXzU6/T8nhrqLCPi9Gc40kRN43pvUFK92W+mg7jKj8QssUB9/2mbS0LY33hZB3AldcaB911Z3uN5Ik3oldWPcmZZeArQlV8+iyZSYs/xZLWzKvpae+z6Y/LQUI6Q/4sYwQQgghhBBCCCEkNgWAHwqHJJRhEkIIIYQQQgghhBDSAz+WEUIIIYQQQgghhBDSA2WYg4DXXgMWL94VnjfPjgvVfktPLqkz777mm3b+K5abAyXmP77ZaOqfXmF79Uhtv8tqpanJeOnU5NrtSE8zC5dOXm6prLMb32X8itq7JllxUV5JcTwSfL1K9PbUkurq6PIn7TMV6lHh8nuQx3qb6dbW3q+nt6739YlweU2sWNF7GADmzw/zgImwtLL6FgB0dnnWq6qgSuGNdcAB0eWK8k7T+Sfh7+Fq46FeLvI83RekNYdvGUvuU5q86YcoG5fuYOLinTDjW1dHZLISX6D2XI25lHXSGCtdiOeOZv16E66rs9vB6tUmfETjGjt/6ael85ed8eyzTVibHMlOpf3MZLtWD3hsg/CCC/SpScIHJwm8+9Dc4624T00TnnFqDOiGPS8V0b5wElf9qzaejTLMVINuEvXvOie0/SfxTJP2CgslNP+oMVj6bQL2u4SLUt/I3tO5yjttWnT+rveYJLyqfOlusj3KahLy6Ys6J7TMIZ53/dkvNGn3kyRw1V1lZfQ7d7+iLy7H8XvusZM2vrXXLIKfhX5ZF/NBaJ5J919CBhP8WEYIIYQQQgghhBASxM6+k5CyY/D/EwEhhBBCCCGEEEIIIf0EV5YNAvYZU8AJ83YtW01iy3KNUwLRPNUrj+nNapvjVatMuG2DCTc3W8le2GDkSJUTbOlQznHt7FohJXLse14VpZUD0D3BSFyq9DbNoum7ZIZypXRofdfWmvy1RFCqlrQ8MR/VO116RL20W1wgq6Q3UnoWeS3Y99PWZrfB554z4ZYW+7zf/c6E5WO69FI7nVTRuXA0A2wQTXDJEjvOpWiSVaLloPJ6rmevZZleFwOQF3mObfDLQo8BIdLFJORAoWgFWdJoCVx2g5DAPfignbi+vhiUIvO87l9iTKusq7GiIscHh8whtB6fesqE3/AGO07cij02A2itNDLMMbUqU1HOLdUmne5qWVdHWbvWhPX44+q0CRBUly69dUn+gkAZo/1wdP4irczTpVXXA6183rq+5QA9caIJz5xpl8PxnJKW8sd5Zv0p50n6PpMiKs/Qa8m5ErCbmm+emzfbx8OGmbBrjLdVwcm/6yYtdY2TLrSND6SkMoq0+3ka0vqQOtDTVZRqXZclkfrW887SpSa8aJEVNeESI8OUp1VVxpCty5tbtsyOU/OBD+UgxyUkKdjaCSGEEEIIIYQQQgjpgSvLCCGEEEIIIYQQQmJTAD3LhiZcWUYIIYQQQgghhBBCSA9cWTbISNvrINSLoMQn5ZprTFiK6OfPt5K11Z/QazLAtmEp8X361rdMWJpazZplp/P1g1EGBNH+A8l/P5ZWAbq4sg5KrchMWaz6kUZngG3KpQ1DpA+CunhX03SRv75274yptZ/TUUeZMh5+uJ324INN+JlnTDjUxkh7SOzYYcLSmkeGAeDuu0143To77tRTTbipKaxcSdDeYepRW0KVA2n4VyThC9Jdv6/JT3l5Yds2E379dROWDQuwOmZePZw19YcWw42NYkzRxnnSy9FhjqfrUXZtaTOi26p9bPtdycvp/B9sMT5lcljRw+yyVcb/8djcGjtSXtwxzoYS4lekz7Hi9EArj/UkJStdVGT3nGO9yqEpuRfpGddlPD1rKpXHpiyjLr98cLpt7RT/yr14sQnrwdTXONKTVLyGXHUg0c8wwCjR1X58/bTieDaF9JM4+ddUm7TV1XveJxuUx6bzGYpnlcsZd0hnHw30tUvcV0oR/P7smUdIfmngejaDJf/Q+nH5zulh0fe8qOFI5+f0NX34YRNeuNCKGnNFAm1BFlK/CwV4lrmgnxkZarBFE0IIIYQQQgghhBDSA1eWEUIIIYQQQgghhMSGnmVDFX4sG2zo9bxiHa9etSu3DV6z1l4kaEmCxNLfUJlnVss7ovSDEyZYyapFC3OpBydVt9qR7363CUuZj9bwyXXOLmmGIqoeXMuwNVFLjbNdtoQmLzIdUxs/vxJkxQG2RFbKvQDg5Zd7DwOAkGGGyhdklevnK+Pq6kw4QBXTJ+PGmfAhh9hxzz5rwhs22HHr15twEjJMl0THFVeV6xTp8lY613bmoeWKIlQa47pP3/xLh76I/hUo0cG559qRK1aY8O23m7CrgapCVlREpNOyBtln9UDu0CVLReidd5pwo620tI6rVGSlo81IZd6vf23CV1xhpzuh/glzkFMXD22UCRA0bum5TJZfP/sITXRiMiXRnqQquLLSHgPy8iHqMd4hg8WMGSYs25lLihrjeUbOgTFkjK7zLGS/0eWXsiLZqAH7XcKhcU9aOhR6n51dftKw0HFWz9NRw4/jVTQenicmITtMIw/fNu6iXy1TAvEtYxL9JAkpapx3rah0rmetp2n5PqL7hpze5RCjpxN7vlJIybx+x4/Mw++drAR9c57Jco6/51z2IbvPKxS8LkvIoIMyTEIIIYQQQgghhBBCeuDHMkIIIYQQQgghhBBCetirZJgVFRU4RGi0br/9djQp7dWDDz6Iiy++GNu3b8f27dvxrne9C/vvvz++/e1vAwCefvppHHTQQaioqMBJJ52Er33ta/jv//5vfOYzn8G6deswevRoAMDChQvxzne+E1OmTMG2bdtw6qmn4vzzz8d5550HAFi5ciVGjx6N0aNHY4PUgjmWrEsZDgCceboJX3SRHXfjjSZc49h90HtJtV53fMklvcep+mwTm4npnSBrcu3iSK3hlYnl+l7Xbms5W7riK4Hz+b0vXDtveufRtsX+QebjWuMsZVd63ffGjbHL4WoTuhnIZdp6E0FZZKnOdWxgGqv+GxpMOU880fyud/KTZVy71o6bOLH3dED0LoKhS9+d8g7RdnU5ZJ27dhL1rbtgGWMgsvx611W5lF8rD6KGgFAZSMl5zVOLwaxsQK+8YqeT4/OBB0bm79zpyrFjrZRd6aFDdt8//MHkWV1tjweyzU+YYI+DEl2s2bNNWF5bqemxstLs+jmpUo1TDnylMRLfsbqvOG/EjZdcWzwrt2Q4ukxWnloHLhg1qsaRvxh/dCNxzTe+W+t6yjB9Zdqp7Ibmu42yrjy5i6lnuXQWJbt1RxBaBzKtawc937k5SsIOuGWYMk7XQdL2CansmOqZfyI7LcfIP+2+kcS9hlophOArdQ2VGoci2/zWrXbc9u0m7JInRlozaPR4Jq0b7rgj8rTQXVezrgk+Av1OJqcTHSdfk+R7NWDqq1Nt8jw0oWfZUGSv+lg2YsQILFmyxJnm/PPPxy9/+Uscdthh2LlzJ5599llMnz4dH/jABwAATU1NuPfee1Ev/pK75ZZbcNRRR+G2227D/Pnzi78fd9xxuOOOO7Bt2zYcfvjhOOOMM4rXnz9/Pk499VScffbZuPDDH076VgkhhBBCCCGEEEJIAJRhKl599VWM63ELr6iowPTp053pn3/+ebS1teGqq67CLbfc0muaESNGYObMmVi9enXi5SWEEEIIIYQQQgghybFXfSzbtm0bZs6ciZkzZ+KMM87oNc3HP/5xHHTQQTjjjDPwgx/8AB197Bpyyy234D3veQ+OO+44PPvss3j11VdL0mzevBnPPfccjj/++ETugxBCCCGEEEIIIYSkA2WYii984Qt43/veh7vuugs333wzbrnlFixcuDAy/a233orbbrsN2WwWZ555Jn71q1/hox/9KADgH//4Bw499FA8++yz+PSnP41G6S3lifSzuf12O+7006N9LiSJbPXcNCUyzuV1cOg0I1K/70HbS+f4GeJDpPZWiTAsCvUB8Y3z9WTp7TikHFYeLn8ZbTQikXWlfRAOOMCER42KzEJ6Nbi+D9dU2/ecqzb3pou/M0K6r9Ml4RPX2JgV4ehzXNXo8qGQ4VA/D9d5slzPPGPHSf8HXf/lgGtskvdTU2mb5Pz+TjNezJtnftdNPBE/GOkXIsN95FnX1Xu6rDb4kQYfvt5L0L4pdxVDjz12mpVO+wtJZP1oL6Ojjuo97Ma//CHE8aLxHTs6rKkmbA5ZscL8rut72rTez3EWBLA6h+wnrucZC1//zMALhnh/xpmXI30AdXnlACofBqLncNe1tLeibxn724/KF9e8Jwltg76enmmTxtzsS9r5J51fHG/ItEm6D6X9LBy2iK7XbLsc2mNZ+ohpA+AAnM9TeZZF1Yn2X1u1yoT1a0yPIAtAqTXn2LE9ZRryy3MKoGfZ0GTIN92++MAHPoCZM2fi5JNPLv52wAEH4CMf+Qj++te/4vHHH8fGCJP0J554As899xze8pa3oKmpCbfeeqslxTzuuOPwxBNP4Mknn8T//M//9PmhjhBCCCGEEEIIIYQMLHv9x7Kf/exnWLJkCf70pz8BAP74xz+iUCgAAJ577jlUVFSgNmIboFtuuQVXXHEFWlpa0NLSgjVr1mD16tV46aWXrHRTp07FZz7zGVx99dWp3gshhBBCCCGEEEII2TP2KhmmDzfccAM+/vGPo6qqCrlcDjfddBMqIvYCvvXWW/HnP//Z+u2MM87ArbfeitmzZ1u/X3TRRbjmmmvw4osvYvLkyVZcAZnIZbDLlpmw3qpX8utfR8dFShkAYO1aE9ZLc9Uy4ag8ncuaxQ0cv+BbVtR9839aDM+ZY5/mu1W7i6S3G09CDqSXb0tZlPPLtVzX7JKsap5/3oTVuuncnN499LZti85OS5hcUg0Zl5isyAP9LKSUWd9bS4sJv/aaHSe7g1L2RBIqbZD18/rrdlwM1V4kvrKEOH3G9zzn+CMl1mq8kQtxZfM/91w7CymZCt1OPlSaIcslu2G+rdVOKPULqr/KIVh3ZXtRc10xdMghdrqRI03YVQeO6rckWK48+lu+k4REx1eN6ELWnR5HnPK+jnZzoC0dmpuLwbzQj2u5bOLoCnFYACQx77mQY5/zOblsCsQgmbZELYl7TkOu6eq/1dV+15NV7KpuTUidhI7VoSQhFXX189D8fce3kHRxCJ0ro64XR66c9rt6SP7aRkT2L71+IuodrfR933FBmelxx/VRur4pqQN5cdW5o56NlpTKOpHvLYA9P6o/JbF9+67/96xDIaTs2Ks+lrV5GDfceuutzvgW8df1iy++WBL/zW9+sxieJ4x2RowYYe2GuWDBgj7LQgghhBBCCCGEkMFM+fkKk77Z62WYhBBCCCGEEEIIIYTshh/LCCGEEEIIIYQQQgjpYa+SYZYDWuO+e8tdAPiP/4g+r0STLzOSYnIlM91y4YXFcI30twKApimuovohdfKLF1tRVwkbn2uusU+bMSOBrci9zVAMaftoBHvnNDV5JSvxKZDmAerisnqk/4C0V9IIix0Abj8tl8demug6kLetPRgmTozOZ+tWE16/3oTr6ux0snvp+vBtPzIP7VtVU+3p9aFl5p5mZ75eIqE+ILaXi0I0wi7YnmWyycu2pMfIpUtNrjNm2HGu/hZ1b3HGgPGNvefRWT3GSpeXD1UVSlhVlbDPPvJoUjF0+ul2uoYGE3Y9pxrP9pmUJ05UvcYZV5PwGpLo9rN5swkPG2bHyS4kfQtdnprZrk77Bznn/uhHdty11/ZasI4uuy/I8WFMbeSl/dGV4JgrrftJwPxNP8O8I8u0fax8r9Wf5UjCc8pV3jheZANFGp5iSTOQvmRxSHr8TCJ/1xwb8l4RimssamyM9uf19f6MhXzh+da3AjOJxqqv+n0j08n7lO/AgP13gvZtk+fpV88dO3b9P5Ppu5yEDEb4sYwQQgghhBBCCCEkNgUAO/tMRcoPyjAJIYQQQgghhBBCCOmBK8sGGXoJr5TXnHiiHedcrvzggyZ8++0mfOSRVrKan/zEHDj0QMHLq6dNN3Fz51pxd/3LTeZg8XYr7uncB4vh5mbzTTfOEufuXD4yLvR+rPwjZA+uc7RSzt7N2S5vIsvRZ87s/WKwl03LZeTDh9tZjBhhwloiKJejb9tmx0U9K60AkkvfQ2WArrpq7zDn6WXlFRUmPG6cHScVrDL/zi67HPKZeiofS5Bdb3y9knGtaDHl2LDBinqi+thieMKEGitujKfMMJQgGYTWAInGcOed0adddJEJ55c9YcWdfvqhxbAc6gC7+YdKrEPqK792pf2DuO91W6usqHXrovORkt9jjtm/GNZbs/uOU5oSyeDuc3LRY1Eciaav1NW6dqBEU+JSGeot7xcuNGE9BZ50kt91s2vXmIOlS+3EctA891w7TgySss4r1dhZVSnqS9+ci6hB3pVO6+fFDuBWh0L6Ei8rT4dU1LfNhMqtI8sU47zBgq80Xbcz2T6TkEm6iPMe4Jt/qMQxjXYtiSqL77248ohDaB2HXDsNCWUS87krD9e7riT0HdC3HGm3R2nDIu1HAOC110xYTydalinZ/XestjkgpFwor1meEEIIIYQQQgghhJAU4coyQgghhBBCCCGEkCDoWTYU4coyQgghhBBCCCGEEEJ64MqyQY6vvr7EB+rSS82BNGnRCa+6yoQD9xT39qG4/nv2eauEr4/0RQEwPbe8GN7UNrUY1n4A+Zyfp1VJWSK8S9L2H9F+IfJx6EeTy8X3gymxs5kwpRiUdQUAlREWMKFby2s/AulhIL3BdB0k7R2l83N5tOwU/wik25bl5ySMyfLKnKGtzVxP2/24fBysa8k2qP2impvNgXo4h7Ya/67u2kOtuCT8hHw9flx9SHp9VHXZpn3d1cZnTdedtHfKrjDjgTb+k35mzz1n5zFjhgnnE5jtvMcYbU4oOubYyjVWVN208cWw7qPSH08O6bJJALAqr7N6jBUl27/26xq/dGExfBfeWgwfdpidrqHB0Zbkg9ODR8BgEqetRrU73efl8ciRdtwpp5iw9AiNVRZZsdqzTAwCL7z9o1aU9J7Ld7QXw92Vtq+d3dcUsoPpCUDEddabdpbTY0y18E7TV5hp2lPafjkuXB6kklAvI/kIxzeGtcGQ67ry0PnE8bHyxSqnwxfOQg8ksp/7Tnopk0Zb7U+vrf72wgu93kCOCZIkymG986n2XyPeD6uro99xfLuQCz2MSx+xKU3R5yXxt4zsvtob1fd+9LPY7RvcPTiaCiGx4coyQgghhBBCCCGEEEJ64MoyQgghhBBCCCGEkNgUQM+yoQk/lg0CMihELyGW63sVWbH0feFCe5HgWy+/3Bz84Acm/O5325mIPPSyXVtJZMdJyZqvNEBKigBg8/BJxfCImZOsOLmqfwzE0mit1RIJs0pHF7IMWS53BoD6ehOuqgzbclqycKF9vHWrCb/r8OV2ZFOTCbvWdgt5io5y1f+iRSYs71svvZbLsnfsQCSyuIAtvXz9dROuq7PTyTLHWUofVeclUlSBllk5ichH16NsI5oQ6ahW8G3bZuJG1Nr9pEY8rDS2k3fhe2+yy1Y1Ru+r/v7Tt6hfRFqpO1QaxEtnRV8732WkbcjZksAQ2YbvWNc9bXp0ujb7Pl3ShmXLTFjWY0kbF+NgXo6Xu65QDI1vVFEbzA9vXfbLYnjl9n+1kjnrSjZYdTMDJQV2ISWlsZCVricK+XBOPNGOE+11SqWjj4r2acmB1LW1RFNKKEsahpgTLYmvfq+Q82igDDZtvCVGqg7Wbzbz49iG7sh04zeIztZVa+epJ0UPfKWVoXHZDa/akXKi1s9XewwIrHLmouW42dZNxfDflo234ubMMeGqfp6Hoohjy+GbLtQKIuR6obYiA0louw4aR/RY53xHjhgjdT/ZsCE6D8ffGq2tZkxessT8Lm0gAGD4cBN2vYvqYvnKMEORVSKtLEaNstNNmxadh/UM1d9pVT11mS3wQxIpTwbHCEsIIYQQQgghhBBCyCCAH8sIIYQQQgghhBBCCOkhUygUBroMXmQymUJIWTOZDAb7PX74wxfi+9/fJZXMih2xANhLgX/0Izvu3/6tGNzUZu8UJeU7s4RMSe+2JtHLpKViU694vv56E27U0h5P5LLdTa32taUMU4a1hKk9Z3bTq4KqO4fE1FoyLCtL7WS25SQjR3IoGdzLyOWSZL20W8bpC8hjlzyiH3fz1EhpRol+UJR5S7WRbZTsOpnATmCunWGjVuDrOOcuf2IdfHuzvetkVS56ByXrgqp+umvtXQujymHVgZZniTJ21+8bmU8ScjgXaeyk5bvbpqzWmkq7ftq7zLioN2aMUm2U1LGj70lC27ErT7lJsLxP3Y6lMjV0nNoidnXVdRW663DaRNVdKmVy7CrdPWESokhCujVYdpzrb0LGLd/5MY6sLen6D5XpWeVfoWwbpFTUIbP13aG2pA7Wil189Y6XoVtoR1wvCclh6PMNffb9aXuQxM7voYS+f4Zcu+Racm52tXEXnrsHW5MvYE+sSpbt+y5nnTNI25kvzvLq3XJ73qFmvfWtWLxkSSbFYg0omcy4AnD+QBcjAa5+pFAoOAxO9j4GR68jhBBCCCGEEEIIIWQQwI9lhBBCCCGEEEIIIYT0wN0wCSGEEEIIIYQQQmJTAMAdP4ci9CwbBFz44Q/jB9///p5l4jBjCvXLkaThieD0N+jq3QcqDW+kgSQJTxYXaXut+PpopO2ZJUnKb8bXDyn03jq7zHm+XoKDtR1L0tjyPrRvSAuSFSvstE1NJiztTrTtXBLlkgzkGOZ6Nr7tsRxJ27cnlHLoz4QQQsieMuvoo7F48eIh7FnWWADOG+hiJMA19CxTUIZJCCGEEEIIIYQQQkgP/FhGCCGEEEIIIYQQQkgP9CwbBBSQKco6QiVLWS3jvOACEyc0RjqPO+804VtvtbNobDThuXPt80480YRDdw13bjn9ox+Z8DveYc5RWza7kHm66k4qWF0SrDQkM1aebW125IYNJiy2as/qbdsTRteVrB+t9q2sdMibROKOrnwxXKXbi0jXncsjaZLekj4pmWdUW3Pmr7dLX7rUhGelu2ra977jSL19Zbwu2jvMeXosknUsqwoAxo414dZWE3YNMUlLegH3+JNt3VQMd1aPiU4XWI8yrSxHHtGyfinX1GXxffZJ2QH49u1QGa9vG3flkUQ5QvJw4rBtGEjiyPyj0rnyTOK5JZ2uL3z7kBwHqyr3fJzSU41sIvnWV6MjdVsK0LgnNcf65u+6VtLvD75YViSaBPpr2mNMcP56bJLI+44xhgXJ8H3L4SAxywVZFvF3QnftGCtZv7ZPWgj0Aj3LhipcWUYIIYQQQgghhBBCSA/8WEYIIYQQQgghhBBCSA/8WEYIIYQQQgghhBBCSA+Dw6iCGLROXhxnXeZg8+e784lg5kwTbm6245qaTDif62d9uvApc5lmJeFxlW9Zbg7q6+38lSeAFRfig6CRxiBr19pxnmZqSfj9+OLySnIlrhTnlVxXPMM0fBDS9kMKxdffxiqHHgOmTTNh6XEH2F4x1dVe13IRWge+96mx7rttSzHcWVljpZO3qcuYF+3u3e/288HxfRauPFy4ylhybXFzsu+tX28nG1sn5gnVSX3rvKrD+KO5xj2nXYsan2VZfD0k49RpVNtKxU9FGtvJMIBNtVOKYW0pmbT3UCKeaGreTMLzKwnSHoOTqLv+9r2MauMub9EkxqkS3zP5rqLek+66x1zvrXPb7fMS8HcKmsMdnlahY0wS6bxxmcY5xnin35XjWYR6efm+gwf5aupnKH19tceveMfR95mVcb4M4Du38x1Z+hen7J1JQqBn2VCEK8sIIYQQQgghhBBCCOmBH8sIIYQQQgghhBBCCOmBMsxBQAaF6GWxUu7R2BidScgyY9gSJp29VSbPJeFxZFYy/5L7l1oWvdxa4FphbslfXNIkqTfVy7dT3rLcktX5LjnXUrxAKaqvDM2lorCW/2u5kWi7WXFv7bXjrWQudbGLEDmhc/m/lpDJgwS26y6pHymbbDR1EmdpvSUv8BwDkpDj9lWuJK5tyTaqjfRSN0dfeYdvX9ZD3datJtzQYMeFyMRi1bdod125qmL4tdfsZDt3mjFgfMv9dhYzji2GnU0kQBKoiSPvC8p/IP99T44PqiK19NJC1qunPULaxJE7OqVtcl5y1I/vIB/6fEPGn6SuFTLGpIH3K6BDnijR99my1ow/EybYaefONeHlq6qsuKlNETLkBMYbwFHneiCXbTCGVH3Anql+oPJ9Qd1b1jUARdRz6FychJSzJJ38O0fakej7knVS8h6ci45LgKTn+uD6d5yTtFQ9iTISMhTgxzJCCCGEEEIIIYSQ2BRAz7KhCWWYhBBCCCGEEEIIIYT0wI9lhBBCCCGEEEIIIYT0QBnmYGDLFmDx4l3hWbOsqO7G8b2csIsQ3bza8d6yBHDm5+kvofP420JzbXVrqK52eABEeDFpzfziB6PLMmOG8c/RxbcsDVx+YC5PsUCvsEjUduyWiZzDk8LX48rXbyDYV0rXR/2+vZ5T5draXOPrjyE8PNZttT1TtM9UFM4t0JVPmS/O+onwKQv1xAn1kwhtPyEeFa48dJy3p5B49lmHV4lv+aVHGWC3H1ff8PZ9ioO4n/zSR4vhjtwRVrKp9ZvMQagvlhhnXfepLSRrqv18oHzbeOqeUIsWRUZ1zTneOs5D1KUYnzu7siqdZzt2jDHBfj+ehHjuALC9kqSfEGC3NemjpPthc7Mph/Af1KThBRR1XhzfNt+y9Kdvj77WljZTjiS8CXX+UyrFs19rjzEnnjupGF6wQGUU5b2q3ndcY7fE1b+sMsfw8U3kubkMdAXBvk+yf8k+Cdgmcvo9MmGS8PrLrlhuRy5dasLyvVfXo2w/2pNOnpeCZ1nSxHmfimrjaXiKJZEuDS81QgYSfiwjhBBCCCGEEEIICYIfBocilGESQgghhBBCCCGEENJDplAoDHQZvBg+fHihszNiC2oH++yzD84666wUSpQcK1asQLOQKZAwVjz9TzTvP3agi+HknytWYuz+k/pOGIO2dW14w0FvSCy/fy79J8ZOSLYeXWUcyOcW8jySrm8gmTpPo1xJkEZ7CsHZBv/5TzSP7buMK9ra0PyG3vNI+j7bVq7EGw5IdqwgNitWtaF5kPSZRx55BEceeeRAF2NQUg5ze9rEmasGyzvBYJ33kyaJcSROHQ/GuT6NNtKfBJe/zOfp/pwDf/jDHz5SKBRm9Z2yPMlk9i0AZw90MRLgf4b0cwqhbD6WzZo1q7B4t6/XEOPCCy/ED37wg4EuRtkz9/CJWPSDkwe6GE4mnv8bnPz1ZD/eLr5qMR556JHE8ps4YyJO/mqy9egq40A+t5DnkXR9A8nUeRrlSoI02lMIzjY4cSIWndx3GecuXoxFj/SeR9L3ufgzv8EjPx3c/9BT7sy9eDEWPTA4+sz06dPx9NNPD3QxBiXlMLenTZy5arC8EwzWeT9pkhhH4tTxYJzr02gj/Ulw+ct8nu7POTCTyQzpjzD8WDZ0oWcZIYQQQgghhBBCSGwKAHYOdCFICtCzjBBCCCGEEEIIIYSQHvixjBBCCCGEEEIIIYSQHvixjBBCCCGEEEIIIYSQHuhZthexcOFCnH/++Zg8eTIA4He/+x1Gjx4NALjmmmvwm9/8BhUVFTjxxBNRV1eH2267DS0tLRg9ejTq6upw5ZVXIpvN4h3veAdeffVV5PN5tLS0YPbs2Zg+fTp27tyJ6667DhdffDEA4LHHHsPhhx+OyZMn42c/+9mA3Xdv/PXh1fjiTx5FoVDAPqMr0bWzG+s3d6C6ahhqRg7D1/9jNponjsYVP1qM2xa2oHbUcBw4sQY//q83AgDeeelf8PfHXsGvv3oiTjx6QnA5CoUC7v7a3Wjf2I7R+43GG//zjfj9Z36PTS9twlnfOgujx+96Pn+56i945alXcOKnTsSEmeHXS6uMne2duOsrd6G7qxv5qjxOuPQE5Kvywdfck+ez9fVOnP7Ju7Cjqxs1I/O45UsnYNTI0rIUCgVsXLUVt196u7Puf//p3yOTySBTkcGbL31z8D31ha7nI99zJBZ+ayEAYGT9SLzp429CtiI7oG0hTXzuv2t7V6LtLC18+zUAbHh+A3778d/igtsuQLZicP771Z6Ol8dfuKsP5SoyuOVLb8a+Y0YM8B25cc2VBx10EMaNGwdglyn/9773PTQ1NeHzn/88PvShD2HhwoW45557cNVVV2H06NE48sgjUSgU8C//8i+4/PLLMWzYsAG/h71tvncxWN4FXPjOVbvnhkkTkt2dr1Ao4K6v3hX7HSBN+uMdob8oFArYuHJj8fn2Nfcn/XyTQLcR3/l7sODTxoHk3gcH65ya5ty3d0DPsqHI4HwzJ6lx3nnnYeHChVi4cGFxANyyZQvuuOMOPPDAA1i0aBEuvvhiXHzxxVi4cCHmz5+Pa6+9FgsXLsQb3/hG/Pa3v8XZZ5+Nv/71r8U83/KWt+Dee+/FV77yFdxwww3F/A855BAsXLhw0L04b2jtwBd/8ijuuPZtuO8Hp+Hq/zganTu6ceOVb8I915+CL104Cx+86u/YvVPstRfPwd+//w4AwNLnNwEAvv/p43DJu2fscVk2tWxCviqP0685HR1bO9CxpQNv/exbMeXYKVa64/79OMx4x55fL60yZnNZnPD/TsBpXzsN+8/eH8v/tjz4env6fIblsrjxyhNw3w9OwzuP3x8L/th7WZ5csQmZikyfdX/qVafiHV99B6a+aeoe3Vdf6HrO5XN42+fehtO+dhpGjR2Flx95GcDAtoU08bn/JNtZmvj2awB46o9Pof6A+gEopR9JjJd//e6p+Pv334H3nzwVP4/oj4ON3uZKAGhoaCj+/r3vfa/424033liSxyGHHIK//e1vuPfeezFs2DB897vf7bfyA5zv+2IwvQu48J2r0pobdmzf0a/vAH3RX+8I/cWTTz5pPd9ynPt1Gym3+dunjQPJvA8O9jl1KMx9hCQJP5YRVFRUYO3atXj88ccBAHV1dZFply9fjssvvxy33357SVxra2tKJUyWP/7fSpz39gOL/5I4dVItxtVXFePfMGUMJo8fhZVr26zzXmvrLIZl+j1h++vbMXKfkejq7EJHaweGjxqOqrrSvKvGJHO9EHzKmMvnimXMVmSRyWaCr7enz6dyeK6YPleRRUVEWTZv3Y6KXLbPus/mdg2TXZ1dqJsU3Tf2lN7qeXj18F1lEHU6kG0hTXzuP8l2FlmOnTtx1l134ejbbsP3nnoKH/r73+Pn4dmvN63chJH1IzFsRP+sNgohifFyWE8f2ra9C2+Ykl4fGiiGDx+Of/mXf8Hdd98dmeYzn/kM/vSnP/VjqXpnb5vvXQymdwEXvnNVWnNDYWehX98B+qK/3hH6i82bN6MiV1HWc39vbWQg5u9QfNo4kMz74FCaU8tp7iMkFH4s28u44YYbMG/ePHzgAx8o/jZy5Eh8+9vfxmWXXYapU6f2+mIMAI8++ihmzZqFiRMnYt26deju7gYA3H333TjqqKPw7//+7/jYxz7WH7exR7yyoR3j9nG/dIyvH4m1G7cBAD7x7QfRdPrNGJ6vwIwDxiRbmF3/cIRf/vsvka/OI5MZPC8PRWKUcce2HXjmL8+g+fjm4Msl9Xza2nfgh7c/g/e+rfeyFDzvq219G26/7HY89cenMGb/hJ+/VaDey/P6xtexeslqTDh86EgueyXG/SfRzqL4zYsv4siGBjzwznfimieewBt7ZAex8GxbT/7uScw4dXCuFNhNEv1x5do2HPOh23H9r57CIc0p9qEE6W2uBID169dj3rx5mDdvHr74xS8Wf//oRz9a/Nf23sjn89ixY0dq5e0NzvduBtW7gAPfuSq16/cMaP31DtAX/fWO0F/sXkFUznN/VBvp7/k7FN82nsT74GCfU4fC3EdIkvBj2V7G7uW1X//614uDHgC87W1vw1133YUHHngAX/rSl3o997e//S3++te/4qSTTsKzzz6L+++/H8AuWcbDDz+M8847D0uXLu2vWwlmXH0V1mx43Zlm9frXi//Sc+3Fc/DkTWfj1U3b0LG9K5UyvffH78V+h+6HZ+56JpX8k6CvMhYKBfz9O3/HUeceVfwXxRCSeD6FQgEfvOrv+PJHjkLtKHdZ+rqv6oZqnP6N03Hke4/EE7c/EXBH8ZDl2bljJxZ+ayGO/4/jB62fVdL0df9JtbMoXtq6FTP32QcV2SzeUFeHt00I/0PF1bZeW/Ma8lV5VNZU7klxUyeJ/jipsRoP/OR0XPlvR+KaG9PvQ0kQNVdKKcoXvvCFYvpx48Zh1KhRWLZsWa/5dXZ29ptf2W4437sZjO8CLgb6PaG/3gH6or/fEfqLoTD3D/T8vaf0x/vgYJ9Th8LcNzAUsMuzrNz/I5ryGYFJoshBb9u2bVi9ejUAoKamJnJQe/jhh7Fo0SLceeeduO2223DbbbdZ8Zdddhm+8Y1vpF72PeXkYyfixjtXYOvru5Y0r3j5Nbyyob0Y/8yLm/HS2jZMHDuy+NuokXmc9abJqXhbtG/ede2R9SOxc8fgHKh8yrj4psUYe/BY7HfYfnt0rSSezxd+sBj/cuhYnDDLXZadXd3O++ru6i7+q29+RB4V+Yo9ure+0PV83/X3YfrJ01OVfw4mfO4/qXYWxYSRI7GmvR3dhQKWbt6MHT0rauLSV5/Z1LIJ659bjz9d/idsatmEf3zvH3tU7rTY0/64Q/ShmpF5jKhMtw8ljZwr++JjH/sYvvOd7/Qa9/Wvfx2nnnpqwqXzY2+e710MtncBF33NVWnTn+8AfdGf7wj9xc6uXXVaznP/YJi/94S+2nhS74PlMqcOhbmPkCTgbpgE27dvx/vf/35s374d3d3duOSSS0rSPPvss9h3332Lx9OmTcMDDzyA//zP/yz+Vltbi4kTJ+LRRx/FEUcc0R9FD6KhbgQ+/8HDceon/oJCoYAxNcORH5bF+y7/G0ZV5TGqahh+8l/HlyzDfu/bmvG2i/+Mi86cjo9d+3+4Y9FK/P4fL+GiM7biw2ccHFyeNY+vwe8++Ttkc1m8+bI3456r78HaZ9bitTWv4bAzD0PTnCb83w//DysfXomX/vkStp60FQefFH69NMrYcGADHv/t4xg7bSxaHmzBAXMPwPSTpwdda0+fz2nH7Y+rb3gcxx46Frf9vQXvOvEAfOSs3suyvX2H877qD6jHvd+8F8gCFbkKzLtkHp7+7tNB9+WDrOej3380Hrn5EbStb8PSPyzFjHfMwORjJg94W0iTvu5/36n7JtbOojhz8mRccN99uHvVKsyfOhWffOgh3Pzm+Lte9dVnJh87GZOP3bXj1B8++wcc9+/HJXofSbGn/fHkYyfhvCvuRTYDDM9XYMEX5g3MjSTEbikKAOy333646aabinGzZs3CmDFGEvPkk0/ihBNOKO4I9qlPfaq/i1vC3jbfuxhs7wIu+pqr5HtC19Yu/PCHP8SHP/zhxK4f8g6QFv35jtBfbH99u/fcn8bzTYKQ+Xsw0Vcb7/V9cNmq2Ncp1zl1T+e+3TsnE1JuZHZ/nR7szJo1q7B48eKBLkYqXHjhhfjBD34w0MUoe+YePhGLfnDyQBfDycTzf4OTv35W8XjNk2uw+vHVOOrco4LzXHzVYjzy0CNJFA8AMHHGRJz8VVOPaZdxoJ7bwkfW4LTP/xXv+dl5sc5Lur6BXXU+870z96ie0yhXEuj2FEUS7cyFsw1OnIhFJ/ddxrmLF2PRI73nIe8zkT7zmd/gkZ+e1XdCEszcixdj0QODo89Mnz4dTz+d3of4cqYc5vY0iTtXJT0XNExuwMSjJ8YezwbjvJ8GezqOLFy4EKedcxre89P3eKUfjHN9Gm2kPwkuf5nP0/05B2YymUcKhcKsfrnYAJDJ1BeAdwx0MRJgwZB+TiFwZRkhhBBCCCGEEEJIbHZ7lpGhBj+WETKAjD9kPMYfMn6gi+GkHMoYwrwjx2N0w+DZin2o1rMvQ+n+h9K9EEIGloGeqypHVqa24pcA8+bNw+ixowe6GHtEubeRci8/ISQ9aPBPCCGEEEIIIYQQQkgP/FhGCCGEEEIIIYQQQkgPlGESQgghhBBCCCGEBEHPsqEIV5YRQgghhBBCCCGEENJDplAoDHQZvJg1a1Zh8eLFA12MVKivr8fGjRsHuhiEEEIIGQAqKyvR0dEx0MUghBBC0uCRQqEwa6ALkRaZzD4F4KSBLkYC3Dykn1MIlGEOAjZu3Ihy+WhJyGBlwYIF+MAHPoDnnnsOzc3NVlxXVxeGDRuGyy+/HFdcccXAFLAfmDdvHrq6urBo0aJE8ps/fz4WLlyIlpaWRPIjhPROJpPhewAZMrjm493syfzS1NSEuXPn4sYbb+yzHN3d3fjgBz8Y+xq9ccUVV+DKK6/Ejh07kMvt+Z9Qu+vpxRdfRFNT054XkJBBSiaTGegiEBIEZZiEEEJ65fOf/zxuu+22gS4GIYSQIUZ/zC8LFizAT3/601SvsSeccsopeOCBBzBu3LiBLgohZI8oAOgeAv8RDVeWEUII6ZUDDjhgoItACCFkCML5BWhoaEBDQ8NAF4MQQkgEXFlGCNlrefHFF/G+970PDQ0NGD58OGbOnFnyL90rVqzAeeedh8mTJ2PEiBGYMmUKPvKRj2Dz5s3FNF//+teRz+d79R6cPn06Tj/9dGzfvh0NDQ34+Mc/XpJmwYIFyGQyWLZsmbO8jz/++P9v786juyjvPY6/vwhECAgYWcumBNkCCoRVWcwFQRavgNWKRKHuVFoBrRsHUWvVHigqFo3XIggSwCuCFApUrWgjMYISRJEigQIuCBgvIDs894+ZJJNffkl+WSABP69z5vjMzDPPMjmeCd88C0OGDCEmJoYqVarQokULnnzyyTz53n77bTp06EDVqlWJi4tj0aJFRe4TeNNkglNDtm3bhpmRlJTExIkTqV+/PjVr1mTw4MHs3LmzwLaLiIhkCf2+AGRkZDBgwACqVq1KnTp1GD9+PC+99BJmFna65rx582jVqhXR0dHEx8fnWoKgd+/erFq1ipSUFMwMM6N3794Ftmn37t2MHj2aRo0aERUVRaNGjUhMTOTIkSO58m3dupWBAwdSrVo1mjRpwmOPPcbJkzmjMg4fPszYsWOJi4ujWrVq1KtXj8GDB+f5xmd9+4N9a9q0KSNGjCiwbyIicnooWCYiZ5UTJ05w/PjxXMeJE3m3c96xYwddunQhPT2dqVOn8tZbb9GhQweGDRvGW2+9lZ3vm2++oWHDhjzzzDOsWLGCiRMn8s477zBgwIDsPCNGjODEiRPMnz8/Vx1r165l48aNJCYmEhUVxahRo5g1a1aehbyTkpLo1asXLVu2zLdfaWlpdOvWjS1btjB16lSWLl3KuHHj8gSptmzZwu9+9zvGjRvHwoULqV+/Ptdeey1fffVVkfpUkCeffJKvvvqKGTNm8Oyzz7J69WpuvPHGiJ4VEREJdfToUfr27Ut6ejrTp09n5syZbN26lSeeeCJs/g8++IApU6bw+OOPM3/+fE6cOMGgQYP48ccfAZg+fTrt27enXbt2rF69mtWrVzN9+vR868/MzKR79+7Mnz+fcePGsWzZMv70pz9x7Ngxjh49mivvkCFDSEhIYNGiRVxzzTU88sgjzJo1K/v+kSNH2L9/PxMmTGDp0qW88MILHD58mK5du/Ldd98V+i4K65uIiJwemoYpImeVggJOQZMmTcI5x6pVq4iJiQGgX79+7Nixg4kTJ3L11VcD0LNnT3r27Jn9XPfu3YmNjaVHjx58+umntG/fngYNGpCQkMDs2bMZPXp0dt7Zs2dTq1YtBg0aBMBdd93FlClTeP3110lMTARg/fr1pKamkpycXGB77733XmJiYkhNTaVq1aoAJCQk5Mm3Z88e3n//fZo3bw5Ahw4dqF+/PgsWLOChhx6KuE8FadKkCXPnzs0+3717N/fddx/ffPMNDRo0KPBZERGRUDNnziQjI4OPPvqIzp07A3DVVVdx6aWXsn379jz59+3bx7p166hVqxYA9erVo1OnTixbtozhw4fTunVrzjvvPI4fP07Xrl0LrX/q1KlkZGSwZs2aXN/AG264IU/e8ePHM2rUKAD69OnDu+++S3Jycva1GjVq8PLLL2fnP3HiBP369aNu3bokJyeHHWFelL6JSHmU9w/zcubTyDIROau8+eabfPzxx7mO1NTUPPmWL1/OgAEDqFGjRq5RaP369SM9PZ19+/YB3l+7//jHP9KyZUuqVKlCpUqV6NGjBwCbNm3KLi8xMZHU1FQ2b94MeDtwzps3j+uuu46oqCgALrzwQvr160dSUlL2c0lJSdSuXZuhQ4fm26eDBw+SkpLCjTfemB0oy0/z5s2zA2UAderUoU6dOrn+sRFpn/IzcODAXOdt27YFCPsPGhERkcKkpqbSuHHj7EAZeDvoDRs2LGz+bt26ZQeToOTfoZUrV9KpU6dC/1gEeb+BcXFxeepdsGABXbp0oWbNmlSsWJHo6GgOHDgQ0Te2tPsmIiLFo2CZiJxV4uLiiI+Pz3V07NgxT77vv/+eV199lUqVKuU67rvvPoDs9ccefPBBJk2axIgRI1i6dClpaWksXLgQINd0ymHDhhEdHZ29lf3KlSvZtWtX9giyLKNHjyYlJYUNGzbw008/MWfOHEaNGkXlypXz7VNmZiYnT56kYcOGhfb//PPPz3MtKioqV1sj7VOkdWQFAyN5VkREJNS3335LnTp18lyvW7du2Pyl/R3au3dvRN/Y/OoO1rtkyRKuv/56WrVqxdy5c/noo4/4+OOPqV27tr6xIiJnEE3DFJGfpZiYGHr06MH9998f9n7WdMJ58+Zx0003MWHChOx7Bw4cyJM/OjqaIUOG8Nprr/Hoo48yZ84cLrroIi677LJc+QYMGEDTpk1JSkrikksuYf/+/dx+++0FtrVWrVpUqFCBr7/+uqjdDCvSPomIiJwO9evX54svvshzfdeuXael/gsuuKBUv7GxsbHMnDkz+9qxY8f44YcfSqV8ERE5PTSyTER+lvr378/69etp06ZNnpFo8fHx2X/JPXjwIJUqVcr17CuvvBK2zMTERLZs2cKKFStYvHhxnlFlABUqVOCOO+5g9uzZPP/88/Tp04dmzZoV2NaqVaty+eWXM2fOHA4dOlTMHucoSp9EREROta5du7J9+3bS0tKyrznneOONN4pdZlRUVMTfzCuvvJK0tDTS09OLXV+WgwcPUrFi7vEIs2fPDrvZkIicDRzemmVn+iGhNLJMRH6WHnvsMTp37kzPnj25++67adq0KZmZmWzYsIGMjAxmzJgBeEG1WbNm0bZtW2JjY1m4cCEffvhh2DL79OlDgwYNuOWWWzh48CAjRowIm++WW25h0qRJpKenR/wPgcmTJ9OrVy+6devG+PHjadiwIRkZGaxbt45p06YVqe9F6ZOIiEhxLF++nHr16uW6VqNGDfr27Zsn78iRI3n66acZOnQoTzzxBLVr1+bll18mMzMT8P7QVFStW7dm+vTpzJ8/n2bNmlG9enVatGgRNu/YsWOZO3cuffr0YcKECbRt25Y9e/awePFiXnzxRapXrx5xvf3792fRokWMHTuWQYMGsXbtWp577jlq1qxZ5D6IiEjZUbBMRH6WGjduzJo1a5g0aRIPPfQQu3fvJiYmhri4OG6++ebsfNOmTcM5x8MPPwx40yiTk5NzLUKcpUKFCgwfPpzJkyfTrVs3YmNjw9Zdu3ZtevXqxWeffZa962ZhOnXqREpKChMnTmTMmDEcOXKEJk2aZO++VRRF6ZOIiEhxjBkzJs+1Nm3asGHDhjzXK1euzMqVKxkzZgx33nkn1apVY/jw4XTp0oUHHniAGjVqFLn++++/n02bNnHrrbdy4MABevXqxXvvvRc2b82aNUlJSWHChAk89dRT7N27l7p165KQkFDgmqLh3HbbbezYsYMZM2aQlJREp06dWLJkCUOGDClyH0REpOyYc66s2xCR+Ph4t2bNmrJuxilhZpwpPwcRKbnMzEwaN27MPffcw+OPP17WzRGRMqbfA0TCGzRoEBs3bmTLli1l3RQRKSYzW+uciy/rdpwqZjUd9C7rZpSCxWf1z6k4zphgmZntBv5T1u0QESmBisC5QB2gBrABOFamLRIRESkf6uItnHMEb13l8/1jO7C7DNslIiXTxDlXu6wbcaooWHb2OmOmYZ7N/4OJyM+DmY0EXsH7xf9259z/lm2LREREygcz+w1wN9AYOAfYBPzeOffXMm2YiIj8LJ0xI8tERERERERERMoLjSw7e50xI8tERERERERERMqXk2XdADkFir4Ps4iIiIiIiIiIyFlKwTIREREpVWY208ycf/QuhfJ6B8qbWeIGioiIiIgUQMEyERGR08zMtgWCP6HHcTP7wcw+M7NXzewaM9OyCSIiIiIip4l++RYRESlfzgFq+UcckAisN7PhzrnPy7RlIiIiIhLwfytgyQVl3YpSsKesG1DeKFgmIiJStl4EtgTOKwL18LZWusS/1g54x8zinXM7T2/zRERERCQc51z/sm6DnBoKlomIiJSt+c6598LdMLPhwCy873Vd4HFg1OlrWvE450YCI8u4GSIiIiIixaI1y0RERMop59xc4NnApWFmVqms2iMiIiIi8nOgYJmIiEj59mYgXR1oVlBmM7vCzF40sy/MLNPMjpjZ12a2xMx+HclmAWZ2jpndaGYLzWyrmf1kZofNbKeZfWJmC8zsNjNrks/zEe+GaWbnmtlYM1vtb2zwk5n92+9Du8LaGijnvUCdTSPIn5V3WwR5zcz+28xmmdlmM9tnZofM7D9m9rqZXWtmFkE5VczsDjNb5r/LQ2Z20C9njb+hQ6KZ1Y2s1yIiIiJyKmgapoiISPn2fcj5+eEymVkdYA7QN8ztBv4xCPi9mV3jnPsyn3J+AfwNuDTM7V/4R3vgl8BaIL7wLoRnZs2BpUDzkFvN/ePXZjYO2FDcOkrKzGKBeUDHMLcb+8e1QKqZDXXOfZtPOW3w3mvTAsrpiLehwxt+mSIiIiJSBhQsExERKd9CRxn9FJrBD3D9i5xAzAFgOfAFcBgvEDMQaAS0AFLMrKNzbltIORWAReQEyvb75Xzp1xvt1xEPtCpBnzCzesA/8YJvAEfxgknpQGWgB9ATmAZMKUldJWhjO+BdIMa/tBfvfWwGjgMXAVcDFwBdgX/57/XHkHKqAX/He//g7Ti1HG9jh0PkjBjsAlx46nokIiIiIpFQsExERKR8GxZIHwY2BW/6Aa5kcgJlrwK/dc79X0i+SsCTwHi80Wmz8QJSQb3JGSm2BujvnNsbrlFmdhGQULSu5PI8OYGybcAA59zGkDoGAwuAcSWop1jMLBp4nZxA2dPAJOfc4TD5/ge4AS949hxwU0hx15ETKFsKXOecO5hPve2ANqXRBxEREREpHq1ZJiIiUk6ZWSIwJnBpfmiwBi+YlhX0Wuicuzk0UAbgnDvmnLsXWOhfutzMQoNl7QPpp/ILlPnlZTjnXo6oIyHMrDU5QcDjwNWhgTK/jiV4/S90PbBTYDRwsZ/+s3PugTDvHufcT3hTJ9P8S8PDrJkWfK+P5Bco88tb75xLLn6zRURERKSkNLJMRESkbF1vZsF1vyriTb1MAIIL3H8J3B/m+dGB9AMR1DcFGOqnrwY+CNw7J5CuEkFZxTUikE52zn1WQN6/4vWrwI0NToGs93oIeLSgjM65E2b2LPAa3jscCPwlkOV0vVcRERERKQUKlomIiJStOwu5fwJvwfffOud2BW+YWRWgu3+61Tm3OYL61gXSoYvzpwfSfzCzjc65tRGUWVSXBdJv5psLcM45M1sI3HcK2hGWP8W0qX+a6pzbF8Fj6wLpgt7rc2Z2fYQ/KxEREREpA5qGKSIiUr6tAsaHBsp8LfEWwwe40MxcYQe5NwioHVLeP4BP/XQTYI2ZpZvZZDMbamYNSqlPFwfS6yLIn154llJ1SSB9RYTv9fPAM6HvdS6w00+3BzaZWaqZPWFmg8wsBhEREREpNxQsExERKVtXOOfMOWd43+V6QB9gmX8/AfjQH+0UqqRBlujgiXPuJDAAeDtwuR3epgBvAF+b2UYzm2RmoQGhoqgVSOe7LlrAnhLUVRyl/V734/1MP/EvGd7Olw8BS4DdZrbWzMabWfUS1i0iIiIiJaRpmCIiIuWEc84Bu/zjHTN7Dm+B+0bAAjPr7pw7Gngk+B3fBBR1wf1wGwF8B/Q1s254uzj2wguYZa271RJ4BBhnZjc75wqcRllKTvcC/8H3mooXKCyKHaEXnHOb/LXp+uCtGdcTaIXXNwM6+Me9ZvZL59y/itNwERERESk5BctERETKr/FAb6At0BEYBzwVuB8clXXUOTe5tCp2zq0GVgOY2Xl4a6P1B4bjTTOsDsw3s/bOuc/zLSi8TLwRdOCN4ipsTbBIRnq5QLrA4JqZVS2krOB73V1a79UPhv7DP/CnX/bAG833K7x3Wg9YYmYXO+d2l0a9IiIiIlI0moYpIiJSTjnnjuEFzLI8GDL9cTPeBgAArc0sOL2xNNuxzzm33Dl3D3AR8JF/qxJwazGK/HcgfUm+uYqW50AgXa2QvI0Luf9lIN3NzE7J70vOub3OuUXOuduB5kCGf6smXlBSRERERMqAgmUiIiLlmHPuH0DWlLzzgAcC934E1vin5wA3nYb2HACmBi61LEYxHwbSQwrKaGZWWB5fcAOEi/PN5elXyP0NwHd++gJgcAT1l4i/gcNLgUvFea8iIiIiUgoULBMRESn/Hg2k7zKz+oHzaYH0xHw2AgjLD0SV1KFiPDM7kL7BzFoXkHckEBtBmZ8E0kPzy2RmNcg9Wi8Pf7rk84FLfzaz8yNoQ1YdZfVeRURERKQUKFgmIiJSzjnn3iZnNFYV4MHA7eTAvfOBVWbWJ7+yzOxcM7vGzP6Jt6B88N4zZjbZzNoU8PwvgAmBS+9H3hOPc+4LIGtjgEp4a3S1CFPXQOAv5F6PLD+LyZmS+iszuyZMefWBv+FtmFCY54Cv/PRFwPtm1iG/zGZW3cxGmNknhKyxZmbzzGyimV1YwPOtgd8GLhX5vYqIiIhI6TDvj6ciIiJyupjZNqCJf3qFc+69CJ65Eljhnx4BYp1zO/17dYEP8Na9yvIZXsDlW7w/jsUAcUAXctb06uScy5rGiZnNBG72T7cAacBWYD9eIK4l3iL/lQJ5LvWnZpJPOWH75weu1gJZo+SOAEuA9UBl4HK8zQ0A/oy3uQHALOfcyNDy/DJfBO4IXPo73m6WAG2AQUBV4A/kBPz+45xrmk95rYB/AnUDl9PwgpPf++2sjbdbaGcgys9T2zm3J1DOe3i7igJ8jjd1djve6LEL8NZku4KcP2KuBno457KCfyIiIiJyGmk3TBERkTOAc26lmaUCXfGCMg8Dd/n3dplZJ+BF4Hq83SDb+kd+vsbblTLoaCDdzD/y8zFwbWigLFLOuW/N7Aq8kV6xeH261j+yHMcLkn1GTrCsIOPxAoYJ/vlV/hE0FZhI7tFx+bVxo5l1BF4B+vqXO/tHfjbjBf6Cgu+1jX/kZzkwXIEyERERkbKjkWUiIiKnWXFGlvnP9ccbLQVwDLjYObctJE8bIBFvJNOFeCPCjgM/4O1CmYY3Qm2Vc+5kyLMV8IJx/+X/twXeqKqqwEFgJ95osNeBt1w+v0REMrIskPdc4DfAdXgL80cB3+CN6JrunPvUzHr751DAyDK/vHOAUcAIvBFf0XiL9a8GXnDOrfLzZbU935FlIeV2BX4F9MSbxlkTLwi2G2/3zNXA351zaWGereQ/l4AXaIvFe6+V8Xbx3I63w2iyc+7dwtoiIiIiIqeWgmUiIiIiIiIiIiI+LfAvIiIiIiIiIiLiU7BMRERERERERETEp2CZiIiIiIiIiIiIT8EyERERERERERERn4JlIiIiIiIiIiIiPgXLREREREREREREfAqWiYiIiIiIiIiI+BQsExERERERERER8SlYJiIiIiIiIiIi4lOwTERERERERERExKdgmYiIiIiIiIiIiE/BMhEREREREREREd//AwtMK+/f5f8BAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAASFCAYAAAAfCU0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xN9//A8de592YiiUQEEbFCELH3ir21VtWoWkV1qOpEVf3MtlQHtUtLS+1Vm9grdpAEEWQnsvcd5/fHjduEKPVVo30/H488cnPO53zO53PujW/z/r4/74+iqipCCCGEEEIIIYQQQvwVzbMegBBCCCGEEEIIIYR4/kkQSQghhBBCCCGEEEI8lASRhBBCCCGEEEIIIcRDSRBJCCGEEEIIIYQQQjyUBJGEEEIIIYQQQgghxENJEEkIIYQQQgghhBBCPJQEkYQQQgjxQlEUZZKiKKqiKGX/6tizGMd/haIofrlzH/SsxyKEEEKIp0eCSEIIIYT4nyiKUlRRlKzcoMKAJ9Tny4qiTHoSfQkhhBBCiCdDgkhCCCGE+F/1B6yBG8DQJ9Tny8DnDzg3BbADbj6he4m/7yDm9+CXZz0QIYQQQjw9EkQSQgghxP9qKLAfmAO0UBSlwj95M1VVDaqqZqmqqv6T9xEPpqqqKfc9MD7rsQghhBDi6ZEgkhBCCCEem6IotYGawHJgJaAHBj+graooyjJFURopinJAUZR0RVHiFUVZrChK4Tzt/IHX81yj5q2/85BaRIUURflOUZRoRVEyFUU5oShK6weMZ5iiKGdy2yUrirJLUZSmBbTTKIryqaIoN3KX7V1UFKV/Ae2+yx2XVwHnSiqKYlAUZUlBY8nTTlEU5T1FUS4oipKqKEqKoijBiqIsURTFKk+7MEVR/BVFqa0oyj5FUdIURUlQFGW5oijFC+jXRlGUcYqiXMqdQ5KiKFsURan1gDG8kfvs0nK/LiqKMjlPmwJrIuVe+6aiKKcVRcnIncN+RVFaFnCfgYqinMwdS7qiKKGKoqxUFMX1r56REEIIIZ4dCSIJIYQQ4n8xFEgH1qmqegfYBryuKMqD/hujJrAVOAW8D+zO7WN2njZTgUO5r1/L83XwEcbzM9AQmAlMB0oDOxRFaZO3kaIoM4FFmINe44BZQFVgv6Ione7pczYwDbgFfARsAuYC3e5ptyD3+5ACxvU6oAX+MogETAC+AcKAj4EPgQ1AI8Dmnralgb1AaO641mN+TvsVRbHPM1crYAfm5YHHgDHAjNz5HlEUpe49/f4CLARUzO/Fh8A+oNdDxn732h+Aa7ljmgQ4ArsVRbE8r9zaWcuBLGAi8B7mIGRl4L4gmBBCCCGeD4pkggshhBDicSiKYgtEAptVVR2Ue+wlYCPQSVXV7fe0VzEHJhqrqno8z/FtQDugqKqqabnHlgGvq6qqFHDfSZgDIuVUVQ2759hJoJmqqjm5x0sDQcBtVVWr5B6rDFwBjgKt8rQtBVwGkoAKqqoa87TdD7S7u3wrNwMrAFDuGcdRoCxQRlVVQ54xhwAGVVWrPuSZngFsH6FdGOAJjFFVdU6e42MwB70+VVV1xj3HOqiqujNPWwcgEAhVVdUv99grwGpgBebnb8rTXnP3Z0VR/HKfyWBVVZflHuuOOZA1QlXVhXmu0wHHARegvKqqqqIo64E2gHPe5ySEEEKI55tkIgkhhBDicfUAimLOKLlrGxBLwdk4AMfyBpBy7QN0mIMv/6tv7gaFAFRVDcec4eKtKEqV3MMvYQ7+fHlP20hgGebgTK172s7OW/9HVdUzmLOo7rUQKAl0vHtAUZTmgBcPz0ICSAbcC1pWV4AU4Md7js3LPd49z7EBmANppxVFKXb3C3Mx9N1AU0VR7HLb3l2m90HeABKY6yA9ZDwDgFRg4z33cQK2YH5/7y71Swbsgc6KotwXKBRCCCHE80mCSEIIIYR4XEOBOCBcUZSKiqJUxBwo2A10yw0g3Cu0gGN3cr+7PIExXSng2OXc7+Vzv5fL/X6pgLaB97S9+z3oL/rNazXmAEneXeqGAjmYl9o9zDjMS7wOKYoSkVsjqJ+iKNYFtA1VVTU774Hcn0PzjBugCuCN+b2692sI5mV2d98rLyBKVdWYRxjrvaoARYCYAu4zKbeNW+73aZh319sIxCmKsk4x16gq8hj3FUIIIcRTonvWAxBCCCHEi0dRlHJAS8xZOiEPaDYA845tef3Vbl5PIiOloHX69/b7d+5zt+2j9IuqqpmKoqwARiiKUgLIwFxLaLOqqnEPu5mqqscU8+527TE/35ZAP2CCoihNVVVNyNv8IWPO+/NFzDWoHiQuT9vHrXWg5PbT7y/aBAKoqnpVUZSqQOvcrxaYa1R9oShKc1VVrz/mGIQQQgjxD5IgkhBCCCEex2DMQYM3MNcQutcUzBk4cx6z/8cNZFQFLtxz7O4ytrtZUHcDFNXyvM57fUFtq3B/FlUVCrYQeAsYyJ/Lth5lKRsAuXWh1uV+oSjKKMyFvIcCX+VpWkFRFOu8S/IURbHBnGmVN3PqKuAK7HuEJWnBwEuKorg9RjbSVaAScPxubau/kps19UfuF7kFzbdhDna99TfvLYQQQoinQJazCSGEEOJvyd15bRBwUVXVxaqqrr33C/gN8FEUpd5j3uZugW3nv3ndmLxLv3ILa/cDglVVvbvUbTPmINWHuTuX3W1bEnNw7CZw9p627yuKos3TtjbmwtD3UVX1AuYC30MwB35uAbseZfAPWAJ4Jvf7vc/CARh1z7FRucc35jn2M1CCB2QiKYrilufHlbnfv7x3h71HqF30M+b/tpz+sPv8zXkKIYQQ4jkhmUhCCCGE+LvaAR78dXbNOsx1cIYCpx7jHseBt4F5ubu36YETqqreeMh1Osz1hH7DXJ9nJGAHvHu3gaqqwYqifIV5C/qDiqKszm07HCgM9L9bRFtV1SBFUebmjmWfoijrMG9B/zZwnj8LcN9rIbA49/UXj5ABdNcVRVGOAycw73xXMndcOcCqe9peBz5XFMUHOA3UwRy4CgK+y9PuW6At8JWiKK0wFzJPAcpgXkqWhXnZHKqqrsl9HgMBL0VRNgOJmDOM2gM+Dxq4qqprFUX5CXg7N8i2FYgHSgONgIr8Watpl6IoycBB4Dbm4tuDMAfsfnm0RyWEEEKIp02CSEIIIYT4u+4WjV7/oAaqqgbmbmv/qqIoY1RVzfyb9/gNc4DmVaA35gyXwcDDgkgDMQeOPsEcmLgADFJVNd9OaqqqfqwoyjXMmTszMAdpTgD9VFU9dE+fo4FozMGcrzAv23oLcxHqBwWRVgGzMQelfnrImPOaBXTCHPRyxLzT3XFguqqq5+9pGw68AnwN9M2dw0rMO6ul55mrXlGUzrlzfQ34IvdUJOaMqby764E5c+sQ5vd5IuY6VjeANQ8bvKqqQxRF2Y/5WX2KeQe4aMxZRp/mafpj7thHYM48uoM5++sdVVX3P+w+QgghhHg2FFV93JIDQgghhBCiILm1iaKAU6qqtv8H+g8DwlRV9XvSfQshhBBCPIjURBJCCCGEePL6A0WBBc96IEIIIYQQT4osZxNCCCGEeEIURekKeGKuB3UZ2PRMBySEEEII8QRJEEkIIYQQ4sn5HiiFudD1sLsFuoUQQggh/g2kJpIQQgghhBBCCCGEeCipiSSEEEIIIYQQQgghHuqFXc5WrFgxtWzZss96GEIIIYQQQgghhBD/GqdPn45XVdW1oHMvbBCpbNmyBAQEPOthCCGEEEIIIYQQQvxrKIpy80HnZDmbEEIIIYQQQgghhHgoCSIJIYQQQgghhBBCiIeSIJIQQgghhBBCCCGEeKgXtiaSEEIIIYQQQgghni+ZmZmEhoZiNBqf9VDEQ2i1WsqXL4+dnd0jXyNBJCGEEEIIIYQQQjwRoaGhFCtWDFdXVzQaWfz0vDKZTMTFxREaGkq1atUe+Tp5R4UQQgghhBBCCPFEGI1GCSC9ADQaDa6urn87Y0zeVSGEEEIIIYQQQjwxEkB6MTzO+yTvrBBCCCGEEEIIIf4VgoOD8fLyetbD+J8cOnSIwYMHP+thFEhqIgkhhBBCCCGEEOIfUXPyLpIy9E+sPyd7K85NbPfE+nseNWvWjGbNmj3rYRRIMpGEEEIIIYQQQgjxj3iSAaRH7c9oNPLqq69SsWJFmjZtSnp6OgDHjh2jRo0aVKpUiXbt2hEXFwdA/fr1GTZsGHXr1qV8+fIcPHiQdu3a4enpyejRoy39Tpo0CS8vL7y8vPi///u/++5rMBjo1asXXl5eVKpUicmTJwMwe/ZsfHx8qFy5Mu3btyc1NRWAXr160b9/f+rWrUvZsmVZtWoVAH/88QctW7YEICUlhVdeeQUfHx+qVKnCr7/+CsD3339Pu3btaNasGZ6enrz55pt/OYYnRYJIQgghhBBCCCGE+Ne4desWo0eP5tq1azg4OPDzzz8D8PrrrzNjxgxCQkKoWrUqn3zyieUaa2trAgICGDJkCL169WLRokUEBQWxatUqYmJiOHz4ML/++iunT58mICCA5cuXc/To0Xz3PX78OFFRUVy9epWQkBBGjRoFQP/+/QkMDCQ4OBhvb2++++67fGM9ceIEW7duZfTo0WRkZOTrc9y4cbRs2ZLAwEAOHTrEuHHjSElJAeDy5cts3LiRK1eusGnTJq5fv/7AMTwpEkQSQgghhBBCCCHEv4a7uzuNGjUCoFatWty4cYM7d+6QmppKx44dARg+fDjHjh2zXNO9e3cAatSogZeXF56entjZ2eHh4UFoaCj+/v506tQJBwcHHB0d6dKlC/v3789338qVK3Pr1i0GDRrEunXrKFq0KABnzpyhbt26VKpUibVr13L58mXLNb169UKr1eLj44OHhwfnz5/P16e/vz+zZ8/G29ubpk2bkp2dzfXr1wFo2rQpLi4u2NvbU7FiRa5fv/7AMTwpEkQSQgghhBBCCCHEv4a1tbXltU6ne6Rt7G1tbQHQarX5rtdoNBgMBlRVfWgfrq6uBAYG0rJlS+bOnUvfvn0BGDZsGD/88AMhISF88sknZGdnW65RFCVfH/f+rKoq69atIygoiKCgIKKioqhVqxYANjY2lnZarRaDwfDAMTwpEkQSQgghhBBCCCHEv5qLiwsODg7s3LkTgCVLltC4ceNHvr5Vq1b88ccfpKamkpKSwrZt2yx1i+6KiorCZDLx+uuvM3XqVC5cuABARkYGHh4eZGdnW+oe3bVu3TqMRiOXL1/m9u3b+Pr65jvfsmVLZs2ahclkArhvCd29HjSGJ0V2ZxNCCCGEEEIIIcS/3rJlyxg5ciTvvPMOnp6eliLVj6JJkyb069eP2rVrAzBw4MD7glA3b95kyJAhloDPlClTAPj000+pX78+7u7uVK1albS0NMs1Xl5eNGjQgPj4eL799lvs7e3z9Tlz5kzeeOMNvL29UVWV0qVL37eM7lHG8KQoj5KS9TyqW7euGhAQ8KyHIYQQQgghhBBCiFwXLlzIl01Tc/KuJ7pDm5O9Fecmtnti/T1LvXr1okuXLgwaNOiZjeHe9wtAUZTTqqrWLai9ZCIJIYQQQgghhBDiH/FvCfgIMwkiCSGEEEIIIYQQQjxla9eufdZD+NuksLYQQgghhBBCCCGEeCgJIgkhhBBCCCGEEEKIh5IgkhBCCCGEEEIIIYR4KAkiCSGEEEIIIYQQQoiHkiCSEEIIIYQQQgghxAtk7NixfP7550/9vrI7mxBCCCGEEEIIIf4Rc4f2JSst9Yn1Z1u4CG8t+e2J9Sf+HslEEkIIIYQQQgghxD/iSQaQHqW/4OBgypUrR58+ffDy8uKll15i06ZN1K5dG09PTw4cOADcn8nj5eVFcHAwKSkp+Pn5UblyZby8vFiyZMl996hfvz7Dhg2jbt26lC9fnoMHD9KuXTs8PT0ZPXq0ZRxeXl6Waz7//HPGjh0LwNSpU6lQoQKVKlWiS5cuACQnJ9OrVy8qVapEpUqVWL58OQD29vaWPpYtW0avXr0KHM+hQ4cAiIqKwt3dHYDTp0/j6+uLt7c3lSpVIjAw8CFP9+EkE0kIIYQQQgghhBD/Grdv32b16tXUqVMHX19fVq5cSUBAAKtWrWLKlCm0aNHigddu2LCBEiVK4O/vD8CdO3cKbGdtbU1AQABTpkyhV69enDp1iuLFi1O2bFnGjRv3l+P79ttvuXnzJnZ2dsTHxwPw6aef4ujoSEhICABxcXGPMfP8vv/+e0aNGsXIkSPJysrCaDT+z31KJpIQQgghhBBCCCH+Ndzd3alfvz5arZbKlSvTqlUrNBoNtWrV4vbt2395be3atTl06BCjRo1i586duLi4FNiue/fuANSoUQMvLy88PT2xs7PDw8OD0NDQv7xH5cqV6d69Oz/++CNWVlYAHDhwgDFjxljauLq6/p0pF6hRo0Z8/fXXjB8/nmvXrlGoUKH/uU8JIgkhhBBCCCGEEOJfw9ra2vJao9Fga2treX03G0er1WIymSztsrOzAahevTpnz56levXqjBs3jg8//LDAe9ztU6vV3nc/g8GAlZVVvv4zMzMtr/fv38/bb7/N6dOnqVmzJnq9HlVVURTlvvvkPZa3j7x0Op3lXnnbjBgxgs2bN2Nvb0+HDh3YsmVLgdf/HRJEEkIIIYQQQgghxH9KuXLlOHv2LABHjhwhIiICgLCwMAoXLsybb77JmDFjOHfu3GP17+7uTkJCAjExMWRmZrJz504AjEYj169fp0uXLsydO5eUlBSSk5Np2bIls2fPtlx/dzmbi4sLZ8+exWg0snHjxgLv5eHhwYkTJwBYuXKl5fiVK1fw9vZm/PjxtG/f/rHnkpcEkYQQQgghhBBCCPGfMnDgQJKSkvD29ub777/H09MTgDNnzlCzZk28vb2ZMWMGEydOfKz+bWxs+OCDD6hXrx5t2rSxFNk2GAz069ePSpUq4ePjw4gRIyhWrBjTpk0jKSkJLy8vKleuzPbt2wGYPHky3bp1o1GjRpQoUaLAe3366acsXryYWrVqWWosAfzyyy9UqlQJb29vQkJCGDFixGPNJS9FVdX/uZNnoW7dumpAQMCzHoYQQgghhBBCCCFyXbhwAV9fX8vPc4f2faI7tNkWLsJbS357Yv391937fgEoinJaVdW6BbWX3dmEEEIIIYQQQgjxj5CAz7+LLGcTQgghhBBCCCGEEA8lQSQhhBBCCCGEEEII8VASRBJCCCGEEEIIIYQQDyVBJCGEEEIIIYQQQgjxUBJEEkIIIYQQQgghhBAPJUEkIYQQQgghhBBC/GuEhobSpk0bPD098fDwYMiQIWRlZXHs2DHWrFljaTd27Fg+//zzZzjSF4/uWQ9ACCGEEEIIIYQQ/05VDl0k0WB8Yv0V1Wm50qz6A8+bTCZefvllhg0bxrvvvovBYKB///689957VKtWjYCAAHr37v1ExmIwGNDp/lthFclEEkIIIYQQQgghxD/iSQaQHqW/rVu3Ym1tzbvvvguATqdj/vz5/Prrr3z++eds3rwZb29vlixZAsCVK1eoX78+pUuXZurUqZZ+fvzxR3x9ffH29qZfv34YDAYA7O3tee+99/D19WXfvn1PdG4vAgkiCSGEEEIIIYQQ4l/h4sWL1KxZM9+xokWL4u7uztixY+nWrRtBQUEMHToUgKtXr3LgwAFOnTrFV199RXZ2NmfPnmXNmjWcOnWKoKAgtFotCxYsACAzMxNfX18uXLhAu3btnvb0nrn/Vt6VEEK8IAIDAxk+fDharZaKFSuydOlSFEV51sMSQgghhBDiuaaqaoH/3ayqaoHt27dvj52dHXZ2djg7OxMREcGOHTsIDAykRo0aAGRnZ1O8eHEAtFotAwcO/Ocm8JyTTCQhhHjOqCYTlStX5ujRoxw6dAiAgICAZzwqIYQQQgghnn/Vq1fn7Nmz+Y4lJiYSHR1dYP0iGxsby2utVoter8dkMvHKK68QFBREUFAQN27cYNasWQBYW1v/5+og5SVBJCGEeA5kpqWye9EPfDuwJ7P7duOXD98i+NhhwPw/bB4eHkyePBk/Pz9atWpFWFgYM2fOZNu2bQBs3LiRWbNmMWnSJPbs2QPAoEGDCAsLe1ZTEkIIIYQQ4qnr2rUrWVlZzJ07FzAXv37zzTd55ZVXKFGiBGlpaQ/to2PHjmzZsoWIiAgAYmNjCQkJ+UfH/aKQIJIQQjxj+qwsfh3/PoH+ezBkZwOQGBXJ1+M+pGJZT2JjY4mLiyMiIgJ/f3/mzp3L9OnT6devH6tXrwZgzZo19OnT51lOQwghhBBCiGdOo9GwadMm1q1bh6enJ+XKlcPW1pZvv/2Wjh07EhwcnK+wdkFq167NxIkTad26NZUqVaJly5aEh4c/xVk8v/67OViCEydOMGbMGLRaLXXr1uWbb77Jd37EiBEEBgaiKArz5s3D19eXQYMGMWHCBCpWrPiMRi3Ev0/ggT2kJSRgyt3x4S7v4i5U93AnuLArly9fxt/fHz8/P1JSUrh16xaXL18mIiKCO3fukJSUROnSpVEUhRs3btC0aVNCQkLo06cPZcuWfTYTE0IIIYQQ/3lFddonukNbUZ32oW0qVKhQ4M5pdnZ2BAYGPvC6q1evWl4PHTrUUnw7r4yMjEcc6b+TBJH+wzw9Pdm3bx+2trb079+fixcvUr16dQBMJhOffPIJ5cqV4+rVq3zyySesW7fuGY9YiH+noMP+GHKy8x0zGI3otFoUjQZysomOjqZdu3Z8//33REdHU6hQIYoUKUKDBg3o27cvPXr0AMDBwYH58+ezYcMGunbtyuzZs+nYseOzmJYQQgghhBBcaVb9WQ9BPEESRPqPCbtwluPrfiP+1k3sHByo3bEbNdp2QqfTodVqadmyJS4uLnTq1IkhQ4YAYGVlhVb7Z7R39uzZBAYG4ufnx+TJk5/VVIT41yhop4hj12+xIzAERYESJUvy/kefMHBAfxrUqU1SahpZ2dnMmzePcuXKsXnzZtLT09mzZw8NGjQgJCSEsWPHUrx4cVJTUwHo0aMHCQkJREZG8tprr/HZZ5897WkKIYQQQgghXnASRPoPObfrDw78ssSS8ZCdkc7BlcvY98c24uPisLe3JzY2lj179uQLGn366ae8++67lp+bNGnCvHnz6NKlCxEREbi7uz/1uQjxb1K5cXPibobly0ZqXNGTZpXKobO2YcfNGOaOHsGrVcsBMHfXAX6b+z2FPTxISEigRYsW3Lp1i4MHD6LVatm8eTNr1qwBoHnz5gCsX7+elJQUunfvzvDhw5/+JIUQQgghhBAvPCms/R+RnZHBgV8W5/sj9eadRL7etocJ85dQxNa8rWGNGjUsAaSpU6fi6OhIZGQkTZs2tVxXq1YtwLx14o0bN57iLIT4d6resi32jo5o8gRvtRoNWmtrPGvUIiU6EoM+h2X7j3Aq5Do34xPoP+JNenZ/mcOHD5OSkkJUVBRnzpwBzMUE77r7WlVV3njjDaZNm4abm9vTnaAQQgghhPhPMZlMz3oI4hE8zvskQaT/iLDzp9Fo8hcgc7S1wd7amjea1yf65g2CgoIsf3CaTCYqVqxIrVq18gWQAM6fPw9AYGCgFOwV4gmwtrOn92dTsXNwzHNU4UhIGK98MolzN8PZH3QdvdFEXGoapRwdyMzKJi0xEa1Wy8KFC/Hz8+OLL74AwNnZmfDwcCIjI3F0NPc5depUWrVqRaFChWjcuDHNmjVj8ODBREVFMXXq1ALHlZSUxPr16//p6QshhBBCiH8RrVZLXFycBJKecyaTibi4uHyrkB6FLGf7jzDk5NxXd+XGnUQiklLYdiGIO5nZJCQksHv3bnr16kWnTp2YOXMmiqKwZMkSFi9eTMWKFTl//jy2trbMmzeP27dv4+bmxtSpU5k7dy5DhgxhypQpz2iGQrzY9iyaS1Zaap4jKvXKlKBh2VJsOBPIzTtJFLKxpk1VL87cjCAuNZ2yxYqSblBISUnB3t6euLg4AL744gteffVVVFVl7ty5gDmI1KBBA1auXMnw4cMZNGgQgwcPJjw8nPHjxxc4prtBpLtFu4UQQgghhHiY8uXLExoaSkxMzLMeingIrVZL+fLl/9Y1EkT6lzlx4gRjxoxBq9VSt25dvvnmGwA8qlbHaNCzNuAi0cmpoECP2j588VJbNl8IIj4ihpkzZ2Jtbc3q1avRarUMGTIEf39/Nm7cyIwZM7C1taVixYp07dqVMWPGMGvWLLRaLcOGDaNx48bs3bv3Gc9eiBdTQmQ4EcGXMer1lmMGo5G4tAzWBlwgKSMLo8mEvbUVvx4/i6IoWOu0aLRaNBoTe/bsITg4mNDQUG7duoWvry+HDx8GQJ+Tzfk9O1j64TuoJiOVGjaheqv2ANjY2GA0GhkwYADz58+na9eubNmyhRUrVpCVlUVsbCy7d+/Gz8+PNWvW4Orq+kyejxBCCCGEeHHY2dlRrVq1Zz0M8Q+R5Wz/Mp6enuzbt49Dhw4RGxvLxYsXATAaDRiNJlp6V+Dt1o3pU68Guy9dJSM7h9vxiQReuMivv/5KZmYmGo2GmxfPsWfJPE5v24AhIw0ba2sAKlSowM6dO+nQoQNBQUEsW7YMNzc3FEXJN46+ffty7tw5Ll68SO/evZ/6cxDiRRJ74/p9y02DouNYf/oiWXoD2QYDigJ6oxGAQjbWuBd1ZMH0Kbi7uzN37lxMJhPTpk1j+vTplj6yMzJY+ekY/H9eRGTwZaKuBnNk9UrG9OxK1SpViI2NxcXFBYDChQszbtw43njjDTZs2MC7777L8OHDadu2Lf7+/hJAEkIIIYQQQkgm0r+BISeHkBNHiLsZhkOxYjg2aQG2tuh0OrRaLS1btsSYmkxJrYn6ZUsDoNUooMCvJ87xUp3q2GkVYrOycHR0ZM3kcUSHXkWflcW12DuE3kli9RefUKlbH7RaLefOnSMuLo6QkBCsrKwKHNOcOXPo168fGo2G5cuXP83HIcQLx7aIA8bcANFdPu4l8HEvAYCiKHy14yBexYtxMSKaQrY2RCSlULJeYxISJtGkSRPWrVvH77//zt69e9mwYQPTp0/HkJZK3eJOVHZzsfRryMmmolMROrzRht03oti6davlXJs2bXjrrbf44osv8hXnFkIIIYQQQgiQTKQXXvytMBa8+Tp7Fs8jYMs6Dq78iYWjBrFl5c/Ex8djb29PbGwsI9r7WQJIAH9cCKaEQ2FuJyaz9dwlqtWuQ/v27bHXaYi8Fow+K4sTobfYcv4yp0JvMmfl7wzu35elS5fi7e1N6dKlHxhAAnBzc6N8+fKUL1+eUqVKPY1HIZ6gyMhIateuja2tLQaD4S/brlu3Dg8PD8vP9xZiFw9XppovJuP9z9lgNHIpIoYvtx/AulAhCrm4omp1bFj1G9V8qvPNt9/h5ubGsWPHAFi0aBENGjSwBJSGNPSlUnHn+/pUTUZCT5+kcKFC2NnZWc7Nnz+f1157jUWLFpGdnY2VldV9wS0hhBBCCCHEf5cEkV5gJpORtVM/IystFX1WJmDOSkpJTeO9999nzpczAahRowZObiUhd8nZwZAbuDkUpr1PZUb6NcRgMlHW05P27dsTEx3NznOXuHknkQMhocSnpmMyqcSnpNK6fGkmTpzI5s2buXnzJq6urkyYMKHAsV24cIHU1FRiY2MJDg5+Og9EPDHOzs7s3buXhg0bPrTt2rVr8wWRxN+n0WrRWdvcdzwoOo4DIaEUsrFCq9Xi16sP6XoDb0+awtVr10hJSeHcuXM4ODhQv359zpw5w5QpU5gwYQJTpkzhZ/9jxKdl3NfnvP3H+GHPYaKiImnXrh0At2/fZvPmzYwfP563336byZMnU6JECRISEujVqxcJCQlP5VkIIYQQQgghnl+ynO05EBgYyPDhw9FqtVSsWJGJEyfy2WefsWLFir+8Luz8GfTZWfmOGU0mfj1xjm41qxF76Rzu9Zui0Wio1aEL104d59KtcMLiE3mtUS2iklNZc+o8VtY2VK3uS3JyEqkZmbSp6kVKZhaFbWx4t3VTfth7hLA7iWwOuEDm+WCqVauGTqcjM9McuFqyZAnz5s0jISGBxMREvvvuO8aOHcsvv/xCTk4OI0eOZNu2bffVTRLPF6NBz7VTJ7gTfovCzi5UbtTMck6v19OhQwf0ej2urq78/vvvaLVatm3bRtu2bVm6dOl9/b377rs0btyYV1999WlO44XlXMqdmNBr+Y55l3C1LGk7cDsWVVV5/fXX+f777wHz+wLw/vvvs3v3boYMGYKnpyeZmZksXryYz/r3Yu+JU/SsU93S591lcvaOToycvwxFo7H8W7N9+3YAevToYdmRbefOnf/sxIUQQgghhBAvDMlEeg5UrlyZo0ePcujQIQDi4+Mf6brk2BiMhvxLTS6ER3E7MZnNZwMZ+elEoqKiAChVqQr1uvVg49nLJGZk8KP/cQ5dDWNs5zY0btmKbVu3smv7dpwL2fPr8bPYWllhrdVia6XDvagjpRwd0Oi0NGrUiP79+7NgwQJLzZShQ4dy+vRpvL29mTt3LgMHDqRz5844OTkxevRo/vjjjxcqgPR3lnIBnDt3Dj8/P/z8/ChXrhxz5szJdz4sLIxBgwb9M4N9Qu6E32LhqMHsnP8tx9b+iv/yRSwYOdCy5bxOp2Pr1q0cPHiQKlWqsG/fPgCWL1/OgAED7utv9OjRNGrUSAJIf0OV5q3uO3Y3a2je/mPcSUjgnXfeoUSJEvj5+dGyZUt++uknAHr37s327dvp1asXAJMmTaJFixZsOBNI7XKe9/Wrs7GhUa++KFL3SAghhBBCCPE3SCbSM5IcG8OZ7ZuJDLlCISdnarXvQpnqNSxbbkdGRtKrVy9u3LjBpk2bOHPmDLNnzwbg+PHjeHl5ERcTg6eDPY3KlWbZkdN81rU1tcq4U6uMO1orK+p160mjRo1o1KgRAI1792erjQ1HVv2CKbfOiUGfg01MFGkpyZR0LILeYOR6XAI/7DuKo50tkUkpBEZEo9VoMKRl8PMHH9CwYUOaNWvG7du3CQsLo23btrRo0YJChQqRnp6OyWTi4sWLBAQEUKdOnXzzjoyMpEuXLly+fJm0tDR0uvs/gtHR0ZbgQ0xMDO3bt2fOnDl07dqVpKQkrK2tWb58OaVLl77v2sdx75juLuXq3r17ge3PnTvHe++9B8DNmzcZPXo0/v7+vPPOOzg6OtKlS5cnMq6nxWQysmbKBDKSkwEVwJLhFh9+i/SkRLS2dgwfPpyIiAhiYmLw8vJi3759NG7cGOvcnfvuCgkJwdbW9r5gmvhrVZv6ceDnxagmk+VY3uLa7t5V0Wg0jB8/nvHjx993ffv27SlWrBgAM2fOtBw/v2c7B35ZgqKYA0Ymo4F6XXtQo22nf3I6QgghhBBCiH8h+b+hn4Hbly6w7INRnNu1jehrIVwPOM6U0W9SvrS7ZcvtxMREfv/9d95//33WrVtHt27d8Pf359VXX2XcuHFcvHiRqj7V0Gi0XAiPpqi9bb57KIoG39Yd8h27dGAvh3/72RJAAgi8HcWW0xeo4OqMk70diRmZlHd1plvNKkQkJbPhzCU0igb3EiXo2LEjU6ZM4ZtvviE0NJQFCxYwYMAAmjUzL3uqX78+GzduxNPTE6PRyNGjR2nSpEm+MTxKrZ0SJUrg7++Pv78/7dq1swRlvvvuOw4dOsQnn3zCN9988z+9BwWNqV7dukQEXSY7JZmiRYtazoeFhdGqVSteeeUVatWqRWhoKNbW1hgMBqpVq2YZ34wZM4iOjqZixYoATJw4kWbNmlmCf8+rsPNnyMnM5G4AKR8VLuzbxc6dO6lUqRIHDhygZ8+eqKpKYGAgmzdvpkOHDly6dMlSH6tSpUr07duXDz/88OlO5AVnV8QBr/qN0BQQWNXZ2FD/5d4FXhcUFETXrl0ZPXp0gedrtOnIm4tW0nXMJ3Qe/SEjF6ygce/+L1R2oBBCCCGEEOL5IEGkp8xkNLJ59nQM2dmY8iyV8i7uwpjWjXCwtWHr1q1UrWrOOnB3dycpKQlVVdm4cgXrf11B71bN0Wdn0axZc5zKludmQjJarY7lR08zZ88R0vRGbGo2oGvPXvj5+WFnZ4fJaKRL7z6sD7jArJ0HOXsrkmVHAth+MYj+DWvhaGdLamYWjna2KIBHUUfSsnJo71OJ0p5laNC8BYWLFCEsLIz9+/fTsGFDbGzMhYDvLmtr3LgxX331FU2aNKFs2bL8/vvv1K9fH1VViQwJ4uL+XUQFXcLRwSHfMxkyZAht2rRh6NChTJo0Kd+5gwcP4ufnB0C5cuUA89IqrVb7P70Pd8JvceaPTZzb9Qfpd+I5uGQuUVeD2PDVZGYNH0i1smW4FBhI3bp12bFjBwEBAURGRvLOO++wfPlydu3aRZs2bQgJCbEEjerUqUOHDubAXVRUFCdPnuTQoUOPVJz6f/F3l9/dKyk66r6dwYwmEwv8jxOZmMTbEz6nWLFibN68mS5duhAWFgaYax7t27ePHTt2UK1aNaZMmWK5fujQobi4uOTLiPlfnThxgsaNG9OsWTPGjBlTYJulS5dSrly5ApfYvQjajRiNW7kKWNnYomg0aK2s0FpZUf+lXpSvVa/Aa7y9vTl8+DDNmzd/YL9W1jaUrVGb8rXqYWNv/08NXwghhBBCCPEvJ8vZnrLbly7e9we7wWhEp9Wiz84hIyEBOzs7S5bAjRs3WLhwIct/nMudlFRG+DXitYEDqVW2NHuuhZNjNFKrXgOuhwTz/efjOHLhEtYurowc+xEjx37E/Pnzadu2LfG3b5KelUWbRrUwqSpzdh/mow7NOXb9FosPnkSjUXC0syPLYEAFDl69AcBPhwPIMRr5YvL/sWbNGsLCwrCzs+PixYscOHCAIkWKkJCQwLx586hbty5BQUE0adIEW1tbtmzZgik7k+Wff0RKbAwqKhrF/IdxTqZ5x6iTJ0+i1WrZs2cP06ZNIycnx/JcAgIC8PX1zbfkzWg0MnXqVBYsWPBYz99o0LN1zpeEnT+NqqooioJBr0dRFFRVJScjA6NBT1JyMk62trw3ejQrf/2Vrl27Uq1aNcLDw/Hx8QEgLi4Ob29vS98JCQmWYsQ3b97E19cXMAeXdu3a9VjjfRBVVclKT0Nnbf3Q5XcP4+Dqhkanw5hbpBlAq9HwaoOaLD0cQFDYLZo0acKZM2cs5/39/Zk0aRKTJk2iadOmHD582HLu8OHD9x37X5iMRvTZWZQpU4Z9+/Zha2tL//79uXjxItWrV8/Xtlu3bjRv3vy+YOSLwsbenr7/9zURwZcJvxyIta0tXg2aUMSl2LMemhBCCCGEEEJIEOlpy0xNRr1n1VBQdBwHQ8xBG8/SpWnXrp3lD/DSpUtTr0wpstNS2X8nkV+PnSY5M4u+9XzxKV2SqdsP4ubmhqOjIy36D0Z19+fAgQOAuXbS/v37WbVqFXE3b1DY1oYitubsIZdC9lyPS+BiRDQmVcXbrTitq1Rk9anzZOkNXImM46OOLaheqw4zt+xm48aN3Lx5k71799KgQQM2bNjAjBkzKFSoEH369AHA1taWrCxzLZ22bdvSpk0blo0dRVJUJCZTngLgWZnE3QwjMzWF0NBQatWqBZiDLceOHbM027BhgyUoc9fYsWMZOHAgFSpUuO/Z3rvL3dKlS+9bsnPo1+WEnT+NIU+wCsxBmbzcHAqTmp2DMfEOlSpVIjk5mVKlSnHp0iVLBtaZM2cs26Pr9XoyMjKoUaOG+X309OTixYsAnD179r6x/i8uHdjL4VU/k5GSDCp4+tak9ZA3Lec3b95sWUJ34sQJMjMz2bp1K19++SUGg4GJEyfSoUMHRo8ezblz5zAajXQo7YLdPfext7birTZN+SMi8YmO/1FlZ6Tj//Nigg4fwGQyYWNvT72XelG3S3dLNtqECRPYv38/NjY2rF+/nmLFipGWlpavn0mTJhEWFkZ4eDhlypQpcCe554miKJT2rkZp72rPeihCCCGEEEIIkY8EkZ6y4uUqohrz76h2t3iu1sqKul16YGfU06euDz9/9A52RRzwq+CBUZ9DUkYm9cqVZtuFIJYfPU1ieiaKRmvJ5PHz8+PYsWP079+ft99+mytXrrBkyRK6d+/O+vXr8u/EpJjvW8rJgR0Xg3mlnjlrZlTLRpYGVjY2tB4yknn+x1m9enW+MXfv3v2hmS8RVy6ReicufwApl6qqBB7YS7ly5di/fz9wf7Bl165dljo7AEuWLEFRFAYOHHhfX/rsLLy8KnL06FEABg8eTEBAAPXq/bkEyKDXc2HPjvsCSPcymkxci4nHYDIx/ZtvaNam3X1t9Ho9kZGReHh4ALBv3z4cHR0t50uWLEmdOnVo1qyZJbD0JJzdsZWDK3/CkJNtORZ27gwrxo3BmLuUrVu3bnTr1s2ShWYymfj666/Zt28fJpOJjh070qFDB6ZPn469vT179uxh6/r1VMy6gzFHj0Gfg6IoWFtZ0XroKHZOmWG515AhQ7h16xaenp6WuaemptK3b19CQkKYP38+9erVw2AwMHz4cM6cOcOkSZP+drFxo0HPb599SFJ0pGVemakpHP19JefOniE+Pp7s7GxCQ0M5cuTIfUHAe3l5ebFs2TLefPNNjh8//o8vMRRCCCGEEEKIfyMJIj1lzqXcca9SjfArgfmWDwFotDq0Vjp+nzwOgz4HVJWo5FR+PnqapIxMCtlYU8OjJLfuJKHVKOQYjFhbWTFkyBBOnjzJq6++SlxcHB4eHsycOZMyZcpYavRoNFqc3Eqi1eksf5TnVcanBvZORbkecBzVZMKzei2avvoaxcqUfey5xt26gcloynfMaDKx+OBJIhOTGfnRJyz85Veys7Np3bo1np6elClTBoDg4GA8PT2xs/szP2bUqFHUr18fPz8/WrRowaRJkzi3axvH168mKyUFRavBu0kL/F4bho2NDR4eHgwePJjbt29TpkwZ3Iq5UEJV2X4xmNC4BEo5FSHbYKSZV1l+OhxAtsHAuPU76F3XlxKORahUwpVWHTuSoLNnypQpLFu2jMqVKzNs2DB27txJ7969GTZsGGDeGetuzaa78tYIehIMej2HVy3PF0ACUFUT+sxM0hLuWI7ly0KLi+PKlSu0adMGgNjYWFRV5csvv2Tv3r3o9XqqVKlCvW49Obrm19w+VbQ6HQd+Xkx2Rjrw4KWHt2/f5siRIyQnJzNixAi2bt1KXFwcEyZMwMXFJV9x9EcVcvwIKXGx931WU1JT+e6H+ew6eIiA8xdo3LgxwEOLRN/NdqtZsybXrl2TIJIQQgghhBBCPAYJIj0D3d7/lK1zZnLr0kW0Oh2qqmJtZ0fbYW+xZc6MfMGl4kUK8XFHPwC+3O7P5cgYCttYM6Fra67HJbDr2i20Wi3z58/nm2++ITAwEEVRWLRoEatXr+b//u//WLx4MQCnz18g7PwZ/H9ZwtutABTKeHiw/MPxVGvWMn+mUh6PW9umkFNRtDotxjyxMq1Gwwi/hihaLbU7dKVBgwY0aNAAwLIjG0DlypVZu3Ztvv6ys/MHTw7+uoyzO7ZguHvcZGTNqt8Y+tlk6jdtzs2bN7GxsWHPnj3MnDmTtNRUkjIyiEhM5q1WjTh3K5Kg6DhKOTlQwrEIPer4sDbgItl6AxWKu1ChRHH6Dx+FW3lz4exBgwZZ7t2+fXvat2//RJ7To4q9cR0oOFhiNOjJTEkGICYmhvHjx7NhwwYURaFYsWJUr16dnTt3otVq0ev1JCQk4O/vz6FDh9i9ezdLFy7k+PpV+ep1GfV6jOiJv3UTo0H/wKWHFStWpHDhwhQuXJjkZPMYXFxcLAHBxymCHnL8MPrsLMvPyZlZLDl4kqjkVN7t0IKsmEgqV67Mli1bePvttwEsNa7Onj3L9u3bKVu2LN27d+fIkSPY2NjQqVMnzp8/z2uvvUZqaiovv/wyer0eBwcHfvvtN4oUKfK3xymEEEIIIYQQ/yUSRHoGrO3s6fHpFyTFRBN3MxQ7B0fcK1UhYNvG+3ZZz7tMR6fVotVoMJhMLD96mqjkVIq7l2bLli3MmDGD+vXro9VqyczMJCUlhZ9++ong4GDq16/PlStXsLKyomyN2gyqUdvyB/c/qXzt+jwo6KHVaqneun2B5x5FRkoyZ/7YdF82V9USrtTw9OBEmoHQ0FBLceuaNWty7NgxCntWpOSVawCUcnIgKDoORVHQaTVci7lDE6+yXI6IIcNg5N23e1oCSM8D8y549y/bupvdFZGcSvv27WnevDm3b9+mW7dugDk49/7779O6dWsURcHFxYXIyEiCgoLw8PCgZ8+eJESFY/Qo/oA7q9w4e/qBSw+vXbtGeno6ycnJOOTuvJeQkEB4eDjOzs4YjfcvZ3yYewOa9tZWNPYqy/rTgWw9c4mj743l23k/4unpSZMmTSw1kQ4fPsz06dOxsrKiTp06xMbGUqdOHa5cuULr1q3x8PCgUaNGZGVlsWLFCkqWLMmiRYtYtmwZ77zzjuV+JpPJsuugEEIIIYQQQggzCSI9Q05uJXByK2H5OTMlGaMhf1AkKDqO7ReDSUjPoLCNNZVLuHIi9Da1Pd3ZeCGY+IREUlJSsLW1JTY2Fmtra2xsbChUqBA//fQTjRo1omzZslhZWeXr958OIAHorK3pNnYcm76agsloxGjQm7ct1+lo2vd1XNw98rX38/PDz8/vkfq+fekCWm3+HcUMRiNHrt3kYkQ0tatV5auvviIqKoqXXnqJCxcuANDzrff4ZdMWwpJS8b8Ugq2VDisbW6p4eXEq5BqjO7XhWmomtoUc6DD8nQfd/pkoXq4CGu39v7JajYa32janUa++1H+5NwCff/55vjadOnXCr2kTjAY9adl6ihYtatnlbOjQoVx3d+F6wIl811iCU0kpvD7qbb6bv4Ds7GxatWqFp6cnnp6eAHh4eDBkyBCuXbvGvHnzAChWrJh5ueG5c0ycOPFvz7VczbpcDziBKTcAZaXV0rB8Gc7cjODN1o3p9On/8dbo9yhWrBgZGRmMGv4G7Zo3IzU1hTkTPqWkbx2+/PZbtFotGzduxNfXF0VR0Gg0ll3lSpYsCWAp0g3QsGFDatWqhZ2dnaU4uRBCCCGEEEIIMwkiPUdKVvJG0WhQTX/WEbpbdBtgw5lAopJS8C7pSnX3Ejg5OnE0LgVPT08aN26Mo6MjxYsXJzAwkOTkZEwmE7GxsQwfPpypU6cyfvz4J7r1+qPwrF6TwXPmc2H3DqJDr+JYvAQ12nbE9W/WWoqMjKRLly5cvnyZtLQ0FEXh16MBRCcl07iCJzEpaZRyKsL+oOvojSaS0zMoVKgQHTp0YODAgZQqVQpvb2/KVqhA5z79WPv77xg1Wjw8ytBj3Bf4RMYwZswYRi/6hdjx48nKynoqgba/Q6PV0mbYW+yYNztfcXCNToe9kxM12nUq8Lqoa8HsXjSXhPBboGiwd3CgxcBhVG7Y1BJA2XTyLP7+x9BqFAY1rkNsahrrTwfiZG+HwWji/OUrbNu2jaysLG7dusXq1atxdXUF4Pz585Z7vffee9StW5fjx48/9jzTEu5w6LfllgBSXoqioW6X7tgVcSAxMZE9e/bw3fSpzJgwjqHNG7DrwhVWLV+Kh8sGbkcnU9jZBZPJhJWVFTt37mTmzJlkZmb+ea+0NBYuXMj27dsBiI+PZ/z48ZQuXfqxxy+EEEIIIYQQ/1YSRHqOOBQrni+ABObsGl1uloStlQ6dVmtZ4mYy6sGgR6/Xc+7cOUJCQujUqROVK1emTp06ZGVlcfnyZdzd3enVq9dTn89dRZyL0aTPgL99naqqZCQnoSgKzs7O7N2717IjXBmfmsQkp/J2q8Zci71DTEoaaVk59G9Yi12Xr1GhSlVWbdqCg4MDv/zyC82aNePkyZNERETw3Xff0bZdO8aOHcv1mHgGjnqHtWvXWoIhU6dOfaLzf5IqN2qKbeHCHF71M7E3rqOztqFKs5Y0eaU/NvaF7msffyuMNZPH56svlHonnh1zZxN89Zpll7N0tIzp1IqczAwA9ly+xuCmdbGxsmLGdn/qNjAXoq5RowarVq164PjmzJnzP8/x0G/LyUpLK/CcztqKxr37ExERQdWqVdFnZXLtwG7cithjNOhxsLMhPTOLtPQMzpw9x7lzZ+n00st06mQOsN1d1gjmz9eQIUOYOnUqTk5OABQvXlwCSEIIIYQQQgjxABJEeo5EXwtBa2WNUf9nlklQdBwHQ24AUKxwIeqXK8O5WxHM23+MLIMRh2KuREVFkZ6eTtuWflwODgGjEUVRaNWqFXFxcUycOJFz587h7e3N1atXiYqKYvDgwbRp04abN2/i6OjIwoULqVChAtu3b7f8Qf0s3TgbwL6fFpCaEA8qOJYoQduhb1nOT546leiUVJYcOkWLyuUxqSrX4xI4fuM2adk5eHpXoXpoGMWKFeOVV16hcuXKrF+/nmHDhvHmm29y4sQJwsPDCQ4OZt++fSxcuJBPPvnkGc740XlWr4ln9ZqP1PbI7yvQ37ObG0BKahpjP/6Yg6fPcfDgQZq3aEH3tq3Z+OVkjPocsg0GihYqhHWhQlSuXNlynbu7OwMGDGDFihXMnz+fZcuW0aJFC06cOIG/vz9+fn7s2bMHne7x/2kJOX4E1VRwHSVDTo5550LMSzJDjh9BQSFv7S2TqrL53GVKOzuQEHIZW1tbLl68CGBZ1ggwceJEmjRpQqtWrSzHpA6SEEIIIYQQQjyY/MX0HLG2s0Nzz05WPu4lGNWyEaNaNuKVer64FLZnVKvGjGrZiI+7tGb/9j94qbYP//dSGwZUr0DxQnbMG96fXm1bsWzZMipUqMC3335L+/btOXToEADTp0+nVatWfPDBBwwZMoTQ0FA6derEzz//jKOj47OYej5hF86yefY0kmKizDuEGfQkhN9m3fTPLZkyDV2LUMKhMEOb1QMgOjmV2p6lSM7IooqPD+PGjQdg+fLlrFmzBmtrazp06MDhw4cZMGAA3333HcOGDcPV1dWy7fu/0a2L50HNX4zbaDLx64lzdPGtQmEbKypXrszx48dxr1yFDqPGYDQasbGyIikjg7SUZIKDgkhLvAP8GWQxGAwsW7aMI0eO0KNHjyc65rw7xN21P+g6EzbsJDwhGUenovTo0YO9e/eSlngHgyEnX9trMXe4EZ9IUFQcjXq8QnZ2NllZWbRu3ZoLFy5gZWVFZGQkM2fOZMOGDfj5+fHjjz8+0TkIIYQQQgghxL+RZCI9R8rXro9q+v6R2ioaLUVLluZW4HnO7/4Do17P+pPnqVCsKIbsbHat/Z0KxZ0hLorJbw4jRWONQa/HYDCwc+dOateuDcCrr77KO++8Q0BAAD/88AOnT5+mbdu29xVmfpr8f16cr+bPXYacbJJiojnm78/o6bOISkph1cnzVClZnMikFI5eu4lJVbly5Qrff//nc3zvvfd4+eWXGTRoEP3797csB7y7fO38+fNUqFDh6UzuKYqMjOTLrXuITkphao/2aDUafj91gdD4BFIzs1h+6CSnX3qZlNQ0EhIScHR0xMXGiiFN6tCmSgWWHj5FscKFcLKzJSk6mqz0P5eYxcfHU6ZMGbRaLTVr1nyi4y7pVZmIoMuWnw1GI9HJqZRwLMLILu24qNexYsUKAK6ePEpVj9JUdHUBoF45D6q5l6BF5fL8dCSAPj27c+TMeRYtWkRsbCz16tVj1apVfPzxx+QU8BkrqF7Yjh07MBqNdO7c+YnOUwghhBBCCCFeNJKJ9ByxsbenzbBR6KxtIE9RZ62VFRqdDmtbO3TWNljZ2OJS2oOXP57IyU1rMWSblyu9VKsq7X0qYTAaaVe1Ir19vNCaDOjTUgm5fIly7ubdqD7++GOOHz+OyWTCzs7OUgTZz8+PQ4cO8ccffzz9yefSZ2WREHH7gedzMjKwM+YwplNLSjoVASA9O4e6ZUszvEUDSjgWxt3FOd927cHBwcyaNYuXX36Z9PR0y3ErKys6dOjAvHnzGD58+D83qWfE2dmZ7yaOw7NYUcuxuNQ0Punox+Cm9WhaoxoHDx3m1KlT3Lp1i0/eepPqHiWxs7aidFFHxrRtxiv1fLHSagGVTrV9adq0KWDefe327duYTKZ8S8SehGZ9B6G1srb8fCL0NnXLlkZRFHzbdmTjxo04OjpStWpVXCpUZuPZS0zYsJPPN+3mqx0HyMzJYfnR02QbDKzZup1atWrRsmVLmjVrho+PD76+vvk+Hw/ToUMHCSAJIYQQQgghBJKJ9Nyp1qI1zqVKc3LTGuJu3qCwswt1Or1M2Vp1CTt/moykJFw9y1HSqzIZyUkFZuwUVEcpLD6BgS0aMmWbP8nJyZQqVYp3332XwoUL4+npyaJFiwgODqZly5bY2dk97WlbKPcs57vr7nbzkUkpDHnrbaq5FiUqKYU7aekkpmeQnJlNYnoGGTk5FHLQ0rhxY0aMGIGfnx83btygVq1avPXWWzRu3Jh27dpRqlQptm7d+pRn98+7fekCp7asJzEqkqIlS1GtRRs0Wi0arZbtF4KISjbXkWrlU5nyVWoC5mAaQEpSIsWLmItzh8UnsvNSCFl6A6qqkpSSyXuTp7Lg5yoA6HQ6Xn/9dRo3bkyjRo0sfTyROVy+aCkwbzSZuB6XQBOvsuy6fI3ty5dQt2J5tuz3p1nLVnwxeTJFK1TCNSqG/o3rsPbEWYLiEpk+oCcLjp3HpM+huZM1GTbu/JZ4h1XLf6JWw8b07NmTmTNn4uPjQ+fOndm4cSPXr19n1KhRDBkyhJiYGFxdXVmxYgUrV67EYDAwbNiwJzZHIYQQQgghhHgRSRDpOVTSqzIvfTDhvuNe9Rrl+9na1g5VNd3Xzse9BD7uJSw/G4xG+jWshSE7mybeXtjZ2VGuXDl++OEHmjZtytSpU4mIiGDChAnPvKi2zsqK0lWqcfvSxXzHtRoNI/zMO4Sh0XDq+k2c7O1wLVIIo0nFtYh51zoHOzs2/r6aMtVr0rJlS8qVK4fBYMDf3x+Ao0eP0qxZM2bMmPHYY4yMjKRLly5cvnyZtLS0Ry4iPWjQIK5cuYKdnR3Dhw+nX79+jz2GgpzcuIZj61ZhyC2knRQdye1LFynkVJTqrdphZ1+IG/GJTH//XfCowKmLgQDcunWLPn36kBAXR7+alQCoUNyFUcX//LxZ2djQrN9gajVoQIMGDQAYNmwYI0eO5MSJEyxduhQAk8mE9gGBwEdx7dRxTmz83VIX6XRYBLU9SwGgqiYSUtKwNeZQunRpiroW55dffsHJyYlsjY79kQkULVmKMnUa0PiN4by9uB6lijqwYOsu+tavSWZSIj+OHkFiYiLNmjWjcuXKjB8/ns6dO7NmzRpmzpzJ4sWL6datG3379uXHH39k7dq1jz0XIYQQQgghhPi3kSDSCygsLIwGDRpQpUoVkiLDGVinmmU3q2uxd7gee4f2PpUs7fNmJpV2c6Ndu3YF1n55XrQaNIJfP/sQQ3Z2gUEyTCbqlfOgXjkPNpwJ5OadJIrY2pCUlUN4YhK1/Frj4+NDfHw8ZcuWRVVV+vXrx4gRIxg/fjy3b99Gp9MxZcqUxxqfs7Mze/fupXv37n/72pUrV1KxYsXHuu9fSYmP5ejaXzHq9fmOG3KySb0TT72uPWk//B1+a9qUlz4Ybw6q5QaRypQpw7Fjx1i7Zg3zp0yiU9UKlkyguzRaHVWbt8p37Pvvv2fjxo3k5OSwfPlyvvrqK7y9vVHyLMX8u46vX21ZngkQm5pG5O0Ujl2/RUxyKlFJKcSnpuPlVgzVwZF27dqRnZ2N0WhkxYoV7Nmzh8OHDzP2rbdwLmzPe22asv1iEFeiY6nm7sbu85fRGA1otVo8PDxISEjgzp07JCUlUbp0aa5cucLp06dZsGABWVlZ9O3b97koNi+EEEIIIYQQzwMJIr2g2rZty4oVK0hLTGDluDFkpafl++M7r6ql3PBxL4FGp6N2p26UL1/eUpj47h/8y5Yts7S/m7XzrBQrU5YB07/hyO8rCT194r4lewajEV1utouq1WFCwa5QYUwqNKteg0GDBpGQkECnTp2YMGECV69eZerUqbRo0YIpU6awZ8+evxVASk9K5MjqXwg6chCDPocSFbxo1vd1y/mwsDAGDx6Mg4MDMTEx/Pbbb8TFxfHRRx8BcObMGS5duoSiKAwcOBAXFxd++OEHPD09n8DTMgs+eshSMLwgkz79hDPXQsnKymLAgAGWpVl6vZ74+HiWLl1K/fr1qd6iFUW1elIT4lFVFY1Gg87ahh6fTMLG3j5fn2PGjGHMmDGWZ/D1119TpUoV2rVrx+zZsxk+fDharZaKFSuydOnSAoNLu3fvZvr06ZhMJmbNmkViVES+811qVLG8/mHfUcq5OnPs+i0y9XqsrKLo+UofEhISmD9/Pk5OTjg4ONCwYUMOnz4NKszbf4wiNjaULeaMlUbDwZAbFHcoRKFChYiKisLFxYW2bdsSHx+Pra0t06ZNo3Xr1vTs2dPyfFauXFngM5WC20IIIYQQQoj/GgkivSD0RhN7LsdwITwZNTWWvfv20axZM3r06MFbs3+k90vdCL12DdeiThQrURKttTVfbtlDSccilHAswq2EJLIMJtQTF3k9NILPPvuMMWPG0Lp162c9tQI5lypN1/c+5uzOrRz4ZSlG/Z+BpLuZVUaTiYT0TFb/9hsLli2nUKFC9O/fn3HjxpGcnExAQAAHDx7E1dWVOXPmPNYyq8zUFH75ZDSZKcmYjOZsr6irwayf8QWZqSmWdtHR0ezevZvTp08zc+ZM5s+fj7+/P9u3b2fjxo14eHgwa9YsnJ2dzZkyY8c+0aVSWelpmAyGfMfu1pGKSEhi5cbNlPb0vK92UVRUFK+99hoajYZDhw6xbNky3NzciAwJIiHyNkVcXCnj44tG8/BndzewCebgy9GjRwEYPHgwAQEB1KtXL1/7zMxMFixYwO7duy3vzXmnouRkZhTY/9utGgPwebfWGFWV5n1eY/ryX5k2bRqpqaksWLCAK1euMGfOHGa91oustFSSM7P45egZKrkVIyNHTyFrKxLSM7EvXIRly5ahqipBQUFcuHCBYcOG8cYbb/Dmm28yb948VFVl+vTpD5xvhw4dHvpMhBBCCCGEEOLfRIJIL4DbCRn0XnCM1Cw96dlGrDBSeMBcRr5cg1+nvkOdOnUo7lmOTbv2MG3aNLKzs6jjXYHk37fxfufWWCkKRUuVounrI3jj3fcsO5F98803z3hmD1esdBkUTf4MFh/3ElQpWZyfDgcwqElVTLevM2fOHCZMmECnTp2wt7fH39+fQYMGoaoq5cuXx9XVlWbNmv3tLKvT2zaSlZZqCSDdZcjJJjEqwrLsq3r16uh0OmrWrMm1a9cACA0NZc6cOWzevBkwL4MDaNq0KZ988snjPI4Hcq9cFStbO/RZmQCkFHIkokQZWperQsyhA/R4fQjzV/zKihUrGDJkCD/88AM3btxg5MiRLF++nAkTJjB//ny6du3Kli1b2LL/AFlZWbz33nsF3k9VVRat28Vnn36I3qRQplx5Ii8eo3Z1H9o0a4qdczEaNmlCx44diYqKYsuWLbzzzjsEBQUBUKNGDSpVqkRMTAwdO3YkJyeH9u3b06nzy3Tq05dSjkUIT0ymfbVKnLhxi9SsbAY3qYuTvR06rRYdkJ5why5dunD+/Hn8/f3x8/MDoGTJkpSu60Pw8SOsOnmeXnWro9VoKGJrQ6mijlRyL8Hb075m+5bN3Lh2jQ7t21uWGNrZ2VG9enX69u1rKbi9detWOnfuTN++faXgthBCCCGEEOI/TfOsByD+mqqqDF52itiULNKzzYEMPVr0Gmv+b3swdZu1Jjw8nFq1agFQp04dFEVDs76v41u7FgOnzmLQ7B95beb3fDp5CtOmTcPNze1ZTulvKV21OraFCt93/EJ4FLcTk9l2IYixM2cTFRX1wD4mT57MlStXWLVq1d++f9CRg/fVGbpLNZmID78FQGBgIEajkfPnz1OhQgUyMjIYMWIEixcvxsbGBoCUFHPmUnBw8BMvYF62Zm0KF3XGpLNiW6ueLO77HrtavMTWFt3ZYe2EzUuvWNomJiby+++/8/7777Nu3TrL8cKFCzNu3DjeeOMNNmzYwLvvvvvA+03eepmvjtzB9qUvcOg9jasRd7Bq+z7N6vmxbfNGMs8eZeLHH+Hj48OVK1eoXbs21apVIykpCR8fH7y9valRowbBwcFs376djIwMMjMzqd66Hel6A682rkuvOj7suXyVIU3r0aJSec7fNr/HWXpzxlXIicMcOXIET09P2rVrh7+/P/7+/vz888807tWPtWcu0biCJyUci1jGXbRwIcIzcrixYSXb1v7OuTOn8chM5NSW9ZY2/fr1Y/Xq1QAsWLCAW7duERERQbdu3di3bx9+fn5ScFsIIYQQQgjxnySZSM+5wIgUIpMyMeUpd2PKzkBjY4/eqLL2j70s/WqiZXess2fPWtpptTqKly0PwJQpU2jVqpVlZ60XhaIodBg1hrVT8u9WV6uMO7XKuANQuooPjRo1olEj825ifn5+lqyUu8ur5s2bZ7n27rlHcW+BacizTCwphVdeG8jXs7+hePHivPzyy8TFxbFy5UrWrVtHcHAwr732GgCrVq3ijTfeIDExEUVR+PHHHx95DI9Co9HSZ9IMBm/ZTUiJshh1VhixInPvRqzbdOajkAgcDOYgZNWqVdFoNLi7u1uypu5q06YNb731Fl988QUazf0xZn1WFhu3H2TlyRz0No7czRFTdFaotkVYtMsfx7QMlh44QWE7GzauXkXLnn344IMP0Gg0lgys/fv3c+LECbKyskhKSsLe3p6oqCg0Gi3VfGvQ57Mp7F27iiPXbqJRFBzsbIlNSQPgRnwCOwKDUVDIsbJh7dq1jB8/Hj8/PxRFoW/fvlSvXp3L0fEkZ+Vw+NpNWlT1wsOlKCmqBk1qMmkJdyhsbUWbqhVZuO8I285dIiYtg4SEhHwFtzUaDSdPnmTUqFFs2bJFCm4LIYQQQggh/tMkiPScu5WQwT2rucgOv0TSoRUoWivKVK1NgwYN+PHHH2ndujWenp6UKVPmvn6mTp1KgwYN+O233xg0aBCDBg16OhN4Ajyr16RoqdIkRobfd87KxpbaHbv9Y/euWL8h53Zuy7ecTavRMMKvIbaFC/PmwpXcun2b0qVLWwJWABUqVLAEkO7asmXLPzZOAAo7cLJMZQx5Io6G2zcxXAsmc8taIoIus2XLlnwFru8txj1//nxee+01Fi1aRI8ePSxZVACRIUGsmzaR7Q6NybGrALn95MTeICsiCP222ag5mRRxLoFvUWtO3Ajn/THvk5OTQ9WqVTEYDERERFC8eHHs7e1ZuXIlVapUoXfv3lSsWJFy5coB5sBhae9qNO8/hHnL/3ymd0dapWRxqpQsThG3kvT+4ku6d+/Op59+ymeffZZvLmnp6aiqSlJ0JIacHFL0Bva/0otuXlUBlf4Nzdl7525H8WaLBsw/eBKn3MBQt27dGDlyJF27dgWgcuXKj1xwWwghhBBCCCH+rSSI9Jwr42yfLwsJwK5CPewq1EOrUeheuzSQf3e1uw4fPmx5nZmZ+U8O8x/30thx/DbxI4z6HMtubVY2tng1aEzF+o3+sfvW69qTywf2kZ2Rni/gorO2ofmAoWgeo1j3PyUsKwcrRSGLP8dZZPhoy+vU0UPo2rUrJ06cKPD627dvs3nzZrZt20a1atWYPHkyU6dOBUCfncW66RPJycwgzcEGFHOWkjEzlTu75qGzdyIn5jqKzhpb95LY2xiJS00j/MIl3Nzc6NKlC5MnTyY5ORmDwUDLli1xdXWlSZMmluDal19+mW88iqJQrEw5dHkCWXml34njxKrllmyxsLAwhgwZQrFixbh69SqfffYZ8+fPJyMjg507d5IeF0dUVDTL42JJSM+w1FiKSU5lwoadGIwm2rRpzVdfz6J37968//77loyx4cOH88YbbzBv3jySkpLQ6/VkZWXh6ekpNZGEEEIIIYQQ/xnKX20L/jyrW7euGhAQ8KyH8Y9TVZW23xwkNC7tvmCSrZWGDaOaUKWkw7MZ3FOWmZZK4L5d3LxwFtsiDvi2bo9HNd8Ct45/kpKio9j703xuXTwHQGHnYjTvP4jKjZr9o/f9u6Kz9TQ4dpnsB/xOV7a35UAD78fq+9KBvexd+iP6rCwCHGtx0qkuBhRi103GqlgZ7MrXJcn/JwwpsfSoW5tSVnp2BAZTycOd6+k5+Pr6kpKSgqqq1K9fH4DTp08TEBCATqcjPPz+LDMwf/6PrfuNkxvXYjIa7lteqNVZseDQKS5cCyUiMpLu3btz+vRpVq1axerVq9m0aRPTpk3D29ub2rVr07xubd5p1YhztyJJz86hWaVyZGTnYGdtxfqzl3nvi6m80q8fiYmJDBs2LF/NKMtzjo7GyckJW1tb+vfvzyeffEL16tUf67kKIYQQQgghxPNGUZTTqqrWLeicFNZ+zimKwk+D6lG8iC2FbMxZLzY6DTY6DZ93qfqvCSBFRkZSu3ZtbG1tMeRuVT9s2DCaNm3KypUrmTBhAnaFi6DzKM+CAyeYtXE7F2+G/+MBJACnEiXp+ekXvL3sd95ctJJh3y9+7gJIACVsrKhexK7AX2o7jcLQ0sUeu++kmGj0WVmYUIiyccOoaMm4cojsyBDSL+4l+chvqEY99kVc2H3qOBvPXsLKSsfwkW9Sp04d/P39yczMpEiRIsTExLB161auXLmCqqrUqFHjgdlRiqLQuFc/eo77AqWAGk1Ggx5DTjY3L5hrgd2t91SqVCl8fHwAKFWqFImJiQB4e3tjZW2Ng50tmbkF0+1trM33qenLtbAwgoKC6Nq1K6NHj853r+jkLHZdiuZGuhU6K2sAdDodKSkp9OvXD4ABAwYQEBDA5MmT8fPzo379+rRu3RqACRMm0KRJE1q1akVSUtJjvxdCCCGEEEII8azIcrYXgIezPYc+bsnuyzFcDE/GpbA13WqWongR22c9tCfG2dmZvXv30r17d8ux4OBgDh8+jL+/P1euXAHMBcI3bdqEvb39Ux+jlbUNVtYFL616Xsyt6kmn0yFkGE1k5qau2Ws0NHQqRL+SLgQGBjJ8+HC0Wi0VK1Zk6dKljxSIc3IrgZWNLSdsKhNuVxoUhULV/FCNOWhsi2Dv1ZCY5aOpYKsnR+PAa83qs+bcFTq9PpQ7WhuaN2/OG2+8waRJkwgLC6NkyZL8/PPPVKtWjfnz53Pt2rW/LPoedTUYHpBhZTKZCD0XQKU2nfPNpaDaTy6ly+BQzBFtTDyqCtkGA9ZW1tjY2GAsUpwKFSrg7e2dbylotsHIh2susPNSNFZacyDLSqvwbk1r4uPjadKkCX/88QcjRoygVKlS1K1bl7p16zJx4kQGDhzI0KFDOXv2LKGhoRw5cuS+OlRCCCGEEEII8aKQTKQXhJVWQ6fqJfm4ozfDmpV/4QNIBqOJFcfDaDXLn5qTdzHo57NcvvNn8eoJEyZw4cIFunTpYjkWGhpKVlYWvXr14uWXXyYmJuZZDP255mlnw9EGVfi4XEmaORWmQzEH5lfzZIVveXQahcqVK3P06FEOHToEwKMuCa3UoAmKRsNZxxrolT/rQOkTIkg9+wcxaz4nJymadJNKG78WHErM4o3R76PVmePU9waqSpYsyenTpy1jqFChwl/eX6vToSj5/7kymkws8D9OVFIqn3zzwyN9HrQ6HQOmf0O1Fq2xK1KETJ0NC46d5bfg2ySkptGrV6/7rhm/IZBdl6LJNphIyzaQlm0g/k4Cb739DhNmfgvAyJEjWbJkSb7spdmzZ1OrVi1atGhBSEgIjRs3tjyLp5FBJ4QQQgghhBBPmtREEk+dyaQydPkpjocmkKn/M3BkZ6WFbZO4ePIwOp2Opk2bWjKR9uzZQ+fOnXnttde4cOECBw4cYPv27Xz33XfPcCYvhvSkRC757+FOxG2c3T3w8WtDIaeijBw5Ej8/PwIDA5kyZYqlOHtMTAw+Pj507tyZjRs3cv36dVxcXFi/ejV7QuJxaj4Qa7fy990nZuVHRAefw5SdhoeHB2FhYRQrVoxly5ZhMBgYNmwYkyZNws/Pj5o1a9KvXz9SU1Px9fVl7ty5fzmHpJholo19E2PuErS8dNY29Pl8OiUqVnoizyuvhPQcGk3fS7bhz1pMqslI7LrJODftR78urfmqdw369+9P48aNOXPmDEuWLOHAgQMsWbKEn3/+GYBz587x9ddfW3bwU1VVAklCCCGEEEKI59Jf1USS5WziqTtwNY4TN/IHkAAy9UZi72SQlm3ASXf/R9PR0ZF69ephb29Pq1atmD179tMa8gvrxrnTbJ49DdWkYtTnoLWyZvG3szlwOxYf3xq4uLjcd02/fv0YP348nTt3Zs2aNcycOZM9e/ZQskwZfJuNJTolu8B7VRgym8K2OlKyoX379hQrZq7BNGjQIEubSZMmWV7/8ccfjzwPJ7cS1GjbiQt7d2DI/vP+OhsbKtSu/48EkACCo1Ox1mnyBZEygg6TE3WVO/t/YtHhn3G+1gdPT0/eeustRo8eze7du5kxYwapqamWgNmcOXPw9PSkSZMm2NjYsH79epycnP6RMQshhBBCCCHEP0WWs4mnbm1AOBk5xgLPKQocDI4r8JyXlxe3b9+mdu3aODg44OnpSVhYGAMGDHjoPQcNGsS1a9f+p3G/aLLS09g8exqG7GyM+hwAjPocvIu78FbjmrgVL87Ro0ct7e9mJXp4eJCQkMD//d//sX37dkqXLg1AnTp1GNmigjljLFf8tm/QJ0Zia6XhtUaeXA0JpmvXrpQoUYKmTZv+5fgKek82btxIQkJCge39Bg6j7bC3cC5VGp2VNY7F3WjebzCd3/3w7z+cR1S0kBWGe7ZFLFS1BR7v/kqJfjNo/cE8Pv30U6ZNmwbAt99+S9u2bdm7dy8nT57E39+fOXPmADB16lSOHDnCvn37ntsAUkEF7v/qeF6TJk2iRo0a+Pn5SYBXCCGEEEKIfynJRBJPXUbO/X+EqkYDsWs+JyfmBuNH9sXt+1n3tbGysmL48OH8+OOP2NnZ8fHHHz+N4b6wgo8evO+YwWhEpzUHgfTJidiULcutW7cAuHjxIr6+vgB07NiRr776CmdnZ8u1Go2GgY3KEhiZwtYLkRiMKgpgq9PSpGIx3m9bCSuthr179zJ8+PDHGvPGjRvx8fHJd9+7FEWhavNWVG3e6rH6fhyV3YrgVsSGsDsZ952zt9YysJHnUxvLPynNYCTTZMKpaNH7CtxDwYXvCzJr1izatGnzTw5VCCGEEEII8QxJJpJ46tpUccuXzQKgaHW4vTqVimN/548du2jQoIFlhyw/Pz/eHTaEq6eO0dGvOceOHaNmzZqUK1fOcr1er6dfv34cOHCAa9eu0a5dO1q0aMGUKVMeaUyPkmkBsHv3blq1aoWfn5+lMDTAmTNnUBTlL6992lLiY/Mt/QIIio5j3v5jfLfDn+ioKD766CMiIyPp2KkTgeGRrItJ4POrEYQkJBITE4OLiwtz587l3LlzREdHU6yYC1/18qVNhj89PDKpWsqBhlknOfnju7z0wccsvRFBdV9fXn/9dQAqV67Mxo0bCQkJwdnZGVVVmThxIidPngTg+++/p2nTpnzxxRfcunWLHTt20L9/f7766qun/rwKoigKP/SrTWEbHda6P/+5tLfW0rRiMbr6lnqGo/vf3cjIpve5a1Q5HEjdY5dpeOY62zPNS/cS9QY2XrhEoxZ+DBgwgDZt2pCd+3kaPHgw5cqVw83NjXLlyrF69WpOnjzJhx9+iEaj4cCBAyxdupSFCxfSsWNH/Pz8+PTTT5/lVIUQQgghhBBPgGQiiafu5VrufLfvKjlGE8Y8S4VsrTS0reqGh7O95VhybAwbv5xMUmw0Go0Wk8mIc8nS+Qos6/V6Bg0axPDhw2nRogV9+vRhyZIleHh40LdvX8LDwx86pkfJtMjMzGTBggXs3r0brTZ/EGzu3LnUrl377zyGf5yLexniMrNZdTQAjaLgUrgQfer54uNeAitbW1oPeRONRsO6rdtoOX85F5b8iDHkGkeLFCNr5z5UG1t0VlY0btyY8PBwSpcuTb169bh8+TK3rl5h3YwpDDi6iTNe1ch5fRR7RvTncpc+hKekccnOgYyMDKpVq8aJEydISkqyXHvu3Dk+++wzwBwg/Pbbb2nQoAGff/45HTp0YMKECVSsWJGwsDAaNGhAlSpVsLa2ZteuXc/kOfq4O7JvbAuWHQ3j6PU7ONpZ0a9BGdpWcUOjeXGLY8dk6+l4OoQUgxETgAqxOQbGXw0nJTWDOkcvoYmPJSoyGqsZ8+hz+QQLp0/lxIkTpKam0qhRI2rUqEFGRgZt27Zl7dq1fPPNN3z22WeMGjWKxo0bYzQaGTNmDO3atcNkMj1sSEIIIYQQQojnnGQiiaeukI2OjW81oUE5Z6x1GgrbaLGz0vJqvTLMfqWmpZ3RoGfV5x9xJ/w2huxscjIzMGRnE3frBrFhoZhM5rpKBw8exMrKCj8/PwCCg4N57bXX8PPz48qVK0RERBQ4DpOqcj41gxNJaRh1VhQtWtRyLiwsjFatWtGrVy/q1KlDeHg4x44dQ6PR0LFjR1577TXS09MBuHTpEh4eHhQpUuSJP6sTJ07QuHFjmjVrxpgxYwpsU1BdKJPJxJT5i1h78hzWWi2DmpgL699OTAZAo9VRqZG5ZtFngde5+PuvOHz5I87fLCb79Emyb9/A5FyMmGw9vr6+XLx4kZMnT/L+++9z6NAhTCYTVlZWHE5MI9G9DOlGE9jYkLhzK7YdXmLi4mVEx8UxatSoB14L4OPjA4CdnV2Bc2vbti3+/v7PLIB0V3EHWz7q4M3Gt5qwfEh92lcr8UIHkADm344l3ZgbQMoj06SSajSRraqkm1Q0nuW5mpXDd+kqOQYDYWFhODo60rhxY2rWrImiKDg7O5OamsrRo0eZNGkSKSkp3L59m7CwMD788ENsbW0fGESKjo5m6tSpgDmo6OfnR61atXj55Zf/2QcghBBCCCGE+NskE0k8EyUd7fj1jYbEp2WTmJ6De1E77K3zfxyvnTpOdkY6qpr/j0/VZMJkNHDjbAA2bu60bt2aMmXK8P333/POO+9QuXJl5syZQ8mSJTEajSiKwo8//pivj/13UhgddIt0owkNoFdVRpUpnq9NYmIie/bs4bfffmPdunUUL16cqKgo/P39WbhwIQsWLOD999/nm2++YcaMGfj7+z/x5+Tp6cm+ffuwtbWlf//+XLx4kerVq//lNXfCb7F11a+kREWxafVvfPX5RM5HxmKl0+JatChbAkPILuTIjh49+emXX1i5zx+TopD0ydtoirqgcXRCW7wk+qBAwuJimTdvHhqNhqSkJPz8/Jg4cSKtWrUiOD2LZIMBW0Wx/ENiuH0T/dUgMq4GkZyeyqVLlwq89q57t7nXabXcOH+WjJvXyEDH/v37adasGT169KB79+4MGTKEYsWKcfXqVT777DPmz59PRkYGO3fu5IcffsDHx4fOnTuzceNGrl+/zrBhw+jfvz8pKSnUrFmT77777km/RS+sHfHJ6NWHt0NRUAG9yUSOwUjZsmVJSUnh+PHjZGZmAuai7G5ubuzbt4833niD9PR0XFxcKFq0KK1bt+bbb799YBCpRIkSjB8/HsDyO/TNN9/8I0FZIYQQQgghxP9GMpHEM1WssA1ebkXuCyABRF0NRp+Vle+Y0WRigf9xIhKS6D9sODExMQBMnjyZK1eusGrVKqZOncqQIUNo1aoVnTp1IiMjf1HkC6kZDAm8QWyOgXSjiVSjiSyTyo+34gjPyrG0q1q1KhqNBnd3d5KSknB0dKRp06ZotVpatWrFlStXuHr1Ko6Ojpbt7J8Ek9FI6NlTXNi7A2NSAjY2NgDodDq0Wi2TJ0/Gz8+PVq1aERYWBphrOvXq1QuvMh788O4Iwo7sJ+5mKHuX/Eh4WgZHwiKxKVaCKp1epnz9xhw7eZJXX32V73+cjyHhDqaEeJxm/IBVNV80xd0o+uU8dGUroC1bnnfeeYdatWrh6uqKjY0NOp2Oxo0bE5qRheaeIFCR4aNx/upH7Dp0w7qoC6NHjy7w2oJEBF2GG8G8/fZbTBn/KUeXzmViz05sWbeWPXv2kJKSQmJiIqtWreLDDz9k+fLl7Nq1i06dOrFz50769evH6tWrAVizZg19+vRh4cKF9OnTh4MHD5KRkcGJEyee2Pv0otMp92dSqQY9iR+MwHA9hKSP3sKUeMdyPGHeLFLiYpk4cSKZmZkcPnyYr776ip9//pnk5GRu3rzJmTNnaNyqPUqx8hxMdOJ2mQ7MmP0d586dY+LEiej1elq3bk3z5s3p2bMnRqOxwEy6zZs389JLLz2V5yCEEEIIIYR4dJKJJJ5b9g6OaHU6jHmKVWs1Gkb4NURnZU2z/oOp3aABDRo0AGDevHmWdtu3b8/X17JlyyyvZ92IJst0fwpGpslEcraenNyMibxZMqqqUq9ePRYuXAjAuXPnKFeuHBcvXuTUqVN06NCBCxcuMHLkSBYvXvzYc466FsyGGV9gNOgxmUwoKBQpVozKL71KfHw8RqORiIgI/P39uXLlCtOnT+fTTz8lMTGRWR+PZXb0Tc7euEWTimUxGI1M3bgTjUbD0hlT2X4phBwbe+rUNS9tq1u3Lvv9/bGqVAsrn5ooWi3WteqT8fvPlvHUWLgSgC+++MJy7MiRI4A5GFfsk/8jI/d5OX/z57wVRaHT9wsfeC3kf0/+2LSRxe8Oo4qrE1Vc65ufuUFPRlwsG2d+QefOndm6daslsFeqVCnLUrhSpUqRmJiIh4cHCQkJ3Llzh6SkJEqXLs3169fp1KmTZb7Xrl2zfF4eZPbs2axfv95S2D2v6OholixZYsmceZH1dnNm9s38vwuKzoqiXy/I186xijnzzWXBbzQ2ZhL20VscPnyY9PR0Zs2aRZkyZXBycmL//v28ueIMOw8eJ33nfNIDD7Lt6Dpc6r9EyfKZTJkyBa1Wy9atW7Gzs2PChAns27cPLy+vfPeLjY1FURRcXV3/+YcghBBCCCGE+FskE0k8t7yb+kEB2RIAKirejZs9Vr+nUtK5N4R0NwMj51owrdu1t2Q45eXq6kqLFi1o3rw5P/30E506deLNN83FqU0mE76+vsyfPz/fNe+8884jjyszLZW1Uz4jMzWFnMxMDNnZ6LOziAgLY1C/vixevJgrV67g7++Pn58fb775JikpKYA5a+r01g0UttKRqdcTHBOHrZUV77drRtuqXnw//0cKFy7E1atXLbvKBQQE4FWxIq+3aIZ66wYAhuvBaEu6A+Z/HN65Z4lfXtUL2+Fua3XfPyJpP81DjY1iQsdH3+r9wr5dmIz5lztl6Q2YTEZS4mPZs2M7rVu3zhfYuzfIB9CtWzdGjhxJ165dAShfvny++VaoUOEvx5Gdnc358+cfeD7v0qsX3eDSxShubYXVA37H7mWv1TDYuzx79+6laNGitGzZkkOHDlmK0R+9foeDV+NQXcpSot8MSvSbgbVrWXTl6nLzTgYpWXrS09MZOnQoLVq0YO3atURGRt53n02bNkkWkhBCCCGEEM8pyUQSzy2HYq40HzCEQyuXYdTnoKoqikaDVmdFq0HDsXd0eqx+C2m1JOiN+Y7dzcCw0Sisb1iFkjbWloyVu8V+AcaMGWMpcB0WFkbbtm1ZsWLFA+/1/fffP/K4LvnvxmTMPy6jycTKY2foUssH/Z04KleuTLt27Sz96vV6IiIiSE9PZ8z6dRSxsSbbYKS4Q2HSsrIJio5jz+WrpGZncz5mOZW9vbG3t6dZs2YUKVKEX3/9lUIOjuxt1ISL7w0FG1tcJkxHp1EoZq1jQCmXB45XURR+rl6ebmeukmEykW40YaWAy9C3+KhcCWo7FnrkuUdfC8aoz8l37EZ8AjsCg7HS6mjRsiVubm4P7ad37968//77lhpYw4cPp1+/fixatAhfX18aNmx43zWpCfFkpaXhVLwEi5cs4fXXX2fixImEhYUxZMgQnJ2duXHjBps2bcJgMDBhwgRWrFjB6NGjOXfuHCaTiZUrV1KmTJlHnu/zoIhOy866lZgdFs2a6EQyTSZqFrGntUsRvgmLIdukWopuWysKZWytKVbIHienwnh7e7Nnzx7Cw8Pp1KkTzs7OHDpzGasOH6NzMC/tNOVkYUxPxKpoKRQF6tSuQ1l3Ny5fvsz8+fP58MMP+fzzz/ntt9/yjWvjxo35sgqFEEIIIYQQzw/l7v+D/6KpW7euGhAQ8KyHIZ6C6OtXOfPHJhIiI3DxKEOdTi9RvGz5x+7vu7CY+5bx3OVb2I5d9So/8FpVVTkfnsydtGwK6RPp2bE15cuXp0ePHlSoUIHZs2cD5l3VMjMzadq0KYcPH+ann35i+fLlpKWlMW3aNNq1a3df31vmzCTk2KF8x87eimDj2cuUcCyCk1tJvl+wkH379rF7924URaFv3760a9eO9957j+grgdQq5cr12DvU9izFggMncC5kj6qCjZWOE1dCcHB0fODcLqdlMmHml1zY8Qd7Dh6krJ1NvvPLli3DYDAwbNiwfMczjSa2xCVxKikdV2sdr5R0vu/ah9n30wLO7foD1WS875y1nR0d3/6AinX/ehkamIuhDxs2jHXr1t137t5laonRkWz/YRaxYaGk6w0cDrpOpo09g996x1IHKiEhgfPnz/Pbb78RHx/PSy+9ZAkiZWRkYG9vz549e9i/f79lh7EnLTIyki5dunD58mXS0tLQ6f6M/fv7++Pv78+kSZM4e/YsH330EQaDgQ8++IDOnTs/9j0vp2Xy/c0YDiemcUdvMGcrKaBFoYydNfoPRnBg317Cw8Pp3r07p0+fps1bUzl39TYOdc1ZROlBh8mJvUFOZBA5MddRDNn8sW0rb7/9NjExMXTu3JkiRYrg6upKWFgYK1asICUlhY4dO+Zb9iiEEEIIIYR4uhRFOa2qat2CzkkmknjulajgRad3Pnhi/Q3zcGVTXCKhGdlk5gaSrBSw1Wj4tsqDs0kuhiczYkUASRl6tIpCVnY2bT7/je/616ffKz1p3bo1/v7+zJ8/n7Zt2+a7tk+fPgwePJjk5GR69+5dYBDJwdUVjVabLxupVhl3apVxx8rWjvYjR1O5USMaNWrE+PHjUVWV8MsXiTx7kuHduzHo0EHikpLwKVmcUzfCMeQuD3upTnWORsbzat++WFtbs2DBAtzc3GjYsCG+vr6cOXOGSZMm0bZtW4rcCqWEjdXfCgLZaTW8UsKZV0o4P/I196rRtiMX9+3EkHN/EEnRaChXs/ZD+wgKCmLYsGFMmzbtvnP3LlPLTEvl1/FjyU5PQ1VVbAEHaytK2GqZ8cUkqlevzgcffMCHH35oKa5+7dq1fH1++eWX7N27F71eT5UqVf7+pB+Rs7Mze/futSwbe5ApU6awadMm7O3t/+d7Vi1sxyflS+J3MojsKxeJn/s1aLVYVapKzlsfkJGe+WfbqlW5efMm13avJDUukezIEIp1eZ/0KwcwpsShWNmiK1QUJ52edu3asWvXLsaPH8/KlSvx9/fn999/x87ODgAHBwcJIAkhhBBCCPEckyCS+M+x12rYWrsSq6LusDLqDplGldYuRRjhURx3W+sCr4lLzabvouOkZRvyHNVy/FY6766+QJcuXQgMDCQjI4P9+/ezatWqfNfv3LmTb7/9FlVViY2NLfAevq3ac27H1vuWtIF56ViFOvUtP2emprDm/8aTFBOFIScHVVEY27YJJcuWZ+Yvq+no601SRiavt2hEks6GO1dvs3/tWg4cOMDUqVP57rvviIuLY8jbY3HYtJV+/frj5lacd955h+3btzNz5kx8fHzo3LkzGzduZPHixYSEhJCTk8PatWvRaDRs27bNskNacnIyWq2Wjh078ttvv1GyZEn8/f2pUqUK1tbW/P777+zbt48ePXoQHR3Nq6++CkBMTAzt27dnzpw53LIrytrtG1CArjWqUKGkGxqNhpc/+AytzqrAZ5Y3u8jb2ztfMeyUuFgSoiIo4lyMVZs28/rrrzN+/HhatWrFqRMn0KgmCttYMaRpPUyqyoHgUArbWhObmk50QiLXr1/nzp07lv7yZm3euXMHf39/Dh06xO7du1m5cmWB43scqqpyPDmdNdEJpBqMtHZx4KXiRfO1GTJkCLdu3cLT0xMPDw9CQ0PJysqiV69elkDhtWvX2Lx5MzNnziQhIYEhQ4awcePGRx7H0vB4DKqKxq0kRWcvRLG2IXnqODJDr5JhVLmUlokj5s+mk5MT33w1k9E/rCM9M5uMaycwJsdSctC32Oo0WJ1ajhoRaOn7bj0rg8HA1q1bLQXrhRBCCCGEEM83Kawt/pPstBoGl3ZlTz1vjjSswmSv0g8MIAGsOH4T/T2Fn03ZGWQbTBwPvcPOfQeoUKEC48ePZ9GiRfmKPgNMnz6d7du3s2nTJjSagn/tMlWF+cfO88na7ZhQyMzRcykqDisbW176YDw66z/Ht/XbL7kTfpsjl6+imkxgNKJTVRIjwunRpw+pTsVx8fCkx6eT6Dl2HPXq18fe3p5WrVpx5coVEtNzSDLZ0G/xSZas34XByYO0wqWp08ycQdWvXz9Wr14NwC+//EJGRgbjxo3D3d2doUOH4u7uzoULFwBzwfFt27ZRokQJsrKyOHjwIJGRkTRv3hx/f3927dpFUlIS69evB8zFqe8uw2rXrh1dunQBYN+pM5w6fZqZ4z7iZEwCDbr3Zuh3iyhd1Sffc4qMjKR27drY2Nhw9uxZAIYNG0bTpk25efMmvXv1xKd8WV5u0YQt30xn+cfvMvOLzxn36SdcvnyZ6tWr41KkMI0qlKGiazEuhkcD4F7UgREtGuJUyJ6yHqVxcXEhOzu7wPeqaNGiFC5cmFatWrFt27YHfm7+LpOqMuryTfqfD+W3qAS2xCUz/moEjU9cISc3a+7kyZNotVr27NljKRQeExNDcHAwa9euZcSIEUydOpXGjRtz/PhxADZv3vy3ilVHBF3GtOBL3l7wOWM2/Ei7Y9uxz0gDRSF11v+Rc+UCTTw96NWrF2lpaRQtWhSXoo68Wq8MpV0KY7pzmyLlamCj09CzTmm0McE4FrCUUqfTMXDgQDp06PAEnp4QQgghhBDinyaZSEI8ghOhd8g25A8iZYdfIunQCrRW1lRt3YJdu3Zx+/ZtunXrBpjr1dzVpUsXmjdvTv369XFycirwHs7Ozhw9FUCXTp2o2bYjoVdDOHQ0gO/mLKCw858FrlPi44gIuoTJaOBk2G3ql/cgS2/A1kqHISeHg/7+TP7mO+bPn0/pKj646fXExsZiNBo5d+4cZcuWpe+i46QkJWG66E9OTg5ZUVfByo6Rv5wiOzubMWPGsHv3btavX8/OnTtxdXVl8eLF+Pn5cfz4cdzd3VmxYgWbNm1CVVVef/113Iq7YpedwdY5M1Ey0jiwfz+urq44ODiQk5NDZmYmfn5+rFmzxrJ9+8GDBxk7diy1a9fmwoUL2DkXo0SdRhh/XUujnn0tBc2Tk5Px8CjNzI8/ICkuluVzv6fHwEEMHDiQL774guDgYCpVqkSXLl1Ii4ulkmtRwuLusPH4GXRaDZHxCYTH38HNrQRnz54lIzubLL2BooXsyNTrScrI5EZ8IhqNQgffKpxPzuLAgQNkZWWh0WgYOHAgn332Ge+++y5ubuYMqa1btxIWFmapkZTX7t27mT59OiaTiVmzZlGnTp1H+pytjUlkZ3wKGaY/P2vpRhNZRhPpcfE0a9aMxMRESpUqBUCdOnU4duwYjo6O1KtXj3Xr1jF37lyuXbvGuHHj8PX1pWfPnvj7++Pl5UWdOnXw9fX9yzHcOHeazbOm4ZRjDqDpTEaqB52h8NkTLE9KpsjYz9BvWs3On5fhFHWbOXPmAOYC9JUqVeJY797s3raLlGwT7k52XLl4jvAavixfvhyAsmXLWp5X3qL1QgghhBBCiOefBJGEeAQuRe6vEWRXoR52FepR2EbHe/1r06KSK5999lm+NneXV02cOJGJEyfe18fs2bNZ+/vvrFn+E0WcXSjqWhwrGxtaDhrOvs8+48CpAEqXr4Cvry/du3dn/fr1ZGek09LdhdDIGKKTU5m3/xg1SpfkZNhtdBoN3p5laNq0KdOmTaNXr14sXLiQN954Az8/P4wqOLQbTVB0Kho7BzKCDmJIisa2fB1yoq8T8vN4DGlpNGvWDEdHR7744gteeeUV6tevz4oVK0hISCA7OxutVsvRo0f59NNPSUlJ4bNx4yA2ggQXJ9KdHUm/E8eghjVo1a0H32/6g549ezJjxox8gbWAgAB8fX0pXrw4e/fupUGDBvj4+GAwGNi+fTtgDsSpqso7A/oSG3KFP777ynyxVktMRDj1atbg5s2bJCYmcvPmTQa80ps969eimkz4uLtx5NpNihUuhJVOi6qqJCclcf78eTIyMoiwsca7hCuhcQn53pPqZUoxb9Gv/Dh/Pr6+vhQuXJhq1aqxa9cujh8/zs8///yXn5XMzEwWLFjA7t270Wq1D/1s5bXgdly+ANJdRiBTo2Pl1j+IuxbCgAEDuHjxoiUTy8vLi+joaObOncvs2bP56quvmDlzJr169WLp0qU0bdqUr7/+mk8++aTAouN3qarK7oXfY8jJn4GVnZXFjmOnaf3GKA7dukHOudN8+rI5g6xkyZIA3Lhxgxo1apCVlUWxwjaQFc+cr78jIyMDKysrGjRogEajYfbs2TRq1OhvPRchhBBCCCHE80GCSEI8gv71y7A/KJaMAgo/azUKjSu4FHDVX0tJTGTrr78QfesW62d8jklvoHi58hj1egCaNGnC77//zvXr15k/fz4//PADFy9eJCw4iG5tWzOocW0CboYzqqX5D/ImXmUBKFujNlqtlp07d1ru9eqrr/Jyz960mX2AkCRzUWRFo6VQ1Vag0VCkZkcyQ0+TE32NrHNbqFbYmlvJcVy+dIlhA/qRkpKClZUVQUFBODk5odVquXTpEh9//DGZmZmUdCyMzmTi8q1w3m7dhGux8bQxViTk8D4a1vDlwIEDFC2av67Pr2vX0bxLV6xsbMjJySE6Opro6GjOnz9Px44diYiIAGDHj3PYsXs3rzWqjcFoYuHBE6RkZpOelc2Hr/fH09MTe3t7Ro8eTWbkbbINesCGsPhEdBoNFYu7EJuSRmFba1KNJlyKlyApKZEcVWXlibPU8jBn9eiNRn4+eprrcQl8s70kDkWd6Tt4CNu376BGjRps2LABHx8fFi9ezPjx49m0aRNgXl7Xq1cvbty4waZNmwgJCUGj0dCxY0fc3NyYP38+hQoVeqTPRGy2/v/Zu++wrKv+gePve3Kz91aGqAhOFDcgiju3Zq7MXFmO0rLxaI4nsyxHluU2NWepufdA3Aqo4ERURPbecO/fH+RdhJY9lY3feV3Xcz14vuOMm7zkw+d8TrU2m7wssma8if7BfYb078viefMwGo3079+f4uJizMzMmDdvHosWLWL69Om89957rFq1iuHDh7NgwQKGDh3KzJkzUSgUvxrUyk9PpbykuEqb3mBg04Ur9GxUD/uMe8SF9KV7t65sWr60ct20WtLS0mjWrBnl5eW0adMGqNy2OG3aNJo3b45Go+Hy5cukp6czYcIEvv/+e9P7Z86cyeHDh1myZMlTZ2wJgiAIgiAIgvDXEEEkQXgKrf0c6dnYgz1X00yBJLlUgkImZcmQIBSyXy8vlpeWQuyB3WTdv4utixtbdu8lwM6S+w+MZGTnsPVSHJbK89zOyCbp/n1cXV1NtZXu3r1LRkYG7du3Jy0tjYdZuSyNPI9WVzWoJTczo1mPx5/itS8unbxSDYYf60Nj5hlA8dXKYJMm6z4SiQRnNx/ijh0kPyMdBwsVF3Z+x47Ya3Tt1h0/Pz9iYmJYsWIFR44c4cSJE2xcu5YHUUeIT05BIZOhNxhwt7XGxcaK8rJy5n/+ORbWNjRp0gSAhNIKptxK5vDO3bh36MOCM9eY6GyNVCpFqVRibW2NTqczrdnFIwdBIsFKVZkN9lr71myPiefCvTJOXr5KVpkaG1tbrl69yqsD+vDFsmU8zC2gjqsjfs6OXH2Yjo25GSAholULUotLMTc3Z8L48Xy/ZRM2OjUShRyD0ciw1k25kpxGqVpDbXcXvlu5HAuPGpw4cYLCwkLy8/M5evQomzdvZvv27fTu3btam4uLC+np6URGRrJixQqWL1/OlClTnur7zN9SRXZBCQBKdQW9jm6hRloS+qZ1kTapg6O9PeX5ufj7+5tqMS1btozc3FzGjBnDqlWr2L9/P2fPniUvLw+pVEpKSgoAgwcPZtKkSb/Yv0Gvr1bPKy4lnYf5heyLu4XkeiKrRozjYloNwkJDKSvMp3ltX2r5eKNWq7G0tOTq1avs3LmT4OBgJk2ahLe3NxKJBLVaTUFBAY6OlQHX8PBw2rZty+eff87ChQtZtGgR8fHxfPLJJ3Tp0uWp1ksQBEEQBEEQhGdLBJEE4SlIJBI+7teQrg3cWH82iaxiNU297BkV4ouP069nmdy5eJb9XyxAr9dh1OtJSbhF3O07DG/z49H15Rotr7RryYJDUaz8bBHj33kXnU5nOj4+JCSEFStWMGjQIM5EHuf7D9/n4+92AyCVyZDKZAQ/1wefRkGPHcORm5lVMqnchn0CgFFbTvKi55HI5JjXqI+NtoDMfFv2x9/Cy9GOoBpuFJZXcOTwYY7JZJiZmWFmZoalpSVdunTBTC6nIj8HGzMlHnbWXHmYhrlCyaIjp5BLpbSpV4fZX62gR48ePNe3H7dGTaYoNxepqztqhRlqrZ5PMgqR29gSEhJCeXm5ac4J589w7WE6DTxcTePW6fXklpThaW/D2PBWbL5+H3MbW9RqNa+88x9crK2o6+pMUUUFIXV9+PzoGZysLZFKoEadulw9fIS8vDy2bN3KxElvcOnSRb5ZvhR3W2ukEgk25ipySkpxt7bE2dKc0zGxNGzYCCcnJwIDA5FKpXh6epKYmAhQra1OnTqEhIQgk8no0KED8+fPf+rvszd8XImJK6XcYKTvwQ14ZD5EbtCj0FcG1TJTHvLJiJc4cuYcAOfPnzedBiiRSJgxYwbdu3cnKCiIunXrmt772WefERgYSEhIyC/27+BZA5lCibaiwtQW5OVJkJcnEpmMRh060zE0lCDvmtgkxqHROIFOC2kPmNu/K19fjMfW1Z0+ffowaNAgLl26RLdu3cjKyqJevXpkZWURGBhI586d0ev16HQ6JBIJr732Grdv30alUjFu3DgRRBIEQRAEQRCEvylxOpsgPCWJREJ7fxe+frkF+yaF8kGfBk8VQNJUlLN/yQJ0GjVGfWUQJ+Z+Ck29Parc52JtycqTF8gvLWPd1q1s374dg8FA/fr1eeedd5BIJDRo0IATJ07Qom0o3yWkENikKTsTU3EJbsOL8z6n7QsvAnDlyhVT0WJfX18+++wzLBQy8o4sqzY+x66TcOg0DjMXX3Qp12hZwwkXGyumdm3HgGYNAWju7Ym1hTlbt25Fq9UybNgwhg0bhouLC5HHjqLV6bA2U+Lj5MDJ2/dp7luDNzqGML5DWyYMH4K9vT0dOnQgaN7naKyskXn5YDfrx+BKucFIqaMLx6Ki2LVrFzVq1ABAp9VwLS2D+p4/BpF2xF6npEJNTnEpK06cY+Z77wCwdu1aRrRvQ0p+IdFJKfg42mNnbo67nQ2B7q6k5heRePceu3btolOnThw5cgQbGxvKi4p4KbQFtuYqUx/GH7K1Otarhae9LY6OjrRv375Klo7xh5t+3ta8eXNu3rxp+hx8fX1/9XvkkRB7a97388AzPxP37FTkhh+DfqZtZUH1ybkeR2ZmZrXTAHv16sXJkyfp06cPoaGhABw+fJizZ88yffr0X+1fKpXRbtjLyJU/qwEmkaAwM6NF7+cxGo18M2cW6rLSygDSDwumU6spKcinoqSYCxcuYGZmRkREBN7e3ly+fJk7d+4QFxeHq6srAwcOJCsrizlz5tCoUSNatGhBrVq18PDwID8//6nXSxAEQRAEQRCEZ0tkIgnCb5CWlkaPHj24ceMGJSUlyOXV/xMKCwtDIpGQnZ1deUx8STEpSfdxt7FiSKvKLKGs4hLSHhax8fwV9AY9y09ewMXaklfCW3E3O5dSG0f8/f156aWX+OCDD4iMjMTb2xutVsvhw4e5e/cuUqkUg8GAVFo9FtykSRNTEevevXvTo0cPMox2HHxufLW6TvqyAtQPr7Fo7kesnzUBtU7PgfjbdGvoz96rN7mdmYNMIsHKxobOnTvj4eHB3r17ad68OfHx8fQfPASZUoWvqxNeDnZkFZXg5WCHzmBg1aloXJNzMNt5kC+//JKXcovQGquO1ajTUvDuBHSJt2nfqTNffDLPdM3BtzZqnR4HSwsACsrKufowHU97G9yVCjo1qU/PF4bQa/AwAMwx0juoPnezcqnv4cryk+dpUasm0fdTkEorP5OfBymMRkO1LVxQWSPpv7uPotbp2bhxI88999yvfHdUcnZ2pl27doSFhWFhYcGmTZue6rlHRtZwpsEtI6elUn66VI+2le2OiefIG1N44eVR1U4DnDhxItevX8fb25uvvvoKgIkTJ2JjY0P79u3x9/dn+fLlv9h/g/BOyJVmnNr4NaUF+RiNRjzr1Sdi1KvYOLtw7FQM6qICFI951mgwUJKfR1JSEvXq1eP27ds0btzYVI/pk08+4cyZM6SlpaFWq03r/rjgnCAIgiAIgiAIfz+Sf+o/2IODg43R0dF/9TCE/2cqKiooLy+nb9++HD16tFoQSaMzkJpXjLakgNEjXqRnz55E1K9L7xdfwsXK0hREemTJ8bMADGnZhIPxtxnSKoj7eUWoApvw9ptvMqBfX7KzsjAYjTRv3IjWHSJ4/e13UalU6PV6WrRoQWxsLA0bNuTatWt4enri4eGBWq3m0KFDLFy4kA0bNnD79m2+//57ho8dj3nT3uiNYNmwI1nfzcLKvw2axPPoMu9gIZPSNyiQozcqt2qVaTS0re1Dud7A5bRsOnTqxNWrV2nZsiVeXl4sXbqUhg0b4unhThcvV7KT72M0GJDKZBgNBjqNnUhgaHvTfEMv3OROWdWTvx6xlEnZ3bQO9a3MTW1Go5HN779FRuIdjMaqp5ZJpFKGzl2Eq6+fqe3wiiVcO3EEo+ExBdAVCsYsWYOlXdUC3zqtlqVjhqApL6/2jFQup2m3nrQbNuqxY/6z3Ll0joNfLnzsmCQSCYHtIuj66ht/6hiMRiMVJcXIFAqUqh8/k0mfbMItdhtmRk2V+/UGA7N2HUEilRLYsBE1a9bEwsKCxo0bc/DgQbKzs0lLS2Pt2rWkp6fz4YcfkpiYSHh4OPDjSYYhISGmrwVBEARBEARBePYkEkmM0WgMftw1sZ1NEH7F6fxiBlxOpOGZazwX/4Aj6h8Dr4mJibRp04bw9u3p9vJkgv57mO5fnCN00mfcTstn3fpv+GLTt4CEwvIKPj14kjl7j5FbUgZAmUaLBAnHb97l+eaNUJipsPKuxZGjR2nZrCnNHa0Y3boJo1o1Jv7qVcounqS2pzuxMTEolUoWL16Mo6MjTk5OLFtWuVVt/PjxdO/enUOHDuHs7IxKVblNa9u2bdSu6U5bX080d85ScGAx3kEdqJ0Xh68hj7B3vsHa0pJTd5Io12qZENGGdv61UMik3EjL4MXhw1mxYgWpqanY2dkBoFKpOHr0KBaWVtTqMYAXZn5Mu2Ej6Th6POOWb6gSQAIY6OaASlo96wfASiYlwFJVpU0ikTBg+hwCQtohlcuJupPEkuNnca1VmzFL1lQJIAEE9+iLTFE9O0ymVFKnZdtqASQAuUJB2xderLaFSyKRoDBT0ax7n8eO94+WlpZG06ZNUalU1KzfmCfF92VKJY0iuj722vr164mIiCA8PJwzZ84wbNiwavc8qS5SWloaKpXKVOtJIpFgbm1TJYAEkKCxQMbPstkMBlZFXQQk+NSsyZIlS7C1tSU9PZ24uDg6dOjA2bNnqVevHkuWLOHixYuMGDHCFIT9adBIBJAEQRAEQRAE4e9LbGcThF/wdUoO/72bSvkPR5pla3S8ezuFitIKjEYjkZGRjB07luuWQey+mopao0dXlEVu1AYMmjK8Jq/GQRtDhU5PQWkZoXV9qe3iyIlbdxkQ3IjJ3TtQp2FjNuzez60SLe++9QbDxr/OS03qklvoxvex1xkV2pyYpFSaensgNRrRlJdxM+oE/v7+7N+/n9q1a9OwYUM8PDyoXbs2+fn5ptoyp06dwtbWltzcXAoKCiguLKJlQTQWrlKO3IhlbEMbThmKkDnb4XdvP+rGzcm5cw2VTofS3ILs0nJ83N1wqiHlxq1bWFlZYWtrS6tWrbhx4wZWVlZA5fa5xMREWrVqhZtfnSeu58ueTmxOzyOlQoPmJ1ESc6mEhfW8kD5mW5lSZU63CW8SMmwkF8eOxUNlw7CPPnvs+x08POkz9X32Lf4EvVYLEgl6nZbazVrS5ZUnn0zWtFsvFCoVZ7Z8Q0VpCUaDkRoB9ek4+jWsHByf5lvld3NwcODYsWP07dsXuVJJj9ffZs+ij9HrdKbMKoWZGQ06dMajbj3TczqNBk1FOXmFRZw8eZJjx44BkJSU9Jv6/+yzz2jVqtWv3ufi7k5Kogc1ylORU5kdJpNKeSW8FVqJnB7vf0KD+nVp1qwZcrmcefPm4eXlhZWV1WMDRCJoJAiCIAiCIAj/HCKIJAhPUKjVMftuKhWGqikhZQYDhVo95wtLGThwIG+9N50tJ9dhHhCOuV8wchsXbFs9jzrrPnePb6HzsAFIzVQY1BoiGgQgkUk5dP0Oti4u9Jn6Pk5ePgT2HcyiRYuw86mNvYUKqUSCg6UFFdrKwsWPaiiduZNERkERm9auITs7m4iICE6cOPHYmjI6nY6bN28ybtw4xo0bR8+ePbkePQODtoIL95JpXMOdS0kpGIxGTly/w+XkdPR2rowdNYYlX3zOtjspONUJILR3H7J37KBRo0a0bt2ajIwM+vTpw40bN5DL5fTv3x+lUvmrx8cDWMllHAyuy3/PRPNZv+4ovGthqzJj+8FDNLWtWqQ8OzmJU5vWsm//AfzcnEnWSanfOIg79+4DMHLkSJKTk/H29qZmzZoEBASQk5PD+PHjafXam3yxYAHvTHiN6Z8uZMeOfWy8cIVvvvnmsXWsABq270yDdh0pKypEYWaG0tzi6b9Z/gfX0wpZGnmXKw8LsLdQMqKND32CPE3XazZswvb7meRnZqCSwjsjhmFey59Vu/bQYcQrDBo4kBaezlyLucSx63dQ6/V4+fgSERFBYGAgb7zxBqmpqfTu3ZvMzEw2b96Mr68vxcXFDB48mISEBJYtW0bz5s3Jzs6muLgYHx+fXx33mLBajL/blYiUvbhqsgEwIEEC3G/Qmwb1K0+FGzVqFPfv38fGxoZt27b9GUsoCIIgCIIgCMIzJrazCcITHM4tQvaYzBgAPUa2ZeShUCjoMvJtPHtPoeD0Rox6HUajETPPAAwleeglCg5HnUdlbo6TqytnywzUCO9M83bteXH+V1i7ugNw5swZ/Pz8cHZ2JiUtHY1aTV5pGSpFZfniHo0DGNuuJWH+tdAbjJy5mYC5uTmurq6PHR/AzZs36dChA88//zwHDhxgwIABSIxGDsbfpkNAbTrVr0Psg1SaensS5FV5UpyriytTp05l5KjR6JCQX1xCv379eP/99zl48CDe3t7Ur18fpVIJQOPGjSkoKMDMzIzWrVs/1brayGVM8HZlUPdulF++RMa509UCSJn3Etk8/S3uX44h7mEaBcXFnI+O5sz32ygtLubixYvIZDKOHj2Kn1/llrZevXqxb98+AL77bhtjxk8gPiWdxkFBREVFUb9+fbZv3/6LY5NIpVja2f/pAaSjNzIZsPQc++PTSckvJz61kOk7rzHumx/rvMnlcg4dOUL8nUS6PD8I2+C2PPfCYHx9fRk9ehT5d24iyUzh6oNUhrUOoqmXB/rCPGaOHIaFhQW7du0iIyOD7du3s3jxYubNqyxY/vDhQ1auXMnu3buZPXs2UJmFNGHChKcae2gdZ0a2D2C/Vz92ePYjyjGE0+4dOdhkHHMmDTLdt27dOqKioti7d69pS6UgCIIgCIIgCP9sIhNJEJ6gTG9A/7PCNKaTxO4m8N3oYXj07c36rTtIysjDMjAcfWkeOXsXgkSCriATfXkReYZ8nJycsLa25n7yQyZNm8mZM2coKCigW7duWFlZYW9vz4YNG5DJZIwYOoSvli4Fo4F+TRvwIDef3VduIJVIqGFvx9z+XbF2dGLsV2sBOHLkiGl8j4oU/1R+fj5dunTB2toaK2tregUF8ig09kq7lgD0bBKIVqJg3MqNKJVKPvzwwyrvaNmyJbGxsdXePXz4cDp27PhU62k0GklLuEXKjXiyCws5fuwYoaGh9OvXD6VSibe3N3Xr1qVVq1YseW0ke2KuUsfVidsZ2dzLzsXXyYELd+5TptUxe/Zs02lpzZo149y5c5ibm+Pi4kJycjIXLlxg7ty5zJs3j6ZNmwIQHBxMTEzMU431f7V+/XrWrVuHXl95otvMmTO5desWr776KitXrgTg9u3bKNuNxegWSMWDOCz82wBQrtVz5m4uirLKgtWlpaWMHTuW1NRUMjMzqVOncpvguHHj8PXx4f2+XTDo9XQMrMPRG4lkFBYT4O5C7IE9tB3wIvHXb9CwYUPkcrlpuyFA7dq1sbKywsrKisLCQgoKCnj48CH169d/6nm+0akufYI82XUljcJyDS18HekY4IJcJn4vIQiCIAiCIAj/ZiKIJAhP0NrOqlqbRK7Afv5yLGVS5tTxZLC7I+MmTaHFh0dR6yrrw7gN+dh0v4VSxheDg4gIeHzG0OMCM2/NmIVtVjKl+XkAFJVXMC68FQqZjI3nL5NVWkGHl/s/1Rxu3brF6NGjmTt3LkOHDmXEyJFwIwZ02ir3aSVyPEO6YGf952TgaMrL2PbhDHKSk9BpNRiQ8Hq7YNr2H8xHazfy9ttvc/DgQXJycghu1owrsTGkFRTRKbAO/m7OSCUSCsrKkUokGA0GWrRowdWrVwG4fPmyqZ8hQ4bw5ptv0qJFCyQSCbVq1SImJobnnnuO6Ohoateu/afMDyA1NbVKTSKoDBg9qvkzdOhQAAIbN8PoG0RxQR5lCWdNQSSAMo0edVHl6XWHDh2ibt26bNq0iWnTppm2Kb777rv0bNuS+XuP4WxtiYOFBc81rsf3sde48jANZ3s7Phk3DisbWwD0ej1Xr141ZWwlJiZSWlpKYWEhNjY23L59mzt37tC1a1fi4+NJSUnh6NGjvzpfHydLXu/45PpXgiAIgiAIgiD8+4hfGwvCE9S1VBFib13tNDG5pHJLVh+XypO+bM0VTO3ij7lCVuU+lUJKk5p2hPu7/KZ+ZXI5/d+bhbmNLUgk2JirUMgq3y2TyajVNJg3P1nEwIEDCQoKYseOHXTu3JmQkBBKS0tJSkqiffv29O7dmxEjRvDNN98QFhaGVCpl9+Ej7EhMRSdTYJCboZebYZTKCQzvxLDXxlYZR1JSEq6uroSHh9O5c2cKCgrYsWOH6frRo0erZCFduXKF1atXP3ZOh5Z/Ttb9u2jVFRgNBiQGPXKjkZg922nVuCEpKSnEx8dz8eJFJk2ayL3sXIzGyoLNAB3q+TG2XUuaenviYGnBzJkzUavVREREkJCQYOonIiKC06dPM3jwYAD69u3L9evXCQsLIz4+nv79ny749rRK8vOI2beLM99uYMOKZeh0OiIiIpg4cSLvvfcecXFx9OjRw3T/vXv3sLF3RKY0p/jKQcqTrpCx6V30ZYUY9Toyt0wjN/kOXbp0wcnJid27dxMYGGjKYtq5cyfe3t4MjAijiZcHbWt7czszm1WnLpFXVo6rjRXfXYilUWAgH3/8MWVlZfTp04dJkybx9ttvA1CzZk1GjhxJz549mTFjBi1btuTcuXMcPHiQTp06mU75EwRBEARBEARB+DmRiSQIv2BVfR/eS0hhR1Y+SokEjcFIsK0FSwK9Mf/J1p3RobXwcbRk8bEE7maXYmeuYHgbH0a29UX2hCPtnyT+xGGOr1mORCJBJleg1+uwcXBE5VcPu5xyuowcx7I9hzh69Chbtmxh3bp1HD58mLlz53Lo0CGaNm1KRkYGR44cISYmhnnz5rFs2TLWrl2LhYUFq1atQq/T0S2kDTqtGvfa/phb21QZQ+WJYAY6derEhg0bgMqg0o4dO+jXr99jx61Wq1m9ejVr164lODiYRYsWAVBeXMTd6Avof8h+On7zLrfTszBKYFx4Kw7t3cOC3n2RSqUUFBTQqXMXXh87Bh87awBkEgmGH7JwZFIJo/pWBmXWrl0LQGRkJJGRkaZxNGjQgMaNGwOgUCjYunXrb1r/pxV7cA9RG74GjOi1Wk7fSSKrtILjFy7x348+pnnz5jRs2JC9e/eantmxYweDnh/A0nQD1k26oi/KxqnnW6brXsM+YkKH2kzsUJnhc+7cOcaOHcvdu3cZMWIEmopymterS/L1OJ5vlYhWXUFiVh7NfWtw5k4SPZsEsvPKTXbv349UruDTTz9lz5497N69m4EDB9KsWTOsra2fuCZr165l4cKF7Nix47GnpmVkZLB69WqmTZtGSEiIOFlNEARBEARBEP6fEUEkQfgFKpmURQFezK7jycMKDc4KOS5misfe2zHQlY6BTy50/TRSbl7j+Jrl6DTqKu3Z2dlsPnyKI6dOU1FRQWBgIFKpFA8PDxo0aACAh4cH+fn5ANVq4ej1eqZOnUp8fDxFRUX07dsXrwaNqvV/7/IlojZ+TW7KQwrKKjhw8iJtWrXi+RdeIDs7myNHjhAeHs53331nembSpEm0adMGpVJJWFgYw4YNo3379pw8eZLGjRvz0fvTKoNhWi3JeQVodDrC6tViy4WrvP/9YSzMzPDz8yMoKMhUpNvezYNaduYA1HVzZkfsNRrVcKeupzvHbiai/O9/mTFjRpWx5+Xl0b9/f1555ZXf9Rk8jbSEW5zauBa9VmNqU0jAy8aS3Qvm0qFDR6Kjo6s9t2fPHnbs2MH9I8nsPZNZ5ZoEcNfnUffBSY59fQyfRkEcOHeRl156iRkzZvD5+++xd+f39GzWiHMJ90jJzeNmehZanZ52/rW4nZGN+c173MrIZv/BQ1haWpKXV7klct68eURFRVFQUPDYulmPqNVq0zbBx3Fzc2PatGm/bbEEQRAEQRAEQfjXEEEkQXgKNnIZ9a3M//R+Lnz/bbUAkt5g4JvT0XRtHIi9jTXpFRVIfnJq3E+/flQ359q1a1Vq4Vy5coXS0lKioqJYuXIlqamp1fq+deYkh5Z9burfSinnrc5tsbKxZd+BA3wyfz7Jycl07tyZQYMGER8fz3OdO3P39g0CynN5UFhCjkxFndq18fLyIjs7m4MHDzJ8yGCu3H/AnfRsrqdloNMbuJycir2lOVM6h3ImLYdmzZrh5+fHsGHDAIi+fJnka3GcWLucIJmMIJ8auPj60eHlV3Cv7V9l3OHh4abAyIkTJ37/h/AUovd+j+4nASQAH0d7Ltx7SFbSXW4bldQNrFqoOiMjA6VSiaOjI58OsEdXlMM3x41Yq+RodXq6Fp7GO/8W1+9rMRqNxB0/wuaLVzkZc5minGwSLpzBoNejKS/DoNPiYWtNWN1arIy6wK2MbPTAgi++4EZaJqNHj2bYsGHUrVsXqNwGaWlpiaWlJU5OTkDl98qNqOOc276ZwqxMVJaW3DUqGTZkKLM/+IDIyEiOHj3KnDlzTFlf4eHhTJ8+3ZSdJgiCIAiCIAjC/y+iJpIg/I1kP7hfrS0uJZ2H+YXsvXKD9h06kJ6e/qvvcXFxqVILx9/fn8TERLp27crFixer3W8w6Dn+ddUMKLlMhlIqRVdRTqCnG3v37qWsrMxUPFomkXDzcgwWGCkrKqQwO4ukq7G81asLSffvcebMGbRaLYlJDzh6O4mYBylodXrqe7gyIaItFVotGSXlZGuNDBs2jDVr1nD8+HGgcovamm07eGn+l7y2ahPjV29m6IcLqwWQ/ip5qQ/hZyf3edrbopBJWXLkNBfOn2fAgAFVru/atYvevXsDoJRL+XxUB5q7K3G5+CWfNiylVuFtDFqNKRB4/lYiDVwdOfjVIkrycjFofyyGrjcYTF+rLC3pOnYCVja2tOzSnZdffpmGDRvSp08fQkNDATAYDJSVlZGWlkZOTg4AZ7Zu4OjqryjMzACjkdKiIo4fO07O6aNA1bkJgiAIgiAIgiCAyEQShL8VC1t7Sgvyq7QFeXkS5OWJTKFg1OcrsXZwonXr1kDVLJwRI0YAlbWLatSoUS1b5Jfq1+Q+TK6WWVOh1SFRWhBr3YSjUUdwohFFVxNoG9yY9uHh6NUV1Kvpzbm7yaw7G0N6QTF+zg58dyGWmnY2RIS3w2g0cvToUTQSKX4ebiRnZROfmkGnBv5YqVR8fTYGJ1c3srKymDx5MhUVFdXGZmZh+VuX8U9n7+5BbspDfh5s6dkkELlSyYvzPkepVFZZ859vs5PJZBw7ehiAdVMnoFVXzUDLKi4h7WEaZz/7kozCIu5l51H8w/rcSM8iu7iUs3cfUKHT07lzZ9P2vokTJ3LlyhXWrVvHV199BcDbb79NWFgYTZo0wdXVldKCfKL37kD/k8BUTFIqQTXdyE6+T0VJSbUMt5/+WRAEQRAEQRCE/59EJpIg/I00e643CjNVtXaJVIqbXx2sHZx+dx/r168nIiKC8PDwx25reyQhp4j3d+xn755NGK1d0DrXJT8/j70HD/Pi6NeRSCTIZTL0RiM17Gxp6OlKfGoGjWu64+fkwJudw6hduzYnTpxArVZzJyMbJxdXrKytOZaSjbmjE7v37WfGjBnUrFmT9957z1SPx2j84zNhnjTvyMhIZs2aBcDMmTNp3bo1MTExhIaGEhYWxpAhQ9Dr9VXe1axHX+RmSgCik1JYFnmer06co6hCjVNNbxw8ajz2vRcuXKB169ZYWVmRmJhoel9JXm618fZoHMDYdi15rWMobrbWRATWprBczaqoi6gUCjrU8+PF1k3x83CnVq1apq1rX3zxBY0bN+brr7/G3LxyC2b37t2Jjo5m9uzZ2NraknQ1Fqms6mmCWcUlnE18wFeHo7iVcIeoqChT1lt8fPzvWHlBEARBEARBEP4tRCaSIPyNBIa2517sRe5fjkGrrsw6UZipUJqb033iW7/ydCUfH58n1qxJTU01bUf7KceaXsgVSrQ/yQQqr9cJZVIRrkPmmdpsgvuAVMqKu0oGtWnGg8xsars4EhFYmw3nYqnQ6rj6MB2tXk9NZwd8atYkOjqaPn36oFQq+eabbxgxYgQ7d+6kbt26tGnThk2bNrFz5062bduGo6Mj8McHLZ407587fvw4586dIz8/nz179mBnZ8e0adPYv38/PXv2NN1Xo159Wg8Ywv61K7mXk8+48FYoVOaYW1vT683qhacfvddoNLJz507eeeedKtftXN3JKCl+7JgMBj3TBvenICONMWEtqlyTK81YsuB1oGqm2U9PqwPYtm0bS5cupbS0lM8//xyDuuTnu/Ho0TjA9PXqS9eYNm0azz33HN27dzd9LoIgCIIgCIIg/P8mgkiC8DcikUrp8ca7JF+7yvXIo6jLyqjVNJiA0PYoVf97YW91WRmFWRns3rsPvV5PREQEgYGBfPbZZ8ycOZMTJ06gryind21PMvLy2R4dT4lrPgZNZVCp4PRG9MW5aLKTMGorSCwv5PqlWDRaDVqdnm4N/UkvLKaFb028He3YffUmey9fx9LNg2bNmtG4cWMWLVpEx44dad26NYMGDTKdFGYwGDh58iR+fn6MHDmSjh07Urt2bdzc3H7XWuqNRq6XlKM1GIk+cKDavMeMGUNycjLe3t5YW1tjbW1NeXk5Dg4OJCcnY2VlBYBcLkf2s6yd7GI1Ob5tyK93A4e8cjZeu4vKwpLho0bz+tS3Te+tWbMmS5YsIS4ujvDwcPbu3Yura/UT/Fr0fZ79X8xH97MtbTKFAv9WITTt3puts99Fr9Vi+CErSq40w6mmF407dvvVtRg0aBCDBg0y/bk4NwejQf/YexUqFd9v/AapVMqBAweqXX8UoHwUtEpLS6NHjx7cuHGDkpIScnJyWL16NdOmTWPx4sVs2rQJqVTKwoULad26NW+88QYLFiyotqaCIAiCIAiCIPz9Sf6MbSPPQnBwsPFxR2gLgvAjnUbDsTXLuHk6EplczqEr1ykwwIHIk8yZ9ykuLi7ExMSwadMmjEYj9y5fov/zA+kRWJvtvsNJWDmBmq9vpuD0RqRmltg070PK0pHIzFQEOFuT/jCJMo2W93tGcD8nn7tZuXRpUJfjN+9yLSOHMiNs2bKFiIgItmzZwpdffolUKmXt2rX4+vr+afM+nFPIlFsPKTcYkAK5G1bjl/mQS7t28M477+Do6MidO3dYtnQpH875gNz8AnJzc0lKSqqS0ZOWlsbzzz/PyZMnkcvlGAxGZu2+ztbohyhkUrJPb6EiM4mlq9eyYfarWFhYYG9vz8qVK5k7dy4ajYZZs2YREhJS5b0jRoxg+vTp1K5d29R2Zus3XNqzAwCDXo9cocDFtzb935uNQqWiMCuDS3t28ODqZRQqFY0iutKgfSfkSuX/tEZHV33J9ajjVQJXMrkCe3cPhn28GJm86u8YLly4wOTJk5HJZAQHB7No0SJGjx7NjRs3WLlyJePHj+fo0aPIf3guLS2NGjVqcOvWLSwtLZkwYQLff//9/zRWQRAEQRAEQRCeHYlEEmM0GoMfd01kIgnCv9iezz7mQfwV9FoNeq0GpUyCu0LKpmlvEfZcf6JjYmnTpg0AEokEv6YtsPaoyezvD1K+4xr3t3uY3qVw8gZA5dUQ97AXOPHfvoS1amkqBO5gac6RnDzWn40lt7SMGTNmsG3/QWbOnEmrVq1o1aoVy5cvx8bGhsGDB7N582Z8fX0ZOHAgmZmZmJmZsW3bNmxsbH7XnC8WlPDK9STKDT8GyHUWltyvXZ/1qTl06NCB8+fOYlZSwBcjBpKamkFCVg7XM3JQ6/QsWrSIvn37MmLECG7evImDgwO7d+9m2bJlJKblonjufbIu7ELh7I1eZo5BYc4b0+fQvqYPmvx0fH196d69O8OGDSMhIeGpx932hRdpGNGVxItn0arV1KzfCPc6/qaC1rYubnQc9drvWpufihj5KrYurlzctR1NRTlSiZSA0HDavTiqWgAJwNvbm+PHj6NSqXi+Xz82LPqUi6ei2LllI74BP26Fu3fvHjNmzMDDwwNHR0c0Gg1arda0JS48PLxKsEkQBEEQBEEQhH8O8a94QfiXyk19SHL8FfSaH09d83G058K9h6jLSji6eyfOPn6cP3+eCRMmAJUFrW1tbUnPyGBkSw8W56f/+MIfghlSo4FG+VdZ9/oB5AoFbn518WvagquXzlOh1THntbHkWjuw78RJDh8+zNy5czl06BBNmzYlIyODI0eOEBMTw7x581i2bBlr167FwsKCVatWsXXrVsaMGfO75j3vfkaVABKAon5jyvbtYN79DIbGxHD58H6ysrPxbdqAlNw8ZEYDb3UOZd2laxw9epSIiAji4uJYuXIlarWadevWse/AQWp0GoUx4RKWge0oiFqPTfO+FEXvwrb1C5w+v466tkaWLVvGuXPn+Oabb37z2G2cnGnavffvmv/TkkilNO81gOAe/dBUlKMwU1Urtl1RUsKts1GU5OXgWNMbpxZtOLP1G5KuRPPJpXPcycyhZ89e9GjdnPj4OPr06cOAAQOoqKiguLiY2rVr07lzZyQSyWO3xgmCIAiCIAiC8M8igkiC8C+VcuMaUPVYdk97WxSyVBYfOIGruzuRS5Yye/Zs2rZti5mZGTt27OD999+nV69e1K1blzp+Pvi4W3NRAnKDDpW+AhdNNnUKrqO3tqQ4LxeJVErvqdNplpLC3WnTGDRzLpGRkaTlVmYoeXh4kJ9f+XXDhg2Ry+U0adKExMRE9Ho9U6dOJT4+nqKiIvr27fu75x1bVFqtTVHbnwqlGXcnjOCwvRW9atVkc3oGyyLPY29hjp2FOTKDnvKiAjqGh/PVV19RXFzMF198QUFBAbVr1yazqAKplQOaihLkNs4YKkqQ2TiBQU/O3vlIdGpupRfj5+fH8OHD8fb2xsvLq9pYBg4cyOnTp7lz5w5vv/02vXs/m6DRk0ikUswsLKu1J0ZfYN/iTwDQadQoVCqOrvySh9k5lFRUMDq0BUuOn2Vk22bcy8lFXV7Ozp07SUlJYf78+UydOpXnnnuOqKgobGxsGDt2LPv373/W0xMEQRAEQRAE4Q8kgkiC8C+lUKmQSCXV2ns2CQQk1A+PQKlU8uGHH1a53rJlS2JjY6u0Lcs+RMr9BGyToymo68znR8/gYmOFXCqlODfHVOz50darn3/9qPbatWvX0Ov1XL16FT8/P65cuUJpaSlRUVGsXLmS1NTU3z1vc5mU8scUjbZ+dQoKiYRxVw+RejaKQS0am65VaHUAvNG1PYcPH+T9OXMpKSlhw4YNREZGcvToUWzMFT/Mo3Iu5rVbknfoS2xa9sc6qDuyxJO82cGHQ4cO8d5779GqVSvT+39aD+nbb7/93XP8sxXn5rBv8Tx0P8li01ZUUKbWsO3iVV5sHVTlfoPBgEIioSQ/j6KiIsrKyqhfvz5yuRylUomtrS2lpdWDe4IgCIIgCIIg/LNI/+oBCILw56jVtDkGveGx1xRmSuq3i3jqd2mSb2OvK0T6QwClrqsTr7RridFoJDWvgE6dOpKZmfmr73FxcaFPnz5MmjSJt99+G39/fxITE+natSsbN25k/fr1hIeH/2owKTw8/InXXnBzQCmpHjyTAM1tLbB6zGEC93PyWHTkFIsOnsDFyemxJ6jZqBTUdrHiUVzOol4I5fdisPBvi0ohpbWfI0qlko0bNzJr1ixu3rz5i3P4O4s7doifH7qgNxjYdOEKPRrXw8ZcVaV9z5UblFSo6dmrN5cuXaK4uJgBAwZQVlZGs2bNiIiIYOrUqc96GoIgCIIgCIIg/MFEJpIg/EupLK1o9+IoojasQaf58QQuuZkZvk2bUyOgwVO9x2g0VquVk5idy7LI8zT0dOPVjiHk12rAO++8g1QqJSkpifDwcHbs2EFYWBg2NjZs3LiR/Px8cnJy0Gq1WFhY4OjoiJWVFadPnyY1NZUZM2YQGRn5u+f9hrcrB3MKSVdrqfihNpJSAuYyGfP9vTDo2nHv8iW0FRWmZwLcXQhwd0GmUDD2y+VY2NqZjrIPDw83Ba22LfwPvb88TVG5lpIKMPdtirWdAwHuNqwe8xZm8sp1Onjw4O+ex18pNyUZvVZbpS0uJZ2H+YXsi7sFQPeG9QCQSaX0bBLI3ew8vj+wH0s7e0aNGgU8/hS6P+IzFgRBEARBEAThryGCSILwLxbU5TkcPWtwfsdWclOSsbSzp9lzfQgMbV9lu9kvOb1lPVr1jwEXG5UZ73QLRy6VsvZMDKEhLmRmZRMZGcnNmzf56KOPGD16tGmb2oYNG1i2bBkNGjSgpKSEa9euYTQaKchI58h3G3l4PY7ziffJ1Uno0KED9evX57PPPmPmzJmcOHHCVKvpzp07vPLKK9SrV4+ioiIAkpOTGTFiBGq1ml69evHOO+9gq5BzJNif9am5bMnIRWs00s3JjrE1nXEzU2Bo1hwnLx+y7t9Dr/1xu5bczIzg5/pgYWv3xLVws1Vx7M1wvtgeycIZcwnt/xoTBjSia3035LJ/T2Kng2dNZHIFet2PgaQgL0+CvDyr3DehQ+XJfnXdXenUpQuWdvZVrq9du/ZPH6sgCIIgCIIgCM+O5OdbFv4pgoODjdHR0X/1MAThX60wK5Ovp4yrlpXyyKWHGbQfOoKFn3+Bu7s7AO7u7vTu3Zvc3FzGjx/PrVu3WLBgAR07diQ7O5sJEyaQevsm2z98H51Oi1Gv59jNRDKLS3l35HAuFWlwdXMjJiaGTZs2mbZV9erViy+//BIHBwe8vb1N7x80aBChoaF06dKFr7/+Gg8Pj1+dl06j4fyOrVw9sh91WSm2zq606j+IwLAOTx1cA7hw4QKTJ09GJpMRHBzMokWLHnvfkSNH+OijjzAYDCxYsIBmzZoREhJSpVbSb/VrfX/33Xd8+umnSCQS/vOf//ymAt5FOVl8PXlclZpIjyjMVOj1esCIQadDoTLH1tmFgbM+xtzK+n+ejyAIgiAIgiAIfw8SiSTGaDQGP+7av+dX54Ig/OESL52v1vaoCDVAjlFGvQYN6dy5M5GRkURGRrJ+/Xpq1apFTEwMANHR0fj5+eHv78/58+cxGo3s+/wTNBXlGH8oyK1SyPF1tCPtzi1quzhSUlJCmzaVWS4SiQSJREJBQQFeXl5YWVlRt25dAO7evUvTpk0BCAoK4v79+081L7lSScigFxm/ejNTNu9m1Ocrqd8u4jcFkAC8vb05fvw4p06dIisri/j4+Gr3lJeXs3z5co4cOUJkZCTNmjX7TX08iVQq5e7du8hkMrZs2VKlb4PBwKJFi0yfycKFC3/Tu22cXOg24U1KdXo+O3Kad7cdQKpQopHKyXD1YdRny0mxcGB1zE3WXrlNnb5DMLeyJjw8HJ1O9+sdCIIgCIIgCILwjySCSIIgPJFOq8FgqFqc+1ER6i+OncHRzpZ27drh5uZGeHg47du35+uvv6ZFixaYm5sTGhrKpk2bGDduHE2aNMHb25uWzYOZv31flWCUj6M96QXF6NRqjh/Yh0Kh4Pz5HwNYRqMRW1tbUlJSKC0t5c6dOwBVglWXL1/Gx8fnT1+TnOQkjq9dzp5FH5EaewH0lfOQy+UYDAYiIiIICwujf//+6PV6zp07h1QqpVu3brz44ovVTimbNGkSW7Zseer+SwvySb19E5VUQqdOnYiMjKRz587IZDLat2/PgAEDWLt2Lf7+/pSWllJSUoKNjQ0A//nPf2jbti3t27cnLS3tiX0YDQb8mrVgwtK1fLNsKfXr1iFi5Ku8tW4rcz+dj42zC8ejL3Mt4Q579h/g0/nzqzy/cOFCQkJCyMjIMJ3+t3jxYlq2bEnr1q05d+7cU89XEARBEARBEIS/D7GdTRCEJ0pPvM13//0PWrW62jWFSkWP19+hVtPmv+mdD6/HsXP+HDRlZVXa91y5QVJuPlnFZeiBKVOmcOzYMXJycoiNjeX27du8+uqr1K1bl4SEBGJjY2nVqhVmZmZotVp69uzJe++993um+6vO7djCxe+/Ra/TYTQYkJuZIZPJqT/wJeYv+ZK9e/dSUVGBubk506dPp127duTk5DBt2jTc3d0ZNmwY5eXlTJkyhZCQEJo1a4ZarSY4OJjRo0f/Yt8FhcV88PlGTuWrMEjkuGbEcnb3Srx9fdHodOzfv5/mzZtTp04dVCoVY8aM4ZVXXqGiooKAgAAOHDhAcHAwdevWJS8vj+DgYNasWVOlj7KiQk5uWMPts1EYdDpsnF1pO+hFXp02k6NHj5KSksL06dOZM2cO9erVo0WLFuh0Onx8fKhfvz5Hjhyhe/fuzJkzh4qKCk6ePEnr1q2BykyxmJgY0tPTmTBhAt9//72pX4PBgFQqfqchCIIgCIIgCH8Hv7SdTRTWFgThidz86uLmV5e0O7eq1EWSyuXYOrvi06Tpb36ns3ct9NrqW556NglEB9Rp3Y7Pd+7jgw8+4KOPPjJdb9myJbGxsVWeUalUHD16FLn8z/+rLD3xNhe//65KnSCdWk2Rupixo14mKuYKpaWljB07ltTUVDIzM6lTpw52dnZYWloikVQWDp//Q9ZOQkICKpWKoUOH/lBj6MlK1Do6f3SAPIMbOqUCgDzXNjgMqUvB7tn4BQRw/vx5LC0tOXv2LEajkSZNmtCoUSP27t1Ljx49cHd3Z+XKlWzatIkHDx4wYcKEKn1oysvY+N4blOTnYfhhPIVZGRxe9jnFeTnVxtS4cWMePHiAVqNhROf2SDPukXH3Dh9+8AHt24eTlp7BrFmzcHZ2ZsOGDdSuXRu1Wk1BQQGOjo5A5cl3LVq0IC0tzXQaniAIgiAIgiAIf1/iV7+CIDyRRCKh77szCQhpj1yhRKFSIVMoqN28FS/MnodUKnuq9yQlJeHq6kp4eDi9+vWjYftOyJVmVe7JKy3j2wtXaBLWrspzw4YNA2DZsmW0atWKd955h/Dw8D9sjk/r8oE9VU5zA9AbDGy6cIWeTeqjL8zj0KFD1K5dh/e+3IJF3TasPnWPbcfOY21dWXB69uzZqH/I6nJ0dMTBwYGtW7dy7NgxunfvTvfu3TEajaxdu5aBAwfSpUsXevfuzdytZ8g1mKGTKn7sW64k/egq7NqNoG1QI1JTU3F2dgYqPzeVSsXbb7/NhAkTSExMpKysjA4dOuDk5ESbNm1MWwIfiTt+mLKiQlMA6RGdRk1hViZH41OYtPkyR25k8tam88TGXsbV2YlGLvbM+2o5S3cfRFNRTklpKe09HdFptdjZ2QFw5swZYmNjsbe3JzQ0lEmTJpne37dvXxFAEgRBEARBEIR/CBFEEgThFynMVHQZN4lXV21k2EeLeXXFRnq+8S4qS6vf9J5H9XsOHz5M+xFj8QyoX/0mo5G9iz9Fp6m6fU6n07F27VrOnDlDv379fs90/meF2Vn8fPtvXEo6D/ML2RMbT78hw7B1cOTzr7fwfL8+3L57j+up+ew6eoZs5yDi4uJJTU01BZFycnJYuHAhVlZWJCcns3//fjw9PYmLiwPA1taWQ4cO0aZNGzbs3IdeWjXbquTacdTpd7h9di+fr1iNra0tOTk/ZgyNGzeODz74gDt37tC6dWv27t1Ly5Yt2bFjB8nJybRr167K+26dOfnY09gACmU2vP5dPLHJ+ZSqdVzMNCJ3q0uL8L7cz8xGravMUiuu0FDfw4W3V37DtevXGDFiBABTp07FxsaGoqIirly5wrvvvmt69x9VaFwQBEEQBEEQhD+f2M4mCMJTUarMcfDwfKp7c0vUfHkikV1X09DpjTSy1XDk2HFCQ0Pp168f48ePZ/qXK9FoNFiZKXmx9Y/b4nQaNQ/v36dt27ZIpVKsrKzIycnBy8sLmUxGkyZN/qQZ/jK3WrXJSEzAoP9xK16QlydBXp7IlWYM+XABX9+owPWlz1DrKouRl8QdRlUvDALaYH37LCdPnqRHjx7k5ubSokULatSoQY8ePdD+sFXQ09OTgoKCyncHBQHQpEkTyvZv4OchO7mlHXIbZ4x6LeFt2jJ69Gju/7BuZmZm7Nixgy1btlBWVkZOTg7t2rVj2rRp+Pr6IpVKWbt2bZVgzuPoDQa+On2ZvPxiSjZNxy7sJQCk5jaoajVj1eYNqIrLqO1sj9FoRKPTkZCZi6u1FWmFxbz55pum0/NsbW1RKpXY29tXKS4uaiEJgiAIgiAIwj+HCCIJgvCHyilR033xKfLLNGj1lZk7p0t02L/0FZ+9EsKMCS/RvEljRoW1QGrQcyD+NolZOThZWwKg1+vJzMnlWsIdcnNzmTZtGk5OTjx8+BCDwWDK1HnWgrr2JO7YoSpBJACpTIaTlzfOXj5sWnvYFEAC0Oalosm8R/GVA2jSE1n02ef06tWLcePG0bNnT9N9EonE9PWjbKerV6+a/r9WrVpk/Ww85n7NMfdrjkpfwehWRtq0aYNMJqNFixYsWrQIgEOHDlV5ZunSpXz00UcYDAY6deoEwMSJE/niiy8ICAkn92FylSwwmVRK4z4Tkdg0xCipDPaYefhjUJdh23ogji37wo73aOPjwJk7SbzTLZzVpy/xWvvWfHnix218crmckJAQWrdujU6nY+bMmb95/QVBEARBEARB+OuJXwELgvCHWnI8kfzSHwNIAEaZggoUzNhzkx49enD95k22nIvlqxPniEtJp7CiMnBhBJaeOIdWr6dPnz5kZmYikUiQy+W89NJLtGnThk2bNqFQKJ7Q+5/Hzs2dnpPfRWGmQqEyR65UojBT4VjDi75vzwCgqFxb5Rn78JdxfeEDXAf+F6WTFyPHvsrzzz/PgQMHGDBgwC/2l5ubS+fOnTl9+jTz334F5WP+tpYbtPR1KyO4bQjHjx/n1KlTZGVlER8fX+3e8vJyli9fzpEjR4iMjDRtI/viiy8AaNi+Exa2dkhlVetcaRQWpgDSI+qU66SvfZ2Uje9iZmGLtaqyvpWZQo6/qzNfHDuDXGXOyy+/jLm5OR999BHHjx9HpVLx1ltv0aNHDwAiIyOfSVF0QRAEQRAEQRD+GOJf74Ig/KF2X01Da6haO8igLkNqZsGdrBKO3YmiedMm1HBzYYi3Owfib8EP2TcSYHzHEFZeiGPfvn08ePAAlUoFwOjRoxk3bhwXLlwwHU0fGRn5LKdGrabNeXXlBu7GXKS8uAgXHz886tYzZRJ5OViQlFtmul+ddpv8YytBKsW6hj/WKjkvvTIJlUrFoUOHuHnzJnPmzMHf399UXHrgwIEkJSXRtWtXRo8ebXrXwkHw3raraDQaMBoxICHEkIj7tYvsn3eaZt170zCiC3K5HIPBQEREBFqtFmdnZ7799lvOnTuHVCqlW7duuLq6smzZMiwtLQkJCeH06dMozS0YOnchpzat5ebpk+i1Wuzc3HmuTUMeXNdSpvmx4La5X3Ok5jYUHF9JUdYDTlWYM6RV5fa7iMDadAmqz/MzPmLQyNHk5uaycuVKzp49+yw+IkEQBEEQBEEQ/kQiE0kQhD+U9ifbuR55lLnycN2bOLu6MXToUO4VlbHmTAx5peU/3iiRYG5lzYzZ/yUsLIyWLVtSt25doDJjxs/Pj06dOvHCCy+YTm37JW+//TZt27YlNDS02mlkv9WjE+Y6denKpFlz8G0ZwoXrN00BpJCQEN7oWBdzRWUmT0VyHKU3TuI6eC6+Ixbga6Vn79497N69mx07duDp+WN9KWdnZyIjI4mMjCQwMPCx/fdo5MHlmV3Y9Goo0xpLeSVjEw0eRqItKyM/LZXIb1bz+VuTyMnJoVGjRuzdu5eoqCgCAgI4fvw4mZmZpKenc+DAAdq0acPy5cur9WFhY0uXca/z+jfbmbxpJ6MWr2B0v3CszeTIfrLlDsDc3pWOb33J1i8WUqbVkVOhRWGmwtrRib5vz8Cjdl2ioqKwt7d/4poaDNW/VwRBEARBEARB+PsSmUiCIPyhWvs5cuRmJj89yOxR/R4XazO+fC8CqVRC/I2bZNy9w6nN60i9dR2pTM7cd6fSduAwrBwcGfLi8Crvfe2117hy5Qp3796lVq1avzqOvLw8oqOjOXPmDGfOnOGrr74y1Qr6LYxGIxWlJWjVajp16mTKGEpKSmLHjh1VTovrE+TJ1YcFfHP+AXKpBKXKAjOViueDa5D0wI61a9cC8Mknn/DWW29VGWtYWBgBAQEsXrzYdKrZz8llUuo7Kjm1/2sk2qpb54qKill3KIrNWzZTWlrK2LFjSU1NJTMzkzp16uDs7ExISAgymYwOHTowf/78J85ZIpEg+WFbm0ohY/trbXhtYywJmcXIJaDRGwlpUofPBgdho1IQsGsfXYcOZvnX68hKS+HCos+pWbMms2bNori4mOHDh3P16lXWrVtHkyZNaNy4MQ0bNqRBgwa/WtxbEARBEARBEIS/DxFEEgThDzWlc11O3cmhXKuv0q5SSHmvWz2k0h8zWtz86vD89DlPfJdOb+BWRjFSiYRjO9bz0ksvMWNGZf2htLQ0BgwYwP3799m1axcVFRUMHz4cMzMzOnXqxFtvvYWjoyN6vZ6CggIcHR1/81xunY3i1MavKcnPJ6+klP2R52ndsiUDBw0iOzubI0eOEB4eznfffQfA1O+usuqTGag86yG1tEdvNNLBx4qTCydgNBqIiooiJCSEvXv3VtmKd/r0aRwcHJg7dy4rVqxg0qRJTxzTvcuXkMpk6H8SRNIbDGy6cIXuDeuSc/0qh/IKqVu3Lps2bWLatGkYjUaaN2/OihUrALhy5Qq+vr5PvQ417C34op0VW5ZvJafCgJ2+BNt0Nfc8hyN1q0Fefj7mjs5Y2tpy9NtvmTt3buW2OyAjI4MLFy4QExNjCiKlpKRw9uxZLC0tf8vHIQiCIAiCIAjCX+yZBpEkEskaoAeQZTQaG/zs2lvAp4Cz0WjMeZbjEgThj1PPzYYNo1vynx1xJOWWIZVIsFLJ+U+3evRtWuOp37MtJoU5e2+gNRgw6nSk7/qODZs2m67n5+dz9OhRNm/ezPbt27G0tGTs2LGMGDECo9GIRCKhdu3a+Pv7o9PpOHfu3G+ax7WTRzm2aqnptDIrpZy3OodgaWnF/v37+XTBApKTk02ZSRmFFaz+dCZyd3/M6oVRkRyHXl3Gho+n4Cir4MLJI0/sy8HBAYC+fftWyZa6du0aY8eORSaTUbt2bdasWYNOozGd4PbInL3HKVVrSMrN58DtB6zZtJndu3cTHR2Nra2tKROpXbt2hIWFYWFhwaZNm556LTLu3mHnJx8g16hx+6FNDexftZTtt5LYd7iyWHdQUGVdpGbNmpnWu3bt2qhUKjw9PSkoKADA399fBJAEQRAEQRAE4R/oWWcirQWWAOt/2iiRSGoCnYDkZzweQRD+BM287Tk0uR2ZRRVodAY87cyrZCD9mgPx6UzfGU+FtrJmTkncERR1Q3nzu6sofzgBLTAwEKlUiqenJ4mJibz88svMmjWLoUOHMmzYMHx8fLh27RoJCQnExsYybdo0U0HuX2PQ6zm5fnWV4+7lMhlywKDVUM/Nib1795quGY1GHtxPRO6kw6X9j8Wwy26dBoUKi4Hv4ebmxuNofggKmZmZcebMGfz8/EzX/P39TQWpX375ZaKjo6kd2ADjzwqXO1pZMLNXRxRmKjqMHEeD0FBiY2Or9TV58mQmT55cpe306dO/uh5ntm6oshZQmf30zeloerZsiquLC76+vpw4cQKAy5cvm+6T/KSW0qPgl1QqyvEJgiAIgiAIwj/RM/2XvNFojALyHnNpEfA2lSd8C4LwD7F+/XoiIiIIDw/nzJkz1Ypdu9qo6Ng6iA4d2hMeHs6NGzcAfjWY8/HBW6YAEoA2L5Xiy/t5sHE6N2/e4P333+fYsWOEh4eTnZ2N0WhEoVCwcOFCvv76a2bMmIHRaMTOzg6pVIqTkxNxcXGsWrXqqeaVl/oQvU5Xpa1CW/lng17P+QsXaNu2LXp95ZY9jd6AzN4Ti4B2FJz4cW5Kd3/0xTkkbp9Pu3bhj82Gys/Pp3Xr1oSFhbFn927aNwpk3Vvj+XLUYLb99z3uXb4EgJmZGTVr1mTKf6az9mIc38bEc+haAgBlGi1fnTjHtph4vJs258KFC0ydOhWAnJycKnWb/hept29Ua4tLSedhfiE7zsUQFhqKwWBArVYTERFBQkLC7+pPEARBEARBEIS/p7+8JpJEIukFpBqNxqsSyS9nKkgkkrHAWAAvL69nMDpBEB6nqEJLVno6J0+e5NixY0BloenHeXTy2E+tWbOGkSNHPvb+Mo2OlPzyKm324S+bvk5fPxm1Wk3Hjh3ZsGGD6d27d+9myZIllJWVMWzYMAIDA7G2tiY0NBSdTkf37t2fen4SqQyMVU8Ou5+Tx8Frt5FLpfjXrEFISAhz585lwIABLF++HKkErBt3pvDctxSe34aZR10Uzt44932Pgr2fMnv2LFq3bs3p06dZv34969atQ6/X8+qrrxIbG4vRaOTAkgWc37wWrboy6yct4RYfTZnE8Xup2Dk58/nnn2NmZkbMjZuMG/wCD2/fRKEyZ1KnMAKaBRNXZuDrteuYNGkS7733Hkajke3btzNgwICnnvvjyBUKtBVVP5MgL0+CvDyRyuWMW7Yec2sbWrduDWA6aQ5+zHTy8fExFRZ/muwnQRAEQRAEQRD+fv7SIJJEIrEApgGdn+Z+o9G4AlgBEBwcLLKWBOEZO3Erizn7bvAgt4yiq4exzMugdWg4wU0a8sYbb5Camkrv3r3JzMxk8+bN+Pr6Vjt57PDhw8THxxMeHs60adPo1KlTlT7kUim/FE62btKNYl0mmtx0Jk6cyPz58/nggw84fvw4Li4ufPvtt8TFxTFkyBA2bdrEsGHDeOONN7h27Ro6nY7U1FTGjBnDqlWr8PDweGwfDp41MLO0MgVzAALcXQhwd0EmV9CsRx9kMhmHDh0yXZ++bBvrziZh23qgqU3l1QiVXMprC1YSHl4PgNTU1CrBt0fS79wi8dK5Kn0C1HNxpL6nG7tS8snJyaFJkybI5AoGjH6F06dOMey1cZhb22BubUPAzZummkqhoaGcOXOGPXv2sHXr1l9Y0V8XENaeK4f2YfhZdhaAq68f5tY2v+v9giAIgiAIgiD8M/zVhSn8AF/gqkQiSQJqALESieTxxUMEQfjLHL6ewasbY7ibXYrOYERbkk9WYSlFHd5FI1Gwa9cuMjIy2L59O4sXL2bevHlAZdZJVFQU3t7erFixgl69etGwYUMiIyOrBZAAlHIp7eu58KQSSvrSAs4mZNJ16pdYWFiwd+9e9u7dS1RUFAEBARw/fpygoCB8fX155ZVX8PDwIDg4GKg80W3MmDGsXLnyiQEkqKzj02nsBORKZZV2qUyGytqaZs/1qfbMlE51aVTDFgulzNRmoZTRuKYdY9v5sj0mhSXH7zB/zVa0Oh0RERFMnDjRtAWsa49erDpxFoPBSGp+IRvPX0an17Pp/GUe5hdiUJeTkZFBfHw8AHFxccjkcqycXJAqzQCq1FQaOnQoixYtwtbW9ncXsW7VbxBW9g7IFIof10gqQ2luTqexE6vdHx4ezqxZs35Xn4IgCIIgCIIg/P38pZlIRqMxHnB59OcfAknB4nQ2Qfh7MRqNzN5zo0qdIqmZJSqvBlRoDGRa+OFVXkDDhg2Ry+XY2dmxatUqNm/eTKNGjfD29mbatGlVTh4DCAkJMW1tunz5Mm+//TY6nY4R4yYSbW5FcYUWXdVdZUjNLJHWqM/qM/d5O6gV167FsX37dlJTU8nMzKROnToAjBs3Dl9fXx48eGB6dtmyZXz44Yd4enr+6pxrBTWn/3/+y+nN60lPTECmUFCvTRhtXxiGhY1ttftVChlbx7bmzN0cDsRngASea+gOGAn5+ARGoEKrp/RiPNrsh1w4sotVC+eYgmCRXy9jwZKvSMzKoa6bMw6W5qw5HU1mUQmF0XHYOLsy9OVRnDt3joiICDw8PKhXrx75+fl069YNKysr7O3tTafF1a1bl+TkZKZPn/40H/EvMrey5sWPPydm/y5unDqOQaujVtPmtOgzAFuXH2P+P92mt3Hjxqda55/KycmhV69eKBQKbG1t2bp1K+bm5r97/IIgCIIgCIIg/DGeaRBJIpFsBsIBJ4lEkgLMNBqNq5/lGARB+O0yiirIKam6zcrMM4Diq4fQG41ciI6lRQc/rl27hl6vJy4uDgsLC+rXr8+qVav44IMPqmTJPK7+2Zw5c9i1axcWFhYAdCks4+1t8Zy6k1Ol4v6jfrV6A98eOs2LHZtiNBrZtGkT06ZNM50A9u6777J48WJmzJjB6tWVf81Mnz6dnTt3EhAQQKtWrX513jUCGjDov5889TpJpRJC6zgTWscZgNwSNSHzTlCu1Zvu0cnMkXgEMmTVBWa3C+fSpYts376dOzdvkJyagZN1ZdZQaz9vTtw6wbTnOuBoZ4u0cSukUikrV65ELpczb948vLy8cHV1fexJbACOjo5069btqcf/S1RWVrQdOJS2A4c+9vqTtun9Fvb29pw+fRqpVMrs2bPZu3cvzz///P/8PkEQBEEQBEEQ/ljPNIhkNBoH/8p1n2c0FEEQfgOZRFLt6ESlay2kciUZm95FZWWHXf0RaBW7aNm+Kxn3biKTyUy1j8rLy9mxYwcymYzY2FhKSkpwcHBArVYzd+5cbt++zb1792jfvj3Jyck0bNiQyZMn07Z2Xc7ezUX3kyPtH/WbuuFd5B5uhM5+nQULFhAdHY2trS116tRh586deHt7M378eF5//XWOHDlS+axSycaNGxkwYACLFi0iICDgT12376IfYjBWXblHQbAyjY7vj50hvGkARqORb9avo1fr5qYA2764W/RuEsjhm4lMHTmcYidndDodo0aN4v79+9jY2LBt27Yn9v3cc88RERGB8mdb8v5oqQXlnLydzck9Wykp1xAREUFgYCBvvPEGY8aMwcnJiTt37vD++++zbNkyysrKOHToEJcuXeLo0aPMmTPHVHB7xIgRpvfq9XpTVpkgCIIgCIIgCH8PEqPxn1mfOjg42BgdHf1XD0MQ/t+IWBDJ3ezSau1SCUgAI1AUf4yS+KNosx/w4n8WsG/xezRs2JCHDx/SoUMHwsLCeOWVV1CpVDg5OWFhYUFISAiOjo588803LFmyhOnTp9OmTRs+//xzLt7PY8TXFynT6Kv1a6mUMadvA/oG1fjzJ/8/mrz1Mt9fTqvWnn98NZrMRAJ9Pfl+/XL69OmDh4cHlhYWOBs1lGel8zC/kO6NAolMy+WVt94mMysbnU7H6NGj/4KZVGcwGOn9xlyO7fkODAbMPeuhLcrirY++pOTUOtzc3Pjmm2+IiYlhy5YtbN26lV27djF37lwyMjI4ffo0ubm5nD171hTkGzFiBBcvXuS1115DpVKxb98+bG2rbx0EGD16NLdu3WLr1q2/educIAiCIAiCIAhPJpFIYoxGY/Djrv2lNZEEQfjnmNOnISPXXqT8p3WRJPAoSUhXnENF8jWs6rdHqrLmaKqUMo2eDh06cODAARo3boynpycWFhaMGjUKtVrNV199hdFoZMOGDdy6dQulUkmHDh24fPkyAM197PF1siQhsxit/seAt0wiwUolp3tD92e6Br+Vj6MVSrkUzc8KO9l3GIWlmYw5Axrj5eVebTtaeXERZYUFWDs68Ya5xbMc8lP79PuznIqKwuWFDwHI2bsQdXoiH08YzIiXR1JeXkpgYCBSqRQPDw8aNGgAgLm5OZcvX2bRokUcOXIET09PjEYjubm5DBs2jA0bNhAdHc2CBQtYs2YNkydPfmz/t2/fNtXTEgRBEARBEATh2RCZSMK/RlpaGj169ODGjRuUlJQgl8urZSssXLiQHTt2iB8+/0eXk/P55OBtLiXlIZdJqGFnQWJ2CQAlcYepeHidiuQ4jAYDcjs3NGk3sbG2RkLl9qoxY8bQo0cPHBwc6NatG3FxcaSnp6NWq5HJZLRq1Qpra2sUCgUrVqwAoKBMw8TNl7l4Pw+lXIpWb6COizXLXmyGp93fu+hyRmEF4fNPVClI/oituYJL0zqilP/Vh2Q+Ha3ewMbzD1h/7gH5ZRrSLu6n9ME19MXZyKyd0Rfnosl9iMozAG3aDZ7v2ZXjx4/j5+fH+ClTWbxmCzevxVGRl4GluRm2VuaUl5Zy5swZ2rZti06nQ6/Xs3r1apYtW8a9e/eYOHEivXv3ZuTIkTg4OHD//n127drFsmXL+OKLLwgNDWXv3r1/9dIIgiAIgiAIwr/KL2Ui/TN+ehGEp+Dg4MCxY8eqFEx+lK3g6emJWq3m6tWr1Z5LS0ujadOmqFQqdDodGRkZfPjhh0/VZ3h4+B81/H+EIC97No9tReLc7lyf3ZUStdZ0TV9agFGvo8arX6Py8EdfkAEGI206PkerVq2Ijo5mypQpeHt706ZNGw4dOkRsbCyvv/46Go2G4OBgbt++zbFjx3jvvfdM77WzUPLNqJZ81d0Zdr+P9ZEPcIpdjYet6rFj9Pf3Jzw8nPDwcG7cuPGnr8kvcbNVsXBgY1RyKWY/BIvMFTKszOSsfbn5PyaApNMbGL7mIh8fvMW9nFLyy7RoivMx6nW4DpqLvrQAg7oUQ1kBFak3QGXN/v37USqV3Em8y6szF3Hp+H7KigqQutahRCdFU6M5hUVFhISEkJuby8CBA7Gzs2PQoEGcP38eqVSKi0vl4Z35+fl8++23TJkyhe3btzNnzhwaNmwoAkiCIAiCIAiC8Iz9M36CEYRfkJeWStLVWMoL8rC3tze1T58+nbi4OHr06AHAqlWreOmll0zX53zwX3Z89x329vZMmTLFVFfFzc2NadOmPdtJ/AN9djSB7BKN6c9SM0tUXpVblqwad8E6qDvWASG8O/czdu3aRY0aNYiNjWX48OH07t2bAwcO8NJLLzF58mT8/f3ZuXMn8fHxJCcn4+vrW62/sOaNiY+9yKXzZwF4Uiais7MzkZGRREZGEhgY+CfM/Lfp3tCDU+90YHKnugxt6cW05+px7r0OBHnZ//rDfxOHrmdy9WFBlYyqn37eMks7jHotFvVCsKrfHmvvBpiZmXH//n1s/VtRnpWM5yurkFrYostJRuZYk3IduNdtQpMmTbCwsGDq1KkYDAbefPNN0za3srIyANO2OE9PTwoKCv6KJRAEQRAEQRAEAVETSfgHK87LYfeCj8hJvo9UrsCg0+LiWxu9TgdUHhkfGRnJ3r170Wq1nDx5kvHjx/Pu21PZ+J/JaK5f56M1K8k/fYTdd5JNWQ9JSUlMnz6dDRs20Lp1a5o1a8bp06f5+OOP6dq1KytWrGDNmjX/77KQfkqjM7Dm9H30Pzk17dGpYwCarPsgkaDOTqK5ty1Xr17h4cOHhISEYG1tzffff8+GDRvw8/MDQCqtHs8uLykmdv9ubp05idFooE6LNgT36IulnT1mZmbUrFmTl19+mYcPH+Ll5YWXlxezZs0iLy+PsLAwAgICWLx4MTExMezevZt58+aRl5fHyJEj2blz5zNZp0ecrc0Y187vmfb5R9oanVytuPlPP29DRSlyWzckSDD3bkTNwjjKy52o0BnI1siQWjmCVIZ14y5o89IovrwPpZM3BRIb4uPjsbKyQiKR4Ovri0wmo0mTJmRlZfFou/WjE+sA/qlbsAVBEARBEATh30BkIgn/SAa9ni0z3iHrXiI6jQZNWSk6jYb0xNtkJd3DaKhag+abb75hyJAh5CQnkZP8gIy7d7BVKSlVa0h9kETi1SsYtZpq/eTm5jJjxgz27dvH8uXL0el0rF69mtOnT9OrV69nNd2/ncyiCn7+o7zStRZSuZKMTe+iSU/ALjCEOt6evDCgP5MmTeLAgQNs376dzMxMOnfuzJ49e3jttdce+/7SgnzWT53Apd3bKMhIozAzg9gDu5nyfG8C69UjKyuLBw8eYGZmxtGjR/H39zc9e/r0aaKiovD29mbFihW0adOG8+fPA7B792569+79Zy3Lv1aZuvrpeD/9vI2aciRKMwA0mfdp4GGLRCKhQmtAQmUAqDzxAoXnvqX0+gnkdu6UxB1CXVZMXl4eTk5OQGUA12AwcPXqVZydnZ/dBAVBEARBEARBeCoiE0n4R7obc4Hy4iIMhqo/3Br1egw6LUlXY6nTvGptpCtXrvDfpHtkFBRx+s59Qur4Ut/Dle0x8dRzc+ZaRlq1LAdnZ2dThlJBQQE5OTl4e3sjl8tp1qzZnz/RP8iFCxeYPHkyMpkMT09P7t69S3Z2Nn379uXSpUvVCo0vWbKEtWvXYmNjQ0REBNOmTWPNmjV88MEHtG3bli9Xfo1OXz0jxL7DKACUMgnrR7WkVa0x1e75+UlkQLX+T29ZT1lhAQb9j5+vQafD39GOrh07cjwlm3v37tGoUSMAmjRpwrlz54DK2lgAffv2ZdGiRUgkEho1asTly5fZvXs3q1at+i1L9z95VMB9w4YNpqy2f7KIABeupRZS8ZhT5h7JP74adcYdjDoNby9bw4dzPsDeQoFr/VakSWRYBoRh1GkwGvRYNepE1nezsZbrkdjamk5g8/HxIT4+nuPHj7Nx40ZTptqj9XtU6wqqf88IgiAIgiAIgvDnE5lIwj9S6u2baCvKq7TpDQaWR54nNa+AwSNHceHCBdO1efPmcejQIV5q2QhXWytC6lTW3GlU051bGdk0rumOXqulvKiwyjt/vo3GycmJBw8eoNfrTcfQ/xN4e3tz/PhxTp06hUajYenSpSQlJZGVlUVpaWm1+3ft2kXv3r05fvy4qT5Ur169OHLkCFB5slhrP0dkkmqPolJImdKpLq1qOf7P4711NqpKAAlAp9djNBpIuhqDlaUlCQkJxMfHAxAXFweARqNBrVYDcObMGVMQYsCAAXz99dfo9XpTkOnP8qQC7v9kg1t4Ya6UIX3M5/2IfYdRuA35mJBXPyKgnj8bNmxAIpHw33ED8YgYAYBVw45YN+6CRCKlZr+38bCWs2jRIkaMGIGPjw+RkZHs2bOH8+fPmz47QRAEQRAEQRD+PkQmkvCPZG5ljVQux/BD/SMAmVTKK+GtkCkUhA4eQbOWLatkK6SlpTF/33EyCorQGwzIpFJ2xl5HJpGw9kw0GYUlNG3REksrKxo2bPjYfuVyOS+//DJt2rShXbt2f/o8fw+d3sDpxByyi9UEuNug1EvJzivD0soKCwsLhg0bhlwuJzs7m65du5KTk0OXLl1wcHAgNTWV/fv3c+DAAQC2bduGh4cHJSUlpvd/MqARvZacpqhcR7m2MuBjoZTRwMOWkSG1ftfY9VpttbZbGdlEJdwHJLTrbs+qNWsYNWoUEREReHh4UK9ePfLz8+nWrRtWVlbY29ubMlhCQ0MZOnQoM2fO/F3jepzCMi07YlNIyCrBx9GCwpi9vPTSS4wbN46hQ4dy48YNwsPDiYuLIy4uDp1Ox8svv4yNjQ1RUVHo9XomTZqEu7s748eP58qVKyxevJjNmzdz7do1ateu/YeP+beys1Cyc3xbJm+9wvW0IiRQLSsJKgOI73atV6Xt+eCalGp0zD+UAFQGY80UMub0CaL7/IHPYviCIAiCIAiCIPxBRBBJ+EcKCAnn3PYtT7zu3zqkWpuDgwML33uL9z5ZBEBWUQnX0zIYGdocP2dHHGp6E5ldwt27d03Bh58GoSIjIwEYN24c48aN+wNn88f46Za1mnUbcNWhHdkxB3BoO4iktW/hPvQTjHkPyDt/m/rXcoiMjKSkpISKigry8vI4efIkPj4+XL58mXfffZdx48Zx48YNioqK8PDwqNafq42KY2+G831sCgevZWCmkDEwuAYdA1yRy35fkqOLTy0y7yVWaWvg6UYDTzdsXVwZ9fkqJBIJK1euRC6XM2/ePLy8vHB1dX3sdjmpVEpKSsrvGtPjXLiXy8i1lzAYjZRrDZihJ33Xd6z4KozCwkIOHz5M3759WbNmDS+++CLbt2+nd+/eZGRkcOTIEQ4dOsTMmTNp3bo1X375JePHj2fr1q1oNBpatWr16wN4hrwdLdnxWlsyiyooKNNy9WEBHx24iUZnwAioFDJm9QykfT2Xas+OaOPL4BZeXE8rQiGVEuhhg+yX0poEQRAEQRAEQfhbEtvZhH8kG2cX2jw/FLnSDH4o3ItEglxpRtiQl7FyqNxKZdDreRB3hYTzp1EXFdJlxBgkMikSqZSYB6lIJBIib91DbmZGuqUjL730kqmPy5cvM2TIEACGDRv2xCPl/y4ebVnbvv8I+y7eIj8vF4sWAyuPZTeCrryYjANfYdt5IsuOxJOZncOBAwdo1KgRLi4uVFRUoNfrqVGjBm5ubmzfvp1hw4Zhbm7+xD6tzOS82NqHjWNasWZEc7o2cP/dASSAkMEvIVcqq7XLlWaEDhlh2mY4atQowsLCOHXqFH379v3d/f4W5Ro9o9ZFU6rRU6HR0awghsATs+nrWMG3745CU17OkCGDKSsrw2g0UlZWxtKlS+nbty+1atVCLpfTsWNH8vLyMDMzw8XFheTkZE6dOoW1tTU+Pj7PdD5Py9VGhb+bNQOb1yR6eie+G9eGbePacGlaR3o18Xzic2ZyGU297GlYw1YEkARBEARBEAThH0pkIgn/WC1698ejrj/Re3eSn56Ko2dNgnv2xaNuAABJV2PZt/gTU/FtvU6HrW8d0otLmbbjEPMG9eReTh5zJr1Ky/6DmTztff4z+7/MmDEDgKCgIHx9fXnllVfw8PAgODgYgLCwMCQSCXK5nM2bN5sKb/8V4lMKWRF1l5sZxdSwN2dUiIzYB/kgkYFESs6e+Tj1fAuDXkf61xORKFRUpN2mOHoXRqUlk6dM4fr163To0IExY8Zgb28PgJubG/369WP79u3k5+c/83n5NAqi62tTOLZmKTpN5al5UpmUdkNH4t861HTfunXrnvnYHjlwLd1UiL1z9jF8y5I4VFjAjYIi8krLKS4tI8DBhvOFRezatYu8vDxeeuklgoKCGDlyJHq9nqtXr5rWfMiQIbz55psYDAYmTpzIp59++pfN7WnJpBICPWz+6mEIgiAIgiAIgvCMiCCS8I9WI6ABNQIaVGvPS0th1/wP0WnUVdpz7tzCy9kJZy8fJn79LdvDw+n37izWrFljyjr6qXHjxuHr68uDBw9MbceOHUOhULBu3TrWrVvH1KlT//iJPYXtMSlM33kNtU6PwQiJWSVcuJeHefFDtKWFSBVmpnv1RZlg0CO3dSFn9ydI5AqkMjlaowwXFxc2bdpEamqqKSjTp08f1q5di7W1NUqlkps3b3L37l0+/vhj7t69S//+/dm+ffufOj//1iHUadmanOQHGA0GnLx8kMn/Pn9lpeaXU67V46DJJf96FMeTkjEYjQxtGcS1tAyibt9HV5hPUWEB5eXlFBQUIJVKCQwMBCrX+MaNG5SVlfHee++xc+dOoqKiaNGiBfXr1/+LZycIgiAIgiAIglDd3+cnMkH4A0Xv2YFeV704s9RoQFNail6nJS0tjdjYWKRSKTVq1MDMzIxly5Zx7tw5AgICyMvLw9/fH6VSSePGjWnTpg1FRUWo1WrKy8sZN27cX/bDfmG5lmnfx1crblxSVEDSjsU493kXg05japfbuuA+vLIWVMbGd3DsOpGymJ2s+W4zjWva0apVK5o3b86wYcMAmDZtmulUtkcCAgLo0aPHnzyzqqRSGS4+v69I95/F19kSc6UM15Rr3M/OYVz4jzWMfBztyXQrwUIhw8XWBolEglar5f3332fPnj0olUpKSkrIzs6mX79+3Lhxg08++QRvb29ycnLo2rUrJ06c4Ntvv0WpVJKQkICLiwshISHiaHtBEARBEARBEP4yoiaS8K+UlnALo6FqgEVvMLA88jxpBYVcuXyFxMRE3NzcqFu3Lvfu3SMhIYGDBw8ik8lYvHgxDRs2JCEhgaCgIIKDg3F3dycyMpKXX36ZnJwclixZ8sRT3P5sh69nIP1ZXRmjQU/O3vnYtx+JwrrqMfaG8hJ0RTkYtBUYDXpyD36Bfd3mNPC05cCBAyQkJPD6668/yyn8oyWWVXBErqWghROxlgYKLW1ZFnme72OvYTAYOX0niRvpmWw8F0tOQSEDBgxAKpXi5eXF4MGDkUgkbNmyBVdXV44dO0ZCQgIrVqxgypQpnDt3joMHDzJgwAC6dOmCi4vLX7ptTxAEQRAEQRAE4RGRiST8K1nY2pGbklylTSaV8soP2SJfnTjH7W/XsebjDxg25R1efPFFhg8fznfffYeFhQVbt26lQYMGuLq68uDBA959912OHTsGVJ7Ytnv3bu7fv8/8+fNZvHjxM59fYbkWnb5qkKzs1mk06XfIi/waC6Uc69AXTdek5jYUntmEJusetm0G4xjYGrtTi2gXFopEIiEqKooGDapvC/z/IC0tjR49enDjxg1KSkqQP2bL3Jo1a/jggw9o27YtYz5fyoj4e+Tv3k7ZgZ3oc7IocHKh5YeLkM2fzcmEe0glEqb3iOBEQhJ127bD2doSKbDy/XeIunGHDTu+Z/DgwRQWFnLs2DGGDRtWuV1w/gKsatQjvHkD2rRpQ0BAAGPGjEGlUlUp8u7g4ICjoyORkZGYm5ujUCiYPHkyCQkJbNq0CYPBQFpaGomJidXmIgiCIAiCIAiC8L8SQSThXymoSw8e3oiHHwofP05xbjaXvv8OO6WcVStX0rxFC9q2bUuDBg3w8/MjKyvLdAoYgNFopLy8nLi4OJo2bUpubu4vnlz2Zwryskcuk6LR601tloHtsAxsh4VSxuxe9VGVZTL94Rnq+zmgnbGG+zmlVGgNBHnZ8UbHujT74PBfMva/GwcHB44dO/aLp7v16tWLsLAwZsycxbgbSZQbjCiCW+HQox+lOzZT9u167nvVpXHDxuhvXcPD3ga5UkmTxo1Jy0hj/dSJ2JkpuHniMNfvPKAwL5c9O7bz4shR9OnTh5zcPMxqNqSg0QsMf2Mazp3HYTzyLQ5yDRkZGfTp04eMjAyOHz+OXC6nUaNGGI1GXnnlFQYNGkS3bt0AGDt2LGPHjuW99977fxsUFARBEARBEAThzyO2swn/SrVbtMbMwqJa+6MtbekFRayMukjk9dvcTUmlZfPmBAcHExQUBECzZs0e+94dO3aQk5ND+/btWbBgAW+88cafOY0nauplh5+zFQpZ1S1tUglYKGV0DXTm0+lTmPfWGDaNac1349oQPb0T12Z34ZtRLWnmbf+XjPvvwmg0knLrOtcij5J9NwE7W9sq16dPn07btm3p0KEDBQUFODk5IZfLydFq0RoqA5MyNw8AFA2DMGrUaBVmnE1M4vy9ZLJKygnu2Q+1tR1pd26h02rILCzmzJ0kdFoNVkoFexfPo3HjxpRXqCkpV1Ou0WF08KE8J5XcK0cp8w2j63urqFmzJvPnz2fcuHFkZmaSm5vLG2+8wf3792nUqBEATZo0MY19x44dlJeXM3To0GezmIIgCIIgCIIg/L8hMpGEfyWJRELr/oM5tWktep3O1P7TLW2P3MrI4uNXR+LcMow1a9Zw+vRpPv74Y+zs7Pjss88ICQkhPDyc8PBwXnvtNTZt2kRYWNiznlIVEomEDaNaMmFzLBfv56GUS9HqDfg6WbJ8WDDWFiqioqL+0jH+XcVdukRIu3a42lgik0p5rVMYKksrtOoKAC5fvkxcXBy+vr588803hIaGmopZaw1GJD97n+5GHPIa3uS9PgpZdgZNGjWhtr8/M5Z/jaEgB4WuMlvMXKngUlIKGp0OVxtr0u8ksDP+LuV6CUaJBJ26lIrUG8jt3NHkPKTkxn0+jTkAmSncuHGDd999l1q1auHh4cHLL79MgwYNiI+PJzAwkLi4OLp06cKtW7dYvXo1u3bt+s3rcuHCBSZPnoxMJiM4OJhFixY99bMTJ07kiy+++M19CoIgCIIgCILwzyIykYR/rUYRXbFxdkUmVzz2+k+zkqYtWQ6AWq0mIiKChISEavcbjUbOnTtHSEiIqe3ChQu0adOG0NBQJk+e/NRjCw8PR/eT4Nb/wtZCwTejWnLszXZ8NbQpeyeGcOD1MLwcq2dgCZUMej17PptHHRcHxrVryZjQ5mgryinOzSE76T5ajZqEhARTJtpPtzMC2CvkaAw/bpHU3oxHfeEM9otWoWrXifbT5iKTyXj99ddxdXVlaJtgcktKeZhXQNcGdXGyssTB0oLU/EK+PHoaDzdXAl7+CKVLLfS5KRRErsWmZX9sgnuCQYdEr0UqkzNkyBC8vb1xd3enXr16eHl5cffuXZYuXUrXrl0xGo0oFAo+/fRTHj58SMeOHRk0aNBvWhtvb2+OHz/OqVOnyMrKIj4+/qmfFQEkQRAEQRAEQfj/QWQiCf9aCpWKoXMXcm7bFuJPHEZTVlrl+qOsJIVKRaexEwlo2ZKWLVtWe8+jLBSJRMLly5erXHv0g7dKpWLo0KHEx8c/8xPbathbUMNeBI5+yYH4dJacSOR+VjFYhPIg+xBfHj9LQ0832tbxYWXURVLyC+nZpQvzPlvM5s2bsbKyAkCn0zF27FjOnz+Pg4MDXZxsOZRTSFlWJsVLF2I35zMwGtBcjSHRpT2KUg1BQUH4+vry7ZGD2JirqOlgx8nb97ibncfEiDYsj7xAn2YNmPHNJoZvvo1tywGU3TmHY9eJpjG7DfkYS6WMTWNa0bimXbU5GX44fVAqlfLcc8/h4+PD6tWrf9O6XLyfx9LIu9zJKsbTzpzRobXoGGCGXC5HJpMxadIkrly5go2NDRs3bsTW1paRI0eSnJyMt7c3NWvWZNasWYSEhJj+OxEEQRAEQRAE4d9LZCIJ/2pmFpaEDx/FxK+3Uq9tGHKlssp1qUyGpZ0DdVu2+cX3/DTjaFj/vqx+fSyLh/dn/7xZ3L1wBqPRiFwu58SJE6atb4+Kbrdq1YqxY8cSHBzM3r17q7x306ZNvP766081l6fJejp8+DAhISG0bt2aadOmmdrXr19PREQE4eHhpKamPlV//xaLjiQw5durXE8rokxnpNTWG9cxK/F9fhoJWTmkFRRhNFZuU7t28yZnzpzB09OTQ4cO0aFDBzIzM2nVqhWWlpacPXuWrBlTcC01ULp+OYa8XApmvEnuywOw9GiBplRHcn4ZRqORcePGcTz2KuH1/dHp9eSXlaOUywBQyGVYe9TE2sGJCE8jJZd2YN9hTLWxW5rJaehpW60doKSkhHbt2tGyZUuaNGmCp6fnb1qXdWeTeGnNRU7cziIlv5wL9/N4fctlxn/xPTk5OZSWllJaWkpUVBSDBg1i2bJlXLx4EZlMxtGjR/Hz8/vNn4UgCIIgCIIgCP9sIhNJ+H+j2/g3Ob11PVcO7cNoNGI0GPBr2oKOY8Y/ccsbVB4BP3r0aBISEtg+/0NmLfwctxIf3O1syE9L4ejqrzgbeZycnBwmTZrEpEmTaNu2LS4uLqSmppKdnc306dM5cOAAkydPpkePHgBs2bKFixcv8vnnnz/V+J8m66l9+/Z07tzZ9HV2djYajYaTJ09y7Nix/3Hl/rkyiypYevIuGp3B1CaRKzDIFTxQ+uFbszaZRSXYmKtAIkGnMMPW1papU6dSWFjIhg0baNGiBSNHjmTkyJGEhYWxc8cOGs8+jHPT0RjCXkWi1VOwZyVlFw5QdvEgmswHzPlkITevRDP3v7M5dfQIZsX5+Lk4c/VhKnIzM+QKBc169ef555/n9u3beNYKIGX7bPTaCqRKczwGf0TR2c3oKu7R8dhc1qxZg4+PT5W52djYcOrUqf9pXfJKNczdfxP1T9YFoLiwgLVr53Bwz/fcvRlD06ZNAQgODubkyZN4e3tXKT5/7ty5/6l/QRAEQRAEQRD+mUQQSfh/QyqTETbkZdoOHEZpQQEqKyuUKvPH3ms0GkmMPk/07h3kpqfxxnMRLJVAwvkzYDRQodOx8fxlhrYKYs3xs+TuPUbfQYMJDw8nKyuLxMRE1Go1o0aNIicnh9mzZ5Obm4tU+mPy30cfffSrW4A0FeXcPBVJys1rWNrZ0yC8IyovH+RyOTt27CA5OZnnnnuOnTt3cvfuXd58800A9Ho9bm5upm1Ier2eiIgIAgMD+eyzz5DJZH/Yuv6dHb6egfRnlbAN6jKkZhboJTJu5pfTWKXGycqS4aEtSXXxxmg0Vrk/Ly+PlJQUHBwc0Osri2TLpBIk5QZkeWoAHMJfNt2fufFtNFkZ5Fy/gkqppSA1mexyNf26d+f2rj10HjuRbbemsmjx5/j6+pKfn08t+0xkjhbk6WxxbtWPIIdStN4Ktqw/w82bN/noo49Yvnz5H7YuB69lIP1ZvSejQU/O3vnYtx/JqRQtnWrV4vDhwwBER0fj5+eHr68vJ06cAKi2tVMQBEEQBEEQhH8/EUQS/t+RyRXYODk/8bpBr2fbhzN4eCMOfggoqIsLKchI56GrLQVl5Ry8lkBxeQXvf38ImVSKvaUFUZEn+H7vfho1aoRcLic0NBR/f390Oh3Hjx/H3NzcVMcGYN26dQwbNoxt27Zhbm5e7XSs6W9NYevMd9BpNGjVFUikUs7t20m6ypacnALmzJlDjx49mDNnDnZ2dqxcuRKAFStW8Mknn9C1a1fMzMzIzMxEo9Fw7Ngx3nnnHXbt2kW/fv3+3EX+m1DrDOgNVYNC6pTrFJzagESmwMPFlWbeznwddRG1TRo1jObU/9k7nJycmDVrFleuXGHGjBkAPNfQnc0Xk9H97N0ATUfOxen+eroE+KGtqMDDxprazo54aIrx8vbB0z+QvLw8mjdvbvrMABYuXIhEImHy5Ml8++23vL/qDOHh4QC4u7v/oetSqtahM1TNQiq7dRpN+h3yTnzN8uhNdFj1Bebm5oSGhmJtbc2mTZuws7Nj6dKlRERE4O3tjZeX1x86LkEQBEEQBEEQ/t5EEEkQfsJg0LN19ruk3b5Z7ZrOoGfXlRv0bBzAtphrjA5rwdx9J5BJJLjYSMnOzaN///5YWFigVqvJy8sDwMrKivz8fJKTk2nUqBFJSUncvHmTJk2aMHXqVIYPH87mzZtZvnx5le1qS96ZjJVWDVQGKowGA9n5hXwddZSThw9Ss2ZNHj58yJ07dxg+fDg1atQAYOzYsYwaNYr+/ftz+fJlbG1tadeuHQAdOnQgOjr62Szm30AbPyfkUgla/Y/BHnO/5pj7NcdMYmCQ2R3CvCx446s1OHjUqPLshg0bADh//ny1907sUJv919IpLNNWCSSpFFLaPDyITq02tWUVl5D2sIjz95JJKSphz549RERE4OXlxRdffMHEiRM5efIkV65cYf369QD4+/vTuXNn06lnWq32j1sUoJmPPXKZFO0PmVUAloHtKv+nlDG3X0NaN/GkdevW1Z5du3YtAJGRkURGRqJWq031vwRBEARBEARB+HcTQSRB+Il7sdGk30mo1q43GMgqLmVk22CsVGa42lhxIP42IXV8uJuVy+tdw0kwdyA2/jpZWVmEhISwYMECJk2ahJ2dHcOGDePChQskJSXRp08fjEYjU6dO5cPZs7B8cRCHvlrEyC4d0BQXIZfLOX3qFFElxZRpNHja25BWUISFQkF6YTE6g4G+L7zA6NcmUF5eTr169Zg+fToAarUaMzMzZDIZlpaWmJub06ZNG1PGy5UrV/D19X2ma/pXCvSwoYWvIxfu5VLxk/o/CpmEmo42vP/6G8hlv/18ARcbFfsnhbLoSAJ749LR6g20quXIsFpwa20ump/c26NxgOnr5Wdi6dmzJxcuXOC///0vr732Glu2bGHlypUUFxcTHh5OkyZN+Oyzz3BzcyM8PByJRMLgwYMZO3bs71mKKoJq2lHP1ZrraUVo9D+ui0wqwdZcQdcGbk/9rqFDhzJo0KA/bGyCIAiCIAiCIPx9SX5e/+OfIjg42Pj/KaNCeDZ2fvoBd6MvVGu/nJzK5gtX8XG0R2cwoNPrqefuQl03Z/bF3WL4c13YER1HeXk53t7e3E5I4PPYa0zt2I7kG9dxcXHBaDTi5eXFihUrmDJlCrdu3kCirmBkWAsOXL3J9dRMOjWoy5WsfIpLSkGnoaisAnOlArlUiquNFSkFRai1Omp7urH22+1MnjyZa9eukZSUhJOTE8uWLWPLli3odDrat2/PBx98AMBbb71FdHQ0Tk5ObNq0CeXPTqn7N6vQ6pmz9wbbYlOQSiTo9EY6BrjwUb9G2Fo8uaD6/yLl1nW+/3gWmvLyx153r+PPkDkL/tA+/1dFFVre/PYqUQnZKOVSNDoDDT1tWTKkKW62qr96eIIgCIIgCIIg/EUkEkmM0WgMfuw1EUQShB9998E0kq9drdKmNxhYFXWRlPxCajjY8XK/Xmw/cIQXQ5tzJz2bPKUF677fxcZNm9HpdFR06slbPbriuWQdmvRUij+ejnleNoXZWbi7e3Ds+HG6de2KlbYcqdFISn4hjWu4E/0gBaPRSH5pOa+Pf5Vju3YSl5LGC80bo5DJOHjtNgOCG7Lp/BW2LvyYLuNep1WrVnh6erJ9+/a/aMX+Oco1erKKK3CwVGKt+mODR48Y9HqWjh1GRUlxtWtyMzM6jHiFhh06/yl9/6+yiitIzi3D1UZFTQeLv3o4giAIgiAIgiD8xX4piCS2swnCT/g2bU7q7ZvotT9uSJJJpbwS3goAJy8fhn/yBW9p1JQXF2FuY4tCaQbAiBEjOJhdyNsXLtNvYH98Ni7AqrQYWUANbj2UsDEtFW+VjCWz38fR1poHiZnUcXYg+//Yu+8oK+q7AePP3O30DtJWBAQRQQQRkYUVFH1V7AVLVCxYElsSNUYlxth7SYwNA4qCXSNWiouASLFQFESU3hdYdmGXLffO+we6ESmDSln1+ZyTIzt37tzvHXM28XHmNwXraFm/DmNmf0N6SjLJSTHWrlhGWpUqEMLH8xZx6D4tKC2L89WyXKpXyqDj0ccza9YsvvjiC+66667dcq5+aTJSk8isXXmnfkYsKYneF1/OWw/dQ1nJ/9ZFSk5JpXajJuzTLXunfv5PUa9qOvWqeuWRJEmSpGg/fjEQ6Vdsv0MPJzUjAwg2e61q7TqcdtMdBEFASlo61erUKw9I33nyo8mcPuwh9v9iErXXriKtrISgrJScWd/QsEY1DmnelLfeG8mUT6dSIyOdPevUIiAgDENK4wnWFZdQGo/z6jsjqNKgEanJyWSkpbFgzVoIAr5ZtYYGTffk4qv+RL169WjXrh3du3ffRWdH26PlgQdzyo23sme7A0irXJlqdepy0El9Oe3vd5L8G7qNUJIkSdKvj7ezST+wdsVy3v7nvSz75itiSUkkysrYp3tPDjv/UpKSt37xXhiG3HhxP2rm5W6y/aNv5vPKx5/TuFZ1koKApWsLqF21CmsLi6hVKYNYEJCcFGP1+iIOaZHJ2K/mst++bTnz/Au47rrruPmv1zFz2lQ+mDyFeg0bMmrU6J19CiRJkiRJv1Hezib9CNXr1afvzXexbs1qNhTkU71eA1LSo2/3Wb1kEVXXrd1kWzyRYMai5fy+58Fk1q7JpwsW8+KU6eStL6RyehrHdtiX3IICXpwynczaNZmzYhVXHHkoEwrKuOmmm/jzn//M+niCQ448inaHZO3wR71LkiRJkrS9vJ1N2ooqNWtRp+me2xWQAEoKC0n+wZVK0xYtZeGatbw5bRaPvD+BmpUqccMxvShLJBg/bjz77d2CtplNiQUB+RuKab5HPS689R7efe89zjzzTN577z0mT57MySefzEUXXcQf/vCHnfFVVQHMmzeP+vXrk52dTe/eW198++6776Zbt26ceeaZ5VHxmmuu4ZBDDiErK4uvvvpqV40sSZIk6TfGK5GkHaR24yYkJ+KUfW9bh6aN6NC00Sb7lRCQ1aULLdruR8kfrubsM8/kX7f+gx49urNXx4NITtn45LB77rlnF06viuDwww9nyJAhW3195cqVvP/++4wbN44777yT1157jV69ejFlyhTGjx/P+PHjeeSRR7j//vu3+P4ZM2bQv39/kpKSaNGiBU899RRBsPn6Xz+0fv16evfuTcOGDXnxxRd/8veTJEmS9MvmlUjSDpKaUYn9ex9DclraFl8PYjFWFRXz7MdfcMM/bgGgTZt9mfLpZ1x47V/Zu0u38oCk34YNpXFe/ngR/xj+BcMmLWDU6PfJysoqj0A333wz2dnZ9OzZk3nz5jFp0iSys7MBOOyww/joo4+oUqUKtWvXJh6Pk5eXR+3atbf6ea1ateLDDz9k7NixAGzvunJTp04lKyvLgCRJkiT9xnklkrQDZZ15DolEnKkj3iYpJZlEPEFySip7tu9ArYaN2LtLN25r3HR3j6kK4MtlBfR9fALFZQkKS+KkEKfqWf/kT6d25Im/XULPnj1ZvHgxOTk5zJw5k9tvv53u3btTrVo1AKpXr86aNWtITU2lRYsWtGrVirKyMiZMmLDJ58zLXc+b05ewvjhOl71q061FHWKxgLS0NJo0acLNN9/M6NGjicViPPXUUzz//PO0bduWo48+mtdee42vv/6aV199lYULF5KcnMwtt9yyO06XJEmSpArAiCTtQLFYEoeecyFdTzmDFXO/JjWjEvWaNd+uW4b02xFPhJw9cCJrCv+3UHopSRBL4i+vf87Zh/Zm6tSp5OTklF95tMcee1CjRg0WL14MQH5+PjVq1GDmzJnMmDGD2bNn88knn3D99dfz1FNPAXDXO7MYOG4uiTCkNB4y+MN5pC/9lKLxQ2jduhUrV67cLFTdcMMNXH/99Rx99NG8+OKL3HnnnXTs2JGRI0cakCRJkqTfOG9nk3aCtEqVabJvO+rv1eIXHZCWLFnCAQccQHp6OmVlZVvcJy8vj1deeWUXT/bLNn5OLutKNj2fieJCYGNgevHNkWRmZtK7d29ycnLIycnh6aef5sADD2TMmDEAjBw5ki5duhCGITVq1CAWi1GnTh3Wrt34hMARXyznPx/Oo7gsQWk8BGB9SZz8eu055C+DadSoEV988UV5qLrkkkvIz8+nSZMmrF69mlWrVpGXl0fjxo134ZmRJEmSVJF5JZKkrapVqxajRo3ihBNO2Oo+30WkE088cRdO9su2cE0h8US4ybbiRZ+TN3YIQVIKe7fvRI8ePRg3bhzZ2dkEQcDpp59O//796d69O926daNp06ZceeWVpKamUrVqVbKysigrK+PBBx8E4NGcrykqiW/yGWFZKaWkMGb2So5Jr8SyZcvo3bs3Dz/8MED5096OPfZYLr74Yvr06bMLzoYkSZKkX4ogDMPovSqgTp06hdu7KKyk7ROGIdNGvs2k11+iYFUuGVWrccBRx3Ht/f9k5KhRJCcnb7aGzuOPP87AgQPZZ599uPPOO7n22msB+OSTT/j8889p0qTJbv5WFc/4Obn0f2YK64vjm72WmhRwQdZeXHNk65/1GQfeOpKVBcWbbCv86iPyJ79GUhBwZNf9efHZQdx+++2MGDFik1C1Zs0amjRpwrx586hTpw45OTneziZJkiT9RgRB8HEYhp229JpXIkkqN2rgv/n8g1GUFW+MD4Vr8/jo5aHkLpxPGIZMnz59szV0rrvuOhYsWFD+aPqcnBzefvttXnvtNQPSVhy8V22qp6dQWBznhxk/Fgs4s0vmz/6MpjUrbRaRKrXsQqWWXUhNjvH4X3oSi8W4/vrruf766zd7/xFHHEGdOnUAyM7OLl+bSZIkSdJvl2siSQIgb9lSZuSMLA9I3ykrKaG4cD1LvpzJzJkzN1tD54e++eYbHnjgAR566KFdNfovTiwW8MwFB1G7SiqV05IAyEhJIj0lxoN9O9CoRsbP/oyLs5uTkZq02faUpIAee9eldpW0Lb5v1qxZ9OnThyuuuOJnzyBJkiTp18UrkSQB8PXHk2Cz62I2SiQSzP5oHK0OPGSzNXRWrFhBPL7xtqzCwkIuuuginnrqKdLSthwptFHzulX48C+9GPHFcr5clk+9aun0adeQ6pVSdsjxD29Tn/MO2ZMnx84lkQgpTYRUTk2iae1K3HNy+62+r3Xr1owbN26HzCBJkiTp18WIJAmAMBHnh2ukxRMJnvxgEkvz8rn23gf596CONGjQYJPFns8//3xWr17NySefTJ8+ffjyyy/53e9+B8CwYcNo0KDB7vg6vwipyTGObrcHR7fbY6cc/+ojWnNqpya8OW0p64rLOLh5bQ5pXodY7Jf7xEBJkiRJu48La0sCIHfhfJ7961WUlZRs9lpKejrH/ul69mzXYTdMtnUzZsygf//+JCUl0aJFCwYMGMCNN95Yvj7Td7p16+bVNZIkSZK0Hba1sLZrIkkCoE6TTPbqcCDJqambbE9KSaFOk0wy2279FqjdpVWrVnz44YeMHTsWgNzc3N08kSRJkiT9ehmRJJU7+opr6HjMCaRmVCIpOZnk1DT269mbU268lSBWMX5dzC0s5upZC+k2cSYnTpvLy8tWEw9D0tLSiMfjLF68mOOOO44uXbowd+7cTd57+eWXM2zYMA499NDydZxOOukkVqxYsTu+iiRJkiT9orgmkqRysaQkup32O7qecgbFhYWkZVQilrT5E752lwl56zhz6jeUJBKUfbtt0rtDOP+pf3Jou7bUrl2bZcuWMWLECD7++GPuvPNOHn30UQCuuOIKDj74YPr27cucOXN4//336dy5M6WlpdSrV2+HzDdv3jwOOugg9tlnH1JTU3nvvfci3zNixAhuv/12EokE9957Lx07dqR79+4EQUBycjJDhw7dYfNJkiRJ0s9RMS4tkFShxGJJZFSpWqECUiIMufjzeRR+LyABBAd3p9bAlyipWYfhw4ez3377kZyczP7778+cOXMAmD17Np9//jl9+/YF4IwzzuD555/n1Vdf5YQTTtgh8323vtzhhx9OTk7OdgWkoqIiHnvsMUaMGEFOTg4dO3YEYNSoUYwZM4azzz6bwYMH/6y5ZsyYQdeuXcnKyqJfv36EYcgFF1xAt27dWLx48Rbfc9VVV5GVlcUVV1zxsz5bkiRJ0q+LEUnSL8Jn+YWsiyc22RZ+uwh4YSLBHJLIyMhgxowZxONxpk6dSvPmzQHYe++9Of3007n66qsB2GuvvViyZAkvvPACJ5544k+eqTiR4M5vltJ67HTq/HsIbY44imEvvECjRo24//77mTdvHj179uTUU0+lQ4cOvPLKK/Tu3Ztu3bqxfv16Hn74Yd5//33q1q3Lsccey/r16wFISUkBNkamfffd9yfPB5uvGzVlyhS+/PJLxo0bR6NGjTbb/5NPPmH9+vWMHTuWkpISJk+e/LM+X5IkSdKvhxFJ0i/C2rI4P7wuqnjyeFZfeT6rrzyf/NyV9O7dm3r16nH88cdz+eWXc80115Tve/7551O7dm3uvPNOAI466ihSU1OpXr36T5onEYacPvVr/r1wBXllcWL196DKPY/R6L8fUKNDJ1599VXy8/NZs2YNw4YN4+qrr2bw4MG89957HHXUUbz99ts89dRTtGrVimnTprF48WIee+wxABYsWMDBBx/MP//5T/bbb78fPVsYhoyfk8sdb8/kXzlzmb28AIC0tDQee+wxpk2bxjHHHENOTg7HHXccffr04ZBDDmHdunVMmDCBww47DIDDDjuMjz766CedH0mSJEm/Pq6JJOkXoW3VDIq/vWXsO+mHHEr6IYeSEsC5jeqw116NycnJ2ey948aNA+C6664r3xYEAWecccZPnuetr+fz8aq1FCdt/DWaVKsOAMXAqrIEh3fL4qKLLmLx4sUce+yxXHzxxTRu3JhDDz2UgoIC9ttvP5KSkujRoweNGzemuLiYmTNnAtC0aVMmTJjAyy+/zD333MODDz643XOtKy7jjCc+Ys6KdRSWxEmKwT1PPkvxhGfJ6tSO559/nlmzZjF8+PDyc/XGG29w6623MmrUKPLy8sqv4KpevTqff/75Tz5HkiRJkn5dvBJJ0i9C3dQUTqxXk/RYsNlrqbEY/Zts/+LTjzzyCK+++irHH3/8T5plzbIlPDw6h+IfPLEuUbie0q9nk1ibx6gJH1GnTh169+5N3759+e9//0sQBKxYsYJLL72UQw45hKpVq/LZZ58xa9YsvvrqK5o1a0ZpaWn5+krVqlUjIyPjR81242szmLWsgMKSjU+fiycguVln6pz7TzakVmf48OGb7N+2bVsAGjVqRF5eHjVq1CA/Px+A/Px8atSo8VNOkSRJkqRfISOSpF+Mu1o14aT6NUmLBVRNilE5KUbj9BRebN+cJump232cSy+9lBEjRpSvPfRjjX1uEPFEAoJNf4UWfzSO1ZedS3zNamLJyRx44IEAdOrUqXwR6/bt2xP7Nj7df//9fPXVV/To0YOqVaty8cUXs3TpUrKzszn00EO59957ufLKk0+J0QABAABJREFUK7d7rnXFZbw1fSklZf9bOyosKwWgqCTOzNyyzaJUEPwvyoVhyMEHH8yoUaMAGDlyJF26dNnuz5ckSZL06+btbJJ+MVJiAfe2bsr1zRvyxboiqicn0bZKxiYhZFf45uPJ7N1wL75sti+lqWkAhPEyNrz3BrXufYwqbdpxc6yA1wc9xZAhQxgyZAhZWVn07duXG264gXPPPbf8WHPmzOGrr77in//8J7Vq1aJWrVqMGTPmJ82VW1BMciyg+HvbiuZ+TP7k1wDIqNOI3r17c8stt2z1GAcccADp6elkZWXRvn17Onfu/JNmkSRJkvTrY0SS9ItTKyWZbjWr7rbPD8MEzRbOpvaalaysXZ94cgobckZQ+uXnrHvsAdJTU6j30P1kZGSQlZVF1apVee6558jLy9vkOLfeeisjR46kdu3a5Ytq/xx1q6ZRlth03ahKLbtQqeXGq4la1a9KLBYrXyMqOzub7OxsgE3C1o9Zg0mSJEnSb4e3s0nSj9R4n7bEwpDT3hhIu5lTSC4toXJ2b5oOfZPTL76IhZMmcPDBB/Ovf/2LsWPH0rdvX0466STOPffc8qfDARxyyCH06NGDl156iXfeeYeuXbtyzDHHlK9JdOmll1K3bl2efPLJ7Zqrcloyfdo3JC1581/tGSlJXHpo8x1zAiRJkiT9JnklkiT9SN3P7Mewm66F4mIOG/8mPT98i7KkFDJicOK1fyP2vdvrFi9ezJgxY8rXGdqS0tJSHn30UT744ANefvllHnvsMa6++mpuvPFGOnfuTFlZ2XbPdvNx+zI3dz0zl+ZTVBInKRaQFAvo27kJx7Zv+LO+tyRJkqTfNiOSJP1I9fdqwSk33Mro/zzGyvnfECOgboMGHHpuf5q2bU9ZPMHImSsYNXM5X+S8DnmF9OrVizZt2vDAAw9w4YUXsmDBAjIzM2nSpAmzZ89mv/32Izk5mcMOO4z+/fsDsMcee/zo2SqlJvPSxQczZf4axn21krSUJP6v7R40q1N5R58GSZIkSb8xRiRJ+gka7t2as26/n+LC9YSJkPQqVQBYW1TKqY9OYNGaQtaXxFk742sSq5Zx8p/vIv3zF7n33ntJSkpi5MiR3HbbbZSUlJCXl0e1atUAqF69OmvWrPlZswVBwIF71uLAPWv97O8pSZIkSd9xTSRJ+hnSKlUuD0gAN/33c77JXcf6kjgAsbTKJDfel/Ff51LaoA2lpaV06NABgI4dOwJQo0aN8nWQ8vPzqVGjxq79EpIkSZK0HYxIkn5V7rvvPrp167bF1wYNGrTdi1T/FEUlcd6cvpTS+P+ekJbWaB9KVsxjQ2mCV0eOp6ysjKlTpwLw6aefArD33nszY8YM4vE4I0eOpEuXLjttRkmSJEn6qbydTdKvRnFxcXmg2R3WFpUSCzbdllp/L2LJqSx77i+kVK7Oda//i/79+9OrVy8yMzNp2rQpKSkpXHjhhWRlZVGzZk2ee+455s2bR9u2bQnDkCAIWLJkCQMGDNjk2HfccQe/+93vaNSo0S78lpIkSZJ+q4IwDKP3qoA6deoUTpkyZXePIWk3CcOQt6Yv46nxc1mev4G2japTa95oDuvakQEDBtCnTx/atm3L0UcfzWuvvcbXX39N7dq1effdd1m7di0Ab775Jv/4xz8YPXo0hYWFVK1adZtPUduWiRMncuWVVzF1cT7J9VtQrdOx5H3wDHX6/Ll8n5b1qjDijz2263jz5s3jhhtuYMiQIT9pHkmSJEn6KYIg+DgMw05bes3b2ST94oRhyJ9fnMrVL07l4/lrWLSmiHemLeKfz71BQc1WAJxxxhk8//zzALz44oucdtppANSrV4+33nqLRo0aMW3aNAYMGEBOTg6tW7fe7Eqf7Zljfd4aCvPXkpmZyfvvj+aGR1+EorUkSoo22TcjJYk/9GxR/nMikdjseKvXl/Cv9+fQ8dQr6NzzKN4dOYqsrCzuv/9+ADp37kzXrl3p2bMneXl5nHvuucyZM4dBgwZx+umnc9RRR3HUUUfxS/2XA5IkSZIqNm9nk/SLM3Huat6asYyi0nj5tnUzRpPeujt/eWU6NcOQJk2asHr1alatWkVeXh6NGzcGoG3btgA0atSIvLw8YOM6Sh06dKBHj+27Sghg3mcfM+o/j1KQmwuE1GjQkMPOv5Srj2jD4NsrU5KcTGL9ala9fjulecv5411P0K56CYceeii1a9fmqKOO4umnn6ZTp06MGzeO/zvpdF5e35oNG4pZMnMGpcUhe57zb7p0bMrIwTey//7706JFC5577rktRqJ69eoxdOhQLrzwQqZNm0b79u1/+gmWJEmSpC0wIkn6xXlh8kI2lMQ32Va6ejEly7+haNo7LFwxh4cffphjjz2Wiy++mD59+pTvFwT/W7QoDEPGjBnDZ599xtNPP73dnz9/+me8fu9tlJUUl29btWgBL9/+N9qeeg4tqoVcfeEhnPP+Q/xj4DMUfJ5D2eqpBMGerFixgpEjR5KUlMTTTz/Nsccdz5H9/sjx/3c4tU+7lXVT36Vy216sHfss6/NX88g1f2OPSgmGDBnC5MmTKSsr47HHHuOZZ55h3rx5nHDCCcCW45gkSZIk7UjezibpFyevqJQfXotTM7sf9U/7B41Pv4XGe7Xksssu45RTTuHtt9/m5JNP3uqxbr75ZmbNmkV2djZXXnnldn1+ztNPlgek+avW8PCo8fxr9IcM+3AKF118Menp6exZpwrdDtyfs7s2Y9+WzRg8eDAnn3wyLVu2JCkpCYDCkjhXjczjD8OmElapQ1n+KjYsmEFGZnvCxMZIVrouj3i1hvTv35/ly5fTu3dvbrzxRm699VYqV65MmzZtgP/FsaeeeoowDLnyyiuJx+NbmF6SJEmSfhqvRJL0i9O9ZR0mfLOKopLNI0kYhgx/7/3yn4844gjq1KkDwLnnnlu+/aabbgIgOzv7R312afEGVi1aUP5zzUoZXJzdhVgQcOvw0fTZvw1kZACbXvWUm5vLBx98wA033ADAhtI4XyzNp+o3s0jdY2/ia1ewYf6nVG6z8Za6REkhK166mXhhHlSqRePGjUkkEmzYsIFmzZrx4IMPsnLlSlatWrXFOR944IEf9b0kSZIkKYoRSdIvzkkdG/PQ6DkUl8ZJfO+SpLTkGF2a16ZFvSrMmjWLCy64gNtuu22HfnYQxID/xaFqGekAfLpgMYUlpXwwey4Fs+ayePFipk6dyqJFixg4cCDLly/nvPPOo379+hx77LEszM1nw4r5xMc9R6J4PVX2O4yyvGUUfvkhBZ+9TWLdaqpnnUXJki9pd+LveWrYq1SpUoX09HTat2/Pn//8Z/r06cN5551HtWrVGDp0KABNmzYlOzub7OxsRo4cSXKyv+YlSZIk7Rj+04WkX5yq6Sm8emlXfv/sJ8xZuY6UpBglZQmO2LcBd57UDoDWrVszbty4Hf7ZT320kMVpDdijaPH3UhLUr1aVlvXrcNV5Z/PImyMZNWoUQ4cO5eWXX+aZZ55h7ty5jB49mueff565c+dS1vZYpvXNolLrLKq2773Z5ywbcg2VWnSmZMmXfL4knw8/+piCwhL+++bbdDmwI++++y5Lly5l4sSJFBUVceedd/Loo4/u8O8rSZIkSd8xIkn6RcqsXZnhl2cxL3c9ueuKaVanMrWrpO3Uz3x+8kLuH/EVGbUO4ZQlr5IclhEjpLC4hFc//ZwLDj2Eg447lZy5S4jFYjRq1Ig5c+Zscoy5c+fSrl07llVLJyktfauf1eCsuwCo0+fPlCVCEskZVO92Jn8fPot7772XKVOmMHXqVNq1a0dxcfFmnyNJkiRJO5oLa0v6RduzTmU67VlrpwekMAy5b8SXFJXGWZ1am+cbnsScSntRFCYxZNI0unQ/it8//ATV6tbd7Alw39esWTOmT5/Ocfs3onKzDgSxzX8NB5ttgbRG+1C4bC7/nbqEiVM+IQgCZsyYQTweZ+rUqTRv3nxHf2VJkiRJ2oQRSZK2Q/6GMlavLyn/OS+1Ju/W782DG1oxJ6+IVyd9xnGnnsbSpUu3eZzjjz+e8ePHc8ZJx7JPjZDUlBRSkjZmo9SkGOkpMSqlJm32vtT6exFLTmXRkGv5cMJETj75ZOrVq8fxxx/P5ZdfzjXXXLPpvPn5ZGVlkZWVxVVXXQXABRdcQLdu3Vi8ePFmx7/jjjvK11KqXLkyq1ev/tHnSJIkSdKvW/DDf0v+S9GpU6dwypQpu3sMSb8RxWVx2v7tXUrjW/6dWSUtmRl/P2K7jlVWVkZycjKXXHIJRxx/KrPDPZizYh0t61fhzIMy6TdoMl8uK9jie9OSY3x0XS9qVk7d5mcsW7aMGjVqkJ6ezplnnslf/vIXjjvuOBo2bLjNtaJyc3M5+eSTycnJKd/23RPs1q5dS2ZmJq+99tp2fU9JkiRJvzxBEHwchmGnLb3mlUiStB3SkpPo1boeSVu41ywlKeDEAxpt97GOPvpoDjnkEAoLCzn+iEO55sjWPH52J64+ojUNa2RwYdZeZKRsfjVSSlJAtxZ1thqQVq0r5l/vz+G8QZN58MOVfJVbDEBycjJ//OMfmTt3LhMnTqRDhw5cffXVJBIJjjzySF544QVuuukmAP773/9y7LHHMm/ePM4991wABgwYQHFxMQUFBXTt2nW7v6ckSZKkXxcX1pak7fT349ryyYI81haVUlyWACA9JUaDaun86fBW232cd999d5uvn9ihER9+ncvb05dRXBYnEULl1CTqVUvn7lPab/E9UxfmceaTEymLJ9hQliAWwMufLGSvYBXzZ87jkK5dqD55Mm3btuX000/n5Zdf5rTTTmPs2LFce+21vP/++/zf//0f1157LZMmTSqfs7S0lH/84x+89957ZGdnM2vWrO3+npIkSZJ+XbydTZJ+hLWFpTw3aT5vTF1KUizgpAMacUqnJlRO2/FNfurCPF77bDGFJXF67F2Xw9vUJyVp8wtIE4mQLrePYuGX01gz6gmIxUht0JLqXfuyZOAlJFWrS3JaJTYs/JxK6WmEYUiVKlVYsWIFsPFKpdTUVBYtWkTdunVJSkqiV69efPLJJ9x44428+eabDBo0iD59+jBr1izatm1Lz549+cc//rHDv7MkSZKk3Wtbt7N5JZIk/QjVK6VwSXYLLslusdM/q32TGrRvUiNyv/FzcllXXEpytXrUP/02guRUVr5xN8vfuZ1Y/XpkHN8XKlWibOgzZCTipBbns379etLT0+nWrRsZGRm89dZb3HPPPSQlJXHjjTfy6aefUrduXQoLC6lWrRqvv/46aWlp7LnnnowfP57DDz+cvLw8atSInk+SJEnSr4MRSdJvysSJE7nqqqtISkqiU6dOXHvttQwcOJDrr7+e7OxswjAkCAIGDBhAz549yc7OZuTIkSQnV7xfl+Pn5HLrWzOZuSSfEEiqUhOAEChlLaXfzIREnPx/3kFSvQbEly8lNzkVitYTJCUTi8UoDZOY/MEHJBIJ7rzzToIg4JZbbqFhw4YUFxeTkZHBqFGjWLlyJUceeSRDhw4lHo8DkJaWtvu+vCRJkqRdzoW1Jf2mZGZmMnr0aMaOHcuKFStYuXIl119/ffnro0aNIicnh549e+7GKaO9/+UKzh88mS++DUjft6FkMUGVytR/bxIpbdpR/52J1Hr0OdKze0NqKikNW5CxTzbxeJwvwoasLywiCAJeeeUVqlSpQosWLWjSpAmlpaU8//zzVK9enfXr17P33nuzcOFCWrVqxcEHH0xGRsZu+e6SJEmSdg8jkqTfhJINReQunE+1Shmkp6cDG9cCSkpK4qyzzgIgFotx2GGH0bdvX1avXr1T55kxYwZdu3YlKyuLfv36sbX16bp167bZtjAMGfDaDDaUJjZ7LV5UQN6bj1Dtmps22V467RNKZ86AgrWk7tOBukdfSUrdPckdO5SysjIaNGpC27ZtqVKlCnPnzqVSpUo0aNCAyZMn89BDDxEEAZdeeinPPPMMs2fPZvr06cybN29HnApJkiRJvxAV7/4MSdqBykpLeX/QY3wxZjSx5CTiZWU0adOOxt0PJzc3l0qVKpXv+9JLL1GrVi2ee+45brnlFu67776dNlerVq348MMPAejXrx9TpkzhwAMP3K73Llm7gZXrijfbHibi5A6/h2p9LyGpZu1NXkvtfAhJrw4j/bBjiK1cD0BKrcYESSnEUtJJq1eLZs2aEYYh9erV48EHH+Skk07i2GOPZfLkyUyYMIFTTz2VNm3aEIvFqF69OgUFBT/zLEiSJEn6JTEiSfpVG37/7cyf/hllpSVQunHbzI8ncd0/H2P0xMmUfbu+D0CtWrUAOOGEExg0aNAOnaNgQynPT17I8GlLCQI4rn1DTj2wCZVSk0lLS6NJkyb069ePhQsX0rRpU5o2bcpNN91EQUEBZ599NlOnTmXw4MHsv//+DH36PywY/AiJMKRmr/6kNdi4yHfhrHGULP2KdUMfITH8CSpfeFn55xe+MpS0boeSVLs+a4ddx4bJYwhiyZSs+AaCGPOXxKhatSqxWKw8Iq1fv57evXvzzjvv8Pnnn3PRRRex//77E4vFqFGjBv/+97936DmSJEmSVLEZkST9aq1atHBjQCopKd8WTyR49sOPOaZDW/LnzaFSk2blr+Xn51OtWjXGjx9P8+bNd9gcueuKOfbhcawuLCm/BW3W0gLueeJZEpOG0rp1K+bPn09aWhojR47kzjvvpKioCIBly5YxceJEPv74YwYPHkzjxo35YOQ7dPz9Q8xbsoJVbz9IvRNvAKBymx5Ua9uDUzo2Yf0+1XlpyWpSH/rPxtdOPhPKEiQtXE/1K57fZL7kWMDJHRpwxykHABuvjDr33HNZu3YtF1xwARdccAEArVu3Zu3atcRiMf7+978zfPhwTjnllB12niRJkiRVbEYkSb9aC7+Yvtm2aYuWsnDNWl6fMpUR/c7n8WeeLX+tZ8+eZGRsXDNpR16J9I83vmBFQTFlif+te1RUGiel0QGceutx5I9+nG+++YZ27doBsP/++zNhwgQAWrRoQXp6Oo0aNSIvL49vvvmGqVOnUnP5jaxaVkDie2spxQKokpbCZb1askf1dBrGAx6ev4JEWoygKE7y3AJiS4s2my8RhpSFSSxcXUiTWpVIS0sjHo+zZMkSTj75ZObOncvrr79O48aNy98Tj8dp2bIlAO3bt6dNmzbMnj2bRx99dLtvy5MkSZL0y2JEkvSrlZyaShDb9PkBHZo2okPTRkDAfj0Pp1atWuVPGZsyZcpmx8jJyflZM8QTIW/PWLZJQAIIy0opJYVXPlnMidWqMXv2bJYtWwbAtGnTyvcLguB/7wlDmjVrxoEHHshLL73ER9+s4pY3pvP5svXEgoDD9qnH9Ue1oVGNjd/nuv2a0qdWde58ZxYTvl5FEEDljBQKS+MkEmH5TIkQXp+6mGEvv0rKp8/Toe0+1K5dmzVr1jBy5EiGDh3Kyy+/zBVXXMGkSZO49NJLSU9P509/+hMACxcuZPz48axdu5aLLrqI4cOH/6xzJkmSJKliMiJJ+tVq3rEzI5/81xZfS0lLo+XBWZxz4YX89a9/3WkzlJQliCc2f/Ja0dyPyZ/8GgDLDu/ME088wfnnn0+vXr1o2LAhrVu33uLx6taty9FHH0337t1JSkqiZ8+evH7rDcSCTYPTd9o2qs4z5x+0ybb/fraYP704dZNtpfGQ5GYHUql1F+rnDmf48OHli2g3atSIOXPmANC5c2emTJnCvffey1NPPcVVV11FixYtqFKlClWqVGHt2rU/5TRJkiRJ+gUwIkn61cqoWo2s089h3PPPUFb8v6eZJael0axDJ/bcb38++OCDnTpDekqM+tXSWLJ2wybbK7XsQqWWXWhetzID/5QNwBNPPEFycjJ33nknTZs2BWDcuHEA7LnnnuW32PXr149+/fr95JkmzVtNIrHptrCslCA5hQBYU5pERkbGZldBlZSUkJqaCkC1atWIf7so+Zw5c1i/fj1r166lWrVqP3kuSZIkSRWbEUnSr1rHo4+ndqMmfPTq86xavIjK1WvQ8ZjjadvjsC1eubOjBUHAHw/fmxtf/5yi0vgmr2WkxPhz71blP59//vnMnTuXatWq8dJLL+20mZbnFxMPN7066rsro2IB1G2/L717X1EesL7z2WefcfXVVxOLxahVqxbPPPMMAE2aNOG8885jzpw5PPLIIzttbkmSJEm7VxCGm99m8UvQqVOncEvrl0jS7nTffffxyiuvbBZgHh3zNQ+O/Iqk2MZwFS8rpfT1ASybN5vPPvuMFi1abLL/vHnzuOmmm3boAt/feWzM19w/cnb5k+K+LyMliWH9u9C+SY3tPl63bt02+76SJEmSfpmCIPg4DMNOW3rNK5EkaQcpLi5m6tSpW3zt4h7N+V2XTD6ev4YggE6ZNcm//ECuvfbaXTwlnHZgEx4ePQfYNCIlxwJa1KvyowKSJEmSpN8OI5Ik/URL1xbxwuSFzM1dT+sGVcn/5E3OOeccBgwYwLx58zjvvPOoU6cOX331FTfeeCOPPvoohYWFvPvuu2SkJpNRv/5mxxwwYADvv/8+HTp02Glz16iUyrD+Xbhg8BQKNpQSBFCWCNm3YXWeOHuL/8Jhm7wKSZIkSfptMCJJ0k/w5rQl/OnFqSTCjU9gSw0SLHv9Zd5548zyfdasWcPIkSMZNmwYgwcP5r333uO2227j3Xff5cQTT9zsmEuXLmXSpEmMHTuW5557jvfee2+nzd+2UXU+/EtPpsxfw4qCDexdvyp716+60z5PkiRJ0i9fbHcPIEm728SJE+natStZWVlcddVVLFu2jFtvvbX89SVLlpCenl7+mPsV+Rv404tT2VCaoKRs4y1hq6eOJL11dy58egqJb9eaa9OmDbFYjIYNG9K2bVsAGjZsyJo1a7Y4x/z582nXrh0AHTt23Gnf9zuxWEDnZrU4pl1DA5IkSZKkSF6JJOk3LzMzk9GjR5Oens6ZZ57JypUruf7668tff+CBB+jSpUv5zy99sogfPpOgdPViSpZ/Q+G0d2DFHN54441Nnv72/T9v7YEGmZmZTJ8+HYBPP/10R3w1SZIkSdphvBJJ0m9SvKyM2RPHk/PMQBZMGk/p+nUAJCcnk5SUxFlnnQXAypUrKSgoYM899wQgPz+fh6//A8VlCZYNuZrC2RMozVtGoqSI+qf9g3qn/J36mS3o06dP5Aynnnoq7733Hueccw6vv/46e+yxBx07diQrK8t1hiRJkiRVOF6JJOk3J3/lCob97Ro2rF9P6YYikpKT+fCFIexxyKHk5uZSqVKl8n0feOAB/vCHP3D33XcDUK1aNVLiRSRicWIZVSlePJNE6QbSGu0DQEZqEvcOHc6eezZgyJAhAGRnZ5OdnQ3AueeeW37sF154YbPZbrnllp30rSVJkiTp5/FKJEm/Oa/d/Q/WrVlN6YYiYONVSQXr1vPXm27m9hv+Wr5fXl4eCxcuZN99993k/Z3b78P6mePI2KsT8cK1FC+eSVqjfQiASinJ9Nqn3q78OpIkSZK0SxiRJP2mrFwwjzVLlxAmEuXb4okEz038jGPatWbh5A/Lt3/55Zd89dVXHHnkkYwYMYKLL74YgOysblSe/Ta1m7cjJTWV+OpF1KjfiLpV0xja/yBSkvzVKkmSJOnXx9vZJP2mrF2xnFhS0ibbpi1aysI1axk+dSbvfTmPpw7sBsBBBx3EhAkTgI23od1www0AHHLIIaxYsoilD57PtbcUMC5nJHf17UCPveuSbECSJEmS9CtlRJL0m1KjfgMS8fgm2zo0bUSHpo0IghitD+lOrVq1yMjI2GSfQYMGlf+5WbNmrFmzBoAH//5n4M87e2xJkiRJ2u38V+aSflPqNMmkVqPGBLHNf/0lpaTQrvfRXHjhhZx00km7YTpJkiRJqriMSJJ+c46/+kaq1alLSvrGq42SUlJJSkkh+5wLaNxqHz744AOOPPLI3TylJEmSJFUs3s4m6Tenau06nPfg48z9dApL58ymUtVqtOranco1au7u0SRJkiSpwjIiSfpNisWSaN7xIJp3PGh3jyJJkiRJvwjeziZJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIuzQiBUHwVBAEK4IgmPG9bXcHQTArCIJpQRC8GgRBjV05kyRJkiRJkqLt6iuRBgFH/mDbCKBtGIbtgNnAdbt4JkmSJEmSJEXYpREpDMMPgNU/2PZeGIZl3/74EdB4V84kSZIkSZKkaBVtTaTzgLe39mIQBP2DIJgSBMGUlStX7sKxJEmSJEmSftsqTEQKguB6oAx4dmv7hGH4eBiGncIw7FS3bt1dN5wkSZIkSdJvXPLuHgAgCIJzgGOAXmEYhrt7HkmSJEmSJG1qt0ekIAiOBK4FeoRhWLi755EkSZIkSdLmduntbEEQDAUmAK2CIFgUBMH5wD+BqsCIIAg+C4Lg0V05kyRJkiRJkqLt0iuRwjA8fQubB+7KGSRJkiRJkvTjVZiFtSVJkiRJklRxGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRdqlESkIgqeCIFgRBMGM722rFQTBiCAIvvr2rzV35UySJEmSJEmKtquvRBoEHPmDbX8BRoVh2BIY9e3PkiRJkiRJqkB2aUQKw/ADYPUPNh8HDP72z4OB43flTJIkSZIkSYpWEdZEqh+G4VKAb/9abzfPI0mSJEmSpB+oCBFpuwVB0D8IgilBEExZuXLl7h5HkiRJkiTpN6MiRKTlQRDsAfDtX1dsbccwDB8Pw7BTGIad6tatu8sGlCRJkiRJ+q2rCBHpv8A53/75HOD13TiLJEmSJEmStmCXRqQgCIYCE4BWQRAsCoLgfOAO4PAgCL4CDv/2Z0mSJEmSJFUgybvyw8IwPH0rL/XalXNIkiRJkiTpx6kIt7NJkiRJkiSpgjMiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUaZsRKQiCRkEQ3BQEwRNBEFwVBEH1LeyzTxAEo3feiJIkSZIkSdrdkrf2QhAEewJTgJrASuB84NogCM4Mw3DU93atBvTYmUNKkiRJkiRp99rWlUi3ACuAZmEYNgD2Bb4E3gqC4IxdMZwkSZIkSZIqhm1FpCzg5jAMFwCEYTgT6An8B3g6CIJLd8F8kiRJkiRJqgC2ejsbUAdY/P0NYRjGgYuDIFgDPBwEQVUgZ+eNJ0mSJEmSpIpgWxFpARtvYRv7wxfCMLwuCIJ1wO3A2ztpNkmSJEmSJFUQ27qd7QPgzK29GIbhrcCVwJE7eCZJkiRJkiRVMNu6EulxoG8QBLXDMFy1pR3CMHwoCIIVwBE7ZTpJkiRJkiRVCFuNSGEYfgx8HHWAMAyHAcN25FCSJEmSJEmqWLZ1O5skSZIkSZIEGJEkSZIkSZK0HYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiJt9elsAEEQ1AHOAloAecBLYRh+tvPHkiRJkiRJUkWy1YgUBEEr4AOg7vc2XxsEwclhGL6+0yeTJEmSJElShbGt29luATYA2UBlYD9gEnDfzh9LkiRJkiRJFcm2ItJBwIAwDD8Iw7AoDMPPgYuAPYMgqLuN90mSJEmSJOlXZlsRqRHw5Q+2fQkEQMOdNpEkSZIkSZIqnG1FpACI/2BbYjveJ0mSJEmSpF+ZbT6dDfh7EAS53/s5+Pav/wiCYPX3todhGJ6zY0eTJEmSJElSRbGtiLQA2GcL2+cD+/5gW7jDJpIkSZIkSVKFs9WIFIbhnrtwDkmSJEmSJFVgO2RtoyAIMnfEcSRJkiRJklQx/eSIFARB5SAIzg2C4H3g6x04kyRJkiRJkiqYqIW1NxMEwWHAOcAJQAawFLhjB88lSZIkSZKkCmS7IlIQBPsAZwNnAQ2Bsm/feyXwrzAMEztrQEmSJEmSJO1+W72dLQiCWkEQ/D4IgknADOBaYCFwKdAaCICpBiRJkiRJkqRfv21dibQESAEWALcBT4dh+BVAEATVd8FskiRJkiRJqiC2tbB2ChuvNsoH8oCCXTGQJEmSJEmSKp5tRaRM4EYgDbgbWBgEwVtBEPQFKu2K4SRJkiRJklQxbDUihWG4KAzDW8MwbA0cAgwEugDPArOBEGi1S6aUJEmSJEnSbrWtK5HKhWE4IQzDi4EGwOnAB0AceDQIgjlBEPx1J84oSZIkSZKk3Wy7ItJ3wjAsCcPwhTAMjwYaA9cA64F/7IzhJEmSJEmSVDH8qIj0fWEYrgjD8N4wDNsDHXfgTJIkSZIkSapgfnJE+r4wDD/bEceRJEmSJElSxZS8tReCIFjwI44ThmGYuQPmkSRJkiRJUgW01YjExjWP8oF3gcJdM44kSZIkSZIqom1FpKeBE4AjgVeAp8MwfH+XTCVJkiRJkqQKZatrIoVheC7QAPg90BAYEQTB/CAIbgmCYO9dNJ8kSZIkSZIqgG0urB2GYVEYhkPCMDwCaAr8CzgWmBkEwUdBEJy0K4aUJEmSJEnS7rXdT2cLw3BJGIZ3AZ2A27/965k7azBJkiRJkiRVHNtaE2kTQRB0Ac4GTgUygBeBf+6kuSRJkiRJklSBbDMiBUGwF3DWt/9pDowDrgVeCMOwYOePJ0mSJEmSpIpgqxEpCIJxwMHAHDY+qW1IGIbzdtFckiRJkiRJqkC2dSVSVyAfWA70BnoHQbC1fcMwDHvs4NkkSZIkSZJUQWwrIn0AhLtqEEmSJEmSJFVcW41IYRhm78I5JEmSJEmSVIHFdvcAkiRJkiRJqvi2tbB2z228rwxYHobhlzt+JEmSJEmSJFU021oTaSQb10T64Wra5eskBUGwFLguDMNndsJskiRJkiRJqiC2FZEO3cZrSUBD4GRgUBAEa8IwHL5DJ5MkSZIkSVKFsa2Ftcdsx/uHBEHwAnA1YESSJEmSJEn6ldoRC2sPBfbfAceRJEmSJElSBbUjIlIBkLoDjiNJkiRJkqQKakdEpIOA+TvgOJIkSZIkSaqgfnJECoIgOQiCE4FrgRd23EiSJEmSJEmqaLa6sHYQBAuBcCsvJwF1vn3/SOCWHT+aJEmSJEmSKoqtRiRgFFuPSGXACuD9MAxH7vCpJEmSJEmSVKFsNSKFYXjuLpxDkiRJkiRJFdiOWFhbkiRJkiRJv3JGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEWqMBEpCIKrgiD4PAiCGUEQDA2CIH13zyRJkiRJkqSNKkRECoKgEXA50CkMw7ZAEtB3904lSZIkSZKk71SIiPStZCAjCIJkoBKwZDfPI0mSJEmSpG9ViIgUhuFi4B5gAbAUWBuG4Xu7dypJkiRJkiR9p0JEpCAIagLHAc2AhkDlIAjO2sJ+/YMgmBIEwZSVK1fu6jElSZIkSZJ+sypERAIOA+aGYbgyDMNS4BWg6w93CsPw8TAMO4Vh2Klu3bq7fEhJkiRJkqTfqooSkRYAXYIgqBQEQQD0Ambu5pkkSZIkSZL0rQoRkcIwnAi8BHwCTGfjXI/v1qEkSZIkSZJULnl3D/CdMAz/Bvxtd88hSZIkSZKkzVWIK5EkSZIkSZJUsRmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJOlXb8aMGXTt2pWsrCz69evH3LlzOeuss7b5nu7du9OjRw969erFihUrdtGkkiRJklRxGZEk/eq1atWKDz/8kLFjxwKQm5u7zf0TiQSjRo1izJgxnH322QwePHir+953331069Ztk205OTncdNNNADz11FM/b3hJkiRJqiCMSJJ+leblrue6V6aTfc/7nPzYRF6cspCyeIK0tDTi8TgApaWlnHHGGYwZM4ZBgwZx2mmncfTRRzNt2jRSUlIAKCoqYt99993iZxQXFzN16tRtzmFEkiRJkvRrkby7B5CkHW3KvNX8buAkSuJx4omN2z6+eyAXjnuGQzu3o3bt2pSWlnLuuefSv39/evTowdy5c6lRowbPP/88AAsWLOC0005j1apVrFmzhn333ZeUlFQu/9tdPHz3Lbw4bChDnnqSc845hwEDBgBw3nnnsWDBAjIzM4nH49SuXZu1a9fSoEEDRowYwfjx4xk0aBA9evRg4sSJ5OTk7KYzJEmSJEk/nlciSfpVCcOQy4d+SlHp/wISQHKzA9njvH+xIbUGw4cP54MPPiAlJYXs7OzyfTp27Fj+56ZNmzJhwgSuuuoqateuzYBHnyc368/88cWpTJq7mgNvfod/D32D7OxDAZg0aRJJSUmMHDmS5s2bA3DJJZfQpUsXli1bxj777MOgQYMYP348J5544i45F5IkSZK0IxmRJP2qfL4kn7yi0k22hWUbfy4qjfNNXpyMjAx69epF06ZNefjhh8v3i8U2/kosLS2lsLiMhasLSUmrxMJFizimdy/mj3mRopI4ZfGQVZ++yzcLFnHpvc+wfPlyrrzySj788EOOOuooDjjgAACGDh3K9OnTGTp0KLm5uTRt2pSkpCT233//XXMyJEmSJGkHMiJJ+lUp2FBGUizYZFvR3I9Z9txfWPbcXyjIW0Xv3r0BuPnmm5k5cybDhg0r33dDaZwr//M+dfbuQOsDDubyWx6kxUWPULfvbWyY9xmJ4kLCRJz8Kf+lrKSYIY89xOLFi0kkEnTr1o1GjRrx9ttv07BhQ2bNmsW+++7LQw89RBiGLFy4kEQiwbRp03bpOZEkSZKkHcE1kST9qrTZoxolZYlNtlVq2YVKLbuQHAs4vXNT9tprL4YMGQLAI488ssm+Zz45kSkL4tQ7/Y7ybWuBAMho0ZmirydTvHAG6c0OoM7RV1ElLZl1z1zK+eefz/jx4xkzZgz77LMPnTt3JiUlhT333JOPP/6YnJwczjnnHLp27crBBx9cvnC3JEmSJP1SeCWSpF+V6pVSOK1TE9JTNv/1lpoc48Ksvbb63qkL8/hk/hqKvxehEsWF5X8uXvQF6ZntSc9sT3K1uuR//Aal8QRX/PlagiBg0KBBnHPOOVxzzTX88Y9/BOCZZ56hUaNG9OjRgwsuuICPPvqIvn37stdeW59DkiRJkioir0SS9KszoE8bggCGTV5IanKMeCKkVuVUHjq9A01rV9rq+8bNyaUkHi//OX/SqxRMe49YciplBbkEsWQymnemaO4npNRuTLwwn6YN61OzRTMGDhzIoEGD6Ny5MwAvvPACjz/+OLFYjNNPP52GDRty//3389prr1FSUsLgwYN3+nmQJEmSpB0pCMNwd8/wk3Tq1CmcMmXK7h5DUgW2tqiUWUvzqZqewj57VCUIgm3u/+TYb7jr3S8pKUsQlpWy6t2HKVuzjAZn3cWyZ6+h0Vl3UVZWRpCUTGpSjJVv3c8Tt/+Vk4/MJisri7Fjx+6w2SdOnMhVV11FUlISnTp14tprr2XgwIFcf/31W9y/W7dujBs3bod9viRJkqTfpiAIPg7DsNOWXvN2Nkm/WtUzUjhor9q0aVgtMiDllZZRUi+NxLdhfd20d6ncthcAaz54htKV80h//246NqtL6wZVuSCrGcd2yKTb/q254YYbmDZtGsccc8zPnnnDunVsWLeOzMxMRo8ezdixY1mxYgUrV67cakCSJEmSpF3BiCTpN+/ZJbns/+Hn3LMsl9ImlQmJs2HBDDIy2wPQsNe5NNhzbz7/KIdXLu3KpXvl8fSfT6YgbxW1a9fmlltuYb/99mP48OE/eYaFX0xn0J9/z7/7n8m/+5/Fe/fdSu68rwFITk4mKSmJs846C4Dhw4fTvXt3unbtyjvvvPPzT4AkSZIkbQcjkqTftClr13PDV4vZkAgpTIQU712Ntas/otIBPUlKDkhPiTGgTxua1alc/p5jjz2WGTNm0KhRo58Vjr6zaOYMXrn9JlYtnE8iHicRL2Pl/Lm8fOsARv73dXJzc6lUaeNaTolEgnvuuYfRo0eTk5PD3Xff/bM/X5IkSZK2hxFJ0i4xb9486tevT3Z2Nr17997iPolEgrPOOosePXpw2GGHkZubu9kxzj333B0618MLlrMh8b214YKA0oKl5H81giXv3Qp5i8id+Hr5y8XFxeV/rlatGhkZGT97hjHPDKSspHiz7fkFBVx22R8YOHBg+bbc3FxmzpzJYYcdRu/evVm6dCkVZW277fl7LEmSJOmXy4gkaZc5/PDDycnJ4b333tvstaeffpouXbowatQobrvtNoqKinj22Wc32eeUU04BIDs7m7Kysh0y08x1G/hhgqna/wpq3vUITe75N5mtWnPZZZeVv/bOO+/Qo0cPevTowfLly392LImXlbL8m683355I8NzEzzh870zq16tXvr1OnTrst99+jBo1ikGDBrFq1SoOPfRQPv/88581x88RhiGFJWWUxRPb/Hv8W7Y9gS0vL49XXnllF08mSZIkbT8jkqSdKj93BauXLCIRj/P++++TlZXF/fffD8DNN99MdnY2hxxyCG+++SZvvPEGRx11FI0aNaK0tJTatWsDMGDAALKysli8ePEOn69RespWXysJQ/77fg5A+ZPPjjvuOMaMGcOYMWN48sknicVim7y+NVuLCEEQg2/X/C4qKWX6oqUATFu0lDkrVvHW1Fkc2rMnS5du3B6LxfjjH/9Ir1696Nu3L9WrVycnJ4d99933J33/n+vFKQvpesdo9rvpPQ67bwyvvfUeXboewv3338+nn37KGWecAcBZZ53FlClTePjhh/nXv/5FYWEh2dnZrF27lsMPP7z8eD179qS0tHS3fJef4umnn6ZXr15kZ2dv9b+fI0aMKD8P9957Ly+//DK9evWie/fuHHPMMRQUFABGJEmSJFV8ybt7AEm/TkvnfMm7/36QvOXLiCXFSAQBLz7yEJ2PPo7jjjuOnj17smDhIp584Q0GPnwvr7wwlNNPP53FixfTq1cvli1bxrBhw7j//vupXLkyY8eOpVWrVuXHv/HGGxk5ciQXX3wx559//k+e8+Im9ZiaP5/CRGKT7UnAPpUzyMxI+8nH/qHDDz+cIUOGbLItlpREk33bsWD6ZxSVljJ90TL2a7wHHZo2okNmY5rt34kT//I3vvzyS5JS0rjz7Vm8+EkKxT2uo1WVIr6591KysrI46aSTmDdvHueddx61atVi7ty5vP766zRu3Jh+/fqxcOFCmjZtStOmTWnZsiX5+flccsklTJs2jccee4x//etfP/r7/DtnDg+NmkNRaRyAMKMm9c57FGpU4Z33HqBXr140a9aMiy66iIYNG9KpUyc6duzIUUcdxYcffsjVV19N9erVyczMZM6cOcTjcVq0aEFKytbDXkWyePFixowZw6hRo7b4+oSvV/H4+zN5++FbOfK86/j6jou48sor6dOnD5deeimffvopmZmZXHLJJRx22GHMnj2bESNGkJ2dzZ133sm1114LwCeffMLnn39OkyZNduXXkyRJkjbjlUiSdrhVixfy4s3Xs2rRAuKlJZRu2EC8qIjJLz/H9JHvcNRRR3PnkHd45pW3aN/5EO55+FEWrlzL7/pfRuXKlfn9739PzZo16dixI5deein5+fkAVKlSpfwzTj31VMaNG8fgwYN/1qy9a1ej7x41yYgF5b8QKyfFqJOazONt9/xZx15ZUMy9731Jn4fHcdnQT3n7vVF06/a/K7Euv/xyunfvzhPvT6AslsxH3yxk9vJcHnl/AuuLS3jk/Qlkn30+paWlnHf+BXyStDcDx31D7roSCorLmLIcapzzL25+/AVGjhxJfn4+a9as4YUXXuCPf/wjL7/8MhMnTiQtLY2RI0eWR7g+ffqULwj+yiuvcPLJJ//o77a+uIwHR31VHpAAguQUEslp5BXHqdfmYGbMmMHFF1/MwIEDueKKKzbuEwTlVyUdffTRAJx55pkMGzaMYcOGcfrpp/+sc76z5ZWW8ciCFZzy6RxOf2oIiws30KtXLy677DLi8Xj51XUt9+/CWQ8M561RH1BQHOf5+2+kqNbeXHTLY4wZM6b8qqXk5OTyq9n69+9ffjvgQQcdRE5ODtdeey2nn376FgPSxIkT6dq1K1lZWVx44YUccMABpKenb9etnvPmzSt/2p8kSZK0vYxIkna4j14eRllJySbbNpSWUVZczPgXhvDYi28xfnlA2p4dqNv3dqp1PpGMTifyjzc+Z68WLSkqKqJFixasW7eOXr16sWjRIgDWr19ffry2bduSlpZW/g/gP1UQBNy2dxNeO6Al/RrV4aT6Nbm1ZSM+6tKGJumpP/m4c1YU0OveHB7/4BumL17LtFUBdc/7N43Oup0RI0YwZswY1q9fzwcffMDZ/fpR2Gwf+p5wPK32qM/lR2TToUdP6mbuRa2GjUlJSeH0m5+ipEE7SuLfW8EpOYWSIJXrX/uCo48+muHDh9OmTRtisRiNGjUiLy+PuXPn0q5dOwD2339/YOOC4KmpqeTm5jJ27Fi6d+/+o7/flPlrSP7BuU8UFwKwoTTB+x+MpXnz5vzlL3/hwQcfZMCAAcDGv4dPPvkkp556ankA7NGjB2PHjmXs2LH06NHjR8+yq3xduIGDP5rJ3XOXMjZvHZ8uWMS4lWvY68EnycjI4JZbbmHx4sU88fwblB3cjxVjh5FYn0d8/WrqnXozKY335Y+33E+vI/6PNWvWUFJSwuOPP85BBx20xc/75ptveOCBB3jooYe2+HpmZiajR49m7NixFBQU8PDDD9OlS5edeQokSZL0G2dEkrTDLZgxlTDc9PawubmruX/EWO4ePopFxekEDfclqXJNlj33Fwqmj2D9rHEkZ+7P+Mmf8uSTTzJp0iQuuugiVqxYQdOmTcnKyiq/Igk2xp8dqX3VSty6d2P+1SaTvnvUJiNp678e77vvPrp167bN410+7DMKNpRRXJYgvm4N+ZNeYQMpTFu8jvptu7J48WIOOOAAADp16sSSlbkcfuHvaX1Id6545mX6XPUXklP/F7Fe+ngRxWWbntPvok1eUSnvjh5Dr169NjkvYRjSrFkzpk+fDsC0adPKXzv++OO56667aNmyJUlJSdt5lv4ntoXTX7zoc5YOuoJlz/yZjBp1Wbp0KZmZmfz+97+nSpUqjBgxguuvv56//OUv/O1vf2PIkCEsX76cWCxGu3bt2G+//X52FNyZ+n8+n7yyOEXfPs0vqFyVWLsDGLWqgLQDOgOQk5PDEYf3Ytlb/yRRUkgsrRJpjdsQlhaT3rQdpasW8erbozniiCN48cUXufXWW/n6640Lq6ekpBCPb7yyq7CwkIsuuognn3yStLRNb6n8clkBQyctYPz8QmZNmcLsj8aRHIuRk5PDqlWrAHjiiSdo0aIFHTp0oHHjxgwdOpRatWrRpUsXrr76ak4++WRGjhzJkiVLeO211+jSpQuHHnooY8aM2VWnU5IkSb9ArokkaYdLSt58TZt99qjHPnvUY2HVvRjZ8P9YV5KgetfTqN71NADWjB7IgiHXUbNWQ9594XH69+/Pn/70J1auXMmLL75I8+bN6datG4MGDSI7O/tHzTNjxgz69+9PUlISLVq04KmnnvrREaqkqBCCgDCIMXXq1G3uu3B1IV+vWFf+1LekKjWp2rEPAEWlcd4ZNYaLTzqcxx57DIApU6bQvHnzTSLCZp//g4AEG6NN3tghJKWk0uWYw6lfv/5m+xx00EE8+uij9OrVi4YNG9K6dWtg4wLhl1xyCa+//vr2noJNdMqsRSLc9Ll2Gc0P3PiflCT+elRrjj94T44//ngAHnzwQYBNFtEeMWJE+Z+DIChffLoimldUzNeFmz7JL2Xf9hS9+QqFiQQvjP+IM+pUpXfv3qRknc8rnywmjJeRKF5PwdR3KV70OatGPEoQxqnc+gSGDx9Oeno699xzT/kC8g0aNGD16tWcfPLJ9OnThy+//JLf/e53AAwbNoyqNevQ/5kpfDxvDYl4nDBeShjEOOCb15jx4WiOOegAcnNzAXj33XdJTU1lypQpHHDAAVx99dU888wzTJ06lWeffZY33niDAQMGUL9+fW699VY++OADMjIySCQ2/++ZJEmS9B0jkqQdbt/sXkz+78vEt/CUrWrVqsIWAk7NnhsXx+7crBZ77703OTk5m+3z3RPQjj32WLKzsxk3btwW97vsssuYPn06mU2b8MDdd9GyRQs+/PBDAPr168eUKVM48MADt+u7LJ71BaP/8xi5C+cB8FluPkefeTYPff01paWlHHnkkZSWllK3bl1eeOEFkpKSuOO2W1j00nDiYUCdozauBZT75gOEJYUESSnUbN6Ogw46iKeffpqsrCyqVq3Kc889R9WqVcsjwuOPP77JHD33qcewSQspS/wvY3wXbaqmJ/PoDYeTmhwrX7g7Ozu7PLY98cQTJCcnc+edd9K0aVPmzZvHQQcdROfOnbn77rs3CTvfmTdvHjfccMMmC4Hn5uZy7LHHkpKSQvXq1bnqqru4b/S8TdZFSkkKqF8tjZM6Nt6u8wsbn743f/787f57sjusLCkjNQj4fkZKadGKDalp5J5zAqsK8hndri1dunRh+J2XsHJVIemtu1N1/yNJb9KWNTmDCIvXk1qnKUcdcRh/vvAsKlWqxNKlS2nQoAH33nsvSUlJvPvuu+XHP+ecczaZ4dIhHzNl3ppvr0gLIJZKvKiANz6aRL+De7D84wmsLyigqKiIZcuW0aFDB5KSkjjmmGN49NFHOfroo1m5ciWHHXYYf/rTn5g5cybz588nMzOTjIwMgAp9JZgkSZJ2PyOSpB2u49HHM3NcDutWryoPSUEQIyk1hfMvPJPXnl+4xfdlpCbR98BtP4GquLh4m1cCTZ48mXVr1/L7w7ox5JXXuLrviezfrCmdjzuFA489ibS0NJo0acJ5553HggULyMzMpEmTJhx44IHMnTuX8847j5o1a7J06VIGPfoI0955g8bVqjBs8lTKyuIUx+McUL8WJUVFJCcnM3z4cDIyMrjhhhsYPXo0DRo0oChvJU1+dycFS+ezdsKLVD/4FJKr1qZOn9uJBdC7TQOALT4R7buIUFxcXP4P9gAXdW/Oa58uYV3xposmZ6QkcdVhe5OavPV/+D///POZO3cuVatWY+Azz1GwJneLT4qLUrNmTcaNG0csFuPvf/87NXKnc/9p3bj73S/5euV6MlKSOKljI67u3ZpKqdv/Py8333zzj5pjd2hRKY3iH1x5BVDp5LMI1+Vzxl3382TbZgDcVBIn667RrF5fQiKEKvv/H8WLvqDpBQ/Tao8aXHZ2Ny4/51RKS0tJSUlh8ODBDB48mKuvvnqrn7+yoJiRs1ZsckVamIiTO/weamT348saqTRf8R6pMbjpppvo2rUrS5YsYf369bz++usUFxeTkpLCo48+SqtWrbjqqqs4/vjjmThxIgsWLGDlypX07duX0tJSqlWrxtChQ6lateqOP5GSJEn6RTMiSdrh0itX4azbH2DKG6/yxQejKCspoWnb9nQ5qS91mmRy50k1ueqFz9hQ+r9/IE5PibFPg6oc067hZsdbXVpGzuoCysKQOc8/wznnnMOAAQO2+Ej7WV98TuHXM1lYksce1aowe9lK9qlXm4suv5KZp55Jo8aNWbhwIQ0bNmTkyJHcdtttlJSU0LVrV5577jnatm1LdnY2EyZM4I0Xn6db43qMnvk1R+y7N7kF6xn31VxWrV1L/srlrF+/nv79+7N48WKWL19Oy5YtWbNmDePHfkBJ6lTW5G8gqFxzk++SlhzjDz1bRJ7DM888k759+5b/3KRWJV665GCufXkaM5cUkBQLyEhN4o+H781ZXTK3eayBT/2Hf46ew8Dxc+l+7zji+StY8fYIuh7SjVNOPokTTjhhs/MIsGTJEk4++eTybY0b/+/qong8TsuWLdm/7R4c2XYPwjDc4etUVSQ1U5I5vl5NXl+xhg2JEEriBOvLKBk3llgiwfQ/9OOy/fbjgQce4O47biX53RHkrVhPzSOvIMhfRiwpxrrX/0GV9i0pPP8AKleuTErKxts+i4qK2Hfffbf5+XNz15OWHNskIhXOGkfJ0q9YM2YwExNlzC5cwrqiYu6//36ef/55Xn/9da6//nrOOOMMVq5cyaBBg1i7di0DBw7kP//5D0uWLOHQQw8lPT2do446itTUVG677TZmz57NoEGDuOyyy3bqOZUkSdIvjxFJ0k6RXrkK3fr+jm59f7fZa/+33x7Ur57OgyO/YuqiPKqlp/C7Lpmc3TVzsytq7p+3jAfmLyc5CAjLSln+2pv84cgTy19fs2YNI0eOZOjQobz88svUjBcze9FSOjeuz5wVuRSVlJJftIENJSXcccrRvLU8n3Xr1tGhQwcAOnbsyIQJE6hZsyarVq3iww8/5JprrmHkyJEsXbacGntnsmp9IY1qVuOLJcspKitj8PgprCwo5J577mHvvffmueee4/rrrycMQ1q1akXv3r25/4EHGfDfz3lx0jxihatZlxRQPSOFe09pT9tG1SPP30svvbTZttYNqvH677uxal0xhSVxGtbIIGlLK1z/wJ9fnMo7ny8rj3ZhWg3qn/8oNRrWYMR799CrV6/NzuNxxx232bYrrriCSZMmcemll5Kens6f/vSn8s/4NQek79y5d2MKSkoZ9cECgqWFEAvYMG0hyWvXM/jt//Kf+2/llltuYcmSJXw0fiwzZ87kb7fdxd77H8R7s+NMGDeBxx9/nMcee4w//vGPLFiwgNNOO42CggLefvvtbX52vapplMY3Xa+ocpseVG6z8Wl2DYuWcNKy10lOTeXypzfeStq9YweSU1Op1agJQRDw6aefcvnll3PiiSfSr18/Dj74YI4//niGDh3K5MmTy4/7zTfflC+2/tprr3HHHXeQkZHBTTfd9JOennfffffxyiuv8NJLLzFw4ECuv/76Le6XnZ3NyJEjSU72/5pIkiRVVP4/NUm7xQFNazL4vM7b3Oe15Wt4aP5yihMhxYQUvfMGKT3/jxeWrSYo3nib3PcfaT9nzhxqb8ijXtXK/Pv9CTSoXpUq6ankFqynQfWqJCUnU6d6db6Y83X5LXGffvpp+ec1adKE0aNHc9111/Hggw9SKW3j09FqVc5g0Zq1HNN+H5bk5XPage155qNPOP+88zju+OOZMmUK1atXp2XLlrRv354GDRpwWK+eBEHAJSecTP02nXl6Xm2G33AYKdt46tv2ql0ljdrbue/c3PW8PWPZJk92C5JTKAPmry7msE7dGT58+GbncUvnFqBz585MmTKFe++9l6eeeoqrrrrqZ3+fX4r0pBgZn68lbfkGShJAIiSWWgnq78Mpj07gxoOzmDn1Y3JycsrXo9pjjz3ouk9T4tk9SEpKomfPntxzzz0ANG3alAkTJvDyyy9zzz33lC8+viV71qlMi7pV+GJpPokf3FWXnCilff40kpKT2SfrUCb/9xU+emUYQRCQSMSpVLU6R1565SbvWbZsGSNGjODjjz/mzjvv5NFHHwVg3bp1PP7447z99tskEomfvej2928/bdCgwVYDkiRJkn4ZKkxECoKgBvAk0BYIgfPCMJywW4eStFvdM29Z+ePUAcoWzqdszpcUvfESZbNm8vp//7vZI+2TUlLovW9L2Lcl786YTes96rI8fx2T5i5kYV4+9TP3on379hQXF9OrVy8yMzNp2rQpAF27dmXFihUEQUDVqlXZf982ABzaujnDJk0lnkjQpmF9qlfK4J6rLqNJ06Z88sknm819/fXXb/YPy2ce9uLOOEWRPpi9crNtieKNj55f/sl7PDnuaVrt1ZQ999yz/PW5c+fywAMPbHJu16xZw9lnn83TTz8NQLVq1bb6JLlfq8V5RYz8YjklZQnyJ71K4ewJ1Dr8YgqmvktJWYJnhufQqUlVunTpQjweZ8iQIdx3333ccMMNzJs3j2OPPZYFCxbQrFkzSktLSU5OJggCqlWrtsn6V1vzrzMP4MRHPqSwpIyi0gSECZLDOHuv+4rW8aVUq9eAanXqMuHl5ygrLi5/X37xCl654++UbthQvm2//fYjOTmZ/fffvzwQhmHIeeedx6233kqNGjVYvnz5j150e+zqAu6Yu5TpBUVkJMXYa+TrXHLmWdx18983Way9S5cutGvXjk8++YSbbrqJY445pvwYzz33HBMnTtxmVJMkSdLuUWEiEvAg8E4YhicHQZAKVNrdA0naveYVFW/yc9X+V5T/ec3l/ejxf0cxedKkTfZp070nAx7/D4QhLevVIbN2TTJr12TVukLmrsqjTbt2wMYnlgHk5OSUP+GtX79+9OvXD4Bnn32WlQvmMfTGP1OLgEsPPXjjBwQBKWnp9PjdeTvjK+9wsViw2cPwihd9zpqcQcQL8+h0+Ak8/8DfuOGGGyKPtXr1anr06EEsFqNWrVoMHjx4J01dMU1dmEdKUowNG4opWTkXgNT6exFLTmX+09ewvk4dXn7kXf7617/yzDPPcOihhzJnzhzmz5/PzTffTJ8+fejUqRPPPfccS5cu5Xe/+x2xWIy0tDQGDRoU+fmZtSsz5ppDee3TRYz5cgVBwSr2Xj2TzGoF7NPtYlp27srjvz93k4D0nXhpCfm5K8p/njFjBvF4nKlTp9K8eXNg41PyDjnkEHr27Fl+C1pJSQkbNmwgPT2dRCKxzZD0+vI1XDlrAUWJkPXDBrN0/Pt8vXI5qw/vQ+wHi5KvXLmSG264gdq1a9O7d+/yiDRs2DAmTZrEQw89FHk+JEmStOtViIgUBEE1oDtwLkAYhiVAye6cSdLuVz05iVWlW77apcE/B7FP8702e6R9WUkJN55zOqsXLyx/MhzAUR3acuTFlzN9yQq++eab7fr8uk335Mxb72Psc4OYO/UTAgL23L8jWaf/P3v3HRd1/Qdw/HWbvUEEFQfuLU5EQXCHW8tSc2uZZvYr09zlSCtzNBypaK7cgzRBEfdWFFBRFET23nD79wdyeoLlbn2fj0eP5Hvf793n+wWOu/e9x1DsK/3xFLm/C786TnwZeN3wtam2EAu3umib90KTeB1t6h2+/fZb1q9fbzSxzsbGhiVLljBz5kyOHj1K06ZNcXBwIDAwkNatW+Pk5MTMmTNZvHjxX3h2r4daqyM0Ko1zMRlodTryrx3CvIEfOSc2oddqUKXeAb0emViERCJh/PjxJCcns3HjRgYMGIBSqWTAgAHEx8fz888/A2BnZ8exY8eeeS0WCimDW1dlcOuqD7Z0M9yWEX8ffTklZ1qdjp+Pnyc+O5cuXbowf/58nJyc6N27N2lpaWzatInExEQWLlyIp6cnO3fuRKVSIZVKmTp1Kt7e3pibmzNr1qwn9kRS6/R8diueIp0eXXYmqrALmHXvjSrsInePBGGtMp4qaG9vb8gALO2/BLBgwQJOnjz5zNdFIBAIBAKBQPB6/C2CSEB1IA1YJxKJGgOXgIl6vb7g0Z1EItEYYAxgePEpEAj+vYa6OvBjXGrJNKxHyETg72iDopysCKlczttzFnFh/y6uHT6IqqgIp2rVOXY/jT3TZiGRSNi2bZth/9Lg05PYV6pC78kzX9o5vW4uNqYMae1GcOh5PJNDsFXnoBfB4aQY4vRmXDh1hilTpvDtt98ikUiMJtYlJSVx/vx5Tpw4webNmwkKCgIgPT2dadOmGU1r+7e6dC+TkQEX0eh0qLU6ipVqiuMicGzmT86JTSCW4NhvFhbmZjRNPURISAg1a9Y0HO/n50edOnXQaDR/2jz7RclMTNCVU2IoEYsZ69MaKwdHRv+wjtjYWExMTMjIyEAmk7Fk2XI8Rr/HGx99wuTPP2f5uDFcvHgRmUzGpUuXuHnzJjVq1GDZsmV4eXlx//59RowYgYODA7dv32bGjBks+v4H7qVnYvXVj6hvRiJv0ryk/DQhjsyfviO7sID9+/cb1pSZmUl8fDx2dnZGZZHr169n8ODB7Nix46lK/AQCgUAgEAgEr9ffJYgkBZoBE/R6/TmRSLQUmALMeHQnvV6/ClgF0Lx5c32ZexEIBP8qH1apwPHMPG4UFFPwYDKVmVhMRYWMeTVdn3iczMQEzwHv4DngHcO2ga98tX9fYxuYYL5lH3rNgwRPPVhJdDRRKLl15gS+vr5cvHixzMS6e/fu0ehB+Z+Hh4chiOTk5PSfCCBlFqh4d815ClQPgxwFkSGGiWgAenUxOUE/oNHkcokCOrdpYggi5ebmsnbtWm7fvk1qaipjxozhwIEDr2y9Vg6O2FV0JS0utsxtEpmcBh06Gb42Nzdnz549nClQ0XPg2+y5EIn4jbcYdDmK+ENB3L4bw6A3uhEaGkpycjKmpqZMnz7dECQrndy3detW1q9fz5Jde3nj089RXjiNXqVEZGaO5cBhaBLiKNi0FnnifXr06MG5c+cAcHBwYPbs2YSFhTFz5sMgbZMmTfj0009599132bJlizCpTSAQCAQCgeBv5u/y6iweiNfr9ecefL2DkiCSQCD4DzORiNnTtCbBGTnsTMlCo9fj72hDD6fys5AED5X2tNm4cSND+/ahZy3j7M2q9racu3ufngPeRK0wQ6fT0aBBA8aNG2eYWOfm5kZ4eDhgPMXuaRos/xtsu3gf7WO9fNSZCahS7pIfdhBNRhzmUQfx9GrK5h+/ZcaM6egf2V8sFmNmZoZcLsfa2pqCgoLHH+Kl6/L+R/w6ZwoalRq9riT4JZXLsXJwwq1RM87t3oZep+PHrxeShpgREbFoxGKKgIK5nyMyM0ddUECTDr7Y5WSSlpZG1apVqVmzJunp6dSsWZOaNWsaJve5uLjQoEEDGluaIXZwRJOfi9jOAc2D/kv6ggJkFpZM2x2IUplryC6SSqWG0r5Spb3J/iw7UCAQCAQCgUDw1/lbvBPQ6/XJwH2RSFT7wSY/4PofHCIQCP4jpGIR3Rxt+LlBNQIaVqe/s90rCyAtXrwYLy8vYmNjGTx48Ct5jNfh0bHqAAXZ2fBYMMTV1hqZRExcWgYN6tfj1q1bODg44Ofnx61bt4CS8fQeHh60a9fuP9mnJjw+h2K1DlVaLMm/fELypsloC3JwevMLKr8zl+o1axO8cg63zofSs2cPYmNjjY7Pzc0lLi4OS0tLWrRowaeffvrK11yhujvvLvqeBh06YengiG1FV9r0exuHKm5s//JzTm3bxOkdm9k66zOm7dpHUfRNdDnZiExKgjsiM3NEMjnFEhlpGZnY2Njw/vvvc/LkSfr162cIkj06uU8kEmEqEdPVwQoZIKtdH9XVSwCoL5/DqmFjBlewZvTo0fTr1++VXwOBQCAQCAQCwavzd8lEApgAbHowme0uMPwvXo9AIPgPeTzw8k9TnJ9PQXYWFnb2/LxuHUOHDjWUCYkfvOH/PuQ04309ySwoJCjyNgNbNiYhJ4/s7GzeffddfvzxR+zs7Izud+7cuWUe678SUKpsZ4pMLEJvVwnnId8AkP7bElTJt7GoWpdvNu2nUqWKXL58ucyxGzdu5MMPP2Tjxo00atQIf39/ozH2r5JNBWc6jxlv+PrC/l3cvXwRjerhvAqNSklkbgGZPy7FetYieHCb5ZiJqG+EU3Hh98injMNSr2Xfvn1cvHgRa2tro35Pj/Ozt0ah13G+ghPqxh5kfTgc50qVObLoS1zMzTh+/Lhh3//Kz5BAIBAIBALBv83fJoik1+vDgOZ/9ToEAsF/x520fM7HZGIiE3MndJdR4KVUmzZtaN68OcePH2fq1Kls27aN6OhofvnlFxo3bsyqVatYu3YtPj4+nD171lCS87oU5+dzaOVSYq5cRCyRolar2XMzlpDTZ0lISKB///4orKzZfC6s3OM/fqsvbl16MW7cOAYOHGjoe/Rfp9Prcatph/5kDCLJwz+VIqkUTVYSaTHn8Z2xkYCAAACGDRvG9OnTOXr0KAqFgl27dnHt2jWWLl2KSCTC0tKSvLw8LC0tX/u5XNy/C41KabRNq9Nxb/k3WL7/CRI7B7TJiUa3i4DVvwcztWe3cgM+j09FhJJrMIySa5fZ4htMJSLMH5m8JhAIBAKBQCD45/vbBJEEAoHgdVFqtIzffIXjt9JKsnR0GuJ3b2f5zz3K7JuRkcH06dPRarU0a9aM2NhYLl++zJo1a1i8eDFr1qzh1KlTnD9/nrNnz77W89DptPw6+zMykxLQaTRo1WrO371PLUsTtn45jYKCAuzt7bFzqURKfi4iSjKSSivbZAoT+nz4CTMXfs2ePXuYPHnya13/39X9YhV9r0STqdagqm2F5GYOhbfOkX1sPQr7Spha2eBbWYtC+jBAcuXKFe7evcupU6cMJV9arZbvvvuOXbt2UbVqVbKysoyCSLGxsUyfPt0QkHkV9Ho9hTnZZbZfi0+i8G402tXL0ItEWIyaYHS7mUSMp63Fcz2mWCTCQS68vBAIBAKBQCD4NxJe5QkEgv+cOfuvc+JWGkpNycS3/GvBmNbxZuHBKGRFaqN9HR0dqVChAgA1atTAxMQEFxcXsrKySE9Px83NDalUioeHx0tZW2xsLK1ataJu3brI5XKjzKDQ0FBCQ0OZPXs2s2bNYv/uXfhVccLZ/OEo9NS8fMLuJxIYdp1CjY7MzEwqVapE9aYtyDl/josJKRy5dhNTc3N+vR1P7ei77Nu3j+PHj1OnTp2Xcg7/ZHq9nrfC7pBQrEIHUNkCjZ0CeWVfXNp64xy6jvZVipCLTQ37i0Qibt26haenJwA6rQaRWIxIJDKUSObm5mJjY/Paz0ckEmFqZU1Rbo7R9qZVXGlaxZXLHj6catUJjU6PvH5jTMUi3JatZVNTdyQikVB2JhAIBAKBQCAwIgSRBALBf0q+UsPOS/GGABI8nLiVF3YQbcpt9u/fb7jt8QbCpfR6PQ4ODty7dw+tVms0vexFderU6U+zU0JCQvhm0niu/L7faLt/47podTo2nQ1DKRJj8aDHkVQu580h77JkyRJGjRpFVFQUhYWFTJs2Db1ej729PT/88MNLO4d/qgs5BaSo1Oge2aaT6dHXsUEsEmFy2w47K3Nu374NQHh4OI0aNaJ27dps/WUD1vdvkXYvBj2QER/HG507c/v2bbKzs+nTpw9qtRpHR0e2bdtm9LgTJ04kLCwMnU7Hpk2bqFLFeJrei/Do3ouzu34tU9Imlct5r5IDs5vXZlNSBknFappZm/GWsx02MuHlgUAgEAgEAoGgLOFVokAg+Ec6d+4ckyZNQiKR0Lx5c7777runOi4hqwiZRGwURLL1edjHP33LZ/To0YNz58796X1JpVKGDx+Op6cn3t7ez34SD+RlpHPv2pWS7BVbB44ePUq7du3o27cvkyZNYsSIEcTFxeHm5kblypX5/vvvuXbtGv/7+jucxHoq21lTt6ITkQkppOblYy6X08zNhYaVXdgRm8aSJUuYPn06H3zwAVFRUXz33XesWbOGTz75hMaNG9O+fXtEIhFvvfUW77//Pjdu3GDu3Ll4eXn95zJRoouUhnK0UsoLpyjcXhLUk9eoweTvl/DGG2/QvXt37O3tAbBGS8G9O8w8ewaJRMyQ1k3RFxex5odlJOUVsmPnTtq3b4+pqSnTp08nJCTEqEn1ggULMDMz4/Dhw6xcuZJ58+a9tHNq0bMfSdG3uBd+paS5tl6PTGGCS+26eL45CIlUxmx315f2eAKBQCAQCASCfy8hiCQQCP5RitVacovUuFSqTEhICCYmJgwaNIjw8HAaNmz4p8fbW8hRaXVPvN3zox+oWrWqIRPo0SBK6b8fvf29997jvffeAzA0GH5aep2OI+tWEnE0CPGDBsQqlYp1X86iw5Dh9O7dGw8PDyQSCYcPH2b+/PmoVCrGjx/P1q1b2bVxA999MJKQG3eoW9GJ8IRkOtWryZk790i8n8vZmPsk5hUaMqtKM6fi4uLYs2cPjRs3JjQ0lGHDhhEZGcmFCxcIDQ3lxo0bz3Qe/yauCvmDaXYPA0kmbTtg0rYDUuAtVwfEYjEHDx403K7X61nz4Wi61HOnSz13AM7fvU+r6pVpWNmFNefDadu2LSNHjiQhIYGUlBRq1qxpFERatGgR+/fv59atW5iZmZGYmMjatWuNst9KjRo1ips3b/Lrr7/i6vrnwR+xRELvT6eTHH2L6Atn0ev11Gjekoo165R7/wKBQCAQCAQCwZMIQSSBQPCPkFOkZva+SH4LT0IMSCVihnlW5aOONZFKpezbt4/4+Hi6devGvn37iIqKwsTEBLFYzPDhw+nevTv79+8n5uZN0n/5CJVFRdQZ8VQcttTwGKYyCaO8qr+2c7r42x4ijx1Gq1ajVZf0YhIBN0IPUbFaNfz9/YmPj6dp06YAeHh4cObMGcPxTlWrU7VKFTIuXEOt0ZJTVIy9hRn+jesCIDc1IyAsih49enDk94NsnfEpVXTFNKtfD0tra7LyC5gwYQKXLl0iNjYWf39/PvnkE8P95+Xl8fbbb3Pr1i1WrFhBixYt/vB8Fi9ezK5du8rNXvLx8TH0D5o5cya+vr4vevleCS9bC8wkYvLLCTRKxSKGujqU2Z6flUF+VobRttS8fBLv53LmThxxmdl8++231KpVi82bNxtKCEtlZGQQGhpqmO63adMmAC5evFjuNY+KinquDDFn91o4u9d65uMEAoFAIBAIBIJS4r96AQKBQPBn1Fod/X86TeC1RFQaHcUaHflKDWtO3mXoNztIT09nwIAB7Ny5E4Bdu3bRv39/xo8fT2BgIKNHj+bTTz/F0tKSL774guAD+6k34BO0ualASeDGTC7Bp7Yj/T0qPfc6Q0NDn3pfvV7Phb070CiN+9QUqzVolErO7tzKqVOnqFGjhqE5c3l9l7zeHoq7sxO/R97C3cne6DadVsPp02cojLtLBztTUu7epnX1yrSsVglbqRhnCzMUcjlz5syhcePGBAYGGh1///59Vq9ezb59+5gzZ84fno9SqTSs80mOHDlCaGhomQCSTvfkzLDXTSISsalRdaylEszEJVk6chEoxCK+cHellrlJmWNKp949yr9xXcZ4t2J0+5ZUtLFm5MiR7Nu3D39/f2JjYw37qbU69kRmE5OjpZaHFxt+3QWAQqFAq9Xi6+tL//798fDwID4+nunTp3Pt2jX8/f0JDQ2lR48edOvWDV9fXzIzM1/NRREIBAKBQCAQCB4QMpEEAsHfXlBkConZRai1xr1q8nNz2L1+Lsd+30etWtW5c+cORUVFJCQkUK1aNQAGDx7MF198YcjuyM7OxqN+LY7XqkGjXTXxa+CMhUJK32aVaF3d7rWV96iKilAWFpTZHpOeye8RUUjFEgYMH0mrVq346aef8PPzw83NrUzD5Tqe7fBu4cH0dZv5tOvDvkxShQLPAYOQymUcWbfCqKmyiUxKdQcbwu4nU83O+onla+7u7lhYWGBhYUFOjvF0L51OT+itVHZfSUCl0aGPPMTbgwczd84c9u3bx+LFi4GS3lVFRUWIxWI6duyIs7MzP/74I3Z2dvj4+NCyZUsSExNf6Zj7Z9XQ0oxLbeqxIzmTsLwiXBQyBla0o4qpotz9zW3tsLR3IDs5qcxtIrGYH2ZPo1KlSly+fNnotqjkPG7WGca14NuIukxBJIKjd8+jObcZz2YNsbe3Jysri8OHD7NlyxZ27tzJ3LlzCQ0NJTAwkNDQUIqLiwkODubXX39l1apVTJky5ZVcE4FAIBAIBAKBAIQgkkAg+Ac4FJlMgUprtE2v05Ie+A1OHUcSlSuhBSUlU4+WShUUFPDzzz/z5ptvsn79eoYOHYq1tTXx8fHY2tqSmXiPnwZ7/AVnBDKFArFEgk5rfF51KzpRt6ITCnNzxn/9NQABAQFlji8tZ5JIZfzvh9V4dvAlPCQIVVEhthVdafvmIGq19iL+esSj7X0AqGpvy7m793nfpxUnDgfRc/S4ctcYHR1NQUEBOTk5WFlZGbarNDqGrj3H1fgcClVa9FoNWb8d4rZDWzQ6PT179qRnz56sWLGCTp06AbBjxw7s7OzYvHkzc+fONQSZ+vTpQ5s2bZ7rGpaKiIhgzJgxSCQS3N3dy/QS8vHx4fDhw0ilZf/kxcbGMnv27DLX2EIqYVglx6d6fJFIhN/Icez9eq5RsE4kEiE3MaVNv7fLHKPX6xm14QI5RWrDNp0epNVaYlmrDdK4nQQGBlKvXj3EYjGurq5ER0eXuZ/SUscmTZoQHBz8VOsVCAQCgUAgEAielxBEEggEf3tyadnK28KbJ1El3SY9ZB3zr26jxveLGTBgAI0aNTJk1kybNo0pU6bg5+dHt27d6Nq1KzNmzKBnz57UqlXrpY5Rf1ZiiYS67Xy5fuwwWo3G6DaJTE7jTt2e+r7kJqZ4Dx6B9+ARZW7T6bRltrnaWiOTJPDj0TPY2drSv39/fvzxxzL7Va5cmREjRhAdHW10+6oTd7hyP5tidUkZWkFkCCZ12hOfWUhBRkl21dmzZzl69Chbt24FwM7ODigJGj0asPHwePEgXu3atTl9+jQAw4cPN+ol9LpK5ao2akq/qXM4tmktyXduIxKJqd6sBd5DRmDtVKHM/lfjc8jIVxlt02vUiKQyitVaorO1+JqaGgXDHp8aBxhKCK9evUqNGjVe8lkJBAKBQCAQCATGhCCSQPAf9EcNkKGk987kyZPRaDR88sknvPHGG/z888+sWLGCOXPm8MYbb7zW9fZq4sKB8CQKH8lGMq/njXk9bxRSMcc+88XRsqTUSPNIQGbJkiWGf5dmaVSoUMFQVvSs09ReNu/BI0i6dYOc1BTUymIAZCYmOFRyo3U52SvPo6J77TLZTgA9mtRDKpPTqu9byOVyw8+Cj4+P4bo8qcfRhtP3DAEkAHVmAqqUu+SFHUSVdIcZM2dx+tRJdu/ebQiC5ObmYmVlZejzVEosfv7WfLlpqaiKCrGp+HBCWWkvoQ4dOmBvb0/37t0Nt23evJlz586xdOlSZs6cydGjRw2ZPC9DpXoNGDRvMTqdFpFI/IelkSm5xQ+mwD1UFHOJ3At7ANBVcqNz585/2kBbJpPRtWtXiouLDT3BBK9fec+poaGhhIaGMnv27HKPmTBhAsuXL39NKxQIBAKBQCB4OYQgkkDwH/M0DZDnzp3L3r17MTMzM2zbtm0bJ0+exMSkbGPhV61tDQc83Gy5EJtpFLwwlUkY3a66IYD0T6MwM2PwV0uJvnCWqDMnEInF1G3rTXWPFojFkpfyGDITE9r0G8iZXVuNmniLxGLkZmY07tz9D44uX/YjJVgAtj7DDf9O3TQZta6kKXfPnj0BDM20TU1NMTExKbc871mkxNzh9x8Wk52chFgiQQ8oXaqyfv9BatWqhb29PampqRw+fBiJRMKGDRvYunUr58+fZ9myZSQlJXH+/HlOnDjB5s2bCQoKeqH1PO5pvnc1nSzQPDYBzqxma8xqtkYihoEtqlC9enVDr6hHg3uPBiqaNGnC3LlzX97iBc/saZ5TyyMEkAQCgUAgEPwTCUEkgeBfTq/Xczkum9j0AlxtTbl4YAtDhw5l5syZxMbGUrduXUxMTDAzM2P06NG8++67FBcX079/f+RyOStXrsTb25vk5GS6dOnCmjVrcHd3f63nIBaLWDusBWtO3GXd6ViyCtVUsTPjQ7+a9Gzs8tz3+yzT1F4ViVRK7TZe1G7j9coeo0Wv/igsLDi9bRPKggL0ej1VGzfDb+T7mFpYPvP9VbU341ZKfrm3VR+xmLkzO/HVXONpbhcvXiyz7/Nc/5zUFH6dPQV1cVHJhgfxLHnCXVbN/pwtx84QGBhI48aNkUgeBnMWLFhgCL7cu3ePRo0aASXldC87iPQ0qjta0KiSDVfuZ5VpGC+XSBjhVe21r0nw9LKTk4i/EYFELifo/CXDcyrAiBEjiIuLw83NjcqVKwMwffp0jh8/TuPGjcnLyyMgIAAvL68/zTQTCAQCgUAg+LsRgkgCwb/Y/cxChq07T1JOMSJAr9WQun87Z4JLRrlfuXKFSpUqcfv2bRYuXEhRUREpKSlERUVx7do1jh07xrx583BwcMDZ2fmJzYlfB5lEzHs+7rzn83oDWH8nGzZsYP369Wi1WjZt2oSra0kZV3llM482jBaJRDTu2I1Gvl0oys9DplAgUzx/RtlEv1p8sv0qRWrjMjlTmZhRXtWQSp6/RO3PXNi/E43auJeQRqsFpZKL+3ZhXrEGpqamZcrk1q9fz+DBg9mxYwdubm6Eh4cDJb8Dz+LPSkFL6XQ63n33Xe7fv49MJmPr1q04ODgY7bNyiAfvrj3PnbR8dDo9EokIvR6WvNWEGo4Wf7qWR7OTnmVtf1Zm9Xf0tOcGMHDgQJKTk1EqlRQVFREWFvbS1qHVqDmw/FvuXDqPWCxCq4cNx8+xduUKAM6fP49EIuHw4cPMnz8flUpFUlISly9f5vjx4/z6668cPHjwpa1HIBAIBAKB4HV7da/0BQLBX0qr0zNw1Vli0gsoVGkpUGlJvRKM2L0dfX86TW6RmruxcaSlpdGuXTvu3r0LwKJFi8jPz2f8+PGcOnWKGzdukJeXx82bN2nWrBlhYWH89ttvfP/99xQWFqJQKMjMzGTt2rVs27btLz7rf6+EhASOHTvGkSNHCA0NNQSQnoVILMbMyvqFAkgAbzSqyAcdaqCQijGTSzCTS1BIxfg3dmGCX80Xuu8/Ext2Gf1jPZ5uJqfx49EzLAs6RtzdO3Tu3LnMcU2aNOHTTz/l3XffxdHREQ8PD9q1a/dMmSDPUrYUFhaGXC7n2LFjDB8+nE2bNpXZx9Zczr7xbdk8ujXT3qjLV30bcWl6JzrXd36qx9Dr9YaSuD9b24YNG/Dz88PHx4fw8HB27dpVZh8vr1eXDfesdHo9OWoNGp3+mcvFtm7dSmhoKJMnT8bf3/+lriv0lzXcvXwerVqFWqnk7M1omlR25vimdSgLCrh7966hz1Zp0/h79+7RoEEDoOTn8FGLFy/Gy8uL5ORk5s2bB8Cbb76Jt7c3Xl5eREVFvdT1CwQCgUAgELwoIRNJIPiXCo1KJbtQhe6RShnjBsi3WLDrHPU8OxOydxONGjWiVatWODo6Ur9+fWrWrMmdO3eoVq0a165do3bt2nz55ZesX7+emTNnsnnzZho0aICPjw9nzpzhzJkzzJo166874X+hzMQErvy+j9SYu5y/G0d+kRo/Pz/q1avHkiVLGD16dJmymfIaRrdp04bmzZtz/Phxpk6dyrZt24iOjuaXX36hcePGz7W28b41GdTKjaNRqWi0etrWdMDVxvSlnPcfkSnK9r9q4OpMA1dnZAoT3v7yaxzdqhl6CcHDsrlHM3eepo9QZoGKwGuJpOcpqediza2jO4xKQUeMGIGDgwO3b99mxowZrFixgsLCQg4dOoSrq6uhsXZ2djb29vaA8fcnNzeXgIAAmlS2oUllm6e+BkUqLYuDo9h8Po5CpRZHSwW1M08z7N13Db+DH374IWFhYZhZWLJo0SKOHTuGm5sbcXFxnDhxAigJTI4YMYIDBw4wffp0MjIynnoNr4pWr2fZvRRW3E+jUKtDIgL3I/uZNHgwC+bMYd++fSxevBiAc+fOkZOTQ9++fSkoKMDR0dEokL17924++uijl7Y2dXExESFBaFQPM+FS8/JJvJ/LmTtxxGfnEhUVRWJiIvAwy83NzY3AwEBOnz7NxIkTDcfqdDpDcCw8PJwjR44QHBzMwoULadWqFQ0bNmTZsmX88MMPRse8SDN6gUAgEAgEghclBJEEgn+pG0m5ZcqNHm2AnLxxMhZtB3H94FIatfbGysqKwsJCWrZsia+vL3PnziUvL4/Q0FAiIyMRi8W4urqSnZ2Nra0tGRkZnD59msmTJxMSEsL9+/epVKnS6z7Nf61b505z8Ptv0Wo16LVabt24Q3JePj8t+Y6dpy/w7bfflls2U17D6IyMDKZPn45Wq6VZs2bExsZy+fJl1qxZw7Jly557jbbmcvo2e73f8wa+nTm5ZQMalbLMbSYWFjhUqfpSHmfvlQQm77yGSATFah1mUj0pe7cTduxhKVJWVhaHDx9m69atrF+/nqCgIObPn8+hQ4fo1asXSqWSChUqkJ+fT1pa2p829A4ODmbBggXodDq+/fZbatWqRe/evVGr1VhZWbFlyxbMzC145+ezXE/MRakpyUJKyS7g5sHDVPfuC8CFCxeIiE1F1XUWUWcP4jlgLPYKUKbcZUD/fsjlci5cuMC4ceO4ffs2b7/9NlKp1BDo+vDDD/H09OTNN99kzJgx3L59GzMzs9dShjXp5n32p2ZR9CD6rVKrOX38OOIeA9ADPXv2pGfPnqxYsYJOnToRFxeHg4MDgYGB6PUPI+YajYbw8HCaNWv20taWm56G6LGm6f6N6xr+/WPoOWbNmsWwYcPw8/PDzc2NKlWqYGdnh1Qq5eq1ayz/ZRcFSjV7riSQnJzM3LlzmTZtGosXL8bZ2ZnNmzcb7k+n0xl6d/n4+NCyZUsSExONAqQCgUAgEAgEr5vwcZZA8C/lYKFAIXvylCjnwYvQKQux7jIeWY9ZqFQqGjZsSHh4OAMHDmTo0KEMHz6catWqIRKJCA0NRSqVGt6oVa5cmZCQEHx9fYmIiDC8ARVAYmIizZo1w8TEBI1G88zHq4oKOfj9t2hUSkPplkImoZq9DWd2bKZF44ao1epyy2YebRhdytHRkQoVKuDi4kKNGjUwMTHBxcWFrKysFz3V165Rx67YVnRBKpMbtolEIqRyBV3HfWzI/nkRd9Ly+WzXNZQanWEaYOrlYKS12jF07XnDfvXq1UMsFuPi4mIoVyq9rkFBQVhYWNC1a1cqV67MN99888TvD0BRURErV64kODiY0NBQPDw8kMlkbNy4kePHj9OrVy8CAgIIjUolKjnPEEACKIgMwaROe7aev49Kq2Nl4Gmuq+1Jzi1GWsEddXYKKemZmLToj0SmIC8vj/z8fHbu3Mm6devYs2cPEyZMAGDixIm0adOGgQMHsnfvXpycnDh27Bi//fbbC1/XPxNbpGTvIwEkgOLg35D7deNOkZKcB0Hxs2fPcvToUT7//HPc3d1p2LAhgwYN4rvvvjMcd/ToUaN+US+DqZUVukd+n5Ny8lh+5BQ/hJxm6/mrTHu7JIgXEBBAcFAQX38xm4/ef4/69euTXaimUKUlPEVJ5I1bfL7jCslKGRcjb5GXl4dYLObo0aMMGTKErKwsvLy8iI6ONjSJz8/Pp0+fPkIASSAQCAQCwV9OCCIJBP9S3RpWNPpkvjzK+Ejilw8mckEfMrNy+PTTTykuLsbPz49r164hk8meeKynpyfm5uaIRCIsLCxo3br1U6/t3LlzeHp60q5dOyZNmkRsbCyDBw9+4v6xsbEMGzbsqe//r2ZnZ8eRI0ee6Zo8KvrCWURi42BIVXtbkrLz0Gm1HN63F41GYyiFebRspryG0Y8GVh7995/9fPwdyeQK3v7ya9r0fxvrCs6YWdtQs1Vb3pn3LVUaNHopj7H+dCyaxyamqTMTyL18gPMrPuFaeAT79+8vE7DafzWRb4OimL4nnMnbwzh99QZDhryLTCYjLi6O//3vf/zyyy80bdqUlStXEhQUhJeXFwUFBZw5cwaxWEy3bt0YMmQIBQUFmJiYULFiRQCkUikSiYTAa0kUqrRl1pZ35QAJW2YQGRHJ3tCL5CfcAkCZHI3Ewh5Fpfpkx0ejda7PvXv3cHJyQiqVsm/fPqpVq8b8+fO5desWkZGRDBw4EIBbt27h6ekJ8FpKqI5m5vF4CFBz/x5F+7YT/8n7RN+8zpw5c5g2bRqrV69GJBKhVCqZNGkSmzZt4vfffyclJQUoKWXr06fPS12fmZU1rnXrIxKLScrJY/uFq4hFIuwtzBGLxShqlGQlhQX9xo+jB7Fp2sd80OcNkuPjSUvPQKdSkn1xH1IbZ+6s+wSpcy1WH7+LWq0mNTUVhULB2bNnadWqFXv27MHCwoLr16+j0+kIDw/HysrqpZ6PQCAQCAQCwfMQgkgCwb+UtamM795sgolMjExSfnaGaY0WVJ64hRqf7ORSxA1MTExYvXo1R44coUGDBlSvXh3A0Hy4atWqBAQEADB8+HD27t0LwKZNmwyZDE/Dzc2NkJAQTpw4QWpqKnl5eS9wpn89VXERV4MP8tuyrzm6fjV5qcnY2toabo+NjcXX15f+/fvj4eFBfHw80dHReHp60qFDB+bPnw9A48aNeffdd+k9dCRxqcb9aVxtrZFJxHx/+CQRUbeYOnUqSqUSPz8/bt0qCRhUrFix3IbRpWVVPj4+REZGAvDZZ58RFBREQkLCq748L51MYULL3gMYtexn3l+1kR6TpuD4ksrYAG6l5KPRGQeRbH2GU+GtL3EbNBfX6rXo0aOH0e1n7mQwecc1knKKUWl05NjW5kZkJEM//Iy4uDiGDBlCYWEhI0aMoKioiN27d9O5c2e6d+/OoUOHSElJISkpiYMHD+Lp6cnKlSsN952fn8+qVat45513yl1v6doqv/MlDpVrUMFnMCKpguRNkym4HopVyz7oVEVo1CrWLppOeno6qampnDt3juvXr+Pj40OHDh2wsrLi7bff5tNPPwWgdu3anD17FigprXrVJFAmiGQ5ZiK2i37EduEP2LvXQiwWc//+fXr27ImPjw/37t3D29ubNm3a4OjoiJOTE3q9njNnzrz0RuF6nY4GPh2RSGVUsLbkw45efODriVgiQWRqTod+A+jdtTNvDR3OL6Gn2H/hKkHhN+nXrD4961RGJBYhsbBDLJOjyU0l72oQMb+tJDo6GolEgkQiYf/+/VSsWJFNmzZRqVIl8vPz2b9/PxYWFqxateqlno9AIBAIBALB8xB6IgkE/2LdGlakvos168/EEhSZTGJ2MdrHsk9EQH0XKxwsShoWjxw5kpiYGKysrNixY8dLW0thbg7Xjhwi4WYkFrZ2NO7YDWf3WoYMi4SEBHr16kVKSgpbtmyhWrVqT2wS7eHhwcmTJ/nqq6/o2rXrS1vj88hMjGfrzMloVCrUymJEYjHXDh/Eo3tvo/1K++ds2bKFnTt3Ym5uzpgxYxg2bJghIyg5OZlz585xYPuvLFswlx4NaxvdR48m9ZApFHgPGYlcLjcE9B5VXsPo7du3M336dKNSmMTERFJTU5/6PCMiIhgzZgwSiQR3d3fmz5/P2rVrmTZtWrn7v/nmm6SkpKDValmzZg21a9cud7/nlZiYiL+/P9evXyc/Px+ptOyfs9jYWMN5h4SEMG3aNExMTPjll1/+sH+Xu6M5F2Iy0JaXqKWHX3b/TtWqdobrWatJKxLci1CqtVg07AhA/rUgbDu+h1V9L5x+n42bmxv16tVj3rx5dOrUie3bt1NQUGAof6tYsSJeXl5IJBJ8fX355ptvSh5Or2fEiBHMmzcPGxsbujesSFBkMgWPZSMB6PTww5ZApuwKx77z+4btysQoim6dQacuxtTKli1btjBmzBjmzp1LVlYW33//PTVq1GDXrl14eHjwxRdfsHPnTgICAkhKSqJ9+/ZYWFhw4MCBZ/kWPbOO9lbMiC4/qGkuFrM2OARvO0tmzJhhdFtpo/BHPZqJ9zJo1GpWTJtK/v07SHVqxIBeJCIqNYuo1EyaNHWjR48exERFYamQY2plQYFKhVwq4eTtWOIys9HrdOjVSopirqBXK5FY2KLNz0ChMEGhUCASiUr6WUVEkJaWRkJCAq1bt0ar1aLT6bCzs3up5yQQCAQCgUDwPIQgkkDwL1fF3owZ/vWY1KkWfX44xf2sQkOfF5lEhIlMwtcDHpYBrV+//qWvIfnObbZ/+TlajRatWoVIJOLmqeNYN2hKeno6ZmZmJCcnExwczKVLl1i4cCGzZs16YpPomTNnolarGT9+/F8aRNLr9ez9ei5F+XnwIBCk1+nQqFRcOrgXZUGBYd/S/jmurq5ER0czfPhwZs+ezaBBgxg8eDDdunXD3d0dExMTmnq1RyuSIBJL0OseDRaIkMjk1G3X4Q/XpdPrOZaZR2BaNgDNi/I4evQo7dq1o2/fvmRkZHDt2jX8/f3Zt29fmebJXl5ehkwmHx8fQkNDqV27NqdPnwZKstDi4+OfGECCkuw0mUzGsWPHykyYehlKSwaftmTpyy+/JCgoiOvXr7NgwYI/XM9Qz6rsuByPVm2cfSMSgb2FAg83W6PtwddTytxH6STE/LCD6FOjy5S/PV5W2KJFC0OmSVhYGNWqVQNKprm1bdsWX19fAHzrOOFewYKbScZ9kUxlEvp7VKJT/QpM2RVutBaplROu7/2MmakJNudWoFQqDRPrHnXy5El69uzJqVOnsLOzo2/fvvz+++9PvE4vm4uJnGEuDmxITDfqi2QiFtHEyox2thavbS2PW7x4Nbq4aGT6hz2RrscncyA8inrV3KhcpQqHg4PxreeOi5UFwZG3sTRRUNvZia4NarHx7BVuJqWhFYnRFmSh16iQmFVCbu2EvSifnj17snDhQt5//30qVarExYsX6dy5M82aNcPX1xe1Ws2YMWP+svMXCAQCgUAgKCWUswkE/xEWCil7x7dlcpc61HG2pJqDGUPbVCV4kjfuTpav7HH1Oh17vv4SVVERWnXJaGy9Xk9uXh5fLl7C3CmTAWjYsCFSqZQmTZoQHR39h02inZycDJPi/kpp92LIy0gzBJAepVGqyMtMN3z9eNBAJpOxePFi1q1bx8yZM432EYlEuDVuhlPVakgVCuSmpshMTLBydGLgnIXITUyfuKZirY4+V6IZFRnLpqRMNiVlMi1DSZNtBzh4+AiHDx/mzTffpGHDhgQGBv5h8+Q7hcXEFCnpeyWa6XeTiSooBkChUKDVag19rErLhh7tXVXaTys/P9/wfXxRqbnFrD0Zw3fBtzh7LxdraxvDbeWVDJYqLCzE1NQUS0tLWrVqxfXr1//wcWpWsOSLXg1QSMUopCV/Js3lEuzN5QQMb1GmF5JKo0OnL7/8zenNL3CoXKNM+ZuNjY1RJpmjoyPe3t60b9+edevW8d5775GYmMjChQvZvXs3Pj4+/PTTT0jEIraObsOgVlUwk0sQi8DBQs6nXWrxRa/6KKQSZvjXxUT68M+7xMIWuUKBk5UJ1Z2sOH78OIGBgdy6dQs7Ozv0ej0zZ87k/PnzZGVlUalSJczMzCgoKKCoqIi0tDR69uxJhw4dGDdu3FN9r57XbHcX5tZ0pbKJHDFgJ5MwvooTWxpXR/wSmqY/j7Q8JcVXQ40CSAC1nR34tGt7xEUFJCYmYmNjQ2JWLq42VqTlFSCViLmXkcW3h46TkpOHrYU5elUh5vX9EMkUiE2tcGnSnvycLNauXYulpSUpKSnMnTuXDh06sHr1aiIiIoiJiSE0NPQPg7ZP4/FedI+LiIjAy8uLtm3bcu3aNQCGDRtGdHT0Cz2uQCAQCASCfxchE0kg+A8xk0sZ4VWNEV7VXttjxt+MRFVUZPi6pCHtNdLy8qnqYEfC5XPYVnYjIiICrVbL1atXqVGjBm5ubuzdu5eJEyeyZMkSQ9+fv1Nj6PzMjDIjvwG0Oh0/Hz9PQk4+Xbp0MfQ8etS+ffv4/vvvKSwsLLepuFQuZ/CCJaTFxZKZEI+lvT0Va9b50+lji2KSuJpXSPEjmRyFEikRGvjufjr+/v5EREQYbntS8+TdKZlMuhFHslLN6ex8zmXns27nLhQbVtCiXt0/ncanUqnw9fUlMTGR3bt3/+G+TyPgdAwLDtwEQKnRYS6XUMHaBLX2YTbO4yWDvXr1Mmx/tCmxVlu2FOxxbzavjE8tR/aEJZCaq6RhJWu6NnBGIS37/fZ0t0caLEJdTv2buVzC0p0HqVq1gqH8zcfHxzA57NGG8ZMmTSrz5l6lUpW5T1O5hJk96jPDvx4qra7MmjxIpEvK75yy8iBDaotUr6FBUQwjW9Xkp9BMPD092bZtG+np6bRo0YLr168TFhbGjBkzcHR0JCIiggoVKhAREUF2djbffPMNU6dOpU2bNnz22WecOXOGNm3a/Ok1LE9sbCytWrWibt26yOVyQ4ZhKZFIxCAXBwa5OLB27Vq+/PJLwtq2Rf4HU8kWL17Mrl27jPqAlcrOziYkJIS+ffs+13oBjt9Kw0RbbLRNo9VyMzmN47diyCwooo6tI4hE6ERivg85g1gkQiISk5KTh1QioUilRqMXoUeP2MQckUiMJvkWbjUcSFQq+frrr1m7di0///wzjRs3xsvLC71ej42NDWKxGAcHB3Jycp557Y9eb71ez7p16/jyyy9JTU0lPDychg0bEhsby7Rp0ygsLGTLli2IxWLGjRtn6HknEAgEgrLOnTvHpEmTkEgkNG/e3GhC6B/RaDQMHz6cmJgY/P39mTJlyiteqUDw8glBJIFA8EoVZGfxaNzDydKcdrWqsufKde5nZjPhq2/Z3LIdTk5O9O7dm7S0NDZt2kTFihUZMGAAAwcORC6XP/kB/kK2Lq5GI79LScRi3vP1pG67DnQbVxIUaNWqFWAcQHjrrbeMjiuvgbljlapP3TRar9ezITHDKIAEoCssQGlmzvrEdFqfOmXUBL20ebK/vz86nQ6xWIxap+Oja3fIvxdD6T1pAXEbb8RtfbD9dRWBgYHlPn4puVzOyZMnuXTpEjNnznyhN6SX7mWx8GCU8Vh7lZa4jEJyUvIN2x4vGSxla2tLbm6u4eunnTTmZGXCmPY1/nS/+i7WtKpuz9k7GRQ/ska5REwlOzM61HF6qsd7ViKRqEwAKS8znd+WLaKKSkWV3DuG7YVKFZPGfsWxi1eo4OzMjBkzyMnJ4eOPP+bEiRPodDpkMhlfffUV48ePx9LSkkaNGuHg4MCNGzeYMmUKIpGI/Px8WrZs+ULr7tSp01ONqu/Zsyft27dn9uzZT9xHqVQaphSWJzs7m127dr1QEEkP5MqtsVVlGbaVBpAAalZ04peNGxkxahRJKVlkKfQ4tuzEnRuhOFhZkZKdg5lCxjtt27DmxFmci+8TrS5i2fffc/fOHSKuXqZz584sW7aMefPmUadOHQoLC/n222+xtLSkXbt2aDQali5d+sxrj8wrwrFVWxot/I4OdlZQUHIOpb3oOnTogImJCdnZ2cjlcipXrgxQJmB19OhRfv75ZwICAv5waqdAIBD8V5QOiTExMWHQoEGGwPyf2bdvH3Xr1uWXX37B39+f5ORknJ2dX8OKBYKXRwgiCQSCV8qxSjW0moeZHxKxmKZVXGlaxZWdlyOp16QJGRkZrFq1itatW5ORkcGsWbPw9/cnPj6edevWcfLkSQ4dOkT37t2xsrJCr9cjEonK7evyOtk6u+BcszaJUdfRPZbdkl2s4t1Z86i/bS9yuZwNGzawZs0apk2bZtRz6GVS6/UUaMtO0VJfu0z+up/IlMno1b2zIaAFJW/U9+/fb9Q8uW7vAYRNGIashadhP71KhUguBz0kiGW0MH1YUldcXJKlER5e0otHr9ej0WiQyWRYWVlhavrk8runsfr4XYrVZbOHNDo9BUoN9zIKSiZ7PSFLzczMjKKiIvLz87l+/Tr16tV7ofWUZ+UQD+b/doNtF0vK6HR6PV0bOPNl7wZIxK+vDCv8SFCZDD2tTsfmc2H0aNqAouQEJK6uiMVisrOz8fHxYebMmYaeS7Vq1SIoKIj09HQmTZqETCajdu3aDB482FBWqikncPpH1Fodd9MKkEvFoNcb9eeSy+W4ublRq1atMr//LVu2JD8/3+i+Zs+eTczt29yIDKdShQrkqtQkJKdQ8KD/2BdffEFISAhisZi1a9eyatUqgoOD8fHxYfv27SxfvtzQrD83N7fc5vSPa1fTgTV2zfFOOWooaWvg6kwDV2fUIinObbugRczdQgXmfRfgoIOiuGvkoEDmUJdPOlfm5KVzJGZl4FrBicjzx6hRowZfzJmDq6srbm5uAPTr1w+9Xs+hQ4cMJaI//vjjM13rUnEZBcyIjOPIvTsknT7Jrbf6sKm9H66+nZFERZEcH8/ly5dRKpUcPHiQ0aNHc+3aNTw8PNi7dy+5ubm88847yOVyBg8ejLW1NYGBgUIASSAQ/KclZBex4+J9knKKaVTJml62JW+lSwPzvr6+2NnZERMTw969e9m0aRMNGjTgjTfeYM+ePdy5c4fk5GQGDBgAQIcOHbhw4UKZkneB4O9OCCIJBP9Rf1QC8vPPP7NixQrmzJnDG2+88dyPodfruXbkEFqN2mh7ZEIKB8JvUsHaikGj3yPoaGi5pTWPcnJyYsuWLYY3O40bN37udb1MPT+eyo55M8hKjC/J5JFI0Ov0eL85hLvmDkYZFy/a0+TPyMVi7GVS0tXGb/IVrduhaN0OR5mUb70aAA+znsRiMWvWrDHav17/gdi2MG7erbxwisLtJediV6sWnT/+0HAfb7zxBl5eXobglFKppGvXrohEIkQi0Qs31Y5Oy+fxQjG9VkPq9lmoUmN4s3cPflzy9R/ex7Rp0+jUqRMmJibP3Dz+8RKsVatWlZl2l5WexrHvxuOo15OUlELnLp1ZOnAZ48aNY/v27SxYsIBRo0Y90+M+j4yE+2jVxr9v1+KTuJ+Vw75L1zg+fCTLV66iadOmZGdno1AokEqlhpLGNWvWsHHjRszMzPj+++8B+PzzzxkzZgw5OTmIxWJWr15taPz9Z345E8vXh6LQ6vTo9GBvKuKX38/Qvq4LvXr1YvLkyfz+++9/+vsPJc8nMWGXyLl/j7frV+enI6dQ63QsmvAewxcuJTw8nISEBEJDQ7lx4wYLFixg6tSpxMXFsXHjRpKSkspt1v9nKliZ0NrPj/CDWTTKvIJOJEIEiNCTZl+LSWNH8dXOk+QWa5A+iOGaVGmEOv0+IpGIw45NaFjhDsmFSpq1aEGvXr147733OHKkpEfZ6tWr6dixIy1btqRChQpPtaYnicso5IPNl7mZkocaPWKVhgqT16Ft7Ej2rP+RVLMuWZGRfPuguXxSUhJXrlwhLCyMBg0aMHbsWHbu3ImVlRUnTpzAzMyMpKQkLl26ZBRAKg2+PVqOKRAIBP9mW87dY/b+6+j0etRaPfuuJrLw9yhmt7UwDIl5vKz+nXfeYdq0abzxxhts376dhQsXMmfOHEOJvbW1NVlZWX/yyALB348QRBII/iOUhYUoC/Ixt7VD86D30JNs27aNkydPYmJi8kKPef14CNeOHCzTeLq+awUaurlyVW9CZl4+4eHh5ZbWPKpBg5Lgx9+hofajTC2tGLxgCUm3b3Lz9AlS7txGIpWSnZxMSEgIrVq1IiEhgbS0NPr168fmzZsNxy5atAixWMwnn3zC9OnTOXr0KAqFgl27dmFjYwPAV199xZAhQ3B1dX2q9Yyv4sTCmCSj6VYApmIRH1R5urKqBpamWEjE5D+S1WTStgMmbTtgLhEzvVYlqjs/HHE/Z84c5syZY3QfLzNLrJqDOXdSjQNJIomUCgPnYSITs/3DdlR3tCi3ZLB0jR07dqRjx47PvYZHS7BiY2PL3O7s7Gw454kTJxo+VZwxYwYtW7Z85uyd5+VQqTJ3ZDKjQFJp5p/MxBT/iZOp3qyFUU+jU6dOGf49cuRIRo4caXSfjo6Oz9XXasu5e8w/cJOiR7LI4tUwbtt1drxnbcg2fJrff4AbJ0NJiYnGzcYKnUaDWqOlmZsLiVE30Gu1REZGEhoaavjeV6xY0ej4x5v1P20QCWBmj/qsszNnbXATbDKikYn0NGzVkjkD2qKQSwm6p8fujf8ZHaNwrUve1UOkNulColJPE98u7Nq/n/DwcC5dumT4ORo9ejSjR48mICDAaIjAs8pXaujz0ymyClSU/vqLxTJk2SAJz0Xeqi1Z38xBWqsu566E8cUXXzB//nycnZ2xtrbG3t4euVzO/fv3sba2xtnZmUuXLrFlyxbef/99tm7dioODA+fOnWPu3LmIxWKuXr1abh+QsLAwdDodzZo1IywsjEuXLpX5uRIIBIJ/iujUfOYEXjcqqy9UadEWZTN01CfcPH0IlUpZpqy+cuXKZGZmkpGRQXZ2NpUqVcLGxsZQYp+bm4u7u/tfdVoCwXMTgkgCwb9cfmYGQauWExcehkgsQSwREysx590hQ5g1ezb79u1j8eLFQEmTwF9++YXz58/TpUsX1qxZw86dO9m3bx8KhYKAgACqVKny1I99bvc2NEql0TaNVotUIkEikVDRpSrm5uZPLK151N+pofbjRCIRUWdOER5yCI1KBXo9evF1Jvm0ovfkGXwweQqZmZlGx3z9dUnmzCeffMKVK1e4e/cup06dKnNuz9pwcUxlR24VFrMzJQtD1EUEfSvYMqay41PdR2d7ayylEgq1Oh4tjhMBpmIx/k42z7SmFzW6XXVO3k43CkYASMQi6jhbUt3x5Y9+v56Yy9GoVADqWBQZlWD16dOHhIQEevXqRUpKClu2bDHKzDl+/DjffvstUDaQ8ao19O3C+b07yr1NplBQtXGz17IOrU7P10G3ynzPdMpClJjx3eFbKB/053qa33+A83u2odNoKW2yVqRWc/leIpGJqRQrldyPi6Nz584sX74cALVaTWpqqqGRupubm6Hk8sqVK890PiKRiBFe1RjetirFah0KqRjxI2WKeUp1mWPkFaojlspJ2jqNmo2q8+7IkZw8d86o9xvAgAEDyMzMpFGjRoafm+ex+3I8hUotj8aPdcpCxAozxJlKlL8fQJeZiSojnaCkeC6dOU1GRgZarZaioiKys7MZOnQo1tbWHDx4kM6dO9OyZUumT5/O2LFjeeedd5DJZBQWFtKsWTO6d+9OcHBwuX1AwsLC0Gg0NGvWjCZNmtCkSZPnPi+BQCD4q208G2s0yANAr9OSHvgNzn4juFsgo5JMWe5r1Z49e/Lee+8ZPlxq06YNR44coWXLlhw9epS333779Z2IQPCSPF13UYFA8I+kKipk07SPib16Ga1Gg0alpKiggJAjh9HHlkw769mzJ6GhoQwcOJDp06fTv39/mjRpwpEjR7CwsCAkJIRTp07xxRdfsGDBgmd6/Nz01DLbbian8ePRMyw7dJzEhHg6d+5M06ZNcXR0LFNa809x/3o4144cLAmYPXjRINJpEWvVBH79BW2blfR9Avjhhx9ISEggICCABQsWoNfrmTt3ruFTqy5duuDj48PcuXOBZx+xLRaJWFynCsdb1mGmuwsz3V043rIO39ap8tQj0qViEXuaulPNVIG5RGz4r4qJnL3N3FE8ZWPql6VlNTs+9HNHIRUjk5Scg7lCQkVrE1YMbv5SH0uj1fHexkv0/ekUi4OjWBx8i/d3xeD/5TYOHwnh8OHD5ObmkpyczM6dO1m6dCkLFy40HH/x4kUaNWqEVPrXfEZjYWeP/0dTkMoVSOUKAGQmJphYWNJ/+lzEkrLT5V6FxOwiilRl+1gp4yNJDJjIlulDcXFxoVWrVk/8/Q8MDGTw4MEcOXKEfv36kZuWZnRfle1sGNiyMaPbt0QulTBi8CCcnZ1p1qwZ1tbW1KtXj0WLFpGZmUn//v1RKBR4eHjQrl27P+xJ9ke/cyKRCFO5xCiABNDI1abc/W19R1J92Dfs272bWrVqERoayv79+zl79iw1apQ0bd++fTtHjhzhu+++MzR9/7MpjOU5diutTNBOGR9JUsBEktd/goltTSoOW4bUsgJS14Z8+fVSateuTXBwMEVFRQQHB/PNN9/g6upKbGwsCoWCVq1aUaNGDewq18SqSRdSTNx4c9ZqTM0tgZI+IKX9kwAGDx7MxYsXWbVqFV9//TWDBg0iNDSU6dOnP/P5CAQCwV/l3LlzeHp60q5dOyZNmsTd9EIebzlZePMkqqTbpB5ey9iBPUhKSjLctmzZMnbt2gWUfFBw8OBB+vfvD0CPHj2IiIjAy8uLNm3avPYPmwSCl0HIRBII/sUij4dQXJCPXvfwL9+l2ASaVHImIjTYMFns7NmzHD16lK1btxodHxsbayj/aN68eZmSpT9jbmNLbppxIKm0Ia1EJueDNWsQi8VG9/toaU1p341HU33/aFLTXyUs6Dc0SuNR7MVqDSYyKTqNhv2/bkX6YPy7p6cnGo2Grl27snnzZiIiIkhPT0ehUDBt2jTWrFlDpUqVeOedd4iPj3/uNbmZKhhZ6ekyj550/MlWdbicW0hMkZIqJnJaWJs/15vbl+F9H3f8G7mwNyyBrEI1Lara0rFuBaSSlxvQ+uFoNMeiUilWl/7O6NEi4XhMHmtP38Pf35/AwEAaNmyIVCqlSZMmRgGH3bt3v9AksJehhkdLxv60npunj5OXkYZDZTdqtvRE+hqnHJrIJGh1ZTMGTWu0wLRGCxws5Cya3gngib///v7++Pv7G75eO3EMXRrUMnw9sOXDvmhfvdkDKzt7pk2bxsiRI7GxsTFMzPnmm28MmTKlwdnY2NiX+lzyUceaXLyX+cjPzYPzlYkZ2756SVPxpzRp0iT8/PyeeQ3WpjJEYFT2WXq99ZRkEgJYNu6KRixmcYSU6dOmc/XKZbp06YJUKmXkyJHs2rWL3r17M2bMGCIjI+k77ScWhUSTdj4cqWNVlh6+TW6aOWbht0hPT6dt27YcOHCAsWPH4uLiQvPmzRkzZgwajYZRo0b95QMQBAKB4Fk9PnnNsTgZmUSKWvvwGda8njfm9bwxk0sIGNGSFlXtaNOmDSkpKWg0GsPrZ4AuXbrg4OAAgEwmM2SiCgT/VEImkkDwLxZ9/kyZcrLUvHxOR99j5dEzRF6PZM6cOUybNo3Vq1eXCRBUrVrV0Dvp4sWLhk/On1Zz/z5IFYoy2yVSGXXatkcmL3vbP1F+Rjo81vo5Jj2T74JPsPzIKSwVMtRFBRTm5NCoUSMKCgooKipi6NChTJgwAUtLS6pVq0ZgYCCNGjWiXbt23Lhxg4SEhL/mhB4QiUR4WJvT39mOljYWf1kAqVRlOzPG+9Zkhn89ujao+NIDSHq9nrWnYil6LBCgUxZSpNby84kYTp06hZ+fHxEREWgf9BZ79PciKCiIzp07v9R1PQ8TCwuadO5Ou7eHUtfL57UGkAAcLRXUdrYs9za5RES/ZpWe+T6b9+z7xOeTWp7tKELC3bR8LG0dDP3cpFIpx48fJzAwkFu3bmFnZ4der2fx4sWkp6fj4+Nj6FdV2ksJSgYPtG/fnpkzZz7d2qrasfjNxliZSrFQSLFUSFFIxbzbpiofdHi2fhfffffdcwW43mxeGRN5+Zlmj/7mKlzrokyNJU+pYUfQSUQiUbk/z7Vq1aJ9t15M/3wKxWodYusKqFJjKNboyL13nXXrN7Bq9c8AvPfee6xZs4aJEyc+87oFAoHgRWzYsAE/Pz98fHxe6HXT9cRc5uyLZMLmyxyJVaIVPZy81rOpK4mbppK2ez5JARPR5KaTc3YHxXcuUMHKhPgrxwzlyN999x0TJkwA4ObNm/To0UN4bhT86wiZSALBv5hEVvaNo3/jugDITc1YHxaFWCzm/v379OzZEzBuiOzs7EyHDh3w9PRELpc/81Srxp27E38jgpgrF1E/6BUkMzHBzqUSvsPHPv+JlSMxMRF/f3+uX79Ofn6+UTlRaGgooaGhT3xjNmHCBEMfledRsWZdku9Eo9M+bJ5ct6ITdSs+bGT949EzjOzsjUQiwcvLi+zsbL777jvat29PmzZtmDdvHtHR0SxZsoSKFSui1WoRiUT89NNPz70uwbNRanTkF5dtgK2MjyT7xEaSJTI6vONPhQoVcHJyKtPbJioqCjc3N0xNTQ3Hzps3j82bN6PX60lMTHzqoMS/wVf9GvLmijMUq7WUfngrl4pxslTwvs+zBaQBGnboTMLN69w6ewqtWoX+wfOJtbMrgWatmPjlYWQSERqdnl5NXOlfTUt6ejqenp5s27bNaAJcbGwsu3fvplOnTuU+Vtu2bfnxxx/x9/cnISHhqRrbd2/oQqd6zly6l4VSo6NJZRusTcs2CH9VWlazo2t9Zw5FJlNYTilhqdJeTXfWfQqVK/L5uu8JCgoq8/MMUFTNBxSXyDm7A6vmvUjbM5+UX6ejSruHbbOu3MmX4kpJ77alS5cyc+ZM1qxZg0wmQ/nYBxgCgUDwsiUkJHDs2DGOHDnyh/udO3eO0aNHExsbi6WlJW+++abRUIBFv99k7akYVBodOj0cuZnKN0FR9DO9wf79+7l27RqK/CScBgeQFxlK8a1TODb2JfvEBjasnMyUCaNZuHAhmZmZpKWlUbNmTQDq1Knzh+XTAsE/lRBEEgj+xep7+xF/PRy1srjMbTqtljNnzyEzMSkzTvvRQNLUqVOZOnXqcz2+WCzB/6MpJEffIurMCbRqFdU9WlG1UVNEL7mvjp2dHUeOHKFPnz7PfOyLBJAAmnb15+rhA0ZBpFJanY6fj58nKTuXz5f9hFNr7yeOV583bx4jRoxAqVQik8nYuXPnC61L8GwUUjFmCgl5jwWSSkuCbExlfDOrJMuovBKd2rVrs2OHcVPradOmMW3atFe25r+z+i7WHJjYju9Dojl2Kw2ZREw/D1dGelV/ruCKSCym2wcf4/FGb6LOnECjUuHW2IP3Q/K4ezsbtVZPaexk15mbBExdwLUTB3F0dGTGjBnlToB7UsP+pk2bAtCwYUNiYmKeejqiTCKmdXX7Zz63l0EkErH4zcYEXnNi7akY0vKUmCukxKTlo9IaZ0ra+o5ELhHzQcea1KrlXu7P88mTJxmy5hxWrQcYtjn1n0XB9WNkHl5JUVwE77/dk8H9e+Lm5sYHH3zAxIkTCQ4OpnXr1gwbNoyIiAj69ev3qk9dIBD8h+j1ei7HZXE9MZdLwbtQqTX4+flRr149lixZwqxZs9i3bx/37t2jXr165OTk0LZtW+RyOf/73//YtGkTa9euxdbWlpkzZ7J65yFmjv8Aia0rqqRbiE2tQQSm1ZvzTcI1bkRGolQqadWqFQffa8r63/K5ePYU/3u/C99E/4qZvsgweW3WrFmMHz/+r75EAsErJwSRBIJ/sZot23D5wF5SY++UTA17QCpX4D1kJLIHJR+vkkgkomLN2lSsWful37deryc9Lpb8rEzsXStj62g8wn7EiBHExcVhZWXFhQsXOHLkCHl5eVhYWNCsWTNyc3MJCAjAy8uLkydPEhwczIIFC9DpdHz77be4uroycOBAAFJSUujSpQtLliwpsw5rpwr0mTyLvd/MRVVUaHSbRCxmrE9rpHI5bQa8Q8tWrQyj6MG4B4y7uzsHDx40Ol6pVBpltgheHZFIxLtt3Pj5RIzRGF8AE5mY4W2r/jUL+wdzszfn6wGN/3zHZ+BUtTpOVasDcORGCvHZV4z6VOh1WhL2LKKC91BS1CY4SyRPnABnbW1NUlISpqamJCcnG+7j6tWr1KtXj4iICD744IOXuv5XSSQS0aOxCz0auwCQnq+k7VchPF5uW7Iv9G76x8GxxpVsOBeTieqR34fSPiCmMglbxramUSUbw21Lly41/PvEiRMAHDp0SHgOEwgEL0VanpIha84Rl1mITqcn60w4xalx7Nu5jQNrvmHJkiXcvXuXoKAgkJlx5l4uY3t4onCswu6gpXg1rUtmZiZFRUXMnj2br776imKlCom1M1K5GZrsFMhOxq7HZDIDv8Gpy3vMW/w9F44fJiMjg2YN6+Hm5kavXr3oUMeJ27164uHhwYgRIwCIiYlh6tSpFBUVcfv2bbZt28abb775F181geDlE4JIAsG/mFgiYcDM+Vz6bQ9hh35DWZiPfaUqeA4YRLUmHi/lMc6dO8ekSZOQSCQ0b97cKD34j4SGhnL48GFDo9unFRERwZgxY9BrNEgKchjQrD5iqRStWk3leo3QPRjnvXz5cn7//Xdq1apFhQoVGDlyJAcOHCAtLY3Vq1dz+/btkhcZDxQVFbFy5UqCg4ORPDLBqvQT+okTJxo1+X1clQaNGPfzZjZP/x9pcbHotY+Wk4iQyGQ09O3yTOe6YcMGioqKnjoLQvDiJvrVIjw+h4v3sgzTxUxkEtrUsGfcM/a2Ebx6oVFpFDxWulU6MSflyFoGXN7C+p+WPDH7b8yYMfTo0QMvLy8cHR82oj927Bg//vgj3t7eVKr07P2b/i4cLBTM7lGPOYHXDWUaYlFJWeHkLnVwsfnj4M7g1m4lJR6PbZeIoZqDuVEAqTwJCQl8+eWX/PDDDy92IgKBQAAMX3ee26l5hklpGokpUtf6jNlwkYrKikTuu4TM3JaxO6O5kZRHcfwN0lKSWblqNSu+X4ZeWQAaJS1atOD8+fMUFRUhksrQA5rsREQKM/RqJZmB34JeT37kMfbeLEJZkIdEImHPnj3o9XrDa8MBAwbwwQcf0LVrV6DkdRuUDG+YPn26EEAS/GuJHk3f/idp3ry5/uLFi3/1MgSC/7zk5GSjSUhTpkwxTEL6I88bRFKr1ejUKn6eMIqAkJN4urtRxc4GAIlUyqpTlzgXfp2Ofn707eHPqOHDuBAeydlz59i9ezcikYj9+/fz5ptvcvfuXby8vEhOTubLL79kxYoVZGdnU6FCBVasWIG5ubnhcZs2bcqFCxf+dHS7qriIA8u/JfbqJSQyGXqtFnM7e3p9/DkOVao+07m+KrGxsbRq1Yq6desil8vZtm0bISEhT5wqNnbsWCIiIhCJRPz4449GE0f+jUpS5bMJikxGLBLRuX4FmlS2+csbiwvKmvfbddacjKGcQXAopGI+61qHEV7VXv/C/mYiEnJYeyqG2yn5VHc0Z0TbajSubPNUx56OTmfsxkvo9SXluSKRiMq2ZvwysiVOVq8+m1UgEAig5HlswIozFKkffnCgSrlL3tVD2Hd+n5yzO0CvQ50eh0OPTwAojAkj48BiHHt8QsqueYh0GkRmNrTt0JWTezcgkcrR6vXoNQ9D5SJTS/RFeSCSYOvZH6fMcGLuRKNSqbCysmLcuHEUFRVx7do1IiMjycnJoVu3buzevfu1XxOB4FUSiUSX9Hp98/JuEzKRBALBM7t0L4uVx+8QnZJPZTszRreT4lXTBKlUSm5uLu+88w6bN29m8ODBfPTRR1SvXp1+/fphamqKXC7no48+AkpKRrp164ZSqWTHjh3Y2dmV+3gZ8XHcOHkMVVEhVRo2ISclCY1ahVQsxspEwYrQs2h1eiwUcpQqNQGLF5GTEMeCrxawY90aKthag50TUVFRAPTq1YuePXsSGxtLpUqViIqKIiUlhaSkJEJDQ1m1ahUrV67k448/Bkom0zVq1OhPA0gAchNTen86nbzMdDLi72NubYNDlap/uwBEp06d2LhxI1ASVNq1a9cTg0hTpkyhWrVq3L59mylTprzWXk2LFy9m165dT2xMeeXKFSZPnoxGo+GTTz7hjTfeeOFG6SKRCA83WzzcbJ/7PgSvR68mrmw8G2f0puJRXRs4P/HY0qxGiUSCu7s7M2fOZMaMGYbfC4D9+/czb948RCIR/fv353//+99LP4fXoYGrNYvfbPJcx3q6O3BxekdCo9JIz1dSx9mKZlWEoKpAIHi9olPzET/2tFM6KCB58xQkplY49PyU7FNbSN74KYhE6HU6TCrVQ6/TgVYNIjFihSWXbsag1+vRqJUgKsk+l1jYoc3PLAkgSUr69uVe3IdnR18S7seh1+vx8/Pj8OHD6PV68vPzkcvl+Pj48PXXX7/uyyEQ/KWEIJJAIHgmG8/EMu/ADYo1OvR6uJtewPmYTN5wVZGenk7btm05cOAAY8eOxcXFhebNm7No0SJGjRrFoEGD6NLlYUlXcXExwcHB/Prrr6xatYopU6YYPZZeryd0/WquHfkdrUaLXqclIvQw4fcT2H8pHEdLcyxNFIz0aoFYLOKrA6EUKFXMX7wUkQjcHe25l5ZBSnYO9dRqTBQKqteoQXZ2Nl9//TWWlpbY2Nig0+mwtrbGy8sLiUSCr68v33zzjWEdu3fvfmKA5Uks7RywtHN4sYv9EkUm5rDlfBzJOcVUVRRwJOQo7dq1o2/fvqSlpREcHIyPjw8LFy7ks88+A+Dy5ctERkZSrVpJJodMJjMq9XvVlEolV69e/cN95s6dy969ezEzMzNse9FG6f9lj5enTpw4kenTpxsFVvLy8ujduzdqtRorKyu2bNmCpaXlX7LeBq7W+DeqSOC1JKNAkqlMwgivqn9YrlW7dm1Onz4NwPDhw0lPTy+zT+PGjTl16hRisRgfHx9GjRqFtbX1yz+RvzmFVEKX+k8OyAkEAsGr5mSlgHJi17a+Iw3/ViZGobx3Db1IhDY3Hcden6FwqU3m0XWgUaEXidGk3kGTFgOAxM4VbX4WqIvRqh4OoRFLZejUKrTKIo6EHKW4qBCxWMzly5dJT0/HwsKCLl26cOjQIU6dOkXv3r05ceIEtra2fPTRRwwZMoTly5djY2PDhQsX6N69O0lJSZw5c4YPPvjA0ENJIPinernjkQQCwb9aer6SL3+7QZG6JIBUKj83mx/nf86MhcsAeO+991izZg0TJ04E4O7du4ZpR82aNTMcV7qtSZMmREdHl3m86PNnCA8JQqNSodeVvEFUFxdRx8meT7t6Y21qQlhcItsuXmPlsXNIJWL6eDTgjcZ1qFvRibdbNWG4V3OcrS3pVLcGlnIZUVFRKBQKtFotvr6+1K9fH4AWLVpw48YNAMLCwgyBE4CgoCA6d+78si7ja7f08C36/XSaLefuc/hGKhvCcrEd+iNLf9nN4cOHGThwIJ06dSI0NJRWrVoRGhrKZ599xttvv03lypUN9zN16lQ+/PDDV7bOIpWWoMhk9oYlEJ9VyM8//8zQoUMNtw8fPpyOHTsyYsQIZs+ezd27dykuLqZ///707t2blJQUALy8vF7ZGv/t3NzcCAkJ4cSJE6SmppKXl1dmH5lMxsaNGzl+/Di9evUiICDgta1v8eLFZb6/i/o34ote9alZwYK0LVPI2zENRdA8hjYtm9mo0+m5m5bP/cxCo8zC0ucEKCmZfeeddzh27BhVqlRBIpEgEomQPGjQHRAQwM8//wzA7Nmzy51sJhAIBIKXq3U1e8zlf5z/ILVyosLb87Fq5o+2IIvM4J9I2vgpxTGXMavlicvoFYhNLBCbWSN1qIJjr89AVQSARPHwwyi9RgU6DVJLB1R6CY5NO2Jiakrbtm0pLi5GqVTy4Ycf0qFDBzp27Eh+fj4BAQHodDquXr2Kh0dJ31Fvb29OnTrFhg0bGDlyJKdPn2bNmjWv7iIJBK+JEEQSCARP7WBEcplUYr1OS3rgN9h1GMGJhJLR6FOmTGHp0qXMnDkTgGrVqhkySq5cuWI4tnTb1atXqVGjRpnHu7B/J2plsdE2jVZLaQTLRCZFJBLhYGHOuA5taFTJGfR6Kttak5KbD0Bidi5anY4fj54hIT2DChUqsGHDBmQyGUePHiU4OJh69erh6OiIt7c37du3Z+3atbz33nsAREVF4ebm9o+dLhR2P5ufjt2hWK1D++C6qZBQqJcydmMY3bu/QWBgoNExd+/eZcmSJSxbtsywbcmSJdSrV++VBWj2XEnAY24wH2+7yue7w/FddIQlv+zFq70PUJIho1AoOHz4MLVrl0z6S0lJISoqih07djB27FjmzZv3Stb2b6YqKuTKoUC2fzmNXV/NIScmGrmsJI1fKpUikUhISEigV69etG7dmpiYGExMTKhYsaLRPvn5+XTo0IH8/HxWrFhR7hTDF/WkzDSRSMSA5pUJnuRNdvRlMqLDmDRuFOvXrzfab/fleFrMP4z/8pN0+u4Y3l+HsnDlRho0aEBqair29vao1WqGDRvGmDFj8Pb2Nhx78OBB3N3d/7KMK4FAIPivE4tFrBnaAguFFBNZyVtYyWOvSSUWtoik8pIpknXbYd9tIpqMeMSmlmhyUiiIDEWnzEdXmI0mI57UHV8gkskRm1khkspLHwm9uCRYZeU9FJ0yH33lZhQVK7l06RIAOp2OqlWrkpubi7W1NR06dGDXrl2cOHGC9u3bG9bToEEDACpWrEiDBg1QKBRCKbDgX0EoZxMIBE8tt0htNOoZHk5CSj+6ju8vbUFzuS9ubm706dOHOXPmIJfLuX//Pm+99RYbNmxAoVAYjtVoNLi4uFCrVq1y++zkpqWW2XYzOY3jt2JAJMLJ0oJqDnYci7pLfHYOpnI5DpaWWJgocLGx4vOdv6PSannrnXGYmZiRu30liYmJtG7dGmdnZywtLcnOziY7O5u0tDQCAgJo2LAhDRo0oEOHDtjalvTEKS8b459iw5nYMt8znbIQscKMQrWGfUFH+fzj8YSHhwNQWFjI2LFjWbt2reF7FRQUxOnTp/n1119fyRov3cti6q5wo3Kk/GuHUVRpxRf7I4GSsbmlDb2bNGnCmTNnsLa2pkWLFpiZmeHr68vixYtfyfr+rfIzM9g07WOKC/LRKJUAxF8P5/LBfdTu9Rbp6emYmZmRnJxMcHAwly5dYuHChaxYsaLk+Px8Vq1axcGDB7GwsODzzz9n9OjRZGZmcvDgwRden1an58TtNG6l5FHByoS7x3YxdOhQQ3B6+PDh3L9/nypVqlClShVmz56N7EEArKioiPr163Pu3Dl27NiB95BJTN50ioTApTj1mQZAXGYh6/Ls2XrwJGsWzSAwMJDjx4/TpUsXfHx8DOu4e/cuixYtMgRbH30D8E8dTiIQCAT/RA0rWXPysw5svxjPpbgsYtMLuJ2Sh/axp2JVagy6wlyK48LRKQvQ67To1Ep0ynxM3VshlptiUrUJGQeXIbZyRGpui53vKDIO/YBILEadnYLCpTZihRlSW1fM67Yn9+QmJKZWtGrVCmdnZ0aOHEmPHj0YPXo0nTp1wsnJiaVLlzJ//nzDOh79eyEEjwT/JkIQSSAQPLVmVWxRyCQUPjJS27yed8l/cgkL+jWiZ2MXoKTfUVRUFH369MHe3t5Q8jF79mwAfHx8qFq1apl+K4+yrehKQXaW0bYGrs40cHVGIpPR7YOPiTx2hJp16+JUrQbN/ftwZsdmos+fwaeuO/rWgzkZvI0LFX0RiSVYjWnDey1dmNnHg969e6NSqcjNzTWsLT4+ntOnTyMWi/n22285f/48CoXC6A3l39njU9dWrVrFzm8/Q9TBuARNGR9J9omNSGRyavl5Y2Zmxm+//UaDBg349NNPiYqKYsiQIQBs3bqVCRMmYGVlRYcOHahduzYrV658qev+PuQ2xY81RlZnJlBw4wTfXTqIPPMOUVFRJCcnA3Dt2jUAatasSWpqKlqttkwJouDPBa1aTkF2VknD0QfUymJibl5n0c4hHDwSQnFxMQ0bNkQqlRqVner1ekaMGMG8efOwsbEBoGPHjnzwwQfMmTMHsfjFEp3jMgp5e/UZsh8ErmUiHQm7t/PbnrcB48y0hQsXUlRUUo4QFxfHW2+9RV5eHgcPHqRy5cpMnTqVk3bXyYw8gXnttigTo8g6shq9CBQVa/N1FVuqWllhamqKn58fVapUYfny5UyYMIG8vDyGDRtGQECAYVqjtbW1IegaHh5Ohw4dXuhcBQKBQPD0bMzkjG5fHbtL8UzfE1EmgKQtyiMzeAWOvaag16pQJkXh2ONTiuOuURwXgVPfMaTumINpjRaYVm2Kef0OZB5eSVboOjTZydh3+YDMwysxb+BHzrENyCvWImXrNFQ5aVwPS6BWrVps2LCBevXqERcXR0BAAG+//Tbu7u5Mnz6dOnXq/DUXRiB4jYQgkkAgeGqtq9vhZm9GdGo+6kf+akvEIqxMZdRSxbFlxndkpyZj7ViBFr36GfaJjY1lxIgRJCcns3nzZkJCQgAMpTIpKSls2bKFtLQ0Jk+eDMClixf5X5d2WEqNmzlLpDKqN21B7TbtqN2mnWH77QtnyIgvmaARbudBjE0j9GxHI5ahzUsn/cBSlvxmyaZZOYwa8jbbtm1DrVbj6OiIUqlEIpGwb98+zpw5g0gkwtvbm+zsbBwcShpk//TTT6xfvx5TU1NWrFhhKKv6O3l86pqtmZwCicjo+2VaowWmNVpgIhMzf1xbdq/7nm3bttG1a1cAoz5EgGGq3asSkZjL4/kctj7DAbBQSJEfnM2sWbMYPnw4fn5+uLi4UKdOHWQyGaNHj8bHx8fQq0bwdJSFhcSFhxkFkKBkhPsvJy/Sq00LnJ2diY2NJSIiAq1Wa1R2OnPmTNq2bYuvr6/h2BUrVjBkyBBWr15N3759jbIOn4VOp2fQz2dJyilG9+AHI+taMIra7Rnzy0UstbpyM9MAqlSpwpkzZ9i5cyfffPMNS5cuxaNVG7beCKMo+jwOPT9DryqiwtvzKYq5TMbvy9k5M5LBb3gzcuRITp48yRdffMG4cePYunUrMTExxMTEGJqgrlu3Dj8/P77++msuXLjwVBMbBYI/8+gUylGjRnHz5k1+/fVXXF1djfZLTk5mzZo1TJs27S9aqUDw97Hi2J0ykzlLWyzYdhiBxMIWTU4KIqNu3CV/VEzdW5F56AdM3VsaPgwFyNz6GbaNOhi+tmjw8G+cXFOI9aW1XDh6kKysLPz9/Y2y6A8cOMA777xj+PrR1ySP9s570rRZgeCfROiJJBAInppIJGLzqNa0rGaHQirG0qSkLr2BixVTXJMIWv41ibduUJidRdLtmxxc/g05KcmG47OysoiIiGDWrFmGP7zJycns3LmTpUuXsnDhQlq2bGlo7PzOoEF0eWcoEpkMiUyGSCRCpjDB0a0aXd7/yGhtF/bv4sDyb8hMiEcPXLZugkYsM9pHW5iLXc/PKLCsypdffolcLkepVHL37l2Cg4NRq9VYWlpy/PhxtFotTZs2xc/Pj1u3bpGamsr27ds5deoUR48epWbNmq/6cj8VVVEh4SFBHN+0jhunjnE0JIR27drx3XffAVDd0RyJXkfavq8pjgsndcccdMoCpGIRmlMB5MdHsWrVKj777DN27Njxl5yDvbn8ibeptTp+Cy4JOK5evZojR47QoEEDqlevDsDAgQM5ceIEx44dM2QiCSnjf05ZkI9IXHbS3rX4JO5n5bDz9Hl8fHxISkrCycmJ3r178+GHHzJ58mQSExNZuHAhu3fvxsfHh59++on79++zb98+pk2bxvjx4/niiy+ee21nYzLIKFAZAkhQkpmWd+UA9zZNJzwikiNHjvDFF1/Qrl075s6dW7KPWm0oL8vIyGDnzp20bdsWDw8PMs/vRpUeh7Yg09Azw6xma0yre2DXtDO9e/dGo9Fw4MAB9Ho9Dg4OVK9enUOHDhETE2N4A1CtWjUSEhKQyWTk5ubi7e39j8lUFBgrbdIeGxvL4MGDn/q4YcOGlTsI4nk93usrKiqKkydPlgkgATg7OwsBJIHggcScojLbSlssZIWuI3XLVGTKHORSMT+805T3vd3p0cgFvzpO2NTzoujuJcxqtwVAk5tG2q/T0WXeJ2HT52hyUozuV51xn/hfZzN76ifcvHmTHj16GIbHAOzcuZP58+cLU9cE/xnCR2gCgeCZ2JrL2TSqNfFZhdzLKMTVxhRbXR7rPv4WrVpttK9aqSQvM4OspAQA6tWrh1gsxtXV1fAivLxSmdLGzvv27UOhUNDApyO3z51CVVxMpbr1ca1T3yhQUFyQz6lfN6JVqwBQieWoHwsgAUhMLUhePwm9Rk0tVxdq165NVFQU9evXx8XFhaKiIjIyMnBwcKBSpUps3LiRnj17IhaLiYmJoVmzZoYR9y9arvMyxN+MZPeC2ej1OtRKJUilfOTTkv5TZjF+6nT8/PxQFeYT821/RLYu5J/bjnmVhqRtn43v5JVkq5No0aIFw4YNw8vLi44dOz7V45ZXNvdHZYl/Znjbqszed73MJ4piEdR3saKidUlT85EjRxITE4OVldUTA16TJk3Cz8/vudbxX2Jua4dYUvZnuGkVV5pWccXZvRaD5pX0mCpv+phKpSqzrbQPUt++fenbt+9zr+1OWgE6nXFuWmlmGoBy1zS+/PJLlEolCQkJ3L17l4yMDJKSkhgyZAhisZjr169z4MABKlSogE+fIWhy0pBaVzA+h9QY9EW5dPUtmZ6Tnp5OixYtuH79OmFhYcyYMaPc9U2dOpUVK1ZQp04ddI9lcgn+GZ7UpP110Gh1hNxM5VxMJpYmUnIuBRp6fU2fPp1r167h7+/Prl27GDBgAEqlEltbW0Ovrhd5rhUI/k1crE25nZpvtK00q0guETHDvx5V7M1pW2MiUomYNxoNAAaQV6xmcEYGqTU8MLOyRZUURcahVVR1tKBr7xHU7TKYaQuXoWjzJgkbpyCi5MOpaTNn8UbnktcXj2cT9evXj379+iEQ/FcIQSSBQPBcKtmaUcm2ZBzq+b0H/6DBrJ6oMyep1LJtuQ1pHy+VKa+xs6W9A82693riWu5du4JEIkH7IIYl06kR6fXwWEKK1NIB+24T0d+/SqUbW7EwN8fCwoJhw4bh7+/P2LFj0ev1jBkzhkmTJvHBBx/QtGlT6tevT/Xq1bly5Qo6nQ6xWGz4/19FVVzE7q/moCp+5JM4jQYxsP/beXTt3JnAwEDOnz9PpUquXI+6RWhUGpcuXmTZ54eZ42nKlnstnvvxHy+bexH9PSoTfD2F03cyDP22TGUSzOQSlrzV1LDf49O2ylOagfVX27BhA+vXr0er1TJv3jx++umnMm/82rdvj0gkQiqVsmXLFpycnF7b+iRSKR5v9ObC/l2GptqlpAoFngMGvba1PM7F2gSJRASacm4Ugex/SxmdkMvkxcto52CDh4cHVapUYejQoTg6OtK9e3fWr19PxYoV8enUlTvXIzCp2gSxmQ3Zxzagzc/Erss4MoNXUOedmcwb9QaD+61k586dLF++nBMnTqDT6ZA9yH4sVfqclZ6ebuh58XcIJgv+XF6xmr1hCUQm5uFqY0Le5d+MmrQnJibSv39/YmJi2Lt3L3v37sXNzY1atWrRunVrMjIymDVrFv7+/kBJFlNERAQ+Pj7PlHWXlqdkwIrTpOUpKVBpkei1pO7fjVmT7gDMnTuX0NBQAgMD2bZtGy1btmTatGmMGTPm5V8UgeAf7j3vGkzfG0GRyvgDKLlUTI9GFRnSpmq5xyXE3iFj91yWz/0csUtd1HkV6PHtSJxsLBk0aBAjXOWc+fUHNpyJZeVOGe8tXMdwL3eqOpi/hrMSCP4ZhFc/AoHghamVxeg0xu/4tDodK0PPkpiVw8Q580hJSSn32MdLZXbu3Glo7Ozj42NopvxHdBqNUU8dMXpq5VwnZcvnqFNjSN02A21BNgDKO+fJPfwT5+/GkZKUROXKlVm6dCldunShSpUqQMknSnl5eQQHB7Nu3Tree+89HB0d6devH56ennTo0IHbt28/17V6WW6dOYleb5wFUawu+R7otFo2r/iB/CtnqepgS0pyMvVq1+J60Bbe8W6ABD3r1q0jPDycY8eOsXnzZgoKCgD4+OOPuXDhAtHR0XTu3Blvb2/mzp1LsVrL0ahUDoQnkZar5OjRo0Zlc4+Pgd+0aRM//fQTUNII+4MPPiA0NJQePXrQrVs3fH19yczMBEp6aq0a0pzv32lK1/rOtK1hzyeda3H0Ux+q2Ju9rkv60iQkJHDs2DGOHDlCaGhouWUpAEeOHOHYsWO8++67TxUge9na9Hub+u39kMhkyExMkZuaIZUr8B48kmpNPF77ekq1r+WIvJwsKQC9CNSu5lzILaTb4CHUbNyE+/fv07NnT1JTU/n1118ZMWIEOp0OOzs7Wo77DsQiTNwaIRKL0eQkU+GdBWSFrsPBdwTfDPOmoo05IpEIlUqFj48P69ato2HDhkBJE+2kpCTS09MNz0WOjo7cunULQMhE+gcIj8/B86sQ5h+4yZbzcSwNvsn8tTvJsall2CcrK4tt27bx8ccfs3PnTjw9PTl16hSnT582yk5r2rQkqN22bVuOHz/O5cuX2b9/P56enrRr145Jkyb94Vo+3HKF+KwiClRa8sMPE7d6HMWpcUzp3YLkjByjfe/evWt4PA+Pv+73USD4u+rbzJV+TV0xkYmRiEsC/mZyCfVdrPiiV4MnHle7dm0WBezhksqZ4MgUNApr5PKSDy2lUikSiYTZH7/HF70aUN/VhmNLJjJl/EgyMzNJSkpi4MCBQMmE4Uf7AgoE/yVCJpJAIHhhles15NJve1AXFxu2ScRixvq0RmZiSo9JU6jWxINWrVoBJZPZSvuIPF4qU6NGDcNksKd+/PqN0GmNg1jtc86T1vdjcmRWqMUlPXcsnKvhqEyjd8eWyKUS3l+9CYVZ2SCFVqulVatWBAcHG20fN24c48aNe6a1vSrZKUlG1xsgJj2T3yOikIrFVHOwQ1SUjzo/j5k9O3Imo4ANGzbg5+eHs7MzAQEBBAYG4u3tTa1atTh9+jS9evXi8uXLLF68mLfeeos1a9ZQuXJlvLv1ZsPkzcitSjJlipVK+i3YwcK3POjftw9+fn5lxsAvWrSIt99+m/fff59du3bRv3//kmOLiwkODubXX39l1apVTJkyBQCxWIRvnQr41jEuOfqnyClUs+9qAveziog/+xsqtQY/Pz/q1avHRx99VKaBfLVq1cqMo1epVPTt25eCggIcHR3Ztm3bK1nr41lSZ4NCmTNpAhKpDLeGTZCZmODl5WWUrh8aGsrhw4cN/YdeJZlEzLrhLRn88zm0Oj1Fai16ESACdV0b9OYlL13M3v+EpFn/4/bVqyiVSho3boyyIJ/I0CNkJSVwYfc2slSVEclMsGrZl6SAiagz4rm/5E30IjGJmz6j9+45fDj+A+rXr098fDxisZi7d+/Su3dvAMaMGUOPHj3w8vLC0dERgPnz5zN69GhEIhF9+vQx6ovxT3Hu3DkmTZqERCKhefPmRhl8oaGhhIaGGiZpQkm24ezZswkICGDp0qVs3rwZsVjM4sWLadOmzStf76ONp5+FRqtj6Lrz5BU//PuQdfUwpnW8mborHEtNSRDw8VLrRo0aMWPGDHJycvj444+NstMAQ3CnYcOG6HQ6QkJCMDExYdCgQYSHhxuCkI9KyiniclwWmgelmhYNO6LOuI8q5Q7KvDTi4u6xfPlyw/7VqlXj6tWrdO/enStXrtC6detnu2gCwb+cSCRibp+GDGtblYMRyRSrdXi5O9C6ut0TeyPq9Xr+t+0qv0cmGzKfL97L5MfQO8xtb0l6ejpmj7wu3LFjB3Z2dmzevJm5c+eyePFiCgoKyMvL4/Tp00/dBkAg+LcRgkgCgeCFVa7fCFtnF9Lj44wyksRSKdaOTlRt1PQPjn5xFnb21PfpyPXjIYbSHLlezVtJO4kxrUK0eQ3Eeh21CqKpUnQfiVRKDY+W5QaQMjMz6devH2PHjn2la35RNhUqIjMxMQok1a3oRN2KxiVRg9s0A50Wbycr2nXsRGBgIImJiQwYMMAwmrw02+rSpUuGT7xLs8HylRoiYpKwdWyPQmH34F4lBN3Oxu7Qbfz9/QkMDCzT28rKygq5XE56ejonTpxgxowZnDhxwvDmq0mTJmWCdP9UITdT+GDTFfToKVbrKDwfiSotjpO/7+GXZfPZu3dvmSDbihUryoyjj4uLw8HBgcDAwD8oD30+Op0ejU5PWkqSIUsKSoIDUrncaMrh30GTyjacmuLLrkvxfHU1jnyZCG0lMzAtedmi12rImT8N+7EfkWtliyItmeL8PH6eMAq9TououJDDv25CZ+OBSFTSx0zmWA1tXgYy+8ooqjTEqkZTziybgKuNKffu3SM5OZlhw4axfft2Q5C7e/fudO/e3WhtderU4dixY6/1erxsbm5uTxX4KE9AQACXLl0iKSmJ8ePHs3v37le61if1L3qakuJjt9JQaYxLXdSZCahS7lJw9SC61Gj2799fpmxRIpEgFovJzs7Gx8eHmTNnGmUc/H78LIeTZOw9ehZP/3cMpdelWQy+vr7Y2dkZyuM2bdqEiZMbcqktWddPoclOwqplX2x9hlN07ypFt89CegwTJkzg119/BaB3797079+fLl26YGtr+9zXTyD4t3N3smSCr+VT7XsoMtkogARQpNZRkJvDu6M+5capQxQ/8rrKzq7kdU+fPn0M09b69u3L3r17CQkJYfr06S/vRASCfxAhiCQQCF6YSCRiwMz5HPppCTFhl5BIZWg1aqo2akqXcZMQvYa+IR1HvI+FrT2XAnej1ag5H32P8PRsdLpwOtZ048TNaDq1aoLMxBRLewc6jZnAhAkTWL58OQEBAbz77ruIxWLs7Ow4evToK1/vi6rdph1H16/+0/2K1RpMZFL0Oh1BvwUyZ9E3XL9+nSpVqrB8+XImTJiAo6MjRUVFBAQEGMbT1q5dmyVLljDtUDzp15PQP/ImS6cspBgztl6Io0n0CSZ9NJGNGzeWGQPfu3dvFi1aRM2aNQ0NyUvfDD663z9ZWp6ScZsuU6x+WNaklZoica3PkDXn+NLbh6tXLpfbQL68cfQNGzZk0KBBeHh48PHHH7/w+tLzlcz/7QaB15LQ6HTIoo9RSZn3p1lSpT788EM8PT1xdnbm6tWrdOvWDaVSafh09lWyNpUx3Ksay8WF5CiNm/YXhwajjooka9VShmxexeL587gfeQ1185JASKf6tVlxNpJ8SQwS65LAqiYrAbFpyRsN69qtyDn4HVM/jEClUhEbG8uVK1fo2bMnPj4+tGnTBg8PD06ePMlXX31F165dX8k5RkREMGbMGCQSCe7u7qxdu/appgv6+PgQGhpKQEAACxYsoGLFirRs2ZJFixY98Zir97PZfD6O5JxiWlS1ZWBLW0x4GPgYMWIEcXFxuLm5UblyZQBmzpzJ0aNHDcFfAHd3d5RKJdnZ2djb27/wNXhcdkoylw/sJfHWDSxs7bmWVcC7777LrFmziI2NZfjw4djb29O9e3dUKhUBAQF4e3tz7tw5QkND8fHxoW3bthw6dIhGHfsR91swxSkx2PoMx7S6h1GT9uJd0+jRowfnzp0rs46mTZuSnZ2NQqFAKpXi6emJXq/n0r0s9oTvQJn6LYrKDfnsUAIbwvP4tIWpIYshKyuLw4cPs2XLFnbu3Mk777zDx5OnoKwxmIKok9h6P1xD0a3TmNVqS6f3S6aulWZbKRQK9u/fDzwcFa5UKjE1NX3p11wg+K9YdyrWKIAEoNdpSQv8hgrew8kTmSPjYRApNzcXKysrTp06ZXjN0q9fPwYNGoRarTZMihUI/muEIJJAIHhqf/SGx8Tcgl6fTOdG+DVmzJjBhg0bMLOyBiAsLIyPPvoIgHv37jFx4kTD10+jtJRh48aNZSbTJCcns2bNGqZNm0aRrRObbtxDp9Ph5lada2e2o9frOX80hIhpn9OgQyeqN2tBDY9WiCUSQ+lAQEAAgwcP/kc1yZWZmNB3ymx2fTUbvU6HWlmMWCJBpzV+cfRoiVubVq2pUKGkXOyLL75g3LhxbN26lYEDB+Lv78/ChQtZtmwZAPPmzWPEiBGcikpGrRfh2OdzRPKSNy/K+EiyT2xEIpPj6d+JChUqGHpbpaWlsWnTJgB69erF+++/z969ex+uWyaja9euFBcXs3PnztdxqV6p7Rfv83jSkMK1LnlXD6HS6tgVfBJ3R/MyDeTVajVSqRSRSISVlRWmpqYolUomTZqEWCzG09OTzZs3Y2pqiru7OzNnzmTGjBlGP/t5eXn07t0btVqNlZUVW7ZswdLy4aexucVqei4/SWqe0lBCk5qaQnJGGktXreXG3hVPzJICmDhxIm3atGHgwIGEhoY+sRTxVevqYM2GxHQ0j1xnU79umPp1w1Yq4XTbBsRcPMO77VqiKipCD4TV6o9l48qYimUkb56CXqtBauWETlLysqdlLVekSi8WLlzIsGHD+PXXXxk5ciTJycksX76cjIwMZs6ciVqtZvz48a8siFS7dm1Onz4NwPDhw7l48SItWjxbw/tPP/2UUaNG/eE+i36/ybpTsSg1WnR6OHs3gxXH7jKrrTnp6enk5+cjkUg4fPgw8+fPR6VSkZSUxPnz5zlx4gSbN28mKCgIAD8/P+rUqYNGozFM5HtZ4iKusnvRF+g0WnRaDYm6W+y+cA3PGpUN+6SmpnL48GH0ej1eXl6cOnWKixcvGgWC+vfvz8yZM3FyrkjFET9QUKwmM+gHTKs/7C2kkIqZ9OM2qlatavi9erTUes6cOYZ9T506BcDW83FovN7H5pFJkoUqLVdux9Nv2UIuhPxGcXFxmfK4ypUrU5SXQ7MKUhKUBUitHICSrKfi+Ou4dH2f97z/OKiuVqsZPXo0n3/++XNeXYFAkJqnLLOt8OZJVEm3SQtZy1s9t/PDkm8Mt/n6+mJqaoqJiYkhmGtlZYWJiYlQyib4TxOCSAKB4Kk9zRseU0srTCwsDQEkKCldKu191KtXL8OEm6fxZ6OYnZ2dmTZtGgXZWXz64Xgm9evBgQthnL982SjbQmtixo8HQ7jz/Wrkcjnm5ubcvXuX3bt3ExYWhp+fH6NGjXpiP6Y9e/bQvn37V5598Sxc69Rj7Ir1RJ05QXZSIhqVimshh4ymbZWWuMlMTHnjw0+N3jD9+OOPhv0e7/fk7u7OwYMH6fzdMW6lGI/QNa3RAtMaLVBIxcz9xAcXG9Nyx8Db2NhQWFhotK1Jkyavpa/Oy/aknizRqfkoNTpUKXfIOroOvV6LVcu+iKVy7gZMxqSaC1NWLSMoKMgQZFu4cCEVK1ZEo9EgFotp2bIlAQEB3Lt3j5EjR6LRaKhatSqbN29GJBIxfPhw0tPTy6xDJpOxceNGKlasyOrVqwkICGDChAmGtW09H0dmocoQQAIQK8wRV6rPot+jWNjem2thV8rNkrp16xYmJiYsWbLEcOxfVYo4vooTO1KyyNNojRrom4pFzHJ3QSoWkZeRgfZBKW2CiQv3TSuh1otI3ToNdWoMSesnYtGgI8V3zlO3ohX1iiJYcfgw/v7+VK9enQEDBhATE0OPHj24ceMGIpHIMC0vOzv7pZ2LXq/nZHQ6607FkphdRKNK1oxqV51aFSxRKBQEBQWRkpJS7lQwkUjE2LFjqVOnDrm5uYb7XLJkCRs2bGDWrFn4+fmVecyLsZmsOxVL0SOBD6VGR2FeDiPGfErU6UMcP37MqInzmTNnuHfvHo0aNTJsCwoKIjc3l7Vr13L79m1SU1MZM2YMBw4ceCnXRqfVsv+7BUbPX5diE2hSyZnrx0NQPnguady4MRKJhOTkZKpUqYJEIqFJkyZG99WgQQNkMhkN6tUFRydUOcXoio2fx8QiEQNbVjF8/fiHJOUFbpcFXiT52B6sPd8iI+hHCm+exKb9EApvn8XJezA29o4kJ9wvd6pfz5492bn7O3QZ94j7pg9VPt6BPu0ups7uTOxUm7buDk+8NgcOHCAlJQWdTmeUKSgQCJ5NI1dr7mUU8MifRczreWNezxu5VMzvn3XAydLE0Ovt4sWL5d6PTCbjzTfffB1LFgj+loQgkkAgeKKE7CJ+PBrN4RspSMQiejdxZVS76tiZy1EoFGi12jK9H6DsuORKlSoBUFBQQHJyMu7u7n/4uLHpBdzPKqSKnRmBWwP+cBSzRqPh4w8n4GkpoSgrk5SbkeQkxJGSmMCGhV+y98JVo2yLoKAgdu/ezerVq3FycsLU1JQmTZpw+PBhpNInPyXu2bOHBg0a/K2CSAByE1MadugMgF6n4961K2QlJxk1GhdJJJjb2FLt/+ydZ0AUVxeGn20svUmRoggi9oqKIiqCvfdYoya2mGjURE1i/UzUaBJrjCXR2GvEHhsiolixF2woIr1Jh+3fD8LqCho11mSeX+zszJ17Z2dnue895z21X7zCz0Dfcny7J9JgAgogFkGl0hY4W/87Uyt0Oh1KjRYjiRilUvlUIbOCozlyqZiUE5ux7zYJscwYANPy9TCTS5jRoxZeXqUNRLbo6Ghat25tMDkFKJBa8MH/VpKjUOPjUQqdDkQi9N+1Bw8ecPToUTIyMrh37x7u7u44OTkBj1KSoqOj8fLywtfXl8sPHqI0tceu3aOKUUVRUmKRiH1HT+FqbcyFCxdwcHDA1dWV5ORkALy8vOjduzfjxo3jxx8LV2XfViqis7ER+729+OrWA05k5CBCRGm5jMkeTnR0LPSKKeVaBrFEikal4oa5FyqRFJFYjGOvGQA8DP2dgvuXkMhNuHUjEvv+fWjZsiULFiygW7dunD17lkOHDrF+/Xp++eUX/Pz89Od/lf5U3+65zsYzD/Tfp9vJOWzYGoT0/GbqVK/Cxx9/TFBQEKmpqQZVwSZPnkzXrl3ZsWMHtra2uLm5AYUpox9++CFpaWm0bNmSiIgIfepoEWtO3qdAXTx9I3XPj5QO/IiYAiPc3d31abwXLlwACn2Trly5YrBNLBZjamqKkZERVlZW+qqOr4KYq5eKRVImZ+cQ/yCLk1ExxGZms3v3bn3EqJ2dHQ8ePECr1XL58mWD44pEHJFIxNrBDei1/CRJosLnlrGs8Pos6eeNo6Wx/pgnF0mKhNvHSdeZYOX7AQBWvr2QO3mhiI0sjGI4/DsBzbbz0w+zSxxfjx49GDt2LJcvXOCDfgPpF1iB4LX76P3NcPr7P/s3cf369chkMo4ePcrChQtZvHjxM/cXEBAomeH+5TlwPdEgBR0KIxObV3HEwcL4KUc+YujQoTg4OOh/fwUE/osIIpKAgECJRKXk0HlxOPlKjT6S4bdjd/lt/RYk5zZTuVJFSpUqVcz7oVOnTsW2FVUv2rdv3zPTQpKzCvhk/XmuxWci+2vynnsgiPOhe/X7PNl2h/btib1+hazKnsj/Kgsul0qQSySc3bmN2oHtuXL9Oo7mpuyeOxPbMm7cuX1L396uXbv0peZ37drFzZs3MTY2RiwWM2jQINq2bcvq1avZv38/kZGRdO/enXHjxr3y6/0qEInF9Jz2PXsXzCHu5nWkMhlqlRrnChVp9/l4xGLJ3zfyBD3rluHAtSTORqfrfQSMZWKMZRLm93oxw/THU0XeVdQaLYuP3GFleDTZBSosjKVUSD3B0H79mf6/aUDhBPPBgweULVsWu9LOqLPKo1MrSdkxC5FERqlWnyIxsyF65Vh2pwUw4dgxRnz+BT+vWMeD+3dp2vdzTgYfpnHjxnTt2pUOHTrQvGMPkvO0mJSrhUnVAL7bv5DyTboQu3s+FTw9KVWqFDdv3mTt2rV8+eWXBmlnOTk5LF++nH379pGRkYG1tTWhoaEETN3CmaDlBuMzcvRALDXi3upx2FdyY/TCn9i1axf5+fkYGRkZGEZ//PHHzJo1i9mzZ+Pj4/NWUxE9TOVsqeVJnkaLQqvFWioxiPYoW7UGppaWZCkKUItkIDJMTS3ywTGWidHtmqL3wbGxscHc3JyAgAB91M3r4tKDDAMBCUCj1SF1r49pxYY4pu4hJiaGK1eulFgVLCMjg7JlCyNnvLwKy9NbW1sDYG9vj5eXF0lJSTg7OxucNyEzv1jKZVH6RvLhlQy5vIXlC39CoVAQGBiIm5sbZcuWxcnJCW9vbxo3bkzNmjUBMDc3p2XLljRs2BCNRqMX918F+TnZxfrZvmZl/d+/nrxo4F8klUoZMGAAvr6+NGzYUF857Unc7cwInxBArT/M+aRlRRwtjWlTrTRmcik3E7NZHhbFpQcZOFoaM6iRO4GVHfTC7ZOLFtaaTK7uXoZdhy+RmhcuKBg5e1GqzUiMZWJCprTEWCbRRzE0atKUjMo16X/5LnmZGVRp2gxXj/JYmsgYFVgBT0Ub5s6dy4olCzl9+jT5+fl8/vnnXLx4Ea1Wy/r16ylbtqx+bDk5Oa/9PhUQ+DdT2cmSBR/UYuzWS4gQodXp0Gh1+JYvxY/daz5XG8uXL//7nQQE/uUIIpKAgECJTN5xlRyF2uCfeqVGh7RMXbp36UL2keXs2bOnmPcDFC+XXMT27dsZP358iedTa7R0X3qSuIw8NFooUGnJuRyM1L0hHyw7qU9jebLt+JvX0Wl1mBjJKFAVRt+UK2XDYc0dNCoVO9esJPthOjfuxnDn7GniQ0JQxj/gYNAfqNVqevTowS+//IJGoyEoKIipU6dSrlw52rZty4kTJxg3bhxubm60bt2aSZMm/W0U1dvG1NKKHpNnkJWaQlZyEpYODljaOfz9gU9BKhGzcmA9Dl1PYktEDNkFagIqOdC7flmsTY1eYc/fDUasP0/Y7RT9KmVGTgEHD4dgU7cwBfP06dPI5XKCg4OZPXs2+fn5jPVzYMyGONyH/kJG1CXyTm/Ftd2nIFMyZfJkzken0iGwMeU++x1j99uEHNqP84AltGjkQfCyr4lKyUPhGYBDlQB0Oh0ikQh5BV/uXQjDztObevW82LlzJzKZjBYtWmBmZqb/XqVmF9C8fQ/kdT5g4Ppr+DvryMjMpHHjxli610Skyidx7ZcglWFSrjZm1QJQpkTj3m8WdZVhXL9+nU2bNtGoUSNkMhm7du1izJgx+rS9r7/+Wn9t3gUB0FQixlRS3LtMJBbTY/IMtkyfSHl1PNHasqjExe9PnQ72BR9BkR6HiYkJYrGYPXv2FNvv8bTFklI1X4ZNZx+geDIiSK1CJJUhAtJVEszMzJ5aFczKyorY2FhsbGy4ffs28Mj0NT8/n9u3b2Nvb1/svLXKWHPxQQYqzaOHeVH6hrFUTNBIPyo4WuiFj8cpKfX0m2++eS2+PI7unui0mhLfk8iMWPHjbIN0XIDBgwczfPhwTp8+zcqVKwHDz6voc5RKxFw9b2iefeBaIp9vuoBKrUOj03EnJZew4P0UnFxH47o1Slwk6Vu/LpN2Fzc+l0vFdKntoo9yAsjTaOly4Ta38xRk3Ysi68fplBoyioCzN5A8luLWsWNHli5dSosWLQCYNWsWpqamBAcHs2zZMmbMmIFSqSQgIID4+PjXXg1PQODfTqtqTpyr6MCx26lkF6ioXdYGdzuzt90tAYH3CkFEEhAQKEauQs3Z6PRiq8I6tQq1VMauS/F0+ssMuCTvh5K2qVQqIiMj9SvaTxJyI5m0HAWaxyKMVelx5Ebe5ezF/YhSSi7FnJeVhQ4dRlIJKo0GhUqNRqvDTG7E4pBwzORGtK1ekci4RH4PjyBXoaRrnaqMGPEJnuXL4+XlhYmJCR06dCAxMVHvN9GvXz+mT5+uN4l+37C0s8fSrviE8mWQiEW0rlaa1tVKv5L23lWuxGZy7HaqQZh77rUQjCs15fidNIyVau7du6ePBKhVqxYnT56kWQ13OjZvTJcutYlJLs+mGYc5/U0ggQcdsbN3YNLyy0itS6NGitTCFp0yH4VIxsaz8XRq2IyQO5nkJkSRFXUO8yrNMClfF9OKfsQdWYF17++QGCfp03U0Gg25ublUr16dmLQ86ncdglZeFlOLCiQ9yCAyVoOxnRt7DxzC368RutxcLGu3wbRac71AZV2lMXaX1hBnIaFz59koFApu3bqFXC6nU6dOBAYGvpfRDlYOpRm88FeaXrrIhZ3xpCrgMd0EY5kYfy8HyljLCez25g2K03IUBj4cAPn3zpF1dgdiETjUrErLli05efJksapgAJMnT6Zjx454eXnpI5LmzZvH/v370Wq1fPXVVyVG43zYsBzrTsWgeiJVTCYRUd3VigqOz1ca+3Vj6+yCS8UqxN64hkZlWI1PIpFQq2XbYscsWrSIHTt2oFQqWb169XOfq0ClYeyWi8VSWiTu9bCr2ADp/W0lLpJ82NGZZbYmqGViVH/9WBlJxdRwtWJK+6oGbc2LTuRGbgEKrQ5pWXdsF/6ODogtUKLNf+T7dOrUKY4cOcKmTZsAmDNnDocPH0alUlG5cmEklpGREcePH+fcuXNMmTLFoFiBgIDAi2Msk9CiiuPb7oaAwHuLICIJCAgUQ6HWlri9aMIjApJa+vDxxx8XMxp+GiEhIfoV9ZI4H/OQ3CfKrj5eilm0e0qJpZhtXFwpClMKrFKB5WGnkYrFfORXD1sLs0IRS6djRLPCVXaNVsvvxyPoVKc6w6cWrrL379+fnJwcmjVrBhR6N/3222/07NmT1atXM2DAAGQyGRpNyavkAv8ODkcmFYsUUaXHoUy6S87FfZByh5s3b5KYmAigF3YqVKjAw7RUetV1JSIigns1KmEsK0y3OnU37a82HxM/1YUT5AK1hh1HQhBVDsQ2cAg6jYrEdeMxKV+XtP0LEJtaEbd5GjGdO2NvaUJubi5OTk6kp6fTuXNnRq04TNLxLchdKpF14wRmlZtA7bbIPOpRs34jype2oZrcGDWp3NrzIyaV/alcvwmjpn7OwOa1mH3gAFDouSSXywFo3749V69efS9FJCiMSPKqXYe9Faoy4Y/LHLuTikwsQqPT0ateWb5pWxmZVExYWNgb71sDj1Icu51qkM5mWqEBphUaYCKT8PMnDRGLxSVWBQPw8fHh/PnzBm1OnTqVqVOnPvO8ZWxN+W1AXT5Zdw6tDrQ6HTodVHKy4NcP676i0b0aOn7xDXsWzCHm6mUkUik6nQ65qSmdvpiImbVNsf3HjBnDmDFjSmjp2Ry9lcKT8URFUWEFSg3RWToCSlgkEYlE1Cpjw9TP/Nh3NZFwxWU87U35blhDg30B1sanoXhSNQRUOshQqlFqtaQlJTFx4kS2b9+OSCQiLS2N0NBQjh07pvfo0ul0qNVqZDKZvpKjgICAgIDA20QQkQQEBIphYyrDwcKYuIx8g+1FE5767rb8NqxQlCmpNHJJ21q1akWrVq2eek4rExkyicgg5aIII6mYcUu2lliK+ebNm1hYWSGWSPBytMPL8YkKN0+EU12OTeDBw0x2nrvC0SHDWLRsOT169KBGjRpERkYCMHHiRL766isCAwNp06YNrVu3plWrVowYMYIePXowfPjw57iKAu8bouJZKnohUywC3e4pTJ06lUGDBhEYGIizszOVKlVCJpMxZMgQ/P39EYvF+jLAAKk5Cp68ozV5mSSs+hyRREa5qt5Yk8e99ePRqRSYVW2GIuE2YpkxrsN+I/fcDvx8azN25AiWLVsGgJ+fH2MnTKLujEO4jdth0LZWkYdFoz7YW8gpHbmKIUOG0LRpUxQKBY38/AjdOpUJEybw7bffMnPmTHbv3k12djYWFoXRKOHh4QYV3t5X7MzlrBhYj8w8Fel5SkpbGmNi9OKeYK+Sbt6uLDh8mwKVYZU5I4mYqs6WVHW2euqx/5RGnnZETGrBsdsppOUqX/v5XhYjE1O6fjWNzOREUu5HY2JphXOFiojExVMYi3iyqtrKlSsRiURER0fj4+ND5cqVMTIy4uDBg/pjsvJVT40K0xbkkGkso+VP3zx1kaSCowVbflvI1f0buKLTIVdmFvOHylIXX3TQqVVkfPUZqqhbtGndmoCmTXnw4AEdO3YEChdbnvToUigUtG7dGpFIhEgkEky1BV45z/quPEl8fDz9+vWjoKCA6dOn07x5c65fv86QIUMACAgI4Ntvv31TXRcQEHhLiF5l1ZE3Sd26dXVPK7soICDwz9l9KZ5xf1wqFu5vLBOz7mMf6pZ7tVXK4jLyCfgxtMQoKLlUTOg4f5ysDFdgVSoVgYGBjB39OTlnj5EW9wARIkRiUaGo1KAx18MOo1Yqi7UpMzamy4SplKlS/ZWOQ+D95WpcJj2WnixWiQ7ARCZh6/CGVHOxQq1WI5VKmT17NmXLlqV3795PbfN2UjYdfj5e7HsEheLB4Mbu1Ctny4j154udVyYR0aSCPSsG1it2bOzDPFrMDSt2TH7UWTKOrUMiM+Kz3u3x9vbm559/Ji8vj379+tG4cWMWLFjA2rVrmTt3LhYWFri4uDB58mTkcjl+fn7MmTPneS+ZwAtyOymboWvPkZRVgEQsQqnW4uNuy6I+dbAyKdkYWuDZqFQqfRrfoEGDGDFiBPXq1SM6OpqJEyeWmJJ8Jzmb9guPU1DC74027irVRTHsXfPPxBq/05HcyVOU+J6tTMLVRtUQl6RcCwi8IQpUGrLyVWQkxzN92pRiFUNLYtSoUfTq1YsaNWrQvn17QkNDGTVqFN27d6dJkya0aNGCrVu36k3/BQQE3l9EItE5nU5XYsiyEIkkICBQIh1qOlOg0jDjz0hUai1aHVibypjZtforF5AAXKxNGNvSi/mHHq3UiyjMW/+ipVcxAQlAJpM9Skvp2o2ku3dIuX8PU2tr3KrXRpGXS+Tx0GLHicRizG1L4Vq52isfh8D7SzUXK5p42XP0VrKB6GMsE+NXwY5qLoWRGx9//DH37t3D0tKSP/7445ltVnC0oIarNRdiHhaLspNKRPRv6IaTlQlDm3iw9GgUWp0OlUaHmZGEMramzO1Zq8R2S1saI5OIyDe0jsGkfD1MytejgYctc4YWRgt+8MEHBvusXbsWgLFjx+q3tW1b3G9G4NVTwdGCkC+aci0+i5RsBZ4O5pSxNX3b3Xqv0Ol0xN28ztUjh1Dk5uBWow5VmjTDyNgEuVzOw+REGtari5m5BWfOncPe3p5vvvmGnJwctm7dyoQJEzh+/DimqVJSkzPIvHwYqXVpRFIjbJp9ROIf36Kzt6Vly9vPjMj4O8a5l2Z0ZAz5T4Q8mYhFfF7WURCQBN4auQo10/dcZ+eFOADUWckk7zuEn19junXripGREW5ubnh5edGgQQPS0tKYOnUq7du35/LlyyxYsACRSISFhQXZ2dlUrVqVzMxMfcp/UXq0gIDAvxchEklAQOCZaLQ67iTnIBGLKG9vVsz34VVzNjqdX8PucjclBw8Hc4Y29vhHolX8rUi2z56ORq1Gp9UW/uNjZ0/3id9iUcru7xsQ+E+h1mhZEhrFivB7ZOapsDKV8VGjcozw90RaQlWw5yEzT8WQNRFcjstAIhKBqDAKaVn/utR3f3RvP0jP488rCeQUqPHxKEUjz1LP/L4tOxrF/ODbxaKRTGRiVg2qj49HqZfqr4DAu4pOp+PA0gXcOnkMlVIJOh0yuZzIpDSO3IvDUiyiZcVyrAg7zdhWTbEtU461Zy5hbGJCjx49WLx4MaGhoVSpUoUDwUdo12cIqVl5ePT7lsRjm7G2MMf+4RWaNW5UYmW6F2XR/SR+ik5EKhKhA9Q6HYNc7Jha3vm1/5YKCJSEVqujyy/hRCZmo/wrEk+nViEX6/CtWJqUoO8YP348+/fvp2LFimzcuJG5c+fy9ddfs23bNgICAjh27BhQWIBk5syZKBQK2rdvj0ajoU+fPkyfPv1tDlFAQOAVIUQiCQgIvDQSsYiKpd9c9Z565Wyp9wojnZy9KjN82VruX75AzsM0SrmUxbliZeEfeIESkUrEjAyswMjACqg0WmQvKRw9jpWpjC3DG3IrKZvIhCxszYxo6FGqmChVxtaUYU3LP3e7Q5t4kKNQ82vYXWQSMToKvZtmdKkuCEgC/0punQrn1snjqBSP0sRUCgWe1hZUrF+NP85c4sr9WJwszRHrtGTF3sdenY9N2Yps3rwZqVSKTCZDqVTiaGeDaUEyX308iJrVJETKKhCbEMeG41d4cC+KUqVKkZeXR506dWjTpg27du3i5s2b2Nvb8+eff5KZmYmxsTFbt25Fp9PRo0cPlEol1tbWtG7dmoEDBzLSzZEPnUtx9GEOWp2ORjbm2BsJaYsCb49jd1K5k5yjF5AARFIZSuB0dAbd/QKJjY3lypUrZGZmMnbsWI4dO4ZWq0UmkyGRPPKWy8rKwtramiFDhrBu3Tq8vb3p1q0b0dHRlCtX7s0PTkBA4I3xz/87FhAQEHjHkUileNSpR43A1rhUqiIISO8wc+fOxc/P74WOiY+Px9jYmDt37rzSvrwKAelxvBwt6FTLhcYV7F86qulxRCIRX7SsyNlJzVnSz5sVA+pybnILOtR0fgW9FRB49zj/5w5UigKDbWqNBtChUakwloqRSiSIgAKVGq1WQ9XSdvy5Zw9paWnUq1eP8uXLo9PpaNasGaYyCX/+/gvR25YRvn0jaedP8sWHvenbty/BwcF06NCBbdu2ARAUFET37t0BsLKy4sCBA/j6+hIUFMSOHTvw9fVl//792NgYVpGzkknp6GBNZ0cbQUASeOuE3EgqVglXq8gDQKXRcTDkKJ6enojFYjIyMvD39+f333+nevVC/8gaNWpw8uRJcnNzycrKwtLSEp1Oh62tLWKxGCsrK7Kzs9/4uAQEBN4sQiSSgICAgMBbQ6fTkZGnwsRIgkir5tKlSy/cxvz582nQoMFr6N37gYWxDL8KQmqmwPvBmjVrWL16NRqNhhkzZrBkyZJihr7r169n8eLF2NrasmHDBiwtLQHIeZherL0biSmE3boHgJ25GfXdyxKdms691HT2X72JVCymQKOjdevW9OzZk2XLlnH69Gl8fOpTq6wzOSo1P+8PRSIWM8C3Dg+uXiLXshTt27fn6tWrREVFkZ+fT1xcHO7u7hw9epTatWsDUKtWLc6ePYtUKtVXU6tVq9ZrvHoCAv8MI4kYERhUiFTEXiPj2DrEUiM8m/jh4+ND7dq1ycjIQC6XI5VK8fX1BWD8+PF8+OGH5Ofn87///Q+ACRMm0L9/fyQSCZUrV9YLTgICAv9eBBFJQEBA4F/C3LlzCQoKMihLHRoaSmhoKNOmTXvqcefPn8fb2xuVSoVU+uZ+FjaffcDcQzdJzy2snmcXE8qYHr1YOGcG0dHRDBo0CEtLS5KSkti4cSNWVlZ07doVkUhE9erVWbhwISkpKWRnZwuh86+JZ5V+fvze6tSpE0ePHuWPP/6gefPmb7HHAu8ycXFxHD16lMOHDwOF99eTqFQqli5dSlhYGNu2bWPZsmWMGzcOAIdyHmSlpPD4FLiaS2mquZQ2aKNPg0KRp7KTA2KpFK8GfnjW9aGMeznUajUATWtURVyQz6WUeEpbW+JkZcn6UxcZ0MgbqbGUadOmMWHCBExMTPj66685cuQI6enphIWFERMTw4gRI7h06RLly5dHLBZz5coV2rZty+XLl6lXr3hFRQGBd4G21Z1YdyrGwEuvqCCDXCpm+ZimAHqBCCA8PFz/t6urKyEhIQZtent7c+LEidfccwEBgXcJQUQSEBAQ+BegUCheKooHYPHixdSpU+cV9+jZ/HosirkHH5lC6zRqrkScZLZXC2R/VTNKTEzk0KFDnDt3jtmzZ9O9e3f8/f2ZNm0aRUUh5s+fz2effcYPP/zwRvv/X6JFixZ/W/p56dKlLFu27A31SOB94np8FjsuxpGrUJN3NRiVWk1gYCBVqlRh9OjRxMXF0alTJ71YnJeXR/Xq1ZFKpTRv3pyhQ4cC8Pnnn3Pm5AmSo+/Ru35NbMweVewUS6XoNFp0Om2x82vVaqLOnuTuudNo1Gpy7VzYGByKJOshrtYWFKg19G9QB7FYxNyDx5h78BhanY5yXhUZNGgQISEhLFq0iIYNG3Ly5EmioqIwNzenZcuWek8kgB49etCqVSvMzc2RyYS0NYF3k1plrPGvaE/ozRRDIUkmoWc9V8qWEqpFCggI/D2CiCQgICDwnqHR6th0Nobfw6NJzVHg5WiBS/xRBgwYwJQpUwD46KOPiImJwc3NjTJlygBQs2ZNatasyaVLl1i9ejW1atXi2rVrlClThqioqDfW/wKVhnmHDKuK5V4LwbRyU3IUalRZhZ4nRRPJWrVqcefOHZo2bUpYWBh9+vShTZs2dOjQgQcPHlC1atU31vf/AjcSswi7lYJYJKKSeQFHjhyhcePGdO3alTFjxpR4bzk5ORm0kZOTQ4cOHdi9ezfr1q2joKCA0aNHv4XRCLwtdDodk3dc5Y/zsSjVWrQ6yD9zGR7GEnl8H7OnT2bnzp3FxOL+/fvr09esrKx4+PAhALNmzcLU1JTffprDllUraV+neqFopNPhUqkqZavX5OTWjahVhVXbHudxI27z9ARWfT+dcV99g1QsxtOhFGJxoU9eHTcXSpmZEpWazvyfF2NjY4Narebbb7/Fx8eHkJAQ0tPT6d+/P4MHDzY4R1BQEFKplE8++QQPD4/XeWkFBF4akUjEz33qsPpENCuO3yUlW4mztTEj/MvTo26Zt909AQGB9wRBRBIQEBB4j9DpdAxfe47jd1L1IszpO8k83PsntVr1AuDMmTNIJBKCg4OZOXMmSmVhulhiYiKnT5/m3LlzehFp3rx5fP/994SGhr6xMVyOzUT8hLm5Kj0OZdJdsi/uQ514i927d3P16lU0Go0+ZUSj0ehLB9eqVQsvLy9u375N69atuXLlCrGxsQQHB7+xcbxq4uPjad++PdevXycnJ6fE1MLo6GgmTZpULDLoVaSTqTRaPttwgaO3ktFodYgQodOo6PtjEDO616Fz5854e3uXeG89ibm5Od988w1DhgwhPT2dffv2vVSfBN5f9lxOYNuFOApUj6KD1FITxKWr8MWWi/QKCCAiIqKYWGxtbU1WVhbwqPoTwJw5czh8+DAqlYqKterRcuhglAX5OHtVxq6MGwCulaoSsXs76fGxZKUmoyoowYRboeD0jj8o61WJ/Nj7PP4kquFamn1Xb6GSyPCuXx+AMmXKEBISwtdff83ChQsxNzcvcbzt2rUjJycHT09PGjZs+Iqu4pvhybTV5cuXl/icKeJ50qQF3l0kYhEf+bnzkZ/72+6KgIDAe4ogIgkICAi8R4TfSSM8KrVYFI9xpSbM/DMSW62Ou3fv6o1fvb29OXnyJACenp4YGxvj4uJCRkYGt2/fxsrKCju7N2vKXFJhMhv/Qfq/M7d8ra+K1LlzZ1JSUli/fj1nzpzhm2++QaVS0bx5c3x8fPRjGzhwIJMmTXpTQ3gt2NracvjwYbp06fLCx76KdLJ5h25x9FbyY5N+HSBh9/WH1DxXKHDFxsaWeG+VRPPmzfn000/53//+h1gsFIP9r7E87C75T1SBkrtUJvvSAcKj0ij74DxyqaiYWOzl5aXfFhwcTIMGDUhLSyM0NJRjx45x6NAh1q9fT6VGTYud09mrMh2/qAzA3N4di71fZMItEolo1LI1vnXrcHf/If37DjY2ZOQr6Na3p36br68vycnJiEQizM3Nad68ebEoJIADBw689LV6F3g8bbUkryoBAQEBAYEiBBFJQEBA4D1i2/lY8p6YmBVF8eRd3k9c8h1u3rxJfHw8ABcuXNDvJ3os+ken03HlyhXOnj1L69atuXz5MsOHD+e333576rmf12R5/PjxhIeHIxaLWblyJRUqVGDkyJEsWrQIgBqu1ohFJZ/DWCZm0uodQKGB5+Mr4eXLlzcwDX+cVatWPbXf7zKJUbdJunsbY3MLPOrUK1YefNSoUVy8eBFLS0vWr18PUMxDxt3dvVg62Yui1mhZc/K+QdQIFJZ+zseUJUejKHclnJEjR7Jy5UrA8N4qiaVLl9K/f39+/fVXunbtilwuf+b+p0+fZsyYMUgkEurWrcu8efOeq++P31sC7w4JmfnFthk5eiCWGhG3bgInq7rz87wfOHjwoIFYLJPJGDJkCI0bN8bGxoYNGzZgYWGBubk5AQEB+ipof4fc1IyCHMNS40Um3BKpjM9W/o5IJKL16XCuHT2MWqWkQn1fhi9bi9z0kS/MoEGDGDSoUOQu+g7+G0iPjyNi9zZiI6+SpdJw6MB+Gvv50bVbN7p06UJ8fDzdu3fn3r177Ny5E1dX1xJTWadMmcKRI0eoXbs2WVlZ7+2zWEBAQEDg+RFEJAEBgX8VzxI6ihg9ejQXL14E4NKlS3rPjfeBXIW62LaiKB4TmQTd7slMnTqVgQMHEhgYiJubG2XLli2xra5du9K1a1cA/P39Wbp06d+e/+9MltPT04mIiCA8PJzw8HB++eUX5s2bZzDJl0nE/K9jVb7efsVAtJBJRDhYGNOrfllSE2L/ti/vIlevXmXo0KFIJBI8PT2ZMmUKkydPZt26dfj7+6PT6RCJRHw1bhzpJ0NIiYkGnQ6RWAI6HW1GfqFv6+zZs+Tm5hIWFsa6detYunQpH3zwQTEPmef53P6O7AI1SnVxU+Ki0s+JUhm+fTrg4+PDkiVLit1bo0aNYs+ePezatYvhw4fTpk0bdu3axd69e6latSrTp09nxowZz+yDm5sbISEhGBsb07dvX65cufJcpaLfZwHpyRTG1NRUVqxYwcSJEw32K4q08/T0fEs9fXHc7cxIzSme7mgT8DFyqZit3zTHylRWYipt//796d+/v8G2PXv2vND5azRvzbm9O9GoDPsglkio4NMQ6V/m15UaNS0xqunfzIPrVwj6fhoalRqdVoNao+HL5n6UrVyV1YcOERgYyMOHDwkODmbjxo1s27aNhg0bFktlTUhI4MyZMxw7dowNGzaU+HsrICAgIPDvQxCRBAQE/lUkJSWhUqk4deoUOTk5JXrIzJ8/HyiMpPjpp5/eUk9fjsDKDhy/k1osGglAq9Nx8HAoUHJkTlEUT7ly5Yq9/zRPpMNpWXx/N4HI3AJkyfGkHQrG18+PHt26lWiybG5uTqlSpdBoNGRkZFCqVCkA/Pz8DKKIutRxpZS5nB8P3uR6fBYmRhK61nFlTPMKmMulmJcr97cVwd4ldDodORot7hUq6EsdDxo0iNTUVIP9Dh8+jFQqZeu3E0m6F4VWbSgK/rnwR70JcFRUlL5qXt26dTl69ChQ3HD8VWBuLEUiFsETt1VR6WcHCzlzJhZ6LZV0by1cuJCFCxcabCvyQXpcrHwSnU7H+ZiHPEjPp4ytCY5/RStJpVKOHTvG5s2b+e677/TntLW1Ze7cuUBh5FJ+fn6xe+t94skUxtKlSxcTkLTa4uLe+8AIf09GrD9vkHoLIJeKaVnVESvT11vBrEHXD7h/+QLp8bF6bySZ3BhTK2uaDRz2Ws/9LqPTatm78AfUj5mNSyUS0KpJunOTepW92LNnD1WqVEEsFuPi4sKdO3dKTJO+f/++PjLM29tbEJEEBAQE/iMIIpKAgMB7T3J2AetO3ef8/QyMchKQyIyQyzXMnz+f7t27c/HiRRo1aoRcLicoKEhv1Lp9+3b95PbLL7+kWbNmeHt7079/f/bv349EInmLoyqZjjVdmBd8G4VKg+axAkTGMjEBFR1wK2X2ys61MSGNb27Fkq8tPJHKqhSWq3aAhRkHZk4o0WTZyMgIT09PKlasiFqtfqZnThMve5p42b+y/r4tNiek8f29RFKUKkSIaGlnyYwKrsjlcjSaRxNosVhM8+bNsbW2oq6RBp1axdaIK/RvWIefD5/Av5IHzjZW3Ii8DoCHh4d+UhYREUH58uUBinnIvApkEjHdvF3ZEvGgWESSsUz8WgxYo1NzGfj7GZKzFYgodGBysJAzob4pqampVKlSRZ+WWUTHjh3p2LEjS5cupUWLFq+8T2+KzOQkCnKysXF2MUhhfFz0btCgAbVr18bEpLCU/aJFizh37hwtWrRg6tSpb6vrz02zSg582qw8C0PuIALUWh1GEjFVnS35vuvzpaT9E2RyY3p/+yO3z5zgelgIWo2Gig0bU6lRE2Ry49d+/neVxLu3UeYbphoWqNQYy6SoFAUcPnSQn379nevXr+vf1+l0uLu7c+TIEeBRKqubmxtXrlwx2CYgICAg8O9HEJEEBATea87dT6ffb2dQabSotTpEGrAduBTVnzMICQnB1dWVlJQUKlWqxN27d8nOzsba2prWrVtz6NAh/Pz8qFOnDj4+PvTt2xepVEp2dnaJAtLIkSO5cuUKHh4e/Prrr29FZDIxkrDz00Z8seUSZ6LTkUlEaLQ6enqXYVL7Kq/sPAqtlsm34/QCEoDIyAg1kKDRUt7Pv0ST5cjISK5evcqtW7c4f/48EydO1Hvo/BtZ9iCZ7+8mPHaddOzYsZP1KxfTokY1fSQWwB9//IGtrS3zZkxn14Z1tK/mRYFKjVqjwVQu415KOvuu3CQnr4BWrVoxc+ZMTExMaNy4MRYWFmzYsIGMjAwcHBwMPGSgeDrZ0KFDX3gsE9tW5lp8JjcTs8lTahCJwFgqoZFnKQa/YhFJqdbSc9lJUnIUBtXY78Ul0XPATK6H7+fundv67UVpgACnTp3iyJEjbNq06ZX26U2QFhvD3oU/8DA+DrFUilajpkbzNsVK0gOkpqYyceJEXF1dGThwIP7+/ixYsAAfH5/3QkQC+CygAj3qlmH/1UTylBp8PGypXcbawJ/tdSKRSqnk24RKvk3eyPneBxR5eYieMKW7l5rO/qs3kYrFVHEvh6OjY7HjSkpldXJywtvbm8aNG1OzZs3nOv+aNWtYvXo1Go2GGTNmsGTJkmJRp1OnTuXgwYP8/PPPeHt7s23bNkaPHs2DBw9efuACAgICAq8MQUQSEBB4b8lVqOm9/BTKx0JydBIZCiA5S0GPhv7ExcUhk8nYsmULGzduJCgoCD8/P27cuIG1tTVLly5l1qxZLFu2jFu3brF+/XrGjBlT7Fxnz55FqVQSGhrKTz/9xJ49e+jUqdMbHO0jHC2NWTfYh7QcBem5SlxsTDA1erWP84jMXJ6c5mnzchGbmpGv1XH42HE+C5xYzGRZp9NhbW2NWCzGzs6OzMzMV9qvd4k8jZbZdxMNhDYAWSN/SjduRubKhQY+Lra2tgB06dKVZYsXF24zM+FSbAKVSjsQk56Bh70tA3p0Z9iswjRLHx8fg7atra1LTD0sKZ3sRTExkrBtuC/hUakcup6EVOz05SkAAQAASURBVCymXY3S1Clr88on/YeuJ5GrVBtoJzqthuTdP1I68CMup4lwsbIiISEBgCtXrlCjRg2SkpKYOHEi27dvf2NCxKsiN+MhGyePQ5GXB+jgL6+ey8H7eZgYX2x/BwcHXF1d9a+rVasGoI9Mel9wtDRmgG+5t90Ngb9wKOeBRqUy2FbZyYHKTg6IpVJqtWhLucfSif39/fH39wdKTmX97rvvgMIoumnTpj3z3HFxcRw9epTDhw/rjymJkJAQgyjWP/74Q2/kLSAgICDw9hFq7goICLy3DPj9jIGABIXVpKDQH2jngSN4eHggk8m4npBNgsqEqNgkfvnlFzIyMsjLy6N3794cP36chIQEVqxYQWpqKqampvpy8atWrWLVqlXcvXtX7/1Qq1atZ6ZpvSlKmcup4GjxygUkAG3xwAhUl8+TNqwP6Z8NQGbngI+PDwqFgsDAQG7dugVAlSpVsLCwoHHjxvTu3ZsJEya88r69K1zIykXyhI6hUxYKAwVaHTFimcGEPysrC4DbcQmUtrMFRJSzs+HozXu429kgFYtJzcmnTd8Bb2oIxRCLRTSuYM/0TtWY0qEK3m62r0WsuRKXQa7C0Csn78ZxlAm3STi0gpH9OpGbm0t8fDxt27YlJSUFgOXLl/PgwQM6duyon9i+L1w8uBe1Sklh4t4j1EoFuRkPycvMMNguFhv+i/Y6RbPo6GgcHR3x9/enZcuWBu8VVV18HkaOHPkaeifwKjG1tKJKkwCkRsWrJUqkUrzbdX6udp68Z2JjYzl27FiJ+95Oyub47VQ2b9+NRqMhMDCQFi1a0KVLF/78809at25NgwYNuHfvHj///DOXL1/G39+fnJwc9u7dS4sWLYp9HwQEBAQE3h5CJJKAgMB7SXxGPhdjMoptL6ompXoYDxWro5SaER0TQ00PZ0CHZe02GGU+wMTEFGdnZ2rVqoWFhQXVq1cnNzcXS0tLZs6cyUcffUSHDh24efMmUqmUefPmsW3bNj799FNCQkLeq4puL0MdS1PUT6TYyBs0Rt6gMcZiEWPdSgMlr0z/8ssvxba9b1Ejz4O4hDEpzoaTt7VwBd++nActW7bUmz4HBARgYmKCsbExP69YzdGlc/F0Ks2O89dwsrHCzb4URrYiylZ7/X4xbxsHC2PkUjGKx/yXzKo0xaxKU+RSMRNaV6JRI3e9OffjTJ482eD1+2Kqfe/CuWIRIBqtlt/CzhCfkUXrNm2Yt+jnt9S7v6+8+Dy8z5Xy/ksEfvQJIrGYa6HBSGUytBotJpZWtP98PJb2Dn97vEqjRafTGdwz0dHRNGzY0GC/e6m5DFsbwYP0fKQSEYlHT2GZn0BE8B6qepVn7NixLF68mIoVK9KnTx99tclNmzbpIy5Xr17NunXrXkta9JPVEaXS55sWLViwgA0bNiAWi5k7d26xcQsICAj82xFkfQEBgfeSq3GZGEmLP8KMy9VGbGyOSCRGlXyXrzeEI7Gwo8yYLdh3m4wiLRZx1VaY12nH/fv32b9/P1FRUXz++edYWlqiVCqxtLREJpOxcOFCvv76a9q1a8fBgwepVq0azZo1Iysrq0TPiH8TZlIJY9xKY/rE6q8EsJRK+NClVMkHlsCYMWMIDAx8xT18dVy9ehVfX18aN27MoEGDuHfvHv369QMKUzmaNm2Kv78/ISEhBsfVsTQt1pZxo2bYzl+B88KVTPl5MR4eHvpJVkREBMeOHePQoUNUq1efwYtW0HnoCDbN+h81W7RhwYYtHD177vUP+B2gYy3nf/T++4hRCWloErGYYf4NmN27E5t/X4G1tbU+eu1xcWzVqlV4enoCT6+k+DJodToeFChJU6o4cuQIjRs3Zt68eQB89NFHNG/enLVr1+r3r1WrFgMHDqR69eps376ddu3a4e3tTWxsLFBYhVHg3Sfyxg2mrlzP1rtJhGUo6TV9DoMX/YZThYrPPO6PM/ewdKuC3MSMxpO3sHPfQRo28tPfMwAqlYo+ffqw/1AIdZq142ZMEsln9xK1YRpamSkPom4ycEkI5cuXR6FQULduXc6cOVNitcmQkBB8fX0xMjLSb3syAio6Olr/vH5RiqojNmjQ4IWOW7VqFSdPnuSPP/5gzpw5L3VuAQEBgfcZQUQSEBB4L7E2NaKk4BaRRIpjrxm4jd5M/U/nobUtBxo1ievHo0y6i6xUGVIO/MLdI5tRqVRUrlwZJycnJk+eTN++fbG0tGTz5s0kJCTg7u7OlStXEIvFSCQSpkyZwpEjRyhVqhTt2rV742N+04x0c+B/ns44GEkxEomQiUQ0L2XJfm8vrGXPH8g6b968506HeRtUrFiREydO6FMxUlNTDd4/fPgwoaGhBAQEGGy/ff06orGDyfj8IzJnT0WTEEfmzInIRJA+Zghr+3YvUXwqQm5qRp02Hen4xTc0/3gEjh6er2eAL8nzpjh16tQJS0tLbGxsStz3cebOnYufnx925nJmdqlO8vrxKB9cJuP4eiRiSF4/nlldqmNnXphqo9PpaNeuHU2aNDGodPcu8qQYqXsikq9GYKunVgWbvy8Uh/JeDBkyhG7dur2J7rI5IY1aJ67R5HQknaMz8Nq4h3k79xIcHExYWJi+8uLjFQATEhJYunQpy5Yt49tvv2X37t188cUXbNmy5Y30WeDVUPTMCz9xAjNrG+6npP1ttOiysCgm7bqBVcdvMK3YCK2xBQ6DliJtP40DBw+RlZWFSqVi4MCBDB06lGQzD4ycKlIQdwNl4m1EYilGThXQqvK5maHj1p0oVCoVZ86cIS0trcRqk1evXmXXrl20bt2aa9eu6dPMW7RoQWhoqL565fOSkZTIngVzWNC/K/P7deHP+d+jzsrQvx8aGloslX3Xrl16X6gigdfT0xOFQkFGRoZB8QQBAQGB/wpCOpuAgMB7ibebDSYySTFflSIkEhEn76ajM7HBechyRFIZKdu+xbJBd7T52ZRu/znpK4bQpEkTzpw5Q9u2bQFwdXWlTp06ei8WGxsbLl68yI4dO/D390cikRAYGFjM8PjfiEgkor+LHf2cS/FQrcFELMZE8u9Ye8guULH3cgIP0vMoZ2dGuxpOmBpJkcvlBmKFWCymefPmlC5dml9++QWFQsGYMWPYtGkT5cuXx9XSnJ+3bGfAwEGoMjOQiqCvUymOW5gQevjwc6dHvKv8XYqTRqtj7oKfWTjvR65du0ZwcPBT91UoFFy6dEn/upu3K7OcLalcuTQXsqLoUt+NfYct6er9yEw6ISEBCwsL9u7d+2oG9BopmpgDDBo0iIiICOrVq6d/36uBH5cPHyDhzk3UCkXhRpEIqcwIGydn5MbGhIWFvZG+bkpI4+tbsY9M4WUyIjXQ80o0A1q0KrHyIhROno2NjXF2dqZy5cqIxWKcnZ2JjIx8I/0WeHm0Wg3Jd6PQaDQ4uj8Sa+RyOWXKlGH69OmEhIQgFotZuXIl5cqVY9SoUVy8eBEzcwvuVB2ESmKCxMwGAJFEhkYqJzVPTflqvuzZs4ewsDBatWqFv78/w9ZGIC5dkfyoCHRqJUYO7qjS45CY2RKz7htc7J3Yu3cvGo2GzMxMRo0apa82WcSoUaMYNWoUAL6+jeg5/EviUhL0UXNdu3alS5cuxMfH0717d+7du8fOnTtZv3491apVo127duzYsYOoqCgcbW2YOH4cRmIRTSt6UNnJgXsXzvHg+hWU+flPvW4dO3akY8eOLF26lBYtWgAQGBhIpUqVUKvVJabcCggICPzbeb//uxUQEPjPIhGL+KWvNwN+P4Nao0X1l8F20Vqq/rVUhggZACae9dFkp2LkWB6ZRMzwibMRpd3R/xM4ceJE6tevj1gs1m8bPXo0EyZMoEKFCq80jeR9QiQSYfsCkUfvOieiUhmyOgIdkKfUYGok4cufViA7v5kaVSsbrCz/8ccf2NrasmHDBqZP/5b6vUcTciWGelN3Y5cXTbV6frS0s6KTqwMDa5fn53Abvq9YhgCJxEB8srKyom3btqxcuZKrV6+yb98+5s+f/9auwdNQqrVE3E9HpdFhq1MZTNbGjBnDRx99RExMDC6uZbhXYMLmqQdQabRkno4hP/Kcft/Y2Fg2bdpElx692bt7JxO++orEuAdEREQQGxvLzJkzuXPnDjevXyUjbQY5OTl0+/YzjsgkQOHk0de3cGJ65MgRBg8ezG+//faWr05xdDod1+KzSM4uoIKDBWVsC581RWJkQEAAtra2+sltt2+m07VdG+7cuIGViZyyZcuyYOk8VnbpRu/evbl16xZLly41EJ9eNRqdju+iEgyqChZVXizQalm5fQeW6SmkpqZy9uxZvLy89PsVRaskJSVx+PBhfH196datGzqdjpiYGK5evUqTJk347LPP6Nmz52sbw9/xeBn59evX4+Li8tR9o6OjmTRpEuvWrcPPz++98dh6EW6fOcGh5T+jVqkQiUTodDpUZT35fftuvLy8SElJIS4ujtDQUCIjI5k1axaDBw8mNzeXsLAwvvnhF84f2IdJ3a76NrXKAgDyVRpCjh7jk0XTuX79OmXLlmXRokXYuvhjXLo86YeXY+xSBblrZdIP/4pN04HYVa7P911r0KGmM6GhoZw5c4aePXvi4+ND5cqVMTU1JSMjg5CQEDp26sysfTeIuHmfhn5N0Gl11Ow1laVjetC7bVN+++038vPzCQ4OZuPGjWzbto0+ffowceJE2rVrx9atW5k9ezb9Onegf4Pa2JgaPxYlqEOtUOirIz4ejaXT6fSvT506xZEjR9i0aRNZWVmsXLmS27dvk5yczNChQ/nzzz/fzAcpICAg8I7w75kVCAgI/Oeo727LwdFNWHH8Hmej07GQSzkX81AvIEFhtTaxvNC7RhF7HQvvDuRcPoRWp0OWcd+gvYMHD+pD2QFWrFiBSCTiww8/fDMDEnjtZOarGLw6gjzlo2ijPKUGkVs9TCs2xDFlN3v27NG/Z2trC0DHTp35csYCDli0QutWn3vnj3Lj/iUulKnMrgqVqFO9ylPFp++++465c+cyd+5cPvnkE7Kyst7JyJrdl+L4ZvtVdLpCMbZAoWDE4t2Mb1edzp074+3tjUQiYf+Bg1TrPJyUjEwsyhVeR6XYCOvWo/Ht3oFDv0/i8pWrmFULYFeGE0mZBUzbcQXRzUN8+/UXrPp9JYGBgdy7dw9TU1P69+/P/fv3Wb16NQCff/45DRs2pFevXnqvkndRQLqTnM2QNedIyipAIhahVGtxyrhK8pFVVKpYkVKlSvHw4UODyW2DBg1wci/PzgOHmD17Nvn5+Th6ePLgwQPCw8PJzMxk2LBhBvfgqyYmX0meRmuwTXX5PDm/L0Ekk2FevRb3j4YwcOBADhw4QFpaGnXq1DHYf8mSJdSsWZNt27bh5+dH+/btmT17Nm5ubhw5coQ2bdrQtWvXtxKJ92QZ+f86sdev8uein1ArFQbbpfdvsWH+j/y6cy/Xr18nNDRUX/HQycmJqKgo/edesVpNlBt387irlzLxNun7FiCSyChbpY7eJ3D69OmMGDGCsiITjOWuiCQy5K6VMXLyQpUWi9ylElot/LlsBvNuROLm5sYvv/xCUlJSMaPuoKAgzokqEHQ+FrGJFfa9ZgGQCPT67QwKhZK+fQrFV7FYjIuLC3fu3KFMmTKkp6eTlpZGRkYGrq6u+DrbcejqTbQ6HYGVPbG3MNOPRVWQjzI/DysrKxISEgC4cuUKNWrUICkpiYkTJ7J9+3ZEIhFisRhTU1OMjIywsrIiNzf3NXxqAgICAu82/468BAEBgf8sZWxNmdaxKntHNeaLVhUx/iuSoQhF7DUSVn1O4tovkZjbYupaCbFOjfzgDGLuRQGFPi116tTBzc3NoCT7iBEjiIiIwN/fn6lTp6JSqWjYsCHm5ubFDEAF3g92XIjlCasadOrCilkarY6UApHBPZCVlQXAwg27yTexI1+lwbRiI/Iiw1DnpGNcvRWWfRfg5OxcovjUpUsXrl69CkDVqlXJz8+nVatWmJk9msC8C5yMSmPcH5fJLlCTo1CTrVCjQsK6c8msPBFD+/bt9SlOITeSybd0Q/PYhRSJJahEUnZcSqJyHR/SFGKSc1SI7Mqj1erIeXANqrfj520h3Lx5k+3bt1O7dm08PT1p0KABlpaWZGRkcOvWLa5du0avXr3e4tX4e7IKVHRfepLo1FzylBqyC9Qo1FrirKpS6dPluLi4sGfPHqpUqaKf3GZkZPDzzz9z6NAhEhMT9Slgfn5+eHp6Ym5ujouLC5mZmc/VhyJ/qefl+++/Jy4uDiOxCA3FKy+WWrYB259X4/Dpl2h0OlatWkXHjh1Zvnw5arWaRo0aYWRkREZGBtHR0ezfvx9zc3PKlCnDhAkTuHv3LidOnEAikeDo6PjGnpE6nY7tF2IJ+CmUChP/pPHIeVyPyyAgIJCRI0cSFRVFQEAAPXv2pHbt2gQFBdGyZUv8/PyeKgDMmTOHH3/88Y30Hx59lv/EJPppHN+8tpiApNZoUCsUhG9Zh4WFBYmJibRs2ZLQ0FBCQ0NZs2YNHh4enDtXaPSvTryD1Lq0QRvGZavjNHAB7h/NY/L0GZQrV04vAP3yyy989dlgunu74jHwB0y9fBHLjHEftx0zcwvmdK/Okl8Ws33TRj5q2YxDS+Zzft8uQkIO683dly9fzsGDh5g3ui85mQ/RFmSTuH4CqXvno1UrSb0Sxt27UezcuZOcnBx9v4qijDp27Mjw4cPp0KEDANYmJvSsV4MGHmUIu3UXKKyOuCz0FPEPs2jXoSMKhUKfyp6SkgLA8uXLefDgAR07dsTf3x9zc3NatmxJw4YNCQwMZNy4ca/08xIQEBB4HxAikQQEBP41uFiboFQbrrCblK+HSfnC1BAzuYR21Z34eFQQFUtbAIU+LUOHDsXU1JQ//vjD4FiFwvAfb51Ox44dO5gwYcJrHIXA6+RuSi75KkMfrfx758g6uwMAi6qVaNlyjD6lJSAgABMTE+6kKzDz/xQAsdwUkdQIuXNhJSOtDrI1smLik6WlJeHh4Xqz2H379lG5cmWCg4MZMmQIdnZ2r3u4z8284FsUqAy/O1pFHvmYsvjIHardPs7no0axcuVKbtn6khV322DfIiFOLILdh0+i1elQZ6ehTIpCpypAk/uQh+cPkiWVIlWqWLt2Le3bt0ckEnHhwoXCNnQ6vLy86N27N+PGjXujk/gXJehcLAqV1kCK0alVqJARmZCNnUiOiYmJQXqMSqUiPT2dvLw8SpcuTdWqVfUixp07d8jNzSUzMxNLS8u/Pf+T/lLPw1dffaX/u6yxEbfzFCXul6vWUH7Oz0hXL6FGpUo8ePCAu3fvEh4erp+gazQa/disrKx4+PAhFStW5OjRo/j7+3Pq1CkePnz4Qv17Websv8mqE9H673VmWgqpaWl0GTsHkxt/sHPnTn1E2KZNm1i9ejUHDx5k5syZHDhwoFiU1Q8//ADAl19++Ub6/zKf5YuQdPd2sW03ElMIu3UPkUhEo5Zt+O6775g1axb+/v6IRCJ69+7N0KFDWb16NY0bN8bCwoJvvpjB8lNJxGydgSLuOuqH8dg06EbZ+gF0e8zH7HGmd6pKs0r2rDweTUJmPlWcLRnWpDzVXKy4fuwIh5YvQqvRotWo0YkljG5an67jJvH55GnMmjWLs1dvkVB7CDkKNY595yAxsSB1z1zilg9BamGPzNyWLVu2lFi4oUePHowdO5YlS5YAcCIxjSuRN1Co1XSoWQV4VB2xlGtZBv70C0CJHkeTJ082eP3NN9/wzTffvNDnICAgIPBvQhCRBAQE/jU4W5tQt5wNZ+6mo9IarrSbyCQs61cXvwp2KPLyiDp3BpFYxJ6j4QwYMIApU6YQHR3NRx99hJ2dHbdv32by5MksXbqUvLw8Dhw4gJmZmT5k/3EmTZpEWFgYNWvWJDs7m1WrVr2hEQu8KO52ZpjIJAZCkmmFBphWaICZkYTxnavh4eGqX1GPiIgAoOsv4ZyPyXjUkFiK2NiCxA1fIRGJcK1bnZYtRxYTn4yNjVm1ahXZ2dnMmTOHvXv3cu3aNb744gt9+ta7wLW44tEvithrZBxbR7LMCN8urfDx8WHJkiXs+24YKrElUkt7ANKDl5EbeYzsc7t4aG6LUy1/zGq3IyNsNYqYK+i0aswqNUYkNSL3wl4UKhXTvvySS5cucfXqVby8vAyEk48//phZs2Yxe/ZsPvjggzd2DV6Ek3fTnipGikXgWLMqn34yhFVB++m25AQP71wn49QJZk77mgH9+uHr60tCQgKDBw8GoEyZMvj6+pKWlsaiRYto1qwZlpaWJCUlsWHDBm7lmbD06F0epOdR1tYU54Qw/XMLCp9BR44cQS6XExQUxOjRo7GysuLcuXO0aNGCqVOnMnDgQCZNmoSnpyc/VSzDB5eiKNDqnohJAhWgqt8Yy4ZNsdu8jLt37+Lr6ws88oyRSB5FfGZlZWFtbc3XX3/NsGHDWLx4MZUqVSrxWfmqScoqYGX4PRSPLR6I5WaIXatxNjqdIZXrkhd/Wx8R5uzsTLVq1QBwdnYuJnRlZWWxceNGTp069dr6XKDScOx2Kln5KmqWsebA1tUGnyUUCo4DBgxg2LBhXL58GbFYzKBBg2jbti27d+9mwIABpKenEx8fT//+/YuJHI8jlctRK5UG26q5lKaaS2nEUikjli1DLBYzceJEJk6caLDf4sWLDV67O8fyk/n/iM3Ix0gipnNtF75qXQlTo5KnEyKRiIBKjgRUMrwXstNSObhsERrVo36JtBokwJ8LZtOmVSv27NmDRCyCv+5QiUnhwo9Vgx6IpDJKtR5J3vbJBhFQRVXUimjVqpVerF++ei0bp4x7ZGpfdH2M5PgPGPLU6ycgICAgUBxBRBIQEPhXsbBXbXouO0liZgG5Sg0yiQixSMQI//I08izFyaBNnNm+BbFEikarZXXYKVb88ov++GetWHft2rXY+RISEjh//jxhYWFs3rz5P1Wp5WnmtUUpEY+vDkdHRzNt2rS3LrB1qe3KnAM3S3xPLBbRpppTie819XLgWnwWCrWWtP2LkJhaYVGjBRY1WiCXilkzoRkOFsbFxKfHOXLkCAD16tV7pwQkAHO5lFyloShSFMVnJBEze2JzoLDs9ZEbyXy64bzeV8q2+TBsmw8DQC4V09CjFKG3UrCs0w6AxA1fYV698HjHWs2Y27MWLasapsY8yddff63/+1nV4d4WduZyxKLCKLQi9GKkXMLgNpUYEnSHbJ/hJN5/iE7swsOHahZFGuNRvjwbNmygS5cueHh4ANCvXz90Oh3jx48nOjqaxMREDh06xLlz5+j16dfk1Bukv96pWXkc3rsPN78uAFy4cKFYpBAUTqgXLFiAj48PU6dONeh/fWtz9np7MWLvYU5MnwgSCRLnMph/OJTs337GevIsYj4dQKx/U+7du8fVq1f57LPP6NChgz6dbefOnTRv3lwfdRcTE0NycjIikYi4uDj9uF7n53c4MhnxE5Xp5S6Vyb50gDylhp2HT9CyioNBRNiT5smPY2lpyeTJkxk0aBBr165FLH61rg+HI5P4fNNFALQ6HRqVioLg7Vw/Pky/j0qlYuDAgQwdOpSmTZvSpEkT2rZty4kTJxg3bhwWFhYEBQWRlZVFly5dGDp06DPPWbVJcy4e2I1GrTbYLhKJcKlUFbmp6XP3v3NtVzrXdkWl0SIViwyu5Ytw7ehheEK+LFCpMf6rgMP+3bsYN2kyly9fJlEiRqcpAF1hoYyCuOtIrZ0wNZJgbiEvsf0bN24wePBgZs6cqd/mUM6DD6bM4vDvS0m+FwWIsHZyotmAoZSrUfulxiEgICDwX0XwRBIQEPhXUcpczsExTfm5Tx1G+JdnbIuKBI9tysjAClwJOcCZHVtRK5Uo8/M4GXmbWq6lObZpNfnZhd43T1uxvn37No6Ojvj7+3Pw4EH9+e7fv4+lpSXTpk3DxcWF/fv34+/vT+XKlRk9ejQAISEhNGzYkGbNmhEbG/vGr8nr4HHz2tDQ0GdWP3qXsDKV8euHdTE1kmDyl3+WqZEEc7mUVYPqY2IkKfG4fg3KYiyTIAJKtR6JbfPCiZuxTEzHms44WBi/qSG8FnrXL4tcWvxfArEI6pazwcpUpt/WxMueKk6WxfY3kUno18CNAb7lMH3KddTqoHEF+1fb+bdAr3plkUtLHqNOB8HXk0nLUeijlXKvhWBcqQl3knO4cv0mPXv2JDk5mS5duuijX4qeFwDVq1dHKpVi4eLJtRu3DIzgi9pacbwwAufWrVsGkUJFE/ui59fjaZaPU8XchF716+D0yxpsF6wEQJuZgTYtmfTRH6O8e5u78QmMHz8eNzc3GjVqRGpqKrt372b27NmMHDmS5s2b69N6oqKikMsL0/hq1KhBWlraP7jCz4daq+WJoFOMHD0QS41I3PAVcXeu0r179xdqs1WrVrRr105fWv5VcTspm882nCdHUeg7lqfUkHYpGHW5hozefFG/X1hYGDKZTB9RIxKJ6NevHxEREbRrVyjM6nQ6hgwZwsyZM/824qtBtw+wKGWP1MhIv00ilSE3NaPFkE9faiwyifilBSSArJRkNCqVwbZ7qenMO3SMuXtDsDY3w8/Pj4cPH2IVvgiZOo/EdV+SuH4C+XfOYF+/AzXLWFPKTE50dLT+t7lly5YAVKpUiePHj6PVag0WM0p7etF3xlxG/LaRT35dx6CflggCkoCAgMBLIEQiCQgI/OuQiEU0q+RAs0oO+m06nY4TWzcYhLInZ+cQ/yCLk1ExPHiYye7du5+5Yl1UOWbgwIH67W5ubty/f59KlSqRkJBA69atWbVqFZ9//jnt27cH4Ntvv+XgwYNcv36dWbNmFUsReF/ITkvl4sE9xN+8wYlbd8nOVxIYGEiVKlWYP38+Q4YMISYmBjc3N8qUKQPAlClTOHLkCLVrF/6jHh4ezq5du5g9ezbp6el89NFH7Nix442Oo5GnHae+CWT3pXiiU/PwdDCjfQ1nzORP/0ksZS5n2ye+fL7pAneSc5BJxKg0Wj6oW4ZJ7au8wd6/HoY29eDg9STupT7yjJJLxZgaSZjdrYbBvhKxiHWDfVh4+DbrTt8nK1+Ns7UxnzXzpHf9suh00Kh8KY7fKUz5Kt3ne0SAsUzCjM7VnirUvU9Ud7WiX4OyrDsVo79eErEImUTEjM7VGL/tMo8ViUSVHocy6S7ZF/ehUijp378/p0+fxtjYuFj0C8DVq1fRaDSs3HmkmKFxUVu5F/ehS7nDrVu3uHnzJp999hnwKLrmaZN8pVrLgWuJHLqeRKJKhcQcsJYhMpKh02qQOJTG6psZpH/2IZamJtSpU4fvv/+eGTNm6NtwcnKiR88PqNzpE749Gc3Y8AN4OdoxbdkWmnrZM3z4cDSaR8LXnj17mDNnDmq1milTpmBhYfFKngN+niX7itkEfIyZkYS5H9TCy6t0ielOjz/Hi94vSkft06cPffr0eeH+PIvlYXdRagwVL1V6HLmRx9hwfh+ytCh2795NYGAgZcuWZdGiRYwcOZLc3Fx+++03evbsyerVhalvM2bMICAgAB8fn789r7GZOf1nL+BS8H6uhQaj1WjwrNcA73adMbO2eaVjfF4cynkUptk99ntc2cmByk4OyIxNaDvySyQSCQcOHADgWnwmv9StxLn7D7EylfFhQzd61i2DbEgo0dHRBlXdnocXib4SEBAQECiOICIJCAj8J1AV5JOfZej70r5mZf3fP4ecoH379pw+fRoApVrDufvp+M0O4f7JK5QS5xN/4jD29vYoFApu376tX+HPz89n5cqVtGnTBpmsMGIjLCyMn376iby8PExMTLCwsMDHx8fA3PZdIz4+nvbt23P9+nVycnIMynPHRl4laNY08hUKlh4Op0ClBrGIccOGkKST8NNPPyGRSAgODmbmzJkolUoSEhI4c+YMx44dY8OGDRw8eBBfX1995MKuXbvo1KmT/hxz584lKChIP5F7nFWrVqFWq/UeMlCYNhccHMx33333wmO1NJbR18fthY7xdDBn76jGPEjPIyNPRTk7UyyMZX9/4HuAqZGUoBG+7LwYx5azsSjUGlpVK00/HzdszIyK7W8skzC+dSXGt66ETqd7QnyFpf3rsu1cLCvD75Geq6SqsxWfBXji7fZ2Jq2vg4ntqtDUy4Hfw+8Rn5lPdRcrBjf2wMpEhkQsQvWYYGDjP0j/d9L68XTo0EH/rIHC6Je0tDRGjRrFl19+iYODA507d+bS7RjMm440OO/jbYn2TGHy5MlMnDiRRo0a6T2RnkZmnpJW88NIzirQpy/mRZ3m4bG1SCq4I7a00u+ry8pk4fTplDGS8Nlnn9G6dWug0FR7xowZmAV8wp8Hb5L/lyH7+ZgM+k5eDGc3Ur9WVUqVKgWAVqvlxx9/JCQkBK1WS5s2bQgODn7qc+BF8LA3p2UVRw5FJhkYwxtJRLjamhL42ELC2+ZSbAaaJ8Kmij5LC2Mpot1T9PfF9OnTGTFiBJs2beLUqVN89dVXBAYG0qZNG1q3bs2MGTPw8fFh48aNDBw40EAQKwkjE1PqdehKvQ7FU7LfBpUbN+PYxhJSekUi5KameNSua7C5qrMVi/sWGqBr1GrunD3FwcVbEEskmJfz5MiRIzRu3JiuXbsyZswYPvroI4MFjc2bN5Oamsqnn37KxYsXWbFiBfPmzaN///7ExcXh4uLC2rVrDX7zBAQEBASejvC0FBAQ+E8gkRk9M/x+TNtA3N3dWbduHUq1liW3jLlXrgMFD/ORVArgoVqFdYUWzO5Rh9+mjmDChAmsXbuWX3/9le+++w61Wk3lypW5e/cuu3bt4saNGzRv3hydToeT0yOfnbS0NKZNm8bw4cP1ZcyTkpJo1aoV8+fPZ8SIEWzdupVZs2YZCCZvAltbWw4fPkyXLl0Mtms1Gnb+NBOVooDY1HTc7W2xNjXmRkIKdyJO49f7Q+4lJuujjby9vTl58iT379+nRo0a+m0HDx5EJBJRo0YNLly4wK5du/jtt9+A11+h6FVSxtaUMrZvuxevHmOZhA/qleWDemVf6LiSvlcSsYie9crQs15hRFp0dDQ+9StRuXJljIyMDFJC32f8KtjhV8EwGkat0SKXSopVuyui5YRlKBQKvQj9ZPRLdHQ0rq6F5u5Hb6UwYt25Yn5VUJiG+duOwkiNx6OEAAPvsdDQUP22T9efJzY9z6DwgGl5H0wrNCDtzAoUJ48hAkzEIso6OtLAvfBeyMjI0O//xRdf4N28E7vzzIqZi0vd62Hs5YN96h727NkDQGpqKpGRkTRvXuiLlZycDFDic+BlmPdBLeYdusXqk/dRaQqvefsaTkztWBWp5N1xbXC0NOZWUk6J76m1Ov7YfZByzlb6iJpf/vLqK/qdADh06BBQuHDxJM9aBHjXkJua0mPyDIJmTUWjVqFRaxBLJBibmdNj8neIJSVHKyryctk4eRxZqcmoCgoAEJ08xqyBvfhg8nd07dYdb2/vYgsaHTt2pFu3bnz66ads3ryZ3r17s337dqpUqcLGjRv57rvv2LZt2ztr5C8gICDwrvHu/sIICAgIvEIkUikVfBpx69RxtBpNsfeq+QfqX++5HM/NxGyDSaBIKkMJTN59g2Ft2hIbG6sXTS5fvszp06fx8PDQlxv28fEhNDSUvLw8A0+OIqPW0qVL6yd3j6e+TZ48mfr166N+wgT1dZEaE83Z3UEk3rmFmY0ttdt00L83Y8YM6tSpQ2VnRy7dvU98WjrX4pPIyCvAy9GO7AIFZ6Oi2fHV1zi6lqF+/foA+pLtbm5uXLlyxWAbQPfu3Vm5ciXZ+Qri8yWYqTX89ttv+gpFs2fPplq1arRr144dO3YQFRVFqVKlOHjwIFu3bsXY2JitW7e+kesj8M9QqDX66IsXTTl5X5FKxIzwL8/84NvFRBZjmYRRzTwYMqTXc5UIb+xpRxlbU6JScgwim4wkYjzszGhYvtRz9ytXoeZQZJKBgKRTqxBJZaDVYaySU8bGknwTI7bWqcBw40cRaEUpcitWrEAkEpHl6kve1USD9ovakojFZKilepHMzs6O6tWrc+DAASQSCSqVCpFIRPfu3fn999/RaDTY2r68KiuViBnXuhKjW3iRkafCwliKsezdS5kc6FuOc/cfGvhbFeFoIaeKk2UJRz0/T1sEeFcpXb4Cw5auIfrSObJSkrFxdsWtWk1EzzAzD1m1nIzEBDTqR35KOpWKhzH3OL93J+3btzf4bS5a0DAxMcHBwYGYmBhOnz7NzJkzmT17NnXqFEY31a1bl3Pnzr3eAQsICAj8i3h3lmgEBAQEXjPNBg7F3LYUUvmjii5SuRwrh9I0+qC/ftuWiNhi/+hrFXn6v3cfCqV8+fL6yJnc3Fx0Oh279h0kWWXEkdCj3Lp1i8aNG7Ns2TLy8/Pp378/9evXR/FEeWEoTH0r8ul4PGrpdXMn4jTrJ35B5PFQ0uNjeXDtMvsW/UR6fCw6nY4ePXqwbds28rIyuRQTRw1XJ1pXq4i3mws969VAIhIRlZxGWQc76tWrR2xsLIGBgdy6dUs/Fm9vbxo3bmyQomZathrL127iqtiTXstPUXvqPlZs3UuzZs2AwoiMzZs3A7B161b96rCVlRUHDhzA19f3mSk7Am+fO8k59F9xmipTDlB92kH6/XaKA4cO07hxY+bNm0d0dDQBAQH07NmT2rVrExQURMuWLfHz8yM3NxeA6dOn4+/vT0BAANHR0cyYMUNf/XDXrl388MMPb3RMa9asITAwEH9/f8LDw+nXr99T9x3axIMBvm5kn9gAcZcxl0sxNZLwv45VCKzqTFhYmD497EkeL1kuFovYPLQhzSo5IJeKMZdLkUvFNK/swIahDV7I3PhhnhLJE/vn3ztH4oavSNzwFaqsdP74uB/elmZUsyjZM2bEiBFERESw/buhZBxbX2Jb0au+JC0lWW9yLBaLGTt2LIGBgTRr1kxvIN64cWOCgoL0Avo/RSYRY28hfycFJICASg50quWMyV8G/VBozG9pLGVpf++XMqpWK5UkR9/lYWI8xsbG2Ng8Shct+o51714YnRMbG/u33zuVSkVgYCBNmjShW7duBr5WrwOJVEp5bx9qt+5AuRq1nykgadQqbp44ZiAgQWFVN7VSycUDewgPDzf4bX588aJPnz588cUX1K9fH5FIhIeHh144ioiIoHz58q9hhAICAgL/ToRIJAEBgf8MppZWDPhxMddCD3Mj/CgiiZgqjQOo3NgfmdEjYalAVfwfZ0XsNTKOrUMiM6Jqy2b4+PiwZMkSmjVrRsyDB2Tkqaj7XTDah3EkqC1pMWEB8/rU49OBvenQoQOzZ8+mSpUqerGoiIiICMqWLUuTJk2QSCR4enrSpEmT130pUCuV/LnoR9RKQ1FLpSggPyuTB9eu4FWrDlFRUVg4OpGRm08pc1Me5j1Ko/AqbU85h1J8OGwE1zLzaNKkSbGJ9ZN+RXeScxjw+1mchq8CKKxUdPkQxg51WXI0CoAyZcqQnp5OWloaGRkZuLq6AuhXl2vVqsXZs2cpXfrZZeIF3g4xaXl0XhxOrkKtL+L9QGmMzcBfmNi3Pou+HkpgYCAPHz4kODiYTZs2sXr1ag4ePMjMmTM5cOAAFSpUIC4ujtDQUCIjI5k1axZffPEFc+bMoU2bNgQFBRUrW/86ebwaIRRO0J+FSCTiqzaVyTjugY2HJz5+tWngUeqlBA4rUxnL+9flYa6ShMwCnK2NsTYt7lP1d9hbyHlSpzCt0ADTCg0AqOxkgYeHRzGTaXiUElckgm84fZ/v9kYaiO1FbcmlYtZ86Y+ztYm+rbZt29K2bVuDc4vF4ne+WmV0dDQ+Pj7/KA3zcT+3mV2q06mWCxvPxJCeo6SRZyk+qFe2RN+xZ6HT6Ti9fQtndv6BSARajRYLO3vafDrGYL+i79jGjRvZtm0bnTp1eub3rkuXLuzZswcTExMmTZpESEgILVq0eOExvw4UeXmFpQ+f4F5qOvuv3kQmkdBj0GD9b3NgYCBubm6ULVuYkhkYGMiAAQOYNGkSAF26dKFfv340adIEJycnJkyY8EbHIyAgIPA+I4hIAgIC/ymMjE2o3bo9tVs/ffW7eRUHbiRkUaB+lM5mUr4eJuXrIZeK6de9JvuuJDBn0VK2rlnBwTgJh9YuIvn4FmT2bth1mcjJsFAa79+Cn60NW7ZswdbWFktLS5o0acKpU6fo2LEjSqWSmJgYAgIC2LlzJwCDBg0iOjpaX93sdXH/yoViE8oitFotV48cxKNWHfz9/Vn46wpqV6mIuASPjYTMbGq1bMuGSZPp379/Ca0ZsvjIHRRPeMUUVSgaP/hPZGlRLFq0iI4dOzJ8+HA6dHiUXle0unzp0iVh1fgdZsHhW+QpHwlI8Cgd9Ns/b9K3XTv27NlDlSpVEIvFODs768vROzs78/DhQyIjIwkNDTWI0PPy8iIqKor8/Hzi4uJwd3d/reOIfZjHyuP3OH0vnYcXDmD+MEdfjXD06NHExcXRqVMnkpKS2LhxI+7u7ixZsoTVq1djYmLC0qVLMZZJ8HazwU6VzAfdh7Bu3TosLCxeqj82ZkYvLDY8jlwqoV8DN9acjC7m12QikzAqoMJzt9W5tguLQu78la74eDti2lZ3wtna5KX7+Tp5EVEoPj6e3r17o9VqmTRpEs2bN0er1TJ+/HguXLiAra3tC6fVikQiGniUooHH86chlsTp7Vs4vWOLQXWzh/GxbP12ImqlUr+t6Dvm4uLCnTt3DLaV9L3Lzc1l6NChxMXFkZSURIUKz39PvG6Mzc2RGhkVi0Qqqupm4+TMR3PmAIaeYI9TrVo1atasCYBMJtNHvAoICAgIvBhCOpuAgIDAE/St74apXIr4CZFFJhGh0Wr5evsVxv1xmUYzDzF/7Q5uiN3Q6sCsSlPyIsPQKvLIvnEM44p+nL10HUdHR5o0aYKvry/r168nMjIS87JVkLSdyO2YeK7mW3EtvrBynFwu11czelrKwYULF/Tlp/v160dERAQffPABmZmZLF++XO+J0a5du6emIyj+SsF7HI1Wy7LQUyRkZDHx52WcPn2aHj16MG/ePCb9tBAnTy8kUikSqRQjYxNkcjnyMuXp1KMneXl5NGzY8G+v7YmoVDS64hWKHD/4lnJ9v8O9QiVGjhxJjx492Ldvn4GfVFpaGi1btuT48eN07fpuVBkSKM7hyGSeKEKlTwdNy1UQHBpGYGDgExXdHv2t0+moWLEiLVu2JDQ0lNDQUNasWQMUlmifMmUKAQEBr3UMEdHptJwXxtpT97kWn0Xk3QecvpNMlY9/wMTEhJ07d5KYmMi2bdtYsGABs2fPJjk5ma1btxIeHs6RI0f0E/Br167xzTffsHbt2pcWkF4V41pVJLCSI3KpGGOZGBMjCUZSMZ/4l6dN9edPpTU1krLz00Y0rmCPkUSMqZEEUyMJA3zLMbtbjdc4gn9OixYtCA0NfaaAlFWgYsw30+j98QhkMhndunVj3rx5/PDDDxw7dozDhw8jl8uJiIhg1apV9OnTh3bt2tGxY0eWLFlCkyZNDAojHD58WB+N9eRz90VRKRWc2bnVQEAqQq1UkpWarH/95PfqyW1Pvn/gwAG8vLw4evQo3bp1+8d9fZWIxRLqtOuE9LGo4SKkcjkNuvV+6rHp6ek0b96cjz/++HV2UUBAQOA/gxCJJCAgIPAENmZG7Py0EV9uvcSFmAxkEhFanQ6VRodaW5iCBZBzORiZawPM/poxSy3t0RbkkHf3LPl3zvIgIwk7WxtatWrFmTNn2LRpEyKRiIQCCVKjmmivXEdkbse1xDxajZmL7PxmTI0kKJVKHjx4QO/evencuXOxlIOuXbvi7u7OsGHDcHZ2pm7dujRo0IBTp04RERGBTCZDpVIhkUiQPKXKTWlPL3Qaw2gEiVjMMP8GSI2MaNi9D/V9fAD0Jt/VatWi+YP7pMREY2ppxadVqyMWv1h6jskz0nnUWh17/gzWv27VqhV2doWVr0oqY+3v718sPVDg7VNShFtROqhYakRA19Y4Ojo+s42aNWtSunRp/P39EYlE9O7dm6FDh9KjRw9q1KhBZGTka+o9aLU6Rqw/b5CqJZabIXatyuEbyfT3rEN+ShTVq1dHKpVSq1Yt7ty5w71796hTp47+O1dkoj979mzWr1+PpeU/M05+FcgkYhb3rcO91FzC76RiJBETUNkBO/PiE/O/w8HSmFWD6pOZpyIjX4mjpfE76UeUn5PNlcMHuH/5ApkqNcEHD+rLwRsZGeHm5oaXlxcNGjQgKTmF5n0/455pRdJCT3HRqT3lPvkVyZEF7N+/HyOjwkgwZ2dnqlevTt26dbl69Sr29vZs2LCBoUOHUlBQQFhYGC1btiQ9PR0ABwcHNm7cyJAhQ7h8+bI+GuZlSHsQg0hUfA1Yo9XyW+gp4jKyadWqFTNnznzhtn18fJgxYwYRERFYWVm9U5FIAA26fkBWSnJhOrpYjAgRWq0G7zadqOzn/9TjbG1tOXLkyJvrqICAgMC/HEFEEhAQECiBMrambB7WkLQcBVkFar4Ousypu+kG+xSlYWWc/xNV6n2yzu3GxNOH/JsnsPEfiEXttng+PMulS5dYtWoVc+bMIU1nzvozD8hJuIdVA2/kzpXQAVL3+lhWaYRfyi48y5cnIiKCqVOnEhoaWizlAGD48OG4u7tz//59ABo1asTevXvJz8+nZs2abN68We8hVBK2zq64Vq3Og2uX0ageTw8QIZEZUT2gZYnH2ZVxw66M20tf1171yjA/+LZBqmARzlYmlLMz48aNG4X+IS8xCSqJNWvWsHr1ajQaDTNmzGDJkiXFqoStX7+exYsXY2try4YNG96JCf/7SutqTmyNeID6sXCkonTQcqVMWfxloTBU9Bk8LgY+LhROnDiRiRMnGrRdpUqV11658MKDh+QqDc8hd6lM9qUD5Ck1/HHwON3qOHP16lU0Go0+vdLDw4MLFy6g1WoRi8VotYX3+MKFC5k5cyZlypTB09Pztfb9eRHlpPBFp8K0rt9e0uunCCtTGVamslfYu1dHWmwMG6eMR6NSolYqUWs0fBHoS0WfBiw7FMz48ePZv38/qamp1KtXj1FLdnP+wgVsO7VGo9Gg0EmIz4WHKWqGdmzCgd1B9OnTh0mTJpGVlUVSUhKAwTPaycmJOnXqcOnSJVJSUsjLy0P5V4qZi4sLGRkZBn309/cnODgYaQnpwiUhkxuj1RaPMC1aBLB1cWXQ3KVAoShUdI6i79jffe/Onz//XP14G4jFElp/MpqG3Xpx//JFRBIxHrXrYWZt8/cHCwgICAi8MoR0NgEBAYFnUMpcjrudGTcSs4u9V5SG5dhzOjI7Nyy9O2BayY/8u+cwrdgIUyMJ9dxLGaRhPbCqjsTdB0XcdZI2T0ab+1DfnkarJUcrw8TE5JkpBwBfffUVCxYsYMqUKUCh6fTBgwdxdHSkUaNG/Pjjj/j6+j5zbB3HfI1HnfpIZDKMTM2QyuXYOrvQ63+zMbF4PSLKh77lcCtlhrH00c+PRCzC1EjCjz0LV+crVarE8ePHX4nB+OOGyKGhobi4uBTbR6VSsXTpUsLCwujfvz/Lli37x+f9LzMq0BNz4+LpoMYyMd91rv5SVajeJBl5KsRP9NHI0QOx1IjEDV8Rf+cq3bt3x8HBgc6dOzNq1CjGjx+Pvb093bp1w9fXl2bNmnH79m0ArK2tWbNmDcOGDSMxMfFtDKlEniet631n97xZKHJz9T5BUokEsVZN9PkI6lWtRGxsLFeuXOHMmTMM+3QUQX8Go9FqEUmkIBLr0zDVBbnsPXoSe3t7wsPDWbBgAXl5eXqfIZFIhEatRqvRYGlpyeHDh7G3t0en05GXl2dQJeyfpojZurhiZlWyaCI1kj91AeDfhJVDaWo0b031Zi0FAUlAQEDgLSBEIgkICAg8B1YmMjLyVCW+JxFBuUE/6s1qTdzrYG5li5+nHV6aBMq3bq33x+i8OByRVIZ9l4mIxBLSDixGk5tB4oavkIhElKlbnZYtRxpURnqSHTt24Obmxqeffsrnn3/OoUOHaNGiBUZGRjRq1Ij69etz48YNGjRo8MwxyYyN6Tj2a3IeppMWG4OZlTV2Zcu93AV6TkyNpGz/1Jc1J6LZHBFLRmoi8Rv/R2zCPWpMyQFg8ODB3Lhxg82bNxcTffLy8ujRowe5ublYWVmxZcsW5HLDVJwbiVlsPPOA5KwC8q8Go1SonmmInJeXp09Nat68OUOHDgVgz549zJkzB7VazZQpU55akl3AECcrE/aM9GP2/hscuJqEWqulTlkbvmpTibrlbN929/6WKs6WKEuIlLMJ+BiZRMSHDcvh5eWlr1j2OCNGjGDEiBH619OmTdP/XVTZ7W0RdiuFBYdvcysxG+OCNO4cCMbPrzHdunVFqVRSrVo12rVrx44dO4iKimLw4MH07duXrKwsatWqxcKFC+nUqROrVq3CxsaG0aNH079/f7y9vd/quJ5GWmwMmcnJ8JjFe4FKjbFMikpRQPD+fbTp1hOxWExGRgZ2FWqTffkLZGWrA2Dk4E7Opf3kXAtFnZFAjmtHypUzIz09nU8//ZQff/yR+/fvk/MwnWthR8g6vIvTV26Sf+MSVZwfpWuGhoZy/fp1/P398fT0ZPTo0VhbW3P+/HmuXbsGwOTJkwkODmb48OF/69sjEolo/ekYts2cgkalQvdXxJvUyAjr0k7UbNH2mccLCAgICAj8U0Tvkmnei1C3bl1dRETE2+6GgIDAf4QVx+7y48Gb5D9R1UgsgrrlbPmyZUW+W3+IkF+/pXLHYYz7sDPdvF1Zu2a1vrwzwNxDN1l29C7Rq75EmXATsbEFRg7uOH7wLUZSMccnNMPBwvhtDPEf8WTVoy1bthASEvJUA+xVq1bx4YcfolQqyc/Pp0uXLvqUjsaNG3Ps2LESjwsKCuLq1atMmTKFGTNmUK1aNTp16qR/f9Hh2ywOvYNKrUWjg7wzf6BMiSb8wA7WLJiJo6Mjv/76K1euXOHcuXP8/vvv9O/fn927d/P999+jVqtp2bIlwcHBBAQEEBwcjFarpU2bNm9dBHhf0el073z00ZOMWH+OkMjkYmmXpkYSDo5pgquN6Vvq2cux7tR9vtsbSYGqMA1Kp1Yhl+io425P1q5ZTJgwnhUrVrBmzRr69u3L7Nmz2bhxI6VLl6Z///4MHjyYIUOGcPv2bQoKCvjoo48IDAx8p31mHly7zM4fZ6DIy9Vvi0xIZv/Vm0jFYiq5lWX/uUtMnTqVjIwMhoyfTv0Gvpj7dMPU0wd1Viqpe+eiUyuw9utLwyYBrP2wBgMGDCApKYlWrVrx+fChrJkwCmV+vkH5eamRERuuRxN++gyxsbFMmjTJIIV237597Nixg2XLluHv78+8efOoUqUKLVq0ICws7LnGlxb7gNPbNxNz7TIyuTE1AltRq1U7ZPL37/dDQEBAQODdQyQSndPpdHVLek+IRBIQEBB4Dvo3LMehyCQux2bqDXdNZGJMjaT81KMmZWxN2TXpA5j0gcFxj3tN6HQ6Otdy4ffj97Dv8AUZYWux6/Clvq12NZzfSwGpiBYtWugnStHR0QQFBZUoIqkUBSz9eRENK3vhVq0GNjaP0hEmTZrE5cuXad++Pbt372bEiBHcvHkTExMT1q1bR/ny5Tl37hwAGRkZlCr1qFT2hZiH/BIaZVC+XCM1QeJSlcGrI5ji34zz588VM0S2trYmKysLgKysLKytrUlNTSUyMpLmzZsDkJyc/F6KIS/C495R69evLzH179ChQ8yaNQutVstPP/2Ei4sLvXr1AtBPrOfPn29wzItes6tXrzJ06FAkEgmenp6sXLlS30ZRtbbHI3xeB3N71mLslkscjkzCSCJGiw4zIym/9K3z3glIuQo13+29bvC9EEllKIHL8TkEejchLi6O9PR00tLSyMjIwNXVlaioKNq2LYxqqVu3Lnfu3KFz58707duXChUqvJJ009dJKdeyqFVKg21F5eBFIjEVGxX2/3//+x9Q+HyuOWIhCZkFAEgt7Sjdu9CXzUQmoY9PWSwsLAgKCtK3t3/JfFQFBQYCEhRWSctIjC8xde3u3bvMnz+fXbt26bdVq1YNmUymN2N/vvGVoe3IL597fwEBAQEBgVeFICIJCAj853hZo+V1H/tw8HoSm88+IE+ppkUVRz6oVxYrk783lQ2+nsR3e68Tl5GPVgdyqZiCmCukbJyAmZcvldzt8TPy4dYtExo0aEBaWhpTp06lffv2jB8/Xh+l4+/vT2hoKL1792bChAlIJBKmT5/O1q1bX9flKhGtVkfQhThWHL9Lao4SV2k2x4MP66sepaSkcOjQIfz9/Zk9ezYTJkwAIOLsGQb51eXy5Su069QJHw83Rnz+ub7d7777jtDQUPbs2cPu3bspW7YsS5YsYd++fQwdOpSUlBQuXbrE1q1byc7O5uTJk3zyySdERkaSW707CrWh4WyRIXJWvoq9oSdxtpIXM0T28vLSbwsODqZBgwbY2dlRvXp1Dhw4gEQiQaVS/asFpMe9o55Gfn4+y5Yt49ChQwZV/4rSuj7//HPat2//0n1Qa7TkKjVUqODFiRMnABg0aBARERHUq1fvpdt9GYxlEn7pW4eEzHyux2dhbSqjdhkbxE8aPb0Fnoz6+ztPo2O3U5A+0W+tIg+x3JQ8pYZ9YaH0az+Njh07Mnz4cDp06ACAh4cH586do2rVqkRERDB48GDMzc2xtLRkwYIFr8z4/nVhamWNZ72G3Dl7Cs0TYpJEJuNc8kNm+fnpU4dFIhELetVmwMozpJ77k6wL+7Dy64s26TY5sZdw6/A7UMagnbvnzujTyZ5Eo9aQlZKMTCZDoyl8LuXl5TFs2DBWrlxpkIb7b362CAgICAj8+xBEJAEBgf8EKo2WpKwCctOTDSbL0dHRxfd9zGh527ZtLFu2jHHjxiGViGlb3Ym21Z1e6Nz7riQwZstFg0gA5NZ4fvobP3zgzc/fDOPrvn3Zv38/GQ/TqVevHtevX+fixYtMnjy5xDbnz59Pnz59EIvFrF69+oX6UxLx8fG0b9+e69evk5OTQ2pqKitWrChWHQsKV+xHbrpASGQy+SoNiRu+Irnnt9gM+IWhHWuwaeYoZs2aRUxMjF6cCw0NZcWCeSjj7lPO2hInawuGNq6HRCwmYu8OctLTip0nMjKSTZs2ceDAAXJzcykoKGDEiBG0a9eOcePG4eHhwdChQ3FxcSEyMpLYh3lon1j4LzJEjl4zngsVyjBq8TwOHjxI586dSUlJYf369chkMoYMGULjxo2xsbFhw4YNiMVixo4dS2BgICKRiCpVqrB48eJ/fJ3fJa7EZhIcWVhdKvvSQTQajd476scff6Rt27aoVCrs7e3ZsmULJ0+eRCwW06ZNGxwdHVm6dClmZmb69sLCwvjpp59euB+5CjWz/ozkj/OxaLQ6TGQSPvZz57OACsjlcsqUKcNHH31ETEwMbm5ulClThvXr15OVlcUnn3zC5cuXWbZsGXPnzqVHjx4olUqsra1p3bq1QSTgy+BkZYKTlYn+9bOipB6nU6dOHD16lD/++EMfzfYqeTzq7+9QqLVPBsqgiL1GxrF1iCQyylf3xsfHBy8vL8aOHcuSJUsAGDp0KH369OHXX3+lRo0aeo+1Xr16MWnSJCpVqvRKx/Q6aDV8FGpFgb6SV9FnFTBkJHOWryi2f313W/aO8iOw+f+oNPJnrC3MuL3iT67cvoxM8nxRQhqtlt/CzhCfkUXXXr2Y88OPpKen0717dxo0aEBISAjVq1dHLBZz/fr1Ysd///339O/fv8RIQAEBAQEBgXcBQUQSEBD4V6PV6lgYcpvfjt1Do9WRfmE/lhlJNG7ajFo1qj230bJSqaRr167k5ubqJ9XPg06n43+7DVNJAJDKUIog9HYanTt20FcJyszMZOzYsRw7dgytVotMJiuxOpujoyMeHh6IxWKcnZ3/8XWytbXl8OHDdOnSBYDSpUuXKCABnLybxpEbhQJSEUXpMTP23WJYqzbs2bPH4JjCFI559POuWqw9tUJBVkpysRX9ihUr0qtnDz7u24egP/dz4tQp5s+fj6urK+np6SQmJjJnzhx+/vlnAKq7WHF0x3oyLx9GJDOiVMtPkZVyxSbgY4xlYlZ82giv0pYlGiL379+f/v37G2xr27atPp3n34Rao+WT9ec5fjtVH7mVc/oclvmJRB4/xKRvvmbPnj3s2bMHExMTJk2aREhICKmpqSQkJBAaGsry5ctZtmwZY8eOBSAiIoIaNWo8d5nyIjRaHb2Wn+RmYg5KTeHnr9Ko+eHXDXw7aB1N6tXg/v37SCQSgoODmTlzJkqlkg4dOtC7d28++eQTgoKC6N69Ozt27MDX15evvvqKTz755NVetL+oWLHic0VJLV269JVV+dPpdITdTuWPcw/IKVBT3UpJyJEj+qi/MWPGMGnSJI4cOYJcLicoKIiPPvqI9PR04uPj6dyjNykRyWh0YFa9Oclbp+HQbQpOAxdgKpPwVdtHYlCrVq2ws7MDCqvK/fnnn8X6IxKJ6NOnzysZ2+tGJjem8/gpZCQmcC7iAjfT1Ri7VWJ7+F4GDBjAlClT2LVrF3PnzgXg9OnTrF27lof3Iyl7YCatevQg7N5NWgQGsGfPHszNzQ3a96zvy9XQQ+g0j56FErGYYf4NsHIozccLf0UkEnHgwAGgcNHi4sWLBgLg48+jkp5NAgICAgIC7xqCiCQgIPCvZuqua/xxLlYveCizH5LwMIdSfSchTT/Azp07SUxM5NChQ5w7d47Zs2fTv39/LC0LS9xbWVnx8OFDYmJisLOzY8+ePU8t0fxkmsny5csZO+4rMioNKLavVpEHclNCbiSTdCuckSNH6qsE+fv7M2XKFAICAvR9SEhIwMTERF8i/PLly2RnZ6NQKLh58yYVK1Z8oeui0+k4HJnM+tP3Sc9V4lvejgG+5QzGUmQGu3z5clauXIm/vz+nTp2i9ifzSb1+kszj6zEqXQG0Wn16jEQsYueBEP43/nOuXLkCPErh6FKjEtK/0qAkYjE6nU6/ah/7MIuWLVvw/ew5AOTnZKO9cZE/16zm958XkpaTi5ODA2HHwmnQqBGJiYkYGRkRFhbG5cuXAWhfwYzZN8Ip3W8OIrEEne6vqkViEZVKW1KptOULXaN/K4uP3OHY7ZRi3lE5NhX45cgdAgICOHXqFNu2bSMuLo6kpCQqVKiAvb09fn5+SCQSAgIC+PHHH/XHb9++/akm6s8i9GYyd1Ny9QJSEVL3epSq4INF4k7u3r1L7dq1AfD29ubkyZNYWlpiZGREamoqx44dY/Lkyfzwww/UqFEDgFq1ar3ElSmORqtjx4U4fj9xj/RcJTVdrfm0mSfVXKyeGiU1bdo0nJwMoxVfVoTWaHV8su4cx++k6r3YToo0OA1eyvqR/nwyoBd16tTh7t27hIeH659NQUFBZGVl0aVLF74YNQJdWCJLvv6YgrhILH26FX5XRWBhIqVLHVdu3LjB4MGD/zZFbdu2bcybN4+dO3e+xNV8OyjVWsYdjOPYbREarRRR5E0SdgbxZeWWAHTs2JGOHTuydOlSWrRoQffu3fn555/1KcSbNm16qrjTsFsvbp8+jiI31+B3QWpkRPOPPyFXqWHdqftsOxeLSqulrq2awyEhzxQAR48ezaRJk7C1taVbt26YmJhgZGTE6NGj8ff3fwNXTEBAQEBA4NkIIpKAgMC/luTsAjZHPDAo1y2WmyEvU43MfDVSl2rk58U+l9Gyp6cn1atXp2/fvnh7e+sjMJ7kSXNpRKJiqSTwKJ0k1UhOi17t8PHxoXbt2mRkZCCXy5FKpfj6+gKFaSUdOnTAz88Pe3t7NBoNX3zxBWvXrkWpVDJ8+HD27t373L4aWm1hOtqRG8n6iWlkQjZrTkVjolAb7KtWq1mxYgXh4eGcOXOGU6dOkVOgJuvUVhz7fI+2IIekjd/oxyORGeHh3wQ/Pz9mzpxJ9+7d6dChAzdv3iRaVYBWo6Ffg9pUdnLg9/Bz+HiUYZh/AyRSKZ/9vgWpkRFhYUdZM24kDxPi6VyrCgDhd6KRSqUE//wjS5Ys4dy5c+zbtw9b20cl41WZSbQL8OWasRGIQKMRIxaLKFfKjN8GlFhc4j+HTqfj9/DoYpFxRd5RK8Oj6WN8EU9PT3Q6HRs2bGDixInodDrq1avH8uXLAbh48SLu7u764w8ePMikSZNeuD/7ryaSqzT0sdKpVYikhT5j6SoJt27dIj4+HoALFy7o9+vcuTNz5syhQoUKSCQS3N3duXLlCm3btuXy5cv/2EdJq9UxfG0Ex++k6UXohMxEdu/ehfT8ZupUr8L9+/e5fv06UqkUW1tbgoKCipl++/n5sWrVKr0IfeTIESZNmsR33333t33YGvGAY7dTDaL+CnQSVEoRX267Svv27YmOjtY/K4qeATqdjiFDhjBzZmFFwu+7OfDg7AdsX7EAu25fodboaOBRijnda2Aul1KpUiW9N9Cz6NatG926dXveS/hO8OPBmxw5f4MHm6ahTI3BtsVw5OV9+HXNJsxzFACcOnWKI0eOsGnTJgDu3LmDRqP528g6i1J29Ju1gLD1v3Mn4hRajYbS5b1o2ncQFu4Vab/wGImZBfoqf7EpauwGLWXFZ00YM7hviQJgEb/99huDBw+mb9++tGrV6jVcGQEBAQEBgZdDEJEEBAT+tZy99xCZRITyMV2kaLKcr9Jw6PgZenq7PJfRskKhYMyYMYjFYlq2bEnfvn1xdHQEIDn6Lgm3b5KalcWRx1aZu3TpgqmRBEdzKefWzMCiVmuyzgRh1+FLTMrXQ3H/Et17fkC3xu7UqVOHihUrcvPmTQDCw8P1fS4prerQoUP6v0tKOXkWB64lGghIAEqNFqUGYpNyDCYzqampuLm5IZVK8fb2BqBZJXvWi8VoFXmkBH2HOiMRY/c62NuVJev4OhbM/RGJRKJP4QAYMGAAR9et4MK+PdyMTyRXoWRIk/oAiCQSynv7IDUyAiD64nmyUlPQah59cOVK2XD67gPSYmO4dugA1byLCwQeHh6k3b/J2SWBHLmZSmp2PtVcbahT1lowrv0LlUZHVoGq2PYi76ibK77gdD0vevfuzU8//URERARWVlb6SKSmTZvSpEkTTE1N2bBhAwA3b97Ezc0NExOTYu3+HZISjKrz750j6+wOxCJwqlmVyZMX6UvKu7m5UbZsWaDQd+iTTz7RR8V07tyZHj160KpVK8zNzZHJ/t7w/lkcuZlMeFSagYCj04HUvT7mlXwpnbpb/32Fwgpbj9/zj/O4CG1lZWUgfj6LleH3DM4Pj6IYLz7IQHs7jHFjR7No0SI+++yzv/qoY8aMGQQEBODj4wNAQX4eSWf/ZOzwAdg5xjB40CCsTP/Z9XkfCD9xku+GfYxWB0ZOXoiMTMiO2IU6KxmRWAoaJf/73/8ICwtj+/bt+ueEp6engXn8s7BycKTDmK/0z82iNmb9GUl8Rj5KzaPnqVokJUcLU3ZHPlUALOLu3bt6o/o6der8swvxnvGi5vGJiYl6D7+QkBAmTpyIsbExa9euxdXV9Q31WkBAQOC/gyAiCQgI/GuRSUSIMPzHvGiynLjhK3Cwp/usz5/LaPn+/ft8/PHHqNVqPDw8cHBwQJGXx/Y500mKug2ARqfj86b1aDv8cybM+YnAwEBUKhXGJ5ZRyrsNYpdqqNJjybt9GqvqAWhS7jJzaGc+6tOdXbt2YWNjg5ub22u/LmtP3TcQkB5HrdVyNS4Lm79e29nZcf/+fTQajT4KpHNtF4aJdEhkRti2G0vimjEAyCViHCzkeNibl9h2w269ib54HmlKun6b1EiOsbkFAR8N12+7f+UCqoJ8g2NdbKyQSeJYsP8IbuU9mTZrNr/88ovBPvb29nTr1o2Apo0xMTFh6dKlVHSzQeARMokIC2MZmfnFhSSbgI+xMpGxbUoLRCIR58+fL7bPmDFjGDNmjMG2ihUr8scff7xUf9rXcGbXpXiD+1GryEUkFoNOx0/ff4dYLGbVqlXFjrW2tiYvL0//uigd6Pjx43z55Zd4eHi8VJ+K2HTmgeH3RKfDI+smtXJvYKYr4GJcLLdvXMfOzo6MjAyuX79Odna23l+tSMABUCgUREdH06FDB3788UcaN278XH1Iy/k/e+cZFsW5huF7G0sv0kUpFlBs2BUbir0bTWLsPRpjook1KpbElmKKRo2xd2NvsSGigthRVLBSREB6b1vPD8LKChoLMeXMfV3nOmFmduabj93F75n3fR5FqW0lq/5a9ehA06ZNOXjwIC1atNDNwYIFC2jatCnbt29n2LBhXL9+nenTp+Pr60uXLl0Y1K8XFsb2bzQ//3SyUlNIio6m4gcLUIkNSD70DRpFAWK5CWYNupMTdhKtVkJ8fDwhISE4OzuTk5NDVFQU169fR6VSvZLH17Mi0K6rj/UEJHiainc1Jh1t5Dk+m/hpKQGwGDc3N27cuIGnpyehoaH/F9VIapUSRUEBWo3mlczjS3r4ffnll5w4cYLw8HAWLVr0nwtEEBAQEPgnIIhIAgIC/1laVLNBVUb8slW7kRgbSPimXz3c3R1fymjZwsKCc+fO6R1zdPm3PHlwF7Xy6YJcApxas5w2zZtx+PBhzp49S6dOnVg8fwxfH7vDxYIWpBz/meYtG2LazQc7c0OysrJ0T0urV69ePjf/AspamGrVKpJ2zUGRGMWoD/qw4odvAJBKpQwfPhxvb2/qNGrO/cQcWiwOwKHV+yTs8kNiVwWxRIpcKqZdLXsibuXrmZSfP39el6J15/4DLuSoadKlB3H79mLpWpVNgSH8uGIlJpZPxZ7UrFzmHjiJnbkpUrGY/k3qcSkqlh5enuwLDSc0/A6bNm3Std/s27eP69ev07RpU5YuXcqFCxd059q0aRMbN25ErVazYMECVq5cWWphsnXrVn7++WcqVKjAtm3bdH5Y/0VEIhEjWriy8szDUi1thjIxw1u4vtWqLe+q1tR3tuJqTBoFSg2q7BQKHt3CdfAS+jepTEPPasCLU9ECAwMJDAxk7ty5dOvWjbi4OCQSCc2bN3+jsWWWrNjSaumSdIKcBxc5cPcBABVMTFBqNFTzasCtW7dwdHQkJyeHPXv2MGDAANavX8+5c+fIyspi9OjRXLp0iStXrmBpaYmxsfFLjaGGoxnBD/STC42qNsaoamPkUjE/zu4AwIIFC/SOyc/XF2FLUrKK8W2xdOlSncD3Z6SlpTF27FhSUlLw9fV9rsH/8zh6M4H5uy6SUChFojVCIyqqKBKJJaizklCpVSCRYmDrgrVbLX755RdsbW3Zv38/ALNnz8bLy0snIL3MmMsivwyhvlgAFMsM6PhO5zIFwGJGjRpF37592bRpE3K5/LXG8G8hLyuT0xtWc//ieUBLtkrDCf9gvareESNGYGNjw/3795k9ezarVq0iLy+P48ePk5yczKxZs1i9ejVGRkaYmZnRtGlTpk+f/nffmoCAgMB/EkFEEhAQ+M9iIpcyq2tNFvx+R68lxFAmpqajOZ1qvf6T+Oy0FKLDQvUEpAKlCkOZFLVSxdH9+1j880rCw8NxdnYm+MAWdkyYADSna9fNWMWFMGBgUcKRubk58fHxWFpa8uDBg9ce08vSyNWKh8k5qDRPn3qLJFLs+y/AQCrm6LS22JkZ6iopxo4dS6PO7zF47SXSck8hy1NCpYZUHN4YWzMDCvZlc/ILX7JSEunyUyKn/P11JuVff/21XorWe++/j0gkonJ0LAfvRLNi3Xpq1SpKbNNqtWi0ULVREzwc7fmgSV3d+Np7FolrHep4MHBCF737+fbbb5HJZMTExPDRRx9x6NBhlBoNKYlPOHPmDKdOnQL+8Kh6BqVSyapVqzh79ix79uzhl19+YcqUKeU63/80PmpbjVtxWQQ9eJrOJpdKaFnNhvFtq73VsYjFIub28OST7aHceZJNQdQ1pGIt2t/nk5zegMKO39G1a1cUCgWOjo789ttvjBo1iv79+5OQkIC5uTljxxZVsY0YMQK1Wk3Tpk2pXLnyG4/Nx92WsNgMClQa3PKicc5/hEFFW7wq2gJwKTIWY7mMRrYmPKlVi759++r8kTZv3ky3bt3w9/fHzs6O+Ph4IiIiEIlEBAYG4u/v/1Jj+KRdda7FZJRqaTOUienXoBKm8n/+P+MKCwu5cePGSx8/b9485s+fT40aNf784GfYHBLNV4duUaiRFfmiiWSg1aBIjESTl4XMxhk0amy6fkr6sWXUq2xJQkICQUFBODk5MXjw4Jf+3fwZ9SpbcCEyTW9bsQBobWLAspntgdICYGFhIUZGRlhbW+secDzrs/VfQqkoZNusz8lOSUbzR8qdgVrN5I4tadipG0t3HcDX15f09HT8/f3ZsWMHGzdu5MSJEyxcuJDjx4/r2v3S09P1HgKo1WVX3AoICAgIvBniv3sAAgICAn8lg5q7snJQA7wqW2JsIMHRwpAJ7aqzbXRTpJLX/wpMi3uM5BnPlaiUNL4/eY6f/M9hiEbnmTR//nwiIiJ0pq3NmzdnxYoVzJgxg44dOzJy5Ehq167N8OHDsbe3p3v37rRt25a1a9e+/o2/gFGtqiAr497lUjGdatljZ2aot12r1TJldxj5SjUlmzMUKg0p2Qoy81WYGxbNxbMm5c+maLVu3RqAXbt24eXlRa1atUjJKWTyrht4zD5GtS9+Z/zhWB6mZbIi8AJn70aSlpvHtguhyORy2r8/ECMz/UqhYu+b+OR0UuUO1PA7Rs3Zx2jz6fc8TMzC19eXCRMmoFariYuLo1evXjRr1oyoqCju3bunG3P79u11VUyrVq2iWbNmTJs27T+XiCSTiPl1aCN2ftiMj9tW4+O21dj5YTN+HdqozPfFX8mdJ1n0XhHM3cRstIA6NwO1Uolpn3mIpHK27trHN6u38fvJAGrWrElAQACZmZm6iqSoqCjmzZtHXFwcUVFR9O3bl6pVq5KYmMj48eMJDAykV69e9OjRgxYtWpCTk/PSY/ugiTNymQSRCGplh2Og1TedT8rO4fyDGJYfPc3NWzc5f/48SUlJev5qAO7uRR5TryNONq1izdyetTCUiTGRSzE2kCCXivGtYY9fj1qvfL63wa24TMZvvUbLJQH0XB7Ex3O+YdDgIQAcPHgQHx8ffHx8MDIyQqFQ6L7v3nvvvaLX37rFwoULadu2LSEhIS993QKlmkVH71Co0a+kUxfkkua/CptO43XbDOUGWBpJqVfZssj0PzqaNWvWvLEZe0kmd/TAUFb682QkkzCpgzviMvzANm3aRH5+Pk5OTuU2jn86d4LOkJuRoROQAKQSCRKNmpv+R+no68vhw4fx9PRELBZTsWJFateuDUDFihVJT0/Xvc7KykoXigEgFr/Z99nFixfx9vamVatWTJo0iSdPnuhEv5iYmL/8b7WAgIDAP5V//iMsAQEBgTfEx8MOHw+7cj2nqZU1GpX+U86ajnbUdCy6jnMdL1xdXXWtUyX9ewYPHszdu3d1+x48eEDXrl355ZdfcHV15fTp09ja2pbreEviZmPC2qGN+Hh7qC65TqHW4FvTnm/61St1fGxaPgmZRe0xDgMW6+0rVGlIzy7U/fysSTmUTtECGD58OI8fP2brzt0sj7QiObtQVxkVV2iI7YfrmeypYcVXU6htYIiRuQXdPp1K1YZNuV+GP07PXr05HhiETffPkf1xT+nJySSnpvDVj6t5fGINBw4c4MmTJ5w8eVJXKTV48GDdk2sLCwvS09NRqVRs2LCB4OBgrly5wsWLF99kuv+x1K1kSd1Kln/rGGbuu0Vu4dPPkVhugkHl2qTnKTmRYcP21YdRLfkFRVYKkpwk1q/fgJNTRdq0aUNGRgZ79uxh8ODBpKen0717dw4fPswnn3zCiRMnmDNnju68hw4dYsGCBZw6dYpevXq91NisTAzY+5E3E7aHYhxfUGp/93o1ATAwMmZD6F0+++wzwsLC9PzVihk5ciSLFi1iyZIlel5JL8P7jSvTva4jgXeTyVeqaeJaAWfrl2uHe9tMWfgTK35dh0atxrrHZGKNLUk/cgKRZ2cAevbsSc+ePVm1ahUdOnRg0KBBXL58mb1792JoWCRenz9/nmvXruki7l+2nexqTDrP6jJajZqUw99i2WYY6Ye/RZ34EIlUymwfe5YHw769e7G3syMxMZHBgweTnJysEyjelEauFVj2QQOm7w2jQKFGJBKh1WqZ2KE6g5qV7X03ZMgQhgwZUmr7f7kS6W7IOVSF+p+v4qpeiVTKyePHmDn/S8LDw3X7S7bclvSRMjY2Jj8/n5ycHMLDw/H09Hyjsbm4uBAQEIChoSEDBw4kOTlZ1145c+ZM1q9f/5f+rRYQEBD4pyKISAICAgLP4UU+LNaVKmNh70Dq40fEpWVwOOwOGo2GNh5VqOfmTMOuTxeqPj4+BAYGkpRVwOXodNITkwk4fVrn9+Do6MjJkydp2bIltra2fPjhh+Tm5rJs2TLMzMyYNGkSO3bsQKVS0bFjRwICAt743ryr2XB5ZnsuR6eRma+kjpMFFS3LTtcqUKmRlOGTU+yjpEx8SKdOnVi4cCF2dnalFtHPpmhB0SLgl19+oYlvd5Kd2yFxelpVIZLKUAA/RUn5cOJksrMycTWuQNWGz198v//Fj4S7nCV29wIch3wHFAkS4kq1WH76AYtatiYi7HqpSilLS0vdk+usrCwsLS1JSUnB2dkZiUSCl5fXq05tufCq6UT/RrIKlNyIzdDbVpyeqNZoSYu+h8TCATQa7LpNJvvcZtxquFMx+w6XL1/mvffe48qVK9SpUwexWMy9e/cwMDAgKCiImJgYWrduzblz53SigJOTExkZGaUH8gKq2pry+yetOLLuLndPHUGrKm1IrlYpCQw4hZm1TZn+asUiyIwZM/S+U4YPH46fnx+zZ8/+UwNhE7mUhEtHWLVqFfPmzcO5W7dXuo+3QWTMI9bsOoLt+0/bs3LCTmBYozVBD1IQ/2HmfuHCBU6fPs2OHTto3bo1U6dOZfLkyVSuXJnffvsNd3d3atYsEuhepZKkSEvQ/57KuxOEIuE+GWc3YaBR8bFvMy5nKRnauwMuljL8/f359NNPSU5O5syZM7Rs2RKNRsPOnTvfeD4AOnja065GeyISslCoNXg6mmMoe7nUt/8XyvodR6WkcezWXWRSGb4dO+mqel+GmTNn0qFDBwwNDdm4ceMrj0et0RJ4N4mz95IxMpDQo54RtSoaIpVKkUgkDBo0iPXr1xMTE6P3t9rd3Z2LFy8ybdo0lEolo0aNYvjw4a98fQEBAYF/A4KIJCAgIPAcPDw8OH/+PFBUOXPlyhW9doeen33BDr8pnAq5xvAWjZDLpEgMDPBs0x63+o10x2mB6XvC2Bsah4FEjEalwHzwz4zvXY/NX37MokWLqFSpEhKJhMjISM6cOUNSUhJTp05l//795Obmkp2dzfnz52nfvr3eGD/66CN27drFokWLGDVq1Cvdn0QsolkV6z89zs3GpMwodpFESsUBC+lZryLfv+8FUOYi+tkUreJ2FgD7d74gLSFb7/jiBCOA3/0DmTtjst5T6GcpLCzk4PV4FGIDxAZPDWiLBQmZRMzvp4OpYmNcqlLK3d1dt83f359mzZphY2NDbGwsGo2GsLCwP52fv4pXSSf6N6JQaRCLRFCiSbJkeqLEyBwrz1EkX95PYcI9xIamPEyqSJ2qLkRHR/Pll19Sv359GjdujEgkIjo6mrt37/LgwQOsra11VW/Pq1p4Fdr0eYfIs8dRPCMiSWUGVG3cFDNrm5c6z7PfKSkpKS89ht9++42goCBdxc4/gZScos/ek6wCrpzYg1ajIXHHF8isnTFr1IuM4O1oVUpSjixFgpaqVauSmppKREQEs2fPJiwsDHNzc0QiEUeOHKFv3764u7vr/K5UKtWfD+IPGrpYodbo/35NPNtg4tkGqUZJ86yr9PR25vsho4Gn3kNQVOkjlUrZuXMnkZGR5TdBFH3P1nayKNdz/ht4GSE8NDSU6Ws2k5qYyBfd2gKQmV/AsZt3SczKYcn7PRi/ejVyYxPdd2HJvx/Dhg3Tnat4f/v27Uv9nXxZMvOUvPdLCI/T88hVqBGLYMP5aJpb5pKSkqIzxE9JSSEsLIwHDx7o/a328/Pj4MGDmJmZ0aFDBwYOHIiBgcFrjUVAQEDgn4wgIgkICAiUQKXWcCUmnZwCFXUrW2D3h9+OXC6ncuXKDB8+nNjYWJydnXF2dqb/ZzPZHnaf3eEPkcsNWbVyJXWbt2D16tWsW7cOHx8fYtPySLoej0Kl+aN9TAyImXfkLt2b+rB//37S09Oxt7fH09MTW1tbbG1tSU0tSmV65513OHDgAAEBAcyaNUtvvLNnz6ZJkyavtNh6VWQSMZ939GDx0TulDH7lUjET2r2+GXNZa/qSEeb1u7bXewq9YMECtm3bhlarJT4+Hj8/P95//31CImLJzCvAss1Q3bHFgkTUxilUcHdm6vKlnDhxQq9SSiaTMXr0aFq1aoWVlRXbtm1DKpUydOhQvL29ad68uc5z6W0QlZJLyMNUspITCAh4Wq02adIkZs2axenTp3UpTiNGjCAtLY3bt29jbGyMu7s7zZo148svv8TJyYn9+/eXq8dLeWNtYoCtmZy4DP0kMat2I/V+dhz2I3n3L5B1eT+ZYSeJENXiwoULjBgxgtjYWN3nccOGDWRkZFCxYkUOHDhAdHQ077zzDmZmZly6dIkBAwbozlky0e1ZsrOz6d27N0qlEnNzc7Zv346ZVQXe81vEoR8Wk5eRgUgiRq1UUr1ZCzqOmfCn96pWqchOTUFubKx7P8nlcj2fruJEQzc3N2bNmsXZs2epV68e2dnZdO/enUuXLtGpUyfWrl1LtWrlZ4D+7GL/t99+IyAggHfeeafM4588eUL//v1JzSnkXnQcxlUaYNFuNLk3HqBUKrHvv5D0wPXk37+A2NAMx2E/kBdxlsxTqxk2bBg//vgj7du3x9bWlmrVqpGVlUViYiK1a9dm9+7dRERE8MEHH5Cfn6/XkvhnGBlI+KxjdZaeuEd+ieRBsVaNkbaQNpb5tHy/KHEzLi6OL7/8Uhf/PnPmTEJCQpBIJPz2229vMJsCJfkzIbxatWpcuXaNRrU8kchkqJVKjA1kfOjTjI0h12j27gDkxiZvbbzT94YRmZKDUl30h0mjhdysTHZuXMCyNU+rmiwtLcv8W33jxg169uwJFAlNycnJ/1f+VgICAv8/CCKSgICAwB+cvZfMpztCUao1gAiFWkPNwrs8OLoGD3d3YmJikMvl+Pv7s2TJEvLz80nPzCIhLZ2wsDDOnDnDmu07Wdq4KWvXriU4OJhz50NYtuN3bEuIL8WVNvlKNWsOHKV9wxpUqVKFgoICUlJS2L17N/b29ly4cAGtVsudO3cIDg7mzp07rFu3DgBfX1+OHTuGo6PjW5mbod6uiESw9MQ9FGoNao0WNxsTlvStSxVb09c+b/d6jkSl5FKoerroK04wMpFLWTO7PdEPH+gqBmbOnFkq8nv//v3suPSIeYfCS4lcVu1GYigVc2RWe8wMZWVWSg0ePJjBgwfrbRs1ahRjx47l4sWLujn/K1GoNHyyPZTTd5MQi0Ro1QpMBi1ncNfaHPhmIg0aNCAyMpLg4GBdNc3evXtJTk6mbt262Nvb069fP92T8pycHD0BSaPRvLHJ7MvybBtoyZatzZs3s2LFCiwsLNiwYQMzu9Xgg0FDKUh+hEhqgJlXZ0w8fUqd07h6s6L/GUiY0Ks2YrGYDWV4Y5WseouOjqZr166vXM0lk8nYsmULjo6O/Prrr2zYsIEJEyZgX6UaI3/8leSYKApysrGp7IKxheULz6XVarm0fxeXDu5Gq9agUauJ10o5fO0mNTw9sba2LuXTNWfOHK5du8bZs2fZuXMnR48epV+/fixfvhx/f39d9Hx5UnKxHx0dzd69e58rIjk4OLBxzxE6/XAW+dGVGFQpep9pZMYYOhe1Dho616Ug+jrK1FgSt38BygLa9hnA7NmzqVy5Mmq1mpEjR9KyZUvOnTvHhg0bWLRoESKRiEuXLpGQkICjoyOBgYF07dr1pe9jdKuqWJvI+e7EXRIyCxBpNTQwymaqrxsNvfsh/qM6zcnJSc9racmSJa81bwJPiY6OpknTplSo6EaWQovv6NkcP3lKJ4QrFAqMjY3Zs2cPKSkpuocAEydOxNbZlQZde3Hz1DFEeXnYOztRISaJJj3Kfg/+FWTmKzl1J0knIEEJTy2f4fwWnoOvewUAjIyMMDU1JS8vTy8Rrn79+uzevRsTExOUSuVbfQAhICAg8DYRRCQBAQEB4H5iNmM2X6XgGRHirqEHvedtIzfwVyIjI6lbtyh23svLi5CQECwsLGjcuDHGxsa0a9eOpUuXkpKSgouLC1KpFPsqpY09iyttRBIZBk41OHruCs4VbalAAZMnT2bSpEnI5XIaNmxIeHg4ERER2Nvbk5+fz6NHj9BoNFSuXLnMf6BevHiRSZMmIZFIaNSoEd9//73e/mHDhhEREYGRkRFjxoxhwIABFBQUMH78eKKioqhVqxbLli0rc46GNHdlQBNnHqXlYWQgwdGibA+lV2FwU1c2h8SQmqPQGWtDUYLRjM4eiLUaRo8ezRdffPHC8/Su78Tqc5HEpuXpLQKMZBI+8a2GmeGr/WN+2bJl7N+/H4VC8Vq+Gq/Kl4fDCbyXVEJMk4BYwvenHtK5cRuio6Px9vbmWmYuvz5O5lGBAk8TQ37v34tZs2axfft2GjVqRJ8+ffD09MTUtEjYGzZsGKampty7d++t+So9r2VLpVKxYsUKgoKCuH79OkuWLOH777+nkYsVSb6DUJnYo0WLlbEBqbkKnel7SdQaLe1rPt8fJflRNLdOnyA3PR2xlS2nAwL0qrlGjBjBo0ePcHFxoXLlykCRgHDw4EHkcjkbNmzA2dlZJ84W+6AUIxKJsHOt8tJzcXbreq6fOIKq8Kn5vINIzcctG3BTYsbhw4dL+XTFxMTofJy8vLw4evToS1/vZckpVHEjNgO5VIylWsPpEh5tycnJnDx5Eh8fH3bt2sWBAwd0n4Eff/yRBg0asPlCDGqNloLY21i1K2qjLW4fBVAkRYFIhMTUCscBixE/Cae23dO4+2fbCmUymd62KVOmvHJ7bjHvNKhEn/pOFCg1GEjFZbbiCpQ/cen5qBxqI+o+BQOlmrOPlVgPX0mNGg6c/O1Lpk2bytq1awkMDGTgwIFUrFiR7t27AyASi2k9YBitBwzTnW/jW07FTM4uRCYWoSixrdhTKz1wPcFnN5LQdJVu36xZs+jUqRMqlUr3N3PevHn07NkTjUZDhQoV2LNnz1u9BwEBAYG3hSAiCQgICACrzjz8owLpKVqVkgJk7AuNo7uRCffu3ePJkycAOq+c6tWr62K9r1+/jpubGzY2NsTExKBWq4m9d7tUy1ZxpQ0UGc+KK9WC2i3J/n0Ow4cPZ//+/Tg7O9OrVy/OnTuHRqNBLpczbtw49uzZg0ajoW/fvmXex7NpMjdv3qROnTpAUTUKwNatW/XaYX766ScGDBiAr6/vn86TVCJ+o8qjZ7EwlnFoQksWHI7g91sJqDVanCsYM6VTDbrVLVrInz179k/PYyiTsO+jFnx97A57r8WRr1TjXMGYSe2r06dBpTJf86I2nkmTJpGRkcGJEyfIzs4u8/XlRZ5Cxa6rsRSUaMEpWa225/gp+i+bz/hF3/BdnVYUarSotVrOLVtKQX4hzv0GwPbtWFtbo1ar2bBhA9bWT72uWrRowfLly//SewC4nZPPhYwcTCRiOtlYYCWT6lq2AFJTU3XeX/Xq1ePjjz8GwNnahPwLv2BkZsmCb5bSpLY7n+64jn9Ekl5lmZFMwrTOHlgYPxUEly5dyt69ewkKCiJ45xauHN6LWqVCq9Egksr4vH0LBs7/mhHjP6Zhw4Y8fPiQ06dPs3jxYhQKBU+ePCEgIIDg4GCCgoJYtGgRK1euBIqquVavXv3aIk5BTg6hxw6jVj5dlqrUaqQSUBYUkJ+fj5FR/VI+XS4uLjoPsPL25NJqtSw9eY9fz0UiE4vRAmKNkp/3naV7Axd69erFokWLePToEVu2bCElJYWDBw9y9uxZ0tPTGTFiBPv37+dBUg45j+9hYOeKSFwkshW3jyZum47Y2Bybxj3JvnaYjN9m0K1NU4wM7Jk1axY7d+5EIpHQr18/cnJyaNCgAU5OTsTHxzNhwgQaNmzIDz/8wKZNm5gzZ85LfS89i0gkwsjg5QysXxSg8CJUKhWDBg0iMTGRxo0b8/XXX7/yOP8LJGTmk5RViN+BW2RFXidvw+cYu3tj7N6c6N9/JN7YDIP0SMLCwkhLSyM1NZXU1FQyMzOpVq0aR44cISEhgby8PKysrEhISGD//v0kJye/1ftwsDDUe5ABTz21AOo4WVChQgVdVWybNm04d+6c3vFNmjTh1KlTb2fAAgICAn8jgogkICAgAFyJSS9lypofdZWsy/uRiEU8aFqPfds3MnLkSHx9falYsSI1atTQeer4+PjoWmykUinDhw/H29ubNm3aYGooRSISoS7DAEiZFociMZLs60fRJt5nxYoViMViMjIy8PHxwc/Pj8LCQnx8fBg4cCC9e/dGJBLpFuDFaDRaHqXmYWRihaFhkbl0cRVF27Ztsba2pmvXrohEIoYMGYK1tTXLly/HxcWFwMBAnUfIZ599pvN0eFvYmRny4wf1+V7jhVKjQS59vfQiCyMZC/rU4avetdFoeakKhBe18QQEBBASEvJaY3kV4jMKSqXflaxWM3etg3Wdetw3syR//FCQGWA5/zuyt65FUsmFdzt1wCk3Eyhq0zl48CCVKj0Vzho2bPiXjj9XrWbYzSiuZOaiAaSI+GT9Fgw2rqJJrZo6QcvGxoaoqChyc3M5f/48aWlFlSnfffcdFSpUICgoiG/nz2L37t382L8+e0PjWBsUSXJ2IdXtTBnftjotqz81sC4sLOTGjRsAPI64xZUj+1Apngo2WpUSVCoOf7+Qbt268fjxY+Lj49FoNDRs2JCQkBCio6N11YWNGjVi3rx5Ra/VahkxYgQLFizA0tLyteYl/n4EEqlUT0S68ySZs/eiAKjs6IjfN9+xY8cOPZ8uR0dHvLy8aNWqFZ6enuXaErPqzEPWnIuiQKmhgGLRUsT0Q/eobG9F9+7dOXz4sO74yMhIbty4Qdu2bfXO425nxsEHIRi7e+ttL/azkklEaFVK+n1/jHUjvXm/3zuMHjaIX375hfv37+uqjipXrszPP/9MhQoVcHFxYdmyZWRkZDBkyBBSU1Pp2LEjV65c0asGK2/+LEDheezbt4969eoxY8YMJkyYwI0bN6hXr95fNs5/GgmZ+Xy6PZQbjzORikXk5MmoOHo1IqmM5D1fYlDRA01BDlb9vyLrty+IjIykZ8+ejB07FmdnZ5o2LUrb9Pb2Jjs7m0uXLuHj40NISAghISG6FrG3halcSve6jhwOS9Brr4YiAfvDls6MHj3oT6tiBQQEBP4fEEQkAQEBAcDK2ICY1Dy9bcU+LEYyCd983AKxWMyvv/6KVCplyZIlODs7A9C/f3/69++v99qxY8cyduxYAD79Ip9ey4PIzFfqtVoBWPk8jQDO2/0FEyZMICUlhYyMDORyOVKplFmzZtGjR4+i462skMlkyOVFQtGCBQtYuXYjKTmFmG09i1XLAdRwNGNETbEuTSYpKQl/f38kEgm9e/fWLdg///xzdu/ezcOHD5k4cSILFy7Ex8eHrl27/iW+K3+GWCxCLn7zxaJIJELyAv0oObuQR2m5KDLzn9vG4+vrS1hYGD4+PtSvX5+RI0cSHx/PtGnTCA0NZejQoXzzzTfY2dm98XitTQxKvS9KVqtVtTVhR3waZiM+pmQDoXG/Qage3EUsFpEYncyhQ4dwd3fn0qVLtGzZUnfcX+2FNPlOLJcycyn8Q4QtRIu4eRtkLXwQb12hEyUkEgl+fn507dqV+vXr4+7uDkCFCkU+Iy1btmT69Ol/jFlEv4aV6NfwqRimVim5c/4ssbdvIjcxIeThI4YOHYqfnx8rv/maHccCAXiUlsHivl344WQQTlbmxGcEUbl6GCPHfMijR4/w9fXVmdi7urrqhKgrV65QtWpVAPz8/GjRogXt2rV77XmRykqnMtV2cqC2kwMATjVqUaVKlTJ9uspKCyvruFdBqdawIvBhKd8wTWEeBRjz/cn7EBzM6NGjuXnzJgBubm40btyY3bt3F51DWZRON6iZC19GhWLb7P3nXEsLIilX78Rg79gPJztrxo8fz4ABA1iwYIHO1ywjI0P3PVr8figW7WxtbXF3dycxMZGKFSu+0b2XRWFeLnmZGZhaWUMJs/MTJ06QkpJCly5dOHjwIHfv3mXEiBH069cPIyMjZDIZkyZNKrO9+f9FRCpQqumz4jzJ2YWoNVoKAZFUhoiieTSq1oSc60dRZSWRuGUqJtYOWFpa8u677/LZZ5/RqVMnxo8fT2xsLMOHDyc9PZ1Ro0Yxb948zp07x969e9FoNHTq1ImFCxfqBKe/mlFepvw8aiBiq0ogllJ54AK0wMiWrnSv70z3ElWxw4YNY9asWXpVvWVtExAQEPgvIohIAgICAsCQ5i7cS8wmT6Eutc/BwpDqdkUtXCNHjiQqKgpzc3PdwurPcLI0ImCyD6sCH7Iy8CFlBJJhKBUz+dei8xVXQwAEBwfrHbdjxw69nyv6DMCsoCHSPxaGCrWG0PuPGfjNAs4eOwBAvXr1dE/yy1qwW1hY0KZNG+RyOdWqVSMxMfE/mSiTXaDk8103CLybjFwqpqCgkEaTN7F8SBPGDumv18YDcPz4cQIDA9m3bx/BwcE6s9/s7GwSExPLRUACsDIxoHlVa4IfpJRqpzCSSRjR0o2LSiXP5u+ZjfkUAJkI5FM+pEePHly8eLFcxvSypCtV/J6cSWGJKjutQoHIwIB8jZZwjYT2Rk+lr549e9KzZ08CAwO5dOkSAFlZWZibm3P37t3nVv3kpKWy3W8K+dnZKAvy0QA7LlynmWvR+7SGXQU+atuc8w9icLcvqlbKzCtApdYgN5DxIDKSESNG8MUXXyCRSHSeUQ4ODrRt2xZvb28MDAzYuHEj8fHxLFmyBG9vb/bt28f777/PuHHjXnlunGqU9kMrRiaXU7tth+fu/yvSwuIz8nXVlqrMRBI2fY7MuhKawjxAyy61kk9HfEDLli1ZuHAh/fr1Y/Xq1XTr1o3WrVsjkUioUaMGq1at4tatWzSoVZ0UIyNEIvRaMYvRFOahUmuQVK5H/doOfDbxU5YtW6b7fGm1WiwsLHj8+DFWVlbcv38fePp+yM/P5/79+9ja2pbL/RdTkJPDyV+X8/DqRcQSCVqNhgwza347cx4PDw8mTZrEN998Q5cuXdi7dy9z5sxhzZo1fPjhh/Tv358uXboARRVMZ86coVu3bpw+fZpatWr96bVLtl+OGjWKO3fusGDBAmbMmKHXTnfjxg0mTpwIQExMDJ9++qnu538Ch27Ek5Wv1KveLW7BBSh8HI5Zwx6g0WDbYzI1tLFotUWt4B06dCAqKkonuPn7+zN69GiioqIYMGAAvXv3pnPnzmzduvWt35eRgZR+Pbvy+cJlhESmYiiV0Km2A06Wb+7/JyAgIPBfQhCRBAQEBIBeXk4cDkvgQmSqTkgykIoxkIhZ9kF9nUfG65osmxvKmNq5Brfjs7gQmVqqXF4mFTOgicsrnVOh0rD05D29yoLiNJkKPsPZHZHLhw3M9CpRylqwe3t7ExYWRoMGDYiOji73Rds/hXe/PYj/olFIrSshksiw7TWNi0EXebcABnTpyurVqzl16hRt27Zl8uTJQJHYtnfvXqZMmYJGo2HgwIEcOHAAe/vnmzu/Dt+8W5c+P58nPU+he/8ZG0hoWc2G/o2d0SSkcjgpkzxN6cW6TCRm4wl/CpPidX4dxclTZSWYlScx+QoMxCIKS1RSFV4OJm9XkVCgdHalY8eOuvFMmDCB27dv4+LiwooVKwAYOHAg6enpiEQinR/Rsxz+8WuyU1PQ/nH/VyJj8arswI2TRynIycberQpXrl7lYXIqg5rVB8DSxJBP27dEamDAzvvxANSoUYMTJ07oVdrNmDGDGTNm6F1PoVDwpkikMjqM/pjjq35EpXhqrC2VGVDBqTI1WrR57mv/irQwU7kUVUnTeVcvbHoUvc9VmYkUXtim8/U5fvy47rjhw4czfHhRxeTIkSNp0KABHh4eBJ88QnqugkNh8Sz+PYK8Z4Skwse3SQ9cjzItnjMpdjRr0hgLCwtsbW2pU6cO3bt3Jzo6moYNG6LVaqlcuTKdOnWidu3a/P7776Snp/PTTz+VazufRqNm59xppCXEoVGpUP9RWWWZlcrc/r05m5RFeHg4Dx8+JD8/n7i4ONzc3IiKitJVg3p5eQHQo0cPTp06ha+vL66urn/6nVCy/RLg7t27BAUFoVQqy2ynK64869Wrl86A+p/C2XvJpR64lGzBlVfyRGJiCUDe1QPcfxRE1Q7t6NGjB71799ZV/AGsW7cOb29vkpKS+OSTTzA1NaVZs2Zv83ZIy1UQmZxDQVoep0+fJmZgT9555x20BgaEZriQ6+5Os2bNSE1NZc6cObrfx7Jly7h69SodOnRgzpw5uvOdPn2aNWvWsGHDBiGhTUBA4D+JICIJCAgIUOSf8+uQRpy4/YStFx+RVaCkZTUbhnq7Ym9uWG7XWTmoAZN2XifwbjIGUjFqjRY7MzkrBzWkgknp9pcXcT8pu5Rpd3GaTOrp9fx8biM9t67S21/Wgn3atGkMHTqUrKwsRo8ejYHBq43jn8SzZtnFiWQ3YjO4n5iDYYmFc9aVAxQ+Die7Viu2njjE3dALyGQyxo0bR7du3Vi0aBEAdnZ2JCQkUKlSJVq0aEHv3r1fqzLlRdiZGXLq8zYcDkvgVEQiJnIp79R3onlVa0QiEe/YW7EwMoF8DXqVbFKgkqGMxiZy2r9Eil15Yy+XonimesqwRVsMWxR56HiZGVOlShW2bNnC0qVLCQ0N1YtWBzh06NALr5GVksSTh/d1AhJAUnYO8bFZhDx8xOOMLE7di+borbsMbf5U8M1TKMlSKKlazQNRZCJQlAKmVqvfWrtmjRatMbWqwPldW0mMeoiBkTH1OnShYffeSP/CxWXJihcoqvq58TgDIwMJaZdOoMpJp+BRGE+2TsXY3RtRQRaK6OuYmpry5ZdfYmZmViqR7fbt21SuXJmHDx/qrmNlYsCQ5q7svBzL7fgsvTEYVW2MoYsXaNScntaBCSM+YNGiRWRmZrJhwwZatmzJjRs3uHLlCtOmTSMwMJDbt28zY8YM7O3tuXLlCiYmJuU6L1GhV8hMTkKjelrXp1KrAQXx9+8gNrXDyMhI50dX3M7o5ubGzZs38fT0JCwsjE6dOiGRSHSpXGPGjKFjx46lrqdSKMhKScbIzIx1mzbr2i9nzZpFWFhYKQ8quVyuSw0EyM3N5cmTJ/+49igzIxliEZT86JdswS1+AGPScxIVb25GaVvhueb+69atIygoSCdUvk0KlGqm7Qnj6K0nyKViCgsLqT1xPcsHN2XiyAFMnTqVY8eOkZKSQuPGjQkPD+f69evMnj0bAB8fH3788UeaNm2qE5HOnDnDqVOn2LhxoyAgCQgI/GcRRCQBAQGBP5CIRXSp40iXOo5/2TWMDaT8MrgRTzILuJeYjbWpAZ6O5i+VBvQscqmklBl4yTQZ5wrGNG/enObNm+v2l7Vgd3R0fGvx72+DkmbZ5x+msCzgATdiMyhUqfUWzllXDqLOSiFiyTtYWNtSs2ZN7t+/z+DBg/H01G9FcnR0pE6dOri6upKcnIy3t3dZl34jDGWSUj5AxZhIJRxoUJ3BYZGkKFWIALVWSw0TIzbWccPAQPZSKXbljaPcgPrmxlzJykX1jKBpLBYztnJRVduzVRivQnZKChKZvkF193o1df+98txlTC2tUMjkrA++hkgE49u3xNRQzpnIxxyKTmLuHy2i3bp1o3fv3owaNeq5CYflTSXP2rw3Z9FbuRaUnmuNRsvH268RePdp9YjY0ERngpy67yu83vkIkeQJhvIiAbmsRLbvv/+exYsXl+nNNKKFG1N23+CZr6MinxyRjGPhSXqCSUpKCs7OzkgkEl1lD0CtWrXIz8+nU6dO5S4gAUSFXkVZkK+37anZuYja9erRsWNHnJ2dqVu3LhEREQC698v69esRi8XIZDLi4uIYOHAgYrGYIUOG6JnZazRqgnduIfRY0fetUqFk9817nDhTlOb11VdfERgYqJuPgwcP8sUXX+Du7q6XrHj06FE6d+5c7vPwPLG9JNevX39uS13fBpXY90cK5rPIRDDQPgtbcyOyEsJp8tk4/Pz8ABgxYgSPHj3CxcWFypUrU7FiRW7evImPjw/Lli1j3LhxpUTmv5KPtl4j+EEKCpUGhUoDSLiXpuS91RcZ3KkLjx8/5ubNm2RmZvLZZ5/p0lKLxaHatWsD6CpAoagd/dSpU4KAJCAg8J9GEJEEBAQE/gYcLAxxsHizCqeqtiZUMDEgLiO/1D65VMx7jcqOtv+voVJruBSVRma+Egv1U7Ns5wY+nLqXhsbEBlkFJ55s/pyKY9eTdXEXuRHn0CrzERuaYNG8HybxV0lMTOTRo0d0796dxYsXExQUpDOoLtnGGBcX97fcp7uJIRea1SQ0O4+EQiVVjeXUMPn7vTpW1nKh29X7ZKrU5Ko1iAG5WEx7Y2OyHmayOSqLmHN7dVUYoaGhfPPNN2zbto1BgwYxceJEbt26xfHjx8nMLEqZO3LkCBs3buTEiROkpqQQF34TD3sbQh/FY2tmwnuN6+quv2TCWPrOmM3s2bNRFOTz8PIF8nNy2BbxiNNXrugJtBMnTvxHecuUF2m5Cm7GZWJiICHk8DbdXC9ZsoQ8E0cCk+xIuRWEKiMBsZE5IrEERXIUidtnYGvvyJM9X6FQKOjevTspKSmlEtnu37+PhYUFsbGx3Lhxg/bt2zNlyhS6desGgG+Nsv3Bin1yNl+IoertYCZMmEB4eDg2NjbExsai0WgICwvTHX/06FFq1qyp88mxsbEp87yvi1RuACIRJUs4i83OJTIDWg8chlgsxtPTE1WJaiUrKysCAgIQi8V069YNV1dXnJycnmt27v/rz0QEndG1MV6KjKWGlSlbv5iEpoyW1GKvsAkTJnD48GH69OkDFCXATZ06tRxn4Cklxfay8PLyem5LXQNnS7rXdeTIzQS9tjaZVkXrjEuYRt4gXyJhR/AVujRaA8ClS5eQSCT4+/uzcOFCFAoFY8aMYdOmTW9sGv86RCbnEPwgRa+1vPj9WqDUsOuwPz98OaNUWmpJs/2yHv5s2LCBcePGsWPHjnJ//woICAj8UxBEJAEBAYF/KSKRiG/61WXkxisUKNW6NicDqRgHC0OGeLv+ncN7KwQ/SGH8tmuo1BpARGFhIR3n7uCrvvXxaNIO0ybvUBh1FU1+FgYO1VFnJaFMjsaklg85N/2Rmllj3+I9qoXnkZWSAMCjR4/Izs7+e2/sOYhEIhqYl3+FxpvgKDfgfNOaHEzO4HRqFmYSMSnXkjkTfp8zAGoV8Qf2MrF6kZF0/fr1cXNz48MPP6RixYo0atSIW7duYWdnx/bt2xk9erROWLC1tWXbtm10bNoItaqQ8e2as/rMRfIKFRjLDZDK5TTp1U83FgNDI2q2KhI/DBYsea0Kv38TKrWGOQdvs+vqY+QSMWq1koT9u9i/t8ikf8CAAbR8dwwin4/JvRuEVZvhFMRcR5WRSM7t05hWa0KzWpVo1awRmzdvJjQ0lPfee69UItuhQ4e4fPmyTnSoVq2aTkACyC5UIZdKSlWmFPvkJMkMaPVBd51vkFQqZejQoXh7e9O8eXNkMhnZ2dl8/fXXHDlyhNu3b/P555+/tgfd86jZwocbJ4+iKiwsY6+Wao2bl7EdcnJy6NatGwqFgvbt278weCAnLZXwc6d1fkvwtP3yQuQj4rJydW1wUFQ5Vpy2aW5urqtqUSqVRERElGviW0RCFldi0slNSSAg4GkyZf369fH39+err77S+agNGzYMKN1St2TJEg4ePIhcLufzqUs4+KCQxKxCTDJj8UoMoWJ+kch+6X409Ss7ErhxDcqCAiIjI6lfv8ivrGHDhoSEhJTbfb0O1x5lIBHrfz+U9HWqVrcRTZs2pX79+nppqX9Whers7MxPP/3EoEGD2L17t87EX0BAQOC/hCAiCQgICPyL8a5mw66xzfn+5D0uRadh9EdL1IdtqmJu+N8up49KyWXUxivPLFwlnI/JYfz265i5N0GZnYIyOQZNYR6mXl0ofHwbtFoU8XeRGFsgAd5tVIkxH35L/fr16devHw4ODnqtKf/P3Lp1izFjxuglR5UlzBhKxLznUIH3HCqwMvABe0JukRiwAZsek8kJ88eoRht2X32MOrto8T527Fjc3NyIiYnRnaO4NcTJyYmMjAy9bU18O6KMuoNMJsbc2AgFYCaT0ar/ECp71ilz7C9qiyn2DNq9ezdr165l5syZfPTRR+zatYtFixYxatQoAHbt2sU333yDSCTiiy++oFevXq88h38lC36PYO+1x7p2nJywk8jcWzF281WMFWoqV65MblYGRvlZaAtykZoXVUbkXP8dpHIUcXc4nx5JzIM7ZGdnExERQXJyMhMmTMDd3Z2kpCQsLCzYt28fGzZsYMKECVy4cIHk5GQSExN1opC9uWGpBTk89clp4GzJ1x+1ANAJUaNGjWLs2LFcvHiRdevWYWZmxunTpwFo3LhxuQtIAPZVquHetAX3LgbrCUlSuZyGXXphblN2qIC5uTnnzp17qWs8vnMbiUSqJyKVbL/89cINJkyYwM6dOwE4duwYS5cuBaB69eo6b6WAgAC9qpc3IU+hYvSmK1yNSUerBZFGiemg5YzrU4+tX03QpXeWRcmWuidPnhAQEEBwcDBBQUFs3bqOAytXkhwTxbbZK/TmtKRvWVxmDnfv3iU+vsjgPjQ0VHfc3yX0msolPHvp4verCPD1qggUmZ03bdqUGzduYGJiQuPGjVmwYIFeaEFxJdWGDRtIS0tj7NixKBQKfvzxR2bOnPmXjH/Tpk1s3LgRtVrN1q1bmTNnDnfu3GHnzp2lRM7o6GhmzZr1wsozAQEBgVdBEJEEBAQE/uXUdrJg7bDGf/cw3jprz0WiVOu3hmgK8yjEmFtxWeTGhmNSvzuIRGgKchGJRKQHrEVsaIJ5nbZYWJpinJ9I+Oa5GLdazbJly/jpp5+4f/8+mzZt+pvu6p9BZr4SlVqDu7t7mclRz0Or1fLL2UgKVU+FPWVaHIrESLKvH0WZcI9ly5Zx4cIFfvzxR/z8/Fi7di2gv5jU/tFuVLxNamBAmxHj8KzsxImPPqJxr3dp/867GFtYvvK9lfQMcnBw0C3yZs+eTZMmTfTamL7//nsCAwMRiUR07tz5HyUi5RSq2HbxkV47TvFc51w/iibxPsuWLaNBq/acP/EzRtWa6I6zbDWYvMgrmDfujZNHA+4vfY+6deqQnp6OoaEhTZo04dSpU9y9e1fnizRt2jTu3r1LbGwsZ86cYcGCBfz0009AUfXjqJZu/HI2slQ1kpFMwqQO7qXGv2zZMvbv349CofhLBKPn0XncRCp71uHyob3kpKdiaedI0z7v4t6sZbmcXyozgBfoIovHjwaeipy9evUq833VqVMnOnXqVC5jmro7jCvR6SXeKxIQS/jy97v0bt6W9PR03bFarVbvs1iypS46Opq6dYtaSRs1asS8P7zGMhITEIv1haiSwtnq86HMmTOHYcOG4evri4uLC87OzgBUrlyZvn37smDBgnK515eljbsdZXQWAmBkIOH9Rk8Nzp9t/XuRMDRv3jzmz59PjRo1ym2szxIXF6cz8C6mOO1PQEBA4G0giEgCAgICAv9KrsSko3rGybe4HUEiM0Du5Im8ogcGdlXRFOZg7N4cA/sq2LZ8j28+G4H00SVWrlxJ+/btCQkJ4ZdffsHY2Jhjx45RpUoV4MXVLP9Fbj7OZOb+m0QkZCFChL25nFndPelUy0GXHDV//nydP8y6detwdXXlk08+4fr165iYmpFZYxgAqpxUkvZ8iTo3A5ueU5BZOvBky1QqVaqEi4sL48eP59NPP+XkyZMvNTaRSIRTDU9snF3xbNX2pQWk+5dDuLR/F5mJTzCztuWeUsSQIUOYM2eO3hN6R8fShvoeHh7k5uYCRdUo/yQeJOUgk4j1RCQrn6cJV2k7pjFhwgSa331Ek/XfYtXho6cvlkix7TmV5P2LMLKwpuuIz6lnJ0Oj0TBy5EgkEkkpXyQLCwsaN26MsbEx7dq101XPFPOJb3XS8xTsuByLTCICRGi0Wvy6e9KqeukKn0mTJjFp0qTym5CXRCQWU7ttB2q37fCXnN+ljleZvkcAMrkhtXza/yXXfR6pOYWcDE98rvfPb/6n2PbDXFavXg3AzZs3dULRsy11rq6uOgH2ypUrVK1aFQALOwc0mtIm2wAikZgfpn0GoKveCQwM1FXvbNu2TXfs2/y+NTKQ8HW/OkzZHUahSqOzyTI2kODtYcvvmny+uXYfq7QkTgQE6Fr/+vTpo/vOWL16NevWrcPHx4cLFy4QGBjIrVu3WLhwIbGxsSxcuFAv2OJN0Gq1hESmci0mnWsn95JXoMDX1xdPT09MTU11aX979uzh3XffRaFQYGlpSefOnfHx8SEuLo5evXqRmJjI9u3bcXNzK5dxCQgI/H8iiEgCAgICAv9KbEzlKJJvknZsOYjFSC0rYtGiPzLryjj3nUbdSpZcf5SOWf2u5IQVpQ/Z9ZpK1qlVrJwayJDBg/We5Jb0ePl/5F5iNu+vDilhlKslNj2fkfNXIr22kwZ1PElOTiYuLo7AwEAiIiJ0rV+5ubmcPXuWTZs2M3njUQzcW6LOScd+5Fconjwg6+JurDt9jMfo7+nTp6POOPjHH38sNY65c+e+cFvJNpI/I3jnZq4e2Y/yjzabnMwMDl8Oo00tj5d6/TvvvEODBg3QaDSsX7/+pa/7NrAwkqF6XikF0GLSCgCq2plRr3lr0o0tADCtUyRiaArzsH9vPgDn/Pfw0XczuXnzJqNGjSI5ObmULxJAUlISarWa69evl1qEisUi5vWqzQTf6lyOSsNAKsa7qg1GBs9vlfovIjM0pN2wMQSsX60z1gaQGshxqFqdqo2avtL5XiZJ7YWvT83DQKovNpb0/rGuVpfGjRszd+5cunbtqpcO92xLnYODA23btsXb2xsDAwNdBZmdaxUs7R1JjX2EVqv/npTIZDTo+s+p4CtJj3pOuFibsCLwIbfjMrE1k9Ogrj1rVDmo41NRakGklmG0bi/93Z35fcJofH19AVCpVKxdu5bg4GAuXbrEhQsXADh//jzXrl2jQoUK9O3bt5Qw9rItwiXJyFPQf1UwIRu+ojD9CRIDQyRGZny3Yh0PjvxC48aNqVOnDocPH2bnzp14e3szffp0xo0bpzvHkydPOHnyJFevXmXJkiWsWrWqnGdTQEDg/wlBRBIQEBAQ+NeRXaCkW10Hrka6YDD4WwBSjvyAJj8LACtjAzYMb8SXhyPYfRUs2g5EqdZQeGUHQUd+o3ZV579z+P9Ilp64V2Zkt9StCU7121Dx8V7Cw8MJDAzEx8cHAEdHRx4+fEiDBg0AaNKkMZW2HCBDIsbA1hWRWIKBXRVU6QkYSsUMavb25j0rOYnLh/bqedNcjY7Dq5IDtwNP6oSlFzF79mxu374NQNeuXXV+Nf8E3GxMqGRlzIOknFL7jGRiBjVz4c6dO0XeQxOmsyxcSk7h01a9kkJCxRr1admyJQsXLqRfv36sXr2abt260bp1ayQSCe3atWP27NmMHj0aHx8fxGLxc8U8G1M5XeqUrur6f6JOu05Y2Dlwftc2Uh5FY2hqilfnHtTv1L1U29fL8GdJai/C3lz+R3z9U4q9f6AoaU0sFnP06NFSry2rpW7GjBnMmDGj1LF9pvqxY85UCnJzURbkI5HJABFtBo/Avko1vWN9fHx03yF/N3UrWbJqUEMAclVqagffpqBEgavWwIBC4JvYZEZ27Mzhw4cBSElJwcXFBalUSsOGDXXHu7u7U7NmUSufWCwudT0PD49XahEGmLjzOjeC/RFbVcKh62fErx2PQeV6LD15jzE1GhEREaE7NioqSldJ5uXlpdtep04dpFIpXl5ePHjw4OUnSEBAQKAMBBFJQEBAQOBfQ2JWATP23OTcg2QkIhFKxEjFoNJoEUmlyMSgzUvH+NyPtNg1hQMHDjDA04gZX8xk5a9r6H9mIX5TJpKbW5SQ5O5e2qvl/5VzD5JLJp8DoFUpEUllpOQUIjU04cmTJ3Ts2FGXLqVUKgkNDdVVR1y5coU+bRpwTm1CXGoMWo0aRVIkhtYVqVfZkk98q5e67us8mX8Z7l86D8/cj57Zb3Yuhw4deuE55HI5xsbGiEQiFArFG4+pvPmpf33e+yWEQpUapbroZo0MJHhVsuC9RpWRScQEBQWhUGlYHqHfNlgsJBhKxUzu5IFEIuH48eO6/cOHD2f48OF6r+nfvz/9+/f/62/sP4Bz7Xo41369ZLWEB3e5HehPQW4OUjtHTp9+2k6lUCioXbs23bp1Y//+/Tx8+JBLly6xevVqdu7cydGjR9m3bx/dunXDz8+P3bt34+nWm9C7j0g6tgy7Pk/9fIwNJIxqVaVc7tfc1o6RP63h4dWLPHlwD2NzC2q0aINpBes/f/E/hKMpmTzrD6/Jy0VsbIJKq2VPQCC/fDGV8PBwbGxsiImJQa1W6xmFu7u7k5CQgLm5OSqVioKcHK7+foCIoNNo1GqqNWpG4559MbO2QS6Xc+LECVJSUujSpQsHDx7k7t27fPzxx4wYMYLExETMLCsQ4TGUvMd3MPYoMqc3dPWiIPYm+cq+bDlyhs/feZoY5+bmxs2bN+natSthYWE6gerWrVuo1Wpu3Liha0MUEBAQeF0EEUlAQEBA4F9BbqGKXj8Hk5xdgFoDyj8UAsXDi2Sc24yVgzP9W9Xk6FU4fmgf27dvZ8+ePfTq1QtzIxniwhzCwsJ48OABSUlJTJ06lf379/+9N/UPQioWA/qVSPlRV8m6vB8RkNK2EUu/XsSiRYvw8fFBJBLxwQcfMGbMGDZu3EirVq0wMzNj27ZtDEhLp+/hyuQEfIcyK50VK9bwfrvGiMtI8HqdJ/Mvg7KwEI1apbetpNnvhtA79OjRg4sXLwKwYMECtm3bhlarJT4+Hj8/P8aNG0eLFkULtzFjxrzxmMobz4rm+H/WhvXBUZy9n4yZXMaAps50r+uIVPK0CsJAKsavuyezD9yiQPm0KkUmEWFjJqd/E6Ey7+/i2Xa1Ke/2JPzsadRKRZHJtVRGmyrONOnVk5P+/kydOpW1a9eSnJzMypUr2bNnD2KxmAsXLnDlyhVkMhlKpRKJRELTpk2ZMWMGG2fMpdXwXVh5tgJALAK5VEKPuhXpUtuh3O5FIpXi3rQF7k1blNs53yYpChXKZ1pElWHXyFm/EpFMhl3T5rpEQqlUyvDhw/H29qZNmza64+fNm8cHH3xAfn4+06ZMZtPUj8nLytRVRN44+Ts7t2zmbFwKNT09mTRpEt988w1dunRh7969zJkzhzVr1tCzZ08++OADpn/1LddCg9EU5CCWGwMgs3FGmfqYJ9umk2NhRb9+S1mxoqh9tXfv3rz77rt06tQJU1NTZLKilFY7Ozt69+5NcnIyW7du/cvnUkBA4L+NICIJCAgICPwr2Bf6mMw8Jc8EsmFQtSmVPJrTKvkgjpkR1K1TC7FYjJOTk17ZvqWlJZ6enmzevJm9e/dSWFjIoEGD9NpE/p+jkLvUdmD31cd6ZuXG1ZthXL0ZNR3N2PJpa6AomejZdKKff/5Z72dLS0uuXwp+7rW0Wi03HmeSkafAs6I5dn8sdF7GvNvc3JytW7dibGxM586dUSqV2Nra8ttvv+lFlVf2rIPUQI6ysKDU9WWGRhzYsR1XV1fd77qs+xo2bBjDhg17idn7+3CwMER+5yjZe/dytIT/SrF58dy5c1m8eDGHDx/G1tgSue8EHmaoMJJJ6F3fiSkdPTCV//k/B5+tGPPz82P27NnP/axER0czd+7cV/Kw+n+luF3t/qXzHF2+VM9LSatSolEUcuv0Sbp370NcXBxpaWnk5OSQn59PpUqVaNGiBUeOHCE/P5969eqxc+dO6tevD0CrVq2ICQ+lpvI+/ad/x6XYPCyMZPRtWIkGzpblUvX3X6G2mREysRhFiT8y8matkDdrhbFYxCdVK1KYm4aRkREAY8eOZezYsQC69jxPT0+dabj/2hXEZGToidkatRp3Wyva+7ThbFIW4eHhPHz4kPz8fOLi4nBzcyMiIoKrV6/yyy+/kJWbR6FVfcSGpmgK8wDQFuZhVr8rxtWb0ryqNQYGBjrvJblczt69e5FKpYwbN44qVarg6uqqG5OAgIBAeSCISAICAgIC/wqO30os5dlT3G4lk4jIUsswMjIqMyoewMjICGNjY65evYpCocDU1PStjf3fwMT27pwITyQzX6ET6kSAoUzCV73rlNt1rsakMX5bKNn5SsRiEYUqDTUK7vLw2Bo83N3/1Lx7y5YtrFq1iqlTp3L48GGMjIyYNWsWAQEBdOjwNHGrokdNbJxdSYp6iFr11BdJLJVibmOLq1eDcrunv5PCwkJdYlZZJCQkcO7cOYKCgtizZw+PH9/h00Wf6vY/L0nsWZ6tGEtJSXmzgf/FlGVIPWrUKO7cucOCBQuYMWOGXgtlTEzMWxOQM54kcOXIfuLu3CZbpeH3I0cwNzfHUCLGRCKmXc2qeFa051bcE55kZmNhZMi12xEcuRaGm1sVhg4dysqVK0lKSsLb2xs/Pz9OnDhBixYtaNGiBRMnTmTJkiUADBw4kBkzZlDBypKhrWswtMT8ODjU0M3Ppk2bWLt2LTNnzuS9994jMTERtVrN2rVr8fDwwMfHB39/f6TS/+7SoYWlKY4GMqILClE90worE4vpZW1GrwF9+eKLL17qfBFBgaWqIVVqNVKJhMcRtzGp7I6RkRE+Pj74+fnpTMw9PDzw9fWlb9++APRbcY6gU8coiLmBvKIHBY/CqODZBiOZhDGtS7cjduvWjZycHKpVq1Zu6XACAgICJSnt+CYgICAgIPAPRC4r/ScrP+oqT7ZNJ3rDFLLTU0sZH2u0Ws4/TOZ6bAZzD97G3tWdsLAw7ty5w6RJk4iPj6dfv340bNiQx48f616nVCoZMGAAZ86cYdmyZfz888/k5eXh4+NDdnb2X36vfwcOFoYc+aQlfRtUwlQuxUgmoa2HHbvHNaehi1W5XCM2LY/Bay/xJLOAXIWa7AIVCpWGe4YetJ+1GScnJz3z7nHjxpGVlaVn3t2oUSMePHhAbm4uI0eOpE2bNuzevZv4+Hi9a4lEIvrN+pLqTb2RyGQYGBohkclw82rE+/OWvJbB8ZuwdOlSWrZsqbetuFIIYPHixbRs2ZK+ffuSm5v7wnMlZOYT+iidlJxC1qxZw9ChQ3X7RowYQfv27dm8eTMAjx49wtPTEygy2g0JCQGgWbNmjBs3jsmTJ7/wWknZBcSm5SGRPBUP5HI5arVaFxverFkzoqKiAPDz86NVq1YsXboUgIsXLzJlyhSgyIz4nXfeeeH1ypMOHToQGBio8+y6e/cuQUFBeHt7c/78ec6dOwcUeXm9LWLDb7Jx6sfcPHWMlEfR5MZG8bFPU9bM+Ax7CzOkEjEXHj4C4EZsApZGhpy4fZ+HSSn07taNWrVqUaNGDW7dusV7773HiRMnWLx4MQYGBrRo0YImTZpw584dmjVrBhR59Dx69Ij33ntPNwalohCNRq03Pw4ODgwfPpwGDRpw4MABTp06xYIFC/jpp5/0xr9//37S0tIACA8P1wlXs2fPfksz+NchEonYXb8aNUyMMBaLMf1D1HOSy9hfvxpWRoacPXuWzp07l3ptWZU+aoWy1LY7T5JZcTqEn08F8SShyGPu3Xff5fvvv6dfv35AUevsvn378PX1pV27doysoaVaIx80aY94smUqRpVqYmppw/AWrrT1sCt1jePHjxMcHKxLzxMQEBAob/67jxMEBAQEBP5T9G1QifMPU0tE0D9ttzKUidkzqwMmcqmukqBhsxZ8fUPCnjOp5DYfx8agB6SG3GbgFxswX/UpdevWJT09HX9/fz3/JKVSybBhwxgzZgxt2rShdevWdO3alfPnzzNlyhTMzMz+rin4y3G0MOLrfvX4ut/rGQL/GeuCo1A+04+oVSkpQMbRW0/oKjd+KfPuqlWrcvz4cdzd3dm2bRszZ87UqzorxsDQiG6fTKEgN4ec1BRMKlhjZPr2f3+vWi20Zs0aPv3001LHJWUVMGFHKNcfZRTFthcqUAfs5/qZIr+mS5cuIZFI8Pf3Z+HChSgUCqpUqcKlS5dQqVQEBASQnp4OFAk6M2fOpFKlSmWO6XpsBtP3hBGZnItEDCZyKe2NYzm8binu7u5YW1uXig2fM2cOly5d4ty5c2zbto0TJ07ofHm0Wi179uzRLZT/CtQqFQkP7qJRqVHK5Jw+fVpnSJ2amkpYWBjdu3fXJWzB0xbKgoICnSiWmJjI9u3bcXNzK9fxaTRqDv+wBFWJZECpRIKFBJ5E3KJhjeqcvXqDAq2KrSHXuJuYgkwipqKlObUqOxJ04SIisRiFQoGRkRF16tTB1NRU50VW/N1UUKDfwmltbU2XLl24c/4sQds3kZWSRHpeAUfPXMS7eXPefe89+vTpw4wZMzh16hR9+vQBICcnR5f0BUVphb/++iuff/45M2bMYNWqVSxatIjWrVvToUMHMjIysLS0LNc5e9s4yGX4N/bgZnYeD/IKcZTLaGph8lptfw7VqhN3J1xvW20nB2o7OWBmbcPon9cjEonw9PREpXpasWRkZFSqIq5DGw3+PeoQEpmChaGM3vWdqGIrVNMKCAj8PQiVSAICAgIC/wo6eNpTq6I5hs9UJBnJJMzsWhOTZ3xd5hy4zYOkbHL/EJ2ybwVgWKM1gXeTSc4qWmR5enrq/JMyMjIAOHv2LDKZTOdxIRKJGDRoEFeuXKFbt25/7U3+x7kYmapLESumuJosbss07kc/ZsKECTg4OODj40Pbtm1Zv349TZo0wcjIiFatWrFt2zbGjh1L06ZNOXjwIN27dyc6OvqF1zU0McXG2fWtCEgajRb/8EQ+3HyFIWsvsjkkmp9X/fJa1UKrV6+mWbNmTJ8+nTZtfHhn5XmuRKdRqNKQXaAi7YY/+ZWbMWz9JQAiIyN1XjjFseO2trYMGjSI9u3bc//+fZ0xsJ2d3XMFpAdJ2Qz49QJ3nmSjUGvIV2pIyVFwIL0iczcew8nJicOHD5eKDY+JidGJDiVjz1u1akVwcDCHDh2iV69e5TbXJbkTfJaVYwayb/E8Dnz7FQfnTWPrt4sICAjA39+f9957jzp16ugEpIMHD1K7dm2SkpKwti5KEHvy5Al79uzhxx9/1LWDlSfx9+6gLCEgARQoi8QDZWEBNx5EoQVcra2ISc2gc20PrE1MEIlF2Dq7Ep+QQPPmzbl27RqWlk/9jCwsLHTi4LN069YNX19fwgNPcnzlj2QmPUGr0WAqkzC5Q0sG1qnK0cOHeRB2HY1KhZWVFRqNhjZt2jBhwgSuXLlCixYtuHHjBq1atUIikbBo0SK++eYbatWqRWZmJmp10XesXC5/rXkprtKLjo5m0KBBevsOHTpEs2bNaN68Od99991rnf91qGNmTB97K5pZmr62b1TL/kOQGpSeE6mBnJYfDH2l80olYjrXdmBez9p81tFDEJAEBAT+VoRKJAEBAQGBfwVSiZgto5qyLiiKTSExZOYrqW5nysQO7qVK+vMVao7cTEBRQrBQpsWhSIwk+/pRlAn3OHToUJn+Sb6+vjg7O7Ns2TImTJhAbm4ua9as4b333mPjxo16YkAxZfmvPEt8fDyDBg2ioKCA+fPn0759+/Kamn8NVsYGpbYZ2LmhTH2MxLYyqUnxPHr0iIiIiFLtITdu3NCZxwLk5RWZzPr7+5OTk/OP8GpRqjWM2HCZqzHpuoq5S5HJJB/cw62g0UU/v2S1kEqlYu3atQQHB3Pp0iWO+J9Fk6vQM5ZXpsWRG3GO46FHEac84O7du7q2vpKx46NHj2b06NFs2LBBJ+6Ixc9/jvj9yfsUlOE/lg8sPhpBRzMzjIyMSsWGu7i4cPPmzVLXL/blsbCwwMTE5PUn+Dk8unWD46t+1DOkBrhx9ACW1tZ0796dW7du6e3r2bMnPXv2ZMKECRw+fJj69euXEsXKm8LcHD3jeoColDSO3bqLGBFZChX7NvzKL999Q+a9KBpUcSY2LZNkpZrabTvg8TgRR0dHli1bpjN0BsjKynpuBdCRI0dQKRSsGD1Qb36kf5jQF2ZlYp6ZzI/zZpOQlsFv82ag1Wg4c+YMO3fuZNq0aTx+/BgfHx/at29Ply5diIiIYMqUKdy/f5/u3bszadIkBgwYoDOcfqU5+ZMqvXr16hEcHIxYLMbHx4dRo0ZhYWHxytf5O6hUszbdJ07j5K/LUeTlIRKJEEnEtB44As9Wbf/u4QkICAi8Nn//v7gEBAQEBAReErlUwjifaozzqfbC4zLyFTybJm/lM1z330lbp+rFuz/L/Pnz+eijj9ixYwcXLlxg+vTp+Pr60qVLFzp37qyr5ihJccLS81i8eDFfffUVdevWpXv37v+XItKgZi6ExmbotSQCGLl6UWvgTM5P9+XRo5iXOleFChX0Wm/+CWy9EMOV6DTylU+VnpTQk8g8WjNlVxhQulooJCREr1qoSZMm2Nvbk5KSgouLC1KplIYNG5KZr0T8zLwVv6dlEhHaQ37MmTOHYcOG4evri4uLC87OzgC8++67pKWlUbdu3Zeq5gh6kMIzWgf5UVfJuryfJBFUa9WQUaNGsWPHDr3YcEdHRxo2bEirVq2oV+9pS2SxL8+sWbNefVJfgqAdm0sJSAVKFYbA+V3bOJ8HEz75RLevsLBQVzVjbm6uEz+eFcXKGzu3qqiUSkq6cdV0tMPd3oZ1QVep4/MOrfq8T76hKUGjx9B11Dj2BJylWytjxo77iC1bt+k8tDp27EitWrXIzc0lKysLc3Pz5173ycN7papeCpQqDGVStFotUcmptKjuSnxKGrF3bpMY9QCNWk1ycrLed92zwmOxEXnDhg3p27cv0dHRuLq6/uk8KAryyUlLw8TSijXr1zN06FD8/Px0+5VKJUOHDuXDDz+kTZs2uu0SiQSxWMyGDRtQqVSMGjWKuXPn4uPjo6sc/adRtWETqtTfQOrjR6jVamwquyD5BwjeAgICAm+C8C0mICAgIPCfo4KJAUXZYmXjPWmFXrx7yUVI8bYVK1YA0L9/f93rTp48SXR0NPb29tSsWROVRIrfzj2Icwv0/FcmTZrErFmzOH36tC5yeePGjfz444+IRCLMzMzIzs7mu+++4/Hjx7rF15o1a/6aCfmH0KmWA/tC4wi8l4xCVSS0iIHC2JsU7pvNj0Y36dOnzwu9aT755BO8vb3p378/hoaGf9OdlM2G89F6AhI8rRbaF3oUWdrDl64WsrGxISYmBrVaTWhoKBKxCJGIUuIOgFQsZtave4rGsGFDqf27du0qta1kVdezGEhKVykV+4/JpWJ+mNIWBwvDMs2Ev/rqqzLPWezL81eQFP2w1LbiCh+ZREqvDwbStGlT3b5jx47pjL+rV69Ox44defToEXZ2dnqiWHljVsGGKBNXXHKikfFUEAx7nEBsegZxVy7SuEkTNColtevVY/LX3+uJgSWZOnUqQ4YMIT8/n3nz5r34wmW0TRXPj1Qsxs2mAmaGRaKaUqkkNjmVVs2boZXKqFixou41Wq0WmUymq9rUarVUqFABsViMhYXFn4YOKAsLOLVuFXeCzyKWiFEqleyLiOJUcMjTY57xpCvm6NGjVKtW7V/pSScSi7Fxdv27hyEgICBQbggikoCAgIDAfw65VEL/JpXZfvERBSr9Rb2RTMLHbV9cyfRntGznS97nc7mTm8/48BiUhYVU336I9Q1q8PH779KgQQMiIyMJDg7WM3wuy8OkVq1arFmzho4dO/4njGlfRHahiujUXD15T2ZmzTuLdrFpdEve6dMbX1/fUobNq1atAuDTTz+lefPmesLeP4n0PP00pqxL+yh8HIHDoK8xMZBgdHyerlqoZs2aJCcn6xIFn60WEovFDB8+HG9vb9q0aYOtmZwsqZiCZ0QqKEoh7FzLodzuo1f9imw8H13KvwrA1doYB4tXE++KfXkMDEq3M5YHMkND1Er9ua/paEdNRzvEUinjlywGngpnvXr1KuXN5OrqWqYoVt5cd+2COuoYVXOjUIskiNBSzc2d2k0nkGnqyIW5HZFLn9YqBQYG6sZVUvirVKkSAQEBL3VNx2ruAJy5G8nNuCcMaOpFaEwckzq00h1z/kEMdxOTmXfAH5VGg7Ign5XrV3Hw4EHc3NxIT08nNzeXTp06ERkZyapVq5g2bRqDBw9GIpFQs2ZN6tSp89wxaLVa9iyay5MHd1ErlaiVcCkyFg8zI3bOm6E77uzZs3Tq1EmvsigyMpKvv/5a52dVVhuygICAgMDbQxCRBAQEBAT+k8zoUpNHaXkEP0hBrdEi/mPhMbi5C728Kv7Jq/XRaLQEPUghKiUXUW4yh/xPIbp9B4OW7ZBVr4Hi6kWUI8fTZtH3tK5QgYsXL3LhwgXatm1Lhw4d+OKLL/TOV9LDpHbt2gBUrFiRzMzMf72ItHTpUvbu3VtmpYvfgVtEpeTqiRNqsZQbTwrYcukxqampbNy4sUxvmnv37mFoaMgPP/zwxmN8GQ+rYhYvXszgwYMxNTVl4MCB5OTk0Lt3byZOnFjqWA8HMy5FFcWfa1VKFMlRun0a7VMRYMOGDXTs2JHQ0FBdNVVZ1UJjx47Ved/4+PjQpVFldl19rNcOaCSTMLmTB9amr2dqDHDx4kUmTZqERCKhUaNGzP5qCYfDEkjNKdT9rkQiMJRKWNS37p+crTRHjhx57bG9DLV9OhB69BBqlb6QJBKJcfasi4GR8V96/VdhaKtq/KjoRFB+DjaKFAokhiQZ2GIgFdPbq6KegFReSKQyvPsPZvO5j8vcr9ZouBwdS//GXtRwtGVl4EUWTplE06ZN8fLy4vHjxzx8+BBLS0v69eunl7B3/vz5lxpDwv27JEU+0BP7krJzuB4bz/mHMcRn53Ho0KFSnnTZ2dm8++67aLVaOnfuTLVq1fD19eXYsWOMGjWK0NBQDh06hKmpKebm5mzfvv1fWa0kICAg8G9CSGcTEBAQEPhPYiAVs3ZoY/aPb8HUTjWY0aUGAZN9+KJrzVdKxYlMzqHlkgDGbbnKwt8j+Op0Ag4jV2E1ZzmKaxdRRd5Dq1KgBgo0Gq5E3CUjIwN7e3tOnz6tizc3MTEhJCSklIfJf+mp+otMcvMVao7eelKqukVTmEeBUsO6oCiSk5Np3rx5md407u7ufPDBB0yZMqVcxtqhQwcCAwNfKCABTJ8+HScnJ1avXs3AgQMJDAzk7NmzpKSk6B2n1WrpWa+irhUsJ+w4JrV9AVBFXaJgvx+dO/hiZGTE7t27uXTpEp06deLBgwfMmjWL1q1bM2HCBIYNG/bcscztWYul73nR0MUKRwtDWlW3Ye2wRoxs+WpR9BcvXsTb25tWrVoxadIkXFxcCAgI4Ny5cyQlJREXeZffP2nFkOauWJsaYG4opZOnA/vHt6CBs9UrXett0Oyd/ljY2eslYUlkMgxNTWk/evxrnzc+Pp4GDRpgaGioF8H+Ip48eYKPjw9t2rRhxIgRpfaPbFWFZlWswdiMWGNnkuR2mMilVLMzw69HrVLH+/j46HyQXgW1SsX9i+c5v2srN07+zrnw+0z4fMofcyRCJBaj1mrZeiGU6JR0Pm3fkpoV7RCJREjEImq2KGolW7NmTZlhAq/Ko1s3UCkVetu616vJmDZNGdWyEc4OdvTo0QMo8qSLiIhgw+atLP7uBxITkzA3N0cikZCdnU2lSpXw9/enZ8+eiEQiZs6cydmzZ+nVq1eZ7ZwCAgICAuWLUIkkICAgIPCfpoaDOTUcnm86+yJUag0frL5AUnYhT6UPCWIkyEMzkDdpiSYrA3XiE1I/HIA2NxvzatWYPn06p06dwtbWlooVK3LmzBkqVarEzJkzX87D5F+AsrCA68ePEHbqGIqCAirVrM3t7EI9k9ySvlAr1m8l8dBStDJjFE/uY1SlEercNPIjr6LVqEk0t6GqhRFHjhwhLi4OT09PrKys9LxpRo4cyaJFi1iyZAmfffYZXbp04caNG3Tq1ImFCxfq+d6URKstqiTbeuERqbmFuBvncyogQOdhZWBggIuLC+7u7jRr1ozU1FTmzJlD9+7dWbFiBbNmzSIyMpKuXbsCRS2IV65coXPnzgDEpuUxfMNl4jPyEYlAq1ZREHsL56Y9yQrayvt9+7Bk2xzW/LqaDh060K9fP5YvX46/vz/Jyclcu3aNs2fPsnPnTo4ePVrmPRS3NHWu7UDn2m/Wuubi4sLxo7+TEHGLSTNnc+d6KD6di/yKpFIpGo2Gd3t2QalU4mpry2+//YZEImH+/PkEBAQgFotZt24dAMOHD8fc3LxM/6q3hdzYmEGLfuBW4EluBfqjUalwb9aCeh27YWz++kler2Pevm3bNkaMGMGQIUMYPXo0N27c0DMZl0nErBvWmItRaRy8EY9KraGjpwNta9gheTYN4DVJfxLPzrnTUebnoyjIRySVsTnoMjt/24m9W1VG/fQrD2bMIOBJPN4eVXGzevr9eD8lHQ9PT1zca6BUKjlz5gzjx4/XM75+HaQyGWKxGLWmdDumSCxm5Xw/nU9dXEY+eY2GseBOCmJRI+w+bMawdtUY6u3KuHHj2LRpE2KxmKysLHbt2oWtrW3RNaRSJH+kzjVv3pyGDRsSFBTE4sWLdZ9VAQEBAYE3RxCRBAQEBAQEnkPAnSRyFCpK1s5oCvMQy41Bo0V15SpGgwajTkrA+pdt5K74jiZNGyGTybh48SIKhYIWLVpgaWmJgYFBKQ+TkhUG5fUE/datW4wZMwaJREK1atVYt27dK1VevQxKRSE7/KaSFv8YlaKouuDO+bPsvHSDAX16A0Wm0SV9oRQqDSJA7lybCu3HEPfrh9j2nIpV21Ek7viClpNW4hS2np49e7J+/XqaNm3KhQsXdNcsbgWbMeOpf4q/v/+fjlWr1TJ51w2O3nqiawO7jhrLoSv56cOWzBo/hKlTp3Ls2DFSUlJo3Lgx4eHhXL9+ndmzZ+vO4+HhwZkzZ6hRowZnz57F09OzaC7UGt79JYSkrAKd6XXu7QBMPNtgIJVQ28mC797z4sKFC5w+fZodO3bojS8mJkbX0ujl5fVcEelNyE5L4cKeHdy7EIxWo8HG2YXEyAeIxRKSoyP5ffm3fDxuLAaWFYhPSGDt2rUcPnyYb775hrVr19KwYUMWL15MXFwcVapUISIigs6dO9O5c+fn+le9bWSGhtTv3IP6nXu80Xly0tO4dyEYZUE+FT1qUqlmbb39zxrmjxgxgrS0NOLj4xk8eDANGzYkKqqojTE7O7vM9lSRSESzKtZFFUnljFarZc8CP3Iz0uGPysaL9yLxquzA0eXfoVYqEInFOu+hqZMncenAbtLiH1MglXP94RNOnSmqztu8eTMDBgwol3FVb+pN0M7NZe6TSKV4NC/yZ0rPVdBzWRAZeUrUWi2gpVClYNZPG5kxaBvN69dmyZIlKBQKvTTMnJwcVq9erfv8pKam4ufnh1Kp5OOPP/7bRaRnW2hXr16tS7crJjAwkKFDh+Lm5oazszObNm1CpVIxaNAgEhMTady4MV9//fVzr1HcSrx7927Wrl3LzJkzSx1T3J7r5OT0l9yngIDA/weCiCQgICAgIPAc7iflkP9MrHrh49tknNuCSCJDVrMeUo9aaDauIn36x0gtLGlkYcLBgwdZvnw5eXl5DBo06K2O2cPDQ+dTMnz4cK5cuULjxo3L9Ro3Tx0nLT5OJyABXIl6jFclB46uKEq9unfvHt7e3kDRolkuk1DF1oQMRzc0gMTECpmNCyKJFLFIxMftqrEv7KlHVHHs+ptyKiJJT0ACUCJBqYWPd9xgYLduPH78mJs3b5KZmclnn33GuXPn0Gg0yGQy3WtGjx7Nhx9+yP79+6lYsaIu+tw/PJHsAqVeapoyLQ5FYiR5N45B0gPmzZvH2bNn2bdvXylBz8XFhfDwcADCwsLK5Z5LkpWSzObpn1KYl4tWXTQHcXeKrhefkUV2fj52xob086rBb6F36N+/P7///jurVq0iNDQUCwsL3n//fb799lvu3buHUqnEw8NDZ5Jdln/VP5X4+Hi6d+9OeHg4OTk5PH78WG8hf/nQXoJ3bmHvlRv0rl+LgDuRBD+IxsyqAlBaGAXYu3cvWVlZ9OnThzFjxiASiZg9ezbLly+ncePGuLi4vNV7jIu4TV5Whk5AgiLvofjYLEIiY4nLzNHzHjpw+iwTZn5JdnY23bp1Y9tvv2FiYgLA3bt3uX79OqtWreL27ds6n6LXwcLOgQZdenL9+GGUhYW67VK5nJot2mDrUlTBtvlCDDmFqj8EpKdI3Rpj6t4Uu9TDOoPtYrRaLSNGjGDBggU60c7W1hY7OzsAMjIyXmvM5U2HDh1077Xo6Ogyjxk8eLBewuG+ffuoV68eM2bMYMKECaUq24op2Urs4OBQpoAERe25AgICAm+KICIJCAgICAg8B3tzQwxlEn0j46qNMaraGMSgqmqGSiymwuKfMRSLmObmyFjnooXL+++/r3euF0Wqlwf3ErOJSsnFydKIWhXNi4QbuRy1Wk27du2wsbHh/v37zJ49m1WrVpGXl8fx48cxMDCgc+fOKJVKbEu0Lj1bcVGyouJmwAlUikK96xcvVC9EPSYhJ5979+5x9+5dPv64yMxXq9VSu6IFCjcbrmeIEYtEGBpI0IrE2Jsb0rNeRfZBuVdNbQqJ1vv9wdNqsvQ8BUcuBeI37XPEYjEZGRn4+Pjg5+dHu3bt9F5jYmLCli1bUKvVDBgwgGbNmgEQ9jiT3EL981v5DH/6wyE/xGIxsbGx9OzZE0AvBczR0REvLy9atWqFp6ennnBVHgTt2ERhbg7aZ9qI8goV7Lt2m8HN65OvVPL9sbOYGRny+5EjqNVqTExMMDc3Jz8/n40bN+Lm5kbNmjXp1asXH330EUeOHOHkyZNl+lf9U3lRe9qjW2Gc/20raqWCXvVqotVoaOTsiLO1Bbuu3gZKC6NQ9L4ePXo0CxcuxN7enmnTpjF9+nTeffddJkyYwNmzZ2nduvVbu8f0xPhS3mrd69XU/feai2H06NGDixcvMn/+fD766CN27NhBVFQUUVFROh+n9evXs2TJEt3rWrZs+doCUjGtBgzDvkp1Lu7/jcykRMwqWNO4Z188Wz/9rB2//YTCZxI1tSolIqkMmVhMntYAOzs71Oqnnzk/Pz9atGih95n9p3jNRafkkqtQIVWqOX36tK6Ftvg9qFQqGTp0KB9++CEA27dv58yZM3z00Ud88MEHREZGUrdukZm9l5cXISEhOhEpMymR+Pt3MDA05EjQBV0rcXR0NLNmzWLhwoUMGTIEgPDwcPbs2cPatWuZNWsW1aq9WUKpgIDA/zeCiCQgICAgIPAcutR2wO/ArTL3GYjFtKvryCM0VDGS82FlWxpamLzlEUJiVgGjN17hXlI20j/Mcg0eX6MgZAu1atYgNjaWixcvUr9+fRwcHNi4cSMnTpxg4cKFHD9+nD59+nD48GGMjIyYNWsWAQEB2NjYlKq4KImyoKDUtuKFqoGRMZtvPmT27NnMnDmTFi1a6IQosVjEV71rozWzp8cRY6Z3qUnnOk70CzQqd/GomKTswlLbiqvJJDID6nZqR9OmTalfvz4ZGRnI5XKkUqlOLCjm6tWrTJ48GZFIxNSpUzE2Lkr8sjY1QC4Vl1r4AsilYqas2sWoVlX0WuNAX0iaO3cuUqmUnTt3EhkZWQ53/ZT7F8+XEpDUGg3bLl6ne70amBsZciD0NvlKJXYW5uTmZGNmZsbJkycpLCykZcuWdOjQgYEDBzJhwgS++uordu3ahZWVFc7OztjZ2dG7d2+Sk5P1/Kv+Dp5t5fTz82Pq5M/5uE83xvl9Sad2Ply8fRcD+VMD7ri4OHr16kVE6FX61XHH2tSY5QHn+bidN3cSklBpNKgVCnLS0/Dw8ODQoUN6wuiCBQto166dzo9Lq9VSoUJR5ZK1tTWZmZl/Ou6XSQu8fv26LhEwJiaGTz/9tMyEQAtbB0SisnNzxBIJK+bN0nkPAaxYsUK3v2Sr6LM8TwT/s/bZBQsW8PPPPzNixAi++uorPJq3xKN5y+deRyopPfb8qKtkXd5PskiEW7O69O/fn02bNtGvXz9++uknlixZgre3N/v27eP9999n3Lhxzz3/2+J6bAaf/Xad+Ix8pGIRaqWCz1b/zicdPenduze+vr4olUqGDRuGpaUlM2fO5NixY9y5cweFQkH79u1p3769ro22W7dunD59mlq1aqFSKjm6/DseXr2IWCJFo9Wy8ewFtm/bpjcGZ2dnAgMDCQ0NZf78+bRo0YK1a9f+TTMiICDwX0IQkQQEBAQEBJ6DiVzKqkEN+XDzVTRaLYUqDTJJUXrRknfq0qv+3+srodFo6b86hEepeRSFnhWJBYX29bAe1ASH+P2Eh4fTo0cPduzYQfv27alUqRIAFStWJD09ndzcXMaMGUNcXByJiYlUr16dtLS0UhUXRdfTIBaLcfVqwM1Tx9Go1c8OCa1GTXBwMFC0gCxJSd+nO6Gl/Y5K7i8psrwJDV2seJCUg6pEv1lxNZlcKub7KT4AembnxeN/dkynT58udf6eXhX55vjd516/p1fFPx3jzJkzCQkJQSKR8Ntvv/3p8a9CWb+jsMcJxKZnciTsDgCda3sQmZyGgVRC3YZNcHd3586dOyxYsICTJ0+yceNGFAoFq1atoqCggNjYWF1lWqVKlfR8Xf5Onm3lPHdgL5HXrnJVriYvK5Pg06dJzcnF3rWK7jXFnk6z+/fhdGgY/RrV0e1r4OLET/7BZBcW0r1nT7774UdcXFz0hNEFCxbQtGlTtm/fzrBhw/joo48YOnQo8+fPx9rami+++OKlxv5sq9OzopKXl5fuM9GrVy+6du3KoEGDiI2NRSaTsWPHDmxsbKjsWRtDE5M/hF59AVgskeDVsdsbzHBpXtQ+q9FoGDVqFN7e3pw6deqlztevgRP3nmSRr3wqfBpXb4Zx9WaYGUrZPasDEomY48eP6/YrFIpS5ykpepXXd8nLEpWSy4BfLzxTASlhzYUEDAyN6d69O4cPH+bs2bO0b9+e3NxcAExNTQGQyWS0bt2a+/fv06NHD06dOoWvry+urq7Y29sTsG4lkdcuoVYqUSuVXIqMxauSA8dX/oiiIF9vLGlpaUyePJldu3YhFguh3AICAuWDICIJCAgICAi8gNbutpyZ6sOOS7FEJGThZmPCB02cqVzB+LmvWbp0KVu2bMHQ0FD3hH7IkCGcOXOGuXPn0rJly5dub5swYQI3b96kSpUq/Prrr7r0IYBZ3/7MpZVrUKvV2PSYjNTMBq1KiUYqIyW7kJ3Xk6lc2QjbvKJ4colEglgsZvLkyWzduhULCwtkMhnh4eH4+Piwe/duDh48iFQq5eTJkxgbGzNixAiGDh2KmZkZ9+7d48SJEzTu0Zfws6fRqPUXLFK5nEbd30FmaPgaM/3XMKpVFfZei0Ol0RdT5FIxPh62OFq8mfeSnZkh83rWYu6h2yjVWtQaLRKxCJlExJzuntiZ/flclGwbKm+catYi9tYNvW31nZ2o76wvgE7q2BpLB0dG/PCLTjicOXNmKW+VYlEtMDCQ/fv3/2Xjfhm0Wi2Bd5PZciGGlJxCmrhVYHgLNxwtDIlMyubM5XySjN1YUWk4SYpzGBUoeZyaQYHyHqNGjmTP3r1AUcXGB62b8TAplZ/8g0nKziEpK4fQR/HUd3aiUK1m96FDmNvYlkoAzM/PLzWuM2fOvHDcWQVKtl98xIHr8QC0sFcTEPC01cnR0RFbW1sCAwPZsGEDGzZsYNiwYQDk5uby5MkTcnJyMDAwIDMzE3Nzc+rWrcvPP//MmjVreBz7iPdqVcXMQIqyoACJTIYIEe1HjcfK8c2E70KVmiNhCey9Fodao6VrHQfeaVAJE7lU1z7btm1brK2t6dq1KyNGjCAiIkLvHBcvXmTcuHF4eHhw9+5drl27ptvXr2FlNoXEEJOah0L9VEgylImZ17MWBtJ/vhCyMvABhcrSLbT5GLP89AMK/Q9QoXFPTNy8eBibQMM6RVWc3377LTVq1KBq1aosXbqUTz75hHnz5jF48GCmTp2KSCSidcsWdG7VknE+TVlxOoQP2zQlKTuHizceEfLwEY8zszl06FDRNTUaRo4cyXfffaerjhMQEBAoDwQRSUBAQEBA4E+wMzPkE9/qL3VsscGpkZGRrqJl+PDh3L37/GqV53H58mUUCgWBgYF89913HD58mF69egFFbTinT5/Bvv8CPVPn4tYPAJlVRZItOxJ1+ypfbT5KZmYmarWae/fu4erqyogRI2jbti2TJk0iKCiINm3acOrUKY4ePYqrqysTJ05ky5YtODg40KJFC5YvXw6AhZ09789dzLGfl5KRmIBYIkGrhca9+tKsz/vP3sbfipuNCauHNGTCtlBUGi1atKjUWlpWs+H7973K5Rr9mzhTr7IlG4KjeZCUQzU7U4a1cKWmo/mfv/gvptUHQ/ht3helPKyKEAFapHI5UqmM3lNmvVJboaWlJT/88EN5DfWVKE7d+/3WE535fXhCFqs2/UZ+yBYKjGyxaNMREKHUiigoyEc64EvsfptJSk4ueZkZVKhQgZycHIYOHcquHTsoVKuZ0q4NKwJDsDErak0ViUWYWthgbmNbLuNOzSmkx/Ig0nIVFPxRbfMgQU3FMauY2tOLxZ+PpF2rZsTExNCqVSsqVapEp06dmD9/PgEBAaSkpODr64uTkxMikYiEhASGDRtGWloaX375JWPHjuW7775jzYUbfP3FNGxkYkwrWOPZuh0mllZvNPbcQhX9VoUQk5r7NOkwNoOFK7fAle3UrOGBtbU1SUlJ+Pv76wneJfnyyy85ePAgVlZWpYzHjQwk7P3Im+UBD9h1JZZchZqajuZ83tGdVtXL53fwVxN0P+WPytCnlAxkkFfyRKUyJCMjnyTUGMVlkJycTFZWFmPGjMHIyIiqVauSkZFBSEgIZ86cISwsjMGDB2MiLu0b171eTR6lZTC6dRNWnr2s87wKDg4mODhY1/b4d31W/2ts2rSJjRs3olar2bp1q5B0J/B/iSAiCQgICAgIvCGxaXlk5it5kJTNFwu+I9uwBplxV1kV+IALGxfgf/IkKSkp3Lp1Sxcfv3fvXiZOnIiRkRHHjx/n448/Jjg4GCMjI5o3b85vv/1WylT15MmTNO/clRy1hlNHjyEVa0ncMRNJhcpY+Y4mI2gbhY/CQCLDrs8XJB/8BpmlA0qlgvmfjOD6hXMMGzwAS0tLIiMj2bp1K71796ZHjx7MnDmT6tWr4+PjQ+3aRTHawcHBBAQEMGzYMBo2bKh3z/ZuVRn67c9kJiWiyM/DytEJ6R+JXf80WlW35fKs9lyMTCMjX0FdJ0ucrZ9fSfY61HQ0Z0m/uuV6zvLAsZoH78yYi/+aFWQmPUEkEmFkboFXx25kJD4hLzOdyrXqUtunPXLjl/f08vHxwcfH568b+J9w+m5R6l7J9ESlWovErTGmbo1RnFxF/sPLAOTeDkBsZMb9gz+hyMhCq9Vy6eo1TM3NsbCwYM+ePSQkJdG2aeM//JJEiEUi4rNySM7Owcgih/Hjx/Pzzz+/8bgXHb1DUlahXnulAgkpBTBp903yjD345cwDOvYbzM5ff6JBgwbUrFmTuLg4AgMD6d69O3FxcdjY2FBYWEh2djZr1qxh165dhIeHc/jwYVatWsWRI0fYeuRYuVaL/XTqPg+Tc1CU8P/KV6qRVmpA585dEYWs5/Dhw9SrV++5AhJAVlaWrq22evXS4ryZoYwZXWsyo2vNUvv+DRgZlL53XSBDCQxd6yE2NOOxZwusEh4yZ84crl27hrOzM7169eLcuXPI5XJOnjxJ27ZtGTp0KLlpKWi1RfNfltw7Z2h/CgsLMTIyolWrViQlJentL94n8HrExcVx5syZl27PFBD4ryKISAICAgICAq/JvcRsPt0RSmRyLlotFCoUpNy6gm3v6ShUW/D7ajEZIXvo1rE9bm6uXL58mR07dlCzZk0mT57MkiVLiIqK4pNPPuGLL76gfv36zJ07l8TERAICAvDw8GDPnj2MHz+eXceOc+RhDNtCwpGKRWReCsNZrMZp4CIS/deSfeUAqownOAz6RmeGLZbJURfkUvg4HOOK7vx+4RaNGzcmLi5O58FSfGzJp9tlVaM8z0/Dws7+L5jZ8kcmEdOyug0XL16kf49+SCQSGjVqxPfff/93D+0vp7JnHYYvXUlOWioajQYza5u/zMj8bbE5JKZU6l5xiheASG6MSFokairT4tAU5CKq4ITEwBCxSkHtWp7cefCQd999F7FYzMmTJ8kXy+g7dzFbbrxD3Q5daGtmT49336Njp07lMmatVsvBG/F6AhI8TQtUabRkRd/CrGEPToUe5+qjTGxtbYmNjdWlvIWGhtK9e3dOnDiBhYUFDRo0YOLEiaxevZrc3FzCw8OZNGkS6enpuLm5lcu4i9l5OVZPQIKiOVdJZZy4nUgfE1OMjIz+1HvH3Nyc+Ph4LC0tefDgQbmO8Z9A/8bOfHfiLgVlmO2XRJkWhyIxkrwbx3icfJ8VK1Y8NyXSwsKChIQEjIyMyFWpQSTCUCYju6AQmURS9P9yQ+p06Mro0aPL9OLatGkT+fn5b1w5s3TpUvbu3cuWLVuYNWuWnifaiRMnmD9/vi4VdMGCBVy/fp2rV68ycuTIN7ru38XFyFR+OnWf8IQs8m/5Y5OTSbt2vtSq5ckPP/zAggULCAgIQCwWs27dOnbu3Ent2rXp1q0b+/fv5+HDh4waNYqBAweSlZWFl5cXP/300999WwICb8Q/v7FYQEBAQEDgH0hSdgF9V57nTkI2hSoNCrWG3NsBmHi20R2jNa5AhTZDEJlYkZubi62tLWKxmKSkJLRaLf3796dixYpERUUxdepUXF1dWbFiBSdPniQ+Ph4vLy9q166NdxsfdjyMJd3UAoVWS55ag9LYhFj32rTuUhXzKl6gLETuVAMoEoFEIhEGFd3JOLsJTWEu+fF3+Xbmp9SsWRMnJyeOHz9Ou3btXio96r+Ei4sLAQEBnDt3jqSkJG7evPl3D+mtYVrBGnMb23+9gASQklPaTDk/6ipPtk3nybbpaHIzMHRrAICVz3AMbF2xf/8rjCs4Yig3ID4pmYSEBPbs2cPKlSvx9PQkIyODuk2aEZucwpId+7CuVJnZfn6o1WoOHz5M69at8fb25tixY681ZrVGi7IMYaHw8W0SNnzKk82TkZhWQFrBicKsVHr37EFkZCTW1tZ07NiRmTNn8uGHH7Jp0ya9FDgbGxuys7MxMTGhcePG/PDDDwwePJiTJ0++cDybNm3C19cXHx8f4uLiXnhsdHQ0D3ctKrW9eM4fb55K/JNEOnbsqLd/7dq1fP7552zdupXx48cDMHv2bHr06MHw4cOpXLnyC6/7b2RQMxdcbUwwLOHfVNYnzspnOPbvf4nD+/NxdKnOhAkTqF+/Pra2tqVSIseMGUOPHj2YO3cuLlWrY2hiSguPqqwLusLx2/cwNTTEpa4Xddu25+zZs3Tu3LnU9YYMGfLGlWnF7drPo23btgQFBRESEsL58+dJTk7Gy8vrXysg7b36mGHrLxP8MJX0PCWJiYncfJSCwwcLMDQy4quvvtJVCf78888sWrSIAQMGsHPnTgB27drF+++/z+rVq3n//fc5e/YseXl5XLx48W++MwGBN0OoRBIQEBAQEHgNNp6PplCl0cs/Kn6ynH39KIqUGJRpcRTkpBErr4g2N0m3eK9UqRIuLi5MmTKF2rVr4+DgQIcOHcjLy2Pu3LnMmDFDVyHk5+eH6oMR3FrwFfImLXTXktWqR96RvQSoCnjHVcU1rRV37kQgEYFaW1T1IHeqSW74GWx7TUOd9BD77DsMHz6cjIwM0tLS2L59OwB169Zl2LBhBAUF6SUZlZWaZmFhQf369QHYu3fvv8KwtSA3h7g74UgkEpw8ayMzkHPr1i1OnjxJUFAQ7u7unDhxggMHDvDw4UOsra35/fffyczMJDY2FgcHByIiIvD396dWrVr89NNPODo68u677/7dt/Z/SxO3Ctx5koWyhPlMcYpXSWx6TAbAYdDXyDQKurTxJT0limU//0zr1q1ZvXo1EydOZM6cOezfvx9PT0/27NlDRkYGM2fO5Nq1a4hEIr799lsCAgLQaDR06dKlzEX6nyGViHG1MSEqJVdv+7OtTvkPL6PJyyBTacDgD95l8eLFLFiwgEWLFiESiVi/fj0jRoxg3bp1SKVS/Pz8WL9+PVWrVmX9+vX4+fkhkUhYvHgxs2fPLnMsr9OWYyovvWwonnMrIykbZ3dELBbpVaaMHDmylIDQsGFDrl69Sm5ubinR6b+AkYGEfR+1YGNINDsvx5KnUFHJyojweP3UuWIMpGI2HDwBPD8lsmvXrnTt2lX3c0FODjdPn8A39ApyE1PqtOuAW72GiP6kCuzWrVuMGTNGF/iwcOFC1q1bpzPQL95/+/Zt3nnnHRYuXMjSX1bT69PPqGxowOF1axg6dCh9+vTRnVOpVDJ06FA+/PBD2rQpeoiiVqtxcHDA3NycwMBA/P39+eqrr15jNv8+CpRqZh24RX4Jk3Sx3ARxpdpcj82gVtX6qJ7cIzAwUNfa6+joSOXKlUlLSyM1NZWMjAwqVarEw4cPdb+/Ro0a8eDBg1Im/QIC/yb+USKSSCSSAFeAOK1W2/3vHo+AgICAgMDzOHMvuVRrh5XPcN1/x60ZS8GjMJSpjwmPkeLa3kfvWC8vL0xMTDhy5Ahdu3bl+PHjBAcHs3z5clq0aIGHhwcajYZ27doRmlOA1qsxsppP48dl1TwoMJCTMHEkN52dOLXrN2b5zWHltmmoRBJse3+B3KE6ytTHWLrWob6nEw+O3MHExARDQ0PS0tLo168fy5Yte+GT5WepU6fOW4/Mfl20Wi3BO7dw5fA+JNKif/JoNGpaDxiOxtaRxo0bs2rVKtq2bcuVK1fYtWsXS5Yswd/fHwsLC6ZMmcL/2DvrgKru94+/btMpqZTdYmMgKHbrdE7FwM7pyoU5czp7zq+zA3M2tojYXYCBqKDSIF2XW78/GHciuJnT7Xde/8A995xPnHtufN7ned7Pd999x9ChQ7G0tGT37t1Uq1aNI0eO8Pvvv3/g2f3/xq+JK1svP0GlKV51r7SFAU+SMlCL/vyZK9aqMcyK43LQHo6fOk25ihXJzc1FqVSSkZGBm5sbTZo04eDBg+Tm5lKrVi22b99O7dq1SU5O5u7du7Rs2RJAH0n4JhFdE9pU4ssdt4osTF+kUFSyNVUwb2JBnyVVytu5c2fx8+Lnh5+fX7HthWQr1dxPyOTwrn1oNBp8fHyoWrUq48ePZ+jQoZQqVYqIiAgmT57MihUryMnJ4ejRowDYSXN5tG8OytR4bLpPBp2G5EOLkRuZ0bxrJ8TiV0v7O3fuHFOmTCEzM5MpU6a80jH/NgzlEkZ4lWOEVzmgoKqd98/B5Gcq0TyXziiTiHArZUx919czPTcwMaF+p+7U79T9tY6rVKkS58+fBwqulejoaCZOnEieSkOWUk35ChU5f/483t7e5Gm19A48T2TzruwNjSRflY9q70FuDBmmb0+lUjFw4ECGDRumF5BWrlzJvHnzaNu2LQqF4rXG974pTMXbuXMna9asKfaeKmT16tX8vPgX8mp8gsjlTz9ARekqZN46Sk6+hj2B5+hU3YbWrVvzyy+/AAXnA6Bz586MGDGCTp06AVC2bFmuXbtGtWrVuHr1KkOGDHnPMxUQeL+ICu90fgyIRKIvgXqA2d+JSPXq1dNdvXr1nxmYgICAgIDAC/RaeYFLj1L+dj8juYTZ3WrQtfab+1A0v3yPu9l5JT5nLBGzp3Z5apoWGEUnZOTx7a4Qzj94hlQiQgQMbOLKl60qIRbBmYhkNl6IIilTSR0XSyR3j9G4Xi2mTJmCv78/gwYNeulC0tjYGGtra6pWrUqTJk2YM2cOV65cYcKECQBcv36d27dvfzQpKtcO7uXs9k2olUUrk+Uo8/G/GsauvfuoXq8+Li4u+Pr6cuzYMa5cucK4ceN48uQJNWrU4MaNG9y+fZv+/ftz+vRp2rdvz7x586hcuTKxsbH/SU+XfwuXI1MYtfkauSoNIkSoNFq8Ktowplwev246yHnjWmRKTZDq1FROv01EwC+0r1mZXsNG4tG9Fz/++CNZWVlYWVnx/fffo1KpaNasGU2aNKFjx46MHz+euXPn0qpVK1q3bs3Ro0eRSCSoVCpkMtkbj9v/4mPmHL6LGBE5+Ro0JfwWV0jFDGtWlq9aV3qbU6RHq9Ux/1g4a89FIhWLSTyzDVKecHjf7+xYPhc7Ozs2bdrEtWvX2LZtG9u3b2ffvn3Mnj2bypUrU6dOHbp168aoJTuZuvA3dHmZmFby4PGWKUxdd5DvO1T7T6RJvk/i0nMZ6X+de/EZyCRi8tVaGrpZs7S3OxZGr1+U4MWoorVr15b4GowZM4ZuoyezY89+jm5YzFfjxzF25DBGjBhB10/78Pnkn8B7LCkXfyflzBbQqGjatCl3jc3JTExEZGmN2bc/kvRpW8TGxth6t+LZjk24u7tz5coVpFIpAQEB/Pzzz2RlZen73LlzJ1OnTiU9Pf2DRiLl5+ag0wESCcOGDePhw4f6KNuX0bp1a0bO+o3JB+6TpVQXeS41aA3K+AhsSpXi4cWj/Pzzzxw/fhyRSETv3r0ZNmwYqampODk5ERUVRalSpUhLS6NPnz5kZmZSs2bNd2LSL/BuiI2NpWPHjty5c4esrCyk0pJjbKZOncqxY8dYtmxZsUIj/1VEItE1nU5Xr6TnPppIJJFIVAboAMwCvvzAwxEQEBAQEPhL+jRwJjQ6vZi57/PIJCJsTRW0q2H/dn05WDHrURx52uKLTWOJmOomf1bbsTMzYL1fA9JzVWTkqrA1U6CQStDpdEzaG8aeGzH6Md+OTiFx/x6OfNJPf3xqaiqBgYFs27aNDRs2cOzYMWbPns3Ro0fp3r07ERERWFpaMmLECAICAujcuTPBwcEcPnyYvXv3fjQCkk6r5dKeHcUEJI1Wy5ZLN2lTrQJLJozjbMwzrKys2LVrF7GxsQBcu3YNJycnEhISyM7OZtasWezbtw8TExMSEhJYsmQJISEhVK9e/UNMTeAPGrhZcemHllyNSiEtV0U1RzPKWBpx9cAeKmfcpWJqKFpEiNBx80kMMSmp7L8eyolvf+A3B2d69uxJzZo1uXv3LgAymQy5XE6TJk1o0KAB9+7dw8PDA7FYzJdffomPjw8ikYiqVau+1SLQ18OFnvXKcONJGgnpeUzdH0auSovyj8hGQ5kEF2sjRnqXeyfnCWDBsXDWnYsiT6UFtGikhmBfhX5rLvNt3cZER4RRtWpVxGIxjo6O+mvb0dGR1NRUAKpWrcrQZuUok9eGrfuP4NO+KgFxjfih47/jfVAYhfJXAoK3t/d7i7R0MDdk7+gmPH6WTWxaHi7WRjhavHmltBejiq5evUr9+kUrwEWn5nCjTDdObrvBk327sGkxnrnB0cxfUBn36lWYeDiKuPRcrFQqMu+cxXHEWhI2fsn5S5dRNGiMVqNBrFajvHIBXV4ukrIVSLl2GbVGg6+vLwqFgps3bzJmzBj27dtHuXLlEIvFeHh4ULlyZQwNDT+Y715cRDhB61aQGPUIgOuJqbTv3Y9fHz4kKipKbwru7+/PsmXLkEgkLF++nIiICC5fvkzmF/3JqjkQzIp+f1u2GIyhTMJXrSsil8tLjBIEaNOmDaVKlQLAwsKCQ4cOvfc5l8TLoq9iY2MpW7YsYWFhlC9f/oOM7WPAysqKEydOFEnRLImgoCAuXLjwD43q4+ejEZGAxcAEwPRlO4hEomHAMABnZ+d/ZlQCAgICAgIl0KGGA1svP+HW03R9aooI0FEgHokQ0aqqHTO7VkchfXm561ehr2MpNselEJmjRFlYTQ0QRz1E8795eCnkxe5EmxvKMDeU0bRp0wKj00fP2H0jhvSnESjjH2BaqzVpIScwqNyMUZuvY/yHPvV3C8lCD6SuXbty48YNOnfuzKNHj1i8eDH79+9/q3m+S3IzM8jPyy22PSQ6jqep6RwMuQfA8M96Ep6tYv369RgbG5Obm0tqair29vYcOXIEBwcHunfvzpMnT1iwYAEBAQFs2LCB3Nxc+vbt+09PS+AFJGIRDctaF9lmYeeARC5Dm6tG/IdrWW3n0tR2Lo1EJqdRj940bNQIALW6aJTBqVOn9P/n5f0Z/feiJ83rUNIiTiGV4PHHuOd93puBU1azeOZEavYYS68GLnxSpwwGsrf73CgkW6lm7bmoIil0hWk5SpWGtftP0qaq7UsrNL5YwdFQLqFsKWO8KtlwXP4xLSVezssMobVa7d9Wk3vXuFgb42Jt/EbHZinV7LsRw+24DMpYGtKjThlszQxQKBQ4OTnh5+fH06dPcXZ2xsnJiXNmzbn26+dYeA0g58ElYhIjsWwxGJPei0gJ3czTm2fR6UCbk4HU3A6pkTliU2uws0eVnoZOp0Md/YT0KV8ir9MQWaWqyOs2ImfSODp16sTKlStxc3PD0NCQkJAQTp8+zbZt27h//z7t27encuXKxMfHv+Mz+PckPHrAjhk/6G8iaLRaQsIfUC/4CMqcPz3JNBoNS5cu5dy5c8TExDBmzBgOHDjAsmXLCAwM5Ie9dwi4FVPEy0osAiOFhJ71Sr5hcu/ePYYMGcLs2bPf7yRfwvMRam5ubmRnZ3P//n3s7e2LiF2LFy/Gw8PjL1r6b6LT6bh3NphLe38nIzkJEyvrYmmhgwYN4smTJ7i4uODk5ESpUqUICQnB29ubr7/+mosXLzJz5ky9X+TAgQP/+Yl8YD6K6mwikagjkKjT6a791X46nW6lTqerp9Pp6tnY2PxDoxMQEBAQECiOVCJm0+CGTOxQmYp2JtiZKWhb3Z69oxtzZkILbk5txa9962Bp/PppCi9iJBFzsE4FPnexpbRChoVUgo+VKXs7t+T25UucOXMGgL9K89586Qm5+RrkdmUxrVVgZqtKiSHzxiEebvyBkLAwAgIC/nIhmZ2djeYPD5pz585Rrlw5cnJyGD58OKtXr/5g/hdhYWE0btwYT09P/Pz80Ol0yAwMKCllv7Zzab5q7Ul5GytGNW/ErSuX+X3HDgwNDTEzM2PcuHHEx8dz6NAhoqOjcXBwwMvLiy1btmBvb0/9+vVZtmwZFy5cwMPDg8DAQH3br1Pt6p/k+XGdO3cOX1/fYvts3ryZxo0b07FjRzIyMgBYsmQJDRs2pFGjRv+qO7ButeshlZX8vhOJRVT3bvle+9dqdcSm5ZKanV9EvHhxEVeITCJmfKuKRJ36nf1jm9G3ocs7E5AA7idkIhUXTXOS25VFLJUTs/k7bt+6To8ePd5Zfx8DOp2O2Pt3uXfuFAmPHrBq1SoGDBgAFFSaa968OT169GD9+vWsXLkSDw8PvvvuO/3xBw4coG7dugwfPpymTZt+qGkUISQ6jUZzTjDr0F22XHrCksAI6gyZg0v5yiQmJvL48WMUCgWBgYFUqlSJhAwlsel5oAODMtUwdKuLdftxGJSphlqj43aSCo24IC1TbGSGOiMRbX4euvw8xDqQlXYGqRRtfAwiI2O0SQnkR9xDKtLhVK06rq6uKJVKmjRpgrGxMS1btmTEiBH06tWL77//nhkzZgAFAp6h4ZtHXL0Jp7esLxKFei0qhjoujqjzlaQnJui3JyUl4eLigkwmw9XVtVjU1Oxu1fH1cMFQJsFYLkEuEVPP1Yq9o5pgblhySmvlypU5e/YszZo1K/H5F7+vIiMjS/xMBti1a5c+ujczMxMfHx+aNWtGx44dyczMLLZ/eHwmBx9D+x9WM3PNbu7fv4+Pjw9QcN0X9pOUlERmZiaurq76YwsFEg8PD1auXFnieP4LBG9czbFVy3gW/QRVXi6psdEErf+NlNhoAC5fvoxEIiEwMJBy5QqiQceMGaP3gzQxMfmQw/9o+FhuHzQBOotEovaAAWAmEon8dTpdye8oAQEBAQGBjwCZRIyvhyu+Hq7vvS9jqYQvXe1prJWz5fJjkjKTOJOoxsVDga1pwZ1opVJJ48aNUSgUtGrVih9++EF//LHVc8g2cUNiYklu1C0sm/XTG4GbKKRo9xeU3f6r0sMREREMGjQIY2NjypYty48//siWLVsIDw+nX7+ClLht27Zhb/926Xuvy8vSOtzc6/Lw2mV4QUwyMzTA0dKcX4POE52Sjg4Y07cXm48EsmbNGqytrZk1axa7d+/mVPBJnB0cKGVthVok4X5EBBkZGVSpUoXHjx/Tq1cvXF1dWbFiBadOnaJRo0acPHmSfv36sXv3bvbs2cOGDRvIyspi9uzZ/1g1qpx8NRm5apTpSUWqcEVFRRXbV6VSsWLFCk6fPs2uXbv47bff+Oabb1i/fj3Xrl0jLi6OMWPGsGfPnn9k7G+LRCqles9+DOzniwiwMjKkb9P6iEQiOn/5A8YWRU2Mf/zxR44cOQLAzJkz9YuuQgYOHMi0adOKLLhexo6rT/n5SDiZShUarQ6jiEC+/LQnDxf/VCSFZuXKlaxdu1Zf1QkKFnGBgYEv9eR4U0wUUtQlpMJatiiomlbJzpSKFSvqq6p5e3vrx/X8HfaSnn++EtvHQkpsNLt/mkZOehoiRKg1arZeCSXw3Hn9PomJiQQGBqLT6WjSpAnnzp3j8uXLXLx4EYA5c+Zw6tQpUlNTad68+Yeaih6VRsuAtZfJzPszck6p1iIt2wCDSh6YJ+zn0aNH1KxZEygo3HBj91FEL+R35D29Tcqx/wEgs3TErEZrlNF3EIklmNRoSdz6z1FnJKJJl2NQzhWRTodOrcawVQe02VnkXzpHnutpysml3Lhxg9TUVObPn8/t27f56quvGDVqFIcOHWLv3r1AQRXAGTNm/OMeQE9vhxZ5nJiZRezTDC48fEL0szT27t4NgI2NDVFRUahUKmJiYjA3Ny9ynFQiZmKHqnzVuhLRqTmYG8qxMX27myUvfl8lJye/dN+dO3fqRSSZTIa/vz8ODg6sWrWK9evXM3bsWPJUGvwvRLE06IH++tABWy48IurBUypVq6lvLyIiQp+iq1KpqFatGitWrODKlSvcuHGDAQMGMHfuXDw9PRk4cCBy+dvfBPuYSIuP49bxw2hU+UW2q5VKctLTSXocyaNHj/QVaOvWrVvsBsqLN9f+v3rBfRQikk6n+x74HkAkEnkDXwsCkoCAgICAwJ/odDom773NruvR5Kk06IAbT1JZvGYr8hvbqVmtCnfv3mXYsGEMHDiwSBTOuHHjaNjQg8uSqmQ8ulmsbZVGy+FjQbjamPztQvL69etFju3Xr59eQPqniVPmk6XW4mL45w9dhUKBRqOhRYsWWJiZceXsOXwqleXCw8fkazQMbdaAbGU+IU/j6N+4LmvOXKZl1QqUUWWTmZ7Oxp+ms/P0Bfr16M4vP83C2cyEdm4ObL18k4T0LErZ2uDk5ETnzp31ooq1tTULFy4kOzubgwcP0rNnTxYtWoREIqFXr174+fmRnp5Oz54937uIlJylZNLeMILuJiIWQ1bIcRxzU4tU4YqJiaFLly4kJCSwdetWcnJyqFGjBlKplJYtWzJsWEH1pfLly6NUKklLS8Pa2vpvev64aNTch/tPY4m4fJ6vJ03B1sOLT/yGoDAqnkbUv39/pk6dSlpaGp07dy4mIr0qWy49ZsaBO/rUF51GTWzIFeZVaY3Rc5Uc1Wo1a9asKSZcvC/K25pgY6rgSUpOsecMZRL6NvzvWESo8/PZNvVbcjMz9OLx5UdPqWZryfZp38Mf6Y21atVCIpEQHx+Pi4sLUqm0iFmuWCzGxMQEExMTPobsh5P3EsnXFK0GqlOrEEllaLU6nmbquH//vj51LCQkBNMSImUMXd0xq100LbNUp68BMK3dHtPa7Ynf8h0u/eYwcnBdfujXG425BUaf+ZE+41vMuvRk2qxZjHe1Z968eSxYsIBHjx4xbtw4NBoNnTt35s6dO0gkBZF0pUuX5uzZs/oomH9KdBSJReieO10da1XR/78s6DwdOnbg6vXrSCQSxowZg6enJ2Kx+KVil4FMQnnblzqu/C06nY5HydkoVVrK2/4ZyVL4fRUbG0uPHj2IjIxk3759lClThoMHD9KqVSvWrl1bMAYDAxwcHACQSqVIJBLyVBq6Lz9PRGImKs2f3/k5EZeIPvYrUjMb1l8rEKnUajUPHz7k3r179OvXj9zcgnTvAQMGMH/+fBo2bMiRI0fw8/PDxcWFxMREypQp88Zz/hiJuHwenbbo++hU+CNCY+KRiMSEXzyHW/kqnDx5EoAbN27o98vLy8PX15evv/6auLg4AC5evEhycrKQziYgICAgICDwcXL2QTK7rkeT+4eABAV3osWu9Sk1YBmOjo7I5XJCQkLo27evPrLi/v373L59mwXfjUImKX7HTC4V08DNirI2/54Q7btZubS+Go7Hxbu0vXafamfDGLZ6I9WrVycxMRFra2tSU1PZuXs3M39ewP0cFcO8Pahib8v9+CR9O8ZyOWk5eZyNiGLx0VMo8/PZuXUrT2+H4P/9F6DVkpqVzYOEJCrYWONoYYpcpcTM1ITjx49ToUIFkpKS6Ny5M0lJSTx79oxJkyZhZGTE/v37EYlEHD16FG9vbzp37szTp0/f63nJzdfQ9ddzBN5JIF+jJU+lJTX8MtfPn+RBQgYajYZ9+/YRHx/Prl27WLJkCXPnziUtLQ0zMzMAzM3N9f5XPj4+VK5cmdatW/P555+/17G/C3Q6HTHhd7myfxd3go+Tn5tDlabeOFWuSmRaFseDTnL//n2srKzQ6XRMmTKFy5cv4+bmBhQs6ArvKkdGRuLh4UHXrl2Jjo7+277VGi1zj4QX8U7Jvh2EgUstwuf3JiQkVC+2JicnlyhcvC9EIhGLetXCUCbh+Y8AQ5mEinYmfFr//ZnhX7p0SZ+688UXX5S4z5EjRzh48OA76S/8whnU+coi0YeJmVmcj4hi4Z6DhIaEEhAQoPdBKlWqFI8fP0aj0RRZMGq1WrKzs4mOjiYpKalYP/80MWm5qDVFo8lyI68Rv+U7nmz6ltj4eCZPnkxeXh4+Pj6EhITgUspUn06dnxRF7sOrJO+fR/LBxajS4kkOmF+kPZ1GTcK2iagSIxEfmU2jpCc4ZaVhbmFBxbJuWCjkfN+xDeNdCyJNAwIC8PFqRvly5Th//jzu7u7k5ubSqlUrvL299SLFh6Bs7XrwkgiROaOGUKFiJb2gNWDAAC5evMj58+f1ESjBwcHvLCLw4qNneP0cTMelZ+n523nqzjzOmDkri31f7dixgy+//JJdu3YBsGHDhhLT3LKysli5ciV9+vRh04XHPErOKiIgARhVaIhxteaoM1PYPnssaWlpbN++HWNjYx4+fEhqaiohISEcP36cTz/9lGbNmhEeHk5ERAQajYbHjx9ja2v7Tub/MaFRqdBp//SGU2s0xKRlEJeWwaPkZ7ToNwi1Wo1SqcTHx4f79+8Xa6NmzZrExsbSvn17srOziY2NxcvLi5YtW/5lVNl/jY9ORNLpdME6na7jhx6HgICAgIDAx8TGC4+LGONCwZ1ogMw8FTnIsbW1ZeHChaxbt44pU6YAULFiRXr37s3PMyazeYgHlkZy5BIRJgopCqmYxuWs+Z/vv6dcbWxePp2vRxCSmYtSqyNboyVTo+V4hVoMCAikdOnSHDhwQG8Q7uLmRvP2Hek7cwFOrq7k5Kv0bYnFInrWq4lWp8OtlCUGMhlVHW3RaTRoVPmIRCLqupTm4qOn3I1LJCkzixylis/atuLOnTsEBgZibW1NtWrVUCgUNG/enIsXL9KiRQvu3r2LTqdjzpw5HD58mH379r13A9/9t2JIyc7Xpy6pM5NRZz7DvGlfFF2n06xlO3Jzc/VRR+7u7jx48AALCwu9D1JGRob+8dq1a4mIiODSpUtF/GI+Ni5dukQjDw8qO5ehb9fOnN22kREjR+Hm7ERpe3suX75M69atGTFiBOfPn6d+/frcuXOHmzdv6heNGzdupHLlyiQlJRETE8PPP//MggUL2Llzp/6u888//0zTpk3p27cvKpWqyBgeJmWjfiFSRJUSQ9btk+hEIjQ6+PTTT4GXCxfvk7ouVhwa58kndctQxtKQyvamfNeuEtuHN3qn/ksv4uLiQlBQEGfOnCExMZHQ0NBi+7Rt25YOHTq8k/7iH95H9ZwhOhREoQzzasgQz/q4lnakU6dO+uekUil+fn40btyY3X+kOAF8++23NGvWjB9//PEfT88tCbdSxkhfuAlgVMED+z4/4dJ/HqMm/4xYLGbVqlWcOHGC6tWrU65cOX7rUwu5QoGFvQtOn2/GZfBSxGIgL6NYHyKJFLvPZuE5I4C7187TsGFDwm/dJOXeHc57VCHp5jW+7f0pKmUegat/pYerLb9P/IKVI/pxyn8Ny39dRp8+fZgwYQJNmzbF0NCQ9evX682HCyMgPTw8iIyMJCYmhjZt2qDRaPj+++/1KXDvAs8+fsgNDF9INRIhUxjQfODwd9bP33E3LgO/dVd4kpJDrkpDtlJDZp6aEznOfP1bQLHvq9KlS5OWlkZQUBCNGzculk6m0+kYNGgQs2bNwsLCgm1XnvxRcfG5ff74XWDp7Ydx9eZYN+yKqZk5vXr1Ijs7m3r16rF48WJq1qxJq1at0Ol0BAcHU6lSJRITE2ncuDH9+/f/z6WyAZRycSsiLl569JT6rmWwNzflmw4+mJqYsHjxYm7dusXo0aMJDQ1l7dq1ZGdns3PnTmJjY/n0009JTExk5cqVfPbZZyQmJnLq1Cn8/PzYvHnzB5zdP8tHkc4mICAgICAg8NckZOQV25YbeY2MK3uRiEQ41atBRkYGnp6e5OTkFLmDOXjwYObMmcPRLb/xa58GbN4TS69Pa1HFwQwnK6N/chpvzYqnieS9EI6uy88nVy5n+ZMEepiYYGhoWMwg3L58RRp0/oTja/5X5Nhqpe2oVtqOB4nPMDM0wMrYiD4etfXP13crQwM3J6JT09l04ToJGRls2L6TqVOnsmDBAtq1a4dIJMLJyYnU1FRcXFwYNmwYJiYmjB49mo4dO9KsWTMaNGiAhYXFez03+2/GkpP/p9CYF3kdsaEZ6ee2oUt5QkBqFS4eKRBFunfvzjfffINUKmXkyJGEhISwdu1aFi5cyM2bN+nQoQM3b97k0qVLuLu7k52d/Rc9f1hcXFz4olMrYu+EsvHsFWKepZKQnsGEtl5IFQpuahQ8efKEnJwcLl++zJdffsmZM2fQarXIZDJiYmLYuHEjrVq1YvXq1QB6XwypVErNmjV59uwZJ0+e5OzZs8ydO5e9e/fSs2dP/RhkEhEv2g5ZevuhTk8g3v8b0GlJTExEq9XSpk0bUlJSsLGxYdCgQeTl5dGiRQtu375NgwYN2L9/P2q1mkGDBlGqVCkiIiKYPHkyK1asICcnh6NHj2Js/PrVvdxKGTOvR623Otd/h1arIeLSeUICC6pgudaqg3ubjmBggFQqZf/+/URHR9OuXTv2799PeHg4NjY2qNVqvL296d+/f4mebq+KsYUlEqkMjVpV7DmpXM7GpYtwdXUtklY1YsQIRowYUWTfzp0707lzZ4AivlUfCs8KNpgqpOQo/4xELUQsEumjyQYPHkxkZCRmZmbMXraOLj16UapWc0yNDahuZUTT8jZcjXUhwc6U09kpJO2ZjTo9AZvuk5EYW5C8cyomVgZ8crE0O3bsQCKRMH36dIKCghCLxaxZvZoLa5eTGPUQzR9Cqkalwn/1avp9/T31Gjd9aeprfHw8x48f59q1a8ydO5cVK1bQo0cPhg0bRm5uLnPmzHln58vKsTS+cxZxZutGHl2/gk6nxaVGbTz7DMDG2fWd9fN3LAm8T566+M2fXGBRYATtTUyLfV/pdDrCwsLYv38/R44c4fbt20yaNImZM2cyZcoUmjRpQosWLQCKfN4XUvi7AAp8rwxqt8HL7BkajYbKlSvTuHFjvLy8AFi/fj1Dhw6lWbNmxMfHU65cuSIVKv9LxD+4z+Ff5utT/TVaLQ+TUmhSwZWjt+9jV9oJre4SmzdvZufOnYwYMYLs7GzkcjmbNm2ibdu2hIaGUrlyZbRaLf7+/vj4+KBWq/H19aVRo0b6a/95/7v/KoKIJCAgICAg8C+grosld2MzUD23UjWq4IFRBQ8UUjErv/DC2dqIXr16FTnu7NmzAHz//fcAHD16lLL2VrSu9uHvrr8Jgc8yUb2wilJeOUfO7/5IRCLCa1Zj5NCh+nk/j0Qmw758RSRZKfpte66HEZ+RhaWRIZ/UqQ4U/LhcffoycWkZLDx2Bq1OR7YyH3MjA5pXrcCE776nYfdezJkzh969e1OrVi19ZZtz585Rv359tmzZglwuZ8qUKfqosPdJeq6Kq49Ti2zTZKchlhtiXKUZmeFnuKaMYc+ePXz++eeEhoYyaNAgDhw4QLly5fDz8+PEiRMcPHiQGzdu8OjRI/r27cuECRPQaDT/yBxelWylmuXBD9h+5Sk5+RrcrcXUuxOKTq1GLBJx9PZ9YtMyWHPmCl6VynLhUTS9+vVHrVZz+PBhzpw5Q35eLlXsbfnfMF+O33nArXsFaRxjx45l/vz5+gpKZcuWJTw8nFu3bunFhJYtW7JlyxZcXFyYMGECUOAVVmn0SnIp6psiMbbCcehKqjtZcT1wPrNnz6ZixYoYGhoyadIkvLy8GDNmDN26daNy5coMHz6cXbt20aVLF1JTUwkMDGTbtm1s2LCBY8eOMXv2bI4ePUr37t1fPC0fHK1Gw+6fphEbfheVskD0Tn76mBtHD1Cj10CSk5OZOHEi8+bNo127duzevZupU6fqF63BwcElerq9DlWbteDi7h0lP6nTUamR5xu1+6GRiEX4D/Gg96qL5OSryc3X6CPIVvjWxdbUAChIgQI4G5FMrzVX0bb4Aq0OEjKUxNw6w9Hpm2jesBbTxzbCZ+NcnPvNIfFmELn3z1HKoytjf1rNnE/rMnnyZIKCgrC3tycmJobg4GDu3r3LxAkT8DBGLyAVUtnOmupOjoSIjfWm0VDUePjFCEgAX19fvvrqK44ePfrOz5mlQ2k6f/n9O2/3dbgYmfJiXQe9yJMkgkeedRg6dEix76vPP/9cn0LctGlTZs6cSWxsLHPnzqVx48bs2bOHXr160ahsI/bdjEWjK/67AArS1TvWdGBut374+PgwadIk2rZtC/wpjq5atUr/+Plqo/8ldDod+xfOIT/vzxTLwop9haQnJaCQyxGLxWRmZqJWq6lduzbt27dn69atODg4YGZmxpkzZ5g4cSInTpygZ8+eaLVaAgICuHnzJpcvX/4Q0/sgCCKSgICAgIDAv4BBTdzYdvkpKm3RO49yiQiPstY4W/99RNGHqpTzLjEswdfJoElzDJo0x1giZkbt8pQ1NXqpQXj+Z71YMn4kCnkEAN3+EI6eRyIWM9zbo8T+pXI5NVoUmGNXr16dWrX+jOyYP39+icf8E2w4H4XmhVAYscIYA+fqmLq3w7RcHbqXz+enn35Cp9MhkUj47rvvKFeuHBcvXiQnJ4fHjx8jEolISUnh66+/5uzZs1hZWX2gGZVMoZFs5LNs8v8wq34UGUN1rZhnaRlk5+czxLMB8w4Ho1Sr2XfjNhKplNatW6PRaGjfvj113Zz4YsqPNLG3JCc9jTO3QslS5vMs5ilHoqPx9vbm6NGjDBo0iLCwMIyNjcnIyCjmG9WgQQOCg4M5fPgwe/fupf8gH3zXXC4SKSKSyhAhIzJFSZt6Xty6dYu5c+cSExNDQkICFSpUoEKFCgBUqVKFMmXK8PDhQwCqVq3K4sWLWbduHc2aNcPX15eWLVvqPavWr1+PWq1myJAh/9wL8BfcPn2CmPA7RUqra1QqMrOyGT5kCKeuXsfe3p6HDx+Sm5tLTEwMbm5uehHp008/Zdq0afTt2xdfX1/atWv32mMwK2WLV7/BnPZfg0atRqfVIhJLkEiltBnxOQZvUJ47ODj4tY95H5S3NeH8dy04cTeRh0lZ2JoqaF/DAWNF0eWcVqtj/PYbxdKfpW4NcKzYiLz72zkffIxOXvXx7VmbzdI4Eu7f4KcB7iya+jXey/+8NlNTUwkODtZ/horzclC5FPXKUWs0SCUSNBo1mtwsFIqCyD+A0NBQfcW4sLAwNBoNt27d0pdOnzZtGjNmzGD27NkEBAS8j9P2QSkQ+ooKbs/f/FnyTXPszQ1K/L4qpFBgcnR05P79+zRs2JAqVaqwZ88elvv343BYfLHXGkCUk0La0cWcPyHnlNUMTp8+zbRp0/QFFF7kY7nO3wfxD++Tl51ZZNvzFfsS0jMJiXyMMjuLG8cOsnvXTtRqNaGhocTFxZGUlMS0adOIj49n9+7d7Nu3j6ioKH01zbp165KTk0P58uX1QlJJZun/JT46TyQBAQEBAQGB4jhZGbFmQD0sDGUYKyQYKyQo/jDFXtan9t83wJ+Vcp4XPv5t9HGwxlBcsmGqsURMDRPDvzxeJJEScOcRI776hvqdP8HGpSziEgxUJTI5UrkcmcKgyOO2o75EJRLTsmVLBg8e/PYTekfsvRFTrIy7onQV8hOjAKiqSKFa5UpUrFiRU6dO8cknn6DT6UhISGDixImsWrUKkUiEVqtl8ODBLFiw4KMTkAB2XnvKk5QcvYAEkCU1RpmXy57rt/m0XsGC1UghZ1TzRnSpXY36VSsjFotxd3fn5zmziTp7kop2pajmaAeAZ0U3OtSszGCPWvz43beEhYUxa9YsDAwMEIvFjB8/ngoVKhTzjYKCtLfFixezdOlSLI0VKKRFf1prlQUV0XJVGvYfDSIuLq7YawBQrVo1Vq5cCaDfptVquXXrFlC8rPTHyM0jB4oISFAQ1bfl0k3a16iE/A8B3NvbmylTpuhTcgqRyWTFPN3ehNptOtB7xnyqeflQunI1arZsi+9Pi6ncxOuN2/xYkEnEtK1uz+jm5elZz6mYgAQQEpNObn7J/nm5Kg2RaRoMDQ2RiMV0qOnAMK9yeFYoxZOQC8WuzUqVKtG6dWuCg4MJDg5m4vAhxQyr78UnsfzkBX49cY60jAwmTJigNx5+3pTc1taWrl278vnnnzNhwgSuXr1KbGws48aNo3nz5vqImA/Ji0bw8fHxzJo1C4CxY8e+dns965Yp9plQiFspY+zNDV67zVatWhEcHMyxY8cob2vCpsENcLI0xFAmwUguQSoW4VHWigYZZ9izdimBx48zc+ZMAG7dusU333yDt7f33/r3PD/3Tp064enpiY+PzysVGvjYyM3MQPSCJ2GhV9rQZg2wMzel6h/fB0EbVnHn6lXK2NlSo0YNRo4cibm5OVOmTMHExIQNGzbQpUsX7OzsCAkJQS6Xk5qayuzZs3F3d9cbo5dklv5fQohEEhAQEBAQ+JfQuHwprkxqyYWHz0jNyad6aXPKfSRV1S5dusQXX3yBRCKhXr16LFq06L3008fBms2xz3iUqyTvD9FEBBiIRSyp7Iz4JRV5CpHJZJw+fVr/uHHPvuybP5Pou7fRajWIxRJ0Oi0Nu39K3XaduXs2mKQnUZjZ2FKtmQ/GFpYA+hLAHwuaEoQFuV1ZxFI5iVu/p0I1Nzw9x7NgwQKuXr2Kubk5FSpUYOXKlTx9+lTv/zJjxgzOnTvH+PHjAVi8eDHu7u7/4Ez+mt+vxRS7654pNmLj5TA61qqCmWHRRZlUJsehbFmgQIh5eO0SohdESFdrSy49eoomP5+gwwdo3q0nOp2OLVu2MHHiRHQ6HfXr12f58uVMmDCBwMBAPDw8yMnJYfjw4axduxaFQkFiZjoyqZi85wQuZfRt0s74I5LIcKjkTt++fencuXOR16CQ27HprDz1kNBr0eS4POBO+H0Wzf+Z69ev6/fRaDSsWrVKf9yJEyf0htAHDx5k2bJliMVi/Pz8aN++PQEBAZiavnlp8tchNyur2LaQ6DiepqZz4MZtLnXrxoLFS+jZsyc1a9bk7t27Rfbdv38/y5YtK+bp9ibYupalzYhxb9XGv5UcpbrY5+DzPjnWDs60bt26WApVw4YNmTVrVpFrs1atWtjb2+Pt7Y1IJKK9T3PkcnkRsbB6aXuql7ZHKpPTf37B9Xf48OFi4yop0mXTpk0AfPnll28563dDoRG8gYEBffv2JSkpiYkTJwLwyy+/vHZ7Q5uV5UBIHLFpuSj/+FyQiEAhkzC/56vdzNHpdCQ8ekBeZgY5YiknT57E09OT7t27I5fLcXFxYXXXCjT08CD41iO2/7aAbu6dmbDlPo0bN0YkEmFqakp4eDhRUVH8/PPP2NvbM2rUKPz9/V/6+WBvb6+f+9KlS3Fzc+P48eMsWrSIBQsWvPa5+JDYOLsVS8F8npHeHqw+fRmNVsvCw8HUcysDYgmnb95ErVbj6OhIt27d2LBhA9euXUOlUvHVV1+RnJxMTk4OaWlpTJs2jeHDh+tTNZ83Sy/c9l9CEJEEBAQEBAT+RcgkYppVtPnQwyjGiz++Q0NDqVGjxkv312q1b1StzFAiJqBuBVY/TcY/LplstZZ65sZ85WZPLdPXNwmXyuV88sN0pk+ayO49u9mweAHl6zfSi0W1WrUvsn/hHfmvvvqKrl27olKpMDMzY+vWrf/YYr0k2lazZ+25yGKlni1bDMbUQMrBSa2QS8VFBIlCJk+eXORxYmLiex3r25CvLp62kXPvLKmp6QSE3keKjnbVKwIFr23ZOg1IlvxZZUiVp0T3gjF7aUtzZJIYfg06j4NjaaZ4ehYT22xtbWnWrBlNmzbF2dmZ8ePHs337dsLDw+nXrx8Ai39bVyRCCsCwXH0My9VHIhbRvXZpypQpU+Jr4DX8Rz7533lUagc01bqxOzyHxDwjRKWrY25uztdff823335LUFAQc+fOxcvLi8jISGxtbdm6dStDhw4lJCSEMWPG0L59e86fP88333zzj16TpStVJvxZMjpIlsrKAABkSUlEQVTdn+egtnNpajuXRiKTM3LlJhRGBYbgarVav8/AgQP1/7/o6Sbw+lQrbU7+C5UCC1OoZBIRAxq5UrZs2RJTqEq6NidOnKgXE3Q6HQGLfiLyxlXU+X8KSVKFgmrNWmBp71js+H8DGWoNMXn52FmXwkBWsDyWSqVIJBJ8fX3x9/enadOmnD17lt69e/Ptt9/qTcd///33l7ZrZiBj/5gmbDgfxY6r0SjVGrwq2jDKuzyupf7eHD/uQTgBC38iLzsTkViMMi+PpeNH0WH0F3zSsycTJkzgyJEjJCcn07BBA2SZsdwODWH6tKloNBp0OjgdkURCnpgZv25ErdUyatQoVCoVe/bsoUuXLi81709KStKbQ7u5ubFw4ULWrl1L+/ZFvxN///13fv75Z0QiET/88ANdunR5uxfjPWBqXQq32vWIvHG1RDHp+RT2A7fu8iDhWUFkrkZN3759uXTpEgDjx48nMDCQmTNnsnr1avz9/Zk5cybHjx/H39+f4OBgIiIKUuX/DdGjb4MgIgkICAgICAi8NiqNlmO3Ezh6Ox6ZRERn99J42iqAgh/fGRkZ9OnThy1btuDr68v48eMJCwvj8OHDZGVlMWvWLGbPnk1CQgIKhYKdO3fqPWf+DmOJhHGudoxztXsnc1EqlTx8Go2JpXUx0ehlyGQy/P39cXBwYNWqVaxfv/6N0h3eFYM93dh+9SkZuaoiVcIMZRK+bVsZ+UtSKv5ttKlqz6OkbP1dfQDjql4YV/XCSKpjSytjEu+F0cPPmKrNWnD9bjhXr14FCrxFEqMeYW1qwmcNikYBdHKviszAkJZDRuHs7FziYvrbb7/l22+/1T/u16+fXkAqpGn5ZM5EJJH/gpgnk4gY2qxsiXN6mJTFgqP3i0QwpYWcwKCyF2M2X8f8jwXI6dOnadOmTRHPlOrVCzy9CkuDi0QifH19mT59+j9ebrpBl548uHKpiLgAIJUrqObdUi8gCbxfzA1l9GnozLbLT4tF7cmlYgY1dXvjtkUiER3HT+D64QCuHdxLTloqptY2NOjagxot2rzt0N87UVFRek8huVzOnsOHmRAezYHENGRiEflaHRXuXqdNfgbJyckYGRW/MbF48WL69OmDWCzWG5n/XT/Hjh1jTIsKJe77PM/7nGU+S+b3GRNR5f1ZmVUEPA25xvGVS+nYsSPR0dGEhoaSnp5erOqkRiei+YJgkjOVREXFE5lvQkZcOibk0dqnOUFBQX9p3l+nTh19v0qlkhs3bhAdHc3w4cP127VaLYsWLSI4OBiRSETbtm0/ShEJoP2Yrzi4ZB5RITf+MiqpY60q+v+XB1+iU6dOehHpeaRSKRMmTMDLy4vjx4+/lzF/zAgikoCAgICAgMBrkZ6roueK80Sn5upLDB8Oi8fdyYKv6hqQnJxMkyZNOHToEMOHD8fR0ZF69eoRFhaGhYUF27dvBwp+MBsZGbF69Wq2b9/O0KFD/5HxHwmLY3FgBI+Ss7E0lOGSeIZBvr7M/PFHoKAyzs2bNzEzM2Pz5s2Ym5szaNAgnjx5gouLC05OThgYGODg4AD8ecf6Q2JrakDAmKZM3hvG2QfJiERgY6rgm9aV6Fbnv2Po2a+RCxsuRKHSaIuJZUOaueHuVQm8mgMlG8nbupbFsVJVYu7dLrKQEIklGJqYUNGj6VuNb0nv2gzbeJXrT1IRIUIiBh2w6FN3KtqVHBW048rTYn5WqpQY8hMekRNyBBIfEBAQgI+PD87Ozvzyyy96wfLFu93Z2dmsXr2aTz/9lA0bNjBgwIC3ms/rYOPiRucvv+fQsgVoNWpAhEatonKTZjQf8M+8twUKmNShKjKJmE0XHiMVi1BptZSxNGJxL3ccLf7aN+7vEIsl1OvQlXodur6bwf7DtGrVCn9/f3Q6HV1vPOBmRg5KnQ7lH8LvvdJluTr1K24fDCgmiALY2dlRtmxZxGIxjo4vj7wq7OdNuX54P9rnIvYA8lRqDICHVy9xQSnly6+/RiwWk5aWVsRrTKfTESOyQR16HUkpVzTKHLQKc8Rmthi4tyLk9gEcHBz0KVeOjo56QdrR0ZGUlBQiEjKJT8/jUVIWh3dsICcnB1tbWyQSCc2bN8fa2pr27dtTqVIlsrOzAfQ3gtq1a8fhw4fp27cv9evXZ8SIEfTu3Zs9e/a88fl4W2QKA7pOmEJ6Yjx3z57i0p7taHU6tH8hKE3s0x1XV9eXFuoopKTn/8os/b+AICIJCAgICAgIvBbT9t8mMjm7SOpUTr6GK+FP6PXLz5w9VlBlZ8SIEbi5ufH48WP9fnXr1gUKvF2++eYbQkNDycjIoFu3bv/I2P8X/IClJx7o79DHp2Vz93gQoqpt0QFXrlwhOzub06dP4+/vz4oVK2jevDkSiYTAwEBmz55Nfn6+vr2srCxWrlxZogfIP42TlRHrBzUgN1+DUq3B3FBWRGT4L2BtomD/mKZ8uyuEK1EpSMQiDKQSxrQoz+AXIiwKjeRfpOs3kwhcvZzwC2eRSKVo1CpKV6pKuzFfIZXJ3mp8JgopW4Z6cD8hk5tP0jAzlOFdyUZfjr0kYtPziolIlt5+AMglYnQBk/V3w6dPn86oUaPYtm1biW1NnDiR7777Dh8fH9q1a0fbtm2xs3s3EXuvglvteoxc6U9M+B3yc3OxL1dBnxr6PK/ioXbkyBE0Gg0dOnR4rTEsXLiQ3bt34+/vr0/HKSQ9PZ2+ffuSlZVF165d9d5fzx9X0jXzb0MiFvFD+yqMb1mBiIQszA1lr5Q+9V8kPy+XiEvnyUpNQSmV6z2FGrTryFVbV1K2rsd80hzSZ0/EsGsvMhbMwKSxFyfikvht7AhiYmKoXbs2eXl5tG7dmqSkJMqVK4dGoyE8PJxKlSoBBSLu9SepXIpMIedZPCeCgvTeRTk5OdSpU4d27dqxf/9+wsPDGTZsGH379iUjIwN3d3eWLl0KwLFjx/j9999JfvSAT2tVQir5M4o0MjmFI2HhyKQyWrZtS8OGDalduzZpaWkoFAqkUimNGzcmNCYded2uJOyZj06txKJpXyRGFmSFBoLMCOvKHuzbt6+I313hd0VyppI1Zx6Qf0vGs8cptFt4kqQty/i0UytsExKAgpTnwMBAJBIJNjY21KlTB61Wy7p16wAwNjYmOzsbrVZLaGgoV69e1X/3f2jMbe3x6N4L9zYduHMqiCsBu8hKTYEXUs6kCgV123+cUVUfA4KIJCAgICAgIPDK5Kk0HAqNK+a9o9NqiN4zD7dWA7C3twfgu+++Y8mSJUyZMoU1a9YA6H2Qbt68qRdrVq1aRUxMzHsfe1pOPosDI4qkQmXfDsKgshehMemIc1Q8fPhQH8Zfr149Tp06hYuLC7VrF1TAq1u3LhcuXCiYs07HoEGDmDVrlr5a18eAoVyCofzDRka9T5ysjNgy1IP0XBXZSjV2ZgZIXlKxryRkCgPajf6S5gOGkZGciLGFZYlCx9tQ0c70pZFHL1LHyYLAOwkllumWSkSs3XsUV1drvRiyfPnyYvtNmzYNoMgd7w+VYiGWSHCq+nI/NHg1D7W2bdsWO+7vvNSUSqW+ol1JrFy5kr59+9K7d2+6d++Or68vpUqV+tvj/q0YyaXUcrL40MP4YDy6cYUDi+aCCNT5KpBI+K59c3pP+wmvfgNR9xmGxKE0GQtnIra2QRMXgyY+hqxTgXwfeg2T3GyaNm1Khw4dGDt2LGFhYVSqVIl27drRqlUrRowYwcGDB8lSqum/5jLhCZko1RokWg0mvr/yWZsqHFr4FXPmzGHp0qW0a9eO3bt3M3XqVFauXEmvXr3o168fQ4YM0adMmZubs2PHDnzb+hAaE09t5z+jnao42FLFwRaZgSHdv/sOgB//iKAFOHfuHFBQrVNuZoN979lFzoeBU3WenduGuFQpThw+zPTp04s8n5uvYdnJB2TnKVFYa1BrdDy7FUhqdATbD8nQPnvMokWLqFWrlj76dvLkydy+fRuA9u3b07p1axo0aMDevXtxcXEhPj6e8+fP06RJk3f86r4dBsYm1GnfmUqNPdky6StyMzP0qYMyhQHONWpRw+fjT9H8UAgikoCAgICAgMArk5mnLnF7zr2z5MdFEHl4Fd7eu2jTpg0uLi6MHj2acePGFVvQVqpUiQcPHtC2bVucnJwoXbr0ex/7qftJSMUink9QKEwbyrx5GG1CBOHh4frIqatXr1KuXDnc3Nz01dhu3LihP3bKlCk0adKkWKlygX8Gc0MZ5oZvHjlkYGKCgcmHr27YvW4ZFgbehxeyKiRiEQ7mBjR0s/owA3uH6HQ6Yu7d5sGViwCUr++B4o8IKalUyv79+4mOji4SqWFjY4NaraZly5b4+fnp02cGDRqkb/dxrpKVT5M4n5aFlUxKqaN76Ne/P9OmTtXvo1KpGDBgAMOHD+fRo0d6Y+Bq1apx9epV2rZty+rVqxkwYABTpkz5B8+KwPskIzmJgIU/FU1J02pQqVXsnTsN95atORr1EMNOPUju05FSWw8hsbEFlQqRRs1nnToQMX8mRkZGODo6MmLECCQSCZMmTUKj0eDs7MyhQ4cA+GZnCLdj0/VeaBokIJawLDiK9g28CAsL4+HDh+Tm5hITE4ObmxsPHz7UX4v16tXTV/AqvGHh074TO9euKnFuMrkcx0pVSnwOeGnKomWLwUjEIj6tV4aKFSsWS7nacfUpRtV94I809VKdviY1eB0GzjVRicWIEVG+fHmePXumb1OhUGBkZIRIJNJH6TZu3JgxY8YwY8YMrl27xo4dOxg9evRfv2AfCGMLS/wWriD8whkeXr2EzMCAal4+OFWr+Z+L5H2XCCKSgICAgICAwCtjaSRDLhUXieaBP82Ny9kYc+Ir7yLPLVmypFg7JiYm/3jaiFqj48UaKYVpQwB5uycydepURo8ejaenJ6ampmzZsgULCwv+97//4ePjg4uLC87OzsTGxjJ37lwaN27Mnj176NWrFyNHjvxH5/MmlGT4KvBhMTeUsXWoB4PWXyE7Xw060OrA1bogPfHfvpDRqFXsmTud2PC7qP4oDR8SeATHipUp174bycnJTJw4kXnz5hWJ1Dh16pS+jefTZwq5nJbFZ7ceodJpUelAp1aRfTQQZYdP9PuoVCp69epFaGgou3fvZtasWZw6dYrKlStz+vRpqlatikql4tSpU1SsWJGwsDC8vb1ZsGABdevWZezYsfrS7mFhYQwbNgyJREL58uVZu3btv/61+S8TEni4WCXGPJUaA5mUnPQ00h4GI+3Yh/RVSzEd8w1Z65dj/s00AKQiES0tjPC/dImNGzcCL6+29SxLycl7iUXM9LXKHMQKI3JVGnYdD+LTtj8W8SwCKFu2LNeuXdOLmUOGDOHevXv6iLjEXCVVatRAJlKjUhZEyIglEsRSKR3GfYtY/PJo0/qullgYycnJzy32nSeTiOjfyLXE465Epuh9Dgsp/I6USUToAqYUM5oeOXKkPspo2LBhQIEodu/ePZo0aYKBgQEBAQEYG3+86ZRSuZxqXj5U8/L50EP51yCISAICAgICAgKvjFQixq+xGyvPPCRP9UI5c5mEsa9QgeZD0bi8dTHvmUKM5BIWbD0AUMSIuZD169cX2/a8N9K/Aa1Wh06ne2vDV4F3T/XS5lz83oeLj54Rn5FHeVsTapaxeG/9/Z3/z/Hjx5kzZw5arVYvqLwpF3ZtI+bebdTPvV9Uyjzuh9xkxubfOXryFPb29sUiNZ4XkZ5PnwHQ6nQMu/2YnOdEgrzjB5G2aMvplCwMVAURk6dPn6Zly5ZcvnyZbt26MWTIEEaPHs3evXtxdHTEzs6OTZs28cknn/Dbb79RrVo1goOD9W0WCkhQED15/vx5APz8/Lh69Sr169d/4/Mi8H5JehyJRl00vE/vKSSR4t2iBe3EKvbYO2LQtRcZy+ahvHoRuUhEHTNjqpqb0rp1a9q2bVvkmniRmLRc5JKiN1aU0bdJO+OPSCLDslxNGjZsiKmpKTVr1uTu3btAgeDSp08fVq1aRc2aNfHw8ODevXs8e/aM1q1bY2BgwI7t23kScp2bRw+Sm5FO6SrVqNuhK5b2Lzf0hgLBa51ffXr9dgGlWktOvgaZRIRYJOK7dpWp4lByJVRrEzlSsajE70mZRMy0NXtwdXUq8v0xcODAIibTAAYGBuT9kRrWqlUrWrVq9ZfjFfj3IYhIAgICAgICAq/FuJYVeJqaw6HQOEQiEItEaLQ6Bjd1o4v7X/+4/ZA4mBvSrXZp9t+MIfc5AUwmEVHKREGHmg4fcHTvj0Ohcfx8NJzI5Gwk2UkkHj5OoyZN+bTHJ5QrV46FCxcCBWbHSUlJdOrUiYCAAPz9/cnLyyM7O7uYKew333zzgWf176Yk82exWETj8qVYv349l9Vqag4Zot//5s2baLXaImW335S/8//Jzc3lt99+4/jx429ddVCn03Hz6IEiAhKARqtl09mrdKhbQ2/8/WKkxvO86IN0MyOHTE3RiAn108eoH4QTE7AT3b27rP/frzRwr0kZRwf9otfY2Bh/f3+mTZvG8uXLiY2NpUqVKly7do2nT5/y7Nkz6tevT3BwMMbGxjRt2pT1u4+QnptPeVtTzP/InlQoFCiVSho3boxCoaBVq1b88MMPTJkyhZMnT1K7dm0yMjJYv349/v7+LFu2DIlEwvLly6lVq9ZbnVOBV8PCwRGxRIL2ueuk0FNIbmBIpy++w9W9Lr0/6c6SxwlEfvE9jgo55YMP0dTB5pWqcgHYmxmQr3nhhkq5+hiWKxAY6zhbAFC1alXUz1Vbs7Cw0KfDFVKSIFOxYRMqNnx9P6GKdqac+64F+27GcutpGrZmCnrWdcLJyuilx/So68T681ElikharY421e1fexwC/00EEUlAQEBAQEDgtZCIRSzq5c4XLSty5kESMrEY78o22JoafOih/S2zu9XAwcyANeciC8rEa6FVVTtmdK3+lxW0/q2sPx/J3MP39KKZWmGB7aD/IbUy4+ixhcyb60NwcDArVqygVatWmJiY8MMPPzB06FBSUlI4fPgwDx48KJZqJPDmvImJ882bN1Gr1W8sIsWn5xF0LxGNTkfkqV16/5/g4GACAwOZOXOmPtrO2dkZsVhMu3btsLOzY8WKFezdu5eMjAxGjhxJSEgIv/32W4kRey+i1WhQZucU2x4SHcfT1HT2Xr7JFW9vfvrpJ3r27FkkUuOvSFNreNFe23TYOP3/maP6wsM7xN6/R3NrIwKvXCIxMYlr164xduxYYmJi2LhxIy4uLixevJgvv/yS5cuXU65cOXx9ffntt99o+9kQwmLS6fTLWaQSEflqLe7aCML2r6RSxYrcvXuXYcOGMXDgQHQ6HXFxcVy+fJkzZ86wZcsWjh07hkajYenSpZw7d46YmBjGjBnDgQMH/nZ+Am9PrZbtCTl+uIiIVIhUocC5pjsArUuZ07qUOVDgeff5/t1M2b79lfuxNTOgvqsVFx89Kya+GMklDGtW9s0n8ZYYyaX0buBM7wbOr7R/eVsTRnmV53+nHpKn0qADJCIRMqmIOd1qvJUHncB/C0FEEhAQEBAQEHgjnK2N6Gvt8qGH8VpIxCLGt6rImBblScnOx9RA9p+tZJabr2HekfAiUVciqQwNkJyjwq1aI8LCwsjJyeHkyZP6svEtW7Zk9OjR/Pjjj4jFYipWrFgs1Ujg1dDpdOy8Fs0vQQ+ITs3BwkhO2cSzDPXtx4wfp+n3e978GeDEiRPs3r0bgIMHD7Jy5UqePXvGyZMn2bx582v1/9Phe6w7H4VEBFqNmti9e0h1bVHMK6WQhIQE4uLiCA4OZuXKlfz2228MGTKE3r17M3LkSHbv3k2PHj1e2ueLvltdnUuRm5lRZJ/azqWp7VwaAxNTRq3ewty5c+nXr1+RSI3nIzJeTL+sYWpI/ktSU8UaNV4jx2B67iCf1auBRqWiRZlSPE1IpG7dunz99ddMnjyZn376CQAHBwfMzc1p2rQpc+bMITw8nBmz57I2/QJ5Km1B1bw/sqJuySrQZdpmck6tRi6Xc+vWLfr27Yuvry+WlpbUrFkTKKjieOzYMZKSknBxcUEmk+Hq6kp6evpLz5vAu8XKsTQtBo0kaM3/0Ol0aNQqZAoDxFIJ3b//sURPodq1a3PmzJnX7mvxZ+70+N95krKUZCs1SEQgk4rpVd+JNtX+XdE7n7esgEc5a9aejeRJSg5VHEwZ4ln2pSlwAv8/EUQkAQEBAQEBgf93SCVibM0+/sipt+Hq4xTELxj//mn4quXk6bOM7tmaH374gT179uiNY1esWEG/fv1YtWoV3bt3R6FQ/GWqkcDL+enwPTZeeFwgRADPMnJ4cCIIWY0/y9erVCoGDhzIsGHD8PLyIjIyEltbW7Zu3crQoUMJCQlh2LBhqNVqhjyX4vYq7LoWzcYLj8n/w68lKyQQw8peHA6LIz8tt5hZsEgk0gsqEomEFi1aMH/+fMzMzJDL5SQnJ3PmzBkmT578l/0+77t1ed9OLuzcWrRKFiCVK6jXqRs6nY7v/ihX/qrYyGV0srXgQFIaeS+ISRKthroh54tsUyuVZD5LRqNWUalSJVq3bq33O1KpVKSlpbFy5UqgIOorWWSuP2f686NWkYeMvTdjaW9ghK2tLQsXLiQ/P58mTZqwf/9+QkNDgT+rONrY2BAVFYVKpSImJgZzc/PXmqfA21GjeStcarhz59QJMpITsStbgSpNvZAbvjyl600oZaIg8EsvAu8mcDYiGRMDKd3rlKGinek77eefooGbFQ3+A1UhBd4fgogkICAgICAgIPAfRKeDF2tHPW/4WqZKbY4dO8bTp0/p3LkzAJs2bWL//v0cPHiQatWqMX36dGbNmvVaqUYfikuXLvHFF18gkUioV68e48aN0/sNPc/YsWMJDQ2lbNmyrFq16q19f15GQkYe689HFTHczb4dhEFlL25FpyPJLQhvOX36NG3atNF7rgBUr14dgNKlS5OWlvbGY/jl5AO9gAWgSokhP+ERmTcPkx93n+BTp4iLiwMgNDSUmjVrUr9+/SKCSmHkWdeuXZk3bx4VKlQods7y1VqO30ngUVIWkpxkgk6exNPTk+7duzNu3OdMnD2XJ08eY2FogIWxIe3dq7E46AKNtQbUuPeIe/fuMWnSJMqXL//Kc1tQ2QmAgMQ05GIRWkCckUbH49uwyEzV76fRall9+jIxaRm0btWaefPnY29vj7e3NyKRiN69e+sFvGbNmmFkZITWeyz5aUVFpNzIa2Rc2YtELCK8Xg08MjLw9PQkJycHX19fHBwcqFu3Lp6ennrfI4lEwpgxY/D09EQsFr9SCuB/hecj0jQaDffv3//LqpCxsbH4+vqSl5fH9OnTadmypf45b2/vvzS3/ivMStng8clnbzqNV0YqEdO2ugNtq/83vfUEBJ5HEJEEBAQEBAQEBP6D1HO1LObRUWj4aiAT803rSgz2LFssquTw4cMAdO/ene7duwPFTWE/RlxcXAgKCsLAwIC+ffuSmZlZbJ8rV66Qn59PcHAwCxYs4MCBA3Tp0uW9jCfoXmKxSLDnRRxdYgQBAQH4+Pjg7OzML7/8wtixY4Hi5cRlMhlKZdFInlchJjW3yOPCct0ACZsnMOaLCfh+2o327dtjbW0NFETPPC+obNmyBYAuXbowcuRI9u3bV6TNe/EZ9Fl1CaVaQ26+BrlIg3n/X5k10IO5Xw6mTp06lKtdl227djF14g8olfn4zpnP9Fq1WblyJcbGxsXMhF8FhVjMsqouTC3vSGhmLhYyCVe+H0NWclKR/SRiMcO9PZBIpQz/bROGJqY0bNiQiRMnFtnviy++4IsvvgCgz6qLhCfHI5LK9c8bVfDAqIIHJgop0wbWp4GbFb169SrSxsyZM4ECAWXatGkADBgwgAEDBrz2/P4LFEakRUVFlSjoPs9PP/3EzJkzqVmzJh07diwiIgkICHxcCCKSgICAgICAgMB/ECO5lC9aVWDR8Ygi0ShSsQhrYzmf1nf6gKN7e9QaLYF3EzgSloBcKqJzrdI0sVMAIJVKkUgkxMbG0qNHDyIjI9m3bx+PHj3S+9a4u7tz/PhxunTpwqRJkzh9+jS1atUiMzNTbzL9Nmi0OnQvOA89L+Lk751Ep06duHTpEtOnT2fUqFF6X6oX8fDwYODAgYSFhRUpO/93WBjJSc4qWXxyHjAfU0O5XjR8nucFFX1bFhbk5BQ1yVZptPRddYmU7D+rr+XpJICEEZtvMrhVW2JiYqhZsybWZZzp1KcfFy5cwLqMM5UqVcLY2PiV5/IisbGxdOzYkTt37pCVlUVycjI30/KoLJcXqwYnEospXaU6hiavll7Up6EzBxZ+jVGVZsWek0nE1HWxfONx/5eJTs3hSFg8SrUWF3k2QUEnqe/RmBbNm3Ps2DFsbW35/vvvuXbtGnK5nP3791O1alW6d+/Oli1bWLJkCR07dsTExISlS5eyaNEilEolOTk5XL9+/Z1UJyyksELi2bNn31mbAv8MYWFhDBs2DIlEQvny5Vm7dm0R4f15CgXdd/GZLvAngogkICAgICAgIPAfZVizctiYKFhw7D6x6blIxWI61nRgYocqmBr8eyvtZOSp6Pm/C0Sn5pCdXyCQHQiJo66LJePrKEhOTsbIyIjU1FQCAwPZunUru3btwsvLi127djF69GiCgoJITU0lLi6O69evc/r0abZv316iqPImNKtgg+4l7tXGcgkrdh7G1dVeH52xfPnyYvsVRrMAb2T4O6CRC78GPyBPVTQ1Sy4R0cXdEbn0xRpnr8eJu4nkqYtWvyr03dLqdPx+6ARLZnyvX8CFhITo9xOL365vKysrTpw4Qbdu3QCwt7fnl3Ub2DHjB5IfR6FS5gEF3ktyQ0PajPj8ldpduHAhu3bvppXf1wRuWgq1WgMFVaok6lwMTy7BJ2gWXbt2Zfz48SW24erq+v9u0TrvyD3WnI1ER4HAi1qF7LOlZBkqWLZtGl0+X4BjehiLFi2iSZMm5OXlMXHiRKpUqcKuXbsQiUSo1WokEgkmJiasW7eOcuXKMXHiRH788Udq1679zsb6JhUS/8u8aIb/fLphcHAwwcHBRT6LPjSVKlXi/PkC3zM/Pz+uXr1K/fr1P/Co/n/xdp/eAgICAgICAgICHzXd6pThzLfNuTO9LXdntGVhL3esTRQfelhvxY/7b/MoOUsvIAHk5Gu4ePcxvQYOZc2aNUBBGp5YLNZ7C7m7u1O9enWaN29ORkYGdnZ2PH78WO9B5O7u/s7G6GxtRKdajhjKiv7clkvFOFsb0bKK7Tvr62UM9ypHPRcrjJ6rQGgsl1DWxoTJHau+dftRz7JRviBQKaNvE7d+HFFrv0RraEHDhg3Jy8vDx8eHkJAQZLI3Fy91Oh0RCZncfJqGTizD0vLPiKCoqCgGDhpEr6k/sebaHQ4/iuHXM1fRulXCb9EKxn71DV5eXjRv3hyt9gXT7D8eF4oLImDuJzWpWcaCGqXNKWNpSGd3R7oa3mXsMD+Cg4M5ffo0ycnJxc9JVBR2dnZ4e3vTunVr4uPjmTVrFgBNmzYttn9J2/5tHA6NY925Av+vfLUWrQ60EhkiuQG5GhEG5Rty8moodyw8iImJoWHDhjRu3JgmTZpw4cIF8vLyMDExYfv27dSuXZvk5GRcXV2ZMWMGa9eu5f79+yQmJr7x+KLvhHFg8Vy2TpnAKf+1LFu8qEiKoZ+fHy1btmTQoEF6scTd3Z2BAwdSo0YN9uzZQ4cOHahbty7R0dGkpKTg7e1N8+bN+fzzVxMnS2Ljxo34+Pjg7e1NTEyM/jopTGuFgmu+Vq1arF69+o37eRVatWpFcHBwiX5VHwPpuSo2nI/kh92hrDn/hKTMgghLhUKBUqmkcePGNG/enNmzZwMwZcoUPD09WbhwIVDgmffNN98AkJycrE/VFngzhEgkAQEBAQEBAYH/OCKRCAPZ+zGQ/qfJU2k4EBKHSlM0zEen1RC9Zx5lWw3A3t6eqKioYt5CULC4mDJlCtOmTaNdu3Y4Oztz584doGikzLtg7ic1cbYyYvXZR+TlaxCLRXSrXZqJHaoilbz/e7lyqZiNgxpw/uEz9t+KQaXR0ba6PT6Vbd9J/6UtDFFIxaifE/MKfbcUUjEDfSoAsGrVKqRSKXPnzsXZ2RmgSBqRUqnE0NDwL/u6GpXCF9tvkpyVj0QsQqPVMcTTrdh+EqmUrDwlAYePYG1tTevWrRkz+Ueio6M5deqUvgqdTqfj5rGDXN77O1kpz5AbGfFIJ6dvH1+mz5iJVCLGxdqIdSMaMmDAALp6DGdbcAw1exVEPlWrVo2rV6/Spk0bRo0aRXh4OIaGhsyePbtIdTqgmP/Sf43lwQ+LpMzCnxFpAHlPQpDX78a5bUupVK0mQUFBmJmZMXz4cMaNG0fjxo2pXbs206dP5+effyY4OJj09HRq1KjB6NGjuXbtGuvXr+fbb7997bEFb1xNSOBhVMp8QEdsxD38L1zn004FEYeXLl1CoVAQGBjI3Llzyc0t8BGLi4vj4sWLXL9+nTFjxnD16lW2bdvGjh07qFmzJt7e3kybNk3/ufK6xMTEcOrUKU6cOKHfVnidPJ+yun//fmxt373gfCQsnuXBD3jyLAdzTSphxwL1ZvhffPEFgwYN4smTJ7i4uODk5MTBgweJjIxk0KBBWFpaEhcXx969ezExMeHQoUN6Y/y3MUF/Gdcep9B/7WW0WshVaVBIxcz8dSPSG9upU6Mqd+/eZdiwYQwcOBCdTkdcXByXL1/mzJkzbNmyhWPHjtGwYUO+//57dDodu3btokePHu90jP/fECKRBAQEBAQEBAQE/jVk5pVs8J1z7yz5cRE8OrwKb29vfdWx59FqtXh7e+Pj44NcLqdhw4Y4ODjg7u6Op6cngYGBbxUp8yISsYjPfSpwc3JrrkxsRei0NszpXhMTxT93H1csFtG0Qinm9ajFol7utKlm/84ErFZV7ZCIS/YiEYmgR70yAAwePJhmzZpx5swZffpZIRs3biQ3N5fSpUu/tJ+HSVn0W3OZp6m55Ko0ZCnV5Ko0rD4TSXRqTrH9ra2tcXZ2xtjYGIlEgkwmY8CAAfj6+jJp0iS0Wi0nN6zk9OZ1ZKU8AyA3K4uTJ4N5djYQ/vCyUqlUDBw4UF+9rVKlSpw6dQqNRsPp06dJTU0lICCAHCsb5PNWENa8I90X/MKRE0F4enqyaNEioqKi8PX1BUCj0TBmzBjc3d05cuTIa5/vj5UnKcVfg8KItPhNX4NWS/L+n8mOCsWhSj3c3Nz078W7d+9Su3Zt5s6dy8OHD5k5cyYTJ07Ez88PNzc3evbsSXR0NJ06dXrtccXcu8OtwMOolEoKX9PLDx7jXsae/Qtmg05HZGRkEZ+0QsqXL4+BgQGOjo5UqVIFsViMo6MjqampeHl5odVq6dOnz1+ahZeEVqsjJi2X3/cdQKPR4OPjw9ixY3n48KH+Onk+Om3r1q3FDNzflp+P3uOL7TcJiU4nLVdFVI6CUn4raDpuKYGBgZw+fRqJREJgYCDlypUDoHHjxly4cIHLly/j7e3NhQsXuHDhAo0bN36nY3uRPJWGgeuukK3U6IVKpVqLtGwDDHotwtLGDrlcTkhICH379uXIkSM8fvxY/5rWrVtX35anpyfnzp0jICDgvRVU+P+CEIkkICAgICAgICDwr8HSSIZMIkapLpqSZFzVC+OqXpS1MSboK28AGjVqBBSUCPf2LthW0l3yadOmIZVK2b59O48ePXrnYxaLRZgb/Xs9qF6GgUzC+kEN6L/mMhqdjtx8DQZSMYhgyWe1sTU1AGDDhg0vbaN///7079//L/tZfvIB+Rptse25Kg2JaXnk5heNgklJSSE6OhorKys0Gg0ajYbevXvTv39/hg0bRnDgcUICj6BRqfTHXIuKobaTPUlPosjLzgbg9OnTtGnTRn/tDB06lOHDh7N3714cHR2xs7Nj9pETnNm9E93BQ6DRIK1UDZt1u2lb1pHAL0bi4+Oj7+PZs2dMmTIFlUrFmDFjaNu27V+f4Bd4UzPo69evU7duXVQqFVLpu1/+2ZsbkJ6rKrKtMCLteWQSEZ+2rsRwr3IltqPRFH0dR4wY8VbjunX8UDGT9cTMLGKfZnAxMprYzBzCw8OJj48HikYiPh/F+GJEo0ajYfr06UCB8NSvX79XGs/+mzHMOnSX9FwVyWcvIMuI5tCenWz79adiVQ8Bjh49ipeXF1Kp9J1Vx3yaksPqM5FFPj9FUhlKYM+teHo18yE6OlrvQVW3bl0uXLiApaUlz5494/z580yYMIGgoCCePn1KmTJlSoz4fFccu5OA9oUqozq1CpFUhg6IyRZha2vLwoULyc/Pp0mTJuzfv5/Q0FAAbty4oT+ub9++fP/995ibm7+Vqb+AEIkkICAgICAgICDwL0IqETOwsWsxryEAQ5mEz1tUeO02J06cSLNmzVixYgVDhgx5F8P8f0MdZ0sufN+Cie0r4+vhzJetK3Lu2xa0qWb/zvq48PAZmhcXkho1CdsmokyMpGXr1iQkJOifK1WqFNOmTaNZs2Z8++23ZGZm4uPjQ5MmTXj69CnG+bmIREWvn8TMLM4/eMzyY6cJD79PQEAAPj4+ODs769OLjI2N8ff35/Dhw2i1WqxruBNiboO8VQesFq3Gauk6TIePQ6kwYGVcKo1bt+XAgQP6PmxsbLC1tdV7dL0Ob2MG/euvv77TymYvMrxZWQxfIV1WLBLRrrrDexvHi2SnpfCiu33HWlUY5tWQkS09Ke/qwtSpU1/bs+vy5cs0bdqUhg0b0rJly1cay/6bMXy7K5SEDCV5Ki06mRH5NpXps+oSFdwb6tPonmf16tX4+fmV0Nqbc/R2PC/KPFplQSSZSq0l4Ggw5cqV019rz4swTk5OBAUF0aJFC8LCwrC2tgbA3NycuLg4lEolERER73S8sWm5xW4Y5EZeI37LdzzeOIHYuHgyMjLw9PSkUaNG9OnTBwcHB+rWrYunp2cRwbVixYo8efKETz/99C/7vHTpEo0bN8bT07NYlcq/YtOmTTRq1IgmTZpQv359PD098fPze6mwduPGDVq1akXz5s05ePAgUNQP62NGiEQSEBAQEBAQEBD4VzG+ZQWepuRw5HY8IhGIEKHR6fBr4koXd8fXbm/u3LnvYZT/fzA1kOHr4fre2jcqIf1PJJFi99ksDGUStnzeFHVKjN5XSSqVFjMiPn36tP7/W8eLV+DrWKuK/v+1V2/TqVMnLl26xPTp0xk1ahTbtm2jQoUKfP3114hEIiZMmMDxLCWyRl5k/TKXlC+HAWDYsTuGLdqi08G+4FP88t03es8tkUikr4SlVCpp3bo1SqUSX1/fEtOiEjPzeJqSg4O5IXs2r+XBgwdcunQJf39/1q5di5WVFZGRkezbtw+1Wo2fnx9mZmYkJCSwdetW3NzcuH37Nk5OTjx8+PANzvyr0a12aa5EpbDnRozeWPtFDGUSfD1ccLY2em/jeBHHStWICb9bJOKsEJ1Ww7FDBQv3v/LscnV11b82z0c0vk40mE6nY9ahu0V8oxSlq5B56yh5ag2r9p6kS63i4lpERARdu3YlJiYGnU5H06ZNqVy58iv3WxJKtbaget7z26Jvk3bGH5FEhkPDRjRs2JD//e9/+Pj44OLioj8njRs3JjExEZFIhImJCR4eHkBBNKGfnx/u7u7Y2xeIx5MmTWLevHnUqVOHx48fc+HCBSZNmoS/vz9RUVH6//8OV2tjFDIxauWf586oggdGFTwwkIkZ17oSvTzLFkv5mzlzZontWVtb065du7/s08XFhaCgIAwMDOjbty+hoaHUqFHjL49Rq9UsX76cs2fP6v2zFi1a9JfV42bOnMm+ffswMvrzPfG8H9bHjCAiCQgICAgICAgI/KuQSsQs6V2bqORszkQkIZWI8alsi62ZwYcemsB7oE8DZ+YdvUeeqnhKm62ZAidzOS0/GcoPP/zwSu25udfl5IaVJT4nMzBg/45tRcSD5cuX658/efKk/v+LD2LQiESYff6dfpvy4hmeDe+DSCajXNOm2NnZFeujVatWREdHc+zYsRIXlxl5Kr7acYvT95OQS8UolfnkHtvNwa3+dGzpBUBqaiqBgYFs3bqVXbt20aVLF+Lj4zl+/DjXrl1j7ty5rFixgkWLCiqRLVq0CG9vbypUqMCUKVOYPHlykUV8ZmYmXbt2RaVSYWZmxtatWzE1NX2l8ykSiZjTvSb9G7kScCuWnHwNMomIU+FJxGfkUcbKiFHe5ehQ45+LQgKo1aod1w7uKSYiiaVS7MpVwLpMgTgyePBgIiMjMTMzY+fOne98HHHpeaTnFB2D3K4sYqmcuM3fkWJiwaYZY/UpcoXcvHkTgPXr16NWq99aQALwKGuFQiYpkgJamHpoLJcwvU9tfZ8v4ufnp4+M2rx5s357nTp1ikTJKZVK7t69i4WFBdu2bWPSpElvPF6fKrYYSCVkKzXFnhOLRHxSt8B37e9SPStVqkRycjIWFhY8ePCAqlWrsmnTJpYvX465uTnr16/HpJQN93PysDSzxN6goIKpVCpFIpHQokWLIqLt9evXi1R+G7fqKHczZFSdeozqDsbcP1UwDoVCgZOTE35+fjx9+hRnZ2ecnZ3p378/eXl59OjRA7lczm+//YadnR1NmzZ97XTVD4EgIgkICAgICAgICPwrcS1ljGspwdviv06fhs7svhHNg8QsvZAkEYNCKmFRL3fkcnmRSKO/W4SZ2dhSzcuHO6dPos5X6rdLZDKsHJ1wq13vlcbV1NKUTbHPyH4uskPh4YnCwxNjiZhZNcqiTCyIkHqQmMnIBZs5HBpLUNBJypUry6JFi/j999/x8/OjS5cuJCQksGXLFr44FMu53WvJun8RJDIMy9ZF4dqIUXsi9dlZVatWRSwWU7p0aR48eABAjRo1kEqluLu78+DBAyIiIjA3N8fDw4PatWsTGBjI0KFDSU5OLjYXmUyGv78/Dg4OrFq1ivXr1792ak0VBzOqOJjpH0/s8FqHv3NMLK3oMXEG++bPQq1Uggi0Gg325SvR5as/K+b9lWfXu0AuFZcYnWXZYnDBXyMZFStW1It6L16/AwcOfGdjqeNsSVUHM0Jj0sl/Lk1MJhFRxtIIr4pvVglOpdaw5fRdtt9MJPz0XiqUqUNaWgA9e/YkLS2NkSNHcunSJb14euTIERo1akRubi5Pnz5FJBKxZ88e9uzZQ+/evfXiqkwiZstQD/qsukieqsBc21AmARGsGVAfCyP5K6V62tjYEB4ern9cJHLo+g26fDeJBL+xyEQiVDodroYKxmszSE5OJiUlhTNnztCkSRPy8/PZtWsX48aNo3PnzixZ9iuPDcqxMyyVzEc3yFv/NZGqPDTZKbiWr0ydmlV5/PhxsQqACQkJhIeHExISwqlTp5g1axZLly59o3P/IRA8kQQEBAQEBAQEBAQEPloMZBJ2jmjMt20qU9HOhDKWhvSo68TBzz2p42z5Rm22HDyKJr18MTIzRyQWI1MYUKtlO3pNnYNY/Pf+PgDNrUwpYyBH9kKBOrlIRAUjBfWM5QweMoSnZjXouPQsMw7cYcmFJIx9lzFg5loCAwPJyMggPj6eXbt2sWTJEr6ZPIO7j56QHXkTe9+fsfDsS/adYNKvH+LmqgkkJCZy8eLFEs2Mw8LC0Gg03Lp1CydXN5btCmL30VPUb9aKkJAQRowYgUKhQKPREBMTQ5cuXfDw8CAyMhIDAwMcHAoihQqjL86dO8e3334LFJiVd+3a9Y3O9YfEsWIVhq/YQNcJk2k9/HN8f1pCr6lzMDAxeeM2N27ciI+PD97e3sTExDBr1izgTz+bU6dO0bBhQzw8PFixYgWlTBSUty25P5lYROdar5+C+6aIRCI2DmpAhxoOKKRijBUSFFIxPlXs2DG8UbFqiwsXLixSLa4kHt26QZvv1jPjyANux2USf+8G4YbVEJcqi9y0IHonJSWFChUq8Pvvv/Prr7/SsmVLLly4wPXr1xkxYgQuLi40adKE69evF4vOq2RvyoXvfZjfsxZfta7EwCau1HW25LtdIQxad4WJPy1hwIABAERFRdG8efMi1zYUXL/NmjVj+PDh5OXl8ezZM8qUKYNEImGHkTW3rlwhT6sjU6MlT6vjTlwCvYeP5KflK7h9+zYSiQSNRkOlSpX0fmYXL15k0+5DyOt+QnZ8FHK7ciAWIzGyQGJgimX/pTg6OvLo0aNiFQDNzc2pX78+RkZGtGjRgrt3777tS/uPIkQiCQgICAgICAgICAh81BjIJPg1dcOvqds7aU8kFlOvYzfqduiKWpWPVCpDJH69++sSkYi9tcsz/u4TglMykYtF5Ot0tLI2Y1FlZ+RSCc2+WM7u69Hk6aM+JCCWsCDwIe0beHHgwIEiEUR37t0nR1oDuW3BPBX2FZAYmmPXawYAKauH4OHhwZEjR4qNx9bWlq5du/LoaRzKpqOQZTui6/gj+XIJOQ9HcPL0WWpVr4q1tXWJqW8AWVlZrFy5ksOHD2Nubq5PEdy/f/+/tiy6WCzBqVrNd9JWTEwMp06d4sSJE/ptEycWRDUV+tksWLCA33//nTJlytCoUSNGjBjB7O416L3yIkq1Rh+VJBOLsDCWM+YNigG8DcYKKYt6uTO9SzXi0/OwNTUosXrkq0T4xN6/x4Jl/jyx9EQtlpEdcgzjql7oJDK06nxuJ+TiXrs2Li4u3Lp1i9jYWBwdHfVVAtPS0jh9+jSOjo7cuHGDunXrltiPXCqmXQ0Hlgc/YO3ZKL2/VGRiBqkHD1Deu7t+35Ku7bNnz2JlZcXs2bNZuXIlo0ePJjIyksep6Ww6chR1Rrr+eJ1GTd60r2jnXpWjsyYSnZz6h0G7jpCQEPLz8/niiy8ICQkhx6oWz24ex7BsXSRmtpRqP45nx/6H2MCYfI2Wc5evEhAQgJmZGZcvX6ZatWoAVKhQgcTERDQaDTdv3sTN7d18rv1TCCKSgICAgICAgICAgMD/S0QiETK54o2Pt5RJ2VCzLM/y1cQp8yltIMdSVrDEylKq2X3jeQGpoBKWWGFErkrDzmMn2LF0Ov7+/voIIgcnF9RWdjxLLIigUMZHILUsMCuWiKB+m+7Y29sXM3uOioqiTJky/LpyHY1+OoE6X4P6j4V2Tr4G+0G/YmwgxS4poJhwVZgOp9PpGDRoELNmzcLCwgKAmjVrcuPGDfbv31/MrPz/ExqtjodJWezeuQ+NRoOPjw9Vq1Zl/PjxTJ06FX9/f72fTbVq1UhPT8fGxkZfSt7dyYJ9Y5qw6Ph9zj5IRioW0dm9NGOal8fG9M2vv7fB1ECGqcGf4tGDxEyWn3zIxchnmCik2EWfoq+vLzN//JGoqCgGDRpUzMy9Y5s2xEtLkZGxF4vGn5F2bhtaZTayq/tQpyeQL1cQm5FDc29v7ty5g5GREbGxsVhYWKDVahk0aBC//PILP/zwA+vXr6dPnz4vHW90ag5LAiOKVGvLvh2EQeVmLDoegfkf20u6tq2srADo1q0bixYtQiKRMGXKFDp16EB+aVckZVz0bVpuX0f23VBuxURyC2hTrSJVHGwY36ElIxb8SmpqKuvWrUOj0ZCdewaxqTXqrBRyH17m8dxOBY1I5dyd+wnW5mYkxMXg5OTEgQMHUKvVhIWFcfLkSVJSUmjSpAkKhYKnT5/i7e1NaGgod+7coWrVqu/qZX4vCCKSgICAgICAgICAgIDAW2Atl2ItL7q0iknNRSoWA38uep+vhGXuVgM7Ozt9BFFSUhK/rFyL747HGDjXIH7T1yCRUqrDlwCknFhJfkIIE+5eYMSIEQwbNqzYOHbfiEb7QklxnVqFSCpDo9WRlCcm6dw5Dh06xMOHDxkzZgzlypUDYMqUKTRp0oQWLVroj+3Ro4d+wVy4EP//xs5r0cw6eAelWkvy2Stonz1h545tHF67gH379hXbv2vXrnTs2BEoOKeFVLQz5X++JUfafGguPnqG37or5Ku1aHQ6dBo1Fw8fJ6ucj/56KsnMPS09Hbf+U4h6dI+ssBOUGbmW9As70ObnoYp/gPJZNEkaJfv27aNMmTKIRCJGjRrFxIkTqVevHo8ePWL8+PHExMRw48aNv/QFCrgVW+zaVqXEkJ/wiOxbR4hOjCAgIKBIWme5cuXIz89Hp9OhUCg4d+6c/nrv3LkzNs1a0GPDdjR3QgGQaNT0z43nYuVyhMbE06ehO0dCw/H1qM3s39ZgaWZGvXr1iIiIIDY2lkYdPuPOk0SkJtaIFcY4jd1M3OYJ6HKzMHKqgrtNwXgdHR2pVq0aZmZmWFhYEBwczObNm0lOTmbcuHE0bdqU4OBgPD09P3oBCQQRSUBAQEBAQEBAQEBA4J1TykRO/gvl1AsrYQFUtDPB1dWV4ODgIvt8m2HIz6Le5Db6VL/NSC5h8JQ5TO5Y8gKzsJrc5L1hxarY5UReI/PKXgBMqlSgtHGBkfawYcO4desWy5YtIzY2lrlz59K4cWP27NlDr169GD58OJ6envTt25epU6e+5dn4MERFRdGwYUOqVKmCXC7n2LFjbNy4kQ0bNqDRaNi8eTPr169n4sSJjBw5kvz8fEJCQoiOjqZ8+fJ0GPQl6x8Z6M+pRmoIDlUZ4X+N0VXrkxEdXqzPb775hrNnz2JnZ0erVq3o3bt3kTLu75qwsDCGDRuGRCKhfPnyrF27tohn1suIj49nzZo1/PDDD4zfdlOfIgaFET5e3IvLRJuVD5Rs5m5vYYZzXgwxRubIbAqieSQmVoi1Wmy6fIfy0RUigndx6mgAd+7c0Ytqw4cPf+15pueqUGmKikiW3n76/0UBU+jUqRO7du3Si7KbN28mNTWVdu3aYWJigqWlpT6Kb+zYsYTdvk22gRlGf1RYdI5+iFqjITYtQ9+uRqslR5lPalYOdvZmNGvWjP379yMWi7Ez0HBPk4/EyAzQocnNAI0asUTCp107sn7WlzRv3pxbt24RFRWFu7s7rq6uQEEqn7W1NVDg2VSmTBns7OzIy8vDwODjrjQqGGsLCAgICAgICAgICAi8Y6xNFDR0s0JSworLUCZhiGfZEo8b1NSNdX718apoQ2kLQxq4WbH0s9pM6lClyH6FpsdRUVH4+voCUM7GGENZQYc6sQhVJXMkI7phsW4jlqs3IK1Rg5GjR1OjRg3WrFlD27ZtcXZ25uuvv+b48eMMHDgQOzs7Dhw4QEhICOPHj6ds2bLs27eP9PT0YmP9N9CqVSuCg4M5duxYEU+j4OBgSpcurfc0cnNzo0+fPjg4OHDlyhWOHDnC3DlziohyitJVyE+MIk+lZdW+oBLFGolEgoWFBXK5HLFYjEqleunYnjeuHjJkCE2bNiUmJua15lepUiXOnz/PmTNnALh69eorHWdvb8/EiRO5HZtBRl7RMapSYsi8cYiozRN5FHGPgIAARCIRUVFRdO/enXXr1tGvXz/MbGxxz7qDGO0LreuQoKGyiwMtmzbg0qVLpKens2rVKjw8PPDw8GDLli2vNc/6rlYYy0s2vTdWSFiz6xAAZcqUISAggIsXL1KuXDns7Oy4fv06p0+fZt++fZiamgIFHlYng4LYvWkjDvk5lIl7jElOJlcfRFHPtYy+7UxlPrMOniQ6NQ0bswKD9CdPnuDo6MjRo0fQ6HQYl62DSG5EzIrB5Cc+ooJrGb7p0waJRMLt27epX78+bm5uHDlyBLVaTZUqVfjf//5H9+4FXk5nz54lOjqaTz75hJUrV77WefkQCCKSgICAgICAgICAgIDAe2BBz1rYmxlg9MfiV0RBVFGLKrb0qFPmpcd5lLVmw6AGnPuuBTuGN6JlVbsigsXLTI+71S5IGdIB+fWs0TgZoRMDYhFakYab1y6wx76cfn+VSsXAgQMZNmwYXl5eAFhYWHDw4EFUKhXZ2dmcPn2azz77TG++/TGj0mjZcyOanisu0H7JGVacesixwCDcqtejYe8vaO87nLsRD2nUqBEGBgY8ePCAGjVqcPnyZX766Sf279/PqVOnuH79Okpk5GamEbthPIm7ZpCw7Qey750lN+ICcZu+5t6Zg/To0UOfhhQWFkZ0dDTffvstLVu2pFGjRjRv3hxzc3OgIGKocePGeHp64ufnx71791i2bJl+7OHh4Zw9e5bSpUsXm1eXLl2wsLAgMDAQKPCvOpOSyZxHsSyPecajHCUACoWChw8fMmnSJADWr1/P+vXrUalU+Pj40KxZMz755BM0Go1efMzJ1yB5QQyz9PbDrtcM7D6djpGdK+07dKQwk6xu3boMHDiQTZs2YeviRikjKV5pFzDU5CHVqpDqVIh1Wnp1bAVxYTx58oR9+/YxatQoWrVqxcWLFzlz5gwLFix4rdfWu5IttmYKpC9UkJOKRdiaGuBV0fa12gNIiY0heu5EBvy+jJ5HNtH81D4eJyRSwa6Ufh+tTodUIkYsFhOTnsWCBQvo2LEjXWfvRK0BqY0bWpEEu89mgU5HtS+30Kh2dQ4cOEDDhg1xcnJi7Nix5Ofnc+zYMczNzbl79y7Tpk1j/vz5QFHPprCwsNeexz+NkM4mICAgICAgICAgICDwHrA1M+DEV94cCIkj6F4CJgopn9QpQwM3q1dKOSpEp9NxIS2bwGfpSEQisvZuZ8CAAUU8d1QqFSOHDGB0h178ePAcGRdvosvLxWTwGDJ+mgxyBdr0NPacPUdpbUHkyOnTp2nTpg3e3t76dgorZD18+JA6deoAUK9ePU6dOvUOzsj7I1+tpd+aS4TGpJOTX5CaFR6jxqDPL0gUckJ3TEdmak1ezCOGjh5PfHw8K1euJDU1ldq1a5Obm0uHDh2IjIzkhx9+YN+B2iiTIrHp8gOG5eoSt24sqpSnSM3tsfedh4lCSsWKFTlz5gxubm4cP36cRYsWsWDBAtq2bVtsfBF5psi6zeLxsxxCDi/m7ndzcXZxRa3KZ9KkSYSEhNCxY0d2795Nz549USqVWFpa0qZNG6pXr6436d6yazfTzlxC060vids3kH8miFm9B5I5dypGUoleDHye5ORkPD09mTZtGpMmTSIoKIgKFQqqwlVxMC2WdlmIRAQVBy+i5ao7iJ378NWOm4SE3SYvLw9zc3M8vbyxLWVN28cP2TtlOqNrOXBB85SRo0fQqbMnnx12YcjgwQB6LyIAqVSKRFJyVNHLkIhF7BjemNFbrnPraRpyqZh8tRZ3ZwuW9a6DRCzSp3VCQZTX7t278ff3Z9KkSfrtheRlZbF18tfkZWeBTocUuP7oKe7OpdHy53vTysiQUS2a8OvJC5y9cIHW7TuwfP0WvH8ORlrKCYumfYEC7zFDtzqoFSY8yYI6hoaIRKIiZuE6nU4vGJUqVYr09PSXejZ9zAgikoCAgICAgICAgICAwHvCQCahR90y9Kj78sijvyJXo6XPrYfcysolV6MFtYqMA4dJbtOVQoeY5yOKvL292RcVwdlMM8ymzgNAk5SAQetOqCPukvjtWDJ0WgICAvDx8cHZ2ZlffvmFsWPHAiAWFySrlC1blmPHjgEFKVIf++J2+5UnhESnkftc+plGLEUsl6LWgWH5Bihjw9Ehxj8giJG+A7kTch2dTodMJkMqleLl5YWrqyvNmjXDb/BgxDIDFE5VEYkliCRyjCo2IevGIXQZiXB7F9BGX569UBjRaDS0b9+etWvXEhoayuad+yjbaTTbrz7901tJJCbk5g3kEhHi1Meo1WoqVKjAgQMHGD58OLdu3cLJyUnvpTRixIg/zbrXbiBn4Gg0eXmoH95HB4gbeaFzKUvjBvW4f/++fv46nQ6RSISpqSn379/Hy8uLhIQEKlSooBeRTA1k9G/kgv/FJ0V8kQBSL+0h5v4F7H3noUHHtUSwGric1Z978+WQvkyYMIEjR45QqVIlmnp5027YEJZ16MDP839m9pzZ9OnTB6lUilqtLtLuihUr6Nq162u/xjamCnYMb8TTlByepubgZGmEk1Vxv6mXReo9T1jwMdT5+fCcWXdiZhaxTzO4+PAx8elZ3EpIQSsSk1zKHpmjE4amZpibm3Ps8h0kmnzUqXEAqJ49JXH3bERSKVEbJqB0ckXbuDq3b99m586dhIaG0rVrV1q3bs3atWvx9vZGq9Wybt26l3o2fcwIIpKAgICAgICAgICAgMBHysyHsVzPyEH5x2I39/hBZC3aEfgsA4mywMvmxYgiqViMrOKfHkoSRyfMRn8NQNq4QTgayOjUqROXLl1i+vTpjBo1im3bthXpt0GDBmzYsAFPT09MTU3/0sMmNjaWjh07cufOHbKyspBKX22ZefPmTUaPHo1YLGb27Nl4enq+8nl5kY0XHxcRkAC0yhzEigKRQRl9BwO3OuQ9DUWjzCIsNp2b169jaWkJgKmpKSEhIdSpUwf7Ms7E1RyA+MZt1CkxiGxcUaXGYlCmCtk3D2FpLKO8vam+H41Gw6xZs/jtt9+QSCQsXLiQXv0HExIZh0PPaZy58BiAnIhLpJ3eABIZJjVbk3FuKzJULFmyhObNm9OwYUNSUlL49ddfadSokb5SnpOTEzk5uRwLiSQmNgkLQ0tyD+3GsHUnstb+StaaX8l/FEFQ6jMaDh/K2rVruXr1KlFRUTRt2pTc3FzCwsIICQlh4sSJ6F6ocvZ9uyrIJGLWnYtCIhah0epQ5SvJT4osepKlMvKARYEP6NixI9HR0YSGhpKens6XX37JqlWrsLCw4PTp01SvXh17e3uys7OLNHHp0iUOHTrE3r173/i1drIqLh5lpTwjNuIecoUBAafPFYvUAzhw4ADz5s1DrVbTvIIrVvlKrj2O5lzEY8QiEd3rVqdjrSrky+TMuxBCZP8xxO7aRuaoidjdKvAdmzx5Mr6D/EgUWSE1swFAZu1E6aH/0/fjU8WWUQPqM2rUKAC8vb31782dO3cWm8/169ff+Fx8CAQRSUBAQEBAQEBAQEBA4CNEpdWxJe6ZXkACUD99jPpBOLkBO9Hcu1diRJG7mRFXUp6rMBX7FF1uLtrsTETGxgQGBeJiqNBHPSxfvrzE/n/99ddXGqeVlRUnTpygW7durzW/KVOmsH37dqysrOjevTtHjhx5reOfJyNXRX5SFClHloFYjNTCEaNKTUg/649IIkNRpiom1VuQeeMQWffOc+jeOdxcXShVqsD/Rq1W06RJE8zNzcmXGqPavxirNmNICVyJTpOP1LQUiCVIxSLW+zVg/uw/x/rVV1/Rv39/fbSW1NqZG5GJyJ3cUYrk+v2MKjTEqEJD4taPI/PqPjTKHLQ6DefPnyc/P59ffvmF9u3bM3bsWJydnUlMTATgSFgc8SJLli1ZilFVL2RnYlEHn8doQU+0WZnkh14HnQ5ZrbqUL18ehUJBXl4eDx48ID09XV9xrmPHjpibm+ujkAoRi0VMaFuZDjUduByZgqO5Ab5fzcC4ug/pZzajTk8g+dBiRFIF2txMjnX/ltu3tuDh4YFYLCYyMpJ9+/Zx/vx5fcWxxMRE5s+fT05ODjqdjqZNm2JqaspXX33F/v37Xzud7WVo1CqOrljK/YtnkUilaLQ6Npy5xI4dO4rsp9VqmT9/PkFBQWi1WupXr4pvrUqcjYhiTIvGpOfmsef6bQZ71sdAIuHzhYsRVatN1wF9cDczgrNnAWjYsCFht25Qd0YgD9Z9XWw8RnIJveo7v5O5fawIIpKAgICAgICAgICAgMBHSIZag7Zo0Aimw8bp/0/93K/EiKIKRgpcDOUki0XkaXVIbOxI/3kautinfDrjJ1wMFe9sfJG5SkrJpJT+I6IHYO7cuVSvXp0OHTqwd+9eHj58yOnTp1m/fj2WlpaMHz+efv36kZqaSpkyBWl+2dnZ5ObmYmho+EZjqeNsSWJaGez7FZgVJx9cjMTYHIeBS4rs59BvPjJlOu5ZVxjeqwMtW7YE4NatWxw9ehS1Ws1PjxxRa3XotBoc+i8g5eRasm4eIfnQElSJUQQdPaxvb82aNYhEIvr376/f9vXC9UitypD3+CYmtdogMTJHp1YhksoAMChbF3VqHDqNCpEym9DQULRaLZMmTaJJkyZcunSJsLAwjIyMCDgaxOkNJ9GIpeTF3seoRhue7fsZ4+reSMPSEJuZY7V4DSmf++Ex7SeiAnezePFiqlatSq9evRg5ciTe3t7FfIHCw8P15zouPZcRm64RnpCJTCJGmack53EoNrU7kH5mMwCarFQsm/uRenIdT9Z/SddhfvrKYwcPHmTy5MncuHGD7OxsqlWrRrVq1Thx4gQbN25ErVZTuXJlhg8fTkJCgr4q2eHDh9/49S7k5PpVRFw6h0alQqNScfnRU9xL23Fo6XxUeXn6/ZKTk7l7967+9c7RaMnTgaWRIRKxGCtjI/L+qKQnQcekdq2QyUt+nyikEn7uUZNP1osQif7MiDOUSfAoa41P5dc3+f43IYhIAgICAgICAgICAgICHyHm0oLIF6VGV+LzNX7zL2Im/HxEUV+tll8eJ7Lm/9q78/Aqq3Pv49+VgUCQSYIMAhIQigoOiKg4oEVLCy2iVFEcouIRnK1jrdbzqkcQtQ5Ha2vPq9IqWq1Qx6JAC4qC1AmQ44QKiODAFKYAIck6f+wYGUIehsCW+P1cV66w97P2s++dLPe183Ot+5m/kCW5ddn31ru4tPUeFOyZV+m5tsbasjJ+8/EXjPp6KdkhUBwjnXarw5ryht0DBw7k+uuvp0+fPvztb39j+PDhNG3alFGjRnHuuecyffp07rnnHpo0acLMmTNp2rQpM2fOpLCwcKtChRgjEz9eyKNT5vL54iIysrIpLU/dQlYWlJXx1RPXkVErl9JVheT1vZrshs2o2zCPDrvV2+BczZs33+T8JYVfsXjMfxPXraFRjwLqdenDVyOvoXefn/PO228CcOGFF9KtWzeOOeYYevTowVVXXcUrTz9EwxN/y7pFn7N0wkPk9bmC1bPfZvmbzwCQ1bAZZcWrqdWwGWHp57z//vt06dKFsWPHcsEFF1C7dm3y8/OZPXs2H361nNULl7P607cJmdmsePdFajVpw8q3/8HKd8ZQsvBTikY/QQZwces9mN90T558eRLHZ6d+tkOHDuXTTz8F4JxzzmHevHm0bNmSCRMmcMUVV9CjxzFMm1fIivkf02LQA6xbMp8lL90HGZmsnjOt4mdRq0kbcvc+lNz8LpT8Yyh33XUXZ599NoMGDWLSpEkcfvjhnHXWWaxcuZKrr76aO++8k8cee4yzzz674hwPPvhgxb/vuusujj/+eF4rX+GzvpdeeonS0lL69OlDgwYNOOiggwAYPXp0RWNqgLVFq5g5cTyl64or7vu2r9GUTz/ni2UreP7554FUI+vOnTvz8ssvk5mZSXFxMWN+fxf/M3EKpWVlLFu9htrZ2WTVyqHXkMs3GyB962edm/PG669y/4RPeO+LZTTKzebsI/Lp36UlGRlb3jR/V2SIJEmSJEnfQ1kZgYIWjXl4/iLWbLQkqU5G4KLWm1/xUCsjgyvzm3FlfjOObFCX17rvV211Xfj+XP65eDlryiJrytt7v7u8iGUrVrOipJRWrVqxZMkSFi9eTGFhIS1btqRfv36cfvrptG/fnqOPPhqA2267jYsvvph69eqx//77V2wt2xIxRq55egYvvvdlxdXYMjNSfYeWTfoLOY33pNZu9YlFhbQ5cxhFC2ax/K3R7Hnir/jzud148sHJmz33Ue3zmPjRQrJ335Nmpw/f4Fivax+kY4d2FcHd2rVrN3n8wRfew+xFq8hp3oGcPlcAkNv+MHLbHwbAyhljyahdj7xOR9Jw/C1Mnvw6Rx55JAB77bUXDzzwAL1796agoICxHyykweGnUPTJVPJOuJYVU0fT+KcXp34GWYGvRl3H7r8cSNnkCbzyyhye+agBX435F08//xKZrQ/iuJNP4PXXxpCZmUm7du0YP348w4cPp02bNlx22WV0+PEpDB72/yl7fzJZ9Zuw6Lk7qLP3oRQvnMPCZ4YRgKJP/s26RXOJZaVkLp3LkQd3AlJh4ZVXXkm3bt0IIVR69bHKJDW+Xv/qdp07d2bixImVjlu6YH5qC9t6IdLPD/iuF9gfXn2zYqVeRkYGV1xxBT179iSEwL777sv9993HB4uX8adHRhDLyrjktFM49eLLaNp2783Wtr79WzbkT2d23aKxNYkhkiRJkiR9T/26bXM+WrWGyYUrKS6LhABZIdCvaaMtXlVU2WqPbTV39VrGL17O2o1CrTKgNEae+nIJg/Ob07dvX4YMGcIvfvELAHbbbTfq16/Pvffey9ChQwHo0KEDY8eOZdGiRfzqV78iOzt7i+t4ddaiDQIkgNKyVN+hpp2PYO9PnqJrm0KmH3sYV5x7GB8v6MB/XzOaKdf1JDNhpch1vfdh6uwlG5wbUtuV/rNvchg3sFtrfjfuo4qrsW1s3ZL5FH/9Gaumj2HBks+47777Ko7l5+czffp0evfuTZ06dWi1Txe+adyK+l37sXbONGrvtX/F2Gzg2sef4ewfteDxm0Ywcupc1pFJ45NSDaVXvjeev0/7krOO7c0B7VpQWFgIwIEHHsiUKVMAGDt1Bgun/J09+pc3oQ6w+3HnA/DVyGvIzgzU3bsbqz96ndKXb6dR1lpufSrVhL1nz54UFBRwww03pF73wIEMGDCARx99lOzsbJ588kkAZi9axcipc5m7qIiOzetRPGNMRePrd999lzvuuIPHH3+cM844g8svv5yZM2dSUlLCeeedxwcffMBRRx3FEUccwbBhwwjhu99d7Xr1KSvd8Mpv67vxrAEbrNTr3bs3vXv33mDMr/9rGL/+r2Gb/2VqExnpLkCSJEmSVLlaGRmMPKAdz3Rpz9X5zbg2vznjuv6Iuzu2JiPs/G0z/162iqyNnjeWrGPpVYMp/vRjbjy1P1OnTuXkk09mzJgx/PKXv6wYd+qppzJ79mw6duwIpPoJHXvssRQUFHDzzTdvVR0j35i7ScgTS1I9bWKM1K/fgMYN6jFz5kwO2ashHWst5eDO+yQGSAAdmtZj9IXdOap9HhkBMgIc0qYRT5x/GF1aN0p8/JmH78Xee+xGnezK/9xudMw5NB1wC23PHErrdh245JJLKo7169ePyZMn06tXLwoLCzmyfR65tTLJ7Xgky998htwfHQFAAPIb1+Xmg/JpnpXFyKmfb3B1urK1RQCsK4089eJ42rVrx3vvvQfAjBkzACgqKmLMH26m6c8vq+jXRIyUrS2ibG0RIUbufex5/nXVMZx41P58Mf01pr39ZkUDcYBOnTpxwAEHANCwYUNefvllJk6cyLhx49h999156q15/OzeV/nz63MY98HXPDjhY4Y9PJrMlp0BOOigg8jPz2fw4MG0aNGCrl03XNkza9YsXn31VZYuXVqxNe1bDZs2o1HzPaGS/w6ycnLo8tNfVP2L0jZxJZIkSZIkfc8dUC+XA+rlJg/cwXIzM9j4T/aQlU2jO1P9bk7YoyGH7teGpUuX0qtXrw22qIUQGDhwYMXtQYMGMWjQoG2qY9HKTbeRfdt3KDME9jy4Ez+56mL++te/0q9fPxYuXMjIkakm0ZdeeikvvPACzz33HEOGDOH888/n1ltv5fHHHyfGyIIFC7jxxht5dNChFT2WtiR8+lbt7EyeHtKdJ9/8nNvGfLhBuLO+0rLIU8+OBb5bLZaTk1MRlowYMYIYI6FuM8YAOdc8RwRqZ2eQk5XJH07vAsAXS4vI2CivWvvF/7Li7ecJmdlk5nfm0EMP5Y9//CM9e/akRYsWdOzYkVGjRrHi689Z+tzvKIuRJn2vpUH3U/n6yd8CkSY9zuTnBzSnaPFXmwSWS5YsoX///gwePHizP4f5hav57TMzWVvy3etfMn08tTsezQWPvU3D8o7UQ4YMIT8/n7lz525yjm+3x/Xr1493332Xvn37bnC8z6XX8MSNV1O6rpiS4tS2tuyc2rTctxP7Hv3jzdambRdirLxJ2/dd165d41tvvZXuMiRJkiTpB2NVaSmdXpvJ6o0vG0cqYHpovzY0X7iA8847j6FDh1b0Pxo1ahR33303zz77bMVl4LfH8DEf8tBrn1FcSdPxnKwMxl/Rg9Ll32xyVbKd7fnpC7h21IxNVk0BtGxUh0nXHLvBFq31jRgxAoCCggKmfLaYv/57HkuLijmqfR4DuramQW5q9dDCFWs5Yvi/KC6pPKzKz6vLhKuOoaSkhKysLIYPH07r1q057bTTAPjjK59y7/hZrFlXSiS1sCcnK4PrfrYPBd3bbPNrv2f8x/x+wiesW+93tHTiIxR//RmZmRnwzScMu/UW3njjDbp3784777zDQw89xIgRIygpKeG0006jdu3aZGZmcsMNN9C5c2cGDBiwyfMULV/GjPEvMXva2+Tk5tK5Zy/2PvhQwsbJmrZYCOHtGGOlDZ9ciSRJkiRJ2iJ1MzO5vUMrrvl4HmvKIt/GA7kZgWMa1eOY3esRGnfcpA9T//796d+/f7XVUdC9DX+ZMofi0g3DmZysDI5sn0er3XOZs7zanm6b9encnBdmLGDSrEUVQVKtzAyyswK/H9hlswESsMGVzbq3y6N7u8p7YDWpl8OBrRry1pwlbJzt1cnOoODwvYDUyq/Zs2dTv359nn766YoxQ3q04+C9GvE/kz5j9sJVtN9jN/7j6LYctAVb96qyoHD1BgESpLbyQappPM/fSKtWrfjyyy+56KKLuOyyyxg3blzF2FmzZnHuuedSt25d2rZty0033VTp8+TWb8BhJw3gsJM2DZhU/VyJJEmSJEnaKm8uW8W9c77ivZWryauVzX+0zOOUZrvv1D5N73y+lAsee5uVa0vIIFBcWsbRHZpw76kHklvr+7NeoqwsMvb9r3l86lyWFq3jiL0bU9C9Dc0b1Km255i3pIh+D7xO0dpSVq9LhVW5tTLp0roRj5xzCNmZO39VzqNT5jBszIeVrsKqm5PJ/ad14diOm7/CoNKnqpVIhkiSJEmSpF1SWVnk3XlLWbJqHfu2qM+eDasvmNnVLF+zjqfenMc/P/iG3FqZnHJIK47bp+lW9XOqTivWrKP7bf9ixZoNr6CWEaBZ/dpMuvbHaatNVTNEkiRJkiRJO9V7Xyzj7Ef+zdqSMkrKysgMgca75fDYoENp3Tj9jeJVOXsiSZIkSZKknapzywZM/U1PJs1axIJlq2mbtxuHtd29yl5Q+n4zRJIkSZIkSTtEVmaGvY9qEK95J0mSJEmSpESGSJIkSZIkSUpkiCRJkiRJkqREhkiSJEmSJElKZIgkSZIkSZKkRIZIkiRJkiRJSmSIJEmSJEmSpESGSJIkSZIkSUpkiCRJkiRJkqREhkiSJEmSJElKZIgkSZIkSZKkRIZIkiRJkiRJSmSIJEmSJEmSpESGSJIkSZIkSUpkiCRJkiRJkqREhkiSJEmSJElKZIgkSZIkSZKkRIZIkiRJkiRJSmSIJEmSJEmSpESGSJIkSZIkSUpkiCRJkiRJkqREhkiSJEmSJElKZIgkSZIkSZKkRIZIkiRJkiRJSmSIJEmSJEmSpESGSJIkSZIkSUpkiCRJkiRJkqREhkiSJEmSJElKZIgkSZIkSZKkRIZIkiRJkiRJSmSIJEmSJEmSpESGSJIkSZIkSUpkiCRJkiRJkqREhkiSJEmSJElKZIgkSZIkSZKkRIZIkiRJkiRJSmSIJEmSJEmSpESGSJIkSZIkSUpkiCRJkiRJkqREhkiSJEmSJElKZIgkSZIkSZKkRIZIkiRJkiRJSmSIJEmSJEmSpESGSJIkSZIkSUoUYozprmGbhBAWAnPTXYe+V/KARekuQjWKc0o7gvNK1c05permnNKO4LxSdXNO7Th7xRibVHZglw2RpI2FEN6KMXZNdx2qOZxT2hGcV6puzilVN+eUdgTnlaqbcyo93M4mSZIkSZKkRIZIkiRJkiRJSmSIpJrkT+kuQDWOc0o7gvNK1c05permnNKO4LxSdXNOpYE9kSRJkiRJkpTIlUiSJEmSJElKZIikGiOE8GQIYVr515wQwrR016SaIYRwSQjhoxDC/4YQbk93Pdq1hRD+Xwhh/nrvV73TXZNqjhDCVSGEGELIS3ct2rWFEG4JIcwof58aG0Joke6atGsLIdwRQviwfF79PYTQMN01adcXQji5/DN6WQjBK7XtBIZIqjFijANijAfGGA8ERgGj01ySaoAQwrHACcD+Mcb9gDvTXJJqhru/fb+KMf4j3cWoZgghtAKOBz5Pdy2qEe6IMe5f/rnqBeDGNNejXd84oFOMcX/gY+C6NNejmmEmcBLwaroL+aEwRFKNE0IIwCnAE+muRTXCBcBtMca1ADHGb9JcjyRtzt3ANYANL7XdYozL17tZF+eVtlOMcWyMsaT85htAy3TWo5ohxvhBjPGjdNfxQ2KIpJroKODrGOOsdBeiGqEDcFQIYWoI4ZUQwiHpLkg1wsXly/kfDiE0Sncx2vWFEPoC82OM09Ndi2qOEMKtIYR5wOm4EknV61xgTLqLkLT1stJdgLQ1QgjjgWaVHLo+xvhs+b9Pw1VI2gpVzStS75ONgMOAQ4CnQghto5e2VBUS5tQfgFtI/V/9W4DfkfowLVUpYV79BvjJzq1Iu7qkz1UxxuuB60MI1wEXA/+5UwvULmdLPquHEK4HSoCRO7M27bq28G9A7STBv4NUk4QQsoD5wMExxi/SXY92fSGEl0htZ5tYfvtT4LAY48K0FqYaIYTQBnghxtgp3bVo1xVC6Az8Eygqv6slsADoFmP8Km2FqcYIIewFvOh7lbZXCKEAGAL0jDEWJY2XtlQIYSJwVYzxrXTXUtO5nU01zXHAhwZIqkbPAD8GCCF0AGoBi9JZkHZtIYTm6908kVRDSGmbxRjfizHuEWNsE2NsA3wBdDFA0vYIIbRf72Zf4MN01aKaIYTwU+BaoK8BkrTrcjubappTcSubqtfDwMMhhJlAMVDgVjZtp9tDCAeS2s42Bxic1mokqXK3hRB+BJQBc0mtHpG2x/1ADjAudR0c3ogxOq+0XUIIJwL3AU2AF0MI02KMvdJcVo3mdjZJkiRJkiQlcjubJEmSJEmSEhkiSZIkSZIkKZEhkiRJkiRJkhIZIkmSJEmSJCmRIZIkSZIkSZISGSJJkqQfjBDCiBDCF5s5dkwIIYYQjlvvvonl902u4nyxinO2CiGUhhCKQwh5mxkzp/wcMYRQFkKYF0J4OoTQcQtez9AQwtgQwuLyx5+d9BhJkqRtZYgkSZJUtRXA4SGEvde/M4SQC5xUfnxzziL1eSsbOK2KcS8DhwNHAjcC3YBJIYQ9Emq7BKgDvJAwTpIkabsZIkmSJFVtBvAJcMZG958EBFIB0OacBcwEPgcKqhi3KMb4RoxxcozxEeBMIK+S59xYgxjjUcAtCeMkSZK2myGSJElSskfZNNA5CxgNrKrsASGEw4EOwF/KH39wCGG/LXy+N8u/713VoBhj2RaeT5IkabsZIkmSJCV7FGgbQugOEEJoAfQkFRBtTgFQBoxcb9xZW/h8+eXfC7e6UkmSpB3EEEmSJClBjHE28BrfhUBnAAuACZWNDyHkAAOA8THGBTHGj4E3gDNCCJV9/gohhKwQQq0QQifgT6QCqKer+aVIkiRtM0MkSZKkLfMX4JTygOhM4LEqtpOdADRkw5VKfwZaAMdVMn4gsA5YC7xXPu7kGOM71VO6JEnS9jNEkiRJPyQlQOZmjmWuN6YyTwG1SV09rRPJW9mKgAkhhIYhhIakGnCvo/IG22OAQ4AuQLMYY36McXQV55ckSdrpstJdgCRJ0k70DZAXQqgVYyze6FiL8u9fV/bAGOPyEMJzwK+Bt2KMH1Q2LoTQFPgJqc9Z8ysZcmIIoV6MccV69y2JMb61NS9EkiRpZ3MlkiRJ+iGZQCrc6VvJsf7Al8BHVTz+fuB54PYqxpxR/hwXAMdu9HU5UAc4eSvrliRJSjtXIkmSpB+S8cA4YEQIoSMwFagHnEqqj9E5VfQ5Isb4GqkG21U5C5gNPBhjjOsfCCFMAq4htaXt4W19EeudrwfQBGhWflfXEMLK8lptyi1JkqqVIZIkSfrBiDHGEEJf4AZSYc9vgWJgGtAvxvjs9pw/hHAQsD9w48YBUvnzl4YQRgDXhRDyy6/6tj1uAnqsd/ui8i+AsJ3nliRJ2kCo5PONJEmSJEmStAF7IkmSJEmSJCmRIZIkSZIkSZISGSJJkiRJkiQpkSGSJEmSJEmSEhkiSZIkSZIkKZEhkiRJkiRJkhIZIkmSJEmSJCmRIZIkSZIkSZISGSJJkiRJkiQp0f8B/wbxO+jPuPEAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -292,104 +303,20 @@ } ], "source": [ - "epsilon_ext = get_epsilon(preprocessed_data, model, mode='extreme')\n", - "\n", - "plot_map_with_regions(preprocessed_data, epsilon_ext, 'Epsilon (extreme cases)')" - ] - }, - { - "cell_type": "markdown", - "id": "7f584119", - "metadata": {}, - "source": [ - "# Change in $K_D$ when adding $\\epsilon$" + "colours, pdb_files = compute_umap(preprocessed_data, model, scheme='heavy_species', categorical=True, include_ellipses=False, exclude_nanobodies=True)" ] }, { "cell_type": "code", "execution_count": 10, - "id": "6b42b16f", - "metadata": {}, - "outputs": [], - "source": [ - "coord, maps, labels = map_residues_to_regions(preprocessed_data, epsilon_gen)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "50fd219d", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.4716516e-07\n", - "Thus, Kd is smaller by 1.6096847 %\n" - ] - } - ], - "source": [ - "# Here it is possible to tune the weight of each antibody region\n", - "\n", - "# Heavy chain\n", - "cdr1_factor_h = 0.1\n", - "beta11_factor_h = 0.1 \n", - "beta12_factor_h = 0.1 \n", - "cdr2_factor_h = 0.1 \n", - "beta13_factor_h = 0.1 \n", - "beta21_factor_h = 0.1 \n", - "beta22_factor_h = 0.1 \n", - "alpha_factor_h = 0.1 \n", - "beta14_factor_h = 0.1 \n", - "cdr3_factor_h = 0.1 \n", - "\n", - "# Light chain\n", - "cdr1_factor_l = 0.1 \n", - "beta11_factor_l = 0.1 \n", - "beta12_factor_l = 0.1 \n", - "cdr2_factor_l = 0.1 \n", - "beta21_factor_l = 0.1 \n", - "beta22_factor_l = 0.1 \n", - "beta13_factor_l = 0.1 \n", - "cdr3_factor_l = 0.1 \n", - "\n", - "# Expressing weights as vector\n", - "weights_h = [cdr1_factor_h, beta11_factor_h, 0.1, beta12_factor_h, 0.1, cdr2_factor_h, beta13_factor_h, 0.1, \n", - " beta21_factor_h, 0.1, beta22_factor_h, 0.1, alpha_factor_h, 0.1, beta14_factor_h, cdr3_factor_h]\n", - "weights_l = [cdr1_factor_l, beta11_factor_l, 0.1, beta12_factor_l, 0.1, cdr2_factor_l, 0.1, beta21_factor_l, \n", - " 0.1, beta22_factor_l, 0.1, beta13_factor_l, cdr3_factor_l]\n", - "weights = np.array(weights_h + weights_l)\n", - "\n", - "compute_change_in_kd(preprocessed_data, model, weights, coord, maps)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "09e62d51", - "metadata": {}, - "outputs": [], - "source": [ - "importance_matrix_signed = np.zeros((len(coord), len(coord)))\n", - "for j,_map in enumerate(maps):\n", - " for i in range(len(coord)):\n", - " importance_matrix_signed[i,j] = _map[coord[i],:].sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "c74cdf5a", + "id": "41fdf60f", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAARNCAYAAACnn74hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABrVUlEQVR4nOz9f5ild1kn+L/vTtvpxCaGkE5CCLGRABmIGJhSwgizQcFhFJX4E3dUwIWI38mFg6sr6LiDM+6iqDuj6Ig9rIRFBpgvF5kooMiM5Cu4sNhICAm/JjA9kkkiCSEJbWhCpe7vH32arRRPJ1Xp7s85Xf16Xde5us5zPs/z/lQ9p05V3/V57lPdHQAAAADubcu8JwAAAACwiBRNAAAAACYomgAAAABMUDQBAAAAmKBoAgAAADBB0QQAAABgwtZ5TwAAAAC4t/Oq+q55T+IouCl5Z3c/c97zWC9FEwAAAFgwdyX5yXlP4ih4eXL6vOewES7PAQAAAJigaAIAAAAwweU5AAAAsGAqVjksAucAAAAAYIKiCQAAAMAERRMAAACACXqaAAAAwAKyymH+nAMAAACACYomAAAAABMUTQAAAAAm6GkCAAAAC6ZilcMicA4AAAAAJiiaAAAAAExQNAEAAACYoGgCAAAAMEEjWAAAAFhAVjnMn3MAAAAAMEHRBAAAAGCCogkAAADABD1NAAAAYAFZ5TB/zgEAAADABEUTAAAAgAmKJgAAAAAT9DQBAACABVOxymEROAcAAAAAExRNAAAAACYomgAAAABM0NMEAAAAFpBVDvPnHAAAAABMUDQBAAAAmKBoAgAAADBB0QQAAABggkawAAAAsGAqVjksAucAAAAAYIKiCQAAAMAERRMAAACACXqaAAAAwAKyymH+nAMAAACACYomAAAAABMUTQAAAAAm6GkCAAAAC6jmPQGsNAEAAACYomgCAAAAMEHRBAAAAGCCniYAAACwYCrJCfOeBFaaAAAAAExRNAEAAACYoGgCAAAAMEHRBAAAAGCCRrAAAACwgKxymD/nAAAAAGCCogkAAADABEUTAAAAgAl6mgAAAMCCqVjlsAicAwAAAIAJiiYAAAAAExRNAAAAACboaQIAAAALyCqH+XMOAAAAACYomgAAAABMUDQBAAAAmKCnCQAAACwgqxzmzzkAAAAAmKBoAgAAADBB0QQAAABggqIJAAAAwASNYAEAAGDBVKxyWATOAQAAAMAERRMAAACACYomAAAAABP0NAEAAIAFZJXD/DkHAAAAABMUTQAAAAAmKJoAAAAATNDTBAAAABZMzW7Ml5UmAAAAABMUTQAAAAAmKJoAAAAATNDTBAAAABbQCfOeAFaaAAAAAExRNAEAAACYoGgCAAAAMEHRBAAAAGCCRrAAAACwYCpWOSwC5wAAAABggqIJAAAAwARFEwAAAIAJepoAAADAArLKYf6cAwAAAIAJiiYAAAAAExRNAAAAACboaQIAAAALyCqH+XMOAAAAACYomgAAAABMUDQBAAAAmLBpe5qcdNLpfcopu4ZkPfzhQ2KSJPfcMy6re1zW1k37TBxo5Akb+UTcxE+Ou+8el/XlL4/LuuuucVlf+7XjsrZvH5c18tv5C18Yl3XKKeOyRr5Mfc3XjMsa+uSoGpc10Gc/Oy7rjDPGZXFkfOlL47JOPHFc1lDLy8OiPvjhD9/a3TuHBQ5WscphEWza/42ccsqu/JN/smdI1m/8xpCYJMm+feOyBr7e5dRTx2VtycqwrJWBL3Nblgf+D3zgE3Hl1NOGZY12ww3jsm66aVzWhz88LmtpaVzW+eePyxr5+vuf/tO4rGc+c1zWyGLQzoG/ro98rV/Zum1Y1ki/8zvjsl582bjfOUYb+TvOSHv3jsvatWtc1khbbh1Xmawzz/xvw8I4bm3OVzsAAACAw6RoAgAAADBB0QQAAABgwqbtaQIAAADHMqsc5s85AAAAAJigaAIAAAAwQdEEAAAAYIKeJgAAALBgKlY5LIIjcg6q6p6qunrVbdfEmMur6r+uGvN/z7Y/r6pWqurxq8Zee/AYVbW3qj4yu320qn6lqk48EvMGAAAAOJQjtdLki9194TrG/Vx3v2Vi+w1JfjHJDx9iv6d1961VtSPJ7tntuQ9opgAAAADrsCirfd6W5HFV9Zj7GtTd+5K8KMmzq+q0ITMDAAAAjktHqmhy0qrLbq64j3G/vmrcG1ZtX0nyyiS/cH9B3X1nkv+a5FFrH6uqS6tqT1Xt+eIXb9no5wAAAAALozbh7VhzpIomX+zuC2e3S+5j3M+tGvdP1jz275NcVFWPWEfe5Ne6u3d391J3L5100s71zh0AAABYEFX1zKr6RFVdX1UvnXj8/Kp6X1V9qap+ds1jB/uiXl1Vew53Lkft3XOq6rVJnpDkxu7+zvsb393LVfWbSX7+fo77oCS7knzySMwTAAAAWAxVdUKS303yjBzof/pXVfVH3f3RVcNuS/LiJM8+xGGe1t23Hon5HLWiSXc//wHsdnmS/yXJg6YenDWC/bdJ/mN3f/6Bzw4AAABYQN+S5Pru/nSSVNWbknxvkq8UTbr7s0k+W1XfdbQnM7oR7OqeJldX1bbVD3b33Ul+O8kZa/Z7d1Vdm+QDSf4myU+OmS4AAADMxwmb8Jbk9IO9SGe3S9d82g9L8plV92+YbVuvTvJnVfXBiWNv2BFZadLdO9Yx5nmHeOjy2e3guN/OgcLJwfu7DmtyAAAAwKK4tbuX7uPxqR6mvYHjf2t331hVZyR5V1V9vLv/YmNT/H8tylsOAwAAANyQ5OGr7p+T5Mb17tzdN87+/WySK3Lgcp8HTNEEAAAAWBR/leRRVfWIWUuP5yT5o/XsWFVfO3vzmFTV1yb5jiTXHs5kjlojWAAAAICNmL2z7mVJ3pkDbVD+oLuvq6oXzR5/dVWdlWRPklOSrFTVP0vy2CSnJ7miqpID9Y5/391/ejjzUTQBAACABVM5fi8N6e53JHnHmm2vXvXxzTlw2c5adyb5piM5l+P1HAAAAADcJ0UTAAAAgAmKJgAAAAAT9DQBAACABWSVw/xVd897DkfF0gUX9J63vnVM2K5dY3JGW17elFm3LZ8yLOvLXx4WlS99aVzWiSeOy7r88nFZSfLzP7cyLOvTe8f9GDxnqk3WJrB1k5b+t+y7c1zY9u3Don7qp7cNy/q93x33vbwy8FfaLct3D8vatN9g+/cPi1rZfvKwrH37hkUlGfrSkW1bx30//4OnjPt+/r/fO+7zunt53Oc18qXjhBPqg929NC5xrEdX9e/OexJHwXckx9R5U7gCAAAAmKBoAgAAADBhk667BAAAgGNXxSqHReAcAAAAAExQNAEAAACYoGgCAAAAMEFPEwAAAFhAVjnMn3MAAAAAMEHRBAAAAGDChosmVXVWVb2pqj5VVR+tqndU1aOr6otV9aGq+lhVfaCqnrtqn+dV1S1VdXVVfbyqXnKIY19cVW+b2P5/VtWHq+qaqnpLVe3Y6LwBAAAANmJDPU2qqpJckeR13f2c2bYLk5yZ5FPd/YTZtm9I8taq2tLdr53t/ubuvqyqHpLkE1X1lu7+zDqjX9Ldd86O/X8kuSzJr25k7gAAAAAbsdGVJk9L8uXufvXBDd19dZJ7FT+6+9NJfibJi9ceoLs/l+T6JA9db+iqgkklOSlJb3DeAAAAcEzZsglvx5qNzvmCJB9c59i/TnL+2o1VdW6S7Umu2UhwVb02yc2zY77qEGMurao9VbXnls9/fiOHBwAAALiXo1noqTX3f7iqrkvy6SS/1d37N3Kw7n5+krOTfCzJDx9izO7uXurupZ0PfvADmTMAAABAko0XTa5L8vfXOfYJOVDgOOjN3f24JE9N8puzhrKXzJrDXl1VS/d3wO6+J8mbk3z/BucNAAAAsCEbLZr8eZITq+qFBzdU1Tcn+frVg6pqV5LfyMRlNN39viSvT/LT3X1Fd184u+2ZCqwDzjv4cZLvTvLxDc4bAAAAjhmV+fcf0dNkg++e091dVZck+TdV9dIk+5PsTfLPkjyyqj6UA/1KvpDkVaveOWetX0vy11X1v3f3F9Y89u1VdcOq+z+c5JVVdUoOPG8+nOSnNjJvAAAAgI3aUNEkSbr7xiQ/NPHQSfexz+VJLl9zjLMmxl11iON86wanCQAAAHBYjsXVMQAAAABH3YZXmgAAAABH39q3pGU8K00AAAAAJiiaAAAAAExQNAEAAACYoKcJAAAALJhKcsK8J4GVJgAAAABTFE0AAAAAJmzay3P6xO25e9ejh2Rt3axfxa3bhkVtycqwrFOHJY21f//mzPq5nxuXlSQrA2vJp58+LGroObv11nFZu3aNyxppZccpw7JGPjf+t/9tXBaHb+Tr4cjfA+7KycOytg9L2sS/jw521VXjsm68edz32Nlnjfseg83GyysAAAAsIJeGzJ9zAAAAADBB0QQAAABggqIJAAAAwARFEwAAAIAJGsECAADAArLKYf6cAwAAAIAJiiYAAAAAExRNAAAAACbMrWhSVZdV1Ser6rqqesVs2w/O7q9U1dKqsd9SVVfPbh+uqkvmNW8AAAA42ioH/sO+2W7Hmrk0gq2qE5P8cpJHJbkjyWeq6pVJrk3yfUl+f80u1yZZ6u7lqnpokg9X1R939/LIeQMAAADHj3m9e86ZSW7u7tuq6nGzbXd09+eTpKruNbi771p1d3uSHjJLAAAA4Lg1r9UxW5J0Vb0syTVJruzulfvaoaqeVFXXJflIkhdNrTKpqkurak9V7bn11luOysQBAACA48NcLynq7lck2ZlkV1W98H7G/j/d/bgk35zkZVW1fWLM7u5e6u6l00/feXQmDQAAAAPMu/+IniYLMOfuvi3JG5M8cZ3jP5bk75JccDTnBQAAABzf5lk0eXhVPXr28ZOSfOJQA6vqEVW1dfbx1yd5TJK9R32GAAAAwHFrnkWT5SRXVtVHkpyd5DVVdUlV3ZDkyUneXlXvnI19Sg68Y87VSa5I8v/p7lvnMWkAAADg+DCvd89Jkpu6e+0lNlfMbvfS3a9P8vohswIAAIA5qyxAPw2cAwAAAIApc1lp0t17o5ErAAAAsMCsNAEAAACYoGgCAAAAMGGejWABAACAQ7DKYf6cAwAAAIAJiiYAAAAAExRNAAAAACZs2p4mdctns+3Vvz0ka+WyFw/JSZLLLx8WlR/90XFZe/aMq99ddNGwqGzJyrCsk7cPixqatbKJa7un7Bj3/Bj5ddyxY1jUUFddNS7r2/a8cljWyeefPyzr+l3fMyxrx45xz/mtA3+b+oM/3DYs69nPHhaV03YsD8s6eeRvv+M+rWzfPu65kSTLAz+3u5fHfT9vy93Dss46a9w5+3uPG/c1vPLKYVHHhZr3BNjE/xsBAAAAOAyKJgAAAAATFE0AAAAAJmzaniYAAABwrKokJ8x7ElhpAgAAADBF0QQAAABggqIJAAAAwAQ9TQAAAGABWeUwf84BAAAAwARFEwAAAIAJiiYAAAAAExRNAAAAACZsqkawVXVpkkuT5NwHP3jOswEAAIAHpmKVwyLYVOegu3d391J3L+3csWPe0wEAAACOYZuqaAIAAABwpCiaAAAAAEzYVD1NAAAAYLOwymH+nAMAAACACYomAAAAABMUTQAAAAAm6GkCAAAAC8gqh/lzDgAAAAAmKJoAAAAATFA0AQAAAJigpwkAAAAsmIpVDovAOQAAAACYUN097zkcFUtLS/2BD+wZkrXl1s8OyUmSbN8+LmvHjmFRd+0fV78b+SXct29c1p4xT/ckyTnnjMs677xxWUmyJStjAwdZUSM/bEOfG29727ispzxlWNTKqacNy1peHhaVrdbtHjavvYdv9Ndws35um/XzGmnk1/CEE+qD3b00LHCwx1f1H897EkfBruSYOm9+iwYAAACYoGgCAAAAMMGCUgAAAFhAVjnMn3MAAAAAMEHRBAAAAGCCogkAAADABD1NAAAAYAHVvCeAlSYAAAAAUxRNAAAAACbMrWhSVZdV1Ser6rqqesVs269X1cer6pqquqKqTp1tf0ZVfbCqPjL799vmNW8AAADg+DCXoklVnZjkl5NclOTxSZ5bVQ9O8q4kF3T345N8MsnLZrvcmuS7u/sbkzw3yevHzxoAAADGqCQnbMLbsWZeK03OTHJzd9+W5PzZtju6+8+6e3l2//1JzkmS7v5Qd984235dku2zwgsAAADAUTGvosmWJF1VL0tyTZIru3tlzZifSPInE/t+f5IPdfeXjvIcAQAAgOPYXBvBdvcrkuxMsquqXnhwe1X9YpLlJG9YPb6qHpfk15L85NTxqurSqtpTVXtuueWWozdxAAAAYNPbOu8JdPdtVfXGJE9Okqp6bpJnJfn27u6D46rqnCRXJPnx7v7UIY61O8nuJFlaWuqpMQAAAHAs8Ha38zfPc/Dwqnr07OMnJflEVT0zyc8n+Z7uvuvgwNm76Lw9ycu6+y+HzxQAAAA47syzaLKc5Mqq+kiSs5O8JsnvJHlQkndV1dVV9erZ2MuSnJfkl2bbr66qM+YyawAAAOC4MM/Lc27q7gvWbDtvamB3/0qSXzn6UwIAAAA4wCVSAAAAABPmstKku/cmWbvKBAAAAEhSscphETgHAAAAABMUTQAAAAAmKJoAAAAATJjnu+cAAAAAh2CVw/w5BwAAAAATFE0AAAAAJmzey3PuuSdb9t05Juvmm8fkJLnrvMcPyzr5hr8ZlvWFE88dlnXy9pVhWdu3j6tLPu5xw6Kyc+e4rC0Zd76SZGWT1pJHfx03ozv3jXtunLJ9+7CsDMzasnz3sKxtW8f9ijPydWN5eVhUtm31unEsGf3za+TPlc36Pebv13Bs2LxFEwAAADhGVZTWFoFzAAAAADBB0QQAAABggqIJAAAAwAQ9TQAAAGABWeUwf84BAAAAwARFEwAAAIAJiiYAAAAAExRNAAAAACZoBAsAAAALpmKVwyJwDgAAAAAmKJoAAAAATFA0AQAAAJiwqXqaVNWlSS5NknMf/vA5zwYAAAAeOKsc5m9TnYPu3t3dS929tPMhD5n3dAAAAIBj2KYqmgAAAAAcKYomAAAAABM2VU8TAAAA2Cyscpg/5wAAAABggqIJAAAAwARFEwAAAIAJiiYAAACwYCoH/sO+2W7r+tyrnllVn6iq66vqpROPn19V76uqL1XVz25k341SNAEAAAAWQlWdkOR3k/zjJI9N8iNV9dg1w25L8uIkv/EA9t0QRRMAAABgUXxLkuu7+9PdfXeSNyX53tUDuvuz3f1XSb680X03StEEAAAAGOX0qtqz6nbpmscfluQzq+7fMNu2Hoez76Sth7MzAAAAwAbc2t1L9/F4TWzrdR77cPadtHmLJieckOzYMSTq7vMfPyQnSd571bCofMfTzxmW9Xd7h0VlZee4BVbbtq4My9o58PPaknGf12gjP7eVgYv9RmZt1ufHtdeOy/oHF100LGtl+8nDsrbcfOOwrJWzzh6WNdLWgb+5jXzd2KyGvh7u2zcuK8nKjlOGZY38Om7dOu55v7w8LCr794/LOmXH5vw9YF6O01fiG5I8fNX9c5Ks95eIw9l30nF6DgAAAIAF9FdJHlVVj6iqbUmek+SPBuw7afOuNAEAAACOKd29XFWXJXlnkhOS/EF3X1dVL5o9/uqqOivJniSnJFmpqn+W5LHdfefUvoczH0UTAAAAYGF09zuSvGPNtlev+vjmHLj0Zl37Hg5FEwAAAFgwFf00FoFzAAAAADBB0QQAAABggqIJAAAAwAQ9TQAAAGABWeUwf84BAAAAwIS5FU2q6rKq+mRVXVdVr5ht+/Wq+nhVXVNVV1TVqbPtD6mqd1fVvqr6nXnNGQAAADh+zKVoUlUnJvnlJBcleXyS51bVg5O8K8kF3f34JJ9M8rLZLvuT/FKSn53DdAEAAIDj0Lx6mpyZ5Obuvq2qHjfbdkd3/9mqMe9P8gNJ0t1/l+S9VXXe4HkCAADAXFTVvKdw5HXPewYbMq/Lc7Yk6ap6WZJrklzZ3StrxvxEkj8ZPjMAAACAzLkRbHe/IsnOJLuq6oUHt1fVLyZZTvKGjRyvqi6tqj1VteeWW245spMFAAAAjitzf/ec7r4tyRuTPDFJquq5SZ6V5J90b2zdTnfv7u6l7l7auXPnkZ8sAAAAcNyYZ9Hk4VX16NnHT0ryiap6ZpKfT/I93X3X/KYGAAAAHO/m1Qg2OXD5zZVVtZzk+hwollyd5MQk75o1vHl/d78oSapqb5JTkmyrqmcn+Y7u/uj4aQMAAMBRVpVsned/2Y+SL3953jPYkHmegZu6+4I12w757jjdvevoTgcAAADg/zX3niYAAAAAi2guK026e2+StatMAAAAABbGJrxACgAAADYBPU3mzuU5AAAAABMUTQAAAAAmKJoAAAAATNiEF0gBAADAMa5qc/Y0OcZYaQIAAAAwYfOWre65J9m3b0zW9lPG5CR5ylOGRWVlYE1t165hUUON/BqONPLz2pKVYVmjbdnzgWFZK0vfMixrpJHPxe3bh0Xlb7847ufKzh3DovK3J5w9LOvM228blpUdA7+It98+Luv004dFjfxeXl4eFpVt1149LuzCC8dlDTb0947lu4dlbd26bVjWyJcp2Gw25//oAAAAAA7T5l1pAgAAAMcqPU0WgpUmAAAAABMUTQAAAAAmKJoAAAAATFA0AQAAAJigqwwAAAAsGo1gF4KVJgAAAAATFE0AAAAAJiiaAAAAAExwgRQAAAAsGj1NFoKVJgAAAAATFE0AAAAAJmyqoklVXVpVe6pqzy2f+9y8pwMAAAAcwzbVBVLdvTvJ7iRZesITes7TAQAAgAdOT5O521QrTQAAAACOFEUTAAAAgAmKJgAAAAATXCAFAAAAi6ZKT5MFYKUJAAAAwARFEwAAAIAJiiYAAAAAExRNAAAAACboKgMAAACLRiPYhWClCQAAAMAERRMAAACACYomAAAAABM27wVSX/xicvXVQ6K2vec9Q3KSJD/3i8OitmRlWNad+8bV707ZetewrOzbNyxq5fQzhmUNtby8efMuvHBc1kArm7Qef/7547K2bx+XNdJVV43LuuSS04Zlbdt327Cska/1I38PGGnbrTcOy7r7gicOyxr9S/2W5bvHhY3s6TAwa//+YVE5efnOYVm733TKsKxNT0+ThbA5f7MFAAAAOEyKJgAAAAATFE0AAAAAJrhACgAAABaNniYLwUoTAAAAgAmKJgAAAAATFE0AAAAAJrhACgAAABaRniZzt+GVJlV1VlW9qao+VVUfrap3VNWjq+qLVfWhqvpYVX2gqp67ap/nVdUtVXV1VX28ql5yiGNfXFVvm9j+hqr6RFVdW1V/UFVfs9F5AwAAAGzEhoomVVVJrkhyVXc/srsfm+QXkpyZ5FPd/YTu/ntJnpPkJVX1/FW7v7m7L0zyrUl+saoevoHoNyQ5P8k3JjkpyQs2Mm8AAACAjdroSpOnJflyd7/64IbuvjrJZ1YP6u5PJ/mZJC9ee4Du/lyS65M8dL2h3f2OnknygSTnbHDeAAAAABuy0aLJBUk+uM6xf50Dq0PuparOTbI9yTUbzM7sspwfS/KnG90XAAAAYCOOZleZWnP/h6vqaUkek+SF3b3/ARzz3yb5i+5+z2Rg1aVJLk2Sc8888wEcHgAAABZAlUawC2CjK02uS/L31zn2CUk+tur+m7v7cUmemuQ3Zw1lL5k1h726qpbu62BV9S+S7MyBy34mdffu7l7q7qWdp566zmkCAAAAfLWNFk3+PMmJVfXCgxuq6puTfP3qQVW1K8lvJHnV2gN09/uSvD7JT3f3Fd194ey251ChVfWCJP8oyY9098oG5wwAAACwYRsqmswasV6S5Bmztxy+LsnLk9yY5JEH33I4yX9I8qrufu0hDvVrSZ5fVQ+aeOzbq+qGVbcnJ3l1DrxDz/tmq1L+143MGwAAAGCjNnyBVHffmOSHJh466T72uTzJ5WuOcdbEuKsOcRwXcgEAAHD80NNkIWz08hwAAACA44KiCQAAAMAERRMAAACACS6QAgAAgEWjp8lCsNIEAAAAYIKiCQAAAMAERRMAAACACS6QAgAAgEWjp8lCsNIEAAAAYEJ197zncFQsLS31ng98YN7TOKatDKyp7d8/LGposXZk1pasDMsa+dxYXh4WlSTZtnXc1/HOfeO+jjt2DIvatDbr99hII1/rt28flzXSyOfhSJv1Ob+Zbdbn4tBfPEb+ojjw87o724ZlnXhifbC7l4YFDrZ0yim9Z2nzfXr17ncfU+fNTygAAACACYomAAAAABN0lQEAAIBFpBHs3FlpAgAAADBB0QQAAABggqIJAAAAwAQXSAEAAMCiqdLTZAFYaQIAAAAwQdEEAAAAYIKiCQAAAMAEF0gBAADAotHTZCFYaQIAAAAwYVMVTarq0qraU1V7brnllnlPBwAAADiGbaqiSXfv7u6l7l7auXPnvKcDAAAAHMNcIAUAAACLRk+ThbCpVpoAAAAAHCmKJgAAAAATFE0AAAAAJiiaAAAAAEzQVQYAAAAWjUawC8FKEwAAAIAJiiYAAAAAExRNAAAAACa4QAoAAAAWjZ4mC8FKEwAAAIAJiiYAAAAAEzbtWp/Pfz558/93TE3okkuGxCRJtm1dGZa1ZfnuYVknbx/3VLxz37ha4Sk7xp2vkUY+N5aXtw3LSpKtW8c9P/btGxa1aZ+LQw08YVv27x+WtXL6GcOylpeHRQ21Jb6/Dpev4eFb2cR/Cx35ue3bP+73jh07hkVly8BLPDbtfzA5bnlOAwAAwCLS02TuNm9JGgAAAOAwKJoAAAAATFA0AQAAAJjgAikAAABYNFV6miwAK00AAAAAJiiaAAAAAExQNAEAAACYMLeiSVVdVlWfrKrrquoVs20/OLu/UlVLq8Y+o6o+WFUfmf37bfOaNwAAAHB8mEtXmao6MckvJ3lUkjuSfKaqXpnk2iTfl+T31+xya5Lv7u4bq+qCJO9M8rCBUwYAAIBxNIJdCPM6A2cmubm7b6uqx8223dHdn0+SqrrX4O7+0Kq71yXZXlUndveXhswWAAAAOO7M6/KcLUm6ql6W5JokV3b3yjr3/f4kH1IwAQAAAI6muTaC7e5XJNmZZFdVvfD+xs9Wpfxakp88xOOXVtWeqtpz5523HNnJAgAAAMeVuV8gNbtE541Jnnxf46rqnCRXJPnx7v7UIY61O8nuJHnkI5f6SM8VAAAAhtDTZCHMc6XJw6vq0bOPn5TkE4caWFWnJnl7kpd1918OmBsAAABwnJtn0WQ5yZVV9ZEkZyd5TVVdUlU35MCqk7dX1TtnYy9Lcl6SX6qqq2e3M+YzbQAAAOB4MM+1Pjd19wVrtl0xu91Ld/9Kkl8ZMisAAACALEBPEwAAAGANPU0WwlzOQHfvTbJ2lQkAAADAwpjrWw4DAAAALCpFEwAAAIAJLpACAACARaSnydxZaQIAAAAwQdEEAAAAYIKiCQAAAMAERRMAAACACZu2q8yOHclTnzoma9P25lleHha1snXbsKxTdqwMy1oZWJfckoGf18DztX3w99fIr+Ppp497fmzW5+JIKztOGZa1ZceOYVkcvpHfX/v3D4vK9u3jsrYs3z0sa+TPsC23fnZYVk4/Y1xWkruXxz3vR/6u/aY3jcu69EfvGhc28Bt65Pfzple1if+zeeyw0gQAAABggqIJAAAAsDCq6plV9Ymqur6qXjrxeFXVb88ev6aqnrjqsb1V9ZGqurqq9hzuXKz1AQAAABZCVZ2Q5HeTPCPJDUn+qqr+qLs/umrYP07yqNntSUl+b/bvQU/r7luPxHwUTQAAAGDRHL89Tb4lyfXd/ekkqao3JfneJKuLJt+b5P/q7k7y/qo6taoe2t03HenJuDwHAAAAGOX0qtqz6nbpmscfluQzq+7fMNu23jGd5M+q6oMTx96w47JsBQAAAMzFrd29dB+P18S23sCYb+3uG6vqjCTvqqqPd/dfPJCJJlaaAAAAAIvjhiQPX3X/nCQ3rndMdx/897NJrsiBy30eMCtNAAAAYNEcvz1N/irJo6rqEUn+e5LnJPkf14z5oySXzfqdPCnJHd19U1V9bZIt3f2F2cffkeRfHs5kjsszAAAAACye7l6uqsuSvDPJCUn+oLuvq6oXzR5/dZJ3JPnOJNcnuSvJ82e7n5nkiqpKDtQ7/n13/+nhzEfRBAAAAFgY3f2OHCiMrN726lUfd5J/OrHfp5N805Gci54mAAAAABOsNAEAAIBFc/z2NFkom2qlSVVdevC9nj/3uVvmPR0AAADgGLapiibdvbu7l7p76SEP2Tnv6QAAAADHsE1VNAEAAAA4UhRNAAAAACboKgMAAACLSCPYubPSBAAAAGCCogkAAADABEUTAAAAgAkukAIAAIBFU6WnyQKw0gQAAABggqIJAAAAwARFEwAAAIAJLpACAACARaOnyUKw0gQAAABgwqYtW23dmpx++pisLbd+dkxQkpx66ris7dvHZQ109/K4WuG2rSvDskZ+XiML3lsy7ms4mj8ccEjLy8Oitgx8Im7f7m81h2vkj+aRr78rW7cNy9py+23Dsob+3jbYyN9xVgb+nfcFLxgWlWTcN/TIr2EGfj/DCH57AQAAAJjg75wAAACwaPQ0WQhWmgAAAABMUDQBAAAAmKBoAgAAADBB0QQAAABggq4yAAAAsGg0gl0IVpoAAAAATFA0AQAAAJgwt6JJVV1WVZ+squuq6hWzbT84u79SVUurxj6kqt5dVfuq6nfmNWcAAADg+DGXC6Sq6sQkv5zkUUnuSPKZqnplkmuTfF+S31+zy/4kv5TkgtkNAAAANjc9TeZuXmfgzCQ3d/dtVfW42bY7uvvzSVJV9xrc3X+X5L1Vdd7YaQIAAADHq3ldnrMlSVfVy5Jck+TK7l453INW1aVVtaeq9tx66y2HPUkAAADg+DXXRrDd/YokO5PsqqoXHoHj7e7upe5eOv30nYc/QQAAAOC4NfcLpGaX6LwxyZPnPRcAAABYCFV6miyAea40eXhVPXr28ZOSfGKOcwEAAAC4l3kWTZaTXFlVH0lydpLXVNUlVXVDDqw6eXtVvfPg4Kram+T/SPK8qrqhqh47j0kDAAAAx4d5rvW5qbvXvn3wFbPbV+nuXUd9RgAAAAAzLpACAACARaOnyUKYyxno7r1J1q4yAQAAAFgYc33LYQAAAIBFpWgCAAAAMEHRBAAAAGCCrjIAAACwaDSCXQhWmgAAAABMUDQBAAAAmLBp1/rUPcvZdvtnx4RdffWYnCTZtWtc1nnnDYvau3dYVL4hnx4X9t73Dova9pznDMu67fZtw7I+/vGxtd1/sHT3sKz9y+O+jiNXdm7dujnr8VuyMizrzv3jnhs7dgyLyrab/2Zc2L59w6JWzn/ssKyRVjbp39bu3nHasKxhv4smWT71jGFZSbJt4M+V5eXNmbV9+7jvsZE/w/72ls352sHxa9MWTQAAAOCYpafJQlAGBAAAAJigaAIAAAAwQdEEAAAAYIILpAAAAGDR6GmyEKw0AQAAAJigaAIAAAAwQdEEAAAAYIILpAAAAGAR6WkydxteaVJVZ1XVm6rqU1X10ap6R1U9uqq+WFUfqqqPVdUHquq5q/Z5XlXdUlVXV9XHq+olhzj2xVX1tontl1XV9VXVVXX6RucMAAAAsFEbKltVVSW5Isnruvs5s20XJjkzyae6+wmzbd+Q5K1VtaW7Xzvb/c3dfVlVPSTJJ6rqLd39mXVG/2WStyW5aiPzBQAAAHigNrrS5GlJvtzdrz64obuvTnKv4kd3fzrJzyR58doDdPfnklyf5KHrDe3uD3X33g3OFQAAAOAB22jR5IIkH1zn2L9Ocv7ajVV1bpLtSa7ZYPb9qqpLq2pPVe255XOfO9KHBwAAAI4jR7OrTK25/8NV9bQkj0nywu7ef6QDu3t3kt1JsnThhX2kjw8AAABDVGkEuwA2utLkuiR/f51jn5DkY6vuv7m7H5fkqUl+c9ZQ9pJZc9irq2ppg3MBAAAAOGo2WjT58yQnVtULD26oqm9O8vWrB1XVriS/keRVaw/Q3e9L8vokP93dV3T3hbPbno1OHgAAAOBo2VDRpLs7ySVJnjF7y+Hrkrw8yY1JHnnwLYeT/Ickr1r1zjlr/VqS51fVgyYe+/aqumHV7clV9eKquiHJOUmuqarXbGTeAAAAABu14QukuvvGJD808dBJ97HP5UkuX3OMsybGXXWI47wvyW9vbKYAAABwjNLTZCFs9PIcAAAAgOOCogkAAADABEUTAAAAgAkukAIAAIBFo6fJQrDSBAAAAGCCogkAAADABEUTAAAAgAkukAIAAIBFo6fJQti8Z+Bv/ia57LIxWX/4h2NykvzMS7cNyxr5/fn0p4/L+oan7xqWtbLrG4ZlXXvtsKjccMO4rIsvHpeVZOgT/+StK8Oy7tw3bmHhv/k3w6KGPj/OO2/c1/Dsvf/3sKx8/OPDolae9xPDsrbcfOOwrOXlYVH5/OfHZY30oAeNy/qP/3Fc1sUXnzEs6+xbxz3nkySnnz4satvAn80f//i41/pdu4ZF5QUvGPd5veY1w6JgCJfnAAAAAExQNAEAAACYsHkvzwEAAIBjmZ4mc2elCQAAAMAERRMAAACACYomAAAAABMUTQAAAAAm6CoDAAAAi6ZKI9gFYKUJAAAAwIT7LVtV1T1JPrJq07O7e++aMRcl+a0kJ85ub07y35L89GzIY5N8Isk9Sf60u19aVS9J8ookZ3b3HbPjXJzkyiSfTnJSkrcleV2S18+Oc26SO2a3W7v76Rv6bAEAAADWaT1rfb7Y3Rfez5jXJfmh7v5wVZ2Q5DHd/dEkr02Sqtqb5GndfeuqfX4kyV8luSTJ5au2v6e7n1VVJyX5UJIrDuZX1eVJ3tbdb1nHvAEAAAAesCN1gdQZSW5Kku6+J8lH72twVT0yyY4kP5fkF3Lvoklmx/liVV2d5GFHaI4AAABwbNDTZCGsp6fJSVV19ex2xSHG/Oskn6iqK6rqJ6tq+/0c80eSvDHJe5I8pqrOWDugqh6c5FFJ/mIdczy4z6VVtaeq9tzypS+tdzcAAACAr7KeoskXu/vC2e2SqQHd/S+TLCX5syT/Y5I/vZ9jPifJm7p7Jclbk/zgqseeWlXXJLk5By7FuXkdczw4j93dvdTdSztPPHG9uwEAAAB8lQf07jlV9drZypN3HNzW3Z/q7t9L8u1JvqmqHnKIfR+fAytI3jXrdfKcHFh5ctB7uvvxSb4xyU9V1YUPZI4AAAAAh+MBXSDV3c9ffb+qvivJO7q7c6Agck+S2w+x+48keXl3v2LV/v+1qr5+TcYnq+oVSX4+9y6qAAAAwOamp8lCeEArTSb8WA70NLk6B94e+J/MGsJOeU6Stb1RrphtX+vVSf5hVT3iCM0TAAAAYF3ut2zV3TvWMWaq4LH68V2rPv6qAkh3/8yqu1et2v7FrHr3nO5+3v3NBQAAAOBIOFIrTQAAAAA2FRdIAQAAwKLR02QhWGkCAAAAMEHRBAAAAGCCogkAAADABEUTAAAAgAm6ygAAAMAi0gh27qw0AQAAAJhQ3T3vORwVS1u29J5BVbmV/XcPyUmSLXs/PSwrZ501LOrG208elrV//7CofMPpdw7LWtlxyrCs228fFpXT3vf2cWFJ8rSnjcvas2dY1N0X/cNhWSP/ILJl/13jwt7//nFZT3nKuKwzzxyX9Vu/NSxq5Ud/fFjWlqwMy1rx967DNvJ83b087nyN/mP00Nffkb+8vfe9w6LuvPh7hmWdsn3c/1f+7Kptw7L+0T+qD3b30rDAwZYuuKD3vPWt857GEVePecwxdd785AUAAACY4AIpAAAAWDRVeposACtNAAAAACYomgAAAABMUDQBAAAAmOACKQAAAFg0eposBCtNAAAAACYomgAAAABMUDQBAAAAmHBELpCqqnuSfGTVpmd39941Yy5P8j8kuWO26a7u/gdV9bwkf5Dkwu6+Zjb22iTP6u69VbU3yRdm+5yQ5K1J/lV3f+lIzB0AAAAWjp4mC+FInYEvdveF6xj3c939lontNyT5xSQ/fIj9ntbdt1bVjiS7Z7fnPqCZAgAAAKzDolye87Ykj6uqx9zXoO7el+RFSZ5dVacNmRkAAABwXDpSRZOTqurq2e2K+xj366vGvWHV9pUkr0zyC/cX1N13JvmvSR619rGqurSq9lTVnlu6N/o5AAAAAHzFolyekyT/PskvVtUj1nGcmtrY3Qcv3cnSli2qJgAAAMADdtS6ylTVa5M8IcmN3f2d9ze+u5er6jeT/Pz9HPdBSXYl+eSRmCcAAAAsHI1gF8JROwPd/fwHsNvlSf6XJA+aenDWCPbfJvmP3f35Bz47AAAAgPs2uhHs6p4mV1fVttUPdvfdSX47yRlr9nv37G2IP5Dkb5L85JjpAgAAAMerI7LSpLt3rGPM8w7x0OWz28Fxv50DhZOD93cd1uQAAAAAHgAXSAEAAMAi0tNk7kZfngMAAABwTFA0AQAAAJigaAIAAAAwwQVSAAAAsGiq9DRZAFaaAAAAAExQNAEAAACYoGgCAAAAMGHTXiB100OfmH/5k3uGZL3g5iExSZKz3/vecWFPf/qwqO3bTx6Wdfby3wzLujPnDsv64i3DorJz57isO5/6XePCknzxC+OyHv70fzgsa+/eYVE566xxWdm+fVzWRReNy/p3/25c1uc+Ny5r4M+wffuGReWU7cvDsob+tevWW4dFrZx19risgV/Fkc/D03LbuLAk2TPm9+wkyZe/PC5r4A/MHTuGRSX79g+LuuiibcOyNj09TRaClSYAAAAAExRNAAAAACYomgAAAABMUDQBAAAAmKCrDAAAACwajWAXgpUmAAAAABMUTQAAAAAmKJoAAAAATHCBFAAAACwaPU0WwrpXmlTVWVX1pqr6VFV9tKreUVWPrqovVtWHqupjVfWBqnruqn2eV1W3VNXVVfXxqnrJIY59cVW9bc22y6vqB2Yf/59V9eGquqaq3lJVOx7oJwwAAAAsrqp6ZlV9oqqur6qXTjxeVfXbs8evqaonrnffjVpX0aSqKskVSa7q7kd292OT/EKSM5N8qruf0N1/L8lzkrykqp6/avc3d/eFSb41yS9W1cMfwDxf0t3f1N2PT/I3SS57AMcAAAAAFlhVnZDkd5P84ySPTfIjVfXYNcP+cZJHzW6XJvm9Dey7IetdafK0JF/u7lcf3NDdVyf5zOpB3f3pJD+T5MVrD9Ddn0tyfZKHbnSS3X1n8pXizUlJeqPHAAAAABbetyS5vrs/3d13J3lTku9dM+Z7k/xffcD7k5xaVQ9d574bst4LpC5I8sF1jv3rJOev3VhV5ybZnuSaQ+z31Kq6etX9c5N85ZKdqnptku9M8tEk//PUAarq0hyoMuXrvu7cdU4XAAAAFs/K5nzvltOras+q+7u7e/eq+w/LvRdo3JDkSWuOMTXmYevcd0OORleZWnP/h6vqaUkek+SF3b3/EPu9p7uf9ZWDVF2++sHufv5sqc2rkvxwkteuPcDsC707SR72sCWrUQAAAGCx3NrdS/fx+NqaQvLVV5scasx69t2Q9Zatrkvy99c59glJPrbq/pu7+3FJnprkN2cNZS+ZNYe9uqru64t1L919T5I3J/n+9e4DAAAAHDNuSLK6F+o5SW5c55j17Lsh6y2a/HmSE6vqhQc3VNU3J/n61YOqaleS38iB1SD30t3vS/L6JD/d3Vd094Wz2561Y9ccs6rqvIMfJ/nuJB9f57wBAACAY8dfJXlUVT2iqrblwBvO/NGaMX+U5Mdn9YKLktzR3Tetc98NWdflOd3dVXVJkn8ze8ue/Un2JvlnSR5ZVR/KgX4lX0jyqu7+qktnZn4tyV9X1f/e3V9Y5xwryeuq6pTZxx9O8lPr3BcAAACOOd3J8vK8ZzFedy9X1WVJ3pnkhCR/0N3XVdWLZo+/Osk7cqDn6fVJ7kry/Pva93Dms+6eJt19Y5IfmnjopPvY5/Ikl685xlkT465KctWabc9bdfdb1ztPAAAA4NjV3e/IgcLI6m2r3823k/zT9e57ODZlK14AAACAw6VoAgAAADBB0QQAAABgwrp7mgAAAABjHK+NYBeNlSYAAAAAExRNAAAAACYomgAAAABM0NMEAAAAFoyeJoth0xZNHvq1d+Z/vejPxoSd9fQxOUnyrGeNy9q7d1jUaRecPizr7h3nDss6Zf+d47J27hiWlf37x2Xl5IFZyZk7V4Zl3T3yy8jhe//7x2X92I+Ny/qTPxkW9dFHfNewrMfuGPe9vJJtw7JG2rJj3M+VLRl3vu7aP26h9Q03DIvKf/niaePCkvy9i75jWNYpA7+f/+w/jXt+DPwfRFZ2nDIsa6vfb9hkXJ4DAAAAMEHRBAAAAGDCpr08BwAAAI5VeposBitNAAAAACYomgAAAABMUDQBAAAAmKCnCQAAACwgPU3mz0oTAAAAgAmKJgAAAAAT5lY0qarLquqTVXVdVb1itu0HZ/dXqmppYp9zq2pfVf3s+BkDAAAAx5O5FE2q6sQkv5zkoiSPT/LcqnpwkmuTfF+SvzjErv86yZ8MmSQAAABwXJtXI9gzk9zc3bdV1eNm2+7o7s8nSVV91Q5V9ewkn07yd6MmCQAAAPPQrRHsIpjX5TlbknRVvSzJNUmu7O6VQw2uqq9N8vM5sDrlkKrq0qraU1V7brnjjiM6YQAAAOD4MtdGsN39iiQ7k+yqqhfex9BfTvKvu3vf/Rxvd3cvdffSzq/7uiM5VQAAAOA4M6/Lc75idonOG5M8+T6GPSnJD1TVK5OcmmSlqvZ39++MmCMAAABw/Jln0eThVfXo7v5kDhRFPnGogd391IMfV9XLk+xTMAEAAGCz0tNkMczz8pzlJFdW1UeSnJ3kNVV1SVXdkAOrTt5eVe+c4/wAAACA49g8V5rc1N0XrNl2xex2SN398qM2IwAAAICZuTaCBQAAAFhUc1lp0t17k6xdZQIAAABET5NFYaUJAAAAwARFEwAAAIAJiiYAAAAAE+b57jkAAADABD1NFoOVJgAAAAATFE0AAAAAJmzey3NOOim5YMy7Gq+MrD2detqwqC27hkUlW8c9FbdlZVjWSCOfh/tz8rCs7duHRQ131/5x52zk13HLyO+xkWtWL754XNZIT33qsKib9wyLyvnnb86/C438/lrZccqwrJFGvh4+/oLN+TtHMvb3jpFZT3/6sKhNa+/eec8AjqzN+RsFAAAAwGHavCtNAAAA4BimEez8WWkCAAAAMEHRBAAAAGCCogkAAADABD1NAAAAYMF062myCKw0AQAAAJigaAIAAAAwQdEEAAAAYIKeJgAAALBg9DRZDFaaAAAAAExQNAEAAACYsKmKJlV1aVXtqao9t3zuc/OeDgAAAHAM21Q9Tbp7d5LdSbL0Td/Uc54OAAAAPCB6miyGTbXSBAAAAOBIUTQBAAAAmKBoAgAAADBB0QQAAABgwqZqBAsAAACbgUawi8FKEwAAAIAJiiYAAAAAExRNAAAAACboaQIAAAALSE+T+bPSBAAAAGCCogkAAADABEUTAAAAgAmbt6fJF76QvPvdQ6K2/OAPDskZ7tRTh0XdePO4+t3ZZ60My8qOHcOiRl7vePL2cV/Du5c3b233hhvGZT36vIHP+5FPxq2b88fYysi/aew4ZVjUX/3VsKhcfPG4rC0Z+P010MjPa+hzfpMa/TX0/Dh8e/eOy9q1a1zWH//xuKzNrltPk0WwOV+BAAAAAA6TogkAAADABEUTAAAAgAmb82JwAAAAOIbpabIYrDQBAAAAmKBoAgAAADBB0QQAAABggqIJAAAAwASNYAEAAGDBaAS7GKw0AQAAAJigaAIAAAAw4ZgpmlTVP6+qj1TVh6rqKVX1x/OeEwAAALB5HRM9TarqoiTfn+QJSX4gyVuS/IuJcZcmuTRJzn3IQ0ZOEQAAAI4YPU0Ww7Gy0uTJSd7e3ctJ/jTJGUnetnZQd+/u7qXuXtp5yimj5wgAAABsIsdK0SRJvrTq3//e3f99npMBAAAANrdjpWiyJ8m3zj7+niRnV9XOOc4HAAAA2OSOiZ4m3f2eqrquqt6R5GuT/HiSt1bVP+ruu+Y8PQAAADji9DSZv2OiaJIk3f0/r9n0hrlMBAAAADguHCuX5wAAAAAMpWgCAAAAMOGYuTwHAAAAjhfdeposAitNAAAAACYomgAAAABMUDQBAAAAmKBoAgAAADBBI1gAAABYMBrBLobNWzQ5+eTkCU8Yk7V13Jfx7uVxi4OW9w+Lyq23jss666zNucBq4NMwKwMXqW3L3cOyDhj3hTzvvGFRyf6B39Dbtw+LGvlc3JKVYVk33zwsKqefPi7rec8blzXyl8ytWzfnz5WRz/nNauRrFMeeka+/Iz35yfOeARxZXskBAAAAJiiaAAAAAEzYvJfnAAAAwDFKT5PFYKUJAAAAwARFEwAAAIAJiiYAAAAAE/Q0AQAAgAWjp8lisNIEAAAAYIKiCQAAAMAERRMAAACACXqaAAAAwILR02QxWGkCAAAAMGFTFU2q6tKq2lNVe2657bZ5TwcAAAA4hm2qokl37+7upe5e2nnaafOeDgAAAHAM21RFEwAAAIAjRSNYAAAAWEAawc6flSYAAAAAExRNAAAAACYomgAAAABM0NMEAAAAFky3niaLwEoTAAAAgAmKJgAAAAATFE0AAAAAJuhpAgAAAAtGT5PFYKUJAAAAwARFEwAAAIAJm/fynJtuSn71V4dE/e2v/19DcpLkzAfdNSxrOScPyzrzzGFRQ235jVeOC3vBC4ZF3b3jtGFZ2666alhWkmTv3mFRWy68cFhWlpaGRX304+Pq8bt2DYvKydvHZT3sYfcMy+r/318OyzrzKU8ZlnXX/nHPw60Df5sauUz7858f9zU86aRhUTllx8q4sGuvHZd1wQXjspKsbNK/vW7JwOfHwK/h9dcPi8o554zLghE2b9EEAAAAjlF6miyGzVkiBgAAADhMiiYAAAAAExRNAAAAACYomgAAAABM0AgWAAAAFoxGsIvBShMAAACACYomAAAAABMUTQAAAAAmzK2nSVVdluTFSb6c5I+6+2VV9etJvjvJ3Uk+leT53X17VT0jya8m2TZ77Oe6+8/nNHUAAAA46vQ0mb+5rDSpqhOT/HKSi5I8Pslzq+rBSd6V5ILufnySTyZ52WyXW5N8d3d/Y5LnJnn9+FkDAAAAx5N5XZ5zZpKbu/u2JOfPtt3R3X/W3Qdrae9Pck6SdPeHuvvG2fbrkmyfFV4AAAAAjop5FU22JOmqelmSa5Jc2d0ra8b8RJI/mdj3+5N8qLu/tPaBqrq0qvZU1Z5bvvRVDwMAAACs29x6miRJd7+iqn4/yRuq6oXd/e+SpKp+MclykjesHl9Vj0vya0m+4xDH251kd5IsPeQhfTTnDgAAAEdLt54mi2CuRZMk6e7bquqNSZ6cJFX13CTPSvLt3f2VwkdVnZPkiiQ/3t2fmstkAQAAgOPGPN9y+OFV9ejZx09K8omqemaSn0/yPd1918GBVXVqkrcneVl3/+XwmQIAAADHnXkWTZaTXFlVH0lydpLXJPmdJA9K8q6qurqqXj0be1mS85L80mz71VV1xlxmDQAAABwX5nl5zk3dfcGabedNDezuX0nyK0d/SgAAADB/epp8tao6Lcmbk+xKsjfJD3X35yfGPTPJbyU5IclruvtXZ9tfnuSFSW6ZDf2F7n7HfWXOc6UJAAAAwHq9NMl/7u5HJfnPs/v3UlUnJPndJP84yWOT/EhVPXbVkH/d3RfObvdZMEnmVDTp7r0Tq0wAAAAADuV7k7xu9vHrkjx7Ysy3JLm+uz/d3XcnedNsvwfEShMAAABglNOras+q26Ub2PfM7r4pSWb/TvU6fViSz6y6f8Ns20GXVdU1VfUHVfXg+wuc+1sOAwAAAMeNW7t76VAPVtV/SnLWxEO/uM7j18S2nv37e0n+1ez+v0rym0l+4r4OpmgCAAAAC+Z4bQTb3U8/1GNV9bdV9dDuvqmqHprksxPDbkjy8FX3z0ly4+zYf7vqWP8uydvubz4uzwEAAACOBX+U5Lmzj5+b5MqJMX+V5FFV9Yiq2pbkObP9Miu0HHRJkmvvL9BKEwAAAOBY8KtJ/kNV/U9J/ibJDyZJVZ2dA28t/J3dvVxVlyV5Zw685fAfdPd1s/1fWVUX5sDlOXuT/OT9BSqaAAAAAAuvuz+X5Nsntt+Y5DtX3X9Hkq96O+Hu/rGNZm7eoskZZySXXTYk6swH3TUkJ0ly++3DorafdfK4rO3DorIlK+PCzj9/XNappw6LGvrCcdFFI9OSHTvGZb33veOylg7Za+uIe+z5A7/HNqmbbz5hXNiDxj03VgZeFXzy9nHPw5Gf17at4z6vnTvHfV5Dfzbv3z8u64ILxmUNNvScDTTy+3nkrxyPPm9zviZudsdrT5NF4xkNAAAAMEHRBAAAAGCCogkAAADAhM3b0wQAAACOYXqazJ+VJgAAAAATFE0AAAAAJiiaAAAAAEzQ0wQAAAAWTLeeJovAShMAAACACYomAAAAABMUTQAAAAAmKJoAAAAATNAIFgAAABaMRrCLYVOtNKmqS6tqT1XtueX22+c9HQAAAOAYtqmKJt29u7uXuntp56mnzns6AAAAwDFsUxVNAAAAAI4UPU0AAABgwehpshisNAEAAACYoGgCAAAAMEHRBAAAAGCCniYAAACwYPQ0WQxWmgAAAABMUDQBAAAAmKBoAgAAADBBTxMAAABYQHqazJ+VJgAAAAATNu9Kk6/92mRpaUjU3cvjak9bzzp5WNa+fcOicsr+z44LO/30cVnPeta4rL17h0Utn/MNw7K2XXXVsKwkycUXj8v6/OfHZe3fPyzq7q3jXqdGGvglzIMfPC4r733/sKj9F33bsKyPfGTcz+Zv/uZhUVkZ+Peukc/5rVvHfV7bhiVtbiOfixy+X/v1cefrJS8ZFgVDeLUDAAAAmKBoAgAAADBh816eAwAAAMeobo1gF4GVJgAAAAATFE0AAAAAJiiaAAAAAEzQ0wQAAAAWjJ4mi8FKEwAAAIAJiiYAAAAAE+ZWNKmqy6rqk1V1XVW9Yrbt16vq41V1TVVdUVWnzrY/pKreXVX7qup35jVnAAAA4Pgxl54mVXVikl9O8qgkdyT5TFW9Msm7krysu5er6teSvCzJzyfZn+SXklwwuwEAAMCmpafJYpjXSpMzk9zc3bclOX+27Y7u/rPuPvi0eH+Sc5Kku/+uu9+bA8UTAAAAgKNuXkWTLUm6ql6W5JokV3b3ypoxP5HkT4bPDAAAACBzbgTb3a9IsjPJrqp64cHtVfWLSZaTvGEjx6uqS6tqT1XtueWWW47sZAEAAIDjylx6mqzW3bdV1RuTPDlJquq5SZ6V5Nu7uzd4rN1JdifJ0tLShvYFAACARaGnyWKY50qTh1fVo2cfPynJJ6rqmTnQ+PV7uvuu+U0NAAAAON7Nc6XJcpIrq2o5yfU5UCy5OsmJSd5VVUny/u5+UZJU1d4kpyTZVlXPTvId3f3R8dMGAAAAjgfzLJrc1N1r3z74vEMN7u5dR3c6AAAAAP+vuTaCBQAAAFhUc1lp0t17k6xdZQIAAABEI9hFYaUJAAAAwARFEwAAAIAJiiYAAAAAE+b57jkAAADAIehpMn9WmgAAAABMUDQBAAAAmKBoAgAAADBh0/Y02b8/+eT1Y2pC55wzJCZJsi13D8vavn3bsKzcfPu4rO3bh0Wt7DhlWNaWs84alrXt5r8ZlnX3M79nWFaSbB35qviPv2tY1JasDMvaNjDrrv3jav+nbB/3+ruyddzr720XftuwrHf98bCoXHzxuKzN6uStm/M5v7L15GFZI418nR/t4x8fl/XY88d9HW+7fdzPsB/7sWFR2Xb7Z8eFbXLdeposAitNAAAAACYomgAAAABMUDQBAAAAmLBpe5oAAADAsUpPk8VgpQkAAADABEUTAAAAgAmKJgAAAAATFE0AAAAAJmgECwAAAAtGI9jFYKUJAAAAwARFEwAAAIAJiiYAAAAAEzZVT5OqujTJpUly9tnnznk2AAAA8MDoabIYNtVKk+7e3d1L3b304AfvnPd0AAAAgGPYpiqaAAAAABwpiiYAAAAAEzZVTxMAAADYLPQ0mT8rTQAAAAAmKJoAAAAATFA0AQAAAJigpwkAAAAsmG49TRaBlSYAAAAAExRNAAAAACYomgAAAABMUDQBAAAAmKARLAAAACwYjWAXw6Ytmtx5Z/Knfzom6wUvGJOTJNm7d1jUtl27hmXl9NPHZd1++7CoLXv2DMu6c+nbhmWdMvB8bbvh08OykmRl1zcMy9py+23DslZOPW1Y1sgf7tu3j8sa+SPzlluGRWXnznFZ3/iN47LOfPDdw7JWsm1Y1lBbxz3nt2RlWNZIKwMXdY/MSob+OpWbbx6X9djzx2WN/Bm2b9+4rJx+6sAwOPpcngMAAAAwQdEEAAAAYMKmvTwHAAAAjlV6miwGK00AAAAAJiiaAAAAAExQNAEAAACYoKcJAAAALBg9TRaDlSYAAAAAE+ZWNKmqy6rqk1V1XVW9YrbtB2f3V6pqadXYb6mqq2e3D1fVJfOaNwAAAHB8mMvlOVV1YpJfTvKoJHck+UxVvTLJtUm+L8nvr9nl2iRL3b1cVQ9N8uGq+uPutlgJAAAAOCrm1dPkzCQ3d/dtVfW42bY7uvvzSVJV9xrc3Xeturs9SQ+ZJQAAAMyJnibzN6/Lc7Yk6ap6WZJrklzZ3Sv3tUNVPamqrkvykSQvssoEAAAAOJrm2gi2u1+RZGeSXVX1wvsZ+/909+OSfHOSl1XV9rVjqurSqtpTVXv27bvl6EwaAAAAOC7M/d1zuvu2JG9M8sR1jv9Ykr9LcsHEY7u7e6m7l3bs2HlkJwoAAAAcV+ZZNHl4VT169vGTknziUAOr6hFVtXX28dcneUySvUd9hgAAAMBxa16NYJNkOcmVVbWc5PokPz97K+FX5cAlO2+vqqu7+x8leUqSl1bVl5OsJPn/dPet85o4AAAAHE3dGsEugnkWTW7q7rWX2Fwxu91Ld78+yeuHzAoAAAAgC9DTBAAAAGARzWWlSXfvzUQjVwAAAIBFMc/LcwAAAIAJeposBpfnAAAAAExQNAEAAACYoGgCAAAAMEFPEwAAAFgweposBitNAAAAACYomgAAAABM2LSX59x+e/K2t43JevFzPjsmaLSt454eK6eeNixry+23D8vKW94yLOqUkefrKf9wWNaWXbuGZSXJlrf8h3Fht9wyLuun/umwqG1bV4ZlZd++cVkDfc3XnDIsa8v+u4ZlnX/+ycOy8odvGha15Ud/dFjWysC/d43MGmnLzTeOCzvr7HFZg+3YMS5raWlc1kjbt4/LGvhr4uAwOPo8owEAAGDB6GmyGDbnnxAAAAAADpOiCQAAAMAERRMAAACACYomAAAAABM0ggUAAIAFpBHs/FlpAgAAADBB0QQAAABgwrqLJlV1VlW9qao+VVUfrap3VNWjq+qLVfWhqvpYVX2gqp67ap/nVdUtVXV1VX28ql5yiGNfXFVvW7Pt8qr6gdnHb6iqT1TVtVX1B1X1NQ/0EwYAAABYj3X1NKmqSnJFktd193Nm2y5McmaST3X3E2bbviHJW6tqS3e/drb7m7v7sqp6SJJPVNVbuvszG5znG5L86Ozjf5/kBUl+b4PHAAAAgGNCt54mi2C9K02eluTL3f3qgxu6++ok9yp+dPenk/xMkhevPUB3fy7J9UkeutFJdvc7eibJB5Kcs9FjAAAAAGzEet8954IkH1zn2L9Ocv7ajVV1bpLtSa45xH5PraqrV90/N8naS3a+JsmPJfnpdc4FAAAA4AE5Gm85XGvu/3BVPS3JY5K8sLv3H2K/93T3s75ykKrLJ8b82yR/0d3vmQyuujTJpUmyffu5G503AAAAwFest2hyXZIfWOfYJyT52Kr7B3uaPDnJ26vqT5I8Ocm/mD3+gvUctKr+RZKdSX7yUGO6e3eS3UlyyilLvc75AgAAwMLpXpn3FI576+1p8udJTqyqFx7cUFXfnOTrVw+qql1JfiPJq9YeoLvfl+T1SX66u6/o7gtntz33F15VL0jyj5L8SHvWAAAAAAOsq2gya8B6SZJnzN5y+LokL09yY5JHHnzL4ST/IcmrVr1zzlq/luT5VfWgDc7z1TnwTj3vm7198f+6wf0BAAAANmTdPU26+8YkPzTx0En3sc/lSS5fc4yzJsZdleSqNduet+rjo9F7BQAAAOCQFCMAAABg4XSSe+Y9iePeenuaAAAAABxXFE0AAAAAJiiaAAAAAEzQ0wQAAAAWkp4m82alCQAAAMAERRMAAACACYomAAAAwMKrqtOq6l1V9V9m/z74EOP+oKo+W1XXPpD9V1M0AQAAAI4FL03yn7v7UUn+8+z+lMuTPPMw9v+KTdsI9owzkhe9aEzWyulnjAlKsmXv3mFZI21Zvntc2NaBT/uf/dlxWQNt2XfnuLDt28dlJcmznz0samXrtmFZm9aOHcOi7l4e93eG027+m2FZn7793GFZ37BrZVhWLrpoWNTKwL9Bbcm4r+Gd+8Z9XiNf6redeuq4sE1s5K9TA1/qN60TTpj3DHhgOhrBfpXvTXLx7OPXJbkqyc+vHdTdf1FVux7o/qtt2qIJAAAAsHBOr6o9q+7v7u7d69z3zO6+KUm6+6aq2ugKhg3vr2gCAAAAjHJrdy8d6sGq+k9Jzpp46BeP3pQOTdEEAAAAWAjd/fRDPVZVf1tVD52tEnloks9u8PAb3l8jWAAAAFhIK5vwdlj+KMlzZx8/N8mVR3t/RRMAAADgWPCrSZ5RVf8lyTNm91NVZ1fVOw4Oqqo3JnlfksdU1Q1V9T/d1/73xeU5AAAAwMLr7s8l+faJ7Tcm+c5V939kI/vfFytNAAAAACZYaQIAAAALp5PcM+9JHPesNAEAAACYoGgCAAAAMEHRBAAAAGCCniYAAACwcPQ0WQSbaqVJVV1aVXuqas8dd9wy7+kAAAAAx7BNVTTp7t3dvdTdS1/3dTvnPR0AAADgGLapiiYAAAAAR4qiCQAAAMAEjWABAABgIWkEO29WmgAAAABMUDQBAAAAmKBoAgAAADBBTxMAAABYOB09TebPShMAAACACYomAAAAABMUTQAAAAAm6GkCAAAAC2ll3hM47llpAgAAADBh0640+dznkj/8wzFZF100JidJzj7nnHFht946LOruU88YlrXtrLOGZa1s3TYsa8vttw3LGvncyI4d47KSrJw+7rl4883DonL77eOyTj11XD3+7LPG/fVl29ZxWX974rnDsrYP/E3gz68a99w477xHD8sa+JM5KwP/3nXK9ruHZd21PO7n5XJOHpa1dXlY1NCfKUly4onjsk46aVzW+98/7nvsO54+7ufKmQ8e92RcybjvZxjBShMAAACACZt2pQkAAAAcuzrJPfOexHHPShMAAACACYomAAAAABMUTQAAAAAmKJoAAAAATNAIFgAAABaORrCLwEoTAAAAgAlzK5pU1WVV9cmquq6qXjHb9oOz+ytVtbRq7DOq6oNV9ZHZv982r3kDAAAAx4e5XJ5TVScm+eUkj0pyR5LPVNUrk1yb5PuS/P6aXW5N8t3dfWNVXZDknUkeNnDKAAAAwHFmXj1Nzkxyc3ffVlWPm227o7s/nyRVda/B3f2hVXevS7K9qk7s7i8NmS0AAAAMp6fJvM3r8pwtSbqqXpbkmiRXdvfKOvf9/iQfUjABAAAAjqa5NoLt7lck2ZlkV1W98P7Gz1al/FqSnzzE45dW1Z6q2vOlL91yZCcLAAAAHFfm/u453X1bkjcmeeJ9jauqc5JckeTHu/tThzjW7u5e6u6lE0/ceeQnCwAAABw35tXTJEkeXlWP7u5PJnlSkk8camBVnZrk7Ule1t1/OWh+AAAAMCcdPU3mb54rTZaTXFlVH0lydpLXVNUlVXVDkicneXtVvXM29rIk5yX5paq6enY7Yz7TBgAAAI4H81xpclN3X7Bm2xWz2710968k+ZUhswIAAADIAvQ0AQAAAFhEc1lp0t17k6xdZQIAAAB8xcq8J3Dcs9IEAAAAYIKiCQAAAMAERRMAAACACYomAAAAABPm+ZbDAAAAwKROcs+8J3Hcs9IEAAAAYIKiCQAAAMCETXt5ziMfsZK3/uFdQ7JWtp88JCdJsnf/uKw/+ZNhUdsuuWRYVs46a1jUlpHvq75jx7Cou3ecNixr/8CnfJKM+yoOPWU59dRxWSdvH/i837dvXNbevcOizjz99GFZI58cr75q3M/Lb7t43PNwZeDfoLbsH/O7TZJk67hfE7dvHxY19GfzyOfGuecMfO1NkhtuGJe185xhURdfPO6cDX3tWF4elnX7vm3DsmCETVs0AQAAgGObnibz5vIcAAAAgAmKJgAAAAATFE0AAAAAJuhpAgAAAAuno6fJ/FlpAgAAADBB0QQAAABggqIJAAAAwAQ9TQAAAGDh6GmyCKw0AQAAAJigaAIAAAAwQdEEAAAAYMKmKppU1aVVtaeq9txy663zng4AAABwDNtUjWC7e3eS3Umy9MQn9pynAwAAAIdhZd4TOO5tqpUmAAAAAEeKogkAAADABEUTAAAAgAmbqqcJAAAAbA6d5J55T+K4Z6UJAAAAwARFEwAAAIAJiiYAAAAAE/Q0AQAAgIWkp8m8WWkCAAAAMEHRBAAAAGCCogkAAADABD1NAAAAYOF09DSZv81bNPnCF5J3v3tI1P6nfdeQnCQ5+dRTh2Xlu797XNZI73//uKyR52vruG/nbeedNy5rx7CoA26+eVjUKWedNSzr7uWBCwuXl4dFrew4ZVjWll27hmXlT/90XNbS0rCo5eVvGJaVj398WNSWga+J2b59XNZAW7IyLOuu/eNeDwe+HGbPnrELyC+66NxhWSfvv2tY1lv+48nDsp7znGFRQ39PHBgFQ7g8BwAAAGCCogkAAADABEUTAAAAgAmuOAMAAICFpBHsvFlpAgAAADBB0QQAAABggqIJAAAAwAQ9TQAAAGDhdJKVeU/iuGelCQAAAMCEuRVNquqyqvpkVV1XVa+YbfvB2f2VqlpaNfYhVfXuqtpXVb8zrzkDAAAAx4+5XJ5TVScm+eUkj0pyR5LPVNUrk1yb5PuS/P6aXfYn+aUkF8xuAAAAAEfVvHqanJnk5u6+raoeN9t2R3d/Pkmq6l6Du/vvkry3qs4bO00AAACYl3vmPYHj3rwuz9mSpKvqZUmuSXJldx92h5uqurSq9lTVnlvuuOOwJwkAAAAcv+baCLa7X5FkZ5JdVfXCI3C83d291N1LO7/u6w5/ggAAAMBxa+7vntPdtyV5Y5InznsuAAAAAAfNq6dJkjy8qh7d3Z9M8qQkn5jjXAAAAGCBdPQ0mb95rjRZTnJlVX0kydlJXlNVl1TVDUmenOTtVfXOg4Oram+S/yPJ86rqhqp67DwmDQAAABwf5rnS5KbuXvv2wVfMbl+lu3cd9RkBAAAAzMy9pwkAAADAIprLSpPu3ptk7SoTAAAAgIUxz8tzAAAAgEkawS4Cl+cAAAAATFA0AQAAAJigaAIAAAAwQU8TAAAAWEgr857Acc9KEwAAAIAJ1d3znsNRsfTEJ/ae9753TNitt47JSXLX6ecOy9q+fVhUbr55XNZZZ43L2nL7bcOy7tp+2rCs5eVhUUOfh0mybd+4c3Zbxp2z004d+FeKgU+Qla3bhmVtGfiXnhtvHvc3jaGvict3jwu76qpxWRdeOCxq5fQzhmWNfK3ftnXga9Q//+fDou5++f8+LGvr4PXjW669ZlzYwBeqkd9jI3+ujLQy8O/yJ5xQH+zupWGBg1Wd18lvzHsaR8Elx9R5s9IEAAAAYIKeJgAAALBwOsk9857Ecc9KEwAAAIAJiiYAAAAAExRNAAAAACboaQIAAAALSU+TebPSBAAAAGCCogkAAADABEUTAAAAgAnrLppU1VlV9aaq+lRVfbSq3lFVj66qL1bVh6rqY1X1gap67qp9nldVt1TV1VX18ap6ySGOfXFVvW3Ntsur6gdmH19WVddXVVfV6Q/0kwUAAABYr3U1gq2qSnJFktd193Nm2y5McmaST3X3E2bbviHJW6tqS3e/drb7m7v7sqp6SJJPVNVbuvszG5znXyZ5W5KrNrgfAAAAHIM6GsHO33pXmjwtyZe7+9UHN3T31UnuVfzo7k8n+ZkkL157gO7+XJLrkzx0o5Ps7g91996N7gcAAADwQK33LYcvSPLBdY796yTnr91YVecm2Z7kmkPs99SqunrV/XNzYHXJulXVpUkuTZJzH/7wjewKAAAAcC9HoxFsrbn/w1V1XZJPJ/mt7t5/iP3e090XHrwl+aONBnf37u5e6u6lnadrfQIAAAA8cOtdaXJdkh9Y59gnJPnYqvsHe5o8Ocnbq+pPkjw5yb+YPf6CdR4XAAAAjiN6mszbelea/HmSE6vqhQc3VNU3J/n61YOqaleS30jyqrUH6O73JXl9kp/u7itWrSrZ80AnDwAAAHC0rKto0t2d5JIkz5i95fB1SV6e5MYkjzz4lsNJ/kOSV61655y1fi3J86vqQRuZZFW9uKpuSHJOkmuq6jUb2R8AAABgo9Z7eU66+8YkPzTx0En3sc/lSS5fc4yzJsZdlTVvJ9zdz1v18W8n+e31zhUAAADgcK27aAIAAACM0klW5j2J497RePccAAAAgGOeogkAAADABEUTAAAAgAl6mgAAAMDC6ST3zHsSxz0rTQAAAAAmKJoAAAAATFA0AQAAAJiwaXua3PihD+XlX/u1Q7Je/nd/NyQnSU5+99uHZeXJTx4W9dKXnjYs69nPHhaV3/mdzfl5PfOZ47LOOWdcVpJs27t3WNZpv/qiYVl5+cvHZX3oQ8Oitjz1qcOycv31w6Iuf/+3Dcv6hX910rCsXHLJuKx/82+GRd2144xhWbfeMCwqV189Lut7nrk8LuxZzxoWtW3/ncOysmPHuKwk2bVrWNTKjlOGZW35vd8dlrXyU/90WNaW6z85LOuZlz16WBaMsGmLJgAAAHBs0wh23lyeAwAAADBB0QQAAABggqIJAAAAwAQ9TQAAAGDhdPQ0mT8rTQAAAICFV1WnVdW7quq/zP598CHG/UFVfbaqrl2z/eVV9d+r6urZ7TvvL1PRBAAAADgWvDTJf+7uRyX5z7P7Uy5P8sxDPPavu/vC2e0d9xeoaAIAAAAcC743yetmH78uybOnBnX3XyS57UgE6mkCAAAAC2lT9jQ5var2rLq/u7t3r3PfM7v7piTp7puq6owHkH9ZVf14kj1J/ufu/vx9Db7foklV3ZPkI6s2Pbu7964Zc1GS30py4uz25iT/LclPz4Y8NskncuCM/2l3v7SqXpLkFTnwSd8xO87FSa5M8ukkJyV5Ww5Uj14/O865Se6Y3W7t7qff3/wBAACAhXFrdy8d6sGq+k9Jzpp46BePQPbvJflXOdBl918l+c0kP3FfO6xnpckXu/vC+xnzuiQ/1N0frqoTkjymuz+a5LVJUlV7kzytu29dtc+PJPmrJJfkwPVGB72nu59VVScl+VCSKw7mV9XlSd7W3W9Zx7wBAACAY8h9LY6oqr+tqofOVpk8NMlnN3jsv111rH+XAws17tOR6mlyRpKDS2TumRVMDqmqHplkR5J/ngPFk6/S3V9McnWShx2hOQIAAADHrj9K8tzZx8/NgStV1m1WaDnokiTXHmrsQespmpy06u14rjjEmH+d5BNVdUVV/WRVbb+fY/5IkjcmeU+Sx0xdhzR766BHJfmLdczx4D6XVtWeqtpz13p3AgAAgIXTSVY24e2w/GqSZ1TVf0nyjNn9VNXZVfWVd8KpqjcmeV8O1BtuqKr/afbQK6vqI1V1TZKnJXnJ/QUekctzuvtfVtUbknxHkv8xB4oiF9/HLs9Jckl3r1TVW5P8YJLfnT321Nkn8Jgkv9rdN69jjgfnsTvJ7iQ5u6rXux8AAACw2Lr7c0m+fWL7jUm+c9X9Q13R8mMbzXxAl+dU1WtnK0++Usnp7k919+/lwCfwTVX1kEPs+/gcWEHyrlmvk+fk3pfovKe7H5/kG5P8VFVd+EDmCAAAAHA4HlDRpLuf390Xdvd3JklVfVdV1ezhR+XAu+TcfojdfyTJy7t71+x2dpKHVdXXr8n4ZA68u87PP5A5AgAAAByOI9UI9sdyoKfJ1Tnw9sD/pLsP9YbSz0mytjfKFbPta706yT+sqkccoXkCAAAArMv99jTp7h3rGDNV8Fj9+K5VH39VAaS7f2bV3atWbf9iVr17Tnc/7/7mAgAAAJvDodYiMMqRWmkCAAAAsKkomgAAAABMUDQBAAAAmHC/PU0AAACA0Tp6msyflSYAAAAAExRNAAAAACYomgAAAABM0NMEAAAAFo6eJougunveczgqquqWJP/tAex6epJbj/B0ZMmSJUuWrM2UNTpPlixZsmTJmvL13b3zSE9mUVSd08lPz3saR8H/8sHuXpr3LNZr0640eaDfPFW1Z9QJlCVLlixZso7FrNF5smTJkiVLFsyLniYAAAAAEzbtShMAAAA4tulpMm9Wmny13bJkyZIlS5ashcqTJUuWLFmyYC42bSNYAAAAOFYdaAR72byncRS87JhqBGulCQAAAMCETVc0qaqLq+q/VdVVs9vXrXrsZ6vqfVX13qp6eVX99GzM3qr68Ozj/6GqnlpVt1fVttl+u6rqb6v+/+3dfYxt1VkH4N9rYymJ9ZPSFpLWRrEYS5uQYERJpYUaVNR+aGIUImlT02BiY9BqRT5amxjBJoKKtan9AG2iEQiVGLAWpQrVQmsjVmv9g0asVK3ABU1L4d7lH3tPe+69a86cO8yZs+fM8ySTmTl77zXv2mfttfZ5zzpr6i+r6sNV9ZKZ8g9U1Seq6nPjtpur6k+r6m+r6i+q6qaq+taxnCvHv3NnVb2rE/uVVXXuzO9/M35/bVXdX1V/sEXdq6puHP/2+6rqq8f6/u9GDON+t4z1O3deeVOxSL2q6plV9aHxObi1qp656riTpKrOGZ/vZbWNK8Zz8ZGqOmdOHIu2jQ+PMXyoqk7c2bOx8zr1ekFV/fVYj/dX1dPG/fZ6mz+qXlNt8/vRotfXuO/pVdWqau6aYrvQd7x5LPueqnrV+Ni88fNfZh6/bnzsM1X1uplj3zb+fKCq7qhhzHzbeD5WMTb/VVXdtqTzuOlz3Dl2ofZRe7+f2jNjc7LUa+wF1RmHVq3zfHXjXIN2eFS9ptwON3MM/cbC921LbPMnVNXd4/4fqKrjZ7YtbVzZ/tmFY7d2SZPRDa21s8evA0lSVV+b5PzW2pmttbOSXNNau6a1dnaS9ya5ZNz/ziSvTvInSWZfhH6wtfayJL+c5MKN8pP8c5IDSU5prb00yS8meXqSC1pr5ya5LMm7q6rGci5prX3vGNOLFqzPB5K8YoH9TkvyaGvtuzL8r/MTkrxyrMusNyT5zQX/9hQsUq8nMpzzlya5JclFuxzjUarqhCSXZ2h3y2ob17fWzkzy/UmumLPfom3jnDGG65P81IIxrNKR9fpikh8az/f9SX5g3G+vt/levSbX5vexRa+vJPmZJB+fV9gu9R2/MZb9srH8DUeNn6P/nnn84o3HklzQKfu+1trLxzHzibHO3bKXODbfl+RHkxy/pPP4ZDZ/jo9kbJ5YP7Xka+yR9MehVTNeTqwdbmFH79uW3OYfTnLWuP/Hkpx/xPZljiv7QMuwEOy6fe0t65o06TmY5DlV9ZIkaa09PGffb0vylgyd05G+/ojfvzFDZ/DYWO6nkzy4sbG19skMnfbzjjju67Kg1trnM9ygbeUbkny2qp6R5MQk/9Na+89OeQ8edeS0bVmv1toXZ+r1ZKZxNf5glt827h9/fDxDr7qZRdvGE+OPxyf55KJxrFCvXo+M277cDtakzT8ybnsyycGJtvljVlXHje+mfbSqLq6q3191TNuw0PVVVd+R5IEkj21R3m70HbPX+j8uetwRHk9yV1XNS+r/Wua/aFzW2Jws8Ty2wVHP8SaMzYMp9VPLbBsP98ahCTBezjy2+2Ees52+b1tmmz/YWjs0/vq0JP+61TFz7MS4AjtuXZMmF45Tvd6z8UBr7f+SvDHJ1VX16ap6Ze/Aqjo9yb2ttQeSPLuqNs7RK6rqniTXJbl25pCnZ6bT2cR/JHnO+PPbq+ozSR5vrfVuVN++MVVt5phFbWSHP5Uh67suq/wuXK+q+pokP53k/bsQ11aem91rG1cm+b05f2ehc1hVz6uqj2RYceq+LWKfgm69quqkJOcm+fMVxfVULVyvibX57XhNhnemzkzy80nuXG0427JoH/VzSX57gfJ2pe8Yp0P/Q5I7ZvY9avwcPWtmGvXlM4//TpKLs4nW2peSbEyj3s2xOdn587hdxubp9VNLbxsTHIeMl9Nrh/Ps9H3bUtt8VX1nVd2b5OUZki+zljmuwK5Y16TJDeP03DfN3CimtXZ7a+37MtycX7bJsa9Ock5V3ZbkhUm+e3z8g621M5LckGR2mtqXkpy0RTwn5ysd1SUZptydWFXPqKqNm9nzNrbPTC/+3GLVPVxr7Zsz3AS/fjvHT9VW9RqnFL47yaUz7zKs0oPZhbZRw3oE39Ra2/ImYKtz2Fr7tzZ83OeKDC9g94TZelXVcUnel+T1rbVFZmhN1lb1mmCb347nJ/lEa+1ghnfJbl9xPNs27/qqqlOSHBhnDm5lV/qOcTr0qUkunSm3O37m8GnUb50p48EMM2dO7QVZw/ojG++E7ubYnOz8eXxKjM2T6qeW2jamPA4ZLyfVDre0g/dtS23zrbWPtuE/odyc5LVHbF7muAK7Yl2TJkmS1tqXL8aqOr6qTh43PZrNL7YzWmtntdbOS/Kq8WvW1Ul+Yeb3h5JcUOOiUjUsovTcjY1V9e0ZXhQ8MBPXY0luTHJRa23jZva27df0MBsZ4geSHLdDZU7BIvV6a5K7Wmt3bLJ9t/1Zltw2qurFGT7XuchnO+eewxoWGdt4Z+PRJF9YoMwpOLJe70xyXWvtn1YX0o5YpF5Ta/Pb8e9JThpnDrwoe/fdo636qNOSnDG+6H9xknfMKWs3+o6NGL+Q4Xo/zOz4OSfODdcm+dlNtr0pya2blb3EsTnZhfN4DIzN0+qnlt02pjoOGS+n1Q63spP3bUtr82MSY8OmcSxzXFl/h9bwa2+Zu3r/mjkuyfXjjeJXpbPIVVW9MMl/bfzeWvtUVZ2Z5LdmHnukqh6oqtNbax/P8NnIX01y69hxPZRh9skfVtVjGTKlr2utta/0a0mGqYG3Z/6N80Zc5yf5pSTfUlU3ttZeM2f3c6rq7jGGH6+qP05yVpJTquqq1totVXVthkWafriq3tFae+dWMUzA3HoluSfDolZ3jzMv/qi19rurC3cYHKpqqW0jwwuFZye5vaoOtNZ+ZM6+W53Dv09yQ1UdyvCZ0ouOobqrNFuvN2e4MXp+Vb0xw6KSN69Bmz+qXkn+LhNr89t0U5J3ZVjs+r1JrkryE6sMaJu26ntvylDXjO+yvWGzgnap77imqk7N8BHTqxfY/1kz7w5+trX2kzPx3ltVD83se1pV3ZFhevldSX49yfdsUu6yxuZlnMerZur5Yxk+EnnY+LpJHRNj86T6qSW3jcsyzIw6bBxaYnWOhfFyQu1wATt237bkNn/pGM+hsdwLF6zfUx1XYNdUa+vy0Vqq6uwk57bWfmXFoeyoda3XblrXc6heTIHni3nWtX2sa73W1bo+X+rFuqs6uc15n2UPu/xj40e69oS1/ngOAAAAwHaZaQIAAAATU3VSG/7p07p5i5kmAAAAAHudpAkAAABAh6QJAAAAQMd++pfDAAAAsIccXHUA+56ZJgAAAAAdkiYAAAAAHZImAAAAAB2SJgAAAAAdFoIFAACAyWmxEOzqmWkCAAAA0CFpAgAAANAhaQIAAADQYU0TAAAAmKRDqw5g3zPTBAAAAKBD0gQAAACgQ9IEAAAAoMOaJgAAADA5LcnBVQex75lpAgAAANAhaQIAAADQIWkCAAAA0GFNEwAAAJgca5pMgZkmAAAAAB2SJgAAAAAdkiYAAAAAHZImAAAAAB0WggUAAIBJshDsqplpAgAAANAhaQIAAADQIWkCAAAA0GFNEwAAAJicFmuarJ6ZJgAAAAAdkiYAAAAAHZImAAAAAB3WNAEAAIBJOrTqAPY9M00AAAAAOiRNAAAAADokTQAAAAA6rGkCAAAAk9OSHFx1EPuemSYAAAAAHZImAAAAAB2SJgAAAAAdkiYAAAAAHRaCBQAAgEmyEOyqmWkCAAAA0CFpAgAAANAhaQIAAADQYU0TAAAAmJwWa5qsnpkmAAAAAB2SJgAAAAAdkiYAAAAAHdY0AQAAgMmxpskUmGkCAAAA0CFpAgAAANAhaQIAAADQYU0TAAAAmCRrmqyamSYAAAAAHZImAAAAAB2SJgAAAAAdkiYAAAAAHRaCBQAAgMlpSQ6tOoh9z0wTAAAAgA5JEwAAAIAOSRMAAACADmuaAAAAwCQdXHUA+56ZJgAAAAAdkiYAAAAAHZImAAAAAB3WNAEAAIDJabGmyeqZaQIAAADQIWkCAAAA0CFpAgAAANBhTRMAAACYHGuaTIGZJgAAAAAdkiYAAAAAHZImAAAAAB2SJgAAAAAdFoIFAACASTq06gD2PTNNAAAAADokTQAAAAA6JE0AAAAAOqq1tuoYAAAAgBlVdVuSE1YdxxJ8vrV23qqDWJSkCQAAAECHj+cAAAAAdEiaAAAAAHRImgAAAAB0SJoAAAAAdEiaAAAAAHT8P/HO96Ij4i2SAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAASFCAYAAAAfCU0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3yN1x/A8c9zb3ZCIkKsiC1qxagQKwli59eqFrHV6KCq1UlVW6M60GrVLrVbFFV7hNh7xIgREdmJ7Nyse+/z++PGJcRWo/2+X6/7kvs855x7zvM88nK/zvkeRVVVhBBCCCGEEEIIIYS4G83T7oAQQgghhBBCCCGEePZJEEkIIYQQQgghhBBC3JMEkYQQQgghhBBCCCHEPUkQSQghhBBCCCGEEELckwSRhBBCCCGEEEIIIcQ9SRBJCCGEEEIIIYQQQtyTBJGEEEII8VxQFCVIUZTwf6DdCoqiqIqijH3cbYvbKYpipyjKj4qiRCiKYvgn7ul99qPQ+55/bP7T6JMQQgjxrJMgkhBCCPEMUBTFJ//L68i7lFEVRVn3JPslHo6iKB3z79fUe5T7Ir9c4BPq2rPgI2AYsBzoB7z7NDsjhBBCiPtn8bQ7IIQQQgjxlF0BbAH9Y2xzIxAF9FQU5QNVVfNuLaAoigL0BVKAVY/xs591bYBTqqp+8JT78U/cdyGEEOJfTWYiCSGEEOI/TTXJVlX1sQUTVFU1AAsAF6DzHYr5Ae7AElVVsx/XZz8HSgFJT7sT/8R9F0IIIf7tJIgkhBBCPOcURWmoKMqfiqIkKoqSoyhKqKIooxRFsbilXCNFUeYrinJeURSdoijpiqLsURTl5VvKTcpfYlWnkM9yVBQlS1GU1YqiWCmKkqAoyu479OvD/Haa38cYSuXnyQnLH0O8oihbFEVpU0jZMoqiLFUUJVlRlExFUTYpilLtljJFFEUZpyjKgZuuy0VFUb5WFMXulrK35ca5+ZiiKJ0URTmkKEq2oigxiqJ8e+u1vYN5gAoMuMP5ATeVuydFUd7Mv7fZ+fdwqKIo/fL76XNLWcf8+3gxf+wJ+des0i3lrtf3UxRlpKIol/LLn1cUpe8d+tFaUZTNiqKk5PflpKIob9xH//spiqICFYGW+Z9rvu6KovgrirI8/xnIym9/s6IoLQtpK0hRlPD8+/Rnftnk/OfbQVEUjaIonyqKcjm/j0cVRWl6Sxv3zIX1OJ9xIYQQ4t9AlrMJIYQQzxY7RVFc7rewoigdgD+Bi8D3mGZ4NAG+BDyBV28q/jLgAfyOaSlPcUzLqVYpitJTVdUl+eUWAB8CfYBbczS9BtgAC1RVzVUUZQHwvqIoHqqqnrulbH/gvKqqwfcYQwVgD+AK/AYcBuyBxkBrYMtNxe2BXcB+4FNMAYnhwBpFUWrlzwACKAsMBFYCSzAtWWqZP656QNu79ekmHYC3gBmYgj3/w3RNkoEJd6uoquolRVF2Ae0URSmtqmrMTWN2xHQ/TqiqeuRenVAU5SPga+Bo/rjtgA+AhELKOgJ7gfL5fT4NlM4fxwFFURqqqnrllmoTMC3tmgnkAG8C8xVFuaiq6p6b2h6cfy32A+OBTEzL035RFKXyPZao7QJ6A1OAxPz6ACfz/+wHOGN6BiK5cQ+3KYriW8hzZA9sz2/3Y+BFTIE5G+Aa4AVMAywx3bO/FEVxV1U1/S59LOBxPeNCCCHEv4aqqvKSl7zkJS95yespvwAfTLNW7vVad1MdGyAW05doi1vaG5Ff3uemY/aFfK4dEAqcueX4ISAa0N5yPBhTAMAq/321/M/55pZyTfOPf3gfY1+fX7ZtIec0N/0cVFibmIIpBeoDVoBlIe19lV+20U3HKuQfG1vIsUygwk3HFSAEiLnP+9r7Dn0ekn/8nftowxnIwhRssbnpeCkgtZD7/EN++bq3tOMOpAHzbzrWL7/+sev3NP94WUzBpKU3HSsNZGNafndrH38ADEDl+xhPOBBUyPHCnk/X/Odt/S3Hrz8LH9xyfBVgxBSItLzpeEB++SF3u+/5x9VbrtEjP+Pykpe85CUvef1bXrKcTQghhHi2zMI0s6Ow163aYPqS/SvgpCiKy/UXpsAMgP/1wqqqZl7/WTFts14cUxBpO1BDUZSiN7W9AFPQoM1NdSpi+uK8VFXV3Pw2zwM7gT63LPF6HdPsnwV3G6yiKM5AO2Cjqqqbbj2vqqrxlkNG4Mdbjm3P/7PqTfVy1fxk1oqiWCiKUiz/umzNL+J1t37dZLWqquE3tasCO4BSiqI43Ef9FZgCPf1vOd4fU5Bm8X200QZTwPAX9abcSaqqxt5aX1EUBeiJKbAYdcszkYlpBpE/t5t+/Z7mtx0FnOemawp0BayBuTe3m9/2X5jSJLS6j/EU6pbn0yH/+TQAByj8fhkwzTS6WTCmQN8MtWAy8+szharygB71GRdCCCH+TWQ5mxBCCPFsuaCq6tbCTpjiAwXUyP/zbjl1XG+qXxIYh2lJVslCyjphmqkCsBSYjGlJ28b8Y30wfUG/9UvzLEzBjE7A6vzgymuYZk3F3aVvAFXy2zx2j3LXRau3J6G+lv9n8ZsPKoryFvAGUJPb80AWu8/PCyvk2M2fl3G3yqqqZimKshR4Q1GUJqqq7lMU5QVMQZHfVVW9drf6+Srm/xlayLlbj5XI75c/hSx1y3drYA7uPE73m95ff94KfT7zud7l3F0pilIZ0xK3tpiexZuphVSJKeRZSM7/83KByqqanP/3pzgP51GecSGEEOJfQ4JIQgghxPPrelTpA+D4HcpEg3mGymZMgYAfMS1XS8U0m6M/EMhNgRZVVa8pivI38JKiKEVUUx6ZXsBZVVUP3/IZK/PbfB1YDXTHlK9mzgOMobAgQWEMdzlnjrIpivIephxRm/P7Fg3kYlqmNZ/731zkvj7vHuZhCmb1B/ZxY1bS3Pusf7+fc3PZrcCkB6h3p3EqhfzcB4gppCwUHoy6p/ygzC5Mz81U4BSQjing9Qmmnexudbd7cz/jeRCP8owLIYQQ/xoSRBJCCCGeXxfy/8y80+ylm9QB6gJfqqr6+c0nFEUZeIc6C4CXgFcVRQnFNGvo41sLqaqaoyjKb8A7iqKUwfRFO4obM5juNQYVU7Lrx6k3ptw77W9eEqcoSrvH/Dn3pKrqIUVRTgLdFEUZiSkYd5W7z+i52fVZNdW5sXSPm47dLAFIAYrexzPxoK4/b4n/QNutgDLAAFVVf735hKIo4x7zZz2wR3zGhRBCiH8NyYkkhBBCPL82AfHAx/m5hQpQFMVWUZQi+W+vz8xQbilTC9MuYYX5G1NS4z75LyOw6A5lZwNaTLNfGmNKTHy3mSIAqKqaBGwA2iuK0rqQMTzszBEDpuDUzbOTLCgkCPaEzAOKYpq5Ugr4tZB8T3eyhfwd0xRFsbl+UFGUUpjyH5nlt7kYaKQoStfCGstf1vgwfs/vxxeKotgW0q6joijWD9n2nZ5Pf+4/f9U/7aGecSGEEOLfRGYiCSGEEM8pVVUzFUXpg2l5TaiiKPOAi5jyyXgAXTAFiIKAs5i2ev9QUZTrO7JVw7RLWAhQv5D28/Lz+QwFGgBb8xMuF9aXs4qi7MY0y0bl7nmabjUU05b0G/K3Uz+Cabt5L0yziT56gLauWwFMzG9zFaYATiCQd9da/5xFwDfAq5iuz693L35D/tLCL4AJwB5FURZhSog+GFPy64YUXA44ClMC9N8VRfkdUzLtXEz5jTpgur79HnQAqqpGKoryJqZA2FlFURYCVzDlYaqNadbaC5ju2YPajWmnwe8VRakARAKemGaUncpv/6l6xGdcCCGE+FeQIJIQQgjxHFNVdZOiKC9immHTC9MX+mTgEqbE2CfzyxkURekIfAf0xZTPJST/57oUEkTKtwAYBjgAv92jO7OAZsAOVVXvOzeOqqqXFUVpCHyGKcjRJ38MJ/LbfBjfYprV8jqm7edjgeWYgjdnHrLNh5YfCFqNKRnzjpt3fLvP+hMVRUkDhgNfAxHcGGNDIOumsqmKojQF3s//vP9h2kUsElOw5qHz+Kiq+quiKOeBkZgCkE6YZquFYrp/sQ/ZboqiKG0xBdqGYfo36hFMz8PrPANBpHwP9YwLIYQQ/xaKaadaIYQQQohHoyjKa5gCNYGqqi592v35L1AUZRqmmVxlVFW9U7Jr8ZjIMy6EEOK/ToJIQgghhHgsFEXZiWk5UzlVVXOedn/+TRRFsbl1O3tFUUoD54AIVVWflZk6/2ryjAshhPivk+VsQgghhHho+UmaWwHNgRbAJ/Ll+h/hoyjKt8AqTMvSKgCDMC0zfFrJwv8T5BkXQgghbpAgkhBCCCEexQvAEkzbys8Avn+qvfn3uogpz9UgoDiQDRwGJqqquvVpduw/QJ5xIYQQIp8sZxNCCCGEEEIIIYQQ96R52h0QQgghhBBCCCGEEM++53Y5m4uLi1qhQoWn3Q0hhBBCCCGEEEKIf40jR44kqqpaorBzz20QqUKFChw+fPhpd0MIIYQQQgghhBDiX0NRlCt3OifL2YQQQgghhBBCCCHEPUkQSQghhBBCCCGEEELckwSRhBBCCCGEEEIIIcQ9Pbc5kYQQQgghhBBCCCEeVFZWFmFhYRgMhqfdladKq9VSqVIlbG1t77uOBJGEEEIIIYQQQgjxnxEWFoaLiwslSpRAo/lvLtAyGo0kJCQQFhZGzZo177vef/NqCSGEEEIIIYQQ4j/JYDD8pwNIABqNhhIlSjzwbKz/7hUTQgghhBBCCCHEf9J/OYB03cNcA7lqQgghhBBCCCGEEE+QnZ2d+eeQkBB8fX1xc3OjZs2aeHl5sXHjRgCmTZtG3759C9Rt1KgRwcHBdO3ale+++67AuUWLFtGyZUsAXnvtNZydnalatepj67fkRBJCCCGEEEIIIcR/lueXm0nR5T229pzsLDk+xv++yup0Ojp16sSECRMIDAwE4PDhw+zbt4927drdtW5gYCCTJk1i5MiR5mPLli2je/fuAAwYMIDhw4fTr1+/hxtIIWQmkhBCCCGEEEIIIf6zHmcA6UHbmzVrFg0aNDAHkAAaNmzIsGHD7lk3ICCAsLAwrly5AkB6ejp79uyhR48eALRr1w4XF5cH7P3dSRBJCCGEEEIIIYQQ4ik4ffo09erVu2uZtWvX4uHhYX6FhIQAYGFhQfv27Vm4cCEAy5cvp3Hjxjg5Of1j/ZUgkhBCCCGEEEIIIcQzwN/fn6pVq+Lvf2M5XEBAAOfOnTO/atWqZT7Xq1cvVqxYAZiCSNdnIf1TJIgkhBBCCCGEEEII8RTUrFmTY8eOmd9v3ryZefPmkZKScl/1W7duTUJCAvv37+fIkSN07dr1H+qpiQSRhBBCCCGEEEIIIZ6CQYMGcejQIZYsWWI+lpmZed/1NRoNAQEB9OvXDz8/vwK7vv0TJIgkhBBCCCGEEEII8RTY29uzdu1aZs6cSbly5fD09GTcuHGMGjXqvtvo3bs3oaGhty1l69y5M82aNePy5cu4uroyderUR+6vxSO3IIQQQgghhBBCCPGccrKzfKw7tDnZWd6zjE6nM//s6enJzp07Cy1X2C5tBw8eLPDe29sbVVVvK/fXX3/dsx8PSoJIQgghhBBCCCGE+M86Psb/3oUEIMvZhBBCCCGEEEIIIcR9kCCSEEIIIYQQQgghhLgnCSIJIYQQQgghhBBCiHuSIJIQQgghhBBCCCGEuCcJIgkhhBBCCCGEEEKIe5IgkhBCCCGEEEIIIcQTZGdnZ/45JCQEX19f3NzcqFmzJl5eXmzcuBGAadOm0bdv3wJ1GzVqRHBwMF27duW7774rcG7RokW0bNmSS5cu4eXlRaVKlahSpQrjxo17LP22eCytCCGEEEIIIYQQQjyPJlWErKTH156tM3x0+b6K6nQ6OnXqxIQJEwgMDATg8OHD7Nu3j3bt2t21bmBgIJMmTWLkyJHmY8uWLaN79+5YWFgwefJkmjZtSkpKCp6ennTo0IH69es//LiQmUhCCCGEEEIIIYT4L3ucAaQHbG/WrFk0aNDAHEACaNiwIcOGDbtn3YCAAMLCwrhy5QoA6enp7Nmzhx49euDu7k7Tpk0BcHJyokqVKkRERDzgQG4nQSQhhBBCCCGEEEKIp+D06dPUq1fvrmXWrl2Lh4eH+RUSEgKAhYUF7du3Z+HChQAsX76cxo0b4+TkVKB+aGgop0+fpmXLlo/cXwkiCSGEEEIIIYQQQjwD/P39qVq1Kv7+/uZjAQEBnDt3zvyqVauW+VyvXr1YsWIFYAoi9ejRo0B7qampdOnShUmTJlGsWLFH7p8EkYQQQgghhBBCCCGegpo1a3Ls2DHz+82bNzNv3jxSUlLuq37r1q1JSEhg//79HDlyhK5du5rP5eTk0KlTJ1599VX69OnzWPorQSQhhBBCCCGEEEKIp2DQoEEcOnSIJUuWmI9lZmbed32NRkNAQAD9+vXDz8/PvOub0WikR48eVKtWjbFjxz62/koQSQghhBBCCCGEEOIpsLe3Z+3atcycOZNy5crh6enJuHHjGDVq1H230bt3b0JDQwssZdu6dSt//vknwcHB5lxKf/zxxyP31+KRWxBCCCGEEEIIIYR4Xtk6P94d2myd71lEp9OZf/b09GTnzp2Flitsl7aDBw8WeO/t7Y2qqgWO+fv733bscZAgkhBCCCGEEEIIIf67Prr8tHvw3JDlbEIIIYQQQgghhBDiniSIJIQQQgghhBBCCCHuSYJIQgghhBBCCCGEEOKeJIgkhBBCCCGEEEIIIe5JgkhCCCGEEEIIIYQQ4p4kiCSEEEIIIYQQQgjxBNnZ2Zl/DgkJwdfXFzc3N2rWrImXlxcbN24EYNq0afTt27dA3UaNGhEcHEzXrl357rvvCpxbtGgRLVu2RKfTUadOHapXr06VKlUYMWLEY+m3xWNpRQghhBBCCCGEEOI51GxZM1JzUh9be47Wjuzuvvu+yup0Ojp16sSECRMIDAwE4PDhw+zbt4927drdtW5gYCCTJk1i5MiR5mPLli2je/fu2NjYEBwcjKOjIzk5Obz44ots374dPz+/hx8YMhNJCCGEEEIIIYQQ/2GPM4D0oO3NmjWLBg0amANIAA0bNmTYsGH3rBsQEEBYWBhXrlwBID09nT179tCjRw80Gg2Ojo4A5ObmotfrURTlAUdyOwkiCSGEEEIIIYQQQjwFp0+fpl69encts3btWjw8PMyvkJAQACwsLGjfvj0LFy4EYPny5TRu3BgnJycA9Ho9Hh4euLq64uPjg6+v7yP3V4JIQgjxDAoJCcHb25vmzZvTv39/VFV92l0SQgghhBBC/MP8/f2pWrUq/v7+5mMBAQGcO3fO/KpVq5b5XK9evVixYgVgCiL16NHDfM7CwoJz584RERHBkSNHOHz48CP3T4JIQgjxjDGqKtWrV2fv3r0EBwcDPJZf+EIIIYQQQohnS82aNTl27Jj5/ebNm5k3bx4pKSn3Vb9169YkJCSwf/9+jhw5QteuXW8r4+LiQvPmzfnrr78eub8SRBJCiGdAcp6eD85dpeLOE5QJOkHLIxdZG58CgLW1NW5ubnz55Zf4+Pjg5+dHeHg4kyZN4u+//wZg9erVfP/994wdO5atW7cC0K9fP8LDw5/SiIQQQgghhBD3MmjQIA4dOsSSJUvMxzIzM++7vkajISAggH79+uHn52fe9S06OprExERze0FBQdSoUeOR+ytBJCGEeMoyDQY6HDnP8tgksoymZWthWTkMmrOAstVrEB8fT0JCAlFRUQQFBfHzzz8zceJEAgMDWb58OQB//PEH3bp1e5rDEEIIIYQQQjwge3t71q5dy8yZMylXrhyenp6MGzeOUaNG3XcbvXv3JjQ0tMBStqtXr9K8eXOqVauGp6cnvr6+dO/e/ZH7a/HILYjn1oEDBxgxYgRarZaGDRsyZcqUAueHDBlCSEgIiqIwffp06tSpQ79+/Rg9ejRVqlR5Sr0W4t/n95gkYnPyyL0l75HSpCXWTX1x/WMWZ86cISgoCB8fH9LS0oiIiODMmTNERUVx7do1UlJSKFeuHIqicPnyZZo1a8b58+fp1q0bFSpUeDoDE0IIIYQQ4jngaO34WHdoc7R2vGcZnU5n/tnT05OdO3cWWq6wXdoOHjxY4L23t/dtOVS9vLw4e/bs/XT3gUgQ6T/M3d2d7du3Y2NjQ8+ePTl16hS1a9cGwGg08vHHH1OxYkUuXLjAxx9/zMqVK59yj4X4d1oZl2yegXSdmpuLYmWFVoF0KxtiY2Px9/dn2rRpxMbGYm9vT5EiRfDy8qJHjx506dIFgKJFizJjxgz+/PNPOnfuzOTJk2nfvv3TGJYQQgghhBDPhd3ddz/tLjw3JIj0H3MtaTeXL08jM/M8lpbFcCvXj7JlA7GwsECr1eLr60vx4sXp0KEDAwYMAMDS0hKtVmtuY/LkyYSEhODj48OXX375tIYixL9GYfuu6datIHPedOIVhSxXVz7dto35fftSt2kzshITyMnOZvr06VSsWJG1a9eSmZnJ1q1b8fLy4vz587z//vuULFmS9PR0ALp06UJSUhLR0dH07t2bzz777MkOUgghhBBCCPHckyDSf0hk5GIuXJyI0ZgFgF6fxsVL37B330oSE/Ows7MjPj6erVu3FggaffLJJ7zzzjvm902bNmX69Ol06tSJqKgoypYt+8THIsS/yf9KOnEmI6vAbCS7gFex7xKIrUbB6cfx+G3aTZGvfgQg8v0hfLtuOW5ZKSQlJdGyZUsiIiLYtWsXWq2WtWvX8scffwDQokULAFatWkVaWhovv/wygwcPfvKDFEIIIYQQQjz3JLH2f4Ren86FixPMASSAs2ezefONCwzov47ixU1Bo7p165oDSOPHj8fR0ZHo6GiaNWtmrlevXj0AateuzeXLl5/gKIT4dwosXZziVhZYKDeOKRaW2CjgU6wIF/NUcvUGIr/6hITtm8g5G8LIlwPo3K07u3fvJi0tjZiYGI4ePQqYdmi47vrPqqoyaNAgJkyYgKur6xMdnxBCCCGEEOLfQYJI/xHXru1CUbQFjrm4aClSRMukb0px7dp5zp07Z/7CaTQaqVKlCvXq1SsQQAI4ceIEACEhIZKwV4jHwMFCy4q6VShueWNyqALo/lzGgkY1ydy5hcxlC1BzstFfvYJF5WrkZaSTkJWNVqtl1qxZ+Pj48MUXXwDg7OxMZGQk0dHRODqakvqNHz8ePz8/7O3t8fb2pnnz5vTv35+YmBjGjx9faL9SUlJYtWrVPz5+IYQQQgghxPNBgkj/EUZjDrdmXjl1KocLF3KYPTuJ/fsjSEpKYsuWLXTt2pX58+czZswYYmNjmTt3Lq6urjRt2pQVK1awc+dOmjdvzqlTp3B1dWX8+PGUKVOG0aNHP53BCfEv8NH5qyTnGczvVUDp9AolN+zDxq8dxoQ41OxsHHoNxJiSjDHyCvqiTiiKQlpaGnZ2dqSmmnaU+OKLL+jevTuvvvqqObA0fvx4li5dyltvvcXgwYMJDg4GIDIy8o7bh0oQSQghhBBCCHEzCSL9yxw4cMA8y2DEiBHm405OXhiNuUyZnMDwd6IYPjyKCu6WrFxVgcqV7TAYtEyaNAkrKyuWL1/OgAEDCA0NZcaMGXTv3p0rV66wZ88eSpUqRefOnZkzZw7+/v5otVoGDhzI4sWLn+KohXi+XdRlcyA1k9ybtuVUc3MxXL1C0tC+5OwJwhAXA6pK6oRRoChgbYNWo0Gj0bB161ZCQ0M5c+YMERER1KlTh927d7Nnzx48a1aHw/PJ+rkFQb0s2PX1q/Tr/jIA1tbWGAwGevXqRUZGBr6+vmRkZDBjxgymTp3KrFmz2LJlCz4+PiQkJDytyyOEEEIIIcS/jp2dnfnnkJAQfH19cXNzo2bNmnh5ebFx40YApk2bRt++fQvUbdSoEcHBwXTt2pXvvvuuwLlFixbRsmVL83u9Xk+NGjXw9fV9LP2WxNr/Mu7u7mzfvh0bGxt69uzJqVOnqF27Nqqah8FgoHsPJ0qXtiQyMo85c67x3nsluHBex+nTp0lJyaJly5ZoNBqSkvYQn7CJiIjLaLUarK2tAKhcuTKbNm1i6NChuLm5MX/+fAYMGMDZs2cL9KNHjx589NFHaLVavvzyS3OSXyHE7ULSs7BQFG6eLZhzaA+63xdi1GWiZunA2ho1JwcAjVMxtI5OjFy2klWvdODnn3+mbNmyTJgwgYkTJ/LLL7+YGslOg7ltICUC8nSmY3EhrJ0ziU/3O1DN4wWKFy8OgIODA59++imDBg0iKSmJDRs2EBERQUREBIsWLXqSl0MIIYQQQognau77u8jO1D+29mzsLXj9+xb3VVan09GpUycmTJhAYGAgAIcPH2bfvn20a9furnUDAwOZNGkSI0eONB9btmwZ3bt3N78fN24cVatWNe/a/KgkiPQvYDDkEJ+wgYyMc9jYlEGr7QzYYGFhgVarxdfXFyvrOGrXTqd9ewcALCxAURS+nhjPG2+WwtFRT2xsNk5Ojhw91ov09JMYDDoSErOIj9dz5GgPtJoP0Gq1HD9+nISEBM6fP4+lpWWhfZo6dSqBgYFoNBoWLFjwBK+GEM+fYpYW5KkFl5vaNPXFpqnpfws0QOKArljVb0R28DYsiziSF3aermQzJymJpk2bsnLlSn7//Xe2bdvGn3/+ycSJE3HIjWdk7WQ6VL6p4bwsAtwtCGjry7DdTqxbt858qnXr1rz99tt88cUXBZJzCyGEEEII8W/2OANID9rerFmzaNCggTmABNCwYUMaNmx4z7oBAQEMGTKEK1eu4O7uTnp6Onv27DH/J3BYWBibNm3i008/ZfLkyQ8+kELIt4TnXEZGKHv2eBMaOoaIiNlcvDiJ3XuasWPHDBITE7GzsyM+Pp4vv3jBHEACmDsniQoVLAkNzWH2rASqVGlC27ZtcXQ0kpZ2DINBx4b1acyccY2tW5MZ89kmBg9+lXnz5uHh4UG5cuXuGEACcHV1pVKlSlSqVIkyZco8iUshHqPo6Gjq16+PjY0Nev3dfwGuXLkSNzc38/tbE7GLe2vq5IDeqN52XM3NJXtPEAkDulJMA2UtNdjk5fLrho14elTnp++/w9XVlX379gEwe/ZsvLy8zAGl7d2NtK9UsN0cvQqqHs5vpKi9Hba2tuZzM2bMoHfv3syePZucnBwsLS0xGAwIIYQQQggh/hmnT58274B+J2vXrsXDw8P8CgkJAcDCwoL27duzcOFCAJYvX07jxo1xcnIC4K233uLbb78178D+OEgQ6TmmqgaOHe9Lnj4FgyETAKMxm5SUTIa/+z4//2zacalu3brY25fDtN8TrFyZiru7FX37OvPd92XQ61UqVixP27ZtiY+PYeHCWM6ezWbFilQiI/PQ61ViYnLoP0DLmDFjWLt2LVeuXKFEiRJ3TKZ98uRJ0tPTiY+PJzQ09IlcD/H4ODs7s23bNho3bnzPsitWrCgQRBIPzkKjYFvIzJ+cQ3vQ/bEQpagjGq2Wt2tXR5OSxIwer3DxwgXS0tI4fvw4RYsWpVGjRhw9epRx48YxevRoxo0bR7/lcVxMMhZoc+NFPS3nZ9JybgpxsdH4+/sDcPXqVdauXcuoUaMYOnQoX375JaVKlSIpKYmuXbuSlJT0RK6FEEIIIYQQ/2X+/v5UrVrV/O90MM04OnfunPlVq1Yt87levXqxYsUKwBRE6tGjB2Ba1laiRInH/p/8spztGRASEsLgwYPRarVUqVKFMWPG8Nlnn90zD8m1a7swGHQFjhkMKl9PjGfIkJIYjDvQal5Go9Hg5taHhMStHDx4jdOns/nss5JcvpzL5O/jsbCwxsPDk9TUFJKTc+nZsyxJSXocHbVM+6ks77wTxenT2cycGUViwjpq1qyJhYUFWVlZAMydO5fp06eTlJREcnIyP/74I++//z4LFy4kNzeXN954g7///htFUf6xaygeXa7RyMbENM5nZlPa2pKAkk7mc3l5ebRr1468vDxKlCjB77//jlar5e+//6ZNmzbMmzfvtvbeeecdvL29C6zHFXdW2d6aE+lZBY5Zv9jUvKTN9rcZqKpK3759mTZtGmC6LwDvvfceW7ZsYcCAAbi7u5OVlcWcOXPYO/IAk4NC+aXTjdlG//Ow5H8elmBfAt5fABqN+XfNhg0bAOjSpQtdunQBYNOmTf/swIUQQgghhPgPq1mzpnnnZIDNmzcTHBzM+++/f1/1W7duTUJCAvv37+fIkSOsWbMGgN27d7N582bKli1LTk4OGRkZvPTSS6xevfqR+iszkZ4B1atXZ+/eveYHJzEx8b7qZWVHoqoFlxrt3JlJaGgOs2bF0b3bd8TExADg6Fgf9/KD+OmnJGJj9bz/fgyrVqbx8/RqNGzYjvXr/2Lbtr8pVcqSiRPisbPTYGOjYGenoWoVaypVskajsaBJE2969uzJzJkzzTlTXn/9dY4cOYKHhwc///wzffr0oWPHjjg5OTF8+HDWr1//XAWQHmQpF8Dx48fx8fHBx8eHihUrMnXq1ALnw8PD6dev3z/T2cckNDOb+nvPMOJcBN+Fx/LZhUjq7jlNSv6W8xYWFqxbt45du3ZRo0YNtm/fDsCCBQvo1avXbe0NHz6cJk2aSADpAbzqWuy2YzmH9pD07uskvfs6KYkJDBs2jFKlSuHj44Ovry+//vqrqe6rr7Jhwwa6du0KwNixY2nZsiXDNmTTra7Dbe1iaQctPwbJeySEEEIIIcRTNWjQIA4dOsSSJUvMxzIzM++7vkajISAggH79+uHn52fe9e2nn34iLi6OqKgofvvtN5o0afLIASSQmUhPTVZWJFevzic17ShWViVxK9ebYsW8zVtuR0dH07VrVy5fvsyaNWs4evSoORHW/v37qVq1KteuxVK3roGA/9ny+Zg4li5zx8/PAT8/BxTFCnf3wVSu1IQmTZoAUKnScHbtsiUs7HvAFBwxGnOoXOUgWVnJVKxoRW6ukRMnshg+PBoXFy1hl3LYvScTC61Cbq6BX6aPpHHjxjRv3pyrV68SHh5OmzZtaNmyJfb29mRmZmI0Gjl16hSHDx+mQYMGBcYdHR1Np06dOHPmDBkZGVhY3P4IxsbGmoMPcXFxtG3blqlTp9K5c2dSUlKwsrJiwYIFlCtX7rHci1v7dH0p18svv1xo+ePHj/Puu+8CcOXKFYYPH05QUBDDhg3D0dGRTp06PZZ+PSkGVeW14xe5lqc37w2mM6qASnRmFvE5eRRVsxk8eDBRUVHExcVRtWpVtm/fjre3N1ZWVgXaO3/+PDY2NrcF08TddSnlzOcXo7k5A9HNybW9HO3RaDSMGjWKUaNG3Va/bdu2uLi4ADBp0qQbJw7/CptHgZK/DtqQB97vwIuv/1NDEUIIIYQQQtwne3t71q5dy/Dhw/nwww9xcXHBwcGh0H/z30nv3r2ZMWMG48eP/wd7aiJBpKcgOXk/x08MRFX1qKppOcpff61nwfxsatduRvHixUlOTmbr1q0sXbqUlStXMnz4cAICApgxYwZ+fn6MGTMGPz9fIIRdOzMpWbLgrVQUDWXLFJwFEhOzirCwb4EbOVL27k1j3twk6ta1wdpGw5HDOurXt6VjpyJMnJDAtGnX0GoUyruXoEplL8aNG0erVq0ICwtj3rx5BAcH07x5cwAaNWrE6tWrcXd3JzY2lr1799K0adMCfbhXgAagVKlSBAUFAaYZLdeDMj/++CMVK1Zky5YtTJkyhe+///5hLv9trvcpICCAiIgIihUrRrFiN2aFhIeHM2DAAFxcXLhw4QKfffYZVlZW6HQ6atasae7f119/jZ+fH1WqVAFgzJgx7Nix455J0p62HUnpZBiM3J7W2WRJzDUqnjhAtWrVWLJkCaNGjUJVVUJCQli7di0bN27k9OnT5jw81apVo0ePHnzwwQd89913T3QszzNnSws6lHBkY0Iqebecs9UoDHN3LbTeuXPnGDhwIBMmTCi84Yb9oW53uLIXjAYo3xhsij7ezgshhBBCCPEcs7G3eKw7tNnY3zvUotPdSE3j6enJzp07Cy03bNiw244dPHiwwHtvb29U9U7f6KBDhw506NDhnn26HxJEesKMRj0nT72N0Vgw90mTJpY0bVqUJUu0rFu3jhdeeAGNRkPZsmW5ePEiqqqyecsc/v57HrNmj8ZgyKJ58xYcPqwhJOQAWq2WL8bGERtrYNx4N7KzXuOLsaaEWgcOHCAzM53WrXtTtZoFp05m06OHEzt3ZhAZmccnn5Zk/fp0IiJycSlhgaIoVKtmQ3KygY8/cWX2LBvqeZoeyuPHj7Njxw4aN26MtbU1gHlZm7e3N0OHDuWrr77iyJEj/P7777z99tuoqkpkZCQJCQkUKVKESpUqFRj7gAEDiIiIwN3dHTc3N8aOHWs+t2vXLnOwqGLFioBpadWjZpePj48nLCwMrVZLhQoV2LZtG5GRkSxZsoTk5GT+/vtvEhMTadiwIW+88QaHDx+mTp06DBs2jAULFrB582bGjh3LkiVLzEGjBg0a0K1bNwBiYmI4ePAgwcHBLFmyhM2bNz9Sf+/mfmZ33U14Vg76W37hqPo8Uj4eSt6l80zp1Y0lkyawdu1aDh8+jKOjI1WrVuWdd97hnXfeAUw7so0bN85c//XXX2fixIlMmjSJjz766NEHiek5HjFiBFqtloYNGzJlypTbysybN4+vvvqKpk2b3jOn2LNoskd5onMucTYzmxyDEQtFAQWGlXeldfHCAz8eHh7s3r377g1b2kKVVv9Aj4UQQgghhHj+vf59i6fdheeGBJGesJSUA+bZR9fl5qpYWSkYjdnAZWxtW5lzCF2+fJnZs2fy++/fExubxdeTytGnd198fB1ZtMhAdraR+vV9CA8/w5y5b7Bp42Uir7rz3nsf06fP58yYMYM2bdqQmXmetDQ9vXq6YOgBb74Rxa/zy7HurzQ+/SQWrRZKlLBAl2lEVVVWrkhFUWDMZzFkZcHnn4/jjz/+IDw8HFtbW06dOsXOnTspUqQISUlJTJ8+nYYNG3Lu3DmaNm2KjY0Nf/31FwaDgV9++YXk5GQAFEXBwsKCnJwcwBRB1Wq1bN26lQkTJpCbm2u+LtcDNzcHRQwGA+PHj2fmzJkPdf31ej0rVqwwB+YURUGv16MoCqqqkpubi8FgIDU1laJFi/Luu++yePFiOnfuTM2aNYmMjDRnwk9ISMDDw8PcdlJSkjkZ8ZUrV6hTpw5gCi497iCSqqqk6A3YaDT3NbvrbtxsrLBUFHJumoukWFhS9OOvSB01nPhjR2jatClHjx41nw8KCmLs2LGMHTuWZs2aFQhi7N69+7Zjj0JvMKLLM1C+fHm2b9+OjY0NPXv25NSpU9SuXbtA2YCAAFq0aFEgEPk8KWKhZV39qhxMzWRfSgb2Wi0dSzhSxsbq3pWFEEIIIYQQ4h8mWVWfsNy827fJPnRIx3sjonlvRBQJ8ckFtvIrV64c7drZ0cjLkuxsA998E83hw2k0bqxlzlxH8vJyKVnSlTp1mlCt6ofUrt2N9HRTgGb//v3s2LGDTz/9FFBwdNRSzNkCFxcLypSx4MSJbHbvzsRgUGnQwI6PPi6JSwkLdDqV/Qd0zPvVjaCdXahduzarV6/mypUrbNu2jUOHDrF06VIqV65MxYoVzbNvbGxsyM7OxtnZmTZt2nD48GF+++03EhMTycvLIy8vj9zcXHQ6HXFxceh0OsLCwszLvW7Nn/Tnn3+agzLXvf/++/Tp04fKlSvfdh1DQkLw9vamefPm9O/fv9DpfNu2bePixYvo9XoMBoM5cfatZUuUKAFATk4O1apVQ1EUypQpQ3p6ujnAd/ToUXPf8/Ly0Ol01K1bFwB3d3dOnToFwLFjx27rx6P4IyaJ+vvOUGfPaaoFn+L10CjSbezM59euXWtO9G1ra9qVa926dbRo0QJvb282btwImJYKtmzZkq9e7oQmIfa2z9EUdcR18iwaenk91v7fr7TsPD5acZKan2+iwVdb6DgnhN8ORqGqqnk22ujRo2natCl+fn6kpKTg4uJy20yssWPH0q9fP1q3bs2AAQOeylgehKIoeDk58G6FUgxyKyEBJCGEEEIIIcQzQ2YiPWFFi9S6bUe1pk3tadrUHo3GmvJuAylePI2PPi7GgYOdKO5SjJ69rDAanUhMyMO/bRHmzEnKX7qmx9LS1jyTx8fHh3379tGzZ0+GDh3K2bNnmTt3Li+//DJ//rkSRXPTEjDF9LmVK1vx67xk3h9ZAlCYPLmMuYBWa0v16mMpUuQNli9fXqDPL7/88j1nvly5coW0tDSMRuNt51RV5dixY1SsWJEdO3YAtwdbNm/ezOjRo83v586di6Io9OnT57a2cnNzqVq1Knv37gWgf//+HD58mBdffNFcTq/Xc/jw4XvuuGYwGAgLC8NgMDBp0iRatmx5W5m8vDyio6Nxc3MDYPv27Tg6OprPly5dmgYNGtC8eXNzYOlxmBeZwFeXosky3gh67UhKp92R8xTLD4QFBASY82e1adMGo9HId999x/bt2zEajbRv35527doxceJE7Ozs2Lp1K8s3bWZXQG9yDEayVRUNoFhZM6FWJeZqbuysd+vSQ4D09HR69OjB+fPnmTFjBi+++CJ6vZ7Bgwdz9OhRxo4d+8DJxnP1Rl6Zvpfwa5nkGUzjSsrMZcqWCxw9dpzExERycnIICwtjz549d13/C1C1alXmz5/Pm2++yf79+2ncuPED9UcIIYQQQgghhASRnjg7u4o4Ob5IcspBVDW3wDlFsUCjseTosZ4YjTmAyuXLuXz5RSzx8QYcHTW09LHn3NlsLCwUsrJUbGz0DBgwgIMHD9K9e3cSEhJwc3Nj0qRJlC9fnnbt2uW3rcXOtjyKYrztcwGKOXljZeVC4rWtqKoR52LNqFz5PRwcqj/0WOPi4m4LIBkMBhYvXkxsbCxDhw5lzpw55OTk0KpVK9zd3SlfvjwAoaGhuLu7m2fSALz11ls0atQIHx8fWrZsydixYzl06BC7du1Cp9Oh0WioVasWbdu2xdraGjc3N/r378/Vq1cpX748JUuWpEiRImzfvp0rV67g6upKbm4ujRs3ZunSpeTm5jJhwgQ6d+5MyZIlqVy5Mq1btyY9PZ1x48Yxf/58qlevzsCBA9m0aROvvvoqAwcOBEw7Y13P2XTdzTmCHocco5EJYTEFAkhgSpOeoTeSnX1jmeT1WWjLli0jISGBs2fP0rp1a8CUD0pVVb755hu2bdtGXl4eNWrU4C23EnwXHoeS36a1RuHzSzE46U37hd1p6eHVq1fZs2cPqampDBkyhHXr1pGQkMDo0aMpXrw4/v7+DxxE2hASQ1RKljmAdF1GWgoLFozj0LZ1nD56AG9vbwDz7LA7uT5jzNPTk4sXL0oQSQghhBBCCCEeggSRnoLatX8mJOQdklP2oyiWgIpWa49H9a8IOf1OfgDJxM3Nkl/nmwIrA/pfZd8+HU5OWpYsdef48RzmzNaj1WqZMWMGU6ZMISQkBEVRmD17NsuXL+err75izpw5ABw4cJpr14I5f2ECP/wAoFC+fDl+WziF0qVeRlEKX934sLltHBwczEm3r9NqtfTp0weNRoOXl5f5BaY8O9d3ZatevTorVqwoUPd6HqXrtmzZwsGDB8nLMwVPjEYjv//+uznYdOXKFaytrdm6dSuTJk0iIyODtLQ0YmJi6N+/PyEhIVy8eBFXV1dKlixJx44dWbduHTk5OVSoUIEKFSrQu3dvypQxzc7q16+f+bPbtm1L27ZtH8t1ul8h6VncKVSSq6qk5plmWMXFxTFq1Cj+/PNPFEXBxcWF2rVrs2nTJrRaLXl5eSQlJREUFERwcDBbtmxh+oLfmHIljrybZvTkGFVAJTYzm1yj8balh/v27QOgSpUqODg44ODgQGpqKgDFixc3BwQfJgn63ydj0OXe2Oxen36N+BVfkBd/Gfd+3xGaZkH16tX566+/GDp0KIA5x9WxY8fYsGEDFSpU4OWXX2bPnj1YW1vToUMHTpw4Qe/evUlPT+ell14iLy+PokWLsnTpUooUKfLA/RRCCCGEEEKI/xLJifQUWFg44Ok5j8ZeG3nhhW/wrDuPZk33oMu6fNuynJsn8lhZKVhYKOTlqXwxNo4pk+PRah3566+/aNGiBVFRUWi1WnJyckhLS+PXX38lNDSURo0amQMtxYs3p0njDfj5XqSV30WaN9tLmdKv3DGA9Ciu5xIqjEajoX79+g/ddmZmJgcOHDCP6+bPfPvtt7GxsSEsLMyc3NrT0xOtVouTkxOurqat0kuVKgXcSPZ9+fJlXnzxRWJjY4mNjaVDhw7mANKzQKMoFLZoS9XnkTxyCLqLobRt25YZM2Zw9epVAgIC8PHxQaPR8N5779GqVSt8fX3p0aMHnTt35uTJk7i5ufH3338TpstGbyx8SZgK7LiWTsWKFTlx4gRQcOnhxYsXyczMJDo6mqJFTTuIJSUlERkZiU6nw2AwFNbsXWk1BZ8brW0RitTvCBoNCdt/5fMhr5KVlYW7u7s5J1Jqairr1q1j4sSJWFpa0qBBA+Lj42nQoAFnz56lVatW6HQ6mjRpgqWlJYsWLWLXrl3873//Y/78+QU+r7AlmEIIIYQQQgjxuNjZ3chrGxISgq+vL25ubtSsWRMvLy9zLttp06bRt2/fAnUbNWpEcHAwXbt25bvvvitwbtGiReaULGXLlqVatWp4eHiYN4h6VDIT6SmytS2PrW158/vc3KTblpodOqRj3rwkYmP0ODlpaNjQjvV/p9O6tT1Tp6rk5aWQlpaGjY0N8fHxWFlZYW1tjb29Pb/++itNmjShQoUKWFpaFmj3Xst/HgdLS0u6devG0qVLMRqNGAwGFEVBq9XSqlUrc/Lq664ng74fly9fvm2Wk16v59ChQ5w9exZPT0++/fZbYmJi+N///sfJkycB6N69O0uWLCEyMtI8Q8XS0hIPDw+OHTvGkCFDiIiIwMHBgZdeeulxXIbHpraDLZaF3DfFwpLSk2fxfoVSDHM3Bcg+//zzAmU6dOiAV4tW5BlUVF0yxYoVM+9y9vrrr5OCPRsT0wrUUfV5pHw8FP3FUD589WXmff8tOTk5+Pn54e7ujru7OwBubm4MGDCAixcvMn36dABcXFwYO3Ysx48fZ8yYMQ88Vp/qJdlyJs4c2FIsrChSty2Zp3dQtudEFvWqxntD38DFxQWdTseAN4bSqFVH0tIzefPrubSuaMcv349Hq9WyevVq6tSpg6IoaDQa865ypUuXBjAn6QZo3Lgx9erVw9bWlsmTJz9wv4UQQgghhBDPn59f70F2Rvpja8/GoQhvz116X2V1Oh2dOnViwoQJBAYGAqadyvft22dOT3MngYGBTJo0iZEjR5qPLVu2jO7du5vf79y50/zd53GQINIzxMmxHhFoMGWkMbmedBtg2rREwsJyaORlR9NmDjg6ObF4kSPu7u54e3vj6OhIyZIlCQkJITU1FaPRSHx8PIMHD2b8+PGMGjXqsW69fj8qVarEsGHDOHz4MNHR0RQrVoyGDRuaZwPdr+joaDp16sSZM2fIyMhAURRWrVpFfHw8DRs2JDExEVdXV/bs2YNeryctLQ17e3vatWtHnz59KFOmDB4eHlSsWJHOnTuzcuVK8vLyKF++PL169aJJkyaMGDGCTz75hIyMDLKzs59IoO1BWGgUvqlWjnfORRTIi2SpQAkrS/qWdSm03vGrKXy66hQX4007yznbW/FZpxp0qF3GHECJnj6NlJ07MFpY4fTl9xiuhpM2ZQKakqVQ83K5ePggf//9N9nZ2URERLB8+XJzEPD67CSAd999l4YNG7J///6HHmdcWjaTNp7FUMjMKI2iMLB5RZzsrEhOTmbr1q18Nnkm7477kdJdx5CzexkzFq/it9JVcQqPoZSjDUajEUtLSzZt2sSkSZPIysoyt5eRkcGsWbPYsGEDAImJiYwaNYpy5co9dP+FEEIIIYQQz5fHGUB60PZmzZpFgwYNzAEkgIYNG9KwYcN71g0ICGDIkCFcuXIFd3d30tPT2bNnD4sWLXqoft8PCSI9Q2xsynFzAAkgN1fFysoUzLC302BtrUHN/3KtGvPQanPIy8vj+PHjnD9/ng4dOlC9enUaNGhAdnY2Z86coWzZsnTt2vVJD8esaNGi+Pn5PXA9VVXNASNnZ2e2bdtm3hGuUqVKJCYmMmDAAMLDw0lMTCQzM5NXXnmFoKAgqlatyu+//07RokVZuHAhzZs35+DBg0RFRfHjjz/i7+/P+++/T3h4OP3792fFihXmYMj48eMf6/gfp86uxXCytGBCWAynMrKw1Sh0LVWMDyqWpqjF7bmHQmPTCZy9/6b8Qioxqdm89/sJwkLPmHc5K5IYS9mffyMjP4l2xsLZOI2fioWNNYm9X6JJPU8A6taty7Jly+7Yv6lTpz7yGL/ZeI7UrLxCl+5ZW2oY0boaUVFRvPDCC2TkGlh4Ih1N8fLkGoxoHZzJ1WWgZKZx5dgRFhw/ziud2tKhQwfAtKzxei4nVVUZMGAA48ePx8nJCYCSJUtKAEkIIYQQQgjxxJw+fdqce/ZO1q5di4eHh/l9REQEYFpV0b59exYuXMjo0aNZvnw5jRs3Nn+/AWjVqhWKojBgwADef//9R+6vBJGeIalpx1EUa1T1RgLpQ4d0rFxhSlZctqwl7doXYcf2DN4bEU1GpoqdbRliYmLIzMykfftmnDp1CY0mD0VR8PPzIyEhgTFjxnD8+HE8PDy4cOGCObF069atuXLlCo6OjsyaNYvKlSuzYcOGAg/c03LhwgXWr19PWpppiZWzszMdO3Y0n//qq6+Ii4tjyZIleHt7YzQauXLlCkePHiUzM5OKFStSu3ZtXFxceO2116hevTqrVq1i4MCBvPnmmxw4cIDIyEhCQ0PZvn07s2bN4uOPP35aw30gzZ2LsMH5/pJAf78llKy823MSZaal8ukHEwjdu4ldu3bh26wpH9etTJ+TYeTq8khNTMU+woIiRbUUr1LVXK9s2bL06tWLRYsWMWPGDObPn0/Lli05cOAAQUFB+Pj4sHXrViwsHv5Xy/pTsRjukJIoO89Ijt50UlEUNpyKwTRh7MasMdVoIGnbHKxLVWZPtAEbGxtOnToFYF7WCDBmzBhzPqXrbl0iKYQQQgghhBBPkr+/P5cvX6ZixYps3rwZMM04WrBggblMo0aNzD/36tWLDz/80BxE6t27t/ncnj17qFChAlFRUfj5+VGzZs17LpG7F/nG9Ayx0Dqg0RT88t20qT2Tp5Rh8pQyvD+yBGXKWJrfz5lThd27V/PWWyVYu7Yc4ycoVKgAu4Ib0X9AI+bPn0/lypX54YcfaNu2LcHBwQBMnDgRPz8/Ro4cyYABAwgLC6NDhw789ttvODo6PoWRF3Tp0iWWL19OcnIyBoMBg8FAQkICixcvNu/QVrduXUqWLGme8hcfH0/t2rVJS0ujRo0afPrppwAsWLCAP/74AysrK9q1a8fu3bvp1asXP/74IwMHDqREiRLmbd//jfZcTOSWXO2oRgOJ677Dyac/il0xqlevzv79+3nR0Z6fSrii2RWLFmv0l6PIuBDPuXPniUvLBm4EWfR6PfPnz2fPnj106dLlsfY5r5AIUuqBlURMfY2c2Is4OxahS5cubNu2jbi0HHL0BYNk2REnyYk8jS7sGG+18iAnJ4fs7GxatWrFyZMnsbS0JDo6mkmTJvHnn3/i4+PDL7/88ljHIIQQQgghhBD3o2bNmgU2Ltq8eTPz5s0jJSXlvuq3bt2ahIQE9u/fz5EjRwqsQqpQoQJgmgzQqVMn86qMRyFBpGeIi4svqnq/O1lpsberSHLKPiKjlmBUc5k2LRzPelYYjVnsDFqIp6cNzs5nmTnzJTJ1lzAac9Dr9WzatMn8kHbv3h1vb28AfvrpJ5o3b84XX3zxD43w/mzatAm9Xn/b8by8PJKTk9mzZw8ffPABsbGxrFmzBp1OR1xcHIcPH0ZVVc6dO8e0adPM9d59911eeuklgoKCaNq0qXkHvOvL106cOEHlypWfzOCeoOjoaMJmDePKdy+jGk3P1bUNPxI95y1yIs8Qs2oir3Typ1+/fuzatQtHR0c6+/uSk5lO0SbdSVj5JfHrfkBbpARXrulIzbqxE15iYiLly5dHq9Xi6en5WPtdr7xTgfeqPo+8xCtYuVSg0Xtzee211zh69CgxMTFUcy1C8ar1KNbCFG13qN2a4m3fplSv79DaO/G/3m+g0WiYPXs2CxcuZPv27YwdO5aSJUuSm5tLUFAQQUFBvPnmmwCF5gvbuHEjf//992MdoxBCCCGEEEIADBo0iEOHDrFkyRLzsczMzPuur9FoCAgIoF+/fvj5+Zl3fUtLSzMHotLS0ti+fbt59/JHIUGkZ4iFRRE8qo9Do7Hl5uU5GsUaRbFEq7VHo7FFq7HF3r4KderM5sqVmRiNpkTBb73lQt++zuTmqvTtV5SPP7HCxiYHRZNMWNhJqlYtCcBHH33E/v37MRqN2NrampMg+/j4EBwczPr165/42K/Lzc0lMTHxjuezs7OxtrZmyJAh5uTcOp2OunXr0qtXL0qUKEGpUqUYNmyYuU5oaCjff/89L730UoG/jJaWlrRr147p06czePDgf25QT4mzszNvfjMfm7I31s7mJUVSdvBMSr7yGe5e7dgTvItDhw4RERFB3/e/oEi1JmhsHLAqVYXS/X6gePvhKBZWqEAZ3540a9YMMO2+dvXqVYxGY4ElYo/DR+08KKZk80L6GeqkncJw9E8c6jZGo82hVzNnVq9ejaOjIy+88AINy1hzbetsIqZ24+qPgUTPfQtjdgYJqydgzNWx/c+F1KtXD19fX5o3b06tWrWoU6dOgefjXtq1a1dgKaUQQgghhBBCPC729vasXbuWmTNnUq5cOTw9PRk3bhyjRo267zZ69+5NaGgoPXr0MB+LiorCy8uL6tWrU79+fdq2bcsrr7zyyP2VnEjPmNKlX8bOriJXrswgPeMc1taulHcbQPHiLUlK2kVObiJFHGpQtKgnubmJGI3Zt7VRWB6lkFPZTJ3qRvduUaSmplKmTBneeecdHBwccHd3Z/bs2YSGhuLr64utre2THraZRqMxzxS6mcFgYPHixcTFxTFw4ECqVq1KXFwcycnJpKSkmKOsWVlZODg44O3tzZAhQ/Dx8eHy5cvUq1ePt99+G29vb/z9/SlTpgzr1q17CiP8Z109fZJDf60iOSaaYqXL0Mvvf8zWKFhoFBJ3LSQ3Ppz4FV/g0qQrPtVNQUVLS0sAklIz0BZ3AyAn8gwpuxdjzNGBasSQlsDPH72Oz5wfAVMCt759++Lt7U2TJk3MbTwO+qNb6B2xjDyjSqY2lwPX9lOqlxsZB+P48cAwyjQuw97Ve2ndrDVffTGWRq5atjuXwvV/I4nd8AuG8EN4friErN8/IsugcKVmP7Ir61DXfcfMxavwaViTV155hUmTJlGrVi06duzI6tWruXTpEm+99RYDBgwgLi6OEiVKsGjRIhYvXoxer2fgwIGPbYxCCCGEEEKIZ4eNQ5HHukObjcO9c9jqdDrzz56enuzcubPQcoX9B/jBgwcLvPf29r7te3SNGjUIDQ29n+4+EAkiPYMcHT2pU2fGbcdLlPAv8N7Cwh5VvT1/TNOm9jRtam9+n5ur8smnJTEas+jQ0RVbW1sqVqzITz/9RLNmzRg/fjxRUVGMHj36qSfVtrCwwN3dnfDw8ALHtVotffr0AUwJlY8dO4ajoyPFixfHaDRSvHhxVFXFwcGBVatWUalSJXx9falYsSJ6vZ6goCAA9u7dS/Pmzfn6668fuo/R0dF06tSJM2fOkJGRcd9JpPv168fZs2extbVl8ODBBbZwfBwOrv6DfSuXoc815Y1KiY3m6ulTVLTV0+nFcvxtO4ALkafo/fl0mtrHc/7oXsCU2b9bt27EXUvBof2n5AI25WtTKvDGNbK10vJxOw+8vCrg5eUFwMCBA3njjTc4cOAA8+bNA8BoNKLV3r5L3P26eGg/B1b/jqrPQ4PKEm0INi2KYNQaUTGSlZBFnmMe5cqVo5RTKRYuXIiTkxP2hkyKHl2IjYs9jaoW5c1OpfAacwJr10rELRqPS6f3SMzQ4//1OpKSU2jevDnVq1dn1KhRdOzYkT/++INJkyYxZ84cAgIC6NGjB7/88gsrVqx46LEIIYQQQgghng9vz136tLvw3JAg0nMoPDwcLy8vatSoQU5OBuPG2wGmnDfHj2dx4kQWffs6m8vfPDPJ3d0Ff3//QnO/PCvat2/P3LlzycvLK3RWkqqqeHp64unpyfr164mKisLe3p60tDSio6N58cUXqVWrFomJiVSoUAFVVQkMDGTIkCGMGjWKq1evYmFhwbhx4x6qf87Ozmzbto2XX375gesuXryYKlWqPNTn3k1aYjx7VyzBkJdX4Lg+NwfdtThGersy4ZV6NNtSjJm9GxIUFMT5/DLly5dn3759/PHHCt79YSk2zV/HcMt1t9AodKlftsCxadOmsXr1anJzc1mwYAHffvstHh4eKIrCw9q/ajn6/OTpUSWzSL+Yhe5ENklBSWRHZZN9NZuc+BwcajpQNLco/v7+5OTkYDAYWLRoEVu3bmX37t0MfvcjLJxKUarvVJJ3/UZW2GFsqzYhLvh3crBAq9Xi5uZGUlIS165dIyUlhXLlynH27FmOHDnCzJkzyc7OpkePHs9EsnkhhBBCCCGEeBZIEOk51aZNGxYtWkROTjyHDr9MXl6qOTfSrZo0saNpU3sUxRI3t/5UqlSJRYsWAZi/8M+fP99c/vqsnafF1dWVwYMHs2PHDkJDQ29Lsq3X67GwsMAAqIoGg8GAnZ0diqLQokUL+vXrR1JSEh06dGD06NFcuHCB8ePH07JlS8aNG8fWrVsfKICUkZHB9u3bOXXqFAaDgTJlytCqVSvz+fDwcPr370/RokWJi4tj6dKlJCQk8OGHHwJw9OhRTp8+jaIo9OnTh+LFi/PTTz/h7u7+WK4XQOje4EIDbteN/eRjjl4MIzs7m169epmXZuXl5ZGYmMi8efNo1KgRLzWsyDkXO2JSTcskFQVsLbXM79+IIjYFl6yNGDGCESNGmK/Bd999R40aNfD392fy5MkMHjwYrVZLlSpVmDdvXqHBpS1btjBx4kSMRiPff/89yTFR5nOxzjmU7F7K/D5sfBj21exJCkoiPTOdVKtUur/cnaSkJGbMmIGTkxNFixalcePGnNoXhIpC7JKP0do7YVO2BoqFJWmH12LpXAZ7e3tiYmIoXrw4bdq0ITExERsbGyZMmECrVq3Ma4Xz8vJYvHhxodd048aNGAwGyZckhBBCCCGE+M+QINJzIs+YR9DVIE4nnsZwzcC27dto3rw5Xbp0YdiwTfTs2YHw8POULu2AaylXFCWXQQMvUrGiFRUqWhF6Lpv0dIXMzFn06ZPLZ599xogRIwoEQ54lLi4uvPrqqxw8eJDNmzcXCCRdvHiR/fv3YzAYSExNY96atSz/YQr29vb07NmTTz/9lNTUVA4fPsyuXbsoUaIEU6dOfahlVjqdjpkzZ5KZmYnRaFo6GBkZyeLFiwusYY2NjWXLli0cOXKESZMmMWPGDIKCgtiwYQOrV6/Gzc2N77//HmdnZ3bv3s3777//WJdKZWdmYLwl2GYwGpmz6yBRSSksXr2Wcu7ut+UuiomJoXfv3mg0GoKDg5k/fz6urq4cjUjmUnwmpZ1s8K7sglZz79lF1wObYAq+7N1rWi7Xv39/Dh8+zIsvvligfFZWFjNnzmTLli3me3PCqRi5WabrapWngBFz+v9KoyoB4DHVA4wwtOFQ1n22jgkTJpCens7MmTM5e/YsU6dOpfanq0nJykOffo3ENV9jU7E+xqx0NDYO6FPjKWpvz/z58827+Z08eZKBAwcyaNAg3nzzTaZPn46qqkycOPGO423Xrt09r4kQQgghhBBC/JtIEOk5EJkeSb+N/UjPTUen12FhtMD1S1eGeQ9jwQcLaNCgAUWLVufAgV1MmDCBnJxsyrsVITHxE376uQI2Ngbs7CriVu5Levf+0LwT2ZQpU57yyO6tRIkSt81g8fDwoFq1aixZtgzP/m+w29WdqVOnMnr0aDp06ICdnR1BQUH069cPVVWpVKkSJUqUoHnz5g88y2rfvn3odDpzAOk6vV7PtWvXzMdr166NhYUFnp6eXLx4EYCwsDCmTp3K2rVrAdMyOIBmzZrx8ccfP8zluKOy1V/A0saWvGzTbLRMGz1xxXLo8FodIg4l0aXfYGYsWsKiRYsYMGAAP/30E5cvX+aNN95gwYIFjB49mhkzZtC5c2f++usvDm34nezsbF57991CP09VVeatn8foD0ejR49bJTeiDkVSv3YtWjdvhq2zC42bNqV9+/bExMTw119/MWzYMM6dOwdA3bp1qVatGnFxcbRv357c3Fzatm1Lh44v0aFbD8o4FiFicwo2PZ1JCk5Cn6rHfbg7ls6WaCxNUaW47Dg6derEiRMnCAoKwsfHB4DSpUvTuFlxNp28yrW/p+DcbhiKRovW3gkr10o4VazD/I96sHr9FkLDrtC2XTvzEkNbW1tq165Njx49zAm3161bR8eOHenRo4ck3BZCCCGEEEL8p2medgfE3amqytvb3iYhKwGd3jRDQ6/RY7A08M3Rb3jR90UiIyOpV68eAA0aNEBRNFSp8gEvvNCQZk2X09hrM41eXMeIEd8wYcIEXF1dn+aQHkiFChWwsLfHSMFA0unTp4mOiuLY6pUs6vUaMTExd2zjyy+/5OzZsyxbtuyBPz8kJASDwVDoOVVVSUhIKFDuxIkTVK5cGZ1Ox5AhQ5gzZw7W1tYApKWlARAaGvrYE5hX8KyPQzFnVAsNu+oksrJlFHtrXWNnzQR2GMJxbF3OXDY5OZnff/+d9957j5UrV5qPOzg48OmnnzJo0CD+/PNP3nnnnTt+3qRDk/gp/Cec33Wm1IelCIu/hOPAovj4luHvtavJOraXMR99SK1atTh79iz169enZs2apKSkUKtWLTw8PKhbty6hoaFs2LABnU5HVlYWtVv5k5mnp7t3Q15pUJv4v+Jxf9cdl3YupB405fUyZJnux6bwTezZswd3d3f8/f0JCgoiKCiI3377jeGtq5K06SeK1O+AlUt5c7+tHUtim3iWsYc1/LZmC0eOHedYUW9m7bpkLhMYGMjy5csBmDlzJhEREURFRREQEMD27dvx8fGRhNtCCCGEEEKI/yQJIj3jziSdISYzBuNNu7Bd/xKtN+pZtWUVlStX5sSJEwAcO3bMXE6rtaBIkRewtS3H+PHj8fPzM++s9bxQFIU23XqQbmtPrlZLnkZDrtaCqvXqU23xWpx+mIffnMU0adLEvJTKx8eHsWPHUqFCBfOx6dOn0717d3x8fB4oH9KtM5AADAYDv/32GzExMXTv3p24uDhKlizJSy+9xDvvvMOHH37IypUrCQ0NpXfv3vj4+BAbG0vPnj1p1qwZAwcOfKTd4Qqj0WjpNvZrzjRWuVJah1ELekuVhEPJFG3iyJf7vyIzLxOAF154AY1GQ9myZUlJSSnQTuvWrTly5Aj9+vVDo7n914MuV8/kXZtYdnYFegc9GitTGcVSg2qnMHvzXpIyMpm38wAJMVEs+nEyaWlpjBw5kuDgYPMMrB07djBnzhyys7NJSUnBzs6OmJgYNBotNevUpdtn46jXyhebMjYoGgULJwsMmabnXndex8XPL3Ji1Am2bNlC27ZtKVmyJD4+Pvj6+vLrr7+SEn4afdh+ck/8TfzSTzBc3o91diJFs2JIyIKYtBywc6Kodw8iln7Ou71f5uDhoyQlJRVIuK3RaDh48CDR0dFMnToVHx8fFixYQHx8/GO9f0IIIYQQQoj/Fjs7O/PPISEh+Pr64ubmRs2aNfHy8mLjxo2AaUOjvn37FqjbqFEjgoOD6dq1K999912Bc4sWLaJly5YAJCYm0q5dOypWrEilSpXYtm3bI/dblrM94yLTI9HcEuvTndcRtyoOxVKhYt2KeHl58csvv9CqVSvc3d0pX778be2MHz8eLy8vli5dSr9+/ejXr98TGsGjq1/aleEtO5AZE42TLh2dlQ0Rzq4YNRrsNBoGupX4xz7bw8ODQ4cOFQgmabVa+vTpg62tLSNHjuTq1auUK1fOHLACqFy5Mr179y7Q1l9//fWP9RNAsbfmVLFYDIYbCbZzYnPIjsgmaUcSueG5/PXXXwWWB96ajHvGjBn07t2b2bNn06VLF/MsKoCjEcn0nXcQY/GlKEVyud5M9tVsMi9mkj07GzVbxbGkI7WKlODA5UjeG/Eeubm5vPDCC+j1eqKioihZsiR2dnYsXryYGjVq8Oqrr1KlShUqVqxoGoeiUM6jJq27D8Rq/ZzbxlmkbhGK1C2Cu20FFrb5jZdffplPPvmEzz77rEC5zIwMVFUl/JqO7DwD2sxEOhxchkuLoahAic4fAKA7G0zJHhNJXPYpRR2dAAgICOCNN96gc+fOAFSvXv2+E24LIYQQQgghni+TJk0iK6vwjaoehq2tLR999NF9ldXpdHTq1IkJEyYQGBgIwOHDh9m3b98987AGBgYyadIkRo4caT62bNkyunfvDsCQIUNo27YtGzduJDs7m4yMjIcc0Q0SRHrGlStSDiMFZ8Nc/xKtVbT8r/L/gIK7q123e/du88+P8y/E0zCndiUC8gwkG0uQZTQFPuw0GjqWcKSDyz+3BXvTpk05efIk2dnZBQIuFhYW+Pv7P1Sy7n/K1fSraDVauGn1XanXbuxuFjExgs6dO3PgwIHC61+9ytq1a/n777+pWbMmX375JePHjwcgK9dA33kHSc/WY6tJx0IxXQt9hp6oBVFYFLUg+0o2GksNNmWtsLOyIiE9g8iTp3F1daVTp058+eWXpKamotfr8fX1pUSJEjRt2tQcXPvmm28K9EdRFKoVq0a2NpsMCv6yU42WXLrUgglKBIb85yE8PJwBAwbg4uLChQsX+Oyzz5gxYwY6nY5NmzaRkKMhNiYG9c8J6FPjKNHlMyyKupCbGEHE1G6gz8WvjT9Tvp3Eq6++ynvvvccvv/wCwODBgxk0aBDTp08nJSWFvLw8srOzcXd3l5xIQgghhBBCPOce9/flB2lv1qxZNGjQwBxAAmjYsCENGza8Z92AgACGDBnClStXcHd3Jz09nT179rBo0SKSk5PZv38/f/zxBwA2NjbY2Ng8+GBuIUGkZ9wLzi9Q2r404WnhBZa0AVhoLAisEXiHmv8u1e1t2N+4Bkuir7EzOR1nSwt6lSlOUyeHQreOf1yKFi3KoEGDWL9+PWFhYeZjrVu3platWgAFls09TcVsipFnyLvjed9JvgX66uPjY05Gff3Yhg0bAOjSpQtdunQx111/KsYcrDFkVkRrFwZqHpGzIrGrYkeROkWI/T2WvGt5VHNyoRh2uBcvRjW3slzKzGX79u3UqVMHVVVp1KgRAJ06deLw4cOUKVOG7du3mz/revCzQoUK7FqzixknZjCXuRT1cDHNslKM5MS3Iy/1BdaciOZaTBrG/L4lJyezdetWli1bxoIFC9i8eTMTJkxg06ZN1K9fHzUnA5fXviLzzE505/dQtOH/KDtkNhobB1K2TOeNtwfg5eVFcnIybdu2xcXFBTD9T8L1axQbG4uTkxM2Njb07NmTU6dOUbt27Ue7eUIIIYQQQoj/pNOnT5tzHN/J2rVr8fDwML+PiIgATJMb2rdvz8KFCxk9ejTLly+ncePGODk5sW/fPooXL85rr73G6dOnqVOnDrNnz6Zo0aKP1F/JifSMUxSFn1v9jIutC3YWpjWTVlorrLRWfNzoY6o7V3/KPXw8oqOjqV+/PjY2Nujzt6ofOHAgzZo1Y/HixYwePZpilhZ4J0WT/MGbhA7tT+reXf9oAOk6Z2dnevXqxSeffMIHH3zA8OHDzQGkZ0lJu5K8UPwFNMrtf61ttDb09Oj50G1HJGWiyzVNccpLbQSqBakHU9GF6UjZk0L8mnjQq9g7W7N57zlWHzuNpaUFg994kwYNGhAUFERWVhZFihQhLi6OdevWcfbsWVRVpW7dunecHaUoCm96vsn05mvIi+lBVlQPMs5/Rl5yUwBy9Uay8wwEX0wEbuR7KlOmjPkelSlThuTkZACqe9TAxtICiyLFMWabckRpbYugKArVvXyJvHSec+fO0blzZ4YPH16gLxnJOYQdT8CQao2VpRVg+qWdlpZm/l+DXr16cfjwYb788kt8fHxo1KgRrVq1AmD06NE0bdoUPz+/23JRCSGEEEIIIQSAv78/VatWxd/f33wsICCAc+fOmV83fx/t1auXeeOf5cuX06NHD8C0o/iZM2d4++23OXv2LPb29owZM+aR+yczkZ4D5YqUY+MrG9kRsYMz187gbONMh0odcLF1edpde2ycnZ3Ztm0bL7/8svlYaGgou3fvJigoiLNnzwIwbtw41qxZUyAJ2ZNiaWmJpaXlE//cBzGx+UQC1weSlZdFtiEbAFsLWxq4NuDlqi8TEhLC4MGD0Wq1VKlShXnz5t1XIM7N2R47Ky26XAOqwR7dlcEUbfAbxhwNWntLijYowuXPw6ikOJDjpKd380b8cfwsHfq+zjWtNS1atGDQoEGMHTuW8PBwSpcuzW+//UbNmjWZMWMGFy9evGvS96Ph2eSme5hnQ93MYFQJOhdH5fpOBcZSWO6nqq5FiHeyRafVkI2KMTcbSysrbKwtqWcVT+XKDfHw8CiwFNSQZ2Tbb2cIO5aIxsLUplaroVwzlcTERJo2bcr69esZMmQIZcqUMU89HTNmDH369OH111/n2LFjhIWFsWfPntvyUAkhhBBCCCH+u2rWrElwcLD5/ebNmwkODub999+/r/qtW7cmISGB/fv3c+TIEdasWQOYVna4urri6+sLQLdu3Zg4ceIj91dmIj0nLDWW+Ffw590G79KnZp/nPoCkN+pZfm45nf/sTLNlzXgr6C1Cs0PN50ePHs3Jkyfp1KmT+VhYWBjZ2dl07dqVl156ibi4uKfR9WdauSLlWPfyOobWG4pXKS983Xz5psU3/NzqZyw0FlSvXp29e/eaf0kdPnz4vtrtULsUmvygjKoaMeaUIfPSR2Ser07iJi2XxhnIjteTYdDQ2qclwcnZDBr+HloLU5z61kBV6dKlOXLkiLkPlStXvuvnW2gUNJqCbagGPXHLRpEXf5klX7xxX8+DpVbDX8Oa0bVBOYrZWeGsv0bm7x9iv/krslPi6dq16211gpac4/LxRAx6I3nZBvKyDVy7do2hQ4fx3YRpALzxxhvMnTu3wOylyZMnU69ePVq2bMn58+fx9vY2X4snMYNOCCGEEEII8ewbNGgQhw4dYsmSJeZjmZmZ911fo9EQEBBAv3798PPzM0+4cHNzo3Tp0pw8eRIwBaduXhL3sGQmknjijKqRd7a/w6HYQ+bZMofiDnFq2yl0Oh1gmnEUFBTEunXrCAoKAiAuLo7Q0FBOnjzJzp07GT9+PD/++OPTGsYzq6hVUfrW7EvfmqZtIDNTkjm8ZiXXoq7iXNaNWj6tsXcqhrW1NZcuXWLNmjWMGzfOnJw9Li6OWrVq0bFjR1avXs2lS5coXrw4pY+sYc/ZSJxa9MHKtRKg4NT8RtAkbvGHHD53HGNOBm5ubvy2ZGmh/evXrx+enp4EBgYye/Zs6tSpQ+PGje86Jv8XSvHtptACxxStBa7dx2NrqWXZ4MbUdXMyz2a6Od/TzTsRXs9rNOXdnkx5N39534+D7/i5WRm5XDgUj0F/Ix+ZwWhgwfaJvNR4CNHHc6hRFz7++GN++OEHxowZw9y5c9m5cyfHjx/nt99+A0y7u/31118MHToUMM2MkkCSEEIIIYQQwt7enrVr1zJ8+HA+/PBDXFxccHBwYNSoUffdRu/evZkxY4Z5Y6Trpk2bRmBgILm5ubi7uxcIVD0sCSKJJ25P1B4Oxx02B5CuyzZkE5EeQWZeJo4Wt++45ujoyIsvvoidnR1+fn5Mnjz5SXX5uXX5+BHWTp6AalQx5OWitbRizg+T2Xk1nlp16lK8ePHb6gQGBjJq1Cg6duzIH3/8waRJk9i6dSuVypYkzftt4tJyCv2sygMm42BjQVoOBZJS3xzEGTt2rPnn9evX3/c4yhe3o6dXeZYevEpW3o3t52wttbSqUZK6bk733daDSIrKRGupYNDfOHYsbCcRCaGs3jeLdUfm0Cf6Vdzd3Xn77bcZPnw4W7Zs4euvvyY9PR0fHx88PT2ZOnUq7u7uNG3aFGtra1atWoWT0z/TZyGEEEIIIcSDsbW1faw7tNna2t6zzPUJFACenp7s3Lmz0HLDhg277djBgwcLvPf29i40bUaTJk0ICQm5Z18ehASRxBO35uIasvSF/wVVFIU9UXvoUKXDbeeqVq3K1atXqV+/PqdPn6Z3796Eh4czevToe+6O1q9fP0aPHk2VKlUeyxieB9mZGaydPAF9zo2gjyEvF4+SxanlVoZzdiXYu3ev+dz12TFubm4kJSXx1VdfsWHDBhYvXgxAgwYNaFKzMpM2hpoDOYl/T8HRuxtFSpajdxN3LpwPZeDAgdStW5dmzZoVyC10q8LuyerVq2nRogXOzs63lf+s0wvUKuvIzzsuEpmcRcki1gxsXonejd0f+VrdiY2DJUZDwV/GDav40bCKHwClKjnyyocNzOd++OEHANq0aXNbW7f+r8CzKDo6mk6dOnHmzBkyMjKwyF+OeKfjNxs7dix//vknxYoVIyAggPfee+9Jd18IIYQQQoiH8tFHHz3tLjw3JIgknjidXnfbMVWvEj45nOwr2XzS5xOKT7l9hoylpSWDBw/ml19+wdbWVv6i30Po3l23HdMbDFhotQDkpSZjXaGCeXvIU6dOUadOHQDat2/Pt99+WyCYo9Fo6NOkAiHRaaw7GY3eoKIANhZamlZx4b021bDUati2bRuDB995idjdrF69mlq1ahUaRFIUhS71y9GlfrmHavthOJexx97RmtSE24OeFlYaavuWfWJ9+Sdl5OjJyjXg5FTstgT3UHji+8J8//33tG7d+p/sqhBCCCGEEOIpksTa4onzcfPB1qLg9D7FQqHihxWpO6Mu6zevx8vLyzyLxcfHh48+CiQhYTNdunixb98+PD09qVixorl+Xl4egYGB7Ny5k4sXL+Lv70/Lli0ZN27cffUpOjqa+vXrY2Njg16vv2O5LVu24Ofnh4+PjzkxNMDRo0dRFOWudZ+0tMT4ArOQAM7FJjB9xz5+3BhEbEwMH374IdHR0XRo357w8+c5E7yDoN/mEHMlnLi4OIoXL87PP//M8ePHiY2NxcWlON92rUNrXRBd3LJ4oUxRmmQf4OTUwbzVqzuH16+lTu3a9O1rysdUvXp1Vq9ezfnz53F2dkZVVcaMGWOefjlt2jSaNWvGF198QUREBBs3bqRnz558++23T/x6FUZRFNoOqoWVjda8MxuAhbUWtxrOVG3g+hR79+jCEzPpOXs/9b7cTLNJ22k5ZQ+bL2YAkKLLZe3u4zRp3pJevXrRunVrcvKfp/79+1OxYkVcXV2pWLEiy5cv5+DBg3zwwQdoNBp27tzJvHnzmDVrFu3bt8fHx4dPPvnkaQ5VCCGEEEII8RjITCTxxHWq1IkZJ2aQa8jFoN7Ib2OjtcG3vC9lHW7M7sjKiuTEyUFkZV1FUbSoqgF7u4oYjbnmMnl5efTr14/BgwfTsmVLunXrxty5c3Fzc6NHjx5ERkbes0/3M9MiKyuLmTNnsmXLFrT5s3mu+/nnn6lfv/6DXIZ/XPGy5UnIymHZ3sNoFIXiDvZ0e7EOtcqWwtLGhlYD3kSj0bB29Z+M6d+LlTt2ccJgIPvKRYJCL2OpUbC0sMDb25vIyEjKlSvHiy++yJkzZ4i4cJaVX4+jX/AKnOLD6V2nMt+v20INbR6J0VHkxEah0+moWbMmBw4cICUlxVz3+PHjfPbZZ4ApQPjDDz/g5eXF559/Trt27cxL3MLDw/Hy8qJGjRpYWVmxefPmp3IdS5QvQuAXjTm5I5LIc8nY2FtQs3lZKtZxQdE8v8mx49Oy+d/Pe0jPzsOoAqgkpOcwdu1pEqJS8f56O4ruGlcuRGL/v7H08L3EjClfc+DAAdLT02nSpAl169ZFp9PRpk0bVqxYwZQpU/jss89466238Pb2xmAwMGLECPz9/TEajffqkhBCCCGEEOIZJzORxBNnZ2nHko5LaOjaECuNFfaW9thobXil2iuMb3Yjb4zRmMuRo6+RmXkRozELgyEDozGLjMxQ0jPOoOYHoHbt2oWlpaV5N67Q0FB69+6Nj48PZ8+eJSoqqtB+GFWVE+k6DqRkYLCwpFixYuZz4eHh+Pn50bVrVxo0aEBkZCT79u1Do9HQvn17evfubd528fTp07i5uVGkSJHHfq0OHDiAt7c3zZs3Z8SIEYWWCQ8Pp1evXgXHZjQybsZsVhw8jpVWS7+mDQG4mpwKgEZrQbUmzQDYPG8G63fvY1CzF3nLtwkX4hKJTU3D3tKSjOQk6tSpw6lTpzh48CDvvfcewcHBGI1GLC0tuRpykiKqnrzsbCy0Gg6EhvFihXL89M3XxMfF8dZbb92xLkCtWrWAOyeea9OmDUFBQU8tgHSdvaM1TV6qzKsfN6TzME8qeZZ4rgNIAHOCL6PL1ecHkG7IyjOQkaMnR28kM8eAtrgblxJ1TD+URG5eHuHh4Tg6OuLt7Y2npyeKouDs7Ex6ejp79+5l7NixpKWlcfXqVcLDw/nggw+wsbG5YxApNjbWnC/q+q569erV46WXXvqHr4AQQgghhBDiQclMJPFUlLIvxZy2c7iWdY2UnBRK25fGztKuQJmEhC3o9elAwS+fqmpANepJvLYTqEarVq0oX74806ZNY9iwYVSvXp2pU6dSunRpDAYDiqLwyy+/FGhjx7U0hp+LINNgRAPkqSpvlS9ZoExycjJbt25l6dKlrFy5kpIlSxITE0NQUBCzZs1i5syZvPfee0yZMoWvv/6aoKCgx36d3N3d2b59OzY2NvTs2ZNTp05Ru3btu9a5FhnBumVLSIuJYc3ypXz7+RhORMdjaaGlRLFi/BVynhx7RzZ2eYXfFsxn/aqVoKrMCT6Ig4019taWFLOzJSIphbRLYUyfPh2NRkNKSgo+Pj6MGTMGPz8/rkVGkJ2ZATcFB+LTM4hKTiUqJY0cvYHTp08XWve6W7e511pYsPt8HIeSrHDITWHHjh00b96cLl268PLLLzNgwABcXFy4cOECn332GTNmzECn07Fp0yZ++uknatWqRceOHVm9ejWXLl1i4MCB9OzZk7S0NDw9Pfnxxx8f7w16jm0+E0ue4fYdHG6loKACeoNKZraeChUqkJaWxv79+807WKiqiqurK9u3b2fQoEFkZmZSvHhxihUrRqtWrfjhhx/uGEQqVaqUefvS63+HpkyZ8o8EZYUQQgghhBCPRmYiiaequG1xKjtVvi2ABJCadhyDoWASbr1e5YMPYrh0KYtXugwlLi4OgC+//JKzZ8+ybNkyxo8fz4ABA/Dz86NDhw4Ftk4EOJmuY0DIZeJz9WQajKQbjGQbVX6JSCAy+8YyuRdeeAGNRkPZsmVJSUnB0dGRZs2aodVq8fPz4+zZs1y4cAFHR0fzdvaPg95gZMe5eJYejCAy2wpra2sALCws0Gq1fPnll/j4+ODn50d4eDhgyunUtWtXqpZ346d3hhC+ZwcJV8LYNvcXIjN07AmPxtqlFDU6vESlRt7sO3iQ7t278/NPP5OelU16djYDmzeiQvFiONnaMrilF6Uci+Ba1IFhw4ZRr149SpQogbW1NRb5S9ySYqJuCwJ1qluDIT6NebGiG0XsbBk+fHihdQtzODyJbWmlGfr2UEaM/ZYP1kdQfehclq3ZwNatW0lLSyM5OZlly5bxwQcfsGDBAjZv3kyHDh3YtGkTgYGBLF++HIA//viDbt26MWvWLLp168auXbvQ6XQcOHDgsd2n552F9vZf/6pBT9yyUeTFXyb+988wZKbcOL5lNqlJiYwZM4asrCx2797Nt99+y2+//UZqaipXrlzh6NGjeLfrgFrFg20lynPpf4FMnPYTx48fZ8yYMeTl5dGqVStatGjBK6+8gsFgKHQm3dq1a/nf//73JC6DEEIIIYQQT4Wd3Y3vwCEhIfj6+uLm5kbNmjXx8vJi48aNgCmP7PWcs9c1atSI4OBgunbtynfffVfg3KJFi2jZsiUnT57Ew8PD/HJwcOCrr7565H7LTCTxzLKyLI6iWKGqNwI7FhYK335bGo3GmiqVP8LNzQsvLy8Apk+fbi63YcOGAm3Nnz/f/PP3l2PJvnUND5BlNJKak0du/oyJmwMkqqry4osvMmvWLACOHz9OxYoVOXXqFIcOHaJdu3acPHmSN954gzlz5jz0mI9fTWHA/EPk6o0YjCqKAqUdbfjEy47ExEQMBgNRUVEEBQVx9uxZJk6cyCeffEJycjLff/Q+k2OvcOxyBE2rVEBvMDB+9SY0Gg3zvh7PhtPnybW2o0FD09K2hg0bEhQUhK21NRVdnNFoFKqULM7O0DBzfz7t/hIAX3zxhfnYnj17AIgLu0hP74bk5WQD8JZvE3MZRYHPBve/Y10oeE9WrNtEy292QKXGuFRqDEC2Ea6kG+k3/wgvd+zIunXrzIG9MmXKmJfClSlThuTkZNzc3EhKSuLatWukpKRQrlw5Ll26RIcOHczjvXjxovl5uZPJkyezatUqc2L3m8XGxjJ37lzzzJnnWZd6Zflh2wVy9DdmCClaC1y7jy9QzrpMdQDK9PuBxq5wfuFn7N69m8zMTL7//nvKly+Pk5MTO3bs4PWQcDYeOETmT9+QGbSFzct/w/GVQEplZTNu3Di0Wi3r1q3D1taW0aNHs337dqpWrVrg8+Lj41EUhRIlSvzzF0EIIYQQQghg564G6PUpj609CwsnWrY4cu+CgE6no1OnTkyYMIHAwEAADh8+zL59+2jXrt1d6wYGBjJp0iRGjhxpPrZs2TK6d+9OnTp1OHfuHAB6vZ5SpUrRrVu3hxzRDTITSTyzSpUKuG2my81cXTs+VLuH0jK5NYSk6vNIHjmE3IuhtPJva57hdLMSJUrQsmVLWrRowa+//kqHDh14801Tcmqj0UidOnWYMWNGgTrDhg27736l6HLpNecASZm5pi3X8wzocg1cuhpH1z6DmDNnDmfPniUoKAgfHx/efPNN0tLSANOsqSPr/sTB0oKsvDxC4xKwsbTkPf/mtHmhKtNm/IKDgz0XLlww7yp3+PBhqlSpQseurxKfYZqtFZ2ShrO9KSKuKBpe/N+rd+xvyYqVKeLicts92hgSSkpWDj3eGHrfY192KAL9LYE9Y44Og1ElKiWLdVt20KpVqwKfdWuQDyAgIIA33niDzp07A1CpUqUC461cufJd+5GTk8OJEyfueP7mpVfPu95N3ClZ1BpL7f3ldrKz0tLbpxbbtm2jWLFi+Pr6EhwcbE5Gvzs5g6CkdIyVq+E8ZQ7OU+ZgWakqmsbNCc/KIU1vIDMzk9dff52WLVuyYsUKoqOjb/ucNWvWyCwkIYQQQgjxRD3OANKDtjdr1iwaNGhgDiCB6T/A7+e7ZEBAAGFhYVy5cgWA9PR09uzZQ48ePQqU++uvvyhfvjzVqlW7737dicxEEs8sG5syVKn8MRcvTcrfjc0IaNFoLKlWdQxWVg+3hMxeqyUpz1DgmGJhSbHvZmKtUVjVuAalra3MM1auJ/sFGDFihDnBdXh4OG3atGHRokV3/Kxp06bdd7/+OByJ4Za8MarRQPxf31LKtz+XdZZUr14df39/c7t5eXlERUWRmZnJiFUrKWJtRY7eQMmiDmRk53AuNoGtZy6QnpPDibgFVPfwwM7OjubNm1OkSBGWLFlCEQcHVq/fyPSg/VhqNPRu2hCtpRV2jo7UadX2jv1VFIWXPhzDsjEfkpeTTV52Nhqtlo71auP9Wk9KV61+32M/EZFaYEYMQE7kaVKCF6GxtKJSyxa4urres51XX32V9957z5wDa/DgwQQGBjJ79mzq1KlD48aNb6sTm5pNSlYu5Z3t+HXOHPr27cuYMWMIDw9nwIABODs7c/nyZdasWYNer2f06NEsWrSI4cOHc/z4cYxGI4sXL6Z8+fL3Pd5nQREbS/4a2owftl3gz6NRZOUZqFPOEd/qJflx+wVy9UZz0m0rrYJbMTtcHB1wcnLCw8ODrVu3EhkZSYcOHXB2dmbX2VDUz79DW8J0n9SsLAxJ17AoWx5FUajfoAEVS5bgzJkzzJgxgw8++IDPP/+cpUuXFujX6tWrC8wqFEIIIYQQ4t/s9OnT1KtX765l1q5di4eHh/l9REQEYEp50r59exYuXMjo0aNZvnw5jRs3xsnJqUD9pUuX8uqrd54g8CAkiCSeaW5ufXB09CTi6nx0ujDs7atS3q0/RYq88NBt9i5dnMlXCl/SVt3OhtLWVnesq6oqJyJTuZaRg31edoHEz5UrV2by5MmAaVe1rKwsmjVrxu7du/n1119ZsGABGRkZTJgwAX9//9vaPh6ZQlZewUCK7txucmMuELd1HgOOLuPX6VMoVaoUPj4+KIpCjx49zG3VLF+OemVKcCn+GmWdirLuxFkycnOxsbTE0c6WA2fPUdTRsdBxzftrAwlXLjP+i7H8sf8gQdu3826p0gXKzJ8/H71ez8CBA83HipUqw8Cf5nJ+326iz5/FztGJmi1a4XRL3XspW8wWrQYMNw3ftvKL2FZ+EQdrLcO71aNCBVdzwO7mwF6/fv0KtNW2bVtzjionJyfWr18PmJapXb8fAOGJmYz4/ThnotMgK4Vrh9dTypDAyEEOnDx5kr59+5KUlFQgufrNM2QmTpyInZ0dW7duZebMmeYdxh636OhoOnXqxJkzZ8jIyMDC4sav7aCgIIKCghg7dizHjh3jww8/RK/XM3LkSDp2vPdMPSc7Kz7vXJPPO9cscNzXoyTTgy6y79I1kjJzURSF8GuZ9J9/iHLFbMm76UZdT0Dv880PHN+1DbtXTP+DknNwN1YNG5M8cgj6i6FE5mQza8pkhg4dSr9+/ejYsSNFihTh77//NreVlpZGSkoK7u7uj3rZhBBCCCGEeC75+/tz+fJlKlasaN6lOiAggAULFpjLNGrUyPxzr169+PDDD81BpN69exdoLzs7my1btpi/qz4qCSKJZ17RonWoVfPxPPAAA91KsCYhmTBdDln5gSRLBWw0Gn6ocefZJKciUxmy6DApujy0ikJ2Tg6tP1/Kjz0bEfjaK7Rq1YqgoCBmzJhBmzZtCtTt1q0b/fv3JzU1lVdffbXQIFI5J1ssNEqBZV32L7Q0vay1fPNKXZrUKU2TJk0YNWoUqqoSeeYU0ccOMvjlAPoF7yIhJYVapUty6HIk+vwv+v9rUJu90Yl079EDKysrZs6ciaurK40bN6ZOnTocPXqUsWPH0qZNG5IN4OBc/IGCQJZW1tRs2YqaLVvdd51b9fQqz7JDEbfNxALQaBRaVrt3fpxz584xcOBAJkyYcNu5W5eppehyeXn6HlKz8kyzbSyLgr0zyXblGTVhMrVr12bkyJF88MEH5uTqFy9eLNDmN998w7Zt28jLy6NGjRoPPuj75OzszLZt28zLxu5k3LhxrFmzpkCCvodVo3RRPmzrgf+UXWRFhRK9bTZoNFiVqkpum8Ekx6aby77wwgtcuXKF8AWz0SWnkHf2FEU/GUf2to0Y4mNQbO3QOLtQLDcLf39/Nm/ezKhRo1i8eDFBQUH8/vvv2NraAlC0aNECebOEEEIIIYT4t6tZsybBwcHm95s3byY4OJj333//vuq3bt2ahIQE9u/fz5EjR1izZk2B86tWraJmzZqUK1fusfRXgkjiP8dOq2Fd/Wosi7nG4phrZBlUWhUvwhC3kpS1KXwWUkJ6Dj1m7ycjR3/TUS37IzJ5Z/lJOnXqREhICDqdjh07drBs2bIC9Tdt2sQPP/yAqqrEx8cX+hndG5Vnwd7w23IDgWmb9VY1SprfZ6Wn8cdXo0iJi0Gfm4uqKLzfpimlK1Ri0sLltK/jQYoui74tm5BiYc21C1fZsWIFO3fuZPz48fz4448kJCQwYOj7FF2zjsDAnri6lmTYsGFs2LCBSZMmUatWLTp27Mjq1auZM2cO58+fJzc3lxUrVqDRaPj777/NO6Slpqai1Wpp3749S5cupXTp0gQFBVGjRg2srKz4/fff2b59O126dCE2Npbu3bsDEBcXR9u2bZk6dSqeqXtZs/J3VBSK+Q2kqHtNtBqF2b0bYmVRePq2m5Nge3h4FEiGHZms43JiJqUdbdj0x2/07duXUaNG4efnx/5Dh8nFEo2dEyVfGQOqgbSDf6Kxc0KfdJXMeLh06RLXrl0zt3c97xLAtWvXCAoKIjg4mC1btrB48eJC+/cwVFXl4OUkVh2LIj07D9/qJelct0yBMgMGDCAiIgJ3d3fc3NwICwsjOzubrl27mgOFFy9eZO3atUyaNImkpCQGDBjA6tWr77sf8/eGozcasShaEtceE1AsrEj461t0cZfJyjVwJjqNopiWNTo5OTH5668ZunYjmTm55OzdiSE2muKzlmKjUbCbNRXNiUPmtq/ns9Lr9axbt86csF4IIYQQQoj/mkGDBjF58mSWLFlizouUmZl53/U1Gg0BAQH069cPPz+/2/5TecmSJbz22muPrb+SWFv8J9lqNfQvV4KtL3qwp3ENvqxa7o4BJIBF+68UWMIDpsTPOXoj+8OusWn7TipXrsyoUaOYPXv2bcmmJ06cyIYNG1izZg0aTeF/7axzU8n+4wMivnsZDQaM2RnkXtyHnZWWWb0bYGOpNZdd98M3XIu8yp4zF1CNRjAYsFBVkqMi6dKtG+lOJSnu5k6XT8byyvuf8mKjRtjZ2eHn58fZs2dJzswlxWhN4JyDzF21Gb2TGxkO5WjQ3DSDKjAwkOXLlwOwcOFCdDodn376KWXLluX111+nbNmynDx5EjAlHP/7778pVaoU2dnZ7Nq1i+joaFq0aEFQUBCbN28mJSWFVatWAabk1NeXYfn7+9OpUycAQoPXcezwQd4cNx3rM+t4y6cKQR/44FWpeIHrFB0dTf369bG2tubYsWMADBw4kGbNmnHlyhW6vPoapTwaUKdDH95afJSOU4P4ZMJkPvp0NGfOnKF27dpYOZXCoV4HbMrXRnfeNPPFyrUyrt3HYVm0BKXLV6Z48eLk5OQUeq+KFSuGg4MDfn5+BZZjPSqjUWX4suP0n3+I3w9dZf2pWD5fexrf74LIzX/+Dh48iFarZevWreZE4XFxcYSGhrJixQqGDBnC+PHj8fb2Zv/+/YBpDfWDJKs+HJ7E74eukmdQ0ToUQ7Ew/d1Q0HBtwzSyo0PxrlWRrl27kpGRQbFixXBxLErP0sVxs7dFDb+EfYNG2GgUXivljNWZ4zgWspTSwsKCPn363HPXCSGEEEIIIf6t7O3tWbt2LTNnzqRcuXJ4enoybty4B9rQp3fv3oSGht6WUDs9PZ3du3fTs2fPx9ZfmYkkxH04EHbtjomftZZWvNCqJZs3b+bq1asEBAQApnw113Xq1IkWLVrQqFGj25KcXefs7Myx/cG06xRAWy93zl4KJ+zUSdaPHI1rURtzubTEBKLOncZo0HMw/CqNKrmRnafHxtICfW4uu4KC+HLKj8yYMYNyNWrhmpdHfHw8BoOB48ePU6FCBXrM3k9aSgrGU0Hk5uaSHXMBLG15Y+EhcnJyGDFiBFu2bGHVqlVs2rSJEiVKMGfOHHx8fNi/fz9ly5Zl0aJFrFmzBlVV6du3L64lS2Cbo2Pd1Ekougx27thBiRIlKFq0KLm5uWRlZeHj48Mff/xh3r59165dvP/++9SvX5+TJ09S1kHDS5W0BCsZDG9d1Zz3KDU1lXLlyzNg1nxiMg1MWLmGYf5+9OnThy+++ILQ0FCqVatGp06duJqah8a9AVmR54jYNAdFa016XASHY8JxdS3JsWPH0GdloM3RYeHkijErA31aItlRZ1A0Wkq0CMQ6bDM7d+4kOzsbjUZDnz59+Oyzz3jnnXdwdXVFo9Gwbt06wsPDzYm2b7ZlyxYmTpyI0Wjk+++/p0GDBvf1nP15LIotZ+PIyr2R+F2XayAnz0DSlTiaN29OcnIyZcqYZiY1aNCAffv24ej4f/buO67qsn3g+Ods9l6CggguHKjgQAFxa24zH1e5zXKUlpW5H02zHFmaK03NWWnuhQNRc+ECtyCKguwNh8MZ398f5ElCy552v/v9evVKv+NeB9fFdV+3PY0bN2bbtm0sXbqU+Ph43n//ferXr8+LL75IVFQU1atXJygoiPr16//sGKJupTNqwwVKflKfqzQ9EVNJAc6dxqK9vJcD33yFnS6dTz75BCirU1WjRg3OvPQSRyIPkydBFY2aG5cvkVa/vnkPd9WqVZ9a20oQBEEQBEEQ/ipKpcPvekKbUunwi88UFxebf9ygQQOOHz/+1OeedkrbuXPnyv28efPm5XZOPGZra0tubu4vjuXXEEEkQXgOzraaCtd+LPys5M0BjWhZw5WpU6eWe+bx9qpp06Yxbdq0Cm0sXLiQrdu2sWTfITw0Kqo4OmKpUjCtax2mTt3C7lOHqOntQf369enZsyfbt29HV1xEKy9n7qakkZpXwOfHThNYuRLn7j1AKZdTy8eb0NBQ5syZQ+/evVm5ciUjRowgIiICowR27d/gZmoBcks7im9GY8hNxaJaEKWpCdxePxlDYSFhYWHY29szc+ZM+vTpQ5MmTdiwYQPZ2dnodDoUCgXff/89kyZNIj8/n6nvvw/pyWQ7O1DkZE9RVgaDmwXSulsvPtu5jxdffJEPP/ywXGAtJiaG+vXr4+bmxpEjR2jatCl169bFYDCwf/9+oCwQJ0kSXd57nRMGR2Ku3gSZEpXJRGpmFgHNy7KPcnJyuH//Pt37D2H9vlOYJAnL6s0ovLQHpaMXMqUGJBO5eflcuXKFkuJiNGnxWFRrhO7BtXKfiV3NEM5umMrKZZ9Tv359bGxsqFOnDocOHeLMmTOsX7/+Z79WtFotK1asIDIyEoVC8bPP/tTqk3fLBZAeM0pQYpKzcftuMpISGDhwIHFxceZMrOrVq5OamsrSpUtZuHAhH3/8MfPmzaN3796sWbOG0NBQ5s+fz3vvvce2bdue2b8kSby/Pa5CAMmoLSA7cjmu3d+j5MFVSpLieHfoiwBUqlRWPysxMZHAwEBKSkpwVauQZWbyySerKS4uRqVS0bRpU+RyOQsXLiQkJORXrYsgCIIgCIIg/JFahl/4q4fwjyG2swnCcxjQxBsr9dMDAgq5jOZ+zk+993Myi4r5POoUV/KL6X8lgbCzN+hy4Ta6H2oitWjRAi8vL3Jzc+nfvz+rV68mOjqarRs3su/SNZr5eeNhb8vrrUJoUb0q49uFMbZNC0a82B2FQsHBgwf59ttvcXJyom/fvkQejULedSa3tWVFjGVyBTb12uHQchBuPSfj3GE0VgGtUFvbkenThjhlDa5eu07V+s3Iz89HpVJx8+ZNcnJyyMnJ4dq1a7z77rtMmTKFO1evkJiazr5LVwGIT89EZjRy++RRmgXW5/jx4zg6Opab/6ZvtxHepSsqjQaFQkFqaio3btzg22+/pVOnTubn3j/zKYcPnkMd2haTUUnWhNdIGfIf9AX5tJv3CT4+Pnh5efHee+9hsquESV8CQGnydVCo0HjXRWHlgMqtGipLWypVqoSzszMqQxFZu+Zj0pV9B0DSl5KxYw43Pu6DU7X6LFi5nl4v/QeAwMBAYmNjqVu3Ll988QVBQUE8fPgQKNte17t3b/O106dPI5fL6dSpEy+//PKv2s+cXvCU7XPydNK/eZPSrCT6v1QWuJEkiRdffJHFixezdu1a7Ozs+M9//kN8fDyTJk3io48+4syZM4SFhXHkyBG6dOmCSqX6xaDW3cwicor15a5JJiOZe+bj2GooShtHHCr50KtrJ/OWxPXr15OSkkJQUBBardYcIPLw8GDy5MkcOnSI8+fPc/r0ab799ls++uijcu1Pnz6dkJAQLlwQf3ALgiAIgiAIwt+dyEQShOcQ4udM10BPdl9JofiHTBGlXIZKIWdJ/4aoFL8cj03IKOTLU4lcS8mniqMVB099Q35ER0yJn5Ob/JC8j2aQZmdHaUwMCfeTcHd3N9dWSkhIIDU1lVatWpGSksKD9CyWRZ1BbyiftaLUaAjq8vRTvPbGPiK7qJQn63ZrvGpTcOUgULZdSSaTofRuwOZzSeRlFSG392DZsTtkR35O544d8PPz48KFC6xcuZLIyEiOHTvGxrVruR8dSVzSQ1QKBUaTiUr2trjZ2aAt1jL/00+xsrWjQYMGANwuKmHCzSQO7dhFpdY9WHDqKmNdbZHL5ajVamxtbTEYygqYJ+YlsvlOBpJMhtzBCQCnRV+Qv+gDtI8ecnfvDh7evY2DrS1XrlwhYsh7rF66GO2jO1h4B2JRpS7FN0+V1fUBGrTsDBm3sbS05PUxY1j37V7SNZ7olSYwGXHp/h5F149j0uZjqlqPRRu3UctB4tixY+Tl5ZmPs9+8eTPbtm2je/fuFa65ubnx6NEjoqKiWLlyJStWrGDChAnP9XVW3d2WzMIfinnLS7D02ojCKhGbyQ4gs8Pe1pK00jRq1qxprsW0fPlysrKyGDFiBF988QX79u3j+++/Jzs7G7lcbg529evXj3Hjxv1s/0aTxE/KeVF88ySlj+6QE/UlCrmMHWuXcu5UNqHhLcko0OES2Joqvn6U6EqxtrbmypUr7Nixg+DgYMaNG4ePjw8ymQydTkdubi7OzmUB14iICFq0aMGnn37KwoULWbRoEXFxcXz00Ud06NDhudZLEARBEARBEIQ/lwgiCcJzkMlkfNirHh3rerD++3ukF+ho5O3IsFBfqrpY/+L7B68+4o2tlzEYJQwmiUuJmWQcOYFDgx8LCkuF+djNX07O0N7M2bCJWUNewWAwmI+PDw0NZeXKlfTt25dTUUf57oOpfPjNLgDkCgVyhYLgzj2oWr/hU8cQeSPNHAAD8BhYlhEi6bUkLXoJmUKJpnJdZCoN2owk8o6vR+NZE03tCOwKszgU+Q2KI0fQaDRoNBqsra3p0KEDGqWSkpxM7DRqPB1sufwgBUuVmkWRJ1DK5TSvVZ2Zn6+kS5cudO7Zi5vDxpOflYXcvRI6lQad3shHqXko7ewJDQ1Fq9Wa5xx5P5K8C6lYtGj94zqVlmJ8lIyyem1c5y3G5v03cVYr0el0zBk7EKVzZSx8G2IszMY2qDtFX41H5eiFJJdTr6oLx26UBVi+3rKFd8aO5dz58yz6ci0qt6rIZHKUts6U5DxC7lINybEKFy7spH69uri4uBAQEIBcLsfLy4v4+HiACteqV69OaGgoCoWC1q1bM3/+/Of+Ohvbyp/LSblo9UYsK69DYZmETG4EyoJqSWn3GTh1IDEHYgA4c+aM+TRAmUzGtGnTeOGFF2jYsCE1atQwt/vJJ58QEBBAaGjoz/bv52qDRikv93ViHdAS64CWKOUy/tO4Cu0i6uFdqwFb9MEYDSaSDSZSSsBnwrdod0zFx8mKHj160LdvX86fP0+nTp1IT0+nVq1apKenExAQQPv27TEajRgMBmQyGa+//jq3bt3CwsKCUaNGiSCSIAiCIAiCIPxNie1sgvCcZDIZrWq68eWQJuwdF8asHnWfK4BUpDPw5tYrlOhNGH5IAyq8dhTr2i1R3i0oK3gDKKpUJfed19Cnp7Jj1Uq2bduGyWSiTp06vPvuu8hkMurWrcuxY8do0iKMb24/JKBBI3bEJ+MW3JyX531Ki/+8DMDly5fNRYt9fX355JNPsFIpyI5cXmF8zh3H4dRuFGq3apSm3MA6IByVcxU8hy3FucMYAKzrtkNl7cDWrVvR6/UMHDiQgQMH4ubmRtSRw+gNBmw1aqq6OHH8ViKNfSvzZttQRrduwZhX+uPo6Ejr1q1pOO9TSm1sUXhXxWHGj8EVrUmiyNmNI9HR7Ny5k8qVKwOgM+oo+f57NC3Czc/mf/ohppwsjA/vk/HOWMZ/MAeAtWvX4tv7XUpT4ymMO4LGqzZKO2fUrr5Y+jehNO0ud+Pj2blzJ+3atSMyMhI7Ozuyi/R49pqE0ubJLYlln4lNSF807tVwdnamVatW5U7de1y47qfXGjduzI0bN8yfg6+v7y9+jTzW3N+F9zrVwsIqDYXlwx8CSD+0bZR4uPIhXv/x4lTBKdLS0iqcBtitWzeOHz9Ojx49CAsLA+DQoUN8//33TJky5Rf7V8hlvP9CbSxU5f9okMnAUq3gtQg/JEmi75dnyS8xYPih2LwkgVZvJD1fR65Wz9mzZ9FoNLRp0wYfHx8uXbrEnTt3iI2Nxd3dnT59+pCens7s2bOpX78+TZo0oVq1anh6epKTk/Pc6yUIgiAIgiAIwp9LZCIJwq+QkpJCly5duH79OoWFhSiVFX8JhYeHI5PJyMjIwNnZmRytgbsPUlG5VMWl69sA6LOTKU27S+ae+UhGPTlvj0LhXRXH+SvQX46hzt3r1KxZk0GDBjFr1iyioqLw8fFBr9dz6NAhEhISkMvlmEwm5PKKseAGDRqYi1h3796dLl26kCo5cKDz6HJZJgDG4lx0D67y1qKvWDr7PSSdlpzor3AMf5mcqDVoEy8ikyuxt7Wjffv2eHp6smfPHho3bkxcXBwv9uuPQm2Br7sL3k4OpOcX4u3kgMFk4osTMbgnZaLZcYClS5cyKCsf/U8ODZAMenLfG4Mh/hat2rXns4/mme/VtamLPD8NhVvZaW7G9FR0UYdQVq+F0sYWt/6DGN62FSPblRUw16rscWo7kpKkOCz9m5K2dQo29dtTFHcYmVxORkZGhSCFSaLCFi4Ak6GUh0teBn0JGzcW0Llz55//4viBq6srLVu2JDw8HCsrKzZt2vRc7z02qHlVlPa2LLigQC/9WJ8o73we2kQtSVuSmPLdFB72fljhNMCxY8dy7do1fHx8+Pzzz4Gy0xzs7Oxo1aoVNWvWZMWKFT/b/0vBVbBQKfhw/03SC0qQJGhc1YlZPepS2dGKTTcfkVNYylOWDJMkkZZXwr1796hVqxa3bt0iMDDQXI/po48+4tSpU6SkpKDT6czBr6cF5wRBEARBEARB+PuR/VP/wh4cHCzFxMT81cMQ/p8pKSlBq9XSs2dPDh8+XCGIVGowkZxdgL4wl+GDX6Zr1644h/TmtZfao3KqbA4iPZa64R0ktRy7D+ZRuGYp9u9/AFdi6JmWyGdvvEzf3t25m15Atska/0bhtA5rxrTxr2FhYYHRaKRJkyZcvHiRevXqcfXqVby8vPD09ESn03Hw4EEWLlzIhg0buHXrFt999x2vjByNZaPuGCWwrteW9G9mYFUrFH38aQypdzBq7HBo+xp5p7ciQ8JYUoBtoy7IdYWYbh6hY5sIrly5QtOmTfH29mbZsmXUq1cPL89KdPB2JyMpEclkQq5QIJlMtBs5loCwVub5hp29wZ3ipxSPBqwVcnY1qk4dG0vzNUmSGLhvIOdLvcm36wkyOciUyEwlKGSwP7g+9eyszM9P2h7H1zFJGE0V29co5Zx8tzWuPzlpT2cwEjTrMIU6Q4V3VAoZQ5r78n7n2s/+ovgDHEk6wuQTkykyVCzKLUdON79uzAqd9YeOQZIkcov1qJVyrDU/fp2/sD+Wa6ceIjOU/7NDMhp48NkAFHIZDerUokqVKlhZWREYGMiBAwfIyMggJSWFtWvX8ujRIz744APi4+OJiIgAfjzJMDQ01PxjQRAEQRAEQfgjxMbGUr9+/b90DHfv3mXkyJHcuXMHk8lEu3bt+Pzzz7l06RIPHz7kpZdeAuCtt97CxsaGmTNn/iHjeNpayGSyC5IkBT/teZGJJAi/4Nyjc6yMXUl8bjwuli68UucV8734+HheeeUV1BoNllUbkFSlAyYJsi8dhJQcstd/RcDV28hkYCjMIvmL15BKS3DvPxeVgwemkgJk1k4UbVqD3dvTsJLLqaMv4tLebwjbOB/bdmMoCW0ORjmndy/ggW8XnKvW5vjebTRt0pjFixfTo0cPXFxcWL58ObNmzWL06NHcvHmTgwcP4urqioWFBQDffvst/lUqkdOgM2nfzKAk+QZ2TV9En56IycKBwCk7ublsNIUXdmIqKcRr+OcUXDkEMhnF144y6uWX+e+MqVSuXBkHBwcALCwsOHz4MK+99hrVuvSmtaszj+7cRGNtg19QUzRWVuXWso+HEwvupVJiqhi8tlHIqW1tUe6aTCZjVftVzD4zmz3JM0iJlFN45ibtl05iZdOX8LAs3/6IMF92XEpGayqfbaVRyulY16NCAKnsnoK32tfgowM30T5xtL1cBlZqJcPCnn872m/xZJZbVl7WM59TK9T0rtn7qffWr1/PunXrMBqNfPDBByxbtowNGzaUe+ZZQZqUlBSqVavG1atX8ff3RyaT4WitrvBchloCU8UAUvo305EBLtVqs2TJZyxfvpykpCRkMhmtW7fmjTfeoGPHjixZsoQqVaowePBgcxD2yfGIAJIgCIIgCILwZ6t9Io6cnxxa9Fs4KhXcCKv3zPsmk4kePXowfPhwxo0bh8FgYMCAAbz55pvUqVOHmJgYcxDptzIYDE/dQfO/EkEkQfgZm29uZmHMQkqMZcfGZ5VkMfv0bB7lPkKSJKKiohg5ciTXrBuy60oyulIjhvx0sqI3YCotxnv8aqroLyDTFVKal4FtcHcsfQLJP/stLh3GUG3YQhr0CeTkqqU4Ht7D3Lfe5L9vrePUi7lMTP8PXxw8jkvv1hReO4R1QAQ6mZoCnYltlx5Rs2ZN9u3bh7+/P/Xq1cPT0xN/f39ycnLMtWVOnDiBvb09WVlZ5ObmklpkRCOTYV0ngrzvt+DadSL5OY+w8K5LeoGO+nVrcfteCnkWVtholBTkPMCpij9W7nbcunEVGxsb7O3tadasGdevX8fGxgYo2z4XHx9Ps2bN8PCr/sz1HOLlwuZH2TwsKaX0iSxIS7mMhbW8kT9lX5mVyoo5YXN4uzCbEbtG8MjBjV0Rw57afjVXG74YFMzYTZfQGY3IkKE3mmgX4M68F5/9nYYhLXyxUitZcOgWeVo9JkmiSVUnZvesh7udxTPf+z05OTlx5MgRevbsiUah4aOWH/FW1FvoTXqMUtkfaJZKS3r59yLQNdD8XoneSHGpkaLsdI4fP86RI0cAuHfv3q/q/5NPPqFZs2a/+Jyfsw2pjhrk2TpkP3yEMoUS974fgFzG+lFNaertTFBQEEqlknnz5uHt7Y2Njc1TA0QiaCQIgiAIgiD81X7PANLztLdnzx7UarX59GSlUsny5cvx8fFBqVQiSRK1atVi4sSJANy4cYMmTZqQkpLCa6+9xuTJkwFYtmwZy5Yto7S0lEaNGrF+/XqUSiVWVlaMHDmSo0ePMn/+fNq3b/+7zU0U1haEZ8gvzWdBzAJzAOkxrVFLni6PC2kX6NOnD9+fv8iKmW+Se+s8AEo7N+ybvYRVrXASjm7BwicQW6UJhWTEvcWLOFapjpSXSmVHS3aO78CWoOpEvvEqIXlpBKPHx16GTK7kkG13DDotUFZDqeDSPlK3TEaXcZ+VG74hIyODNm3aIJPJnlpTxmAwcOPGDQYOHMioUaPo2rVrWYCktITC2ENY1wylMO4ISCZyT20mZeN7JCbcZezAHtgZcrE69hHNPFVM6lSLKp7uBAYGEhISQmpqKj169Cibq1LJiy++SFRUFH5+fr+4pjZKBQeCa9BHVkLmi23ImzAC3h/Dtgb+tHG2K/fsjUItA68k4DJ7EVV2R9Nl7mfUqt+UUl0pAEOHDqVt27YMGzaMGTNmsHXrVpYuXUoLfxdWdXEhIHEbH/eqQ+2bXxK7/E2GvDIQg6HilrXH/tO4CmcmteHku625NK09G0c0w/c5Cqf/r66l5DFm00VC5x2l62cn2XstEzt7B/P9EPcQVKtU5CzMIWdFDmGVwnjd9XViF8cC0Ps//eg96yt8+03Hs3o9qjcK4fSVm7Rp04axY8diNBpJTk6me/fuNGvWjMTERAAKCgro168fQUFBnD9f9jWbkZFBQUEBVatW/cVxv+bthqKhMyYHNZIcJLkMSVH2X9WQSoR7lxUoHzZsGOHh4Zw4cYKePXv+vosnCIIgCIIgCP9gcXFxNGjQoNw1R0dHvLy8eOutt+jWrRs3b95k2LCyb57fuXOH48ePc/78eT7++GN0Oh2XLl3im2++4fz589y8eROFQmGuf6rVaqlfvz6xsbG/awAJRBBJEJ7p+IPjKGSKp94zSSb2JOxBpVLRYeg7eHWfQO7JjUhGA5IkofGqjakwG6NMxaHoM1haWFDJ1YnqN79ieG0ZHUICOfxmC6o6lm0XOnXqFH5+fri6unLvYSq5OonivCzkmrIghmPEENz/Mwv7xj2QTEZSYw5gaWmJu7v7M8d/48YNWrduzUsvvcT+/fvp3bs3SJAbvR77pr2xD+1P0bVjWAe0xKZ2SwBcPLyYOHEiw4cNRWUsQZubQa9evZg6dSoHDhzAx8eHOnXqoFaXjTswMJDc3Fw0Gg0hISHPta52SgVjfNzp+0IntJfOk3r6JI3sywdrYguK6XzhDkeyCyg6eYzirEwunTrFsluJ5BcXc+7cORQKBYcPHzYHr7p168bevXsB+Pabrxk/agiFt08TFFiP6Oho6tSpw7Zt2352bHK5DFdbDTaaPzZJ8/D1NHovO82+uEc8zNESl5zHlB1XGfXVj3XelEolRw4c4f7l+wxuPZiesp4Mbj8YX19fhg4fwelUE5e1zhTcOIVL93exDGjNwxIV7d5egpWVFTt37iQ1NZVt27axePFi5s0rK1j+4MEDVq1axa5du8z7qj/55BPGjBnzXGNv6WTLaL9KKJq5YQxxw1DbHkWgE26dvNnavq75uXXr1hEdHc2ePXvMWyoFQRAEQRAEQSj7xr/sKbswnlWzukOHDlhaWlKpUiWcnJxITk7mwIEDXL16lcDAQGrVqsXJkye5e/cuAAqFgldeeeWpbf1WYjubIDyD1qDFJJWv0CwZJO4tvIf2gZb149dj+x9b1m/dzr3UbKwDIjAWZZO5ZyHIZBhy0zBq88k25eDi4oKtrS0p9xL46O3hnDp1itzcXDp16oSNjQ2Ojo5s2LABhULBmEG96bxsGemmBTi0H40u5RY5R1aBXI7aozreE76lkr0Fpye1ASAyMtI8vsdFip+Uk5NDhw4dsLW1xc7GGou2I8333PvOBsCxdVmE+/CUtqjVaj744INybTRt2pSLFy9WaPuVV16hbdu2z7WekiRxJeMKMWkxFKYVcuToEcLCwujVqxdqtRofHx9q1KhBs2bNaH7oNOmrl6Bu1JTSc99TGnsRdd0G5O/fSUFeLjNnzjSflhYUFMTp06extLTEzc2NpKQkzp49y5w5c5g3bx6NGjUCIDg4mAsXLjzXWP9XT9Yk2rhxI9OnT+fmzZu89tprrFq1CoBbt26hbjkSySOAkvuxWNVsDoBWb+RUQhaq4rJMq6KiIkaOHElycjJpaWlUr162TXDUqFFU9fXFd/RaDCYJ++b/Ie/7rZRm3MfSL5gvT91jTvMwbl69Qr169VAqlebthgD+/v7Y2NhgY2NDXl4eubm5PHjwgDp16jz3PCf6etDb3ZHtaTnkGgyEONjQ3tkepfxpZ7YJgiAIgiAIgvCkevXqsWPHjnLXcnJySE1NfWr9Io3mx9quCoUCvV6PyWSiT58+LFmypMLzarX6d62D9CQRRBKEZwh2D0aifCRYppTh+44vVkor3mvyHj2r92TUuAk0+eAwOkNZwMmj/4fm563UCj7r15A2tZ+eMfS0wMygd+czSHOAedkRfGmsTFFhMe795iBTqsnY/TGynPu82rXTc83h5s2bDB8+nDlz5jBgwABGDBnIljwZemPFCHeXepVwtqlYePr3UKQv4tXIV7mdc5tSYykyowz3/7rTv2F/9kzbwzvvvMOBAwfIzMykUXAw5+Kuoo+/hfXLI1A3aQ5KFaa0R0gKBUagSZMmXLlyBYBLly6Z++nfvz9vvfUWTZo0QSaTUa1aNS5cuEDnzp2JiYnB39//D5kfQHJycrmaRFAWMHpc82fAgAEABAQGIfk2pCA3m+Lb35uDSADFpUZ0+WWn1x08eJAaNWqwadMmJk+ebP6uxHvvvUfNdgO59cUYVE5eKOzdcYwYQlbkcopvnqDIpRKvrd6Mg21Z0XGj0ciVK1fMGVvx8fEUFRWRl5eHnZ0dt27d4s6dO3Ts2JG4uDgePnzI4cOHf3G+vlYa3vL1+B1WThAEQRAEQRD+f+natSuTJ09m6dKljB49GoPBwGuvvUafPn3w8PDg3Llzv9hGp06d6NmzJ5MmTcLLy4v09HRyc3OpUaPGHzp2sZ1NEJ6hmkM1mlZqikZRPrCikCmwVdvSybcskGNvqWJih5pYqspvfbNQyWlQxYGImm6/rmOFiqIBexhpf5bmihvY2FihVCpQYkCpUBJRy4P1U4fRp08fGjZsyPbt22nfvj2hoaEUFRVx7949WrVqRffu3Rk8eDBfffUV4eHhyOVyovduw/bYPCwoQaWQoZCV/dc7yItP+zUsN4x79+7h7u5OREQE7du3Jzc3l+3bt5vvHz58uFwW0uXLl1m9evVTpzT9++ncyLqB1qDFKBkxyA0YVUa+vPkltVrU4uHDh8TFxXHu3DnGvvkmpXEXQZKQKVUAWPcdhONHn2PZtjNKD0+mT5+OTqejTZs23L5929xPmzZtOHnyJP369QOgZ8+eXLt2jfDwcOLi4njxxRd/3WfxC9J0elY+SOeju49YtG0HBqPRXJNo0qRJxMbG0qVLF/Pzd+/exc7RGYXakoLLB9Deu0zqpvcwFuchGQ2kbZlMVtIdOnTogIuLC7t27SIgIMCcxbRjxw58fHwI7D4c69rh2DTsQkniJdK/mYEpLw2lcxUe7VtKzbqBfPjhhxQXF9OjRw/GjRvHO++8A0CVKlUYOnQoXbt2Zdq0aTRt2pTTp09z4MAB2rVrx/Lly3/XNRIEQRAEQRAEoTy5XM7OnTvZtm0bPj4++Pr6YmFhweLFi+nUqRO3bt2iVq1az/z3FUCjRo2YNm0abdq0oUaNGrRq1YqHDx/+4WMXmUiC8DMWRizkgzMfsC9xHyq5ilJjKYGugcwNm4uF8sc6L8PDqlHV2ZrFR26TkFGEg6WKV5pXZWgLXxS/covP1vMPmL4rHoV8LvXltwmVXSfftjq+TpaccVcwvWcjeq7P4fDhw2zZsoV169Zx6NAh5syZw8GDB2nUqBGpqalERkZy4cIF5s2bx/Lly1m7di1WVlZ88cUXGIyZ1G/7Ijq9iQZVHCoc5a43mjCZJNq1a2c+Iv7evXts376dXr16PXXcOp2O1atXs3btWoKDg1m0aBEAuSW5HEs6RqmpbJtWxt4MCmILAPB915fvDn9Hn7l9kMvl5Obm0rFNG0zvTEJZPwgoO/kL4w/bCpVKmk8sO4lg7dq1AERFRREVFWUeR926dQkMLDu9TKVSsXXr1l+1/s9r9cMM/puQAhLoJInSq7eRp2Ryfd8BFkybQuPGjalXrx579uwxv7N9+3b6vtSbZY9M2DboiDE/A5eub5vvew+cy5jW/oxtXbZ17fTp04wcOZKEhAQGDx5MaYmWxrVqcOh+CVdeeL0sc+lBLDZ121JwcQ+OrYeRd2QFB/bsRKOAjz/+mN27d7Nr1y769OlDUFAQtra2z1yTtWvXsnDhQrZv3/7UU9NSU1NZvXo1kydPJjQ0VJysJgiCIAiCIPwrOCoVv+sJbY7Kp9fWfZKfnx9Hjx6tcN3S0pKrV68+8707d+6Yfzxs2DBz8e0nFRcXP+dIfz0RRBKEn6FRaPhvi/8ysfFEUgpTcLZ0xsXS5anPtg1wp23AswtdP49zidnM2HWNEn1Z0OQ0ZduvVOlFfL9uJueP7qWkpISAgADkcjmenp7UrVtWzNjT05OcnByACrVwjEYjEydOJC4ujvz8fHr27Elzv4rzOHYznbn7b3AnvRBTXjpZ+w7RNKQFffv0JiMjg8jISCIiIvjmm2/M74wbN47mzZujVqsJDw9n4MCBtGrViuPHjxMYGMjEjyeiVqgpNZVSfLcYU4kJl04uPFz1kBuv30Blo8LPz4+GDRuai3T7WFuSXq8BAOrGIRQsnoumZVtsGwZTtGk1/818wLRp08qNPTs7mxdffJFXX331N30Gz+NCXhGzE1LQmX7cFmiwskZRtwHDriYypnVrYmJiKry3e/dutm/fTmJkEntOpZW7JwNUCjmZBTqm77xKWHVXbhz9hkGDBjFt2jQ+nTqJPTu+o2tQfU7duUe21pHse1cxGUqxa9wTbeJFVKetKbkbQ+T+PVhbW5OdnQ3AvHnziI6OJjc396l1sx7T6XTmbYJP4+HhYT5OVBAEQRAEQRD+LW6E1furh/CPIYJIgvAcbNW21HSq+Yf3s+ToHbT68hFwyWTk4Y6PcA0fiJWDMyWpyeUq+T/548d1c65evVquFs7ly5cpKioiOjqaVatWkZycXKHvXZeTeWdbrDmAhZUjLkOWobe1Zt+BxSz4eB5JSUm0b9+evn37EhcXR+sXuhF3+z6nXLtC+nU8i4rw96+Ot7c3GRkZHDhwgD6v9CH9XDp5N/LIv5iPZJDIPZuL2lmN/3/9kQ5KBAUF4efnx8CBAwGIO3uGkzkFTL2TzJ2IdthEtKOejRUf1PCi0ZjB5cYdERFhDowcO3bst34Ez2XZg3RKTOXrSqnqBKLdu524Qi1Hz8UQ6Odb7n5qaipqtRpnZ2c+7u2IIT+Tr45K2FooKTUYsVApKdEb+erMfUwSfHPuHll7t3Hr+5HkZ2Zw++wpTEYjpdpi0OsIU2VQ1Lk/R/ZtRnf3PDKTgRULP6Qo4TzDhw9n4MCB5v3QCoUCa2trrK2tcXEpCx5KksS2iw/59Eg8D3KKsbdQ4Zt+glcHDGT2f2cSFRXF4cOHmT17tjnrKyIigilTppiz0wRBEARBEARB+P9F1EQShL+RG6kFFa4V3zxJ6aM7ZB37kjatWvHo0aNfbMfNza1cLZyaNWsSHx9Px44dn1qkzWiSmLH7+o8BJCirR6SyoEBvwsq/CXv27KG4uNhcPFqSqzgdG0+xtTMpAXYkVrXimE6L75L1JNy/z6lTp9Dr9TyMf0jurlxyT+Vi0puwbWSL32Q/jMVGTA9MWCRbMHDgQNasWWNO54yKiuLw4gUca1KL66H1uBlaj/3BNWhkZ/0bVvf3c6dIx09Lk6v8ayJTa0h7czhnzp+jd+/e5e7v3LmT7t27A6BWyvl0WGsaV1Ljdm4po5p5UGo0oTOYeBybSr8Uidw/lIlfX6YwOwuTXm9uy2gyoZCMNMq9hIfGwOzeQTjaWtEnvC5DhgyhXr169OjRg7CwMABMJhPFxcWkpKSQmZkJwIJDt5i64xpJ2cVIEuQUajl8LIpVCdYV5iYIgiAIgiAIggAiE0kQ/lZcbdRkFOjKXbMOaIl1QEs0Sjm7J7bCw96CkJAQoHwWzuDBg4Gy2kWVK1eukC3yc/VrbqcVoPtJBpRJV4xcY4XeKHHkeDTXGncm/8ptWgQH0rJVa4r1JqxrNaUwdj/GxZMxJN5BFRhExpIPUddrRGi79kiSxOHDh1FpVTjVdCI3MZf8mHw8unmgtlPzYPEDPJ09SU9PZ/z48ZSUlFQYm91z7Cf+s1Wz0nC7uKRCsMX2tQlYyGWsblwTtVpdbs1/us1OoVBw5PAhADp+Eo22tPz667OTKbpxgk2X9iHlFXA3I5uCH9bn+qN0MgqK+D7hPiUGI+3btzdv7xs7diyXL19m3bp1fP755wC88847hIeH06BBA9zd3cko0LHqRKL5REGAomtHsazVkhuP8pEX6ytkuD35c0EQBEEQBEH4pzOZTMjl/7/zakwm0y8/9BP/v1dMEP5mhoZWw0pdMWiikMmoX9keD3uLp7z166xfv542bdoQERHx1G1tj+keXiNpYW9Sv3obhbUTetca5ORks+fAIdqOnotMLkdytwWjEWXNADThbdCdOIpFRHuUDRrjtOZb/P39OXbsGKW6UgquF1DJuRJ2NnbIt8uppK7EgZ0HmDZtGlWqVGHSpEnmejyPt+X9np4176ioKGbMmAHA9OnTCQkJ4cKFC4SFhREeHk7//v0xGssHeEZVccXih4Lp2kO7yXnrVbLHD4fMdGpZW+JvZfHUds+ePUtISAg2NjbEx8eb20vNqxg8c4wYgvt/ZuHTfzYuDg60CfAnT6vji+hzWKhUtK7lx8shjfDzrES1atXMW9c+++wzAgMD+fLLL7G0tATghRdeICYmhpkzZ2Jvb8/x2xkVCr7rs5MpuLSPxA2Tib91g+joaHPWW1xc3G9YeUEQBEEQBEH4e1EoFGRkZPxPQZR/C5PJREZGBgrFr/umvchEEoS/kV4NvTh6M42oWxkU/5CZYqVWYK1R8knfhs/VRtWqVZ9ZsyY5Odm8He1JNdxt0agUFD2RDWPp1xi1hz8e/T80X7ML7gFyOTtu5OPR+Q1yVKmoGzbGpv9Qcme9h1RUhDbqEJTqSK1ek2bV/IiJiaFHjx6o1Wq++uorBg8ezI4dO6hRowbNmzdn06ZN7Nixg2+//RZnZ2fg9w9aPGveP3X06FFOnz5NTk4Ou3fvxsHBgcmTJ7Nv3z66du1qfq6pgw1v+3ow59wVDFcu4LhgBTYKOQ4qBWvqVn1mu5IksWPHDt59991y932crch9mPfUMRklmNT/JYpT7jEivEm5e0q1hiUL3gDKZ5o9eVodwLfffsuyZcsoKiri008/5aFJqpBF5RgxxPxj3XeTmTx5Mp07d+aFF14wfy6CIAiCIAiC8G9QrVo17t69S1pa2i8//C+mUCioVq3ar3pHBJEE4W9ELpextH8jvk/I4puYhxSU6Gldy40eDb2w1vzvv1wLSvQ8yNZyaOcejEYjbdq0ISAggE8++YTp06dz7NgxDHpQtXyTwvSHZB9citKpMlKpFoDckxsxFmRRmnEPSV/CfW0euRf3YTJokXQ6rIePwZAYj8UL3VEF1Kfw8wXkrPyUeJmRoKAgAgMDWbRoEW3btiUkJIS+ffuaTwozmUwcP34cPz8/hg4dStu2bfH398fDw+M3raXRZORWzi30Jj1n9p+pMO8RI0aQlJSEj48Ptra22NraotVqcXJyIikpCRsbGwCUSmWF6HymNpPqpit0iz9CjKWKrMljsFEpGdavH1NWLTC3W6VKFZYsWUJsbCwRERHs2bMHd/eKJ/i93sqfN7dcrlBUXaOU80K9SvRq/CZbZ76HUa/H9ENWlFKtwaWKN4FtO/3iWvTt25e+ffuaf/4oT4vR9PRsLyu1giXf7EMul7N///4K9x8HKB8HrVJSUujSpQvXr1+nsLCQzMxMVq9ezeTJk1m8eDGbNm1CLpezcOFCQkJCePPNN1mwYMGv/o6HIAiCIAiCIPxeLC0tqVOnzl89jH8k2R+xbeTPEBwcLD3tCG1BEH5Uojcyfdc1dlxKRqWQkxq9GeuiFM5G7mLRnOm4ublx4cIFNm3ahCRJHLuZzn9698Si5QhkFrYkLxtKlTc2k3tyI3KNNXaNe/Bw2VAUGgtcvaqSlnYPo7YQ128Ooo+7TOnlGGwGj6Jo85dI0YexzEpny5YttGnThi1btrB06VLkcjlr167F19f3lyfwP4p6EMX076dTYihBLpPzcOdDKhdW5vTe07z77rs4Oztz584dli9bxgezZ5GVk0tWVhb37t0rl9GTkpLCSy+9xPHjx1EqlZgkE3PPzmX7ne2oFCpSdqZQ9KCI5V8u58vxX2JlZYWjoyOrVq1izpw5lJaWMmPGDEJDQ8u1O3jwYKZMmYK/v7/52oJDt1gZfRcAg9GEWqmgnpcda4c2wUqtJC89lfO7t3P/yiVUFhbUb9ORuq3aoVSr/6c1mvJdHNsuJpcLXKkVMnxdbNgzLhSVovxu57NnzzJ+/HgUCgXBwcEsWrSI4cOHc/36dVatWsXo0aM5fPgwSqXSvHaVK1fm5s2bWFtbM2bMGL777rv/aayCIAiCIAiCIPx5ZDLZBUmSgp92T2QiCcK/2OhNFzl1JxOdoezkL0llRbFTDXp8for3w1py6cJ5mjdvDoBMJqN1bXdqOSk4+tkg3tsWy9Ktnua2VC4+AFh418MjvB/RH/SjSWg4aTJnMEkoPDwpjb1I7sx3kJKTmD51KlEb1jF9+nSaNWtGs2bNWLFiBXZ2dvTr14/Nmzfj6+tLnz59SEtLQ6PR8O2332JnZ/eb5nwp/RITj0+kxPhjnSGjxsgj60d8fetrWrduzZnT36MpzOWzwX1ITk7ldnom11Iz0RmMLFq0iJ49ezJ48GBu3LiBk5MTu3btYvny5dzNuIvdaDtSDqVg4WWBQWNAspCYMHMCoVVCKUkvwdfXlxdeeIGBAwdy+/bt5x73W+1r0q+JNweupqLVGwnxc6ZhFQdzQWt7Nw/aDnv9N63Nk/7bvS6VnaxYfjyBIp0BuUxGz4ZevN+5doUAEoCPjw9Hjx7FwsKCl3r1YsOijzl3IpodWzbiW7u2+bm7d+8ybdo0PD09cXZ2prS0FL1eb94SFxERUS7YJAiCIAiCIAjCP4f4W7wg/EvFpxdy6k4mJU+cwKXxqk3BlYPka/VsPXCCOp62nDlzhjFjxgBlBa3t7e1Je5TC0KaeLM559GODT5zOZTBJtJp/HLVcTkNbC2rZ23I0OwMK8+n8xQYaXT7F2W1fc+jQIebMmcPBgwdp1KgRqampREZGcuHCBebNm8fy5ctZu3YtVlZWfPHFF2zdupURI0b8pnl/dumzcgEkACt/K3KO57Dk8hI6JnTg0qF9pGdk4NuoLg+zslFIJt5uH8a681c5fPgwbdq0ITY2llWrVqHT6Vi3bh17D+ylWr9qZF7JxL6ZPenb0nHu4EzWoSzcurpxatsp/FR+LF++nNOnT/PVV1/96rF7OlgyNPSPy9B6klwuY1RLP0aGVaOw1ICVSoHyJ8GjvGI9u2JTSM0roYa7DR1dVJza+hX3Lsfw0fnT3EnLpGvXbnQJaUxcXCw9evSgd+/elJSUUFBQgL+/P+3bt0cmkz11a5wgCIIgCIIgCP8sIogkCP9SZxOzKhzLrnavhlyp5u7aieg83Pjy5H5mzpxJixYt0Gg0bN++nalTp9KtWzdq1KhBdb+qVK1ky9mftKM3SWAwkZ5XgkIGa4L8eehuweQmQWwMqkFUQQrFdesC4OnpSU5ODgD16tVDqVTSoEED4uPjMRqNTJw4kbi4OPLz8+nZs+dvnndcRsWi3JY+luSqc7k04xIKdwNdq1Vh86NUlkedwdHKEgcrSxQmI9r8XNpGRPD5559TUFDAZ599Rm5uLv7+/mQUZ6ByUKEr0qF2VmMsMqJyViEZJR6seACloNfq8fPz45VXXsHHxwdvb+8KY+nTpw8nT57kzp07vPPOO3Tv3v03z/m3kMtl2FmoKlyPvJ7G2M0XkSFDqzdirVYw7bsrNL2yncKSEoaHNWHJ0e8Z2iKIu5lZ6LRaduzYwcOHD5k/fz4TJ06kc+fOREdHY2dnx8iRI9m3b99fMENBEARBEARBEH4vIogkCP9SVmoFPznFHQDH1sOQAb2CKqNWq/nggw/K3W/atCkXL14sd62rXE5cctnpYQ6h/Xm0/i1UzpWRKVQ8ytNhMJZlOz0ZtHryx49rr129ehWj0ciVK1fw8/Pj8uXLFBUVER0dzapVq0hOTv7N87ZQWlTIRAKo1LcSKrmKUZnteXgmhr5NAs33SvQGAN7s2IpDhw4wdfYcCgsL2bBhA1FRURw+fBhbtS1G6cf6QbYNbUlZm4LrC644tXbCeM7ImDpjOHjwIJMmTaJZs2bmZ5+sh/T111//5jn+0R7laRm7+SIl+h+z2IpKjRi1+WyIucnbwYHlnjeZTKhkMgpzssnPz6e4uJg6deqgVCpRq9XY29tTVFT0Z09DEARBEARBEITfWcXCF4Ig/Cu0ruWO4RkncFmqFbwYVPm520rIKCz/ftUGuP9nNkgmtGl3adu+w3Mdj+nm5kaPHj0YN24c77zzDjVr1iQ+Pp6OHTuyceNG1q9fT0RExC8GkyIiIp55r4d/D9TyisWmZcho4NoAa5llhXuJmdksijzBogPHcHNxeeoJarZqW6rZV0P+w2+b9o3tKYwrxK6xHRqFhqYeTVGr1WzcuJEZM2Zw48aNX1iNv6/N55L46ZeOZDKSuWcBzhGDyXX6sSC40WRi9+XrFJbo6NqtO+fPn6egoIDevXtTXFxMUFAQbdq0YeLEiX/yLARBEARBEARB+L2JTCRB+Jeyt1QxuXNt5u67We4ELkuVgla13Gjq6/Rc7UiShPInKU0lSbGkbXkfqxrNqTxgDi0VZ3n33XeRy+Xcu3ePiIgItm/fTnh4OHZ2dmzcuJGcnBwyMzPR6/VYWVnh7OyMjY0NJ0+eJDk5mWnTphEVFfWb5z2i/giOJh0lrTgNnVEHgEquwlJpyfTm09E7P+LupfPoS37MVqpdyY3aldxQqFSMXLoCK3sH81H2ERER5qDVlhlb6Le3HwWlBRRRhE1dG2wdbanpWJMV/VagVpQFrw4cOPCb5/FXupNWSOkTtbQAim+epPTRHTKjv+JrfT4vBVQBQCGX07VBAAkZ2Xy3fx/WDo4MGzYMePopdL/HZywIgiAIgiAIwl9DBJEE4V/slZCq+Lva8NmxeO6kFeBqq2FYaDV6NfSqUC/pWT4+eIvi0h+DUAprJzxHrESmVJGxfRY1w1qS+SiVqKgobty4wdy5cxk+fLh5m9qGDRtYvnw5devWpbCwkKtXryJJEvezivj4uzhOJ2SRc/kg9nn5tG7dhjp1Avjkk0+YPn06x44dM9dqunPnDq+++iq1atUiPz8fgKSkJAYPHoxOp6Nbt268++672Knt+Lrr13x962t2xu9Eb9LT2rs1Lwe8jJuVG6agyrh4VyU98S5Gfal5XkqNhuDOPbCyd3jmWrhbu7O7524+P/Q58+fOJ2JYBK+1eI223m1Ryv89v536u9mgVsgpNf4YSLIOaIl1QEtUplI6pkdSVZvEmNZlJ/vVqOROuw4dsHZwLNfO2rVr/8xhC4IgCIIgCILwB5M9rlXyTxMcHCzFxMT81cMQhH+1B9nFtF14HN1PslIeM8QdYGLXQD5f9DGVKlUCoFKlSnTv3p2srCxGjx7NzZs3WbBgAW3btiUjI4MxY8Zw4X42L68+R6nBhMEkkXf6a0xZSXR+Yy5et7fj4eHOhQsX2LRpk7meUrdu3Vi6dClOTk74+PiY2+/bty9hYWF06NCBL7/8Ek9Pz1+cl6G0lDPbt3Ilch+64iLsXd1p9mJfAsJbP3dwDeDs2bOMHz8ehUJBcHAwixYteupzkZGRzJ07F5PJxIIFCwgKCiI0NLRcraRf65f6/uabb/j444+RyWS8//77v6qAd3KuljYLosrVRHrMXmli0L21yCQjJoMBlYUl9q5u9JnxIZY2tv/zfARBEARBEARB+HuQyWQXJEkKfto9URNJEIRnOnS9Yp0jk64YABngVJRIg9rVad++PVFRUURFRbF+/XqqVavGhQsXAIiJicHPz4+aNWty5swZJEli7ObLFOkM5ppNco01ysp1uJSUi8anPoWFhTRvXpblIpPJkMlk5Obm4u3tjY2NDTVq1AAgISGBRo0aAdCwYUMSExOfa15KtZrQvi8zevVmJmzexbBPV1GnZZtfFUAC8PHx4ejRo5w4cYL09HTi4iqeDKfValmxYgWRkZFERUURFBT0q/p4FrlcTkJCAgqFgi1btpTr22QysWjRIvNnsnDhwl/VtpeDJYv6NEBZkkPquje4P78nlkqwNhQQYTjH8EXLeGjlxOoLN1h7+RbVe/bH0saWiIgIDAbD7zI/QRAEQRAEQRD+fkQQSRCEZ9IZjBh/UmFZ9/Aaj9a+waOv3sbG0Y2WLVvi4eFBREQErVq14ssvv6RJkyZYWloSFhbGpk2bGDVqFA0aNMDHx4dGTUK4smICku7H07o0XrUpTb+HVm/ku8OnUKlUnDlzxnxfkiTs7e15+PAhRUVF3LlzB6BcsOrSpUtUrVr1D1+TW6kFzNx1jdc3XmBfvBadpABAqVRiMplo06YN4eHhvPjiixiNRk6fPo1cLqdTp068/PLLFU4pGzduHFu2bHnu/jO1mVxOv4zJykS7du2Iioqiffv2KBQKWrVqRe/evVm7di01a9akqKiIwsJC7OzsAHj//fdp0aIFrVq1IiUl5Zl9SCYT7Wu7ED21GwvWfItvQAP+260OF+a+xOIPZ2Hn6sbRmEtcvX2H3fv28/H8+eXeX7hwIaGhoaSmpppP/1u8eDFNmzYlJCSE06dPP/d8BUEQBEEQBEH4+xDb2QRBeKbLD3Lpt/JMucLcj1mrFXzWvyGta1U8yeznnE7IYuRXMRSUlM9YyTm6mpLkGxizH6IwlTJhwgSOHDlCZmYmFy9e5NatW7z22mvUqFGD27dvc/HiRZo1a4ZGo0Gv19O1a1cmTZr0m+b7Sz47coelUfHoDSaMUlmRcpVCxsxQW75Y9AF79uyhpKQES0tLpkyZQsuWLcnMzGTy5MlUqlSJgQMHotVqmTBhAqGhoQQFBaHT6QgODmb48OE/23dmcSavRr7KndyyAJoh08C9Offwq+KHsdTIvn37aNy4MdWrV8fCwoIRI0bw6quvUlJSQu3atdm/fz/BwcHUqFGD7OxsgoODWbNmTbk+ivPzOL5hDbe+j8ZkMGDn6k6Lvi/z2uTpHD58mIcPHzJlyhRmz55NrVq1aNKkCQaDgapVq1KnTh0iIyN54YUXmD17NiUlJRw/fpyQkBCgLFPswoULPHr0iDFjxvDdd9+Z+zWZTMjl4nsagiAIgiAIgvB38HPb2f49lWAFQfjdBVa2J7CKPZeScsvVRVIpZFR2sqJlDbdf3WZAJbsKJ38BOLYehtykp3s9Vy6tnsysWbOYO3eu+X7Tpk25ePFiuXcsLCw4fPgwSuUf/1vZ5Qe5fB6VUK5OkFZvpDC/gEEjJnLr+4MUFRUxcuRIkpOTSUtLo3r16jg4OGBtbY1MJqN169bM/yFr5/bt21hYWDBgwACMxopBuicV6YvouL2j+bQ5AJm9jCqTq5C0MokgryDOnDmDtbU133//PZIk0aBBA+rXr8+ePXvo0qULlSpVYtWqVWzatIn79+8zZsyYcn2UaovZOOlNCnOyMf0wnrz0VA4t/5SC7MwKYwoMDOT+/fvoSvXU6fMWB3SOXHv4Dednz6F1RGtSHyUzY8YMXF1d2bBhA/7+/uh0OnJzc3F2dgbKTr5r0qQJKSkp5tPwBEEQBEEQBEH4+xLf+hUE4ZlkMhlfDm5Cj4ZeaJRyrNUKNEo57et48PWrISjkz1dD6N69e7i7uxMREcFLPTrzn+AqWKrK//ZjyEsjff9iurSsVe69gQMHArB8+XKaNWvGu+++S0RExO82x+e19tQ9dIbywR7JZCRzz3ycWw/loU7DwYMH8a/uz9T1U7ELtuOra1+x/eR2bG3LCk7PnDkTna4sEOTs7IyTkxNbt27lyJEjvPDCC7zwwgtIksTatWvp06cPHTp0oHv37sw6OatcAAlAJpeRsi4Ftz5u1GxZk+TkZFxdXcvuyWRYWFjwzjvvMGbMGOLj4ykuLqZ169a4uLjQvHlz85bAx2KPHqI4P88cQHrMUKojLz2Nw3EPGbf5EpHX03h70xkuXryEk1sljDVasWHhTC6tn0WRzkBxYSH5Qa+gNxhwcHAA4NSpU1y8eBFHR0fCwsIYN26cuf2ePXuKAJIgCIIgCIIg/EOIIJIgCD/LUq1g3ov1uTi1HbvHhhIzpS1L+zfC3lL1q9p5XL/n0KFDTOsaQHCAG8hBUsjK/tMoMDppGHkvGa2pfKaSwWBg7dq1nDp1il69ev2e03tuD3OK+Ul5KIpvnqT00R3Sj6xh6EtdsHe2Z8nGJfTu0ZvbCbe5kXmD3dG7yauVR2xcLMnJyeYgUmZmJgsXLsTGxoakpCT27duHl5cXsbGxANjb23Pw4EGaN2/Ot9u+rTCenFM5aBO1pHydwvpF67G3tycz88eMoVGjRjFr1izu3LlDSEgIe/bsoWnTpmzfvp2kpCRatmxZrr2bp45jKC196tzzFHa88U0cF5NyKNIZOJcmofSogarbTAqTbmAs1QJgKsrF0r8pJ2b34+rVawwePBiAiRMnYmdnR35+PpcvX+a9994zt/17FRoXBEEQBEEQBOGPJ7azCYLwXKw1Sqq52jzXs1mFOpYei2fnlRQMRon69qVEHjlKWFgYvXr1YvTo0exYMBqdrhS5tT0O78zBWCLBNQUlRhN3HqXSokUL5HI5NjY2ZGZm4u3tjUKhoEGDBn/sRJ+hXmV7rjzIRf9EJMk6oCXWAS2xUMn5ZnQLDqZ8SbUZ1cxZQznROdg2tUXTWIN9jD3Hjx+nS5cuZGVl0aRJEypXrkyXLl3Q6/UAeHl5kZubC5TVEAJo0KABxeeLscSy3HhU9ipUTioko0SDFxowfPhwEhMTadGiBRqNhu3bt7NlyxaKi4vJzMykZcuWTJ48GV9fX+RyOWvXri0XzHkao8nE5ycvkZ1TQOGmKTiEDwJAbmmHRbUgrix/A2NhNpoqdUGSMOm1lNy/jNLZG316Im+99Zb59Dx7e3vUajWOjo7liouLWkiCIAiCIAiC8M8hgkiCIPyuMgt1vLD4BDnFpeiNZQGXk4UGHAd9zievhjJtzCBqNw/Fac5idCoNhauXoku4grKyNwAGk4nc5GQOX7xAVlYWkydPxsXFhQcPHmAymcyZOn+2wc2rsuXcA/Sm8tu9lHIZtTzsqOVhx/Cob8ptO9Ol6ihJKiH7WDbau1o+WfwJ3bp1Y9SoUXTt2tX8nEz247bAx4cdXLlyxfx/32q+5JNfrl/bQFtsA8u2yY31GEvz5s1RKBQ0adKERYsWAXDw4MFy7yxbtoy5c+diMpWd7AYwduxYPvvsM2qHRpD1IAlD6Y/jV8jlBPYYi8yuHpKsLNij8ayJSVeMfUgf7EP6kLl7PraNulBwYTdeI1aQ/u1MPPp/SMbGt83b+JRKJaGhoYSEhGAwGJg+ffqvXX5BEARBEARBEP4GxLeABUH4XS05Gk9O0Y8BJABJoaIEFdN236BLly7cuhpH5kczyH5zGCXRhzFlpZc9ZzKRM344UmkpPXr0IC0tDZlMhlKpZNCgQTRv3pxNmzahUv26rXS/Bx9na5YOaIiVWoG1RoGFUo6VWkF1dxu+GFR2cEFBaUG5dzz6eFD17apUfbsqFl4WDBk1hJdeeon9+/fTu3fvn+0vKyuL9u3bc/LkST4a/RFK+dNj/o3cGtEqsBVHjx7lxIkTpKenExcXV+E5rVbLihUriIyMJCoqyryN7LPPPgOgXqt2WNk7IFcoyr1XqrIyB5Ae0z28xqO1b5D61dsobJxQWDsAIFdbYunbiNSv3sJGLWfIkCFYWloyd+5cjh49ioWFBW+//TZdunQBICoq6k8pii4IgiAIgiAIwu9D/O1dEITf1a4rKeW2fAGYdMXINVbcSS/kyJ1oGjdqgFPVaugnz6Vw9RL44XGZXI7rJ18gvTmUvXv3cv/+fSwsLAAYPnw4o0aN4uzZs+aj6aOiov7MqdG6ljsXprTj8I00copLqeNpRyNvR3MmUWWbyiQVJJmfL04o5tHmR8jkMuz97bFV2zJo+CAsLCw4ePAgN27cYPbs2dSsWdNcXLpPnz7cu3ePjh07Mnz4cHNbH4Z+yPTT0ykxlGCSympG2Rgac/HcS/S/fpNhLXzp28QbpVKJyWSiTZs26PV6XF1d+frrrzl9+jRyuZxOnTrh7u7O8uXLsba2JjQ0lJMnT6K2tGLAnIWc2LSWGyePY9TrcfCoROfm9bh/TU9x6Y8ZWJZ+jZFb2pF7dBX6lFvkm4y4dH0bAPuQPniE92PriMaMGdiTrKwsVq1axffff/+Hfz6CIAiCIAiCIPyxRCaSIAi/K73BVOHa48yVB+vewtXdgwEDBmB1/hT574/DmJpifk4GOKjVfDBlMuHh4TRt2pQaNWoAZRkzfn5+tGvXjv/85z/mU9t+zjvvvEOLFi0ICwurcBrZr/X4hLlO7dvw2cTBdKvtwP0LUeYAUmhoKK81eA0LZVnQq/BGIblncvF9x5c6U+vgI/Nhz+497Nq1i+3bt+Pl5WVu29XVlaioKKKioggICHhq/x18O3Cy70nWdlxLb8/Z6BNmk3KnFwVaI3czipi99wYvzdlMZmYm9evXZ8+ePURHR1O7dm2OHj1KWloajx49Yv/+/TRv3pwVK1ZU6MPKzp4Oo97gja+2MX7TDoYtXsnwXhHYapQoZOVP4rN0dKft20uZu2Y7spI8lLkPsFIrqGRvwepBwdT3diY6OhpHR8dnrqnJVPFrRRAEQRAEQRCEvy+RiSQIwu8qxM+ZyBtpSE8kI1n6NcbSrzFuthqWTmqDXC7j1pXLXM4vZs7dFM7mFqGUyxj42TLe9a2Eh6YuQ/q8VK7d119/ncuXL5OQkEC1atV+cRzZ2dnExMRw6tQpTp06xeeff26uFfRrSJJEfmk+Wr2Wdu3amTOG7t27x/bt28udFtelWheuZl5ly80tqOQqNJYaLCws6FG9BzddbrJ27VoAPvroI95+++1yYw0PD6d27dosXrzYfKrZTynlSnxt6rDx+CN0PwnWFebncmDHXLZs2UJRUREjR44kOTmZtLQ0qlevjqurK6GhoSgUClq3bs38+fOfOWeZTIbsh21tFioF215vzusbL3I7rQClDEqNEqENqvNJv4bYWag436AKPXsHsmn15+RlPGJ1vA+HqlRhxowZFBQU8Morr3DlyhXWrVtHgwYNCAwMpF69etStW/cXi3sLgiAIgiAIgvD3IYJIgiD8ria0r8GJO5lo9eULUFuo5EzqVAu5/MeMlgZ2VnzdwP+ZbRlMBu7k3EEuk3No0yEGDRrEtGnTAEhJSaF3794kJiayc+dOSkpKeOWVV9BoNLRr1463334bZ2dnjEYjubm5ODs7/+q5HEg8wMILC8nQZqBL13H/wH0aN29M/5f6k5GRQWRkJBEREXzzzTcATD05lRX/XYF1dWsUdgpMkolQ51AOvnsQySQRHR1NaGgoe/bsKbcV7+TJkzg5OTFnzhxWrlzJuHHjnjmmo7fSUMpl6J64JpmMZO6Zj0PLIRxL0qNPOUiNGjXYtGkTkydPRpIkGjduzMqVKwG4fPkyvr6+z70OlR2t+KylDVtWbCWzxISDsRD7Rzruer2C3KMyOdlZVLFT4GRjwbbNh5kzZw6lpaUApKamcvbsWS5cuGAOIj18+JDvv/8ea2vr5/8wBEEQBEEQBEH4y/2pQSSZTLYG6AKkS5JU9yf33gY+BlwlScr8M8clCMLvp5aHHRuGN+X97bHcyypGLpNhY6Hk/U616Nmo8nO3szN+Jx+f/xi9SY/JYOLexnts2LzBfD8nJ4fDhw+zefNmtm3bhrW1NSNHjmTw4MFIkoRMJsPf35+aNWtiMBg4ffr0r5rHzvidzD4zmxJjCQAyexm+c3xRWinZu2EvCz9aSFJSkjkzKa04jZWzVqLx02DTxIbCG4UYSgysnbQWR4MjZ46ceWZfTk5OAPTs2bNcttTVq1cZOXIkCoUCf39/1qxZg05vwiSVrzmV/PlgjNp80pJvsOHkF/Rat4Jdu3YRExODvb29OROpZcuWhIeHY2VlxaZNm557LVIT7rDjo1koS3V4/HBNB+z7Yhnbbt5j76GyYt0NGzYEICgoyLze/v7+WFhY4OXlRW5uLgA1a9YUASRBEARBEARB+Af6szOR1gJLgPVPXpTJZFWAdkDSU94RBOEfJsjHkYPjW5KWX0KpwYSXg2W5DKRfEnkvslwAJyc6B6vGVkw5OcWc4RIQEIBcLsfLy4v4+HiGDBnCjBkzGDBgAAMHDqRq1apcvXqV27dvc/HiRSZPnmwuyP1LDCYDH8d8bO4fQK4qKyFXYirBrb4be/bsMd+TJIn7CfdR69S49nM1X887l4dMI8NvrB8eHh48TWlpKZIkodFoOHXqFH5+fuZ7NWvWNBekHjJkCDExMTStFsBP6pajdKhE5TFfYaVWMLNbHcKCq3Dx4sUKfY0fP57x48eXu3by5MlfXI9TWzdgKNWVu2Y0mfjqZAxdmzbC3c0NX19fjh07BsClS5fMz8meqKUk/RD8kstFOT5BEARBEARB+Cf6U/8mL0lSNJD9lFuLgHcwn9EkCMI/wfr162nTpg0RERGcOnWqQrFrdzsL2oY0pHXrVkRERHD9+nWAXwzmLLq4qFwAR5eqI/tYNjfn3eTG9RtMnTqVI0eOEBERQUZGBpIkoVKpWLhwIV9++SXTpk1DkiQcHByQy+W4uLgQGxvLF1988VzzSsxLRG/Ul7tm1JZtzzNIBs6dPkeLFi0wGsuu6U16VO4q7Jvak7o11fyOZTVLDDkGri+7TsuIlk/NhsrJySEkJITw8HB27d6FTwcfeu3sReiWUIZGDiX6YTQAGo2GKlWq8N+JYyjaMYOcA4vJPbkRAFNJAWmb3iX74BLa1XTi7NmzTJw4EYDMzMxydZv+F8m3rle4FvvwEQ9y8th++gLhYWGYTCZ0Oh1t2rTh9u3bv6k/QRAEQRAEQRD+nv7ymkgymawbkCxJ0hWZ7OczFWQy2UhgJIC3t/efMDpBEJ7GYCggJSWN48ePc+TIEaCs0PTTPD557Elr1qxh6NChT32+WF9MSmFKuWsefX7M4omfGY9Op6Nt27Zs2LDB3PauXbtYsmQJxcXFDBw4kICAAGxtbQkLC8NgMPDCCy889/wUMgXST2LaxbeLSduehkwlwz3AndDQUObMmUPv3r1ZsWIFcpkcp5ZOZOzJIGNvBpbVLLGobIH3GG8eLX/EzBkzCQkJ4eTJk6xfv55169ZhNBp57bXXuHjxIpIkMenEJBZeXYjWqAXgcsZlhi0cRvGuYjzsPfj000/RaDTcvXyaF4a9zeXEdKzVCqq8Mp+welXxvHeA9V+uZty4cUyaNAlJkti2bRu9e/d+7rk/jVKlQl+iLXetobcXDb29kCuVjFq+HktbO0JCQgDMJ83Bj5lOVatWNRcWf57sJ0EQBEEQBEEQ/n7+0j0FMpnMCpgMTHue5yVJWilJUrAkScGurq6//IIgCL+rzMxjnD7TjugTwXy2JJT09KNERIQwduxYjEYjycnJdO/enWbNmpGYmAj8ePLYq6++SklJCbt27SIuLo6IiAgiIyMr9KGSq5Dx7ICycytnCink0aNHjB07lpCQEE6cOMHSpUtxc3Pj3LlzRERE0L9/fz7//HN8fHz47LPPzCe6JScn88ILL5CSkvLMPnztfbFV25a7Zhtoi/9Mf2pNq8Wb099EoVBw8OBBvv32W5ydnZmxcQYahQbXLq64dnbFprYN7i+6Y6G2YOqyqURERJj7fxx8i4qKwsvLC4ArGVc4+uCoOYD0mEWgBR7TPbCxsyEzM5P69eujVsqZ2L8Dr7asxq6xocTM6sHaIU14ue9LXL16FYCwsDBOnTrF7t276d69+y98sj+vdngr5Mqnf8/B3dcPS1u739S+IAiCIAiCIAj/DH91YQo/wBe4IpPJ7gGVgYsymezpxUMEQfjLpGdEEnd1DMXFd5EkA9nZpRQVZzBjZhEqVSk7d+4kNTWVbdu2sXjxYubNmweUZZ1ER0fj4+PDypUr6datG/Xq1SMqKop27dpV6EelUBFWOQy57Om/PRnyDZx9eJbuH3fHysqKPXv2sGfPHqKjo6lduzZHjx6lYcOG+Pr68uqrr+Lp6UlwcDBQdqLbiBEjWLVqFZ6ens+cq0wmY3rIdCwUFuWuK2VKHDQOvBLwSoV3xjQcQx3nOlgprczXrJRW1HOpx5C6Q9iVsIuVsStZtGkReoOeNm3aMHbsWPMWsB4denBr0S0kk4T2vpYHyx9g0pt4sOIBJYklFFJIamoqcXFxAMTGxqJSyKlir8ZKWZY19WRNpQEDBrBo0SLs7e1/cxHrZr36YuPohEKl+nGN5ArUlpa0Gzm2wvMRERHMmDHjN/UpCIIgCIIgCMLfz1+6nU2SpDjA7fHPfwgkBYvT2QTh70WSJO7c/i8m0491iqyt5QTWt8RoLKFmrXQyM7ypV68eSqUSBwcHvvjiCzZv3kz9+vXx8fFh8uTJ5U4eAwgNDTVvbbp06RLvvPMOBoOBIaOHcEl9icLSQgySodw7cks5FjUsWH99PaObjObq1ats27aN5ORk0tLSqF69OgCjRo3C19eX+/fvm99dvnw5H3zwgTn75+eEVw5nebvlLL64mLjMONRyNZ18OzGm4RgcLRwrPK9RaPiy45eceXSGyPuRyJDRvmp7kKD9t+0BKDGUkB2TTenDUr7f+z0r5640B8FmX5jNqo9WUXS9CJu6Nqhd1CQtTqIkuYSk7CS8bLzo0q8Lp0+fpk2bNnh6elKrVi1ycnLo1KkTNjY2ODo6mk+Lq1GjBklJSUyZMuV5PuKfZWljy8sffsqFfTu5fuIoJr2Bao0a06RHb+zdfoz5P7lNb+PGjc+1zk/KzMykW7duqFQq7O3t2bp1K5aWlr95/IIgCIIgCIIg/D7+1CCSTCbbDEQALjKZ7CEwXZKk1X/mGARB+PV0ulRK9VnlrtWpY8G+vQWAkYsXz+Lj3ZirV69iNBqJjY3FysqKOnXq8MUXXzBr1qxyWTJPq382e/Zsdu7ciZVVWSZPx6KOTD01ldOPTperT2Tlb0XO8RwMJgPborbRr1k/JEli06ZNTJ482XwC2HvvvcfixYuZNm0aq1eX/TYzZcoUduzYQe3atWnWrNkvzjvIPYj1ndb/4nOPyWVymns2p7lncwCyS7LpuK0jWsOPW9SMGiPK6kqGHxrOxIiJnD93nm3bthGXEEfBgwLU7moAHFs5kjExg5oLamLrYkuv3F7I5XJWrVqFUqlk3rx5eHt74+7u/tST2ACcnZ3p1KnTc4//51jY2NCizwBa9Bnw1PtPbtP7Xzk6OnLy5EnkcjkzZ85kz549vPTSS/9ze4IgCIIgCIIg/L7+1CCSJEn9fuF+1T9pKIIg/AoymcIcnHnM31+DRlPIhAkpODhY0KttS7YpdtG2ZUfu3LuBQqEw1z7SarVs374dhULBxYsXKSwsxMnJCZ1Ox5w5c7h16xZ3796lVatWJCUlUa9ePcaPH0+zKs04l3quXDaSpY8luepc7sy5g66SjrCJYSxYsICYmBjs7e2pXr06O3bswMfHh9GjR/PGG2+Yay+p1Wo2btxI7969WbRoEbVr1/5D123HnR2YJFO5a4+DYFq9lp3ROwmvG44kSaz7ah21+9SmlFIA0r5Jo1L/SmR+l0nElAgqGSphMBgYNmwYiYmJ2NnZ8e233z6z786dO9OmTRvUavUfOseHJaUcy84neus2CkvLtukFBATw5ptvMmLECFxcXLhz5w5Tp05l+fLlFBcXc/DgQc6fP8/hw4eZPXu2ueD24MGDze0ajUZzVpkgCIIgCIIgCH8Pf/npbIIg/P1pNG5YWlamuPhuueuvjnIGFOQlhpJwREcd1wjO3DpIbnYhs9/6hA9WTKR27do8ePCA1q1bmwtsW1hY4ObmhpWVFampqVSrVo1Tp06xZMkSpkyZQq1atejUqRMX0i6gUqgwGMpvaavUtxJWSiumNJuCt7f3UzNxevToAcDixYsr3Dtw4MDvtjY/507uHXRGXblrj4Ng12Zfw1jFyOTXJpuDYA1tGpLtmM29S/ewdrOmUodKKHYq6GrsSgYZAKxbt+65+t67d+/vPp8nmSSJLh99wtGvt4DRiKZOfQxpGby1fD0lqxazc+dOcnJyOHz4MFu2bGHdunUcOnSIOXPmMGnSJE6ePElWVhavvfZauXbPnTvH66+/joWFBW+99dYz+x8+fDg3b95k69atv3rbnCAIgiAIgiAI/xsRRBIE4bnUqjmLy1eGlauLBHKMOgsyrr5ATmEG8SlXaFK9LVYaW/IT1Rh0Rlq3bs3+/fsJDAzEy8sLKysrhg0bhk6n4/PPP0eSJDZs2MDNmzdRq9W0bt2aS5cuAdDIrRFV7aoSnxuP3qT/sVeZHBu1DR2qdviTV+HX8bHzQS1XU2oqLXe9Ut9KWCutmRU666lBsNySXLJKsvCw9sB64G8riv1HmXc+lhPR0TjMXwFA3odT0d++yUcvdWfwsOHY52cREBCAXC7H09OTunXrAmBpacmlS5dYtGgRkZGReHl5IUkSWVlZDBw4kA0bNhATE8OCBQtYs2YN48ePf2r/t27dMtfTEgRBEARBEAThzyH76RaVf4rg4GApJibmrx6G8DeSkpJCly5duH79OoWFhSiVygrZCgsXLmT79u3iH5//o7y8yyQkfExuXgwymRJZSQjx0SGorTM5fv4i125lcfthHCbJhIttJRLTrmNrZwOUba8aMWIEXbp0wcnJiU6dOhEbG8ujR4/Q6XQoFAqaNWuGra0tKpWKlStXlvWpy+Od4+9wIf0CKrkKg8mAn4MfiyIWUcmm0l+5HL8orSiNzt91rpCNBGCntiOqTxQqheopb/796E0S61MyWfMwkxy9ntTd36GNvYApPQ25mzvGjHSMSYmo6gRivHqZPh3acfToUfz8/Bj9znss2voNN2Jj0T16iI1Gjb2FBdqiIk6dOkWLFi0wGAwYjUZWr17N8uXLuXv3LmPHjqV79+4MHToUJycnEhMT2blzJ8uXL+ezzz4jLCyMPXv2/NVLIwiCIAiCIAj/KjKZ7IIkScFPu/f0M7QF4R/IycmJI0eOlCuY/DhbwcvLC51Ox5UrVyq8l5KSQqNGjbCwsMBgMJCamsoHH3zwXH1GRET8XsP/R7C3b0CjRhtp3eoWES1jKSlQ4tPqIzyC1yM5RmHlcZ5Pp76Kr1sAWQWPkCQTHVp3oVmzZsTExDBhwgR8fHxo3rw5Bw8e5OLFi7zxxhuUlpYSHBzMrVu3OHLkCJMmTfqxT409K9qv4OMaH1O0sAg+B8ttlnhYezx1jDVr1iQiIoKIiAiuX7/+Zy3NU7lbuzMndA4ahQaNQgOApcISG5UNy9ou+8cEkAwmib5XEpidkEKCVke2wYQ+JxP0ehwXrMCUk41UVIApNxv91ctI9g7s27cPtVrNnYQEXl28hAt7d6HNyUZWqy75CjXakAjy8vMJDQ0lKyuLPn364ODgQN++fTlz5gxyuRw3t7LDO3Nycvj666+ZMGEC27ZtY/bs2dSrV08EkARBEARBEAThTyaCSMI/XnZKMveuXESbm42j449Hr0+ZMoXY2Fi6dOkCwBdffMGgQYPM92fP+i/bv/kGR0dHJkyYYK6r4uHhweTJk//cSfwD3U38FJVjNHKFAYWqBBs7I4EN1Lg3+IbWIQGEBnSjoX84H88qq49TuXJlLl68yCuvvEL37t3Zv38/gwYNYvz48dSsWZMdO3YQFxdHUlISvr6+FfoLbRhKbEws578/D8CzMhFdXV2JiooiKiqKgICAP3QNnkf7qu058OIBXg98nT41+vBW8FtE9o6kvmv9v3poz21fZh6X8ovRmn7MXJVZ26IKDAJA7uSMpNdj0bIdFu06Y12/IRqNhsTERGxaRKC9n4jzht3IHRwxJMaj8PalWCbHo2EQDRo0wMrKiokTJ2IymXjrrbfM29yKi4sBzNvivLy8yM3N/SuWQBAEQRAEQRAERE0k4R+sIDuTXQvmkpmUiFypwmTQ4+brj/GHIsyzZ88mKiqKPXv2oNfrOX78OKNHj+a9dyay8f3xlF67xtw1q8g5GcmuO0nmrId79+4xZcoUNmzYQEhICEFBQZw8eZIPP/yQjh07snLlStasWfP/LgvpSSZTKQ8efAnyH7dp1aljwb69BciVpWRxGBnhPMq+h4efHZevXOLBgweEhoZia2vLd999x4YNG/Dz8wNALq8Yz87T5bHh+gb2Je5DQqKNdxsG1RmEi6ULGo2GKlWqMGTIEB48eIC3tzfe3t7MmDGD7OxswsPDqV27NosXL+bChQvs2rWLefPmkZ2dzdChQ9mxY8eftVQAuFi6MLTe0D+1z9/T5kdZFJvKnzKnqhOIdu92AKSCfJSVvEAmw6JhY6rGnEDn4oJWkkhXWyB3cUWmVGLZuReG5AcU79yCqqofWQ4uxF05j42NDTKZDF9fXxQKBQ0aNCA9Pd18IqBMJjP3+0/dgi0IgiAIgiAI/wYiE0n4RzIZjWyZ9i7pd+MxlJZSWlyEobSUR/G3SL93F+kn/+D96quv6N+/P5lJ98hMuk9qwh3sLdQU6UpJvn+P+CuXkfSlFfrJyspi2rRp7N27lxUrVmAwGFi9ejUnT56kW7duf9Z0/3Z0ujT4ydH1/v4aNBoZEyakkJCURlCNCCr7ePLiS70YN24c+/fvZ9u2baSlpdG+fXt2797N66+//tT2M7WZ9NrVizVX15BUkMSDggdsvLGR8Knh1AqoRXp6Ovfv30ej0XD48GFq1qxpfvfkyZNER0fj4+PDypUrad68OWfOnAFg165ddO/e/Y9bmH+pIqOpwjWVf01kag3Z44dj0haDhSUApfG3qGdrhUwmo8QoURb+kaH7/jhFm1ZTErkHpWcVivd/h76ggOzsbFxcXICyAK7JZOLKlSu4urr+eRMUBEEQBEEQBOG5iEwk4R8p4cJZtAX5mEzGctcloxGTQc+9Kxep3rh8baTLly/z33t3Sc3N5+SdREKr+1LH051tF+Ko5eHK1dSUClkOrq6u5gyl3NxcMjMz8fHxQalUEhQU9MdP9Hdy9uxZxo8fj0KhwMvLi4SEBDIyMujZsyfnz5+vUGh8yZIlrF27Fjs7O9q0acPkyZNZs2YNs2bNokWLFnz55eeYJGOFfl4d5QyAqdSFgGpdmF7j5QrP/PQkMqBC/59e/JQsbRbGJ/rQm/So6qsI6xSGbIeMu3fvUr9+2ZawBg0acPr0aaCsNhZAz549WbRoETKZjPr163Pp0iV27drFF1988WuW7n/yuID7hg0bzFlt/2TtnO2ILSimxFT+14ftaxPMPy5YthD97etIpTreXbmUD2bNwkmlwC0knFS5EotWHZB0OiSjActOPch9fyy2hlIU9vbmE9iqVq1KXFwcR48eZePGjeZMtcfr97jWFVT8mhEEQRAEQRAE4Y8nMpGEf6TkWzfQl2jLXTOaTKyIOkNydi79hg7j7Nmz5nvz5s3j4MGDDGpaH3d7G0Krl9XcqV+lEjdTMwisUgmjXo82P69cmz/dRuPi4sL9+/cxGo3mY+j/CXx8fDh69CgnTpygtLSUZcuWce/ePdLT0ykqKqrw/M6dO+nevTtHjx4114fq1q0bkZGRAKhUdjg6NgMUFd6Vyy2oXmsoXjUcK9x7XvsT95cLIAGY9CZMkolTyaewtrHm9u3bxMXFARAbGwtAaWkpOl3ZFrtTp06ZgxC9e/fmyy+/xGg0moNMf5RnFXD/Jxvo6YyVQv6zf2DYvjYBp0VfEPLxEmrXrMmGDRuQyWTM7t0N1xFjALDs2A2rzr2QyeW4T5lLZQUsWrSIwYMHU7VqVaKioti9ezdnzpwxf3aCIAiCIAiCIPx9iEwk4R/J0sYWuVKJ6Yf6RwAKuZxXI5qhUKkI6zeYoKZNy2UrpKSkMH/vUVJz8zGaTCjkcnZcvIZCJmPtqRhS8wpp1KQp1jY21KtX76n9KpVKhgwZQvPmzWnZsuUfPs/fwmA0cTI+k4wCHbUr2WFvkJOfqcXGxgYrKysGDhyIUqkkIyODjh07kpmZSYcOHXByciI5OZl9+/axf/9+AL799ls8PT0pLCw0tx9Q+0POne+BwVCAyVQW0JPLrbCzrYO395DfNPZSU8WthYVxhWQezESGjMDmgaz5Yg3Dhg2jTZs2eHp6UqtWLXJycujUqRM2NjY4OjqaM1jCwsIYMGAA06dP/03jepo8XR67E3aTkJeAt603GYczGDRoEKNGjWLAgAFcv36diIgIYmNjiY2NxWAwMGTIEOzs7IiOjsZoNDJu3DgqVarE6NGjuXz5MosXL2bz5s1cvXoVf3//333Mv5ajSsm+oBqMuX6fuAItMhkVspIALOUyJvt5lrvWt5IzRUYTc+8+AkACNHIZ85rWo+uJ6D9j+IIgCIIgCIIg/E5EEEn4R6odGsHpbVueeb9mSGiFa05OTiyc9DaTPloEQHp+IddSUhka1hg/V2ecqvgQlVFIQkKCOfjwZBAqKioKgFGjRjFq1KjfcTa/jye3rFWpUZcrTi3JuLAf/2b9eLD2bSZ2/5T03EQun73DvYs5REVFUVhYSElJCdnZ2Rw/fpyqVaty6dIl3nvvPUaNGsX169fJz8/H09OzQn8ajTshzSJ5lLqDjIyDyOUaPCu9hItLG+Ty3/ZbSy2nWlzPul7uml0jO+wa2VHZpjJf9voSmUzGqlWrUCqVzJs3D29vb9zd3Z+6XU4ul/Pw4cPfNKaniUmNYfSR0ZgkEyXGElQmFfc232NF8xXk5eVx6NAhevbsyZo1a3j55ZfZtm0b3bt3JzU1lcjISA4ePMj06dMJCQlh6dKljB49mq1bt1JaWkqzZs1+eQB/oqqWGvYE1SBVpydHb+ByfjGz7qag+yGYZCGXMbu6F22d7Sq8O6yyKwM9nblaoEUpl1HXxhLFE1l+giAIgiAIgiD8M4jtbMI/kp2rG81fGoBSrYEfSvcik6FUawjvPwQbpx9q8xiN3I+9zO0zJ9Hl59Fh8AhkCjkyuZwL95ORyWRE3byLUqPhkbUzgwYNMvdx6dIl+vfvD8DAgQOfeaT838XjLWvb9kWy99xNcrKzcA3uw4s5KtQSlGjz2RK1mH6hb3Fq7w0y0jPZv38/9evXx83NjZKSEoxGI5UrV8bDw4Nt27YxcOBALC0tn9mnUmlDlcoDadTwKxoEfoGbW4ffHEACeKPRG1goLCpct1BY8GajN83bDIcNG0Z4eDgnTpygZ8+ev7nfX0Nr0DLm6BiKDcWUGEsASD+Zjm1TW8avGE+Rvoh+/ftRXFyMJEkUFxezbNkyevbsSbVq1VAqlbRt25bs7Gw0Gg1ubm4kJSVx4sQJbG1tqVq16p86n+floVFR28aSfp7OxLWoy65G1dnVqDqxLerS0/3ZWwU1cjlB9tYE2lqJAJIgCIIgCIIg/EOJTCThH6tJ9xfxrFGTmD07yHmUjLNXFYK79sSzRm0A7l25yN7FH5mLbxsNBux9q/OooIjJ2w8yr29X7mZmM3vcazR9sR/jJ0/l/Zn/Zdq0aQA0bNgQX19fXn31VTw9PQkODgYgPDwcmUyGUqlk8+bN5sLbf4W4h3msjE7gRmoBlR0tGRaq4OL9HJApQCZHu2sByojJGI1G5n47ErXSgsS060TFbcdSZcOECRO4du0arVu3ZsSIETg6ltUx8vDwoFevXmzbto2cnJw/fV7NPZszO3Q2H5z9AJ1BhwwZcrmct4LeooNvB/Nz69at+9PH9tjh+4crFGLXpeooSSqhNKMUfb4eWUMZyiglO3fuJDs7m0GDBtGwYUOGDh2K0WjkypUr5jXv378/b731FiaTibFjx/Lxxx//FdP6VRQyGXVsnh1kFARBEARBEATh30UEkYR/tMq161K5dt0K17NTHrJz/gcYSsuKLEsyOZJcTmb8LbxdXXD1rsrYL79mW0QEvd6bwZo1a8xZR08aNWoUvr6+3L9/33ztyJEjqFQq1q1bx7p165g4ceIfN8Gfse3CQ6bsuIrOYMQkQXx6IWfvZmNZ8AB9UR5ylQZbkxwlMrILUzGajDjburP2yAcoFSoUciUykwI3Nzc2bdpEcnKyOSjTo0cP1q5di62tLWq1mhs3bpCQkMCHH35IQkICL774Itu2bftD59ehagfaerflTu4djJKRGo41UMlVf2ifv0ZKYQpaQ1ktqJxTOeSezEUySVQZVYX8i/lkHswkTZaGtkCLVqslNzcXuVxOQEAAULbG169fp7i4mEmTJrFjxw6io6Np0qQJderU+SunJgiCIAiCIAiC8FQiiCT8K8Xs3o7RoMekVFNSyRujtR1IIDMZKYk+h9GgJyUlhYsXLyKXy6lcuTIajYbly5dz+vRpateuTXZ2NjVr1kStVhMYGEjz5s3Jz89Hp9Oh1WoZNWrUX/aP/TytnsnfxVFiMJW7Xpify73ti3Ht8R4mQymP82ScbNyZ2OtzABbtfJP+Ld/i2NVv+HbrJtyr2tGsWTMaN27MwIEDAZg8ebL5VLbHateuTZcuXf7wuT1JIVdQy6nWn9rn8/Kx98FSaUleRh5FN4vwfdfXfM/K3wrbZFskGwlrD2tkMhl6vZ6pU6eye/du1Go1hYWFZGRk0KtXL65fv85HH32Ej48PmZmZdOzYkWPHjvH111+jVqu5ffs2bm5uhIaGiqPtBUEQBEEQBEH4y4iaSMK/Usrtmxhlcop8a2O0sgOZHKMksW7TZh5l53L58hXi4+Px8PCgRo0a3L17l9u3b3PgwAEUCgWLFy+mXr163L59m4YNGxIcHEylSpWIiopiyJAhZGZmsmTJkmee4vZHO3QtFbm8fF0ZyWQkc898HFsNRWVbVpsmV25Cj0SRroCcwgxK9SWYTEY2HV9Afb9muHrbsn//fm7fvs0bb7zxV0zlHykxL5GTD09SYiyhMK4QTJA4L5GUr1KQTBJZh7MouFLAg+UPyM/Ip3fv3sjlcry9venXrx8ymYwtW7bg7u7OkSNHuH37NitXrmTChAmcPn2aAwcO0Lt3bzp06ICbm9tfum1PEARBEARBEAThMZGJJPwrWdk7oNfqQa4AeVmsVKFQ8MorrwCwbu2XNLvwJpdXvEbAkMW8/PLLvPLKK3zzzTdYWVmxdetW6tati7u7O/fv3+e9997jyJEjQNmJbbt27SIxMZH58+ezePHiP31+eVo9BmP5LKTimycpfXSH7KgvsVIrsQ17mRyFRJ5cwtrCjn0X1vEwM4FOQS/TqEYoX1+ZS3h4GDKZjOjoaOrWrbgt8P+DlJQUunTpwvXr1yksLESprPjb4po1a5g1axYtWrTg9Y9e542jb5B6NJWs41noc/SonFX4TfEj9etUMg9kIpPJqLmgJjl7c+ji0wWNhwZJIfHqxldJPpzM3rV76devH3l5eRw5coSBAweSkJDAvAXzsPO3o2VgS5o3b07t2rUZMWIEFhYW5Yq8Ozk54ezsTFRUFJaWlqhUKsaPH8/t27fZtGkTJpOJlJQU4uPj/+zlFARBEARBEAThX0wEkYR/pYYdunBrxy5zAOmnZEgkFxiofHI+/rYmVq9aRXCTJrRo0YK6devi5+dHenq6+RQwAEmS0Gq1xMbG0qhRI7Kysn725LI/UkNvR5QKOaVGo/madUBLrANaYqVWMLNbHSyK05jy4BSJDWwYX2M9NiklmEpNuPva0aRrNV6tdvAvGfvfjZOTE0eOHPnZ0926detGeHg406ZP493odykxlmAVYIVDSweyIrPI2J8BgHVta7SJWix8LNAoNNRvWJ/79+7z4q4XkZwlvrn/Dbl3ckkvSOfy3suMHDCSHj16kJmdiXUta0o6lzDk3SFUfrkyxZuLsTfak5qaSo8ePUhNTeXo0aMolUrq16+PJEm8+uqr9O3bl06dOgEwcuRIRo4cyaRJk/7fBgUFQRAEQRAEQfjjiCCS8K/k3yQEzaFIio3lT88yGo1s3LiRR2npDN6QRbdqRi4llhLatBHBwc1o2LAhN27cICgoiP3791dod/v27WRmZtKqVSs0Gg1r1679k2ZUXiNvB/xcbbiZmo/+iTnKZWClVtAxwJXOHQcw7/336dix2V8yxr8zSZK4lH6JpIIkvGy8CHIPKnd/ypQpHDt2DI1Gw/bt23FxcaGwsJCckhz0Jj0Aalc1AJY1LJF2lX0G2YezKXlQglMDJ4bUGcKVq1fYm7EXJ6MTJcklZB7OxGQ0obBTMPH4RAIDAzlz9gyFJYWY9CZcKrtQlFpE2ok0LIIt6N6vO7mDcpk/fz5vv/02c+bMwdXVlTfffJNx48bRtWtXABo0aGAe+/bt29FqtQwYMOBPWElBEARBEARBEP4/EUEk4V9JJpMR1rY9hw9HYnxi29fjLW0WlDCRFSgwsT/ewOGZEVyoMow1a9Zw8uRJPvzwQxwcHPjkk08IDQ0lIiKCiIgIXn/9dTZt2kR4ePhfNznK5rdhWFPGbL7IucRs1Eo5eqMJXxdrVgwMxtbKgujo6L90jH9X31/9nlahrdBU0iBTyqj1Xi3sNHbmk9YuXbpEbGwsvr6+fPXVV4SFhZmLWetNemSUr0WlTdCi9lBzd85dyIGgmkHUrFKT7W9v56HyIXrLsqCTwkZB7slcTDoTFp4WxGXGcWHHBUooARkYig0U3ylG7aamJKWE3Ae5fHj0QwwPDVy/fp333nuPatWq4enpyZAhQ6hbty5xcXEEBAQQGxtLhw4duHnzJqtXr2bnzp2/el3Onj3L+PHjUSgUBAcHs2jRoud+d+zYsXz22We/uk9BEARBEARBEP5ZRGFt4V8rKCgIBwdHFApFuetK9LzAUUxGI23XF3ElzUiHmXsA0Ol0tGnThtu3b1doT5IkTp8+TWhoqPna2bNnad68OWFhYYwfP/65xxYREYHBYPgfZ1bG3krFV8OacuStlnw+oBF7xoay/41wvJ2tflO7/2YGk4GJxydiFWCFz3s+eL/tTbGhmLSiNG5m36TEUMLt27cJCirLTHpyOyOAvcaeUmOp+efFCcUUXimk2qRq2Dexp9O7nVDIFbzxxhu4u7tTbWQ1StNL0SZqce/pjsZdg9pVjfa+ltsf3MbVy5WG7zfEwtsCfaqe1K9TcXnBBed2zkgGCQwgV8jp378/Pj4+VKpUiVq1auHt7U1CQgLLli2jY8eOSJKESqXi448/5sGDB7Rt25a+ffv+qrXx8fHh6NGjnDhxgvT0dOLi4p77XRFAEgRBEARBEIT/H0QmkvCvpVarGTFiBMePH+fyxQuU6rR4kE5rvsePJFDIOPyKNaitoeunUK8pTZs2rdDO4ywUmUzGpUuXyt17/A9vCwsLBgwYQFxc3J9+YltlRysqO4rA0c/ZH/eIJcfiuZuZT1FuTwquX+buB3exC7bDuY0ziQsSKblXQttubVk6dymbN2/GxsYGAIPBwMiRIzlz5gxOTk608m7FsaRjFGUVkbolFe83vMEERbeKuNf+HlqdloYNG+Lr68vlNZdROaiw9LUkY38GxbeLqTa5GokfJ+I10ItNb25iQtQEXDu7kn8hH68hXuYxV5tUDSulFas7rKauS8X6RiZTWYadXC6nc+fOVK1aldWrV/+qdbmQdoHVcau5m3eXStaVeCXgFSKqRKBUKlEoFIwbN47Lly9jZ2fHxo0bsbe3Z+jQoSQlJeHj40OVKlWYMWMGoaGh5l8ngiAIgiAIgiD8e4lMJOFfzcLCgg4dOvDupPeZWjeFEcqdZQGkx+QqsPGA2t1+tp0nM446jhhFyJnr+B6/Qu/7OezMKUaSJJRKJceOHTNvfXtcdLtZs2aMHDmS4OBg9uzZU67dTZs28cYbbzzXXJ4n6+nQoUOEhoYSEhLC5MmTzdfXr19PmzZtiIiIIDk5+bn6+7dYFHmbCV9f4VpKPtpSkKn98Rz2BR4vv0vhtUJKHpQgSRKSTOLW1VucOnUKLy8vDh48SOvWrUlLS6NZs2ZYW1vz/fffk7A4AWdLZ9J3pmPIN5D0WRJ3ptzBLtgOnUlHckEykiQxatQobh+8jWdHT0x6E/psPXL1DycFqhX4W/jjbu1OmGUY2fuzqdS/UoWxW6usCXAOeOq8CgsLadmyJU2bNqVBgwZ4eXk99bln2XxzM6MiR3Ei+QTJhcnEpMXw7ol3mbBpApmZmRQVFVFUVER0dDR9+/Zl+fLlnDt3DoVCweHDh/Hz8/v1H4YgCIIgCIIgCP9oIhNJ+P+j5wo4OgvOrwJJApMRanaELp+AUv3M11JSUhg+fDi3b99mZMwNvpwwBs21a6iqVSe+WMd7tx8QeT6GzMxMxo0bx7hx42jRogVubm4kJyeTkZHBlClT2L9/P+PHj6dLly4AbNmyhXPnzvHpp58+1/CfJ+upVatWtG/f3vzjjIwMSktLOX78OEeOHPnf1u0fLC2/hGXHEyg1/FgXS6ZUIUOFsbguNgHelKTkoXJQIZfkWOgssLe3Z+LEieTl5bFhwwaaNGnC0KFDGTp0KOHh4Xy3/TtabG6B1+AfgzapX6eSeyKX3BO5aB9o+WDBB1y7eI1pH07jwNEDPLR/iF0NO3JicrBUWqJWqBkeMJyXXnqJW7duUblGZZIWJWHUGZFbyPF7z4/MnZmoHqlou7wta9asoWrVquXmZmdnx4kTJ/6ndckpyWFBzAJ0Rl256wW5BXzx2Rfs/24/CVcSaNSoEQDBwcEcP34cHx8fGjZsCJRtFz19+vT/1L8gCIIgCIIgCP9MIogk/P+hUEK7mdBqMhSlg4UDaGye+qgkSRy6nsbK6LskpedSfch89JtnsDs9B6NcgVRcRN7sSdhPmcuj6W+zPvkBg7u8QEREBOnp6cTHx6PT6Rg2bBiZmZnMnDmTrKws5PIfk//mzp37i1uAinQGdlxO5lxiNq42Gl4KtqamhwVKpZLt27eTlJRE586d2bFjBwkJCbz11ltA2Sl0Hh4e5m1IRqORNm3aEBAQwCeffFKhTtS/1aFrqcjLlzXCpCtGrrECSUXhTRnW1Q2o/4+9+46yor4bMP7M3q2UpRfpSBURRVGRugKiEcFuIBq7WBJropiovMYajDXGrgQUBbtGjFIFARVFEURBQFh6h2Vh+96d9w90I1IGlbLK8zknR5iZO/d7B7Pn8Djzu7WSafCHBnSa0Ykw3Pob/davX8/SpUupWrUq8XgcgFiw9fWrfVbt0l8vvHMh3/AN7+e8z4IDFrAwZyHh/JCeZ/RkzBdj+L8O/8fNT93Mw/c9TOPGjdmwYQMHbjiQoGJAVqUsDvjNARxacii5FXMZ/upwZs+ezd13380TTzyx267L2MVjSfjBjahhPGTpk0upfVZtPtr8EV0O7MLo0aMBmDZtGk2aNKFx48a89957ANs82ilJkiTp18+IpP1PYjJUqrfD3cXxEs4d/DEffrOO73LCmrxiVm7Kp/z8ucRXr2Tz4EcpWb+WVSd3JYglklj7AMZNnsKYF4fTpk0bEhMT6dy5My1atKC4uJjx48eTlpZWuo4NwNChQznnnHN45ZVXSEtL2+bbsf7wl9s58/EPKCguIbcwTiyAoRO/pNWmzyheu5Y77riDk046iTvuuIPKlSvz1FNPAfDkk09yzz33cMIJJ5CSksKqVasoLCxk3LhxDBgwgDfffJPTTjttT17hMqOguIR4ydZRqGDpl2RNGkYQSyKtSRWqdQjJfDATNsKaOmvg4K3PUb16dW699VY+//xzBg4cCMDxjY7nlbmvUBxuuzh629va8mXxl1Q9rSq5xbkkN0gmdlCMzBaZNK7XmLY127J+/XqOPPLI0j8zgPvvv58gCLj22mt56aWXuOXDW8jIyADggAO2fdTt58gtyt1m9o2fbCRvYR7LX1rOv976Fx0f7UhaWhqdO3emYsWKvPDCC1SuXJnHHnuM7t2707BhQxo0aLBb55IkSZJUthmRpO+Jl4T0ffJDpi3K2mZfSXExm/51DxWv+BPZ999B5b//i3W/O4kwMUaQ0pislSs4/fTTKVeuHAUFBaxfvx6AChUqsGHDBhYvXkybNm3IzMxk9uzZHHbYYVx//fWce+65DB8+nCeeeGKrx9X6DXqJrKRapSErHkLe2hW8/dJjvPXeh9SvX58lS5Ywb948zj33XOrV2xLG+vfvz0UXXcTpp5/O9OnTqVSpEl27dgWgW7duTJs2bW9cyjKhQ5PqJCYEFMX/F5LSmhxJWpMjSUqM0+qgTzm6aQr9LuhH40qNt3rtsGHDAPjoo4+2OW//Nv0ZvWg02QXZW8WY1FgqOUU5FJUUlW4rWFlA/uJ8siZkUZRZxFtvvUX37t1p0KABDz/8MFdeeeWWxd8//5xnn30WgBYtWtCzZ8/Sbz0rKipidzqs5mEkJiRuNWfl9pWp3L4y5RLLMfCYgRxz4DEcc8wx27x2yJAhAEyYMIEJEyZQUFBQuv6XJEmSpF83I5L0PePnrObzJVnbbA9L4hQvX0Tlux4koXJVEhseSM4z/yLttH4UzZhG3YcG0+WNocyd+iGrV6+mU6dO3HfffVx11VVUrlyZc845h6lTp5KZmckpp5xCGIZcf/313HLHIHr8sT5/euULDu47gLV5JdROLGbi5CmsLZxKcV4OKbUOpHD1QoK0ihStzoR4IWefdhLXXno+eXl5tGzZkptvvhmAgoICUlJSiMVilC9fnrS0NDp06FB6x8vnn39O48aNt/l8v1at6qRzVONqTF2wjvzvrYuUFAtoWLUSr/b9PxJjP/77BWqUq8HLvV/m0c8fZVTmKIpKimhXqx0Z9TN46LOHtooz33/UbcWgFfTu3ZupU6dy2223ccUVVzBixAieeuopNm3aREZGBocddhgPPvggtWvXJiMjgyAI6NevH/379/95F+N72lRvQ7PKzZi9fvZWs8aCGOkp6RzX8LhdPtfZZ59N3759d9tskiRJksqu4Ifrf/xStGvXLtyf7qjQ3nHJ0GmMmb1qm+05X01k7dv3k9SyDYTFhIUFJB/diZR2x5DzxIMcefWfWf/wPeTl5dGwYUO+/nouj7z9MX/qdwKL5n1FzZo1CcOQBg0a8OSTT3Ldddfx5ZyvyS5J4YDTb2LN+y+QO+8jqnX8LbG548ndnE1uSSLxTesI0ioQJCSSVL0+RasWUFKQR5XGrXh72BNce+21zJo1i8zMTKpXr87jjz/OiBEjKC4u5thjj+X2228H4M9//jPTpk2jevXqvPDCCyQn73gh8V+b/KI4d4z8ilc+W0pCEFAcD+lxUE3uPq0Nlcol7db3+mzVZ1wx7gpyinK2u79N9TY83+v53fqeP9Wmwk3cNPkmpiyfQnJCMkUlRbSq2op/dP0HtcrX2tfjSZIkSdpHgiD4NAzDdtvb551I0vfkFG67xk0YL2bzzNEkJKWSmFtC51tuYcrwIdTofxV50z+hxbHdGNP/XF5Mg+LiYoqbZXDtOSdz8xuzCI77M6nFj5BXuIn8tUsotz6LKlWqsGLFSgprtiKJGMtevYvyLTsTWzGPrM9HU7xxNRdf9WdGvDuJzV9/SNVuFxMkppA16TlqnHYza9/6B5cMGsYxx7QB4Pjjj6d69eoAXHbZZVx22WXbfIZ77713z164Miw1KcYdpx7CTb1asXpTPlXLJ1MxdffGo++0qdGGxGD7P1bTEtM4vfnpe+R9f4qKyRX5Z7d/sjZvLUs2LaFmuZrUrVA3+oWSJEmS9ltGJOl7urWsyWeLNmz16FMQS6RW3zsBaFG7Iu9e0Jm8805nfVEx1TodQtq3j0Odf/75jP5yJVcOn06ts+8htzAOFWpQ88xbyZk3lU3/uYeNNdtw5X3PklalJgWZi0hu2JbiDctJbXgo2Z+8QZBSjiAxiSXrc6iUlsRmQnJmvUd6+zMIiwrIWzidpIrVuahzY+bMmcNXX33FPffcs0+u1S9NWnKMhtXK79H3SExI5G8d/8aN799Ifjy/dHtKLIXGlRrT68Bee/T9f4rqadWpnlZ9X48hSZIk6Rfgxy8GIv2KnXVkfcqnJBJsZ98BlVJ56dJjCIKAcrEE6qUmlwak7wx6dw4F3wtQsGU9peypr5Bc60DKte3Ne++OZNZnU0lIr0FK3ZZAAGEJYVEBJTlZhEUFTP7PcJpViRFLSiEptRzFK+YQBFC0dBbN6lTjr3+4gJo1a9KmTRu6dOmy5y6IfrTuDbrz9PFP06FOB9KT0zmg/AFc2uZShp4wlJRYyr4eT5IkSZJ+MtdEkn5gyfpcrn3pc75YupFYQkBxvITTDq/H7ae0JmknizCHYciBf/kvP/x/1KbP32X9mMdIrt0UEhIpXpNJSuUaFG7aQKxSbUiIEcQSiWevpmLbXmya9h9aHXIIV5x7Fn/5y1/4062D+HTW13zxwTjq16rG+HFj9+wFkCRJkiTtt1wTSfoR6lctxyuXdWB1dj4bcouoXzWNcsnR/1f5Zs22iymHJXFy531I7bPvIaVOC3K+msi6dx+mcNN6ktIqUrnHxRStW866dx8mpU5L8hfPpNH591Lz6xe49dZb+fOf/0wsbz1nZBzO8Uc02+1f9S5JkiRJ0q4yIkk7UDM9lZrpqbt8/Kb8IpITE7Z6nC13zmQKV8xjw4R/A1Cl63nUvWIIKx47n8lTpvDH1+azfm091o9OoCRnPZWb92T4dSfRrtG5/PnPf2b06NFUr16da6+9dr/6RrX9UWZmJkcffTQHHXQQycnJjB49ervH/eMf/+DNN9+kYcOGDBkyhKSkJG644QamTJlCQkICgwcPplmzZnt5ekmSJEn7AyOStJs0q1WR4AeLKZVv1ZXyrbputS25OJcjOh7LES0a8vTJufT9/V+5/oFn6dq1C90PqklKYgzYv79RbX913HHHMWzYsB3uX7NmDe+99x6TJ09m0KBBvPHGG3Tv3p1p06YxZcoUpkyZwqOPPsoDDzyw3dfPmjWL/v37E4vFaNq0KYMHDyb44b+025GTk0PPnj2pU6cOL7/88k/+fJIkSZJ+2VxYW9pNKqQk8vv2DUlL2v7/rWIBBBuXkff23dzzfwMAOLjVQXzx6VQG/fG3nHjIAaUBSfuH/OJ8/vPNf7jnk3t4de6rjBs/js6dO5dGoNtuu42MjAy6detGZmYmH3/8MRkZGQD06NGDjz76iAoVKlCtWjXi8ThZWVlUq1Zth+/XokULPvjgAyZNmgTArq4rN2PGDDp37mxAkiRJkvZz3okk7UY3/uYgSkIY9tEikmMJxEtKSEmK0aVZDQ6sUZ4TD+lCs1r99/WYKgPmbZjHhaMupDBeSG5xLkklSdS+rTYDug7gsWseo1u3bixbtowJEyYwe/Zs7r77brp06UJ6ejoAlSpVYsOGDSQnJ9O0aVNatGhBcXExH3744Vbvszh7MaMyR5FblMuRtY+kfZ32JAQJpKSkUL9+fW677TbGjx9f+ijciy++SOvWrenVqxdvvPEG33zzDa+//jpLliwhMTGRO+64Y19cLkmSJEllgBFJ2o1iCQG3nNSKq3s048tl2VRISaR13fRdemRI+494SZxLx1xKVkFW6baihCJIgFun3sppPU5jxowZTJgwofTOowMOOIDKlSuzbNkyALKzs6lcuTKzZ89m1qxZzJ07l88++4ybbrqJwYMHA/DQpw/x3OzniIdxikuKeWHOC8S+ipH1RhYtW7RkzZo124Sqm2++mZtuuolevXrx8ssvM2jQII444gjGjh1rQJIkSZL2cz7OJu0B6alJHNOkGofUq/SLDkjLly/n8MMPJzU1leLi4u0ek5WVxWuvvbaXJ/tlm7piKrlFuVtti+fFASgJS3h1pV3JvAABAABJREFU9Ks0bNiQnj17MmHCBCZMmMCzzz7LkUceycSJEwEYO3Ys7du3JwxDKleuTEJCAtWrV2fjxo0AvLf4PZ6f8zwF8QKKS7b82eUW55LfMp8eD/egbt26fPXVV6Wh6vLLLyc7O5v69euzfv161q1bR1ZWFvXq1duLV0aSJElSWeadSJJ2qGrVqowbN45TTz11h8d8F5FOO+20vTjZL9vSzUuJh/GttuXOzWXVa6sIkgJaHt6Srl27MnnyZDIyMgiCgH79+tG/f3+6dOlCp06daNCgAddccw3JyclUrFiRzp07U1xczEMPPQTA4FmDySvO2+o9SopKKEoqYsqyKXQt15WVK1fSs2dPHn74YQCKiooA6NOnD5dddhm9e/feC1dDkiRJ0i+FEUlSqTAMeW75Ov65eBXL84uolpxI/3o1CL93zA/X0HnyyScZM2YMGRkZDBo0iAEDtiwa/tlnn/Hll19Sv379ffNhyrAG6Q1ICLa+EbTioRWpeGhFkhKSOLfVuQDcdNNN3HTTTVsdN2DAgNJr/J1HH310m/dYunnpNts2f7GZtaPWEgtiND6iMffefS933333NqHqzDPP5LrrruOxxx77uR9VkiRJ0q+IEUlSqRvnLuWllRvIKykBYE1hMfdnriQ3J58wDPniiy+2WUPnL3/5C4sXLy79avoJEybwzjvv8MYbbxiQduCo2keRnpJOXnEe4VaJDmJBjN+2+O3Pfo96FeqxNm/tVtvSD08n/fB0khOSefLMJ0lISNhuqAI4/vjjqV69OgAZGRmlazNJkiRJ2n+5JpIkADLzChixcn1pQPpOXklIdlGcTzbmMHv27G3W0PmhBQsW8OCDD/LPf/5zb43+i5MQJPDkcU9SNbUq5RLLAZAWSyM1lsqgzoM4oMIBP/s9Lmx9IWmJadtsT0pIomPdjlRNrbrd182ZM4fevXtz9dVX/+wZJEmSJP26eCeSJABGr924w31xQt5ak0XfFi22WUNn9erVxONb1vfJzc3l0ksvZfDgwaSkpOyVuX+pGldqzJgzxjB+yXjmbZhHzXI1Ob7R8VRKqbRbzn9sg2M556BzeParZ0u/na1cYjnqV6zP7R1v3+HrWrZsyeTJk3fLDJIkSZJ+XYxIkgCIh1ASbv1oVVhcRNaNf6T4m7kMv/BsTnnwfmrXrr3VGjoXXXQR69ev54wzzqB37958/fXX/P73vwdgxIgR1K5de198nF+EpFgSxzc6nuMbHb9Hzn/V4VdxatNTGZU5ipyiHI484EjaH9B+m/WYJEmSJGlXBOEP/tL4S9GuXbtw2rRp+3oM6VdjTk4eJ0ybS37Jtj8TyscSGNy6MV2rVtwHk+3YrFmz6N+/P7FYjKZNmzJw4EBuueWW0vWZvtOpUyfvrpEkSZKkXRAEwadhGLbb3j7/c7QkAFqWT6NHtXTSEoKttqckBLQsn0rnKhX20WQ71qJFCz744AMmTZoEwNq1ayNeIUmSJEn6qYxIkko93qoRl9avScVYAslBQFpCwO8OqMbLhzUlIQiiT7AXZK7N4a+vfUH3+ybQ96lPeGP6MuIlISkpKcTjcZYtW8bJJ59M+/btWbhw4VavveqqqxgxYgTHHnts6TpOp59+OqtXr94XH0WSJEmSflFcE0lSqcSEgBsPPIDrG9cmuzhOxViMxISyEY8Api5Yx/n//oSieAnFJSGQw8cTR3PBlOfIOPJQqlWrxsqVKxkzZgyffvopgwYN4vHHHwfg6quv5phjjqFv377Mnz+f9957j6OOOoqioiJq1qy5W+bLzMzk6KOP5qCDDiI5OZnRo0dHvmbMmDHcfffdlJSUcN9993HEEUfQpUsXgiAgMTGR4cOH77b5JEmSJOnnMCJJ2kYsCKiSVLZ+PJSUhFw5fDp5RfGttscaH8kBLdpTNO8lRo4cySGHHEJiYiKHHXYY8+fPB2Du3Lmkpqby4IMPAvC73/2Ou+++m2XLlnHqqafulvm+W1/uuOOO22ZNph3Jy8vjiSeeYMyYMcRisdLt48aNIykpiaFDhzJ06FCuv/76nzzXD9eNGjx4MJdccglz5szhxRdfpG7dutu85tprr2XatGkcfvjhPPTQQz/5vSVJkiT9uvg4m6RfhBlLs8gpKN5qW1hcBEBuYZwFWXHS0tKYNWsW8XicGTNm0KRJEwCaN29Ov379SmPMgQceyPLly3nppZc47bTTfvJMBcVx7hv9NYf9bTR1znuAgzsex4gXX6Ju3bo88MADZGZm0q1bN8466yzatm3La6+9Rs+ePenUqRM5OTk8/PDDvPfee9SoUYM+ffqQk5MDQFJSErAlMh188ME/eT7Ydt2oadOm8fXXXzN58uTtBqTPPvuMnJwcJk2aRGFhIZ988snPen9JkiRJvx5GJEm/CNn5xST84NG6vIWfsvKFG1n5wo1kb1hHz549qVmzJqeccgpXXXUVN9xwQ+mxF110EdWqVWPQoEEAnHjiiSQnJ1OpUqWfNE9JSch5z3zMU+8vICuviMT0mlQ7806aXPcSVZscyuuvv052djYbNmxgxIgRXH/99QwdOpTRo0dz4okn8s477zB48GBatGjBzJkzWbZsGU888QQAixcv5phjjuFf//oXhxxyyI+eLQxDlsxZzwevzWf6qCWsW74ZgJSUFJ544glmzpzJSSedxIQJEzj55JPp3bs3HTt2ZPPmzXz44Yf06NEDgB49evDRRx/9pOsjSZIk6denbD2vIkk7cHCddAqLS7baVq5Ze8o1a09SLOCc9g058MADmTBhwjavnTx5MgB/+ctfSrcFQcDvfve7nzzPu5/MZXrmGgrCLY+hxSpUAaAAWJlVSPcTOnLppZeybNky+vTpw2WXXUa9evU49thj2bRpE4cccgixWIyuXbtSr149CgoKmD17NgANGjTgww8/5NVXX+Xee+/9UY+UFeYX8+YD09mwMpeigjhBAgx5fDjvzBhC2yMP4cUXX2TOnDmMHDmy9Fq99dZb3HnnnYwbN46srKzSO7gqVarEl19++ZOvkSRJkqRfF+9EkvSLUL1CCicfVofUpG1/bCXFErioU+NdPtejjz7K66+/zimnnPKTZtmwcjmPPv9fCkq2nqWkIJfC1QuJ52UzftKHVK9enZ49e9K3b1/+85//EAQBq1ev5oorrqBjx45UrFiRzz//nDlz5jBv3jwaN25MUVFR6fpK6enppKWl/ajZJg6fy7plmykq2LJ2VFgCB9c7hhtPfYpyscqMHDlyq+Nbt24NQN26dcnKyqJy5cpkZ2cDkJ2dTeXKlX/KJZIkSZL0K2REkvSLceeph3DKYXVJSUygYmoi5ZJj1K2cxvMXH029KuV2+TxXXHEFY8aMKV176Mea9MIQ4vESCLZ+vC53wTRWDrue4pwsYrFEjjzySADatWvHsmXLADj00ENJSNjyo/eBBx5g3rx5dO3alYoVK3LZZZexYsUKMjIyOPbYY7nvvvu45pprdnmuwvxivvl0NfHisHRbUbwQgOLCEjavKtkmSgXf+wxhGHLMMccwbtw4AMaOHUv79u13+f0lSZIk/br5OJukX4ykWAJ/P70NA05oyewV2aSnJXFwnfStQsjesODTT2iSVIf55Q+kKCEZgLAkTs6scdTqeyfpDQ7ib13L88bwIQwbNoxhw4bRuXNn+vbty80338z5559feq758+czb948/vWvf1G1alWqVq3KxIkTf9JcudmFJMQC4t9bf3z2kk8YP/MVAGpVrUfPnj254447dniOww8/nNTUVDp37syhhx7KUUcd9ZNmkSRJkvTrY0SS9ItTpXwyHZpW32fvH4YlNMxbTJXCDaxLrkY8IZHcOZMpXDGPrAmDSayQQo1e/yItLY3OnTtTsWJFXnjhBbKysrY6z5133snYsWOpVq1a6aLaP0e59GRKSsKttrVp1JE2jToCULVOeRISEkrXiMrIyCAjIwNgq7D1Y9ZgkiRJkrT/8HE2SfqR6h3UmgRCTlv5Hw7eNJvEkiIqHtSJZn8YzO/6XsCiWdM45phjeOSRR5g0aRJ9+/bl9NNP5/zzzy/9djiAjh070rVrV1555RXeffddOnTowEknnVS6JtEVV1xBjRo1ePrpp3dpruTURJq1q0kscds7sxKTEzjihIa75wJIkiRJ2i95J5Ik/Uhdzr6AEbcOgIICuq6fTOf1UygOYqQlJXDagP8jIeF/EWfZsmVMnDixdJ2h7SkqKuLxxx/n/fff59VXX+WJJ57g+uuv55ZbbuGoo46iuLh4h6/dZra+LchancfapZspLoiTEAsIEgJadapDsyNr/azPLUmSJGn/ZkSSpB+p1oFNOfPmOxn/7ydYs2gBCQTUOKAOx57fnwatD6W4pJiJSyYyYckEvnjnC4o3F9O9e3datWrFgw8+yCWXXMLixYtp2LAh9evXZ+7cuRxyyCEkJibSo0cP+vfvD8ABBxzwo2dLSolx2p8PZ8U3G1kyez2JSQk0aVuTyrV2feFxSZIkSdoeI5Ik/QR1mrfknLsfoCA3h7AkJLVCBQCyC7M5753zWL55ObnFuayZu4aiZUX0u70fqaNSue+++4jFYowdO5a77rqLwsJCsrKySE9PB6BSpUps2LDhZ80WBAF1mlamTtPKP/djSpIkSVIp10SSpJ8hpVz50oAEcPfUu1mUvYjc4lwAEtISSG2eytQVU6HplkfX2rZtC8ARRxwBQOXKlUvXQcrOzqZy5cp790NIkiRJ0i4wIkn6Vbn//vvp1KnTdvcNGTJklxep/inyivMYnTmaopKi0m3lmpYjf0k++fF83nj/DYqLi5kxYwYA06dPB6B58+bMmjWLeDzO2LFjad++/R6bUZIkSZJ+Kh9nk/SrUVBQUBpo9oXsgmwSgq3bfFrDNLKSs1hw9wKS05P5y+C/0L9/f7p3707Dhg1p0KABSUlJXHLJJXTu3JkqVarwwgsvkJmZSevWrQnDkCAIWL58OQMHDtzq3H//+9/5/e9/T926dffmx5QkSZK0nwrCMNzXM/wk7dq1C6dNm7avx5C0j4RhyOhFoxn21TDW5K3hoKoHUf7j8nQ7shsDBw6kd+/etG7dml69evHGG2/wzTffUK1aNUaNGsXGjRsBePvtt7n99tsZP348ubm5VKxYcafforYzU6dO5ZprrmHW+lmkNEqh2nHVWPXaKupfWr/0mCaVmvDGKW/s0vkyMzO5+eabGTZs2E+aR5IkSZJ+iiAIPg3DsN329vk4m6RfnDAMuXnKzdwy5RY+X/M5yzYvY+yCsTz62qPkNcoD4He/+x0vvvgiAC+//DK//e1vAahZsyb//e9/qVu3LjNnzmTgwIFMmDCBli1bbnOnz67MkZO1gdzsjTRs2JD33nuPvz3/N8JNISX5JVsdm5aYRv82/Ut/X1JS8sPTsT6nkEfem88RZ13NUd1OZNTYcXTu3JkHHngAgKOOOooOHTrQrVs3srKyOP/885k/fz5DhgyhX79+nHjiiZx44on8Uv/jgCRJkqSyzcfZJP3iTFs1jTGLxpBXnFe6bcMHG6h4dEVu/eBWksIk6tevz/r161m3bh1ZWVnUq1cPgNatWwNQt25dsrKygC3rKLVt25auXbvu8gyZn3/KuH8/zqa1a4GQyrXr0OOiK7jy8Ct5uuLTBEkB8aw4yx5ZRv6afAY8MoCDgoM49thjqVatGieeeCLPPvss7dq1Y/Lkyfzm9H68mtOS/PwCls+eRVFBSKPzHqP9EQ0YO/QWDjvsMJo2bcoLL7yw3UhUs2ZNhg8fziWXXMLMmTM59NBDf/oFliRJkqTtMCJJ+sV5fd7r5Bfnb7WtYGUB+Yvz2ThxI/HMOA8//DB9+vThsssuo3fv3qXHBUFQ+uswDJk4cSKff/45zz777C6//6IvPufN++6iuLCgdNu6pYt59e7/o/VZ59E4sTEDfjOAc4ecy9+H/p31H66naF4RQauA1atXM3bsWGKxGM8++ywnn9yHS/ueyeGnnk/VvnezecYoyrfuzsZJz5OTvZ5Hb/g/DihXwrBhw/jkk08oLi7miSee4LnnniMzM5NTTz0V2H4ckyRJkqTdycfZJP3iZBdmE7L13Ti1z6pNoz83ovkNzanXtB5XXnklZ555Ju+88w5nnHHGDs912223MWfOHDIyMrjmmmt26f0nPPt0aUBatG4DD4+bwiPjP2DEB9O49LLLSE1NpUF6Azoe3pG+B/Wl1YGtGDp0KGeccQbNmjUjFosBUFSQz/QhjzH0scFQoTrF2evIXzyLtIaHEpbEtxyzOYt4eh369+/PqlWr6NmzJ7fccgt33nkn5cuXp1WrVsD/4tjgwYMJw5BrrrmGeDz+o66rJEmSJO2MdyJJ+sXpUKcDH6/8eKvH2b5TEpbw9vi3S39//PHHU716dQDOP//80u233norABkZGT/qvYsK8lm3dHHp76uUS+OyjPYkBAF3jhxP78NaQVoasPVdT2vXruX999/n5ptv3nKewgJWZy5gXrkYYd3WFGevIX/RdMq32vJIXUlhLqtfuY14bhaUq0q9evUoKSkhPz+fxo0b89BDD7FmzRrWrVu33TkffPDBH/W5JEmSJCmKEUnSL06fJn14fMbjFBQXUML/FqhOiaVwZO0jObDSgcyZM4eLL76Yu+66a7e+dxBsfQNneloqANMXLyO3sIj35y5k05yFLFu2jBkzZrB06VKeeeYZVq1axYUXXkitWrXo06cP61euYOWGjYz+ci45M+ZQ4fCzKMxaSe7XH7Dp83co2byemp3OIXHZXC7sdTWvvPAmFSpUIDU1lUMPPZQ///nP9O7dmwsvvJD09HSGDx8OQIMGDcjIyCAjI4OxY8eSmOiPeUmSJEm7h3+7kPSLUyG5As+f+Dx/mvgnFmxcQFJCEoXxQro36M6tHW4FoGXLlkyePHm3v/eweS+wskoeNdclE/C/O41qpVekWa3qXHvhuTz69ljGjRvH8OHDefXVV3nuuedYuHAh48eP58UXX2ThwoW0r1Odky/9I4fWP4CjD2zA2zUPZlFafeIJW34s5zx7A5fU6sx/F82n2oI8xkyfTn5OIf8d+Q7tjjqCUaNGsWLFCqZOnUpeXh6DBg3i8ccf3+2fV5IkSZK+Y0SS9ItUP70+L/V+icXZi1mXv46G6Q2pmlp1j77na/Ne45Hpj5DaKs6JH9QmMQ4JBOQWFPL69C+5+NiOHH3yWUxYuJyEhATq1q3L/PnztzrHwoULadOmDRXDIlKS/vcj+Lg1Y3mn5vEsS61Dk6IETuzzT5IIuKD7XwnjIcmxcvRqdz5TXl7Afffdx7Rp05gxYwZt2rShoKBgm/eRJEmSpN3NiCTpF61BegMapDfY4+8ThiGPfP4I+fF88ivCyI4raDu3MgesSmHYx5/T8YRW/OHep9iQm7fNN8B9X+PGjfniiy/IuPwyWhxQk4Rvj00Oizl51dusT6pMpfKnkhSU3+p1B9Y6mCmz32betFWsr/UZQULArFmziMfjzJgxgyZNmuzxayBJkiRp/+a3s0nSLthUtIn1+etLf59doZiJh6/l8Spf8s3m9bz+yXROPuu3rFixYqfnOeWUU5gyZQqnnnkWaXXqk5ScTOzbdYtiiUnUDPKonFplm9fVq96UpMQUHnj9Gj76cCpnnHEGNWvW5JRTTuGqq67ihhtu2Or47OxsOnfuTOfOnbn22msBuPjii+nUqRPLli3b5vx///vfS9dSKl++POvXr9/mGEmSJEn7t+CH/5X8l6Jdu3bhtGnT9vUYkvYThfFC2r/QnqKSou3uL59Uno9+99Eunau4uJjExEQuv/xyTjvpJFKz17B+2VKq1WtAmx6/4e3HFrB+Wc52XxtLTOD8v3cktULSTt9j5cqVVK5cmdTUVM4++2xuvPFGTj75ZOrUqbPTtaLWrl3LGWecwYQJE0q3ffcNdhs3bqRhw4a88cYbu/Q5JUmSJP3yBEHwaRiG7ba3zzuRJGkXJMeS6VKvC7Egts2+pIQk+hzYZ5fP1atXLzp27Ehubi7H9epF537nc/Kfb6ZT33NJr16Dtj0akJi87Y/nhFhAvYOq7DAgrdtcwCPvzefCIZ/w0AdrmLe2AIDExESuu+46Fi5cyNSpU2nbti3XX389JSUlnHDCCbz00kvceuutAPznP/+hT58+ZGZmcv755wMwcOBACgoK2LRpEx06dNjlzylJkiTp18U1kSRpF/316L8yY80MNhVuoiC+JdCkxlKpWa4mf2j7h10+z6hRo3a6v8XRtVn69Qa++Ww1xUUlEEJSSoxylZLpft5B233NjCVZnP30VIrjJeQXl5AQwKufLeHAYB2LZmfSsUN7Kn3yCa1bt6Zfv368+uqr/Pa3v2XSpEkMGDCA9957j9/85jcMGDCAjz/+uHTOoqIibr/9dkaPHk1GRgZz5szZ5c8pSZIk6dfFx9kk6UfYWLCRV+a+wjsL3yGWEKNPkz6c2vRUyiWV2+3vtSozm7kfr6SoIE6DVtVofFh1YrFt71AqKQlpf/c4lnw9kw3jnoKEBJJrN6NSh76sePpykirWIJZajtylX1IuNYUwDKlQoQKrV68GttyplJyczNKlS6lRowaxWIzu3bvz2Wefccstt/D2228zZMgQevfuzZw5c2jdujXdunXj9ttv3+2fWZIkSdK+tbPH2bwTSZJ+hEoplbjokIu46JCL9vh71WqUTq1G6ZHHTZm/ls0FRSSm16RWv7sIEpNZ9597KH75DmqlVaVzyz6kJpXjnfxCwrSQpMJscnJySE1NpVOnTqSlpfHf//6Xe++9l1gsxi233ML06dOpUaMGubm5pKen8+abb5KSkkKjRo2YMmUKxx13HFlZWVSuXHmPXwdJkiRJZYMRSdJ+ZerUqVx77bXEYjHatWvHgAEDeOaZZ7jpppvIyMggDEOCIGDgwIF069aNjIwMxo4dS2Ji2ftxOWX+Wu7872xmL88mBGIVvv1WtxCqZK1n+aqvCcMSXp38MFUq1GDDptUkJCZRWJhLEEskISGBojDGJ++/T0lJCYMGDSIIAu644w7q1KlDQUEBaWlpjBs3jjVr1nDCCScwfPhw4vE4ACkpKfvuw0uSJEna61xYW9J+pWHDhowfP55JkyaxevVq1qxZw0033VS6f9y4cUyYMIFu3brtwymjvff1ai4a+glffRuQvq/6ikVUSCrHQ5eMolGtVjx48TsMOO1xDm+SQVJCMuVqNiHtoAzi8ThfhXXIyc0jCAJee+01KlSoQNOmTalfvz5FRUW8+OKLVKpUiZycHJo3b86SJUto0aIFxxxzDGlpafvks0uSJEnaN4xIkvYLhfl5rF2yiPRyaaSmpgJb1gKKxWKcc845ACQkJNCjRw/69u3L+vXr9+g8s2bNokOHDnTu3JkLLriAHa1P16lTp222hWHIwDdmkV9Uss2+eN4mlo57jN93vX6r7d+s/ILM1bPJLcimXt021Oh1DUk1GrF20nCKi4upXbc+rVu3pkKFCixcuJBy5cpRu3ZtPvnkE/75z38SBAFXXHEFzz33HHPnzuWLL74gMzNzt1wLSZIkSb8MZe/5DEnajYqLinhvyBN8NXE8CYkx4sXF1G/VhnpdjmPt2rWUK/e/BbFfeeUVqlatygsvvMAdd9zB/fffv8fmatGiBR988AEAF1xwAdOmTePII4/cpdcu35jPms0F22wPS+KsHXkvGZ0upkK5KlvtO6j+kVSreADtmh/HwoQiAJKq1iOIJZGQlEpKzao0btyYMAypWbMmDz30EKeffjp9+vThk08+4cMPP+Sss86iVatWJCQkUKlSJTZt2vQzr4IkSZKkXxIjkqRftZEP3M2iLz6nuKgQtrQTZn/6MX/51xOMn/oJxd+u7wNQtWpVAE499VSGDBmyW+fYXLiZ1+a9xruZ7xIEAb0a9+KUpqdQLqkcKSkp1K9fnwsuuIAlS5bQoEEDGjRowK233sqmTZs499xzmTFjBkOHDuWwww5j+LP/ZvHQRykJQ6p0709K7aYA5M6ZTOGKeXz44TPMjyfQ58j/Lf498YvXObRxR9Ir1ODd8XcRWziFICGRwtULIEhg0fIEKlasSEJCQmlEysnJoWfPnrz77rt8+eWXXHrppRx22GEkJCRQuXJlHnvssd16jSRJkiSVbUYkSb9a65Yu2RKQCgtLt8VLSnj+g085qW1rsjPnU65+49J92dnZpKenM2XKFJo0abL75shbR9+3+5KVn0V+PB+Auevnct+z95H3nzxatmjJokWLSElJYezYsQwaNIi8vDwAVq5cydSpU/n0008ZOnQo9erV4/2x73LEH/5J5vLVrHvnIWqedjMA5Vt1Jb11V848oj49NiXy5dSVXHfyQwAc2+Z0Cgn5PKWY+m1e3Gq+xISAM9rW5u9nHg5suTPq/PPPZ+PGjVx88cVcfPHFALRs2ZKNGzeSkJDA3/72N0aOHMmZZ565266TJEmSpLLNiCTpV2vJV19ss23m0hUs2bCRN6fNYMwFF/Hkc8+X7uvWrRtpaVvWTNqddyLd88k9rMldQzz8311P+fF8klol0a9PP1a/sJoFCxbQpk0bAA477DA+/PBDAJo2bUpqaip169YlKyuLBQsWMGPGDKqsuoV1KzdR8r21lBICqJCSxJXdm1EnPZWiqkl8OmoR5eMBGxNCpqYWMzspzg+VhCHFYYwl63OpX3XLnVHxeJzly5dzxhlnsHDhQt58803q1atX+pp4PE6zZs0AOPTQQ2nVqhVz587l8ccf3+XH8iRJkiT9shiRJP1qJSYnEyRs/f0BbRvUpW2DukDAId2Oo2rVqqXfMjZt2rRtzjFhwoSfNUO8JM6YRWO2CkgAJUUlFCUV8daCtzgu/Tjmzp3LypUrAZg5c2bpcUEQlP46DEMaN27MkUceySuvvMJHC9Zxx1tf8OXKHBKCgB4H1eSmE1tRt/KWz/ObPs2of0RNBr07hw+/WUcQQOXkJHKL4pSUhBSXbAlQJSG8OWMZI159naTpL9K29UFUq1aNDRs2MHbsWIYPH86rr77K1Vdfzccff8wVV1xBamoqf/rTnwBYsmQJU6ZMYePGjVx66aWMHDnyZ10zSZIkSWWTEUnSr1aTI45i7NOPbHdfUkoKzY7pzHmXXMJf//rXPTZDYUkhJeG236K2+YvNrB21FoBDOh7CU089xUUXXUT37t2pU6cOLVu23O75atSoQa9evejSpQuxWIxu3brx5p03kxBsHZy+07puJZ676Oittv3n82X86eUZW20riockNj6Sci3bU2vtSEaOHFm6iHbdunWZP38+AEcddRTTpk3jvvvuY/DgwVx77bU0bdqUChUqUKFCBTZu3PiTrpMkSZKkss+IJOlXK61iOp37ncfkF5+juOB/32aWmJJC47btaHTIYbz//vt7dIbUWCo1ytVgZc7KrbanH55O+uHpNE5vzDOnPgPAU089RWJiIoMGDaJBgwYATJ48GYBGjRqVPmJ3wQUXcMEFF/zkmT7OXE/JD7pWWFxEkJhEAGwoipGWlrbNXVCFhYUkJydvmT89nfi3i5LPnz+fnJwcNm7cSHp6+k+eS5IkSVLZZkSS9Kt2RK9TqFa3Ph+9/iLrli2lfKXKHHHSKbTu2mO7d+7sbkEQ8MfD/sgdH91Ruqj2d1JjqVx5+JWlv7/oootYuHAh6enpvPLKK3tsplXZBcS/t5YSQN7CT8n+5A0SAqhx6MH07Hl1acD6zueff871119PQkICVatW5bnnngOgfv36XHjhhcyfP59HH310j80tSZIkad8Kwh/8ReKXol27duH21i+RpH3p/vvv57XXXtsmwAyeNZjHPn+MxIREQkKKi4rZ+MBGVsxfweeff07Tpk23Oj4zM5Nbb711ty7w/Z0nJn7DA2Pnkl+07WN2aUkxRvRvz6H1K+/y+Tp16rTN55UkSZL0yxQEwadhGLbb3j7vRJKk3aSgoIAZM2Zsd9+FrS+kb4u+fL76cwigbY22ZJ+QzYABA/bukMBvj6zPw+PnA1tHpMSEgKY1K/yogCRJkiRp/2FEkqSfaGXOSl6f9zqLNi2ieeXmrB23lvPOO4+BAweSmZnJhRdeSPXq1Zk3bx633HILjz/+OLm5uYwaNYq0pDTSaqVtc86BAwfy3nvv0bZt2z02d+VyyYzo356Lh05jU34RQQDFJSEH16nEU+du9z847JR3IUmSJEn7ByOSJP0EozJHcdPkm7YsOF1SyJhwDAuHL+Td375besyGDRsYO3YsI0aMYOjQoYwePZq77rqLUaNGcdppp21zzhUrVvDxxx8zadIkXnjhBUaPHr3H5m9dtxIf3NiNaYs2sHpTPs1rVaR5rYp77P0kSZIk/fIl7OsBJGlfmzp1Kh06dKBz585ce+21rFy5kjvvvLN0//Lly0lNTS39mvs1uWu4efLNFMQLKCwpBGDVpFVUPLoiV42/ipJwy2NirVq1IiEhgTp16tC6dWsA6tSpw4YNG7Y7x6JFi2jTpg0ARxxxxB77vN9JSAg4qnFVTmpTx4AkSZIkKZJ3Ikna7zVs2JDx48eTmprK2WefzZo1a7jppptK9z/44IO0b9++9PdvfvMmIVt/KUHBygLyF+ezccJGihcV89Zbb2317W/f//WOvtCgYcOGfPHFFwBMnz59t3w2SZIkSdpdvBNJ0n4pXlzM3KlTmPDcMyz+eApFOZsBSExMJBaLcc455wCwZs0aNm3aRKNGjQDIzs7mwWsfpCBewII7FpD9aTaFqwspyS+h0Z8b0fBPDTmgyQH07t07coazzjqL0aNHc9555/Hmm29ywAEHcMQRR9C5c2fXGZIkSZJU5ngnkqT9Tvaa1Yz4vxvIz8mhKD+PWGIiH7w0jAM6HsvatWspV65c6bEPPvggf/zjH/nHP/4BQHp6OrGCGElhErEKMXLn51JSUEK5pltek5aUxv2v30+jho0YNmwYABkZGWRkZABw/vnnl577pZde2ma2O+64Yw99akmSJEn6ebwTSdJ+541/3M7mDespys8DttyVtGlzDn+99TbuvvmvpcdlZWWxZMkSDj744K1ef1Sro8j6OIuKbSpSnF1M7vxcyjUrR0BAaiyVLvW77NXPI0mSJEl7gxFJ0n5lzeJMNqxYTlhSUrotXlLCC1M/56Q2LVnyyQel27/++mvmzZvHCSecwJgxY7jssssA6Nq5K4nvJ1KjVQ2Sk5MpXFFIlQOqUD2tOoOPH0xSQtJe/1ySJEmStKf5OJuk/crG1atIiMW22jZz6QqWbNjIyBmzGf11JoOP7ATA0UcfzYcffghseQzt5ptvBqBjx46sWraKlX9ayY3hjUwaN4lBXQbRsW5HEhP8sSpJkiTp18m/7Ujar1SuVZuSeHyrbW0b1KVtg7oEQQItO3ahatWqpKWlbXXMkCFDSn/duHFjNmzYAMADNz4AN+7xsSVJkiRpn/NxNkn7ler1G1K1bj2ChG1//MWSkmjTsxeXXHIJp59++j6YTpIkSZLKLiOSpP3OKdffQnr1GiSlbrnbKJaUTCwpiYzzLqZei4N4//33OeGEE/bxlJIkSZJUtvg4m6T9TsVq1bnwoSdZOH0aK+bPpVzFdFp06EL5ylX29WiSJEmSVGYZkSTtlxISYjQ54miaHHH0vh5FkiRJkn4RfJxNkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkfZqRAqCYHAQBKuDIJj1vW3/CIJgThAEM4MgeD0Igsp7cyZJkiRJkiRF29t3Ig0BTvjBtjFA6zAM2wBzgb/s5ZkkSZIkSZIUYa9GpDAM3wfW/2Db6DAMi7/97UdAvb05kyRJkiRJkqKVtTWRLgTe2dHOIAj6B0EwLQiCaWvWrNmLY0mSJEmSJO3fykxECoLgJqAYeH5Hx4Rh+GQYhu3CMGxXo0aNvTecJEmSJEnSfi5xXw8AEATBecBJQPcwDMN9PY8kSZIkSZK2ts8jUhAEJwADgK5hGObu63kkSZIkSZK0rb36OFsQBMOBD4EWQRAsDYLgIuBfQEVgTBAEnwdB8PjenEmSJEmSJEnR9uqdSGEY9tvO5mf25gySJEmSJEn68crMwtqSJEmSJEkqu4xIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiLt1YgUBMHgIAhWB0Ew63vbqgZBMCYIgnnf/rPK3pxJkiRJkiRJ0fb2nUhDgBN+sO1GYFwYhs2Acd/+XpIkSZIkSWXIXo1IYRi+D6z/weaTgaHf/noocMrenEmSJEmSJEnRysKaSLXCMFwB8O0/a+7jeSRJkiRJkvQDZSEi7bIgCPoHQTAtCIJpa9as2dfjSJIkSZIk7TfKQkRaFQTBAQDf/nP1jg4Mw/DJMAzbhWHYrkaNGnttQEmSJEmSpP1dWYhI/wHO+/bX5wFv7sNZJEmSJEmStB17NSIFQTAc+BBoEQTB0iAILgL+DhwXBME84Lhvfy9JkiRJkqQyJHFvvlkYhv12sKv73pxDkiRJkiRJP05ZeJxNkiRJkiRJZZwRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSDuNSEEQ1A2C4NYgCJ4KguDaIAgqbeeYg4IgGL/nRpQkSZIkSdK+lrijHUEQNAKmAVWANcBFwIAgCM4Ow3Dc9w5NB7ruySElSZIkSZK0b+3sTqQ7gNVA4zAMawMHA18D/w2C4Hd7YzhJkiRJkiSVDTuLSJ2B28IwXAwQhuFsoBvwb+DZIAiu2AvzSZIkSZIkqQzY4eNsQHVg2fc3hGEYBy4LgmAD8HAQBBWBCXtuPEmSJEmSJJUFO4tIi9nyCNukH+4Iw/AvQRBsBu4G3tlDs0mSJEmSJKmM2NnjbO8DZ+9oZxiGdwLXACfs5pkkSZIkSZJUxuzsTqQngb5BEFQLw3Dd9g4Iw/CfQRCsBo7fI9NJkiRJkiSpTNhhRArD8FPg06gThGE4AhixO4eSJEmSJElS2bKzx9kkSZIkSZIkwIgkSZIkSZKkXWBEkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhRph9/OBhAEQXXgHKApkAW8Eobh53t+LEmSJEmSJJUlO4xIQRC0AN4Hanxv84AgCM4Iw/DNPT6ZJEmSJEmSyoydPc52B5APZADlgUOAj4H79/xYkiRJkiRJKkt2FpGOBgaGYfh+GIZ5YRh+CVwKNAqCoMZOXidJkiRJkqRfmZ1FpLrA1z/Y9jUQAHX22ESSJEmSJEkqc3YWkQIg/oNtJbvwOkmSJEmSJP3K7PTb2YC/BUGw9nu/D7795+1BEKz/3vYwDMPzdu9okiRJkiRJKit2FpEWAwdtZ/si4OAfbAt320SSJEmSJEkqc3YYkcIwbLQX55AkSZIkSVIZtlvWNgqCoOHuOI8kSZIkSZLKpp8ckYIgKB8EwflBELwHfLMbZ5IkSZIkSVIZE7Ww9jaCIOgBnAecCqQBK4C/7+a5JEmSJEmSVIbsUkQKguAg4FzgHKAOUPzta68BHgnDsGRPDShJkiRJkqR9b4ePswVBUDUIgj8EQfAxMAsYACwBrgBaAgEww4AkSZIkSZL067ezO5GWA0nAYuAu4NkwDOcBBEFQaS/MJkmSJEmSpDJiZwtrJ7HlbqNsIAvYtDcGkiRJkiRJUtmzs4jUELgFSAH+ASwJguC/QRD0BcrtjeEkSZIkSZJUNuwwIoVhuDQMwzvDMGwJdASeAdoDzwNzgRBosVemlCRJkiRJ0j61szuRSoVh+GEYhpcBtYF+wPtAHHg8CIL5QRD8dQ/OKEmSJEmSpH1slyLSd8IwLAzD8KUwDHsB9YAbgBzg9j0xnCRJkiRJksqGHxWRvi8Mw9VhGN4XhuGhwBG7cSZJkiRJkiSVMT85In1fGIaf747zSJIkSZIkqWxK3NGOIAgW/4jzhGEYNtwN80iSJEmSJKkM2mFEYsuaR9nAKCB374wjSZIkSZKksmhnEelZ4FTgBOA14NkwDN/bK1NJkiRJkiSpTNnhmkhhGJ4P1Ab+ANQBxgRBsCgIgjuCIGi+l+aTJEmSJElSGbDThbXDMMwLw3BYGIbHAw2AR4A+wOwgCD4KguD0vTGkJEmSJEmS9q1d/na2MAyXh2F4D9AOuPvbf569pwaTJEmSJElS2bGzNZG2EgRBe+Bc4CwgDXgZ+NcemkuSJEmSJEllyE4jUhAEBwLnfPu/JsBkYADwUhiGm/b8eJIkSZIkSSoLdhiRgiCYDBwDzGfLN7UNC8Mwcy/NJUmSJEmSpDJkZ3cidQCygVVAT6BnEAQ7OjYMw7Drbp5NkiRJkiRJZcTOItL7QLi3BpEkSZIkSVLZtcOIFIZhxl6cQ5IkSZIkSWVYwr4eQJIkSZIkSWXfzhbW7raT1xUDq8Iw/Hr3jyRJkiRJkqSyZmdrIo1ly5pIP1xNu3SdpCAIVgB/CcPwuT0wmyRJkiRJksqInUWkY3eyLwbUAc4AhgRBsCEMw5G7dTJJkiRJkiSVGTtbWHviLrx+WBAELwHXA0YkSZIkSZKkX6ndsbD2cOCw3XAeSZIkSZIklVG7IyJtApJ3w3kkSZIkSZJURu2OiHQ0sGg3nEeSJEmSJEll1E+OSEEQJAZBcBowAHhp940kSZIkSZKksmaHC2sHQbAECHewOwZU//b1Y4E7dv9okiRJkiRJKit2GJGAcew4IhUDq4H3wjAcu9unkiRJkiRJUpmyw4gUhuH5e3EOSZIkSZIklWG7Y2FtSZIkSZIk/coZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhSpzESkIAiuDYLgyyAIZgVBMDwIgtR9PZMkSZIkSZK2KBMRKQiCusBVQLswDFsDMaDvvp1KkiRJkiRJ3ykTEelbiUBaEASJQDlg+T6eR5IkSZIkSd8qExEpDMNlwL3AYmAFsDEMw9H7dipJkiRJkiR9p0xEpCAIqgAnA42BOkD5IAjO2c5x/YMgmBYEwbQ1a9bs7TElSZIkSZL2W2UiIgE9gIVhGK4Jw7AIeA3o8MODwjB8MgzDdmEYtqtRo8ZeH1KSJEmSJGl/VVYi0mKgfRAE5YIgCIDuwOx9PJMkSZIkSZK+VSYiUhiGU4FXgM+AL9gy15P7dChJkiRJkiSVStzXA3wnDMP/A/5vX88hSZIkSZKkbZWJO5EkSZIkSZJUthmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJOlXb9asWXTo0IHOnTtzwQUXsHDhQs4555ydvqZLly507dqV7t27s3r16r00qSRJkiSVXUYkSb96LVq04IMPPmDSpEkArF27dqfHl5SUMG7cOCZOnMi5557L0KFDd3js/fffT6dOnbbaNmHCBG699VYABg8e/POGlyRJkqQywogk6VdpcfZi/vbh3+j1Wi/OHX0ub8x/g+KSYlJSUojH4wAUFRXxu9/9jokTJzJkyBB++9vf0qtXL2bOnElSUhIAeXl5HHzwwdt9j4KCAmbMmLHTOYxIkiRJkn4tEvf1AJK0u01fPZ1Lx1xKYbyQeBiHTTBt3DQueO0CMtpmUK1aNYqKijj//PPp378/Xbt2ZeHChVSuXJkXX3wRgMWLF/Pb3/6WdevWsWHDBg4++GCSkpK49u5reejuh3h5+Ms89/RznHfeeQwcOBCACy+8kMWLF9OwYUPi8TjVqlVj48aN1K5dmzFjxjBlyhSGDBlC165dmTp1KhMmTNh3F0mSJEmSfiTvRJL0qxKGITe8fwN5xXlbAtK3Ug9NpdmdzSisWMjIkSN5//33SUpKIiMjo/SYI444ovTXDRo04MMPP+Taa6+lWrVq3DbsNvIvyuemKTfx2arPOPaFY3ny9SfJOHbL6z/++GNisRhjx46lSZMmAFx++eW0b9+elStXctBBBzFkyBCmTJnCaaedtjcuhSRJkiTtVkYkSb8qs9fPJrsge6ttJUUlAOQV57GoYBFpaWl0796dBg0a8PDDD5cel5Cw5UdiUVERuQXFLFmfS1JKOZYsXUKv7r2Y/5/55BblUlRSxMqJK1mwZAHXPH0Nq1at4pprruGDDz7gxBNP5PDDDwdg+PDhfPHFFwwfPpy1a9fSoEEDYrEYhx122N65GJIkSZK0GxmRJP2q5BTlkBBs/aNt8xebWXD3AhbcvYBN6zbRs2dPAG677TZmz57NiBEjSo/NL4pzzb/fo3rztrQ8/BiuuuMhWlxzEw3/3ILNX26mJL+EMB6ybvQ6iguLGfrwUJYtW0ZJSQmdOnWibt26vPPOO9SpU4c5c+Zw8MEH889//pMwDFmyZAklJSXMnDlzr14TSZIkSdodXBNJ0q9K8yrNKSop2mpb+uHppB+eTmKQyOnNT+fAAw9k2LBhADz66KNbHXv201OZtjhOzX5/L922Pl5MwtLqVDz0b2R/nk3u17lUaF2BepfUo3xSeVbespKLLrqIKVOmMHHiRA466CCOOuookpKSaNSoEZ9++ikTJkzgvPPOo0OHDhxzzDGlC3dLkiRJ0i+FdyJJ+lWplFKJU5ueSmosdZt9ybFkzjv4vB2+dsaSLD5btIGC4pLSbSUFuRAmUlJYjZw5MSq0qkD5VuVJqpbEujHrKC4p5tobriUIAoYMGcJ5553HDTfcwHXXXQfAc889R926denatSsXX3wxH330EX379uXAAw/c/R9ekiRJkvYg70SS9Ksz4KgBBEHAa/NeIykhiXgYp0pqFe7pcg/1K9bf4esmz19LYfx/i3Fnf/w6m2aOJiExmeJNawkS46QfUZnNX2wmpU4K8ew4DWo3oFLrSjzzzDMMGTKEo446CoCXXnqJJ598koSEBPr160edOnV44IEHeOONNygsLGTo0KF7/DpIkiRJ0u4UhGG4r2f4Sdq1axdOmzZtX48hqQzLLsxm7vq5VEyuSPMqzQmCYKfHPz1pAfeM+prC4hLC4iLWjXqY4g0rqX3OPax8/gYOvLoPCVXeIkgMSEpIYunTS3l84OOc1v00OnfuzKRJk3bb7FOnTuXaa68lFovRrl07BgwYwDPPPMNNN9203eM7derE5MmTd9v7S5IkSdo/BUHwaRiG7ba3z8fZJP1qpSen0652O1pUbREZkDbmFhEvCSkp2RLWN88cRfnW3QHY8P5zFK3JJOH1MRx2wGE0r9Kcc1udy2+a/YYOB3fg5ptvZubMmZx00kk/e+aNuUVszC2iYcOGjB8/nkmTJrF69WrWrFmzw4AkSZIkSXuDEUnSfm/Ex4s56q6xPDRuHiVhSBgvJn/xLNIaHgpAne7nU7tRc2ZNmcawE4dxHufx9HlPs2n9JqpVq8Ydd9zBIYccwsiRI3/yDB8tWMfxD0yk3Z1jaHfnGC54cS5frMwFIDExkVgsxjnnnAPAyJEj6dKlCx06dODdd9/9+RdAkiRJknaBEUnSfu3TRRv421tfUVBcQm5hnJIQcr4cT/lWXYkFAalJCQzs3YrG1cuXvqZPnz7MmjWLunXr/qxw9J2PF67n/H9/zNerNlMUDymKh8xesYlzn5nKi6Mms3btWsqVKwdASUkJ9957L+PHj2fChAn84x//+NnvL0mSJEm7woW1Je0VmZmZHH300Rx00EEkJyczevTobY4pKSnh3HPPZcmSJSQlJTFixAiqV6++1TluvfVWhgwZstvmenziN+QXxbfaVrR+GYWrFpAz412SspayduqbpfsKCgpISUkBID09nbS0tJ89wx1vf0V+Uck22zdnb+SPf/wLX0x6l/z8fADWrl3L7Nmz6dGjBwCrV6+mrKxttyt/xpIkSZJ+ubwTSdJec9xxxzFhwoTtxoVnn32W9u3bM27cOO666y7y8vJ4/vnntzrmzDPPBCAjI4Pi4uLdMtOcFdn8MMFUybiAWr+9nQN/fyeNmrbgyiuvLN337rvv0rVrV7p27cqqVavo2bPnz3r/wuISZi3buM32sCTO2pH3ktThXGrWrFW6vXr16hxyyCGMGzeOIUOGsG7dOo499li+/PLLnzXHzxGGIblFuRSXFO/0z3h/lpmZSa1atcjIyNjhvzNZWVm89tpre3kySZIkadcZkSTtUUvzC5mfm09xSch7771H586deeCBBwC47bbbyMjIoGPHjrz99tu89dZbnHjiidStW5eioiKqVasGwMCBA+ncuTPLli3b7fPVqbzjO4kKi0v4z7vjAUq/+ezkk09m4sSJTJw4kaeffpqEhISt9u/IjiJCQgABWxb9LsnfTO7XHwCQO2cy+YtmsuG9IXTrdiwrVqzYcnxCAtdddx3du3enb9++VKpUiQkTJnDwwQf/xCvw87wx/w16vtKTDsM7cPIbJ/PmqDc5puMxPPDAA0yfPp3f/e53AJxzzjlMmzaNhx9+mEceeYTc3FwyMjLYuHEjxx13XOn5unXrRlFR0T75LD/Fs88+S/fu3cnIyNjhv59jxowpvQ733Xcfr776Kt27d6dLly6cdNJJbNq0CTAiSZIkqezzcTZJe8Rn2TlcO3sxmfmFJAYBsaIibnnvAy4+sC4nn3wy3bp1Y/HSxQx+YzBPPfAUr414jX79+rFs2TK6d+/OypUrGTFiBA888ADly5dn0qRJtGjRovT8t9xyC2PHjuWyyy7joosu+slzXtz5QGYu20he4daPtMWCgJa1K9KgWrmffO4fOu644xg2bNhW2xJjCRzTpBqT56+lpCCH3LkfUK5FB8q36kqFg7tybPOaDL7gSL7++mtiSSkMemcOL3+WREHXv9CiQh4L7ruCzp07c/rpp5OZmcmFF15I1apVWbhwIW+++Sb16tXjggsuYMmSJTRo0IAGDRrQrFkzsrOzufzyy5k5cyZPPPEEjzzyyI/+PM988QyPz3ic/PiWR+1Ih8Z3NaZcxXK8O/RdunfvTuPGjbn00kupU6cO7dq144gjjuDEE0/kgw8+4Prrr6dSpUo0bNiQ+fPnE4/Hadq0KUlJSbvjcu9xy5YtY+LEiYwbN277+7/ewNR35zHoybu54tyB3PjAhVxzzTX07t2bK664gunTp9OwYUMuv/xyevTowdy5cxkzZgwZGRkMGjSIAQMGAPDZZ5/x5ZdfUr9+/b358SRJkqRteCeSpN1uXk4+Z0z/hq9zCygoCcmJl5CdEGPQio08u3IDJ/Y6kXv/cy/Pv/U8hx1zGPc/dj9LNyzl3D+cS/ny5fnDH/5AlSpVOOKII7jiiivIzs4GoEKFCqXvcdZZZzF58mSGDh36s2btcVBNzjyiHmlJCSRsuSGIcskxqlVI5pGzD/9Z516zqYD7Rn9N74cnc+Xw6bwzehydOv3vTqyrrrqKLl26sOzF/yM1zGfzjHfJy/yclS/cSJi3kdXP38BNJx1EUVERF150MZ/FmvPM5AWs3VzIpoJipq2Cyuc9wm1PvsTYsWPJzs5mw4YNvPTSS1x33XW8+uqrTJ06lZSUFMaOHVsa4Xr37l26IPhrr73GGWec8aM/W25R7tYBCUhISiBMDskuzuaAIw9g1qxZXHbZZTzzzDNcffXVAARBUHpXUq9evQA4++yzGTFiBCNGjKBfv34/65rvafmbN/PJW6/x8u03Mei6q9i4ZjXdu3fnyiuvJB6Pl95d167NMQy5exQTxk6iKL+Eux/+K/XSW3L//z3DxIkTS+9aSkxMLL2brX///qWPAx599NFMmDCBAQMG0K9fv+0GpKlTp9KhQwc6d+7MJZdcwuGHH05qauouPeqZmZlZ+m1/kiRJ0q4yIkna7R7IXEl+ydYLRZfk5pBXUsI9C1fy9H+e5pP8Tyh3cDka3tiQaidUo/IJlbln6j0c2OxA8vLyaNq0KZs3b6Z79+4sXboUgJycnNLztW7dmpSUlNK/gP9UQRBw28mteenSDvz+mEacclgd/tbnYN6/4VjqVfnpdyHNX72J7vdN4Mn3F/DFso3MXBdQ48LHqHvO3YwZM4aJEyeSk5PD+++/z0XnnUPv5C/pdebvKX9gWxqf9w9OOqolBx1QiSY1KpCUlES/2wZTWLsNhfHvreCUmERhkMxNb3xFr169GDlyJK1atSIhIYG6deuSlZXFwoULadOmDQCHHXYYsGVB8OTkZNauXcukSZPo0qXLj/5801dPJzFh65tZ43lb7ubKj+czYdIEmjRpwo033shDDz3EwIEDgS1/hk8//TRnnXVWaQDs2rUrkyZNYtKkSXTt2vVHz7K3rF++jGeuvoQPXhrG4lkzmD/7SxZ+MYNrTupBWload9xxB8uWLeO1F96m1yGX8c7Hw9iUt4Hs3HX84cRBNKnVhkG3PsgJPX/Dhg0bKCws5Mknn+Too4/e7vstWLCABx98kH/+85/b3d+wYUPGjx/PpEmT2LRpEw8//DDt27ffk5dAkiRJ+zkfZ5O0272/YTM//K6xopmfsfnfj5GVFKNSo9XUbF6TxDmJLLh7ASUFJSSkJlD7xtp8+NqHfPrxp6xatYonn3yS1atX06BBAzp37lx6RxJsiT+70yH1KnFIvUq7dOz999/Pa6+9ttN1kK4a8Tmb8osJgfjmDWyeOZqgw2+ZuWwz7Vt3YNmyZRx++JY7ndq1a8fEiRO586JzCT6tw7DbTwCg02P/C2SvfLqUguIfhLmCXBJSypGVV8SoTyfy1+uv46uvvirdH4YhjRs3ZuLEiQDMnDmzdN8pp5zCPffcQ7NmzYjFYrv0ub8vCALCHyxJnjs3l1WvrSJICmh0aCNWrFhBw4YN+cMf/sDVV1/NmDFjePvtt7nxxhvp3r07v/nNbzjhhBOoVasWbdq0obi4+GdHwT1p5IN/Jz9nM3z7bXipSYk0rlaJhdM/pdmhR7F8cx4TJkyg++Ru5GQVkJ5WlbTk8hxY+xAKiwtoXrct42e9zOj/ruKmv11Pv379eOaZZxg5ciRt2rQhKSmJeHxLiMvNzeXSSy9l8ODBpd8G+J15G+YxY80MgpJUElYeREqsHEEsiQkTJrBu3ToAnnrqKQYNGkTFihVZs2YN//jHP/jDH/5A8+bN6dy5M++99x5Lly5l+fLlfPzxx/z9738nLS2NW2+9tUyHPEmSJO1bRiRJu11KwraBJ6V9Z1Lad6Z8/kyqr3+U3OIcavapSc0+NQFYMWIFc+6eQ9VaVRn171H079+fP/3pT6xZs4aXX36ZJk2a0KlTJ4YMGUJGRsaPmmfWrFn079+fWCxG06ZNGTx48I+OUIV5uRAEhEECM2bM2OmxS9bn8s3qzaWJJVahChWP6A1AXlGcd8dN5LLTj+OJJ54AYNq0aTRp0mSriLDN+xf/MMtBwdIvyZo0jFhSMu1POo5atWptc8zRRx/N448/Tvfu3alTpw4tW7YEtiwQfvnll/Pmm2/u6iXYStuabSkJt56p4qEVqXhoRVJjqfyp3Z84peUpnHLKKQA89NBDAFstoj1mzJjSXwdBULr4dFmUtXIFG1YsKw1IAI2qVWHqgiUUFeTzwdtvcVDXHvTs2ZOTD7+cr6euJB4vJrdwM1Nmj+SblV/w0uR/UhLG6XPwaYwcOZLU1FTuvffe0gXka9euzfr16znjjDPo3bs3X3/9Nb///e8BGDFiBOnV0rl6/NVMXzOd4nhIcTyAoIT8LzqycurXNOpxDmvX/guAUaNGkZyczLRp0zj88MO5/vrree6555gxYwbPP/88b731FgMHDqRWrVrceeedvP/++6SlpVFSsu2/Z5IkSdJ3jEiSdrvf1q7KvxavpjAMt9lXIyUNttNvDuh7AABH1DqC5s2bM2HChG2O+e7Onz59+pCRkcHkyZO3e9yVV17JF198wYEN6vHUA3fQomkTPvhgy7eeXXDBBUybNo0jjzxylz7LsjlfMf7fT7B2SSYAn6/NptfZ5/LPb76hqKiIE044gaKiImrUqMFLL71ELBbj73fdwdJXRhIPA6qfuGUtoLVvP0hYmEsQS6JKkzYcffTRPPvss3Tu3JmKFSvywgsvULFixdKI8OSTT241R7eDajLi4yUUl/zvmqY1OZK0JkdSMTWRx28+juTEhNKFuzMyMkpj21NPPUViYiKDBg2iQYMGZGZmcvTRR3PUUUfxj3/8Y6uw853MzExuvvnmrRYCX7t2LX369CEpKYlKlSrxh9v+wL9m/WurdZGSEpKoWa4mfZr02aXrC1u+fW/RokW7/GeyL+RszCIhMREKC0u31a1SiaTYMga9M4H84jgr4gm0b9+ev/7zYjauyePwA4+lU6uTaHrAobzx0ZPkFeZwQNWGHNezBxdc/jvKlSvHihUrqF27Nvfddx+xWIxRo0aVnv+8887baobrJlzHZ6s/o7BkywxBDIo3F7Pi7X9T7ZRbeGNBSPbmXPLy8li5ciVt27YlFotx0kkn8fjjj9OrVy/WrFlDjx49+NOf/sTs2bNZtGgRDRs2JC1ty7cUluU7wSRJkrTvGZEk7XaX1q/Bq6s2sKKgqDQkJQCpCQk80KYnf3r3ge2+Li0xjdObnb7TcxcUFOz0TqBPPvmEwk3rmHBhZe574XVGXv02J7euCJ2ug45Xk5KSQv369bnwwgtZvHgxDRs2pH79+hx55JEsXLiQCy+8kCpVqrBixQqGPP4oM999i3rpFRjxyQyKi+MUxOMcXqsqhXl5JCYmMnLkSNLS0rj55psZP348tWvXJi9rDfV/P4hNKxax8cOXqXTMmSRWrEb13neTEEDPVrUBtvuNaN9FhIKCgtK/2ANc2qUJb0xfzuaCrRdNTkuKcW2P5iQn7vgv/xdddBELFy6kYsV0nnnuBTZtWLvdb4qLUqVKFSZPnkxCQgJ/+9vfKDevHHd3vpt/Tv8nCzcuJC0xjT5N+nBl2yspl7Tr60nddtttP2qOfaFq3XrEi4q22d6l+YHkFRVz0x8vp891fwGg6PY4z930AfmbiwhD6NSqNwtWzuKm3z5F9XrpnHXhkZx9USFFRUUkJSUxdOhQhg4dyvXXX7/D91+bt5aJSyaWBiSAMB6y9Mml1DqrNsk1PydvWWuKE7c8ktahQweWL19OTk4Ob775JgUFBSQlJfH444/TokULrr32Wk455RSmTp3K4sWLWbNmDX379qWoqIj09HSGDx9OxYoVd/+FlCRJ0i+aEUnSblcpKZHR7Zrz2JI1vLRyPfklJXSuXJFrG9eiZfk0/nbM3/jr5L9udQdLaiyV5lWac0KjE7Y5X/7mIhZ/tY6SkpD/TnqJ8847j4EDB273K+0XzJ5Jm6zRsDDOYTVhzIJcTm5awlmX3cjb82+gdt36LFmyhDp16jB27FjuuusuCgsL6dChAy+88AKtW7cmIyODDz/8kLdefpFO9WoyfvY3HH9wc9ZuymHyvIWs27iR7DWryMnJoX///ixbtoxVq1bRrFkzNmzYwJRJ71OYPIMN2fkE5ats9VlSEhP4Y7emkdfw7LPPpm/fvqW/r1+1HK9cfgwDXp3J7OWbiCUEpCXHuO645pzTvuFOz/XM4H/zr/HzeWbKQrrcN5l49mpWvzOGDh07ceYZp3Pqqaducx0Bli9fzhlnnFG6rV69eqXnjMfjNGvWjMMaHkaPhj0Iw3C3r1NVlqRVqEjLjl35+oP3KS4sJD8pzsYKRcxetpIwCPjHK28xZuFyHnzwQe7++52M/uD/2bvrsKruP4Dj73OTbhBFwMDuLlQEaw475uyYunKbC6cTu6Yzl06nYsfEZDoLsbsxMEjpzsvl1u8Pfly9orN1cV7Ps2d47jn3fM8h7+d+4gAZ8fn0a/0l6TkJSKQSloUEUL1+Rfzzl2JpaYlcLgdApVJRo0aNvzx/dHY0CqnCJIiUdTYLVaSKpN8TQL8bbc45NHnZLFi4kM2bNrFjxw4mTJhAv379SElJITAwkKysLJYvX87KlSuJj4+nTZs2mJmZ0alTJxQKBbNmzeLWrVsEBgYyevToV3pPRSKRSCQSiUT/PGIQSSQSvRK2chnjKpRmXIXSJR5rV64dLpYuLLm0hKtpV7GWW/NOlXfoV60fcqncZN9zf0Ry7s9oJBIBnU7Luj+3UX/a/UBTRkYGBw4cYMOGDQQFBdHaKpqgO7l8VFdJSKSWDJWBhBw9uWodeQEOdDxcjtzcXOrVqwdAgwYNOHnyJPb29qSlpXHixAnGjh3LgQMHSEhMwq6yJ2l5+bjZ23A9PgmVVsuq4+dIycln3rx5VK5cmfXr1zNhwgQMBgNVqlShffv2LFy0mEk7r/H7mSgk+enkSgVszeXM712Hmm5PbuC9ZcuWEtuqutqw4yNv0nLV5BfqKGNnjvQR/ace9uXvl/nzWiIFmqJ+NwalHaWGL8GujB37983Dz8+vxH3s2rVriW2ffvopZ86c4cMPP8TMzIwvvvjCeI5/cwCpWNvhH5KvymVNwW4iXXORGAQSU1IxGOBwcCDLv13OjBkziI+P59jxI9y4cYNvZ35HgyZNUcZpOHr8OEuXLuXXX3/l888/JyYmhnfeeYecnBz27Nnzl+d2NndGozfNhLJraoddUzsAtHnlUcWMwkwm4cb0jqi1eqo2a4+ZXIKXixWCIHDx4kU++eQTevTowdChQ2nWrBndunVjw4YNnD171vi8ERERxmbr27dvf+Gm28WN6Lds2cLy5cuZMGHCI/fz8fHhwIEDyGTinyYikUgkEolEf1fiX2oikeiNqONch1/a/fKX+9w+m8T5vdHoNHp0wMmbf9Kgoi/hpxLIzVADmIy0v3PnDnXNL1DTGdqsyqOms4RSVgK30/XUdJGAVE45J3NO3bhnLIm7ePGi8Xzu7u6EhIQwfvx4Fi9ejIVSAYCDpTn3MrLwr1ON+Mxs3mlUhzWnLjB82DC6duvGuXPnsLW1pVKlStSpUwdXV1fa+vkiCAIfdO9FqeqNWR3lSHBAW+TSF+8542ilxPEp941MzWNPWKLJZDdBJkcLRKeraduwFcHBwSXu46PuLUDjxo05d+4c8+fPZ8WKFYwZM+aFr+efQqZQcKJBJjExanR6AzoMYClBUklg8J7BfN7ic65fvE5oaKixH1Xp0qXxqlmW1hmtkEql+Pr6Mm/ePAA8PDw4efIkQUFBzJs3z9h8/FE8bDyoYFuB8PRw9A/NPjTo5WgyWiCXCnSv58avRyL44eBtBEFApzfgYKlgXu86JsckJiayf/9+zp8/z5w5c1iyZAkAubm5LF26lD179qDX61+46faD5aeurq6PDSCJRCKRSCQSif4Z/jZBJEEQ7IDfgJqAARhmMBhOvtFFiUSiN+pMcCTawvsvXJMyY7mXdpdj14OJTrnJzp07TTJgDAYDyJRMal3035TQAt7yknE9Rc/yi4Wcjk9BVjqeOnXqoFar8fPzw9PTEw8PDwCaN29OcnIygiBgbW1N3RrVAWhTtSIbz1xGp9dTvUwpbC3MmTdmNO4eHly4cKHEuidMmFDixXL/tr+/ilv0REdupZTYplfnI1FakHRhH78dW02VCh6UK1fO+HhkZCSLFi0yubcZGRkMGjSI1atXA2BjY/PYSXL/Vgm5CRyKPUShvpDUP1PJPp9N6QGlyTicgUavYf3B9dR1qEvTpk3R6XSsXbuWBQsWEBAQQFRUFF26dCEmJoby5cuj0WiQyWQIgoCNjY1J/6vHmd96PgP2DCBfk0+BrgCDQQCDDE12HRTq2pR2MKeMvTmLD9xGpbn/uYnLVDEs8CzWhfe31apVC5lMRt26dY0BQoPBwLBhw5g5cyZ2dnYkJSU9c9Pt43dSmbc3nGvx2ZgrpJRNOMKovv2ZO3OaSbP2pk2bUrt2bS5cuMCUKVPw9/c3Psf69es5ffr0XwbVRCKRSCQSiURvxt8miAQsBv40GAy9BEFQAE/flVUkEv0rZaWoTP7drelI48cLd35KB7+3OHPmjMk++trv4jv9EFJBj195GU3KymhSFu5m6DkcA1416qNHYNmyZQCEhoYaJ7wNHTqUoUOHArBu3TpSYqLYMPFLHBD4sE2zohMIAnKlGa0HDntFV/1ySSQCD1eaqe9dIyM0EF1+Jg3bdWfToskEBAQ88bnS09Np3bo1EokEBwcHVq1a9YpW/fd0NfUqcomcgoICCmKL+nmZe5qTqcjkxowbpDilsClkE9988w1r1qyhTZs23Llzh+joaKZNm0bnzp1p2LAh69evJyEhgYEDByKRSFAqlQQGBj7x/O427uzusZvgu8EciztBVq6c3LS6WFh50bWFGx1rutL82xCTAFIxtVZHVka+8d9hYWHodDouX75MxYoVgaIpeS1atMDX19dYglZYWEhBQQFmZmbo9fq/DCTtuhzP2C2XUWn0ZJ0OIv/WKa7nppJTrjU6vemkxpSUFAICAnB0dKR9+/bGINLGjRs5c+YM33///RPvh0gkEolEIpHo9ftbBJEEQbABWgFDAAwGQyFQ+FfHiESifz+lhYyC3JITsQC+7PEDXpUrlhxprykg9OvlkHoLtPcbd09pa4es6/dsulnU8+VpOHuUo//MBRxdH0jk5QsICJSr24CW7w7Gsaz7C1/f6+BX1YXpwddNtplXbIQuLwNt3HV0yXeZP38+q1atMplYZ2dnx6JFi5g0aRKHDh2iXr16ODk5ERwcTNOmTXFxcWHSpEksWLDgDV3Z66PR6QkNT+F0Qh46vYGMwxnYtbAjeVsyBq2BgugCMIBMIkMqlfLxxx+TmJjI2rVr6d27N2q1mt69e3Pv3j1+++03ABwcHDh8+PAzr8VSbsk7Vd/hnarvlHjsTnIO+oeCNQAGnZaE3yejSbpLhw4dmDVrFi4uLnTr1o2UlBTWrVtHfHw8c+bMoXnz5gQFBVFYWIhMJmP8+PG0bt0aS0tLJk+e/NieSBqdnoDtYag0enT5WRTEXMG6TjtUMVe5e/YQFrlqk/0dHR2NGYDF/ZcAZs+ezbFjx575vohEIpFIJBKJXo+/RRAJqACkACsFQagDnAc+NRgMeQ/uJAjCSGAkYPzjUyQS/XvVau3GhX0x6DSmvVgkUoGK9Z2Ryh+RFSE3g2F/wvHv4fxKUOdA6TpMOO3AydE/IZVK2bx5s3F3Y/DpMRzLetBt7KSXdUmvXRk7cwY29WTtyWjUuvv3UZeXibnUwNnjhxk3bhzz589HKpWaTKxLSEjgzJkzHD16lPXr17Nv3z4AUlNTmTBhgsm0tn+r89HpDA88h1avR6uXI3XXkheeh2NbR5K3JYMUPMd4YmlhSZXTVQgJCaFSpUrG4/38/KhatSparfaJzbNflIVChvYRQSRBKqNU35m42ZlzcJwvUVFRmJmZkZaWhlwuZ9H339O461A6D/mEsePGszhgNOfOnUMul3P+/Hlu3rxJxYoV+f777/H29iY2NpZhw4bh5OTE7du3mThxInMX/cCdqGQce01DnXALM49aaNLj0GbEk3RgOYImn127dhnXlJ6ezr1793BwcDApi1y1ahUDBgxgy5YtT1XiJxKJRCKRSCR6vV68w+vLIQPqA78YDIZ6QB4w7uGdDAbDUoPB0NBgMDR0dnZ+3WsUiUSvWf2Onji7WyFX3s9UkCml2Dia0fKdyo8/UGEJbcbDl7dgQgIM+5M5v67nyJEjHDp0iP/az4+e9d3QYxpckCgtMbhW448rCfj6+qLRaEwm1gFER0dTu3Ztk20ALi4u/4kAUnpeIYOWnyFTpSFXraNAI5C8xwvbJo5gKKoR1Kv1JK5MJH5uPGf3nSU+Pt54fHZ2NitWrOD27ducPn2aceNK/Fp7qcrYmVPeyfKRjyllEvo0vP85s7S0JCQkhBnLt7I65ApTNp8kzMWPIctPErTrTw4cO4O9vT2hoaEkJiZy4cIFqlWrRkhICFDUI2vjxo189dVXrFq1iu9XBWHl1ZiCyAvoC3KRKCyw9xmKk/8XmHnWxrJUOTp37mw8v5OTE1OmTKFVq1Z8/fXXxu1169blq6++YtCgQWi12ld0p0QikUgkEolEz+vvkol0D7hnMBhO///fW3hEEEkkEv23yORSun9Rn6iradw6k4hOa8CrgQte9V0enYUkMiruabN27Vq69PsAXeuPTR5XulUj5/Je+nV/Cydy0Ov11KxZkw8//NA4sc7T05OrV68CplPsnqbB8r/B5nOx6AymwbfCBB15VyxIP5hGYXwhsqMyOjbqyJpFa5gYMLGoufv/SSQSLCwsUCgU2NrakpeX9/ApXrp5vevwzq8nKdDqKE48M5NJcLM3p2VlZ346dAe93sDU71eQqtLz/prz6JCg0kL2trkICnM0BfnUbe6DvSGHlJQUypUrR6VKlUhNTaVSpUpUqlTJOLmvTJky1KxZk9plbZFaO6AuyEVqZY8mNw0oauIuN7ciYN4W1Gq1MbtIJpMZS/uKFfcme1J2oEgkEolEIpHozflbvBIwGAyJQKwgCFX+v8kPuP4Xh4hEov8IiVRChbrOdBxZi7c/rE2VJq6vLIC0YMECvL29iYqKYsCAAa/kHK/Dg2PVAVJz1DwUC0FRqgISmYK8+LtUq1mbW7du4eTkhJ+fH7du3QKKxtM3aNCAli1b/if71Fy9l0WBRk9hShSJa74kcd1YdHlZOPf6Frcev1G+Qh12f7ubG0dv0KVzF6KiokyOz87OJiYmBmtraxo1asRXX331ytdc082WPZ+2ok9DD8rYmVHByZJP2laiiqs1/ZadYsH+cBYeuEXvJSfp/9tp8hLvos/PRiJXAiBRWoBMjtogJSUtDTs7Oz744AOOHTtGz549jUGyByf3CYKAmVxKu+qlUEgFlK6VUMeEAaCOvoStZ3X6NXJjxIgR9OzZ85XfA5FIJBKJRCLRq/N3yUQCGA2s+/9ktghg6Btej0gk+g95OPDyT1OQm0teZgZWDo78tnIlgwcPZtKkol5OxS/4E9eOxXXAXLRZSWQeW4/T22PQJN8lMyOdQYMG8fPPP+Pg4GDyvDNmzChxrv9KQMndwRy5RMDgUBbXgfMASP1jEYWJt7EqV41563ZRtmxpLly4UOLYtWvX8sknn7B27Vpq166Nv7+/yRj7V8nD0YLZPWoZ/730yF0O3Uym4IHeYiqNjsi4JJL//AXnruMw6IpmWdj7DEUdH47nu9MwBE/FSm5g586dnDt3DltbW5N+Tw9rU8UFpcTARfNSqDxrkbRuLK5uZTnw/UJK21tx5MgR477/la8hkUgkEolEon+bv00QyWAwXAIavul1iESi/47IrEjOJ51HKVUSHhxuEngp1qxZMxo2bMiRI0cYP348mzdv5s6dO6xZs4Y6deqwdOlSVqxYgY+PD6dOnTKW5LwuBbm57P11MZEXzyGRytBoNGy/GUXIiVPExcXRq1cvnM1tSAie98jjvUfN4rM6Ah9++CF9+/Y1Ns/+rzPoDbS0s2YFRY2piwkyGdqMBFIiz+A7cS2BgYEADBkyhICAAA4dOoRSqWTr1q1cuXKFxYsXIwgC1tbW5OTkYG1t/dqvZdmRSFQPNac36HWk7JqHfZthSK3s0WYlmR4kwG9bdvP1kG6PDPiUmIpI0T0YAuj1BjI+a4m5QoqF4m/zZ4ZIJBKJRCKR6CUQ/7oTiUT/OYW6Qr48/CUn4k8gIIAO7qy/w0+BP5XYNy0tjYCAAHQ6HfXr1ycqKooLFy6wfPlyFixYwPLlyzl+/Dhnzpzh1KlTr/U69Hodm6Z8TXpCHHqtFp1Gw5mIWCpbm7Fx+gTy8vJwdHSkorMVaQV5aP9fgWQwGBAAC4WUeQOb8uO0sWzfvp2xY8e+1vX/XWWnqdi+4CIFuRpaCzIOKTXk3D5NxtFVKB3LYm5jh6+7DqXsfsP3ixcvEhERwfHjx40lXzqdjoULF7J161bKlStHRkaGSRApKiqKgIAAY0DmVTAYDKTkqktsz795jMKE22SErgTAvvVgk8ct5TKaVnB8rnNKJAKOVsrnOlYkEolEIpFI9PcmBpFEItF/zrdnvuVE/AnUuqIX1xlHMrBpYsPC8wspLCw02dfZ2ZlSpUoBULFiRczMzChTpgwZGRmkpqbi6emJTCYzmV72IqKiomjSpAnVqlVDoVCYZAaFhoYSGhrKlClTmDx5Mru2bcXPwwVXy/uj0JNzcrkUG0/wpevka/Wkp6dTtmxZ2lR14cT5RHTX95N6fAtWFmZYH5hJQosAdu7cyZEjR6hatepLuYZ/MoPBwM7Fl8hNL8BggLrI8CiUcMmjOTmDm5MfvobmHioUEnPj/oIgcOvWLZo3bw6ARmdAKhEQBMFYIpmdnY2dnd1rvx5BEHC0VJCWZ/p1bVm9NZbVW6OQCkgEAa3egNKtGuZyKZWGzmPl8KZIJYJYdiYSiUQikUgkMiEGkUQi0X9KniaPnXd3GgNIAOpENQUxBaQfSqcwqpBdu3YZH3u4gXAxg8GAk5MT0dHR6HQ6k+llL6pdu3ZPzE4JCQlh3piPufjnLpPt/nWqodPrWXfqEmpBgtX/exyZyaUMf7cHixYt4sP33iM8PJz8/HwmTJiAwWDA0dGRn34qmYn1X5N4N4v8rEKTRuTWGi2+egVSmcBJpS0ONpbcvn0bgKtXr1K7dm2qVKnCivVb2KOvw42EbADyk3Jp81Ytbt++TWZmJt27d0ej0eDs7MzmzZtNzvvpp59y6dIl9Ho969atw8PD46Vd0zDv8vwYcrtESZuZTMLQFuXp2aAsG8/GkJhVQF13O3o3cMfWQv7Szi8SiUQikUgk+vcQg0gikegf6fTp04wZMwapVErDhg1ZuHDhUx0XnxuPTCIzCSK59nE1fhwzO4bOnTtz+vTpJz6XTCZj6NChNG/enNatWz/7RfxfQpaKo7dTkQgC5ZVqDh06RMuWLenRowdjxoxh2LBhxMTE4Onpibu7Oz/++CNXrlzhi+8W4iIx4O5gS7XSLlyLSyI5JxdLhYL6nmWo5V6GLVEpLFq0iICAAD766CPCw8NZuHAhy5cv58svv6ROnTq0atUKQRB45513+OCDD7hx4wYzZszA29v7P5eJkpGUbyxHK3Yj9iwhV7YAUN6zAis3/8jbb79Np06dcHQsKvnKNC/DuTQpeXNHgVSOc5exZOtkzF+6FlLvErRlC61atcLc3JyAgABCQkJMmlTPnj0bCwsLDhw4wK+//srMmTNf2jWNalWBy7GZHL2dilqrw2AAc4WUBp72jGlXGYVMQsDb1V/a+UQikUgkEolE/15iEEkkEv2jaAt1qFVaypZ1JyQkBDMzM/r378/Vq1epVavWE493MHNAo9M89nHfOb6UK1fOmAn0YBCl+OMHH3///fd5//33AYwNhp+WXm9g8s5rbD4Xi1RSlOWkKSzk/Z92Me7tWnTr1o0GDRoglUo5cOAAs2bNorCwkI8//piNGzeyde1qFn40nJAbd6lW2oWrcYm0q16Jk3ejiY/N5lRkLPE5+cbMquLMqZiYGLZv306dOnUIDQ1lyJAhXLt2jbNnzxIaGsqNGzee6Tr+TaztzRAkgsm22uVaULtcCwQJ1GxVFolEwp49e4yPGwwGWn8XirX3QKy9i7blXtmHVe32WFVphnpbAC1atGD48OHExcWRlJREpUqVTIJIc+fOZdeuXdy6dQsLCwvi4+NZsWKFSfZbsffee4+bN2+yadMm3NzcnnhNMqmEpYMacjk2k33XEtEDbauVor6H3SOfXyQSiUQikUgkehwxiCQSif4R1Pkajmy8xd0LKSCARCpQu01ZGvuXRyaTsXPnTu7du8dbb73Fzp07CQ8Px8zMDIlEwtChQ+nUqRO7du0i4mYE0dOi0TnpKEgowGuql/Ec5jJzBlUf9Nqu6bdjEWw5fw+19sEyIynrzydTxS0Bf39/7t27R7169QBo0KABJ0+eNO7pUq4C5Tw8SDt7BY1WR5aqAEcrC/zrVANAYW5B4KVwOnfuzM79h+nxyykiHRrhVacJ9jZWqLNSGT16NOfPnycqKgp/f3++/PJL4/Pn5OTw7rvvcuvWLZYsWUKjRo3+8noWLFjA1q1bH5m95OPjY+wfNGnSJHx9fV/gzr06blXtkSukaAp0JR6TSCXUbF0yaJOUrSYpu8BkmyY9jsKkCHIu7UGTcIf58+dTuXJl1q9fbywhLJaWlkZoaKhxut+6desAOHfu3CPveXh4+HNliNVxt6OOu90zHycSiUQikUgkEhWTvOkFiEQi0ZPodHqCvjvPnQvJ6LR6dBo9mgIdlw/GsmzGdlJTU+nduzdBQUEAbN26lV69evHxxx8THBzMiBEj+Oqrr7C2tmbatGnsC95H3Q/rokkrykgSEDCXmePt5k1Xr67Pvc7Q0NCn3tdgMLDkcAQqjWmwQq/OR6XR8X3IHY4fP07FihWNzZkf1XfJ+93BeLm68Oe1W3i5mE7T0uu0nDhxkgvpMu7VeY8rcVlY1HkLy9rtybdyQ3D0RK40Y+rUqdSpU4fg4GCT42NjY1m2bBk7d+5k6tSpf3k9arXauM7HOXjwIKGhoSUCSHq9/jFHvH4SiYD/x3VQmMuQKYp+RUqkAlK5BO/eXjiUtixxzKOSeex9hlLqnemU6jMNpbMnw4cPZ+fOnfj7+xMVFWXcT6PTs/1aJpFZOio38Gb1pq0AKJVKdDodvr6+9OrViwYNGnDv3j0CAgK4cuUK/v7+hIaG0rlzZ9566y18fX1JT09/JfdEJBKJRCKRSCQqJmYiiUSiv73IS6nkpqvRa0171WRlZ7IsaCp/7N1G5coVuHv3LiqViri4OMqXLw/AgAEDmDZtmjG7IzMzk/pV6rOn4h7qLKhDO892WMos6eLVhYalGr628p5ctZZsVcmyOvW9a2QeXUuiVE6zfv40adKEX375BT8/Pzw9PUs0XK7avCWtGzUgYOV6vup4vy+TTKmkee/+CAozJu+8ZhKskigtUbjXRHXjCBK3mo8tX/Py8sLKygorKyuysrJMHtMb9ByLO0bw3WAK9YWoj6jpN6Af06dOZ+fOnSxYsAAo6l2lUqmQSCS0bdsWV1dXfv75ZxwcHPDx8aFx48bEx8e/0jH3z8rZw5rBs5sTfjqR5KgcrByUVGtWGhsn80fu72KtpLStGVFp+SUekwjw4fx1lC1blgsXLpg8Fp6Yw82qQ7iy/zZCh3EIAhyKOIP29Hqa16+Fo6MjGRkZHDhwgA0bNhAUFMSMGTMIDQ0lODiY0NBQCgoK2L9/P5s2bWLp0qWMGzfuldwTkUgkEolEIpEIxCCSSCT6B4i4lIxGbZqxo9PrWBUym57NR1GYrgSKSqYeLJXKy8vjt99+o0+fPqxatYrBgwdja2vLvXv3sLe3Jy02jQU+C1779QCYy6XIpEWj1U22V2yEecVG2JjL+G5yBwACAwNLHF9cziSVyfnip2U0b+PL1ZB9FKrysS/tRos+/anc1JvTEWk81CcapVs1ci7vxeXd2ewODSbgnZaPXOOdO3fIy8sjKysLGxsb43aNTsOo/aMISwtDpVVh0BpI2J1AbO1YdHodXbp0oUuXLixZsoR27doBsGXLFhwcHFi/fj0zZswwBpm6d+9Os2bNnuseFgsLC2PkyJFIpVK8vLxK9BLy8fHhwIEDyGQlf+VFRUUxZcqUEvdYYSajVuuy8BT90gVBYHq3moxYfY6CByagSQSwUsr4xK9SiWMMBgPvrT5L1gOBRL0BZOUbY125GbKYIIKDg6levToSiQQ3Nzfu3LlT4nmKSx3r1q3L/v37n7xYkUgkEolEIpHoBYhBJJFI9LcnlZWsvL0YcZiYlHC2nlxKyJ21LP55Pr1796Z27drGzJoJEyYwbtw4/Pz8eOutt+jYsSMTJ06kS5cuVK5c+aWOUX9WMqmE7vXKEnQ+lkKdaZRHKZMwoInnUz+Xwsyc1gOG0XrAsBKP6fQGHs6tUpSqgESmIHH9OOwcHOnVazE///xziWPd3d0ZNmwYd+7cMXk88FogV1KvGCfcZZ7IxKqJFfG58STnJgNw6tQpDh06xMaNGwFwcHAAioJGDwZsGjRo8NTX+ThVqlThxIkTAAwdOtSkl9DrKpVrWcmZVUMbM3vPTS7fy0QiCPhVdeGbTtVwd7Aosf/le1mk5RaabDNoNQgyOQUaHXcydfiam5sEwx6eGgcYSwgvX75MxYoVX/JViUQikUgkEolEpsQgkkj0H/RXDZChqPfO2LFj0Wq1fPnll7z99tv89ttvLFmyhKlTp/L222+/1vVWbuTK3QvJaNT3AwINvXxp6OWLVCZh0KzmWNgoANBqtcZ9Fi1aZPy4OEujVKlSxrKiZ52m9rJ906kqF2IyiE3PJ7+wKNPKQiGlSinrR2avPI+6HnYlsp0A7H2Ho5RJGO3rhUKhMH4t+Pj4GO/L43ocbbi5wRhAAlAnqimIKSD9UDqqCBUTJ0/kxLETbNu2zRgEyc7OxsbGxtjnqZhE8vyt+WILCsnV6qhgoTRuK+4l1KZNGxwdHenUqZPxsfXr13P69GkWL17MpEmTOHTokDGT52VoUsGR7R+1QKc3IBH4y9LIpOwCJA89roo8T/bZ7QDoy3rSvn37JzbQlsvldOzYkYKCAmNPMNHr96ifqaGhoYSGhjJlypRHHjN69Gh++OGH17RCkUgkEolEopdDDCKJRP8xT9MAecaMGezYsQMLi/sZFJs3b+bYsWOYmZm96iWWULaqPa4VbEm4k4X2gXIhmUJC3XYexgDSP421mZzg0d7su5bEH1fikUgEutQpg1+1UkglL6c3k4VCxmg/L344eMe0L5IA1mYyBjR9+oynYllq0/5Irn1cjR9HzopEa9ASGxtLly5dAIzNtM3NzTEzM3tked6zuJqTz+gbMUSp1MgEAQPgE36R04u/o3Llyjg6OpKcnMyBAweQSqWsXr2ajRs3cubMGb7//nsSEhI4c+YMR48eZf369ezbt++F1vOwp/ncVXKxQqszzZKyqNQUi0pNkUqgbyMPKlSoYOwV9WBw78FARd26dZkxY8bLW7zomT3Nz9RHEQNIIpFIJBKJ/onEIJJI9C9nMBi4nHKZmJwYSluW5vSW0wwePJhJkyYRFRVFtWrVMDMzw8LCghEjRjBo0CAKCgro1asXCoWCX3/9ldatW5OYmEiHDh1Yvnw5Xl5er/UaBInA2x/X4fKBGK4ciqMgtxAbZ3MadSpPpUalnvt5n2Wa2qsil0p4u3Zp3q5d+pWd44PWFbE1k7PwwC2yVVoMGGhVyZnp3WpiZ/HsATgPGw/uZJbszwNQa3Itpvedzuxps022nzt3rsS+z3P/Y1Rqul+8Q64xAFOUZRVSuS4f7TpA9IKZBAcHU6dOHaRSqfG42bNnG4Mv0dHR1K5dGygqp3vZQaSnUcHZitpl7bgYm4HmoXJGhVTKMO/yr31NoqcXnZbH6ch0lDIJd0KDjD9TAYYNG0ZMTAyenp64u7sDEBAQwJEjR6hTpw45OTkEBgbi7e39xEwzkUgkEolEor8bMYgkEv2LxeXG8cH+D0jKTwJAr9UTuz6W47uPA0Vla2XLluX27dvMmTMHlUpFUlIS4eHhXLlyhcOHDzNz5kycnJxwdXV9bHPi10EqlVC/Qznqdyj3Rs7/d7B69WpWrVqFTqdj3bp1uLm5AY8um3mwYbQgCPRv6sm7jT3IyC/EQiHDXCF9zFme7P067xNwLIACXYHJdjOpGQOrD0QmeXVfIz/HJFPwUAaPobAQlULBzzHJ9LKyxtzcvESZ3KpVqxgwYABbtmzB09OTq1evAkXfA8/iSaWgxfR6PYMGDSI2Nha5XM7GjRtxcnIy2efXgQ0YtOIMd1Ny0esNSKUCBgMseqcuFZ2tnriWB7OTnmVtTyqz+jt62msD6Nu3L4mJiajValQqFZcuXXpp6yjU6hmz6RIHbiQhEQQEvZbYbb/z429FWXdnzpxBKpVy4MABZs2aRWFhIQkJCVy4cIEjR46wadMm9uzZ89LWIxKJRCKRSPS6PX8zCpFI9Lem0+sY+udQonOiydfmk6/NJ+FIAsqGSgbsHkBOYQ4R0RGkpKTQsmVLIiIiAJg7dy65ubl8/PHHHD9+nBs3bpCTk8PNmzepX78+ly5d4o8//uDHH38kPz8fpVJJeno6K1asYPPmzW/4qv+94uLiOHz4MAcPHiQ0NNQYQHoWEomAo5XyhQJIAB3KdWBE7REopUosZBaYy8xRSBV0LN+RUbVHvdBzP0lIeg7ah7apzx4n/bPhJHw6jFtx8bRv377EcXXr1uWrr75i0KBBODs706BBA1q2bPlMmSDPUrZ06dIlFAoFhw8fZujQoaxbt67EPvaWCnZ+3IL1I5oy4e1qfNujNucD2tG+husjnrEkg8FgLIl70tpWr16Nn58fPj4+XL16la1bt5bYx9vb+6nO+zoY9AbU+Rr0Ov0zl4tt3LiR0NBQxo4di7+//0td18w/rnPwZhJqrR6VRkfyxf2YV23Nt3tukq3SEBERYeyzVdw0Pjo6mpo1awJFX4cPWrBgAd7e3iQmJjJz5kwA+vTpQ+vWrfH29iY8PPylrl8kEolEIpHoRYmZSCLRv9SxuGNkqbPQG+5nbTzcAHl+6Hxq+dYiZFMItWvXpkmTJjg7O1OjRg0qVarE3bt3KV++PFeuXKFKlSpMnz6dVatWMWnSJNavX0/NmjXx8fHh5MmTnDx5ksmTJ7/BK/73iUjJJfBEFNfis8m5vA+zbBV+fn5Ur16dRYsWMWLEiBJlM49qGN2sWTMaNmzIkSNHGD9+PJs3b+bOnTusWbOGOnXqPNfaRtYeSZ/KfTgadxStXkvT0k0pbfXqSvKKWUhLvvdh1qINZi3aYCGVMKt+JSpYmRt7CcH9srkHM3eepo9Qel4hwVfiSc1RU72MLbcObTEpBR02bBhOTk7cvn2biRMnsmTJEvLz89m7dy9ubm7GxtqZmZk4OjoCpp+f7OxsAgMDqetuR113u6e+B6pCHQv2h7P+TAz5ah3O1kqqpJ9gyKBBxu/BTz75hEuXLmFhZc3cuXM5fPgwnp6exMTEcPToUaAoMDls2DB2795NQEAAaWlpT72GV0WvN3BhTxSXDsaiUesQJAI3cg7S790BTJ8xlZ07d7JgwQIATp8+TVZWFj169CAvLw9nZ2eTQPa2bdv47LPPXtra8gu1bDoXS8EDfdk06XEUJkWQc2kPusTbhIeHEx8fD9zPcvP09CQ4OJgTJ07w6aefPnCtemNw7OrVqxw8eJD9+/czZ84cmjRpQq1atfj+++/56aefTI55kWb0IpFIJBKJRC9KDCKJRP9S4RnhFGhNy40ebIAcMTMCx+6O3Fh+g7ot62JjY0N+fj6NGzfG19eXGTNmkJOTQ2hoKNeuXUMikeDm5kZmZib29vakpaVx4sQJxo4dS0hICLGxsZQtW/Z1X+a/1p9hCXy26RJanQGt3kD2zUi0qfHM+fE3ovYsY/78+Y8sm3lUw+i0tDQCAgLQ6XTUr1+fqKgoLly4wPLly/n++++fe412ZnZ0rtj5ZV3yU+lX2oHZEQmoHjFxzk4mpZrly2n8vuNiHGODriAIUKDRYyEzkLTjdy4dvl+KlJGRwYEDB9i4cSOrVq1i3759zJo1i71799K1a1fUajWlSpUiNzeXlJSUJzb03r9/P7Nnz0av1zN//nwqV65Mt27d0Gg02NjYsGHDBiwsrej32ymux2ej1hYFM5Iy87i55wAVWvcA4OzZs4RFJVPYcTLhp/bQvPcoHJWgToqgd6+eKBQKzp49y4cffsjt27d59913kclkxkDXJ598QvPmzenTpw8jR47k9u3bWFhYvJYyrEOrb3DnQjLawqJr0xVqOHbsKC0qF5WLdenShS5durBkyRLatWtHTEwMTk5OBAcHYzDc/5rQarVcvXqV+vXrv7S1xWeqkD40Uc/eZ6jx45QNXzN58mSGDBmCn58fnp6eeHh44ODggEwm4/KVKyzetos8rZagxHQSE5OYMWMGEyZMYMGCBbi6urJ+/Xrj8+n1emPvLh8fHxo3bkx8fLxJgFQkEolEIpHodRPfzhKJ/qUczRxRypSPfbzChAroVDpch7hi+6kthYWF1KpVi6tXr9K3b18GDx7M0KFDKV++PIIgEBoaikwmM75Qc3d3JyQkBF9fX8LCwowvQEUQHx9P/fr1MTMzQ6t9uPjqyXLVWsZsukyBRo/2/8ESQWGJvGxNFh+4TdX6zdBoNI8sm3mwYXQxZ2dnSpUqRZkyZahYsSJmZmaUKVOGjIyMF73U125gGScqmCsxe2ACmgQwlwh8X83DmP3zIu6m5PL11iuotXpj1knyhf3IKrdk8Iozxv2qV6+ORCKhTJkyxnKl4vu6b98+rKys6NixI+7u7sybN++xnx8AlUrFr7/+yv79+wkNDaVBgwbI5XLWrl3LkSNH6Nq1K4GBgYSGJxOemGMMIAHkXQvBrGorNp6JpVCn59fgE1zXOJKYXYCslBeazCSSUtMxa9QLqVxJTk4Oubm5BAUFsXLlSrZv387o0aMB+PTTT2nWrBl9+/Zlx44duLi4cPjwYf74448Xvq9PkpWSz+3z9wNIAGdu76dBRV8yk/IpyNMAcOrUKQ4dOsQ333yDl5cXtWrVon///ixcuNB43KFDh0z6Rb0MDpZKkybohSlRJK75ksR1Y0n9YxFNRhdNWwsMDGTvvv2Mn72YYaPHUqNGDTI0WvL0Bi5r4drt23x1PZIEpTlnb98lJycHiUTCoUOHGDhwIBkZGXh7e3Pnzh1jk/jc3Fy6d+8uBpBEIpFIJBK9cWIQSST6l2pXrp3JO/OPkn8rn5uf3OT0sNOkZ6bz1VdfUVBQgJ+fH1euXEEulz/22ObNm2NpaYkgCFhZWdG0adOnXtvp06dp3rw5LVu2ZMyYMURFRTFgwIDH7h8VFcWQIUOe+vnfNAcHBw4ePPhM9+RB+64l8nAsROlWjcLkKLR6A5v3HkWr1RpLYR4sm3lUw+gHAysPfvykr4+/I3OphF0NKvNFOVfKmSlwVsh429mO3Q0q421v/VLOsepEFNqHJqZp0uPIvrCbM0u+5MrVMHbt2lUiYLXrcjzz94UTsP0qY3+/xInLNxg4cBByuZyYmBi++OIL1qxZQ7169fj111/Zt28f3t7e5OXlcfLkSSQSCW+99RYDBw4kLy8PMzMzSpcuKhGUyWRIpVKCrySQX6grsbaci7uJ2zCRa2HX2BF6jty4WwCoE+8gtXJEWbYGmffuoHOtQXR0NC4uLshkMnbu3En58uWZNWsWt27d4tq1a/Tt2xeAW7du0bx5c4DXUkIVcy29xLakzFiOXt/Foq1fEX7rJlOnTmXChAksW7YMQRBQq9WMGTOGdevW8eeff5KUVDREYNu2bXTv3v2lrs/BUkHj8g5IhaIAUtqeH0AiQWZXBqkEfByyAVhzMooGMw7Q9afjNBk6kaj4ZBIzsjEUqMjdugFpaTdiPx6KUK0WS2KT0Wg0JCcno1QqOXXqFE2aNGH79u1YWVlx/fp19Ho9V69excbG5qVej0gkEolEItHzEINIItG/lI3ChlneszCTmiGXPDoYZF3Hmmo/VaPu0rpcuH4BMzMzli1bxsGDB6lZsyYVKlQAMDYfLleuHIGBgQAMHTqUHTt2ALBu3TpjJsPT8PT0JCQkhKNHj5KcnExOTs4LXOmbl6/J5/fw3/n6yNfMOTOHGFUM9vb2xsejoqLw9fWlV69eNGjQgHv37nHnzh2aN29OmzZtmDVrFgB16tRh0KBBfNqnHbnxt03OoShVAYlMwb21X3Pn2mXGjx+PWq3Gz8+PW7eKAgalS5d+ZMPo4rIqHx8frl27BsDXX3/Nvn37iIuLe9W356WzkEoY7VmKU82qc7VFTZbVLEc1K/OX9vy3knKNGWDF7H2GUuqd6Xj2n4Fbhcp07mxaxnfybhpjt1whIauAQq2eLPsq3Lh2jcGffE1MTAwDBw4kPz+fYcOGoVKp2LZtG+3bt6dTp07s3buXpKQkEhIS2LNnD82bN+fXX381Pndubi5Lly6lX79+j1xv8drc+03Hyb0ipXwGIMiUJK4bS971UGwad0dfqEKrKWTF3ABSU1NJTk7m9OnTXL9+HR8fH9q0aYONjQ3vvvsuX331FQBVqlTh1KlTQFFp1asmSIQSwdNuTUfy8dtz+Ojtbynn5oVEIiE2NpYuXbrg4+NDdHQ0rVu3plmzZjg7O+Pi4oLBYODkyZMvvVG43mCgZ7sKyM1lmLm4U3rQfFz7z0UmFbCXaxnesTGt/fvwfr/u3A2aR9yBQFKPbcC+w8fYNOoLggSJkzOC0gxdUjyqP7YR88M87ty5g1QqRSqVsmvXLkqXLs26desoW7Ysubm57Nq1CysrK5YuXfpSr0ckEolEIpHoeYg9kUSif7F25dpR1bEqG29u5GD0QRLyE0wabQMICFR1qIqjeVE52vDhw4mMjMTGxoYtW7a8tLWkFmpZF5/G6axcXJVyBlroqWd2P8MiLi6Orl27kpSUxIYNGyhfvvxjm0Q3aNCAY8eO8e2339KxY8eXtsbnEZkVyaA9g1Dr1Ki0KiRI+P3W7wyqPshkv+L+ORs2bCAoKAhLS0tGjhzJkCFDjBlBiYmJnD59mlU7Q/hmwTKsfSqYPIe973As5FImvF0NhUJhDOg96FENo3///XcCAgJMSmHi4+NJTk5+6usMCwtj5MiRSKVSvLy8mDVrFitWrGDChAmP3L9Pnz4kJSWh0+lYvnw5VapUeepzPY34+Hj8/f25fv06ubm5yGQlf51FRUUZrzskJIQJEyZgZmbGmjVr/rJ/l5ezJWcj09A9KlHLAGu2/Um5cg7G+1m5bhPivFSoNTqsarUFIPfKPuzbvo9NDW9c/pyCp6cn1atXZ+bMmbRr147ff/+dvLw8Y/lb6dKl8fb2RiqV4uvry7x584pOZzAwbNgwZs6ciZ2dHZ1qlWbftUTyHspGAtAb4KcNwYzbehXH9h8Yt6vjw1HdOoleU4C5jT0bNmxg5MiRzJgxg4yMDH788UcqVqzI1q1badCgAdOmTSMoKIjAwEASEhJo1aoVVlZW7N69+1k+Rc+sXC1Hjm2+/cjH5EoJu7fvx726AxMnTjR5rLhR+IMezMR7GQp1etqfPsUtlRR9MyekiQVIk/Mx3DqDLvIMnnXr0rmzP2F37yFY2KN0tkKvykGQm5Nzfifq+Fug02AoUKE+dxIKCpA4OKFPS0FpZo5SqUQQhKJ+VmFhpKSkEBcXR9OmTdHpdOj1ehwcHF7qNYlEIpFIJBI9DzETSST6l3O3duerRl8R1DWI8jblMZPebzwsl8ixlFsyvcV047ZVq1Zx5MgRgoODMTN7OU2KL2Xn0/TUdRZGJxKSnsPGhHR6XLzNJ38cIDU1FQsLCxITEwkKCmLx4sXMmTPHpAnxg2VhaWlpTJo0iT/++MMkW+NNMBgMfHroU7LUWai0KgD06FHr1Ky5voacwvsZVsX9c4qbk/fp04crV67Qv39//vzzTwC8vLwwMzOjfaNqKPUFPDyITAAUMgnd6rn99br0BmKupXFozQ0OrblB3K0MDh06RMuWLVm4cCEBAQFcuXIFf39/9Ho97733Hq1bt+att94CTEe9F/eVqVKlCidOnDC+YL93795jA0hQlJ12+PBhZs6c+ULNux/nWUsGp0+fzr59+/j222+ZPXv2X+47uHk55LKSvx4FARytlDTwtDfZvv96Uol9i0vMotdN4OaNGyXK3x4uK2zUqBE3btwA4NKlS5QvXx4omubWokULfH19AfCt6oJXKSuUD63PXC6lT0N32tUoVWItMhsX3N7/jSpjt1C7XgPUajWhoaHs2rWLU6dOUbFiRaAo43DSpEkcP36ca9euMXv2bJYvX86RI0deeQAJwMrejJqt3ZApTK9NKpfgUs6GslXtH3Pkqzfw9DbCVVL0EiXIpOjKWpKtukbivhU4N2qKh4c7cfHx2DftiUPbkWjSYjDoCjEvX59S78zEwqsxyJQglaJPT8OgLkBiZ49Zjdo4l3KhS5cuZGdn88EHH+Ds7My5c+eoVasW9evXx9fXF41Gw8iRI9/Y9YtEIpFIJBIVE4NIItF/hKXckvVvr+eT+p9Qya4SnjaevFv1XbZ33U4FuwpPfoLnpDcYGHw1glydnoL/lwjpgbzMTJZ+8zUfLygKMNSqVQuZTEbdunW5c+fOXzaJdnFxMQZj3qTwjHAS8xIxUDJlRa1Tk5R/P7jwcNBALpezYMECVq5cyaRJk0z2EQSBVpWcqFHaFnO5FCulFEuFlLL25vz+fjMslY9PItVqdGxbcIE/l4Zx/XgC148ncGlHKt99tIn9+w5w4MAB+vTpQ61atQgODv7L5skRKblEpebRd+kppgbf5HZSUVBMqVSi0+mMfayKg04P9q4q7qeVm5tr/Dy+qJT8FNZeX8vPl37mXNo5bO1sjY89qmSwWH5+Pubm5lhbW9OkSROuX7/+l+epVMqaaV1ropRJjMEaS4UUR0sFgUMbleiFVKjVozc8uvzNpc80nNwrlih/s7OzM8kkc3Z2pnXr1rRq1YqVK1fy/vvvEx8fz5w5c9i2bRs+Pj788ssvSCUCG0c0o38TDywUUiQCOFkp+KpDZaZ1rYFSJmWifzXMHggySa3sUSiVuNiYUcHFxhgkvnXrFg4ODhgMBiZNmsSZM2fIyMigbNmyWFhYkJeXh0qlIiUlhS5dutCmTRs+/PDDp/tkPacWvbzw7lMJa0czBAHMrOTU7+BJ59F1ESQv3jT9eaSqUjma54BBYjqoQNmoOY4rgki2sSMuIQE7O3sKkqJQuFRAmx6HIFVQkBBO/IqPKUyJRuZQGkNeLmbt/RHMzJHY2lHKpy25GRmsWLECa2trkpKKJra1adOGZcuWERYWRmRkJKGhoX8ZtH0aD/eie1hYWBje3t60aNGCK1euADBkyBDu3LnzQucViUQikUj07yKWs4lE/yEWcgsGVh/IwOoDX9s5T2Xmkae7X0KnjbxD1vxp6GKikdesww6NhGrKohcwOp2Oy5cvU7FiRTw9PdmxYweffvopixYtMvb9+Ts1hk7OT0YqSEtsN2gNRC6IpDC6kA4dOhh7Hj1o586d/Pjjj+Tn5z+yqbiZXMrG0d7cTMzmbnIerrZm1Pewe+L0sTO7IkmOzkGneaBsUSclO0HLhT2x+Pv7ExYWZnzocc2Td16K46stl0nKUXMqIo2zkWkEbtyCcG4jjerUeOI0vsLCQnx9fYmPj2fbtm1/ue/TWH9jPQvOL8CAgUJdIRYyC1wsXNDoNcZ9Hi4Z7Nq1q3H7g02JdbqSpWAP69PQHZ/Kzmy/FEdytppaZW3pWNMVpazk57u5lyOy/YLJ5K5ilgopi4P2UK5cKWP5m4+PjzHD68GG8WPGjCnx4r6wsLDEc5orpEzqXIOJ/tUp1OlLrMneQoHOYEAAY3hTAEbUkLIhNJ3mzZuzefNmUlNTadSoEdevX+fSpUtMnDgRZ2dnwsLCKFWqFGFhYWRmZjJv3jzGjx9Ps2bN+Prrrzl58iTNmjV74j18lKioKJo0aUK1akUlmfv27TN5XBAEani7UcPbjRUrVjB9+nRaJLZgrf/jp5ItWLCArVu3mvQBK5aZmUlISAg9evR4rvUCnIg/gV5axmSbobAQ9dnj5P++Fl1iHLkVKyDBgBwNieu+AkEKEinalGgEqRy9Og8DetDrkVhZIwgCupthVLC35pRazXfffceKFSv47bffqFOnDt7e3hgMBuzs7JBIJDg5OZGVlfXMa3/wfhsMBlauXMn06dNJTk7m6tWr1KpVi6ioKCZMmEB+fj4bNmxAIpHw4YcfGnveiUQikaik06dPM2bMGKRSKQ0bNjSZEPpXtFotQ4cOJTIyEn9/f8aNG/eKVyoSvXxiEEkkEr1SyYUak39L3T2x6P4uOT/ORRN+nY29/Rm84jdcXFzo1q0bKSkprFu3jtKlS9O7d2/69u2LQqF4Q6v/a+VsypkEMYoJMgGvr73wr+DPDO+iHkVNmjQBTAMI77zzjslxj2pgXtXVhqquTzeVyWAwEHY4zjSABBQU5mOGBWFH4jieetykCXpx8+Ti0jaJRIJGp+fLTefJTYoxBup0BpCVb4yyUlPsU3YSHBz8yPMXUygUHDt2jPPnzzNp0qQXekF6KfkSC88vRK1TG7fla/O5l3OPhMwE47YHSwYfzJ6wt7cnOzvb+O+nnTTmYmPGyFYVn7hfjTK2NKngyKm7aRRo7997hVRCWQcL2lR1earzPStBEEoEkBKzCvhk48USAS1VbjYffPg1N47vpbRrKSZOnEhWVhaff/45R48eRa/XI5fL+fbbb/n444+xtramdu3aODk5cePGDcaNG4cgCOTm5tK4ceMXWne7du2ealR9ly5daNWqFVOmTHnsPmq12jil8FEyMzPZunXrCwWRDAYDMm0KWnnp++f9fwAJwKxhE9YuXsB7w4eRkZYPghTbFu+Sf/MIcseyFCZHITG3waV3AKkbvqFMZDgRqnx++PEnIu7e4dqF87Rv357vv/+emTNnUrVqVfLz85k/fz7W1ta0bNkSrVbL4sWLn3nt4enhlKlXhhYBLWhRpgWCoSgIXdyLrk2bNpiZmZGZmYlCocDd3R2gRMDq0KFD/PbbbwQGBv7l1E6RSCT6rygeEmNmZkb//v2Ngfkn2blzJ9WqVWPNmjX4+/uTmJiIq6vra1ixSPTyiEEkkUj0SlW3Mkebp0GaqAKDAb2jGeZ+b2Hu9xa5C2fQwKsiaWlpLF26lKZNm5KWlsbkyZPx9/fn3r17rFy5kmPHjrF37146deqEjY0NBoMBQRAIDQ19o9fmYeNBLadaXEq5hFavNXlMn6ZnyZdLOFb9GAqFgtWrV7N8+XImTJiAt7f3I7MmXpReZ0DziIbLdxOvEnx2JTKpnB4DOhkDWlD0Qn3Xrl0mzZNrtO7MhlVfoixX37ifQatBkBW9eIzPF2hkfn8aWkFBAQBXr14t2tdgQKvVIpfLsbGxwdz8xSanrbq2yiSAVExr0JKnySM2OxYB4bFZahYWFqhUKnJzc7l+/TrVq1d/ofU8yq8DGzDrjxtsPldURqc3GOhY05Xp3WoifY1lWBvPxPBwgp5BryM1eB6ufsMJz5ZS1k2KRCIhMzMTHx8fJk2aZOy5VLlyZfbt20dqaipjxoxBLpdTpUoVBgwYYCwr1Wq1D5/2L2n0GqKyolBIFRgMBmN/rh49eqBQKPD09KRy5colvv8bN25Mbm6uyXNNmTKF8LvRXLpxC8cyHgh56aTGx5CXlwfAtGnTCAkJQSKRsGLFCpYuXcr+/fvx8fHh999/54cffjA268/Ozn5kc/qHNSvTDOtLk8mwHwySoj5xZi3aYNaiDYJeTWd7DQYDROQrsen6NWY6AwUxV9BrCpBaO+PRfy4ZoSvRx1ylVClXboSGULFiRaZNnYKbmxuenp4A9OzZE4PBwN69e40loj///PMz3etisdmxzDkzh8NXDnPz9E1uDb/F2kZrKdeiHDk3c0iIS+DChQuo1Wr27NnDiBEjuHLlCg0aNGDHjh1kZ2fTr18/FAoFAwYMwNbWluDgYDGAJBKJ/tPiMlVsORdLQlYBtcva0tW+6KV0cWDe19cXBwcHIiMj2bFjB+vWraNmzZq8/fbbbN++nbt375KYmEjv3r0BaNOmDWfPni1R8i4S/d2JQSSR6D/qr0pAfvvtN5YsWcLUqVN5++23n/scBoOBTYciEE4kIcNQVFtzJ4e8xHNkHlqN0t2TMT26cvyPXY8srXmQi4sLGzZsML7YqVOnznOv62Va6LOQUftHEZkdiU6vQyaRoTfo+bjhx+xvv98k4+JFe5o8iVQmwdxKjirHNDuqhkcTang0wdxazrDvWgL3s54kEgnLly832b+mbw9KYdrHSBV5nuyz2wGwqlqF9u3bG5/j7bffxtvb2xicUqvVdOzYEUEoCuz89NNPL3RdEVkRJfpOGbQGohZEURBTQO8uvflp/l+fY8KECbRr1w4zMzNWrVr1TOd/uARr6dKlJabdZaSmcHjhxzgbDCQkJNG+Q3sW9/2eDz/8kN9//53Zs2fz3nvvPdN5n8edlFzUWtNMtPybxyhMuE3SgRV8dGEjK39eSL169cjMzESpVCKTyYwljcuXL2ft2rVYWFjw448/AvDNN98wcuRIsrKykEgkLFu2zNj4+0k23tzI9xe/R6fXoTfocZA5sOHoBpp7NKdr166MHTuWP//884nf/1D08yQ0PJnrqXJsO0zg/LpvQFtI98kr2TmmLVevXiUuLo7Q0FBu3LjB7NmzGT9+PDExMaxdu9akWf/69etLlNI9jouFC4PcPVmZeIBs6/Zg0AMCCAJOunAW1+nL3M3HyS7QIvt/BpiZR20sU2Ph/1lv5h61kaZH0qRBXbp27cr777/PwYMHOXDgAMuWLaNt27Y0btyYUqVKNkZ/FrE5sXx1+CtuZdxCo9egt9FTeU5lBJlA9OJo5J5yoq9FM+/befz0008kJCRw8eJFLl26RM2aNRk1ahRBQUHY2Nhw9OhRLCwsSEhI4Pz58yYBpOLg24PlmCKRSPRvtuF0NFN2XUdvMKDRGdh5OZ45f4YzpYWVcUjMw2X1/fr1Y8KECbz99tv8/vvvzJkzh6lTpxpL7G1tbcnIyHjDVyYSPTsxiCQS/UcUqrQU5GuwtFOi1Wr+sgRk8+bNHDt27IWns229EMf60zEY9EX9WQAwGLBybYDN162pd3496qQErl69+sjSmgfVrFkT4G/RUPtBdmZ2bPTfyOWUywQnRHCuoBQSuRPheVkcPPQNTZo0IS4ujpSUFHr27Mn69euNx86dOxeJRMKXX35JQEAAhw4dQqlUsnXrVuzs7AD49ttvGThwIG5ufz2RrVi9Dp6c2RmBttA0kCBTSKjfwfOpnqN6GVsslVLy1PezmiwqNcWiUlMsFVImdq9FhQpuxiDK1KlTmTp1qslzvMwsMU8bTyKzIk0CSYJMoPzY8iilSrZ03kI523KPLBksXmPbtm1p27btc6/hwRKsqKioEo+7uroar/nTTz81vqs4ceJEGjdu/MzZO8+rkosVCpmEwgcCSZbVWxf9p5Tyw7v1aFa1lElPo+PHjxs/Hj58OMOHDzd5Tmdn5+fqa7Xl1hbmn5tPga7AuC1eF88XJ75gte1qY7bh03z/A2y/FEdYXDbS0lXR6AwYtIVYVPfhfHQGGr3AtWvXCA0NNX7uS5cubXL8w836nzaIBDCu8de431jHkrBpJEsrIBUU+LuWYUqjUZhLFeyLNuDw9hcmxyjdqpFzeS8AsswY3mnswZ7tv3P16lXOnz9v/DoaMWIEI0aMIDAw0GSIwLPK0+QxYPcAMgsy0VP0+ZfI75duWte2JnZFLMpySs5cOMO0adOYNWsWrq6u2Nra4ujoiEKhIDY2FltbW1xdXTl//jwbNmzggw8+YOPGjTg5OXH69GlmzJiBRCLh8uXLj+wDcunSJfR6PfXr1+fSpUucP3++xNeVSCQS/VPcSc5lavB1kzdp8gt16FSZDH7vS26e2EthobpEWb27uzvp6emkpaWRmZlJ2bJlsbOzM5bYZ2dn4+Xl9aYuSyR6bmIQSST6l8vLVHNo7U1ib6YjkQgIEoHb6lAGDRzE5CmT2blzJwsWLACKmgSuWbOGM2fO0KFDB5YvX05QUBA7d+5EqVQSGBiIh4fHU5/7p0N3UGlMy6uKy6KUcSq8nBywtLR8bGnNg/5ODbUfJggC27KcWZ0pUKA3YEDFOa2A2Yog5tUsz/ShA0lPTzc55rvvvgPgyy+/5OLFi0RERHD8+PES1/asDRfr+rqTmZBH+OkkEP7/XAaByo1dqePr/lTP0baaC9ZmclSFOvQPLEcQipo6v1Xr9dbuD64xmJPxJ02CEQBSQUpl+8qUsy330s95LVfFgdRsBAGq5xWYlGB1796duLg4unbtSlJSEhs2bDDJzDly5Ajz588HSgYyXrW+jT345fDdRz5mLpfSqpLza1mHTq/j+wvfl/ic6VQ61OZqfr70MxnHMxg9evRTff8D/HzoLlq9Hun/fxbo1fnkXT+M6s5pCgvyiY69R/v27fnhhx8A0Gg0JCcnGxupe3p6GksuL168+EzXIwgCA6oPoH+1/hToClBKlUiE+wGaHHXJ3miKUhWQyBQkbxhPq9oVGDVkLOdPHDbp/QbQu3dv0tPTqV27tvHr5nnsursLlUZlDCBB0f2Wmhf1zco8mY82y4A2s4C9aXs5d+ocaWlp6HQ6VCoVmZmZDB48GFtbW/bs2UP79u1p3LgxAQEBjBo1in79+iGXy8nPz6d+/fp06tSJ/fv3P7IPyKVLl9BqtdSvX5+6detSt27d574ukUgketPWnopCozN9c+5+qfgwIvLklJWrH/m3apcuXXj//feNby41a9aMgwcP0rhxYw4dOsS77777+i5EJHpJnq67qEgk+kcqLNDy+7fniLmehl5rQFuopyBPTciBQ0iTywJFv9xCQ0Pp27cvAQEB9OrVi7p163Lw4EGsrKwICQnh+PHjTJs2jdmzZz/T+eMyVSW2qSLPk7h+HNGrv+JeXCLt27enXr16ODs7lyit+ac4kZHL6vhUVPr7uTKFMjkqhRn9bydSuW0H0tLSAPjpp5+Ii4sjMDCQ2bNnYzAYmDFjhvFdqw4dOuDj48OMGUUNuZ91xLYgEWgzsBrvTm5C8x6VaN6jEu9ObkKbAVWfekS6TCrh91HNKOdoiYVCiqVSiqVCiru9BZtHNXvkhLJXqUGpBrxf532UUiVySVGGioXMglIWpVjo83TTUJ6WVm9geFgk/udv8V1kAnMiEngvPocO2/dzICSEAwcOkJ2dTWJiIkFBQSxevJg5c+YYjz937hy1a9dGJnsz79GUsjHjp371MZdLMZcXfZ4sFVLsLeSsfa8JMunr+bWfkJdQIoAEkH8rn9uTbxP4QSBlypShSZMmj/3+Dw4OZsCAARw8eJCePXuW+HmicPXC6e3PKNVnGhK5GX0Gj8TV1ZX69etja2tL9erVmTt3Lunp6fTq1QulUkmDBg1o2bLlX/Yk+6vvOUEQMJeZmwSQAGq72T1yf3vf4VQY8h07t22lcuXKhIaGsmvXLk6dOkXFikVN23///XcOHjzIwoULjU3fnzSF8VGOxx1HpTO9R/m38rkzKZLbAfnIndpQeshipDbuyMrWYfp3i6lSpQr79+9HpVKxf/9+5s2bh5ubG1FRUSiVSpo0aULFihVxcK+ETd0OJJl50mfyMswtrYGiPiDF/ZMABgwYwLlz51i6dCnfffcd/fv3JzQ0lICAgGe+HpFIJHpTTp8+TfPmzWnZsiVjxowhIjWfh2JIxlLx5AMrGNW3MwkJ9wd9fP/992zduhUoeqNgz5499OrVC4DOnTsTFhaGt7c3zZo1e+1vNolEL4OYiSQS/YuFn0pEna8pauHxf2du76dBBV9unkhA///+HadOneLQoUNs3LjR5PioqChj+UfDhg1LlCw9ibO1knsZpi9qisuilDIJyye3RyKRmDzvg6U1xX03Hkz1/atJTW9KYFwKBXrTDCJ9fh4SC0sKDQZW7g/B0twSgObNm6PVaunYsSPr168nLCyM1NRUlEolEyZMYPny5ZQtW5Z+/fpx7969516TrbM5tduUfe7j3R0sOPhFay7GZhKdloe7vQUNPO2f68XtyzC81nA6lu/I7ojdZKgzqO9SHx93H2SSl/trbHF0EiFp2age+HzqZHIO5WtYGp+Ov78/wcHB1KpVC5lMRt26dU0CDtu2bXuhSWAvg1+1Upwa78fOK/EkZKqo4mpNhxqumMlfX/DPTGaGTl+yybt1HWus61jjaObI3HfmAjz2+9/f3x9/f3/jv9vMCyXfu7/x305vjzF+7PXVFkrZWTBhwgSGDx+OnZ2dcWLOvHnzjJkyxcHZqKiol/qz5LO2lTgXnU7BQ5MRzeUSRrWqgEL29MG7MWPG4Ofn98xrsFHaICCYlH1a1bZBsJyGQWMHFH3+reu8hVYiYUGYjIAJAVy+eIEOHTogk8kYPnw4W7dupVu3bowcOZJr167RY8IvzA25Q8qZq8icy7H4wG2yUyyxuHqL1NRUWrRowe7duxk1ahRlypShYcOGjBw5Eq1Wy3vvvffGByCIRCLRs3p48ppzQSJyqcxk8mlxqbiFQkrgsMY0KudAs2bNSEpKQqvVGv9+BujQoQNOTk4AyOVyYyaqSPRPJWYiiUT/YhEXU0r0xknKjOXo9V38EDyWa9euMXXqVCZMmMCyZctKBAjKlStn7J107tw54zvnT+s97/LGbIgHKWQSutQt81pf1L5K8WoNDxfYaa5cIG1UP9I/HgyOzmQhIVVT9EdFXl4eKpWKwYMHM3r0aKytrSlfvjzBwcHUrl2bli1bcuPGDeLi4t7I9RQTBIH6HvZ0r1eWhuUc3lgAqZiblRsjao9gbKOxtPVs+9IDSAaDgWX3UkwCSFAUEFTpDSyJTeH48eP4+fkRFhaGTqfj8uXLJt8X+/bto3379i91Xc/D1kLOwKaejO1Yla513V7795qTuRNe9o/u8yCXyOlSscszP+fIVhUe+/PEv3ZpdKiIyorCxtHG2M9NJpNx5MgRgoODuXXrFg4ODhgMBhYsWEBqaio+Pj7GflXFvZSgaPBAq1atmDRp0lOtrWE5Bxb0qYONuQwrpQxrpQylTMKgZuX4qM2z9btYuHDhcwW4unt1x0xm2sdOl1sFg9aS4gASFPVqUidHkaPWsmXfMQRBeOTXc+XKlWn1VlcCvhlHgUaPxLYUhcmRFGj1ZEdfZ+Wq1Sxd9hsA77//PsuXL+fTTz995nWLRCLRi1i9ejV+fn74+Pi80N9N1+OzmbrzGqPXX+BglBqdcH/yWpd6bsSvG0/KtlkkBH6KNjuVrFNbKLh7llI2Zty7eNhYjrxw4UJGjx4NwM2bN+ncubP4s1H0ryNmIolE/2JSeck4cbemIwGQm0lZengsEomE2NhYunQpelH34LvGrq6utGnThubNm6NQKJ55qtXAZuU4E5XOoZspFGh0GCgqrangbMmUzjWe+7oeJT4+Hn9/f65fv05ubq5JOVFoaCihoaGPfWE2evRoYx+V59HQ1pLLOfloHog9KJu2RNm0pfHf6WPeo+LE2UilUry9vcnMzGThwoW0atWKZs2aMXPmTO7cucOiRYsoXbo0Op0OQRD45ZdfnntdomdToDeQoy2ZPaO5coHclb+QLpfzVqf2lCpVChcXlxK9bcLDw/H09MTc3Nx47MyZM1m/fj0Gg4H4+PinDkr8G0xtPpXBewaj1qnRGYruq0KiwMncieG1nr3J8jsN3TkXlc7uqwmotXr0BrBQSCnnZE6hwzp8NoUgk8jQGXR0Kt8Jf3N/UlNTad68OZs3bzaZABcVFcW2bdto167dI8/VokULfv75Z/z9/YmLi3uqxvadapWhXXVXzkdnoNbqqetuh615yQbhr0qDUg3w8/DjYMxBVNqiDFCdqiwYlCb7FfdqurvyK3AvzTcrf2Tfvn0lvp4BVOV9QHmerFNbsGnYlZTts0jaFEBhSjT29TtyN1eGG0W92xYvXsykSZNYvnw5crkctVr92q5dJBL9N8XFxXH48GEOHjz4l/udPn2aESNGEBUVhbW1NX369DEZCjD3z5usOB5J4f9/txy8mcy8feH0NL/Brl27uHLlCsrcBFwGBJJzLZSCW8dxruNL5tHVrP51LONGj2DOnDmkp6eTkpJCpUqVAKhatepflk+LRP9UYhBJJPoXq9qsNPG3M9GoS74wNugNnDx1ArlSWmKc9oOBpPHjxzN+/PjnOr9UIvBTv/pcis3kjytFL/z8qrnQqpIzkqfsz/O0HBwcOHjwIN27d3/mY18kgAQwzM2J1XFpaAz6Eo8ZtBoyx32M9u4tto4YyJDvHz9efebMmQwbNgy1Wo1cLicoKOiF1iV6NmYSAUuphOyHGh8UBwTtZFLmtSwqi3pUiU6VKlXYsmWLybYJEyYwYcKEV7bmv7OqDlXZ0nkLS68s5Xj8cWMG0sAaA7FR2Dzz80kkAvP71GWYd3njz5NWlRxZeON9jidEo9FrKNQXArDz6k6W/rSUS/sv4ezszMSJEx85Ae5xDfvr1asHQK1atYiMjHzq6YhyqYSmFRyf+dpeBkEQmOU9i71Re1lzYw2p+anInd24lSVQ+NBwQHvf4SikEj5qW4nKlb0e+fV87NgxBi4/jU3T3sZtLr0mk3f9MOkHfkUVE8YH73ZhQK8ueHp68tFHH/Hpp5+yf/9+mjZtypAhQwgLC6Nnz56v+MpFItF/icFg4EJMBtfjszm/fyuFGi1+fn5Ur16dRYsWMXly0dCY6OhoqlevTlZWFi1atEChUPDFF1+wbt06VqxYgb29PZMmTWJZ0F4mffwRUns3ChNuITG3BQHMKzRkXtwVbly7hlqtpkmTJux5vx6r/sjl3KnjfPFBB+bd2YSFQWWcvDZ58mQ+/vjjN32LRKJXTgwiiUT/YhXqOnE5xIrUmBy0D/TqkCkktOjphVz56ktcBEGgnoc99TzsX/pzGwwGbmXcIkWVQgXbCpSxL2Py+LBhw4iJicHGxoazZ89y8OBBcnJysLKyon79+mRnZxMYGIi3tzfHjh1j//79zJ49G71ez/z583Fzc6Nv374AJCUl0aFDBxYtWlRiHR7mSlbXLs/Qq5HkPBSAEGRy7Of9irlE4MtyrjTxLGUcRQ+mPWC8vLzYs2ePyfFqtdoks0X06giCwFA3J369V7LHlZlEYETZ1zPZ7N/E3cad6d7TX+pz1ihjS40ytgAcjj1MQl48Gv396WgGnYG7v9zFvZc7qbJUXKWuj50AZ2trS0JCAubm5iQmJhqf4/Lly1SvXp2wsDA++uijl7r+V0kQBDqW70jH8h0BSM1V0+LbEKBkgFsQoFu9vw6O1Slrx+nIdAofGGtd3AfEXC5lw6im1C5rZ3xs8eLFxo+PHj0KwN69e8WfYSKR6KVIyVEzcPlpYtLz0esNZJy8SkFyDDuDNrN7+TwWLVpEREQE+/btA7kFJ6OzGdW5OUpnD7btW4x3vWqkp6ejUqmYMmUK3377LQXqQqS2rsgUFmgzkyAzEYfOY0kPnodLh/eZueBHzh45QFpaGvVrVcfT05OuXbvSpqoLt7t2oUGDBgwbNgyAyMhIxo8fj0ql4vbt22zevJk+ffq84bsmEr18YhBJJPoXk0gldPusHpcOxnD1cByF+VocSlvSqHN5PGu8nHfLT58+zZgxY5BKpTRs2NAkPfivhIaGcuDAAWOj26cVFhbGyJEj0Rg0JJknUWpYKWQSGYX6QhqVamQsm/nhhx/4888/qVy5MqVKlWL48OHs3r2blJQUli1bxu3bt4v+yPg/lUrFr7/+yv79+5FK7wfXit+h//TTT02a/D7M296a69616HT+FjdyVTz4xr8AKCQS+pV5tnu+evVqVCrVU2dBiF7cF+VduZyj4kxWHip90Qtnc4mE5vZWfOJZ6g2vTvSwY3HHyNfmm2zLOpuFKlJFzMYYegb3JPD7wMdm/40cOZLOnTvj7e2Ns/P9IOHhw4f5+eefad26NWXLPn+D+jfNyUrJlM7VmRp83VimIRGK+kiN7VCVMnZ/HdwZ0NSzqMTjoe1SCZR3sjQJID1KXFwc06dP56effnqxCxGJRCJg6Moz3E7OMU5K00rNkbnVYOTqc5RWl+bazvPILe0ZFXSHGwk5FNy7QUpSIr8uXcaSH7/HoM4DrZpGjRpx5swZVCoVgkyOAdBmxiMoLTBo1KQHzweDgdxrh9lxU4U6LwepVMr27dsxGAzGvw179+7NRx99RMeORYH71atXA0XDGwICAsQAkuhfS3gwffufpGHDhoZz58696WWIRP95iYmJJpOQxo0bZ5yE9FeeN4ik0WgoMBTwVtBbXP/5Ova+9lhUsACKGvbGfRfHneN38Gvrx1s932LQyEHcOnWL06dOs23bNgRBYNeuXfTp04eIiAi8vb1JTExk+vTpLFmyhMzMTEqVKsWSJUuwtLQ0nrdevXqcPXv2iaPb87Q6ProRzaH0HJSCgNYArko5y2uWo5rV3+Pd+KioKJo0aUK1atVQKBRs3ryZkJCQx04VGzVqFGFhYQiCwM8//2wyceTfyGAwcD47nz0pmQiCQCcnW+rZWLzxxuKikuafm8/qa6vRPyLTRilV8ln9zxhQfcAbWNnfS1hcFiuOR3I7KZcKzpYMa1GeOu52T3XsiTupjFp7HoMBdHo9giDgbm/BmuGNcbExe/ITiEQi0UsQFpdF7yUnUWnut2goTIog5/JeHNt/QNapLWDQo0mNwanzlwDkR14ibfcCnDt/SdLWmQh6LYKFHS3adOTYjtVIZQp0BgMG7f1QuWBujUGVA4IU++a9cEm/SuTdOxQWFmJjY8OHH36ISqXiypUrXLt2jaysLN566y22bdv22u+JSPQqCYJw3mAwNHzUY2ImkkgkembnozP49chd7iTl4u5gwYiWMrwrmSGTycjOzqZfv36sX7+eAQMG8Nlnn1GhQgV69uyJubk5CoWCzz77DCgqGXnrrbdQq9Vs2bIFBweHR57vbuZd/oj8g7zCPJqWbsq93HtFvU9kILOVETknEoPOgMxahq5Qx5T1U7idd5tL317ip50/YVXGinIF5QgPDwega9eudOnShaioKMqWLUt4eDhJSUkkJCQQGhrK0qVL+fXXX/n888+Bosl0tWvXfmIACcBSJiWwVgUS1IXcylPjrJBRzdLsbxeAaNeuHWvXrgWKgkpbt259bBBp3LhxlC9fntu3bzNu3LjX2qtpwYIFbN269bGNKS9evMjYsWPRarV8+eWXvP322y/cKF0QBBraWtLQ1vLJO4veqLfKv8XGmxsp0BWUeMyAgbaebR97bHFWo1QqxcvLi0mTJjFx4kTj9wXArl27mDlzJoIg0KtXL7744otXch2vWk03Wxb0qftcxzb3cuJcQFtCw1NIzVVT1dWG+h52f7ufaSKR6N/tTnIuD7fTLB4UkLh+HFJzG5y6fEXm8Q0krv0KBAGDXo9Z2eoY9HrQaUCQIFFac/5mJAaDAa1GDUJR9rnUygFdbnpRAElaNBQh+9xOmrf1JS42BoPBgJ+fHwcOHMBgMJCbm4tCocDHx4fvvvvudd8OkeiNEoNIIpHomaw9GcXM3Tco0OoxGCAiNY8zkem87VZIamoqLVq0YPfu3YwaNYoyZcrQsGFD5s6dy3vvvUf//v3p0KGD8bkKCgrYv38/mzZtYunSpYwbN87kXAaDgbln5/L7rd/R6rXoDDq239lOxvkMYjbHoHRVIreV4znGE0EicGvcLXQ5On6a/hOCRMCimgU5d3PIi8+jsG4hCjMFXhW8yMzM5LvvvsPa2ho7Ozv0ej22trZ4e3sjlUrx9fVl3rx5xnVs27btsQGWxymtVFBaqXixm/0SJUdFcOXgn+SkpSLYORISEkLLli3p0aMHKSkp7N+/Hx8fH+bMmcPXX38NwIULF7h27Rrly5cHQC6Xm5T6vWpqtZrLly//5T4zZsxgx44dWFhYGLe9aKP0/7KHy1M//fRTAgICTAIrOTk5dOvWDY1Gg42NDRs2bMDa2vqNrLe6Y3U6luvI3ui9xolkAOZScwZUH4Crpetjj61SpQonTpwAYOjQoaSmppbYp06dOhw/fhyJRIKPjw/vvfcetra2L/9C/uaUMikdajz+XopEItGr5mKjLOoP8BB73/vTPtXx4aijr2AQBHTZqTh3/RplmSqkH1oJ2kIMggRt8l20KZEASB3c0OVmgKYAXeH9NyMkMjl6TSE6tYqDIYcoUOUjkUi4cOECqampWFlZ0aFDB/bu3cvx48fp1q0bR48exd7ens8++4yBAwfyww8/YGdnx9mzZ+nUqRMJCQmcPHmSjz76yNhDSST6pyo5/1skEokeIzVXzfQ/bqDSFAWQiuVmZ/LzrG+YOOd7AN5//32WL1/Op59+CkBERIRx2lH9+vWNxxVvq1u3Lnfu3ClxvoMxBwm6HWQyIjxfm49ZHTMqzayEzE5G5ulM4lbEEfldJIJMoMzAMrj2ccWqthXuI93x/NQTs7JmOHZ1RLAXCA8PR6lUotPp8PX1pUaNGgA0atSIGzduAHDp0iVj4ARg3759tG/f/mXdxtfuxJb1bJj4JVcO/EnE+TPcDd3H522asOG3pRw4cIC+ffvSrl07QkNDadKkCaGhoXz99de8++67uLu7G59n/PjxfPLJJ69snSqtipCYEP6I+IP43Hh+++03Bg8ebHx86NChtG3blmHDhjFlyhQiIiIoKCigV69edOvWjaSkJAC8vb1f2Rr/7Tw9PQkJCeHo0aMkJyeTk5NTYh+5XM7atWs5cuQIXbt2JTAw8LWtb8GCBSU+v9NaTOObJt9Q0a4i0bOjSfouCc0vGvqW7VvieL1BT1RWFPdy7plkFhb/TICiktl+/fpx+PBhPDw8kEqlCIKAVCpFIpEQGBjIb7/9BsCUKVMeOdlMJBKJRC9X0/KOWCr+Ov9BZuNCqXdnYVPfH11eBun7fyFh7VcURF7AonJzyoxYgsTMComFLTInD5y7fg2FRW9ASJX334wyaAtBr0Vm7UShQYpzvbaYmZvTokULCgoKUKvVfPLJJ7Rp04a2bduSm5tLYGAger2ey5cv06BBAwBat27N8ePHWb16NcOHD+fEiRMsX7781d0kkeg1EYNIIpHoqe0JSyyRSmzQ60gNnodDm2EcjStqJz1u3DgWL17MpEmTAChfvrwxo+TixYvGY4u3Xb58mYoVK5Y438qwlSbZBQB6jR4DRREsqXnRiztFKQUVxlfAtqEtBoMB8/LmqOPVABTEFGDQGoiYHUF2dDYupVxYvXo1crmcQ4cOsX//fqpXr46zszOtW7emVatWrFixgvfffx+A8PBwPD09/7HThRLuhHN2RxDawsKidG4AnQ5Bq2HXglm83akTwcHBJsdERESwaNEivv/+e+O2RYsWUb169VcWoPkj4g9ab2rNN8e+YdrJafhv8eeHLT/QsnVLoChDRqlUcuDAAapUqQIUTcwLDw9ny5YtjBo1ipkzZ76Stf2bFaryubg3mN+nT2Drt1PJiryDQl6Uxi+TyZBKpcTFxdG1a1eaNm1KZGQkZmZmlC5d2mSf3Nxc2rRpQ25uLkuWLHnkFMMX9bjMNEEQ6ObVje1dt5N2NY3ksGQ+G/kZq1atMtkv+G4wbTa3oU9wH7rt6EanrZ34LvA7atasSXJyMo6Ojmg0GoYMGcLIkSNp3bq18dg9e/bg5eX1xjKuRCKR6L9OIhFYPrgRVkoZZvKil7DSh/4mlVrZI8gURVMkq7XE8a1P0abdQ2JujTYribxroejVuejzM9Gm3SN5yzQEuQKJhQ2CrDh7XIJBUhSssmk9GL06F4N7fVQFas6fPw+AXq+nXLlyZGdnY2trS5s2bdi6dStHjx6lVatWxvXUrFkTgNKlS1OzZk2USqVYCiz6VxDL2UQi0VPLVmlMRj0D5N88RmHCbVIPreTH8xvQXuiBp6cn3bt3Z+rUqSgUCmJjY3nnnXdYvXo1SqXSeKxWq6VMmTJUrlz5kX12EvISSmzLvZpL6t5UJEhQuiqxqGJB6t5UCqIKkFvIEVwFZDYyzDzMuDbqGoZCA1UWVUFuK+fW+FskxCfQtGlTXF1dsba2JjMzk8zMTFJSUggMDKRWrVrUrFmTNm3aYG9vD/DIbIx/ikt7/0CnMZ2tVKDRYiaXoSko4NCe3Xz21ViuXr0KQH5+PqNGjWLFihXGz9W+ffs4ceIEmzZtejVrTL7ElBNTTPraZBzNwKyOGXPOzgGKxuYWN/SuW7cuJ0+exNbWlkaNGmFhYYGvry8LFix4Jev7t8pNT2PdhM8pyMtFqy4Kut67fpULe3ZSpes7pKamYmFhQWJiIvv37+f8+fPMmTOHJUuWFB2fm8vSpUvZs2cPVlZWfPPNN4wYMYL09HT27NnzwuvT6/XcvXuX5ORkbGxsCAkJYfDgwcbg9NChQ4mNjcXDwwMPDw+mTJmC/P8BMJVKRY0aNTh9+jRbtmyh7YdtCdgXQOTySDxGexRda+49Nss2s+HQBpZOW0pwcDBHjhyhQ4cO+Pj4GNcRERHB3LlzjcHWB18A/FOHk4hEItE/Ua2ythz7ug2/n7vH+ZgMolLzuJ2Ug+6hH8WFyZHo87MpiLmKXp2HQa9Dr1GjV+di7tUEicIcs3J1SdvzPRIbZ2SW9jj4vkfa3p8QJBI0mUkoy1RBorRAZu+GZbVWZB9bh9TchiZNmuDq6srw4cPp3LkzI0aMoF27dri4uLB48WJmzZplXMeDvy/E4JHo30QMIolEoqdW38MepVxKfuH9yRiW1VsX/aeQMrtnbbrUKQMU9TsKDw+ne/fuODo6Gks+pkyZAoCPjw/lypUr0W/lQR42HqSoUky22dS3waa+DQqJgtnes9l+dzuJixOp5liNwTUG88ulXwiJCcH5bWec2jsR/X00MquiH3WVp1XmnYrv8LX313Tr1o3CwkKys7ONa7t37x4nTpxAIpEwf/58zpw5g1KpNHlB+Xf28NS1pUuXMuvX5XSrVt5kv8jUdP4MC0cuk+Hbth0WFhb88ccf1KxZk6+++orw8HAGDhwIwMaNGxk9ejQ2Nja0adOGKlWq8Ouvv77Udf965VfUOrXJNnWimqwzWXwX8h2SWAnh4eEkJiYCcOXKFQAqVapEcnIyOp2uRAmi6Mn2Lf2BvMyM+xlqgEZdQOTN68wNGsiegyEUFBRQq1YtZDKZSdmpwWBg2LBhzJw5Ezs7OwDatm3LRx99xNSpU5FIXizROT09nVWrVqFSqdBqtQiCwObNm9m+fTtgmpk2Z84cVKqijMWYmBjeeecdcnJy2LNnD+7u7owfP56L5y6ScjoFm4Y25N/NJ2FDUYDaooIFi50XU8qmFObm5vj5+eHh4cEPP/zA6NGjycnJYciQIQQGBhqnNdra2hqDrlevXqVNmzYvdK0ikUgkenp2FgpGtKqAw/l7BGwPKxFA0qlySN+/BOeu4zDoClEnhOPc+SsKYq5QEBOGS4+RJG+ZinnFRpiXq4dljTakH/iVjNCVaDMTcezwEekHfsWyph9Zh1ejKF2ZpI0TKMxK4fqlOCpXrszq1aupXr06MTExBAYG8u677+Ll5UVAQABVq1Z9MzdGJHqNxCCSSCR6ak0rOODpaMGd5Fw0D/zWlkoEbMzlWNiGM3D319zLvYeblRtDaw417hMVFcWwYcNITExk/fr1hISEABhLZZKSktiwYQMpKSmMHTsWgLPnz+I1wwu9nWn2k1wip1XZVrQv35725e/3KjoYc5C7mXfRo0eikMADfa0LUwqJWxHHfKv5rMxfyfB+w9m8eTMajQZnZ2fUajVSqZSdO3dy8uRJBEGgdevWZGZm4uTkBMAvv/zCqlWrMDc3Z8mSJcayqr+Th6eumVnbIJXJ0Gm1xn2qlXahWmkXZAoF/WbMZtm6DWzevJmOHTsCmPQhAoxT7V6Vm+k3jSWKxVz7FDXxtZRbovlew+TJkxk6dCh+fn6UKVOGqlWrIpfLGTFiBD4+PsZeNaKno87PJ+bqJZMAEhSNcF9z7BxdmzXC1dWVqKgowsLC0Ol0JmWnkyZNokWLFvj6+hqPXbJkCQMHDmTZsmX06NHDJOvwWej1elavXk12drYx0+fixYvUqFGDjRs3otPpHpmZBuDh4cHJkycJCgpi3rx5LF68mIbNGrL98nZyLuXg/qE7OpWO8mPLkxuWS9zKODa8v4F3/d5l+PDhHDt2jGnTpvHhhx+yceNGIiMjiYyMNDZBXblyJX5+fnz33XecPXv2qSY2ikRP8uAUyvfee4+bN2+yadMm3NzcTPZLTExk+fLlTJgw4Q2tVCT6+1hy+C4qjc5kW3GLBfs2w5Ba2aPNSkIw6cZd9DvF3KsJ6Xt/wtyrsfHNUID0jV9jX7uN8d9WNe//jlNo87E9v4Kzh/aQkZGBv7+/SRb97t276devn/HfD/5N8mDvvMdNmxWJ/knEnkgikeipCYLA+vea0ri8A0qZBGuzorr0mmVs8G95k2+Of82llEukqlK5nHKZ8UfHcy/nnvH4jIwMwsLCmDx5svEXb2JiIkFBQSxevJg5c+bQuHFjY2PnAf0G8KHPhyikCpRSJRIkmMvMqeJQhektppusLfBaIOOOjCMyO/Kx69fmaHH7wI1c91ymT5+OQqFArVYTERHB/v370Wg0WFtbc+TIEXQ6HfXq1cPPz49bt26RnJzM77//zvHjxzl06BCVKlV6NTf5GeWqtWw6G8Ps3TfYeSmOkJBDtGzZkoULFwLgUNoNvSCw7tRF7iansfzoWVSFGiRSKX/eiiYqOZWlS5fy9ddfs2XLljdyDQ5mDo99TKvX8sfBPwBYtmwZBw8epGbNmlSoUAGAvn37cvToUQ4fPmzMRBJTxp9MnZeLICk5ae/KvQRiM7IIOnEGHx8fEhIScHFxoVu3bnzyySeMHTuW+Ph45syZw7Zt2/Dx8eGXX34hNjaWnTt3MmHCBD7++GOmTZv23GuLjo4mPz/fpFQsNTWVc+fOERgYSFhYGAcPHmTatGm0bNmSGTNmAEUNsYuPSUtLIygoiBYtWtCgfgOS9yZTEFeAJlOD3E6ORCHBpr4N1rWtcWlddH1arZbdu3djMBhwcnKiQoUK7N27l8jISOMLgPLlyxMXF4dcLic7O5vWrVv/YzIVRaaKm7RHRUUxYMCApz5uyJAhjxwE8bwe7vUVHh7OsWPHSgSQAFxdXcUAkkj0f/FZqhLbilssZISuJHnDeOTqLBQyCT/1q8cHrb3oXLsMflVdsKvujSriPBZVWgCgzU4hZVMA+vRY4tZ9gzYryeR5NWmx3Ns0hSnjv+TmzZt07tzZODwGICgoiFmzZolT10T/GeJbaCKR6JnYWypY915T7mXkE52Wj5udOTJlBt12fFaiJEmlVZGUn0R0djRSpFSvXh2JRIKbm5vxj/BHlcoUN3beuXMnSqWSrl5dORB9gHxtPg1KNaC+S32TQEF2YTY/XvyxxPkfJrWUcnfqXQwaA6UqlaJKlSqEh4dTo0YNypQpg0qlIi0tDScnJ8qWLcvatWvp0qULEomEyMhI6tevbxxx/6LlOi/D2ah0hqw8g0EP+RodSkGH7aCfmD2sGbPHDMPPz4+8ggK+2bUfR0tzQsIjqOjixPJj55g2fAB5sWk0atSIIUOG4O3tTdu2bZ/qvI8qm/urssQn6V+tP9+e+bZEE3WJIKGqQ1XjmPbhw4cTGRmJjY3NYwNeY8aMwc/P77nW8V9iae+ARFrya7iehxv1PNxw9apM/5lFPaYeNX2ssLCwxLbiPkg9evSgR48ez7221NRU9A9lSLVr18748caNG5k+fTpqtZq4uDgiIiJIS0sjISGBgQMHIpFIuH79Ort376ZUqVL4vetHYVohCieFyXMWxBagy9XR0acjx48fJzU1lUaNGnH9+nUuXbrExIkTH7m+8ePHs2TJEqpWrVpinaJ/hsc1aX8dtDo9ITeTOR2ZjrWZjKzzwcZeXwEBAVy5cgV/f3+2bt1K7969UavV2NvbG3t1vcjPWpHo36SMrTm3k3NNthVnFSmkAhP9q+PhaEmLip8ik0p4u3ZvoDc5BRoGpKWRXLEBFjb2FCaEk7Z3KeWcrejYbRjVOgxgwpzvUTbrQ9zacQgUvTk1YdJk3m5f9PfFw9lEPXv2pGfPnq/pykWiN08MIolEoudS1t6CsvZF41BXhG1Cb3j0iykDBvZG7qWTY6dHNqR9uFTmUY2dXS1dGVD98e8Un4g/gUwie2IQSe4gx22YG/l38lHfUmNpbYmVlRVDhgzB39+fUaNGYTAYGDlyJGPGjOGjjz6iXr161KhRgwoVKnDx4kX0ej0SicT4/zclT61l6Mqz5Knvp3KrDVJAysi1FxnR4S2Cg4M5c+YMbmXLEn7zJpGXznH+3Dm+mD6Lar0G0kjz/L8CHi6bexFdK3blUMwhziSeIV+bD4CZ1AxzuTmzW8427vfwtK1HKc7AetNWr17NqlWr0Ol0zJw5k19++aXEC79WrVohCAIymYwNGzbg4uLy2tYnlclo8HY3zu7aamyqXUymVNK8d//XtpaH2djYPPZ7S4+eBqMa8NWFr/ho1kc0LduUBg0a4OHhweDBg3F2dqZTp06sWrWK0qVL49PBh9vXbmNVwwqptZSkLUloM7WUGVyG+DXx1Pm8DlN6TaFf134EBQXxww8/cPToUfR6PXK5/JE/s1JTU409L/4OwWTRk6nz87lxLJTkqAhsnJ05fjvKpEl7fHw8vXr1IjIykh07drBjxw48PT2pXLkyTZs2JS0tjcmTJ+Pv7w8UZTGFhYXh4+PzTFl3KTlqei85QUqOmrxCHVKDjuRd27Co2wmAGTNmEBoaSnBwMJs3b6Zx48ZMmDCBkSNHvvybIhL9w73fuiIBO8JQFZqWtClkEjrXLs3AZuUeeVxc1F3Sts3ghxnfIClTDU1OKTrPH46LnTX9+/dnmJuCk5t+YvXJKH4NkvP+nJUM9fainJPla7gqkeifQfzrRyQSvbB8TT4avcZkm0FrIHJuJKoYFQvfX0hSUtIjj324VCYoKMjY2NnHx8fYTPmvaPXaElOSis9fEFtA1LwotNlFPYFyr+aSsD6BtCNpxCXF4e7uzuLFi+nQoQMeHkVTm3r27ElOTg779+9n5cqVvP/++zg7O9OzZ0+aN29OmzZtuH379vPcqpfmj6sJ6B+6Zr26KACj0xuYu2oHm+PtULpVIyExiSpVqxJ87BRN3+oMgoSVK1dy9epVDh8+zPr168nLywPg888/5+zZs9y5c4f27dvTunVrZsyYgVqn5ui9o+yL2kdKfgqHDpmWzT08Bn7dunX88ssvQFEj7I8++ojQ0FA6d+7MW2+9ha+vL+np6QBIJVIW+y7mu9bf0dajLU1cm/BJ/U/4o/sfuFu7v65b+tLExcVx+PBhDh48SGho6CPLUgAOHjzI4cOHGTRo0FMFyF62Zj3fpUYrP6RyOXIzcxTmFsgUSloPGE75ug1e+3qKeXl5PbbXkF7Qc9f6LpdSLuH/rj+Va1UmNjaWLl26kJyczKZNmxg2bBh6vR4HBwdaTW8FAlhWs0SQCBSmFFJ+XHkSNyfi1teNWW/NopRVKQRBoLCwEB8fH1auXEmtWrWAoibaCQkJpKamGn8WOTs7c+vWraL1iJlIf3tJEXdY9tFQjqxdwdWDf3L89/Ws+ekHXOX3A4QZGRls3ryZzz//nKCgIJo3b87x48c5ceKESXZavXr1AGjRogVHjhzhwoUL7Nq1i+bNm9OyZUvGjBnzl2v5ZMNF7mWoyCvUkXv1ADHLPqQgOYZx3RqRmJZlsm9ERITxfA0avLnvR5Ho76pHfTd61nPDTC5BKin6frZQSKlRxoZpXWs+9rgqVaowN3A75wtd2X8tCa3SFoWi6E1LmUyGVCplyufvM61rTWq42XF40aeM+3g46enpJCQk0LdvX6BowvCDfQFFov8SMRNJJBK9sEaujVhzfY0xiwRAkAmUH1seC5kF833m08StCU2aNAGKJrMV9xF5uFSmYsWKxslgT6uxa2O0Bq3JtuLzP8iiYlHmVPF0tw3vbMBKYVXi+XQ6HU2aNGH//v0m2z/88EM+/PDDZ1rbqxKTlm8yJQ9Afe8amUfXIkjlKMtWJ1VnRoYa3D9ei9P1TaxevRo/Pz9cXV0JDAwkODiY1q1bU7lyZU6cOEHXrl25cOECCxYs4J133mH58uW4u7vj09mHoJ+CUDopwVBUCtIvsB/TWk+jV/de+Pn5lRgDP3fuXN59910++OADtm7dSq9evYCiqX379+9n06ZNLF26lHHjxgFFpWutyraiVdlWr/1evgwFeRpun00iJ62AQxd2otFo8fPzo3r16nz22WclGsiXL1++xDj6wsJCevToQV5eHs7OzmzevPmVrPXhLKlT+0KZOmY0Upkcz1p1kZuZ4e3tbZKuHxoayoEDB4z9h14lqVRKv379WLNmDXq9Ho1Ggw4dCHDR8SJ58qKAp3NfZxJ+TODG5Ruo1Wrq1KlDVoGO389FEZGaz/ehUWQIOUiUEpw6OnFn8h3UCWquf3gdJHBn1h38F/nzyUefUKNGDe7du4dEIiEiIoJu3boBMHLkSDp37oy3tzfOzs4AzJo1ixEjRiAIAt27dzfpi/FPcfr0acaMGYNUKqVhw4YmGXyhoaGEhoYaJ2lCUbbhlClTCAwMZPHixaxfvx6JRMKCBQto1qzZK1/vg42nn4VepyNo1iTU+XnGbWduR1HP3ZX9S39Apykqy3y41Lp27dpMnDiRrKwsPv/8c5PsNMAY3KlVqxZ6vZ6QkBDMzMzo378/V69eNQYhH5SQpeJCTAZafVHw36pWWzRpsRQm3UWdk0JMTDQ//PCDcf/y5ctz+fJlOnXqxMWLF2natOmz3TSR6F9OEARmdK/FkBbl2BOWSIFGj7eXE00rODy2N6LBYOCLzZf581qi8W+oc9Hp/Bx6lxmtrElNTcXCwsK4/5YtW3BwcGD9+vXMmDGDBQsWkJeXR05ODidOnHjqNgAi0b+NGEQSiUQvrLFrYzxsPLibedckI0kukVPGqgzNyzR/ped3sXChW8Vu7IzYSYG24In7yyVyWru3fmQAKT09nZ49ezJq1KhXsdSXxsPRAguF1CSQZF6xEeYVG5ns59xlLGogtc4gBre+RXBwMPHx8fTu3ds4mrw42+r8+fPGd7yLs8HyNHlcu3eN0vVKY2H7/z+spBCaFMqii4vw9/cnODi4RG8rGxsbFAoFqampHD16lIkTJ3L06FHji6+6deuWCNL9U0VdTWXvsjAwgFaj59yVG8SnxxG8bzvzfprBjh07SgTZlixZUmIcfUxMDE5OTgQHB5fIrHtRer0Brd5ASlKCMUsKioIDMoWCKs1avtTzvaiyZcvy2WefcfnyZVafWk0qqURbRZMvLwpUG3QG7i29h3tfd/LN85GqpWTka2g5JwSdwUCGTsEvf5xB5mSGIC16MWHmboYmQ4NZGTMsq1piX8ueQ+MPUdqyNNHR0SQmJjJkyBB+//13Y5C7U6dOdOrUyWRtVatW5fDhw6/1frxsnp6eTxX4eJTAwEDOnz9PQkICH3/8Mdu2bXula31c/6KnKSmOvHQendY0SzY5J5f42GxO3o0lLjuXXbt2lShblEqlSCQSMjMz8fHxYdKkSSYZB38eOcWBBDk7Dp2iuX8/Y+l1cRaDr68vDg4OxvK4devWYebiiUJmT8b142gzE7Bp3AN7n6Gooi+jun0KUiMZPXo0mzZtAqBbt2706tWLDh06YG9v/9z3TyT6t/NysWa0r/VT7bv3WqJJAAlApdGTl53FoPe+4sbxvRQU3P870sGhaPBH9+7djdPWevTowY4dOwgJCSEgIODlXYhI9A8ilrOJRKIXJggCyzssp1XZVigkCizlligkClqUaUFgx0Akwqv/UTOh6QTeq/ke1nJrlFIl2SeyyVqcRcbCDLQRWu79WjQlzkJmgbu1O5ObTWb06NFA0Yui4rIUBwcHDh06ZExX/rvyr10ayVNMISsucdPrDWzfG4Kfnx9+fn54eHgY3/V2dnZGpVIRGBhozBiqUqUKGzZsoMm0JlScUhHz8ubG59SpdBToCgi6HcTho4fx8/N75Bj4bt26MXfuXCpVqmRsSF78YvDB/f7J8rML2bs0DG2hHq2m6GtIIbWggkstdi6+SOvWPqhUqkc2kC8eRz916lTmzZuHl5cXtWrVon///i+tt1NqrprPN12i6sQ/qTpxD76fLSYqJQc/Pz9Gjx6NTqcrUYr4oE8++YSNGzcCRZ+zh0sRXyVzc3OaNm3Kbbfb3LC/YQwgAWSdzUIVqeLexnu86/8uMbFxnIpII69QR4FGj32L/mQHzUG95BylzcvRLexTiJMitSz6OrSvZ0/yqmS+/uBr+vbtyzvvvMO2bdtQq9X4+PjQrFkzPv74Y+rWrcuff/75yq4xLCzMWAo1dOjQpw4eFge5AgMDqVKlCj4+PowdO/Yvj7kcm8nXQVcYvOIMW67nkKst+vlRHPgYNmwYbdu2Zc2aNcZjJk2aRMuWLVmwYIFxm5eXF2q1mszMTBwdHZ/xip8sWqUm4NY9/sfeecfXdP5x/H13bnZChMgQkpghZiJEI7H3bq0WRVVrtqU1Wy1KW3SoUdQeRexakcResUNsQfbe487fH/fnypVQWrM979fLy81znvOMc8+59z7f5/v9fFtHXuPdi7cZ9+MvvPvuu4DB6Nm8eXN69OjB8uXLWbhwIX5+fowfP954TQIDA5k4cSINGjRgxapVrDh4kh/2HuJaYgoAHepUZ+hbvgxp1hCXcmXp2LFjqeOoW7cuDg4OKBQKpFIp/v7+6PV6ztzNYNpvmxg/oAvxYkfG742j16LjnDpzzujF8Gh4XJ8+fTiybwdFGh15145gXu2hx2XB9WOYezam8+QlwEPBXoVCwY4dO9i7dy9t2rQBDAY1pVJZcrACAgJPxe9HY0p4cet1WlJ2fo/NWwPJEZnqHmVnZwNw9OhR42+W7t27s2HDBuLj442ZYgUE/msInkgCAgJPTVRUFEOHDkUikeDh4cGyZcuMO7jWcmvmNZ/HhWsXmDRpEitWrTCmbj9//jyjR48GDOm7R40aZfz7aXgQyrB69eoSmWkSExNZunQpEydOxDPNE93POkR6EY3cGrHx7Eb0ej27z+5m4smJdPToyFvOb/GWy1tIxVKjEWX58uX069fvjRLJNZdLWT6wIQN+P41OrydfpUUqFhlDJR5QPMStQmN/HB0dAZg2bRrDhw9n/fr1vPPOO3To0IFZs2bx008/ATB9+nQGDRrEifsn0Ig0uHzsgsTMsADPv55PUkgSUrmUOq3r4OjoaNS2SklJYc2aNQB07tyZDz/8kG3bthnHI5PJaNOmDYWFhWzevPllXKoXSvSxePSYXvPKjjU5Gr0LrUZPxN5j2DoqSxjZ1Go1UqkUkUiEtbU1SqWSoqIixowZg1gsxt/fn7Vr16JUKvHw8GDKlClMnjzZ5N7PycmhS5cuqNVqrK2tWbduHVZWD3djswvVdPr5CMk5Rcb7Ijk5icS0FH5cvIzobQsf6yUFMGrUKBo3bsw777xDRETEY0MRXzTNXZqz8fpGk5BVWz9bbP1ssVHYENErgtArqVTsOp7cIg3ooYeFF+6dfkKGiHnbx1Im25lKspokiG6TJ8qkQaUGaJtpmTVrFgMGDGDDhg28//77JCYm8vPPP5OWlsaUKVNQq9V8/PHHxkX886Zq1aocO3YMgIEDBxIZGUnDhg3/4ixTPvvsMwYPHvzEOrP3XOX3ozEUabTo9HDidhoLD95mahMLUlNTyc3NRSKREBoayowZM1CpVCQkJHDq1CkOHz7M2rVr2bdvHwDBwcFUq1YNjUZjzMj3vDiSkUP/i3fQ6HWo9aDXZJO3ex9mnXsZ6yQnJxMaGoper6dp06YcPXqUyMhITp48aazTo0cPpkyZQnlHRz5pFYCqsIDNZy5RtbyDsY5EJmPpdzOpVKmS8bkqHmr91VdfGesePXoUgPWn7qFp+iG26oeL0HyVlnM3Yun+0yxOh+2isLCwRHici4sLBTlZ1HOUEleUh9S6LGDweiqMvYJTmw8Z9taTjepqtZohQ4YwYcKEv3l1BQQEknNKJmDJv3oEVcINUsKW8Xanjcyf973xWFBQEEqlEjMzM6MnkrW1NWZmZkIom8B/GsGIJCAg8NQ8zYLHRmGDjcLGaEACQ+jSA+2jzp07GzPcPA1/lYq5fPnyTJw4keQiNUMnTsbnh0XcX7mEyLB9Jpo0tkW2XJh9gZBbIcjlciwsLLh9+zZbtmzh/PnzBAcHM3jw4MfqMW3dupVmzZoZXZtfBxpUsufkhGB2XUzgTmoehRotG07dI1/9UOz3QYibhULC1HfqUqmSo3HB9OuvvxrrPar35OHhwe7du+m6rSs3M2+a9GtVxwqrOgaPr+ldp1PeonypaeBtbW3Jz883KfPx8XkpujrPm8dpsmQk5KNV67mfeoOtJxaj02sJrt0LmVTB95tG4VrZiV+XzmPfvn1GI9usWbOoUKECGo0GsVhMo0aNWL58OXfv3uX9999Ho9FQqVIl1q5di0gkYuDAgaSmppYYh0wmY/Xq1VSoUIHffvuN5cuXG73rwLDgTc9XmRgWxQoLxM41mb3nGrOavcXF8+dK9ZK6fv06ZmZmzJs3z3juqwpFHOQ9iJ13dpKryjUx2JlJzPi0/qdIxVISswpQaw33vYtGTCWNBLFWy8+7vyAu7RazNg/Dz6s1OffTcXGsQJU7VVgYupAOHTpQuXJlevbsyZ07d+jYsSPR0dGIRCJjtrzMzMznNhe9Xs/xhOOsiV5DYl4iNcvU5N0a7+Jh54FCoWDfvn0kJSWVmhVMJBLxwQcfUK1aNePuOMC8efNYuXIlU6dOJTg4uESfkTHp/H40hoJiho8ijY78nCwGDf2Ma8f2cujQQRMR5+PHj3P37l1q165tLNu3bx/Z2dksW7aMGzdukJyczNChQ/nzzz+fy7XR6PQMjoqhoJhYeeH+XUiD2rAxMQMrjWH8derUQSKRkJiYiKurKxKJBB8fH5O2atWqhUwmo0bNmpRzKEtOWioFKtOwNpFYjHdQa+Pfj26SlGa4/WlnJIkHt2Lj/zZp+34l/+oRbJv1J//GCcq91Q/bMg4kxt0vNatfp06d2LxlLrq0u9z7viuuYzehT7mNsrwHo1pWpYlH2cdemz///JOkpCR0Oh3u7u6PrScgIPBkale04W5aHsX32yxqvIVFjbeQS8XsGd+cclZmRq23yMjIUtuRyWT06tWr1GMCAv8FBCOSgIDAY0nITWDJpSVExEYgEUlo596O92q+h52ZHQqFAq1WW0L7AUqmS3Z2dgYgLy+PxMREPDw8nthvTGoe9zPycbU3Z+f65U9MxazRaPhw3OdcHTyGRL2I3CI9+VrIS0nlo70HSVk418TbYt++fWzZsoXffvuNcuXKoVQq8fHxITQ09LEZocBgRKpVq9ZrZUQCsFBI6dXQkMFMp9Nz5EYqd1LzTAwHUrGIclZmBFZ99hTyfar14bvI7yjQFJiUixHjaedJeYvy/2wCryl6vR6dRo9Yasja9ThDpl0FcyQyMXvOruGD1l8jl5kBUMvND5mZhBbv1aCyl4OJkS0mJoY2bdqYLE4BzMTWzP1iJapCLRW97EAPiDA+a/fv3+fgwYNkZmZy584d3N3dqVChAvAwJCkmJgYvLy/8/f25eD8DlbkDZds/zBilqFidnAt7EYtE7D54AmdbM86dO0e5cuVwdnYmOTkZAC8vL3r37s1nn33G998bdmVfVShieYvyrGu/juknpnM66TQiRJQzL8eYemNo7W4wAng6WiGViCjSQA2VBCkglkgZ0eE7ALaeWMy1+HOYycy5EX0dh37v0qpVK3788Ue6d+/O6dOn2b9/P2vWrOHXX3+ladOmxv6fpz7Vd6e/Y9ONTcbn6VbmLdZtXodml4a6Nevy/vvvExISQmpqqklWsMmTJ9OtWze2bt2Kvb09bm5ugCFk9N133yUtLY1WrVoRGRlpDB19wMrjdynUlAzfSN35PeWDB3GvUI67uzvh4eEAnDt3DjDoJl26dMmkTCwWY25ujlwux8bGxpjV8XlwJDMHzSPXWnP/Lpqb14jbsQmuXWHHjh1Gj9GyZcty//59dDodFy9eNDnvgRFHJBLRc9I3bPjqCxCJEYnFSOVy0EOnsV9gaf8wHO/RTZIHhtvipOuV2Pi/DYCN/zsoKnhRFBtt8GI48DtBzbfww3ezSp1fz549GTt2LBfPnePtfgPoF+xJ6Krd9J4wjP6BT/5OXLNmDTKZjIMHD/LTTz8xf/78J9YXEBAonWGBVdh7xSDCXRyFVEyLGo6UszL7yzaGDh1KuXLljN+/AgL/RQQjkoCAQKncybpDn119KNQUGsNIVl5ZybINy1DvUlO9anXKlClDRkYGoaGhrFu3js2bN9O5c+cSZQ+yF+3evfuJYSHJ2YV8uOYsl+OzkEnEqFQq8vaGcDZil7HOo22379iJY5m5yDOz0Jv/P5bdwgrMLZh/L4lxfv7cOHUGcRk3hq05R3UHV67duGVsb/v27UZ9l+3bt3Pt2jXMzMwQi8UMHDiQdu3asWLFCvbs2UN0dDQ9evTgs88+e96X+7kgFovY8EFjRqw7S2RMBnKpGJVGR11XW37uXc+YAvdZ6OrZlQP3DnA2+axx4auQKDCTmvFtwLfP1FbxUJHXFZ1Wx5ndd7kQdh9VgQa5Usq1gnD69evPV199CRgWmPfv38fV1ZUKjhVRZldHo1WxZP9XSCVS3gkYg7W5PbP++IiLmkAOHz7MmJGfsnzJamLu3mZIr7EcCA0jICCAbt260bFjR7p26IUqV0815/o08mzJ2kM/0NqvOysPfIeHhwdlypTh2rVrrFq1ik8//dQk7Cw3N5fFixeze/duMjMzsbW1JSIigqCpf3AqZLHJ/OSOlRFL5dxZ8RkO1dwY/dMPbN++nYKCAuRyuYlg9Pvvv8/MmTOZNWsWvr6+rzQU0c3ajcWtFlOgKUClVWEttzbx9mhcuQz25nIKVAXIADGm93oXv6EASGViFh0cR8eOHTl58iR2dnZYWloSFBRk9Lp5UUSlRrHx+kYKtQ9FW7V6LWZ1zFDWV+J4zJF79+5x6dKlUrOCZWZm4urqChiMfGDw9gODrpmXlxdJSUk4OTmZ9JuQVcCjdrAH4RvJB5Yx5OIfLP7pB4qKiggODsbNzc1wb1eoQP369QkICKBOnToAWFpa0qpVKxo3boxWqzUa958HGWptiTKroQ8z36nHDja+b2AwnL733nv4+/vTuHFjY+a0R7GrUJGh839nyYl6NOnVD0v7Mnj6+iM3U5IWl8u5/fdIjsnGwlZB7SAXKnmXMRpuH920sNVmEbVjEWU7forU0rChIHfyokzbEZjJxIRNaYWZTGL0YmjSrAkFbgV8fOBj8rLy8G7ijYu7C9ZKGSODPfEoasucOXNYuuAnTp48SUFBAaNGjeL8+fPodDrWrFmDq6urcW65ubkv/D4VEPg3U72CNT++7cPYjRcQIUKn16PV6fGvUobve9R5qjYWL17815UEBP7lCEYkAQGBUvnmxDfkqfNMwkfUOjXSWlJ6dO1BytoUdu7cWUL7AUqmS37Ali1bHiv+qtHq6LHwOHGZ+Wh1UKjWkXsxFKl7Y95edNw4ikfbPp2Viw49Yisr9P/fFZfVrAOrl1Ck0/PTnoOkXk8n6+oVci8nsC/lNjk5ZqzadQiNRkPPnj359ddf0Wq1hISEMHXqVCpVqkS7du04duwYn332GW5ubrRp04ZJkyb9pRfVq8beQs6awX7EZxZwPz0fZ3tzKtr+fSFWqVjK/OD5RNyPIORGCLnqXJo5N6OHVw9sFDbPb+CvCXsWR3H/SrpRJDs/p5CwiHACvbsChtToCoWC0NBQZs2aRUFBATVa2ZO87T6Tey8l+u459l9cR5+gUWBWyOTJk4m/mU5gqyZ83X8ddx2vs3f/Hr7oupQ6gZWYvfJTMhMLqOfSikZVWqHX6xGJRNSpFMCJiwepWakhtRt6sG3bNmQyGS1btsTCwsL4XOVnF9Gl3du0qN6f0EU3saqkISsri4CAAKzd6yBSF5C46lOQylBWqotFrSBUKTG495tJA9Uhrly5wvr162nSpAkymYzt27czZswYY9jeF198Ybw2r4MBUClVopSWvJ/FYhFrh/jR+7cTxGk1VFHrkVPSaKoHwvZHkJR5H6VSiVgsZufOnSXqFQ9bLC1U8++w+fpmVFqVSZlOrUMsEyNGTCaZWFhYPDYrmI2NDbGxsdjZ2XHjxg3AIPpqbW1NQUEBN27cwMHBoUS/Pi62nL+fiVr78LP8QfiGmVRMyIimeDpaGQ0fxSkt9HTChAkvRJentpWyhCfSAxRiEWNDdlCpUgUTD77BgwczbNgwTp48ybJlywDT9+vB+yiWSIg8b+pNePt8CvuXXkar1aHXQUZiPntD/2T3+eXUbeRd6iZJ30YNmLSj5H2lkIrpWrciZrKHXmAFmgIG7hnInaw7ZNzLIO73OFzfdqX79u5odIaNmU6dOtGpUycWLlxIy5YtAZg5cybm5uaEhoayaNEipk+fjkqlIigoiPj4+BeeDU9A4N9O61oVOFO1HIdvpJJTqKauqx3uZS3++kQBAQEjghFJQECgBPnqfM4mny0hGKxT69DINPx550+CrYNRKpWlaj+UVqZWq4mOjjbuaD9K2NVk0nKL0BbzMFanx5EXfZvT5/cgSrlZairmVLUWvR5EZkr0qiJ0BfmgViO2tSN1zGAyzKyxr/0O4ltnSAn5Bm1+NvYtP2TY8I+o4eGBl5cXSqWSjh07kpiYaNSb6NevH9OmTTOKRL9pONkqcfoHxqPiSMQSgt2CCXYrqbfybyL5bjb3ox8akABO3dhP/cpBxF5NR12k5c6dO0ZPAB8fH44fP061uq4EtmxK897e1El25YvZexjwbRN+P+mIg0M5dn13nbJWTkiQYWNRhkJ1PhK9gqtHkwhoFER8dC73k25yJSaShp7B1HT1xadyM7YcX8iITrPRK+4Zw3W0Wi15eXl4e3uTlVJAv47DsJe7U15ejaQ72STe01DBvhL79oTSJMAffV4e1nXbYl6rhdFAZVsjgLIXVhJnJaFLl1kUFRVx/fp1FAoFnTt3Jjg4+I30dnCxN+fQZ805fC2Zy0uvoc8ziGw/QCIT41azDBb2Mob0fPkCxWmFaegwDaHIvZRL6t5UxIix8LagVatWHD9+nMzMTJOsYACTJ0+mU6dOeHl5GT2S5s6dy549e9DpdHz++eeleuO827gSq0/cQ6019fSRSUR4O9vg6fh0qbFfNFXMzfC1seB4Zh6qR4xJMpGIAU4lNYN+/vlntm7dikqlYsWKFU/dl0alJfT3KybPOkBN58bUqdyEkxlrS90kebeTE4vslWhkYqMGl1wqprazDVM61DRpa9GFRdzMvEmRtgiFk4LKEw1ZnBLyEkjNeRgqd+LECcLDw41ZEGfPns2BAwdQq9VUr17d0IdczpEjRzhz5gxTpkwxSVYgICDw7JjJJLSs4fiqhyEg8MYiGJEEBARKUKQtQlTKLn7xBU+tprV4//33SwgNP46wsDDjjnppnL2XQd4jaVftAgcaX4t2TDEJZXiAp7nC+Nqi7/tkfjYM5Apsv5mHvFwFxHeykdzIoXwfQ+iVXqclefM0KrR4n6/HGLQt+vfvT25uLs2bNwcM2k1LliyhV69erFixgvfeew+ZTIZWWzLcQuDfQ8zF1BKLyqTM+8Sm3eJI9E5i069x7do1EhMTAYyGHU9PT9LSU6nepDyRkbHU9KmKVC5BJBIRdz0DjUYHxYyfWq1B4Fej1rF/dzgN3VvT3X84Gq2aOdtGUdPVl7UR32OptOXXXRPo3KkzlrZK8vLyqFChAunp6XTp0oXNvxxi9+m1uDvW5NzNI9SvEkhAzU7UdPHDr2ETHJzsqKUwQ0Mq13d+j7J6INUbNWPk1FEMaOHDrL17AYPmkkJheI46dOhAVFTUG2lEAoNH0lvVHWk4xY6wVdHERqcjlojR6/RUb+pEk+4eSKRiDh069NLH1rB8Q47HHzcJZ7OuZ411PWvMJGbMbzcfsVhcalYwAF9fX86ePWvS5tSpU5k6deoT+3WxN2fJew34cPUZdHrQ6fXo9VCtghW/vdvgOc3u+bC0ljsfXI7hSGYucpEIHWAtkbDM251yipIGsjFjxjBmzJiSDf0F966k8+hXnFqrQiaRo1HpKMwQlbpJIhKJ8HGxY+rHTdkdlcjRoot4OJjzzQeNTeoCbLq+iSJtyUxQap2ajMIM1Fo1aWlpTJw4kS1btiASiUhLSyMiIoLDhw8bNbr0ej0ajQaZTGbM5CggICAgIPAqEYxIAgICJbBV2FJWWZaEvAST8gcLnvqO9VnSZglAqamRSytr3bo1rVu35nHYKGXIJCKTkIsHyKViPluwsdRUzNeuXcPWwsKwIKjvh6K+38MTdXrE90yFXx9ogSSGLmPMufXYzJ9Lz549qV27NtHR0QBMnDiRzz//nODgYNq2bUubNm1o3bo1w4cPp2fPngwbNuzpLqTAm0UpklEPtHQQweKD45g6dSoDBw4kODgYJycnqlWrhkwmY8iQIQQGBiIWi41pgAEKclQl2swpyGTW5mFIJTLqVG+AWprL3G2jUGmKaOjZgrsp15DLzPiy9yrCozbh38Sbj0Z+yKJFiwBo2rQpX4ybxO/jjvDjkL0mbReq8mlX7z3MbeQciFvIkCFDeOuttygqKqJJ06ZEbJzK+PHj+frrr5kxYwY7duwgJycHKyuDN8rRo0dNMry9qZhby+nwUR0K89QU5qqxsFMgk0v++sQXSGePziy8sJAibZGJl6dMLKN6mepUs6/2wvpu4lGWyEktOXwjhbQ8FTWdrKnp9PqFo1pKJaypU4W7BUVE5xZSRi6lvrU5YlEpD+f/eTSr2rJlyxCJRMTExODr60v16tWRy+Xs27fPeE5RvoZHhaKi758m7OIm8otyUSilfPPT+Mdukng6WvHHkp+I2rOWS3o9ClVWCX2oHHVOifP0Gj0xc2IovFdImzZtCAoM4v79+3Tq1AkwbLY8qtFVVFREmzZtEIlEiEQiQVRb4LnzpGflUeLj4+nXrx+FhYVMmzaNFi1acOXKFYYMGQJAUFAQX3/99csauoCAwCtC9DyzjrxMGjRooH9c2kUBAYF/zp47e5h8dLLJrjkY0movbrWYuuXqPtf+4jILCPo+giKNrsQxhVRMxGeBVLAx3YFVq9UEBwfz0WfjWVbBg+t5hYgQIRaBVCSiq0bOlrDbJbJwAJjLJSwb0BC/ymVKHBP4b5JyL4eQ78+gUZW8X6RyMd0+rY+DqxUajQapVMqsWbNwdXWld+/ej20zPT6PjTNPl/BwAhBLRfgEu1DBw5a9v0WV6FcsEeFSw54OH5UMAc1OK2DdVydLnHP53kl2nv4dmVRO9/7tqF+/Pr/88gv5+fn069ePgIAAfvzxR1atWsWcOXOwsrKiYsWKTJ48GYVCQdOmTZk9e/bTXjKBZ+RW5i1GhY8iOT8ZiUiCWqemvmN9vnvrO6zl1q96eG8karXaGMY3cOBAhg8fTsOGDYmJiWHixImlhiSnJ+Txx4zTaEt5Lm8lXyTb7BZL1v78j8bVaUsn7mTfKfWYncKOiLcjEIvE/6gPAYF/QqFaS3aBmszkeKZ9OaVExtDSGDlyJO+88w61a9emQ4cOREREMHLkSHr06EGzZs1o2bIlGzduNIr+CwgIvLmIRKIzer2+VJdlwRNJQECgVNq4t6FQU8j3Z75HrVWjR4+N3IYpjac8dwMSQEVbJWNbeTFv/w0K1doH2c0xk0n4pJVXCQMSgEwmM4alvA1cyMnnSm4BDnIZb9lZkVOgZnt4yR/xErGI8tZm+LrbP/d5CLy5OLha4VqjDPcup5kYfaQyMS7V7XFwNXjrvP/++9y5cwdra2s2bdr0xDbtnSxwcLMiKSYbncZ000YsFuEd6IylnRk+LV05t+8eep0enVaPTCHBuqwZLQbUKLVdS1sFEqm4hBGppqsvNV19cfKypevYegC8/fbbJnVWrVoFwNixY41l7dq1e+I8BJ4PVWyrsKPLDq6mXyWlIIUqtlWoaFnxVQ/rjUKv13Mu+RxbbmwhW5WNv5M/Hat0xFxmjkKhIC47jg/8P8DKwopzJ8/h4ODAhAkTyM3NZePGjYwfb/AwKohXkJaYxYmr+yhr7YRMIqeL3wcs/HMyZcvZ0arVtSd6ZPwVw+sOZ/KRkhsxSomSwd6DBQOSwCsjr0jDtJ1X2HYuDgBNdjLJu/fTtGkA3bt3Qy6X4+bmhpeXF35+fqSlpTF16lQ6dOjAxYsX+fHHHxGJRFhZWZGTk0PNmjXJysoyhvw/CI8WEBD49yJ4IgkICDwRrU7L7azbSMQS3K3dS+g+PG9Ox6Tz26Hb3E7JpXI5S4YGVKZBpb9v7DlzN4PBK06j0urQ6vSIRSKcbMxYNdi3VMOUwH8bnVbH2b13uXDgPoV5GswspNQOcqF+GzfEkr+36CvMU/Pngouk3M1BJDY8PxKpmLbDvHHytDXWy04t4ObZZNQFGpy87HCuZvfE5+3s3ruc3nWnhCFJKhfTcUQdnDzt/tZ4BQReV/R6PVOOTmHv3b0UagrRo0cpVZJ/Pp/CHYWo7FXYdLPh1rxbVP2qKp62niT+nIi5mTk9e/Zk/vz5REREUKNGDQ6EhjPg7aHkZhUwsussdp9ai6W1JXfzzhHQzL/UzHTPytJLS1lwYQFSsRT0Bj2kd6q9w6cNPn3h36UCAqWh0+np+utRohNzUP3f81uvUaMQ6/GvWp6UkG8YN24ce/bsoWrVqqxbt445c+bwxRdfsHnzZoKCgjh8+DBgSEAyY8YMioqK6NChA1qtlj59+jBt2rRXOUUBAYHnhOCJJCAg8LeRiCV42nm+tP4aVrKn4T8wGj1KfTc7Tk1sweEbKSRlF+FZzpL6bk9enAv8dxFLxDRo506Ddu5otTokf9NwVBwzCxndPq1PWnwuabG5KC3lVKxqW8IoZV1WSb1Wbk/dbt1WrqiLtJzbfw+JRGTw3hOJCOxbVTAgCfwr2Xd3H3vv7qVAU2AsK9AUIK4lxqa2DXdX3kV9Vo3cRY5GquF63nUK3QoJUASwYcMGpFIpMpkMlUpFmbJ2ZKmTeHfYQOya5VDLoyJp15O4vOYid2JuUqZMGfLz86lXrx5t27Zl+/btXLt2DQcHB/7880+ysrIwMzNj48aN6PV6evbsiUqlwtbWljZt2jBgwADe936fnlV7cjz+ODq9jkblG1FGKYRQC7w6Dt9M5WZyrtGABCCSylABJ2My6dE0mNjYWC5dukRWVhZjx47l8OHD6HQ6ZDIZEslDbbns7GxsbW0ZMmQIq1evpn79+nTv3p2YmBgqVar08icnICDw0hB8aQUEBP71yCRigqo50ruRKw0q2QsGpNeYOXPm0LRp02c6Jz4+HjMzM27evPlcx/I8DEjFKeNkiVej8rjUsP/bXk3FEYlE+HaqzKDZTWnzgTcdPqrNoO+b4tlASFss8O9k1ZVVJgYkAJ1ahx49Kp0KsZkYsUwMItAWaNHqtZjVM2PH7h2kpaXRsGFDqlSpgl6vN2TjtIQf9s3m+5hvWH5kCbsKd9FxUkf69u1LaGgoHTt2ZPPmzQCEhITQo0cPAGxsbNi7dy/+/v6EhISwdetW/P392bNnD3Z2pgZca7k1rSu1pq17W8GAJPDKCbuaVCITrq4oHwC1Vs++sIN4eHggFovJzMwkMDCQ33//HW9vbwBq167N8ePHycvLIzs7G2tra/R6Pfb29ojFYmxsbMjJKSkqLyAg8O9C8EQSEBAQEHh16PVQkAEyJUU6MRcuXHjmJubNm4efn99fV/yXIldKcaku6HsJvBmsXLmSFStWoNVqmT59OgsWLCgh6LtmzRrmz5+Pvb09a9euxdraIDqekp9Sor3cS7mk7k0FQOGowK6ZHXk38si/nk9SSBIimQhZoYw2bdrQq1cvFi1axMmTJ2nk2whbX1s0ORqiZkQhlolx+ciF43eOUzmtMh07dCQqKopbt25RUFBAXFwc7u7uHDx4kLp1DbqAPj4+nD59GqlUasym5uPj8wKvnoDAP0MuESMCiouZFMVeJvPwasRSOR7NmuLr60vdunXJzMxEoVAglUrx9/cHYNy4cbz77rsUFBTw1VdfATB+/Hj69++PRCKhevXqRoOTgIDAvxfBiCQgICDwL2HOnDmEhISYpKWOiIggIiKCL7/88rHnnT17lvr166NWq5FKX+LXwtlVED4d8tMAPUtuufJe93FMmf0LMTExDBw4EGtra5KSkli3bh02NjZ069YNkUiEt7c3P/30EykpKeTk5Aiu8y+IJ6V+Ln5vde7cmYMHD7Jp0yZatGjxCkcs8DoTFxfHwYMHOXDgAGC4vx5FrVazcOFCDh06xObNm1m0aBGfffYZANXsq5GQl4C+2BLYup411vVMM9u5fOACgFUdK2RiGa3cWhHgGoBLeRc0Gg0AlVtWJkuWRe7pXMyczTBzMSN2USyuH7uSXj2dLz/5kvHjx6NUKvniiy8IDw8nPT2dQ4cOce/ePYYPH86FCxeoUqUKYrGYS5cu0a5dOy5evEjDhg1fxOUTEPjHtPOuwOoT9yhQP/RGUlZpiLJKQxRSMYvHvAVgNBABHD161Pja2dmZsLAwkzbr16/PsWPHXvDIBQQEXicEI5KAgIDAv4CioqK/5cUDMH/+fOrVq/ecR/QXHPsFwr8BtSE0Ra3Vc/B0FB/VmMgUnQMAiYmJ7N+/nzNnzjBr1ix69OhBYGAgX375JQ+SQsybN4+PP/6Y77777uWO/z9Ey5Yt/zL188KFC1m0aNFLGpHAm8S19Gvsur2LPHUeWUeyUGvUBAcHU6NGDUaPHk1cXBydO3c2Govz8/Px9vZGKpXSokULhg4dCsCoUaM4evood9Lu4PSBE/IycmMfMpEMLVp0el2J/tU6NWH3w4i4H4Far8Y7yZvI3yNJVaaiqKRAV6DDZbgLIrGIG1NucHPKTdBCLfdaDBw4kLCwMH7++WcaN27M8ePHuXXrFpaWlrRq1cqoiQTQs2dPWrdujaWlJTKZ7KVcWwGBZ8XHxZbAqg5EXEsxNSTJJPRq6IxrGfNXODoBAYE3BcGIJCAgIPCGodXpWX/6Hr8fjSE1twgvRysqxh/kvffeY8qUKQAMGjSIe/fu4ebmhouLYVe+Tp061KlThwsXLrBixQp8fHy4fPkyLi4u3Lp16+VNQF1g8EBSP9Q2WXVRTR9vKahyIcfww/bBQtLHx4ebN2/y1ltvcejQIfr06UPbtm3p2LEj9+/fp2bNmi9v7P8Brmdc51jcMcQiMR46D8LDwwkICKBbt26MGTOm1HurQoUKJm3k5ubSsWNHduzYwerVqyksLGT06NGvYDYCrwq9Xs83J75h+63tqLQqdOjIjMxEl6Ajal8U3079lm3btpUwFvfv398YvmZjY0NGRgYAM2fOxNzcnGkrp7Fg8wJc33ZFpzPoIdV3rI9veV8WXFhAkbbIxFMJMNFRuuJ4hc82fMbETyailWmxqG5hzJpo19gOeTk5+dH5/DLrF+zs7NBoNHz99df4+voSFhZGeno6/fv3Z/DgwSZ9hISEIJVK+fDDD6lcufKLvLQCAn8bkUjEL33qseJYDEuP3CYlR4WTrRnDA6vQs4HLqx6egIDAG4JgRBIQEBB4g9Dr9QxbdYYjN1ONu4gnbyaTsetPfFq/A8CpU6eQSCSEhoYyY8YMVCoVYPDsOXnyJGfOnDEakebOncu3335LRETEy5tE/DkQS0yKrqXqOJ+kZWFkGpfjYceOHURFRaHVao0hI1qt1pg62MfHBy8vL27cuEGbNm24dOkSsbGxhIaGvrx5PGfi4+Pp0KEDV65cITc3t9TQwpiYGCZNmlTCM+h5hJOpdWo+O/gZR+OOotFrECECDQxaNYgpAVPo0qUL9evXL/XeehRLS0smTJjAkCFDSE9PZ/fu3X9rTAJvLntj9rLj9g4KtYXGMq1Ci6SKhIlHJtI5qDORkZEljMW2trZkZ2cDD7M/AcyePZsDBw6gVqtpUbUFfRr3IU+dh4+DDx52HgDUc6zHissruJN9h4TcBPI1+SZj0ql1FFDAkktL8Hb25or2CgWihwYm64bWJG9OxrzAHN96vgC4uLgQFhbGF198wU8//YSlpWWp823fvj25ubl4eHjQuHHj53YdXwaPhq0uXry41M+ZBzxNmLTA64tELGJQU3cGNXV/1UMREBB4QxGMSAICAgJvEEdvpnH0VqqJG3re5TDMqjVjxp/R2Ov03L592yj8Wr9+fY4fPw6Ah4cHZmZmVKxYkczMTG7cuIGNjQ1ly5Z9uZMQSUoUzWppZnzddLXemBWpS5cupKSksGbNGk6dOsWECRMMi8gWLfD19TXObcCAAUyaNOmlTeFFYG9vz4EDB+jateszn/s8wsl+Pf8rR+OOmiz6EcOe+D143/amQ4cOxMbGlnpvlUaLFi346KOP+OqrrxCLhWSw/zV+v/x7iUxq5h7mZBzM4GTCSRzuOqAQK0oYi728vIxloaGh+Pn5kZaWRkREBIcPH2b//v2sWbOGtu5tS/TpU84Hn3I+htcrfUocfyDCLUZMJ79O+AT4cOT6Qw05a0drElMT6dmlp7HM39+f5ORkRCIRlpaWtGjRooQXEsDevXv/5pV6PSgetlqaVpWAgICAgMADBCOSgICAwBvE5rOx5D+SnledHocq6Tb5F/cQl3yTa9euER8fD8C5c+eM9UQikfG1Xq/n0qVLnD59mjZt2nDx4kWGDRvGkiVLHtv304osjxs3jqNHjyIWi1m2bBmenp6MGDGCn3/+2VC5Yj0QPcaoIFVyZOUkYjAIeBbfCbiUaOsAAQAASURBVK9SpYqJaHhxli9f/thxv86cz87nQk4+tjIJLcvYYGdmZnJ85MiRnD9/Hmtra9asWQNQQkPG3d29RDjZs6LRaVh3dZ2pAQlDmvRCZSFLo5bicNSBESNGsGzZMsD03iqNhQsX0r9/f3777Te6deuGQqF4Yv2TJ08yZswYJBIJDRo0YO7cuU81dpN7S+C1ISkvqUSZ0k1JpjyTGzNvcMLjBD9//zP79u0zMRbLZDKGDBlCQEAAdnZ2rF27FisrKywtLQkKCjJmQfsrLOWWZBVlmZQ9EOGWi+X83ud3RCIRoUGhbL25FZVWRQu3FnSO6oyl/KG30cCBAxk4cCCA8Rn8N3A7JZfFh25z8k46svxUzuwLpWnTALp370bXrl2Jj4+nR48e3Llzh23btuHs7FxqKOuUKVMIDw+nbt26ZGdnv7GfxQICAgICT49gRBIQEPhX8SRDxwNGjx7N+fPnAbhw4YJRc+NNIK9IU6LMLtCwwFHKJOh3TGbq1KkMGDCA4OBg3NzccHV1LbWtbt260a1bNwACAwNZuHDhX/b/VyLL6enpREZGcvToUY4ePcqvv/7K3LlzTRf5Ehm0/Q52jjLRRUIiA6vyUP89SEj7y7G8jkRFRTF06FAkEgkeHh5MmTKFyZMns3r1agIDA9Hr9YhEIsZOmMjCMm5czS1Ehx6JSIRef5/5NR6+V6dPnyYvL49Dhw6xevVqFi5cyNtvv11CQ+Zp3re/IleVi1qrLlH+IE36bdltPur6Eb6+vixYsKDEvTVy5Eh27tzJ9u3bGTZsGG3btmX79u3s2rWLmjVrMm3aNKZPn/7EMbi5uREWFoaZmRl9+/bl0qVLT5Uq+k02ID0awpiamsrSpUuZOHGiSb0HnnYeHh6vaKTPjqu1K2mFJZ/jCu9UQC6R80fPP7BR2JQaStu/f3/69+9vUrZz585n6r+nV09WXVlFkbbIpFwqlhLsFoxcYhDmbuvetlSvpn8zJ26nMfD306i0WrQ60GuklB24ELcqDuzfOp3g4GAyMjIIDQ1l3bp1bN68mcaNG5cIZU1ISODUqVMcPnyYtWvXlvp9KyAgICDw70MwIgkICPyrSEpKQq1Wc+LECXJzc0vVkJk3bx5g8KT44YcfXtFI/x7B1ctx5GZqCW8kAJ1ez74DEUDpnjkPvHgqVapU4vjjNJHCryXz/d5rXEvMQZqfQvzu/fg3aUrPHt1LFVm2tLSkTJkyaLVaMjMzKVOmDABNmzY19SKq8zZYlIWwryExCmRKqNMbAj8HhRWVKln9ZUaw1wm9Xk+uVoe7p6cx1fHAgQNJTU01qXfgwAGkUik9zt3kUlYuaqP+r+HF8Ct3Kac1ZJi6deuWMWtegwYNOHjwIFBScPx5YCG3QFyKd5hVHSus6ljhoHRgdq/ZQOn31k8//cRPP/1kUvZAB6m4sfJR9Ho9F1IuEJsbi7OlM44KRwCkUimHDx9mw4YNfPPNN8Y+7e3tmTNnDmDwXCooKCh5b71BPBrCWL58+RIGJJ2uZMaxN4HB3oP59OCnJULa5GI5wS7B2ChsXmj/Q2sP5Vj8Me5k3TGOQSlVUsasDF80+uKF9v06o9PpGbX+nElItEgqowg4F5tDM58Adu7cSY0aNRCLxVSsWJGbN2+WGiZ99+5do2dY/fr1BSOSgICAwH8EwYgkICDwxpNakMqGqxs4n3IeaYoUiUyCQqFg3rx59OjRg/Pnz9OkSRMUCgUhISFGodYtW7YYF7effvopzZs3p379+vTv3589e/YgkZTU7nnVdKpTkbmhNyhSa9EWS0BkJhMTVLUcbmUsnltff0TeZ+q2y8bFhlpqQ7lBC5CVtWHvvh9KFVmWy+V4eHhQtWpVNBrNEzVz8Ag2/HvD2ZCQxrd3EklRqREholVZa6Z7OqNQKNBqHy7UxGIxLVq0wMqhHOff/ZgikZjsH77Gdsos0kcMwPzt99BX9uTytesAVK5c2bgoi4yMpEqVKgAlNGSeBzKxjM4endlyYwsqnalYtpnEjH41+j2XfopzL/seH4Z+SEpBCiJE6NHjoHRgZPmRpKamUqNGDWNY5gM6depEp06dWLhwIS1btnzuY3pZ3CsoIlOjpYpSgZ3dwxDG4kZvPz8/6tati1KpBAweV2fOnKFly5ZMnTr1VQ39qWnm3IzB3oNZdGERIpEIjU6DXCKnmn01vvT/8oX3r5QqWd1uNQfuHmDHrR2odWrauLehrXtblFLlC+//deViXBa5haYerbqifMQKc/JVWnaHR/DHT9O4cuWK8bher8fd3Z3w8HDgYSirm5sbly5dMikTEBAQEPj3IyhdCggIvNGcTz5Pu5B2LIlawomEExwpOILLdBccPBwICwvjxIkTpKSkUKFCBTIzM8nJyQGgTZs2TJ8+nR9//NEYAte3b19q1arFoUOHSjUgjRgxgsDAQAYNGmRiHHiZKOUStn3UhMZVyiKXirFQSDCTielV34V579R9bv0UabRM23GlxG61RqIgKVeFYy3/EiLLANHR0URFRXH9+nU2bdpUwqvi38ai+8l8fj2WhCI1Gj2o9Xq2bt1Gpeo1iEtMMnpiAWzatImIiAhqtmhFzqrfEFtYos/LRa9SIbK2QX3pLGkTR1GQk0Xr1q3R6/UolUoCAgJYu3Ytw4YNA6BcuXJ06dKFkSNHMm7cOMAQTrZy5UrGjRvH4sWL/9ZcPmnwCdXsq2EuNQdAhAilVIlfBT/erfHuP7xSpqi1agbsGcD9nPsUaArI1+RToCkgJiGGt99/m4W/LSyh4fWAEydOEB4ezoQJE57rmF4G1/IKCT59jWanrtL93E1qHo1i8o24RxLSG0hNTWXixIlGz6vAwECOHDnCn3/++XIH/Q8YWnsou7vvZmz9sYyoO4LfWv3GijYrMJeZv5T+ZWIZbdzbML/FfBa3Wkw3z27/aQMSQE6hGrFYZFJWFHuZhOWjSFz1KSILexwdHUuc5+vrS1FREcHBwVy/bjB0V6hQgfr16xMQEPDU3oArV64kODiYwMBAjh49Sr9+JQ3UU6dOpXHjxpw5cwaAzZs3GzWYBAQEBARePYInkoCAwBtLniqPQXsHodYV03KRgRo1SflJ9GzWk7i4OGQyGX/88Qfr1q0jJCSEpk2bcvXqVWxtbVm4cCEzZ85k0aJFXL9+nTVr1jBmzJgSfZ0+fRqVSkVERAQ//PADO3fupHPnzi9xtg9xtDZj9WBf0nKLSM9TUdFOibn8+X6cn72bWaLswW51oVrHgYhDDO/RsoTIsl6vx9bWFrFYTNmyZcnKyirRzr+FfK2OWbcTKdCZmgBkTQIpH9CcrGU/mei42NvbA9C1a1d+XLIUM0BSoSKFB/ej8G2KOvoS8jr1aTNsGSFt3wIMC7fi2Nralhp6WFo42bOilCpZ1W4VJxJOEHEvAolYQutKranjUMfEoPM8CLsfRr46H30x84leq+fe4nu4vuPKFdUVHG0cSUhIAODSpUvUrl2bpKQkJk6cyJYtW577mF40KSo1Hc/eIEejRQ8U/n/uq+NT0eQXlahfrlw5nJ2djX/XqlULwOiZ9KZQzrwcfar3edXDEPg/NZ1sUGlMQySVVRqirNIQmUREPz83KlWqZAwnDgwMJDAwECg9lPWbb74BDF50X3755RP7jouL4+DBgxw4cMB4TmmEhYWZeLFu2rRJMCIJCAgIvEYInkgCAgJvLB8e+NDUgIQhmxQYjBnbD2yncuXKyGQyrmZcJVmazO2E2/z6669kZmaSn59P7969OXLkCAkJCSxdupTU1FTMzc2N6eKXL1/O8uXLuX37tlH7wcfH58lhWi+JMpYKPB2tnrsBCQz6So9SfLdaYV221J3pGjVqYGVlRUBAAL1792b8+PHPfWyvC+ey85A8YsfQqwyhYIU6PffEMpMFf3Z2tuH/C2exdnFDBMhq1iH/j5XIavkgksnR349hrF+9lzWFEohFYvyd/JngN4HxjcbjU87nhRhrrqRdIU+TZ1KWdTqLgjsFxKyL4aPuH5GXl0d8fDzt2rUjJSUFgMWLF3P//n06depkXNi+Kfwem0qRVlfC66hApydFpSZFZfpZJhab/kR7kUazmJgYHB0dCQwMpFWrVibHHmRdfBpGjBjxAkYn8Dyxt5DTrV5FlLKS3rYyiZj3m7o/VTuP3jOxsbEcPny41Lq3Mm9xPP44f2z/A61WS3BwMC1btqRr1678+eeftGnTBj8/P+7cucMvv/zCxYsXCQwMJDc3l127dtGyZcsSz4OAgICAwKtD8EQSEBB4I0nMS+RiysUS5Q+ySamSVIhqitCYabh77y7eLt6gh7JBZZEkSFCaK3FycsLHxwcrKyu8vb3Jy8vD2tqaGTNmMGjQIDp27Mi1a9eQSqXMnTuXzZs389FHHxEWFvZGZXT7O/i42KLRlb5brZCKGRXsCZS+M/3rr7+WKHvTvEaeBnEpcyo6fZT8jYYdfIdKlWnVqpUxzCMoKAilUomZmRkbf13I0MR8JLXrkvPzLBTuHoiq1cBRlU9TO6uXOo9XgYPSAYVEYZI5y9bPFls/WxQSBaPrjaZJjSZGce7iTJ482eTvN0VUOyw9m6JHjLN6jZrMzz9Gc+s67dq0YeF3s1/R6P468+LT8CZnyvsvMa1zLcQiEZvOxCKXitHq9NhbyPm5d12c7f461FCt1aHX603umZiYGBo3bmxS7272XUaHjyY2JxapWMq98HtYpFpwaucpanjUYOzYscyfP5+qVavSp08fY7bJ9evXGz0uV6xYwerVq41er8+TR7MjSqVPtyz68ccfWbt2LWKxmDlz5pSYt4CAgMC/HcGsLyAg8EZyJe2KMUVzcSxrWiKxkIAYiu4VMTV0KlJ7KTUW1MB1lCv58fkoAhTYB9lz9+5d9uzZw61btxg1ahTW1taoVCqsra2RyWT89NNPfPHFF7Rv3559+/ZRq1YtmjdvTnZ2dqmaEf8mLBRSRgR5ltitlojAWimjr6/bU7c1ZswYgoNfXwHtqKgo/P39CQgIYODAgdy5c8eo0xEYGMhbb71FYGAgYWFhJufVsy652DJr0hz7eUtx+mkZU36ZT+XKlY2LrMjISA4fPsz+/ftp5lmFU41r8GWThgw4doF3K5YlbMrnXN775ujd/BP+KqX6vzHlukUpOmsiqQy77xfhvusIv2zbia2trdF7rbhxbPny5Xh4eACPz6T4d9Dp9dwvVJGmUhMeHk5AQABz584FYNCgQbRo0YJVq1YZ6/v4+DBgwAC8vb3ZsmUL7du3p379+sTGxgKGLIwCrz/Xoq8Q/t0H2IdPxy1qBZuGNebwuObUdbV74nmbTt3B2q0GCqUFAZP/YNvufTRu0tR4zwCo1Wr69OnDngN7aNC6AdfjrxN/IJ7LP1xGb6bn/o37DNs2jCpVqlBUVESDBg04depUqdkmw8LC8Pf3Ry5/+F3/qAdUTExMqbpKT8OD7Ih+fn7PdN7y5cs5fvw4mzZtYvbsV2f4FRAQEHhVCEYkAQGBNxIbhU2pKclFUhHu49yp+WtNmn3TDCqCXqPn9ozbFN4rxMzJjNiVsVzbeg21Wk316tWpUKECkydPpm/fvlhbW7NhwwYSEhJwd3fn0qVLiMViJBIJU6ZMITw8nDJlytC+fftXMOuXy/DAKkzuUAMHKwUyiQiZRERQdUe2f9wEG3PZU7czd+7cpw6HeRVUrVqVY8eOGUMxUlNTTY4fOHCAiIgIgoKCTMpvXLmCaOxgMkcNImvWVLQJcWTNmIhMBOljhrCqb49SjU8PsJZKGOziwDJvd76t6kJtq5cjNvy0PG2IU+fOnbG2tsbOzq7UusWZM2cOTZs2pYyyDFP8phAzI4aCqwUkbUlCIpIQMyOGKY2nUEZpECTX6/W0b9+eZs2avTIx+6flUWOk/hGvo/5OZTB/TEhO3McDqGeuYMiQIXTv3v1lDJcNCWn4HLtMs5PRdInJxGvdTuZu20VoaKgxuUBoaKhJBsCEhAQWLlzIokWL+Prrr9mxYweffPIJf/zxx0sZs8Dz4cFn3vGjR3CwUpAXd/0vvUUXHbrFpO1Xsek0AfOqTdCZWVFu4EKkHb5k7779ZGdno1arGTBgAEOHDiXDKQNlZSV5t/IouFOASCJC6a5EW6jlpvom129dR61Wc+rUKdLS0krNNhkVFcX27dtp06YNly9fNoaZt2zZkoiICGP2yqclK6WAvUuiWDQigoUfRxC65BravIffZRERESVC2bdv327UhXpg4PXw8KCoqIjMzEyT5AkCAgIC/xWEcDYBAYE3Eh8HH8wkZuSp80o9LhVLOZV4CpG1CK9ZXoikIu7+eBeH9g5oc7VUGlyJe+Pv0axZM06dOkW7du0AcHZ2pl69ekYtFjs7O86fP8/WrVsJDAxEIpEQHBxcQvD434hIJKKPryu9G7mQma9GKZdgVoqOxhtJYTZc3gIZd5GVqQI1u4DcAoVCYWKsEIvFtGjRgvLly/Prr79SVFTEmDFjWL9+PVWqVMHZ2pJf/tjCewMGos7KRCqCvhXKcMRKScSBA08dHvG68lchTjqdnp/m/cKced9z+fJlQkNDH1u3qKiICxcuGP/u5NGJqnZVqeNSh7P3z9Ldqztb7bbSqUonY52EhASsrKzYtWvX85nQC+TBwhxg4MCBREZG0rBhQ+PxDg62rI5P40x2PgX/DxUVAWZiEWWVCpQKOYcOHXopY12fkMYX12MfisLLZERrodelGN5r2bpE5sUHGnAeHh6YmZnh5ORE9erVEYvFODk5ER0d/VLGLfD30er0RMVlodHpqOlkwwPTiUKhwMXFhWnTphEWFoZYLGbZsmVUqlSJkSNHcv78eSwsrbhZcyBqiRKJhcFbSSSRoZUqSM3XUKWWPzt37uTQoUO0bt2awMBARoePRuYhI+dCDjqVDjMXM1SJKqQ2Uq7NvIZTeSd27dqFVqslKyuLkSNHsmbNGpMxjxw5kpEjRwLg38Sf3qN7E58Yb/Sa69atG127diU+Pp4ePXpw584dtm3bxpo1a6hVqxbt27dn69at3Lp1C8cyFZn8+VfIJWYE1+lFTVdf7kalEXc9A3Xh4w3UnTp1olOnTixcuJCWLVsCEBwcTLVq1dBoNKWG3AoICAj823mzf90KCAj8Z5GIJfwQ+AMfhn6IRqcxCmyLMOymPvhbLHu482/lY4U6XY2ZmxkysYyPpn+E6K7I+CNw4sSJNGrUCLFYbCwbPXo048ePx9PT87mGkbxJiEQi7CxKhg6+sdw5BOveAb0e1Pkgt2D73FFMOGmDV806JjvLmzZtwt7enrVr1/LNtGnM6edD3uV95Ez34lhuRVo0qkmrsjZ0di7HgLpV+OWoHd9WdSFIIjExPtnY2NCuXTuWLVtGVFQUu3fvZt68ea/uGjwGtVbNueRzqHVqbFQ2Jou1MWPGMGjQIO7du4eLswv6HAt+G30QrUbP5eNxRN4+a6wbGxvL+vXr6fZON3Zt38W48eNIjE0kMjKS2NhYZsyYwc2bN7l2+RqZczLJzc2lw6cd2CPdAxgWj/7+hoVpeHg4gwcPZsmSJa/46pREr9dzOT6b5JxCPMtZ4WJvWJo/MEYGBQVhb29vXNyuq1OFoN59iLoTg8ihPG6urqyYPZP+hQaR/+vXr7Nw4UIT49PzRqvX882tBJOsgrr8PMTmFhTqdCzbshXr9BRSU1M5ffo0Xl5exnoPvFWSkpI4cOAA/v7+dO/eHb1ez71794iKiqJZs2Z8/PHH9OrV64XN4a9YuXIlK1asQKvVsmbNGipWrPjYujExMUyaNInVq1fTtGnTN0Zj61nYG5XAF1uiKNJoESFCr9cTqLzLwTU/4+XlRUpKCnFxcURERBAdHc3MmTMZPHgweXl5HDp0iAnf/crZvbtRNuhmbFOnKgSgQK0l7OBhPvx5GleuXMHV1ZWff/4ZuwZ2WLhakLAmAXNPc8w9zUlcm4hjL0fK1y3Pl/5f0sa9DREREZw6dYpevXrh6+tL9erVMTc3JzMzk7CwMDp16cScyDmcvX2Wxs0ao9fpafhJQ+b3n8/bwW+zZMkSCgoKCA0NZd26dWzevJk+ffowceJE2rdvz8aNG5k1axbv9hjGoODJ2FuVN/ES1Kh0ZCbnA6bafXq93vj3iRMnCA8PZ/369WRnZ7Ns2TJu3LhBcnIyQ4cO5c8//xthyAICAgIPEIxIAgICbyz1HesT0imE1dGrOZt0FguZBedTzqPRaYx1tAVaJEqD90z+jXzKtChDxuEMdHod4nixSYrxffv2GV3ZAZYuXYpIJOLdd999eZMSeLEUZBoMSKpiHmyqPDpVhk7V1YyIdWTnzp3GQ/b29gB07dyJ5TPHgMMGulUuYNuZ+4TdicHP9Qy1PHfg5V3/8canb75hzpw5zJkzhw8//JDs7OzX0rNm9+3dTDsxDT16RIgoKipi9B+jGd1oNF26dKF+/fpIJBL27d1H37Yfk5OZg8bB4FEjEZnRN+BTuvbqxJz147gYdRHbJrbss9hHQl4C3574FvVRNdM+m8bvy34nODiYO3fuYG5uTv/+/bl79y4rVqwAYNSoUTRu3Jh33nnHqFXyOhqQbibnMGTlGZKyC5GIRag0OipkRpEcvpxqVatSpkwZMjIyTBa3fn5+1LSz4fCG48yaNYuCggJqW5lz//59jh49SlZWFh988IHJPfi8uVegIl9rKpqvvniW3N8XIJLJsPT24e7BMAYMGMDevXtJS0ujXj3TjIELFiygTp06bN68maZNm9KhQwdmzZqFm5sb4eHhtG3blm7dur0ST7xH08j/1zl5O41RG85TqDZ9z8P0bkxeuovjq7/nypUrREREGDMeVqhQgVu3bhnf96q16qBatwNlsfNViTdI3/0jIokM1xr1jDqB06ZNY/jw4bgp3FCYKxBJRVh4WmBe2ZyihCLMq5ij1WvZ9v02ZkfPxs3NjV9//ZWkpKQSQt0hISFcrnCZ7be2I7GS4DbeoMWXSiqD9g+iUFVI3959uX79OmKxmIoVK3Lz5k1cXFxIT08nLS2NzMxMnJ2decujF7vPrEan09K6Xl/K2Tgb56Iu0qIq1GBjY0NCQgIAly5donbt2iQlJTFx4kS2bNmCSCRCLBZjbm6OXC7HxsaGvLzSvaEFBAQE/s0IRiQBAYE3GmcrZz5v9DkAZ5PO8tGBj8jV5RqPP8jWJpIZfshaeViRFZ6F+lc1d6vdxdXVlTlz5rB69WoqV65skpJ9+PDhNGrUyCiuPGnSJJo1a8alS5c4f/68UehW4A3i4h8GD6RiFGn0KKQi0GuxLkpEqaxjPJadnY21tTVH18+hinkuqKV0ryGjb0gBaq2eoXVFDG2sZ0RshdKNT127GjPY1axZk4KCAlq3bo2FhcWLn+szcDrxNFOOTaFQW/iwUAx/3PmDsjZl6dChgzHEKeZSGuXM3clKjzJWlYgliJFx83QqdevV5+Clg6gL1ZR1LYtOryPrehZ2gXYs2LOAu9fusmXLFurWrcuVK1fw8/MjIyODzMxMrl+/jpmZ2WvppVWc7EI1PRYeJytfTfG7Kc6mJt4fLaZi9Hp27txJjRo1TBa3v/zyC8eOHSMxMZHo6GgqVapE06ZN8fDwwNLSEktLS7Kysp5qDHPmzCEkJOSpPWe+/fZb+vfvj7yMA1pMnwGFXwAKvwAA7MSGbF3Lly9n2LBhfPnll/zyyy80adIEhUJBZmYmMTExhIeHIxKJcHFxYfz48fTq1Ytjx44hkUhwdHTk5s2bVKtW7anG9k/Q6/VcP5VE5J8xZKcWcPrOPlLUWQQFBVOzZg1Gjx7NkCFDKFu2LDdu3GDy5MksXLiQ/Px89u7dW2qbs2fPRiwW8+mnn77w8cPD93L16tVGr6jnxQ/7r5cwIOk1agqAOfuv08rKisTERFq1amXMrqdWqzl37pxRc0iTeBOpbXmTNsxcvbGq0xqlTMKEdtWoVKmScdwPMnRqTmgQTRZRoCkAwHupN3KxnGn+02jbry330/NZd+oeYzdfwYFsDoSFGb0ZU1JS2Ld/H9vObMN5uDPaPC23Z9xGXk6O07tOJEUmce/WPbZt24aLi8vDuf3/871Tp04MGzaMjh07AmBnWY6+b33K7cTLhF3cxDsBo9FqNfy6+wti027RvkM7vp010xjK/mBTYPHixdy/f59OnQxhthEREbRq1YrGjRuj1WqZMmXKc3uvBAQEBN4UBCOSgIDAvwYnSydjGNsDrOpYYVXHkDLdQmpBq0qt6L+9P552hhT1RUVFDB06FHNzczZt2mRyblFRkcnfer2erVu3Mn78+Bc4C4EXStoNQwhbMfbc1DDnhArIw7NmLO+3amVcmAcFBaFUKjHLuMbyVobQSGuFCDMpBLr9/ytUr8Nal2ligDQan44eNYrF7t69m+rVqxMaGmpc1L4uzD8/39SAhMGLr1BZyG+XfqPSkUqMGjmKZcuW4Wn2FjEJ103qarT/DycVQWhEBDqdDlWGisK7heiKdGiyNCQfSiZNkgZqWLVqFR06dEAkEnHu3DnA8Hx5eXnRu3dvPvvsM77//vuXM/m/QciZWIrUOhNTjF6jRo2M6IQcyooUKJVKk/AYtVpNeno6+fn5lC9fnpo1axq9GG7evEleXh5ZWVlYW1v/Zf+P6ks9DZ9//rnxtauZnBv5RSUr6fQU3Mum2m9fQ+R6vGtU4/79+9y+fZujR48aF+hardY4NxsbGzIyMqhatSoHDx4kMDCQEydOkJGR8Uzj+7uc2HqLi+GxaFQGQ0lqWgpJGRlMHvEDh++vZdu2bUaPsPXr17NixQr27dvHjBkz2Lt3bwkvq++++w7gpRmQ/s57+SxcjM0sUVZw5wzZp7eSLIKqbzXgm2++YebMmQQGBiISiejduzdDhw5lxYoVBAQEYGVlxYRPprP4RBL3Nk6nKO4Kmox47Py649ooiO71nUt2DEzwnUCAcwCrrqwiKT+JavbVGFhzINXLVGfL2Vi+2HIJrU6PWqtHhhbr/r8ybYAv3386mJkzZxJ5NZKcHjnkqnNxn+CO1FJK7G+xXB9/HVkZGXJbOX/88UepiRt69uzJ2LFjWbBgAQAHb27g4pWzFKkL6Np4GAASiZQRHb7DroIFfaYadA5L0ziaPHmy6bwmTGDChAnP8jYICAgI/KsQjEgCAgL/GspblKduubpEJkai0WtMjimlSuY2n0tjp8YGUeVre0AkZsnuKN577z2mTJlCTEwMgwYNeuyOtYWFhdFlvziTJk3i0KFD1KlTh5ycHKPnicBrSBkPkJmbGJI6V5PRuZoM5BbQ/hOoXNm4ox4ZGWmotKQlxJ4yniMTg71SxFvL80BUiGf9lNKNT2ZmLF++nJycHGbPns2uXbu4fPkyn3zyiTF863UgOq2kMPIDLz6JXEKddnXw9fVlwYIFjPv+fcx0dthZlgNg49FfOHsrgohLIdhY2FPZ1xO7YDuSNiWRdy0PvVaPTUMbxHIxGQcy0Kg1fPrpp1y4cIGoqCi8vLxMDCfvv/8+M2fOZNasWbz99tsv7Ro8C8dvp1GgNhXjfbAwF4vAsU5NPvr4A5btDaXjmetk3ogj9/hJZn4xnvf69sXf35+EhAQGDx4MgIuLC/7+/qSlpfHzzz/TvHlzrK2tSUpKYu3atdyW3GZZ1DLicuNwtnSmzNkyxs8tMHwGhYeHo1AoCAkJYfTo0djY2HDmzBlatmzJ1KlTGTBgAJMmTcLDw4Mfqrrw9oVbFOqKBfRq9aDWor+Zg9q5PlYevpRN2s7t27fx9/cHHmrGSCQPBfazs7OxtbXliy++4IMPPmD+/PlUq1at1M/K501eZhEXDsSi1Tz0tFHKLahSvjbxN7Oo7d2Iu0nXjB5hTk5O1KpVCwAnJ6cShq7s7GzWrVvHiRMnXtiYC9VaDt9IJbtATR0XW/ZuXGHyXoLB4Pjee+/xwQcfcPHiRcRiMQMHDqRdu3bs2LGD9957j/T0dOLj4+nfv38JI0dxlDJJCU8kc08/zD39kElELJzcErFYzMSJE5k4caJJvfnz55v87e4Uyw+WXxGbWYBcIqZL3Yp83qYa5vLSlxMikYhmzs1o5tzMpDwhq4DPQy5RVOx9UyMBkYSP111gaJu27Ny5E4lIYgw5l1oa+ijbviwiqYiKAyuS+kOqiQfUgyxqD2jdurXRWL9o+U9snn3GaGx8gFQmJqCn52Ovn4CAgIBASQQjkoCAwL+KWc1mMWD3AJLyk8jX5CMTyxCJRLxf630aV/CDg7Ph8A8gkaHW6jm4IZ2PfpvLg5/vT9qx7tatW4n+EhISOHv2LIcOHWLDhg3/qUwtjxOvjYiIMEkBDwZ9iy+//PLVG9hq94LQL0s/JpJA9U6lH/NoAYkXQVPI0B0FlLMQM7CunIF15SBVwKhVYOVY0vhUjPDwcAAaNmz4WhmQACxkFuRrTD20HnjxycQyvu31LWBIex1zKZV9Sy6jLjIYUXo2+ZieTT4GQCIVc7PdHvampFMm2BAOcnvmbewCDBmdnJo6MaPpDIJcg544ni+++ML4+nmG9jwvyloqEIugmDa1cWFuoZDwfpeavJuSRfboydzLzkdfyYs8nZgfbFyoXKUKa9eupWvXrlSuXBmAfv36odfrGTduHDExMSQmJrJ//37OnDlD38/6ou2mNYYEpeWmEb8znirtDB5u586dK+EpBIYF9Y8//oivry9Tp041GX8jW0t21fdi+Lb9HJsxGURipLYVsPPpSWrYchw6jePW0rG4NQ/kzp07REVF8fHHH9OxY0djONu2bdto0aKF0evu3r17JCcnIxKJiIuLM87rRb5/MZdSEYlNyyo71uRo9C40RVoO7T9OpTplTDzCHhVPLo61tTWTJ09m4MCBrFq1CrH4kcb/IQeikxi1/jwAOr0erVpNYegWrhz5wFhHrVYzYMAAhg4dyltvvUWzZs1o164dx44d47PPPsPKyoqQkBCys7Pp2rUrQ4cOfWKf3es7s/JYDCqt6VzFImhYyR4rM9ljzixJl7rOdKnrjFqrQyoWmVzLZ2HTmdhHAipBV5SPWGGOHti8O4yvx4/i4sWL5Ihy0Gl0oDckysi/kY+8nBylVImDuUOp7V+9epXBgwczY8YMY1lZZyu6jK3HofXXSb2fA4BNOSUBPb1wqWH/t+YhICAg8F/l+X47CggICLxi7M3s2dJ5C9+99R2Daw3mI5+P2N5lOx/U+QDOroAjc0FTCEU5rDqdTp+aIjjwFeSnAzx2x/rGjRs4OjoSGBho1IkAuHv3LtbW1nz55ZdUrFiRPXv2EBgYSPXq1Rk9ejQAYWFhNG7cmObNmxMbG/vSr8mLoLh4bURExBOzH71WKO2g9zqDN5LM3FAmswCFNfTbDHLz0s9r+D5IzQARizsqmdfGzFAuVUKtnmD14r0uXiQ9vXqikChKlItFYuqVq4eNwsZY5lqzDGWcLZHITH9CSOViar1VkU6126GUKh9tCgCdXmfwBnzDeaehKwqppNRjej3sFqlIVWmMGdAK9+9CGtSG63mFXLp2nV69epGcnEzXrl2N3i8PPi8AvL29kUql2LjbcPnaZaMBCSDzWCZWvlasjF5JkbaI69evm3gKPVjYP/j8Kh5mWZwalkr6OlfDveu3OHX4BnGWGl1OJtrcdBLXfk5hcgy378cxbtw43NzcaNKkCampqezYsYNZs2YxYsQIWrRoYQzruXXrFgqFIYyvdu3apKWl/bOL/BTotPoShiDnsh7IpArmbR/L1VuX6NGjxzO12bp1a9q3b29MLf+8uJGUw8drz5JbpCG3SEO+SkvahVA0lRozesN5Y71Dhw4hk8mMHjUikYh+/foRGRlJ+/btAYPxa8iQIcyYMeMvPb5GBHlSwVaJmfTh8yqXiLEykzGjq/ffmotMIv7bBiSAuIwCVBpTj6Ci2MskLB/F7WVjUFiXoWnTpmRkZCBdLUVWKOP2N7e5PeM2OedzcGrphHdZb+zM7IiJiTF+N7dq1QqAatWqceTIEXQ6nclmhmMla3p+3oD3vw9g0HdN6TPVTzAgCQgICPwNBE8kAQGBfx0SsaSkC71eDxHfmoQxXUvVcT5Jy8LIFC7Hp7Bjx44n7lg/yBwzYMAAY7mbmxt3796lWrVqJCQk0KZNG5YvX86oUaPo0KEDAF9//TX79u3jypUrzJw5s0SIwJtCQlYBq47fJfJuBuln92CWlU9wcDA1atRg3rx5DBkyhHv37uHm5mYUOp0yZQrh4eHUrVsXgKNHj7J9+3ZmzZpFeno6gwYNYuvWrS93IpUD4ZOrELUZ0m9DWS+o2Q0Ulo8/x6IsvL8fQgZDyjWQyECrhnr9ofWMx5/3hvBezfcIuxfG3Zy7RoOFQqJAKVXypf+XJnXFYhGdR/twelcMlw/FUZSvwdJOQYO2lagR4ISeKvhW8OVkwkkKNAVU/qIyIkQoJAqm+E15rIHpTcLb2YZ+fq6sPnHPGNYmEYuQSUR8092bURmpFA9209y/i+bmNQp2bEKjUtG/f39OnjyJmZlZCe8XgKioKLRaLcv3LUfmYOopUpRYROG9QjIiMtDGaLl+/TrXrl3j448N3mAPjCqPW+SrNDr2Xk5k/5UkkrMLeVBNJJWCTofUqixlO35K4qpPsbawoF69enz77bdMnz7d2EaFChV4p1dPZnevDKc+gzOD6OxQnc6/TQSPFgwbNgyt9uEV2LlzJ7Nnz0aj0TBlyhSsrKyey+eAS3V7QASP+LV0azwMmUJCi4E1qOzlUGq4U/HP8QfHH4Sj9unThz59+jzzeJ7E4kO3S3gDqdPjyIs+zNqzu5Gl3WLHjh0EBwfj6urKzz//zIgRI8jLy2PJkiX06tWLFSsMoW/Tp08nKCgIX1/fv+zXRilj18gA1p68y6Yzsai1elrXdGRQU3fKWZk91zk+LTWdrFHKJCYhocoqDVFWaYiFQsK4t+sikUiMwudX06/yW83fuJByAWu5Nb2r9aaLZxdkrWXExMSYZHV7GuRKYfkjICAg8E8QPkUFBAT+G6hyIS/FpGhWy4c/oJsuy6Njhw6cPHnSUF2r4nzyeVpvas2t47ewVdty78A9HBwcKCoq4saNG8Yd/oKCApYtW0bbtm2RyQwLvkOHDvHDDz+Qn5+PUqnEysoKX19fE3Hb1434+Hg6dOjAlStXyM3NNUnPfepOOgN+P4WqoIDYdRPRFeUjEkG/UZMxz77ODz/8gEQiITQ0lBkzZqBSqUhISODUqVMcPnyYtWvXsm/fPvz9/Y2eC9u3b6dz587GPp6UbWr58uVoNBqjhgwYwuZCQ0P55ptvnn2yZjbQYNCznePgBR8cgoy7UJAO9lXA7K9FkN8EzGXmrG6/ml23d7HlxhaKtEUEuwbzdtW3sTWzLVFfKpPQuEsVGnepgl6vNzW+ImJe4Dy239rO6ujVpBemU92+OkNrD8WnnM/Lm9QLZmL7GrzlVY7fj94hPqsA74o2DA6ojLWtGZITqaiL2Qusho4yvs4cOZCOHTsaP2vA4P2SlpbGyJEj+fTTTylXrhxdunThYsxFyrxbxqTf8r0eZsnKn5fP5MmTmThxojF7WkhIyGPHnJWvovW8QyRnF5KnMizg82+cJPPQCqT2FRErrYx1dYXZ/DjrG5xt5Xz88ce0adMGMIhqT58+nUWtRRC2BtT/95KKPcX2L3sy4bg5XnV8jdmtdDod33//PWFhYeh0Otq2bUtoaOhjPweeBVtHc9zrlCXmQiqaYro/YqkI67JmVPIu84SzXy4XYjPR6kyNSHaBAwGwMpMi2jHFeF9MmzaN4cOHs379ek6cOMHnn39OcHAwbdu2pU2bNkyfPh1fX1/WrVvHgAEDTAxipWGpkDK0WRWGNqvyoqb3THSpW5HZe66VKBeJDGNtXtU0TK2afTV+CPwBALVWx77LSXyyIQqpWETDshrCw8ONWd3GjBnDoEGDTDY0NmzYQGpqKh999BHnz59n6dKlzJ07l/79+xMXF0fFihVZtWqVyXeegICAgMDjET4tBQQE/htIzSghnlGMI8Mcwd2d1atXo9aqWVG4gsRmiRTlFaH0V1KgLsDZ35mvmn3FwjELGT9+PKtWreK3337jm2++QaPRUL16dW7fvs327du5evUqLVq0QK/XU6FCBWM/aWlpfPnllwwbNox33nkHgKSkJFq3bs28efMYPnw4GzduZObMmSYGk5eBvb09Bw4coGvXriblGq2OD1ZFkq/SUphwC4VzTaTWDuTfjmT/lWTGtW5I1v1rRm+j+vXrc/z4ce7evUvt2rWNZfv27UMkElG7dm3OnTvH9u3bWbJkCfDiMxQ9V+zcDP/+ZSgkCrp5dqObZ0ntrydRmseLRCyhq2dXunoa7qWYmBh8vX2pXr06crncJCT0TaapZ1maeppm2dPo9JiJxRTqtKWe0/z3DRQVFRmN0I96v8TExODs7Mzq1as5GneUsRFjS+hVAZhLzVnyp+H5Ke4lBJhoj0VERBjLPlpzltj0fNTFjBnmnr6Ye/qSsX8hBbdOIxKBmUyMq1N5fGu6A5CZmWms/8knn/BuSx+qqNc+NCD9n04eOjpV0zIizoGdO3cCkJqaSnR0NC1atAAgOTkZoNTPgb9Dy4E1OLnjDpciYtH939PHo345At72Qix5fVQbHK3NuJ6UW+oxjU7Pph37qORkY/So+fXXXwGM3xMA+/fvBwwbF4/ypE2A1w0rMxlrhvjy3rJTqLV6g8aSRISNmYw1Q/yQPuZ9yy5U02PBMWIzCsj/vxH0T7EW/89XsWJIU3p270r9+vVLbGh06tSJ7t2789FHH7FhwwZ69+7Nli1bqFGjBuvWreObb75h8+bNr62Qv4CAgMDrxuv7DSMgICDwPJHIoEZnuLwVdOpHjsnBp6/xzz0xe7iReYMi7cMU2GKZGDVqZkTOoE+7PsTGxhqNJhcvXuTkyZNUrlzZmG7Y19eXiIgI8vPzTTQ5Hgi1li9f3ri4Kx76NnnyZBo1aoRGY5pd7oWRdAWO/gjxZzCzLI+Z7zDjoenTp1OvXj0sqjQg7coxcpLuUXDjJJqcFMwq1UWXl0n6xQNMOvAr7hXK0qhRIwBjynY3NzcuXbpkUgbQo0cPli1bRmG+Cm2uDK2VjiVLlhgzFM2aNYtatWrRvn17tm7dyq1btyhTpgz79u1j48aNmJmZsXHjxpdzfQT+ESqtCo3OcC8/a8jJm4pULGKEWzm+v5NEgc5U90UpFjHWuQxDenV9qhThjZ0a42zlzJ2sO6iLfW7JxDLcrN1oVL7RU48rr0jD/ugkEwOSXqNGJDV4TyrMLalUwY48tTl/fOjPB+EPww4fhMgtXboUkUjEu5WSIDrPpP0ijR6FVARiKdbaNKORrGzZsnh7e7N3714kEglqtRqRSESPHj34/fff0Wq12Nv/fV0asURM4y5VaNTRnaI8DXKlBKmsdL2qV8kA/0qcuZthNH4Ux9FKQY0K/8yr8XGbAK8rtZ1tOTWxBQevpRCXWUBlBwuaVCmLWPx4raVpO64Qk5pnEhZYqJNwKamIJUfv0qFDB5Pv5gcbGkqlknLlynHv3j1OnjzJjBkzmDVrFvXq1QOgQYMGnDlz5sVOWEBAQOBfxOuzRSMgICDwomnzLVhVAFkxTRaZOdhVgqCHqY233NxiImQLoC0w/PDXo2dn2E6qVKli9JzJy8tDr9ezY+8O0iRphB8M5/r16wQEBLBo0SIKCgro378/jRo1oqioiEc5dOiQUaejuNfSC+fqn7AkCC5thNQbEHMYQoYYXuv19OzZk82bN5OWV0T21aOYV22CbbN+WNQMomzbkSCWUHg/CuuKnjRs2JDY2FiCg4O5fv26cS7169cnICDAJETNs2Jt1qzYgL2qGlvmnGXxmHC2bviT5s2bAwaPjA0bNgCwceNG4+6wjY0Ne/fuxd/f/4khOwKvnttZtxm6byiN1jTCf50/Q/cNZW/oXgICApg7dy4xMTEEBQXRq1cv6tatS0hICK1ataJp06bk5RmME9OmTSMwMJCgoCBiYmKYPn26Mfvh9u3b+e67717qnFauXElwcDCBgYEcPXqUfv36PbbucJdyvF+xLAUrFiI5dworiRgLiZjpns60LF+GQ4cOGcPDHqV4ynKxSMyy1sto5twMuViOhcwCuUROoEsgS1svfSZx44x8FZJH6hfcOUPi2s9JXPs5qtwM1k8bRl1XO2o62ZTaxvDhw4mMjCTwyz1MDS80Obbnpoa3lufx1m8pJKWmG0WOxWIxY8eOJTg4mObNmxsFxAMCAggJCTEa0P8pEokYc2v5a2lAAgiqVo7OPk4oZRIevAtmMjHWZlIW9q//t4SqC9VaLsdnEZOah5mZGXZ2dsZjD56xHj16UL9+fWJjY//yuVOr1QQHB9OsWTO6d+9uomv1IpBJxLSo4ch7/pUI8HR4ogFJpdGx40J8CV0pXVE+hRodK4/HcPToUZPv5uKbF3369OGTTz6hUaNGiEQiKleubDQcRUZGUqXK6xHqJyAgIPAmIHgiCQgI/HewKAvDj8P5tRC1CcQSqP2OIe17McNSoaawxKn51/NJCklCKpfSIagDvr6+LFiwgObNm3P//n2yirII/CMQTaKGeLN42s1vx7fNv+XDvh/SsWNHZs2aRY0aNYzGogdERkbi6upKs2bNkEgkeHh40KxZsxL9P3fUhQaD0SPhKKjzIa8AYg7j5RXErVu3qGwrR52disy2PNrsZGNVpXtdLJyrMXLg21jFRNCsWbMSC+tH9YoyEvPY8dMFvu6z/v/D0HL86h48rBpzdu9dAFxcXEhPTyctLY3MzEycnZ0BjLvLPj4+nD59mvLlyyPw+nE/5z59dvUhX52P/v+Cx3HiOFy+cWFq0FTmjphLcHAwGRkZhIaGsn79elasWMG+ffuYMWMGe/fuxdPTk7i4OCIiIoiOjmbmzJl88sknzJ49m7Zt2xISElIibf2LpHg2QjAs0J+ESCRikocTOS7lsHVzxLdmJRrbWqL8G+FVNgob5jWfR2ZhJkn5SZS3KG+SLe9pcbBS8KidwtzTD3NPPwCqV7CicuXKJUSm4WFInNEIHrkc9n5hkqigczUZnavJQKqAESvBxtnYVrt27WjXrp1J32Kx+LXPVhkTE4Ov7z8Lwyyu5zajqzedfSqy7tQ90nNVNPEow9sNXbGzkD9Tm3q9nvnhN1kQcQuRyBAO52SrZE4vH5N6D56xdevWsXnzZjp37vzE565r167s3LkTpVLJpEmTCAsLo2XLls885xdBbpGGRxLxAYasbpmHV5MolRHUp6Pxuzk4OBg3NzdcXV0BCA4O5r333mPSpEkAdO3alX79+tGsWTMqVKjA+PHjX+Z0BAQEBN5oBCOSgIDAfwuFJfgONfx7DM1dmnM947pJOJtVHSus6lghF8vp6zON3ZcSmP3zQjauXEpEUQS7F+0mdnssZhXNcBnhwrGIYzQPaY6vnS9//PEH9vb2WFtb06xZM06cOEGnTp1QqVTcu3ePoKAgtm3bBsDAgQOJiYkxZjd7YdwOBx6z66vXwdlV4BlEYGAgq3/9jsq1fSmUiHjUvKZOvkP/xm58te0C/fv3/8tuI3fHoH0ktXNS5n3O3Irg0LDtxGfd4Oeff6ZTp04MGzaMjh07Gus92F2+cOGCsGv8GrPwwkIK1AVGAxI8DAedfXY2Xdp3YefOndSoUQOxWIyTk5MxHb2TkxMZGRlER0cTERFh4qHn5eXFrVu3KCgoIC4uDnd39xc6j/uFKn67n8zxzDyydm3BJq/AmI1w9OjRxMXF0blzZ5KSkli3bh3u7u4sWLCAFStWoFQqWbhwIUqJmIY2FpRLuMc7gyayevVqrKys/rrzUrA1sy1V5PxpUUgl9PNzY+XxGArVj4TZySSMDPJ8+sZq94RDs0GjAn2x0FuZEmp0BRvnvz3OF8mzGIXi4+Pp3bs3Op2OSZMm0aJFC3Q6HePGjePcuXPY29s/c1itSCTCr3IZ/Cr/M8Hv+eE3mR9+yyS72e2UPPr8dgLrYmUPnrGKFSty8+ZNk7LSnru8vDyGDh1KXFwcSUlJeHo+wz3xgrFRyjCTiVFpH7l3/5/Vzb2sBbM/DQRMNcGKU6tWLerUqQOATCYzerwKCAgICDwbQjibgICAwCP09OqJudQc8SNC3DKRgsL0Rny+6TafbbpIkxn7mbfmD+6Uu4Ner8fGz4asU1loC7RknsrEqqEVp6NO4+joSLNmzfD392fNmjVER0dj6VoDSbuJ3LgXT1SBDZfjswBQKBTGbEaPCzk4d+6cMf10v379iIyM5O233yYrK4vFixcbNTHat2//+HCEwiyDsagYaq2eFivzuJCkpfW0nZw8eZKePXsyd+5cVkwbiY+LLXKJGLlEhIVCglImoaFtPn26tic/P5/GjRv/5bWNvZrxaLd08RvKx+1nMarLd3h5VGPEiBH07NmT3bt3m+hJpaWl0apVK44cOUK3bs8m/izw8jh4/yA6TN/kB+GgGYUZHDh0gODgYNOMbsVe6/V6qlatSqtWrYiIiCAiIoKVK1cChhTtU6ZMISgo6IXO4VRmLm+dvMrvcalcyi0gOi6O46mZeP60FKVSybZt20hMTGTz5s38+OOPzJo1i+TkZDZu3MjRo0cJDw83LsAvX77MhAkTWLVq1d82ID0vPmtdleBqjiikYsxkYpRyCXKpmA8Dq9DW+xlCaeUWMCQMqjQ3aMrJLQz/Gn0AnX5+cRN4DrRs2ZKIiIgnGpCyC9WMmfAlvd8fjkwmo3v37sydO5fvvvuOw4cPc+DAARQKBZGRkSxfvpw+ffrQvn17OnXqxIIFC2jWrJlJYoQDBw4YvbH0pbnTPAOFai2/RpgakB5QpNYSn/nQu/TR5+rRskeP7927Fy8vLw4ePEj37t3/8VifJxKxiEFN3VHKSi5dlDIJI4M9Hntueno6LVq04P3333+RQxQQEBD4zyB4IgkICAg8gq2ZLWvbr2Xy0clcSLmATCxDp4e85CbkJzcHDDvvuRdDUXpWxFJ7AwB5GTnaPC05F3PIuZDD9dTrlLUrS+vWrTl16hTr169HJBKRUChBKq+D7tIVRJZluZyYT+sxc5Cd3YC5XIJKpeL+/fv07t2bLl26lAg56NatG+7u7nzwwQc4OTnRoEED/Pz8OHHiBJGRkchkMtRqNRKJBInkMfogFeuD3nQRIpOICH3XAqRKCPwcfH0BjCLfG2vD9a7eRCdkU9ZSgd/U1kieoGFRGjLF4/VK9Do9e3cdMP7dunVrypY1ZL4qLY11YGBgifBAgVdPadouD8JBJTIJjTo0wtHR8Ylt1KlTh/LlyxMYGIhIJKJ3794MHTqUnj17Urt2baKjo1/U8NHp9Qy+HEN+MVFskYUVotr12JeazfsN/Ci4EY23tzdSqRQfHx9u3rzJnTt3qFevnvGZeyCiP2vWLNasWYO19T8TTn4eyCRi5vetx53UPI7eTEUuERNUvRxlLRXP3phVeei3CQoyDP+snEBm9vwH/Q8pyM3h0oG93L14jiy1htB9+4zp4OVyOW5ubnh5eeHn50dScgot+n7MHfOqpEWc4HyFDlT68Dck4T+yZ88e5HJD2JmTkxPe3t40aNCAqKgoHBwcWLt2LUOHDqWwsJBDhw7RqlUr0tPTAShXrhzr1q1jyJAhXLx40egN83e4npSDuJRnTK/VEL9xKuqkW7Ru3ZoZM2Y8c9u+vr5Mnz6dyMhIbGxsXitPJIARQZ7EZhSw40I8YpHhs0ar0zOoaSW6+FR87Hn29vaEh4e/xJEKCAgI/LsRjEgCAgICpeBs5czvbX4nvTCdHFUO4zfc40RytkkddXoc+Tcuknk2icK4QtL2p2FV14rs09mU71ke+yB7nKOduXDhAsuXL2f27Nmk6S1Zc+o+uQl3sPGrj8KpGnpA6t4I6xpNaJqyHY8qVYiMjGTq1KlERESUCDkAGDZsGO7u7ty9a9ARatKkCbt27aKgoIA6deqwYcMGo4ZQqZT1hEpN4c5h0BYX+xYZNE3qvVvqaV6OVng5/n1vihpNKnBqZwzaR8JpACztFNiWM+fq1asG/ZC/sQgqjZUrV7JixQq0Wi3Tp09nwYIFJbKErVmzhvnz52Nvb8/atWtfiwX/m0oLtxZsvbEVTbEwpwfhoK5WrvzS9RdEIpHxPShuDCxuKJw4cSITJ04s3jQ1atR44ZkLz2Tnk/dIyIysZh0KdoWQr9Ox8dgJepWzJSoqCq1WawyvrFy5MufOnUOn0yEWi9H93wj1008/MWPGDFxcXPDweLy3xMtElJvCJ50NYV1L/qbWjxGlneHfa0ha7D3WTRmHVq1Co1Kh0Wr5JNifqr5+LNofyrhx49izZw+pqak0bNiQkQt2cPbcOew7t0Gr1VKklxCfBxkpGoZ2asbeHSH06dOHSZMmkZ2dTVJSEoDJZ3SFChWoV68eFy5cICUlhfz8fFQqFQAVK1YkMzPTZIyBgYGEhoYilT7dT3JzuQStrqSHkEgixfGd6VRxsODAJ4GAwSj0oI8Hz9hfPXdnz559qnG8CiRiEd/3rMOoYE8O30hFKhYRWM2Bclavn/FSQEBA4N+MEM4mICAg8ATszexxs3bjakJBiWN2gQMp1+Nb3MZWwayiGWValsGmoQ25l3KxbmiNUqqknmM9kzCs+zbeSNx9KYq7QtKGyejyMoztaXU6cnUylErlE0MOAD7//HN+/PFHpkyZAhhEp/ft24ejoyNNmjTh+++/x9/f/8mT67USvNoYjEYKa0OmurKeMGgPmP/9lNtPwjvQBRsHJZJiIQkisQipQkLwezUAqFatGkeOHHkuAuPFBZEjIiKoWLHkbrVarWbhwoUcOnSI/v37s2jRon/c73+ZD2p/gIXcAvEjPzHMJGZM8pv0t7JQvUwy1JoSP45kHlURyRWkjxlMwqUL9OjRg3LlytGlSxdGjhzJuHHjcHBwoHv37vj7+9O8eXNu3DB4KNra2rJy5Uo++OADEhMTX/6EHsPThHW96eyYO5OivDw0/zfiSCUSxDoNMWcjaVizGrGxsVy6dIlTp07xwUcjCfkzFK1Oh0giBZEYXZFBOFxTmMeug8dxcHDg6NGj/Pjjj+Tn5xt1hkQiEVqNBp1Wi7W1NQcOHMDBwQG9Xk9+fr5JlrB/GiJWxcESB6vSPcfMZGLeaej6j9p/E3CxN6ePryu9GroIBiQBAQGBV4DgiSQgICDwFNgoZWTmq0se0CvQJHeh+pQdFGkNstOWtSyxsrOicYXGeKg8cG/jbtTH6DL/KCKpDIeuExGJJaTtnY82L5PEtZ8jEYlwaeBNq1YjTDIjPcrWrVtxc3Pjo48+YtSoUezfv5+WLVsil8tp0qQJjRo14urVq/j5+T15UnILeHsl5CRCylWwKAeONf72NXoaZAoJPcY34FLEfa4cTSAlLZlfd37B/aTbvP9DLgCDBw/m6tWrbNiwoYTRJz8/n549e5KXl4eNjQ1//PEHCoXpgupqYjbrTt0nObuQgqhQVEXqJwoi5+fnG0OTWrRowdChBtH1nTt3Mnv2bDQaDVOmTHlsSnYBU8pblOePDn8w7+w8Dtw9gEanoU65OoypP4a65Z7gHfeaUMtSiaqUhb7Vh2ORiWBQRQe8PCsaM5YVZ/jw4QwfPtz495dffml8/SCz26viWNwxFlxYwM3Mm8iz5Fzcf5GmTZvSvXt3VCoVtWrVon379mzdupVbt24xePBg+vbtS3Z2Nj4+Pvz000907tyZ5cuXY2dnx+jRo+nfvz/169d/pfN6HGmx98hKToZiAu+Fag1mMinqokJC9+ymbfdeiMViMjMzKetZl5yLnyBz9QZAXs6d3At7yL0cgSYzgVznTlSqZEF6ejofffQR33//PXfv3iU3I53Lh8LJPrCdk5euUXD1AjWcHoZrRkREcOXKFQIDA/Hw8GD06NHY2tpy9uxZLl++DMDkyZMJDQ1l2LBhf6nbIxKJ+KFXHd5degqVRof2//eqmVSMWxkL+vm5PecrKSAgICAgYIrodRLNexYaNGigj4yMfNXDEBAQ+I+w9PBtvt93jYJHwrDEImhQyZ7xXeTM3jmbPd/toc67dRjTcwydqnRi1cpVxvTOAHP2X2PRwdvELP8UVcI1xGZWyMu54/j218ilYo6Mb/5G7qw+mvXojz/+ICws7LEC2MuXL+fdd99FpVJRUFBA165djSEdAQEBHD58uNTzQkJCiIqKYsqUKUyfPp1atWrRuXNn4/GfD9xgfsRN1BodWj3kn9qEKiWGo3u3svLHGTg6OvLbb79x6dIlzpw5w++//07//v3ZsWMH3377LRqNhlatWhEaGkpQUBChoaHodDratm37yo0Abyp6vf619z56lMFRdwhNy6bwkbAhc7GYg77VcDF7tpTsr5o/rv3Bd6e/o/D/hm6dWocCBXWc6pD0SxLjx49n6dKlrFy5kr59+zJr1izWrVtH+fLl6d+/P4MHD2bIkCHcuHGDwsJCBg0aRHBw8GutM3P/8kW2fT+dovw8Y1l0QjJ7oq4hFYup5ubKnjMXmDp1KpmZmQwZN41Gfv5Y+nbH3MMXTXYqqbvmoNcUYdu0L42bBbHq3dq89957JCUl0bp1a0YNG8rK8SNRFRRQPP+8VC5n7ZUYjp48RWxsLJMmTTIJod29ezdbt25l0aJFBAYGMnfuXGrUqEHLli05dOjQU83vZnIOv4Td5PjtNJQyCb0bufJu40oo5Y/XnRMQEBAQEHhaRCLRGb1e36C0Y4InkoCAgMBT0L9xJfZHJ3ExNot8lUGQWikTYy6X8kPPOrjYm7Ph/Q3wyCZyca0JvV5P13pl+P3YNRw6fkLmoVWU7fipsa32tZ3eSAPSA1q2bGlcKMXExBASElK6EUmVz/IFc+nX0AGzyk0ws3uopzJp0iQuXrxIhw4d2LFjB8OHD+fatWsolUpWr15NlSpVOHPmDACZmZmUKfMwVfa5exn8GnHLJH25VqpEUrEmg1dEMiWwOWfPnikhiGxra0t2tkHvKjs7G1tbW1JTU4mOjqZFixYAJCcnv5HGkGehuHbUmjVrSg39279/PzNnzkSn0/HDDz9QsWJF3nnnHQDjwnrevHkm5zzrNYuKimLo0KFIJBI8PDxYtmyZsY0H2dqKe/i8CH6u7sbI6LvsS8tGLhKhAywlYn6rWemNMyDlq/NNDEgAYpkYNWquZFyhcZPGxMXFkZ6eTlpaGpmZmTg7O3Pr1i3atWsHQIMGDbh58yZdunShb9++eHp6Ppdw0xdJGWdXNGqVSVn1CuWoXqEcIpGYqk0M4//qq68Aw+dzneE/kZBluE5S67KU723QZVPKJPTxdcXKyoqQkBBje3sWzENdWGhiQALQqFRkJsaXGrp2+/Zt5s2bx/bt241ltWrVQiaTGcXYnwaPclbMe+f19+wTEBAQEPj3IRiRBAQE/nP8XaHl1e/7su9KEhtO3ydfpaFlDUfebuiKjVL2l31G3I/gu9PfEZ8Xj8Rdj63CkaT750lZNx4LL3+quTvQVO7L9etK/Pz8SEtLY+rUqXTo0IFx48YZvXQCAwOJiIigd+/ejB8/HolEwrRp09i4ceMLulqlo9PpCTkXx9Ijt0nNVeEszeFI6AFj1qOUlBT2799PYGAgs2bNYvz48QCcPX2SHb3NOX8xg+AO3RhcX0H/4eOM7X7zzTdERESwc+dOduzYgaurKwsWLGD37t0MHTqUlJQULly4wMaNG8nJyeH48eN8+OGHREdHk+fdgyKNacY5RcXq5FzYS3aBml0Rx3GyUZQQRPby8jKWhYaG4ufnR9myZfH29mbv3r1IJBLUavW/2oBUXDvqcRQUFLBo0SL2799vkvXvQVjXqFGj6NChw98eg0anIV+Tj6eXJ8eOHQNg4MCBREZG0rBhw7/d7t9BKRHzWy134gtVROUWYCeTUt/avNSsWC+bR73+/krT6Fj8MSRiCRR7NLQFWiRKCfmafPaE76F3i9506tSJYcOG0bFjRwAqV67MmTNnqFmzJpGRkQwePBhLS0usra358ccfn5vw/YvC3MYWj4aNuXn6BNpHjEkSmYwzyRnMbNrUGDosEon48Z26vLfsFKln/iT73G5smvZFl3SD3NgLuHX8HXAxaef2mVPodSWTBABoNVqyU5KRyWRotYaLn5+fzwcffMCyZctMwnD/zZ8tAgICAgL/PgQjkoCAwH8CtU5NSn4KuSm5JovlmJiYknWLCS1v3ryZRYsW8dlnnyGViGnnXYF23hWeqe/9MfuZcGSCiScAZeOoPbcK0/yW8NOnE/iib1/27NlDZkY6DRs25MqVK5w/f57JkyeX2ua8efPo06cPYrGYFStWPNN4SiM+Pp4OHTpw5coVcnNzSU1NZenSpSWyY4Fhx37E+nOERSdToNaSuPZzknt9jd17vzK0U23WzxjJzJkzuXfvntE4FxERwe7F09iad4q3nDX4OIoJ7a9AKhbB8fmQXTLjW3R0NOvXr2fv3r3k5eVRWFjI8OHDad++PZ999hmVK1dm6NChVKxYkejoaGIz8nk0aZHcsTJiqZyYleM45+nCyPlz2bdvH126dCElJYU1a9Ygk8kYMmQIAQEB2NnZsXbtWsRiMWPHjiU4OBiRSESNGjWYP3/+P77OrxPJd7OJuZgKwLGru9FqtUbtqO+//5527dqhVqtxcHDgjz/+4Pjx44jFYtq2bYujoyMLFy7EwsLC2N6hQ4f44Ycfnnkc+ep8fjjzA9tvbker12ImNePdGu8yxHsICoUCFxcXBg0axL1793Bzc8PFxYU1a9aQnZ3Nhx9+yMWLF1m0aBFz5syhZ8+eqFQqbG1tadOmjYkn4N/ByUyOUzHPoyd5SRWnc+fOHDx4kE2bNhm92Z4nxb3+/gqVVlXCIyb/ej5JIUmIZCI863ri6+uLl5cXY8eOZcGCBQAMHTqUPn368Ntvv1G7dm2jxto777zDpEmTqFat2vOd1Aug9bCRaIoKuXvxPCKJ2PheBQ0ZwezFS0vUb+Ruz66RTQlu8RXVRvyCrZUFN5b+yaUbF5FJns5LSKvTseTQKeIzs+n2zjvM/u570tPT6dGjB35+foSFheHt7Y1YLObKlSslzv/222/p379/qZ6AAgICAgICrwOCEUlAQOBfjU6vY9GFRay8shKNTkNyRDLKWCUBgQH4ePs8tdCySqWiW7du5OXlGRfVT4Ner+fb09+aGpAAkUyEBjXHMjbSpVNHY5agrKwsxo4dy+HDh9HpdMhkslKzszk6OlK5cmXEYjFOTk7/+DrZ29tz4MABunbtCkD58uVLNSABHL+dRvhVgwHJOB+pDBUwffd1Pmjdlp07d5qcYwjhmMv2bqV87ajzISsTHtnRr1q1Kn369GD48B6sX3+Aw4dPMW/ePJydnUlPTycxMZHZs2fzyy+/AOBd0YaDW9eQdfEAIpmcMq0+QlbGGbug9zGTiVn6URO8yluXKojcv39/+vfvb1LWrl07YzjPvwmdVseexVHcj05H8//Qv4MXzpOhTubAif1MmPAFO3fuZOfOnSiVSiZNmkRYWBipqakkJCQQERHB4sWLWbRoEWPHjgUgMjKS2rVrP3Wa8gdodVoG7h3IzYybqHQGbxG1Ss0PK35g8tbJBPgEcPfuXSQSCaGhocyYMQOVSkXHjh3p3bs3H374ISEhIfTo0YOtW7fi7+/P559/zocffvh8L9r/qVq16lN5SS1cuPC5ZfnT6/UcupHKpjP3yS3U4G2jIiw83Oj1N2bMGCZNmkR4eDgKhYKQkBAGDRpEeno68fHxdH27K/Ex8WjRYhdgR8ycGNxGu+HxlQdKqZKx9cca+2rdujVly5YFDFnl/vzzzxLjEYlE9OnT57nM7UUjU5jRZdwUMhMTOHs+glsFMSg9KrJ1/2Hee+89pkyZwvbt25kzZw4AJ0+eZNWqVWTcjcZ17wxa9+zJoTvXaBkcxM6dO7G0tDRp36ORP1ER+9FrH34WSsRiPgj0w6Zced7/6TdEIhF79+4FDJsW58+fNzEAFv88Ku2zSUBAQEBA4HVDMCIJCAj8q5lxcgbbbm2jUGMw4hRlFZGdnU3FsRWRnZSxbds2EhMT2b9/P2fOnGHWrFn0798fa2trAGxsbMjIyODevXuULVuWnTt3PjZF86NhJosXL2bs+LFkd8wuUVdboAUlHIo9hNtRN0aMGGHMEhQYGMiUKVMICgoyjiEhIQGlUmlMEX7x4kVycnIoKiri2rVrVK1a9Zmui16v50B0MmtO3iU9T4V/lbK851/JZC4PxGAXL17MsmXLCAwM5MSJE9T9cB6pV46TdWQN8vKeoNOhK8pHrDBHIhaxbW8YX40bxaVLl4BiIRxt9SikBoOYTAJanWEcbdfkcyFBR+tWLZgx6zsA1OpM3Nx2snzFJjZsmEVioooKTg4cPXqChg2bkZiYiFwu/x97Zx1eZd3G8c/pnY11McaCGt01xoDB6EYQkW5BRUClpAQFRBRFlBKUDumShhFjdLMxYt3d2+n3j7nDDhtIifE+n+vyuvCJX+2cZ/t9n/v+3pw5c4Zbt24B0LWKBQvvBVJ24NeIxBIMhkKBRCoWUa2sFdXKWr3QGv1XuXookujgxwISgFxijquiGtcORdKmTRsuXLjAzp07iY2NJTExkSpVquDo6Iivry8SiYQ2bdrwzTffGO/fvXv3U03Un8W52HNEZEYYBaQizOqa4dHAA6uzVoSFhVG/fqH3S8OGDQkKCsLKygq5XE5KSgpnz55l5syZLFq0iDp16gBQr169l1iZkuj1Bu5fSuDWyRjyc9Q4eVjRqJMnju6WT42S+vzzz3FxMY1WfFkRWqc3MHbjVc49TDF6sQWJdLiMXMGmcX6MHdKPBg0aEBYWRmBgoPHZtGvXLrKysujVqxcff/gx8gdyfvjgB/Ie5uHYyRGJUoJEJMFSZkm3St24d+8eI0eO/NMUtZ07d/Ldd9+xd+/el1jNvweNTsOs4AUEpQShM+gQXRURvi2cKb6FKbbdu3ene/furFixgnbt2tGnTx9+/PFHYwrx1q1bnyruNOvdjwcXz6HKzTX5vSCVy2k7Yiy5ah0bL0Sy82oMGr2eRnZaTpw8+UwBcMKECcyYMQM7Ozt69+6NUqlELpczYcIE/Pz83sCKCQgICAgIPBtBRBIQEPjPkpKfwu4Hu002qGKlGPOq5mSrs1FUU5CfmP9cRsuVK1emdu3aDBgwgIYNGxojMJ7kSXNpkUiEgZKiU1E6iVwup1nPZjRt2pT69euTkZGBQqFAKpXi4+MDFKaVdOvWDV9fXxwdHdHpdHzyySds2LABtVrNmDFjOHjw4HP7auj1helop+4lGTemIfHZrL8QgVKlNblWq9WyZs0aAgMDuXTpEhcuXCCnQEvWhe049/8KfUEOiVs+QxVzl4yzG5HI5FT0a4mvry/z58+nT58+dOvWjdDQUAY9KgC9lq19lHSpIqXntjxG1pdzfLAFSOQw9SjIzDh79jQXL3UhLy+CDz+0A2Dv3kwkEh3h4eNZvnw5V69e5dChQ9jZ2RnHqslMpEsbH+6ayUEEOp0YsViEp70Fq4eUWlzi/w6DwcDNk9EmAhJAReeaBIYc5ObJaFKdb1C5cmUMBgObN29m+vTpGAwGGjduzKpVqwC4ceMGFSpUMN5/9OhRZsyY8cLjOR55nDxtnskxvUaPWFaYOpRBBvfv3ycuLg6A69evG6/r2bMnX3/9NVWqVEEikVChQgVu375N586duXXr1iv7KBn0Bg6tuE3MvTS06sL1yklPZv/+fRy/t4FadWoQGRlJcHAwUqkUOzs7du3aVcL029fXl7Vr1xpF6FOnTjFjxgy+/PLLPx3D9ivRnH2QYhL1V2CQoFGL+HTnHbp27UpERITxWVH0DDAYDIwaNYr58wsrEn7u+DkRb0ew46cdOH3ohFavpXHZxsz1mYuFzIJq1aoZvYGeRe/evendu/fzLuE/gqXXlxJwN4AH3z5AFavCZaALFvUs+Hnzz8jyC/3sLly4wKlTp9i6dSsADx8+RKfT/WlknaW9AwMXLOHMpl95eOUCep2OspW8aDVgGJYVqtL1h7MkZBZQoC38/MQka3EYtoI1H7Zk4sgBpQqARaxevZqRI0cyYMAAOnTo8BesjICAgICAwMshiEgCAgL/Wa4mXkUmlpmISOaVzUk/nU6+Np/jQcfpVanXcxktq1QqJk6ciFgspn379gwYMABnZ2cAguOyuB6dTn5qokmaSa9evVBKlTjKHQn6Lgg7PztSDqVQ/r3yWNa1JC84jz59+9C7Zm8aNGhA1apVCQ0NBSAwMNA45tLSqo4dO2b8d2kpJ8/iyN0EEwEJQK3To9ZBTGKOyWYmJSUFDw8PpFIpDRs2BKB1NUc2icXoVXkk7/oSbUYCZhUa4OjgTta5jSxZ/A0SicSYwgEwZMgQODoDLq4i4FEuKXkGDg34w09HLIWqnUBWWJkuNfUMBQVxGAwa4/01a5rx+8FscvMecOHCAby8fErMq2LFiqRGhnJ5uT+nQlNIyc6nVnlbGrjbCMa1f6DXGVDla0scL+9QGZlUwcKtH1GnWSXeffddvv32W65cuYK1tbUxEqlVq1a0bNkSc3NzNm/eDEBoaCgeHh4olcoXHo9EXLIcec7tHFKOpCBGjFUtK2Yun2ksKe/h4YG7uztQ6Ds0duxYY1RMz549efvtt+nQoQNlypRBJvtzw/tnEXknldjQxwISAAaoWb4Z9Sv7clOz3fh9hcIKW8U/88UpLkJbW1ubiJ/P4pfAcBMBCUCvygOFOTeiM9A/OMOkjyewdOlSPvzww8IhGgzMmzePNm3a0LRpUwAK8guIORHDxOETcch2YMSwEVgrrF9kOf6VBAYFMnvIbHQGHeYVzRGbiUk9noomRYNIKsKgNjBnzhzOnDnD7t27jc+JypUrm5jHPwtrJ2e6TZxqfG4WtbHg9xDiMvJR6x4/T7UiKTl6mLU/5KkCYBFhYWFGo/oGDRq82kL8y3hR8/iEhASjh9/JkyeZPn06ZmZmbNiwgfLly7+hUQsICAj8/yCISAICAv9ZZGIZPKEdKD2UZMgzCFsQRlmnsvSZ0ue5jJYjIyMZMWIEWq2WihUr4uTkRHaBhhHrrnA7JgMDINJrsBz4E5/0rc/Ps97H398fjUaDfqse5zbOyL3kqOJVZF3PwsHXAXWUmjn95jCs7zD27duHra0tHh4ef/m6bLgQaSIgFUer13MnNgvbP/7fwcGByMhIdDqdMQqkZ31X3hMZkMjk2HX5mIT1EwFQSMQ4WSqo6Fim1LZpNQUenoCIUOAPIUOmBKUtdFpkvCwtLRCdLtfk1sqVFSgUOYwf/5ByLlI++2wxy5YtM7nG0dGR3r1706ZVC5RKJStWrKCqhy0CjxFLRCiUUlR5JYWkt5qNQWEuZcS3LRCJRFy7dq3ENRMnTmTixIkmx6pWrcqOHTteajwdPDtwKPyQSTSSLl+HSCwCA3y74FvEYjFr164tca+NjQ15eY/vK0oHOnfuHJ9++ikVK1Z8qTEVcfdcHBrVYwHJgIFgcT63lBLyJQa4n8ud0E04ODiQkZFBcHAw2dnZRn+1IgEHQKVSERERQbdu3fjmm29o0aLFc40hNUdd4ljxqL8W3drRtGlT9u3bR/PmzY1rMG/ePJo2bcqWLVsYOnQoN27cYOrUqfj7+9OpUycG9BqAtfN/W0TKSk0mOTqYSpMropPpiV4RjV6lR6KUYNnWkvQz6SApLCoQFBSEu7s7OTk5hIeHc+PGDbRa7Qt5fD0pAm2/GmMiIAHGtN+rkekYws7y8YTxJQTAIipUqMDNmzepUaMG169f/7+IRtJpNagLCjDo9S9kHl/cw++LL77g6NGjBAcHs2DBgv9cQQQBAQGBfwKCiCQgIPCfxdvFG52+pFji0s8Fc6k5c5vPxcvT67mMlq2trTl79qzJNRO33eBGVHqxjYIERBKm7gnmbV9/Dhw4wJkzZ+jQoQNfT/iaJVeXcLnxZWLXxdKgaQO823rjaO5IVlaW8W1plSpVXtv8n0ZpG1ODTkvS9tmoE8MZ+W4vln1fKOpIpVKGDRuGj48PTRo0Iy0+ly3TgujXaCC/bZ8FThURS6QopGLa1HQm5E6+iUn5+fPnH1fRCg1n5e26vO3dBpK2keXgwcBtyXz1w2pqWDobxxIfr6JP70jcPWTIpCKmTHXk0KFs3htjzw9L0jh37iHr1683pt/s3r2bGzdu0LRpUxYvXsyFCxeMba1fv55169ah0+mYN28ey5cvL7Ex2bRpEz/99BN2dnZs3rzZ6If1X0QkElG3jRvXjkSWSGmTysTUaeP2RqO2mro0pY5jHa4nXUelU6FJ15B7L5ca02vQu0pv6lcp9EJ6VlW0gIAAAgIC+Pzzz+nSpQuxsbFIJBKaNWv2SmNTF4vYMmBgn7ma2xEXSb+yBwCpTVnE2gKaV3Plzp1zuLi4kJOTw86dO+nfvz+//vorZ8+eJSsri1GjRnHp0iWuXLmCjY0N5ubmzzWGai6WBD5MNTmmrNQYZaXGKKRilsxsB8C8efNMrsnPz39qm8WjGN8UixcvNgp8f0ZaWhpjxowhJSUFf3//pxr8P41jEcf46vQXJBnSkehB/0dAkUgiQpOiwaAzIJKKMCtvhmM1R1auXImjoyN79uwBYObMmdSrV88oID3PmEsjvxShvkgAFMvktH+rY6kCYBEjR46kd+/erF+/HoVC8VJj+LeQl5XJqbWreHDxPGAgW6vn6PFAk6je4cOH4+DgwIMHD5g5cyYrVqwgLy+PI0eOkJyczIwZM1i1ahVKpRJLS0uaNm3K1KlT/+6pCQgICPwnEUQkAQGB/yzmMnM+bfQp31z5xqQ6mpnEDC9bL/zd/V+67YTMAs4+SDF501z0llmt1bP94HHWfTub4OBg3N3dObP1DL+M+wWAzgc7Y3HDwljhyMrKiri4OGxsbHj48OFLj+l5aeRpy6PkHLT6x2MXSaQ495uHXCrm0JTWOFmaGSMpxowZQ4+2/dj3ww2OZAdQkKuhnmNTGvbyRm8j5xfFFI5+5k9WSiKdfkjkxPHjRpPyr7/+2rSKVt93QCQiu2IOg45FsGDFD9SoWRMofAuvN+hxcGxDo0ZLmTrN3ji+AQMKI4oGDXaga9f3TebzzTffIJPJiIyM5P3332f//gNo9HpSEhM4ffo0J06cAApTJJ5Eo9GwYsUKzpw5w86dO1m5ciWTJk16ncv9j6NBJw+SorILvX7+EJKkMjHlq9nRsNNfHwlXHLFIzJR63zBh1xGCo0Vk3TyOKP8yOT/kE904GlVdFZ07d0atVuPi4sJvv/3GyJEj6devH/Hx8VhZWTFmzBgAhg8fjk6no2nTpri5ub3y2Nxr2pEYkYVOo+eRVE+4TI/Cy5uyXoWl7nNuHUVsZklCvZbUTIyhd+/eRn+kDRs20KVLF44fP46TkxNxcXGEhIQgEokICAjg+PHjzzWGj9pU4VpkRomUNjOZmD4NylNG8c//M06lUnHz5s3nvn7OnDnMnTuXatWqvXBfW+9tZdHFr1GjKfRFkwB6KIgqQJutReGqAB24Dnclfm08tR1qEx8fz7lz53B1dWXQoEHP/bP5M+q6WXMhLM3kWJEAaG8hZ+n0tkBJAVClUqFUKrG3tze+4HjSZ+u/hEatYvOMT8hOSUb/R5U7uU7Hp+19adihC4u378Xf35/09HSOHz/O1q1bWbduHUePHmX+/PkcOXLEmO6Xnp5u8hJApys94lZAQEBA4NUQ/90DEBAQEPgreafaO3zX+jtqO9RGKVXibO7M6LqjWdNhDVLxy2/AHiXnIJeaPkJVMXeJXzueuPWfki+zMnomzZ07l5CQEKNpa7NmzVi2bBnTpk2jffv2jBgxglq1ajFs2DCcnZ3p2rUrrVu3Zs2aNS8/8WcwskVFZJKSj3+FVEyHms44WZqZHDcYDJxYH4JWrTexCNdpDYgzNRhytViZFfrPPGlS/mQVrZYtWwKwfft26tWrR82aNUnNT2XGuRk02tiI+hvqM/7sPK7f1DBxQgI7dmSQkKBhwfwkxGIl9et/gExmmqJW5H0Tl5xOqqIs1WYdpvrMw7Qa/x2PErPw9/dn3Lhx6HQ6YmNj6dGjB97e3oSHh3P//n3jmNu2bWuMYlqxYgXe3t5MmTLlP1cRSSIR0+X9OvT6pAGNOnnSqJMnvT5pQJf36yAp5XPxV3IvIYsePwURHGmBXmeOLrsATZ4V5t0WI5Iq2LxrM4vXL+bQiUNUr16dkydPkpmZaYxICg8PZ86cOcTGxhIeHk7v3r2pVKkSiYmJfPDBBwQEBNCjRw+6detG8+bNycnJee6x1fR1RSoTgwhuKLRongjQ0qTFkn39dx6u/4zbd+5w/vx5kpKSTPzVALy8vHj33XdfSpxsWtGez7vXxEwmxkIhxVwuQSEV41/NmVndar5we2+CkNQQPgn4hA47OtDvQD/GLxjPwEEDAdi3bx9+fn74+fmhVCpRq9XG513fvn2Bwqiz+fPn07p1a4KCgp673wJtAd9d/a5QQCqGNk9L3MY43Ia6Go8pFUqsZdbUcqhFaGgoERERrF69+pXN2IvzafuqmMlKfp+UMgkT23khFpeM+Fu/fj35+fm4urqWOPdf5d650+RmZBgFJACpRIJEr+P28UO09y+M6q1RowZisZhy5cpRq1YtAMqVK0d6errxPltbW2NRDACx+NWeZxcvXsTHx4cWLVowceJEEhISjKJfZGTkX/67WkBAQOCfyj//FZaAgIDAK+Lr6ouvq+9rbdPZSoH2Cb+LorfMAL6VHfD09DSmThX37xk0aBChoaHGcw8fPqRz586sXLkST09PTp06haOj42sdb3EqOFiwZkgjPtxyHfUfVYPUOj3+1Z1Z1KduieuzUgrITVcBMKH7YpNzOo2evKzH6XFPmpRDySpaAMOGDSMmJobN2zfzC7+Qkp+CzlC4iYiXxOM+34vp9brw3YTVNGlihUwmolatJTg6+HP2zNoSY+zeoydHAs7h0PUTZH/MKT05meTUFL5csoqYo6vZu3cvCQkJHDt2zBgpNWjQIOOba2tra9LT09Fqtaxdu5bAwECuXLnCxYsXX2W5/7E4eVjh5PH3pu5N332HXNXjzaNYYYHcrRbpeWpOFBSwc/t01EvVqNJUiNJE/Lr2V1zLudKqVSsyMjLYuXMngwYNIj09na5du3LgwAE++ugjjh49yuzZs43t7t+/n3nz5nHixAl69OjxXGMzKyOj9+SGHF1zl4IMVYnztn7DACijkGLYP5OPP/6YW7dumfirFTFixAgWLFjAwoULTbySnod3GrvRtY4LAaHJ5Gt0NPG0w93++dLh3jRTvpvC8tXL0ev0lB9TnljLWOIOxSFvKQege/fudO/enRUrVtCuXTsGDhzI5cuX2bVrF2ZmheL1+fPnuXbtmrHE/fOmk91IvlEiFdOgMxCzKgbnPs7ErYxFE6lCLJXySeVP+EH6A7t37cbZyZnExEQGDRpEcnKyUaB4VRp52rH03QZM3XWLArWusFKnwcCEdlUY6F16xN/gwYMZPHhwieP/5Uik0KCzaFUFJscKNFrMZFIkUinHjhxm+twvCA4ONp4v/nMu7iNlbm5Ofn4+OTk5BAcHU6NGjVcam4eHBydPnsTMzIwBAwaQnJxsTK+cPn06v/7661/6u1pAQEDgn4ogIgkICAg8hWf5sFR2ssTdzpz7SdmoEh6RfupXDAYdVk3ewr66N8N9PY3t+Pn5ERAQQFJWAZcj0klPTDap4ubi4sKxY8fw9fXF0dGR9957j9zcXJYuXYqlpSUTJ05k69ataLVa2rdvz8mTJ195bj6VHbg8vS2XI9LIzNdQ29WacjalV9fSav4wOn4CnU7LskPTiE55QIcOHZg/fz5OTk4lNtFPVtGCwk3AypUr8e7kTXaTbORecuM5sUyMBi2L7h9nwLvTiY/Lxt4+GEeHp6cfvvPZEoI9zhC9Yx4ug78tbEdhgbh8TX489ZAFvi0JuXWjRKSUjY2N8c11VlYWNjY2pKSk4O7ujkQioV69ei+8tq+DF61O9G8kq0DDzegMk2MK1+pk3zyCTg/xoZmU8ZIg1ovxfM+TlF0pVPWqikOkA5cvX6Zv375cuXKF2rVrIxaLuX//PnK5nHPnzhEZGUnLli05e/asURRwdXUlIyOj5ECegW1ZC96Z3oQHu26z7ko0Gr2hxDUanZ6AU6dxsVaW6q9WJIJMmzbN5JkybNgwZs2axcyZM//UQNhCISX+0kFWrFjBnDlzcO/S5YXm8SYIjwrn172/4jH5sUCSfiYdy6aWXIi/QL6q0KfpwoULnDp1iq1bt9KyZUsmT57Mp59+ipubG7/99hteXl5Ur14deLFIEoPBgOiJSgqZlzPJD88ncWciMq2YD1q34HKWhkGdBuGmdOP48eOMHz+e5ORkTp8+ja+vL3q9nm3btr2GFYF2NZxpU60tIfFZqHV6arhYYSZ7vqpv/y+U9jMOT0nj8J1QZFIZ/u07GKN6n4fp06fTrl07zMzMWLdu3QuPR683EHUnlajgVKRyCVUaW2DmZoZUKkUikTBw4EB+/fVXIiMjTX5Xe3l5cfHiRaZMmYJGo2HkyJEMGzbshfsXEBAQ+DcgiEgCAgICT6Fq1aqcP38eKIycuXLlikm6w/KBDei9/DwPL/yGY+8ZSOVmKKQS+jQoT+uqTsbrDMDUnbfYdT0WuUSMXqvGatBPfNCzLhu++JAFCxZQvnx5JBIJYWFhnD59mqSkJCZPnsyePXvIzc0lOzub8+fP07ZtW5Mxvv/++2zfvp0FCxYwcuTIF5qfRCzCu6L9n15n42xeauqFRCLlo+7fUKWxE+2GFabWlLaJfrKKVlE6C4DnOE9C00NNrtfl65AoCzdah04dYvak2SZvoZ9EpVKx70YcarEcsfyxAW2RICGTiPn9VCAVHcxLREp5eXkZjx0/fhxvb28cHByIjo5Gr9dz69atP12fv4oXqU70b0St1SMWiaBYkqTcuSJiqZyEzVORmFti3s2clCMp5IflI7GQEOYcRjW3akRERPDFF19Qv359GjdujEgkIiIigtDQUB4+fIi9vb0x6u1pUQsvwui2Vdh6Mw6NyrSqnZlUTLsazrhYly7APsmTz5SUlJTnHsNvv/3GuXPnjBE7/wRScgq/ewlZBVw7+QsGnYjwheEoyimw72BP0t4kDBoDMT/HIEZMpUqVSE1NJSQkhJkzZ3Lr1i2srKwQiUQcPHiQ3r174+XlZfS70mpLVhF8GvWc6qHVm15v422DjbcNEq2Iho/s6F6tP98NHgU89h6CwkgfqVTKtm3bCAsLe30LROFztpbrf7sSXmk8jxB+/fp1pq7eQGpiIp91aQ1AZn4Bh2+HkpiVw8J3uvHBqlUozC2Mz8Livz+GDh1qbKvofNu2bUv8nnxeCnI17P72GtmpBWhUOhDB7VMxiJ0zSElJMRrip6SkcOvWLR4+fGjyu3rWrFns27cPS0tL2rVrx4ABA5DL5X/Sq4CAgMC/D0FEEhAQECiGVq/letJ1cjW51HKohYPMASgsH+7m5sawYcOIjo7G3d0dd3d31r/Tn0GH5aQdX4xUoWDp8uW0bViVVatW8csvv+Dn50d0Wh5JN+JQa/V/pI+JATFzDobStakfe/bsIT09HWdnZ2rUqIGjoyOOjo6kphZWZXrrrbfYu3cvJ0+eZMaMGSbjnTlzJk2aNHmhzdaLIpGIadKjAkG7HqFVl6zo1bhzhZdu20DJTX3e/TwSdyUilUvp1a6XyVvoefPmsXnzZgwGA3FxccyaNYt33nmHoJBoMvMKsGk1xHhtkSARvm4Sdl7uTP5xMUePHjWJlJLJZIwaNYoWLVpga2vL5s2bkUqlDBkyBB8fH5o1a2b0XHoThKfkEvQolazkeE6efBytNnHiRGbMmMGpU6eMVZyGDx9OWload+/exdzcHC8vL7y9vfniiy9wdXVlz549r9Xj5XVjbyHH0VJBbIZpJTHbNiMAPRKLR8jt11B5TmWyrmWRciSF1DOp3Kt9jwsXLjB8+HCio6ON38e1a9eSkZFBuXLl2Lt3LxEREbz11ltYWlpy6dIlo5E9mFZ0e5Ls7Gx69uyJRqPBysqKLVu24GRlydbR3ry/6RrJOSqkYhFqrZ5OtV1Y8FbtP52rRqcnPqMASzMptn98nBQKhYlPV1FFwwoVKjBjxgzOnDlD3bp1yc7OpmvXrly6dIkOHTqwZs0aKleu/CpLb8KTm/3ffvuNkydP8tZbb5V6fUJCAv369SM1R8X9iFjMKzbAus0ocq8lkZ9WBfcJcpL33ib7WjYSCwmVPq9E5sVMkjYlMXToUJYsWULbtm1xdHSkcuXKZGVlkZiYSK1atdixYwchISG8++675Ofnm6Qk/hlKqZIP63/Ij9d/NCmkINKDmVaCj6g2vu8UVtyMjY3liy++MJZ/nz59OkFBQUgkEn777bdXWE2B4vyZEF65cmWuXLtGo5o1kMhk6DQazOUy3vPzZl3QNbzf7o/C3OKNjffUxntkJOahL0pVN0BmdgY/75rNr6vWG6+zsbEp9Xf1zZs36d69O1AoNCUnJ/9f+VsJCAj8/yCISAICAgJ/cD72PFPOTkGj1yBChFqnpmJMRYI3BVPVqyqRkZEoFAqOHz/OwoULC70XMlLJSYri3q1bnD59mn3rfsKv7mLWrFlDYGAgZ88HsXTr7zgWq65UVMUtX6NjzYFdtGviTsWKFSkoKCAlJYUdO3bg7OzMhQsXMBgM3Lt3j8DAQO7du8cvvxRWePP39+fw4cO4uLi8kbWp4+eGCBEX94Wh1xnQ6w3YOClpPag6Ns4v78/S0bMjkVmRqHSPPWcs61piWdcSC5kFq99ZTfjDcGPEwPTp00uU/N6zZw9bL0UxZ39wiSpWtm1GYCYVc3BGWyzNZKVGSg0aNIhBgwaZHBs5ciRjxozh4sWLxjX/K1Fr9Xy05TqnQpMQi0QYdGosBv7IoM612LtoAg0aNCAsLIzAwEBjNM2uXbtITk6mTp06ODs706dPH+Ob8pycHBMBSa/Xv7LJ7PPyZBpo8ZStDRs2sGzZMqytrVm7di3Tu1Tj3YFDKEiOQiSVY1mvIxY1/ECkReF4xNimVQMrrBpYYS41Z4L3BMRiMWvXri3Rd/Got4iICDp37vzC0VwymYyNGzfi4uLCzz//zNq1axk3bhy1XK05PcmPkPhsMvLUeJW1xKHMs0uvGwwGlgU8YsXpR+j0BrQ6A2Uz7pB48ldqVq+Gvb19CZ+u2bNnc+3aNc6cOcO2bds4dOgQffr04ccff+T48ePG0vOvk+Kb/YiICHbt2vVUEals2bKs23mQDt+fQXFoOfKKhZ8zvdQChVtd8qOaYVFtJjnB2ajiVIQvDMegMuDfz5+ZM2fi5uaGTqdjxIgR+Pr6cvbsWdauXcuCBQsQiURcunSJ+Ph4XFxcCAgIoHPnzs89jyE1h2BnZsfS60tJzE1EZIDaWg/G1/mQBiP9Ef8Rnebq6mritbRw4cKXXTqBP4iIiKBpkya4lXVGk5fHuP59OH70qFEIV6vVmJubs3PnTlJSUowvASZMmICjuycNOvfg9onDiPLycHZ3xS4yiSbdSv8M/hWo8jRE3k55LCABOr2OdScX0LPJaKKvFVC+ZmFEmVKppEyZMuTl5ZlUhKtfvz47duzAwsICjUbzRl9ACAgICLxJBBFJQEBAAHiU8Yjxp8abvMEGCHcL5+1Vb5O6JZWwsDDq1KkDQL169QgKCsLa2prGjRtjbm5OmzZtWLx4MSkpKXh4eCCVSnGuWNLYUxVzl4yzGxFJZMjLV+bwxcO4O7tjjTWffvopEydORKFQ0LBhQ4KDgwkJCcHZ2Zn8/HyioqLQ6/W4ubmV+gfqxYsXmThxIhKJhEaNGvHdd9+ZnB86dCghISEolUpGjx5N//79KSgo4IMPPiA8PJyaNWuydOnSUteotl95arYoR1ZKAVK5mDK2r55W07dqX7aGbiUtPw2t4XE0lZnEjIkNJiLSixg1ahSfffbZM9vpWd+VVWfDiE7LQ1NsE6CUSfjIvzKWZi/2x/zSpUvZs2cParX6pXw1XpQvDgQTcD8JlbYo0ksCYgnfnXhEx8atiIiIwMfHB2KuILqwHDIiMTjVouOMY8yYMYMtW7bQqFEjevXqRY0aNShTpgxQ+PMuU6YM9+/ff2O+Sk9L2dJqtSxbtoxz585x48YNFi5cyHfffUcjD1uS/AeitXDGgAFbCxH5tpvRmcWUaFtn0NGqfKun9p0cFcGdU0fJTU9HbOvIqZMnTaK5hg8fTlRUFB4eHri5uQGFAsK+fftQKBSsXbsWd3d3ozhb5INShEgkoka55zcjX3DoHhuCIk3EzRirGli/+z0OcXs4cOBACZ+uyMhIo49TvXr1OHTo0HP397zkaHVcz8pDIRZhpzdwqphHW3JyMseOHcPPz4/t27ezd+9e43dgyZIlNGjQgA0XItHpDRRE38W2TWEabVH6qEHvT94jcyAbqY2UStMqoX+op4bm8bPwybRCmUxmcmzSpEkvnJ5bRLdK3ehasSsFugLkYjkSseBB9CbISk7Gw8qCAfW80KpUpAbf4hN/HyrVa8DqY8eYMmUKa9asISAggAEDBlCuXDm6du0KgEgspmX/obTsP9TY3ro3XBUzL0uNWCJGp338Xb0edpqo5FD2XPyZfVdWs7bt4wIZM2bMoEOHDmi1WuPvzDlz5tC9e3f0ej12dnbs3Lnzjc5BQEBA4E0hiEgCAgICwC93fkGjNy0NrdfoUaFi/6P9tDZvzf3790lISAAweuVUqVLFWNb7xo0bVKhQAQcHByIjI9HpdETfv8uTNizFq7jl3N2FRQUblE2VZC/JZtiwYezZswd3d3d69OjB2bNn0ev1KBQKxo4dy86dO9Hr9fTu3bvUeTxZTeb27dvUrl2YbqPXFwoUmzZtMkmH+eGHH+jfvz/+/k83ri5CLBG/UuTRk1grrNnWdRuLLi/iWOQxtHotbpZufNTgIzp4dgDgzJkzf9qOmUzC7veb8/Xhe+y6Fku+Roe7nTkT21ahV4Pypd7zrDSeiRMnkpGRwdGjR8nOzn5t8y2NPLWW7VejKdA8ThUsHq2288gJ+i2dy9KZ7/Nh5pegVWHQ65i7KRBStXzg58qWLWBvb49Op2Pt2rXY2z/2umrevDk//vjjXzoHgNC0UK4mXsVcZk5rt9ZYK6yNKVsAqampRu+vunXr8uGHHwLgbm9B/oWVKC1tmLdoMU1qeTHl7AlOR0eSr3uc6mYmMWNCwwlYKx77yyxevJhdu3Zx7tw5Ardt5MqBXei0Wgx6PSKpjE/aNmfA3K8Z/sGHNGzYkEePHnHq1Cm++uor1Go1CQkJnDx5ksDAQM6dO8eCBQtYvnw5UBjNtWrVqpcWcTLzNKw7H1FMGASDVoNeKiNPrSMy20ADpbKET5eHh4fRA+x1e3IZDAYWhsezIjoZmUiEARBrNPxw7hI93Jzp0aMHCxYsICoqio0bN5KSksK+ffs4c+YM6enpDB8+nD179vAwKYecmPvInTwR/SHSFKWPJm6cjdQKynWuRNrJy8R9HUenZp0wK2vGjBkz2LZtGxKJhD59+pCTk0ODBg1wdXUlLi6OcePG0bBhQ77//nvWr1/P7Nmzn+u59CQikQil9Pl8qp5VQOFZaLVaBg4cSGJiIo0bN+brr79+4XH+F4jPzCcpS8XxX1YQGhfPkkOnqO1allrly7Lt7GXKnL9MYr6GW7dukZaWRmpqKqmpqWRmZlK5cmUOHjxIfHw8eXl52NraEh8fz549e0hOTn6j87CwUZhEIQE0qtyGRpXbAODobomdnZUxKrZVq1acPXvW5PomTZpw4sSJNzNgAQEBgb8RQUQSEBAQAG4k3TCWmC8i53YOKUdSkIgkuDVwY9eGXYwYMQJ/f3/KlStHtWrVjJ46fn5+xhQbqVTKsGHD8PHxoVWrVpQxkyIRidA9qSaJ1Ohzr5J2Ko20U2loIjQsW7YMsVhMRkYGfn5+zJo1C5VKhZ+fHwMGDKBnz56IRCLjBrwIvV5PdHY0Smul0Xi3KIqidevW2Nvb07lzZ0QiEYMHD8be3p4ff/wRDw8PAgICjB4hH3/8sdHT4U3hoHRgYcuFLDAsQKvXIpe8nBGptVLGvF61+bJnLfSGQkPbP+NZaTwnT54kKCjopcbyIsRlFCB5YtNaPFrNyrM2TSvZsU91j+YrVSgksOsdc+adKcDLXoxf174kSgqjalxdXdm3bx/lyz8Wzho2bPiXjj9Pk8f4k+O5kXwDAwYkIgmfLvsU1X4VjWs3NgpaDg4OhIeHk5uby/nz50lLSwPg22+/xc7OjnPnzvHN3Bns2LGDhS0Xsv/RfjYEbyA5P5lKNpUYVXsUzco1e7xGKhU3b94EICbkDlcO7karVhvPG7Qa0Go58N18unTpQkxMDHFxcej1eho2bEhQUBARERHG6MJGjRoxZ86cwnsNBoYPH868efOwsbF5qXW5FpWOXCo2EZHyw6+SdXlP4b9dPVj+xSS2bt1q4tPl4uJCvXr1aNGiBTVq1HitKTE/RSWxKjqFAr2BgiI/MrGET6NScLezoWvXrhw4cMB4fVhYGDdv3qR169Ym7Xg5WbLvYRDmXj4mxwv9rEAmEaHTqunznZJfhvnxTp+3GDloJCtXruTBgwfGqCM3Nzd++ukn7Ozs8PDwYOnSpWRkZDB48GBSU1Np3749V65cMYkGe938WQGFp7F7927q1q3LtGnTGDduHDdv3qRu3bp/2Tj/acRn5jN+y3VuxmRiq8+lW0oiUzr5IRWL+TXwCu72NuSrNbzXqimrAq8TFhZG9+7dGTNmDO7u7jRt2hQAHx8fsrOzuXTpEn5+fgQFBREUFGRMEXtTyM2kVGnkxIMrSei0T3j/ycXUaVuOUaPe/dOoWAEBAYH/BwQRSUBAQIDCiBieCDgp8mFRSpV80/kbxGIxP//8M1KplIULF+Lu7g5Av3796Nevn8m9Y8aMYcyYMQCM/yyfHj+eI7NAhUb7h1ggUiFRxlBuMIhEngAkf53MuHHjSElJISMjA4VCgVQqZcaMGXTr1g0AW1tbZDIZCkWhF8u8efNYsXYFqfmpzDk6h7I9ylLFtgr9rfsbq8kkJSVx/PhxJBIJPXv2NG7YP/nkE3bs2MGjR4+YMGEC8+fPx8/Pj86dO/8lvit/hlgkfmkBqTgikQjJM/SjlPwUYrJjUOWqnprG4+/vz61bt/Dz86N+/fqMGDGCuLg4pkyZwvXr1xkyZAiLFi3Cycnp6R09J/YWcpMUPDCNVqvkaAHXNzLP3wz0j38uE73l3EjUIRKLSUlIYP/+/Xh5eXHp0iV8fX2N1/3VXkhzguZwLekaav1jAUdZV4ltA1ukp6RGUUIikTBr1iw6d+5M/fr18fLyAsDOzg4AX19fpk6dWjhmkZgelXvQo3IPY5s6rYZ7588Qffc2CgsLgh5FMWTIEGbNmsXyRV+z9XAAAFFpGXzVuxPfHzuHq60VcRnncKtyixGj3yMqKgp/f3+jib2np6dRiLpy5QqVKlUCYNasWTRv3pw2bdq89LoopOISUYjmVbwxr+INQGNPOypWrFiqT1dp1cJKu+5F0OgNLIlMJE9vukHW5+WSb27BovB45IGBjBo1itu3bwNQoUIFGjduzI4dOwrb0BRGaw709uCL8Os4er9Tel86A4hkXA2Ox9mlHK5O9nzwwQf079+fefPmGX3NMjIyjM/Ros9DkWjn6OiIl5cXiYmJlCtX7pXmXhpZBRpSc9Q4WykokukUCgVHjx4lJSWFTp06sW/fPkJDQxk+fDh9+vRBqVQik8mYOHFiqenN/y8iUoFGR69l50nOVqHTG9CrshFJ5Cj+eNTUcHEm6FEU6bn5/HTyPA421tjY2PD222/z8ccf06FDBz744AOio6MZNmwY6enpjBw5kjlz5nD27Fl27dqFXq+nQ4cOzJ8/3yg4/dW4N1PQe1xvnKzdkIikjO+xCBBR19+Nak1cTaJihw4dyowZM0yieks7JiAgIPBfRBCRBAQEBIB3q73LwwsPydfmlzjnZO5EJZvCzeWIESMIDw/HysrKuLH6M1xtlJz81I+VZ2+yMugCBnEBMusrSC2DEYkKd5kKiYIvtnwBYIyGAAgMDDRpa+vWrSb/79nLk7IeZbHR2QCg1qu5GXmT35f+TsCBAADq1q1rfJNf2obd2tqaVq1aoVAoqFy5MomJif/JijI56hxmBM7gbMxZ5BI5KpWKlktbssh/Ee/1f88kjQfgyJEjBAQEsHv3bgIDA41mv9nZ2SQmJr4WAQnA1kJOs0r2BD5MQat/QkySSRjuWwHitsIT5csXtvvDk0oix3eHFd26dePixYuvZUzPS6Yqk+ORx00EJL1Gj1gmpkBXwIP8B7RRPhZiunfvTvfu3QkICODSpUsAZGVlYWVlRWho6FOjfnLSUtkyaxL52dloCvLRA1sv3MDbs/BzWs3JjvdbN+P8w0i8nAsrKmbmFaDV6VHIZTwMC2P48OF89tlnSCQSo2dU2bJlad26NT4+PsjlctatW0dcXBwLFy7Ex8eH3bt388477zB27NgXXptGnnZPPWcuk9C3UelplvDXVAuLVakp0ip1CXGkfTAIiXsFDLk5YDCwR61iQr+++Pr6Mn/+fPr06cOqVavo0qULLVu2RCKRUK1aNVasWMGdO3doULMKKUolIhEmqZhF6FV5aHV6JG51qV+rLB9PGM/SpUuN3y+DwYC1tTUxMTHY2try4MED4PHnIT8/nwcPHuDo6Pha5l9EZp6Gz3bf5lhIIjKxCJ3eQA3tA0L3r6JqVS8mTpzIokWL6NSpE7t27WL27NmsXr2a9957j379+tGpUyegMILp9OnTdOnShVOnTlGzZs0/7bt4+uXIkSO5d+8e8+bNY9q0aSbpdDdv3mTChAkAREZGMn78eOP//xPYfzOOrHwNuj+eVxkya7QaFQppoXofkZJG8yqeGAwG+ns3INfaHv0fimq7du0IDw83Cm7Hjx9n1KhRhIeH079/f3r27EnHjh3ZtGnTG5+XTCGha49OfPPFT8SGpiOVSahY3xFLu1f3/xMQEBD4LyGISAICAgJA5wqdORxxmMsJl41CklwsRyaRsajlIqNHxsuaLFuZyZjUrhGPWM3lhMsmm24AmVhGH68+L9SmRqfhxxum5awNOgMxq2Io+05Z9ifvZ4jLEJNIlNI27D4+Pty6dYsGDRoQERHx2jdt/xQGbR7EgfEHkLvIEUlFuL/vTtD1IIbqhtKjcw9WrVrFiRMnaN26NZ9++ilQKLbt2rWLSZMmodfrGTBgAHv37sXZ2fm1jm3R23Xo9dN50vPU5KkL0yrN5RJ8KzvQr7E7XPOG4L2gySt5s0TGuT1rCVWpjH4dRZWnSqtg9jqJyY5BLpGbfJ6L0kABrF2tad++vXE848aN4+7du3h4eLBsWaFJ7YABA0hPT0ckEhn9iJ7kwJKvyU5NwfBHFM2VsGjquZXl5rFDFORk41yhIleuXuVRcioDvesDYGNhxvi2vkjlcrY9iAOgWrVqHD161CTSbtq0aUybNs2kP7Xa9Pv5MsilYha8VYtJO26ZiCxmUjGVnMrQvd7To2v+imphZSQStMVCo+QNvbH+bB5QKCrp1i4z+vocOfK4Mt6wYcMYNmwYUCiiN2jQgKpVqxJ47CDpuWr234rjq99DyHtCSFLF3CU94Fc0aXGcTnHCu0ljrK2tcXR0pHbt2nTt2pWIiAgaNmyIwWDAzc2NDh06UKtWLX7//XfS09P54YcfXms6n05voO/KIMJSctDoDBT9lO9Kq9Bwwmrsb20iODiYR48ekZ+fT2xsLBUqVCA8PNwYDVqvXj0AunXrxokTJ/D398fT0/NPnwnF0y8BQkNDOXfuHBqNptR0uqLIsx49ehgNqP8pnLmfbHxOAajFCs5mmxF85QQysYgKDnZYmhVGy559GMm97FDati9Dt27d6NmzpzHiD+CXX37Bx8eHpKQkPvroI8qUKYO3t/cbnU96QToRWRHkZedx6tQp3h7clbfeegu5XE50vgdeXl54e3uTmprK7NmzjT+PpUuXcvXqVdq1a8fs2bON7Z06dYrVq1ezdu1aoUKbgIDAfxJBRBIQEBAAJGIJP7T+gZPRJ9keup0sdRbeLt70r94fJ/PXE3ECsNhvMZ+d+8wYDaMz6HBUOrLYbzG2ZrYv1NajzEcYMI1cybycSX54PnHb4vh+x/e0X93e5HxpG/YpU6YwZMgQsrKyGDVqFHL5q6eU/V08aZZdVJHsTsodwjLCsKhpgdt7hf5BKUdSyH2QS3bTbDbt2cS9y/eQyWSMHTuWLl26sGDBAgCcnJyIj4+nfPnyNG/enJ49e75UZMqzcLI048QnrThwK54TIYlYKKS8Vd+VZpXsCwXM2n3gxBzQ5EPxn7lYCtbl0bg2ZVTbtm/cr8NB6YBaZyq4FKWBAtSyr0XFihXZuHEjixcv5vr16yal1QH279//zD6yUpJIePTAKCABJGXnEBedRdCjKGIysjhxP4JDd0IZ0qy+UfDNU2vIUmuoVLkqorBEoLAKmE6ne2Ppmt3quuJkacb3x+9zOzYLSzMpA5q6M7JFRRTSv87np3jECxRG/VzPysVcIibzwG50aSmor18mbfxwFL5tEGelo796kTJlyvDFF19gaWlZoiLb3bt3cXNz49GjR8Z+bC3kDG7mybbL0dyNyzIZg7JSY8w86oFex6kp7Rg3/F0WLFhAZmYma9euxdfXl5s3b3LlyhWmTJlCQEAAd+/eZdq0aTg7O3PlyhUsLCxe67qcupdETLppBUeDVoMKGdejMvBFjlKpNPrRFaUzVqhQgdu3b1OjRg1u3bpFhw4dkEgkxqpco0ePpn379iX6K9DpiVWpsZVJ2bJ6tTH9csaMGdy6dauEB5VCoTBWDQTIzc0lISHhH5ceZamUIRZB8cDJR/WH0M3VlQr5kcikUmRSCf19rTiTmoeDMu+p5v6//PIL586dMwqVb5ICbQGfn/+cY5HHjNGpTb5vwjf+3/DRoI+YPHkyhw8fJiUlhcaNGxMcHMyNGzeYOXMmAH5+fixZsoSmTZsaRaTTp09z4sQJ1q1bJwhIAgIC/1kEEUlAQEDgDyRiCe082tHOo91f1oe5zJzvW39PYm4ijzIeYae0o6pt1eeqBvQkcokcvcH07b+Ntw023jYAuFm60axZM5o1e2xGXNqG3cXF5Y2Vf38TFDfLvhR/iZW3VnI7+TYF2gJyQ3IJmx+GVUMrUo+moknTcGXkFawdrKlevToPHjxg0KBB1KhRw6RNFxcXateujaenJ8nJyfj4+JTW9SthJpPQp2F5+jQsJc1JUQaGH4bN70BuEiAGgxacakC/Lcjk8ueqYve6cbZwprZj7VKN6ZVSJYNrDgZKRmG8CNkpKUhkUnSax2JV17rVjf9efvYyZWxsUcsU/Bp4DZEIPmjrSxkzBafDYtgfkcTnf6SIdunShZ49ezJy5MinVjh83TStaM+W0c3+/MLXxJNrrTcYeO9uBCdSs41+SCKLMjis3wtyGdkzJ1Jj3CTk0Q8x+0NALq0i23fffcdXX31VqjfT8OYVmLTjJvonawdIZYhEMg4HJ5kIJikpKbi7uyORSIyRPQA1a9YkPz+fDh06vHYBCSAgNIlctenntMjsXATY1a7OyvbtcXd3p06dOoSEhAAYPy+//vorYrEYmUxGbGwsAwYMQCwWM3jwYBMze53BwMKweNbEFkbkqdVq2HuQiyNGAfDll18SEBBgXI99+/bx2Wef4eXlZVJZ8dChQ3Ts2PG1r8PTxPbi3Lhx46kpdb0blGf3H1Uwi9CLJBx27oCdPou3y2tRWluSHf+Q8U0aMGvWLACGDx9OVFQUHh4euLm5Ua5cOW7fvo2fnx9Lly5l7NixJUTmv5JPTn/CxfiLqPXqwmhKMTzKe8TQo0N5q+NbxMTEcPv2bTIzM/n444+N1VKLxKFatWoBGCNAoTAd/cSJE4KAJCAg8J9GEJEEBAQE/gacLZxxtni1lKgKVhWwVdiW6uOkkCjoWbnnK7X/b0Gr13I18SpZ6iwscy2NZtkVfSsSEBcAdqAoq+DR3EdUXVyVlIMpZF7MRK/SI7GQ4NjZEVmwjMTERKKioujatStfffUV586dMxpUF09jjI2N/Xsm6lgVProOsdcgKxYcqoBT9T+/7y9mYYuFDPx9IFnqLPK0eYgpNEjvYt+T8pG1uRMVw5GL241RGNevX2fRokVs3ryZgQMHMmHCBO7cucORI0fIzMwE4ODBg6xbt46jR4+SmpJCbPBtqjo7cD0qDkdLC/o2rvO4/3Fj6D1tJjNnzkRdkM+jyxfIz8lhc0gUp65cMRFoJ0yY8I/ylnld5OeoSY7MRqaQsPPwRuNaL1y4kJzynpwoX520MyfQxUUjtrJBJJWiCXtA+sSROLq4kDrrY9RqNV27diUlJaVERbYHDx5gbW1NdHQ0N2/epG3btkyaNIkuXboA4F+t9GhNvSoPscKcDRciqXQ3kHHjxhEcHIyDgwPR0dHo9Xpu3bplvP7QoUNUr17d6JPj4ODwWtdJKZeUiKApMjtXSMWM7FQNsVhMjRo10Gofe5DZ2tpy8uRJxGIxXbp0wdPTE1dX16eanU8OjWZXYjr5f3SUf/QAkpbt6HT1PuZPuq3z2Cts3LhxHDhwgF69egGFFeAmT578+hagGMXF9tKoV6/eU1PqGrjb0LWOCwdvx5uktYmAHJk1K+MMyOP1xO/dywq/twG4dOkSEomE48ePM3/+fNRqNaNHj2b9+vWvbBr/MkRkRnAx/iIqncp4TJevQ6KUUKAtYMfRHSyesbhEtdTiZvulvfxZu3YtY8eOZevWra/98ysgICDwT0EQkQQEBAT+pYhEIuY2n8uHJz5EpVMZU9vkYjlO5k68W+3dv3mEfz0X4i/w6elP0f5hOq1SqeixqgczW8ykWstq2HeyJ/t2NrpsHeYVzdGkaiiILsDax5qMsxlIbaWU71YeF4MLmYmFAkZUVBTZ2dnP6vbvQySC8g2Bhn/3SIw4Wzhz4K0DHIk4wrnYc1hKLal2pw2pBzUE8hCdTsvmo3tp5NYZgPr161OhQgXee+89ypUrR6NGjbhz5w5OTk5s2bKFUaNGGYUFR0dHNm/eTPumjdBpVXzQphmrTl8kT6XGXCFHqlDQpMdjLzG5mZLqLQrFD/m8hS8V4fdvQq/Tc2bbfe6dj0ciE6PVaFl3bBc7dxV+9/v374/P2HFoPvkc1eljlBk9HvXVi+gSYik4/jvmzVrQtJwTLRs2YMOGDVy/fp2+ffuWqMi2f/9+Ll++bBQdKleubBSQALJVWhRSiUlkChT6ImWc3UiSTE6Ld7safYOkUilDhgzBx8eHZs2aIZPJyM7O5uuvv+bgwYPcvXuXTz755KU96J5G97qubLwQVWKcRXSoWbbU4zk5OXTp0gW1Wk3btm2fWXggQaVhR2I6qmJKlTY6koKHodzftwNx6F1jGhwUPrOKqm1aWVkZo1o0Gg0hISGvteJbcE4+lzJzyU3O4GSxypT169fn+PHjfPnll0YftaFDhwIlU+oWLlzIvn37UCgUfDJ5IfseqkjMUpFdoCFfrUP9R6pg2s3jKKu14ouDwZirdYSFhVG/fqFfWcOGDQkKCnpt83oZbibfRCwyrVyZdz+PxF2JiGQiqjaoStOmTalfv75JtdQ/i0J1d3fnhx9+YODAgezYscNo4i8gICDwX0IQkQQEBAT+xTR1acq6TutYdmMZVxOvYiY1o0elHgyvPRxLueXfPby/lMisSMadHEeB9rGxOGK4lH6JT85+gm19WzRpGlQxKvT5emxb25IXmgcGyH+Uj9RSigQJvar0YvDiwdSvX58+ffpQtmxZk9SU/2fu3LnD6NGjTSpHlSbMKCQKulfqTvdK3bl6OILD5y+wN3A1Q/w/I+jeERpWasO9oHhyMwtT0saMGUOFChWIjIw0tlGUGuLq6kpGRobJsSb+7dGE30MmE2NlrkQNWMpktOg3GLcatUsd+7PSYoo8g3bs2MGaNWuYPn0677//Ptu3b2fBggWMHDkSgO3bt7NoUaGx/meffUaPHj1eeA3/SgJ3PiT0QgI6rQGdVkfQvcPU9/Tj0MrbaNU63NzcyE3PQJqZgT4nG4ljoYiTv28HKBRo7qYT5OhIVEgw2dnZhISEkJyczLhx4/Dy8iIpKQlra2t2797N2rVrGTduHBcuXCA5OZnExESjKORsZYZEXPJzoazUGGWlxjRwt+Hr95sDGIWokSNHMmbMGC5evMgvv/yCpWVhFCFA48aNX7uABFC7vDWda5fl99sJJkJSYRVET8rZKEu9z8rKirNnzz5XHxcycpCJRKiKeZdZjh5v/Lf245GMGzeObdu2AXD48GEWL14MQJUqVYzeSidPnjSJenkVcnU6ht4O50pmLgZArNEiXbOT0TUqsHXscGP1ztIonlKXkJDAyZMnCQwM5Ny5c2za9At7ly8nJD6Lt5adp3hytSYtFnViGDk3DqFPekBoaChxcYUG99evXzde93cJvRYyC8SYikiWdS2xrGuJCBEdKnQACs3OmzZtys2bN7GwsKBx48bMmzfPpGhBUSTV2rVrSUtLY8yYMajVapYsWcL06dP/kvGvX7+edevWodPp2LRpE7Nnz+bevXts27athMgZERHBjBkznhl5JiAgIPAiCCKSgICAwL+cGvY1+NG/dNPS/zLrg9ej1ZmWvdfl61ApVYSkhpB9PxsbfxsQgS5PhwgR8VvjkZhLsPexx9LSEkWagmuLrjFm1RiWLl3KDz/8wIMHD1i/fv3fM6l/CFnqLLR6LV5eXqVWjnoaBoOBG8ei0BWr1JWYEU1M6iPOBR8gMjmEpUuXcuHCBZYsWcKsWbNYs2YNYLqZNPyR8lN0TCqX02r4WGq4uXL0/fdp3ONt2r71NubWNi88t+KeQWXLljVu8mbOnEmTJk1M0pi+++47AgICEIlEdOzY8R8lIqkLtNw9G1f6WoccIDo1lKVLl1K/fUfOfz8PRbOWxuvKDP8A1cVzmL89COcGjQnr3pI6tWuTnp6OmZkZTZo04cSJE4SGhhp9kaZMmUJoaCjR0dGcPn2aefPm8cMPPwCFlehG+lZg5ZmwElE+SpmEie28Sox/6dKl7NmzB7Va/ZcIRk9jUZ+6NK1oz6ozYSRmFeBuZ84HrSvTubbLa2nfTCx+5vnO634DHoucPXr0KPVz1aFDBzp06PBaxvTxvWguZeSiKkqlk0hBImVWeAJ9/duRnp5uvNZgMJh8F4un1EVERFCnTmEqaaNGjZjzh9dYZGpeCRHR1u+xUXbW9mnMnj2boUOH4u/vj4eHB+7u7gC4ubnRu3dv5s2b91rm+rw0d22OHn2p58ykZvSq0sv4/0+m/j1LGJozZw5z586lWrVqr2+wTxAbG2s08C6iqNqfgICAwJtAEJEEBAQEBP6VXE+8jtZgKiIVpSNI5VLMq5hjXskcMw8z9Hl6rBpaoXRX4trdlQXvLcBwy8Dy5ctp27YtQUFBrFy5EnNzcw4fPkzFihWBZ0ez/Be5m3qXL4O+5F76PUSIcDJ3YnKjybTxaGOsHDV37lyjP8wvv/yCp6cnH330ETdu3MCyjCVtXMYAkJGXwsrDM8nOT2eo/3QcrFxYvHc85cuXx8PDgw8++IDx48dz7Nix5xqbSCTCtVoNHNw9qdGi9XMLSCeiTrDm9hpismMoa1EWh2sODB48mNmzZ5u8oXdxKSkiVK1aldzcXKAwGuWfRHp8HhKJCJ3m8bGe3qON/15ycALjxo2jaUw83l/NxXJCscp9UinWM78i8/NJZDg40HHydOqLdej1ekaMGIFEIinhi2RtbU3jxo0xNzenTZs2xuiZIj7yr0J6npqtl6ORSUSACL3BwKyuNWhRxbHE+CdOnMjEiRNf23o8L2KxiL6N3OjbyO3PL34JWtiVQVeK7xGAuVhMPxe7v6Tfp5Gi1nI4JfOxgATo83IRm1tQoDfw24kAts6axqpVqwC4ffu2USh6MqXO09PTKMBeuXKFSpUqAeBuZ47uSVf1PxCLYMj8QlG+KHonICDAGL2zefNm47Vv8nmrlCqZ02wOs87PMkkHV0qVtHZuTJPrO+HwHNDYc+rEUWPqX69evYzPjFWrVvHLL7/g5+fHhQsXCAgI4M6dO8yfP5/o6Gjmz59vUtjiVTAYDFxOuMyN5Btc2XeFXFUu/v7+1KhRgzJlyhir/e3cuZO3334btVqNjY0NHTt2xM/Pj9jYWHr06EFiYiJbtmyhQoUKr2VcAgIC/58IIpKAgICAwL8Se6U9t+/cJnZtLCKxCLmTHKceTijKKaj6QVVq2tfkVsot7FrbkX6m8E27x1gPkjYl8cPVHxg8aLDJm9ziHi//jzxMf8iww8NMjNpjc2J5b8l7aA9qqV+zPsnJycTGxhIQEEBISIgx9Ss3N5czZ86wYf0Gdq88QD3PVmTlpfPh24uITr7PsRtbebflRKa9+xO9erU0GgcvWbKkxDg+//zzZx4rnkbyZyy9tpQNIRuMc0rLTSPu9zhcOzzd06Y4b731Fg0aNECv1/Prr78+d79vAoW5FL2u9I07wNz3VgNQxcKMOn5tSLC2BUDZsTtQKCTYLvwJHXBmy698OPUTbt++zciRI0lOTi7hiwSQlJSETqfjxo0bJTahYrGIOT1qMc6/CpfD05BLxfhUckApf3qq1H8RC4mEeVXKM/1BjNFYG0ApFlHfypwODtYv1N7zVFJ75v35KuRPpNdpbl0j59fliGQy7Oo1pHHjxnz++ed07tzZpDrckyl1ZcuWpXXr1vj4+CCXy40RZDXKWeFhb879xOwSFfrkUjEjfP+ZgkWnip1wt3Jn9e3VhKSF4KB0YKB1TToELEGk04Jeg4tOxP3RChT+feix8Cj+/v4AaLVa1qxZQ2BgIJcuXeLChQsAnD9/nmvXrmFnZ0fv3r1LCGPPmyJcnExVJsN+H8aZb8+Qn5SP1EyKpIyE737+juD1wTRu3JjatWtz4MABtm3bho+PD1OnTmXs2LHGNhISEjh27BhXr15l4cKFrFix4jWvpoCAwP8TgogkICAgIPCvI0edQwfPDlyPv47ZDDMAYlbHoM0ujEyyVlizvO1yvr78NXvZi01vGzQ6DZkHMgnYGUAtz1p/5/D/kfx04ydTf6k/MKtrRjmfcpQLKEdwcDABAQH4+fkB4OLiwqNHj2jQoAEAjZs05rd1+5FIxJSzq4BELMHVoRIpl+OQyMTUavl84s3rIC4njrXBa1Hr1MZjGeczsGxqyZ6He9BrS09lKc7MmTO5e/cuAJ07dzb61fwTsHE2x9LejPSEvBLnpPLCtb537x4jR47kvWkz+FYiJkf3eM7FhQSXBo3w9fVl/vz59OnTh1WrVtGlSxdatmyJRCKhTZs2zJw5k1GjRuHn54dYLH6qmOdQRkGn15Qa9m+lfzl73JVyvglPIDi3ABuphBHlHRju6ojkJTyA/qyS2rNwVsjQPBEZpfBugcK7BQCNrMwRi8UcOnSoxL2lpdRNmzaNadOmlbh29ZBGvL0iiKwCDbkqHXKJCJFIxPTO1anlaiqc+fn5GZ8hfzc1HWryXevvCv9HlQPfVAHNYyFdITGgoADOzKer3wccOHAAgJSUFDw8PJBKpTRs+LjQgZeXF9WrF1bNFJeS2li1atUXShEGmHp2KjdO3UBSVkLFURV5MP0BNtVs+PH6jwyqN4iQkBDjteHh4cZIsnr16hmP165dG6lUSr169Xj48OELrJCAgIBASQQRSUBAQEDgX0NSXhJzguYQFBeERCRBK9IiRYrWoEUkFSFDhiHTAOvAZ4EPe/fupbdDb6ZOn8rK1Svpu6ovsz6eRW5uLkuXLsXLq6RXy/8rQfFBxpSOIvQaPWKZmJSCFKqbVychIYH27dsbq0tpNBquX79ujI64cuUK3m3qYZNlTkJ6BHq9jtjUMJxsXXH2tKJxl5IRCS/zZv55OB55nCemgypBRUFUAekB6WgjtOzfv/+ZbSgUCszNzRGJRKjV6mde+3fQfmRNdn1zDZ1Wj15bOFmpXIyzpxXVm7sgkbhy7tw51Ho9i8/dMbm3SEgwE4uYWsEFiUTCkSNHjOeHDRvGsGHDTO7p168f/fr1++sn9h/A19YSX9uXK25wIzqD7VeiycrXUNWiwKSSmlqtplatWnTp0oU9e/bw6NEjLl26xKpVq9i2bRuHDh1i9+7ddOnShVmzZrFjxw5q9hvF1ehYMr79Epu53xr7MReLec/N6bXMt7ytOWcmt+Z4cCI3YzKwt1DQvV45nK3MXkv7b4R7B+GJim3ZKgOWChHodQQe3sG4+T8THByMg4MDkZGR6HQ6E6NwLy8v4uPjsbKyQqvVUpCTw9Xf9xJy7hR6nY7Kjbxp3L03lvYOKBQKjh49SkpKCp06dWLfvn2Ehoby4YcfMnz4cBITE7G0syS6azTZD7KxalKYUlumZhlyQ3Mp0BWwOWAzH7X5yNh/hQoVuH37Np07d+bWrVtGgerOnTvodDpu3rxpTEMUEBAQeFkEEUlAQEBA4F9BniaP/gf7k5Kfgs6gQ0Nhik3ejTwSdyZiV96OPvX7sHfPXg7vPcyWLVvYuXMnPXr0wEpuBblw69YtHj58SFJSEpMnT2bPnj1/76T+QUhEJdOOcm7nkHIkBTFiajSrweKvFrNgwQL8/PwQiUS8++67jB49mnXr1tGiRQssLS3ZvHkzaWnpbDjpyubL88nMTmPlj2vwbV8fUSkVvF7mzfzzUKArQKs39cwq2/dxCffsxdl069aNixcvAjBv3jw2b96MwWAgLi6OWbNmMXbsWJo3L6wqNnr0aP5pOJS3pP9sb26diiYqOA25mYSaLVyp0sgJseTxZlguFvNFFVem3TdNsZKJwFEuY2A5+9KaF3gDPJmu1mjst+y+FotKq0NvgGNiHfJGfejSqjLHjx9m8uTJrFmzhuTkZJYvX87OnTsRi8VcuHCBK1euIJPJ0Gg0SCQSmjZtyrRp01g790t8tm7Eyq8dAGJAIRbT09mGro4vll73LGQSMZ1qu/x7I9Fyk0FnKhafjdIy85QKhUSEb0NXY0VCqVTKsGHD8PHxoVWrVsbr58yZw7vvvkt+fj5TJn3K+skfkpeVie6PlNCbx35n28YNnIlNoXqNGkycOJFFixbRqVMndu3axezZs1m9ejXdu3fn3Xff5bOvPyP4SjC6PB0Ss8JntMJVgSpeRdiCMCxtLemzrA/Lli0DoGfPnrz99tt06NCBMmXKIJPJAHBycqJnz54kJyezadOmv3wpBQQE/tsIIpKAgICAwL+C/Y/2k6XOQmcwrf5kXs+cqg2qUv98fezD7alTqw5isRhXV1eTsH0bGxtq1KjBhg0b2LVrFyqVioEDB5qkifw/l0Ju59GOvQ/3mpiVWzWwwqqBFV62XmzovgEorEz0ZHWin376yeT/bWxsuHA58Kl9GQwG7qTcIVOdSTW7ajjIHACey7zbysqKTZs2YW5uTseOHdFoNDg6OvLbb7+ZlCpvXLYxCqnCxOOpCHOpOT8d/AnP8p7Gn3Vp8xo6dChDhw59jtX7+yhjq+BCxD52Hd5l4r9SZF78+eef89VXX3HgwAFcbeyQTPqc+3oxSomYPs62TK3oQhnpn/sWPRkxNmvWLGbOnPnU70pERASff/75C3lY/b9SlK52+E4CH/92w6TCXYFeQp5WzLarsYzu2pXY2FjS0tLIyckhPz+f8uXL07x5cw4ePEh+fj5169Zl27Zt1K9fH4AWLVoQdfUytYOv8vaS5Vwo0GMtlfCOix0NrcxfS9Tff4aytUEiNxGSOleR0bmKDGTm0P4jQlUqlEolAGPGjGHMmMJCAkXpeTVq1DCahh9fs4zIjAz0xaqI6nU6vBxtaevXijNJWQQHB/Po0SPy8/OJjY2lQoUKhISEcPXqVVauXEl2bjYF1QqQmEvQFRR+LvT5euza2GFV34omZZsgl8uN332FQsGuXbuQSqWMHTuWihUr4unpaRyTgICAwOvg2XVIBQQEBAQE/iGciDpRQhDQ/1HeXCqWkiPOQalUlloqHkCpVGJubs7Vq1dRq9WUKVPmzQz8X8LYumOxlFuaRCSJEGEmMWOm98zX1s+NpBu029GOkUdHMun0JDrs6EDvBb2pWasmSUlJJubdP/30EwsWLODy5ctG8+5+/fqxYsUKpFIpBw4c4MyZM1SvXp2TJ0+a9FPPsR5etl7IxXKT4zKxDJcyLjQv1/y1zenvRKVSGStmlUZ8fDxnz57l3LlzTBw2hLdunCW+dT3CWtbh66pu2Eie70/Booixs2fPAoWeMP9kIiIicHZ2xs/Pz+hlNXLkSHx9fTl9+jQ+Pj60aNGCYcOGYTAYiIiIYODAgW9kbJGpuczcc4eO35/hoy3X2f/7IaysrOjt14BHv3xC3qPLAOTdDyLz/Db0wKMbF5gz9wt+/PFHunXrxurVq0lKSsLHx4e0tDSOHj2Ks7MzzZs355tvvsHHxweAAQMG8N1332FnY8Pwyu6squXJompuOKQnU7ZsWeP6JCQkMG/ePAD69u1Lq1at8PX1JTQ0FCgUSbRabanz+c9QoSVYuoC4lHfsEjma6r0YNWoUvXv3fq7mQs4FmAhIAFqdDgwGYkLuYmGuRKlU4ufnx6xZs4wm5lWrVmXy5MkEBARw9fJVWr/TGosqFuQGF1aKzA3JRVlBiVKqZGjNoSX67dKlC82bNycvL++1VYcTEBAQKI4gIgkICAgI/CtQSBQljuXcziFsQRghX4aQlZpVwvhYbzBw/lEyN6Iz+HzfXZw9vbh16xb37t1j4sSJxMXF0adPHxo2bEhMTIzxPo1GQ//+/Tl9+jRLly7lp59+Ii8vDz8/P7Kzs//yuf4dOFs481u33+heqTsWMgvMJGa0KN+CDZ03UM+p3mvpIzYnlveOvUdiXiJ52jxyNDmo9Woi3SLptqwbrq6uJubdY8eOJSsry8S8u1GjRjx8+JDc3FxGjBhBq1at2LFjB3FxcSZ9iUQiVrVbRVuPtsjFcixkFsjFclq4tmBdx3VIxG+2atjixYvx9fU1OVYUKQTw1Vdf4evrS+/evcnNzX1mWwUF8WRm3kCtTmH16tUMGTLEeG748OG0bduWDRsKI8eioqKoUaMGUGi0GxQUBIC3tzdjx47l008/fWZfKfkpxObEIikWraRQKNDpdMay4d7e3oSHhwMwa9YsWrRoweLFiwG4ePEikyZNKmwrJYW33nrrmf29Ttq1a0dAQIDRsys0NJRz587h4+NjIohduXLljY3pQlgqHb8/y5ZLUdxLyOZmqgjHAYvou/gACgd3RFIZOdcLTa5zQ88hsXQg49xm8qNu0b5HH2rWrEm1atW4c+cOffv25ejRo3z11VfI5XKaN29OkyZNuHfvHt7e3kChR09UVBR9+/Z9PAhNPuh1JutTtmxZhg0bRoMGDdi7dy8nTpxg3rx5/PDDDybj37NnD2lpaQAEBwfTvHlzmjdvzsyZr09o/tsQiWDIfnCqURh5JC9T+J9VeRj2O7Iydpw5c4aOHTuWuLW0SB+dWlPi2L2EZJadCuKnE+dIiC/0mHv77bf57rvv6NOnD1CYOrt79278/f1p06YNAywHULV5VbRxWsLmhVGmShnK2JdhQLUBtCjfokQfR44cITAw0Fg9T0BAQOB1I6SzCQgICAj8K+heuTuXEi6Rp31cjaoo3cpMYsaOd3ZgLjM3ptc09G7O1zcl7DydSm6zsaw795DUoLsM+GwtVivGU6dOHdLT0zl+/LiJf5JGo2Ho0KGMHj2aVq1a0bJlSzp37sz58+eZNGkSlpYvZ5b7b6CsRVnmNp/L3OZz/5L2NwZvRK039RzRa/SoUHEs8hgtlS2fy7y7UqVKHDlyBC8vLzZv3sz06dNNos6KMJeZs7DlQrLUWSTmJuJk7oS14vV5wDwvLxIttHPnTlavXs348eNLaSeJO3cnkJV1A5FIjkZTwL59Wt57r9DY99KlS0gkEo4fP878+fNRq9VUrFiRS5cuodVqOXnyJOnp6UChoDN9+nTKly9f6phuJ9/m86DPiciMQCwSYyGzoHlGc/Yu3YuXlxf29vYlyobPnj2bS5cucfbsWTZv3szRo0eNvjwGg4GdO3caN8p/BTqtlviHoei1OjQyBaeKGVKnpqZy69YtunbtaqywBY9TKAsKCoyiWGJiIlu2bKFChddbml6nN/Dh5msm6WoiqQyt1JnzUXmUr9uc++cPo9frSN73NQUR1xFJ5MidKmDp1ZRrgacQi0CtVqNUKqlduzZlypQxepEVPZsKCkyrLNrb29OpUye4swtOzIGMaMiEU7+raOHTlLfe7kevXr2YNm0aJ06coFevXgDk5OQYK31BYbXCn3/+mU8++YRp06axYsUKFixYQMuWLWnXrh0ZGRnY2Ni81jV741i5wJizEH8TUh6AVTlwb1YoML0gZStXIfZesMmxWq5lqeVaFkt7B0b99CsikYgaNWqYRHkplcoSaaL+en9Oe5/mUsIlLOWWdK3YFU9rz5eaooCAgMCrIkQiCQgICAj8K2jt1ppqdtUwk5hW+zGTmPFJo08wl5mbHJ+99y4Pk7LJVRdu2LLvnMSsWksCQpNJzircZNWoUcPon5SRkQHAmTNnkMlkRo8LkUjEwIEDuXLlCl26dPlrJ/kf53LC5RJm10XRZA/mP+BB9APGjRtnTLNp3bo1v/76K02aNEGpVNKiRQs2b97MmDFjaNq0Kfv27aNr165EREQ8s18ruRVVbKu8EQHJYNCTnHKCW7fHcv3GUKJjNrJy5U8vFS20atUqvL29mTp1Kn5+rbhytQ8ZGVfQ61XodNkcOZJKc98CbtwYDkBYWJjRC6eo7LijoyMDBw6kbdu2PHjwwGgM7OTk9FQBKSwjjBFHR3A//T5qvZoCXQGpBakctTjKvD3zcHV15cCBAyXKhkdGRhpFh+Jlz1u0aEFgYCD79++nR48er22ti3Mv8AzLRw9g91dz2PvNl+ybM4VN3yzg5MmTHD9+nL59+1K7dm2jgLRv3z5q1apFUlIS9vaFxuIJCQns3LmTJUuWsHDhwtc+xmtR6eSrTT3d9KpCUTxPrSPx7nlEGFCUq4YqLhSbFoOQ2bogFouo7mJFfFwszZo149q1a9jY2BhTd62trY3i4JN06dIFf39/5DfXw973IT0CDDpczLXcH6vgVM90fv/9IBfuxaDWg62tLXq9nlatWjFu3DiuXLlC8+bNuXnzJi1atEAikbBgwQIWLVpEzZo1yczMRKcrnJNCUTJa9HkoitIrLaVw//79eHt706xZM7799tuntPAX4FIXavcBD5+XEpAAfPsNRiovuSZSuQLfd4e8kB+VVCzF38OfaU2n8WH9DwUBSUBA4G9FiEQSEBAQEPhXIBVL+bn9z2wI3sDWe1vJVGdSyaYS79d9v0RIf75ax8Hb8ah1j6NTNGmxqBPDyL5xCE38ffbv31+qf5K/vz/u7u4sXbqUcePGkZuby+rVq+nbty/r1q0zEQOKeLLCUlHUTHHi4uIYOHAgBQUFzJ07l7Zt276upfnXYKOwKXHMzM0MVbwK83LmpManEhUVRUhISIn0kJs3b5oYR+flFW6+jx8/Tk5ODlLp3/8njV6v4ebNkWRmXUOnKxxfSspl9uxJYPToO8DzRwtptVrWrFlDYGAgly5d4syZg2g0IuCxCBETreHho1wO7D/M/fsiQkNDjWl9xcuOjxo1ilGjRrF27VqjuCMWP/094rIby1BpVaZz0+gpoIDvrn6Hj6UPSqWyRNlwDw8Pbt++XaL/AQMGMG3aNKytrbGwsHiFFS6dqDs3ObJiCVq16ZhvHtqLjb09Xbt25c6dOybnunfvTvfu3Rk3bhwHDhygfv36JUSx101mngadQQs8fu6oYu6ScXYjiMQY8lJZuvUIs3/cSHZOKrY1W6BKeIQ+M5y3G5ZHHVwVFxcXli5dajR0BsjKynpqBNDBgwdBUwCLKhWmsf2BQipCgQ51fjrWMifGL1pDflIi/VYFoTPA6dOn2bZtG1OmTCEmJgY/Pz/atm1Lp06dCAkJYdKkSTx48ICuXbsyceJE+vfvbzScfhH+LEqvbt26BAYGIhaL8fPzY+TIkVhbv/lowpehfPVadJ0whWM//4g6Lw+RSIRIIqblgOHUaNH67x6egICAwEvz9//FJSAgICAg8JzIJXJG1B7BiNojnnldRr6aJ6vJ2/oNM/47adNkk/LuTzJ37lzef/99tm7dyoULF5g6dSr+/v506tSJjh07GqM5ilNUYelpfPXVV3z55ZfUqVOHrl27/l+KSO9Ue4dbKbdKGKSXqVmGBhMacPzt40RFRj1XW3Z2diapN/8EYmM3k5F5Fb3+8fyOHEnCr7WC4JApQMlooaCgIJNooSZNmuDs7ExKSgoeHh5IpVIaNmyIVpuJTicz6W/U6MIIGpFIxpTJWmbPns3QoUPx9/fHw8MDd3d3AN5++23S0tKoU6fOc0VzBMUHoUdvcizndg4pR1KIFEXi0tiFkSNHsnXrVpOy4S4uLjRs2JAWLVpQt25d471FvjwzZsx4iVX9c85t3VBCQCrQaDEDzm/fzPk8GPfRR8ZzKpXKGDVjZWVlFD+eFMVeN7VcrVFpdRT/81tZqTFmFRqQtHMOZd/2YUSHepTVJzP6xi5mve3N9f33sPZqwwdj32PLpg1GD6327dtTs2ZNcnNzycrKwsrK6ukdx10rEU2TrTJgqRAhN6hRRd9BXP8t9AkRXA5PIyU2E61OT3Jyssmz7knhsaiSZcOGDenduzcRERF4enr+6TrkanUkqDU4yWWs/8PTa9asWcbzGo2GIUOG8N5779GqVSvjcYlEglgsZu3atWi1WkaOHMnnn3+On5+fMXL0n0alhk2oWH8tqTFR6HQ6HNw8kPwDBG8BAQGBV0F4igkICAgI/Oews5BT/G3/k/hMXIan5+Py7sU3IUXHli1bBkC/fv2M9x07dsxY9al69epoETNn+RbIyTHxX5k4cSIzZszg1KlTxpLL69atY8mSJYhEIiwtLcnOzubbb78lJibGuPlavXr1X7Mg/xD83f3Z77KfwNhAozeSBAl59/JIX5zOktgl9OrV65neNB999BE+Pj7069cPMzOzp3X1txAds85EQILi0UK7ePBA+tzRQg4ODkRGRqLT6bh+/ToikZRCFwJTcQdAJJKye0/hJnzt2rUlzm/fvr3EseJRXU/yZEU7eOw/JpfI+b7X9zhbOJdqJvzll1+W2qbRl+cvICniUYlj4SlpHL4Tikwipce7A2jatKnx3OHDh43G31WqVKF9+/ZERUXh5ORkIoq9bspamyG1DEGTXRUMj9c479451PEPST4aRuMmN9Fr9NSvXYN1M0bg4eGB9R9iYHEmT57M4MGDyc/PZ86cOX/Sc8ln4dkoLTNPqVBIRFRzs0ViYQOAVqMmJ+4RTXz9MBNpKVeunPEeg8GATCYzRm0aDAbs7OwQi8VYW1v/adGBPJ2eafdj2JuUjkQkQqNWI9v/O9ffexxV9aQnXRGHDh2icuXK/0pPOpFYjIO75989DAEBAYHXhiAiCQgICAj851BIJfRr4saWi1EUaE033UqZhA9bV36l9lv4tUHT4gNCE7OZsO0GapWKmuN/ZdUwbz4Y+i4NGjQgLCyMwMBAE8Pn0jxMatasyerVq2nfvv1/w5j2GeRocojOjjbZ00ptpfT/tT8rO63krV5v4e/vX8KwecWKFQCMHz+eZs2amQh7/yQ0GlNfmh3bM7hzt4AlS1yRSCz4bJrcGC1UvXp1kpOTjRUFn4wWEovFDBs2DB8fH1q1aoVc7oBYnIteX1BKz3qcHDu8tnl0rtiZLfe2oNGXrC7lbumOs0XJSLxnYfTlkZcUp14HMjMzdBrTsVZ3caK6ixNiqZQPFn4FPBbOevToUcKbydPTs1RR7HXjWvEEMWE6tNk1QaQFg5gyderi2Lk55mWSOP/ueeSSx+sUEBBgHFdx4a98+fKcPHnyOTstTGFcHKRiV4iWjW8p2Xxby9XRZcg3yPle+xZ7rlwhP/wa0UsHgk5LtlrPz6uWsm/fPipUqEB6ejq5ubl06NCBsLAwVqxYwZQpUxg0aBASiYTq1atTu3btpw7BYDDQ/+YjrmfnodIbAAP5Rw8g821Lr+sPjNedOXOGDh06mEQWhYWF8fXXXxv9rEpLQxYQEBAQeHMIIpKAgICAwH+SaZ2qE5WWR+DDFHR6A+I/Nh6DmnnQo165P7nbFL1Bz4W4C0RkRUCqiP2HjyE+fwullw9y54rkR9xE22ow/mO/pJmdHRcvXuTChQu0bt2adu3a8dlnn5m0V9zDpFatWgCUK1eOzMzMf72ItHjxYnbt2lVqpMv8C/OJzIo0EScMUgN3s+/y24PfSE1NZd26daV609y/fx8zMzO+//77Vx7j83hYFfHVV18xaNAgypQpw4ABA8jJyaFnz55MmDChxLVlLKqSkXkZALXawKNHjyvRGQx6zp4tXJO1a9fSvn17rl+/boymKi1aaMyYMUbvGz8/P8q5dCE+fju6YtFOYrGSShU/QS63f/GF+IOLFy8yceJEJBIJjRo1YtaCWRyJOEJaQZrxZyVChJnUjM99Pn/h9g8ePPjSY3seavm14/qh/ei0pkKSSCTGvUYd5Erzp9z55hlc812Wa5eTpzqAvsAFkSQfsVkMComczhW6mAhIrw2pHFXrOdz87UOTwxqDhDQs2aT2I/f259h3mYiyYiOStkxjxOc/0rRpI+rVq0dMTAyPHj3CxsaGPn36mFTYO3/+/HMN4VpWHrey8/8QkArRRkdS8DCUoP07kITeZf/+/SU86bKzs3n77bcxGAx07NiRypUr4+/vz+HDhxk5ciTXr19n//79lClTBisrK7Zs2fKvjFYSEBAQ+DchiEgCAgICAv9J5FIxa4Y05l5CFmfvpyCTiGhXsyyuNi9m/hqRGcGoY6PIUmWhM+jQq0VU+qoC+fHDSNz0K4jEoNOgMxjQaHRceRCCu5sbzs7OnDp1CoPBgMFgwMLCgqCgIOrUqWPiYfJfeqv+LJPcfG0+xyKPlYhu0eXrKFAWsDFkI8nJyTRr1oxDhw6V8Kbx8vLi3XffZdKkSXzzzTevPNY/87AqYurUqQAsWrSIAQMG8O677/LWW28xcOBAHBwcjNcZDAbUtt25mXAHO0kBV3/PpH0HS9auTSMoSMP+fQaUyo5cvHiRDRs2cOnSJTp06MCaNWtYu3YtZ86coW7dumRnZ5eakla4BrOwtfMmKmoNBQVxWFhUwsNjDHa2zV5o7k+KRlOmTOHkyZOYmZkxYMAAYh7EsL3bdlbfXs2BsANo9Bqalm3K+/Xep4ptlRfq603g/VY/wq5eIisl2eiNJJHJkJspaTvqg5duNy4ujq5duxIcHPzc5u0JCQn069cPg8FApUqV+OWXX0zOD6o5iCuJV7iSeIUC6UMMGDCXmuNu6c6UJlNKtPeyfj8anZ4TIYmExGfjaKkgISiXIeNnMuuLBYAIRGJ2aH35YHcq8nqRuAxebLxXLBbTrZ4rAKtL8Sx6Gc6mZ6PSm0aFWo4eb/y37NPRRp+6Ik+6TZvWEhb2kKSkRCpVKowezc7Opnz58hw/fpzu3bsjEomYPn06vXv35ueff2bt2rWMGzfulcYqICAgIPBsBBFJQEBAQOA/TbWyVlQr+wzT2Weg1WsZfmQ4KfkpGPhD4JGAxBwsPH9FWaU+upwctFnJxK8dj16Vi3mlykydOpUTJ07g6OhIuXLlOH36NOXLl2f69OnP6WHyzydfrWN9UASbL0WRp9bRtIIdtpGnTDacxX2hlm9YTuSqSFBCfng+ZeqUQZupJft2Nugg3DYcT6UnBw8eJDY2lho1amBra2viTTNixAgWLFjAwoUL+fjjj+nUqRM3b96kQ4cOzJ8/38T3pjgGg4Gg+CC2h24nrSCNivqKnDh5wuhhJZfL8fDwwMvLC29vb1JTU5k9ezZdu3Zl2bJlzJgxg7CwMDp37gwUpiBeuXKFjh07AhCTHcMHJz4gPjceDAq0agOxlzT81N0FERn06vUOn01bwKpVq2nXrh19+vThxx9/5Pjx4yQnJ3Pt2jXOnDnDtm3bOHToUKlzKEppcnLs8Mqpax4eHhw7dpCc3AuMee9LIiIu4O3dEwCpVIper6dPlz5oNBocHR357bffkEgkzJ07l5MnTyIWi43iyLBhw7CysirVv+pNoTA3Z+CC77kTcIw7AcfRa7V4eTenbvsumFu9fCWvlzFv37x5M8OHD2fw4MGMGjWKmzdvmpiMy8QyfvL/iSuJVzgUfgitXksb9za0cG2BRCx56bEWJyIll3dWBZGj0pKr0mEmNhC3Zzvbtv0GLr/DR+vRxE/ju0sFlGnYA7FrTeO9ushr1KxelboVXNBoNJw+fZoPPvjglUUkhViMRCRCV4pQLgHe/20vnp4ubNy4kYKCOEaPLiAt/SvKuYpp5edCBc9hlC8/mLFjx7J+/XrEYjFZWVls374dR0dHoPCzK5EUrmGzZs1o2LAh586d46uvvjJ+VwUEBAQEXh1BRBIQEBAQEHgKZ2LOkKvJfSwgURg5I1FKQKRHnRhEmdrD0GYl4zJ0CRmnVtO0lTcymYyLFy+iVqtp3rw5NjY2yOXyEh4mRZWWoHRD5Jfhzp07jB49GolEQuXKlfnll19Mop1eBwUaHX1WnOdRUo7Rc+rgjWhSD+ylU98hQKFpdHFfKI1OAyKwqGaBywAX7k+9j9tYN8r2K0vEwgjaLmqLzR4bunfvzq+//krTpk25cOGCsc+i9Lhp06YZjx0/fvxPx2owGJgROINjkceMVeFu6W5R/svy/NjlRz4b/hmTJ0/m8OHDpKSk0LhxY4KDg7lx4wYzZ840tlO1alVOnz5NtWrVOHPmDDVq1ABAo9cw9PBQkvOT0RsK1yI9MBNlExt+SrGijGVNatZYxIULFzh16hRbt241GV9kZKQxpbFevXpPFZFehQJVAuHhP5KUdAjQY2HhRXb2HUQiKXl5kdy58wnjPnoPndaFuLgE1qxZw4EDB1i0aBFr1qyhYcOGfPXVV8TGxlKxYkVCQkLo2LEjHTt2fKp/1ZtGZmZG/Y7dqN+x2yu1o1IlkZR0CJ0uF2vrhtjYNDE5/6Rh/vDhw0lLSyMuLo5BgwbRsGFDwsPDgcKomdLSU0UiEY3LNqZx2cavNNbSMBgMDP7lEknZKor0mpQbxzCr1oqJv93AUqsHsdjoPfT9jOEsP/2IsORcbLRpxIYd5tTJwvTODRs20L9//9cyrs6O1nwVHg+lBFvKxCJ6ONsAhb5ily73QKPJBHQYDKDXq1i3fibr10+jVk1vFi5ciFqtNokkzMnJYdWqVcbvT2pqKrNmzUKj0fDhhx/+7SLSkym0q1atMla3KyIgIIAhQ4ZQoUIF3N3dWb9+PVqtloEDB5KYmEjjxo35+uuvn9pHUSrxjh07WLNmDdOnTy9xTVF6rqur618yTwEBgf8PxH9+iYCAgICAwP8njzIeUaA1NTLOu5/Hw9kPCZsfgsxWhNylCrqcNBK3z0afl0kDDxv27dtHixYtaNas2WvbhD0vVatW5fz585w9exaAK1euvPY+tl6KIiw5x8S0PPvOScyqteST3wrT2e7fv4+Pjw9QuGmWS+V4Wnli5V4YFSa1lmLmaoZYJkYsFjO6zmjgsUdUUdn1V+V0zGkTAQlAK9FSIClg0tlJdOnShZiYGG7fvs2lS5f4+OOPOXv2LHq9HplMZrxn1KhRnD9/nk6dOlGuXDlj6fOA6ABy1DlGAQlAlaAi9VQa1+ff5c7de8yZM4fp06fz888/lxD0PDw8CA4OBuDWrVuvZc7FKSiI49KlrsTFbUerzUCrzSIz8wp6fQEP7qeSkanGs4KBTz+1BOLp168fv//+O71792b58uUolUreeecdvvnmGw4dOsShQ4dQKBRGk+zS/Kv+qcTFxdGgQQPMzMzQarVEREQwcOBA4/nIqNWcD/Ljo/ETeRT2HZMmdcfJSUlYWGH1t+LC6IkTJ7C2tmbXrl3s27cPNzc3Ro8eTaNGjfjll1+MYoGHh8cbneOl8DRScx4LSACatFiyr/9O9OYZ3Llj6j109dAWNoxoyuEPGpN99Ad2bdmAhYUFAKGhoSxfvpyOHTty9+5dli5d+tLj8lAqGOnqgLnYdOthLhbR29mWGmUKv+8xMZvQ6XIBncl1zZrJWLnSFhcXJ6PBdhEGg4Hhw4czb948o2jn6OiIk5MTrq6uZGRkvPS4Xyft2rUjICDgmR5sgwYNIiAggPXr1wOwe/du6taty6lTp8jPz39qunDxVOKyZcuWKiBBYXquICAJCAi8KoKIJCAgICAg8BSczJ1QSBUmxyzrWlJ5TmUqflYVx07tEYnElH1nDp79v+TbZT/z8Qfv8c4773D27FmuXr3KxIkTgWeXVH8d3E/M5sjdBEKT8ozeSgqFAp1OR5s2bejbty/169dn165dtG/fHl9fX3Jzc9FoNPj7+9OyZUt69+6NTle4eZsxYwbNmzenTZs2JTZhWy9Hk68x9Tcp2qjeXjOF23fucP/+fZNIIoPBQA37GjQs2xCFRIFYJMZMaoZcLMdR6UinCoXl31931NSWe1tMBCQojCYDyFRl8vup36lcuTJisZiMjAz8/Pz49ddfS1SasrCwYOPGjRw6dAi9Xo+3tzcAd1PukqvNNbm2bN+yeH7qidsnbjhWcEQsFhMdHU337t1L+Nu4uLhQr149WrRowfHjx02Eq9fBo0ffotFkAVqT41lZOpYuTeXTTx3JzdXz/tgIsrMzOXToAMeOHcPCwgIrKyvy8/NZt24dMpmM6tWrM3PmTAICAliwYAFQGPn2pH/VP5Wi9LSin11x0tKDCAv7Hr1exYcf2gJ6OnY0Y+o0J2PVvSeFUZFIhMFgYNSoUcyfPx9nZ2e+/fZbpk6dSkhICNbW1pw5c+ZNTpHI1LwSwT62fsNwfucLHN+ei6WLJ926FUZrzZ07l5CQELZu3cqPP/5IeHg4w4cPx8/Pj/DwcBYuXMiRI0c4fPgwNWvWfGWvoRmVyvF9dXdqlVFiJRFT1cKMr6q68U1VN+M1SclH0OtVJvep1YUzEomkKBR5ODk5GZ9TALNmzTI+q4r4p3jNZSTlkRydjVaj49SpU7Ro0YLvvvvOeF6j0dC/f39Onz4NwJYtW2jRogVbtmwBCivT1alTByiMVAwKCjLem5mUSEjgaR5dvcjKFSsYMqQwCrRIHI2KijJ6ajk5OXH27FmGDh36jxd7BQQE/vkI6WwCAgICAgJPoZ1HO+ZdnFfqOblUjG/5zkTJZVRwtGCEbwUauNu+4RFCYlYBo9Zd4X5SNlKxGJ3BgDzmGgVBG6lZvRrR0dFcvHiR+vXrU7ZsWdatW8fRo0eZP38+R44coVevXhw4cAClUsmMGTM4efIkDg4OJqloT5Kn1pU4Zus3DABLhRTJ77OZOXMm06dPp3nz5sbUH7FIzAzvGYgcRHT9oSsfN/wY/wr+9F7Z+7WLR0Wk5KeUHP/9PBJ3JSKVS+nm342mTZtSv359MjIyUCgUSKVSo1hQxNWrV/n0008RiURMnjwZc/PCil92ZnbIJXLUOnWJfuQSOZM2TWJwzcEmqXGASTn5zz//HKlUyrZt2wgLC3sNs35MUvIRnozq0OkMfLUgidHv2WFnJ2XZshRyc3W4uZmRkpKNpaUlx44dQ6VS4evrS7t27RgwYADjxo3jyy+/ZPv27dja2uLu7o6TkxM9e/YkOTnZxL/q7+DJVM5Zs2YxbdpEvviiKe+8s5QuXXw5eTIKmczMeE9sbCw9evQgLPw8U6YocXGRMX58LEuWuHLpUj4ajQG9XoVKlUTVqlXZv38/H35YWOXMYDAwb9482rRpY/TjMhgM2NnZAWBvb09mZuafjvt5qgXeuHHDWBEwMjKS8ePHl1ohsLydkqd9k6RiER8s3oynp6cxjWrZsmXG88VTRZ/kaSL4n6XPzps3j59++onhw4fz5Zdf0t3Jhu5ONk/tRywuKaJevpzHzh2ZIJJQp7YH/fr1Y/369fTp04cffviBhQsX4uPjw+7du3nnnXcYO3bsU9t/UySGZ3F8bTA56QWIxCI0GjVblx7Fu5sXPXv2xN/fH41Gw9ChQ7GxsWH69OkcPnyYe/fuoVaradu2LW3btjWm0Xbp0oVTp05Rs2ZNtBoNh378lkdXLyKWSNEbDKw7c4EtmzebjMHd3Z2AgACuX7/O3Llzad68OWvWrPmbVkRAQOC/hCAiCQgICAgIPAVzmTnf+33P+FPjMWBApVMhE8sQi8TM8ZlDl4pt/ryRvxC93kC/VUFEpeahMwAURgepnOtiP7AJZeP2EBwcTLdu3di6dStt27alfPnyAJQrV4709HRyc3MZPXo0sbGxJCYmUqVKFdLS0kwiLh73p0csFtPSy4Gtl6LR6ksKTFq9gYuBhRvOefNMBbjivk8hl0KM/y7aoBY/X1xkeRXqOtYlLCMMreFxJI5lXUss61oiF8tZ/FZhVariZueBgYGljvnUqVMl2u9csTM/XP/hqf13rtj5T8c4ffp0goKCkEgk/Pbbb396/YtgMGhLHDt9OpfQUBU//5wGwLChtty6WYBSKcbHpzFeXl7cu3ePefPmcezYMdatW4darWbFihUUFBQQHR1tTBsqX778c1W5exMUpXJCoeH3nTu/kpx6isjoEApUqVy6dJSsLA3W1tWN9xR5Ov3yayO2bQ1jwkRH4zn/tmUY92EsGRk6OnfuyddfL8XDw8NEGJ03bx5NmzZly5YtDB06lPfff58hQ4Ywd+5c7O3t+eyzz55r7MWrBZYmKtWrV8/4nejRowedO3dm4MCBREdHI5PJ2Lp1Kw4ODnhXsMdKKSNPrSsRkSSViBjczPOl17c0nlzzK1eu0LhxodeTXq9n5MiR+Pj4cOLEiedqr2zZt8jJuY9e/zh6sHlzC5o3t0AisaRlix2IxRKOHDliPK9WlxRwi4ter+tZ8rxkJOax9/vraFTFxVsJwQHJKBXmdO3alQMHDnDmzBnatm1Lbm5hJGOZMmUAkMlktGzZkgcPHtCtWzdOnDiBv78/np6eODs7c/KX5YRdu4ROo0Gn0XApLJp65ctyZPkS1AWmUZdpaWl8+umnbN++HbFYSEAREBB4PQgikoCAgICAwDPwcfXhUO9D7Ly/k9D0UDytPOnt1RvXMk/3lVi8eDEbN27EzMzM+IZ+8ODBnD59ms8//xxfX9/nTm8bN24ct2/fpmLFivz888/G6kMAM775iUvLV6PT6XDo9ilSSwcMWg16qYyUbBXbbiTj5qbEMa9QSJBIJIjFYj799FM2bdqEtbU1MpmM4OBg/Pz82LFjB/v27UMqlXLs2DHMzc0ZPnw4Q4YMwdLSkvv373P06FHea1mJ3ddj0apMI1yUMgmjWlbAXP7P+fNiSM0h7H+0H63OVExRSBT4uvpS1qLsK7XvoHRgWpNpLLi0AK1ei86gQyKSIBVLmdpkKg5Khz9tY+HCha80hmdhY9OI9PQgk2Nt2pShTZsyJsdWrHRDqfSgmfd+o3A4ffr0Et4qRaJaQEAAe/bs+cvG/TwYDAYCQpPZeCGSlBwVTSrYMax5BVyszYjKecCMq6eJyhUxOUZGdLIeK2sNDx/mU67cXUaOHMHOnbuAwoiNjz+uxI2bBXz4YSxRUWqio9WcPJlD6zZlyM0VsfrnPZiZlStRATA/P7/EuIpSk56GKl/L3bOxPLiUCICFm5pTJ08ZqwW6uLjg6OhIQEAAa9euZe3atQwdOhSA3NxcEhISyMnJQS6Xk5mZiZWVFXXq1OGnn35i9erVZMfEYdFuEgZzO3LVOhTSQvFgXs/aVHCweKU1V+vUHIk4wr5H+9DpdbT3bE/3St0xl5kb02dbt26Nvb09nTt3Zvjw4YSEhJi0cfHiRcaOHUvVqlUJDQ3l2rVrxnPlXHoTG7OBvPwoDIbH4pBYbEZVr9mIxfJXGv+b4NqRSLQa02djgToPM8y5ciiczWeX07JaRbxcnIiJjKBW3XoAfPPNN1SrVo1KlSqxePFiPvroI+bMmcOgQYOYPHkyIpGIlr7N6djCl7F+TVl2Koj3WjUlKTuHizejCHoURUxmNvv37wcKRbwRI0bw7bffGqPjBAQEBF4H/5y/8gQEBAQEBP6hOCgdeK/ue891bZHBqVKpNEa0DBs2jNDQ0Bfu9/Lly6jVagICAvj22285cOAAPXr0AArTcE6dOo1zv3kUDwjKD79K1uU9AMhsy5Fs057wu1f5csMhMjMz0el03L9/H09PT4YPH07r1q2ZOHEi586do1WrVpw4cYJDhw7h6enJhAkT2LhxI2XLlqV58+b8+OOPALjZmbNtdDM++e0mkWm5SMViDAYDY1pV4sM2lV94nn8lHlYeLGmzhMmnJxdGIxlAa9Di7eLNfN/5r6WP3l69qeVQi80hmwnLDKOidUX6V+9PVbuqr6X9V6FSpUlcuzbAJLLjMSLAgFisRCyWU6fOihdKK7SxseH7779/XUN9IQwGA59uv8nvdxLI/yO9Mjg+ixXrf6Pg0gq09gU4NnLCAKg1kJelRz6wPO5pkcTGqNFok7GzsyMnJ4chQ4bw889byM8zsGZNOT7+OA5X16K0KjEKhTNmZuVey7jzs9X8tuAyBdkatH/4iiXFaZnZby1VBlRj1qcjaNPCm8jISFq0aEH58uXp0KEDc+fO5eTJk6SkpODv74+rqysikYj4+HiGDh1KWloaX3zxBWPGjOHbb79FvXM673+5jHwrT5ytzOjVwBUnS7M/Gd2zydPkMfjQYKKyo4w+Y7dTb7Pw14UUHCigetXq2Nvbk5SUxPHjx00E7+J88cUX7Nu3D1tb2xLG4xKJkkaNdhAesYz4+O3odHmUKVOdihUnYm/n+0rjf1NEh6RhMLWM41HCbQ5c/hWpRIqHrRRys8hOTcGQmkqitRXJyclkZWUxevRolEollSpVIiMjg6CgIE6fPs2tW7cYNGgQFuKSvnFd61YnKi2DUS2bsPzMZbp168bFixcJDAwkMDDQmPb4d31X/2usX7+edevWodPp2LRpk2BULvB/iSAiCQgICAgIvCIx2TFkqbN4EGPGtC+Wkm1WjczYq6wIeMiFdfM4fuwYKSkp3Llzx1g+fteuXUyYMAGlUsmRI0f48MMPCQwM5H/snXd8Tff/x5935WYnshOZYs/YkUiEiKJWlaotRmhRtKqDompUW6OqqlbVVrU3QcTeJDGCSES2yF53//7IN5cr0Zql/Z3n49FHc8/5nM/5fM49916f13m/X28TExNatGjBH3/8Uc5U9eDBg7Ro8xaFCg3he/ciFetI3zARiY0blYKHkXN8HYrEKJDIcHjnS+7v+B6ZtRMqlZJpHw3m8uljDOrfB2tra+7cucPatWvp1q0bnTt3ZuLEiVSrVo2goCDq1q3L7NmzOXHiBIcPH2bQoEE0btzYYM51K1uxf1wg97KKKFCo8bIzw1hW8aLxdePn4seRXkc4n3aeXGUudWzr4Gbh9vcHPgM1bGrwtf/Xf9/wH8bKsgE+DZZzI/YrSkqSABEymQ2urv0pLr6LUplJpUq+uDj3QCq1eOp+ywx7XxdHYjPY+4iABKDS6JBUrY1TB2dS1iSSfyUfgJyTOYjNxVyce4+ieAU6LZw+dRlz80pYWVmxefNmkpPv8/bbDZHJCgARYrGI27c13EssQSIxZeTIkfz8888vPO6TW25TlKtEq3mo/Iq1UpRFOravjiXetAa/Hr1Nux792bh0AY0aNaJWrVokJycTERFBp06dSE5Oxs7ODoVCQX5+PsuWLWPTpk1cu3aNXbt2sXjxYnbv3s2JTb++1GixxVcWE58bj1L7MEKoRF2CtI6Utzu+jeJPBbt27aJBgwZPFJAA8vLy9Gm11apVK7dfKrWgWtXPqFb1s5c29n8SqVH5uddxb04d9+bodCqUeWvQabOp5mCHqVxGAysjkmxsmDJlChcvXsTd3Z2uXbty7Ngx5HI5Bw8epHXr1gwcOJDCrEx0/1OoKpJ7pwx8H4VCgYmJCQEBAWRkZBjsL9sn8HwkJydz9OjRp07PFBD4ryKISAICAgICAs/J7ezbfH7scxLyEtBqxSgUKu7dzsO2/TyUah2Tp39LzqnNvN2uLV5enpw7d44NGzZQq1Ytxo8fz+zZs4mPj+ejjz7iyy+/pGHDhkydOpX09HQOHz5MjRo12Lx5MyNHjuTPnfvYc/4mW2YfQSoWkXXiBJV1Cir3mUn6oRXkn9+OOicNp37f682wxTI5mpJCFEnXMHWpzp7TMTRt2pTk5GS9B0tZ20efblcUjfIkPw03G9NXcGVfPjKxjBYuLThz5gy9+vRCIpHQpEkTg0pJ/1UqVWpOC98DKBTp6HQa5HLnV2Zk/k+x+tTdcgbvOrUKmUUcOq0EiYkEsaz0nlWkKdAWacFJjNREjESjo2692lyNSaBnz56IxWIOHjzIgwcW1Ku7Amur7jg798bfL46QKf1p1+6tlzJmnU7HrXMZBgIS/C/VycgU7xLIS4jBonFnDl3az4XEXOzt7bl37x6RkZEEBgZy6dIlOnXqxIEDB7CysqJRo0aMHTuWJUuWUFhYyLVr1xg3bhzZ2dl4eXm9lHGXseXWFgMBCUCr0qKWqTmceJgQ8xBMTEz+1nvH0tKSlJQUrK2t/5OVwmq3dOHsjjv6SLNH0WkL0WlLq/1l5BeQci+P0/H3SM4rZNGiRQZVIidPnqyvOGdlZUVqaiomJiYUqjUgEmEsk5FfokAmkZT+X25MvZCODBs2rEIvrlWrVlFcXPzCkTNz585ly5YtrFmzhkmTJhl4oh04cIBp06bpq4LOmDGDy5cvc+HCBYYMGfJC531dnLnzgAWHbnEtNY/imHDsCnJp0yaYOnVqM3/+fGbMmMHhw4cRi8WsWLGCjRs3UrduXd5++222bdtGXFwcQ4cOpW/fvuTl5eHj48OCBU/20RMQ+DcgOKwJCAgICAg8B5nFmfTf25+b2TdRaBSodMXknr5PpQAdcscdAOhMbbBpNQCRWSUKCwuxty8t956RkYFOp+P999/HxcWF+Ph4JkyYgKenJ4sWLeLgwYOkpKTg4+ND3bp18Q9oxR8nb5KrM0Wp1lKk1KCSmJBs7EWbmo5YVvEBlQJ55ZrAw/LjRi7VyYlchVZRSHFKLD9MHEOtWrWoXLky+/fvp02bNk9VPeq/hIeHB4cPH+bYsWNkZGQQHR39uof0j1GWlvVvF5AAMgvKmykXx18gedkS4mfHos5TY1631PfJ6T0njF2N8frUC0tXOaamMu4lZpGamsrmzZv55ZdfqF27Njk5OVSvHsjt23l8NPoEZmZV+eqryWg0Gnbt2kVgYCB+fn7s27fvucas0+rQqMsLC3Fp0czePIIft32E1NwGqU1lFHkP6NalM3fu3MHW1pZ27doxceJEhg8fzqpVqwyqwNnZ2ZGfn4+ZmRlNmzZl/vz59O/fn4MHD/7leFatWkVwcDBBQUEkJyf/ZduEhASu/nS13PaC6ALuzLrDrRm3SE1LpV27dgb7ly9fzieffMLatWsZOXIkAF999RWdO3cmNDQUN7eXGxH4JlC3VWWsHEyQyB5dZmnR6VSoCh/eO50a1CKsVXOGtfLFy82V0aNH07BhQ+zt7ctViQwLC6Nz585MnToVD+9qGJuZ41/DmxXHz7P/6k3MjY3xqO9D/dZtiYyMpH379uXGNWDAgBeOTCtL134SrVu35vjx45w6dYqTJ09y//59fHx8/rUC0pYLSQz67Rwn4h6QXaQiPT2d6MRMnHrPwNjEhOnTp+ujBH/++WdmzZpFnz592LhxIwCbNm2iV69eLFmyhF69ehEZGUlRURFnzpx5zTMTEHgxhEgkAQEBAQGB52Dd9XUoNUp0j9RAUqQpKEnMJTviD1SZGlRZyZQUZHFP7oKuMEO/eHd1dcXDw4NPP/2UunXr4uTkREhICEVFRUydOpUvvvhCHyE0efJkaPgu17+biYnXw5QyeeVa5F/Zz9Gb9+nuoeairhI3blxHIgKNrjTqQV65FoXXjmLf9TM0GXE45t8gNDSUnJwcsrKyWL9+PQD169dn0KBBHD9+3KCSUUVV06ysrGjYsCEAW7Zs+VcYtuYWqzifkIVUIqa5lz3GMgkxMTEcPHiQ48ePU716dQ4cOMD27duJi4vD1taWPXv2kJuby71793BycuL69euEh4dTp04dFixYgLOzMz179nzdU/t/SzMvG26k5aF6JKrHtJovpjXqY15tJiJxqZG62/BSkaLKxCroNEa0G+xL9hExP/64iMDAQJYsWcLYsWOZMmUK27Zto3bt2mzevJmcnBwmTpzIxYsXEYlE/PDDDxw+fBitVkuHDh0qXKT/HWKJGCsHE3IzDP2pylKdssVallkqKI47h7Yoh1yVEf179+Tbb79lxowZzJo1C5FIxG+//cbgwYNZsWIFUqmUyZMn89tvv+Ht7c1vv/3G5MmTkUgkfPvtt3z11VcVjuV50nLMjczLbbNsZIllI0usZdas7L0SsUhsEJkyZMiQcgJC48aNuXDhAoWFheVEp/8CMiMJ737WhOgjSVw7kYJKocHCRknK9Y3oNKnl2kulMnZv/hN4cpXIjh070rHjw0qPJQUFRB85QPCl88jNzKnXJgSvBo0R/U0UWExMDGFhYfqCDzNnzmTFihV6A/2y/VevXqV79+7MnDmT+Yvn8+6Id3E2d2bHqh0MHDiQd955R9+nSqVi4MCBDB8+nFatWgGg0WhwcnLC0tKSiIgIwsPDmT59+nNczddHiUrDpO0xFD9iki6WmyF2rcvleznU8W6IOu0mERER+tReZ2dn3NzcyMrK4sGDB+Tk5ODq6kpcXJz+/WvSpAm3b98uZ9IvIPBv4o0SkUQikQQ4DyTrdLpOr3s8AgICAgICT+JEyolyqR1O75VW+tJp5Nz87B4liVGoHiRx7a4Uz7ZBBm19fHwwMzNj9+7ddOzYkf3793PixAkWLlyIv78/NWrUQKvV0qZNG64k54FLPeQuD42ajRyrIJYakbh6AjG1PDm0/U8mTZ7CL+s+Qy2SYN/tS+RO1VA9SMLasx4Na1fm9u4bmJmZYWxsTFZWFj169OCnn376yyfLj1OvXr1/vGT286LT6ZhzIJalx+KRSUoXVyKNks871KKmsYKmTZuyePFiWrduzfnz59m0aROzZ88mPDwcKysrPv30Uz7//HOGDRtGpUqV2LJlC3Xq1GHfvn1s2rTpNc/u/zeh/p6sP5uISmOY0iYXm+Mq7kiydi+IVfrtOq0EVY452xamc/bQbqpX86S4uBiFQkFeXh5eXl74+/uze/duiouLadCgARs3bqRhw4ZkZmZy/fp12rZtC6CPJHyeiK4W3bwJX3kNtdIwIkmFjmPyUuHLxLspJt5NcbCQ893E0nNWVCnvzz//LH9dQkMJDQ194vmVJWqyUgvZvHU7Go2G4OBgateuzdixYxk2bBh2dnbcunWLr776isWLF1NUVMT+/fsBsFPacffnuxRnFOMxxgOdRkfy8mSMLIxo3qU5YtHTJTicOHGCyZMnk5+fXyqS/weRGUlo9JYHjd4qNQ5Xq1SsGLMKtUKMTvvwvZdIpVRydqFyzTrP1L+xuTlNO3enaefuz3RcjRo1OHnyJFB6ryQlJTFx4kQUGgUFygKqVqvKyZMnCQoKQqFWEPZHGKnVUok8EolSqeTBhgec239O359KpWLQoEGEhYXpBaQlS5bw3Xff0b59e+Ry+TON71VTlor3559/snz58nKfqTKWLVvG9/N/oqTeu4g8yj+8KVJq2Bp+gs517WnXrh0//fQTUHo9ALp06cKIESPo3LkzAFWqVOHChQvUqVOH8+fPM3To0Fc8UwGBV4uo7Ennm4BIJPoYaAJY/p2I1KRJE9358+f/mYEJCAgICAg8Rui+UM6nV/w7pNPIKU4aiKaoCqZGEma+U49uDZ/fh6L9/EhupOVXuM/MSMLG4S2oW9kKgPS8Ej7bHMXJ2w+QSkSIgEH+nnwcUgOxqLRyUHREEkW5Spy8rTgbv5uGTRswefJk1qxZw+DBg5+4kDQzM8PW1pbatWvj7+/PrFmzOHfuHBMmTADg4sWLXL169Y1JUVl+/A4/7L9JsUpD5eJkAh6cwFaVRZFCyZoLV9m6dSt1mzTFw8ODfv36ceDAAc6dO8eYMWNITEykXr16XLp0iatXrzJgwAAiIyPp2LEj3333HTVr1iQlJeU/6enyb+FsfBYfrr1AsUqDCBEqjZZW1e15u54zX4YvB+uDiGQ5oJOhfNCIe79cxD6wPxP6d2JUm2p8/fXXFBQUYGNjwxdffIFKpSIwMBB/f386derE2LFjmT17NiEhIbRr1479+/cjkUhQqVTIZLK/Hd+TiIlM4uSWOERAkVKDVqvjqLGKy8YPBTG5VExYYBU+afdyKvzptDpOb48j6nASYomIPWfXkJZ3ly3bNzF/yUwcHR1ZvXo1Fy5cYMOGDWzcuJHt27czc+ZMatasSaNGjXjnnXcYu3osX//8NdpCLZUaV+LG9zeYvmU6Hzf9+D+RJvkqyX+QyY65s8hMjEcilaJWqXCrXY+OH32KifnTm9qX8XhU0YoVKyp8D0aNGkXPz3qyafsmdi/azccffczoEaMZMWIE7/R+h7HTx2I6wJS03WmkbU1Dp9bRsmVL7ojukHs/F4mVBNehrtwYdwOJqQRXX1eS9iTh4+PDuXPnkEql7Ny5k++//56CggL9Of/880+mTJlCbm7ua41EKlQVotPpkOlkhIWFERcXp4+yfRLt2rXjgxm/8tWumxQo1Ab7sg8vR5F2C3s7O+JO7+f777/n4MGDiEQievfuTVhYGNnZ2bi5uZGQkICdnR05OTn06dOH/Px86tev/1JM+gVeDikpKXTq1Ilr165RUFCAVFpxjM2UKVM4cOAACxcuLFdo5L+KSCS6oNPpmlS0742JRBKJRK7A28AM4OPXPBwBAQEBAYG/pEf1Hlx9cFVf6vpRdDoxmiIPZBIRDhZyOtRzeqFz9Wrixuz9NyipwKjVTC6ltrOl/rWjpTErQ5uRW6wir1iFg6UcuVSCTqfj6LpYYs+k6aMg0u/msO7Qdnp1G6Q/Pjs7m/DwcDZs2MDvv//OgQMHmDlzJvv376d79+7cunWLSpUqMWLECHbu3EmXLl2IiIhg7969bNu27Y0RkLRaHQsP36ZYpcGtOIm30/ci06nRaLVsOHOJDnWq8eOEMRxPfoCNjQ2bN28mJSUFgAsXLuDm5kZ6ejqFhYXMmDGD7du3Y25uTnp6Oj/++CNRUVHUrVv3Nc/y/zfNvGw482VbzidkkVOsoo6LJa6VTFl27A7KnCaoHjQGNICYwmuRKFPjyDi0gm/PrKXx8p/o2bMn9evX5/r16wDIZDKMjIzw9/enWbNm3LhxA19fX8RiMR9//DHBwcGIRCJq1679QovAuoGu1GrhQlp8Lum5JYTtiSZfpYP/rVVNZBI8bE35IMj7xS/S/zi94w5RR5JKzZ5VYCQxxdOmDjsWXKJZCz9uxMVQu3ZtxGIxLi4u+nvbxcWF7OxSI+jatWszsO5AHN51YOOejYQ0DmGr/1Y+afbJSxvnq6QsCuWvBISgoKBXFmlpYWtH3xlzyElLJf/BfawcnbG0s3/u/h6PKjp//jxNmzY1aJNSkMLNoJt8FvkZN/+8SeXQyiy4uYA5NebQoFYDvon6hvTCdFxULmSdyaL6D9W5M+0Op86cwqKeBTqtDp1GR0FMAVqFFmM3Y9Kj09FoNPTr1w+5XM7ly5cZNWoU27dvx9vbG7FYjK+vLzVr1sTExOS1+e5F3Y9i1plZXM+6jggRuhM6wjqFEfdjHAkJCXpT8DVr1rBw4UIkEgmLFi3i1q1bnD17lvxxAyioPwgsDX+/K7UZgolMwiftqmNkZFRhlCDAW2+9hZ2dHQDW1tbs2bPnn5h2OZ4UfZWSkkKVKlWIiYmhatWqr2VsbwI2NjYcOnTIIEWzIg4fPsypU6f+oVG9+bwxIhIwH5gAPFGKF4lEYUAYgLu7+z8zKgEBAQEBgQp4y/MtNt/cTHRmNCWakv9tFaHTStFm9MJIIiOktiPTu9VFLn1yueun4f1m7mw4d4+EB4Uo1I+Ud85OpGj/ClrtMy73JNrKRIaViYyWLVty/Phxkm/mEHsmjYSUmyRm3sSvZkdO3zhA4ypt2LckmjJrp79bSJZ5IHXr1o1Lly7RpUsX7ty5w/z589mxY8cLzfNlklWk1FfvCnxwDJmudIUelZTKvexcdkfdAGD4+z2JLVSxcuVKzMzMKC4uJjs7GycnJ/bt24ezszPdu3cnMTGROXPmsHPnTn7//XeKi4vp27fva5ufQCkSsYjmVWwNtrnbmGIkFf8v1a30s2dWuxVmtVshl4oZE1yNFi1KF01qtWGUwdGjR/V/l5SU6P9+3JPmWahoESeRialcvRKVAfnHveg3eRnzp0+kfo/R9GrmwbuNXDGWvdj3RhnKEjVRh+8ZpNBVcazDieu70ai07NsaiVcD2ydWaHy8gqOJ1ARPS0/8Xf3ZK9v7Usb4qnmSIbRWq/3banIvG2snZ6ydnJ/r2EJVIbvv7OZG1g1czF3o6t0Ve9NSI243NzdCQ0O5d+8e7u7uuLm5cbnhZU58eQLHno7kX8on7l4cTu87Yf+VPbm7crl7+i5atKjz1RjZGyG1lCKpJEFmK0ORr0Cn06FJ03B3wV3Ma5tj4mWCeV1zUn9MpXPnzixZsgQvLy9MTEyIiooiMjKSDRs2cPPmTTp27EjNmjVJS0t7yVfw77n24BpDDgyhRF36Gdapddy7dI/fAn5DpXyY5qrRaFiwYAEnTpwgOTmZUaNGsWvXLhYuXEh4eDhfbrvGzivJFD/yAEcsAlO5hJ5NKn5gcuPGDYYOHcrMmTNf7SSfwKMRal5eXhQWFnLz5k2cnJwMxK758+fj6+v7Wsb4OtHpdGy/nMKiiNskZxfjaGXM8MAqBm0GDx5MYmIiHh4euLm5YWdnR1RUFEFBQYwfP57Tp08zffp0vV/koEGD/vmJvGbeiOpsIpGoE5Ch0+ku/FU7nU63RKfTNdHpdE3s7Z9fuRcQEBAQEHhRpGIpv7b7lfFNxlPVuioOpg60dQ9mfafVHPlwJJenhPBz30ZUMjN64XOZGEnY8qEfHwZ542JljLWJjNY1HPjz8x7EXDrHsWPHAPirNO+rkcmolVpc7ariV7N0MZyec49j13Yyb/N4omNi2Llz518uJAsLC9H8z4PmxIkTeHt7U1RUxPDhw1m2bNlr87+IiYnBz8+PgIAAQkND0el0mBlJ0ep0GGuKsVLl6ds2dK/MJ+0CqGpvw4etW3Dl3Fk2/fEHJiYmWFpaMmbMGNLS0tizZw9JSUk4OzvTqlUr1q1bh5OTE02bNmXhwoWcOnUKX19fwsPD9X0/S7Wrf5JHx3XixAn69etXrs3atWvx8/OjU6dO5OWVXq8ff/yR5s2b06JFi3/VE9jWNR0wfoJwKxaJnrj4e1lotTpScorJLlQaiBePL+LKkEnEjA2pTsLRTewYHUjf5h4vTUACyEotRCw2THNytauKTCpn3raPuXzlIj169Hhp53sT0Ol0XLibzY4rKUQn5bJ06VIGDhwIlFaaa926NT169GDlypUsWbIEX19fPv/8c/3xu3btonHjxgwfPpyWLVu+rmkYcDXzKiGbQvjh/A9surmJxVcW02JSCzxreJKRkcHdu3eRy+WEh4dTo0YNMooySC0sNfI2q26GeT1zXIa4YFbdDLVWzY2iG2ilpeKI1EKK6oEKjUKDVqFFhAi5oxyRRIQyU4nERIIqW0Xx3WKkIinutdzx9PREoVDg7++PmZkZbdu2ZcSIEfTq1YsvvviCb775BigV8ExMTP7RazXvwjy9gASQczIHa19rSjQlJBUk6bffv38fDw8PZDIZnp6e5aKmZr5Tl36+HpjIJJgZSTCSiGniacO2D/2xMqk4pbVmzZocP36cwMDACvc//nsVHx9f4XcywObNm/XRvfn5+QQHBxMYGEinTp3Izy+f4p6enk5ycjJTpkzht99+4+bNmwQHBwOl933Zee7fv09+fj6enp76Y8sEEl9fX5YsWVLheP4LfLPrGl9sieZmegGFSg137hcydcc17twvTcU8e/YsEomE8PBwvL1Lo0FHjRql94M0Ny9fYOD/I29KJJI/0EUkEnUEjAFLkUi0RqfTVfyJEhAQEBAQeAOQiWX0qtmLXjV7vfJzmcmlfBRcDb+6ufwR+wcPih9wOqcxHsW9sDOxQy6Xo1Ao8PPzQy6XExISwpdffqk/fsGq6TjIq2JpakNs0kU6NxtMN9+w0nkYS/g1YgKdO3f+y9LDt27dYvDgwZiZmVGlShW+/vpr1q1bR2xsLP379wdgw4YNODm9WPres/KktI6gGg6ciLlbrr2liTEulaz4+fBJkrJy0QGj+vZi7b5wli9fjq2tLTNmzGDL1q0cjjyGnXdVbFxcMS4q4PbNm+Tl5VGrVi3u3r1Lr1698PT0ZPHixRw9epQWLVpw5MgR+vfvz5YtW9i6dSu///47BQUFzJw58x+rRlWkVJNXrEaRe9+gCldCQkK5tiqVisWLFxMZGcnmzZv59ddf+fTTT1m5ciUXLlwgNTWVUaNGsXXr1n9k7C+KTCJmSksLeg8cjA4xYitnXLuOQyQS80u/RthbGIqdX3/9Nfv2lZZenz59un7RVcagQYOYOnWqwYLrSfxx/h7f74slX6FCo9Vheiucj9/rSdz8bw1SaJYsWcKKFSv0VZ2gdBEXHh7+RE+O58VILkWrLe+B2r3FCABsXMyoXr26vqpaUFCQflyPPmGvaP+jldjeFOLuFxD62zkyCxSIRKBRqcnZs5kLEQ+rxGVkZBAeHo5Op8Pf358TJ05w9uxZTp8+DcCsWbM4evQo2dnZtG7d+nVNRY9Kq2JE+AjyVQ+FA4VGgUkDE4wbGWN93Jo7d+5Qv359oLRww5U9Vyh1xXtIUWwRqatKhSW5oxz7AHsKbxUikoio1LIScZPjUD5QopKpsHa0RqQTodPosGpuhbZIS350PrmXcqliXIVLly6RnZ3NDz/8wNWrV/nkk0/48MMP2bNnD9u2bQNKqwB+8803/7gH0Lm0cwavSyunlpB1JIviu8Vs3rYZAHt7exISElCpVCQnJ2NlZWVwnFQiZuLbtfmkXQ2SsouwMjEq9/3xrDz+e5WZmfnEtn/++adeRJLJZKxZswZnZ2eWLl3KypUrGT16NCUqDWtOJXDu2CEcVGmI0SKiVAyJi4ujTp2Hpu23bt3Sp+iqVCrq1KnD4sWLOXfuHJcuXWLgwIHMnj2bgIAABg0ahJHRiz8Ee5O4+6CQtWcS9RHdZRSrNGQWKLmemsedO3f0FWgbN25c7gHK4w/X/r96wb0RIpJOp/sC+AJAJBIFAeMFAUlAQEBAQOAhOp2OGWdmsCNuByXqEnTouHL/CgvWLEC7R0u9WvW4fv06YWFhDBo0iEcLZ4wZMwbf5r7Yl/hwPfFiub61Gh2H9h/B2tH0bxeSFy8aHt+/f3+9gPSPk5cCigJklTz1m+RyORqNhjZt2mBuVYm7Z65wuporV2OvotRoGBbYjEKFkqh7qQzwa8zyY2dpW7saLuoicvPyGfXLHmJ3L6XDsBFMXP474noNyR86mqSZk1AlxuNka4ubmxtdunTRiyq2trbMnTuXwsJCdu/eTc+ePZk3bx4SiYRevXoRGhpKbm4uPXv2fOUiUmaBgknbYjh8PQOxGAqiDuJSnG1QhSs5OZmuXbuSnp7O+vXrKSoqol69ekilUtq2bUtYWKm4WLVqVRQKBTk5Odja2v7Nmd8sOrRszIO4aPZfTWP6hNF08dYwpncIlsblowcGDBjAlClTyMnJoUuXLuVEpKdl3Zm7fLPrmj71RadRkxJ1ju9qtcP0kUWLWq1m+fLl5YSLV0UlZ1NMLY3Iyywpt09qJKZu4POb/r9plKg0vLf4FFlFSsq+AguiDiL1bkmvX0+VZe3SoEEDJBIJaWlpeHh4IJVKDcxyxWIx5ubmmJub8yZkPxxLOoZKqzLYplVpEcvEaHQaklXJ3Lx5U586FhUVhYWsvEOIeR1zbNsYfpbdhpeKFDZtbLBpY8OdWXeo9UUtwhqGMWHQBKTmUuw62pH0SxIObRz4esbXhNUP47vvvmPOnDncuXOHMWPGoNFo6NKlC9euXUMiKY2kq1y5MsePH9dHwfxToqNYVHpdyiirnApwZ8YdOnXqxKXzl5BIJIwaNYqAgADEYvETxS5jmYSqDs9ufl6GTqcjIS8BpUZJFauHqVNlv1cpKSn06NGD+Ph4tm/fjqurK7t37yYkJIQVK1aUjsHYGGfn0jRIqVSKRCKhRKWh+6KTaB4k0ESUhkRU+j0TGxvLrl27sLa21kdCqtVq4uLiuHHjBv3796e4uNTPceDAgfzwww80b96cffv2ERoaioeHBxkZGbi6uj73nN9E9sWklRPU885upejmKURiMXuiUwny8uLIkSMAXLp0Sd+upKSEfv36MX78eFJTS4XY06dPk5mZKaSzCQgICAgICLyZnEo9xY64HRSri9H9bymk1Coxqm+E+zR3XFxcMDIyIioqir59++ojK27evMnVq1cZN2kEYkn5J2YSqQiXqtZYO5r+o/N5IdKvwa+tYIEPLA2C76uwY9YQ6tatS0ZGBra2tmRnZ7Nt8yYWzJxMXJGSIa39qeXkwM20+/puzIyMyCkq4fitBBbsi0ClKGHNpq2cupNF599Oo5JIUGSkU3zpHLImLZBWrUGWtR1mVlYcPHiQatWqcf/+fbp06cL9+/d58OABkyZNwtTUlB07diASidi/fz9BQUF06dKFe/fuvdLLUqzU0O3nE4RfS0ep0VKi0pIde5aLJ49wOz0PjUbD9u3bSUtLY/Pmzfz444/Mnj2bnJwcLC1LzdmtrKz0/lfBwcHUrFmTdu3a8dFHH73Ssb8MdDodlzMu81vMb2y9s5VCdQ5dfSrTuIoD4pQoIsP3c/PmTWxsbNDpdEyePJmzZ8/i5eUFlC7oyp4qx8fH4+vrS7du3UhKSvqr0wKg1miZvS/WwDul8OphjD0aEPtDb6KiovVia2ZmZoXCxatCJBLRNrQOUiMxokf+5S81EmPjbEYt/+fz53kazpw5o0/dGTduXIVt9u3bx+7du1/K+XZHpVKi0vBo8WlVVjK5F3dzeekEoqJL03bLfJDs7Oy4e/cuGo3GYMGo1WopLCwkKSmJ+/fvP36af5zUwlRUGkMRqSC6gDuz7hA7I5aUtBS++uorSkpKCA4OJioqCjdrNyoZVwKgJKmE/Kh87v1yj6RlSSjvK7n3q+H3kU6tI/67eErulVD8SzENihvgrHbGytqK6t7VsTK2YnyP8YTVLxWZd+7aRYu32lOlWnVOnjyJj48PxcXFhISEEBQUpBcpXgeBroHlorDK6PFjD2pUraEXtAYOHMjp06c5efKkPgIlIiLipUUEnks7R8ctHXlv53sM3DuQwI2BjFs4rtzv1R9//MHHH3/M5s2lUVK///57hWluBQUFLFmyhD59+rD61F3uZBZQgxRkooffPTVq1KB+/frk5eXxzTffkJOTw8aNGzEzMyMuLo7s7GyioqI4ePAg7733HoGBgcTGxnLr1i00Gg13797FwcHhpcz/TUKp1qJ55MtBp1ahTL+D8n48JUnX+KJTPdRqNQqFguDgYG7evFmuj/r165OSkkLHjh0pLCwkJSWFVq1a0bZt27+MKvuv8caJSDqdLkKn03V63eMQEBAQEBB4k9hwY0O5SnDa/y1YC5QFlEhLcHBwYO7cufz2229MnjwZgOrVq9O7d2+mTp9E17ENMTGTIZaKkBlLkEjFVK5RifbD/0VVxnKTYUU7SL0MagUoC0GRTxftHmJ+6kvlypXZtWuX3iDc29OdTu1aM+Cb73Dz9KToEVNVsVhEzyb10ep0eNlVwthIhknVZmi0OlRpxYiVWkxC3qZk9xYUpyLR3EtAk59LkxEfce3aNcLDw7G1taVOnTrI5XJat27N6dOnadOmDdevX0en0zFr1iz27t3L9u3bX7mB744ryWQVKlH/70mrOj8Tdf4DrFr2Rd5tGoFtO1BcXKyPOvLx8eH27dtYW1vrfZDy8vL0r1esWMGtW7c4c+aMgV/Mm8aZM2do3qI5jnUdaT+wPQsuLmDk8JFUrloZBzcHzp49S7t27RgxYgQnT56kadOmXLt2jcuXL+sXjatWraJmzZrcv3+f5ORkvv/+e+bMmcOff/6pf+r8/fff07JlS/r27YtKZbigj7tfiFpjmCKhykqm4OoRdCIRGh289957wJOFi1eJs7cVvSY2o6avMxa2xthWNqPFO968M74R0pfov/Q4Hh4eHD58mGPHjpGRkUF0dHS5Nu3bt+ftt99+Kee7kpRDoVJjsK1SUCiOvb7BoefXOLh507lzZ/0+qVRKaGgofn5+bNmyRb/9s88+IzAwkK+//vofT8+tCA9LD2QSwyg6y0aWVPmiCrUm1WL0rNGIxWKWLl3KoUOHqFu3Lt7e3swLmIeR3AhrV2tq/VSL2tNqIxaJ0eWXT28USUV4TfCi/er2XD19lebNm3M96jr3b99n1zu7SL2ayicDP6FIo+Wz2HskffMTbW+kUu/MDb6+ncxPv/xCnz59mDBhAi1btsTExISVK1fqzYfLIiB9fX2Jj48nOTmZt956C41GwxdffKFPgXsZjG00FlOZKeJHlroiRJhITfi82T/3XRabFcuH4R+SVJBEiaaEQnUhBaoCTlQ6wZebviz3e1W5cmVycnI4fPgwfn5+5dLJdDodgwcPZsaMGVhbW7PhXCIlKi1mIqW+TVmxgJCQEOrXr4+fnx+Wlpb06tWLwsJCmjRpwvz586lfvz4hISHodDoiIiJKfbQyMvDz82PAgAH/uVQ2gFouljyafVYQtR+z+m0xsvPAa+gCzMwtmD9/PleuXGHkyJFER0ezYsUKCgsL+fPPP0lJSeG9994jIyODJUuW8P7775ORkcHRo0cJDQ1l7dq1r29y/zBvRDqbgICAgICAwF+TUZRRbltBdAGZ+zORiCTYNrAlLy+PgIAAioqKDJ5gDhkyhFmzZrHyj194a1gzSjYn0nZQbexczbG0+2cNT1+YUwtBZZiWo1DrkFMEJ3/E0qw/JiYm5QzCnapWp1mXdzm4/BeDY+tUdqROZUduZzxAZmZNnJUjdp3Hg0aHqESDcceumHToiurmdXKnTUB99w67f13ElClTmDNnDh06dEAkEuHm5kZ2djYeHh6EhYVhbm7OyJEj6dSpE4GBgTRr1gxra+tXeml2XE7RV6QDKIm/iNjEktwTG9BlJbIzuxan95WKIt27d+fTTz9FKpXywQcfEBUVxYoVK5g7dy6XL1/m7bff5vLly5w5cwYfHx8KCwtf6dhfBA8PDxpNboQqU8WdRXcoSCygKLWIajOrYSwxxuuIF4mJiRQVFXH27Fk+/vhjjh07hlarRSaTkZyczKpVqwgJCWHZsmUAel8MqVRK/fr1efDgAUeOHOH48ePMnj2bbdu20bNnT/0YZBIRj9sOVQoKRZ2bTtqaT0GnJSMjA61Wy1tvvUVWVhb29vYMHjyYkpIS2rRpw9WrV2nWrBk7duxArVYzePBg7OzsuHXrFl999RWLFy+mqKiI/fv3Y2Zm9szXydrRlDYDar3Qtf5btBq4th0urISSPJyqBkOzYWDshFQqZceOHSQlJdGhQwd27NhBbGws9vb2qNVqgoKCGDBgQIWebk+LvYUcI4kY5WOCHoBcKmHS8i14enoYpFWNGDGCESNGGLTt0qULXbp0ATDwrXpdtHBugZnMjCJVkT4StQyxSEz3at2B0u/6+Ph4LC0t+Xbpt3R7rxtO/k5YmlpSx7wOvs6+nKx2klybXFJzUklcmIjyvhKPMR5ILaUkzk0EM3h37bv88ccfSCQSpk2bxuHDhxGLxSxbvpyPslREFxSj+N8Nr0DHz3/8ybwVP9Omft0npr6mpaVx8OBBLly4wOzZs1m8eDE9evQgLCyM4uJiZs2a9dKul6eVJxs7beTHiz8SmRSJVqelhUsLxjQaQ/VK1V/aef6OX678gkKjMNimVWkpppifL/9MoEVgud8rnU5HTEwMO3bsYN++fVy9epVJkyYxffp0Jk+ejL+/P23atAHQf98X6OTIRUUA3L59W58ia2NjQ9OmTTE1NUWj0VCzZk38/Pxo1aoVACtXrmTYsGEEBgaSlpaGt7e3QYXK/xJX7uUwZsMltP/7atBp1JQkxmDfqBO54rV4ONtzX6dl7dq1/Pnnn4wYMYLCwkKMjIxYvXo17du3Jzo6mpo1a6LValmzZg3BwcGo1Wr69etHixYt9Pf+o/53/1UEEUlAQEBAQOBfgI+DD7FZsah1D0uSWzayxLKRJXKJnF+7/oqbhRu9ehmafB8/fhyAL774AoD9+/dj72JNFZ/X7/PxXNw6AI95g+y7rWbuaSWISqjWPJYhYR/o5/0oEpkMp6rVkRRk6bdtvRhDWl4B1qam2IR8AJT+4zJj0xSU6XfIGtILnUaNLjcHsYMT1r0GMnb8J4x0d2DWrFn07t2bBg0a6CvbnDhxgqZNm7Ju3TqMjIyYPHmyPirsVZJbrOL83WyDbZrCHMRGJpjVCiQ/9hgXFMls3bqVjz76iOjoaAYPHsyuXbvw9vYmNDSUQ4cOsXv3bi5dusSdO3fo27cvEyZMQKPR/CNzeFqKVEUsi17GlltbKFIXUdWqKtezr6PWqhFJRGRsy6A4sZi78+5i296We2fuMbjnYNRqNXv37uXYsWMUKtQYezelyfSD5J1YT+aVaDQaDaNHj+aHH37QV1CqUqUKsbGxXLlyRS8mtG3blnXr1uHh4cGECROAUq+wGiOXUIyhb4rEzAaXYUuo62bDxfAfmDlzJtWrV8fExIRJkybRqlUrRo0axTvvvEPNmjUZPnw4mzdvpmvXrmRnZxMeHs6GDRv4/fffOXDgADNnzmT//v107979n77sf49GDet6QuIZUP1PdMy4BmeXENV8PpmZmUycOJHvvvuODh06sGXLFqZMmaJftEZERFTo6fYsdG/kysLDtyvcp9Pp6FTP5bn6fd1IxBKWtlvKkP1DKFIVUaIuQS4tNXieHzQfOxM7oDQFCuBUyilCD4ViPNgYrU5LRlEGiacS2bZlG0ENg/iyzZccmX+EGl/UIPV4Kvnn83Fu78zHP3/MlFZT+Oqrrzh8+DBOTk4kJycTERHB9evXGfv1N1wPHasXkMoQt2hFJf8gjNct1ptGg6Hx8OMRkAD9+vXjk08+Yf/+/S/9mnlYejA3aO5L7/dZOJ/UDvIfAABwQElEQVR+vpzo9+jDH9emrgwbOqzc79VHH32kTyFu2bIl06dPJyUlhdmzZ+Pn58fWrVvp1asXLaq0YPvlFKLVzvjL4pGJtNSsWZOaNWsCIJFKqVunDp06dSI4OJhJkybRvn174KE4unTpUv3rR6uN/pfQ6XR8sPYChYqHD1kKrx7GrHYr/euk7GJkcmPEYjH5+fmo1WoaNmxIx44dWb9+Pc7OzlhaWnLs2DEmTpzIoUOH6NmzJ1qtlp07d3L58mXOnj37Oqb3WhBEJAEBAQEBgX8B/Wr1Y8utLfpQ9TKMxEY0cWyCm8Xfly1/XZVyXirS8pFTXWvK6FpTBkZmMOhrcKnyRINw5fu9+HHsB8iNbpUe26geGpGEm2ZVOVypHgAiiRTH92egtZKh9DX0hTAWi+jjXPq0sW7dujRo0EC/74cffnjp031afj+ZgObxhZ3cDGP3ulj4dMDCuxHdqyr59ttv0el0SCQSPv/8c7y9vTl9+jRFRUXcvXsXkUhEVlYW48eP5/jx49jY2LymGVVMibqEvnv6kpiXiFJbmsIR/aA0RarkXgnqfDWeH3ty84ubaEo0pK5LRSaR0a5dOzQaDR07dsSyThDffzYCm/qemBYoST69D21xIbcz8knat4+goCD279/P4MGDiYmJwczMjLy8vHK+Uc2aNSMiIoK9e/eybds2BgwOpt/yswZLRpFUhggZ8VkK3mrSiitXrjB79mySk5NJT0+nWrVqVKtWDYBatWrh6upKXFwcALVr12b+/Pn89ttvBAYG0q9fP9q2bav3rFq5ciVqtZqhQ4f+Q1f/b7iyHhJPg6ro4TaNgqyCEkaFhfLH8Zs4OTkRFxdHcXExycnJeHl56UWk9957j6lTp9K3b1/69etHhw4dnnkIla1NmPh2LWbuuY5Ko0Oj1SERl1bs++7d+liZVlyW/a+IiIh45mNeBVWsqnCgxwEi70VyJ/cO9qb2tPNoh6nM0M9Oq9PyxbEvKNEYRmwaNzCmeuPqKPcpORl+krdbvM2ggEGsz11PanQqs1rN4ofPfyBoSpD+3szOziYiIkL/HXrf3IpCrWGUl06pRGRkhFKr44FMjlwuJzExEYDo6Gh9xbiYmBg0Gg1XrlzRl06fOnUq33zzDTNnzmTnzp2v4rK9VowlxuSSa7Ct7OGPkcSIBe8swNHMscLfqzLKBCYXFxdu3rxJ8+bNqVWrFlu3bmXRmv7sjUkjQVUJW00BtSQZiAAROgoLi9izeyfW1tZYWFgQGRnJ1KlT9QUUHudNuc9fBVeScsktMnz4pMpKRpl+h/zLe1Hdv8uD66fIK1az+mQCf27ZilqtJjo6mtTUVO7fv8/UqVNJS0tjy5YtbN++nYSEBH01zcaNG1NUVETVqlX1QlJFZun/Jd44TyQBAQEBAQGB8rhauPJTm5+wMrLCTGaGqdQUuUROI8dG/NDq6cSLsko5jwof/zoa9a9QSALAyByc/npuIomUndfuMOKTT2na5V2KawWxza0Hh+1b86hZglwmRlbVClNx6Ta5SISxWMRPNd0xLiqgbdu2DBky5Emn+cfZdilZ74VUhrxyLZQZCQDUlmdRp2YNqlevztGjR3n33XfR6XSkp6czceJEli5dikgkQqvVMmTIEObMmfPGCUgA229vJyk/SS8glaEuUJOyOoXKg0srjUnNpVT5ogrOfZyp4lsFsViMj48P33w3j43XCjH2bIRp1eYAWDbthnXQIMy7T2fM5FnExMQwY8YMjI1Ln0qPHTuWatWqlfONgtK0t/nz57NgwQIqmcmRSw3/aa1VlAoqxSoNO/YfJjU1tdx7AFCnTh2WLFkCoN+m1Wr1lZUeT3d5Izm7xFBAAtRaHf22FPN9WxlO0gKgdKE8efJkfUpOGTKZrJyn2/MwoIUnWz7wp0cjV5p6VqJPMw92jQ6gi8+/vwqdTCwj2COYYfWH0a1qt3ICEsDVzKtP9M8rVheTqEzExMQEiVjCW55vMajuIFo4tyD+XHy5e7NGjRq0a9eOiIgIIiIiePf7H8vZVSvOnSBr7BAyxw6hIPM+EyZM0BsPP2pK7uDgQLdu3fjoo4+YMGEC58+fJyUlhTFjxtC6dWt9RMzr5HEj+LS0NGbMmAHA6NGjn7m/blW7YSSu2FvI09ITRzPHZ+4zJCSEiIgIDhw4QFUHc1YPaYZbJVOuibw4iA/ROjdMPOqR9eA+y5Yt4+DBg0yfPh2AK1eu8OmnnxIUFPS3/j2Pzr1z584EBAQQHBz8VIUG3jSyC5WIxYZ3bplXmuN705DZeWBatRk6dEzfFc2xqDhsXDyoV68eH3zwAVZWVkyePBlzc3N+//13unbtiqOjI1FRURgZGZGdnc3MmTPx8fHRG6NXZJb+X0KIRBIQEBAQEPiX0Ny5OUd6HeFc6jlyFDnUsq2Fl5XX6x4WUPqP73HjxiGRSGjSpAnz5s17NSdqNAAuroIHt0Fd9qRdBDJj6LYI/sa8WiaTERkZqX/dTKUhbvUFcuMfoNbqkIpLvW1GBVUltFUVNqdnc72gGDdjI3o62eAgL41kKCsB/KagqUBYMHKsglhqRMb6L6hWx4uAgLHMmTOH8+fPY2VlRbVq1ViyZAn37t3T+7988803nDhxgrFjxwIwf/58fHx8/sGZ/DXb47aXi7DQaXQkLUnCqZcTMmvDSBO5RE59+9JICJFIRPi1dERiETwSLySvXIv8K/tRqDVsOXiCIW81QafTsW7dOiZOnIhOp6Np06YsWrSICRMmEB4ejq+vL0VFRQwfPpwVK1Ygl8vJyM9FJhVTon4YqaFIukrOsTWIJDKca/jQt29funTpYvAelHE1JZclR+OIvpBEkcdtrsXeZN4P33Px4kV9G41Gw9KlS/XHHTp0SG8IvXv3bhYuXIhYLCY0NJSOHTuyc+dOLCyevzT5M1GcXW7TpqtqzqVo+OxAAVzpxay5C+nZsyf169fn+vXrBm137NjBwoULy3m6PQ+1XSyZ3aP+C/Xxb6VIXYRYZPg9WJZCBWDnZke7du3KpVA1b96cGTNmGNybDRo0wMnJiaCgIEQiEf7dumPsE0jxI4K1sX/r0v/EItY0rYlYLGbv3r3lxlVRpMvq1asB+Pjjj1902i+FMiN4Y2Nj+vbty/3795k4cSIAP/300zP3N7DOQPbF7yOtKE3vjSQRSZBL5Hzj/81T9aHT6YhOziW7SIWZUsGRI0cICAige/fuGBkZ4eHhwbJu1Wju68v6K3fY+Oscgut2Yf+qePz8/BCJRFhYWBAbG0tCQgLff/89Tk5OfPjhh6xZs+aJ3w9OTk76uS9YsAAvLy8OHjzIvHnzmDNnzjNfi9dJTWcLlOryPmllOPaeScamKaBRk7jiI8zrtqVQpOXS+dKIJBcXF9555x1+//13Lly4gEql4pNPPiEzM5OioiJycnKYOnUqw4cP16dqPmqWXrbtv4QgIgkICAgICPyLkIll+FX2e93DKMfj//iOjo6mXr16T2yv1Wqfr1qZzASGHIDTi0vNe5UF4NYcgj4Dl4bP3J2xTMLvg5sxYcpMtm7fwsQlm2lXxxEHC2MABla2M2hf9kT+k08+oVu3bqhUKiwtLVm/fv0/t1ivgPZ1nFhxIh6VxlBMqtRmCBbGUnZPCsFIKjYQJMr46quvDF5nZJQ3cX9TUGqU5bblnsulOL6Y9D/SEYlEOPQoTUE0lhjj5+qHXdLD97BIqUb7WMRWmdiWsvZzJM6OBEwfV05sc3BwIDAwkJYtW+Lu7s7YsWPZuHEjsbGx9O/fH4D5v/5WbqFi4t0UE++mSMQiujesjKura4XvQavhX/PuLydRqZ3R1HmHLbFFZJSYIqpcFysrK8aPH89nn33G4cOHmT17Nq1atSI+Ph4HBwfWr1/PsGHDiIqKYtSoUXTs2JGTJ0/y6aef/rP3pFtzyEsG3cNr0LuejN71ZCA1hvGHwdgKwCAtd9CgQfq/H/d0E3h2atnWKhepV5ZCJRPL6F2zN1WqVJzyW9G9OXHiRL2YoNPpSLuawKEHeQZCkolYzHtOlfAylb+iWb1aFMVqCrJKsLayxdi4VIiWSqVIJBL69evHmjVraNmyJcePH6d379589tlnetPxTZs2PbFfCyMLNnTawLob69h2exsKjQJ/F3+G1huKu6X7347r8r0cPlx7gdwiFWKxiJISBV2mb+L79xvTq0d3JkyYwL59+8jMzKR5s2bI8lO4Gh3FtKlT0Gg0oNORcOUi6vxclsz9Aa1Gw4cffohKpWLr1q107dr1ieb99+/f15tDe3l5MXfuXFasWEHHjh0Nxrhp0ya+//57RCIRX375JV27dn2xN+MV4GxlQusa9hyJvY+iAjGpLIUdIDviN0ruXgGRCI0G+vbty5kzZwAYO3Ys4eHhTJ8+nWXLlrFmzRqmT5/OwYMHWbNmDREREdy6VZoq/6+IHn0BBBFJQEBAQEBA4JlRabQcuJrO/qtpyCQiuvhUJsChdAEhlUrJy8ujT58+rFu3jn79+jF27FhiYmLYu3cvBQUFzJgxg5kzZ5Keno5cLufPP//Ue878LUZmEPhJ6X8vAYVCQXpCLI6WxvTz9XiqY2QyGWvWrMHZ2ZmlS5eycuXK50p3eFkMCfBi4/l75BWrDKqEmcgkfNa+JkbS/4aDQbB7MPF58QZikrWvNda+1sjFcib5TuLy/ctYdrWkk3cn4s/Gcz7rPFDqLXItJQ95JUfs3h5n0G+lNkMwM5Iw/Z26uLtXLPR89tlnfPbZZ/rX/fv31wtIZbSsmsmxW/dRPibmySQihgVWqXBOcfcLmLP/pkEEU07UIYxrtmLU2otY/W8BEhkZyVtvvWXgmVK3bl0AfWlwkUhEv379mDZt2j9fbrrlOIjdDSrDVCqkJtCwr15AEni1WBpZ8l719/jz5p/lovaMJEb0r93/CUf+PSKRiF/reLIs6T6/3rtPhlJNZbmM0e4O9HWpuCrbm0RCQoLeU8jIyIjdO/cSsfYGcRfvI5aK0Kq1ZOhuYFFFSWZmJqam5dMF58+fT58+fRCLxXoj8787z4EDBwirH/a343vU5yw1t5i+S09T+EjFTZBwJC6Xz7ZepVOnTiQlJREdHU1ubm65qpNotSwfO5yi3GwSb92ErEwyEpPRyGQEtw3h8OHDf2ne36hRI/1ZFQoFly5dIikpieHDh+u3a7Va5s2bR0REBCKRiPbt27+RIhLAvF4NGbX+IsdvZVYoJJVRKShU//f9dZ/RuXNnvYj0KFKplAkTJtCqVSsOHjz4Ssb8JiOISAICAgICAgLPRG6xip6LT5KUXawvMbw3Jg0fN2s+aWxMZmYm/v7+7Nmzh+HDh+Pi4kKTJk2IiYnB2tqajRs3AqX/YDY1NWXZsmVs3LiRYcOG/SPjD78bzi9XfiEhNwEruRVOl50Y2G8g33xdml7w0UcfcfnyZSwtLVm7di1WVlYMHjyYxMREPDw8cHNzw9jYGGdnZ+DhE+vXiYOFMTtHteSrbTEcv52JSFRa7vzTdjV4p9F/x9CzV81erLuxDrVWjfaRiBdjqTGDag+iW7VudKvWDajYSL62iyVNPGw4l5BlsJCQiMHa1IiO9ZxfaHw/9m5I2KrzXEzMRoQIibg0cW7eez5Ud6w4KuiPc/fK+VmVmb4WRe2DjNvs3LmT4OBg3N3d+emnn/SC5eNPuwsLC1m2bBnvvfcev//+OwMHDnyh+TwTTnXhvdWwZVhppTaRCDQKqNcD2n/7z41DgPFNxiMVS9lwYwNSsRS1Vo2LuQvfBnyLk5nTC/UtEYkY7ubAcDeHv2/8BhISEsKaNWvQ6XRsnXORjIQ8NGodmv8Fx5mqXPh1wVQOn9yNUlU+8tHR0ZEqVUp91lxcnlztr+w8z8vKEwkoNYZih1ZRRAmmhF9LJ+1WJBM+HotYLCYnJ8fAa0yn02FcnE/U9es4WZpTolJhIhNTydSY5lW9uBATg7Ozsz7lysXFRS9Iu7i4kJWVxa30fNJyS7hzv4C9f/xOUVERDg4OSCQSWrduja2tLR07dqRGjRoUFpZWYyx7ENShQwf27t1L3759adq0KSNGjKB3795s3br1ua/Hi2JiJGH5wKbcyypi++VkFh65jU6rQ6F5cpRQ8zEL8fT0fGKhjjIq2v9XZun/BQQRSUBAQEBAQOCZmLrjKvGZhQapU0VKDediE+n10/ccP1BaZWfEiBF4eXlx9+5dfbvGjRsDpd4un376KdHR0eTl5fHOO+/8I2NfHr2cxVcW65/QZ+RncPnQZeSBcnToOHfuHIWFhURGRrJmzRoWL15M69atkUgkhIeHM3PmTJTKhwuLgoIClixZUqEHyD+Nm40pKwc3o1ipQaHWYGUiMxAZ/gvYGNuw/u31TD05lYsZF/X+IsPrD6dfbUMfnTIj+cdZOqAJE7dFszsqFZlEjEqjpYlnJea954Nc+mJioLlcyrphvtxMz+dyYg6WJjKCathjLHtyvym5JeVEpLKn4UYSMbqdX+mfhk+bNo0PP/yQDRs2VNjXxIkT+fzzzwkODqZDhw60b98eR8dnN+99bqqFwPjbcO80KAqgciMwLy82PI2H2r59+9BoNLz99tvPNIS5c+eyZcsW1qxZo0/HKSM3N5e+fftSUFBAt27d9N5fjx5X0T3zb0MilvBJk0/4oMEH3Mm9g6WR5VOlT/0XUZYUc+vMSQqys1BIjfSeQm1bdUAZZ8/+8xsIDZ7I74dmElj3HdZHzqFBFT9uX0nl8+mjSU5OpmHDhpSUlNCuXTvu37+Pt7c3Go2G2NhYatSoAZSKuFfuX+F8+nkK0ws5dPiQ3ruoqKiIRo0a0aFDB3bs2EFsbCxhYWH07duXvLw8fHx8WLBgAQAHDhxg06ZNXEktQv7WJ4gkD33eyjzWJDIjGoS0pnnz5jRs2JCcnBzkcjlSqRQ/Pz/S79wmwMuVVcfPotZoaFenOuZyI87FJ2EsFVPf043t27cb+N2V/VZk5itYfuw2yisyHtzNosPcI9xft5D3OofgkJ4OlKY8h4eHI5FIsLe3p1GjRmi1Wn777TcAzMzMKCwsRKvVEh0dzfnz5/W//a8bNxtTRrWpRv8Wnmy5kMTiyDgy8hQ8LiWZyCQM8X8zPCffRAQRSUBAQEBAQOCpKVFp2BOdWs57R6fVkLT1O7xCBuLkVPqk+/PPP+fHH39k8uTJLF++HEDvg3T58mW9WLN06VKSk5Nf+dhzFbksurzIwC8k52QOFs0tuPbgGkWKIuLi4vRh/E2aNOHo0aN4eHjQsGGp31Ljxo05depU6Zx1OgYPHsyMGTP01breBEyMJJgYvd7IqFeJq4Ury95aRp4yjyJVEfYm9kjETz9fEyMJc9/zYUqnOiTlFGFvIdd7YL0sqjtaPDHy6HEauVkTfi2dYpWm3D6pRMSKbfvx9LTViyGLFi0q127q1KkABk+8X1uKhUQKni3/ssnTeKi1b9++3HF/56WmUCj0Fe0qYsmSJfTt25fevXvTvXt3+vXrh52d3d8e92/FVGZKXbu6r3sYr407l86xa95sEIFaqQKJhM87tqb31G/p9s4AWnn1xtbCifWRc7Eys+VBfioP8tI4f+soIz6KRi0upmXLlrz99tuMHj2amJgYatSoQYcOHQgJCWHEiBHs3r2bQlUhww8O51bOLZQaJWKNGKdpTgxoPIBtk7Yxa9YsFixYQIcOHdiyZQtTpkxhyZIl9OrVi/79+zN06FB9ypSVlRV//PEHjXuMIjH2JGa1W+nnU+axZiaXMH5QMwC+/vpr/f4TJ04AcP3YEazNzfggyNfgenjb23AgJhY7Ozv27t3LtGnTDPYXKzUsPHKbwhIFclsNao2OB1fCyU66xcY9MrQP7jJv3jwaNGigj7796quvuHr1KgAdO3akXbt2NGvWjG3btuHh4UFaWhonT57E39//Jb+7L4aViYzQll683cCZd34+SXaRUh9ZbWokwd/bjveb/f8UXp8GQUQSEBAQEBAQeGryS9QVbi+6cRxl6i3i9y4lKGgzb731Fh4eHowcOZIxY8aUW9DWqFGD27dv0759e9zc3Khc+dWX3z6efBypWGogIinSFJQklpB1JAtVgorY2Fh95NT58+fx9vbGy8tLX43t0qVL+mMnT56Mv79/uVLlAv8MlkaWWBo9pY9WBViZyrAyff0+Pd0buzI3/CaoDLdLxCKcrYxp7mXzegb2MtHpIPEU3NgN6HCq2QnkLYDSdNAdO3aQlJRkEKlhb2+PWq2mbdu2hIaG6tNnBg8erO82KT+J1ddWcz79PNZya4zPGNN/QH+mTpmqb6NSqRg4cCDDhw/nzp07emPgOnXqcP78edq3b8+yZcsYOHAgkydP/ievisArJC/zPjvnfotaqXi4UatBpVaxbfZUWvkFk3rtLgG1OzNlXV+m9V2HtZk9ao0SrU5D9/c7s3L3HExNTXFxcWHEiBFIJBImTZqERqPB3d2dPXv2APDVia+4nnUdlbb0Q6wRa0AMS64uIahlEDExMcTFxVFcXExycjJeXl7ExcXp78UmTZroK3iVPbB4t50/89fvq3BuxlIJjT0qPXHuFnb2FW7v7FMbkVhM3dYhVK9evVzK1R/n72FaNxj+J6bYdR5PdsRvGLvXRyUWI0ZE1apVefDggb5PuVyOqakpIpFIH6Xr5+fHqFGj+Oabb7hw4QJ//PEHI0eO/Os37DXhYGHMoU9asSsqlfDr6ZgZSXi3kSstvG3/c5G8LxNBRBIQEBAQEBB4aiqZyjCSissZU5rVboVZ7VZ425tx6JMgg30//vhjuX7Mzc3/8bQRja58pIfTew/9QR788IApU6YwcuRIAgICsLCwYN26dVhbW/PLL78QHByMh4cH7u7upKSkMHv2bPz8/Ni6dSu9evXigw8++Cen81xUZPgq8HqxMpGxfpgvg1eeo1CpBh1odeBpW5qe+K9fyKiVsL4XJJ5+aLp9fiW4NSOq7ldkZmYyceJEvvvuO4NIjaNHj+q7eDR9poxLGZcYfnA4Ko0KtU6NTq0jZXcKkpYP26hUKnr16kV0dDRbtmxhxowZHD16lJo1axIZGUnt2rVRqVQcPXqU6tWrExMTQ1BQEHPmzKFx48aMHj1aX9o9JiaGsLAwJBIJVatWZcWKFf/+9+Y/TFT4XnRaw9+pEpUaY5mUotwcojNOUMuyE9vPLONdv5HsPreSvkGfAqURs251rDkz+QyrVq0CnlxtK6ski8ikSL2ABKAp1iAxkVCiKWHrwa30mNXDwLMIoEqVKly4cEEvZg4dOpQbN27oI+Ik2Yk0qF2dZCOJPkJGKhYhk4j5qU9DJOIn33uVa9bBxNwCVUkJPJaoJZFKafhWpwqPOxefpT9XGWWptTKJCN3OyeWMpj/44AN9lFFYWKl5eJMmTbhx4wb+/v4YGxuzc+dOzMzMnjje142xTEKPxq70aPzf8Q981QgikoCAgICAgMBTI5WICfXzYsmxOEpUj5Uzl0kY3abaaxrZ39PMqRlqbcWRVKZSU2ZsKy3x+6gRcxkrV64st+1Rb6R/A1qdFp1O98KGrwIvn7qVrTj9RTCn7zwgLa+Eqg7m1He1fmXn+zv/n4MHDzJr1iy0Wq1eUHluIr+DuydB/UilMFUhWTdOMOqHd/njwGmcnJzKRWo8KiI9mj4Dpffy+KPjKVY/rARXlpp6OvU0hYpSo9/IyEjatm3L2bNneeeddxg6dCgjR45k27ZtuLi44OjoyOrVq3n33Xf59ddfqVOnDhEREfo+ywQkKI2ePHnyJAChoaGcP3+epk2bPv91EXil3L8bj0ZtGN4Xn5nFvphYZBIpQW3aYFdVgl2CI63qduPPEwu5nnQesVSMvYcZDm7WtGvXjvbt2xvcE4+TWpCKkcTIIMK16GYR6VvSEclE2Ne2p3nz5lhYWFC/fn2uX78OlAouffr0YenSpdSvXx9fX19u3LjBgwcPaNeuHcbGxuzY+AcRt7NZffouDwqUNPWqxNCWVfC0+2tBRiQS8c7nU9g49XM0KhUqRQliiRSRWExA31DsPSr2+rE1N0IqFpXzaAOQScRMXb4VT083g9+PQYMGGZhMAxgbG1NSUvp5DwkJISQk5C/HK/DvQxCRBAQEBAQEBJ6JMW2rcS+7iD3RqYhEIBaJ0Gh1DGnpRVefJ1ered04mTnRqUon9sTvMSh9LRVLsTWx5S3Pt17j6F4dBxIOsODSAu7m3UWUJSJhfwJ+/n707NETb29v5s6dC5SaHd+/f5/OnTuzc+dO1qxZQ0lJCYWFheVMYT/99NPXPKt/NxWZP4vFIvyq2rFy5UrOqtXUHzpU3/7y5ctotVqDstvPy9/5/xQXF/Prr79y8ODBF686qNPB2aWGAhKg1urotymH70NEOP3P+PvxSI1HedwHKSYzhgJlgcG2R1NTlQlK5ixbR63GfjhWfrjoNTMzY82aNUydOpVFixaRkpJCrVq1uHDhAvfu3ePBgwc0bdqUiIgIzMzMaNmyJSu37CO3WElVBwus/udxLJfLUSgU+Pn5IZfLCQkJ4csvv2Ty5MkcOXKEhg0bkpeXx8qVK1mzZg0LFy5EIpGwaNEiGjRo8GLXVOCpsHZ2QSyRoNU8jKyp5exALWcHjIxN6Dzuczx9GtOj17tc2JtAP/NxmFeSE5sfQZW6Lk9VlQvAwdTBQEACsGhggUWDUk+0Bval73ft2rVRqx8+xLC2ttanw5VRkSDToZ4zHZ6jaqSdmwdhP//G9RMRpN2+iVklW+oGBWPl8OTqfD0au7HyZEKFIpJWq+Otui9W2U/gv4MgIgkICAgICAg8ExKxiHm9fBjXtjrHbt9HJhYTVNP+pZsTvwomt5iMo5kjq6+tRqVVodVpaePWhom+E5FL5K97eC+dddfXMe/CPL1oprHQ4DXLCwtLC/av3M93wd8RERHB4sWLCQkJwdzcnC+//JJhw4aRlZXF3r17uX37drlUI4Hn53lMnC9fvoxarX5uESm9MJ3I5Ei0Wi03d9/U+/9EREQQHh7O9OnT9dF27u7uiMViOnTogKOjI4sXL2bbtm3k5eXxwQcfEBUVxa+//lphxF45tGooyS23edNVNedSNHy2JwuCWjHr29n07NnTIFLjr8hT5iEWGQpLj6am3vkmif35lclIDCfZJwDLvb9TmJHBhQsXGD26tOLWqlWr8PDwYP78+Xz88ccsWrQIb29v+vXrx6+//kr794cSk5xL55+OI5WIUKq1+GhvEbNjCTWqV+f69euEhYUxaNAgdDodqampnD17lmPHjrFu3ToOHDiARqNhwYIFnDhxguTkZEaNGsWuXbv+/roJvDAN2nYk6uBeAxGpDKlcjnt9HwC86tvhVd8OKPW8W/jRTjZ+tPGpz2Nvak9jh8acSzuHWmcY6WoiNWFQnUHPPYcXRWZsTP3g9tQPLm9SXxFVHcz5sFVVfjkaR4lKgw6QiETIpCJmvVMPKxPZ3/Yh8P8DQUQSEBAQEBAQeC7cbU3pa+vxuofxTEjEEj70+ZCw+mFkl2RjbmSOidTkdQ/rlVCsLmb+xfkGUVdimRgtWrKUWdRrWo+YmBiKioo4cuSIvmx827ZtGTlyJF9//TVisZjq1auXSzUSeDp0Oh1/Xkjip8O3ScouwtrUiCoZxxnWrz/ffD1V3+5R82eAQ4cOsWXLFgB2797NkiVLePDgAUeOHGHt2rXPdP55F+ax9vpaxCIxWrWW+D/iKWpWhK5cUetS0tPTSU1NJSIigiVLlvDrr78ydOhQevfuzQcffMCWLVvo0aPHE89ZznerrQ0UPTBo07uejN71ZGBiAxOO8u3s2fTv398gUuPRiIzH0y9r2tREqak4nVSnk+A68j0U6XZYd/wEhVpLQeNBqJKn0LhxY8aPH89XX33Ft99+C4CzszNWVla0bNmSWbNmERsbyzczZ7Mi9xQlKm1p1bz/ZUVdkVWj69S1FB1dhpGREVeuXKFv377069ePSpUqUb9+faC0iuOBAwe4f/8+Hh4eyGQyPD09yc0tL6gJvBpsXCrTZvAHHF7+CzqdDo1ahUxujFgqofsXXyOuoKJjw4YNOXbs2DOfa1bALAbsHUBmcSZF6iIkIgkysYzu1boT7B78Mqbzj/FR22r4etuy4ng8iVlF1HK2YGhAFWo5P38RA4H/HoKIJCAgICAgIPD/DqlYir1pxRVs/itcyriERGS4UHrU8PVw5GGGdxzOl19+ydatW/XGsYsXL6Z///4sXbqU7t27I5fL/zLVSODJfLv3BqtO3S0VIoAHeUXcPnQYWb2HkQEqlYpBgwYRFhZGq1atiI+Px8HBgfXr1zNs2DCioqIICwtDrVYz9JEUt6dhe9x2NsRu0KfbZB/LxqK5BeF3w8kqzCpnFiwSifSCikQioU2bNvzwww9YWlpiZGREZmYmx44d46uvvvrL8xr4bh2fB0dnPzTVLkNmAn6j0ep0fP755880LzsTO9p5tiP8briBSFo6EQnKrJYGm4pVGu7nFqNUa6lRowbt2rXT+x2pVCpycnJYsmQJUBr1lSmyQvlY8QCdWkUJMrZdTqGjsSkODg7MnTsXpVKJv78/O3bsIDo6GnhYxdHe3p6EhARUKhXJyclYWb3+aoD/n6jXOgSPej5cO3qIvMwMHKtUo1bLVhiZmL7U89ia2LK923Yi7kVwKuUUFkYWdKrSiaqVqr7U8/xTNPOyodl/oSqkwCtDEJEEBAQEBAQEBP6LVBBo8qjhq0d9Dw4cOMC9e/fo0qULAKtXr2bHjh3s3r2bOnXqMG3aNGbMmPFMqUavizNnzjBu3DgkEglNmjRhzJgxer+hRxk9ejTR0dFUqVKFpUuXvrjvzxNIzyth5ckEg0qGhVcPY1yzFVeScpEUl4a3REZG8tZbb+k9VwDq1q0LQOXKlcnJyXnuMSyJWmJgPv2ob1DxnWIijkaQmpoKQHR0NPXr16dp06YGgkpZ5Fm3bt347rvvqFatWrlrptKoOHzvMAm5CYiyRRw+cpiAgAC6d+/OuDEfETr5F+7dzcLdSoy7lZipwRY0WKqk3rUL1D3xHTdu3GDSpElUrfr0i+6v/b4GSj2/jCRGaHVaCktkFCf1Rqd6uADWadRkbJqCMj2ekHbtmPv9bJycnAgKCkIkEtG7d2+9gBcYGIipqSnaoNEocwxFpOL4C+Sd24ZELCK2ST188/IICAigqKiIfv364ezsTOPGjQkICND7HkkkEkaNGkVAQABisfjpUgD/IzwakabRaLh58+ZfVoVMSUmhX79+lJSUMG3aNNq2bavfFxQU9Jfm1n+FpZ09vu++/7zTeGqkYiltPdrS1qPt3zcWEPiXI4hIAgICAgICAgL/QXwcfMpVoyszfDWWGPNRo4/oX7t/uaiSvXv3AtC9e3e6d+8OlDeFfRPx8PDg8OHDGBsb07dvX/Lz88u1OXfuHEqlkoiICObMmcOuXbvo2rXrKxnP4RsZiB8rAa/KSkaZfof8y3vRZdxi586dBAcH4+7uzk8//cTo0aOB8uXEZTIZCoXimceQUpBi8PpR36D4GfGMHj+avu/2pWPHjtja2gKl0TOPCirr1q0DoGvXrnzwwQds377doM+b2TcZun8oSo2SInURcp2cytMqM7vdbGaMmEGjRo2QV29D+IaxzJ7yKcUKFYTNJ2mePyeXLMHMzKycmfDTYCQxYlbALD5p8gk3sm5gZWRF2PJ0CooNr5NIIsXx/RkYScTsnhiMtakRzZs3Z+LEiQbtxo0bx7hx4wDos/Q0sZlpiKRG+v2m1XwxreaLuVzK1EFNaeZlQ69evQz6mD59OlAqoEydOhWAgQMHMnDgwGee33+Bsoi0hISECgXdR/n222+ZPn069evXp1OnTgYikoCAwJuF+O+bCAgICAgICAgI/NswlZkysuFIjCWGhudSkZRKxpV4p+o7r2lkLwe1Vk343XA+P/Y5k09MJl4bj1xeao4ulUqRSCSkpKTQo0cPGjduTFJSEnfu3NH71vj4+HDq1CkAJk2aRGBgIKNHj34uQaMiNFpdOd+hSkGhOPb6Bsf3pmHj6k3nzp0BmDZtGtevX9f7Uj2Or68va9as0YtMT4u13PqJ+2pOromF3IK9e/eyZ88eVq9erZ/7uHHjiIyMZN++fdjYlEb1WFtbU1RUZFCuW6VVMezAMLIV2RSqC9Gho0RUQom0hLGRY2nzVhuSk5NLr7lDTXy6jQJ3X3CoSY0aNTAz++tS5X9FSkoKjRo1wrWSK76Ovthr7LG/vQdjWfnljUQkopmXDdamRhX0VJ4+zd3J3v0DprUCy+2TScQ09qj03OP+L5P3oJjL4Ymc35vA/cQ8Dh8+QlNfP375dSkHDhzAwcGBefPm0a9fPwYPHoydnR2BgYHMnz+fdevW0aJFC3r16oW5uTkLFizAy8sLFxcXLl++zMWLF1/qWOfOnUvLli3/vqHAG0dMTAx+fn4EBAQQGhqKTlexvxuUCrov6ztd4CFCJJKAgICAgICAwH+UQXUGYWdsx0+XfiKtKA2JSEJ7z/aMbzoecyPz1z285yZfmc+AvQNIKUihSF0EwP6E/fg4+BBmH0ZmZiampqZkZ2cTHh7O+vXr2bx5M61atWLz5s2MHDmSw4cPk52dTWpqKhcvXiQyMpKNGzfqI7FelMBq9jxpbWNmJGHxn3vx9HTSR2csWrSoXLuyaBbguQx/+9Tsw5LoJSg0htE5RmIjOnp1RCZ5sWpLkfciy/Vd5rul0+nYfGAz876ap6/8FhUVpW8nFr/Ys2wbGxsOHTrEO++UiqFOTk788cv39Fl6mhtp+RQpS32oTGRizORSZveo/1T9zp07l81bthASOp7w1QugQTugVIiSqIsxOfIjwYdn0K1bN8aOHVthH56envo5/3/h1NbbXDmUBIBGo0WhVdKn82IO2IlZuGEKXT+ag0tuDPPmzcPf35+SkhImTpxIrVq12Lx5MyKRCLVajUQiwdzcnN9++w1vb28mTpzI119/TcOGDV/aWJ+nQuJ/mXJm+I+kG0ZERBAREWHwXfS6qVGjBidPngQgNDSU8+fP07Rp09c8qv9fCJFIAgICAgICAgL/YTp5d2Lfu/s40+cM5/qeY2bATGyM/92mqd+e/Za7eXf1AhJAkbqIs3Fn6T2kN8uXLwdK0/DEYrHeW8jHx4e6devSunVr8vLycHR05O7du3oPIh8fn5c2RndbUzo3cMHkscgYI6kYd1tT2tZyeGnnehKhdUNp6NDQoAKhqdQUTytPJjSd8ML9382/i0JtKCIV3Szi9pTbXP36KlhC8+bNKSkpITg4mKioKGSy5xeudDodcTlxRN+PRifVUanSw4ighIQEhoYOZOPwFmi2fYns5FJy139CW7NkDn0SxJdjRtCqVStat26NVmvod6TVlb4uExdEwOx361Pf1Zp6la1wrWRCFx8XuplcZ3RYKBEREURGRpKZmVlujAkJCTg6OhIUFES7du1IS0tjxowZABVGvvwXomHiLmYQdSQJjVqLRq0FHchFRriJTPHLk2FctTlHzkdzzdqX5ORkmjdvjp+fH/7+/pw6dYqSkhLMzc3ZuHEjDRs2JDMzE09PT7755htWrFjBzZs3ycjIeO7xnbnzgFHrLtLjl5PM2nOdHxYsMkgxDA0NpW3btgwePFgvlvj4+DBo0CDq1avH1q1befvtt/URjVlZWQQFBdG6dWs++uij5x7XqlWrCA4OJigoiOTkZP198mjEoU6no0GDBixbtuy5z/M0hISEEBERUaFf1ZtAbrGK30/G8+WWaJafTOR+fun3jlwuR6FQ4OfnR+vWrZk5cyYAkydPJiAggLlz5wKlnnmffvopAJmZmfpUbYHnQ4hEEhAQEBAQEBD4jyMSiTCWGv99w38BCo2C/Qn7UWlVBtt1Gh23f7lN9feq4+TkREJCQjlvIShdXEyePJmpU6fSoUMH3N3duXbtGmAYKfMymP1ufdxtTFl2/A4lSg1isYh3GlZm4tu1kUpe/bNcmUTGryG/cib1DHvj96LWqgn2CKaVayuk4hdfBriYuWAkMTLwyyrz3ZJL5AxuMBiApUuXIpVKmT17Nu7u7gAcP35cf4xCocDExIS/4lLGJb449gVZJVmIRWI0Wg0Dag+oYM5i1IW5HNm1AFtbW9q1a4fpJwNJSkri6NGj+ip0Op2ODTc2sCxmGRlFGZjLzHG+7ExYvzCmfz0dqUSMh60pv41ozsCBA+nmO5wNEcnU71Ua+VSnTh3Onz/PW2+9xYcffkhsbCwmJibMnDnTsDodlPNf+q9xYd9d1EpDYa5EWYSxkSm1VBKUd6MwavYOJzYsoEad+hw+fBhLS0uGDx/OmDFj8PPzo2HDhkybNo3vv/+eiIgIcnNzqVevHiNHjuTChQusXLmSzz777JnHNn3XNdaeSaREpUEHXL6bScaOrRx4t/TeOXPmDHK5nPDwcGbPnk1xcakRfWpqKqdPn+bixYuMGjWK8+fPs2HDBv744w/q169PUFAQU6dO/ctUqr8iOTmZo0ePcujQIf22svukrHIgwI4dO3BwePmC86G7h1gavZSk/CQsCiw4G372oRn+uHEMHjyYxMREPDw8cHNzY/fu3cTHxzN48GAqVapEamoq27Ztw9zcnD179uiN8V/EBP1JXLibxYAVZ9FqSystyqVipv+8CumljTSqV5vr168TFhbGoEGD0Ol0pKamcvbsWY4dO8a6des4cOAAzZs354svviiNkNy8mR49erzUMf5/Q4hEEhAQEBAQEBAQ+NeQryxvmA2Qey6X4vhibq65SVBQkL7q2KNotVqCgoIIDg7GyKjUYNnZ2RkfHx8CAgIIDw9/oUiZx5GIRXwUXI3LX7Xj3MQQoqe+xazu9TGX/3PPccUiMS1cWjDNfxozA2YS7B78UgQkgNburZGIK65uJ0JEt6rdABgyZAiBgYEcO3ZMn35WxqpVqyguLqZy5cpPPE98bjzDDw4nuSCZYnUxhapCSjQlrLq+iuSC5HLtbW1tcXd3x8zMDIlEgkwmY+DAgfTr149Jkyah1WqZfXY28y7MI6OoNMIlvzifiKMRrFGt0XtZqVQqBg0apK/eVqNGDY4ePYpGoyEyMpLs7Gx27txJsVElLLpP46atHz3Hf8e+g4cICAhg3rx5JCQk0K9fPwA0Gg2jRo3Cx8eHffv2PfP1flPJyywuty0uLZrZm0cwb9tHSLRaMnd8T2FCNM61muDl5aX/LF6/fp2GDRsye/Zs4uLimD59OhMnTiQ0NBQvLy969uxJUlKS3j/sWTifkMXaM4kU/09AAsiJOoRxzUBGrLmATgfx8fEGPmllVK1aFWNjY1xcXKhVqxZisRgXFxeys7Np1aoVWq2WPn36/KVZeEVodVpSC1L5c+efaDQagoODGT16NHFxcfr75NHotPXr15czcH9RFlxcwBfHv+Dqg6vkKnNJFCXiOcOTNjPbEB4eTmRkJBKJhPDwcLy9vQHw8/Pj1KlTnD17lqCgIE6dOsWpU6fw8/N7qWN7nBKVhkG/naNQoaFYVZqiqlBrkVZphnGveVSyd8TIyIioqCj69u3Lvn37uHv3rv49bdy4sb6vgIAATpw4wc6dO19ZQYX/LwiRSAICAgICAgICAv8arOXWSMXScl481r7WWPta42XpxY53dgDQokULoLREeFBQEECFT8mnTp2KVCpl48aN3Llz56WPWSwWYWX68sSpNwW5RM4vbX9h+MHhaHVaitXFyCVyRIiYHTAbOxM7AH7//fcn9jFgwAAGDCgfUfQoy6KXodQoy20vUZeQXphOsdpQxMjKyiIpKQkbGxs0Gg0ajYbevXszYMAAwsLC2Be5j033NqHUPuwz52QOFs0tuJV9i2JlaX+RkZG89dZb+ntn2LBhDB8+nG3btuHi4oKjoyPfrtpN5N6tIN8JWi1GztVwHvQLnYOqEb5wAsHBwfpzPHjwgMmTJ6NSqRg1ahTt27f/6wv8GHPnzmXLli0GUVxPw8WLF2ncuDEqlQqp9OUv/8wqyVEUGVZvrOPenDruzVGjY5FlCQoxyCQi3mtXg+GtvCvsR6PRGLweMWLEC41rzelEStSGfZZVSLwdtQ/R/dvExsaSlpYGGEYiPhrF+HhEo0ajYdq0aUCp8NS/f/+nGs+eO3uYc34OucpcUg+nIk4Xs/vP3az9YW25qocA+/fvp1WrVkil0pdWHTO5IJnfr/1u8HkSy8QoUbL77m46telEUlKS3oOqcePGnDp1ikqVKvHgwQNOnjzJhAkTOHz4MPfu3cPV1bXCiM+XxYFr6Wi1hn3q1CpEUhk6ILlQhIODA3PnzkWpVOLv78+OHTuIjo4G4NKlS/rj+vbtyxdffIGVldULmfoLCJFIAgICAgICAgIC/yKkYil9a/UtV3UOwERqQliDsGfuc+LEiQQGBrJ48WKGDh36Mob5/4YG9g0I7xHOJ40/oVeNXoxqOIr9PfbTxqPNSzvH2dSzaHSGYoBOrSP+u3iKEosIaRdCenq6fp+dnR1Tp04lMDCQzz77jPz8fIKDg/H39+fevXtkVcoqZ+ytSFOQdSSLa99e49b1W+zcuZPg4GDc3d316UVmZmasWbOGvXv3otVqsa9Sh6tFZpjWaY1Tn29x6vcdlYJCUYhkLD+RiH/rduzatUt/Dnt7exwcHPQeXc/Ci5hB//zzzzRq1Oi5jn0aGoW4IzUqv6xUoyNOpkHxv11ikYgOdZ1f2TgeJyO/pJy5fVmFRI8+03GtUp0pU6Y8s2fX2bNnadmyJc2bN6dt27ZPNZY9d/Yw5eQUMoozUGgU6Ix1aL20DD0wlOpNq+vT6B5l2bJlhIaGPlX/T0v43XAeKxqJprj0s6XWqtl1aBfe3t76e+1REcbNzY3Dhw/Tpk0bYmJisLW1BcDKyorU1FQUCgW3bt16qeNNySlGoTZMlSyOv0Daus+5u2oCKalp5OXlERAQQIsWLejTpw/Ozs40btyYgIAAA8G1evXqJCYm8t577/3lOc+cOaOv/jZu3LinHuvq1atp0aIF/v7+NG3a9G+rx126dImQkBBat27N7t27AZ65AufrQohEEhAQEBAQEBAQ+FfxQYMPSMpP4lDiIUSUPgXX6rT0rdmXt73efub+Zs+e/bKH+P8KcyNzetV8uSk3j2IqMy23TSQV4TXBC2OJMes7r0eZptT7Kkml0nJGxJGRkfq//4j9o9xC2uk9J/3fOXNy6Ny5M2fOnGHatGl8+OGHbNiwgWrVqjF+/HhEIhETJkzg0K1cjL2bkx+3mLT1XwJg3qA95rUD0elg+4HDLPjmS73nlkgk0lfCUigUtGvXDoVCQb9+/SpMiyrMySYnPQ0LWztWb/yD27dvc+bMGdasWcOKFSuwsbEhPj6e7du3o1arCQ0NxdLSkvT0dNavX4+XlxdXr17Fzc2NuLi457v4T0H15k6k3M7l5pk0NGotOh0oRTpyRDr2m5R6l5nIJPTz9cDdtvx7+apo4lmJC3ezy4kQABqdjp37Sv2I/sqzy9PTU//ePBrR+CzRYDqdjjnn51CiKdFvM61qSvbRbErUJfx29Dc6enYsd9ytW7fo1q0bycnJ6HQ6WrZsSc2aNZ/6vBWh1ChRaw2jmopuFpG+JR2RTERT36Y0b96cX375heDgYDw8PPTXxM/Pj4yMDEQiEebm5vj6+gKl0YShoaH4+Pjg5FT6OZo0aRLfffcdjRo14u7du5w6dYpJkyaxZs0aEhIS9H//HZ62ZshlYtSKhyKyaTVfTKv5YiwTM6ZdDXoFVCmX8jd9+vQK+7O1taVDhw5/eU4PDw8OHz6MsbExffv2JTo6mnr16v3lMWq1mkWLFnH8+HG9f9a8efP+snrc9OnT2b59O6amDz8Tj/phvckIIpKAgICAgICAgMC/CqlYyuzA2STmJXIy5SRSsZRWrq2wN7V/3UMTeAX0qN6DBRcXGCzCy3AwdaCySWXaDmvLl19++VT9tazcktnnKhYOTaWm/LT7JzzdHooHixYt0u8/cuSI/u/zu6+h0YFNyMO0q+K4c6SuHINIIsOtZUscHR3LnSMkJISkpCQOHDhQ4eJSUVTI3p/nknDlIhKZDKVCyaYrN1izaTNt2pcugLOzswkPD2f9+vVs3ryZrl27kpaWxsGDB7lw4QKzZ89m8eLFzJs3j4EDBzJv3jyCgoKoVq0akydP5quvvjJYxOfn59OtWzdUKhWWlpasX78eCwuLp7qeIpGI1v1qUi/IlVvn01EpNCQba9kXl448T4O3jSkfBnnzdr1/LgoJoF9zD5Yfi0fx2HaZRER9V2uqOZbOb8iQIcTHx2Npacmff/750seRXpROrjLXYJuJhwk5RjnEzYpDbilnxfgV+hS5Mi5fvgzAypUrUavVLywgATR1aopcKjdIAS0zwzeVmvJNq2/053yc0NBQfWTU2rVr9dsbNWpkECWnUCi4fv061tbWbNiwgUmTJj33eINrOWAslVCo0JTbJxaJeLexK/D3qZ41atQgMzMTa2trbt++Te3atVm9ejWLFi3CysqKlStXYmNlyYPkexibW2BsXBrpKpVKkUgktGnTxkC0vXjxomHlt62fckt3i+brm1PLuhaXj10GSqvHubm5ERoayr1793B3d8fd3Z0BAwZQUlJCjx49MDIy4tdff8XR0ZGWLVs+c7rq60AQkQQEBAQEBAQEBP6VuFu6427p/rqHIfCK6Vm9JzvjdhKfG68XkiQiCUYSI2YGzMTIyMgg0ujvFmEu5i509e7KzridBsKUkdgILysvAioHPNW4/L3tWH8mkULlwwWuiXdTTLybYmokYcagpigUmZiYmHAn5w4fLf+Ig3cPcvjIYbyreDNv3jw2bdpEaGgoXbt2JT09nXXr1nFq2UI27N1PzL1UJBIxNR3tqWVjwZFFc/SpMbVr10YsFlO5cmVu374NQL169ZBKpfj4+HD79m1u3bqFlZUVvr6+NGzYkPDwcIYNG0ZmZma5uchkMtasWYOzszNLly5l5cqVz5xaY+dqjp2ruf51b15c9HgRHCyNWTWkOcNXn6dYpUEEqDU6fNyt+bVfE327v/LsehnIxDK0uvLRUM7vl4pq1nJrqlevrhf1Hr9/Bw0a9NLG0sC+ATVsanAt85qBJ5hMLMPF3AV/F//n6lelUbEtdhV/3N7F1R2xeNfxJmdnDj179iQnJ4cPPviAM2fO6MXTffv20aJFC4qLi7l37x4ikYitW7eydetWevfurRdXZRIx64b50mfpaUpUpebaJjIJiGD5wKZYmxo9Vaqnvb09sbGx+tePRg5dvHCBUQP7EuBghVgqRatWY+XojGdIJzIzM8nKyuLYsWP4+/ujVCrZvHkzY8aMoUuXLvz484+kuqSyI3UH2THZFE8r5qriKqocFZ41PGlUpzQS6/EKgOnp6cTGxhIVFcXRo0eZMWMGCxYseK5r/zoQPJEEBAQEBAQEBAQEBN5YjKXGrOqwijGNxlDVuiouZi50rdqVTZ030cC+wXP1Ocl3EqMajsLG2AaxSIyJ1ISeNXqy4q0VT6w49ziB1e2pXMkEmURksN1IIqKqgzmNXC0YOnQo6d7pvLfrPb4/9z1L4pfg8LUDQxcNJTw8nLy8PNLS0ti8eTM//vgjU778gvhbN7mZmsGoYD/a16nOpcRkTt5KYO7WPWRkpHP69OkKzYxjYmLQaDRcuXIFTw8vdm+M4NDeSFq3bEdUVBQjRoxALpej0WhITk6ma9eu+Pr6Eh8fj7GxMc7OpaJGWfTFiRMn+Oyzz4BSs/Ju3bo917V+nTT2qMSZL9uybEBTvn23Prs+CmBDWIsXMrpftWoVwcHBBAUFkZyczIwZM4CHfjZHjx6lefPm+Pr6snjxYmxNbPG2qthMXCqW0sHrr9OrXiYikYhf2/5KO892yCVyzKRmGEmMaOXaipXtV5a79+fOnWtQLa4i7j84Rv8tzfn2/Dyu379FclQyCe7xyNxlyCvJiY+PJysri2rVqrFp0yZ+/vln2rZty6lTp7h48SIjRozAw8MDf39/Ll68WC46r4aTBae+COaHng34pF0NhoRoaem/nW8uD2Bk+Ei+mvsVAwcOBCAhIYHWrVsb3NtQev8GBgYyfPhwSkpKePDgAa6urkgkEh5cPMX5i5dRK5Uoi4pQK5Xcu32LoQMHsGDOD1y9ehWJRIJGo6FGjRp6P7PTp0+zdudazDuYU5BYgImHCYhBailFai7F7Ws3XFxcuHPnTrkKgFZWVjRt2hRTU1PatGnD9evXX/St/UcRIpEEBAQEBAQEBAQEBN5ojKXG9Kvdj361+72U/sQiMQPrDGRA7QEoNAqMJEaIRc/2fF0iFvHH8BZ8+mcUkTfvI5OIUWm0BNd0YHaP+hgZyQiZHcKOOzseVhMUATJYeGUhQS2D2LVrl0EEUez169g4WuFsbQmAq40VZsZywlo1B2D2wRP4+vqyb9++cuNxcHAo9dBJTKW7zzhMMiozLHA2UrmEaXGhHDt6gjr1amFra1th6htAQUEBS5YsYe/evVhZWelTBHfs2PGvLYsuEYto4W37UvpKTk7m6NGjHDp0SL9t4sSJwEM/mzlz5rBp0yZcXV1p0aIFI0aMYHKLyQw5MASFWoGW0qgkqViKtdyasPrPXgzgRTCVmTIrYBYTm08kvSgdOxM7rORW5do9TYRPbu4lVp8ewa1iEUqdiJyT2Vj7WoNMhFap5UbeDXwa+uDh4cGVK1dISUnBxcVFXyUwJyeHyMhIXFxcuHTpEo0bN67wPEZSMR3qObM8ejkrryzWRxDezb5LyrYUanZ6GPVW0b19/PhxbGxsmDlzJkuWLGHkyJHEx8dzPzWF7Zv+oEjxMOlRo9Wy8tw1bAIH8t7aW5D2AB0idJRW8FMqlYwbN46oqCgU1RQ8OPoAi/oWyGxluA5xJWVVCmIzMUqNkpPnT7Jz504sLS05e/YsderUAaBatWpkZGSg0Wi4fPkyXl5ez/IWvnYEEUlAQEBAQEBAQEBA4P8lIpEIY2n5Sn9Pi7WpEUsHNCGrUElqbjGVrU2wNjUCoFBVaCggUVoJS2IioURTwpaDW1g3ax1r1qzRRxC5u1bGzkRMas4NAJKycrE1KzXeFYnFvB0UiJOTUzmz54SEBFxdXVn262/8/sUJ1EotamWpWKFWaPiyxzKMTKRcVvxRTrgqS4fT6XQMHjyYGTNmYG1tDUD9+vW5dOkSO3bsKGdW/v8JjVZDfG48m7duRqPREBwcTO3atRk7dixTpkxhzZo1ej+bOnXqkJubi729vb6UfD37eqzruI5FVxZxKuUUUrGUjl4dGVZ/GHYmdq9lTuZG5pgbPUw/vJ2Rz6IjcZyOf4C5XIpj0lH69uvH9K+/JiEhgcGDB5czc+/Zsz2pkmIepKqw72JPxo4MNEUajA8Yo8hUIJFLSFGk0DqoNdeuXcPU1JSUlBSsra3RarUMHjyYn376iS+//JKVK1fSp0+fJ443pSCFX678YvB5yjmZg0VzCxZdWYRYWyoCV3Rv29jYAPDOO+8wb948JBIJkydPplOnTpgUF2Bnbqbv80CGhoTsfJJP74fT+7Fu2Re5dzNqhM4m9rPOZGdn89tvv6HRaCiMLERaSYoqV0X+5XxiQmNKO5HB+WHnsbG0IT0lHTc3N3bt2oVarSYmJoYjR46QlZWFv78/crmce/fuERQURHR0NNeuXaN27dov7X1+FQgikoCAgICAgICAgICAwAtgY2aEjZmRwbaUghSkYqnBovfRSli2NW1xdHTURxDdv3+fZYt/IfyHaXg72PLToRNIxGLeb1aasrft0lUSi1RcmTCBESNGEBZWPoIl9kxauW0qjRKZxAidVoemqDRNbc+ePcTFxTFq1Ci8vUtTrSZPnoy/vz9t2rTRH9ujRw/9grlsIf7/je23t/PD+R9QapQkH0tGnazmz41/snPBTrZv316ufbdu3ejUqRNQek3LqFqpKnOD5v5j434WTt95QOhv51CqtWh0OnQaNaf3HqTAOxjt/9IlKzJzz8nJpd4UL2KOF5BzIocaP9QgY2cGWoWW4oRiSlJLUCgVbN++HVdXV0QiER9++CETJ06kSZMm3Llzh7Fjx5KcnMylS5f+0hdob/zect5SijQFJYklZEdko0nQsHPnToO0Tm9vb5RKJTqdDrlczokTJ/T3e5cuXWhUtQrffTySO7LSND4NYu42H4GVxI2im6ew6/wJOZGrses8gT/nfk4la1uaNGnCrVu3SElJoWWPllxPvY7MWobEVEKtn2pxZ8YdNIUaLKpb4GPkA4CLiwt16tTB0tISa2trIiIiWLt2LZmZmYwZM4aWLVsSERFBQEDAGy8ggSAiCQgICAgICAgICAgIvHRsTWxRaVQG28oqYQFUta6Kp6cnERERBm2UfQYhEq0iuFZV/TaZ3Jivv/iC1gOHVniuslL0R9fH6iOQyrh+7wxHojahQ0yNOtUxstAik8kICwvjypUrLFy4kJSUFGbPno2fnx9bt26lV69eDB8+nICAAPr27cuUKVNewhX550lISKB58+bUqlULIyMjDhw4wKpVq/j999/RaDSsXbuWlStXMnHiRD744AOUSiVRUVEkJSVRtWpVuo7qykbVRn36lFauRVJVwrgj4xjUaBA5t3PKnfPTTz/l+PHjODo6EhISQu/evQ3KuL9sYmJiCAsLQyKRULVqVVasWGHgmfUk0tLSWL58OV9++SVjN1ymWPXQIL7w6mGMa7biRmo+2oJSA+6KzNw9PI2paarjlrUU48qlEX0yaxk6rQ73ke4UXink+s7rROyO4Nq1a3pRbfjw4c88zzxlHiqt4efJ6T2nh2OeV0jnzp3ZvHmzXpRdu3Yt2dnZdOjQAXNzcypVqqSP4hs9ejRXY2IoSr5Ht3o1ALhn4opOrUR5P17fr06jRlOcjyI3E5GjC4GBgezYsQOxWIw99sSqYpFaSEEH6gI1Wo0WsURMz849Wfb5Mlq3bs2VK1dISEjAx8cHT09PoDSVz9a2NM0yKysLV1dXHB0dKSkp0VeHe1MRjLUFBAQEBAQEBAQEBAReMjbGNjR2bIxEVN6o20RiwoDaAyo8rlHHrnT/YiqePo2xsHPAtVYd3h7zKUEDhhi0KzM9TkhIoF+/Uq+oSk6mSGWlSzwpClpaLGNhs0VcH5ZCzNBMAioXMurDD6hXrx7Lly+nffv2uLu7M378eA4ePMigQYNwdHRk165dREVFMXbsWKpUqcL27dvJzc0tN9Z/AyEhIURERHDgwAEDT6OIiAgqV66s9zTy8vKiT58+ODs7c+7cOfbt28e3s741qOBnWtWUknsllGhKWLG/YrFGIpFgbW2NkZERYrEYlUpVrk0ZjxpXDx06lJYtW5KcnPxM86tRowYnT57k2LFjAJw/f/6pjnNycmLixIlcTckjr8RwjKqsZPIv7SFh7UTu3LrBzp07EYlEJCQk0L17d3777Tf69++PiXFlAix0SESASGfQhxSoUbkGwb7BnDlzhtzcXJYuXYqvry++vr6sW7fumebZyKERptKKxThTqSkrd60EwNXVlZ07d3L69Gm8vb1xdHTk4sWLREZGsn37diwsSkXcn376icNHjrD+j00oLBxJNXamQGJKbtQhzOoG6/vWFOWQvHgIyrTbGNu4AJCYmIiLiwv79u9DrVVjVc8KsYmYm+NvoriroJp7NcZ1HodEIuHq1as0bdoULy8v9u3bh1qtplatWvzyyy90794dKK3Il5SUxLvvvsuSJUue6bq8DgQRSUBAQEBAQEBAQEBA4BUwo+UMHEwdMJGaACBChInUhEC3QLpWfbJRtVvterz7xdeE/byCXlNn4924uYFg8STT4+rNnErNu9HSxWYKdUwOIBEVIxFpEOsKuHD+CG1yN+rbq1QqBg0aRFhYGK1atQLA2tqa3bt3o1KpKCwsJDIykvfff19vvv0mo9FoiT2TxpYfLrBxxlku7k/gUPhhfGo3ZWj38YS+/wG3b96hRYsWGBsbc/v2berVq8fZs2f59ttv2bFjB0ePHuXixYsoJUqK8oq4PfU2d3+8S/zseHLP5ZJ3MY+4b+K4duAaPXr00KchxcTEkJSUxGeffUbbtm1p0aIFrVu3xsqq1LQ6JiYGPz8/AgICCA0N5caNGyxcuFA/9tjYWI4fP07lypXLzatr165YW1sTHh4OlPpX3buRxentcVwJTyYnvQgAuVxOXFwckyZNAmDlypWsXLkSlUpFcHAwgYGBvPvuu2g0Gr34WKTUIHlMDKsUFIpjr29wfG8apo6edHy7E//LaqNx48YMGjSI1atXY25eC3sTa96tpMFMDDKRDplIhwR4v9M7qG+qSUxMZPv27Xz44YeEhIRw+v/au/c4mcv+j+Ova2b2YNdaq5VDFouVshSJnFeKfkgOdQtlo343iQ463XfU3V03JaJut46/pJQbN26ncgwhN3fK2l0kh7U5s6zD2uPMXL8/Zm02yzhls72fj8c+mPl+5/v9zMxlHzNv1/X5rlnDypUrefPNNy/ovW1xXQvKlyqPyxReTOUyLsqHlKd55eYXdDyAHYcyeOzrTCZX+QPzKnViedmmZO7eRKlqp1310evBOF3gcOI5uJU333yTTp06cf/H9+O2boKqBuF1eIl+Lhos3Dr+VprUa8K8efNo0qQJUVFRDB48mNzcXBYtWkR4eDibN2/m5ZdfZvTo0UDhnk3JyckX/DyuNC1nExERERER+RWUDynP3K5zWZCygBW7VxAaEErnmp25pcIt57XkqIC1kPoN/LgQHC7+779ZxMfHF+q5k5eXR7//jafrXT1ZPXkyj69MJDPPw/Dbg4iflUWwC9IyLd8ungl5vqtBrVixgvbt2xMXF1dwnFNXyNq+fTsNGzYEoFGjRnz99deX/oL8ijxuL3PeTuDgTydw5/iWZrl/yuXZjh8SGBjEe18OIzw0kh37U3h84JPs37+fDz74gPT0dBo0aEBWVhYdO3YkJSWFF154gTk3zyF7VzZRj0URdlMY217cRs6+HALLB1JjaA1CA0KpXbs2K1euJDo6msWLFzN27FjefPNN7rrrrjPq25odRkDX4aQeziRx/lts/tNIqlarjjsvl2HDhpGYmEinTp2YOXMm9913Hzk5OURERNC+fXtiY2MLmnT/a+oM5kxcScvaXVnw7RQSU1Zx5y3389nyNwgMchWEgadLS0ujZcuWvPzyywwbNoylS5cSExMDwA2Vwsj1eM94DIDTQO2Hx3LHh5twVO3F09MSSEzeSHZ2NuHh4bRo0Ya0QxHE3byOf/zt77w+qCozvBXo98Dz3NWmB9uq3c8jD/uWYJ7qRQTgcrlwOs+coXcuToeTif8zkWe+fobktGQCHYHkenOpF1mPUa1H4XQ4C5Z1gm+W18yZM/nss88YNmxYwf2nHMvMo9u7qzmWlZcfkLnI2LyU0BtbY07rveQKr0DF3iM5+PlzrP1mJZ3vasu7n71Lx5kdCaocRIWuFQDw5nkpHVsab6iXPe49NCzVEGNMoWbh1tqCwCgyMpJjx46dtWfTb5lCJBERERERkV9JkDOIe2rdc86ZR+eUlwWfdYe9CZCXSZ4Hvp6Vw2O19vESvukhp88oiouL48S6v5N5yMu/7vMt/9l1zEv8TQF8v99Dx0lHyXNuZu7cubRt25aqVasybtw4Bg8eDIDD4VusUqNGDRYtWgT4lkj91r/cblq1l4Opxwv1hHKZQFwBgIXYqrex8+BmDIYFs5cR/0Bf1id+h7WWgIAAXC5fAFO9enVatWrFQ30H4Ah0EVI7FOMwGJehTKMypC9Nx5PmIXNRJvSi4PLsp4IRj8dDhw4dmDBhAklJSUyeNZma9/wv/1ydQXaerzaPcZCYsJ5Ap8GRnorb7SYmJoZ58+bRv39/NmzYQFRUVEEvpQEDBhQ0637nzQnceWM8mZlZ7Dm8HQvEVmlKxTLVaNrqVn788ceC52+txRhDWFgYP/74I61bt+bAgQPExMQUhEhhwQH0aVqNz9b8VKgvEkD62n+z58f/UPGBN/Bg+e4glHvoHf7v8TiGPNKb5557jgULFnD99fVp2rQtNcsO5+t5Hdm/dTx/HfoWvXr1wuVy4Xa7Cx33vffeo0uXLhf8HkeWimTiXRPZk7GHPSf2cF3YdVxX+syZW2ebqXe6aet2kZ3nKZhhBb5lfLkHdnAiYT55aank/rgaYy3l844QGuYgIjSQ8PBwliQuwZHnIPeAr19Uzt4cUsel4nA52PS3TRytdhRvAy8bN25k+vTpJCUl0aVLF9q1a8eECROIi4vD6/Xy8ccfn7Vn02+ZQiQREREREZHfqsV/gT3fgdvXm2dSYi696hrYughO+EKGX84ocjgc3FL55696tco5GHuXb0ldy4lZ2PDK3H333axdu5ZXXnmFgQMHMmXKlEKnbdy4MZ988gktW7YkLCzsnD1s9u7dS6dOndi0aRMZGRm4XOf3NTMhIYHHHnsMh8PBiBEjaNmy5Xm/LL+U/PWeM5qKZ+dmEhzoe4127E/mhiq3snXvBjJzMjj403G+//57IiIiAAgLCyMxMZGGDRtSsUpV9tWPxyQkkrPXYqpC7sFcQmuFcnTpUcKDwqlSrkrBeTweD8OHD+f999/H6XQyZswYevbtSdKeJKo/eT0rV6RhbSCZW9dydMUn4AygdP12HP/mnwSQx9tvv02bNm1o0qQJR44cYfz48TRt2rTgSnlRUVFkZmaxbH0KOw6l4Qkpx+rEOTSp3Z55305g7n8nsPvwDhYtTmdQbH8mTJjAunXr2LlzJy1atCArK4vk5GQSExMZOnQo1hbuX/Tn/7mBAKeDj7/ZidNh8Hgtebk5hRpMA+AKIBsYu2QbnTp1Yvfu3SQlJXHs2DGGDBnChx9+SNmyZVmxYgWxsbFUrFiRkydPFjrE2rVr+fLLL5k1a9ZFv9fXlT4zPDpwPJvvU9MJCXKRsGDqGTP1AObNm8cbb7yB2+2mVOM/kB0cQ8bGZZz4bh7G4aBcu0eJiOtLgDeX458M5p7w46zZuYuXqx/ktWt84+TFF1/kwUce5EjpIwRcEwBAUOUgar9Wu+A8cVXiGNh2IAMHDvTdjosr+Lc5ffr0M57P999/f9GvRXFQiCQiIiIiIvJb5MmD9ZMKAiSALWleEg54eG/dITbutUXPKLquIY7UtZA/U2nbES8ncy3HcixlggxfLFsM5X5e+vPOO+8Uefrx48efV5nlypXjq6++omvXrhf09F566SWmTp1KuXLl6NatGwsWLLigx58uJ8vN3iMp/HPFGBzGQWSZ62hQoxVfrJuIyxlAzYqxNL7+TlZumkPCjlWs37GC6tWrERkZCYDb7aZ58+aEh4eT6wolb85blGv3BHs+/gg4iCsiCOsNx+HN4L0732PUmlEF53766afp06dPwWytwMqBJOxNIOTGELJzr8MaD1gIiWlCSEwT9k18ghPrZuPJycRrPaxevZrc3FzGjRtHhw4dGDx4MFWrVuXgwYMALEjex34Twdh//J3S17diYshJThxazwux95C5KoPt+5PAWmIq30StWrUICgoiOzubbdu2cezYsYIrznXq1Inw8PCCWUinOByG5+6qw92NXKzbvZ2KpaLo9fh4QmPbcmzl57iPHSDty7cwriC8WSdY1O15Nm6YzG233YbD4SAlJYXZs2ezevXqgiuOHTx4kNGjR5OZmYm1lhYtWhAWFsbTTz/NnDlzLng529nkur08PyORL5P2EeB0YD1udv97GtOmTSu0n9frZfTo0SxduhSv10uNhi1wdhjGie/mULH3KDwZhzmy+D2uvfcvBAQG8ezQv9EowsMro4ZTsWYMHR9/FoAmTZqQnJBMq6mtSHol6Yx6SrlK0S2m22V5br9VCpFERERERER+i7KPg7fwEqORd/58+e8WH2cWPaMosjZERINrL7iziQp30G9OFtvS4Z0h90K56MtU3zE4soPg0PIER/w8M2fkyJHExsbSsWNHZs2axfbt21mxYgUTJ04kIiKCJ598kgcffJD09HSqVPE97uTJk2RlZVGqVKmLKqVCdBlOHIni6S7jAJi07A3CSpXl+e6FG4I/3XUcJ91HSfV+Q9de/8Mdd9wBwIYNG1i4cCFut5vXd1TG7bVYr4dKD77NkWUTyEhYwE/vusnbf4yvvlxecLyPPvoIYwx9+vx8tb0/ffgnAisHkrExg7BGviVP1p2HcflmrgTXuAV3+j6sJw+Tc5KkpCS8Xi/Dhg2jefPmrF27luTkZEJCQpi7cCkrPlmGx+Eie++PhNRrz/55owirG8eCkDxCg8vwZOexjJn9BI/3/gvbd37FW2+9xY033kiPHj149NFHiYuLO6Mv0JYtWwpe6/0n9/PUsqfYdnQbLoeL7CzI/MlJ+QYdObbycwA8GelEtOlL+rKP+WniELr8sW/Blce++OILXnzxRdavX8/JkyepW7cudevW5auvvuLTTz/F7XZTp04d+vfvz4EDBwquSjZ//vyLfr9PeWXuRuYn7yPH7SXH7SUjcRFB17fiiSnrCcn9+d9OWloamzdvLni/XdnHCMjLwFXmWozThSu8At6c/FlTDgeDHn2Q4ICig65AZyCvNnuVbqYbBoPND2tLuUpxa8VbaR11Zl+qkkQhkoiIiIiIyG9RcDg4A8CTU+TmVU9eD9XPMqPowd6waiz8933CAk8ytV8MtBgCtz586XW5c+DLZyFxKjgDwZMLFesVzJjq1asXQ4cOpWPHjvzrX/9i5MiRVKhQgRkzZtCvXz82bNjAW2+9Rfny5UlOTqZChQokJydz9OjRCwoVrLWs2rOKKVumkFXa0jCgK+TnBi5nAF7r5e25QwgOCOVEVjoPtR1KZJlKlCsTyYmQ0ELHqlSp0plP8+h+Ds//OzYvm4jW8YQ17Mj+z5+jQ8dOfP/dtwAMHDiQxo0bExcXR+vWrXnmmWdY+slSKj9Rmew92Ryas5qyrR4hK2Udx7+d5autbEW8uVkElq2ISf+JTZs20bBhQxYtWsSjjz5KcHAw0dHRpKSk8MP+42QdOk7W9u8wzgBOrP+CwPLVObb+S1YkzIcjO1me/G+MgYbtqpGZUIWvvviGMFOR5ORkRowYwfbt2wHo27cvu3btokqVKixbtowhQ4bQOq41SYeSOLbjGLWG1yJ3fy57Ju4BTzmydiYUvBaB5asTUqsJIdENcX85gjFjxvDQQw/x8MMPs3LlSpo2bUqfPn3IyMjg2WefZfTo0Xz22Wc89NBDBcd4//33C/4+ZswY7rzzTlatWnXG675gwQI8Hg8dO3YkPDycBg0aADBz5syCxtQAx7Pz+Nd3u8lx/7yM8fS+Rt4DW5k7dy7ga2Rdr149Fi5ciNPpJDc3l6embWDC1INYjxtPxmEcQaGUCnAw6t76Zw2QTrmz+p2sWbmGDxI/YOPhjZQNKkvvG3rTuWZnHMZxzsde7RQiiYiIiIiI/BY5XdCoH/z3g0JL2gAICIHmT5z9sa5AiHve9zOnBQw588v6RZvxCGxd7KvpVF17voN92ZB9nKioKI4cOcLhw4c5evQoVapUoUuXLvTu3ZuYmBhatWoFwOuvv86gQYMICwujfv36BUvLzoe1lpe+eYmFqQvJcmcBkFb7KJGLarBgzedUjIgiLKQMJ7LSearbm6Qe2MLSpKk81OE57h58M//4v6VnPXbLmEiWbzlEQLnrqNh7ZKFt7Z9/nzq1axYEdzk5ZwZ8zf/WnNTjqYTUCCE4viond0BIzG2ExNwGQEbiIhzBYUTGtqDskldZvfobWrRoAUC1atV455136NChA/Hx8SzafIjwpn8gc9taIu95nhNrZ3LNXYMACPJC5mfP07ZBd7akrWZnUhrHv72WxQvf4cu5C7m+UiO63duZpd98gdPppGbNmixZsoSRI0dSvXp1nnjiCW7sciODxg+CbyHwmkB2v7ebsJvDyE51c2jWCAyGzG3/JS8tFev14ExPpcUtsYAvLHz66adp3Lgxxpgirz5WFH+Nr0+/ul29evVYvnx5kfulHDpJoNNRKESKiOtb8PcjU54vmKnncDgYMmQIbdu2xRjDjTfeyLhx/yAgZSCfTngBtxc6/u8L/KVvM2KvCz9rbaerG1mXt29/+7z2LUkUIomIiIiIiPxW3f4iHNoMO7/xzQAyDnA4IbYbNDq/WUVFzfa4aEdSYOtCXy2ns17f0ruEf0KLx+jcuTMDBgzg7rvvBqB06dKUKVOGt99+mxEjRgBQu3ZtFi1aRFpaGk899RQBAQHnXcbqvasLBUgAKWWT2HnfRm67uzlhK4IpVe8gLfOa0HlwQw7uimbVsKnEv9Ych8Oc89h/7nADa1OOkJlbeClhqQAnf+lc129t98bcy/iE8WR7ssk90hIofL5Ts2VObpjP3iM7GDduXMG26OhoNmzYQIcOHShVqhRRNzTk4DVRlGnUhZydCQRXq1+wr3UZxv19BnEto6jXegrJK/bgsC76t/sbAGu2LGDrt4e4s3VHqsVU4ujRowDcfPPN/Oc//wFgyfol7J2/l6pPVPUd1EDl3pUB2P7qHlyeCoTWakzWlm/wLHyDCFcOw6f5mrC3bduW+Ph4hg0bBvhCpR49ejBp0iQCAgKYOnUqAKnHU5m2ZRq7TuyidkRtTiw7UdD4ev369YwaNYrJkyfzwAMP8OSTT5KcnIzb7eaRRx5h8+bNtGzZkubNm/Paa69hzM+vZURIIHmews3UT9dyyLtUP22mXocOHejQoUOhfd568UneevFJv++p/Kxkz7MSERERERG5mrkCofd06PsltPkz3D4U+q+Ee8aDoxi+zu1aC6bwXIQ8j+WOT0+yYX8e7fv/lbVr13Lfffcxf/587r333oL97r//flJSUqhTpw7g6yfUpk0b4uPjeeWVVy6ojGlbphUKkAC8eV6s8bK3zDYc5T2UKVua5ORkKtYsQ15YGnXr1/EbIAHUrhDGzIHNaBkTicOAw8Ct1SP45x9vo2HVCL+Pv7/O/USHRxPsDMaTWR0ovDQqIq4vFXq8So0HR1C1Zm1fM/R8Xbp0YfXq1bRv356jR4/SIiaSkEAnIXVacPzbWYRc3xzwxVLVyofS5d7rCY0IInlF4avTZedm+l4Tt5eFc7+iZs2aJCX5GkEnJiYCkJmZydyRc6n2cDUcAfljyQueLA+eLA8Ok8s7Xwxl6TNxdG1Zn90bVpHw3bcFDcQBYmNjuemmmwAoW7YsCxcuZPny5SxevJhy5crx763/pvuc7kzePJllu5YxIWECo6aOIuj6IAAaNGhAdHQ0/fv3p3LlyjRq1KjQa7V161ZWrFhBenp6wdK0U6peE0KN8qUxRbylpQKcxDer7ve9kgunmUgiIiIiIiK/dZUb+H6KW0AIv/zWHuA0LOmT32Oobkdo0oT09HTat29faImaMYZevXoV3H744Yd5+OGL69F0OPvwGfdlJGWQtjANp3EScVME7Z5ox5QpU+jSpQuHDh3i8899TaIff/xx5s2bx5w5cxgwYAB//OMfGT58OJMnT8Zay969e3nppZeY9HATPF5f02TneYRPpwS7gpnUYRIzf5zJ8NRMMnKL3s/jtUybvQj4ebZYUFBQQVgyceJErLWY0IrMB4Kem4MFggMcBLmcvNu7IQAn0rILzdAB2L4/ia+TZ+FyBlA76iaaNGnCe++9R9u2balcuTJ16tRhxowZHNt9jOPvH8drvUQ9GkX5e8qzc9ROAK7rfh13Rd9FxoEMHL84/pEjR+jevTv9+/c/6+uwL2Mfw9cOJ+e0nl4HVx0krEkYTy1/Cpf1xREDBgwgOjqa1NTUM45xanlcly5dWL9+PZ07dy60/e89b6b7u/8hO89TsKwtJNBJk+hydGtw3Vlrk4tnrLXFXcNFadSokV23bl1xlyEiIiIiIvL7kXsSRtWCvMwztwWEQo9P+cFdhUceeYQRI0YU9D+aMWMGY8eOZfbs2QWXgb8UY78by6RNk8jz5p2xLdAZyOx7ZuM+7D7jqmRX2twNe3l+RuIZS+MAqkSUYuVzbc4IgE6ZOHEiAPHx8fxnx2Gm/HcX6Zm5tIyJpEejqoSH+Jb/ZR7P5dMXVuNxF720q+y1pej9SlPcbjcul4uRI0dStWpVevbsCcCE5Am8m/AuOZ4cLBaDIcgZxJBGQ+hZp+dFP/d3E97lw6QPC71H+6ftJ/unbJzGiTvVzWt/e401a9bQrFkzvv/+ez766CMmTpyI2+2mZ8+eBAcH43Q6GTZsGPXq1aNHjx5nnOfIyVwmr01l+ZZDhAW7uL9xVe68ocJ5zTqTohljvrPWNipqm2YiiYiIiIiIyPkJDIWOY+CLpyAvG/Ivb05ACNS8HWq2pY4xZ/Rh6t69O927d79sZfSq04spP0w5I0QKdATSrFIzqoRVYefhnZftfBerY71KzEvcy8qtaQVBUqDTQYDLML5Xw7MGSEChK5s1qxlJs5pFNx4PKRNIhegy7Nt2lF/OEXEFOqjXpgrgm/mVkpJCmTJlmD59esE+/WL7cXP5m/lk4yeknkilRngNHqr7EPXL1+dS7Du574z3p+IfKvrqMi4y3sogKiqKffv28dhjj/HEE0+wePHign23bt1Kv379CA0NpUaNGvz1r38t8jzlQgMZdHsMg26PuaR65fxoJpKIiIiIiIhcmJ/WwsrRsD8RQstDk0fhpp5XtE/ThkMbGLJsCCfzTmKMIc+bR7PKzXi95euEBIRcsTr88XotizYdYPLaVNIz82he6xrim1WnUnipy3aO42lZTB+5jrwcT0FvpIAgJxVqlKHToJtwOq98/6wpP0xhzHdjzuhdBRDiCmFU61G0qtLqitcl/p1rJpJCJBEREREREbkqea2XxEOJpGenU6dcHSqVrlTcJRWbnCw3m7/Zy87ENFxBTm5sXpnq9SOLbVlXRm4G7aa340TeiUL3O3Bwbei1LOi2AKfDeZZHS3FSiCQiIiIiIiIiV9TGwxsZuGQgOe4cPNaDwzgoF1yOD9p9QFRYVHGXJ2ehnkgiIiIiIiIickXVvaYuX933Fav3rmb/yf1Eh0fTqEKjc/aCkt82hUgiIiIiIiIi8qtwOVzqfVSCXPnuWiIiIiIiIiIictVRiCQiIiIiIiIiIn4pRBIREREREREREb8UIomIiIiIiIiIiF8KkURERERERERExC+FSCIiIiIiIiIi4pdCJBERERERERER8UshkoiIiIiIiIiI+KUQSURERERERERE/FKIJCIiIiIiIiIifilEEhERERERERERvxQiiYiIiIiIiIiIXwqRRERERERERETEL4VIIiIiIiIiIiLil0IkERERERERERHxSyGSiIiIiIiIiIj4pRBJRERERERERET8UogkIiIiIiIiIiJ+KUQSERERERERERG/FCKJiIiIiIiIiIhfCpFERERERERERMQvhUgiIiIiIiIiIuKXQiQREREREREREfFLIZKIiIiIiIiIiPilEElERERERERERPxSiCQiIiIiIiIiIn4pRBIREREREREREb8UIomIiIiIiIiIiF8KkURERERERERExC+FSCIiIiIiIiIi4pdCJBERERERERER8UshkoiIiIiIiIiI+KUQSURERERERERE/FKIJCIiIiIiIiIifilEEhERERERERERvxQiiYiIiIiIiIiIXwqRRERERERERETEL4VIIiIiIiIiIiLil0IkERERERERERHxSyGSiIiIiIiIiIj4pRBJRERERERERET8UogkIiIiIiIiIiJ+KUQSERERERERERG/FCKJiIiIiIiIiIhfxlpb3DVcFGPMISC1uOuQ35RIIK24i5ASRWNKfg0aV3K5aUzJ5aYxJb8GjSu53DSmfj3VrLXli9pw1YZIIr9kjFlnrW1U3HVIyaExJb8GjSu53DSm5HLTmJJfg8aVXG4aU8VDy9lERERERERERMQvhUgiIiIiIiIiIuKXQiQpST4o7gKkxNGYkl+DxpVcbhpTcrlpTMmvQeNKLjeNqWKgnkgiIiIiIiIiIuKXZiKJiIiIiIiIiIhfCpGkxDDGTDXGJOT/7DTGJBR3TVIyGGMGG2O2GGM2GmPeKO565OpmjHnZGLPntN9XHYq7Jik5jDHPGGOsMSayuGuRq5sx5lVjTGL+76lFxpjKxV2TXN2MMaOMMT/kj6t/G2PKFndNcvUzxtyX/xnda4zRldquAIVIUmJYa3tYa2+21t4MzABmFnNJUgIYY9oA9wD1rbV1gdHFXJKUDGNP/b6y1n5Z3MVIyWCMiQLuBH4q7lqkRBhlra2f/7lqHvBSMdcjV7/FQKy1tj7wI/DnYq5HSoZkoBuworgL+b1QiCQljjHGAH8A/lnctUiJ8CjwurU2B8Bae7CY6xEROZuxwHOAGl7KJbPWHj/tZigaV3KJrLWLrLXu/JtrgCrFWY+UDNbazdbaLcVdx++JQiQpiVoCB6y1W4u7ECkRagMtjTFrjTFfG2NuLe6CpEQYlD+df4IxJqK4i5GrnzGmM7DHWruhuGuRksMYM9wYswvojWYiyeXVD5hf3EWIyIVzFXcBIhfCGLMEqFjEpqHW2tn5f++JZiHJBTjXuML3ezICuA24FZhmjKlhdWlLOQc/Y+pd4FV8/6v/KvAmvg/TIufkZ1y9ALS7shXJ1c7f5ypr7VBgqDHmz8Ag4C9XtEC56pzPZ3VjzFDADXx+JWuTq9d5fgeUK8Toe5CUJMYYF7AHuMVau7u465GrnzFmAb7lbMvzb28HbrPWHirWwqREMMZUB+ZZa2OLuxa5ehlj6gFfAZn5d1UB9gKNrbX7i60wKTGMMdWAL/S7Si6VMSYeGAC0tdZm+ttf5HwZY5YDz1hr1xV3LSWdlrNJSXMH8IMCJLmMZgG3AxhjagOBQFpxFiRXN2NMpdNudsXXEFLkollrk6y111prq1trqwO7gYYKkORSGGNiTrvZGfihuGqRksEYcxfwPNBZAZLI1UvL2aSkuR8tZZPLawIwwRiTDOQC8VrKJpfoDWPMzfiWs+0E+hdrNSIiRXvdGHM94AVS8c0eEbkU/wCCgMW+6+CwxlqrcSWXxBjTFRgHlAe+MMYkWGvbF3NZJZqWs4mIiIiIiIiIiF9aziYiIiIiIiIiIn4pRBIREREREREREb8UIomIiIiIiIiIiF8KkURERERERERExC+FSCIiIiIiIiIi4pdCJBEREfndMMZMNMbsPsu2OGOMNcbccdp9y/PvW32O49lzHDPKGOMxxuQaYyLPss/O/GNYY4zXGLPLGDPdGFPnPJ7PCGPMImPM4fzHP+TvMSIiIiIXSyGSiIiIyLmdAJoaY2qdfqcxJgTolr/9bPrg+7wVAPQ8x34LgaZAC+AloDGw0hhzrZ/aBgOlgHl+9hMRERG5ZAqRRERERM4tEdgGPPCL+7sBBl8AdDZ9gGTgJyD+HPulWWvXWGtXW2s/Bh4EIos45y+FW2tbAq/62U9ERETkkilEEhEREfFvEmcGOn2AmcDJoh5gjGkK1AY+zX/8LcaYuud5vm/z/6x1rp2std7zPJ6IiIjIJVOIJCIiIuLfJKCGMaYZgDGmMtAWX0B0NvGAF/j8tP36nOf5ovP/PHrBlYqIiIj8ShQiiYiIiPhhrU0BVvFzCPQAsBdYVtT+xpggoAewxFq711r7I7AGeMAYU9TnL2OMcRljAo0xscAH+AKo6Zf5qYiIiIhcNIVIIiIiIufnU+AP+QHRg8Bn51hOdg9QlsIzlT4BKgN3FLF/LyAPyAGS8ve7z1r7/eUpXUREROTSKUQSERGR3xM34DzLNudp+xRlGhCM7+ppsfhfypYJLDPGlDXGlMXXgDuPohtszwduBRoCFa210dbamec4voiIiMgV5yruAkRERESuoINApDEm0Fqb+4ttlfP/PFDUA621x40xc4A/AeustZuL2s8YUwFoh+9z1p4idulqjAmz1p447b4j1tp1F/JERERERK40zUQSERGR35Nl+MKdzkVs6w7sA7ac4/H/AOYCb5xjnwfyz/Eo0OYXP08CpYD7LrBuERERkWKnmUgiIiLye7IEWAxMNMbUAdYCYcD9+PoY9T1HnyOstavwNdg+lz5ACvC+tdaevsEYsxJ4Dt+StgkX+yROO15roDxQMf+uRsaYjPxa1ZRbRERELiuFSCIiIvK7Ya21xpjOwDB8Yc+LQC6QAHSx1s6+lOMbYxoA9YGXfhkg5Z/fY4yZCPzZGBOdf9W3S/FXoPVptx/L/wEwl3hsERERkUJMEZ9vREREREREREREClFPJBERERERERER8UshkoiIiIiIiIiI+KUQSURERERERERE/FKIJCIiIiIiIiIifilEEhERERERERERvxQiiYiIiIiIiIiIXwqRRERERERERETEL4VIIiIiIiIiIiLil0IkERERERERERHx6/8BaX0GbZ9EZnsAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -399,35 +326,20 @@ } ], "source": [ - "fig = plt.figure(figsize=(20, 20))\n", - "plt.imshow(importance_matrix_signed, origin='lower', cmap='seismic', norm=CenteredNorm())\n", - "plt.xticks(np.arange(len(coord)), labels, size=8)\n", - "plt.yticks(np.arange(len(coord)), labels)\n", - "plt.colorbar()\n", - "plt.show()" + "colours, pdb_files = compute_umap(preprocessed_data, model, scheme='heavy_subclass', categorical=True, include_ellipses=False, exclude_nanobodies=True)" ] }, { "cell_type": "code", - "execution_count": 14, - "id": "e5231492", - "metadata": {}, - "outputs": [], - "source": [ - "importance_matrix = np.abs(importance_matrix_signed)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "92ea01a0", + "execution_count": 11, + "id": "d6fde4bb", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAARNCAYAAACnn74hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABbOklEQVR4nOz9fZhld1UnfH8XUUIeAgahyQtJaIQAQsSABYFbmQEBBQeFoAg4owmOaRknDww6ChFRcHjuCOjMCKjYNyNBHuTlYugJA1FEMSM6IDSkSWhCYsBoYpKxQyAQ3ju97j/qNFaKXd1V3V21d1V9Ptd1rq6z92/v3zp1Tp1TvWr91q7uDgAAAAC3d4exAwAAAACYIkkTAAAAgAGSJgAAAAADJE0AAAAABkiaAAAAAAyQNAEAAAAY8C1jBwAAAADc3v2q+ktjB7EKbkje091PHDuO5ZI0AQAAgIn5UpKfHTuIVfCS5B5jx7ASlucAAAAADJA0AQAAABhgeQ4AAABMTEWVwxR4DgAAAAAGSJoAAAAADJA0AQAAABigpwkAAABMkCqH8XkOAAAAAAZImgAAAAAMkDQBAAAAGKCnCQAAAExMRZXDFHgOAAAAAAZImgAAAAAMkDQBAAAAGCBpAgAAADBAI1gAAACYIFUO4/McAAAAAAyQNAEAAAAYIGkCAAAAMEBPEwAAAJggVQ7j8xwAAAAADJA0AQAAABggaQIAAAAwQE8TAAAAmJiKKocp8BwAAAAADJA0AQAAABggaQIAAAAwQE8TAAAAmCBVDuPzHAAAAAAMkDQBAAAAGCBpAgAAADBA0gQAAABggEawAAAAMDEVVQ5T4DkAAAAAGCBpAgAAADBA0gQAAABggJ4mAAAAMEGqHMbnOQAAAAAYIGkCAAAAMEDSBAAAAGCAniYAAAAwQTV2AKg0AQAAABgiaQIAAAAwQNIEAAAAYICeJgAAADAxleSosYNApQkAAADAEEkTAAAAgAGSJgAAAAADJE0AAAAABmgECwAAABOkymF8ngMAAACAAZImAAAAAAMkTQAAAAAG6GkCAAAAE1NR5TAFngMAAACAAZImAAAAAAMkTQAAAAAG6GkCAAAAE6TKYXyeAwAAAIABkiYAAAAAAyRNAAAAAAboaQIAAAATpMphfJ4DAAAAgAGSJgAAAAADJE0AAAAABkiaAAAAAAzQCBYAAAAmpqLKYQo8BwAAAAADJE0AAAAABkiaAAAAAAzQ0wQAAAAmSJXD+DwHAAAAAAMkTQAAAAAGSJoAAAAADNDTBAAAACamZjfGpdIEAAAAYICkCQAAAMAASRMAAACAAXqaAAAAwAQdNXYAqDQBAAAAGCJpAgAAADBA0gQAAABggKQJAAAAwACNYAEAAGBiKqocpsBzAAAAADBA0gQAAABggKQJAAAAwABJEwAAAJigO2zA23JU1ROr6sqqurqqXjiwv6rqVbP9l1XVw2bb71RVH6qqj1XV7qp66TKnXJKkCQAAADAJVXVUkt9J8qQkD0ryrKp60KJhT0py2uy2LcnvzbZ/Ncn3d/d3JzkjyROr6pGHE4+kCQAAADAVj0hydXd/uru/luQtSZ6yaMxTkvxhz/tgkuOq6sTZ/VtnY751duvDCUbSBAAAAFgr96iqnQtu2xbtv1eSaxfcv262bVljquqoqtqV5J+SvLe7/+Zwgv2WwzkYAAAAWB0btMrhpu6eO8D+Gti2uFpkyTHdfVuSM6rquCQ7qur07v74IUWaDfscAAAAAOvQdUlOWXD/5CTXr3RMd38uySVJnng4wUiaAAAAAFPx4SSnVdV9quqOSZ6Z5J2LxrwzyU/NrqLzyCS3dPcNVbVlVmGSqjomyeOTfPJwgrE8BwAAAJiE7t5bVecleU+So5L8QXfvrqrnzPa/NsnFSX4oydVJvpTk2bPDT0zyhtkVeO6Q5G3d/a7Diae6D6uR7GQdd9w9+sQTt67JXHe+85pMA7Au3Hbb2s111FFrNxewMXiPgo3jIx/5yE3dvWXsOFbL/ar6lWMHsQqelnzkID1NJmXDVpqceOLWXHjhzjWZ68yH71uTeQDWg8/funYrP+96rPdfYGW8R8HGUUcd9fdjx8DGp6cJAAAAwABJEwAAAIABkiYAAAAAAzZsTxMAAABYz1Q5jM9zAAAAADBA0gQAAABggKQJAAAAwAA9TQAAAGBiKqocpuCIPAdVdVtV7Vpw2zow5sKq+rsFY/73bPs5VbWvqh6yYOzH95+jqq6pqstnt09U1cuq6ugjETcAAADAUo5UpcmXu/uMZYz7xe5++8D265K8KMkzljjusd19U1Udm2T77Hb2IUUKAAAAsAxTqfZ5V5IHV9UDDjSou29N8pwkT62qb1+TyAAAAIBN6UglTY5ZsOxmxwHGvXLBuDct2L4vySuS/PLBJuruzyf5uySnLd5XVduqamdV7fzc5/as9DEAAADAZNQGvK03U1mekyR/lORFVXWfZZxn8Hvd3fuX7uQ7v3Oul3EeAAAAgEGrtjynql4/qyi5eDnju3tvkt9K8oKDnPcuSbYmueqwgwQAAABYwqpdcri7n30Ih12Y5JeS3GVo56wR7O8m+R/d/dlDjw4AAADgwFYtabKEV1bVryy4/4iFO7v7a1X1qiS/vei4v6iq/Zep3pHkP61umAAAADCuo8YOgCOTNOnuY5cx5pwldl04u+0f96okr1pwf+thBQcAAABwCKZyyWEAAACASZE0AQAAABggaQIAAAAwYK0bwQIAAAAHsf9KKIzLcwAAAAAwQNIEAAAAYICkCQAAAMAAPU0AAABgglQ5jG/DJk3ufOfkzIfvGzsM4DBdf+PaflScdIL3jcN112N9Dxn20V1r9/P8sDO8DhnmPYoDecf/WLv3qac91WsR1gOJKwAAAIABkiYAAAAAAzbs8hwAAABYryqqHKbAcwAAAAAwQNIEAAAAYICkCQAAAMAAPU0AAABgglQ5jM9zAAAAADBA0gQAAABgwIqTJlV1QlW9pao+VVWfqKqLq+r+VfXlqrq0qq6oqg9V1dkLjjmnqvZU1a6q+mRVPX+Jcz+mqt41sP2/VdXHquqyqnp7VR270rgBAAAAVmJFPU2qqpLsSPKG7n7mbNsZSY5P8qnufuhs23ckeUdV3aG7Xz87/K3dfV5V3T3JlVX19u6+dplTP7+7Pz87939Ocl6S31hJ7AAAAAArsdJKk8cm+Xp3v3b/hu7eleR2yY/u/nSSn0/y3MUn6O7PJLk6yYnLnXRBwqSSHJOkVxg3AAAArCt32IC39WalMZ+e5CPLHPvRJA9cvLGqTk1ypySXrWTiqnp9khtn53z1EmO2VdXOqtq5Z8+elZweAAAA4HZWM9FTi+4/o6p2J/l0kt/u7q+s5GTd/ewkJyW5Iskzlhizvbvnuntuy5YthxIzAAAAQJKVJ012J/meZY59aOYTHPu9tbsfnOTRSX5r1lD2rFlz2F1VNXewE3b3bUnemuRHVxg3AAAAwIqsNGnyviRHV9W5+zdU1cOT3HvhoKramuQ3M7CMprs/kOSNSZ7X3Tu6+4zZbefQhDXvfvu/TvLDST65wrgBAABg3aiM339ET5MVXj2nu7uqzkryX6vqhUm+kuSaJP8hyX2r6tLM9yv5QpJXL7hyzmIvT/LRqvq/u/sLi/Y9rqquW3D/GUleUVV3zfzr5mNJ/t1K4gYAAABYqRUlTZKku69P8uMDu445wDEXJrlw0TlOGBh3yRLn+d4VhgkAAABwWNZjdQwAAADAqltxpQkAAACw+hZfkpa1p9IEAAAAYICkCQAAAMAASRMAAACAAXqaAAAAwMRUkqPGDgKVJgAAAABDJE0AAAAABlieA0zaSSfsGzsE4Ah52Bl+noFpe9pTvU8BtydpAgAAABNkacj4PAcAAAAAAyRNAAAAAAZImgAAAAAMkDQBAAAAGKARLAAAAEyQKofxeQ4AAAAABkiaAAAAAAyQNAEAAAAYMFrSpKrOq6qrqmp3VV0w2/b02f19VTW3YOwjqmrX7PaxqjprrLgBAABgtVXm/8O+0W7rzSiNYKvq6CQvTXJakluSXFtVr0jy8SRPS/L7iw75eJK57t5bVScm+VhV/c/u3ruWcQMAAACbx1hXzzk+yY3dfXNVPXi27Zbu/mySVNXtBnf3lxbcvVOSXpMoAQAAgE1rrOqYOyTpqjo/yWVJLurufQc6oKrOrKrdSS5P8pyhKpOq2lZVO6tq5549e1YlcAAAAGBzGHVJUXdfkGRLkq1Vde5Bxv5Ndz84ycOTnF9VdxoYs72757p7bsuWLasTNAAAAKyBsfuP6GkygZi7++Ykb07ysGWOvyLJF5OcvppxAQAAAJvbmEmTU6rq/rOvz0xy5VIDq+o+VfUts6/vneQBSa5Z9QgBAACATWvMpMneJBdV1eVJTkryuqo6q6quS/KoJO+uqvfMxn5f5q+YsyvJjiQ/1903jRE0AAAAsDmMdfWcJLmhuxcvsdkxu91Od78xyRvXJCoAAAAYWWUC/TTwHAAAAAAMGaXSpLuviUauAAAAwISpNAEAAAAYIGkCAAAAMGDMRrAAAADAElQ5jM9zAAAAADBA0gQAAABggKQJAAAAwICN29PkttuSW29dm7mOPXZt5gFgc7jxxrWb64QT1m4uAEbxjv+xdn8rf9pT963ZXJtBjR0AKk0AAAAAhkiaAAAAAAyQNAEAAAAYsHF7mgAAAMA6VUmOGjsIVJoAAAAADJE0AQAAABggaQIAAAAwQE8TAAAAmCBVDuPzHAAAAAAMkDQBAAAAGCBpAgAAADBA0gQAAABgwIZqBFtV25JsS5JTTzll5GgAAADg0FRUOUzBhnoOunt7d89199yWu9997HAAAACAdWxDJU0AAAAAjhRJEwAAAIABG6qnCQAAAGwUqhzG5zkAAAAAGCBpAgAAADBA0gQAAABggJ4mAAAAMEGqHMbnOQAAAAAYIGkCAAAAMEDSBAAAAGCAniYAAAAwMRVVDlPgOQAAAAAYsHErTY46Kjn22LGjAICVO+GEsSMAYAN52lP3jR0CrFsqTQAAAAAGSJoAAAAADNi4y3MAAABgHVPlMD7PAQAAAMAASRMAAACAAZImAAAAAAP0NAEAAIAJqrEDQKUJAAAAwBBJEwAAAIABoyVNquq8qrqqqnZX1QWzba+sqk9W1WVVtaOqjpttf0JVfaSqLp/9+/1jxQ0AAABsDqMkTarq6CQvTfLIJA9JcnZV3S3Je5Oc3t0PSXJVkvNnh9yU5Ie7+7uSnJ3kjWsfNQAAAKyNSnLUBrytN2NVmhyf5MbuvjnJA2fbbunuP+3uvbP7H0xycpJ096Xdff1s++4kd5olXgAAAABWxVhJkzsk6ao6P8llSS7q7n2Lxvx0kj8eOPZHk1za3V9d5RgBAACATWzURrDdfUGSLUm2VtW5+7dX1YuS7E3ypoXjq+rBSV6e5GeHzldV26pqZ1Xt3LNnz+oFDgAAAGx43zJ2AN19c1W9OcmjkqSqzk7y5CSP6+7eP66qTk6yI8lPdfenljjX9iTbk2Rubq6HxgAAAMB64HK34xvzOTilqu4/+/rMJFdW1ROTvCDJj3T3l/YPnF1F591Jzu/uv17zSAEAAIBNZ8ykyd4kF1XV5UlOSvK6JK9Jcpck762qXVX12tnY85LcL8mLZ9t3VdU9R4kaAAAA2BTGXJ5zQ3efvmjb/YYGdvfLkrxs9UMCAAAAmGeJFAAAAMCAUSpNuvuaJIurTAAAAIAkFVUOU+A5AAAAABggaQIAAAAwQNIEAAAAYMCYV88BAAAAlqDKYXyeAwAAAIABkiYAAAAAAyRNAAAAAAboaQIAAAATU1HlMAWeAwAAAIABkiYAAAAAAyRNAAAAAAboaQIAAAATpMphfJ4DAAAAgAGSJgAAAMBkVNUTq+rKqrq6ql44sL+q6lWz/ZdV1cNm20+pqr+oqiuqandVPe9wY5E0AQAAACahqo5K8jtJnpTkQUmeVVUPWjTsSUlOm922Jfm92fa9SX6hu78zySOT/PuBY1dE0gQAAACYikckubq7P93dX0vyliRPWTTmKUn+sOd9MMlxVXVid9/Q3R9Nku7+QpIrktzrcILRCBYAAAAmprJhqxzuUVU7F9zf3t3bF9y/V5JrF9y/LsmZi84xNOZeSW7Yv6GqtiZ5aJK/OZxgJU0AAACAtXJTd88dYH8NbOuVjKmqY5P89yT/obs/v/IQ/9kGTVwBAAAA69B1SU5ZcP/kJNcvd0xVfWvmEyZv6u53HG4wkiYAAADAVHw4yWlVdZ+qumOSZyZ556Ix70zyU7Or6DwyyS3dfUNVVZL/luSK7v7PRyKYDbU8p6q2Zb5zbk499dSRowEAAIBDtxmrHLp7b1Wdl+Q9SY5K8gfdvbuqnjPb/9okFyf5oSRXJ/lSkmfPDv/eJD+Z5PKq2jXb9svdffGhxlPdi5cGbQxzc3O980MfGjsMAAAAVkEdddRHDtIbY117WFW/f+wgVsGxybp63jZj4goAAADgoCRNAAAAAAZsqJ4mAAAAsFGochif5wAAAABggKQJAAAAwABJEwAAAIABepoAAADAxFRUOUyB5wAAAABggKQJAAAAwABJEwAAAIABkiYAAAAAAzSCBQAAgAlS5TA+zwEAAADAAEkTAAAAgAGSJgAAAAAD9DQBAACAiamocpgCzwEAAADAAEkTAAAAgAGSJgAAAAAD9DQBAACACVLlMD7PAQAAAMCA0ZImVXVeVV1VVbur6oLZtldW1Ser6rKq2lFVx822372q/qKqbq2q14wVMwAAALB5jJI0qaqjk7w0ySOTPCTJ2VV1tyTvTXJ6dz8kyVVJzp8d8pUkL07yH0cIFwAAANiExuppcnySG7v75qp68GzbLd39pwvGfDDJjyVJd38xyV9V1f3WOE4AAAAYRVWNHcKR1z12BCsy1vKcOyTpqjo/yWVJLurufYvG/HSSP17zyAAAAAAyciPY7r4gyZYkW6vq3P3bq+pFSfYmedNKzldV26pqZ1Xt3LNnz5ENFgAAANhURr96TnffnOTNSR6WJFV1dpInJ/nX3Sur2+nu7d09191zW7ZsOfLBAgAAAJvGmEmTU6rq/rOvz0xyZVU9MckLkvxId39pvNAAAACAzW6sRrDJ/PKbi6pqb5KrM58s2ZXk6CTvnTW8+WB3PydJquqaJHdNcseqemqSH+juT6x92AAAALDKqpJvGfO/7Kvk618fO4IVGfMZuKG7T1+0bcmr43T31tUNBwAAAOCfjd7TBAAAAGCKRqk06e5rkiyuMgEAAACYjA24QAoAAAA2AD1NRmd5DgAAAMAASRMAAACAAZImAAAAAAM24AIpAAAAWOeqNmZPk3VGpQkAAADAAEkTAAAAgAGSJgAAAAADLJACAACAqdHTZBJUmgAAAAAMkDQBAAAAGCBpAgAAADBA0gQAAABggK4yAAAAMDUawU6CShMAAACAAZImAAAAAAMkTQAAAAAGWCAFAAAAU6OnySSoNAEAAAAYIGkCAAAAMGBDJU2qaltV7ayqnXv27Bk7HAAAAGAd21ALpLp7e5LtSTI3N9cjhwMAAACHTk+T0W2oShMAAACAI0XSBAAAAGCApAkAAADAAAukAAAAYGqq9DSZAJUmAAAAAAMkTQAAAAAGSJoAAAAADJA0AQAAABigqwwAAABMjUawk6DSBAAAAGCApAkAAADAAEkTAAAAgAEWSB0J11yzdnNt3bp2cwEAAKzA52/1d/kjRk+TSfCKBgAAABggaQIAAAAwQNIEAAAAYIAFUgAAADA1eppMgkoTAAAAgAGSJgAAAAADJE0AAAAABlggBQAAAFOkp8noVlxpUlUnVNVbqupTVfWJqrq4qu5fVV+uqkur6oqq+lBVnb3gmHOqak9V7aqqT1bV85c492Oq6l0D299UVVdW1cer6g+q6ltXGjcAAADASqwoaVJVlWRHkku6+77d/aAkv5zk+CSf6u6Hdvd3JnlmkudX1bMXHP7W7j4jyfcmeVFVnbKCqd+U5IFJvivJMUl+ZiVxAwAAAKzUSitNHpvk69392v0buntXkmsXDuruTyf5+STPXXyC7v5MkquTnLjcSbv74p5J8qEkJ68wbgAAAIAVWWnS5PQkH1nm2I9mvjrkdqrq1CR3SnLZCufObFnOTyb5k5UeCwAAALASq9lVphbdf0ZVPTbJA5Kc291fOYRz/m6Sv+zu9w9OWLUtybYkOfXUUw/h9AAAADABVRrBTsBKK012J/meZY59aJIrFtx/a3c/OMmjk/zWrKHsWbPmsLuqau5AJ6uqX0uyJfPLfgZ19/bunuvuuS1btiwzTAAAAIBvttKkyfuSHF1V5+7fUFUPT3LvhYOqamuS30zy6sUn6O4PJHljkud1947uPmN227nUpFX1M0l+MMmzunvfCmMGAAAAWLEVJU1mjVjPSvKE2SWHdyd5SZLrk9x3/yWHk7wtyau7+/VLnOrlSZ5dVXcZ2Pe4qrpuwe1RSV6b+Sv0fGBWlfKrK4kbAAAAYKVWvECqu69P8uMDu445wDEXJrlw0TlOGBh3yRLnsZALAACAzUNPk0lY6fIcAAAAgE1B0gQAAABggKQJAAAAwAALpAAAAGBq9DSZBJUmAAAAAAMkTQAAAAAGSJoAAAAADLBACgAAAKZGT5NJUGkCAAAAMEDa6kjYunXsCAAAAEZ312P3jR0CHFEqTQAAAAAGSJoAAAAADLA8BwAAAKZII9jRqTQBAAAAGCBpAgAAADBA0gQAAABggAVSAAAAMDVVeppMgEoTAAAAgAGSJgAAAAADJE0AAAAABlggBQAAAFOjp8kkqDQBAAAAGLChkiZVta2qdlbVzj179owdDgAAALCObaikSXdv7+657p7bsmXL2OEAAAAA65gFUgAAADA1eppMwoaqNAEAAAA4UiRNAAAAAAZImgAAAAAMkDQBAAAAGKCrDAAAAEyNRrCToNIEAAAAYICkCQAAAMAASRMAAACAARZIAQAAwNToaTIJKk0AAAAABkiaAAAAAAyQNAEAAAAYYIEUAAAATJGeJqNTaQIAAAAwQNIEAAAAYICkCQAAAMAAC6QAAABgaqr0NJkAlSYAAAAAAyRNAAAAAAZImgAAAAAMGC1pUlXnVdVVVbW7qi6YbXv67P6+qppbMPYJVfWRqrp89u/3jxU3AAAAsDmM0lWmqo5O8tIkpyW5Jcm1VfWKJB9P8rQkv7/okJuS/HB3X19Vpyd5T5J7rWHIAAAAsHY0gp2EsZ6B45Pc2N03V9WDZ9tu6e7PJklV3W5wd1+64O7uJHeqqqO7+6trEi0AAACw6Yy1POcOSbqqzk9yWZKLunvfMo/90SSXSpgAAAAAq2nURrDdfUGSLUm2VtW5Bxs/q0p5eZKfXWL/tqraWVU79+zZc2SDBQAAADaV0RdIzZbovDnJow40rqpOTrIjyU9196eWONf2JNuTZG5uro90rAAAALAm9DSZhDErTU6pqvvPvj4zyZVLDayq45K8O8n53f3XaxAbAAAAsMmNmTTZm+Siqro8yUlJXldVZ1XVdZmvOnl3Vb1nNva8JPdL8uKq2jW73XOcsAEAAIDNYMxanxu6+/RF23bMbrfT3S9L8rI1iQoAAAAgE+hpAgAAACyip8kkjPIMdPc1SRZXmQAAAABMxqiXHAYAAACYKkkTAAAAYDKq6olVdWVVXV1VLxzYX1X1qtn+y6rqYQv2/UFV/VNVffxIxGKBFAAAAEzRJuxpUlVHJfmdJE9Icl2SD1fVO7v7EwuGPSnJabPbmUl+b/ZvklyY5DVJ/vBIxKPSBAAAAJiKRyS5urs/3d1fS/KWJE9ZNOYpSf6w530wyXFVdWKSdPdfJrn5SAUjaQIAAABMxb2SXLvg/nWzbSsdc0RsvlofAAAAYCz3qKqdC+5v7+7tC+7XwDG96P5yxhwRkiYAAADAWrmpu+cOsP+6JKcsuH9ykusPYcwRIWkCAAAAU1O1KRvBJvlwktOq6j5J/jHJM5P8xKIx70xyXlW9JfMNYG/p7htWIxg9TQAAAIBJ6O69Sc5L8p4kVyR5W3fvrqrnVNVzZsMuTvLpJFcn+X+S/Nz+46vqzUk+kOQBVXVdVf3bw4lnU6atAAAAgGnq7osznxhZuO21C77uJP9+iWOfdSRjUWkCAAAAMEClCQAAAEzN5u1pMikqTQAAAAAGSJoAAAAADJA0AQAAABhggRQAAABMjZ4mk6DSBAAAAGCApAkAAADAAEkTAAAAgAEWSAEAAMDU6GkyCRuq0qSqtlXVzqrauWfPnrHDAQAAANaxDZU06e7t3T3X3XNbtmwZOxwAAABgHdtQSRMAAACAI0XSBAAAAGCArjIAAAAwRRrBjk6lCQAAAMAASRMAAACAAZImAAAAAAMskAIAAICpqdLTZAJUmgAAAAAMkDQBAAAAGCBpAgAAADDAAikAAACYGj1NJkGlCQAAAMAASRMAAACAAZImAAAAAAMskAIAAICp0dNkElSaAAAAAAyQNAEAAAAYIGkCAAAAMEDSBAAAAGCArjIAAAAwNRrBToJKEwAAAIABkiYAAAAAA0ZLmlTVeVV1VVXtrqoLZtuePru/r6rmFoy9e1X9RVXdWlWvGStmAAAAYPMYZYFUVR2d5KVJTktyS5Jrq+oVST6e5GlJfn/RIV9J8uIkp89uAAAAsLHpaTK6sZ6B45Pc2N03V9WDZ9tu6e7PJklV3W5wd38xyV9V1f3WNkwAAABgsxprec4dknRVnZ/ksiQXdfe+wz1pVW2rqp1VtXPPnj2HHSQAAACweY3aCLa7L0iyJcnWqjr3CJxve3fPdffcli1bDj9AAAAAYNMafYHUbInOm5M8auxYAAAAYBKq9DSZgDErTU6pqvvPvj4zyZUjxgIAAABwO2MmTfYmuaiqLk9yUpLXVdVZVXVd5qtO3l1V79k/uKquSfKfk5xTVddV1YPGCBoAAADYHMas9bmhuxdfPnjH7PZNunvrqkcEAAAAMGOBFAAAAEyNniaTMMoz0N3XJFlcZQIAAAAwGaNechgAAABgqiRNAAAAAAZImgAAAAAM0FUGAAAApkYj2ElQaQIAAAAwQNIEAAAAYICkCQAAAMAAC6QAAABgavQ0mQSVJgAAAAADJE0AAAAABkiaAAAAAAywQAoAAACmRk+TSVBpAgAAADBA0gQAAABggKQJAAAAwAALpAAAAGCK9DQZ3YorTarqhKp6S1V9qqo+UVUXV9X9q+rLVXVpVV1RVR+qqrMXHHNOVe2pql1V9cmqev4S535MVb1rYPt5VXV1VXVV3WOlMQMAAACs1IrSVlVVSXYkeUN3P3O27Ywkxyf5VHc/dLbtO5K8o6ru0N2vnx3+1u4+r6runuTKqnp7d1+7zKn/Osm7klyykngBAAAADtVKK00em+Tr3f3a/Ru6e1eS2yU/uvvTSX4+yXMXn6C7P5Pk6iQnLnfS7r60u69ZYawAAAAAh2ylSZPTk3xkmWM/muSBizdW1alJ7pTkshXOfVBVta2qdlbVzj179hzp0wMAAACbyGp2lalF959RVY9N8oAk53b3V470hN29Pcn2JJmbm+sjfX4AAABYE1UawU7ASitNdif5nmWOfWiSKxbcf2t3PzjJo5P81qyh7Fmz5rC7qmpuhbEAAAAArJqVJk3el+Toqjp3/4aqeniSey8cVFVbk/xmklcvPkF3fyDJG5M8r7t3dPcZs9vOlQYPAAAAsFpWlDTp7k5yVpInzC45vDvJS5Jcn+S++y85nORtSV694Mo5i708ybOr6i4D+x5XVdctuD2qqp5bVdclOTnJZVX1upXEDQAAALBSK14g1d3XJ/nxgV3HHOCYC5NcuOgcJwyMu2SJ83wgyatWFikAAACsU3qaTMJKl+cAAAAAbAqSJgAAAAADJE0AAAAABlggBQAAAFOjp8kkqDQBAAAAGCBpAgAAADBA0gQAAABggAVSAAAAMDV6mkzCxn0GvvjFZOfOtZlrbm5t5kly1dVrVxy0lj+f37F139pNBqyqf7hu7d6nTj3ZewcAHMxHd63dZ/PDzvDZzMZieQ4AAADAAEkTAAAAgAEbd3kOAAAArGd6moxOpQkAAADAAEkTAAAAgAGSJgAAAAADJE0AAAAABugqAwAAAFNTpRHsBKg0AQAAABhw0LRVVd2W5PIFm57a3dcsGvPIJL+d5OjZ7a1J/j7J82ZDHpTkyiS3JfmT7n5hVT0/yQVJju/uW2bneUySi5J8OskxSd6V5A1J3jg7z6lJbpndburux6/o0QIAAAAs03Jqfb7c3WccZMwbkvx4d3+sqo5K8oDu/kSS1ydJVV2T5LHdfdOCY56V5MNJzkpy4YLt7+/uJ1fVMUkuTbJj//xVdWGSd3X325cRNwAAAMAhO1ILpO6Z5IYk6e7bknziQIOr6r5Jjk3yi0l+ObdPmmR2ni9X1a4k9zpCMQIAAMD6oKfJJCynp8kxVbVrdtuxxJj/kuTKqtpRVT9bVXc6yDmfleTNSd6f5AFVdc/FA6rqbklOS/KXy4hx/zHbqmpnVe3c87nPLfcwAAAAgG+ynKTJl7v7jNntrKEB3f3rSeaS/GmSn0jyJwc55zOTvKW79yV5R5KnL9j36Kq6LMmNmV+Kc+MyYtwfx/bunuvuuS3HHbfcwwAAAAC+ySFdPaeqXj+rPLl4/7bu/lR3/16SxyX57qq6+xLHPiTzFSTvnfU6eWbmK0/2e393PyTJdyX5d1V1xqHECAAAAHA4DmmBVHc/e+H9qvpXSS7u7s58QuS2JJ9b4vBnJXlJd1+w4Pi/q6p7L5rjqqq6IMkLcvukCgAAAGxseppMwiFVmgz4ycz3NNmV+csD/+tZQ9ghz0yyuDfKjtn2xV6b5F9U1X2OUJwAAAAAy3LQtFV3H7uMMUMJj4X7ty74+psSIN398wvuXrJg+5ez4Oo53X3OwWIBAAAAOBKOVKUJAAAAwIZigRQAAABMjZ4mk6DSBAAAAGCApAkAAADAAEkTAAAAgAGSJgAAAAADdJUBAACAKdIIdnQqTQAAAAAGbNy01Re+kFxyydrMNTe3NvMkuf/99q3ZXACH4tSTvU+tK695zdrNdd55azcXAN/wsDN8NsOhUmkCAAAAMGDjVpoAAADAelWlp8kEqDQBAAAAGCBpAgAAADBA0gQAAABggAVSAAAAMDV6mkyCShMAAACAAZImAAAAAAMkTQAAAAAGHJEFUlV1W5LLF2x6andfs2jMhUn+ZZJbZpu+1N3/V1Wdk+QPkpzR3ZfNxn48yZO7+5qquibJF2bHHJXkHUn+U3d/9UjEDgAAAJOjp8kkHKln4MvdfcYyxv1id799YPt1SV6U5BlLHPfY7r6pqo5Nsn12O/uQIgUAAABYhqksz3lXkgdX1QMONKi7b03ynCRPrapvX5PIAAAAgE3pSCVNjqmqXbPbjgOMe+WCcW9asH1fklck+eWDTdTdn0/yd0lOW7yvqrZV1c6q2rnni19c6WMAAAAA+IapLM9Jkj9K8qKqus8yzlNDG7t7/9KdzJ18ci/jPAAAAACDVq2rTFW9PslDk1zf3T90sPHdvbeqfivJCw5y3rsk2ZrkqiMRJwAAAEyORrCTsGrPQHc/+xAOuzDJLyW5y9DOWSPY303yP7r7s4ceHQAAAMCBrXUj2IU9TXZV1R0X7uzuryV5VZJ7LjruL2aXIf5Qkn9I8rNrEy4AAACwWR2RSpPuPnYZY85ZYteFs9v+ca/KfOJk//2thxUcAAAAwCGwQAoAAACmSE+T0a318hwAAACAdUHSBAAAAGCApAkAAADAAAukAAAAYGqq9DSZAJUmAAAAAAMkTQAAAAAGSJoAAAAADNiwC6S+9u0n5B+e+UtrMtep2bcm8wAby6+/bO3y1r/6K96nWMJ5540dAcB03Hjj2s11wglrNxfrk54mk6DSBAAAAGCApAkAAADAAEkTAAAAgAGSJgAAAAADdJUBAACAqdEIdhJUmgAAAAAMkDQBAAAAGCBpAgAAADDAAikAAACYGj1NJmHZlSZVdUJVvaWqPlVVn6iqi6vq/lX15aq6tKquqKoPVdXZC445p6r2VNWuqvpkVT1/iXM/pqretWjbhVX1Y7Ov/1tVfayqLquqt1fVsYf6gAEAAIDpqqonVtWVVXV1Vb1wYH9V1atm+y+rqoct99iVWlbSpKoqyY4kl3T3fbv7QUl+OcnxST7V3Q/t7u9M8swkz6+qZy84/K3dfUaS703yoqo65RDifH53f3d3PyTJPyQ57xDOAQAAAExYVR2V5HeSPCnJg5I8q6oetGjYk5KcNrttS/J7Kzh2RZZbafLYJF/v7tfu39Ddu5Jcu3BQd386yc8nee7iE3T3Z5JcneTElQbZ3Z9PvpG8OSZJr/QcAAAAwOQ9IsnV3f3p7v5akrckecqiMU9J8oc974NJjquqE5d57Iosd4HU6Uk+ssyxH03ywMUbq+rUJHdKctkSxz26qnYtuH9qkm8s2amq1yf5oSSfSPILQyeoqm2ZzzLlXvc6dZnhAgAAwPTs25jXbrlHVe1ccH97d29fcP9euX2BxnVJzlx0jqEx91rmsSuyGl1latH9Z1TVY5M8IMm53f2VJY57f3c/+Rsnqbpw4c7ufvas1ObVSZ6R5PWLTzD7Rm9Pkoc8ZE41CgAAAEzLTd09d4D9i3MKyTevNllqzHKOXZHlpq12J/meZY59aJIrFtx/a3c/OMmjk/zWrKHsWbPmsLuq6kDfrNvp7tuSvDXJjy73GAAAAGDduC7Jwl6oJye5fpljlnPsiiw3afK+JEdX1bn7N1TVw5Pce+Ggqtqa5DczXw1yO939gSRvTPK87t7R3WfMbjsXj110zqqq++3/OskPJ/nkMuMGAAAA1o8PJzmtqu5TVXfM/AVn3rlozDuT/NQsX/DIJLd09w3LPHZFlrU8p7u7qs5K8l9nl+z5SpJrkvyHJPetqksz36/kC0le3d3ftHRm5uVJPlpV/3d3f2GZMVaSN1TVXWdffyzJv1vmsQAAALDudCd7944dxdrr7r1VdV6S9yQ5KskfdPfuqnrObP9rk1yc+Z6nVyf5UpJnH+jYw4ln2T1Nuvv6JD8+sOuYAxxzYZILF53jhIFxlyS5ZNG2cxbc/d7lxgkAAACsX919ceYTIwu3Lbyabyf598s99nBsyFa8AAAAAIdL0gQAAABggKQJAAAAwIBl9zQBAAAA1sZmbQQ7NSpNAAAAAAZImgAAAAAMkDQBAAAAGKCnCQAAAEyMnibTsGGTJne8Y3LqyfvGDgNgSb/6K96jAGBSTjhh7AiAibE8BwAAAGCApAkAAADAgA27PAcAAADWKz1NpkGlCQAAAMAASRMAAACAAZImAAAAAAP0NAEAAIAJ0tNkfCpNAAAAAAZImgAAAAAMGC1pUlXnVdVVVbW7qi6YbXv67P6+qpobOObUqrq1qv7j2kcMAAAAbCajJE2q6ugkL03yyCQPSXJ2Vd0tyceTPC3JXy5x6H9J8sdrEiQAAACwqY3VCPb4JDd2981V9eDZtlu6+7NJUlXfdEBVPTXJp5N8ca2CBAAAgDF0awQ7BWMtz7lDkq6q85NcluSi7t631OCqunOSF2S+OmVJVbWtqnZW1c49e/Yc0YABAACAzWXURrDdfUGSLUm2VtW5Bxj60iT/pbtvPcj5tnf3XHfPbdmy5UiGCgAAAGwyYy3P+YbZEp03J3nUAYadmeTHquoVSY5Lsq+qvtLdr1mLGAEAAIDNZ8ykySlVdf/uvirzSZErlxrY3Y/e/3VVvSTJrRImAAAAbFR6mkzDmMtz9ia5qKouT3JSktdV1VlVdV3mq07eXVXvGTE+AAAAYBMbs9Lkhu4+fdG2HbPbkrr7JasWEQAAAMDMqI1gAQAAAKZqlEqT7r4myeIqEwAAACB6mkyFShMAAACAAZImAAAAAAMkTQAAAAAGjHn1HAAAAGCAnibToNIEAAAAYICkCQAAAMAASRMAAACAAZImAAAAAAM0ggUAAIAJ0gh2fCpNAAAAAAZImgAAAAAMkDQBAAAAGKCnCQAAAExMt54mU6DSBAAAAGCApAkAAADAAEkTAAAAgAF6mgAAAMDE6GkyDSpNAAAAAAZImgAAAAAM2FBJk6raVlU7q2rnnj17xg4HAAAAWMc2VE+T7t6eZHuSzM3N9cjhAAAAwCHR02QaNlSlCQAAAMCRImkCAAAAMEDSBAAAAGCApAkAAADAgA3VCBYAAAA2Ao1gp0GlCQAAAMAASRMAAACAAZImAAAAAAP0NAEAAIAJ0tNkfCpNAAAAAAZImgAAAAAMkDQBAAAAGKCnCQCwJv7hurX7W82pJ+9bs7kA+Gefv9Xf5Y+Ubj1NpsArGgAAAGCApAkAAADAAEkTAAAAgAF6mgAAAMDE6GkyDSpNAAAAAAZImgAAAAAMkDQBAAAAGCBpAgAAADBAI1gAAACYGI1gp0GlCQAAAMAASRMAAACAAesmaVJVv1JVl1fVpVX1fVX1P8eOCQAAANi41kVPk6p6ZJIfTfLQJD+W5O1Jfm1g3LYk25Lk1FNPXcsQAQAA4IjR02Qa1kulyaOSvLu79yb5kyT3TPKuxYO6e3t3z3X33JYtW9Y6RgAAAGADWS9JkyT56oJ//7G7/3HMYAAAAICNbb0kTXYm+d7Z1z+S5KSqUkoCAAAArJp10dOku99fVbur6uIkd07yU0neUVU/2N1fGjk8AAAAOOL0NBnfukiaJEl3/8KiTW8aJRAAAABgU1gvy3MAAAAA1pSkCQAAAMCAdbM8BwAAADaLbj1NpkClCQAAAMAASRMAAACAAZImAAAAAAMkTQAAAAAGaAQLAAAAE6MR7DRImgAAa+LUk/eNHQIAq+yux3qvZ2OxPAcAAABggKQJAAAAwADLcwAAAGBi9DSZBpUmAAAAAAMkTQAAAAAGSJoAAAAADNDTBAAAACZGT5NpUGkCAAAAMEDSBAAAAGCApAkAAADAAD1NAAAAYGL0NJkGlSYAAAAAAzZU0qSqtlXVzqrauWfPnrHDAQAAANaxDZU06e7t3T3X3XNbtmwZOxwAAABgHdtQSRMAAACAI0UjWAAAAJggjWDHp9IEAAAAYICkCQAAAMAASRMAAACAAXqaAAAAwMR062kyBSpNAAAAAAZImgAAAAAMkDQBAAAAGKCnCQAAAEyMnibToNIEAAAAYICkCQAAAMCAjbs854tfTHbuXJu55ubWZh7WnxtvXLu5Tjhh7ebayG69de3mOvbYtZuLdeXXX7Z2f9P41V/Zt2ZzAQCsNxs3aQIAAADrlJ4m02B5DgAAAMAASRMAAACAAZImAAAAAAMkTQAAAAAGaAQLAAAAE6MR7DSoNAEAAAAYIGkCAAAAMEDSBAAAAGDAaD1Nquq8JM9N8vUk7+zu86vqlUl+OMnXknwqybO7+3NV9YQkv5HkjrN9v9jd7xspdAAAAFh1epqMb5RKk6o6OslLkzwyyUOSnF1Vd0vy3iSnd/dDklyV5PzZITcl+eHu/q4kZyd549pHDQAAAGwmYy3POT7Jjd19c5IHzrbd0t1/2t37c2kfTHJyknT3pd19/Wz77iR3miVeAAAAAFbFWEmTOyTpqjo/yWVJLurufYvG/HSSPx449keTXNrdX128o6q2VdXOqtq553OfO9IxAwAAAJvIaD1NkqS7L6iq30/ypqo6t7v/nySpqhcl2ZvkTQvHV9WDk7w8yQ8scb7tSbYnydx3fmevZuwAAACwWrr1NJmCUZMmSdLdN1fVm5M8Kkmq6uwkT07yuO7+RuKjqk5OsiPJT3X3p0YJFgAAANg0xrzk8ClVdf/Z12cmubKqnpjkBUl+pLu/tH9gVR2X5N1Jzu/uv17zSAEAAIBNZ8ykyd4kF1XV5UlOSvK6JK9Jcpck762qXVX12tnY85LcL8mLZ9t3VdU9R4kaAAAA2BTGXJ5zQ3efvmjb/YYGdvfLkrxs9UMCAACA8elpMg1jVpoAAAAATNYolSbdfU2SxVUmAAAAAJOh0gQAAABggKQJAAAAwIAxG8ECAAAAAzSCnQaVJgAAAAADJE0AAACAyauqb6+q91bV387+vdsS455YVVdW1dVV9cIF259eVbural9VzS1nTkkTAAAAYD14YZI/7+7Tkvz57P7tVNVRSX4nyZOSPCjJs6rqQbPdH0/ytCR/udwJN25PkzvfOZlbVuIIVs8JJ4wdASt17LFrN9ett67dXGv5uDhsv/or+8YOAQAYmZ4mg56S5DGzr9+Q5JIkL1g05hFJru7uTydJVb1ldtwnuvuK2bZlT6jSBAAAAFgPju/uG5Jk9u89B8bcK8m1C+5fN9t2SDZupQkAAAAwNfeoqp0L7m/v7u3771TVnyUZKtl/0TLPP1RG0iuI73YkTQAAAIC1clN3L9lLo7sfv9S+qvo/VXVid99QVScm+aeBYdclOWXB/ZOTXH+owUqaAAAAwATpafJN3pnk7CS/Mfv3ooExH05yWlXdJ8k/Jnlmkp841An1NAEAAADWg99I8oSq+tskT5jdT1WdVFUXJ0l3701yXpL3JLkiydu6e/ds3FlVdV2SRyV5d1W952ATqjQBAAAAJq+7P5PkcQPbr0/yQwvuX5zk4oFxO5LsWMmcKk0AAAAABqg0AQAAgInp1tNkClSaAAAAAAyQNAEAAAAYIGkCAAAAMEDSBAAAAGCARrAAAAAwMRrBTsOGqjSpqm1VtbOqdu7Zs2fscAAAAIB1bEMlTbp7e3fPdffcli1bxg4HAAAAWMc2VNIEAAAA4EjR0wQAAAAmRk+TaVBpAgAAADBA0gQAAABggKQJAAAAwAA9TQAAAGBi9DSZBpUmAAAAAAMkTQAAAAAGSJoAAAAADNDTBAAAACZIT5PxqTQBAAAAGKDSBGAsxx47dgQAwCZw/Y1r97fyk07Yt2ZzwVpQaQIAAAAwQNIEAAAAYIDlOQAAADAx3RrBToFKEwAAAIABkiYAAAAAAyRNAAAAAAboaQIAAAATo6fJNKg0AQAAABggaQIAAAAwYLSkSVWdV1VXVdXuqrpgtu2VVfXJqrqsqnZU1XGz7Xevqr+oqlur6jVjxQwAAABsHqP0NKmqo5O8NMlpSW5Jcm1VvSLJe5Oc3917q+rlSc5P8oIkX0ny4iSnz24AAACwYelpMg1jVZocn+TG7r45yQNn227p7j/t7v0viw8mOTlJuvuL3f1XmU+eAAAAAKy6sZImd0jSVXV+ksuSXNTd+xaN+ekkf7zmkQEAAABk5Eaw3X1Bki1JtlbVufu3V9WLkuxN8qaVnK+qtlXVzqrauWfPniMbLAAAALCpjNLTZKHuvrmq3pzkUUlSVWcneXKSx3V3r/Bc25NsT5K5ubkVHQsAAABToafJNIxZaXJKVd1/9vWZSa6sqidmvvHrj3T3l8YLDQAAANjsxqw02Zvkoqram+TqzCdLdiU5Osl7qypJPtjdz0mSqromyV2T3LGqnprkB7r7E2sfNgAAALAZjJk0uaG7F18++H5LDe7urasbDgAAAMA/G7URLAAAAMBUjVJp0t3XJFlcZQIAAABEI9ipUGkCAAAAMEDSBAAAAGCApAkAAADAgDGvngMAAAAsQU+T8ak0AQAAABggaQIAAAAwQNIEAAAAYICeJgAAABvYSSfsGzsEDkG3niZToNIEAAAAYICkCQAAAMAASRMAAACAAXqaAAAAwMToaTINKk0AAAAABkiaAAAAAAyQNAEAAAAYIGkCAAAAMEAjWAAAAJgYjWCnQaUJAAAAwABJEwAAAIABkiYAAAAAAzZUT5Oq2pZkW5KceuqpI0cDAAAAh0ZPk2nYUJUm3b29u+e6e27Lli1jhwMAAACsYxsqaQIAAABwpEiaAAAAAAzYUD1NAAAAYKPQ02R8Kk0AAAAABkiaAAAAAAyQNAEAAAAYoKcJAAAATEy3niZToNIEAAAAYICkCQAAAMAASRMAAACAAZImAAAAAAM0ggUAAICJ0Qh2GjZs0uTrX0+uv3FtCmlOOmHfmswDAAAArB3LcwAAAAAGSJoAAAAADNiwy3MAAABgvdLTZBpUmgAAAAAMkDQBAAAAGCBpAgAAADBATxMAAACYGD1NpkGlCQAAAMCA0ZImVXVeVV1VVbur6oLZtqfP7u+rqrkFYx9RVbtmt49V1VljxQ0AAABsDqMsz6mqo5O8NMlpSW5Jcm1VvSLJx5M8LcnvLzrk40nmuntvVZ2Y5GNV9T+7W7ESAAAAsCrG6mlyfJIbu/vmqnrwbNst3f3ZJKmq2w3u7i8tuHunJL0mUQIAAMBI9DQZ31jLc+6QpKvq/CSXJbmou/cd6ICqOrOqdie5PMlzVJkAAAAAq2nURrDdfUGSLUm2VtW5Bxn7N9394CQPT3J+Vd1p8Ziq2lZVO6tq52c+s2d1ggYAAAA2hdGvntPdNyd5c5KHLXP8FUm+mOT0gX3bu3uuu+fufvctRzZQAAAAYFMZM2lySlXdf/b1mUmuXGpgVd2nqr5l9vW9kzwgyTWrHiEAAACwaY3VCDZJ9ia5qKr2Jrk6yQtmlxJ+deaX7Ly7qnZ19w8m+b4kL6yqryfZl+TnuvumsQIHAACA1dStEewUjJk0uaG7Fy+x2TG73U53vzHJG9ckKgAAAIBMoKcJAAAAwBSNUmnS3ddkoJErAAAAwFSMuTwHAAAAGKCnyTRYngMAAAAwQNIEAAAAYICkCQAAAMAAPU0AAABgYvQ0mQaVJgAAAAADJE0AAAAABmzY5Tlf/nLy8Y+vzVwnnbA287AOffKTazfXAx+4dnNxZNx449rNdYI3KgAAWKkNmzQBAACA9UpPk2mwPAcAAABggKQJAAAAwABJEwAAAIABkiYAAAAAAzSCBQAAgAnSCHZ8Kk0AAAAABkiaAAAAAAxYdtKkqk6oqrdU1aeq6hNVdXFV3b+qvlxVl1bVFVX1oao6e8Ex51TVnqraVVWfrKrnL3Hux1TVuxZtu7Cqfmz29Zuq6sqq+nhV/UFVfeuhPmAAAACA5VhWT5OqqiQ7kryhu58523ZGkuOTfKq7Hzrb9h1J3lFVd+ju188Of2t3n1dVd09yZVW9vbuvXWGcb0ryb2Zf/1GSn0nyeys8BwAAAKwL3XqaTMFyK00em+Tr3f3a/Ru6e1eS2yU/uvvTSX4+yXMXn6C7P5Pk6iQnrjTI7r64Z5J8KMnJKz0HAAAAwEos9+o5pyf5yDLHfjTJAxdvrKpTk9wpyWVLHPfoqtq14P6pSRYv2fnWJD+Z5HnLjAUAAADgkKzGJYdr0f1nVNVjkzwgybnd/ZUljnt/dz/5GyepunBgzO8m+cvufv/gxFXbkmxLknve89SVxg0AAADwDctdnrM7yfcsc+xDk1yx4P5bu/vBSR6d5LdmDWXPmjWH3VVVc8s5aVX9WpItmV/+M6i7t3f3XHfPfdu3bVlmuAAAADA93fs23G29WW7S5H1Jjq6qc/dvqKqHJ7n3wkFVtTXJbyZ59eITdPcHkrwxyfO6e0d3nzG77TzY5FX1M0l+MMmzej1+lwEAAIB1Z1lJk1kD1rOSPGF2yeHdSV6S5Pok991/yeEkb0vy6gVXzlns5UmeXVV3WWGcr838lXo+MKtO+dUVHg8AAACwIsvuadLd1yf58YFdxxzgmAuTXLjoHCcMjLskySWLtp2z4OvV6L0CAAAAsCTJCAAAAJicTnLb2EFsesvtaQIAAACwqUiaAAAAAAyQNAEAAAAYoKcJAAAATJKeJmNTaQIAAAAwQNIEAAAAYICkCQAAAMAASRMAAACAARu2Eexd75r8wOP3jR0Gm90DHzh2BEzZCSeMHQEAAJPV0Qh2fCpNAAAAAAZImgAAAAAMkDQBAAAAGLBhe5oAAADA+qZP59hUmgAAAAAMkDQBAAAAGCBpAgAAADBATxMAAACYnE5y29hBbHoqTQAAAAAGSJoAAAAADJA0AQAAABigpwkAAABMjp4mU7ChKk2qaltV7ayqnXv27Bk7HAAAAOAIqapvr6r3VtXfzv692xLjnlhVV1bV1VX1wgXbX1lVn6yqy6pqR1Udd7A5N1TSpLu3d/dcd89t2bJl7HAAAACAI+eFSf68u09L8uez+7dTVUcl+Z0kT0ryoCTPqqoHzXa/N8np3f2QJFclOf9gE26opAkAAACwYT0lyRtmX78hyVMHxjwiydXd/enu/lqSt8yOS3f/aXfvnY37YJKTDzahpAkAAACwVu6xv63G7LZtBcce3903JMns33sOjLlXkmsX3L9utm2xn07yxwebUCNYAAAAmKQN2Qj2pu6eW2pnVf1ZkhMGdr1omeevgW29aI4XJdmb5E0HO5mkCQAAADAJ3f34pfZV1f+pqhO7+4aqOjHJPw0Muy7JKQvun5zk+gXnODvJk5M8rrs7B2F5DgAAALAevDPJ2bOvz05y0cCYDyc5raruU1V3TPLM2XGpqicmeUGSH+nuLy1nQkkTAAAAYD34jSRPqKq/TfKE2f1U1UlVdXGSzBq9npfkPUmuSPK27t49O/41Se6S5L1VtauqXnuwCS3PAQAAgMnpbNCeJoesuz+T5HED269P8kML7l+c5OKBcfdb6ZwqTQAAAAAGSJoAAAAADJA0AQAAABigpwkAAABM0r6xA9j0VJoAAAAADNiwlSZf/GLyNx9em5zQmQ+X/QMAAICNRqUJAAAAwIANW2kCAAAA61cnuW3sIDY9lSYAAAAAAyRNAAAAAAZImgAAAAAMkDQBAAAAGKARLAAAAEyORrBToNIEAAAAYMBoSZOqOq+qrqqq3VV1wWzb02f391XV3IKxT6iqj1TV5bN/v3+suAEAAIDNYZTlOVV1dJKXJjktyS1Jrq2qVyT5eJKnJfn9RYfclOSHu/v6qjo9yXuS3GsNQwYAAAA2mbF6mhyf5MbuvrmqHjzbdkt3fzZJqup2g7v70gV3dye5U1Ud3d1fXZNoAQAAYM3paTK2sZbn3CFJV9X5SS5LclF371vmsT+a5FIJEwAAAGA1jdoItrsvSLIlydaqOvdg42dVKS9P8rNL7N9WVTuraufnPrfnyAYLAAAAbCqjXz2nu29O8uYkDzvQuKo6OcmOJD/V3Z9a4lzbu3uuu+eOO27LkQ8WAAAA2DTG6mmSJKdU1f27+6okZya5cqmBVXVckncnOb+7/3qN4gMAAICRdPQ0Gd+YlSZ7k1xUVZcnOSnJ66rqrKq6Lsmjkry7qt4zG3tekvsleXFV7Zrd7jlO2AAAAMBmMGalyQ3dffqibTtmt9vp7pcledmaRAUAAACQCfQ0AQAAAJiiUSpNuvuaJIurTAAAAIBv2Dd2AJueShMAAACAAZImAAAAAAMkTQAAAAAGSJoAAAAADBjzksMAAADAoE5y29hBbHoqTQAAAAAGSJoAAAAADNiwy3PufOfkzIe7pjUATMWnr1m7v9V8x1a/AwAAh2/DJk0AAABgfdPTZGyW5wAAAAAMkDQBAAAAGCBpAgAAADBATxMAAACYnI6eJuNTaQIAAAAwQNIEAAAAYICkCQAAAMAAPU0AAABgcvQ0mQKVJgAAAAADJE0AAAAABkiaAAAAAAzYUEmTqtpWVTuraueePXvGDgcAAABYxzZUI9ju3p5ke5LMzc31yOEAAADAYdg3dgCb3oaqNAEAAAA4UiRNAAAAAAZImgAAAAAM2FA9TQAAAGBj6CS3jR3EpqfSBAAAAGCApAkAAADAAEkTAAAAgAF6mgAAAMAk6WkyNpUmAAAAAAMkTQAAAAAGSJoAAAAADNDTBAAAACano6fJ+CRNAIA1sXfv2BEAAKyM5TkAAAAAAyRNAAAAAAZImgAAAAAM0NMEAAAAJkkj2LGpNAEAAAAYIGkCAAAAMEDSBAAAAGCAniYAAAAwOZ1k39hBbHoqTQAAAAAGjJY0qarzquqqqtpdVRfMtj19dn9fVc0tGHv3qvqLqrq1ql4zVswAAADA5jHK8pyqOjrJS5OcluSWJNdW1SuSfDzJ05L8/qJDvpLkxUlOn90AAAAAVtVYPU2OT3Jjd99cVQ+ebbuluz+bJFV1u8Hd/cUkf1VV91vbMAEAAGAst40dwKY31vKcOyTpqjo/yWVJLuruw+5wU1XbqmpnVe3cs2fPYQcJAAAAbF6jNoLt7guSbEmytarOPQLn297dc909t2XLlsMPEAAAANi0Rr96TnffnOTNSR42diwAAAAA+43V0yRJTqmq+3f3VUnOTHLliLEAAADAhHT0NBnfmJUme5NcVFWXJzkpyeuq6qyqui7Jo5K8u6res39wVV2T5D8nOaeqrquqB40RNAAAALA5jFlpckN3L7588I7Z7Zt099ZVjwgAAABgZvSeJgAAAABTNEqlSXdfk2RxlQkAAADAZIy5PAcAAAAYpBHsFFieAwAAADBA0gQAAABggKQJAAAAwAA9TQAAAGCS9o0dwKan0gQAAABggEoTAGBN3P9+/lrGBFxzzdrNtXXr2s0FwKpQaQIAAAAwQKUJAAAATE4nuW3sIDY9lSYAAAAAAyRNAAAAAAZImgAAAAAM0NMEAAAAJklPk7GpNAEAAAAYIGkCAAAAMEDSBAAAAGDAspMmVXVCVb2lqj5VVZ+oqour6v5V9eWqurSqrqiqD1XV2QuOOaeq9lTVrqr6ZFU9f4lzP6aq3rVo24VV9WOzr8+rqqurqqvqHof6YAEAAACWa1mNYKuqkuxI8obufuZs2xlJjk/yqe5+6GzbdyR5R1XdobtfPzv8rd19XlXdPcmVVfX27r52hXH+dZJ3JblkhccBAADAOtTRCHZ8y600eWySr3f3a/dv6O5dSW6X/OjuTyf5+STPXXyC7v5MkquTnLjSILv70u6+ZqXHAQAAAByq5V5y+PQkH1nm2I8meeDijVV1apI7JblsieMeXVW7Ftw/NfPVJctWVduSbEuSU089dSWHAgAAANzOajSCrUX3n1FVu5N8Oslvd/dXljju/d19xv5bkneudOLu3t7dc909t2XLlpUeDgAAAPANy6002Z3kx5Y59qFJrlhwf39Pk0cleXdV/XGSRyX5tdn+n1nmeQEAAGAT0dNkbMutNHlfkqOr6tz9G6rq4UnuvXBQVW1N8ptJXr34BN39gSRvTPK87t6xoKpk56EGDwAAALBalpU06e5OclaSJ8wuObw7yUuSXJ/kvvsvOZzkbUleveDKOYu9PMmzq+ouKwmyqp5bVdclOTnJZVX1upUcDwAAALBSy12ek+6+PsmPD+w65gDHXJjkwkXnOGFg3CVZdDnh7j5nwdevSvKq5cYKAAAAcLiWnTQBAAAA1kon2Td2EJvealw9BwAAAGDdkzQBAAAAGCBpAgAAADBATxMAAACYnE5y29hBbHoqTQAAAAAGSJoAAAAADJA0AQAAABiwYXuaXP+Rj+QlRx21JnO95DbrzA7X33x47fJ3Zz587a51/qd/tnaP6/TT12yqnHSC68UfETt3rt1cc3NrNxeH7R+uW7v3jlPf8oo1myuPeczazeU1z1K2bh07Aqbs1lvXbq5jj127udbQWv5eD2thwyZNAAAAYH3zB/qxSQMCAAAADJA0AQAAABggaQIAAAAwQE8TAAAAmJyOnibjU2kCAAAAMEDSBAAAAGCApAkAAADAAD1NAAAAYJL0NBnbQZMmVXVbkssXbHpqd1+zaMwjk/x2kqNnt7cm+fskz5sNeVCSKzP/jP9Jd7+wqp6f5IIkx3f3LbPzPCbJRUk+neSYJO9K8oYkb5yd59Qkt8xuN3X341f0aAEAAACWaTmVJl/u7jMOMuYNSX68uz9WVUcleUB3fyLJ65Okqq5J8tjuvmnBMc9K8uEkZyW5cMH293f3k6vqmCSXJtmxf/6qujDJu7r77cuIGwAAAOCQHameJvdMckOSdPdts4TJkqrqvkmOTfIrmU+efJPu/nKSXUnudYRiBAAAAFi25VSaHFNVu2Zf/113nzUw5r8kubKqLknyJ0ne0N1fOcA5n5XkzUnen+QBVXXP7v6nhQOq6m5JTkvyl8uIcf8x25JsS5JvW+5BAAAAMDmdZN/YQWx6y6k0+XJ3nzG7DSVM0t2/nmQuyZ8m+YnMJ04O5JlJ3tLd+5K8I8nTF+x7dFVdluTGzC/FuXEZMe6PY3t3z3X33P9nuQcBAAAADDik5TlV9fqq2lVVF+/f1t2f6u7fS/K4JN9dVXdf4tiHZL6C5L2zXifPzO2X6Ly/ux+S5LuS/LuqOuNQYgQAAAA4HIeUNOnuZ88qT34oSarqX1VVzXaflvmr5HxuicOfleQl3b11djspyb2q6t6L5rgq81fXecGhxAgAAABwOI5UI9ifzHxPk12Zvzzwv+7upS4o/cwkOxZt2zHbvthrk/yLqrrPEYoTAAAAYFkO2gi2u49dxpihhMfC/VsXfP1NCZDu/vkFdy9ZsP3LWXD1nO4+52CxAAAAwMawVC0Ca+VIVZoAAAAAbCiSJgAAAAADJE0AAAAABhy0pwkAAACw1jp6moxPpQkAAADAAEkTAAAAgAGSJgAAAAAD9DQBAACAydHTZAo2bNLkhuSmlyZ/fwiH3iPJTSs54KVHHXUI0xzaXIfBXOYyl7nMZa71Op+5zGUuc5nLXEPufaQDgcU2bNKku7ccynFVtbO75450POYyl7nMZS5zbZS51no+c5nLXOYyl7kgSarq25O8NcnWJNck+fHu/uzAuCcm+e0kRyV5XXf/xmz7f0rylCT7kvxTknO6+/oDzamnCQAAALAevDDJn3f3aUn+fHb/dqrqqCS/k+RJSR6U5FlV9aDZ7ld290O6+4wk70ryqwebcMNWmgAAAMD6pqfJIk9J8pjZ129IckmSFywa84gkV3f3p5Okqt4yO+4T3f35BePunPnGMQckafLNtpvLXOYyl7nMZa5JzWcuc5nLXOYyFxvHPapq54L727t7ua+B47v7hiTp7huq6p4DY+6V5NoF969Lcub+O1X1/0vyU0luSfLYg01Y3QdNrAAAAABrqOrkTs4bO4xVcP5HDtTDpqr+LMkJA7telOQN3X3cgrGf7e67LTr+6Ul+sLt/Znb/J5M8orv/v4vGnZ/kTt39aweKVqUJAAAAMAnd/fil9lXV/6mqE2dVJidmvpnrYtclOWXB/ZOTDDV7/aMk705ywKTJhmsEW1WPqaq/r6pLZrdvW7DvP1bVB6rqr6rqJVX1vNmYa6rqY7Ov/2VVPbqqPldVd5wdt3X25PxFVf1lVX33gvPfUlW7qurG2b4dVfU/q+qDVfVnVfWOqrrf7Dwvmc3zv6rqdQOxv6SqHr/g/l/N/v3pqvq7qvr/H+SxV1X999ncb6iqb5093lv3xzAbd9Hs8S35YpyS5TyuqrpLVf357Dl4V1XdZey4k6SqHjd7vlfrtfFrs+/FB6rqcQeIY7mvjb+cxfDnNVzqNikDj+s+VfX+2eP4o5pvArURXvPf9Lim+prfjJb78zUb+7Cq6qo64B8t1uC94/zZuT9cVWfNth3o8/PKBdt/d7btmqr6twuOfdns61uq6n01/5n5stn3Y4zP5kuq6k9W6fu45HM8cOyyXh+1/t+n1s1nc7KqP2P3qYHPobENPF+DcW6A1+E3Pa4pvw6XsoL3jWX/3raKr/l7VNX/no1/Z1Uds2Dfqn2uHPp3lw3gnUnOnn19dpKLBsZ8OMlps/eEOyZ55uy4VNVpC8b9SJJPHmzCDZc0mXljdz9mdrslSarqrkme3N2P6u7vS/Lb3f3b3f2YJBcm+YXZ+P+V5GlJ3p5k4X9C39vdj03yy0l+cv/5k1yR+bVQp3X3v8h8E5o7Jvk3swzZi5P8QVXV7Dy/0N3/chbT6ct8PO9M8oRljPuuJJ/v7kdm/lrn90jy1NljWeg5Sf7rMueeguU8rq9n/nv+LzL/g3POGsf4TarqHpnvxvzkVXxt/GF3PyrznaEPlCFd7mvjcbMY/jD//GY0ZYsf11eS/PDs+/13SX5oNm69v+aHHtfkXvOb2HJ/vpLk3yf56IFOtkbvHb85O/djc/vmad/0+TmzZ8H2n9u/Lcm/GTj35d39/bPPzK/PHvPguVfxs/nyJD+W5JhV+j7uzdLP8WI+myf2PrXKP2Ofy/Dn0Nh8Xk7sdXgQR/T3tlV+zX82yffNxn8kyZMX7V/Nz5VNoDPfCHaj3Q7LbyR5QlX9beb/j7z/UsInVdXFSdLdezO/ruk9mf//+tu6e/f+46vq41V1WZIfSPK8g024mZbn3JbkhKr67u7+2NC1nBe4f+Y/NH4lyR8v2nfcovvfnuQV3f2FJOnuq6rqhv07u3t3Vf1dklMXHfdtWabuvqmqjl3G0Lsl+cequlOSeyb5THd/7Z/f/75xvhsWb5u4gz6u7v5Kkv3f972ZRpvpf5X5D4rVfG383ezLr+bAnZ+X+9r4+uzLY5LszvQNPq7Zvm+8DjbKa362b2+S2yb6ml+xqjo686WRp2T+P8nf093/dtSgVm5ZP19V9eDMNyW770HOtxbvHQt/1j++3OMW+WqSv66qJ2T+l9ghF2T+cn67lti/Wp/NySp+H7u7k/yfZb6v+GyeN6X3qdV8bSx8DU/pMfu8XLBt7cNcsSP9e9tqvuYXfj+PSvK3BzvmAFbyufJfD2Me1rHu/kxu/weU/duvz4JEdXdfnOTigXE/utI5N2qlyU/OSr1ev39Dd38x81mkV1bVVVX11KEDq+phSXZ297VJjq+q/d+jJ1TVh5P8bpJXLTjkjvnnN+KlXJ9/bmTzW1V1TZKvdvfQL6q/tb9ULcPNbw5k/zvpJzOf9d0oXX6X/bhmyaVtmf9P2NhOzNq9Nl6S5PcPMM+yvodVdWpVfSDzmdnLDxL7FAw+rqo6Kcnjk/zpSHEdrmU/rom95g/Fj2b+L1OPSvIfk/yvccM5JMt9j3p+ktcs43xr8t4xK4e+LMn7Foz9ps/PmS0Lyqh/dcH230nyc1nC7D8v+8uo1/KzOTny38dD5bN5eu9Tq/7amODnkM/L6b0OD+RI/962qq/5qnpEzV8J5fszX+Gz0Gp+rsCa2KhJkzfOynN/acEviunu93T3D2T+l/MXL3Hs05I8rqr+JMkDkvxfs+3v7e6HJ3ljkoVlal9LctJB4rlX/vmN6hcyX3J3z6q6U1Xt/2X2ifv3LygvvnF5D/f2untr5n8JPvdQjp+qgz2uWUnhHyR5UXd/bu0iW9INWYPXRs33I7h7dx/0l4CDfQ+7+x96frnPr2X+P7DrwsLHNatceEOSc2eleevWwR7XBF/zh+LeSXbN/lK1O/NllOvSgX6+an797C3dfdMyTrUm7x2zcugHZr4T/X6Dn5+5fRn1ry84xw1JvjA7zzep+XXE+/9auJafzcmR/z4eFp/Nk3qfWtXXxpQ/h3xeTup1eFBH8Pe2VX3Nd/eHev5KKDuS/PSi3av5uQJrYqMmTZIk3f2NH8aqOqaq7jXb9fks/cP28O7+vu5+YpKzZreFXpnkFxfcvznJv6lZU6mab6J04v6dVfWdmf9PwTeuEz0rjfvvSc7p7v2/zP7JoT/S29mfIb42ydFH6JxTsJzH9etJ/rq737fE/rV2cVb5tVFVD8n8us7lrO084Pew5puM7f/LxueTfHkZ55yCxY9re5Lf7e5PjBfSEbGcxzW11/yhuC7JSbPKgdOzfv96dLD3qO9K8vDZf/ofkuS1BzjXWrx37I/xy5n/eb+dhZ+fB4hzv1clee4S+34p82XUg+dexc/mZA2+jyvgs3la71Or/dqY6ueQz8tpvQ4P5kj+3rZqr/lZEmO/JeNYzc+VjW/fBrytL5upp8nRSf5w9oviHTKwDq6qHpAFlyzq7k9W1aOSvHrBts9V1bVV9bDu/mjm10b+pyTvmr1x3Zz56pM3VdUXMp8p/bfd3XX7dYh/lPm/qB7oF+f9cT05yQuT3Leq/vtB1mE9rqr+9yyGZ1bV25J8X+a7B7+iuy+qqldlvknTj1TVa7t7+8FimIADPq7Md0h+QZL/Pau8eGt3/9544c5/OFTVqr42Mv8fheOTvKeqbunupxxg7MG+h5cmeWNV7cv8mtJzVvBwx7TwcZ2f+V+M7l1Vz8t8U8kdG+A1/02PK8nfZGKv+UP0jiSvy3wjrwuTvCLJT4wZ0CE62HvvOzL/WDP7K9tzljrRGr13/HZVPTDzS0xfuYzxWxb8dfAfu/tfL4h3Z1XdvGDsd1XV+zJfXv7XSV6e5HuXOO9qfTavxvfxFQse59MzvyTydp+vSzzGxGfzpN6nVvm18eLMV0bd7nNoFR/OSvi8nNDrcBmO2O9tq/yaf9Esnn2z8/7kMh/f4X6uwJqp7o2ytJaqekySx3f3r4wcyhG1UR/XWtqo30OPiynwfHEgG/X1sVEf10a1UZ8vj4uNrupefYC/s6xjv/qR2ZKudWFDL88BAAAAOFQqTQAAAGBiqk7q+Ys+bTQvVWkCAAAAsN5JmgAAAAAMkDQBAAAAGLCZLjkMAAAA68htYwew6ak0AQAAABggaQIAAAAwQNIEAAAAYICkCQAAAMAAjWABAABgcjoawY5PpQkAAADAAEkTAAAAgAGSJgAAAAAD9DQBAACASdo3dgCbnkoTAAAAgAGSJgAAAP9vO3dsHFcMREEQlwODYsgKSincga6MMeSwdqt+dwSwpxYPIIgmAAAAAMGmCQAAAKxzzznv6Uc8nksTAAAAgCCaAAAAAATRBAAAACDYNAEAAIB1bJps4NIEAAAAIIgmAAAAAEE0AQAAAAiiCQAAAEAwBAsAAAArGYKd5tIEAAAAIIgmAAAAAEE0AQAAAAg2TQAAAGCde2yazHNpAgAAABBEEwAAAIAgmgAAAAAEmyYAAACw0mf6AY/n0gQAAAAgiCYAAAAAQTQBAAAACDZNAAAAYJ17znlPP+LxXJoAAAAABNEEAAAAIIgmAAAAAEE0AQAAAAiGYAEAAGAlQ7DTXJoAAAAABNEEAAAAIIgmAAAAAMGmCQAAAKxzj02TeS5NAAAAAIJoAgAAABBEEwAAAIBg0wQAAADWsWmygUsTAAAAgCCaAAAAAATRBAAAACDYNAEAAICVbJpMc2kCAAAAEEQTAAAAgCCaAAAAAATRBAAAACAYggUAAIB17jnnM/2Ix3NpAgAAABBEEwAAAIAgmgAAAAAEmyYAAACw0nv6AY/n0gQAAAAgiCYAAAAAQTQBAAAACDZNAAAAYJ17bJrMc2kCAAAAEEQTAAAAgCCaAAAAAASbJgAAALCOTZMNXJoAAAAABNEEAAAAIIgmAAAAAEE0AQAAAAiGYAEAAGClz/QDHs+lCQAAAEAQTQAAAACCaAIAAAAQXvfe6TcAAAAA/3i9Xn/OOV/T7/gFf++939OP+F+iCQAAAEDwPQcAAAAgiCYAAAAAQTQBAAAACKIJAAAAQBBNAAAAAMIPtAaDWRQ67fcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAASHCAYAAABSwew0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xN5x/A8c+5N5tIjAghkhBZ9p4hYs+aVYqiimq1VdVWjZpVVa1qa5XWLLWq9hZ7NDRWECtkS2TvO87vj8utSJSqGv1936+XV+Q5z3nOc8690t5vvs/3UVRVRQghhBBCCCGEEEKIv6J51hMQQgghhBBCCCGEEM8/CSIJIYQQQgghhBBCiIeSIJIQQgghhBBCCCGEeCgJIgkhhBBCCCGEEEKIh5IgkhBCCCGEEEIIIYR4KAkiCSGEEEIIIYQQQoiHkiCSEEIIIYQQQgghhHgoCSIJIYQQQgghhBBCiIeSIJIQQggh/nMURTmpKMrZZz2PR6EoSmVFUfSKorR8StfrrChKrqIoFZ/G9YQQQgjx3yFBJCGEEEL8pyiKYgFUAv541nN5RF8Bh1VV3XVvo6IoRRRFMSqKsvP+ExRF8VIUJVRRlBxFUd74OxdTVXUDcBaY/k8mLYQQQoj/PxJEEkIIIcR/jR9gzQsQRFIUpQHQElMg6X41AQU4dd85HYETgAPQVFXVHx7j0t8AXRRFqfQY5wohhBDi/5QEkYQQQgjxX1P9ztfnPogEDANuA1sLOFbzztdTAIrJp8BvmDKJaqmqeuwxr7seyASGPub5QgghhPg/JEEkIYQQQvzX1LjzNeTeRkVRKiqKslhRlKg7NYGuKIoyUlEU5f4BFEWpoyjKVkVRUhVFSVIUZaGiKA6KomQqirLsSUzyzrK7zsAuVVV1BXSpdefrSUVRHDAFjyYAc4FAVVVjH/faqqqmAweBHo87hhBCCCH+/1g86wkIIYQQQjxh1YHrqqom321QFKUV8CsQBXwHJAEdgC+B4sAn9/RtC2wAbtw5ngQMBLYBtjy5DKdaQGFMS9MKUhNIwbQ07wRQDhigquriJ3T9o0BrRVF8VFW9+ITGFEIIIcR/mASRhBBCCPFfUx3Ye/cbRVE8MC3fOgW0VlU1886heYqiHAPeVxRliqqqmYqilAJ+BoKBVqqqZtwZYxkQfue8JxVE8rvz9er9BxRFKQx4AcnAsTtf/VVVDX5C1773upUACSIJIYQQ4qFkOZsQQggh/jPuBIwcybuUbSxgBwy6J4B0VxCmTB+3O99/CBQBXr8bQAK4k9V0d8x7x/4nnO58TSzgWHVM/59mAdgDC59wAAlMtZgASj7hcYUQQgjxHyVBJCGEEEL8l1S/8/UPAEVRNEAXYJ+qqpcK6H+3HlLGndpIPYFDf7G864aqqkl3xn5LUZQTiqJkK4oSlG9gRbFQFOUbRVESFUVJvlNXyfqeLup9c7jX3XpI7wJHgE8VRenwgDmhKIr2Tr2mDEVR0hVFSVMU5XdFUYYWVPPpvuuqDzguhBBCCJGHBJGEEEII8V9yt6j23SVnZYGiQOgD+lfGVPMoAnAGXICT93e6E4jxI+9Sthjgc+DrB4z9CdD0zjUqYlo2Nu2e4/F3vhYr4Ny7O7MdBbpiquX0s6IoVR5wLV9M9ZrKqqpaGCgFTAEmA5MecM7d68Y/4LgQQgghRB4SRBJCCCHEf0l1IF5V1ag739/Nssm9v6OiKK5AS+BXVVVVTEveAIwFjNsO0/KzkLsNqqquV1V1PRD3gLkMAqaoqhqtqmo8pp3VBtzJjgI4d+drxQLOrQWkAWGqqsYBnTD9f9smRVEKWn5WCwi/myWlqmqGqqq/AZ8C795zzXt53jcPIYQQQoi/JEEkIYQQQvyX1CBvtlAkph3Omt7bSVEUW2AZYODP7KAIQA8E3NfXGfj2zrePVFRbURRHwPW+/qcw1WtyvWesVKB+AXPzAULuBLdQVTUEeA3TDm0b7lsWB6Yg0qkCpnIeU00lxwKO1QfiHrDMTwghhBAiHwkiCSGEEOI/QVGU4piWr5kDN3eCMFOBWoqibL5TI+gjTBlF9YGeqqpeudNXB/x4p+9WRVGGKIoy/s54+jtDPurObPZ3vqbc05Z87zFVVQ2Ydo0LvC8oVB3Qct+yOlVV12HKZmoALLrvejUpOIjkCOjum8fd3d/8gTUPvxUhhBBCCBMJIgkhhBDiv+JuPaSQ+9q/xLTrmi8wG3gPU4CmlqqqG+/rOwKYc2esmUAzYABwCYhWVTXiEeeSduerwz1tjvcdA5iLqWbTvUWz79ZDyhcUUlV1ErAaeFVRlLFgLh5enYIDXAHA/jsBq3t1w7R8b/5f34YQQgghxJ+UO1nSQgghhBCiAIqiOGFaFvejqqpvFnD8PaCzqqoB97XfBEbcySBCUZRWwC9AcVVVjff02w4UUlXV/zHn54dp2VppVVVj72mviClY1kNV1R33nXMS005zXR/nmkIIIYT4/ySZSEIIIYQQgKIoloqiWNzXZgMsARRg1n3HLO4ctwA0iqLYKIpidU+XhcAYRVFc7gSiJgA/3RtAumMk0OBOkOlx1ARi7gaQFEUpqihKf+Ag8HUBAaTOQBXgo8e8nhBCCCH+T1k8vIsQQgghxP+FRsBCRVFWAjcx1VfqA7gDbxZQgHospt3P7soC9vNnYe7PgBKYsoQ0mOoPfXL/RVVVPc8/+3+yWoCzoijpmGo3pQLHgd6qqu4t4HobAKv724UQQgghHkaWswkhhBBCAIqi1Aa+AKpiqmWUDBwBvlRV9eAznJoQQgghxHNBgkhCCCGEEEIIIYQQ4qGkJpIQQgghhBBCCCGEeKgXtiZSiRIlVHd392c9DSGEEEIIIYQQQoj/jJMnTyaoqupU0LEXNojk7u5OcHDws56GEEIIIYQQQgghxH+Goig3HnRMlrMJIYQQQgghhBBCiIeSIJIQQgghhBBCCCGEeCgJIgkhhBBCCCGEEEKIh3phayIJIYQQQgghhBDivykrK4tr165hMBie9VT+s7RaLeXLl8fW1vaRz5EgkhBCCCGEEEIIIZ4r165do0SJEjg5OaHRyCKqJ81oNBIfH8+1a9eoVKnSI58nr4QQQgghhBBCCCGeKwaDQQJI/yKNRoOTk9PfzvSSV0MIIYQQQgghhBDPHQkg/bse5/nKKyKEEEIIIYQQQghxj8zMTKpWrYq3tzeenp6MGDEiX5/bt28TGBho7jN79mzzsYSEBNq0aYOHhwfly5dnz549ABw7dozq1avj5eVFYGAgSUlJ5nOOHz9O9erV8fT0xMvLi8zMTACys7Pp1asX7u7ueHh4sGTJEvM5P/74IxUqVMDT05NOnToBEBYWRqVKlfDx8cHT05MZM2Y8seciNZGEEEIIIYQQQgjxXNPlPvkC25ZW2gces7Gx4eDBgzg4OJCTk0OdOnXYu3cvgYGB5j5ffvklPj4+7N27l+joaHx9fRk8eDA2NjYMGTKE1q1bs337drKzs0lPTwdg0KBBzJgxg7Zt2/LNN98wceJEZs2ahU6no2/fvixdupT69esTFxeHlZUVAKNHj6ZkyZKEh4djMBi4desWAOfOnWPGjBkcO3YMJycnoqKiAChXrhzBwcHY2tqSkpKCn58fPXr0wN3d/R8/MwkiCSGEEEIIIYQQQtxDo9Hg4OAAQG5uLnq9HkVR8vRRFIW0tDSMRiOpqak4ODhgaWlJUlISx44dY82aNYApIGVjYwNAeHg4rVu3BqBDhw60atWKWbNmsWHDBvz8/Khfvz4Azs7O5uusXLmSsLAwwLSjWunSpQH4/vvvGTx4ME5OTgCUKVPGfL27srOzMRqNT+65PLGRhBBCCCGEEEIIIf4j9Ho9Pj4+ODs7ExAQQLNmzfIc//DDDwkLC8PZ2ZmaNWsyY8YMtFotFy9epHjx4rz88sv4+vrSs2dPUlNTAahYsSKrVq0CYNmyZcTGxgJw8eJFFEXB398fPz8/xo0bB5iWxQGMHDkSPz8/2rZtS2RkJABXrlwhLCyMmjVrUq1aNdatW2ee29WrV/Hy8sLNzY133333iWQhgQSRhBBCCCGEEEIIIfKxsLDg4sWL3Lx5k5MnTxIcHJzn+IYNG6hSpQpxcXH8/vvvvP/++yQlJaHX6wkNDeWtt97iwoULFCpUiPHjxwPw008/MWfOHCpVqkR6ejqWlpaAKWB14sQJVq9ezfHjx9m0aRMbN25Ep9MRFxdH48aNCQ0NpV69egwfPtx8ztWrVzl69Ci//PILw4YNMwedKlSoQFhYGBcvXuTnn382B57+KQkiCSGEEEIIIYQQQjxAiRIl8Pf3Z9OmTXnaFy9eTI8ePdBoNFSqVAlXV1fOnDmDu7s7zs7O5sylnj17EhISAkD16tU5dOgQ58+f57XXXqNcuXIAuLq60qBBA0qXLo29vT0tW7YkODgYZ2dnbGxs6NOnDwB9+/bl7NmzALi4uNCxY0esra3x8fGhfPnyhIaG5pmju7s7Xl5e7N69+4k8CwkiCSGEEEIIIYQQQtwjOjranNWTkZFBUFAQvr6+efqULVuWnTt3AhAZGcm1a9fw8vLC1dWV0qVLc+bMGQB27tyJj48PgLn4tcFg4NNPP+X1118H4KWXXiI0NJS0tDR0Oh2HDx+mUqVKaDQamjdvztatWwHYunUrFStWBKBr164EBQUBEBMTw/Xr1/H29ubatWtkZGQAEB8fT3BwMH5+fk/kuUhhbSGEEEIIIYQQQoh7RERE0L9/fwwGA6qq0rlzZ1555RVmzJgBwKhRo5gyZQp9+vTBy8sLVVWZOHGiuej1t99+S+/evcnNzcXNzY2ff/4ZMC1nW7hwIQDt27c3L01zcnJi+PDh1KhRA0VRaNGiBT179gTgq6++onfv3owcOZLixYuzdOlSALp06cL27dupUKECWq2WKVOm4OzszIYNG/jwww9RFAVVVRk+fDh169Z9Is9FUVX1iQz0tNWuXVu9fz2iEEIIIYQQQgghXnxnzpyhatWq5u91uYYnfg1LK+0TH/NFc/9zBlAU5aSqqrUL6i+ZSEIIIYQQQgghhHiuScDn+SA1kYQQQgghhBBCCCHEQ0kQSQghhBBCCCGEEEI8lASRhBBCCCGEEEIIIcRDSRBJCCGEEEIIIYQQQjyUBJGEEEIIIYQQQgghxENJEEkIIYQQQgghhBCiAHq9Hl9fX5o1a1bg8a1bt+Lj44Onpyd16tQxt69btw4PDw/KlSvHJ598Ym4fOnQoHh4eeHl50apVKxISEszHPvnkE8qVK4eHhwfr1683t2dnZ9OrVy/c3d3x8PBgyZIl/8KdPhqLZ3ZlIYQQQgghhBBCiEeQmpL1xMcs4mD70D5TpkyhYsWKpKWl5TuWkJDA8OHD2b59OxUrViQqKgowBZ7ee+89du7ciYeHB9WqVaN79+7UrFmT1q1b8+2332JpacmwYcMYP348c+bM4dSpU6xbt45Lly5x48YNWrZsSadOnbCwsGD06NGULFmS8PBwDAYDt27deuLP4lFJJpIQQgghhBBCCCHEfa5du8aOHTt44403Cjy+aNEiOnToQMWKFQEoU6YMAPv378fd3R1fX19sbGzo1q0ba9euBaBLly5YWloC0KBBA3Pgae3atXTr1g1bW1t8fHxwd3dn//79AKxcuZLJkycDoNVqKV269L930w8hQSQhhBBCCCGEEEKI+wwbNowZM2ag1WoLPB4WFkZSUhJ169alUqVKfP/99wBERETg4uJi7ufq6moOFt3rp59+ok2bNgBERUXh6upqPubi4kJERIR5udvIkSPx8/Ojbdu2REZGPrF7/LskiCSEEEIIIYQQQghxj1WrVuHk5ETjxo0f2Eev13P69Gl2797N7t27+eKLLzh79iyqqubrqyhKnu8//vhjLCwsGDJkCMADz9HpdMTFxdG4cWNCQ0OpV68ew4cP/4d39/ikJpIQQgghhBBCCCHEPQ4dOsTOnTspU6YMOTk5pKen07lzZzZs2GDuU6ZMGUqUKEGRIkUoUqQI9evXJzg4mHLlyhEdHW3ud39m0nfffcf27ds5ePAgGo0pt6ds2bJERESY+0RHR1O2bFmcnZ2xsbGhT58+APTt25fly5f/y3f/YJKJJIQQQgghhBBCCHGP7777jri4OKKioli6dCkNGjTIE0AC6NGjB0eOHEGn05GWlsapU6eoUqUKTZo04fr161y8eJHs7GzWrVtHt27dANOubV9//TVbt27F3t7ePFa3bt1Yt24dWVlZXLx4kevXr9O0aVM0Gg3Nmzdn69atgGk3uLs1mJ4FyUQSQgghhBBCCCGEeAQzZswAYNSoUdSoUYOWLVvi4+ODRqOhX79+1K5dG4Cvv/6aNm3aYDAYePXVV6lVqxYAI0aMIDc3l8DAQABq1arFihUrqFWrFl26dMHLywsLCwtmzZqFhYUpZPPVV1/Ru3dvRo4cSfHixVm6dOkzuHMTpaB1dy+C2rVrq8HBwc96GkIIIYQQQgghhHjCzpw5Q9WqVc3fp6ZkPfFrFHGwfeJjvmjuf84AiqKcVFW1dkH9JRNJCCGEEEIIIYQQzzUJ+DwfpCaSEEIIIYQQQgghhHgoCSIJIYQQQgghhBBCiIeSIJIQQgghhBBCCCGEeCgJIgkhhBBCCCGEEEKIh5IgkhBCCCGEEEIIIYR4KAkiCSGEEEIIIYQQQhSgTJkyeHl54ePjQ+XKlfMd37p1K/b29vj4+ODj48OoUaPMx6ZMmULFihXx9PRk8uTJ5vaffvoJT09PNBoNBw8eNLfPmzfPPI6Pjw8ajYajR48CkJ2dTa9evXB3d8fDw4MlS5b8i3f9YBbP5KpCCCGEEEIIIYQQjyjiZjJGo/rExtNoFFzLOT5S3/3791O6dOkHHq9duzb79u3L0xYcHMySJUs4deoUNjY2NG3alC5dulC5cmWqV6/O+vXrGTRoUJ5zhg4dytChQwE4ceIEXbt2pUGDBgCMHj2akiVLEh4ejsFg4NatW3/jbp8cCSIJIYQQQgghhBDiufYkA0j/xnj3O3v2LDVr1sTe3h6ARo0a8csvv1C5cmVq1Kjx0POXLl1K165dzd+vXLmSsLAwALRa7V8Gtf5NspxNCCGEEEIIIYQQ4gGaN29OpUqVmDlzZoHH//jjD7y9vWnSpAknT54EoHr16hw/fpy4uDjS0tLYtWsXERERj3zN3377jX79+gGQkJAAwMiRI/Hz86Nt27ZERkb+w7t6PBJEEkKI59C5c+do2LAh/v7+DBgwAFX9d39TIoQQQgghhMjv8OHDhIaGsnPnThYsWMD27dvzHG/QoAE3btzg0qVLDB8+3Jw9VKNGDd577z2aNWtGs2bNqFSpEhYWj7YYbN++fdja2lK7dm0AdDodcXFxNG7cmNDQUOrVq8fw4cOf7I0+IgkiCSHEc0ZVVby9vTly5Ii50F5wcPAznpUQQgghhBD/f9zd3QFTge0OHTqYC13fVbRoURwcHADo0aMHer2emJgYAN577z1CQ0MJDg6maNGiVKxY8ZGuuWLFCrp162b+3tnZGRsbG/r06QNA3759OXv27D+9tcciQSQhhHgO5OboORkcyfq1Z1i7+gy7d14hIiIZAGtra1xdXZk0aRIBAQEEBgYSHh7O9OnT2bJlCwAbNmxg5syZTJgwgd27dwPQv39/wsPDn9EdCSGEEEII8WJLTU0lOTnZ/Pe9e/dStWrVPH0iIiIwGo2AqQC30WjE2dkZgKioKAAuX77Mli1bGDhw4EOvaTAY2LRpk3kpG4BGo6F58+Zs3boVMO0I96gBqSdNgkhCCPGM6fUG9uy+TPj1RAwG07K19PRc5ny3FC8vX27dukV8fDxRUVEEBQXx/fffM23aNHr37s0vv/wCwJo1a+jZs+ezvA0hhBBCCCH+U6KioqhXrx7e3t7UrFmT1q1b061bN2bMmMGMGTMAWL58OV5eXnh7e/POO++wbNkyNBpTqOWll16iQoUKdOjQgW+++QYnJycAli1bhrOzMyEhIXTu3Bl/f3/zNXfs2EGpUqXw9fXNM5evvvqKiRMn4uXlxc8//8zs2bOf0lPIS3lR62zUrl1bleUd/8zx48cZMWIEWq2W2rVr8/XXX+c5PmTIEM6dO4eiKMyZM4eqVavSv39/xo4di6en5zOatRD/PVcux3PmdIw5gHQvrVbDnn3zadLEn/Hjx1O6dGlSU1O5efMmvr6+REVF8fvvv9OvXz+2bNnCxIkTcXFxYcmSJYSFhbFkyRLatm37DO5KCCGEEEKIx3fmzJk8WT8RN5Of6I5qGo2CaznHJzbei+r+5wygKMpJVVVrF9T/0ao6if8kNzc39u7di42NDa+++ipnz56lSpUqABiNRj7++GM8PDy4fPkyH3/8MevWrXvGMxbiv+nmjeR8ASSdLhdLSysUBSwsbIiNjaVVq1Z8++23xMbGUqhQIezt7alXrx69evUyF/ArUqQI8+bN49dff6Vjx4589dVXEkQSQgghhBAvPAn4PB8kiPR/xmAwotcZMBpVHB2KodVqUFUVCwsLtFotzZo1o3jx4rRr1868XtPS0hKtVmse46uvvuLcuXMEBAQwadKkZ3UrQvxnFPT7lF271/LL6u8BhdKlnAnav4/XXutPkyZNiYuLJTs7mzlz5uDh4cHGjRvJyMhg9+7d1KtXj7CwMEaOHEnJkiVJS0sDoGvXriQmJhIdHU3fvn0ZN27cU71HIYQQQgghxItPgkj/R3Q6A3qdwfy9qoJeZ+R0yGkSEhKws7Pj1q1b7N69O0/QaPTo0bzzzjvm7xs1asScOXPo0KEDUVFRlClT5qnehxD/Na6ujqQkZ+XJRmrVsgft2vZGq1VYs24Gp0Mus3SJKRuw96tdWbd2PTGxN0lMTKRp06bcvHmTAwcOoNVq2bhxI2vWrAGgSZMmAKxfv57U1FS6dOnC4MGDn/5NCiGEEEIIIV54Ulj7/4SqqnkCSAAnfj+Bf5NGNG8RSOnSLgBUq1bNHECaOnUqDg4OREdH07hxY/N5NWrUAKBKlSpcv379Kd2BEP9dHuWLYW1tgaL82WZhYYlGAxU8i2OhtcBgMPDOO4PZvPk3Tp8+Sdt2renVqxeHDh0iNTWVmJgYTp06BWAu5Hfv31VV5Y033uCzzz4z7xYhhBBCCCGEEH+HBJH+TxgMxnxtLqVdKFq0KBs3biEjPZ2LFy+aP3AajUY8PT2pUaNGngASwOnTpwE4d+4c7u7u//rchfivs7TU0jSgAtbWeZNDt+9YRf0Gnmze8hvz5s8mKzuba9cu4+tbmbTUVHJz9Wi1WhYsWEBAQAATJ04EoFixYkRGRhIdHY2DgwNgCgoHBgZSqFAhGjZsiL+/PwMGDCAmJoapU6cWOK/k5GTWr1//7968EEIIIYQQ4oUhQaT/Y0eOHCYk5A/GjRvD3n17SUxMZNeuXXTv3p3Fixczfvx4YmNjWbRoEc7OzjRq1Ii1a9eyf/9+/P39OXv2LM7OzkydOhUXFxfGjh37rG9JiBfWqZOR5ObmzRYMbNaN5UuP07FjV2JiosnOymT48A+4fTuBq9euUKxYcRRFITU1FTs7O1JSUgCYOHEir7zyCj169DAHlqZOncrKlSsZNmwYgwcP5uDBgwBERkYyZsyYAuckQSQhhBBCCCHEvSSI9B9z/Phxc5bBiBEjzO13M4zeHj6MwOYBNG/RDF9fP27eiKJy5SrodDqmT5+OlZUVv/zyCwMHDuTSpUvMmzePV155hRs3bnD48GFKlSpFx44dWbhwIa1atUKr1TJo0CBWrFjxrG5ZiBdeWmo2CQkZebYs1elyiY65wSdj+7JjxxaioiIwqirvvjsYRVGws7NFURQ0Gg27d+/m0qVLhIaGcvPmTapWrcqhQ4c4fPgwVapWJTYujd+Dw/n2u1WsWrWZPn36AWBtbY3BYKBPnz6kp6fTrFkz0tPTmTdvHrNmzWLBggXs2rWLgIAA4uPjn9XjEUIIIYQQ4plISEigTZs2eHh4UL58efbs2ZPneHx8PK1atcLLy4uqVasSHBxsPlamTBm8vLzw8fGhcuXK5vajR49SrVo1c/v+/fvNx44fP0716tXx9PTEy8uLzMxMAA4dOoSXlxflypVjwIABGI2mlUaDBg3Cx8cHHx8f3N3dsbe3/zcfByCFtf9z3Nzc2Lt3LzY2Nrz66qucPXuWKlWqACp6vYGR73+Ah0d5rly5zLjxY/nu2zmE/HGK8+fPmwv0ajQadDoDulw92Vm52NraYW1tDUCFChXYsWMHb7/9Nq6urixevJiBAwdy4cKFPPPo1asXH330EVqtlkmTJpmL/Aoh8ktKzkJRFO7dpy3k9GE2bV5KZmYGmZmZFCpkR3Z2FgDFi5egWLHibNq0nYCA+nz//feUKVOGzz77jGnTpjF37lwA9Hoj587HkpNjMAeoMjN1rFq1jkWLZuLt7UXx4sUBKFy4MJ988glvvPEGiYmJbNu2jZs3b3Lz5k2WL1/+dB+IEEIIIYQQ9zlw8Dp6ff4yLY/LwkJDE3+Pv+wzZMgQWrduzfbt28nOziY9PT3P8XHjxlG1alV27txJSEgIb775JkePHjUf379/P6VLl85zzqhRoxg3bhzdu3dnzZo1jBo1ihMnTqDT6ejbty9Lly6lfv36xMXFYWVlBcCwYcOYO3cuzZo1IyAggPXr19O9e3cWLlxoHnfq1Knm0jP/JslE+g9QVRWjUcVgMFKypLM54GNhYYFWq6VZs2Z069adZcuW4ubmgaqqWFhYoCgKrw8awNSpn1OypDPZ2dk4OjqSnpZDRloOuTkG9DojulwD6Wk5nD59Gq1WS0hICPHx8ezZs4eBAwcWOKdZs2YxcuRI3n//fb755pun+TiEeOFYW1lgVNU8bXVqN2PShJ/46st1/Lz8CI4OjjRq1JQLF0MBuHDhPElJsSQmJtKoUSNOnjxJ0aJF2bNnD7/++it169alSZMA9u7dmSfDyWhUadCwOet/3UeZMmXYvHmz+ViLFi04efIk/fv3z1OcWwghhBBCiGftSQaQHmW8pKQkjh07xrvvvguAjY0NJUqUyNPn4sWLtGrVCoDq1asTGRlJZGTkX46rKIq5DEVSUhKlSpUCYMOGDfj5+VG/fn0AnJ2dsbCw4MaNG6SlpdG8eXM0Gg19+vQpsOTE2rVr6d279yPc+T8jnxJecKqqYjSoqEYVVFCNpu9DQkJISEjAzs6OW7dusXTJcvr1fc18fPz4cfj4+HLy5EnGfzoWV9eytG7dGienkhju/GNatnwJY8ePZs3aXxg2bAhvvfU2P/74Iz4+PpQtWxZLS8sHzsvZ2Zny5ctTvnx5XFxcntbjEE9IdHQ0NWvWxMbGBr1e/5d9161bh6urq/n7+wuxi4dzKlkYtYD/hul0uQQHB/H2O53RG/SAgZycLHbv2oO3txczZnyBs7Oz+bcdP/zwA/Xq1WPdunWsXr2aWd+soH79ZnnGzM3NASApKQt7e3tsbW3Nx+bNm0ffvn354YcfyMnJwdLSEoMhb50mIYQQQggh/h9cvHiR4sWL8/LLL+Pr60vPnj1JTU3N06dy5crmVTf79+8nJiaG8PBw8/HmzZtTqVIlZs6caW6bPXs2Y8eOpVSpUowdO5Yvv/zSfD1FUfD398fPz49x48YBcPPmzTzZTG5ubsTExOSZR1hYGJGRkXTo0OGJPoOCSBDpBXY3gHS/xMREhg9/x5zaVq1aNSws/ly5+P2cb/Hx8WXM6HFs3byd3NxcypevQOvWrUmIj+fLmV8QHPw738+ZzdWrV9DrdITfCGfC+CmMHz+ejRs3cuPGDZycnB5YTPvMmTOkpaVx69YtLl269O88APGvKVasGHv27DFHwf/K2rVr8wSRxN+n0SjYFbLK1x5y+jCbty6jSBFHtFoL3N3LkpAQT/sOrQkLCyM1NZWQkBCKFClC3bp1OXXqFFOmTGHs2LFMmTKFiRPeJzIyPM+Yx47tZ9ibL/Pmmy8TGxtn/s1JREQEGzduZMyYMbz99ttMmjSJUqVKkZiYSPfu3UlMTHwaj0IIIYQQQojngl6vJzQ0lLfeeosLFy5QqFAhxo8fn6fP5MmTSUpKwsfHh1mzZuHj42P+7H348GFCQ0PZuXMnCxYsYPv27YApiPT5558TGxvL559/Tv/+/c3XO3HiBKtXr+b48eNs2rSJjRs3oqr5P/ObSmH8acmSJbRv3z7P5/5/i9REeg6cO3eOwYMHo9Vq8fT0ZPz48YwbN+7hdUjyv5fQ6/X0e60v0z+fjnNJZ25G3ESj0WBlZUGWPpc9e3Zz/PgxlixeTmjoed4a/iYWWgsqVvQkJSWFW/HxfDDyQ+LiYilerAS7dgTRpl1zTpw4xoRJ47h+/SqVKlXCwsKCrCxTfZZFixYxZ84cEhMTSUpKYvbs2YwcOZJly5aRm5vL0KFD2bJlS743uni+GAxGIm4mk5yUhV0hS9w9ipuP6XQ62rRpg06nw8nJidWrV6PVatmyZQstW7bkxx9/zDfeO++8Q8OGDXnllVee5m28sBwcbTAYVfQ6PQaDiqIo1KsXQJOmrdFoFLZv+wFVVXnttdf49ttvAdPrAvD++++za9cuBg4ciJubG1lZWSxcuJAlSzeyauVCRn041XydJk1a0aRJKywtNdSqWQZFUcw/a7Zt2wZA165d6dq1KwA7dux4mo9BCCGEEEKI54K7uzvOzs40a2bK7O/ZsyfTpk3L06do0aKsXbsWAKPRiKurK97e3ubzwVRgu0OHDhw9epQ2bdqwdu1aFi1aBED//v155513AHB1daVBgwbmrKOWLVsSHBzM66+/nifz6MaNG+YlcHetX7/e/Bnh3yaZSM8Bb29vjhw5Yt5yOyEh4ZHOKyCGxNq1awgODmb0J6NpFhhofrNpLTRYWmn54MP3uXEjnDZtWzHzq69Zu3o7VapWYdu2bQQFBeFWzo3BQwZib18Eu0J22NvbU7VKNSpXqoKiKDRo0IBXX32V+fPnm2umvP7665w8eRIfHx++//57+vXrR/v27XF0dOTdd99l69atL1QA6e8s5QIICQkhICCAgIAAPDw8mDVrVp7j4eHh5ujy8yo5KYs1q0I4dPAaIX9EceLYTVav/IOcHNP9W1hYsHnzZg4cOICvry979+4FTBHvPn365Bvv3XffpUGDBhJA+hvc3Yui1SpYWVtia2eFja0lIacPM3p0P8aMeY34hHiGDx9OqVKlCAgIoFmzZvz0008A9OjRg23bttG9e3cAJkyYQNOmTfn6q09p0bJjvmtpNAplyzi8UP8uhRBCCCGEeJpcXV0pXbo0Z86cAWDnzp34+Pjk6ZOQkEB2djZgqgtcr149ihYtSmpqKsnJyQCkpqayd+9eqlatCoCTk5M5K2nz5s24ubkB8NJLLxEaGkpaWho6nY7Dhw9TqVIl3NzcKFSoEHv37sVoNLJ8+XK6dOlinsOZM2dITU0lMDDwX30ed0km0jOSlaXj5s1kUlKysbbWUrasI8WK2Zq33I6OjqZ79+5cv36d3377jVOnTvHVV18BcOzYMSpWrEhSUhItmrdg2LC36Na9K+HXb/DKK7145ZVeACgKaLQaGjRoAIC1jSUhIWf542QUCQmZKAqEhERT0qkK2dmrqVK5ClnZ2Rw+fJC27VpQurQL586fZfOWjVhaWpKVlcW+ffuoX78+/v7+REREEB4eTsuWLWnatCmFChUiIyMDo9HI2bNnCQ4OplatWnnuOzo6mg4dOhAaGkp6enqB6XaxsbHm4ENcXBytW7dm1qxZdOzYkeTkZKysrFiyZAlly5Z9Iq/F/XO6u5Tr3n+Y9woJCeG9994DTFHgd999l6CgIIYPH46Dg8NTWYf6JBmNKju2XyQ7+8+A2d0ic8lJWWRm5qLRGBk8eDBRUVHExcVRsWJF9u7dS8OGDc07BtwVFhaGjY1NvmCa+GulStkTE53GrXjTjg+qCg0aNKdF8za4uRXFxtYSjUbDmDFjGDNmTL7zW7dubS70N336dHN7XFwa4TeSuRsvUlVwKW2Ps3Phf/+mhBBCCCGEeIF9++239O7dm9zcXNzc3Pj555+ZMWMGYNpl7fTp0wwcOBCNRkPFihVZsWIFAFFRUXTu3BkAg8FA9+7d6datG2CqQzpixAhGjBiBtbU18+fPB0zBpeHDh1OjRg0URaFFixb07NkTgLlz5zJw4ECys7MJDAw0jwWmX+x37tz5qW2MoxS0vu5FULt2bTU4OPhZT+OxJCZmEhISg6qq3H38x47tYcmSr6lSxY/p06fz8ssvc/LkSVauXElCQoK5Ivy8efO4desW48ePJzAwENeyrpQqXZpDBw9y4MDBPNfRaJU8mQY52TpOBkdy61aGebem33/fx4qVs3FxcadsmRIcOLiXpk2a8Vq/gQweOhB3dw9Cz5+jgqcnrq5l0ev1NG/enC+//JIff/yRgwcPMmnSJDQaDV988QVlypTh7NmzxMbG4ufnR506dczpfwDZ2dlkZWXRpUsXdu/e/dA1m++++y4dO3akRYsWXL9+HQ8PD3bt2sX27dvzFCf7J+7OqXPnzmzcuA1bWyusrCwICAhg9+7dREZGMnDgQEqUKMHly5cZN24c8+bNIzMzE0dHR2bNmoWnpycZGRkEBgZy/PhxAMaPH8++ffuoUaMGqampLF68+InM90mLjEgmaN8V9Lr8lZ2nz3iT5cvXE34jmLNnzzJhwgTGjBlDxYoVSU1NZcOGDVhZWXH8+HHeeustpkyZQuPGjRkwYAAXLlwwF4kTjyY+Pp3UlGxS03JQjSqFCllha2uJokAJp8LY2uYvZn/x4kUGDRrEZ599RpMmTQoc12A0kpaag6qCvb01FhaShCqEEEIIIZ5vZ86cMWfvABw4eP2J7tBmYaGhib/HExvvRXX/cwZQFOWkqqq1C+ovmUhPmdGocvZsbJ4ttwHq129Ow4YtWLnySzZv3oyfnx8ajYYyZcpw5coVVFXlwIHD7Ny5m6VLV2A0qvj7+xMSEsKVK1fQWljwcs8ehF8PZ/36X/kj5JQ5E+T48eNkZmbSqHEjnEt6cj70JF27vM6RIzuJjgnnvXc+Z/ee9dy4eRMXlzJotBpq1qpJfPwtFsxbyKiP3sfPzxdVNe36djcbydraGsAc8WzYsCFvv/02kydP5uTJk6xevZq33noLVVVJTcshM0OHlbWWokUd89z7wIEDuXnzJm5ubri6ujJhwgTzsQMHDpiDRR4epn/gFhYWaLXaf/Q66HQGcrL1oICVlQXJKSqZmTquXU8kNjaaSRNHcuXKRWrXrs3QoUMJDg6matWqDB8+nCVLlrBz504mTJjAzz//jKenJwC1atUyR4pjYmI4ceIEBw8e5Oeff2bnzp3/aL5/5VGyu/5Kamp2vgLter2er795j5sRl3ljcC++/noaGzduJDg4GAcHBypWrMg777xjXr/buHFjpkyZYj7/9ddfZ9q0aUyfPp2PPvron98kpvfxiBEj0Gq11K5dm6+//jpfnx9//JHJkyfTqFGjh9cUew4VL14Ig96IlZWWe+P79kVsCgwgAfj4+HDo0KG/HFer0eDoaPuXfYQQQgghhHieScDn+SBBpKcsKSkrXwApNzcHKyvrO+1W2NramjOIrl+/zg8/LOS33zYRFRXJ0qVr6de3L+07dGbFihVkZWVRs2ZNIiMj2bNnD6tWreLXDet577336Ny5M/PmzaNly5YYDCq3b99m+FtfoNMZGPVhT2Z/s5Edu1Yz9bO30Gg0lCxZmqzsVFSjypw536EoCr379CQ9PZ3x48ezZs0awsPDsbW15ezZs+zfvx97e3sSExOZM2cOtWvX5uLFizRq1AgbGxs2bdqEhYU1vwdHmZdKKYqpHovBYIognzhxAq1Wy+7du/nss8/Izc01P5e7gZt7gyIGg4GpU6eaU/7+LlVVSbydSU6O3vwhXVVV9DoDKqYgn6pCUlIS7u6eDB/+JsuWLaNjx45UqlSJyMhIKleuDEB8fHyeNbGJiYnmYsQ3btwwR3Nr1ar1xINId7PYFIWHLr97mMKFrdFolTzvSwsLCwa9/infzB7J+fOnaNSoEadOnTIfDwoKYsKECUyYMIHGjRvnCWIcOnQoX9s/cfdey5Urx969e7GxseHVV1/l7NmzVKlSJU/fTp060aRJkzyByBeJRqPgXMqenBwDOTk6FEXBzs5KMoeEEEIIIYQQzwX5ZPKU6XSGfG3BwQd5//3evP9+b+Ljb5m33AYoW7YsPXu+SrNmrcjMzOSDD97iwMEgWrZoy769v6PT6SlZsiR+fn5YWlrg6lqWlJQUwFQ7ad++fXzyyScoQPHiJXBwKEGxYiVxLuXK+dBgjh/bg8Ggp1q1BowePYMyLmVIS0tlx85tnDjxBzHRt6hSpQobNmzgxo0b7Nmzh99//52VK1dSoUIFPDw8zNk3NjY2ZGdnU6xYMXMl+dNnYsnK0mE0qhiNKgaDik5nJD09F53OwLVr16hRowZAvvpJv/76qzkoc9fIkSPp168fFSpUyPccz507R8OGDfH392fAgAEFboWYkpJNdrY+T5aHoijY2FiiuWfpX/kKXoCCfZHieHl5oSgKLi4upKWlmQN8p06dMs9dp9ORmZlJtWrVAHBzc+Ps2bMA/PHHH/nm8U9kZuYSfyudW3FpxMWmkZlpxN7ewXx848aN5kLftram7JPNmzfTpEkTGjZsaC7i9u6779K0aVNe7dOJpKS4fNcpXKgIH3/4PXXr1n2i839URqNKUmIm0VGpxESngloInc4UVLqbjTZ27FgaNWpEYGAgycnJlChRIl8m1oQJE+jfvz8tWrRg4MCBz+Re/g7T+9ECBwdbihSxkQCSEEIIIYQQ4rkhmUhPmb29NffHNho2bEHDhi3QaKBcuaKULFmYTz+dxdmzsZQrV51hb9bA0lJLXGwM3bv3Yvr0SQx98zUiIm5ibW1tzuQJCAjg6NGjvPrqq7z99ttcuHCBRYsW0aVLF3799VcsLLRYW2vJytKjoFC3TjPc3bxYueo73n5rEpUqO9OpU97tvG1srbC3t+eXX37J096lS5eHZr6kpGTnyfi5X0xsGh4eHuzbtw/IH2zZuXMnY8eONX+/aNEiFEWhX79+efrdzVTx8vLiyJEjAAwYMIDg4GDq1KmTp19mRi4F0SgKGo0pOKTX6zhx/BC5ubmMG/sJderUzNdfp9MRHR2Nq6srAHv37sXB4c9ATunSpalVqxb+/v7mwNKTkJGRQ1paTp6t+XJz9NxOyDA/506dOtGpUydzFprRaOTLL780V/Nv27Ytbdq0Ydq0adjZ2bF79262btlB7ZqvkJ2tJyUlG6NRxcpKS/OWlVi15s8gxv1LDwHS0tLo1asXYWFhzJs3jzp16qDX6xk8eDCnTp1iwoQJf7vYuKqqxN9Kz7Pm2WhUSUvN4fTpMyQkJJCTk8O1a9c4fPhwgQHDe1WsWJHFixfz5ptvcuzYMerXr/+35iOEEEIIIYQQQoJIT12hQlY4OtqQlJSVL7iiKArW1louXIg3Ly06e/Ycn3wylLi4aIoXK077Dp0JOX0KC62WzKxMbGxsGDhwICdOnOCVV14hPj4eV1dXpk+fTrly5WjTpo15bK1GoXLlUpw6FQXKvdcF51KFcSlTBMOdD+0WFhqsbSzRah8/CyI9Q5fvw71er+OjDwdw5coFevfqwjfffElOTg7NmzfHzc2NcuXKAXDp0iXc3NzMmTQAw4YNo27dugQEBNC0aVMmTJhAWlqOOehher46ihY17XLn6urKgAEDiIiIoFy5cpQt68rQIe/zxRdTOH78ML5+lclIT2fQoGEMfL0X6WlpNKjvyaeffkmFCt40aNiURg3rc/r0MaZMmcLixYvx9vZm0KBB7Nixgx49ejBo0CDAtDPW3ZpNd91bI+hJUFWV9PsCSPceMxr/DLjczUJbtWoV8fHxXLhwgRYtWgBw69YtVFXliy++YM+ePeh0Onx9fXHzKMaBoGsY7tRHytUZ2fTbBfNSxActPYyIiODw4cOkpKQwZMgQNm/eTHx8PGPHjqV48eK0atXqbweRsrJ05iWP90pMTOKDke+xbv1aDh06SMOGDQEeulX93Yyx6tWrc+XKFQkiCSGEEEIIIcRjkCDSM1C1amnOno0lKSnLvO22VqvB17ck168n5gkuubmV55dfTJk6r77anD27t1O8eAmOHD7N0aOHmDJ1LFqtlnnz5vH1119z7tw5FEXhhx9+4JdffmHy5MksXLgQgMNHDqPTGWhoa8Hypb+RlJRFCaeKrPh5BS4uRR74Qfxxa9tYWWnvjHlvrR1LZn5lKnhctmwRPCsUp169eoCpzk5QUBAA3t7erF27Ns94OTk5eb5PSsokLS0nz/PasOE3vvxyCn5+Pty4cQNra2t2797N9OnTyczMJDY2lrPnTrNu3TY2blzPvn278POrjJeXL5MnzWDUh++SnpFGnToNqV69Du3bt6ZHD1MApH///ubrtG7dmtatWz+R5/SoCloKea+7gbS4uDjGjBnDr7/+iqIolChRgipVqrBjxw60Wi06nY7ExESCgoI4ePAgu3btYtGixRzcf90cQAIw6I0YgPhb6RgMxnxLD48ePQqAp6cnhQsXpnDhwuallMWLFzcHBB+nCHpWpi7P6xobG8Nr/V/mwoXzrF+3jaKOJfD29mbTpk28/fbbgCmQpigKf/zxB9u2bcPd3Z0uXbpw+PBhrK2tadeuHadPn6Zv376kpaXRuXNndDodRYoUYeXKldjb2//teQohhBBCCCHE/xMptvEMWFhoqFHDhfr1y1GpkjM1arjg7++OXp8/SHA3u0SjUbCyskFRtOTkZDN06Gt8PHoEYGTTpk00adKEqKgotFotOTk5pKam8tNPP3Hp0iXq1q2LTqcDwNJSi1NJe2rWLkuLVl40aVqBMmUcHprJ8TiKF3/wblAajULp0o//od1gMJKampMvm6tly7bs3HmYkiVLce3aNXNx6+rVq6MoCvEJMXh7+wJQqZKpKLOiKFhZWbH/QBCvvDKAS5fOc+HCGRo3ro+dXcE7Yj0LCgW/Rjqdjpdf7sT58+do3bo18+bNIyIigk6dOhEQEIBGo+H999+nefPmNGvWjF69etGxY0fOnDmDq6srW7Zs4fbtzAIzf+66cjkBDw8PTp8+DeRdenjlyhUyMjKIjo6mSJEigKnIeGRkJJmZmRgMfx38ehSOjkV5rd8gNBoNn38+kTZtWpKVlYWbm5u5JlJKSgqbN29m2rRpWFpaUqtWLW7dukWtWrW4cOECzZs3JzMzkwYNGmBpacny5cs5cOAAL730EosXL85zvXuzuoQQQgghhBD/n86cOYOPj4/5T+HChZk8eXKePlu3bsXe3t7cZ9SoUQBkZmZStWpVvL298fT0ZMSIEeZz2rdvb+5fpkyZPBs2HT9+nOrVq+Pp6YmXlxeZmZmAKWnBy8uLcuXKMWDAAPNnlgkTJlChQgW8vLxo0KABYWFh/+ozkUykZ8jOzjJPkEKnM+YLihw7tp/582cQFXWTYsWK06BhM1avWU679t048fsRMjPTSE1NxcbGhlu3bmFlZYW1tTWFChXip59+okGDBri7u2NpmTcY8m8Eje6n1WioXMmZs+fizHWLwBRA8vAoSiE7qzz97xaDfhTZ2XoUhTzPKycnh2XLFrJ9+2YaNfJnxowZxMTE8NJLL3HmzBkAKlf24ssvL3H06EF+/HEBhQsXRlGgevUa/Pzzjyz6cR1BQVvRalUqlC/5JB7DE2NhqcG0DjHvm8TS0pLVqzdS2N6awoWtAfj000/z9GnXrh3Nm7fCaFRJTk6gaNGi5l3OXn/9dS6cNxB2KSHPOQaDnqXLPyE65ioDBrzMt9/NJCcnh8DAQNzc3HBzcwPA1dWVgQMHcuXKFebMmQNAiRIlmDBhAiEhIYwfP/5v36tGq8FoMKK5s5zSxsaG3r1fY/2vq1m18jf0hhTeeGMQJUqUIDMzk7feepe2bV4iPSODeXNW4FAUPv98Mlqtlg0bNlC1alUURUGj0Zh3lStdurTpud4p0g1Qv359atSoga2tLV999dXfnrcQQgghhBDi37F5Yyi5uf/8F9R3WVlp6dDJ7y/7VK1alYsXLwKg1+spVaqUeWOpe9WuXdtc6/cuGxsbDh48iIODAzk5OdSpU4e9e/cSGBjIli1bzP0GDx5srq+r0+no27cvS5cupX79+sTFxWFlZfrcPGzYMObOnUuzZs0ICAhg/fr1dO/endq1azNy5Ejs7e354osvGDFiRJ7xnzQJIj1HChe2ytcWENCa9u07oCgKU6aMJizsPP7+zWnevC0ODg58++1nuLm50bBhQxwcHChZsiTnzp0jJSUFo9HIrVu3GDx4MFOnTmXMmDFPdOv1R1G0qC316pYlKjqV9PRcbGwscCldpMB7/SvR0dF06NCB0NBQ0tPTAfjww3e4evUyffoM5MqVMHx9KzN37mxycrLx8vKmUKFCtGnThn79+uHi4nInyutC3bq1mDBxNBqNlhrVa1C8RCFatWrGtm0bqVfXE19fT7Kzs59KoO3vUBSFIg7WpCRn5zum1Zq2gi9IUlIWZ8/GkJ5uqmFkZaXFz88OFxcbcwBly9b57N8fhEZjSa+en5JwO4JNm2fj4OCEQa/jzNlgtmzZQnZ2Njdv3uSXX37ByckJwJydBPDee+9Ru3Ztjh079tj3mZ6Ww6rlp2jk74GDo22+3ckK21uTlqYhKSmJ3bt38/33i5j55Rzef+8rNmz8kTVrfsPD3ZeoyDjsCllhNBqxtLRkx44dTJ8+naysrD+vlZ7OggUL2LZtGwAJCQmMGTOGsmXLPvb8hRBCCCGEEE/ekwwgPc54mzZtoly5cnh5eT1Sf41GYw4O5ebmotfr833GNBqNbNy4kd27dwOwYcMG/Pz8zDVcnZ2dAbhx4wZpaWk0b94cgD59+piDSPfWn23cuDGrVq36W/f1d8lytueIlZX2TsbOvZkmevPfChe2x9ra1py2pqqmLBSdTkdISAg//PADYKonVKtWLapUqcKlS5coU6YMY8aMeZq3koe1tQXlPYpRtUopvCqWeOQAkqqqpKXlkJ6eQ7FixdizZ4/5H5ONjQXXrl1h1crN2NsXR683cPt2PN9++wM+Pn64uJTmzJkz3Lp1i2XLlnHkyBGWLl3KsGHDmDhxIt999y2WllqOHT9C27atqF69ujkYMnXqVGbOnPmvPY9/wtbWiqLF7LC0NP3TVRSwtbOkeIlC5t3l7pWams2xYzdITc3BaFQxGlWys/WEhMSwe/dh8y5nWdkJDBv6LQNe+wIbm0IE7V/Bq70m0bXzKCytrM3PvVq1aly5csUcQLrfrFmzHqsG0r0O7L9GZqaOPbsuE3bx1p0d/kzvhawsHUWKmLKt/Pz80OuNxMWqlClTHqNRpahjCdLT00hLT+XUHyf59tu5ODo60q5dO8C0rPEuVVUZOHAgU6dOxdHREYCSJUtKAEkIIYQQQgiRz8qVK+nRo0eBx/744w+8vb1p0qQJJ0+eNLfr9Xp8fHxwdnYmICCAZs2a5Tlv586dlChRgsqVKwNw8eJFFEXB398fPz8/xo0bB8DNmzfNKykA3NzciImJyTeP+fPnmzdU+rdIJtJzJC09F6MRFA3mdVpHjuxj+XJTcMjNzYNu3Xqzdeuv9OvXmbS0FKytLYmJiSEjI5M2rdtz7vxZFMVU0DowMJD4+HjGjx9PSEgIPj4+XL58mZiYGAYMGECLFi24ceMGDg4OLFiwgAoVKrBt2zbzB+pnKexSPFt/CyUlNQdUlWLF7ejYuZL5+Lhx4wg9f45u3TrTtk0fIm4kcTrkPIlJi0lIuEXXri9RpUoVSpQowcsvv4y3tzfr169n0KBBvPnmmxw/fpzIyEguXbrE3r17WbBgAR9//PEzvONHZ21tgbV14UfqGxYWn6dY9l0pKUlMm/YeO3Zs5MCBAzRp0piXXqrB6pWnycnKJTMtFf0tDdYOCl4VK5rPK1OmDH369GH58uXMmzePxYsX07RpU44fP05QUBABAQHs3r0bC4vH/9ESdjEeVQWDQeV0SAynQ/784ZieloP+zg6CiqJwIzwJhbz1ogwGAytWfo2bmw9ZGZbY2Nhw9uxZAPOyRoDx48eb6yndpdFIXF0IIYQQQgiRV3Z2Nrt27Sqw5EWDBg3Mn6vXrFlD165duXHjBmAqnXHx4kUSEhJo3749wcHB1K5d23zu8uXL6d69u/l7vV7PiRMnCA4OpnDhwvj7+1OnTp0CP6Pfn9U0d+5cQkJC/tGqkEchn5ieI1qtBkVj+vCsN6gYjCqN/VuxZMmvLF26gcmTv8bV1Z2lSzewdOkGNmzYx9GjJxg44EOWLzvK6NHzcXX1ZOuWC/TrO5TFixdToUIFvvnmG1q3bs3BgwcBmDZtGoGBgXzwwQcMHDiQa9eu0a5dO5YuXWpOt3uWrlxOYNXyP0hMzDLtEGZQib+VwbKfgsnJMWVmtWj2Gi4u5Xn37ZkYDUYiIq9Qq0YLoiKj8PT0ZPTo0QAsWbKENWvWYGVlRZs2bTh06BB9+vRh9uzZDBo0CCcnJ/O27/9FCQmZ+doMBj0zZ35E//4f4Hhnl7Njx47h6upIy2bliQqJRatakRAbQ9z1eC5eCCP5tmmcu0EWvV7P4sWLOXz4MF27dn2ic767y9y9gg6sYtzEDkRGXcbBwZ6uXbuyZ88esrJ0+YJkoReCCQsL4dy5Y1SrUY6cnByys7Np3rw5Z86cwdLSkujoaKZPn86vv/5KQEAAc+fOfaL3IIQQQgghhPjvWL9+PZUqVSpw1ULRokXNn6N79OiBXq/PlyVUokQJ/P392bRpk7lNp9Oxbds2+vXrZ25zdXWlQYMGlC5dGnt7e1q2bElwcHC+zKMbN25QqlQp8/e//fYbM2bMYOvWrdjaPniDqydBgkjPkWJFbfMUilZVyMnWP7C/lZUFkREpXL+eiNGosuCHaVSuXA+DQWXP3sPUr++Pr48fW7ZsxWg0LZPT6/Xs2LHDvLvWK6+8QsOGDQH47rvv8Pf3Z+LEif/qfT7M9s0X0evy746l0xlJup3J8eOnGPJmdyIir7Bo8WTS01OIjLzMvv3rMRoNXLhwgW+//dZ83nvvvUfnzp0JCgqiUaNG5uWCd5evnT59mgoVKjydm3uKoqOjefvtrnTtWh2DwfQ+mj17HMOGdSI09BSffz6C1q1b0L9/fw4cOICDgwNt2rYgMzONGhU6sf33WewNWUhhm2LEx6aRmZ5jHjshIYFy5cqh1WrzLBF7Ekq75N21T6/PJTb2OqWcPZgwbjkvv/wyp06dIiYmBkdHW6pUqUP3bm8C4N+4IwNe+5jxYxZRpEgxBr/xNhqNhh9++IFly5axd+9eJkyYQMmSJcnNzSUoKIigoCDefNN0fkH1wrZv3/6vFqYTQgghhBBCPN9+/vlnXn755QKPRUREmEvO7N+/H6PRiLOzM9HR0SQkmDYvysjIICgoCF9fX/N5GzdupHz58pQvX97c9tJLLxEaGkpaWho6nY7Dhw9TqVIl3NzcKFSoEHv37sVoNLJ8+XK6dOkCwJEjR3j77bfZuHEjZcqU+bcegZkEkZ4jFhYaKlQolqe2jVGF9AwdYNrVTFFMdXCsrbW4uhYhLCzBnIkxcMBHvNJzGDpdLq/0fIv33p1OkSJFsLWxJTIyksqVTVvaf/TRRxw7dgyj0Yitra053S0gIICDBw+ydevWp3znf8rN1ZMQn/HA49nZeooULsX4MYsoW8YTgLT0ZBo2aMfI977BxaU8rmUrMHz4cPM5ly5dYubMmXTu3JmMjD/HtrS0pE2bNsyZM4fBgwf/ezf1jBQrVozFi9fi7V3N3BYVdZ3587cybtz3tGnThQMH9vP7779z8+ZN3n1zLOVL18TashBODu50859IQNXX0WotQYWGVbvRuHFjwBRJv/vD8t4lYk9Ck4AKaLUKRqMpG+/4iS00aNAOC0stdeu7smHDBhwcHPDz88O+CKxY8RVDhzXjrXdaMnpsTzIy0pn9/UdkZ2Xw88qfqFGjBs2aNcPf35/KlStTtWrVPO+Ph2nTpg3t27d/ovcohBBCCCGEeDGkpaVx6NAhXn31VXPbjBkzmDFjBmBakubl5YW3tzfvvPMOy5YtQ6PREBERgb+/P15eXlSvXp1mzZrxyiuvmMdYuXJlvsCUk5MTw4cPp0aNGvj5+VGtWjXzbnBz585lyJAhuLm54eHhQbdu3QD44IMPyMzMpHv37vj4+JiLb/9bpCbSc8a5ZGHsbC2JiEwhI0OHtbUWF5ciFHW0ITNTh15vxMbGAhsbC3Jy9BgM+TN2/vjjEBs3LUVBoW7dKvTvP4AjRw6ze+ce3D3KkZKSgouLC++88w6FCxfGzc2NH374gUuXLtGsWbN/Pf3tr2g0GvIvZgKNVmX1+k9JSAxnwOu9qF61GZGRV7gVH0XC7RiSk+JJuB1DRkYqdnYlaNiwIUOGDCEgIIDr169To0YN3nrrLRo2bEirVq1wcXFh8+bNT/3+/m3JyVlERKSQlaXD1taSil5lzcHHZcu+ITw8jIkT36R794GULGmqq2RpaQlASlIajoVMkevYpMsEh/1Krj4LVTWSlJXI2Klv8pPvHMC0tve1116jYcOGNGjQwDzGkxAenkiuzojRqKLVqiSlXmbikI85fHQF0THRtG7dgRUrllK/fl0mTJiArZ0OZ+cyDB0ymSVLv+D02QPM+347n01/HUXR8mrvT8jKyuLrWR+xbt1GKlf2plu3bkyfPp3KlSvTvn17NmzYwNWrVxk2bBgDBw4kLi4OJycnli9fzooVK9Dr9QwaNOiJ3aMQQgghhBDi77Gy0j7RHdqsrB5tQyB7e3uSk5PztI0aNcr899GjR5vLqdyrXr16XLhw4YHjrl27tsD2N99807xS4l7+/v5cvnw5X/uRI0ceeI1/gwSRnkP29tb4+ZYssP1eFhYFv+nr1g2kbt1ArKy0tGxRkZycHBb/tBSAfv1ew9bWFg8PD7777jsaN27M1KlTiYqKYuzYsc+8qLaFhQZ396Jcv5ZobnMsakvV2mXxb74SrVaD0aiyctliihVzplSpchgMepydXVFVFQeHYmzcuI3SLkVo1qwZHh4e6PV6goKCANM/MH9/fz7//PPHnmN0dDQdOnQgNDSU9PT0Ry4i3b9/fy5cuICtrS2DBw+md+/ejz2Hgty8mcyNm8nmmkJZ2XqSU7KxsbHA1dWRgQNHcO7c78ydu4y4uAscPRp257yb9OzZk4T4JPy9hgHgUtyHTg3+/EFoZW1BlwE1qVfPl3r16gEwaNAghg4dyvHjx/nxxx8B0xaV/2R3trBL8Rw9fMN8D6npp+jSpTtarQZQiImJoXTpcpQtW5bChe1YtmwZjo6OZGRmsGHjbIoUscGppCXefpacOXMaDw9vPv98FO+8Mw2dDjb8GkxycjL+/v54e3szZswY2rdvz5o1a5g+fToLFy6kU6dO9OrVi7lz5z7wB7sQQgghhBDi6erQye9ZT0Egy9leSOHh4Tg7O9OiRSBTP3uTe4uynzv3O6t+mYNGo1DO1RGAHTt30KJlIC1aBnLrVhytWrV6NhN/RO06+WJlrTUt3dMoVKlVBgsLzZ1AgmlZX6fOrzB10kqKOjqRkpIIKCQmxnL12jkqV/GgadOm3Lp1C1U11YLq3bs3+/fv58MPP2TlypWMHTv2sedXrFgx9uzZY972/u9YsWIFQUFBTzyAlJ2tzxNAustoVMnNNVCxYglat/amaFFbatd2pVAhK3OfcuXKcfToUT6bNoVzN3bkWU55l9ZCoX5g3rpR3377LU2bNuW9995j5MiRzJgxAx8fn3y7BPwdRw6Fo7tTD8u5VGGiosNZvXoZQ4b04urVS4SFhRIWdoEGDZpQqlRpunfvjr+/Py1btuTIkYNMnvIp9vbWfPTRGJydyzDji18oWbIsp04dpF7dQNatW4RWa4VWq8XV1ZXExERu375NcnIyZcuW5cKFC8yaNYuAgACWLFnCrVu3HvtehBBCCCGEEOK/RjKRXlAtW7Zk+fLlZGfp2LfvKjqdwVwbSaNA4cJWeHoWB6BD+w506tjJdEyrYGGpZfny5cCf2wIuXrzYPPbdrJ1nxbmUPUPfbsDeXVe4nZjJ/TGJ3Nwc7B1ssbSyAMWAXp+Dja0VuToD/v6N6d+/P4mJibRr146xY8dy+fJlpk6dStOmTZkyZQq7d+9mypQpjzwfg8FIamo2WZk6VBUsLbU4OPxZ/Dk8PJwBAwZQpEgR4uLiWLlyJfHx8Xz44YcAnDp1ivPnz6MoCv369aN48eJ89913uLm5PZHnBRAfn24uGF6QadO+ZP/+HWRnZ9OnTx/z0iydTkdCQgI//vgjdevWpUGgN446e5ITMlFVU8DOylrL2xNaYGtnlWfMESNGMGLECPMz+PLLL/H19aVVq1Z89dVXDB48GK1Wi6enJz/++GOBwaVdu3Yxbdo0jEYjM2fOJDHxz93kihcvxAcfjMdoNJKcnM3Qod1xLevHL78sIT09FSsrKzp16khiYiLz5s3D0dGRIkWKUL9+ffbv3wVoGDd+AA4OxfHxqY6VlTWbNi/DxcVUlC4mJobixYvTsmVLEhISsLGx4bPPPqN58+bm9cU6nY4VK1YU+Ey3b9+OwWCQeklCCCGEEEKI/xsSRHpBGAxGwq8ncisunaTkWPbu3Ye/vz9du3bl7bffoXfvvly/foNSzmXw9PSgUUN36tavReVKlankV5nfg38nKSmRmNgY+vbty7hx4xgxYsS/XnTrcZVwKszLvasTFZXK1Wu3Md5T+unEiQOsWbMIg15PdMxN1q/7lVmzvsTTszSvvvoqn3zyCSkpKQQHB3PgwAGcnJyYNWvWYy2zMhiM3IpLz5Pho9MZSLidkactNjaWXbt2cfLkSaZPn868efMICgpi27ZtbNiwAVdXV2bOnEmxYsU4dOgQI0eOfKJLpXR6I/fHkPR6HR9+OIDLl0P54YfrlC5dKl/topgY0/tBo9Fw8OBBFi9ejLOzM9cuxhMbkUJRp0L4VC2FRvvwpMW7gU0wBV/urs0dMGAAwcHB1KlTJ0//rKws5s+fz65du8yvTfDxo+TkZN0Zw0Bujp6Im8kYDEYmT1wMwMIFe9BoVeo3qMCQIX347LPPSEtLY/78+eZMotW/BKPTGUhMvMWML0dSvXpD0tJSsC/sQHx8DIUKFWLx4sWoqsrFixc5c+YMgwYN4o033uDNN99kzpw5qKrKtGnTHni/bdq0eegzEUIIIYQQQoj/EgkivQBSU7L5dd1ZcnP06HRGjEYdH3+wlIBAb0aPGUKtWrVwdCxEcPBhPvvsM3JycrCw1BAVFcX+fQcpVKgQKJCZlUG3bl3NO5F9/fXXz/jOHs6ukCWgwD3lths3bkmD+s0YM+YNpk1bgKurL7NmzWLs2LG0a9cOOzs7goKC6N+/P6qqUr58eZycnPD39//bWVbp6Tn5loiBaTp6vdGc/VOlShUsLCyoXr06V65cAeDatWvMmjWLjRs3AqZlcKb5N+bjjz/+28/irzgUsSFam2rORgOwsLDkq6+Ws2HDUpr412HmzM9Yvnw5AwcO5LvvvuP69esMHTqUJUuWMHbsWObNm0fHjh3ZtGkTu/avJzs7m/fee6/A66mqyqaNu/noo1GoqoJH+Qr88ccR6tRpQJs2HbCwMFC3bh3atm1LTEwMmzZtYvjw4Vy8eBGAatWq4eXlRVxcHG3btiU3N5fWrVvTplU/2ndsSulSFYiJucwbb7zP5s2rSU5O4OOPvqF48VJYWFihKJAQn0mHDh04ffo0QUFBBAQEAFC6dGmcnApx40YCs78dw7A3J6DVWuDoWBx3Dx+qVK5Nn77t2blzNzduRNCmTRs8PU07/dna2lKlShV69eplLri9efNm2rdvT69evaTgthBCCCGEEOL/mtREes6pqsqWTaFkZuSaa8VoNJZYWNhw7EgEAQEtiYyMpEaNGgDUqlULRTEtWfP29sahaBEsrbRYWmkZMmQwn332Gc7Ozs/ylv4WRwcbLC3zv02D9m/l4sWzzJ/3Ba+80pGYmJgHjjFp0iQuXLjAqlWr/vb1szJ1Dz6oquj1ptfk3LlzGAwGTp8+TYUKFcjMzGTIkCEsXLgQa2tTQfTU1FQALl269MQLmBcrZlvg7gJ6vY6QP07QoIG/uS0pKYnVq1fz/vvvs27dOnN74cKF+eSTT3jjjTf49ddfeeeddx54vQP7r3H+XBaDBn7JsKGziYtN4tVXPuW9d2azbdsOHItUYvLkz6lcuTIXLlygZs2aVKpUieTkZCpXroyPjw/VqlXj0qVLbNu2jczMTLKysqhWw4XMzCS6dx1Jp44jWLb8e0Z//C2dOvbj8JGdAGRlZaCqpkLihw8fxs3NjVatWhEUFERQUBBLly7Fx7ck8+ZPpE2bV3B1/bOWk5NTKS6FncSgd2XnziBCQk5Tp05nLofFm/v07t2bX375BYD58+dz8+ZNoqKi6NSpE3v37iUgIEAKbgshhBBCCCH+L0km0nMuPj6DtNScPEuVsrMzsbGxw2AwsnPHPqZM/cS8O9Yff/xh7qfRaMxFkqdMmUJgYKB5Z60XhaIo+Po4cfpMbJ5n0Lx5J9q17YJWq2Bvb4WvrzMNGjQAICAgwJyVcnd51Zw5c8zn3j32uHQ6HX37dSf0wjnatWvL559Po2TJknTu3Jn4+HhWrFjBunXruHTpEn379gVg1apVvPHGGyQlJaEoCnPnzv1Hc7ifoihUr+bCyVOR5Ob+ufZv545fad6iE5ev3MZgMLX7+fmh0WgoU6aMOWvqrhYtWvDWW28xceJENJr8wTtdroETx29w5nQMheyKmtstLCyxtrZjwqQh6HLTmTZ9BA4ORdm8eRd16/rxwQcfoNFozBlY+/bt4/jx42RnZ5OcnIydnR0xMTFoNAqVKvnQp19ddu/WEHqhPBqNhqLFShIZdR2A0AunWLXqOxRFIS09gbVr1zJmzBgCAgJQFIVevXpRpUoVTpzYS0JCDFu3LKdjx76UL+9LXOx1bGyKkJ2tx9GxBHXrBjJlylv8vMKHGzfDSExMzFNwW6PRcOLECYYNG8amTZuYP38+2dnZ9OrVCwcHhyf6GgohhBBCCCGeL2fOnOHll182fx8ZGclHH33EuHHjzG0hISH079+f0NBQRo8ezcSJEwHIzMykfv365OTkYDAY6NixY57VQFOnTmXhwoVotVpatmxp/ox4/PhxhgwZQnp6OhqNhpCQEHJzc/Ns7BQXF0fXrl1ZtGgRgwYN4tChQwBkZ2dz+/Zt0tLSCAsLo0uXLhgMBvR6PUOGDGHUqFH/+JlIEOk5l5qSna+w9JWrp9m89QcsLKyoWrU29erVY+7cuTRv3hw3NzfKlSuXb5ypU6dSr149Vq5cSf/+/enfv//TuYEnwNHRFkcHazIz9RhVFUUBrUZBURQ0GgVnZ/uHD/KYbGwsycjIzdNmaWnJqpW/oSgKpV3suXHjBmXLljUHrAAqVKhgDiDdtWnTpn9tngBarYJen3fpXUTENa5cucDGjT9z8UIomzZtylPg+v5i3PPmzaNv37788MMPdO3a1ZxFBRAdlcK6NWdQjSoqfxZlj4q+Snh4KMt/nkpubhYVyvtRpUptdu9Zz8iRH5Cbm4ufnx96vZ6oqChKliyJnZ0dK1aswNfXlx49euDp6YmHhwfcGde1nCMBzSqwdJkm31xr1fSnVk1/rKxVGjV2pUuXLowePTrPD3KA9PQ0VFUlIyMXg0Hl9u1o1qwtx9AhkwEY8d50AA4f3sGkST8x/tOBODqaAmOdOnVi6NChdOzYEQBvb+9HLrgthBBCCCGEePL27LliXp3zJFhaamje3PMv+1StWtVckkOv11OqVCl69uyZp4+TkxOzZ8/Ot1rBxsaGgwcP4uDgQE5ODnXq1GHv3r0EBgayefNmtmzZQmhoKLa2tkRFRQF3Ehb69mXp0qXUr1+fuLg4rKyssLOzM88DoFKlSvTo0QOAhQsXmtunTp3K6dOnAdMu3MHBwdja2pKSkoKfnx89evTA3d398R7YHRJEes4VcbDJVzC5cqUGVK7UAEUBH9+SQN7d1e66G40EUxHjF5mXlxOhoXEYjX8GEzQahaJFbSla1PZfu659EWsyM3PzvQYADg7W/2g7+yctK0uXL+A4ZOiftZfeGf4yHTt25Pjx4wWeHxERwcaNG9myZQuVKlVi0qRJTJ06FTAVuV635gy5OQa0WsVcaDsjI5W162Zib+9IRGQYlpbWOBZ1wr6II9Ex4Vy9FoqzszMdOnRg0qRJpKSkoNfradasGU5OTjRq1MgcXPviiy/yzEdRFBwcbNBq8z9jo9HIlUsp6HIUc82q8PBwBg4cSIkSJbh8+TLjxo1j3rx5ZGZmsmPHDjQaDbExMXwx431u3Yrk449nU6J4KSIirtKnb0N0uhxatWrF9Omf06NHD95//33zbwMGDx7MG2+8wZw5c0hOTkan05GdnY2bm5vURBJCCCGEEOIpeJIBpMcZb9OmTZQrVw4vL6887WXKlKFMmTL89ttvedo1Go159UJubi56vd78+XHOnDl89NFH2NramscA2LBhA35+fuaso4JK0Zw7d47bt2/TqlWrfMfWrl3Lp59+CpiCWHdlZ2djND6Z5ydBpOeck1Mh7ItYk5yUlS+QodFqqFLd5dlM7CmztbWkWrXSxMdnkJKSjYWFlpIlC2Fv/+8GcrRaDSWdC5OclE1Ojv5Om0IRBxvs7mx57+7unicL6VmxtNTyVz8XFi76FXf3PzOmClr2t23bNgC6du1K165dzeeGXYpHvROsUVVQjSpG1cCyFZNxc6uMn289Nm6aR1JyHJX8alGihBNeXtWoXKkmp/7Yy969e6latSqqqlK3bl0AOnToQHBwMC4uLuzdu9d8rbvBT3d3d379dTUXL9xCVetSya82BoMRBYiOSiUpMYvUlGxiY9LMgaSkpCR2797NqlWrWLJkCTt37uSzzz5jx44d1KxZk/SMVMaPX8DBQ1s5dnQ3HTr0Yc73WylcuAjzF0zmjTdeoV69eiQlJdG6dWtKlCgBmApu331GsbGxODo6YmNjw6uvvsrZs2epUqXKP3nphBBCCCGEEM+5lStXmrN/HpVer6dy5crcvHmT/v3706xZM8C0CVNQUBDjxo3D2tqamTNn0qRJEy5evIiiKPj7+3P79m26devG5MmT84y5ZMkSXnrppXzlR8LCwoiMjKRDhw7mtqtXr9K2bVtu3rzJhAkT/nEWEkhh7eeeoii07+iHnZ2VucC0Vqug1Sr4N/GgRIlCz3iGT0Z0dDQ1a9bExsYGvd4UrBk0aBCNGzdmxYoVjB07FgsLLbGxVxk+/FXeeKM7Bw/ueSqZQBYWWko4FcKlTBFKuxTBuZS9OYD0PLG2tsDevuB5aTQKZVyKPPbYyUlZ6HSm3ehunIrBYDDyR8g+bty8wO+/b2fHziUYDHpKlCjDjz99xsIfP8fKyprBg9+gVq1aBAUFkZWVhb29PXFxcWzevJkLFy6gqirVqlV7YHaUoij4+jlTs1ZZIm4kc+N6EufPxnE7IRMAg0FFpzNw7cpt4M96Ty4uLlSuXBkAFxcXkpKSAPD19cXCQkvxYs5kZKYBYG/vgKIoNAtoTVjYRS5evEjHjh15991388xFrzeSkZGLg0Nx8zI/CwsLUlNT6d27NwB9+vQhODiYSZMmERAQQN26dWnevDkAY8eOpVGjRgQGBpKcnPzYr4UQQgghhBDi6crOzmbXrl35SpY8jIWFBRcvXuTmzZucPHmS4OBgAAwGA8nJyYSEhPDll1/Sq1cvjEYjer2eEydOsHr1ao4fP86mTZvMu33ftX79+gLnsWTJEtq3b4+FxZ+5QhUqVCAsLIyLFy/y888/ExkZ+Rh3n5cEkV4ARRxs6NO/FoEtKlKjVhnqN3Sjb//a+FUu9ayn9sQUK1aMPXv25CkWdunSJQ4dOmRO7QNTgfDffvuNffv20b59+6c6x7s1mJ6nJWz38/F2wtLyz4LqYAogOTjYULq0PefOnaNhw4b4+/szYMCAfDWRHsTR0RZLSy0JV5NIiUnj8oEbVPFpSsd2Q+jedSRvDZ2FRqPFtawb7u4+jB87F60WGvtXpXnz5kyePJl9+/bh5+dHdnY2pUuXZuPGjcTFxdGxY8d8Bb7vd/NGEinJ2aSl5pizju5SVZWwS6bd1e59bQqq/VSkiA12dpYoGlNbdnYmRqMBCwsNt2+HUaFCBXx8fDh06BBNmjQxn3vrVjoREcnEx6cTF5fGzZvJHD9+koSEBBo1aoSHhwdDhgzBxcWF2rVrM378eIKCgvDx8WH8+PH88ccfXLt2jcOHD7Nnzx4pyi2EEEIIIcQLZP369VSqVImyZcs+1vklSpTA39/fXMqjVKlS9OjRA41GQ9OmTU2lN2JjcXV1pUGDBpQuXRp7e3tatmxpDjwBHDt2DIPBQOPGjQucY58+fQq8vru7O15eXuzevfux5n8vCSK9ILRaDRUqlqBBI3eq1SiDXaHnLxPm71BVlZwcHelp2aSmZmHQK9jb/5kpM3bsWM6cOZMnFe/atWtkZ2fTvXt3OnfuTFxc3LOY+nPN1taSunXK4u7uiKOjDcWL2+HrW5IqlZ1RFAVvb2+OHDnCwYMHAfL8QPorXt5OKAokXE/CqDeQlZLD+R1XufTHefbuXM3Mz98mLvYm8QkRtG7dltVrvqRfv5fNwaz7A2+lS5fm5MmT5jlUqFDhL69fUPDOYNCzbOXHxN26zqcTBz/S+0GjUQhoVoFy5YpiZaUlMSmaseP6MO3zwdyKj6V79+75zklIyCAz01RcXVVNfxITExk+fDhz5y4AYOjQoSxatChP9tJXX31FjRo1aNq0KWFhYTRs2ND8LJ7nQKQQQgghhBAir59//jnPLm2PIjo6moSEBAAyMjIICgrC19cXMG3ks3PnTgDOnj2LTqejVKlSvPTSS4SGhpKWloZOp+Pw4cNUqlTJPOayZcvo0qVLvmudOXOG1NRUAgMDzW3Xrl0jIyMDgPj4eIKDg/Hz8/t7N14AqYkknjpVVcnMzMWg/7OAj8FgJDMj15xlMmXKFIKCgti8eTNBQUGAaRvDS5cucebMGfbv38/UqVOZPXv2s7iF55qFhRbXso64lnUEIDdXz82byWRk6LCzs8TFxR4rKwusra25evUqv/32G1OmTDEXZ4+Li6Ny5cq0b9+eDRs2cPXqVYoXL86uvRs5deoyNd06U6ywKwDVSr9kvu72MzMIPvE7ufpMXF2n8ONPPxQ4v/79+1O9enV69+7NDz/8QNWqVfNkoBXEx68ke3ZeztOm1VrQt9fnWFpqGPBGXcqUdaBevXpA3npP9+5EeLeuUb9+nenXrzMAb73V+YHXNRhMS9juTdjS6/WMGDGU0aMnYGtryij6+OOP+eabbxg/fjyLFi1i//79hISEsHTpUsC0u9umTZt4++23AdO/AQkkCSGEEEII8fxLS0vj0KFDLFmyxNw2Y8YMAEaNGkVERAS1a9cmIyMDRVGYN28eFy9eJCIigv79+2MwGFBVlc6dO/PKK68AMHz4cF555RUqVqyIpaUlP/zwAxqNBicnJ4YPH06NGjVQFIUWLVrk2Q3ut99+Y/PmzfnmuGTJEjp37pynTtKZM2f48MMPURQFVVUZPny4uT7tPyFBJPHU6fXGPAGke6lG9YFLrBwcHKhTpw52dnYEBgby1Vdf/ZvT/E+4fTuTc+dMGTpGoylw8fPPa1m27Gt8fX0oXrx4vnN69+7NmDFjaN++PWvWrGH69Ons3r2b0i5OdG/aleQ79Yju17n+J9jaWZKbSp6i1PcGcSZMmGD++9atWx/5PooVs6N2XVdO/h6RZxcFS0sNXj4lKVP231kelptryNe2detvnD37B9OnT+KLL6BTp/a4ubnx1ltv8e6777Jr1y4+//xz0tLSCAgIoHr16syaNQs3NzcaNWqEtbU169evx9HR8V+ZsxBCCCGEEP9FlpaaJ7pD292aww9jb2+fr6bpqFGjzH93dXUtcFVEvXr1uHDhQoFj2tjYsGHDhgKPvfnmm7z55psFHntQTaOZM2fma+vcuTOdO3cusP8/IUEk8dTpCvhgfi+93oilZf72ihUrEhERQc2aNTl//jx9+/YlPDycsWPHPnR3tP79+zN27Fg8PT3/ydRfKDqdgXPn4vLUEFJVlQYNmtOoUQtWr57JkSNH8hxTFAVXV1cSExOZPHky27ZtY8WKFQDUqlULj2LVWTP/BLnZpuLnh8IWU9W1HSUcS9O8ayXCLocxaNAgqlWrRuPGjc07rRWkoNdkw4YNNGnShGLFiuXr36a9Ny5linAg6BrJSVkUtremYWM36tQr94+f1YNotfmzhTp16kanTt0AsLbW4uLyZwDrm2++AaBly5b5zps6deq/NMsnJzo6mg4dOhAaGkp6erq5KN+D2u81YcIEfv31V4oWLUqnTp14//33n/b0hRBCCCHEf1jz5v8/n+WeZxJEEk+dSv5MI51OR7funTl77izt2rXl88+n5etjaWnJ4MGDmTt3Lra2tnz00UdPY7ovrFu3MvK15ebmYGVl2llMq7XB2tqamzdvAqa1uFWrVgWgbdu2zJgxI08wR6PR0LxrJW6EJXBi71UMeiOKApbWWvxqlaHL67WxsNCwZ88eBg8e/Fhz3rBhA5UrVy4wiKQoCtVquFCthstjjf04LC21aLUa9AVkzimKqVD3f4FOZ8CgN1K0aFH27NmTb5313cL3Ba2/vtfMmTNp0aLFvzlVIYQQQgghxDMkhbXFU2dhkf9tZ2lpycbftnDzRjR79uymXr165iyWgIAAPvhgDNHRqbz00sscPXqU6tWr4+HhYT5fp9PRu3dv9u/fz5UrV2jVqhVNmzZlypQpjzSn6OhoatasiY2NDXq9/oH9du3aRWBgIAEBAebC0ACnTp1CUZS/PPdpy87W5dvJ7PffD/Dee714551XiI2N5cMPPyQ6Opp27dpx40YUVy/Hc/zoDW7FJRIXF0fx4sX5/vvvCQkJITY2lhIlivP66KYU8rtIpWa2lKtYHLsK1/l53wSGDx/FmdM3qVq1Kq+99hpgqgW0YcMGwsLCKFasGKqqMn78eE6cOAHAt99+S+PGjZk4cSI3b95k+/btvPrqq+Y1xs+aoiiULFmY+8sXKYqpiHmhF7zAfVpaDkF7r7Bh/Tk2bQxl5/arJCWaAmY6nYEzZy7StGkz+vTpQ4sWLcjJyQFgwIABeHh44OzsjIeHB7/88gsnTpxg1KhRaDQa9u/fz48//siCBQto27YtAQEBjB49+lneqhBCCCGEEOIJkEwk8dRZWVmQm6OnoNJHFpbaPMXAMjJyOXbsJpkZueaCYIULW+cJjuh0Ovr378/gwYNp2rQpPXv2ZNGiRbi6utKrV68Hrhu916NkWmRlZTF//nx27dqFVqvNc+z777+nZs2aj3D3T0+hQlbcuBHGjBmfoNVqcXFx48MPp9OoUUs0GgVv7xJoNBo2bdrMtCmLWPnLAs6fu4zRUJTtO3ZjaWmDpaUlDRs2JDIykrJly1KnTh1CQ0O5Gn6JL2Z+xqnLO3Fy8uHtgEFMmDyAOjW6kZiYjmosRGZmJpUqVeL48eMkJyebzw0JCWHcuHGAKUD4zTffUK9ePT799FPatGljXuIWHh5OvXr18PX1xcrKyrx7wdNmbW1B2bKOpKZmk5WlQ6vVYG9vjZ2d5QtdHDsrS8funWF56j5lZ+s5dTKSlJRsjhy5QXzCLaKjb/H55z8RGhrEtGlTOH78OGlpaTRo0IBq1aqRmZlJy5YtWbt2LV9//TXjxo1j2LBhNGzYEIPBwIgRI2jVqhVG45Nbvy6EEEIIIYR4NiQTSTx1iqJQqLANWm3et5+VlRZb2z+LIRmNRg4euE5aag4Gg2oqyG1QSU3NJiU521yA+8CBA1haWpp347p06RJ9+/YlICCACxcuEBUVVeA8VFUlNiaViIhkNBoLihYtaj4WHh5OYGAg3bt3p1atWkRGRnL06FE0Gg1t27alb9++5u0Sz58/j6urK/b29k/yMQFw/PhxGjZsiL+/PyNGjCiwT3h4OH369MnTZjQaGTlyKF9/PQ4bG1smTZoLwKVLZwHTVvdOToUAOLg/jI2bV/H+u9/w4cg5XLj4O9GxN3AoUozMjFyqVq3K2bNnOXHiBO+//z4HDx7EaDRiaWlJTHQKxYq6otcbsbKy5uDhLTRq2J453//ErVvxDBs27IHnAlSuXBkAW1vbAu+tZcuWBAUFPbMA0l0WFhqKFbOjTBkHSpWyp1Ahqxc6gARw6eIt9Pr89ckMBpXcHD0GoxGjUcXNzZOsbAPpGdbo9XrCw8NxcHCgYcOGVK9eHUVRKFasGGlpaRw5coQJEyaQmppKREQE4eHhjBo1ChsbmwcGkWJjY831ou7uqlejRo1/pQigEEIIIYQQ4p+RTCTxTGg0CoXuZBSpqopGo+T7UB4TnYZOl/9DrqqCUVWJjU0HoHnz5pQrV45vv/2W4cOH4+3tzaxZsyhdujQGgwFFUZg7d26eMa5dvc2WTRfI1RlQFDAaVOrVz1ugOSkpid27d7Ny5UrWrVtHyZIliYmJISgoiAULFjB//nzef/99vv76az7//HOCgoKe7EMC3Nzc2Lt3LzY2Nrz66qucPXuWKlWq/OU5qanZ7Np1iKxMI1u27GLBgsXs3bsRKysrSpVy4fvvJxETc4WiRR1ZunQZ27fvAxS+nv0+RYoUw76wI8WLleL69fMkJcUzZ84cNBoNycnJBAQEMH78eAIDA0lKyiQnx5CnwlVs7E1uRoRx8+YlsrLTOX/+fIHn3nX/a67VWnD+ZATRYQaMFqns27cPf39/unbtSpcuXRg4cCAlSpTg8uXLjBs3jnnz5pGZmcmOHTv47rvvqFy5Mu3bt2fDhg1cvXqVQYMG8eqrr5Kamkr16tWZPXv2E3x1XmxRkSn8VXKQ/u7OF3deIqPRFMh1d3cnNTWVY8eOkZWVBZgCss7Ozuzdu5c33niDjIwMihcvTtGiRWnevDnffPPNA4NIpUqVYsyYMQDmf0Nff/31vxKUFUIIIYQQQvwzkokknimNRkGr1RSY1ZGYlIXBkHfNm16v49MJg7h+/RI9enQyb6U4adIkLly4wKpVq5g6dSoDBw4kMDCQdu3akZmZd0v62Jg01q89S0ZGLrpcA7k5BvR6IyeO3yQ1Jdvcz8/PD41GQ5kyZUhOTsbBwYHGjRuj1WoJDAzkwoULXL58GQcHB/N29k+C0agSGZFM2KV4NEohrK1NhbAtLCzQarVMmjSJgIAAAgMDCQ8PB0w1nbp3746vb1VW/3KI1GQLUlJyOPl7JCF/HGft2kXk5qZRqFA2RYpoOHz4EK+88gpz5swlNeU2KSm3GfHOV3hWqELRoiV5/91ZuLiUp3RpD4YPH06NGjVwcnLC2toaCwsLGjZsSGpKdr5aQT26vcXI976hUcP2OBQpxrvvvlvguQW5fC6OmHOFeOvttxn30WesmnWGvi1m8OuaLezevZvU1FSSkpJYtWoVo0aNYsmSJezcuZN27dqxY8cOevfuzS+//ALAmjVr6NmzJwsWLKBnz54cOHCAzMxMjh8//sRepxedRpP/35xer2PK1CHcuBnGmDGvk5SUYG6fO+cz4uNvMX78eLKysjh06BAzZsxg6dKlpKSkcOPGDU6dOkXHjp2oUaMmdWrX5eOPRjN37jxCQkIYP348Op2O5s2b06RJE7p164bBYCgwk27jxo289NJLT+U5CCGEEEII8SBnzpzBx8fH/Kdw4cJMnjw5T5/bt28TGBiIt7c3np6eeX5xXaZMGby8vPDx8TGvwgB47733zO2NGzc2f67LycmhW7dueHl5Ub58eT755BMAkpOT88yjaNGivP7664Bpl+QKFSrg5eVFgwYNCAsL+1efiWQiieeWtbUWjUbJU//IwsKSiRMWotEoVKrsTIUKxalXrx4Ac+bMMffbtm1bnrEWL15s/vuhg9cL3G1LpzOSmpqNwWA6dm9gS1VV6tSpw4IFCwAICQnBw8ODs2fP8vvvv9OmTRvOnDnD0KFDWbhw4WPfc3x8Ont2XsZgNKKqKgoKhQpZUbpMDgkJCRgMBqKioggKCuLChQtMmzaN0aNHk5SUxIIFvzDnu0UcObKLtm16odfn8tbwTmg0WtavO8CKn2dx+3YUtWrVAqB27doEBQXhYF+Jip5V0Wi0+HrXYvuun83zmTrZ9NwmTpxobjt8+DAACQkZvDFwvPlZfjjyz+evKApTJs994LmQ9zXZ+Os2Rr+2Bpci1XCpXg0AvQ4S43KYPXY37du3Z/PmzebAnouLi/mHsIuLC0lJSbi6upKYmMjt27dJTk6mbNmyXL16lXbt2pnv98qVK+b3y4N89dVXrF+/3lzY/V6xsbEsWrTInDnzInNzL0bo+dg8gVoLC0vGjpmPolEo7lQIRVHw9a0OwLz5v2EwpPLRh69z6NAhMjIymDlzJuXKlcPR0ZF9+/Zh0Bv5IySEDz54n183rOebb2bx9tvDycnJYcqUKWi1WjZv3oytrS1jx45l7969VKxYMc+8bt26haIoODk5Pc3HIYQQQgghnnOrV/1Bbk7+lSqPy8pay8uv1PjLPlWrVuXixYsA6PV6SpUqRc+ePfP0+fLLL/Hx8WHv3r1ER0fj6+vL4MGDsbEx7eS8f/9+SpcuneecTz/9lFmzZgEwdepUxowZw4oVK1i8eDE5OTmEhYWRlpaGj48Pr732Gt7e3uZ5AFSqVIkePXoAps85I0eOxN7eni+++IIRI0awZcuWf/Rs/opkIonnVtmyjg857vBY40ZFpuRrMxj0LPxxFNExV2nZspU5w+leTk5ONG3alCZNmvDTTz/Rrl073nzzTTQaDUajkapVqzJv3rw85wwfPvyR55WTo2fX9kvk5OjR64wY9KblQ9HRcQwcOISFCxdy4cIFgoKCCAgI4M033yQ1NRUwZU1dvXwbx6IlycxM4/SZI9jZFWbmjDX07DGU2bO/wt7ensuXL5t3lQsODsbT05PWrZsSE3sDgJsRl3EqbvoBpyhQtbrLA+dbvLgdhQrn351sw8YFJCbF0a1Hq0e+94PbwjDel3WWq8/CaFC5HZfOjq17ad68eZ7A3v1BPoBOnToxdOhQOnbsCED58uXz3G+FChX+ch45OTmcPn36gcfvXXr1oqvoVQIbmwKKgytgX8S6gKWGCj4+5dizZw9FixalWbNmHDx40FyMXlVNf6pXq87uXXvZvWsvlatUoV279oBp2WpGRgavv/46TZs2Ze3atURHR+eb12+//SZZSEIIIYQQIp8nGUB6nPE2bdpEuXLl8PLyytOuKAppaWkYjUZSU1NxcHAw14B9kHvr8WZkZJj/31tRFDIzM9HpdGRmZmJpaZmnL8C5c+e4ffs2rVqZPm916NDBXAqicePGxMTE/K37+rskE0k8t+zsLKlU2ZnQ83HmbAlFMS3DqVKlNNbWj/f2tbLSkpWly9Om1VowaOAMtFoNQ4c1wL6ItTlj5W6xX4ARI0aYC1yHh4fTsmVLli9f/sBrffvtt488r8th8Rjv27LOYNAz/4dPebnHO0AhvL29adWqlXlcnU5HVFQUGRkZ9OzViKKOTmRlZ1CmTHlSUhL5I+Qwa9YtIDkpAbtCNnh7e2FnZ4e/vz/29vb8/PPPFClShHq/NmT6l29iZWXNkDcmodUq2Npa4u1T8oHzVRSFlq192LLxPDqdaUmgRqPQrcsQatR2pWTJR69pc/1SPLrcvD/E45Ivc/LqBiy0ljQLbIKzs/NDx+nRowfvv/++uQbW4MGD6d27Nz/88ANVq1alfv36+c65O3cray0LFy7ktddeY/z48YSHhzNw4ECKFSvG9evX+e2339Dr9YwdO5bly5fz7rvvEhISgtFoZMWKFZQrVy7f2M8zS0stLVt7cf5cLDfCk9DrjRQrbkc5t6JERaeaMwAVBQrZWWFvb0WJ4vbY2Fji4+PD7t27iYyMpF27dhQrVoxr166zbu16ypYtC5j+YxgXF4unpydg+g1JsWLFCA0NZd68eYwaNYpPP/2UlStX5pnXhg0b8mQVCiGEEEII8TxYuXKlOfvnXh9++CGtW7fG2dmZjIwMfvrppzy7ed/9ZfjAgQMZOXKkuf2dd95h9erV2Nvbs3//fgBee+01Nm7cSMmSJcnOzmbKlCmULJn3M9mSJUt46aWX8uxqftf8+fNp0aLFk7rlAkkQSTzXKlQoTrFidly9epv0tBzsi1hToUJxHB0L3s3rUVSr4cKRQ+EFLmkr4WSHfRHrB55ryqbIRaczkpOjz1P4uUKFCnz11VeAaVe1rKwsGjduzKFDh/jpp59YsmQJ6enpfPbZZ+ao8b1uJ2Rg0OcNIv0evIfr10NZ9ctstmybzzffzKRUqVIEBASgKAq9evUyj1WzRiMCAjpz/vzvlPfwZenSmaSmJmFnV5iiRUtw4MAO7O0LF3hfc+dPI/H2WD777At+XDyWoP0HeO314Dx9Fi9ejF6vZ9CgQea2Ig429OhVg+vXbnMrLg1bW0s8vZwoUsTmgc+wIMVLFkajVfJkI7mWqIpriarY2FkyaGRT3N3LmQN29wb2+vfvn2es1q1bm2tUOTo6snXrVsC0TO3u6wGmzK+bN5PJytZx+3Y8a1YvIyLiCvb29pw5c4bXXnuNxMTEPMXV782QmTZtGnZ2duzevZv58+ebdxh70qKjo+nQoQOhoaGkp6djYfHnj+2goCCCgoKYMGECf/zxBx9++CF6vZ4PPviA9u3bP3Rsa2sLatYqS81aZfO0ly5tT/iNJLKz9RR1tDH/ZiQ2Ng0LCy33xjrvFqBfvmwFv/66nuHD3wFg+47ttGjekjZtWnHmzBkyMjLYvHkzb7/9Nv3796d9+/bY29vnSbVNTU0lOTkZNze3f/LIhBBCCCGEeKKys7PZtWuX+fPevTZs2ECVKlU4evQoFy5coFWrVrRq1YqiRYty+PBh3N3diYqKIjAwkEqVKtGmTRsAZs+ezezZs/nkk0+YMWMGX3/9NQcOHECr1RIbG0tCQgKNGzemXbt2+Pr6mq+3fv16lixZkm8ec+fOJSQkhGPHjv17DwIJIokXQNGittSuXfbhHR9RnbquXAy9RWJipjmQpNUqaC00dOjo98DzMjJyCQtLQK83oiiQnQ2bNx/Gz8+Frl270Lx5c4KCgpg3bx4tW7bMc27Pnj0ZMGAAKSkp9OjRo8AgUqHC1igKeT6g16/Xmvr1WmNhqaFRYw/cPYrRoEEDxowZg6qqZGbqyMzUMWHCNNq0CSQ2Lop6dZuzd9+v6PS5APTvN5JNmxfRs+fLWFlZMX/+fJydnalfvz5Vq1bl1KlTTJgwgZYtWxKfEI5dIau/FQSysNBQ0cuJil6PX8OmaQdvDmy9hNGQP6VUo1GoXKfMQ8e4ePEigwYN4rPPPst37P5lanq9kctXEswZbsWKOeHsXJoKnt588813VKlShQ8++IBRo0aZi6tfuXIlz5hffPEFe/bsQafT5fmh/qQVK1aMPXv2mJeNPciUKVP47bffsLOz+8fXLFzYGm8vJyIjk/njj5NMmTIWrVZLlSrVGDt2Krm5enNfPz8/bty4wYwvvyA1NZUTv59g8U9LWLVqJRERERQuXAhn51KkpqbQqlUrdu7caV7zHRQUxOrVq7G1NQWFixQpkqdulhBCCCGEEM+D9evX8z/27juuyrJ/4PjnTPZGpgo4cAIO3IgIuffITMltWq60tOF+NMs0zbLc5l6piZITFXFvBUVFtoAge4+zfn+QJwkse9LG87ver9fzeuS+r3Pf13UfxPie7/X9NmrUSJ91/6xNmzbx8ccfI5VKadSoETVq1CA8PJwOHTrg6uoKlBfY7tmzJxcvXtQHkZ56+gHr8uXL2bp1K127dsXAwABnZ2datGjBxYsX9b9vXLp0CY1Gg4+PT4VrBAUFsWTJEs6ePav/b+tXRdREEv7fUShkvDWiOR0D6mBnb4q1tTFNmzsz5u1WVLOrOlNHpdIQGfmEsjINWq0OjUaHQmGASiUjLi6Xnj17cufOHS5dusTp06f1VfSfOnbsGH5+fvTu3ZtHjx5VeQ9392pVdsyC8i7rNWpY6r9Wq7XExmbx6FEu6emFSCSm/PTTBbZs2k9ExCXateuGl2cbPl24CVNTBY9TE9i7dy/jxo3TZ8ykp6cz4Z1p9Ok5mCFDhtK4cWOaN29OVFQUixcv1meIHDhwgJ49e7Jo0SIWLlxI165d6d69Ozqdjk2bNjFkyBB69OhB7969WbVqFb6+vrzxxhvY29vj5+dH586dycnJYf/+/UB5ceqnmUQNGjTgvffew8nFCuzucejqpxy6uoi0nGgUShkGhnImzn8NuUL260cC/JJdBFC/fn3OnTuHr68vAMXFKjKziigsLNNvU9NoNPj7+2NjY01Hvya8MagTaWkpJCc/YsuWNezauZGEhHgiIyOJiYkhMzNTfy/dM9G9zMxMQkNDOXv2LAsWLKhw7s96mu2WlJRLQkI2xcVaLCwsK4wZNWoUr732Glu3bgUgNjaWkpISBg4cSN++fUlLS+P8+fN8+OGHAGRlZdG3b98/NI/c3BJ0OnB2rs727T+ye3cwmZkZPHgQiU6no7S0PJAkkUiwtLRk0aJFDBs2HFdXV4KDD5GQkMCli5cJOXGKTp06YW1trb/208wmtVpNcHAwAwYM+C+fliAIgiAIgiC8ejt27GDQoEFVnqtevTrHjx8HICkpidjYWNzd3fVZ9lCecX/q1Ck8PT2B8rpGT/3www/62q01atTg5MmT+vpK169fp1GjRvqxW7durfTh8oULF5g4cSIHDx7E2fn3P3z/s0QQSfh/SaGQ0dy7OqPGtOTtd1rzWif338y+SUsrqBQoKCwsQKeDvLwSwsLOUrt2bWbOnMm6desqFSX+7LPPOHLkCEFBQVXuXQUoKMxi0eJRjB3ng1arprAon+s3TiOXS+kYUBeZ/JfXJSfnUlqqYe/e7T+vxwAjIxNMzIwYNKgfiYnXMTM3oJ2PKx06NqRFixYYGxvj7+/PvXv3KCwoRaNSsnbZefbtOYaFiTPGSifatyvfPztkyBB2794NlP+gKioq4pNPPsHZ2ZnRo0fj7OxMeHg4UF5w/KeffsLBwYGSkhLCwsJISUnB19eX0NBQjh8/XiGI5ODgoN+G1blzZ3r27AnApVvHuHbjCrOnLyMx/wzd3/Rk0eaBuHs6VHhOKSkpNGvWDAMDA27evAnAmDFj8PHxISEhgUGD3sC7RVtGjpxAREQaFy7G8dVXK5k1azaRkZF4eHjg7FyDQW8Mx7tFO0JCyre71a/fmDVr92Bv70jduvWwsbGhtLS0yvfKysoKU1NT/P39X2rnA51Ox6NHucTHZ5OdXUxeXinJyflERaXrv/+uXLmCTCYjJCRE/49NWloaDx48qBAobNu2rT6V9eDBg3+oWHVCXBZ7tt1k05orHA16xLVLKRQXqZBIpHzyyVRu3bqOs7MDAwcOpKCgACsrK8zMzJBKJSjkcu7cvUPHn7cbSqRw7txZLCwqF8KXy+UMGzas0qcxgiAIgiAIgvBPkZ+fz7lz5xg6dKj+2JIlS1iyZAlQviPg8uXLuLu707FjR+bPn4+joyPJycm0atWKevXq0axZM7p06aL/8PT999+nbt26uLu7c/LkSX1N1xkzZlBYWIi7uztNmzZl6NChFbpLBwUFMXz48Arz++CDDygqKmLgwIHUr1+fgICAV/o8xHY2QXgBeXml/DrZ5PbtK6xZsxSl0oAOHdpz/PhxHj16RO/evYHyejVP9ezZE19fX1q2bImlpWWV97C2tub8+TP06tWHevXtiItLICb2Ep9/8R7Gxr90QVOpNBQVlRcG379/J/37D6GwsAATE1N0Orh46SLvvTeB1avjsK1mgoWlO0+ePEGj0XDr1i1cXV3Z8PUF8vNziXwYRllZGanpMSjkRmz69gKlpaVMnTqVEydOsH//fo4dO0a1atVYv349fn5+XLp0CWdnZ7Zt20ZQUBA6nY7hw4fj4OCIrW1Nrl1LwtDQgjNnwqhWrRrm5uaUlZVRXFyMn58fP/zwg759e1hYGO+//z7NmjUjPDwcy2pKPHwsUPxYSq/Apvq6R7m5udSsWZNVq7aSny/hhx8O0bWrH8OGDWP+/Pk8ePAAd3d3evbsiVotoWVLPyIjb7FmzRcolUri42OJjY3Czs6Omzdvkp+fS0FBHs7ONcjLyyEtLYVbt64ik8kYN34ae3av58yZM5SUlCCVShk2bBizZ89m8uTJ2NvbI5VKCQ4OJj4+Xl9o+1knTpzgs88+Q6vV8uWXX9K8efMX+j7LySn5+Xvtl282nU6HSqUjMzOH9u3bk52djZNTede85s2bc/HiRSwsLGjRogX79u3j22+/JTo6mk8++QRPT08GDBhAaGgodevWpXnz5vpPP54n6n46O7dcR6Uq3+qp1WqIupfO1cs3yM7KYtGi5Wzdup4NG9YTHx+tb03q5+eHu7s7r7/+OqGhochlcpDA9evX8fT01O/bdnV1rbK2lSAIgiAIgiD8FqWB7KV2aFMaVL3b4dfMzMz0GUVPTZ8+Xf9nV1dXfd3VZzVo0IAHDx5Uec1jx45VedzCwoIjR448dy5JSUmVjl24cOG5418FEUQShBegUFTOHmrb1p+2bf2RSiXUrVte7Hv27NkVxjz9YTJnzhzmzJlT6RrLli1j3759nDhxGrlcgZWVIXK5lJatXTj003pOnjqMk5Mdnp6e9OvXj/3796PR6Hj//flERNzk4cN7jBjRjy5derF//06USiXe3q3x8fFh0aJFDBw4kLVr1zJ27Fh9Me4PPvgcaxsnHLbb8zjnJkmPE3Ct3pQnmbFs+3EeBQUFtG/fHgsLC+bPn8+gQYNo2bIl27ZtIysri9LSUmQyGRcuXODjjz8mLy+POXPmYWlZEwODHCws8lCrJcyZs4ZWrbyYN28iAwYM4PPPP68QWLt27Rqenp7Y2dlx8uRJWrVqRePGjVGr1fofnKGhoeh0OmZM/w9lKim3bqaABLRaNRkZWbRp056EhASys7NJSEhg1Oi3uXjhBjqgbdvXCDq4DWdnVwwMDNHpNOTl5XP79m2Ki4u5FxlOu3b+3LhRsfBcx45dmDhhGN9+uxJPT09MTU1p1KgRx48f59KlS2zZsuU3v1eKi4tZs2YNJ06cqNCV4UVkZBQ+d2ucXK7g8OGjREXdJzAwkIiICH0mVt26dUlNTeXbb79l2bJlLFmyhMWLFzNw4EA2btyIj48PS5cu5aOPPmLfvn3Pvb9OpyNoX4Q+gPRUUVE+QT99w8yPvyI6OorLl8/TrVt53S9HR0cA4uLi8PLyoqSkBIlEQtqTNDZs2KBvTdqqVSukUinLli2jTZs2f+i5CIIgCIIgCMKgwU3/7ikIiCCSILwQOztTcnJK9G3PnyWR8Ie7kQEUFRVz4cJViovVJCTkoNPpMDRU6IMI7dq1Y8+ePcTExLB69WpWrlxJREQEaWkZDB06jG++2czBgz+wadOPALz55igATEwUyGSyCtHtwYMHM2jQG9y6nUJJiRqJRIJcLqdb9wGgk9CyaQ/2bN1HakYM4Q+O0LNnIBJpMFu3bmXy5GlkZqahUCi4f/8+lpaWyGQy7t69y4cffkhxcTGurvVIS8vj+vULLF7choiIq7z++niePCmhQ4dOnDlzBisrqwrr37dvH7169cHAwKA8Gyo1ldTUVG7fvk23bt1ITk4G4NKFeI4dP8wnn3yFWqNi1qzRZGWlk5+fx6JFK3FxccHY2JgpU6agUFhQUlJemPnu3esoFEqaeLUiMSEaK2tb0p8kY2FR/klCbm4OH3/0Lt27l+8pLikp4f33x3D92iWcnV0xNjZk8OA3CQ4+hJeXFz/++CONGzdm/fr1zJw5k6CgIKB8e93AgQOJi4sjKCiIqKgopFIp3bp1w97entWrV2NiYvJC3xNVdQwsLCxm4sRAYmMf0q9fXxYv/hydTseAAQPIz8/HwMCAxYsXs3z5cmbNmsXHH3/M+vXrGTZsGF9++SVDhw5l7ty5KBSK3w1qZaQXUlSoqnBMq9UQdHgp/h1GkZkOXi3q0qVLF7777lsAVCoVKSkpNG/enOLiYtq2bQuUb1ucOXMmLVq0oKysjJs3b/L48WMmTpzIjz/+qL/+3LlzOX78OCtXrnzhjC1BEARBEARBEP4eIogkCC/A3NwAGxtjMjOLKgSSyrOQbJ9bEPtZ6U8KuHg2jsfJeVhZG3PlZjDduw9k5covePQogdmzp2JhYcm1a9dJTHyEvb29vrZSTEwMqampdOzYkZSUFFJSHjNiRD9KSoor3EMiARubqgMWmZmFqFTaCvWaPDyaczBoJ337DiWnMAmJREKDei1JTSuguFiNk1NNEhKzWPblf+jcuTO1a9fm+vXrrF27lhMnTnD69Gl27dpLSYkply6dwsDAELVahYtLXapXd6OkpJTPPluAoaGSJk2aAOUFrxMScjh48Ai9e4/h9u1ULCwkSKVSlEolZmZmqNXlRZtzc4u5/yAeiUSChUV5YebFi7eycuU8UlN/4MiR/cTF3cPc3Izbt28zc9bnfPXVl0RF3aFJk9Z4ebXkTNgRbGzs0KGjZ8/+3L9/CyMjIyZNmsTRYyepUbMmGrUatVrFJx+v4MSJIHJzs/Hyasnu3WvQ6XScPn2a3NxcfTv7nTt3sm/fPvr06VPpmJ2dHY8fPyY0NJS1a9eyZs0apk2b9kLfZwYGctQ/d9XTqLXExmRSkF/ClIkrADA2VlBWVkK9evX0tZhWr15NZmYmY8eOZf369Rw+fJgLFy6QlZWFVCrVp7y++eabTJ48+Tfvr9Xq+FU5L+49OMvj1ChOndnEmXMStgR8h7OzEx06+KHV6ujTZwB167pTVlaGiYkJt2/f5sCBA3h7ezN58mRcXFyQSCSUlpaSk5ODjY0NUL6VrV27dnz99dcsW7aM5cuXExERwRdffEGXLl1e6HkJgiAIgiAIgvDXEkEkQXgBEokENzcrrK2NSE0tQKXSYGqqxNHRDENDxe++/m7EY/Zuv4VGo0Or1REfl8GRI8dp0aynfkxeXi7r1/9A374d2LlzD2+99SZqtVrfztHHx4e1a9cyePBgrl+/SWpqMW+80eOZOYKNjTGmpspK9wfIyi6uEABbvaZ8W1NxSTFdunggQYqTXQOcXauRkBDNmjVf0LBRU7p06U9GxhO2bvmWkydPYmBggIGBASYmJnTp0gUjIxN0OiU2Nva4utbj3LmjmJiYM23a68jlSjp37s/774+lZ8+e9O8/gClT/kNGRiYODs4olYZoNFpycsDc3BIfHx+Ki4v1a06Iz+ba9TBat/6lOJxKVUZq6iPq1GnIwoXrmD9/DEqljNLSUoa91Z+aNWvT3NuHzMwn9O8/nAnvDqB6dTdkMik2NmZkZGSQlZXFzp07mTRpElevXuXLLxfg5lYPrRZsbR1ISUmkdu2G1KxZl/37v6dx48bY2trSsGFDpFIpzs7OREdHA1Q6VrduXXx8fJDJZPj7+7N06dIX/C4DOzsT4uPL0Okg5mEGhYXltbieZqelpqYza84Mjh47CKDvBrhr1y4kEglz5syhe/fuNG3aFHd3d/11v/rqKxo2bFipFeivVbMzRS6XUlb2y17zRg38aNTAD6lUgnfLGvj4NKZly9a8Ffjuz0Gn8qhT5N1HDBnSB5lcQt++fRk8eDBXr16lW7duPHnyhPr16/PkyRMaNmxI586d0Wg0qNXlWXHvvvsuDx48wNDQkPHjx4sgkiAIgiAIgiD8Q4nubILwgspbmRtRv341PDwccHOzfqEAUmmpmr3bb6NSafVBnIjIUzSs14HI24/R/LyFyc2tDm+//QapqSmsWbOKffv2odVqadSoER9++CESiYTGjRtz+vRpPD0bM2HCEGrXdmX69DFkZz+iVi1r7OxMAbh165a+aLGbmxtfffUVUqmEZV9Wrsv08cefM2XKPJyd6pCW+ZDuPfrj4lKHrVuPM336pwB07/461tY27N69G5VKRWBgIIGBgdjZ2XH27HnKykqxtLShQYOmHDjwPf7+ffjyyz0sWrSJGTPmYmVlhb+/P199tQFTU0tcXWvzxRdr9XPQasHOzomwsLMEBQVRvXp1ADQaLZcunaRNG3/92O+++w85OZkkJycwc+YYFi78HIBNmzbx3bfriI+7x/Fj+2nUsBm2to7UqlWf1m06Eh19j7jYGIKCgujUqRMnTpzA3NwctVrHnDlfY2trr7/H06BNYOBE6tRpgI2NDR07dqyQxfV0zK+PtWjRgnv37unfBzc3t9/9HnnK1NQAR0czSorLKCwqq1DMXaNRs3b9XN4YNJn8PBlpaWmVugH27t2bM2fO0LdvX9q3bw/A8ePHuXDhArNmzfrd+0ulErr2bFCpBphEAgqljPb+tdHpdCQn5VQIIJWvHdSa8u/xy5cvY2BgQEBAAC4uLty8eZOHDx8SHh6Ovb09gwYN4smTJyxcuBBPT09atmxJrVq1cHJyIjs7+4WflyAIgiAIgiAIfy2RiSQIf0BKSgo9e/YkMjKSgoIC5PLKf4V8fX2RSCSkp6djY2NDcZGapEepVLNxpU/3DwDIykomLT2WoMNL0WjVjB07CFfXuqxf/wNXrpznzp2r1KtXj+HDh7NgwQJCQ0NxcXFBpVJx/PhxYmJikEqlaLVapNLKseAmTZroi1j36dOHnj17YlvNlA+mL6hU1yk7K5PwiCts2bSfz5fOpKiogLVrl/L22x/w3beLuHz5LHKFHHNzSzp37oyTkxPBwcG0aNGCiIgIevfuDmhp2LAp7u4eJCXFUa+eFypVGfPnj8PS0giFQsa3335Lbm5Jpbmq1SomT36LqKhIOnfuzOLFn+vPmZpBQX4edtWcAUhPf0xY2BHq1GmIm1s93nhjDJ06+dK5c3kBc0cHRz7/bAmhZ0Lp2qUbH0wfTt++gzl2bD9yuYwn6emVghTPqWNNWVkpb7zRluLiQnJz0+nRo0fVA3+lWrVqdOjQAV9fX4yNjdmxY8cLve4pGxsTMtILkUrg2d4TV6+dJC4ukl17vuHHoFUMHNizUjfASZMmcffuXVxcXPjuu+8AmDRpEubm5nTs2JF69eqxZs2a37x/sxbVkSukHP/pPvn55ZlQLm5W9O7fGCsrI1KSc9HpeO4WTrVaS3x8PPXr1+fBgwd4eXnp6zF98cUXnD9/npSUFEpLS/VBqKqCc4IgCIIgCIIg/PNI/q3/we7t7a27du3a3z0N4f+ZkpISiouL6devHyEhIZWCSBqNltycQnLzshg+/C169epFu1YDGTioMzZW1fVBpKc275qBgaGc71at5+uvF7N48bdcvXqehw9v8sknMxk06A3SUp9QVqamZYu2NG/hyaRJ4zA0NESj0dCyZUtu3LiBh4cHd+7cwdnZGScnJ0pLSzl27BjLli1j27ZtPHjwgB9//JFJk6bwxhujkUik9Og5iPenjaBjx+4cO3KIuIS7WFra8v77C9i06RtAR15eDgMGDCcvP4fDP+2mQwdfbt++TatWrahZsyarVq3Cw8OD6tVrMHr0HPLyStDpyjNXdDrw8nKkRg1L/Xrv3k2jpERd5bOVSiXUq1cNY+Nfsrt0Oh1HfrpHUZEKY1MDoDzg8LR2T7t2LlhYGOnH5+eVUPqc6wNY2xpXCrpptTrOnIlFo6m6aHqNGpa4u9s+95qvQmJCNmfDYlGrKhfaBqhd1xaf9i+e4fTf0Ol0FBepkMmlGBj88n1+4Xw89namyBUVi3SrVCqae5dvoXN3r0uNGjUwNjbGy8uLo0ePkp6eTkpKCps2beLx48d8+umnREdH4+fnB/zSydDHx6fKFqmCIAiCIAjC/y/h4eF4enr+rXMYNGgQISEh2NjY8PDhQwCePHlCv379SEpKonr16hw4cIBq1apVeF1RURGtW7emtLQUjUZDr169WL58+W++Pi0tjd69exMREcHrr7/O5s2b9dc7d+4co0aNoqSkhICAADZs2IBUKmXJkiWsW7cOqVSKiYkJ69ato1mzZn9ojVU9Z4lEcl2n03lXNV5kIgnC78jNLSEpOZfiYhUKhQwnRzP9uejoaIYNG4aBgQH167WgeZN+6HRw7vwh0p/ksXXrVu5ERIEE8gsyWbPpHcpUJbw16DMsLRwoKc3H3KIa69d/w3/+8yUSiYT8/EyOHz/G4cNHeXPQB9jauFCmUrF+4zxaeg/AvW5jDgT9QIsW3qxYsYK+fftia2vL6tWrWbBgARMmTOD+/fscO3aMatWqYWhY3jlu79692NlVw7NRd75d/QG3b1+jb9+R3LpxC7nCjLkzDvL9rvfYvXs9+QW5bNt2guDg3UiQcP7oSd56K5BZs2ZRvXp1LC0tATA0NCQkJIR33nkHhSKNdu28yM4uRi6X4uBghuJXgQYbG2NSUvKqzP6RySQYGVX8kSSRSOjUpR6XLybw6FE2x07s4vLlk6z8Zjdt27lgZFSx/pOxsfK5QSQDA1mVWVtSqYTatW2Ijs6slKUlk0lxcbGs8nov27NZbrk5ec8dJ5NLqVevWpXntmzZwubNm9FoNHz66aesWrWKbdu2VRjzvCBNSkoKtWrV4s6dO9SpUweJRIKxSeX6WpnpBTg4mFU4plKpGDFyEACNG3uxbNkXrF69msTERCQSCf7+/kyZMoWuXbuycuVKatSowYgRI/RB2GfnIwJIgiAIgiAIQlU+GLqLwvyyl3Y9EzMlS7cP/s0xo0aNYsqUKYwYMUJ/bO7cuXTo0IFFixbxySefMHfuXP0ugKcMDQ05e/YsFhYWlJaW0qJFC06dOoW/v/9zX29kZMSCBQu4ffs2d+7cqXC9d999l1WrVtGxY0f8/PzYv38/AwcOZMyYMUyfPh2AHTt2MGXKFM6ePftyHtBziCCSIPyGx6n5JCbm6IMLKpWW2LhsiotV6HQ6QkNDefvtt3Gp3o6HUemoVFqyslI59NMGiksK+fzTXTxKOUNpaQG5uem0bN4H1xpeXLi6l+6vTWTs8GWMHO/HqlXLCQrawXvvTWbLlrWsX/8j165E8vU385n07lIuXT5KqxadkEoVqNQ6YqKzqFevHocPH6ZOnTp4eHjg5OREnTp1yM7O1teWefqDKzMzk5ycHIqKtKSlFlDbzYeQU1vp7D8VjSaCWm5eaCXg5lqHrOxMTIxNkckkxMVFUa9eQ0yMlURERGBqaoqFhQWtW7cmMjISU9PyGkxNmjQhOjqa1q1bY2lp9NznWa2aCRkZhZSVaSoEkiQSCS4uVhW2NT2lUMjw8a1FQUERh4IfY21tRMBrdau8vkwuxdzSkPzcEvSX14HSQIapueFz51WzpiUymYSYmCzUai06nQ5LSyMaNKhWIQvnVbK2tubkyZP069cPmVxKB7/ahJ6KQavV6p+VXC6ljrst1X6ufQXl2W8qlZaMjFTOnDnDyZMnAYiPj/9D9//qq69o3br1744zMFSQk12MlbWRPiinUCjYvu1HNBot1tbGWFoZ0bx5c+RyOYsXL6ZmzZqYmppWGSASQSNBEARBEAThRbzMANKLXq9r1648ePCgwrGjR4/qS4eMGzdOn1n/LKlUioWFBQBlZWX6hjK/9Xpzc3M6d+5c6X4JCQnk5+cTEFDebCgwMFAfRLKystKPKygoqPL3qZdNBJEE4TnUai0JCdmVsma0Wh0qtZb8/FIGDRrEJ5/MZtW3O2jh3ZlGDdtgbe1A506BJCdHczB4C2++2R+5Ygu6Eg0+rQcglUgIu7AVK2sjAkf5Yu9oxtixgSxfvpzS0nycnGogl8uR6MwpKioEIDUtgUePHnIqdB8pyXHs2rmX9PR0AgICOH36dJU1ZdRqNffu3WP8+PGMHz+eXr168cXi71CpSrhy9TBeHn5cu3EUnVZLyJkt3Lp9EoVCy7Dhg1m58ltmzxqLjY0NLjUtsbe3w9PTkzZt2pCamkrfvn2JjIxELpczYMAAlErl77aPh/LMngYN7Lh69Q49egTg5lYXQ0MDjh07hsmvsl6yMgu5fCmR4EMHcXdvQnTMeRo19iDq4X2g/FOBxMREXFxcqFGjBg0aNCAjI4MJEyaQmPSQ9es28MWSpYwePYKUlBScnZ3ZunVrlXWsAJydLXByMqesTINMJkUuf7V9B7Kzioi8k0ZmZiEGBnLc61fDxdVaf97ewYR1Gz8gN7cQYyML5s39GiTprPj6S3a03sGbbw6ho98g7t+LJujQJkpKCqlZswYBAQE0bNiQ9957j+TkZPr06UNaWho7d+7Ezc2N/Px83nzzTaKioli9ejUtWrQgPT2d/Px8XF1df3fejT0cCD0dQ8NG9pj/HJgr/56TkJKcQ63aNgCMHj2auLg4zM3N2bt376t4hIIgCIIgCILwl8vIyMDFxQUAFxcXMjMzqxynVqtp3LgxiYmJjBgxgo4dO/6h1z+VmJiIo6Oj/msXFxceP36s//rzzz/n22+/RaVSERIS8qfW9iJEdzZBeI7s7OLnR3J18CS9EIVCwaQJMxkxfBaHDm9Ao1Gj0+mo5eZBbl4mcpmS8+evYGhoSLVq1tyN3ko9Twmt23ox8YN2WFqXB07Onz9P7dq1qVatGgkJ8RQXlZKenoKRkQkAA/tNYOrkr+j82mA0GjWhZw5hZGSEvb191fMD7t27h7+/P6+//jpHjhxh4MCB6NBx9PgGOnZ4k9f8h3PzVghNvAJo6hWABAmODs5Mnz6dUaNGUlRUwJMnqfTv35/Zs2dz9OhRXFxcaNSoEUpl+by9vLzIycnBwMCANm3avNBzlcmkODiY061bF65du8C5c6crBZAy0gs4sO8OjxJyuHkrjJycLC5eOs/Vy9EUFRZx5coVZDIZISEh1K5dGyjvTPbTTz8BsGfPHoYGDuHw4UM0atSIsLAwGjVqxL59+35zbhKJBAMD+SsPICUn5XDi2AMSE7MpLCwjK6uIq5cfcS4sVj9GLpdz9Ohhbt26gn9AKySyJDp38cXNzY2xY9+mpNgAU+MaXL5yiknvfoZP2x5IJcYs/WIzxsbGBAUFkZqayr59+1ixYgWLFy8G4NGjR6xbt46DBw8yf/58oDwLaeLEiS80dydnCxo2tCPidgo3rj/i4YN0oh6kc+tmMs1b1NCP27x5M2FhYQQHB+u3VAqCIAiCIAjC/xdyuZz79++TmJjI9evX+W9rOldVx/rZ31M/+ugjHj16xPz585k7d+5/Pd8XJTKRBOE5NM9sI3pKrVYxbepwoqMjGTnidfr27cEPP/xI+pMcWnh3Jjc3g01bFyKRSMjMekxBQS5FxU7Y2tpiZmZGfEIM0z4Yw/nz58nJyaFbt26YmppiZWXFtm3bkMlkjB//LqPH9KewoIwhg98nNu4ue/auQCKR4epSn5UrTmJiouTNt5oDcOLECf38qkqlzM7OpkuXLpiZmWFqYkKvHhP0P3TGjloKQM/u76DT6ZgwuR1KpZJPP/20wjVatWrFjRs3Kl172LBhvPbaay/0PHU6HQUFZeTllfDkSQGnT5+mffv29O/fH6VSiYuLC+7u7rRu3ZqN686w/8Aa6tfz5m7kJR5G36JObU/OnQ+moDCX+fPn67ulNW/enIsXL2JkZISdnR2JiYlcvnyZRYsWsXjxYn1hOW9vb65fv/5Cc/1vPVuTaPv27cydO5f79+/zzjvvsG7dOgAePHjAW0Nn4F63GXcjr9KyhT9Qvi0tLTWf0tLymk6FhYW8/fbbJCcnk5aWRt265Vv4xo8fj5ubG18vD0ang769R3Pg4AaSkmNo4tmOB/ef0L59B27fvomHhwdyuVy/3RCgTp06mJqaYmpqSm5uLjk5OTx69IhGjRq98DqbNKtOrTq2xEZnUlqmxsHBjBo1rZ7bsU0QBEEQBEEQ/lfY2tqSkJCAi4sLCQkJ2NjY/O749u3bc+jQIby9vf/w63+deZSQkICDg0OlcWPGjOGDDz6odPxlE0EkQXgOc3NDfZexp+RyBV9/swOpVIKbqxV2dqa89977bN5wFY2mvJPWtCkr9eMVCimvdamHq5v1ry8PUGVgZty40XTs2IeYh+mkpuSRnZ3B++99g0JhwLqN83icGkv/Af4vtIb79+8zZswYFi1axNChQxk+YigSjbRSAWmdTkfduraYmFYupPwyaDRaIu89oahIVb4dUGXAtu0ncXOrxoR3hzFjxgyOHj1KRkYG3t7e3L4VzqOkh/ToNpJGDVsjk8vJykpFIpWBDlq2bMnt27cBuHnzpv4+Q4YM4f3336dly5ZIJBJq1arF9evX6dGjB9euXaNOnTqvZH0AycnJFWoSQXnA6GnNn6FDhwLQrJk3Hh6tyM7K4uq1U/ogEpRvoSwuVgFw7Ngx3N3d2bFjBzNnztR/AvHRRx8xaOAYPp41BAcHF6rZOjH4jcls3rKYS1dOYO/gzIGgNZiYGP/87DXcvn1bn7EVHR1NYWEhubm5mJub8+DBAx4+fEjXrl2JiIggKSnphdJgzc0NadLM+SU8OUEQBEEQBEH49+jSpQtr1qxh0aJFrFmzhq5du1Yak5KSglKpxNbWlsLCQkJDQ/UBnhd5/bNcXFwwMTHh1KlT+Pn5sW3bNiZNmgTAnTt3aNy4MVC+G+PpNrlXSQSRBOE5jI0UmJsbkJtbUikjSS6XYmNb/ku6gYGcVm1qcuVSImq1tsIYO3szarpY8UdIJBKqO1ugUmkoLlIBtvqW9nK5DBcXayZNGYqtrS0PHz5k9uzZrF69mqKiIo4dO0Z6ejojR47E3Ny8Qi2clStXcujQXtTqffTq/hFymSE6XXkb+4aNHejes36FecTHx9OqVSsaNGiAUqlkz549nDp1iv79+wMQEhLCvHnz9ONv3brF9evXGT16dKU1xcRkUlhYpn+OCoUBCgWkpRXh79+ZpKQkIiIiyM3NZcqU99i5LRSdTotMVv4jqstrgdjZVefQT+u5fvM0c+fOZcSIEQQEBODi4kLNmjUBCAgIYPjw4cyaNQuAfv36ERgYiK+vL46Ojnz44Yd/6L34PXm5JUTcSqGoSMXV64dRqzX6mkSmpqaEh4fTs2dPgoODAYiNjcXGphqGBsacPL2eiDuXWfDp20yZtBhjY1MWL51MQsJ9unTpwpw5czh48CB79uwhIyODL774ggMHDuDi4kIHn6FkZuVSt44nW7cvJSkpBolEgrOTG99/vxg/P3/GjB3B5MmT6du3L+np6Wzfvh2AGjVqMGrUKKKjo/nuu+9o1aoVFy9eBGDEiBH6ZycIgiAIgiAI/9/16tWLS5cukZ2djb29PR9//DHz58+nb9++uLi44OTkRFBQEFD++9Pw4cM5c+YMjx49YsSIEWg0GnQ6HX379mXw4PJOcM97PYCzszMFBQWoVCqOHj3KkSNHaNasGatWrWLUqFGUlJTg7+/PgAEDAFi2bBlhYWHI5XIsLCzYvHnzK38mIogkCL+hnns1YuOyyMgoRCqVoNXqMDMzoE4dG2TPtIv3auqMhaUR1y4nkp1djKGhnMaejng2cfrDW3yiHjzh0oUEpFIwNlFiZVMerCpTpWJiqsW3YwOWf51NSEgIu3btYvPmzRw/fpxFixZx7NgxmjVrRmpqKidOnOD69essXryY1atXs2nTJoyNjVm/fj0aTQLdug5CrdLi6GSOkbGiwhy0mvIOZZ06ddK3iI+Pj2f//v36INKvlZaWsmHDBjZt2oS3tzfLly8HQKXSkJVdrA8gbd26iksXTwMSvlm5k9OnzzJ79nSkUik5OTm89loA7035kDq1mwIgk8nQ6jQ//1nO+HEfAbBp0yYAQkND9d0NABo3boyXlxdQ3jVs9+7df+j5v6iLZ+M4cvAeUJ5BdPnGbbJzHnHm7E8s/HQuLVq0wMPDQx9AAti/fz8DBvRHq9UR0LE/mZmpTHhnof78nJmradjYgcYe5YXzLl68yNtvv01MTAwjRoygrExN8+Z+ZKQXMmrEDNRqLffuX8PXpxfHQ/Yw9M332LJtCUEHf0Qi0bFkyRIOHTrEwYMHGTRoEM2bN8fMzOy5z2TTpk0sW7aM/fv3V9k1LTU1lQ0bNjBz5kx8fHxEZzVBEARBEAThL2NipnypHdpMzH5/F8ahQ4eqPP70Q9hnubq6cubMGaC8HMi9e/eqfK29vX2Vr4fy3Q1Vad++PQ8fPqx0fOPGjVWOf5VEEEkQfoNUKqFObRtcXawoLVWjUMhQKmVVjnV1s37utrUXlZqax+WLCWg0WjQayM0pAaC4OI+162dx9NhBSkpKaNiwIVKpFCcnJ336opOTE9nZ2QCVauFoNBqmT59OREQEeXl59OvXr8oMqUeJ2Vy5lEhOdjFZWY85evQEbdu24/XXB5Kens6JEyfw8/Pjhx9+0L9m8uTJtG3bFqVSia+vL4GBgXTs2JEzZ87g5eXFN9+sRiqVoNHoiIy8TXFRIUOGjOM/C6bSuZMH5uYW1K5dm6ZNm+qLdFtamVCnjicADRu0YseupTRv5k+D+s05emwLSFKZM2dOhblnZWUxYMAAxo0b96fegxeRGJ/N0UP3K2aeyYxwsKvP9u+v4+/vX2XhvEOHDrF//34e3MsjPSOl0nmJVEpZmYab15OwdzBj/49bGT58OHPmzOGrZds5dOgI3buN4crVo2TnxBMRcZEyVSnduwYSHnERExNTboef46efDmFiYkJWVhYAixcvJiwsjJycnCrrZj1VWlqq3yZYFQcHB2bOnPkHnpQgCIIgCIIgvBxLtw/+u6cgIIJIgvBC5HIpcvmrqRf0rPCbKRUCEwAajZrVa+fSr894rK1tSUlJqlCN/9k/P62bc+fOnQq1cG7dukVhYSFhYWGsW7euygh3THQGZ8/Eovn5/mZmNiyYuwsTEyN27JnPF18sJjExkc6dOzN48GAiIiLo06c/CQlJDHx9KrdvXSY/X0XdunWpWbMm6enpHD16lJs3r3Lh4j1u3rzM2bDjlJWVERJyEEeH6mzafJgtm1fQvHlzateuTWBgIABXr14iJTmX82fjaeEdQAvvAGxsTWjX3pXPvni7wrz9/Pz0gZHTp0//+TfhBZwLjUGt1lQ4Vt2xAbfuHCMlOZfHGdep16B2hfOpqakolUpsbGxo1caKrKwn6HRaFIryGlUKpQytFmKiy1t8Rkc/Yc/unwgJGU9ubgn37z9Bq9VRWqpBo9FiblaTie++zrer3+fW7XNoNCoWL/6UW7e7MWbMGAIDA3F3dwfKs7lMTEwwMTHB1tYWKP9eSUrKJTo6k6IiFQqFlLNn9xMY+Bbz588jNDSUkJAQFi5cqM/68vPzY9asWfrsNEEQBEEQBEEQ/n95tX2sBUH4Q7Kyiiodu3rtFHHx99iz91s6duxYoTL/89jZ2dG3b18mT57MjBkzqFevHtHR0XTt2pUrV65UGq/V6rh0Pl4fQAJQKJQolUZoNBK8PNsRHBxMUVGRvni0QqEkJiYBC3M7zh97yIUTD7l5KZHxw5cTF5fA+fPnUalU3L9/j40blnP48F5KS0vx9e3M6jX7yC/IIyrqDlFR4QQGBrJx40ZOnToFlG9RW7tuOa8P9mLYSG+GjWpBv4Ee2Nmb/Ymn+/I8SSuoVCfL3q4WcrmSrbs+4vKVKwwcOLDC+aCgIPr06QOATCalWw9vjE20bN42DxdXY3Q6KhQ8P3X6EG1ad+bK5UQK8kvRqH85p9GUF9/OzS1BIVfQrn1dTEyMaNqsLiNHjsTDw4O+ffvSvn17ALRaLUVFRaSkpJCRkQHAgwcZ3L2bRlFR+bWKi0sJDT2DicmrKz4uCIIgCIIgCMK/m8hEEoR/ECMjhb4711OtW3WmdavOyGQSBgxqgomJkjZt2gAVs3BGjBgBlNcuql69eqVskd+qX5OTXYRaUzEDqqSkEFNTM2rVtiHop9sMGzaSffv2Y2pqhr+/PzqdhGZNfTlwYBupSXNJz0qghmMjDh37Dnub+nTs2AmdTkdISAj5+Tl4eTbnQVQkp08fYfiIiVhZ2jBj+misrCx48sSVqVOnUlJSUmluSoN/3o8p22qmPEktqHQ8wHc0CoWUiR/4olQqKzzzX2+zk8lknDhxHIDjRx+g0VSMSqWkxHMx4QHHTuwl7Uk8cQkR5BeUb0+7/+Ay6RmPuHTlEKUlRXTu3Fm/vW/SpEncunWLzZs389133wEwY8YMfH19adKkCfb29pSWqomLy6oYtDp1kA4depCXV4pKpamU4fbs14IgCIIgCIIg/P8kMpEE4R+kYWMH5PLKfy0lErC1NcHE5M9vqduyZQsBAQH4+fk9t3AbQExsOO9O9mfqB2/i5OREyxZtyM7O5uTJk6xcuRGpVEpuZilarQZ729q4u7YhKu4y9Wq3pYZjY0YOXE6dOnU4ffo0JSUlXLt2AStLC0xNTfjm67nodGX8+OM+5syZQ40aNfj444/19Xh0v07zeQmet+7Q0FB9l7m5c+fSpk0brl+/Tvv27fH19WXIkCFoNBW3rvn41UKhKK+NFRF5ih37ZrL9h48pKMzE3tGManamVV738uXLtGnTBlNTU6Kjo/XX+3XgECBw6HvM/GQVc2atwsHeFT/fIeTlZbJ56ycYGprg5/smbw6aRa1ajalVq5Z+69o333yDl5cX33//PUZGRgB0796da9euMX/+fCwsLEhPL+TXMaHk5DgOH97FzJljuHfvHmFhYfqst4iIiP/+wQuCIAiCIAiC8D/jn/cRvyD8P1anri1Jj3JIepSjr40kl0tRKGT4dnyxbUaurq7PrVmTnJys3472LEsrY+QyKWrVL9lIffr04uKVfezfd1h/bOyYd5HJZFhaWDN9+ucc/jGEmk6Nad10AIdOLqNMVcSDmPOoNSoc7WvhUtONa9eu0bdvX5RKJVu3bmXEiBEcOHAAd3d32rZty44dOzhw4AB79+7FxsYGePlBi+et+9dOnTrFxYsXyc7O5tChQ1haWjJz5kwOHz5Mr1699ONca1kT0LUu+/dc4FHKHYYM+BQDAxlGxkqGjvR+7nV1Oh0HDhzgww8/rHDe1FRJVlZxlXPS6eDDGWvJzChixLDPKpyTy6V88806oGKm2bPd6gD27t3LqlWrKCws5Ouvv64ySDdy5Af6P8+cOYyZM2fSo0cPunfvrn9fBEEQBEEQBEH4/00EkQThH0QikeDnX4fHKXk8jEpHVaahek1Latex1We+/DdKS9Rk5xQTFBSMRqMhICCAhg0b8tVXXzF37lxOnz6NVivlrSHzSElJYOv2xXh5NaagIB+ApV9+RmpqCpGRdykqKiQjI4PvN60jNzcPtbqU9i2GkpGVgEe9AJzs6nH60vecvrgFK1s5zZs3x8vLi+XLl/Paa6/Rpk0bBg8erO8UptVqOXPmDLVr12bUqFG89tpr1KlTBwcHhz/1LHU6HXl5pWi1Oo4cOVJp3WPHjiUxMREXFxfMzMwwMzOjuLgYa2trEhMTMTU1BUAulyOTVXz2ZSoNjbycuHg1B/tYUw6fXIihsYIRI4Yyddp2/XVr1KjBypUrCQ8Px8/Pj+DgYOzt7SvNtX4Dey5fSkTzqy2FUqmE6jUsaOvjyrYtN9CotfotaHK5lGp2JjRr7vy7z2Lw4MEMHvxLN4viYlWlmk5PyWQSDh8OQSqVcuTIkUrnnwYonwatUlJS6NmzJ5GRkRQUFJCRkcGGDRuYOXMmK1asYMeOHUilUpYtW0abNm147733+PLLLys9U0EQBEEQBEH4p/nPf/7Dli1bkEgk1K9fn927d2NsbKw/r9VqGT16NCdPnsTQ0JDvv/+edu3a/Y0zfvVEEEkQ/mEkEglOzhY4OVv86WupVRqOHH5ARHgqMpmEk6eukl+QyrHjP/Hpp3P56quviI2N5fz58+h0Oh4lZtO//3+Y8M5iuvdsiq9vU/213OvWZ+mSb2jZqjEHD+3D06sZd8IjKcjPxczEhoB2Y3mUcofG9TpSWJxNTOIlUlLS2LVrFwEBAbi7u/Ptt99y4cIFNm3ahJubW6X5bty48U+vGSAtLZ/w8FQ0Gi0SiYTz5yPJysrn5MmTfPjhh/ogxrFjx/n000/JzMygT58+xMfHV8joSUlJISQkhNmzZwPlgan4hGyePClAKpGQkJgMEi3HQk4wcsQbhISEYGVlRUhICIsWLaKsrIyJEyeya9euStlBz3KuboF7PVse3E8HQKvTIZNKsbI2orl3deRyGWPfbsWliwnExWahUMpo2swJryZOyOV/PBhjZKSgenULkpNzK9RikkjA2FiBg0PlAuaXL19m6tSpyGQyvL29Wb58OWPGjCEyMpKtW7cyYcIEABwcHJg5cyYpKSlMnTqV+/fvY2JiwsSJE/nxxx/56quv/vB8BUEQBEEQBGHntuuUlmp+f+ALMjCQ8WZg8+eej4uLY82aNURFRWFiYkL37t3ZsGEDkyZN0o/Zt28fMTExxMfHExoayjvvvEN4ePhLm+M/kaiJJAj/w/buiSAiPBW1WktpqQal0phqtvXZsO4qvu07UFBQQNu2bYHy4FVNF2uMjLV8MKM31atXo1atX7bQ1avfAIC2bdqzft12Dh0MonoNJ2ysq4MELMzsSEqN5GDIUh7EnueTTz6hadOmzJ07l8LCQlq3bo1cLsfS0pI333yTuLg4AAYNGkSHDh3o3LkzeXl5f3rNWVlF3LiRQlmZBo1Gh1qtxcjIFFdXTxISsvH396e4uBS51IEln4cSF63gxvVkjh0LISIiguXLlxMfH4+fnx9NmzYlKyuLgwcP0rlzZ1q1akNiYjpbNq8i7GwIJsZmmJiYsmjRF9SqVReNRoObmxvdu3fH1dX1D827sYcj3XrUx9PLkcaNHejgVwu/jrX1QSJLKyO6dq/POxPbMubtVjT3rvFfBZD092tsT9265RluEsnPWU/VLWjTxgWptHIRbRcXF06dOsXZs2dJSX7MgR9Pc+NGBPv2HqVhw4b6cbGxsQQGBvLVV19hY2NDWVkZOTk5+i1xfn5+qNXq/3regiAIgiAIwv9PLzOA9KLX02g0FBYWolKpKC4upnr16hXO//jjjwQGBiKVSvH39yc/P5+EhISXOs9/GhFEEoT/URnphcTGZulrKwHUqNGQ1LRYSkvUHD9+DoVCwaVLl/TndTodFhYWpDxOQSJVExsXoz8noTywoNXpSIjPYu/uWwBUd7HEs5kTCoWUkrJC3nt3EZ/M/IhjIQc4fvw43bt359ixYwCkpqayb98+VqxYweLFiwHYtGkTZ86cYdCgQezevftPrzsqKqNC1zGABg2aEhv7gKioDG7cuMHVKwlcv3ETtVpLcko0MqkBkydswNm5NiEhIeTl5REeHs53333H7Nmz2bx5M0ePHsO7RQcuXgilc5c+hIQE4+HZnGvXzhMQ0JOoqFhycnJYvXo169atIzEx8Q/P3dhYSV33ajRoaI+Nrckr7YgmkUioXduGTp3q0KlTXbp0ccfT07HCtkmtVkdBQSm5ucWYm1tjYGBARHgKaWmFfPbZQu7fj6RXr54sWbyFiIgI+vbtS1hYGCUlJeTn51OnTh06d+5M586dmTx58itbiyAIgiAIgiC8bG5ubkycOBFXV1fs7OwwNzenX79+FcY8fvy4wofHDg4O/9XvAf8mIogkCP+jEuKz4VcxCEeHOijkBqxZ9x6XL1/lgw8+wMXFhXbt2uHv709ubi6zZ8+md+/ejBv3Ni4uLuXd4nQ6NFodZWVqcnOLefQoB41GR1FhGWVlGoaMackH8zvxWuc2jH+/A55N3GncuDEATk5OZGdnA+Dh4YFcLqdJkyZER0ej0WiYPn06vr6+rFy5kpSUlD+97pycygWqa9VqgFJpyPvvD+XUyXO0aT0ItaqM7zdPJzMzCalUhkRiQFGhioCALnz33Xfk5+fzzTff8MUXX6BQKFCpNNja2pOXn4u9vRN5eTnY2zuh0WiYN/c9HiUlcv/+fWrWrMmwYcOIioqqcn6DBg3i+PHjDB8+nKCgoD+93j9LIpGgUMgqZR8VF6tIfZxHXm4JBfll5GQXk5KcR9iZK+Tl5fD+tC+pWbMOM6Z/TVGRCpVKw4EDB/Dz8+P+/fuMGDGChw8fEhISwuXLl/noo4/+phUKgiAIgiAIwh+Xnp5OcHAw0dHRpKamUlRUxKpVqyqMqaphzav8IPifQNREEoT/UQqlDGkVP8C6dB4HgFdTR5RKJZ9++mmF861ateLGjRsVX9NpBNk5xZw++ZBO/sNYuGg0jo6uyOUKCgvL9Jk/z/7AfPbPT3+43rlzB41Gw+3bt6lduza3bt2isLCQsLAw1q1bR3Jy8p9et1QqRaOpnJo6evQMJBIoKijj/r0n9O83Q3+utLQIgHfGfc3JkJXMmTuDgoICtm3bRmhoKCEhIchk0vJ1/LyW9u07sXjxJwwNHE///oEcPboPu2oGHDt2jI8//pjWrVvrr/9snaU9e/b86TW+ahq1luysogrFt3U6yMrOYvPWxYwft6DCeB2gVBpRXKwiLy+PoqIiGjVqhFwuR6lUYmFhQWFh4V+7CEEQBEEQBEH4E4KDg3FxccHJyQmAvn37cuHCBd555x39GCcnJ+Lj4/Vfp6amUqNGjb96qn8pkYkkCP+j3N1tK23rekqhkOLVxOmFr5WWlk9RYZk+qNCwYUven/oNWp2WxMSHdO7cmbS0tN+9jp2dHX379mXy5MnMmDGDevXqER0dTdeuXdm+fTtbtmzBz8/vd4NJfn5+zz1Xo4bFc6P/VlZGVdb7SUiIYNWad/luzUTs7Oyr7KAml0sxMlLov/b378Gli6H4+3dHKgVzcwOUSiXbt29n3rx53Lt37zfX8E9W+Mx7/ZRarWbKlHF88vF/cHWt8cxxFVu2fkleXhY9enTj6tWr5OfnM3DgQIqKimjevDkBAQFMnz79L16FIAiCIAiCIPz3XF1duX79Ovn5+Wi1Wk6dOkX9+vUrjOnTpw/btm3TnzczM8PFxeVvmvFfQ2QiCcL/KEMjBZ261CXk+ENUql/qIikUUuq62+LiYvlC19HpdCgN5BgaSpFIJRQVG/DgwQ2WfDmB5s38+PCDb4lNOMyHH36IVCrVF6Xev38/vr6+mJubs337drKzs8nIyEClUmFsbIyNjQ2mpqacO3eO5ORk5syZ85sdzF5UnTo2pKbmU1KifiZDqjwI5OnpiLWVEQ8fZqAq+yVbyd29Fe7urZDJpUx+zwcTE6W+lb2fn58+aPXB++8ScSdNn+nUqpUv1tY2GBsreG/KO/oA1dGjR//0Ov5OKlXlTK7g4APcvn2DxYvnU1KiYkD/dwGQyxUMe+t97ty5zLbt32FkpGD06NEAjBgxglmzZlGnzi8F2l/GeywIgiAIgiAIr1rHjh3p1asXnp6eyOVyGjduzLRp01iyZAkA06dP5/XXX+enn37CxcUFIyMjNmzY8DfP+tWTVLWH79/A29tbd+3atb97GoLwjxcXm8XZsDjSnxRiaqqkdduaeHo6IqkiI6cqdyJSeRiVrs9MUanKUKtVoJPyxdKpjB83nVvhR1izZg337t3jq6++YsyYMaxevZoNGzawbds2kpOTady4MRMmTCA+Ph6dTkd2VhGXLz0iPj6bq1cPk5kVRX5BBo0aNeSrr75i7ty5nD59GgMDA/bv38/Dhw8ZN24c9evX5/79+9y4cYPExERGjBhBaWkpvXv35sMPPwRArdaQkJBDUlIuWq0OBwcz3NysMDRUoNXq2Pz9NdJS8ysUHVcopLRq7YKff+3ffB4ajZbzF27w3nsTmPreJ3Tv/hrW1sb/U3uf83JLyM8vrfKcWq0l6sETsrN/qT0llYKdvRm+HX772QmCIAiCIAjCiwoPD8fT01P/9c5t119qhzYDAxlvBjZ/adf7t/r1cwaQSCTXdTqdd1XjRSaSIPyPc6tljVst6//qtYWFZUQ/zKiwtUmhUKJQKNHpdHg390WmyCQ0NFSfrePo6EhMTAzNmjUDwNvbmzNnzuDq6soHH3wAQHJSLju23UKj0aDVQlJSCunpGXzwwRJuR+ziq6++IjY2lvPnz+vrKf3nP//hwIEDWFtb61NEFy9ezPz582nfvj1dunThrbfewsnJCblcRu3aNtSubVNpTVKphLeGN+NcWBzXryVTUqLC0tIIH183PL0cf/eZyGRSfNt7c+P6ZS5fvkyvXp2QyWR4e3uzfPnyKl9z4sQJPvvsM7RaLV9++SXNmzfHx8enQq2kP+ry5ctMnTr1uff+4YcfWLJkCRKJhE8++YQ+ffq88LWNTZTkF5SWFzv6FalUQm5eCVKpBK1Wh1wuxcRESavW/9tpu4IgCIIgCMLfSwR8/hlETSRBEJ7rcUpepWPFxeUFkiUSCalpD6hXr7yNe2hoKKGhoWzZsoVatWpx/fp1AK5du0bt2rWpV68ely5dQqfT8eP+u5SVqdH+nAhkaGhCzZqeJCfl4ubWlIKCAtq2bau/j0QiIScnh5o1a2Jqaoq7uztAhWBV06ZNiYuLe6F1yeUy/Pzr8P6MDsyc8xoTJrfDq4nTH84mcnFx4dSpU5w9e5YnT54QERFRxfMqZs2aNZw4cYLQ0FCaN385//hJpVJiYmKQyWTs2rWrwr21Wi3Lly/XvyfLli37Q9eWy6VYWRmRmvaYrt18qV3HHo1GTXr6E77f9A3dujfgxq1DLPh0FIs+H4OZRRYGBnL8/PxQq9UvZX2CIAiCIAiCIPzziCCSIAjPpdFoK7WtjLx3g+kz3uCTmW9RrZo9HTp0wMHBAT8/Pzp27Mj3339Py5YtMTIyon379uzYsYPx48fTpEkTXFxcaNWqDSu+nkRJyS/dumrWaERaWiwqlZZTJ8+jUCi4dOmS/rxOp8PCwoKkpCQKCwt5+PAhQIVg1c2bN3F1dX3lz6SwsIzYuCzuP0hHqzVGLlcCIJfL0Wq1BAQE4Ovry4ABA9BoNFy8eBGpVEq3bt146623KnUpmzx5Mrt27Xrh+5eWqsnKKsLU1JJOnToRGhpK586dkclkdOzYkYEDB7Jp0ybq1atHYWEhBQUFmJubA/DJJ5/Qrl07OnbsSEpKynPvodPpMDCQU79+TQ4fPoa3d0ssLY3walKHOXNmY2Ki5MiRfdy+fY2goB/1+8KfWrZsGT4+PqSmpuq7/61YsYJWrVrRpk0bLl68+MLrFQRBEARBEAThn0PURBIE4bmysoo4eyYWjabyzwm5XEqLVjVwdDT/Q9dMiM/mh93hlJZWzFg5cmwNiYl3yMh8hEZTxrRp0zh58iQZGRncuHGDBw8e8M477+Du7k5UVBQ3btygdevWGBgYoFKp6NWrFx9//PGfWu/vSXyUQ3Jynr5gt1QqQSIBCen85z9zCA4OpqSkBCMjI2bNmkWHDh3IyMhg5syZODo6EhgYSHFxMdOmTcPHx4fmzZtTWlqKt7c3Y8aM+c17FxerOHc2lqzMIgCys1OZPXckzs6OlJWVcvjwYVq0aEHdunUxNDRk7NixjBs3jpKSEho0aMCRI0fw9vbG3d2drKwsvL292bhxY4V7lJSoCb+dQmJCNlqtDhMTJY09HRg+vD8hISEkJSUxa9YsFi5cSP369WnZsiVqtRpXV1caNWrEiRMn6N69OwsXLqSkpIQzZ87Qpk0boDxT7Pr16zx+/JiJEyfy448/6u+r1WqRSsVnGoIgCIIgCMIvqqrVI7x8oiaSIAgvjZWVEVbWxmRlFukDJ1BeSNnYWIGDg9kfvqadvSkajbbS8W5dxqHRlFGvoTWrVn3IggUL+Oyzz/TnW7VqxY0bNyq8xtDQkJCQEOTyV/+jLD+/tEIACUCr1ZGXl8Mnn7zL4Z8OUFhYyNtvv01ycjJpaWnUrVsXS0tLTExMkEgk+Pv7s3TpUgCioqIwNDRk6NCh+m5vz6NSaQg+eBf1M132jI2smDd7I6vWzsHR0ZFLly5hYmLChQsX0Ol0NGnSBE9PT4KDg+nZsyeOjo6sW7eOHTt2kJCQwMSJEyvdI+T4A4qLVfoaWIWFZVy78oiiIlWlOXl5eZGQkIBKpWbSxHmYmVZn9+4gFi36jI4d/UlJSWbevHlUq1aNbdu2UadOHUpLS8nJycHGprxWlZ+fHy1btiQlJUXfDU8QBEEQBEEQhH8u8dGvIAjPJZFIaNvOlRo1LZFKJcjlUqRSCY5OFvj61X7hGkLx8fHY29vj5+dHnz498GrihEJR8cdPdnYq+w98iXez2hVeFxgYCMDq1atp3bo1H374ob6I91/p8eP8CgEkALVazX/mv8eECZ9gYmLFsWPHqFu3LuvX7sWjsS/Xrz7iTOgVzMzKg23z58+ntLS865mNjQ3W1tbs3r2bkydP0r17d7p3745Op2PTpk0MGjSILl260KdPHy5fjK0QQILymkjrNixiyOApBAT0IDk5mWrVqgHl75uhoSEzZsxg4sSJREdHU1RUhL+/P7a2trRt21a/JfCp2JhMSkvV/Do5VaPRUVhYSlJSDpcuJZCSnMvZsHvcvHkTRwcnfNr1YsHCT1j8xXRUKg35+fkMGjgVtVqNpaUlAOfPn+fGjRtYWVnRvn17Jk+erL9+v379RABJEARBEARBEP4lRBBJEITfJJdLae5dnZ69G9AxoA49ejWgVeuaKJWyP3Sdp/V7jh8/TueudanpYllpjFQq4afge6jVFQMmarWaTZs2cf78efr37/9nlvNfKymtXDD69OmfuH8/nO++/Zxu3TphbW3Dls276duvDzExsaQ+zuX06Qu4VG9FeHgEycnJ+iBSRkYGy5Ytw9TUlMTERA4fPoyzszPh4eEAWFhYcOzYMdq2bcveffsq3fvsuZ+IjbvLtu0rWLr0MywsLMjIyNCfHz9+PAsWLODhw4e0adOG4OBgWrVqxf79+0lMTKRDhw4VrvcoMbvKbYtPXb2cSFZGIWq1FpXKmDq1G/PhjFU8eBBOyc/F1nNzM2nevAMjR3fhzp27jBgxAoDp06djbm5OXl4et27d4qOPPtJf92UVGhcEQRAEQRCEl+0///kPderUoW7duvTq1YuioqIqx4WFhSGTydi0aZP+WEZGBl27dsXNzY1atWpx8uRJAC5evIiXlxf169encePGnDlzBoAHDx5gaGhI/fr1qV+/PkOHDgUgPz8fPz8/3NzcqFOnDhMmTNDf4+jRozRs2BC5XF7h3q+S2M4mCMILkctlmJm9WOCouFjF7ZvJxERnoNXokMnzOXXqFO3bt6d///5MmDCBefPHUlZWhomJJYFvzkGplCIB1CoNjx49pl27dkilUkxNTcnIyKBmzZrIZDKaNGnyStf5PKamSvLzSysc69SpD5069UEqleDp4cCNa0lMmbhGH4y5cvUwTTwD8PRoT/jdMM6cOUPPnj3JzMykZcuWVK9enZ49e6JSlW8Xc3Z2JicnByivIQTQpEkTblw7WGk+FhY22Ng4oFar6NVrIGPGjCEuLo527dphYGDA/v372bVrF0VFRWRkZNChQwdmzpyJm5sbUqmUTZs2VQjmVEWtVvHZ4okkJETxn4XvMGTwJADMzSxp0qQdH348nOzsdBrUb4ZOp6OkpIg7dy5To3ot4hOieP/99/Xd8ywsLFAqlVhZWVUoLi5qIQmCIAiCIAgvYt3qS5SUvLxOwIaGcsaOb/3c83FxcaxZs4aoqChMTEzo3r07GzZsYNKkSRXGqdVqZsyYgY+PT4Xj48aNo0uXLhw9epSSkhIKCgqA8g9YZ8+ezcCBA/nhhx+YPn06V65cAaBGjRrcv3+/0lw++OADevbsSUlJCT4+Puzdu5eBAwfi5ubG999/z+LFi//s43hhIogkCMJLVVys4se94ZSWqPXbv1RFcubN2kmvvl6MGTuUFi3aMnrkZ0glCo4c20Bs3C1sbaoD5R3h0tKSuXPnBpmZmcycORNbW1sePXqEVqvVZ+r81RwdzUhLK6i0pQ3K60OZmCgJv5VSIZvnScYjUlKiuXj5IImPolix4mt69+7N+PHj6dWrl37cs9sCnzY7uH37tv7/a9WuVemeTZv40LSJDxIJ2Nrn07ZtW2QyGS1btmT58uUAHDt2rMJrVq1axWeffYZWq6VTp04ATJo0iW+++YaaLlbk5pZUmL9crmDOrDUV5le3rgfFxYX07zeG/v3GsOLrT+jc+Q2OHdvF8i8PsHjJZObOXs/sucMxMzP8+TpyfHx8aNOmDWq1mrlz577gUxcEQRAEQRCEci8zgPSi19NoNBQWFqJUKikuLqZ69eqVxnz22Wf07duXZxt/ZWdnc+nSJX744QegvJaroWH5fxtLJBJyc3P14xwcHH5zDmZmZvTs2VN/HU9PTxITEwGoV68e8Nd+MCuCSIIgvFS3biRXCCABKORKAC5fSKRnz57cvXuHXbt3kpObTn5BNra2ztjaVEen07Fq7XuoVGX07duXRYsWIZFIkMvlDB8+nLZt29KmTRsUCsVfvi4jQwX13G15EJWBRPI02CPB0FBOg/p2AJU6zvXsNk7/529XT2LcuHcoLi5g2rRprFq16jfvl5mZSefOnTE0NOTblRu5cO5RlQEsBydz6jdw4tSpU/pC3REREXh4eFQYV1xczJo1azhx4gQy2S8ZZd988w0AbrVsiIrKoLiorEJdpKrqXt27f4Ndu79DoVBQz70pFhblhbINDY3x9GjD7DnDkCskjBw5kuvXr/PZZ58xffp0DA0NGT9+vP4fwdDQ0N98BoIgCIIgCILwd3Fzc2PixIm4urpiYGCAr68v/fr1qzAmLi6OgwcPcvHiRQYPHqw/fv/+fWxsbBg0aBB3797F09OTdevWYW5uztdff0337t2ZOXMmWq2Wc+fO6V+XlJREgwYNMDU1ZeHChXTp0qXC/TIyMjh+/DjTp09/tYv/DWIfgSAIL1VsdEalYEdJSfn2peycYsLOnCUnJ4Pq1V15d9wKPBv7ws/DJRIJE8avoG7dhvz0009YWlrqI/Zjxozh0qVLDB48mFq1yjNzQkND/5LObE9ZWxvTskV1ate2wdXFmkYN7Wji5aivD2VhaVRhfEJiJN98N5FvV0/G1aUBBgZyJk+ejKGhIceOHWPWrFmMGDGCJUuW4OfnR2hoKHZ25QGprl27cvz4cQ4ePEiNmra0buuCXCFFIkH/PwtLIyRSKfHxKjIzS9HpdMjlcrRaLQEBAfj6+jJgwAA0Gg0XL15EKpXSrVs33nrrLf2WsqdptwqFjE6d3XFxtUYqLQ8cmZoqqVXbGpms4j8VzZq2Z+zoTwB4GB3OkaM7mDjhUwD69R3Nok+3cib0LDt27ODChQu0a9eOCxcucPr0ad54441X9O4IgiAIgiAIwsuTnp5OcHAw0dHRpKamUlRUVOmD4HfffZfFixdX+p1ErVYTGRnJhAkTuHfvHiYmJsyZMweAr7/+ms8//5zU1FQ+//xzfR3RmjVrEh8fz71791i+fDnDhw8nOztbf02VSkX//v0ZN24cDRo0eLWL/w0iiCQIwkulqSJbJurhbf6zaASffj4WewdHhg4dSmzcVTZu/oSs7NRfBkrAyFjJnDmz8PX1pVWrVri7uwPlGTO1a9emU6dOvPHGG/qubb9lxowZtGvXjvbt21fqRvZHPe0wFxDgz9Ah/TAy0hASclifqePj40Pbdq7If+46Fx1zi5u3TzF+7DKmTFqJ0qCMQ4cOcfDgQfbv34+zs7P+2tWqVSM0NJTQ0FAaNmxY5f1dXK0Z8LoXAZ3daeTphL2TJUYmBmi15VsIo6Oz2LfvNBkZGXh6ehIcHExYWBgNGjTg1KlTpKWl8fjxY44cOULbtm1Zs2ZNpXsYGMhp2aomA173ZOAgL7r3bIiXlzOKn4NXz7Kzc2LF8u38sOcn8vOySU6JQSaXYmSsoL1vLarZmRMWFoaVldVzn6lWq33uOUEQBEEQBEH4OwUHB+Pi4oKTkxMGBgb07duXCxcuVBgTHh7OW2+9hbOzM4cPH2batGls27YNV1dX7O3t6dixIwBvvPEGt27dAmDv3r289dZbAIwYMUJfrsPIyAh7e3ug/HeLmjVrcufOHf29hg4dSu3atZk9e/arXvpvEtvZBEF4qZyczEmIz65wzNOjLZ4ebTEyVvBmYDMkEgkRd26T+jiPs2FxJD/KQSqTsmjhN7Rr74apWTuGDBlU4Rrvvvsut27dIiYmRp+J9FuysrK4du0a58+f5/z583z33Xf6WkF/hE6no7RUjUqloVOnTvp29PHx8ezfv79Ct7gGjex5/DiP2zdTkMnAyMgYQ0MDGns4cOO2hb5jwhdffMEHH3xQYa6+vr40aNCAFStW6D+N+DWpVIKlpRGRkemVzuXkZLNgwUfs2rWbwsJC3n77bZKTk0lLS6Nu3bpUq1YNHx8fZDIZ/v7+LF269Llrlkgk+qCRTC6lY0BdLl2IJy+vBIlEglaro159V1q1ckGhlOHqZkPr1i58t2opqakpuBx0oUaNGsybN4/8/HyGDRvG7du32bx5M02aNMHLywsPDw8aN278u8W9BUEQBEEQBOHv4OrqyvXr18nPz8fExIRTp07pm8Y8lZycrP/zwIED6dmzp/7DbkdHR8LDw/H09OT48ePUr18fKP8A+ejRo3Tv3l0fqAJISUnBzs4OuVzOvXv3iI+P19c8mjJlCrm5uezcufOvWPpvEkEkQRBeqmbeNUhOykWtrphlIpNJadm6ZoUaOw6O5rz+htdzr6XV6sjOLkIikbBjx0aGDx+uTwNNSUlh4MCBxMXFERQURElJCcOGDcPAwIBOnTrxwQcfYGNjg0ajIScnBxsbmz+8luiH6Vy+mEhRYRkZmY85cuQEbdq0Y9CggaSnp3PixAn8/Pz0BfOO/HSPzz6bhYtLI8xMrdFpdTg5G7Lg07fRarWEhYXh4+NDcHBwhXpA586dw9ramkWLFrF27VomT5783DllZhZVygrSaNQsWjSNceM+Qqcz4dixY7i7u7Njxw5mzpyJTqejRYsWrF27FoBbt27h5ub2ws/BxESJZxMnrl9NoqxMjVwuIy+vlKTkXPLzk8jKykSu0GJkZEBISAiLFi2irKwMgNTUVC5fvsz169f1QaSkpCQuXLiAiYnJC89BEARBEARBEP5KHTt2pFevXnh6eiKXy2ncuDHTpk1jyZIlAL9bl+ibb75hyJAhlJWV4eLiwo4dOwBYvXo1U6dOZerUqRgYGOh3CJw4cYIFCxYgk8mQyWSsWLECOzs7YmNj+frrr3Fzc6NRo0ZAeee3qVOnEhYWxuuvv05eXh4hISEsXLiQ6OjoV/hU/uIgkkQi2Qj0BJ7odLrGvzr3AbAEqKbT6TL+ynkJgvDyWNsY07VHA86HxeozVxQKGS1a16RO3WovfJ3ohxlcu5KIVqtDrVazfdtBdu58U38+OzubkJAQdu7cyb59+zAxMeHtt99mxIgR6HQ6JBIJderUoV69eqjVai5evPiH1vHg3hPOhcXqg2FmptbMnbkDY2NDfvhxIUuWLCYxMVGfmZSfX8pnn8+mRvWGeHn4ExN7i5KSIub+ZwroCjkdeuL5z8zaGoB+/fpVyJa6c+cOb7/9NjKZjDp16rBx40a0Wl2FwtcAb7zhQ25uNnfv3sDVtRarVn3DwYMHuXbtGhYWFvpMpA4dOuDr64uxsbH+H7EXkZ1dzOVLiT93bpOg0erQaHVcunifr1Z8QFDQfkJDQ2natCkAzZs31z/vOnXqYGhoiLOzMzk5OUB5FwkRQBIEQRAEQRD+CEND+Uvt0GZo+PvhkOXLl1fazfC84NHevXsrfN2mTZsK29Ge6ty5M3fv3q10fPjw4QwfPrzS8Vq1auk7OP+ar68vaWlpz53/q/BXZyJtAlYCW549KJFIagCdgMS/eD6CILwC9g5m9B/kRWFhGVqNFlMzgyq7fD1PQnwWly8moNGUB3DCzgbTskUnzp+Np6xMA0DDhg2RSqU4OzsTHR3NyJEjmTdvHkOHDiUwMBBXV1fu3LlDVFQUN27cYObMmWzcuPGF7q/V6rh4Ib5CNpVCofz5HDRu1Jbg4GD9OZ1OR2xsNA72Wnp1n6A/fjviDEqFISNHzH1u686ysjJ0Oh0GBgacP3+e2rVr68/Vq1dPv+965MiRXLt2jUaNmlS6hpNTTfbuvYRMJqFuXVscHc24ceNGpXFPP/F41rPdIJ7n/r0nPweQfqHRqFn65Ue8FTgFe3t73NzcOH36NAA3b97Uj3v2fX/6j99f2YJUEARBEARB+N8wdnzrv3sKAn9xYW2dThcGZFVxajkwA32PJkEQ/g22bNlCQEAAfn5+nD9/vlKxaxMTJd4tvOjYsSN+fn5ERkYC/G4w58a1JH0ACeBxagKnTu9j8ZKJREZGMnv2bE6ePImfnx/p6enodDoUCgXLli3j+++/Z86cOeh0OiwtLZFKpdja2hIeHs769etfaF052UVoNRW34z3tMKfTwaWL5R3HNJrygJZGo8PWpjpNvfwJPrJa/5qa1euTm/eErdsW0aGDX5XZUNnZ2bRp0wZfX18OHTrEgAFvcfVaEucvJHDnbjqZWUUAGBgYUKNGDSZMeJsPPxzOkiUfsmnTCgDy83OZMmUwy5bNwtxcxuXLl/WfkGRkZFSo2/TfeDqHZ52/cJzo6Dts2PglHTr4odVqKS0tJSAggKioqD91P0EQBEEQBEEQ/pn+9ppIEomkN5Cs0+lu/16mgkQieRt4G8rb3wmC8PcoLVXz+HEKZ86c4eTJk0B5oemqPO089qyNGzcyatSoKserVBoKCkorHHvj9Un6P8/7zwhKS0t57bXX2LZtm/7aBw8eZOXKlRQVFREYGEjDhg0xMzOjffv2qNVqunfv/sLrk0gklbaMPYy5zaHg9cjlCho0aIqPjw+LFi1i4MCBrFmzBolEQssWPTgVup3TZ3ZSs0YDHBzceGvofHbuWcD8+fNo06YN586dY8uWLWzevBmNRsM777zDjRs30Ol03H+QzuPUIrQ/d7jLyytl7drtbPp+Gaamxnz99dcYGBhw4cIZZsyYS0ZGLjKZhK+/3o2LiyNBQRvYsGE9kydP5uOPP0an07Fv3z4GDhz4wmuvikwqQfOrY77tu+PbvjtSqYQuXd1RKuW0adMGQN9pDn7JdHJ1ddUXFn+R7CdBEARBEARBEP55/tYgkkQiMQZmAp1fZLxOp1sLrAXw9vYWWUuC8BeLi83kzOkYcnNKuHTlJx6npuPr64eXlwfvvfceycnJ9OnTh7S0NHbu3Imbm1ulzmPHjx8nIiICPz8/Zs6cSadOnSrcQyqVABKeTUw0NFJgbWOMgaGCgQMDSUqO5PHjFCZNmsTSpUtZsGABp06dws7Ojj179hAeHs6QIUPYsWMHgYGBvPfee9y5cwe1Wk1ycjJjx45l/fr1ODk5VblOSysjDAzkqNVl+mMejdri0agtUqkEryZOyGQyjh07pj+/ccOP3LyRhL/fUP2x2rWaIJdL+XrFBnz9yrepJScnVwi+PZWXX0pGxi8BpKfatn2Ndu1eY97cMWRkZNCkSROkUgmdOrXj/PkLeHs7o1DURKGQoVQO0O/Zbt++PefPn+fQoUPs3r37xd/kKtSoYUFsbFalwBqAhYUhSuXf/nmEIAiCIAiC8D9Iq9WKUgivkFar/f1Bv/J3vxu1ATfgtkQiiQeqAzckEknVxUMEQfjbRD/MIDgokuysYrRaHXl52eTlFTFowEKkUgVBQUGkpqayb98+VqxYweLFi4HyrJOwsDBcXFxYu3YtvXv3xsPDg9DQ0EoBJCjv4uZc3ULfgczC0oiarlaYmRtiYCCnoDCHrKx8Nm3ah7GxMcHBwQQHBxMWFkaDBg04deoUTZs2xc3NjXHjxuHk5IS3tzdQ3tFt7NixrFu37rkBJCjPRPL1q41MXvFHpFQKhkZyPJpUfq2PrysODuYoFDL9MYVCioOjGa3auJCcnEdMTCZ79gShVmsICAhg0qRJ+i1grwV0ZNbM8Wg0Gh5G3WXBf6ZQVlbKwoVTefAgAplMQWpqKhEREQCEh4cjlUqQy0GrLS8w+GxNpaFDh7J8+XIsLCz+dBFr93rVMDRU/Bzge/qMQC6X0qSKZ+Hn58e8efP+1D0FQRAEQRCE/99kMhnp6en/VaBD+H1arZb09HRkMtnvD37G3/rxsU6niwDsnn79cyDJW3RnE4R/Fp1OR+ip6AqFpo0MTahdywu1SoOtTQOKi5/g4eGBXC7H0tKS9evXs3PnTjw9PXFxcWHmzJmVOhv4+PjotzbdvHmTGTNmoFarmTBhCkqlCxqtFntH8wrBC1NTc5o0aUVqagHt2vly8+Y19u3bR3JyMmlpadStWxeA8ePH4+bmRkJCgv61q1ev5tNPP8XZ2fl311zT1YoevRpy5VICT9IKkMkk1K5rS4tWNTEyUlQaL5fLGDy0CQnx2UQ9SEcCuNe3w8RUydmzcUB57aQ7d2JISsoiKOgwCxbM0QfBEhIK+HTRfG7euIB3i/Y4Otbgk0/eJiH+IelPHmNgIOf114dz8eJFAgICcHJyon79+mRnZ9OtWzdMTU2xsrLSd4tzd3cnMTGRWbNmveC7/HxKpRy/jrWJickg6VEuWq0Oewcz6ta1xcREqR/37Da97du3v9BzflZGRga9e/dGoVBgYWHB7t27MTIy+tPzFwRBEARBEP59atWqRWxs7F/efez/E5lMRq1atf7Qa/7SIJJEItkJ+AG2EokkCZir0+k2/JVzEAThjysoKKOoUFXhmKtrIy5d/gmdDq5fu0HL1jW4c+cOGo2G8PBwjI2NadSoEevXr2fBggUVsmSqqn+2cOFCgoKCMDY2BqCwoJTIyDQ02vK28k95ejbnwIGd6HQ6Ll68SuPGddHpdOzYsYOZM2fqO4B99NFHrFixgjlz5rBhQ/mPmVmzZnHgwAEaNGhA69a/393B0cmcPv09Xvg5SSQSXN2scXWzBqCsTE1YWFyFzmZGRqY0auTN1atJ+Pl15MqVy+zbt4/4+ESSkx9TvborAL37DGHH4A7s3n0We3tH7t4JQSqFdevWIZfLWbx4MTVr1sTe3r7KTmwANjY2dOvW7YXn/1uUShkNGtjToIF9leeft03vj7CysuLcuXNIpVLmz59PcHAwr7/++n99PUEQBEEQBOHfy8jIiEaNGv3d0xB+5a/uzvamTqdz1Ol0Cp1OV/3XASSdTucqspAE4Z+nPOZTsSCOs1NdFAol366eQkLifdq17YyJiSWdO3Vn6tSpyGQyfe2j4OBgJk+ezMKFC3njjTcoKCjA2tqamzdvsmjRIoYPH05sbCwdO3bE0dGRzp07E3b2FNVrWFbaA+3u3ggDA0PeeWcQt27doH379hw8eJCePXvqi3sfOHAAFxcXJkyYgKmpKSdOnABAqVSyfft25s2bx7179175c0tKyqtUR6hhw2bExT1Ao9Fy4cIV6tSpg7u7O+fOnaWjf3d9EGztmi+YNGk233//FRYWhhgalsf8R48eja+vL2fPnqVfv37PvXePHj0ICAhAqVQ+d8zLUFamISuriP37D6JSqfXb9GJiYvD392fQoEE0bdqU/fv307lzZ3x8fCgsLCQ0NFSfJbVp0yY2bdqETCbTv98ajUafVSYIgiAIgiAIwj+DRFdVpdR/AW9vb921a9f+7mkIwv8bmzZcITuruNJxiQRMTJRIZRLCzgZz6fIRklNi+HThNyz8dBoeHh48evQIf39/fH19GTduHIaGhtja2mJsbIyPjw82NjZs3bqVlStXMmvWLNq2bcvXX39Nfn4pDx6kVyo2DeUFuF1drbC1/XP1fl6l8PDHPH6cX+n4unWLefjwDk5O9qxZs5K+ffvi5OSEmZk5jRq1QiI15P79cN5+ezrr1i5iyJABpKY+Rq1WM2bMmL9hJZXpdDpWrFjDrl3b0Wg0eHo25/HjZNav38RXXy3EwcGBrVu3cv36dXbt2sXu3bsJCgpi0aJFpKamcu7cOTIzM7lw4YI+yDdixAiuXLnCu+++i6GhIT/99BMWFhZV3n/MmDHcv3+f3bt3/+Ftc4IgCIIgCIIgPJ9EIrmu0+m8qzonWuoIgvBCAjq5c2BfRIW6SBJJ+RYutVpLTkY6D6Nv0dK7M8Ym5hTkGqFWafH39+fIkSN4eXnh7OyMsbExo0ePprS0lO+++w6dTse2bdu4f/8+SqUSf39/bt68CYCpqRJDQznFxapKGT0ymRRra+O/8hH8YSYmSqRS+HUtwLFjP0Qmk9C4sQMODmaVtqOpVBrKyjQYGMhp77P2L5zxi4uIeEhYWBjr1v0AwMyZk7l3L5w+fboyZswYMjIe07BhQ6RSKU5OTjRu3BgoT0u+efMmy5cv58SJEzg7O6PT6cjMzCQwMJBt27Zx7do1vvzySzZu3MjUqVOrvP+DBw/09bQEQRAEQRAEQfhriCCS8D8jJSWFnj17EhkZSUFBAXK5vFK2wrJly9i/f7/45fO/UKOmJQPf8OJcWBwpyblIpRJsbU0oLimjIF9FxN1LaLUaDh/9Hq1Wi62NI3n5uSxduhQo7xzWsGFDioqK2L59O926daNp06Y8fvyY1157DZlMhkqlwszMDDc3N6A8QFW/fjWiozPJzy9FKpWg04GhoZy6dW0rFNz+J3J2Nic2NotfbwWE8rXZ2ZlW+TqFQlahy9s/gVarIykpl6SkXFQqDaGhwWg0GsaMeR1HR2fS09MoKirE2tqW2bM/oVOnAE6dOoWPjw8fffQJKSnpNG/ekkePElAqlYwaNYrCwkJGjhzJxx9/jFqtRqPRsH//flavXk1sbCyTJk0iPj6eUaNGYW1tTVxcHEFBQaxevZrw8HB69uxJcHDw3/1oBEEQBEEQBOH/jb+0JpIgvErW1tacPHmyQsHkp9kKzs7OlJaWcvv27UqvS0lJoVmzZhgaGqJWq0lNTeXTTz99oXv6+fm9rOn/Kzg6mfP6YC+mvO/LhCk+lKm0ZGaUUFqqITs7k9KSMubM3IObayMyMh+j02np2qUXrVu35tq1a0ybNg0XFxfatm3LsWPHuHHjBlOmTKGsrAxvb28ePHjAyZMn+fjjj/X3lMtl1K9vh0yWybvvDmTKlMF8+eXHKJVVB1nq1auHn58ffn5+REZG/lWPpkqGhgo8POyRSiX6gJdUKkEul9K8ufM/Pgj2lFar4+bNFKKjMykqUqFSacnISKe4uITPPttESspjcnJyyMrK4ObNq1haWnP48GGUSiUxMTGsXr2OoKB9ZGZm4unZDKXSkNde60FeXh4+Pj5kZmYyaNAgLC0tGTx4MJcuXUIqlWJnV968Mzs7mz179jBt2jT27dvHwoUL8fDwEAEkQRAEQRAEQfiLiSCS8K9XWqqmoKAUiUSOlZWV/visWbP02QoA69evZ/jw4frzCxcsYt/eA1hZWTFt2jR9XRUHBwdmzpz51y7iX+jCuXgy0gv1XxsamlDLzYuyMi2tW/WkvU9fmjXtyBdffE1QUBDVq1fnxo0bDBs2jD59+nDkyBGGDx/O1KlTqVevHgcOHCAiIoLExER9JtKzPDwacfnyJc6fL88ie15NtGrVqhEaGkpoaCgNGzZ8NYv/AxwczPH1daNOHRuqV7egXj1bOnRww9Ly39O6Pj29kNzckgq1qSQSQxo29Ear1WFlVY3S0lI6dOhOjx79adasJQYGBsTFxREQ0JWYmGhOnryGjY0tDx/ep3Ztd2QyOS1atKZJkyYYGxszffp0tFot77//vn6bW1FREYB+W5yzszM5OTl/01MQBEEQBEEQBEEEkYR/LZVKQ2xsJjExmTx6lEtMTCaxsVn67lbPZiuoVCrOnDmDv78/ZaVqVn5xhtRYe+bNWsHKxefZvfNHfdZDfHw8gYGBALRp04aJEyfSpEkTjh49CsDatWtp3bo1H3300d+z8H8AjUbLtatJFYIKrjUb8zg1FoCExCgkEgkpKbE4OJpy+/ZtHj16hI+PD6GhofTr14/z589Tu3ZtgEod2KD8/Y2OzuDcuXjOno0nLi6H0lI1AAYGBtSoUYORI0fy2muvMWrUKObNmwdAVlaWvoB3SUkJ58+f58MPP9Sf69u37yt8MlUzMJDj5mZNo0b21KxphVz+z9qq9nuSk3MrFTdv2LApsbEPAMjPz8HBoQYAjRu3RCrVYmtrC0gwNjbD3t4BuVzOoEGBdO/ej8uXzwNgZ+dEREQEpqamSCQS3NzckMlkNGnShCdPnuj/Lkskv2Rs/VubQQiCIAiCIAjC/wIRRBL+lXQ6HXFxWRQXq9Hpyrfb6HRQXKyipERd6RfNrVu3MmTIEFJT8nickkdSQg6mxrYUlxSQ9Ogx9yMT0agrby3KzMxkzpw5/PTTT6xZswa1Ws2GDRs4d+4cvXv3/quW+4+Tn1/KrytdOznVQaEwYPW693j06D7ezTpSo4YTAwb0Z/LkyRw5coR9+/aRlpZG586dOXToEO+++26V1y8tVXPhQgJxcTkUFakoLlaRkJDDkiUbaNSoEU+ePCEhIQEDAwNCQkKoV6+e/rXnzp0jLCwMFxcX1q5dS9u2bbl06RIABw8epE+fPq/uwfyP0mgqB27q1GmIgYEh778/lJKSIoyMyjOr7t27g5GRAolEUuHv4cmTR1m16isOHtxDzZqu/PDDdvLycsjKyvo54FQewNVqtdy+fZtq1ar9NYsTBEEQBEEQBOGFicLawr9Sfn5plb/YQnlso6CgDCsrhf7YgwcPuHXrFnNmLiY9M5Hr4cE09+xJHdcWHDuzmlo1vYlOuFAp+FStWjV9hlJOTg4ZGRm4uLggl8tp3rz5q1vgS3b58mWmTp2KTCbD2dmZmJgY0tPT6devH1evXq1UaHzlypVs2rQJc3NzAgICmDlzJhs3bmTBggW0a9eO9eu/r5SZAtCz+zsAyOVS3hjixez5gyuN+XUnMqDS/aOjMykr01SIU+l00LKlP9279+T77z8nNjYWT09PAJo0acLFixeB8tpYAP369WP58uVIJBI8PT25efMmBw8eZP369X/gyf13nhZw37ZtG7NmzWLbtm2v/J6vkq2tMfn5pZXe83HjfsnGW7Pmc6KiIigrK2XduhUsWLAAqVSCn18AcrmcHj36UVpaglqtZuDAoYwd+yZlZaVYWFjoO7C5uroSERHBqVOn2L59uz5T7enze1rrCip/zwiCIAiCIAiC8OqJIJLwr1RUpKr0C61KpeKdd4bw4MFdevfuwdKli/XnFi8u//PsqcF8v2sGzT3L6yTVr92OU+e/p7PveO7HnKOwoKzCNX+9jcbW1paEhAQ0Go2+Df2/gYuLC6dOncLQ0JD+/fuzatUqvL29GTp0KIWFhZXGBwUF0adPH2bPnq0/1rt3b3x9fZk3bx6GhgpqulgSH5f964Qk5HIpbX1ccHK2+K/n+/hxfqXrlpWVoVQqycwswszMjKioKFJTUwEIDw/Xj9HpdBgYGFTYLjdw4EC+//57NBqNPsj0qjyvgPu/WfXqFiQm5lQZOHzqaUDJxERJvXo19YGfHj260LJlO3Q66N//Tf34ZctW8/77Y1m+fDmDB5cHG0NDQ1/dIgRBEARBEARB+NNEEEn4V5LJKm89UygUrF//AxIJ2NubYmNjUiFbISUlhfU73iM9MxGtVoNUKuPEuXVIpXJ+PPIZGdmJeLfwwsTEBA8PjyrvK5fLGTlyJG3btqVDhw6vbH0vg0at5c6VJHIzi6hR1wZLCxn5+SWYmpphbGxMYGAgcrmc9PR0unbtSkZGBl26dMHa2prk5GQOHz7MkSNHANi7dy9OTk4UFBTor9+1e322brpOSakatUoLgEIhxd7BDO+WNf7U3KsKVly7Fsb+/d8D4O3twfr16xg9ejQBAQE4OTlRv359srOz6datG6amplhZWekDGe3bt2fo0KHMnTv3T82rKkWFZVw9F09ach629qbcun+U4cOHM378eIYOHUpkZCR+fn6Eh4cTHh6OWq1m5MiRmJubExYWhkajYfLkyTg6OjJhwgRu3brFihUr2LlzJ3fu3KFOnTovfc5/lEIho0WLGty9m0p+fhmgQ6utPE4qlVC3rk2FYxYWhuh0OjIyioBfahzVq1eDM2dCX/ncBUEQBEEQBEF4eUQQSfhXsrAwIj29sFK2ylPm5oaVjllbW7No/nrmLpgIQGZ2EtFxVxjYYxY1nBph52jE7YfbiYmJ0Qcfng1CPc2SGD9+POPHj3+5C3oJnt2yVtulAdqEBkQmnaFVw34cubOETz5ax+O0GMJvx/AoIZ/Q0FAKCgooKSkhKyuLM2fO4Orqys2bN/noo48YP348kZGR5OXl4eTkVOl+pmYGjH67JXfvpBH1IB25QoaHpwN16tpUWSj7jzA3NyAvr7TCsbZtX6Nt29cwMpLj4+OKRCJh3bp1yOVyFi9eTM2aNbG3t69yu5xUKiUpKelPzakqMffTWfflWbRaHaoyDRKZjsNhe/j2Ox9yc3M5fvw4/fr1Y+PGjbz11lvs27ePPn36kJqayokTJzh27Bhz586lTZs2fPvtt0yYMIHdu3dTVlZG69atX/p8/wxjYwUtWtSgtFSNSqUhN7eE6OhMfcBPKpVQr141bG1NKr3W0tIIc3NDSkvVSCQSDAxkFbL8BEEQBEEQBEH4dxCFtYV/JaVSRrVqpvz699CnWUgKRXn3K51OR3GxisLCMuQyBf0GtUQqlSKRwt2oMyCRcPnmjyiUMgo1txg+fLj+Wjdv3mTIkCEABAYGPrel/D/F0y1rh348xrnjt8nMysCzZg88utRGqpBRWJzH1u1fMmzox1y+FEV6egZHjhzB09MTOzs7SkpK0Gg0VK9eHQcHB/bt20dgYKC+YHJVlAZymjZ35o0hTRjwugfu9ar96QASQN26NkillYMM5ZkutvoAxOjRo/H19eXs2bP069fvT9/3jygrVbNu2VlKS9SoyjRYO5mRVnKTDgG9+H7zPsrKNAwZMoSioiJ0Oh1FRUWsWrWKfv36UatWLeRyOa+99hpZWVkYGBhgZ2dHYmIiZ8+exczMDFdX1790PS/KwECOqakBzs4W+Pq64e1dHW/v6vj6uuHgYPbc10mlEoyMFBgaykUASRAEQRAEQRD+pUQmkvCvVa2aCcbGCjIziygrU6NUyrG1NcbYWAmUd2rLSC+sUCw7JyeDjOxYlq99kxkT9vAo5Q4zZ3yNf9e6TP9oC7PnzmDOnDkANG3aFDc3N8aNG4eTkxPe3t4A+Pr6IpFIkMvl7Ny5U194+++QkpzL+bB40lLzsbQyok07ObdD4wApUomUq4+30Vr+GVqNmvkLh2GgNCI27g4hp/ZgbGTGtGnTuHv3Lv7+/owdOxYrKysAHBwc6N+/P/v27SM7O/svX5eNjQmNG9tz71462p/3TUkkEtzdbSsEKjZv3vyXz+2p21eT9JlwjrWtMbUyJONGEjdvnyYzM4X8/Fw8Gvlx7kIQQUFBZGVlMXz4cJo2bcqoUaPQaDTcvn1b/8yHDBnC+++/j1arZdKkSSxZsuRvW9uLkkgkmJkZ/N3TEARBEARBEAThLyKCSMK/momJEhMTZaXjKpWG9CcFFba7SSRgaGhKo0YeGBoqmbe0B6HXljDy3TZs3LhRn3X0rPHjx+Pm5kZCQoL+2MmTJ1EoFGzevJnNmzczffr0V7K233PzejI/HYxErdai00F6eiHxcdnEXLlBcVk+MqkSAxMlMpmUjMzHaDUabG0cWbthLnK5ArlMjkQix87Ojh07dpCcnKwPyvTt25dNmzZhZmaGUqnk3r17xMTE8PnnnxMTE8OAAQPYt2/fK12fg4MZ9vam+ho8pqYGVWYn/V2yM4pQlapRGsm5+zCUy9eOotVqGTV8LrfDzxJyehc6rRH5+QUUFxeTk5ODVCqlYcOGQPkzjoyMpKioiI8//pgDBw4QFhZGy5YtadSo0d+8OkEQBEEQBEEQhMpEEEn4n5SbW4JOB1JJeS0Xubx8i5W5mQEymRydTkdKSgo3btxAKpVSvXp1DAwMWL16NRcvXqRBgwZkZWVRr149lEolXl5etG3blry8PEpLSykuLmb8+PF/2y/7xcUqgoPKA0jPysvL4djVjbR1G4Fao+JpFM3G2oFZH28EYPHSdxge+BEnTu7kh73bqGZnSuvWrWnRogWBgYEAzJw5k5kzZ1a4doMGDejZs+dfsLpfSCQSzM3/mZku1RzNUBrI0cgKeRhzi/cmfa0/V6tWYxqmtsLU1Ap7u+pIJBJUKhWzZ8/m0KFDKJVKCgoKSE9Pp3///kRGRvLFF1/g4uJCRkYGXbt25fTp0+zZswelUklUVBR2dnb4+PiI1vaCIAiCIAiCIPxtRE0k4X9SWakaiQTMzAyQy6VIJBLUajV9+/ckMvIO4eHhREdH4+DggLu7O7GxsURFRXH06FFkMhkrVqzAw8ODqKgomjZtire3N46OjoSGhjJy5EgyMjJYuXLlc7u4vWr3I59UysrRajX8ePALOnUcjYmhJQDF+aVoVBoKi/LIyn5CaVkJGo2azds+x6tJW2xsTThy5AhRUVFMmTLlb1jJv1NpqRobR1N6BjZBYpKE0kDKV99MZvcPy9BqNZw+s5c7d86z4fu5pGekMXDgQKRSKTVr1uTNN99EIpGwa9cu7O3tOXnyJFFRUaxdu5Zp06Zx8eJFjh49ysCBA+nSpQt2dnZ/67Y9QRAEQRAEQRCEp0QmkvA/SSqTYiCVIJGgL+KrUCg4eOAnALr37IKFRR2OHg3D3781b731FsOGDeOHH37A2NiY3bt307hxY+zt7UlISOCjjz7i5MmTQHnHtoMHDxIXF8fSpUtZsWLFX76+4mIVGk3FLKTIe2GkPI7izJWtSDQ6Gll3pzivjJKCMkxNLDgYvJ5Hjx7Sq8covJt3YOuOOfj6HkQikRAWFkbjxo3/8nX8E6SkpNCzZ08iIyMpKChALq/8Y3Hjxo0sWLCAdu3asWrVBhISsvnhh238+ONOnjxJxd7ekVXf7eLzz+cRcmoXUomUT/+zn2MntlC7jhXVq7shlyv46afzBAXtZN2673jzzTfJzc3l5MmTBAYGEhMTw5dfLsPd3QMPj/q0bduWBg0aMHbsWAwNDSsUebe2tsbGxobQ0FCMjIxQKBRMnTqVqKgodvwfe/cdZVV5LmD82edMpQy9SBsQFFFEFGzIwAiIRsUSjYFoLKiIJhaMJcYSW2KMvcbKRcUaC3ZFwKELYqEpUgTpnaFOO3P2/QOdiJSNShng+a11F7BPe8/WzF08fvvbL7xAMplk/vz5TJ8+fUefTkmSJEm7MSOSdktZldMpKizZ/F2gwpB4LMbixQXUq5fNU089xaGHHspRRx1Fy5Ytadq0KYsXL97g9evv9FbAhAkTOOSQQ1i2bNkW71y2PTVsVJVYPEZpaWnZsZYHHE3LA44mLS3O8d1asHzxbG65cRKFC9Zy61+fJshIobQ0pFadShzSpgHnnP/BTpm9vKlevTqDBw/e4t3dTjrpJDp06MDNN9/MnDn5hCEceWRHTj/9LJ5//mmeeeZRqlWvQJs27Zg8eTwNG+xLPCXGwQcfwrIV0/n007nstVcjVqxIMm/ectauXcf77w+kR48zOOWUU1i+fAX779+W3556Addddwvnn3ctL730BolEfxYuXMgpp5zCwoULGTJkCCkpKbRq1YowDLnooovo3r07v/nNbwDo1asXvXr14rrrrttjo6AkSZKk7cfL2bRbyqyQusmAVFJSwkmnnMCkyZO4qHcPXnqpL199NZF27drTtm1bDj74YADatGmzyfd9/fXXWbp0KUcffTT33HMPV1xxxfb8GpvVoGEVatWqSDy+4XcMAkhLi9O8RQ1uueNa/nb7pVzzwImcddERnHlOW87ueSi/OaEFdbZwK/Y9QRiGzJ2bz6SJC1iyuICqVatu8PgNN9zAUUcdRadOncjPz6dmzZqkpKSQSJSWbdZev35DAA455DCKi4uJp8TIG/oqw0e+yYKFM2h9cD1KSheycmURyWTIrFnTGDDgOZLJkGrVajJ58mIOOuggioqKKSwspjSRpFHD5iyYP5uP896h3ZEn8ugjr9KwYUPuvvtuevfuzaJFi1i2bBlXXHEFM2fOpFWrVgC0bt26bPbXX3+dgoICzjzzzB1xKiVJkiTtQVyJpN1SEARkZKZQXFS6wfEfLmkrLU0ybcZyAEaPzuOFFwaQnz+Lvn37MmLECP71r39RtWpV7r//ftq3b09ubi65ublccsklvPDCC3To0GFnfK0yQRBwds+2/PfF8Xw3awXxlBjJ0iTVa1Sk+1mtqVAhg2HDhu3UGcurCROm0L59O+rUziYeT+GS3veSkZ5CScn6f1e++OILJkyYQJMmTXjuuefIyckp28z6x3f7+9/7fU529t6ce+4pLFw4j+bN96bx3lX469/Oo3LlWlSpUgeAypWr8sEHr1FYuI7s7H1YvbqIAQPegjBGLBawZu1qvvnmC+rUacDcud8ye/ZUBg78L3PnzuWrr77ir3/9K3vvvTf16tXjvPPOo2XLlkycOJH999+fCRMmcOyxxzJlyhSefvpp3nzzzZ99XsaMGUOfPn2Ix+O0bduW++67b6tfe+mll/LQQw/97M+UJEmStGtxJZJ2W+kZqQSbuCV8MhmycPEaEokS/vznHkyb9hXnnfc7AIqKiujcuTNTp07d6HVhGDJ69Gjat29fdmzMmDG0a9eOnJwc+vTps9Wz5ebmkkgkfsG3+p/MzFTO7tmWS/u05/c9DuKiPx3JJZe1o3r1Cr/qfXdnyWSSt9+czD7N2tD7wvu4sOddlBSXsnp1EUsWr6GkpJSpU6eWrUT76Wq2eDxG+KOSNGHC5wwfPpi+fV+na9eTuP32+4nHY1x++eXUqVOHa6/9N/Pnf8c330zgvPOuoH79bOrWbcC0aZO4/PIeNGrUiFtufozG2c2ZP38mz7/wACd1O5fjf9ODkkQJiUQJKSkp/OEPfyA7O5u99tqL/fbbj0aNGjFjxgz+85//cNxxxxGGIampqdx1113MmTOHLl260L179591brKzsxkyZAjDhw9n8eLFTJw4catfa0CSJEmS9gyuRNJuKwgCKn2/N1JxUSnJMKSoMMGSZetYt66ElJRUHn74RWKxgCZNqlGjRkUOP/zwjd7nh1UoQRDwxRdfbPDYD3/xzsjI4Mwzz2TixIk7/I5tVatlUrXaztmbaVcxbuhM3n7uCxbNXcnqomVMnfo5jzx2GQcekMNR7U7lyb7XMHfeNLqdeCp3/vs2XnzxRSpVqgRAIpGgV69efPLJJ1SvXp2srHRWrixi0aIF3HPPzTz44DMkk0k++2w0LfbtSmFhCQcffDBNmjThnnuup0aN2jRv3opXXnmaCRPG8tBD/+Wqq87m0ktv4qyzujJi+ExOPuk8xn46hIt63VQ28y1/f5qUlBgdc5tSvcbGYTCZXL+xeiwW44QTTqBx48Y8/fTTP+u8hGFIMhlCCLVq1iYWCwjDkJSUFOLxOJdddhlffvklWVlZPP/881SpUoWePXsye/ZssrOzadiwITfffDPt27cv+9+JJEmSpN2XK5G0W1t/WVsaWVUzWbqsgNlzV7FuXckGz0lNjVOt2pZX7/x4xdEll1zKd9+tYMaMZRQVpVNcTNlfvD/++OOyS99+2HT7iCOOoFevXrRt25Z33nlng/d94YUXuPzyy7fqu2zNqqeBAwfSvn17jjzySK6//vqy488++yydO3cmNzeXefPmbdXn7S7e6PsZT/4zj9nTllFUkCCeqMApbW7lxEOvYer0z5i/YAZhGBIQMGnyBEaOHEn9+vX58MMP6dSpE4sWLeKII46gYsWKjBo1iiuuuICCdcU89tg9LF26hCuuOJ9TT82lebN2FBaUsHpVEWEY0rt3bwYMeJHTTz+P4uIiFi+eT3p6BsD3vxaSnp5Caupq3nqnH+ecffVGs6ekxKhWfdOBcM2aNXTs2JHDDz+c1q1bU79+/Z91XpKlSZKl6wNS2bFkyJdfjmfp0qWsXbuWtWvXMmzYMLp3785jjz3G2LFjicfjDBo0iKZNm/6sz5MkSZK063MlkvYYTZtWZ+7clSxatAZYH36qVs2kceNqxDZx2dsP5s+fzwUXXMDUqVP59tuFXHLJhUyaNInmzfenpCTJkiVr+eyzL1m6dCmXXXYZl112GUcddRS1a9dm3rx5LFmyhBtuuIH333+fPn36cOKJJwLw0ksvMXbsWB588MGtmn9rVj0dffTRdO3atez3S5Ysobi4mKFDhzJ48OBfctp2aSuWruW9F8aTKPnf3ljxWCoAa5YW0iy7LYsWzSKrcnWo15REYjVVqlTh6quvZuXKlfTv35/DDjuMnj170rNnTzp06MDrr79Gv6fHcvyxl3L6b/9CoiTJc8/fx5C8AQzJe5O5877l7rvv54svPuXOO+/hlVceoV69fWjZsi3Dh39ILBYQiwXUr1+J3/3ud3zzzVT2a34wd/77UgqLCsjMqMjfb3qCV197nDlzJnLfA6n07duXxo0bb/DdsrKyGD58+C86L2EYbnJ/p+XLl3PZZZfxyisvM3ToUA455BAA2rZty9ChQ8nOzt5g8/nRo0f/os+XJEmStGsyImmPEQQBDRtWpX79KpSUlJKSEiMe3/RivDAMWbGigPkLVrFqVQGPP/EqV191AWvWFBOPp7BmzWr69OnFffc9wZ//3JPZs2dy3HFdyc3NZfHixUyfPp2ioiLOP/98li5dyi233MKyZcuIxf73eXfccUfkJUClpUmWLVvHmjVFpKRkEIZxAFJSUnj99deZPXs2J5xwAgMGDGDGjBn85S9/+f51pdStW7fsMqTS0lI6d+7M/vvvz/333088Ht9GZ7V8+2L4dwQ/+UdckigkNSWDsDRk+qzx7N18f2rWbMjZf/w78xa+u8GeR7A+rMydO5fq1atTWro+RsWCgOKSUlblFwJw2il/Knv+Xff2JiWeRXFRBZo26cTgQZ8wZMi7nHnm2XzyyUfst18t0tNj3H33v2nSpAkrVixn6dJZVKyURpWqVel24lkUFS8ks0IxI0cN5+uvv+aOO+7g8ccf32bnZVMBKZFIcPY5f+TOf91J7dp12HvvvRk4cCAA48aNo2nTpjRp0oSPP/4YYKNLOyVJkiTt/rycTXucWCwgPT1liwFp+oylTJu+lDVrionFUonFMikuLmXKlK+YP38e999/B19/PZG2bffh009Hk5KSysiRo+jbty+zZ88mJSWFnJwcgiAgkUgwZMgQpk6dWraPDcAzzzzDWWedRUFBAbDx5WoFBSVMnLiQuXNXsnx5AYsXr2HMmGn8/e//YOnSpfTs2ZO//e1vHHnkkTz++OP8/ve/B+CJJ56gefPm1KhRg/T0dBYtWkRxcTGDBw+mQoUKv+jOXbuqkpJSwuSGxWTRqmm8/fntvPvlv6iYUY02h3Th6ymjeOPN25g/f+5G71GzZk1uvvlmOnTowLXXXgvA3s1qENvMT8+brn+axtmH0v33l5JIJGnceD+OO7YH++2bS716e1GlSgbLly+nQYMGPPnkk8yZM4e8oXn8/vencfrpx/PX684hNW0lo0YNJzc3l4svvphVq1Zt83PzU6+++l/GjRvHdX+7K1y4YwABAABJREFUjk6dOlFaWkpmZiY5OTm88MIL9O7dm8MPP3yLm89LkiRJ2r25Ekn6kTAMWbhgFcuXF2y0WiORKOG2267jb3+7jRtu+AtPP/0KRx99CPF4Ck2b7sOCBfM47bTTqFChAkVFRSxfvhyASpUqsWLFCmbPnk2rVq2YNWsWX3/9Na1bt+bqq6/m7LPP5sUXX+Txxx/f4HK1994bQXb2PhvMMG/eHB566D7Gjv2Mhg0bMmfOHKZNm8bZZ59NgwYNAOjVqxfnn38+p512Gl988QVVqlShY8eOAHTq1Ilx48Zt/xNZTrQ4pN73q7/+F+8aVD+QBtUPJCUtzkGdmtCibQOuuPLLjTav7t+/PwCffPLJRu97SJsGfDtjOUWFJRv8exJPiZGWHqe09H8H58+fxaxZ3/DRR68y49vJvP3223Tu3JlGjRrx0EMPcemllzJ06FC+/PJLnn32WQCaN29O165dy+56VlKy4T5ev1YQbLAVEgDdu/ege/ce6x///pK7I488cqPX9uvXD4C8vDzy8vIoKioq2/9LkiRJ0u7NiCT9SFFhghX5mwpICb79djqPP/481avXpFmzfbnnnts5++wLGTNmJC+88Bb/+c+djBo1gsWLF9O+fXvuueceLrvsMqpWrcpZZ53FmDFjmDVrFqeccgphGHL11Vfz73/fzb77HsKsWSu55Zb7CIIUEokEo0aN5rPPJrBmzSqaN2/J1KlfUaVKNaZN+4ri4iKOP/5Y/vjHMykoKGC//fbjhhtuWD9/URHp6enE43EqVqxIZmYm7dq148knnwTgyy+/pEmTJjv6tO40jZrVoPlBdZny5QJKin+0L1JqjFp7VebiqzsST/n5CzIrVEzjtDNa8dnYOcyYvoxkMsle9arQdJ8afP3VIhKJ/0Wrs868ouz3N9/Sk27dujFmzBhuvfVWLrnkEl566SWefPJJVq9eTW5uLq1bt+b++++nbt265ObmEgQBPXr0oFevXr/qXPwcwea3CNvImWeeSffu3bffMJIkSZLKjeCn+3/sKtq2bRvuSSsqtGMsW7aWBQtWs2Zt8QbHBw58k9tuvZLWrQ+lpKSY4uIiOnbsQvv2udx55y1cd91N3Hbb3ygoKCA7O5upU6cyd+482rQ5hPHjx1O7dm3CMKRRo0Y88cQTXHnllUydOpUKFbL4178e56mn7mfYsI8499w/8+67L7NqVT6pqRksWbKQrKyqpKam0aRJM775ZjJr167hoIPa8PDD99GnTx8mTZrErFmzqFmzJo899hgvvfQSiUSCo48+mttuuw2Aq666inHjxlGzZk1eeOEF0tLSdsbp3SlKihK8+MgnjPxgKkEsoDSRpHW7bM69OoeKldO36WctXbKGEcNnbhCRfqx69Qp06rLPJh/b0cIwJJkMN1qSFIsHBD+nIkmSJEnarQRB8FkYhm039ZgrkaQfCcOQjIwU1q4rLluNlEiU8PZbL5OZWQEIuO22O3nqqce46qob+OSTEXTu3IXf//5kiorySSQS9DyvJzkdOhAmQ1579TV6976ExUsWM23aVPLzV1KtWjUWLlzIQQcdQWpqOn/72yV06nQCX389gbfffoUFC+ZyzTXX8ckn48jL+4A+fW4iIyOTRx/9N3fd9SQ33HApr732Ho0bVwfg2GOPpWbNmgD07t2b3r17b/S97r777h11Csud1PQUzr6yPb+/5AhWLltH5aoZZFbcPhGteo2Km73TXzwe0GTv6tvlc3+JIAiIx4MNNhI3HkmSJEnaEiOS9CMZ6SlUyEwhPx4rW02SkpLKQw+/AECFCqkc2LIuJ5zQidLSJE2anMSZZ54MwLnnnkuYDCkqSvDKK+8y49tlFBVX4O57/4+PP/6Qv157CUcd1ZlXX3uHOnXqMXPmNA49NIfZs7/l0EPb8+KLT1GpUmXS0tIoLCwhJWX9X+jfe+81zj33zxQVFTJmzHBq165LnTqVmTJlCl999RX//ve/d87J2sWkZ6RQu37Wdv2MWCygzaENGfvJdxvsixSLB1TOyqBRdrXt+vm/hOFIkiRJ0tby7mzSj1SomE4sFqNOrYpkpMeB/+0PU6liGvu3qEMQrN90ODU1vtGqk7Xrivl25gry8wspLEyQTIaUlCTo1+8/NG9+AD3+cD5vvTWAMWNGU6dOPVq1aksQBCSTpRQVFbB8+RKKigp57rm+JJNFpKdnULFiJcaP/xSAL74YQ7VqWfzxjz2oXbs2rVq1okOHDjv0HGnL6tevQofcptSpU4nU1DgVKqTSokUdjj662WbvCChJkiRJuwL3RJJ+IpFIsmLFOkqKS0kmk5QkkmRVzqB6jQpbXLURhiHTpi2lpCRJGIaUfn9r+dde688d//wb+x9wECkpqUyb+hV77VWPJUuWUK9eI+LxOKmpaSxcOJfTTjuHl19+ilatDuK0007huuuu4+6772fatOl8+OF7VK9elUGDBu2oUyFJkiRJ2sO4J5L0M6SkxKhVqxKlpUmSyZB4PLbZfW5+rLi4dKMNlROJBEOGfMD//d8ADmx1CO+//wa33XoNS5YspnLlKlxxxU3MmTOTf/7zWlq2PITPPhvFk0++wSOP3MzNN9/MVVddxZIlCzjwwP1o3Lj+Nr/VuyRJkiRJW8uIJG1GPB4jHt/655eWhgTBhhsVf/TR23w1+Uvuf+AfAFx22XV88OGnHHdsWyZMmMSSJSENGzYmHo+zdOki2rXrSG5ua7p1e5+rrrqKgQMHUrNmTfr06bNH3VFtTzRr1iwOP/xwWrRoQVpaGgMHDtzk8+666y7efPNNsrOz6devH6mpqVxzzTWMHDmSWCxG37592Wef8nEHOEmSJEm7FyOStI2kp8fLAlIQBASE/OY3p/Kb35y6wfNWr86nU6djaNBgL1av/pq///0SXnzxDTp06EC1apllq5725Duq7amOOeYY+vfvv9nHlyxZwscff8yIESO48847GTBgAJ07d2bcuHGMHDmSkSNH8uijj3Lfffdt8vWTJk2iV69exONxmjVrRt++fbdqY+21a9fStWtX6tWrx3//+99f/P0kSZIk7drc5VXaRuLxGNWrVyjbiHtTl8DNmjWNPn3O46qr+gDQokULPvlkFKeeehw1alTYqsvmtPtIJJJMn7aUsZ98xzdTFjNkyMfk5OSURaBbb72V3NxcOnXqxKxZsxg7diy5ubkAdOnShU8++YRKlSpRo0YNSktLyc/Pp0aNGpv9vObNmzNq1CiGDx8OwNbuKzd+/HhycnIMSJIkSdIezpVI0jZUp04lwjBkxYoCYrEYsVgIAVSsmEZ6WgrN9z2Sk0/6ZGePqXJgxfJ1fPDeFEpLkyQSSZLJEm79+4t0zG3OFVf2pFOnTsybN4+8vDy+/vpr7rjjDjp06EBWVhYAVapUYcWKFaSlpdGsWTOaN29OIpFg9OjRG3zOunXFLFq0htLSJNWqVaB69RSCICA9PZ2GDRty6623MmTIkLJL4V5++WVatmzJCSecwIABA5gxYwZvvPEGc+bMISUlhdtvv31nnC5JkiRJ5YARSdqGgiBgr72yqF27EoWFCWKxgIyMlK26ZEh7jmQyZOCH31BUlCg7FoulEoul8snoOXTpchzjx48nLy+vbOXRXnvtRdWqVZk3bx4Aq1atomrVqnz99ddMmjSJqVOn8vnnn3P99dfTt29fAKZNW8qcOSsJw5AwhDlzVjJuXB79+t1H8+b7smTJko1C1Q033MD111/PCSecwH//+1/uvPNO2rRpw6BBgwxIkiRJ0h7Oy9mk7SAej1GxYhqZmam7dECaP38+hxxyCBkZGSQSiU0+Jz8/n9dff30HT7ZrWzB/FYmS0g2OFRSuBSAMQwYOHEJ2djZdu3YlLy+PvLw8nn32WQ499FCGDh0KwKBBgzjiiCMIw5CqVasSi8WoWbMmK1euBGDJkrXMmbOSZHJ9QIL1m78fckhHXnhhIPXr1+err74qC1UXX3wxq1atomHDhixfvpxly5aRn59PgwYNdtyJkSRJklSuuRJJ0mZVr16dwYMHc+qpp272OT9EpN/+9rc7cLJd25o1RSST4QbHpk79kjcGPE5KahptDjmMjh07MmLECHJzcwmCgB49etCrVy86dOhA+/btadSoEVdccQVpaWlUrlyZnJwcEokEDzzwAACzZq3Y6DOKi4tIS0tn2bICKlasxMKFC+natSsPPfQQACUlJQCcdNJJ9O7dm27duu2AsyFJkiRpVxH8+Hbku5K2bduGW7sprKStE4Yhc+as5Ntvl1NYmCAtLU52djXOP/+3DBo0iJSUlI320HniiSd4+umnadGiBXfeeSfXXnstAJ9//jmTJ0+mYcOGO/lblT/z569kyKBpJEqSGz0WiwUc0LIubQ79dedt2LCZFBdvuNpp1KhBvPrq+juyHXTQ/vTr9zR33HEHH3300QahasWKFTRs2JBZs2ZRs2ZN8vLyvJxNkiRJ2kMEQfBZGIZtN/WYK5Eklfnqq8XMn7+K0tL1cbm4uJQZM5axenURYRgyceLEjfbQue6665g9e3bZrenz8vJ4//33GTBggAFpM/baK4v0tBQSJcUbPRYEAc1b1P7Vn5GZmbpRRGrXrgvt2nUhFgto374xsViM66+/nuuvv36j1x977LHUrFkTgNzc3LK9mSRJkiTtudwTSRKw/i5e8+b9LyD9IJkMSSSS5OcX8vXXX2+0h85Pffvtt9x///08+OCDO2r0XU4QBHQ9rjkZmamkpK7/MRxPiRGPx+iQuzeVKqX/6s9o3LgasdjG+3EFAdSokUlaWnyTr5syZQrdunXj8ssv/9UzSJIkSdq9uBJJEgCLF68FNn15axjCggWrad68+UZ76CxevJjS0vUrXtatW8dFF11E3759SU//9SFkd1alaia/+/1BzJmdz4rl68iskEaTvauTnr5tfizXqlWRRo2qMnt2ftnd2eLxgMzMVPbfv85mX7fffvsxYsSIbTKDJEmSpN2LEUkSQFlo+LFEooQbb7yQmTOn0KvX73nggbupW7fuBps9n3/++SxfvpzTTz+dbt268c033/DHP/4RgJdeeom6devuhG+za4jHYzRuUp3GTapvl/dv1qwG9eplsWjRakpLk1SrVoHq1TN36TsGSpIkSdp53FhbEgCrVxcxevTsje7oBetXsBx8cD1q1qy4EybbvEmTJtGrVy/i8TjNmjXjpptu4sYbbyzbn+kH7du3d3WNJEmSJG2FLW2s7Z5IkgCoXDmdWrUqbrSPTiwWUKlSOjVqVNhJk21e8+bNGTVqFMOHDwdg6dKlO3kiSZIkSdp9GZEklTnooL1o3LgaKSkxgmB9QGrQIIvDDmtQbi6BKixM8N13K5g8eRHffruC5cvXEYYh6enplJaWMm/ePE4++WSOOOIIZs6cucFrL7vsMl566SWOPvrosn2cTjvtNBYvXrwzvookSZIk7VKMSJLKxGIB++5bk86dm3L00U3p0qUZ++9fh3i8fPyoWL26iClTFrNs2TqKihKsXVvCs8++QvPm+7N48WJq1KjBwoULee2113jggQe48847y157+eWXc+SRR9K9e3c6d+7Mxx9/zKpVqygpKaF27drbZL5Zs2ZRp04dcnNz6dq161a95qOPPqJTp07k5uby2WefAdChQwc6duxI586dDVySJEmSyo3y8TdDSeVKEASkpcU3eYv4nSUMQ2bNWr7Rnk0dOhzDK68MpkaNOrzzzjsceOCBpKSk0Lp1a6ZPnw7A1KlTmTx5Mt27dwfgD3/4Ay+//DJvvPEGp5566jabD+CYY44hLy+PgQMHRr6moKCAxx9/nI8++oi8vDzatGkDwODBgxk6dChnn302zzzzzK+aa9KkSbRr146cnBzOO+88wjDkggsuoH379sybN2+Tr+nTpw85OTlcfvnlv+qzJUmSJO1ejEiSdgnr1pVQWrphQCouLgIgmQxJSckgMzOTSZMmUVpayvjx42natCkA++67Lz169ODqq68GYO+992b+/Pm88sor/Pa3v/3FMyWTITO+Xcaw4TN59D+vc+yxJ/LKK69Qv3597rvvPmbNmkWnTp0444wzOPjgg3n99dfp2rUr7du3Z+3atTz00EN8/PHH1KpVi5NOOom1a9cCkJqaCqyPTAcccMAvng823jdq3LhxfPPNN4wYMYL69etv9PzPP/+ctWvXMnz4cIqLi/n0009/1edLkiRJ2n0YkSTtEkpLkxsdGzUqjwsvPI0LLzyNJUsW07VrV2rXrs0pp5zCZZddxjXXXFP23PPPP58aNWqUXeJ2/PHHk5aWRpUqVX7RPGEY8uX4+cyZs5JEIkmdOvW56+7+vPnW57Q++DDeeOMNVq1axYoVK3jppZe4+uqreeaZZxg4cCDHH38877//Pn379qV58+ZMmDCBefPm8fjjjwMwe/ZsjjzySB5++GEOPPDAXzRbaSJJUWEJYTIg+f25S09P5/HHH2fChAmceOKJ5OXlcfLJJ9OtWzeOOuoo1qxZw+jRo+nSpQsAXbp04ZNPPvlF50eSJEnS7idlZw8gSVsjMzO17JKxH+TmHktu7rEA1KpVkYYNq5KXl7fRa0eMGAHAddddV3YsCAL+8Ic//OJ5Fi1ew8qVhfwwUvXqtcoeSyQC2rfP4aKLLmLevHmcdNJJ9O7dmwYNGnD00UezevVqDjzwQOLxOB07dqRBgwYUFRXx9ddfA9CoUSNGjx7Na6+9xt13380DDzyw1XOFYUjhupINLvsbMOBNbrn1Jpo3b87LL7/MlClTeOedd8rO1dtvv80//vEPBg8eTH5+ftkKripVqjB58uRffI4kSZIk7V5ciSRpl5CaGqdatQps6iZxsVhA7dqVtvq9Hn30Ud544w1OOeWUXzRLUVGCGTOW8ZOmxbp1a5gxYworV65g9Oix1KxZk65du9K9e3feeustgiBg8eLFXHLJJRx11FFUrlyZL7/8kilTpjBt2jSaNGlCSUlJWSzLysoiMzPzZ81WXJjYaN+oE44/kbGffM5ee9XjnXfe2eCxli1bAlC/fn3y8/OpWrUqq1atAmDVqlVUrVr1Z32+JEmSpN2XEUnSLiM7uyrVq68PSbFYQCy2fgPwffapSXr61i+svOSSS/joo4/K9h76uebNX7VRQAIY80kel116BvkrlpGSksKhhx4KQNu2bcs2sT7ooIOIxdb/6L3vvvuYNm0aHTt2pHLlyvTu3ZsFCxaQm5vL0UcfzT333MMVV1yx1XOFYUgiseFlf0VFRWW/r1ih0kZRKvhRlQvDkCOPPJLBgwcDMGjQII444oit/nxJkiRJuzcvZ5O0ywiCgOzsatSvn0VBQYJ4PCAzM3WDELIjrFpVSGpqnOLi0rJjpaUJBg58g7vveZYDDjiYWLCQfv2eon///vTv35+cnBy6d+/ODTfcwLnnnlv2uunTpzNt2jQefvhhqlevTvXq1Rk6dOgvmmtTYeujQQN56OH1l8M1a9qMrl27cvvtt2/2PQ455BAyMjLIycnhoIMO4rDDDvtFs0iSJEna/QQ/3WNkV9G2bdtw3LhxO3sMSXugL76cTxiGrF5dVHbHuCGD3+bhh2+lceN9SE2L8+AD99C/f38mTJhA5cqVeeGFF8jPz+eGG26gf//+APzjH/9g0KBB1KhRg8cff5waNWr8qrnCMGTdmuLNPh7EAipUTPtVnyFJkiRp9xYEwWdhGLbd1GOuRJKkn6lSpTTWrCmmcuV0CgpKKCoqpVPnbnTu0o1KldJo26YBQRBw5JFHAvDss89y2mmnUVpayvPPP1/2PkcddRQlJSXcfPPNPP/88zzyyCNUr16dF154gaysLC655BL++9//cscdd3DBBRdEzhUEASkpsY0uaftBWlp825wASZIkSXskI5Ik/Uz162UxbdoykkCFCmlkZq5fjRQE0KxpzQ0ur5s3bx5Dhw4t22doU0pKSnjssccYNmwYr732Go8//jhXX301N954I4cddhiJRGKrZ0vLSCH5k7uzAaSkxoinuA2eJEmSpF/OiCRJP1OFCmk0a1aDuXNXUlBYQhAEpKel0KBBFSpXTicMQ1asKGDFigJeffV1CguL6dy5M/vvvz/3338/F154IbNnzyY7O5uGDRsydepUDjzwQFJSUujSpQu9evUCYK+99vrZswVBQEaFVJKlIYlE6frVSamxss28JUmSJOmX8m8VkvQLVKyYRvPmtTiwZV1aHlCXFi1qU7lyOolEkokTFzFjxnKWLl3Hd9/NZenS1Tz66EtkZmZyzz33EI/HGTRoEE2bNgUgPz+frKwsAKpUqcKKFSt+1WxBEBBPiZGekUpaeooBSZIkSdI24d8sJOlXiMdjpPzoMrFZs1ZQWPi/y8kqVszi4IMPZ9WqIg4++AhKSko4+OCDAWjTpg0AVatWZdWqVQCsWrWKqlWr7tgvIUmSJElbwYgkabdy77330r59+00+1q9fP5566qnt9tmlpUmWL1/Hj2962apVG6ZPn0IyGfLJJ5+RSCQYP348AF988QUA++67L5MmTaK0tJRBgwZxxBFHbLcZJUmSJOmXck8kSbuNoqKiskCzM5SWJgmCgPBHFWnffQ8gPT2Diy8+g6pVq/HBBwPo1asXnTt3Jjs7m0aNGpGamsqFF15ITk4O1apV44UXXmDWrFm0bNmSMAwJgoD58+dz0003bfB5//rXv/jjH/9I/fr1d/RXlSRJkrQHCn78l51dSdu2bcNx48bt7DEk7SRhGPLdrBV8NXkRBeuKqV6jImPHvcWhh7bmpptuolu3brRs2ZITTjiBAQMGMGPGDGrUqMGHH37IypUrAXj33Xe57bbbGDJkCOvWraNy5cpbvIvalowZM4Y+ffqwbl2CFi1accYZPXn88bu55ZYHyp6TmZlCq1Zbt1n2rFmzuOGGG+jfv/8vmkeSJEmSfokgCD4Lw7Dtph7zcjZJu5wwDBk5fCYjh89kyeI1rFlTzLczlvD6a+/TOPsgAP7whz/w8ssvA/Df//6X3//+9wDUrl2b9957j/r16zNhwgRuuukm8vLy2G+//TZa6bM1c6xbV0xBQQnZ2dkMGTKEt94ayIoVy1i3bu0Gz43FAurVyyr7czKZ3Oj9igoTTJ60kEt6X8dvjuvG4MFDyMnJ4b777gPgsMMOo127dnTq1In8/HzOPfdcpk+fTr9+/ejRowfHH388xx9/PLvqfxyQJEmSVL55OZukXc6ihav5btYKEon/hZhRo9/j8MO6MmrkLMIwpGHDhixfvpxly5aRn59PgwYNAGjZsiUA9evXJz8/H1i/j9LBBx9Mx44dt3qGOd+tYPiwmaxdU0QYQpWqGeR0zKRBgypkZqYRj8dZunQR113Xm/nzZ/PMMy+xenUJv/tdT2rUqMHxxx/Ps88+S9u2bRkxYgS///1ZNKyXQ1FRIZMmTyRRGnDnP1+j6T61+ecdl9G6dWuaNWvGCy+8sMlIVLt2bV588UUuvPBCJkyYwEEHHfQrzrAkSZIkbcyVSJJ2OdOmLt0gIAEsXPgdH+e9xl13X8qkSZN56KGHOOmkk+jduzfdunUre14QBGW/D8OQoUOH8uWXX9KnT5+t/vy5c/L58P1vWLWykNLSkGQyZMXyAt57+2uG5n1CcfEaWrduSFHRGp5//kWuu+5qPvlkEEEQsHjxYl5++WV69uwJwCmnnMIHHwzm8cefoqCgkEGD36BD+xOJxWLk5y+j10Xd+e67OfTv359PP/2URCLBo48+ypFHHskHH3zA5MmTgU3HMUmSJEnaloxIknY5xcWJjY6d8btLuerKh7jmqodo1qw5l156Kb/73e94//33Of300zf7XrfeeitTpkwhNzeXK664Yqs+f9SIWWURa+asydx170Xcfd/FPNv/X/S6qBcZGRlkZKTSqlVL9tori+zsRjzzzDOcfvrp7LPPPsTjcQCSyZDKlRvx7bf51Khel+UrFvP1lM844IDDSCZLAVi5cjl16zSmV69eLFq0iK5du3LjjTfyj3/8g4oVK7L//vsD/4tjffv2JQxDrrjiCkpLS7f6nEqSJElSFC9nk7TLqVe/CgsXrN5oNRKsX100ZHBe2Z+PPfZYatasCcC5555bdvzmm28GIDc392d9dklJKSuWryv7c/Xqdbni0geJxeJcf9NvOe2UP1NUOh3YcNXT0qVLGTZsGDfccAOwPiAVFiaYPHki2Y32Z8nSBUycOIZ2Rx4HwLp1a7nr3itYtXI5VavWpEGDBiSTSQoLC2nSpAkPPPAAS5YsYdmyZZuc8/777/9Z30uSJEmSohiRJO1ymjaryfgv528UkeLxgLp7ZVGlaiZTpkzhggsu4J///Oc2/ewfhyGAKlk1APh03EesXbeKwXmvsHLVAubNm8f48eOZO3cuTz/9NIsWLaJnz57UqVOHk046iXXrCpgx4xseeeRuVq1aSU77E1i8eC5jxw1m8JDXyM9fym9P6cU330zgtFP+zMsvDaBSpUpkZGRw0EEHcdVVV9GtWzd69uxJVlYWL774IgCNGjUiNzeX3NxcBg0aREqKP+YlSZIkbRv+7ULSLictLc7xJ7Zg6MczWJlfQCwWozSZpFF2Ndq1bwzAfvvtx4gRI7b5Z48ZPZuiogSpqfENgtJeezVhv+Ztueqq27j/gasYPHgwL774Iq+99hrPPfccM2fOZMiQIbz88svMnDmTc8/9E61a7cOxx57E6aefycwZS1m9qpAf9sy+/sZzqZ51IIWFn/PN10sY+clnrFtXzLvvvs+hh7bhww8/ZMGCBYwZM4aCggLuvPNOHnvssW3+fSVJkiTpB0YkSbukrKwMup18AKtWFVJYUEJWVgYZmanb9TM/HzeXjwdNJwxDatSsAIQEQcDatat4+b/3cslF/+SQQxqw//77E4vFqF+/PtOnT9/gPWbOnEmrVq1ITY1RoULFsuONGldn1rfLWLummDWri/hj938ThnDKideQTIakplSgY/s/8sE7U7nnnnsYN24c48ePp1WrVhQVFW30OZIkSZK0rbmxtqRdWlZWBrXrVN7uASkMQ4YMmk5JSSmJRJKlS9ZSWJCgpKSEvs/cwqkn/4nzL+pE5az0je4A92NNmjRh4sSJVKmSSbt2Hcs22Y7HYzTdpxb7tqjNyvz/rUj6QYP6LVi48Fsmjl/AuHGfEwQBkyZNorS0lPHjx9O0adPt+v0lSZIkyYgkSVuhsDDB2jXFZX8uLQ3Jzy8kL+99Zs36mldefYiTTjqOBQsWbPF9TjnlFEaOHMkJJ/yGNWuWk5q64YLQzMxUioo2vvtc3TpNSUlJ4//6X80no8dw+umnU7t2bU455RQuu+wyrrnmmg2ev2rVKnJycsjJyaFPnz4AXHDBBbRv35558+Zt9P7/+te/yvZSqlixIsuXL9/qcyNJkiRpzxD89L+S7yratm0bjhs3bmePIWkPkUgk+ectgygt3fTPzLT0ONf/vctWvleClJQULr74Ynr0OJPmzVtTXJwgLS2F6tUzeeKR0SxauGaTr01JiXHVdblUqJi2xc9YuHAhVatWJSMjgzPPPJO//vWvnHzyydSrV2+Le0UtXbqU008/nby8vLJjP9zBbuXKlWRnZzNgwICt+p6SJEmSdj1BEHwWhmHbTT3mSiRJ2gopKTH23a8WP7k5G7D+rnCtD66/1e91wgkncNRRR7Fu3To6dGhPnTqVaNiwKnXqVCI1NU67nCakpsY3+TlNm9XYbEAqLEzw1eRFDBv6LXNmF7NuXfL72VO48sormTlzJmPGjOHggw/m6quvJplMctxxx/HKK69w8803A/DWW29x0kknMWvWLM4991wAbrrpJoqKili9ejXt2rXb6u8pSZIkaffixtqStJWO79aCObNXUlhQQiKxPtCkpsaonJVBp2OabfX7fPjhh1t8/KCD6/HtjGV8NXEhiUSSMFx/R7rKWemc8rsDN/maZcvWkTdk/abfpaUhQQBz565kXcECZs9ZwBGHH8Gnn35Ky5Yt6dGjB6+99hq///3vGT58ONdeey0ff/wxv/nNb7j22msZO3Zs2ZwlJSXcdtttDBw4kNzcXKZMmbLV31OSJEnS7sXL2STpZygoKGHc2DlMmrCQWCzgoIPrcXCb+qSnb/smP2/OSsZ/OZ/i4gT77FuL/favTTy+8QLSMAx5a8BkJk76gmefu5tYLE6L/VrR8/zLOeecrtSuvRcVKlZi4sRxpKelE4ZJKlWqxOLFi4H1K5XS0tKYO3cutWrVIh6P07lzZz7//HNuvPFG3n33Xfr160e3bt2YMmUKLVu2pFOnTtx2223b/DtLkiRJ2rm2dDmbK5Ek6WfIzEwlp+Pe5HTce7t/Vv2GVajfsErk8xYtXE1JSSm1au7Fjdc/QVaVSjz40F+57m8XUq1aTU44oQeZmRUoLCgAkqxcuZS1a9eSkZFB+/btyczM5L333uPuu+8mHo9z44038sUXX1CrVi3WrVtHVlYWb775Junp6TRu3JiRI0dyzDHHkJ+fT9WqVbf7eZAkSZJUPhiRJO1RxowZQ58+fYjH47Rt25Zrr72Wp59+muuvv57c3FzCMCQIAm666SY6depEbm4ugwYNIiWl/P24XLhgFV98Po/8FQUAZFWuThALqFgpncWLF/LNlAkkk0kefvhmatWqx+LF80lJSaOgYC2pqSkEQYyUlDSGDRtGMpnkzjvvJAgCbr/9durVq0dRURGZmZkMHjyYJUuWcNxxx/Hiiy9SWloKQHp6+s78+pIkSZJ2MDfWlrRHyc7OZsiQIQwfPpzFixezZMkSrr/++rLHBw8eTF5eHp06ddqJU0abP28lw/JmlAWkH4TJkJmzvqFChYq8++5kWrQ4iLffnsTDD79Ohw6/IS0tjaZ770eXLieTTJbStOlBFBYWEgQBr7/+OpUqVaJZs2Y0bNiQkpISXn75ZapUqcLatWvZd999mTNnDs2bN+fII48kMzNzJ317SZIkSTuDEUnSHiGRSLJmTRHVq9ciIyMDWL8XUDwe56yzzgIgFovRpUsXunfvzvLly7frPJMmTaJdu3bk5ORw3nnnsbn96dq3b7/RsTAMGTd2DqWlG79mzZqVPPjAzfTp88+ffN44vvlmAqtX53Ngq8O49NLbadp0P/r2fYBEIkGjRo1o2bIllSpVYubMmVSoUIG6devy6aef8uCDDxIEAZdccgnPPfccU6dOZeLEicyaNWubnAtJkiRJu4byd32GJG1DyWSSr79ewvz5qwgCCEOoVi0TWMzSpUupUKFC2XNfffVVqlevzgsvvMDtt9/Ovffeu93mat68OaNGjQLgvPPOY9y4cRx66KFb9dp160ooLCzZ6HhpaYJH/nMj5537F6pXr7XBY23bdmDAgOfo3PlkSkpKKC5KkJ3dlNTUNDIzK1C9elWaNGlCGIbUrl2bBx54gNNOO42TTjqJTz/9lNGjR3PGGWew//77E4vFqFKlCqtXr/71J0KSJEnSLsOIJGm39uWXC1i2bB3J5P9W7cyaNZ/bbvsz778/gOLi4rLj1atXB+DUU0+lX79+23SO0tIkq1YVsmbN+s+rVCmdKlVSiMUC0tPTadiwIeeddx5z5syhUaNGNGrUiJtvvpnVq1dz9tlnM378eJ555hlat25Nv359efihxwlDOPuPV9GkcQsAxowdxLczJ/N033tISYlx3nl/Kfv8AQOe5aijjqFmzbrceedfGDVqEJmZGUybNpkgiBGLxahcuTKxWKwsIq1du5auXbvywQcfMHnyZC666CJat25NLBajatWq/Oc//9mm50iSJElS+WZEkrTbWrOmaKOAVFqa4N//vpoLLrgGqAT877K1VatWkZWVxciRI2natOk2myORSDJnTj6lpUl+uGqtqCjBq6++zgMP3MG+++7Ld999R3p6OoMGDeLOO++koGD9XkcLFy5kzJgxfPbZZzzzzDM0aNCADz98j3/d8SyLFy3l8Sdv4S991q+YanfkcRzV7jiaNK1BhYrpLFiwmnvvfQmA3/72XMIwJJFI8nz/0aRnpFCt2v9WYVWrlsa++9YB1q+MOvfcc1m5ciUXXHABF1xwAQD77bcfK1euJBaLccstt/DOO+/wu9/9bpudJ0mSJEnlm3siSdptLV9esNGxYcM+YOrUiTz55F2cdNJxLFiwoOyxTp06kZOTw5133skNN9ywzeZYsmQticT/AhKsv6wuN/dYBg8eTf369fn2229p1aoVAK1bty57XrNmzcjIyKB+/frk5+fz7bffMn78eO686xLuf/Bq1q1bs8FnpaTGaXngXrRsWYfs7CokkyFhGJJMJikpLiVRUkoQQOXKGRQUFLNgfj5zv1vO8qUFrFldBKy/61ppaSnz58/n9NNPp02bNsydO5d4PE4stv7/bZSWlrLPPvsAcNBBB9GjRw/atGnDp59+us3OmyRJkqTyxZVIknZb8XhAEGx47OijT+Too08EoH79LFJTV5bdZWzcuHEbvUdeXt6vmiEMQ9auLdroeHFxEWlp6axeXURWVhZTp05l4cKFAEyYMKHsecGPvkAYhjRp0oRDDz2UV199lcWLVvPpmFmsWlVCEED9BlU4+JAGVKyYBkDz5rWpU6cyX01exNKlawmCgIqV0qhYMY0Vy9exYtnasrD17YylvPrqG7zz3pPsv/9+1KhRgxUrVjBo0CBefPFFXnvtNS6//HLGjh3LJZdcQkZGBn/5y/rL5ebMmcPIkSNZuXIlF110Ee+8886vOmeSJEmSyicjkqTdVq1alfjqq8WbfCweD6hdO5PTTz+Dv/3tb9tthjCETd14bdiwIfzf/63fU+jAA1vw5JNPcv7559O5c2fq1avHfvvtt8n3q1WrFieccAIdOnQgHo/TqVMnrr/+BoJgw+D0g6pVM2l3VOMNjs2bt5KZ05duMFcyCa0PyqFt246MGNWXd955p2wT7fr16zN9+nQADjvsMMaNG8c999xD37596dOnD82aNaNSpUpUqlSJlStX/rITJUmSJKncMyJJ2m2lpcXZZ5+aTJu2dIN9keLxgJo1K1KrVhbDhg3brjMEAaSkxEgkkhsc79LlN3Tp8htSU+M0blwNgCeffJKUlBTuvPNOGjVqBMCIESMAaNy4cdlm3+eddx7nnXfeL55p7px8wp+UrZKSYlJT0yAESCczM3OjVVDFxcWkpa1f5ZSVlUVpaSkA06dPZ+3ataxcuZKsrKxfPJckSZKk8s2IJGm31rhxNSpVSmPGjGWsXVtMWloKjRtXo379rE2u3NnWgiCgevUKLFmyZqMVSUEANWr8b3Pr888/n5kzZ5KVlcWrr7663WYqWFe80SwTJo7m/Q+fJyCg5YEtuPLKP5UFrB98+eWXXH311cRiMapXr85zzz0HQMOGDenZsyfTp0/n0Ucf3W5zS5IkSdq5gp/+1+hdRdu2bcNN7V8iSTvTvffey+uvv75RgFm+fB3Ll68r+3NJSQnnnHMKX301mS+//JJmzZpt8PxZs2Zx8803l60+2pYmT1rIhC/nUVq68c//eEqMY45tTs2aFbf6/dq3b7/R95UkSZK0awqC4LMwDNtu6jFXIknSNlJUVMT48eM3+Vj16hWoWjWTgoISADIyUnj77be49tprd+SIADTbpyaTJszfKCIFAVSpkvGzApIkSZKkPUdsZw8gSbuqdeuK+WrSQsZ88h1Tvl7MY/95nHPOOQdYv5KoU6dOnHHGGRx88MG8/vrrHHfcsRx7bCeghHg8Rp06dTZ6z5tuuomcnBzuvffe7TZ3enoKxxy7HxUqpJKSEiMlJVa2T1SnLvv87PdzFZIkSZK0Z3AlkiT9AnNmr+DTsXMIQ0gmQ8JwKS+/8i49evQse86KFSsYNGgQL730Es888wwDBw7kn//8Jx9++CG//e1vN3rPBQsWMHbsWIYPH84LL7zAwIEDt9v81WtU4NTTW7Fk8RoKCkqoUiWTqtUyt9vnSZIkSdr1uRJJ0h5vzJgxtGvXjpycHPr06cPChQv5xz/+Ufb4/PnzycjIKLvNfUFBCZ+OnUNpaVh217eP897hqHbHMXLEzLI7n+2///7EYjHq1atHy5YtAahXrx4rVqzY5BzfffcdrVq1AqBNmzbb7fv+IAgCatepTHbj6gYkSZIkSZFciSRpj5ednc2QIUPIyMjgzDPPZMmSJVx//fVlj99///0cccQRZX/+bubyje5uNn/+LL777hsGDX6Vb7+dzNtvv73B3d9+/PvN3dAgOzubiRMnAvDFF19si68mSZIkSduMK5Ek7ZFKS5N8NWkhH773DdOnrqOoaP3xlJQU4vE4Z511FgBLlixh9erVNG7cGIBVq1Zx6eUXkEyG3HjTOYz9dAiLFs2lsHAt1//tP/ztr4/SrGlzunXrFjnDGWecwcCBAznnnHN488032WuvvWjTpg05OTnuMyRJkiSp3HElkqQ9Tv6KAp5+YiyFBSUUF5cSjwd8PGgGTZqVsnTpUipUqFD23Pvvv58///nP3HXXXQBkZWVRVLSWZDJBpcpVmTp1PIWFBey7b2sAUlJivPXWQOo3qEL//v0ByM3NJTc3F4Bzzz237L1feeWVjWa7/fbbt8+XliRJkqRfyZVIkvY4L/b/gtWrCikuLgWgtDRk9eqV3HDj1dx+231lz8vPz2fOnDkccMABG7x+//2bM/qTgRzcuj0rVy5n6tQv2a95awDiKTH2qpe1w76LJEmSJO0oRiRJe5RFC1ezbOnaDfY0SiZLeeOtf9Pl6AuYMa2g7Pg333zDtGnTOO644/joo4/o3bs3AO3bH8XgIS/S8oBDSEtPZ/78WdSr15CMjBRyj25KLBb89GMlSZIkaZfn5WyS9igrVhQQi8WAZNmxr74exvwFUxn08dMMG/kMzzz7CACHH344o0ePBtZfhnbDDTcAcNRRRzF37hz+dOnJFBXPYfDgAg4/Mpu6dSsbkCRJkiTttoLN3SWovGvbtm04bty4nT2GpF3M4kVreOLR0ZSUJDd6LAjgwIP2ouVB6dx99908+eSTO2FCSZIkSdp5giD4LAzDtpt6zMvZJO1RatepRM1aFTe5YiglJUbbw+pz4YUXctppp+2E6SRJkiSp/DIiSdrj9PjjIWRVySAtLQ6sj0cpKTGOPb452Y1rMGzYMI477ridPKUkSZIklS/uiSRpj1OlSgaX/yWHad8sYe6clVSomEbLVnWpXDl9Z48mSZIkSeWWEUnSHikWC2jeojbNW9Te2aNIkiRJ0i7By9kkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUaYdGpCAI+gZBsDgIgkk/OnZXEARTgiCYEATBG0EQVN2RM0mSJEmSJCnajl6J1A847ifHPgJahmHYCpgKXLeDZ5IkSZIkSVKEHRqRwjAcBiz/ybGBYRgmvv/jJ0CDHTmTJEmSJEmSopW3PZF6Au9v7sEgCHoFQTAuCIJxS5Ys2YFjSZIkSZIk7dnKTUQKguB6IAE8v7nnhGH4RBiGbcMwbFurVq0dN5wkSZIkSdIeLmVnDwAQBME5wIlA5zAMw509jyRJkiRJkja00yNSEATHAdcCHcMwXLez55EkSZIkSdLGdujlbEEQvAiMBpoHQTA3CILzgYeBysBHQRB8GQTBYztyJkmSJEmSJEXboSuRwjDssYnDT+/IGSRJkiRJkvTzlZuNtSVJkiRJklR+GZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRdqhESkIgr5BECwOgmDSj45VD4LgoyAIpn3/a7UdOZMkSZIkSZKi7eiVSP2A435y7K/A4DAM9wEGf/9nSZIkSZIklSM7NCKFYTgMWP6TwycDz3z/+2eAU3bkTJIkSZIkSYpWHvZEqhOG4QKA73+tvZPnkSRJkiRJ0k+Uh4i01YIg6BUEwbggCMYtWbJkZ48jSZIkSZK0xygPEWlREAR7AXz/6+LNPTEMwyfCMGwbhmHbWrVq7bABJUmSJEmS9nTlISK9BZzz/e/PAd7cibNIkiRJkiRpE3ZoRAqC4EVgNNA8CIK5QRCcD/wLOCYIgmnAMd//WZIkSZIkSeVIyo78sDAMe2zmoc47cg5JkiRJkiT9POXhcjZJkiRJkiSVc0YkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIibTEiBUFQPwiCm4MgeDIIgj5BEFTZxHNaBEEwZPuNKEmSJEmSpJ0tZXMPBEHQGBgHVAOWAOcD1wZBcGYYhoN/9NQsoOP2HFKSJEmSJEk715ZWIt0OLAaahGFYFzgA+AZ4LwiCP+yI4SRJkiRJklQ+bCki5QC3hmE4GyAMw6+BTsD/Ac8GQXDJDphPkiRJkiRJ5cBmL2cDagLzfnwgDMNSoHcQBCuAh4IgqAzkbb/xJEmSJEmSVB5sKSLNZv0lbMN/+kAYhtcFQbAGuAN4fzvNJkmSJEmSpHJiS5ezDQPO3NyDYRj+A7gCOG4bzyRJkiRJkqRyZksrkZ4AugdBUCMMw2WbekIYhg8GQbAYOHa7TCdJkiRJkqRyYbMRKQzDz4DPot4gDMOXgJe25VCSJEmSJEkqX7Z0OZskSZIkSZIEGJEkSZIkSZK0FYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiJt9u5sAEEQ1ATOApoB+cCrYRh+uf3HkiRJkiRJUnmy2YgUBEFzYBhQ60eHrw2C4PQwDN/c7pNJkiRJkiSp3NjS5Wy3A4VALlAROBAYC9y7/ceSJEmSJElSebKliHQ4cFMYhsPCMCwIw3AycBHQOAiCWlt4nSRJkiRJknYzW4pI9YFvfnLsGyAA6m23iSRJkiRJklTubCkiBUDpT44lt+J1kiRJkiRJ2s1s8e5swC1BECz90Z+D73+9LQiC5T86HoZheM62HU2SJEmSJEnlxZYi0mygxSaOfwcc8JNj4TabSJIkSZIkSeXOZiNSGIaNd+AckiRJkiRJKse2yd5GQRBkb4v3kSRJkiRJUvn0iyNSEAQVgyA4NwiCj4EZ23AmSZIkSZIklTNRG2tvJAiCLsA5wKlAJrAA+Nc2nkuSJEmSJEnlyFZFpCAIWgBnA2cB9YDE96+9AngkDMPk9hpQkiRJkiRJO99mL2cLgqB6EAR/CoJgLDAJuBaYA1wC7AcEwHgDkiRJkiRJ0u5vSyuR5gOpwGzgn8CzYRhOAwiCoMoOmE2SJEmSJEnlxJY21k5l/WqjVUA+sHpHDCRJkiRJkqTyZ0sRKRu4EUgH7gLmBEHwXhAE3YEKO2I4SZIkSZIklQ+bjUhhGM4Nw/AfYRjuBxwFPA0cATwPTAVCoPkOmVKSJEmSJEk71ZZWIpUJw3B0GIa9gbpAD2AYUAo8FgTB9CAI/rYdZ5QkSZIkSdJOtlUR6QdhGBaHYfhKGIYnAA2Aa4C1wG3bYzhJkiRJkiSVDz8rIv1YGIaLwzC8JwzDg4A223AmSZIkSZIklTO/OCL9WBiGX26L95EkSZIkSVL5lLK5B4IgmP0z3icMwzB7G8wjSZIkSZKkcmizEYn1ex6tAj4E1u2YcSRJkiRJklQebSkiPQucChwHvA48G4bhxztkKkmSJEmSJJUrm90TKQzDc4G6wJ+AesBHQRB8FwTB7UEQ7LuD5pMkSZIkSVI5sMWNtcMwLAjDsH8YhscCjYBHgJOAr4Mg+CQIgtN2xJCSJEmSJEnaubb67mxhGM4Pw/DfQFvgju9/PXN7DSZJkiRJkqTyY0t7Im0gCIIjgLOBM4BM4L/Aw9tpLkmSJEmSJJUjW4xIQRDsDZz1/f81BUYA1wKvhGG4evuPJ0mSJEmSpPJgsxEpCIIRwJHAdNbfqa1/GIazdtBckiRJkiRJKke2tBKpHbAKWAR0BboGQbC554ZhGHbcxrNJkiRJkiSpnNhSRBoGhDtqEEmSJEmSJJVfm41IYRjm7sA5JEmSJEmSVI7FdvYAkiRJkiRJKv+2tLF2py28LgEsCsPwm20/kiRJkiRJksqbLe2JNIj1eyL9dDftsn2SgiBYAFwXhuFz22E2SZIkSZIklRNbikhHb+GxOFAPOB3oFwTBijAM39mmk0mSJEmSJKnc2NLG2kO34vX9gyB4BbgaMCJJkiRJkiTtprbFxtovAq23wftIkiRJkiSpnNoWEWk1kLYN3keSJEmSJEnl1LaISIcD322D95EkSZIkSVI59YsjUhAEKUEQ/Ba4Fnhl240kSZIkSZKk8mazG2sHQTAHCDfzcByo+f3rBwG3b/vRJEmSJEmSVF5sNiIBg9l8REoAi4GPwzActM2nkiRJkiRJUrmy2YgUhuG5O3AOSZIkSZIklWPbYmNtSZIkSZIk7eaMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpUbiJSEAR9giCYHATBpCAIXgyCIGNnzyRJkiRJkqT1ykVECoKgPnAZ0DYMw5ZAHOi+c6eSJEmSJEnSD8pFRPpeCpAZBEEKUAGYv5PnkSRJkiRJ0vfKRUQKw3AecDcwG1gArAzDcODOnUqSJEmSJEk/KBcRKQiCasDJQBOgHlAxCIKzNvG8XkEQjAuCYNySJUt29JiSJEmSJEl7rHIRkYAuwMwwDJeEYVgCvA60++mTwjB8IgzDtmEYtq1Vq9YOH1KSJEmSJGlPVV4i0mzgiCAIKgRBEACdga938kySJEmSJEn6XrmISGEYjgFeBT4HJrJ+rid26lCSJEmSJEkqk7KzB/hBGIZ/B/6+s+eQJEmSJEnSxsrFSiRJkiRJkiSVb0YkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSdrtTZo0iXbt2pGTk8N5553HzJkzOeuss7b4mg4dOtCxY0c6d+7M4sWLd9CkkiRJklR+GZEk7faaN2/OqFGjGD58OABLly7d4vOTySSDBw9m6NChnH322TzzzDObfe69995L+/btNziWl5fHzTffDEDfvn1/3fCSJEmSVE6k7OwBJGl7WDx/FR+9MZmpExeSWTGNjsc357DcvUlPT6e0tBSAkpISzjnnHC666CJmzpzJ+++/z5o1a/jHP/5B69atASgoKOCAAw7Y5GcUFRUxfvz4Lc7Rt29fevbsuU2/myRJkiTtDEYkSbudGV8t5sG/DyJRUkoyGQLwz5v+w7hpr3HEUQdTo0YNSkpKOPfcc+nVqxcdO3Zk5syZVK1alZdffhmA2bNn8/vf/55ly5axYsUKDjjgAFJTU7nxr//i7nv/yUuvvMj/9XuKc845h5tuugmAnj17Mnv2bLKzsyktLaVGjRqsXLmSunXr8tFHHzFy5Ej69etHx44dGTNmDHl5eTvrFEmSJEnSz+blbJJ2K2EY8vTdwyguSpQFJIAGNQ7ijI7/JCWszDvvvMOwYcNITU0lNze37Dlt2rQp+32jRo0YPXo0ffr0oUaNGjx8z/O0adib5x4ZzfSvF3Pd+f/l+WcGkJt7NABjx44lHo8zaNAgmjZtCsDFF1/MEUccwcKFC2nRogX9+vVj5MiR/Pa3v90xJ0OSJEmStiEjkqTdypxvl7NuTfEGx0pLSwAoLkqwbGERmZmZdO7cmUaNGvHQQw+VPS8WW/8jsaSkhKLCEpYtXkN6eiZz58zl2N90ZuRnAyguLKW0NGTCtI+ZPWsud97cl0WLFnHFFVcwatQojj/+eA455BAAXnzxRSZOnMiLL77I0qVLadSoEfF4vOxSOUmSJEnalXg5m6TdSuG6EmKxYINjs5dMZMKMDwCoW7shXbt2ZcSIEdx6661ccsklvPTSS2XPLS5O8OT9H/Cve68lCGIEQYzzTr2HsLAC74y8lwa1DyCZTDB+2vukpKTz+FMPsTh/HjVq1KB9+/Ykk0nef/996tWrx5QpU+jYsSMPPvggubm5zJkzh2QyyYQJE3boOZEkSZKkbcGIJGm3Ur9JNRIlyQ2ONal7CE3qHkI8HtD+2H3Ze++96d+/PwCPPvroBs995I48vv2mkN92/vv/DoYQpoY03utgZi34gvlLv6FRnQPpcmhvMjJTeG34dZx//vmMHDmSoUOH0qJFCw477DBSU1Np3Lgxn332GXl5eZxzzjm0a9eOI488ktTU1O1+LiRJkiRpW/JyNkm7lYqV0mnXtRlp6fGNHktJjdP5lP03+9rvZixj1rSlG0So4pKC9b8JYMGyqTSofQANah9A5Qo1GT/9QxKJkL9ceQ1BENCvXz/OOeccrrnmGq688koAnnvuOerXr0/Hjh254IIL+OSTT+jevTt77733tv3ikiRJkrSduRJJ0m7ndxccCsCoj6YTT4mRTIZUzkqn51UdqFW38mZfN3XSog0C0udfv8vkGUNIiaexZt0yYrE4jfc6mNkLJ1Ctcj0KilZRv0FdDqrcgqeffpp+/fpx2GGHAfDKK6/wxBNPEIvF6NGjB/Xq1eO+++5jwIABFBcX88wzz2zfkyBJkiRJ21gQhmH0s8qhtm3bhuPGjdvZY0gqx9atKWberBVkVkylfuNqBEGwxed//P43vPPSBBKJJInSEoaMfZKVaxbxu2Nu4dWP/s7vjrmF4sIi4rEUUlJifPTp49x1/4385sRO5OTkMHz48G02+5gxY+jTpw/xeJy2bdty7bXX8vTTT3P99ddv8vnt27dnxIgR2+zzJUmSJO2ZgiD4LAzDtpt6zMvZJO22KlRKY5+WdWjQpHpkQCooKCElI5Xk92F98owhtGjSAYDR419maf5sRk15lGb71aVedlWOPnE/DstpysFt9+eGG25gwoQJnHjiib965sLCBIWFCbKzsxkyZAjDhw9n8eLFLFmyZLMBSZIkSZJ2BCOSpD3e5+Pmcu+/hzF8+EzSK6dTGiaYt/hrGtZtCUDHw/5AdqN9GPvZUK78R1cO6JDgb3ecRf7K5dSoUYPbb7+dAw88kHfeeecXzzBv7kpe6P85fZ8cQ98nx/Dx4AUsX1YEQEpKCvF4nLPOOguAd955hw4dOtCuXTs++OCDX38CJEmSJGkrGJEk7dHmzM7ng/e+IZFIUlKSJKNaJjOXjqVF0xxi8YDU1DinnnUwtX+0l9JJJ53EpEmTqF+//q8KRz+YP28lb785meXL1pFMhiSTIcuWruWtAZMZMngUS5cupUKFCgAkk0nuvvtuhgwZQl5eHnfdddev/nxJkiRJ2hpGJEk7xKxZs6hTpw65ubl07dp1k89JJpOcddZZdOzYkS5durB06dKN3uPcc8/dpnONHD6Lkh9tph0EASvXLOSr74bwzqi7WLVuPp9Nfq/s8aKiorLfZ2VlkZmZ+atnGDFsJolEcqPjK1fm8+c/X8rTTz9ddmzp0qV8/fXXdOnSha5du7JgwQLKy952W/PPWJIkSdKuy4gkaYc55phjyMvLY+DAgRs99uyzz3LEEUcwePBg/vnPf1JQUMDzzz+/wXN+97vfAZCbm0sikdgmMy1atGbjOTtfwB//cAfnn/dvmjVrzqWXXlr22AcffEDHjh3p2LEjixYt+tWxpLQ0yZIlG89QWprg2f63cfxxvahTp07Z8Zo1a3LggQcyePBg+vXrx7Jlyzj66KOZPHnyr5rj1wjDkJKSUpLJcIv/jPdkWxPY8vPzef3113fwZJIkSdLWMyJJ2q7WrC4if0UByWTIxx9/TE5ODvfddx8At956K7m5uRx11FG8++67vP322xx//PHUr1+fkpISatSoAcBNN91ETk4O8+bN2+bzVamSsdnHShNJBn44BKDszmcnn3wyQ4cOZejQoTz11FPEYrENHt+czUWEH2/4vW7dar4cPxSAL77MY9q0z3nzncc4+uijWbBgAQCxWIwrr7ySzp070717d6pUqUJeXh4HHHDAL/j2v960qUv478vjeeG5z3jjtQl8+MEgjjqqPffddx9ffPEFf/jDHwA466yzGDduHA899BCPPPII69atIzc3l5UrV3LMMceUvV+nTp0oKSnZKd/ll3j22Wfp3Lkzubm5m/3386OPPio7D/fccw+vvfYanTt3pkOHDpx44omsXr0aMCJJkiSp/EvZ2QNI2j0tXrSaYR/PYNWqQoJYQLI0wZuvD6N1m2xOPvlkOnXqxJw5c3n99fe4//67ePnlF+jRowfz5s2jc+fOLFy4kJdeeon77ruPihUrMnz4cJo3b172/jfeeCODBg2id+/enH/++b94ziPbNWL+vJUbXNIGEARQp04lqlWv8Ivf+6eOOeYY+vfvv8GxWCygQYOqzJmTT0HBGsZPGErrgzrStk0X2rbpQnbjanQ7+QC++eYbUlPSeOWxMQx/byn7pZ9NjX0Cnn7rb+Tk5HDaaacxa9YsevbsSfXq1Zk5cyZvvvkmDRo04LzzzmPOnDk0atSIRo0asc8++7Bq1SouvvhiJkyYwOOPP84jjzzys7/PhPHzGf/lfEq/vxQvq3IN/nHby2RlVeSZ/jfRuXNnmjRpwkUXXUS9evVo27Ytbdq04fjjj2fUqFFcffXVVKlShezsbKZPn05paSnNmjUjNTV1m5zv7W3evHkMHTqUwYMHb/LxObNXMGrEdO6+919cfNHfuf6m87jiiivo1q0bl1xyCV988QXZ2dlcfPHFdOnShalTp/LRRx+Rm5vLnXfeybXXXgvA559/zuTJk2nYsOGO/HqSJEnSRlyJJGmby19RwLtvfcWKFQWUloYkSpIkkzEmTljKN18v4YQTTuD11wbz9lsfcuQR7Xn0kcdZvnw1F198GRUrVuRPf/oT1apVo02bNlxyySWsWrUKgEqVKpV9xhlnnMGIESN45plnftWs++5Xi9aH1CM1NQbfLwpKS4tTsVIap3dv9avee/XKQj4Y8BX33zaE558Yy8CBg2jf/n8rsS677DI6dOjAI49dTSJRwMjRb/HNN+N44KFLWbN2Bfc/9Cfad2hCSUkJ5/e8gNXf1ubDlyewankBBWtL+O6rtRzX4kYe+vdzDBo0iFWrVrFixQpeeeUVrrzySl577TXGjBlDeno6gwYNKotw3bp1K9sQ/PXXX+f000//2d+tpKSU8V/8LyABpKamkZaWSUlJyKFtOzJp0iR69+7N008/zeWXXw6sX3n1w6qkE044AYAzzzyTl156iZdeeokePXr8qnO+vRUWlvDZuLm88eoE/v3v/2PlygI6d+7MpZdeSmlpadnqujaHtOPJJwby8cfDKS4u5V///ht71W3BXXc9zdChQ8tWLaWkpJStZuvVq1fZ5YCHH344eXl5XHvttfTo0WOTAWnMmDG0a9eOnJwcLrzwQg455BAyMjK26lLPWbNmld3tT5IkSdpaRiRJ29znn82htHTDlT2FhWtJJJKM+3QOA974kLWrM9iv+aFc/ueH6NKpB51zezBi6EyaNduXgoICmjVrxpo1a+jcuTNz584FYO3atWXv17JlS9LT08v+Av5LBUHA8Se24NzzD+WwwxtyYKu6/OaE/bisT3uqVv3lm2Yvmr+Kf9/4EXkfTGXud/ksWRBy9ikP0L3bLXz00UcMHTqUtWvXMmzYMM4++0zyV33CH7qfQ4sWh/KXPo9wUOtm1KxZkWrVKpCamso1vR6gakozEj9aMRUPUgkTcZ65awQnnHAC77zzDvvvvz+xWIz69euTn5/PzJkzadVqfQxr3bo1sH5D8LS0NJYuXcrw4cPp0KHDz/5+ixet5qenvqBw/T+f0tKQ4cOH07RpU/7617/ywAMPcNNNNwHr/xk+9dRTnHHGGWUBsGPHjgwfPpzhw4fTsWPHnz3LjrJixTqe/b9xfDL6O+bMWcm30+fw3awl/KXPw2RmZnL77bczb948Xnv1Xbp26c1HH/VnzZoVrF69nAt7/psmjVvxr38+wHHH/YYVK1ZQXFzME088weGHH77Jz/v222+5//77efDBBzf5eHZ2NkOGDGH48OGsXr2ahx56iCOOOGJ7ngJJkiTt4YxIkra5+XNX8dMbhk2bPp7b7ziP2/5xPoSV2LvJQWRlVef+h/7M6DHv8vmXQ2i+bxs+/+wLnnrqKcaOHctFF13E4sWLadSoETk5OWUrkv6fvfsOiLL+Azj+vsneQ1AQlOECUXAiKoJb3FpW7tUwMytLc5sjy9k0zZkrc2uagoq49wAHirL33hy3fn/w8/IEV7mq5/WP8Mzv83B33n3u+/l8QL+W0LNQvYY5XbrVpU9/7//PTJI8dNtFixYREBDwyONtWHGO0hIlKpWG4pJczkfuAo2M5PhCGtRpSXJyMr6+vgA0adKE5JQEAoPd8fC0450x/nTpWg+p9M+X6OP7o1GWq/XOoVSVAVBcoCDsYDjBwcF690Wr1VKrVi0iIyMBuHr1qm5dr169+Oqrr/Dw8EAiefi1PkzFefT/BrduXWbGrMHMnjcSa2t7UlNTcXFxYcyYMZiamhIaGsrkyZOZOHEi06dPZ/369aSnpyMWi2nYsCHe3t5/Oyj4PO3//SZlZSrd7CtDIxNq1/IhLi4HT08/AMLDwwluH8Rv2xZRpijB0NCEWq7elCsVuLs1JiMjngMHjtCpUyd+++035syZw507dwCQyWSo1RV/45KSEt5++21+/vlnDAwM9MaRlVnM1SupZGdBVpaC9PQiZDI54eHhZGdnA7BixQrc3d1p3LgxTk5ObNq0CWtra1q0aMGECRPo168fYWFhpKSksHPnTlq0aEG7du04evToi7qdAoFAIBAIBIJ/IKEmkkAgeObEksoBHm8vf7y9/HW/K5UaOnccQueOQwDYvvM7lnw7DltbZ9b98gOjR4/m448/JjMzk99++w03NzcCAgJYs2YNgYGBTzWeqKgoRo8ejUQiwd3dnVWrVj11EEqhUCECtKi5cuXKI7fNySomM61Q97uJsRW+9StSt5Tlag4fO0q/AR356aefADh//jxubm56QYQHPRhAAkgvuM3lhD3IpDJ69uus18XtnubNm7Ns2TKCg4OpXr06devWBSoKhL/77rvs2rXria7/QfbVTNE+ECn0adgKn4atkEjENGnmTL361ejVqxcAS5cuBdAroh0aGqr7WSQS6YpPv4ry8krJyy3VW1bL1YtTp/egUmo4fuIkdepa07FjR7p2eo/r19JRq1WUlhZx+uxeYmOvsn3XUrRaDd09erN3714MDQ1ZsGCBroC8g4MDOTk59OvXj+7duxMdHc2gQYMA2Lx5M9bWduzeEUVKcgFarRatFrSARpvBrVuJDBkyhu+++w6AAwcOIJfLOX/+PL6+vkyYMIFffvmFK1eusGHDBvbs2cO0adOoVq0ac+bMISIiAiMjIzQa/RmEAoFAIBAIBALB/YQgkkAgeOY869hx5VIKGo220jojYzmlpZW7b/Xp9T4AjtXN8fT0JDw8vNI29zqg9ejRg8DAQI4fP17ldmPHjiUyMhJX11p8992PeHh4cvLkSQCGDRvG+fPnadq06RNdS0JCHn/siyYjvQiA6zf/oEfPvnz33VcolUo6d+6MUqnEzs6OLVu2IJFImDt3Nr/t3otWC51ajwHgQMT3KJQlSCQyatf0onnz5qxbt47WrVtjZmbGxo0bMTMz0wURli9frjeORq1cCN99A436z3vqZO2Nk7U3RiZyvvtxMFKZRFe4OzAwUBdsW7FiBVKplPnz51OzZk3i4uJo3rw5zZo14+uvv9YL7NwTFxfHlClT9AqBZ2Vl0aNHD2QyGRYWFsycsZSoyGy9ukhisQhjExnuHrZPdH+hovtefHz8E/9NXobSEiVisX7g0amGBzKZAXO+HEhpaQHJKQ1p0aIF02aOIC+3lEYNg2jRvDtutXz4ff9yFGXFVKvmQseOHRg+4g2MjY1JTU3FwcGBhQsXIpFIOHDggO74Q4YM0Tvfnp3XSE7KR33fY6CkpIDV675g6tRvEIlsKSkpobS0lLS0NBo3boxEIiEkJIRly5bRrVs3MjMzad++PR9//DE3btwgPj4eFxcXjIwqUjdf5ZlgAoFAIBAIBIKXTwgiCQSCZ87bpzoxt7MoLirXBZJEIpBIxAR38OD33der3E8qFVO/QeXZNPdTKBSPnAl07tw5SkrKWLhwA8uXf8eiRWto3bojtWpZ4eJiiYGBAc7OzgwfPpyEhARcXFxwdnamadOmxMbGMnz4cKysrEhNTWXVqo1cOJeBo2Nddu76GqVSQbmyDO8GXSgvVyOVStm7dy9GRkZMmTKFw4cP4+DgQF5BFm/2mE1aZjxnr2ynmU8fTE2seS1wJiIReDWuDlBlR7R7QQSFQqH7YA/Q9c1GnDp4m9Ji/QCc3FBKnxFNkD4i/W7EiBHExsZiZmbO+vWbyMnJrLJT3ONYWVlx/PhxxGIxM2fOJObOedq0Debi+STy88uQSsW4udvi28TpkemAD5o1a9ZTjeNlsLI2qlTnCyCwzWuUlhYydcrXdA2pD1QUHf952WlKS5VotdCyRQ9i46P4ZPzP2Nub89ZAPwYOKkepVCKTyVi7di1r165lwoQJDz1/cXE5d+9k6wWQ1GoVGzbPIaTrO6jKDdFotBgbmzFjxgz8/f1JSUmhuLiYXbt2oVAokMlkLFu2jDp16jB+/Hh69erFmTNnSEhIIDMzkwEDBqBUKjE3N2fTpk2YmZk9+xspEAgEAoFAIPhHE4JIAoHgmTMwkNK7X0OuXk7h9q1M1CoN1WtY0LiJE9bWxrQLdudQ6G1U981gkUrF2Nia4O5ZeQZLSXE5t25koNFoOXx0K0OGDGHatGlVtrS/dSsGU1MncnJKcXOrx8WLJ2jZsj1DhrzF2bPhVK/uSGJiItWrVycsLIy5c+dSXl6Ov78/GzduxMvLi8DAQE6dOsXuXWE0bfI6x45vol3bwWTnJHPm7E6yczLIzS2luLiY0aNHk5ycTHp6Oh4eHuTm5nLsWARyyWXy80sxNrTUuxapTEJwtzqPvYdvvfUWAwYM0P1u52jG5B96smr+URJuZyOWiDEwlNJnZFOCetV/5LFWr17N8YhYzpxOZNn3Z8nLS2f//lACAgLo27cvvXv3rnQfAVJSUujXr59umZOTk+6YarUaDw8PXFytcXG1RqvVPvM6Va8SQ0MZnnXsuHUrS2/m1c3os2i1WubNf4/9B7xZsmQJ8+bN4eDBMLKzS+jfZwK5ealIxGLWrp+Ml3dt+ry2HBMTE2QyGQClpaU0aNDgkefPzSlBIhXrpTteiTxKYtJNft//E7/vB4lUQ0FBHosXL+bXX39l165dTJ48mTfffJPMzEzWrFlDfn4+K1euZPXq1aSkpNCuXTsMDQ3p2rUrcrmcuXPncuvWLdasWcPYsWOfz80UCAQCgUAgEPxjCUEkgUDwXBgYSGnavCZNm9estM7NwxYTUwPOn00gPb0IA7mUBg0daNjQEYlEP53m8IFbhB+8jVgiQq1Sse337Xi4BOvW5+bmEhYWxqZNm9i2bRtubo24fPkXQkLe4vLl0xQW5pOdnUFpaQl790Yyf/57FBUV0bhxYwD8/Pw4deoUVlZWZGdnc/LkST799FPCwg6RmpqMhbkdubmpODq6E337NGWKYjb/OpPsnCQWLFiAp6cnGzduZPLkyWi1WurUqUPHjh1ZsmQpOzZc4cyxO5QqchFLRBgZyxgwvAlOLlaPvX9bt26ttMzZzYbpy/tQkFuKokyFjb0JYsnj049277zOzZsZus5uRkaWfDBmJQ6OVuzaM5fg4OBK97Fnz56Vlo0bN46zZ8/y3nvvYWhoyMcff6w7x785gHRPu2APystVxN7N1S0rKsoF1OzY8Ttffz2L2bNnk5KSwvHjEdy4cYN5877Gz7cF5y+Wc/z4cZYvX85PP/3ERx99REJCAq+//jqFhYXs37//kec2MTXQS2UE8G0UjG+jiueCsYkcN087xGIRQUG1USk1tGgSjEwmoVoNc0QiEZcuXeKDDz6gT58+DBs2jJYtW9KrVy82bdrEuXPndMe9e/eurtj6zp07+fLLLzEyMmLGjBl/qXveokWL2L59O1u3bmXlypVMnjy5yu0CAwMJCwtDKhXemggEAoFAIBC8qoR3agKB4KVwcDQjpOejZ19cuZjM0dCYihlLKrhyLYz6Hm24eC6J/LyKIsf3t7SPiYnBzq42rq4eTJgwEFdXT6ysbElOjsPV1QORCBwdnbhy5YIuJe7SpUu68zk7O3P48GEmTZrE0qVLMTY2B8DKypGU1Nt0bD+KtLQ79OrxCb9tm82I4SPo2asn58+fx8LCAg8PD3x8fHBwcCA4OAiRSETvXv2o59GUxLwDzFjUDYn079ecMbcyevxG/5eTXcLNGxkPzPqSA5CXV06zZm3Zu3dvpftY1b0FaNasGefPn2fhwoWsWrWK8ePH/+3r+aeQSsVIJBIkEpEurczQyBRXl4Zs/+0q/v6tuXz5AuHh4bp6VI6Ojnh4OhEY2AaJREJQUBALFiwAoGbNmpw6dYpt27axYMECXfHxqlhZGWFtY0xmRlGlzocisQhbe1NEInBwMOXw3psc2HkdkQg0Gi0mZga89XZzvX3S0tIIDQ3lwoULzJ8/n2XLlgFQVFTE8uXL2b9/PxqN5m8X3b4//dTBweGhASSBQCAQCAQCwT/DKxNEEolElsDPgBcVDWeGa7XaUy91UAKB4KU6vD8apfLP9J2cvGTSM2O5GLmf1PTb7N69u1JLe7FYxMCBYxk4cCzr1n1D06ZtSEi4wx9//EZ09BUsLIzx8fFBoVAQHByMi4sLNWtWzJby9/cnIyMDkUiEmZkZDRtWpJ0F+L/Ojl1foVar8PRsgbm5LXPnrMO5pjMXL16sNO7JkydX+rDcoWvlmUUvwp072ZWWKRQlGBgYc/bsHxwOX0mtWjVxdXXVrY+NjWXJkiV69zY3N5fBgwezbt06AMzNzR/aSe7fqrCgjNi7FXWJDh/ZzJWrEfTvO56Tp/egVmsIPXgCO3tDWrRogVqtZv369SxatIgpU6YQFxdHjx49SEhIoFatWiiVSqRSKSKRCHNzc736Vw8T0qM+mzZcQlmu1gUFRWIRlpZGWFoZYWQkI/VuDge2X6P8vm5+5YoSfvo6AoVCpVvm7e2NVCqlUaNGugChVqtl+PDhzJkzB0tLS9LT05+66HZmZhE3b2aSn1+GRCLi+PEdvPXWQGbNmqlXrL1FixY0bNiQixcvMmPGDEJCQnTH2LhxI2fOnHlkUE0gEAgEAoFA8HK8MkEkYCnwh1ar7ScSieSA8csekEAgeLmys0r0fm/Xaqju51+2TqRD+86cPXtWbxsHB1NGjuyLWCyhceOW1KvXiHr1GpGSEk9k5Dnq1vVEq9WyYsUKAMLDw3Ud3oYNG8awYcMA2LBhA+npRaz++RyWltUYNmRhxQlEIJdJ6NDJ8/lc9DMmriLNLD4+koNhKykqyqVTp94sXDSNKVOmPPZYOTk5tG3bFrFYjLW1NWvXrn0eQ35lpacXIRaLKVOUkpxyBwAnp4oObYuWvI+trS1HI37n888/55dffqFdu3bExMQQHx/PrFmz6N69O02aNGHjxo2kpqYyaNAgxGIxBgYGrFmz5rHnt7QyYsSoZly/nk58bC5arRYLKyPMzA2pXt0cWxtjpo7ZrRdAukelVJObWaz7PSoqCrVazZUrV3BzcwMquuS1atWKoKAgXQpaeXk5ZWVlGBoaotFoHhlISk7O5/LlFNRqLdu3r+LMmUNkZ6fTpk0Y2gemT2VmZjJlyhRsbGzo2LGjLoi0efNmzp49yzfffPPY+yEQCAQCgUAgePFeiSCSSCQyB9oAQwG0Wm05UP4yxyQQCF4+I2MZxUVVvxQMG/AVHp5ulVraq9UafvrpN4qLy7k/+2bo0HF4ezsSEbGfu3fvPtH5q1UzZcSophwKi+FOTMWMHncPW4Lau2NnZ/L3Lu4Fcfe05eCBW3rLPD2bU1iUS0JSFKlpMSxcuJC1a9fqdayztLRkyZIlTJs2jSNHjtC4cWNsbW3Zu3cvLVq0wN7enmnTprFo0aKXdGUvjlqt4dbNTJIS89BqtZw6tZdmTTuzb/9K1GoVSUm3KgqLi0EikfD++++TlpbG+vXr6d+/PwqFgv79+5OUlMTPP/8MgLW1NUePHn3qscgNpDRqXINGjWtUWpeWXFApWAOg1qjYfeRLMnNj6dSpE3PnzsXe3p5evXqRmZnJhg0bSElJYf78+fj7+7Nt2zbKy8uRSqVMmjSJtm3bYmJiwvTp0x9aE0mj0XL1aipqtZb8/Byios7SoUNfIiPPcuTIARQK/cCWjY2NbgbgvfpLAPPmzeP48eNPfV8EAoFAIBAIBC/G3y/O8WzUBjKB1SKR6JJIJPpZJBJV+oQmEolGi0Si8yKR6HxmZuaLH6VAIHihmge4IK2ihpBEIsKrkSNSaeU28hKJmKZNnXB1tUYur6hfY2lpyN69P/H66yEsW7aMkSNH6rYPDAxkxowZDx2Dnb0pA95sxORpwUyeFszrb/j8YwJIABYWhjRp6oREoj8jqag4F4lYw4kTRzE2NmbhwoVIJBLCwsJ0M1NSU1M5e/Ysx44do0WLFrp9s7KymDx58n8igJQQl8uXsw6xddNlTkTEUlqqIObOZep4+gEgFkt4e9RXTPj4B3wbN+Tw4cN6+wcHB1O3bl06duzIBx988FzHamAoRa2uXLdIIpbSO3gKn72ziUOHDlGtWjUMDQ3Jzs5GJpPxzTffEH09g2FDPmD1ym04OTmRk5NDbm4uFy5c4ObNm+Tl5fHNN9+gVquJi4sjKCiI1157jcaNG7N9+3aCg9vzySdvUVZWwu3bkXh5NSU5OZaUlARWr15AdPQN9uzZoxtTTk4OSUlJlJSU6KVFrl27loEDB1JaWvpc75VAIBAIBAKB4K95VYJIUsAX+FGr1TYGioGJD26k1WqXa7XaJlqttomdnd2LHqNAIHjB2rb3oLqTBXL5n8EiuVyClY0x3ft6PXQ/iUSMm5s1bdvWIijIjaZNnfjmm0VERERw5MgR/muvH94+DpWWGRqYUKN6A25cTycoKAilUqnXsQ4gPj6ehg0b6i0DsLe3x8nJ6QWM/OUqLi5nzc9nKS1RolCoUSk1RBzdi1/j9roZP+XlpWz6dT7f/TCOsEO/k5KSotu/oKCAVatWcfv2bc6cOcPEiZX+W3umrGyMsXc0q3KdVCamRdtaut9NTEw4fPgwq1Zs50jYVbZuPoWjdTBrfjrF3j1/cOL4WaysrAgPDyctLY2LFy9Sr149XZAsNzeXzZs3M2HCBNauXcvWrbtp0qQNly6doKioECMjU4YM+ZiPPpqHt3dzXF096N69u+78tra2zJgxgzZt2vDZZ5/pljdq1IgJEyYwePBgVKo/azgJBAKBQCAQCF4Nr0Q6G5AEJGm12jP//30rVQSRBALBf4tMJmHUB/5EX0vn8vlk1GoNXo2q49246llIgj/dq2mzfv16Bg0cQ6cO+l3UajrX5/zFffTs2QW1Jh+NRoOXlxfvvfeermOdi4sLkZGRgH4XuycpsPxvcOFsIhqNfnpYeno8kdfCOXZ8J2npcZw9t4MWLXz45tuvmDJlil46mVgsxtjYGLlcjoWFBcXFxQ+e4pl7c3Qzvp19BGW5Wjd2mVyCta0xjVrW5OrlFLRaGct/WkdpiYaNay4AYlQq2Lb7K+RyI0rLSvBvGYiGQjIzM3F1dcXDw4OsrCw8PDzw8PDQde6rXr06Xl5eWFoaYW1tR1FRAVZWtuTkpANQUlKMqak53323D4UiV1ekWyqV6lL77rlXm+xeaqpAIBAIBAKB4NXzSnwS0Gq1aUCiSCSq8/9FwcD1lzgkgUDwipBIxNRv6Mibw5swaFQzGjd1em4BpEWLFhEQEEBcXBwDBw58Lud4Ee5vqw4VM2oe5OjojkxqQFLSbby8GnLr1i1sbW0JDg7m1q1b/9/GET8/P1q3bv2frFOTkpSPSqkhIzOONRs/Zt2mTykuyef1PrMY0HcW7m51WLh4MidOHqJ79+7ExcXp7V9QUEBCQgJmZmY0bdqUCRMmPPcxO9ey5tN5nWgeWEs3M6lzn/q06ORO6IFoLl1M4tKlZPbtvcGWjZdITbtDSWkBMqkBAAZyY6QSGVqthOysbCwtLXn33Xc5fvw4ffv21QXJ7u/cJxKJkEjEODiYIRKBu7sXUVHnAbhy5RT16zfCycmMUaNG0bdv3+d+DwQCgUAgEAgEz8+rMhMJYCyw4f+d2e4Cw17yeAQCwX/Ig4GXf5qSIgUFeWVYWBuzavXPDBkyhGnTplWs/P/n/RUrP2TUiCXk5qZxJHwdfXp/SmpaDLm5uQwePJgffvgBa2trvePOnj270rn+KwElK2tjxBIRNtZODH2zojvfnv2LSU27jatrPTau342TkyMXL16stO/69ev54IMPWL9+PQ0bNiQkJESvjf3zZGtvyoARTXW/R0WmcOlCRde0e9RqDYnxqewL+5E+IRNRqSoCjUFthpGcFs1b/Wex+8BMpDItu3fv5vz581hYWODh4fHQ81arZgZoqFbNHi+vJkycOBAnJ2eWLJmJqakRERERum3/K48hgUAgEAgEgn+bVyaIpNVqLwNNXvY4BALBf0dWVjEJ8XlIpWIOHf5NP/Dyfy1btqRJkyZEREQwadIktmzZQkxMDL/88gs+Pj4sX76cVatWERgYyOnTp3UpOS9KSZGCDT+e4drFZCQSMUqlktO3tnPs1AGSk5Pp168fBnJLtm7/ssr9Pxg7H486Kt577z0GDBjAwYMHX+j4X1VarRZ7BzPQgkTy53+VEqmM3PxU7oSf5fMZv7BmzRoAhg4dypQpUzhy5AgGBgZs376dq1evsnTpUkQiEWZmZhQWFmJmVnXNoucpKjK9UsFttVrF1l1fE9xmOKYmVuTlp+vvJIKtW/YxZHivKgM+D3ZFhIp7ABX3LjBwPhKJuMrC+AKBQCAQCASCf65XJogkEAgEL4pKpWHbb5HcvZMNgEajZvOW7axc2avSttnZ2UyZMgW1Wo2vry9xcXFcvHiRlStXsmjRIlauXMmJEyc4e/Ysp0+ffqHXoVFrWDwtlIyUQtQqDSqlhutxEVQz9eGbmX9QXFyMjY0NNrbGpKaU8WcGkhZEFTWn+r/ejBkzPmHnzp18+umnL3T8r6r8/FI2/nKJ0lIlMkMJihIVt2JOE35sHTY2NTA3s6R6TZVeWuWlS5e4e/cuJ06c0KV8qdVqFi9ezPbt23F1dSU3N1cviBQXF8eUKVN0AZnnQavVUlaqrLT83PlDJKfe4vCx1QC0Cxiit95ALqWWu81fOqdIJMLAQHh7IRAIBAKBQPBvJLzLEwgE/zkH9kdz9042KlXF7IyLlw7g7dWOw2ExlJXpd4Sys7OjWrVqALi5uWFoaEj16tXJzc0lKysLFxcXpFKpXveyvyMuLo7mzZtTr1495HK53syg8PBwwsPDmTFjBtOnT2fnjr141+iHpUlN3TZ5hanEJMZz4uqvKFQl5OTk4OTkhIenDYUXUrhy9Q/CI37FyMiQ3b9Po5HfFHbv3k1ERAR169Z9JtfwT6bVatm88TIFBWVotSCTS5FIxDRo0Ir69f25ePUXariWIBYb6bYXiUTcunULf39/ANRqLWKxCJFIpEuRLCgowNLS8oVfj0gkwtBQWulx3aJ5J1o070RBbik5WSVo1FqcqtdDJpMwcvACho5ugVgsEtLOBAKBQCAQCAR6hCCSQCD4T1EoVFy9kqoLIAFkZSWSmn6Hc+f3kpIazZ49e3TrHiwgfI9Wq8XW1pb4+HjUarVe97K/q0OHDo+dnXL48GGmfPgTR/dF6y339x6AWqMi9OwPaERWWFsbAiCVSnh9QG+WLFnCyJEjiY6OpqSkhMmTJ6PVarGxseH7779/ZtfwT5WclE9RYTn3NVlDo1VhYCRHIhFhbm6BubkJt2/fBiAyMpKGDRtSp04dNm3ciljViLTUQgAy04vo0qUht2/fJi8vj969e6NUKrGzs2PLli165x03bhyXL19Go9GwYcMGatasybNSv0E1rlxOrZTSJpGIaNW2NjVrWnH+TAL5eWU4u1ji29QZI2PZMzu/QCAQCAQCgeDfQwgiCQSCf6QzZ84wfvx4JBIJTZo0YfHixU+0X35eGWKxSG9Zxw6jdD+vWjue7t27c+bMmcceSyqVMmzYMPz9/Wnbtu3TXcD9Y8ov487tLEQiEXIDBUeOHKF169b06dOH8ePHM3z4cBISEnBxccHZ2ZnvvvuOq1evMvPrdzAWu1DNyg0XBx9iUy6QW5iKoYEZHs4tcXdqyvmk71myZAlTpkxhzJgxREdHs3jxYlauXMknn3yCj48Pbdq0QSQS8frrr/Puu+9y48YNZs+eTUBAwH9uJkp2dgmg1Vt26/Y5jp/YCoBrrdqs++U7unXrRteuXbGxqUj5MjGqQU6WlHlfj0YildEnZCJqtYwVy38hM+sOW7dupU2bNhgZGTFlyhQOHz6sV6R63rx5GBsbExYWxk8//cScOXOe2TV5NaxOZmYxqSkFuuCpVCrGvpopjXxrIJGI6dKj/jM7n0AgEAgEAoHg30sIIgkEgn+U8nIVpcVKnGo4c/jwYQwNDXnrrbeIjIzE29v7sfubmMj1ulQ96LMJy3F1ddXNBLo/iHLv5/vXv/POO7zzzjsAugLDT0qj0bJv9w0unk9CJBYhAsrLFfz4/V66dPOiV69e+Pn5IZFICAsLY+7cuZSXl/P++++zefNmNq/fw8R3VnIxei8uDj7cTTlP03q9ibp7mKy8eG7EHSGnOE43s+rezKmEhAR27tyJj48P4eHhDB06lGvXrnHu3DnCw8O5cePGU13Hv4m5uaHejDOA+vVaUb9eK0Qi8PVzQiwWs3//ft16rVbL4vlHadtqMG1bVSy7HHmQRt4dqevpz2+7PqdVq1aMGDGC5ORk0tPT8fDw0AsiffXVV+zZs4dbt25hbGxMSkoKq1atqjQWgJEjR3Lz5k1+/fVXatSo8dhrEotFBHfwJCuziPj4XNCCc01L7OxNqzy+QCAQCAQCgUDwMEIQSSAQ/COUFJezfd1FLp9NRIQIsUREm06edO7TAKlUyu7du0lKSqJLly7s3r2b6OhoDA0NEYvFDBs2jK5du7Jnzx5u3rzJ8pXvYW5WnaysRN59+0fdOWQyMS1aPLs0osc5dTyOSxeS9VLrQMqVC1k41UgnJCSEpKQkGjduDICfnx+nTp3SbenkaoWLc22OXMhApS6nqDQXcxN7Wnq9DlowNJJxOGoB3bt3JywsgrWrLuBQrSWNGjXH3NyMvLxMxo4dy4ULF4iLiyMkJIRPPvlEd/zCwkLeeOMNbt26xbJly2jatCmPsmjRIrZv317l7KXAwEBd/aBp06YRFBT0927ec+LiaoVMJqG8XF1pnUQiprFf5aBNYYGCwgKF3rLsnCTSM+5y4fJ+UtJiWLhwIZ6enmzcuFGXQqjbNjub8PBwXXe/DRs2AHD+/Pkq73l0dPRfmiFma2eKrZ3pU+8nEAgEAoFAIBDcIwSRBALBK0+t0rB01iGy0otQ3wu4KCF8fzRXLl8hKyuLyZMn89VXX9GlSxe2b9/O9OnTcXV1pWvXrpw8eZIJEyZgZmbGrFmz2Pf7HvbuvsuML17TnUMmk+DuYYNPo+p/eZzh4eFPvK1Wq+XY0bsolfrBCoWiBDAm/PAdLkaeYOzYsaxatQqgyrpLPd7y4dCpepy5tpUadvUqghP/j0+o1RpOnjpBTEw2LZu/S2pqIU39QigpKSQjIxa5zBQDA0NmzpzJokWL2Lt3r941JCYmcuLECfLz83n77bfZu3fvQ69HoVDoikg/zKFDh5BKK/+3o9FoEItfjVbwYrGI/gN82LT+EhqNBqVSg0RSUSQ7uIM7trYmT3Sc4LbDdT+v2zyBESNG0KNHD86fP4+FhYVuFpJapeHalVzyc1X4NW5FsxYVBdoNDAxQq9UEBQVhbW1NbGwsu3btYtmyZVy9elUX8Fu4cCEqlQqFQsHWrVuxtrZ+9jdFIBAIBAKBQCD4PyGIJBAIXnmRF5LJyy75M4D0f4WF+Wzat5ADoXvw9HTjzp07lJaWkpycTK1atQAYOHAgs2bN0s3uyMvLo34DDzw8a7N+kzt169ljYCChoY8jLq5WLyy9R6FQU1aqqrQ8ISmK8GO/IJXIGPBmN5o3b86PP/5IcHAwLi4ulQou+7VypYVfe7755X3eaD9fF0CSG0jo9npD5AZS/th3E5Xyz3tnaGCCq0tDIq+FU7Omz0PT19zd3TE1NcXU1JT8/Hy9dRqNlqunEzl18DYqpZq4/BO89eZAZn0xk927d7No0SKgonZVaWkpYrGY9u3b4+DgwA8//IC1tTWBgYE0a9aMlJSU59rm/mk5OJjx3lh/rkWlkZpSiLm5Ad4+jlhaGlW5vZm5AeYWhuRkl1RaJxLB4gUbcXJy4uLFi3rr0lIKqOsyiNDfo+nU5lNEIrgbf44zlzfj6+eNjY0Nubm5hIWFsWnTJrZt28bs2bMJDw/XBfzKysoIDQ3l119/Zfny5UycOPG53BOBQCAQCAQCgQCEIJJAIPgHuHo+CcUDLco1GjV/nPyOwKaDyMuoiJwEBgbqpUoVFxfz888/89prr7F27VqGDBmChYUFSUlJWFlZkZIST//XG77w64GK1DmxRIRGo1+fycOtGR5uzTA0kvL59PYArFmzptL+99KZpDIJXy4bSdvg5pwMjaGsVIlddTNCBvjg6+9CfHwuD1aAqulcn/MX9zF8yAIiju6kT1//KscYExNDcXEx+fn5mJub65arlGoWfLyf2JsZKEpVaDRqTtzZhzSnPmq1hh49etCjRw+WLVtGhw4dAHSzZDZu3Mjs2bN1QabevXvTsmXLv3ILdaKiohg9ejQSiQR3d/dKtYQCAwMJCwurchZUXFwcM2bMqHSPDQyk+Po5gd/jzy8SiejeuwEb115AeV+wTiSqOE679u6V9tFqtaxbfpbSEuV9y6BWzaZ4urcgIXMne/fupX79+ojFYmrUqEFMTEyl49xLdWzUqBGhoaGPH6xAIBAIBAKBQPA3CEEkgUDwypNKK6c63U44TUb2HSLOr+f6x7v4/sfF9O/fn4YNG+pm1kyePJmJEycSHBxMly5d6Ny5M1OnTqVHjx54eno+0zbqT0siEePTuDqXLyRXKvQtlYpp2tz5iY9laCSj92Bfeg/2rbROo9Hy4NwqR0d3ZFIDVq7+GGtrG/r1W8QPP/xQaV9nZ2eGDx9OTEyM3vr9m69y93o65YqKVLw7GadxsW5KVmohmckFAJw+fZojR46wefNmAF2aVe/evfUCNn5+TxCleYw6depw8uRJAIYNG6ZXS0ij0Txq12fG3dOWwSOacuD3myQn5SMSiahTz45O3epiZW1cafuk+DyKCvXrKKnUSqQSGcpyNXnZKoyMjPSCYffXUbrnXgrhlStXcHNze8ZXJRAIBAKBQCAQ6BOCSALBf9CjCiBDRe2dTz/9FJVKxSeffEK3bt34+eefWbZsGTNnzqRbt24vdLx+/i5cPptEueLP2Uh1XFtRx7UVUpmY6Uu6Y2ZhCIBK9ec2S5Ys0f18b5ZGtWrVdGlFT9tN7Vnr1LUuSQl55OaU6go5y+US7KuZEhhcefbKX1GjhkWl2U4AnTu9jVQqJqC1K3K5XPdYCAwM1N2Xh9U4Ctt2TRdAAigoTSMnK4no1KNkFcUxbep0Tpw8zo4dO3RBkIKCAszNzTlx4oResOPv1EIqLFSgLFdjYWmoW3avllC7du2wsbGha9euunUbN27kzJkzLF26lGnTpnHkyBHdTJ5nwbW2NW+P9a8I3Il4ZGpkQX4ZIrH++tj4i5y7vAsApxqudOzY8bEFtGUyGZ07d6asrIxt27b9/YsQ/CVVvaaGh4cTHh7OjBkzqtxn7NixfPvtty9ohAKBQCAQCATPhhBEEgj+Y56kAPLs2bPZtWsXxsZ/zqDYsmULx48fx9DQ8BF7Ph8eDapRy9OGu9FZKO/rmiWXS2jXtY4ugPRPY2go5Z2x/ty4lsG1q6mIxCK8fRypU88esfjZ1GaSyyUEtKnF8YjYKlOt/Jo++Yyne4of6ETmV6uv7uc/Ir9GrdKSmJhIjx49gIoP00FBQRgZGWFoaFhlet7TyMos5sih2xTkl+nuU17BNVauXoSnpyc2NjZkZGQQFhaGRCJh3bp1bN68mbNnz/LNN9+QmprK2bNnOXbsGBs3buTgwYN/azwPepK/nb2jGWq1/iwpj9rN8ajdHLFYRNOWNaldu7auVtT9wb37AxWNGjVi9uzZz27wgqf2JK+pVRECSAKBQCAQCP6JhCCSQPAvp9Vqyc4qprBQgYmJnC2/VdQGmjZtGnFxcdSrVw9DQ0OMjY0ZNWoUgwcPpqysjH79+iGXy/npp59o27YtaWlpdOrUiZUrV+Lu/mxmyTwpsVjE6I/bcGR/NMcO3qa4UIFNNVM69WqAb8u/npL2NN3UnheJRIxXQwe8Gjo8t3P4t3LFyEjG0SN3KStTotWCm7sNnbvWxchI9tTHq+ZkTnJsbpXrerf4nFlfDGHOvFl6y8+fP19p279y/wsLytizM0oXELuXCmhh1oC1q/ezZt1X7N27Fx8fHyQSiW6/efPm6YIv8fHxNGxYUQvLz8/vmQeRnoSdvSlONS1JjMutlM4okYoJaCekpr3KFAoVRUXliESwYcMq3WsqwPDhw0lISMDFxQVn54og7ZQpU4iIiMDHx4fCwkLWrFlDQEDAY2eaCQQCgUAgELxqhCCSQPAvVlSkIPxwjK54r0qlZNPGPezbNwKoSFtzcnLi9u3bzJ8/n9LSUtLT04mOjubq1ascPXqUOXPmYGtri4ODw0OLE78IEqmY9t3r0b57vZdy/lfBunXrWLt2LWq1mg0bNlCjRg2g6rSZ+wtGi0QifP2caOxbg5ISJXK5BJlM8pCzPF7PYX78PDec8geKncsNpHR8zRtJFTWsnpUrl1JQPdClT6ksB+RcuZSCqYkpRkZGldLk1q5dy8CBA9m6dSsuLi5ERkYCFc+Bp/G4VNB7NBoNgwcPJjExEZlMxubNm7G1tdXbZtCoZqz6/hSZ6UVotFokYhFaLbw+xBe7aqaPHcv9s5OeZmyPS7N6FT3ptQEMGDCAtLQ0FAoFpaWlXL58+ZmNQ6PREh+fS35+GSKRCKVSyZ49BxgwYCgAZ8+eRSKREBYWxty5cykvLyc1NZWLFy8SERHBr7/+yv79+5/ZeAQCgUAgEAhetOf3Tl8gELxUGo2WQ6G3KSpUoFJpUKk0hB/dS/NmHTmw/ybl5Wri4xPIzMykdevW3L17F4CvvvqKoqIi3n//fU6cOMGNGzcoLCzk5s2b+Pr6cvnyZX7//Xe+++47SkpKMDAwICcnh1WrVrFly5aXfNX/XsnJyRw9epRDhw4RHh6uCyA9DZFIhImJ/G8FkACatatNyKBGyOQSDIykGBhKkcklNA92o+eQysW9n6XExDwerC997fppFix+j/kL3yUhMYWOHTtW2q9Ro0ZMmDCBwYMHY2dnh5+fH61bt36qmSBPk7Z0+fJl5HI5R48eZdiwYWzYsKHSNiYmct6f0IZRY/3p1qsBfd5oxJR5nWjQ0PGJzqHVanX1rh43tnXr1hEcHExgYCCRkZFs37690jYBAQFPdN4XQaPRUlKoQK3SPHW62ObNmwkPD+fTTz8lJCTkmY4rOTmf/PwytNqKMe7Zs5XOnXuTnFyAWq3h7t27ujpb94rGx8fH4+XlBVQ8Du+3aNEiAgICSEtLY86cOQC89tprtG3bloCAAKKjo5/p+AUCgUAgEAj+LmEmkkDwL5WaUkC5QqX3gTs5JY64uGhCw7ZyN/YaRw5dJahdF37dso6GDRvSvHlz7OzsaNCgAR4eHty5c4datWpx9epV6tSpwxdffMHatWuZNm0aGzduxMvLi8DAQE6dOsWpU6eYPn36y7vgf6GszCJOHYsjNbmAy5EHKSgoJTg4mPr167NkyRJGjRpVKW2mqoLRLVu2pEmTJkRERDBp0iS2bNlCTEwMv/zyCz4+Pn9pbD0G+xLUsz5XTiWgVmto0MQJmyeYPfN3VdWpr5FPGxr5tEEqFdOzjxc2tia6WkLwZ9rc/TN3nqSOUGmpkphbmZSUKLGzM2HfH5v1UkGHDx+Ora0tt2/fZurUqSxbtoySkhIOHDhAjRo1dIW18/LysLGxAfT/PgUFBaxZswZnVyucXa2e+B4olWpOHo/j6pVUlOVqTEzkxCYcZvDgwbrn4AcffMDly5cxNTXjq6++4ujRo7i4uJCQkMCxY8eAisDk8OHD2bdvH1OmTCE7O/uJx/C8aNQaft9wmQNbIlGUqRBLRJSaRPHmyLeYPXcWu3fvZtGiRQCcOXOG/Px8+vTpQ3FxMXZ2dnqB7B07dvDhhx8+s7Gp1Rqys0v0XlPj4+8QHX2NrVt/4fr160RHR5OSkgL8OcvNxcWFvXv3cvLkScaNG/fntWo0uuBYZGQkhw4dIjQ0lPnz59O8eXO8vb355ptv+P777/X2+TvF6AUCgUAgEAj+LiGIJBD8S+Xlluil/Wg0Gvr2fk/3+9z5o+nVczSr186mdUAQ5ubmlJSU0KxZM4KCgpg9ezaFhYWEh4dz7do1xGIxNWrUIC8vDysrK7Kzszl58iSffvophw8fJjExEScnp5dxqf9K166msnXjZdTqitkmN2/Ekpmdwvff/czvB1awcOHCKtNmqioYnZ2dzZQpU1Cr1fj6+hIXF8fFixdZuXIl33zzzV8eo6mFIa06ez6rS34idevZc/ZMIuoHUtoADAylWNsYV7HX07sVncHh0BgQgVqlQSzWsm7dTsLCRuq2yc3NJSwsjM2bN7N27VoOHjzI3LlzOXDgAD179kShUFCtWjWKiorIzMx8bEHv0NBQ5s2bh0ajYeHChXh6etKrVy+USiXm5uZs2rQJExNTtv56hYz0Il0tpYKCEg4cOETHDq8BcO7cORISMujdYw4nTu5jwGvvIjfUkpp6h379+iKXyzl37hzvvfcet2/f5o033kAqleoCXR988AH+/v689tprjB49mtu3b2NsbPxC0rBWfR3B+SN3dd3/lOUqjl8+hptta9BCjx496NGjB8uWLaNDhw4kJCRga2vL3r170d4X3VGpVERGRuLr++xmximVakQikd55xo2brPt5+PBeTJ8+naFDhxIcHIyLiws1a9bE2toaqVTK1atX2bJlN8pyFXfvZJOWls7s2bOZPHkyixYtwsHBgY0bN+qOp9FodLW7AgMDadasGSkpKXoBUoFAIBAIBIIXTfg6SyD4lzI0lOnVprm/MxfA558tp7SsmMEDJzJ2zGLKy8vx9vYmMjKSAQMGMGTIEIYNG0atWrUQiUSEh4cjlUp1H6CcnZ05fPgwQUFBREVF6T6ACiAlJQVfX18MDQ1RqVSP3+EBijIVWzdeQanU6NKV5HITnGt4cfjgbXx9W6JUKqtMm7m/YPQ9dnZ2VKtWjerVq+Pm5oahoSHVq1cnN7fq4tivsnoNqmFhYYhEcl8HNFHFDKV2we662T9/R25uCUfCYlCrNbpg1YmT+2jsE8Sendd029WvXx+xWEz16tV16Ur37uvBgwcxNTWlc+fOODs7s2DBgof+fQBKS0v56aefCA0NJTw8HD8/P2QyGevXryciIoKePXuyZs0a4u7mkJVZoleM+/zFgzTyCSLyShpqtYb9+06jUdtTWKjA0dGD3Lx0srJy8G/xOnK5AYWFhRQVFbFt2zZWr17Nzp07GTt2LADjxo2jZcuWDBgwgF27dmFvb8/Ro0f5/fff//Z9fZyM5ALOHf4zgAQQk36aWnZNSUvMo7iooivg6dOnOXLkCJ9//jnu7u54e3vz1ltvsXjxYt1+R44c0asX9SxIpWK9AFJMzE2GDu3B8OG9mT59POvX7wFgzZo1HDwYytxZi3n/3U9o0KABCoUKlUpLUaGG6Fu3OR4Rg0hkxM2bMRQWFiIWizly5AiDBg0iNzeXgIAAYmJidEXii4qK6N27txBAEggEAoFA8NIJQSSB4F/K2cWS+/MutA8WkgFu377Chx93ZeTbbcnLy2fChAmUlZURHBzM1atXkcke3rnL398fExMTRCIRpqamtGjR4onHdubMGfz9/WndujXjx48nLi6OgQMHPnT7uLg4hg4d+sTHf9msra05dOjQU92T+12PSuPBWIhT9XpkZMahUWs5uP8YKpVKlwpzf9pMVQWj7w+s3P9zVY+JV51UKqFXHy/8mjpjbm6AkZGM2rVt6NXXi+o1LJ7JOSIvp6JW6wdd0zMSiDi+k7nzxxAVFcWePXsqBayib2Zw8ngsh8NucfCPm0RGRjN48GBkMhkJCQl8/PHH/PLLLzRu3JiffvqJgwcPEhAQQHFxMadOnUIsFtOlSxcGDRpEcXExhoaGODo6/v+6pUgkEqJvZqBUqvXOm5mZyMlTu1m24hOuXbtOxNELJCXdAiAl5RZmZja4OHuTmHSbGtW9iY+Px97eHqlUyu7du6lVqxZz587l1q1bXLt2jQEDBgBw69Yt/P39AV5IClXUuSR44HGfX5rOzZSj7DmzkFu3bjJz5kwmT57MihUrEIlEKBQKxo8fz4YNG/jjjz9IT08HKlLZevfu/UzHJ5VKMDWVAxUBpC++mIBYLMHZ2RWA5OSbABw/eJvJb+9g0dRQBvX5jJSkDHKy81EoSgkN3YKdbXVmzR5J7VoNuH4tDaVSSUZGBgYGBpw+fZrmzZuzc+dOTE1NuX79OhqNhsjISMzNzZ/p9QgEAoFAIBD8FUIQSSD4l5LLpbTwd0UiESF6yDO9obc/3y45yLLvj3D9ejSGhoasWLGCQ4cO4eXlRe3atQF0xYddXV1Zs2YNAMOGDWPXrl0AbNiwQTeT4Um4uLhw+PBhjh07RkZGBoWFhX/9Ql8BijIlJw7FsO77U2z/5RI5GWVYWf1Z4yYuLo6goCD69euHn58fSUlJxMTE4O/vT7t27Zg7dy4APj4+DB48mP4DOpCcclvvHA72tZFK5azd/BnXrl9h0qRJKBQKgoODuXWrImDg6OhYZcHoe2lVgYGBXLtWMZPms88+4+DBgyQnJz/v2/PMSWUSGvnWYMBAXwYNa0L7Tp5Y25g8s+Pn5BRXKt7dq8e7vP/uIsa9vwg3tzp0795db31SYj6hB25RVFSOWq3F0cGL69eu8eGHk0hISGDQoEGUlJQwfPhwSktL2bFjBx07dqRr164cOHCA9PR0UlNT2b9/P/7+/vz000+6YxcVFbF8+XLefPPNKscb0vVt3h75Ne+OXkDNmm50aD8EqVTOytXjiYw6jH/L/ijKS1Aqy5n35WSysrLIyMjgzJkzXL9+ncDAQNq1a4e5uTlvvPEGEyZMAKBOnTqcPn0aqEitet7EYhGiB6JITWv3pVPDD+nYcBzVHVwRi8UkJibSo0cPAgMDiY+Pp23btrRs2RI7Ozvs7e3RarWcOnXqmRcK12q1SKViNGoNNWvWZu3aPaxatQORCBSKYry9PenWuR9vDenLnsPfEX52I6evbqddkxH4evZCJBJjaWWLXG5IVnYqRyN2se6XxcTExCCRSJBIJOzZswdHR0c2bNiAk5MTRUVF7NmzB1NTU5YvX/5Mr0cgEAgEAoHgrxBqIgkE/2I1XaywtjbmVnQGcbE5FBSUVfpwDGBjY4KRUcWsoxEjRhAbG4u5uTlbt259ZmPJzykhbEsUN88nY1XNlI6ve+Pe0EE3wyI5OZmePXuSnp7Opk2bqFWr1kOLRPv5+XH8+HG+/PJLOnfu/MzG+FekpxSwdNYhlOVqyhVqRGI4efgOgQ/UCrpXP2fTpk1s27YNExMTRo8ezdChQ3UzgtLS0jhz5gy7dx1m8YIVBLeprXeM9m1HIJNL6NK9HnK5XBfQu19VBaN/++03pkyZopcKk5KSQkZGxhNfZ1RUFKNHj0YikeDu7s7cuXNZtWoVkydPrnL71157jfT0dNRqNStXrqROnTpPfK4nkZKSQkhICNevX6eoqAiptPJ/Z3FxcbrrPnz4MJMnT8bQ0JBffvnlkfW7rKyMSUkuqPK5ArB3TyiO1c1199PPtwWRlyWoVBqaNe0CwJmzv9On9zgaN27LuvUTcHFxoX79+syZM4cOHTrw22+/UVxcrEt/c3R0JCAgAIlEQlBQEAsWLAAqAhfDhw9nzpw5WFpa4llHRczt7Eqzke5tu+XX39mz6wYhXT/QLU9KusHNmycoV5Zhbm7Npk2bGD16NLNnzyY3N5fvvvsONzc3tm/fjp+fH7NmzWLbtm2sWbOG1NRU2rRpg6mpKfv27Xviv89f0bCFMxu/O1XlOgMjKTt/20+DJk5MnTpVb929QuH3u38m3rOgUqn5bfMV8vPKEInA1s4UK2sjTp0+TETEQXx8fAgJCSHmVgJGBpbYWJhQVl6IVGrA5Vt/kJ59B7VGiUJRRtS1MygUZVhY2JCXl4mhoSEGBgaIRCLOnTtHVFQUmZmZJCcn06JFC9RqNRqNBmtr62d6TQKBQCAQCAR/hRBEEgj+5UzNDPBt4ox3w+rs3X2NwkKFLlVHLBYhkYoJuC9YsXbt2mc+hpjIdGYO2Ypapfl/oEXE8b3ReLc3JSsrC2NjY9LS0ggNDeXChQvMnz+f6dOnP7RI9LRp01Aqlbz//vsvNYik1WpZufg4JUXluoCDVgPKcjVHD9yitESp2/Ze/ZwaNWoQExPDsGHDmDFjBm+99RYDBw6kS5cuuLu7Y2hoSNNm9dBoyxCL4cEJIFKpGB+/Go8dV1JiPrF3KrptSeXFHDlyhNatW9OnTx+ys7O5evUqISEh7N69u1Lx5ICAAN1MpsDAQMLDw6lTpw4nT54EKmahJSUlPTSABBWz02QyGUePHq3UYepZuJcy+KQpS1988QUHDx7k+vXrzJs375Hj8fapzo0bGVUW7zYyluPgaKa37M6dyl3NMjISSU6J4eSp3SQl36yU/vZgWmHTpk11M00uX75MrVq1gIpubq1atSIoKAiAWm422Ngak5lRrJdyJ5WKaeDtgGcde7TaG3pjsbCsxrgPfsHIyJCjx75BoVDoOtbd7/jx4/To0YMTJ05gbW1Nnz59+OOPPx56n541a3tTgnrWI3zPTcrL/qwlJjOQUKuuPfV8H/24f55274giL7f0/4W1ITOjiLBD+9m15ye8GjTF2bkaYWFhNKnfHVuL2pyJ2oaxoQUujj608O7PgZPfEpd6GYlYQkF+NuXlZZibuWJn60hpWQ49evRg/vz5vPvuuzg5OXH+/Hk6duyIr68vQUFBKJVKRo8e/dKuXyAQCAQCgeAeIZ1NIPiPkMklhPRsgF9TJ6ysjDA3N6Re/Wr07tsQSyuj53ZejUbL/Pd2U1qs1BXM1Wq0FBXns/in2Uz8YA4A3t7eSKVSGjVqRExMzCOLRNvb2+s6xb1MyfF55D7Q8vuecoWavJwS3e8PBg1kMhmLFi1i9erVTJs2TW8bkUiEex1bHGtYIJNJMDCQIDeQYGVtxKgxLTEweHj8X6XSsGfnNUIPRHPzRgY3b2QQeSWfxQt2EBp6iLCwMF577TW8vb3Zu3fvI4snZ6QVkpVexPdfhrNr41XSkgsAMDAwQK1W6+pY3Usbur921b16WkVFRbq/499VVKTgwrkkThyLJTW5GEtLS926qlIG7ykpKcHIyAgzMzOaN2/O9evXH3keaxtj2gS6IZGIdQW8ZTIxRsYyuvdsUKkWklqtrfQY6B7yDu+MXsDbo77GxcW9UvqbpaWl3kwyOzs72rZtS5s2bVi9ejXvvPMOKSkpzJ8/nx07dhAYGMiPP/6IWCyi/wAffBo5IpOJEYnA2FhGQJtaBLV3RyoV07GzJ9L7iuqbmVpjYGCAmZkB9nZmREREsHfvXm7duoW1tTVarZZp06Zx9uxZcnNzcXJywtjYmOLiYkpLS8nMzKRHjx60a9eO9957j+fp9fda8Ob7LbF1MK2ot2ZhSNc3fPjoq86IxX+/aPpfUVxcTnpaUaW/e/26zZn2+XqkUgtSUlKxtLAiMycBW0sX8gpTkUpkpGXfZuP+z8jOT8LCrBqlZUX4+3fFwMAIU1MLWrYIIi8vl1WrVmFmZkZ6ekXHtnbt2rFixQqioqKIjY0lPDz8kUHbJ/FgLboHRUVFERAQQKtWrbh69SoAQ4cOJSYm5m+dVyAQCAQCwb+LMBNJIPgPkckkNPBypIGX4ws7543zyZQWl+t+z1ekcjH9VwrLM7AxqsX5Ayk417EkKioKtVrNlStXcHNzw8XFhV27djFu3DiWLFmiq/vzKhWGzs8t/X/BYf3UIrVGxe4jX5KVH0enTp10NY/ut3v3br777jtKSkqqLCouk0l498MA0lILyMooxtzCEGcXy8d2Hzt/NpHMjCK97l0ipBQWaLhyMZWQkBCioqJ06x5WPPni6QQ2rzxHfl4pd25mcvdWJhs3bOVKzHZ8GjV4bDe+8vJygoKCSElJYceOHY/c9klcPJ9E+JG7oNWiVmuRySWYmcr1rvPBlMGePXvqlt9flFitrpwK9qD6Darh4mrFrZsZFBeXY29vipu7rV7Hw3uca1oiFot0nfTuJ5NJ2L3rIK6uNrr0t8DAQF3nsPsLxo8fP77Sh/vy8nIeJJNJCAx2p22QG2q1Vi9gBCDTailIKcDA0hCxTAJaUBSX49ZIwh8Hc/D392fLli1kZWXRtGlTrl+/zuXLl5k6dSp2dnZERUVRrVo1oqKiyMvLY8GCBUyaNImWLVvy2WefcerUKVq2bPnYe1iVuLg4mjdvTr16FSmZ92YY3iMSiWgTUpc2IXVZtWoVX3wxjRyzVvQc+vCuZIsWLWL79u16dcDuycvL4/Dhw/Tp0+cvjRcgLjan0jKlspzrN85w6MhmsrJTqVOnNoi0iKQath6agUgkRiySkp2XhFQio6y8GNCiRYOJsRlikYjY2Gs4VjdHoVDw9ddfs2rVKn7++Wd8fHwICAhAq9ViaWmJWCzG1taW/Pz8px/7ffdbq9WyevVqvvjiCzIyMoiMjMTb25u4uDgmT55MSUkJmzZtQiwW89577+lq3gkEAoGgsjNnzjB+/HgkEglNmjTR6xD6KCqVimHDhhEbG0tISAgTJ058ziMVCJ49IYgkEAieq7ysYr1SuWZye9wt23A5czu5ZYnMX/M+LfpvwN7enl69epGZmcmGDRtwdHSkf//+DBgwALlc/tLG/yj2jmZVpjxJxFL6dphKkwAX3nq7OQDNm1f8e38A4fXXX9fbr6oC5g6O5jg4PllXJq1Wy41raXqBFYCysmIMDU24fi2dEydO6BVBv1c8OSQkBI1Gg1gsRq1Ss2H5KTKyEuG+ND3X6r64uzQhTxTG3r17qzz/PXK5nOPHj3PhwgWmTZv2tz6QJiflc/TIXb17rSxXk5dXSnZWsW7ZgymD91hZWVFQUKD7/Uk7jZmYyGns9/DaSffY25vi5GxBUmI+qvvGKJaIMLcwxLXW86llIxKJkEr1g4p5OSWs/f40ynI1pQUK3fIyRRHvbFzEqXOhODhUY+rUqeTn5/PRRx9x7NgxNBoNMpmML7/8kvfffx8zMzMaNmyIra0tN27cYOLEiYhEIoqKimjWrNnfGneHDh2eqFV9jx49aNOmDTNmzHjoNgqFQtelsCp5eXls3779bwWR0FY0urw/fnsvgARQv25T1qxbwogRw8nNViCRSWnlO4Cbt45hZV6d7PwEjA3NGDlyHstWjCc98zZlihK+++577tyJ4dKli3Ts2JFvvvmGOXPmULduXUpKSli4cCFmZma0bt0alUrF0qVLn3roaakF1K/XjLFj5uLhaYtEUgr82e2vXbt2GBoakpeXh1wux9nZGaBSwOrIkSP8/PPPrFmz5pFdOwUCgeC/4l6TGENDQ9566y1dYP5xdu/eTb169fjll18ICQkhLS0NBweHFzBigeDZEYJIAoHguXKpY4fcRE4NL3vEYhHpd3MRi3xxNvflcuZv+DStT3Z2NsuXL6dFixZkZ2czffp0QkJCSEpKYvXq1Rw/fpwDBw7QtWtXzM3N0Wq1iESiKuu6vEh2Dma4uFsTeyurUuCmqDSLD6e8z4pN9ZHL5axbt46VK1cyefJkvZpDz5JGo0WprBzUuh1zhd17VyCVyujTp7MuoAUVH9T37NmjVzy5jX8I636ZjEt1H912KrUSqaTiw2NxvhYjoz9TIMvKygCIjIwEKoJJKpUKmUyGubm53rZ/xbmziXrBmT+vF8rL1eTmVnwwftgsNWNjY0pLSykqKuL69evUr1//b42nKiE9GnDs6F2uRaWBqCJl093DjqD27i80DevUkbtoH5gRpdGoOXDyO9r4DSQ3HWrUkCAWi8nLyyMwMJBp06bpai55enpy8OBBsrKyGD9+PDKZjDp16jBw4EBdWqlKpap03kfRaLQU5JchlojQarV69bnkcjkuLi54enpWev43a9aMoqIivWPNmDGDOzFxXL92i+qONSkpyyElNZHi4opg4qxZszh8+DBisZhVq1axfPlyQkNDCQwM5LfffuPbb7/VFesvKCiosjj9g1xcrVCp1MhkEt1jzKdha3watkar1eJa2xqtBkqLDOjZ5TPUKg3xiZGoNOVYWVdj5MAFHL+0kbj4qzg4OHL8+GHc3NyYOXMGNWrUwMXFBYC+ffui1Wo5cOCALkX0hx9+eKp7fU9BfikH99/i9OmrXLhwig8/egOv+q3x8w3kxo1oUlKSuHjxIgqFgv379zNq1CiuXr2Kn58fu3btoqCggDfffBO5XM7AgQOxsLBg7969QgBJIBD8pykUKjIyilGUqzA1MUEmq/iS815gPigoCGtra2JjY9m1axcbNmzAy8uLbt26sXPnTu7cuUNaWhr9+/cHoF27dpw7d65SyrtA8KoTgkgCwX/Uo1JAfv75Z5YtW8bMmTPp1q3bXz6HVqslM6+E4FG+FR9sRSLqt3Xl8IF9bNvxI+ZG9rz9wZscOX6wytSa+9nb27Np0ybdhx0fH5+HnPXFGj6uFT98eZSM1AI0Gi0SiRiNRkvPvj6UGnbUm3Hxd2uaPI5EIsbISEZpqVJvubeXP95e/hgZyRg0rAnw56wnsVjMypUr9bYPDOiJMke/u1x88mUuXK+YfVSvXh06duyoO0a3bt0ICAjQBacUCgWdO3dGJBIhEon+dlHtnKySSsvUahUr13xGSmoMPXt2Y/Hirx95jMmTJ9OhQwcMDQ2funj8gylYy5cvr9TtLisrg5lfjESrreiy17FjJ8Z+uJT33nuP3377jXnz5jFy5MinOu9fkZ5SUCngdjvhNOk5dzh6bj1RQ3fy409LaNy4MXl5eRgYGCCVSnUpjStXrmT9+vUYGxvz3XffAfD5558zevRo8vPzEYvFrFixQlf4+3FuRWdy5XIKWo0WrVaLVKrl2LEL1KxpS8+ePfn000/5448/Hvv8h4rXk5tRaWSmienQ4lM275mOSqVg6qcr+HhaFyIjI0lOTiY8PJwbN24wb948Jk2aREJCAuvXryc1NbXKYv2PY2pmgJe3A9evpSOR6M9ik0rFtO/oydbNEZSWKnWz5VycvcnKSUAsEiOSS/D09CMt/Ta+vj707NmTd955h0OHKmqUrVixgvbt29OsWTOqVav2RGN6mIKCMg4dvEVOdgkqlYZatZyZPGk9xYUaNv02g2rV3Ll27Rrz51cUl09NTeXSpUtcvnwZLy8v3n77bbZt24a5uTnHjh3D2NiY1NRULly4oBdAuhd8uz8dUyAQCP7N0tMLuRubB1TUQcwSlxCfkAfaDF2TmAfT6t98800mT55Mt27d+O2335g/fz4zZ87UpdhbWFiQm5v7Mi9LIPhLhCCSQPAfUVpcTnGhAktbE9Rq5SNTQLZs2cLx48cxNDT8W+eMi80h5nY2YokYJH8uD+rcFffqTYhM3EJhWQ6RkZFVptbcz8vLC+CVKKh9PxMzAz6Z3YG4mGzuRGeh1GowNpVTrszl8OEjNG/enOTkZDIzM+nbty8bN27U7fvVV18hFov55JNPmDJlCkeOHMHAwIDt27frikZ/+eWXDBo0iBo1nqwzlU/j6pyvYuaOVCrGp3H1JzpGDRcrDAylKO7rkOVWsyluNZtiYCCl3xBfatd20QVRZs6cycyZM/WO8SxniVlZG5GdrR9IkkikjB6xEKlUzJDhTbC2Ma4yZfDeGNu3b0/79u3/8hjuT8GKi4urtN7BwUF3zePGjdN9qzh16lSaNWv21LN3/iqHGuZIpWK9v38d11bUcW2FgaGUIe+3pEHj6no1jU6cOKH7ecSIEYwYMULvmHZ2dn+prlXM7SwuXUjW6yKnVsO506lYWprrZhs+yfMf4OKZRJIT8nCwrYNarUGpUlDPrTVxd7LRaODatWuEh4fr/vaOjvq13x4s1v+kQSSAdu09sLQy4sypBMrL1YjFItw9bAnu4IFMJiExVkP3Th/r7ePkWI/LUQdQlqvJyLiDl7cj27dHEBkZyYULF3SPo1GjRjFq1CjWrFmj10TgaZWXq9m1PYqyMiVoK7pvyuUGWErlGBmq8HBryu69i3Go5s6FC5eYNWsWc+fOxcHBAQsLC2xsbJDL5SQmJmJhYYGDgwMXLlxg06ZNvPvuu2zevBlbW1vOnDnD7NmzEYvFXLlypco6IJcvX0aj0eDr68vly5e5cOFCpceVQCAQ/FOUlCqJjcvTm+Ws0WgpKMhj0qQx7Pt9BwqFolJavbOzMzk5OWRnZ5OXl4eTkxOWlpa6FPuCggLc3d1f1mUJBH+ZEEQSCP7lcrOKWfP1MW5cTEYsFiOWiFDZ3GDQkMHMmDGd3bt3s2jRIqCiSOAvv/zC2bNn6dSpEytXrmTbtm3s3r0bAwMD1qxZQ82aNZ/43Nej0vU+QEJFQVqZTI5HsxoUGlTHxMTkoak193uVCmo/SCQSUVBcTlG5ErVaS0mZCrVazOKFO2jp78rIUQPJydEvzvv11xUzZz755BMuXbrE3bt3OXHiRKVre9qCi94+juTmlhJzK1NvubunLd4+T1ZQvUEjRwyNZJQrVHpdx0SiinbrPk0fXyfoWWra3Jm4uFxUD6TqicUi7OxMsLYxfubnTEnI4/rVVEQiEWbW5XopWL179yY5OZmePXuSnp7Opk2b9GbmREREsHDhQqByION5a9nOjbA9N6tcJzeQUrfhi6m7oNFouXIppdLzv7S0GCMjEyKvpOjqcz3J8x/gyP5o1GqtrjaRoryEm3eOcyfhPGVlpSQmJNGxY0e+/fZbAJRKJRkZGbpC6i4uLrqUy0uXLj3V9YhEInybONPYzwmVSoNUKtZ7TSorqxwkrGZfG6lUzsZtn+PdsDaDB3/I8eNH9Gq/AfTv35+cnBwaNmyoe9z8FbdvZaBSqnV1zCrGVVEPzcBAyo3oCEpK8yguyeWPP9I5c+YU2dnZqNVqSktLycvLY8iQIVhYWLB//346duxIs2bNmDJlCm+//TZvvvkmMpmMkpISfH196dq1K6GhoVXWAbl8+TIqlQpfX18aNWpEo0aN/vJ1CQQCwcuWllZYqXmGSqVi5sxxvD/mc4yMrFAo0qp8r9qjRw/eeecd3ZdLLVu25NChQzRr1owjR47wxhtvvLgLEQiekSerLioQCP6RSkvKmf3OTq6dS0Kl1FCuUFFSVMqh0MOkRBoAFf+5hYeHM2DAAKZMmUK/fv1o1KgRhw4dwtTUlMOHD3PixAlmzZrFvHnznur8xcWVO0tduXqSmbNHMn3mcFJT0+jYsSONGzfGzs6uUmrNP0VmZhGxd7P16iJJJDKkUkPOn0sjsG0nsrOzAfj+++9JTk5mzZo1zJs3D61Wy+zZs3XfWnXq1InAwEBmz54NPH2LbZFIRNt2bvQf0Ijm/i4093eh/4BGtAl0e2xntz/HLub9z9thW80UuYEEA0MpBgZSrG1NeP/zdkhlkscf5BlycrbEv5ULUqlYV19IJpdgamZAz75ez/RcarWGNd+f4pu5Rziw8zp/7LjGllU3mfnpeg4dOkxYWBgFBQWkpaWxbds2li5dyvz583X7nz9/noYNGyKVvpzvaCysjBg61h+ZXIJMXvF3MjCUYmIq572JbSulYz0vJcXlVdaxir51icnT3mL0232pXr06zZs3f+jzf+/evQwcOJBDhw7Rt29fcnP0Z6M52LrRue379OsyFZnMkCGDR+Hg4ICvry8WFhbUr1+fr776ipycHPr164eBgQF+fn60bt36kTXJHvWcE4lEerWR7qnhbFHl9sFtRjDsza/YsXM7np6ehIeHs2fPHk6fPo2bmxsAv/32G4cOHWLx4sW6ou9P+ly9X1JCfuVUxpgrzPlyGEu+G0PT5i346afd1HByoVGjFnzzzffUqVOH0NBQSktLCQ0NZcGCBdSoUYO4uDgMDAxo3rw5bm5u1KpVh1b+IdhYu7Pw618wNa1IxZBKpbr6SQADBw7k/PnzLF++nK+//pq33nqL8PBwpkyZ8tTXIxAIBC/LmTNn8Pf3p3Xr1owfP77KLwqOHP6dmzeu8v338+jarQOpqam6dd988w3bt28HKr4o2L9/P/369QOge/fuREVFERAQQMuWLV/4l00CwbMgzEQSCP7FTh64TXFRud63JzHpp3G1bcrx/bd09TtOnz7NkSNH2Lx5s97+cXFxuvSPJk2aVEpZehwjI1mlQFITv0Ca+AUilojo068hYrFY77j3p9bcq7tx/1TfR3VqelnuxGRXKqx9b8aFRqNl//7DyOUmAPj7+6NSqejcuTMbN24kKiqKrKwsDAwMmDx5MitXrsTJyYk333yTpKSkvzwmcwtDvLz/+hsTGzsTJs7rTPydHLIyirCxM8HV3eYvfbh9Fpq3dKFuPXtuXM+gpESJk7MF7h42T9xp7Ukd2nuTm5FpKMvV9y0VE3Mjj+NhdwgJCWHv3r14e3sjlUpp1KiRXsBhx44df68T2DPg5VudWd/14OKpBPKyS3BwssCnqZMuqPQiSKTiKmcMNvIJoJFPAIaGUvr0r3htedjzPyQkhJCQEN3v86ccpJXfnx0NuwT+2WXwo5EbsLQyYfLkyYwYMQJLS0tdx5wFCxboZsrcC87GxcU909eS9p08SYjNqVTYXiaT0DqoNlLpkz9Ox48fT3Bw8FOPwcCg8ls6by9/uvXojuS+AGxIyOuIxRJMTd2ZMmUqFy9eoFOnTkilUkaMGMH27dvp1asXo0ePrqifNG81588lceni71R3dOfc2QTKy2y4cT2GrKwsWrVqxb59+3j77bepXr06TZo0YfTo0ahUKkaOHPnSGyAIBALB03qw81pCwm0sLJz1Zmd36NiTDh17IhaLqF/PDnNzQ1q2bEl6ejoqlUr3/hmgU6dO2NraAiCTyXQzUQWCfyohiCQQ/ItdPBZH+QPfnuSXppOTmcjt9GPklSUwc+ZMIiIi2LFjR6UAgaurq6520vnz53XfnD+pOvXs/p/Sov9hUiwW4eJi9VQfrF5lDxayBrhx4yKbf/0eqUyGp0cjUtMSUJRVvKkoLi6mtLSUIUOGMHbsWMzMzKhVqxZLlizh4MGDNGjQgKKiIpKTk1/C1fxJJBLh6m6Dq7vNSx3HPRaWRrTwd3lux9dqtUSE3X4ggATlylLAiKMHbnMnuyIFa/369ajVaq5cuaL3vDh48OArMevC2EROQPuXV2fByEiGpaUROTmVi6KLxSJquT39Y6ptJw92/3q10t9HKhXj08QJsURMSYkSOzt73YwrqVRKREQE8fHxeh3gFi1aRFZWFoGBgYSFhSGVSgkMDNQFPBYtWkRUVBSBgYHMmjXrsWNzqW1NvzcbsWNL5P+bCIBapaFFgCuB7T2e6jqrqjH0JOrUsyf2brbebCRjEzkSiUivQ2CDBr78/vuvqNQaTpw8i7GRlKioqEqPZ09PT0JCejNp0mf06jEGG+vqJKfE4NWgJTF3Igk7HMXFi2cAeOedd6hVqxbx8fF/aewCgUDwV61bt461a9eiVqvZsGHDE9eQfFBJiZLs7GKUSg1mZqZ6ndeqVTNj1Mg3MDOzIDU1kS/n/8zBAzupXduToOBOHDq0n7t37/Lxxx+zePFixo4dy9q1a7l58yYjR45k7ty5z/KSBYKXTggiCQT/YlXNPGhauy8AhsYyTiV9j1gsJjExkR49egD6BZEdHBxo164d/v7+yOXyp+5q5e5hR2ZGMSnJBbraKFKpGDNzA3ybPNu6OikpKYSEhHD9+nWKior00onCw8MJDw9/6MyDsWPH6uqo/BU2Nsbk5pTofUPl69saX9+KFuDKcjVfzBnNuA/mIJFICAgIIC8vj8WLF9OmTRtatmzJnDlziImJYcmSJTg6OqJWqxGJRPz4449/eVyCp6NSalCUVp6ynpR2g5OXNiMRy3hrSA+qVauGvb19pdo20dHRuLi4YGRkpNt3zpw5bNy4Ea1WS0pKCtOmTXth1/OyNW9Zk9ADt1CrNbrnhlgswshIRv0GT9+FrFkrV+Jisrl6IRmVUo1WC3IDCXbVzKjb2JGTp+IRi0RoAXs7E0pKksnKysLf358tW7bodYCLi4tjx44ddOjQocpztWrVih9++IGQkBCSk5Of6EOJd6Pq1Pd2ID42F5VKjbOLFUZGlQuEPy8Ojma41rYm7m6OLpBkYCRDJNb/csDdvT4GckPGffAGDg72fPPNQg4ePFjp8QzQyLsTRw5FcjBsPe0CX+PnVVP49ofxpKTeJaBVd1TKiuYLEydOZOnSpUybNo2VK1cik8lQKBQv7NoFAsF/U3JyMkePHuXQoUOP3O7MmTOMGjWKuLg4zMzMeO211/QC9snJ+WRkFOtm0BYUlJKSUkhExHb27NnD1atXSU5OYeeus4Qe3EX4kf106tyL5T99zfvvD2Lhgq3Mnz+fnJwcMjMz8fCo+PKgbt26j0yfFgj+qYQgkkDwL9aqsyfRV1Kr/GCsUWs5feYkBkaySu207w8kTZo0iUmTJv2l84vFIvwDXMnJLiE+PheNWksNJwscHM2eeVqUtbU1hw4donfv3k+9798JIAG4udty907llLaKAFI5c+a9T3zCLT4cP5gflz28vfqcOXMYPnw4CoUCmUzGtm3b/ta4BE9HKhMjN5BS9sDMstrOvtR29sXYRM4XX1cOtt5Tp04dtm7dqrds8uTJTJ48+bmN+VVmZW1Ml5B6XItMIyUlH4lYTK3a1tStb49c/vRvP8RiEQOGNaF1e3eunK+o81anQTXyS8opKCxHqwX1/z8AxNxJZtrUd/j9953Y2dkxderUKjvAPaxgf+PGjQHw9vYmNjb2ib/ZlkjE1H5JM/dEIhGBQe7cdckm6moqJSVKLCwMEYtFPJhZ+M67kxCJoFYta1xdrKp8PB8/fpw9O6/RqcMg3bJ3R3/F+Quh/LZtKTExV+jXP4TevUNwcXFhzJgxjBs3jtDQUFq0aMHQoUOJioqib9++z/nKBQLBf4lWqyUnu4S8vFJ27NyBSqUiODiY+vXrs2TJEqZPr2gaEx8fT/369cnPz6dVq1bI5XI+/vhjNmzYwKpVq7CysmLatGkcPnyMMWPew8XFjaioS1hZVaTut2oVxJkzEVy7dg2FQkHz5s2pXcuQhg09OH78GG1aN2TF8jKKi/N1ndemT5/O+++//7JvkUDw3AlBJIHgX8w3wJXQrVHE385CqfgzBURuIOX1d5tj8AK+JReJRNjYmmBja/LMj63VasnKKqG4SIG1jTFWVlZ664cPH05CQgLm5uacO3eOQ4cOUVhYiKmpKb6+vhQUFLBmzRoCAgI4fvw4oaGhzJs3D41Gw8KFC6lRowYDBgwAID09nU6dOrFkyZJK4zAxkeMfUItTJ+JQKv+8z1qNFq1WwucTf0QiEeHd0JH6Xg66VvSgXwPG3d2d/fv36x1boVDozWwRPD8ikYhWQW5EHLxVubaNXELrl5ge9k9lZmbwzFMQazhbUsPZEoDs7BIyb2ToBUlUKhVfzPqQ0aM/w9jEColE8tAOcBYWFqSmpmJkZERaWpruGFeuXKF+/fpERUUxZsyYZzr+50kkEuHmboube0XtjfJyFSdPJVRZn0okEuFQzeyRx7OvZkpycj6a+wLkTfw60MSvA1KpmF59vbC/7xhLly7V/Xzs2DEADhw4ILyGCQSCZ6KsTMmxiFiKi8rRarVcuRxDfEImW7bsZPHi2SxZsoS7d+9y8OBBTE3NUCpFNG7cADc3T7777kc8Pd3IycmhtLSUGTNm8OWXX6JUKqlRwwVTU1NSUhJJSUlkzpzvmTLlfT79dDY//LCMgwf/IDs7m3r16uLi4kLPnj2xsjKiR48e+Pn5MXz4cABiY2OZNGkSpaWl3L59my1btvDaa6+95LsmEDx7/46CJAKBoEoSqZgJi7rRY7AvVnYmGBhJqV3PjjGz2tOuV/1nco4HO1g8qb/asScqKgp/f39atmxFm9Y9+HXTJfb/fpN1q8+zc3uUroj4t99+yx9//IFKpaJatWqMGDEChUJBZmYmixcvpkWLFnrHLS0t5aeffiI0NJTw8HD8/PxwcHDQpcJ17NhRr8jvg+ztTeneswFmZgao1RUpbPcHIsQSMW4etk91revWraO0tPQv5/cLnl7HnvWpXccOucH/U0FFIJdLcK9rR3C3ui93cIJKsnNKUD/Qdvlo+D5u3ozkx2Xz6dQxmFOnTj20A9zo0aPp3r07M2bMwM7O7s9jHD1K69at8fHxwcnp2abevkhyuRQPdxu9mkhQMavLrbY1hoaP/i6xgbcD4ipmjYpEYGFpqBdAqkpycjJffPHFI187BQKB4EmdOBZHYUEZarUGjUaLoaEJ9er6cfpkHM7O3kRFJWJvX4ecHBEJCUX88cdRUlNT+fnnn3FxqUl2dkUAqUmTJkDFez+xWIJWqyUxMR4TEzOkUhlTp36AVqvljz92smnTRmJjY5FIJOzcuZMlS5boZrH279+f5ORkOnfuDFS8b/vjjz9Yu3YtQUFBQgBJ8K8lqurbqX+CJk2aaM+fP/+yhyEQ/OelpaXpdUKaOHGirhPSo4SHhxMWFqbrlvSklEolGo2INSvPsWrNFwT496JmzXpAxQejZcs/5PSZI7Rv356+fV5n1Kh3OHM2gtOnT+uKh+/Zs4fXXnuNu3fvEhAQQFpaGl988QXLli0jLy+PatWqsWzZMkxM/pw91bhxY86dO/fY1u1KpZpTJ+JISS5AIhGh0YCxsYzWbWtjafVqfBsfFxdH8+bNqVevHnK5nC1btnD48OGHdhV7++23iYqKQiQS8cMPP+h1HPk30mq1xN/JIepSMiJEePlWp2Zt65fWmU7wcHfuZpOUVFDlOpEIate2xqmGxQse1aunsFBBYmIexSVKjI1kODtbYG5u+ET7JiXm8cfvN9Fq/5/yJwJzc0O692qAiYn8OY9cIBAIKuTllhJ+JEavdEBs3E3CwrYzauTn7P19LRKpiMTEOyxc+CMikYjTp48xadL7fD5xIVOmvotKrcLGxpaQkB6sWPGDrnh2efmfNdysrKzJzc1BIpEwdOgYTp8+xO3btykvL8fc3Jz33nuP0tJSrl69yrVr18jPz6dLly7s2LHjhd8TgeB5EolEF7RabZOq1gnpbAKB4KndvZlJ6I5rpCXlY1PNlPY961PXxxGpVEpBQQFvvvkmGzduZODAgXz44YfUrl2bvn37YmRkhFwu58MPPwQqUka6dOmCQqFg69atWFtbV3m+ouJy0tMKUak1WFsZk5SYi0qlQSqVYWZmzfc/fohao8LUxBJFuYpf1u2hqFDLl19+yY4doTg61ESpyiQ6OhqAnj170qNHD+Li4nByciI6Opr09HRSU1MJDw9n+fLl/PTTT3z00UdARWe6hg0bPjaABBUtvdsEulFSUk5+XhmGRlIsLY1euQBEhw4dWL9+PVARVNq+fftDg0gTJ06kVq1a3L59m4kTJ77QWk2LFi1i+/btDy1MeenSJT799FNUKhWffPIJ3bp1+9uF0l+1rnSCh7O3MyUlpVA3A/F+IkTY2jw8jTYqKorRo0cjkUhwd3dn2rRpTJ06Vfe8ANizZw9z5sxBJBLRr18/Pv744+dyHc+bmZkB9es/fTFzACdnS4aNbEZ8fC6lJUpsbI2p5vDs69oJBALBoxQUlP3/defP1/tarnWRyw2YNmMEFhZWzJjxDVu2/MCgQT0Qi8UolUrc3RqSmVWEUlmOSCzG0MCM6OhYtFot5eUKJJKKmcf29g5kZKSRm5uDXC5HJBKxadNK2rULJD4+Hq1WS3BwMGFhYWi1WoqKipDL5QQGBvL111+/lHsiELwsQhBJIBA8lYj90WxbcwFVeUV3pPTkAmKuZeDWWEJWVhatWrVi3759vP3221SvXp0mTZrw1VdfMXLkSN566y06deqkO1ZZWRmhoaH8+uuvLF++nIkTJ+qdS6vVcvt2NskpBboPiamphUQcPciyH7/Czs4Jc3MbRo2cj0QsYc68NykqzmPOnCmIxRLqeDbhbuw10tLi8fb2x9DQiNq1a5GXl8fXX3+NmZkZlpaWaDQaLCwsCAgIQCKREBQUxIIFC3Tj2LFjx0MDLA9jbCzH2PjV+ZY+Pa2QSxeTKShQIJUWcvjwEVq3bk2fPn3IzMwkNDSUwMBA5s+fz2effQbAxYsXuXbtGrVq1QJAJpPp3my9CAqFgitXrjxym9mzZ7Nr1y6MjY11y/5uofT/sjNnzjB+/HgkEglNmjRh3LhxTJkyRS+wUlhYSK9evVAqlZibm7Np0ybMzB6d1vS8mJkZYGdnQmZmsV4gSSwW4VTD/JHpWnXq1OHkyZMADBs2jKysrErb+Pj4cOLECcRiMYGBgYwcORILi//ezCaJVExtNyGoKhAIXh7Dh9TxHDK4IrgvN5ASE3Od8+dPIRaLSUtLYez7c3Gt2YANm5dSrixHLBYTG3eTuPiKLxVr1HAlJycLhaKU4uJi3THlcgMUijIUimLCw8MpLi5GLBZz8eJFsrKyMDU1pVOnThw4cIATJ07Qq1cvjh07hpWVFR9++CGDBg3i22+/xdLSknPnztG1a1dSU1M5deoUY8aM0dVQEgj+qYSaSAKB4IkV5pWybdUFlAq1XiHbgsI8vlw4jS9nV7RLfeedd1i5ciXjxo0D4O7du7puR76+vrr97i1r1KgRMTExlc6XmVlMyn0BJAC1WkurVu354cc9WJjbcfHSITb/Op8flo1HKpXzxmsf06fXGLwatGTYkKmMeWc+1R1rE9JlBBYWdkRHR2NgYIBarSYoKIgGDRoA0LRpU27cuAHA5cuXdYETgIMHD9KxY8dncQtfimMRd1m7+jyXLiYTczuLmzeKef/dn9m4YRdhYWEMGDCADh06EB4eTvPmzQkPD+ezzz7jjTfewNnZWXecSZMm8cEHHzy3cSqVamLvZHMrOpPCgjJ+/vlnhgwZols/bNgw2rdvz/Dhw5kxYwZ3796lrKyMfv360atXL9LT0wEICAh4bmP8t3NxceHw4cMcO3aMjIwMCgsLK20jk8lYv349ERER9OzZkzVr1ryw8S1atKjS37eOpy0e7jYYG8sY98EAPhr/BpM/H4qJSRVdKTVaMtMKyc4s1ptZeO81ASpSZt98802OHj1KzZo1kUgkiEQiXYHuNWvW8PPPPwMwY8aMKjubCQQCgeDZsrMzQSp9+EdXQyMZ1arVYMWKLbzxxjAyM9NZsWIe02cOI/LqKZo1bcfCr7ZjYmKGhYU1zs7ufPnlj5SVlSASgZHRnzNXy8sVKJUqqlevgUwmo3+/1zEyMqZVq1aUlZWhUCj44IMPaNeuHe3bt6eoqIg1a9ag0Wi4cuUKfn5+ALRt25YTJ06wbt06RowYwcmTJ1m5cuVzv1cCwfMmBJEEAsETu3QqAR7IYNBo1By6sAx/rwHEXqv4FmfixIksXbqUadOmAVCrVi3djJJLly7p9r237MqVK7i5uVU6X3xCXqWiueXlChCJMDE1wMjYBJFIhJ2dE2PHfItPw7Zo0eLqUo/UtDgAEpNuo1KrWLD4PRIT71CtWjXWrVuHTCbjyJEjhIaGUr9+fezs7Gjbti1t2rRh1apVvPPOOwBER0fj4uLyj+0ulJKcz6kT8ahUmvsCf1JAzvat1+jWrRt79+7V2+fu3bssWbKEb775RrdsyZIl1K9f/7kFaG5FZ7B6xVnCQm9z9PAdfllzli2/7qVt20CgYoaMgYEBYWFh1KlTB6jomBcdHc3WrVt5++23mTNnznMZ279ZuULFxQtJ/LrxMtu2XCU/V4xcXjGDTiqVIpFISE5OpmfPnrRo0YLY2FgMDQ1xdHTU26aoqIh27dpRVFTEsmXLquxi+Hc9bGaaSCTCwcGMpk2cOHfuOBcunGbEiGGsXbtWb7sLpxKY+dHvLJp5iK+nhjJv0gF+/G4dXl5eZGRkYGNjg1KpZOjQoYwePZq2bdvq9t2/fz/u7u4vbcaVQCAQ/NeJRCL8A1yRSsVIJPpvRo2M5UilEqyt7VCrJXTu3Iv27UN45+3ppKTGYWJiTmZmCidO7qe4uJD8/GySk2P5+OMRGBgYYGFhjZFRRZ04iViCXCZHJIKpk2dQUFBAhw6dUSrLuXDhAgAajQZXV1cKCgqwsLCgXbt2bN++nWPHjtGmTRvduLy8vABwdHTEy8sLAwMDIRVY8K8gpLMJBIInVlJcjlql3/r8TspZMvJiORn5K9dm7eZaYn9cXFzo3bs3M2fORC6Xk5iYyOuvv866deswMDDQ7atSqahevTqenp5V1tkpK6s8k+DcuQi2bV0FgLm5A261exB+9FcSk6IxNjKlRvWamJlZ4ezkwQcfBVNeXsaC+XsxN7dm6vQBpKSk0KJFCxwcHDAzMyMvL4+8vDwyMzNZs2YN3t7eeHl50a5dO6ysrACqnI3xT3H+fBJqtf7fTKEowcDAGKVSzZGII4wf/z6RkZEAlJSU8Pbbb7Nq1Srd3+rgwYOcPHmSX3/99bmMMS21gPBDd1Dd99g6eXo/Deq15XjEXaCibe69gt6NGjXi1KlTWFhY0LRpU4yNjQkKCmLRokXPZXz/VkWFCn5Ze4GyMhWq/3cSTEzI48J5U+o2EJOVlYWxsTFpaWmEhoZy4cIF5s+fz7Jlyyr2Lypi+fLl7N+/H1NTUz7//HNGjRpFTk4O+/fv/9vj02i0pCTnk5tbiomxjL37NjFkyBBdcHrYsGEkJiZSs2ZNatasyYwZM5DJKtIdSktLadCgAWfOnGHr1q289doHrP0pnP3h39Mj+FMAsjOLKcg3Z9/uCL5ePJ29e/cSERFBp06dCAwM1I3j7t27fPXVV7pg6/0fAP6pzUkEAoHgn8jKypgu3eoSF5tLdnYx5eVqNBoqOin8X2mpivj4aAoK8rh27TwlJUVoNBoUijKKivPx822DkZEJfk1a8e2303B0dMLa2oZx46bx5ZeTMDKSk5AQT0BAG8zMzHFzc6d3r358OX8O1tbWNG/eHAcHB0aMGEH37t0ZNWoUHTp0wN7enqVLlzJ37lzdWO7//0IIHgn+TYQgkkAgeGK169ghk0tQ3Bfc8XBqiYdTSwwMpbw1pgVNWlekgZWVlREdHU3v3r2xsbHRpXzMmDEDgMDAQFxdXSvVW7mfsZGM8nK13rJWrTrQqlUHxGIRLs4WRF5NZZ7HJuztTfH1c+LShSRi7+bQueMgOrYfwPfLJmJhYYlEIuaLmRtwc7cgoE0devXqRXl5OQUFBbqxJSUlcfLkScRiMQsXLuTs2bMYGBjofaB8lT3YdW358uXMnz+Bbl30iwHHxUcSdmgNMpmcoKC2GBsb8/vvv+Pl5cWECROIjo5m0KBBAGzevJmxY8dibm5Ou3btqFOnDj/99NMzHff5s0l6ASSAjIwELl6K4eixnaSkRhMdHU1aWhoAV69eBcDDw4OMjAzUanWlFETB4/2xP5rionK91FSlUsPduyl8vfAL9v+xi7KyMry9vZFKpXppp1qtluHDhzNnzhwsLS0BaN++PWPGjGHmzJmIxX9vonNhQRn7f7+BQqFCo9ag0WrYsH4XO3YMBvRnps2fP5/S0lIAEhISeP311yksLGT//v04OzszadIkzLRXuXH7BB6uLUnNuEX42TWIAAc7D1zdrDE3N8fIyIjg4GBq1qzJt99+y9ixYyksLGTo0KGsWbNG163RwsJCF3SNjIykXbt2f+taBQKBQPDk5HIpnnXsSM8w4s6dHDQaLWq1Bs3/u7YVFOQxZ87njB/3FcpyBTF3onj/vTlcv36e6zcvMGTQBL5a8AHtgztx9mwYnTv3ZtGi6Xz//TxSUhJYtOAbPp/yKQNef4vZc2fQuJEffft1JzU1mbt3Y/D09GTdunXUr1+fhIQE1qxZwxtvvIG7uztTpkyhbt26L/kOCQTPnxBEEggET8zDqxq2DmakJebrzW4Ri0UYm8px965GfHwuSqUamUyCtfWfxY7j4uIYPnw4aWlpbNy4kcOHDwPoUmXS09PZtGkTmZmZfPppxUyBCxcu8vPKfdjaOuqNQyQCGxtjarvZ6BV7Vas1+DWpQUpyAVKpGLHEGEQV3/5kZaeyavUXmJpaUFKaxZtvvs6WLVtQKpXY2dmhUFR06Ni9ezenTp1CJBLRtm1b8vLysLW1BeDHH39k7dq1GBkZsWzZMl1a1avkwa5rRsYyJBKRXkvcOp7NqePZHKlUzNDhTfh55bds2bKFzp07A+jVIQJ0Xe2el6zMokrLevV4DwC5XMKK1eOZPn06w4YNIzg4mOrVq1O3bl1kMhmjRo0iMDBQV6tG8GQUChUJcbk8OJFGrVazfuNsenYfhYODA3FxcURFRaFWq/XSTqdNm0arVq0ICgrS7bts2TIGDRrEihUr6NOnj96sw6eh1Wr5Y99NiovKdcuOHf+dZk06cujgLTQabZUz0wBq1qzJqVOn2LZtGwsWLGDp0qU0b9aSmzeucCfxPCGBH1GuLKV/5xnEJV8m9MQyZsy/SUjPQEaMGMHx48eZNWsW7733Hps3byY2NpbY2FhdEdTVq1cTHBzM119/zblz556oY6NA8Dj3d6EcOXIkN2/e5Ndff6VGjRp626WlpbFy5UomT578kkYqELw6kpL+rJkpkYgRi7WoVCrmffkx7435HLXSiOzsXN2MUZFYhIiK94Tt2nVi0eKptG4dTKdOPenUqSdarZZ33ulHnz796dOnPwCv9X9Dd768vFw++fQDdu7cQW5uLiEhIXqz6Pft28ebb76p+/3+9yT31857WLdZgeCfRKiJJBAInphIJGLcrA64N7BHJpdgZCxDJpfg7GbNsAltyMgopqxMhVqtpaxMRWpqAUrlnzOJcnNziYqKYvr06br/eNPS0ti2bRtLly5l/vz5NGvWTFfY+c0336Bp0/qIxSLdTGWJRISZqQH169nrjU2lVKNSqjExNaB7r3rI5JJKU4cLC/N59+25ONfw4osvvkAul6NQKLh79y6hoaEolUrMzMyIiIhArVbTuHFjgoODuXXrFhkZGfz222+cOHGCI0eO4OHh8Xxv9hNSKtXExeYQFZlKYmIeR45UdF1bvLiiyLmNtTFarZpff5tDbOwV1q2fTFlZEWKxiENHVhCfcJPly5fz2WefsXXr1pdyDUYP6bgCFYHBQ2HhAKxYsYJDhw7h5eVF7dq1ARgwYADHjh3j6NGjuplIwpTxxysrUyESV75PV6PCSUq6ybYd3xMYGEhqair29vb06tWLDz74gE8//ZSUlBTmz5/Pjh07CAwM5McffyQxMZHdu3czefJk3n//fWbNmvWXx5aWWkBZqVJ/WXo8R45u5+tFHxAVdY1Dhw4xa9YsWrduzezZs4GKgtj3PixkZ2ezbds2WrVqhZ+fH+ev7iY7N4mi0lxMjK2QSuW4uzSjllNjfOoH06tXL1QqFfv27UOr1WJra0vt2rU5cOAAsbGxug8AtWrVIjk5GZlMRkFBAW3btv3HzFQU6LtXpD0uLo6BAwc+8X5Dhw6tshHEX/Vgra/o6GiOHz9eKYAE4ODgIASQBIL/Ky/XL3kgEok4Gr6Pmzev8tOy+SxcMobi4hzQQgt/F+rWs8O5piU+vtXp2q0np06FExTUDYD09BTGjn2L2Nhb9O3XnYSEeL1j374dzVuDXuPDDz/k5s2bdO/eXdc8BmDbtm3MnTtX6Lom+M8QvkITCARPxdTcgHGzOpCdUURmaiHW9iZY2pgQF5dTaVaDVgsqlUb3H339+vURi8XUqFFD9ya8qlSZe4Wdd+/ejYGBAdUdzcnILEKt1mJpaYilhWGluiT3z4ySyapuQ29ias7M2UNRKhV4eDSgTp06REdH06BBA6pXr05paSnZ2dnY2tri5OTE+vXr6dGjR0VL2NhYfH19dS3u/266zrOQlVXMqRNx/79+LRqNhiWLdtK6jQcjRr5FcHAwxSWFTJ/VHRsbJ44e30TtWj6sWz+ZqVNWUVKaTNOmTRk6dCgBAQG0b9/+ic5bVdrco9ISH8e7UXWOH71bKaVNJAJbO1NMzSpmtIwYMYLY2FjMzc0fGvAaP348wcHBf2kc/yWmpnLEVQTbGvsE09gnGMfqZgwcUtFdpqruY+Xl5ZWW3auD1KdPH/r06fOXx5afV1bptaR/3/d1Py9a+h5ffPEFCoWC5ORk7t69S3Z2NqmpqQwaNAixWMz169fZt28f1apVY8iQUZSU5WBhqh94zsyJo1RRSPv2Fd1zsrKyaNq0KdevX+fy5ctMnTq1yvFNmjSJZcuWUbduXTQaTZXbCF5tDyvS/iJo1Bpu384iPi4XA0MZZ87u0tX6mjJlClevXiUkJITt27fTv39/FAoFVlZWulpdf+e1ViD4N5HLpZQ+8IVD+w49ad+hZ8WMdUtDTEwNmDVnBGKxCNdaPXnjzZ6o1Rpyc3Np0aItVlbWXLt2mUWLZmJsLGfYsGF88MF4VixfyUfjJ9Czdxe0Wi0ikYiZM2cSGFjRcOHB2UR9+/alb9++L+zaBYKXTQgiCQSCv8TG3hQbe1MAsrNLKn3ou0erhYICBVB1QdoHU2WqKuxsaCilprPlQ8eieaCDm1QqoarJKNZW9gwfOoWYmKvcjL6ImakMU1NThg4dSkhICG+//TZarZbRo0czfvx4xowZQ+PGjWnQoAG1a9fm0qVLaDQaxGKx7t+XRaVSc+pEnF7gRSyWIRbLOHs2mS5durJ3717Onj2Lk1MNoqNvcScmmwsXzjPh0z/waSym2c0mf/n8D6bN/R1169kTdzebpKR8XYFnqVSMVCamfSdP3XYPdtuqyr0ZWC/bunXrWLt2LWq1mjlz5vDjjz9W+uDXpk0bRCIRUqmUTZs2YW9v/5CjPXsSiZgmzZw4ezqxUvBOKhPTKsD1hY3lQSYmcsRiUKurXv/JRz9y9VIe8+YtpUYNK/z8/KhZsyZDhgzBzs6Orl27snbtWhwdHenSpSuRkVdp5NMSRbGM4+c3UlySS7D/aI6cXsnr3ScxckxP+vVfybZt2/j22285duwYGo0GmUxW5WtWVlaWrubFqxBMFjxeWZmKq5dTSE0twNLCiPMX9+gVaU9JSaFfv37Exsaya9cudu3ahYuLC56enrRo0YLs7GymT59OSEgIUDGLKSoqisDAwKeadVdUpGDNqvMUF5VTXq5Gq1Xz27ZdNPHrDsDs2bMJDw9n7969bNmyhWbNmjF58mRGjx797G+KQPAP5+RkrquJdD+RCOzsTPD0sK1yv9u3bzFhwkimTp1JzZqWGBs34OTJCExNjXnrrbcoKspn1hfTKSspRyQS8fvePzAzM0IiFV7vBYJ7hGeDQCD426r6Nl6pVDJsWF+io6/Rv39FzaOqPJgqs23bNl1h58DAQF0x5achFotwcjblqwVjSEy8zYJFH1BQkAPA1ciTbNi8iOMn9pKWnomzszNLly6lU6dO1KxZE6j4RqmwsJDQ0FBWr17NO++8g52dHX379sXf35927dpx+/btpx7Xs5SclF8pcFdaWgyAVqNl544DmJi4U7dOI9LTM6hTx4N9+9fj36oeoGX16tVERkZy9OhRNm7cSHFxxb4fffQR586dIyYmho4dO9K2bVtmz56NslxF5NkkLkTEkZ9TUilt7sE28Bs2bODHH38EKgphjxkzhvDwcLp3706XLl0ICgoiJ6fibyIWi+gSUo+OnetQ282GGs4WNG9Zk7cG+2FhYfhibugzlJyczNGjRzl06BDh4eFVpqUAHDp0iKNHjzJ48OAnCpA9a/4BrjTwdkAiESGXS5DLJUilYtoFuVHrvlpjL1oNZ4tHBmckEjGZmcW8MWAQ3t6NSExMpEePHmRkZPDrr78yfPhwNBoN1tbW/PDDZsRiMU2aBeDobEVpeTYD+8zhxMUNvPH6OD6a1gMraxNEIhHl5eUEBgayevVqvL29gYoi2qmpqWRlZelei+zs7Lh16xZQ9Wuf4NWSkpzPovnhHNgXzYWzSRwOi2b1qu1YW/1Z0y43N5ctW7bw0UcfsW3bNvz9/Tlx4gQnT57Um53WuHFjAFq1akVERAQXL15kz549+Pv707p1a8aPH//IsezYGkV+Xinl5WouXT7AN9+PJD0jjm4hjcnJydfb9u7du7rz+fn5PeO7IhD889nbmWBvb4L4vtRssViEqYkct9rWD92vTp06bNq4B7WyOieOxVJaIkMqqUirl0qlSCQShg4dzP/YO++Aqso3jn/uZk/BgWzErSgqiqgo7r1L09JSM8tVqZUzc6S/cparMvfMjRsB98KNoqgIyJa94a7fHzeuXkHTctb5/AXnnvOe9z333HPv+7zP8/2aWRghl0vp3qMT7w3oT3p6OomJibz77ruAzmH4UV1AAYH/EkImkoCAwD/GxERORkaBQVBDJpPx++/bEInAwcESU1M5Pj4+gM6ZrURH5PFSGXd3d70z2LMiLkPbpUFDFyaM+xmNRqvPJnBzrYlWC3VrN0MsEfHe+97I5aUfg2q1Gh8fHw4fPmywfcSIEYwYMeK5+vayyM0tNijhA7gRcZGNm35CJpVTvXo9jBSWaJGy8rdgtm//iTVr1hAQEECFChVYtWoVgYGBtGjRAk9PT06dOkW3bt24ePEi8+bN45133uG3337D0dGRdgFduHtsCWYmNqDVUlRUxKQRvzP4C3969epBQEBAKRv4uXPn0q9fPz755BO2b99O7969AZ1r3+HDh9m8eTMrVqzgq6++AnRZai6uNri4PvmH35tMUZGKe1Hp5OYWERS0HaVSRUBAADVq1GDMmDGlBORdXV1L2dEXFxfTs2dP8vLysLOzY8uWLS+lr49nSZ27uJxpUxcgkYhxdrFGLpfg5+dnkK4fGhpKUFCQXn/oZSIWi2nTvioH991Eq9UaZEpJJCL95/m9fp+z8KdxXLlyhaKiIurWrUthgYqw01GkpuQRejAKm4rmGBmZ8M47Qxg2tCtJKfdYtGoAYrGYBUtGsvz3CXz66Qhq1qxJXFwcYrGYqKgounfvDsCwYcPo0qULfn5+2NnZATBr1iyGDh2KSCSiR48eBroYbwtnz55l7NixSCQSGjRoYJDBFxoaSmhoqN5JE3TZhtOmTWPVqlUsXLiQDRs2IBaLmTdvHk2aNHnp/X1UePp5UKs1rPk9jMJHHEUvXT5Mjer+7N5+XX9vPV5qXadOHSZPnkxWVhaff/65QXYaoA/u1K5dG41GQ3BwMEZGRrz33ntcu3ZNH4R8lOysQuLisiiJO9bzaseDB7EkJt0hKyuFmJgYFi9erN/f1dWVK1eu0LFjRy5dukTjxo2fa+wCAv92RCIRHu62VKpoQWpaHhqNFisrYywtFE/URtRqtRw8cIu7t1NR/pn5nBCfzfmz96lZR0JqaiomJg9NYf744w9sbGzYsGEDM2bMYN68eeTl5ZGTk8OpU6eeWQZAQODfhhBEEhAQ+MeYmMiQy6UUFalKvSaTSTAxebJw8otAJBIhloj09q4l5/WqV4mLF+J12QJa3Y8HrVYXdHJyti4zgJSenk6vXr34+OOPX2qf/ylmZnIkErFBIMm7fjO86zd7uJNIxOdj5wLQr9947kUHExgYSEJCAn369NFbk5dkW124cEG/4l2SDVaYr+TOrTiMqtVFivmfDUsIP5PEjpUX6dy5M4GBgaW0rSwsLJDL5aSmpnL8+HEmT57M8ePH9ZMvLy+vUkG6t5W4+5kcDbkL6LSpLl26TVxcMrt372bu/6aza9euUkG2ZcuWlbKjj42NpVy5cgQGBupLp14UWq0WjUZLUlKiPksKdMEBqVRMteqvrpTuWbCzN6NPPy/u3n7ApQvxqNQaJBKxfmKgVqtYunwy/d8djYmxFUVFyeTnKfl+8mG0Gg1qpZzAnafxqFlBr2Pm7lGNB6mJODt74OXVmIYN/Rg2tBcKhZSYmBiSkpIYNGgQW7du1Qe5O3bsSMeOHQ36Vq1aNY4ePfpKr8eLxtnZ+ZkCH2WxatUqLly4QGJiIp999hk7dux4qX19kn7Rs5QU34lMLVWumZoeR3JKFBcv7yM55TZ79uwpVbYokUgQi8VkZmbi7+/PlClTDDIOzpw5j1hUjtOnL9Cv32B96XVJFkOrVq2wsbHRl8etX7+e8vYuSCT2XAs/SXp6Ak19+9C2zVCi7l0i4uYpUh7cZeTIkWzevBmA7t2707t3b9q1a4e1tfXfvn4CAv92TExkOJlYPdO+d++kced2qr50HnTanVnZmQwdOoWjR/dRWFiof83GRrew1aNHD73bWs+ePdm1axfBwcFMmjTphY1DQOBtQihnExAQ+MeIRCIcHS0xM5MjEqF3UzM1lePkZPVK3LKkUgkSycNH2rr1axk9diDzF43k7p2rLP91KlqtTu/FwsIIv+ZujBw5EtBNikrKUmxsbAgJCdGnK7+pOFS2KlP36XH0JW5aLcHBRwkICCAgIAAnJyf9qrednR0FBQWsWrVKnzFUtWpVNm7cyHvtptHNZwp2Fq76NotVBRQXqTm+P5JjR48TEBBQpg189+7dmTt3LlWqVNFP5Esmg4/u9zZTUKDkaMhd1GoN6j+DmEYKUzyr1CPo0C1atPCnoKCgTAH5Ejv6b7/9lh9++AEPDw9q167Ne++998K0nfLyitm75wbz/neUef87yjdfLSE9LZeAgABGjhyJWq0uVYr4KKNGjWLTpk2A7j17vBTxZaJQSKlRqyImpvI/dc4e3vBnzwURde8GGzYtolPndty/H09UZCrFRSqUSg1NG77L3uD5/Lz8G8rZViT9QS6xsfewsLACoGnTAOb9OJGhQz/k3Xff5Z133mHHjh0UFRXh7+9PkyZN+Oyzz/Dy8uLAgQMvbYzh4eH6UqjBgwc/c/CwJMi1atUqqlatir+/P+PHj3/qMWlp+Zw7G8vR0LukpwHoPpMlgY8PP/yQ1q1bs3btWv0xU6ZMoVmzZsybN0+/zcPDg6KiIjIzM7G1ffFlj7m5RVy6GE/QoUhOHL/HvHk/8f777wO6oGfLli3p3bs3q1atYtmyZTRu3JgJEybor4m/vz8TJ06kQYMGrF79O1u3fc/y30ZwN+oCAK1bfsR778ykf98ZVKrkSpcuXcrsR7169bCzs0OhUCCVSvH19UWr1ZKels+WLXvp2asDduVciL6n4vixe1y8eFmfxfB4eVz//v05eGg3KpWW6zeOUauWv/48NyJOUL1aU76btgp4KNirUCjYs2cPBw8epH379oAuoGZsbPzCr7mAwH+FSxfjDQJIoFuUWL9hBl06foxMZm7wWnZ2NgAnT57U/2bp1asXmzdvJiEhQe8UKyDwX0PIRBIQEHhmwsPDGTZsGBKJBA8PD1auXKmf2EkkYhwcLLlzJ4rJkyexdu06pH+KEF6+fJkxY8YAEBMTw+jRo/X/PwslpQzr1q0r5UyTlJTEb7/9xsSJEzl2/CgTJ05EJBLh5ORESEgwWq2WC2HXOX9xL55V7XB0tsbJ2RqxWKQPoqxatYoBAwa8VSK5UqkY36YunHrEnU0k4mFJ4Z/vy40bF3QlbjI5vk18KV++PADTp09nxIgRbNq0iXfffZfOnTszZ84cFi1aBMDMmTP58MMPuX4xFo1aROs6nyKT6vSJkjNuE3Z3BzKpjG692lO+fHm9ttWDBw9Yv349AN26deOTTz5h165d+n7LZDLat29PYWEh27Zte0VX6+Vx5/YDwHDi7+FRh6NHd6JWazl27AwWFopSQTalUolUKkUkEmFhYYGxsTFFRUWMHTsWsViMr68vGzZswNjYGA8PD6ZMmcLkyZMN7v2cnBy6d++OUqnEwsKCjRs3Ym7+8AdwUaGKNat0Ir4lwqMpKSkkp6Txyy+r2bJ18ROzpABGjx5NkyZNePfddwkNDX1iKeLLprKjFbcjHxiUy/o2aY9vk/bIFRJ69anLjauJdO/wBUV/li019mtImy7NkUjEfPvdEAoKirC2tEciliBCRKWKdjRt2pg5c+YwaNAgNm/ezEcffURSUhKLFy8mLS2NKVOmoFQq+eyzz/ST+BdN1apVOXXqFACDBw8mLCyMhg0bPlcb48aNY8iQIU/d58rlBG5HPtAHOh+k5BJxIwW78gWkpqaSm5uLRCIhKCiIWbNmUVxcTGJiIufOneP48eNs2LCBQ4cOARAQEEC1atVQqVR6R74XRUpyDieO30Oj0WWNqh5ks2fPIdq26ftwn5QUgoKC0Gq1+Pn5cfLkScLCwjh79qx+n969ezNlyhQqVKjIxx8uo6hIyd6Di3F3e6gtJJWKWfbzH7i4uOg/V4+WWn/77bf6fU+ePAnAvXvpDBkyVX8dQVcyFxubxLz5n7Nv304KCwtLlcc5OjqSk5OFbTkRhYW5WFroSiO1Wi2xseF06/IZvn8hZq9UKhk6dCjffPPN37u4AgIC5OWVdha9cjWU2Ps32R24jJNn1jJv3v/0r7Vq1QpjY2OMjIz0mUgWFhYYGRkJpWwC/2mEIJKAgMAz8ywTHqlUjEQi1geQQFe6VKJ91K1bN73DzbPwV1bMFSpUYOLEieTlFTNu3ES+GDufwH2rOX/uiIEmTbEyix/mf87du3eRy+WYmpoSFRXFjh07uHz5MgEBAQwZMuSJekw7d+6kefPm+tTmNwHbcqZ06FSNuLgscnOK0Wg0REdnGExwvL2b4+3dHKlUTIOGlalY0UI/YVqyZIl+v8f1njw8PNi/fz9Th+0gITrT4LyOdnVwtKuDTC5hxsye2NiblWkDb2VlRX5+vsE2Ly+vV6Kr86J5kiZLVmYharWWmJhbbN66GLVGTYd27yGTK/hu5jAcHSvy08/zOHTokD7INmfOHCpWrIhKpUIsFtOoUSNWrVpFTEwMH330ESqVChcXFzZs2IBIJGLw4MGkpqaW6odMJmPdunVUrFiRX375hVWrVumz60AXOCjIVxo41xgZmeLiXIdjoVE0b96Cy5cvlZklFRkZiZGREQsWLNAf+7pKEWvWqsC9e+koiw3t2iQSEfW9KyMWi8jKKNCXdppZGmFuZYxWq2bGzE+IjYnk64n9adGiKxcvHsXCQkFY2CEOHz5M586dcXNzo0+fPty7d48uXboQERGBSCTSu+VlZma+sLFotVoiw5M5dug2mWn5OLpa06JDVSpWtkShUHDo0CGSk5PLdAUTiUR8/PHHVKtWTb86DrBgwQLWrFnD1KlTCQgIKHXOBw9yDQJIAGq1ltzcTKZM+5ygoECOHj1qIOJ8+vRpYmJiqFOnjn7boUOHyM7OZuXKldy+fZuUlBSGDRvGvn37Xsi10Wi0nD4VY9DPY8f30tS3PTHRGSiVuve/bt26SCQSkpKScHJyQiKR4OXlZdBWrVq1kMlk1KhRHTt7e7KzCikszDXYRyQC70aV9f8/vkhSVuD27NkI9uzeTO/ew1i+YganTx+if7/POHcuhH79RmNnZ8/9+7Fluvp17dqVHTt+4EFqNNNndmTi13tITr5DJQdP/Ft64PoUIeB9+/aRnJyMRqPB1dX1ifsJCAg8nfLlzcjKNNTwrF+vNfXrtUYiEfHhUB9MTeV6rbewsLAy25HJZPTt27fM1wQE/gsIQSQBAYEnkpdXTMSNZBLisxGJwMnZmmrV7VEopCgUCtRqdSntByhtl1y5cuU/28sjKSkJDw+Pp543N6eIvLxiTM3krF7961OtmFUqFV98PgE/32EUFkBKcjHZWWqSklNZu+YwO3YtMci2OHToEDt27OCXX37B3t4eY2NjvLy8CAoKQip98iNx586d1KpV640KIoGujM/FRdcnrVZLSkoeublFBj+QRCJQGEmpUMH8Ca08mYBuNdi8/BzFhYZ6VyIROLhaY2Nv9o/6/6ai1WpRqzRIpGKKi4ufGMi0tDJGIhGxO3Alo0f+gEKhy9byquuHVCbGr5kbTs7WBkG26Oho2rdvbzA5BZDLLZg9cw1FRSqcXR5qoJR81u7fv8/Ro0fJzMzk3r17uLq6UrFiReBhSVJ0dDSenp74+vqSkJCJhXkF+vaeoG/L2akm587vRSSC48fPYWEh59KlS9jb21O5cmVSUlIA8PT0pF+/fowbN44ffvgBeH2liCamctp3rMb5s7EkJ+UiEoGxiYx69R1w/vPeL1/RAolYjAoNNvamiCUiRCIZkyYuB2D9xoVcDz+HkZEJN25cp3//frRt25aFCxfSq1cvzp8/z+HDh1m/fj1LlizBz89Pf/4XqU+1a8NlTodEUVykC4gkxWezZct2rkbtoE7dmnz00Uds376d1NRUA1ewyZMn07NnT3bu3ImNjQ3Ozs6ArmT0/fffJy0tjbZt2xIWFqYvHS3hzu1Ug8AM6Mo3fvp5IgPeG4tEYo6rqyshISEAXLp0CdDpJl27ds1gm1gsxsTEBLlcjqWlpd7V8UWQkpJbyqo7ISGamJhbHA76g6ioG+zZs0efMVquXDnu37+PRqPh6tWrBseVBHFEIhGDPmrIyhXnEIl0zy2ZTIIWePc9LywsHro/Pr5IUhK4fRQTYyt69x4GQJ8+H1PFoxY3b13mzt3rrFk9jz17ljFnzvdljq9Pnz58/vnnXLp0iYEDB9O8hSurVu9iwoSh+Po9PTC0fv16ZDIZR48eZdGiRfz8889P3V9AQKBsGjRy5O6dtFJaaRKJGDd3G0xN5X/ZxrBhw7C3t9d//woI/BcRgkgCAgJlkp1dSNChSFQqjT4gEXnrAVu2bGPnrmVUrVoVW1tbMjIyCAoKYuPGjWzbto1u3bqV2lbiXrR///6nloUUFCg5fTKazMwCxGKd5fbWLXs5cGCYfp/H2+7SpStxcZlkZWeiUOgcNYwUphgpTAg7f5969Rpz5cplytk6s3n9FcrZOXPn9l19e7t379bru+zevZtbt25hZGSEWCxm8ODBdOzYkdWrV3PgwAEiIiLo3bs348aNe9GX+4UgEolo1tyV8+fuk5aWj1gsQqPRYmNjQsNGjn9Lm6pp+ypcPBnDnfBkfamQTCFBLpcy5Kvmz9XWo6UibypqtYbQQ7c5efQehQVKjIxkPMg5xYABA/n222mAboJ5//59nJycqFjRgXI2DVAqi/lpyVdIpVIGvf81lpa2TPt2MG3bNef48eOMHv0FK39dS3TMPQb0G01Q0BGaNWtGz5496dKlC9269aWwQIO7mzdedduwc8+PtPTvxbbtOq0kW1tbbt26xdq1a/nyyy8Nys5yc3NZsWIF+/fvJzMzEysrK0JDQ/lh7i42bV5qML5KlTyQyuT8tGQ0nlUdWbDgB3bv3k1BQQFyudxAMPqjjz5i9uzZzJkzBx8fn9daimhhYURAG09UKg1qtQa53FAjyc2zHKZmcoqLVX9qshne6+/10z2DJBIR38/ROa6dPXsWa2trzMzMaNWqlT7r5mURG5XOqeAog4wqjUaLc4X6VHFuSI48mNjYWK5du1amK1hmZiZOTk6ALsgHumw/0OmaeXp6kpycTKVKlQzOm5+vLNWXM2cPczfqOuvWL2T3nmXMm/c/ioqKCAgIwNnZ+c97uyLe3t40a9aMunXrAmBmZkbbtm1p0qQJarVaH9x/ERSXYcww4L0x+r+nz/hI/76BLnD6wQcf4OvrS5MmTfTOaY9jW86Uzye0YNMfpgS0rYK5uRE1apVHoZCSkZHP9WtJpD7Iw8RERvWaFajsaKkP3D6+aJGZlcxvv81jzOjvsbHWlaRVqVKbEZ9MQyIR0alzdSQSsT6LoXnzFni4e3HqVDRZWVk0a9YSNzd3jIykNG/hRm5ee+bNm8eSJYs4e/YsBQUFjB49msuXL6PRaFi/fj1OTk76seXm5r70+1RA4N+MnZ0Z7TtW5eD+yD8lALRotODoaEXb9lWfqY0VK1a85F4KCLz5CEEkAQGBMrkQFqe3Py1Bo9FSt04zenTvzuq1cwkMDCyl/QCl7ZJL2LFjxxPFXzUaLSFH7pCfX4xWqyu3CAkNpFGjNoQEP2zj8bYTErLQasHE2JzCQt2quKtLLQ4fWYdarWHnjmBSU3K5efMGEdeTSHlwl9wcY/btPYZKpaJPnz4sWbIEtVrN9u3bmTp1Ki4uLnTs2JFTp04xbtw4nJ2dad++PZMmTfrLLKrXjUIhxa+ZK/n5xeTnKzExkWFi8tcra09CIhEz6rvWXD59nxMHIinMV1LbpzLNO1TF1ELxAnv+ZrBh5QVu30zR3/u5uQUcORJCQy9dCebZs2dRKBQEBQUxZ84cCgoKcPcwITEphu9nbiL8ehiB+1Yx+IPxaDQFTJ48mZioVFq1acbIoStxc7zN4cP7GfzuEnybu7Pst69JTyugRvXW1K3dFq1Wi0gkoka1Zly4cJSqng2p7+3Brl27kMlktGnTBlNTU/3nKje3iK5d3sG3yQB2br9NOTvVn5PVZlSp4kVRUR4/L/sMqUROlSreeNdrS1LyPT4ZPo+U1APcuHGDTZs20bRpU2QyGbt372bs2LH6sr2vv/5af23ehACgVGpYKluCWCxi6OimrFh4krycYixtNQZC+48SEnKUhMQYjI2NEYvFBAYGltrn0bLFsko1/w5nQqNQKQ1L8lRqJVKJDJFIRHGBGFNT0ye6gllaWhIXF4e1tTW3b98GdKKvFhYWFBQUcPv2bezs7Eqd19bWhPS0PL21PEBT3w409e2ARCKiTbuqWFoa6QMfj1JW6ek333zzUnR5rG1Mnpj1JRaL2LhhDy4uFQ0y+IYMGcLw4cM5e/YsK1euBAzfr5L3USIRc+HiWYM2Y2MyOBYahUajWyjJyirkwMF97Ny9HC+vmmUuktSv36JMQwOxWISjo5XBPadSaTh+LIqcnGJiYu6wZOk03h84miNBd/QZV127dqVr164sW7aMNm3aADB79mxMTEwICgpi+fLlzJw5k+LiYlq1akVCQsJLd8MTEPi341HFDhdXW2KiMyguVlGhogXW1oJgvYDA8yAEkQQEBEqhVKp58KB0mYJSWYxMJicmJkMvBlyW9kNZ25RKJREREfoV7cdJTMymqEhlUIb1aCnDvXvXy7RiLshXglaLXG6EUllEUVE+KrUKM1NLFv88GhMTC5o1GciduxfYsn06+flZdGjzKSNGfIaHhweenp4YGxvTpUsXkpKS9HoTAwYMYPr06XqR6LcNExP5PwoePYpYIqa+nzP1/ZxfSHtvKvGxmdy+9cAgeBp+K4TqHs2586fz17179/SZAF5eXpw+fRqPKg74t2hKU78qVK9ZgbPjdtD7HS8WL7HHzs6eX3+6gpVFBURIMTO1oai4AJFIRtiZeJo0bklsTB4J8VFERs6mbp0APKs0omaNZhw4uJzBg77HyChOX66jVqvJy8ujdu3aZGQU8E6f4ZiaumBrXY2E+GwS4lWUt3fh4MEgmjXzJSe3gMaNuuJdv50+QOVVx5/jJ5ZjYipmzpw5FBUVERkZiUKhoFu3bgQEBLyV2Q425UwZ/20bIiNSCL+eVKqESyIRUaGiBUbGktciUJyTXcjjMZKYhMtcjNiLSCzCq15N2rZty+nTp8nMzDRwBQOYPHkyXbt2xdPTU5+RNH/+fA4cOIBGo+Grr74qMxunSpVy3LmdBhguCojFusCNpaVRqWNeB+bmCsqVM+XBg7xSZW1isQgPj3Kljlm8eDE7d+6kuLiY1atXP/O5SgI8JTpaJdSt0wzv+i0IPrqizEWSypUtMTGRI5GI9H0Ui8Ha2pjadQxLW27dTCE7uwiNRkvlym7MmrkGgPz8YgNx3zNnzhASEqJ3QZw7dy5HjhxBqVRSvXp1AORyOSdOnODChQtMmTLFwKxAQEDg+ZFKxbh7vHh3SQGB/wpCEElAQKAUGo0WEY97TsGVKyfZu28diET4+nrx0UcflRIafhLBwcH6FfWySEvNK1Wj/mgpw+zvhxqUMpRgbW2i72frgIEsXfEFMqmcIR/OxsamPPl5SgrylLzff+6fY1Ozeds02rUewuixOlHEgQMHkpubS8uWLQGddtOvv/5K3759Wb16NR988AEymQy12jCLQODfRUR4cqlMkfSMeFJS73EpfD8P0u5y69YtkpKSAPSBnSpVqpCa9gD3KrZkhN2jRg1PpFIxIpGIqDtpqJQag+wFtVpXtqNSqQk+EIyXVwc6tB+OSqXk15Vj8KzSiB27fsTU1JLVayfSvVt3zC2MycvLo2LFiqSnp9O9e3fWrzlGcOgGnBxrcP36CWrX8senUVc8PRvT2Kcp9uWtUSiMKFYmsWnLLLzqBtCksT/fTPyM5i1qc/DgQUCnuaRQ6LLKOnfuTHh4+FsZRAJdsKFazfK4uNtw/ux9kpJyEItFaLVa3NxtqetVCYlEzLFjx1553zyq2XPrWrJBOZu7Y0PcHRsik0sYPaUVYrG4TFcwAB8fHy5evGjQ5tSpU5k6depTz2tqpqBZc1dOnrinD2JptVqsrIzxa/ZmiTQ3aerCmdMxpCTnIpaIQKvTMPJt6oKRcekA2dixYxk7duxznychPqvUtpJFEpVKg7JYUuYiiUgkwsbGBP+W7iTEZ3P9hjkmJlKaNXctVUJ5715GqWCYrh0oKlKh0WhITk5m4sSJ7NixA5FIRFpaGqGhoRw/flyv0aXValGpVMhkMv3ijYCAgICAwOtECCIJCAiUQi6XYGQkLaWl0aBBSxo0aImdnSmtWlcBKNMauaxt7dq1o127dk89Z4mGz+OIxSI2bgzExcW+VNu3bt3C3NwUsRiqejagqmcDg2MLCwx1Nm7cPE5CYiSHgn7j/KUN/PzzfPr06UOdOnWIiIgAYOLEiXz11VcEBATQoUMH2rdvT7t27RgxYgR9+vRh+PDhz3IZBd42yihTadl0kO4lEewOmsbUqVMZPHgwAQEBVKpUiWrVqiGTyRg6dCj+/v6IxWK9DTBAXm5RqTbzC7L4fcMYJBIZNWvUR6PJ4deVY1Eqi6hbJ4D4+FvI5UaMHb2G02e20cS3NiNHjmD5cp1ItJ+fH199NYlF848zfeoBg7aLivJp5f8+ZmZyzl1YztChQ2nRogVFRUX4+fmxctVXTJgwge+++45Zs2axZ88ecnJyMDfXia6fPHnSwOHtbcXISEazFm4UF6soKlJjbCwrswzuVdKomQsHd14v5TInlYqp7GKNg7P1E47855SvYE63HrVITsqhsEiFtbUx1tYmL+18fxeZTEKz5m7k5RaRmVWIQiHF1tbkqXpuj7uqrVy5EpFIRHR0ND4+PlSvXh25XM6hQ4f0xxQXq0utklwLP83BQxvIz89BJpcy7dsvn7hIYmFhxOLFP7Jhwwa0Wi05OWml9KGUqtKLDiqVkhkzPiE6OpJ27drj79+C+/fv07VrV0C32PK4RldRURHt27dHJNJpfQmi2gIvmqd9Vh4nISGBAQMGUFhYyPTp02ndujU3btxg6NChALRq1YrvvvvuVXVdQEDgNSF6ka4jr5IGDRpon2S7KCAg8M+Jjcng3NnYMktCWrR0x87uxbpy5ecVs3/fzScGkTp0qlaqPEupVBIQEMDnn48jP9eB9LT8Px14RIjFIpycrAk7dx/VY9pOoAtavTfI+6m2ygL/LeLvZ7J84alSk3wAmVzCx6N9cXC0QqVSIZVKmTNnDk5OTvTr1++JbSYn5bBk3vFS+mIAEqkYvxauuFe1Y9vWq6X2EYtFuHvY8k4/r1LHZmUWsGLZmVLH3Io8S9CRVchkcvq+0xFvb29++ukn8vPzGTBgAM2aNWPhwoWsXbuWefPmYW5ujoODA5MnT0ahUODn58fcuXOf8YoJPC9J8VmsXHCSrIwCxGIxKpUa92p2fPBpE4yfwRVIoDRKpVJfxjd48GBGjBhBw4YNiY6OZuLEiWWWJGdmFhC463qp7zeAyMiLPEiPYMWKBf+oX4cPRZKbW1zma3K5hI6dqv0tswMBgReFWq1BqVSTkHCfKVOmlHIMLYtRo0bx7rvvUqdOHTp37kxoaCijRo2id+/eNG/enDZt2rB161a96L+AgMDbi0gkuqDVahuU9ZqQiSQgIFAmTs7WqFQarlxOQKPRotWCXCGhYUPHFx5AAp2Nd63aFbgebqhlIpGIqFW7Qpn6PjKZzKAsJTk550+XHTlOzlYUFqq4eD6u1HFisQhzCwUuri9v5V/g7cPB0QrPanZERqQYBGdkMjFVqpbDwdEK0LmW3bt3DwsLC/7444+ntlm+gjkOjlbcj8kspb8iEYto7OeCpZUxjX2dOX0yBo1Gi0ajRS6XYGVtTNfuNcts19xCgUQiLhVEqurpQ1VPH5ycrRjwvjcA77zzjsE+a9euBeDzzz/Xb+vYseNTxyHwYqjgYMnXczsQH5NJdmYhFRwssLEzfd3deqvQarWkPsjj7t00iotUVKxogYubDTKZBIVCQXZ2Pk19m2NiasTZs2ews7Pjm2++ITc3l61btzJhwgROnDiBSmlOeno2J07sxd7eAZlMQd8+I1mweBy2tla0bXvjqRkZf0X1GuW5eCGuzIUYz6p2QgBJ4LWhUqkJv5bE/fu6ss6UlAQOH37oGCqXy3F2dsbT05PGjRuTlpbG1KlT6dy5M1evXmXhwoWIRCLMzc3JycmhZs2aZGVl6Uv+S8qjBQQE/r0ImUgCAgJPRaPRkp1dqAu8mCte+g/f1Ae53Lr1gJzsIswtFFStak+5fzDJio3JYP3qi6jVGrQanaaFhaURHwxp+MYIygq8OajVGo4G3eFkaBT5eTp3O19/V/zbVHmi29dfUZBfzNrfwoi/n4lIrPv8SKVi3hvcAFf3h8KemZkFRFxPpqhIhZOLNa6uNk/9vJ0+FcOJY1GlAklSqZh3+3vh9BLLowQEXgdarZazp2OJjc1A/aeGnkQq5tKlY+zcvQxbm8r06fUpP8z/nFnfrcXS0oh5C7/AyEhBnz59+PnnnwkNDaVGjRoEB4cyePBw8nILGT9uEbv3/I6ZmSl37p7Dz8+3TGe65+XWrQfcjEhB/OfnXqPR4uZmQ63aFYQgksBrQavVcuxolF70HXR6YFqtmooVrZn9/SjGjx/PgQMHqFq1Khs3bmTevHl8/fXXbNu2jVatWnH8+HFAZ0Aya9YsioqK6Ny5M2q1mv79+zN9+vTXOUQBAYEXhJCJJCAg8LcRi0VYWb06Ic9ydmaUe4GZTk7O1oyf2JI7t1PJyS7Czt4MJ2cr4Qe8QJlIJGJatfOkVTtP1Oon28Q/D8YmcoaN9CU5MYfEhGxMzeS4ediWatvKypgmTV2eud3GTZwoLlJx9kwsEokIrVZXytmhU1UhgCTwr+R+bKZBAAlArdJQp7YfXnWbsXLVHMIuHMPJsQpSqRH5+eDm0gCpPIvNmzcjlUqRyWQUFxdjY2NFRkYCgwcPpXbtCuTnN+Xa9bOEh18lKuoOtra25OfnU79+fTp06MDu3bu5desWdnZ27Nu3j6ysLIyMjNi6dStarZY+ffpQXFyMlZUV7du3Z9CgQVStaoerqw0PUnLRarXY2ZmhMBJ+egu8Ph6k5JGTU2wgHSCT6TK9MzOLCGjVlri4OK5du0ZWVhaff/45x48fR6PRIJPJkEgk+uOys7OxsrJi6NChrFu3Dm9vb3r16kV0dDQuLi6vemgCAgKvkNerMikgICDwCpBIxFStZk+DRo44u1gLAaQ3mHnz5uHn5/dcxyQkJGBkZMSdO3deaF9eRADpUcpXNMfL24EqVe1eSNsikU6fbPTnzejZuw59363LmC+aUaNmhRfQWwGBN49bESkGASTQZVGALsvH2NgUuVyBSCSmoCAPrRYaeLdk//6DpKWl0bBhQ9zd3dFqtbRs2RJzc2sOHTzJrZsPOHr0DKpiG6ZOmc97771HUFAQXbp0Ydu2bQBs376d3r17A2BpacnBgwfx9fVl+/bt7Ny5E19fXw4cOIC1tWEAVy6X4FDZksqOVkIASeC1k5ScU6q0uqAgD9B9ho4eO4GHhwdisZjMzEz8/f35/fffqV27NgB16tTh9OnT5OXlkZ2djYWFBVqtFhsbG8RiMZaWluTk5LzycQkICLxahG8zAQEBAYHXhlarJTezEIWxDK1IzZUrV567jQULFtC4ceOX0OtMAYcAAQAASURBVLu3A4VCKgjEC7w1rFmzhtWrV6NWq5k5cyZLly4tJei7fv16fv75Z2xsbNiwYQMWFhYAFBQoS7V35eop9u3XiWdXqOCIf4tu3Iq8zM1bl9i6bSkyqZzCwkLat29P3759Wb58OWfPnsXHxwffxu3Izs5k+ozhyGQyxoz6H3ejrpGeVkDnzp0JDw/n7t27FBQUEB8fj6urK0ePHqVevXoAeHl5cf78eaRSqd5NzcvL6yVePQGBf0ZJaeWjXL9xgQ0bfkIuk9OsmR8+Pj7Uq1ePzMxMFAoFUqkUX19fAMaPH8/7779PQUEB3377LQATJkxg4MCBSCQSqlevrg84CQgI/HsRgkgCAgIC/xLmzZvH9u3bDWypQ0NDCQ0NZdq0aU887uLFi3h7e6NUKpFKX93XQvC262xedJqcjAIA8izDGTSyNz8umkN0dDSDBw/GwsKC5ORkNm7ciKWlJT179kQkElG7dm0WLVrEgwcPyMnJEVLnXxJPs35+9N7q1q0bR48e5Y8//qB169avsccCbzLx8fEcPXqUI0eOALr763GUSiXLli3j2LFjbNu2jeXLlzNu3DgArGyMycszdDxr4O1PA29/g22ffqLTM6rn5YdYLMLRyYrKjlbYlzdDpVIB0L5db+QyM86cDcLR0QMnpyr8tGQiY0f/jxo16jNydAcmTJiAsbExX3/9NSEhIaSnp3Ps2DFiY2MZMWIEV65cwd3dHbFYzLVr1+jYsSNXr16lYcOGL/jKCQi8GCpVsiD6XrqB4HsD7+Y08G6OWCyiVYAHgD5ABHDy5En935UrVyY4ONigTW9vb06dOvWSey4gIPAmIQSRBAQEBP4FFBUV/a0sHoCff/6Z+vXrv+AePZ09v19gy6IzFBXqJnQarZpLV89ht9Bbn2qflJTE4cOHuXDhAnPmzKF37974+/szbdo0SkwhFixYwGeffcb//ve/V9r//xJt2rT5S+vnZcuWsXz58lfUI4G3idQHudy6+QClUs2Zs3tRqdQEBARQo0YNxowZQ3x8PN26ddMHi/Pz86lduzZSqZTWrVszbNgwAEaPHs358xfISM9jxPAZlCtXUX8OkQie5BOj0WiJj8siIT4bjUZLQuJFfl05D1OT8ri52VNQmMfokd8jFkv4amI/vprYD7VahaurG4MHDyY4OJjFixfTpEkTTp8+zd27dzEzM6Nt27Z6TSSAPn360K5dO8zMzJDJZC/9ugoI/B2srY0pX96M5OTcUk64Ts7WmJqWdsIVEBAQeBwhiCQgICDwlqFRazhx8DZHdt0gJ7OQSs5WZIov8cEHHzBlyhQAPvzwQ2JjY3F2dsbR0RGAunXrUrduXa5cucLq1avx8vLi+vXrODo6cvfu3VfW/+JCFVsWPwwgAcRkncfRvD4FecVk5Oj0GUomkl5eXty5c4cWLVpw7Ngx+vfvT4cOHejSpQv379+nZs2ar6zv/wXiotIJPxeHWCLCxhFCQkL01s9jx44t896qWLGiQRu5ubl06dKFPXv2sG7dOgoLCxkzZsxrGI3A60Kr1XI05C43I1J07phaOHsmguSUJI4EH2DatEns2rWrVLB44MCB+vI1S0tLMjIyAJg9ezYmJiasXbudHdu20+/dkfpgsp29GeUrmBN+NdFgYlyCbptuu0Mlb/7YcoQvvhyLTCqjRvUGiMU6sWC/ph0pb+fA9YjzzJr9FdbW1qhUKr777jt8fHwIDg4mPT2dgQMHMmTIEINzbN++HalUyieffIKbm9vLuqwCAv8IkUhEg4aOREWlc/dOGkVFKoyNZVSpUg4nZ6vX3T0BAYG3BCGIJCAgIPAWodVqWTYzhIhLCRQXqQG4dTWe0Gu7CGjaA4Bz584hkUgICgpi1qxZFBfryj+SkpI4e/YsFy5c0AeR5s+fz/fff09oaOgrG8Pd8GTEjwlL5xSnkFkUz93MU2QWx7Jnzx7Cw8NRq9X6khG1Wq23Dvby8sLT05Pbt2/Tvn17rl27RlxcHEFBQa9sHC+ahIQEOnfuzI0bN8jNzS2ztDA6OppJkyaVygx6EeVkKpWGZd8eIfzcfdRqLSIRaLQqpn22ikFf+tO9e3e8vb3LvLcex8zMjG+++YahQ4eSnp7O/v37/1afBN5e7txO5WZECqpHhLBlclOcnWsTdCiSVq1aERYWVipYbGVlRXZ2NvDQ/Qlg7ty5HDlyBKVSSdWq1WjU2AmlUoOdnSmWfzqI2tubEXEjhezsQvLzi1EpNQZGCjoRbjk3biTj4GCHVmNk8LpPowA2b/mZ/PwM6tf3AsDR0ZHg4GC+/vprFi1ahJlZ2e6hnTp1Ijc3Fw8PD5o0afICr+TL5/Gy1RUrVpT5nCnhWcqkBd5cRCIR7u62uLvbvu6uCAgIvKUIQSQBAQGBt4iblxO5eTlRH0ACiIw/hVsFH7b9FoZGoyUqKkov/Ort7c3p06cB8PDwwMjICAcHBzIzM7l9+zaWlpaUK1fulY5BLBGVJAXoqWPfVf/3qZQlelek7t278+DBA9avX8+5c+f45ptvUCqVtG7dGh8fH/3YBg0axKRJk17lMF44NjY2HDlyhB49ejz3sS+inGzn7xcIP3ff4N4CMReOxuFR8w6dO3cmLi6uzHurLFq3bs2nn37Kt99+i1gsmMH+17h4Id4ggATg5lKLU2f2EHc/k7SMC4glolLBYk9PT/22oKAgGjduTFpaGqGhoRw/fpzDhw+zfv16nF1Ki8mXszOjWQtdkGfzhkulnDivXD3F3v3rEAGNfOrSqkUXbkZe1r9eobwDqanxdO3WQb/N19eXlJQURCIRZmZmtG7dulQWEsDBgwf/wdV6/TxatlqWVpWAgICAgEAJQhBJQEBA4C3idNAdgzIwgKy8JKKSYrkZF0pGfgy3bt0iISEBgEuXLun3e3RCpdVquXbtGufPn6d9+/ZcvXqV4cOH8+uvvz7x3M8qsjx+/HhOnjyJWCxm5cqVVKlShZEjR7J48WIA3GuV1wWSykBuJGXZjxsBnYDnoyvh7u7uBqLhj7Jq1aon9vtN5n50BnExmZiYyqhep0Ipe/BRo0Zx+fJlLCwsWL9e50D1uIaMq6trqXKy50Wt0hC84/pjASRQqgqh0Ij9Gy6TID3JyJEjWblyJWB4b5XFsmXLGDhwIL/88gs9e/ZEoVA8df+zZ88yduxYJBIJDRo0YP78+c/U90fvLYE3h9ycolLbKleugkymYMGikXhWdeLHH+dy6NAhg2CxTCZj6NChNGvWDGtrazZs2IC5uTlmZma0atVK74L2V8hkEoqLDe/nEhFusVhEr751EIlEtGjpzb2oNNRqLY6OllwLv4hMJtEfM3jwYAYPHgyg/wz+G0hLy+fs6Rjux2aSk/uAw4eO6MtWe/ToQUJCAr179+bevXvs2rWLypUrl1nKOmXKFEJCQqhXrx7Z2dlv7bNYQEBAQODZEYJIAgIC/yqeFugoYcyYMVy+fBmAK1eu6DU33gYeDyAB+FTrC4BcIeVo5HymTp3KoEGDCAgIwNnZGScnpzLb6tmzJz179gTA39+fZcuW/eX5/0pkOT09nbCwME6ePMnJkydZsmQJ8+fPN5jkS2USBk/0Z8XUIxQ/Mh6pTIy1nSkBfWqR/CDhL/vyJhIeHs6wYcOQSCR4eHgwZcoUJk+ezLp16/D390er1SISiRg/7muirilIjM8GrRaxWIQWePfDBvq2zp8/T15eHseOHWPdunUsW7aMd955p5SGzLO8b39FQV4xKqW61PakrNtcit6FRCzjg4974uPjw9KlS0vdW6NGjSIwMJDdu3czfPhwOnTowO7du9m7dy81a9Zk+vTpzJw586l9cHZ2Jjg4GCMjI9577z2uXbv2TFbRb3MA6fESxtTUVH777TcmTpxosF9Jpp2Hh8dr6unzY2VtTEGBstT2Ht0+RSIRMXiID0ZG0jJLaQcOHMjAgQMNtgUGBj7X+d2rlOPWzRQ0j2kkiURQ2dESyZ8ltc4u1ji7WJfVxL+W2JgMtmy6gkql06pSqeSMHrkSZ5dyrN84lYCAADIyMggKCmLjxo1s27aNJk2alCplTUxM5Ny5cxw/fpwNGzaU+X0rICAgIPDvQwgiCQgI/KtITk5GqVRy5swZcnNzy9SQWbBgAaDLpPjxxx9fU0//HrUbVSbiUkKZwSStVsuRoBCg7MyckiweFxeXUq8/SRMp6m4aJ47dI/VBHtk5yRw4cJimTf3o3btXmSLLZmZm2NraolaryczMxNZWp7ng5+dnkEXUvGs1LG2N2bjgFDE3U1EYS2nerTp9P22MsakcF1OXv3QEe5PQarUUFihxd/PQWx0PHjyY1NRUg/2OHDmCVCplxfwTxMem6Z3oStj4W5g+e+Lu3bt617wGDRpw9OhRoLTg+IvAyFT+Z8mZYX8cbWvjaFsbS1sT5s59Dyj73lq0aBGLFi0y2Faig/RosPJxtFotKcm55GQXYm5hqs9WkkqlHD9+nM2bNzNjxgz9OW1sbJg3bx6gy1wqKCgodW+9TTxewlihQoVSASSNRlPWoW883g0qc2DfzVIlbRKJCDd3W4yMXu5P0Jq1KpCUmE1OdpG+D1KpGIWRFO8Gji/13G8yWq2WXTuuo1Q+fF+kUp0jV2JCHt71WxAYGEiNGjUQi8U4ODhw586dMsukY2Ji9Jlh3t7eQhBJQEBA4D+CEEQSEBB460lLymHX0vNcPxWL1iwHiViGQqFgwYIF9O7dm8uXL9O0aVMUCgXbt2/XC7Xu2LFDP7n98ssvadmyJd7e3gwcOJADBw4gkUiectbXQ6MWbgSuv4yyWI1G83CFXSaXULthZewqWrywc127msiRQ7f1EzAjhRVfjl2NjY05O3bPLFNkWS6X4+HhQdWqVVGpVE/VzKnb1Jm6TZ1fWH9fF6eP3GXPhstkZxYgQkTthpXpO6whCoUCtfphdo9YLKZ169ZYW5fDxbY7GrWIg8eW0LX1l6zf9TWN6nbHvpwzNyNuAeDm5qaflIWFheHu7g5QSkPmRSCVimnavgrH90WWykiSKyS07V3rhZznUbKyCjiw9yb5ecUgArRgYiqnsrOS1NRUatSooS/LLKFr16507dqVZcuW0aZNmxfep1dFbm4RRUUqLCyMsLY20m9/NOjduHFj6tWrh7GxTjR68eLFXLhwgTZt2jB16tTX1fVnxsXVBu+GjoSdiwVAo9EikYixszOlZUCVl35+qVRMm3ZViYvN5N69dDQaLU7OuqwjqfS/q9GVmJBTqsyvqCgfhcIEpVJDcPBR5s2fyo0bN/Sva7VaXF1dCQnRLVKUlLI6Oztz7do1g20CAgICAv9+/rvfogICAv8Kwk/FMqDKQjbOOc6FoCgu7EqiTv4wylvqSmPOnDnDgwcPqFixIpmZmeTk5ADQvn17Zs6cycKFC/UlcO+99x61atXi2LFjZQaQRo4cib+/Px9++KFBcOBVIjeS8tX8zlStWwGpTIzCWIpMLqFp2yp8NL75CzuPSqUhJOiOQRaBVCpHKjEiP09NPS+/UiLLABEREYSHhxMZGckff/xRKqvi38aR3TfYvOIsmWn5aNRa1GoNu3btoop7NRISkvSZWAB//PEHoaGhNGnUktMX/0AhN6GoOB+VWomxwpy4xAi27Z9Nbl427dq1Q6vVYmxsTLNmzdiwYQPDhw8HwN7enu7duzNq1CjGjx8P6MrJ1qxZw/jx41mxYsXfGkvfTxrjVMUWhbFufUkk0t1vNbwdaNvnr8vKnge1WkPgzutkZxWiUmlQKTWoVBoSE1P46MPh/LLil1IaXiWcOXOGkJAQvvnmmxfap1dBZmYBe3dfZ8/OcIIO3uKPzZf1QZbHSU1NZeLEifrMK39/f06cOMG+ffteZZf/EQ0bOTJwUAOaNnOlsa8L3XvWomefOsjlryZALxaLcHKxpkVLd1oGeODuYfufDiABFBWpeExvnOiYa/y0dDjLVozEzMyG8uXLlzrOx8eHoqIiAgICiIyMBKBixYp4e3vTrFmzZ84GXLNmDQEBAfj7+3Py5EkGDBhQap+pU6fSpEkTLly4AMC2bdv0GkwCAgICAq8fIRNJQEDgraW4WMVXXdZTkPvQZlyklaAugNT4HPr0aUJ8fDwymYwtW7awceNGtm/fjp+fHzdv3sTKyoply5Yxe/Zsli9fTmRkJOvXr2fs2LGlznX+/HmKi4sJDQ3lxx9/JDAwkG7dur3K4eqxsjVhzMx25GQVkpNViK29KQoj2Qs9R0J8VqlthUX5GClMUKk0HD16gm7dA0qJLGu1WqysrBCLxZQrV46srNLt/FsoLlKxZ/2VUmLUzuXr4eHYgHs5gQY6LjY2OjepHj17sGypTsDcyqI8t6JO4ebkTUJKJI4Va9D/nQWMm6LLkPPx8TFo28rKqszSw7LKyZ4XhZGUb37qSsTFeC6diEEiFdPQ3w33mvalXK7+KTHRGSgfy3hSq1X89vu39On1KYWFCiwtLUlMTATg2rVr1KlTh+TkZCZOnMiOHTteeJ9eNgUFSg7uv4nyzywQ9Z9aPbcjU8nOLiy1v729PZUrV9b/X6uWLhusJDPpbcHMTEGdupVedzcE/qR8BTNUj+lEVfX0oaqnD2KxiPreDri4PCwn9vf3x9/fHyi7lHXGjBmALotu2rRpTz13fHw8R48e5ciRI/pjyiI4ONggi/WPP/4QgkgCAgICbxD/7eUYAQGBt5rday4bCDMDqNA5Amk0WgK3H8LNzQ2ZTEbs7TTy0iTE3ktkyZIlZGZmkp+fT79+/Thx4gSJiYn89ttvpKamYmJioreLX7VqFatWrSIqKkqv/eDl5fXUMq1XhbmlEZWcrF54AAlAqy297d69qyxYPIyfln6GlWW5Mlema9Sogbm5Oc2aNaNfv35MmDDhhfftTSE6MrWUy5xarRMSVharyU5TGUz4s7OzdcfFXsfezgGASuWrcf7qLhwqVEMilpKRlUCPd5q9ohGURiwWUbNBZQaMaUq/z5rgUav8SwnWpKbkGmiyAFy4GEx0TARb/viZPn06kZeXR0JCAh07duTBgwcArFixgvv379O1a1f9xPZtIfJmCmpVaX0jtVpDYYGSwsdEqHUaVQ95mUGz6Ohoypcvj7+/P23btjV4rcR18VkYOXLkS+idwIvExERO7doVyszIkkjENPJ5tmDN4/dMXFwcx48fL3PfvPxiMjILCAzch1qtJiAggDZt2tCjRw/27dtH+/btady4Mffu3eOnn37i6tWr+Pv7k5uby969e2nTpk2pz4OAgICAwOtDyEQSEBB4KyksVJEYkwUYRjuyiCWaUArIQKqqhkhtRExMLJ41dS5SVSs2o0CbgrGxCZUqVcLLywtzc3Nq165NXl4eFhYWzJo1iw8//JAuXbpw69YtpFIp8+fPZ9u2bXz66acEBwe/VY5uf4eKlcwNNJcAqldrTPVqjZFIxfj+qWVU1sr0kiVLSm1727JGngWRWPT47UdsylWu3D0AgENFJ9q2basv82jVqhXGxsYYGRmxbMVidqy7g4tjTY6c/BU7W2ccKnpiZqnFo6rdqx7KK8fEVI5EItJn4wA0atiWRg3bIpGIaNTYmVp1KurFuR9l8uTJBv+/LaLaCfFZpT5TKpWKH+aNIjb2Nu3bt+fHeXNfU+/+2nnxWXibnfL+S7Rt74lIBFevJCGVitBotJiYyOnWsyaWVn+d6abRaNFqtQb3THR0NE2aNDHYr6BAyY2IFAoLdSV0Fy/d5sGDbPbu3Y+bmwuff/45P//8M1WrVqV///56t8lNmzbpMy5Xr17NunXr9FmvL5LH3RGl0mebFi1cuJANGzYgFouZN29eqXELCAgI/NsRwvoCAgJvJbm5RVSsYoP2sbR8a9yQYowIEXniZJbP3IeJ3Jp3G87H3/MTMnOTcbLwpWr55sTExHDgwAHu3r3L6NGjsbCwoLi4GAsLC2QyGYsWLeLrr7+mU6dOHDp0iFq1atGyZUuys7PL1Iz4NyGXS2nS1Bmp7PFsCDBSSKlb79nLU8aOHUtAQMCL7uILIzw8HF9fX5o1a8bgwYO5d++eXqfD39+fFi1a4O/vT3BwsMFxLp7lSrXlWtGb7n4T6dNqCt/PWICbm5t+khUWFsbx48c5fPgwXt7V+GpWO/p90IoVC4No3NyVFatmcPLM4Zc/4DcAd49y6NS0n/b6vwuprLQOkFQq5avxS/j1l1D+2LYHKysrffbao8GxVatW4eHhATzZSfHvoNVoycwsIC+viJCQEJo1a8b8+fMB+PDDD2ndujVr167V7+/l5cWgQYOoXbs2O3bsoFOnTnh7exMXFwfoXBgF3nwiIm4wfcaH7AqcxJlzyxn4gTeffNYEBwfLpx53OzKZatW8MDExZfXvRzh0KIimTf309wyAUqmkf//+BAeH0KVLT1JS0ti5cz1fTRiGqak5ETevc+r0Tdzd3SkqKqJBgwacO3euTLfJ4OBgfH19kcvl+m2PZ0BFR0eXqav0LJS4IzZu3Pi5jlu1ahWnT5/mjz/+YO7c1xf4FRAQEHhdCEEkAQGBtxKpVEJ5N2sqVLFF8khavhgJdRlAG9sp9Gs1CWOtPRqNioPXfyA9/z6WxhU4c2cDZ64HolQqqV69OhUrVmTy5Mm89957WFhYsHnzZhITE3F1deXatWuIxWIkEglTpkwhJCQEW1tbOnXq9BpH/2po1NiJlq08MP0za0Qs1llzD/igPkbPUUI3f/78Zy6HeR1UrVqVU6dO6UsxUlNTDV4/cuQIoaGhtGrVymD7rVsRHL46l10nZxJ88Rey8x4QdGEZEqmYnSdmMe2H4WUGn0owNpbh18qd94c3pmd/Lyo7Wb2U8f1dnrXEqVu3blhYWGBtbV3mvo8yb948/Pz8MDaR4dfclbk/Dify9kV2B/6KSARzfxyOXws3jE1095dWq6VTp040b978tYnZPyuPByO1j9WEVvG0e6Ko87RvP8La2oihQ4fSq1evV9FdrlxOYP684yz96TTbtkTx1fh1rF+3i6CgIL25QFBQkIEDYGJiIsuWLWP58uV899137Nmzhy+++IItW7a8kj4LvBhKnnknT57A1ExB7P2bf5ktejMimcuXEhk75kd8fFpjbm7Nj//bwfhxSzh8+DDZ2dkolUoGDRrEsGHDqFbNmxo1vLhx/RK3bl5DKpVSvXodCvLzkErNiIqKQqlUcu7cOdLS0sp0mwwPD2f37t20b9+e69ev68vM27RpQ2hoqN698llRqzXkZBeQ9iCXtAe5FBdpMTd/6GgaGhpaqpR99+7del2okgCvh4cHRUVFZGZmGpgnCAgICPxXEMrZBAQE3kosLRWIxSL6zQxgwzdHSL6ThkgsQiwRY1rRBCNTOdfPxSHSmNDe/RtkCgUnY36lZqW2FKnzaFb1fQJvTKN58+acO3eOjh07AlC5cmXq16+v12Kxtrbm8uXL7Ny5E39/fyQSCQEBAaUEj/+NiEQi6tarRB2vihQWqpBKxcjKyKZ4G8nPLeL0/tukxGVT0cWKxu2qYGQiQ6FQGAQrxGIxrVu3pkKFCixZsoSioiLGjh3Lpk2bcHd3x668FRtW7eaDDwZRqMxBIhHRtLUHl5NtCAkJfubyiDeVvypx0mi0LFr0E/Pm/cD169cJCgp64r5FRUVcuXJF/79nNXtsy5ni5GxNfIKC6jXKY1vOFM+q9vp9EhMTMTc3Z+/evS9mQC+Rkok5wODBgwkLC6Nhw4b6152crbkd+YDUB3mo1Q+1kSQSMRYWChQKOceOHXslfb18KYED+27qdalEIhmZGWo2rLuCf4s2pZwXSzTgPDw8MDIyolKlSlSvXh2xWEylSpWIiIh4Jf0W+PtoNFri72eiUWup5Pgw40ihUODo6Mj06dMJDg5GLBazcuVKXFxcGDVqFJcvX8bc3Jy+fb7GSGGGlaUuaCKVypDLjVEWa/Fp5E9gYCDHjh2jXbt2+Pv7cyMimZq1vDlzOoSiokLcPaoTGxOFra09o0f3p1Klyuzduxe1Wk1WVhajRo1i/fr1Bn0eNWoUo0aNAsDXtylD3h9DWkqSPmuuZ8+e9OjRg4SEBHr37s29e/fYtWsX69evp1atWnTq1ImdO3dy9+5dXFxcmDlzNqampnw6YhRtWrdDWawmq7igVMD3Ubp27UrXrl1ZtmwZbdq0ASAgIIBq1aqhUqnKLLkVEBAQ+Lfzdv+6FRAQ+M8iEomoWaM8V68lMXRJJxLvpJN0J52b5+6TmZKrd0CSiKWAFK0SKlnUJL84AxsTRyRSMRNGTSdHE6f/EThx4kQaNWqEWCzWbxszZgwTJkygSpUqL7SM5G1CJBJhbPzixbtfF+Fn7zN3xB60Wi1FBSqMTGRMH7+YOG0IterUMFhZ/uOPP7CxsWHDhg1Mn/4d/fqM5tqVWKaO30l+cSwNGzSldsPKNGruwaBB7fjpp9u8O9yHFVukBsEnS0tLOnbsyMqVKwkPD2f//v0sWLDg9V2EJ6BSqom8moRKqUFmXmQwWRs7diwffvghsbGxODo6olKaseDHY2g0Wi5fTuDKlYv6fePi4ti0aRPvvNOfPbt3MX7CBOLj7xMWFkZcXByzZs3izp07XL9+jYWLp5Cbm8v4r4bpM3VGjRqFr68vgYGBhISEMGTIEH799dfXfHVKo9VqSU/LJz+/GCsrY2Qy3eekJBjZqlUrbGxs9JPbgDZV6NP7Pe7evYeNTQWcnJz4cd5svv9fAf369SMyMpJly5YZBJ9eNBqNliNBtw2EzYuK8lEoTFCp1PyxfQdFxemkpqZy/vx5PD099fuVZKskJydz5MgRfH196dWrF1qtltjYWMLDw2nevDmfffYZffv2fWlj+CvWrFnD6tWrUavVrF+/HgcHhyfuGx0dzaRJk1i3bh1+fn5vjcbW8xB+OYEdG6+gUmpApLtvja3iWb9lMZ6enjx48ID4+HhCQ0OJiIhg9uzZDBkyhLy8PI4dO8ZPi3/hcNAfdOk0SN9mYWE+oHMZPH78BDNnTeTGjRs4OTmxePFi2nfoh6dnTRYvmk6t2t7Urt2AxYumM3z4BJo08adKlXLY2ZkSGhrKuXPn6Nu3Lz4+PlSvXh0TExMyMzMJDg6mW7fubPstjIirUfg1bYZGo6Vrq8/5evb7dOkZwK+//kpBQQFBQUFs3LiRbdu20b9/fyZOnEinTp3YunUrc+bM4YsvxvHbL6txcnIuFTQq0WZ7NBtLq9Xq/z9z5gwhISFs2rSJ7OxsVq5cye3bt0lJSWHYsGHs27fvJb+DAgICAm8WQhBJQEDgrcXKyoiGDRyIi8vG1FSOg6s15/bfQvOITpJSXYhMYgRAcvYdajgEcDf7FFqNljxtskF7hw4d0qeyA/z222+IRCLef//9VzMggZdOXnYRc0fsoTD/oRNWYb6SctJqOJnXwaR8OIGBgfrXbGxsAOjWrTszv1uAuaQ1zpUacPHyMWLiruJYqTpVPKpR+ynBpxkzZjBv3jzmzZvHJ598QnZ29huZWXP68G1+n3Ncb81XVFTE7HHr6fdpU7p37463tzcSiYRDhw7Rt89nZGfnoPrTbUwqVtC7x5f07NWVn5aMJzw8nEYN2iPSupGTU0Ro8G3CLuxlwldfsHLlSgICArh37x4mJiYMHDiQmJgYVq9eDcDo0aNp0qQJ7777rl6r5E0MIGVmFBB06Bb5ecWIRCI0Gg33YsLYum0pVat6YmtrS0ZGhsHktnHjxtjZW7Jt+xnmzJlDQUEBtram3L9/n5MnT5KVlcXHH39scA++jH6XBNlLiIm9xpGQ1UglMlxdaxF24SiDBg3i4MGDpKWlUb9+fYP9ly5dSt26ddm2bRt+fn507tyZOXPm4OzsTEhICB06dKBnz56vJRPvcRv5/zpRt1PZvOoiSqXhe67NcOC3ZYGs2/wjN27cIDQ0VO94WLFiRe7evat/3+vUrcfOXQcM2426wfIV05HKZNTzaqjXCZw+fTojRozA1Gw/Vas2RyqVUbt2A6pXr0ts7F1q1KyHFvj22wncuHEDZ2dnlixZQnJycimh7u3bt1OQUJEzR+6gkJvTqaHO7VObD/O/OkRRYTH939MFX8ViMQ4ODty5cwdHR0fS09NJS0sjMzOTypUrM3b0l/w4fy5qlYqxY8fh7ubx8FpotWg1WiwtLUlMTATg2rVr1KlTh+TkZCZOnMiOHTsQiUSIxWJMTEyQy+VYWlqSl5f3wt8zAQEBgTcdIYgkICDwVmNsLKNKFd3k/eaFeOQKCapHJkip+VGEP9iHRCSlnIkb5a3cuJt6nMtZK9HEVMfJyYl58+axbt063NzcDCzZR4wYQaNGjfTiypMmTaJ58+Zcu3aNy5cv64VuBd4eju+JKL0KrVEhEUvRqLXkpKoxrvvwHsjOzsbCwoINa3djLC+HslhNVQ9f9hyah0ajonb1NjSs34HU/H1lBp969Oihd7CrWbMmBQUFtGvXDlNT05c/2Ocg4kI8v844SnGR6pGtYo7uvINtOSs6d+6sL3G6eycNWxs3sjKvPdxTLEEklhMRkYa3d2MuX75JfoESh0qeaLVa7kZdw7dJTwJ3H+PWrVvs2LGDevXqcePGDRo3bkxGRgaZmZlERkZiZGT0RmZpPUpxsYq9u69TZHC9wMWpAXNmbeJg0HICAwOpUaOGweT2p59+4tSpUyQlJREREYGLiwt+fn54eHhgZmaGmZkZWVlZz9SHefPmsX379mfOnPn+++8ZOHAgZma2PF6941nFB88quhJdExMZWq2WVatWMXz4cKZNm8ZPP/1E06ZNUSgUZGZmEh0dTUhICCKRCEdHRyZMmEDfvn05deoUEomE8uXLc+fOHapVq/ZMffsnaLVa7kWlc+1KArm5xZw8HUhaai4BAQHUqFGDMWPGMHToUMqVK8ft27eZPHkyy5YtIz8/n4MHD5bZ5ty5cxGLxXz55Zcvvf/w8L1ct26dPivqRXF4T0SpAJJKrYRiOBx4E3Nzc5KSkmjbtq3eXU+pVHLp0iW95lBU1A3K21c2aKNGjQa0atUTiUREXa9KuLjY6ftd4tB5524qPy/ZonclDDpyC7FYRBUPW3766SfSU/M4ezyarauvIJLlEhwcrM9mfPDgAYcOHSbkwAUC6n5CUXEeu8/MxsLEHr+a73Mz5gJ3o+6ya9cuHB0d9f0qeb537dqV4cOH06VLFwAqV3Zi4fyfOXfuDEuX/sQP/1uAUqnknXd7cv16OO07tGfWrFn6UvaSRYEVK1Zw//59unbtCuh0k9q2bUuTJk1Qq9VMmTLlhb1XAgICAm8LQhBJQEDgX0O5ShalVtgrmtegonkNAEwsFPh1qMqMdwOp7K6b5BcVFTFs2DBMTEz4448/DI4tKioy+F+r1bJz504mTJjwEkch8DJJuJdJUYHhxD8pL4LI9FAA6ihq0LbteP3EvFWrVhgbG5OeWoR/408AUMhNkEpkVHKoBegSd9QqqUEAsiT4dPLkSb1Y7P79+6levTpBQUH6Se2bwrZfwh4LIOmy+Cg0Yvfqi+TanWDU6FGsXLkSp8r+xN6/ZbCvSqXL7BIBx46dRavVkpWVSlzcbYqKC8nOTuPU6b1IJBKKi5WsXbuWzp07IxKJuHTpEqD7fHl6etKvXz/GjRvHDz/88ErG/ne4HfnAQNcIQKksRiaTk56Wj1RqhLGxsUF5jFKpJD09nfz8fCpUqEDNmjX1WQx37twhLy+PrKwsLCws+Cse15d6Fr766iv931ZWRqSm5pfaRyQCc3MF3367jM2bf6J69arcv3+fqKgoTp48qZ+gq9Vq/dgsLS3JyMigatWqHD16FH9/f86cOUNGRsZz9e/vculiPLciUvRZcakPUkhJyeK76Us5ePhXdu3apc8I27RpE6tXr+bQoUPMmjWLgwcPlsqy+t///gfwygJIf+e9fB7iYjNLbbsXe5HzV3YjEkGLVg2ZMWMGs2fPxt/fH5FIRL9+/Rg2bBirV6+mWbNmmJubM23qAmJjCvhx3jhu3bpEUlIs3bp+QPPm7XB1synz3O5utthYmxAfn01RsRozUxmVK1tiZqbgwplYtq29hEaj0ZWTidX07zKfDz/1Y9zXw5g9ezZXL93E3bQXhflKujb+GiO5GSFXfmHz0QmYGdtgamzFli1byjRu6NOnD59//jlLly4F4Icfv+fc+bPk5eUx/dtZAMhkMrZv24NEIsLKRhfYL0vjaPLkyQb/f/PNN3zzzTfP8zYICAgI/KsQgkgCAgL/GspVNKdavUrcCItHrTKc4CmMpXw+ryN1mjihLFYTF5eJCBHbtq/hgw8+YMqUKURHR/Phhx8+ccXa1NRUn7L/KJMmTeLYsWPUrVuXnJwcfeaJwJtHRRcrFEZSigofBkwczGvjYF4bIxMZQya0xM3NTb+iHhYWBsCSH48TG/1wUiwWSzFSmLNh+zeIxCIaNKxN27ajSgWfjIyMWLVqFTk5OcydO5e9e/dy/fp1vvjiC3351ptATGRqqW0pOXe4cn83UqmcPu91wsfHh6VLlzJx8ofIZdZYWeoEsHftWczVa6GcPL0dC3MbGjUMwK9pTwL3LufOncto1CrqebVCJpNz4uQOlEolX375JVeuXCE8PBxPT0+DwMlHH33E7NmzmTNnDu+8886rugTPRVJCtj5oUUL49TMcCtqISCSiVu3qDB8+jP37j3DyZDTXrydx6tQ5vv56PAMGvIevry+JiYkMGTIEAEdHR3x9fUlLS2Px4sW0bNkSCwsLkpOT2bBhA2nRWvasvsSDhBzsHSwosAzXP7dA9wwKCQlBoVCwfft2xowZg6WlJRcuXKBNmzZMnTqVQYMGMWnSJDw8POjctQbr11400EVCBFKpmHLlTang0IJGjVqyd+9PREVF4evrq9vlz8CRRPJQYD87OxsrKyu+/vprPv74Y37++WeqVatW5rPyRZOfX8zNG8l6TRsAYxMzqnrWJyU5l3r1GhMVFaHPCKtUqRK1aumCv5UqVSoV6MrOzmbjxo2cOXPmpfVZpdIQG5NBUZGK8hXM2bjxd4P3EnQBxw8++ICPP/6Yq1evIhaLGTx4MB07dmTPnj188MEHpKenk5CQwMCBA0sFOR5FJpeiVBYbbKvi6kMVVx8kEhGT53RALBYzceJEJk6caLDfzz//bPC/vX06E79ZQF5eMWKxCGcXa+p6VUIqLdtwQSQSYWNjgo2NicH2zIx8/lh7UafRVIJGgggJ63+5QPv2HQgMDEQsEcGfb62R3AwAL/dOSCQymtcaRFD4PFxcXPTP6xIXtRLatWunD9b/8ONcsjIKyuyniZmizO0CAgICAmUjBJEEBAT+VYz+X3umvv8Hacm5FOYrkcrEiEQiug9pSO3Gjly7msj1a4mIxSJUKiUb1u9h1aqHE9WnrVj37Nmz1PkSExO5ePEix44dY/Pmzf8pp5YnideGhoYaWMCDTt9i2rRprz3A1qxLNTbMO1nma2KxCJ+2ZZcoetawJyE+C5VSw4HgnzExsaROjQDq1AhAKhUz4dvWmFsYlQo+PUpISAgADRs2fKMCSABGJjIDnSgAB6taOFjVQioTM+f7DwCd7fXdO2ns3nldXyLTrctIunUZCeicxtw9bIiNyaRZ0+4ALP55FD6NOgDQ2KctbdpXxd396bbYX3/9tf7vF1na86IwMpYhEmFQFlbPqzn1vJojk4lp1MSF2Ngshg//joyMAhwcaqBUSlAo3HB392DDhvX06NEDNzc3AAYMGIBWq2X8+PFER0eTlJTE4cOHuXDhAkMHfI6zpKM+gy4zPZczMXvwrtIOgEuXLpXKFALdhHrhwoX4+PgwdepUg/47Olkx+KOGrPxtH0uXT0csFlOxghPvf/AZCxZ8xZdf/o9x496jRYsW3Lt3j/DwcD777DO6dOmiL2fbtWsXrVu31mfdxcbGkpKSgkgkIj4+Xj+ul/n+xd0vXfpXxaMOoUd3olJpOH3yHJUdLQwywh4XT34UCwsLJk+ezODBg1m7di1isfiF9vdeVBoH99/Sn1upUrF5y25CQofr91EqlQwaNIhhw4bRokULmjdvTseOHTl16hTjxo3D3Nyc7du3k52dTY8ePRg2bNhTz+nt48ipY1GoVYZjFYnAxd0Wo+cwTXBxtcHF1QaNRotIZHgtn4ewU7H64FAJxcUFyOXGgJZ9gUf46psxXL16FYlWhFqjAq0WiURGcsZtLIztkBtJsXosOFXCzZs3GTJkCLNmzdJvk0olWFoZk5tbpF9kkkhEmJgpkMuF6ZCAgIDA8/Bivx0FBAQEXjMWNib8uGsAY37sQI+hDej7WRPmB75Pr+GNuHM7levXklCrtSiVGkKPBtKkcTsuX4zXa5s8acX69u3blC9fHn9/f71OBEBMTAwWFhZMmzYNBwcHDhw4gL+/P9WrV2fMmDEABAcH06RJE1q2bElcXNwrvyYvg0fFa0NDQ5/qfvQmYWZpxPifu6AwlqEw1k0cFMYyjM3kfLOiO4onTKga+7kg+3O1vX2rT2ndTJdBIpNJqOvtgLmF0asZwEuiZffqyOSlswlEYhGedStiavFwpd7VzQb78mZ6J7USpDIx9epXwqueAzJZ2T8vNFotTk5WL7Tvr4Oq1ewRS8oeo1YLmVmFFBWp9BkyISG7ad68I7m5xdy6FUnfvn1JSUmhR48e+uyXkucFQO3atZFKpdhbORNx45ZBCea9tLM4Wnmzf8MVlMVqIiMjDTKFSib2Jc+vR8ssH6V8BXN69m7BkiV/sGjRZkxM5eTnZ5OensI333xAdHQkCQmJjB8/HmdnZ5o2bUpqaip79uxhzpw5jBw5ktatW+vLeu7evYtCocDY2Jg6deqQlpb2zy7yM6DVlLZmd3aqilymYNb3HxMRcYXevXs/V5vt2rWjU6dOemv5F0VaWh77996kuFhNcbEapVLDmTP7qVmjBYcO3NTvd+zYMWQymT6jRiQSMWDAAMLCwujUqROgC0ANHTqUWbNm/WXGV6sOVbGyNkH6yGdSIhVjZCyjR7+6f2ssYrHobweQADLS8ktl8sUl3WDtjnGs2joBC3Nb/Pz8yMjI4FrqejSiQnadmcHuM7OJSbmMV5W2uFYth5mlEdHR0frv5rZt2wJQrVo1Tpw4gUajMVjMkMokWFmbYG1rirWtKVY2pkIASUBAQOBvIDw5BQQE/nWIJWLqN3elfnNX/TatVsu1K4kGOiaJiTHExEZyJGQbUVE32LNnz1NXrEucYwYNGqTf7uzsTExMDNWqVSMxMZH27duzatUqRo8eTefOnQH47rvvOHToEDdu3GD27NmlSgTeFnJzi7gRnkRSUg7Hj+8hN7dQL167YMEChg4dSmxsLM7Oznqh0ylTphASEkK9evUAOHnyJLt372bOnDmkp6fz4YcfsnPnzlc6jtpNnFh+9CNO7oskKSYTBzdrfDt4YmQqf+IxZuYKPvncj02rL5KSnINEIkat1tCgiROde9Z8hb1/OXR8z4uLx6JJjM2i+M9SP5lcgsJYxkfftDDYVywW8U6/upw8Ec3liwkUFakwt1DQxNeZul6VAKjsaMX92ExUKg0jP10E6EqlWgV4IJOVXfryNlHOzozqNey5eeOhFo9IpHv2+DZz5VakYQAlPj6aqKibHDiwheLiYgYOHMjZs2cxMjIqlf0CEB4ejlqtZuuag5jJDbWzsgtTyCiI427qCbKU94mMjOTWrVt89tlnwMPsmidN8tVqDdFR6URHp1NUpKKoUIVUJkEmk6PRaChXrgKffz6H8eP7Y2JiTP369fn++++ZOXOmvo2KFSvSt+879Oz+KedOxxJ2Ogj78uX5ZflWPDzLMXz4cNTqh/p0gYGBzJ07F5VKxZQpUzA3N38hz4GKlcrWj+r37hikUjFNm7ni5GxdZrnTo8/xktdLylH79+9P//79n7s/T+NiWHwpHa2UlFguXb7DiZO7SEyKZM+ePQQEBODk5MTixYsZOXIkeXl5/Prrr/Tt25fVq1fzwQcfMHPmTFq1aoWPj89fntfYRMaor1pw9kQMF87EolZrqFm3In4t3TG3fD3BbwcnS2RyiYGGoZuTN25O3igUUvp91ACJRKIXPr9/N43Gm2txNyIFU3MF/p2r0bRtFT6Xtic6OtrA1e1ZEIv/fgBMQEBAQEAIIgkICPxHUKk0FBYaluu8+87DlebpMz6ic+fOnD17FtAJxybEZ/HL0tMcPR6JRptLcEgwdnZ2FBUVcfv2bf0Kf0FBAStXrqRDhw7IZLpMlmPHjvHjjz+Sn5+PsbEx5ubm+Pj4GIjbvmkkJCTQuXNnbty4QW5uroE9d2JCNvsDIygoyGf+otEUFOQhEsH48dOJT7jKjz/+iEQiISgoiFmzZlFcXExiYiLnzp3j+PHjbNiwgUOHDuHr66vPXNi9ezfdunXTn+NpblOrVq1CpVLpNWRAVzYXFBTEjBkznnusJuYK2rxT+7mOsa9gzqgJLUhPyyc/r5hydqbPVQryJmNkLGPKLz04dfA2x/bcRFmsxtvflYCeNcucaEqlElr4u9PC3x2tVlsqYNGpSw0ibiRz+VI8BQVK7O3MaOjj9MRJ/9tIo8YuOFS25kZ4Inm5xdjamVKrdkWMTWRE3k4zKHUbNOgL/d8TJgygS5cu+mcN6LJf0tLSGDVqFF9++SX29vZ0796dm9eiqF6+r8F561Xurv/7QuZyJk+ezMSJE/Xuadu3b39in4uKlPyx6Qp5+cV6PZor146za/dyHJ1cMTe30u+bk5PJjBnfolCI+eyzz2jfvj2gezbOnDmTdq0/I/jwbb2u0v3YLKZOWcKZc+up61VT726l0Wj44YcfCA4ORqPR0KFDB4KCgp74HHgeLCyNcHS04v79TANdJLFYhJm5gsqOVk8++BWTnJxTyhWvaxedWL9cLuG3VZ/r74vp06czYsQINm3axJkzZ/jqq68ICAigQ4cOtG/fnpkzZ+Lj48PGjRsZNGiQQUCsLBRGMpq39qB56zfDUbS+jxP7d1xH+dh2kUinX1itdgWD7Y7utgz7xh8AtUrDlXP3WbPoJGKJmIruEkJCQvSubmPHjuXDDz80WNDYvHkzqampfPrpp1y+fJnffvuN+fPnM3DgQOLj43FwcGDt2rUG33kCAgICAk9GeFoKCAj8J5BIdNpIj2tglDB92u+4urqybt061GoNyQnW1K3Vh+zsIurVbYtKVYxX7U506FyLr74exoQJE1i7di2//PILM2bMQKVSUb16daKioti9ezc3b96kdevWaLVaKlasqD9PWloa06ZNY/jw4bz77rsAJCcn065dOxYsWMCIESPYunUrs2fPNgiYvApsbGw4cuQIPXr0MNiu0Wg5dOCWThD2/m083OtiY1Oe8OuniY1Op0GjxtyNuqHPNvL29ub06dPExMRQp04d/bZDhw4hEomoU6cOly5dYvfu3fz666/Ay3coepHY2JpgY1u2FsfbjFwhxb9rdfy7Vn+u48rKeBGLRdSsVYGatXSTwejoaLzqVaF69erI5XKDktC3GYfKljhUtjTYptFokUhEelvzx1m+/A+Kior0QejHs1+io6OpXLky69at4+rpWBZOOFhKrwp0ZZjblu4FMMgSAgy0x0JDQ/Xbgg5GkpNTZNC3urWb4VWnGX/sWMj587p9JRIRFSrY4+amyyjMzMzU7//FF1/QpnV3igvNSlnHe7j5UK1qExJSdhIYGAhAamoqERERtG7dGoCUlBSAMp8Df4emzd24cimeWzdT9ONydrGhoY/jG5VxYmaqc+4rC41Wy769QdjZm+kzapYsWQKg/54AOHz4MKBbuHicpy0CvGkYGcsYNrYZvy46iVqlQa3WIBGLMTbVbZc8oVS0IK+YH785SPqDPL05guSUllEDlzJ6ajt69e6Jt7d3qQWNrl270qtXLz799FM2b95Mv3792LFjBzVq1GDjxo3MmDGDbdu2vbFC/gICAgJvGm/uN4yAgIDAC0QsFuHobEVsdEap1WCxWISbx0Oh31sRKaQ+yDXQbJBKdaVOoUei6NChI3FxcfqgydWrVzl79ixubm56u2EfHx9CQ0PJz8830OQoEWqtUKGCfnL3aOnb5MmTadSoESqVod36yyItNY+LF+JJSc7BxFSuL0cC3cS0fv361K7ZhAsXjhKfEM2Vq8fJyEimevVGZGenc+r0ATZuCcfe3oZGjRoB6C3bnZ2duXbtmsE2gN69e7Ny5UoK8osoyBWjMlfz66+/6h2K5syZQ61atejUqRM7d+7k7t272NracujQIbZu3YqRkRFbt259JddH4J+h0Wj1gdvnLTl5WxGLRbi723L7dqpBdgzogjOurlb069ftmSzCa/k4Yu9gQUJ0hoGTlVQmpqKzJTUaPLsWmVKpJiY63SCApFQWI5PJ0WpBLjPGxsaCpCQ5fn6uGBs/LO8seQ9/++03RCIRLo5NuXE9xaB9laoYqVSORCxCrZLqg2TlypWjdu3aHDx4EIlEglKpRCQS0bt3b37//XfUajU2NmVbxD8LYrGIet6VqVuvEkVFauQyCRLpmyf5WbdeJRITsw0d8f7E1FROOTvTf9T+kxYB3lQcXayZMrcjt64nk5GWj10FMzyq2T818PfHyjAeJOYYfDerlSISo/MI2XOLzp07G3w3lyxoGBsbY29vT2xsLGfPnmXWrFnMmTOH+vXrA9CgQQMuXLjwcgcsICAg8C/izfuWFRAQEHhJNGjoiImJHInk4Y9UiUSEmZmCul4PJ2Ph15JK/dAvLHq4gnwkKBR3d3d95kxeXh5arZZ9ew9RlCshNOQokZGRNGvWjOXLl1NQUMDAgQNp1KgRRUVFpfp17NgxvU7Ho1lLL5t7UWls3XyFyFspZGQUEB+XxaEDt8jIKECr1dKnTx+2bdtGQYGSi5dC8K7Xkm5dhuHj05733/saiURK5J1LuDhXpWHDhsTFxREQEEBkZKR+LN7e3jRr1sygRM2xUg3WrN4EhS4smXuMSSN3sXVTIC1btgR0GRmbN28GYOvWrfrVYUtLSw4ePIivr+9TS3YEXj95ecVcvBhPSMhdQkOjuHgxjiNHgmnWrBnz588nOjqaVq1a0bdvX+rVq8f27dtp27Ytfn5+5OXlATB9+nT8/f1p1aoV0dHRzJw5U+9+uHv3bv73v/+90jGtWbOGgIAA/P39OXnyJAMGDHjivu7utri4WLNx489cu3YGqVSMRCKiZs3yODhYc+zYMX152OM8alkuFouYtLwbXk2dkcklGJvKkMkl1G/uwsRl3Z5L3LiwUFVq/+s3zvDD/BH8MH8EWVlpfPJJP6ytjbF8glbOiBEjCAsLY9p3Qwg9ttbgtbtRF1i1bhy//P45qakP9CLHYrGYzz//nICAAFq2bKkXEG/WrBnbt2/XB9D/KWKxGGNj2RsZQAKds5lnNXsDQXqpVIxcIaFTlxp/S6hardaQnp5PTnYhRkZGWFtb618r+Yz17t0bb29v4uLi/vJzp1QqCQgIoHnz5vTq1ctA1+plIJGKqVG3Ik1bueNZo/xTA0gqpZoLJ2JKCXIXKwtQFqs5uj+SkydPGnw3P7p40b9/f7744gsaNWqESCTCzc1NHzgKCwvD3d39JYxQQEBA4N+JkIkkICDwn8HISEanrjWIuptGzL10RCIRru62uLjaGPywf7xEA+DevascOLwSmUxOm9Yt8fHxYenSpbRs2ZL79++Tl1vEN0O2kZWbRFG2MSMHLOOjsc0ZPOQ9unTpwpw5c6hRo4Y+WFRCWFgYTk5ONG/eHIlEgoeHB82bN3/ZlwKVSsOhA5GlfpCrVBoKCpTEx2Xh6enJ3bt3MTEVk575gHLlKpGWnqTft0b1Rri51mTAwN5cvLyf5s2bl5pYP65XlJKYw68LTjG073IAigpVXIs8gq2ZFyEHdMEnR0dH0tPTSUtLIzMzk8qVKwPoV5e9vLw4f/48FSoY6mYIvBnk5ys5d+6+QRaOkZE1v/56kPr1nRgypD8BAQFkZGQQFBTEpk2bWL16NYcOHWLWrFkcPHiQKlWqEB8fT2hoKBEREcyePZsvvviCuXPn0qFDB7Zv317Ktv5l8qgbIegm6E9DJBJRvXp53NxscHe3pX59B2xtTZ5YpvM0TC2MGPtDB3IyC0lPycW2vBlmf0MQ2cSktH6XV93meNXVPW9sbE1wc3MrJTIND0viSoLgYefuc2DfLQNh5KqeTajq2QSpVMyoz/2wtDLWt9WxY0c6duxocG6xWPzGu1VGR0fj4+Pzj8owH9VzaxXgQdVqdly/lkR+vhJHJytq1qqA8XNqq2m1WsKvJnI9PAlEOpc6U1MFvn4uBvuVfMY2btzItm3b6Nat21M/dz169CAwMBBjY2MmTZpEcHAwbdq0ee4xvwwKC5RoKV0imph2i3MR25CIZQz8qLv+uzkgIABnZ2ecnJwACAgI4IMPPmDSpEkA9OjRgwEDBtC8eXMqVqzIhAkTXul4BAQEBN5mhCCSgIDAfwqZTELVavZUrWb/xH3cPcqR+iDPIMBSvVpjqldrjEQiollTFy6ejGHh/KWs27CSe9eUbNy2jLPXdmJjUZn2jcdw4mQoh49uo6KHNVu2bMHGxgYLCwuaN2/OmTNn6Nq1K8XFxcTGxtKqVSt27doFwODBg4mOjta7m70s7sdmwBMWfbUaLTeuJ+PiWg5/f38WLPyeBvV9y1wljku4Q41aFfh99RUGDhz4l+cN2nuzVJZXRmYCt6JOMnT4QdKz77F48WK6du3K8OHD6dKli36/ktXlK1euCKvGbzD37qWXKuOSyxUA3L2bQadOnQgMDKRGjRqIxWIqVaqkt6OvVKkSGRkZREREEBoaapChVxLULCgoID4+HldXV14mmZkFnDsTS0x0JufD9pGenqd3IxwzZgzx8fF069aN5ORkNm7ciKurK0uXLmX16tUYGxuzbNkyJBIxNjYmpKREM3ToRNatW4e5ufnf6o+5lRHmVn/fTUsiEVOjVgWuX0ss9f5IpWLqN6j8zG3V8arI0ZAo1Co1mkc+zjKZmJq1KmBpZfy3+/kyeZ6gUEJCAv369UOj0TBp0iRat26NRqNh/PjxXLp0CRsbm+cuqxWJRFSubEXlylb/aBzhVxMJD09C/ch3VHZ2IUGHIg0c4Eo+Yw4ODty5c8dgW1mfu7y8PIYNG0Z8fDzJyclUqVLlH/XzRWJiKkcmkxiUdQI4V/DCuYIX9hXNmTpXJ9D+qCbYo9SqVYu6desCIJPJ9BmvAgICAgLPx5uZ8ysgICDwGqlbrxIymYTHqwvEYhEZCTmsXXCKNQtP8dXgzfy+4g9UWRXQarVUcfTlTtxZipUF3L5/FvdKjbh88Trly5enefPm+Pr6sn79eiIiInBxrkmPrtOIjU1EWWRDUmIOAAqFQu9m9KSSg0uXLuntpwcMGEBYWBjvvPMOWVlZrFixQq+J0alTpyeWIxQVqXlcHEqtVrF4yRjiE+7w1TcfcfbsWfr06cP8+fOZ8NXH2Jc3QywRIRGLkMkkSKVixJIMunbtQH5+Pk2aNPnLa3vn5gO0jwkON280kN7tp/Bul2lU8ajKyJEj6dOnD/v37zfQk0pLS6Nt27acOHGCnj17/uW5BF4PDx7kldqWn58LQHGxmuPHTxAQEGBQvvPo31qtlqpVq9K2bVtCQ0MJDQ1lzZo1gM6ifcqUKbRq1eqljuF+bCbLfj7D+XNxJCXlcO9eHPeiHvDpJwswNjZm165dJCUlsW3bNhYuXMicOXNISUlh69atnDx5kpCQEP0E/Pr163zzzTesXbv2bweQXhSNfBxxdrFBIhEhkYj0ZXZ16zvg5m771w38iVwuZdgnjXH3KIdEIkIulyCXS2jUxImuPWu+xBH8c9q0aUNoaOhTA0harVaf/SaTyejVqxfz58/nf//7H8ePH+fIkSMoFArCwsJYtWoV/fv3p1OnTnTt2pWlS5fSvHlzA2OEI0eO6LOxnmTu8KyoVBquPxZAKkGt1pCXW6z///HP1ePbHn/94MGDeHp6cvToUXr16vWP+/oiEUvEtOpSHZlCUuo1uUJCh75PdttMT0+ndevWfPTRRy+ziwICAgL/GYRMJAEBAYHHMDaW8d779Tmw7yaJCdmIxWK0Wi2pMZk8uJep3+9m7AnKm3ih+XMp3tzElsLiXGISLxOTeInAYw+wsbWmXbt2nDt3jk2bNiESiSgqkmJm7E14+A3MzWxJSSngyy8WcC5sAzKZmOLiYu7fv0+/fv3o3r17qZKDnj174urqyscff0ylSpVo0KABjRs35syZM4SFhSGTyVAqlUgkEiSS0j+4AcpXMDPIIACQSKSMHLEAqVRMQx8nvP/MTCgR+a5ZC/xauJGe1hdjYxkffLTiud2P5PKy+wM6EeZ9gUH6/9u1a0e5cuUAyrSx9vf3L1UeKPD6KUva5dq1MFavXoBMJqddu5aUL1/+qW3UrVuXChUq4O/vj0gkol+/fgwbNow+ffpQp04dIiIiXlLvdZl4f2y5alDWamRkipNjbSJvpeLp6U1y8h1q166NVCrFy8uLO3fucO/ePerXr6//zJWI6M+ZM4f169djYWHx0vr8rIglYlq38yQrU6eBJpaIcXa2xriMUre/wtxCwYBB3hQUKCnIV2JuoUAme/Ln+3WRl1vMmaNRRF5PJr8ojcOHj+jt4OVyOc7Oznh6etK4cWNSU1OZMmUKHTt24urVq8ye9T0RN27Sv38/Dhw4gFyuExuvVKkStWvXpkGDBoSHh2NnZ8eGDRsYNmwYhYWFHDt2jLZt25Keng6Avb09GzduZOjQoVy9elWfDfN3yMosKPMzplKp+GHeKKJjbtKuXTtmzZr13G37+Pgwc+ZMwsLCsLS0fKMykQDa965FWkouYSdiEIl1QTCNWkPLztVp2PzJmYk2NjaEhIS8wp4KCAgI/LsRgkgCAgICZWBpZcw7/euRn19MUaGK3+edMAggAWTmJXI38Szh946Qnh3H1TuHcK1Yn7sJ52lS+11quQWQL7vOlStXWLVqFXPnzkUksuDC+XgSEqNwc22IY+UaaLVQxb0xtWv6cT9xG+7u7oSFhTF16lRCQ0NLlRwADB8+HFdXV2JiYgBo2rQpe/fupaCggLp167J582a9hlBZWFub4FDZkvi4zDIdpGrULHuSb2Njgo3N37e3b9TMhcO7I8p0KLKyNqZceTNu3rzJkCFD/tYkqCzWrFnD6tWrUavVzJw5k6VLl5ZyCVu/fj0///wzNjY2bNiw4Y2Y8L+t2NubER+fbbDNx8cfHx9/jI1l+Po6IRKJ9O/Bo8HARwOFEydOZOLEiQbt1KhR46U7F8bFZVFcbJjB5+hYgwsX9qFUqjkSdIradcoTHh6OWq3Wl1e6ublx6dIlNBoNYrFYH1xetGgRs2bNwtHREQ8Pj5fa92clIzOZlgH/TOunBGNj2XNr+rwqkuKzWTwzGJVSjVKpQaVW8l6nH6nr7cyWfbMYP348Bw4cIDU1lYYNGxJ+LZwrl68w8ZtJqNVqjIx05YOWVlbUqFGdLVu20L9/fyZNmkR2djbJyckABs/oihUrUr9+fa5cucKDBw/Iz8+nuFiXHeTg4EBmZqZBH/39/QkKCkIqfbaf5FKpGE0ZCUJSqZSvxi/BwtKIrt11/fHx8dGfo+Qz9lefu4sXLz5TP14HYomYgSN96dC3DjevJCKWiKhZ3wFL6zezfFJAQEDg34pQziYgICDwFExM5FjbmBAflV7qtcbV36GTzzi6+E3AxqIydTza4l7Zh5ikK7g7NEJuJMWjur1BGVY5q7pUcW9M7P3rrN3wNbl5GfCnWKhGq0WrkWNsbPzUkgOAr776ioULFzJlyhRAJzp96NAhypcvT9OmTfnhhx/w9fV96tg6dKqGi6uNvhxFKhVjbW1Mzz51XtqksGkrd2ztzZDJHn79iMUi5AoJ737YAIBq1apx4sSJFyIw/qggcmhoKA4OpS3RlUoly5Yt49ixYwwcOJDly5f/4/P+l3F1tTF4f0sQi0VUq2b3t1yoXiUFBcpSfaxYwQOpTMHKVV8QGXmN3r17Y29vT/fu3Rk1ahTjx4/Hzs6OXr164evrS8uWLbl9+zYAVlZWrFmzho8//pikpKSyTvlaeJayrred1T+fpiBfqQ9aSyUy0MiIuJqMV62mxMXFce3aNc6dO8fYsWM5fuIEGq0GmUyGRCIhJ0dXZpyTnc3VK1exs7Pj5MmTLFy4kPz8fL3OkEgkQq3WoNFosLCw4MiRI9jZ2aHVasnPzzdwCfunJWIWlkYYG5UdcJJIRHh4lPtH7b8NlCtvhl/bKvgGeAgBJAEBAYHXgJCJJCAgIPAMmJgpyMspLvtFjZZ32n6rdypyKl8HSwsrqtWpgMwun/aV2uv1MX5dfhapVM47faYiEUsI3LeIvLxMfl/zBWKxiPretfii7WcGzkiPs3PnTpydnfn0008ZPXo0hw8fpk2bNsjlcpo2bUqjRo24efMmjRs3fuqYZDIJHTpVJy+vmPS0fExMZNiWM/17F+gZUSikjPzGn5PBdzl3IobUtGS27p9JYnI00xfqdHOGDBnCzZs32bx5c6mgT35+Pn369CEvLw9LS0u2bNmCQqEw2Cc7q5Do6AwKi5QcObIDpVL1VEHk/Px8fWlS69atGTZsGACBgYHMnTsXlUrFlClTnmjJLmCIkZGURo0cuXMnjZSUPLRaLZaWRlSpYovVGyq4/CgVKpiXci0EaN/2YyQSEQ0aVsbT01PvWPYoI0aMYMSIEfr/p02bpv+7xNntdRF+Lo6dv18g/l46KkkOB04fws/Pj169elFcXEytWrXo1KkTO3fu5O7duwwZMoT33nuP7OxsvLy8WLRoEd26dWPVqlVYW1szZswYBg4ciLe392sd15NIis8mPdVQn6tYWYBcZkxxkZrjB0Po2nMGYrGYzMxM/Fvo9LZa+rcEoHbtOvzy6y9s2LCee/fuMXTIUMwtzElPT+fTTz/lhx9+ICYmhtzcIq5fSyAr7RhnTsWSn2tP9WoPn72hoaHcuHEDf39/PDw8GDNmDFZWVly8eJHr168DMHnyZIKCghg+fPhf6vaIRCJ8/Vw5EnQbjVqjl7aTSESYmxvhWc3uBV5FAQEBAQGB0ghBJAEBAYFnoEWnquxee4niIsMyF5FYhKtnObq9X59Vy/ayest82jcfRJ8PG+Lj78qatfcM9nf3KEdyUi4rf/ucuPgIjI3NKW/vxuD3f0QiFTPmcz/MzBV/WXLQvXt3ABYuXKjfdvToUf3fhYWFzzw2U1M5pqbyZ96/LB53PdqyZQvBwcFlCmArFFJik08z/rv3KS4uZuLsznoxcIBbt249MYh24MABfHx8mDJlCjNnzuTAgQN069btkWNTuB2Zqi/RuxkRTWxMGrt2BTJr9jS9IPLhw4e5cOECc+bMYeDAgfryNUtLSzIyMvTi5sHBwWg0Gjp06CAEkZ4DY2MZtWtXAHSZF2969tGjWFga4Vm1HLcjU0sFk8RiMY0aO72mnv19gnfeYNNPZygu0pUCqjUSutT9liq1KnH48HImTJjAb7/9RqdOndi6dStz5sxhxYoVvPPOOwwcOJAhQ4bohfa3bdvGhx9+yJUrV1iwYMHrHdhTyM0uRCIRo+ThMzs+OYJTlzYjkcjwcK2Nj48P9erVIzMzE4WRAqlUqjcI+PKLLxn84SCMjIzYtHETbdq0paAwnw8++ICmTZsyePBgOnbswdrfw3B3rYpWC21bDwJg1/ZwnJ3d8fDw4KeffmLSpEkGJbT79+9n586dehfOvn37Mm3aNNq0afNM4s/25c3p2Kk64VcTSUrKQSoV4+FpR9Vqdkilb54ulYCAgIDAvwshiCQgICDwDPh3rMrVM/eJuZNGUaFuIiZTSFAYSflgrB/lypsxY9FgZiwabHDco4EfrVZLzVr2nDkZTY9u4wkOXUWv7l/p2pLp7LfNzA2zat4m2rRpo58oRUdHs3379jKDSBqNlpUrf6dnj76YmhnpdUcAJk2axNWrV+ncuTN79uxhxIgR3Lp1C2NjY9atW4e7uzsXLlwAIDMzE1vbh45S6en5BgEkACNjM2rU8ObM2VhatmzJhQsXSgkiW1lZkZ2t0/DJzs7GysqK1NRUIiIiaN26NQApKSlvXTDkeXlUO2r9+vVllv4dPnyY2bNno9Fo+PHHH3FwcODdd98FIDk5mXbt2pUKLDzvNQsPD2fYsGFIJBI8PDxYuXKlvo0St7ZHM3xeBt161GTXjutE3kpFKhWh1epE4Xv3rfNWZFM9SmG+kk0/nTYIgEvEMrQqiLmVRt3avsTHx5Oenk5aWhqZmZlUrlyZu3fv0rFjRwAaNGjAnTt36N69O++99x5VqlR5IeWmL5PyDhaoVIZBf9fK9XGtXB+RCOr9GQz89ttvAd3z+djR4/p9K1euzOFDD4X+xRIR5ubmbN++Xb/twN6bpfSzQOeglplRUGbpWlRUFAsWLGD37t36bbVq1UImk+nF2J8FSytjmjZ3e+b9BQQEBAQEXhRCEElAQOA/x98VWh49ow2Xz9zn1OHbFBWqqNuoMk3bemJi9tdZPJdPx7Jl2TnSUnLRarWoZLlER19h1dovqF6tKc4u5ahZtyGRkTIaN25MWloaU6dOpXPnzowfP14vvOrv709oaCj9+vVjwoQJSCQSpk+fztatW1/W5SoTrVZLxI0ULl2MJz+vGI0mk6CgYL3r0YMHDzh8+DD+/v7MmTOHCRMmADrR1hUr1nP58mXatG3DO+8MYNCgD/Ttzpgxg9DQUAIDA9mzZw9OTk4sXbqU/fv3M2zYMB48eMCVK1fYunUrOTk5nD59mk8++YSIiAh69BheSiS8WjUvDh/6A6VSw/lz51EYSUoJInt6euq3BQUF0bhxY8qVK0ft2rU5ePAgEokEpbK0Ts6/iUe1o55EQUEBy5cv5/DhwwaufyVlXaNHj6Zz585/uw8ajRalUo2npyenTp0CYPDgwYSFhdGwYcO/3e7fQSbTBYyyswpJSsrB2FhG5cqWiJ7TjfBl8HjW319pGoWfj0MsEcMjGTlKVSEyqRFFBSoOHwyme982dO3aleHDh9OlSxcA3NzcuHDhAjVr1iQsLIwhQ4ZgZmaGhYUFCxcufGHC9y8Lcwsjatd34NrFeFSPCflLZRJuxwfh5/eFPutRJBIhkYhRqzX8tvI3VqxYwdQpUzh//jyHgw7z008/0aBBA4N27t5J5UkSR2q1luysQmQyGWq17trn5+fz8ccfs3LlSoMy3H/zs0VAQEBA4N+HEEQSEBD4T6DRaCkuVpOcnGgwWY6Oji6176NCy9u2bWP58uWMGzcOiUSMd1NnvJs6P9e5Lxy/x29zjhlkAmhVct71m83waW2ZOO0T3u33LgcOHCAjI52GDRty48YNLl++zOTJk8tsc8GCBfTv3x+xWMzq1aufqz9lkZCQQOfOnblx4wa5ubmkpqby22+/lXLHAl0Aaf/em9yLSkel0rB4ySg+GfYD479YQ8uAqkyaPJzZs2cTGxurD86FhoayY8dutm7djk+jptSoUZu1a7YjlUrJziosU4MmIiKCTZs2cfDgQfLy8igsLGTEiBF06tSJcePG4ebmxrBhw3BwcCAiIoL8PGWpNtxcqyFXKPj66w9wcqrI/Pn/49ChQ3Tv3p0HDx6wfv16ZDIZQ4cOpVmzZlhbW7NhwwbEYjGff/45AQH/Z++8A2s6/zD+uTN7LwkyjCBWbGKFIPbW2ltLVUsHVbstqi0dWquoPWqvmlkkRmoGiRhZZO+d3Pn74zaXK9GiqY7f+fyVnHPuOe85996TvM95vs/XD5FIhJeXFz/88MOfvs7/JJKT8rh3NwOAy1ePo1ar9dlRX331FT179kSpVOLg4MDPP//MhQsXEIvF9OjRAycnJ9asWYOZ2eMMrbNnz7J8+fIXHodSqebXSwncv5uBVqtFKhXj1bAKjb2rYmRkRPXq1Rk/fjwJCQm4ublRvXp1tm/fTl5eHlOmTCEiIoK1a9eyYsUKhgwZgkKhwNramu7duxs4AV8GSytjLK0eO+V+zyX1JP369SMkJIS9e/fq3WyVyZOuvz9CpSzvlEnNu8e1+MNIxFK8PL1p1aoVnp6evPfee6xevRqAN954g+HDh/Pjjz/SqFEjfcba0KFDmTt3LnXr1q28E/qLeH18cxSlaqJvpyARi+G3t2rI2MZ8u/pQue1FYhESkZi9e/cQEhyCsbExX371JRcuXHiG0FN+mVqtYv1Ps0hKvs/AQX354ovPycrKYvDgwbRu3ZrAwEAaNmyIWCwmMjKy3Os///xzRo0aVaETUEBAQEBA4J+AICIJCAj8p9FqtSQk5JCYlIdWC0eP7CYjs4BOnTrToEH95w5aVigUDBw4kMLCQv2k+nmPv3PVpXJZShKRDK1GxLWQePr27aPvEpSbm8t7773HuXPn0Gh0XYIq6s7m5OREjRo1EIvFuLi4/OnrZGtrS0BAgD6bqEqVKhUKSACPHuYSG5tlIPxIpTo31vnQBLp378HRo0cNXqMr4fiWtWvKT3y1Wl35x9OlH3Xq1GHEiJG89da77Ny5hXPnzvLNN99QrVo1srKySElJ4YsvvuD7778HwNrGmB07NhIYdBi53Igpk+dTtaoH48Z+iEQiokOHGlhaGVcYiDxq1ChGjRplsKxnz576cp7/EhqNhn17bupFQK0WQsOuk1+QSsjZ03z88WyOHj3K0aNHMTExYe7cuQQGBpKRkUFycjLBwcGsW7eOtWvX8t577wFw+fJlGjVq9Nxtyh+PRcvxo1FkZxWh+a1vuUKhZvOm3Rw6spYmTRoQHx+PRCLhzJkzLFmyBIVCQZ8+fRg2bBhTpkxh//79DB48mIMHD+Lj48NHH33ElClTKv26ge4z+TwuqTVr1lRalz+tVsuDe5lcu5pIaakKc8sSgoKC9K6/GTNmMHfuXIKCgjAyMmL//v2MHz+erKwskpKSGDzwdSJiH6BRa6nl1JYzt1fi5zWVPk3mYGQs5bW3WumP5e/vj729rruXtbU1v/zyS7nxiEQihg8fXinn9lcjN5IyYXpbMtIKuH09ifz8Uqq52xIQvIcxY8Ywf/58Dh8+zIoVKwC4dOkSW7du5ddff6VX754MGTKEiIgIOnXqxNGjRzE3NzfYf+069tyMSEb7hAYukUh5c+JyrKyNmfhmK0QiESdPngR0Dy2uX79uIAA+eT+q6N4kICAgICDwT0MQkQQEBP7TPIjJJDW1UD9BzcrKoKiwhM+XbWbvnpXPHbSckJCAvb09R48efWaL5qfLTNatW8cH78/CsbS8EKFQFSOXmhBx6SGZJmFMmzbtcZcgX12XoM6dO+vHkJycjImJib5FeEREBPn5+ZSWlhIdHU2dOnVe6LpotVquh8YTeCCS/NwSvJq50GVwA4NzKQuDXbduHRs3bsTX15eLFy8ye9ZabtwI5fjJjVSvVgeNWk1JSRHGxqaIRHD6dDDvvz+NmzdvAo9LOJYs/kZfwiGVSlGr1Wi1WsaNf42oqFv4+3dn6VJdiYxSqaZmrVZs2bqf3bt9SUlJxNnFhbCwC7Ro0YyUlBTkcjlnz54lIiICAHNzNefPn2Lpkq1IJBI0Gt3MTiQCS0tDR8n/M2Hn4oh5YCgCymQmODrU43xoHJ07d+bixYvs27ePxMREUlNTqV27Ng4ODrRr1w6JRELnzp356quv9K8/cOBAhflXf0Tiwxxyc4r1388yGjdsR1Pv9oRd/ImYmBiaNGkCQLNmzbhw4QKWlpbI5XIyMjI4d+4c8+bN48svv6RRo0YAeHt7v8SVKY9WqyUpKZ/4+GwUCjVWVsbUqGGLlZXxM11SCxcuxNnZ2WA/LytCazRadm+/zoMHmfrujyKRmrfeWM/kqe0YPWYoTZs2JSYmhrCwMP29af/+/eTl5TFgwADenfE2NayiWLR8Gmn5MTSo1g2Z1BixWISJuRwf/9rcuXOHiRMn/mGJ2r59+/j66685dKi8i+efilqt4fKvD3n4MBetRsvD5Bx27jhC65a6QP6+ffvSt29f1qxZQ9euXRk8eDDff/+9voR4165dzxR32vi4cfdOOqWlKoOyNqlUTJdunigUasIvJnD9SiJqjRYbWyWBgYG/KwBOnz6duXPnYmtry6BBgzAxMUEulzN9+nR9kwUBAQEBAYG/E0FEEhAQ+M+iUKhISSkw+OfezNyCxt6tUKk0NGnSmtjYqOcKWq5VqxYNGzZkxIgRNGvWTO/AeJqnw6VFIlGFmRmpOfe48uAgcpmckRP6G3YJMtJ1CfLx8QF0ZSV9+vShXbt2ODg4oFaref/999m6dSsKhYLJkydz7Nix587V0Gi0rJp/hhvn4ykt1oWEJ9zL4My+25QUGZaEqVQqNmzYQFhYGOHh4Vy8eBGFQsWZgG1Me+s7iory+WH1dGJib/DLiQ3IpHJ8fTvQrl07lixZwuDBg+nTpw/R0dG8/4HOHfLdtz/SqVM3Jk8exWuvj2Tb1gMAuLnbIBaLOHfuHFevJVFcrGT6dF3o7YEDW5GIJTx8VMLq1au5cuUKx48fx9bWVj/WtLREfNq2Qi6XIRKBRiNCJNJ1n2v1L+yo9Veg1WoJD39YrnzQtXp9Ll/5hfBLD1Fpr1OrVi20Wi07duxgzpw5aLVaWrRowbp16wC4fv06Hh4e+tefOnWKuXPnvvB44uKyyo1FqVQgk5XljMm5e/cuSUlJAFy7dk2/Xf/+/fniiy+oXbs2EokEDw8Pbt68Sc+ePYmIiPjTOUparZZr15LIzCzSZ22VlBRw+PBhdu78Di+vusTHxxMZGYlUKsXW1pb9+/eXC/1u164dmzZt0ovQQUFBzJ07l88+++wPx3DtyiMe3M9A+USmj1YrQamAQ/uj6N27N3Fxcfp7Rdk9QKvVMmnSJJYsWYKTkxPjZzoQcW8IW3avomvjN1GrNdRt4sKEjzpiYiqnbt26z+yI+CSDBg1i0KBBz3sJ/xGEX0zg5s37rPzhA5JT4nh98HQaNmjH9m27Kf7tfnfx4kWCgoLYtWsXAPfv30etVv+hs87C0phRY5sREhzD/bsZaDRanF0s6OBbE3sHM1Z/d96gXDczXckb49Yy+e0OTJg4vEIBsIz169czceJERowYgb+//19wZQQEBAQEBF4OQUQSEBD4z5KbV4pYLDIIW27QoBlHjuxEo9ES/utVHB1MnytoubS0lBkzZiAWi+nWrRsjRozAyckJgKzMQtLSCkhLyzYoMxkwYABGxlIsTYzYe/ob6lbryM34E/g2mER1+0YkZ0cxePBr+A9qQNOmTalTpw7R0dEAhIWF6cdcUVnV6dOn9T9XVHLye1wJiTUQkABUSg0qpYZHMVkGk5mMjAzc3NyQSqU0a9YMAHcPW8RiMSUlRWz46WMyMpOo49kCJyd3jp/YwPIVXyKRSPQlHABjxowhM7OIvNwSLl4MJTsrk59+euzGMDWTIf4ttDg7u5iSEsMn+2XvW1GRkkuXLlO7dvmuRDVq1ODu3dt8911t0tIKKSlWYmNrio2NiRBc+xsajVbfXfBJnJ1rIZUZ8f3qd2jatBbDhg1j+fLlXL58GSsrK70TqWPHjnTo0AFTU1N27NgBQHR0NG5ubpiYvHjXMnEF78ut2xc5eXonIhE0aFiP1Wu+Zvz48fj5+eHm5oarq04Q7NevH1OmTNG7Yvr378+QIUPw9/fH3NwcmUz2wuN5kvT0QgMBqYxWrTrTtm0XDh78Rv99BV2HrSc/80/ypAhtZWVlIH7+HhfPJxgISAClpUUYGZny6FEut6PP8t5701m5ciVvv/02oBOQFi9eTOfOnWnVSleqVlxSzM3YIN56dwLOjgrGTxiH2b+4E+Tzcv78BUaPfgOtVoS7uxfGxmYEhewlKzsViViCUqVg0aJFnD17lgMHDujvE7Vq1TIIj/89rKxN6Nu/vv6+WbaPk79Ek5tTbPD5EYlkaDXwy5E7zxQAy4iJidEH1Tdt2vTPXYh/GS8aHp+SkqLP8AsMDGTOnDkYGxuzdetWqlWr9opGLSAgIPD/gyAiCQgI/GepaIJau7YXRkbGvDNtKA4O9rz1/YrnClqOj49nwoQJqFQqatSogaOjo86Rc/IuGRmFoNWiUitZOG8nHX09mfH+BPz8/FAqldzO/5kGHr44mHuSW5hMfPp16lRtS1ZhAu/MHsbIMa9x+PBhbGxscHN7sdDulyFg3y0DAelJ1GoNcdEZyH6L/rC3tyc+Ph61Wq13gdSt5whokcqkjBg2l+XfTAJAIhFjZi7Dxsa0wn3b2JhQXKTkybdFJAKxWISd3eOA5uzs8uVNZe/b21Nfx9nZidmzZ7Jq1SqDbRwcHBg0aBDt27fDxMSENWvWYGtr/yKX5j+PWCzCyEhKSQVCUg//NzE2lvLehx0QiURcvXq13DYzZsxgxowZBsvq1KnD3r17X2o8HjXtiHmQaeBGKiouQCKRoNVqWLLkU8RiMZs2bSr3Wmtra4qKivS/l5UDhYaG8sEHH1Cjxp9rf/7wYW45AUmrVWJuYYpELEKhkLJjx07s7e3JyckhMjKS/Px8fb5amYADUFpaSlxcHH369OGrr76iffv2zzWGwgJFuWUJD28RfG4LMqmc3n260qpVKw4fPkzbtm3112Dx4sW0atWKnTt3MnbsWK5fv85HH32En58fPXr04LVhAzCzcPpT1+efTmFBKYpSU2a8sxKJRM7GzQspLS3GxMSMjg0Gcv7iUcQaCUlJSVy4cAFXV1cKCgqIjY3l+vXrqFSqF8r4eloEunblUbnPT5kA+DA+hzsx55g+/d1yAmAZHh4e3LhxAy8vL65du/Z/4UbSaLRoNFq0Wu0Lhcc/meH36aefcurUKSIjI1m6dOl/riGCgICAwD8BQUQSEBD4z2JtbVxhKdnUqXMQi0V4etrjYG/2XEHLVlZWnDt3zmCbs0EPSE8r0AseIqRIJVIunn+Ir29Xjh49ytmzZ/H392feV++xb8NlFOrmhEZtpUPnVvSr0RVrO1Py8vL0T0tr165deRfgGeRll5RbptGoCbizkqyiR4wcN5jvvtcFzUqlUsaNG4ePjw+tWrUlN6eYg/siGDhgPOt+nImLSy2kUhkSiZiaNW0JCik0CCk/f/68vovWrVs3WbNmDb1790cqFaNQFDF9xpt8+eUXuEpt9GNJTn5Ev75+uLnVQiqTMWfOCo4d283UqXNYsXweZ88eZ8uWLfrymwMHDnD9+nVatWrFihUruHjxon5fW7ZsYfPmzajVahYvXszq1avLTUy2b9/ODz/8gK2tLTt27NDnYf0XEYlEtGxVnfNh8eXKyKRSMS1aVX+lri1nF0scHM1JSy1ArdaQnZ1G9N1rzJ65Cs+6Dnh6ugO/3xUtODiY4OBgFi5cSK9evUhMTEQikdCmTZs/Nbanr4+pmYwLF0LYtWsDAFVdXFGqJNja2hAaGoqzszMFBQXs27eP4cOH89NPP3Hu3Dny8vKYNGkS4eHhXL58GWtra0xNKxZan8apijkxD7IMltWu1ZLatVoilYqZOacTAIsXLzbYpri4+Jn7fNLF+KpYsWKFXuD7I7Kyspg8eTIZGRn4+fk9M+D/WTxMyObX8IcoFLrMNYlEVxopFkvIzEpGrVYhlcio6lwTT89GrF27FgcHBw4ePAjAvHnz8Pb21gtIzzPmilAqynecTHh0i+BzW5HJZAwY2L1CAbCMiRMnMmjQILZs2aLPkvuvolKpSUjIJSdH97lNSUknICDQwNU7fvx47O3tuXfvHvPmzWPNmjUUFRVx8uRJ0tPTmTt3LuvWrcPExAQLCwtatWrFRx999DefmYCAgMB/E0FEEhAQ+M8ikYip4WFDTGy2gbNFLBZhZibH3u75JnIVUVioICkx12C/xSWFmBibodFoOHUyiM8Wf0xkZCSurq78ErCbmcunAdCz5wlytBGMHK3rcGRpaUlSUhLW1tbcv3//pcf0vNRuXIWk+Gw06ieviYSuXtORyiWs2D8CaztTvZNi8uTJDBw4gsDT9zh9KoTSUjWNGrbDu3F75EZSVnw9lYlvtiI9PYXFS1M4c+ZxSPkXX3xh0EVryJAhupwoFMycNZWvvvqC+vXrA7qn8FqNFls7E1q0aM/ceV/rxzd6tO5J/Zix79Czpy/weOxfffUVMpmM+Ph43nrrLY4ePYpGoyUlJZmQkBACAgIAXYnE0yiVStasWcPZs2fZt28fa9eu5cMPP6zkK/7PwqedO8nJ+cTFZulLpWQyMe4etrRt5/5KxyISiWjStCp7t14j4UEWEdEBFBeUsHLVdFq2aoJ30+X07NkThUKBs7MzP//8MxMnTmTo0KEkJydjaWnJ5MmTARg/fjxqtZpWrVpRvXr1Pz02e3tTcnNL0Gi0SGViZDIxHTv607GjzhFy5MhuLC2t8fPrQUJCLIMGDdLnI23dupVevXpx5swZHB0dSUpKIioqCpFIRHBwMGfOnHmuMXTsXJOHCTnlStqkMjHeTV0wMvrn/xtXWlrKjRs3nnv7RYsW8cknn1C3bt0XPtb9exlcvfIIrVb32RKJRMjkEmJjoyksyMXFuQZqtYpRIz5m+65lODqZk5ycTGhoKFWrVmXUqFHP/d78EVWrWxIXk22wrHbNltSu2RIzMzkfPkMALC0txcTEBDs7O/0Djqdztv5LaDRaoqLSUSgedzC1sbFn376zuLhYM3XqGPz8/MjOzubMmTPs2rWLzZs3c+rUKZYsWcLJkyf15X7Z2dkGDwHUanW54wkICAgI/HnEf/cABAQEBP5KnJ0tqVfPAQtzOWKxCLlcQvXqVjRqWOVPOS5yc4oRSwxvoffu3WDRZ2P4bOkkzExt9JlJn3zyCVFRUfrQ1jZt2rBq1Spmz55Nt27dmDBhAg0aNGDcuHE4OTnRu3dvOnXqxIYNG17+xH+HHsMaIZWVz/uQySU07+iO9VPimlar5UJYXDlnhkajRVGqQqFU6yezT4eUP91Fq0OHDgDs2bMHb29v6tevT35OCVtXnmf60J1Me20HP34ewtWrF3h76mv8vHsDycmP+PST6YjFIry9ayF7auxl2TfZ2Tk4OXpw6MBtDh24zVdfbCI3twg/Pz+mTZuGWq0mMTGRfv360bp1a2JjY7l7965+zF26dNG7mNasWUPr1q2ZNWvWf64jkkQi5rWhjRk5phntOrjTroM7I8c047WhjZFIXu2/BcmPcvn2syBi72agUmkoKMimqKCYnu1mI5UYceDAIXbu3EdQUAj16tUjMDCQ3NxcvSMpNjaWRYsWkZiYSGysTsipWbMmqampTJ06leDgYPr160efPn1o27YtBQUFzz226tWtkUh09wgjuaTc/SIhPoYD+7cx7e2R3Lp1m/Pnz5OWlmaQrwbg6enJsGHDXkqcdPewpWefekhlYuRGEuRyCVKpmDp1HOjRq94L7+9VUFio4N69DK5fT+L27RS++eYHRo8eDcDhw4fx9fXF19cXExMTFAqF/n732muvATrX2ZIlS+jUqRMXLlx47uOqVBpuXE8q5z7VUszPe1cwcsRs/TK5kQy5XIyjkznR0dHExcWxfv36Px3G/iR+3TyRycp/n2QyCZ261tJnwD3Jli1bKC4upmrVqpU2jn86WVlF5f62yOVGGBmZkJVVSo8ePTl69CheXl6IxWJcXFxo0EDXSdTFxYXs7MdCnY2Njb4pBoBY/OfuZ5cuXcLHx4f27dszY8YMUlJS9KJffHz8X/63WkBAQOCfyj//EZaAgIDAn8TWxhTbZ+T0vCympvJyuT2NGvrQqKEuJNW5qiXu7u760qkn83tGjRpFdHS0ft39+/fp2bMna9euxd3dnaCgIBwcHCp1vE9Spbo1733Zgx/mnUapUCMSgVKpwbudGxN/ezr+JAUFCooKdV2M5sxea7BOo9FS8kS+0tMh5VC+ixbAuHHjePToEbt37SEiQEJeTrHeGVWcI+W1jksZ/EYb5n86lVat2iGTSahbxwG7Z7jH+vfvT2joBd6Ztlj/vqRnpJGWlsu6tTv4adMKDh06REpKCqdPP3ZKjRo1Sv/k2srKiuzsbFQqFZs2bSIsLIzLly9z6dKlP3O5/7G4uFji4vL3lu7t3XrNIOhbLjelqpMXhQUKVCIXjh8P48cft5GRkUJKyiM2bdqEi4sLHTt2JCcnh3379jFq1Ciys7Pp3bs3R48e5Z133uHUqVMsWLBAv98jR46wePFiAgIC6Nev33ONTS6X0KqVKzduJKOlfF3s1Ld1ooREImLa26/z3nvvERERYZCvVsaECRNYunQpy5YtM8hKeh6aNq9G/YZVuH83A6VSjau7Dba2lXs/qyxWr/6RjRs3o9GoWbToO2xt7ThzJogBA3SlwX379qVv376sWbOGrl27MnLkSH799Vf279+PsbExAOfPn+fq1av6FvfPW06WmVFYbplareKHVXMZPvwdtmz7lMTE+4jEUL+hObJ9avbv34+joyOpqamMGjWK9PR0vUDxZ3Fzt2HIMG8O7b+lv89qtdCpay1aPqNb5OjRo/WC25P8l51IWVnlM/AKCwswMzNHJBIREnKODz6YQWRkpH79k4LukzlSpqamFBcXU1BQQGRkJF5eXn9qbG5ubgQGBmJsbMyIESNIT0/Xl1fOmTOHn3766S/9Wy0gICDwT0UQkQQEBASewe/lsFjbmGBhYUROdjHxCdHs2fc9GrUa/24jaNa0PfUbVNHvx9fXl+DgYHKzingQlU5qRrJBFzdnZ2dOnz5Nu3btcHBw4M0336SwsJCVK1diYWHBjBkz2LVrFyqVim7duhEYGPinz82reVVWHh3N3RspFOaX4l7XATsn8wq3Vas0VGTaUqlUfLXiHeLio/H392fJkiU4OjqWm0Q/3UULdJOAtWvX0ql9T5xMWuNk7alfJ5HIQANHN9/g9dcHkpBwBRsbk2cKSAArlm8gMPAaX3z5Hp8v0R3X1NQcr3rNuROVTocOHbl+/Vo5p5S1tbX+yXVeXh7W1tZkZGTg6uqKRCLB29v7RS9tpfCi3Yn+jRQXKXkYa5j34+JYh5vRZ9BotNy6fZ3Wvt5oNFo++mgFmzatwNOzNrdvX+DXX3/ltdde4/LlyzRs2BCxWMzdu3eRy+WEhoYSHx9Phw4dOHfunF4UqFq1Kjk5OS80RnNzOW3buvEgJpP09PIiBeiE1JCQsxgZSSvMVysTQWbPnm1wTxk3bhzz589n3rx5fxggbGQk5cKlo6xZs4ZFixbRq1evFzqPV8HDh484cSKAH37YqV92+PBuunXrR15eqd5tcvHiRYKCgti1axcdOnRg5syZfPDBB1SvXp2ff/4ZT09P6tXTuaxexElSQfwdFy+d5kHMbX7eswq08MH73xAQtJGevTpjavYlZ86c4d133yU9PZ2QkBDatWuHRqNh9+7df+palFHXyxHPup1ISc5DrdZSxdminJPy/52K/rZcu3aJNWu+Qi6X07FjB72r93mYM2cOXbt2xdjYmM2bN7/weLRaLfn5peTllyIWm6LV6t4vqVSKRCJh5MiR/PTTT8THxxv8rfb09OTSpUvMmjULpVLJxIkTGTdu3AsfX0BAQODfgCAiCQgICDyDOnXqcP78eUDnnLl8+bJBuUPnLrU5djiSY8c3Me2tLzEyMkYqFVPL055q1a0f70gL21dd5FJwDFKpGJVaRf82i3n9jTYs+/Y9li5dSrVq1ZBIJMTExBASEkJaWhozZ87k4MGDFBYWkp+fz/nz5+nSpYvBGN966y327NnD0qVLmThx4gudn1gipm5Tlz/cztLKCFEFpRdSqZTZs1bpsnTa6zphVTSJfrqLVlk5C0CPNu+QGJdjsL1CWYxcpmsXf/pkEB/P/dDgKfTTlJaW8uhhDkZyE4yNHreZr+PpzZmAfYjFIs6f/xUzM1k5p5Snp6d+2ZkzZ2jdujX29vY8fPgQjUZDRETEH16fv4oX6U70b0SlUv82g3w8/Xe080AqlfPzL/MxMbGkYcNJ7Nu3kejoG5ibW1G1qjtubjWIi4vj008/pUmTJrRo0QKRSERcXBzR0dHcv38fOzs7vevtWa6FF6F6NWsyM4vKOSZEIp3T8XmziZ6+p2RkZDz3GH7++WdCQ0P1jp1/Amq1hoICBWq1hn37DqNWq5k6dSgeHp4MHTqe9eu/RqlUsHDhDLRaDTVr1iQzM5OoqCjmzZtHREQElpaWiEQijh07xqBBg/D09NTnXalUFXeRrAh7e7Ny729bnx609emBVqtFrdZQu7Y9iz4dDzzOHgKd00cqlbJ7925iYmIq7wKhy+BzqWpVqfv8N/A8Qvi1a9cYMWIkOTl5HDmiKyVOT09h9eoviY29x7lz0TRrVh2JRKy/Fz7592Ps2LH6fZWt79KlS7m/k8+LSqXhwYNMFEq1/ruekVFISvIDMjIy9IH4GRkZREREcP/+fYO/1fPnz+fw4cNYWFjQtWtXRowYgVwuf6mxCAgICPyTEUQkAQEBgSdQqzTcu5lCcZESj7oOWNvp8naMjIyoXr0648aN4+HDh7i6uuLq6sqwoSMwNRXz05b5GBnJWb16LfUbeLBu3To2btyIr68vGWkF/Ho2FpVSg0ofkCtl/8artGjagYMHD5KdnY2TkxNeXl44ODjg4OBAZmYmAAMHDuTQoUMEBgYyd+5cg/HOmzePli1bvtBk60URi8V4N3Hh6uVE1GrD7AqJREzDRn8sRD2TCub0yZnRhEftQyqV0atPN4On0IsXL2bHjh1otVqSkpKYP38+r7/+OvHxKZSWKBgx/F39th4edZHLjZgzdyxubi6s+PpLTp06ZeCUkslkTJo0ifbt22NjY8OOHTuQSqWMGTMGHx8f2rRpo89cehVkpBUQcy+TtPQkAgMfu9VmzJjB3LlzCQoK0ndxGj9+PFlZWdy+fRtTU1M8PT1p3bo1n376KVWrVuXgwYOVmvFS2ZhbGGFpZUR2pmEnsY4txwBg52SOo6MLq1Yd4vz5M+zbt5GTJ/fi5VWXixcvMn78eB4+fKj/Pm7atImcnBxcXFw4dOgQcXFxDBw4EAsLC8LDwxk+fLj+GE92dHua/Px8+vfvj1KpxNLSkp07d2JhYUF9Lyfu3tOVlIlEOgeSnZ0pNTzs/vBcNRotRUUKAxeKkZGRQU5XWUdDDw8P5s6dy9mzZ2ncuDH5+fn07t2b8PBw/P392bBhA7Vq1XrJq16epyf7P//8M4GBgQwcOLDC7VNSUhg6dChqtYbk5BQ6dOjMvHlLSExMRizWsGbNbr79djFnz57GysqGzZuPcfr0YZYvn8/YsWP59ttv6dKlCw4ODtSqVYu8vDxSU1Np0KABe/fuJSoqimHDhlFcXGxQkvhHSKViGjR05tbNZNRPNA0oE5YsLOQ0ba7rgpmYmMinn36qb/8+Z84cLly4gEQi4eeff37ZSynwFH8khNeqVYtLly7h6+unL/eztLRm9epdfPjhJFxcLF9pTtujxFxKSg3/lubkZDN79gds275Dv8za2rrCv9U3btygb9++gE5oSk9P/7/KtxIQEPj/QRCRBAQEBH7jVvgj1nwSgEqpK99SKjQYOScTcn0XnnU8iY+Px8jIiDNnzrBs2TKKi4vJys4gMSmOiIgIQkJCWLvuG1asWMGGDRsICwvjfNgFtm08jKL0cZeYMqeNolTN3l2/0KZjQ2rUqEFJSQkZGRns3bsXJycnLl68iFar5c6dO4SFhXHnzh02btwIgJ+fHydOnMDZ2fmVXJs6dXVCzo1rSWg0WrRaLRaWxrT2ccfS6uWdEU3bupOWFGHQfcqtijduVbwxMpGybO0QYmLu6x0Dc+bMKdfy++DBg8TGZhFxPclg8ggwZvQHiMUievWph0wmqdApNWrUKEaNGmWwbOLEiUyePJlLly7pr/lfiUqlYdfmK0TfTkMkEqHWKBk16Dt69GvIl1/PoGnTpsTExBAWFqafFO/fv5/09HQaNWqEk5MTgwcP1j8pLygoMBCQNBrNnw6ZfV6eLgN9smRr69atrFq1CisrKzZt2kSf1xoxcsRoMrIeIpXKaVinK/VqtkcsEeHZ6PFn28enCz4+XZBIRNSt64BYLGbTpk3ljv2k6y0uLo6ePXu+sJtLJpOxbds2nJ2d+fHHH9m0aRPTpk3DzEyOd2NnioqUqFQaTE1lf1iapNVquROVRnR0GlrNb7/fucC2Hd9Rt24d7OzsyuV0LViwgKtXr3L27Fl2797N8ePHGTx4MN9//z1nzpzRt56vTJ6c7MfFxbF///5nikhVqlTh9OkAEhNzWbRoNp06dQPAwsKSli19sLIypnnztly6dI64uPtMnTqU4uJCRo+ewLx586hevTpqtZoJEybQrl07zp07x6ZNm1i6dCkikYjw8HCSk5NxdnYmODiYnj17Pvd51K3niLGxlJsRyRQV6XLcTEyk1G/gTI2advow66pVqxpkLS1btuylrpvAY8rESHf3Wmg0Ij7+6HMCAgL1QrhCocDU1JR9+/aRkZGhfwgwffp0jI1lODqak5FRiJGRMVZW5hgbS6lSxeKVjV+t1pCXV2KwTKVS8fHH05gxYx5isQWgK2k1MTHB3NycoqIig45wTZo0Ye/evZiZmaFUKl/pAwgBAQGBV4kgIgkICAgAibHZfPfxKRRPPYUUpzrz/uhVXH20h5iYGBo1agSAt7c3Fy5cwMrKihYtWmBqakrnzp1ZsWIFGRkZuLm5IZVKca9ep9yxypw2EomUKnaenD9/hSpVHIASPvjgA2bMmIGRkRHNmjUjMjKSqKgonJycKC4uJiEhAY1GQ/Xq1Sv8B/XSpUvMmDEDiURC8+bN+frrrw3Wjx07lqioKExMTHjjjTcYPnw4JSUlTJ06ldjYWOrXr8/KlSsrvEZ16jpR29ORgvxSJFIxZmZ/3qbfoXttzp6IJj+3RB+sDSAzktB/VFNAw6RJk/j4449/dz+urtbci06nsFBpUNIikYioW8/xhXNIVq5cycGDB1EoFC+Vq/GiHNt/m7uRaU90KRIjFskJPHGfFs06EhcXh4+PDzFR6QQcvE16cgHVa9jw5Ya3mDt3Ljt37qR58+YMGDAALy8vzM11+VZjx47F3Nycu3fvvrJcpWeVbKlUKlatWkVoaCjXr19n2bJlfP3117jXsqOT0zDMjBx04qSVMZ7ezlhVkIGl1YKDg9kzj11YqCAlJR+FQk1uXr5B9tiMGTMYP348CQkJuLm5Ub16dUAnIBw+fBgjIyM2bdqEq6urXpwty0EpQyQSvdDn/mZEMg/uZxiIm551WvP5kracOLWao0ePlsvpio+P1+c4eXt7c/z48ec+3vOiUKhISclHKhGj0WgNrlN6ejqnT5/G19eXPXv2cOjQIf134Ntvv6Vp06bk5ZWi1UJ4+AU+/vhTAJo1a8muXVsQiUQ8eBCJSAR2do6sXv0z165dJC7umv74T5edyWQyg2UffvjhC5fnluHuYYubuw1qtRaxWFRhFzSByqewsJR69Vrw7rSlqNUaSkoUrPjqAFWr2bJs2XRmzprJhg0bCA4OZsSIEbi4uNC7d29AVxZarZoV1ao9LvuTSl9tp0ilUoNIJDL4HJ4+fYTI29f55tvFiIDvvluuXzd37lz8/f1RqVT6v5mLFi2ib9++aDQabG1t2bdv3ys9BwEBAYFXhSAiCQgICAC/7Liuy2h5ArVGiaIUzp+6h3UTU+7evUtKSgqAPiundu3a+rbe169fx8PDA3t7e+Lj41Gr1dyLiSp3rDKnDcDdpHO4efnQtElHNm39gHHjxnHw4EFcXV3p168f586dQ6PRYGRkxJQpU9i3bx8ajYZBgwZVeB5Pd5O5efMmDRs2BHRuFIDt27cblMN89913DB8+HD8/vz+8TmKx6E85j57G1NyIWV/2ZP+mK1y7kIBGrcHeyYK+I71p6uMGwNmzZ/9wPxKJGN/Otbh9K4WE+GzUai1mZjLqeTnh6mZT4Wt+r4xnxowZ5OTkcOrUKfLz8yvtfCtCUariyqUEAzdWqaIII7kpSoWagKAzrFz1KR+9/wlRJy1RKnR5HfuPryc5LZdWDXuyc+dO7OzsUKvVbNq0CTu7xyVWbdu25fvvv/9LzwEgPa2AxEe5yOQSata0w9hEpi/ZAsjMzNRnfzVu3Ji3334bAHtHcy7f+QkLcyu+WLaCho3rcOtWGunphQYZRGKxiNq17QwEwRUrVrB//35CQ0OJi8vmUWKe/jUqlRFbtgbQorkrw4YNoVmzZjx48ICgoCA+//xzFAoFKSkpBAYGEhYWRmhoKEuXLmX16tWAzs21bt26lxZxFAoV9+9lGJyDUqlAJpOjUmlQq2WYmJiUy+lyc3PTZ4BVdiaXVqvl4vl4rl5JRCwWoQU0aiXHfwnDq341+vXrx9KlS0lISGDbtm1kZGRw+PBhzp49S3Z2NuPHj+fgwYMolWoiIq5Rt66X3hnl5dUQY2MTRozoi4WFDQMHjmTv3i1MnjyYFi2a4uBgx9y5c9m9ezcSiYTBgwdTUFBA06ZNqVq1KklJSUybNo1mzZrxzTffsGXLFhYsWPBc96WnEYlESKXPJx79XgOF30OlUjFy5EhSU1Np0aIFX3zxxQuP879ASYmS0lI1168mEhERzsdzx9CqZWdatujMqjULsbCwIj4+ioiICLKyssjMzCQzM5Pc3Fxq1arFsWPHSE5OpqioCBsbG5KTkzl48CDp6emv9DxkMnE5cbNHjwH06DEA0DnatJosvSu2Y8eOnDt3zmD7li1bEhAQ8GoGLCAgIPA3IohIAgICAsC9m6kGThiAxOzbRCaeQSwR09aqKbv3bmPChAn4+fnh4uJC3bp19Zk6vr6++hIbqVTKuHHj8PHxoWPHjhibyBCLReVDecUiijSZhJ2/xvkLh3n46A6rVq1CLBaTk5ODr68v8+fPp7S0FF9fX0aMGEH//v0RiUT6CXgZGo2WnOxiLMxtMTbWOSXKXBSdOnXCzs6Onj17IhKJGD16NHZ2dnz//fe4ubkRHByszwh577339JkOrworGxPGzWjHmHd14bcv271ILpfQpGlVvJvoMpqeZyL4e2U8gYGBXLhw4aXG8iLk5BSXCy5/lBTJ2YvbkUpkuLs2wM2lLnkpEvbe+hSJWEqXxm9z7cFRLE2d6DegJyY2Ogdd1apVOXz4MNWqVdPvq1mzZn/p+JUKNYcO3iY5KQ+tFsRi+ObrTQSFbKJRIy+9oGVvb09sbCyFhYWcP3+erCxdZ7bly5dja2tLaGgony6ex969e2nY0Ink5Hzi43NQKNSYmcnx8LAx6NBXWlrKjRs3AMjNLTEQkACkUt334E50Fr169eLRo0ckJSWh0Who1qwZFy5cIC4uTu8ubN68OYsWLQJ0Ysv48eNZvHgx1tbWL3VdMjOLEEsMv/fXr4dx5Jju8+bu5sGsWe+wa9cug5wuZ2dnvL29ad++PV5eXpVaEnPl10dcvZL4hOMNQMy5kETsHWzp3bs3R48e1a+JiYnhxo0bdOrUyWA/MpmEU6eO4e/f22D5xx9/gkajJS+vlMLCIsLCImnYsBoDBvRn+PChrF27lnv37ukn69WrV+eHH37A1tYWNzc3Vq5cSU5ODqNHjyYzM5Nu3bpx+fJlAzdYZfNHDRSexYEDB2jcuDGzZ89m2rRp3Lhxg8aNG/9l4/ynUVKiJCIiRedK02gRiy347pvDyGQyln05ndq1GlFYmMf8uWtZ9OkEYmJi6Nu3L5MnT8bV1ZVWrVoB4OPjQ35+PuHh4fj6+nLhwgUuXLigLxF7VUgkYqytTcjJKebp/H2RCGxsjBg08I9dsQICAgL/DwgikoCAgABgbmVMWmKewTJXO29c7byRG0tZsLw/YrGYH3/8EalUyrJly3B1dQVg6NChDB061OC1kydPZvLkyQB89OECls08TnGhQh+sLRKLMLaQM+S1aXoBYe2P7zJt2jQyMjLIycnByMgIqVTK3Llz6dOnDwA2NjbIZDqHB+iCpjdu3EJhYSn79p6nS+fRODia4+ah1neTSUtL48yZM0gkEvr376+fsL///vvs3buXBw8eMH36dJYsWYKvry89e/b8S3JX/ghd6cmfnyz+kXiUm1VEWmIe+SUFzyzj8fPzIyIiAl9fX5o0acKECRNISkpi1qxZXLt2jTFjxvDll1/i6Oj4p8drZm5ULsuppntzaro3B8DByZywU3dpXnsgTWs83q6BWzcy8xOQiMWkpSZx5MgRPD09CQ8Pp127dvrt/uospNOn7pKUmKs/B7UavOr50KhhO65e36IXJSQSCfPnz6dnz540adIET09PAGxtbQFo164dH330EaB7D11cLHFxeTyRVKs1xMZkkpych1wuJShoL2PGjGH+/Pls3fozGzasAiAy8jqnz9zhjUl9qe1Zn3t3b+PgYMO4cWNISEjAz89PH2Lv7u6uF6IuX75MzZo1AZg/fz5t27alc+fOL31dJGJRueD4Fi060aKFTpCxtzejRo0aFeZ0VdQtrKLtXgS1WsOv4Q+fEpCgpKQIY2NTLp6PJywsjEmTJnHz5k0APDw8aNGiBXv37gVAqdTlDFlaGhEaGsTbb79vsC+tVpeXplCokcmMePjwIf7+rbC1tWbq1KkMHz6cxYsX63PNcnJy9PfRss9DmWjn4OCAp6cnqampuLj8ifD+Z1BaqqK4WGlQnmhkZMSpU6fIyMigR48eHD58mOjoaMaPH8/gwYMxMTFBJpMxY8aMCsub/19EJLVaw6VLD1Eo1Gi1oFapkcnklOmdzZp24PSZPaSnJzNvwVicnFywtrZmyJAhvPfee/j7+zN16lQePnzIuHHjyM7OZuLEiSxatIhz586xf/9+NBoN/v7+LFmyRC84/dUolVl07tQaD49aSKUy1q7bBehKaB3sLQ1csWPHjmXu3LkGrt6KlgkICAj8FxFEJAEBAQHAb4AXiTFZlJaU73Jm62CGi7uuJGrChAnExsZiaWmpn1j9EbYOZiz8vi8BR6IIPnkPRGDlZI65nYle8JBKxWzedAhA74YACAsLM9jXrl27DH737zYaY1lbfSmUWq0l5kEin362gF+OHwSgcePG+if5FU3Yrays6NixI0ZGRtSqVYvU1NT/ZEeZ4kIF6xYHEXHhITK5hNLSEsZ3X860T7szbtIIgzIegJMnTxIcHMyBAwcICwvTh/3m5+eTmppaKQISgJmZnJq17bgfnVHOrSaTS2jr68Ht8w/LOeVa1h4CgEQqJjTmW/r06cOlS5cqZUzPS0mxkvv3DDN/VCoFUqmuZCsvT6sv/wDo27cvffv2JTg4mPDwcADy8vKwtLQkOjr6ma6fokIFvxyNpKRE9VspmIq9e3/Bt6OurNOnbRcaNe7AoUPbad5cJ6Clp6egUJRiYmLK/fv3GD9+PB9//DESiUSfGVWlShU6deqEj48PcrmczZs3k5SUxLJly/Dx8eHAgQO8/vrrTJky5YWvjb39s7ObJBIx7h62z1z/V3QLy88v1TuAMrOS+frbyTg5uVFSXIAWLSqVkjFjXqddu3YsWbKEwYMHs27dOnr16kWHDh2QSCTUrVuXNWvWcOvWLTw8PPTvrVaLPnA/J0cXTlxYWIBWCy1atMPGxoR3332HlStX6r9fWq0WKysrHj16hI2NDffu3QMefx6Ki4u5d+8eDg4OlXL+ZZSUqAgJvE9cbNZvDlFIz7zBrp+/x9PTkxkzZvDll1/So0cP9u/fz4IFC1i/fj1vvvkmQ4cOpUePHoDOwRQSEkKvXr0ICgqifv36f3jsJ8svJ06cyJ07d1i8eDGzZ882KKe7ceMG06dPByA+Pp53331X//s/gZSUAlQqjd6xI5aIKS4uxMRE95mPjr5Oj+7D0Gg0vDNtCckpt8nMugvo3J+xsbF6we3MmTNMmjSJ2NhYhg8fTv/+/enevTvbt29/5eclEYvp3r0ba9dtpKBAgVgswsrSGLn8r3PCCQgICPwbEUQkAQEBAaBN11qEB8Zw51qSXkiSysRIZRKmLPTTiz0vG7JsYian99DGKGViHj3MKec8EUtENGz0Yp3W1GoN50JiDLJ01Go1u/cupbv/G8Q+KKWul7GBE6WiCbuPjw8RERE0bdqUuLi4Sp+0/VOY+8YmVu35ACuTKojFUjrWmUTYxWDyp6ro3r0H69atIyAggE6dOvHBBx8AOrFt//79fPjhh2g0GkaMGMGhQ4dwcnKq1LENHuHNquWhFBUqUCh0GUJyuYRadexp0caN0pxSrpyLQ1GByCmVitm3+xilpXn6SX1Z56mKOphVJjm5JUgkYn3uEcCdO+EEn9MJHy5VXOnWrZt+PNOmTeP27du4ubmxapXOOTRixAiys7MRiUT6PKKnCQm6T2GhQj9pDbvwC61adiP6ThqlpSrMzeSEh1/i2tULLFioC7l1dHRm7bpDiMUiPpo1EoC6dety6tQpA6fd7NmzmT17tsHxFArFn742YomYps2rceXXhwbfd7FEhIWlEdVdrZ/52r+iW5hcLjEQKet4NmfUiHmATlQ6dXqjPtfn5MmT+u3GjRvHuHHjAJ2I3rRpU+rUqcPBg/tRqzUUFip49CgXhUJNaakaqVSMkZGY8PDLfPPNYhISYnB0dKRFi+ZYWVnh4OBAw4YN6d27N3FxcTRr1gytVkv16tXx9/enQYMG/PLLL2RnZ/Pdd99VajmfRqPl4L6b5GQXo9Fo9e+Lg11jFn+yizNBa4mMjOTBgwcUFxeTmJiIh4cHsbGxejeot7c3AH369CEgIAA/Pz/c3d3/8J7wZPklQHR0NKGhoSiVygrL6cqcZ/369dMHUP9TyMgoNPhMi0Qi7t6/zvbt3yOTyahbpwlWVjqR9NgvW7l46Th+fp3o06cP/fv31zv+ADZu3IiPjw9paWm88847mJub07p161d6PkVFCrKzisnNLSYoKIju/n4MHDgQuVyOm5sbnp6etG7dmszMTBYsWKB/P1auXMmVK1fo2rUrCxYs0O8vKCiI9evXs2nTJqFDm4CAwH8SQUQSEBAQQDfhe3dpN66ciyP4cBRF+aV4Na9Gl0H1sfkdR8GL0ruvFyd+uUNcbBYSiS7I08xMTq++XpiYvtg/mxnpheWyG27eCiHxUTTHT/zIqTPr2bJllcH6iibss2bNYsyYMeTl5TFp0iTk8j/fde3v4umw7LKOZDFRaSTFZeNsXY/2nuMBiEwMIC3/AbVdWrJn50EiIi8jk8mYMmUKvXr1YunSpQA4OjqSnJxMtWrVaNu2Lf37938pZ8rvYWFpzHtzOxFxNYk7t1KRG0lo2rI6NWrbIRKJaNm5Bvt/uqLrHvjEey6WiLB1NMOjnh1durz+yvM6zM3kqNWG5VENGrSjQQOdG8ipijk1atRg27ZtrFixgmvXrhm0Vgc4cuTI7x6joKCUjAzDz3pKSgIJD+8SFLyfuLgoNm/+jhMnA/jsszV6wTc/P5f09GSqujii1erGKJPJUKvVr6xc09XVBhMTGZG3UsjOLkYmk1Cjph2eng5IJH9dmeGTjhfQuX4yM4owMpISFHyY/Pws7t+/xnffv02jhh0oLMrh7r3LmJub8+mnn2JhYVGuI9vt27epXr06Dx480B9HIhFjaWmMWq3LrjI2liIS6UQFX9+utGnTHqVSRcOGVXn99cEsXbqU3NxcNm3aRLt27bhx4waXL19m1qxZBAcHc/v2bWbPno2TkxOXL1/GzKzy7r0ACXHZ5OeVGIadqxSAnNSUfCQSY0xMTPR5dGXljB4eHty8eRMvLy8iIiLw9/dHIpHou3K98cYbdOvWrdzxVCoNBQWlGBtL2bBhvb78cu7cuURERJTLoDIyMtJ3DQQoLCwkJSXlH1ceJZOV/+y2a9eFZk3bo1Jq9F3x3p66iN17vsLOzuaZ4f4bN24kNDRUL1S+SpRKNaeOR3M3Oh2JVIyitJSF83bRf2Bjxo4bxsyZMzlx4gQZGRm0aNGCyMhIrl+/zrx5OvHV19eXb7/9llatWulFpJCQEAICAti8ebMgIAkICPxnEUQkAQEBgd8QS8S08K1BC98af9kxZDIJffrVpyC/lMzMQkxM5Tg4mD1XCPTTSKXlu8l4N+6Md2PdxMfa2oQ2bdrQpk0b/fqKJuzOzs6vrP37q+DJsOw715M5uv06D26loihVkZIbzYmbX+Fq601UchCFpVn8FDQVG2t76tWrx7179xg1ahReXl4G+3R2dqZhw4a4u7uTnp6Oj49PpY9bJpPQrFV1mrWqXm6dsYmMWSt6snLeGfKydUHcGrWGqu42TF3kh1wuf64udpWNuYURVZwtSUrKQ/tUKZ5UJqZZc13A99MujBehsFCBWGzodnpt8ONg+c+/fBNjYxk52al8PHsSAN+t3IWVlQ1bt6zk4cO7LFgwH4BevXrRv39/Jk6c+MwOh5WNg4M5HTu9OhHg6Wut1WoJDrxP4qNcykyJxsZmfPzRdqRSGRs3zWHk8HcpKU3AyEgnIFfUke3rr7/m888/rzCbqUoVCxITc/UCUhlGRsYYGUFRkdpAMMnIyMDV1RWJRKJ39gDUr1+f4uJi/P39K11AAoiPyzZwbgJERl0iMGg3IhHUr1+Xbt264erqSqNGjYiK0nXXLPu8/PTTT4jFYmQyGYmJiYwYMQKxWMzo0aMNwuw1Gi2/Xkrg1s1kABRKJTt3HOHEyYkAfPbZZwQHB+uvx+HDh/n444/x9PQ06Kx4/PhxunfvXunX4Vli+5Ncv379mSV1Li6WJCfnl3MjmZoZo9VoMDGWYmwsIzTsAFOnvsH8+brv3/jx40lISMDNzY3q1avj4uLCzZs38fX1ZeXKlUyZMqWcyPxXcuTgbeLjdc5g3f1FSm6Omp933qS7fw8ePXrEzZs3yc3N5b333tN3Sy0Thxo0aABgULK7aNEiAgICBAFJQEDgP40gIgkICAj8DZhbGGFuYfSn9mFrZ4qJqRxlbkm5dRKJmEaNq/yp/f9b0Gg0PEzI1bWaVpTow7Ib1WnLzYtJGEttsDBy4Oj1pQxsvoTbiSeJy7iCSl2CkdSUBtX9ydVEk5qaSkJCAr179+bzzz8nNDRUH1D9ZBljYmLi33Kezq7WLN40iLjoDLIzCnGqZkXV37K6/k569qrLzh3XKS1RoVSqEYl0n7+aNW1RqzVERaZw/PhuvQvj2rVrfPnll+zYsYORI0cyffp0bt26xcmTJ8nNzQXg2LFjbN68mVOnTpGVlU1aaiEN6rfhUvgpnJxcGT92jv74K7/dRVf/OsybNw+1WkNGZhEqpQZLSxMOHNhuIGpMnz79H5UtU1kolWqKipSIxSI2b/5Rf62XLVuGvb0rRtLahP8aRFraI0zNLBFLZKSkxvLd99OoUqUK63+ag0KhoHfv3mRkZJTryHbv3j2srKx4+PAhN27coEuXLnz44Yf06tULABsbY1JS8suNq7CwADMzc7KyiggLC2PatGlERkZib2/Pw4cP0Wg0RERE6Lc/fvw49erV0+fk2NvbV+p1klbgoGncsD2NG7ZHIhHRpq07YrEYLy8vVKrHpaM2NjYEBgYiFovp1asX7u7uVK1a9Zlh5+dCHnD/boY+xPzCheM0auDLgT0R5YR/eJwVNm3aNI4ePcqAAbq28gcOHGDmzJmVcObleVJsrwhvb+9nltRZWRnj5GRBaqqhkKTVaikuVpKVUYhGo2LPnmP06TMcgPDwcCQSCWfOnGHJkiUoFAreeOMNtmzZ8qdD41+GrKwiEuJzUD8RNF9SWoSxkanOoRQQyIKFs8p1S30ybL+ihz+bNm1iypQp7Nq1q9I/vwICAgL/FAQRSUBAQOBfikgkomfvuuz9OULf9Q1A8lvmStPm5R0t/zXiYrM4dPC2PnS6tLSUL5ftx7+7F0292tHAtTuPMm9RYpKPnYU7RYossgsT8XBoyYO085ga2dCkRk8yzSVkZqcCkJCQQH5++QnxPwGRSIRHXQc8+OfkVplbGDFuQgvuRqcTF5uFXC5BrVaTkpRHemo+KpWKXbuO0LpVXwCaNGmCh4cHb775Ji4uLjRv3pxbt27h6OjIzp07mTRpkl5YcHBwYMeOHfTq+ToqtYLZs9by1YppFBTkYm5uhUQqNsgSk0jEODma639+GYffvwmtVktCQg4ZGYWIRCKUSiWHD59k1Cid42X48OGMHfM2o0bM4dfLAQwZNJXbkeHk5KRw+fIpvL3bUsPDiRYtm7F161auXbvGa6+9Vq4j25EjR/j111/1okOtWrX0AhLonDciEeXKa69evcT33y9DLjeiW7dO+twgqVTKmDFj8PHxoU2bNshkMvLz8/niiy84duwYt2/f5v3333/pDLpnUbuOA7dvppTrUFeGR027CpcXFBTQq1cvFAoFXbp0+d3GA4WFCu5FpxuIK6mpCVx5dI+zoQdJeHhHXwYHuntWWbdNS0tLvatFqVQSFRVVqR3f8vNLyc4uJiUl36AzZZMmTThz5gyfffaZPkdt7Nixv52PYUndsmXLOHz4MEZGRixb9j1qtTmlpSpKipXk55Wg/C3T7ey5Y7Rp7c+1K49QqTTExMTQpEkTAJo1a8aFCxcq7bxehqTEPJ6+PcTGRnDy9EakUjnejVvQqlUrmjRpYtAt9Y9cqK6urnz33XeMHDmSvXv36kP8BQQEBP5LCCKSgICAwL8Yd3dbRo5qRui5GB4m5CKViWnYsAqtfdwwNv5v3+KzsorYt/emgYAmEklJTirh0N7beFRpQmFJNtkFj1Coiqjr0pHU3Pto0ZJREIuxzAKxCNr3rEPn1/xp0qQJgwcPpkqVKgalKf/P3Lp1izfeeMOgc1RFwoxUKsarvhNe9Z24cT2RM6d+Ze++NUyasJDQ87/QskVX7t9Np6hIF1g9efJkPDw8iI+P1++jrDSkatWq5OTkGCxr0rQORrLqSKVirK0dKCktwMrKmmbNqlHF2bLCsf9eWUxZZtDevXvZsGEDc+bM4a233mLPnj0sXbqUiRN1IsyePXv48ssvEYlEfPzxx/Tr1+/FL+JfyMOHuWRmFqHV6gSlY8f20q1bPx48yESj0YVV5+ZmU1CQS1FRPmZmdhQXqwgM2o9MZkThg5s8euRA9N0o8vPziYqKIj09nWnTpuHp6UlaWhpWVlYcOHCATZs2MW3aNC5evEh6ejqpqalPiEISRCJROZdN+/Z+tG/vh4mJjFq1dAJNmRA1ceJEJk+ezKVLl9i4cSMWFhYEBQUB0KJFi0oXkAAcHc2pWcuOB/czDYQkqVRMI28XLJ7hDrW0tOTcuXPPdYzkpDzEYpGBiDSw/1v6n7/9/m2mTZvG7t27AThx4gQrVqwAoHbt2vpspcDAQAPXy59BpdJw7Voi2dk616pSKWb16l9o1KgqU6eO0XfvrIgnS+pSUlIIDAwkLCyM0NBQNm5cyerVq8nOLuL0ibsG+WjJyfHEJUQTELiP2LjbREdHk5SUBMC1a9f02/1dQq9cLil37Hp1W1Ovri7Uu56XrvvmuHHjaNWqFTdu3MDMzIwWLVqwePFig6YFZU6qTZs2kZWVxeTJk1EoFHz77bfMmTOHv4ItW7awefNm1Go127dvZ8GCBdy5c4fdu3eXEznj4uKYO3fu7zrPBAQEBF6E//YMQ0BAQOD/gCrOFgx+rfKeVv9b+DX8IZqnQp1LS4sAUzKyi0nOuUedKp0QIUKhLEYiFXMlbi8yqSm1qrTC1s4SlTSbw+e/offYdaxcuZLvvvuOe/fusWXLlr/npP4hlJSo0Gg0eHp6Vtg56llotVpu3UhGrXo8gU5JSeDho3uEhBwgNk7nwrh48SLffvst8+fPZ8OGDYDhZLJMjChbJpWKae3jTqNGddizz5SGDZ3p4OuNicmL5448mRlUpUoV/SRv3rx5tGzZ0qCM6euvvyY4OBiRSET37t3/USKSWq0hPb3AwP0THx/D3bu32bdvG5GRt1m5ciWdO/mzeevn1PfyobhYd249u08g6s4lfDu+Rv36zfjo4140bNiQ7OxsjI2NadmyJQEBAURHR+tzkWbNmkV0dDQPHz4kJCSExYsX89133wEgFouwtzcrNx4AkQicnMq7MVauXMnBgwdRKBR/iWD0LDp3rY1LNSuuX0mksFCBpZUxzZpXo2btyik9kkrEwLOFkRVf6VrXl4mc/fr1q/Bz5e/vj7+/f6WM6datFLKzHweKSyQyJBIZd+9m07lzN7Kzs/XbarVag+/ikyV1cXFxNGrUCIDmzZuzaNEiAAryFYjEwOPYMoYNfUf/82dLJ7FgwQLGjh2Ln58fbm5uuLq6AlC9enUGDRrE4sWLK+VcnxePGrZoKigtBF1w+JMOx6dL/35PGFq0aBGffPIJdevWrbzBPkViYqI+wLuMsm5/AgICAq8CQUQSEBAQEPhXkvgwF81TVSmxcRGcPvMTUpkce/MaOFrVwM7ClVJVEW6OTbG1cKW5Z29mLZxMWtFNVq9eTZcuXbhw4QJr167F1NSUEydOUKOGLlz9/+2f8tSUfAJO3yM9rQCRCMzMjejYqQa1ajvoO0d98skn+nyYjRs34u7uzjvvvMP169exsLCgZ7cZAGTnpLNy1Uzy8rJ4Y+InONi7sPSLN6lWrRpubm5MnTqVd999l9OnTz/X2EQiEU5OFtjYmlKztv1zC0hxMVlcv5pIXl4JZuZybt4+wejRo1mwYIHBE3pnZ+dyr61Tpw6FhYWAzo3yT6K4WFXO/TNt2uPufJMmDWTatGnExSbx3feL6df3Xf06qVTG6JHz2bRlAdbW9kyePBNrazEajYYJEyYgkUjK5SJZWVnRokULTE1N6dy5s949U4ajoxlqtYasrCK9CKHVgouLRYUOnxkzZjBjxoxKux7Pi0gkop6XE/W8nP6S/VetblVh7hHoxNA69Rz/kuM+C4VCRVpaoUFHuqKiAkxNzdFotAQEhLBgwSzWrVsHwM2bN/VC0dMlde7u7noB9vLly9SsWRMAcws52oorBBGJYP26fQB6905wcLDevbNjxw79tq/yfiuTSfDvUYeTv0QbuNJkMjHV3Wy4fTuFwIAHKFRZBAQE6kv/BgwYoL9nrFu3jo0bN+Lr68vFixcJDg7m1q1bLFmyhIcPH7JkyRKDxhZ/Bq1Wy91bqcTcSSco9DDFRaX4+fnh5eWFubm5vtvfvn37GDJkCAqFAmtra7p3746vry+JiYn069eP1NRUdu7ciYeHR6WMS0BA4P8TQUQSEBAQEPhXYmomJ+XWLfYfXI5YJMHOzgW/TqNxcHBj1Ih5SIuURIU/om61TtxN0pWidG70BuH3dzJv2TVGjx5l8CT3yYyX/0cyMgrZs+u6QfeqvNwSvvh8PcHnttCgQT3S09NJTEwkODiYqKgofelXYWEhZ8+eZevWrRw9dJBmTf3Iy8vk/enfEp8QzfGTWxk9YhYL5q5nwIAW+uDgb7/9ttw4Fi5c+LvLniwj+SN+vZTAzRvJ+kliYWEJx46dpovfkOd6/cCBA2natCkajYaffvrpuY/7KpBKReVcP0+ybZuuE6OVtQlt2/piYW6NVgstW/QAoKSkiDcnfQnAnn3bWbL0I27evMnEiRNJT08vl4sEkJaWhlqt5vr16+UmoSKRCBcXSxwdzSgsVCISgbm5EWLxfzuX6mlkMgk+7T04fy62XMmco5M5bu62L7S/5+mk9nsUFuoC158UkW7dusLWrd8ik8lp1Kg5LVq0YOHChfTs2dOgO9zTJXVVqlShU6dO+Pj4IJfL9Q4yGxtTzC3k5OWWlPtMisUi6tR9tcLZ81LPywkbGxMuXUggLbUAMzM5VVwsuHghAbVai0ajRa1W8sbEdXTpUo/Pv3gHPz8/AFQqFRs2bCAsLIzw8HAuXrwIwPnz57l69Sq2trYMGjSonDD2vCXCT1KYX8qKeSfZcfBLcvLTkMuMMZab88PKHzl9fjMtWrSgYcOGHD16lN27d+Pj48NHH33ElClT9PtISUnh9OnTXLlyhWXLlrFmzZpKvpoCAgL/TwgikoCAgIDAvw6NRot3ExceJmTy1pvfA7Bn3zIKi3TdvUxMpEx4x4fda8I5f+oeresPQKXUEJ14nOMB+/Gs5/43jv6fyYXQuHLtzwHq1fWhVctOXLu5jcjISIKDg/H19QXA2dmZBw8e0LRpU0CXZbNnzzHEEqhatSYSiZTq1WqTlvYIiURE3b/I/VER+fmlRFxPMsimuXjpBC2adSH6Tvozw5WfZN68edy+fRuAnj176vNq/gkYG8swMpJQUqIqt04kAgcHM+7cucPEiROZMf1jUpMlKBSP641iYiM4fmIDUqmM+vWb0q5dO5YsWcLgwYNZt24dvXr1okOHDkgkEjp37sy8efOYNGkSvr6+iMXiZ4p5UqkEK6tnZ+z8P1DPywlLS2Muhz8kK7MQI2MpDRo6U79hlZcS1f6ok9rvYWwsNRCQAFq27EjLlh0BsLY2RiwWc/z48XKvraikbvbs2cyePbvcth19a3Lm1F0UCjUqlQaxWIRIBE2aVcPWztRgW19fX/095O+mirMl/QbqstcUpSq++iLE4D4okcgBOBsSh69vV44ePQpARkYGbm5uSKVSmjVrpt/e09OTevXqASAWl+8GWKdOnRcqEQbY9E0YF8KDsDR1plOTN9kdMBsXu3oc3XmDhp28iYqK0m8bGxurd5J5e3vrlzds2BCpVIq3tzf3799/7usjICAgUBGCiCQgICAg8K9BrdaQk11MaakKS0s5bu52PEzIRaXSIJXIEYm0FBRkcuzEMtb/9IhDhw7RspsDs2d/zLqf1jNg8Ho+mvMehYWFrFy5Ek9Pz7/7lP4xxMdnl1umUimQSuUUFioxMTEjJSWFbt266btLKZVKrl27pndHXL58mdatG2FtbUpSUgwajZqHj+7h5FQNB0dzmjQrH1j+Mk/mn4fYmMxyroiUtHge6btkRXHkyJHf3YeRkRGmpqaIRCIUCsWfHlNlU6OGLXfupKPVavXnKhaLMDOTY29vhqNjXUJDQ1GrNaxdZdgNy6tea7zqtUYqFdOmrTsSiYSTJ0/q148bN45x48YZvGbo0KEMHTr0Lz+v/wJVq1lRtZrVS702J6eYR49yUSrVFBfnGXRSUygUNGjQgF69enHw4EEePHhAeHg469atY/fu3Rw/fpwDBw7Qq1cv5s+fz969exk4cBoJCUl899185s37Xn8ciUSEu7tNpZyvmbkRffo3IPFRDpkZRRgZS3Fzt8HUVF4p+38V3LmTXu7eU1pahJGRKRqNlpMngli85GMiIyOxt7cnPj4etVptEBTu6elJcnIylpaWqFQq1GoNubklFBSUAmBqKsfaWoxUKsHIyIhTp06RkZFBjx49OHz4MNHR0bz99tuMHz+e1NRUrK1scZb0JSn9LjWrtgSgmkMDkjLuoCjtzeG9Ibw+7nHZqYeHBzdv3qRnz55EREToBapbt26hVqu5ceOGvgxRQEBA4GURRCQBAQEBgX8FGo2W9LSCJ56qi2jbzp1dO/fx/eqlVHFypU2bOpwN1XD48AF27tzJvn376NevH6bmRig1RURERHD//n3S0tKYOXMmBw8e/DtP6R+FuALh5k50OMFn9yASQbv2TVm2bClLly7F19cXkUjEsGHDeOONN9i8eTPt27fHwsKCHTt2kJWVzYZNVflpyzxycrJYt+4nfNp6VSgOvcyT+edBpdSUc2AM6j9V//MPa6bRp08fLl26BMDixYvZsWMHWq2WpKQk5s+fz5QpU2jbti0Ab7zxxp8eU2VjaiqnQYMqpKbmk5dXikQiwsHBHFtbE4NrLZGI6dipJkEB9w0cWGKxCFNTGQ0bVfk7hi9A+XK15cu3kJSUq3fQqdUihgyZTM2adpw4cYyZM2eyYcMG0tPTWb16Nfv27UMsFnPx4kUuX76MTCZDqVQikUho1aoVs2fPZtGiKuzZs4UOHbrrjyuRiKhSxaLC0POXRSwWUd3VhuqulSNMvWoKCxQGHeYA4hNuERS8CYlUTvNmLZ/oSChl3Lhx+Pj40LFjR/32ixYtYtiwYRQXFzN37jwePco12GdeXgkHDhzkm2+WUqeOJzNmzODLL7+kR48e7N+/nwULFrB+/Xr69u3LsGHD+GTBF1w6cxmFsgi51AQAG8uqZBckcejcYiwtrRk8+AdWrVoFQP/+/RkyZAj+/v6Ym5sjk+my4xwdHenfvz/p6els3779L72OAgIC/30EEUlAQEBA4F9BUZGinCggEokYNnwww4YPZsnSOaSmR9CgQX3EYjFVq1Y1sO1bW1vj5eXF1q1b2b9/P6WlpYwcOdKgTOT/uRVy7Tr23L6VYhCQ26B+OxrUb4e9gxmjxjYHdJ2Jnu5O9MMPPxj8bm1tzYULzw7J1Wq1pKbkU1KiwsHBnN/mOc8V3m1pacn27dsxNTWle/fuKJVKHBwc+Pnnnw1albtUtUQqFVdYtiaTiTly+DSu7jb697qi8xo7dixjx479w2v3dyKXS9izZyP79+83yF8pCy9euHAhn3/+OUePHsXc3IbBA2dRkK9BJhNTt54TPu3ckcv/+N/Bpx1j8+fPZ968ec/8rsTFxbFw4cIXyrD6f6WsXC0lJZ8bNwxLMCUSGWKxlMTEPHr37k1iYiJZWVkUFBRQXFxMtWrVaNu2LceOHaO4uJjGjRuze/dumjRpAkD79u25ejWc6OgLfP31jxQV6UoOq1a1xNrauFJcf/8VqjhbIJGIUasfl3161m6JZ+2WyGRiuvp7UlpahImJTsyZPHkykydPBtCX53l5eelDwzMyCsjLKy13HD+/7vTq1ZulS+cSGRnJgwcPKC4uJjExEQ8PD6Kiorhy5Qpr166loKAIM3Vd5DJTFKpiAJSqYup7+OHh3BTPBk7I5XL9d9/IyIj9+/cjlUqZMmUKNWrUwN3dXT8mAQEBgcqgfLGugICAgIDAP5CSEmW5ZaWlun/QRSIwNTXHxMSkwlbxACYmJpiamnLlyhUUCgXm5pX3BP6/QBsfd4yNZDw9p5RKxfh1rV1px0lKzGX9movs3R3BscORbFh3kQXzfqBBgwakpaUZhHf/8MMPLF26lF9//VUf3j106FDWrFmDVCrl6NGjnD17lnr16hEYGGhwHKcqFtjamZbLoBGLRZibG1HN1brSzunvpLS0VN8xqyKSk5M5d+4coaGhTJo0lsLiK0x/vwNT32mHX9faGBk9X35RmWPs3DldSH1GRkaljP+vIi4uDicnJ3x9ffVZVhMnTqRdu3aEhITg4+ND+/btGTduHFqtlri4OEaOHPlKxpafX8qv4Qn8cjSS8+diOH78BJaWljRrVp/33htOeHgwABcunGHXrjVotXDx4jk+/fRTvv/+e/r06cP69etJS0vDx8eHrKwsTp06hZOTE23btuWrr77Cx8cHgBEjRvD1119jbW2Np6cL3t4uNGjgRG5uKlWqVNFfn5SUFBYvXgzAa6+9RseOHWnXrh3R0dGATiRRqcrnb/2XcPewwcKy4jB4iURMPS97Jk2axKBBg55rfwUF5Utgy/5mlZSosLCwwMTEBF9fX+bPn68PMa9Tpw4zZ84kODiYy5fD6e0/FGe72iSm6/LZEtMjcbSpgdxIQtf+XuWO0atXL9q2bUtRUVGldYcTEBAQeBJBRBIQEBAQ+FdQ0RPz4OAzDBrUk4GDepKWllYu+Fir1ZKXV0JBgYKEhGzq1vUiIiKCO3fuMGPGDJKSkhg8eDDNmjXj0aNH+tcplUqGDx9OSEgIK1eu5IcffqCoqAhfX1/y8/P/8nP9OzC3MGLEmGZ4NaiCXC5BKhXjUcOW14c3waXqy2W7PE1ubgn790RQUKBAqVSjUKhRq7XY2zbiy8/3ULVqVYPw7ilTppCXl2cQ3t28eXPu379PYWEhEyZMoGPHjuzdu5ekpCSDY4lEInr19cKjpi0SiQiZTIxEIqK6qzV9BtR/5V3DVqxYQbt27QyWlTmFAD7//HPatWvHoEGDKCws/N19ZSbnc/d6MrmZRaxfv54xY8bo140fP54uXbqwdetWABISEvDy0k00vb29uXBBl43UunVrpkyZwgcffPC7x1Io1JSWqpBKH7uVjIyMUKvV+rbhrVu3JjY2FoD58+fTvn17VqxYAcClS5f48MMPAZ3wNHDgwN89XmXStWtXgoOD9Zld0dHRhIaG4uPjYyCIXb58+ZWNKS01n+PHonhwL4PcnBJUKlMWzf+JvT+HUb16DeRyI44f3w1AaOhJHByqsGPH99y8+SuDB79O/fr1qVu3Lrdu3eK1117j1KlTfP7558jlctq2bUvLli25c+cOrVu3BnQZPQkJCbz22mv6MaiUajQarcH1qVKlCuPGjaNp06YcOnSIgIAAFi9ezHfffWcw/oMHD5KVlQVAZGQkbdu2pW3btsybN+8VXcG/DpFIxJixzXB0NEcmEyOXS5DLJVhaGTF2QnPMzU04e/Ys3bt3L/faipw+TztnAc6eDWDYsD4MG9aH1NRUunXrxpAhQ/j6668ZPHgwoCudPXDgAH5+fnTu3JmmfmY0bdiOnMIkDpz9FGf72lhb2tGpd13qN6ta7hgnT54kLCxM3z1PQEBAoLIRytkEBAQEBP4VmJrKUZSqDMKS/f174e/fC9B12RGLRfrymvbtO+DgUI/SUhVz564gKSmHu3fjOHAgmLFj+9GoUSOys7M5c+aMQX6SUqlk7NixvPHGG3Ts2JEOHTrQs2dPzp8/z4cffoiFhcXfcfqvBAsLI7p1r0O37nX+kv1fu/LIoFQHdOHdIOfe3XSMjU2fK7y7Zs2anDx5Ek9PT3bs2MGcOXMMXGdlyGQS/Lp6UlqqorBAgamZDGNj2V9ybr/Hi7iF9u3bx/r163n33XfLbZedVsDXM37h7vVkZHIJpSUK7ij3c/FaAADh4eFIJBLOnDnDkiVLUCgU1KhRg/DwcFQqFYGBgWRn6wLUMzIymDNnDtWqlQ87BygoKCU2NpviYiUikQiJRMTt26EsW/Ypnp6e2NnZlWsbvmDBAsLDwzl37hw7duzg1KlT+lwerVbLvn379BPlvwKVUs3d68molRrkNgqDQOrMzEwiIiLo3bu3vsMWPC6hLCkp0Ytiqamp7Ny5Ew8Pj0odn0ajJfRcLOonSixlMjl2dlXJzVHTtq0fJ08eQqVS8sUXH3D1ahgymZwaNerSsqUvQUF7AFAoFJiYmNCwYUPMzc31WWRl96aSkhKD49rZ2dGjRw+i76QRdi6OvLwSsrJTOH78ND4+bRkyZDADBgxg9uzZBAQEMGDAAAAKCgr0nb5A163wxx9/5P3332f27NmsWbOGpUuX0qFDB7p27UpOTg7W1taVes1eNRaWxrz5VmuSk/PISC/E0tIYVzfrlyr7MzaWluue2LVrT7p27YlEIsbVVbdfLy8vA5eXiYlJuTJR384ahvzakrs3UzExl9OygwdOVS1f7iQFBAQE/iSCE0lAQEBA4F+BsbEUmayC0hsRWFoZl3OWxMfnUFKi1D8N/uWXffj79yMvrxilUpd54eXlpc9PysnJAeDs2bPIZDJ9xoVIJGLkyJFcvnyZXr16/WXn9//Ao4Scck/n70SH8/3qd1m56h0SEhKZNm2avsymU6dO/PTTT7Rs2RITExPat2/Pjh07mDx5Mq1ateLw4cP07t2buLi43z2ukZEUWzvTVyIgaTRablxIYNWiAL6ZfZKgw1GsXrX2pdxC69ato3Xr1nz00Ud07NiR2UN2EXU5EWWpmqJ8BQ8yL2FZWofPJuwHICYmRp+FU9Z23MHBgZEjR9KlSxfu3bunDwZ2dHR8poBUXKwkKiqdoiIlWq3unJRKDXXrtiUo6CJVq1bl6NGj5dqGx8fH60WHJ9uet2/fnrCwMI4cOUK/fv0q7Vo/ybkjUYxptopPx+1n6ZsHmdP/MMve30ZgYCBnzpzhtddeo2HDhnoB6fDhw/oSSjs7OwBSUlLYt28f3377LcuWLav0MWZmFBoISADFxTrXmUqlITQ0AI1GQ716Tbhz5zqjR7+Ls7MrAJaWxiQmJtKmTRuuXr2KtfVjYcPKykovDj5Nr1698PPzI+p2BqdO3CU3twStFizMbZn5/hZGDV/GiROnSE7OAETY2Nig0Wjo2LEj06ZN4/Lly7Rt25YbN27Qvn17JBIJS5cu5csvv6R+/frk5ubqM4SMjIxe6rqUufQqKik8cuQIrVu3pk2bNixfvvyl9v8yODtb0rCRM27uNi+dG2VjY1quPBh05ddPh9//ERKJGO/Wrrw2qQV9hjUWBCQBAYG/FcGJJCAgICDwr0AkEmFnb0ZBQSmFhQq0Gi1SqQQLS6Ny4oBarSE7u8jAtRQfH8Pdu7fZt28bUVG69u4V5Sf5+fnh6urKypUrmTZtGoWFhaxfv57XXnuNzZs3G4gBZTzdYanMNfMkSUlJjBw5kpKSEj755BO6dOlSSVfm34OxSXkRx8W5JmnpCVRxciMlJYmEhASioqLKlYfcuHHDIDi6qKgIgDNnzlBQUGBQbvV3oVJpWDnvNA9up1H6mwPhzs0kgiJ2cOHKi7mFVCoVGzZsICwsjPDwcE4eCyRfXIzmCSdXgTKdRwXXeXD8PEWiZKKjo/VlfU+2HZ80aRKTJk1i06ZNenFHLH72c8RHj3LLiX0KRSlyuREJCbn6LJen24a7ublx8+bNcscfMWIEs2fPxsrKCjMzsz9ziSsk4nwC3394Un/Nyzjy4w3sHGzo3bs3t27dMljXt29f+vbty7Rp0zh69ChNmjQpJ4pVNgqFqgIR9Rp79q1GLBaTk5PBqVNn2bp1D5mZabRv3537928RG3ubatWsqFOnDs7OzqxcuVIf6AyQl5f3TAfQsWPHUKk0rPnhgkHIvFQq/21MWtxcm7Ft2x5yckqIjExDJBIREhLC7t27mTVrFo8ePcLX15cuXbrQo0cPoqKi+PDDD7l37x69e/dmxowZDB8+XB84/SL8kUuvcePGhIWFIRaL8fX1ZeLEiVhZVU557V+NiYkMR0cLMjIedxUViUTY2ppiYWH8N49OQEBA4OURnEgCAgICAv8aRCIRFhbGVKliibOLFQ6O5hW6S9RqTbmnvNOmfczKldtZuXIbNWp40qdPn2ce55NPPiEqKopdu3YxZ84cPvroIxYsWMC2bdtITU2t8DVP5688zeeff85nn33GqVOn+Oyzz17grP87NPZ2QSYr/6+HZ+1mfPj+KoKDA557X7a2tgQEBOizX/4JhBy9w/1bqQZiRmTsOdztWrJpuS5/53ndQhkZGbi5uSGVSmnWrBmFuaWUFBqGyzew6007lzdpX/VNqjq5s2DBAkpLS/Hz8+Pu3bv67YYMGYKfnx83btxgyJAhf3geubnlO0pdvBjClClDmDRpEMnJupLDsrbh77zzDjNnzsTZ2ZlmzZrRvn17A8GvolyeymT7V+fKCUhKTQmlxSp2fhNGaGgYNWvW1K8rCzcGsLS01IsfT4tilY2NrWk5EamJdzs+XbgZC3Nr3pm6jCZNPPH3b46zswutWtVBqUymc2cf3nzzDcRiMQsXLtSHYdevX5/CwkLy8vKwtHy2MyUlJb+cI6akRCfCajRabtz4laZN26LV8luGXClarZb09HS9cw3KC49lnSzv3r3LzZs3/9ARqD92kZKUhByKCxXlMr3AMJPO1dUViUTyW0mlBLFYzKZNm1i/fj0ACxcu/Ed3HjMzk+PqakPVqla4uFjh5maDpaUgIAkICPy7+fsf2wkICAgICFQyUunvd5zatu0w7u5V9LkTvr6++vK1smWrVq0CYOjQofrXnT59Wt/1qV69eshkMg4f/gWlUm2QvzJjxgzmzp1LUFCQvuXy5s2b+fbbb38TwizIz89n+fLlPHr0iLi4ONzd3fUTo/8qtTztiYq04cH9TBQKNYhAq4UHD66z4af3KSwZwoABA343m+add97Bx8eHoUOHYmz8z5qMBR6MRFGqNliWW5RCTGoCURuCyFc+em63kL29PfHx8ajVaq5du4ZYKkIsFlUY1iuViflmwRYANm3aVG79nj17yi17UuR5GrEY1IanQYcO3ejQoRsiEXh7OyOXSyucvD9LIC3L5fkriLmdVm5ZVmksUTknkabKGN6mH61atdKvO3HihD74u3bt2nTr1o2EhAS9KJaens727dsrfZympnLUKg1iichA5L4UfoaY2Eh27v6OI7/8gFKpwMurLhMmDMbNzQ1XV9dy+5o5cyajR4+muLiYRYsW/e5xKyqaiomN4MTJDUilMmrX9sbW1h7QOc7u3o3E19cPpbIEFxcX/Wu0Wi0ymUzv2tRqtdja2iIWi7GysvrDpgOlJUq2LA/l0pkHiCViVEoF19N/JjT8sfD+dCZdGcePH6dWrVr/ykw6kUiEXC5MuQQEBP47CHc0AQEBAYH/HGKxCHt7M9LTC3g6b1ksFuHs/OfyJLp06cLXK9aiUqnJzipCKrHg3LkruLjYMmjQAJo2bUpMTAxhYWEGgc8VZZjUr1+f9evX061bt/9EMO3vUVqqIjW1AKVKg/o3McTYxJoVyw8ycnRLBgzoj5+fX7nA5jVr1gDw7rvv0qZNGwNh759EQZ6hg+dm/ElSc+7Rp8XHGJnICE/6gQULFjB27Fjq1atHenq6vqPgkCFDyMrKolGjRixfvhyxWMy4cePw8fGhY8eOWNubIS2SoCgp32Zdo9HSqlutSjsPOztTUlPLf3dAl032ohPislweuVxeSSN8akymMpRPiXdOJvVwMqmHVCZm2edvA4+Fs379+pXLZnJ3d38ljhaJVIRKpUEieezqad3Kn6ZN/BCLRIwc29xgXXBwsH5cTwp/1apVIzAw8LmOWcVZJ7wEh+zm5q1zjBg2h6vXzvDe9B8Ri3UdCy9cOMKlSyH07Nnst7B7EStXruTw4cN4eHiQnZ1NYWEh/v7+xMTEsGbNGmbNmsWoUaOQSCTUq1ePhg0bPnMMWq2W5e8fJyYyDaVCDai5l3oeW+P6LH37iH67s2fP4u/vrxf1Qefe++KLL/R5VhWVIQsICAgIvDoEEUlAQEBA4D9JtWpWlJaqyM8vNZhoODiYYWv7YtkdGo2W25cfkfIwl1JNDgEBQfTp040ePXpTv0EjQs+FMHPmXNas2YCtrS2XLl3i4sWLdOrUia5du/Lxxx8b7O/JDJMGDRoA4OLiQm5u7r9eRFqxYgX79++v0Oly8ng0WVlFBh3axGIZGekKrl9LJjMzk82bN1eYTXP37l2MjY355ptv/vQYnyfDqozPP/+cUaNGYW5uzogRIygoKKB///5Mnz693LZV3W24d0tX7qjWKMnKf6hfp9VqCQ3VlbRt2rSJbt26ce3aNb2bqiK30OTJk/XZN76+vvj1akDg3tuUFj8uazMykTLsvXZY2Zm++IX4jUuXLjFjxgwkEgnNmzfniy++IitLF0D/5BxdLBbh4WH7wvs/duzYS4/teejyWkOO/nT1N3HiMWKxiAZtXDEx/2vEq5ehfgNnrl19hFKhRCwWoQW0Gi1isYgatewMBKTKQiIR09qnKlu2xhiuEOlcbHYOJhw7tod581bg49OJt956jXXrtlC/vhve3t48evSIBw8eYG1tzeDBgw067J0/f/65xvDgdhpxd9IN3qO84lTiMq8QnXyOXGUCR44cKZdJl5+fz5AhQ9BqtXTv3p1atWrh5+fHiRMnmDhxIteuXePIkSOYm5tjaWnJzp07/5VuJQEBAYF/E0ImkoCAgIDAfxKxWETt2vbUretI1apWVKtmTYMGVahe/cXaNack5PD+4O18P/c0u3+4yME1t+nTcAFff76Zc6EhREXdRqHQOVC0Wi13794jJycHJycngoKC9O3NzczMuHDhQrkMk//SU/XfC8lVKtXciUo3EJB0rylCpdLw66WHpKen06ZNmwqzaTw9PRk2bBgffvhhpYz1jzKsyvjoo4+oWrUq69atY8SIEQQHB3P27FkyMjIMttNqtfgOqIe9qyWmVkZEJ56ltktbABKzbxAc/Q3d/LtgYmLC3r17CQ8Px9/fn/v37zN37lw6dOjAtGnTGDt27DPHMmF+J95d3p26TV2wc7agcTs3Zq/rT59xTV/o3C9duoSPjw/t27dnxowZuLm5ERgYyLlz50hLS+POnUgaNHDCyckcqVSMRCLCxsaE+vUdsbB4uQ5cfyVD3m6NY3Ur5CaPn43KjCSYWxszZXHXl95vUlISTZs2xdjY2KAF+++RkpKCr68vHTt2ZPz48eXWN2hUBWdnS6RSMRqNVtcgQCbG2saE1m3cy23v6+vLwoULX3jsWq2WnJxiklPyycgoJOz8Uaa98wZSqe5ff12HMCMOHv6CyMhrbNx4mLZtOyMSiRCLJTg46ISYijKLXobIK4nlRL5m7gPp6vUOneu+jbO9uz6nriyTbvv2HXzzzbekpaVhaWmJRCIhPz+fatWqcebMGfr27YtIJGLOnDmcPXuWfv36VVjOKSAgICBQuQhOJAEBAQGB/zSmpjJMTV+utbtapWHpO0fIySyCp/SdzZ+fw7dDF3Jys0hMSqRHz47k5eVRu3ZtPvroIwICAnBwcMDFxYWQkBCqVavGnDlznivD5N+AQqHifHAMl87GoShV4eFpT0LaWcaMGcP8+fMBDHKhNm3awZ59yzCSm/EoMRpPz5bk52dx796vaDQqLK3ssbAw4dixYyQmJuLl5YWNjY1BNs2ECRNYunQpy5Yt47333qNHjx7cuHEDf39/lixZYpB78yRarZbomymEnblPQV4pFvZKAgMD9RlWcrkcNzc3PD09ad26NZmZmSxYsIDevXuzatUq5s6dS0xMDD179gR0JYiXL1+me/fugC6M+PiRKPLzS/Fo4kxJiYKQ6Ee0rNmLqzEHGfzaIMa8t4Iff1xH165dGTx4MN9//z1nzpwhPT2dq1evcvbsWXbv3s3x48crPIeykqZW3WrTqlvtP/Xeubm5cerUaTIzSnl72iTu30ugXfsqAEilUjQaDd27d0OpVOLg4MDPP/+MRCLhk08+ITAwELFYzMaNGwEYN24clpaWFeZXvSpMLYxYfmQkAT/fImDvbdRKNW16etJzlDeWti/v0CoLbx8wYMBzv2bHjh2MHz+e0aNHM2nSJG7cuEHjxo3168ViMV271yElOZ+YBxloNFrc3G2pVt0asfjlWsk/TWmpinv3M9FotGg0WlQqFUePnWL37t2sWbuc8ZNacvfBfg4dWc6gQSNp0uRxOP3Fi8F4etbG0dEWpVJJSEgIU6dO1X+nXxaZXIJYUnGml1gsYvGsH3F3d2fbtm0UFSkYNXIW6emFeDf2Zt3awdSp44BHDVumTJnCli1bEIvF5OXlsWfPHhwcHADdZ1ci0eXhtWnThmbNmhEaGsrnn3+u/64KCAgICPx5BCeSgICAgIDAM7hxIYGSIqWBgKRUlQC6DnBnTgTi69sFU1NTjv8SQreuPRg4cDAymYxLly6RmJiIXC7H2toauVxOYGAgFy5c0OfgLFy4kC5dugC6Eid3d/c/PeZbt27pXSbjxo37S9xNSoWaVV+c5fThO2SmF5KfV8r18Hi2bjqIa1VdLsq1a9f0uVABAQG4uOgmeu7ujXhz0rdcv36a5s268+609VhaOjDnow00b96cvn376sv6Ll68qHcilZXHzZ49m1mzZiGTyThz5gzZ2dkEBAT8roC0bfVF1i8P5Ub4Ix7cSef6+UyGdFrG5g37OHPmDA0aNCAsLIzz58/TokULIiMjuX79ur6LGkCdOnUICQlBrVZz9uxZfaaVWq3h0L5b5OQUo1Jp0Gjh8tVTtG7VnQadPHCtZcf4D9vz66/hBAUFlSttjI+P15c0ent7V96b9ARFhQouhsWxa8dVdm6/yvWr2RzaH8X50Fhysks5G/IA78atadq0KSdPnqR+/focPXqULl26cPnyZZo1a8aJEydITEykRo0aFBcX0717d7755htSUlLYt28f3377LcuWLftLxv88GJvK6TW2KSuOjuLbk2MZ+q7PSwlIudnFnD11l9OHInkUm1euvHTu3Lm0bduWzp07k5OTw8CBA/H19cXT05NPP/2UunXr6gOm8/PzKyxPFYlEOLtY0rZ9Ddp3rImrm02lCUharZYHMVm6z+Jvgs3Ro3vo0b0/CQk5aDRaRCIRZ8+exdLSlGHD+mBpaYRcLiEnJ5m9e9fz448/ALB161aGDx9eKeNq3tHjmQ5QqUxMSz/d91yhUBESHPNbnp1OBFMo1Pz0007qeNYjLS2N2bNn652EZQJSQUEB69at0483MzOT+fPnc+zYMdauXVsp5/BnKGvIUNZZLy4ujpEjRxpsExwcjJubG76+vowePRoAlUrF0KFD6dSpEzNnzvzdY6xYsYJ27dqRkpLC4sWLK9zm888/JzExsXJOSkBA4P8WQUQSEBAQEBB4BomxWeWCjFPz7nH0+hIO/7oUucgS78ZNSU1NYdToIWRmZSCXSzh8+DDt27enTZs2lTYJe17q1KnD+fPnOXdOl79z+fLlSj/GpdA40lMLUCofl6fcvhtC3Rrt2P3TFUCXYeTj4wPoJs1SqQRbO1OqutQAwMLCFidHD6RSOWKxiLbt3YHHGVFlbdf/LLeuJnHj0kMUpU+8jxoJWrWUzd9doFevXjx69IibN28SHh7Oe++9x7lz59BoNMhkjx1skyZN4vz58/To0QMXFxd96/P42GwUCpVBdlBqWgJnQw/w9crp3ImOYtGiRcyZM4cff/yx3ETazc2NyMhIACIiIirlnJ+ksKCUI4duc+9eOopSNUqFmrTUAtRqLQ9iosnPz6GqS03Gj52PSilh6NCh/PLLLwwaNIjVq1djYmLC66+/zldffcXx48c5fvw4RkZG+pDsivKr/qk8XZ729EQ+6NgdPn3vKNPffZdf9t1k3MjpWFvaExOjyxJ6Whi1srJi//79HD58mOrVq/PGG2/QvHlzNm7cqM/bcnNze6XnWFioQKXSGCyLj3vAnj1beGvKcCIjbxtkD23Z8iP16jlSq5YFixd/wObNP2FmZgZAdHQ0q1evpnv37ty+fZuVK1e+9LgcXCzpOqQBRsaGRRByYyltutXGtZYdALGxOgHsae27efNOrFixH2dnF33AdhlarZbx48ezePFivWjn4OCAo6MjVatWJScn56XHXZk8TwntqFGjCA4OZssWXbfFAwcO0LhxY4KCgiguLn5mufCTpcRVqlRhzpw5FW5XVp4rICAg8GcQytkEBAQEBASegY2DGTIjCaXFjwWIarYNqWbbEKlMTOdB9RGLxWzbuheRCCwsjbCw0AUlv/766wb7+r2W6pVBYZGCkmIVRkZSpFKd28DIyAi1Wk3nzp2xt7fn3r17zJs3jzVr1lBUVMTJkyeRy+V07969XOnSk6Vo+/fvN3BUhIfGlcs3ycpNJC0mjog7p8jMieHu3btER0fz9tu6zlharRZnZwtc3WwoKhTDb8KSWCzC3MIIr/o6UeZF8qqeh3Mn76J4qnOXQlmMXGZCYYGC0yeD+OjjDxCLxeTk5ODr68v8+fPp3LmzwWvMzMzYtm0barWa4cOH07q1rgQoLa0ApdJw0j6g31v6n1f/+C5isZiHDx/St29fAIMuYM7Oznh7e9O+fXu8vLwMhKvK4NrVxHIiF0BBQS5bt3/J1ClLKCrKZ8GiMVhZ2fHLL8dRq9WYmZlhaWlJcXExmzdvxsPDg3r16tGvXz/eeustjh07xunTpyvMr/qn8nvlafciU/ll3y1USg0dmo1Fq4G67h2pYl+bwHCdk+VpYRR0n+tJkyaxZMkSnJycmDVrFh999BFDhgxh2rRpnD17lg4dOryycywtVZd7r9+dPlf/88QJA+jTpw+XLl3ik08+4a233mLXrl3ExsYSGxurz3H66aefDJxl7dq1Y9q0aX9qbK9NaYVHXQeObLlGenI+tg5m9BzhTdvuj8szk5Pyy5W8KZUKZDI5IpEImcwER0dH1OrH3+n58+fr3WFl/FOy5pJjsykuUqCSqggKCtKX0JZ9BpVKJWPGjOHNN98EYOfOnYSEhPDWW28xbNgwYmJiaNSoEaBzKl64cEFfHpmXV0JKcj4ymZgjR3foS4nj4uKYO3cuS5Ys0TuaIiMj2bdvHxs2bGDu3LnUqlV53RwFBAT+/xBEJAEBAQEBgWfQvGMNtqyoWPwRiUT4dPNEJhMjlYoxNzdCbvTq/6yWlqqIupNOUZESkQi0Wrh4MZAN67+kTp06PHz4kEuXLtGkSROqVKnC5s2bOXXqFEuWLOHkyZMMGDCAo0ePYmJiwty5cwkMDMTe3l7vuKhoAmbg6vmNjq10kxVjYynHwxYzb9485syZQ9u2bfVClEgkonvPulhZVWH3XhM6d6mFl1cVjvxiXOniURl5OSXlliWl3+HirT3IpHL8e/jRqlUrmjRpQk5ODkZGRkilUr1YUMaVK1f44IMPEIlEzJw5E1NTXamUiakMiURULjAcQCIRsWXzIRp7uzBv3jyDdU8KSQsXLkQqlbJ7926966WyiI/LLicqqNUq1v64gKFD3sHayp7tO1ZQVJSPs7MbuXmpWFhYcPr0aUpLS2nXrh1du3ZlxIgRTJs2jc8++4w9e/ZgY2ODq6srjo6O9O/fn/T0dIP8qr+DW7du8cYbbyCRSKhVqxbz589n1qyPeeftJbw5ZTD+3Xpx8VIAcvljoS4xMZF+/foRce0evk2nYGXuyM+nFvBat0XEJ11HrVGhVKrJzS6mTp06HDlyxEAYXbx4MZ07d9aXU2q1WmxtdR3s7OzsyM3N/cNxP0+3wOvXr+s7AsbHx/Puu+9W2CFQbiTR3wcq4uChk1SrasW2bdsAWLVqlX7d7NmznznGZ4ngT1/zjRs3GnyXFy9ezA8//MD48eP57LPPaNm5Ji07P1tsFFVQI3H1aiiHD29BJILG3vUZOnQoW7ZsYfDgwXz33XcsW7YMHx8fDhw4wOuvv86UKVOeuf9Xxd1ryXwz4xcykvIQS8So1EqWTt/KsOnt6d+/P35+fiiVSsaOHYu1tTVz5szhxIkT3LlzB4VCQZcuXejSpYu+jLZXr14EBQVRv3591CoNp09FExeThVgsQq1Rs2XTQXbuHGowBldXV4KDg7l27RqffPIJbdu2ZcOGDX/TFREQEPgvIYhIAgICAgICz8DYVMa0xd347uNTaDValAo1UpkYkVjEhI864uFp/7eOT6vVcvNWKiVPldy1bNmJtm392LplGZGRkfTp04ddu3bRpUsXqlWrBoCLiwvZ2dkUFhbyxhtvkJiYSGpqKrVr1yYrK6uc4wJAo9EgFovxrO9EeGgcmgqEE41GS1iYbsL5dC7Hk52Trly5oP+5bIL65PonRZY/g4enPSmJuQZjdXdpgrtLE6QyMfNW6DpCPRl2HhYWVuGYg4KCyu2/dm17wi/EP/P4tWv/8Wdkzpw5XLhwAYlEws8///yH278IFYmA4b8GEBsbyc97vwdg4IA3ib57DSMjE9q08cHT05M7d+6wePFiTp8+zebNm1EoFKxZs4aSkhIePnyod6ZVq1ZNL0j83ZSVcoIu8Pt86G1iYzK5fu0RxUWlnD//KxkZBTg6Wepfk5KSwunTp5ky8hsuXjmMX6uJj/fn0Y7dJ+dRVJJLn769+PqbL3FzczMQRhcvXkyrVq3YuXMnY8eO5a233mLMmDF88skn2NnZlcvAehZdu3bVX8eKRCVvb2/9d6Jfv3707NmTkSNH8vDhQ2QyGbt27cLe3h5zMzmSZwRYi0TgYG/2spe3Qp6+5pcvX6ZFixaA7n4xceJEfHx8CAgIeK79Va9uTX5eqoEo26pVZ1q16oxUKqZHzzqIxWJOnjypX69QKMrt50nRq7LuJc9LUmw284bu1uXpPcHRH29gJDemd+/eHD16lLNnz9KlSxcKCwsBMDc3B0Amk9GhQwfu3btHnz59CAgIwM/PD3d3d5ycnDgb/ID42GzUai1qtZYLF3+haRM/As/cK+8Qzcrigw8+YM+ePYjFQoqJgIBA5SCISAICAgICAr9Dw5bV+XL3MEKORPHwfiZO1a3x7VsPB2eLZ75mxYoVbNu2DWNjY/0T+tGjRxMSEsLChQtp167dc5e3TZs2jZs3b1KjRg1+/PFHffchgDVrNrBhw0+o1WrmL/gWB4cqKBSlyOVGFBcquXM9iyQTUMh0kyyJRIJYLOaDDz5g+/btWFlZIZPJiIyMxNfXl71793L48GGkUimnT5/G1NSU8ePHM2bMGCwsLLh79y6nTp3Ct1ttrl18SKnaULySySV06Frrb3FkPYtOvery67lYFGrDyZVMJqaetws2di/fvQvA1ExOuw41CD0Xi0aty3IRiUAsEdO2vQemZvI/3MdfGUjt6GROSnK+wbI2rf1p09rfYNknC7diYWlE/4EN9cLhnDlzymWrlIlqwcHBHDx48C8b9/Og1Wq5HhrP6Z9vkpdVRN2mVekxojG2TuakPipg39pwshPzufHLfbIy0jEzs+bho7uUlFRl4sSJ7Nu3D9A5Nnr6vkli2m12n5hLVl4i2XlJRMeFUcfNB6W6mGNHt2JjZ1ouwL24uLjcuEJCQn533CqVhuSUfNLTCwAoKckzKHVydnbGwcGB4OBgNm3axKZNmxg7diwAhYWFpKSkUFBQgFwuJzc3F0tLSxo1asQPP/zA+vXrSU5OZtkXG3Bycv4tSFt33OrVrDD6k99NlUrDnahUbkWkoNFqqVvXkQaNqiCXS/Xls506dcLOzo6ePXsyfvx4oqKiDPZx6dIlpkyZQp06dYiOjubq1av6da6uNsTFZlNYqDAQwiQSEY0aOf8rhJC9P1wq59ZUaUqg2Jh9P1wio2og3f2H0qB+S5KSUvHyqgPAV199Rd26dalZsyYrVqzgnXfeYdGiRYwaNYqZM2ciEono2LEzPboP4N23V/LNymlMe+trUtMSCLtwhNDzh0h4eIcjR44AOhFvwoQJLF++XO+OExAQEKgM/jn/5QkICAgICPxDsbYzpd/YZs+1bVnAqYmJid7RMm7cOKKjo1/4uL/++isKhYLg4GCWL1/O0aNH6devH6ArwwkJCeGbb3cYvObSpRB2714PgIWxIyaapkTevsbG7w+Rm5uLWq3m7t27uLu7M378eDp16sSMGTMIDQ2lY8eOBAQEcPz4cdzd3Zk+fTrbtm2jSpUqtG3blu+/1zlXbO3NmPxBe3b/dIXM9ALEEjFaLfyPvfOOr+n+//jzzuwlO2SJJGbECJEIidi1qlTtvYqiLR1aq2i1Naq+qqgasfdeQcTeRIggBFmyd3Jz1++PW7cioTbt7zwfj/YR557zOe8z7vi8zvv9eoe08qRZW+/nPs7XiZ2jGYM+C2LZLydQa3TeRWqVFq9a9vQe0eiV7KNaDXvs7E25cjmZrKxCrKyMqVXbEetXnPXxItStV4l9e2JRqzVPXEciFSMRiwgJ9XyuskJLS0vmzp37CqJ8frRaLQu/Ded0+C29Z9nd2HT+XLSK6zl7kVOB+h51AVCrlBQU5VDfpTs5uRmkpd2nqFBFhQoVyM/Pp2/fvqxft4oSZTG93pvFxvApWJo5ACASi7AwN3ppsfEhJUo1ly4loVT+3T1NpTJk1apDODlaMvzj3gQG+nP37l2CgoKoVKkSrVq1YurUqRw6dIj09HRCQ0OpWLEiIpGI5ORk+vXrR2ZmJt999x3Dhg1j1qxZDB3yAX/8sRJPr5rIZBIqWBkhk0n+Ibp/iL1ERdjyC2RlFelN9ZOSclm0eBWRR1dQtao31tbWpKamEh4eXkrwfpTvvvuO7du3Y2VlVcZ4XCoVE9TEnRuxady7l41KpcHCwpCq1eywszN9qfjfFJePls3SzFDc4XrufiRiKb72DZFKzcjPV6DVaslIzyctLY3c3FyGDBmCkZERHh4eZGdnc/LkSY4cOUJUVBS9e/fG1MS6zHu0U4fhxN+9xohhs/hl/gi959Xx48c5fvy4vuzxbb1X/2usWLGC5cuXo1arWbVqlWBULvD/EkFEEhAQEBAQeEkyUvMpLFRSrFDy86xfcLJvyOnTUVy5nMTsuRM4cOAA6enpREdH69vHb968mTFjxmBkZMS+ffsYOXIkx48fx8jIiEaNGrF+/foypqoHDhygSaNQivJL2H1wD1qthjGje+Dq5sknn0xk6R9zuHDxJHKZnClTfuOLz4ZQ09YOpbKEsV8O5szZ4/Tu2xNLS0tu377NqlWr6NSpE+3bt2fChAl4enoSHBxMzZo1mTlzJsePH+fQoUP069ePevVKi2gVXSz5dFIomekFKIpV2NibvvQk9XVR1ceR6b+/z62YVAryS3CpXAEb+1c7IbW2MSE49N0zq7WxNSW0pSenT9wlP18BgKGhDO+qtuTllVBcrMTewYwqnjbI5c/+szA4OJjg4ODXFPU/c/FofCkBCUCl1GBnVB135/qcjF3N/TRdt6pbyScxkJmy+8Rs0nLj0Wo1nDl7ClNTUywsLNi0aRMpDxIJ9G+JgYEMESASiUnPvktWXiKm5nJGjBjB//73v5eO+86dTEpKSptfS6VyNBotMTHpWFvV4vSpe3T7sC8Lf59L3bp1qVatGomJiURERNCuXTsSExOxsbFBoVCQl5fHkiVL2LBhA9euXWPnzp0sXLiQXbt28csvP73SbLHjx+LJyCgsJUiqlBoquzWgdav3OHj4d3bu3Ent2rWfKCAB5Obm6stqPT09y7wuk0moUdOBGjUdXlnsbxIDo7Lm+PZG1bA3qoZEJia0Q33MbUyoUb0Bpqbm+PmFEH/3BpMmTeLChQu4uLjQsWNHjh49ioGBAQcOHCAkJIS+fftSWKDSl6iWFpN0y6ZNWYZCocDIyIigoCBSU1NLxfHwNYEX4+HDm2ctzxQQ+K8iiEgCAgICAgIvSHJCDmG/nSItOQ9EIhQlJZw4d5RPP/0Jjfp3ZsyYyc7dm2nRQudncfbsWdauXUu1atX4/PPPmTlzJnfu3OGTTz7h66+/pk6dOkyePJkHDx5w6NAhvL292bRpEyNGjGDLhp1E7rrEjTULkUjFxOYcwtythF/mrWbB/75nw/qlJCXd47ffNqHValEp1SiLRShKCknJvIl9BQ+ORVzGz8+PxMREvQdLeROS8rJRnlRGUuEdyLZ5FiRSMd61HDh9+jQd3v8IiURC/fr1mTNnztsO7bXj4GBOx861KCwsQavRYmwif21G5m+KA+uvlBKQANQaJXIjQ7SATGqERKIrJcwuTKFEWYiFsT1yqRFakZoaNWpy/Xo0Xbt2RSwWc+DAAdSiXEZ8E0T4eSsCQitTbBTE+11a06pVy1cSs1arJS2toIzpdWFhPsbGplhWMOZWXBSNG73PmXO7SE7Kx9bWlvv37+u7vF28eJF27dqxf/9+LCwsqFu3LmPGjGHRokUUFBRw7do1xo4dS1ZWFu7u7q8k7odcvphUJqNNpSpBKpVz80YapqamGBkZ/WPJmbm5OUlJSVhaWnLr1q1XGuO7QMvuPqz6+RglxWUbEBiayjGz0WW1paTc5e69GxyO2Ez83WssWLDgiV0iLSwsSE5OxsjIiPyCLACMDE3Izc1AJjMgNzcTqVRMtRq2DB7co1wvrhUrVlBUVPTSmTOzZ89m8+bNhIWF8c0335TyRNu/fz9Tp07VdwWdPn06ly5d4vz58wwcOPCl9vu2iL2czPblF7h3M4O4tBOojNJp1iyUGjWqM3fuXKZPn86hQ4cQi8UsXbqUdevWUbNmTd577z22bt1KXFwcgwYNomfPnuTm5uLr68u8efPe9mEJCLwU735hsYCAgICAwDtIbnYR8747RNK9HJRKDcoSNTG3InF3aEjirQwALC1t+eD9YVhY2FBQUICtrS1isZjU1FS0Wi0fffQRTk5O3Llzh/Hjx+Pm5saCBQs4cOAASUlJ+Pr6UrNmTRoHNGHf2nMUZ4tRlqgpLlSiVUopvGtBzMHb1K8fSFFRATVr1UOj0aBWaYg6Gk8FE1fOxG5AoSziQWYcE7/7lGrVqlGxYkX27dtHs2bNnql71H8JV1dXDh06xNGjR0lNTeXKlStvO6Q3hrGxHBNTg3+9gASQm1HWiyg5L4YD1+ew+/yPFJXkUrFCDQAaeHalgmlF2tT9DGuLShgaGpOUdI/k5GQ2bdrEb7/9RvXq1cnOzqauXzWSU++waNVXOFQ0Z+LEb1Gr1ezcuZMmTZoQEBDA3r17Xzju8rqmXb58lkED2zPi4y5YmFtjY+tCdk46HTq04/bt21hbW9OyZUsmTJjA0KFDWbFiRakucDY2NuTl5WFiYoKfnx9z586ld+/eHDhw4KmxrFixgtDQUIKDg0lMTHzquvHx8awI+67M8hs3z7JoyVh+WzSG5OQHtGxZWnD7448/+Oyzz1i1ahUjRowA4Ntvv6V9+/b0798fZ2fnp+7330ibPr44uVshN/z7Wb1ILEIiE+P3QTX9+6/bh6MY//mvjPtsHh4eXowaNYo6depga2tbpkvkkCFDaN++PZMnT8bFxQlDQylBQR1ZuPhLdu/9EzMzK5xdLalRqyKRkZG0bt26TFx9+vR56cy0h+XaTyIkJIRjx45x8uRJTpw4QVpaGr6+vv9aAen4vhvMHreXa+eTyM9V8OBBKrevP6B17U8xMjRi2rRp+izB//3vf3z//ff06NGDdevWAbBhwwa6devGokWL6NatG5GRkRQWFnL69Om3fGQCAi+HkIkkICAgICDwAhw9cAvV451wcpNIuxtP1I0DpGbdJjnlHtnZaTg7O5KdnayfPFSqVAlXV1fGjRtHzZo1cXBwoEWLFhQWFjJ58mS++uorfYbQxIkTcVQHMuvqD9jIvfT7spK5cq/wDHuXXaRGzwIsLIyJjr5A/RptiDmTQHpSLg5WnhxLPEWLeh+TkXcXpUE8/fv3Jzs7m8zMTNasWQOAj48P/fr149ixY6U6GZXXNc3CwoI6deoAsHnz5n+FYWthvoKb0alIpGK8atkjN5ASHR3NgQMHOHbsGF5eXuzfv59t27YRFxeHtbU1u3fvJicnh/v37+Pg4EBMTAzh4eHUqFGDefPm4ejoSNeuXd/2of2/pWo9J+7dSEel+jszppKFD5UsfTC2Mda/14JrDgagnd9XIIKOrUYQl7abX3/9hSZNmrBo0SLGjBnDpEmT2Lp1K9WrV2fTpk1kZ2czYcIELly4gEgk4ueff+bQoUNoNBratGlT7iT9nxCJRBgZSil6LEOlUaMQGjUKobhIyeXzicRcP0V+fhYKhZyuH3blhx9+YPr06Xz//feIRCL+/PNPBgwYwNKlS5FKpUycOJE///wTDw8P/vzzTyZOnIhEIuGHH37g22+/LTeWFynLkcvLlqhVrxZI9WqBGBpKGP1pE0QiUanMlIEDB5YREOrVq8f58+cpKCgoIzr9FzAwkvHjtp7sWnaRA2uiKC4swd3HAbuatphUKFtKJpGI2bNHdx2e1CWybdu2tG3bVv/v4mIVda9WonloKwwMpFSrYY+rm9U/CsTR0dEMGTJE3/BhxowZLF26VG+g//D1q1ev0rlzZ2bMmMH//vc7gweNxtzCkNWrl9K3b1/ef/99/ZhKpZK+ffsydOhQmjZtCoBarcbBwQFzc3MiIiIIDw9n2rRpL3A23x4lChUrZx8vZZIulxphZ1qF2zGp1Gxeg4yCeCIiIvSlvY6Ojjg7O5OZmUlGRgbZ2dlUqlSJuLg4/fWrX78+t27dKmPSLyDwb+KdEpFEIpEEOAckarXadm87HgEBAQEBgSdxPSql1AQWIKhuTwDEEhGrdn/O9evnSE65S/RVCSEhTUut6+vri4mJCbt27aJt27bs27eP48ePM3/+fAIDA/H29kaj0dCsWTNuXkzBTOOGldxFv72FzAlJkYzI5AXkHvNm594tfPvtRL74ujdoxLSsPwpbSzey85NxcayKj58r4afuYmJigqGhIZmZmXTp0oVff/31qU+WH6dWrVpvvGX2i6LVatm27AL7N11FIv07+fqDQfUxc1Tg5+fHwoULCQkJ4dy5c2zYsIGZM2cSHh6OhYUF48aN48svv2Tw4MFYWVmxefNmatSowd69e9mwYcNbPDKB1j1qc3Dj1TLvQZlcgo2tCRkZhQ9tYvSUqAvYF/4bB4/swsvLnaKiIhQKBbm5ubi7uxMYGMiuXbsoKiqidu3arFu3jjp16pCenk5MTAzNmzcH0GcSvkhGl5ubFbE30kt1HgNQqzXcv6srU6pW1Z9qVf0xMZEzfJQuE6W8TnkbN24sM37//v3p37//E/evVKrJzS1my5YdqNVqQkNDqV69OmPGjGHw4MHY2Nhw8+ZNvv32WxYuXEhhYSH79u3TbSzKZ/XaKWRkJtOn53doNGo2bv4RExMLOnZsh0jU9In7fZTjx48zceJE8vLymDhx4jNt82/DwEhG5+EN6Dy8AaC7vls3XaGoSFkqG00sFmFmbvDcpuGGhlLq1KtEnXqVnms7b29vTpw4AejulYSEBCZMmIBKpaGkRIWnpxcnTpwgODgYlUrD4t/DsTANZtOGKEpKlGzZtpWDBwfpx1MqlfTr148hQ4boBaRFixbx448/0rp1awwMDJ4rvtfNw1K8jRs38scff5R5Tz1kyZIlzP55Hm4modibVtcvtzX34GbyURRFKvbuPIlfiCstW7bk119/BXTnA6BDhw4MGzaM9u3bA1C5cmXOnz9PjRo1OHfuHIMGDSq7UwGBfxEibXl5tW8JkUj0KVAfMP8nEal+/frac+fOvZnABAQEBAQEHmP+9MPEXU8r9zWxRIR7LXtMLQ2RSsU0CnTDo4rNC+9rVLOlxMeUvy9DExnfb+5BFR+dCW12RiFh808SG5WMWCJGBIS0r0r7Hr6IxCIS7ucQHZVMYWEJDg7mnDq7jTp1fJg4cSJhYWEMGDDgiRNJExMTrK2tqV69OoGBgXz//fecPXuW8ePHA3DhwgWuXr36zpSoHNh8la3LLlBSrMKkghFO1W0xNJVTUJjLshXfsHnLJmrUqIyrqyu9evVi//79nD17ltGjR3Pv3j1q1arFxYsXuXr1Kn369CEyMpK2bdvy448/UrVqVZKSkv6Tni7/Fq5fSGTu53tQFKsQIUKlVFM70JWmXaqzcv4pCrOK0Wq0IAKJXMS+C/NoXO9D+g7qSIuO1ZkyZQr5+flUqFCBr776CqVSSZMmTQgMDKRdu3aMGTOGmTNn0qJFC1q2bMm+ffuQSCQolUpksrLmyc9KcnIud+J1gpFSqTPZvncnk9SUfP06EqkYvwbONG7yanyNtFotV6KSuXkjDZFYxKZNf5CYeIuNm9bz009Tsbe3Z+XKlZw/f561a9eybt06tm3bxowZM6hatSp169bl/fffZ+FvW/hl7mIKi3KpWT2QJUu/JGzlPkJbeP0nyiRfJwUFJUQejiMrqxCxWIxao8He3oygppUxMHj+5/qPZxUtXbq03GswcuRIPv90Klu3bef3RbMYPXoUw4YNYdiwYXz0UU+mTvmRDz/4kv3hq9i1509UKiWNGweiKDYmIyMVUxMrPuj8BTN/7oaBgQn16gYTcWQ9vr6+nD17FqlUyo4dO/jpp5/Iz8/X73Pjxo1MmjSJnJyct5qJVFKiAi1oUTNkyBDi4uL0WbZPomXLlkz87BdWzT1NcaGy1Gtnb28gPe8utjY2nL92mJ9++okDBw4gEono3r07Q4YMISsrC2dnZ+Lj47GxsSE7O5sePXqQl5eHj4/PKzHpF3g1JCUl0a5dO65du0Z+fj5SafnvxUmTJrF//37mz59fptHIfxWRSHReq9XWL++1dyYTSSQSVQLeA6YDn77lcAQEBAQEBJ5Ko5DK3L+TSYlCXeY1kUiEibkBYrEII2MZbu4vV/LVoocPy6cfKdeo1chETuWa9vp/W1obM3JSKIX5JRTmK7CwNkYmk6DVajkacZsbsWn67I3UB7msWb2Dj7r9nbmQlZVFeHg4a9euZfny5ezfv58ZM2awb98+OnfuzM2bN7GysmLYsGHs2LGDDh06EBERwZ49e9i6des7IyBpNFp2r75MSbEKU2sj3Oo7IZaIUatVhK2exntthzF/3gYiIpdToUIFNm3aRFJSEgDnz5/H2dmZBw8eUFBQwPTp09m2bRumpqY8ePCAX375haioKGrWrPmWj/L/N1XrVmTBgQHEXkomP6cYt6q22DqZE7EnFpmhDFM7ib4sNDb+BKmZcUScCeN87AaW2v2Prl274uPjQ0xMDAAymQy5XE5gYCANGjTg+vXr+Pv7IxaL+fTTTwkNDUUkElG9evWXmgQ6Oppjb29Gbp6C/DwF2zZfKfU5IpWJsbI0ooG/y1NGeT50AlI6arUW1FoMDU3w9KzDkYg4/P2DuHbtMtWrV0csFuPk5KS/t52cnMjK0gle1atXp6G/G/0GNGPnzn2ENPfkZpw/zVt6v7I4XycPs1CeJiAEBwe/tkxLExM5bdpVIy+3mIKCEszMDTExkb/weI9nFZ07dw4/P79S6+TmFuNXty/798ayYcNmPuryNVEX7+HlVY3q1aty5mQq+fkKSkqUnL9wmCnfbuDnuUM5ffoMnlX8dB57ahU3b52jpKQYB/vKXL9+HrVaTa9evTAwMODSpUuMHDmSbdu24eHhgVgsxt/fn6pVq2JkZPTWfPdSUvI4GhFHWmoBIhGcPbeDtm0+4Nf5PxIfH683BQ8LC2P+/PlIJBIWLFjAzZs3OXPmDF9MGUxF3sNEVvoBkF/lrsgNpHQeWA+5XF5uliBAq1atsLHRbWtpacnu3bvfyHE/zpOyr5KSkqhcuTLR0dFUqfLudRZ9U1SoUIGDBw+WKtEsj0OHDnHy5Mk3FNW7zzsjIgFzgfGA2ZNWEIlEQ4AhAC4ur+6LVUBAQEBA4HnxbejMycO3uXc7E+VDbySRTkByq2GLRCrGxcUS/0A3JJKX62PRskdt9q+6TNKdLJR/TTZFIigSp3FZtY6mTdeVeRJtbCrH2FRO48aNOXbsGEmJudyITeNO/HXu3Y8lsFF7Tp7aQ/26Ldi/N1a/r3+aSD70QOrUqRMXL16kQ4cO3L59m7lz57J9+/aXOs5XSX5OMcV/de9yqmGH+K9rcOlyBHfvxbBj50IAhg37lmsx4SxbtgwTExOKiorIysrCwcGBvXv34ujoSOfOnbl37x6zZs1ix44dLF++nKKiInr27PnWjk9Ah1giplq90t2mrO1MkcrEqNUa/fuhqnsgVd0DkckktHy/Oo0aVQNApSotzB45ckT/d3Fxsf7vxz1pnofyJnFisQhLC0MsLQxZt3ECP8xYxuQpX9Orx1hq+1akek0HZLKyHkQvglKp5uaNNJ2A9BfeXrU5eGgzGrWGw4eP41TR7IkdGh/v4CiXS6hQwRgPD2tk8ndpKvFknmQIrdFo/rGb3KvGzNwQM3PDF9pWpVKTmJhLbq4CY2MpFStaYmgoxcDAAGdnZ/r378/9+/dxcXHB2dkZb48OTJ02kI7th3El+jiJibfo3Gkkn43+g4MRizh79ghooaAgB2trR8zMLLG0sMHC3Ib8ghzQaknPSGTVmol4VK5DxYreeFapT9jqb2jfvj2LFi3C3d0dIyMjoqKiiIyMZO3atdy4cYO2bdtStWpVUlJSXvEZ/GfSUvPZtumK/oGJSqXiUtQZGjbooMtM+gu1Ws28efM4fvw4iYmJjBw5kp07dzJ//nzCw8NZMesEpw/eKiXyisQiDI2lBLUtXzy9fv06gwYNYsaMGa/3IJ/Aoxlq7u7uFBQUcOPGDRwcHEqJXXPnzsXf3/+txPg20Wq1xF5P49zZ++TlKjA1lVO3funvkAEDBnDv3j1cXV1xdnbGxsaGqKgogoOD+fzzzzl16hTTpk3T+0X269fvzR/IW+ad6M4mEonaAalarfb809bTarWLtFptfa1WW9/W1vYNRScgICAgIFAWiUTM8C+a0rFHbRwqmWNhZYRP/YqMmdyM/sMb0b1XXYJDPTE0fPGyl4cYGsv4aWdvuo5qhG1Fc0wtDakX6sEvWz7h8tULHD16FICnlXlfi9Z5ODlX8iKwkc6n4UHqPSKPbWHWnE+4ciWaHTt2PHUiWVBQgFqt+zF9/PhxPDw8KCwsZOjQoSxZsuSt+V9ER0cTEBBAUFAQ/fv3R6vVYmAkQ6vVIpGJkRv/fQ3q1W3OV+OX4+lZl8/GzOfqlRg2bNiAkZER5ubmjB49mpSUFHbv3k1CQgKOjo40bdqU1atX4+DggJ+fH/Pnz+fkyZP4+/sTHh6uH/t5ul29SR6N6/jx4/Tq1avMOqtWrSIgIIB27dqRm5sLwC+//ELDhg1p1KjRv+oJbPXajsjKMYEGnfja8BWViD0JjUZLWmIuuZlFpcSLxydxDxGLRQQ0dmf/gTX06d+A2nUqvjIBCXTZKGJx6TInNzdv5HIDJk8ZxMWL5+nSpcsr29+7gFarJS0tn/g7mWRkFLB48WL69u0L6DrNhYSE0KVLF5YtW8aiRYvw9/fnyy+/1G+/c+dO6tWrx9ChQ2ncuPHbOoxSZGcXcehQHNevp3L/fjY3b2bwww+LqVq1Oqmpqdy9excDAwPCw8Px9vamoKCEvHwFAB6VfahetQG9un+FR2Uf1GoNebkaJFJdJpSJiQWZmSkoSopQKIoQiUTYWFdELJGSlZ2CgdyYnNx0kpJuIRKJ8PaqgZubGwqFgsDAQExMTGjevDnDhg2jW7dufPXVV3z3na6bn0KhwMiorKH46+TEsfhSfmlnzu6jft3mqFQacnMU+uVpaWm4uroik8lwc3MrkzXV97PGNOtUHbmhFENjGVKZGM9a9nz7WyeMzcr/vqtatSrHjh2jSZMm5b7++PfVnTt3yv1MBti0aZM+uzcvL4/Q0FCaNGlCu3btyMvLK7N+bm4xGrUli37fzKaNe7hx4wahoaGA7r5/uJ+0tDTy8vJwc3PTb/tQIPH392fRokXlxvNf4OiR2xwKv0lmRiFKpZqsrCKOHL5NVpau4+eZM2eQSCSEh4fj4eEB6MozH/pBmpo+n3/Zf5V35fFBINBBJBK1BQwBc5FIFKbVast/RwkICAgICLwDSKRiAkOrEBj6+lPBjUzkfPRpAI06V+P8uUTy80tIzVPikqfA1MwAAwMDFAoFAQEBGBgY0KJFC77++mv99r/8OhV7O28szCsQE3uOju2G8H7HjwGQyST8tugT2rdv/9TWwzdv3mTAgAGYmJhQuXJlpkyZwurVq4mNjaV3794ArF27FgcHh9d7Mh7jSWUdNf0qcu1CUpn17WxtqezmxexfRnD37nU0Wg2fjpnEn8t/4Y8//sDa2prp06ezZcsWjhw5irubB3Z2TpSUFHLjxg1yc3OpVq0ad+/epVu3bri5ubFw4UKOHDlCo0aNOHz4ML1792bz5s1s2bKF5cuXk5+fz4wZM95YNyqVUk2JUk1GRmqpLlzx8fFl1lUqlSxcuJDIyEg2bdrE77//zrhx41i2bBnnz58nOTmZkSNHsmXLljcS+8sikYoJ6WRLn94DECHG3MSOtk1HIhaJ6Dc6ADOL0lkgU6ZMYe/evQBMmzZNP+l6SL9+/Zg8eXKpCdeTOLAmiuUzjlCYq0Cj0ZJnfoWBn3diQdzsUiU0ixYtYunSpfquTqCbxIWHhz/Rk+NFkUolaDRll/fupXOPsLAwxMvLS99VLTg4WB/Xo0/Yy3v90U5s7wq5OcUcPniT4mIViHT399q1O9m3d4h+ndTUVMLDw9FqtQQGBnL8+HHOnDnDqVOnAPj+++85cuQIWVlZhISEvK1D0aPRaDl7NqGUMKLRaGnQIAR//2Zs2zaP27dv4+PjA+gaN+zYEc7jDkm34i6zbuMsAGxtK+HfoB23b0chkUjxb9iWH34aQGbmA2QyOVZWjmg1GjQaFT61m1NcXMiNm6e5HuuKsYmcixcvkpWVxc8//8zVq1f57LPP+Pjjj9m9ezdbt24FdF0Av/vuuzfuAZSYkF3q3w9S75GQeJNjJ7Zx7/4ttm7d9tc5sCU+Ph6lUkliYiIWFhaltpNIxXT72J/3B9YnPTkPE3MDLCoYv1Rsj39fpaenP3HdjRs36kUkmUxGWFgYjo6OLF68mGXLljFq1Cg0Gi05OUVcvfqAzIxCvXH7rbhU7t1Lwsentn68mzdv6kt0lUolNWrUYOHChZw9e5aLFy/St29fZs6cSVBQEP369UMuf/Fyy3eR7OwirkSloFaX/kBUqTQUFZaQnlbA7du39R1o69WrV+YByuMP1/6/esG9EyKSVqv9CvgKQCQSBQOfCwKSgICAgIDA32i1Wnbvuk7UpWSUSt0PoMSEHJYuXcOZc6upXr0qMTExDBkyhH79+vFo44zRo0fj7++PvU19Yq6XTfrVaLSEh0dgaWX0jxPJCxculNq2d+/eegHpTVNQUIJSqcbskSfCBgYGqNVqmjVrhoW5FcePXaC1aV/OXNiNUlnM6JFzyMzM4fyFwwwfOoNffv2Mdu/1w9sziIKC7zl3LpoffphKv75D+G3Bn1TxqE3nTsNZsnQyycl3sbapgLOzMx06dNCLKtbW1syePZuCggJ27dpF165dmTNnDhKJhG7dutG/f39ycnLo2rXraxeRiouUnD1zn8SEHEQiiDiynfS0/FJduBITE+nYsSMPHjxgzZo1FBYWUqtWLaRSKc2bN2fIEN1ku0qVKigUCrKzs7G2tn6tcb9qgoL9uHPvKlHnEvhywmiq1pfQo997GBmXnRT16dOHSZMmkZ2dTYcOHcqISM/K3pWXWPxtOIq/yig1WjUxcZfYMs2Xkgp/l9CoVCr++OOPMsLF68Lc3ABDQykFBSVlXpNIRFT2+Hdd26ehVmvYvy8WxSP+cZGRO2lQvwUH9v1dtlu7dm0kEgkpKSm4uroilUpLmeWKxWJMTU0xNTXlXah+SEvLR/OYEqhUliCTydFqtWi1cm7cuKEvHYuKisKgnGy8qt71CWrcCdBde7VaS9/eug55QYGdCArsxNxfRzH2k1+oXdeZIUN6YWxkQdOg7qxZ/x2N/Dvy3XfTCGzszo8//sisWbO4ffs2o0ePRq1W06FDB65du4ZEott3xYoVOXbsmD4L5k2JjiKRqNR3YKcOw/V/z/7lY9q1a8e5c2eRSCSMHDmSoKAgxGLxE8UuuYEUJzerF45Hq9Xqy9Erevztkfjw+yopKYkuXbpw584dtm3bRqVKldi1axctWrRg6dKlABgaGuLo6AiAVCpFIpGg0WhJTMwhNTW/lIB05sxhFi78DhtbB1If6LKHVSoVcXFxXL9+nd69e1NUpMu86du3Lz///DMNGzZk79699O/fH1dXV1JTU6lU6fm6/73rxN3K4PGmYocj1nH5SiQSsYQbN9Jwd3fn8OHDAFy8eFG/XnFxMb169eLzzz8nOTkZgFOnTpGenv7/spztnRCRBAQEBAQEBJ7O7duZpQQk0D09q+LhTx3fpsTFr0Mul3P58mV69uxJr169aNOmDTdu3MDQ0JCtW39k3apLZcaVSEQ4OplhafVmyw1ehqzMQiIj4sjOKkQkFiFCRGZONIuXzMLLywtra2u9Qfjy5WEsnL+Uj4fO4sDBlVy/cQY3l6oAmJlakJWVyqHDG9m5exlFRUVs376dkhI1cXEZiEQSMjIecP36eapXb4j0r9IPc3MZBw4cwNPTkxMnTjBw4EC2bt1KUVER33zzDffv32f79u107tyZffv28csvv6DVaklNTX2t50Wl0rBvTyyFhSX6ycSFi0eJvXERj8peqNVqtm3bRkpKCgcOHOD8+fPMnDmT3r17Y25uDoCFhYXe/yo0NJSqVauiUqnYs2fPa439VaDVarl/L5t7d7MxMJBSrYYd9QJc8fB2ICXrGgcPyfDy8sLf35+MjAwmTZpEu3btaNBA14bdwMBA/1T5zp07dO/eHQcHB33HqaehVmlYNi1CLyABJBZfxFruwfb4SYgTNPTu3RtXV1fS09PLFS5eFyKRiIaNXDlyOA6NRqO/NyQSEeYWhq9VRDp9+jRjx45FIpFQv3595syZU2advXv3olaree+99156f3fjs1CrSostycl3uXvvBocObyL+7jV27Nih90GysbHh7t27qNXqUhNGjUZDQUEBWVlZpKWV3xnzTVJUpOTxhtrnzh1l69ZlAHh4VGHBglkMHDiQ0NBQnJyc8Pb2xtBIV8qblHybq9dOkZxyB0fHyrRp1Y+9+5fSp9e3aP7yylKrVSz4/XMSk26xPOxr5jWchViSj4WlBR4e7hgbG9CzZzsCG+vKQXfu2Mm69RupUMGSEydOMHToUGJiYmjRogXm5ubs2bPnjZexPcTV3Yo7cZnlvvbTzDCqVPHQC1p9+/bVlzo+5FWaq189fZ//fbmf7PQCRGIRYrEI16ASth5aWub7as2aNWzatInRo0ezfPlywsLC9CLSQ/Lz81m0aBF79uwhJ6cYpVJNWmpBqfujQYMQYq5f5OjR3Xwyuh/Z2dmsW7cOExMT4uLiyMrK4saNG9y8eZPTp09ja2tLbGwsSqUStVrN3bt3sbOze2Xn4F1BrdageeREqVQlJCTeJCkpjpKSYoJDvDh69CgKhYLQ0FBcXV3L+DD7+PiQlJRE27ZtqVChAklJSTRt2hSZTMbatWv1Zur/dd4JT6RH0Wq1EVqttt3bjkNAQEBAQOBd4tyZ+6UEJND9AAJQKFSIMMDOzo7Zs2fz559/MnGi7umyl5cX3bt3Z/LkCbTrVB0DQxkSsQiZXIJEIsKpkgUt21R948fzohTkK9i57SoZ6QWo1VpUSg1KpRor8xqsXL6HihUrsnPnTr1BuLu7C81bB9Kthy8uLpUoLPzbR0IsltC395eo1So8PXwwMjIhNLQ1ABWsTTAwkNHIvw1Hjm7j8uVjpKTcpaAglz69R3Lt2jXCw8OxtramRo0aGBgYEBISwqlTp2jWrBkxMTFotVq+//579uzZw7Zt2167ge/dO5koFCr9ZCIzM5XMrDQ+eH8Y4z5bQKtWbSkqKtJnHfn6+nLr1i0sLS31Pki5ubn6fy9dulQ/yXjUL+Zd4/Tp0/j7N8LLsw4fdRvEwf03GT58CO7unlR0cuHMmTO0bNmSYcOGceLECfz8/Lh27RqXLl3Sly2sWLGCqlWrkpaWRmJiIj/99BOzZs1i48aN+qfOP/30E40bN6Znz54olaXbft+/mYH6sfdnvjqNxOJLiBChUWn58MMPgScLF68TGxsTWrb2xtWtAiYmciwsDPGp7USzUM+XNv5/Gq6urhw6dIijR4+SmprKlStXyqzTunXrVyIgAWSkF5Qq+QL4qNsnfDFuPuM++5XK7l60b99e/5pUKqV///4EBASwefNm/fIvvviCJk2aMGXKlDdenlseJibyMmUzjRqFMnPmSn76KYyff/4VsVjM4sWLOXjwIDVr1sTDw4OWratgYGhIpYpu/DB9B1+O/wOxSIRKnY9YLMLUVI7cQIJIBBKJlNEjf2HFn0c5feYYDRs25MqVy8THxzL040bExl5i4KDuqFQaLpy/z9gx8zl5PIU9u2KJupTEbwt+o0ePHowfP57GjRtjZGTEsmXL9ObDDzMg/f39uXPnDomJibRq1Qq1Ws1XX32/GtegAAB3j0lEQVSlL4F7FQQEuiOX647rUaRSMUFNK7+y/fwT8dfTmD5oCw/u56AoUlFcoKQwr4Tbh6XMHL+yzPdVxYoVyc7O5tChQwQEBJQpJ9NqtQwYMIDp06djaWlJXl4xWq3OPP8hSqXud0HfPp8S3LQ9HTv2xsLCgm7dulFQUED9+vWZO3cuPj4+tGjRAq1WS0REBN7e3qSmphIQEECfPn3+c6VsABWsjSlRqCgoKKGwUMmxEzto4NcGR0d3vhr/B2Zm5sydO5fLly8zYsQIrly5wtKlSykoKGDjxo0kJSXx4YcfkpqayqJFi/joo49ITdWVjPfv359Vq1a97UN8YwiZSAICAgICAv8C8nIVZZbdijvHiZMbEYtF1K1Xk9zcXIKCgigsLCxl1Dlw4EC+//57li1bQMvWDShS3KJZc0+sbYwxf8EuQW+L6KjkMn4Guh/Ncq5cTsbExBQjI6MyBuH2DmbUrV+J45G3Sm3rWzsI39pBXI+9gK2tPc7OLsyd+zsABoZSggLbERTYjvi7sSxcNIGk5Dv8+edvTJo0iVmzZtGmTRtEIhHOzs5kZWXh6urKkCFDMDU1ZcSIEbRr144mTZrQoEEDLC0tX+u5iY/PLDWBjrpyEjNTC7ZsW0JiUhw1anqwdetakpOT6dy5M+PGjUMqlTJ8+HCioqJYunQps2fP5tKlS7z33ntcunSJ06dP4+vrS0FBwWuN/WVwdXVl2KDZ3Lubx4bNP5CccpvUtPt8PHgxMpmYm3fWc+/ePQoLCzlz5gyffvopR48eRaPRIJPJSExMZMWKFbRo0YIlS5YA6H0xpFIpPj4+ZGRkcPjwYY4dO8bMmTPZunUrXbt21ccgk0tKPeEGqGbWhkJ1FicyF6JFl4mm0Who1aoVmZmZ2NraMmDAAIqLi2nWrBlXr16lQYMGbN++HZVKxYABA7CxseHmzZt8++23LFy4kMLCQvbt24eJiclznyczMwMaNHy93Y21Wi1FRUoKCkrQarQYGVkgk+kmo1KplO3bt5OQkECbNm3Yvn07sbGx2NraolKpCA4Opk+fPuV6uj0rhkYyxGIRGo22zGsSiZh163bh5mZbqqxq2LBhDBs2rNS6HTp0oEOHDgClfKveFjY2Jkil4jKffaAzi3d2tgR0n/V37tzB3NycpUvD6N69J61adcTByQqZVIy9gxnnLjpha2dCdnY6v/7vS9LSkhg7+mfMza35efYnmJhIWbPekfXr1yORSJg6dSqHDh1CLBbzxx9/cOe2iuysIv051mi0rFm7kXWd5+PrW/OJpa+PZ0AuXLiQLl26MGTIEIqKivj+++9f2fmytDKi60e+nDoRT/ydTLRacHaxpFGgG9Y2z//eeVHWzztJSXHpDpBqrQpFEaz75QQVW5qV+b7SarVER0ezfft29u7dy9WrV/nmm2+YNm0aEydOJDAwkGbNmgHovc7kconOAwy4cOEY27evAMDRyYWWLT8gK+sWarWaqlWrEhAQQNOmTQFYtmwZgwcPpkmTJqSkpODh4VGqQ+V/iaTEHDZvuIJSqUarBbVayY0bF2lQvwNikRh7Bxs0GjWrVq1i48aNDBs2jIKCAuRyOStXrqR169ZcuXKFqlWrotFoCAsLIzQ0FJVKRa9evWjUqJH+3n/U/+6/iiAiCQgICAgI/Auo5GJJSkp+qclRVe8AqnoHIJWKGT7CH6sKxnTr1q3UdseOHQPgq6++AmDfvn3Y2lriXrkC/0bu388uM0GMvnqK/eFrEIlE1KtfkyFDBuuP+1EkEjE2dqY8mhC0as0skpLvYGPtwNTvfgJ0Rrz9+n3IjRvXmDi1FxqNhvy8bCpUsKdNq16MG/8ZPr6OfP/993Tv3p3atWvrO9scP34cPz8/Vq9ejVwuZ+LEifqssNeJQqHiQUoePGKlm5ObgaGhMY38W3L6zAFS0+LYsmULn3zyCVeuXGHAgAHs3LkTDw8P+vfvz8GDB9m1axcXL17k9u3b9OzZk/Hjx6NWq9/IMTwrJSVqLpy7z7WrD1CWqLG0MuLe3TzUai1isYQjR1fyIPU2a9ZPpFHDDzh55gzde3ygL8s7evQoKpUGP7+mHDhwgzVrFnDlSjRqtZpRo0bx888/6zsoVa5cmdjYWC5fvqwXE5o3b87q1atxdXVl/PjxgM4rrLXbF1Ao0V8CkUiEgdiMEJvP8azlxIULm5kxYwZeXl4YGRnxzTff0LRpU0aOHMn7779P1apVGTp0KJs2baJjx476Epe1a9eyfPly9u/fz4wZM9i3bx+dO3d+S2f/yWi1WjLSCykp+TsbTqksoSC/hOSU26SnpzNhwgR+/PFH2rRpw+bNm5k0aZJ+0hoREVGup9vzULmyNVevJD8pQlxcX9zX5m0iEolo2NCZ06fvoVJpUKu1SCS6G61u3UoYGOimdMuXLwd0Hkpnztxn9Oif9GOcOXeYsLB51K5dg5BmtZg7N48JX/3G0WN7OHvuEG1ad2fB/1YS1NSLb7/9lkOHDuHg4EBiYiIRERHExMQwadJ3dO40tsxncL26TWngF8yefb/pTaOhtPHw4xmQAL169eKzzz5j3759r/ycWVoZ0fq9aq983Ofh6pmEMmWIDwqvcyv7COIUEaFVGjF48KAy31effPIJn3zyCQCNGzdm2rRpJCUlMXPmTAICAtiyZQvdunWjc+de5OeXYGtrQkJCLlqtloYNm9GwoU5kEotFVKxoTr/+ywgNDeWbb76hdWtdtu3Dz7PFixfr//1ot9H/Elqtlo0brlBS8nfG1qXL4fjUaoZKpSvxVSnVGBoaIRaLycvLQ6VSUadOHdq2bcuaNWtwdHTE3Nyco0ePMmHCBA4ePEjXrl3RaDTs2LGDS5cucebMmbd4lG8WQUQSEBAQEBD4F9DQ34WL5xPL/HiXSES4ullh9QwdY95Wp5xXiVRatvSmjm8T6vg2QSoV07Z9dWxsTZ9oEK5Uqln8+y4MDHQZWD27f4ZYLMLe0Rz3yvaArgvOqlVbyMku4vyZ+6X2JZGI8PLWGe3WrFmT2rX/7nzz888/v/LjfVauRSejLFEhlUn1kzZjI1OqVa1HaLMPqO3jj1Seyg8//IBWq0UikfDll1/i4eHBqVOnKCws5O7du4hEIjIzM/n88885duwYFSq8W2KjSqVm0/rL5GQXof7LyyU5MReNRsuD1NsUFuXQ48PvWLBoMIqSIvaFL0QiEdOyZUvUajVt27aladN2DB/eFze3migUavbu3Up+fgF5eQr27t1LcHAw+/btY8CAAURHR2NiYkJubm4Z36gGDRoQERHBnj172Lp1K8N79uDbbutBq+VhHY1U/Jcnze1sarVvyOXLl5k5cyaJiYk8ePAAT09PPD09AahWrRqVKlUiLi4OgOrVqzN37lz+/PNPmjRpQq9evWjevLnes2rZsmWoVCoGDRr0Rq/BkygsVKIoUcFjk+bMzCxGjhjJlq2bcHBwIC4ujqKiIhITE3F3d9eLSB9++CGTJ08u5en2vJiYyqlbrxIXzieg0Wj1l0IsFuEf4KoXW56HV+mP8zKYmhoQElKF1NR88vMVGBpKcXAwL/OZqNVquXAhUf/+eEj9+iE0bNiMDRvmEB6+D/9GdQkMqkx2jieXr5whqKkLX3w5hm8n/X1vZmVlERERof8MNTS0LFMu+NDgW6PRIhbpOoXeu3cPgCtXrug7xkVH64Tay5cv61unT548me+++44ZM2awY8eO13Ha3ioGhlIed1RzMqmJk0lNZAYSfv1lANYOZuV+Xz3kocDk5OTEjRs3aNiwIdWqVWPLli0MHDiEgoISzC0MqVCkLGWunZWVxrxfv8LAAL777jsiIyOZPHmyvoHC47wr9/nrICkpl+Ki0iXI6Rn3SUmJ4+y5naSk3OHM2SMoilWcP5vA5s1bUKlUXLlyheTkZNLS0pg8eTIpKSls3ryZbdu2ER8fr++mWa9ePQoLC6lSpYpeSCrPLP2/xDvniSQgICAgICBQFisrIz7q4YuRkRS5XIJcLkEqFePiakWXrrWeaYyHnXIeFT7+bXh52yIpR0gCXUnRP5cqaFi7/mcGD+lNrdqOeFW1xc/fleo1Hcp4jiTcy9ZP0CQSERKJiKBgDxQlBTRv3pyBAwe+ikN6Jdy6kY5Sqflr4qybRXh61ube/ZtotVry8hPw9vbCy8uLI0eO8MEHH6DVannw4AETJkxg8eLFiEQiNBoNAwcOZNasWe+cgAQQc+0BuTnFpSbIYomIwsI89uxfQIe2YwEwMjKjX6+faNV8GHV8myAWi/H19WXOnF8oKJBTp04gDRroWrd37NiHfv0+47vvlvL997OIjo5m+vTpGBoaIhaLGTNmDJ6enmV8o0BX9jZ37lzmzZuHhbUJckMpjxqxqDS6MlRFkYrd2w6QnJxc5hoA1KhRg0WLFgHol2k0Gi5fvgyUbSv9LpKfrygjIKlUKj4ZPYQJE6Ziba0TX4ODg5k4caK+JOchMpmsjKfbi+BV1Y5WbapS2cMaWztTqnjZ0qZdddzc//1d6MRiEQ4OZlSpYkOlSpbliurZ2cVlBKSHPjlqtRaNRoaRkS7jwtWtAtVrOuDoaM6Zs0fL3Jve3t60bNmSiIgIIiIimD7tlzL7u3TpOBMnD2TipIFkZKYxfvx4vfHwo6bkdnZ2dOrUiU8++YTx48dz7tw5kpKSGD16NCEhIfqMmLfJ6dOnCQgIICgoiLFjx5KSksL06dMBGDVq1HOPF/JBDWTldMkDcHK3wtrB7LnHbNGiBREREezfvx+5XIKjozkymQQnJ3O8vGxwcDDD1dWS4yfW8euvP3PgwAGmTZsGwOXLlxk3bhzBwcH/6N/z6LG3b9+eoKAgQkNDSUhIeO6Y3zZFhcoy/litWgymb+8f6Nv7e2ztXHFyqotGq2XP7mtER9+hYkU3atWqxfDhw7GwsGDixImYmpqyfPlyOnbsiL29PVFRUcjlcrKyspgxYwa+vr5s2rQJgKysLNavX8+nn36qX/ZfQshEEhAQEBAQ+JfgXrkCn45rQvydLIqKlDg4mmHzBv0dnsazdGF6FXhVtSf2ehq5OUWlJkoSqZigph5lhKDHkclkREZG6v+t65qWrzekFol0iSQWFoa0aOVN3K10sjILMTEzoIqnDcZ/tYh/2AL4XeGhsKAoViKVSZBKJbi6eCGTypk2YwhVPJ0ZN344s2bN4ty5c1hYWODp6cmiRYu4f/++3v/lu+++4/jx44wZMwaAuXPn4uvr+5aOqizXr6WWyYQADVt3/kjzkEGYmpYWvqQyCc4uFoBOiElJyddf44dUq+bLvn0bUau1HD9+mvr1q6PValm9ejUTJkxAq9Xi5+fHggULGD9+POHh4fj7+1NYWMjQoUNZunQpBgYGZD7IRyqXlPJAyVDe4UbeAcQiCW4O1ejZsycdOnQodQ0ekp6Wz8XziVyPSeX82fvcuHGTn376kQsXLujXUavVLF68WL/dwYMH9YbQu3btYv78+YjFYvr370/btm3ZsWMHZmbPP1F9EbTl+BDt3LmVy5cvMGPGJH76ScIPM3+ga9eu+Pj4EBMTU2rd7du3M3/+/DKebi+CVQVj/APcXmqMfytl3x86n5xt23Slbq6u7rRs2bJMCVXDhg2ZPn16qXuzdu3aODg4EBwcjEgkokP7D3BzbVLqs9fPLwQ/vxDEYhEtW3kjFovL7eZYXqbLypUrAfj0009f5pBfGQ+N4A0NDenZsydpaWlMmDABgF9//fW5x+swqD7Hd8WSnpyHUqErpRJLRMgNpIz8odUzjaHVasnNVVBSokahUHH48GGCgoLo3LkzcrkcV1dXPD09adSoEYmJD5gxYyrt27fn5s0YAgICEIlEmJmZERsbS3x8PD/99BMODg58/PHHhIWFPfHzwcHBQX/s8+bNw93dnQMHDjBnzhxmzZr13OfibWJnb1pGWH2U/n1+ZuWqr1GrVfxv4TDq1G6FSKThxKkNqFQqnJyceP/991m+fDnnz59HqVTy2WefkZ6eTmFhIdnZ2UyePJmhQ4fqSzUfNUt/uOy/hCAiCQgICAgI/IuQSMR4VHn3nqg//uP7ypUr1Kr15AwpjUbzQt3KpFIx7TrW4Fp0MrExqSiVGuwcTKlTtxI2tqbPPZ5IJMLe3owff/yJLVu2sH//YYyNZfqOVVWr25da/+ET+c8++4xOnTqhVCoxNzdnzZo1b2yyXh5u7hWIvpKCRqNFpVSj+qtbT+dOI5DLJfTsWx+JRFxKkHjIt99+W+rfqampbyTmF6G8icDFSxEkJd/gUMRSEEFIk34ASGVivL1tycnPfGR7TRmPksqVqyGXG/DVV32xt7dl7NihZcQ2Ozs7mjRpQuPGjXFxcWHMmDGsW7eO2NhYevfuDcD8OYtRKUqb6NobVMXeoCpiiYhmnWtSqVKlcq/B55/OZPOGKxjK3WgS6EZKkhqR1gKPynWwsLDg888/54svvuDQoUPMnDmTpk2bcufOHezs7FizZg2DBw8mKiqKkSNH0rZtW06cOMG4cePe6D0pl0speqxkpFOnLnTq1AUARydzxGKdyKtS/X2e+vXrp//7cU83gefH0tKwTNnzQ58ckQjc3StQubJDuSVU5d2bEyZM0IsJWq2WUyfvkpKcW1rEl4hwdauAqZnBazqq14tSqaawUImVlY2+5FEqlSKRSOjVqxdhYWE0btyYY8eO0b17d7744gu96fiGDRueOK6JmQE/bunJ7pUXObTxKkqFGt8mrnQe2gBHt3/258rOLuLSpWSUSjUikYjiYgUbN0ZSt64znTu/z/jx49m7dy/p6en4+flx+/YNLl++zMSJE1Grdd8BaWkFSCSGrFy5Ho1Gw8cff4xSqWTLli107Njxieb9aWlpenNod3d3Zs+ezdKlS2nbtm2pGDds2MBPP/2ESCTi66+/pmPHji9xJV4P5uaGeFSx5tbNjLLm9FpdZ8J+fX4EYP+BxdyOv6jrqqmBnj17cvr0aQDGjBlDeHg406ZNY8mSJYSFhTFt2jQOHDhAWFgYERER3Lx5E/h3ZI++DIKIJCAgICAgIPDcqNUabsdlEncrHYlEjJe3LQYGugmEVColNzeXHj16sHr1anr16sWYMWOIjo5mz5495OfnM336dGbMmMGDBw8wMDBg48aNes+Zf0Imk1C7TiVq13k1HgMKhYKrV6ORSMSYPeMkSCaTERYWhqOjI4sXL2bZsmUvVO7wqqhZ24nY62mlTI1BJ7r5NXR5rW3c3ySVPSqQnVVYagJbv15z6tdrjkQiomEjV+7dy6Fb97b41nHi0uUTnDun87U6duwYubnF2NtXZOzYGaXGHThwPBKJiFq1HKlUyaLcyfQXX3zBF198of9379699QLSQ2o3cePSkXiUjxi4gq7UstNwv3KPKSurkNOn7qF+JIPk5Ok91KvbnP17rusnIJGRkbRq1aqUZ0rNmjUB9K3BRSIRvXr1YurUqW+83bSZmQHFxcoyIh0iMDGW6wUkgdeLTCbBzc2Ku3ezyoiuEokYD48XfwghEonw93fl5s10bt5Io7hYibGxHO+qtrhXfvcebjxOfHy83lNILpeze/deLl5IIDEhV9/V7/ad84gl2aSnp2NsXNZrcO7cufTo0QOxWKw3Mv+n/ezfv58uH/v/Y3yP+pwVFys5ezbhkWuoRSqVkZenISYmnXbt2pGQkMCVK1fIyckp03VSJBJz9Gg8CoWKlJQMzMxSyc0toqgoj5CQYA4dOvRU8/66devq41IoFFy8eJGEhASGDh2qX67RaJgzZw4RERGIRCJat279TopIAJ0612Tzxivcvp2J5hEhSav/n46WLQbr/166bCzt27fXi0iPIpVKGT9+PE2bNuXAgQOvMfJ3E0FEEhAQEBAQEHguFMUqNm6IIi+3GKVS92Ms7lY69g5muFVWk56eTmBgILt372bo0KE4OTlRv359oqOjsbS0ZN26dYDuB7OxsTFLlixh3bp1DB48+Gm7fWXEXEslMuI2GRmFGBlLuZ9wmF69ejNlymRA1xnn0qVLmJubs2rVKiwsLBgwYAD37t3D1dUVZ2dnDA0NcXR0BP5+Yv02MTaW0+mDWhw/eoekxBwAjIxl+DVwoYqX7VuN7VVSy8eJK5eT0WjKimW+dStSp14l6tTTiYvlGcmbmxtSoYIRmZlFZbI1dP4iL5e58/mC9kzvt5nr55MQi0WIxCLQwqfz2+HqXf51iLn6oNSkBiA19R4Jibc4fnIb9xOus2PHDkJDQ3FxceHXX3/VC5aPP+0uKChgyZIlfPjhhyxfvpy+ffu+1PE8DzK5hAoVjMnMKtLXC2q1YGwkw8LS8I3FIQA1atgjEomIj89EJBKh1WoxMpJRr15FjIxkLzW2SKxrLuD1hPv5XadFixaEhYWh1WqJPHKbrL8+Cx5+HthYe/DTrLHs27edkhJFme3t7e2pXLkyYrEYJyenf9zPi3L3btlOpIWF+Rgbm5KaWkBk5FHGjBmNWCwmOzu7lNeYVqvFzs6d8+fP4O7uTWFhARYWFbCzq0jLlp3Zvv0PHB0d9SVXTk5OekHaycmJzMxMHiTlkpNVRNqDPNZvXEFhYSF2dnZIJBJCQkKwtrambdu2eHt7U1BQAKB/ENSmTRv27NlDz5498fPzY9iwYXTv3p0tW7a88Pl4WWQyCd26+5KVVURszAOuXE5GIhWRmPi49fnfjPvsd9zc3J7YqOMh5b3+NLP0/wKCiCQgICAgICDwXByJiCM7q/QkXKnUcOtWIlOnTWLPnm0ADBs2DHd3d+7evatfr169eoDO22XcuHFcuXKF3Nxc3n///TcS+4ljd4g8ckcvfuVkF3LgwGFq+7wHwNmzZykoKCAyMpKwsDAWLlxISEgIEomE8PBwZsyYQUlJiX68/Px8Fi1aVK4HyJvGzNyQ1u9V05WzqTUYGEj/0SPq34aRsYyuH/lyOPwmSUm67AGJVEx9P2dq1yk9oXtoJP84fn7OREUlk5ycp88+sLIyok4dp5fO2DI2NWD6xu7cjU3jxoVkTC0Mqdesss5w+wnk55eUyd7p1OFjQGek/PsfY/RPw6dOncrHH3/M2rVryx1rwoQJfPnll4SGhtKmTRtat26Nvb19ueu+DgyNZDgaSikpUaPRaJHLJeWe02fxUNu7dy9qtZr33nvvuWKYPXs2mzdvJiwsTF+O85CcnBx69uxJfn4+nTp10nt/PbpdeffMvw2RSESNGvZ4e9uSl6dAJpNgaip/22G9FRQKFVevpJCXq0ClydJ7CrVu1Q5jo8ps3vInY8fM5Jd5X9GmdXd++30Kfn7B3L+fztixQ0lMTKROnToUFxfTsmVL0tLS8PDwQK1WExsbi7e3N6ATcePjMrgdm05mdgqHDh3SexcVFhZSt25d2rRpw/bt24mNjWXIkCH07NmT3NxcfH19mTdvHgD79+9nw4YNFBZqGD9+DjLZ39ctOvo8K1f+glwuJySkCQ0bNqROnTpkZ2djYGCAVColICCA3FwFnTsP5Mcfx6FQKOjVaxSWltbs378FY2MzGjUKYdu2baX87h5+V+TlFnPkwA0uRGqIj8vg50n7WLvzV9p3bMmDBw8AXclzeHg4EokEW1tb6tati0aj4c8//wTAxMSEgoICNBoNV65c4dy5c/rv/reNlZUR/gFu1KlXibibaRw+dJusrKIyn8EymZgG/s5vJ8h/AYKIJCAgICAgIPDMqFQabt1ML/OEVK1WsWz5FDp1HIKDgwMAX375Jb/88gsTJ07kjz/+AND7IF26dEkv1ixevJjExMTXHntRoZKIiDulyoYuR4VTq2YIycl5FBUpiYuL06fx169fnyNHjuDq6kqdOnUAnQh28uRJQDdpGDBgANOnT9d363oXkMokSGVvNzPqdWJuYUjHD2qhUKgoKVFjYvJ8pVISiZg6dSpSo4aaoiIlBgZSDJ8i8rwIrt62T8w8ehwHBzPib2eWa4gslojYueMAFStZ6MWQBQsWlFlv8uTJAKWeeL+tEguRSKT3lXkSz+Kh1rp16zLb/ZOXmkKh0He0K49FixbRs2dPunfvTufOnenVqxc2Njb/uN2/FalUjJWV0dsO460RG5PK2rCLiACVSg0iNR8PWsTgj4P48MMP6NhhGHZ2FVn4+1SsrGx5kJpAamoiJ0/sZ9CgsygUBTRu3Jj33nuPUaNGER0djbe3N23atKFFixYMGzaMXbt2oShW8fuso6Qk5qBSatCiplvrn2n7vg9zF37B999/z7x582jTpg2bN29m0qRJLFq0iG7dutG7d28GDRqkL5mysLBg/fr1jBr1NcePHyA4+G8RtUGDpjRo0BSJRES9ehUBmDJliv7148ePA7qW9ra2Dvzww4pS56NWLT/WrPkNGxtr9uzZw9SpU0u9XqJQcXB3LMVFCiqYalCrtVyOOUxC0i1275SRkX2POXPmULt2bX327bfffsvVq1cBaNu2LS1btqRBgwZs3boVV1dXUlJSOHHiBIGBga/24r4kBgZSqtd0xMW1AkuXnKWwSKkvQ5bJJLhXtqJuvVdTMv9fRBCRBAQEBAQEBJ6ZEoUKEPF4L+9LlyO4ey+G9Rvnc/zkSlq1aoWrqysjRoxg9OjRZSa03t7e3Lp1i9atW+Ps7EzFihVfe+y3bmUgEYt41K0mPf0+yQ/iOHtuJ8kpscTGxuozp86dO4eHhwfu7u76bmwXL17Ubztx4kQCAwPLtCoXeDMYGEj/Uax4GnK5BPkT2m+/Sbyr2XHm1L0yy0UiEaamBjhVfDavsHcZrVbL/XvZxMamgRa8q5b2UNu+fTsJCQmlMjVsbW1RqVQ0b96c/v3768tnBgwYoB83K7OQkyfuEn8nC2NjGbduh9O7dx8mT56kX0epVNK3b1+GDh3K7du39cbANWrU4Ny5c7Ru3ZolS5bQt29fJk6c+GZPjMBrIzu7iLUrL+izTnVIKC6CsD8vENKsBfcTbtGq5YcMH9GGhQv2Ym1tj1KpRKNR0aFDW/634DuMjY1xcnJi2LBhSCQSvvnmG9RqNS4uLuzevRuAtUvPkXgv+5EHFGLEyDm46yZ+dZsQHR1NXFwcRUVFJCYm4u7uTlxcnP5erF+/vr6D18MHFoGBDdi790i5xyaRPF0cfJIoPnjwF4hEULGiBV5e9mVKrs4ej6eGZzAlf3WSey9kNEdOr8TFqSYixICIKlWqkJGRoR/TwMAAY2NjRCKRPks3ICCAkSNH8t1333H+/HnWr1/PiBEjnnyx3iKmZgZ8PLIRV68+4EZsGnK5FJ/ajri5W/3nMnlfJYKIJCAgICAgIPDMGBrJkEhEqEv7BlOvbnPq1W2OlZURvfqWTlv/5Zdfyoxjamr6xstGNJqynbkeNdFctWYckyZNYsSIEQQFBWFmZsbq1auxtLTkt99+IzQ0FFdXV1xcXEhKSmLmzJkEBASwZcsWunXrxvDhw9/o8bwI5Rm+CrxdDAykdOxck107rqEs0QBatFqwsDSkXYfq//qJjFqtYd2aS9y/l62f0F84n0glZwuq1xSTnp7OhAkT+PHHH0tlahw58vcE+tHymYfcu5vFyuUXUKs0aDRa1GoV27bvpUb1vzOYlEol3bp148qVK2zevJnp06dz5MgRqlatSmRkJNWrV0epVHLkyBG8vLyIjo4mODiYWbNmUa9ePUaNGqVv7R4dHc2QIUOQSCRUqVKFpUuX/uuvzX+ZsyfvoXksuU9RUoiB3Jj8PAXno87QOLAzYavmMqD/F6xdt4ARH+uyesQiEbZ2Rpw+fZoVK3TZPE/qtpWfqyDmcnKpDNcSZRFymRHKEjWHdoXTpt20Up5FAJUrV+b8+fN6MXPQoEFcv35dnxF3924s3t6ef33fav+KQVfiWru241PvPSsrI2QyCWq1qsxrIpEIV1fLcre7fTNdLyA9pGlDXfMAiUTErqPTyhhNDx8+XJ9lNGTIEEAnil2/fp3AwEAMDQ3ZsWMHJiYmT4z3bSOVSajt60Rt3yd7XAmURhCRBAQEBAQEBJ4ZsVhE7TpOXDyfWKb8RtcJ7N31EHB3r1CmDO8hMpmEdet2AZQyYn7IsmXLyix71Bvp34BWq0Wr1b604avAq8fWzpS+A/xITMihIL8EqwpG2Nm/nMn30/gn/58DBw7w/fffo9Fo9ILKi3L0yG3u3c0u9XmhVKqJvX6PmT9NZ//+HTg4OJTJ1HhURHq0fAZAo9GyYV1UqS54UVcOUqN6CLdvZVJYqHtvRkZG0rx5c86cOcP777/PoEGDGDFiBFu3bsXJyQl7e3tWrlzJBx98wO+//06NGjWIiIjQj/lQQAJd9uSJEycA6N+/P+fOncPPr/yOewJvn5TkvDLt3O8nXOXI8ZVIpXKCg5tgZFKCnZ0TbVp/xB9Lf+Dy5ZOIxWBhaYy1tRktW7akdevWpe6Jx8nKKEAqE5e6vxNSYjhxcS0SsYzKLjVp2LAhZmZm+Pj4EBMTA+gElx49erB48WJ8fHzw9/fn+vXrZGRk0LJlSwwNDVm/fj3Z2Uru3cumpESNlZURbm5WmJg83d9KJNKVu505c/8vgVWLSKRb7u1t88QupKbmhnqfuMeRSMX8sXBTKaNp0BlMP2oyDWBoaEhxcTGgMxhv0aLFU+MV+PchiEgCAgICAgICz0WDhi7k5hRz62a6/mmoVqvFt67TO92xx9zCkFq1Hbh6JaVUiYNYLMLUVE6NGm/OgPhNkpycS2xsGgUFStLSEjlw4CCNGzfmgw8+wMPDg9mzZwM6s+O0tDTat2/Pjh07CAsLo7i4mIKCgjKmsOPGjXvLR/XvpjzzZ5FIRCVny1Jtvh9y6dIlNBpNqbbbL8o/+f8UFRXx+++/c+DAgZfuOqjVajl3NqGM4KxWq1m7fgatWvTXG38/nqnxKI/7ICUl5qAoLp1lkZ55nwcPbnPuwk6SU26wKmwDjRo1wdnZVT/pNTExISwsjMmTJ7NgwQKSkpKoVq0a58+f5/79+2RkZODn50dERAQmJiY0btyYdSu2k59dTKUqFZDJdJ3NDAwMUCgUBAQEYGBgQIsWLfj666+ZOHEihw8fpk6dOuTm5rJs2TLCwsKYP38+EomEBQsWULt27Zc6pwLPhrWNcRlBpEplP6pU9kNuIKF777p4etvS5YPOxF5PZfiwCRgZyzhzdifOzrbP1JULwMLKqMz9Xdm5LpWdde9VVw9rAKpXr45K9fc9a2lpqS+He0h5goyDgyEODs8vKJuZGdC0aWWSk3PJySnGwEBKxYoWGBs/uTufXyNXjh+8Va6IpNFoqVVXyNQR0CGISAICAgICAgLPhVgsomVrbxo2cuX+3SzEEhGubhX+8enou8B77aphbmbA6VP3Uas1aLVavKra0rZt1f+kGfWdO5lcv56mnxRYWtry22+7MDc3YfbssYSGhhIREcHChQtp0aIFpqamfP311wwePJjMzEz27NnDrVu3ypQaCbw4L2LifOnSJVQq1QuLSJmp+Vw6dheNRsvZ63v1/j8RERGEh4czbdo0fbadi4sLYrGYNm3aYG9vz8KFC9m6dSu5ubkMHz6cqKgofv/993Iz9h5Ho9FSXFy2pObqtSMkJt1g557fiQpezw8/fE/Xrl1LZWo8jaIiVZlynhbN/hbdlq38DDu72mRmHKFB/Y9YvfYnUlNTOX/+PKNGjSIxMZEVK1bg6urK3Llz+fTTT1mwYAEeHh706tWL33//nc5te3P7WirjO69GKhOjLFFjVT2HI1Fr8fL2IiYmhiFDhtCvXz+0Wi3JycmcOXOGo0ePsnr1avbv349arWbevHkcP36cxMRERo4cyc6dO//x+ARengaNXDhz6l65gohcJsHD0wYARydzHJ10vmMXL15k9+7NrFu37pn3Y25pRGVPG27FpqFRl96X3EBCcGuvlziKl0MqFePsbInzMyYI2zmaEdLam8P7buiz/ERiEVKJmA9618HI+N3/jhd4MwgikoCAgICAgMALYWFhiIWP49sO47kQi0U0DfEgqIk7BYVKDA2kyN4Bc+XXgVqtITY2rdQkStcuWo5SCY0aNSM6OprCwkIOHz6sbxvfvHlzRowYwZQpUxCLxXh5eZUpNRJ4NrRaLddjUjl/5j55eQoMDKVcj91Pr169mTJlsn69R82fAQ4ePMjmzZsB2LVrF4sWLSIjI4PDhw+zatWq59r/2l9PsXdtlC4rQ63iyM01WCh8H/fG1/PgwQOSk5OJiIhg0aJF/P777wwaNIju3bszfPhwNm/eTJcuXZ64z8d9t1q3mEBhobLUOj61muFTqxlGRjI+HdeEmTNn0rt371KZGo9mZDxefunoZIZKXbab3UM+G/sb1hUs+GTU92g0Wnp2H8f0GUOoV68en3/+Od9++y0//PCDbixHRywsLGjcuDHff/89sbGxTP/uey6t3kBJseqv/3TjZsdYMuL9OVzL2Y5cLufy5cv07NmTXr16YWVlhY+PD6Dr4rh//37S0tJwdXVFJpPh5uZGTk7OE2MWeLXY2JrS/v0a7Nh8Fa1W93kol0sQS0T0GeRXbkfHOnXqcPTo0efeV48hDZg/4zB5uQoUxSpEYpBKJTQMcv/XZe+0aF8Nj6q2HAu/RUZ6AY6VLGjSwhOnShZvOzSBdwhBRBIQEBAQEBD4f4dYIn6iL8R/hczMor+yNf5WCwoLCzA2NkGj0XLs2DFatvyKr7/+mi1btugzOxYuXEjv3r1ZvHgxnTt3xsDA4KmlRgJP5uTxeKKjUvTlLgX5xRw8FEFAo076dZRKJf369WPIkCE0bdqUO3fuYGdnx5o1axg8eDBRUVEMGTKkTInbsxC58zoH1l9B9VdWQVz6CVws63P28G0yHuSVMQsWiUR6QUUikdCsWTN+/vlnzM3NkcvlpKenc/ToUb799tun7vdR360Tx+KJjLyNSvmYh5pMjH+AC1qtli+//PK5jsvU1IAaNe25Fv2gTCmRWCzC1ra0ia9araWoSIlGo8Hb25uWLVvq/Y6USiXZ2dksWrQI0GV9FWcaICkpnUGl1ujEpKPbr+PU3Ag7Oztmz55NSUkJgYGBbN++nStXrgB/d3G0tbUlPj4epVJJYmIiFhbCRPxNUs/PGQ9PGy6eSyA7q4iKlSyoXaciBk/oXvaimJkbMn56K65eSubmtQcYGsqoF+CCQ8V/5/Wu7GlD5b8ytQQEykMQkQQEBAQEBAQE/p9w9eo5wsLmIZPJqVOnAfv37+f+/ft06NABgJUrV7J9+3Z27dpFjRo1mDp1KtOnT3+uUqO3xenTpxk7diwSiYT69eszevRovd/Qo4waNYorV65QuXJlFi9e/NK+P0+iIF/BlcvJ+s5KAKfP7qV+3eakpeajUOhEisjISFq1aqX3XAGoWbMmABUrViQ7O/uFY9j2x/lS3kG5xalkFSVwK+0oGYV3ORJxhOTkZACuXLmCj48Pfn5+pQSVh5lnnTp14scff8TT07PMOVMp1Vw+fZ8HCTkUq7M4fOgwQUFBdO7cmdGjx/DNxDHcu3sfCwtbLC3saNG8HwsXDefKVT+OHqvJ9evX+eabb6hSpcozH1uHTjUAuBr9AKlErDeOd3G1Qm7w9xRHpVIybcbH3ImPpWXLVsyc+QMODg4EBwcjEono3r27XsBr0qQJxsbGeMk6k1xSWGp/DwpiuJF1BIlEhH9sXfwa5hIUFERhYSG9evXC0dGRevXqERQUpPc9kkgkjBw5kqCgIMRi8TOVAP5XeDQjTa1Wc+PGjad2hUxKSqJXr14UFxczdepUmjdvrn8tODj4qebWT8PS0oiQ5p4vehjPjEQixqdeRXzqVXzt+xIQeNsIIpKAgICAgICAwH8QKyujUq2oAfz8muLn1xSxWIS3ty2VK1cok1WyZ88eADp37kznzp2Bsqaw7yKurq4cOnQIQ0NDevbsSV5eXpl1zp49S0lJCREREcyaNYudO3fSsWPH1xLP3fisMplgqan3SEi8xdHjW7mfcJ0dO3YQGhqKi4sLv/76K6NGjQLKthOXyWQoFIrnjiE9ufQ5qFOpk/7vAzdmM3rU53zU8wPatm2LtbXOANjW1raUoLJ69WoAOnbsyPDhw9m2bVupMRPjs5jz9T6USjUlxSrEUi0dG05lxLctGf/tMOrWrYuXlwPr1oUxaeI0FIpiBg5pwE+z01m06HdMTEzKmAk/C1KpmM5datGytRfJSXkYGcuIupRUxoNJKpUxeeJixGIRbdtVRS6X0rBhQyZMmFBqvbFjxzJ27FgApvTbSEJsLhLR3ybETma1cDKrhZGJnK+mdKRa/Yp069at1BjTpk0DdALK5MmTAejbty99+/Z97uP7L/AwIy0+Pr5cQfdRfvjhB6ZNm4aPjw/t2rUrJSIJCAi8W4j/eRUBAQEBAQEBAYF/G1KpGE9PGySS0t4fIhHI5RKcnf+dpRYP0Wi03I7L4OD+G0QcvIVKaYiBga5EUSqVIpFISEpKokuXLtSrV4+EhARu376t963x9fXl5MmTAHzzzTc0adKEUaNGvZCgUW582rKmQ506fMzI4bMZOXw2ri5VaN++PQBTp04lJiZG70v1OP7+/oSFhelFpmfF1NLwia+1rTUOEzMD9uzZw+7du1m5cqX+2MeOHUtkZCR79+6lQoUKgK6bVGFhYal23WqVhrkT9pOfq0BRpNJ5zyhFaJRSFs2IpEVoKxITE/Hx8cHW1pSOnUJwdrHE1tYUb29vTExMygvtmUhKSqJu3brY2FjgXtkSqbSIA+EryvW6EYnAxsYYufzZnp+36ObDubRVOJvVKfOaVC7Gq86/ywvuTZGXpyDqchIXzyeQlpbP4cOHCWgUyKJFi9m/fz92dnbMmTOHXr16MWDAAGxsbGjSpAlz585l9erVNGrUiG7dumFqasq8efNwd3fHycmJS5cuceHChVca6+zZs2ncuPErHVPgzRAdHU1AQABBQUH079+/zMOSR4mPj39ln+kCfyNkIgkICAgICAgI/Efx8LDGwEDKjRtpFBWpEItFODqaUa2aHbJ/cTc6hULFtk3R5OUVo/zLa+fWrXQcHMyo6KIkPT0dY2NjsrKyCA8PZ82aNWzatImmTZuyadMmRowYwaFDh8jKyiI5OZkLFy4QGRnJunXr9JlYL4uzixVa7Z1yX5PJxGzfvh83N2t9dsaCBQvKrPcwmwV4IcPflh/WYtvS85Qo1KWWS2USAlp5vnRHwqgz9ykpKT12iaoIudQIjUbLzm37mf7jt/rOb1FRUfr1xOKXe5ZdoUIFDh48yPvvvw+Ag4MDP8+aztEjt8nJUaD+y3hbIhEhlUqoW7/SM407e/ZsNm3azIethrFp/xLc8f8rXhFaSQm3RDsIDV1Lp06dGDNmTLljuLm56Y/5/wtnTt3lyuVktOgEXpWyhK/GrcTYxIC58z5nyqQF3Ll7ljlz5hAYGEhxcTETJkygWrVqbNq0CZFIhEqlQiKRYGpqyp9//omHhwcTJkxgypQp1KlTVtB7UV6kQ+J/mcfN8B8tN4yIiCAiIqLUZ9HbxtvbmxMnTgDQv39/zp07h5+f31uO6v8XQiaSgICAgICAgMB/mEqVLAgJ8aB1ay9at/bC19cJA4N/93PE40fvkJ1dpBeQAFRKDbduJTBw4FD++OMPQFeGJxaL9d5Cvr6+1KxZk5CQEHJzc7G3t+fu3bt6DyJfX99XFqOFhSGeXrZIpaV/bkskIswtDHFzr/DK9vUk2vWpg1dtRwyM/r7ehsYynNws6fXpy2dhpCbloXrMgDol8wabjk5iw+EpyCXmNGzYkOLiYkJDQ4mKikImkz1htH9Gq9WSkpDD3bgMxCIpVlZW+tfi4+Pp27cPTYI9mPJdP5Ytn85XE3rwIPUyLVp5MXz4YJo2bUpISAgaTWkz7ocdDB+KCyIRDJ/Wgiq17Klc0w67SuY0bueNZ9sCho8aREREBJGRkaSnp5eJMT4+Hnt7e4KDg2nZsiUpKSlMnz4doNzMl/9CNsztuAyio1JQq7W6NvdakErlyOVGqFViavsEcenyNap5tSAxMZGGDRsSEBBAYGAgJ0+epLi4GFNTU9atW0edOnVIT0/Hzc2N7777jqVLl3Ljxg1SU1NfOL7U1HxOHI/n4IGbXLqYxP/+t7BUiWH//v1p3rw5AwYM0Islvr6+9OvXj1q1arFlyxbee+89fUZjZmYmwcHBhISE8Mknn7xwXCtWrCA0NJTg4GASExP198mjGYdarZbatWuzZMmSF97Ps9CiRQsiIiLK9at6FyguVnL2zD1274zh7JlE8vN15b0GBgYoFAoCAgIICQlhxowZAEycOJGgoCBmz54N6Dzzxo0bB0B6erq+VFvgxfh3/4IQEBAQEBAQEBD4R0QiUZmytn8rKpWGuJvp+on/Q9RqFUuWTuaD94fh4OBAfHx8GW8h0E0uJk6cyOTJk2nTpg0uLi5cu3YNKJ0p8yoIDq2CuYUhly8molRqEP3lRRUQ5FZu2dWrRiqT8MX89lw7m8CJfTdRqzT4NatMncZuSKQv/yzZ2s4EqVyCuuhvIcnFrjYudrWRySS810NnML148WKkUikzZ87ExcUFgGPHjum3USgUGBkZPXVft2PTWPnbafJzixGLRajVWkLaepdZTywWkZOTydatm7C2tqZly5b0H/AhCQkJHDlyRN+FTqvVsn9tFFsXnyMztQBjUzlapxv0GNKL76ZNQSIVY+9sybQ/u9K3b1983hvKtbUP8PHpCkCNGjU4d+4crVq14uOPPyY2NhYjIyNmzJhRqjsdUMZ/6b/GpQuJZbrkFRcXYGhoglYLsbEXaNmiO4uX/IxPrdocOnQIc3Nzhg4dyujRowkICKBOnTpMnTqVn376iYiICHJycqhVqxYjRozg/PnzLFu2jC+++OK5Y7t4IZG4W+l6g/vU1Gw2bthNr14DAZ24YGBgQHh4ODNnzqSoqAiA5ORkTp06xYULFxg5ciTnzp1j7dq1rF+/Hh8fH4KDg5k8efJTS6meRmJiIkeOHOHgwYP6ZQ/vk4edAwG2b9+OnZ3dC+3jaSQn53LzZjqFhUqys1MIDz+kN8MfO3YsAwYM4N69e7i6uuLs7MyuXbu4c+cOAwYMwMrKiuTkZLZu3YqpqSm7d+/WG+O/jAn6k7h/P5s1YRfRarUolRqkUjELfwvj5OkwatWqTkxMDEOGDKFfv35otVqSk5M5c+YMR48eZfXq1ezfv5+GDRvy1VdfodVq2bRpE126dHmlMf5/Q8hEEhAQEBAQEBAQ+NdQUlK+wfeFi4e5e+86a9f/SnBwsL7r2KNoNBqCg4MJDQ1FLpfTsGFDHB0d8fX1JSgoiPDw8JfKlHkcsVhE/QbODBjSkH6DGjBoaEOCQ6s8szfPq4qhZkNnhkxsxvCpzakfXPmVCEgAtf1dkDypLE0MjZrruq0NHDiQJk2acPToUX352UNWrFhBUVERFSs+uavVg6Rcfpt5hMy0AkoUaoqLVChL1ETsiSUzraDM+tbW1ri4uGBiYoJEIkEmk9G3b1969erFN998g0ajYfkPkayafZzMVN32+XlFHD4cwbGwLL0XulKppF+/fvrubd7e3hw5cgS1Wk1kZCRZWVns2LEDY2NrBg/8GQ/3UL75Zjbh4QcJCgpizpw5xMfH06tXLwDUajUjR47E19eXvXv3Pu/pfmfJzS0us+zmrctM/6E/M38eglqjZtGSicTEnqd27Ya4u7vr34sxMTHUqVOHmTNnEhcXx7Rp05gwYQL9+/fH3d2drl27kpCQoPcPex7S0vJLCUgARyJ3EdCoNceP6kpN79y5U8on7SFVqlTB0NAQJycnqlWrhlgsxsnJiaysLJo2bYpGo6FHjx5PNQsvD61WS0FBCTt27EatVhMaGsqoUaOIi4vT3yePZqetWbOmjIH7yxITk8rFi4nk5BSjVKqRyy1YsGAHc+euJjw8nMjISCQSCeHh4Xh4eAAQEBDAyZMnOXPmDMHBwZw8eZKTJ08SEBDwSmN7HJVKzdpVlygpUeszT1UqDV6e/gzstwA7OwfkcjlRUVH07NmTvXv3cvfuXf01rVevnn6soKAgjh8/zo4dO15bQ4X/LwiZSAICAgICAgICAv8aDA1liCVi1OrSXjx+9VvgV78FlpZGfNRL55/SqFEjQNciPDg4GKDcp+STJ09GKpWybt06bt++/cpjFolEGBr+9352y+QSRk5pzrxvD6DRaClRqJDJJSCCgZ8HYWGlyy5avnz5E8fo06cPffr0eep+DmyPQaXUlFleolCTlVlIiaK0sJiZmUlCQgIVKlRArVajVqvp3r07ffr0YciQIYTvjSB8QwzKR/yc4rPP4mxWl3s3Migo1pXKREZG0qpVK/29M3jwYIYOHcrWrVtxcnLC3t6e9ev2sWPnJrZt3YVGo8bFuSrjPl2BX0N3Zv44mtDQUP0+MjIymDhxIkqlkpEjR9K6deunn+DHmD17Nps3by6VxfUsXLhwgXr16qFUKpFKX/19aGpiQKaisNSyWjUDqFVTJzBIJLr3gFgsop6fM7VqO5U7zuPv6WHDhr1UXHE3M0oJSABJyXe5Gx/LwUMbuRN/ldjYWFJSUoDSmYiPZjE+ntGoVquZOnUqoBOeevfu/UzxxN/J5OL5REpKVEQcjiIlJZ2NG7fz089Ty3Q9BNi3bx9NmzZFKpW+su6YhYUl3L6dUSqTUyaTA5CSkk9oaCsSEhL0HlT16tXj5MmTWFlZkZGRwYkTJxg/fjyHDh3i/v37VKpUqdyMz1dF7PW0MmOqVCVIpXK0Wi2FhSLs7OyYPXs2JSUlBAYGsn37dq5cuQLAxYsX9dv17NmTr776CgsLi5cy9RcQMpEEBAQEBAQEBAT+RYjFImr5OJTxGgJdR7q6fs9moPwoEyZMoEmTJixcuJBBgwa9ijD/31C5qi3fL+/CBwPr0aStNx161WHG0i74NnJ9Zfu4eS21bPmiRsWWg9NIy7xLixYtefDggf41GxsbJk+eTJMmTfjiiy/Iy8sjNDSUwMBA7t+/T0mmGaLHygnzFKncyjzO/ph5xN68zo4dOwgNDcXFxUVfXmRiYkJYWBh79uxBo9Hg5emDRm1J/bqtGPnxL3wycj7t2w1DIjHg8sUUQkNbsXPnTv0+bG1tsbOz03t0PQ8vYwb9v//9j7p1677Qts+CTx2nct+PoOuM91BkEInA9Q14gT2kqFhZZlnP7qP5+qsFfDPhNzw9qzJp0qTn9uw6c+YMjRs3pmHDhjRv3vyZYom/k8npk3cpKlKiVmsxMjTBo3JtDh64SQO/QH0Z3aMsWbKE/v37P9P4z0pycl6ZZYWFumw8jUbL4cOReHh46O+1R0UYZ2dnDh06RLNmzYiOjsba2hoACwsLkpOTUSgU3Lx585XGm5NTjEpVWly8eescf/z5KYuWjCUlOYXc3FyCgoJo1KgRPXr0wNHRkXr16hEUFFRKcPXy8uLevXt8+OGHT93n6dOn9d3fxo4d+8yxrly5kkaNGhEYGIifn98/do+7ePEiLVq0ICQkhF27dgE8dwfOt8V/75GIgICAgICAgIDAf5r6DVzIzVVwJy4DQO9xU6u2I55eNs893syZM191iP+vMDKW07Rt1dc2vkE5WVwSsZT3Q79BJpcwbnpLsvOS9b5KUqm0jBFxZGSk/u8D66+UGa+2Qwf93+dyFtG+fXtOnz7N1KlT+fjjj1m7di2enp58/vnniEQixo8fz/37+VSvFkDM9V/4329jAGjUqAN1fZuhRUv4gQgmTf5C77klEon0nbAUCgUtW7ZEoVDQq1evcsuicjIKSU3Oo4KdCWs3LOfWrVucPn2asLAwli5dSoUKFbhz5w7btm1DpVLRv39/zM3NefDgAWvWrMHd3Z2rV6/i7OxMXFzc85/4Z8TTy4aU5Fxu3khHo9bw6Jz5YbWjVCqmanV7zM0NX1scj2NjY0J6WkEZARJ0GTPh4RHA0z273Nzc9Nfm0YzG58kG02q1XDyfWCorytOzNocjtqBWazh84BgurpZltrt58yadOnUiMTERrVZL48aNqVr15d5nGo2mzPm4du08q1b9ikwmp1GjABo2bMhvv/1GaGgorq6u+nMSEBBAamoqIpEIU1NT/P11nQv79OlD//798fX1xcHBAYBvvvmGH3/8kbp163L37l1OnjzJN998Q1hYGPHx8fq//4kKFYyRSiWlukBWqxpAtaoBSKViQkI9aOjvWqbkb9q0aeWOZ21tTZs2bZ66T1dXVw4dOoShoSE9e/bkypUr1KpV66nbqFQqFixYwLFjx/T+WXPmzHlq97hp06axbds2jI2N9cse9cN6lxFEJAEBAQEBAQEBgX8VYrGI5i29yMku4v79bMRiMa5uVpiYyN92aAKvgYCQyuxcf6VU+dlDLKyMsLIxpOtHg/n666+faTzfxq4s/yGy3NcMjWWsn7+9lHiwYMEC/euHDx/W/x0ZEQeI+OD9Mfpl12JOMWvOYKRSGYGNG2Nvb19mHy1atCAhIYH9+/eXO7kszC9hyYwIos8mIJVJKFEoOH1vDeu3rKBV2xAAsrKyCA8PZ82aNWzatImOHTuSkpLCgQMHOH/+PDNnzmThwoXMmTOHvn37MmfOHIKDg/H09GTixIl8++23pSbxeXl5dOrUCaVSibm5OWvWrMHMzOyZzqdIJKJJsAc1ajoQdysdpVKNRCImKSGbwkIlpmYG+PhWxL3ym8tCAqjiacON2LQyoolYLKJCBWMsLHSC1sCBA7lz5w7m5uZs3LjxlcdRWKgs4+Xm5uqNXG7AtBlDMDe35NPPFuhL5B5y6dIlAJYtW4ZKpXppAQnA2toEiaS0T1T9+k2oX78JEomIevUq6ff5OP3799dnRq1atUq/vG7duqWy5BQKBTExMVhaWrJ27Vq++eabF47X08sGqUxcSkR6iEgswuev0sh/KvX09vYmPT0dS0tLbt26RfXq1Vm5ciULFizAwsKCZcuWYWFWgcTbmZhaGGJoqLs3pFIpEomEZs2alRJtL1y4UKrz26qVh1EUGTJ/7nFsbA2JPHIc0HWPc3Z2pn///ty/fx8XFxdcXFzo06cPxcXFdOnSBblczu+//469vT2NGzd+7nLVt4EgIgkICAgICAgICPwrsbA0wsLy6V29BP79BIR6cPbYXR4k5eqFJLFYhFQmoffwhsjl8lKZRv80CbN1Mqdpx2pE7rhOSfHfk3uZXIKTuxV1gtyeKS5nFyuuRCXrDX8Bqlfzp3o1f2QyMR3fr0lB4QOMjIxIS8tn7py1XLuWyKFDh/HwqMycOXPYsGED/fv3p2PHjjx48IDVq1cTNjOKnQfDuJt2CbFISqUKNbA3rs0f353Rl8ZUr14dsVhMxYoVuXXrFgC1atVCKpXi6+vLrVu3uHnzJhYWFvj7+1OnTh3Cw8MZPHgw6enpZY5FJpMRFhaGo6MjixcvZtmyZc9dWmNtY4K1zbvjNWNkJKNpiAfHjt5B/Vf3OK1WSwVrYxoHuevXe5pn16tAIhZRXkVTz+66UikDAwleXl56Ue/x+7dfv36vLBYrKyPMzQ3JySkuJa6JxWBsLMfOzvSFxtVoNKSk5JOfX8KqVX8QHNyaHTt20rVrV7Kzsxk+fDinT5/Wi6d79+6lUaNGFBUVcf/+fUQiEVu2bGHLli10795dL65KJGJ69alH2PLzqFQalEo1MpkEgG7dfTEykj1TqaetrS2xsbH6fz+aOXT+3AX6dvkE++IQJDIxapUG+0rmNO9fifT0dDIzMzl69CiBgYGUlJSwadMmRo8eTYcOHZg//39YWVbl9q18Ym+cZ+6vI1Aqi8nJzcTLqyo1a1bn7t27ZToAPnjwgNjYWKKiojhy5AjTp09n3rx5L3Tu3waCJ5KAgICAgICAgICAwDuLXC5l9KRmtOvmg2MlcyrYGNOgiRvjZrTEzfP5yxcBBn4bQrdR/phXMEIsFmFgJKP5hzWZ9OcHiCXPNkVydbPC3NwQ8WP+ShKJiArWxtjZGzNo0GCsrXxZ9Ntp9u2N5fyZLAYP+J0fZiwjPDyc3NxcUlJS2LRpE7/88gsTvpzCrdh4EjNjaOv7BXXcOnA79SwxSRGsOziD1AepnDp1qlwz4+joaNRqNZcvX8bNzZ2dOyI5GH6UkJCWREVFMWzYMAwMDFCr1SQmJtKxY0f8/f25c+cOhoaGODo6An9nXxw/fpwvvvgC0JmVd+rU6YXO9dvExsaEDh1rENTEHb+GzrRs7U2zUM+X6pC4YsUKQkNDCQ4OJjExkenTpwN/+9kcOXKEhg0b4u/vz8KFCzE0kmFuUX4Zn0gMrm5vLkNLJBLh7++Kk5O5ToiVihGLRdjZmREQ4FbqvgJdhs+j3eLKI/5OJidP3CM9vZCiIgWnT58gKKgV1arVxNbWnjt37pCZmYmnpycbNmzgf//7H82bN+fkyZNcuHCBYcOG4erqSmBgIBcuXCiTnWdnZ8roT4No37E6wSEe1Kpqi0G+ksVTD/HrxANMnzKbvn376mKJjyckJKTUvQ26+7dJkyYMHTqU4uJiMjIyqFSpEhKJhAu7s7lw6RwlChVF+SWUFKu4df0+fXsNYtbMX7l69SoSiQS1Wo23t7fez+zUqVNs27qXpo27k5h0m4pOnojFYkxNrDAxNmfMyD9wcnLi9u3bZToAWlhY4Ofnh7GxMc2aNSMmJuZlL+0bRchEEhAQEBAQEBAQEBB4p5HLpQS39iK4tdcrGU8sFtGub13e61MHpUKNVC4pIwY9yxhdu9Vm/75Y7sZnIZGIUas1VK5sTfNWXsjlUr4Yt5DLl5JRqR5mK0kQiyUciYinYYNgdu7cWSqD6Pq1WJwNnLAy0ZUVWZu5YSAzpWWtMQBsv/wN/v7+7N27t0w8dnZ2f3nopNCpwzgM5ZUY2H82UpmYadN7c/TocWrUqIa1tXW5pW8A+fn5LFq0iD179mBhYaEvEdy+ffu/ti26WCzCzv7ZSvP+icTERI4cOcLBgwf1yyZMmAD87Wcza9YsNmzYQKVKlWjUqBHDhg2jgb8LBw/c1GdEgU5AMpBLqVHL4ZXE9qxIpWLq1KlIzZoOFBerMDCQIpdLyqz3LBk+SYk5nDxxlxq1dM0ONm9ey3vvvY9cbohCoUCjEVO3bl1cXV25fPkySUlJODk56bsEZmdnExkZiZOTExcvXqRevXrl7kciEVOtuj171kWxa/VlfUfGlIRMIq5uIcC3nX7d8u7tY8eOUaFCBWbMmMGiRYsYMWIEd+7cIfl+OhtXb0ehLNBvr9GquZS5lvHjJiESmyCXmyES6YTlqKgoSkpKGDt2LFFRUVRyrM+p03uo6t0AKyt7Puwyns1bf8HQyBSVWsPZM+fZsWMH5ubmnDlzhho1agDg6elJamoqarWaS5cu4e7uzr8JQUQSEBAQEBAQEBAQEPh/iUgkQl6OcfezYmgko0OnmhQVKsnLV2BuZoChka7Dl0KhekxAAoWiEAMDY5RKDXv3H2LuL5MJCwvTZxBVquiCRbEdWbfvA5CRF4+ZkS2gE0OaNW6Pg4NDGbPn+Ph4KlWqxJIly/hzyRlUKo1+vyqlhi/HL0duICEqelUZ4ephOZxWq2XAgAFMnz4dS0tLAHx8fLh48SLbt28vY1b+/wmtVktxsYqdO3ejVqsJDQ2levXqjBkzhkmTJhEWFqb3s6lRowY5OTnY2trqW8nb2JjQqo03Vy4nk5Kch/ivDKQatRwwMvrnjnCvA5lMoi8NA8jIKOTs6Xsk3M9BLpcQE7uPXr16M2XKZOLj4xkwYEAZM/d273XF1s6OlJR7DBv2Kb/9Npu8vBxWrlxMYuI9DA0Nyc5Op2nTply7dg1jY2OSkpKwtLREo9EwYMAAfv31V77++muWLVtGjx49nhhvxoN8dq66VMob7WbSSSrbNWRH2EVUSt3y8u7tChV02V7vv/8+c+bMQSKRMHHiRNq1f4+ifFPMDGz1Y2rt7pOTlMD6Xb+xftdCxo79gubNW7Fw4VJ8fb3Iysrizz//RK1WE1l8FHNzW3LzMrgac5JxXzVDqwWZzIAvvm6DubkZycmJODs7s3PnTlQqFdHR0Rw+fJjMzEwCAwMxMDDg/v37BAcHc+XKFa5du0b16tVf6bV+1QgikoCAgICAgICAgICAwEtgZCzDyLi0GJCTXYxYIoJHPJXv3ovmcMQyJFI5HpVrYW9vr88gSktLY+GCP1jwxWkcLKuy69IPiEVSgrx1Zsan49aSxy3ixutKgIYMGVImjusxD8osU6pKkEnlaDVa1Gopx48fZ/fu3cTFxTFy5Eg8PDwAmDhxIoGBgTRr1ky/bZcuXfQT5ocT8f9vpKcXkJCQi1arJTr6NqmpuWzevIsZMyaxbdu2Mut36tSJdu10mTETJ07UL7e0NCKoaeU3FvfzkHA/my2bolH/1V1PrVaxd+9BfGq11fs5lWfmnp2dzcLf13PixF62bVvHgQPnWLRoLkVFRURHXyI+Po7CwkK2bdtGpUqVEIlEfPzxx0yYMIH69etz+/ZtxowZQ2JiIhcvXnyqL9DZI7f1pZsPyS5IISPvHtcTI8gqvMuOHTtKlXV6eHhQUlKCVqvFwMCA48eP6+/3Dh064OlUj7F9ZpGs1XUvlEjFTJ4/Du/VVuzbt5M5cxby88/T+fXXPxg+fBC2tnbUr1+fmzdvkpSURMcOPUhMTMfC3AYjIxOmfLuF+QtHUVSYj7t7TczMSwBwcnKiRo0amJubY2lpSUREBKtWrSI9PZ3Ro0fTuHFjIiIiCAoKeucFJBBEJAEBAQEBAQEBAQEBgVeOiakctar0pNfLswFeng0AsLMzwc3NjYiIiFLrdB2qQbRIhI/i71bkBoZSJoz/ju4jG5W7r4fd5CIO3SqV+QQQE3OaiCPr0aKlqrcncgMNMpmMIUOGcPnyZebPn09SUhIzZ84kICCALVu20K1bN4YOHUpQUBA9e/Zk0qRJr+CMvHni4+Np2LAh1apVQy6Xs3//flasWMHy5ctRq9WsWrWKZcuWMWHCBIYPH05JSQlRUVEkJCRQpUoVvvxyIo6O1fVCiomJGb6+DYmLy6BRoyCuXi1b7jVu3DiOHTuGvb09LVq0oHv37qXauL9qoqOjGTJkCBKJhCpVqrB06dIy3kblkZKSwh9//MHXX3/Nnl3XS903587vo45vKOlpBRQW6oSQ8szcHezdyEwvxMbGHk9PXfc4W1sHNBo1c+Ys4ciRA6xYsYStWzdz7do1vag2dOjQ5z7OgvwSVMrS93ZD7676v4/e/oX27duzadMmvSi7atUqsrKyaNOmDaamplhZWemz+EaNGkV09FUSMxT42HQGoEptB0oUCmJiovXjKpVKsrOzSElJpnLlKjRp0oTt27cjFouRypSoVAqMjM3RaqGgIAe1Wo1YIqZDx7ZMmjSakJAQLl++THx8PL6+vri5uQG6Uj5ra2tA59lUqVIl7O3tKS4u1neHe1cRjLUFBAQEBAQEBAQEBAReMSYmclzdLBGVM+OSycT4B7iWu12LLrUY+2NrajWohLW9KV61HRg2sRkfjfAvtd5D0+P4+Hh69eoFgFUFY6RS3Q7FYhHObpb0G9id5Su3smz5Vmr5+DJixAhq1arFH3/8QevWrXFxceHzzz/nwIED9OvXD3t7e3bu3ElUVBRjxoyhcuXKbNu2jZycnFd7gt4QLVq0ICIigv3795fyNIqIiKBixYp6TyN3d3d69OiBo6MjZ8+eZe/evcyYMaNUZzUfn/rcuhWDVgvHjp0uV6yRSCRYWloil8sRi8UolconxvaocfWgQYNo3LgxiYmJz3V83t7enDhxgqNHjwJw7ty5Z9rOwcGBCRMmkJZagEKhKvVaatp9Tpzcxv9++4wbN66zY8cORCIR8fHxdO7cmT///JPevXtjbmHE/XtZf3V6K232rlZrsLW1pl69Opw+fZqcnBwWL16Mv78//v7+rF69+rmO07OGPQZG5efAGBhJWbdyBwCVKlVix44dnDp1Cg8PD+zt7blw4QKRkZFs27YNMzOdP9avv/7K4cOHWL9pNWZWZhiYG2BoKmfDptV88MFH+rEzMtIICqpDdPQlXF3dALh37x5OTk7s27cPpVKDi0tdZDIjZvzYg6Skm7i6VqJLl+ZIJBKuXr2Kn58f7u7u7N27F5VKRbVq1fjtt9/o3FknXh07doyEhAQ++OADFi1a9Fzn5W0giEgCAgICAgICAgICAgKvgU6da2JuZljKuFgmE+PlZYuvr9MTt6vq68inP7Xh5/Xd+Wpee3wDXUsJFk8yPfauaqefy3tVt8PWzhSRiL9Mw9WcPXsSF9fa+vWVSiX9+vVjyJAhNG3aFABLS0t27dqFUqmkoKCAyMhIPvroI7359ruMVqslP09BUmIuiQk5ZGcVcejQIerWacjIjycweNBI4uJu06hRIwwNDbl16xa1atXizJkz/PDDD2zfvp0jR45w4cIFDAwMycrKpHfvtnz66QCGD+9GePguIiL20r///7V33+FRVvn7x99nZtLAkAChxQAJfSEgIEV6MKi7gIiLLIu6RNEVRFkFV9fvEvlZVhQEG+rquiDWFSmKgFQVAREEaQm9hBoILbQUkpk5vz8mjMQEBgQNxPt1XblI5jnzPJ+ZOck1c3PKLXz66Sfcdttt/mlIqamp7Nmzh3/84x906dKFNm3a0LlzZyIiIgDfiKG2bdvSoUMH7r77bjZu3Mhrr73mr33Tpk0sXryYq6++usjjuuWWW4iMjGT+/Pn+x7lrVyZLFu9g1cp9ZGbmABASEsK2bdtITk4GYMKECUyYMIH8/HwSExPp2LEjvXr1wuPx+MPHvHxPkTDs5m4DGfDX0Qz46wtER9fyT88DuPbaa7nrrrt4//33qVylLA5j2LQ+g/w8D263F4/Hi9druaHLDSxf/i27du1i2rRpDBo0iBtuuIGlS5eyaNEixowZc0GvbXyLq4moUMY3RfQMDqchskIZ4lsUfd4COZhxgq+/3ka1a6pQNb4SOS4vP6xcStu2Hf1t3G4PwcHBOJ0u1qxZxZgxY+jevTsvjPwUr9dSpUotDA6S7hyJ1+tl2OOTaNq0ETNmzKB169ZUr16dwYMHk5eXx9y5c4mIiGDDhg08+eSTjB49Gii8ZlNqamqxtV5ONJ1NRERERETkFxAeHsKDf2tLamoGWzYfIjjESdOm0dSoGXleU45Os9Zy7NgpjhzJxhiYOvV9kpKSCq25k5+fT//+Sdx66x3Mn7ecz6avIDc3mwEDH+WZpx8hODiYY8cyWbz4u4KRI7Bw4UJuuukmEhIS/Oc5vUPWtm3baN68OQAtWrTgm2++uQTPyC/HWsv+fSc4dcrtHz2UmxvM889OISjIxajRQ6lQoRLbtu7ib38bwv79+/nPf/5DZmYmzZo1Iycnh27dupGWlsY///lPmje/lq1bNzJq1Fu0bXs9ffvewI4dW4iOrsG4cZ/icBjq1Ytm0aJFxMXFMW/ePF566SXGjBnD73//+2IKLM+9d7/EsaO5TJw0kuFPjCY2Npa8vDySk5NZu3Yt3bt3Z+rUqfTu3ZtTp05Rvnx5brrpJuLj4/2LdE+aNIXPPv2Wdm16MXf+/0hJWUiXxDv46OMRBAe7/GHgmQ4dOkSHDh148sknSU5O5quvvqJu3boAVKpUFo/XFrkPQFiYi5de+h8pKTn06fNPVq7cw7p168nNzSUiIoIOHdpTucoBripXl4GDHqdDuzvYumUr/fr9ibr1KlOjRg369+8P4F+LCMDlcuF0Ft0R7lwcTgePje7KWyO+ZsemQ7iCHLjzvcTVr8R9/0zA4XT4p3WCb5TX1KlT+eCDD0hOTvbfflp2Vh6vj1xITnaev78sXzWP1h26kJ/348ismJjqfDJxBr17d+WbbxaQkNCJdyf8j1df+ZZKUTXp3KkfAG53PnVqtyA4OJysk4awsDCMMYUWC7fW+gOjqKgojh07dtY1my5nCpFERERERER+Ia4gJ02bRdO02dlHHp2Lx+MlNTWDEyfz8Hotbnc+M2fO4w9d+/rbnDmiKCEhge3bt5NxMIJnR7wBQMaBdLr+4TY2b05l6JC7sNbD9OnTSUxMpEaNGowdO5bBgwcD4HD4JqvUqlWLuXPnAr4pUpf7h9vjx08VCpDcbi+7dpwgONi3vkzzZh3Yui0VYwzz5y0kKeluVq36AWstQUFBuFy+ACY2NpaOHTty7733EhYWRrNmrXE6nQQHh5CY2JVJk94jPX0348e/yKeffuLfnv10MOLxeOjatSvjx48nJSWFaZ/NoO+fh7BmVfoZ6w45WL16FU4HZBxMw+12U7duXWbMmMGAAQNYs2YN1atX96+lNHDgQP9ooNdff4frE/qTk5NLevpWrIWGv2tLlcqxtG3bks2bN/ufE2stxhjCw8PZvHkznTp1IiMjg7p16/pDpJAQF02bRrNmdXqhdZFCQ10sW/EZr74+n+ef/wBrwdqreO216Vx/fX3uuONPPPbYY8yePZv69evTvn0bGjd18viwSezYuZYnhudz++2343K5cLsLT5d788036dmz5wW/xuXKh/HoC105tP8EhzJOElXlKqKqhhdpd7aRemdavmQn+fmeQtMVjxzby7vvfcv0mRPZun0js2bOxOu17EvLJC/bjdPpICIiguXLN+Bx53L4iG/q4cFDu5g46SmcziDeHjeEGjXiuK5NI9atW8fkyZNJSUmhZ8+e3HjjjYwfP56EhAS8Xi/vvPPOWddsupwpRBIREREREblMpaVlcvzEKf+H3TlzPiWxSw+OHMkhr2C785+OKDIOQ4MGjf3niImJ5eEhvlFLAwfcRnCwk5tvvplly5bx9NNPM2jQID7++ONC123VqhXvvvsuHTp0IDw8/Jxr2KSnp9O9e3fWr1/PyZMncbnO72Pm6tWreeCBB3A4HIwYMYIOHTqc79NSxInjuYUDgcNZ5ORkERLiC2I2bV7NNY3bsH7DCrKyT5B5JJuVK1dSvnx5AMLDw1m7di3NmzcnNjaW5ORR3HlnT3bs2Erdug3Zs2cHTZq0YNKk93C5HISF/bgbn8fj4dlnn+Wtt97C6XTy4osv0r//X0lPP8Tj/3iVlSv2YC2krvuWL2a/jdMVxHUtuzFn/gS8XjevvPIKnTt3pnXr1hw5coTXX3+dNm3a+HfKq169OjnZOaSs3UFGxmGuKluRJd99RssWv+eL2f9l5qy32Zu+jbnzMnmw/n2MHz+eFStWsGPHDtq3b1+wW1oqa9euZdiwYUV2OevQKQ6Hw7Bq5V4cDoPXa6kQFcLOnZsKtQsKCgZgy5YjdO/enT179pCSksKxY8cYOnQob7/9NpGRkSxcuJD4+HiqVq1KVlZWoXMsW7aML774gs8+++xnv9ZRVcOLhEfHj+eye+dRgkOczJo9schIPYAZM2YwatQo3G43LRv3IoRarNvyDavWfYExDm5ofx+dKvbD6/ayN+1x0peEsGHjHpZO20RElK8fPfHEE/Tvn4TLWZGIiMoAVIqqwYP3j/Nfp179SvS9oymDBg0CICEhwf+7OXny5CKPZ+XKlT/7uSgJCpFEREREREQuQ16vZX/GyULhyO5d29m6dT2fT/uQjRvXFzui6KqyIRw7mu2/z549O8jJyebkyROULXsVX345l9BQl3/UwxtvvFHs9V9//fXzqrNChQp8+eWX3HrrrRf0+IYPH87EiROpUKECf/zjH5k9e/YF3f9MXq9l06YNDBs2BIfTSaWoq4lv1JHJU/6NKyiY+vWa0qFDd+Z9OYnvl3/F0mXziY2tSVRUFABut5t27doRERFBREQkyclDeeaZMYwe/SS5ublUrlyNoCAXDoehbt2KBetM+TzyyCP069fPP1orJqYW+/dn0iT+OrweF3AKgPhG7Yhv1I4xL/+VhYsnk5ubjdfrYcmSJeTl5TF27Fi6du3K4MGDqVGjBgcOHABgw/oMnM6KvPrqWBrHJ3D8eA6bNq+ifbtbyck+yfbta8Fa6tRuSp06dQgJCSE3N5etW7dy7Ngx/45z3bt3JyIiwj8K6TRjDO07xlGnbhR7dh8lsnwoo8e8wvXX38JHH71GRsZeXn11GCEhoZw4cYxHHx3NRx99xHXXXYfD4SAtLY1p06axZMkS/45jBw4cYPTo0WRnZ2OtpX379oSHh/PII4/w+eefX/B0trNxu71Mm5LKupT9OJ0OPJ58Jn06iU8++eQn/cPL6NGj+eqrr/B6vTRr0o4/dPgHK1NncvstIziZdYT5375Nr98PIzjUxWN/fZXIcqH889U7qXtNVR7BNxKsdevWrFmzmhdGLuCtt4cUqSco2Enza3/eqMMrhUIkERERERGRy5DH4y0yamTg/Y/7v3/wgd7FjigKC3MREurC4QCvF6pUjubZfz3Knr07GDFiDKGhl+Zj4KlTbo5m5lCmTJB/RA/AyJEjiY+Pp1u3bnz22Wds27aNhQsXMmHCBMqXL8/DDz/MX/7yFzIzM4mJiQEgKyuLnJwcwsLCflYtISEuatWqw+TJviDqoYcGElm+IiP+VXgE1dNPvsuJE4dJXT+Xm3vcSJcuXQBYs2YNc+bMwe1207HjLYAvWJo0aTYjRz7JpEnv869//Z1t2zbxxRcz/ecbN24cxhj69evnv238uIlcHR3H2tRltGvXAwjC7c7D5fKN5Pldg9YcOrwXtzuPnNyTpKSk4PV6SU5Opl27dixbtozU1FTKlCnD3Llf878PF+FwBLFn70aaN/89k6c+R5PG15OT46ZMmXIMfmAsr4x9gAcHPcWOHXN4+eWXadiwIX369OH+++8nISGhyLpAmzZt8j/Xx4/nMmniWg4eOInT6cDtziclZQVdu97ORx/5Fv8+evQwSUlDmTBhDI8+2pe77+7n33ls5syZPPHEE6xatYqsrCwaNWpEo0aN+PLLL3nvvfdwu900aNCAAQMGkJGR4d+VbNasWT/79T5t1vQNrEvdj9vtxe32snrtXH5XvxOTP17jH6kHvnWhNmzY4H+9T+UfJ997knJXVcLpcBERXplTeb7g1eE0DH72RoKCiw+6XC4Ht/RsxNv/xbeQfcGvaFCQg9jY8tSrV+miHtPlTiGSiIiIiIjIZcjlcuBwGDye4hc+fvu/U4mNrV7siCKv15Kefpz9GScoU6Yso154k+joclSpfNVF1+V2e/n6yy1sWH8AZ0F9lSqX9a+pc/vttzNs2DC6devGpEmTGDlyJFWqVGHKlCn079+fNWvW8PLLL1OpUiVSU1OpUqUKqampHD169IJCBWstO9IyWbM6HQs0aVLNf+yq8DI4sDzz7H2EhZXl2LHDDH7gOSpXvpqKFSsTERla6FzVqlXjp3bv3kly8hBycrIZMmQYd9zRn759u9O9+818//33AAwaNIhWrVqRkJBAp06d+Pvf/84777zBPx57ld27tzHxk1foefPf2bjpexYsnARAxQrVOJWbTcWK0Rw4mMb69etp3rw5c+fO5f777yc0NJS4uDjS0tI4kHGCQwdPsGXrclzOIJYvn06VynF8v2I6y1fMYH9GGgsXTcE44NqW1XHbGixZspxq1eJITU1lxIgRbNu2DYC7776b3bt3ExMTw9dff83QoUPp1CmB9L3H2L1nM4MHvc2hQ3uYNuNlQkODWL36O/9zUbNmXVq16kyzZu0YOfJBXnzxRe666y7uueceFi1aRJs2bejXrx8nT57k0UcfZfTo0XzwwQfcdddd/nO89dZb/u9ffPFFbrjhBhYvXlzkeZ89ezYej4du3boRERFBs2bNAJg6dap/YWqA3Nx8Vv2wt9BaToeO7CEjYzsrV3/BvozNTJ8+HfAtZN24cWPmzJmD0+kkLy+Pie/8wKQZB/F43ZzMOkJIcBmCgp307tf8rAHSaQ0bVWHx4oUs+iaN9PTjlCkTTKvrqnNN02iM4/wXzb8SKUQSERERERG5DBljqFYtnPT043i9hY85HIaYmIiz3vf08ZiYCMLDQ2je7MK3QD+bWTM3sGP7ETxuL6fHemTsP8GBjJOcOuWmevXqHDlyhMOHD3P06FFiYmLo2bMnd9xxB3Xr1qVjR98W6s8//zwPPvgg4eHhNGnSxD+17HxYa5k7ezNbNh8kP9/35OTm5HP0WAovv/wccXG1uaZ5bV7/92GGJ7/Jtu3rmfHFuwwaOJyE6+uwdp3jrOcuWzaYrKw84uJq8+GHnxc6NnXqbGrW/HEB5FOnThW5/6iR73Hy5Cnq1IlnwH1PsWf3URo1bEd8o/YALFv+BWFh4TRv2omPJz/Ot99+S/v2vmM1a9bkjTfeoGvXriQlJbFl8xE6duzLxs1L+FPvJ1i85BN63PzjNKrx7w6hc+febNm6GI+1VIu+ln+/OZ45c+bRslVHetzcnRkzpuB0Oqlduzbz589n5MiRxMbG8tBDD3HjDX/mhVHvkJK6mIiIynwyeQT1613HwUM7GTVqCGBYvnwBO3duwePxsGvXZuLjGwC+sPCRRx6hVatWGGOK3X2sOIEWvj5zd7vGjRuzYMGCYtsdPphdMHLqx1+OLgn3+L9//+NH/SP1HA4HQ4cOJTExEWMMDRs2ZOzY10hLH8Q77/w/vF64N+lx7h7QkZgakWet7UzRV0fQ5/am59W2NFGIJCIiIiIicpmKrVmerKx8jh3Lxeu1GOMLlypVKkt0taI7UxWnuNEeP9fRozmkbTuCx1M41fLt3mVZn7qflq1j6dGjBwMHDuTmm28G4KqrrqJcuXK88sorjBgxAoB69eoxd+5cDh06xJAhQwgKCipyvbPZuSOzUIAEsH/fCYyJ5akn/8eChf9h/frvaNO2BZ0T69H4mqrMnjOOHrfGF1rPqDhRUWXJPmPr99OMgcrnMZKrVq0KrFu3H4/HknkkG7fbYr1eXC4HxsCBA7vYm76VJd99zoGDWxg7dqz/vnFxcaxZs4auXbsSFhZGw4bNqRRVg7bX3ca2bT9QK7apv63DYRj336k0ax7DH7rPZd++EwQFhfDcc/8FYNasyRw6nEP37j2pWjWKo0ePAtC0aVO++843ymj59yksWjyZO/o+XfAYDd3+4FsQevy7QwkLDaJlywS++24eY8YM4dSp43z88f8ASExMJCkpieTkZMAXKvXp04f333+foKAgJk6cCMDhg1l8v2wXRw5lU7VaOKtTvvAvfL1q1SpeeOEFPvroI+68804efvhhUlNTcbvd3HvvvWzYsIEOHTrQrl07nnvuOYz58bULKxNUpB+e6dGhbxIbG+sP/Lp27UrXrl0LtRn+1BCGP1V0bSM5u7PHryIiIiIiIlKiHA5D4/gqXNOkKrE1I4mtWZ7mzapRv15UoQ/Uv5b0vcdx/ORTpMfj5t//Gcre9K3cc28fli1bRu/evZk1axa33Xabv92f//xn0tLSaNDAN5Jl3LhxdO7cmaSkJJ5++ukLqmPtmn2FAiQAt9sX/Bw+lEWQK4yyZcuQmppKxagynMzay+8a1g8YIIFvfaUaNcpTpsyPoVZoqIuYmMhCu7KdTe06UYSHh+J0GnJyfNvbe7yWU3keck956JJ4L0l/eZ777n2B2rXrM3jwYP99e/bsyZIlS7jppps4evQotWpVICjIQaNGHflu6RQaNfxxB7uKFctwfWJdypULYd++E3i9P6Ze2dknAV+49+VX31C7dm1SUlJ8z93atQVtshn72pPc2vMR/3pN1nrJzc0iNzcLj9vDO+M/JTGxDk2a1GPx4vksX/69fwFxgPj4eK655hoAIiMjmTNnDgsWLGDevHlUqFCBlcv38NrLi1m6eCcb1x/gm6+28M64qVS/2rd7YLNmzYiLi2PAgAFER0fTokWLQs/lli1bWLhwIZmZmf6paadVqFiGqEplKe7XICjIwXVtawZ8reTCaSSSiIiIiIjIZS48PITw8JCSLoOgIAc//dTudLq4/74XAajXoBKtWzckMzOTm266qdAUNWMMt99+u//ne+65h3vuuYefIzsrr8htGzd+z4JFn+AwhqbNGjFk6AN8/PHH9OzZk4MHD/Lhhx8C8Le//Y0ZM2bw+eefM3DgQO677z6effZZPvroI6y1pKenM3z4cGJiIv0Lm19IYOd0OeicWIe07YfZvftYoQWez+T1WmZMnwf8OFosJCTEH5ZMmDDBN0UssgpgeHL4HMD3GjhdDnr9qQkAubnuIkHK2jXLmTrlXYKCgrmmaUtat27Nm2++SWJiItHR0TRo0IApU6awb/9OJk8ZibWWP902jIROd/Lu+77F27t0uYuG8VU4dGhfkfMfOXKEXr16MWDAgLM+D0czc5j+6bpC081WrZ1Pwwad+Pj9Vf7nduDAgcTFxbFz584i5zg9Pa5nz56sWrWKHj16FDreu+81vP3vpbjzvf7rBAc7qRlXnmuale5d0kqK+elq/1eKFi1a2BUrVpR0GSIiIiIiIr8Z+Xke3nx9SaFg4LSgIAfdb2lE7qkD3HvvvYwYMcK//tGUKVN46aWXmDZtmn8b+IuxeOF2Vv6wt9hFx51OB0l3X0vm0Ywiu5L92tavy2Dm9A3k5xcNkiIiQxn0YNuzBlQTJkwAICkpiZ07Mln1w16yc/KpVasiTZtH+0dF5eV5WPb97iLT704LC3PRskUMbrcbl8vFyJEjqVGjBn379gVgybc7WPTN9kIju1xBDhK71KVlq+o/+7F/NW8LC7/aVug1+vKb8WQc2I7DYcg4uJVnn32GpUuX0rZtW1auXMm4ceOYMGECbrebvn37EhoaitPpJDk5mcaNG9OnT58i18nKymPFst1s2XSQkNAgWrSKof7vKp/XqDMpnjHmB2tti+KOaSSSiIiIiIiInJegYCeJN9bly7lbCgVJriAHNWMrUDO2PMZUKLIOU69evejVq9clq6Nps6tZvSq9SIjkdBpqxkYSERlG5tFLdrmf7XcNK7N+XQZp24/4gySn0+B0Ori1V+NzjnA6c2ez2LgKxMZVKLZdcLCTcuEhHDtedJFvh8MQXa0c4Bv5lZaWRrly5Zg8ebK/Tdt2scRUj2TZdzs5fDibqKiytGlbk6vPsXD7+TiWmVPk9Uns1N9f16czk6levTr79u3jgQce4KGHHmLevHn+tlu2bKF///6ULVuWWrVq8dRTTxV7nbJlg+l0fW06XV+72ONyaWkkkoiIiIiIiFyQ9L3HWLZ0FwczTlKmbBDNro2hYaMqv+o6TfvSjzP98/XknfJgDHg8lti48vyha4OAW7T/mqy1bN500D+SKDauPC1aVqdcudBLdo3c3HxWrd6Hx2P9ayM5HIZy5UKIb1SlREblLFuykzlfbCK/mOl8wSFO+tzelHq/q/yr1yWBnWskkkIkERERERERuSJZa9mXfpycHDeVKpe9pMHMlcbt9rJ//wkOH8nB6TRUrXIVFSuWKZEF2MEXbI0ZsYDcXHeh242BchGhDH08QVPOLlOaziYiIiIiIiKljjGG6KsvbtpVaeFyOYiJiSDmIqehXSqhoUHcdV8r3h+3Arfbg9drMcZQ9qpg7vprKwVIVyiFSCIiIiIiIiJyyV0dE8GjyZ3ZtvkQx47lElWpLLG1KpTY6Ci5eAqRREREREREROQX4XQ6tPZRKeIo6QJEREREREREROTypxBJREREREREREQCUogkIiIiIiIiIiIBKUQSEREREREREZGAFCKJiIiIiIiIiEhACpFERERERERERCQghUgiIiIiIiIiIhKQQiQREREREREREQlIIZKIiIiIiIiIiASkEElERERERERERAJSiCQiIiIiIiIiIgEpRBIRERERERERkYAUIomIiIiIiIiISEAKkUREREREREREJCCFSCIiIiIiIiIiEpBCJBERERERERERCUghkoiIiIiIiIiIBKQQSUREREREREREAlKIJCIiIiIiIiIiASlEEhERERERERGRgBQiiYiIiIiIiIhIQAqRREREREREREQkIIVIIiIiIiIiIiISkEIkEREREREREREJSCGSiIiIiIiIiIgEpBBJREREREREREQCUogkIiIiIiIiIiIBKUQSEREREREREZGAFCKJiIiIiIiIiEhACpFERERERERERCQghUgiIiIiIiIiIhKQQiQREREREREREQlIIZKIiIiIiIiIiASkEElERERERERERAJSiCQiIiIiIiIiIgEpRBIRERERERERkYAUIomIiIiIiIiISEAKkUREREREREREJCCFSCIiIiIiIiIiEpBCJBERERERERERCUghkoiIiIiIiIiIBKQQSUREREREREREAlKIJCIiIiIiIiIiASlEEhERERERERGRgIy1tqRr+FmMMQeBnSVdh1xWooBDJV2ElCrqU/JLUL+SS019Si419Sn5JahfyaWmPvXLqWmtrVTcgSs2RBL5KWPMCmtti5KuQ0oP9Sn5JahfyaWmPiWXmvqU/BLUr+RSU58qGZrOJiIiIiIiIiIiASlEEhERERERERGRgBQiSWnyn5IuQEod9Sn5JahfyaWmPiWXmvqU/BLUr+RSU58qAVoTSUREREREREREAtJIJBERERERERERCUghkpQaxpiJxpjVBV87jDGrS7omKR2MMYONMZuMMeuMMaNKuh65shljnjTG7D3j71XXkq5JSg9jzN+NMdYYE1XStciVzRjzjDFmbcHfqbnGmOiSrkmubMaYF4wxGwv61afGmMiSrkmufMaY3gXv0b3GGO3U9itQiCSlhrW2j7W2qbW2KTAFmFrCJUkpYIzpDNwCNLHWNgJGl3BJUjq8dPrvlbX2i5IuRkoHY0x14AZgV0nXIqXCC9baJgXvq2YAw0u4HrnyzQPirbVNgM3A/5VwPVI6pAJ/BBaWdCG/FQqRpNQxxhjgT8D/SroWKRXuB5631p4CsNYeKOF6RETO5iXgMUALXspFs9YeP+PHsqhfyUWy1s611roLflwKxJRkPVI6WGs3WGs3lXQdvyUKkaQ06gBkWGu3lHQhUirUAzoYY5YZY74xxrQs6YKkVHiwYDj/eGNM+ZIuRq58xpgewF5r7ZqSrkVKD2PMs8aY3cAdaCSSXFr9gVklXYSIXDhXSRcgciGMMfOBqsUcGmatnVbwfV80CkkuwLn6Fb6/k+WB64CWwCfGmFpWW1vKOQToU/8GnsH3v/rPAGPwvZkWOacA/eqfwI2/bkVypQv0vspaOwwYZoz5P+BB4P/9qgXKFed83qsbY4YBbuDDX7M2uXKd52dA+ZUYfQ6S0sQY4wL2Atdaa/eUdD1y5TPGzMY3nW1Bwc/bgOustQdLtDApFYwxscAMa218SdciVy5jTGPgSyC74KYYIB1oZa3dX2KFSalhjKkJzNTfKrlYxpgkYCCQaK3NDtRe5HwZYxYAf7fWrijpWko7TWeT0qYLsFEBklxCnwHXAxhj6gHBwKGSLEiubMaYamf8eCu+BSFFfjZrbYq1trK1NtZaGwvsAZorQJKLYYype8aPPYCNJVWLlA7GmN8D/wB6KEASuXJpOpuUNn9GU9nk0hoPjDfGpAJ5QJKmsslFGmWMaYpvOtsOYECJViMiUrznjTH1AS+wE9/oEZGL8RoQAszz7YPDUmut+pVcFGPMrcBYoBIw0xiz2lp7UwmXVappOpuIiIiIiIiIiASk6WwiIiIiIiIiIhKQQiQREREREREREQlIIZKIiIiIiIiIiASkEElERERERERERAJSiCQiIiIiIiIiIgEpRBIREZHfDGPMBGPMnrMcSzDGWGNMlzNuW1Bw25JznM+e45zVjTEeY0yeMSbqLG12FJzDGmO8xpjdxpjJxpgG5/F4Rhhj5hpjDhfc/65A9xERERH5uRQiiYiIiJzbCaCNMabOmTcaY8oAfyw4fjb98L3fCgL6nqPdHKAN0B4YDrQCFhljKgeobTAQBswI0E5ERETkoilEEhERETm3tcBW4M6f3P5HwOALgM6mH5AK7AKSztHukLV2qbV2ibX2HeAvQFQx1/ypCGttB+CZAO1ERERELppCJBEREZHA3qdooNMPmApkFXcHY0wboB7wXsH9rzXGNDrP6y0v+LfOuRpZa73neT4RERGRi6YQSURERCSw94Faxpi2AMaYaCARX0B0NkmAF/jwjHb9zvN6cQX/Hr3gSkVERER+IQqRRERERAKw1qYBi/kxBLoTSAe+Lq69MSYE6APMt9amW2s3A0uBO40xxb3/MsYYlzEm2BgTD/wHXwA1+RI/FBEREZGfTSGSiIiIyPl5D/hTQUD0F+CDc0wnuwWIpPBIpXeBaKBLMe1vB/KBU0BKQbve1tqVl6Z0ERERkYunEElERER+S9yA8yzHnGe0Kc4nQCi+3dPiCTyVLRv42hgTaYyJxLcAdz7FL7A9C2gJNAeqWmvjrLVTz3F+ERERkV+dq6QLEBEREfkVHQCijDHB1tq8nxyLLvg3o7g7WmuPG2M+Bx4HVlhrNxTXzhhTBbgR3/usvcU0udUYE26tPXHGbUestSsu5IGIiIiI/No0EklERER+S77GF+70KOZYL2AfsOkc938NmA6MOkebOwuucT/Q+SdfDwNhQO8LrFtERESkxGkkkoiIiPyWzAfmAROMMQ2AZUA48Gd86xjdfY51jrDWLsa3wPa59APSgLestfbMA8aYRcBj+Ka0jf+5D+KM83UCKgFVC25qYYw5WVCrFuUWERGRS0ohkoiIiPxmWGutMaYHkIwv7HkCyANWAz2ttdMu5vzGmGZAE2D4TwOkgut7jDETgP8zxsQV7Pp2MZ4COp3x8wMFXwDmIs8tIiIiUogp5v2NiIiIiIiIiIhIIVoTSUREREREREREAlKIJCIiIiIiIiIiASlEEhERERERERGRgBQiiYiIiIiIiIhIQAqRREREREREREQkIIVIIiIiIiIiIiISkEIkEREREREREREJSCGSiIiIiIiIiIgEpBBJREREREREREQC+v/1S7O+nZBurAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -437,386 +349,18 @@ } ], "source": [ - "im = np.multiply(np.where(importance_matrix<0.04, 0, importance_matrix), importance_matrix_signed)\n", - "\n", - "fig = plt.figure(figsize=(20, 20))\n", - "plt.imshow((im + np.transpose(im))/2, origin='lower', cmap='seismic', norm=CenteredNorm())\n", - "plt.xticks(np.arange(len(coord)), labels, size=8)\n", - "plt.yticks(np.arange(len(coord)), labels)\n", - "plt.colorbar()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "7ef40b4d", - "metadata": {}, - "source": [ - "## One region at a time" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "2a53b7f9", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "---------------------------------------------\n", - "F-START\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5051364e-07\n", - "Thus, Kd is smaller by 0.27673987 %\n", - "---------------------------------------------\n", - "CDR-H1\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5092737e-07\n", - "Thus, Kd is smaller by 0.11204232 %\n", - "---------------------------------------------\n", - "β11\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5101693e-07\n", - "Thus, Kd is smaller by 0.07639197 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5109716e-07\n", - "Thus, Kd is smaller by 0.044452615 %\n", - "---------------------------------------------\n", - "β12\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5102466e-07\n", - "Thus, Kd is smaller by 0.07331457 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5111066e-07\n", - "Thus, Kd is smaller by 0.039078474 %\n", - "---------------------------------------------\n", - "CDR-H2\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.508913e-07\n", - "Thus, Kd is smaller by 0.12639976 %\n", - "---------------------------------------------\n", - "β13\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5107894e-07\n", - "Thus, Kd is smaller by 0.051704876 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5111507e-07\n", - "Thus, Kd is smaller by 0.03732481 %\n", - "---------------------------------------------\n", - "β21\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5106516e-07\n", - "Thus, Kd is smaller by 0.057192154 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.511443e-07\n", - "Thus, Kd is smaller by 0.025694042 %\n", - "---------------------------------------------\n", - "β22\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5101915e-07\n", - "Thus, Kd is smaller by 0.07550948 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5117353e-07\n", - "Thus, Kd is smaller by 0.01405196 %\n", - "---------------------------------------------\n", - "α\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.51125e-07\n", - "Thus, Kd is smaller by 0.03337623 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.511829e-07\n", - "Thus, Kd is smaller by 0.010318347 %\n", - "---------------------------------------------\n", - "β14\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5116637e-07\n", - "Thus, Kd is smaller by 0.016903082 %\n", - "---------------------------------------------\n", - "CDR-H3\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.510693e-07\n", - "Thus, Kd is smaller by 0.055540312 %\n", - "---------------------------------------------\n", - "F-END\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5112251e-07\n", - "Thus, Kd is smaller by 0.034360547 %\n", - "---------------------------------------------\n", - "F-START\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5078498e-07\n", - "Thus, Kd is smaller by 0.16872534 %\n", - "---------------------------------------------\n", - "CDR-L1\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.509938e-07\n", - "Thus, Kd is smaller by 0.085601546 %\n", - "---------------------------------------------\n", - "β11\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.511989e-07\n", - "Thus, Kd is smaller by 0.0039485777 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5113906e-07\n", - "Thus, Kd is smaller by 0.027775815 %\n", - "---------------------------------------------\n", - "β12\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.511774e-07\n", - "Thus, Kd is smaller by 0.0125132585 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5119834e-07\n", - "Thus, Kd is smaller by 0.0041748574 %\n", - "---------------------------------------------\n", - "CDR-L2\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.510635e-07\n", - "Thus, Kd is smaller by 0.057848364 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.511628e-07\n", - "Thus, Kd is smaller by 0.018328642 %\n", - "---------------------------------------------\n", - "β21\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5115423e-07\n", - "Thus, Kd is smaller by 0.02173415 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5114596e-07\n", - "Thus, Kd is smaller by 0.025026517 %\n", - "---------------------------------------------\n", - "β22\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.511316e-07\n", - "Thus, Kd is smaller by 0.030740077 %\n", - "---------------------------------------------\n", - "\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5089736e-07\n", - "Thus, Kd is smaller by 0.12398987 %\n", - "---------------------------------------------\n", - "β13\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5117657e-07\n", - "Thus, Kd is smaller by 0.012841363 %\n", - "---------------------------------------------\n", - "CDR-L3\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5094502e-07\n", - "Thus, Kd is smaller by 0.10501633 %\n", - "---------------------------------------------\n", - "F-END\n", - "Without adding epsilon, Kd = 2.5120883e-07\n", - "After adding epsilon, Kd = 2.5107153e-07\n", - "Thus, Kd is smaller by 0.05465782 %\n" - ] - } - ], - "source": [ - "for i in range(len(coord)):\n", - " weights_at_a_time = np.zeros((len(coord)))\n", - " weights_at_a_time[i] = 0.1\n", - " print('---------------------------------------------')\n", - " print(labels[i])\n", - " compute_change_in_kd(preprocessed_data, model, weights_at_a_time, coord, maps)" - ] - }, - { - "cell_type": "markdown", - "id": "8ad5f896", - "metadata": {}, - "source": [ - "# PCA" + "colours, pdb_files = compute_umap(preprocessed_data, model, scheme='$log_{10}(K_D)$', categorical=False, numerical_values=np.abs(preprocessed_data.train_y), exclude_nanobodies=True)" ] }, { "cell_type": "code", - "execution_count": 17, - "id": "509219d1", - "metadata": {}, - "outputs": [], - "source": [ - "pca = PCA(2) # 2 principal components" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "91cf1001", - "metadata": {}, - "outputs": [], - "source": [ - "train_x = preprocessed_data.train_x\n", - "train_y = preprocessed_data.train_y\n", - "n_filters = model.n_filters\n", - "each_img_enl = np.zeros((train_x.shape[0], input_shape**2))\n", - "size_le = int(np.sqrt(model.fc1.weight.data.numpy().shape[-1] / n_filters))\n", - "labels = preprocessed_data.labels\n", - "clusters = []\n", - "\n", - "for j in range(train_x.shape[0]):\n", - " inter_filter_item = model(torch.from_numpy(train_x[j].reshape(1, 1, input_shape, input_shape).astype(np.float32)))[1].detach().numpy()\n", - " for i in range(n_filters):\n", - " each_img_enl[j] += cv2.resize(np.multiply(inter_filter_item[0,i], model.fc1.weight.data.numpy().reshape(n_filters, size_le**2)[i].reshape(size_le, size_le)), dsize=(input_shape, input_shape)).reshape((input_shape**2))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "f40defa4", - "metadata": {}, - "outputs": [], - "source": [ - "converted_data = pca.fit_transform(each_img_enl)\n", - "for j in range(train_x.shape[0]):\n", - " if np.sum(np.multiply(each_img_enl[j].reshape(input_shape, input_shape), pca.components_[1,:].reshape(input_shape, input_shape))) <= 0:\n", - " clusters.append('Low')\n", - " else:\n", - " clusters.append('High')" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "731fa619", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(669, 78961)" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "each_img_enl.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "342ca768", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(669, 2)" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "converted_data.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "fb758e93", - "metadata": {}, - "outputs": [], - "source": [ - "cluster_according_to = 'heavy_species'\n", - "db = pd.read_csv('../data/sabdab_summary_all.tsv', sep='\\t').loc[:,['pdb',cluster_according_to]]\n", - "\n", - "clusters = []\n", - "for i in range(len(labels)):\n", - " clusters.append(str(db[db['pdb'] == labels[i]].iloc[0][cluster_according_to]))" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "6fd5bf90", - "metadata": {}, - "outputs": [], - "source": [ - "'''\n", - "cdict = {max(clusters, key=clusters.count): 0,\n", - " max(list(filter(lambda item: item != max(clusters, key=clusters.count), clusters)), key=list(filter(lambda item: item != max(clusters, key=clusters.count), clusters)).count): 1,\n", - " 'other': 2}\n", - "\n", - "cdict = {'IGKV1': 0,\n", - " 'IGKV2': 1,\n", - " 'IGKV3': 2,\n", - " 'IGKV4': 3,\n", - " 'IGKV5': 4,\n", - " 'IGKV6': 5,\n", - " 'IGKV7': 6,\n", - " 'IGKV8': 7,\n", - " 'IGKV9': 8,\n", - " 'IGKV10': 9,\n", - " 'IGKV14': 10,\n", - " 'IGLV1': 11,\n", - " 'IGLV2': 12,\n", - " 'IGLV6': 13,\n", - " 'Other': 14,}\n", - "\n", - "cdict = {'IGHV1': 0,\n", - " 'IGHV2': 1,\n", - " 'IGHV3': 2,\n", - " 'IGHV4': 3,\n", - " 'IGHV5': 4,\n", - " 'IGHV6': 5,\n", - " 'IGHV7': 6,\n", - " 'Other': 7,}\n", - "'''\n", - "\n", - "cdict = {'homo sapiens': 0,\n", - " 'mus musculus': 1,\n", - " 'Other': 2}\n", - "#cdict = {'Kappa': 0,\n", - "# 'Lambda': 1,\n", - "# 'Unknown': 2,\n", - "# 'None': 3,\n", - "# 'Other': 4,}\n", - "colours = []\n", - "for i in range(len(clusters)):\n", - " if clusters[i] in cdict:\n", - " colours.append(cdict[clusters[i]])\n", - " else:\n", - " colours.append(cdict['Other'])\n", - " clusters[i] = 'Other'" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "d81dc580", + "execution_count": 12, + "id": "a2644722", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKMAAASFCAYAAABzDx86AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXid5eHG8e+bE0/dlQpUKKUUCMWd4bp1MNy2MRwG7DdgGzLYmDHcYbgMiuuQ4gVqUEqNtlCjRkstnnPe3x8nLZGTSpqcE/l+ritXmue8cp8EsvXmeZ43CMMQSZIkSZIkKRnSUh1AkiRJkiRJLYdllCRJkiRJkpLGMkqSJEmSJElJYxklSZIkSZKkpLGMkiRJkiRJUtJYRkmSJEmSJClpLKMkSVKLFATB1UEQhEEQ9F3fWCpytBRBEOxT8d5PS3UWSZKUPJZRkiSpUQiCoH0QBMUV5cRJ9XTNo4MguLo+riVJkqT6YRklSZIaixOBTOAb4Mx6uubRwFW1vHYdkAPMqad7adO9T/xn8Eiqg0iSpOSxjJIkSY3FmcBo4CZg7yAItmzIm4VhWB6GYXEYhmFD3ke1C8MwVvEziKY6iyRJSh7LKEmSlHJBEOwADAceAh4DyoDTazk2DILgwSAIdg2C4L0gCAqCIPg+CIL7giBoVem4d4FTK50TVt6faAN7NeUFQXBLEASLgiAoCoLg0yAI9q8lzy+DIJhQcdzKIAj+FwTBHgmOSwuC4PIgCL6pWI74ZRAEJyY47paKXAMSvNY9CILyIAjuT5Sl0nFBEAQXBUEwKQiC1UEQrAqCYHoQBPcHQZBR6bhvgyB4NwiCHYIgeCcIgjVBECwPguChIAi6JLhuVhAEVwRB8FXFe1gRBMFLQRBsX0uGX1V879ZUfHwZBMG1lY5JuGdUxblnB0EwPgiCwor3MDoIgn0T3OeUIAg+q8hSEATB7CAIHguCoPP6vkeSJCl1LKMkSVJjcCZQAIwKw3AZ8ApwahAEtf1/leHAy8BY4LfAmxXXuLHSMdcDH1T8+eRKH+9vRJ6HgV2AvwF/BXoBrwdBcEDlg4Ig+BtwL/Hy7ArgX8AQYHQQBIdWu+aNwF+AucDvgBeA24Ejqx13d8XnMxLkOhWIAOsto4A/AP8GvgX+D7gMeA7YFciqdmwv4G1gdkWuZ4l/n0YHQZBb6b1mAK8TX/Y4BrgYuKHi/X4UBEF+tes+AtwDhMR/FpcB7wAjN5B97bm3ATMrMl0NtAXeDIJg3ferYm+xh4Bi4E/ARcTLzEFAjTJNkiQ1DoEz0yVJUioFQZANfAe8GIbhaRVjRwHPA4eGYfhateND4gXHbmEYflJp/BXgQKB9GIZrKsYeBE4NwzBIcN+riRcr/cIw/Lba2GfAnmEYllaM9wKmAfPCMNy6YmwQMBX4GNiv0rE9gCnACmDLMAyjlY4dDRy4dllaxYywcUBQLcfHQF9gizAMyytlngGUh2E4ZAPf0wlA9kYc9y3QB7g4DMObKo1fTLw8uzwMwxuqjR0chuEblY5tA0wGZodhuE/F2LHAU8CjxL//sUrHp639OgiCfSq+J6eHYfhgxdgxxAuxs8IwvKfSeenAJ0BHoH8YhmEQBM8CBwAdKn+fJElS4+bMKEmSlGo/BdoTn+Gy1ivAEhLPDgIYU7mIqvAOkE68xNlc/15bLgGEYTif+IybwUEQbF0xfBTxEunv1Y79DniQeMmzfbVjb6y8P1IYhhOIz+qq7h6gO3DI2oEgCPYCBrDhWVEAK4GeiZYLJrAKuLPa2B0V48dUGjuJeCE3PgiCTms/iG86/yawRxAEORXHrl1+eGnlIgri+0RtIM9JwGrg+Wr3aQe8RPznu3YJ40ogFzgsCIIahaMkSWqcLKMkSVKqnQksBeYHQbBVEARbES8c3gSOrCgiqpudYGxZxeeO9ZBpaoKxKRWf+1d87lfx+asEx06uduzaz9PWc93KniJetFR+quCZQCnxJYQbcgXxpWsfBEGwoGIPpROCIMhMcOzsMAxLKg9UfD27Um6ArYHBxH9W1T/OIL58cO3PagCwMAzDxRuRtbqtgdbA4gT3ubrimK4Vn/9C/GmIzwNLgyAYFcT38Gpdh/tKkqQkSU91AEmS1HIFQdAP2Jf4rKEZtRx2EvEn7FW2vqev1ccMmUT7GFS/7qbcZ+2xG3NdwjAsCoLgUeCsIAi6AYXE91p6MQzDpRu6WRiGY4L40wgPIv793Rc4AfhDEAR7hGG4vPLhG8hc+esvie/RVZullY6t614QQcV1TljPMZMBwjD8OgiCIcD+FR97E9/D65ogCPYKw3BWHTNIkqQGZBklSZJS6XTi5cOviO+xVN11xGcE3VTH69e1EBkCTKo2tnZ53tpZWWuLjm0q/bny+YmO3Zqas7q2JrF7gHOBU/hxOdrGLNEDoGLfrFEVHwRBcA7xDdPPBP5R6dAtgyDIrLzUMAiCLOIzvyrP5Poa6Ay8sxFL7aYDRwVB0LUOs6O+BgYCn6zd+2t9KmZxvVrxQcXG8a8QL83O3cR7S5KkJHCZniRJSomKJ+WdBnwZhuF9YRg+U/0DeAIYGgTBTnW8zdqNzDts4nkXV17SVrGB+QnA9DAM1y7he5F42XVZxZPm1h7bnXjJNgeYWO3Y3wZBEKl07A7EN+CuIQzDScQ3Uj+DeIE0F/jfxoSvZWnjhIrP1b8XbYBzqo2dUzH+fKWxh4Fu1DIzKgiCrpW+fKzi89+rPxFxI/Z2epj4/0f964bus4nvU5IkNRLOjJIkSalyINCb9c/2GUV8n6AzgbF1uMcnwHnAHRVP2ysDPg3D8JsNnJdOfL+lJ4jvX/QbIAe4YO0BYRhOD4LgH8DvgPeDIHiq4thfA62AE9duVh6G4bQgCG6vyPJOEASjgC4VX3/BjxudV3cPcF/Fn6/ZiBlJa00NguAT4FPiTyrsXpGrFHiy2rGzgKuCIBgKjAd2JF6ATQNuqXTczcBPgH8EQbAf8Q3jVwFbEF8iV0x8OSBhGD5d8f04BRgQBMGLwA/EZzwdBAytLXgYhs8EQfAf4LyKsu5l4HugF7ArsBU/7mX1vyAIVgLvA/OIb3J+GvHi75GN+1ZJkqRks4ySJEmpsnZz7mdrOyAMw8lBEMwAfhEEwcVhGBZt4j2eIF70/AL4OfEZN6cDGyqjTiFeQP2eeMExCTgtDMMqT74Lw/D/giCYSXwm0Q3Ey55PgRPCMPyg2jUvBBYRL4X+QXw52rnEN/uurYx6EriReLn1nw1kruxfwKHEy7O2xJ9M+Anw1zAMv6h27HzgWOCfwPEV7+Ex4k/CK6j0XsuCIDis4r2eDFxT8dJ3xGdwVX4aIsRnkn1A/Of8J+L7fH0DPL2h8GEYnhEEwWji36vLiT+xbxHxWU+XVzr0zorsZxGfCbWM+Gy088MwHL2h+0iSpNQIwrCuWylIkiSpIVXs3bQQGBuG4UENcP1vgW/DMNynvq8tSZJUG/eMkiRJarxOBNoDd6c6iCRJUn1xmZ4kSVIjEwTBEUAf4vtlTQFeSGkgSZKkemQZJUmS1PjcCvQgvqH4L9duhC5JktQcuGeUJEmSJEmSksY9oyRJkiRJkpQ0LX6ZXqdOncK+ffumOoYkSZIkSVKzMX78+O/DMOyc6LUWX0b17duXcePGpTqGJEmSJElSsxEEwZzaXnOZniRJkiRJkpLGMkqSJEmSJElJYxklSZIkSZKkpGnxe0ZJkiRJkqTGpaioiNmzZxONRlMdRRsQiUTo378/OTk5G32OZZQkSZIkSWpUZs+eTadOnejcuTNpaS7qaqxisRhLly5l9uzZbLPNNht9nj9RSZIkSZLUqESjUYuoJiAtLY3OnTtv8gw2f6qSJEmSJKnRsYhqGuryc/InK0mSJEmSVMn06dMZMGBAqmNslg8++IDTTz891TESsoySJEmSJElN291PQY+9IW2b+Oe7n0p1opTbc889+c9//pPqGAlZRkmSJEmSpKbr7qfgor/CwqUQhvHPF/11swupaDTKL37xC7baaiv22GMPCgoKABgzZgzbbbcdAwcO5MADD2Tp0qUAjBgxgl/+8pfk5+fTv39/3n//fQ488ED69OnDhRdeuO66V199NQMGDGDAgAH8+c9/rnHf8vJyRo4cyYABAxg4cCDXXnstADfeeCNDhw5l0KBBHHTQQaxevRqAkSNHcuKJJ5Kfn0/fvn158sknAXj11VfZd999AVi1ahXHHnssQ4cOZeutt+bxxx8H4NZbb+XAAw9kzz33pE+fPpx99tnrzVBfLKMkSZIkSVLTdc0dUFxaday4ND6+GebOncuFF17IzJkzadOmDQ8//DAAp556KjfccAMzZsxgyJAh/P73v193TmZmJuPGjeOMM85g5MiR3HvvvUybNo0nn3ySxYsX8+GHH/L4448zfvx4xo0bx0MPPcTHH39c5b6ffPIJCxcu5Ouvv2bGjBmcc845AJx44olMnjyZ6dOnM3jwYG655ZYqWT/99FNefvllLrzwQgoLC6tc84orrmDfffdl8uTJfPDBB1xxxRWsWrUKgClTpvD8888zdepUXnjhBWbNmlVrhvpiGSVJkiRJkpquRd9v2vhG6tmzJ7vuuisA22+/Pd988w3Lli1j9erVHHLIIQD8+te/ZsyYMevOOeaYYwDYbrvtGDBgAH369CEnJ4fevXsze/Zs3n33XQ499FDatGlD27ZtOfzwwxk9enSV+w4aNIi5c+dy2mmnMWrUKNq3bw/AhAkTyM/PZ+DAgTzzzDNMmTJl3TkjR44kEokwdOhQevfuzRdffFHlmu+++y433ngjgwcPZo899qCkpIRZs2YBsMcee9CxY0dyc3PZaqutmDVrVq0Z6otllCRJkiRJarq6ddq08Y2UmZm57s/p6elEo9ENnpOdnQ1AJBKpcn5aWhrl5eWEYbjBa3Tu3JnJkyez7777cvvtt3P88ccD8Mtf/pLbbruNGTNm8Pvf/56SkpJ15wRBUOUa1b8Ow5BRo0Yxbdo0pk2bxsKFC9l+++0ByMrKWndcJBKhvLy81gz1xTJKkiRJkiQ1XVedA9mZVceyM+Pj9axjx460adOGN954A4D777+f3XbbbaPP32+//Xj11VdZvXo1q1at4pVXXlm3r9NaCxcuJBaLceqpp3L99dczadIkAAoLC+nduzclJSXr9oVaa9SoUUSjUaZMmcK8efMYNmxYldf33Xdf/vWvfxGLxQBqLA2srrYM9SW9Xq8mSZIkSZKUTGcdF/98zR3xpXndOsWLqLXj9ezBBx/kN7/5Deeffz59+vRZtxn4xth999054YQT2GGHHQA45ZRTapRZc+bM4YwzzlhXHF133XUAXH755YwYMYKePXsyZMgQ1qxZs+6cAQMGsPPOO/P9999z8803k5ubW+Waf/vb3/jVr37F4MGDCcOQXr161VgeuDEZ6kuwMVPEmrP8/Pxw3LhxqY4hSZIkSZIqTJo0qcbsHiU2cuRIDj/8cE477bSUZUj08wqCYHwYhvmJjneZniRJkiRJkpLGZXqSJEmSJElN1DPPPJPqCJvMmVGSJEmSJElKGssoSZIkSZIkJY1llCRJkiRJkpLGMkqSJEmSJElJYxklSZIkSZLUAl1yySVcddVVSb+vZZQkSZIkSWrS7uYLenAXafyLHtzF3XyR6khaD8soSZIkSZLUZN3NF1zEaBZSQAgspICLGL1ZhdT06dPp168fxx13HAMGDOCoo47ihRdeYIcddqBPnz689957QM2ZRQMGDGD69OmsWrWKffbZh0GDBjFgwADuv//+GvcYMWIEv/zlL8nPz6d///68//77HHjggfTp04cLL7xwXY4BAwasO+eqq67ikksuAeD6669nyy23ZODAgRx++OEArFy5kpEjRzJw4EAGDhzIQw89BEBubu66azz44IOMHDkyYZ4PPvgAgIULF9KzZ08Axo8fz7Bhwxg8eDADBw5k8uTJdf6+rpW+2VeQJEmSJElKkWsYQzHRKmPFRLmGMZzFdnW+7rx583jqqafYcccdGTZsGI899hjjxo3jySef5LrrrmPvvfeu9dznnnuObt268e677wKwbNmyhMdlZmYybtw4rrvuOkaOHMnYsWPp0qULffv25Yorrlhvvptvvpk5c+aQk5PD999/D8Dll19O27ZtmTFjBgBLly6twzuv6tZbb+Wcc87hN7/5DcXFxUSj0Q2ftAHOjJIkSZIkSU3WIgo2aXxj9ezZkxEjRhCJRBg0aBD77bcfaWlpbL/99sybN2+95+6www588MEHnHPOObzxxht07Ngx4XHHHHMMANtttx0DBgygT58+5OTk0Lt3b2bPnr3eewwaNIhjjjmGO++8k4yMDADee+89Lr744nXHdO7ceVPeckK77ror//znP7nyyiuZOXMmeXl5m31NyyhJkiRJktRkdSNxOVLb+MbKzMxc9+e0tDSys7PX/Xnt7KBIJEIsFlt3XElJCQDbbrstEydOZNttt+WKK67gsssuS3iPtdeMRCI17ldeXk5GRkaV6xcVFa378+jRoznvvPMYP348w4cPp6ysjDAMCYKgxn0qj1W+RmXp6enr7lX5mLPOOosXX3yR3NxcDj74YF566aWE528KyyhJkiRJktRkXcWuZBOpMpZNhKvYtcHv3a9fPyZOnAjARx99xIIFCwD49ttvadWqFWeffTYXX3wxn3/+eZ2u37NnT5YvX87ixYspKirijTfeACAajTJr1iwOP/xwbr/9dlatWsXKlSvZd999ufHGG9edv3aZXseOHZk4cSLRaJTnn38+4b169+7Np59+CsBjjz22bnzq1KkMHjyYK6+8koMOOqjO76UyyyhJkiRJktRkncV23MS+dCePAOhOHjex72btF7WxTjnlFFasWMHgwYO59dZb6dOnDwATJkxg+PDhDB48mBtuuIE//elPdbp+VlYWl156KTvttBMHHHDAus3My8vLOeGEExg4cCBDhw7lrLPOolOnTvzlL39hxYoVDBgwgEGDBvHaa68BcO2113LkkUey66670q1bt4T3uvzyy7nvvvvYfvvt1+1BBfDII48wcOBABg8ezIwZMzjrrLPq9F4qC8Iw3OyLNGX5+fnhuHHjUh1DkiRJkiRVmDRpEsOGDUt1DG2kRD+vIAjGh2GYn+h4Z0ZJkiRJkiQpaSyjJEmSJEmSlDSWUZIkSZIkSUoayyhJkiRJkiQljWWUJEmSJEmSksYySpIkSZIkSUljGSVJkiRJklTN7NmzOeCAA+jTpw+9e/fmjDPOoLi4mDFjxvD000+vO+6SSy7hqquuSmHSpscySpIkSZIkNW13L4AeH0Pau/HPdy/YrMvFYjGOPvpojjzySObMmcM333xDQUEBF110EePGjePll1+un9xAeXl5vV2rqbCMkiRJkiRJTdfdC+CimbCwFELiny+auVmF1Msvv0xmZiYXXHABAOnp6dx11108/vjjXHXVVbz44osMHjyY+++/H4CpU6cyYsQIevXqxfXXX7/uOnfeeSfDhg1j8ODBnHDCCeuKp9zcXC666CKGDRvGO++8U/f33kRZRkmSJEmSpKbrmjlQHFYdKw7j43X05ZdfMnz48Cpj7du3p2fPnlxyySUceeSRTJs2jTPPPBOAr7/+mvfee4+xY8fyj3/8g5KSEiZOnMjTTz/N2LFjmTZtGpFIhLvvvhuAoqIihg0bxqRJkzjwwAPrnLOpSk91AEmSJEmSpDpbVLpp4xshDEOCIEg4nshBBx1ETk4OOTk5dOjQgQULFvD6668zefJktttuOwBKSkro0qULAJFIhFNOOaXO+Zo6yyhJkiRJktR0dcuML81LNF5H2267Lc8//3yVsR9++IFFixaRnl6zSsnKylr350gkQllZGbFYjGOPPZbbbrutxvGZmZkJr9NSuExPLceKMrjvO/j7XBi/OtVpJEmSJEn14ao+kF1tFlN2EB+voyOOOILi4mJuv/12IL7J+Nlnn82xxx5Lt27dWLNmzQavccghh/DSSy+xYEF876olS5YwY8aMOmdqTiyj1DJ8sAJ6fxLfxO7K2bDXRDhhCsQST7GUJEmSJDURZ/WEm7aC7pkQEP9801bx8TpKS0vjhRdeYNSoUfTp04d+/fqRnZ3NzTffzCGHHML06dOrbGCeyA477MCf/vQn9t9/fwYOHMi+++7L/Pnz65ypOQlqW+/YUuTn54fjxo1LdQw1pPIYdB8D35dVHc9Lg/sHw3FdUpNLkiRJkpTQpEmTGDZsWKpjaCMl+nkFQTA+DMP8RMc7M0rN36eroSRWc7wgBg8sTH4eSZIkSZJaMMsoNX9hGJ+qmfC1pCaRJEmSJKnFs4xS87dzG4gkaKPy0uC0bsnPI0mSJElSC2YZpeYvIw2e3iZePmWnxWdJ5aXBAe3dL0qSJEmSGqlYLMF2K2p06vJzSm+AHFLjs397+GYXeHIJLCuLf71HWwhqW78nSZIkSUqVSCTC0qVL6dy5M2lpzqNprGKxGEuXLiUSiWzSeZZRajk6Z8L5vVKdQpIkSZK0Af3792f27NksXrw41VG0AZFIhP79+2/SOZZRkiRJkiSpUcnJyWGbbbZJdQw1EOe6SZIkSZIkKWksoyRJkiRJkpQ0llGSJEmSJElKGssoSZIkSZIkJY1llCRJkiRJkpLGMkqSJEmSJElJYxklSZIkSZKkpLGMkiRJkiRJUtJYRkmSJEmSJClpLKMkSZIkSZKUNJZRkiRJkiRJShrLKEmSJEmSJCWNZZQkSZIkSZKSxjJKkiRJkiRJSWMZJUmSJEmSpKSxjJIkSZIkSVLSWEZJkiRJkiQpaSyjJEmSJEmSlDSWUZIkSZIkSUoayyhJkiRJkiQljWWUJEmSJEmSksYySpIkSZIkSUljGSVJkiRJkqSksYySJEmSJElS0lhGSZIkSZIkKWksoyRJkiRJkpQ0llGSJEmSJElKGssoSZIkSZIkJY1llCRJkiRJkpLGMkqSJEmSJElJYxklSZIkSZKkpLGMkiRJkiRJUtJYRkmSJEmSJClpLKMkSZIkSZKUNJZRkiRJkiRJShrLKEmSJEmSJCWNZZQkSZIkSZKSxjJKDa6EcsazmNmsSHUUSZIkSZKUYumpDqDm7VGmcC5vA1BGjG3oyAscTQ9apTiZJEmSJElKBWdGqcGMZRFn8SarKGUVpRRRzkSWcDCjCAlTHU+SJEmSJKWAZZQazC1MoJholbEoIbNZySSWpiiVJEmSJElKJcsoNZj5rCaWYAZUhIDFFKYgUYoUl8CND8L2P4Wdj4P7noFodIOnSZIkSZLUHLlnlBrMIfTjUxZRRHmV8VKi5NM1RamSLBqF/U6HL6ZBYXF87KuZ8PqH8MxNKY0mSZIkSVIqODNKDeYstqMruWQRWTeWRwa/ZwQdyElhsiR69X34csaPRRRAQRG89j5MmJK6XJIkSZIkpYgzo9Rg2pLFBE7m34znBWbSkRwuYgeOZKtUR0ued8fCmgRLEqMx+HA87DAk+ZkkSZIkSUohyyg1qPZkcy27cy27pzpKavToDNlZ8X2jKsvMgK6dUpOpEZvM98zkB4bRmf60S3UcSZIkSVIDsIySGtJJR8BVt9Ucz0iHo/ZLfp5GahUlHM5zjGcx6aRRSpQj2JLHOJSMSss8JUmSJElNn3tGSQ2payd47W7o3hla5UJuDmy5Bbz7UHzGlAA4m7f4jEUUUs4qSikmysvM5q98mupokiRJkqR65swoNYxZc+HRl2BVARy+N+wzAoIg1alSY898mD86/hS9jHQY1K/lfi8SKCPKM8yglFiV8SLKuZNJ/IndUpRMkiRJktQQLKNU/x55Ec66Csqj8Y+7n4LD9oYn/glpLXQyXloabDsw1SkapVJiRAkTvlZAWZLTSJIkSZIaWgttBtRgVq6OF1FFJVBWDmEIBUXwynvxD6maPDLYho41xtMIOJA+KUgkSZIkSWpIllGqX+98CukJJtwVFMGTryY/j5qEezmQVmSQWfErKZsI7cniH+yd4mSSJEmSpPrmMj3Vr4x0SLQdUhBAZmbS46hpGEF3JnMatzGRyXzPrvTgbLajM7mpjiZJkiRJqmeWUc1AKVG+YSWdyaEDOakNs/8uicdzsuD0Y5KbRU1KH9o4E0qSJEmSWgDLqCbuHibxO94jSkgZMY5kS/7DweSRkZpAOdnw3K1w5Lnx2VDRWHzfqItOgb3yU5NJjdaXLOVd5tGJHI5iK3JT9c+tJEmSJClpgjBM/BSrliI/Pz8cN25cqmPUyet8w894kULK141lE+Fw+vM0R6YwGbBqDbz4DqwuhIN2h/69U5tHjUqMkNN5naeZQUhIOmmkk8Zb/Jwd6ZrqeJIkSZKkzRQEwfgwDBPOSnFmVBP2Vz6rUkQBFBPlJWazjCI6pnLJXptWcFKKCzE1Wv9lOqOYQdG6f36jABzF88zl16Ql3HhMkiRJktQc+DS9Jmw+qxOOZ5LGEgqTnEbaeHcziYJqRSrASkqYyJIUJJIkSZIkJYtlVBO2Fz2J1DKDpD9tk5xG2nhlFTOhqgsIan1NkiRJktQ8WEY1YX9iN1qRUaWQyiWdG9iTLFdgqhE7hSHkJvhnNIM08umWgkSSJEmSpGSxjGrC+tGWCZzMyWxNX9qwOz34L0dwDtunOpq0XqczlF3oTquKp+dlESGXdJ7kMNL9tSRJkiRJzZrTZ5q4/rTjPxyS6hjSJskgwpv8nDf4lreYQ1dyOYkh9KBVqqNJkiRJkhqYZZSkzVZOjDeZw/cUsSc96bsRe5alEXAI/TiEfklIKEmSJElqLCyjtMlCQp5hBjcynmUUcRj9uZyd6UJuqqMpBaayjH35L0WUEyOknBhnsR3/Zh+CWjbYlyRJkiS1XG7Ook12FR9zOm/wCQv5mhXcwecM52GWUZTqaEqykJAjeI4lFLKKUtZQRjFR7uNLnmNmquNJkiRJkhohyyhtkuUU8Q/GUkDZurFSYvxAMXfweeqCKSUmsZRFFBJWGy+gjDv950GSJEmSlIBllDbJ5ywli0iN8WKivMG3yQ+klCqknEgtS/FWVyosJUmSJElayz2jtEm6k0cZsRrjaQT0oU0KEimVdqRrwn2hcknnBAanIFHTtooSHmAyo5nHQNpzNtvRn3apjiVJkiRJ9coySptkazqyDZ2YyBLKK5VS2US4mB1TmEypkEmEhziY43mFcmKUESOPDAbTgV+xbarjNSlLKGQHHuEHiimknAzSuJPPeYWfsje9Ux1PkiRJkuqNy/S0yV7hGPagJ9lEaEUG7cniPxxMPt1SHU0pcBRb8QWncBE7cDJbcw8/4WOOJ4eMVEdrUq7mY5ZQSCHlAJQRo4ByTuN1whq7ckmSJElS0+XMKG2yzuQymmP5jjX8QDGD6EC6vWaLNoD2/J29Ux2jSXuRWQmXwC6igAWsoRetU5BKkiRJkuqfZZTqrAet6EGrVMeQmoVWtcwkixHfg0uSJEmSmguns0hSI3Ae29condIJ2JOedCAnRakkSZIkqf5ZRklSI3A22zGSgWQToQ2ZtKrYCP4xDk11NEmSJEmqV679UIMroZwMIqQRpDqK1GhFSOMhDuEqdmUCS+hNa0bQjcB/byRJkiQ1M5ZRajCvMpvzeYdvWUUe6ZzPDlzLbkSckCfVqj/t6E+7VMeQJEmSpAZjGaUG8REL+DkvrXtM/WrKuInxrKaUW9gvxekkSZIkSVKqOEVFDeIaPl5XRK1VSDn3MonVlKYoVcMICRnPYl5kJt+xJtVxJEmSJElq1JwZpQYxnR8SjqeTxkLW0JoOSU7UMBZRwIE8w2xWEiGglCi/ZFtuYT/3+pEkSZIkKQFnRqlBDKdLwiomRkhvWic9T0M5lpeYyjIKKGMVpRQT5T9M5mGmpDqaJEmSJEmNkmWUGsTV7EpOtYl3uaRzKTuRQ0aKUtWvRRTwGYsoJ6wyXkA5NzMhRakkSZIkSWrcLKPUILanK2/zc3alO9lE6E1r/sFeXM2uqY5WUywGj74I+5wKe5wIdz8FZWUbPG01paTX8q/QKkrif/jqa7h/FLz2PpSXJzxWkiRJkqSWxD2j1GB2oQcfc0KqY2zYyf8HL7wDBUXxrydOg6ffgP/dB2m197Vb0o48MiiganGVSRpHx7aE438LL70LARCJQNtW8P4j0K9Xg70VSZIkSZIaO2dGqWX7fCo8//aPRRRAYRF8OgneGrPeU9MI+A8HkUs6kYodsnJIpyt5/P6h7+Dl96CoGAqLYXUBfLcURl7UgG9GkiRJkqTGzzJKLdu7YyEarTm+phDe/mSDpx9Kf8ZxEmcxjIPpy5/ZnS85lU43PR0vtSqLxWDKLJi/qJ7CS5IkSZLU9LhMTy1bp3aQkQEl1faIys6CLh026hJb05HbOaDqYFFJ4oPTAiiu5TVJkiRJkloAZ0apZTvmgPh+TtVF0uDEw+t+3eMOgazMmuMd28GWW9T9upIkSZIkNXGWUWrZ8nLhrfuhZ1dolQut8+KF0Yu3Q7fOdb/uZWfAlr3j14d4MZWXA4/9HYKgXqJLkiRJktQUNbplekEQHAzcDESA+8IwvKHa64OB/wA7AFeGYfjPjT1XSih/KMx9Gz6fBuXlsOM2iWdLbYo2rWDCKHj6dRj9GfTtCWf8NF56SZIkSZLUggVhGKY6wzpBEESAGcBPgPnAWOD4MAynVDqmC9AHOBr4YW0ZtTHnJpKfnx+OGzeu/t+MJEmSJElSCxUEwfgwDPMTvdbYlumNAGaGYTg7DMNS4EngqMoHhGG4JAzDsUDZpp4rSZIkSZKk1GpsZVRPYF6lr+dXjNXruUEQ/DoIgnFBEIxbunRpnYJKkiRJkiRp0zW2MirRzs4bu45wo88Nw/CeMAzzwzDM79x5MzapliRJkiRJ0iZpbGXUfKB3pa97Ad8l4VxJkiRJkiQlQWMro8YCA4Ig6BcEQSbwC+DFJJwrSZIkSZKkJEhPdYDKwjAsD4LgPOANIAI8EIbhV0EQ/Kbi9buCIOgGjAPaALEgCC4ChoRhuCrRuSl5I2rewhCKiiEnG4JEq0MlSZIkSVJtgjDc2C2Zmqf8/Pxw3LhxqY6hpiAM4dZH4Zo7YOUa6NAWrrsAfn1sqpNJkiRJktSoBEEwPgzD/ESvNaqZUVKjdueTcPlNUFgU/3rpcrj4BsjOglOOSmk0SZIkSZKaisa2Z5TUeF1z+49F1FqFxfCnW1OTR5IkSZKkJsgyStoY0SgsWZ74tQVLkptFkiRJkqQmzDJK2hiRCPTpnvi1AVskN4skSZIkSU2YZZS0sf52afwJepXlZMPfL01NHkmSJEmSmiDLKGljHXcIPP53GLJlvIQaNhCe+Tccvk+qk0mSJEmS1GT4ND1pUxx9QPxDkiRJkiTViTOjJEmSJEmSlDSWUZIkSZIkSUoayyhJaoQWsJp5rEp1DEmSJEmqd+4ZJUmNyFSWcRwv8zU/ANCXtjzJYWxHlxQnkyRJkqT64cwoSWokiihjL55iMt9TTJRiokxjOfvwX1ZRkup4kiRJklQvLKMkqZF4jpkUU05YbbyMKE8xPSWZJEmSJKm+uUxPSqUfVsIDz8JnX8LQAfDrn0PXTqlOpRSZz2qKKa8xXkA581idgkSSJEmSVP8so6RUmbMAdjoW1hRBUTG8OBr++R/48FHYdmCq0ykFdqY72aSzhrIq463IYBe6pyiVJEmSJNUvl+lJqXLJ32HZyngRBVBcAqvWwK+vSm0upcxe9GJHupJT6b8TZBNhazpyEH1TF0ySJEmS6pFllJQqr38IsVjN8c++hJLS5OdRygUEvMHP+CO7MJD2bEU7Lmdn3uVYIv66liRJktRMuExPSpXsTCgoqjmeHoGIxUNLlUU6l7Mzl7NzqqNIkiRJUoPwb7xSqpzxM8jOqjqWmQE/+wmk2xNLkiRJkponyygpVa49H/bcEXKzoXUe5OXAsIFwx59SnaxRmMhiTuQVduEx/o/3WURBqiMlzULW8BELWEJhqqNIkiRJUr1z+oWUKtlZ8L/7YNJ0+HIGDOgDO20LQZDqZCn3MrM4jpcpJkqMkIks4X6+ZDwn04c2qY7XYEqJcjqv8yxfk0WEEqKcwNbczU9I978dSJIkSWom/NuNlGrDBsGJR8CIYRZRQIyQs3iTQsqJEQJQSowVlHAVHyUnxKISmF0EYZic+1W4kg95jpkUE2UlpRQT5Umm8Rc+SWoOSZIkSWpIllGSGpXvWMMPlNQYjxLyP+Y07M3nF8PuE6DvJ7DtWNjiE3jnh4a9Z4WQkDv5giLKq4wXUs4tTExKBkmSJElKBssoSY1KazLXzYiqrgPZDXfjWAj7fQGfroKSEApjML8EjvwSvknw1MN6FgKFlCV8bRWlDX5/SZIkSUoWyyhJjUpbsjiUfmQRqTKeRzqXkN9wN/5oJSwshWi18bIQ7v6u4e5bIY2A4XRJ+NoudG/w+0uSJElSslhGSWp0/sPB7E4PckinLZlkEeFshnMa2zTcTReUQKItu0pDmF3ccPet5Db2I5d0IhVBIgS0IoOb2Dcp95ckSZKkZPBpepIanbZk8TbHMosVzGc1Q+lER3Ia9qY7tYnPgqouLw32a9ew966wGz0Zx0n8jc+YxPfsSFd+x04MoH1S7i9JkiRJyWAZJanR2pJ2bEm7JN0sB47rDE8vje8XBZAZQJdMOLlbcjIAW9ORBzkkafeTJEmSpGSzjJKktR4YDLu2gdu/gzVRGNkZfr8F5EU2fK4kSZIkaaNYRknSWmkBnNUz/iFJkiRJahBuYC5JkiRJkqSksYySJEmSJElS0lhGSZIkSZIkKWksoyRJkiRJkpQ0llGS6lWUGKVEUx1DkiRJktRIWUZJqhcFlPFL3iCPW8jhZnbgEcayKNWxJEmSJEmNjGWUpHpxDC/wGFMpIUqMkIksYT/+y7esTHU0SZIkSVIjYhklabPNYDkfsoDiasvzSohyMxNSlEqSJEmS1BhZRknabF+zgswEv07KiPEl36cgkSRJkiSpsbKMkrTZtqEjJQk2Lc8iwgi6pSCRJEmSJKmxsoyStNn60pYj2JIc0teNBUAO6ZzP9qkLJkmSJElqdCyjJNWLxziUy8inMznkkM6h9ONTTqA7rVIdTZIkSZLUiKRv+BBJ2rAMIlzD7lzD7qmOIkmSJElqxJwZJTVihZSxguJUx5AkSZIkqd44M0pqhJZRxJm8wWt8QwgMpD0PcBAj6J7qaJIkSZIkbRZnRkmNTEjIT3iG1/iGUmKUEeMrlrE/TzOf1amOJ0mSJEnSZrGMkhqZsSxiBj9QSqzKeBkx7uKLFKVKgclfw3G/hUGHwM8ugIlTUp1IkiRJklQPXKYnNTLfsDJhS1xClKksT3qelPjkC9j/dCguhVgMvp4Lr38Ir9wF+4xIdTpJkiRJ0mZwZpTUGBRH4cnF8M+5DB+bTXkY1jgkl3R2p0cKwiVHGVFCKt73RX+FwuJ4EQUQhvGvL7g+dQElSZIkSfXCmVFSqk0vhD0nQnEMimMMygw4+NV2vL7nCoqCcgDSCWhNJmcwNMVh698TTOP/eJ/5rKYD2VzJLlw0YQpBooO//DpeUKXZo0uSJElSU+Xf6KRUO+4r+L4MVkehLISCGE8d3ocr3x9EL1rRgWyOZ2vGcxLtyE512nr1AjP5JW8wj9WEwDKK+SMfUtg+N/EJbVpZREmSJElSE+ff6qRU+q4EphdBtVV5Gavhyl+1Zx5nsYxzeZhD6Enr+rlnYRSiNZcBpsIf+JBCyquMFVDOPy4eQphbrXjLzYYLTkxiOkmSJElSQ7CMklJpfaVQfRdGby2HgZ9Cmw+g9Qdw4ddQGtvweQ3oG1YlHP/r74ZS+qufQnZWfDZUdhacchRcdW6SE0qSJEmS6pt7Rkmp1Dsb+mbDtMKq49kBnNK1/u4zcTUcNRkKK8qnohjcuzC+PPCxIfV3n000mA6MZ3GN8TZp2WTcdDFccyF8Mx/69ID2bVOQUJIkSZJU35wZJaXaE1tD2wjkVvzr2CoC2+TBpVvU3z3+OjdeQFVWFINRS2FJaf3dZxP9lT3IqdaJ55LOdexOGgG0bQ3Dt7aIkiRJkqRmxJlRUqoNbw1zdoUnl8DcYtilDRzaESIJnydXN1MKauxLBUB2Gswphi6Z9XevTfAT+vIsR/J/vM90fqAnrbiaXTmZbVKSR5IkSZLU8CyjpMagbTqc1aPBLv/NiJDe00LSo9UKrpIQBuQ02H03xsH042D6pTSDJEmSJCl5XKYnNXOf8B1HXT6BopwYsUrTo4pyY3B2D2iXkcJ0STJvIfz+X3DoWXD17bBkWaoTSZIkSVKLZRklNXP/YCyTBxSyx4fTeWf/1RTkRpnXq5Q/Xv8dc/7ZOdXxGt7EKbDNkfDvh+G1D+CGe2HwYTBzTqqTSZIkSVKL5DI9qZmbwnJCYNJ2Rfzkra/XjeeRwU9ZQx+a+ebgv74aVhf8+HVJKZSVw8V/g5fuSFksSZIkSWqpnBklNXNrSPy0vELK2IZOSU6TZGVlMGFKzfFYDN7+JPl5JEmSJEmWUVJzt5CChOMh0IbUPEUvaSIRyKhlAmheajdulyRJkqSWyjJKasoKCuGb+VCaePYTQOtaCqdM0iimvKGSJfQDxfyLcRzPy/ydz1hGUcPeMC0Njj8Usqp9D3Ky4Nc/b9h7S5IkSZISsoySmqLycrjgeui8O2x7FHTaHf71n4SH/pph5CTYHi4EtuBeppGcJ8vNZgUDuJ8/8hFPMp2rGcMA7mcGyxv2xrdeCbtuB7nZ0KZVvIg6cHe46pz1nraMIj5gPnNYxXKKuJYx7Mbj/JyXGMN3DZtZkiRJkpqxIAzDDR/VjOXn54fjxo1LdQxp01z2T7jjcSgs/nEsNwfuugpOPrLKoaVEOYFXeJ6ZRKn673sAbEsnvuDUBo98GM/yOt8Sq5QhAPalN29zbIPfn6++hhlzYOhWMKBvrYeFhFzGe9zG52QToZjouldKiBEAOaRzO/tzGkMbPrckSZIkNUFBEIwPwzA/4WuWUZZRamLKy6HtzlCYYInboL4w7dWEp/XnXr5hVY3xbCLM5Ex60rqeg1aVxb8pJVZjPI2Aci4mIGjQ+2+se5jExYymcANLGFuTyVLOJsuHkkqSJElSDesro1ymJzU1awrjhVQiC5fWelpkPf+6x2j4UjqTSC3jjevX0L8Yt8Eiaq2vkrTEUZIkSZKak8b1t0BJG9a2NXRsl/i1Hbep9bSTGUJ2gkKoH23pTZt6Cle7kxlCVrX7Z5HG8QxuNLOiAJZTvOGDgDJidGQjn8hXXh4vCktq32i+sYoS4xGmcABPcxDP8DTTk1JeSpIkSWq+LKOkpiYI4KbL4xtyVx7LzYa/XVLraZeSz1A60YoMAPLIoC1ZPMFhDZ0YgH+wNzvRjTwyaEUGeWEGwxe35+bf94GHF0FRdMMXSYL92YK0DZRj6QRsT2f6bEyJd9eT0GUP2PJA6LALXPL32me2NTIhIUfxPGfzFm8zl/8xh9N5g9N4PdXRJEmSJDVh7hnlnlFqqt76GK65A2bPgx22gWvPg+2HrPeUKDFe51s+4Tt60ZpfMJi2ZG1WjDKifMR3RImxOz3J3sAeSuNZzFdLvmPrk5aQ/3E2QUEIrdKgXQaM3QG6bV6ezTWbFezIoxRSRikx0giIVJRTuaRTRowhdORljqEreeu/2Kj/wSm/r7bRfDaccwL849IGfBf1YzRzOYLnKaCsyngu6XzE8QynS4qSSZIkSWrs3MB8PSyjpLr7gPkczQuUV2xMHhLyOIdxOFuu/8QDPofRK6iyn3k68PMu8Pj6C7VkmM9q/sU4PmQBA2nPpeTTn3ZMZAndyGUwHTfuQtseBZO/rjmemwM/jIHMzPoNXs+u5EP+wqc1xjNJ46/syW9J+L8rkiRJkrTeMsrHQEmqk1WUcBjPsrrarJljeZmvOaP2p/OVx+DdFdR4sF458OL3DRF1k/WiNf9m3xrj+9B70y60YHHi8WgUVq6Bzh3qkC55OpFDNhGKqbqEMpMIHciu5SxJkiRJWj/3jJJUJ88xM+E21jFCHmNq7ScGQfwjkUgDbmReVgbTZsPS5Q13jwollMeXtm2/deID2rSqfRP6RuR4BifcPysAfsqA5AeSJEmS1CxYRkmqkx8opqzG9CYoIcqy9T2RLhLAER1rzsvMDOCEBtqD6NGXoMuesNOx0Hs/OOw3sGJVvd9mGUUcw/O05lbacSs7vrgrX+zcrepBudnw90sgrfH/+u1GHs9xFO3Jog2ZtCaTzuTwOj+jzWbuNSZJkiSp5XLPKPeMkurkK75nJx6jiKpPhssjg5c5Zv1L2paUwh4TYVEplMYgI4ABufDucGhTz6uHPxwPB/2q6ibimRmw547w1gP1dpuQkOE8zFSWVynp2kTTmXH8FLqOngxbdIerz4Ujai4BXJ/FFHAtY3iZ2bQjiwvZgdMZSrCBp/7VlzKifMJCIgTsTHci/ncMSZIkSRvgnlGS6t02dOJktuYxpq172loeGRzAFuxNr/Wf3CUTpo6AN5fDjCIYmgf7tqt9+d7m+McDVYsogNIy+GgizP0OtuhRL7f5mO+Yzcoas8VKIyH3/fd0rmSXOl33B4rZnkf4niLKiDGX1VzAaCayhFvZvz6iJ7SaUh7iK0Yzj/605Wy2oz/tGux+kiRJkloOyyhJdXYXP+Ew+vMAkyklxikM4ecM3LgZO5EADu4IBzdwyDkLE49nZsDCpfVWRs1iRcLxYqJMZVmdr3snn9dYEllAGffyJVewM91pVedr1+Z7CsnnUZZSRCHlZJDGHXzOyxzDvmxR7/eTJEmS1LJYRkmqs4CAI9mKI9kq1VFqt//OMHVWfDZUZWXlMKT+cg+nC7EEW7rnks7OdK/zdUczr8bT7ACyiDCRJQ1SRl3HpyykgNKKAqyMGGXEOJXXmcOvkrY8UJIkSVLz5MYfkpq3S8+ANnmQXql7z82BP54NrfPq7TbD6Mye9CK7UsefTkAbsjiVbep83f60JZKg/IkSoxet63zd9XmemeuKqMq+p4g51P/G75IkSZJaFssoSc1b984w8Vk486fQryfssh08cgNc/qt6v9ULHMWl7EhXcmlLFscxmPGctFlPnruAHcgiUmUsgzQG05FhdN7cyAm1IiPheIyQ3FpekyRJkqSN5dP0fJqepEbuNb7hTN5gJSVECdmLnjzGYXQmt0HudwefcxnvUVjpSYnpBOxGT97juAa5pyRJkqTmxafpSVITdgj9mM9ZzGEVrcmgUwOVUAAhIYPpwFA68TlLyCJCCPSiNU9yWIPdV5IkSVLLYRklSU1AGgH9aNug91hDKfvxNFNZRhkxMkgjh3Tu4yAOp78bl0uSJEmqF+4ZJUkC4A98xCSWsoYySohSQDnLKeZuvrCIkiRJklRvLKOkhrZyNawuSHUKaYMeYQolRKuMlRPyBnMorTYuSZIkSXVlGSU1lKmzYMSx0Hl36Lgr7HMqzP0u1amkWkWJJRwPCYnRsh92IUmSJKn+WEZJDWHVGtjjJBj3FZSVxz8+HA+7nwhlZalOJyV0DAPIqPY/CwGwGz3IruMWg/NYxbN8zSd8R2ihJUmSJAk3MJcaxpOvQkkphJX+8h2Nwco18Mp7cPQBqcsm1eLv7MW7zON7ilhDGXmkk00693PQJl8rJOQ83uZ+JpNFhBghvWjN2/ycHrRqgPSSJEmSmgrLKKkhzJwLBUU1x0tK4ZsFyc8jbYTO5DKV03maGUxgMYPpwPEMpg1Zm3yth5nCQ3xFCdF1+1B9zQ+M5EU+5oT6ji5JkiSpCbGMkhpC/jbQKhfWFFYdz8yA7bdOTSZpI2STzskM4WSGbNZ1bmUCBZRXGYsSMoElLGA1PWm9WdeXJEmS1HS5Z5TUEI7eH3p2jZdPa2VnwtABsPdOqcslJclKShOOp5PGGtw3TZIkSWrJLKOkhpCZCWMeh7OOhS4doHtnuPAUePsBCIJUp5Ma3DFsRSaRGuN5ZDCA9ilIJEmSJKmxCMKwZT/dKD8/Pxw3blyqY6g25eXw2gcwdTYM7geH7gXpri6VGrvlFLEjj7KEQgopJ52ATCI8w5EcQr9Ux5MkSZLUwIIgGB+GYX6i1/xbvRqv73+A3U6ARd9DUTFkZ0G3TvDx49C5Q6rTSVqPDuQwiVN5kMn8jzn0pQ3nsT2D8N9dSZIkqaWzjFLjdeFf4NsFUFaxCfKaQpjzHVxwPTzxr9Rmk7RBrcnkfHbgfHZIdRRJkiRJjYh7RqnxGvXmj0XUWmXl8Oxb0MKXl0qSJEmS1FRZRqnxqq1wsoiSJEmSJKnJsoxS43XEPpBe7Wlc6RE4fB+fSCdJkiRJUhPlnlFqvG79A3z2JfywKr5fVKtcaNcabvtDqpNJakBzWcXdfMHXrGAvenEq29CazFTHkiRJklRPLKPUeHXvDF+/Ds++CV/NhCFbwk9/En+qnqRm6SMWcDCjKCVGKVFeYTZ/ZyzjOYnO5KY6niRJkqR6YBmlxi0rE44/LNUpJCVBSMhpvM4aytaNFVJOGQVcw8fcxgEpTCdJkiSpvrhnlNRQwhBWrIKysg0f25QsKYU/zIY9JsBpU2HSmlQnEvEiJ0bT3tx/EQXMZ3WN8TJiPMvMFCSSJEmS1BAso6SGMOp/0Hs/6LontNsZLr6heZRS84phm7Hwz3nw0Sp4ZDHsOgFeW5bqZC1WAWWcxZvkcjMZ3MgePMGXLE11rDrJJr3WQi2PjCSnkSRJktRQLKOk+jb6Uzjl97BgMZSWQWEx3PNfuOAvqU62+f70LfxQBiUVhUEMKIzBr6ZDrGnPymmqjuJ5HuIriokSAz7iO/bgSb6j6c1Ya082e9KLdKo+LTOXdM5huxSlkiRJklTfLKOk+vbnO+MFVGWFxfDgc7C6IDWZ6ugrvucaPuZaxjCFZfDGcogmOHB5OXxXkvR8Ld1XfM8YvqOk2g+lhCh38HlqQm2mRzmUAbSnFRm0JoMc0jmc/pzPDqmOJkmSJKmeuIG5VN9mzk08np4Oi7+H1nnJzVNH1zGGv/AZpUQJgBv4jD9e2ovLL+lY8+BoCK2b76+TcmJ8xxo6ktOolotN5wfSE/w3hRKiTGRJChJtvm7k8RWn8THfMYdV7EhXBtEh1bEkSZIk1SNnRkn1LX8bCILEr/XqltwsdTSd5fyFzyiinCgh5YQUUc61F8zj621Lqx6cGcDBHaBt8yyj7mUSnbmDrfkPnbids/gfpQmnhyXfEDpQRqzGeDYRdqJp/LOWSEDA7vTkBLa2iJIkSZKaIcsoqb5dfR7kZlcdy82BK8+C7KzUZNpEzzOT8gQlRywS8sKfY5CdBm0jkJMGu7SBhwanIGXDe4lZXMRoVlBCIeUUE+URpnI+b6c6GgCD6ci+9CabyLqxgPhG4Ge7x5IkSZKkRsoySqpvwwbB+4/A/rtAmzwY0Afu+CP83y9TnWyjRQhINLcrCAIiR3WGubvAqKHweT68tz20azxL1+rTdXxCIeVVxooo52GmsIbSWs5KrlEcybkMpx1ZZJLGgfTlE06gK01jOagkSZKklicIw5b9BKz8/Pxw3LhxqY4hNSrfsJIh/IfiasvRsokwjTPoQ5sUJUuu7tzFImpuOp9LOlM4vcV8HyRJkiRpUwVBMD4Mw/xErzkzSlIN/WjLjexDNhFySCeHdLKJcDP7tagCZhe6JZwhlkmEnrRKeh5JkiRJag6a547Dkjbb2QznCLbkeWYSAEezFT1pXfsJBYVw++Pw1OvQKhfOOwFGHlT7Zu6bYDrLuYqP+YTv6Etb/sAuHECfzb7uhvyZPXiLuRRQxto5pLmkcwN7JnyKnSRJkiRpw1ym5zI9afMVl8BOx8KsuVBUEh/Ly4EzfwY3X7FZl57CMnbmMQopJ1ZRCeWSzl0cwMlss7nJN2gy3/NHPuQTFtKL1vyRXTiSrRr8vpIkSZLUlK1vmZ4zoyRtvidfhW/m/1hEARQUwT3/hUtOgy161PnSV/JBlZlJAIWU81ve4wS2JtLAM5SG0onnOLpB71HfXmQmNzKepRRyKP35HTvRmdxUx5IkSZIkwDJKUn147YN4+VRdRgZ8NHGzyqiPWUii+ZsFlLGIgvUvHWyB/sqnXM+nFFAGwExW8BhT+ZJT6UhOitNJkiRJkhuYS6oPvbpCei3ddpcOm3Xp7uQlHA8JaU/2Zl27uVlJCdfyyboiCqCUGMsp5hYmpDCZJEmSJP3IMkrS5jvrOMioVkYFAbRtBfuM2KxLX8nO5FabxJlDOieyNblkbNa1m5svWEpWgl/rJUR5g2+TH0iSJEmSErCMkrT5BvaFJ/8J7dtA6zzIzYHB/WD0gxCJbNalf84grmN3WpNBKzLIIsKxDOR29q+X6M1JV3IpI1ZjPAB6u5xRkiRJUiPhnlGS6seR+8EH/4N/TIWCNDipL/TrVC+Xvph8zmE437KKruTSzuV5CQ2iA9vSiQksqVJK5ZDOb0n4EAtJkiRJSjpnRkmqH08shp0+h8eK4JkCOHEqHPwFlNecqVMXWaQziA4WURvwEsewC93JJkJrMmlDJndyALtS903kJUmSJKk+OTNK0uYriMKvpkNRpeKpIAZjVsGTS+CkbqnL1sJ0Jpf3+QXzWMVyitmajmSyeUslJUmSJKk+WUZJqrtlK+CV9+CLNEhrW/P1ghg8bhmVCr1pQ2/apDqGJEmSJNVgGSWpbp54Bc74A6RHINofis6AREvo8lwNLEmSJEn6kWWUpE23cCmc+QcoLqkYmAKUUaOMykuDX7lXkSRJkiTpR05ZkLTpRv2v2kAMuAMohKxovITKDuC8nnBghxQElCRJkiQ1Vs6MkrTpSkohWv0peXMg7Uo45hI4cH/Yrz308cl3kiRJkqSqnBkladMdsS+kJfj1kR3A5TvB6d0toiRJkiRJCVlGSdp0A/vCZadDbjakBfFiKjcbfvMLGDYo1ekkSZIkSY2Yy/QkERLyAQv4lIX0ohVHsxU5ZKz/pGsvgCP3iz9VLxbCcYfALtslJ7AkSZIkqcmyjJJauBLKOZhnGcsiSoiSTYQLGM0HHMdgOq7/5Pyh8Q9JkiRJkjaSy/SkFu4mJvApCymgjHJirKGMZRTxC15JdTRJkiRJUjNkGSW1cA8wmSLKq4yFwHSWs4DVqQklSZIkSWq2LKOkFi5KbD2vhUlMIkmSJElqCSyjpBbuZIaQTaTGeF/asAVtUpBIkiRJktScWUZJLdxl7MQ2dKJVxdPzckmnLVk8weEpTiZJkiRJao58mp7UwuWSwaecwGt8wycspDet+QWDaUtWqqMpGWIx+McD8O+H4IdVsNO2cNPvfUqiJEmSpAZjGSWJCGkcvqQ3h7+WB+kBHJYG7VKdSklx8Q1w3zNQWBz/+qMJsM+pMPa/sPWWqc0mSZIkqVmyjJIai2Ur4P5n4PPpsOMQOOOn0L5tcu59zwK4cFa8iAKIhvDY1nBM5+TcX6mxYhXc8zQUl1QdLy6Bv9wDj/wtNbkkSZIkNWuWUVJjMONb2OUX8RKgqASefxv+ei989hT0792w9/66EC6aBcXVnqp34lSY2xY6ZTbs/VugKDEmsZR00hhKJwKC1ASZNQ8yM2qWUdEYjP8qNZkkSZIkNXtuYC41BmdfCytWx4sogKLi+P4951/f8Pd+YgmUxWqOpwHPf9/w929h3mMePbmbvXmK3XiCftzHRBanJkzfnlBaWnM8CGDogOTnkSRJktQiWEZJqRaG8O5n8c+VxWLw1piGv39xDKIJxqNhzdlSopAyvmQpyyja5HMXU8BhPMdiCllNGWsoYw6r2I+nKaSsAdJuQMd2cMLhkJNddTwnC674dfLzSJIkSWoRLKOkxiCzlhWzmRkNf++jO0FOol8FARzWseHv30SEhPyFT+jMHezOk/Tkbo7nZYop3+hrPMZUotQs+MqJ8Twz6zPuxrvrKjj/BGiVG58Rtc1W8MpdMHzr1OSRJEmS1OxZRkmpFgTx2SlZ1fZmysqEU45s+PuPaAOndoO8NAiI/1bITYMrt4B+OQ1//ybiCaZxPZ9SSDmrKaWEKC8wk3N5e6OvsYgCihNMQysjxhIK6zPuxsvIgL9dCqvGQukXMPlF2GdEarJIkiRJahEso6TG4N+/h+GDIS8nPkMlNwd2Ggp/vzQ59799ALw+DM7tARf2gg+2hz/0Tc69m4i/VBRRlRUR5XGmbvQSu33ZglbUnO0WIWAvetVLzjoLAkj3mRaSJEmSGp5/85AagzatYMwTMPZLmPYNDNkS8ocm7/5BAHu0i38oocW1zlwKWEkJuQlKpuoOoi870JVxLFpXbOWRzmH0Zwe61mNaSZIkSWq8LKOkxiIIYMSw+IcanT3pyfPMpNo287Qjk67kbdQ10gh4k5HcyyQeYgoZpPErtuVkhtR/YEmSJElqpCyjJGkjXM8evMUcCiknWlFJ5ZLOLexHGsFGXyeTCOeyPeeyfUNFlSRJkqRGzT2jJGkjbE1HxnMyJ7I1W9GOA+nDa/yMnzOo5sFlZfEll1NmQlh9LpUkSZIktWzOjJKkjTSA9jzEIes/6IW34bQrIBaD8hj06gov3QED+yYloyRJkiQ1ds6MkqT6MuNbOOEyWLEaVhVAYRF8PQf2Ox2i0VSnkyRJkqRGwTJKkurLPf+F0vKqY2EIq9bA6E9Tk0mSJEmSGhnLKEkNa2EJLCpJdYrkmL8YyssTv7ZkeXKzSJIkSVIjZRklqWFMXgPbfgb9PoG+n8AO42B64Y+vrymAi2+ALntAp93gnGvhh5XJzbhqDXz1dfxzfTh0L8jLqTleVg577FA/95AkSZKkJs4ySlL9W1UOe34OkwuhJIx/fL4G9pwIRdH45t57nwp3PglLl8OyFXD/KNj1hPiT6BpaLAa/vQG67hm/Z9c94aK/xsc3x3GHwJa9ISfrx7G8HDjrWNiix+ZdW5IkSZKaCZ+mJ6n+/XcJlFUrdkKgKAbPfw+dZsU3+y4p/fH10jJYsBheeAdGHtSw+f52H9z9NBSXxD8A7n0aOraDP55d9+tmZcLHj8dLtqdeh9a5cM7x8LMD6yW2JEmSJDUHzoySVP/mFENBgllGxVGYWwKfT4Xi0pqvrymEz6c1fL4bH4w/6a6ywmK46eHNv3ZeLlx6Boz9L7zzYLxYC4LNv64kSZIkNROWUZLq385toFWk5nh2BEa0hv7VlrKt1SoX+vdq+HzLVyUe/2FV/Ol3kiRJkqQGYxklqf4d0hEG5kB2pRlBOWmwXR7s0w6O2AfatIJIpV9BaWmQnRXfd6mhbTco8fiwgc5ikiRJkqQGZhklqe7KyuDB5+AnZ8Bhv4Hn34rPLIoE8P72cNkW0DebsF82Sy/vxJy3+sfLnsxMGPM47D0C0tMhPQK7bgcfPxZf5tbQbr4ccrN/LJ6CIP71zVc0/L0lSZIkqYULwha+JCU/Pz8cN25cqmNITU8sBgf9CsZ8DgUV+y/l5cApR8Edf1p32LvM40ReYSWlxAgZSHtGcSRb0i5+QEFhvMBqlZfc/BOmwJ/vhEkzYNsB8Y3Ld9wmuRkkSZIkqZkKgmB8GIb5iV5zZpSkunn9A/jkix+LKIj/+cHn4k/KA+azmsN5ju8ooIAyiijnS75nH54iSsUG53m5ySmiysrgqlsp7bQLpdnb8tHvLuaP1+3It7P+C8/ftslF1FgWsRdPksvNbME93M5EQlp2uS9JkiRJG8MySmqK3vkEjvstHPJreOj5eNGSbK9/GH/6XQ1BPB9wP19STtWn6sUIWUkpbzInCSErOe0Kyv5xP5nLVpFZEmXXt+dx2a7/5vC5d/ANKzfpUl+ylH14ig9YQBHlzGM1v+N9/shHDRRekiRJkpoPyyipqbn6NjjyXPjv6/FC6Nw/wwFnQnl5cnN0bg+ZGTXH09OgQ1sA5rCKEqI1DokR8h1rGjrhj+YvInz2TTKKStcNpQFZxVF++e+J/Jkxm3S5axlDEVW/34WUcyPjKSAFxaAkSZIkNSGWUVJTsmAx3HBfzaVx46fA828nN8spR0EkUnM8LQJH7AvAfmxBHjULqxghu9GjoRP+aNpsYlk1c2SVxcgfu5R3mbdJl5vAkoQL8tJJ49tNnGUlSZIkSS2NZZTUlLw3FjLSa44XFCa/jOrTE578J7TJgzatoHUedO0Ib94HOdkA/JyB9KUN2fxYWuWSzk/ZisF0TF7WrfqQVlJz5lhpesAXw9rTk9abdLlBdEg4XkaUXpt4LUmSJElqaRL8rVZSo9W2NaQFNccjEejUPvl5jtwPlnwU38g8MwNGbFtltlQW6YzhBG5kHE8ynRwi/Ibt+CXDar1klBiv8y1vMYeu5HIyQza5LKqhb0+CA3ej5H8fkFX8YylVmhXhrt8O5wZGbNLl/sQuvMc8Cist1cslnZMZQluyNi+rJEmSJDVzQRi27Kc/5efnh+PGjUt1DGnjlJZCj31g2Yqq4znZMPYp2GZAKlLVm1KiHMgzjGcxaygjiwgRAp7nKH5C3827eHEJpZfdQHj/s2QUl/HF9p347Z17MnLESM5l+02+3Ot8w3m8w7esJJt0zmU417MH6U44lSRJkiSCIBgfhmF+wtcsoyyj1MRMnAKHnAWFxRAE8Y3L7/gTnHp0qpNttrv4gkt4t8qMI4AOZLOYs+un6AlDvo+uZkl6GVvSlqzNnCBaRBlZpJNGghlrkiRJktRCra+Mcpme1NRsPwQWvAsfT4xvXr7HDtAqb7Mvu4DVXMcnvM63dCaXy8jn5wza/Lyb4BGm1CiiAMqIMZ7F7Ez3zb9JENApvQ2dNv9KAOQk2KBdkiRJklQ7yyipKYpEYM+EBXOdLKKA4TzCCkooJ8a3rOJ0XmcKy7iK3ertPhuSUcvMp5CQTJe/SZIkSVKz4N/uJHEj41hVUUStVUA5N/AZKylJWo6zGEZegplG7chiOF2SlkOSJEmS1HAsoyTxDvMorVRErZVFhMl8n7QcxzGYnzGAHNLJJkJrMmhHFi9yNEED7ck0l1Wcxmv04C624UHu50tCWvZeepIkSZLUkFymJ4m+tGECi2tUMKXE6EGrpOVII+AhDuFS8nmf+XQihyPZssH2ZVpEATtULE+MErKQAi7kHaayjH+yT4Pcs7ELCfmQBbzOt7QlkxPYml60TnUsSZIkSc2IZZQkLiWf1/imyubhmaQxgm70o23S82xLZ7alc4Pf5ybGs5pSopVquALKuZ3PuZyd6UhOg2dY63OWcAOfMZXl7EI3/o8R9Kdd0u4PECPkF7zMq3xDIWVkEuFqxvAEh3EUWyU1iyRJkqTmy2V6ktiFHtzPQXQgm1ZkkEWE/enD8xyV6mgN6j3m17I8MZ0vk7g88S3msDtP8DQzmMRSHmAyw3mYr5KYAeB5ZvIq31BAGSFQQpQiyjmRVymiLKlZJEmSJDVfllGSAPgFg1nM2YznJObxa17lp7QjO9WxGtRWtCMtwV5UpUTpnaSlaSEhZ/MWhZQTq5ihVU7IGsq4lPdqPzEWgydfhQPOgH1OhQdGQXl57cdvhEeYQkGC0ilCwHvM36xrS5IkSdJaLtOTtE46aQykQ6pjJM0l5PMsX1dbnhhhF7qzZZKWyK2hjG9ZVWM8BD5kQe0nnno5PPcWFBTFvx47Gf77Orx2DwR12+w9fT3/fWJ9r0mSJEnSpvBvF5JarOF04b8cQQ/yyCGdTCIcRj+eS+LyxGwitRY9HWqbmfb5VHj2zR+LKIDCIvhoIrw9ps5ZTmcb8hJsFh8QsBe96nxdSZIkSarMMkpSnUSJMZ3lfMeaVEfZLIfRn3mcxQzOYAln8yxH0ZaspN0/gwinsQ051Saq5pLOJeQnPmn0Z1AerTm+phDe/qTOWQ6hH6cwhBzSySJCHhnkkcFzHEkmkTpfV5IkSZIqc5leS/HV1/DsW/HlOyMPhMH9U51ITdirzOZ03qCAMsqJkU9XnuYIutMq1dHqJI2AXknaIyqRf7MPyyjiJWaRRYQSovyaYZzH9olP6NQeMjOgtNr+TtlZ0LnuyywDAu7gAM5lOG8yh7Zk8VMGJLWckyRJktT8BWEYbvioZiw/Pz8cN25cqmM0rOvugr/cA2UVf3HNSIdrz4dLz0htLjVJU1lGPo9W2WcpnYBBdOBLTiVIsCF4IlFivMo3TGAxfWnLSAYmXCLWkixkDXNZzQDa0YGc2g9cUwA994FVBVXHc3Ng1uvQrXOD5pQkSZKkDQmCYHwYhgmXe7hMr7mbOgv+cjcUFceX9ZRHoagE/ngrzJ6X6nRqgm5jIiVUXSJWTsi3rGIcizfqGqspZUce5QRe4WrGcC5v05d7mcHyhojcZHSnFTvTff1FFECrPPjffdCtE7TOhdZ50KEtvHCrRZQkSZKkRs8yqrl77i0oS/C49zCE599Ofp6W5q2PYdsjITIUuu0J/34w/r1vwr5lFVFqvocIAQtYvVHX+DNjmMZy1hCfrVdAGcso4mReq9eszdrO28H80fDWA/DGvbD4Azhgt1SnkiRJkqQNcs+o5i4SSfyY9yCIv6aG89EEOOo8KCyOf714GfzhVli8PL7R9KMvQXk5HLEP3Ph76L4RM1pKSyEjI/HPNEkOYAtGM48iqpacpUTZiW4bdY1HmVpjdlUIfM4SllO04ZlBiotEYMSwVKeQJEmSpE3izKjmbuSBkF5L6fTTA5KbpaW56rYfi6i1CovgH/fDvU/DytVQUATP/A92Ojb+Wm3e/BgGHQo5O0CbneD3/4oXWSlwJtvSmZwqT1fLI51fsi09N3IT8PVVaRvac2ocizid1ziEUdzORFbHSpj51XwWT14MsaY960ySJEmSWgLLqOZuyy3ght/Gn7JV+ePmy6F391Sna96+mpl4PBZWfQpaeRRWrIYnX018/Ngv4ejzYMa3EIvFZ1Xd+hicd129R94YbchiAidzAduzJe3YkS7cwQHcwn4bfY2TGUIWVUvSNAJ2oCvtya71vAeZzN48xcNM5XW+5ZLYu7SP3cawvv+lz1aPsfen97FowqI6vzdJkiRJUsPzaXot4Wl6AHO/gxfeiS/vOnp/6LVxy6m0GfY/Hd75dOOPP+d4uP2PNcePPAdefq/mXlPZWbDwPWjXZvNypkABZezNU0xnOUWUk0M6uWTwEb9gK9onPKeIMrpw57p9phJJL4UhM3L4fItfEbRp2U/mkyRJkqRUWt/T9NwzqqXYogecf1KqU7Qs15wHn3xRdaleVma8VCqtVqjk5cCQLRNfZ8qsxJueZ6bDvEXxMmrVGnjmDViyHPYZATsPS+q+Uqsp5QG+5E3m0I+2nMtwBtOx1uPzyOAzTuRN5jCBxfShDcewFTnUXiBNYAlpG1jCV54J3/QuYtYNj7FV0ULo0QVOPtInzEmSJElSI2IZJTWUPXaE526Fi2+AqbOhU3u47Ay4/xmYPf/HpxympcVnOZ10ROLr7DAEvlkQX6JXWVk59O0ZL7wO+iVEY1BSBlkZ8JPd4JmbkrJJ/TKK2JFHWUohhZQTIeABJvM0R3Ao/Ws9L42Ag+jLQfTdqPu0JYsosfUek1Vczls/eY2+X66E4pL49/WaO+CVu2DvnTblbUmSJEmSGoh7RkkN6cDd4auXIDoZlnwYL6M+eBSO3BfS0yGSBnvtCJ88AW1r2fz7T+fES5XKcnPiM93ycuCnF8Cqgvhm6OXl8c9vfgyPvFivb6WYcp5hBnfyOVNYtm78b3zGIgoorHi6XpSQQso5nTc2WB5tim3oSG/arHd21G/unMrQyctILy6pCF0S/34cd0nNMk+SJEmSlBLOjJKSofKSuc4d4JmbIRqNFyQZG9jbaOgAePdBuPhvMP4r6NgWLj0DLjwZJk6F1QU1zykogvtHwWnH1Ev8z1nC/jxNGVHKiS8Z/AWDuJ+DeI6ZlBCtGYEyZrKCQXSolwwBAa/yU37C0yymkCAMWE0paVGIVfwmO+2hWeQW1cxCQSFM/hqGDaqXLJIkSZKkurOMklIlEtn4ZXQ7bQsfPlpzPAypdaJQPT2cICTkSJ5nOcVVxv/LDA6kL23JTHheOTFa1/JaXfWjLV9zJp+ykGVBMVuWtebeqZ/yfMc5tF2TTs/SNlBp1tY6sRAy/HUnSZIkSY2BfzuTmrLhgyEnG1YXVh3PzYHTf1ovt/icJfxQrYiC+Mynu5nEBezAObxFQcUyPYAIAfl0pQet6iVDZQEBu9Aj/kUG/GvY4fxr7YuXdoIL/hKfGVZZ984wuPb9qyRJkiRJyeOeUVJTFonAqJuhVS7kZseXA7bKhb3z4dSj6uUWZcQIapl+VUI5JzOE0xlKNhHakEkrMhhEe/5LLRuyN6RTj4bD9o5/L7KzoHUedGwHz9+a1KcLSpIkSZJq58woqanbY0eY8xY8+RosXQ77jIC98uutfNmBrmQk6K1zSeckhhAQcCv783+MYByL6EErdqJbrQVWg4pE4Kkb4fOp8OEE6NoRjti35gbwkiRJkqSUCcJ62lemqcrPzw/HjRuX6hhSo/YG3/JTXiBKSAlRWpHBcLrwFiPJstOWJEmSJFUTBMH4MAzzE73m3yIlbdBB9GU6Z/AQX7GIAn5CHw6jPxFX+kqSJEmSNpFllKSN0ovWXMkuqY4hSZIkSWrinNYgSZIkSZKkpLGMkiRJkiRJUtJYRkmNTDHlXMkHdONO2nMbp/AaC1mT6liSJEmSJNUL94ySGpkjeI4PWUAxUQCeYCpvM4fpnEErMlOcrpErKISX3oXVBXDArtCv13oPX0YRLzCTEqIcRn+2oE1SYkqSJElSS2YZJTUiE1jMx3y3rogCKCdkJaU8whTOZnjqwjV2H4yDw86O/zkahVgIF58Cf7k44eHP8zUn8CppBMQI+S3vcjW78X+MSGJoSZIkSWp5XKYnNSJfsJSAoMZ4AWV8ysIUJNo07zOfk3mVo3mex5lKObHk3LikFI48Nz4janUBFBZDcQnc8ii8+1mNw1dQzAm8ShHlFFBGEeUUE+UaxvAFS5KTWZIkSZJaKMsoqRHpT9sEVRRkE2FrOiY9z6a4jjEcwigeYyovMItf8yYHM4po5UIqDOOzlupJGVFeYCZ3znqJL4a0rXlAQRHcP6rG8EvMJpLgO11KlMeYWm/5JEmSJEk1WUZJjche9KIPbcio9q9mJhHOYGiKUm3YQtZwHZ9SSDlhxdja2VwvMgtiMbjuLuiwC6RvCwMOhlff26x7fs0PbMG9nMxrXDJwDrv9b39++sz+lEeqlUxFxTXOLSO6LmdlMUJKqL+yTJIkSZJUk2WU1IgEBIzmWA6hHxmkkU4aO9KVD/gFnclNdbxavcO8GgUawBrKeI6ZcMVN8Nd7YMXq+Asz58LIi+H9cXW+5894kcUUsJpSitJDCvPSeePgntx91uAfD8rLgeMPq3HuofSvOmOrQg7pHMugOmeSJEmSJG2YZZTUyHQmlxc4mlWczw+cyzhOYhidUx1rvdqQmXCvqwgBXYvS4ns3FVaboVRUDFffVqf7zWEVX/NDjdlNhXkZP5ZRebnxJ+odc0CN87uRx7/YmxzSSa9Inks6p4RD2C3sXqdMkiRJkqSN49P0pEYquwn963kgfUhPUEZlEuHMxd0hLdFOWMC0b+p0v1KipCXcXQtKu3eAc0+Ao/aD/XeBtMSd+zlsz35swRNMI+/r7zjr7OdpO/peSI/AcYfALVdAuzZ1yidJkiRJql2j+9tuEAQHAzcDEeC+MAxvqPZ6UPH6oUAhcFoYhhMqXvsWWA1EgfIwDPOTGF2N1eSv4fGXobQMfvoT2G37VCdqdrJI5w1GcijPUlqx51IZMW5lPwZ3G1j7iduu57X12Ip2dCSHQlZXGc8mwgmdd4bbdt2o6wymI9f8MBR2uRR+WBXfYL00Bk+9BlNmwtinIailSJMkSZIk1UmjKqOCIIgAtwM/AeYDY4MgeDEMwymVDjsEGFDxsTNwZ8XntfYNw/D7JEVWY/fvh+DKm+NFVCwGdz4Fpx4Fd/wp1cmanZ3oxkJ+w/vMp4Ay9qYXbciCbOB3Z8Lf7ofCoh9PyM2Ga8+r070CAp7kMA5iFOXEKCZKKzLYknb8lh036VqlD44iKC4iI6y06K+0DKZ/C2M+t7yUJEmSpHrW2PaMGgHMDMNwdhiGpcCTwFHVjjkKeDiM+wRoFwSBm7yopvmL4htnFxVDNBqf9VJYBA+/AJ98kep0zVI6aezHFhzBlvEiaq0/ng1/+y307AIZ6bDDEHj1bth5uzrfazd6MpMzuYbdOIfhPMBBjOVEWpG50dcoJcrrX7xBRmFpzRfDEKbNrnM+SZIkSVJijWpmFNATmFfp6/lUnfVU2zE9gYVACPwvCIIQuDsMw3sS3SQIgl8DvwbYYost6ie5Gp9X30+8V1FhMTzzBuxS9yJEmygI4LwT4x/1qCt5/I4RdT7/aWYwYcc27P90OnmF5VVeixGSts1WmxtRkiRJklRNY5sZlWhzluoPzFrfMbuHYbgD8aV85wZBsFeim4RheE8YhvlhGOZ37ty4n1KmzZCZkXi/n0gaZG387JlGq6wsvgxx26NgyOFwwz3xWWDrUUI51zKGgYW3c9ld5zDpqGMpPveq+L5aLdDrfMN9p/SnIC+d8krFZXFWGsuGbQFdOsKr78HMOSlMKUmSJEnNS2ObGTUf6F3p617Adxt7TBiGaz8vCYLgOeLL/t5vsLRq3I7cF875c83xjHQ48fDk56lPYQhHnAMfjI/P9AK49k54YTR8+ChEIglPO5zn+GL1t7y307P0nl9Aq4JyyiNfEf7nJYKH/wojD0rim0i9HrSiqG02Iz47kpsv/ISD3phPWUYaTx8/gMOWtoUhR0BWRnwPqb13gmdvgZzsVMeWJEmSpCatsc2MGgsMCIKgXxAEmcAvgBerHfMicEoQtwuwMgzDhUEQ5AVB0BogCII84EBgcjLDq5Hp0A4e+3u8PGiVC7k5kJ0Jf7kYhjTx5VdjPocPJ/xYRAEUlcRnOL3xYcJTxrKIj/mOX94yiT5z1tCqIL4sLT0aEhQVw6/+BKUJ9k7aHIVFMPpT+PSL+Abyjcyv2JYM0pjTtzVHv/ATcopPp+3qU1nVOY8ub0yE4hJYuSb+vX13LPz2b6mOLEmSJElNXqOaGRWGYXkQBOcBbwAR4IEwDL8KguA3Fa/fBbwKHArMBAqB0ytO7wo8F8SXZaUDj4dh+HqS34Iam2MOgPnvwEvvxme3HLoX9Oya6lSb7+OJ8fdT3ZrCeEl16N41XprAYkJg5KhvyC2O1jw3GoNJMyB/aP1kfPxlOOtqSEuLF1Ht2sCrd8G2A+vn+vVgK9rzJIdzKq9RTkiMGD1oxfl3zyAoKql6cHEJPPR8/EmMiZZ/SpIkSZI2SqMqowDCMHyVeOFUeeyuSn8OgXMTnDcbcEdq1dShHZx6dKpT1K8eXeL7XpVV3XSb3Gzo1S3hKX1pSzpprGxby35Z0Si0aVU/+abMhF/+qeoeVmsK4YAzYP5oyMion/vUgyPYksWczUSWkEcGQ+hIsObWxAcXl8a/T+mN7lenJEmSJDUZjW2ZnqSNccwB8TKq+gyd9Agcf2jCUw5gCzqRw+3nb8OavKplSpgWQP/eMLBv/eS775nEM7eKSuDtT+rnHvUogwgj6M42dCIggL3yE89+yt/GIkqSJEmSNpNllNQU5WTDew/Fy6Oc7PiMqH694O3/QPu2CU+JkMYHHMfyY/bgrnOGUJwVYXWbTKKtcwj69IQXb6+/fIuXxWcQVReGsHxl/d2nodx8ObTOg8yKWWQZGfF9x+68KrW5JEmSJKkZCOKr3lqu/Pz8cNy4camOIdVNGMK3C+LFz5ZbbPReRqsooXzhYjqMmQ5dO8Ju29fvPkhPvhpfpldQWHU8OxNmvtFg+3a9wbdcwrtMYzldyOVKduYchsdnO22qBYvh1kfhs8mw3SC48GTo27P+QzcSISEf8x1TWMbWdGB3etbt+yZJkiRJQBAE48MwzE/4mmWUZZRU70pLYe9T4xuiFxbFx/Jy4IKT4k8zbADvMo9DeZYiftxHK5d0rmJXfseIBrlnc7GKEg7gGaayjBghaQQMpD3vcCxtyUp1PEmSJElN0PrKKJfpSaofsRhcdxd02AWyh8OK1fCrkbDvznDUfvDMTQ1WRAFcyYdViiiAQsq5nk8pI8GSQa1zCe8xiSWsoYxCyllDGZNZxgW8k+pokiRJkpohd+KVVCffspLVlDKEjkRIg9/9E+586seZUNNmw9zv4J3/wM4N/6DLaSxPOF5KjGUU0428Bs/QVD3BNEqIVRkrJcpTTOchDklRKkmSJEnNlTOjJG2SuaxiRx5hCA+yG0/Qjbt4pWgK3PHEj0XUWoXFcHU9boy+HgNpn3A8gzQ6kp2UDE1VbTPHyokR0rKXckuSJEmqf5ZRkjZajJD9+C9fsJSiiuVc31PEsVn/Y/rgdolPmjIrKdmuY3dyq032zCWd/2MnMogkJUNT9RP6kFZts/I0Ag6gj5uYS5IkSap3llGSNtrHLGAxhUSrzZYpDWLcecaWNU8IAth2YFKy7U8f/ssRDKQ9AdCZHK5nD65g56Tcvym7jf3pRPa6Mi+XdDqQzR3sn+JkkiRJkpoj94ySWrrxq+HpJRAJ4PguMLRVrYcupCDhTJnyIGTOvltD7oT40ry1crLg6nMbInVCh9Gfw+hPSOiMnk3Ql7Z8zZk8zBQmsoThdOZkhtDO5Y2SJEmSGoBllNSS/W4W3L4AimMQAP+eD3/qA7/vk/DwXehOaYL9hXLJ4KCt94RrO8A/HoBlK+Izom66HPKHNux7SCBVRdRsVnAZ7/EWc2lFJucynN+xE+lNYBJqG7I4j+1THUOSJElSCxCEYcvenDY/Pz8cN25cqmNIyff5athtIhRVfYoa2WkwZSfol5PwtPN5m/8wmQLKAcgiwha0ZiKnkEdGQ6dutBZTwBAeZAUlxCqWMeaSzjFsxaMcluJ0kiRJkpRcQRCMD8MwP9Frjf8/10tqGM9/D6WxmuNhCC8tq/W0W9iPeziQXejOEDrwf+zEWE5q0UUUwG1MpICydUUUQCHljOJr5rIqhckkSZIkqXFxmZ7UUmUEkBZAtNrsyLQg/lotAgJOYGtOYOsGDti0jGEhJQmWMGYRYTLfswVtUpBKkiRJkhofZ0ZJLdWxXSC9ltLpmE7JzdIMDKEj6Qn2qiojRn/apiCRJEmSJDVOllFSSzUgF/7ZP75HVG4a5KXF/3zvIOiWlep0tVpNKRNYzBIKUx2ligvZgaxqk02ziLAz3RlMxxSlkiRJkqTGx2V6Ukt2Ti84unN8j6gIcFQn6JxZf9f/+luYuzD+ZL0um1fIhIT8kY+4kfFkkEYJUY5mKx7kYLIbwa+yLWnH//gZv+ZNpvMDaQSMZAB38pNUR5MkSZKkRsWn6fk0Pan+rVoDR58Hn3wBmRlQUgq//DnccgUEte9HtT73MomLGE1hxVP8AHJI52S25m4OrK/k9WI1pWQRIZNIqqNIkiRJUkr4ND1JyXXmH+DjiVBUAivXQHEpPPAs3PVUnS/5d8ZWKaIAiijnYaZQUm081VqTaRElSZIkSbWwjJJUv9YUwIujoaSs6nhhEdz0cJ0vu4yihOMxYA1lCV+TJEmSJDU+llGS6teawtqX4v2wqs6X3Z2eCZ5VB13JpQPZdb6uJEmSJCm5LKMk1a+unaBrgs3KI2lw4G51vuzf2ItWZBCpqKQCIJd0bmd/goQ1lSRJkiSpMbKMklS/ggDuvRZys+MFFEBWBrRtDdddWOfLDqEjEziZUxjC1nTgCLbkHY7lCLasp+CSJEmSpGRI/fPQJTU/B+4OnzwJNz4IM+bAXvlw4UnQrfNmXXYr2vMAB9dPRkmSJElSSlhGSWoY2w6E//wl1SkkSZIkSY2My/QkNR7LVsC8hRCGqU4iSZIkSWogllFSczf3O7jwL7DTsXDK7+HLGalOBEA5MaaznCUUwuLv4YAzoMfeMPBQ6HsAjP40pflihJQTS2kGSZIkSWqOXKYnNWfTv4ERx0FRMZSVw4QpMOp/8OLtsP+uKYv1NNM5m7coJkp5GGPvmUt5YtIkOpSWxQ+YuxAOPwcmPQdbbgFAlBh/4zNuYSIrKGF3evBv9mUY69mHKhqFlavjm6dHIhuVbQ2lXMA7PM40Sokygm7czU/Yji6b+7YlSZIkSTgzSmrefvdPWF0QL6IAYjEoLIazrk7ZUrixLOI0XmcZxRRQRkkQ5d38thw1at+qB5aVwR1PrPvyN7zF9XzKYgopIco7zGN3nmA2K2reJAzhr/dCh12h+97QeXe49dGNyncEz/E40yghSgh8yiL25CkWsLrub1qSJEmStI5llNScvTcucek0dyGsWpP8PMC/GEcR5VXGSrMijN+xE19v1ebHwbJymDkXgCUU8ihTKKx2XjHl/IOxNW9y44Nw3V3x91haBj+sgt//G/7z3HqzfclSPmMRJUSr5iPKHXy+0e9RkiRJklQ7yyipOWvXOvF4WhrkZG3+9ctjcPcC2GV8/OPuBfGx9ZjDKhLNycosjfJdj9wfB3KzYZ8RAMxgOVnUXGZXTshYFlUdXDsrqrCo6nhhEVxz+3qzzeAH0hP8WiwhyhcsXe+5jckPFLOYglTH2CilRIkl/CdCkiRJUnNlGSU1ZxefArk5Vceys+D4QyEzc/OuHYZw5GT47Sz4dHX847ez4mPrWQK4P1skLJZKsiIMm7Q8/kVGOnRoC2f+DID+tKO42mwlgAgBQ+lUdTAaheUrE9984foLpaF0oizBpuXZRNiZ7us9tzFYwGr24Sm6cSd9uJeteaBmWddIfMB8hvIgOdxMK27hQt6hpNrMN0mSJEnNk2WU1JydfxKcfjRkZ8Y38c7OggN3g9v/uPnX/nAlvL8CCiuVN4Wx+NiHtZRBwIXsQFuyyKj06ycvTOeyL9vSvnsv6NUVzjoWxj8DbVoB0INWHMWW5FR75kIWEX7HiKo3SE+HLWopjgb3W+9bGkQH9mMLsivdJwBySOcstlvvuakWI2QvnuJDFlBKjBKiTOMH9ufpRjdL6iu+52BG8RXLiBFSRDn38iWn8Fqqo0mSJElKAssoqTlLS4Pb/ghz34GXbofpr8ALt9ecLVUX762AogRL8opi8ddq0ZlcPudkfs229KMtI+jGA8HBXDPiLJjyMswbDbf+Abp0rHLewxzCr9iWXNJJI2BbOvEGP2MIHWve5J+XxZf5VZaTDf+4bINvaxRHcD7b04FssolwKP34jBPpQu4Gz02ld5jLUgortl3/URlRHmByilIl9jfG1tiXq4hyXmQW35GavcwkSZIkJU/6hg+R1OR17hD/qE9dMyEnDQqqFVI5afHX1qM7rbiNAzbpdlmkczP78W/2pZwYmQmW+q0z8qB4GfWHW2DWPNi6P/zlIthvl426z9/Zi7+z1yblS7U5rKpRRAEUE+VrfkhBotpN5vuEWbOI8A0r6UGrFKSSJEmSlCyWUZLq5ued4ZJZNcfTAji2S4PdNo1g/UXUWofuHf9oIfLpmnA8jwz2pFeS06zfTnTlS5ZSXq2QKibKQNqnKJUkSZKkZHGZnqS6aZcBb24HPTKhVST+0SMzPtbWnjvZtqML+7FFlX21MkmjC7n8gkEpTFbT7xhRZV8ugFzSOY1t6NzIl0NKkiRJ2nz+jVFS3e3cBubtCl9WbJC9bV58ZpRS4lmO5F+M4x6+pIRyfsZArmJXcshIdbQqtqQdH3E8FzOaMSykLVlcwPb8jp3qfM3FFHAXXzCOxQynM+cwnO4u95MkSZIapSBczyPYW4L8/Pxw3LhxqY4hSaqj6SxnFx6niHJKiJJFhCwifMTxDKVTquPp/9m76+g2zqyP49+RZFuW7TAzc9IkdajMbQopU9qmzN3Svlva0paZmZkpZcY0aRMHG2Z0mByjaN4/HiexrTHLkuH3OUdn6xnNzJXblaU797lXRERERBoky7Km2rad7rRPy/REROqYLeTxF5msJyfeodQKV/EL2ynYNaGvgBBZ+LmMH+McmYiIiIiIONEyPRGROiKMzVX8zIv8gxc3+YQ4kZ68yhEVa+peT/3CSofZfPAnawhj40JLR0VEREREahNVRomI1BGPkMErzKaAENvxU0CIT1nMdfwe79DiKrmU+ypJeJSGEhERERGphZSMEhGpIx5hKrkEi23LI8iLzCLsWBvUMJzHALwlKsOScHMWfbGUjhIRERERqXWUjBIRqSO2UeC4PZ8Q/sJ+SQ3RPezLAXQkGQ+NSMSHh71oxyMcGO/QRERERETEgXpGiYjUEaNoy8+sitjem6Z4G/DbuRcP33Ai89jMXDbTm2aaoiciIiIiUoupMkpEpI54hANIJQF34dIzFxY+PDzDIXGOrHboS3NOpJcSUSIiIiIitVzDvZUuIvXedNbzJvPwE+JkerEfHep0D6E9aMU0zuJ+JjOFdQygBdcznEG0jHdoIiIiIiIiFaZklIjUS/cxmTuZRD4hbGxeYw6n04cXOLROJ6R60pSXODzeYYiIiIiIiFSZlumJSK2WR4Bt5FfqmFVk8T8mkkuQMDY2kEOAd5nPRDJrJlARERERERGpECWjRKRW2k4Bp/AFTXiKVjxLP15lImsqdOzXLMPlUP2US4BPWRTtUEVERERERKQSlIwSkVrpSD5hPEvwEyZAmHls4TA+Zinbyj3Wi8cxGeXGIjnKq5PD2HzDMq7lF+7hL1azI6rnFxERERERqW+UjBKRWucfNjKDDfgJFdvuJ8STTC/3+DF0J4QdsT0BN2fQN2pxBghxOB9xCl/wKNO4g7/ozSt8w7KoXUNERERERKS+UTJKRGqdZWzH4/D2tLNCqjxN8fIBR+PDQxoJpJKAFzcPsR99aB61ON9kLpPIJJsAAAWEyCXIWL4iUCKRJiIiIiIiIoam6YmIs+wc2LQNOrQGT2zfKgbRMqIqCsCLm71pV6FzHE13MrmEr1mKnzCj6UorfFGN8w3mkkMwYnsYm79Zyz50iOr1RERERERE6gNVRolIcQV+OP9maLk39B8DLfeBFz6IaQhdaMwJ9MRXJF/uwiKVBC5ljwqfpzFJnE5fzqZ/1BNRAIm4Hbfb2KXuExERERERaeiUjBKR4i6/E979CvL9kJsH27Lgmvvgi19iGsbrjOY2RtGRNJqSxKn0Zipn0aIGkkpVdRGDSCEhYnsqiaTTJg4RiYiIiIiI1H6WbUc2+W1I0tPT7YyMjHiHIVI7ZOeYiqh8f+S+EYPgr/diH1MtZmNzId/zDvOxsUnAjQuLHzlJySgRERERqVtsG/LD4HWBFTmZWqSyLMuaatt2utM+9YwSkd02bQNXKcvLVq2NaSh1gYXFSxzONezJr6yiOcmMoTs+h2qpbPx8zCIyyWZv2rMv7bHQH3kRERERiTPbhmfWwO3LYWsQmifAnV3govbxjkzqMSWjROo6vx8+/A6+/h3atoSLToFeXap2rvatINEDuSW2u1wwanA1A62/+tOC/rQodf9MNnAAHxAkTB5BvHgYSVu+5gT1lhIRERGR+HouE65bCrlh8/OGAFyzBJLccLaq/aVmqGeUSF2Wlw+jxsLFt8M7X8Hjb8HgE+CTH6p2voQEuO9a8CXv3mZZ4PPCHf+KSsgNjY3NSXzBNgrIJkAImxwCTCKTZ5gR7/AkHvIL4MGXYcAYGHgsPPq6SSqLiIiIxMMdK3YnonbKDcNty+ITjzQISkaJ1GUvfADzlkJOnvk5GDQJqnP/W/UvtxefCu89BMMHQruWcPzB8Pd70K9H9OJuQJawjUyyI7bnEuRlZschIomrcBgOPR9uexrmLIbZi+Dmx+GoS0yJvIiIiEgshW1YV8r3htUFsY1FGhQt0xOpy977xiSfnEydW/WldcccaB5SbWWlF+wy90q99OMkmDG/+P9vc/Nh0iyYMBX2dezvKCIiIlIzXBZ0ToIVDomnHsmR22S3Aj+88gm88yUke+GSU+H4Q9T8vYJUGSVSl6X6nLeHQpCiPx61QQ+a0IaUiO3JeDiH/nGISOJq4nTILtmUDSgogD+nxz4eERERkfu7ga9EasDngge6xyeeuiAYhIPPg/97ECZMgx8mwrgb4F93xTuyOkPJKJG67LLTI5NOlgVtWsDAXvGJSYqxsPiQY2hMIimFxaipJJBOa/7FkDhHJzHXtmXxnmw7eZOgXavYxyMiIiJyamt4uy/09YHXBQN88H4/GFP6gJ4G7/NfYOZ8yM3bvS0nD17+BJasjF9cdYiW6YnUZccdbKbnPfsueDwmEZWSDF8+q/LQGlJAkO9ZwXYKOJCOtCet3GOG0poVXMQHLCCTbPamPQfRCRf6d9TgnDoarns4cnuCB048NPbxiIiIiAAc19I8ymPb8OtkM807KQHOOhaG9qv5+Gqbb/9wrnZ3ueDXKdC9U+xjqmOUjBKpyywLHrkerj4L/pgKLZrCwSNNYkqiLoN1HMZHBLGxsQkS5gaGcxt7lXtsY5K4kEExiFJqtSaN4OdX4eRrYP0m01SsQ2v46DFIKWXZrYiIiEhtYNtw/s3wwbemCshlwQsfws2Xwo0Xxju62GrTwtxMDASLb3e7oEWTuIRU11h2A5/ek56ebmdkZMQ7DBGp5YKEacdzbCSv2HYfHr7iBA6gY6XOl0OAHAK0JBmrMhVSH2+Ee1ZAph9GJMKxO2CP1jCkb/nVcGs3wj0vwA9/QpuWcN15cOT+lYpbosS2TQm3ZUG3jqpkFBERkdrvjwwYffHuSd47eZNg4dfQsW184oqHZathwBgziKao5k1gza+QlBiPqGody7Km2rbtOKFH5RMiIhXwB6spIBSxPZcgLzCrwsmoLAq4kO8ZzxIA2pLCixzGIXQu/+DHVsF/l0FuGPgNxn8C4z3gAzq0gm9eMIkNJ2s3wqDjYPsOcwdnwXKY8g/cfTVcPa5CsUsUWRb0qMC/cxEREZHa4rOfI5MvYCqkvvnDtA9pKLp2gHcfgrNuAGwI26YC/stnlIiqIDUwFxGpgFyCpe7bgb/C5zme8YxnCQWEKCDEcrI4ls+Yw6ayD8wPwS3LCxNRi4FPgQCQZxonLl4FR1xkKm6cPPQKbM8uXkqcmw83P1688aKIiIiIiJPkJHC7I7e7XKY6qqEZcxBsnABfPw+/vg4rfoQ9+sQ7qjpDySgRkQrYjw4ECEdsTyGB06jYH53FbGUSayMqrAoI8TDlLBdeXvQu1G9QMgEWDpvqp2lznY//YSIEApHb3W6Ys7jc2EVERESkgTvzGEhwSEaFwzDmwNjHUxskJsLeQ2HP/iYpJxWm35aISAWkkcgzHEwyHtyFPZ5SSGAEbTiV3hU6x3KySHR42w1hs4itzgf9PRP2OROG7APZNwK/Azucn+tywZbtzvs6tHHe7g+YBowiIiIiImXp0w0evs5UQaX6IC0FfMnw4aNmiZpIJahnlIhIKX5iBY8xjQ3kcgzdGEtf/ssIfmMVTfByOn04hu54KpjXH0gL8h36TiXhZh86RB4wYx4cdG6RtfkFwCdADyABs0yviEAAhg90vvh/zoPfphRf55+YAHsPaVjNJkVERESk6i49HU48DL7703yWPHI/k5QSqSQlo0SkwZnDJr5gCYm4OYledCLyTs6jTOVmJuzqFTWdDdzKRHx4AIsQYQ6iY4UTUaxZT+sCP+d3HcBr1pxd53VhkUICVzE08pjbn4a8ghIb/cAisJqBvYVdCSlfMtx9FTROc77+gSPgsRvh3w+YnwMB2C8d3nu4YvGLiIiIiAC0ag5njYl3FFLHWXZpzW4biPT0dDsjo5xeLSISfbYNv22D6dnQLRmObAYJNb9y+Cb+4DGmESCMGwsLeJZDOIcBu56TRQFteI68MpqWAyTjYRbj6EHT0p+0bDWcfLXpy+RyEW7ZlGd/vIrHemxkGwUcSmfuZh+60jjy2M4Hw8q1kdtTffDByzB/Jnz2I7RqBlecAfsPK/8XUOCHBcugZTNo27L854uIiIiIiPHTVrhlGSzMhf4pcFdX2LdJvKOqtSzLmmrbdrrjPiWjlIwSibmcEBw0A+bmgj8MSS5o6oE/hzC5w1Y+YAEuLE6jD0NpHbXLZrCO/Xk/YjKeFzcruYiW+AD4lVUcx2dsL2dKXgIubmUUNzPS+QnBIHQ9FDI3msaOO6Ukw8JvoF2rsgM+7ALTeLwkbxJsmKCSaBERERGp/wrC8PkmWJQHg1JgdHNwW7GP4/ONcPq8wunWhZJd8MVAOLiMm9MNWFnJKDUwF5HYu305zMqB7BD4bdgRgjUF/OfPLziQD3iEqTzMVPblPf6HQzKmit5jPvkO1U5uXHzBkl0/tyCZoMPkvJJChCkoq3rqh4mwPbt4IgrID/oZ/8oDrCOn7Avceikke4tv83nhghOViBIRERGR+m91PvT4G85fALcug7HzYNAU2OYwJbqmXbOkeCIKIC8M/7fE+flSJiWjRCT23lwH+cXfyGf2z+XpY1aRSxAbCGOTS5D7mFz6pLlKsij9DkrRff1pTnea7JqaVxovHo6jZ+lPyNwIociG5d6CEJuWL2EIb7KVfIcDC+2zJ3zwCHTtAG6XWZ535Vnw6A1lxiUiIiIiUi9csADWFpib1yHM/y7Og+uXxjaOkA1LS/ncPqecG8ziSMkokYYmFDL9muIaQ+T1x4/Zhj8xcrsNfEl0/ticRh+8DnMbQoQ5hm67fraw+JoTGEALfHhoRCIJuEjA2tVnyoeHCxnEnmUtIxwxyPF3vSPVwy8HtGE7BbzArLKDPvoAWPo97MiA7ZPh3mvAo9kTIiIiIlLP+cOmR1PJe7t+G97fENtYXJi2Ik5aJ8Y0lPpCySiRhuLnv6D/MeAZCE2Gwy2Pm55G8XBSK0gsXnWUFHDhCkdWIrmwSIzSW9WetOZa0knGQwIuhs7eznlvLOHTCR1oYScXe2570pjBOKZyJl9zAlu5gsmcybXsyTXsyU+czGMcWPYFB/SEow4g6EvatSkvycWqjql8eHJX8gjyMysrFnyyF1x6yxYRERERiTnLgus7ga/E53GfC27uHJ+Y6jg1MFcDc2kIMmbD/uMgt0hpqc8LZx8Lz9wW+3i2BGDkNFNymx2GFBfLevnpnzGbPFfxWx/JeFjKBbQhej2S5vvXkXDCNXT6ZR5ulxsXFnRpDz+/aqbMRVMoxKrnXiLruTdIzA/y/qndeOC6QexolIgHi4vZg6c4OLrXFBERERGpDw6bCT+XqI5KsGBca3ipT2xjsW24Yzk8tNqs9PAE4MQtcHxzOHgkpPhiG08doGl6ZVAyShqEYy+HL36NXDLmTYJ1v0PjtNjH5A/Dp5sgYwf0TIbTW/FS2jz+xU+4CyuhQoR5mcMZS9/oXvt/T8P9L0NekeScxwOH7w1fPhvdawE2NsN4i1lsIlCkMboPD9M4i95EOQEmIiIiIlIfrMiHUdNMr6jsEKS5oW0iTBoKzRLiE5M/DB/9Bhf/B1wWYJlWKG/cByccGp+Yaiklo8qgZJQ0CD2PgMUOy8EapcCEt2Fgr9jHVIoN5PIlS3BhcQzdaU5y+QdVVocDYc36yO0JHtj6V43c1dhELmfyDb+yChcWzfHyCodzKF2ifi0RERERkXojPwSfbIJFeTAoBY5pDp44tq/YvA06HVR81QmYthqLvoH2ZfSUbWDKSkapC65IQzC4DyxdDeESo0j9QbM8rRZphY/zGFizF8kvKH1foGb6aLXAx7ecyBbyyCFAB9LKnO4nIiIiIiKA1w1ja1GC5+PvwelzfDgM738D154T64jqJHXDFWkIbrkUvCWmPPiS4fLTIS16vZjqjGMOBI87cnufbtCkUY1euhnJdKSRElEiIiIiInXRjhznG9j+AGzPjn08dZSSUSINwaDe8NOrMHIPSEiANi3gjivggf+Ld2Txce/V0Kq5SciBSdSlpcCrd8c1LBERERERqeUO38f5xnayF47cN/bx1FFapifSUIzcAya9G+8oaoc2LWH+V/DGeJg4Hfp0hQtOhrYtyz5uZSa8+QVs2Q6j94GDR5kxryIiIiIi0jAM6AnnHQ+vfQY5eWZbSrJpXj58UFxDq0vUwFwNzEWkIsb/BKf/x0zK8AdMk/MDhsH4p8DtcGckxuawiVeYzVbyGUN3jqH7rqmEIiIiIiISRbYNP0yE1z+DUBjOGgNH7qcb1SWogbmISHXkF8BZN0BekYkZObnw62T44Fs4/aj4xQa8xmwu4yf8hAhh8wELGUVbvuFEPEpIiYiIiIhUXzAML6yFFzKhwIax7eGF+yAl/jem6yJ9SxGpZ/yE2Eo+Ng2g6nHGPDj6UmizL4w8Db7+rWauM2Gq812OnDx48/OauWYF7cDPZfxEHkFChf/OcwgwibV8yIK4xiYiIiIiUi/8PRPanw6Xnwgz74D50+GeFbD3NAiEyz9eIigZJVJP5BHgAr6jMU/Shmfpxkt8y7J4h1Vzps+Fvc+Er3+H9Zvh71lw8jXwxmfRv1ZCApSW3EtMdN4eI7+zmgSHt/IcArxXMhm1MhM+/NYk1xr4Em0RERERkQr5IwMOOBc2/ANkAUuAZyB/BizJh083xTe+OkrJKJF6Yhzf8DbzyCeEnzDLyeJEPmcq6+MdWs248VHIzSueVMnNh38/COEo353Ye0hhQqqElGS44MToXquSkktZbW0BqRTGbNtw2f+g95Fw/i0w+mLoNRpWrY1doCIiIiIiddG/H4D8/BIbA8BHkB2C37bFIai6T8kokXpgHTl8yVLyCRXbnkeQ+/g7TlHVsCmznbdn58DGLdG9lsdjGpWnpUCqD7xJkJwEZx8HR+0f3WtV0n50IJHIderJeLiQwmkeb30Bb3wO+X7YkQPZubBsNZx4VYyjFRERERGpY2YtLGXHFkgKQcekmIZTX6iBuUg9sJIsEnFHJKNsYAFb4xNUTWvfGrZsj9xuuaBJo+hfb++hkPkrjP8ZtmbBIaOgT7foX6eSPLj4iuM5nI8JYWNjEyDMdQzjADqaJz351u6xszuFwvDPIrN0r1O70i+Qmwfbs6F1c3Dp/oWIiIiI1GGBMHy2CSZlQVcvnNkamjqsgCiqdXNY6bSiIAncHjinTY2EWt8pGSVSD/SiKf4SiSgADxajaBuHiGLg1kvh7JtMsmQnnxcuOAmSaqiPU2oKnHFMzZy7GobTlnVcwrcsJws/B9GR9qTtfkJWjvOBbje52Vm8x2ZmsYlBtOBU+pBCgpkgePmd8PaXpnl741R44r9wyhGxeVEiIiIiItGUFYS9psGKArO8zueCW5bBb0Ngj9TSj/vvxXDN/cW/d5AIjQ6Hr/aANqqMqgolo0TqgSZ4uYIhPMMMcgkCpmdQMglcz/D4BldTTjoc1m+Cm58Af8D0RTr3eHjoP/GOLC6S8HAsPZx3nnQYPPQqFPiLbQ6lJNGz989sJ0gOAVJI4L/8yWTG0vH8O+GTH3cfk18A595k7gztP6yGX42IiIiISJTdvQIW50FBYc/Z3MI+s2fMhdllfGe68GSzIuOe5yFkm+8dZ54Kz/4fuCPbZVTKP9nw6jqTKDuuBRzZHFwOU7zrIctu4BOV0tPT7YyMjHiHIVJtNjbPMYuHmMJm8tiXDjzAfvSlebxDq1mBAKzbBM2bgC+59OftyIGXPoIfJkKX9nDFWOhXSvKmvtmWBemnwNoNpsm7xwOJHm7/6FTuHJ1AuMikQDcWp29uw5vtH4hIXgFw2F7w3UsxDF5EREREJAo6TYJVBZHbkyxYPrL8Cie/33zvaNXc9JCtrufWwLVLwB+GEJDigoOawmcD6k1CyrKsqbZtpzvuUzJKySiRem/LNhh6EmzYAnn55g5GUgK89zAcc2C8o4uNnFzTxPyHidCpLXRuxw/fvAW2zetn9+Td07sRdpueUINnb2P6Xt+aBF5J3TvC4u9iHLyIiIiISDV1+wuWlZyKByRasGYUtKihVh9OtgSg/STILzEFPNUFb/aF41rGLpYaVFYySt1oRaT+u/9lWLvRJKIAQiFTIXT+zeafG4IUH1x6GnzyBKzfDLc8waE/rOHQHzN57pI/+ejEn0zJMbCiW2Pn34vbDXsNiXHgIiIiIiJRcF4bSC6RAnEBQ1Jjm4gC+HkrJDhUP2WH4YONsY0lTpSMEpH677OfTF+pknILYOHymIcTV1P+gc9/LjZdLzUnyKE/ZrLPhPUk4uJoX3+4+RLTEH4nyzI/33JJHIIWEREREamm/3SCkY3McrgkC9Lc0DoR3u0X+1iS3abJb0kWkFrNPlR1hBqYi0j917iU6RihIKSlxDaWePtlsmNiLjk3yBE/r2frvv15nAPhhiTo3A7ufdGsjd93KNx9NfTsUvq58/Lh0x9hzXoYsQfsu6dJYomIiIiIxFuSC37aAyZlQcYO6JgERzeHhDjU6BzS1DkZleyC8+vpNPQSlIwSkfrvqrPg4tuLVQPhdsOQftChTdzCiotmjSEpEYJ5xTaHvYmc2CydGzkbF5b54zj2aPOoiHlLYL9xZupevt9cI70/fPei+WcRERERkXizLNirsXnEU5ILvhwIR/0DNuYRCMPNnWFEo/jGFiNapiciVZMfMo+6YOzRcMFJJinSKBVSfdC7C3z0WLwji72TDnOsVkpwuelz2pkmEQXw62TYfxy03x9GXwQZs8s+76nXwuZtkJ0LwaBpmD75H3js9ei/BhERERGRum6fJrBuL3itDzzTE5aOhBs7xzuqmNE0PU3TE6mcFflw3nz4fbv5eb/G8Eof6Owt+7jaIHOD6ZnUrhWkD4jrErIcAjzFdN5nAakkcBmDOZXeWI71ulE2YSocfyUU+E0FlMcDHz4KB400+8f/BGP/Y5q87+Tzwg8vOzcwX70Oeo42VVEl9eoCC76uiVchIiIiIiK1WFnT9JSMUjJKpOLyQ9D1b9joh51FUW6gVSIsG2nKTaVcBQQZxtssZht5BAFIIYFz6MdTHBKbIIJBU7lk2zB8ICQkmO22Dd0Og+VrIo8ZuQdMejdy+8pM6H2UczKqRydY9G10YxcRERERkVqvrGSUvjmKSMV9sgmyQ7sTUWD+OTsEnzaMEaTR8D4LWMr2XYkoMJVSLzOb5WyPTRAej6ly2nvo7kQUmITSqrXOx8xc4Ly9Y1vT7LwkbxKMG1P9WEVERERioSAMr6+Dk2bD5Qvhn+x4RyRSbykZJSIVtyQPchz6ROWEYHFe5HZx9C3LySFyop0HF3+SGYeIikhKBF+y877WzZ23Wxa89xA0ToOUwmNTfTCgJ/z73JqJU0RERCSa8kIwappJQn28CZ7PhBHT4K118Y5MpF5SMkpEKm6PVEh1R25PcZt9UiEdSCXB4e3XwqI1vjhEVITLBVefZXpEFeVLhpsuKv24wX1hxY/wyPVw8yXw/sPw17ulJ7ZEREREapOX18KCXMgJm59DQF4YLl1kElVS9+WE4IqFkPYHJP0GR86CxbnxjqrB8sQ7ABGpRTZvg/e/gS3b4eCRpkdQ0SbfRzaDDkmmQspf2G8u0YKOSXBkKVUzEuEiBvE0MwgQ3rXNAhqTyIF0jF9gO912OeTkw7Pvgcsy/w3ceKGZSFiWxmlw0SmxiVFEREQkmt7fCLnhyO0uYMoO2K9JrCOSaDtqFvyVBQWF32O+22Kq3xaOgOYJZR9blnUF8OVm85n56ObQOjE68dZzamCuBuYixi9/wzGXmQbW+X5IToIj9oH3HwF3kWqobQG4aan5gw1waiu4pys0qcYbeAP0JUsYx7cECRMiTGca8TnH0YOm8Q5tt9w8WL/ZTB9M0h9VERERqceOngVfbYncnuqC34bA0LTYxyTRM30H7DM9MuGY7ILbO8N1nat23pcz4YrFJmlpYSrqnusFZ7epZsD1g6bplUHJKBEgEIA2+5mKqKJSkuHFO+D0o+ITVz0XJMwsNpJCAr1oioVV/kEi5bCx2UQePhJIQUliERGRCvlmM5w8Z/cyPTDJhS5eWDKi+GoBqXveXg+XLDSDl0o6pSW837/y51yRD30mQ36JBJfXBYuGQwev83ENiKbpiUjZ/p4FwWDk9pw8ePXT2MfTQHhwMZTW9KaZElESFb+yih68TAdeoBlPcRKfs52CeIclIiJS+41uDld3gCQL0tzm0TYRvh6oRFR90DvZrAApKdkFg6vY+/bDDRB2Ku6xTRN8KZN6RolI2X9ga/CPb4gwn7OEb1lGS3ycxwC60aTGridSny1gC0fxCbnsTix/wVKO4VN+57Q4RiYiIlJH3NUNLm8PE7abHkL7NwG3ElH1wp5pZuDS1B27e0ZZQJILLmhbtXMGbOdkVAjwO/Qfk2JUGSUiMGIQJDjkplOS4dzja+SSfkIcyAeM4xte4B8eYAoDeZ3xLK6R69W0ZWznHL6hMy8wgrf5lEXxDkkamMeZhp/iped+QmSwnnlsjlNUIiIidUzbJDi5FRzUVImo+sSy4NtBcGZrs4zOBRzQBCYNgZZV7I16bAtIcEipuC2zT8qkZJSIgMcDHz8BqT7weU3Dcp8XjtofTjmiRi75GrOZynqyCQAQIEwuQcbxDQU4LBmsxVaSxVDe5C3msZIdTGYdZ/I1DzEl3qFJAzKfLQSJvDuXiIvlZMUhIhEREZFaJM0DL/WB3H0huD/8PBj6pFT9fP1S4NoOZqmfC/NIdsENHaGXL0pB119apicixv7DYMWP8OF3ppH5wSNh+KAau9w7zC+2nKioyaxjXzrU2LWj7R7+Jhs/oSKJgFyC3M4kLmMwPjWRrn3mLobZi6BXFxjcN97RRMW+tGcimRSUqI4qIMQgdHdOREREBIhuG5K7usEJLeGDDWbZ36mtYLAmL1aEklEisluzJnDxqTG5lK+Ut58wNt469tb0G6sdK1LcWCxkK4NpFYeoxFF+ARx/Jfw2BRLcEAzBkL7wzQuQVo07Y7XA5QzhGWYQJLwrMerDw+n0oT36UCQiIiJSI4ammYdUipbpiUhcXMQgx7HzjUliT1rHIaKq60wjx+1+QrShbic46p1bn4RfJ0NePmTlQG4+ZMyGf90d78iqrRU+MjiL0+hNC7x0ozH3sA8vcFi8QxMRERERKcayncYbNiDp6el2RkZGvMMQaXBsbK7kZ17iH9y4cGGRgIufODn+lUQr1sDGrTCgJ3iTyn36r6yKmGKWhJvD6cJ4jqvBQKtmA7lsIY8eNMXT0O5JNB9llqGWlJQIudPA1cB+HyIiIiIiNcSyrKm2bac77atba2FEpN6wsHiSg7maPfmVVTTHy2i6khTPt6WNW+CEKyFjDiR6zKjWh/5T7tLFA+jIsxzC1fyCnzBBwhxNN16jZpq/V9VW8hnLV/zCKhJwkYCLpziYsdSPnkkVkpfvvD0QhHBYySgRERERgZX58O0W05B8TAtoXMp3lLANE7fDpgDs1RhaVXIy3/I8uGkZfL/FXOPKDvCv9uCq/5McVRmlyigR2WmvsWbJVqBIY3WfF75+3jR4L0eQMMvZTnOSaYq3BgOtmgN4n0lk4ie8a5sPDz9xMiNpF8fIYmjMZfDV7ybxVNSowTDxnbiEJCIiIiK1yF3L4e6VhRPyLLBt+GQAHNas+POW5MHBM2Bz0DzXH4brO8HtXSt2nfV+6DcZtgXZ9fHc54IzW8PzvaP2cuKprMoo3QIWEQFYshJmzCueiALTU+iR1yp0Cg8uetC0ViailrKNyawrlogCyCPIg0yJU1Rx8NiN0DQNkguXXyYlQqNUeO622MeyZRtccAs0Hm4eF9xitomIiIhIfEzOgntXQn4YcsOQHYKcMJwwG3KKTCy2bThyFqwsMM/JCkG+DQ+tgm82V+xaT6025yz68Tw3DK+vg8yCqL6s2kjJKBERgA1bICGyoToAq9fFNpYasJYcEh3e8m1gBVmxDygOsijgnm5rOHj+Obx88z6sPW4EXH8BzP8KBsX47lMwCHufAW9+DlnZ5vHGeNjrDLNPRERERGLv9XUmEVWS2zLL9nb6JwfWFBAxUDsnDE+uqdi1ft8OBQ4r1bwumJ1T4ZDrKvWMEhEBGNjTOQmQlAij94t9PFE2kBYRVVEAibg4mM5xiCi2cggwjLdZyQ7yWwT5+aYupJDAtQzhDlrGPqCvfoM1G8Af2L0tEITMDfDlr3DcIbGPSURERKShyw/j8JHZJJ38RXZkBU2CysnWCt5Y7OODP7dDqMR2vw2da99Ki2hTZZSIxE0Ym+9ZznX8xoNMIZPs+AWTmgJ3Xw2+5N3bEhOgWWO4elzUL7cDP1sppZl2DWhEEjcxnJQi9yA8uGhEEteyZ8ziiJdXmc1qdpBfZOJhDgEeZAobyY19QP8sgmyH62bnmn0iIiIiEnuntoIUhzRJwC7eM2rPNOekVbILTq7gjc5rOkBSiWslWTAiDXr7KhxyXaVklIjERZAwo/mYE/mcB8ngFv6kJy/zHcvjF9TV4+CTx+HQvUyl1NXjYOan0LwJvPABdD8M0tLhoHNg2twqXSKTbA7hQ5rzNK15lsG8wUw2RPVllOZmRvE6oxlBW7rSmAsZyEzG0ZqUmFw/nr5iKblE3qVKxM0kMmMfUI9OkOrwISMlGXrW/0o1ERERkVrp0KZwXAuTkLIwa8mSXfBED2hepKVHshue7WkajrsLt/lc0M0LF1dwMFCfFPhyoDkm0TKPY1vA+IFRflG1k6bpaZqeSFy8ymz+xU/klEgQNCWJ9VxKwq539VrgjmfggZchJ2/3tpRk+Os9GNCzwqcJEaYXr7CCLEJFFpg3JpElXEBzkss4WqrjAr7jVeYQLrGwP5UEfuCk2E8TLPBD98Nh3SYIFdZmu93Qujks/d4sDxURERGR2LNt08/p042Q6jbT7fqUcvN2xg54NtM0HD+mBZzV2iSqKnu9zQHwuc2jHtE0PRGpdd5gTkQiCiCEzWRqUcPw3Dy4/6XiiSiAvAL439OVOtWPrGQjucUSUQB+wrzOnOpGKmW4nMF4SyQ4XVi0IYURtI19QEmJMOkdOHQUeNzmcchI+OtdJaJERERE4smyYP8m8FhPuKtb6YkogMFp8Hxv+GIQXNSu8omonddrkVjvElHlUQNzkTjbSC6z2EgnGtGTpvEOJ2ZKq3yysfHUojz5nBX/0NUdJmJBVTgMGZVLIC1jO8GIkRuQR5CFbK16kFKuIbTmRQ7jEn7EwiwT7U4TvuB4LEppPlnTOraFb16AQGET89KmOYqIiIiI1DNKRonUtLx8WLoK2raEZk12bbax+Te/8iwzScKNnzDDacNnHEsT6v/0hAsYyEQyySFQbHsKCQyjTZyiKm4GGxjd7leWBkqOuCjUq3K9ffakNS6HxEcqCYyK9TKxBmgsfTmRnsxgI41JpA/N4x2SoSSUiIiI1GZhG77cDB9thDQ3nNsG0htV7NgV+WbyXF8feGrPDWeJP/3XIFKT7n8JWu4No8ZCuwPgzOsgvwCAl/mH55lFPiG24yePIJPI5By+jW/MMXISvTiJniTjIQk3qSTQmETGc5xjwiYebmYC6xu7ef3sHuSUKLm1fV645dJKnS+d1oykLclFqsIScNGSZE6hV/WCnb0IXv8Mfs8w687FURIeRtC29iSiRERERGqzsA3HzYaxc+HN9fBcJuw/Ax5ZVfZxq/Jh2FToOxn2mg5tJsLnm2ISstQNamCuBuZSU979Ci641fQc2ik5CU4/Cl6+i/68xlw2RxyWiJsNXEpjkmIYbPz8w0Z+YRXNSeY4epBC7akSacuzrCMXTyDMvTdM4dLn5pHgD7OuXQrJT95KyzFHV/qc+QS5l795mdn4CXEivbiTvWgRuRCwYvx+OPEq+OlvcBfeX+jQGn59HVq3qNo5RUREREQAvtwEp82FnHDx7V4XrBgJrRx6Xdo29JkMS/Kg6AIDnwum7An96v8kZzHKamCuZJSSUVJTBh0H/yyM3J6UCFsm0c73OmvJididjIeFnEcH0sq/RiAAr4+HN8ZDYgJcdDKcfIRpgldb+P3wzR+wYQvslw69u0bv3LYNsxZAKAx79DbTyKJoL95hEmt3/ewOhknOCxJKTWaTdTm+2pA4u/s5uPsFsxx0J48HDh4B374Yv7hEREREpO47dx68tj5ye5obnu0FZ7SO3DdpOxw2C7JLtLpwAxe3g6eruSJA6oyyklHqGSVSU9aVUoZqWbBtB4f7uvAmcyMmqzUliXakln/+cBgOvwgmz9o96e2vmfDtBHjl7moGHyVzFsGB50C+3ySMwmEYexS8dGf1E2ZT58Dx/4KtWeZnnxc+eBT2H1btsHe6jb04gfHkFk79C3lchNN8nM+A2pGIAnjhw+KJKIBgEH7+G3bkQFoU7jzZNnz+s7lWfgGccTScNUa9jkRERETquzSPae5TojAKC0gppevPOr9zQ6AQsDLfYYc0ROoZJVJT9h7inHBplAJtWnAHe9GUJJIK+we5sfDh4UUOq1jPpG//gCn/7E5Egfnn9742SaB4s20Yczls3GqSIrl5JpHx/jcmxurIyYWDz4NV6yA71zw2bIGjLoENkUsfq+pwuvACh9EaH0m48eHhYgbxKAdG7RrVllfgvN2ywB9w3ldZ/7oLzrgOvv7dJLmuvMckQkOlNHYXERERkfrhvDaQ6PDdxAKOaOZ8zIhG4HdYgeVzweGlHCMNjpJRIjXlnqsh1be7jw+Y6p3HbwKXi440Yjbn8H+kszftOJO+TGIsR9KtYuf/cZJJwpRkA79OicYrqJ45i2G9Q2IoJw+efa965/7sJ+dESDgM73xVvXOXcAZ9yeQS1nAxW7mCRzgQT2166zz+YEhwKHLt2RmaN6n++Rcth5c/iUx6TvnHJKdEREREpP7KDoGvSCsMF5Dmgi8HgreUFhntkuCSdsUrp5IsaJMI59SOqdkSf1qmJ1JT+naHjA/hzmfhz+nQvSP892I4YPiup7QmhbvYp2rnb9nM9J8q8BffnuCJThKiuvILwFVK0qa0ap6K2rDFueonrwDWbazeuR24sGhOctTPGxV3Xml6cm3ZbpJE3kSzfO61e6Jz/l8mg8vhblh2rqnOO6YWVYmJiIiISPSszocjZkU2L2+eCHs1LvvYR7rDiDR4Yg1sD8KJLeHaDpCqFIQY+i9BpCb16gJv3l8z5x53LNz1XOR2twvG1IIEweA+pql6ScleOLPyU+iK2X8YeNyRCalUHxw0snrnrmtaNYe5X8BbX8Kf06B3F7jgJGjTMjrnb9bYuTF8YoJJiIqIiIhI/fTSWgiWWG4XBjYH4JdtcHDT0o+1LDittXmIOKhFa01EpFLat4ZPnoCmjUyT6jQftGsFP74CvlpQxePxwNsPmKWJO5NSqT4Y2BMuPrV65x7aD44+AFKKvE6fF4YNgENGVe/cdVFqClxyqkl83nxp9BJRYH7PTskotxvOOT561xERERGR2mVZPhQ49H4K27C6misdpMFTZZRIXXb4PrD+D5gy2yR8hvYrfWlcPBy+D8z7El79FNash8P2huMONomq6nrnQXjrC3jxQwiG4Ozj4PwTatfrrw+8SfDjy3DMZZCdA5YLsOGN+6BL+3hHJyIiIiI1Zf8m8PHGyGV6YWB4WjwiknrEsm2HTGcDkp6ebmdkZMQ7DBGR2i0chsn/mB5lI/cw/coqavEKePBVmDnfJEz/fQ5071RjoYqIiIhIFOSFYFAGrMzfPR3P54KjmsMH/eMbWzyFbfhgA7y6zgyPOqcNnNbKuc9qA2dZ1lTbttMd9ykZpWSUiNR+QcJ8zhJ+YxUdSeMs+tGalHiHVb6M2XDgOaahfTBkquK8ifD7GzCkX7yjExEREZGybA3AvSvhw42Q7IJL28Fl7cHdQBMvtg2nzYWvNu+uGEtxweHN4KP+pleW7KJkVBmUjBKR2i6XAPvxPgvYQjYBvLhx4+JbTmAfOsQ7vLINP8UsIy1p76Ew4a3YxyMiIiIi9VtBGH7eCvlhOKgpNI5id6K/s+Cg6ZBbIo/iteCnweVPGWxgykpGqbmKiEgt9wTTmMtmsjHTA/MJkUOA0/kKm1p8Q8G2IWOO876/Z8Y2FhERERGp//7YBq3/NNVL58yHthPh1bXRO//PWyMTUQD5Nny0IXrXaQCUjBIRqeXeYh55BCO2b6WABWyJQ0QVZFlmgqKT1DqwxFBERERE6o7cEBz1D2wPQVbhIy8Mly+C+TnRuUZ+uPR907Ojc40GQskoEZFaLrGUt+owNgm4YxxNJV18CiR7i29L9sLlp8cnHhERERGpPf6cBsdcCv2OhotuhWWrq36urzY7bw+E4bV1VT9vUX1KudEKgPpFVYaSUSIitdyFDMJH8bXuFtCFRnSnSVxiqrC7r4IxB4I3CRqnmeblxx8Mt10W78hEREREJJ4++g4OuwC+/A3mLYVXP4XBJ8Ci5VU7346QmXRXUhDYFrnKoEr2bgyJDkmnRAv2V7+oyohiJy8RqVF+P0yaaZY+jdoDEhLiEoaNzQ+sYDxLaEQiZ9OPPjSPSywNxYUM4kdW8C3LC6uhXCTj4RPGxDu08iUmwnsPw+p1sHgl9OoC7VrFOyoRERGR+m/nsLLaOOEtHIYr7oLc/N3bgiHIzoX/Pg4fPFr5cx7aFEIOyahUFxzfsuqxFtXJC6e2go83Qm7hkj0XkOY2UwalwpSMEqkLfpgIJ18DduEbnscDnzwB+w+LaRhhbE7mc75nBdkE8GDxONN4ioM4j4ExjaVcP02Clz6G3Dw47Ug4+XDze6uDPLj4mGOZznomkklbUjmKriTVpbfwDm3MQ0RERERq1obNcPmdMP5nk5AavS88exu0bx3vyHZbuxGyHHoshcPw25SqnbOjF27oBA+sMr2ibCDFZSbqHdq0WuEW82ofGJgCT60x1ViHN4V7u0GrxOhdowGwbLsWT2KKgfT0dDsjIyPeYYiUbsNm6Hpo8bsGACnJsOpnaBq7ctDxLOYMviancKrbTsl4yORimuAt5cgYmrcELr4d/poJgcJy3JRk2HdP+Oo5cFVsdXIm2dzJJL5mGc3w8m/SOYO+WFoLLiIiIiK1VTAIvY+ClWvNPwO4XdCmBSz+zrROqA2yc6DF3lDgj9w3oCf8M77q556wDV5ZayqXTm0Fx7YAlz7Dx4NlWVNt20532qeeUSK13XtfO699Bvjo+5iG8gELIhJRAAm4+ImVMY3F0f0vwZAT4Y+puxNRADl5MGEafPtHhU6zkVyG8AYvMZuV7GAGG7mYH7iBih0fU6EQrNvo/IdcRERERBqWr36DjVt2J6IAQmHYng0fx/a7Q5lSU8zKhZLJMV8y3HBB9c69TxN4pS+8198sz1MiqlZSMkqkttua5ZxoKPCbfTHkxVNqXVBSvKe6LVkJtz9delImO9eUKlfAE0xjO36C7B7dmkuQJ5jGJnKjEW10vPQRtN4Xuh4GzUbCtfcX/+AhIiIiIg3LguWQVxC5PTvXNAmvTZ6/HY7azwy4aZRqJi5ffz6MPTrekUkM1KGGIyIN1MEj4cFXTHVPUYkJcMiomIZyHgN4j/nkEpnwOITOMY0lwmc/mTXmpUnwQLMmFTrVL6yigFDE9kTczGITB9GpajFm58DvGebf3f7DqteEfvxPcNU9xZdvPv+++d9Hrq/6eUVERESk7urXHZITYUeJz+upPujfIz4xlcaXDB89Dus3wZoN0KuzqZiqrfJC8O4G+HkrdE2Gi9qaPlVSJeVWRlmW1cWyrL0ty3JsP29ZVgvLssZFPzQRAWDvoXD4Pqbv0U4pyXDCoTC0X2xDoT3XMQwvblJIII1EUkngc47DG+Xc9gcsYChv0p7nGMtXLGFb2Qe43WVPCvG44dzjK3TtrjTG5VADFiBMe1IrdI4I73wJrfeD0/8DJ14NbfaDP6dV7VwA/3smso9Ybr5JSGnJnoiIiEjDNHpfaNe6+E1PjweaNzHfH2qj1i3M95ranIjaFoA9MuDKRfD2BnhgJfSdDL9vi3dkdVapDcwty0oA3gJOKtwUBl4G/m3bdk6R540AJtq2Hec1OlWjBuZSJ4TD8OF38NqnpgH3ucfDiYfFbUzrKrL4nhWkksDRdCeFalT4OLiPydzFJHIKK7BcWKSRwAzG0YVSGravzDTNGvMdypK9SfDiHXDmMRW6/nTWsw/vFasAS8DFMNrwJ6dX+vWweAUMOh7ySiSPGqVA5m+Q4qv8OVvsBZu3RW73JsGy76FNlMbXioiIiEjdsnkbXHOf6S9r2zDmQHj8Rn0+rI7rl8Djq6GgRP6kYxKsGBm372W1XVUbmF8FjAFuB44CHgbGARMty9J8bpFYcrng1NHwzQtmItxJh8f1Da8jjTifgZxKn6gnonIIcGeRRBRAGJscAtzL36Uf2KkdPHGTScYkJ5m15wkJcOlpsHFChRNRAENozTscRSt8pJBAEm4OphNfcFzVXtTrnzn3crKBL3+r2jlLq4rzeaFls6qdU0RERETqvuZN4I37IHca5E2H9x9RIqq6PtoYmYgC2ByAZfmR26VcZa2rORu4y7btuwt//tayrHeA8cCflmUdYtv2shqPUEQalEVsxeOQJw9i8ztryj74wpPhyP1M/yjbhmMPgo5tqxTHsfTgaLqxnCwak0gLqlC9tNPWHcWn++0UCkFWtvMx2TlmimKjUpYF3nuNWeZXdKmezwv3XWuWLIqIiIiISHT4Svl8HbIhWXPhqqKs31pXYELRDbZtzwL2AvKACZZlxbZhjYjUe21JcWweDtCFRuWfoH1ruHwsXHFGlRNRO7lx0Z0m1UtEARy9f/GeXzuF7cgm9Csz4aBzoNkosxRv5Gkw32HyyZ794fc34dC9zN2vwX3g7QdMQk5ERERERKLnknbgK5E+cQODU6FtUlxCquvKSkZtA5qX3Gjb9lpgP2At8BvguP5PRKQqWpPCkXTFS/G7Dz483MiIOEVVTYftDQcMj2xCf+WZ0LXD7m2BAOx9hpm4Fwiax+R/YJ8zYUdO5Hn37A/fvwSbJsL0T+C4Q2r+tYiIiIiIVNfmALy7Hj7ZCDnON6JrlUvawXEtTBVUqgvS3NDJCx/2j3dkdVZZy/RmAkcCn5TcYdv2FsuyDgS+Bh6vodhEpIF6kyO5gO/4lMW4sfCRwOMcyH50KP/g2sjlgvFPwcffwztfm55WF5wIB5eoivryN9ieDaHw7m22bZqyv/sVXHRKbOMWEREREYm2F9bAVUsgobAHrg180h8OrcV9T90WvN0PFuTC31nQPgkObAIuNS6vqrKSUZ8Bt1iW1dy27c0ld9q2vcOyrMMwyarDayg+EWmAUkjgXY4miwK2UkAHUnGXWchZB7jdcMpo8yjNstVQ4I/cnpMHi1fWXGwiIiIiIrEwLweuXgL5YSja9/v42ZC5FzQqK0VRC/T2mYdUW6nf7mzbftG27U5Oiagiz8mzbXu0bdt1/FuiiNRGjUiiM40qnogKBEwlUV01pC8kOkwnTPVBukqARURERKSOmJwFY+fAvtPh7uWwNWC2v7UeAuHI51sWfFFq6iF+/GEYvwleyDSJNIkaJZFEpO77bgL0Gg1Jg6HJcLj1CTOprq45YDj07wHexN3bEhOgXSs47uD4xSUiIiIiUlFvrYMDZ8B7G2HCdrhrJQyaYvpEZYdwnFUUtiG3ln1+n5sDHSfBWfPgmsWw51QYN8/EKtWmZJSI1G2TZsDxV8KiFaYqKisHHn4Nrr0/3pFVnmXBT6/AlWdBmxbQsilcdDL89S4kJpZ/vIiIiIhIPPnDcPkiyA2bXlBgluRtDMCDK00T8JJT6QDCwBG1qGeUbcOxs03cO0Lm9eSFTcP1t9fHO7p6QckoEanb/vc05OUX35abDy986DyBrrZL8cH9/4a1v8OGP+HJm6Fp43hHFV07cuDXyfDPwrq9rFJEREREipubszsJVVSBDV9uhgOawJgWkFKYinBhklM3d4KO3hgGWo75uZBZEPlacsLwXGZcQqpvanl3MBGpTzaRy31M5nOW0BQv17Anp9Ibi2pMoZi/zHl7ggcyN0DvrlU/t0Tfk2/B9Y9AogeCIejaHr5+Hjq2jXdkIiIiIlJdTRMgUMrNxhYJZiXA233h+63w/gZIdsHZbWB4o9jGWZ6CcOmT8vIcel5JpSkZJSIxsY18hvAmG8jFj3kDv4DvmcYG7mUffmAF89hCX5pxKJ0r3rR8j96wcm1khU0wBB3bRPlVSLX8OhlueNRUsuUVbpu3FI68GGaNNx9ORERERKTu6uyFIakwJQuCRbanuOCajuafLQsOb2YetdXAVJMoyy7RxyrZBWe0jk9M9Uy1l+lZluWzLGtcNIIRkfrreWaxmfxdiSiAHAI8wVT68ion8wU38Aen8AUDeZ0tu7IV5bj9ckhOKr7Nlwz/Ptv8r9Qej78JuSX+vYbCsGwNzFkcn5hEREREJLo+6W+SOT4XNHaD1wXXdYJjW8Q7sopzW/BOX5NESyq8YZrqgv4pcFm7+MZWT1S5MsqyrIOAccAJQArwRrSCEpH4WU8O9/A3X7KUZoVL6U6nT/WW0gHfs5y8YrdHjDA2S9lOqHBBtp8Qi9nGVfzCmxxZ/omH9IMfXzENy6fPgxZN4PoL4IozqhWv1IANW5y3u92weVtMQxERERGRGtImCaalw5wcWOeHoalm+V5tsK7ANCTvnlz6MrydDmkG84fDq+tgTQEc0tQ0YPeo9XY0VCoZZVlWL0wC6iygA+AHPgNejnpkIhJzW8hjCG+yiTwChFnKdi7iB2aykfvZr1rn7kJjXKwmXKILYMChw2GAMB+xsGLJKIBRg2HSu9WKT2JgzAEwfS7kFRTfHgjCnv3iEpKIiIiI1JD+KeZRG6wtgFPmmuWDHgvSPPBqbziiednHdfDCLV1iEmJDU25Kz7KsJpZlXWJZ1iRgHnATsLlw9zG2bZ9u2/aPNRmkiERPLgFCODfde4YZbCWfQMRSumlsIrda172SIXhxF9vmLuW5QETSSuqBS0+Hdq2LL6v0eeGBf0NqLfmgIiIiIiL1i23DoTPhr+1mql9O2FRsnTgHFlTvO45UXanJKMuyjrYs60NgLfAM0B64H+gLHARYmMooEakDfmYlfXiFRjxJGk/yL36ioMSyuR9YQT6hiGOTcDONDdW6/h604k1G0xwvqSTgxc0o2nM4nXGXWALoxuJIulXrelILNUqFaR+ZPl97DYETDoVvXtCSShERERGpOVN2wPJ8IjqG+MPw1Jq4hCRlL9P7HLCB74EHgV9s24yrsiyrcQxiE5EomckGjuFTcgvfgfMI8jKz2Uw+73DUrud1oTETyHRYShemPanVjuMEejGGHixkK41JpD1prGYHw3mbLPzkECCVBBqRyFMcVO3rSS3UKBWuu8A8RERERERqWmaBaUheUhBYVsGhSbGy0W96WTWvJT22alBZyaglQHdMFVQAaGZZ1ue2basaSiRWbBve3wAPrIINfjioKfyvC3St3JS4e5kcUfGUR5BPWcR6cmiNWSJ1DXvyEQt3Ja0AEnDRnxb0JzrTLzy46MfutdkdSGMx5/MhC5nNRgbQklPoRTL1/w1YRERERERqWHoaFDi0KUm04KAmMQ/H0exsOHMezCtcNjgkFd7uZxqt11OlLtOzbbsnsA/wOrAv8AGwzrKs54C9YxOeSAN39wo4fwFMz4Y1fnh7PQydCqvyK3WauWx27MGUhJvlZO36eTCteIsjaUEyKSSQhJt9aM9XHF/tl1IWHwmcTX8e5ADOpr8SUSIiIiIiEh0dvHBeW0gqUR0VsOGTTWa5XjxlBWG/GTArB/y2eUzZAftMc06i1RNlNjC3bXuibdsXAW2AscDfwPnAF5glfKdaltW5xqMUaYiyg3DPSsgt8gYUBnKCcP/KSp1qGG0i+jIBFBCiJ02KbTuenqzjEqZyJiu4kJ85hZb4qvACREREREREaoFHupvlb0XZmJv+b6yLS0i7vLfBJJ2K1g6EMY3WP98Ur6hqXLnT9ABs2y6wbfs927ZHAx2BG4A5wKXAEsuyvq/BGEUapnm5kOCwtjkA/LqtUqe6keEkl1iV68PDhQyiGZGln25c9KbZruV7Atn4uYUJdOclevEy9zMZv0OzdxERERERibGf/4J9zoCWe8MB4+CPjOL7p+xw/m6VG4a31scmxtIsyytegLBTfhhWVG5FTF1SoWRUUbZtr7Nt+0HbtgcBwzCT9gZHOzCRBq99kinRdNKtcmuHe9CUiZzOIXTCh4cOpHIne/MYB0Yh0PovSJh9eI+HyGAp21nENv7HJI7iE2yH5Y8iIiIiIhIjX/0GR18Gf06HTVvhtww4/CL4ceLu5yS5TLWRE2+l0yLRNbwRpLojtydZMKxR7OOJEatwQF71TmJZHtu2Sw5KrBPS09PtjIyM8p8oEg9Hz4Ift0JBkf+f+lzwwx6wV80PtcwlwHgWs5l8DqRj1JqY1zWfsohxfEM2gWLbU0jge05kL9rHKTIRERERkTjKCcH3W0z/pUObQtM49H7teQQsdmhjMqgXzPzM/HPYho6TILPEPDavBZ28sCMEI9Lgjq4wsPpTxCslGDZ9gRfm7v7e53XBnqnwxxCwHCq66gjLsqbatp3utK/UFKBlWUMsy9psWdaxZTznWMuyNgO9oxCniJT0Xj8Y08JkxX0uaJEAr/SOSSJqCutox3NczA/8h98Yxtucz3fxrwSaOB1GnQ7JQ6DzwfD8B2bqYE1eksyIRBRAgDCTifMacxERERGRePhuC7SZCGfPhwsWQLtJ8Nra2MYQDjsnogDmLtn9zy4LvhwITT2Q5jbfrRIsk0RbmAdr/TB+M4yaBrOyYxP7Th4XTBgCV3WADknQOQmu62gKEOpwIqo8pVZGWZb1MtDVtu2DyjyB6Re1vLDReZ2jyiipE7YHYWsAOnrBXfNvSGFsOvA8a8kptj2FBF7lcE6OVv5563Z46SP4dQr06gJXjIXunUp/fsZs2H8c5BZZO+1Lhv9eBDddHJ2YHDzNdK7jd3IpXgCaRiKvcDgn0avGri0iIiIiUutsD0K7iZG9jpJdMCsdesRwAFKLvWDztsjt7VrBml+Lb8sPwVdbYKMfblwK20r0gLWAo5rBF4MqF0MwDI+thmczITcEx7SAO7pAm6TKnaeeqVJlFHAg8GYFzv82cHBVAhORCmrsgS7JMUlEAWSwjh34I7bnEOBF/onORdZuhH7HwG1Pwde/w9PvwKDj4dfJpR9z65PFE1EAuXlw74uQXxCduByMpS+eEm+XFpCMh2PoVmPXFRERERGpFWwbnngLOh4EvqEw/G6wHZowBW14O8YNwa8/39ygLsqXDDc51Mt43XBiS7P6pMChMMcG/t5R+RjOnAe3LYel+bAuAK+uhT2nQlad7GYUE2Ulo9oBiytwjqWghiki9UmAMBbOia+oTZC79QnTYDCvMIkUCJrE0nn/LX3Z3cz5ztvDNmRuiE5cDpri5VdOoTdN8eImCTdDaMUETiOpxJRCEREREZF657+PwY2Pwup1kJcPCzMhL/LmNUHb9F+Kpf87D647D1J9kJwEaSlwyyVw2enwdxacPBvSM+A/S2Bd4XePph4IlNLRPM2hmXhZFuWaJX5Fq8SCwLagSUqJo7K+ReUBFenclQrU33mDIg3QMNrgdkhGpZDAOPpF5yJf/gZBhz9UazfCuk3QtmXkvuZNIHNj5PaCAmhTQ83VbRueyWTIfSuZv6kHBUOT2fFIR1qMaFMz1xMRERERqU2yc+CxN00Sape5wImRz/W5TNVRLFkW3HY53HghbNoGLZtCQgJ8uAHOmQ95YVPx9E+OSQ7NSIcOXvC5Icvh+4i/tLF7pZiWbfpPlcyK5Ibht+1wVccqvrD6razKqDlUbPndIcDs6IQjIrVBIm7e5Sh8eEjC3BlIJYFRtOWsaCWj0lKct4dt8Hmd95XWwM8mcvletNy6HK5bAqsLID9M0sQcWhy0EGbGuLFhZYXD8PCr0P4A8A2BA8+G6XPjHZWIiIiI1DXLM8FTslpoM/ADWH523cNOccFxLWDfmh+25Cgx0fSJSkiAkA2XLTQJoZ2LLvy26XV1xwpzw9kpEQWmmXlldPHiOOMp0YJeyQ47BMpORr0DXGpZ1vDSnmBZ1kjgYkzfKBGprkAY7lsB3f6C9hPhykWwOXKKWywcQVcWch63M4prGMqHHMN3nEQClSxbLc0VYyOTTgkeOHgkNE5zPiY7z3m7Lwk2bolOXEXlhuCRVZGNGfPC8L/l0b9eNF17P9z6lFm+mFdgmsTvNw4WLIt3ZCIiIiJSl3RobVpqlGR9DaN+hwvbwjmt4eMB8Gbf2jEBblme+cxeUhAzBdCyoFWC87FtK9l0fHgadPNGrjtLtOBSdTQqTVnJqBeAqcBvlmU9blnWIZZl9Sx8HGJZ1uPAL0BG4XNFpLpOmG0y9cvyIdMPz2fCsKmQF+N114Xak8YNjOARDuQIuuIqpY9UlVw+Fk4+HLxJ0CgFUpJhQE94477SjzlgGLgdkmGWC7rVQPnrynznpvE2ML0KjQ1jZet2eP5904OrqLwC0+xdRERERKSimjSCcWMibyQnJ8EjJ8PzveHVvnB4s9qRiAJommD6VzlpWZiE+m9nU81VlM8Ft3Su3LUsC37cAw5pahJQSRb0SIZv94DOpaz4kNJ7Rtm2HbQs6wjgCeAy4IoSTwkDrwFX27Ydn2/KIvXJzGz4eVvxDL7fhg1+eG8DnNs2bqHVCLcbXrsXbr8Cps+Dzu1gSDl3Um65FD75AXbkQqjwbcfnhQf+DUmJ1QpnKdt4hhnMZwv70YELGUTT9kkQKOWPWO8YjqutrCWrTJlyfokS41AIMrSqWkREREQq6elbzOqFZ941Nzi7dYCnboYRe8Q7MmfNE+DQZvD9FvOdaqcUF/ynk/nnf7U3N/3vWQkFYUh2w62dTaVXZbVMhG/2MNPz8sKm6qq2JOZqKcsubWpV0SdZVhvgIKBD4aZVwK+2bdf51vDp6el2RkZGvMMQgZfXwlWLIMehnPSc1uZug8DyNXDns2bZWYfWcMMFMHq/ap1yAqs5gk/wEyJAmGQ8NCKRaZxFuysy4dV1xZfq+Vzm7seoOK2HL8/GLWbsbkGJZJTLBScdBu8/Ep+4RERERKRuC4fBHzCrG2q7bQE4cQ5MzDLVSgU2XNcRbu9SPFEUDMP2EDTxOK+KkCqzLGuqbdvpTvsqOpM8CHxi27am5onUlM5J4HJ48/Na0LMWV+HEWpf28PJdUTudjc25fEcOu3tz5REkQIhb+JOXHzsUGnngqTWQE8Lu5uXXt1L5bcQcWpLMafShObWsMWHLZnDK4fDRD8WnnngTTfJORERERKQqXK66kYgCaJIAPw02/aMy/dDfZ7aBaWSeF4LWieBxQfOyOhhJTSj1N25ZltuyrNsty9oGrAeyLMv62LKsJrEKTqRBOaipWb9csiVSggvOaxOXkBqCjeSxisj+T0FsvmCJ+eN0TzfYtg/B3H04ctEajhnxM3cwiev4nS68yARWxyHycrx0J1xyqlnG6HJBn67wxTMwJErTEEVERERE6oKuybB3Y5OI2uiHI2ZCqz+hy1/Q62+YsK30Y9cVwLh50PgPaDEB/r3YDDmSaiurMuoS4FbgV2AK0A04HsgCzq3xyEQaGpcFvw+BM+bCpCwzIrWrF97oC23qyN2HOigZD7bjLFZIpUgfKpfFq0lz+YPV5GCmieQW/u9JfMEaLsZd5kyIGJgxD179FLJz4cRD4aH/mEddKaUWEREREakptg2HzIR5ubv7wi7OhyNmwZzhkc3Gc0JmmNQ6P+wcJvhMJkzOMt/botkTyrbh7fXwyGrYEoDRzU0j9Xb19zN8WcmoC4EXbdu+eOcGy7IuBp6yLOti27b9pR8qIlXSPgl+HQJbA6aJnpJQNS6NRA6jC9+xnAC7+0L58HAFg4s99zXm7EpEFZVLgBlsZE9a13S4pXv8DbjpMdO0PByGD76FQ0bBx48rESUiIiIidd/WACzOgy5e0zC8sibvgKX5kQOKAjY8uwbu625+3hGEt9abIVIbAhT7+J8fhunZ8FdWdPvH3rDUtAXZ2af2pUz4ZCPMGQYtqjeoqbYq6zZ+N+DDEtvexywiquSsQxGplKYJSkTF0GscwSBakEICjUjEi5sT6MlVDC32vNLufdhl7IuJDZvhhkchN98kosBUR/04Cb75I56RiYiIiIhUT9g2g57aTYJDZ0LHSXDWPPA7DH4qy4p85w/tfhsW5O5+To+/4f+WwO/bi0/i2xUPMCunsq+idJv88MSa4gOTgpjJfE+uid51apmyKqNSMUvyitrZWCWtZsIREYm95iQzhTOZzgaWk8UQWtGVyDsdFzCQGWyIqI5qRCKDaRWrcCP9OAkS3FByxER2Lnz0HRy1f1zCEhERERGptkdXwUtrTVXSzs+7H2+EFgnwaI+Kn2doamRVFJhJ2Qc0Mf985SLYHICy2kJ5LOgRxQFGM3PMtL+Sn+XzbfhpK/yva/SuVYuUN02vvWVZ3Yr87C6yfVvRJ9q2vTSagYlIPWXbMGEqrF5P3rA+vNY9i1+2LyctLZnL3EPittTNwmIorRlaxvXPoh/jWcIPrKCAIEl4cGPxCcfiimdtVLIXx9s8LhekahKjiIiIiNRhj64uXjUEkBeGFzLh4e7OE8md9PDB8c1h/Obd5/MATTxwTlvz87dbyklEYVqrHNikcq+hLO0TnSuwXEC3Wja1O4rKS0Z9VMr2zxy2lZwBJiJSXOYGOOgcWLMB2wJPvp9z3IM5PziOAq/FU9f8wj+39+cc18B4R+rIjYtPGMPfrOU3VtOSZE6iF42I0pLK6XNhySrYozf07FLx447Yx3m7NxHOOT4qoYmIiIiIxMWWyJ6tgKmU8ofBW4lUxJv94InV8PQa06D82BZwexdoXJga8VjOiSEw2ZMjm8NLvU0CbL0fAmGTnKpOM/M+KTAkFTJ2FL+21wXXdqj6eWu5spJRmpgnItF16rWweBWEQlhAApAQmAX8SWL2/vzr4ZY8E5pL3t19SCYhzsE6s7AYSTtG0i56J92WBaMvgn8WgdsNgQCM3g/eewgSKvB7SPbCF8/AMZeZn20bgkG480rYs3/04hQRERERibWRjeCXbZHbeybvTkRtCZhHFy94ymiN7bbgmo7m4eT0VvDm+siElMeCph64oZNJYh0zFWZkmyRUpyR4uy+kN6rSywPgi4Ewdi78us1cy+eGF3vD4PrbIcmy7VKyfg1Eenq6nZGREe8wROq/DZuh08FQ4DSIsw1wKwA5KSGmbenFvoml/IEAyA/B/5bDy+vMHZEjm8FD3aGDt/RjarNTroHxP4M/sHtbshduuABuvazi58nLh28nQE4uHLoXtG4R/Vhjzbbhtynw5zRo2xJOPgLSUuIdlYiIiIjEyowdsO90szQvhFm+5nWZBM6wNDh7Pny92SRxEl3weA84q03VrpUVhINmwLzcyKWBAKkuaOSBdX4oujvNDUtGVG3KX1Gb/LA9ZJJq7riOSIoKy7Km2rad7rhPySglo6ThWUcOv7KKRiRyCJ1JjMUq2xVroO8xJmESoRlwFwB53jBLVvZhQMsyKo8Omwl/bDeJKDCLhFskwIIRu0ts64oCPzQaVjwRtVPblpD5W+xjqi38fhh9MUz+x0wKTE4Cjwd+eRWG9It3dCIiIiISKwtz4d4VMCnLJIk2BnZXK23wQ0GRvIbPBV8Pgv2bVO1atg2XLTRN00uuEPQWVl3ll0hUJbvgji7wf52qds16qqxkVBn1ayJSH93DX3TlRS7ie07nK9rxHFNZX/MX7tQOWjRx2OEGBu/6qcBn079ZGXcyZmbDn9uL/wEIATtC8Nra6MQaS4EAhEsZS5ubF9tYomQem3mV2XzHckJUcuRuUU+/CxNnmKmA4TDk5MH2HXDCVeZDgoiIiIg0DL188Gwv8x1gbYH53+wQrCoonogCk6y6b0XVr2VZpvrJqVVVMAwhh8+heWFY5nTTXUqjZJRIA/IHq7mbv8knxA4CZOFnM/mM5mOC1UkaVIRlwZv3Q0oyJJo+SDaJQBPgCAByfWH8d3fGcpfx1jQr2/mdKzcMf++oVohbyed+JnM0n/B//MoytlfrfBWSmgJ9u0dud7ng8FIak9dSIcKM5Sv25C3+xc+czBd05aXK/x7DYfj+T3jgZcgviNy/IhMWLotO0CIiIiJSN3yyCTYHnJNEJa1w+AxZGYc2hRSHLx1uy3n5XKoL9mlcvWs2MHVsPYuIVMcLzCLP4d27gBB/sJoDqeGy0v2HwZzP4bkPYMlKrE6DCPzZC+YECbT34L29B75TW5d9ju6ljDf1WtDfV+XQ1rCDobzFDvzkEeR7VvAcs/iOE9mb9lU+b4W8fCccdK5ZqucPmOVoKT548P9q9rpR9hL/MJ7Fxf4byyHASXzOVM6q2Em2bIN9z4JVa2FHrvNzbBsmTIfe3aofdDVtJJflZNGdxjSj/o7eFREREYm7mdmQXYEb6AnAAU2qd62Dm5plfr9tg5zCa6a44JRWZoreL9tMNRRAkmV6157YsnrXbGCUjBJpQLLwU9riphwcehbVhM7t4d5rdv2YUOJ/yzWqEfRIhjm5ECjyahJdcEHVJ9z9lwlsIY9g4W8oQJgAYc7lOxZwLlZWCHJD0DqxeqNbnQwbCHO/gGfegzmLYNRguPgUaNYkutepYc8wk9wSyc4wNnPZzCqy6EgFJoxcdS8sWgGBcm55bdxSjUirL0CIC/me91lAIm78hDifgTzBQbio+80mRURERGqdfimmAqmshJQbSPXAjdW8yW5ZMH4AvLsB3lgHCS44vy2c0AKCNjy2Gl5cC/4wnNoKbupsvo9IhSkZJdKAnEJvfmJlROIpQJj96BCnqCrJsuCnwXDxQhi/CcI27JlmRp+2rvr0iq9YtisRVdSOzTn4x80g6ccssID2SfBKn6o3RNxpziK48l6YMBVSfXDJqfC/yyGxmhM44iivlISmC4t8QhU7yYfflZ+I8nmhexnTFmPgJibwAQvJJ7Trtb3KbDqSxvUMj2tsIiIiIvXSyS3hhqWQ52fXR0sP0DwBOnvNhLuDmsBtXaBjJadsh234Kwu2BGBUY3NOj8tM5Ss5mS/Bgv90Mg+pMk3T0zQ9qQUWsoVXmM1G8jiKboyhO54aaOkWIMRhfMQU1pNDADcWibh5nAO5kEFRv16E1evMVLQenUxPpOoKhM2dieTqTwPsyossJ6v4RhumpvdlyD8pWEWrsFJcMHNY6UsGy7NqLQw4FrKyd29L9sIxB8D7j1TtnLXALUzgITIiEk8dSGUlF2FVpGLI1b/s5uRuF7RuAcu+j1vizsYmjScdqwlb42Mdl8YhKhEREZEGYGU+XLwAfthqblIf09w0Nq/GTWkW58Khs0w/Kgvw23BLZ1PtJNVS1jQ9VUaJxNmHLOBsviVYuCzsfRYwlFb8yMkkUv0kS1EJuPmBk/mMxXzKIpqTzAUMZBA1vL55ZSacdDX8sxDcbmicCq/fC4fsVb3zJrgqsb6vbJczhNv4s9gys2HTU+i3ILl4IgpMOe5Tq+HRnlW72ONvRjbmzsuHz3+BFWvMUsY66D8M42MWsZId5BAgCTceXLzFkRVLRG0vpwG9xw2tmpnfVZdD4dzj4eZLTCIvhrZTUOqy1m1Us1mmiIiIiJSukxe+2QOW5ZkWGn1TwFWNFgm2DUf+AyvyKbZI4u4VMDwNDmlW7ZDFmZJRInGUR4Dz+C6i4fM01vMWczmPgVG/pgcXJ9GLk+gV9XM7CofhgHNMQipUuL47Jw+O/RfMHg9da8fywKsZynTW8wmLSMRNCJv9V7Qg0e2BkkvMAsDCvKpfbMps06i8pKQEmL+sziajGpHEdM7ifRbwMyvpSmPOZyAdSKvYCXbkmN9Bvj9yX/MmkJoMmRt3L+N75HX4czr88lr0+3iV4Ty+wwLH/mvDaeOwVURERESq7KetcPVimJMDTT3gdZnldG4LUt3wVt+qJ41mZENmQeQHu9wwPLVGyagapA5bInE0ibWOzY5zCPIu8+MQUQVl58BvU0ylU3lLfX/PgE1bdyeidgoE4PkPai7GSvLg4m2OYg7n8BpH8Aen8uDQo3H5HV5fsgv2r8bo1j16Q4LDvYCCAPSs2+XASXgYR39eYzS3sVfFE1EA7VtDi6aR290u6NcdNm8v3k8qvwAyZsPfs6ofeAVtIpevWeaYiHJh8RgHxiwWERERkQqzbViSB0vzyv/8XpbV6+DNz2H8T1DgcAMx2iZthzH/wOwckzDaEoRMP+TbZsrd+gAcO9tUSlVFVsgktZxsLqePqVSLklEicZSMp9TpdinRWn8WbU+9Da32hTGXw6jTYeCxpgdSaTI3OG8PBGH5mpqJsRQBQrzPfC7ie+5gEquJXBbWjSYcT0+G0No0QjylJfiKvFV6gMYeuLDqk/u45mxIKrGu3ZsEh4yCbvFtzB1XlgUv3WkalLsLl6h6k6BZY+jcDrJzI48J2zBjXsxC3EgeiaX86WxLCkNpHbNYRERERCpk+g7o+TcMmgIDpkDvyTAzu/zjSrr1Ceh5BFx2B5x1A7Tdz9wYrEm3LjdVSmUJ2vBiZtXOn55mji8p2WUapkuNqXXJKMuyjrAsa4FlWYsty7rBYb9lWdYThftnWZY1tKLHitQ2I2hLqkPSKYUELopFQ/HK+m0KXP+w6dmTlW2W281fCqMvLv0Oy4hBztPRUpJN8qUmOMSSQ4DhvM0FfM+L/MM9/E0fXuUXVpZ9rlf6wL3dmHhygKteWM01X29hyqwO0LQaycKuHeDX12HYAJOASfbCBSfCB3W3eXnUHL4PTH7f9IPafxhcfwHM+QL27GeSVCV53NAldssau9MEHKoZ3VgcTpeYxSEiIiJSIVlBOHAGLMk3SZ28MCzKgwNmQHYlKn9+/su0SMj3mxuEO3JgaxYceTEEa7CCaG5O+c/x27Ciin07U9zwZE9z83lndsTnMoOKzm9btXNKhdSqZJRlWW7gaWA00A843bKsfiWeNhroWfi4CHi2EseK1CouLL7ieJrhJY1EUkjAi5tL2YPRdI13eJEef9NMwysqFDYVTrMXOR/TvROcNhp8RSbPJSVC25Yw9qjoxWbb8OwaaDsRXL9B17/gw91VWU8wjQVsJbuw8XQBIXIIMJavCZdanwa4La69chGHfTCXJy9cz+OHLuOAlp9yC39WL949+8PkDyAwC3KmwpM3x7wRd63Vvye8eIdJ2N1+ObRsBuOOhcQSCUCP2+w7tJqN8CshETcPsC++Ii0X3VikkcgtjIxZHCIiIiIV8uFG58qfQBg+2ljx87zwobkRXVK+HyZMq3p85emfUv5zEi3z2Oo8YKZc57WF3wbD2a1hdDN4uDtMHmoSVVWRWQCXLIBOk2CPKaZqa2NB9ZZH1kO1rYH5cGCxbdtLASzLeg84Fphb5DnHAm/Ytm0Df1mW1cSyrLZAlwocK1LrDKE1mVzMdyxnC/kcQEe6UI1+RDVpw2bn7W43bN5W+nEv3wV7D4Vn3jV3Uk4+HP5zXvEEVXU9tQZuWLq7jHd5PpwzH5JcMKYF7zC/WKP4nXbgZy6bGUALx9POYAPPMavYsbkEeYgMzqIvvahmU0N3dCcm1lvNmsAfb8E5N8GsBWbbQSPg1Xti/ju8hMF0pjH3MZnV7GB/OnAro2rv/29FRESk/hu/Ce5bCev8cGATuK2LaTmRWeC8zC0vbHovVZRTuwQwVf55+c77ouF/XeDP7WUv1fPb8MEG+GAjfDoADqvC5/P0RvBKo8ofZ9vw8lq4a4X53ffyweoC2BGEILCqAC5aCJcA7ZPguV5wZPPKX6ceqm3JqPbAqiI/rwZGVOA57St4rEitlISHMfSIdxjlG3MgTJsLeSXKYANBU+lTGpcLLjjJPGqCbcPtyyP/SOWG4b9LYUwLvDgnLMLYpe4D+Jwl+EtO0wNsbL5kKddWNxklFTegJ2R8CNt3mKqoFF/cQhlN1+hXL65aC0+8BRlzYEgfuOqsOjtZUURERGLo0VVw87Ldn4XfWAefbYIZ6TCqkVl2llPic3Kyy+yrqNOPhF8nR1ZHBYOw757Vi78soxrD9R3h9hWmgblV+GiVYJqX7yw2yrUBG06aA+v3guQY3ax8dDXcUuR3/08pywrDmMTUyXPg9yGwZyWG/NRTtWqZHk6NOCKHLJb2nIoca05gWRdZlpVhWVbGxo2VKE0UaeguOQ3atYbkpN3bfMlw/7WQVoES2pqSGzaTMJwsNXdqLmUPUkrk3y2gK43pgcMEt0Je3Lgd3l5cWHhrXT6/Flq4HP6eaSbfRUvjtLgmomrEPwuh/xiTjPp1Mjz1Dgw4NqbN2UVERKQOyg0VT4YAhDCVOfeuhIOawtA0k3zayeeCYWlwQJOKX+fU0TByj92fwTxu02Li2dsgtQa/B6wrgPtW7f5mb2MSOxsDzt/2LeCXbTUXT1GBMNyxvPwG60XlheH+cnrWNhC17ZvUaqDoKKkOQMm2+KU9J7ECxwJg2/YLwAsA6enpWrgpUlGNUmHaR/DcezD+F2jd3FRv7D8svnH5XNDEA5sc1on3SCaMzUbyCBb+xbIALx4akchX8wbB1ukwpK9jz6ZT6M1tTHS87An0jOarqF9WrYVjLoOFKyDBA3YYnr4VzhoT1ctsp4A1ZNOZRrV3AmVFXHm3aQS6UyBoHpffBX++Hb+4REREpHZblAcuh7qMIPDrNrPvhz3gydXw6jrzQfjctnBFe7PErqI8HvjuRfjiF/j8FzPt+LwToF8Nr+74oJTikbK+xYdi9BV/U8AsEawMG1hQypLHBsaya1ETLcuyPMBC4GBgDTAFGGvb9pwizzkKuAI4ErMM7wnbtodX5Fgn6enpdkZGRk28HBGJpefWwL+XFL8zkeyCj/pz/ZFzeIrp5Bbp+9RzRS4zjp6Eb+k688c1HIYnboJzT4g49WvM5lJ+xFNYTBrC5lWO4FR61/jLqpbckPmA0jYRWiXG7rq2Df2OhkUrTIP7nXxe+O0NSB9Q7UsECXMFP/E6c0jARRCbf7Mnd7A3lmOhbC2XMBCCDtV9LguCsyv3YVFEREQajnUFZnBPvsP3+sOawnd7xD6maLp3Bdy6jIjWry7AbUGgxOv2uWDD3lVvPl4Z/jA0/xOyS1mh4cQDXNgOnulVY2HVJpZlTbVtO91pX61apmfbdhCTaPoOmAd8YNv2HMuyLrEs65LCp30NLAUWAy8Cl5V1bIxfgojEg23DoA1wVh60c4Mb6JMM7/cj58hGPFkiEYVt8/nhX5M0d4WZDpiVbZoyXnEXTJ4VcfpzGMAqLuJpDuZZDmENF9f+RNT9K6Dln7DfdDPJ46TZJjkVC9Pmwqr1xRNRYKatPBmdKp8b+YM3mEs+IXYQII8gjzCVZ5kRlfPHXEopzfyTvUpEiYiISOnaJMEhzSCpxOcFnwuu7xSfmHaybZg4HT7/GTZuqdo5RjeDRIe0hdcFhzaBFJep9kqyzI3oN/vGJhEFJq5rO5jfdVFJFjT1gMfhM1wIGBzH9ia1SG1bpodt219jEk5Ftz1X5J9t4PKKHisi9dz6TXDwebAi03xpDwThtEPh9XvB7WY1WyJ6Pg2dtpn2a3Jwh0vcSckrMMmSNwdFXKYFPsZRRpP22uSDDXDHiuJVYl9tgQsXwNv9av76GzaDx+FDQzgMa9ZX+/RhbJ5lZsR0xFyC3M8ULmNIta8RcxeeDE+/U3w4gDcJzj8xfjGJiIhI3fBOXzh7Pny9GRIs8zns0e6mX1S8LFsNh5xvPhe6XFDghxsvhNscv8qXbnAanNUa3lq/uwl7istse6YX/J0FX22Gxh44rRV0iGy7UaNu62Kmdz+0CrYFoXMSPNwDjmsBy/Pg/PnwW1bxnlfXLIEevvj++6kFal0ySkSkVFu3w7tfw+p1sM9QOHwfOOM6WLDcTPLY6dMfYdgAuGoc7UklVGJRecuN+YSc1tbbNqytB0MN7lsZ2UgxPwyfbISsIDSq4bf+4YOgwKF/l88LR+9f7dMXECQ/olbb2ESe4/Za766rYMkq+OYPSEowv7/D9oL7/x3vyERERKS2S/PAJwNgc8A8unohIQqLoFbmw+ebTNuA41pAu6TyjwHzmfqoS2H5GnMzcqcHXzGf0Y+s5OfBZ3vBiS3hzcKbmme1hkOamhvRIxubR7y4LLipM9zYCYJ28d972ySYnB3Z3yo3DLctUzIq3gGIiFRIxmxTARUMmqV1qT7o0w1mzi+eiAKz/5l34apxpJLIZezBs8zctVRv8vCWJPkdpl4kRydZEnfr/M7bXRZsjUEyqnkTuOkiuP+l3eN/vUnQthWcf1K1T59MAp1pxFK2R+xLp021zx8XSYnwyRPmLuL8pdCrC3SPc2m9iIiI1C3NE8wjGh5fDTcsBWyT9Pn3EniyB1zQrvxj5y6GlZnFE1FgPhc++Xblk1GWBYc2M4/ayrJMVVpRGx1uzu60qI7eQI2iWtUzSkTEkW3DKdea3k65+WZbdi7MXggll9rtlL37Df4B9ue/jKAZXiwbOmQ2IbP9IZghnIW8SdChNVxQIlmyIwfe+RJe/ND8UQVTcvvLVlhfStIn3g5o7Pzu7nNDhwre0aquWy6F9x+BQ/eCoX3hvxfD1A8hLTpr5J/iYHxF7qe4sPDh4WHqeDKxawcYvZ8SUSIiIhI/i3LhxqWmsj7fhryw+ed/LYY1BeUfvz0b3KX0bdoSeTOx3mqTaJqsOxmUGttYaiFVRolI+cJheGM8PP8B+AMwbgxcfKpJ4MTCkpWmN1RJ+X5I8JhGgEUleOC4g3f96MLiJkZyU/4w7JZ/YmWHgX5AD+AXcOXAkYfCqxdBapFkyU+T4NgrTEVRKAyhBOh0M6xqbBoT5ofh3DbwdC/nkbrxckdX0yMqJ7T7d+NzweM9Sv+DuNPKTNiwBfr3MJVi1XHU/uZRA0bTlR85mTv5i/lsYU9acSujGEjLGrmeiIiISIPx0Uaz5CyCbdo+/KtD2ccP7Qe20yqEJDj58KiEWKtkZMEv20xV2oktTf8qMA3Ob+oEd5bo5epzwV1d4xJqbaJklIiU78zr4PNfdi+5mrcU3v8W/ngz4q5HFgWsJYfONMIbrbcYtztyrfVOHVqb5EkgaBJlPi80awy3XRb53L+ysIoljfqbRxjY1gQaFblDkZsHx1+5+zUDcBIs8gJhKCzQ4o310NMH13as+uuroBls4GMW4sHFqfSmD82dn9jDBzPS4e4VMGE7dPHCjZ1h/yaln3zzNjjxKvh7FiQmQCgE918Ll59REy8lKkbRjq85Id5hiIiIiNQvIbuU1QeW2VeeHBcccAl8+RTYAcA2n9E7tgN7XzhvPuyZCme1qfn2EeXZ5Df9VsdvhiYeuKYDnN6qYtOMwzacMc/01QrYkGjB1Yvh20GwV2Efq+s7mSTV3StgfQAGpcDD3WF4o5p9XXWAZYbTNVzp6el2RkZGvMMQqb1mzoe9xu5eHrdTqg/efgDGHARAgBCX8RNvMRdP4RqxmxnJdQzDoppVQ7YN/Y42jcqLvmf5vHDP1aYK6tn3YdEKOGAYnHO883Kwv7bDoTMh2+FOTXcvLB65++fPfoSzbzJLAwFwA48ADuvwOyXBilFVfnkVcSO/8zjTKSCEC0jAzd3swzXsGZ0LHHA2TJphEno7+bzw2VNmqZ2T7ByTuEpMdN4vIiIiInXPnBwYNtUszyvK64Jpe5pG4q+tM9VTJ7U0VT7NCj8jbw3AHhmwwQ8FK4HfwL0dDtgXZgyAPI+pEkpxQYobJu8JnYtU4/vD5txvrjOVRRe2hVMrmByqrO1BGDjFtN7wF37HSHHBxe3MRLzyvLveTKvOKfF7apkAa/cqf0VCA2BZ1lTbttOd9qlnlIiUbcI05zsj2bnw01+7fryWX3mbeeQTIpsA2QS4g0m8xdzqx2BZ8NFjpuIp1WeW4aUkw757wmWnQ+f2cN+18PHj8K8zS+9LNLyRGb3qZFUBLClSBeUPFE98kUCpb5nbnCe7RcsMNvA408kjSBibIDZ5BLmJP1hJVvUvsDLTVET5SzRZzM2Hh1+NfP6kGTBgDDQdCWnD4KzrTW+tCgoRxi611E1ERERE4qp/ClzfEZJd5n6sB/PPd3SBixbCo6tgrd806H55LYyYBgWFCZmn18BGPxTYQEfgTAhdDr8Mgi2u3cvVcsKwKQD/WrT7umEbjpgF1yyGCVnw8za4YIGppKoJL2SaGPxFPpfmhOGR1XDMLJhfzufbV9ZGJqLAtPKYEoXP6PWcklEiUrZWzUzypyRvErRvBYCfEC8zmzyKJ2VyCXI3f0cnjv49YdXP8Pztphrq+5fgmxcgoRITQ1wWHFHKFA63Bd9v2f3zIaPM0r9d8gGHvlUWcECTisdQBZ+wiIKIxlhgYfEFS6p/gY1bIbGUEuk164v/vGQlHHo+zFkMwZBJYH34HRx3RbmX+Y7l9OEVPDxKU57mDiYSLpqUmr8U/n0/jP0/ePsL8BdpEL9gmblGs5HQa7TpX9bAK3tFREREasxtXWHyULilM9zaxVREjWoE03eYpuY7+W0zyfnjjebnb7YU379TmMi2G2HguyKfv7/dAlN2FO+vlBOG9zeaaq1o+35rZPXXTl9tgeHTyk5IRX48362U08pu6hklImUbNRiCDpU/bhecdSwAO/AXTyoUsZ7c6MWS7IWxR1fvHD2TzdjVQIl43RakFel/1awJPPlfuPIek5QKBsH7MQQuAgqbpida5i7Rg92rF1M53Fi4iPybZsGuJZHV0q+7c/VbYgIcsW/xbY+9CQUlpggW+GHSTJNM6tPN8RITWcPxjN+VsNxOAfczhSz8PMQB8NF3cPaNJrkVDJkeZY++YfqSrd8Mw0811Ve2DVuz4Nr7YekquP/f1X/9IiIiIhJpQKp57PTkaufG5tkhmJwFY1tD+yTzIbWi9wwTiixl+2GrOVdJNvDrNlOxVZpFuaZaa4/U3Q3Ey9PFayq/nJJKNmYY0C3L4cP+zsef08a87pLVUQkWDE+rWAwNmCqjRKR0mRtgz5PNJLmimqTBl89CWzO5rBlemuE8eW0EbWs6yso5qw14Slm/fWyL4j9fcBJM/xiuPw+uPBO+uhZmjoRxbWBkI7i8PcweBr18NRryqfR27LsVIsxxVGA9e3mSvaZZuS9597bEBGjSCP7v3OLPzZhtkkUleVwmOVSK25noWDn3DDPJKciB8242ywJ3njsnD+YtgZc+gvteNA3li1ZC5ebBE2/BNpVAi4iIiMREV6/p41SSzwU9vKY/a3NP8QQTmBKYZh5zI7eoJAvOaL3751YJZltJCRa0KGU1xOYAjJxq+lSN+QfaTIQ7l1fs9VzZvvQWHmDuBE/cXvr+sa3gwCamzxSYm9QpLpO88ijVUh5VRolI6f73NGzZHlkZleyF/Xb3obOweIIDOZtvyS1MOLiwSMbD/ZSorIm3bsnwUm/TbHBnUsoCPhsAaQ5vib27wl1XF9/2Sp+ajrKYQCl1vs1JphUmEVZAkLv4ixf5h3xCHE03HmA/2pHqeGyEy8ZCry7w0KuwZgMcsY9JRLUukaBbv9n5+Ow8GNCz1NPPY4vjdjcWWzIySHFqSpmbD+99bSqinBJgiQmwcDkMH1TqdUVEREQkSo5oZpJKuaHd1UQWJln0/Va4YZnpl7QzD+NzmQqjQSnweh84fR4syjMV+Ram0umhIisMxrWBu1YQUVbltmCMwxTpidvhsJm7K5N2tn+9f6U59wkty349A1Ph3X6mJ9XmUnrAdkgq/XiPCz4fCL9vh5+2msblp7WClhruUxFKRolI6b7+3XmJ3rYdsGqtaRxe6CR605xk7uQvlrKNYbThNvZiAC0ij48CG5uX+If7mMwGchlOGx5kf4bSuvyDx7aGY5rDL9vMH8+Dmu66KzKexdzN36whm31oxx3sTW9K6TMVI08x3XEZZBZ+MljPMNpwHOP5jVXkFX4yeJ/5/MRKFnAujSjjj2hRh+xlHqWxbdPsvDSd2pW6aw9asoZsh1YBNi1TmkG4lIX1aSnQrhXMXhzZI8ofgI61rPJOREREpL7yuGDCEBg3HyYUVgwNSimcqLdid1JoZ6Iq0QVThkKPwlUEU/eEP7fDvFyTLBrVqPiUvPZJ8MkAGDvXtNSwgcZueLQHjJkNf2wzN4+vaAentYZDZkCew3rAnDA8vKr8ZBTAmBawfm84eXZkvyufC27uXPbxlgX7NzEPqRQlo0SkdE0awer1kdvDIceJdQfSiQPpFIPA4A4m8SBTyCmsxPqZVezHe/zFGRVLgKV5zB+fIp5hOv/h913VXR+xiG9YRgZn0itaCSm/H975Cj741ix3vOS0YlVmTlayg5BDMsqFxTpymMVGfmf1rkQUQBCbLAp4nTn8i6HRid2yTMP4UEHkvmTnZZo73c5e/MKqXb9bAB8eriUd7x4DTKP8nBJL8VKSzbTEdq1MYjQ3f/c+bxIcue+upaIiIiIiEgMdvPDzYNgRhJANTRLg4BnOU+VCtplWt7OrhGXBPk3MozSHN4N1e8HUHZDgMsv+9siAHSGTnCoIwP2r4J0NxafglbQxUPq+ktwWvNsfLlkA720wP3ssuK8bHFMzN9ZFPaNEpCxXjyveRwjM0qiDRpoG33GSS4AHiiSidsojxB1MKrbtV1ZxBl9xLJ/xLvMIlrLkzU+IG5lQLFkSxiaHILeXOGeVBQJwwDlwxV3wzR/w3jcw+iLTE6kMh9MFHx6G/72BJ6+YyDOX/MkBv2Tit4MMow0z2IDLoadULkH+Zm10Yt/p9KPMfwNFJSXCGUeVeVg6bfiWE0mnNQm4aEsK97Avd7CX+WDy5bPQurlJcqalmGTTpafBMQdC+gD48FHo2MZcOykRThsNbz0Q3dcmIiIi0lD8uR2GT4Wk36D9RHh8VeUmFad5TCIKoj85LsEFIxvDnmnw+Goz8a5oaHlhs9yvtGl2bkwD8c2VSEglueDVvqZKatYw2Lg3XNK+/OOkylQZJSK7bCOfR5nKeJbQDC9XnzeEMTNPgBc/NAmAQBAG9Ya37o9rnMvJwu2QfAnbYZqO/xOe/AS2ZvHjCb0488pmrG9k8u4/sZJXmcM3nIC7RC5+Odsdl8KFsfmTNdEJ/INvYdYCUwEE5g9+br7pzXX+idDSufrqfAbiuvUpLnh4Kkn5QSwbxr21mFlnjKTN8yl0p4njcV7c9MVhfX0VbCCXp5nO5Md68fSctnSeuxH3zl/XgJ7w8PXlnmNfOjCFM5139u0Oq36Gn/+GTVth3z2LL8E7cn9Y8RNs3sa2VDcPe2fxGe/RmCSuYign0cuxyftOBQR5ihm8wmxsbM6hP1cyFK/+DIqIiEhDM22H6bWUW5hFyvTDTctMFdOdzpORy3RuG5jiMFUuyQXDGlUv1ik7Iqdgg2mGHrbBKd8UAj7bBB9tNEsIX+5TdqPyohp5zENqnGVXJvtZD6Wnp9sZGRnxDkMk7rIoYDBvkEkOBYW3GVJI4D+kc9v6XjBjvqlM6VfO9Lalq+D1z2DzNjhqfzh8H3BFtwhzOwW04VnyS9wOueu/GVz7+FySc8xfpTyvm1UdUxgy/ThyUxJ2vaZ3OJIxJabQbSOfNjy367UXtQ/t+YPTqh/4yVfDR99Hbk9LgVfugpMOdz5uyUrsAcdi5RdfHmf7vFg/v4o9YhB78Abz2VKs2XkjElnIebSmjDG4FbCKLIbyFjvwU0AItw37/rWJp+Z1pX+/ETBiUPH1/jVoB3724A0yyS723+nlDOZ+9nM8xsbmYD7kb9buqnxLxsNQWvE7pzlWlYmIiIjUW8fMgq+2RPQJx+cyFUE+d+XOF7LhxNnw41ZTteR1gcuCLwdWv5fSZQvgxbVQso1tkmUSTNmh4pVZFsVfV7ILzmoNz/euXhxSJZZlTbVt27EniZbpiTQQK8jib9aSjd9x/wvMYh25xZIxOQS4j8lsbp1ikkrlJaI+/BYGjIF7X4Sn34VTroUjL3Zugl4NjUniTPrhK1LV0nJDHv9+ePauRFRBoovlXVLx5oU499WFxV7TeJZEnLMJXk6mF8kU/+Prw8N/GRGdwJs3KT0x1ySNMDZz2MRSthXf9/XvjukSK68APv8FC4tfOIWj6UYCLjxYhYmWU6udiAK4hT/ZSv6u/zZCFvw6qgWjzwN7ZOwSUQCv8A/riyRMwfw7fYJprCfH8ZjfWc1k1hVbgplHkJls5CdW1HjMIiIiIrXKrJzIRBSAPwyDpsARM+HnrcX3bQ/CQyvh0Jlw/nyYmb17n9uCTwfAd3vA7V3gwe6wfGR0mnpf2zGyqslrmd5S09LhuBaQ5ob2iWaaXcnXlReGN9ZDfmlr+iReVH8mUs9tJZ+T+JyJZJKImwBhbmMU1zO82PO+Zhl5EbccIAk3U1jHEXQt+0K5eXDufyGvSPVOdi5MmAbvfwNnHBONl7PLMxxMGgk8zywChBnz1w7cSUlQkMtTl/flpntMAt6f6CZ9ysZdx3mwaFbKdLkXOQwXFu+zAA8uEnHxIPuX/9rLkEOAp5jOu8xnyEWNePFND57cEgnBZC+/HNCWsTzHDgKEselOYz7lWHrQ1DQHdzsksTxu8JnG4c1J5hOOpYAgQWxSSIh8fhV9y3LHBuobyWUtObQjNWrXqkgsuQ7/nSbiZjLrOIbuEfsmkUm+wzHZBJhIJofSpSZCFREREamd+vhgpcNAmiCwJN88/tgOT/WEc9vClgAMzYANAZPccWMafb/eB05qZY61LNi7sXlEUw8f/DQYLl0IM7JN1dV5beCh7uB1w8cDdj+3+QTnc9i2aYDudUduzwmZc3pUpxNrSkaJ1HNj+YoJrMFPeNeytjv5iz4049giS9U6kIYLK6JvUhCb1vjKv9Cf08HtUNKbkwdvf1l+Mio3z0yZmzgD+nSFc48vtYcSQAJuHuFAHmB/cgmQ1moeVvgnvji6I9ffP2zXsjyAv0e0LHbcuQx0PKcXD68zmic5iM3k05E0PKUUkP7JGh4mg1Xs4BA6cw170qrE76mAIHvxLovYaipxhkLqIyN5+JpJuBISCNlhQqnJbPj2IY7xfF6sIfscNrMf77OSi/AcfwhceU9kEB63aSheRBKeUlJtVdeEJNaTG7E9DKRGMelVEZ1Iw40VkRwLYdOmlCqwtqSSjIfsEk0FUvDENJEmIiIiUivc1sUkm/LK6DyeG4ZrFsMZreHBlbDWv3t6Xahw/0ULTWVSTSdyRjQyVVCBsJlyV1pV/l6NnJcfNk+AFiU+s/64BS5ZCCsKIMGCc9rAoz0q3ltKqk2/aZF6bB05/MIq/CVGXOQQ4EGmFNt2FUPxllii5saiK40YTKvyL5aYgHO9L5BcTnpk4xbodwxcfS+8+gnc/hT0OAJmzCv3sh5cNCIJa8Qe0LYl99w0uFgiCiCYaF5XMm6e5RD6ldPUuxFJdKVxqYmoN5nLYXzEZywmg/U8ylQG8jrrSiwT+5CFLOH/2bvv8KbKL4Dj38w26WDvvfcue4soAgLKUBQZLtx74fq5N+4tLhyAIqAioIBsFCgb2XtvOtM26/7+eAs0zU2bdJeez/P0kd7c+96TtBZyes5543wqzj4c34CKx69n+JSeXPXH5VQ5NJzGLf/xm1WlAUk4+Yv9qr1vypuqCioqAiLtare5j5+FujWyfY1y637a+bREAlgx0o/aROck9eV2w4c/QIvB0PAq+N+HkKTfYpfZ3bQhTOf7tCZRxFBJ95phNMSi87U0Y+I6ZH6AEEIIIUqYLqVUW11Dm5qxFGjiggfYnQK/nrmYiMrIrcE2/19Y5huLMevxEK/VgwgTPv9UtBvhgwa+161PhMFbVAWYW1NJuW+Ow9js33uIvCPJKCEuYWdI0X0TDnA8U6VLOyrxGX2JwkoUVmyYaU1F5jE0y13KLujaJj0hlUmEDW4bnvW1T78HR09e3GUuJQ0SkmDsk9nf9zyDAeZP4mgt/R07wjGxghsYQ7Pg19ThxMO9LMSB+0LqLQ0P50jlNVb7nPsX+0nW2eIjPtrKrP5VWdS9EgkmD2l4Mqx2kRcuJrgG94FjS2HSC/DZc3B4EYy9xu8aDY3Z7OE6fud6ZjOHvWiBkoRBGk9LxtKMMEyUSv/e6EAVvqVfzhYc8RA8PhG27IJdB+CNSdDlRnDqzzPLqCUV+JZ+lCGMKCzYMNOGivzFsIDfpxFYWMJ1NKIMNszYMFOf0ixieM6SaUIIIYQQxd2VZWFHR3D2UBVFelxeVVFUJkBDlUuDUkWo2apZBKxtByMrQQMb9CsDf7aEayv4nvfaQf+qsBQvzDoDJ7L/96jIG0XoO0cIkdcaUgaTTjLKgpF+1PI7PoqmDKchmzlNGcKpR+ngb2Y2w++fQL/b1DarHo/67+0j1PDzrMxcAC6dIedb98C5eCgTZO95rWr0pC0/aFvxZspLhGOmeTYVUcHYyTnd+UkuvMxlH+/S+8Kx6kRhweizw10oPHhJwsVGTtKKihAdCSOuyvKaccxjOrsuJMFms5cbaMznXJGjGACMGPiIy3mGzmzkFLWIonFOX8uN2+HP5eBIvXgs1Qn7DsOMBXB9/2yXGEYjBlOfrZyhFGHUJvvvjxZUYBvj2E8CXjTqUiq4JKsQQgghxKXMbITHa8L1W1Xr3XlhBuhbBipa4YHq6t9wyRkeNwGtI6BmeIGHnKWGdviuSdbnbHPoN3RYDXAgFSpZ8yU04Usqo4S4hFkw8R69fFqsrBgpRRhP0kn3mjDMxFA5tETUeZ1awdElqnrnnSdgy6/w9uPZ77ZmzeIHviW0nPn/6EyUwYopQ6LBjpk36YmFELapPXICXp8Ej74JC1aqAYdAOcJxB0guZZ6tdSstAlamZWZEfW3OM2HAiZdnWEFXptCFH4lHZ9BkBms4zs/s9KnGSsbFD2xjAyeDiiMrlYngSmrnPBEF8O9G/b/8kxywZI3OA/osmGhFxaASUecZMFCHUtSjtCSihBBCCCHOu7o8vFQHIowQbVK71fUuDT80VY8PqwD3VlODvqNN6rymEb7Dw4uTDlHovi1waqqiShQIqYwS4hI3hubUpTRvsCZ92HZNHqF9wGHPuWa3ZVu94+eWofDml7478ZnNcFlHiAwtznqUZh038SL/sJQj1CCKCXTkylB2TJuzBIY/CB4vpDnh02nQvR389hFVzJF0pRpLOexT8RSBhYeJufB5HKm8RSzG9LSHGWP6fCsrCaSRkmlGVDls3EsbprGDONI4iQMXXhJQpcJrOcnt/MU0Ag+C/5P9F4bUZ+TEy5/sD272VxC8aPzANj5jI068jKYpt9GCsGD+SqlaUQ1ezyw8DGpVzZP4hBBCCCFEiB6sAeOrwnYHVLZC1QyjDAwGeLWeOic2UT3eJjL7XzgXVU/UhGmnICnDv5vtRvX8yxTs5jwlmUHTcjdLpLiLiYnRYmNjCzsMIUq2w8eh2SA1J+q8sqXgv9+gcoXA1+WHNCdU7OYbC6jZV5/8D24axBlSGMKvrOUEVozpFUydmEBHQLXXtWQyu4nDmZ4cMmOkFtFsYjQDmckajpOEi3BMmDDyB9fQEzWMvBqfcZRM90dVTiVwb8Ckz3us4wmW+iWk7Jh5i57cSetcvjjKKP5gFnsuVGDZMdOWiizmOt22UB8uF9S6HO3EaQzei3//pERaSdr1KxUq+7ePFhln4tTg9QX/QO1q8OAYaNu0sKMSQgghhBCh2pwEj+yBlQlQ1gwP14B7qoGxmCbYiiiDwbBW07QYvcekMkoIUfhufMx3hhBAappq6RpyecHG8u9G/ePJKTB5Ftw0iHLYWMb17CGO4yTTgvI+g7DnsI9DJFxIRAG48XKCZBZwgAUMZz4HWMRBKhPBDTShYoYWP72h56AGmjvxBhy5fR2NmMAy3ceG0zCrZx20zZxiBrt9dgh04GYDp/iDvQyiftYLWCw4ln7FnuHjqL/9HF6jgdPlwxj9Y2+OVJ7PDm7OPqFVGE6chtbXQlyCmnG1cgPMmA+TX4OhOZ/HJYQQQggh0nk0mHcWdjmgRaRqFcyv5FCLSPizVf6sLYIiySghROE6cgJWbwZ3pgHmjlR465uCT0aZTRfmQ/nJNNuqHqV1Z2tt5JRuQikZF5s4zSDqcyW1A7YOXkktprMLb6bhSo0pQxSB52tVJoKfGMhI/sCYPhNJQ+MnrqZ8pnlWObWUw/ojn3CxkIPZJ6OAqfUd3Ld+GGUOnSMszcueelFgMBCFg7nsYyD18iTWPPXyZ6oy6vygfa9XfY+Ofw4GX6baSoUQQgghRM6ccELXdXDSBU4vWIxqftPi1hAt/866FMlXVQhRuM7GqyHlqTrDuU+fLfh4OrVS84sSk32PR9jUbKsg1KMUEVhI1ElIHddpv8vsDXryN4dIxkUKbqwYsWJiEldme+1A6nGCO1nMIQwY6EV1bORd73tF7FgwkKmOjTBMVCUyqDW2cZZkXCTX8D0/DS+7iMubQPPaH0v1d3xMTYM9h6BRnYKPSQghhBDiUjF+h9rJ7vw/t9I8sDUZntgLH+dNhb8oWopgL4QQokRpXAdMOj+KrBYY2Cv/7nvkBMxbBjv2+R43meC3jyA6AiLtEG4FWziMHADXBFeldQ0NiMTqt1+bBnzFf3zP1iyvr0U02xnH03RkAHW4n7b8x1g6UiWo+9ux0J+6XEWdPE1EAVxNPd1dCU0YuIng5ie1piKROnFZMdKC8rmOMV+UC7Brn9sDpaMKNhYhhBBCiEuJ2wt/nIXMv/dL0+DHE4USksh/MsBcBpgLUfh+mA23P6t209M0CLOqAeYbZ0KFsnl7L48Hbv+fume4FZxu6NgCfv0IojNU6iQlw69/q9asPp2gWYOQbnOABJrwtc9spfNqEsUBbs/lEyk8mzjFIGZxmhSMGAjDxFQG0Ce5Oiw6B6b07YDD9fbMhVTcNOZrjpCEO31HQismmlCWddx0ocWwSJk6B259Rs0OO89ihh4xsOCrwourIKz9TyVuoyLguqugUhFNGAohhBCieHJ5wbYUnU2hIdIEid0LPCSRN7IaYC7JKElGieJg/kqY+DUcPQVXdYeHx0LFcoUdVd5atRHemQwHj8EVXeDeUVCudN7fZ+LX8OwHvgPTw6wwpA9MnZintzLzNh6dCUsGwMNDGHSSLodJZBo7SCCN/tSlA5V1zytsGhpbOI0TL62pgGnGGRi9TSWi1AnwSzPoq59MPEEyD7OEX9mNCQPX05jX6UGpgOPZC5mmwdPvwcRvVBLT5YYWDWH2J1C+TGFHlz80TSXgps5Ru0xaLWoL56kT4erehR2dEEIIIS4lfTbA4jjSf0+pmIHrK8F3TQonpvO27oZNO6FeDYhprv49JIIiyagsSDJKFHkf/gCPT7yYPLFaVNXQpll5XzVUEtTpC/uP+B+3WiBulWrJy6tb8QX7SfA7Xo1IDjPe7/gv7OQm5uJFw4kHO2ZG0IgvubJIJqQuOJwKDVdDitf3uN0IhzpD2bxtFSxUZ+JgwzaoWhGaFMFB63lpzhIY8ZBvNRio+Wknl4PdVjhxCSGEEOLSszcFOq0DhweSvaoiqpwZVrWDSoE38MlXaU4Yej/8vUptcuT1QtN68OcXUCbACAfhI6tklMyMEqIoc6TAE2/7VvE4XWro98RvCi2sYi0+MfBjKZnHcufOS3TDnmmfCDtmXqSL37lJOBnNXFJwk5ZeT5WMm5/YyZ/sz9O48tzUk+DV+cWGAZhxqsDDyVflSkOfzpd+Igrgu9/9E1Gg5qr9varg4xFCCCHEpauuDfZ2hHfrw4PV4ZMGsL1D4SWiAF76FP7+V71HSExW/y7auAPueL7wYrqESDJKiKJsyy71xi8zpwvmLiv4eC4FfbuAUafKqFbVPP8Nx4004VP6UgM14LoakXzIZYyjhd+5CzmIWedHcjIuHmIx+4jP09iClpCkqvPGTIA3v4LT5/zPifeAUycZ5dIgQa/5XxQLWZWgS3m6EEIIIfJapBlurQpv14dRlQPOH81TR9PgzYPw+B5YcFaNKTjv85/VTNuMnC6YtRCczvyP7RJnzv4UIUShqVgOXC79x6pVLNhYgDhSeZu1zGI3ZQjnAdoyhPpFu4Uss9cfhgX/qN9spDlVya3VAl+8kC9vsG+iKTfRFC9aloO5s3psO2dpwTf8wbX0pEaexxjQoWPQfgQkOlSVni0cXvkMVv7oWxl0VVl455Aqqc7IZIB+0kqab87EwbFTULd6/rTMjR4Ev/3tXx3l8cJlHfP+fkIIIYQQBWneGRj6H3g0tXPfR0ege2n4vTmYjYG7JjxetaNyIRZtXQqkMkqIoqx2NWjXTO3alZHdpoaYF6BEnLTle95gDZs5zVIOcxNzeZrlBRpHrtWuBlt/h0dvhl4d4LbhsO4X6Nk+X2+b3Q5xfaipO+wcuNCyN4Z5aAHOyRcPvaEqoRzpyYiUVIhPgtue9T2vczQMKQ8RGf5KiTDCLZWhaUTBxVtSpKTCyEegWi/ocgNU7AavTwptjaMn4Yuf4esZKqml58pucONAsIerpK0tXP152sQ8na0mhBBCCFHgnF4YuQ0cXpWIAvWL1WVx8MNJ9flV3cGokzJp1UhmZ+YBGWAuA8xFUXf6HFx7H6zZoip4vF54/SG464YCDeNtYnmaFaTg9jkejokD3E5F7AUaz6VoLvsYxm+k4NZNOdkws51x1CS6YAKKbKc/M8hohJR1YM3w6yBNg9ln4PsTYDbAmMrQt0yxbeeayz4eYjE7OUcl7DxFR+6iddGoAhz7JEybC6kZysbtNvjqJbjuquyv/+gHeOQt1a5qMKjf7k1+FYb30z9/wzaYtxyiImD4lZfeTp5CCCGEKHmWx8GAzfojJS4rDQtbw8GjEDMCkhzql4FhVvV+bMm30KZpAQdcPMluelmQZJQoNg4cgZNnoXmD/KtK0DRYthaWrIGKZdUb29Iq8XEF05nPAb9LorHyIwMYQN38iamEOUMKzfiGEzj8HgvDxGFup3xBJf7KdVbD8jOzmCFlvf48s6ykpMI/GyA8DDq2DP36ArKQA1zNLJ/Eqx0zz9OFR8jfCrpsJTugXBfVYppZy4awcVbW1+/cD62v8Z9/YAuDAwtlh04hhBBClAz/xMOVmyBRJxl1ZRmY10r9+Vw8fPkL/LNRvQ8bP0LtqiyCklUySmZGCVFc1KqmPvKLywWD7lbJKEeqSng9+hb8NQk6taIGURgx4M1Us+NBo5JUReWZcth4hk48xlIcGZIhZgx0pmrBJaIAxgyGT6ZCaobEh9UCQ/qEnkj6aR7c8rSqqtI0iLTD7E+gbdH7rZJeBaADNy/xLw/QTnfQfIGJS9QfwA9w/HT210/5A1w6/+gyGtUwztuG5y4+IYQQQojioEM02Iz+yagII9xS5eLnZUrBIzcXbGwlhMyMEkIoX82ApbGqLUvT1JygxGQYej94vdxLG8JQCQijx0tUghOTBrWIoh2VCjn4EMVugf7joVpP6DUaFq8u7Ih83EErhtKQcExEYSUSC62SIpg5xQyfTYM9BwsmkJfuhw4tIcKmPiLt0KQufPJs9tdmtHO/ai1Lcqjd+RKT1eDtvrfoV/gUsh2c1T2eiodzBBhkWVCqVIBInTlcRiN0b5f99U4XeHWSUV6vekwIIYQQoiQwGeDX5hBtgkgThBlUcmp4BRhWobCjKxGkMkoIoXw9U1VEZZaQBJt30rpVY75xX87Rp17h1o82Y3V6OVcxAvO7EzAMKwJzdIK1cj1a31vAkaqm/xw9hWvA7Wg/vol1cN/Cjg4AE0YmcxX/ozNrOUHT5ftpNuBpDBpq5w5Ng7tHwpuP5u9MJrsNlkxWybvNO6FBLejaNvR7fjUD3G7/4y43zFsGg/vkTbx5pAFlWM1xv+NhmChDIQ/uNhrhvQlw6zMX/381GdXX6qX7s7/+msvh3cn+/69rwMCeeR6uEEIIIUSR1akUHOkMs07DGbeaFdUisrCjKjEkGSWECNqIh39Fm7QNg0MlFiodSYQxL0CZStCncyFHF6SH38CQ6Y24xeHk6APPUmnQZZgM/u1n2znDZk5Tn9K0yW0V2LY98OoXsG6rmvHzxG3QspHuqfUoTT2nHQaNgYRk3wc/naZ2O+vbJXfxBCOmufrIqVNnVeIpM68XziXkfN188jLdGMwsnzbJCMw8ScfCbdE7b+QAVSH1yuew9xB0aQPP3gn1a2V/bUxz1Yr3xXQ1w8toBKsZnrsnf9uAhRBCCCGKokgzjKpc2FGUSDLAXAaYC6F8/hM8+Lpqz8uoWiU4uFC9ca3Q1X/wMUC3trDs+4KJM5e89tYYU/xbw9wmA38lTad/eJMLx5x4GMZvLOAgZox48NKKCsxjKNGEhX7z2C3Qa4zaBc3jVYmAcCv8+QV0C9BitWClapXMnIwCNWB+6sTQ4yhoMxfA6CdUm15G4WGwfXaRTILMZg8Ps4RdnKNi+m5699CmaOymlxdWbYTpf6lh9CMHQIuGhR2REEIIIYS4xMgAcyFE9m6+Fn79W+2kl5qmEgUmI/zyrkqanDyr/qtn76ECDTU3EitGU+qA/6Bnh93MEutx+nMxGfU8K1nAQZ9h1us4yV0s4HsGhH7z+19RM7nO83pVu9TdL8HGmfrXuNwQKAGSWojzlrwavHVIfZx1QctIeLc+9Cjtf+7VvaBdU4j97+Lzj7DBnSOLZCIKYCD1GEg9NLRLJwGVUcdW6kMIIYQQQohCIMkoIYRiNqvdzVasUwmpSuVh+JVQKko9Xq2i/i5eBgO0KXo7ogWy48lhNHtwEhGOiwmmJLuZDx9sQVVjtM+5X7DZb1e1NDz8zE6+4arQW7bWbNE/vnkneDz6O9T1iFFzojKLsMMN/UO7f156Yi98dAQcXvX5+iS4ahMsbQPtonzPNZth/pfw/e/w42wV+/gR0K97wccdoksyESWEEEIIIUQhKwLDL4QQRYbBoNrFnroDbh12MREFYLXCM3epQckZ2cLghXsLNs5caHHbHbzzVDsSI80kRZhx2Ex8ekdjXn82hhszVEUBPjODMvKg4cYb+s1LR+kfj7QHrjqLsMNXL6nX2WK+eKx3Bxh6Regx5IUkN3yYIRF1XooXnt+vf43FAuOuhflfwawP4aoe+Tt8vTAdOgZbd6sEoxBCCCGEEMKPVEYJIYL3yDioWBZe/hSOnVatV288Am2LT2WUzWBlyJNv0vnhGXiPnuBUJTs2exTzGEh57D7nXkEtfmUPXnxn67WhIuE5+fF5/2h45TPfncxs4XDX9VknZq67Cto3h8m/qoHfA3tBn06BE1j57XAamHXi1YDNOrOtSorDx9V8r007wWxSX9tvXob+Qe5St/eQ+vq2aKCSv0IIIYQQQlyiZIC5DDAXokTS0NhDHG68NKKsbjvWfuJpz/ck4SYVN2GYsGJiCSP8dtXbzTmeYQWLOEQFbDxKe26iqe+6Hg/c9zJ8OUMNLk9zwvX94fPnVeVQcZHkhoorVSVURgagf1mY3bJQwipUmgaNB8CeQ74VUfZwWPcLNKqjf83SWJj0M/y5EhKSwGpRicmPn4UbBxZc/EIIIYQQQuSxrAaYSzJKklFChGwHZ5lILP9xho5U5kHaUYPo7C8shs6QwudsYhXHaE557qQV1fBttztIAi2ZTCLOC1VUEVh4iHa8QFf/Rc/GqaRF7WpQoWwBPIt88PBu+PSob6ue3QiLW0P7S/N7IUsr18OVt/nvGGg2wR0j4YMn/a+5+wX4ZpZvpdx59nBY+h20a5Yv4QohhBBCCJHfZDc9IUSeWcERrmA6aXjwoBHLcb5kC6u4gcaUK+zw8lw5bEygY5bnvM5qkjMkogCScfEmsTxCDNGE+V5QtrT6CEBD43f28DEbiMPJCBpyB62wU4Sqp96sB2Ut8PYhOOeG5hHwXv2SmYgCOHZKv23S7YHPNkHLo3Bb1YvHY7fAlzMhLU1/vVQnvP89xU18EgAAnqtJREFUfPtq/sQrhBBCCCFEIZJklBAiJOOZ7zPY24kXF04eYQmzubYQIys8yziCG/8qUytGtnOWDlQJab0nWcYHbCAZFwCbOMW3/McqbszZrKr8YDTAU7XUh6YV+2HkGznJBJaxmuNUI5Jn6cxQGga/QIcWqu3SjxVcjeGB3VDeAtdUUIdf/SPA+em8Xjh0PKTnIIQQQgghRHEhu+kJIYLmwMV2zvod14DFHC74gIqIepTWmTgFTjxUJ8AOegEcJYl3WXchEQWQgps9xPMj23IZaZAS3PD5UZiwF2aeAnc2OwcW80TUJk7RlSnMZT9nSGUTpxnNXD5mffCL1KgCtw7NtNukGYgGOql2xvM7DWoaLEwmy7+CbeHQv3vIz0UIIYQQQojiQJJRQoigWTFhCfBjoxQld/evx2mPLVPFUhgm+lKbqkSGtNYKjmDB5Hc8GRd/sC9XcQZlazLU/hce2g2vHYTR26HNWpWgukQ9wwqfaj8AB26eZAUuPAGu0vHB0/Dm02CoBVQE+gBPAOHq8UPpLXlODRJaEfCv4DALVC4Ht48I7YkIIYQQQghRTEgySggRNDNGRtGU8EzJEjtm7qNtIUVV+DpRle+2NaLyaSe2FDdhaR6u3WlhitY/5LXKY9M9bsJAVSJyG2r2Rm2DODckp1dDJXlglwNeOpAny7vwcIyk0JI8+Ww1x3WaLFWsR0gKfiGDAcYPgXJPAc8BgwH7xcfbpCcmrQYoXQkYCViAMFQVlQFM5eDx22DtdIgOLZEphBBCCCFEcVFEho8IIYqL9+jNMZJYyCHCMJGGm+toxCPobpJQMsRu4dqeTzIkJZVjVeyUincSqVngCSM8c2dIS/WgOqUJIwmnT4IkDBN30Cpv487stBM2bwNtKRAPtAI6QJoFfjwBb9TL8dIaGi/yL2+yBg8aFow8RUcepT0G3SbH3POi8Qs7+YotaGiMoRkjaIQp0+9hahPNcZJ1rocKGZNJwTAZ4LW6cN9u/50GX62r/mwwwBM14fku4GgBbAUMYGsBn7WCmyqHdk8hhBBCCCGKGYOm6f0+uOSIiYnRYmNjCzsMIYqdfcSzlziaUE61omkarElUVTWdoiG6BOW6+4+Hucv8j0fY4PRKCA/zfywLuzjHAGZwlGRMGNCAL+jLdTTOm3gD+XA63Psi4EZNArMCFYBHoUYUHOyc46XfYg3/Y6VPO5wdMxPpyR20Dn1Brwbzz8Hf56CKFW6oBBV9W0Vv5A9+Zc+F+VsRWLiS2kznap8E2Fz2MYzffGKzYWYszfiYy7OOI8ENv5yCUy7oWRo6RKlk06xT8PwBOJQKrSNVIirjToOaBq8ehNcPQqoXIk3wYm24q3ror4UQQgghhBBFkMFgWKtpmm7VgiSjJBklRO7tcsCVm9QbciPg0uDNunB3CXljXb0XHDmJy2zA5NEwnv+xGmGDTbOgbo2Ql9TQ2MJpEnHSjkqE5Xcha7IDKnWH5JRMD1jBPAQmjIEX6uR4+fJ8xBlS/Y5XJ5JDjA9tMacX+m1Syc8kD4QbVEXS7BbQqwwAsRynJ9P8ZkFFYOEvhtKFaj7Hv2ULj7CUJFwYgFtoztv00p3fdcGqBLhiI3g0SPNCmBGuKAs/N1PxBMPthQQPlDIHf40QQgghhBDFQFbJqBJUuiCEyBdeDfpuhINp+PSVPbYX2kZB51K+52saLFoFsxZCVATcNAga1y3QkPPa2gGNGX9bJ9a3KY/F5eXG73fz/v3/EuHVoHL5HK1pwEALKuRxpFlYvRlMeokXJ9g3woSaOV7ai6abiAI4jiP0Bb88phJB59vgUjVAgxFb4VgXMBlYyEGc+O8C6MDFfA74JaPG0JxRNOUUKZQmjPDs/nr0anDtFpVIOs/thb/OwvcnYEyQrXZmI5SV8Y1CCCGEEKJkkWSUECJ3ViXAWTd+E6BTvPDREd9klNcLIx+BP5aoChyzGd6ZDO8/CbcOK9Cw88oBEuj1UWOSzCopkWYy8cON9ThQL5oFf1QEu/5A8iInOlJ9ffT0rga2LCqEsmHEQD1KsYd4v8eaUDb0BSef8J3HdF6qFzYkQbsoyhJOGCbcmRJS4Zgpe353u0xMGKkc7JD4jUm+iajzkr0w6WjwySghhBBCCCFKIPl1rBAid+Lc6M6f1lBtexnNXXYxEQXgdkNKKtz7MpyNy+dA88eHrMdp9s3EpdnM/NO1CttfH1dIUeVA26ZQsayad5RRhA3uviHXy79Lb+yZfv9hS58ZFbJAv0bR4HxX3TAa6n5bGoHr82L2lhf97/vzjwkhhBBCCCECkmSUECJ3OkeDU2f2nN0I12RqUZs2V2cmEWAxw4J/8ie+fLaJU7rtYBarlZ0m/0qgIstggLmfQ/VKqn0yOhLCrPDEbdC3S66XH0g9fmMInalCOcLpRjXmMZS+1A59sVurQoTOX1+lzdAyEoAyhDObayhLOFFYicZKacKYxZDQd8jT0zoSbDox2I0wTqqihBBCCCGEyIq06Qkhcqe0BV6pA0/vU615GuoNeX2bf6uSLUwlPTJvnGBAJT6KoQ5UZgmHScO3ZSsND83xnxflwMXrrGYyW9GAm2jCBDpixxLajdf+B38uV4mjEf2gUs5mU/loWBv2L4AV6+BMHHRtCxVy0EYXQB9q0YdawZ28YRssiYUKZWBIH992x1GVYM4ZmH0G3BpY0weYz2oOxovlSj2pwQnu5B+OogGdqZL1QPJQmAwwvRn036wGmKd4VYKsWykYK8koIYQQQgghsiK76clueqIk0zSYcRo+P6rm7dxYSb2RtgYomjxwBD78EbbugS6tYfx1UF7tXsayODUj6rQLerihpxFiGkNEhiqUfzbA5TeDI9Mw66gIOLEMbPqzfIqy4yTThK+JJ+3C2CwbZq6iNr8w2OdcLxpdmMJGTpKanrwKx0RzyrOKGzEG7PvKQNPg1mdg6hxIc4HVrBJ8P70DA3LQ8lbUeL0w6jH49W/weMFixms28sLC23m3bSqgUZZwknBRzWHnqb8bMiyuLlxTASLyKNEUijMumHICTrqgd2noVdq/1VEIIYQQQogSKKvd9CQZJckoUZLdsUPt/JWc3mZmN0L7KFjY2n+b+VUboc/N4HSByw3hYRBpg9ifoVb6zmSnzsKQe2H9VrBY1EyoVx6A+0dfXOext+Ctr32ro24aBJNfy89nmq92cpaHWcJCDhKBhfG05Fk6Y81UhfMX+xnKbyThO0srEgs/czX9qJP9zf5YAtc95N/uGGmHk8uLZULPx/e/wR3P+z2/Q9UjqHnwOr9Ejx0zL9ONB2hXkFEKIYQQQgghspFVMkpmRglRUu1wqF3JkjPMO3J4YW2iaoHK7NZnVYLA5Vafp6bB2QR4bOLFc665F9ZshpQ0SEhSFVBPvgfzV148Z8U6MGb60TNjPsxckHfPrYA1pCy/cw0O7ucUd/ES3fwSUQC79myi84IDVDru8DmejIs1HA/uZpN/1Z+7ZTTAolU5Cb9o+fxn3edXOi6NVhvP+h134OZZVpCGuyCiE0IIIYQQQuQBSUYJUVItjtPfDSzJC/MyvelPTIbte/3P9XrhzxXqz/uPwLqtF5NV5zlSYOLX6s+HjsG6beDxna9Ecgq8821OnkXxkJQMV9zK+BbP8vOwheyv/ROfjl+OwauqwyKwUIOo4NYK2AJ2ibSGufWTSprBgMWlv02dBhwgIR+DEkIIIYQQQuQlSUYJUVKVM/u34oEaBl0x0zBtq8W/mum8iPTB0qfOqtY8PcdOqf+eS1A75+k5fS77mIMQTxqfs4lnWcEc9uLR2emuwN35AiyNxZzipFS8k/A0D6O+38N97/2HAbBiYjiN/C7z4GUq2+nMD5TjQyJ5n/tHR+GO0GnF83qhd8f8fy757abBYPd/fmlhRta1Lad7iRsvlYjI78iEEEIIIYQQeUR20xOipBpYDsw6ySizAcZV8T0WZlU7ms1aqGZGnWcLh7tHqj83b6ASIplZLXBVD/XnJnXBpJPUslrg6t45ex4ZbOAkvfgJN16ScRGJhaaUYzEjsIW6W11eSU2Dn/+ENKfP4QiHm8fe3Ey37WlccboUEdfMVbviWdWugl40BjGLhRz02anv/asiaXN9LUZN2Y/Z6VYJQAMwbWLxnxcFcMu18PM8WLMFkhxo4VYcJi8jp/XBq/O9Y8PMCBpSirBCCFYIIYQQQgiREzLAXAaYi5JsfSIM3AyJHpXQMADfN4GB5f3PjU+E/uNhww4wm1RS6upe8OObYE7Pa38yFR55U7XmAYRZoGxp2DgTKpRVx6b8oXaDS3Wq5FV4GJQvDetnXNyZLwc0NBrzNTvxrbCyYeZJOvA0nQNffOQEvPI5LPwHqlaEXh1g3jI4eAw6tYIX7oWm9XMW2Ll4qNzDN4l3IWYwGI3qdYiwQYuGsORbsFqZxz6G87vfsPPzBq9LY9af5SE6EoZfCRX1q4aKJa8X/loBC/+FSuXZP6oHYyvHspwjeNEwY8SU3pZ4I034iD6Eye9WhBBCCCGEKFJkN70sSDJKlHheTQ0td2pqJz1rNt27G7fDvsMqcVKvpv/ji1bBxG/gyEno3x0eHOOfZIrdAu99BweOQr9ucOf1UKZU6LG7XPDuZPj0Jw6UNdBkxeWkWP2rvRpQhp3crL/GkRPQagjEJ+vPKzIaVdvYv1OgWYPQY9Q0aHgV7D6Y/bkRNvjgKRh3LfeykA/ZEPBUA+DhIQyXyqyoIKTixogBEwaOk0wZwrEXVsWbEEIIIYQQIktZJaPkV8lClHRGA7SPDv78Vo3VRyC9O2Y/uyimOXz3evD3DGTEQ2qAekoqRmcEmseD3o81/33tMnjtC0gIkIgCVaWTnALPvA8zPgg9RoMBPn8eBt6lWvU8HjU3K/Ogd1D3+WkejLuWMoRT7UQq3f8+QmKUhfl9q+EMu/hMKmLPVSLKi8Y/HOUsqXSmCuWx65+oafD3vzB1DphMMHowdGmT4/vmRniGr221YAe+CyGEEEIIIYocSUYJIYqn/3ZdSEQB1DicTL09CWxtWhotw7B1G2bG0TzwOgv+0U8MZaRpsHJDzmPt3RFif4K3v4Vte6BWVfj1b5V8yshggNIqMXj/G+t58n9TcVqMaIDHZOCqeVeyumNF7Jh5ipwPK9+tneWtma8x8sN11Ixz8t6wOkTdO4bHoi7zPVHT4LZnVSIqOUXF991v8MBoePmBHN/fZ/2V62HzTmhYW7VHBhqUL4QQQgghhLhkSJuetOkJUTx9OwvueQmSHBcObW1Smh5LB5AWYSXVZiIMM+2pzDyuDTxT6PKb1WyibCS2a0Ba7JTAFUSh8HqhxmVw9KTvcbsN5n6mBrr3GQeOVJ+Hz5axUvfEGCZYuvIY7XNUGaWhMemxsYz8eD2RySoJ5wg3cbBOFIdjv+Jye4aqt383Qp+bL84AO88WBptmQf1aId//gqRktfbWPeDxqsH2NavA0u+gXOmcryuEEEIIIYQoErJq05NfQQshiqdaVf0ONd0Wx8EGM/h0bhgv040/uIa/GZ71cOvHblEzobKQbDdzx9P1qMHn3M0CvOQyiW80wrzPoVI5iIqA6AgIt8Izd0CPGPjiZ0hJ87ustMfCmb9jeJwOOW7R23p0Gze9v+5CIgrAnuqh+oEktn/3re/Jvy+6UHnmw6vBnKU5uv8FT7wDG3eoZGJKqvrvrgNw5/O5W1cIIYQQQghR5EmbnhCiyIsjlS/ZwmIO0ZAy3EVr6vWIgSoV1DB1t+fCuXa3gRs7XQ9UDG7xK7rCW4/B428BBjXXqUJZOH2ONDOkmmHCK+34cUg1wMM3/EddSvMwugn+4LVoCIcXwZI1EJ8E3dtd3HEwMVm1sGViBEjWSQ6FwPDPRpxhRsLTPD7HIx1uWs3ZBuMzHIywqZ0SXZl29DObVBVXbnz/m3qtM3K5YdZCVTkm7XpCCCGEEEJcsiQZJYQo0o6TTDu+4xxppODGgpHP2MgfxmvpuWQy3PgYrFin5hnVqgqTX4WqwSWiNDRiOcGuO1vR8pbfab49ASqWhcoVcCcm0ur0u+ypHo7bcjEx4sDNu6zNfTIKVKKnT2f/48OvVJVHmWdKOV3Qu0Pw62/bA8dPQ+vGF3YrrFuxLi6dwi63yUB09Rq+B0cOgJc+hUy5KLwaXHN58HHocXv0j3u9kowSQgghhBDiEifJKCFEkfYcKzlFCi68ALjw4sLLOOaxp8qtGP7+Gs7FqyqbyhWCXjeOVK5gOls5ixHwWDW6t6zOrwwmDEiLCmd3VAQenZa8c/i30OWpa/vCpF9gxXpIdqjETLhVVXClJ5WydOosDLhTDXm3WNRr88St8L+7Ce/aHle50niST2PyXnxurjATDe66y3edOtXh0+fgjudU4gzUfKdpE3M/12lAT/hlvtpd8DyjUVWImeWvJiGEEEIIIS5lMsBcBpiLEkZDIw0PYZhyPHeoIFXlU46R7Hc8HBO7uYVqROVo3ZHMZga7cKYnuc6v+QDteJXuADTiK3Zyzuc6A3AltZnL0BzdN2gej5rZ9Mt8KB0FtwyF1k2Cu7bnaPhng+8ugRE2mPyaSnTtO4xj0HhMew/jMRkxmUzwxQuEDeuvv965ePhrpRoy3q8bREbk+ulx5AS0HwEJSaoCzB4OtnD450doUDv36wshhBBCCCEKVVYDzCUZJckoUYL8wk4eYjGHSSIKC48Qw5N0wliEk1J6CSGAMEwc5w5Kk/XwcT1uvETwnk8i6rzy2DiFqhBaxEEGMpNUPHjRMGPAhoV/GEkzyof+ZEJ16Bg8PhHmLlMzmu68Dh6/VVU7BXLkBNTvB6k61Vtd28Ly7y9+vmOfSga1agRWa97Hn51kB/wwG9ZtheYN4KZBUCpnyUUhhBBCCCFE0ZJVMkp6IYQoIf5kP6OZiwNVLROPk1dZjRMvL9A1Z4uejVP/LVs6T2LUcy9teJylF+IGMGOkl1ad0n/Fwve/q4OjB8PlndXsqGx48Oq23wGkZrhPb2ryLzfwBmv4jzN0pDKP0YE6BNEqlwPJuDhKEtWIxH42GdoNV6+xxwtxifDKF7B+G/zyfuBFziWoAeN6Tp/1/bxRnTyLPUci7HD7iMKNQQghhBBCCFHgJBklRAnxLCt8EjqghnG/w1qephNWAiQw9OzcD6Meg4071OdtmsB3r+VLe9WdtGINx/mJHVgx4UGjPqWZOX49/Djv4pDvmQtUZc0n/8t2zTDMtKUSazjuc9yIgX74PocWVOA7ArSv5REvGo+zlI/YgAkDXjR+mXSSK5McGDwZqrdSUlWV1M790LC2/mKNausno8wmdX33UTDqahh3TY6qoX5kG/9jJYdJpAnleIMeXE6tkNcRQgghhBBClFyyXZEQJcQe4nSPe9A4Q4ruY7ocKdD1Roj9T+3u5nTBmi3QdZRKduQxE0a+5Sq2Mo6vuJJFjGD92rbYfpjru9tccgpM/hU2bg9q3UlcQTRWwtOTcHYXlEtw89aHR+DkmTx/Hll5hVV8zAZScJOECwdu3CvWYdB7PS1m2LQj8GIWC3z0jJrBdL5KzGhUu9cdPA7L18FDr8MVt/oODw/C52ziNv5iN3Gk4mE9JxnELP7mYEjrCCGEEEIIIUo2SUYJUUI0DzDjyIqRCtiDX2j6X2oeUcZ5c16vSkT98lcuowysDqUYSkPaUxnDvOWQ5vI/yelSlUNBaEkFdnAzE841YdhvR3j+mXXsqPUjtR79HBr2VzvRFZC3ifWrWtvUtBRpVp0KJ49X7XKXlRsGwqJv4LqroHVjMGZqXXSkwtqtMGdp0DF60XiK5X5xpuDmCYJ7zX1oGuw5CPuPhH6tEEIIIYQQoliTZJQQJcTLdMOeqTPXjpnn6II5lB8F+4/4ViSd50iBA0dzGWWQIiNUhVBmFgtEBb/TW2UiePaWP/j5mj955PX1lIlzqkRbQhLcnn27X17wonEO/2Hjn9zVBKc1UxLJaoGm9aBt0+wX7tASprwF40foDzxPcsBfK4KOMxEn8TpxAmwjxEqy2C1Q/0poOQSaDoQmAws0+SeEEEIIIYQoXJKMEqKE6Eo15nAtMVQiHDN1KMWH9OEB2oW2UEwziLD5H7fbIKZ53gSbnRH90NsA0GvQeH54FFczk9dZzdlg2g//XA7eTMPMNQ3+3QQuneqrPGbEQBPK+h0/XCOSu/6+EVo0BLNZJaKu7gV/fhHUkPYLypXWnyEVZoFK5YJeJhKLXzLzvNpEBx/PuXjoczPsPawqtFLS1K5+PcfkS5unEEIIIYQQouiRAeZClCA9qcEaRuVukSu7QYNasHUPpDnVsXCr2pmtb5fcBxmMKhXgx7fUEHWTCdDweDyMnNKLXyvuxomXhRxgIrGs4yaqExV4rTCrSopkZjalr53/3qM3Q/j1QgucAbBh5rb218Gmx1WlltUC4WGhLz6wl34yymSCMUOCXsaEkcfpwEv869OqZ8fMS3QLPp4pc8Dt2+qHpqnvpZkLVIuhEEIIIYQQ4pImlVFCiNCYTLB0Mtx/E1StCNUqwf2jYfE3alB2XnN6waP5Hx/SB04sg8mvwnev0+HEeH6+uhpO1O5zKXg4SyoTsptnNO4a/ySP1QLDrsj98zlyAl74CMZMgK9+CVj505faLGA4V1KbGkRxFXVYzHX0IH02VHRkzhJRALZwWPiV+jpF2iE6AspEw/R3oUaVkJZ6gg48R2fKEIYJA1WJ4HOuYDD1g1/k8HH95F+aE46eDCkeIYQQQgghRPFk0DSdN3klSExMjBYbG1vYYQghMluTAON3wsYksBhgVCV4rwFE+Ff5nCOVSnyCKz0RlVEZwjnL3YHvk5IKA+9UbXlGg6rSaVIX5n8JpUNoP8ts5Xq1Y53boxItETZV0bV6GpQpFdQSGhpuvFjIgwotrxfWb1ND3mOa6c+RCpKGRhqe9JRUCC2DAHOWwHUPq5lVGUXY4K9J0KVNjuMSQgghhBBCFB0Gg2Gtpmkxeo9Jm54QoujZlwKXbYCk9ORSmgY/nICDafBXK7/TVVJEXyTZJF1s4bDwa9iwDTbvgoa11PDvUOYyZaZpqoUw46D35BTYewgefQsmvZjl5Wm4eYylfMFmUnHTgvJ8zOV0pVrOYzIaoV2znF+fgQED4Tn96+PKbtCsPmzaoeZFAdjDoWsb6Nw6T+ITQgghhBBCFG3SpieEKHreP6wSUBmlarA8HnY6/E63Y2EgdbFm+pFmx8yd+CevdLVuAjcNgo6tcpeIAjh0DI6f9j/u1VS73oz5WV5+E3P5gs2k4EYDNnGaK5ge+q51RZHJBIu+gWfuhMZ1VWLqpfth9ie5f92FEEIIIYQQxYIko4S4RHjwMo99fMIGVnMMjWLcgrs5GVw68VsNsEt/h7xJXEkrKhCBhWishGNmIHV5lPaqUunkGYhPzOfA04WH+e/Qd54GjHvy4vD3TI6QyG/sIQXfId9peHiTNXkcaCGxhcOE22HbbNjyGzw4Jldtg0IIIYQQQojiRdr0hLgEHCGR7kzjNA7caBgx0JHK/MG1OW+nKkzto1QVVObqqDQNmtl1LylDOKsZxTpOsJ8EWmrlqL9sL8yeCFPmwqkzKhHUuwNMfg0qlgs9ru9/hxc/hqOnoFVjePMR/dayiuWgXVNYuSHAQgZYtQl6+LdP7yWecEyk4fE57kFjEzrVVkIIIYQQQghRzEhllBCXgNHM5SAJJOIiBTfJuFjJUV5lVWGHljP3VQebCZ9BUDYjDCoHtW1ZXtqWSlybUIX67W+Hq26HN79WO7iludTw7r9XwWXjVLVUKN6bDOOfg50H1PDtFevg8pth9Sb986dOBFuAHfC83oCPNaQMqZkSUQBmDLR3V4DUtNDiFkIIIYQQQogiRpJRQhRziThZxhE8mdryUvHwJVsKKapcqhIGq9pC/7IqCVXBAo/WgO+bBHf9w2+oYeSOVP/HXG44cBT+2RB8PC4XPPM+ODK1CDpS4cl39a+pUQV+fFO17GVWKirgMPFKRDCKJtgzVrRpEO5w82jT5yAyBnqOVsPQC9r6rfDKZ/Ded3DsVMHfXwghhBBCCHFJKIb9O0KIjNx4Az7m1KmwKTYa2mF2y5xd++NsVQUViMEA+49AlzbBrXfyLCTpz6pi9ebA1w3uA+NHwGc/gcmodrSzWuCPT9SfA/iMvtShFO+znngtjS4rT/DuPcupuytenbB8HXQeCXv/ggj9tkUADY3lHGE9J6lDKa6iDuac/A5C0+DuF+HbWarCzGKGCe/AR8/A4tVqILsBGHYlvPUolC0NiclqLlb5MqHfTwghhBBCCHFJk2SUEMVcGcJpSjk24lupYsHIUBoWUlSFLLtWNrc7YGWSrnPxgdv6vIGTgRgM8O4EuG+UStqUKw1XdQerNcvbmTDyFJ14ik4wcz6M/UEldzLe05EKP/8JY6/RXcOBi8v5mbWcvJCUjMDM34ygA1WyvD9zzsCbh+BYGvQtC92OweRfL1aaedKTnLc8hU9B3uTfYOlaqFsdlqQPW69bA759BTrkMLEohBBCCCGEuORIMkqIS8BkrqIH03DiIQU3kViogJ2X6FrYoRW87XtRZToBkkf2cOjfExrVCX5NDVUN5HL7P1ahbPbX162hPnJiz0FI0UmuJTlg14GAl73AP6zmuE/7ZjJuujGFw9xBRQJUVL13GJ7cC470JNveo/DFd5CmUxmW+SX2eFS8+w5d3E1w+17oczNs/wOqVcriiQohhBBCCCFKCklGCXEJaEkF9nALk9nKTs7RmSqMoFGR3UnPgYsEnFTEjtFnSnkeWLcV7GH6bXW2cHjuHnhwdGhrNq0HpaPg1Dnf4xYTjB+e81iD0aoxhFshKVMiLNIOrRtf+PQoSTzBUrZxls5UZQrb/eaIAbjQeJtYXqOH/70cHngqQyIKwKWBMcRh797MuyA64fOf4fl7Lh7TNFjwD0z5A0wmGD0IuvvvLiiEEEIIIYS49BTNd6pCiJCVw8Zl1CCBNA6TxGESqU/RmtfjwMV45vMzOzEAZQnnEy5nEPXz7iZ1qoNegstqgYfHwqM3h76myQQ/vAlD7lXDzF1uVWFVvxbcOyq3EWft8s5QvyZs26PmNYGq0qpcHob0AeBP9nEVMy6knmI5keWSKzii/8DWZDDpvHbeDmBYB1oOd/JzueG/XRc/1zS47VmYOgeSU1Q745Q/4K6R8MYjObuHEEIIIYQQotiQ3fSEuEQ8xlI6M4UX+ZfnWElLJvMJGwo7LB838AfT2UkaHlLxcJRkRvIHqzmWdzfp1EolpCyZcu1WC9xxXc7X7dsFtv4GT9wGY4fAFy/AmmlZDhDPE0YjLJkMt42AsqVUhdbYIfDvVLBYABjG74GaEnU1p7z+A5Ws4NRbqSHU6KUqy0ymEJ9AuqVr4VD613n1JpiSnogClZxKToEPfoCd+3O2vhBCCCGEEKLYMGiBhvKWEDExMVpsbGxhhyFErsRynJ5Mw4FvK1c4JvZwK1WJLKTILjpKEvWYRGqmHf4MwBDqM4PBAa/V0FjKYZZzhErYGU4jShEW+Ganz8HYJ+GvFarqpn5N+PrlS3KI9kkcVOKToM8Px8R6bqIx5fRPuHwDLIv3TUrZjfB7Cyh/Uu0M+OlU/1a8YJQvA9tmw3vfwcuf+Q+FD7PCaw/BAyG2UQohhBBCCCGKHIPBsFbTNN1ZHNKmJ8QlYDo7ScV/uLYRA7PZy+0UfhLmMIlYMfklozRgN3EBr3PhYSAzWcFRUnBjw8TDLGEBw2lPZf2LypeB2Z9AUrJqbStXOs+eR744fQ7mr1TJmH7dwG4L+lJzNjO3OlCZWI5jwEB1IvmKfoETUQA/N4Prt8LSeLCkrz2xHlxWBigD7z+pklE5keRQ10bYVOWa05XpyZjUY0IIIYQQQohLmiSjhLgEmDBi0NlBzoABU14PCM+hRpTFmSkRBWDBSDeqBbzuCzaznCMXqr6S0/87jN/Yz23pzzuAyAiKQFFY1j6dCg++rhIxBoOqFpr5PlzeRff0jZzkGVawhhPUIZpn6ExZwjlLqt+5banIKm4kGRfJuKiALevXC6CMBf5sBcfS4JQLGtkhLENHt8kEbZrC2v9Cf66paTBvOVit/okoUNVW1/YNfV0hhBBCCCFEsSIzo4S4BFxPI6z4z/Lx4GUQ9QohIn+lCONhYojIkAM3YsCOmcfpEPC6r9ji134IcIZUtnImX2ItMFt3w0NvqCRNkgMSk9V/h9yr/pzJek7QlSnMZi/HSeYfjjGM37iP1j5Jx/ar7Xx6dy2W3dwa5p0hQjNTEXv2iaiMqoRBy0jfRNR57zwOtizaJAMxm2D1Zli82ve41aIqon5+p+hXsQkhhBBCCCFyTSqjhLgEtKACz9CJF/gHDZXkAfiCK6hAPg/YDsGLdKUepXmTNZwihV7U4BW6UYvowg6tcEz+Te3Ol5nRCLMXw8gBPoefYNmFyrDzHLh5gVU0oDTViWLMKxFc/7IdcyoYvGfgp3NwdXn4sYmqvMoL3WNg6kS47xU4ckK1Fw7sBR4v7D0IdWrAqo1w7DR4MlXDeb3+s6I0DXbMgWqV8iY+IYQQQgghRJEmySghLhET6Mj1NOY39mDFyDU0oDIRhR2WDwMGxtGccTQP+pqbac42zvhVR5UlnKZZzT4qDpIc4PZvXSQ1DRz+bXdrOKG7jBeNHZzDcziV614sjyXjpcle+P00LIpLn/uURwZdBlf3BkcKhIepBNo738KCf2DLblXp1LwebN2rkmC1qoLLDfuP+K9lC4djpyQZJYQQQgghRAkhbXpCXELqUIr7acudtM55IkrTICVVVbAUAbfRgm5UIwILRiACM9FYmc7VobWdFUVDLtOvVnK5wR7ud7haNl/THn/acZr8v25ashdmnMpxmAEZDBBhV3OkPvoRnvkA4hLUPKhzCbDroGrpO7pEVT61a6r/fJ1OqBFgGH1RF7sFeo+BqBiofyVMmu5f+SWEEEIIIYTwIckoIcRFsxdD3b4Q1R5KdYAJb4Pbf15TQbJgYh5D+YNreJ6uvENvDnI7Haiie/5BEniYxfRiGg+yiAMkFHDEIShbGkwBfgxPm+t36Fk6Y8+ioNVh9+LVyfW4zRrOqHxO3L34iaqS8gkoFV7/Us2BMhjgidv8Z03ZwlSVVaXy+Rtffti0A3qOgcVrVJXbnkPwwKvwymeFHZkQQgghhBBFmiSjhBDKsli47iHYf1TN+UlywPvfw30vw8kzhVopZcBAT2rwNJ24jZaUQn949mZO0Zxv+YD1LOEwH7GB5nzD+gDtbYUuIQnsNvbUjeKuj7rQ6Z+rueOTLuyqHw1n4/1OH04jXqM7pbBi1qkKmz0wHqNOUY7borFotDPrWE6dhZEPQ3hrCGsFQ+9XrXPB0DQ4eVb/sYxrxDSH6e+qlj2rBcKtMOpq+PbV4O5T1Dz3oaoizCg5BV79QrVaCiGEEEIIIXQZtBLeThATE6PFxsYWdhhCFL7Lb4aF/+o/FmaFsqXgw6fh2r4FG1cIejGNJRz2O96FqqxgZCFElI1kB+v7DqLHn5eTGmbEbTVhdnkJT/OwaHZFYq6/WfcyFx42core/EQSvgPQ+yyIYuY19fAawABYXAYee/coHce3ZRRN9eNwu6HJQDhwVLUIgtr5rkoF2DVPff2zU/cK2Of/2tO4Dmz7w/eYpql2vggbWINYu6iqeRkcOu5/PNIO66ZDg9oFHpIQQgghhBBFhcFgWKtpWozeY1IZJYRQdu4P/FiaU1W43PQ4rFhXYCEFy4tKqq9AZzg28C9H0SjAxLvXC38sgTET4M7nYfUm/fMi7Nw7cwhJURbcVhMAbouRpEgLdw+3BFzegokYKjOfYdShFDbMhGOiPqX55/IUKp3YyLhv9jP+swNUP7yJSeNP04/ageOdsxROnLmYiAI1WP1cAsxcENxzfutR/zlXYVZ4/Fb/cw0GKFOqeCeiABrU0j/u9kDlCgUbixBCCCGEEMWI7KYnhFBaN4bDJ7IevuxIhZc/gzlFYybOJDbxLCs5RjI1icKCCTf+M65sWApu2LmmwfAH4a8VqtXRaITJv8Izd6qZSZmsqqTfPrfGdBINLcu4O1GVPdzCARKwYqIKEYxiDr/a9zDr2jhMGLBgYiI9KI89cMxb9+ju3keSA/7bne1TBlTFXLgVnnoPtu9T1VYGA9z5Anw8BWa8D9WL6ZDyQJ69C/7d6Pva2cNhzBCIKlo7WQohhBBCCFGUSGWUEEJ5/h7/4dJ69hzMm/tt2wOPvQXj/wdzloQ8k+pzNnE/izhGMgAHScSFB2umH2s2zNxKi7yJORh/rYA/0xNRoJ6XIxWe+wiO+M+uikS/OigyyASaAQO1KUVVIjFg4Hv68xtDuIvWPEwMa7iRu2iT9SJN6uru3kekHZrWyzaGC/r3hKkTwWhQ1UGpaepj3Tboc/Olt8tcz/bww5tqJ0CzWbUd3jUS3n+ysCMTQgghhBCiSJPKKCGKm807YeV6qFwe+vcAS+B2rpC0aQp/fw0Pvwnr/lNJhMy5A5MRumRKbJw8A/OWg8UMA3pCdKTf0k48TGcnCzhADaK49+v9lL/7LdUW5vbAj3+oN/a/fggmU7ahamg8ywocmaqg3GhEYMaIgTBMpOHhCmrxGt1DfTVybuYCSHb4H7eYYf5KGHuNz+G7aMU7rCMlw3OxYWY8rXSXP0sKc9iHEQNXUYcy+CaRDBi4jJpcRs3gYx7QEyqVU1/zjDOjykSHPiPs4yng9J1jhccDR0/CPxv8v3+KuyF9YPBlKvloDw/q+1cIIYQQQoiSTpJRQhQXHg/c8Cj8vlhNpjaZ1Jvfpd9Bw9p5c4+OrWD59+rPL3wMb3ypdgcD1XJlt8FT4y+e/+lUePB1lbgwGFSMP72jkhvpknHRhSnsJY4kXJSP9/DE3d9BiufiOkkOWLwGfv07qOSHGy8n0Un4oBJfO7mZ7ZylEWWpQymfxzU0tnKGRJy0pRJW8jh5EBWhvjYej+9xg0FVzmTyHF3YTwIz2EUYZtJwM4h6vEy3iyedjYONO/i1ajzXN9qKOb36y4PGN/RjBI1yF7PZDCt/VDsnzkifETWwlxpYH8zw8owOHFUJxsyMBpWQKg68XtVeGSyDQdryhBBCCCGECIEko4QoLiZNh9lLfLeST3LAtffBlt/y/n7P3Am1qsLrk+DkWejaBl59EOqnD23evhceev3CFvZukwGTR8Mw4kE4vEgNqAbeZx27OEsKKkHRddEhnBYjtpRMCYtkB0yZE1QyyoKJykRcaNHLqB6lqU0pamdKQgHs5hwDmMkREjGlJ3QmcQXDc5vMyWjMEPhoim+yDVSLWv8efqdbMPEDAzhKEjs5RwNKU42oi9c8+wG89TXeMDN9XaksbFmOQb/35Ux5VRE1lnn0oDqVyWUypEJZmDIxd2sA9O2iKsAyz6BKc0HHlrlfPz99OwueeheOnISqFeHl+/0q2YQQQgghhBC5JzOjhCguPvsJHCm+xzQN9h6GvYfy/n4Gg0qsbJ0Np1fCrx9B0/oXH/9hNrg8LOpVheabr8XqHEep+Jt48rnWuH//+8JpU9h+IREFkBoeIAceoHIokFfohj1TPt2GmVczVhRl4EWjDz+zi3Mk4yYBJwk4Gcs8tnIm6Ptmq3kDePsxCA9T1TLnP37/GCICDxGvSiS9qHExEQXw8zx451tITcMYn4zd4aHd2tNMvX6Rz7W/sDPv4s+tMYPVTnIZK6oibHDbMKhRpfDiys7kX+GuF1QiClQV190vqgSVEEIIIYQQIk9JZZQQxUWa/q5rGA3+M3oKQkoq61qWZuDsvjgi1NyqxGgr793ViLP7j/Np+mmZE0Z/X1YFr1FnMLctHG4dGvTtx9IcM0aeYQWHSKQepXmd7gyhge75SzlMxa3HGLD4IKcq2Pj96hqkhZtJw8OnbOR9Lgv63tm643oY3g8W/KN2mLuiq3p+oZr4zcU2yXRhLi/dlp+g4okUTlay4cHrM29KV0oqbNqhqp/q1gg9jlBERkDsTyr26X9BdATcNwpuvDp/75tbz7zvX83lSFXHxwwplJCEEEIIIYS4VEkySoji4oYB8NJnF9riLigdBY3qFHw8Q/rwUvejpIT7zlxyRJj5tkkqr5JKGcK5k9ZsYSHJqISZy2ri6tlXMK//X0RqFvBq4HHDYzdDt3YhhTCKpoyiafYnaho1b3mDJVMXA+A2G3FZjPRZeBUbW5fjCEl+lzhwMZFYvmMrBgyMoxkP0o6wYH9slisN110V/JPRczpO97DLYqDMuTROVrJhwshA6gZe49Op8Mibao6VywWtm8CsD6BiudzFlpUypeCl+9VHcXH4eIDjJ1QFoiH7nQ2FEEIIIYQQwZE2PSGKiwdGQ+M6EJne6hVuVe1PP75VOG+Uu7blv45V0Uz+P0asRjMHSADgJpoyjAbYMBOBhSgs7O1al+PH58HXL8MHT8KuefC/u/Mv1mlzqf3TCuwpHuwpHqITXZQ5m8Zvg+YToZn9kjkevPTmJ15lNbuIYyfneMG9giu2voH26Juw+0DQt3bjZTZ7+IB1LOMwmt8WhVkY0EPtwpdJWpiJvfVLYcfM/bShMQESS4tXw8NvqOqqhCRISYM1W2BQPr7WxVWtagGOV5VElBBCCCGEEHlMKqOEKC4i7LB6GsxcAItWQ80qarhylQqFE4/BQJtKTdjt3Yk3Uz7KiefCLnZGDHzDVUygIys4QjxO7Jg5YnNRb2hfDOT+jf5BEniARcxlHxZMjKYpr9GdSNLnFn32E8Zk3xYsI1DmnJP+G9IY2aaxz2N/sp+tnPFpf0sxa6yrYWTJ+r/o1WoKTHtb7TiXhSMk0o2pnCEFJ17MGGlFBeYzDDuW7J/Yk7fDT/MgLlG1aRoMeGxWZn1yA+PNbbiRJnSiauDrJ37j33rmdquWvd0HLg6jF2o4/81P+b5e9nB1XAghhBBCCJGnJBklRHFiscCIq9RHEfC0oTO/G/biyJC0sWNmPC0pRZjPudWJ4mv+Yz0n0dAwYqA20SzmOsoR/ODyzBJIoz0/cJoUvGik4mESm1nHCVYwUiW7nPrztqwGE986+xCe6UfhKo6RhP8crtRwE6valaPXwiMwegKcXAbmwD9GxzKPQyTiSa+GSsPDOk7wAv/wGv476/mpXEHtlPj+92r+VO1qmB4aw60xzbO/FuDYSf3jFovaITHUZJSmwY59akZZs/qq9e9Scd1VqgLqqXdh/xFVEfXKgzCiX2FHJoQQQgghxCVH2vSEED68aHzGRprzDbX5nAdYxGkcuuc2pzx/M4LOVMGCkUrYeY4u/I8ufM0WXmUVS9Nb055mOWs4TjIuHLhJwsUOznEH83MV72S2koQTb4b2tzQ8bOI0qzimDowaBHb/hFeYJQxbu1Z+x6sTRYROrt6e7KLjv+kJnqRk+GNpwLiScbGEwxcSUeel4uFb/gvmqSnly8AL98LKH+HHNyHYRBTAVT18d7VLp7nd0LJh8OsAbNsDjQdAu2HQ9Uao1gv+/lc9tmkHTJoOfy4HjyfLZYq0Ef1Uy6hrM+z+UxJRQgghhBBC5BOpjBJC+LiVP5nGjgvVTp+wgZnsYgtjicI/sdGRKqzkBvVJmpN1ptPUMn+BGy+puAnHTFeqsprjpOGbqHDh5Vf2kIKL2exlKYepRTSjaUZF7EHFu5YTPpVZF2n8xxnVxnbLtTDlD1i/DZIcKkFjMqrkjk5l03U04lGWQoZ1raku5vT/iy7/pCejXG64/iH44U24tq/fGh68AWN2ZfFYnnpgNNrXM3CdPoM1Tb32yXYzH7zSlVsiDQTd4Ol0Qq8xcOqcqo4C9TpefRd0j4FlsYBBvaZlS8HSyVAzi/ZBIYQQQgghRIkmySghxAX7iWcK20nNkDRy4uU0KXzNFu6jrf6F/+2CW59FW7OZobuGEV8n6sJDybhYzpEACSOVtOnIj+wjniRchGPief5hPsOynoeUrgXlsWP2W9+AgUaUUZ9YrbDoG5izFOavhErlYcxgqF5Zd81owljCCK5nNvvdceBy8djrm+n070nfCVepThj7JAzo6VeBFE0YbajIGo771EZZMDKcEKuScqpcaT7d8D8S35lE3zkHOF7ZxtsPtWBJ3xosYS5zGap/nabBqk2qJa9ZfbXTXEraxUTUeWlOVR3lyvDaO1Lg+odh5ZT8e15CCCGEEEKIYs2gZX5zUcLExMRosbGxhR2GEEXCdHZyC3+SgP+MpUHU41eG+F90+hw06AfxSWxrFE3MmsE4IoMYzp2uInYSSPNJgAHUJpq/Gc7nbGYvcfSiBqNpRkSmwd/nSKU+X3KO1AtJHytGmlKOddzEWk7wOqvZSRxdqcrjdKAW0UHHd1CLx/jMB1R/ZYp/MgYgOhJ++wh6tvd7aBtn6MoU0vDgwE0kFiphZxU35mpOVijqM4k9xPsdt2LkJHf5zfYiPhH63gJb96Yf0NTsqqMnVEIqGGFWOLgQKgbY5S+Qg0dhyhwVQ/8e0LWt7GQnhBBCCCFEMWUwGNZqmhaj95hURgkhLqhOpM/spfMsGKmXvjuen69+URUy6YmaUFMHHrx+iSiAYyTTjG/x4MWJlz/Yy5usYQ2jfBI5ZQjnX25gPPNZwmHMGBhOQz6kD3PYxwh+JwU3Gio59CPbWM2NNKRsUPHVNJSCl56GFbth8Wr/EzQvhPu3LwI0oRz7uI3v2cou4mhPZYbRgLAC/NGbrDOIHVTlWApu/2TUfa+oGVBpGa47dAw8IbQWGg3qeyIUP8+DMRPUfVxuNbR9UG/VBikJKSGEEEIIIS4pMsBcCHFBR6pQk2jMmVJKFozcTRv9i7bsulAx03h7POVOp/qdYsFIoH3XwgI8koaHFNw40+crJePmCEm8wiq/cxtQhr8ZgZMHSOUBvmcApQjjDubjSE9EgZrVlIiLCSwLEE0WHhwNETrVTFER0L5FwMtKEcbdtOHdlM7c+M12wm56Cp55X1UBFYBB1MOs86O+BlFUyjyXS9Ng2lzfRBSo3fMMBv3nr6dqxYAtkLqSkmHsU+r7yOlScSSnwG+LYPbi4NcRQgghhBBCFAuSjBJCXGDAwAKG0YVqhGHCjpnqRPIbQ6hHaf2LOrS8kKQwANOH/010vJOIJBcGDSKx0JEqAUd2R2HFrlMppFcL48TLL+wKGL8JI4b0K0+RwilS/M7xorGEwwHXCOjq3nDLUAgPUzvzRUWoYd2zPwFjNj9K4xOh8RAY/yJ8/zu88RU0vVq/0iqPPU9XKmK78BpbMRKBha+58sJrdYGm+c5/yshkhA+fhg4tAj9fkxEi7fD9G6FVMy1aDWadNZNT4Iffg19HCCGEEEIIUSxIm54QwkcVIlnCdZzCQRIuahPtn7QA8HjU7nQtGqoERGoaeLy0jz3NwYYzmfZYV44/PILuVKM9lSnFBzoNgHCIRC6nFgu0A9jiU7l2+l5KxTl5/4FmOM3+940I8sdWFIHnVuVoXpPBAO89CfeNgsVrVCKqfw+/weV+3F6IeS29Eio90eN0ghMY9RgcWpSvbWiViWAr4/iKzSzlCA0pw1201p+bZTRCj3awJNZ3PpbRCFd0gbHXQMeW0PE6SHT4Xx8VCVt/hypB79OnmIwEbPA0BaqpE0IIIYQQQhRXkowSQuiqgJ2AKYVlsTDsgYs7rNnCoFcHtQNbmJVSo6/h9rvuBcIBcOMlDDMpOjvqlSGcXxnCjptupfbP/2LyaJg8Gv92KM8/nSvisVysmLFj5i5aA5BAGjPZzRlSuIyatKaiz7o2LFxHI35ih89MKjtmHkV3hl5w6tVUH8H65CjsWQF6uwmeS4TdB6BB7ZzHE4RShPEgMTwYzPP+9DnoPFLtFJiSCvZwVQn23pPq8QplwRmgeqpFg9ATUQCXdQK9VGWEDcZdE/p6QgghhBBCiCJNklFCiNCcjYP+d0BShsqYJAes3gyHF0GpKL9LzBgZSzO+4T+fhJQdMy9vqgDXDaDR9n0+10wduYjL/u7P0VrRYDTi9rq5du5R7lj+J2smhNOn/AI0NJx4MGPkGhrwCt34mi3sIZ5eVOdtehJHGn+xnzBMpOHhHtpwC4FnPOW5z4+BFqBKy+MBW3jBxRKMRnVg1zw1mH7jDmjXTCWESqdXUpUvA/27w5xlvkPK7TZ4/Nac3TM8DKa/B9fcqz53e9QQ9NuGQ5/O2V6+lzie5x+WcpjqRDGBDvSnbs5iEUIIIYQQQuQ7g6a3VXkJEhMTo8XGxhZ2GEIUHx9PgUffBEemQeUR6dUztwzVvSwVN6OZy2/sIRwTqXi4/3QdXqv/Mob4JN1rNGBZ35ocrman/fKjNNidgGa1cLRSGE22XENi9MUWufD0Qegaavh5BBYqE8EabsSBi8Mk0YgylKaAkz+NV8GOv4BfUL15pMdp4EzzWly5eSQWjNxKC8bRHFNxGOWXlAyjHod5y8FqUdVxrz0Id9+Yu3XjEmDGfNUCeGVXaJx9QmkvcbTlO5Jw4UmvrrJjZiI9uSO9ik4IIYQQQghR8AwGw1pN03TbM6QySggRmlNnL+ye5yPNqR4LIBwzP3E1R0liP/E0pAzlv56qdk8LwAD0mH/Q95jTRZnTXm7+aifvPdD8wvGMrXgAybg4RCKvsIo36Uk1/Cu2CsSNleDlbpC2B1jP+X0jPCY73X7vwg5OArCF08xlP78wqHDiDEVkBMz6EE6egZNnoX5NVd2UW6Wj4Wb9ZGYgz/GPTyIKwIGbx1nGzbTAGnAfRyGEEEIIIURhKQa/ghdCFCm9O6o5QpmFWdXcqGxUJZIuVKM8dti+Vz+xlXndTOwpHi5fcDTbeznx8DM7sz0vIJcXVsbDqgTw5LCK9KEa0DQKIm8BngTL9XjCx9NvyRh21L44SD0ZN/PYx1pO5DzeglaxHDRvkDeJqBxaxmGfRNR5XjT2EV8IEQkhhBBCCCGyI8koIURoureDnu3VjKDzImzQt4vaaS0UnVqpawNpWBvM/pUtLrOBvXWCq3Sy57QAdMFZqLwS+m2Cvhuh6kr4JwfJjQgTrG4L3zaG+9vCazfw0sHGLOya6HeqB41lHM5ZvCVU9QAVby68VMjJrolCCCGEEEKIfCfJKCFEaAwG+PVD+OBJ6NZWJac+egamv6seC8WNA6FsKd+Ek8kIlcvDnM9g6+9Qp5pfQspotfLVPS0uzImKwEJpwjDhe387Zu6kVejP8YQTBm+Bs25I9KiPky6VmEoMsJNcIJoGZiNcWwHebQAP1SC6QhQ2nSSZFSOVsIcebwk2gQ5+CcdwTAyiHmUlGSWEEEIIIUSRJMkoIUTozGY122fZ97D0OxgzBEw5mM1jt0HszzB6sEpKVakAT9wG++bDVd3VmvO/hM6tVbue3QZVKmD65X3+bPQIr9KdJ+nIbwxhI6OpSTRRWInAgg0zA6nLXTkZYv3jCfDqtOV5NZhxOrg1/lgCja4CUzOo1A3e/04lpoAbaeKXOAO16+Bg6ocebwnWn7pMpBfRWInEQhgmrqYe39CvsEMTQgghhBBCBCC76cluekIUD8dPQZID6tYAo34e3YvGIg5ymCQ6UJkmlMvZvZ7aC68c9D9uNcCrddUcqKwsWAmD7/HdcdBug6fvgAm3AWrW0XXMJhEnGhqViGAGg2hFxZzFXNiWxsLLn8LuQ9C5FTx7l2qzLCBOPOwjngrYpCJKCCGEEEKIIiCr3fQkGSXJKCHyjIbGSo5ygATaUpHGOU0G5bGDJPA/VjCfg5QjnEdpz400waBTnQTA3+dg0GZI9voetxtheRtok828qk7Xw6pN/sejI+HMSlVZhkqebeE0Zow0oWzgeIq66X/CmAkXk28mI9jC4d8p0KxB4cYmhBBCCCGEKBRZJaNyONlXCCF8ncTBZfzEARIANYy7P3WYykDMOekIPueCpfEQaYKepdTcpRw4RhJt+Y440vCgcYQk7mA+2zjDy3TXv6h3aehRGpbGXUxIRRhhSPnsE1EAO/frH3e64Gy82oUOMGKgJRVCfEZFjNcL973iWwXm8UJyCkx4B377uPBiE0IIIYQQQhRJMjNKCJEnRjOXnZwjCRdJuEjBzVz28Q5rQ1/s48NQ9R8YvQ2u3aL+vM5/97lgTCSWRJx4uFgFmoybt1nLOVL1LzIY4Lfm8FFD6FUaLi8NkxrB5CbB3bRRHf3jYRY1G+tScvocnDrrf1zTYOWGAg9HCCGEEEIIUfRJZZQQImQuPCzgIGdIoQoRGDCwiIO48G1rc+DmYzbwKO2DX3xdIjy6F1K9XMwVeeDKTXC0M1hCy6Ev5jDOTHEBhGHiP07Tjer6F5qNMKay+giFpqldBldtJEP+C689HONT4y+06F0ykhzg9ug/Via6YGMRQgghhBBCFAuX2LsiIUR++4/TXMbPOHCRjAsNsGBI/5O/FNyh3eCjI+DwTx7h9MLfcXBl2ZCWq0cp1nHCL7o0vFQnm5a7s3Hw5wo1A6lfdzXzKTvvToaPp/gmooD37mjA14+Y+JmzNCK051CkzV6sXh+PztesQ8sCD0cIIYQQQghR9EmbnhAiaBoaA5nJSRwkZUg/BUpEmTEymHqh3WThOf3jTi8khJjYAh6lPbZMefcwTHSjKrXJomVu8iyo1hvG/w9ufRaq9IBfF2Z9M7cbnv/Id34S6gdtm7Wn2GI4Qw+mkhZqgq6IOEYSSznMMZIuHkxJU22NmRkN0Kx+wQUnhBBCCCGEKDYkGSWECNoGTvomInQY03eEs2OmEnZeoGvwN0h0wxGn/mNpmprfFKIYKvM9/amEHTtmwjDRnzr8wqDAF+07DHc8D6lpkOiAxGSVYBr5qJqRFMjpc5Dm0n2o+ZZzaKhKsd/YE/LzKEwuPIxmDnWZxCBmUZdJ3MgfuPDAgJ5g0SmyDQuDq3sVeKxCCCGEEEKIok/a9IQQQdvMadJ05i9lVIdo2lKJHlRnDM2Iwhr8DeLcYDGAW6fSKsIEFUJYK4NraMBg6nOIREphpTThWV8wdQ64dZ6nwQAzF8Btw/WvK1tKtazp2FNPtQSm4eVwNgm9ouY5VjKdXaTiIRU1H2omu6nBSl5r3h3uHAmfToOU9Iowe7h6jVo0LMSohRBCCCGEEEWVJKOEKAk27YCXP4ON21WC4Ok7oFXjkJdZyuEsHw/HxAO04x7a5CzOqmEQaYKUTIkgI9A/d3OWjBioRZADtR2pquUuM4/HrwXPh9UKD42Bid+CI+XC4WS7iWdfaAeABSOdqBJK6Dl35ATs2AcNakGNnN/zYzb6zf5Kwc0nbOA1usPEx+Day+GH2WqA+40DoWvb3EYvhBBCCCGEuERJMkqIS93K9dD3Fkh1gtcLuw7CnKXw5xfQrV1ISx0jOcvHnXgZQaOcx2oywAf14eYdF4eYm1BVUS/Vyfm6obqsI7zyuUqsZORyQa1skjrP3QNhYWhvfYU3IYkj1SN4cGIH/rqyOnbMdKVq/iejXC4Y+yT8Mh/CrZDmhKt7w3evQ1jo1WWJ6LdOJuFEQ8OAQSWfJAElhBBCCCGECIJBy/xmq4SJiYnRYmNjCzsMIfJPzHBY+5//8daNYf2MkJb6iPU8xlIcAQZwR2Bh2to6DFifBvVqQM/2YMzBaLplcfDKAdiXCt1KwVO1oI4t9HUy274XZi1UrXTDroQ61S8+tu+wquxJTIKNO+GvFf7JKFAtaNPehoG9sr6XppHsdDDRupHvDdswYeRWWnAvbbBiyv1zycpT78I7ky+2zQHYwuDO62Hi4yEv15kf+Zdjfsc7UJlV3JiLQIUQQgghhBCXKoPBsFbTtBjdxyQZJckocYkzNwdPgPlHni36O6EFkIyLNkxmL3Hpk4MuCkt1M2fAfLqtOq2SLQYDVKsESydDxXK5ew554YWP4bUvwOVWCTKTEd56FO66AX6cDbc+o14np/4Ach9VK8Khv3OWaCsIZTvBuQT/45F2SAz9591aTtCLaaTixo2GCQPhmFnECNpTOQ8CFkIIIYQQQlxqskpGFdF3UkKIPFM6wJyk0lEhJaJAVT7FMopRNPX74fHMCxvovPIE1mQnJKdAkgP2HoKbn85Z3Hlpyy54bRKkpIHboxJOKWnw8JuwbQ/c9qz6PJhEFMDZeDh+On9jzo1Eh/7x5BTVqhmidlRiPTdxM82JoRLjaM56bpJElBBCCCGEECJHJBklxKXugdGqtQxw2Ez8cm1tvrulCcefzFl7VTRhfEU/alHK5/jNX+/ElpqpXsrlVu1uKVkM/c4rf/8Lna+HMp2g43Uwf+XFx6b/qZ9oMgDvfAvmEMfnaRpEReQq3HzVuZX+8ZhmOa7mqk8ZPuMK1jCKL7iCBpTJRYBCCCGEEEKIkkwGmAtxqZtwG5w4zaKdyxg8vTdoGprVgjvMw8vE8hC6VZNZOoWDoyT6HLM6MzfupdM0VY2Un+YuhaEPXEx6rd4Mg++BaRPV4G6DQSWe/BjAlMX8JgOQuZM5zAqDLytyySgvGhs5iQeNNu9PwNR9tBpc7nKrZFu4FT5+trDDFEIIIYQQQgipjBLikmcy4fjgcQbPG0BilIXEaCtJ4QZSDR6eYQXrOBHykgs5iCXTEO7fBtXCadbJ+LRqHDhxs+cg3PgoVOsJba6FqXNCjgWAh9/wr75KSVXHAYZdARaL/3WaBg+P0x9UbguHkQOgbg01XyoqAsLDoHcHmPRizuLMJ2s4Tg0+pwfTuIyfqdJ6MUt2fg63j4BOreDWobD+F4hpXtihCiGEEEIIIYRURglREsxjv+58qDQ8fMN/tKVSSOtFYMGYqdToidfa02fhUSqddRGW7FS7t1mt8PXL+oscOALthkNSshocfvQU3PKMSlA9dUdI8bBzv/7x3QdUoqlZA3jmTjXE3OtNr5QywHsToH5NmPEeDLkXMIDHo67p3UElo75+Wc2/2roHalSGWtVCiy2fJeGkLz8Tj/PCsURgQJXl7PvwISpgz5sbub3w1iH45Cgke2BAOXilLlQLy5v1hRBCCCGEECWGJKOEKAFScKP59ZuBB41kghzancGV1PbrejtZyUbbbdex7ocy1Fy1DxrXhXHXQPkAs4Ve/UIN1M64058jBV75HO6/CSJDaIOrVB6OnvQ/XqHsxSTchNtg+BUwayGYzWhDL8dbozImYMfljXnjyATKzFjG9d/vps3yQ5iWxsLytSqhtuBL6NYu+HiC4MbLIg5yllR6UJ0qROZonRnswhPga/sj27mftrkNVblhG8w+AynpX68fT8CfZ2F7ByitU3UmhBBCCCGEEAFIMkqIEqAvtXDjv4taBBaG0iDk9cIx8wfXMpCZeNPTXC48PBfRg5q3t4Xbg1hk2Vpwu/2Pm82w8wC0bRp8QE+Nh8feUsmt8yJs6nhG9WuR8MiN3MffTOUnXHhpTQW2c5bUUh76VYTGqw5hcrrBeT62ZBhwBxz8O8fDvzP7j9P04WccqHs48fAo7XmRriGvdYoUnPjP5ErFzQmScx0rALscvokoADeQ4IEvj8PDNfLmPkIIIYQQQogSQWZGCVECVMTO6/TAhvlCe10EFvpRm37UydGaXanGce7gB/oziSs4zHjuCaUKp3aAdjenE6pWCC2YO6+H5+6GyEgwWcBigxvGwD2+OwZqaPTjF6aygzQ8eNFYx0kcuPGiccen24lM1kmQJSTBms2hxRSAF43+zOAEDhJxkoiTNDy8w1r+ZH/I6/WkOmadH+WRWLiMmnkQMbA+CSw688BSvLA8Lm/uIYQQQgghhCgxpDJKiBLiPtrSk+p8w38k4WIoDdLb7XS3mQtKGGYGUi9nF0+4DRavBkeGwePhVriiK1QOMRl15ATMPQIpjdA8NdE8XXD8GM4cz+8kTKrDLYYWGDCwjpNs4jRpOpVEABF6iSgAgxFS0kKLKYBYjnOOVL/jybj4hA1cSe2Q1ouhMgOoyxz2XWi5tGOmM1Xpk1fJqLrh4NEZ8m41QOM8mkklhBBCCCGEKDEkGSVECdKKirxDxcIOQ+nWDr58Ce59Wc2K8nhhcB/4MsSd6lasgytuA4cLcGNgMwaWEpn8OP2nRTJk3GqOd0vmaTqzg7NZloNOub4uHVadItKRKSnl9apd6fJAMq6ACcCEDEPIQzGFAfzANiaxGQ8aY2jKOJrnKtHoo10UNLLD5mRwZUhKWY1wZ9Ea6C6EEEIIIYQo+qRNTwihdo9btAo+/AHmr1TJl4JwfX84vhS2/g4nl8PUiRARQqWNpsFNj6tkFucTSE4gDpiLzWGk38xIXmMNKbhoTnmfYd/hKW6abz5LudOqUunbsQ1Y36YsSZHpeXqzGWzhKmkWnje7xnWkiu7AcTtmRtAoR2uaMDKaZizlelYwkttphQVTbkO9yGCAv1rBVWVVu57VAE3sML8l1AzPu/sIIYQQQgghSgSpjBKipItPhF5jYPdBcLnBaobqlWHZ91CudP7f32SCWjmsrjlyAo6d1nnAA2zAYxpKis2LAThEIi2pQGeqsoIj3PPGOv73wga8RgNWl5ffB9fmrq9702/xIF6b5eSu2XGYKpaHW4dBw9o5f36Z2LHwCZcznvk48eBBIwILTSnHWJrl2X3yXDkL/NoCkj2Q5oWysoOeEEIIIYQQImckGSVESffwG7B1DzjVvCHSnCoxdfeLqlKpKAsPy6KKy4LbAj+MOosbL1WIBOB3hvDztPcY+sIGnxlRw349zBV3HiHpm+fZNyyOncNsNNmfCmfj1WsSZs2zsG+iKW2oyGds5CQOBlGf4TTEmpfVTPklwqQ+hBBCCCGEECKHJBklREk3dc7FRNR5LjfMmK/a4Ax5NHcoJxKS4Kd5qgKqc2u4vDMYM3QXly8DHVvCyg3guTiUXMOCy9Sdhyce4lBjD2NpRhQqmWTDwuhXV0CmYeWG1DQips6nwYdVKJ3k4fshc0nddBar2ap2IPzoGbhpUJ49teaU5wP65Nl6QgghhBBCCFFcSDJKiJLOE6CyyOst3GTUhm3Qe6xKjCWnQKQdWjaChV/5zm+aOlG1GR4/BV7wutxsbF2fQTPLc7ZqHHfSilfp7rv2cb3WPnAaNaxxDqYOmk+LzWexuDUuzKK64zloWAs65s0gcyGEEEIIIYQoqSQZJURJN6AHzPrbp7IIo9G/CknHaRx8wHoWcJDaRPMg7Yihcu5j0jS47mGIS7x4LMkB67fCu9/CE7erZNmmHercrb/D8nVw6DjG9s1p3bgOW3Fhw4xZb5+Gbm1h5kK/Fr+kCAtlz6TSaEd8eiIqg5Q0ePc7mJKHyai4BPh3I5QtBe1bFG4VmhBCCCGEEEIUEElGCVHSvfck/LMR4pMg2QERNvXxyf+yvOwEybTmO+JIJRUP/3KMWezma/rleFe4Cw4chUPH/I+npME3v8JlneCa+1QbH6iqqenvXmijM8CFtjxdLz8Af61Uu/ClV4al2C3c/14nKpxOw2XRSQppmn5MOTXxa3j6fQizqBgqloO/voB6NfPuHiLX3Hj5gHV8zmaceLieRjxOB6LJm90VhRBCCCGEKIkkGSVESVetEuyaq2ZHbdgOLRrCyP4QGZHlZa+wijOk4EIlc7xoOHBzJwu4lgb6FUnByqpASNOg7y2QkHzxWJID+t0OBxZA2dLZr9+oDqybDi9/BsvWQt0a/PJkN2b1iiP8nIOwNJ3WxfAwuKq7//GcWLwanv0QUtPUB4AjVT2HnXOlQqoIGcpvLOAAjvR2zYmsZRZ7WM9NxWPgvBBCCCGEEEVQLt4tCiEuGXYb3DwU7rkRaldTyZ1szGHfhURURk487OJc7uKpVU19ZGYLh1YN9edceb0wdW7w96hfC75+BXb/CX9N4upeI6lCBKll7Lz0dGuSIjLk6sOsUKEM3DUy9Oei54MfVFVW5viPn4b12/LmHiLX1nPCJxEFkIaHgyTwCzsLMTIhhBBCCCGKN0lGCSEgPlENAW99DQx/AGr3hbtf9JuplFE5bLrHXXgpQ3juY/rpbSgTrVrwTCb13w7NoVVjSHP5n5+SBifP5Ph2pQhjPaN5mk4seKof70wZybneLaF5A3h4LKyfAWVK5fz5ZHQ6QLLOaIRz8b7HzsSpOVl3vQDf/Xaxkkrku9UcR9M5noSLpRwp8HiEEEIIIYS4VEibnhACbnka/tkATpdK6gB8MxOa1Q9YDfQw7RjHnyRzMTFkwUhXqlKZrFv8gtKiIRz6G36ZD0dOQOfW0LM9rNoEr34Bbrfv+RE26NWB/cTzGqtZwREaUIYn6EAHqgR1y1KE8RSdeIpOcDXqIz8M7QuxW1RrXkYuN3RsefHzTTugx+j0r0uqSkY99yGs/gnKlc6n4MR51YjErNMzGo6J2kQXQkRCCCGEEEJcGqQySoiSLikZfl+sEh4ZOVLh3ckBLxtGQx6iHeGYKIUVG2baUYlpDMy72CLsMHowTLgdenVQs5Q6toQ+nVTy6Tx7OHRpw86e9WnFZL5kM1s4wyx205uf+J09eRdTXrhlqGqHtKdXkBkM6s8TH/Od1TV6gqpaS0lPWiU54PAJePb9go+5BOpHHaIJw5gpIWXGyFiaFVJUQgghhBBCFH8GTdNrQig5YmJitNjY2MIOQ4jCc+I01Loc0pz+j1UoCyeXZ3n5WVLYyCmqEEFjyuVTkJl4PPDtLPjyF/BqMO4aGHcNQy1zmMUevJmaq6oRySFux5DlZPQC5kiBr2fCrIVQsaya19W59cXHz8VDpe6qWiqzimXhRNZfF5E39hLHdcxmM6cxYqAKEfxAfzpRtbBDE0IIIYQQokgzGAxrNU2L0XtM2vSEKGI8eFnPScwYaUkFv6qMPFexHFQuDweO+h43GeGKLtleXhYbvamZT8EFYDKpges3D/U5vJTDfokogNOkcIwkprCD91hHPGn0ogZv0oOGlC2oqFWF00/zYPVmaFIXRl0Nd9+gf64pi53aLJb8ia+4c7nAbM7T3QjrUpo1jOIYSaThoRbRRSupKYQQQgghRDEkbXpCFCF/c5DKfMpl/ER3plKLz1nLify9qcEAX7yg2sTOJ0DCrFA6Gl6+P3/vnccCDVUHeIYVPMsKDpFIAk5+Zw8d+IHDJBZMcCfPQJOBajD8x1Pg8beh7hWwfa/++dGR0D3GPykVHgY3X5v/8RYnf62ARv0hrDWU7qDaGD2ePL1FFSKpTSlJRAkhhBBCCJEHJBklRBFxgmQGMZPTpJCIiyRcHCaJPvzsMyQ8X/TtAqunwdgh0K0tPDIO/vsNalXL3/vmscdojz1TwWc4JgZRjx/YjoOLLW8akIKbtymgNt0n3oajJyE5RX3uSIG4RDU8PpDJr0LNyhAVAbYwNSercyt48vaCibk4+HcjXHMv7NwPmgYJyTDxG3jwtcKOTAghhBBCCBGAtOkJUUR8zzY8Oi1mHrzMYjc30iR/A2jWACa9mL/3yGfjaM4e4nibtVgx4cTDVdRhLM34i/2k4Vst48TLvxwrmOBmLvCf/6RpqmXPkQJ2naquapVg1zyYvxL2H4E2TaBDyzxtQyv2nv/If1dCRyp8MR1efkAl8oQQQgghhBBFiiSjhCgiTpBMKv6tRS68nMJRCBEVDjde/mI/h0miI5VpRcWgrzVg4GW688TJ+hzZupGytetSsXZD9hFPGl6/800YaBrK0HWXSyU5Jk0Hr1dVkt05UrU1ZscS4MetwZD1fCiTCfp1Dz7GkiZQm6PFDEdOQOO6BRuPEEIIIYQQIluSjBKiiOhDLT5hI0mZWvJMGOhFjUKKqmDtI54eTCUeJ5705NEV1OZnrsYcTFex1wv3vEjU1zNpHBamdgi8rCN1fnqb3hE1WMRBn4RfGCYeRndzB3+aBoPvgSVrLlbiPPkezFwIi74BYzbxjR4MH/0IqRl2LTSbVYtkMMksoa9VYzhwTH19MnJ7oEblwolJCCGEEEIIkSWZGSVEEdGXWnSgss/MowgsDKIerUOoDirORvA7R0kmEScO3Dhw8xf7+Yj1wS3w/vfw7a8q4ROfCKlp8Pe/cPdL/MzVXE9jwjBhxkgjyjCHa2kSbGXUyvWwNNa3JSwlFdZthYX/Zn/98/dAm6Zq7pMtTLWP1a4KXxbv1shC97+71OuZkd0GD46GCHvhxCSEEEIIIYTIkkHL/NvkEiYmJkaLjS2gAcZCZMOJh6/YwmT+w4KRW2nJjTTBWAJ28DpGEnWY5DfXCaAJZdnKuOwXqX05HDjqfzzMCvGrIcyKEw+puIkmzP+8rLzxJTz1rqq4yeyZO+GFe7NfQ9NUUmvjDqhXAy7vnHWLngjOPxvUwPIN26BcGXjsFrhvlMzWEkIIIYQQohAZDIa1mqbptqJIm54QRYgVE3fQijtoVdihFLg0PAGTbqm4dY/7iUvUP+71qiqmMCtWTFjJQQKocnkID4OkTPO77OFQpUJwaxgM0LWt+hB5p3Nr+HdqYUchhBBCCCGECJK06QkhioRaRFMZ/53PwjAxksbBLdK7g/7splpVoVRU7gK89nIw6ySxTCa4/qrcrS2EEEIIIYQQJYgko4QQOZKKm33Ek5Jp4HpOGTDwI/2JxEJ4euVSJBbqUorH6RDcIq8/rGYxWS3qc5NRVS599lzuW7YiI9Sg8rrV1UyiCBvUrALzJ0GZUrlbWwghhBBCCCFKEJkZJTOjhAiJhsb/WMlEYjFgQEPjQdrxIl0x5MFsqxMk8zVb0nfWq8EwGhAWSkfx4ePw9jdqjlCTevDwWGjWINdxXaBpsGOfav1rUk/mEgkhhBBCCCGEjqxmRkkySpJRQoTkbWJ5hhU4MsxxsmPmObrwKO0LMTIhhBBCCCGEEEVFVskoadMTQoTkDdb4JKIAHLh5gzWFFNElTtPg6xnQfBBU7QljJsCBI4UdlRBCCCGEEELkmOymJ4QIySlSdI+fIQUNLU9a9fKFIwVmLoAjJ6FTK+jerni02D0+ET6eAsnpr/sPs+GPxbD5t+B38Ttv/xHVxti8AZSOzvNQhRBCCCGEECIYkowS4hKxhzgOkUgLylMOW77dpxnl2Mxpv+NNKBswEbWYQ3zMBs6RxjAaMIZmhBfkj5//dkGP0eB0QaoTwizQoSXM+wys1oKLI1Rn4uCDHyA17eIxjwcSHfDuZDWwPRjxiTD0flixXj33NBc8Mg5euLd4JOSEEEIIIYQQlxRp0xOimIsnjcv4iRZ8yxBmUZ3PeIylaOTPPLh36IU9UyLJhpl36a17/musZgAz+JmdLOAAD7GY7kwlLVOrX74a8RCcS4AkB7jdqsro343w3vcFF0NObNkFYTrJMqcLloTQFjn6CVi2ViW14pPUf9/5Fqb8kXexCiGEEEIIIUSQJBklRDE3hrms4CgpuInHSSoePmY93/JfvtyvD7VYwHAupyZViKAPNZnPMPpSGwAPXk7jwIWH0zh4npU+M6YcuNnGWaayI1/i83PgCOw7rGYvZZSSCl/NKJgYcqpGZXA6/Y8bjVC/ZnBrnIuHP5erBFZGySnw5le5j1EIIYQQQgghQiRtekIUY/GkMZf9OPH4HE/GzURiGUvzfLlvZ6oyn+F+x79gExNYRhIuzBi5ktpYMJLqF5+LGexiDM3yJT4fGhBojpXXm//3z426NaBza1ixTrXWnRduhYfHBrdGXCKYTIDL/7HT5/IgSCGEEEIIIYQIjVRGCVGMJZCGKUCi5SypBRrLdHbyAIs4QyppeEjGxR/sJS1TIgrAiIEK+TjXyketqlC9kv9xWxiMGRz6em43zF0KX/0C2/eGdq3XC4tXwzczVQteMGZ+AP17qnY9W5gaWj7tbWjTNLjra1aBCLv/cZMJ+nYJPnYhhBBCCCGEyCNSGSVEMVaNKEphJSXT/CUTBvpSK+9utOcgvD4JVm+BZvXg8VuhZSOfU57L1I4HkIZHN1UWjok7aZ138WXFYIBpE6H3OHC51a56kXZoVh8eHBPaWrv2Q6+xkJisEkteLwy9Ar59VbXOZeX4Keg5Bo6dBC+geXH0ieG1X25gpyWJ3tRgFE2JwOJ7XXQkzHhfDSFPSIJqlbK/V0YmE3zyrJoblZKm2hWtFoiyw3N3h/b8hRBCCCGEECIPGLTMc1RKmJiYGC02NrawwxAix35nD9czm1Q8eNGwYiQKK+u4iZpE5/4Gm3dC1xvVjCW3RyVCwq0w+xPo3fHCaaX4gAT85xtZMFIROwmkYcCACy/v0pvbaZn72EIRnwjT5sLh46r17cpuoSV1AFoMhv92+86fstvggyfh5qFZX3v5zWrouPtipZjDZuKVZ9ry8oSWRGChIjbWMCp/dkNcs1nNiNp7GHp3gIfGqiorIYQQQgghhMgHBoNhraZpMbqPSTJKklGi+FvPCd4ilj3E0YsaPEA7KhORN4tfcSvMX+l/vHFd2Db7wqfdmcpyjvidVhE7RxhPLMdJwElnqhKFzg5xRd3eQ9B8sErKZdauGcT+HPja+ESo2M1/iDiwr3YkdfddB4AVI3fRmncC7EwohBBCCCGEEMVFVskoadMT4hLQhkr8wID8WXzFev3juw6olje7quJ5ne70ZbpPq54dM6/THTNGOlH1wvGVHOEhFrOBU1TAxhN04C5aYwg0aLwoSE0DU4BKqtS0rK/VSUKdZ0u5+Ho58fILuyQZJYQQQgghhLikyQBzIUTWygRo9bNa1FDtdF2oxnyG0Z1qlCGMlpTnB/r77ei3jhP0ZTqrOE4aHg6TxGMs5Xn+yc9nkXuN66pZU5mFh8H1/bO+tkJZqFfD77DTYmTGNbV9jkXk5ncELhf8vgg+/wk27cj5OkIIIYQQQgiRj6QySgiRtQdHw7MfgCNDe5otDG65Vg3HzqAL1VjK9Vku9xwr/QauO3DzJmt4nPbYMg/wLiqMRvjhDRh0txqE7nRBhA3q1oAHbsr++m9fhT43q4RRqpOUCAsny/+/vbsMs6u6/zZ+r3GJkRAiECIkuAQYJEBwlxYrRQuUFlqkD5Qixf4UqGCFUqBFC6XFW7QpFII7Ce5uSQghRMdlPy/2BEbOJKN7j9yfXOeaOWvb70yy52S+sySf/ztng293KSKn/RO7f/ApbPkjWFwGtbUQAbtuGU/e3uTvqTUqqeFfvM90ZrMagzmA1Xvm8EpJkiRJ3Y5hlKSlO+FQ+GQGXPsvyM+FyirYYxu46OTm+9bUwf1zYfoiGFcI+60AxY2DkFeYQ6aZ6rIIfMFiJrBc17yOzrDtpvE8Wdf/Gz6dxafbr8nz+67D6nllrLusObo2WgfemxJ/Hd/9mMrJa/O9g0qpKK6iH1BDxPdYhWPaG0btezx8+XXjydX/+yRcfQf8fOkBYVNfU8bG3MwcylhMNcXkchpP8iwHdu+/H0mSJEk9ghOYO4G51Dpz58N7n8CYFTOvwragBjZ7CT6rhMW1UJwFhdnwzPowIR7eNo8KNuNm3mHet4et+2ohvzlrBBtNK2b4KkPIPmssbD84mdfUHrW1lL31LkcUP8G94yrJJota6tiEEdzPXhS1oWdXHRHPz3yVeV9+wfjVN2DVopHLPiiTT2fA6rtnnrtqvdXglbvadLojeJCbeItq6r5tC8DmrMiTy+j5JkmSJEngBOaSOsOQQTBpYsvbz/wYPiiHqvqAu7QOyuvg0HfgmQ2Yxpdsxx1UUvvtIUWLAw9vO4HB83LIjgLMXATffwOuWw32H9alL6ddHngSfnQqWeVlXFdbw/sTBrDXXdvz8bgBPMNMTuYJLme71p1r4WKy9j+RSY8+D7m58dC6c38Bvzys7XVVVcfDCDMpX8bk6hn8m/cbBVEQj/p7jpmUU919h1JKkiRJ6hGcwFzqo76ijE9ZSJRx0Fw73PrVd0HUEnXAiwuJFlazH/ezkKpGYVRtDlx3xNdxELVEWR388sPGw826gw8/g33+H8yZR8HiSorKa1n7jXk8us0UsmrrqKSWG3mz9ec76GR45DmoqIJFpfGcXGf9Ge59pO21jR8NQwY2by/IhwPbvspidgurGob6P5IkSZLUEYZRUh8zg0VM5lZW5mrW4G+M5Voe5/OOn7il7yY18MGvpzM7Km22qbIg4u+HftP8mLnVMK+meXuarr4jnri8gew6WG5eFVs/9iUAFbSy5jnfwEPPQGV14/bScjj/urbXFgLcfGE8oXpB/STj/Ypgwmg48bA2n+4Q1iSfxnN9ZRPYjpUpsEOtJEmSpA4yjJL6kDoituF2nmUmldRSTg2fspDduItPWdixkx88DPIz95rJnrqQqLIu87baDI05Afq3fQW4LvXZrGZhFAARDP+yjABsw8pLPUUVtfyNN9i1cAoH/n0yT0we3nynWXPaV98WG8L7D8BZR8NR+8E158C026HfMiZWz+BcNmddhtKPXPLJpj95jKI/17FT+2qTJEmSpAb8FbfUhzzFDGZRSm2ToXnV1HEVr/I7JrfuRBWVcNfD8M5HsNZ42HM7OHsMPDofXi+F6sbnH/tuLit/lse7EypoOMqrqDqbn/69yWToRVlw1EjI7WZZ+Y6bwX2Pxr2XGsitqWP6ZiMYRD6Xs22Lh1dTy9bcxmt8TWm/asK+K3PPbity5jmvcOoFr8U75WTDDpPaX+OIofDrI9t/fL1+5PE8B/IYn/MaXzOOgezCWHIa/P5iMVX8l4+ppo4dGc3yFHX4upIkSZL6BsMoqQ/5gkUZZ/ypopaPmN+6k8yYDZvuD/MXweKyeDjYKX+E526BFzeEyS/DM417WQUCdx4ynq2eeI+q/IhKaskjmy1yR/LzFTeC/p9BXQS1wGHD4fxxHX2pne+A3eDC6+HjGd+uWldVnMcTB03kkLE7ciTrMnQpgcxtvBsHUcRD86KsLMqKs/jN2etzxPXvMXRBDfQvhjN+lsjLWZZAYBtWztjb60E+YR/uJYt4YvMa6riUbTiK9RKvU5IkSVLPYxgl9SEbMbzZKmkAxeSy9TKGmH3r6HNg1tfx6m8QB1IVVXDCH+Dmi2DP5eHlxfFKeg2s/Xohn39yCHetNotZLGYSI9mMkYQTAhw9CmZUwgq50K+bflsqyIfnb4NLb4TbHoB+ReQdcyA7HbwHO7ViUu+7+ODbIKqhvLrAEwetxz61q8ApP4GVMgzd60YWUMne3ENZk/mxTuAxtmIlVmdISpVJkiRJ6im6zU99IYTBwG3AGOATYL8oiuZl2G9n4E9ANnBtFEV/qG8/G/gpsGTCldOiKJrS5YVLPcgElmNvJnA3H3wbJuSRxQoUcghrLvsEUQRTnvguiFqipgbunhp//pMRcOHnUFXHtwvnFWbBDstRtNogDmJQ8/PmZ8G4wna/rsT0L4Yzj44fbbQ8BWQRqGsyRDIqLmTgpWcDozunxi52Hx+SlSF8q6aWm3ib37JFClVJkiRJ6km606QspwJToyiaAEytf95ICCEbuALYBVgTOCCE0PAn6EuiKJpY/zCIkjL4O7twAVuyJoMZzQCOZX2mcTDF5LbyDC31AqpvXy4Xpm0I+w6FAdkwPA9OGgV3rNUZ5fdYR7FesxXqAArJYWtGpVBR+5RT0yxQA6glytjzS5IkSZKa6jY9o4DvA1vXf34j8BhwSpN9NgY+iKLoI4AQwq31x72VTIlSz5dNFsewPsewftsPDgG+tzXc+1jcG2qJ3BzYZ4fvnq9cALf27fCJujp44XVYsAgmTWSDAcO4hK05gcfIJYsI6EcuD7BPo4nBu7udGZMxjCoil70Yn0JFkiRJknqa7hRGDYuiaBZAFEWzQggrZNhnReDzBs+/ADZp8PzYEMKPgGnAiZmG+UnqoCvOhJffga/nQVkFFBXEq7hd+uu0K+s+3vkIdvopfLMAsrKguhouOomjjj6QA1idp5hBf/LYjJFk96AgCmAUAziTSfyW56igljoiisllb8azJSulXZ4kSZKkHiBEUfPfcHfZxUJ4GMg0O+/pwI1RFA1qsO+8KIqWa3L8D4Cdoij6Sf3zQ4CNoyg6LoQwDPiaeHGnc4ERURT9uIU6jgSOBFh55ZU3/PTTTzv82qQ+pboa7n88Dl3WngC7TIac7pRtp6iuDsZsD1/MjufYWqKoAB75G2zSO1acm8aX3MibVFLLD1iV7RlNaMVE7q02Yzacfin853EoLoJjDoATDvXfmSRJktRDhBCmR1FUkmlbov+rj6Jo+5a2hRBmhxBG1PeKGgF8lWG3L6DR5CorATPrzz27wbmuAe5fSh1XA1cDlJSUJJfGSb1Fbi7s1eLtnL4ogtv+C3+4BmbPha1K4NxfwIQxXX/tZ16G+QsbB1EA5ZVw5a29JowqYTglGX+30AnmLYAN94W586GmFr6eD2dfAdPfglsv7pprSpIkSUpMdxofci9waP3nhwL3ZNjnRWBCCGFsCCEP2L/+OOoDrCX2At7owloldWe/vxqOOBNefRe+/Bru+B+U7AefzOj6a89bCCHDt9YogjnfdP31e4Nr74SFpXEQtURZBdzzCHxgT9YOefdjuORGuOq2eKitJEmSlILuFEb9AdghhPA+sEP9c0III0MIUwCiKKoBjgUeBN4Gbo+i6M364y8IIbweQngN2AY4IekXIKkbKC2D314FZeXftdXVxc9/d1XXX3/z9aEqw6pyxYWwz45df/3e4KmXoLyieXtuThwwqn1OuwTW3xt+fQn88nxYeTu495G0q5IkSVIf1G0m34iiaC6wXYb2mcCuDZ5PAaZk2O+QLi1QUs/w3ieZ5xWqqYUnX+IFZnEOz/Imc1mXoZzNJNZnWOddf/Ag+O3/gzP/HAcqURTPF7XqGDho9867Tm+22ljIe6p5qFdXB2NWTKemnu7pl+BP/4iHizZ0wK/gyyehf3E6dUmSJKlP6k49oySp40auAFVVGTd9PXYwW3M7/+FjPmEh9/EhW3ArT9PJw/d+eRg8cBXstzNsPwn+eAo8czMU5Gfc/WVmM5lbyeMShnAFZ/E0NdR1bk09yTEHxL2gGsrLhdXHwgZrplNTT/eP+zL3NsvOhgeeTL4eSZIk9WmGUZJ6l2HLw65bNg9+igo44dcTKKfm26YIKKOG43m08+uYXBJPtv3QdXDUD1sMoj5kPltyG08xg2rq+IYKLmIaP+HBzq+ppxi9Yvx1W21sHELl5cLOW8CD10LoxBX7+pLa2uaT6n+7rQ8Hn5IkSUqFYZSk3uem82Hv7SE/DwoLYOhg6q4/j39MLsq4+yvMSbjA71zAi1Q0CMgAyqnhVt7lS0pTqqobmDQR3vkPzHwcvnkW7rkChgxKu6qea/9d43nLmqqpgZ02T74eSZIk9WndZs4oSeo0RYXwzwvhr6UwfyGMXIGQncVAPmIBlc12H0JBCkXGXmI2NTTvsVJADu8xj+H08bl8DKA6xzabwMF7wE33QUVFPK9adhZcfQ4sNzDt6iRJktTHGEZJ6r36F387MXMAjmcDLuRFyhr0RCoih5PZKKUCYT2G8jJfUdskkKqkhvEMSqco9T4hwF/Php/sG6+gV1wE++8SD4mUJEmSEmYYJanPOJNNmUcFV/MauWRRQ8SxrM8JbJhaTSexEbfyDqUNArJCcvg+qzCSfqnVpV6qZO34IUmSJKUoRC1NaNpHlJSURNOmTUu7DEkJWkQVX7CIUfSnH3lpl8PzzOJYpjKd2RSTy89Yj9+yBXlkp12aJEmSJLVLCGF6FEUlmbbZM0pSn9OfPNZgSNplfGsTRvAiB1NXWUnW3AWwwmDIMYiSJEmS1Du5mp4kdbaaOjj3Exj+NBQ9ATu+Cm8uZWW82lo4+SKyBk+C8TvD0M3hspsSK1eSJEmSkmTPKEntU1sL/30Snn8NVh4BP9wFBjjHEQA/eRfumANldfHzh+fBpJfg9Y1gdIaV+876M1xxC5RVxM/LK+DXl8YryR20R1JVS5IkSVIinDPKOaOktistg60OhXc/hsVlUFwIuTnwxE2wzqpde91/PQQzZsPG68C2m8arhHUnMyth3HNQ2eR7a26Ao0fCpRMat9fUwHKbxl/HplYbA+9M6bJSJUmSJKmrOGeUpM51/nXw5vtQURU/Ly2PPx54Erx+T9dc860PYPIhUFUd9xwqLICJq8ND10FBftdcsz3eKYOCLKisbdxeHcELi5rvX1oOlVWZzzXjq86vT5IkSZJS5pxRktruH/d9F0Q19MGnMLOLApQfngjzFsY9iGrr4o/T34Q/3tA112uvVQqb94oCyAbWKW7ePqAfLL9c5nNNXKNTS2uXiko46UJYbhMomAg7/xTe+yTtqiRJkiT1YIZRktouq4WhcRFdM2zuiy/hg8+g6bDi8kq44e7Ov15HjC6AHZeDgiZfh4IsOHFU8/1DgItOgqImc0kVFcAFJ3Zdna217/Fw+c0wf1Hcg+t/z8AmP4TZX6ddmSRJkqQeyjBKUtsdthcUNhkaFwKsuQqMGNq4PYpgwSKors54qlrqmFL5Djf/7Xe8t+eBLP7pr+MeT03P0ZLuOO/dbWvC4SOgMCv+LrteMTy0HqxalHn/A3eHOy+N58Eauhxstyk8egNMmphczZm8+zE88nzcO2qJKIqfX3lrenVJkiRJ6tGcM0pS2/3qcHjwaXjl7Xi4XkFeHE7dclHj/aY8DsecG899lJ0Nh+8Fl5wK+XkAVFHL7hW38octrmLLd+bTr7SGmqxXqb35AbIvOx2O2Dc+z6gRMG4leOvDxucvzIdD9+z619tWBdlw5apw+YR4rqj8VuT+u2wZPxqKIpi3IJ4fqzDDKnxd7a0P44npy5u0V1TBtDeSr0eSJElSr2DPKEltV5APT/wd7rsSfvv/4Kqz4dOpsNrY7/Z54TX4wQnwyUyorol709xwN/z49G93uZ43WO2Gx1n17TiIAsipi8guqyT6xe9gcel357v1Yhg0IF65LwToVwTrrQ4nHpbIS26XrNC6ICqTR56D8TvBiK3i1fYOOqnx1yMJq46O/+6ays+F9VZLthZJkiRJvYY9oyS1Twiw9cbxI5PfXR3P6dRQeQX8+yGY8w0MHcw/eIuz7/yQfmXNA4/anCxynn0VdtgsblhnVfhsKtz+AMyYDZusG2/L6iWZ+hdfwuX/hOlvwajhcMuUxsPj/vUQfD0PHrw2uZrWmgCT1oOnX2684l9eHhxzYHJ1SJIkSepVDKMkdY33Pml5PqeJe0NNDaftPpryghzqaN5NM9RFMKDJ6nP9i+GIfbqg2JS98T5sflA8/K2qKg7Y6uoa71NZBU9Oh48+h3EZJkLvKvdeASf8AW66L65t04nwl7NgxWHJ1SBJkiSpVzGMktQ1NlkX3vsUamsbt1dUwcyvANj57wuY3z+H8qJsisu+268uQNbgQbDROgkWnKLjzoOFi7973jSIWiIvDz6ZkWwYVVwEV58DV/0mris7O7lrS5IkSeqVesn4FkndzmlHNl9xr4msmlqKK+t4YquRVORns2BALov651IzYgjhgat7zxC8ZXnqpdbtV1kJa43v2lpaEsJ3QdTiUrjkRph8MOz9i3h+K0mSJElqJXtGSeoaE8bAMzfDSRfBsy/Hk54vWASV1Y12yy+rZvO80dz8+ems9tTHlAxelbwtNobsbG7mbc7hWWZSykSGcgFbsikjO6e+urruE3YVFsCiZUxOXlQAh34fhi2fTE0tKS2DjX8YT0xfXhG3PfgUnHMcnHh4urVJkiRJ6hG6yU9iknqldVaFB66GBS/GK+/lZMi/83IZsNpq/Hjolmy+16HkbzUJsrO5gpf5Kf/jXeaxiCqeZAbbcQcvMKtjNd10L4zaBrLXhpFbwXV3dux8neGn+zbvRZafB+NXhuUGwNgV4fcnwOVnplNfQ3+7Cz5tEEQBlFXAGZfB/IXp1SVJkiSpxzCMkpSMjdaBCaMht0kglZsLR+/fqKmGOs7gacpovMpeGTWczlPtr+GW/8DPzoYvZsfPZ82BX/wu/UDqt8fHKwMW5sPAfvHH7TaF1++Bb56Djx6CXxzSPXpy3T01Dp+ays+F515Nvh5JkiRJPU43+MlGUp8QAjx0XRy65OXGPX8mjIYHr4bRKzba9SvKqKQ242leYU77azj9T82DlLIKOOvy9p+zMxTkwz1XwGt3wz8ugFfvgv/8NW7vboYNif8um6qtgyGDEi9HkiRJUs/jnFGSkrP8cnHIsqg0HuY1dHDGYGMIBWSIOwAYw4D2X//zFob4zfyqe8whNX50/OjOjj2oee+orCwYvjyUrJ1eXZIkSZJ6DHtGSUpe/2J4LoINp8PyT8H2r8AL3803lE8Ox7I+RU3y8iJyOIfN23/dMStmbh81PP0gqqeYNBEuPjmeUH1APyguhPGj4MFrMveYkiRJkqQm/OlLUvJumAUHvAUvL4a5NTB1PmzzSqNA6ndswfFsQDG55JLFcIq4mh3ZhbHtv+4ffhmHKA0VFcDvTmj/Ofuin+0Ps5+Eu/8MT/0D3pkC40alXZUkSZKkHiJEUZR2DakqKSmJpk2blnYZUt9RF8GwZ+Dr6ubbthkEj0xs1FRDHYupYiD5hBYH77XBv/4Hv74EPv4CVh4B5/0/OGC3jp9XkiRJkvStEML0KIpKMm1zzihJyfqmGhbVZN728uJmTTlkMYiCDDu30z47xg9JkiRJUiocpicpWQNzIKeFHk4rJbh6XE0NzJ0PtZlX7ZMkSZIkdQ3DKEnJys2CY1aEoibffoqy4OwxXX/9KIILr4PlN4MVt4Yhk+Div8XtkiRJkqQu5zA9Scn73TioA66cEX8szILfj4V9hnb9ta+4Gc6+EsrK4+eVVXDW5VBUCD/fv+uv3x0tCeJcDU+SJElSApzA3AnMpfRU1sH8Glg+F7ITCkKGbwmzv27ePnIFmPFYMjV0F2XlcNKFcMPdUFEJm28AV54Fa09IuzJJkiRJPdzSJjB3mJ6k9ORnwbC85IKoKIKvMgRRkDmg6u32PA6uvwvKKuJVDp+cDpsfBDNmp12ZJEmSpF7MMEpS3xECjB+deduEFtp7q7c/hKdeintENVRZGQ9llCRJkqQuYhglqbHPZsL518KZl8Gzr/S+ib0vPhkKCxq3FRXE7UvU1cEF18HwyZC3Lmzyw/hr0Zu8+zHkZpg2sLIaXn4n+XokSZIk9RmGUZK+c/sDsPpucNaf4bdXwfY/hsNP612B1B7bwN1/hpK1YGB/2GhtuOdy2HWr7/Y56UL4zZUwey5U18ALr8dfi9feTa/uzrbGKlBd3bw9Py/+2kiSJElSF3ECcycwl2ILF8OILeP5gxoqLoQ7L4WdJ6dSVuIWLoZhk5sPXwsB9tkB7rg0lbK6xK5HwaMvfPdaQ4ABxfD2f2BEAisbSpIkSeq1nMBc0rJNfQ5yspu3l5bDP+9Pvp60fDoz8/C1KIJXetnwtX9fBkfvDwP6QU4ObLcpPHuLQZQkSZKkLpXhJy5JfVJWCyvahZA5pOqtVh4RD81rKgRYa3zy9XSlgny4+JT4IUmSJEkJsWeUpNgOm0FdhmG7RQVw6J6Jl5Oagf3hx3vFr7uhwnw48+fp1CRJkiRJvYhhlKRYUSHc/sc4hCkujCeyLsyHo34IW22UdnUd8/p7cMrFcNx58Ojzy56Q/bLT4cTD4uFrEPeIuv8vsGEvn9j7g09hj6OhcH0YvCmcfFHzubMkSZIkqYOcwNwJzKXG5s6Hfz8UzxW18xaw+ri0K+qYy26CUy+Bqqq451dRAey9A9z4+3jo3bLU1UFWH8jt53wTr6Q4f1H8miEOI7fZBP7z13RrkyRJktTjLG0Cc+eMktTYkEHw0x+kXUXn+HJO3COqouq7ttLyOGw7bE/YdtNln6MvBFEAV90Wr6S4JIgCKK+Me5K9/SGssUp6tUmSJEnqVfrIT1mS+qQHn4bsDJOvl1XAnf9Lvp7u7MU3Mg/Jy82BNz9Ivh5JkiRJvZZhlKTeKz8vc8+mrBAPQdN31l0t/no1VVMLq45JvBxJkiRJvZdhlKTea9ctGw87WyIvDw75XvL1dGc/3x/ychu35edBydpxUCVJkiRJncQwSlLvNaAf3HlpvDpg/6L4Y0EenHscTFwj7eq6l5ErwFP/gEkT495k+Xlw4O7wn7+kXZkkSZKkXsbV9FxNT+r9Fi6G+x+L50TaeXIcvKhlNTVxINVXJm+XJEmS1OlcTU9S3zagX9zLR62T41uDJEmSpK7jr70lqbuZOg82nQ6DnoSNpsH/vkm7IkmSJEnqNIZRktSd/Hcu7PE6PL8IFtTCtMWw1xtwz5y0K5MkSZKkTmEYJanbmcli/sIrXMHLfM7CtMtJ1q8+hPImKwCW1cGJH6ZTjyRJkiR1MicGUfdUXQ0PPwtz58PkDWH0imlXpIRcz+scw1QCAYBf8TgXsCXHsUHKlSXk3bLM7R9WQBRBCMnWI0mSJEmdzDBK3c9bH8A2h0NFBdRF8cpeP9sf/niKP4j3cl+wiGOYSgW1jdpP4Ul2YSzjWS6lyhI0PA9mVDVvH5rrv39JkiRJvYLD9NS9RBHs/nP4ai4sLIXFZVBRBdfcAfdMTbs6dbG7eD9jew113Ml7CVeTkjPHQFGTb81FWXDG6FTKkSRJkqTOZhil7uXVd2DOvObtpeXw19uSr0eJqiUiytBeR0RNxi290JEj4NyxMCgH8gMMzIazRsNxDlWVJEmS1DsYRql7KauArBaGIi0qTbYWJe57rEKmv/08stmL8S0f+OQ0mHwILLcJbLgvTHm8y2rsciHAL0fB15vDF5Pij6eMdoieJEmSpF7DMErdy4ZrQaY4oqgADtgt8XLUeT5mAdfyGnfwLmVUZ9xnHIM4h80oJIccAtkECsnhV5SwFstnPvFjL8D2R8BT02H+InjpLdjzOLhtShe+mgRkB1g+D3L8Ni1JkiSpdwlR1EeGvrSgpKQkmjZtWtplqKF/PwQHnxJPXF5dA8WFsMYq8ORNUJCfdnVqh1N4gst4iaz6gCmLwAPsw6aMzLj/28zlDt6jljr2ZVXWYWjLJx+/E3z4efP2gf1g3vP2KJIkSZKkFIQQpkdRVJJxm2GUYVS39N4n8aTls7+GXbaEfXaAvLy0q1I7PMyn7Mk9lDbpDTWEAmbxM3LJ7tgFstaKJ77P5KHr4IXXYMgg2G9nWG5gx64lSZIkSWoVw6ilMIySutYPuY/bM6yEN4A87uL7bMvKHbvA0sKownyoqob8/Hgusil/hckZvxdKkiRJkjrR0sIoJyOR1KXmUdHitgpqOn6BMZmH+gFQXgm1dVBWDovLYJ/joba249dsjbJyuPZOOPhkOPty+OLLZK4rSZIkSd2cYZSkLvMcM3mSGRm31VDHVozq+EWuOQdyc1q3b0UlTHuj49dclm/mwzrfh+N/D/+8H/5wDay+Gzz9UtdfW5IkSZK6OcMoSV0iIuJgplBB855I2QSuYUeKye34hbabBPf/BdZdFfJyYMyKsPq4jp+3I357FXwxG0rL4+eV1fHnPzq15SGFkiRJktRHGEZJ6hIzWMwMFmfcNowiDmSNzrvYjpvDq3dD5Wvw8UNw2pHxKoxN5edBydqdd92W3PG/eK6qpmbNcbieJEmSpD7PMEpSl8gnm5b6APWji1dGPHA32GGzOJDKyoKiQuhXBP/6E2R3cPW+1ijKz9xeVwcFLWyTJEmSpD6ilROtSFLbDKWIDRnG88yitkEsVUQOR7Fu1148Oxv+fRk8+wo8+jwMGQT77QyDB3XtdZf42f5w+qVQ1mDy9uxs2GgdGDq4a689aw68+g6MHglrrNK115IkSZKkdjCMktRlbmU3tuI2vqaCOuqoA3ZkDL9gg66/eAiw2frxI2nHHghPvwz/eSwOoUKAFQbDLRd13TXr6uDY8+Bv/46HI1bXwAZrwn1XwqABXXddSZIkSWqjEPXxyXRLSkqiadOmpV2G1GvVUscjfMbnLGIjhrMOQ9MuKTlvfQDT3oSVhsHWG8dDBrvKlbfASRc27o2Vlwu7TIa7L++660qSJElSBiGE6VEUlWTaZs8oSV0qmyx2YEzaZaRjzfHxIwl/uqlxEAXxJOr/fRIWlUL/4mTqkCRJkqRlcAJzSeoNFizK3J4VYHFZsrVIkiRJ0lIYRklSb7DTFplXChy2PAxfPvl6JEmSJKkFhlGS1Buc9wtYbkA8eTnEwVRRAVxzTjyBuiRJkiR1E84ZJUm9wagR8NZ9cPnN8NgLsNoYOOFQWGOVtCuTJEmSpEYMoySptxg6GH5zbNpVSJIkSdJSGUZJktrvm/nw9MswqD9svgFkOfpbkiRJ0tIZRkmS2ueSG+G0SyAvD6I6GNAPHrrOoYGSJEmSlspfYUuS2u7pl+CMP0FFFSxcDIvKYMZXsONPoa4u7eokSZIkdWOGUZKktrvyFiivbN6+YBE8+0ri5UiSJEnqOQyjJElt980CiKLm7SHEgVRrfFIO+7wB/Z6AoU/DaR9Bpb2qJEmSpN7OMEqS1Hb77gTFhc3bq2viicyXZW41bPQS3P01lNbB19Vw6RdxOCVJkiSpVzOMkiS13cF7xBOVLwmkQoCiArjwRBjYf9nHXzsTSmuhYUeo8jp4ZD68XdoVFUuSJEnqJlxNT5LUdvl58NQ/4J/3wb8fhiGD4Of7w6brte745xfF4VNTOQFeK4U1iju1XEmSJEndh2GUJKl98vPgx/vEj7ZauximzIXKJvNO1UUwIcPwP0mSJEm9hsP0JPVq31DOVD7lLeamXUrPU10N518L43aEkVvBcefB3Pmdc+6fjYS8Jm9BeQHW6QcbtGKYnyRJkqQey55RknqliIjf8Czn8wL5ZFNNHWswhCnszQoUpV1ez7Dv8fDQs1BeET+/+g64/3F4814o6mDvpZH58MREOPI9eGkRZAfYdyhcuWpHq5YkSZLUzdkzSlKvdBcfcBEvUkEtC6iijBpeYw77cm/apfUMr78HDzcIogCqqmHON3DzfzrnGhP7wwsbwuLJUDoZ/rkmDPR3JJIkSVJvZxglqVf6I9MopaZRWzV1vMiXfMGilKrqQaa9Ea+Q11RpOTw5vXOvVZANOb4dSZIkSX2F//uX1Ct9TXnG9lyymEdFxm1qYPRIyMrwFlGQBxNGJ18PwL2PwLp7woCNYNP94bEX0qlDkiRJUocYRknqlfZgFfIyfIvLJovVGZxCRT3M1hvDsCGQnd24PScHjmjH6nkddfP9cMCv4uGDi0rh+ddgt5/B1GeTr0WSJElShxhGSeqVTmYjhlJEAXGYEoAicvgL25NL9tIPVtwr6vG/w5YlkJcL+Xmw+liYej2MGJpsLVEEJ10EZU16tJVVwMkXJVuLJEmSpA5zplhJvdJQiniNH3Elr/Agn7Iy/TmBDSlheNql9RwjV4BH/gbzFsSTlw9bPp06Kiph9teZt739cbK1SJIkSeowwyhJvdZgCjmDSZzBpLRL6dmWG5ju9QvyoX8/mL+w+bYVV0i+HkmSJEkd4jA9SUrJV5TxIJ/wJi30+lEsBDjlCCgqbNxeVABnH5NOTZIkSZLazZ5RkpSwiIiTeJwreIV8sqmmjrVYninsxfIUpV1e93TKT6C2Di64Lh62N6AYzv0FHLRH2pVJkiRJaqMQRVHaNaSqpKQkmjZtWtplSOpDbuItfs5DlFLzbVsuWWzNSvyPH6RYWQ9QWwsLF8PA/vEk65IkSZK6pRDC9CiKSjJts2eUJCXsEqY1CqIAqqnjCWYwhzKG2juqZdnZLc9h9eUc+O+TkJsDu28NgwYkWpokSZKk1vHXypKUsHlUZmzPJrCghW19QmkZnHwRDJ8MK2wOR58Tr+TXGlfeDGN3gON+Cz8/B0ZuDXdP7dJyJUmSJLWPYZQkJWw3xpKb4dtvP/IYx6DkC+oOogi2PRwu+wfMngtz5sF1/4JND4CqqqUf+85H8KsLoaIKSsthcRmUV8CBJ8E38xMpX5IkSVLrGUZJUsLOYBJDKKSAbCDuEVVEDteyI1mElKtLyWMvwFsfQmWD4KmqGmZ+Bfc8svRjb74fqmubt2dnLftYSZIkSYkzjJLUZvOo4H3mUU2GAEDLNJxi3uBQTmcTtmIlfsSaPMuB7MEqaZeWnpffbhxELbG4DKa9ufRjy6viic2bqq2Le0tJkiRJ6lacwFxSq5VSzY95gHv4kFyyyCGLi9iKI1gn7dI65v1P4J2PYY1xMH50IpccQiFnMIkzmJTI9bq9sStBQT5UN57YneJCGL/y0o/dZwe48hYoK2/cHkWw+1adW6ckSZKkDrNnlKRWO5T/ci8fUkkti6lmPpX8gkf4H5+kXVr7VFTCbj+D9faCg0+BdfeE7x0dtytZu28FA/vFQ+uWCCEOqPbfdenHbrIuHLIHFBXGx2RnQWEBnHgYLFy87DmnJEmSJCXKMEpSq3xNGffzERVNhuaVUcMfeCGlqjro5IvhkeehvDIOLcor4aFn4bRL0q6s78nNhWduhi03gtyc+LHJuvD0P6F/8dKPDQH+8n/w4NVw3EHw8/1h4upw0d9g0gGwwhZww13JvA5JkiRJyxSiKEq7hlSVlJRE06ZNS7sMqdt7i7lsyj9ZRHWzbaswkA/4SQpVdVC/Eigta97evxgWvph8PYqVlkFdtOwQqiXbHQ5PvRRPgL5EUSH89yrYsqRzapQkSZK0VCGE6VEUZfwPuD2jJLXKOAaSKbrOJrAVoxKvp8OiCMorMm8ra6FdySguan8Q9dlMeOaVxkEUxPNJXXBdh0uTJEmS1HGGUZJapYAcfssWFDVY9yCbQD9yOYNNU6ysnUKAzdfPvG3yBsnWos7z5deQl5t52+dfJluLJEmSpIwMoyS12i/YgFvYjU0Zwcr050DW4CUOYSwD0y6tfa44M+6BsyS8yMuDAf3g8jPSrUvtt9Z4qKlp3p6bCzu4cqEkSZLUHThnlHNGSX3bF1/Cn/8JL70FG64Jxx0MKw5Luyp1xEXXw/9dEQ/NA8jJhkED4PW7YfjQVEuTJEmS+oqlzRmVk6lRkvqMlYbD+SemXYU6069+DKuOgQuvj4ft7bQ5nHaUQZQkSZLUTRhGSZJ6n+9tGz8kSZIkdTuGUZLUEZ/NhH89BNU18P1tYbWxaVckSZIkSd2aYZQktdd1/4Jjz4Mogro6OPtyOOUn8H/HpF2ZJEmSJHVbrqYnSe3x5Zw4iKqohMqquGdUeSWcfx28+k7a1UmSJElSt2UYJUntce+jkBWat1dVwe0PJF+PJEmSJPUQhlGS1NmiKO0KJEmSJKnbMoySpPbYY5t4nqim8vJgv52Tr0eSJEmSegjDKElqjxFD4c9nQEE+5OdBbg4U5sPJP4aJa6RdnSRJkiR1W66mJ0nt9ZN9YcfN4M7/xROYf39bWH1c2lVJkiRJUrdmGCVJHbHySPjlYWlXIUmSJEk9hsP0JEmSJEmSlBjDKEmSJEmSJCXGYXqSpM63qBRuvBsefQHGrQQ/3x/GjUq7KkmSJEndgGGUJKlzzZ0PG+4Lc76Bsop4pcErb4X7r4RtNkm7OkmSJEkpc5ieJKlznfdXmDUnDqIgXmmwrBwO/TVEUbq1SZIkSUqdYZQkqXPd9TBUVTdv/3o+fDoz8XIkSZIkdS+GUZKkztWvKHN7XR0UFSRbiyRJkqRuxzBKktS5jjmweeiUkw2brAsrDEmnJkmSJEndhmGUJKlzHbUf/GAnKMiH/sVxT6nxK8OtF6ddmSRJkqRuwNX0JEmdKysLbvg9nHU0THsDVhoOkyZCCGlXJkmSJKkbMIySJHWNcaPihyRJkiQ14DA9Saqsgvc+gQWL0q5EkiRJkno9wyhJfdulf4flN4MN94Vhk+GwX8fhlCRJkiSpSzhMT1LfdccDcPqlUFbxXdvtD0BODlx7bmplSZIkSVJvZs8oSYmaTSk/52FW5K+sxvVczsvUUpdOMb+7unEQBVBeCf+8H8rK06lJkiRJkno5e0ZJSswCKtmAm5hDOdXUAaWcwhO8yJfcyC7JFzRzTub2AMxbCEWFXV7CHbzLaTzFJyxkDAP4PVuwL6t1+XUlSZIkKS32jJKUmOt4nXlU1gdRsTJquJ13+ZgFyRc0aT0IoXl7cSEMX77LL38b73AYD/AB86mhjg+Yz6E8wO282+XXliRJkqS0GEZJSsxjfE45Nc3a88jmJWYnX9Dvjo+Dp6wG3wqLCuCPp0B2dpdf/lSepKzJ16OMGk7lyS6/tiRJkiSlxTBKUmJWZTlyM3zbqSViFP2TL2jN8fDi7bDfTrDyCNiyBO6+HA75fiKX/5SFLbSn0EtMkiRJkhLinFGSEnM0E/kLrzYappdLFqswkI0Ynk5Rq4+DWy5O5dIr0Z/PWdSsfcU0gjlJkiRJSog9oyQlZhyDmMLejGEABWSTRzZbM4qH+AGBDHM39XLnsDlFTX4nUEQO57F5ShVJkiRJUtezZ5SkRG3FKD7iJ8xkMUXkshwFaZeUmsNYi4g6TudpZlHKSIo5j835EWulXZokSZIkdRnDKEmJCwSHotU7nHU4nHWopY5sO6tKkiRJ6gMMoyR1P1/OgWv/Be99DFtsCAftDsVFaVfVpQyiJEmSJPUVhlGSupdpb8C2h0N1NVRUwb8fht9dHa96N3Rw2tVJkiRJkjrIX8VLfdVt/4X19oRhk2Gf/wfvfJR2RbEfnQqLSuMgCqC0HGZ+Bf93ebp1SZIkSZI6hWGU1BddcB0ccQa89h58NRfuehg2/iG8/0m6dc35Bj78vHl7dU1coyRJkiSpxzOMkvqa8go458q4x9ESUQRl5XDuX9OrCyAvt+VtBXnJ1SFJkiRJ6jKGUVJf89HnkJXh1q+tg6dfTr6ehgb2h8kbQk524/bCAjhyv3RqkiRJkiR1KsMoqa8ZMTSeHDyTcSslW0smN50P40ZB/2IoLoSiAth+U/jV4WlXJkmSJEnqBK6mJ/U1gwfB3jvEczCVV37XXlQApx2ZWlnfGjEU3r4fnpgGH38BJWvDOqumXZUkSZIkqZMYRkl90XXnxfMz3TIFsgL0K4ZLT4VtNkm7slg1MGcMzBsBCwfEc1qFkHZVkiRJkqROEKIoSruGVJWUlETTpk1LuwwpHaVlMH8RDF8esrOXvX8S3i+DLV6G8jqorIPcABsPgP+uC/mOLJYkSZKkniCEMD2KopJM2/zJTurLiotgxWHdJ4gC2P8tmFMNi2qhKoLSOnhuIVz6edqVSZIkSZI6gWGUpO7jy0p4sxSadtgsr4PrvkylJEmSJElS5zKMktR91NLy3FA1fXtIsSRJkiT1FoZRkrqPFfNhTH7z9oIsOGhY8vVIkiRJkjqdYZSk7uWWNWFgNhTVf3vqlw2rFcIpo9KtS5IkSZLUKXLSLkCSGpnYHz7ZFG7+Cj6tgEkDYPchkGN2LkmSJEm9gWGUpO5nUC4cvWLaVUiSJEmSuoBdDSRJkiRJkpQYwyhJkiRJkiQlxjBKkiRJkiRJiTGMkiRJkiRJUmIMoyRJkiRJkpQYwyhJkiRJkiQlxjBKkiRJkiRJiclJuwBJ6pGmvwlPvwTDl4fvbQsF+WlXJEmSJEk9gmGUJLVFTQ3sezw89CzU1kJeLuSfC4/dCGtNSLs6SZIkSer2HKYnSW1xzZ3w0DNQVg6VVbCoFOYugH2OhyhKuzpJkiRJ6vYMoySpLa65A8oqGrdFEXw+Cz78LJ2aJEmSJKkHMYySpLaorsncHgLU1CZbiyRJkiT1QIZRktQWh+wBhRkmKx88EFYbm3w9kiRJktTDGEZJUlscdzCssyr0K4qfF+THn996cdw7SpIkSZK0VK6mJ0ltUVgAz9wM/3kcnpgGKw6Dg/eAoYPTrkySJEmSegTDKElqq+xs+N628UOSJEmS1CYO05MkSZIkSVJiDKMkSZIkSZKUGMMoSZIkSZIkJcYwSpIkSZIkSYkxjJIkSZIkSVJiDKMkSZIkSZKUGMMoSZIkSZIkJcYwSpIkSZIkSYkxjJIk9UyfzoCnpsM389OuRJIkSVIb5KRdgCRJbbKoFPY7AR57EfJzobIajjsIzj8RQki7OkmSJEnLYM8oSVLP8pMz4dEXoKISFiyOP155C1z/77QrkyRJktQKhlGSpJ5jcSncMxUqqxq3l5bDxX9LpyZJkiRJbWIYJUnqORaWQmjhreubBcnWIkmSJKldDKMkST3HiKEweGDz9qws2HaT5OuRJEmS1GaGUZKkniMEuOpsKCqIAyiAvFwY2A9+e3yalUmSJElqJcMoSVLPsvvW8OQ/YL+dYcM14ZgD4PV7YOxKaVcmSZIkqRVy0i5AkqQ222BNuOWitKuQJEmS1A72jJIkSZIkSVJiDKMkSZIkSZKUGMMoSZIkSZIkJcYwSpIkSZIkSYkxjJIkSZIkSVJiDKMkSZIkSZKUGMMoSZIkSZIkJcYwSpIkSZIkSYkxjJIkSZIkSVJiDKMkSZIkSZKUGMMoSZIkSZIkJcYwSpIkSZIkSYkxjJIkSZIkSVJiDKMkSZIkSZKUGMMoSZIkSZIkJabbhFEhhMEhhIdCCO/Xf1yuhf2uDyF8FUJ4oz3HS5IkSZIkKT3dJowCTgWmRlE0AZha/zyTG4CdO3C8JEmSJEmSUtKdwqjvAzfWf34jsGemnaIoegL4pr3HS5IkSZIkKT3dKYwaFkXRLID6jyt01fEhhCNDCNNCCNPmzJnT7oIlSZIkSZLUNjlJXiyE8DAwPMOm05OsI4qiq4GrAUpKSqIkry1JkiRJktSXJRpGRVG0fUvbQgizQwgjoiiaFUIYAXzVxtN39HhJkiRJkiR1se40TO9e4ND6zw8F7kn4eEmSJEmSJHWx7hRG/QHYIYTwPrBD/XNCCCNDCFOW7BRCuAV4FlgthPBFCOGIpR0vSZIkSZKk7iPRYXpLE0XRXGC7DO0zgV0bPD+gLcdLUqtVVUFuLoSQdiWSJEmS1Gt1p55RkpSOKY/DKjtB4fowcGM46zKorU27KkmSJEnqlbpNzyhJSsVT02HfE6C8In6+qBQuvgEWlsKlv061NEmSJEnqjewZJalv+82V3wVRS5RVwNW3w+LSdGqSJEmSpF7MMEpS3/bux5nbs7Nh1pxka5EkSZKkPsAwSlLftt7qmScsr6uDlYYnX48kSZIk9XKGUZL6tt8cC4X5jduKCuGkH0NhQTo1SZIkSVIvZhglqW/bYE14+HrYdD0oyIdRw+HCX8H/HZN2ZZIkSZLUK7maniRNmgjP3pJ2FZIkSZLUJ9gzStJ3qqthxmyorEq7EkmSJElSL2UYJQmiCC68DoZsBhN2gSGT4Iw/xZN4S5IkSZLUiRymJwmuvRN+cyWUln/Xdsnf4wm8Tz8qvbokSZIkSb2OPaMkwXl/bRxEAZSVw0XXx72mJEmSJEnqJIZRkmD23MztCxbH80hJkiRJktRJDKMkwdrjM7ePHgl5ecnWIkmSJEnq1QyjJMHFp8TzQzVUWACXnJpOPZIkSZKkXsswShJstRE8fB1sszEMHQybTYT7roA9t0u7MkmSJElSL+NqepJim60Pj9yQdhWSJEmSpF7OnlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKTIiiKO0aUhVCmAN8mnYd6pWWB75OuwipB/GekdrO+0ZqG+8ZqW28Z9QRo6MoGpppQ58Po6SuEkKYFkVRSdp1SD2F94zUdt43Utt4z0ht4z2jruIwPUmSJEmSJCXGMEqSJEmSJEmJMYySus7VaRcg9TDeM1Lbed9IbeM9I7WN94y6hHNGSZIkSZIkKTH2jJIkSZIkSVJiDKOkDgghDA4hPBRCeL/+43It7LdzCOHdEMIHIYRTG7SfHUKYEUJ4pf6xa3LVS8lp6R5osD2EEC6r3/5aCGGD1h4r9UYdvGc+CSG8Xv++Mi3ZyqV0tOKeWT2E8GwIoTKE8Ku2HCv1Rh28Z3yfUYcZRkkdcyowNYqiCcDU+ueNhBCygSuAXYA1gQNCCGs22OWSKIom1j+mJFG0lKRW3APUb5tQ/zgS+EsbjpV6lY7cMw1sU/++4nLc6vVaec98A/wCuKgdx0q9SkfumQZ8n1GHGEZJHfN94Mb6z28E9sywz8bAB1EUfRRFURVwa/1xUl/Rmnvg+8Dfo9hzwKAQwohWHiv1Nh25Z6S+aJn3TBRFX0VR9CJQ3dZjpV6oI/eM1CkMo6SOGRZF0SyA+o8rZNhnReDzBs+/qG9b4tj6IRbXtzTMT+rhlnUPLG2f1hwr9TYduWcAIuB/IYTpIYQju6xKqfvoyHuF7zPqizr67973GXVYTtoFSN1dCOFhYHiGTae39hQZ2pYsY/kX4Nz65+cCFwM/bmuNUje3tHtgWfu05lipt+nIPQOweRRFM0MIKwAPhRDeiaLoiU6tUOpeOvJe4fuM+qKO/rv3fUYdZhglLUMURdu3tC2EMDuEMCKKoln1wyO+yrDbF8CoBs9XAmbWn3t2g3NdA9zfOVVL3UqL90Ar9slrxbFSb9ORe4YoipZ8/CqEcBfxcAx/SFBv1pp7piuOlXqqDv27931GncFhelLH3AscWv/5ocA9GfZ5EZgQQhgbQsgD9q8/jibze+wFvNGFtUppafEeaOBe4Ef1K4RtCiyoH/rammOl3qbd90wIoTiE0B8ghFAM7IjvLer9OvJe4fuM+qJ2/7v3fUadxZ5RUsf8Abg9hHAE8BnwA4AQwkjg2iiKdo2iqCaEcCzwIJANXB9F0Zv1x18QQphI3C32E+CohOuXulxL90AI4Wf12/8KTAF2BT4AyoDDl3ZsCi9DSkxH7hlgGHBXCAHi/+fdHEXRAwm/BClRrblnQgjDgWnAAKAuhHA8sGYURQt9n1Ff05F7Blge32fUCUIUOSRakiRJkiRJyXCYniRJkiRJkhJjGCVJkiRJkqTEGEZJkiRJkiQpMYZRkiRJkiRJSoxhlCRJkiRJkhJjGCVJktSJQgiHhRCiBo9FIYRXQwjHhhBymuybG0I4OoTwdAhhfgihMoTwcQjh+hDCBi2c//36836vDTWtHUK4KoQwPYRQFUJwOWVJkpQawyhJkqSu8QNgErAP8ALwZ+CsJRtDCMXAVODi+u0HATsC5wFj67c1EkLYHBhf//TQNtSyIbAr8BkwrY2vQ5IkqVOFKPIXY5IkSZ0lhHAY8DdgQhRFHzRofxTYMIqiAfXPrwUOAbaOoujZDOfZK4qiu5q0XQ0cDjwCbA2MiKLom1bUlBVFUV395+cBp0dRFNr3CiVJkjrGnlGSJEnJeBHoH0JYIYQwAjgMuCZTEAWQIYgqAPYD/gdcCOQB+7fmwkuCKEmSpO7AMEqSJCkZY4FaYDGwDZAN3NuG4/cEBgJ/J+4Z9QVtG6onSZLULRhGSZIkdY3sEEJOCGG5EMJRwN7A/VEUlQGj6vf5tA3nOxRYANxT39PpH8DGIYTVO7VqSZKkLmYYJUmS1DXeAaqBb4ArgX8CP27PieqH9e0A3BFFUUV98431H3/UwTolSZISZRglSZLUNfYCNgJWB4qjKPpRg8nGP6//OLqV5zqYeFjfPSGEQSGEQcCXwCvAISEE/08nSZJ6jJy0C5AkSeql3mi4ml4TjxHPH7UH8YTky7Kk99N9LWzfFni4TdVJkiSlxN+iSZIkJSyKopnADcCRIYRJmfYJIexZ/3FDYG3gKuKJzxs+dgIqcaieJEnqQewZJUmSlI7jgVWBqSGEvxL3bFoMjAMOAkqAu4knLo+A86Mo+rjpSUIIdwN7hxCOjqJocaYLhRCKgF3rn65e37Zv/fNPoiia1jkvSZIkadlCFEVp1yBJktRrhBAOA/4GTFjKML0l++YCRxKHT2sDBcAMYCpwGfA2MBN4LYqi7Vo4xw7EQ/0Oj6Lohhb2GQM0C7Lq3RhF0WFLq1OSJKkzGUZJkiRJkiQpMc4ZJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMQYRkmSJEmSJCkxhlGSJEmSJElKjGGUJEmSJEmSEmMYJUmSJEmSpMT8f+cBsKgVgBczAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAASFCAYAAAAfCU0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3wU1RbA8d/sbnqvBNJDSGgJLXQCoQlIE0FAEAFFUbAjNhQQHyJSFBERVIqiKEXpvYTeeyCFEEJIJ430TXZ33h+BaATFghQ93/d5H7Izd+6cO7P4Mcd7z1VUVUUIIYQQQgghhBBCiN+judsBCCGEEEIIIYQQQoh7nySRhBBCCCGEEEIIIcQtSRJJCCGEEEIIIYQQQtySJJGEEEIIIYQQQgghxC1JEkkIIYQQQgghhBBC3JIkkYQQQgghhBBCCCHELUkSSQghhBDib1AURaMoykRFURIURTEoiqLe7Zh+TVGUYYqiqIqiRNztWIQQQghx/9Ld7QCEEEII8e/yJ5Mo/qqqJv5TsdwhQ4EJwAJgN2C8G0FcSxBFAB+rqpp3N2IQQgghxL+boqr33H8sE0IIIcR9TFGUx351KBx4GpgP7PnVuZ9UVS26I4H9QxRF+Q54EHBS7+K/WCmKMpGKZNYNiTlFUbSAGVCmqqrpzkcnhBBCiH8DmYkkhBBCiNtKVdUlv/ysKIqOiiTSgV+f+5fwAPLuZgLpVlRVNXKXZkgJIYQQ4t9DaiIJIYQQ4o5SFMVcUZQriqLs/Y3zr12r3xN+7fP1ej6drtUeuqQoil5RlNOKogz8jT7CFEX5SVGUrGttYxVFGXctofVH4xyhKMpxRVFKFEW5qijKFkVR2vzifMS1pXvtAd9rMaqKoiy6Rb8DFEVZoyhK0rXYshRFWaUoSuhN2iYqihKpKEptRVHWK4pScC2WFYqiePyi3SIqZiEBXPxFLBN/9QwjftW/n6IoKxVFyb/W72pFUfyv3/cm8XS69hzyFEUpvfYOnvmrcQshhBDi/iIzkYQQQghxR6mqWqYoymJgjKIotVVVjflVk+FAnKqqv176NhWwAeYC6rV2SxVFsVRVddH1RoqiPAj8BMQDM4AcoCUwCWgIPHKrGBVFmQq8BhwG3gLsqJhNtVNRlN6qqm4AooEhwDjAFXj52uUXbtH9c9dimg+kAzWv9b1PUZTGqqqe/1V7TyDy2pjGAg2AkYA98MC1NvOufe5zLY6sa8dP/84YXahYXlgN+PzaeMKBnVQ851+3f/pau4PAZKAI6AzMVRSlpqqqY/9C3EIIIYS4j0gSSQghhBB3w3xgDPAEFckaABRFaQ3UBl6/yTWuQKiqqlevtf2ciiTJTEVRflBVtURRFEsqClwfAjqoqmq4du08RVFOXWsboapq5G8FpihKMBVJj33X+ii7dvxL4Bzw2bWkSQawRFGUEYDVn1iq1/XXdaAURfkaOElFAmjUr9oHAgNUVV32i/YmYNT1JJyqqgcURTlNRRJp1R8sVv464AU8pqrqt9eOzVUU5cNr4/9lfNWBT4DvVVUd9ItTnymKMgt4RVGUz1VV/WUC7ZZx/4EYhRBCCHEPkeVsQgghhLjjVFWNA3YBj/9qidmTgAFYfJPL5l5PIF3r4yoVM2OcqNiVDCpmxlQDFgKOiqK4Xv8/sOFam1vNgukNKMCH1xNI1+6XCiwCfIFGf2CYN3U9gaRUsL8W2xUgFmh+k0tSf5mIuWbHtT8D/2ocQE8gDVj6q+PTb9K2H2ABfPXLZ3ot9rVU/DtlxzsUtxBCCCHuEpmJJIQQQoi7ZT7wLdADWKUoii3QH1h3bZbPr0Xf5Ni5a38GXPuzzrU/F/zOfavdIi7/a3+evcm5qF/c7+gt+rkpRVEaAe9Rkfj69bKxize5JOEmx7Kv/enyV2K4xh84/Ovd2lRVzVQUJe9Xba8/122/09+vn+s/FbcQQggh7hJJIgkhhBDibllJxRKpJ4FVwEAqkipf/kb7m+1+pvzG57FULA+7mdRbxPXrPm8bRVF8gN1APhWJpFgqagupwMeA7U0u+71d1f6xWH/jPo9TMXvpZn6dNLoX4hZCCCHEbSRJJCGEEELcFaqq6q/VAnpBUZQaVCSTUoBNv3FJXWDNr45dnyFzPYFxvSh1kaqqvzdr5vdcr+tTjxuLZNf91f3+rD5UJIp6qaq685cnrhW61v/FfuHmSbbfkwgEKoqi+eVsJEVR3AHHX7W9/lyz/sZzFUIIIcR9TmoiCSGEEOJu+gLQUrHzWgtgkaqqvzWD5VlFURyuf7j28zNAHhX1lQA2A5nAG4qiOP+6A0VRrBRFsbtFTGuoSMiMVRTF7BfXVqdiR7hLwIlbD+2mro+tykwcRVGeAjz+Yp/XFV7784Zx/4a1QHXg0V8df/UmbZdRkeB6V1EUq1+fVBTFQVEUiz8aqBBCCCHuTzITSQghhBB3jaqq0Yqi7AUeoyJx83u1jLKAQ4qiLKAiCTMc8AFGqKpafK2/IkVRHqdieVzstbbxVMysqQ08TMVsoMjfiSlWUZRpVOwat1tRlB8AO+BpKmYRDf6dRNetbASKgW8URfkUyAVaAw9SMevp7/y72cFrf05VFOVboBSIUlU16jfaTwUGAQsVRWkGxABtrsWTxS9mNqmqmqwoyrNULDWMVhTlGyqSaW5ACPAQFbO0Ev9G/EIIIYS4x0kSSQghhBB323wqkhc7VVX9vWVirwPhwHNUFHE+T0VC57tfNlJVdbOiKE2BN6hITrlRkay5AMwETt8qIFVVX1cUJR4YBXwAlAGHgEGqqu75c8Or0u8FRVG6Ae8Db1ExM2kf0A74FPD7G33vUxTldSpmZ31Bxb/nvcvPxcB/3T5LUZQ2wAzgCSqSRjuB9sARoORX7RcqihJHxUylkVQk5rKoqOv0DpD+V2MXQgghxP1BUdU/u3xeCCGEEOL2URSlP/ADFQmaX283j6Iow4CFQHtVVSPvbHT/PddqM2UB81RVfeZuxyOEEEKIe4fURBJCCCHE3TaaiqTFj3c7kP+am9U3omLGF8DWOxmLEEIIIe59spxNCCGEEHfctR3AOlKxPK0t8Kaqqn9nZzLx12xUFOUScJSKAucdgR7AfirqSgkhhBBCVJIkkhBCCCHuhrrAd1TsrPY5FXV5xJ23FnicisLYVkAyFe/i3b9RPFwIIYQQ/1JSE0kIIYQQQgghhBBC3JLURBJCCCGEEEIIIYQQt3TfLmdzdXVV/fz87nYYQgghhBBCCCGEEP8ax44dy1JV1e1m5+7bJJKfnx9Hjx6922EIIYQQQgghhBBC/Gtc23TjpmQ5mxBCCCGEEEIIIYS4JUkiCSGEEEIIIYQQQohbkiSSEEIIIYQQQgghhLil+7YmkhBCCCGEEEIIIe6skpISEhISMBqNdzsU8TdptVoCAgKwsrL6w9dIEkkIIYQQQgghhBB/SEJCAq6urri5uaHRyOKm+5XJZOLKlSskJCRQr169P3ydvHEhhBBCCCGEEEL8IUajURJI/wIajQY3N7c/PaNM3roQQgghhBBCCCH+MEkg/Tv8lfcob14IIYQQQgghhBD/CW+++eYfateuXTuysrL+4WjuP1ITSQghhBBCCCGEEH9Jw0lbyCsuv239OVqbcXL8A3+rD4PBgE5383THrFmzmDJlyi372LVr19+K4d9KZiIJIYQQQgghhBDiL7mdCaQ/0l9sbCz+/v707duXoKAgunbtSkFBAZ6enowdO5YmTZqwaNEi5s+fT1BQELVq1WLUqFEAjB49Gr1eT+3atenduzcAc+fOJTQ0lNq1azNo0CAMBgMAnp6epKWlERsbS0BAAAMHDiQwMJA2bdpQVFR0W8d8P5EkkhBCCCGEEEIIIe4biYmJPPPMM8TFxWFvb8/06dMBsLS05NixY3Tq1IkJEyYQGRnJuXPnOH78OEuWLGHOnDlYWFgQExPD6tWrOXHiBMuXL+fIkSPExMSg1WqZN2/eDfdLSkrixRdfJD4+Hnt7e77++us7PeR7hiSRhBBCCCGEEEIIcd/w8PCgc+fOAAwZMoT9+/dX/gywf/9+WrZsSY0aNTAzM2PgwIE3XZ62adMmoqKiaNCgAbVr12bv3r0kJCTc0M7T05OWLVsC0KhRIy5evPhPDe2eJzWRhBBCCCGEEEIIcd9QFOWmn+3s7AAwmUx/qB+TyUT//v359NNPf7edubl55c86nY7S0tI/E+6/isxEEkIIIYQQQgghxH0jLS2N7du3A/Dtt9/SqlWrKufDw8M5ePAgaWlpGAwGli1bRvv27YGKJJBerwegW7durF27lpSUFAAyMzOJi4u7gyO5/0gSSQghhBBCCCGEEPeNgIAAFixYQFBQELm5uYwZM6bKeV9fXyZMmEC7du2oU6cODRo0YNCgQQA89thj1KlTh969e9O4cWPGjx9Px44dCQoKon379iQnJ9+NId03FFVV73YMf0lYWJh69OjRux2GEEIIIYQQQgjxn3H69GlCQ0MrPzectOW27tDmaG3GyfEP/Ob52NhYevTowfnz52/bPf/Lfv0+ARRFOaaqatjN2ktNJCGEEEIIIYQQQvwlv5fwEf8+spxNCCGEEEIIIYQQ94Xg4GCZhXQXSRJJCCGEEEIIIYQQQtySJJGEEEIIIYQQQgghxC1JEkkIIYQQQgghhBBC3JIkkYQQQgghhBBCCCHELUkSSQghhBBCCCGEEP8pGzZsYNu2bZWfp02bxpw5c25oFxsbS61ate5kaPc03d0OQAghhBBCCCGEEPenNt+34ar+6m3rz8HCgb0D9962/n7L9u3bsbW1pVOnTgCMHTv2H7/nv4HMRBJCCCGEEEIIIcRfcjsTSH+kv9jYWPz9/enbty9BQUF07dqVgoIC9u7dS9OmTalXrx7h4eFcunQJgGbNmvHkk0/SqFEjatWqxa5du4iNjWXx4sXMnTuX2rVrs3nzZsaMGcOECRMA2Lt3L8HBwTRs2JCPPvqo8t4Gg4FnnnmG+vXrExQUxPTp02/r2O8HkkQSQgghhBBCCCHEfSMxMZFnnnmGuLg47O3tmTZtGs8//zyrV6/m7NmzDBs2rMrMoqKiIk6cOMHs2bMZMWIEwcHBDB06lGeffZaYmBi6dOlSpf8nnniCjz/+mJMnT1Y5PmvWLOzt7YmKiuLUqVMsWrSImJiYOzHke4YsZxNCCCGEEEIIIcR9w8PDg86dOwMwZMgQpkyZwvnz5+nQoQMAJpMJd3f3yvaDBw8GoGvXrhQWFpKVlfWbfWdnZ1NQUEC3bt0AGD58ONu3bwdg69atxMTEsGbNGgAKCgqIjo6mdu3at3+Q9yhJIgkhhBBCCCGEEOK+oShKlc+2trYEBgbeMHPot9r/+vMvqar6m+dVVWXmzJk8/PDDfy7gfxFZziaEEEIIIYQQQoj7RlpaWuXsoG+//ZamTZuSk5NTeUyv13Ps2LHK9kuXLgVgy5Yt2NnZ4eLigp2dHfn5+Tf07erqiq2tLVu2bAFg8eLFleceeOAB5s6di16vB+DMmTM37ePfTJJIQgghhBBCCCGEuG8EBASwYMECgoKCyM3N5Y033uCHH37g9ddfJzg4mHr16rFr167K9k5OTjRq1IjRo0fzxRdfANC3b1/Wr19fWVj7lxYsWMDzzz9Pw4YNsbKyqjz+0ksvERwcTEhICLVq1WLEiBGUl5ffmUHfIxRVVe92DH9JWFiYevTo0bsdhhBCCCGEEEII8Z9x+vRpQkNDKz+3+b7Nbd2hzcHCgb0D9/7m+djYWHr06MH58+f/UH/NmjVjxowZhIeH364Q/1V+/T4BFEU5pqpq2M3aS00kIYQQQgghhBBC/CW/l/AR/z6SRBJCCCGEEEIIIcR9ITg4+A/PQgI4fPjwPxjNf4/URBJCCCGEEEIIIYQQtyRJJCGEEEIIIYQQQghxS5JEEkIIIYQQQgghhBC3JEkkIYQQQgghhBBCCHFLkkQSQgghhBBCCCHEfcPa2rrK59mzZzN06NC/1FdsbCzz5s27HWH9J8jubEIIIYQQQgghhPhLvhqzm9Iiw23rz9JGx5Mz2t62/m7lwoULfP/994wcOfKO3fN+JjORhBBCCCGEEEII8ZfczgTS7ehv6dKlhIaGUqdOHVq1akVycjIAY8aMoU+fPrRo0QJfX19mzpwJwJtvvsnRo0epXbs2kyZNwmAw8Mwzz1C/fn2CgoKYPn06ABs2bKBZs2Z07doVf39/evfujclk+nuDvQ/JTCQhhBBCCCGEEELcN/R6PbVr1678fPXqVR544AEAOnXqxIABA9BoNHz00UdMmjSJ+fPnA3Du3DmOHz9Ofn4+jRo14uGHH2bKlClMmzaNnTt3AjBjxgzs7e2JioqipKSEpk2b0qNHDwCio6M5deoUvr6+NGnShG3btlXe979CkkhC3GOioqJ4+umn0Wq1BAYGsmDBAhRFudthCSGEEEIIIcQ9wcLCgpiYmMrPs2fP5ujRowBcvHiRPn36kJmZSXl5OV5eXpXtunXrho2NDTY2NrRq1Yq9e/fi7Oxcpe+tW7cSExPDmjVrACgoKCA6OhoLCwtCQ0MJCAgAoH79+ly4cOGfHuo9R5azCXEPMakmgoOD2b9/P3v27AGo/IehEEIIIYQQQojf99xzzzFq1Cji4uKYM2cOer2+8tyv/+O8RnNjSkRVVWbOnElMTAwxMTGkpKTQp08fAMzNzSvbabVaDIbbu5TvfiBJJCHusqv6q0w6MImmS5rS4OsGPLT2ITYlbgIqMuze3t5MmjSJiIgIOnToQGJiIlOnTmX9+vUArFq1ihkzZjBx4kS2bdsGwLBhw0hMTLxbQxJCCCGEEEKIu6KgoAAfHx8AFixYUOXcxo0bKS4uJiMjgwMHDtCqVSvs7e0pLCysbPPAAw8wd+7cyuTTmTNnyM/Pv3MDuMdJEkmIu6jEUMLg9YNZFb+KUmMpAEkFSTz/yfN41fIiMzOTK1eukJKSQmRkJHPmzGHKlCkMGjSIH374AYDly5czYMCAuzkMIYQQQgghhLgnvPPOOwwcOJCwsDBcXV2rnGvUqBEdO3akWbNmjB07Fj8/P5o2bYpOpyM4OJhJkybx0ksvERwcTEhICLVq1WLEiBGUl5ffpdHce6Qm0n3u0KFDvPzyy2i1WsLCwvjoo4+qnB85ciRRUVEoisJnn31GaGgow4YN4+233yYwMPAuRS2uWxO/hoziDMpNVf+hZNnAEsfGjrAK+vbtS3JyMuvXrycwMJDq1avj7e1NTk4Oe/fuZePGjSQmJtKgQYPK61VVvbMDEUIIIYQQQvwnWdrobusObZY2t05TFBcXV/n8/PPPV/48aNAgBg0adNPrgoKCWLp0aZVjFhYWHDhwoMqxTz/99IZrH3zwQR588MHKz4sXL75lnP9GkkS6z/n6+rJjxw4sLS0ZPHgwZ86cISQkBACTycQbb7yBv78/58+f54033mDlypV3OWLxS+sS1lXOQLrOVG5CY6ZBp9GhddDy9NNPc+nSJXJycnjjjTcqdyHo0aMHAwYM4NVXX2Xo0KF06dKFli1boqoqZ8+evRvDEUIIIYQQQvzHPDmj7d0OQdxBspztPpSVtZNDh3uwfUctYmIfIPHSFMrLr6LT6dBqtbRv355+/fqxaNEi/P39ATAzM0Or1Vb2MXPmTNq2bcv48ePv1jAEoHLjjKGcyBzOPXOOwyMOE7k1kj6P9CEmJobt27fTq1cv7OzsaN26NeXl5aSnp/P000/j6emJra0tH3/8MV5eXly4cIH27dvz3nvv3YVRCSGEEEIIIcS9ZcaMGbz77rt3O4z7nsxEus+kpq0gNnYCJlPF7BWjsYjU1B84fGgDV644Y21tTWZmJtu2bauSNHrzzTd54YUXKj+3bt2azz77jB49epCSkoKnp+cdH4uAbv7diM2JrTIbyaW9C66dK9bupn+VTu/FvXnt9df44aMfyM/Px9LSkt27d5Ofn8+7775buc7X3NycgwcPApCfn0+fPn14+umn7/yghBBCCCGEEEL8K8lMpPuIyVRGXNz/KhNIANHRpYx69iLPPnscR8eK4w0aNKhMIE2ePBkHBwdSU1Np06ZN5XWNGjUCICQkhIsXL97BUYhf6hPYB2dLZ7T8nPBTdD9vO2nUGinML+TJh5+kw4MdOHXqFNnZ2Wzbtg0vLy8MBgNNmjThyJEjldtTqqrKU089xfvvv0+1atXu+JiEEEIIIYQQQvw7SRLpPnI1/xT8avmTq6sWOzstUz/0IDsnnpiYmMpkgslkIjAwkEaNGlVJIAGcOnUKgKioKPz8/O5E+OImrM2sGd9yfOU7AyhNLiXuzTjOPn2WwtOFZKzKQGOtQddSh6urKwaDAYPBgIWFBQ0aNKC8vJzOnTuTkJBAWloanTt3pkOHDjRv3rzKvfLy8vjxxx/v9BCFEEIIIYQQQvxLSBLpfqIabzh05oye8+f1fPFFDkePZJGTk8OGDRtwcXEhODiYZ599lvT0dJYsWcLIkSPR6/X8+OOPjBgxAh8fH86cOSOzVe6i4vJixu4aW2V3NgsPC4KmBFFvfj1Uk4o+SY+x2MjU4VPJysqic+fOdO/encDAQGbOnIm9vT0mk4lGjRqRnJzMvn37WLp0KRERESxatKiyX0kiCSGEEEIIIYT4O6Qm0n0kOlrP6NHn0SgqQcHmjBrlSocOtnToYEtCgpEJE/KZOXMmJSUlREZG0rx5cxo2bEhxcTHl5eV07doVMzMzevbsSbdu3di3bx9GoxEzM7O7PbT/rM2JmzGoVbfDVFUVfbKelEUpGEuMmLubY9KbCO8fzsoJKzl6/ijNZjXj6KmjdB3clep21QkLC6N69eoYjUb69u3L559/Ts+ePenXrx+ff/45paWlZGZmsnXrViIiIli+fDlubm53adRCCCGEEEIIIe5HkkS6j/j5+TFjhg9mZuW8/34mCQllBASYk59v5JNZ6Uz+Xwvs7UuZNcuN//3vDdau3UlISAgdO3bknXfeYcSIEeTm5jJixAiWLFnC+fPnK6vTP/roo7z++utotVomTZrE8uXL7/Jo/xvO552nxFBS5VjhmUIyVmRQllWGzk6HzklHWXIZbz31Fj++/yP2o+3JL8xH0SiUOZQRHReNmcEMR0dHXFxcALC1teWtt97iqaeeIicnh40bN5KUlERSUhJLliy5G0MVQgghhBBC/AulTDqAWmy4dcM/SLHW4Tm+5W3r72befPNNpkyZcst27dq1Y+XKlZWbGd3Khg0bWLBgAStWrPi7Id7gn4r5z5LlbPcwk8lAWvoqjh4bwKFDD3LlymQsLCryflpNxf9feSWVJ5+4TGgDK3x8L1OqT8VozKag4DibN08iJycHS0tLiouLeeihh3jiiSdo164dp0+f5vLly7Rr1w6Ajz/+mDFjxvDKK68wa9asuzns/5QaNjVuOGbf2J5a79ei3vx62De0h1JoENaA9957D5NqIm56HMXxxQA4tXIi6MMgFGeFjMwMpkyZwsaNG+nQoQNlZWUcO3aMYcOGVam5JIQQQgghhBC3y+1MIN3O/gyG3+7nj/7Ou2vXrn8sGXMz90PM8pvlPcpkKufkyaHExr7D1atHKSyKJSs7EpOphIQLeq7mG7GwVEhNKcdoVImKKuWVV1I5fqyEI0eKuXixhMcee4927ZozevRocnNzSUpKYvLkyXh5eVFUVIS7u3tlcqFatWoEBAQQEBBAjRo3JjbuF6mpqTRu3BhLS8vf/QsIsHLlSry9vSs//7r4+J3gbed9wzFTuQmA/BP5XD18FR8rH6pZVOPE+RNY+lhSfXB18o/lA5B3MI+SxBKMeiM+tX2IiooiPDycHTt2cOnSJYYMGcIXX3yBXq/HzMwMo/HGulpCCCGEEEIIcb+IjY3F39+fvn37EhQURNeuXSkoKADA09OTsWPH0qRJExYtWsT8+fMJCgqiVq1ajBo1CoDRo0ej1+upXbs2vXv3BmDu3LmEhoZSu3ZtBg0aVPm7pKenJ2lpacTGxhIQEMDAgQMJDAykTZs2FBUV/atj/i2SRLpHpaat4Gr+KYzG4l8cNZKfb2T27GxefbWino1/gDmurjrOx+lJulTGipV5VKumw2RS8fMzBxLx9fXF1dWVS5cuMWLECJo0aUJiYiKJiYmcPn0agNOnT1NQUEBmZiaxsbF3fsC3ibOzM9u3b6dFixa3bLtixYoqSaS7Ratoq3wuPFNIwpQEsjZl4dTEibCGYVy9epXMM5mUJpWS+k0qmMCthxv5x/O5NPMShgIDxSXFTJ48maioKB555BG+//57xo0bx3PPPcekSZPw8PAgJyeHfv36kZOTc5dGK4QQQgghhBB/T2JiIs888wxxcXHY29szffr0ynOWlpYcO3aMTp06MWHCBCIjIzl37hzHjx9nyZIlzJkzBwsLC2JiYli9ejUnTpxg+fLlHDlyhJiYGLRaLfPmzbvhnklJSbz44ovEx8djb2/P119//a+P+WakJtI9ICoqiqeffhqtVktgYCDjx4/n2VGvMnasZZV2RqPKB1MyeXqkM87OOtLTy7G10fDee17odAqvv5bGxYtlODpqyM42UlSkZ9Kk76hZMxiAjIwMqlWrRnJyMqqqYmZmRp8+fahVqxZGoxE7OztCQ0N58cUXsbS0ZNWqVXfhafx5Vy4XcGLzJTIvFWDjaE5oh58TQ9cLipeXl+Pm5sayZcvQarWsX7+ezp07s2DBghv6e+GFF2jVqhUDBw78x2Ov61IX46923bNvbI9tiC0aMw0KCh7RHjRp0gTlgEJR9yLKTGWoBhVFp6C11VIYVYhjfUeWzl+KYlCIj49n//79fPPNN2g0Gh5++GEefvhhADZv3vyPj0kIIYQQQggh/kkeHh507twZgCFDhvDJJ59UnhsyZAgA+/fvp2XLlpUrbQYOHMiuXbt47LHHqvS1adMmoqKiaNCgAQB6vR53d/cb7unp6UnLlhW1mho1asTFixf/9THfjMxEuotUVaW8PJ9atfzZv38/e/bsASArKwv1F1u+X7drVxGxsXq++CKHV15JIyfbiEajoNMpAMTE6NGXqaSmGigpUdGXmbCytiY+Pr5y2lqTJk0YOXIkY8aMYfz48eTl5XH8+HHGjBmDhYUFycnJvP3224SFhf2lMf2Z5WQAJ0+eJCIigoiICPz9/fn444+rnE9MTGTYsGG/eX38sQx+/PAY8ccyuXqlhNTzV9m28By56cWoqopOp2PdunXs3r2bOnXqsGPHDgAWL158w19EgBdffJGWLVvekQQSgJu1GwrKDcevz0a6OOUiaRlpPP/887Sp3Yb4KfFc/OAiuXtzAXBo6kDhmUJeHPoi1mbWTJw4kXbt2vH8888zYMCAOzIGIYQQQgghhLiTFEX5zc92dnYAmEymP9SXyWSif//+xMTEEBMTw8WLF5kxY8YN7czNzSt/1ul0f7pUyP0Y881IEukuUFWVpMuL2LO3OXv2NmPf/jCizr5CWVkOFhYWGI1G8vIsee21NHp0v8joUSmMfTWVH1deRVEgJlrPU085sWdvEW++5c7WrQU82C0BVVWpHWyBg4MGKyuFV8eEYG1lR+/evbGwsKB+/fqsWbOGxYsXo6oqr7/+Ok5OTuTk5JCeno6vry9Go5H9+/fTunVrANLT0yuTPHXq1OGll14CoGfPnoSHh9OxY0eOHj1amTiyt7e/5XKyXyaO+vTpw0MPPURkZCSKotCjR48//BzLy4zs+DoGQ7kJVf35uKHMRElhGalxeRQVFfHkk0/Srl07VqxYQWpqKjt27KBVq1ZV/kIBxMXFcfbs2TuWQLqunku9G47ZN7Yn4M0AwiaFsXjBYjQaDe9PfJ+og1EM/Hgg1TpUw1JriYO5A03aNuHldi8DMHXqVHbt2sWxY8eIiIi4o+MQQgghhBBCiDshLS2N7du3A/Dtt9/SqlWrG9qEh4dz8OBB0tLSMBgMLFu2jPbt2wMVCRW9Xg9At27dWLt2LSkpKQBkZmYSFxcnMf8GSSLdBRcuTOPChemUl2ejquWoahmrflpG7dreZGSk4eLiQmmpLe+/78fLL7vSsaMt7u46nnvehWrVzBj8mCN16lhyPk6PqqroS1XGvOpO5wfsKC01UVBgIijIitGjV1FQUIBGoyEwMBAzMzM8PT0pKipi7969eHh4cOTIEUJCQvjoo49o3bo1fn5+LFu2jGbNmgEVU+4iIyOJjIzkgQceqEzyfPLJJ+zZs4fXXx/L/PnvM+eztoSGVqOk5CSOjo6VY01MTKRDhw7079+fRo0a8eOPP/Laa69hMBhYv349oaGh9OjRg6KiItzc3AgMDARg/PjxhIeHM3PmTODmM5wun83hJpN4AFBNEL0/lc2bNxMUFMSuXbvo27cvqqoSFRXFmjVr6Nq1K2fPnuXtt98GICgoiEcffZSxY8cCcOjQIVq1akV4eDgvv/zyTe+zYMEC/P39bzqr6Y96qclLWGotbzhuqbXk+UbPo1F+/mvqbe/Nl12+ZNeAXcysOxPNIg3T355+Q1ZbCCGEEEIIIe4Exfr2Vsn5I/0FBASwYMECgoKCyM3NZcyYMTe08fX1ZcKECbRr1446derQoEEDBg0aBMBjjz1GnTp16N27N40bN2b8+PF07NiRoKAg2rdvT3Jy8m0d0/0a880o6i+ncNxHwsLC1KNHj97tMP608vJc9u5thUktu+GcRmPFwgVOaHXF/PTjaXz9bLAwN+LtY8GhgwUMGOjMgq8yqV/fkowMAyGhltjba1ix/Cp+fuZER+vx9TUnIaEMc3PQaCzR6XQ4ODiQlpZG7969qe3XgBmfTgEUrCytiD59ngGP9+HQoUOkpaXx6KOPcuDAAR555BG8vb2ZOHFiZXyNGjXiyJEj6HQ6cnMPcTHxU3bujOTwoUKeHunMK6+kMnNGTfT6OgwevJVOnTpz7tw5iouLCQwMJCkpicDAQNavX8/777+Pn58fs2bN4tChQ6xYsYJXXnmFpKQk0tLSGD58OJs2beK7775jy5YtfP7555SUlNCnTx+2bduGTqcj5kAau7+PpVz/85Q/o9HAZxvfJOlKHLX86vLJ/A95+eWXqVGjBg4ODnTu3LnK8rg2bdqwd+/eKj9PmTIFjUbD0KFDcXR0xNLSksGDB/PGG28QEhJS5Z1lZWWRl5fHxIkTWbJkyV/+Xmy+uJn3Dr2HwWRAQcGkmhjdcDSP13v8L/cphBBCCCGEELfb6dOnCQ0NvWv3j42NpUePHpw/f/6uxfBbNmzYwIIFC1ixYkWV4/dyzDd7n4qiHFNV9aY1bqSw9h2Wm3sIRWMGxp+TSGVlKubmCiZTCUZjCo6OOsLCLHnzLReeGZlCdLQeGxt7du9yxck5m/ETqrFzRyGXLpVz6FAJqgpxcXrMzRW8vc24fLkMW1sdvr51uHDhAp6enmRnZ7N/9yGO7Y3CxsIBOysnyg16guoGotGZ2LhxI/Hx8fj4+LB582bef/99ysp+jvHo0aN4e3vTtm1bDIZsnF0yefllR779NpuXX3atbGc0FXM1/yRlZaV8++23zJ07l2nTprF161ZGjBhBbm5FLZ8aNWqwZ88eunbtCsBPP/2Ei4sLAJcuXaJ+SH0iL0cSZxNH4tVE9IoeJyenyvusWbOGDz+YRualAhIzovloxEbOXDrAtpM/UGbQY2NlT8zFU6xYsQI7OzuuXr3KZ599RkJCAhMnTmTixIlVEkgAe/fupWWLVsyb8gOGMhNKqTWWlhUzhHQ6HVqtlrfffpudO3diYWHBjz/+iKurK4WFhVXe8cSJE0lMTCQ5ORkfH5+bFu/+tS7+Xejo25Fz2ecwmAzUc62Hhdbij36thBBCCCGEEEKIf5wkke40ReHXa7COHClm5YqrAHh6mtG1mx3nzpUC4OqqISjIit27Szh9Og6jsZwXX0ilRQtrtm8vJD/fSFmZSkioJUFBFjz9tAujR6Xi5R3Atq3Had26Nfv27SO0XiOsjW4MiXjjhpA+WTeG1q3b8NNPP9KoUSOgogD3gQMHKtv89NNPDB06lF69OrB3X2umfmDggylX6NzZlho1zKr0ZzLpsbAwotFoqFatWuXyNldXV9LT0yvbHT9+nPnz51NeXk50dDQ2NjYAWLhasGjbIvY23Evq3lSKs4rpuLwj/2v9v8pre/XqRa9evRg1YBwpl8IwqSa2n1rOCz1nUGYoZf6Wt6kTGsjkyZOxt7dn27ZtzJs3r7Ia/s0cXpfAlaQC9v94AZNJRatVcPezx6etQlZWFnq9noSEBPbt28etZvDVqlWLRYsW8eyzz3Lw4MHfrRF1nU6jI9Tt7mX0hRBCCCGEEOJeFxwcfE/O6AGoWbMmDz300A3H7+WY/yxJIt1hzk6tUNWqO6+1bm1D69Y2VY61i7BhyGNJFBaaqF7dSFmZkYkT32PWrPdo396aU6dKeKCLLTt3FGIwqEycWI3x72Sg1VpTXKzl0YEvAj9XfC8pLMPS/LcqvaukxObi7+/Pzp07AThx4gSqqnL6ymn2p+7n29XfMvj5wVy5sh1F0ZKWZsDLW8epkyVs3VqIu7uW9PRyDAaVl15MJTfXiL+/P56enpSWlvLqq6+i0+nYtm0bJ0+e5MyZM8TFxdGgQQM2b95Mhw4dOHjwIKqqMjFqIlpvLWcmncHS2xKTakJv1PPOvnfQGrSVUR88eJArpvMM6/8GsacukpF3idnrxqIoYDQrQVEcmT59Ojt37iQ2NhadTkd6ejre3t4AFBQU8OijjxIXF8c7r0wh45A5RqORb7ZN53LWeR4Me5xaxSFMmDeJLbvWsWvXrsriZ7eqQXQ9GdewYUPi4+P/UBJJCCGEEEIIIcT9Kzg4mODg4Lsdxj9Kkkh3mE5nR4D/yyRcnIXJVHLTNhcvlvH90jx0OigrM5GbZ8RoNFGnTh3q1g2juOQ8fR42Z+oHmRgMKlZWGiaMz+TcuTJMxlEUFb1Nnz79qvQ5ZvAHLFg+q8qx6/WDkrMuMPjJfnz86XT0ej0dO3bEy8eLM4YzbNyykauXr5Jnlcfj2x7HJ8GGEwvjuHSpjMJCc/KuGunW1Y6dOwvJzTHy+mtpuLvraNzYlSeemM7ChQvp2LEjJ06coEOHDtSsWZN9+/aRlZVFly5dAOjSpQtdunShTZs2nM0+S1pRGu593XHHvUq8BpOB7OJsADIyMhg3bhzzZy1m2/x4bCwdqOEcwOgHP0Cj0aJoTCw4OI5du3YxY8YMJkyYQLVq1ahZs2blMr3Lly+zb98+rl69Sq+OA3ki4l0KS/Po2ngwBlM5U5Y/jcFYxpi+n+Ds4EpwcDALFy7ku+++Q6vV0qRJEz7++GMASkpKmDx5MuPGjWPt2rV88803fPDBByQlJfHll1/+7e+NEEIIIYQQQghxt0kS6S7w9X0KSytPEhI+prj4wg3nq1XT8clsTwCefuoyzZrZsXZtER4eHmi1Fnh7Deebr7/H29sRFFj100d4eT2GnZ0dK1dG0aZNG5ydnQEqa/40blUfCsZhLP95GZZWq+P5HtPQ6jQ8OqE5Dm5WNG/eHICnPnuK9G3puBhcMK9ujvdz3uiNei4HwIhPAjmyIJl69SwpKDDSu7cD9UMsOXeulKZNrdm3V8/MmXMoKKiPh4cHkydPpk+fPjg7O/PBBx+wZs0a8vPzWbp0aZVx7927l/UJ61FusuWaalA5P/M85UnldOnShbZt23L+/HlCwmqjmqBl7a50CO3HJ9dmInk4+lJUVEa16q4MHz6catWqAVWX6QUGBmJra4utrS0FhRXLCW0s7HG2q0a5oQwHG1dyCtNZffAL9nf8gekzPiQ4OJjDhw9jZmZGSkoKn376Kd9//z0XLvz8Hrt160ZMTAy5ubnUqFGD6OhoOnXqVHneZDKh0cjGiEIIIYQQQggh7i+SRLpLqrk/SDX3B4nc1QCjsWph5hMnSiprJOXnm9ixowCDQWHChAkcOnSIkJAQUlMLKSwsxmAw4OPzODExzbC1tWX16tU0b96c6dOn8+qrr1b2Wb+tJ6e2JWEsN1a5l9ZMg3cdZxzcrCqPlRvL2Z2yG4PJUKWtqdxEKXp2FFriYWNGcnI5OTkVbRISKmb3eHhYkZFhR/XqD7Nv388V6Zs0acKnn37Kzp07WbFiBXq9vrJo9S952nre9HkpOoXA1wPpE9iHCa0mADBy5EiWjT+FVmPGou3v42jjxku9ZlZeM2vtKyz/YSVnzp5iwYIFzJs3jw8++KDy/Pnz5yksLCQ/Px8bazsAivQF5BZewcbCDnsrRxxtXHmx1wxaDfXghVdG4VHdndLSUsaOHctzzz3HhQsXqFevHgAnT55k4sSJfP311yxYsIBOnTqxcOFCSkoqZpy1aNGCRo0aYWVlxcyZP8cphBBCCCGEEELcDySJdJdpNBY3JJFat7ZBUWDBVznUrm3Bc8+H8NzoC3Tp0oXCwkJ8fX0JCgpi7969vPzyy5w5c4bvv/8eV1dXhg4diqqqVRJIANb25jw0pjGb5p2hOL8MjVbBWG7CL8SVjsPqVGmbp8/DwsOCgm8LyFqfRd15dVG0Cpc+ukRxXDFnFQgKcME/wMTBA8VcTEjFy8ue+vWb07PHPE6dnENoaChmZmY0adLk2phas3z5chwcHPDy8sLV1ZWbaeDWAGdLZ0oKS1CpWrzaTGNG/5oDOLsnhYunszCz0GKmM8dkUtFoNGg0GtYeXsC5y0dIzo5HVU20CW9FfkE+2dnZfPfddzzyyCMkJCQwfPhwDAYDgwcP5sCBA0x9/TOKz4OtpQMbji0mOesC3ZoMYeeZFWjNFDbMOcOluFQGN5lIiN8pPvnkExo1aoSPjw8JCQksWbKEPn36VIm3sLCQ+fPns3HjRgCysrIYN24cXl5ef/6LIoQQQgghhBD3oF27m2Aw5N22/nQ6R9q1PXbb+vul2bNnc/ToURYvXvyH2sfGxtKjR4+/XBR7w4YNTJs2rbL28B+9Z2RkJCNHjvxL9/ynSRLpLrO1CSI378ANx1u1siEszJp587LZvTsJFxcbcnNzOXv2LDNnzqS0tJR169axbds2atSowUcffYS3tzdLly7l4MGDN72Xm7cdj73XkqzkQkoLynH2tMHG4cZt5B0sHNDZ6PB/zZ9Ln1yqPG4qM+HQ3AFDkoF+/UYSGbmdCxfmYG1dnY8/Xoyvry+WltWZOHEinTp14pNPPiEgIACA9u3bc+rUKQAmT578m89DURQ+6/QZwzYNo9RQSrGhGHONOYqiMKbO6xz+OJvSonQMZRVFwhUNpGRfoKg0H4OxnKyCNF7pPYsyQymLd0+ieo3qrJm3BicnJ3x9fVmwYAETJ07EwsKCgoICAAxlRha9sRcw8mqfT6vEs+P0CspKKmpSVXP0xVimkp5QRHRUHKeijvPuu+/i5uYGgJOTEwA+Pj507NiRAQMGMHny5Mrd6dzd3SWBJIQQQgghhPhXuZ0JpH+iv+vKy8tv3egOKS8vx8zM7KbnLly4wPfff3/PJpGkMMtdVqpPveFYWVnFDJwjR4o5sL+I1auuUFKSz2OPPUbTpk3p3r07OTk5DBw4kAYNGhAQEIDJZMLBwQFvb2+GDx/O0KFDiY+Pv6FvRVFw87bDu65zlQSS0WAi7nA6a2efZOPss7RzfICahga4FNfgkVOvYzXfndJEPeXp5ThZOhEZGcmZM+fw8GiBp2d9Jk2axOzZsxk1ahTjxo3jhRdeYPfu3Wzbto0OHTqQk5Pzh5+Jv4M/W/pt4e0WbzOo9iCebfAs6/qsw3pfIEVX9ZUJJIDC4nyW7Z3N4HavkpmXTEC1epjpzHF0cMKxmg35+fkYDAZGjhxJrVq1+Pzzz/nyyy85ceIEERERALRqEU55ueE3ovnFswOMJiMbjiwhwK0BTvYuuLq6kpycDEBeXl5l2/Hjx9O6dWs6dOhQeUzqIAkhhBBCCCHE3zdnzhyCgoIIDg6mT58+LF26lNDQUOrUqUOrVq0qf0cbM2YMjz76KG3atKFv374ApKSkEB4ejr+/f5UVPBMnTqRWrVrUqlWL9957r/K40Whk4MCBBAYG0qZNG4qKijh37hx169atbBMVFVVZ5mTlypX4+/vTpEkTli9fXtnm17HExsYSFhZG3bp1qVu3Ltu2bQPgzTff5OjRo9SuXZtJkyZhMBh45plnqF+/PkFBQUyfPv2fe7B/gPxWe5cZjcU3HDtypJhXXk5l5YqrNGlizZQPqlMryMDVq2MZPborLi4uWFpa4uTkxMqVK/nxxx8rZ/y0bt0agMOHDzNz5szKRMYvExy/Vq43smLqUXZ+G0PS2RySY3Kpua0TnWKGYmGwwanEg0F1x2Kts+W1d/6Hg4UDERERhISEYGdnR3x8PPn5+ezfv5/8/HxGjBhRudxr+/btjBw5kvnz5/+p52KhtaBnzZ682fxNRoSOwFF1ITUuF/Xn/BFGk5HFO6bQp8VIHGxdqOboTWLGORQFrB3MARV7e3syMjIwGAzEx8ezaNEinnjiCcLDw6uMv1xvqnJ/o9HA7HVjScm+wJz1r1NQnAvAiYRdZORdJi7lOBER7VFVlfLycgYPHkxubi5mZmbo9XqmTp3KTz/9REREBHPnzv1TYxdCCCGEEEIIcXPHjh1j+vTp7Nq1i9jYWObNm0enTp04efIk0dHRPPLII0yaNKmy/enTp9m8eTNr1qwB4NSpU6xYsYKoqChWr17Nnj172Lt3L9999x3Hjh2rXO62f/9+AJKSknjxxReJj4/H3t6er7/+mrp162JnZ1e5adPnn3/OoEGDKC4uZvTo0axdu5YjR46QkZFRJfZfxlKjRg12797NuXPnWLZsGS+99BIAU6ZMISwsjJiYGMaPH8+sWbOwt7cnKiqKU6dOsWjRImJiYu7Ak745Wc52l9nbNyQraxv8ov5P69Y2tG5tU6Xdm2+6UVB4lqioY8yenY2npw9r166nefPmhISEcPr0acaOHcucOXNITEykZ8+ebN++HTc3N9q2bYuDg8NvxnB4/UVy04oxGn5OpCgmDZk5KSRnnWfWmldQUbEyt+XY51Gopp9jDQ4OprS0lOHDhxMTE0NpaSmpqRWzqxo1agRAw4YN2bp16996TiWFZWi0GowGI3lFWXy+aRyp2RexsrBl1aEvyMy7jK2VIy52Hoz7ZgDuDl4kXYkjqE4tOnbsiJOTEx4eHvj4+KDRaKhZs2Zl31qdgtZMA7+oOa7V6vB1r0182ilMqol1RxfyXPcPAQgL7ICZpZawR9wZ8nQ/oqOjady4Mfn5+WzdupW4uDguXryIp2fVIuHXd8rbtGkTRqOR7t27/61nIoQQQgghhBD/NZs2baJnz55Ur14dqCgbcvjwYfr06UNmZibl5eVVyoh069YNG5uff78ODw+v3L27e/fuREZGoigKDz74IPb29gD06NGDnTt30q9fPzw9PWnZsiVQ8TvuxYsXARg+fDhffPEFTZs2ZfXq1Rw9epRTp07h5eVF/fr1AXjsscf44osvbhpLWVkZI0aM4OzZs2g0GhITE2863q1btxITE1OZBCsoKCA6OpratWv/7Wf5V8hMpLvM3280Gs2NdYl+S8tWlqz80RNHx1Rat26Kra0tc+fOpby8nKVLl1KjRg0A8vPzadu2LXv37mXjxo0oivKbfUbvTa2SQLqumoM3Xq61eLHXTErLiigoySU+9TQXLyZy5MgRoGKJ1nfffcdDDz2Eq6srrVu3RlUrkkzXayCdOnWqStLmr7B1tqzs18bCnhd6TCfAoz7vD1nOS71m4uZQg7ce+YL2oX1pHtSFF3rOwNstkPkfLGfixIk4OztjZ2fH5cuXGT9+fGUdIwBr+5+fv15bjF5bTLmxjIy8JKzMbXmp18zKBNJ1Gq1C7Ya+rFu3DhcXF86fP4+FhQWnT5/m5ZdfviGB9Etdu3aVBJIQQgghhBBC/EW//v32ueeeY9SoUcTFxTFnzhz0en3luV8mkG52raIolb9r3oy5uXnlzzqdDqOxYvbB448/zo4dO1i2bBkhISGVianf+937l7G8//77uLu7Ex0dzZkzZzAYbl5iRVVVZs6cSUxMDDExMaSkpNywqdOdJDOR7jJ7+xDq1/+Ec+fGoqpGVNWAyXT9C1/1i1xWpmJuXvGFrFnTjJatrFi3VmHdunWYmZkxZcoUHnvsscr6SJmZmQBYWVmhqupvfpnLSqp+WQ2KAcUAn218s3I5l7uDJ4qiwcbSgRrVvHB0dOTgwYOoqsrAgQOZOHEiKSkpxMTE0KhRI8LCwjAzM6Nr166UlpaycuXKv/WcSvLLcPe1Iz0hHzPMMdP9/Bd57eEFpORcZO7Gt+jYoD8m1cTsdWNJzkpg0NO9KKOQvLw8vvnmG9LT02nVqhUtW7asLGSm0Sp4PFzO7LiPyLFMR1VM5GzPwbKDDcWLCvlozYugVjy7/JIc7K2cMLfW8vkOc/xq+lBaWsqZM2do3749OTk5rF69mvT0dGrVqkV4eDiDBw/G29sbNzc3lixZwrfffovBYGDEiBF/65kIIYQQQgghxH9N165d6du3L2+99RbVqlUjMzOTgoICfHx8AFiwYMHvXr9nzx4yMzOxsbFhw4YNfPXVV2g0GoYPH857772HqqqsX7/+lju4WVtbExERwUsvvcRnn30GQIMGDUhOTq6smbR06dLfvP7q1at4eXmh1WqZM2dOZXLK3t6ewsKfd3B/4IEHmDt3Lt27d8fCwoIzZ87g6+tbOWvqTpMk0j3AzbUj4W0Oc/XqcYzGIhwcGnL23GtkZ++o0u7IkWJWrriKyQTe3mZ07aZj7Zp8rKysAOjSpQvOzs688MILODs7Y21tTevWrTl37hxXr16t3CXs1xzcrcnLKEbFxH7f1RiVclom9eb5HtPYdvIH1h9djLnOgvq+LSg1FBEaGkpGRgbZ2dmYTCbat29PmzZtSExMrFyyVVRURG5uLk5OTuTn5+Pp6UlhYSE63R/7yg0bNozo6GisrKwID+mBpxqGqqqYri2lUzSg0VQkgHq3epLzaad4ttv7xKWeRKNoeL7HNHIKMlh6aCpWllr279+Pt7d3ZVGyQ4cOVf7DpUBfwJTUt9FbVyTvVINKYWwhjk87Yr7VjKTsWNRS8HathZONG3W8w/B2DWLh9v/x5qDPOH78OG3btiU3t6Ju0o4dO6hfvz6HDh3iqaeeYsCAAfzvf/9j7ty5rFix4s99OYQQQgghhBDiHqbTOd7WHdV0OsffPd+kSRNeffVV2rRpg0ajISQkhHfeeYeBAwfi4eFBWFgYSUlJv3l9WFgY/fv359KlS/Tt27eyXu6gQYNo3LgxUDHLqFWrVsTGxv5uLI8//jgbNmzgoYceAioSS59++indu3fH2dmZFi1acO7cuZte+9JLL/Hwww/z008/ER4eXvl7fdOmTdHpdAQHBzN48GDGjRvHxYsXCQkJQVVVnJ2d2bBhw+/G9U9Sfm/a1r0sLCxMPXr06N0O4x+TmrqCXbvHMerZC/j4mmGmU5j6YcWaz337ili8KIfCQhPNmrkxa9Y+xo8fz5IlS2jTpg179+5l2LBhvP322wQGBhIREUFkZORv3iv+WCbbF5/jgPt6TtWoSFwNOvEOluW2FBbnYWVuy08H53Ex4yxuLu741/dgz5491KlTB6iobt+sWTMuXbpUmUTav38/a9asYeLEiZSUlNCnTx+2bdv2p5JIb7/9NvpUK/auOF9lRzaoSB7N3foaew5E8v2ko3y47Dle6T2LuNSTxCYfp2ezJ9CZa+jxXAMOntnB7t27mTVrFh999BGrVq2irKyMxYsXs3r1aubvmI/lQMvKvnN356K10WLfxJ74ifHozHUEV6tHiEV71hxahMFQhrNdNfKLc5g87Hs++OlJVK2BjRs30qRJE7788kvGjBlDVFQUDRs2pEaNGlhbW1NaWsqjjz6Kg4ODzEQSQgghhBBC3JdOnz5NaGjo3Q7jnjBhwgSuXr3Kxx9/fLdD+ctu9j4VRTmmqmrYzdrLTKR7VLVqPTAzm0aTJta8+ZZblXOtW9tgY6Ph1KkSXnqpIwEBASxZsgSTyVS5ZG3RokWV7X8vgQQQ2MSd7Cv5zEvdiUFbBsCq+h/T4ewQXDQ1MCkGLC0ssbKxxCPAgezsbFRVJT8/nzVr1lBSUsK7774LQN8BffHp7MO3H31LaVYpqcWpLJ718zTAxMREhg8fXrlr2tKlS7ly5QqvvfYaAMePH+fs2bMoisLjjz9OyRUNDzcbjbNdtSoxm4wq6RmpPNjrASa/8TGZ8y/zy9V6+fos4q7s5ela7bC/ZE9ZWRnVqlXDx8eH8+fPExISwpQpU/jyqy9Z4r4EEz8nqfTpegrPFZL8VTKmEhOKmcKJhCNYB3ngZl9Rc0pfXkK5QU9mTiqZWZk82KMrdevWxcrKirlz51KvXj0GDhyIl5cXx44dIyMjg1WrVmFpaUlZWdkf+AYIIYQQQgghhLhXPfDAAyQmJrJr1667HcodJUmke1BWSRaxObFYeY/l9OmhvPRiKm3CrenXz5Fp0zLJzDRSzV2HezVLfHxG0KBBA0JCQkhMTCQ7O5uIiAhSU1MZMmQI77zzzh+6p0crM3RrNZRfK4+Ub5nN18ok8rbmo1V1KPYqof4hmJmbkZeWx4IFCxg7dizt27enRYsWlJeXk5aZxqkrp6gRVAObnjZwDmKax/Da7teq3Cs9PZ2tW7dy7Ngxpk6dyueff05kZCQbN25k1apVeHt7M2PGDJydnXmlzyx+PDCXEQ9MrLzeaDTw6YbXySnMJCqqiFxDMhbWZgQ2cSelyAK7YkvCH6nFpqlz6NChAxYWFrz33nsUFBSwcOHCylpIw4cP59jRYxWJt19MyHN/yJ2yzDLcH3In6bMkLLws0OrNOHZhOxZm1hiM5bjYeWBr5ci0H0dRoi9k7do1WFlZUVpayokTJ9izZw/NmjXjvffeIykpifbt23PlyhXmzZtHdnZ25b1kpzYhhBBCCCGEuP9s2bLlbodwV0gS6R6iN+qZsG8CWy9txVxrjqHMQP2ZzXmv1Su8+tgQgoNVNBqFadO8WfpdLtbWDXB1iSA5OZn9+/dXVnrPz8+nT58+PP3003/43nbmdpQby6scs29sj31jewyFBpI+SWLSt5PwtvJm3Lhx9OjRA1tbW3bt2sXQoUNp2bIl2tpa/Ib5AVAWXTHbpsRQwq7kXehLf66OHxISgk6no2HDhsTHxwOQkJDAxx9/XLltobOzc0XbWk1YffBLAIyKkSLzXMyNVjT0D6d7syEczvyRRo0aEdoghPmbJnLx4kVWr16NwWCghmcN+rzRhzEDxvDwYw+TeiGVtWvXMnHiRIqLi8nIyMDHx4e8F/JIvZCKolXQ2eswFBgwFhkpSSrBOsAav5f9sDvixqmvj+Bk686lzFhsLUu4WpwNqsqUYct4elonHu7Xh6tXr+Lv70/jxo3p1KkTqqryzTffsGPHDo4dO0bPnj2ZN28etra2QEVROCGEEEIIIYQQ4n4gSaR7yDt732HH5R2UmcooM5WBAqXGUl458B4PPTIWC/M8wsKi8PPtSM+ezpw4cQmA4ODgygSSqqo89dRTvP/++5VbDP4RzpbOOFs6k1mSWeW4alRJnp9M9QHViTPE4Y13lV3ertfUahrelGPlx8jemo1LZ5cqfZQYSrhSfKXyc1RUFEajkVOnTlGzZk2Ki4sZOXIkCxYswMLCAqhIhNnb22MfpMfawpbjNbZw0nM7JsWE0Wgkc18Wc579liNzfwQgNzeXbdu2sXTpUlauXEm9tvXYlrSNC6cvQHu4evgqVsFWKHYK73/yPvZae4wGI5cvX4YrUPetumTHZFOeW07BqQIUnYLvS74kfZpEzs4csi5lU24op1vjIeyLXk9WQSofDP2RI3HbOBy7g81dF9O5+4N8+PFkZs6cydSpU1FVlR07dlCnTh1Wr15N/fr16dq1KwcPHqRt27b0799fdmoTQgghhBBCCHHf0NztAESFzOJMtidtR2/8ecaOsaRii79yUznLt6ygceO+ZKR7U7PmGKKjMyrbaTQ/v8bJkyfToUMHmjdv/qdjaOPV5oZjV49cpeRiCenL05n2xDTS0tJuem2ZsQyfR3zQp+nJO5hXeVw1qFz88CI5CTl06dKFjIwM3N3deeihh3jhhRd47bXXWLlyJbGxsQwZMoSIiAjS09MZPHgwbdq04eNFE6k3tC7HvbZSpivFoC0j52AWFuFaPta8jcFUsf6ubt26aDQaPD09yc7J5o09b1JuKqfEWIJDMwf0yXqc2jqh6BR0DXTkGfLIyMhgwIABaNHy9WNfU5ZRRuaaTPQZeqxrWpO7J5eyzDLSf0gn80AGRlM5df2a4GJfjbzCLGave5WUnAukZl/kwOkdLP7qO1QVoqOjOXjwIAUFBdjY2LBixQpq1arFypUrSUpKomHDhrRt21Z2ahNCCCGEEEIIcV+RmUj3iOjsaMy15hUzkK4pjism48cMFDMFnxAfmjdvzty5c+nYsSO+vr74+Pjc0M/kyZNp3rw5S5cuZdiwYQwbNuwPx9C3Vl82JGyg1FhaecyxhSOOLRyx0FrwU6+f8Lb3pmXLlgBEREQQEREBwJIlS+iyogs1Hq9Rea1tnYolW4GvB9IzoCfvtXmPxMREvLy8WLJkSWW7mjVrMmTIkCqxrF27FoCr+qt0WNYBwy+eiz5dT2lSKXmReRgSDaxdu7bK7KjTCdGU2Pw8hpydOdg3tSd9WTqmEhPG2kb0RXoaNGyAvlhPamoq27/dTva2bCyqWeD3qh8pC1PQOeowdzfHVGbC0sYSY6qRvq81wTjrUfKLchja8a3K3eBmPLEOgDmbXuWBBx5g//79ODs7s2DBAh5//HHWr19P9erVsbOzA2DFihWVO7UJIYQQQgghhBD3A0ki3SPszO0wqVW3sbdrYIddg4qkQ6sarYCqu65dt3fv3sqfS0pK/nIMIa4hhHuFsyd5T5VEkqXWkt6BvfG29/7Na12tXOnk2+mG2VQAZhozhtUf9pdiOn3l9A3JNY/+HpU/p09Np2fPnhw6dAiAK5cLuJySgTG0YoZSWXYZBScKsG9ujyHXAAqUJJSACbQOWs4eOYurqysfzfwItVRFURSS5iSBCnl789BYaTBkGWjXswPbvt6Mi6ctly8nE5NynK+2TuJy1nm8XGry6frXKDPoURSFkoIyUlNTycvLw8/PD2dnZ8LDw8nKysLR0ZH27dszZcoUDAYD33777V96LkIIIYQQQghxL6iz5wy5BuNt689JpyU6POR32yQkJPD0009z/vx5TCYTnTt35rPPPuPEiRMkJyfzyCOPADBmzBhsbW0rdxMXf58sZ7tHNHBrgJXO6qbnrHRW9A/u/4/HoCgK09pO4/lGz1PNuho6jQ4vWy9eb/Y645qPu+X177Z6lzaebbDQWmCjs8HGzAY7cztmRsykpmNNAPz8/KrMQroVc6056i+3TvuVB2c8WKVPsyxP2rXojbWzDd4jvTF3Mcf3JV+yNmRRfXB1rGta49jaEcVMYfyc8UyZMgV/f3/Gjh2Li4sLDi4O6Mx1+L3uh31ze9QyFa1Ox7EVp/DzrhiDo50bDtYuDO/0Nt3DhmE0GXm26/vkF2dz+cp5nnrmSZKTk9m6dStlZWUMHz6cPXv20KNHDwICAvjmm29o0KABx48f/8PPQQghhBBCCCHuRbczgfRH+jOZTDz00EP06tWLS5cucfHiRYqKinjppZc4evQo69atu22xGAyG29bXv4Ukke4RWo2Wae2mYaWzQqf8PEHMSmdFG882tPdu/4/ePzU1lcaNG2NjbcOg4EFse2QbTXY1oeCjAvRH9LzzzjsAnDhxgs6dO9O+fXvWr19fpQ9LnSUft/+Y1Q+tZmLricxsN5NdA3YR7hX+l+Nq7N4YBeWm56x0VvSp1afKsazLhfjlhqBRtZXH8g7mUZ5ZztUjVylNLsW6pjWqQWX2C7OZOnUq06ZNw87Ojnp16+Fa7IExARwjvSBKB3kaqln5Ul5eRmGuHqPRhGctJzycfNEoGhxsXKju7IdWq6Nr48cY0vVlln7/HQ0bNOZKUiFhTZpWLrWzt7fnrbfeolatWgwcOJDZs2dTv359UlNTiYiIoFmzZnTs2BGAt99+m9atW9OhQwfy8vL+8vMTQgghhBBCiH+TdevWYW5uzgsvvACATqfj888/57vvvmPChAmsWbOG2rVr89VXXwEVNWubNWuGl5cXkydPruxn7ty5hIaGUrt2bQYNGlSZMLK2tuall14iNDSUHTt23PkB3uMkiXQPaerRlJU9V9IvqB+1HGvRzKMZk9tMZnq76WiUf/ZVOTs7s337dlq0aFF5LDY2lr179+Lp6Vl57H//+x+rV69m586ddO/e/aZ9edp60tWvK608W2GmMftbcZlpzRjfYjyWWssqxy20FjjnOTN1yFTCw8MZPnw4qqpiYWOGVtXRPfpZzA1W6IzmYATfkX4EvRaMXXUHHPwdsLey55uvv6F58+a0aVNRUHzQoEG8M2Q+bWs/RNO8rlgXO9C3xSje6Pc5HRo8QrlBT8bFfBp18kGj/TmxdT3JpdFq8A91YcuXZ4k5mkSPHj3w1DYk9nA6eyL3cuXKFVq3bk15eTk7duygRo0ahIWFMX78eCIjI6lduzbjx4/nxIkTJCQksG/fPrZv3y51k4QQQgghhBDimjNnztCwYcMqx5ycnPD09GTMmDH06tWLmJgYnnzySQDOnz/Prl27OHLkCNOmTUOv13PixAmWL1/OkSNHiImJQavVMm/ePKCiRExoaCinT5/mgQceuNPDu+dJTaR7jLe9N+Na3Hrp2N9lLDdxbn8qZ3enUlZqwDPIiSZdfSvPv/3225w+fZoePXrw6quvAhXrTktLS+nXrx/m5ubMmzePatWq/eOxdgvohpu1G5+d/IxzOeewNbOlf3B/Hq31KHajK2pGDR8+nKNHj1K3TQ0O/nQB9yIfhhx7lwsuJ9hxfiX5KVcpWaNQlllGq9RWnPA9wTPPPFMlEaYoCiZjRV0qFRVrC1uuXE3BaDSw6dg3lJYXM2h4X2Z8/CE+9Vzwqu3E+TQFRQFXL1tCvL04tz8Zk1N1LHXWjOzyP+JST3Iu+TBDB4/AxtmM8PBwqlevzqpVq1i8eHHlvWfOnEmjRo1o164dP/zwA61ataqMSQghhBBCCCFEBVVVb/p7kqrevAxKly5dsLKywsrKCmdnZ1JSUti0aRNRUVE0aNAAAL1ej7u7OwBarZbHH3/8nxvAfU6SSP9BRoOJVR8dJyu5EENZRdIk9lAa8ccyKCupmML3v//9j8jISNatW0dkZCQAGRkZxMbGcvr0aXbt2sXkyZP55JNP7kjMYR5hLOi6gMKyQjZc3MD53POsTFhJz4CeuFi5YGFhwYULFzh6aAUBShcOxGwCoKAkl7ZOfanfuQWnLu7lx7y5tKjXgoz4DH766SdGjRpV5T4BjdzRVGwMx5OdJ7Bo+2Q+WTeGUL/WDO74Mk9MD8fMXMvyld8D0OO5BqgmFZ25lvhjfthnRlOuNzK041sA1PQIYdvJH+jf5kVemPwoNQIdGTx4MLNmzWL8+PF89dVX7Nq1i5MnT/L1118DEBwczNq1a3nuueeA3/6HpBBCCCGEEEL814SEhLBq1aoqx3Jzc0lPT0enuzHFYWFhUfmzVqulvLwck8lE//79+fTTT29ob25uftN+RAVZzvYfFL0/rUoCCUA1gaHMRE560W9mcB0cHGjatCnW1tZ06NCB6OjoOxUyULFTW+cVnZl+ZDrfx37Ppyc+pcW4FvgH+5OZmYmLiwtmFtoqS83CAjty/EIkACcSdvP20LmVY+nduzft21fUmho2bBgjRowgNMKLh9uOINirIdYWtox6cAov957F4I4v07S7H2bm2ioxaXUadNeOpcTmUq6vWgTuRMIukq7E8uPeefR8uCtTpkzB19eX0aNHY2try9atW5k0aRIxMTFERETw0ksv0bBhQ3x9fStrIl29evUPP6Prta0sLS2lCJwQQgghhBDiX6dnz56UlpYyZ84coKL49bPPPkv//v3x8PCgsLDwln1069aNtWvXkpKSAkBmZiZxcXH/aNz/FpJe+w86uyelSgLpl0xGleyUIjz8HNHr9TRu3JioqCheffVVzMzM2LlzJ0ajkZMnT+Lv73/TPoYNG8bbb79NYGDgbYu5zFjGs9uepbD8538g6I16LBtYYtnYEud9zuzfvx+tToN/Aze+3HSEpCvnaRHclSJ9PoWlVyktL6T9Q014a+Yz7Nixg3bt2hEfH18lTktbMx55qykPdetP21r9qeboiYW1GU17+hOffQS/HHucnZ1vGqO5lQ5FU5GQuy4ssANhgR3QmWlo1TeQkAivynOzZs0CoHPnzjf09cuCb3/G9dpW3bt3p2nTpkRHR1NYWHjTTPrEiRP56aefcHJyolevXrzyyit/6Z5CCCGEEEKI/y4nnfa27tDmpNP+7nmNRsPq1at56qmn+PDDDzGZTHTs2JFZs2ZRUFDAtGnTqF27NmPHjv3NPho3bsz48ePp2LEjJpMJMzMzZs+eTVBQ0G0bx7+VJJH+g8pLb/wLbjQa+Gzjm6RkXeCRQb2Z/tGHmJmZsWXLlsrZOmZmZgQGBhIREYFGo2HRokV3LOadl3diMFWdWWMqN6Ex02BSTaQaUgm0CCQpKYkWr/iR9lYi11eAhfi2Ytm+WbRt2Ymglq7k5eXh5eWFh4fHTe9l52yJdx1n+r/WFD9vfyxtzFA0CtOHjaN+/fq/mUQKal6NUzsuYzTdmKBTVajZ2P3vPYTfYDKpFOaUojPXYm1viaWlJTqdji1bttCzZ086d+6Mi4sLFy9eZPXq1Xh5eTF8+HB27dpFUFAQLVq0IDg4mE8//ZQnnngCJycn0tLSWLVqFba2tvTv3/8fiVsIIYQQQghx/4sOD7nj96xZs+ZNd06zsrIiKirqN687f/585c9PPvlkZfHtXyouLr49Qf5LSRLpP8gz2In87JIqM2a0Wh3P95iGRqfwwBP1MJQZWbt8C05Otjg6OjJp0iSSk5Px8/Nj4cKFDB06lKSkJIxGI6NGjSI/P5+kpCRycnJ+N+mwdetWpkyZgslkYsaMGTRp0gSA48eP06RJE8rLy286ayatMI0yY1mVY4VnCsnanAVAlncWdQfV5ej6o7Ro05Q6DWoSH5fAuYLtONey5syh/cRkHMFzrjWqqlJaWkpMTAyvvPIKKSkpnDt3jtzcXOrWrcv331fUO3qgSye8vb3p0qULw4cPZ9OmTURHR9OvX7+bZrVdatgS0s6TqN1VZ3rpzDU07xWAtb35H39Jf9C5vSkcWJWAocyIalJxcLembpsaGMtVHB0dgYr1wdu3b+fhhx8mPDwcZ2dnQkNDefzxx/niiy+Ii4ujQ4cOHDhwgBo1amBnZ0e7du3QarWsW7futscshBBCCCGEEOL+JEmk/6DGXXw4fyTjhvo9Gl3FZvXbv45GVQGTipuvHSbjzzWSysvLGTZsGE8//TTt2rVjwIABfPXVV7i5uTF48GBSU1N/874lJSXMmzePrVu3otVWnaI4Z84cGjdu/JvX+tj7YK41x2AwUJpcSsqiFBSNgrm7OZ5PeqJRNGxO2ozFCAtS5qawevlqerXuxZJDn1KSU4LioqB11vLOO+8Q2jwUb29vXF1d0el0PP/887z44otcuHABo9FIfn4+33//PdbW1tja2rJhwwYmTJhA165db7lMr1XfQGoEOXFy6yXys0tx8rChcRdfvIKdfv+l/AVndiezf0V8lYRVTmoRe5ed50pSAUvfO4ShzEidOnU4deoUBQUFDBs2jKCgIHJycnj00Udp2bIl69atY9y4cdjY2DB9+nTGjh1Lfn4+R48excvL63ciEEIIIYQQQgjxXyKFtf+DHNys6fViQ+xdLdGZazC31KLVKaCC0aBSXmrEoDdiKDeRkZhPTlpR5bW7d+/GzMyMiIgIyoxlHI86TvdHutOhcwcuXLiAXq8HIDk5mQ4dOtCvXz+aNGlCcnIyBw4cQKPR0K1bN4YMGUJRUUW/Z8+exdvbGzs7OwAOHTpEq1atCA8P5+WXXwYg3CscS50lABYeFniP9MbMxQyAkoslqKioJpVz752j4HIBLcJbcPHyRaoNr4ZRb8TCwwJzT3MUM4WLeRcpMZbg5OREbm4uhw8fxtfXlz179lC9enU2btyIlZUVs2bNYsuWLVhZWf3hZ6soCv6hrvQZ04Sh77em1wsN/5EEkslo4tCqhN+sbaWqkJdRQk5aEaoKcXFx1K9fH1VVCQgI4NChQ3Tq1Inu3bvj5FQRn7e3N3FxcYwaNYqoqChsbGwqazNFREQQERFBo0aNeOihh277eIQQQgghhBD3D9NNSniI+89feY+SRPqP8ghw4LH3WvLIG03p+UJD6rapcdN2JoNKWYmB3PSKhE/Hjh3x8fHhuXefo+0Pbcmxy0H3mA79SD3tZ7TH1s628trc3FyWLVvGK6+8wsqVK8nIyCAtLY2NGzfSqlUr5s2bB8BHH31UuZ09gK+vLzt27GDPnj1kZmZy5swZkvKTaFW9FWYaM8zNzVGu/0+nYOZsRuqSVC5MvEBpSilmDmYUZxZTVlTGpU8vobHQoOgUUMBYaKQ4uZjoc9HExMSg0WjIy8vDys6KD+d8iF0dO3bs20F+fj6zZs3io48+orS0lA4dOrB792569erFjz/+yAMPPECbNm0oKipi6tSprF+/HoBVq1YxY8YMrl69So8ePWjbti0vvPDCbX9/uenFVWaIXWc0Gpi9biwp2ReYs+51DMZy8rNKCA4O5ty5c6iqSrNmzVBVFSsrK1xcXCgrK8NgMNCqVSscHBw4dOgQtra2REREMG7cOAAiIyOJjIzk8ccfp0ePHrd9PEIIIYQQQoj7g1ar5cqVK5JIus+ZTCauXLlywyqhW5HlbP9hiqLgXMMGgH0rzt+QlKgstp19gd4P9+Cj2dMBePTFR2k3oB0W6Ra4POzC+fnnUQ0q8bp4HBQH/Hz9AKhbty4ajQZPT0/i4+OpVasWbdq0QavV0qFDB6ZPn8758+dxcHDA3N6czOJMZh6dSS2XWnRx6QKATqdj1YVVzJ04l/xz+aCA7whfis8Vk388H42VhqKYIqx8rPAb40fSZ0nY1rfFkG6g7GAZtd6vxaWPL2G4asBntA+5u3KpPrg6hVsKqVOnDra2tpzKOsW5nHOoRhWTg4lSx1Jsqtswf+F83nnjHQwGA7m5uXzwwQe8++67vPvuu5w6dYr333+fzZs3M2jQIMaNG0f37t1Zvnw5U6dOZf78+QwYMIAhQ4YwYsQIDh06RPPmzW/bu9OaaVDVG5NI12tbXX93WVfTSU1xIeNyDo6KD0vmr+T7L9fwzqiZbFW/4dixY6xYsYJ58+bx/vvvVy5LrF27No6Ojjz22GMsWbKksv81a9awbNmy2zYOIYQQQgghxP0lICCAhIQEMjIy7nYo4m/SarUEBAT8qWskiSQAsHGyBPKrHLuekDCz0NLjuVBq1HKiefPmvLrrVaoPqY6Jisyz3xi/ymsSP0jko7kfUXClAOX69miAqqo0bdqU+fPnA3Dy5En8/f05c+YM2/dt58uwLylKKOKD1z8g8OlAPjzyIWNqjCExNZGj0UcpzSnF/w1/SlNLSVubhlt3Nyw8LLAOrCiUXZ5fjtZOi8ZKw5V1V9Baa3Hr5IaiUaj+aHWyNlYU4Lb0tsShkQMP936Yj9p/xObEzRzedxi/bj+PoSiuiBpP1eCH3B/o0aMHubm5nD17lv79++Pu7s7WrVsBqFGjBrm5uXh7e5OTk0N2djZ5eXksW7aMGTNmsH37dgDCwsKIj4+nefPmpKen89VXX1XO8PmrHNyssLY3Jz+r9Kbnr7+7vOIsFkZOpEefrsx4Yj0RAYMBmP31FHIKM7C2smbx4sWMGzcOk8lERkYGDRo0YOzYsdSqVYu33367ss/MzEwURcHNze1vxS6EEEIIIYS4f1lZWVGvXr27HYa4S2Q5mwAgpJ0nOvObfx3MLLVUr+lY+TkqK6oygXSdalC5+OFFSpJKeLDrg5VZ6cTERB5++GEWLVrE4MGDadeuHW3btmXhwoU888wzdHiwA2n2afiM8cHCy4IaQ2tQYighLzePJ559gkbPNaIwuZCimCISpiSQujgVY1FFQXCrGlborHWYykyUZ5ZTGFWIWqZSrUc1Gg1uROmZUrSKltKkUszczCpjtdBaMLTeUAAWnFlAiaGk8lzGjxnoM/WY+Zmx7dI2IvdE0rFjxyoJsV8nxwB69erFM888Q7du3Th16hSWlpYcO3YMgKNHj1KzZk0APDw8/nYC6XoMHYbU+c13dp2DjSNvPf4Jfu51qxx/vP0bvNTzIzxdA2jevDnr1q3Dy8uLgoIC4uPjb1ogffXq1fTu3ftvxy6EEEIIIYQQ4v4kSSQBgGeQE/XbXkskXcuRaM0UzCy1PPhMKIrm58SJs6XzDdcrOgX/1/xpOK8hy9Yvo3nz5pXLoB588EESExPZsmULL7/8Mrt372bTpk04OzuzNmEtPo/7ABDwZgCKVkE1qiTPT8Z7oDeJaiJmHmZYBVihT6so2q1P15P0aRJ5J/PwUXxwD3cHA1yec5ni88V4+njy1oNvUc+vHkkfJJG/Nx/n9s6YacxQFIUXGr1AQ/eGAKQUplQZR7WHq+Hc1pn4CfHEvReHg6sD1apV+83nZig3En8sk1CfcDZu2EhRURFDhw7Fw8ODhQsX4ujoyM6dOxk9ejTJyckkJiby2GOPAfDiiy/Srl07wsPDSUpK+vPvLNiJh19tgm+Iy02TSYoGAhtVpyTr53PZBel8snYMX26ZyNSVz1CYX4yqqmzevBk/Pz9q1qzJo48+iqqqPPjggxw4cICQkBB++uknxo0bx5dffklycvKfjlUIIYQQQgghxP1PuVldlftBWFiYevTo0bsdxr9OesJVonanUHRVT/WajtRv64m1vXmVNusS1jHpwKQqM3gAFBQCHQNZ2WslB9MOciT9CMWZxXz8xMfUqlmLhx9+mJo1azJz5kygYhe2N3e8ydShUwkYF0Dunlxy9+ZSnlOOsdCIlY8Vtua2ODzkQPbhbPL252HpaYlDCwcsqluQ8kUKJ2JOkHQiiaefeZp3vnuHacOmkZFSsSRr4cKF+Pn7sSdlD6cyT3Fm0xnqONZhzOgxlTE/svYRYnJibvoszDXm7BywE3tz+5uejz2Yxttj3+PEhT2M7vk+i7d+iJ2jNTsPbSCifTs++ugjevfuTXJyMqNHj2bjxo34+vri6urKypUrKS4uxtramm3btrFz587KndAAUlNT6dGjB+fOnaOwsBCd7ueVp9eLXE+cOJETJ07w2muvYTAYeGLQM5Se86Cs1EhiejQrD3yGVqPF2zWIy1nxFcvbiq7wxeYJjHloNu8vH0FWfir2DvaVS+40Gg1FRUU4OTkRHx9PzZo1WbhwIc8++yw2NjY899xzpKen88orr/y5L5YQQgghhBBCiPuCoijHVFUNu9k5qYkkqvAIcMAjwOF32zzo/yDbLm1jf+r+ykSShdYCC60FE1tNZMC6AVzKv0SxoRiNUUP1SdXpHdKbbZO20bFjRyIjI/n888/p3LkzPg4+aJSKmTIOzRxwCnfCWGwkaU4Sdd6oQ6hbKEfSj+Bi78LVQ1dRTSomvYmiM0Uo5Qqj+o5i6tSphASHsHL8SkoLSwkODmb37t20aNGC0NBQjh8/zsSJE3HwdMBgMFQZyxP1n2DC/gk3JMTMNGa092n/mwmk9ISrbP3mDEmZ8ejL9Xy65i0CqtWjZvX67PouFgA3Nzfat2+PyWRi165dDB06lLCwMF577TUAPvzwQ7Zv3055eTl16tSp0r+zszPbt2+nT58+v/su/ve//7F69Wqsra3ZuuAs8eWZoIKzXTVe6DEDM505i7a/j7785/F5OPlipjOnT8tnyCq/wMrtCxk3bhzl5eV88sknNGjQAAB3d3dq1qxJjRo1qF+/Pt9++y2RkZFER0f/bkxCCCGEEEIIIf6dJIkk/jSNomFmxEz2puxlZdxK8svyaeXZin61+jHpwCTi8+IpN5UDYNKaMGlNLItfRstWLYmKiqK4uJidO3fy/fffk1+WzyhGAVAYVUjWlooC2MZ8I6XGUo5nHkdFReeoI2hqEFqdlqRPkmg8vDFO1s5Mfnk2kdt2c3D/IZycndDpdCQkJNCoUSPS09NZtmwZ+/fv5/nnn6dZs2Zs3bqVkSNH4uDgQFhYGL179ybzi0xyycVkMFGWVYYx34hGo6HF8Bak1kqlWbNmpKSkYGtjy+z3FrNy/VLOx58n0K0RuQWZZOWn0KRme45d2MmhuM18tXkSJtVISEgI5eXlZGdn4+LigqIo1KlTh6ysLLKzs4mMjGTPnj1s3bqVb75ZwtGNiZzbk0pZqQGPAAea9fSv8tyfeOIJkpKS8PX1xdvbm4SEBEpLS+nXrx9mOjNauz5Oek4KZxL381CLpykqzWfh9vewNLdBQWHT8SVEXz5CdkE62QXp2FjbYu/rAVTUWEpOTq5MIF2Pe/To0ZXnr7tfZy8KIYQQQgghhPh7pCaS+Es0ioa2Xm2Z1WEWC7su5KmQp1BQ2J28uzKBBGAsqSiCXWIoYc22NdSsWZNx48bxxRdfoCgKDhYOBDgEYKWz4srqKxiLjRRfKAYFjEVGsg9nV9zPTIPGQoPOTMfDvR+mZWo4KafzmfL2x5w7mIxiNMNB48nabyIpKyvD39+f8vJyfHx8WLt2LU5OTkRHR9O7d29CQ0Np1KgR06ZNo6SkBMtSS07sOkGD4AZ0HdSVPfF78HD2oFP7Tjg7O+Pk5ISzowvO1jX4ePZMos/GMKrzh5xNOkxt7zBqOAdQbijDTGfBG/2+wM2hBopSsSzM3t6eevXqcfToUcrKyjhw4AB6vZ6rV69y/vx5OnTowNq167gUlc3RDYkcPr2XaT+8yMvvD+Xj15dSWlTxLA8fPoxWq2Xbtm2VRbozMjKIjY1lxYoVPD54OBuOfEtAtXokZlbMFDpzaT81nGty9tIhMq4mcfD8Bvq1GY2vezB7L6wgvH8tbBwsSE1N5aeffqpSNPvUqVO4uLjQvXv3O/F1EkIIIYQQQghxH5CZSOK2ySjOwFxrTpmprPJYcVwxGT9moJgpuNRxYcuWLVy+fJlevXoBFfV97Mzt2PTIJobtH8bB7QcpcCzAZGPCWGwk/1g+DmEOGEuMaK20GEwGDu4/SHfXBuQpWWyO+46Qei0pKs0nLSeJx4c+jkbRsH37dvLz83F0dKRmnZokZCWgra6lUF/IlcQrEA9ffPEFu3fvJj4+nobeDdHpdBQWFlKeUE5ySjKPjniUfjP7EX8hHmOZSj4FZOYlU24sY+yiXhhNJi5lRuPq4ImZ1pzCkqucuBCJqsLA/o+yYdM69Ho9BQUF1K5dm3379pGSkoKqqgwaNAhLS0u2bt3KuT1p7Cee4uIS9p1bx3PdP0Sj0ZKYEc2p0yeJiIjA3t6eHj16ANCkSRMOHDiAg4MDrq6udOzYEf1VhfzcQhRFobA0nykrniK3IBMnW3fG9f+KtJIYNp/+hsNZy3D2tcClhgV9BnbnQX0nevTowfLly6lb9+cd3H766Se++OILAPz8/CqLpEdERBAREXGHvlFCCCGEEEIIIe4lMhNJ3DbVrKtRZiyrcsyugR2B7wZS8+2ahI8M55133iEuLo7IyEh27tzJycyT9Pm4D4++9ijxR+K5HH0Z35q+1Hm7Djm7cig8W8iF9y+QOCORsyPOcuaJMyQcTWB9wJdcyosmIyWZXYdXYbAsI7cog9OJByguLsHOzg4/Pz+KS4o5efIkuro6TDoTpWaleI31QuOqYd/+fZSVldGkSRNiYmJwcXHBw9+D2Lqx6Fx0uPd3Z+PijSjuCkYMGE0GGgW0xdrCjjZ1emJtbguKQkFxLokZ0aiqiZiU4/h71cLX3xu9Xk9hYSFnzpzB0dERFxcXfvjhB9zd3fn+++9RFIXw8HB6D+7ElZwMLmacQ1E0fLbxTRbvmIKNpQNerjX5YeEajEYjO3fuBODEiRMA+Pv7Ex0dzdqVmwip0ZZifSEAXRsPpqZHCKBgbWGHg60znR5qRevWrSkoKODQoYMsWLCA9PR0WrRowahRo9i6dSvNmzenZcuWHDhwgC1btvDAAw/c0e+PEEIIIYQQQoh7m8xEEreNo6Uj4V7hNyxpA7DSWfFk/ScrP5cYSnhpx0sczzxOSWkJKUdTMFw18OTmJ7HUWWJUjTi3c6Y8uxzXLq5kbcpCZ6vDqZkThhwDyRsvETglkITJCTi0cEDRKHiEe9L0p158u/dTrBuGYZ+ZSmJSItY1rdFYaSjPKUefoiczLZOiK0UofhounElANZl4pO8ALidfRnVRsT9tj85eR9bWLCxcLTCWGLGsaYnhooHEzBjMdRYkZZ3H1tqRgtJcjCYD1hZ2lJQVEp92CsOVMgp3ZGBtbQ1Abm4ucXFxtGjRAn9/f2rXrl35HMLDwyn0sObkxd3YWTmRX5zNiz1nsufsGj7b8AZF+qsMeLwPDs62JCUl4eTkhKWlJVlZWTz77LPUqVOHrg924WpmCVqNFoDGNSNYtvcTDKYy0nIT+WT9GL58bA5OTk7ExcWh1+tZsGABjRs3Jj4+nlmzZnH06FEWL15MixYtGDp0KL6+vlhZWVXGOWHCBLZs2cKnn35KkyZN/smvkRBCCCGEEEKIe5TMRBK31aTWkwhwCMBaV5FA0Sk6LLQWDAgeQAefDpQZy5h+ZDqtl7Zmf9p+So2l5OzKwbG1IybVxJHoI5w5dYbsL7JJmpWESW/CzMkMU6mJ0sulpK9OJ3tfNsZiI9k7sim9XErunlyKYoswKUZOle7Bv01vLiUnc/zUKbRWWix9LClLL8OkN2EsNKIx02Db0JYLSQlYm9thb+3MoEYTqB7gi85WR2FUIaZyE/oUPWjBUGig9HIJZQY9+vKKP1/qNZP6Ps3RacwY/cL/sHdxxKQ1YtvaBq2LlsvGyxTri9FoNDzxxBP4+voyYMAAxowZQ1xcHACWlpbk5eVRu0FNSsuLsDK3IcAjBI1GS23vMGrVaMCHw1bz2nMTADh06BC5ublMmDCBiRMn4urqisFg4Ot5P9C9+eOUGUqBinpVHw5bRYhvK5564F06j/iER/TWnOgzlGWnz+Hg4MCTTz5J9erV6d27N5GRkXTr1o0HH3yQvLw8/Pz8WLFiBREREYwbN46wsDC+++47atasyRNPPMHmzZvvzpdLCCGEEEIIIcRdJTORxG1lb27Psp7LOJh2kCNpR7Ays6KrX1d87H0AeGHHCxzNOFo5U0k1qBTFFuHSyYXMnzIpM5ZRVl7G0Y1H6f1Gb06sP4G9sz0Z5hmYikw4V3fG7Q03jEVGkr9IxsLbgprjanJh8gVOPnUcBQXLhi3AygaLQH+0hmQMBQaM+UZs6tqQuToTjKBYKthUt8PVtjpJV+IY82UvnDzcUHUq5q7meAz0IPXrVEwlJrQ2WsqzykGFdvUfYuvJH5i19hXSc5MwYWL+xgnYNrfFuNqAQ3t7jCYD+SfzMRYYcXBwYM2aNfj6+pKXl0eDBg1wd3fn0Ucfpby8nGrVqhHY2J0tG8HHLZh90esASM6Kx8XOg6LSfMa8NoFteyqOHzx4sHJnO0VRGD9+PM+MHYJZgTvuDl6V72Hn6ZV4OPni7R3CipoWqMC5chOjLudi+MXuagcOHKBTp04UFxdTvXp1bGxsqFevHu3atePMmTO89957uLq6MmbMGNzc3FixYgVjxoyhS5cud+gbJYQQQgghhBDiXiEzkcRtp1E0tKrRikeqP8Lnwz4nyD0Ig8FAVFYUxzKOkb47nYtTL5IwJYHYsbEURhVycepFVIPK5XmXMelN+FTzIXVDKiWXSjjy+BF0STrmzZmHuWJO/Lh4MldnYulribmLOYkzEtFoNdjUssW2li8l506i8/LB4ZPFGMtUnNo4YVPbBkOeAXM3c6yDrXF/sBpKvoYAj/pUc/TG1b4GncP6o5hp8Hr6WjJGCxpzDcHTgrELseORl0fSruFDTBm6AhfH6rRq1A2doxb/sf44NHVAa63FyscKh6YOFbvJWWqwtLRkxowZmJmZoV5L3rRr146lS5diYWFB9+7dsbIzx83HDjsrRwKrN+Cj1S9xMHYzLWs/yOIdU+jbeiSFKRoyMjKq7GwH0KtXL3bv3s0TowZTyysURYHoy0dJyDhLh6aPccHDjAseZpXvptSkUmI0oaoqJ06cQKPR8OOPP3L58mWef/55Dh06hKIo7Nq1Czc3N6Kionj55ZextbVl//791KpVi9zc3Dv+nRJCCCGEEEIIcffJTCTxj3F2dmb79u306dMHgH0p+yjKKqIopgj/1/0BSF6QTOGpQgwFBsoyyvAcUI2MjHIahTRg5MhnefHFF6levTp9+/blySeepIZ3DYZ/NBynbk5cnnsZv7F+5O3Noyi2iPIcI8agxpC+g+JNqyle/QPmdpaYrpgozysnNzIX8+rmmEpMONV1JndtAlGGA1zJT0VVTezaswZ9oZ6Yl2MwdzOnPLcc/zf8MZYYMRYbuVjnFLpsHYYsI0cubMOEEVWvcv6d82jMNJi5X0vWaMGxtSNeHbyoe7guzZs3Z9y4cURGRtK2bVsmTpzInj17GDhwIM2bN6+4JLMGp3ck0yG0Hx1C+wFwNH4HSVdiWbl3Plujv+ah/t1v2Nnu+eef5+zZs/j6+vLxwqmci8zkvWWfophb896OsegD/bFv/U6V96ICiSVlJCcn4+TkhEajwcnJCa1Wi62tLVFRUbRt25aUlBTS0tJueK/qL2YyCSGEEEIIIYT475AkkritVFWlsPAcJaXJWFv54eQUjMFkYMm5Jaw5tIYLUy5gKjUROzYWu1A73Hq4UZ5ZjrHQgAKE1jJjMyrHEk/wxNPDMZWpGAwGVqxYwfTp09Hr9SiKQvaBbADOjjiLolGwrmMD1WpSvGUTGI1oa3hj5uKCXWYaXjmenLpwCgt3C5zDnclan0W3yyNYZj+HRgHtOHf5MDWc/Wke9ADVvL1Y0mQCJkwAZG3KIv9YPoFvB1JKIWeq74LqUGdeRXFsK60VpcZSVH5OrNjWscW5njMDggfw2guvARAREUFERARQkfz5NTdvO4rKc5m95g3Scy8x44n1hAV2ICywA2YWWjoOrUPNxu74+vqyePFijEYj+/btIzc3lx07dlT24xPkjv9CbzLHz8ZkqcHiF/cwZKSSPagHKApP9OnNiMeHkJeXh62tLZ6ennz11VcsX76c2rVrs337doKDg2/fF0MIIYQQQgghxH1PlrOJ26ak5DKHDnfj6LEBnDv3GkeO9mVxZGdOXznF7BOzOXnwJJY+ltjUtSHowyA0Fhry9uZRfKEY1aRSa7QXh3YWYuFhgV2YHVpXHdV6u2HtYI2HhwcAoaGhNHmqCSa9CSt/K9z7uGPhZYG5ixmevYzoqrmisbNHLcjDrWYtAr29KLhUgDZPy6gnRjEydCS1vetjVWKDmdYcb9dAALxcapJdlEaz1rV5rdlr+Nr5Yq+xxz7LnkDHQBwsHNAq2irjtdRaMrHVRJwtnbHQWlQ5XsO2Bs82fPYPP7uaTdyxt7XnhR7T8XOvW+WcmYUWvwaupKSksGvXLrZv305kZCSenp437UtVVeqklqExVp0xVPLjUhQbWxQLK6x1WurXr0/r1q3p2LEjrq6uPPPMMxw6dAi9Xk/Xrl1p27YtGo2m8rlft3fv3j88LiGEEEIIIYQQ/x6SRBK3hcmk5+ix/hQVXcBkKsFoLKTYUMLspDSMqgm9UY9DMweMRUb0GXoKzxRiU8cGRafg0NCe4H7uZJ8ppDSzDGOJkbx9ebg/5I5tM3tyCnNoEtYECwsL6tarS5ZjFopOwdLTEjNHM3SOOvRpesycwZiRis7JCV1pKe1tzNAoCp6enpSVlfH4gMfZv3s/qVeSSNWfw8nOjeTsCyhAWt5FgoICqdZBwWAyMLD2QLpldmPum3OxM7djWc9lqD+oXJp2idQFqWi2aOhX3I+LGy+y+qHVPGj+ICXLS6jrWBezpWbkzszl6aFPYzAYfve5lZUYSDydRUpsLg+92AxXdxc0GtCZadCYqcza/BLvbRlK/Y71+N/C/5GWkYaHhwfPP/88L774IjExMTRr1gxbW1tatmzJhg0bKC4pImXm22Q/OwjDuaiK95OXg1pailXLCJ6f9B3bt2+nefPmfPHFF2zfvp369esTEBCAra0te//P3n2HV1VlDx//nttveiOEhBBCJ3QIPYFApBdFECkWRER0RhELFrAjiAqIiCKWAQEFRKT3EjpIqKETQkJ6Ib3cft4/8pqZDOg4DuhPXJ/n8ZHss885e++b+0fWs/ba+/ezZcsWPv/8c9544w1AAkdCCCGEEEIIIWQ7m7hFcnK34XSWwf/fBgZwslzLv+bCKFqFoBFB5Mflk/NDDl5tvfAweFCWY0NnUrBXuDAEGnDZXBhqGshckonOQ4ez3MnGbRtRVZUKewW2IhuKVoHK2tLoPHRYrls4/8Q5VIuLmrYKIqK6su6HHygtLcXX15f27dtzzz334O3tjcViweqWQ7c+HTgRf4qk7LOk5l/ikutHvu8UjEt1gQOSVyajjarMPrp29hqBtkB2793NggULuHTpEoOiBvH888/zt7/9DfsJO1+/8jXp6elc6HSBV199lWnTpvH9999z//3337BeqqpybHMy8ZtT0GgVFMDlUukwKBy/3e50GdqAg8p2PNroQO9N2ndprNq+ChwwbPQw9u3ch6+vL2VlZbRp04aXX36ZrVu30q9fPx544AG2rfyeVT+c4vPP56CZNY/SVcuoHTsMw+JFjO5Yp2ocjz76KFevXsXLy4tVq1bdht8MIYQQQgghhBB3CslEErdEUdGJ/x9E+qdci8LFmclYUi0kf5DM9e3XyVyWSfGxYhxlDnwyfPBL9KM830rCpxlY060E9A8AJ9jz7ChaBWuOFTTQpGUT6tevz95de8lbl4epjqnau/zu8iP0yVD8evqRfz2fpUuXUlBQQI0aNViyZAm7d++mYcOGbNu2jdLSUr755hs8/U08+vcHGDVqFO8efJeQl0KwOq3YXXZy9ufg2dGTHy7/wPWK6yQlJVFSUkJ+fj7t2rUjOTmZjIwMAgMDuXbtGkeOHKFz585cuXKFtm3bAhAZGUliYuJN1+v8wUyObUnBaXdhtzixWZw4bC5+XH8VlxP0zUv54sonJH2exMV3LlJ0tAi7w46hoYEzDc+QkJBAhw4daNGiBa+99hrr1q1j3bp1JCYm0qBBAyLvasBDIzvhn1fCc9+l0+xYKq9fr0NEXV/8anlUjWPx4sXs3buXDRs2YDKZbjpWIYQQQgghhBACJBNJ3CIGgz+KokdV7VVttcwqTV6si1VVqtpqDKgBgFln5sX2LzK00VDKy6/y1raBbCtSsKNQ64FaZH6biaGGAe/23tR/KJzlI5ZX1R0avGYwV4uuVj3TN9q36t8xXWIo8S4hICAAq9VKs2bN6NOnDwDbt28HYF/aPmYfm83B0wcxZZu4vuU6a4+uxaOdB4pWQR+gpzyxnIIDBVzfdZ3yS+Vs3bqV06dPM3r0aPz8/Dh58iTPPfccDRo04LnnnqNDhw4oikK9evU4duwYAwYMID4+ngYNGlRbp6+//prFixeTfjmfB7u/xMb4xWQXphIdMYgD5zcBcDXnLG9+8SZ5V/NQnSr1Xq5H9qps0IEl1cL5y+eJ6hXFzp07KS8vp3bt2jzxxBMUFBQwe/ZsEhMTKSsrw6eeQoOWtWk52IMVx4pY8uObJCQkMGHCBHbs2HErP34hhBBCCCGEEH8BkokkbolaQUNQlOq/Tq3cnGiVm/fXKlr6hfcDwM0tnGENB2PWggYVvb+e8Mnh1HulHq4SJ0M8hlYrXP1B9w+q/fwTXa6OCx9cYPjw4dSsWZPatWuTkZFBYWEhq1evBmBb8jb6x/YnsTCRwCGBeLT3IOiJIDw7e1J6thRTbRPll8txa+iGR1MPao2qhcagYeHChQQHB6PRaKhVqxatW7dm1qxZrFy5kv379zNy5EgAhgwZwtmzZ+nWrRsJCQkMHTqUMnsZeRV5pKalsmfPHrZs2sbTA2fj416DnMJUnr17Lu0b3sVTA95Dq9HicrnYu3wvxWeLKT5WTNL0JPLj8ik6VETxyWKKzxdz5dIVnE4npaWlBAQE0KVLF86fP8/9999PaGgoY8eOZdCgQbz++mv06h/Dj0ePsGXLFnr16sWCBQtuxUcuhBBCCCGEEOIvRoJI4pYwmYJpUH8yGo2Jn36t9IqWv9VU8dSbcdO5oVW0uOnc8DR48lmvz3DTu1Xdr/rdS1ffIBoZnZh8dOgMGmoYPWkT1JbBDQfTs2dPhg8fTps2bTiz+wxuX7lRNKsIT9UT92J3LPMs1NpTC1wQHBxMr1696NGjBwEBAQwaNIgVK1Zw6PAh7ut9H+XXysn8JhMAjV6DuYEZ/x7+eLb2xJ5vp/h4Mdmrs7EX2im7UIZPYx/0ej1RUVEsWbKEhx56qNrcmzdvTqtWrSrnrNezYsUK9u7dyweff8CTu58kankUfb7vQ693epFUkETffr35bv9HrD3yBen5V/l08ysAaLU6RnabRIu6nXj6k6explqr6j41nN6QRjMb4RHhQYNnGrD5yGaOHj1KSEgIZWVlHDlyhP79+xMTE8PDDz9Meno6x44do2PHjtXG+u6777JixQoAoqKibvnvgRBCCCGEEEKIO5dsZxO3TGjoGLy923ItdRHl5Ul4uDeiQ52xjDTXZ1fqLlJLUgnxCKFnnZ7VMon2pu3lubjnsDgt/PQrqUFDUYoVv3J33NzcKCgoYMeOHSxfvryyjs+uvUyfPp0mXk1oG9OWnvN6Ejk7kgsJF5g8czIpJ1IIrxvOsGHD2L59O5s3b+by1csE3RtE4txECg8VUnyimBqDamCoYaDsXBm2PBvuTd3BBYpGQWPWkL0qm5739gQqA0ROp7NyfBoNhYWF3HXXXTz++OM3rEVueS4jN46kxFaC6/8XGy/MKyQ3K5cPv/iQDc/H4e2qw5WscJ7oN73qvlPJ++nVoz8pi/MI7B9E+repBA4J5Pr269QcWhN7nh1ngpNXH3sVnU5H7dq1iYqKok2bNixevJiePXuyYcMGTp48yfjx4zl37ly1k9WCgoKYMmXKLf/shRBCCCGEEELc+SQTSdxSXl4tad5sNh3aryEi4j08PZqg1+rpU7cP41qMo194v2oBJFVVeevQW/8/gPRPtlIbF/9xkc4TOwMQERGBRqMhODiY5s2bA5UZR/n5+Xx64lMKfQtZe3UtZ41nOZN0hjpv1aFu47pMnTqVnbt3YrVbGTppKHl78zCFmtB6aMEFFYkVpM5PJXdjLqVnS1HzVNCCvciOs8iJ4lQoulREx44dOXToEPfccw8XLlzg7bffZt68efTo0YMRI0bcsA5fn/uackd5VQAJQGPWYGpkYv7J+dw/bhAFlgyUf9vul5B8CH9bY47uOk4vzQOggtalx5pl5cqUK2itWoa1GAaA0WjkSmISaSmZeNvr4ePpzysvvUJOTg4tW7akV69enDt3DoBFixaxaNEikpOTeeCBB/73D1oIIYQQQgghxF+OBJHEHyqlOIViW3G1NtWpkrYwjZrDa3Kw9CAAyr9EW/7134kFiWxJ2UJ5WjlOlxNLqgV9TT3X066z9dxWCAZThAklQGFJ+hJcuLBmWHGWODE3NGMvsqPoFRSdgqebJwEZAbTt2hafAB+i20fz3DPPUatWLSZNmkTr1q05d+4cTZo0Yfv27ezZs4fXXnvtpvPadW0Xdpe9WptbAzcsqZXBsr0n4hj0SDQevsaqQFJxeT5ajY6zqUeIbNCT8NLmmBzutMzqTri5OW+88CmR4ZEknU8CoLzIRqeQe8nLy+Xw4UP4GmuRfDUVs94DjUZDjRo1cHNzQwghhBBCCCGEuBUkiCT+UC7VdUNb0dEiKq5WkLUyi2NvHCMzM/Nn7z+ceRiLw4LWU8u1udfIXJqJX08/9EF6Sq6WUJFSQdmlMuwFdlyqC9t1G85yJ85yJxWJFdhz7SgGBaOvkQ8++IDM5EzG9RmHm8aNfdv38dFHH/HKK6+wYcMGDhw4wNGjR3/VvHSaG3eKmsPMKAaFc2+f49ypc4wYORynQwVNZRTpdPIBWtbtSnZhKvvOrWfp7g+osJZxcP029BkmPC/VobioBIPBgMvpIiOxkGa1OxPsX4+W4V3Ra014mnwpyC7DbnNw/fp1ysvLgcqMLyGEEEIIIYQQ4n8hNZHEHyrMKwyzzkyFo6KqzaeTDz6dfNApOoY2GkrnTp3p3LlyW1tMTAwxMTEAjBkzhnVr15F5ORO9n57Qx0MBKDlVQvqX6bgcLgwBBhq804BLky9x7aNr2PPsGEIMhA0OI3lFMi67C0e+AzdPNxZ+tBCNRsOaNWsoLS3lwQcfxG6389RTT/Hdd9/x7LPP8vrrrzN58uT/OK/B9Qfz6alPsTqt1dprjaiFr8mXzfdtRqvR8uLwjynKrZx7VMSgG54ze+1EYlsOY9meWTz/5d0EBdegWbNmbN2wC4CV++eRkX+VIxe34esRyMX04+i0OuKPnWP69Ono9XoAEhISaNmy5X/56QghhBBCCCGEEP8kQSTxh9JqtExuP5k3Dr5RrS6SgoJZb2Zci3G/eL/jqIO0FWlYc6zYC+zoffV4tvLEs5Un13deR9EoKBqF4IeDSfssDZfDhc5dR9r6NJqGNKV169YsWbKEJ594kmHDhrFo0SKOHj2Kw+FAq9UyfPhwRowYwciRI0lISOCLL74gISEBgK+//prFixfjdDpZtmwZISEhAMTFxXFl5xVqtK7ByaUnKUooIvjBYFI/TcVZ4sTT7El653Tq1KmDzqjlUsZJLmecYkDkw2w8uojzafEM6/I3Vh2cT0b+VYL96vHemDW4+xh5eEYXFEWhZ/PhHFmfBCoMj3qqaj2GdnkCp8vJ53teYs2aNbRr147+/fvj7+9/Gz49IYQQQgghhBB/JbKdTfzhBtQbwMxuM6njWQedokOn6Oga3JXlA5YT5B70s/elp6djTDYS8XoETT9qit5XX+36v9YgslyzoDFpcKtfWSNIRUWr1TJ27FgURWHbtm3cd999WCwWdu3ahbu7OxcuXGDy5Mn07t2bgwcPct999/H5559z9uxZiouL2bNnDzt37iQuLg673U7NmjWJiYnh+eefx6A1sHzgcgxXDbR+uzUGo4GQiBAOXznMk48/yalTpwBoFhWMVlf5NTx8cQvxibt4fsjHhAU2YXyft2hTrxsAOoOGzkPqV9WD8gt2R2/Q3nRdTl/bh9GsZ8iQIaxZs4ZNmzYxc+ZMPvroI5o0acKiRYvIysqiX79+AMydO5eOHTvSuXNnDh06BMAzzzxTdRKdEEIIIYQQQggBoPxZa6VERkaq8fHxf/QwxC1WZi9Dr9Fj0Bpuen1r8lYWnFpASnEKFQcr8M3wpTy3nDT3NIJGBZHzQw5l58tQ9Ap1/l6HjCUZFB8vRnWq4ATvTt4YahrQpGnQZelwOByEhoZy4cIFwsPDiY+Px2AwsHz5cubPn49Go2HRokWE1Q3jm/Pf8NWZr8ityMVy0EJAZgDmMjPNIprxzDPP0Lt3b8LDwwkLC0Prq+VI8RHOLD2DW5gbYdFh1Cmsg/W6lZKSEl599VV++OEHUlJSUIvccdP4kVOQxsmr+wgLbMoT/d7BbHZjya6ZDOz0EPeM7U5EVEjVOricLha/cpDyYhv821fYYNbx8IwunDh1jEmTJqHVamndujVvvfUWERER1KtXj5UrV1ZlTrVp04Zjx45x4sQJOnTowMWLF2nQoMFt+4yFEEIIIYQQQvzfpSjKMVVVI292TTKRxP8p7nr3nw0gfXbqM1498CqJhYnYXXYK8gq4kHuBtq+1pX1oewq2F2DLtVFvaj3qTq6Lxk2Dq8JFgzcb0Pi9xqCB2o/VRqfRMXTAUNLS0mjZsiWvvPIKJSWVBasNhsp3jxgxgn379rFnzx7Cw8N58+CbfHTiI3IrcgEoyS/hYu5FnOOdrE1ZS7/J/UjLSMNitXAp5RJrE9ZyZf8VFK2Co9xBWkIa27dtJ/N6JmlpacyfP5/09HR27txJUENPrjuTaBPRGV/PGrz57Gw2XZ1L93GhhDX3Z9iLkdUCSAAarYYhz7bFw8eI3qhFq9egN2kxeei5+5nWGEw6QuuEMuvbWby65FWuZV8jLS2N8vJy9uzZg91u54EHHgCgfv36WK1W5s+fT2BgIFBZe8rhcNyuj1kIIYQQQgghxJ+Q1EQSfwoFlgIWnl6IzWWratOYNZgbmTl7/SyDuw8mYV0Cbg0qt6v9tO3LWeHEWMuIFi0agwazzkxrj9YcWHuA4eeHEx8fT3p6Or179+by5csUFxeTn5/PI488gpeXF9nZ2Xyw8AM2Xt3I5Y8u4yh2oOgUPFp4YG5sJt+Sj6aRhsIrhQTeG0iDUQ3Y8OwGXCEunGVOjEFG/GL9yN2YS41BNbi24xoP3P0AXl5e7NmzB4DMrAw6d4+kZcv6bDmpZemuD1i85B+EhIRgdNOj0d481utT042H3ulC2oUCCnPK8fQzERrhy6kyC6uunGHZqZk4Ki6hKAqXMy8zcMJAysrKuPvuu3nwwQeJi4tj0KBBhIWF0bBhQwoKCrjrrrtu8ycphBBCCCGEEOLPSjKRxJ/C/vT96DTVY54/1Twqd5Sz7eA27ml8D9akf56GpqoqWrMWe74d7KA4FHYP300jv0aUlpayfPlymjdvzg8//MC2bdvw9/dn69atAGRlZfH9998zd+5cXp32Ki7VRe1xtan3cj28O3jjKnNVq7ekoFCWUcbZgrPY3G1Ys6wYg42ggM5Hh1u4G9d3XMfU3ER2Tjbu7u5kZWVx/fp1MjMz8fLyAiAzM5P77ruvaqvZf6JoFEIj/GgRUxtnAw+i4i8y7GQibyeXcMX776QFvEJOsh1bsQ3/Cf5ojBrWrl0LgMvlYtmyZfz444888MADrFu3jmPHjv3Pn5UQQgghhBBCiDuTBJHEn4LD5UD9t+I/5jAzikEhaUYSGRcymPX6LHxq+pA0LYmrM6/iKnfh082Hi89f5MyzZ3C5XJh0JgDCwsLQaDS4ubnRqFEjAAwGAwUFBQC0aNECnU5H69atyUnNQXWpZK3IIml6Evk78lG0StW7K65W4Bfrh2pXOT/9PNY0K4YaBlD+OVbVpWLLtZG/J58d23cQERFBSEgITZs2xc/Pr6pfaGgoa9as4fDhwwwfPpxt27bx8MMPVwV+fk6F08XdxxNJrrBR7lJRNWbQGLFXeJD+rY3gsbWxu+w4VSfnrp8DwM/PD41Gg8FgICMjgw4dOsgWNiGEEEIIIYQQP0u2s4k/hY61OuJUbzwtrNaIWrjp3Hit82uUukrxGeKD291uVdfNdcx4d/Qm9PFQkt9NBipPHps6dSoAL730Ejt27AAgOjqaOXPm8NVXX3H9+nWcTienTp2iZeOWnLx2EpfVRb1X6pEfl0/u+lwaz2pc9Z6SUyVY0iwoeoWADgF4xXiRuTqTelPqUXq+FL2fnuZfNsf3tC8PNX2I++67j7vuuovQ0FDWrVtHQEAAixYt4uWXX2bEiBEMGzaMOXPm0LRp01+1PutyCqlwuaqF2VSng6IZr+Px+ERU3x1cnb4Bl9XF6HtG88SDTwDg4eFBixYtWLp0KWvXrkWn0zFhwoT/5qMRQgghhBBCCPEXIaeziT+NV/e/ypbkLViclqo2vUZPsEcwqwevpsJRQcyKGBzqP7NpbLk2kt5JwmV1oTpUekT3oH79+qxdu5ZmzZoxfvx4zpw5Q0ZGBt9//z1hYWEsXbqUp59+mvT0dLKysmjevDmtnm3FsqnLwAB6Pz2lZ0urBZF+YtQaubfBvaxPWk+5vRwXLgA0VNZjWtJ/CQ19GwJQUFDAuHHj+P777//ntXnxYiqLM65Xa6vYuZmSj99DV7ceWkcewUN05KzMYc32NWiTtOzYsYNp06ZVu2fMmDFMnTpVTmcTQgghhBBCiL+oXzqdTYJI4k/D6XLy2enPWHJuCXaXHVVViQ2LZUrHKXgbvSm3l9N9RfdqQSaX3QUu0Oq0VHxewaoFq/jkk0/47LPPOHLyCC+88wKeUZ4c/+I4LZu0JO1cGiaTicDAQFJTU/H29sZoNLLiuxXM2jKLj6d+jD5IjzXTSqM3G1FxvYL0L9JR7SpebbwIHxLO+nvWU+4oZ/6J+exO3Q1A15CuPNXmKcK9wwG4cOEC48aNY/r06XTr1u1/XptZV7OYm5KF7WZfZ5cFj4JlmMvicNe7s/f+vT97Ap4QQgghhBBCiL82CSKJO4rD5aDQWoiH3qOqxhHA56c/Z8GpBdVOcPuJVtEyMn8ktfxq8c477+Bbw5fz+efRemtxb+1O0eEi9GY9vcf15sR7J7Barfj7+xMfH89P35HBgwcz7+N5uHm50bRBU17e8jLvvfweAV0CcGvkRtrsNH5Y9gOdm3au9u4jR44wadIktFotkZGRzJkz56bz2r59OzNmzMDlcjFr1izatWtHVFQUs2bN+sX7v/vuO96Z+R7nyy2YR43F1LVH9Qe7bARlPoseK3N6zCEqJOq3LLsQQgghhBBCiL+AXwoiSWFt8aej0+gIMAdUCyABrLq06oYAkrOiso6SVtFy9PBRwsLC6N27N2EvhhH2YhjB44IxBBpwlDgwNTJx5OgRgpsH07dvXxSlsjL2T/8vLCykblhdAn0DadSoEc+3f55W2lYsGbeEdfesY0zvMbjyXTeMNywsjF27drFv3z5ycnJISEi4oU9FRQWfffYZ27dvJy4ujnbt2lVd02g0XLlyBa1Wy/Lly6vd73K5mDNnDgf37mHW2g1YVi1DAzjzcsgfP5LsPh2JsG5igH93elzqQVRIFHPnzqVjx4507tyZQ4cOARATEyNFtYUQQgghhBBC/CIprC3uGGWOshvayi+Vk706G51BR7t+7ejevTubdm1i0+RNqKh4d/LGL8YPvZ+e7NXZqHaVq7ar9HyzJ7t37yYsLIz69evz/fff4+3tTVpaGr6+vly+fJmYmBiaNGlCWXIZwXWCOXHiBE899VTlWJxOVmcVcLioDH+9lpEeKk0BnU6Hy+UiNjYWu91OjRo1WLlyJYcOHUKj0dCvXz9q1qzJggULKNLqKXW60Hj74Ovry4QJE9i8eTNarZYePXrg7+9P//79ady4MWVlZdzv48bKoBq0runLxn98jN7NRKmbmUXNx1KnTh3oV7kmixYt4oEHHmDFihW89dZbREVVZiZ99NFHrFixAo1Gw+zZs+ncufMN6ymEEEIIIYQQ4q9LtrOJO8bfd/6dvWl7Ubnxd9pd786++/eh1+o5e/0s47aOo9ReWq1PxrIMLMkW7Fl2CrMKeeedd4iLi8NoNLJ69WouXrzIE088QaNGjbh06RJeXl58+eWXPProo9hsNgYNGsTLL7/MlXILg49fpsKpUu5yoQX0GoXBpblc+WQOGzZswGKx8Omnn1adBpeXl8cnn3xCXFwc7338MXPXLENpaKdoTzK64GAsx1JpWr8+dquVTZs20b59exo2bIjJZOKxxx5j3GPjqLBWYKxlpN5z9Uh+O5kWTVpw5uQZ+vbtS1xcHFqtllatWqHT6cjIyECj0WAwGFBVlfPnz1OzZk1ef/11du/eTX5+Pj/88EPV2rhcLjQaSVwUQgghhBBCiDvdL21nk0wkccd4otUTHMk8Uq2wNoBZZ2Zci3HotXoAwjzDsLvsN9wfPDoYBYX8OfkYDAYee+wxUlJSWLp0KQsWLGDRokX06tWLI0eOcPz4cWJiYggLCyMuLq7acx5JuEq+3VkVynIC9sJCFr72IitWrKCsrIxHH32UuLg4SkpKyMjIoEaNGkRFRWFTnSxSt1CceR7fcC9smSUomhTqvhFO8iIb7YODOXz4MO7u7hw8eBBVVWnYrCGaYA2Nn2nMtQ+voXgrBD4YSOLRRBwOB7W710afqgcDtHu1HWfmnCEzM5PCwkJq165Np06d0Gg0XLhwgYMHD/Lss89W1V2KiYmhQ4cOZGRksHTp0lv9kQkhhBBCCCGE+BOR1AJxx2gW0IzZMbPxN/njpnOrLLytNfFQxEM82vzRqn4eBg+6u3fnwtMXSJqRxNX3r1Zd02OgllstANLS0jhw4AAOh4NFixZx4MAB7r333l8cw7nSCtIstmq5UKrTQdH0Kbg//gxT8iro+ekizuZe54ulS/H392fDhg0UFhZy/vx5Hpk7mezvfkTnoVB2rgzVqeIscXB1+gX09cpIzc3j9ddfp6ioCJutsv5Tnj0Pv35+ZC7NxJptRbWpuEW4gRs4DA6+O/wduRdyyT2Vyz/m/oNNWzbRuktrWrVqRXFxMU6nE4fDgdVqZf369XTv3p1jx47Ro0cPcnJyGDJkiASQhBBCCCGEEEJIJpK4s0TXjmbX8F2cu34Oi8NChH8Ebnq3G/o9FjGeVY3W4vukJxqXFhwKoNIzeTTb8r+p1jcvL486deqg1Wpp3br1L74/w2pHp1Q+6yeWuO3YL56lZOFcSgD3h8ZTfPRHRr8+Db3FQqdOndiyZQvdu3dn8hsvYailw6u9F/ZsO6aQyuLh1mwrhbvSKLJl8unH85k8eTKrV6+m+8DueMd4k7MuB0Wj4NbAjZKTJeSsz8FZ7kR1qLi1diO8WTg563MoPFyIxkPD6eunqauti4eHB+vXr6/MWKpdm0aNGpGbm4uPjw87duyge/fu1Yp8CyGEEEIIIYT465IgkrjjaBQNzQOaV2tzOV0c336N0ztTqSi1U2LLpeh8IZopBsIiGhLZJpZ13/6DH5z/IKvwGgXZ/6yXFBAQwKlTp+jUqRMOh+MXTzFr6GbE9m91xsyx/TDH9qv6uWLzGjwnv4l7VA+sz47jueeeY+DAgTz00EO8tWQ6tScGUbCvAE2Ihlqja3FtwTUMxQZUVSG0WTPGjRvHzp07efHFFwn9NBTfUb7kH87HZXPhLHXi1tgNdZWKy+LCZXWR8n4KoRNCURQFnY8OR7KD7IPZZKvZBPgHMHjwYK5cuUJiYiIvvvgiQ4cOpVmzZkDlyXRSC0kIIYQQQgghBEgQSfwFqKrK5s8SSLtQgMPmAsCk8ea1+xej0xpYuPVV9L5mxvd6iy+2v4HVXk63HlFMn/k2ABqNBqvVisvlIjo6moSEhJ99V5jZSDsvd34sKsX+MzXrHakpOBIvUrF+FfbES7w750MGDx7MhAkTaB3TjlwyKzsqlf8z1jTi192P0vMVFB1KJTo6GoB3332XESNG0G91P5zPO6ueX3qmFH2AHp2fjloja2GoaSB7VTahj4eS+lkqYc+GUbyrmFqWWrjp3NBqtezcuZOWLVvy8ssvY7PZmDBhQtXaCSGEEEIIIYQQIDWRxF9A9tXiagEkAL3WgFFvRqvR0rxOJ9KvX2H5/g9xuhz4ewXx8IjxeHl5odVqyc3NpV27dvz444+MGDGC+vXrAxAXF4dOd2Mc9vPmdWnqYcZNo8GgKDdc9xw/Ed/3PsF35nwM4fUZ/vgT3HfffWzevJkP/v4OOo3+xkkoekJDWhHdtStms5mrV6/SqFEjFEVhSscpmLSV295cNhf5cfnUfaEu9V6uh7mumfJL5ZQnlnNl2hX0Pnp0XjpcqovDhw7TuXNntm/fTmxsLPPmzePQoUNs2bKFjz/+mB49evDkk0/edI5CCCGEEEIIIf565K9Dcce7cjynWgAJwGIrx2SorJWUlHWGYP9wAr1r80jsFDbEf4VPkJGXX36ZOnXqUKNGDY4ePUp0dDQOh4N//OMfv/g+P72Ore0asT7hPA/EdkcJDcei0eL9+nvYjv+ItkYgJfM/wJF8Bc8BQwgx6Rn3+NNotVrefvZt2tZtyaW7PDk66RCFh0pAdeHZuQ5mayltunfltWde4+GHH0an0xEbG4vdbsfD04O6j9Ul/lA8KJA8Kxmdl46QMSFoPbTYsm2Y6phQnSpeQV78bd7f0KPn2LFjLF68mL59+xIVFcXAgQPp2rUrBw8evG2fhxBCCCGEEEKIPyfJRBJ3PJfrxi1ZV7ISmPn9BGateQpvd38iG9xFQspBPts6BbxKMbkZWblyJUVFRXTr1o0pU6Zw/vx5zGYz2dnZP/uuyZMn07VrV7p164bn9WwG9+nDxp07CZ61ALW0BOv+XWhq1sJ39kIM9RoSbi1j64YNrFu3jrfeegtPT0+CPYL5JHYuek8d9V4Ko97L4bgFWUkpTuEfZ/7BD3t/IC8vj5YtW7Jhwwb27t1L1zZdGe8+npEhI3EVuaj7XF3cGrqRvzsfvb8eY4iRiFcjUEtVehl68fc2f0ev17N371769u37K9bQ9R/7CCGEEEIIIYS4s0kmkrjjhbeqwfkDmdit/6wb1KxOR5rV6YhGq2Dy0GO3OJk16RvaD6hLeKsaAFitVpo3b86VK1fo06cP+/bt+8Wj7vPz84mPj2fJpiVs2b2FT7/6lAO7D5AyuD+du/Vi49UUbPGHKXnrJfzffJ8Ag46WPp5MmjQJu93O8uXLadCgAVarlQGDBmArtJE0PQljsJFao2rhG+2Lo9TBE397gpPbT1JWVsb48eNJT08nOzubhg0bEtUgiss9LpNlzoLmkLUxi4DAAFQvlUX9FjFj6wweaP4A4x4dx7Vr1wgLCyM0NJQ33niDkpISHnroIU6dOsXixYtp3bo1rVq1okWLFjRv3pyXXnrptn9WQgghhBBCCCH+75IgkrjjhTTyISDUg5zkYpyOf2YlafUawpr5029Ci6q2a8XXWH5hORpFw5WNV3j44Yd57bXXAMjIyGDYsGFcvXqVtWvXYrFYeOihhzAajfTq1YsHnniAy7bLDF87nNKEUopLi+k2rxuT677Ow/c+whNdHmNNaCq9hr9K2H4XXxRXsG/vXqZPn878+fOZNm0a8+bNY+XKleSpeei8dBgCDej8dBTsKcCvpx9pC9MIGhJEYM1AQmuHotfrqVu3Lt26dUNVVdq3b8+7H72L3Wmn4loFxhpGLA4L+dZ8CpIKKMgvoLS0FK1Wy44dO5g+fTo2mw2ArKwsjhw5UrXFrXXr1qSlpXHw4EHc3d1/3w9NCCGEEEIIIcT/Ob9rEElRlK+AgUCOqqrN/+3a88D7QA1VVfN+z3GJO5uiKAx+ujWH1lzh3IFMXA4XOoOGljG1iRwYDoDT5WTqgalsT9kOgOpQSVqRxNRuU6ueU1BQwI4dO/j222/5/vvvcXd3Z/z48YwZMwab08aAHwZg9bGS8EICqlOl3qv1uFB6gYlH/05EaEfOJR7Eq8JFk1Q7ZZZiEpMu0KF9R0aMGMH8+fMB2LNnD40bN8bncR9cqou0L9IwBhkpO1tG0dEiKq5WkPldJj339sTf3x+dToeHhwdlZWUA2Mw2rgZcJf+tfDQGDbUn1MbqslJuKWfoI0M5teMUcXFxtGnTBoB27dpx6NAhABo0aIDJZCIkJITCwkIAGjduLAEkIYQQQgghhBDA718TaRFwQwEWRVFCgV7Atd95POIv4pvly3jjsyf49tTrNLlXQ1zO53S8uz5abeVX4LPTnzFn+BzOTzvP+WnnSVuXhldHLz5e+DHXK64DEBERgUajqQqyDB8+nNOnTzN69GjeX/I+2UnZWNIsNHy3IXX+XoesFVk4VSdl+iLO5B+iXlBzXKoLp8vJ4l0zCPINo3vbgbzwwgtAZSCrW2w3ikqK8L3oi8vuQtEp2K/bqUipoGBvAZ6tPWkU2Yi4uDgcDgceHh6EhITw5Zdf0rRpU0Y9MYqAPgHUeaoOGqMGnYcO1ami8dDgN8yPMlMZ4eHhnDp1CoATJ05UrZHyLyfJqWplxpZGI2XThBBCCCGEEEJU+l0zkVRV3asoSt2bXJoDTAbW/p7jEX8N6enp7Nmzh507dwKQnJzMv8RLcLqcLDm3BK2nlnov1wMga2UW+bvzKU8qBwf06dOHwsJC0tPTgcogi16vZ/bs2dhsNuq3ro/pARMaNw2KRqH0fCnlieUkvp6IolOoX6s59YOas/XEN8xe8zR5xek4XU427lxN156RXLp6iUlxk0hPS0cfpidtRRpFyUVozVqMwUZMoSZqP1qbws2FdAnuAsD+/fvx8/Nj+vTpLFy4kKeffpqL4y8SEBtAcXwxXpFeAFUZTOkr0hmyZQifzfkMq9VKbGwsYWFh1KlT53f8NIQQQgghhBBC/Fn94TWRFEUZDKSrqnrqXzMhfqbveGA8IH/4il9kd9o5lHmIAksBZzefxel0EhsbS0REBM888wzp6encfffdZGdns2DRAmxOG84yZ7VC1qVnKwNBLqeLqVOnsnXrVkJCQrh8+TIA69at4+OPP6a8vJxO/TtxJfQK+eZ8kqYnYS+w493Rm6BhQWhdejql9EOTpeXvA2ZWjVGr19BxcD2+OvE+Fh8LV1ZeIXRCKHpfPQANtA0oWVFCRe0KnOVOOtfqTIdhHUg7k8aiRYtwOByMGzeOIUOGMGfOHADqt6lP1uUsSk6WEPpkKAA+nXzw6eSDm86N+bHziQyKpHPnzgDExcURFxcHVAalAOrWrcuiRYuqtQkhhBBCCCGEEH9oEElRFDdgCtD71/RXVXUhsBAgMjLyxnPbhQCOZB5hUtwkXKoLl+oiY18Guhwdp7aeYvpr01m7di1ZWVls376dY8eO8cmcT1CiFcJfCUfnoSNnfQ4Fewrw7+WPzkuHV2MvFi1aREREBFarlbfffhu73U5CQgJxcXGcPn2aN2e8iaa1BmeFk1oja2FJs6C6VOwFdlK+usag9mGgrz5OjVbBI8zOd9O/I2xyWFW7y+5Co9dgd9nx8/GjT80+ZGVlsaD3At5//30AHA4HdrsdgAMHDlC/fn0AJj8+mTFPj0Fj1qAxVt+K5q53p23Ntrdx5YUQQgghhBBC3Mn+6Eyk+kA48FMWUm3guKIoHVRVzfpDRyb+lDJLM3lq11NUOCqq2lwmF65wF0/veppRPUcRHx9PixYt0Ol0tG7dmqQrSQx4aADrr6zHrtrxaufF9a2VdZBUp4rD7mDExyNIXJbIhg0b2LBhA2azmalTp7Jr1y569epFs4bNKFxbiMnXhFu4G5Y0C85CJ5n/yOSt996mxqEISgutqKqTS/7HOB24B9XXyrLPbDgcDq7OvIox2EjQiCCuvHkF+3U7ilbBP9KfQc8M4r777iM2NpakpCT69euHr68vs2bN4ttvv8XX15elS5cCcHfnu/Es98TQ24BG0eBSXRi1RvQaPfN6zkOjVA8sxcTEEBMT87t9PkIIIYQQQggh/rz+0CCSqqoJQOBPPyuKkgxEyuls4rf65sI3OFyOam1uDdwo2FPA2etnWR2/mkWfVm4Fi4qKwsPDg/r16/NM62fYfXU3Bc4Cyi+XU3qmtPJmLegCdDw36jnCNGGkpaXx/fffk56eTnZ2Ng0bNgRgwoQJzAyfycZjG9mcv5l9bvu4uOYiL772Is/0fRq1j0pGYgGvnnyFBMsxLC4LWCH3Wi4Oh4PwF8PJWlm5Da3+a/XRGDRkf59NcKtg2rVrx/33309+fj4Oh4Po6GisViuvvfYa48aNu2ENIkIjeHfyu6xNXktueS5tAttwb8N78TX58vXXX7N48WKcTifLli0jJCTkv1rfvLw8Bg8ejF6vx9vbmxUrVmA2m3/bhyWEEEIIIYQQ4k/ldw0iKYryLRADBCiKkga8rqrql7/nGMSd7XTuaewue7U2c5iZQkMhl965hFpDJTAwkOLiYoxGI/Hx8cyfPx9bqY3Tr5/GrrOjddei86n8arjVd+P6tus0frYx3TXd6RzRmUuXLvHNN98wZcqUqlPMXnrpJebOncvKj1by5ZdfsihlEeVNytm6dSuHOxymU6dOXDGf4YzteGUA6f/TmDW4N3YHwL2pOxVXKig+Voy9wI6z2EnvdpU7PS9fvsz3339PbGwsQ4YMYfny5Ted/4ABA4iNjaV1rda0rtW62rV/LzD+W/j6+rJ//340Gg1vvvkmGzZs4L777vvNzxNCCCGEEEII8efxe5/ONvI/XK/7Ow1F3KGC3INQUFCpXjKr1ohaqOgp3ulL6dmrAHTp0gVVVYmNjSU/Px+fVj6UmcqoSK7AmmElZ30OikZBY9Rw6cNLJLmSONXhFJmZmRw7dgxvb28aNmzImjVrCAsL429/+xsTJ05k+/btABgMBpYtW8awYcOYM2cOq7NWV9tmB//MkgKwXrNiCDSgqir1nqxH4Q//PInNaDTy8ccfc/z4cUwm08/Of+PGjdV+Liu7QnLKAr79dh1Ll6ZTVqqla9fztG3bjmeeeYbHHnuM0tJSzp8/T506dQgICMDpdLJ161aOHj3Kjh07mDZtWlWh7TFjxlQ92+l0VmVijRs3jgsXLrBixYr/OrtJCCGEEEIIIcSfwx9dE0mIW2pEkxHsurYLi9NywzWny8TVw+loatdFl3SZjRs3cvnyZUaNGkW3bt2Y9cUsiq8XY8+tzGTK35mPV1svtGYt9Z6sh3m7mTZt2rBv374bnn3PPfcAMHfu3BuubdmyBYDilOIbrv2UJZXybgreft7UjK7JxW0XsV63EhkSiZve7WeDVP9JQcGPnDw1lpycco7F5xEba+DQQQs2WyJr16bi5+dHTk4OHTp04JlnnmHFihWsXbuW6dOns3XrVvz8/G54ZnJyMk888QS5ubmYTCaee+45AC5evCgnuQkhhBBCCCHEHU6CSOKO0iawDaObjmbZ+WVVgSQVPaqiJeNgAzSeF/H74DMKnh5Dx27dSE1NpVWrVoSEhNA4uDHFvsWUXy1Htavoaujw7ekL5fBQy4cocBVw/Pjx3zy2riFdSchLuCHAVWtELYxaI+vuWUewRzA8deO9vxSkuhmXy0XCmb/jclVw9GgJLpfK5k3FWK0w9yMf3nnHypKVq8hMuUpAjRo8/vjjqKpKQkICX375JdnZ2bhcLurVq8e6devIysri7bffZvfu3ezZs4f+/ftz+PBhZs+ejdPp5PTp0wwcOJANGzb85vURQgghhBBCCPF/m+Y/dxGiUkZGBm3btsVkMuFwVBavHjduHFFRURw7doy2bdui1+vp2rUrWVlZvPPOO7/qubf6dLBn2j3DV32+Al0Qdn0ILo0HqmLGHr8L59VL5Nwdg+3iOdZu3oLT6eT999/nySefJDUllSGNhuDr64tGr8GaZSXtgzRs52zMfHIm69atIzs7+4b3NW7cuOqUs3Pnzv3suIY2HIpRa0RBqdZu1BqJCY2pDCDdAqVllzlwMAq7vfKEuYICJ3aHyl29PLHbVV568SpJV9PIb9EOi8PJ3oOH8KkRiMlkok+fPly7do27776bUaNGkZqaypEjRygtLWXlypVVWVA2mw2bzUZ8fDzTpk2jRYsWEkASQgghhBBCiDucZCKJX83Pz4+dO3cyZMiQqraftjFZLBY2bdpE69atAQgKCmLKlCl/0EiheUBznGjQOvLQqFYAPBs4UCoc2B1+2FPKcJnNOJ1OunXrxuHDhzl//jy1a9cmPDCcspwyortHo9Pp8PT0ZMWKFej1en788ccb3lWjRg3i4uL+45h8TD583f9rJu+ZTEpxCjqNDrvLTv/w/kztNPWWzNvhKOPYsRE4HIVVbe7uGlq1NFNc4sRkUnA6QaOAXVf59de1aktx4+aw4TuiO3bk6NGjnDlzBq1Wi9PpZOjQoeh0OkpKSkhLS8Nms1FUVERwcDCZmZm3ZNxCCCGEEEIIIf7vkyCS+FmlBRZO7kjl2tnr6IxamkUF06RTLQCsFQ6efOJZjh87SdfIHmzYsIHvv/+eoKAgoLJ2zpAhQ5g2bRrTpk3D19eXU6dO8eWXX9K3b18WLlzIV199dcuzkH5yIOMAOmc2quqsatOaNfh08sKnZyCZ6RPpVJCLIfkKX375JU6nk+bNm9Orfy/qdK+DBg3ehd4snL+QhQsXsmvXLk6ePMnLL79MamoqderUoU6dOrzxxhvk5+fTrVs3mjZtyty5czl27Bjr1q1j5syZ5OfnM3bsWNasWQNAPe96rBq8imvF18i35BPuHY630fuWzTsray0ul7VaW7NmJjZtLCGsrp5GjYw0amxk53Ez181u6Oo3Qi0qRN+2A66DuwAICQlh/PjxFBYW8sYbb7Bp0yb69u3LhQsX6Nq1KxaLhT179rBt2zYmTJhwy8YuhBBCCCGEEOL/NtnOJm4qL62Ub948QkJcGgVZ5eSmlLD/u8usnnUcm8XBklcP0s7vXoK86zK6w6t889Yh1qzYjI+PT9UzwsPDWbFiBdevX8dsNrNmzRo+++wzHA4HX375Jfv372fw4MG3ZfyrL6+uFkCCypPQLKmV9YiUSwdp4enOmTNneOSRR+jUqRPXS68zzzKPKXFTmHJgCsPmDSMhK4HmzZtjt9tJSUnBaDSyY8cOGjduXPXc/fv3s3fvXsLCwli4cCFdunTh8OHDAKxbt4677777hvHV8apD68DWtzSABFBUdAyXq/oJcA0aGDEaFbZsKSEpyUa3bu5cL9GjKAoaN3fQaimc/z4lhUVERkaSn5/Pu+++y0cffYSXlxdQWWMpJyeHu+66i8LCQpxOJ1euXMHX1/eWjl8IIYQQQgghxP9dEkQSN7XjH2exW5y4nGpVm8Pm4np6CdfTyrCVO3HYXACoLjh0bisNPDtht/wzcOPm5kZ+fj6+vr5YLBbat29PYWEheXl5hIWFodPpaNeu3W0Zf7H15iehKQaF5BkXqJ2WzoP3DycwMJDCwkJKXaWEvBCC1WIl4fUEEt5MIP94PtZBVt5d+y5Go5GkpCRatmwJULVtD6g6xWzIkCGcOXMGRVFo2bIlJ06cuGkQafbs2URFRZGcnMwDDzxwS+dtMNTgZgmGj0/w59NPaxMV5c6sOfl4BPtj7HYXGj9//OcvwetvLxB6zzCmTJnClClTePHFF7l69SotW7akf//+BAYGEh4eTo8ePWjTpg333HMPixcvZuXKlQByMpsQQgghhBBC/AXIdjZxg+K8CgpzKm56zWlXcbnUG9qzC1M5fiWO1PxLaPUKixYtAmDw4MG88sorPPLIIwCoqkpAQAApKSk4nU5OnDjxm8Z45MgRJk2aRHl5OTk5OYSGhqLT6Thw4ABRUVGMXTCWk7knsTqtFOwrwFnhpPxyOc5SJ97NvXioxzD69OlD165dWbJkCbHfxZJbkYsOHQ3ebACAy+7CrrfzyalPeOSRR7h06RJZWVkAnD59GqgsMK2qKkajkQMHDlC/fn0Ahg0bxj/+8Q+cTmdVkAnAarVy6tSp3zTnXyM4+D7S0pfgcjluev3xCf5UYOJdJpOohOH9SmXxc5+27XlnRGWtqzFjxlT137x5M/n5+QwdOpRXX32VunXr/qr6T0IIIYQQQggh7jySiSRuYLM40GiVG9qdTgfzNrxA+vUrzN/4IsnZ56uuDWo/FpfqQlUrA0z9+vUD4L777qOgoIBhw4ZV9dXpdDzyyCN06dKF1atX/6YxhoWFsWvXLrZs2UK3bt344osvqFu3LgkJCUDlSWgmnanqJLSSEyXUHFKTJq80YcTfRvDw8IerThqzOC3kW/JveEdpQilJM5LY88oesrKyePXVV7FYLMTGxnL69Gn0ej0FBQV07tyZbt26sX79ep588kkAoqOjWb16NQMHDsTuspNYkEhqSSpffPEFtWrV4syZM4wYMYJz585Rp04d2rVrR1paGsnJyfTo0YNatWqh0+lYsmQJK1asYP78+QBs27YNnU5HYmLiTdfF3b0+dev+HUUx/OzaWXDjmtKw6mc3jYZ23u4Mq+l30/5+fn7s3r2bESNG/KePRQghhBBCCCHEHUz56Y/+P5vIyEg1Pj7+jx7GHclhc/Ll8/uqtqv9O0VTuYWtsCyPBVumkFWQwqyxG9HrdWw8/wmFtkxWrFhBSEgI06ZN48MPPyQvL+9/GpPL6WLJx+t4+72p4FKoE9iYu7s/RGL5fgqtWZw9e4bCwkIefvhhvvnmG7p3786yb5fhUBwo7gouiwv3Bu5YLllYtngZ995zL8nJyUydOpXFXy+mwzcdsDltN323m86NI6OPVK6Nw4FOp2PmzJnUqVOHkSNH/uyYVVXl2wvf8vHJj3G6nDjsDtI+TqNzo87kXctj6dKl9O/fnzZt2tC/f3/y8vK4++676devH9u2bePNN98kKyuL7777jqFDh7Jp0yY6deqEzWZj5cqVNGjQ4GffXVh4grNnJ2KxZgKVn6OiGNBodARHfMnXBcHsKyjFS6fhoZAAhgT6otPcGDgUQgghhBBCCPHXoijKMVVVI292TTKRxA10Bi2t76qDznDjr4fOoME70A1FA+5GL54e+AF1AyMA0GgV8ssz2L9/PyEhIZw+fZqPPvqIWrVq/c9j2vblWbJOOfl7vw+YdPdcSsoLyc7MwaukIWeOXKGiogKr1crYsWPJyMhg6tSp1PCvQaOwRkx/bTquUhdNjU05tOcQsz+YXe3ZWo2W/nX7o9fob3ivQWNgSMMhVT8/+uijdOvWjX379jFkyJAb+v+rby98y5xjcyi228gzdeLqyVaUBUWwJ+MMpxNO8/rrr9OgQQMyMjL45JNPeP/990lNTaVFixaEhoYSFBRERkYGZrOZwMBATpw4QWpqalVdpl/i49OGLl320KrlQvz9e+Dl2ZLQ0Ifp1HErjWp0YFqj2uzp2IT17RpxX5CfBJCEEEIIIYQQQvxHEkQSN9VhYDgtutdGq9dgMGvRG7UYzDrMHnoKs8pRVSi3lzBvw/NcyTyNolNJsKzj7PkzDBw4EIB9+/axfPlyvL0rTyA7ceIEo0aNAuCBBx4gPj6ebt260b17d2JjY8nJyblhHKUFVg6tucLVU3l4GHzR6yq3aWk0Gqz2cj5aN5lBkY+RfDUFg8HAkCFDcLlcuLu743Q6SUlJ4evPvkZB4bFHH6N169ZoNDf+2j/f/nlqudfCrDNXtZl1Zup41eGpNk9VtS1evJi9e/eyYcMGTCbTz66fw+Vg/sn5lGEmv9b7lPmMxJqtYjmZRHFCIeUuF2np6aSnp5OVlcVbb71F3759WbBgAWfOnMHpdJKdnV0VgBs1ahSjRo2ib9++v/ozVBSFgIAetG71Be3b/0DDBi9hMgX/6vuFEEIIIYQQQoh/JUEkcVOKRqHL0AaMfS+KfhNa0qJHCE6Hk5J8a2UHFdxNnjw/fC4e7p6MmdGVjxfOpkWLFmzYsAG73c6ePXvo2bNn1TPbtGlDeHg4jz/+OMHBwURGRrJz50727NnDQw89xOLFi6v6qqrKoR8SWfrqIU5sS6l2Slz69SuUVhSx/sevqO1fn+/3f4pBa6J169bs2bMHm83Gww8/zJNPPkmLFi3o378/7u7uLF++nN27d+Nw3Fh02tvozfeDv+flDi/TqVYnOgd3ZmqnqawYuAJ3vft/vX6pJanYXXZK/Mbj0nqCxoSubj1QFBQ3d5SQOtQbcA9Op5OaNWuyZMkSgoKCWL9+PYGBgdxzzz1s3ryZ+++/nyVLljBlyhQuXbpUFYQTQgghhBBCCCF+b3I6m/hFBrOOoHpebPrkNHa7g8sBxzgbtB+rrpzgooa0y70Ll+oiuntXzp8/j9FopEePHvj5+fHggw/SoEEDMjMzadGiBQ6Hg+DgYHbt2kWbNm3o3LkzFRUVnDx5koqKCpo1a1b13ks/ZnN6dxpOR/W6TGWWYlbun0dkg56sP/oVLpcTm9OKVqPj4MGDnD59GpPJxNatW0lLS+Ott94iPz8fLy8vysvLGTJkCO+++y4bNmzg3Xff5cqVKwwdOpTvv/8ek87EkIZDqm1f+61MWhN2xQ27qTEoOpy5OdhOHcP7tZlUbFyN18SX2bZqCY8PH86sWbNISUnBz88PjUZDSkoKV69e5Y033qBmzZq88cYb2GyV9ZoGDBiAj48PaWlpWCwW9u/f/z+PVQghhBBCCCGE+DUkiCT+o6ykYlyKk41NF5DtmYxDWxnQKDZe53KNeJwuJ5s3byYmJgaXy8Xu3buZPHkyn376KSkpKWi1Wu666y4+//xz2rRpw8MPP8z58+eZPHkyu3btonPnzpSUlLB58+aqd8ZvSr6hsLfT5WTxrhkM6fQ4dWs2JaJOBzb8+BUPx77C68tHERvbk1atWhEREUHt2rX5xz/+gZeXFxcvXqRly5Zs2LCh2vN+2nZ3O9TyqIW/ZzMyVRUUsMUfBJeL0k9n4yop4vozj0JOJqtDgqmoqMDf3x+9Xo+3tze5ubl4eHhgs9lo3LgxWq0WHx8fvv76a15//XV8fHxYsGABY8aMuW3jF0IIIYQQQggh/p1sZxP/kaqqXPI9Vi2ABOByObk86yIWWwUjR47EZDJRVlbG6NGjOXnyJE6nEz8/PwIDA5k4cSJarZa6desyZswYVFVl/vz5PPLIIxw6dIg333yTDz74oOrZJdctN4zjRNIeruVeZM2Rz/lw3bMUlV0HQNG6sDjKyM/Pp0OHDpSUlDBx4kRGjx5NVFQU48aN4913372ta5SRkUHbtm0xmUw4HA52Xy8m0fMxUCqLdbsKruO4dhVHZhqq3Y6pUzQBHbtSv0kEiqKQkpKCt7c3RUVFtG7dGi8vL1wuFz/88AM6nY5NmzYRGBhISUkJb731VrWT2d57771qayeEEEIIIYQQQtwOkokk/qOgcG8SAvZWCyABKDqF8MnhJM9I5p4BT7Bq7TyOHTvGkSNHuOeee8jNza0KGgEYjUamT59OXFwcd911F5s2baJNmzYAeHl5YTb/S1FrTz2lBdZq74ts0JPIBv+ssZRbnIrRaCJmdASl80tuGHe3bt1u1RL8R35+fuzcuZMhQ4aQa7Mz9kwyFhVQKk89U9w9MXXvhbFrDMWzp6E6HNjCG7I5MwP3pk3wq1/Bri270Og0nDx/kiVfL+GB4Q/w0ksv4ebmRmxsLKdOnUKj0VC7dm169OjBuXPnaNasGVFRUbRr164qEywjI4PExMTfbe5CCCGEEEIIIf4aJIgk/iO9UYvG2wnO6u2qQyV5djKWVAtz57+OzVJOTEwMGRkZdO/eHQB395sXpU5OTq4KfGg0GoxGI4sWLaq63rJnKD+uT7phS5uihfCWATTsUIPRj03ltXenEtHljztxrKzQiqXMjncNM76+lae1rczMR0Wl9Mv52E4eBb0BjzETsOzeiqLV4byWTEV6Kq4OXdHVb0RRWjJWJQCN+Qq2PBsOg4O5GXPRG/QUFhYSFBTEnj17cHNzo27dujzxxBM89dRTTJ8+nZSUFIYNG0avXr0YP348L7/8Ms2bN//D1kMIIYQQQgghxJ1LtrOJXyW6QRe0aKu1/ZSJ1PzjFvx94Pt46v2Ji4vj22+/xd/fH4AHH3wQgLp169KoUSMAYmJi8PHx4eGHH2bPnj3s3r2bLVu2EBQUVPXsVj1rE9LIF53xn7+ieqMWvyB3ej4UQYM2tTgSf5ABA/vf7qnfVGFOOatmxvPh0z8Q3rAOEfXa0aF1FACXyiyUXDyPMzMNv3mL8HrhdcrXr0IxGMl79D5cZSVoAgJR7TYqtq7DmZqC5Wop+homFI2Cy+bix3d+xOhppH79+jidTnJycoiNjcVqtVJcXEzLli3x8vKib9++zJw5E5fLxbvvvsuiRYtYsGABkyZN+q/m89RTT92OZRJCCCGEEEIIcQeRIJL4VR5u9jAGreGGdp1TT8PMSD5f8wbXchPp06cPAFarldjYWC5dukRaWhpdunQhISGBSZMmoaoqhw4dIioq6mffp9Fq+GDVRPo+3oyI6GCadA7irkciGP5Ke4zmPzaBrqLUxvcz48lJLsbpdNEkpC0TB87m0W7TKMwpp76bCSXtGvpmrQBQFAVFUfB84lk0nl7oI1qiaDS43TsKXXAo+oZNsR3/EZfLiLle5Za+irQKclJzqFmzJk6nkwYNGrBv3z4yMzPp27cvCQkJAJSWltKpUycefPBBduzYweXLl9m3bx85OTlVfX6NefPm3fqFEkIIIYQQQghxR5HtbOJXCfUM5bNeC/nbuolUaEvRqBqcGgeNczvS9dq9xAwciV+wOyNf6whAx44dq+7NysrCx8cHk8nE6NGjOXPmDCdOnPhV7w1p5EtYRI3bMqffQlVV9q28hKXcAWpl26WMk8xZO5FW4dGUFVpZ9cgoSrJzcBQWYB58X9V9qsOOWlaGKzsT1/U8XHk5KN4+WOO2Yx54D2H3lVCy6wzmOmZqja7F5Wcu4+vrS0REBGvWrOHuu+/Gbrfz0ksvMXToUDw8PKiwV1BQt4Bj8ccoSinirr53Ubd2XYxGI1qtlqeffpqTJ0/i5eXFsmXL8Pb2ZuzYsVy7do2wsDBCQ0N54403iIqKYv/+/X/gygohhBBCCCGE+L9OMpHEr9amZms+ClnE0IuT6HNxHA/Fv0301fvQoEVn0NBhYDhQGTBZsH4BNSNq4hfhR7+/9+NiyUUAdDodu3fvJiYmhpiYmKpi2p06dWL8+PFERkayYcMGAIqLi4mOjqZx48ZVBbj/3bZt24iKiqJz585MmTKlqv3rr78mNjaWmJgY0tPTb8n8VVVlxz/OcfloTlUAycvNj9dGLOZv/d9j6/FlpOVdxmlxMPDFYWgDA7k+bhiFb78MDisln36AaqnAVVqKqtdT9s1X2M6cwFVwHXvCcS5P2IHqVDGGGDFoDdx1/120bduW6dOnk5SURHFxMd999x2+vr7s2rWLSQsmcTznOHGlcehH6gl6NQjHBAddHuxCXl4eZWVllJWVsXfvXkaMGMGCBQv48ccf0Wq17Nixg/r169+SdRFCCCGEEEII8dcgmUjiv9Kub13KimycP5CBRqcBPbicKu0HhFO/bSAA7x19j68TvqaorAhbhg2Xl4tRX4xibLOx5OXl8fTTT/P000+zYMECevXqBUBubi7FxcXo9XrefPNNBg4ciMlkomnTply7do3AwEASEhJo0aJFtfH06NGD3r17V/07NzcXm83Gnj172Llz5y2d+7Wz+SSdyqsKIAHotQZ+KhU1sP0jmN3cKNBdYtesj1EKLfgN7YahRQuKlq7DaD2LxahH37AR9gvncObnoagqmqBgzAEVaAI9ULQKuMBD70HzgOaoqkpJSQljxoxh0aJFuLu7U1xcTJ9+fTiddRr3CHc0vpWxYIfqwFJkYcq0KRzefJiEIwm0bdsWgMjISPbs2UNYWFhVQK5du3YcOnTolq6REEIIIYQQQog7lwSRxH9F0Sh0H9mYyP51SbtQgEarUCfCD6ObnkMZh1hwagEnck5ADaj3Yj1SPkoBLZTmlfLSAy9xNuEsDzzwALGxsXz88cf4+/uzdu1acnNzSU9Pp3b92mxct5FOd3ciJTWFlJQUXnnlFX788UdWr17NtWvXGDBgAGvWrOHKlSs899xzADidToKCgqq2bTmdTmJjY4mIiODDDz9Eq9X+h5n9Z2f2puGwVj+izmIrx2RwAyAp6wyhNevTsmcz8h/M4cKyCxgqzuJenEypI4daw0MpiS8g+NF6pM8rw5WZSURUNJb0S5SaCyjJdqJRNdgO2Zg4fCLzDsxjy4Yt5OXlkZeXx9ixY0lJSSEwMJBSpZT6f6+P6vfPiJbqVElbmEbIiBDiy+NpWq8p27ZtAyA+Pp769esTHh7O7t27AX71lkIhhBBCCCGEEAJkO5v4jdy9jTTuGETDyJoY3fTMPPwGT+18guM5x1FR0Rg0aN21uCwuHMUO8jblgQa6RXdj69atzJkzh8DAwKqi0aqqcvDIQVZ9uwqr3crRHUfJzs7GWdPJh3M/JDs7m7Fjx7JkyRJWr17Nd999x/3338/rr79OvXr1qFu3Lv7+/hiNRrKzs7HZbOzcuRM3NzfWrl17S+ZcUWK/oe1KVgIzv5/ArDVP4e0ZwDOvTGDDhvVkfJSB/fqN/bUeWgqX70S1O9CG1KbNtFkEmn058NUBejfrTdeKriz/dDn39r2X3bt3c/LkSXr27MnWrVuZN28evXv35siRIwx5YQhp69KqPbvoaBEVVytIXZ7KWw+9hdPpxGw2Ex0dzTfffMOECRPo2LFjtaLnQgghhBBCCCHEryWZSOJ/dvTaelZc+h67Wr3dUerAlmMjMDqQ3B9ycdldZBdl06VLFw4fPoyHhwdWq5VatWqh6BVwgM5Th09HH4qOFuEodmA1WylLLaOJvgm1atUiNzeXb7/9lvLycmrXrs2uXbtISkrC6XQydOhQTpw4gbe3N927dwegZ8+exMfH35J5hjTyITe1BJfjnxNtVqcjzep0BAX6Pd6Ceq1rcLz/cVKKUxi+fjjljnIAQh8PBaDe600p8X0Y1758FE9v9haU4Ot0oSgKB/cfpE+fPsTExFQ9f/bs2bRp04bu3buzcuVK4uLiiImJocBSgEapHgP26eSDTycf3HRuTO00lc71O9O5c+cb5rFo0SIA4uLiiIuLw2q1VtWmEkIIIYQQQgghfo5kIon/2dfHp+FQq0eQftpapa+hx7+HP/XfqI/eS88rM17BZDLx/PPPM2PGDBwOJ3t3H6CstAx9DT2eLT3RumtBAe8u3hTFF1FeWs7u3bt59dVXMRgMrFmzhl27dhEeHs7+/ftp3rw5FRUVuLu7Yzab6dKlC6dPnwbg5MmThIeH35J5togJRau98Suj1Wuo16oG9Vr/8xS5MK8wFvVdRHP/5mgUHaqix6nxocT3Eawe3XCkplCx7jsyX3iSC+fOsX79emJjY6lTpw7z5s0DYM+ePZw8eZJJkyYB0LhxY3r37k1cXBzxB+Np/lRzFJRqY1FQMGqN9K7b+1fPa/To0YwYMeK3LIkQQgghhBBCiL8QRf23P/7/LCIjI9VblWEifrvy8hQe3ziAk+XVgxmFhwvJXJaJ6lAx1THhUd8DS4KFA0vP8eik4VxJuUh5aQVWmwUf9xrkl2WjMWlQtAoaowZHmQPVroITUMDH14fy0nJiYmLYtm0bbm5uLFy4kEcffZT27dujqio9evTg7bffBuD5558nPj6egIAAvvnmGwwGwy2Zb/bVYrYsTMBa7kDRgNOuUreFP7GPRKA33Lzu0msXzvNlaiZOrQ/8W/aQTgHjC4+z87sVTJ06laVLl/Lkk0/SrVs3Pv/8c0pKSnBzc6N169Z8+OGHvPPOO2zfvh1FUehzTx/21N5DviUfFRUFBW+jNwt6LaCed71bMl8hhBBCCCGEEH8tiqIcU1U18qbXJIgk/hclJWeZHTeCdfkqtn/JilEdKsmzk6lIrsCtrhvtB0dR/IOVoYPGsyPjWzJT0+jUqA/Ll3xEx0a92Ze4HsUNfLv7UrCzABUVZ7ETjUmD6lSZ9tY0Nm/czMGDBwkKCuLo0aM8+OCDnDhxgvz8/N91zqqqkpNcgqXMjn+IBx6+xl/sf6K4nHtPJFLhct1wzaRR2BrZmMbupt88lmPZx0gtSaW2Z23a1Wx3wzY3IYQQQgghhBDi1/qlIJLURBL/Eze3erR3V9lUCHZXZT4MgKJTqD+5LrVM7jx0fSbnryWy85klfGN6B5qBWuZg5dx5uDdzp7g0Hx166k2ux8W3zqMxalA0CopZQeepw6gacdqd5ObmAlBeXs6MGTNISkrC39//d5+zoijUDPf61f3beLnRw8+T3fnFVLj+GbQ1axQG1vD5zQGkn8YSGRRJZNBNv99CCCGEEEIIIcQtIykL4n+i1ZppXPdRJgVBDZ2KQVExKSo6VBqa4OMO8ziUc5B1jT6mxJQPCqiuynpJPj28sVjLuVx2ChzgfTwIV7kLl92Fo8iBwduAyWjCx+RDaWkpTqcTd3d3OnTowLZt28jKysLPz++PXoJfZWGzujxXN4gaBh0KEGTQ80q9WsxtWuePHpoQQgghhBBCCPGrSCaS+J/VC5+I6nIQqFtEhkNLkcNFiNmDbq1mk5MWxL6wVbg0zqr+RUeLKE8qp+xSGYpGIfi+EPKXOyk8UIhOZ6BWcG3cfPW4il3MeHsGjz32GJ06dWLTpk34+fmxdetWvv32W8aOHcuRI0f+wJn/ejqNwt/DavL3sJp/9FCEEEIIIYQQQojfRDKRxP9MUTQ0aPAC3aKPMLD9lzwUtYK7ux/Ez7czJ20/olGr/5p5t/fGrZ4bNfrVQNEqFB4qwGR2x6U6uafjo+Rdy+K5R5/DZXMxePBgzGYzM2bMICYmhgEDBgDw3Xffcf/99/8R0xVCCCGEEEIIIf6SJIgkbhmdzgMfn0g8PSNQlMraSBoPF6pSvaB00dEiKq5WUHquFGOwkaBhtXhu+Iek5F5gwIBB9O3Xl82bNxMQEECPHj3429/+xo8//si8efMwm83ExMSg0WhYuHDhHzHN2yY5OZmaNWsSExND7969f7bf+++/T1RUFKNHj8ZutwMwefJkunbtSnR0NJcvX/69hiyEEEIIIYQQ4i9EtrOJ26p1YGu0Og2Of4kj+XTywaeTDwBaRUs7UyeiDRF0vtCZLza+w/Tp0+nWrdtNn/fBBx/8DqP+4/Tq1YulS5f+7PXc3Fx2797N/v37mTRpEs2bN8fX15eUlBQyMjI4ePAgn3zyCXPmzPnZZ5SVldG7d2+Cg4P57rvvbsc0hBBCCCGEEELcgSQTSdxWjXwb0aZmGwwa402vN/ZtzJNNHuPlD57gzbffYP/+/T8bQLoTnSop56lzKQw6dol3r2SwfdcuoqOjq4JAb731FjExMfTs2ZPk5GR+/PFHYmJiABgxYgQDBw5k7969GI1Gjhw5QmFh4X88se7UqVNER0dLAEkIIYQQQgghxH9FMpHEbTe3x1zePPQmO67tQKfosDqt1DDX4PnI5+ldtzeKorB///4/epi/u4WpOcxIysTqUnEBxx06TF+t5rkW9fl8/Bh69uxJeno6cXFxnD9/nhkzZtCmUxtOFp/koU0P4cp1cT31Ojq9Dl9fX0aOHElhYSFNmjRh165dfPXVV6xYsYLmzZszYMAA1qxZw5UrV/jhhx9ITU1Fp9Mxbdq0P3oZhBBCCCGEEEL8SSiqqv7RY/hNIiMj1fj4+D96GOK/UGgpJLUklQBzALU8at2292RkZDBw4EDOnTtHaWkpOt2NsdLCwkJ27drFvffee9vG8UtSKqx0//ECFteN3z+zRuGphP0EeHnyzjvvUKtW5Vp5+Htwpf4VSq6V4NvPl4rkCvLW5UEWmJwmtm7dyptvvomPjw8vvPACH374IVOnTmXKlCl8/fXXjB49mpkzZ5KYmMiOHTskgCSEEEIIIYQQ4gaKohxTVTXyZtdkO5v43fiYfGhRo8VtDSAB+Pn5sXPnTjp16vSzfQoLC1m9evVtHccvWZ6Zj/PfAriu8jIAFGD17jjCwsLo3bs3cXFxxMXFoRulQwlVKDpfBEDpuVK8OnkROjEUnZuOCxcucPLkSdavX88TTzxBcXExoaGh5Ofnc/36dQoLC6ldu/bvPVUhhBBCCCGEEHcI2c4m7hjlxTYKs8tw8zLiW9O32rW33nqLXbt2odFo+Oqrr1i4cCHbt28nJiaGmTNn8uKLLwJw/Phxzp49S2ho6G0da47Njv3fkpDsp49T+o9PKdDrqRcdRffu3dm/fz8xMTFYnVYyG2bi2d0T98buJL2ThM5Xh39vf9BBmaaMV155hfLycjZu3EiHDh2qTm4bPHgwEyZMYNCgQbd1TkIIIYQQQggh7mwSRBJ/enark11fn+fqqTy0egWXQ8WnphsOW+WRcAkJCTfUFnr55Ze5du1a1UlocXFxbN68mTVr1tz2ABJApLc7a7ILKXP989g6Y6dojJ2icddqeLV5OABTpkxhypQpnMw5yRM7nqDUXkqNATWoMaAGxceLSX4/GQDfMF8ub7/MjBkzmDx5MoqiMHLkSMaPH899993Hs88+y6effnrb5yWEEEIIIYQQ4s4lQSTxp7d5QQIZiYU4HS6cjsq26+ml5KaWYKtwcP78eeLi4qpONfupxtC/SkpK4sMPP2TdunW/y5jvDvRl2pUMyl3wrwlJOgVqGvRE+3pU6x/uHY7dZa/W5tXWC6+2XmgUDb3DeqPRaKqCTv+uT58+BAQEABATE1O1FkIIIYQQQgghxK8lNZHEn1p+RlllAMnuqtauqqCqKhcOZ9K4ceNqtYW+/vpr9Ho9TqcTgPLych5//HG++OILjEbj7zJuN62GtW0bEmYy4K7V4KHVYNYoNHU3s7pNAzSKUq2/t9GbQfUGYdTeOD6DxsC4FuNu+p4LFy4waNAgJk6ceFvmIYQQQgghhBDir0MykcSfWtbVIv4t3oLT6eCTzS+TlnuFR/4+goVff0RQUBAxMTFV27weffRR8vPzGTZsGIMGDeLixYs8+OCDACxfvpygoKDbPvYGbiYOdWrK8eJy0qw26puNNPd0+9n+r3R8hQpHBdtTtqPX6gFQUJgRPYPGfo1vek+TJk3Yv3//bRm/EEIIIYQQQoi/FkVVbzxi/M8gMjJSjY+P/6OHIf5gicdy2LXkPHaL86bXm3QKInZMxP/0jjNnzjB+/Hi0Wi0NGjTgtdde49VXX62qp/STqKio3yVgk1WWxZm8M7jp3Wgf1B69Rn/b3ymEEEIIIYQQ4q9BUZRjqqpG3uyaZCKJP7Ww5v6orpsHQnUGDU273lj/6L/VuHFjDh48CMAjjzxCXl7e//zM/0WQexBB7rc/U0oIIYQQQgghhPhXUhNJ/KnpjVp6PNgEnV5TbVubzqChQbua1Grg85ufbXPauJB/gbTyNH7K2DMajTidTtLT07n77rvp1KkTV69erXbf008/zfLly+nRo0dV3aWhQ4eSk5Pzm8cihBBCCCGEEEL80SQTSfzpNWofhE+gG8e3XiM3tQR3bwOteoZSr00NlH8vmPQrqKrKP87+g4WnF4IKTtWJ64yLwjWFtIpohb+/P1lZWWzfvp1jx44xc+ZMFixYAMDEiRPp3LkzI0aMIDExkd27d9OhQwfsdjvl5eXUrFmTpk2bYjAY2LZt238cy/bt25kxYwYul4tZs2bRrl07unXrhqIo6HQ6vv32WwIDA//rOQohhBBCCCGEEP8tCSKJO0JgmBd9xze/Jc9afG4xn578FIvT8s/GpuDXwg+PPR5s2LCBFi1aoNPpaN26NYmJiQBcunQJk8nEhx9+CMCoUaOYMWMG6enpDBkyBIBevXrdUEvp51RUVPDZZ5+xfft2tFptVfvOnTvR6/UsXryYxYsX88ILL9ySeQshhBBCCCGEEL9EtrMJ8S/sTjufnfqsWgDJZXcBldvbLlVcwmw2c+bMGZxOJ6dOnaJ+/foANGrUiJEjR1YFderVq0dGRgbLln1OZGQRO3Z8yMqVK/H29qZ79+4kJyfTs2dPhg8fTps2bVi9ejW9e/cmKiqKsrIyDh06RG5uLn5+fgQFBXH8+HEA9Ho9Z86c4c0332TRokU88sgjqKrKuHHjiIqKIj09/aZzmzRpEtHR0UycOPF2LqEQQgghhBBCiDuUBJGE+BcpxSm4VFe1ttKEUpJmJJE4PZGU9BR69+5NYGAg99xzD08//TSTJ0+u6vvoo4/i7+/PzJkzsduLadYsjfKK0+TmfYqH50a+W1WXEydnk5iYyLFjxygoKGD58uW88MILLF68mG3bttG/f3+2bt1KZmYmJ0+eJDU1lWeeeYaxY8eiqiqXki4xbtw43Nzc2LJlCwDx8fFcvHiR/fv3ExIScsO8jh8/TllZGfv27cNms3H06NHbu5BCCCGEEEIIIe44sp1NiH/hpnfDqTqrtXm19cKrrRcAIR4h1KtXj7i4uBvu3b9/PwAvv/wyAKdOjcdiy6JnTzOq6qBGjcp+KSlzqFXLl3379lFeXk5MTAx2u52uXbuSnJzM119/jbu7O9HR0Xh5eeHl5cU999zDOzPfoefKnhRYC9D9XUfza82ZMXMGRqORzz77jNOnTzNw4ECef/555syZg8vlIj8/n61bt3Lo0CHuuusuAO666y4OHz5M+/btb9MqCiGEEEIIIYS4E0kmkhD/ItgjmFDP0JteM2qNDGkw5Fc9x2LJ4Yuv1nBgXwldu7oDUF5emeGUeLmQa9eu0qpVK5xOJ3v37qVnz55V29VKSkp4/PHHmTJlCuXl5WRnZzP5s8mUlZSRW5qLw+XA6rSyJ34PXy75kqzsLD799FNatGjBhg0bqsawfv16+vfvz86dOyksLMTLqzIQ5u3tTUFBwW9eIyGEEEIIIYQQf02SiSTEv5nWdRpjt47F6rRWZSUZtUaCPYJ5IOKBX/WM3Ukr6TPIi3vu9qxqS0iw8OUX+WRl2enTJ4jS0lL8/PwAaNy4MZs2bQIgNDQUjUZDjRo1eOCBB2jUqBEVmgrMDczYi+ykLUxDURQUnULE9AicR5zVgkcAzZtXFhkPCQmhsLAQHx8fiouLASguLsbHx+d/WiMhhBBCCCGEEH89kokkxL9pFtCMlYNWMqjeIGq61aSOZx2eaPUEywcsx13v/que8U3iZnSo1doiI80EBGiZ+V4tXp7SjY4dO1YFezQaDffffz8ADRo0YNy4cQDMnTuXZSeW0XRqU8x1zBj8DdR7uR5hz4VR9/m6ODwcZDozMZvN1d6lKErVv1VVpXPnzuzcuROAHTt20KlTp9+2OEIIIYQQQggh/rIkE0mImwjzCuPtqLd/8/2XSvK4ptNQ1+hC+//jOXv2lHHxopWFC/P5emkCc2c7MZvNREdH4+npyTfffENhYWG157zzzjusWL+CNFcaNR+uWdVemlBK3tY8AOrWq0vv3r2ZNm3az46nbdu2mEwmoqOjadWqFR06dPjNcxNCCCGEEEII8dekqKr6n3v9HxQZGanGx8f/0cMQ4qYGrB5AYVkyE2tacdeomDTgVCv/O1Ru5MW+R/l++fcsXrwYp9PJsmXLqk5Vi4uLIy4ujjfeeINly5Yxd95cLlovEvJ4CFqzloyvMyg6WkTNYTWpHVubt7q+RZ+6ff7gGQshhBBCCCGEuBMoinJMVdXIm12T7WxC3AZjmo3BrrgzPdPE8nwDB0u07C7R8VGuBzafwRTmFrJnzx527txJXFxcVQDpX9ntdhYsWMDB/Qe59/57KdlTAkCNwTUIGh6ETtFRx6sOPev0/L2nJ4QQQgghhBDiL0iCSELcBkMbDaVHnR7otWZOVehZWWhkV5kPBlNdeoX1YukPS3E6ncTGxvLUU0/hdDoZO3Ysd911F0uWLAHg0qVLtGjRAp1Ox/vj3qd2fm2C3YPR++gxao20D2rP4r6L0Wv0f/BshRBCCCGEEEL8FUhNJCFuA42iYWa3mZzNO8uW5C0UW4s5e/0sycXJTD0wldS9qWiyNRzaeIiP3v6IWbNmodVq2bFjB9OnT8dms1FYWIiXlxcAPj4+mO1mtg7bikt18bX6NQ6HAze92x88UyGEEEIIIYQQfxWSiSTEbdQsoBnPtnuWs9fPcqXoClanlVJ7KS6TC1c9Fw9uepDo7tHY7XbatGkDQLt27YDKwFFxcTEAxcXF+Pj4AJUBKiGEEEIIIYQQ4vcmf40K8V+aPXs2UVFRN722aNEivvjii2ptx3OOk1qSisPlqGpza+BGxbUKyuxlrIpbhcPh4NSpUwCcOHECgEaNGnHmzBmcTic7duygU6dOt2lGQgghhBBCCCHEfybb2YT4L1it1qpgz691Ovc0NqetWps5zEyhoZAzb5+huFYxC7cuZPz48cTGxuLv78/GjRuJi4sjPz+f6OhofH19+eabbwB45513+Oijj/D29iYjI4PXXnvtls1PCCGEEEIIIYT4OYqqqn/0GH6TyMhINT4+/o8ehrjDXci/wIYrGyizl9E5uDMXNlygeURzXnvtNQYNGkTz5s0ZMGAAa9as4cqVK/j7+7N161aKiooA2LhxIyMnjmTT9k3Yim3YC+yYQk2Y65rx7+VPzuocXpv3GpPaTap6Z3JyMlOnTmXp0qV/1LSFEEIIIYQQQvxFKYpyTFXVyJtdk+1sQtyEqqq8fehtHtz0IEvOLWHV5VVM2TOFGd/MoFXnVgCMGjWKFStWAPDdd99x//33AxAYGMimTZsICQnh9OnTfPb+ZzSa0ghjsJHQJ0Op90o9HMUOXBYXGkXD3fXvxua0sTV5K18kfMFL77/Eyu9WEh0dzZw5cwCYOnUqwcHB9OjRg8LCQsaMGUNiYiKLFi1i5MiR9O/fn/79+/NnDQoLIYQQQgghhPi/T7azCXETW5O3sj5pPRanpaotc28mpvYmXtn/CgChoaHk5+dz/fp1CgsLqV27NgDNmzcHwCfQh7kH5nL5/GWyN2Xj3tAdrxZeqKgoWgWTwYS/zZ8JD03g4JmDNHymIeXl5VxZegX00GNID6ZNm8bhw4fZsWMHM2bM4LHHHrthrIGBgXz77bc89thjnD59mlatWv0OKySEEEIIIYQQ4q9GMpGEuIlFZxdR4aio1mbNspK3K4/lzy3nzNkzzJs3j8GDBzNhwgQGDRpU1U9RFLLKslh5cSV7U/eSfiqd0pRSAvoEoFE0eOd542X34q2Yt3Czu1F6fym+vXzJOpJF4ZFCNHoNxlpG1mvXU15ezunTp+nTpw8vvPACFRUVfPLJJ2zcuJHRo0eTnJxcFbQKCQmhsLDw91wmIYQQQgghhBB/IZKJJMRNZJdn39AWNDwIAA+9B7aPbDz11FMUFBTw7LPP8umnn1brO//EfKxOKxpVQ+66XBxFDs5OOItiVDDoDOzZvId33nkHS4AFp8OJzleHNctKwf4CXFYXOqcOl+rCarViNpvZuXMnGo2GUaNGUVZWRt++fXn99dfZt28f06dP57HHHmPLli1ER0f/LusjhBBCCCGEEOKvR4JIQtxEmFcYeRV5N71mc9rYtWdX1c99+vQhICAAgDFjxgDQcVlHatxTAwCPph7YC+1ojBpSP01FcSm4tC5SilPItmRTm8ptcBXXKlB0CqZAExVXK7j4wUVQYP78+axbt4733nuPQ4cOsWTJEp588kmmTJlCly5dqsbRt29ftFrt7VgOIYQQQgghhBBCtrMJcTOPtXgMk9Z0Q7tBY6BnnZ54G725cOECgwYNYuLEiTf0c6iOaj/rffSUnCqh4moFFdcqmPDYBC5dvUTZxTISX0/EWeLEkmLBnmunIrECRavgLHeCCrGxsXzyySeEhobStGlTPvroIwICAujcuTMWi4WaNWsCEBcXR1RU1O1ZECGEEEIIIYQQf3kSRBLiJrqGdGVCqwkYNAZMWhM6RYdZZ6ZZQDPe7PImAE2aNGH//v1069bthvvre9e/oc2nkw/hk8PxbeDLx4s+BhUafdCIgD4B2AvtNJnTBLcGbjT7ohk6Lx2GGgYUncKo0aPo2rUrWq2W7OxsfH19sVgsTJ8+vVotJiGEEEIIIYQQ4naS7WxC/IxHWzzK3Q3uZkfKDiocFUTWjKRFjRb/8b7j2ce5UnjlhnZHqYPMpZksWroIN70bxmAjikZB56vDlmOr1tc3yhd7vh1nkZMUzxRaNm1J165dOXXqFEuWLMFqtTJgwAAiIiJu2XyFEEIIIYQQQohfIkEkIX5BgDmAEU1G/Ff3zD0+F5urelBIdaqkLUyjwQMNGNpuKCkpKXgbvVFQKq+rarX+hhoG7EV23Ju5c/L0Sdy83Ojo35EzZ87gdDo5deoU9evfmO0khBBCCCGEEELcLrKdTYhb7HTe6Rvaio4WUXG1givLrhDdPZrMzExa1WiFu94dnebGWK5nW0/suXZKTpVQ+GMhiVcTGTZsGIGBgXTv3p3Y2FiOHTvGpEmTABg3bhwnTpwgPT39hme9++67xMTEEBMTg7u7O/n5+bd+0kIIIYQQQggh7njKv2dA/FlERkaq8fHxf/QwhLhBx2UdKXeU3/SaTtFxcNRBzDozANll2Sw9v5RvL3yL1Wmt1ld1qihaheyvs5n/4nzu630fAFlZWfj4+GAymRg9ejTBwcEsXLiQoqKiXxxXXl4ew4YNIy4uDoCYmBgAioqKCAsLY82aNb990kIIIYQQQggh7giKohxTVTXyZtdkO5sQt1jf8L6sS1x3wwltCgrtararCiAB1HSvyXORz9E8oDmvHniVCkdF1bWUOSm4LC78avvRqVMn3j/6PpcKLlHXqy4jm4xEk6Vh9erVqKqK1Wpl4MCBPP744+zdu5d+/foxfvx4du/eTWhoKABfffUVZWVlAOzatQur1YrJZGLw4MFVfYQQQgghhBBCiJ8jQSQhbrGn2jzF3rS9FFmLsLvsQGUGkklnYkqnKTe9p1dYL3Zd28Xu1N1VgaTGLzbGqDUyoeUE7l13L0WXi0j7Jg1Fo/Bh3Q/p3bs3DocDVVXRaDRcuXIFRVG4fPkyH374IVFRUURHR2O1WvHx8UFRFMxmMz179sTlcrFt2zbOnTvHvffey8mTJ3+v5RFCCCGEEEII8Scl29mEuA3yLfksOrOIzVc341Sd9AjtwaMtHiXYI/hn71FVlUOZh1h1aRVF1iI6B3emd1hvhq4bisVpwV5oR+umRWPQcO3ja1gyLNgybfj7+1NcVEzTpk1JTExEp9NRUlKCt7c3TqeThx9+mM8++wyj0UjDhg1p3bo1iYmJOJ1ObDYbCQkJWCyW33F1hBBCCCGEEEL8X/VL29kkiCTE/2HfXfqO9358D4vzn0Ee1aly8fmLKAYF+3U7CgqqQ6Vly5YUFBSQmpqKyWTCYrEQFRVFUlISHh4eFBYWYjAYmDVrFlOnTuWLL77g4sWLTJw4kYyMDHx8fP64iQohhBBCCCGE+D/hl4JIcjqbEP+DI0eO0KVLF6Kjo5k0aRJZWVm88847QGXh6u7duxMTE8OuXbuq2hwOxy89sorD5WB94vpqASSA3C25OIodqHYVnGCsbQQFLl++TE5ODlqtltatWwNw+vTpqq1uAJmZmbRs2RKDwUBRURE//PADer0eo9F4i1ZECCGEEEIIIcSdSmoiCfE/CAsLY9euXVUnpeXm5jJlyj/rHu3cuROd7rd9zaYemMqZ62eqtTlKHZSeKqXxrMZojBpSZqdQb0o9zj91Ho8WHuQezMXX15e7776bY8eOUb9+fc6dO0dAQAAWiwV3d3eaNGmCh4cHEydOJD09nRYtWmA2m39mFEIIIYQQQgghRCXJRBLiv+RSXRzLPsaOlB3Y3e2YTCYAdDodWq2WBx54AACNRsNdd93FiBEjyM/P/9nnnTlzpiqb6ZFHHkFVVdJK0tiesr2qMDdA0rQk0hamEXR/EHofPeWXyqlIqeDKtCv4dPUh/0w+WoMWq9XKpUuXCAoK4tixYzRs2JCysjKKi4upU6cOACaTCXd3d7p06YK/vz/Jycm3b8GEEEIIIYQQQtwRJBNJiP/CyZyTTIqbVHWCmsPlILJmJI/4PUJeXh5ubm5VfVetWoWfnx/ffPMN06ZNY/bs2Td9ZuPGjTl48CAAjzzyCPHx8aT5pKFFW62fo9SBM9tJ1sosAILuC8IQYEC1qxQfLQYX1H+5Puq3KidOnOD69etER0dz/fp13N3d8fX1JTw8HIDAwEC+/PJL6tevz5gxYygpKbnlayWEEEIIIYQQ4s4iQSQhfqXssmwe3/445Y7yau2HEg+x9pO1nNh+otopZ35+fgAMGTKERYsWVbXnVeSx8MxCtiRvweFy0CGoA0+1eYrGfo0xGo2Ehoby8t9f5uKFi2j8NOj99NQcUhONXoNbCzcsqRZCxoVgDjPj38efwgOFuKwuXGUuEt9LxF3vTnRUNFqtlrp16zJs2DDMZjOPP/44gwYNonXr1mi1Wtq3b0+TJk1o3rw5LVq0+F3WUAghhBBCCCHEn5cEkYT4lZZfXI7DVb0otupUSVqQRO2htbG6WeFfamAXFxfj5eXFgQMHqF+/PgB2l537199PkaMIp+oEYG/aXrZu3Iq6SaVlREtSUlKo41uHwpcKSVuXhsvmqry3yE69V+tRkVJB4YFC9H56Sk6UEP5yOM4yJ2lfpNHqxVbsGb6HcY+O44033mDu3Lk888wzVWNas2YNiqKg0Wh48803iYiI4L777ru9CyeEEEIIIYQQ4o4gQSQhfqXj2cexuWzV2oqOFlFxtYL0FekM2jKIz+Z8VnWtZ8+emM1mTCZTVSZSZmkmXlYvnBpnVT8VFVMrE41iGhG8PZikpCQi20TSrXU3pp+eTuGlQgCMgUY0Bg16Hz3Ocie2XBuWVAtX370KgIJCdEg0GkWD0WjE6XSSkZHBsGHDuHr1KmvXrqV27dpV73U6nTRs2BCAVq1aERERwaVLl1iwYAHt27e/HUsohBBCCCGEEOJPTIJIQvxKAeaAG9p8Ovng08kHd707H/b4EN9i36qTzuLj42/oHzI5hEJrYbU2l92FRq8huSiZOuY6XLp0iaysLD598lMO6Q6x37wfN50bBp2Bp9o8Rca1DD5d/ymGAAPmcDN1/l5ZLFt1qKz6YRWLxiyic6vO+Pv7U1BQwI4dO/j222/5/vvvmThxIj/++CNPPvkkJpOJ5557DoDU1FQOHDhAUVERjz/+OBs2bLjFqyeEEEIIIYQQ4s9OTmcT4lca3ng4Zp35ptcMGgOt/Vrz2GOPMXTo0J99htPlvKGtNKGUpBlJXHrnEtnZ2bz66qtYLBZiY2MpTy1nVPNRHBl9hGb+zRjfcjxjmo+hfVB7PP088WzlSdL0JK6+e5XcjbmYWpkIfjMY35q+bNiwgYiICDQaDSEhIRQWFgLQoUMH4uPjGTJkCF999RUADRo0wMPDg5CQEIqKiv73xRJCCCGEEEIIcceRTCQhfqUOQR0YVG8Q65PWV53Optfo0Wl0zIqZhcloYu/evb/4jM7BndmRsgMXrqo2r7ZeeLX1oqZbTZYNW4aiKHz++efodDpmzpxJnTqVmUb79+8HoG7dunR4pgOrLq3CN9oX32hfoDKjCUCDhgK1ALPZjKIoVe9RVRWbzYbBYKh8r5cXTmdlUCsxMZGysjKKiorw8vK6FcslhBBCCCGEEOIOI0EkIX4lRVGY2mkqd4XdxYqLK8gtz6V1YGtGNx1NsEfwr3rG31r/jX3p+6qCUD8xaU280P6FqqDPo48+ytWrV/Hy8mLVqlU3PMfutKOiVmsrTSglb2seGjS4N3end+/eVYGnn5w8eZIXXngBjUaDn58fS5YsASA0NJSxY8eSmJjIJ5988v/Yu+8oK8qDAePP3Lud3nsHEZSiYEPKCoJoEEtsUUTRiLEkamLH3rGQmKgxRizYsCuiotKrIAIqqBTpve1Stu/d+f5AV1eQMfkQMT6/czzA3Ln3vjOUc3zO+77zo++JJEmSJOnXIwjDMPqsfVDHjh3DXe05I+3rrr79ap584UkaXNeAWBCjSloVrup4Fb0a9ypzXlFREV27duWzzz5jzpw5NG/evPS1McvH8JfX/sKyV5ZR/4L6Zd6XGk/lpT4v0bRy0x89ps6dO+8UnCRJkiRJvz5BEHwchmHHXb3mTCRpLyooKGDdonW0rNqSkaeOpLCkkBrpNcosO/tGUlISb7zxBtdcc81Or3Wr342aGTVZEawoczw1nkrnep3/o4AkSZIkSdKPYUSSfiI5RTn8c84/eW3Ra+QW5dK4YmMafNaAc845h5tuuonstdmcd955VK9enYULF3LjjTfy6KOPkpuby3vvvUe5cuWoVavWTp970003MW7cOA5oewBryq8hJZZCLIgRBAGntTyNyw6+7D8eq7OQJEmSJElRjEjST6AwUUj/d/uzdMtSCksKAVi0aRETR07k0N8eWnpeVlYWo0ePZvjw4Tz99NO8//773HXXXbz33nucfPLJO33umjVrmDFjBpMmTeL5558nPyeff/7un2wt2ErVtKokx5P32jVKkiRJkn5dYj/3AKT/FdOnT6dTp0506dKFU35/CotXLGblGytLX980ehNZM7O49917KQl3PEmtdevWxGIx6taty4EHHghA3bp1ycrK2uV3LFu2jLZt2wLQoUMHANKT0qlVrpYBSZIkSZL0k3ImkvT/9M3m9I0aNWLs2LGkpaXRvHtzgmYBNfvWLD1vy/QtxNJiLPv3MsI1IW+99VaZvZC++/Mf2vC+UaNGfPbZZwDMnj37p7gcSZIkSZJ2yZlI0n9pzvo59H+3P+2HtafDsx2478v72Fi0cceLsR3/rfjXjo2vi7cWk944nYoHVaTpwKY0aNaA9957D4AjjzySyZMnk5WVxcUXX1zmO0477TTef/99zjnnHN58803q1KlDhw4d6NKli/sYSZIkSZL2KmciSf+F6Wumc+mYS8lP5ANQUlLC6OWj+XDNh9zW5DYqFFUgkZEoPX/T+5uoenRVNr6zkaKSIqZNm8bpJ5zO0KFDOfXUU9m6dStHHHEEAP369St930svvbTTd99xxx0/8dVJkiRJkrQzZyJJ/6EwDLl92u2lAekbJWEJW7K2cN4fzuPVZ1+lckplAgISOQmKNheRVi+NeCzOyS1OplJqJZo2bcrLL7/Mcccdx/r165k6dSpHHnnkz3RVkiRJkiTtnhFJ+g+tz13P2ty1Ox0PEyHL/rWMyr+tTNMGTfl7j79Tp3wdStaXULiukFV/XUXJ/BKm/WMaAJ06deL+++/nyCOPJDU1lS+//JImTZrs7cuRJEmSJOlHMSJJ/6GQXW96veWjLeQtyWPpC0vJzMwkb3MeB9c8mM9u/IzV81azcfZG+h7bl0cffRTYsRfSsmXLOPDAA+nYsSNVqlTZm5chSZIkSdJ/JPihp0Dt6zp27BjOnDnz5x6GfoXCMOTY145l1fZVO70WI8ZxTY/j7i53M3/+fO6//37+/e9//wyjlCRJkiTpPxcEwcdhGHbc1WvORJL+Q0EQcP1h15MWTyt7nID05HQubncxRUVFXHDBBfz2t7/9mUYpSZIkSdKeZUSS/gtd63flwe4P0qJyC+JBnHgQ54i6R/D8cc/ToGIDkpOTmThxIr179/65hypJkiRJ0h6R9HMPQPql6lS3E6+d8Bp5xXkkBUkkx5N/7iFJkiRJkvSTMSJJ/0/pSek/9xAkSZIkSfrJuZxNkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRFMiJJkiRJkiQpkhFJkiRJkiRJkYxIkiRJkiRJimREkiRJkiRJUiQjkiRJkiRJkiIZkSRJkiRJkhTJiCRJkiRJkqRIRiRJkiRJkiRF2qsRKQiCJ4IgWB8EwdzvHLsvCIIvgyD4NAiC14MgqLw3xyRJkiRJkqRoe3sm0lNA7+8d+wA4MAzDtsAC4Lq9PCZJkiRJkiRF2KsRKQzDicDm7x17PwzD4q9/+SFQf2+OSZIkSZIkSdH2tT2RzgPe/bkHIUmSJEmSpLL2mYgUBMEgoBh4bjfnDAyCYGYQBDM3bNiw9wYnSZIkSZL0K7dPRKQgCM4B+gBnhWEY/tB5YRg+FoZhxzAMO9aoUWPvDVCSJEmSJOlXLunnHkAQBL2Ba4BuYRjm/tzjkSRJkiRJ0s726kykIAheAKYBLYMgWBkEwfnAQ0AF4IMgCOYEQfDo3hyTJEmSJEmSou3VmUhhGP5uF4eH7s0xSJIkSZIk6T+3T+yJJEmSJEmSpH2bEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCnSXo1IQRA8EQTB+iAI5n7nWNUgCD4IgmDh1z9W2ZtjkiRJkiRJUrS9PRPpKaD3945dC4wJw7AFMObrX0uSJEmSJGkfslcjUhiGE4HN3zt8AvD01z9/Gjhxb45JkiRJkiRJ0faFPZFqhWG4BuDrH2v+zOORJEmSJEnS9+wLEelHC4JgYBAEM4MgmLlhw4afeziSJEmSJEm/GvtCRFoXBEEdgK9/XP9DJ4Zh+FgYhh3DMOxYo0aNvTZASZIkSZKkX7t9ISKNAM75+ufnAG/+jGORJEmSJEnSLuzViBQEwQvANKBlEAQrgyA4H7gH6BkEwUKg59e/liRJkiRJ0j4kaW9+WRiGv/uBl3rszXFIkiRJkiTpP7MvLGeTJEmSJEnSPs6IJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIhmRJEmSJEmSFMmIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCmSEUmSJEmSJEmRjEiSJEmSJEmKZESSJEmSJElSJCOSJEmSJEmSIu02IgVBUC8IgluCIPh3EARXBEFQaRfntAqCYOxPN0RJkiRJkiT93JJ+6IUgCBoDM4EqwAbgfOCaIAjOCsNwzHdOrQh0+ykHKUmSJEmSpJ/X7mYi3QGsB5qEYVgbOACYD7wTBMGZe2NwkiRJkiRJ2jfsLiJ1AW4Lw3A5QBiGXwDdgSeBYUEQXLwXxidJkiRJkqR9wA8uZwOqA6u+eyAMwwTwhyAIsoB/BEFQARj/0w1PkiRJkiRJ+4LdRaTl7FjCNun7L4RheF0QBNuBu4F3f6KxSZIkSZIkaR+xu+VsE4GzfujFMAzvBC4Heu/hMUmSJEmSJGkfs7uZSI8BZwRBUC0Mw027OiEMw78HQbAeOOYnGZ0kSZIkSZL2CT8YkcIw/Bj4OOoDwjAcDgzfk4OSJEmSJEnSvmV3y9kkSZIkSZIkwIgkSZIkSZKkH8GIJEmSJEmSpEhGJEmSJEmSJEUyIkmSJEmSJCnSDz6dDSAIgupAP6A5kA28EobhnJ9+WJIkSZIkSdqX/GBECoKgJTARqPGdw9cEQXBKGIZv/uQjkyRJkiRJ0j5jd8vZ7gDygUygHNAGmAEM+emHJUmSJEmSpH3J7iLSYcBNYRhODMMwLwzDecCFQOMgCGrs5n2SJEmSJEn6H7O7iFQPmP+9Y/OBAKj7k41IkiRJkiRJ+5zdRaQASHzvWMmPeJ8kSZIkSZL+x+z26WzArUEQbPzOr4Ovf7w9CILN3zkehmF4zp4dmiRJkiRJkvYVu4tIy4FWuzi+DDjge8fCPTYiSZIkSZIk7XN+MCKFYdh4L45DkiRJkiRJ+7A9srdREASN9sTnSJIkSZIkad/0X0ekIAjKBUFwbhAE44Cv9uCYJEmSJEmStI+J2lh7J0EQHA2cA5wEpANrgHv28LgkSZIkSZK0D/lRESkIglZAf6AfUBco/vq9lwMPh2FY8lMNUJIkSZIkST+/H1zOFgRB1SAILgmCYAYwF7gGWAFcDOwPBMAnBiRJkiRJkqT/fbubibQaSAaWA3cBw8IwXAgQBEGlvTA2SZIkSZIk7SN2t7F2MjtmG20FsoFte2NAkiRJkiRJ2vfsLiI1Am4EUoH7gBVBELwTBMEZQMbeGJwkSZIkSZL2DT8YkcIwXBmG4Z1hGO4PHAkMBQ4HngMWACHQcq+MUpIkSZIkST+r3c1EKhWG4bQwDP8A1AZ+B0wEEsCjQRAsCoLg+p9wjJIkSZIkSfqZ/aiI9I0wDAvDMHwpDMPfAPWBq4Ec4PafYnCSJEmSJEnaN/xHEem7wjBcH4bhA2EYtgM67MExSZIkSZIkaR/zX0ek7wrDcM6e+BxJkiRJkiTtm5J+6IUgCJb/B58ThmHYaA+MR5IkSZIkSfugH4xI7NjzaCvwHpC7d4YjSZIkSZKkfdHuItIw4CSgN/AaMCwMw3F7ZVSSJEmSJEnap/zgnkhhGJ4L1AYuAeoCHwRBsCwIgjuCINhvL41PkiRJkiRJ+4DdbqwdhmFeGIbPhmF4DNAQeBjoC3wRBMGHQRD8dm8MUpIkSZIkST+vH/10tjAMV4dheC/QEbj76x/P+qkGJkmSJEmSpH3H7vZEKiMIgsOB/sBpQDrwMvDQTzQuSZIkSZIk7UN2G5GCIGgK9Pv6v2bAZOAa4KUwDLf99MOTJEmSJEnSvuAHI1IQBJOBI4BF7HhS27NhGC7dS+OSJEmSJEnSPmR3M5E6AVuBdUAvoFcQBD90bhiGYbc9PDZJkiRJkiTtI3YXkSYC4d4aiCRJkiRJkvZdPxiRwjDM3IvjkCRJkiRJ0j4s9nMPQJIkSZIkSfu+3W2s3X037ysG1oVhOH/PD0mSJEmSJEn7mt3tiTSaHXsifX837dJ9koIgWANcF4bhMz/B2CRJkiRJkrSP2F1EOmo3r8WBusApwFNBEGSFYThyj45MkiRJkiRJ+4zdbaw94Ue8/9kgCF4CrgKMSJIkSZIkSf+j9sTG2i8A7ffA50iSJEmSJGkftSci0jYgZQ98jiRJkiRJkvZReyIiHQYs2wOfI0mSJEmSpH3Ufx2RgiBICoLgZOAa4KU9NyRJkiRJkiTta35wY+0gCFYA4Q+8HAeqf/3+0cAde35okiRJkiRJ2lf8YEQCxvDDEakYWA+MC8Nw9B4flSRJkiRJkvYpPxiRwjA8dy+OQ5IkSZIkSfuwPbGxtiRJkiRJkv7HGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZH2SRwQYAABAABJREFUmYgUBMEVQRDMC4JgbhAELwRBkPZzj0mSJEmSJEk77BMRKQiCesCfgI5hGB4IxIEzft5RSZIkSZIk6Rv7RET6WhKQHgRBEpABrP6ZxyNJkiRJkqSv7RMRKQzDVcD9wHJgDbAlDMP3v39eEAQDgyCYGQTBzA0bNuztYUqSJEmSJP1q7RMRKQiCKsAJQBOgLlAuCIJ+3z8vDMPHwjDsGIZhxxo1auztYUqSJEmSJP1q7RMRCTgaWBKG4YYwDIuA14BOP/OYJEmSJEmS9LV9JSItBw4PgiAjCIIA6AF88TOPSZIkSZIkSV/bJyJSGIbTgVeAWcBn7BjXYz/roCRJkiRJklQq6ecewDfCMLwZuPnnHockSZIkSZJ2tk/MRJIkSZIkSdK+zYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJIkSZIkSVIkI5IkSZIkSZIiGZEkSZIkSZIUyYgkSZIkSZKkSEYkSZIkSZIkRTIiSZIkSZIkKZIRSZIkSZIkSZGMSJIkSZIkSYpkRJL+C3PnzqVTp0506dKFAQMGsGTJEvr167fb93Tt2pVu3brRo0cP1q9fv5dGKkmSJEnSnmFEkv4LLVu2ZOrUqUyaNAmAjRs37vb8kpISxowZw4QJE+jfvz9PP/303himJEmSJEl7jBFJ+g9sySti3Pz1fLR8C4XFJQCkpqaSSCQAKCoq4swzz2TChAk89dRTnH766fzmN7/h008/5R//+AedO3cmLy+PAw44AIDx48dzyy23APDEE0/8LNckSZIkSdKPYUSSfoQwDLnn3S859M7R/On52Qwc9jEtzr6NRs33Z/369VSrVo2ioiLOPfdcBg4cSLdu3QCoXLkyb7/9Nq1atWLq1Kl8+umnPPTQQ7Rp02an7zAiSZIkSZL2ZUk/9wCkX4JHxn/F01OXUlBcQsHXM5CCRoeQ1vww4steY+TIkUycOJFjjjmGwzp14b6XJ3HdHy4hpUJVRk/vxInH9iA7O5u2bdtyxRVX0Lt3b+rUqUOjRo1o0KABjz32GJ999hnt27dn/fr1lC9fnqysLM477zymT5/O+PHjf94bIEmSJEn61XMmkhShKFHCoxO+Iq8oUXosLC4CIL+ohHkbCklPT6dHjx7UqVefg8/4M49O/Ip4tYakdzyJ4Jhr+dfL75JWsRoAq1evJikpidGjR9OsWTMABg4cSJs2bfjb3/7GueeeS9WqVVm7di0nn3zy3r9gSZIkSZJ2wZlIUoS1W/JJlIRljuUt+ZitH70BQHr1evTq1Ys3P3iTbe3KsW7ye8RLZlO0aTlbp79C/tI5JNc7gA8+GEFqkGDevHmceuqpPPXUU7z//vusWrWKGTNmEIY7vuP5558nJyeHl156yYgkSZIkSdpnGJGkCBXSkihOlJQ5ltHicDJaHA5A7YppvLTxJTadvIm83JXUO68CiYJsavRuQf7q81jxj7sp3rqBRBiQX5DPmWeeSRAEwI6NuM866yxWrVrFmjVr6NixI1988QXdunXj73//O9WqVdvr1ytJkiRJ0q64nE2KUDkjhQ6NqhILdn4tNSlGZrttvLbwNfKK8+Drc+KpIfH0BOmNnqfioSeS0fxQggAqVKrEU089RUFBAffee2/p59SrV49q1apxzjnnsGzZMs477zyWLVvG0KFDSU5O3ktXKkmSJEnSDzMiST/Cvae0pXJGCqlJ3/6VSU+J06JWeQozJpNfnF/m/PVvrWfxnYsJgmK2fvQKOV9MJLVGY9JTU2nWrBlBEHDVVVcxYMAAVq5cyRNPPMGFF17Ik08+yf7778+AAQPYf//9Ofvss2natOnevlxJkiRJknZiRJJ+hAZVMxjz5278sXtz2tSrSMfGVbit7wG8elEnNhdsJOTbPZNKikrI+TyHvOV5LL7rS8JEIQ1Ov4X9m9Rj5cqVHHPMMSxevJilS5cCMH/+fM477zxq1KjBSy+9xAEHHEDFihWZOnUqF1xwAf379+fOO+/8wbF17tz5p758SZIkSZKMSNKPVaVcCpd2b8Fbf+zCK3/oxKkdG5CaFOfgmgeTEkspPS9rQhY1jq9BesN0yrUqT1hQRNpHT/HR6BEAPPLII7Rq1YqLLrqIpUuX8umnnzJz5kwyMzP5/e9/z5gxY9iyZQv5+fl0796dihUrMmjQoJ/rsiVJkiRJAoxI0v9LoiRk85oOFBTv+HVYHJIzP4fyrcsTEHDU74/hsA4HMe/DcQRBwIgRIzjwwANZv3491apV44477uCAAw/k9EEP8Zu/T6LHA+N5/OPNZBfs+LykpCTi8Tj9+vUDYOTIkXTt2pVOnToxatSon+mqJUmSJEm/RkYk6f/hutc+48UPt5G7/HxKisuRNXk7lQ6tASXJlEsux9BjHyIWfLsjd9++fZk7dy716tVj5MiR5BUm+GLNNu565wvmrd7KVxtyeHrqUnr+dQIjxk1j48aNZGRkAFBSUsL999/P2LFjGT9+PPfdd9/PddmSJEmSpF+hpJ97ANIv1Zotebw5ZxUFxSVQ1IichYPIWfggheuWs/m9YsJ1+Tz1r6dKzy8oKCA1NRWAihUrkp6eztApi8kvSpBXVFJ6XlEipGB7FgMuuIZ5k0eRn79j0+6NGzfyxRdfcPTRRwOwfv16wvDbvZh+jKVLl3LYYYfRqlUrUlJSeP/99/+fd0GSJEmS9GthRNKv1o8JKiUlJfTv358VK1aQnJzM8OHDqV69OgAfLt5Eydb1bBz3DNV/cwUQo3LnK0rfm/fq9fzxj3/kxRdfBGDUqFEMGTIEgBYtWtCrVy9uv3c83+9AYUmCDSPvp0bXcwgyKrNy0UxeffVVVq5cSXFxMWPGjCEej1NUVETwnVlOP1bPnj159tln/+P37Wk/5v5nZ2czduxYTj755J9hhJIkSZKk73I5m37Vevbsyfjx43n//fcZNmwYPXr0IDMzkylTptCvXz/mzJlDSkoKEyZMYMCAARx66KEAZGZmEg9D2E3DOemmJwCYPHkyACeccAITJkxgwoQJPP744yxfvpwZd/wWYjHWvXhj6ftyv5xM4ZqFbBr3JMf1PIoRI0ZQu3Ztxo8fT6dOnejRowdHHXUUl19+eeT15RYW8+iEr+j+wHiOvGcsg9/9gtFjxtKlSxf++te/Mnv2bM4880wA+vXrx8yZM/nHP/7Bww8/TG5uLpmZmWzZsoWePXuWfmb37t0pKir6T291mfu7atUqoOz9B/jggw/o3r07mZmZfPzxx6xcuZKLL76Yrl270qdPH7Zt2/Yff68kSZIkac9wJpJ+Nb7K/ooHZz3IlFVTCIKAtvG2jB47mi5dutC9e3dWrlxJt27dGDt2LFdeeSW1atWiXr16pbN9srOzSU5OBnbMorn70jPYWFR9l9+VkRLntx3qR46pYZvDKel2Kd+djFSudTfKte5GcjygamoOzw6/j81r19GlSxdOPvlkTjrpJM477zzWrVtHhw4dePPNNwEYMGAAK1asoGHDhjv+a9yU+0bOIdy/J1tXf8W2OaNYc/TvqXLOI/zjoi4Murg/PXr0oEmTJlx44YXUrVuXjh070qFDB4477jimTp3KVVddRaVKlWjUqBGLFi0ikUjQvHnz0vvwY61atYoJEybw9qj3eXfuGh6esZnY9vWlQevkk0+mdevWXH755cydO5dnnnmGzz77jM8//5zi4mJisRht2rTh4IMPpl69esyaNYt58+bRoEGD/2gckiRJkqT/nhFJvwoLshZw9jtnk1ecR/h1spmeP53qt1QnOymb+26+j/qN6vPOu+9wym9PoU+fPgwYMIALLriAqVOnMn78eNLT06lWrRpr1qxh69at/O53v+OrYc+RHytf5rvSkmO0a1CZ7vvX3GkcWTmFvDprJYvWb6dCURZbF88hZ9U1pLU4goqHnMjm0f+icN1iYqkZ1Op7FTPGvMjW+bNIqVafJqcN4vabz6RHjx5kZWUxevRoXnjhBV599VUOP/xwUlNTGT16NIMHDyYvL4+N1dqwYs5DVG/eg9wFUynX8khKYsnkAde+Po8T+vRh7ty5/OEPf6BJkyYsW7YMgCAI6NevH7fddhvPPfccAGeddRbDhw8nkUjwu9/97kfd8805hYyYs4p1WwtYNeMdsrbnU3P/jiRVa0CFzN+zbepw8pKrsn57ESNGjOCrr74iCAKOPfZYtm/fzjnnnMPFF1/M6tWr+eMf/8jpp5/OmjVrWLx4Meedd15kQFq6dCk33HDDPrF0T5IkSZL+F7icTb8Kg2cMJrc4tzQgAcSSYwSpAcQhqUYSq9auYitbef2N17n44ovJyclh4MCBZGZm0rNnT2655RZWrVrFsmXLKF++PKeddhpjRr1Net5G2jeoTLmUOPUqp/Pnnvvx9IBDicfKrnWbsmgjRw4ey/3vz2f4Ryt4es4Wqp77T27/90skVn4Ka+YRTxRQ56zBZLTqSvasd6hw0HGU278Ldc57mJkbILVcRUaOHEnr1q2JxWLUq1eP7OxslixZQtu2bQFo3749ACM+z6IkFieRu4WClfNIbXAAJQW5ACzZmMMH4ybSrFkzrr32Wh588EFuuukmAHJycnj88cc57bTTePrppwHo1q0bkyZNYtKkSXTr1i3yfo/8dDWd7hnDPaO+5J8TvuLFCZ/x/txVVDv1DhKxFLZMfZGi7VnUOnMwhYcPIHt7PmvXrmX79u28++67NG/enPHjx5d+XvXq1alZsyYffPABSUlJ/P73v/+v/yxIkiRJkv47zkTS/7yikiJmrpu50/FEXoJ4enzHOdlFlNuvHLFEjJNPPplam2sxe/ZsYrEYLVq04KOPPuKMM86guLiYRo0asX37dg488EBeffVVUpJivHHJkT/4/UOGDOHlV15l69E3kluYKD1eSByCOI9PXs6NF/WjKJ7GolpdmFiwhcI1CwmLdjyVLSwpBiC3MEFW9hZ69OjB559/Xvo5YRjSpEkTJkyYAMCnn35aen5GiyPYOv1VkqrUJYjFyV85j+xJzxJPTqFr316sWbOGRo0acckll3DZZZfxwQcf8Pbbb3PttdfSo0cPjj32WHr37k2tWrVo27Zt6dKy3Vm+KZcrX/6E/O88ca44KZ3UBgcSAmkN21Kwej75yz9h7fPXArApbxP9zzyNhQsXEo/HicVirF69mhXZBSzdsJVzLrqcS/5yHbfffjsVK1bk/fff54svvmDYsGEUFhayZMkSjj32WKZMmULlypVJSkrin//8J3PmzOHII49k69atJCcnU6lSJW655ZYfFcIkSZIkSWUZkfS/L9z14dwFuax7bR1BckBa3TTCopCgcsDjtzxO7XK1yc/P57nnnuP+++/nyy+/5KabbqJOnTrUqVOHtLQ0qlatSoUKFdiyZQthGO7ySWkFBQV88sknZOUW7jTtr6Qgl1hqBiEhr747hr/ddh1TJj5I2gGHkFKnBYltGyEWJ5GTzZqnLiOIJxPGkqhVq9ZO33PYYYfx6KOP0qNHD+rWrcv+++/P4Y2qsmnzYax4/xFqnHwDAOnNDiG92SFUSEvi4Rt6kpIU48QTTwTgwQcfBCizifYHH3xQ+vMgCEo34d6dZ6cvI1FS9qan1mvFtk/eA6Bw/RIAkqvWJ7F9M0E8meptunLmmWdyzz33cNxxx7EpawtLc5Po/8J8VkyfQSwlnfnDJrFt+iyK87by1ltvUbt2bbKysmjbti2nnHIKY8eOpXHjxqxZs4bf/OY3lC9fng0bNjBnzhyOOOIIJkyYQEZGBiUlJTuNWZIkSZIUzYik/3nJ8WRaV23N3E1zyxyv0K4CFdpVKP31muFr2D5vOxWbVmTU06MYOHAgp5xyCl999RV16tRh4sSJdO7cme0FxTRv3oKxY8eQlJRERkYGHTt2pF27dgy6+2/c/8FCxnyxnpIwpMqycfzhhN8y6eO5JPIKWP/yTYSJBPGMSpRr04Mtk58nkbuFcqlxrrvuOqrXqsPCx/5I8bZN1D3/EYKUdIJ4MvFKFalx3J8ofvceGjduXLrPT2ZmJo0bN6ZWrVrsv//+pKamcuCBB9KwYUN+e1QLxs3fQMO/vErxlnVsfOt+qh9/JenJcf7YvTlbszfTt2/f0hk6L774Iunp6bu8hzfddBPLli3jkEMOibzfC9dtoyhRNiKl1GpKcfZalv/tdIJYnNr9hxDE4uQtnU0QBDRr3oJatWpx0kknMXz4cLYXJqh2wnUUbc8msWUdJakZbBrzL2Kp5Umr3YKxEybRs3sm++23H6tXr2bAgAFs2LCB1q1bc+WVV9K0aVMAWrduze9+9zuys7MJwx1jippJJUmSJEnaNSOSfhWuOuQqLvzgQvIT+T94Tp0z6pASS+Hs1mez3377MX78eAoKChg4cCBfffUVT0xeTN4xN9P+1veJd72WQW9+Tu9aOTRu3Ji3336bY47rwwFt25NcuznxCtVJrtWM5ZNf494GR7Lk89ns17uAjJadiaVVoGDlPLInPgsBJFeoyqOvf0D7Cjn87W9/46zr/sbLj91PLG3Hht21Tr8dgNQgQb1aVUrH+93ZPj179iQej7NkyRImTZrEK6+8QlpaGk+cewhXvvwJa3PiJMUDyqXEuaR7cy7o0pSSkhImT55MLBbj1ltvZeTIkZx66qm7vDe33Xbbj77XLWpVYPKijWVCUvG2jcTLV6Xh5S+WHqvU6XQqdTqdtOQYD1505I7NwDdu5Ikxn3L9G/NKl8M1vPINCALWPHUZaQ0OpHjjMt75dA0HHnggzzzzDMXFxVx77bUUFRXx+OOPc8ghhzBlyhR69OhB1apV2bx5M8uXL6dz585MnDiRcuXKGZIkSZIk6b9gRNKvwsG1DuaRox9h8IzBfJX9FYlwx95EZTbaDmKUSy7Hic1P5P2l7xMEAZ+88QnnnHMOAy69kjtfnMSqEUOIp5WneMs6nurQhwenPM9+jeqwbNkyskvSSGvagSAlg7zFH5MzbxwlRYUsf+l2ktLKUbD8U7bOeI1YeiWKNq+kwkHHkVKzKZve/Rt/+9PppKelUqdOHW45tiWTX0yDpBjJ8RgQkhSPUXnqo5zd/yzmrtrCnW9/wfQlmwBoXb6Aj0aPZb8WzTj55JM56aSTOO6446hatSpLlizhjTfe4Kt1Nbl61lDqzf03Q99eSt8336R+/fql155IJGjRosUeudf9DmvEsGlLy0Sk/CWzICxh3fBBpNdoSKXuv2f7hy+Ts/QTmtWsQMb5zzFt2mJisRhXnn8G64vTqNrrEmIpaQTxJHI+n0Bx9lq2Za2BRBF//N1x3HfLtQwdOpSOHTsCMH78eG6//XZWrlzJAw88wIYNG5g6dSoNGzakWbNmbNy4kQ4dOvDvf//bPZEkSZIk6b9gRNKvxiG1D+GVvq+wvXA7AFNWTeFvs/7Gmpw1BAR0rteZehXqccpbp5AUS6KkuIRFzy/i+n/cyvptBVQrTlCSv51aZ9xBzucTKMrbSt3TbmbDqPtZvHgxm7blE7Cd1OqNSeRsJqPlkWyb9TYFq76AMKTK0jGsCQJaXPA35j94LhlVa1O+TiOqt9yfIQ/cz5FHHklRURGrVq3ikMZVue+qTD5ZsYWKaUkc2qQqSfFezFu9hVP+OY28om836P4sK0blcx7hwYs6c+Ml59CjRw+ysrIYPXo0L7zwAq+99honnHACRbnbePWV8bzwwgu8+uqrXHbZZcyYMYOLL76YtLQ0/vKXv+yR+9ywWgb3/rYtV7w4h286UiInG0qKef61kbz86GC2rBtDXtUEr74zk7XLv+Luu+8mMzOTNWvWcPE9j3PPXx9m+5x3qXjoSRRvXc/Wj0eQVKkmNU+9laSKNTihXV3OOr09/fv3JzMzk27duvHSSy8xYMAAKlasSMWKFalevTpr1qwpHdeTTz5JXl4e3bp144033uCee+5h48aNpKen88EHHzB06FAGDRq0y2vKzMxk9OjRJCX5T6YkSZKkXy/XdOhXp3xKecqnlOeYJsfwzsnvMOV3U5hx1gwyG2Ty2sLXKEgUkFOUw+oJq6lwWAWe//JpgqQd4Sm5egOCIEY8ozIl+TmUVG1MmF6F66+/nqKtG4mXq0zBqs+JZVSiSuYA0pt0IEhOI7VWUypXKEc58skY9wBVyqdxZK0SPvvHQIrzc7jyyis56qijePLJJ0vHWadSOr0PrE2n5tVJiu/4q3rn21+UCUgAQVIyBUEy97y3kD59+jBy5Ehat25NLBajXr16ZGdnA+zy2KGHHsrMmTM56aSTeOKJJ/bYPV6yMYfkpG//eYmlliO1wYFc//pcevbowaFNqrLq84856Te9uOiii9i6dSuVKlWic+fOnHpIIyo0bU/RphUAJFWsSZ2zH6BS57PYOuM1AN77fC0d7/iA12etLPO9a9eu5dVXX+XBBx9k8ODBpce3b9/OY489xplnnklJSQl33nkno0aN4sgjj6RSpUrUrl37BwOSJEmSJGmHfSYiBUFQOQiCV4Ig+DIIgi+CIDji5x6T/vcFQUC55HIkx5P55yf/JK84r/S1grUFbB63mYX3zadg/WpyF80gYMcT2ArWzGf7Zx+w9vlrqVynIV999RXl0lPIWzyTRN42SnK3AhDLqEQQi9Plz49Qt3Ytbr31VmZM/ICPpkxg4+K5dO/WhfPOO49p06Yxbtw4Bg4cWGbj7O8qKQn5cPGmnY8X5LJ97hjeuvsP3HLLLbRp06b0SXFz5sxh3LhxpdcKO0LL66+/TmFhYelnVKxY8Qc31f5P5Rcl+NfExaV7GgEUZa0he/LzFCZKeGLEjvH06tWL8ePH89RTTxEEAYcccggjR47ktOO6k/PWncTiccJE8bcbYqdkECSlfv0dJWTlFnHd65+xOefb62jTpg1JSUm0b9+eRYsWARCGIeeddx5Hn/0n+j42myaXv8Ci3HQG3vxXzup3NgBLly6lX79+ABx++OEMHDiQjh07MnLkyDLX9vzzz3PZZZftkfskSZIkSb80+9LajAeBUWEYnhIEQQqQ8XMPSL8ehYlC1ueuL3Os9mm1S3+++M7FZDTvQOHq+QCk1W8NJQnqHNWP5FF30LNnT84563e8l3wEmxfNJnvSc6x97mqSqzWkfLMO3Hz8ARx5xXOln9eoUSPGjx+/R8aeu3AaWWMeJ7laPc4+uz9t2rThxRdfjHzfnDlzuOqqq4jFYlSpUmWX4eq/sWj9dmJfByuAsLiIkvytBEHAqmevIbtiFcY8OZr77ruPzMxMCgoKKCkpoUaNGmzevJkqVarQunljimJFVKlawrhHb6CEAOLJVD/uijLflV9UwtrNuaW/njt3LolEgmuuuYa5c3c8je+mm25ie+VmvLKmCnlFuZBekZzNa3j3/dGktT2uNFJ9Y8OGDVSvXp3k5GQGDBjA6tWrARg+fDgzZszg73//+x65T5IkSZL0S7NPRKQgCCoCXYFzAcIwLAQKd/ceaU9KjiWTEk+hIFGwy9f3u6EV+Qvrk3T8lQCkNWxLpabtaV6zAq99OPnrDbBh7qotXPLAIj5p1IbqXc+m/KoZHF6jmCObV/9/jzEWCzi8aTWmfvW92UglCdKbH0q5omwKCvJp0KABKSkpHH300TRq1IjMzEwaN25M06ZN6dKlCwcddBDt27fn0EMPpaCggIMOOoj09HQyMvZMt01LjlFY/O0spO2fvke5A3tQnLWWWqffwbY3buXoo4+mRo0ajBkzhhUrVnDDDTcA0KlTJ4YNG8bixYv561//yuPXnUR47Yk0vf4dvtd6CBPFrH/5ZgrXLeLonr0YfM/d1KxZk+OPP56PPvqIRo0asXr1agYPHkxSnf0pCUdSrlVXKhx0HKl1WpK/dDav3nEhtVPK/lNTqVIl5syZw7Rp02jSpAlvvPEGAHfffTeTJ0/eI/dIkiRJkn6J9pXlbE2BDcCTQRDMDoLg8SAIyn3/pCAIBgZBMDMIgpkbNmzY+6PU/6wgCDi+2fEkx5J3ei05lsxv9zuRO05sQ8OqO0JLhbQkzu3UmJcuPKI0IAEcWK8SE4ZcyvmH16fWxLupsnwCt1+z55Y/DfpNK1KTyv61/WbT6vfeH01GRgYPPPAA8Xic0aNH06xZMwDWrFnDjBkzmDRpEocffnjpezdu3MigQYMYMmTIHhnfyqxcznliBkWJHREpTBSTv3wu6Y3aAZCWmsztjzzLxIkTadWqFWPHji3z/h49erD//vvTq1cv/vSnPwE7fm9S4jv/UxXEk6h1xp3UPu02NmRv45T+v+fLxSto0+Ewjj/+eNLS0hgxYgTx5BQSuVtI5GSz7bPR5CyaTt6iGZQU5JK3egErli2ld+/evP/+++Tk5LB27Vrat29Pbm4uFStW5MMPPwTg6aefpl+/fuTl5e00FkmSJEn6NdhXIlIScDDwzzAMDwJygGu/f1IYho+FYdgxDMOONWrU2Ntj1P+4P3f4M/Ur1Cc96du9gdKT0mlYoSGXH3w5v+1Qn4lXH8WSu4/js1uO4brjWpGeEt/lZz1w/31MmTyJcePGsSf/rFYvn0o8FpQ5FkstR7lGbXh11gq6d+9OUVERBx10EAAdOnQAYNmyZbRt27bMMYCaNWtSv379PTK2MAw598mPWLMln28mDeXMG0u51t0ACAJoVDHOxKG3061bN1555ZXSpWIAW7du5YknnmDhwoVMnz6da6/99p+A49rUYRcdiQAoX602JcfeSNj9CjZu2cZDz71J2zN3vPfVV1/l/lcm0/jCRwmL8qnS5WxSazQmll6B+pcOo9oxlxBPTmbUqFHUrVuX9957j4yMDCZMmEDXrl25+OKLycrKAqB9+/ZcddVV9O/fn+Li4j1yzyRJkiTpl2SfWM4GrARWhmE4/etfv8IuIpL0U6qQUoGXj3+ZUUtG8faStwkI6NO0D8c0PoaUeErpeUEQ7OZTflpPT11KcSJk64zXyV0wjerH/4Xcr2aQVKk2L81cSTx1NkFJMZ988gkAF110EYlEgvfee49EYsdT3WbPnl36ebHYnuvIc1Zkszo7j5LvLDsr2ryKwnWL2TbnXRKbVnDY9qnE92/Ji8NfYNCgQWX2I4rFYmRkZJCSkkKlSpXIyckpfe3aY/dn0sINbM0rpvDrWU4xoAQoTKlEWAJJlWoRr1CN1KaHcPMVf6BSzjq2bFrPrLN7sq0kmcS2TWwe/Sg1Try+9Cl75SrXoNdZAygoKKBSpUpkZWWRmprKCSecwNVXX82sWbOYP39+6f5VmZmZZGZm7rF7JkmSJEm/JPvETKQwDNcCK4IgaPn1oR7A5z/jkPQrlRpP5YTmJ/BYz8f4V89/cXyz48sEpChDhgyhc+fOZZ72tSeNn7+BgoICCjcsKT0WT6tALCmFlc9ew7jJ07juuusoKCigR48e5OXlcc455zBt2jR69epFly5dfrJ9fZZuyuG7fa1ww1IKVswjLC4gXq4qleo24cKBFzBixAj69OnD0qVLy7y/fPny9OrViw4dOlCvXj3Wr1/P6NGjAahVMY33Lu/K77s0oUaFFL6b8b7JUIXrl1CyPZvc+VPIWTKHtevWUaVKFS65+CIuevhtkipUo9LhpxJLSSMgICUpRp3KadSvnMYFF1xAx44dCcOQ8uXLM2HCBABGjx5dZvmfJEmSJP2a7SszkQD+CDz39ZPZFgMDfubxSP+RgoKC0hlAe1IYhsxansXq7HxiwY6NqoOkVAo3LKF460byV31O/T88wYbnr+b+fz1dukRszJgxtGvXjiFDhjBq1ChGjRrFHXfcUeaz92RQqlc549uiAyRXrU/ts+8HYNM7f+M3A6+lfv36zJo1a6f3fvNkuOuvv561a9fyj3/8g7Zt29KnTx+OPvpoAKqVT+WKnvvx/PTlhJT5KhJ529j8waPU7ncfYaKQ7InPEMvZQJ06FXjrrbeo+/HHpMYSpCXHSI7FiMUCTjm4Pl3KpzBl4nomTpzIU089RXFxMdOnT2fw4MF07tyZhg0bcvnll++xeyRJkiRJv2T7TEQKw3AO0PHnHof0YyVKQsbPX89789YSj8Uo+OQdzj67P7fccnOZ84444gg6duzIxIkTue6663jppZdYtGgRzzzzDO3ateOxxx7jiSeeIDMzkw8//LB06RTA/LXbOO+pj8jOLSQIIL+gkPxlnxKkpO00niAIOLhhFVYs31p6rF27drz44ovMmjWLO+64Y49toL0rhzSuQkZqEjmFO5bNBfFv/3mJJyfTtmI+N9xwA3fccQdPPfUU7733HitWrCAzM5Nx48aRmprKa6+9xqeffsoVV1zBH/7wBypUqMC2bduoUKECABMXbKC4pOxj2sKSBBtH3k+Vo84jXr4KxVvWAfCb6//NmuevY9KkSSQlJdG5c2cmvHY/2/KLKJfav3RD9GN79QDg3HPPLf3Ma665hmuuueYnu1eSJEmS9Eu0z0Qk6Zckp6CYMx77kK82bCe3MEGYKCbr7bdZ3yBzp0fRb9q0iRtuuIFEIsHBBx/M0qVLmTVrFkOHDmXIkCEMHTqUKVOmMGPGjNIngQFsLyjm9H9NIzuv6Ntjn44hll6Bcq26krtgWunxtOQYlcjhyE5H0L59e0aNGsXkyZN5//33mT9/PnfddRdz5879ye5HGIbcNvJztn5nrAC5C6ezZeIw2h6wP22a1WfCyq8AKCoqYvny5eTm5rJ48WKmTJlSuj9SIpEo3Xfqm32KvolI67YWkPheRMr9cjKFaxaSNf5JAKp0O4d4LGBgt2bc+nzZccZjAZUzfvzyREmSJEnSt4xI0n/h7ne+YP7abaWbPOfMG0va/l2ZuWwzhVvKPgK+Ro0a1KpVC4BmzZqRlpZG3bp1ycrKYuPGjTRq1IikpCQ6dOhAfn4+tWrVolWrVmzKS5DoNaj0c/KXf8q2T96nOHst+cs+ISzMo2TBRDKSk3jxgkPpNGQ9y75ayAMPPABA586d6d69O7fddhtLly6lWbNmP9n9mLRwIy9+tIKC4pIyxzNaHEaLQ7px0MrXmTBpMis35zJ98SbGjR/PkUceyYgRIzjssMPo0aMHRUVF1KhRo8xm31u3buXuu+/m888/p6SkhGsHP8z39zUv17pb6RPgYgEkx2NcefbxHNWyJkd9Z1bXT7UXlCRJkiT9WhiRpAjTp0/niiuuIB6P07FjR+67/wFembWyNCBB2aeQFa1ZwFtvvVX62nef5vbdn4dhSPXq1Vm2bBmJRKL0qWk9e/bk2Wef5YoXZ/P67NVlxhLPqEilw37L1o9eJ1awjdf+ei1nn302E954DoBq1apx6qmnsmXLFjp37swnn3zC+PHjOeCAA9iyZctPcn8Anpq6lNyvl7GVXl9xEUFSMptzCvlkXSHzP19BUdYqPnriQxaNmsAFf/wz6enpzJgxg5EjR5Kens6gQYOYN28es2bNori4mK1btzJ8+HAyMjIYPXo0Y0cOp171Y1i8MWenGUlJMRjYtSlnHNKIhtUyfrJrlSRJkqRfKyOSFKFRo0aMHTuWtLQ0zjrrLGbMmrNTwKiS+e0+8Gufu5rjjz+e6dOnR352EItzeO/fUne/dlTf7yDytxWwfNw4unTpQvmWnaB6Vza+8zcSWzcQr1iTRN42siY8TXHWagjgrrvuok6dOsyePZt69epx/vnn061bN15++WUmT55M7969adq0KY888gidO3fe4/fmG2u+N/sKIG/Jx2z96A1iwOqqdal8zKVse/lWFvzrEuLlqvDqrJVUj6VQt25dGjZsSFFRETVr1uSiiy7ivvvuY9GiRTz33HPce++9jBkzhqKiIlq1asUz1xzG2UOnsyo7j5IwJCkWIxbAv/t35LCm1X6ya5QkSZKkX7tY9CnSr8/W/CLenLOKF2YsZ3usPGlpOzayTkpKYux771C8dMcTxnIXTmfL9FfZ+vFbbJs1kpKifFKTk6lWrRqXXXYZBx98MA0bNuTggw8Gvl1S1bhxY558ehjnPDGDD8K2pJ86mJx2Z7B6WxF1L3iUF954l6yFH5O/Yi5BEKPWGXeSXKUO6Y3bU++CR0mtuz8Z9fbn2DMvYOHChYRhyLp167jvvvu4/PLLycnJoU+fPmWuadu2bfzud7+jQ4cOfPTRR3v0frWrX5n495aZZbQ4nNpn3kPNM++hSu8/7biO024lo1lHgngy2XMnMP+LzylfvjyXXHIJ2dnZZGZm8vDDD1NcXEzFihU5+OCDGT9+PJMmTeL2228nDENqV0qj4bxhpLx7CxcfUpUhp7Vj5g09DUiSJEmS9BNzJpL0PS9MX8atb31OPB5QUrJj2dmRLarzhwOT2LhxI4MGDeLtywaR1bQDGxdMpdKRvyOpUi3Wv3wLxau/5MJLL6NChQrcdtttvPHGG1StWpVGjRrt9D3Dpi7l42WbySv6dllcSEBWQYzr35jHSSf0Zcj4FaTU2rGXUUqtZhSs/rL03Jpn3stjC5PYUpzEp0vXc+ihh3LwwQdz2GGHMWDAAEaOHMn48eMZPXo0ACtWrGDKlCncd999HHPMMWzevHmnMWVmZhKGIUEQcNNNN9G9e/cfdc9+36UJb85ZVeZaAJJjAcUlId+dt/XdWVvrnrua888/n759+zJz5kwqVKjADTfcQGZmJj169OCrr76ifPnydO/enbZt25a+b8GCBcz56EMkSZIkSXuPEUn6jumLN3HbyC/ILy6B4m+PT/x0Ce8PHsxHY9+mdu3apOZv5OgWVXgyZxPlq9clACq17U7xzJcZfMW5AGRnZ9OwYUMA9ttvv52+6+lpy3aKLjV/exOJED5cvJn8rz6kZctuzP7gDQAK1y8uc24IbCsoJl61PvOXr+XYXj3o3r07M2fO3Om7SkpCmjdvTnJyMkuXLiWRSOx0zjfGjBlDUtLO/zSUlJSU2fT6u5rXrMDff3cwlw+fTRAEpcv9WtepyCcrsyn+3vK/b7Q4fwivfplH7OTBfJlbRIOqGVRu14JGjerSs2dPwjAkNzeXqlWrMmnSJN58801uuOEGPv30U/r06cOVV17JAw88QHFxMQUFBbzyyitUrVr1B69NkiRJkvTfczmb9B0PjVtEXtH3NoguSbDyjXsJDutHeqUdS6aOyswk/bNXufjME7n+uFZc2aMxTTdN56IB/Rg2bBiw4/H0K1euJCcnh4ULF+70XVm5hTsdK1g5jzVPXcbKYX+hSo1aPHn1WSSTYP2LgyjavGqXYy7ftie5S2YzL7U1s2bPpkmTJrRp04Zt+UU8OXkJj074iqbXv8PsuV/yh+vu5De/+Q3xeJwRI0aQmZlJZmYm6enpAMRiMY4++mjOOOOM0plKmZmZXH311fTv33+3965n61p8fGNP7j+1LTcf35rXLu7Eqxd3ott+NYgFO5+fEg/ISInzzwmL2Li9kOKSkCUbc7j0nn9Tt0lL1q9fT7Vq1cjKyuKll17iz3/+M6+++ip33HEHbdq0YeTIkQDk5+fz7rvvcuGFF/LYY4/tdoySJEmSpP+eM5Gk7/hy7badjuV+OZnCNQvZNO5Jju7+Kn8fch+nnnoqbdu25YsvvqBFi8Zcfvnl3HzD9fTo0YNjjz2W3r17c+ONN9K3b1/222+/0hlJ39WyVgVmLssqcyy92SGkNzuEjJQ4D97Yk7TkOPMnvcWwaUsZ++V6vlizlZIQave7t/Q95VoeSeEhJ7Hsjb8ypX0z/vLnP/PQww9z8iNT+eLLdRQldswCCspX49nH/8mYkbVo0KABffv2pW/fvjz66KP07NkToHQmz/PPP88dd9zBkCFDADjppJOoUKECnTp1Ih6P07x5c5544okyT5vLzMxk9OjR9D6wTplruv3EAznm9ldYPnoYVY69HIC05BiV05PZkldE/vdmYyU1OYRyLQ6j6oa3GDlyJK1btyYWi1GvXj0WLVq003086KCDAGjfvj0ffPDBrn9jJUmSJEn/b0Yk6TtqlE9lw7aCMsfKte5GudbdSE2K8dZVR1G70o5NtouLv13v9re//a3059+EjFq1ajFr1o4NuDMzM3f6rj/1aMHAZz4m/3szn9KTY5x9eCPSkuM7xlQhlb/0aslferWkw+0fsCln5xlMVbqfT3I84Pkbe5KSkswVDw7n5hHzSKrfhir12wBQsWNfYmkVSG99JBlj7wDgww8/ZNy4cQwfPhygdCnYSSedxFNPPVX6+R06dCAIAqZOnQrAgAEDmDlzJocccgiwY6nbD6lbOZ1nzz+MgXNfp1qdiiTFA04+qB4fLd3M25+tLXNuWFxEkJRMPBawuShOenp6mVAVhjsvi/vkk09Kf2zWrNkPjkOSJEmS9P/jcjb94g0ZMmS3j6+fPXs2PXv25KijjuLtt98G4PHHH6djx46lv/7G+Z2bkJ4S3+kz4rGAdg0qlwakPaHrfjW44bj9SUuOUS41TrmUOClJMY5rU4erjmm5y/ecfkgDUpN2/msbC+DQJlWpmJYMwJtzVpNbWDZOFW1exbbZ77B6+I3MnTePW2+9lUGDBvHvf/+7NNRs3boVgClTptC0aVPGfrmOrzZs5/rXP2PqkmxKvt7bKDU1lUQiwVFHHcUpp5xSJjg9//zzXHbZZQDcdNNNdOnShaGPPkSrOhV557IujLi0M+ce2aRMHPpG3pKPWfv8tSx9+iqyN22gV69ekfcxOTmZ3r1788gjjzBw4MDI839uu/rzOn78eG655ZYffM8f//jHn3hUkiRJkhTNmUj6RSsoKCidifJD7rjjDt58800yMjJKj7300ktMnjyZtLSyUeikg+oxfv56xny5nrzCBCGQkRKnQloSfzu9/X89zvHjx+/yeL8jGnPiwfWZtGADBcUlHNqkKnUrp//g51x8VHPe/3wdq7JySzflTk2KkZ4S5+6Tvn162a5m7HzzVLTyqUmEb91ILBZjxYoV9O3bt3SM3bt3Jz09nZSUVJK6X8qlz89mw7YCXv54Fe/M20DVjZ+SNXEYLffbj2rVqrF+/XpGjx5NPB5n2LBhDB8+nBkzZvD3v/+dNWvWMGPGDCZNmsTzzz/P+++/X2Y8vQ+szbgv15PzndiV0eJwMlocTmpSjGF/6Ub9Khk8++yzAKX7NwFMnjy59D3t27fnjjvu+MF7ti/5MX9ed+Uf//jHTzAaSZIkSfrPGJH0i/LR2o8Y+tlQFmUvolZGLSp/XJlevXoxYMAAMjMzWbhwIa1ataJhw4Y0bNiQ/v37k5+fzymnnML06dP5/PPPmTRpEjNmzOCYY45h6NChNG/evPTzY7GAv//uID5cvJlXZ61ka14R3fevyQnt6+1yhtKeUD41iWPb1Nnla8OGDePpp58mkUjw3HPPUa9ePd66tDO3PvYyr739Pk16ncsxB9ai/xGN2b5xDef+5Raeeuopjm9Xl1nLs3faJBygKFHCjMlTqJSRzI033ljmtW+e7HbriHk8N2M5hcUJap95DwC5hQlKqrbh/AdeYfnIhxk5ciTt2rUjHv/2vtx9992lgWfZsmW0bbsjbHXo0GGniHTMAbX5+5iFLNmYU7pvE+xYznd8u3rUr5LBrgwZMoTXXnutTEjalfHjx0fO8InyY78L4IwzzmDt2rUUFBSQl5fHRx/PYviM5Tw9bRnZuYW0rV+ZmivGc84553DTTTcBcN5557F8+XIaNWpEgwYNALjhhhuYOHEi7dq1Y9u2bTz11FN07tz5R41BkiRJkn5KLmfTL8YLX77AxaMvZsrqKazLXccnaz/hhbdf4KO0j6hcuTKDBw/m+OOPZ/To0bRsuWM52Lp165g/fz6vvPIKtWvX5s477+SUU06hffv2jBkzpkxA+kYQBBzRrBr3n9qOx/p35IxDG/5kAWl3Vq1axYQJExgzZgzjx4+nXr16AKSnxOl9YG3OPKwh713RlT/3bEn18qll3ntC+3rUrpRGcrzskrH05DgXdm1GpYzkH/zekpKQ4R+toLC47D5HYXER+cUlPPPhMipWrEh6ejqxWNl/Qp5++mn69etHXl4ejRo14rPPPmPIkCGccMIJO31PcjzGKxd1om+7uqQmxUiJw5Z3HqBoxM18/Oif2bhx407v+f5MnuXLlzNt2jQyMzOZMmUK/fr12+k9u1vquDv/6ayh4cOHM378eK6++mqO+81vOOeJGdz1zpcsWr+djdsLGTtvNY+8MIL8GvsDMGPGDOLxOKNHjy7dy2nNmjXMmjWLiRMn/tfjliRJkqSfihFJvwjZ+dk8MPMB8hP53x6bmk2Fwyrw3pL3yMrO4pxzzikND2PGjGHYsGHcd999pKWlkZGRQTwe5+WXX6Zdu3Zs376dd955h4ceeojc3FxSU1PZvHkzTzzxBC+99NLPdZkArMzKZebSzbz8xkgSiQQ9evTgj3/8I4lEgvPOO4+jjz6aZ555pvT8b/Yd+uZJagDdu3WmxVcvseW5KyiYP4kNr9/J+qf+SP+WcEXPFrv9/vziBIWJnTfK/ma/ogVDr2Tt2rW73K+offv2XHnllZzV72yqV69Ou3btGDx4cOleS99XMS2ZB05rz6e39OJfx1XnxA6NWPTJDM4bMIDnnnuO1dl5/HP8Iu5+5wtGzV3Dvx77N+eccw6wI7INHjyYoqIiypcvT4UKFQB2ukeFhYUcc8wxJBIJrrvuOt54441djiUMQ2Ys2cwtI+Zx4xtzufauv3L22f0BGDFiROlyuvT0dAoLC+nTpw9HHXUUp512WpnPef3116nVtitzVpSdCbZ93ljS9u/G1a98RhjC4sWLS58s16FDB6ZNm0bv3r1p3Lgxd955J+3bt2f8+PF069aNTz/9lPnz5+/ut02SJEmSfnIuZ9MvwrgV44gFZZtnwdoC8pfns6lkEyVJJXQ8piOT3pjEhAkT2Lp1K/379yclJYXZs2eTSCRYuXIlJ554Iueffz6nn346RxxxBC+++CIHHnggmZmZTJs2jWnTpnHzzTf/LNe4bms+lz4/i09XbiElKcbaCdOomLeGWeNGcdctN/DAAw+Uzly56667KCws/MF9hzZt2sTtt9zMLTfewMEHH8zKBV/x+WdzePHFFwn69d7tONKT41RMSyIrt6jM8W/2K6pdKY2h1/UAKN2vCGDcuHE8PXUpD09JsGm/AbS9bQxNsuI88fSz3H3Hrdxyyy10796d6tWrs3DhQtq1a8ebb77JAQccwHvvvUfr5o1LZzZlZ2czb1MJj9w/no3jn2Hb/KmU5G+nJH8rF93/HF+t30rbDoeRs2UT69ato23btjz77LN88cUXbNy4kTp16lClShUAUlJSOOWUU2jbti2VK1fmzjvv5Pe//z0LFy4kIyODd999l6JECQOHzWT6ks3kFSYoSRST9fY7LKvVhZIwpG/fvvTt25dHH32Unj17snz5cqpXr87IkSPL7D9VXFzMZ599RtitMrmFZWdSFW1eReG6xeR9Ogo2LGL+/PksXbGSO+65l3//82GqVKlCamoqy5cv55FHHuHll1+ma9eunH322Zx00kl0796dESNG0KFDBzp37szEiRN3mgkmSZIkST8l/w9Evwi5xbkkSsru71P7tNo0vrIxTa5uQlr9NBYcuoDadWpz8cUXU1JSQnJyMh06dKBDhw5kZmaSSCS48cYbqVevHsXFxVSpUoVNmzYxdepUrr76aqZOncqKFSuoX7/+T3Ydq1ev5uCDDyYtLY3i4uLS44XFJZz8yFRmLcuioLiEbfnFlCRnsL3Kfpw9dDpHHXUURUVFZWauwM77Dn2jRo0a1KpVi7p169KsWTOqVCxHvXr1yMrKihxjEAQM7NqM9OSdl/ClJ8e5JLPZLt9328jPGTxqPhu2F1ASQm5+AZMmTuSRBWl801mysrIYPnw4l19+OWPGjOGAAw7guOOO47333qN69eoUFBTQqlUr/vr3hxhf2Jic7I3krvyC5Kr1SGvagZS6rXhnTQZZOUUUVGxAUKUB511+Pfn5+UycOJG1a9dy5ZVX8uCDD/LFF1+Ujm3OnDksXryY+++/nzfffJOaNWsyYcKE0qfz/WvCV0xbvIncrzdTz5k3lrT9uzJv9VZWZuUB8OGHHzJu3Diuv/56mjdvTps2bTjrrLP461//Wvo948aNIzMzk5yCb39vAQo3LKVgxTzC4gKSylelVsPmzK5+NK98+BW33HEPq9ZtoGbjlsyfP59Zs2aRkpLCW2+9RTwe51//+hcNGjTgpptuKv2zvHTpUvr37x/5eylJkiRJe5IRSb8IB9c8eKeZSN9I5CVoOqgpsSBGRq0MnnjiCWKxGE2bNuXTTz/lwAMPZNKkSbRp04YmTZoA0Lt3b5KSkkhNTeXee+/l5ptvZvjw4aSlpe1yX51vLF26lHPPPfe/vo6qVasyZswYDj/88DLH35u3lqzcQr6zvzSp9VqRu24Ji9Zv5+3x0yguLi7do2f27NkApfsOffcY7AhBu/r5rp7atisXdm1auldRWvKO/1KTYpzWsT79Dm+00/nrtubz/PTlZZZv5cwbS3qrbizdmEN2biEzlmwiVrU+T05dxuQPP6Jr167AjplC119/PZmZmbz33nvceeedZOcVs/ifF1K0aSWx9AoQxMhb/DGFq79k7fAbKNq0gkSimJIgzrMzVpKankGlSpVo1aoVc+fOpX379qXLvxYsWMDbb7/N3XffzV133cWCBQvo1KkTQOlMnienLCW/6NslfEWbV7Ft9jssf/4GVi1ZyM0338KgQYP497//TRAEFBQUcMUVV/Dcc88xatQo1q1bB+xYynbSSSfRff+apCZ9++c1/E4A3b5sLjkHncmcFdmk1G1JWrNDSRQVMjdoQm5eHrVq1SIpKYkvv/ySkpISRo4cyYIFCxg0aBDLli3bcW9zcnj//fcpV64cb7755o/6PZUkSZKk/y+Xs+kXoVW1VrSp3oaZ62YSUjaE5C7IZd1r64gnx6lCFa666ipWrVrFY489Rv369dl///1/8HOPOuooSkpKeOutt2jcuDGtWrVixYoVe3z8a7fks2ZLHg2qZlD962VWsCNKnXfeeazOi7NkyRJqnHwjYaKQTSOHQFIylCRY8vTVPL5pKSefcDzvvvsuc+bMoVGjRrz99tuMHz+e5cuX06VLFzZt2sSmTZtYtWrV/3u8sVjA4FPacmn35oyfvx6CgO7716Re5fRdnj9hwQbisbKbeH+zfGvbnHcpXLOAywY/zra12xn89lxWvDOB7t26AjuiSG5uLtdccw1Dhw7l6aefpmnfS/n0jccozl67IySlplMl81y2zRpJetMOhMWFVOnan41v3ce69x4lrFmL35/bj1dffZW6devSuXPn0qfG1a1bl/T0dFauXMlRRx3FokWL2LZtG3369KGkpIRYLMbm3MIyY6+SOaD05+ueu5riEFasWEHfvn0BeOyxxzj//PMpLi6madOm1KxZkzAMmTZtGg899BAH5hXz+OQlFBaXEAIp1RtR++z7AVj12IUk8rex4e0h5C/+GEIghMKiIoqLiunYsSNz585l/vz59OzZk5SUFJo3b87y5cvp0KED+++/Pzk5OWzdupUnn3ySW2+9dZcbl0uSJEnSnmZE0i/GQz0e4px3z+HLrC/LHK/QrgIV2lUgLZ7G08c+TetqrSkuLiYpKYnBgwfTsGFDgNJHpDdu3Jj7H/oX4+avp8tJ5/CnP10GQLdu3Tj77LO55JJLOOGEE1i3bh0vvPACTZo04aabbmLcuHGly8kAjjjiCDp06MDkyZO555576N17572G1m/L57IX5jBreRYpSTEKikvotl8NEiXfhrCsrCz63/Esf/vXk+QumEKQnEb59r0p3+ZowjAkIyXO6of7M3ToUD7++GNeeeUVLrvsMlJSUsrsSdSlSxc+//zz0mudO3cuAwcOJB6PM2DAAO666y5atWr1g/f3tNNOY926dSQSCYYOHUrLli1pUDWDHo1S6NOnDxd8/jnbt28nKWnnfzY2rF7Bqtfvpcpv/kLesk/InjiMICmF6r/5C0kVq7P22auJNzkEVnzJ5k9Gk9qwPdMXb6Ze/o5lX3Xq1KF3797cd999LF26lOIFK8hofigAydXqU7DqcwpXf0m8XBWKNq2gdr97yV/1JUXZawmCGMUlIWeffTaTJk0iKyuLeDzOO++8Q7NmzRg9ejQPPfQQJ5xwArFYjKeeeophw4bRtWtXypcvzzvvvEOdimms3pK/03UBND9/CLff1Is7b7ulzPFJkybtdO43s8FyCoqomJZM9tf7SgXxJHIXTid74tOEJcUktm0ib8GHxFLLkcjbAmGC7KkvAiHPPfcciUSCOnXqEAQBeXl5vPLKKxxzzDGsXr2aeDxOhQoVSE5OJjU1dacxSJIkSdJPxYikX4yM5Aye6P0Ex7x6DNsKt5V5LTmWTMuqLWldrTUA559/PkuWLKFixYq88sorpecVFpdw/euf8dYnq0lJilEShmSkJPGn9ils3LiRjIwM1q5dywcffMDHH3/M4MGDufnmm39w8+qbbrqJoqIiLr300p0iUlGihFP+OY3V2XkUl4QUFO9YLjVh/gY2r9laurSsdevW/LZDQx6tVIOtm9dQsU1Psic/x4a37qN866NIbXkoLfdrTlpaGuWr1GDhinUs3rCdcePG0aVLF04++WQ2bdrEp59+Sp8+fRgxYgQDBw5kwYIFVKpUiXfffZdatWpx8cUXM2jQIDIzMxk/fvxO9/e5554jOTmZCRMm8Pe//52HH34Y+HYJ3kknnfSDvzeHNalWOj9sy9Th1Drtdoo2rWDLhy9TrddF1O53LwDVj7+SrPFPUrhuMQVBwJfrFpKamkqLFi1ISkri1ltvZfTo0Zx64ZX0vuQ2CouKqdrzD2wa9Q8qHnoyG9/+K6l19gMg98tJVO56NnW7nEqNmY9RUFCwy+uaPHkyffv2ZcqUKVStWpWTTz6ZUaNGlTnnosxm3PXOl2WW4wGkJ8c478gmxL43y2p3cguKOXrIxNLf750EASUFuYQlxYSJIpIq1qR480pSazUlN2s1U2bMpnuXw1m2bBmjRo2iuLiYDh06EI/HqVy5MkEQkJ6eTsuWLcnPz+fII4/80WOTJEmSpP8P90TSL0qFlAo8c+wzNKrYiPSkdMonlyc1nkrHWh15uMfDpec9/fTTTJw4kZEjR5KWllZ6/MY3PmPkp6tLN6/OKUiwdv1GLrzoEm6+9x8AtGnThqSkJNq3b8+iRYt2u3l1zZo1qVevHtnZ2TuNdfTn69i0vYDikrLL7woTJeQVJZi5bMcm10EQ0LJ2BXq2rkVSLIBYnKo9LqD6cZezdcpzXHfs/iTFY1z18iec+MhUpizawEWvLabZJY/z8HNvMnr0aE477TTatGnDW2+9xV8ff47sMJ2/PvMGI0eOBHbs/ZNIJEr3e+rcuTNQdo+n5ORkALZv307btm3ZUrCFhVkLKQgKSp909s17unfvzimnnEKHDh1YuXIl1Suk0rR6OVIpIkhKIZaaQWrdliQ2Lef7/aVK5gBqnX47tU67jbSajTj++ON3unftGlSmT9u6JMcCMipWIa3BgWx44x6KslZTvv2xFG/bxLZZb5O3aAbLh11D3sZVpb/fCxYsoGrVqoRhyE033cSMGTPIysqifv36ZGRkkJOTQ15eHhs2bKBv374cddRRTB02mN8eXI/UpBgpSTGS4wFpSTG671+LP3Zv/gN/GnfttpGf7xSQwuIiMlocRt3zHyGeWp78pbMJghjxcpUJi3cspSvOySaWnMKgq6+gYcOGxONxDjjgAIIgICkpieLiYlJTU6lXrx65ubksWLCAyy+/nDfffJMuXbpwxRVX7DSWuXPn0rlzZ4488kg+/fRTAM4991wWLVr0H12TJEmSJIEzkfQL1KxyM9468S2+3PwlG/I20LRSU+pXiH6i2uacQl6fs5rC7/wPfsG6xax74TqSK9Xk93/8M28O/Stz584lkUjwySef0KxZs9LNq++55x4qVqzIokWLePzxxyM3rJ7y1UZyCsvObAkTxax/+WYK1y7m3NNOZNg/v32y19lHNKZ4VW0Wbp3HvNEvkRQWceF5/RlwZBMGbcxl8yerKUqUUJQIKQjjLN9awplDP6L/0ccwd+5cCopLOHrIBD57ZxxpNRpx9tAZBMtnUjz9eQoLC6lWrdpuN9YuLCyke/furFy1ks6DOvPYS4+RHE+mKFFEZoNMEuG315KVlcXo0aN54YUXePXVVznhhBM4sF4lDutUh1veqUAAZKTGqVYumaRYQGFi19974o1Dady4cemyvMzMTDIzMwH49x1Xsn5rPiM+WU12lyspLvkz/564uHTz8UZXvUFacoy7ulVk6F/volOnTrz00kts3LiRQw45hM8//5w5c+Zw4403UqNGDebOnUutWrWYO3cu2dnZ3H///Vx33XUcccQRXHPNNfym9nYuuKIro79YT0lJSGbLGrSoVaHMeIcMGcJrr71WujTyu7Kzsxk7dizvzi2302u5i6azbdaOoBeGCVLrH0D+0tkUb9tIEMSAAPK3EQsT5ObmkpOTw4EHHsjnn39Oly5d+Pjjj0lNTSUejzNo0CBisRixWIxu3brRu3dv3njjDc466yw+++wz2rRpA0BJSQk33ngjL7zwArFYjIsvvthNuPWzmj59OldccQXxeJyOHTuWebLh7hQXFzNgwACWLFlCnz59uPbaa3/ikUqSJOmHGJH0ixQEAa2qtaIVP7zHz/d9uXYrqfFYmYhUtGEpQSxOkFqO+R9NZOzYsdSsWZMTTzyRDRs28Nxzz1GnTh06dOjA22+/Tbt27X7091VMSyYeUOaJa0E8iVpn3ElaUozrjmvFYYc15rDDDgPKBhS4sfQ9a7fkU+HUu8gvLiGpUi2q/+YKSgpyiaVmUJQo4cWRo/n77dfx5dqt1NiYA5XqsmX5F8Qad4Ta7ah+1mFsfbg/b7zxxk4zpr4blVJSUpg4aSI9/9qTkY+MpMFlDSgs2TFLZtyKcazcvLLMErxYLEa9evXKzGo5/+g2vPtoOiPuPJZ4LOCoCfdQvX5lZq/IIvG91V3pyXEGdm2623tYs2Iav+/SlM05hRx1/3i+36KKc7dy2Z9u4KOxb1OjRg1uvPFGtmzZwp///GcmTZpESUkJycnJ3HPPPVx66aVUqFCBtm3bUr16db744gsuv/xyZs+eTWpqKqNGjeKTTz7h/M5NdjmWf/3rX9x8882kp+96c/Hs7Gxee+01CpqctdNrQfzbf2pTa7cgiMWJpVeCMEFYUkI8oyL7N6jOiuItfPzxxzRr1oz99tuPGjVqsHTpUsIwpKioiE6dOjFw4EAatWjFfge2Z8n8ebRp04ZevXpRoUIFrr/+erZv3061atU47rjjWL16Nddddx3PPvssW7ZsKTOmcePG8fjjj/PUU0+VzkKTfkqNGjVi7NixpKWl7RQ9d2fEiBG0atWKZ555hj59+rB27Vpq1669F0YsSZKk73M5m341KqUnk/jeTJzyB3anwZ+ep/aZ91CvfVfWrl3LlVdeyQMPPMCCBQto2rQpN910E3379qVZs2Zcfvnl/P73v2fMmDFUrFiR4447jjAMd7kXz4kH1SM5aee/YsVb1rHob2fy2DX96dWrF2vXruXOO+8Evl1m9l2frMwmOV72cwpWzmPNU5ex7Mk/szVWgW0Vm5AoCSkJIb3FYSS2b2bts1ez7uVbyStMULdZKx5++GGWL18OQH7+jk2kP/vsM4DSSPHhmg/ZGG6E7zWFov9j777ja7r/B46/7s6eZEjs2MQWIyFEUGKrWjVrVK1qqU1b1KrSoao1a+89Q0LsTWIGicjeO3ff3x/5uhWJln777fp9nv/g3HPO/ZyTm3icd97DqEOtV3Ml8QrAK7OwrKysKCgoQF2Qz5UrV6hZsyYr+jegjIMl1srCaWkKmQSVXMr7rSrTwqtU8S9UCTZfeor6pX5FJqOBuL2LkfgMQGrtgEwmQyqVkpmZib+/P2vXrjU/oFatWpXjx4/zww8/UK5cORQKBdWqVWPGjBn07t2bnJwcrl27Vux987V6rsdk8CAxh4yMDFasWGF+7bPPPsPf3582bdoQHR3NqlWrOHHiBKlbp2HIzyIzbCOJmyaTHvwD+Q8v4NZvAW79FuD81jiMBdlI5ErKjtuCZaUGeHrVRJufS3JyMsHBwTRt2pQvv/ySq1ev0qxZMwDkcjkTJk/nfmIO1zx7QMCHWFX3w67vl4yb+hnp6enIZDKSk5PZtm0bQ4cOxWj8JXL34t9Pnz7Njz/+KAJIwv+cwWji0pM0TtxNQmrlYC4vlsvlyGSyYqWxCxcu5NChQwDs3buXL7/8kgsXLtC2bVugcKLmlStX/rLrEQRBEARB+P9OBJGEf7ylS5eWGHwB+Omnn2jUqBGHDh2iprsdqhKCOvmRl0hc8wGuSg3t2rXj3LlznD9/vkhJ1ItT2QBcXFw4fPgwHh4e5l4zL6vqakt/n/JY/id48pxKLqNh85acCzvD8ePHcXNzY/r06a+8PluVHCga/LKs3Bj3wctxe3cJvv3Gczc+C5d+hc2rJRIppTqOx86nByadhsfrJiGxcuLUqVPUrVuX0NBQOnXqhK+vL6dPnwZAo9EQGBjIwC4Debz6MaW7lTa/l0lvImpRFHkxeQzpOYSkpKRXrhVg+vTpBAYGMm7cOHbs2EHvLh2wOPEFk32dsb+0krFtqnD8w5aMa1uFxMREcwZWjRo1mDBhAgCjR4+mdOnS/PTTTwCEPEgp1mco//5ZtAmRpIWspW2bNly4cIH69etTunRpVCoVcrmc5s2bA7B69Wpat27NoEGDaD9wLJ2/OctBiQ8DJn7K1u3bcXBwYM6cOXz33XccPHiQ+/cfYGXrQIPPTtBhwBjaT/2RJZuPYluhMCgVHh5OXFwc/v7+ODs74+vry9OnT3Fzc8PNWkbOpV1oEh7i1n8RqjLVit0jidISmbUDAE71AunQtnWxXlylS5dmwIABfPHFFzRu3Jh2b3Vi5P54ctV61Doj+VoDedG3uLDsfXr27M6nn88nOTmZnJwcmjRpQmxsLFKplPj4eHr16sWNGzeIjY0lLS2NcePG8emnnzJkyBCuXr36q19PQfi9zkam0nhuMMPWX2Xitpv4LQphwtYbXL1+wzzIICMjg+3btzNx4kR27dpFv3792LZtGwA7duzgnXfeITMzEzs7OwDs7e3JyMj4Ky9LEARBEATh/zVRzib8o2k0Gm7duvXK17dv387Zs2exsLDg0O34Yj2KAKyq+NC8TXs8720hJiaG8PDwEkuiXlS7dm2AVzbVfm5Gpxo0reTMipBInqTm4WilpGPDSizdcQkbGxvUajX3799nzpw55r5AAIsWLUIqlfLxxx9zcM1XRG3ci0Eix6X7NKQWNmRd3IF1rdbYObvSt0k5ErPVWCikqHW/BFqsqjTFqkpTVHIpwwOrUqlSJfN7fPrpp3z66adF1hoaGsoPt37g+1vfF+l/JJFLqDi5InKpnDH1xuBTx6fEErzn527bti1t27YlOjqaGTNmmLdHR0dzwsOecQFVzOd2c3MzZ3GNHz+eoKAgAGbOnEmTJk3Q6/UA2KiK/6iyrtkK65qtsFHJ+bZ/A5pVLW3O2gE4d+6c+e/Dhg1j2LBhrDkbxbxjDwqnsCltceg6A1eZiXoVSnH9wAI++SSQo0ePsul0BFKXymQnRJGb8AiDlSMyL18+2n4Lg9HEvXv3CA0NRaPRIJfL8fPzIyYmBgcHB06fPk2Z8l5I3OshlYDS1YuCqBtF1m7l5YMhLxMAZ3UCZZ3KcOZI0V5cAMOHD2f48OF898NPLDkZhalAZz6HzNoJ92Hfk7J/IcaCbIaMfJ/E6EhatGhBXl4eu3btwt7enkePHpGVlUV+fj4DBgygQoUKdOvWDX9/f3r06EGjRo347LPPMBqNzJkzh5s3b3Lt2jWGDRtW7J4Lwut6lJzL8A1Xi008PHQlkl2fLeTKqUOo1epipbFly5YlPT2dtLQ0MjMz8fT0xMHBgezsbACys7Px8nqzZveCIAiCIAjCH0dkIgn/KLE5scw4OwPfLb74bfWj+7TudO5dON1r//795qCGpaUlO3fu5PLly7Rv357IyEjGfDKbmHUfkbhlGvrsZKBwahYUlmTZ29tjbW39ypKoF/1WU+0X98vM13I3IQedwURcZgFrbmRQe9yP3LzzAHt7e/PD0XOLFy8G4OOPP+bGjRtER0dx6EQIFd5dgNzSBgD7pm9j6+yKr1cp2tZwJci7DL+yDLrV93iNuwvtKrRDLi05tiyTyGhXvt2vHp+r0XP6YQpnI1PR6AyEhITg5+dnbqAbFxdH165dadq0KVFRUUWOPXPmjDkg5e7uXuS1Po3LYvVSRtdzEgk0reT8m9eWrdax8Oj9Ig+1ErkCrURJREIelRu2JDY2llu3b3M05CzWDbuiib0DJhP6zERybhwmbu9iMjMzSUhIoF27dgwePJjvv/+eDRs24O7ujq1tYSPuCh4uNLTNYXGvungai2duKV0rIZUrSdw8BUnaY95++21zL65x48YxefJkAN5++20CAgLYeiwMSaVmRc4hkStQP7mKNuEh+rxMUlNS8PX1xcrKCisrKzIzM/nwww/JyspCqVRSqVIl0tPTycjIYNSoUSQlJREeHk5ubi4xMTE8ffoUgHr16okAkvBf++H0Y7T64iWosXsXIfEZgNLWCSj5Z2mXLl0YNWqUeXJjs2bNOHnyJFDYy6tx48Z/xiUIgiAIgiAIJRCZSMI/RlRWFP0O9SNfl48RIya9ifCwcLIaZaEz6OjSpQtdunRh5cqVBAYG0qtXL7799luCg4OJik0g6cF13AYsRh17h6wLO3Bu/wEFUdfIvrKXJKB0Ox/atWvHhQsXyMzMLFYS9XuEx2Yxc19EkVIsHTKicmD60RicnZ05fPgwDx8+5ODBg6SkpDB16lTy8vKYNWsWKpWKKlWqMH/sAOxy8lGUq4uiUS+idi1m/LRpjAhqiFQqwclaycKe3kzZfRu9wYTeaEImAYVcyqddauFqZ/Fa661oX5HeVXuzM3InBfoC83ZLuSV9qvWhrF3ZEo8zmUx8e+oR34U+QiGVYgIMOg3zt5ykf3MvunbtSkBAAImJiZw4cYJr166xcOFCVq5cCcDVq1fx9vZGLi/5R1K7Wm40uBTDtacZ5iCQRAIquZRFPb1RllCm+LIzD1OQyyRo9L9se96gPF9r4GjYaQYEzaZAZ8SkUWNRzpvEzZ9gUd4bx1aDgcJ+Vkk/T2T8+PHMmzePH3/8kT179vDBBx9gaWlJQkICvXr1QiqV0qRxQ5ZN6ItlqQrIpJJi63FsMwxrpYxZ3WtTtapniX21duzYAYDvwlMYM/7z9ZD8snbrmq0w6TVknd+Gpa0D0dHRHD58mF69erFm/UZWb9xOpdqNOHr0IL5NGiCRSFAqlfTo0YMvv/ySadOmERgYSGRkJHK5nP79+zN8+HCCg4OZO3fub95TQXiVU2HniNv1DUilKN2q4BQw/KUS1J18t2xJice+/fbbfPDBBwDmYNKuXbvw9fWlY8eOxYLMgiAIgiAIwp9HBJGEf4xFVxaRp8vD9J/+QJnnM7Fvak+uLpfU3FQALl68SEhICFu3bi1ybHxsDEqXCkDhdKyss1uAX0q+LBUyfvq8A0CRMq8XS6LWrVsHUKSUYs6cOb+65lVhj4tMg4PCh39UVlyKSicrLYPWrVtz/vx5zp07h8lkom7duvTs2ROJRMKsWbPo1asXZ8+epWzZsvTp04clfasw444LbWu6IX0hONGtvge1PezZcCGah4k5VHaxYVDzClR9aUz9b5nUeBJ1XeqyJmINCbkJeNh4MKzOMALKBbzymE0Xn7Ii9DFqnRE1z69XxoIT0ZR1cSQoKIiDBw8W6/vz3J49e+jRo8crzy+TSlg7pDHbrz5jw4WnZOZr8fZ0YExrL+qWdXit69IZjC+3lkITe4fMsI1IZAqqeDfCx8eHOnXrcSvzHhK5AolUhsqjcAJg/qPLZF/cCSYTzs7O1KxZEzc3N+bOnUvbtm05f/48a9euxcvLC39/fz777DPkcjnXIh7Qpv8Y83umHvoK++bvoHAsg0QioUOt334gNhoLF55+8kcsytctsnZDfjYShQr7zpPh6AK27NjF/acJWNdug8KlErdOrcVnXjBZWbkUZGfQtm1bqlatyoEDB7C3t+ezzz5j3rx5VKxYkbVr15YYzBKEN+XmXpbUvvORyJWkHFiMNiXaXIJqqZSx6f3m1HC3M5egvlgam5ycTKlSpVCpVAAoFAo2bdr0V12KIAiCIAiC8AIRRBL+EfRGPRfiL5gDSACaRA3qGDXpIekUPClgzpw5hIWFsWfPniIlEgDVvCpjnRuLVAL5iZHIHX8ZDy2XSuhc93/zm+37CTkYfyVwYdCBY6lSODo6Eh4eTk5ODt988w3btm3j1KlTNG7cGLVaTe3atZFKpXh6ehIXF/fK9/NyseGzrrX/qzVLJBLaV2hP+wrtX2t/o9HEspORxXqfGDX5FGDFkuMPcbp8jrFjx7Jx48ZifX8Ajh8/zowZM371fRQyKf19ytPfp/ybXxSFJW96Y/EG5ZaVG2OllDGjc00Ali+aT8SXp3mSmofbgMXmfa28muBUoykjGjoxukNd85hyV1dX4JcgI1AkEONso6JJBSeeKaTmkkMLuRSVUsbqQY2KNV4vSWBNVzZdisEpYHixtedcPwRSKSYbF1q++xHbLlxB5loFm+b9Mel1yOwOkpeTRWLcMxo0asKSJUuIjY2lfPnyrFu3jsDAwCL9uATh12zYsIH169djMBjYtGkTHh6/lMoajCbORKZwNz4b72rleXIjjgKdEYlUBhIpiVumIbOwQZqXgs3wkyxc+D21a9emU6dO7N27l8ePH9OpUyfatm1rLucVBEEQBEEQ/l5ETyThH8FoMhYJIAG49XajwscVqPBxBVQeKqRSKc+ePaNLly7m32ib93VzY0D3jiRtnERW2Ebsm/YGQCmT4GyjZFL76r+5hvj4eBo0aICFhYW54fNzoaGhJWYllXWyAiD9xErzthcnqykc3YnMs2TTpk1IpVJat26Nv78/d+7coW/fvkDhb+jv379PRkYGN2/e/Nv1A8kq0JFdoC+2XRN7h4R14zm1aARlypTB1dW1xL4/Dx48oHz58lhaWpqPnTdvHosXL2bp0qV89tlnf8g63e0t6VbfA0tF0aCNXCrBwUpBl7qFD8MSiYSl79TDSilD9tJPSLXOyPqbmaw6F4PeYEQul3PmzBkOHjzIw4cPcXJywmQyMWvWLC5fvoy/vz+enp6c2LcN59AvGB9QhQrOVpSLD8Hh1DwOrVv+Wmsf5V/5lT2hVB410CZHo9UbOXXuMgnZGrQpTzEZDWiTnyC3dyP14BKUzmVxqhfIpEmTmDJlCoMHD+brr78GIDY2FqPRWOL5BeG5uLg4Tp8+zcmTJwkNDcXDw4NLly7RvHlzfJq1oFzLtxmz+TpLjz9g3814NHojprRojPnZSBUq0ORS/p3pTP9kEvPnz2fnzp0MHjyY6dOnmyexubi40L59e3r27PlXX64gCIIgCIJQApGJJPwjKGVKvBy8eJjxsMTXu33VjVmdZjFr1qwi21/MCFn4+WwmTvqEH8884UhEIjIpdK3nwdAWFXG0Vv7mGpycnDh58iTdu3d/7XUP863I6YcpOAWOKrLdZNCTvGM22uQnTBneB7cVX1G/fv0SezHNmzePoUOHotFoUCgU7Nq167Xf/89gqZQVC/DBL5kydhZyFs0pzGoqqVSqWrVq7Ny5s8i26dOnM3369D98rfO716G0jYq156MwGgszJ1pWLcUXPbyLZATVK+vAkfF+rDz9hL03YlHrjOYrzFLrWRH6mNALV9GkptK8eXO2b99OamoqjRs35u7du9y8eZOZM2cWeW+FTMro1l5cXu9EYGAg/fv3JygoiLi4uCLZHCVxt7dk3xhfxm+9we3YrCKvvdik28beESf/QeQ+vkbK7rkY8rOxruFHfuQFTAY9107uR1rZBa1Wy9GjR6levTqNGjXCzc2NCxcuMHbsWPHwLhSTlK3m1rNMQvfvRKfXExAQgJOTE7GxscTExKDRaMjMVWOURJAUcQ4rryZoEyNRlatDXngwNnaO2MVfoXSNmnRR3mLOpE+RSqU4OTnh4+PD6dOnsbS0xNPTk9mzZzNmzJjfXpQgCIIgCILwlxBBJOEf46NGHzH+1HjUBnWR7RYyCyY2mvha53C1s2BGUE1mBNV8rf1NJhOPU/Io0Bqo4mqDo2Nhg+qIiAhGjx7NkydPkEqldOjQgXLlygEwa9YsQkJCqF+/Pvfv3yc3Jo2UqPu49p2P3MaZlP0LATDkZeJQty3frv0Bnxqu+Pj4mN/3xV5MXl5eHDlypMi6NBpNkcydv5KFQkbr6i6cvJuE4aVYklIupXfjkptx/xVkUgkft6/GuIAqpORqsLOQY2uhKHHf8s7WDGhajr03YouFyPKyszi65wsO7NmJt7cXM2fOJCsri4kTJxIWFobRaEShULxyil/9+vUBqFOnDlFRUb8ZRAKoWMqa3e83p+HcYLIKdEVec2wzDAuFlEHNK7Dh/FPc+i0o8rpd425IKCyLWzWwkXn7yxPyAI4dO/a3+WwJfy2t3sgnu25zKDwBpUxKytmbaJNj2L1jGz8tnEHVxl5YOT8gMyWJrIdPMGUlY9DkkBt+AhMSNHH3cA4YRj13K55ePEIDHx/2bN9Cr169KFu2LEuWFDbWvnr1KmXLlmXQoEFkZ2dz6dIlCgoKiIyMZPv27fTu3fsvvhOCIAiCIAjCc6KcTfjHaF6mOV/6f4mHjQcqmQqVTEVZ27Isb7Ochq4Nf/XY5yUXfn5+fPjhh6/1flej06ne+xNqeFWgafMWuDV+i+XBhZlQ1apVY9myZXTu3Jn27duTkpLC+vXrad68OSdOnCAsLIyjR4/y8OFD7lw+i4VLBVRuXshsHHHrtwC3fguwrFifUjWa06pq6Te6Dxs2bKCgoOC1Ag9/ls+71qaUjQoLxS8/UiwVMso5WTE+oMpfuLKSKeVSPBwsXxlAeu7kveQik/WgcEx56sElOLQewo1UkMlkSKVSMjMz8ff3Z+3atdSpUwcAe3t7EhISSE1NJTEx0XyOW7duAYXByAoVKrz2uuUyKV/0qF3kPgMoZVLKOFgyPqAKZZ0sKWEYHBYKGUN9K/7q+ePi4vj8888JCgp67TUJ/16z90dwJCIBrd5IrkaPXmaJ1KMWQ9ZdITjPk92nr3Pm7HluhIcjs3NBorQEE5i0BUjkhdmdaSdXc+HwduLi4jhw4AD37t1j3759PHz4EJPJxNGjR9Fqtbi5uSGRSFi8eDFHjx5l/fr1tGnTRgSQBEEQBEEQ/mZEJpLwj9LSsyV+Hn4k5iUikUhwtXIt1kS7JOXLl+fUqVPmZsjh4eHmB/2SPErO5d3Vl8mU2WFVuy2OLd8l9dAylm4+giQtjwIDPHnyhPr163P9+nWSkpIAKCgoIC8vD4PhlybT/Xp1RZWfhJVEj0ShQqM3olJISY6/y779G5C/3HjnNwwcOJCBAwea/x0dHY2Pjw81atRAqVSyfft2Tp069cppZyNHjiQiIgKJRMKKFSvw9vZ+o/cviaudBccntmLr5RgOhScgl0ro2cCTHg08X6tx9N/Vi9lDzz0fU54espbvb2ylhd3yV5Yijhgxgs6dO+Pr60vp0r8EC0+fPs2KFSto1aoVnp6eb7SmjnXK4GStYumJh9yOzcRKKefthp580MYLK6WcVe82otfK8+RrDeRrDcikoJBKGdGyEk0rOf/quT08PDh79uwbrUf4d8rK17H7elyRIKrKowY5t44BoE2OQmppj9zJA7nRiCbpMSgsQKcBox5Tfqb5uPz0ZMCESqXCYDDg6upqHoDg4eHBs2fPyM7OZtOmTVy9epUGDRqwYcMG0fBdEARBEAThb0gEkYR/HIlEgrvNr09T0+qN7L0Zx7bLz8jX6WldzYXBLRywsAC5XE52djb9+vVj8+bNDBgwgAkTJlCpUiV69uyJXqLgQUo+0jqdkEhl6JKfkLR9NtqUKLSNu5EUeQ+Pmo2xQo0hO406dWpTUFCARCKhcuXKXLt2jVOnTpGenk5ubi7Ozs5YWagY5BRJ9cC+JGSpMSQ94mLb5lQv4/CH3JMXJ2xFR0eze/fuVwaRpkyZQsWKFYmMjGTKlCmv7LG0dOlSdu/e/cqgwo0bN5g8eTJ6vZ6PP/6YTp06EbFzGfu/+eYPuaa/g4Aarqw8/aTI5DnzmHKFjC0jmlKvrAO2traMGDECPz8/qlatSu3atRkwYAAbN26kY8eOABw4cICmTZsikUjo1asXK1eufNXb/qamlZzZPrJZia9VKGXN2U/acOBWPBefpFHKRsXbjTzxcrH93e8n/P/zKCUHpVxaJIj0Yv8tmaUdjoHvk7D+Q0zafABMmjzABHIl6HWFfwfcypQhMT6O/Px8TCYTT58+xWQyYWFhQWpqKgqFAgsLC+RyOXv37sXLy+svuGJBEARBEAThdYggkvCvo9YZ6PvjRR4k5pCvLXz4f5ySx8aLT5nfyo7U1FRatGjB4cOHGTlyJGXKlKFRo0YsWLgQec0AEp0akbNxGvb/OZ8+OxVMhsJ+Rrs/B5MJpDL0dhVRWjly9+5d9Ho9ZcuW5datWyQnJ/PBBx+QnZ2Nl5cX+/fvp2bNmjx6+IBPJhWWoE2fvoZev7OBsVpn4ODtBI7fScRSKaO5i5GQkBD8/Pzo0aMHKSkpnDhxAn9/fxYuXMgnn3wCwPXr17lz5w4VKxaWNCkUCmSykrOENBqNueTqVebOncu+ffuwsrIyb/vmLw4gXbp0iQ8//BCZTEajRo0YP348M2bMKJLRkJOTQ7du3dDpdNjZ2bFlyxZsbUsOsNT2sKdl1dKcfpiMWvfLw7SFQkqzys7U9Sz8lFSrVo3z588DMGTIEFJTU4udq27dupw7dw6pVIq/vz/vvfce9vb2xfb7I1goZLzdqCxvN/r79KMS/lkcrJToDMUn9jm2GYYm/gHpwatIWP0+cicPdGkFmDT5IJGAQoXcthT6tGcglWHnVIqkhHgkEglarRYAvV6Po6MjGRkZyGQyTCYT7u7uXLt2jRYtWjBu3DgiIyNxcHDgypUrdOzYkYSEBC5cuMAHH3zA0KFD/+zbIQiCIAiCIPyH6Ikk/OtsvPiUewnZ5gASFGYmZWZkMGj4+6xevRqAUaNGsXr1asaPHw/A0Qu3eGwoTYHOgNKtsvlYy4r1KTNsBQonD+R2pbGs3BiTQU9eTATpUXcxIkGpVBIUFMS4ceOoWrUq06ZNo0qVKuTm5uLh4YFOpzMHbwCOHz9Ou3bt3vjaUnI0tF16mln7Ijh+N4l9N+OZHRxH65mbORF8kuDgYPr06UNgYCChoaH4+PgQGhrKJ598Qt++fSlb9pegwtSpUxk3bhxQOKXszMMUtl2J4Wp0Oj/++CODBg0y7ztkyBDatm3L0KFDmTNnDk+ePEGtVtOrVy+6detmLufz9fV942v6Iz0vWwwLCyM5OZmcnJxi+ygUCjZu3MiZM2fo2rUr69at+9VzeiWFot0zA3tLBVIJ2FnIGeFXiR/ebUhsRgENmzandZsAAgICSE5ONpfsAOh0Ovr168fp06cpV64cMpkMiURi7qO0bt06fvrpJwDmzJlT4vQ6QfgrVC5tg6djyQ3W5XYu2NbvCBIp+owETDpNYQAJkEhkWFZpDkgACdJKzTGZTKhUhUMJngeuMzIyAMwZSceOHaNp06aUK1eOgwcPolaradWqFefOnWPDhg0MGzaM8+fPm39+C4IgCIIgCH8NkYkk/OtsvPi0SNYIFDZDTjm4hNItB2GyLMz+mDJlCsuXL2fWrFmsXr2aJ2prCuIfY+3giTbpCZYVG2Ay6NEmF06wMuo0yKwcUDiVwbqGH2nHVmDCRIW6zXBRaDlw4AAJCQnmKW1xcXFUqlTJ3DB21KhRADx48IDy5cv/rglYU3bdJjFLjd74S68etVHGtbgCtl6NIygoiIMHDxY55smTJyxbtoz9+/ebty1btoyaNWvi6+tLRFwWg9depkBnwGQCk0FP+sGdXD9dOBHu0qVLqFQqgoODWbhwIQUFBSQlJfHgwQNu377N6dOnmTdvHl9//fUbX88f4WFSDqvDoriTkEVZRyuG+ippXKGwNEYmkxEXF0fXrl1JSkpiy5YtVKxYEXf3wnLI5/vk5ubSuXNnDhw4wMaNG1Gr1UyYMAGNRkNE+G3KOFgSNiuwsJ+VXMqj5Fy6fnuOxym5yNtOJ08ixen2Zry9vWnevDnOzs7odDoGDx7MiBEjaNWqlXm9R44cwcvL65XZT4Lwd/Ftvwa8vfICBVpDkZ85MhtHbOoEYF3Ln9jvh2BbrwM5Nw6DyYhJk0v+g7OACYwGch5cAECj1QCFQSNbW1v0ej1ubm7ExsZSvnx5Hj16hI2NDfXr18fKyorw8HBq164NgLu7O7Vr1y428VAQBEEQBEH484lMJOFfJ0etL7bteTPktJC1dAzwp0yZMmzbto2RI0diY2PDiRMnkFYPIOfmEZK2zwaTkazz29AkPESb+IiY5X3QxN/Hrnlv8h+cJ/XgUox56QDcuxjC1atXiY6OJi8vDxsbG+rUqUNOTg5paWnIZDLKlClDjx498Pf3p1+/fuzcufONryurQEdYZGqRhzkAoyafAp2BteejOXfuHC1atDBnwuTn5zNy5Eh++uknVCoVUJgFdf78eWbMmEG2WkffHy+SmqslT1PYiDnlxgnw8qXvqotA4Rj4582369WrBxROHWvcuDFWVla0adOGe/fuvfH1/BEO3Y6n67fn2Hk9loi4bI5GJDJw9WU+WbWf1NRUrKysSExMZNeuXSxfvpyFCxeaj83NzWXVqlX069cPGxsbpk2bxvDhw9m4dQemmh1YevwBsxd9bW5iLpFIeH/Ee7RqE4BPh16c3/E9Gr2RPD2odUae6Bzwf28WMpmMESNGcObMGQwGQ5Hg2pMnT1i0aBFfffWV+ZzPldTEWxD+StXd7Dj1kT9B3iX3oMu+vBtjfjaahIdI5Epc+y9EWaY6EqkUe793kVhYY8jPQGphi9KlMtVr1EKlUqHT6ShfvjxSqZSgoCCWLFlCjRo1sLKyYtSoUVy5cgUbG5si3x8ieCQIgiAIgvD3IDKRhH+deuUcOHUvmRcfyZ83Q7ZSygiZ5IdJr6V79+4ALF++HIAyV09CvwUApAevQpf6FIfmfXBo3qfI+d0HfYVRryV512eU7j6dFYN9+WHm+8jlcrRaLUeOHCE6Ohq5XM7du3eRSqWUK1eOiIgIVCoV/v7+v+u6MvK0GHOSebZ6AgpnTyQyBc4dxpB6aBkmbT7JCiU+fYPw9fVl/vz59OrVi86dO/PgwQO6d+/O/fv3GTNmDHv27MHOzo7WrVuDfRn0dQcWeR9dehx5SU+4fusokpRHPHjwwDye/vbt2wBUqVKF5ORkDAYDN2/eLFKq92fJ1ej5aMetIllnJiA3O5Nv5s4l+NBeAOrUqYNcLqdevXo8evSocD+TiaFDhzJv3jwcHBwAaNMmgN4D38OyaR++DXmMQa8n/dABYt1bYjSZzBlZXad+z90FCzFq1QDkR14k9cASMJk4Et+KYYH1uH37Nm3atCEzM5NSpUoBhb2YBg8ezLp167C2tgYKg3Hh4eEAhIeHF35NBOFvxEop48TdpGLbDQU5FDy+iuf7azEZtGSc2YCFZy0sytcl58pe1NE3kCDBuctkUvfMR5P4iCcZStoGBJCWlsbNmzfR6XSMHz+e+fPn4+Pjw6ZNm4iPj6dv377cuHHjL7haQRAEQRAE4beIIJLwrzM+oArnHqUWK2kD0OgMvL8lnEkdqpm3RUdHM3ToUHQmFYn3H1Gq+wwADAXZJO/6HFN+JhV6TSUzI42M0LUAaJMeo3Aui8zChkkbQjBFRpKamorRaMTX1xetVovRaKRv375ERkZiNBpp1KgRlpaWKJVKbt68yYQJE1Cr1VhaWrJy5UqqVatWbL0vcrO3wGQCywr1KNX5YwD0WUnIbZ0p1fkL6pV1YNEHLQA4duyY+bhBgwYxf/58GjRoQIcOHViwYIH5tYnbb7L7elyR93H0HwKAQibBdGAWs2fPZsiQIQQEBFCmTBmqV6+OQqFg+PDh+Pv7m3v7/NmO30lE+lJ2gsloIPXgEpxaDyUkRkv/WnIiIiIwGAzcunWLypULe13NmjWLFi1a0KZNG/OxQz6Zh7xaK9KvH8W1cjPy7oZgUb0lZ86dJ+nGLQYNGkSZMmWIfZCMrFQF9PH3AZAorZDZOKPPSSE7IoQrpeVIpVKePn2Kg4MDSqWSrVu3EhUVRVRUlLkp8Nq1awkICGDx4sVcuXIFuVz8OIaiUwHfe+897t+/z7Zt2/Dw8CiyX2JiIqtXr2b69Ol/0Ur/fzgUnsDLOXLPv88cWw9FZuOIPisJCYXfi5YV6iKRSnHw7U/OzaPkR5zCqe1IXH06s3VEU7w9HWjatCmBgYEolUrGjh3L2LFjOXz4MFWqVGHSpEnF1vBir7BXTYsUBEEQBEEQ/hyinE341/H2dODbvg1wtFJgrZTxYpjBYIILT9Lo9+NFsgp05u0ZGRlcOHGQgLeHoHt8Hocm3cCgo1zvmbi2H0nsma2oylTDrd8C7H16YV2jFUgLG8SmPbjGo8ePqVWrFtWrV6dr165s374dgNGjR9OvXz/y8vLYsWMHWVlZPHz4kDVr1pCTk8O5c+cICQmhSpUqJV6LRm9g7404Rv58lY923KJReQc0z8JJ3DSZ7Ct7zftZSE3kHPmS06dPExQURFZWFgATJ07kypUrrFq1ik8++aRYGV0ZewsUspLLRJQyKUvW7wPgxx9/5OTJk9SuXZtKlSoB0KdPH8LCwjh9+rQ5E+nPLDnJyNehf2l61Itli99PGkhCQgIuLi5069aNcePGMXnyZOLj41m4cCF79uzB39+f77//nmfPnnHgwAGsfN7GrkEQmee3oEuPI+fGYZJPrUVvgt7v9OHZs2foU5+iTYkGwKjXkn11H6595uL81jgkMjk+vq1wcHBAIpFw4sQJVq1axd27dwkICKBy5coEBwcTGhrKkCFDsLW1ZfXq1WRnZ5Oenv6bE/H+zpYuXYqvry/R0dEMGDDgtY8bPHiwOUPs5amADx484OzZs8UCSABubm4igPQniM8sKDKkAH75PssIXUvi5ikYctNLPNaqui8FT65hVa0FzjZKHIzZNGvWjCtXrhASEkLv3r0B2LVrF/PnzxdT1wRBEARBEP4BxK++hX+ltjVduTK9LR/tuMXB2/G8PKlarTOSkJJn7kNTs2ZN5HIZk3o0Z/ehXEo1qMieO3UY0NKLH08b0GckAKDLTCT76j5ces4ifv0EEjZMRAJYlS6Lt7c3R44cYe7cuWzduhWTyURSUhLe3t7Y29vTp08fdDodJpOJc+fO4e/vb55UJJUWj+dm5evo/v05ErPU5oc4lURCjXFryElPIXrVKAruhaLLTsXizHKkltCqVSvu37/P/v37effddzl//jybNm3C0tISuVxOo0aNGDBggHnk/TuNy/FTWBS6YrkGhaVh7Wq5AjBs2DCioqKws7N7ZT+nDz/8kICAgDf+Wv1e3p72yGVStIZfHnBfLFuc0akGzXzKlzjx7Pmo8Rc595yD3mjCqlpzrKo1L/Ja0qbJTJg8jc2bNnL15wVkJ8Uhs7RDorBA8yyc1ENLwaBHIpXyTqcAju38mczMTGrWrMndu3e5efMmM2fOLPE6pk6dysqVK6levTpGY/HsuX+Cl4M/rys5R82d+CzGbblBxcrZWD4MZuDAgcyePZsZM2Zw+/ZtgoKC2L17N2+//TYajQZHR0fat2+Pv78/M2bMMH+Whf+NiqWssVbKyNMW/z5TyiT08ynH7utxOFeqjc5gQq9QoY66QeLTWyhKlceqfB20Ecf5YcrXDOzXBaVSiZ+fH7NmzTJnAvbs2ZOePXv+VZcoCIIgCIIgvAERRBL+teQyKZej0osFkJ7TGYxEp+WjoGgGjZO1koHNKrD182iuPU0jK/YRcgd3jDo16Ue/xbnjeCRyBTJLW1x6zcFYkEVW2M/Y2NnRt29fzp07x7p162jUqBEGgwELCwssLS25efMm06ZNY//+/bRo0YKbN29iNBqRSqXmP18058AdnqXnozP8EuDRmGRIkNK1flkOVqtF09YdCN65Hi83eywsCkdo9+jRg1GjRlGzZk1q166Nl5cXXl5e+Pr6FrsHZZ2smN6pBvMO30NnMGIwFmYgyaQSVvRvgJWy8EfE+vXrf/N+P28W/To2bNjA+vXrMRgMzJs3j++//75YMKBly5ZIJBLkcjlbtmzBxcWlyOuNyjtS3tmKR0m56F5oNi6RgEoupWu94tkrv6a0rYqELHWJr7kPWETw2cuUKVcRY81+ZKwZj1GnJjNsIyq3KpTuNo341e+jlJhwdSlNZmYmBoOBzz//nL1793Lt2rVik6WeBzBTU1OpXr06UHIw8e8oX6tnx9VY9t+Kx2QyYf0omD59B/DF3E8BiI+Pp1evXkRFRbFv3z727dtH+fLlqVq1Kk2bNiUtLY1RH37CiVwP0pJyub9nHadSojGpc7CoewiAuXPnEhoaysGDB9m+fTtNmjRh+vTpjBgx4q+89P932tdyY/a+O4Ch2GtKuYyP21dnWseanLqfTFK2GkdJWRynvsNPhy+zbfZQ3h49heWzPsTJWgnAyZMnRemmIAiCIAjCP9g/44lFEH6nlyeZQeEI+6St09EkRzHw7cLR7yVxcXHhzHeTSQ9ehZ1PT/IfnEeXHkfqgSXELHsHbdJjEjd+RPLueRRE3SA2LhFvb28ePHjAsGHDkMlkfP3118yePZv+/fvTsmVLrl27RkpKCsOGDaNnz540b96c1q1bExkZWeS9NXoDh8MTigSQoHASm1pvZOf1WGIePyDi7FE8PMpQpkwZHjx4gE6nY9y48dx7FE3bjl1QO1cj+OQpvvzyS77//nuio6M5fPgwpUqVomzZskRFRSF9co6+tvd5t2l5vK0yKXX7Z+b6SPjy42G89dZbtGnThvT0kstVfo+4uDhOnz7NyZMnCQ0NLbFUCQofNk+fPs3AgQNLDGJJJBI2DvPBIe4CKdumk7J1KiTdJ//YMnaMao616pcH1ZcDaKGhocyYMaPIthEtK2GpkJW4Fl1+DoNHvE+yWkL87i9AqsDt3SWoylRDn5NG3A/vIbOwxcbBiXLlypGamoqDgwOBgYHs2LHD3Lzb3t6ehIQEUlNTzc3KS5cuzcOHDwH+EZlImfla3loexoIj97n2NINrUansOxrMF7dk5u+3jIwMtm/fzsSJE9m1axfNmzdnx44ddOzYEZPJxMCBA9l+7CwGxwoYjCZUHjWwqdMWZCq2nb5F9gulpuvWrWPKlCls3boVR0fHYsFE4X/LQiFj43s+OFgqsFbJkErAWinDzkLO+qFNMBhNfBsSyecH7/JtyCNOP9PjWcqB9RO7806PLkwd1JlxIwvL1KRSKW3btqVPnz6kp6eTkJBAnz6Fgwv0en2RHmWCIAiCIAjC35P4daDwrxZQ3YUd154VyUaSyOS49pmHk7WSs9PbIpNK8PHxAcDf3988PS00NJRd12KZuS+CfK0BhaM7NrVLfsixUspYO6sdSrmUd95555XrMRgMdOjQgbp161K3bl1Gjx5d4n65an2J2zWxd8gM2whSOTZ1O9B4wFAOLxjFe++9x+HDh/Fr1QpTgz5keDiR/XA9R8NjcXz3O9TrPiA2NpYvvvgCJycn7t+/T8eOHZk5cyYrVqygb9++HJr8IXOu76TVxOFIJBLUajUnTpxg27ZtrFq1iilTprzGHS/hmo0mjkYksuXyU7LVeiyenEaq1hIQEEDNmjWZMGECcXFxdO1aGNDbsmULFStWRKFQAFBQUECtWrXQarX06NGDvLw8Spcuzfbt21FnpeItj2fr5bM8ScnDkJXExu9u4OVi88brHNSsAjdjMth3K6HIdnMTYf8hSMrVpFRqPJlnfkZu44TJZMSozcOkyUenzSdDJmPVqlVIJBLS09PZtGkTcrkcBwcHdDodmZmZtG7dmg4dOlC6dGkA5s+fz/Dhhfe8e/fujB8//o3XfunSJT788ENkMhmNGjUqkhUWGhpKaGgoc+bMMW+Ljo5mzpw5rFu3juXLl7N582akUilLly6lWbNmRc79YqNrgAVH7hOfWWAOcObdOYVF9VYkZanJT88HCstDpVIpHh4ePHr0CG9vb+Lj4wkICKBHjx5MnDwVbb4OiazwvyCla2XyIk5iUOcQs/1zyErgm2++AQp7JllaWvLo0SN27NhBSkoKXl5eb3yPhN+vtoc9l6YHcOJuEtGpeZR1sqJ9LTc0eiNB34SRnK1Boy/8IbvnRhxHIhL53M+W1NRUrKyszOfZuXMnTk5ObN68mblz57J06VLy8vLIycnh/PnztG3b9q+6REEQBEEQBOE1iSCS8K/2QWsvDt5OIE+jL9L1x0IhZXrHGsikv94IOqiuO6vOPCEqLQ+tvuQsEQu5lL5NyqGU/3piX3p6Oj179mTkyJG/uW4HKyUqudT8YPacZeXGWFZubP73mSQpo8ZP4uDBg+Tl5SGXOWO0r4LKuzJlvJqTfuw7FC6VkFZqRqO2jdm9ejkGg4G2bduSkZFBRkYGdnZ2KJVKUlNTCQsLY+bMmYSFhVG/fn0A6tWrx4kTJ35zzSXRG4wMXX+Fq9EZ5r5OuTci0afGcuH4PtYtm8e+fftITEzkxIkTXLt2jYULF7Jy5UpiYmJ45513yMnJ4ciRI8TExFCqVCkOHjxIao6as5GpnNq3B4PBwIg+XX81IPXcuHHjaN68OW5ubty6dYu33noLjUZjfrgdG1CFY3eSUL9w3583EU4PWUs64NhqkPk1Y24GDi0HkRm6BkxGmrbwIyYmhtKlS+Pq6sratWtZvnw5X3/9Ne7u7vj5+ZGZmUlQUBDffvstANWrV+f06dO/6/4+V758eU6dOoWFhQX9+/cnPDycOnXqvNax69at49q1ayQkJDBmzBj27Nljfu3lXkcmk4m9N+LQ6g1IJIWfd116HNqkJ+TcPII24RH79+83l+2l52kJe5hC52/PcydZjUaehK9fS2JjnqKs2ITELdPQZyagjgnHrf8i8iMvYVO/E6b7wZQtW5a4uMLJgd26dcPf35+MjAxz03jhz6WSywjyLlNk29cnI0nKUqN9IWPSaIKcrEyGj/qEu+eOoVb/UiLq5OQEQPfu3c0THXv06MG+ffs4depUsexAQRAEQRAE4e9HBJGEf62IiAhGjBiBhRHypI7IWo1GJpVSylbJ1A416FyvDNHR0cWa8968eZMJEyYA8PTpU0Z9MIaCJh3YfiWGfJ2R3IiT5EWcApMRl9aD0D0IZvKcg0Xee+zYsXzzzTesW7eOgQMHIpVKcXJyIiQk5LXWLpNKGNGyEt+FPKZAV7wXiVGTj1RlhdFk4mBwCF9/Po1btyMIjgPT5X3YNeyMzMoeo7aAvPBgrGu2Yt+x49SqVYunT59y8uRJLl++zNq1a4HCh/RFixZRpUoVc7Pv58GDW7duUbly5Te+/wC7b8RxJSqjyDWYFFbIPGoxbssNPm7ThqtXr1KnTh3kcjn16tUzT+oqV64cFy5cYNeuXSxZsoTly5dTo1Ztavp1JNXCA9cWvUg6cw1T+jOO7d/Jtu8WvDIgBTB+/HiaNWtGnz59CA0NLTHTSimTwUtxxedNhF+k8qiByaDHqMnDtm47Cu6GoJIYqODhyujRo0lKSkKtVuPj48PmzZs5c+YMOp2OH374AZ1Ox5gxY+jQoUORcz7/vMpkMry8vFizZs0rp91l5etYEfqInddjuf/TR7wzezWVMnfz88rlZGVloVKpAIiJiaF8+fKULVsWgFmzZhESEmIOEAJ4eXmh0WhITUsnWaug8bxg0nI1uNhZ4JVylsHvDmTOnNlER0czeMgQnsVrsazcCJNBT274SSzK1cZk0OHWbwExX/Xm7v37HDlyhM+WfM2iFetQJ0XhrHNBY1OWiPR8ei3YCSYjKvdq5MU9xKJcHfTZqSRt/gTLyo3Rxdzio2Vb2LF1PmFhYYX3W6WiYcOGzJ8/n6dPnwKFAS5LS8s3+jwKf6yd12KLBJDgl8y90i0HI7VyAHWi+bXs7Gzs7Ow4d+6c+WdKz5496d+/Pzqdzjz5URAEQRAEQfj7Ej2RhH+tatWqcf78ea5ePI9/NRfWBDlxYWobzn3Shs71yrzyuHr16hEaGkqXLl3Izs7Gp1FDHm3/grufv0XYB3UJsE/j869+IDCwLatGBVLRWoe/ny+tW7cmNjYWwFyKs27dut/d52a0vxfdG3ggKyGOoIm9Q8K68cSu/wh7Z1dcXV0p0BlwbzMIXdoz8u4WZrbIHd3JuXmU9JM/oVM5MGPGDNLS0nB1deWtt95izJgxAHTt2pVvv/22yIQkhUJBhw4dWLFixe9uZjxn3kKi1n5UZJvKowba5GhiMwrYsnMva9eu5dChQ+zfv59bt27h6OhI06ZN8fX1ZciQIeTl5REcHIxGoyGpbBuM/mPJfniZyNUfknHjGFlxj+n7XQh1GjenoKCgxIDUw4cPuXPnjrn/ClAk0+r5fmWdLHG1s3ita8u7c6rwIRmwUcmpWMoaAEdHRzw8PHj48CEzZswgOTmZgIAA7Ozs2LZtGx4eHmRmZprPozMYUesM5s/r88DJ1atXS3zfrAIdnb4JY+25KNJytRiMJkIeJPNdyGNatOtCw4YNGTVqFDKZjODgYPPDekJCApcvXyYsLIymTZuazxcQEED16tVp7h9AnIc/KTkajCZISM9l/9GTHEl3Nu+bkpxMw6GfYl07gNzwk7gNWIRV1V8m2dl6VGHk8OHEx8czd/ZMHDtNxG3wcnJuHMLBrz/WTftwet0i5m8+jq+/Pxaly1Gq00QcWvTBunYAToGjMGly6V7DjszMTDw9PYHCDKizZ8/SsmXLwnum0zF8+HAx0esv9nKmJPySuZcaspYubwWSkPBLeWibNm3w8/Nj4cKF5qwjOzs7LCwseOutt/60dQuCIAiCIAi/n8hEEv51UnM1ZORp8XS0QvGfbSqVCpVMwttd3sLJyck8NQqKT5Ly9PREo9Fw7do1tFotWXIHwiJTqDr9CPkRJ3DOySRh+RTq1qlNblwkoaGh2NnZIZFImDp1Kj///DO+vr4sXbqUmzdvEhAQwHvvvce7775rXuPevXtp2bKlubyjJFKphPnd69CskhMfbb9V5Df+z8vaLBRSvvnAlwputvy8cSON5wXj3O6XPkvO7Uab/13X0x5/f98Sm2Q7ODiQn59fZFu9evWYO3fuG9//5zQaDakxD4ttV7pWQipXEvPzZNLUKaxfu4auXbsyZMgQDAYDFy9exMrKinfffZejR49y//59qlevzo07kXw/aSBGox65nQsObd4j5/Iecm8fJ/3GcdYnWdG6aikiIiIwGAxFMqiqVq1K3759mTRpEkuWLAFKzrSSSCQs7OnN4LVX0OgMFG/LXshk0JN5bguGnHRiv+mPxGTEtowrUNhDaNmyZVSqVIkPPviABw8eAIUlZ/fu3WPr1q2YTCYeJefw6YG7nH+chslkoqqrLdM71cCvSmlUKhXHjx8nKSmpyESz2bNnk13am2cP4kg8/A1yJ09M2gJMgKYgn/U/rKVxg3rs37/fHCRr2LAhFy5c4OnTp3h7e5u3HT9+nOzsbNasWcOuU1fo8/Ux4g4ux/Xtwglrhb2OWnIoPAGb/2SS1a1blz7ta/DR+tPI7UojkcpQuhRmj1gqZNg4FWYGNfdrhUGvIyN0PfYt+qCJe2DOUHHwH8LOq7HUyQjD2UZF+uGvyI4IAZOJ8m0G8M7Ad/h86kQ6d+5svt9XrlyhQYMGyGQyBg8eDMCJEyf44osvmDt3LqtXr6ZatWpv9gEV/ms+lZw4cTcJ0wvfKM8z9xytFJybEYhMKjH32XpVYFShUNC7d+8/Y8mCIAiCIAjCf0kEkYR/jdiMfD7acYsbTzNRyCUYjdCAR9zas5KqVavi7OxMRkYGwcHBbNmyhV27dtG1a1cyMjLYf/goUxZ9z8CZX9P+naGobx7Gy8sLSxs7Jm67SVJiIrKdc9HE3yfTvSpVuo3hxIF55t+iJycn06lTJ44dO2ZeT5MmTahXrx7BwcHFRlrv3buX2rVr/2oQ6bkg7zL8fCGGW7GZRX7zb6GQ0rqaC9XcbAGwt1QQWNOVE3cSi5WYWCpkvO//+0rS3sSj5FzuxGfhaKXk5rFt+L7Vk8PrvwYg9dAyDDkpyOxKI7crjUunCXg92sHChQtxdC5Nq8k/EZ2voNlbvWjWpDGZmZnUqlULvV7PsWPHePwsAZOuAH12ChKZgvRDS5HZOoNEQubVA4SXrUJ6eA4uLi60a9eO27dvc/HiRaKjo7l8+TJyuZy4uDhKly6Nj4+POdNKrVaza9cu8zU0reTMzlHN+OrEQy5FpSOTSsgp0PFizoVEJsfz/bXmfydumszxEweYM3sWU6dO5cKFC+Tn55OXl4eNjQ3r1q3D19eXFStWALDsm+/o9t35Ir267ifm0HfGtyiub6N+nZoMGzaM3bt3k5qaSuPGjbl79y43b94krakvKWcWUbrHdKQWtsR9PxST0UB+5AU8+8/nm8ndGdCtgzlr58aNG0BhECs8PLzINqlUipWVFScj09HLLDDpNOZret7rKPfmEUh5xIEDB5BKpXSp50FCRiMm7EjFWilFnRqDVCJhZMtK7AhVUK1aNdbsOkrzFi0AMBZkAyZzhkpG6FqunZUyb+P3pCZ/x6gPp7J46VecPryHS9MDKMhvStmys/j+++/Na9mzZw89evQo8lnbtGkTCoWC06dP8/XXX/Pdd9/9zk+t8Ht92LYqYQ9Ti5XcWipkfNyu2m/2nAMYMWIELi4uuLu7/6+WKQiCIAiCIPyBRBBJ+FfIUevo9t05MvJ0GEwm/tPDmeuKynSctRFt2GoOHjxYbGoUQNlKVWm5+DRpjzRkPYnjachDUg7soVoZR/Iklij1RozqXFz7zCXt8HJMOg0pORpS8xVsvRSNta09crmc0qVLm5tAA+zfv59nz57x7bffolAoGDJkCB07dmT9+vUcPXqUe/fu0atXLyZNmvSr1yaRSNgwrAmLjz1gy+UYtHojVkoZQ1pUZGybolOqFvSow7O0fB6l5BZOlJNKkEolDGxWnva13F77fr44pe517/+on69x7WkGMpkEk0FP/J7trFy3kaPrv0YT/wCJvHAqXtbFnWDQos1JJ/TyLSr1+5TUyx+xe9YA7Jr0ICc9heATxzDlpWO6c4djx44RFBRE2UpVeZIjQZebgVu/BeRcP4jMzoX8hxdwH7iUFjXL82zDx4SGhpqnj1WuXJno6Gh69+5dpO/V82t8ldoe9qwe/EsD894rz3M5OuOV+3u8uxidVoulpSVSqZSDBw8W2+f5dDOAZuO+Yd/NuGKZTvKKTfBs0Ioyz3YTExNDeHg4WVlZTJw4kbCwMIxGI3qkGDV5yO0KR93LncqQf/8suuQoUkPW8cGDPZQtW5asrCwCAgIoX7485cqVw93dnYYNG+Ln50fdunUBsLGxoV27dnz3YR+SsvKxb97XvBZH/yEAheWUB2fRuXNnLl26BMDI1lXRTBnDyp9mUrFqHTJVSr4LfURcTCZvfX2eKUG1MJlAKpeD0YjJqCf/wbnC4GHnj3G3U/LWyBk4dfqImOBk6laphbvrWeQyKUeOHMHS0pJevXpx6dIlCgoKyM/PZ/HixSxcuJBNmzZRrlw58/S+3Nxcc4aV8Oeq4W7H+qFNmLTzFknZamQSCXKZlI/aVaV/0/KvdY5Vq1b9j1cpCIIgCIIg/JFEEEn4V9h5NZY8jQHDC3UVJr2OAhQcvJ1AB5UllpaWRRoVm0wmTCYTl6LSsaqiRaM3ACaywk+iqupL+MUdSBWFDYoVpcoikUhRedYg92ZhtpFRnUua2kR2WjrLth0jKioKW1tbc1bL7t27cXd3Z9SoUXTv3p3z588zadIkypcvT4cOHZgxY8Zrjyq3UMiYGVSTaR1rkK/VY62UIy3ht/y2Fgr2jWnBhSdpXHichpVSTsc6bpR3tv69t/a1jN50nSvR6YUZUHrIvX0CZbWWfLr/LuWcrSgoSMXWvTI2Kjlql4po4u9jUlqjdK+C2rI0ZYavImXvAtTRN0Eiwa7ZO7g0bE/iioEs2HQMo60rx44dR+bkiVGdQ+LGSRi1BchsnMFoJG3vfJTGjmg0Gtq3b893333HtWvX2Lt3L/Xq1SMkJAQ/Pz969OjBhx9++MbXt3ZIE1ovCSU5R1PsNakEWns5MXLkCKZNm/Za5zt1PxnjSxEkk16HRK4gOUeDzMIaa2trpFIpmZmZ+Pv7M2vWLNq0aYOpmgsRKmv02alILWzQZyRgXbMVlpUb42BvR/DHvvi39OPIkSPmQMtzJZUnTps2jYA+Ixmy7op5gt6LlHIZO4+dokIZ+yKBuNGjRuLfrT9dZq1Da5WIzmDCpe8XPM3UMPzzlViY1OgKspFa2iK3d6NUtynk3T1N3oNzJFZtisFowgTEZhbw+G4chjwt9+/fZ8WKFezatYu7d+8SGBgIwBdffIGVlRXBwcH88MMPzJs3D61WS5s2bYiPjy8yUU74czWp6ETox/7EpOej1hmpVNoahUy0WxQEQRAEQfi3EkEk4V8h+F5SsZKKgqhrZF/Zi0wCdxvWYfzoUUWyQQDuJeSg1hl4ccaTLj0OdfRNDAU5mLISyX90Gcl/RnYpHMuAVEbKvkUYC7KxrulP9pV9fDS4F17lPQgMDOTx48cYjUbi4uLo1asX3bt3p2rVqhw9epRNmzb9V9cpk0qwtVD86j4SiYTmlUvRvHKp/+q9XtfTtDwuR6UXKaF7XgqVd+sIxqRHTO7aifBHeTRsUpbl57ZjovBeGvMzQSpFnxGPwtENpWvlwmOTo3i6awGafA23E/IxaDUYclKwadIdmZU9Ko/qZJ7dhNzRHbmdM30//YmVAxrS1OcEvXr14v333ycvL49u3bqh0Wh4+PAhKpWKrl27EhAQ8MaZK9YqOdtHNqPzN2fJ0+rNASCZFKyVcmZ2rUP5oWf+q/v4/PMqlUBqq0a0a9eOCxcukJmZiUqlQi6X07x5c+o292Jbq37E7/4cuWMZ5HalC4+/vh9l2h0CjyiYMmVKsQDSr2lS0QlvT3tuxBQvmWzu5UytMvbFjvnmm2/44vsNZOUVUKrTxCKvySs2oaFPGzKDfyA66ipWLuWxsVAgcXQhNyuRl6ot0RmMZBfocC9fmbNnz3Lx4kVCQkLYunUrAIsWLeLkyZPodDpq1KgBgFKp5OzZs1y7do1Zs2aZe5wJfz6JRPI/D1QLgiAIgiAIfw8iiCT8K1gpi3+Urao0xapKU2xUMib1rkelSm7mTIrn5VpHwhMo2+MTcjV6LMp5Y1GuaHAhcdNkrLyaoI1/YN5mWbE+NnXaknnmZ+QObsidPJAatNg5leaLL75g7dq15Obm4uTkxIQJExg+fDhBQUH07t2b9evXM2jQIBQKBQZD8ayPf6J7CdkoZNIiwYfnpVAAOTum8umncxgyZAjfTRpEvtQWhZMnEpkcG+/2JG6ajESmwLnjBLLCNmIy6tEmPcZkMmLQ5CEvXx9T2GYkchWZp9fjPmgZOVf3YMzLQBt9A4NOw/GZvTjhspJOnTqxZs0arl+/TkBAAPCfpur/GXkfFBRERETE7yp/qlDKmiMT/Pjm1COO3ykcW96+lhtj2njh6Wj1RudqV9OV3ddjiwRTnn9eK5ayZtPH/gB8+umn5tfPnTtn/vvhuUP5pH4j7ifkIJNKsFLK+GLRXPr6vF4J0cskEgnrhvxSMqkzGFHJZbzbrDwTA6uWeMyHH37IdynVsHoppep5RtWT1Dx61CmHWxlPjp5MZ/6QJkz99glXn5Q8rVACXHycSiN3JdOnT2fPnj1IJBLS0tIIDQ0lLCyMEydOsGnTJkwmE3q9HoVCgZ2dHZaWliWe8/+j6OhofHx8qFGjBkqlkuPHj79y3/j4eAYMGIBareazzz6jbdu23L17l+HDhwOF09Q+//zzP2vpgiAIgiAIwj+ACCIJ/wpvN/Lk3OPUEstxDEbwq1K6xOMqu9igN5b8UCuTQpfpPxIel4W888cA5kCTLi0WiVxJ/v2zGLKSULiUx2QyERcXx9tvv423tzf37t0DYPr06UyZMoWAgADeeustOnToQPv27Rk9ejRvv/02o0aN+oPuwl/D2UaFyfSqOWbQa84aAH788UdGbbrBrrUrzNkz1jVbIVVZkRm2kbQDS1B51sTRfwg51w8i0Wtw9B+CsSAHywr1KBX0EVnnt6F+egunwNFUtJPy9ZyPmT59OqdOnaJFixZcuXIFtVpNnz59CA4OBiAnJwdb28Lm4+fOnWPs2LG/+1o9Ha1Y2NObhT3/ux4849tW4fjdJHLUuiJlbRYKKXO71f7N42u427F/jC+puRoKtAbKOFi+VhPjX/NiyWSuRo+NSl7knBEREYwYMQKZTIaXlxezZs0i+uv+yJ08kcgUuL5TGGx4nlElAVLaNuH9kSO4ceUijSs4IZGAPiuJ7Mu7zefNPLeF7Es7Mem1DAvy5f3hQ3n27BldunQB4NSpU9jY2NCmTRtz8E+j0dChQwckEgkSiUQ01X5JYGBgsR5gJVmwYAFz587F29uboKAg2rZty8qVK/niiy9o2bIlgYGBZGZm4uDg8L9ftCAIgiAIgvCPIPm1h7+/s0aNGpleNS5Y+P/HYDQxaM1lrj3NKFLWZqmQ8WnXWvRuVPaVx3b99iwR8VkYXoolWSikHBzrS0RcNguP3icpW43RVDjePWnrdOyb9cayUkMAbFRyrs8MRCn//9cLxGg00fSLkyX2C7JUyvhpYCNaeJVi0KBBXA1/QEyuCacuU5DIla88p0wiwUIpRas3onshXafg8RUywzYikSvwadqc0W+349tvvyU/P58BAwbg5+fH8uXL+fnnn1m6dCm2trZ4eHgwc+ZMVCoVvr6+LFq06H9yH95UTFo+Xxy5R/C9JAxGE/XLOTLlreo0rvDbE/v+TEajidRcDXKJESfbwoyrIUOG0K1bNyYv/gGd3wcYjEYkkqKf/SYVndg+slmRbduvPGPSN1vIfHQdx5bvFnlNJZdyeXpb7C1fvwxPKHTrWSZH7yRiMJqoaavhgz6dqFSpEj169ECpVFK+fHmqVq1K06ZNSUtLY/bs2QQFBTF58mRCQkKQSCR07tyZzZs3s3nzZsqUKUPHjh3p0KED+/fvF5legiAIgiAI/89IJJJrJpOpUYmviSCS8G+hMxjZdPEp6y88JSNfS013O8YFVKFpJedfPS45R03/Hy8Rl1mAzmBEIZNiNJlY8nZdgrzLAIVNuB8l59L7hwtkF+iLNPC2VMiY1rE67zar8L+8vL+1GzEZDPjpEnqjCY3eiITCzJa3G3nyaZda5obmWr2Rzt+eJSo1D+0L5W8yqQSTyYSVUo7OYKSOhz2T2ldj4JrLRcrknrNUyNj5frMSe/X80zz/Gfxi0/e/A5PJxKZLMXx14iG5Gj0GoxFPRyuslHLu7/ySLkFvsWLWOIwyCxRuXhhy03FsNRiFcxniVo3CyckJpUKOn58fsbGxJCQkcCviLq0+/oGnty9i5/dLEMlSIWNky0pMeEXpnFAyvcHImM03OP0wBfV/gucqqYE67jasfa8F7/TqweTJkzl69CjVqlVjy5YtLF26lKlTp7Jr1y7atGlDWFgYAAMGDGD+/PloNBqCgoIwGAz069ePzz777K+8REEQBEEQBOEv8GtBJFHOJvxrKGRSBreoyOAWFd/oOBdbC45/2JILT9KIiMvC0UpJh9puRRpYSyQSqrjacnCcH7P2RXD6QQoSSeGxk9tXo2t9jz/6cv5R6pdzJORjf36++JQr0RmUtlUywKc8TSo6FQmOKOVSdr3fnIVH7rPzWixqvQFXOwvGtfGiYx13YjMKcLZR4m5fmPnQt0k5tl15Viy7rENtt39FAAn+fsGj51adecKy4Mgi9/7uxRAyz6xH7uTB/igTCgc3Lly6SrcePUjU5qN5eJY6vv7k2NkScuok7777Lvb29tSsWZP4+HgOH9jH591q80XKXdLkUrQGI652FkxoW+VXswWFkv10NorQh8modb8EWtVGGbeTNCw7+ZigoCBiY2MJDw8nKyuLiRMnEhYWhtFoRKFQIJPJzMdlZ2fj4ODA8OHD2bhxIw0bNqRnz55ER0dToUKFv+DqBEEQBEEQhL8jEUQSBF5/opmHgyWrBzVGozeg0RuxVcn/tkGA32vp0qXs3r272CS7XxMfH0+lSpWIiIjgo3ZNf3VfG5Wcz7vV5rOutdAbTUXGgTtYFS1xm925JnU87FkR+oj4TDUudipGtKxE38bl3uyihDei1hlYfjKy2MRDqyo+WFXxIf3ESjIjryEtVZH9ESm0bNueoydDyY59xNMbcvLz8/nggw9IS0sjJiaGK1euMH/+fDZv3oyNjQ1OmgQ8Hq4lIzMTK0tLun+0A61Wy9tvv41Wq8XBwYEOHTowePDgv+YG/EOsPhtVJIAEYNTko8GKzZdjqP/4HOPGjUUqlZKZmYm/vz+zZs2iTZs2AHh7e3PhwgW8vb3Jzs7Gzs4Ok8mEk5MTUqkUe3t7cnJy/opLEwRBEARBEP6mRBBJEH4HlVyGSi777R3/YTQaDbdu3Xrj45YtW0bTpr8ePHqZRCJBIfv1AJxEIqFnQ096NvR84zUJr2/Dhg2sX78eg8HAvHnzmLt4GbK67xXZJzc8mNybR5Fa2iJ3Kvx6mJDww75QEjYvRmJhjyEvnSfhOTg2683s7xYx5C0foqOjkUqlREREEBMTw/vvv8/mzZuxt7dn+/btLFy4kN27dxcGcps3Z8qUKbz//vt/xW34x0nNLd6HTBN7h8ywjUjlCgJ7d8THx4f69euTmZmJSqVCLpfTvHlzACZPnszAgQMpKCgwTwL85JNPePfdd5HJZNSoUYM6der8qdckCIIgCIIg/L2JIJIg/IOUlCUUGhpKaGgoc+bMeeVx169fp2HDhuh0OuTyX77ts9U6dl2N5VJ0OqVtVBjvHGXQoEGFk7eioxkyZAh2dnYkJSWxZcsW7O3t6dGjBxKJhDp16vD111+TkpJCTk6OKHn5h4qLi+P06dOcPHkSKBwRL5FIeLFbnsmgJ+vSLqSWdugyEzHkZaKo/xYFT66iy0zAunZbHFsPJWbZOxhz01FVa8mk3RE0a9acnTt3YG1tzenTp1EoFLi7uwNQv359AOrVq8eVK1eQy+Xm6Wv16tX7M2/BP5aLrYqk7KKBJMvKjbGs3BgblZyls9sBmANEUDih8DlPT09OnTpV5PiGDRty/vz5/+GqBUEQBEEQhH+y/3+jpAThH+r3ZgkBfPfddzRo0KDItodJOfgtDGHRsQccjUhk4/nHfLNpH1e1Zcz7JCYmsmvXLpYvX87ChQu5fv06/v7+hISEsHz5cqAwC2nMmDG//8L+B6Kjo3F1dcXf35927doVee3FgFvXrl1xcHAgODj4L1jlXysxS82TlFwOHzmCwWAgICCAsWPHYjAYyM9I4dm2OSRs+AhdZiK69DgsytXBvf9C3PovRG5XGlvvdljXao1EpkATfx99djLWNfxweedz0o59y5Otn3M67CzVq1fn448/pnr16kRFRZGXl4e9vT3Xrl1DpVJx4cIFnj17RmJiIuHh4QDcvn37L747/wwjW1bGUlH8v3ELhZSBzcojk/67Sm0FQRAEQRCEv54IIgnC35TJZOLms0xWhD5izdkolny9gkGDBplfHzp0KG3btuXnn382b6tbty4DBw6kbt263Lx5E4A7d+5QtmxZbG1ti5z7vfVXyS7Qmfve5EScwqJ6K9aeiyZHrQegTp06yOVy6tWrx6NHj2jVqhVGo5F+/fqxceNGMjMzefbsGbVq1foT7shvMxhNpOVq0OgNBAYGEhoayvHjx1+5/8qVK5kwYcKft8C/gYi4LDouD6PV4hCCvjnLzC3nuB+XTnBwMFZWVuzbt4+kpEQ2btmGe4eRZF/aiVGTh1RpBYBUZY1BnQuAQ6tBuPVbgEWF+iSsm4AhPwt9ZiKauPvoclKpUKU6AJ07d2bZsmV07NiR5s2b8/jxYx49eoStrS1HjhxBp9MxduxYzp07R/v27UlMTEShULzyGoRCg5tXoGMddywUUuRSCTJJYeP5FpVLMaGtmHQnCIIgCIIg/PFEOZsg/A0VaA0MWXeZW8+y0BoMyExGEvbtZk7djgBcvnwZmUxGcHAw8+fPR6vVAoWZQ5cuXeLatWusX7+eevXq8dVXX7FgwQJCQ0PN578dm0VqrqZIyZIuPQ5t0hNybh7BmBTJgQMHiIiIwGAwcOvWLSpXrozBYDCP/K5Xrx5Vq1YlMjKSDh06EB4eTmxs7F+S1WMwmvgu5BE/hT1Bozeiy0wi+fBxmrfw5e1ePfnwww8ZOnQoMTExlC9fnrJlCyeBPS+tei43N5fOnTtz4MABNm7ciFqt/lcFmWLS8nln1QXyNL80zNbJLImWV+DHsCe0adOGq1evUqdOHTrXL4fdx+/wdo/NqKxs0OgKkEpAp8lHamENQPalXaif3sJkMGBZuQlSpQUmnRqrqs3x7PEJR6YGsHblNzx9+pTRo0czYsQIHB0dyc3NxcvLi23btnHq1CmuXbtG5cqV2b17N3K5nPfff59KlSq98fVFR0fj4+NDjRo1UCqVrFq1ihkzZrBx48YS93+dUtC/M6lUwpe96zGqVWVO3EvCaDThX82F2h7/jsmFgiAIgiAIwt+PyEQShL+hmfsiuBGTSYHOgMEI6beCsazeip/CosjI1/LkyRNzT5mGDRuaj/Py8sLCwgIPDw8yMzOJjIzE3t6eUqWKTp1LylYXK3Vx9B+C6zuf49r7M6zdKtC5c2dcXFzo1q0b48aNY/LkyVy+fBlfX198fHxo27YtPj4+XLhwgaNHjxIYGMjKlSv/q+uOj4+nQYMGWFhYoNfrS9wnOjqaAQMGFNk2bU8400cPJGJBTzIfXcdg4YDrsJVYdPuU4ydOcObMGXPQrXLlyq98fxsbG6ZNm8bw4cPZs2cP48aN+6+u5+/m+9OPUb80cU3lUYO8xCd8ffIRV69fRyKRmIOHlrmxdG/VgEffvUcd62wqO1uijr6Jqkw1DAXZqGPCcX1nHg5+AwATEpUVErkSuUxK70aeOFkr6dWrFzt37uTOnTvmJs1OTk7cv3+fNm3aEBERgbOzMwCdOnWiRYsW5Ofn06xZs991ja+TgfZvU8XVltH+XoxpU0UEkARBEARBEIT/KZGJJAh/M7kaPQduxaPR/zK6+8UsIUPiQx48eEB8fDwAN27cMO8nkfwSGDKZTJw8eZJvvvmGtWvXkpOTw6hRo/jpp5+o4mpL1uObZEfdwsG3Pxkha9DE3QOJBJdO4xm1eBOzZ8/G09OzSBZH5cqVizT1ftG6det+1/WaTCayCnTIZVKcnJw4efIk3bt3f+3jYzPy2XsjDvvA0chuHim8D3IFBiAxR0er+n7ExsYWCbpduHDhledr27YtH3zwAZ9++ilS6b8rzn76QTKGohPhUbpWQipXErV+EqdrVeTbrxZz/PhxunXrRkpKCps2bUKhUDB8+HDGzByHTmZJqS6TkCgtkSotSdgwAWNBLiajAduqPtg3aI+dNoY5XWoDUL58eZ48eWIeKw8wePBg9u7di0QiwcbGxjzZ79ixY298TSaTiesxmVx/mkF+WgInT4Xg5+dHjx496N69O/Hx8fTq1YuoqCj27duHp6dniVlps2bNIiQkhPr165Odnf27P8+CIAiCIAiC8G8mgkiC8AZeLpcpKdthwoQJ5n5Et27dIiMj443eIzFLjVwq4cWZS47+Q8x/T9n8CbNnz2bw4MEEBARQvnx5ypUrV+K5OnToQO/evdm4cSP+/v7mTKGKpayp7GLDrWgJhoIcNImPcBuwGHXsXXJvHGHoZ/2QN/iUGTNmvNHaf0tERAQjRoxAJpPh5eVFm77v8/GU6di99SGxG6dgo5RRsbQNmrxs8zHjxo3j5s2b2NnZsWnTJqBwoljXrl1JSkqi/5QlSCUS5DZO5mOMmnykKivytQZOhoUxuEsb1qxZAxQNur3s0qVL9O3bF4PBwOTJk+nRowcqleo3r2vs2LF88803v/e2/GlUClmJ2x3bDMNSIWPF2BZ4udgWKX187t133yWuVCNWn41CZygshHTpNdv8uoVCysZhPtRwt8NaNbTIsS8H7YYMGcKQIYWf6edf098jW61j0OrL3E/KQW8wIjXqsRnwLUOC6rBr4XgCAgLIyMggODiYLVu2sGvXLpo1a1asFDQhIYHLly8TFhbG5s2b/19lMQmCIAiCIAjCm/h3/ZpdEP4Ev1Uus2zZMkJDQ/nqq6/o1KnTG5+/tK0KndH0ytd9J64ACjN/Tp48yZo1a8w9Xc6cCePU/SQWnUtH0mo0e2/EciqkMDOja9euyOVyc0Nuz9SrlLZVYW1tjcLKDisFKAwFdPGpipeLDQMGDHhlL5nfq1q1apw/f56wsDDiMvKZse0CeRo9OoMJk8mEVfdPyWs7HUsbOwCuXLlCXl4eZ86coU+fPuYg2ItT4w78/AOSl4ZQaWLvkLBuPIk/f4ytU2l8fHzQaDQEBATw8OFD837jxo1jw4YNTJo8mWXfrkAilVKlShWioqKoWLHia0+d+yMCSC+X8iUmJjJv3rxi+w0ePJhHjx79rvfo1dATlbzkH/vONkoql7b51eOHtqiIlVJe7H5bKmSMbVOFRhWcsFb9eb+b+Gj7Le4kZFOgNaAzmNCYZOikShafeETtpq05ePAgNWvWRCqVmks8SyoFffr0Kd7e3kW2CYIgCIIgCIJQnMhEEoTfoNYZCH2QQlqeBkPiI7Zv387mzZtZtGgRvXr1IigoCHt7e1QqFbt378bBwQGAPXv20KNHDwA+/vhjWrduTcOGDXn33Xc5evQoMlnJWSH2lgoCqrsQfC/JnPHxnKVCxsiWJTcc1huMDF1/havRGeRrC/veXJAa8Bi+ki1jWzNy4Ds0bNiwSBZG5Ypaug/zY0bsEa6uH4NSauKLXyn1+j2Ss9WsPRdN8L0kLJUy3mlclp71PbidkI/E9oW+RxIpSVunk2bjiJ0hh+zsbMaNG8eAAQNo0aIFffv25fr160RERBSZGqdJj0P/UtDNsnJjLCs3xkopY3G/woBBSeVJi778Cue2I9l29RkrEkz8eCCN/uOXoTdCxYoVqV+/PjNmzGDu3Lnm452cnFi6dClQmLlUUFCAr6/vK8v8XtfLpXxubm5Mnz69yD5Go7GkQ1/boOYV2HU9lriMAnO5pEQCFnIZi3p5FymHLImLnQV7P2jBJ7tucyMmA5lUgoVCxoSAKgxqXuG/WtubSs5Rc+ZhCtoXyj6fZ6AV6AzsDD7J5mVzuHv3rvl1k8lExYoVCQkJAX7JSitfvjzh4eFFtgmCIAiCIAiCUJwIIgnCrzjzMIXRm65jMpkwmEwY1Pn4zdhKwfGvOHXqFJ6enuTm5hIREYHJVDSQcfToUaZMmQLA559/zltvvYWDgwOLFy9+ZQDpuQU9vHn7h/PEZRSQpzUglYBKLqNL3TJ0r+9R4jEbLz7lSlQGBS80TlYbZeg0MHXvHYKCgkrsDaTMTYCMZ8RFP+b69etMnz7dXPr133qUnEOPFecp0BnMAbHrYcGMPLMBib0bdpa25n1Ld5uKzNKWvLuhpISuxc6uMBvp8uXLODs7c+TIEWxsbGjQoAE//vijeWpc9apV6NqyMj+GPSHzhfe2kEup42FPq6ouJa7NZDIxeM1lbjzLNAdUtAbYcCGai1evY0hNpWbNmubeU8916dKFLl26sHLlSgIDA3/3vYnLLGDp8Qccu5OE0WTCr0opPm5Xzfx6dHS0ebJY06ZNqV+/PpaWlkBh5tO1a9cIDAxk9uzZr3qLYmxUcvZ90IIfw56w42osBVoDPpWcGB9QlZpl7F7rHBVLWbN9ZDOy8nXkafW42lkUa9L+Z4hJy0cplxbpHaaJvUNm2EYkMgWlvLxxdXUtdpyPjw/ff/99kVJQd3d3GjZsiJ+fH3Xr1v0zL0MQBEEQBEEQ/lFEEEkQXuFZej7vbbhaJNMBmQXRashKymVOn3eIi4tDqVTi7e3NkydPuH//Pp6enowfP54nT54QFBTEmjVruH37Nk+fPuX27ds0a9aMgoICxo4dS3h4OJUqVeLHH38sEliyt1JwZHxLQu4ncyYyBSuljCDvMr86eWnd+egiASQozMxAZcWlJ+loHofx0Yfji/UGMplMODg4IJVKKVWqFFlZWX/YPfxoxy1y1HpeDK/JKzbGo4oPiUdWUPD4inm7zNIWk0FPzs1j6PMyad++PWXKlCEuLo7o6GjUajXt27enUaNG7Nu3r0jj58qVK3Nq7QKi74VS8OgyFj5BvD/2A0b5V3plgONyVDq347KKBCEA8rKzCN6zgEN7dyHJSTBvN5lM5kydixcvEhISwtatW3/XfYnNyCfo67PkqHU8TzY7fjeJsMhUrDXFp9KlpqYyffp0PD09GTx4MP7+/ixfvhwfH583CiIB2FoomBhYjYmB1X57519hb6XA3krxX53jv+Fmb1H0e5NfMtAAfCo6UaFCBXNJpr+/P/7+/kDxrLQNGzZw4cIFZDIZ/v7+fPLJJ8Xeb/bs2Rw/fpxvv/2Whg0bsmvXLiZMmMCzZ8/++IsTBEEQBEEQhL8p0RNJEF5h9r6IYg+pRk0+BiPkaw3sPx5CxYqVSElJoV69enh4eLBz507Cw8O5ePEiS5cu5bvvvuOLL76gcePGVKlShVq1atGvXz+uXLmCVqslNDSUWrVqcfDgwWLvL5NKaFvTlc+61mbKWzV+c3R3Rr6u2LbnvYFiN3yEQymXEnsD1axZE1tbW/z8/Ojbt2+JD9C/R3K2mvsJOUUCSCZ94Ro1eiNSi8Jx8M8ZNflIZHKcWrxD/cAe5tKu1NRU9uzZQ6dOnYiKisLPz4/Q0FAOHDjAxYsXqVy5MgAHt6yhIC0eTeIjnu5bxvi2VVDJX53xdep+srnsz7w+o4HUg0twaD2EiAwJ9vb2JCQUBpKelzslJSUxffp0fvzxx98s/3qVJccekP1CAAnAZCr8XEWn5Rfb38XFBU9PT/O/a9cunHz2PDPp/yNPRyvqeNiXGCS0VMoY7le07DM6OhpXV1f8/f1p164dUVFRvNO3H1FPn3H69GlOnjxJaGgobm5uJb7f84Dh9OnTSUxMZOfOnebJboIgCIIgCILw/4XIRBKEEhiNJs5Ephbb/rxcRpseS3D8Q87duIs2L4/r168TFxfH5cuX2bVrF9evX2f27NkkJSWhUqlYt24drVu3Jj8/n23btpn758TGxlKvXj1OnDhB165d/6s1V3W14Up00UlwzzMzLBUyvp5VWHpVUm+gFStWFNv2ewMkz2Wr9cWmzBVEXSP7yt7CtZXywL5+e5JjC3vWJG2dhlSuRKFUsebQDgBatGjB2LFjqV27No0aNSI1tfjX5PeSSSVIJfBiO6X8+2fRJkSSEbqOr29to8F3S4mPj6djx444OzsDsGrVKp49e0aXLl0ASpxk9lsKS9hKfi1Xoyf3pWwkqbRovP9VX5tfmx4YGhpKaGiouQn7r/mnTJv7tl8Deqw4R1aBzlz2qZRL6du4LAE1ipcxBgYG8vPPP7PhQjRdvj1LdHgCoR8sxSknhZb+ralbpzYTJkygXLly5ul/W7ZsYf/+/Tx+/Njcp2rUqFF06dKlSNlnfHw8QUFB3L17l9zcXOTy1/vvdfny5WzevBmpVMrSpUtp1qzZH3Z/BEEQBEEQBOGPJoJIglCCJ6l5mCj+lP88KJOwYSJyB3ccfPuRvG0GY77bx3djuqFUKrGzs6N+/fqMHj0aAE9PTyZNmkRSUhIjRowgNzeXwMBAxo8fz1dffYWFhQUZGRnF3utNjQuowogN14qVtFkopPT3KYfFK8a7l+TDDz8kICDgjd4/IiKCESNGIJPJ8PLyYsq0GcTtXYRDx49I3DzFvJ99i75Yla9L62ouTAiswqJ6tbgUlUbl4d/QsY47H7Wrirt9YYZNxYoVzfdm+PDhDB8+/I3W9Gvequ3O2nNFSwCta7bCumYrLBRSDo71xcvFliNHjhQ7dubMmUX+/aZNtQ0lRJBMBj3JO2ajTX5C104dWbTwizc653OBgYH/9VS9f0IACQpL2kIm+fPD3lAWTp+CQi6jRu0azPzsZwxGEzuuPWPd+Wgy8rRUVOUREnyKynUak1emIYrKPhiNJlLPbCQ5JxXDO9NIOr4LNzc37t+/T5MmTVi+fDmtWrXiypUrfP7555w+fRq9Xk9YWBjbt28vEkR6uTH661q3bh3Xrl0jISGBMWPGsGfPnj/6NgmCIAiCIAjCH0YEkQShBFIJyCVSDBQtZ3v+oK9Le4Y2+Qma2DsglfH1yUgSYmNJS0vDxcUFJycnFixYAEBQUBCRkZG4u7uzfPlyACZNmkSlSpXYsWMHXbt2LbEB8Jvyq1Ka6R2rM/fwPWRSaWEzcKOJDrXc+eSt6m90rq+++uqN379atWqcP38egCFDhpCdmU4VF1tyFTJMOjVIZEhkMvIiQrB2difpwHq8h2wnduMnlPlPv6GO/rPMAaT/xqsycqKjo2nQoAF2dnZUrVoVdZqGZ3euUarbVCwr1AMKJ+B18nbHy+WXpt9/xPQ1+CXQlpWaT56qNM4dx5uziiQyOa595lG5tDUnP/LnwYMH5nK1s2fPmtfwYiZZ8MlTfB/6iDXnoknL1eBgzCTqWDB+fn706NGDDz/8kKFDhxITE0P58uXN5Vf16tWjXr16XLt2jc8++4yffvqJxMRE9u3bh6en5x92vX8GlVzG+11bMq7XTaDws3fp8hVW3oVLT9LNQcLkDBP2A7/FJFOQs/0zHDzrgNGAzNIWqdISg3NlytdoQGRkJJaWlqhUKmrVqkVBQQG5ubmkpaXh5+dHUlISAEOHDsVgyON2+Ghycu6iUpWmbNkh5nWFhoYSHBz8m5P9vLy80Gg0ZGZmmrPdBEEQBEEQBOHvSgSRBKEEFUtZ42SjJCFLXWT78wd9k16HyWgg89wm8sJPEr16PPq8PCZOnMi+ffto2bIl2dnZeHt7o1AocHd3JzIykokTJ+Lt7Y3BYODZs2eEhITw888/89Zbb/0h6x7QrALdGnhy+kEKal3h5C1PR6s/5NwlyVHrCHmQQoFWT5OKzlQsVdhoWaVSYTAYqOZmS90WFZj9syUSQG7jiFRi4L06KlYdvAwUNqyWSqXmset/lFdl5DRs2JAWLVowZ84cYuPiad/tHZ6E/IjN0BW42KkY2bIS5TTRzJkzhzlz5uDr61vkeJPJRFBQEDk5OYSEhPzmpL0XPQ+0RcRl4dvxbbSJkajcq5pft1BImRlUE51Ox/Dhw5k2bdorz2UymXh/4zXCHqWi1hUGO9MM1rgM/Z7mjcoTvG4mDRs2RCaTERwczPz589FqtQAkJCRw8eJFrl+/zpgxY7h69Spbt25l+/btTJw48bWv56+Wr9WTlqultK2K5y2+VSoVUWoLDq1fTM6TmyCRUqrjeOT2riQF/4A26QlGdS75D86hib2Dwq0K+ow41HoDMZlayE4kPT2dOnXqsHDRYsp4eGJCgp2dHVKplDJlypCSksKJE4fJz89i4cJohg51Qq1+Rk7OPfLys4pNanyupMl+AQEBVK9eHb1eX2LWmyAIgiAIgiD8nYggkiCUQCKRMK97bUZvum5+QC/yulyBBAVOrYehcHDH0toGybXtTJ8+nX379rFp0yaaNm0KwJ07d7C1tS3SV2fixInExsYyYsQIAgIC8PHx+cPWbqOS08nb/Q8736tsvvSUzw7eRSaRYDSB0WSiQt5dYk+spUqVKlxL0nE2MpW8J2lM+/JHmlQvz5WTB9j20ze0qVuJFXo9OTk5ZGZmkp2dTZ8+fVixYgX29vZ07NiRNWvWEBERwZEjR1i2bNlrrelpWh65Gj1ynYGQkBAa+jRHVsmH3CrtSTzwFVbqZNKfPuDe/QcorWxoVM+b1JiHVC5dmo+rJQMQG3KB0fPno1AoWL9+PR4eHuTk5DBw4EBu3brF4sWLsbW15dChQ699rzLztcRmFOBip8JFoaC2hz0BtT2Id7Lk1tZpyCxsITeZ1Ru341/NhSFDhqBUKtm+fTsXL15kzpw55OTk0LdvXx4+fMjKlSuRunhx9lFakc+nRK4gJyWarz+cjotCzcyZM+nduzdQGDy7cOECAOXKlaNjx45kZmbi6OiIVCpFJpPx9ddfs3fv3t/sPbVhwwbWr1+PwWBg06ZNeHh4vHLf6OhoZsyYwcaNG/+wDKdstY6ZeyM4GpGI9D+ZXN7GSCL2/UC1qlXZdiYCdWYqbv0WoEt9RtaFHVjVbIlRq8at/0ISNk7CUJCDRfm6yB3c0CZGknpgCS5u7iQUJJGTk8PcLxaiVedTOnAULcd9RV5+AQaDkTt3IrC1tSE9Ix5McOVyPtbWUvbszuKtt2zRabVs3ryES5eekZycTJMmTcjJyaFDhw5A0cl+2dnZrFmzhsjISJKTkxkxYgSHDx/+r++PIAiCIAiCIPyviCCSILxCm+qurB3chI+23yT+pYwkoyYfqaoww0cTexenFt1p3T4QqVRKr169UKvV5gbGjRs35ty5c+bSpNWrVyOVSrl///6fej1/pItP0vj84L1iAban1jXpMmcTO7/5nAvfbSQvV8ONmEzuJUhZu/sY0qubyc7MwNnZmbJly7Jv3z5q167N559/zsWLF5k7dy5Lly5l6dKlvP/++2RnZ79WsObWs0wmbr9JXGYBcqkUg05D74W7OHIvjZitc7CTuqEzgjJoNqoL28nDxLxV23CwPYS9UynzeX766SeuXbtGw4YNqVatGo8ePcJgMJCYmEiLFi3o0aMH48ePJz09nffee4+ffvrpV9eVr9UzZVc4x+4kopBJ0RmMuGdGkHhqHTWrV2PD6AB6nlrJiTMnOHFgFwm3TnPJUoNKpSI4OJiFCxdSUFAAwLNnzzh37hxZWVmMHDmSZu8vQv1S/yujJh+Fkyeeg5bgfGUVtko9J0+e5IMPPuDGjRvm/eLi4ti5cyf29va0adMGgC1btuDv78/q1aspVaoUer2+xObQcXFx5mlmfwWD0cQ7P1zgUXIuuhfG292Se+EzcQ12N37mytNHqJ+Fm3txyWycUD++hjr6Bok/f4zCuSzGgmwkUhkOfgPIux+GQx1/vpo/k0Xv98S+Qm2ces7m8dI+yD1qknVxB7bebYlOTyY/P58tW2YzduxUVnzvTsipXH7+OZMlX5Zh48YMTBjZtn0948ct54MPPiA4OJivv/6aOnXqmCf77dmzB4lEglQqxcrKCqVSib29PXl5eX/JPRUEQRAEQRCE1yX97V0E4f+vZpWdqVfOodh2TewdEtaNL3wgtXVm+dhe3LhxAwcHBx4+fGje78GDB5QvX77IKPbRo0ezevVqZDIZY8eO/TMu4w/3zanIYg28TXodar2R3dfjyNLL0Et+CUDk5+ZiKtcQz46jcXFx4eDBg5QrV45t27aRlpZGpUqV6N69OxEREQDmXjTt27fH2tr6V9cSnZpH3x8v8jglD7XOSK5GT4FRxt6INNQGsPRqgiEnFaVrZYwyBcoy1TEhQVWxISnPnhCbJ0GrN/L48WMMBoM5Y+TSpUukp6cDIJPJ8PPzY9CgQdSuXZvAwMDfDCABDF13hWN3EtHoC9el0RuJtatF6UHf4OZehoMHD1Kndi02rf6ehQsX8uzZM5YuXYq3tze+vr7Uq1fPfC4bGxs6dOiAh4cHWVlZ6I3FW79rYu+Q+PNHPFv/EWlJ8Tg6OqJQKKhYsSJfffUV69evJzMzk7y8PJo1a4a1tTUKhYKcnBzi4+NxcXFBJpOhUCh49OiR+bxxmQVM3R1Oo7kn8B3zFdeiUvFr1ZqxY8fy+PFj2rRpQ+/evalfvz67d++mXbt2+Pr6vjIosmjRIpYsWVLia0uXLsXX15fo6GgGDBhQ7PXQB8nEpOUXCSA9/+xdjkpDI1FR1kKLTaUGuPVbgFu/BZTqNBGras2xqFAPj4FLsK1YF6VrJUp1/hgAS4/qlKrRjOtPM/AbNZeclDhit8zEsdUg8u6dQf30NgUpz1C1/xh7B0eGD59Pfr4Rvd5EbJyOpCQ9Xy5J4eKFPB4/0nD+XDQODg64u7vj5+fHvn37SEpKKjLZz9/fHxsbG9q1a0ezZs0ICAhg0qRJv/mZEgRBEARBEIS/kshEEoTfUMbeErlUgv6FiVrPp7RJJTCuTRUCqjqzrWZNVCpVkYlN1apVY+fOnUXOp1arSU5O5pNPPmH8+PF/2nX8kR4k5hTbVhB1jewrewFQOJbBrk47NLF3AUjaMhWJQkWiXMmA9i2xtLREoVBgYWFh7jl07tw5KleuDMCRI0eoUaMGwcHBDB8+nFKlShV7v+e+P/0Yjb54Rs6LmWK2DTuTe/sERk0+2uQnAOTdDcW6dhvy750h3STh+vXrVK5cmQcPHvDpp5+yY8cOdu3ahYWFBVqtlj59+vD06dNX9rt5WXhsFreeZaHR/5KtZdLr0MsVpOdpSdVI8ba0xGg0cuvWLaAwUDRx4kRzI+bbt28XXoNGQ1JSEp6ensTHx2NnZ0fbGq5su/KMfO0v1/78c5kfeYmCG9vIy8tj6tSpfPXVV2zevNm8dm9vbyQSCRUqVMDf35+MjAyaN2+Ov78/+fn52Nvbm6fiRaXm0fXbs+Rp9RiMkJWeQmpqFl7vTMOQdox9+/aRkZFBcHAwW7duZf369Rw/fpz58+dz7NgxGjRoUOS+LF68GICPP/642D3TaDTme/EqIfeTydMW/Xo//+xJAGfvGuzbsoHa3UYVZiJJJFjXaIVtvQ6o755CvXcmnqUcsWr/Ic/yIGXfAgqe3eXxznh+etYT28qNcH/vByRyBSm7Pseh1SD0mQmU7joFuVxK+VoNWDxrGO+9159DB3OoW9eS48dyWPKlO0eO5HD9upb27brh4+PD8ePHsbS05Pz58/z88898//33xSb7TZs27Vd7XwmCIAiCIAjC34kIIgnCb+jTpBwbLz4tEkR6zlIuY4iHMz+uXMWgQYOYNWsW0dHRDB06lFKlShEZGcnMmTNZuXIl+fn5HDt2DGtr6xKnsc2YMYMzZ85Qt25dcnJyikzh+rspZaMiNVdbZJtVlaZYVWladL//ZHrYt+hb+JBv1JOVm0e7du04e/YsCoWCzZs3c/DgQSwsLFi3bh05OTksWrSIQ4cOcefOHT766CPWr1//yrWcjUzF8FLbKk3sHTLDNiKRKVB51kRVpho5Nw6TuHkyhuw0JAoVMhsnsq8dxJiXRprJxC2TGi8vL+rWrUv37t1RKBS4ubnh5uZGUlISkyZNYsyYMa99jy5FpaE3Fl3Yi4G2JBdPyjbrxL37P7L0y8Vcv36dzMxMvvnmG3J1Jq5cv8WDPEtMBVkcCr2Ai6srV69epWbNmigUCsa9057UXLDq9AmpJ1YhVVmhTXyMRYV6OPj2I+PRBXQSBU+ePKF58+YA5klwLzYDz87OxsHBgalTpzJy5Ei+++47qlevbv6Mfrr/DjkaPc9jZ1KVNcqytckq0BFnWQmPgkxq1qxpbjpdu3ZtAMqUKWMORL34Xlu2bOHixYtAYXPwK9EZxGcWULm0Daf3/mz+PnpOp9MxaNAgRo4cye3bt7lxJwls6pO4fQ4uPWeRevgrjAU5GHLTsa/ThvemfoazrQXnt33H+K03eJCYg0ImRW80MmjmAmYE1UQhK0zCPf84lWHy6UWy6gyAVFn4X6OlVxMKHl/BkJ9FwrrxyBRK2rRqSYUKDSnjUZro6FwqVvrl+lq1suWHlU/ZtvVTAObMmcPFixfJzc3lyy+/fO3PjiAIgiAIgiD8XYkgkiD8Bi8XGz5qX5Uvjz9EqzdiNIFSKkFqNDEPSzI23+HY7j0MWtndfMyvZWb06NGj2HskJCRw/fp1zpw5w7Zt2/7wKU2vaoQcGhpKaGiouX8TFDZCnjNnzq8GsYb6VmT2vjvFStpkUglWShk5an2R7c8DTDYqOT/PDEQpL+wFY2VlxebNm4ud//mktsaNG/9qAAnAUll8OtrzjJwXler04SvPkbrlE2KfRjB48GCioqLo378/5cqVIzQ0FL1eT2RkJF988QXbtm1jyZIlzJgx41fX9HxdcqkUneGXe/RyoG1fpIZkjTWqct7Y29szYcIEho39mDjvwUicb5KbnYlUacmD5ALajlnO0Tn9OXHiBNOnT6dSpUocW7yMJvOCAZDbu6FNiCT78m70WcmYtPmcOfeAFo3rs3TpUsaMGUNERAQjRowgOjoaV1dXPD09CQ8PJzs7G09PT/bu3UtBQQHvvvsuFStWRKs3cvZRKi8mX6k8apBz6xhGE5y7fA2ftl7m4BRQ5O8vZ23Z2dkxc+ZMhgwZwswlKxi6/ipZ+ToAjAY9GYd2ceP0MPP+Op2OwYMHM2LECFq1akXLli3Z2iaQjJRz2Pn0RKqywqX7dIyafFL2zMW+/lu0q+UGFE5Y3D/Gl7jMAjLytFQoZY2Nquh/eT+eiSr2GX45i82mbnu0KdGU7vsFSomBFRNbUa60PQP6T+XevU3Ur5+Om1s2UqkF1tZladeuGm5uFQBYuHDhb35OBEEQBEEQBOGfRASRBOE1DPerjF+V0vx84SnRMVlUTlTTDQUuOilbbx+ia/W2ZJ94ijG38IG4Zs2axMTEMGbMGGxtbWnXrh39+vUzZ2aEhoZy8+ZNUlJSeO+998jOzubp06dMmDCB999/nzVr1tCsWTMsLP6PvfuOiuJuG///3s7Se1NAQFGxYxRFQQR7r4mxxBI1mtwm9thLEk0s0RiT2HuNvVcExF6wV0Qp0nuH7b8/CBsR0839PM/3N69zco7Mzs58ZmbRs1euYsK2bduoXr363177v9EIua9fdcIfZxD1LNNYTmUql2CukDKnmy9T9t2l9LWm20qZhJGtPZFLy7NA1q5d+1bWMqCZG0vPPH3zFD2o0jfodTKxiKk//AxQJXAWHBxsnCY2ffp04/bt27f/4bo61nPmi6OPfnefvHvnMKkTxNjt0VgYQKPTcyshB038ctTpz0EkwTroA6QWdtxLKkCmMOHFixd07tyZ48ePk1agwlRRPtzexLMJls16krLhY0pf3MSg1yJTKJk6dSo//vgjrVq1QiaTceLECYqKimjSpAlqtZp69eqxfPlyQkJCWLp0KRKJhEWLFiESidAb9LxevSd38kIslZO2cxoSU0v69v2cR49+/zor3ZeOHUlJy6B1zyGYh3xk3F507yzSmq15f+1V47aoqCg6duxIcHAwUB6gGvvhMMZNnYVdnc8p1egwGAxkn1qJU8hwRnVsgqu1stL5qlkrqfbatgqJOVV7NlXJYqvuS/6VPeQc/poPxozH29UeMzMz5HI5z58/R6FQY27egdhn77Fw4Q9/6rMhEAgEAoFAIBD8XyUEkQSCP6mOsyULejcgdckNdK98s36Rk8jD9Fi23znMo9THHD161JiN0bRpU/z9/fnqq6/YvHlzlcwMBwcHIiMjSU1NJSAggG7dunHv3j3u3btHTEwMjx494uuvv+bHH3/8S2uNzShi48U47ifnU3TvDGb5JYSGhuLr68t3333HqFGjSExMxMPDAzc3NwDmzJlDREQETZo0Acp7FB05coRFixaRk5PDiBEjOHToEFCecbRqsB9XnmezNzqJwjItbes40LtJNUzlUjQ6PbMPPzSuR63T835zNz4NrfWX7/sfGeTvwf5bScRlFlP2S/8hiUiEXCpmdJAXe26+JKdYjU5vQGcwVAqKSMUirExljA2u+cZjR0ZG/u112ZsrmNKxNt+eiamS7VJBk5OMOv0FpfdOQWYsP27+GQNg33UiablpWAW8R074eiTmduTf0KDOz+fJkydcuXIFb29vCko1FKvKA5ciSflf52KlJYrqvmgLsjA3kXP1RQ4lMiseqmxRv3jExJV7WTFlGH379mXYsGHMmjULiUSCwWBAp9OhUqnIzMw0Pv8ajp2JSUwj++QKHPuUZ2DZhJRnCzV2s6Z27drGwElwcLAx4DNs2DDjdVa8XhGQU9QJwrGTQ6V+TpqcZIofX+DmnZOIMmM5evQooaGhuLu7s3LlSsaNG0dxcTEbNmzgkxGDyeQhT+z8eHxiMx71m/PNZ+/SvaHLX3pGNR3NeZFVXOkzUZHFJhWLsFbKyC/T0PKTZYwLrUljaw15N96rEii6eDGayMhIRowYQVBQ0F9ag0AgEAgEAoFA8H+JEEQSCP4Cg96ALrus0rYZwWMByEdPh+2f8ONzS1LuppC9PZob0bd4+vQpdnZ22NjYsHnzZnbv3s3z58/Jyspi6NChTJ06lZ49e1JaWsq8efOoXbs2UqkUCwsL/P39mTZt2p9eX0pKCkHtOvIi5ik1Ju9Dj4T8mAT02WnMWbaajHMb+frrrzl+/DhBQUHEx8ej0WhITU3l+vXr9O7dmzVr1tCyZUsCAgKMDX+PHDmCnZ0d69evZ+TIkUB5Vog66QFm98NY/tVXldbR2686XRq6cD0uB5VGT1MPG2zM5P/k1v8mpVzCgbGt2HY1nl3XX1Ki1tLCy47/tK1JLScLxrerRUahCrlEzMvcEpacfsqN+BwMhRkkbZ6IU4N6DIoy4cyZM299bSMDvajjbMmPEc+ITshFrascRLQJHg6UZ3Hpj8ymSWA7Nh8+++u1eTXFuqwQVfJjLJv3IX3zp9y8eZP79+8TE5/M9tOh2PX6tSlzybNrqFOfIVZaIJXJsTKVMWLLDQrycnHuOh2DXsvO1V+z56eFhPo3xtramocPH7Jq1SpGjRpFeHg4er2ezp07ExYWxowZM5i3ZhIDpx7BtKZ/pbWbyMRM61znb92XOy/zKgWQXr0XUrEIjs6he/fuXLt2jS+++IKPP/6Y3bt3c/XqVaZNm0ZoaCidO3dmz/bB1JizB19/f5Z9NpCcYcMqBa/+yEdtvDkfk1kli00qFvFODRt2jPAnNjqDmOtpGKIyia2mJiIigsDAQPr06cOECRMYMWJEpYDszz//TFZWFp988gl37txhw4YNLF++nCFDhpCcnEy1atXYtm0bUqnwz69AIBAIBAKB4P8e8f/0AgSC/1NEgLTqr00RBj6kGOXgRZSZ2GPbdRKP8iQ4jlrPmqOXCQsLw8vLi7p167J+/XoyMzOxs7PDzMyMnj17cvPmTdq3b89XX31FWloa5ubmxqyOa9euMX78eAA+/vhjHBwcfnO8vIm5JZKuc5C71jY2mxYrzJBWr8e6Cy/wbuTPy5cvadSoEXv37sXFpTxzIyEhgXr16nH37l3MzMzKL1UkomHDhty+fZsjR44YM5T+LIVUQmAtB9r5Ov1rAaQKSrmE0UHeREwO5tqMdqwY0IRaThZA+XU4WZpgYyanYXVrtn3oz5MvO3N6fBt6d+vMpQtR/0oAqULrWvbsGt2ST0NroXjDZwfAYID9J8KoZa/AICm/V86DFwNg5huMbfuxyCViGrUK5ejRo9x6/BxZv8U4DFiI2MQc+64TkNm4YlrLH/dJ+1FY2uPd8B2yVWLKNHokplZIzKyRWtiDVI7byJ8okVoyevRoPD09sbKy4vHjx7Rr144OHTqQmpoKlE9xsy5NxqvkCR5+QShlEkxkYqpZK1k1uCktvOz+1j1xsjRBJhG98TW5VMzXmw5So0YNY8bPTz/9xIABA/juu+9o0KABzZs358KFC9jZ2VFaWmrs7fVXAkgAfu42zOxSF4VUjIlMjFgEZnIJ3g7mfNe3EXu/uUnkzickPszh5eNcnkYUMH/INk4eO0NYWBhRUVFIJBLCwsKMkwV79OjB8ePHAfj55595//33OXjwIL6+vkRFRVGvXj3279//t+6bQCAQCAQCgUDwP034X6ECwV8gEokwa+JA8a0MeCWr5AAqcjDwajtpkVSGGph99DHDu3QlKSnJGIhp3rw5QUFBxobWBw8epLi4mE8//ZT8/Hxq1apFWFh5w+Tq1avTrVs3AGbPnk3z5s3RasvPlFWkYlXkc47eTUGnN1DT0RyxiYVxDfmXf0akMEWTkUju4yssORGBKjOB3NxcZs2aRVJyCi9T07n7aDwJsU84cOAAY8eO5f79+xw/fpx+/foxe/Zs4uPj6dGjBydOnGDv3r2YmJiwd+/ef+9G/4tUWh2J2SXkFagqZZX07t37D6fqffHFF4SHhyMWi9m4cSM7duzAz8+Pzp07c+TIEZ4+fcqUKVPeeN4Bzd1Zdf4FKm3lrBeZREQdFwt8HEwJHfAf2ncZwAOxuFJ2jAhQSMV42pc3fD5wK6lKryeDVoNIKkMsgjruTgQ2cGPtk/uvHKF8HwwGSjV67j2Oob6zKe7u7tjb29OgQQNOnz6NRCJBo9EgEono168fmzZtwt5MxqEve5OQXYJIBO62ppUaaP9V/Zu6sTbqBW/qWKU3GOhU3/k332tra8u5c+fo3bv3b+7zVwxpWYPODVw4cT+VglINTdxtCPC24/L+WPLSitFpf12jSCdBUyji6sE4unXrVul3umnTply5cgWlUomjoyOJiYlcu3aNhQsXsmjRIvz8/AB45513iI6OfitrFwgEAoFAIBAI/tuETCSB4C+y6uyJxFoBsl9/fU6hRf3afnpVCQClah1HzkSw90QEs+bOo0ytIzo6mk2bNrF8+XIA1qxZQ15eHs2aNWP48OHodDqKioq4fv06KpXK2GemInMIIKOgjE7fRbH1SjwZhSqyi9Vcj8up1H/HtE5rNBlxiKVysk6uRKXVsWHDBjw9Pdl97BxXHieQppKh7TSbQpWWEWP+Q0FBAV5eXvz8888EBgYSHh7OBx98UH7tVlacPn2agIAADhw48C/c3X+PXm9gRVgMfl+cpdePlxi48ykNJ2xmze4jhIWFUVBQQG5uLrt372bKlCnGqXpdunTh9OnT3L9/n+TkZCIjI/nxxx/5+uuv6d+/vzGr5MCBA/Tr16/Kebdu3UpoaCj9unVkSiMDhaeWY6aQYq6QYiIT09jNmk3DmiGTyYiKimLXF2NwenYU3cu7WCikmEjF1HW15OiM3uzdvQuA1Pwy1K8Fo0rjoknbOY2UHdOgNI9mrYKrrKU0Lhp1xgvSdk4j4/F1CgoKOHv2LPPnz2fixImEhobStm1bY+ZbYGAgBw4coFu3bohEImrYm+FhZ/aPAkgA7namTOtcBxOZGIm4/FgysQgTmZgV7zXGwkRWaf/U/FJOPUjl4rMsJDI5NjY2xtfi4+MJCQmhX79+NG3alKSkJOO2d999lyZNmnDgwAE6dOhA69atKS4uRqPREBoaSlBQEH379sVGKeWDljX4T0gtWtW0RyQS8ehSSqUAEkCZugS9zkDszXQuXryIt7c3d+/eBeD27dvG/QYOHMikSZNo3rw5IpEILy8vY+Do5s2bxqwlgUAgEAgEAoHg/xohE0kg+IvEpjKcPvOj+GY6pXcywACG7DIoqRxGqpjyJJbKSKlWB0N8PEUlavw69KZpQChtm9UnLCwMBwcHTExMKCsr49y5c1hbW7NkyRLat2+PWq2mTZs2b+yf8u3ZGPJKNGj1v37RfT2vQ2ZbDU1eKo795qHLiueLn3Yg0yRQvXEgcR7dUUZsReHiQ/qtM5jWCULtUQ+Hl1Hs3buXbt26kZubS9u2bZk6dSqbN282Zl00btyYGzdu4Oz82xkj/9ssPfOUTZfiXwmySXiSpea9ddcZHNqRY8eO4evri1gsxtXVlfr16wPg6upKbm4ujx8/JjIyslJAz8fHh+fPn1NaWkpycjKenp6Vzvn6ZLz4+Hg61XNm3NB3yCxUUcfZwlh2V0EmEdO2jiOTmvvh0cAfG1M57namlfZpUM0KU7mkUl8h01otMK3VAjOFhHnvNqZ1TXtcek6lVKMzlsaZ1mqB+/g9KKRixrbxZnx7n0rH7dKlS6WfxWIxSUlJf/1m/3Kt/v7+1K1bF7lcXqVkcHgrT1p42bHlcjzx2SX4ulgwNKAGHnZmxn3WbdjIrqtxJDsFIJOUB20lYhHfDWhc6Vi5ubmEhYWxa9cu9u/fT8+ePY3bdu/ebQwILly4kNOnT9O7d2+OHTuGUqlk1qxZhIeH0759+0rHVJdWbYb+PO0+x25sQiqR0XtgZ/z9/Vm1ahWhoaF4eHjg7u4OQGhoKEOHDmXWrPJG5L1792bw4MEEBQXh4uLC559//rfuqUAgEAgEAoFA8D9NCCIJBH+DWC7BIsAViwBXADodf8Tmy/FoXilxq5jyBFB46xhSLzfKslNQ1GhKvJUnIYPGkJExh5MnT9KmTRs0Gg0qlYrY2FjMzMyIjIykfv36vHjxggEDBtCpU6dKPV+O3UupFED6LSZuDci/uAMLr8b0bVqd65fiiI7PRela/iVZnRGHXlVM6fMbqNOfk5WXwsqVK+nRowdjxoyhe/fuxmNVZF3cvXv3/1Q2RWGZho0X44zT26A8U0ysMKVMo2P30bOs/mZWpVH1r2bbGAwGateuTYcOHVi5ciUAGk35VLTg4GDmzJlDSEgIhWUaVp9/zt6bSZRqdFgkXMC+qNQ4GW/8+PGkpCTz9YQRpKens2vXLsCCVatWsWXLFpRKJatXrwbAVC5Fkp/EuP/MZPv27VhY/Bps6tbQlYUnHldpTi0WgYWJjNA6jkglYj5p682PEc8rZaeJRWCmkPJBQI23cm9/L1jUvn37SpPMUlJSGDx4MGVlZXzxxRe0a9eOhb3rM3XqVM7/fJv7W20rlUnuj07iUUoBJnb6SmWAH2+/heUr114R/KtWrRqxsbGVtr0pIFhcXMzo0aNJTk4mPT2dWrWqTg20clSSn1FaaVs9d3/qufujtJAxfHFrADZv3vzG+1K/fn0aNWoEgEwm4+eff/5T91MgEAgEAoFAIPjfTChnEwjeglGBXpjKpYjfUOVj0GkpS3yA0qP8C6WyZnNyH0Qy78hDtuw5zNkybw5evM/jbC1devTGwsKCc+fO4efnR3JyMjqdjtzcXJYuXUrr1q1RqVQkJiaSuO8bALKOLkWV+ozMw4vQleSTvG4MquTHZO6dQ8aOqdjWa03BzUNs/XIcFiYy8ku1aPW/fiHXZL9EnfYME49GuHywDKmdO+PGjaN///6cPHmyUolWdnY2HTp04OLFi/Tp0+ffvalv0YPkAmMmSwVV0kNSN3/Gy82TyMUcJyen3z1Go0aNcHZ2Jjg4mLZt27Jp0yYA+vfvz/Lly+nSoxe9frzE+gtxZBSqKCzT8vjFSyIfpzDrp12Ymppy+PBh0tLS2L9/PytWrGDRokVkZGSwd+9eLl26REREhDGg8fDhQ2bMmMG2bdsqBZCgvJH4zx+1xMXKBDOFBFOZBDO5BDcbU/aMbon0l2v9pG1NpnWug62ZHBOpGJlEROua9hz+pBW2b7HZefv27YmMjOTUqdNcis1i48U4zj1OJ/yXnlPLly/n9u3btG3blq+++gp3d3c+//xzNm/eTFBQEGfOnMHMzIyQkBCCgoIYOXIkOcVq7rzMozDuDul755K+dy4GQ3nQVK3Tk5L3a4Dn9YDf69tef/306dP4+Phw/vx5+vbta3zPq5p380Qqr/pPpFQu5p0uNX6zpC8nJ4d27drx4Ycf/sW7KBAIBAKBQCAQ/O8nZCIJBG+Bo6UJhz9pxcxD97kUm13pteKH4Zj5tjH+rMtPp+TZNa4s+wi93oBpLX8Kru3j8fUoHl8+i5OdNTk5OWRmZtKkSRM++eQTFi1axOTJk9mxYwdfffUVFhYWKDUKsk/9gMTcFoVLLRSutVGnxWLiVg9FNW8unjzA8MHvs3rW+zRcPcb4pbdD+xBsr2jR6AxYtx5U5Vp8P1ph/HPHjh2xt7cHYNgbxqdXTJD7385EJkb/WrHfq5liDatbVZoG9up1vXrNM2fOZObMmZWO4+vri1arZV3UC5LzSitlzIgVZoir1+fzffeYH9yWW7eiadCgAVKplMaNGxMbG0tcXBx+fn5IJJLy94jLAxeLFi1ix44dWFpavvGafJwsuPR5CFdfZHPrYQxzP+yFQ31fRob9mg0kEokYGlCDIS08yCxSGXsx/VPhT9JZeS6WF1nFmGtyeHwmjOYtW5Ft34gSrQiRhQNKWyfSsvPZGbaHUT2CcHR0pKysjM2bN2Nra0tsbCwjR46kZs2atGvXjp07d2JiYkJUVBQdOnTg5tNEpGIRElMrdEU5SG1c0GTGIbNzJ2X3XLQZz+nYsSMLFy78y+v39/dnwYIF3Lx5EysrqzdmIvk0d6Ywp4wbx+MR/zJJTq810CC4Og2Cq//msW1tbYmIiPjLaxIIBAKBQCAQCP4vEIJIAsFbUsPejE9DanE7IZeSVyZraXKSUae/oPDOSTRZCWjy0rBpO4Ky+NuYNCzvw2LeqCOq5Ce4dvsUzaGZZGVl4ePjQ/fu3XF1dTX2RBo0aBA6nY4PP/yQE1fv0zWgMdXGbgRAUa0upc9vItap6RLsz82IE3QIakEjN+tK6zRXSGld057zMZm8Xg2nkIoZ6O/GkydPGDly5O9+Qd+6dStbtmxBp9OxYMECVq1aVal0CWDHjh38+OOP2NrasnPnzt8MiPzbGla3RiGVUKyq2udGKRPzXjO3f3yOvdEvK01Ug/JnUnj3NMUqLWcuXMPBXMaDBw/Q6XTGkkAvLy9u376NXq9HLBaj/yVL7Pvvv2fhwoW4ublRs2bNN55TLBYRUNMeV2kRVzt1qHL/X93PydLkH18jwKrIWL4/F2sskcvTmmA/bBVFcjmpu+dh2bwvJXHRqIvzUbj4MGLFEUzkJuh0OpycnNi4cSNPnz4lKyuL6OhoY8lZtWrVePLkCenp6bi6uiLWFKMzgMzeA3VGHBJzO/RlxYgkUpwGLKCpuw37Pw4AyoNCUDn490cBwVu3bv3htTbtVIP6QdVIepKLXm/ArY4tJuayP3yfQCAQCAQCgUDw/yqhnE0geIsSckqoGKdewSZ4OE7vfYnTu18gs/fAsml3TOu0pvRFNKa1WwFg0OnQlxaQuGMmaekZNG/eHDc3Ny5dusSUKVMoLi5GJiv/8lpRerNj5TdMmL0Q7fWfMZGJsarug/blHdo28WFE384sXbqUgICAN65zYZ8G2JkpMHllwpypXEJNR3PGtPGmTp06XLx4kaCgoDe+/9WG0ZGRkVSrVq3KPhqNhtWrVxMVFcWQIUNYs2bNX76fb4tELOLb/o0wkYl5tQrJRCqmpqM5ff1+O7Pkz1K9Ni0NQO7khVgqJ37rVO7diaZfv344OjrSq1cvPv30U6ZOnYqDgwN9+/YlICCAtm3b8uzZMwCsra3ZunUrH330EWlpaW88Z2ahipj0QkrVWiJeKR1btGgRx48fB+DQoUN8++235Ofn061bN4KCgvj0008BjA2oAcaPH/+Ho+ezilQsD3tWqceSSCpDLZZTogWld3O0hVloMhMoS3qEZbNeFCfcJyU9A2c3T549j+OzWQv4asECysrKEIvFmJqakpCQwIsXL0hLS+Pw4cOcOnWKmZ+OJv3kD+jLigAoS7hL9qkfKLx7BlO5hA8CPP7iE/p7FKYyvP0cqfWOkxBAEggEAoFAIBD8/54QRBII3iI3G1N+o1UKAM6DF6OQihGLQOnph8TUCm1+Ornn1lDy4iaq1BhsvBrRtWtXJBIJBw4cYMmSJZiZmeHl5WU8zqFDh/Dw8GDZ/M95t2VNZjfWcmJCME09HRjauyPNmzfnyZMntGjRwvie+Ph4nJycCA4OZmj/nuz7sBHBijiauFvT0EZH2Z4pnJvanoo2MEFBQbRq1Yrk5GQATj1IpdvKCzSYd5qQT5dy6NgJbGxs8PLyoqSkhOTkZHr27EmLFi2Ii4sjJibGWLrVrl07rl69CsCxY8cICgoiICCAU6dOvfVn8Fva1nFkz0ctCa3jiK2pHHdbU8a3q8XeMQGYyCT/+PihdRyRSao+fJuQD/H4YDHHDx/Ex8eHyMhIjh49ytWrV43NyT/++GOuXr1KREQEtWvXZt68ebRr1w4XFxfOnTtXZQpecl4p7629Qqtvwun90yV6bnrE8O8OcSbsHGFhYbRo0cLYyHnv3r289957rF27lvfee4+oqChKSkq4du0a/fv3Z//+/ej1eu7evUvTpk1/9xrDHqUjee0DrleVGP+sSnqEzMYVRCK0uSnknt9C5rkN6ExtGfbTGcoUNhxMlHPkfib3n8QikUjw8vKiYcOGeHt74+npSZcuXejUqROjR4/mnWbNMLW0QiwSIbf3wLb9GEofhRNUy4HuDV3/1nMSCAQCgUAgEAgEf59QziYQvEX+nrZYm8ooUet4vVWvSASNq1sT5Khm5qTJWAZ+YHxN5uiFecP22DftzMfBNfHy8mL79u107NiRoqIi6tevT8uWLWnZsqXxPb169QLKy54qnD9/3vjnsrKyKut7dVpWfHw8RU8uc3D7x5SVlVE6OpDevXsb97179y7Z2dlIpVKWnYlh3YUXxgyUrCd30BpMGLv6JNE/fsrSpUtJS0vj7NmzREdHs2jRIoYMGWIsX7OysiI3Nxe9Xs/SpUsJDw9Hr9fTuXNnOnXq9Pdu9t/QsLo164c2+919Hjx4wOjRo5FIJNSsWZONGzca+0lFRkYSGRnJvHnzqrxvVJAXe6OT0Oq0lZ69UiZhXEjNtxKogvJJc71+vEROkRqdwUD5kDIJ++5lUaR7RLdu3UhOTiYnJ4fs7Gzy8vKoXr06z58/p0uXLgC88847xMbG0qtXLwYNGkStWrV+M+vsVSqtHv1rTahVSQ/Ju7AdkUSGorovCtfayB290auKsG33EWnbp2DWvB9yb3/sHGqScnwZBq0KszZDMI87yZo1a3j//fdJTU1l3LhxVK9enTlz5jB27FguRJyjQA0tWwfR4MPp2FgoiY47wU+D/BC/qYu9QCAQCAQCgUAg+FcJmUgCwT+0detWQkNDCQ4O5sqVy9jfXIetmRwzeXnQQCEVo3pyHsWJuWhOfs2HHZuyYvsRLGo0MB5DV5BByYNzlNw6gvreCY4dO0ZMTAw3btzg4sWLeHh4cP36dYKDg9FqtQDGPi/vv/8+d+7c4f79+/Tv37/K+nKK1TxOLaCgVFOp5Omb5T9w6NhJXOs2Ze7GY3Tv0Ys7d+5ga2vLkCFDKCgowMnJie9Xr+eL6ROI2/o5GXvnoSsrQmLpgMjCjlMP0pBbWCOVSqs0jLa2tqagoACAgoICrK2tycrK4vHjx7Rr144OHTqQmpr6xslYb+NZVGRQve7s2bOEhIQQHBxMdHQ0aWlpxr45devWZe3atVy+fJkLFy4AcPPmzT91bhcrJQfGBtDY3Rq5RIxSJsFaKWNKx9qMaeP91q5xf3QSRWUadK/cN72qhDKNnpMPUjkbEYW3tzc9evRgzJgxdO/eHQAvLy9judrNmzfx9vbG3NwcS0tLVqxYwfvvv/+H527hZVcl007p3QyXYStwHrIUm7YjALAOHIRtu48AcB68BJOa5T2LpJb2OL+/EJch3yJxb0xybikWFhZs2LCBdu3aMWfOHEpKSvjoo49Yv349CoUCBwsF1W2U7B0bwMZhzbAxlQsBJIFAIBAIBAKB4H+IkIkkEPwDr/YGgvLsHgsTKZemhXDyQSoPUwqwU4rZEv4VF6Ovsn//fgZP+oqnTm0Ri0SIMCAxs6XaqLV0aVydZzvm0bzpAE6dOkVWVhbNmjXj0aNH3Llzh9mzZ79xDd999x0DBw5ELBazZcsW4/a8EjWT9t7lQkwWcqmYMpWKrl/uYdG7fgS170Jhg/6IqjdE3m0yh1PFSENm4JA5keDAANatW8eRI0dYunQpcxYspjgrF6dBi8g+sYLUTeMwa9AO1ctHPF/9EelSPW0DxnDx4sVKDaN9fHyMTaQrSqzs7e1p0KABp0+fRiKRoNFofnNU+j99Fm9SWlrKmjVrOHv2rHEaGkDEuQjKnuUyae5UOjUNwaA3IBKLUCgUuLm5MWLECBITE/Hw8MDNzY0dO3ZQUFDA2LFjuXfvHmvWrGHZsmVMGjUItVpNPXNLAoND+XTsKJ48fkSrVq3emNn0qp49e3L+/Hn27dtHu3btjNvj4+Px9/enbt26yOVynN77ktLXGnhXZANJZHJ8Q9vg7++Pj48PEydOZNWqVQCMHj2agQMHsm7dOho2bGgsdRwwYACzZs2iTp06f3iPaztbEOBtz+XYLMpe6QElFYuwN5cTH7mHgseXcBy0GJlEhAgRYECtM1B49zRFd05i1XoQquQnFEYfRYSBoKAgnjx5AoCTkxOLFy/m6dOnDBkyBIDdu3eTmJhIcnIyHh7/nT5IAoFAIBAIBAKB4M2EIJJA8Bfll2o4cT+VrEIV8VeOodFqCQ0NxdfXl/Hjx5OcnMx7/fqQnp7Orl27KCkp4X7jRkilUtRO9Yi4uBLbbgFkHlyIXlOGRGmFe/8Z1KtuS8NePUhKSuL+/fvk5+czceJELly4gF6vRyaTVQo+VGTwODk54eXlRWlpKd26dePRo0fkFxTSY/ExHkYewqLFe6h1ekBC5PN8Bqy7QYa1L+qn16hIZonfMhW7LuNJT0gk+sY1APR6PVFRUTRv14NjB/eSdXQp6vTnWDTujEFVgtjEDLHSEqlIhUwmMzaMzszMZMeOHchkMkaNGkVgYCA2Njbs3LkTsVjMxIkTCQ0NRSQS4evry48//vi3n8XFZ1msDH9GTHohqofnsC/KJyQ0lHq+vixdupQuXbqg0WhwcHBgz549XLlyBbFYTOfOnXFycmL16tXIcvVkbXqIQasn6nwUn9cawpbh37L0+iZ86tYmISEBiURCWFgYCxcuRK1W0717d95//33Gjh3LgQMH6NevH4cOHSIgIIBp06YxduxYbM0VSCViateuzeXLlwEYPnw4N2/epFmzqiV1q1evrtR83GAwoNLqMRgMlcoQx2yr2vxa6d0MpXczzBVSPurfyLi9Y8eO2NvbA+WNuk+cOFHlvSKRiIEDB/7pe/7TID++PPaI/beSkIhEaPQGAmvZ82W32kx6uIWbaUo6N3KlmrWStnUcGLLhOmCg5MlFnActRiSVU3B1L+4T9uDtYMaGvjWYNWtWpclyQ4cOrXTOFy9eGP8cGRn5p9cqEAgEAoFAIBAI3i4hiCQQ/AWnHqQy/uc7iEUiyjQ6iq/fQ5f1klvhx/hx8XwOHz78u72BNlxLR1NSiLYgE7HSEsd+c9GVFVOq0bM26gUNnl3i00/HIRaLycvLIzg4mDlz5hASEgKU9xZKTU1FqVQaJ3ZduRFNenYeBo2K1atXM3XqVM4/zSBbb4pFi/eMa9erSlArTHmeWURx4iPMG3VEnRkPgEGvJ+fUD8jsqrE0LBYtElRqLUWlKu5fPY5YrkRerQ7q9BeosxKR2bgic/DEa9AXuNzZwE8//YSnpydLly6ldu3axnMOGTLEmFFSoUuXLsbePP/E1ivxLDzxhLJf+jTlp6WRnJ3Ne1OXoHywh2PHjnHs2DGUSiWzZs0iPDycrKwsUlNTiYyMZO3ataz+4ScGlLbCUKbjbuoT6jp4IdGKaefqT8cPAlmQvI0XL17QpEkTAJo2bcqVK1ewtLRELpeTlZXFhQsXmD17NkuWLKFhw4YANGzYiKTcEh4k51PH2cK45t/KbJo3bx4uLi4A6HR6vj8Xw7rIZzzfNR9DWSHazDji4uPp17cv/ToOZN/apRTF3QWJDMfeM8g6uQJ9aSH64lwui0ZxcbeGXbt2sWrVKoKDgzl69CgWFha8bv/+/SxfvpzDhw//6ftuIpMws2tdnC1N2H3jJRqdHhtTOevWrWfUh8N5OWcO7cxesmzRMk4CsZevYNd1IqrUGNL3zMG0divUGfHk7ZrO8G83o1f9OlmuT58+TJgwgVmzZhEREYFCoeDAgQOMHz+eWbNmYWtrS9++fVEqlcjlcsaPH28s6xQIBAKBQCAQCAT/PiGIJBD8SYnZJYz/+Q5lr5QSaSVKRC6+fLDxGtPatiU6Ovp3ewPFPn2EKvkx2Se/R1eUQ8b+L1FnJSBRmJEulRPcvzP+/v40adKEvLw8FAoFUqmUgIAAoLwkqXv37rRu3RprWzs+3HyNXfPHUK3XFER6LR98MhlHpYhLz7PIz0whL2ob9t0nU3jnFAXXD6JXFWPQqrBo3BmdqpjS5zdIWv0hIpEYdWEW6HUseL81dt0noxNJOXjsFJPnfcO6ld9S9PwGiMCicWcQQWnsdZK2TiK1IJWnT5/i4OCAXl91zP2/oaBMw4Ljj1G9UlIlVpghrl6Pi7FZfFjnHR48eMD+/ftJTk4mPT2dWrVq4eDgQOvWrZFIJISEhPD11C94r2H5vT317AKdfIJQadUopHL0pTpMNXJiYmJISUkB4Pbt28bz9erVi8WLF1OrVi0kEgmenp7cv38fnWtj5mw6gdylFrvyriATi+lkkcSxjcsQiUR07NiRunXr4uzsjLe3N2q12njMjRs3ckvlRIxUR2FGCgadDln1+lR/fwFu3o6EHf2axo2bYKHJwWH4t5SUd9XGsfdM5Poy5BHL+GTsGBwdHYmOjmbLli1MmTLljQEkgL59+9K3b9+/dO9L1Fp6/3iZhJxi4+/C/hvxZB87RI+BwwHo0aMHPXr0YPXq1TQNaEOYohVFt47j8N5XVBNLKXhyiaMDf0R+v4yym/lcXXIC5z516dW3N35+frx48YJLly5V6Ze1fv16Ro4cyaBBg+jYseNfWrdAIBAIBAKBQCD454TG2gLBn7Ttajw6feUvtYpqdVFlxJNZqOJ45BVEIpGxD9CbegOJ0p8is3PD6d0vcR21Gtt2ozFoVDj2n4f7sG9ZsmQxAPPnz2fFihUAXLp0ydgcuUuXLty5c4ely1cg6/UV52OycXzvKzQKK9RKO0SdZhCXXYypXGr85TbodRTePoFIpkBfVojCyRsrv27knPye6p9sxXngNwB4TD6Ix9QjuI3/GVPvZlgHDcHUN4h1h8L5dvEiWrTrjolDDRzqBSBXmtGwTRcObFnLiBEjcHBwAEAs/u/8lRLxJAPpa82VFdXqos6Ip0St42DYJWrWrImPjw/nz5+nb9++GAwGmjVrxuPHjwG4c+cO1c2c4JdASFTcDYJqNCcy7hr9do6j7+aPSUtKZfbs2ahUKkJDQ4mJiTGer2fPnvzwww/GIEyvXr04fDqcAX27U5KfjUovolilI69Uw6FcF77ZdhyNRkNZWRn16tUDyjObXqXVGbidmEuZRo/MxhWptROlz6+THX2CeylF1G/RlsTEBMYP7MaMLnWp6WiOrZmcFl62uD/cxoYfluHk5IRIJGLw4MHcvHmTrl27vtV7v+VyPAnZxeQnPCZ183gSl/UjfklvFLVb07n3e9y6dYtLly4xY8YMIiIiWLpgHucmtcHVWon82hbWYYrSIEJmAINKhwIpokdFFBx4Trdu3YiPjzcGTUUiUaUSzlezwvz8/N7qdb0qPj4eJycngoOD6dChwx/un5aWxoIFCwAIDw+nZcuWtG3blqSkpH9tjQKBQCAQCAQCwf8EIYgkEPxJT9MK0egqB5HkTl6IpXLit07lxo0b9OvXz9gb6NNPP2XE2M9YeCqGVOcAbLwaooq9gq44l9Ttk0lZM4qMgwsQSWTITS0QRXzP1UsX6datG/n5+QBMnDiRGzducO3aNfz8/Hj//ffx8/PjyN0UcorVaF8LapVqdGQXqfH3tEUmLf/11pcUILN2xun9hchdy0vNpFIRIEIsVyK1dEBsalnlehXV6qLNS8NggL1nLvJRt5Y0drfm2KeBrBnSlM4NXGjo68Pt27eNGUj/rUwklUbPa5dufBZpO6eR8uwBgYGBHDlyxBiYAHBwcKBNmzYEBQWxadMmRvYfBhIRz7MTqW7phFKmoGOtQAY07IpUIiUuPYHU1FQ2b97MuXPn2LhxI/PmzQPKewyVlJTQvn378vulUGDe9XMc+n+BXqelLOEeBoUYnTmUSkRM/GIZTZs2pbS0lMePH5OcnMyECRNYv349cXFxAJRpdej0BnLC1lD0IBzTOq1Rer1DadwtinKzOBV+njp16nDj+jWGtKzBuUnB3JrdnvoZ5+jfozyLDaC4uJj169fz7rvvVmq2/jbsvvGSMq0eqaUjTgO+otrHm0Eqo+D6QTIfXkKr1RIWFsa1a9dYt24dIpEIe/PyCWvX5y/DWibj1fBfkaoEtHpKH+VwITyKOnXqcPXqVePrr2YjeXp6cvfuXaByVti/oX379kRGRnLmzJk/3NfZ2ZmZM2cC8OWXX3LmzBm++eYbvv766391jQKBQCAQCAQCwX+bUM4mEPxJnvZmXH6eXSVwYxPyIWZyCcuGvoOPt72x8W9idgk9frhIsVqLxisQW69ApHot5nodcoWCxN3zsG4zlKJreyk+u5L1X0+jTZs2PHnyhCNHjjBkyBBu3brFsmXL6NatG0eOHMHGxgYPDw9OP0gzljK9TiSCjAIVbXwc2BchQmxqibYwC7FciUijwtXRlsV9G/LuOg3Z++ejKcpGX1JE8cMI9OpSlF5NSd08HqQy0OtRpcZyOd4CUfoTnsXE0LxuDYYNG8bTp08ZMGAA0dHRWFhYoFar2bp1a6VR8Tt27ODHH3/E1taWnTt3GntD/VPNPW3Rv1bqVPEsTOUS5nb3xd3dnVu3blXZZ8KECUyYMAEAbZ6KtOibeNu5s6b3lwCkFmZyNfEOPw9ZgcusFojlkirHeBO93sCFHyZj0JQhkiuhtjuqQGfKLkZQvH87+oQ4mvbphbu7O2q1muvXr9O/f3+kUimLFi1CLpdTmJtNweElmNTyR+Fam8yDC9EWZQOQcWABHi1a4u/vz5EjR2jVqpWxZ9CCBQvw9/dn165dDBs2jDt37jBt2jRCQ0Pp3LkznTp1wsnJ6Y3rXrZsGQcOHODixYt/eI3xyWnc2jQHTXEBSo9GWAWU99wSy02RmFmjSX+OVq9l9erVlJSU4O7uTllZGVqtFnt7e3x6+HFjzL5Kx7yedJelFzYgl8kJDGnzxuurMHLkSPr27cvWrVtRKBR/6rn8WWqtntMP07j7Mg+KMjgXHm7s09S7d29GjBiBvb09z549Y/bs2cZrPH36NJmZmcyaNYu1a9eiVCqxsLDA39+fadOmvdU1CgQCgUAgEAgE/9OEIJJA8CcNaenBzzdfVgkiAVgqZbTwtKu0bd7RhxSUaSplzGjFUsQSKU08bHFu046SosfEZjyhQ+dOdOtYPta9T58+jBkzBl9fX2O5U0FBAdWrVwegVq1aKGRVkwgNOi0Ze+eiTo9jzOA+mLceDCKQSCSYN2hH3s/TsBSVUt1GSdMatrjY22AiK8OylhfPH97Brl5LEvd+g9KrKRILW2xDPwIRqGKv4iYrZtGiRdja2hq/NOfk5HDkyBE0Go0xq2b79u3GIJJGo2H16tVERUWxf/9+1qxZw5QpU97Ks6hhb0ZIHUcinmZU6lElEZU/ix6Nqv2p40itFdj0rknqgWdcMWgo1euJT7iGXmRg8NkZuMRW48WLFzx58gQTExNatWrFnj17kEgk9OnTx9gDa8eOHeXNti3tUeVnIPKuBkoJSESYtAnBUFKAyNyS+A6dEE8ezdKlSxGLxQwbNoywsDCuXr1KWFgYO3buosyiOnadxiESibBt/xGl8XexCRqCUi5h+YjmAMbSqQqlpaW/eY1nz579zddUKpUxs+eP3H2ZS1Dvj7BsNQiZnZtxuzojDvRaHHpNJ2P7ZHoFN+Oj0aMICwvjk08+oUePHvj5+RESEsK40Z8AcGDwrxP5QrxbEuLdEpFCgu27Pm+8PpVKhVKpxM7OzhikrcgIexsSs0vot/oyxWotxSodUnSYD/6RD7s3YO83nxEaGkpubi5hYWHs3r2bLVu2cObMGRYuXMjp06eNpXW5ubmVAqU63ZsDvQKBQCAQCAQCwf9VQjmbQPAn1XS0YH6P+iikYuS/lIqZyiVYm8rYMqI54ld69Ki1eqJiMquUXOlVJegNcDsxj+rql6yc9AFdOranRg0PVq5cCZSXXJWWlrJ582b69esHgKWlJSkpKZSUlBAbG0ufJtUxfS1DRiSR4jRgAe7jd2PX/yvETrWx7ToJvQEsmnTB9YNleHt7G/cPCAgg9tE9Lp85Su26vkgUZiCRoistRJOTTN6F7RQ/uUjhw/No89LQWVVj2918jt1NIfLqLXQ6HaGhoUycOBGdTkdycjLPnj2jRYsWxMXFERMTY2wy3q5dO2OJ0urVq2nRogWff/75P5qstWJAE/o3dcNEKsZMIUEuFdPC245DH7dC+SezhwDOiDR0FxXyjaiU5SIV64rSiTbRcTIqHFdXV6ZMmUJqaiqdO3fGysqK8PBwbty4QVlZGcOHD2fAgAGsXr2aGzdu4G5vjtO4pUjc3MtTwn6hfZlA6dF93P1sFPcePODo0aPGPlnp6enG51K3Tm0COvSgKGpTpTWayMQ0r2FLUw+bv32/oLw0LDohl+P3UnmcWsD69esZOnQoAEeOHCE4OJjg4GCUSiVqtZpu3brRtm1b+vXvz/vrrqHOiif/yh7Sdk1HlfwYXWkhOWdXI7WthlImwdFSgeSV34PLly+TlZXF999/T+PGjRHJJIjkv/HPjsGAolbV69u6dSulpaVUq/bnAoN/554M33ydrCIVxaryoI8WCRqxnG/OPMOvdSjHjh3D19cXsViMq6sr9evXB8DV1ZXc3FzjsWxsbIxN9AGKiooICAggMDCQCRMmVOqdlJCQYLy/GzZs+FeuTSAQCAQCgUAgeNuETCSB4C94r5kbbXwc2H8ribT8MhpWt6JbQ9cqQQuNTk/VfCVQJT0k78J2RFIZ3d/vhpOTE0VFRaxZswapVMq6des4cuQIWVlZPHz4kEmTJtGtWzdSU1Np2bIlLVq0wM3NjbZ1HGnsZs2tX5owVzCRitHo9GjekC2l1etJyy/D3VYJwIMHDyhRqen75U6elZhhpdJhWqslxQ8jMPMNxq3HeOI3T6ZTl65ciDpPl4nLkHv7UxCTiepFIrYWZjy9dIa5s2bQq1cvnjx5wokTJ7C0tGTRokUMGTLEmJVhZWVFbm4uWq2WzZs3c+nSJW7evMm1a9f+9rOQS8V82as+0zrXISWvFFszOXbmf63E6XZiLtMP3qfslSlverkpRSY+TFwURcca73D73n32799PZGQkpqamPHv2jNzcXOPEs9TUVI4ePYqHhwehTWqx+eQq8HKj7OwxNDGPMRTmY734J8RKUwAUU8on7O3fv5/vvvuOzMxMduzYYTz/qVXz6DdmCjduHQR7b0ykYj4K8uY/ITUrNZn+q56lFzJi8w2yi9WIReWZYoUn93Pn/Amg8kS19u3bk5iYiL29PceOHePk/VQ+3nELVfITXIauQKw0J/PgQkQKU2zajiA3chPvNavOybNKY/aNRqNhxYoVeHl5oVAouHfvHiKpCIW3DboXhRhe+dyKZGKse9V8Y+ngBx98wAcffFBl+9vKRHqQXEBqflmlgK9eVYJYYYpGa2D/iXNsWjqHR48e/breV57Dqz2bTE1NKS0tpaioiEePHtGwYUNWr16NiYkJgwYNIjMz09g7aebMmWzatMnYlF4gEAgEAoFAIPi/QAgiCQR/kbOVCZ+0rfm7+5gppLjZKInPLqm0XendDKV3MxpWt2LJf1oD8N133zFr1iy2b98OlE+G8vHx4fr16wwePJhNmzZhY2ODVCqluLiYDh06IBGL2Dy8OZsuxbHlSjx5JRq8HcxpVdOO7VcTKVJpK53XoNOStHsuuowXeDk2Iz09HUdHR/wCO5KQnIptt8kAmNbyJ+fMTzj3m007XxcMvTtw9uI1DA61yL17DgtpeSBEL5ZRZl+bxaeeEBISgqWlJVeuXGH27NmcP3+e2NhYrK2tjVkZBQUFWFtbk5WVhbu7OxKJhCff+2UAAQAASURBVMaNG//jZ1Fxr2s5vXmE/R/5KfI5Kk3lZuCKanUpvHuasKISlBGRFOuLCHsQRuvA1lhaWhIXF8fGjRsZO3YsgPG6PD09WbJkCe9PmM7WXbsAsFm4gqLt61HfuoZJq7bIRDBx3xFq1HA2lmW9qqIv0cG1S4HyPkti8d8PHFUoVmnpv+YK+SUaCh+co/jBObSF2Vi36MP7635tYn316lUiIiLYvXs3IpGIBg0aULNmTfKKVUhDP0VibofMvryUTVdaiD4nmfQ9czCoS9k7ZxgykZ6cnBzmzp2LlZUV8fHxiEQirKys6NGjByKRCLtBdVHfy6HoUjK6Yg1yFzMsQtxReLydfll/1cvcEsSvBeeMwV6JDDdfv9/sJ/UmM2fOJDgkFIXChJ3bt2JiYgKAVCpFIpEYf6cTEhL46KOPKC4uZuXKlfj4+HDt2jU+//xzNBoNI0eOZPjw4W/1WgUCgUAgEAgEgn9KCCIJBG/ZgwcPGD16NAUqHblaS6w7fVYpc0EhFeFgrqD22J9IObMeM7EWVXYSgYGB2NrakpycTJ06dQgKCsJgMPDRRx+RlJSEwWCgrKwMa2trAMTo+Xn+KC6Hh/Pxxx+zd9VeGkycicFQp8qaRBIpzgMW0LmBMz8NKu+zdC48gobzTuP0SoNusYk51f+zDbHClOtxOdTKzUbqPwj9hQM49J4BQNH9dKTWLpSkxbH7xktEsptIJGJiY2NxdXXl7t27eHt74+PjYyzZCgsLo0WLFtjb2/Py5Uv0ej337t37zXsYHx+Pv78/devWRS6X/6kJWX/Hw5T8KhljFVPekndO47rSlqUdPuXKyzvcunWLatWq4eXlRfPmzXF1dWXTpk3Uq1cPb29vvL29SUlJ4d76H9GXahDb2AIgsXfEUFRYfn9FIno5VS7Zqvi8SCQSatasyZw5c5g9ezbbt2//wwDS+vXrWb16NfPnz6dr166/ud/B20mUaXRoCrMoS3yA04CF5EZuoujRRa49vYw4M5b58+cTFRXFwYMHEYlEqFQqJkyYwKFDhzDXiklKj0WsMEVblFPeSNvEnGqjVgMgFYu4Nb8jJrLyTKLTp09z8+ZNjhw5glarRSqV8vPPP+Pr64tMLkP2jhNm7/z5wMy/oeIz5u5Vi7j0Ehze/dL4WkWwV5vxgryw7wkODjZO+PPx8WHixIksXbqUoqIipNLyf0a3b9/OjfgcFt+XUdB+HiIRvL8rlrnd5LjoM8nKysLUtDwIm5WVxb1794iNjSUjI4OpU6dy6NAh5syZw5EjR7CwsKB9+/YMGjQIuVz+X783AoFAIBAIBALBbxGCSALBW1a7dm0uX74MQEiPd0nOj0fqWBMDYCKToNbqOB+TSWr4Dux6zUQqlmIjNbBipD892jQzlrdoNBoePXpk/KI5c+ZMDh06RPfu3SksLOTy5cu0a1fejHv27Nk0b94ctVqDWaaU4jdMbjORSRjSoobx5yKVFrVOX2W/iiyMNKmMNgO7E1Vobnwt//LPFD86DxgQmZgTt2UqP6mzcHd3IzU1FTs7Oz799FN27NiBTCZj1KhRBAYGYmNjw86dO5FKpQwdOpSAgABatmyJTCardG79KzVF7du3N2ZnVaiYJLZv3z42bNjAzJkzad269Z+aLPYmDhYKUvLKqmy3CfkQOfCNVk41qQknhqzjJ/Ux5HI5KSkpxMfHExkZiZ2dHVqtlkGDBrF48WJ69uzJgAED+PyHVTxVvpJZYwBTsZgPbU0Z0a0LGo0GS0tLdu3aVenzMnz4cLKysv70+vfs2cPFixeN2S6vMxgMbLkcz8ITT1Dr9JTF3QKDnvTdM5DZuWPb4WNyT68EkZjVq1cjEomoUaMGOp2O8+fP06NHD1JSUnB0cqJEnImurJDUTeOQWjlh3erXKXyjgryMAaTk5GS+/PJLfvyxvHn2zJkzuXLlChKJhD179vzpa/tvqPiMdfouimfpRehem/hnau/KkcgoPv2gv3Gbra0t586do3fv3pX2vZ+UzwcbrlOq+fV3LyWvjP9svoBJ5HLOHjtIWVn5Z83a2hpfX18cHBxwcHAgO7t8At/du3fp0aMHUB5oyszM/Nd6QQkEAoFAIBAIBH+HEEQSCN6CyKcZfBf2jGfphViZyvigZQ1GtPLEx9WWbXP68p8JU0hPTSZfbEmK1gzT+qEYtGoyD32NSCLDruMnjJz1LbVr1+bixYukpaVha2uLl5cXtWvXJjs7m1u3bnHt2jVevHjB4cOHCQ8P58mTJ0yZMgUXFxcAxGIRa4Y0ZfCGa2h1BlRaPSIRmEglDGjuRkvvXyfImSukyKViNK9NkKrIwnCyVLB4RjvOTNxMrrQ8G8Iq4D3jWHcAM7mEe/M6Vmqm/KohQ4YwZMiQSttGjhzJmDFjuHbtGhs3bgTgXlIeC44/5kZ8DgANrdRcOffriPUJEyYwbdo0Nm7ciFqtxsTEhOjoaIKDg4mOjubLL7/k2rVr7NixAwsLCyZPnsz7779Ps2bNfve5jWjlybT99yt98QcQAV6IeRJ3g0k3ygMf9Tu8w9q1axkxYgQDBw7E0dGRIUOGMG/ePPLy8hg7diyHDx8GoK65kjr21qhtLLgmk2Avl7KkgSf+pjKGbd3GgzwxcxevoMXw2bw3dBQjWntS3cYUhUJhbFLes2dP0tPT2bVrF56ensyaNYuoqCgaNWpEYWEh3bp14/r163Ts2JENGzYglUorZW/t2bOHKSt2cFHrbQwW6orzMOi0OA1YSPaZVaTvmY2+OA8X12o0qFMThULB4cOHWbhwIS9evCAxMdEYpJu79AfWRsZiUr99peyt3o1dmdqxtvHnatWqVQrqLVq06HefwX+TwWDgYUoB6QVlKMpKiIiIIDAwkNDO3Xl85xkGazfEHk3RPL+KOjeNJd/Mwc/LpdIxTExM3hi0W3L6SZXPkUGvI+ngYup0GYGTkxMJCQkAKJVKzM3NKSkpqTTRrUmTJuzbtw8zMzM0Gk2VIKtAIBAIBAKBQPA/TZjOJhD8Q1uvxDN2+y3uvMyjWK0jJa+Mr37aioNHTdLTM0h6mYiTjTmXoyLIlNhhAPTFuWhyknHoNR0z37bkXd7N09tXuXX7DrVr16ZGjRoUFhaiVqvx8/MjIiIClUqFn58fvr6+bN68mefPn+Pj41Pli2YTdxsiJgczpo03Ad529GjkytYPmzO3e71K+0nEIgb7e2AirfrXgFImZlSgFxqNhtLwn7CuF1hlHxOZmMEtPH4zgPRbVq5cSZs2bRg/fjyTJk3izss83ltzlWtxOegNlE+vyxJhM/QnRizcxPYDx9hx6JRxvHq9evXIzc3F1NSUI0eOoFAoGD16NNnZ2fTr149OnTpx69at3wwgPXjwwDgx6+B3s2huryX3+LcAFD0IJ33bJLL3zOHTolI61grEzcoFtUhLbGws36/dzOhZS1m2eiNlZWWcO3eO5cuXY21tzYABA1i0aBHbtm2jRo0abFm6hMan9+EScQLzyNN4FuUilyv4KiKVCT/fITazlLQCNduuJtByzGK8a9clIyMDOzs70tLS2L9/PytWrGDRokWkpqZy69YtoqKiaN26vJdWv379aNy4MefOnaNmzfIeXe3btycyMpIzZ86QmpHFnn37KwU2xAozTNzro81Pp/hRJBj0iOVKenTtTPv27X9z6lhwcDCe9uaE2OZStnMcmiNzqf5sP5enhbB8QJN/1PD7vyU2o5CQb8/Ta9EhOjarQ/ue76K1cOHQ8TPcuHSeTVMGUrvkPp+G1MQu6QIeBff4cfIQPD09SUlJ+cPjX4vLqbKt5MlF1KnPeHJkNYFBwaSmphpfmzVrFh07dqRfv37Mnz8fgPnz59OjRw/atm3LgAED3t7FCwQCgUAgEAgEb4mQiSQQ/ANFKi0LTzyuNCENQOrZnGq1W6J/vpcXL17QsGHD8u2OnqhfPkakMEPuUguxzASRWELR3TNILezRSU2RyeR4eHgQExODn58fsbGxjBw5klq1anHr1i3u3btHUlISzs7OTJ48udJ5N27cyLp161AqlYwePZqdowZSVlbGJ598wudxcdSrV4+VK1ca95/YwYfHaQXciMulTKNDJCqfetbe15nhrTyRiEU8vnWNqfvvcexeClqdAb3BgEIqoYWXLZM61OavmjBhAhMmTDD+3OenS1UzgaQyyoCvTjylxLIuk9afQp1RSLOAQEQiESKRCIPBwKhRo/Dw8MDJyQkPDw9evHjBqlWr2LlzZ5XzanR6covVeHjVrFQ+9nFLR9LC7fByNmfvthMsGLQCj4xEDlzbTcPQcYjEIpYsXc3yNAML92+leOG3uA78mqCZO/hhsD8fvN+Ppk2bIpFICAsLY+HChajVatLS0ti2bRv37t3j8uXLfP311/T8ZA7nYzIpKiqi8O4pnPrPR6MzIPFshkOjQFxTDnLs2DEaNGiAVCqlcePGxMbGkpCQYAzwNG7cmJMnT6LXG0gvKCNkaSSZxVrsDHk8PhNmzN66E5NIcdxtVDun4dBrOiXPrlJ49zS64lwk5nZIrZyw8g2kvlkhVy9fpF+fXkRERBjvl+G10i6ZTIZUBF/OmcHIkSP/8nP/n1RYpqHf6vLG4hqNDhOPxth3n4xMIuLDbbfo1q0baWmpKHSlDG1qzzlbM44fjwSgZ8+eJCcn/+E53hRMNfNtg5lvG6RiESfntCcl4QVKZfl0xDZt2nDhwoVK+zdv3pxz58798wsWCAQCgUAgEAj+JUIQSSD4By4+y0T62pdHg1aDSCqjRK0jodBATEwMaWlpADhp0okDZDau6EvyMOh1SMxtkNlWQ2JmjTo1hphnhQQHt0EkEmFqakp0dDRBQUEEBgbi4eHB1atX8fX1paioCFdXV+N59fryQNaOHTuMmSkA33//PQMHDiQ0NLTK+hVSCVuGN+duUj7hj9ORiEW093XG1/XXfj5isYil/RvxUZAXZx6lo9cbCK7tSIPqVsZ9Xm+EvWfPHsLDw+nTpw8Ac+fO5cyZM/zwww80bdrU+D6VVsedl3lV1lUxYl1ngML4h0isHFEjZ9yu2+X32GDgwYMHfPzxx8Yv+CYmJiiVSjZv3szAgQONx9Lq9Cw7G8OWy/Ho9Ab0QNcGLszrUQ+FQoFer8fBQsHcAbVJ3e/Ju3JzdG61WRi2ApFMjMTVnF6TP0IrVSKSKtDrQYOEm8klDNsSTdeuXUlKSqJJkyYANG3alCtXrhAfH09+fj56vZ533nmH+fPns+1KAsUqLdknVmAd9AFiE3Pj56WwTEMpCpRKpbEheUWTcg8PD+OI+YqG5BP23CEhu4SSnBJEYgkvtSbYD19NuwAvwtZOZ8i4aRy+dBfrLpPQleRTGnsNl2EryDm7mqxj32LQarDPvkNamormzZuzefNmIiMjuXz5Mv369SM5ORk/Pz9evnyJm5sbLVq0YP78+Rw7doytW7cyd+7cKp+p15uEb9y48U9lKWm1WgYPHkx6ejrNmjVj8eLFf/ieP6uwTMN/dt4ir0Rj3FaWeI/UbZMwqxPIfd/WXNg9l0YN6vP8+XOGDh1K9+7dASguLiYtLQ0TExOOHz9OXFwcI0aMwMbGhmbNmrFp0yasrKx499136dLAhYO3ktC93qkdaFjdChMJjBo1ihkzZry1axMIBAKBQCAQCP7bhCCSQPAPqLR6XkvYoDQumoIbhwCQengye/Z6PvzwQ0JDQ6lmZU+CRIFIIsW8YUfSd00HkRiHPrOQWTtTdOcERVGbkUgkmJub4+DgwN2UYuJyyjiQZMaj/bGUha/GwsICnU6HUqmkbdu2ZGZmkpubS3FxMW3btqVx48b88MMPeHh4EBkZaWx2PHHiRGPj3goikYjGbtY0drP+3Wut5WRBLSeL33z91UbY8fHxHDhwwBhECg8P58qVK3/+vr4yYl1R3Rf0OjQFmWwbG4JIq2LPnj08fPiQXbt2cf/+fTZv3gxASEgIGzdu5Pvvvzcea8KeO4Q9Sqf0lWyxn/cdYN343rRr0Rg7u/I+UQ4ODiSVZmD1WT3OHwyjQFZG8ge1qVl/Am4P80k6uRp1WiwARY+iKLpzghSxiBMvH3L58mV69OjBnTt3OHHiBEFBQfj7+5OWlkZoaCiBgYF4e3uTUKIm/8J2FNXrovRoBPz6eZGIRNRo3oAOEz9h9+7d9OrVi8zMTHbs2IGLiwuNGzcmMDAQX19fClQGrj1MR//Kh08klaECdt5IZmjbDsTejEJEeQBHm5eGOiOu/PMGyB1qYN/xE57vnoFEV4ZGo6FBgwaMGTPGGOTo0aMHhw4dwtbWFg8PD7y9vbl+/TqWlpZkZ2fToUMHbt68iUQiMa7h9SbhN2/e/MO+VAAHDx6kUaNGTJ8+nXHjxnH37l0aNWr0pz8vv6WwTEOPHy6RkF1s3CYxs8V11FrKEu+SdfRbSh6cQ67TExYWxvr16xk3bpzx87Rt2zYyMzPJyclhyZIlWFlZUadOHczNzblz5w5xcXGsXl0+oW5SBx/CH2dQUKZB+0uDeLGovKH9l73qI5PJiIqK+sfXJBAIBAKBQCAQ/E8SgkgCwT/QwsvO+IWxgmmtFuX/ySXM7FIXsVjMunXrkEqlLFq0CHEa3OPXUpdXOTbvzk9fTuPdZm4sXryYHVcTGLrxOqZ9F6IC7r7Mx7TeYFq27ElWxGZMTU3JyMjg3r17SCQScnJysLW15eLFi0yaNIl9+/bx/Plzxo8fz8KFCwkODqZLly7GseR/V36JhhXnYjhwK5lSjY6aylJuhJ0zllJlZmZy9uxZgoODCQ0N5d69ewQHB9OkSRM+/PBDUlJS+Pzzz7l9+zba8B8wNB+MxMzaePyK5t6vsgkejoVCiuHoHN577z3u37/P9u3bad26NcOGDSMyMpJBgwYxd+5c43visoo58zAdlbZyuaHc2x/3ugHoY/dw7NgxACQSCXPmzKFbv57Ye9QmQ27PiO3RlGl0aDQadIXZVEQMJQolBnUpalUxXvX88Pf3p6SkhIcPHxISEkJERAQ7d+7Ezc0NtVrNxYsX2bJlC9+HP+fUtf0oqtWhJOYKZnWDsGjSBdNaLZBLxWya2hZHSxMiIyOr3PN58+YhlUr5+eef2XjyKiqtDueB3wCgzU8nZctE5PZuSKQyDni40DOkBQ2rWZAuFaOzdkbhXAuH3uUBIoNOi64oG7lzTYqf32Ty5MlotVr+85//GM+Xl5eHu7s7UD7WHsqnikF5wM3Hx4c7MfEceFJC2ON0xCIRPRu7MirQCztzBQqFgjNnzpCVlUXnzp05cuQIT58+ZcSIEfTr1w+lUolMJmPChAmVSj4bN27MlStX3koQafPleFLySnn1V1QklSFChmlNf2yChyHRFFPXpACxWIyLiwve3t7Y29sDcOHCBWOAC6BTp05cv37dmGkXHR1tzFpysVJy4rNAvj/3jENRt4lZ/xlO7t64OlpR74vfLlEbNmwYs2bNqpQ9+KZtAoFAIBAIBALB/wZCEEkg+AecLE3o3aQah+8kV8p0kYjBUimjt1/5eO4PP/yQuLg4LC0tWblhG51WXq0S2ADQGwx0buAMQH6phi+OPaqyX2F+Hns3L+Dg/r0ANGrUyJgNYmtrC0Dr1q2ZNm0aAFZWVrRp0waFQkHNmjVJT0//R2PDC8s0dP/hIqn5pZTmpJG6dRLxtq5ITBz5dOFqvhn/AZs2bSIxMZFJkyYxdepUAKZMmYJaraZXr14MHjwYFxcXCgsLqa5Uk2ttV6Uv0pvoDQa2HzqFqjTD2FumYhJYRfbIqy7GZvF6NdWr5YappSLjcaA8+8bTrw1dp69B7KqhSKVFryqh5OlFFG71KYuLRl9WjNK7GWITC4pvHeGLdVsBqFu3LpcuXQIgKCgIAHd3d8LCwoxBu/E9HTgZd5QSdeVrVUjFdKznjKNl1alfFWbOnMmVK1eQSCS8M+ILnj4sqPS63N4dg7oEnV6L0tySx48fY6IvRRG1glK/YSi9m5G243MQi1FUq4tFo44Ux98F4NGjRyQmJnL16lW2b9/OqlWrjOWC9+/fJyYmho4dO7JixQoSEhI4evQoDx4/ZejOJ5TpRMZA6saL8WzYsRfprZ+pW6c2EyZMYMmSJXTu3JkDBw4wd+5c1q9fz0cffcSAAQPo3LkzAE+ePGHlypUkJSXx9ddfo9VqqVu3LtOnT69UGnf37l3Gjx8PQEJCAp999pnx5zfZezOpyu9PRakkgCrpEXIzKx7dv8STJ0+YMWMG/v7+AGg0Gh4/fkx0dLQxiPTy5UvCw8OZPn0633//vTGLrYKzlQkL+zRgtJ8Fs7K6GjPzBAKBQCAQCASC/1cIQSSB4B9a0LsB9uZyNl2KR28And5Aq5p2LOrbEFN5+a/Yli1bKr3ny171mXP4AVqdAa3egFwiQiwWsfJ9PyxMyqethT1Kr9Ks16DXkXVsKTZthxP5UkNtBxPE4l+nqxUUFGBpacnTp0+NWSMBAQHcu3cPPz8/4uPjcXBw+NvXGh8fT0O/d9BauGIQS7Hr9B+UNcqbFAPMP3QLU4mEY8eO8fLlS+bMmcPhw4dp06YN3377LaWlpWRkZPD8+XMGDRrE4cOHqeVRnQmjW7Dg+COiE3IxACJA/4beMlamMuo5m9Gu3Z/rLSMTi6r05Hm13NCyVi1evnzJmTNnABg3bhz7z12lUGqNTfuxAGQdXYI6/QV6TRlye3c0WYnkXdyJKukB1frPoXOD8hHwOTk5JCUlYWtri05XHiSSyWTodDpjEMnN1pQtI5rzyY5bFKu1iEUi1Fo9Hes5s7hfw9+9lkWLFhn/HPk0g2MxtyoF3rS5yUitnbGq25o6Ncw5smd7eSDmqx+YuGQ9RffPAmDT9kP0xbmk75mL2MQCE7mUZ8+eUb16dQ4dOkRwcDDFxcUcP36c4cOHk5ubi4eHB8uWLaNnz56kpqbi4+ODTct+JGvAwK8PSq3TI3V/h569e1EcuY5Hjx7x/PlzSktLSU5OxtPTk7i4OGP2TuPGjVGr1eh0OvR6PaGhoRQVFbFw4UICAgLeWBpXkaXVs2dPunXr9rv3TKWtGph8tVRSWb0udS1UPBOJqFOnDitXrjQePzw83FgeOWLECAAmT57MoUOHEIlEmJub06JFi/LrTiok/2QcqrgCEEGObSkR58KNmXlyeXmzfB8fH1q0aEF2djZz5841rn/lypVER0fTvn37Spl0ERERrF+/ns2bN1eZwigQCAQCgUAgEPxPEIJIAsE/JBGLmNyxDp+G+pBeUIaVqQxLk9//wvfuO26842HD9qsJxGUVU8fZkkEt3KluY2rcp0StRfdaJKViZHhOxCa23thJjw0rK70+aNAgcnNzEYlErFq1CoDPP/+coUOHUlBQwKhRo5DL5X/7Wg0GAwqPxth2LJ+ups1Pr9SkuEhVSOG9e6jVajIyMvDx8aFfv37cv3+f/fv306lTJ0xMTJBIJLRq1YpevXoxduxYGrtZs3dMABqdHgwG5h99zP5bSZRpdBgoz9SRScSsHfIOcrn8T/eWCanjyNwjDytte7XccMV7Ddi8eIaxXGvlypVc+eosWUVq4/6O/eZWen/a9qmIxCJ0hdnIw5fS60Z54MHe3p558+Zx584d5syZA0DXrl3p1asXI0eOpG/fvgA0q2HL1emh3H6ZR36pmnquVjj9TgbSm1yPyyb90j5KYq7gPHixsc+PiYmC4mNf4x7YCU9PTyIjI4lLSiX/yRWcBi5CV1pIypoPsQkZiUl1X6zbDEV39lu6du1KQUEBHTt2ZOnSpXz66afG4GPHjh2NgRV3d3eGDRvGZ5Om0HDeGQyvfT4NWg1aqYyj91LoZWmJUqkkODiYOXPmEBISAoDG1J5Bi/dQ5taCtIPhXHuWyrSPPuDFixe0bNmSCxcusHPnTmPgBkChUODm5mb8uaLhdUW51+uN3SuCgoG1HIzNrtXpL8g5txYAXVkR1u/0YEyIDyEt/IzPa+vWrSQmJvLhhx/i5uaGj48P69atIzg4mJUrV7JhwwZj5tuOHTsAUCUWkLXuPoZXMhGt0sREDttG9c+a0+/DAUydOpVTp06RlZVFs2bNePToEXfu3GH27NkABAcHs2LFCvz9/Y1BpPPnz3Pu3Dm2bNkiBJAEAoFAIBAIBP9rCEEkgeAtkUvFuNma/vGOv/ByMGdO93q/+XozT9sqpVgVfZRM5RLm9ahHy3fcaNmypfH1o0ePVjmOi4uL8Uv131Ws0pJeUMaCY4/Jjb1NYdZUTH0CABE2oaPRlRaQe+Yn5I41MDU1Z/ny5XTs2JH09HSmT59OVFQUx44do2vXrkgkEpydnalRowaZmZkEBAQYzyOTlGdVfdmrHj0au7LjWgJZhSpaeNvxfnN37M0Vf2ndjpYmjAr0ZMPF+EpZOzKJiLouFjyMOMjQoUOZM2cOt2/fZsmSJVj4jebJroVYvNMTTVYCpXG30KvKGzM79ZuHR0A39El3qd/IFxtzEzp37kxQUBDx8fFcvXq10vnHjx//xnIrsVhEUw+bv3QtpWod+aUarsdnsyHqGerMOONrIqkMXX4O8esm4+Fsxw8//ICbmxsHDhygevXqaDLjSd81HX1pAYjE6IrzQCpHV5hFenwMX375JZ9//jkA9vb2vHz5Er1eb5wEB3Dy5Enq1q1LWFgY/QcOrfLZhF+zvERAegd/OnTogLu7Ow0bNuTx48esOf+cC6KGJIZ/iUh6FANw9eZtVvv35f79+8jlcmrUqEFYWBgAR44cYcaM8iDfq6VjJ0+epFOnTpXO/Wpj9wqftK3JifuplKh1yJ28jD2kMvZ/idLTj+0H9/H5xM8AuH79OhKJhLCwMBYuXIharWb06NFs3br1jT2qKuQdfl4pgASgkJQHakvOJdGtWzeSkpK4f/8++fn5TJw4kQsXLqDX643Bofr16wNUKq2cP38+586dEwJIAoFAIBAIBIL/VcR/vItAIPifUMfZkmYetiiklX9NJWIRFiZSejRy/dfXUKLWMmnPHfy+PEvnFRcIS1DjOmotTu9/TVn8HeROXqjTYxFL5Ujt3DCr0QhTUxNat25Nly5d6Ny5M1999RXDhw/n6tWrlJSUIBKJ6NmzJwDJyck0aNCgynlFIhHNPW1ZMaAJO0a1YFxIrb8cQKowqUNtvunbAC8HMyqqA8UiEQ9f5vLFun241H0HgCZNmuDp6YnhwlrkVnYoXGoBIDG1wqn/fKTmdriTyfQudenSrDYXws/g7OxMWVkZUVFRqFQqcnJy/tYaf09eiZpxO2/R6IszBC+NYPzuO2TdPIlZ/VAA8q/uo+hJeXaM1LYa5uYWDB8+HI1Gw/bt25k+fTpSO3ecB36DzN6jPPuoMAtV4j1St0xAX1aMg6OjcZKeVCpl6NChBAQEsHPnTmQyGYWFhSxevJhvvvmGb775hi/nTMfRomr2lGmtFjgP/IbuM9eyfv16xGIxvr6+aLVaHKp5sOxsDCqpEqf3F+L07hfoC3NQ1m3Dk0IZ7jXrEB4ejqOjo/F4PXr04MGDB1SrVs3YAB3Kp7n16dOHgjINV19k8yS1gIiICAIDA1m+fDmRkZHMmjULT3sz3rd+gWn8BeN79eoydMW5lCY/Ru3RkqBB47l37x7Dhw/Hw8MDgKZNm/6pZ6NXadGkFlfZXqQqAQOUPs7h0qVL1KxZE7FYTF5eHsHBwWzatKnS5/71kkso7/E1duxYsrKy/tRaBAKBQCAQCASC/wYhiCQQ/C+29oN36FTfGYVUjIWJFIVUjJ+7NQc/boWJTPLHB/gHDAYDQzZc59i9VFRaPSqtHpFUhlhugkgsQVmzOZrcFDSZCahSY5CZ2/BODTswGJDJZMZR8Dqdjs6dO5Obm0v//v1RKpU4OTn9q2t/8OABAQEBBAYGMmLECHo0cqWOswXyXzKdVFo9WXfOgndr3l1zpbyMjvLys6iju/HvNhjlL/dXZu+BXCpGaePA6BblTc8rMkdcXV2pX78+y5YtQy6XExMTw4IFCwD4+OOPcXBwYP369cZ17d27l+bNm+Pv78/hw4f/8DpUWh29f7rMqQdpqLV6yjR6dFotZYkPUHqUN3s2821D0e0TZOybT2niQ5JTUoiPjycxMZHDhw9TUFCAbe1mJP34ASWx18iP2oZYaYlD3zkoPf0Qm5jh5emJUqk0ZvKMHDmSq1evMmDAALy8vLCwsCAiIgJTU1OaNWvGli1bmNGlDiayqv+EmMjETO1Yu8r28zGZSMUiDOoy0ndOI3XrRERyBSVPLhK3fSbPnjxm5cpfyzNVKpXxz5a/lMbBrw2vj7yU0eyrMEZtucn4o/G4jFrNgvV7CQsLq5RB5WZrSmM3a+SS8kBN6YubKD2boslJJufaIe6d3I5ILMHf35+dO3cCcPv2beP73xTgMXpD3y6A60l36bJ5JJ03jODgwYN8/vnnPHz4EFNTU5YuXYpUKq2UgVdBq9Xy7rvvcvr0aY4dO8b333/P4MGDKSoqAsrL7UJDQwkODiY5OZmRI0fSunVrkpOTqxwrPj6ewYMH//baBQKBQCAQCASCv0EoZxMI/hdTyiWsGNCE3GI1iTklOFoqcLFS/vEb34KbCbk8Ti2oNN2qymQrJ2/KXj5EJJHSskMv8uLuo1Ao6NevH6ampvTv35/g4GDEYjERERE4Ozvj5uaGp6fnv7r22rVrV2rKfCLiIuceF1W6Fk1OMur0FxTfPYUh4xkrV67k3LlzNG3aFOdnR/jwP1/wTcIFytQaPmjtSaauBtVtlMTnVw4saDQa7t4tn3Jmb2/PzJkzAZg9ezbNmzdHq9Ua963IkhGJRHTq1MmYkfVbTj1II6OgDM0rvYeKH4Zj5tvG+LPU0gGxTIH9u1+SfeI7Ll+NoG+HIKRSKc2bN+fKlSss2H+VuRd+xu3TXRTdO0vRvdOYer+DNjeZqVvCCbLIYsGCBXz//fdAeW+oQ4cOoVarqzSFr9C1oStlGj0LTjwu711lABszGQt6N+CdGrZV9ldr9egBscIU50GLq7xedmAm48aN4+effy6/9lOnWLZsGQC1atWiQ4cOQHnDa7Majdh5LdEY3AQJZWXw0fY7DAhqR25urvG4BoOB51nFqJ3K72HJsytY+fdF7uiFKvkJmudXcChN5KeffsLLy4vQ0FA8PDxwd3cHwM3Njb59+xqDg68Sm0iROijRppdU2h7i3ZIQ75Zk2Jey7M7WKmV2FZ8RqDxVsGnTpowdO5Y6deoYt506dQooz9qr6JNU4enTp8YeTQKBQCAQCAQCwX+DEEQSCP4PsDGTY2P29xti/x2XY7MofW0U/auTrRTVfbFs3hu9qgTUxRzctpZenUJYsWIF3bt3Z9++faxatYpBgwbh5ubGiBEjkEgknD59+vezO/6mk/dT+fZsDC8yizBTSHn3HTcmtPdBoVCQK7Ik9+I6Cl7cBpEY+y6fYRM8nJywNeWT1/QGbG1tqVatGvn5+Zw/H8nVq+0ZMWIENjY2jOxUh3lXy/+6VGv1XH+RxdEfL/HoWgIRd54zafRgTp06RVJSEvPmzWP79u24uLhUWWPt2rUpLi4vf7K0tPzDazr9II3i155BRfCr8M5JNFkJFEQfRVnTn9xzazH1acmO60k0atQIDw8Pbt26xdWrVwl2AUNpAck/DcWg1QAg0xTj6OXLnF5+iA1aY8AGYMKECUyYMOEP19e3aXV6NanGi8wiJGIRnvZmv/lsW3rboX/TyD3AVC7h213l5WoVQZGePXu+McjWOjiUzIt6yl7pcVUR3FRr9ew+FsbmpXNYu7a8ifb9+/exVFiRAeh1WrTZScgdvQCQWjlRmB7HTydOcvPmTXr06MHq1auJjIw09kGqyE56dW2vsu7hTfbmh1X6IqnFcNlOSnh4hHFKW+/evZk1axbbt29n7dq1bNy4keDgYK5evUpkZCQPHjxg4cKFvHz5koULF+LfpBllT3MxaPScuHwUnU5HaGgovr6+mJubc+/ePbp168b+/fvp378/arUaa2trOnXqZMxW6tmzJ+np6ezatetfD94KBAKBQCAQCP7fJ5SzCQSCN1LIJEh/aSKkzownbdtk8q/uRebgiV33yeiKyvv/OLUdwsDxc9EV59KlSxe6d+9OQkICmzdvNjYP7tq1KxEREYSFhf3pfjN/xfoLL5i45y6xGUXoDVBYpmXVlp9xruFDalo62uI8tIVZOA/8Brv2Y8m/shdVagx6dRnOgxYRMHgySUlJTJkyhbS0NGJiYti8eTPPnz9n5MiRAMybN4+mLVqxt8CbS5JG3H2Zh7p+L27FxDP/lhgPT29q1Kjxu+vs06cPfn5+NG7cmHHjxv3hdcmkVf+KtgkejtN7X+L07hfI7D2wbNod0zqtKXl+E9ParTh8J4Vnz55Ru3ZtWrZsybx588Cgo3evnlx8EE/XMbNoP3wKG2eNpLaVAbkE7ty587cDDBKxiFpOFng5mP9ucLC6jSldG7pUKYGTikXYmcvp2rBq0C0+Ph4nJyeCg4ONmUjPMoqQiisfQ5X0kNTNn5G8dRIFYnOaNWtGSkoKXbp0ITMzkxZedpjIJZQl3MXEveGvaze3wbxGQ2YM68WsWbOYPn36X75+E29r7IbVQ+ZqhkEEWgzcRcdofRErY4qw+uBHlmzaT1hYGAUFBUB52VrFpLcePXpQXFxMQEAAkZGRFBYWsmvXLiaO+YyUr66ReyCGvCOxPD94h8KYLMJOnzWWFdavXx8bGxsaNmyIWq3m1KlT2Nj82rA9LS2N/fv3s2LFChYtWvSXr00gEAgEAoFAIHidkIkkEAjeqFM9Z5afjQG9AZltdZyHLAUg6/h36EsLEIvBRCqmmactS/s3xFQuNZbpzJw5k02bNuHg4PCvr7NIpWXpmaeUvZYJIvdujnvdlqif/oysMIXihPuU7JwGgMTcFm1uKgpnb0zlEob1DOHSwfKyrQYNGiCVSmncuDGxsbGVjvlDeCwJ2SWof+mhVPwwHGWdNuQVayjKrtpg+XWzZ8/m4cOHAHTp0sUYGPktvZtU4+yjdEpey0aq4Dz417IwhaMXGXvmkC2T85/3u/H111/TpUsXLCwsqFu3Ll27duXz4b2RSCSEhITQrn41skaNMpYbvlpW9W9Z3LchzpYmbLkcj94AOr2BtnUcWNi7wW/2+Hp96pqFiRTdaxlNSu9mKL2bAVDH2QKxWMzJkyeNrxsMBgyHHrLfAKVe5UFMmViEVCJm2+rFBNaq/DkNDg4mODj4T1+Xibc1uUPr0n1xJCU6PWrjiSWAhNHbbzOqcxdjc/CsrCw8PDyQSqU0bdoUU1NTzp8/T6NGjbC2tib28iMMuWrQ6jH8Ug1pITOlmbIuecdfEBISws2bN8nJyaFr167Uq1ePAwcOkJaWRuPGjY3r+r3PskAgEAgEAoFA8HcIQSSBQFCFRqdn782XxvIjkeTXvypkcjmNXC1Jeqii+p01PDr5kpyOh8nQapk1axabNm0iISGBjz76iOLiYlauXImPj8+/ttZrL7J/yUz5NYhk0GoQSWWUqHUkFhrIysigS6cOPPHsj1qnR6vRoE5/Tum9OwTXdkCS/QgzMzP69OnDkydPGDp0KB9//DHe3t6VzrXn5ktjAAkql5apU5+z7+Ch312rQqHA1NQUkUiEWq3+3X0Bgmo54Oduw82EnCpBMuMasl+SfXIl1sFDUbrXp31dJxZ/UD5x7vTp08b9hg8fzvDhwyu9d8CAAQwYMOAP1/G2SCVipnaqw/h2PmQWqbBSyjBX/PrZ0usNXIjNIuxROhKxCD9bjXHqWp8+fVCr1dSrVw8XK3MeXA5Dm5eKKvUZdp3+Q/HjC6jjoxm0aSddu3Zlzpw57Nu3jyVLlpCdnc2jbXNYu2gNWy7Hk16gws/dmhGtPfGwM3sr1/bz9ZeUiODVp1pRZqczGDhwMpxv5kzl0aNHWNnacSv2OZ2uPSbl/l3yStXEl6rw8fFBq9VycOMesovzADjz7CIvcl7SrHpDxh//iqOPwim00DB5ymQKCwtp164dcXFxODg4cOPGDe7du0ezZuUBtQcPHqDT6bh7926Vz7JAIBAIBAKBQPB3CEEkgUBQxSc7bhH1LLNSQ+eSZ9fIv7CVxvXr8v3wQN479QMnjhxg165d7N+/39i/Jisri3v37hEbG0tGRgZTp07l0KFD/9pay7NSKmemlMZFU3Cj/Jyu7p6MGzeOoq+/JuX4AlLyyzCtG0Tzdn0pUd/j/urxxFtYsGXLFsaPH8+wYcMIDw/n1q1bVdb9en8im+BfgzLpO6bStn1n7kTfBGDBggXs3LkTg8FASkoKc+bMYezYsbRq1QqA0aNH/+G1icUiNg5rxsaLL9h8OYHcEjU17Mxo4WXLnpsvKdXokdm5GTOSTKQSJrT/9wJ2b4tcKqaadeUG8SVqLb2+OUj44tFIbasjksjweH8e7ebuYs3QFvTt05upU6cyY8YM2vd6j+hnl7BtM5x8kZi8S7vQpsVi6+BI78bO7JWUT1ubPn06BoOB/fv3069fPwJrOVTJOnpbEnJKUGsrB/oqeoiJpTLcggJxcnJCb4DBDxPIC+7MuWHvIm/UFK1ag//yNchv3aKsoAAHiRWulo4AnIyJYkKrYZx7fgUvGzdKdCokiBCJRGi1WiwtLenVqxdff/01M2bMwMfHB5lMBoCjoyO9evUiMzOTHTt2/CvXLRAIBAKBQCD4/xchiCQQCCp5lFJA1LPMKpkvprX8sa8XgFv8Po4fP46vry9isZhq1aqxdWv5BKpq1aoxceJEfH19cXBwwMHBgeTkZAYPHlxlQtXb4u9ph0ZXOYhkWqsFprVaoJRJmNm1DmKxmJkzZ1aaigVg+KglD1MKyCxUoZKaUaOGA5GRkYwZM4Z58+axdu1awsPDEYvFbNy4kbrOFkRsXow6/QVihSn23ScjkirI2DsHqUTMgjkz2Lt3D8Abzzds2DCGDRv2l65PLhUzJrgmY4JrArBs2TIOLDnAgu93s/DEY4pVOori7yLPeMz2tcs4vOUnRh07hpOTE59//jnjx49HIpFQs2ZN5syZw+zZs3/zWcTHxzNv3rz/Smnb6xYcf0xsRjEmHo2x7z4ZgDI9XHtZzJarL+nWrRvJyckUFxdjLdPzjouC1h2ackJSzMuIHVhYyRjSqy2H9u+jSZMmAAQGBnLp0iWOHj1qnPr2b6nrYsHJB+JKvzcVZXZmcglTBzZBpcojDRHxBcVIu/fDrns/AHImjETUMgin4FBa7FyFX7EH68N3UapRkV6Yhbu1K8+yE8gpzcdEpkBuYkJOTg5DhgyhoKAAhULBoEGDqF27NidPnsTLy4saNWoYm4MLBAKBQCAQCARvixBEEggElUQ9y0T7WlDm1fKw9FIxSqXS2ERZrVaTnp5uzH6QSCSYm5tTUlJCbm4u5ubm/+p6rUxljA7yYv2FOEpfmdhV0bC5d5Pqb3zf49QCPtoWTVaRColYhFqrp3rBQ1LPbaJO7dpkZmaSnJxMZGQkjx8/Lu8x1L4v57UqnActouhhBIW3T2Lp3xf3AV8wvUdDYk9sIDw8nPbt2/8r16pSqbh79y4Affyq06txNZJyS7l5Rcy9m6W4ylVcuHCBixcvsn//fi5evMjly5eB8nK2jIyMt7KO+Ph4/P39qVu3LnK5nDNnzjBy5EiePHnCggULmD59ujFwtXHjRhISEoxTyV6l1uo5dDuZHdcSuJeUT1FKLMVPLlISew25ozcmHo2Qu9Rko4kMkzO7adSoEY0bN2bZsmVYWlpyY/UU9v70E3XXTqREJmPxom8A8PHxYezYsRQUFLB8+XLu379Ply5d0Ol0bNiwgdq1axMcHExYWBhS6dv5Z7B/Uze+C3tWZbsIMDeREuBpQ4f2/Snp9wElr0+p++XnXK0OtdIUm5rVaPmiCd9e3ECAhx8A3rZutK7RlN6de+AwqiEajYajR49y7tw5mjdvzpIlS/Dw8MDX15eWLVu+lWsSCAQCgUAgEAheJ0xnEwgElUhEIl4fslUaF03azmmk7ZxGXnYmMTJPrsflsOb8cw4cOkqjRo2M+6akpKBWq3F0dKR79+7GUfEajYaBAwdy/vx5Vq5cyY8//khJSQnBwcEUFhb+ozVPbO/DjC51cDBXIJOIkEvEdG3gwuFPWmGmqBokyC1W896aKyTmlFCi1lFYpkWl1fPSwpfG4zdQrVo1Hj16RGRkJMHBwcaAhJU2h/4dA7EwkWLjXgdRQRoK1JhfX8+m6cPYt28fKSkpf2nty5Yto3Xr1pW2RUZGMm/ePPR6A59Om0ujd/zp0as3P/74I0OHDjXuN3Lkh4x4rwfHD5Zn2SQmJuLr60tBmQZTF2+iLl0BoEWLFly/fp3vvvvOOPa9RYsWxMXFATBnzhwCAwNZtmwZANeuXWPKlClAeXlinz59qqy7ffv2REZGcubMGQCePn3KxYsXCQgI4PLly1y4cAGAmzdvvvG6VVod7629wrwjD7mblI8BUDh5U/0/W3H7bDeavBR0ZYVkH/uWu6vGkZmZydSpU2nWrBlpaWlERkbi6urK1M+nY2fvQOfOXTA1NUWr1bJz5066dOnCqlWrSEhIYNmyZZw/f54FCxbw/fffG68rJ6d8wuCjR49o1aoVrVq1Yvbs2X/p+VWwMZOzaVgzzBVSzOTlkw3N5BIcLBTsHNUCE4WcqKgo5M1bVXmv6buDyRn/ISmfjiA1LZ0e/3mPPh17sv7GXrrWbgPAoGa9OP3iIu9t/4yQkBBu3bpF9+7defDgAa1bt2b8+PHcuHGDLVu2/K31CwQCgUAgEAgEf4aQiSQQCCoJrevI0jNPebXPUEV5mFQsQiUSceS5Dm3gJyw7/Yi083eJPHmYcQO7891339G7d2+io6PZtWsXWVlZNGzYkB07djBs2DBGjx5NmzZtCAoKokuXLly+fJkpU6ZgYWHxj9YsEokY0rIGg1t4UKjSopRJkEl+O0b+843ESg2yoTzbSo2MW4m5tJWYkJaWRocOHVi5ciVQHgS7ffs2Z86cIXrtDBasWEOa8h2Cmmh5pmzKvHnzmDlzJgaD4U2nfKNXM4tel5hdQpMZe3ix/yQ1Bn7JjfsR3PhhHUmxjwC4fv06EomEsLAwFi5ciFqtxtXNg93HIzgsO03R/TDyH70g8JPF3Lp1i9DQUL744gt69OjB2bNniY6OZtGiRcydO5fr169z4cIFdu7cyZkzZ97YT6hiTfeT8ynNyanU8Do7O5t79+7RrVs34wQyKG8k7ubmRllZmTF4lZ6ezq5du4hMLs8Ge7X8S2rl+OufLeyRWtghkpkgl8spLMxh/fr1ODg4IJFIGPPJOK48eE5WVhY2zfsSlZNPbn4+zZo25ciRI2zatIkOHTpgZ2dH9+7dASgqKqJhw4ZAeRBpzpw5REdHY2lpyddff01QUBDt27cnLy8Pa2vrP/0cK/h72XFzVjvOPEonLb8UL3tzgms7IH3ls9jK2pzEUhXaV95n0qotJq3aohCL2B5QD4lUQsC07hT1y6Q4Oh2DSod1XVv2zj+OWF55ip3Q60ggEAgEAoFA8N8kZCIJBIJKvBzM6d2kGsrXRq7LpSL0BkP5dLNfym+y74ShqB3Eh1tuUhE7ebVXUl5eHgBRUVHIZDLj2HSRSMTgwYO5efMmXbt2fWtrF4lEWJrIfjeABHDlRdVpZxXZVi+3TiUmPolx48bh7OxMcHAwbdu2ZdOmTTRv3hylUklo2zbcOHeURbMm0aZ1AEeOHKFbt27Ex8f/7nmvx+Xw0babdPouinG7bjF/yfeVMotGjBhBu3bt+GHtRo7cTSEjJRmxrRuFKi1l2WnkacQsOf2EtLQ0Bg0aREJCAsHBwTRtWj62fu6Zl6g9W5G4fTrFGS8RKa1IsaqPwqUWNby8OXbsWJWx7wkJCcbASsVxoHI/ofaduzJi8w3aLz/P5/vvMudsErbDV7Fg3V7CwsJ49913adCggTGAdOTIEerXr09GRgZ2dnYApKWlsX//flasWMGiRYvYcS2hyjPQq0oAUGfEoSvMQmxigdzKibqe1fHz8yMrK4sVK1ZgMBiIrzuQEpuaGPR6tHpQi5SYeLfgnfdmcj7yPCKRiLy8PEJCQgBwc3Ojb9++bNiwgcTERHJycrh48SJ9+vQhMTGR/Px8dDodCQkJdOnShfj4eAYPHlxpfUePHqVFixa0bNmSb7/99o3P2EQmoUcjV0YHedPO16lSAAngY3dH5OKqn0+lWMRAF1usZOX/b0ckFmHiY4Pd+3WwH1YPc3+XKgEkgUAgEAgEAoHgv00IIgkEgioW9m7AjC51qGZtglgEDhYK6rta8VqVG5qcZApvnyBmy3TuPXjA0aNHjb2SAGNWTmhoKJaWllhaWhIcHExoaCjr16/n3XffrVR+k5KSQkhICAEBAYSFhf1r12dvLq9Ssid39ESTnQQiEXmZqSQmJvL48WMiIyOJiIgwTlO7e/cuFy5c4MSJE1hbWyP+JSAQFhbGli1bfrNx9o8RsQzdeJ0zD9N5klbIsdsv+WHnEdLNykevv5pZlKyzRKfXI7V2RpUag0GvoyzxPuqsl3z5n8HEx8czcOBATE1NAbh9+zY5xSouP89C2aADzgO/QWbvjkkNP3R6AzoDpJeKUCqVVca+e3h4cP/+feNxKgwaNIjly5djZWXFjKPPuBSbhUqrp0ilo0QnoVAr4aMdd2gZ3J4HDx5UutYePXrw4MEDqlWrZgwsvR68yi3RVLlHqqSHpGwcR9qOqZj5tEBuoiQgtCMPr51n0KBB2NvbM2PGDCztHCnSSctz5SoepESCTlPGsbgSLLV12LV1H9bW1kyaNImHDx8ag2IuLi64ublha2vL3r17mT59Ora2tkyePBkfHx+USqXxmb6uUaNGXLp0icuXL3PkyBHy8/Pf/AH7HZ6mCnY38qKaQoapRIyFRIxCLGKAiy1f1nxz/y6BQCAQCAQCgeB/CyGIJBAIqhCLy8vDLk0L5cXXXbkxsx1WShmv9dvGJng4Tu99idv7X1HNs5axbOhNJk6ciLOzM2PGjKFBgwZMmzaNuXPnsn37dtLT0wH45ptv+Oqrrzhz5gxfffXVv3Z97zd3x0RaNatDWaMxnkOXcPn8uT99LFtbW86dO0eLFi1+c5+E7GK+P/eMUo3OWCRY+CAckzptmHf0EVqdnhcvXhiniuWZVscASEytMPMNJn33TOSONVB6v0P1XpOxsLRi/vz5WFhYcPfuXWJiYkjKLQUg89DXpO+egTojDpHchLSd0yhLj+fxi5d06NDBOPb9008/ZerUqbi4uNC0aVMCAwO5ePGicc0+Pj4kJibSrmtPomIyUb0yvr4iY0ir0/Pz8TC8vb2Nr6lUKuOfLS0tUSqVAFWCVxYmVaupTTz9kFjY4vTeV4yb9Q2rx3amOtl07NiRFy9eAOUT7nQm1pRp9Fi3HoSJewNkttVQejdHrypBKjflTsIdeOmCwWDAYDDw6NEjAgICjOupCHSKRCJyitXExD5n1tKf+Oyz8VhYWFS6hld7ebm7uyORSBCJREgkEsRiMZs3b2b9+vUAzJs3709NRGtubc7Nlr4cblKTLQ28uBtQj6993JCKXw/TCgQCgUAgEPzPePDgAQEBAQQGBtKrVy9atmxJYGAgw4cP/9PtG+Lj4wkPD///2LvvgKrq//Hjz3MXe28BQdyIuFBURFHcM01z71lpWVppmnukpmmOyom5994L9wJUEBcyVPbecLnr9wd5E1Gzsj71/Z3HX3jvGe9zzkXOfZ3X+/X6m0cq+qeJNZFEItFb8XK24Ep0RplgwnOCAJsPnMTdzUrfgSsgIIAWLVpw6PIdDh49zvU793j65CkrV66kR48etGvXjqlTp1JYWEjfvn3Zu3cv4eHhLFu2DEEQCA8PJy8vj8WLFxMfH09cXBzu7u76L+x/RQM3K7rXc2ZX6DNUL0TGlE8jEA5PZ5XlPbp3716ujk+lSpX0y37yySc0bdqUPn36YGho+Mb97QmLR/NSRy5VZgIlKTEU3DlOfFoUDx8+1BflVqfF6Jczq9ses7rtyY84jcKxChia4VbJA41Gw8cff8yzZ89Yv349+27FM2XfXezem1xmPybVmiAAXXxc8PDweGWQ43UBOxsbGyp4NUHx8F6Z666MjyT74mYEqRznGvXw9fXVv3f8+HF9ge6qVavStm1bnj59qg9epaWlsWXLFiYcT4aMwjL7K3xwiZKkKLLPb2Bf5C5qTfyEY8eO4ezsjIWFBRUrVgQok+1m3uh90o8sQZOfATotz7ZMxMuhNiYGlqhLtCiVSr7//nvi4+PZu3cvK1euRKfTIQgCi47d51JGLHnFamYeiybz4m6aVHMlKfZh6TVSqcrU8nru2LFjVKlS5S/V8hIEgdpmxn96fZFIJBKJRKK/U/Xq1fVdfgcPHsyUKVNo2LAhQ4cOJSQkhIYNG/7uNp4HkZ6XFxD93yAGkUQi0VsZ0NiNdZdiy70ulQg4WxpRv6JlmdezCkoYsO46Dx/HoKtQG2mXz3BTa/ikZz2CZn5M/fr1iYmJ4fLly/qnGRqNRh8gkMlkZGVlAVCrVi3Wrl1L27Zt/3TR4xeptTpi0vORCALPC4jLTa2pOnYdO8Y254tRAwgMDCQ5OblMEeqffvoJgE8//ZQmTZrQp0+ft9pfVoFKX0fqOauAoeTe2Edh1FWc3aowffp0hgwZQmBgIE5GNiSlPiFp43gEqRxBJkduVwmrVsNxtTGj58jhNG3atExgo1V1BzTaiFfu31Au5f36f2yqVKdOnQgMDMTe0hTNS0+bjCo3xKhy6Y2DfzU7AH0WU7du3ejWrVuZ5d3d3csFr+q6FhMen82Lp8XEswUmni0wlktYP7QRvh429O3bFyjtWPd8G6u2HWb6wUiKVBpk5rYYV25I4aOr2HaZQM6FTfRpMJyVBz8nLz8XPz8/NBoNMpmMmJgYPv74Y/bu3UuTARPZNHssOp0Wu14zebJtOkhlXJYbU0VuAMDZs2cRBIGnT59SpUoVlixZwrZt29i1axfbtm0jMDCQ+Ph4DAwM6N279x8qqi4SiUQikUj0bxN9K5XrB2PJTilEKhOQG0gRJAJpMYUYYsmwYcM4deoUSqWS+/fvY2JiQlxcHMOGDSMzM5PLly/ToEEDBEGgU6dOzJ49m6dPn3L16lXOnHn7TH/Rv5sYRBKJRG/FwdyQtYN8GLUpFB061BodUomAo4Uhm4b7lskOuZuQw4iNIaTkFqNSaSh6Ek7cpskYV2vKhKRHVCwsIS4uTj8dqFmzZgwaNIh79+4xb948vv76a9RqtT5Y5OXlBUCFChXIycn5y0GkIZ9P4+Defdj3X6h/TSeVU6SDibvv0uXXLmMv1/EBCA0NRafTsXTpUv26cXFxXLlyhcDAQAwMDPRt75/zcbdib1g8BSUacq7twqRWSwSJjNyQ/ehKiug4qDR7KCgoCAClWkPF2k2wHLIYpa502p1cKqCQSVjauy5ezi0YM2YMUJrxdf36dT777DOK07JJSE5BZumIwrEq1oEjMZJLaV3TnkaVrP/QOTpy5EjpedHpsDCSU1iiKbeMkULKoKZuf2i7zw1s4sb2m0/LFdcWAGtTgzeOt2vdCqy/HEtMWj5KZQklaaXBTakOHDUCcgQkEinTPlzG4C864ezsjEQiISAggH379oHcmAhpVRTONVBnJWPgWAXj6n6UpMRQkp3K3dSo0oLibdpQpUoV7OzsCAsL486dO8yYMYNr165haWnJ5s2buX79Ohs2bCAoKIiIiAhatmz5p86HSCQSiUQi0f/S7dNPuX4wBnVJ6b2ZukRH2KNLHLqxDnsLF2aMX8zpiL0Etm6FhYUFgiBw6dIlunfvzqFDh6hZsyYfffQRu3fvJikpiTVr1vDtt98ydOhQFi5c+Dt7F/2XiDWRRCLRW2taxZaQqa1Z1LMOUzrVZP2Qhpz5vAWOFqXTuXQ6HbMP3+P9H6+QnFtcWtfHxJoKI1dj1+MbiuNuU5Acw/3HsdSoUYPo6GigNMtk5MiRDBo0iICAAAoKCtBoNJibmwO8slj3H1Gs0pBZUIJWq0OpVHLuSggvJQahVRaiA6LT8jl19jyBgYHl6vhAaZ2fzp0788UXX5RZ38rKijNnzpQLIAG093LEUF76361F417IzGzJOLECM6/WmDl5cPPMEfz8/AgICMDIyIhD+/ehTHqE9MQ8qhjmI4RuR7V/Go2SDvDdlE/Lbd/NzY2zZ89y/eJZAlo0p9WwychLcnHVpTLnPS+W9alX5hz+EYIg8NOABpgYSFHIfvuTYayQ0rm2Ey2r279yvcTEROrXr4+hoSFqtbrc+5XtTJn3Xm0MZBIMft2uQUkO6Tu+puTANIYPH15m+YCAAGbMmEFKbjE/nInCSC7F2cqIojsnMKsViFwHbQrlWGlKt2VtbkeNhi6vrGP0IDmXgvATmHgF6rf/vL6X/QezUNi6YV6tMVmFKmbMmMn9+/d59uwZEydOJCMjg/r16xMYGEhxcTGBgYHcu3ePNWvWAPDRRx8xduxY6taty/Hjx//UOReJRCKRSCT6J5UUqbl24LcA0nNpuQkYGZgCcODaWgwlpty8GYKFhQXW1tbMnTuXoUOHEh4ezrhx4xgwYABXrlxBLpeTmpqKkZERCoUCALVazcCBA2nWrBnffvvtP36MondHzEQSiUR/iKFcSsfaTq98L/hRGttuPC1TP0eQyRGQUxQdQUlaHCVpcZha2+Pr64uNjQ1z587FycmJ2rVrk5iYyIcffoixsTGurq5/eaypucV8c+AuZx+kIiBgZiijVvZVLLwDyUwKAiDrwiaUT8PRlBQhCALa/Exkld356KOPKCoqokqVKqSmpvLNN9/ot/sg5il79+/np71nce8/m6xdU0lLS8PW1pYhQ4ZQtWpV3NzcqFatGo0bN+bDteeJOxmEopIPebeOYu7bE1VqHI0/+IiCM09p0zoQPz8/4uLiaNOmDT179mTFihWcPn2atLQ0ht/YyNHIEHbs2MGxY8eA0mBafFYhny3dwncXkiksSaBlDXscrcz4okdt2q++T+HpFXy44SuWVq+Ovb09tWvXJjg4WF+jyNjYGFtbWxITE4mOjsbc3BwrK6ty9Z/quFpybkIAv1x9wrWYDGxMFQxo7EazKravDU49LzjevXv3116fHg1caFbNloO3E0nJVRJ9djt+0z5j+NAhjBw5kjt37lCnTh398reeZjFg7XVUWh0lai06jZrihLu0rPMed7XbqKiRckurYfOFhfR9fxA9B3bWr/tiHSOjrAzy4yKw7tqRnItbyo3Lps+3LLqSia7OcGoOnoPmxjm8a9Xkxx9/ZObMmfq6XwD5+fnY2tpy7NgxLC0tqVatGtOmTUOlUjF27Fjat2//O59SkUgkEolEov+t+IdZSKQCJRrIM5RgVKJFW5hPQkbpA1+ZVIFCZkR11/rUblyZkJAQsrKymDJlCi1atKBNmzbMmzcPT09P5syZw+LFi1m0aBEtWrTQNyw5ePAgNWvWZNOmTXTu3Jnk5GQcHR3/l4ct+pPEIJJIJHpn1l2MLTftSassRGJgjFHlhhi6emHWoAtmccFAaQewnj170rt3b4yMjCgpKcHPz4+rV6/SrFkzoLTj1XNBQUH6ThFSqZQqVaqwfv36VwYycotVdFlxifR8JRotgI703EL2HztNw+GziD0ZRElKNOrsZBwHLNJnOGUfX8bUKaPp+0FPqlevzvbt2/H09KRVq1ZMmjSJJi1acybHFrsRa0nY+Dn5KjDoOp1acgmHxgfw8ZC+dO/enePHj5Oeno5bDW+2nbxCUXI0po17A1AUdRUjt9po4iORSQQuXLiAXC4nMjKS7du3lzmOJ0+e6Kfz1a1bl2PHjnHhURpT9kWQkF1UJqPq+MUbZN18yLB8JXXq1OHYsWNMmjSJ1q1bs2vXLm7evMny5cuZPXs2VlZWtGrVihkzZnDs2DEaNmxI79696dSpU5n6T8/ZmxsysV311157nU7HpcfpbLwSR0qukvoVLRnWrFKZZaZOncq5c+cwMDBg7969+vnziYmJDBw4kJ6BvsTGlk5Ny8vLKzNtUavV8eHmMApe+HwVRJZ2uHtkpANTGTYuJsSm3yWwZWvGzx2k/1zExMSwcOFCDh8+DMDNU/txadiGsmW9XzgWIF/5a/aUc31M+jTEKvmAfv0Xj3nYsGHMnTtXP1Y7Ozvs7Uuzs7Kzs197vp6Li4vD19eXmjVrolAoWL16NVOnTi0TqAoODmbw4MFUqlSJihUr8ssvv7Bo0SIWLlxItWrVkEgkXLx4sdy2v/32WwYOHIizs/PvjkMkEolEItH/v9RaLWeqG3C1sgE6AbQCGE9dRkF6NFl5yajUSopKCrh49zCXIwU8a3mSk5ODjY0NCoWCoqIiGjVqxLp16/D1LS1zsXTpUurXr8+TJ0+IiYmhYsWK9OrVC4CWLVty8+bNN3Z2Fv17idPZRCLRO5OYXVTuNWV8JElBn5K8aSJSU2ssKtbARiigY8eOpKWlAaVPJvz9/WnSpAn9+vV74z6ed4p4/qU5JCTklcvtuPGMnCLVrwGkUqVBh+Y8zSxEQmmHNAPnGkDptC0jhRQPWxN86pVmvzg5OeHl5YWBgYE+IHH7WRY6S1e0OhBkpem5WomcAq2UpWei6dy5M/Hx8URERHDjxg2k3p3JiQ0HnQ5BWhq3V+ekUJKdwuU9a7hx4waZmZns27ePNWvWlAuIubm5ce/ePQDCw8NJz1cyalMIz7LKBpA0RXkkHl2Jqf9Qeg8egbGxMf7+/vz444+MHTuWw4cPExYWRp8+fTh8+DD79u1j5syZmJiYAFCzZk0kEkmZ+k9v4/m0NbmBIaM23uD4tQjO/fQNW68/pf3Si+QUqQDo06cPMTExdOzYkfv377No0SL27t3LwYMHcXV1ZdSoUfj4+LB+/Xp9QMXN7bd6S7eeZZFXrCqzb1VmAnm3jhK3ZQrxidFoXZ7SsUs7anpXZcWKFUBpMGrIkCGsW7dOf6yPHj3CMi6Y9N3TUWU8ITf00CuPTacu3Z9ao+NJng57e3s0mt+CWNOmTcPPz69Mx5E/M/WyTZs2BAcHv3Iq5HMDBw4kODiYX375BaVSyeHDhzExMeHy5cvUrVuXO3fulFtn0qRJYgBJJBKJRCLR7/pRUcSVKgaUyAVUMoH6D/IxSc9hSq81VLDxYEjgFCpYV+L7EcfwrFmLWrVqYW5uTocOHahTpw7Gxsb069eP/v37c+TIEdq1a8fChQu5fv063t7e/Pjjj2RnZ+tLVVhYWOgb6Ij+e8RMJJFI9M7UdDInLqOgTHDjxU5eBjKBEf4eTJxTvjtD7969y/z7ebcvgNj0AnbcfEpidjF1XS15v4ELD8LDOHbsGGFhYWRmZtKkSROioqL45ptv+OmnnwiNTsak23QEqYzUXdPQaTRoCrKQWdhTFH4cVcpjcoI3oNWocKjfBo3cmB71nIl/alEmEPDizwVKNZkFJZi9FOjRKgvBwJgTkSmkx15m3LhxSCQSsrOzUVauQf7BNRi6eeuXN/d9H7lVBUwMpBgem0FJUQF5eXl07doVoEwnMycnJ+rWrYu/vz+enp5EJhegq1J2vrpOqyH98HdYthhM+tm1mFSsT5UaLvTv35+lS5cyfPhwLl26RFxcHIsXL2bt2rUsWbKEsLAw1q5dC8CDBw8ICAgoU//pbVhbW9OoZQfu3HtYJgtNpdWh0mp4lpKHSqOle/fupKWl0atXL3Jzc0lOTkan0zFy5EjmzZuHg4MDX331FZMmTaJXr16MGzeOCxcu0Lx5cwAyC1S/dtP7jVXAUP3Pubsm06VLF65fv86sWbP46KOP2L59O7GxscTGxjJs2DAANmzYwIIFCwBIyC6iaVM/anbqh0qjJT6rEKX6tw9vUWwouTf3lx5PxUr06dOHX375hZ49e/LDDz+wYMECmjZtyr59++jduzcffvjhW52zjHwlRyKSyC5UYUcO586dw9/fnx49epCRkcHJkydRqVQMHjyYUaNGcTchhxVrNrJ212HeHzCMKualWXxpaWnExcVx8+ZNnJyc+PTT0npZ9+7dY8+ePaxbt46pU6dSpUqVt76eIpFIJBKJ/v+SrFSxNyMHlaz0Pkuu1mGy9yCNKv/2kEwmlVPBuhIKmZw6NRryLOkxOTk5qNVq0tPTkclKwwovNsN58eesrCwsLS3Jzc0FIDc3V7w/+Q8Tg0gikeidGd3CgzMPUsp13JII4GxpxLohDanmYPaHtrnhciwLjj1ArdWh1uo4dS+FmSs3Irm5FV9fX7777jt8fX2ZMmUKkZGRbNy4kZMnT+LVbTSpsWEYVWuC3fvTkcgNyLqwCUNXL0wtrMjYPZ30tGSGj5tAyMlvsTU34cuJ+xl/8PUFqNUvV+P+lTI+kuyLm5HI5HTp1wVfX1/q1atHdnY2bvYWREmkGDjXLLtO8mNSg9fT0N2aybNmlKud82IgacaMGchkMnbs2MGuh0cxf2n/hQ8uUZIURcbx5aizEtEVZLHyZgqXvL158OAB33//PV5eXlhYWPDpp5/y9OlTTpw4gbOzM0qlkv79+yOVStm+fTsnT55ky5bydYKeu3UnnJ79h5BWoEJi7oR3p0GEbdyATgcpWydh22Ui6vwMUvfMRlOQjVQClx+nM3/+fLy8vBg7diwdOnTg1KlTzJ07l1atWuHr6wuUTv8aNWoUK1eu5NmzZ7Rt21a/3xqOZpRotJSkxJB5ZnXp9chNw7xBV2wav8enS7fh7u6unwa2atUq/bqTJ5d2v7t7967+WJ9PhXxyLwyAC4/S6DVmIhk3D2NSuw1WzQdiXLUxxlUbIwCd6jghlUo5ceKEfrslJSXlzs+Lwc8Xr+FzO24+Y9qBuwgCKFVaDCUaPD5aw/YPmzOify/kcjlarZYhQ4YwYsRIdiaYcTYiC4tBK9Bp1Kz/eQoGZlYsnjpeXx8rJSUFQRAIDg7m1q1bzJo1Cz8/P9atW/fa6ygSiUQikUgEcCU7H5kgoKT0PtclXU1K9jPupEVz6d5hkjLjCIs+jwDodBB+5y6NAmpTv359Tpw4wcCBA/VdfV/3IFan09GkSRPOnDlDo0aNOHfuHH379v1Hj1P07ohBJJFI9M54u1gy973aTNkXgUQioNbqkAoCNZzMCBraCAsjOVD6ZX7UqFG/W9foYXIeC44/oPiFQt1FKg2CW0OsPP2I3TWBDh06oFKpkEgkHDt2jNDQUFq1akVDn1Zs37aVorjbFD68hCA3RKcsoCDyLCVVfJg+fRojhg/DzNQUZzsr/VSioKAg/b5eDAI8Dw74DJpKTHoBAI79SjtLPM+2albFloUjSgMiM2fOBOBoRBIxaUv0WTq2nT4DwEAmofe3G1nap+7vntcpU6Zw9epVpFIplvVGo33pfRPPFph4ttD/20AmIWRqa8wM5b+7bSityzNy5Ej8/PzK1KB6UbFKQ4FSzaKrOUi7zcFaoyP9yFJun9mHxtQe8nIAyDq3npLERxhX90OZFIWqOJfBnfzJTksmKyuL+vXrk5SURLNmzTh8+DC+vr5s3rKVHn3606dff/bv309RUREJCQl89913LF++nJMnT+JqbUyzKrZcAhT9vkWn05KwaigF94JRxtzkvSEHXnt8Rb+e++dTIQGGDh1KSEgIDRuWZsn5VrLCtkFHBIcaFD0pOzXMUC6lv68bf1VkYg7TD94tU3i+SCslsQBGbL6FhYUFJiYm5ObmEh0dzck7cZyI0hC34TNcPtlG7pXtaHWQnxTL0Ux7tFotderUwc7OjqCgIIYPH87EiRNRKpVIJOJsdZFIJBKJRL9PLgi8fBfeuekoDH8tD7nkwKeYGloQ+ewGi/ePw8nBGRcXF/z8/Fi2bBk9e/bUB5HepEuXLuzZs4dmzZrRsWNHnJxe3ahH9O8nBpFEItE79X4DF9rUcuBUZAp5xSrqVbSijqtlmWWOHTumLwb8/Mt8QUEBwcHBzJgxg2bNmnHp0iU2XYtD9esX7vy7Zyi4ewadRoNt1y9ISspEma1k9IDerFpZ2sksMTGRIUOGMHv2bNasW88+mQSdTIqhmzclqbEYujfF1KUmBo9OEXrzBjKZDD8/P5YvX/7Wx/dNF08+3BxaLtvKSC7lq/Y1yi3fwcuRO8+yCboSh1anQ6PVYSiXUsPRjLndvd5qn8+nXwF8uu0Wh8ITeU1SFAYyCT3qO791AOn3pOcrmXEwkhORyWi1OjQv7lcqQZX8GKmpNQCa4gI0BdkglYEgYOrdhryQg6iLS0tYr1y5ko4dOzJs2DBUKhWxyVlM3hvOpcfprE6SoHkYi1IDWq2WWrVqMXPmTE6fPg2UBvcaqTRoK9fmSnQGJQkPQKvC88MVdDONoWNAE9q0aUNoaCizZs1i7dq1xDxNwOWDacQUGQJQ29mC6V08qVfRCgMDAzQaDS1btsTGxoaOHTuyZnRX+sx8QskLd1JCWhTZwatZ9rgOHz18SFhY2J8+l+svxaJSl71wz6dCRiZkkXLuPCu3bOXQoUN4e3uz5qdVCFWaIbf3QJX+FGVKNJq8DDTKQo59PxFFYZG+iLe1tTUjR45k8eLFjB8//k+P8e/yyy+/sHHjRjQaDVu2bBFrNYlEIpFI9C8RYG2G+oU6js9sZUheuF35vNsyAJrUaI9MLqHxe5WpE+jKw4cPGT58OFWrVkUQBIYMGaJf5+XGOM+9Kdtd9N8hBpFEItE7Z24o5/0GLmVe02h1hMRlkpKdz/XQ2/rXn3+Z/+yzzygpKeHAgQMUFxfTtm1bbsemYNhlGprCHLKDg5BZVSit/3NwEZqiHKQKIzbs2I+3tzfBwcH6udeCIKCQSanuYIZHQAC7lk1Hh4C5VMuAZh5cybHGzc2NNWvW8ODBAzp06FCmE9ibtKxuz8p+9ZlxKJLUXCU6HXjYmTDnPS9qu1iUW14QBCZ3rMmAxm4cu5tEsUpLk8o2+LhZvTL76vd81aEGF6LSyCtWl5tep5AK+Fe1ZXqXWn9om+7u7pw6darc64Ulat5beZnknOIy+yqMuk72hY0glWPq3ZaShPsAaIvzMPVqReHDK6gy4pFKpUgELd26diEiIoL58+fTuXNnAFQaLd1WXiI9T4lGByqNBp3cAsvBq7AyV3Nh/mCGDx+Oh4cHAAcOHOD+/ftUqFCBdYtXsONAJCfcKnJzSmt+/ulH8vPz+emnn5gxYwYDBw6kSk0v0m3rknLuKOaNugNw+1k2Xb5YhuHtHXjXqomNjQ2pqamcPn0aqVQKwHe9vFmxJRorFwsczA25u2EZO4JPYG1tXabQ95/xMCUPzUvFtp9PhdQqC5FWqcaM9CLUOh0//vgjG20qIJQEo7BzJ3X3TLTKAiyb9aMw6houXT4lacNYUlJSqFWrFkqlkitXrjB+/Hhu377N7du3/9JY36WEhATOnz/PmTPla6GJRCKRSCT63zKTSZnqUYG5MYkUaXWoZQJn6hjT+k4h8heaLkukAsYWCmr6OaFSqRg5ciRff/01n332GYGBgf+7AxD948Qgkkgk+lvlFKr4/vRDtl1/hkanJf/WUeQ2XuTFXMGzlhcF+XmEh4fz9OlTxo4dS/Xq1Rk3bhwHg2/QuEkTci5uQmJuj06QUJIWhyCRYtNpAoUPL1EQeZZs+0p41a3Pvl07MDMzIz09naVLlzJ69GimTZtG/ZwobMyNUSqVhB7ZhJOTE82O7GLu3LkkJCQwderUtw4gPRdY04FWNexJy1MikQjYmhr87jqu1saMav72Batfp4KlEcfHN2flucccjUhCo9VR1d4U/2p2dPByooq96V/ex3N7w+LJyC8pF6wyruqLcVVfkoI+JffabjR5pV32dKpitNmJKCxsKUp4iLQokyoeHkRHRyORSJBKpaxZs4YTJ05QWKJG8jgPi9a/FaMWZHJAzsM8FZYthtCuliUnD+7mzp07ZGVlMWnSJHx9fVm6dCl5eXlUrVSR2l61kEqleHp6kp+fT0hICN26dSO7zgDu/zABo4reZcYuq9SQBq3aYX93K4cPH6ZOnTr6ABKAvbkhzavaMWdsMwCary3G1dUVgKpVq/6l81nJ1oR7ibmvLDyfeX4DyuJ40pbMRacsYdWqVdi5VyOrRIpVwFCUiQ8w8WyOuU83ip9GoNZB+L2HtPJvipeXF2lpaRw4cAAjIyP8/PyoW7cuSqUSIyOjvzTmvyK3WMWtp9mc3LcHlVpNYGAgnp6eLF26lLlz53L27FkkEgnr169nx44deHl50alTJ/bv3090dDQjRoygf//+5ObmUrduXX744Yf/2bGIRCKRSPR/2QhXO9yMFCyOS+ZRgZJELzOkbtZYXM4gJ7UIqVxC9UYONOleBYVhaQjhwoULAOXqeor+7xODSCKR6G9z+1k2/dZc09cD0mnU5MWGY1enI0qpMZV6TCBu73f06tWLjRs3IggCTk5OqAU5jboMQGPhitzWjfzwk6DVoLCvhDLxIbk394K6BEEioyQzkZ07dmBmbIiTkxNBQUGcO3eO6tWrY2NjQ+/evcnLyyM+Ph47O7t3dmyCIGBvbsj169fp+tlnSKVSfHx8+P7779/ZPl7HwdyQWd28mNXt7abD/VlHI5IpUmnKvKZTq34N9oChRwMkCmNKUmPQ5KVjUpSKl6sluXlSEoqs+OjDMWzevJnmzZuzZMkSANasWcPo0aM5n2NNrEHZoJpWWYjEwBhBJic//iFXqvTE3t6eO3fucOfOHb799lscHR1xcHAgNDSUdu3aceTIEXbv3s2ECROIiYnh/v37REREkHsxHF1JEbpXjP1mXCZ9zMwwMjL63dpB5ubmJCYmYmlpyePHj//S+RzezINT98oXntcBlp1GUuLnAED2J0MZN24cd6KesvdaFIJMjvBCcXbr+h0oODSPReprZGZm8v7776PVaunSpQvNmjXDzs6OX375haKiIv20sSVLlrB37142b97M1KlT9QXIAU6ePMmsWbPQaDS0atWKuXPncvv2bUJDQxk+fPgfPk6dTsfCEw9ZfykWhVRC6qVbKFOfsnnLFi5uWcacOXNITEwkODiY+/fvM3/+fKZOncqUKVPo1KkTu3btYsGCBaxevZrevXszcOBARowYwfXr1/VF2EUikUgkEr1bbWwtaGP7UlZ9O9BqdQgCfyqDXvR/kxhEEolEfwu1RsuwoJtl2r4XRJ7FxLMFOrUKnQ7C7j6kmmMFjIyMsLYuratzMy6LvNxsDFKfYOwZADot6rw0dNrS6n6CzACdshATr1Y4DliEiUKKX+45FOoCEhMTMTAwoHXr1kRERLBkyRLc3d2B8kWyLSwsqFevHiNGjGDv3r36/f9Rbm5uLF++nHHjxrFlyxZiY2PZt2/fK//QLliwgFOnTqFWq/VZGP9mUkn5Y3ix7b3cqgKm3m1RpcXRauKPhMztSdsAP+rXr8/kyZN5+PAhKpWKhQsXYmNjQ5cuXZg0aRL79u3DxdsPafuvKIoJJff6HtBqMPRoQFHUNZBIMXT1QmldicSYWFatWoWDgwOTJk1iyJAhHDlyBJVKpb9mtra2qNVqbty4QXFxMTKZDPuuX1Cc9pTiZ3fLjV0AHjeuyb179zA1/S1za926daxatYrMzEyysrJYuXIl33zzDV26dKFKlSr6jKQ/q66rJRPbVmfhiYcoNVoEHeikAsgEVPVs9Mu5rNwIwNofFtH6xlNmHIyk8vAlaLWg1elo07EjyzdNwVAuLdOFrmPHjkDZwvVDhw5l+vTpbNq0CRMTkzLjCQgIIDg4mJYtW+o74bVs2ZK0tDTq1q1L3bp1/9RxrgqOJuhyHEq1FqVai1pqhNS5FhN33eEjz4ZkxUUSHBxMQEAAAE5OTri6upKZmUlGRgbZ2dm4uLgQHR2tPyYfHx8eP34sBpFEIpFIJPqHSV5xPyj6/9u/KogkCIIUCAESdDpd5//1eEQi0Z93MSodpbpsFosqM4GSlBiyL29DlRZHxrl0YqzMaNu2LT///DMAB+8kIDE0w7hmCwofXMS4uh8Kx6oon0YgURghs7BDamaLMvEByQ8vo5DLqDj0fZo2bUfPnj1xdHTE3d2dnTt38vHHH5OdnY1Goyk3vtq1a7+yBfvv0Wp1HIlIYtO1J2QVlNCokjVDGlfmypUrDB48mPDwcJYuXcpnn32mn5ZjY2PD5s2biY2NxcvLi127djF69Gg+//xzatasyQ8//ICTkxO9evX6U+f679KjvjOhT7LKBAKft71/kW2XiXzgoUFo2JBevXqxcOFCli5dyvjx47Gzs2P8+PF4enqyZ88e5HI5KpUKZ2sTcg1kpNzYi0PfeaDTkrprOk5DllEUfZPsi5t5EjSRLp16sGPdSubOnUtQUBAbN26kb9++7Ny5kz59+hAQEIBWq2Xnzp2sX7+e7777jg0bNvDw1DKU9jWxaj6wzNhNqjameTU7ZrayL5eRM3z4cH3mjVZbmi3UoEEDQkNDKSgo0Ada/ooR/h60q+XI+0fukJinRGupQOtgBL/eoMmArvaW+uX7NKpIJ28nzj1Mo6hETUN3azzsyk5ZfLnb4dRvplOpnj9Cve6cWz+bxMnzmDV/AQN6//b5UqlU3L9/n/Pnz9OiRWlnP41Gg6OjI+bm5gQHB3P69GnmzJnzVsf1PNNp246dzJo9B6NGv+3LwLkmeXdOUKzSsmjZSjTJD2nQoAGHDh3SjwWga9eujBkzhi5dugDg4eFBaGgotWrVIiQkhBEjRvyxky0SiUQikUgkeucEne41LX7+BwRB+BzwAcx/L4jk4+OjCwkJ+WcGJhKJ/rCt158y63Bkuak7zyVv/pLKwxfjfncjxdmpuLm5UbFiRY7KmxH+46c4DlhIztWdIEgw9W5D8qaJaIpyEaQyHPotoOjeWYqfRlDJ3pJN23Zw4chuvvrqK+rVq8fYsWP56KOP6NChA48ePQIgKSkJd3d3zp49i4mJCTY2Nnh6euLn58f8+fO5efMmX375JQBhYWFERkaWyzzRanWM2RzKpcfp+sCKAMilEr5uYsSuHxdhZWVFZGQk8+bNY/PmzQQGBnLixAmioqJo3LgxJ06coH79+owYMYJVq1aRk5NDeHg4VlZWREdH/30X5E8oUWvpvuoyj1Pzy7Slf5mmKA/V8QXcPn8MR0dHWrZsydGjR+natStFRUUsWbKEI0eOEBMTQ40aNXBzc+PBw0fcMvPlxMwByGxKi7BrC3NwGr5Kn8VlIJNw+vMWuFobl9unTqfjanQGm649IS1PCY/OIU15QHpKIp6ennTqO5z3+w8BAzNUWYlYNu1D3u1jCBoll4PPYCUpZtiwYVhbWxMbG8uBAwdQq9UMHTpU361t2LBhnD9/nmnTppGXl8e0adN477333sm5vZdfRJewKIo1Wp6H6OQCWMhknG5YHUeDt++up1KpyFVq2RMWzw/TP0fi2RaVdWWKVBrSj/+ALicFQwtbVDE3mTTpKxYvXoyjoyNyuZzQ0FA6duxIq1atWLZsGXZ2dty5c+cPBZGUSiWjRo0iOjqaLQdO0GHZxTKBR4Css+tQJkehzownM/EJy5cv59SpUwiCQN++fRk1ahRZWVm4uroSFxeHra0t2dnZ9OvXj7y8PLy9vVm5cuUfOcX/M4mJiXTu3Jl79+6Rn5+PTPbq53XTp0/n5MmTrFixggYNGvzDoxSJRCKRSCR6PUEQQnU6nc8r3/u3BJEEQXABNgJzgc/FIJJI9N92PSaDoS9NZ3uZjYmCG1Nal5k21fvnq1yPzXzl8jKJQK0K5uQWqTCQS4lNL0AhlaBSqcg4/B0nD+9jXL8ubN68me7duxMaGsr27dvZsWMHBw4cYN68edSoUYMePXqQmZmJlZUVY8aMoVOnTnTt2hWAY8eOsX//fn1m1IuORSQxYdedcsekKcojecuXVLQypE5tLzIzM3FxcSErKws7Oztq1arFgQMHaN68OS1atGDixImsW7eOSZMmsX37dlq0aMHUqVPp37//nznVf6vCEjUrzj5m6/WnZBepyr2v02pI3TML62b9iA/6DEEQmDlzJvn5+VhbWzN58mRUKhXNmzfHz8+Pzp07M378eBYsWIB/QCtq+zZH3XYygkSKTqNGkJZ+4VZIJfh6WLNpePnpSzqdjm8ORLI3LF5/LfKv70KV9oSzR/awc9UCHBwcWLshiEbjV3Ps4F7y71+g99fLsXx0mGY+dahfv77+M7Jt2zbS09Pp1q0bnTp1Ijw8vEyx7b9LdGExS+KSOZORh1QQeM/ekk/cHHB4TQDpxYwjmZUTar8xxGcVYayQUqzSIJMIJB5djjovA+XTCHSqYpBIkSiMkZpaQn4mVSpVJDY2lpYtW1JQUEBMTAyOjo7ExsaSlZVFx44dqVu3Lnv27CEnJ4dFixbRr1+/MuN4HsA7HpmMVqej8NZROjX3Yfr06axYvZ7mH4zBuvME8iPPkRd6GEEiwbrth6gyE8k6sRy/Rg1Yt24dVapUKbPdrKwsRowYwZ49e/6uU/6PKC4upqioiO7du3P69OnXBpH8/f25ePHiPzw6kUgkEolEot/3piDSv6kgx1LgS+D1j7tFItF/RqNK1jiYG/C6adSGcgk/DmhQru7OhwGVMZKX/QJfkhZHyuaJFOyZgnXoOgJr2vMkoxClWkueUk367VNkJ0TTf+11fcaMk5MTGzZsoEKFCnh5lRagrlChAllZWQBYW1sjCALvvfced++W1s2JiYlh6dKlr+0Ctfnak3IBJJ1WQ/rh77DtOB7XUT+TmprKw4cPOXnyJO3atSMhIQE7Ozvy8vJo0aIFd+7cwdfXl6ioKNzd3Rk5ciTu7u7/ygASgLFCxpfta3BjSutXXsvCB5coSYoi89wGWrZsydWrV+nVqxfff/89PXv2BEAul6NQKPDz86NRo0Y8ePCAxo0bY2wgp1VDL9J/HEDqli9I3foVRnIphnIJdV0tWdm/vr5uzvjx4/XTEq9GZ7AnNL7MtdDJjZG51GL0plBaBLSkqKiIet61CRremB2fdWR8r0DWD2mId7VK+s+Ap6cnEokEZ2dnsrOzAcp1a3sbS5YsoVmzZm9c5vlxvKiysSErPd154F+byGZezK3m8soAUqZKTVqJimrVqnHlyhXe+2Ytt55k8/jeHXRAQYmGvEfXiV39IZrCHKxaDMbIwwfB2BIEKRIjczT52aiURcgUCn0WXlRUFB9++CGXLl2iSpUq1K5dG3NzcwICAli1ahWDBg1i8eLFZcaiVGvot/Y6I34J4ZerT9h0OYa1u46w+rExWp0OS2MFViZyBJ2GvNCDOPZfgG2XiWRf2ISNV3MqVa/FmTNnygWQHjx4QJcuXfj000/f6pzfvXuXpk2b4u/vT6NGjfDx8eH9999n7ty5+mUSExMxNDT8ywXRf49Op+PK43TWXoxh3614NIIMKyurMssMGzaM1q1bM3z4cGbMmMGKFSsIDw8nICCAw4cPM3XqVACCgoIICgr6W8crEolEIpFI9Ff8K4JIgiB0BlJ1Ol3o7yw3ShCEEEEQQtLS0v6h0YlEoj9DEAQ2DffF2dIIE4UUmURAKghIBOjo5ciZCQE0qlS+mHVAdXs+CqiMgUyCgUyCRAALRzfaTFrDwzs3UGm0rNl3ukzXMFVmApqCLOI2T+Hu3bscOnQIa2trfX2bF4tc63Q6CgoK9AGJy5cvU7lyZQoLCxk9ejRr167FwMDglcf0qkycwgeXUCY+Iit4A9eXj+NpfAImJiakp6fz2WefERkZyYgRIzA2NmbcuHFcunQJiURCpUqV8PX15ciRI2zduhWAX375hcDAQAICAkhISPjdc/zi8pcvX2bAgAHlltmyZQtNmzalc+fO5ObmArBs2TJ8fX1p0qQJV69e/d39AChkEmo7W5R73cSzBa6fbKXrlNUEBwfTpEkTPD09UavVVK1aVb/c+fPn6d69O8bGxhQXF2NhYYFSqaSkpIR6dbzJjIlg/8lgZnatxb6P/Ng5pgnmhr8FVJYuXaoP7vxy9Um5rnEGzjUpSY2jWKXl8LmrCIJQ5rq//Bl43Wt/tNi5Uqnkzp075V5/XlPprwjJKSDw5gPqXI6kwZV7tAh7zL6n6ay+EINGIkVmZkf6kaWkbJ9CYdRVjKv7ITO1IXX3LLTKAnRFeYAOqZkNMtuKCDIFkRERuLi4cPPmTTIzMzExMWHChAncu3ePqKgoHB0dCQwM1J+LlwNqP5yJ4tYLdbIKIs9iWKM5t59lk5hdDED9ilYYawtRWDggSGXILBygpJAqDqY4WRi+8lhr1KjBpUuXaN68+e+el7xiFZZObly8dJnTp0+TmZmJWq3GyMiIKVOm6JdbunQpjRs3fsOW/rqU3GICl5xnxC8hLDj+gCn77uIz5zSn76Xol7lx4wZSqZTTp09TuXJpR8KxY8fq67K9WNxdJBKJRCKR6N/uXxFEAvyAroIgxAHbgVaCIGx+eSGdTrdap9P56HQ6n3fZqlskEv09XKyMOf9FS34a2IDJHWvyfZ+63JvVnlUDGuBsafTa9cYFViX4iwA+blmFHvVdmN7Nm/0fNcXcUE6RRoJUpyZ500SSt00m5+pOrAKGorB1w/6DWWglpYGHlJQU/dP9l0VFRdGwYUP8/f159uwZPXv2ZM+ePTx8+JCBAwcSEBBAcnJymXXu3r1LxI+fkLzlS9KPLNUHHUw8W2DbsTR7Qp2XiU0Fd6ysrPGuUwetVkuNGjUwMTHh0aNHxMXFERISwuHDh2natCn79u1DoVDg5uZG06ZNOX/+PGfOnCE4OFjfmv11EhISfnd5lUrFTz/9xIULFxg4cKB+il5QUBBXr15l9+7dLFy48I37edG0Lp4Yysv/2TCUS5ncsebvrp+aV8z3px7Rd/U1xm0LY8q3yxg0aBAAyQnP2DR/Ih80dOXioe00btyYSZMm6dcNCAhArS7t0JeWpyy3bYWDBxKZgtiNXxB+K1SfBfWuRcTnMGzDTWpPP4HPnFN88Nkc3u9TmkUWFxdHy5Yt6dmzJ0FBQaxevbrccRw+fJgGDRowevToN2YvhecV0uv2YyLzi1HpdJTodMQWlTB62Trifs04UuemIshk2Pecgdy6tK6UYGCMTq2iJDUG0CHIDTDz6YImLx25uS3VqlUjLy+PkJAQjI2NGTZsGJGRkVStWpXjx4+Tnp4OlAbHIiIiytSA0ul0bLr6hOIX6mOpMhPIu3WUp1un8izmEQcPHsTEQMa5qV2x0mZT08GYGibF1HRzYM+HTZG8pj3wi5lFQ4cOJTY2tlxQNC45j77fX6Ra3xlUquRBw7mnGTxxFtnZ2URFRXHq1Cl69+7N6tWradCgAadOneLBgwcAzJ8/H0tLS5ycnKhduzarV69++4v+BkM23ORJRiGFJRpUGh2FJRqKVBrGbbuF8td6cDExMdSrVw/glbWPXhXMFIlEIpFIJPq3+ld0Z9PpdJOByQCCIAQAE3U6XflH6iKR6D9HIhHwr2qHf9W3D/wq1RoWHn/I0YgkFDIJRyOSmLniF1TXt1CpchWKJE8xrdse09qty3zpyjz9M57dxzJu3Dhq167N6dOnCQgI0E8lGjJkiH7ZsLCwMvscOHAgAwcO5HWqV6/O1atXaL7gLCmHl1KSHIWBUzWgtOuXkYcP6Ye+I9u7L083jMeu4ycIkffxGjqHS5dbIhEEqlWrRmxsLFKplIoVK+Lo6MjJkyf55JNPCAsLIzY2lhYtWug7mBUUFDBv3jx9V7CknCI2XX1CyJMsMsOOY5hTSGBgIJ6enowfP56EhAS6detGSkoK27Zto7CwkNq1ayOTyWjdujWjRo0CoEqVKiiVSrKzs7GxsXntMb+sgZs1vwzzZeahSMIjIkg7thwTAwXe9WtRx6Xda9ebOXMmew8eISolD5sWg5C6eoNGTeaRwxjV6UhUVBTx8fEAqNVq1q1bx+XLl7lx4wbXrl0rtz0fdysiErIp0ZT9wm3VajgGMgmbxzfH3dZE33ntdZ+BV73/Yre2l11+nM6IjTcpVmnRAbmFah6eCybLvRUabelYUlNTOX36NDqdDj8/v3LHMX/+fM6fP09WVhYtW7Z87b7mRidRpC0fUJDVa0YFw9pkHP8RdXYyCrtKFMWGUhB5Dm1JIUbu9ZCZ2SC3caEo7jam9TqSe3UnEkHAkBLGjx/PwoULUalUeHl5YWpqyurVq/nyyy/x9/fH39+fa9eu0adPH7y9vfnqq6/0+9ZodeQVq8ue84Ch+p+Tt3xJu46duHHjBvYWxsz+eiI//jgZiUTC2pUrMZC9fppg9erVuXLlCgBDhw7VB7Oee3Yzka57bpOPjtyHl5Ca2fIsLJg7R5dSo64Phup8tFot0dHRxMXF0bZtW2rVqsXEiRMB+PTTTzlx4gQffvgh+/fvJygoiCFDhqBQKF47pt8TEZ9DXEaB/to/l3tjHylRV3G0NAGgUqVKnDt3DoBbt27plysuLmbAgAFMnDiRpKQkAK5du0Z6enqZz6lIJBKJRP8FcXFx+Pr6UrNmTRQKBb/88gvr1q1jypQpBAQEoNPpEASBadOm0apVKzIzMxkzZgzp6ekEBgaWySYW/bv9K4JIIpFI9KIvdoVz8l4ySrX2t65gFeph0scH16QDxGYZkhr3kLRDizD1bIlRZR9UWQlI5QomfPjqekZ/Rnq+kg2XYzl9LxUDuYQPfFyY854Xo47LQKsledvXSI3MUWUlYuBcE1VmAkmHlyGzdQNja3RaLQdvPkatk1Cvdi12bN+Ot7c3derUIS8vj4yMDNavX4+NjQ2Ojo40bdqULVu2MGHCBJo1a0ZgYCC9evWibdu23IjNZMiGG6g1Oko0WnIexlH8+DYVbCyIOnAAa2trkpOTOXXqFKGhoSxYsICBAwdibm4OgIWFhb4WUGBgIDVq1ECtVnPs2LE/dE5qOJmxebgvOm0DFCtGYWogY+jQoYSEhNCwYcNXrjNgwECOyZthm5pO6p7ZOPb3Jj/yLHJXb+YP8AdlPp9//jnVqlUjPT0dNzc3ZDLZaztWDW7qzqZrTyjRlJ3SppAK+Faywd3W5K2O5fr163z22WdIpVJ8fHz4/vvvyy1z/PhxNBoNHTt25Ivddyh6odtgQeRZjGq2ICW3GFVu6VSu5zWVkpOTX3kcEokEU1NTTE1NeVNG7dXs/HKv6UpK0NoYotVlIxgYo8pMoCT9Kdq8dLSqYiSGppg3+YDkXybgNGQpz5YPwL5OSyQBAxBOLaSehxP9+/dn/fr1GBoa4u7uTkhICOfOnaN79+5l9iWXy9m3b1+Z6WwyqQRbUwPS8stnggF4jlpKtcoe+kDc4MGDGTx4cJllgoODS49FpSH/RjKFISloSzQYVrPCrLkLMitDDAwM0Gg0JCYm0rNnT2IeRdOi+ZcUmZqTH30TI/e65IefRqfMx6bTZyQ+C8ci8ylWlpZoNBpcXFxISEhgxowZ+iDSpk2buH37NitWrEAmk+Hm5kZqaiouLi6vvQa/Jzotv1w6t06tojjhPsUJD4iL19K2bVvmz5+PUqkkMDBQ34XyRd7e3iQmJtKhQwcePHiAQqGgdevWbN++HVtb2z89PpFIJBKJ/mlt2rQp80DuxcDQmTNnyjSbmDlzJrNmzaJGjRr/6BhFf92/ZTqbnk6nC/69zmwikej/ruScYk5EJlP8wpd1nbq0FpFKrSU2R8u4Tg1wbj8Gh07jyb60BQADa2eq+7UndOfydzKOuPQCWi8+z5qLsTxMySM8PodJ3wcx6r2WuBiqkBiZoS3Ox7bbl1j49qA4NgypiSWawmxUaXEUPymtk6NVmKHT6YiOfcLAgQPRarVIpVIcHR0pKiri6tWrtGnTBolEQosWLRAEAVNTUyZMmEDXrl159uwZao2WMZtCKSzRUKIpPS86nQ6tTkDRdQZfzF6CQqHQZx3VrVuXx48fY2lpqa+DlJubq//3+vXriYqK4vr162WmWr3J3YQcmn+xGvsq3lSoUR/vjoO4GZvJiBEjOHbsGGvWrOGTTz5h4cKFSCQSAgICGD9+PDdu3CBLakmeUgVSOQgCOdf3kHX+FzJP/YimKB+tVkfHjh0BsLW15cmTJ2g0mjJZGy+qYGnExmGNsDZRYGIgxdRAioFMgq+HDSv713vra+zm5sbZs2e5ePEiqampRERElFumffv2dOrUiei0fLIKytbEenkq16FDh/Q1lV53HFqtloKCAuLj43lTbb9XFTFX3rxM5qRRpOz6GqEoBwu/PggyBYJcgYGLJwgSNEW5gI7kHVPQKfORXvqJfpWUyO09CElRs+NWKrFxcVSuXBkrKyuio6NZsWIFXbp00Rd1/uGHH8jPz6datWqYm5tz//59EhISaNeuHSObuZF3cSOFj8rW0jKSSxjV3KPM1KzX0ZZoSP3xDrnH41AlFaDJKKbgejKbPlxGrRqepKamYmNjQ1ZWFjt37mR0i/4cfhCMCiiIOINJrZbodFr9+S94fJPk5GSioqKoUqUKUVFRPHr0iBYtWpCVlcWYMWNYtWoVdevWZdy4cWi1Wp48eYK9vf3vjvVNHF9R3yk//ARmddph4FQVpyq10el0LF68mDt37vDxxx8TERHB+vXrKSgoYPfu3SQmJvLBBx+QmprKJ598go+PDw0bNmTo0KFs2bLlL41PJBKJRKK/251n2fxwJopVwY+JSy/g3Llz+Pv78/333xMXF6efmi6RSGjdujV9+vQhM7O0C/Pdu3eZN2+evjGL6L/jXxdEEolE/3+7m5CDQlb2v6ai2FCSt07i6aaviH6agKORDtNTsyjc/TUVGrSmppMZrtbGXA2ag72dLQsWLPjL4/hyTzi5xSpKXqj/IqvUkArDV2JsZYcmLhS5rSuCIEFqao1xTX8ces/GoskHSE2sMHSrA4AgkSIzt0crK+0SpVKpkMvlBAYGIpfLSU9PZ+HChUycOJHw8HB0Oh0bNmxg+vTpHDhwAIlEwtWYDH3wSE+jRlucS9ymr5g3dzYajYYjR47g7+9P+/bt8fDw4OHDh2zdupUWLVrg6OhIjRo16NSpE48ePcLFxYXIyEgKCgp+91w8Ssnjg5+vEltkjEOfeTj0X0BWZjp9Pp3G5i1badq0KSNHjkSr1XL48GEsLCxYuXKlvhZMen4JAgI5l7diUrM5xU/DMa7eFOOazZEoDNHptGRkZKDVamnXrh2ZmZnY2dmxe/duiouLadWqFZGRkTRq1Ij4+Hji4uL4alhPKoevQbXrC7pZJGB/+TtiN0xAoil547FkFpSwJzSeHTefolKYY2hYGgiQyWQcPHhQn5l18OBBFi1aRFBQEGvXriUq6jFPgj7X1+GC0qlcDr1n4/DBLIzs3ejSpctvnxVZaYZW06ZN2bt3r/71r776iubNmzNz5kwcHR1fO86Othbl/kAb+rXEeuk6Wm/byYh5izEykmPT6VPs+81D5lEFwcYStYMMnUSH1NUWl5o1qdjza7bHyHgcEcKzqHuMHzUIi9Yf8uhxNBcuXGDevHlIJBJycnL0+5k3bx5ubm76zLZly5bh7OxMz549ufbLfByEPKw8/VDIJCh+LYDfsbYTo/w9fvezBJB/NRFVahG6FwLFaHW0cW/KmdGbcHZ25vDhw/rueXZaM7TFBRQ9uYOBc00EqRxtcQHKxIfoNCqM3bxRGBhQp04dDAwMGDduHDqdjubNm2NlZcVPP/1Eo0aNuHXrFt999x23bt1i0KBBf2kqG0DtChaoX5jKptOoKX56FyOPBkgkUmzNFGRlZbF9+3YqV67MqFGjUKvVuLi4cOLECWbMmMGNGzcoKipizJgxhIaG6oNwf3SqqUgkEolE/ySlWsOgddfps/oaS08/YsnJR4zaHU3vhXs4c+Ysp0+f1j/IBNi9ezfBwcF07dqVOXPmAHDlyhUmT57M9u3b+eKLL/5XhyL6E8TpbCKR6F/F3EiO9qXissZVG2NctbTLUvOqtvTu7Uvv3r3LrvjpTQAmT54MwIkTJzAyen3x7jfJLCjh9tNsXix1olOrEGRylGoteYUCMlMDBF7MuvjtZ/NGPcg6HwQ6LfHL+6NTKSmWK7C0s8ba2hoPDw/q169PZmYmly5dYufOnWzZsoVnz55x584dzM3NWb58OTdv3sTS0pLU3GKKSspO3RKkckBAp9VSkJOLlZUVDRo0wMLCgrCwMIYMGUKPHj0oKChgxowZVKpUia+++op58+YxduxYtm7dyjfffMO0adPeeC6iUvIY+UsIhSUapKa/tS0XJFLy4sJR6yRcvHaTnKUbCTm2HQc7G4qLiwkMDKSgoKC0eLRETvTTDKQ2rhi4emFYsTbFT8Ix930fqaEZtppUNm/eTOXKlXn06BGRkZH8/PPPtGjRgrFjx9K9e3dq1KjB6NGj2bNnD926dSMrK4vTp0+zfft2duzYwcVzZ5g3bx4nTpygR48erzyWlece88OZKGQSAa0OtDodnbydGFAV0tPTmTJlCgsXLqRDhw7s3buX6dOnc/78eQCe3L2JdYMOyGq0Klf8WCYR+HjJNtzd3cukcI8ZM4YxY8aUWbZr16507doVQF+H6VUmV67A2cw88tQanl95ATCUCDxVqnhgoiW/uQO5335DyaP7aFOTUdRrSG7wNiQmJlSf9z3VD5/gzMUTGNXrgt3705HIDci6sIl8jQzfvlN4vGMe77//PklJScyfP5/GjRvrgxgvZ7UBDBgwgAkTJnDixAkcq3pz7kEqOqBldTs87N6+w1jBjWRQlw2KKtUlGMgUqDOKMZUbY2RkpB+L1FRBFSTcSntC4ePrFMWGoi3IxLh6U6yaD6Toyha+mj6DTh078N1335U57zdu3KBKlSqsWbOGqKgoTp8+XSaV/q+YtC+cFz8KBZFnMfFsAYCpgQxjhQylUoOPjw/Ozs6MHj2aAQMG8OGHHxIWFkZhYSHdunWjQ4cOHDlyhMjISDw8PDhx4gS3b99m165dDBgw4I11ukQikUgk+l9YcOwBN2Iz9c02Su/dpRx7kE390EQ6d+7M4cOH9ctbW5d2ZO7evTtBQUEAVKtWjZo1Sxuz/NHuuKL/LTGIJBKJ/lUauFlhJJdSoNSUe89YIaV/Y7ff3UZCQgKzZ89m5cqVf2oM+cVqZFKBF+M2RbGh5N7cD4CRrTPzJ4zly6/vvnoDEgl2XSaSfWETtl0mknv2ZwyTIygpKcLDw4MJEyZQuXJlGjduTJ06dahTp84bxzP/6H00LwUuJAYmmDfshkW9DrQyTSIzM0FfC8bMzEy/XNWqVfHx8WH79u0IgkBmZib379/n8ePH+j/or7P8TBQrzz0u040LoCQ1Fk1BNg4fzCJ585fo3GsTllBAflEJhSnZmBqbIggC9evXx9vbm5EjR9KkZTuMq/VGW5yPRGGMzMIBbVEu2pJC8nLSmTBhAllZWWRnZzNgwABSUlKIjo4mKiqKkpISkpOTcXFxITo6GgBDQ0PWr19PlSpV8PLyAqBChQr6uk8vO343iRVnH5fW2Xrh9UM3HrF/9kKunDqMo6Mj0dHRFBUVkZCQQKVKlfRBpH59+7Dv3GdcO/wdhjUDMKrso9+GgVzCRwGV33gu/yhXQwWnGlbnu9hkjqZlo9FBCytTIguKiS8uQQsgCJhPLn2aJwC5P3yLUQUX7OztOdGoBv4bTlJSmI+hqpiM4yvQ5Gegzs9CblWBa2EFlCQmsnHjRoqKiggICCAiIgJvb2+gNMVco9Fw584dfVv6GTNmMHv2bObNm8ehQ4eo1KzSnzo2XUn53+3g2OusubkTBAFPvzqMHDuaS5cuAWDkZUv1qzKKfd4j0acrKiB585dYNR+INC+DzKu72U88s2bOKNfR7e+SlqfkRGRKmQxBVWYCJSkx5N0+RkliNLoia0wVUgwMDLh9+zbh4eFcvnyZoqIiUlNT8fLy4tGjR/j4+LB+/Xry8vIwMzOjS5cuvPfee++sg5xIJBKJRO+SSqNl+81n5e4PtcpCijDm5wvRuEVcZty4cdy7dw8oLatgbm7O5cuX9fcV1apVIykpCXNzc30HXtF/gxhEEolE/ypSicAPfesxPCgElUarny5irJDSvKodbWo6/O42nJ2d9V9A/wwnS0NkLxWleTEbyq+yDWO6NKZG1e2M+CUEw4reGFYs/fJtWrs1AKqMeASZAgOZBP9BX7Lnw6bIpKVPWTIzM2ndujWjR49+q/EcCk8s95qBc03y7pxAqwNbZSJVqldBp9OxdetWpkyZgk6nIyUlhSlTprBv3z4EQUCr1TJ8+HAWL178uwGk0CdZrAqOLneDoCnKI/PUT5jWbkPy1kmUpMWhtHHB2LM2gqEpUnNblFoNDqY6LCwsOHLkCFu2bKE4L5+Sc2uRGJhgXL0p5o16kLp7JjqNCp2VI2fPBRP/7Cl9+vRhzpw5fPXVV/prWLVqVUxNSzNdXtUC/W1apC87HUWRqmzwQqfVEL9vIY4BA7CxK62PExAQoO8a8iK5XM6J7esIuhjFx306Y13DF41WRw0nMxa8742rtfEbz+erPC8y/TquhgqW1azIspqlhZjDcgvoeSuaF6+IrqQEQaFACtR2sGOQV2Wu5CRjp5BTWKIBdBTFhiG3roBd1y9I3T+fnGs7kSqMqGjvwIN7kXTq1Ins7OwyGTr29va89957pKWlsWXLFkJCQkhMTGTBggVoNBrWrFnDyJEj//AxAxi4m1N0NwNeuFTtqvrTrqo/gkJKhW8aI8gl+gycqs282D5uKJWe3EItkWDZezYGAxZSXSLjy2GBNFtZwi+//MLGjRsJCwvDz88PnU7HrFmzCA4OZsaMGTRr1kx/vpOTk/XdYrp06UJ2djYKhYKNGze+daHtqJQ8DGSSMtNdy3Sq2/wlWblpeHjXpKQgFzc3Nx4+fIi9vT3Xrl3DxcWFAwcOoNPpCAgIwMHBgcjISK5cuUJWVhbdunUjLy9PX1w8NjaWAwcO/KVC4CKRSCQSvQvZhapynUkBlPGRZF/cTIpMTpN+XXBw+O2evVWrVhgZGWFoaKjPRJo5cyZ9+/alqKiI6dOn/1PDF70DYhBJJBL96zStbMvRT/1ZcyGGm3GZWJsoGNTEnQ5ejkheVXH4Lb1NNy4AuVTCxy2rsPQVgQcjuZTP2lQDIKCGPRuHNWLExhCUas1v0980ajKOL6dCi74Mb1aJTwKr6gNIUJrS+7zl99t4uaAzgMLBA4lMQeq2yUTUrcxHI4awePFiQkJCsLCwoGrVqqxevZpnz57pp0/Nnj2by5cvM378eACWLl1K3bp1X7nPoMuxFKvLB13SD3+HVcthGFSojql3a5I3f4lNh08ofhqOYcXaCFI5mrRY6rbqSuOqjjx9+pSYmBicWvRDZeqAkYcPGUeXYuHbEwPnGhQ/jUBbUszDR49YE7SFjz/+kCPnrqItzKZdm0DOnj2r379arWbPnj36Lh5nzpxhzZo1ZGRkMHv2bE6fPo1Op6Nfv3507NiRQ4cO6bOyYjPK134qfHCJkqQoUk6vp0WLvSxetIBevXrh7e3N/fv3yyx78OBBVqxYQWFhIbMmjOaDIc0xUkixNTV4u4v4DsQVlZQruK28eZnCXaXBFplHZdq3+4wrly8DUNHaiLuxYOBUndyrOylJfoxgYIxF415UaNieXtKbtGrVCkEQ6Nu3L6NGjdJv91UBrk2bNgHw+eefv3GcL/+effXVV/qgzbhx41j89bcUP8gqWxMJEOQSTJs7I8h/+115/nvVtnN71s//kYKbyWjyVRhUtsCkgQMSQxkJCQmcP3+eM2fO8Mknn9CnTx+8vb3p3LkzrVu3Ljc+R0dHfbeYH374gUqVKnHq1Cm+//57Fi9e/MZje87G1AC15tUBS51GDVIZmoJM7ibkUNFYQ+3atbly5Qqpqam0bduWtLQ0evbsyZEjR1i1ahVBQUHcv38fe3t7bty4waRJk1i/fj3jx4/n9OnTbNu2jT179vDpp5++1fhEIpFIJPq7WBjJkbyikYZR5YYYVW6Is6UhCycF8vDhQ31piZCQkHLLe3p6/u4DNdG/kxhEEolE/0qVbE2Y16P2O93m825choaG9O/fn4iICGrXfvU+RjX3IK+ohLWX45BLJOgorX3z7fu18XH/LYvHr4ot+z5uyoqzj7kRm0nW9b0Qd4PsmDsYyqWv3DaUfkkPDg5mwoQJvPfee6hUKszNzdm2bVuZ6WgAbjbGPEjOK7cNq1bDMVZI2TetLQqZhLCwsHLLfPPNN2X+nZqa+qZTpPc0s5CXk3qeB12ygjeU7r9F2fbtUhMrUJdQkBpHxO0wxvWbzuzZs+ncuTO6vGIwdUBqYomBqxfJm79Eam6H88ifKHl0ifwrW+g57GNAgqTBYFJPr0HXsD8GV66wdOlSvvrqKzZs2MDy5csJCAiguLiYW7dusW3bNkaOHEl4eDibNm2iY8eOjBw5ki+++KLMebQyVpCUU1xmvCaeLTDxbIFCKuH09DYYK0r/JL6YUj1kyBD9z+XqcP3DXAzkvBy2MPRriaFfS6RALycbPDxc9Rk8cz/uw5hNVSlSaXAasky/jpFcyugWlfm4ZTu++WbqOx/ny79naWlp+qDN8uWl3RNtBnuSufMRumI1CAJodZj6O2MeWJp1dfxuEt8ee8DTzEK0uamkHz3J45j29O7VE4VCgVuWG5aRFekU2IJvZs8jJCSEhg0bkpiYyCeffELXrl159OgRderUoUaNGhw6dAidToeTkxMLFizg22+/ZfPmzVSqVDolTyaTIZW+/vf1ZdUcTHGyNCQmrXxwUpDKMK0VgHmDLphWb0LuvqmMHTuWpKQktmzZQnBwMKdOnWLu3Lk0bNgQjUaDubk5NWvWJCEhga+//pqioiLc3Nz0xcWdnZ31talEIpFIJPpfUsgk9Gzgws6QZyhfylg3kksZ6e+BSqVi5MiRfP311/+jUYr+TmIFK5FI9H9admFpN64t15+QLzEt040rNzeXfv36AaVFg0NCQggKCqJ3796lWQyOSjzvr0d2bCamZ7/l7CeNaO/lVG4fNRzNWdGvPhcn+tPUqgAHc8M3BpBeJJfL2bx5MxcuXKBbt276FN8XfRJYFaNXbM9QLmFgY7dy3ezehVoVLJC+tFkTzxa4frIVx37f0uSTH7Bwr4XjgIVAaeFxiUyBVavhVP9yD1OWrMXPz4+MjAwOHz7MopVrsavfDgCLxj1xHLAQu65fIJHJqdK0IxXGbMC+73zs+84n53EoRjVacDg8ieScIgAuXLiAXC4vU4z6eS0kZ2dnsrOzEQRBfx07depUZuyDm7hhKC9/nuRSgTaeDvoA0r9ZQwsTbOUyXpWLJ5cIDHOxLfNai2p2TO/iibFCiqmBDFMDGQYyCf19K77TGk5xcXFY29pjV60+Jh71afdzOAtORpNdWKIPzrRq1YojR46UFloHhn7zEbfqpOO9vAt1V3RlyNUZWLR1RxAEdtx8xvgdt4nLKESrA52RFXZDf0TV7huOnThJVEwcoybPo+eMILS2HszddIKop0kcOHEOQRA4ePAgWVlZtGzZkuHDh3Pnzh1cXV25f/8+ffv21U+NBNi1axcNGzbkvffew8Pj7brLQekUylX962Pwmt89VWYCebeOkrRjGilPHnPo0KEy0y5fNQVTKpVy4cIFGjVqpH/tbaZqikQikUj0T5vSqSZ1XCwwVpTen0qE0gBSG08HBjVxRy6Xc+HCBdq3b/8/Hqno7/Dvv2sWiUSiP2n9pVgWHH+ATCKUFqbWQbOqtoypLSM9PR0/Pz+OHj3K6NGjqVChAj4+Pty9exdLS0t27NgBwOZfNmJsbMzatWvZs3tXmTow0Wn5rLsYy534bBzNDTGPPcOgQYP087o/+eQTbt++jbm5OVu2bMHCwoJhw4bx9OlT3NzccHV1xdDQECen0sDU67IhOtZ24nFqPivPPUYqEdDqdOh00KamA1+0q/63nLthzSqx91Y8Gm3ZJ0wyiUBtFwu2jPDFd94ZilVa1Hnp5FzZgXXb0o5YEgl0qVM22NanUUWO3U3m9rPsX2v1gKFMgqFcSolGW2ba4IsFilVJjzh48CCBgYFUrFiR5cuXM27cOKD8F+yCggLWrl3LBx98wMaNGxk8+LdMqeH+Hlx6nEHY0yz9/o0VUuzNDJjzntc7PHN/H0EQ2FLHg/fCHlOk1VKg0WLw6/y22VWcqWlavhthn0YVea+eM1ejMyjRaGnkbo2VyV9rbf+y84/SUDt5Yd5pAiZATpGKzdefcODsFexS0zA2NqZChQp06tSJ+fPnA6VTKbt3747C0IDQ0FAqVKgAlBbrnHvkHsUvTHUTZHJ0yMlT6ahU1ZfdV8LISElCIX+Icf1u5EecQS0zpt+6m1hZWVNUVETNGjXJzczBw90DGxsbTp48ibW1NUrlb2XVtVot33//PY0aNWL06NFs2rSpXDe9N6nhaM7pz1vQ8YcL5BWXnfr5Yn2kjO1f0aVLF65fv/5nTq9IJBKJRP86hnIpO0Y34UZsJmcepKKQCrT3csLL2eJ/PTTRP0AMIolEov+TLjxKY9GJh+W6cZ2PiOXkwgXcOHMEKG3DXqlSJZ48eaJfpkGDBgBoNBq++OILIiIiyM3NpXv37vplzj1I5cMtoag0WjRauPssk6wjRzFv0BmAmzdvUlBQwIULF9i8eTM//fQTLVu2RCqVcvr0aebNm0dJSYl+e/n5+axevZpjx4698ng+CaxKP9+KnL2fSolGS7Mqtrjbmryr01VOFXtTvv+gLp/vvINEAJVGh0wqUNHamDWDfDBWyAga2oghG26gUTggG7AQY4UUQYANQxphZigvsz25VMIvwxpxIjKFHTefkq9U06qGPf183Wgw51SZZV/8Ap6y5UtatuvAjRs3mDVrFh999BHbt29/5ZinTJnCpEmTCAwMpEOHDrRv315f1PH5/i9EpbHvVgJKtZYOXo6093LEQCZ9q3pZx48fR6PR0KlTJ5YsWcLevXvZvHkzU6dOLdOGPScnh/79+5Ofn897772nr0EF6Nf7s4XfqxgbEtLEk8Np2dzOK8RBIaenoxVOBq8PDBnKpbSsYf+n9vcm8VmF3E/KZf7RexTG3aFky5cYV2uKYcXapF7ZAUU56Co5Ex4eTnR0NGvXrqW4sIiAxv7YWNlw//59CgsLqVWrFlZWVgwcOBA7j1podRYURl1HlRmPWd32pB1YgE6lROHgQaamEMHMHk1hLoWPrqLOTUOdnYIgk5OWr0QnNeBxcAT5CWmkF2RStCuWxJh4vpgwkUWLv+PBgwesWbOGxMREgoKCEAQBjUZDt27dOHDgAAAdOnTg2LFj9O/fn4YNGzJmzBj69u3Lvn37yp0DV2tjLn7ZiuYLz5FbXL6zjEIqMPXH3bi7u+s/IwEBAfqMuhenS77q/Ve9JhKJRCLRv4EgCPh62OAgycPX15fDNWuiUCg4efLkG9eLjY1l0KBBCIKAi4sLmzZt+kNTykX/e2IQSSQS/Z+04uzj13bjsm8+ADOr0qk/kyZNYtmyZUybNo1169YBIJGUTlG5ffu2PhC0Zs0aEhISAChWaRi37VaZbImCyLMY1mjOzpvxGCjVREdHU79+fQB8fHw4f/48bm5u1KtXDygNVF29erV0XDodw4YNY+7cuVhaWr72mGxNDfigoes7ODtvp0NtJ/yr2XHqXjKZBSq8XSzwcbPSZwA1cLPixtetORyeyJOMQipaG9PJ2wkTg1f/aZFJJXTydqKTd9ksJUsjOVmF5YuHA7gN+Y6aVSrrv0yvWrWq3DIzZswAKPMl+9SpU+WWk0gEAqrbE1C9fEDlbeplPU/JViqV3LlzByjNZnnZ6tWr6d+/P3379qVHjx4MGDAAW1vbMuv9FYZSCT0drenp+OYOe3+XAqWaT7ff4mJUOlKJQJHMggojV5cGcvbMxsC1NiWpMSjs3MmUWOHtXdq5sOhhJqqkAtLJY3Kd4cTciSJRSOXsxWB69OiBhYUFZ44fhmr9KXx0BQu/vuTdPo7ctiLKpxEU3L+ArEoDJGYOSEwsMXSthdTUhvzMBGTmFYje8AXOhibcuRdBXFYCy7t8g7pETU5ODrWLXHF0dGTfvn1otVr8/f0ZNmwYo0ePJiQkhA0bNtCrVy8ATExMKCgoQKvVEhERQUhIiD6w/CqWxgp+HujDsKCbFKs0+rpVcqmAtakBo5q//TQ5kUgkEon+i9q0aVPmgdqbWFpacujQISwtLZkyZQpHjx6lS5cuf/MIRe+SGEQSiUT/Jz1KLV+I+nlh6PRzG2jVci/vdemIm5sbH3/8MZ9++mm5wEP16tV5/Pgx7du3x9XVFWdnZ6A0y+llL07B0qVG8fDhQ312U0hICJUrV6ZSpUr6rmy3bt3Srztt2jT8/PzKtZX/NzA1kNG93uvbihsppPTy+WuBrUFN3Pn5fDTFLxVnVMgk9KjnUqaz3bsUn1VI8MM0dEBANbsy9bIOHjxIfHw8HTp0YO/+Axy8dYcnCmMEjYaKhbncuXOH+Ph4du/eDYBKpWLw4MGMHj2amJgYOnbsCECtWrUICQmhffv2rF27lsGDBzNt2rS/5Xj+KR9vDeNqdIa+mKYgkyNQmnlmVKUR+eEn0RblUxR1jSxlLklJSWjzVRTfzwQdVLGuyNwTK/nQty9X42/x+ZhPadSoEQ8ePCAr6RlUVqLJy0Bu6Yg6Owmz+l2wbjWCojvHqOZqT1RSNmZ12mFWvxNFMaGYeLXCsmkfZAIMFgwYqv2tY9728CMsbP8lTYw8cbJ1YMvObXz99dds2bIFKL0+Fy5cANBfs0aNGrF//37c3NxITk7mypUr+Pn5vfGcNKlsw64xTfju5ENuxGaikEl4r64z41pVeefTB0UikUgk+jdQabQ8zSwkM1fJqVOnUCgUVKxYEScnJ+RyOba2tkRFRfHNN9/w008/UVhYyIkTJzh79izjx4/n2bNnZUo51K1bl7p16xIaGsqsWbNYu3YtycnJHDhwABeX19+Liv55YhBJJBL9n2RnZkD2S9kt+m5cMgnHJgdi/cKXu2XLlr28CUxNTV857Si7SIX2pSK3L07BKtrzNdOnT+fjjz/G398fMzMztm7diqWlJT/++COBgYG4ublRsWJFEhMTWbBgAU2bNmXfvn307t2bDz/88K2PMy4uDl9fX2q+ZQrxv9FHLStzPSaD8IQcfb0iE4UUNxsTvu5U853vT6fTMe1AJDtDnvG8rNKcw/B+Axc+qKQlPT2dKVOmsHDhQvzatOWjtUHIB44kNywEbYmSa1cvIMsroFqlSmzcuJEHDx6g0WgYPXo0LVq04NatW5w/f54aNWpw7NgxNmzYQF5eHkqlUv95GjdunL5T2X9JXHpBmQASgFZZiMTAGABl/D3MGnRBq8zH2MUTN10KVlZWSAq0oNHxU/dZLLqwlq19lnD28VXM5CZs7DaZ7nvG0bJlS5ydnQmLPkqKRx0AZJaOlKQ8xtjBHV1aNGPHdufTn45QkhoLQElaLHLL0sw2KQJttWWnUcZkPiUy5TGb7xzgXupDDh06pM80BDAwMMDY2BhBEPTTS5s2bcrYsWOZPXs2oaGh7Ny5k48//vh3z42XswVBQxv9hbMrEolEov+al+/Ddu7cydmzZ+nRo8dr1/mv3gM8p9PpWHsphh/OPEar1VFSUkL1YYswf3gInbKQ+fPnM3jwYE6fPs327dvZuHEjJ0+eZN68eZw4cYLdu3fj6upKYmIip0+f1ncSjo+PJzExEWdnZwYPHszt27cZOHAgO3fu/EulAETvnhhEEolE/ycN96vEzEP3yk1pk0kEGleyLhNA+qPquFiWCyI9ZyiXMGnNHgBWrlxZ7v1XdV97sTbSn/FHUoj/jQxkUraObMzFx+kcupOIWqOjY21HWtWw/0NZSL9Xb+jUqVPMnz+fxKxClA36obMt26Fs9+UH7J6xiAsnDuLo6Eh0dDSTIqLJTk7C0r608LP6XgTypgFowkNIz0rnwNatNGrUqEznuJEjRzJ69Gj279+Pu7s7xsbGDBo0iK1bt+o7bP1Xbx4jEnKQSwWUL5T/UcZHkn1xM4JUjoGLJ5r8TOQW9lRo+h51EvfRq2dPmtjWKret+2nRbA8/wpUnYdh5u+Lh4UHTpk2Z7e3N2kMX2fqghAd12pNx+DsMHgfT2b8RvTsFcvRSKPse3yBlxzcIMjnm3SZjJJcyyNES52dlA8dfB/wakJUJ9Dr4ebkC1x9++KE+y2jUqFFA6fTTBw8e4Ofnh6GhIYcOHcLE5O+rPyYSiUSi/7YX78Pi4uLYu3fvG4NI/9V7gOd+PB/ND6ejXsgglxKTrSbl9DmcbS2YPHkyNjY2TJs2jdatW6PVagkKCqJChQqcP3+eNm3a6LOz16xZg4+PD3Xr1qWgoIBGjRohlUqRyWSkpKRgbGxMVlbW//R4ReUJ/9WWsT4+PrqQkJD/9TBEItG/lFarY+y2MIIfplFUUlqnxEQhxdJYzr6P/bA3M/xL2++z+iphT7Io0ZT9P9TMUMaFL1r+rVNY7ibk6KfN6HJTid/0BbWqV6F3r55UrlyZJUuWAHD9+nXS0tLo0qULhw4dYvPmzRQXF1NQUED9+vXp0KEDBw8e5OHDh3zxxRd/23jfxpsKVQcFBaFWqxkxYoT+tdu3b6PVavV1p5RKJaNGjSI6OvqVQaSioiIGDhzIjh07aPLtOVLzlGXe12k1pO6ZhVvrQdz/aRyCIPDNjBksexCLzswck37DKTp+kOJzx9EVK9EkPgWlku/nzmHu3LmMHDkSBwcHsrKyOHv2LAgCU+cvZdrEcTja23Lr1i1SU1Px9PTk1q1byOVyvvnmG77++mumTZvGuXPnqFevHrm5uQQFBbF582ZWrFiBVCpl1apV1KlT528683/Mxag0PtwcSr5S88r3JQJIJQKN3K2Z27027rYm6LQ6FnT+EhOpId1rtS23jiCX4Dz71dPFNFodEqFsJz6Aq9EZ/HwhmujUfNxsTBjV3ANfQwPS10SgU5WvU4VMguOEBsis/trvvUgkEon+/6bR6jh0J5FNV5+QXVRCNZNi9s0cRtUqlenRowdpaWmsW7eOmjVrsmvXLtavX8/BgwcxMDAgKCiIihUr0qxZs/9sVk2xSkP9WScpVJXNSBakcnRaDaY312KlzUWpVNK+fXtat27N4sWLef/99wFYsWIFV65cwcXFhZ9//pnu3btja2fP8gNX+GpAB5Ljn+Dt7U1GRgb9+/fn+vXr+Pr6cubMGRo0aMClS5f49ttvad++PU2aNCn3mujdEQQhVKfT+bzqPTETSSQS/Z8kkQis7Fef67GZ7A2LJ1+pJrCGA528nTCU//UOEGsG+TB26y2uxWSgkEnQaHXYmCr4eYDP3xpAuhGbyeD1N/QFfHUyc+yG/ojG3ISjx5eyeNECgoOD+emnn2jTpg2mpqZ8/fXXjBw5kszMTI4dO8bjx49ZuHBhab2fvXuZPn363zbet/FnCk6Hhd3iflI2j9S2VLY35frhrfp6Q8HBwZw+fZo5c+boM78qVqyIRCKhffv23EvSYN32YwqjrqIrKcKsXkdyb+yl+Ek4T46toUXAHhZ8+y3tu/dgTv362ATt0e/XoHlrDBo0Jn/9SjRJiWxPsUej1TFjxgz69+9Peno6vn3Hs3zWV3Ro0wqz2q0Iv3ITRwsjqlatSqVKlcjJycHe3p7JkyeTlJTEjRs3uHjxIlu3buXkyZNoNBp++OEHLl++TEJCAmPHjuXw4cPv8pT/aU08bH7NDisfRDJWSFnY05uA6vaYvlBc/fad2xyIOcfyNlPLb1AqYFz/9Z3jpBLhla83qWxDk8o2ZV7T6XQY1rSm+H5mmUCSIJdg0thJDCCJRCKR6C/RaHWM2HiT67GZ+un3sSkqLAatYv7wJsz/bBjz58/n6dOnbN68meTkZM6ePcvly5e5dOkS8+fP58cff/wfH8Wb/V6ZhAfJeai0OnKu76Eo6jpSCztMaviTc3kbqqxEpAYmVLQzx8DAoNy27927R5UqVQgNDSUjI4Ml3y9lzKTZ5OoMmH38MalFOoyqNmH83IWM79+J1NRU/boZGRlMmzYNlUrF2LFjad++/StfE/0zxCCSSCT6P0sQBBp72NDYw+b3F/6DzAzlbBzWiGeZhTxKycPOzIDazhblMibetcl7w8tM0RNkcrRAtlKDU+WG3L17l8LCQs6dO8f27dsBaN26NR9//DEzZ85EIpFQrVo1oqOjKSoqIiEhgUqVKv2tY35Zck4x359+xJHwJDRaHRaxZxjV9X2if1ioX+bFQtUAZ86cYe/evQAsWL2VT2Z8h6owB8NtB6nQbQIZh3cTFnz0tftMSUkhKSmJc+fOUaHNcOJXDEBh71HaRr5eR3TqEhx6zcSmaj3Oz2xX2vpdp6NqcBi5ai0FW9dj2KYzUrvSgIfF13MRClQkXUql2MSJ7MIS3n//fcZO+Iqr86ahlSpQuHohd66FRgcGbUfgcT+IlJREOnfuzKZNmzh+/DhWVr91L2vQoAEnT54kLS0NNzc35HI57u7u5OTk/F2X4g+TSSWs6lef4RtDUGm0qLWlmXjGCildvCvQqbZTud+BevXqcSn0KqkrbqHJV8GvAR5BLkFqocCinfs7GZsgCFj3qUH+tSTyLyWgzStBamWAecuKGNW1eyf7EIlEItH/v45GJJUJIAFoJXKUwOe7IhjcsVOZhz5xcXH6v/E+Pj7MnDnznx7yn/KmMgmGcgnFedkUPw3HccBCcq7tRqdR49B3PoJMgUQqw/78HHx8fEhKSiIgIICDBw8C4OLiQkhICDNnzsTc3Jxci8pYNO9FTtBECks02L73NdkXNjHnUiad3+9D1KNInJ2dmTNnDufOncPevvQeLDs7GwA7O7tyr4n+GX9PyxuRSCT6/4SrtTGBNR3wdrH82wNIidlFxGcVlXlNqywEQKXRcfnyFSpXrsyUKVNYs2aNfjw//fQTAwcOZM2aNSiVpdO4AgICmDZt2j/eES4lt5iOP1xkd+gz8pVqCouVRIRcY1GEgvxfC+2oVCqGDBnCqFGjaNGiBQD29vYcPXoUO0cnus/ZhmHttpg27IFV54mk3TqFUKUZfVdfA8pOfXo+ZdvCwoJmzZohk8no0iYAmakVjgMWltbwKcxBGR+JeaXa9G1UUb++VBAY5WKPITpM+g3TB5AAUGuRReehA7Q6HbtCnlHRozIqx9rY952PY79vse30OXL7Sqgy4ilRa7j3NBV3d3eWLFlC1apVmTZtGm5ubkRERAC/deyzs7MjLi4OlUpFXFwcFhYWf+s1+aOaVrHl+Hh/+vlWpFYFc1pWt2Nl//p8+37t1/4OSE3kOIxvgEV7dxQVzVC4mWPRqRL2n9RHYix/5Tp/hiARMGtaAacvG+I82w/Hz30wrmf/t/9uikQikej/vi3Xn5QJIMFv92EFJWqOnA7Gz88PjaZ0GXd3d32m9fNOvf9WSrWGpxmF5ClVnDt3Dn9/f77//nsAPvnkE5o3b07nzp1xNNSiTHqEYcXaABi610WZ+ABlfCTJmyaQtHkiRiamtGvXjsTERDp27EhaWpp+O2fPnuX48eNUrV6T4jq9KCnTqKP0Hlel0XL+Wiju7u769151b/eq10T/DDETSSQSif4jVBotkpe+DL9Y1NiiUm1OnjzJs2fP6Nq1KwCbNm3i4MGDHDlyhFq1ajFr1izmzp1Lr1698Pb25v79+39oDNevX+ezzz5DKpXi4+PDp59+Wq6GEZR2HomIiMDDw4M1a9bo27cuOx1FbpEKza/3DAWRZzHxbEGRSkNyRumN2IULF2jXrp2+UDWAl5cXADmCGaqivLLnJTOBgpQYbt05jpD2mAsXLpCUlARAREQE3t7eNGjgw7wly/n+1EMKUuLQFeaQuvUrBFNbcq/vQZuXQfbeGUQl1mZGiBszZsygTp06eNWujbO9C7fv3cOo73BkFVxBEJA+yUeIzyNl13RKUmKY9fEAvp0/F4WZNclbJ4EgYFKzBVITS1RpcUR/1wu5oTFfjOyHv78/4eHhzJ49GycnJxo0aIC/v7++7pFUKmXs2LH4+/sjkUheWaD9XYiLi8PHx4fc3FxMTU3x8fF5ZXe/xMREBgwYQHFxMbNmzaJ169a42Zgwq5uXfpmAgABaBge/cX8SAylmfs6Y+Tm/60MRiUQikehv93LXX/jtPkwqV+DdrhXNmjVj3rx5NGzYECMjI+Lj42nQoAFmZmZs3LhRv15cXNwr75/+aWqNlsUnH7HxahwAJcoSWk3bxoIP6jNyQG/q169PQUEBFy5cYPPmzfz888+YUEyuorQrq8TAGG1xPkaVGyK3cyPr0CJSk5OoU6cOx44de+1+FwTt55Ptt1CqtTgOKM1E1+Slocp4RsLGiVSoUZfp06czdeorpsKL/ufEIJJIJBL9R7haGWNqICsznc2ockOMKjdEKgh0qePEN33q6VulPvf8j3iPHj303UI8PT1Rq9X8UW5ubpw9exZDQ0P69+9PXl5euWVu3rxJSUkJwcHBLF68mMOHD9OtWzcAjkQk6adAQWkAqCQlhrzbxyhJimXbrn0EBgZSsWJFli9fzrhx44Dfnjal5BajlGtAIgVN6c2cVcBQoLTzHoenMWXKFDp16kTHjh2xsbEhr1hF3833eCypyORh7yORK3AZ9SMf+HuxY87HxIcdxsevOZfPnuS7RQspKip9EhYfH8+VK1cwMTGhebdePHmSjyYnB2l6MUKJFqQyHPrMRQC61XWmQcNK2DTTYtSoV5nzYVy1MQA1Hc0YPrw5AwYMoHPnznz22WcAzJkzByi9oZwxYwYAgwcPZvDgwX/4+vxRzZo1w9TU9I03sd9++y1z5szB29ubzp0707p16799XCKRSCQS/ds0rWxDdFo+qheaqjy/DzOQSVgxqRVSqZT169czbdo01q1bV24bSqUSIyOjf3LYbzRpbwSHwxMpfl5LUJBy9Uk+vX6+zgftO5KQkKBvYuLj48P58+fp2aQpQUcuAqWZWBKD0g6mpjaOTP7lII6Zd/juu+9YtmzZa/dra2qARls2e+j5uQRoXs0Od3d3/f3Ji4XIg399aPWq10T/DHE6m0gkEv1HSCQCUzrVxFBe/r9uA7mETwKrvvN9arU6zj5I4cPNoQxaf4NTscVohNLnDzKZDKlUSmJiIj179qRBgwbEx8cTExOjrwFQt25drl69CsDUqVN5vH4Cmad+Iv1IaYq0VcBQHHrPxuGDWShsKxLYrgMAs2bN4v79+/q6Ts+ZGcqQSgQMKtSgIPIcmad+0r+nkElYtHE/EomEY8eOcfToUTZt2sRFwYunGYUY1u+KY/8F2H8wG52xDQfDU+nT631+2biBQR90RyoRqFu3rn571atX17d2t5ND8vKvSfi8HRSr0ORnkXNlBwCGCil9Grni6WRepqD0iwzlEno3dAWgf//+9OnT5y9dlz9Dp9NxNTqDuUfuMeNgJIfDE7l85Sq7du3Cw8ODCRMm0K9fP6ZOnYqdnR0+Pj706NGDsLAwIiIiGDhwIGZmZrRr147ly5fj4eGBubk5Q4YM0e9jyZIlNGvW7B8/tn/C3bt3adq0Kf7+/gwdOvSNqfNxcXFlzotIJBKJ/vuGNauEXFr+HsxQLqFPLUek5xNI+vYGOz79kaIn2bQKaMm4cePQaDTMmjWLgIAAXF1dad26NfHx8ezcuRM7OzvMzc2Jj48HYOjQobRu3Zphw4bpHyy9yYIFC2jdujUBAQFota/oTvoGidlFHLrzQgCJ0qCQWqsjq1DFrqOnqVy5MqGhocBvU/Im9u+IVe5jDGQSNM/uYOpaE4WgpXNtJz5sURlzc/PfDZR5OZtjY1q++DaAkULKYD/3P3Qs/yvXr1/X3xs8fzj4OmFhYQiCoH+I26VLF/z9/QkMDNRf//8KMYgkEolE/yHv1XNm0ft1cLIwxEAmQS4VqOtqya4xTfCwM32n+1JrtAwLusnYrbc4djeZC4/SmHfsAS2/C+b0pRukp6djbGxMVlYWO3fu5PPPP2fPnj1Ur16d8+fPA3D27FmysrJISkoiLCyMwXODMHT1fOX+6n38Aw1rV9c/dVq1ahV9+vRhyJAhjBgxAoB1yxZi6l4HuZUTjv0XYt1mTJlttKvlWObfzzILufMsu0z20/P6BcUqDbuPnqFy5cr6ukTh4eH65SSS3/5EGhsZ8t3K1Rg510AqCEhNrbBo2htjhZSudSrgW8kaiURg8Qd1MJJLyL25j+TNX6LOSSHzyGIq2ZrQp1HF0mNYt459+/YREBDA0qVL9ftwd3fXd5N714pVGnr/fJXhG2+y5mIsQVfiWHQhFeO+y2g1+wBulaty48YNpFIp27dvZ+jQody8eZNmzZqRnZ1NaGgocrkcMzMztFotBw4cwMbGhszMTEaOHAn8uS57f4e4uDgcHBwICAigbdu2Zd4LDg5+q5vyV6levTpXrlzh4sXSp68hISF/dagikUgk+g9xsTJm68jGuFgaYayQYmYgw0AmYUBNJ0ZFFZN/JRFNtpLUtDQKk3LZHDgPQ4kBc+bMISEhgeDgYM6fP09MTAwApqampKSk8OOPP7Jnzx6uX7+OgYEBp0+fpnr16r87nps3b5Kfn8/p06cJDg4uc9/yNq5GZ5Rmcb9AGR9JUtCnxKz7jBxM8fX1xcjICH9/f7Zu3cqYMWNwcHBgeM9OWJyZTRVZBnM/G8bGPtW4ufJTAgNbsXjxYsaPH//GfQuCwM8DGmBmKMNQVjpuATCSS3m/njMB1f4bDTGeZ+hfvHiR1NRU/f3kq6xcuVKf1QXwww8/cPHiRSZNmqSvP/VfIQaRRCKR6D+mS90KXJnUigtftuTmlNbs/9iPWhXeffHlrdeflutCUlSiITU9g37DRuvTtD09PZFIJDg7O5OdnU3dunXx8vKiZcuW5Obm4uDgwJMnT/Dy8uLzttUwq1A+Y8pQLuGbTp6/WwDZ1dqYaZ09MZRL9Dc+CqkEI7mUVf3rY6womwn0NLMQhazsn7rnN0hJmyZSorDA19eX4uJiAgMDCQ8PRy7/rdBzTFo+RyOSyCpS066uB17OFnSr64SzLA8heDnL+tTj/KJRjBo1ijr1GvDs9iW2DmuAJuI4qvQ4co98R3UHU/Z+6IehvLQu1OrVq2nbti33799n7ty5tGzZkuTkZObOnQvwykyev5rdM+/ofe7E55S5loJMjmBkxv1MDTFG1XH3qEy9evWIjY3l008/RRAEmjVrRn5+PkVFRdSpU4cHDx7QoEEDPho7jrj4JCo1786EI8+ISy9g0Q+rykzBe9XT1Lp16zJkyBBq167Nvn376NSpkz6DLTMzkxo1amBlZYWLiwsJCQn6c/J8WiOUZlTVqVOHtWvXljlGnU6nzw5q06YNwcHBr6zx9LZ0Wh1F9zNI33KftA13UYalo/31/BkYGKBUKmnatCktW7Zk3rx5AEybNg1/f3+WLFkClD6h/OKLLwBIT0/XTycViUQi0X9TXVdLLn7Vkl1jmvDzoAZcmxzIh1oFuiI1/DrNzczAhMauddAWqmlkWBoMCg4Opp6vH+16DuT83Sdci8mguLiYFi1acOXKFeLi4hg2bBg3btygXr165Ofns2nTJpo1a0ZBQQELFizgyJEjAOzfv5/Fixdz6NAhMjIyaNmyJbNmzfrDx2Igl5RGbl5gVLkhTkOW4TjwO/wHjAdKgx8XL17k6NGjWFpaAvDVV19x4+oVtv68jEk9mzH509EYGBhw7tw5jh8/jqNj2Yd6ixYtolmzZvTv3x+VqrQcQfeWDbE4Mw/t4RnUNs6jW11nNg5rxOz3vP7VDTFSc4vZdyueA7cTMDCzxtDQEPgtQ79ly5Z069aNxo0bExsbC0BkZCSurq6YmZnpt/O8O/Lz9f5LxJpIIpFI9B8kCAIO5oZ/6z6CrsSVqb8EoNNqSD24CLvmg5CZWkFx0iu7Y0ybNo1p06YxY8YMOnToQMWKFbl37x5V7M34qI6cZWEK5FIBAQEHcwOmdqpJOy+ntxpX/8Zu+HrYsPnaE55kFOBZwZwBjd1wsiifOu1iZYRKUza9+8U5961qlHZcW7NmDTKZjAULFlCxYkVyilS4DvqOjssuIpNKePYgiQ/WhSLT6VjUqy7xTWyZGneYNp4ODEpIRhXwCYVtOjL88ym4NWyNk701ttXc2bRpE9988w0yQUu/fgMZNWoU0dHR9OjRgzZt2lCpUiX8/PxwcHAgPj6eVq1ace/ePbKysrCysnr7i/UGKo2WXSHxKNVlz8PzjCyJgTHZsXe5k6omNTmJ+vXr62s51K1bF6VSiUajoX79+syfP5+Zs+ewIlJKvsQUnU01Io9vQp1bzKKgfVzuNwygzNPUBQsW6OtMJSUlce3aNcLCwhg7diwhISFs376dnTt3UqFCBYyMjMjKykKn0yEIAlOmTAFg+fLl+nEfPHhQ39IXoCQxn5yjsSijs0EQyLQq4NyZs/j7+9OjRw8+++wzhg0bxtOnT3Fzc8PV1ZUjR44QGxvLsGHDsLKyIikpif3792NqasrRo0eZMvlrLC8p6Tp7ELv6/FC6n9gcdq/YzHehQVSrUZ379+8zatQohgwZgk6nIykpiRs3bnDx4kW2bt3KyZMn8fX1ZfLkyeh0Ovbs2UPPnj3fyTUViUQi0f+OIAj6h3c6rY6Ee5nwwgxnH2cvtt45BDq4dSMMqb89OmdvlM2GIynRUKRR8+O1VCxqNOHQ8SO0DwygXr16qFQq/P39ad68OXPnzmXgwIEoFApOnDhBv3799DUfd+3axYIFC5g9ezY2NjacO3eOPn36EBYWhrW1Nb6+vtSsWROFQvHahymLFi1i7779PMtVYNVhPIK0bFjAWCHl/foub3U+2rRp88baimlpaZw7d45Lly6xYMEC9u/fT69evbCzs+PSxfNvtY//pRebyqitK5FRuy/yXx9kqrU6Pm5ZhQC7ItLT04mJiSE4OJiioiL+X3v3HV1F1TVw+De3p/dKIEDovUd66CCCCIqIFMGuoBTBF8FescCLiILSlI6AFJEqhBp676mkQBLS6+3z/RGMIrzGjvLtZy2WuTNn5p4py0z27LPPyZMnmTp1KrNnz2b69Om89957N9VucjgcvP3228yZM+c2HNnvJ5lIQgghbimn2HrTspILe7FejSV75wJ69+haPgvaTzmdTqKioujSpQsGg4HIyEhCQkJo0qQJ7du359Kx/fRoWIkjU7qxf1JZRtWvDSD9oEagO6/1rc+CEa2Y0KPOLQNIAOF+btQL8UR7ixdaLnotj7evDsCjjz5Khw4d2LNnD/fddx+Pf3mEI5dzMNudpB/dgs1qIU/x4PzVArKKLOX72HLmKnlOI9l4YdMYcKoKKeeOUxDRnXMXLvLhhx9itVrp+8Bg0oLbMHJLMavinLw0Zw3bv9/Bxx9/zJIlS5g3bx4HDhxgx44dBAUFcffdd9OkSRM2b978m87LrRSa7ThuUb/nh4ys5GkDKE48Sb5NQ/PmzenevTubNm2iSZMmlJSUEB4ezunTp3n11VexWq0kKKEcWPwB9pICcrZ8imq3Yi/OxVi7A+NWngAgMTHxhrpYP6hRowYmk4nQ0FDq1q2LRqNB4+bD8bhU4lKv4XQ6CQ4Opnv37sTHxzNkyBDgxkysZcuW8eCDDwJgTS3k2mcnscTllT3AO1W8MnRED1/E1uXfsn37dnbv3o1Wq2X79u3l0yu3adOGmJgYDh06RFRUFDExMcTExNCmTRsAio9nYk0qgJ/E3VSrk65hd7Fz/HIqVaqEwWDg1KlTPPzww2zevJnLly+XH3Pz5s3Lt2vfvj379u1jw4YN5QXmhRBC3CFUtezfT9QPqolJZ+SBpc9x8up5fCIfIFd1JWHhBNKXTaLo9HYsqpZim8r7W2Jp3bo1ly5domXLllgsFj788EM0Gg16vR4XFxfGjh1LzZo1yc7O5vjx40RHRxMWFoaXlxcdO3YEoFOnTuUz7laUjftDUCdm/z56tG+FPeHQDetNeg3NqvjQqXbgLbcHyC+1cSIlj6v5pezcuZP27duXD8l67rnn6NChA/fccw/5+fnlv2sBunbtyoEDBwDIycmhQ4cOPPnkk5jN5t9+7v8mPwxZG/r2Qs7Fp1B0NYFiq4OcpHNcXjCOF4f3pVPXHsybN49Fixbh7e2NTqejSZMmxMXFERsbi9lsJiAgoPxla1RUFFFRUYSEhJCbm1v+fPJvIZlIQgghbqlOiAcHEnJuWOZWryNu9TriotcS/XI3XAxaWrduDfz4CxFuPUvGa6+9hk6nY8WKFSQkJODlor+pzV/hsyHNuf+z/eQUWym2OtBrFDQahVGda9A6wg/ghml3L6YXciotr3z2FfcGXXBv0AUoe05cejCZ/rXLglZvbjyPvaQQe0EWGhd3nMW5uLa8F0ONSBznt5OTk8PWbd+jVmmGT51qoIJrox6c3/wxmALpHBlBbGws/v7+JCUlERUVRVJSEiNGjGDy5MmMGjWKnj17kpaWRrt27W6YieTXOHbsGM2bN6fu5G/5eUjQJaIlla5nZClA/2aVeGdgE4DyYWRA+cPeD6I+2InP3WP5aZ5UbvQCCo9/x76Tm9Flx3Px4kXS09OBG+tM/TRrzepwMnB2DDH7TmG5fJXN57LQ6wI5fC6G5nWqsm7dupuOZ8uWLXTs2BGdTofdbifv2wRU240ZVkadAYDirSncc889pKam0rRpU6AsuBMTE4OPjw/Z2dns37+fiRMnsmPHDlJSUggLC0NRFEqOZ6IqAag/ebVssVsx6gxYEvLxcHEjMDCQadOmYbVaadu2LevXry+vhXD8+PHy7R5++GEmTZqEl5dXeaF2KCvU/cQTT6DVaqlRowbz58+/Zfr+8ePHmThxIna7nRdeeIHevXszevToG7KzhBBC3B6KVoMu0BV7RskNy1/u/CwAumBX7j52FbfIgbhFDixf77SU4Nt7PGuOp9IsM5N33nmHmTNn8sUXX7B3717eeOMNqlevTlFREePGjeObb76hQYMGNG/eHFVV6datG23atKF///40a9aM9IxMPpz5Gaqqlgd1+vfvz+rVq2nWrBknTpzA09OTJUuW3BDU+c9jA5n6yVyS889xOSmRqm3u4cib/diVlsbChQtwd3dn4MAf+22xO3hl3VnWHk/DoNNgNltoPG4hTQsP8eabb9KsWTOKi4vZvXs3ixcvZvbs2SQkJLBz506+++47jh07RufOnYGy2dV8fX155513+Pzzz3nuuef+4qv121zNL6Wg1E64XwAGrYbPouNxKBpQNKQvm4Si0aM6Hah6I6pPGDExMYSEhGC1WnE4HJw8eZKMjAz69etHbGws7u7unDp1iqeeeoro6GjmzZvHV199xdChQ2/3of5mEkQSQghxS891rsnJlCM3DWkz6TU81KoyLobfNn578uTJxMTEoNVqWbly5Z/Z1V8U5Gli5wtRbD+fyZGkHLxd9dzbpBKVfV1v2f5MWj6an/0xrzrsZH79KtaMBD4YM4y2Cz/BYneQWWBB4+JJ/r6lWDMT0AdWpejYRrI3zUS1lnBSZ8WlamNKXf0pOLoBz+Z90BhMBPSdiKI6uLh7Fs8+9BCHDx+mevXqREdH07ZtW2bMmIFerycvLw+LxUJxcfHvOvYfijj2i6zCkoOpmO23nrnFxaDlgRaVf9U+f1pX6Qc+USMAcDNqMW16nVdffZURI0bQpUsXQkNDqVOnzg3tVVVlb2wWbtVzsTmcWOwqqq2AvISz1G3cnG7t2pUPgfupuXPnsmjRIpYvX47qcGJNLripTZGlBHejK+bYPPYl72P06NHMnz8fuDG4U7lyZXbs2MGkSZP4+OOP8fMrCyh6eXmRnplOkJ8Xibk/zpYSnXiQLw6vBEWhXvvGFBQU0L59e0pKShgyZAghISE0b96c9u3b07hxY65du0abNm3QarXExsbelKr+Q6FuKKsfdeTIEVq2bMmiRYv49NNP8fLyYuHChbz11lusW7cOV9cf71cJIAkhxD+HV69q5Cw5f9NLDUWvwatXNfIWpt+0jSX1LHl7FqPR6enxwN0EBQUBMGjIcHYfOExBYTGWeB8q5yXRtrovAPfeey8fffQRPj4+rF+/nvvvvx9Xd0+Onk/AUlrMqCVHyNvzPK9NncOkkf05d+4cVquVS5cu0bVrV+6++25mz55NWFgYnp6eZX338sJdsbDpncd46qmnOLtiIn6+Phw5dJCYmBheffXVG/o9dvkJdlzIxGJ3Xh8mr+V8ejEHt0fj5e1DWlpaefHoFi1asGvXLvr160dERATjxo2jXr165bWAfH3Ljuu+++67qbB0UlLSDcPyPv/8c6ZMmfKLw+b+LBfTCxm/8gSxmUXotAqoEOWbz5n/jsWel0FpwlFwOggbvYT8mJXkx6zEbnTjiSeeIDQ0FIvFUl4n6fjx4+j1eiZMmMCmTZtwd3enVatWADzzzDO4uLhgs9lISUnh9ddf/8uP7c8iQSQhhBC31KaGP6/2qcdrG86i0yioatnY7571Q5h0d93fvL+pU6f+Bb38dXRaDT0bBNOzQXCFbX3dDDcFkRStjqBBb6Mo0L9pJby9XXB1cUVFRdFo8et189uza0snsnTVN3QY+CS+7YeQvfVTis/tQudbiZzvP0fR6AhqN5DDhw8zYMAAHnjgAXx8fCgsLGTiOx8Ts28PJUUW5nz+RfnD5Q+FN319fUlMTGTdunWMGDGCnTt30qpVK5xOJ8uWLaNatWrlRRzj4+MZ3602CVml7I3LKs+w+oGLXkP3ekFEVvP9VeeyZVVfNp25ivPmEXKoKuzbV5Yt9fM6U0B5JtVVhwc+vcdTYnVgqtIIU5VGWDMSUB12qtwzCvf83bfMyomNjaVfv36kpaWhOlVqtv0PNXzDb2hzKPUkH+6Zh0Gnp9NDvYiMjOSzzz6jS5cuhIeHl/elVq1aLFiwAG9vb4xGI8HBwQwZMoRx48YxtO9DhLsFY7H/mL/Vo2Z7etRsj6LXEPrKXSh6bfmwuh+89dZb5T+np6fj7e1dPnyvcuXKqKqKI9eC6nCi8/txCKbRaKRy5coMHz6ctWvX0r9/f/R6PS+99BJms5n7778fg8HAnDlzCAoK+l1ZaUIIIf4aLnV88XmgFnnr4lGvv3hTDFq8+0bgUtuXSt4upOTe+GLkh/qMniYd017pjlaj8PKHnzHgs/14Vn8YV6dKWpGDTENjjqXBlaRcxq06g6LRkpObR2CNRlRt3Zvc4v0YKtXDeSmGq9+8j6Mknxce6Q8OGzqdjuLiYhwOB8uWLWPfvn1kZmbSrl074uPjeffdd+nZsyfe3t74+Phw+fJl/Pz8mDFjBu+++y779u3jyy+/xNXVlVq1ahEWXp2ztYeTfXwrRae347SWYstIAK0WVMhx2omPj2fmzJm4ubnxxRdf0LRpU1q2bMmnn35KixYtCAgIoHXr1lgsFkaPHk1cXNwtJ56YO3cuqqqWZ7YnJSXd8txfuXKFe+65h3PnzlFUVIRO98fCG+n5Zu6fvZ8isx0VsNjLlm+6mI/G5E6lJ98ie/vnWK9ewpadglfk/ZTGH0ZvMHFv15ZER0ej1+txdXXFYDCwZs0aPv/8c/Lz89Hr9Rw+fLj8xVpKSgqDBg1ix44df6jPt4MEkYQQQvxPg1pVoU/jUHZfuobZ7qBlVV/CfG6dwXOnaFfTH63mFkWUAJNOy8BmoTw+8n5eeuklcuPcSblFO60GRk1fRliVcILvnYjV4cSv+zPl673veoC8PYu5tnsJoQ/dQ0BAAJUrV2ZTzElaRLbh2xx/Mq7k4ygs5NU5K6nm6l6+bW5uLtu3b2fZsmV88sknpKenoygKbm5uPPPMM3Tv3p3Y2NjyIo7ff/89vXv1wOFwEGpwpcXI1zh51Uy+2UYlb1dGtqtGn0Yhv3omlNFdarDjQuZNGWouei1PdqhePgvdo48+SmJiIp6enqxateqGtidT87HYb9zeEFQdjc5A/MIJOCoF8/KXs26abebEiRMALFy4ELvdTl1LA2wphTe06RzRms4RrTHW8CbgsYbl7X+gOlScZjt9+/Tls88+IzQ0lMWLF5dPR9ysWTOO7jjAiZnf8/6Oz2/Yt6LX4HZXCNNnzmDNmjU3BXIKzDa2ns1g1H0dCA0NwdOkx+l0EhISwsZl64hq0wGjzoC/qw+Lhk9nZc4OZi3/AldXVxYsWMCgQYPo3r07derUobi4mDVr1mA2mzl16hS7du3i7bff5uOPP67gCgkhhPi7uTYKwKWBP/bMsmFtukBXlOvPEqM61+C19edumdn9WPvq5c8ck9acouiHqMV1tutvbKyWUo6vmIZXt2fI3jST0oJcMjU+OK1mSpOOo3HzxmEpJmz0EtLmPIbqsFNQUIDBYMBsNuPt7Y2fnx/Jycl4eHhQUlJCREQECQkJNG3alA8++IDExETy8/PZunUr586dw+l0MnDgQBYvXkxSUhLDnxmHRlFwb9gV94ZdUZ0OUuc8jmopBhRUawlTpkxh3rx5PP/88/j5+bFx40a8vb3p0KEDQ4YMoW7duvTr14/ly5ezceNGIiIiyod6X84uZs6uBPZcuMKlDXvIyc2jbbt23D9gAPfddx9paWnce++9ZGRklL8wmz9/fnntqOTkZLKyspg4cSJQNqT/hxdqv9b8vYmYbY6f1klHdTq4uvVzfLs+hc4rCEWjQbWWcu27/2LPSQNrKSb/YA4fPkxOTg5WqxWtVovNZmPz5s3ce++9fP311+Tn5/PYY48xf/58atWqxbp16/61tRIliCSEEOIXuRl19Gr42wpf/5vptRo+fbgZj315BLvTic2hogAmvZaHI6sQWSOQ3bt3A1ApNZ+4zI8w2xzlmTlajYKXi56xXWvh726kko8LiVk3DkdziWiJa0RLgj1NXAvx4LsTcWRkZNIisi2GGq0ptTqwFmbjNBdjLcyhZOg7mI58zuzZs0lNTaVr1648+eSTGAwGNmzYQO/evdFoNAQGBlJUVERsbCxeXl74+/ujKApfffUVlStX5osvvsCcfZiPxo/+3eenTrAn84a3YOzKExSa7WgVBbtTZWS7qjzXpWZ5u5/Wmfo5TxcdBq2WUueND9Q+nR9Fp1F4tGMEtWrVKk9b/3mw5pFHHgHAcrmArLmn/+cQAoBp06axZs0adu/YRc6qS5jPZoNT5YuYL8nPziM7O5t58+aRkZFRXkPq6aefZuaW/3Il7QoDlo7iaNpZXHUm9AY9nbp3odR881C7DSfTmLDqFBpFIV91wbf7ywT6ujIiPI9hDz7AhdPnUYCFA97jwz3z2Hh8O8+3fpBX971E7zEDSUxMZP/+/WRkZNC3b1+2bt1KUVERrVu3xtXVlc6dOzNt2rRffZ2EEEL8vRSNgj7Y7ablA1tUJi6zmK9iktCUjY5CVaF3wxCe7VQDgLwSK6fT8m+5X3thNvbsFFSHHWNYPTRGV1TVSf7Bb8DpxLV2G0oTjqHz8Cd7yyxUayloNLi5u5Obk4OqqlitVoKCgjCZTBQUFODh4VEeYDkbfxmrW0vM1drjuBTD4jNFFDj0oJSVH1i9ejXjxo3j0K6tOI4cR9FocW96N9b0OAw+Ibg36k7evqWoDiu9evXCYrFQUFA23Lxx48ZcvnyZiRMnsmzZMrZu3YpWqyU9PR1/f380Gg2KRsP+i2ksnb4bh8NJ3tFv0dbugj4rk4LgFixesoSIiAh2796N2Wxm8PBH6TfsSdr1H8Hij6bRpFFDTCYTU6dOJS4ujri4OHJycjCbzUydOpWFCxcSGRlJVlYWkyZNYuXKlcTFxbFo0SLMZjOrVq3igw8+ICsri/9OehLXu1+84fyXXNiLJe0i6Usmomiv1/PUaLFnJIDqxCNyAO0DbHh5upOcnIy/vz86nY5r165x9uxZjh07htPpLH/hN3HiRNauXcvatWv59NNP/7wb8G8ks7MJIYQQP9O2hj9bx3ZgWOuqNKviQ6+GISwY0ZIp99S7oV3DMC/WPduWnvWDcTPq8HLR82CLymx6vj3BXmXj4V/vWx+T/uZftypwtcDMjnNX+e/7bxPYdwJhQ97FnHQCp6UER1EupqpN0JjciV/4AidOnmLdunW0aBuFy10P8cwbH7Pu5FWOJOWQmZmJTqfjwoULKIrC4MGD+eKLL+jYsSNnzpwpH2ev0+nQarXs27ePF18se0jKycmhX79+v+n8tKnhz4FJXfj6qdbMH9GSI1O6MqFHnV/MZvrqq6/o0qULUVFRNPF1cm3PsrLv3zYbAHPyaa5+NY60L8dhOfXrZqUzhnvi/1hD9JU9yqqDK2Co6knAk40wVHLHYrFw8uRJVKfK1bcOYj6VBQ4Vm93OuStxxDyxgjrBEezbt4/c3Fzat2/PmDFjeOONN1ixfhXN27VCrVaV4J7P4KzWhCJXb3bsP8Qzo8cAZen1nTp1okvP3gzs3YXCa1cosTpwlBaSsOAF9s17g8eeHoWL3oheoyPYI4D6QTVJK8gkpyQf1eZk55wNXL58GV9fX7p27cpjjz3GmDFjiI2NpX79+mRmZuJwODhx4kR5HQkhhBD/HoqiMLl3XXZN6MSUe+ox+e66bB3bgY8GNinPQjLbnDcNpYeymoxZ334EGi3oDDiK88r2qdWDoqAYTNhzr6BxcUfnE4I58RhaDz9cqjal1GIDICQkBF9fX1auXImqqpw6dYp69erh5+dHq6huRB+PJbbUFZfqzXGt3Za8+FPo60Rh1+gJf345teo24NNPP0Wj0aIPqIpHy34UHv8O1W5B4+JF/oGvsedfA1Tat29Pfn4+Q4YMISAggJo1y14uHT58mGbNmqHVlmUr165dm2HDhjFp1nLyukzhUtg9WO1O7HY75uQzuFZvjqpoKPSpgUXryldffUVAQADjPt/Ed4cuEJuSwbwZU9FUvwuPAW9hs9vLg2KTJ0+matWq+Pr68uijjxIcHExhYSGbNm1izJgxLF26lNmzZzNv3jwiIyM5evQoqqqyevVqwpp1uukauNXrSOiIGbjWvAt9QDg671CMobVRdHrQ6rBfvcie3bs4deoUJpMJd3d38vPzy2dn8/T0JDIykoCAAGbMmEF2djYFBQXk5eURHh5+0/f9G0gmkhBCCHELlX1deflnQaNbqRnkwadDmv/P9R1qBTB/eEve2nieC+kFqJTFO37IXFK0OgIHv48CmB3gUqMVpfGHMQRUxbfTo6h2G5mrXsNTKSWgZhP2x2fgXcOfouxMLvuEM+rDr8jJzSMmJoa0tDRcXFyIiYnh6NGjLFiwAEVRmD17NkVFRXz++eds2rQJLy8vXnrpJQDWr1//u9KpFUWhfqjXr2qblpbGrl27+P7778uXzfrgLV5dfwb/7k/hVKHg8DdUvn8yo/pEsmzKMKZMeP5X7dsY7knQs03KspEUQAVHgQWn2c7ceXMZPnw4k54YT/K1VF747j28TZ6cTL/Ac22Gk12Uy/nLl6isCefy5csEBQXx0UcfkZWVhdPpJDHfToZZxbVWA0q2fYFb07spijvArIum8hmd09PT6f3aYi58t4uCg6vw6zGKoIffR2N05crcp9EH10ApOoPdUcK14hzeiZ7N1cJMknJTaTdnEBlF2fS+pzeePl6YzWZ27NhBnTp1qFu3LklJSaSlpVG5cmWcTicxMTG/9TIJIYT4hwj2MvFw5K2DBoEeRjxNeq4VWW5Yrmh1BD/0DgBpc58hc+WrqHYLOKy41mmPJfkkqt0PZ0k+Vksx4MRRmIUVcBQVgurEarWSk5NDs2bNCAsLIzk5mYsXL+Lp6cnajdswVG5W/n3m5NNYr1ygJP4g2O2UFuVx5VoxJXl5BEfUI99SjGJwQbWWYs1MJGT4f8n6dhr2wmz8AwPR6XQEBQWVz0iak1M2y+8333xzQ92jvn37MuTRp3hlZg8cKni2uBfXmpEUn92BW72OOC1lwwJVnyrEXTxP7bAAnIqOld9uwWEuQu8fji31LPnpcXz/USq2/AL8/f2x2+189tlnREREEBgYSIMGDQgKCkJRFEJDQ4mIiCivVZibmwtA+/bt2bdvHxs2bGDoM+8wY/fNhQpUp4OSuEMoWh2utdtiST2ParOi6I1oDG40bd4Mh81GbGwshYWF5S+xnnjiCaxWK7Gxsej1eh577DG8vLzw9PRk3759v/teut0kE0kIIYT4i7Wp4c93z7fn3Bs9qeLjclNRaqelpHz8vSX1HKbwxtiyLqM6HVgzEzD6hvLs1PkcPXMRn97jsaTHYgipgXe7h9FVboTON4yAoGAKCgqoU6cOjzzySPkbsOjoaLRaLSNHjuTtt9/G29sbRVFo1KgRx48f/91BpIqUWh2sPprKtG2XeGvOMiw2G126dGH06NHEx8ezYcYkvn6yDeY1k6kd5EGt2nV5rVc1nmxXpbw+wm+igfzNiVx5I4aMGce4/Npetn65gXb1I1EtZcPm8s1FfNbvdeoEVGf2wSWM/fYdiq2lGNFRs2ZN4uPjmTZtGjqdjq/Xb+JKkQOr1Uz6l8+DqmK7egm3Bt1Iyi4mr7Ss6HbDhg25kFmCLqA69tyrAGhdPCi5sBdHST7my6eweQdzV5vBFFmKOZhyErPdwta4faTmp+NUnRw5dpQ1a9Zw4MABrly5wvnz51m1ahWnT58mKCgIi8VC48aNqVatGrVr1+b06dNERUVx7ty5P+16CSGEuH00GoWJPWvjov/fM99qXT2pPGY5lZ78AteIVjiKsgga9DahI2dS+fnlGIJqlBXrbv0gWpM7WhcPHnvsMQ4fPsxDDz1UPs38Sy+9xIULFxg1ejQ5iWdxrd22/DuclmLQGjAERoBGS+Hp7ynNSsY/KISi7EzMKWfI/nYajuI8DEERoKpYM+IwBVYlqvcAevXqRVpaGgsXLiQ0NLR8JrIfhpY9/3zZCyJFUfDv/hRBD71D8EPv4FozEgBbThqFx78jfdkkLFcukPb5E6A1YLPZcLj5c23nl9jzM/CMHIAhoCoeTe9GtdtwanS88sa7xMbGcvHiRfLy8jhx4gQZGRk3ZEn/9Gf1+tughx9+mOnTp+Pl5cW9Latzq5xqS+p5ULSoNgvFZ3eAAoregKLVY0k5xcXz53nrrbfw8/MjIyODtm3bctddd9GjRw9eeuklVq9ejdPppLi4+F81C9v/IkEkIYQQ4m9i0mvJLbHdtNySeparC58nfdELaN190bp5o3H14tqat8jZ/jm+re/H2z8Q1/BGpC96gbzdi/C6ayCq3Ube3qXY8tJJSEigqKiIixcvoqoqJ0+eJCIiAoBXXnmFtm3b0rlzZ5zOsvpB999/PwsWLMDhcJRPs/tbJSUlERQURFRUFN27dy9ffjw5l8h3tvPyujN8/H0sq/eeZcPRy7j5h7B+/XqGDx8OlA0HrB7gzpaxHZjz8tNMfmoIderU4eGHH/7NfclZcZGig+moNieq1cnqU5vpU6UDWfPOlLep6R+ORtHwZKtBNA6uS565AI2i0KROQzw9PfH29kaj0VCnTh0+nv4RJXGHcRRkoeiNKEYXLClnKY49QOLiycRfusCGDRs4c+YMYV5GbJkJ6LxDUB02VLsNt3odcanaFI3OgF+f8RxMPUWEfzj55kIMWgMXx23hwUZ3E+wdyCMjHiEoKIhWrVqh0Wjw9vZmwIAB6PV6du7cibe3d/kb06KiIsaOHUt0dDT16lWcKSeEEOLf4YEWlbm3SeivamtJOYOi0WGq0ggoC4641Y/Cmh6HT7vBhDwyg6D6rXnxxRepWrVqeY1Bb29vXnvtNQDCw6vi3XYQpXGHSF88EVOVRvj1GAVOG7asy4BKwf4VqOZisjKuUpSXhc7TH9VagmotofjMDlJmDsGen4GjJJ9VX0yjdevWOBwOiouL2bx5M3PmzOHJJ5+kuLiYPXv2YLVaOXz4MAAnU/NueqnmEzWCoAffJPSRGRhD6xD+zHyadLqHatWqUWXY+xj8q+Db41n0PiF4dxiKNT0ea3YyqqWE5o3rYbFYCAkJKR82FxwcTEJCAqqqcu7cOU6dOkXbtm356KOPyr+zVq1aJCcnM3DgQKr5uxHoabjpfLs37EL4+FWET1yPb9en8Gh6NxqtgcB6kWzcuInCwkJ69+5NTk4OU6ZMITo6mvfff58tW7bw4osv0rFjRzIyMpg3bx4tW7ZEURTsdjszZszA09MTT09PmjZt+q+ZqU2GswkhhBB/o1pBHhy5nHvDsh+m+jXoNGgoq5ekG/xe2WcFZgxqyoWrhbhHPoBb5APl25XEHsCen4HWzYdqETXwpASdTseuXbuIjY0lODiY1atX8+677+Lr68sbb7zBk08+SVFRESdOnODQoUNMnTr1Dx1Pt27dWLx4cXnNI5vdzrXmT5B+ZAtebR4kZ9ts9H6VsRTlsWVnEhEB7tStW5fS0huLU0+YMIG9e/eybNkyxo0bx0MPPcRzzz3HhQsXWLFiBZUqVQLgzJkzPPHEE2i1WmrUqMH8+fNxZJspPZcN9h+fRhNykjl7Po7Fx9dxITOervPKAleDV4xjdOuhVPMNY2LHx/lg91w+XzCPvSdi2L59O1FRUTz99NO88J+X8GrUBafOBW2DzhQeWQcoeLXog1u9KGxrp9CnTx9Wr17N2S9fIfdiEr69X8BpLiLz69dQdEbsBZloXH1wmIspTT5Fit4F/4CquKpObIpCvrUYxUWLp6cnKSkp1K5dG7vdTteuXRk5ciRLly5lz549eHh4YDQaAfDy8mLHjh1cvXqVGTNmYDKZ/tD1E0II8c+R9bPhbLeiAdyrN0HnFYj15Ebcmt2DpbSUolNbcavdjqLT3xPQrDu1wnxwOG6cwCI6Orr8565dOlP/oJUTyz4oX2YIqEalZxehMbqS9ukIvKOGk7tzAct2nuCpXs0pzEsvq8+kqnh3GErhqW1g1dO6VUvy0uLo3bs3K1euBMpmOz137hyXL19m5MiRZd/ZtSsHDhygZcuWBHqYSMoq+Z/HGTzkfQxaDYs//ZAagR70mbmX3CE/9lXvE0rQg2+g2q3oVBshh2cRveN7dLofQxxOp5P9+/cTGRlJ9+7dqV27NkuWLKF169acP3++vJ2fnx+9evVCURS61w1mwdbDXP1qPHq/MBStnoB+k9AYy2YntqSeI7LL3Rw+oqVTnUAa1a9Nx44dOXHiBEVFRaxYsYKePXvy5ptvUrdu3fKAFsCsWbPw8/OjSpUqQNnssU2bNuWrr75izJgxdO7cucLr/08gmUhCCCHE3+i5LjVvma5u0msYdlc4u1/sxOjONbi3SSjPRkWwa0InetQPplm4N6XH1pG+eCL2/AyyNnyIa827CHrwLQxBEUycvhCTycTy5ctp27YtNWvWZNy4cQwYMIC5c+dy3333kZ2dzX333UdxcTG7d+9m7ty5mM3m33wMV/NLSckpwe5wsmPnTlq1asWsWbPo378/be8bgdVSSsHhb1BVFY3JHcXggiX1LPbiAjKyc1ixYgUAnTt3JiYmhoCAAE6ePElmZiZnz54FwGazcfHiRfbu3VseQIKyYpz79+9nz549ABw5cgRzQt5NRb1finqaJQ9+xOIHPqSaXxXaVW1Bj5rtWfrgjTOcaTwN6LyNNyw7fvw4fj7e6PyrYMtOoejUVjQungQ99A4Fh77B1aBl8dotAISFhbHn+81MnLUKvU8IWjcfQh6ZgVu9Dvj1HotqN5OxZCJo9RgbdiHDUkSu3Ur9uQ/z3YVoMrIymTt3LgAxMTF4eHgQFBREy5YtMRqNdO7cmaSkpPLim3v37mX37t2Eh4fz+eef/+ZrJ4QQ4p/L7lBvWqY67GQsn4wtMxHjtneZfX8NWlXzY+/Xs+ldxYnP1cMU7VuEd+T9+HV4mNLzO+ld04XHH7qPZ555htmzyyawUFWVDSev0Ou/u6n/6mbavLud89HrcGvQBQBrRjzZW2ehc/MmZ9PHGIKqY048hs47iDEzllPsEohTVfH08gbVifnkJrSWAoJ83DmyazPp6enodDry8vK4cuUKGo0Gu92OzWbD09OTxo0bM3v2bN5++21OnDjBiDZVcTXcevieAoR6u7BwREtqBHoA8FTHCFxu0d5gNNKzeQ1014uU/zDpxf3338/ChQsZNGgQXbp04eWXX+aVV14pD6z98HKmd+/edOnSBYOhLAMpq7hsuLpL1SYED36PoAffLM8YvzL/WZxpZ8g7uAarquVw1YdpP/MYmcGR5OTm0bt3b9zd3Rk4cCAxMTHMnTsXd3d3zp8/z7vvvsvGjRspLi4u/+4aNcpm57v//vs5efJkeQ2pfzrJRBJCCCH+Rh1qBfDS3XV4e+N5tFoFVQWHU6Vn/RBe7FUHvVbDqM41b9quRZgHSu7lm5b/UIRy5o443K6P79+1axc9e/YkKiqqvF3z5mXFv+Pj42nWrKyIZosWLdi1a9ev7vvBhGxe+uZ0WQDJqeKw2TAM+pjsxP3k7VvK/PnzySwwU1SpFWj12LKSKTz2LZWeWkD2xmmo1lICqzYj+fQBrFYrIcEhVK9SDY2qEJeTQIcOHQgNDcVut/PBBx9w6tQpuvW8mxaPvsWnLz+L024jOMCPxx66D0rz2bhxIytWrKBZncZ09muOt8ETgPvqdWPw1y+Q7bDh4urF5Gen8uy7I1BVJ18cXoleq6NRcB3UQCM7Lu5HVVV27NhB3759AcjMzGTiC+PZeOoqF5q/TKmt7IFTVVU0Gi31Qz3pUCuAlOSy63EoMYeVR1LLz5PqKJtdJqDZPeB0gkaHotVivnoJnA5M4Y1wWoqp03MkLue/5cKFC/Tu3ZtNmzaxZMkSTpw4wdatW2nXrh1paWk8/vjjfPHFFwDlQw/vu+8+pk+f/quvnRBCiH++3o1COJSYQ4ntxwwiRasjaNDbGHUa9r7YmQAPI3d36QDAF3Nmo6oqh5Ny2Rt7DZNBS68X9lLNv6y24AMP/Ji9PHXzBb7cf7n8d9qV3SspOLiays8tJX/PEgxBEWhcPcje/AkOcxHmlNPovENRbWaKL+3HnpeBxt0fm1cwxpJiQn3dycmxYrOYqVSpEmFhYaxcuZLAwEBCQ0PLZx/TaDQUFBSQnp7OpEmTOHDgAF9++SXTpk1j67kMtpxNp8R6PbCjU9BpNEwb2Jju9YNveEF0d8NgjiXnsmBf4g3D4OwOlWKzrXzCC4CMjExGvj2P3bE5JGUVE5+4k0uXLpGcnIyLiwsmk4mhQ4eSmJjIunXrCAsL46Ehwzh1MYEinRcFNi3m5FOkfvoIaLSYwupjL8rBJbQm7rZ8Uit1xnb2Ipfnjib44fe5FtAcv4emcubkYqxWK66uriiKgsVioWvXrkyfPp21a9fStWtXzp49S0pKWfHuLl268Pbbb+N0Ohk9ejRvvfUW06bd+LLrn0gykYQQQoi/2dDWVTk8pStTBzTizXsb8P34jvx3UBP02h9/Le+8mMk9M/dQc/J3NHl9KwPHvcXQIcP4acVH1WEn/9A35Mes4MKsJzh06DC9e/emWbNmbNq0iebNm9O8eXMSEhLQaMr2Xb16dY4ePQqUZfH8UDepIqdT83lkwWHirxVjdag4Vcqmt9WbyMnOokTrQZO7H8ZWWoQ5/mDZELbUsqyi4rPfo+hN6H1DeeipMZjNZsaPfI4rh+NZP/BT3mz3HNV8wvDQuuLr5YPJZKJ9+/a4uLqS024sC5Z+jSawJn73v05K8mUmT57MZ3PmUlxcjLu7O0kZKfSp+2MK+BaNg/Sez5BbrQkpfpUYd+o4zcfPpEObjuzPPkWT9i04G5jBxao5tGzZknPnznHixAmaNm3Kli1b6NixIzqdjrsbBvNqn3qE+bigKOA4u4WoHnez6NFItBqFqlWr0qhxEzp1bE9h1hWyNnx4/XjLAnsAWlcvQkfMwKVqU4IHv4fG4Ipfr+fLipdWb03TNlHlM8f06NEDLy8vVFVFVVU8PDwYPHgwvr6+WK1WrFYrFkvZUId9+/b96msnhBDi36FP41ACPY3oNTdm17rotQyOrEKAh/GmbRRFoVU1X8Z1r80zUTXKA0g/lZpbwoJ9ST++FLHbKI2NQePi+bN9aSk6uRlz4lH0AdXwjhqO01JM0entqHYLOu8gdAHVsDqcJCYmUr16dSwWC48//jixsbFcvnwZnU6HRqMhLS2NmjVrUrlyZb7//ntq1KjB7t27iYqKIi+vLIN42sDGfDGsBfc0CqFtDX/Gdq3Fvv90pkeDkJsyjBVFIcjTiF5743IVOJCYQ2pe2dC4jAIzGfog3t18iW3nM8i1OPEd/gm5Wm9q1qzJunXryM3N5f3332fcuHGsXr2aFz9bxaZzWTh6TqbIFIhicCFw8FR0/lUw+FVG718FHDYC+k9BbdSHwtPf41KtKabKDbi6aBwZK1/lyqIJXLx8BU9PL2rUqIHJZMJms5GXl8exY8dwc3MjJCQEb29vCgoKKCgoYP78+cTHx3Pw4EF27tzJmTNn+DeQTCQhhBDiNvAw6bmn0a0LaK44nMKr689ivv6wl1tUSvyuXaSFdOCHadxUp4Os76bj1/1pTFUaUXR6O5b9i9i4cSNTpkzBZrPRrFkzmjZtyueff86oUaMAaNWqFV9++SXt27fHw8ODpUuX/qr+vr/lQvnD5w+clhI0Rlc0RjecKHyfpiEgIICctGz0/gEUnd6OojNiTj6Da602lFzaz64lM9FoNLjuKCXMPZiLaXF8vGchBeYiqnuHMbT6PYw5+SYPP/wwBUUlGK+kYMm9ir0kj6uLX8B27TIakzuNxi1g6wtdqVmzJklJSdQZ0JI9Hx4hzelgvS2PzN2LcBRlY8tKofDCHvQBb6MrsTLuyUHke8L5g5coxsy4cePYs2cPTqcTvV7PnDlzKCkpISkpCZPJxMGDwxjUqgoHDx7krTNJrJ27try+gcViYeueQzedK1tOGtaMBApPbMKWdZmSuBvblCYexZaVQuK8sYQ0b0h2djbR0dGsWrWqvPB5UVER27ZtIzk5Ga1Wy/r168nNzaVXr164u7vj4+NTXihVCCHEncGk17L22ba8vuEcG09fRVVV3I06no6K4PH21X/3fpcfTsHmcJZ/Ljq1Ba1HANasFK4seA7btSTS5jyOPT8D7w7DKDyxmdDh01GdDvI9/DGE1MRyNRZHYTZFVy+h6Aw8Pf4/+OidvPvuuwwbNoxmzZqxfv16Fi1ahNFoJDk5mY8++giDwcDzzz/PmTNnaNq0KU2aNGHt2rUAXL58mf5tI6lbty4Gg4Gntm79xeP4YnciFvvNQ/7MNidXUlLo2LEj3nePx+pQy7ObFEWDGT25hVaatm3BY489hsViYcqUKTzxxBNsP3iSralX0fpXxWxzoguohuPKBdSSfIwBVdF5B2PLSUMxuqGiQXHzRePqhbMoB71/OM7SQlR3fzSegdhL8nl64n958ZlHgLIMZi8vL/R6PWfPnmX+/PkUFBTgdDoZO3Ysrq6umM1mvLy8uHr1Km3btr3p2P6JJIgkhBBC/IOYbQ7e2PBjAAnKMltc6nSk0GLnhxdzlpQzmKo1K5+ZRa9R6P342PJZWFq1alU+BGrZsmU89thjAFy5coWYmBjOnTtHUVHRDQUof8numMNkbP4UFAX3Rt0pOrEZh6UYZ3EeGg8/FEWDe+W6JEU7UPQmFEWDPfcKTnMRev8quDfpCclHOHz4MHa7g/Wnt/Fkq0H0X/IsLjojuaX5XHTYeX/bHOx2O3dFRvL9jj0UfvUCw1oM5OvEk7g3602KLgZL2gX2LvsEu91enk01ZNooThw7TonihuXqWbSunqCqOM2FOG0WbA4n2QVmvo/ezYRxY9BoNOTl5REVFcUrr7xSXszy+PHj6HQ6TCYTV69eZe7cufTr149x48fz1FuzeWDOAXJLbLSs6oNr3Pc07XIv+46fveFcGcPqY0m7AE4HWg8/3Gq0ovj8bq5+NR5bdjI6r0ACH3iN3G2fYlQcREREcOzYsfLtfxiGOHDgwJuuw0/bCSGEuPN4uxqY/mATpg5oRKnVgYdJh0Zzq4nnf50L6QV8vjuhfAhY+ZDrfv8hffFEgoe8T/riiegDqmDLTsUzcgD5h77h8of9URQF1WnHu+Nw7HnpuDfuQd7uRThL8lj8+SdUC6+CyWTCZDLx/PPPk5OTw1NPPYXZbMbX15fx48czc+ZMZsyYwdGjR/nkk09ISkrC6VTJLDBjsTvKJ+ioiKqqXLtF4XHVYSdj5cvY8rM4faYE71qXbxjapjrLnqfcWg3gm6/+Q9WwUMLCwli6dCnR0dEcSsjG6Vsfa+IpAKzXklDtNrRegdiyU3AU5aDzq8IPqeAOSynmxGOEDJtO0dkdKDoD1ivnUa2lgMK7r/4HVVVRFAWn08mlS5fw8vKiUaNGnD9/noCAAGw2G3Xq1CE6Ohofn7IM7PDwcDIyMoCyAujR0dHlM+n908hwNiGEEOIf5Ojl3JtSuG05aRQe/47UZS9jvVaW2WIKb4zOM4CCoxvKGinQtIpv+TZxcXEUFxdz5coVPD1/TFf39fXl+++/56677vpN/crdsxj/vi8SOPANis7tInjoh1R67DNcakTi3+s5XMIbk7BwAhjd8O89FoCQRz9FMbhQGn+IayumUFpSjFXnRqXA6hhQ2Jd0lL51u7D7iaU0DKpN79od0SgKiqJQkJCFxmGnvn91OlZqQE5+Ook7vsB+9RKq3YI59SweHp5YrVYSEhLYvn07bVu1xqrVo/UOxnz5JKUJR9C4eqHarWSseIXCc7s5ePAgzz//PFWrViU3N5e5c+ei0+kIDg5m9OjRrF27loEDBzJ+/HiaNGlC48aNef311zkTl8xTwwfz3XtPEX81h1WHkpj21VoiGkfy08ulqk4KDq0h6KF3qDxsKmGhIbj6BoLTTvDDUwkd+Ql5uxfhGlaHLpMW8N261TdcHyGEEALAoNPg5ar/QwEkgEmrT2O1/5iF9NMh1z/w6TQSp7mYoIfeRdFoaXzvE4CKxuiGS7VmuNZoBUBBzNf4dHsSU+X6jHp+LG5ubkRFRZGYmMjp06dJS0vj7bffpmHDhgwaNIiZM2eWf8fevXsx2xwsOFXE4fCH6PDBTu6esYd1m7bRtl07pk+fTlJSEp07d+b++++nefPmpKaW1RscOXIk3bp1o2jbTPL2LqEk/jAFRzfgtJlJnn4/LtWb4xd5L34Bgdgy4nCt2wFbThopMwbhdddAUj99hOzvpqNz86Zp06bEx8fTsGFDJkyYQFzMJoyhtbGknSf100ewXUui8PRWrnz+BKWJxym5tB/rtURQnVxZ8BxZa97EVKURWnefsgOzWwm8v2xWVo2bN+m5RZSUlOLm7g5Ao0aNSEhIQKfT0bx5c5o1a8YzzzxDdHQ0ly9fZteuXQwbNozvvvsOV1fXP3St/y6SiSSEEEL8g9idN6dp+0SNKP85d8V/8KnTmmvpl/BuP4S8bZ9ivbiHQa0q427Sl7erXLkyI0eOJC4ujuET3uKxLw9TYLYTVSuAh1pVKW83depUGjRoQO/evVm7di3x8fHs3r2bhQsX4uPjw5gxYxg6dCieGitGL38cKmC34LRZ0OiNKDodOJ1YMuLQGV2xFWSBRot/nxcA8GzZD2NYfVyqNqFk9Ut43z2OklVTsaHy2vb/YtQZWH7yW1qFNSYx7woWuxWDzkCwwQ+L3UJCTgpVvEMx6PRU8QpF0eo4l3eFgDqt0MVF43Q6aNWqFcF6X95r8BxnS1eQptUScN9kMlZMIXjQO6QvnohXu8FkrX2XXQdPcC3pPAsWLGDNmjUMGDCAffv2MWnSJBRF4emnn8bV1ZW1a9cSGBhImzZtKPSKYHNRFcw2O64RLUmePhCtuw+KRsunm0+g02jKS1U5SwqwZaeSsXwyWo1CmMnGfzqG8tyaIFxNRiy6ILCWUNnHhXnDW/4l95AQQggBkFts5cyV/BuW/XzIte3QCoovnyak/xRMJj11QzzQ58NpowtOSzG23KuUxB/GlpOKRu9C9rfTqNG0DSH+PhQVFZGWlsaDDz7Im2++yahRozCbzURFReHi4sJzzz3H/v37eeKJJ9BqtVxxeqGNegbr9VnoVKM3wY/OJrCKH1/OfY6FCxeSlJTE5cuX2bhxI6tXr6Z169ZotVq2b99O38fGs/fiVYyV6lJ8LhpDQDimyg0ojT1EeERN3Ly8yA6tS97ZXThLCzAE10TnFYgxpCYB/V4id9Fz9OnTB51OR3x8PDExMdTs+hDW7FT0/lVQtHq07r7ofcIIuv8VFIMLeXuXoDrsaI2ulF4+CYD58knSl/4Hn47DKY0/TMHBVegDquLf5wVKLu2j5MwO0q8m4+npyfPPP8/69etJSkoiNzcXjUbDiy++WD47bosWLXj99ddveIGoqjc/C/6TSBBJCCGE+AdpVsUb+0/qFvyUSadh6oJvuLdpJZYevIvYjCIiOn3E4MhwKnm73NDWw8ODpcuW8+SiI8w+l02JNROAUyl5zNmdgOn6cLnBgwczefJkevfuzddff83UqVMJCgpi9erVjBw5kpMnT9L3qUkU4YozMwmtmw+2a5cpvrCHwkNr0PlWQuPigVqcxxNTF/DNtj1kHVyFX49RN/THoNPQ+7X5RF+6hqFJD7ROSJiwgy2xe/ji8EqKbCWkF17j66Gf0Gv+SHKL8zHpjKx4aAaHU0/j7+pDSv5VCq0lqKpKYXYGudcLhu/YsYOq3pVQG40i8/A3FCoKhXojqGC5chHrtSSurXkb1W5Bb80nOzubZcuWceLECTw9PUlOTiYmJobw8HAyMzN58sknmTBhAh9++CGLFy9mq7UWmipN+eH9oCGgKsawulgzEkhY9R7kpKBPO45Oq2Dy8MYlqCrVhrzNvBF30TTMA41Gw0zXUsb0rElScgqbDoSyY3xU+dvl6OjoP+8GEkIIIa4rtTnQahRsjh+DEj99MZW+ZCJ9m4Yx/+QO0la8hgoUPvgWacuW4B5UFUtWCrh5U3hkPQoKptCaVPJ2wXEtgXnz5nHmzBkefPBBnn32WR5++GFGjRpFREQEM2bMKB8uX7t2bfbv38+JlDyi7hmIS+pFjCG1gLIJOmzAhasFFObm89Tjj7J582a++OILWrZsSVxcHAkJCTRt2hSAQT07sOfCCrQmd5ylhVjSLmAIqIY9P4PkxHjs6RcJNi+kKDEW1zrt8GzZr2ySD1VF0eqwakx8dMJJ6o5otKqD5557DmviMdIPfIfTagZFg86nEp7N70Hv6k7WjgUUn9uNYnLFJ+pRnNZSHB7+oGjQ+1ai8MRmbNkpGENqEfTgGzjNRRQe/RZHST4oZTPwrl69GldXV5KTk3nnnXf48MMPqV27Nm+//Tbw4yQnXl5epKenA3D69Om/4e74/WQ4mxBCCPEP4mHS80xUDVz02huWaxXwcNHzUKtwQrxcGN+9NrOHNmdCjzo3BZB+sOZYKvvis8uLSwKY7U4KzDbiMouAsoylnJwcsrOzycvLIywsjH79+rFhwwb27NlDrcateGbJMdzaDyN3xzxytsxCH1gN93pRVHrsU3TufrhmnCSyeRPe7t8El+AI7LlXb+qLAgy5KxyHU6UaWn4Ik/Wo2Z5Vg2cysGEvXuk8imrBlakTUoMF979HvcAaVPWpRHL+FSZ0GUWdMSvw7/40Ou8QPLs+DQYXaoxZStN6Lck3F9L7y8cxOp10iByIRtHgNBeSt3cJikaDX5MueHp6EhoayqRJk+jfvz9bNm8hJSmZsc8+j16vZ/jw4aiqSlFREYMHD8bf35+ZM2eSeOE0Rae3U3hyCwC27BQsaecxBEVQdfBbVKtZm+3/HUerqr5MurseE14Yj8+uqbw4cgBjxoxBq9Xy/HOj+XT8w2ye+RKfTpv6h4cnCCGEEBUJ9jThbvzfeSMPvj6f8yHdCHl8DkGD3yN48HsUn92Bb+dH8R74Du6Blbm7ZS2UjIsMengo7rmxzHhlLIEBAUyaNInIyEh8fX05eDqWYtXI+7PmsexMIddy82na8i4cTpUp701n/foNrN5xiPyz0agOB6mfjSR9yYukzX2W9CUTSZg/lpzcXLp168bFixfZv38/iYmJvPnmmzz66KNMmTKFqKgoVm3bW/77U+fhj/nySVRFwZxyFmt2CqoKYx8fSljtxijWYryqN6Ho9Hb0AeEAGELrkHktC//hs3APqER8fDz//fA9DHo9ppCauES0wGkuwDuiCRpFwbN5X3Se/oQ+8jEGv0ooSln4RKfV0aaSHnPCYRSNDlt2Knn7V5adVEWLZ+QATEHV0RuNDB48GIfDwb333susWbMICAggODiYTp060aZNG6ZMmcKkSZPw9vamSpUqdO3alXPnzv21N8YfJJlIQgghxD/M6C418HHT89/vYykstaOiElU7kDfvbYCXq77iHVBWe+Cej/dQanXctE5VodTqIDm7hOpBnvTt25ennnqKPn36AODu7o6npyczZszA2XwQ5kInet9KBD34Jo6SfHK2f46i1eFh1DGwWwOqVQ3n4493YtDC+BYmXtgcikmvwWxzotUoGLQKH97fmNYR/jSq5E34MR06bkzVTshJ5mxGHItPreNSZiILjq0uX1fZK4TlmRfJiWhAaUY8Xm3KCk57tbyP9L0rIbg+40Lb4mF0IzrhIG0x0Kndo6y/cpp67YawY8VYwox5aBo1pF+/fiQmJrLk3S8o/uQ8HmYDe3bupm5wBJE+DQgICODAgQNcuHCB3bt3079/f0I6tyP+4jls1yNfoU98jsbkTs6WWeRciOFE9C4CPUxsXb+qrEG7arz6zJAbjm/48OEMHz78V107IYQQ4s+g0ShM6FGH19afvWmGVZNew/3NKzNu5Ykbltty0rBcjaXwxCasV+LZmZOKr68Puzd9Q+WwMI4fPw6U1VhUFIVsu4GvNxynwKHFXlrK4fhrZCansjLWidnm4OsUVz5f/j729Itoja44zUU4SwsIfOwz0he/gDUrGZ27HwrgdDrRaDTk5OQQHByCVquloKCAqlWrcuzYMWrqfXE4TQAYK9XFUZKPb6eROIqy0flUovjg13yzehV1Al1x8/Zn3+op2LNTsftWoujsTjTuPuTvW0Z2UQ4GNy/G9umLzWbDRa+heZPaeNdrxzczpnBX0wbsu5hO1sbp+PYcjaLR8kNhbY3dTDU/AxqHFZ1WR9BT8ym5uI+8vUvxbHY3KODZvA/ZqWeoGVEJPz8/atWqxZ49e1AUhRYtWgAwadIkJk2adMO5nz9//p9/E/wFJIgkhBBC/MMoisLQ1lV5ODKc3BIrbkYdpp9lJv0aOcXWm5apDjuZX7+KNTORh/r34eNp7/PAAw8wbtw4Pvvss/J2gwYNYsqUKTgaeQF2Ck9upfjcTjQ6I6aakaQv/Q/XFEhq35wnn3ic5cuX069fP65du8b3CxdwNNfIp+9Opih2L97557h6yB+aPEGt9G0sO7QCraqSUZTFmLaPAPBS1NNlx27S8sD6sYxsPZAN53YAZdlKk9a+hHXFCTQm9/I+mqq3IGPxC/g8MZv9+77myaYDuFp4DYCSa0m0Qcczio7LoYG8OfUdPv30UxYvXkzrZpHoovPItzlxOJx4mzwZ2qgfeWti0Vhhy5YtpKSkUK1aNV588UU07r58MkeDjbIHcK2LBwBedVtTlWsEeph+87URQggh/g4PtqyM1e7ggy0XcagqTif4uhmYOqARigI/L8XoEzWC0vjD5O1ZjNNupUazKDRFWRw5cgSz2cyFCxfIyspi/PjxXLx4kYOnLuBUdKiWIhRFIWvzTDQGF5yACji8q2CxWDBWa4WxIIviM9tRDC5o9Mayt1qqikZvwODQsvVcBiUuARy+amXUlmy0RjeKrE569uzJ2bNnUR2lFJ/eizU9Dv8+L+DeqBtZG/+LszgPu6LFO7I/87+eQ5+oSKyxsRSXOAh59BO0HgEUxKyk8NA3VHp6PgWHv8GnehM2bouma7tWOJ1OriTF8fAD99H0tdeYn5hN1paZeDS7G4N/WR1JjdEVe2EWtpwrPPDUUM6dO4enuyuuRgNFNgs4HdjzMlAtxWhM7mjsFhrUqQlArVq1OHToEK+99hrffvvt33sD/AUkiCSEEEL8Q2k0Cn7uxt+9faMwL64WmG+Y6lbR6gga9DZGnYatk7vi5aInNzeXHj164O/v/2M7RWHw4MGssesoMNvxaNwdj8bdy9d7NumFQafhkxc7U5x9lbCwsBum6G0GPN5h2U19euu1Vxjf6CGKDqej3KJupGpX2bt/H/YcM+u9FuDINWMyuhB2/ysUA0Wnt//YtjQfQ2A1MjZOp2PVpjStVI8wz2DWnN1CkLs/EX5V2HR5H7EpCYwbN47ExETS09N5vtVQBi8ei81px+F0EO4dyqLja1l8Yh3n0s8zc+ZMDhw4wIwZM3jllVeYN28eT3eM4Kv9CWiwoTMYsDoVQqypPD2g0+++PkIIIcTfYWjrqgxqVYW4zCIMOg3V/d1QFIXMAjPOWxRxdoloialqU7I2fIil/Wj0375Mt27d8PT0xGazMWfOHKKiohj9+jQWrd2C3W7HnltWz+eHmoFF56JRbRYKj2wARcFeWkRAWHXSju0Ahx3V6UDr6oVLUDWGvvgeG997mqXxWqwWK6aQyljsKqXFhYRWrUnzOlWxWCwEeEJA8x5Y3YIoPL4JU5WGKLqy55r8A6tw2C2MXbgbjUbDa6+9xn+mLyR96SRAwVGQgcboVlYI+/BaLEnHaXt3VyZMmEBSUhLffPMNH3/8MWu/28LMCV9ScikGe34mBUfW49miL6ZqzbFcuQBOJ3PmzKFdu3bYzcVcW/YiJWYrxrB62HJSUVUnabOGgaWIgoImhIeHU1paSpcuXahcuTIRERF/89X/80kQSQghhLhDPdupJtGXrmG23Vio26TXcF/TSni56Llw4QKPPfYY77zzTvn61atXM336dNatW4fheDafRsdjsd+4DwWoH+pJgIeR4uzf1i+PjmGUnMhEtf6sgLheg3urYDQmHYZQd4LHNceWVYpaaidy23l2Xrp2Q3OXiJa4RLTE393AF8+0I3fxeT7o+yI6vZ5ZuxdRpWoVHp8xntEer5RvozpV2nk3pt2w2bfsW/8lzxIWUonw8HCeffZZnn/+ebZt20aYrysTetTGr6o/k8Y8g5+XJ7VqRjDowYG/7eCFEEKI20Cv1VA3xPOGZYGeJppV9uZoct5N7YvP7sCtXkdyrySSefYcXy6Yx5gxY+jRowdV6rdg58VMMgssOKwW3Bp1J3/PEhxFORjD6uPeqDtX5j2DzisIy9ULWK5cAsCWehadrQS71kD2N29jy4jHVJzOome7UWxX0C54AVApjTuEai1B5+mPU28i+eo1PIwa+vS5h88efIQOkxeTd+A0ds8ADAHVAND5hGK7lsjJC3GUFFh4bUcGhq6j0a14BVtOGqDgtFnJ3fUlOq9gHMW5pFw8TVJSEhMmTGDXrl2UlpYybNAD5CZko+gMeLcfgqlyg7LzcW4XGoMrev8qVKvqy5gxY8jIyMDN3Z1Ll68Q3v9xim0qhebLbFyzguEDerN06VIsFgvZ2dkoikJycjKzZs36Ky/z30L5p0+tjkcQAAAiyUlEQVQf97+0aNFCPXLkyO3uhhBCCPGPtun0VSasOgWAiorNodKzfjAfPtAYg67i+TVKrHbu+3Q/ydnFlF4PRhm0Cia9ljXPtKFGoMfv6pcluYCcZRdwFttAo4BDxS0yBK+7q6Hcouj0mbR8Hpgdc1NNBxe9htfvbcDAFpUBGDrwYRITE/Hy8WL1+m8wmW4caqaqKmlT9oHjfzz/aBQqvdkWRSuFr4UQQtz53p36AW/NWohP7/Hk7V6Ef58XAMiNXoA1PQ5LehzYLMz47zR27d3PmUITuU4TgXf1I/PwRvKObSJk+H9JXzwRp7UUl4jm6H3DKD63C5/Oj5G3+0sC+r1E1rcf0WX4eD4e1JioqCj27t3LlClTuPfeezFE3MUDvToROPQjAOyF2WSueh1bVjJVxq9Gt28OPpYMGjVqxPz586ncfyJFOZlo3X3J2/UVOt9QULTYsi6j8/DDWVKAd9Qj5MesxJ6fiWotuX60Cmg0oKq4uLphKS3GaDTi7e2Nq6srQUFBBAQEsOuKSknaJYKHvE9p7EHseVfxbNUfAJ1G4fybPUlLSWbUqFHk5OSg1WqpUaMGr7zyCi+//PINmdm30q5dO/bu3fuXXdM/g6IoR1VVbXGrdZKJJIQQQtzBejUMoXPdQGLisym2OGhaxZvQ/zGb2624GnSsfaYtKw4ns/JIKha7gy51gni0fTWCPH9/LSBjFU+CJ7bEnlGC02xHH+yGxvS/H0saVPJiwYiWvLj6FBkFZjSKgkGnYWKP2uUBJIBFK5f84vcqioJLA39KT12Dn8eRFDDV8ZUAkhBCiP8XLBYLF86doW6IJ5k/W+cTNQJz6nlK4w7iuHqe3r3v4a0F63HvOYaSzZ+Sfux7SlMuYAipVb6Nojdhu3YZp6UEz5b9sKSeBVVF0epw5KaRtHoqg9Y6KSgoIC0tDYAGDRoQawZFbyjfj9bFA89W/cneNIOUGQ9hMBrZeGg/M2fOpH379jjzHHh0eZ7sTR9jDG+EsygbrbsPLlUa4tXmQfJjVlJ4ZD0akzuulepScmEvqq0URasntHEHMk/uRKcBz4AANBoNBQUF+Pj4kJ2dzaBBg9j+8mvYrXYylk9G4+aDb9RIoOydV/9mldBry17CeXp6ltc4GjFiBFlZWRUGkO4EEkQSQggh7nBGnZao2oG/e3sXg5ZH2lbjkbbV/sRelQV09MFuv7r9XdX9iH4hipScUix2B9X83dBpK86m+jnvu6thic/DWWr/MSNJo6AxafG+p/pv3p8QQgjxT+d0quyKvcbKwykUme10qhNI7pENDB8+nJdfeQVPFz05lE3AkbVxOh5NepK3exGOwms063IvY6e8QVFOBrlzR2EIrolbvY5YMxOwZiSQufIVbNmXCYoaRkH8MVRzMe5VG5G6+EVM4Y1wNWipVDWCTasXUqlSKA6HA0VR+Oyzz1AUhbYR/jfWb9QZcK8fRdHJzVQb9h7vDGjM1Kkvk5KSQs2aNanrGcD39hJUuxWnzYzG4IrWMxCn005O9AK8u47ErUkvcjbNQLUUo5oLAVCdTkriDmGzWrFZrdjtdsxmMxqNhosXL6LRaJg4cSJubm64h9Un89IJFKMrmateI6Ddg9jj9jPr46P0CduFb5WazPx8QXmfjUYjlStXZuTIkSQnJxMeHk7lypV57rnn6N+/P4qi0LBhQz7++OPybd5//300Gg0vvPDC33Ub/Cl++5OXEEIIIcRtoigKVfxcqRnk8bsCSABaLyNBY5rh3q4SWm8jWm8j7m1DCRrTHJ2vzLQmhBDizuJwqjy56AjPLjnGpjPp7InL4v3vzvLW3NXUaHwXCvBspxpocJD13XQ8mvTAVKUh3h2G4NWoC8vmTKfTyEn4D3wLnYc/XpFlQ7t8okYQ9OCbBA58g+Dwmiya9ipDe3fkwfb1GNGxFm4mA01bRDJtYBM2fTWLxx57lM6dO3P33XdTUlI2xKzQYuOxrw7flBwMoFEUwrxd8C9Jxmg0sn37dmrXrk2otwvP3uWPIzcNk5sXzryrlJyLxivyfqxXLqLYVcxxB3GtEYlf91FUGrUYfaV6oCi07tgVRVEwGo3Y7XY8PDz4+OOPcTjKhsvb7XZycnLIvngY1VaKm8nAvaPfpGT3fI7v3IDJL5S+o9/kwTkHaP3eDmq174urqyuZmZlcvnwZrVbL9u3bywtoHzt2jKioKHbu3MmMGTPKj+2DDz4A+NcFkEAykYQQQgjx/5DW3YB3r2p49/pzs6uEEEKIf5rVR1PZG5d9Q13BrBPbMNRuz5gVx4Gy4e+TMy9irNwYr+pNcKoqlQLcaRAQRvUAd7xc9BREz8O9UXf0fpVv2L9eq/DCpyvpUjeILtOnli+f0vv0T1oFs2nTJgDOnDlD9+7d0Wq1DHxyAnR4mqCH3r2p37rSHArXTOGFrx0MGjQIgCZNmhATE0PPZhEc7N6Bce/MorCklLEjH6LQwwV9QFVsGfGUxB3Er+dzKHoDWWvewJF1GY3Jne1byvpgs9n4oT50t27dANBqtdSuXZucnJzy4XYNa1Xj4tfvEx4WytPLT1NkA31pIWm7l6M6VZz5JRiCIggNDSUhIYGmTZsC0Lx5c2JiYujYsSO7d+9m8ODB9OrVi6FDh1JQUMCyZcs4cODA776mt5NkIgkhhBBCCCGEEHeo+fsSb5qYwpaTRsGx79jy0fOcOXOWDRs2cHePbjzVO5Jhnuc59FJX3r6vIQEeRgBKz0ej0Ztwrd3mpv1rFIV7m1T61f2pXbs2+/fvZ8WGrWQWWihKu3RTG7U4F2tJIXt376Zfv36sWrUKgFOnyiYLqVmzJlnXrtEi3BuP4jSqVa+G6gS32m0pOr0dnE60Lh44SvLxihyAzjsYp6UYbXAtMLgR0qQTVWvUxqFoad+tNxqtFoPBwIULF0hLS8PV1RUAd3d3PvvsMy5eusT2D0dhy7mCJSOh7Lh1Blzqd8bqcJJr03Hp0iVOnjwJwPHjZcE5h8PBG2+8wdKlS/noo7LC4Z6enrz77ruMGDECp/NnM9X+C0gQSQghhBBCCCGEuEPlFFtvWvbDULRqQ96meq069OnTB4A333yTtKQ4tmxYc0P7ae+9TUBxIpnLJlFw4GsAFAVc9FrGda9FZV/XCvthtjm4nF1Mib3sc/y1IrR6AzidpC+bRObqN7n61Xhs2Wmkr3odq6WUHj16UKtWLa5cuUJkZCQLFixAr9dTtWpVunXrRpMmTXjooYeY9vZrKAoYK9en5OJ+0OpIXzyRgoOryVz1OtbMRBStAa/2Q1DtFq5duUxqbilOv+pYwlujoqD4hOHn74+Pjw+lpaVlxz1tGjNmzMBithA06G0UgwuOvKt4NO1NycW95O9bhjkjiQuJKbz88stYLBa6dOnCV199BcChQ4do164dkZGRdO3atfxc9OjRg969e/Pcc8/99gt6mymq+j+muP2Ha9GihXrkyJHb3Q0hhBBCCCGEEOIfa8SCQ+y8eO2W64w6DUemdMXDpP9V+zqZkscXexKIyyyiqr8bj7evRvNwXwAOHjzI2LFj0Wq1tGjRgunTpwNgczh5f/NFlhy8jL0oh9TV72FwFOMszEYNqY9H+6GkfzUOfVAEOg9/NAYT3u2HYt3yIWlnD7FgwQK+/vprtmzZQt26dXnmmWfYuHEjffv2JTc3l6ioKNq1a8ew5UfZdSodrDayt8zEnpuOf5/x5O1ehH+fstpDqsNOxrJJeLUZhN4vjLQvnkLvXwV77hX8Oz+KNn4P93a+i23btpGenk5OTg4tWrTg3Lnz6INrYLkai8bkjqqq+PZ4Fvc67Uj9ZChT18Qwvnvt8vMUHR1NdHQ0r7322h+4crePoihHVVVtcat1UhNJCCGEEEIIIYS4Q43qXIMDCdmU2m4cOmXSaxjQLOxXB5AAGlf25pPBzW65Ljw8nB07dmAymXj44Yc5ffo0DRs25IWvT7L1bAalNgcFJ3bg2rAr3o26Urh9FthKKTjwNTrPQEIGv0f2lllYM+Lx8Pal15CH6dq1K61atSI+Pp6OHTuSl5eH0Whk1KhRrF+/nqysLDoMGEG3abu4FJdA6lfj0BhcUAxuaHQGAEriDpI8fSAaVy/8ej2HLSeVzFWvAypodNizU1BRuLZ1NopOz9cb8tH7V8FiT+Old/9Lt27diE9IIKDXaJIXTcAQWhtz0glytnxC8amtOM1FzHiyF0n39KawsJCFCxcyevRoBgwY8Luv2T+ZDGcTQgghhBBCCCHuUM3DfXn7voa4GrS4G3W4GbQYdRq61g3i1T71/9C+L6QX8Mq6Mzzx1RHWXiiixFEWYtDpdBQUFNDv/oFsPpNOypqpWK7GovcLw2kuwu5UMRcXUSe8Elq7GdVagup0oHXxQKvT80CLMD6cMo7o6Gjq1avHO++8w+7duxk1ahRz5syhQ4cOWK1WruUV8cTSU8RmFuFQVUxVGmMIjCDkkf8C4CgtwLVWWyo/vwydux/5+5aj6E241e2AYnQDpx2dfzg4HWhcPFAdNnIy0siMOwlGD2Z8+B6rNu/E08MDZf9cFKcT90bdcKsfhTG0NmF9x4PqJDkxgXbt2pWfFy8vr39tFlJFJBNJCCGEEEIIIYS4g/VvFkavBiHsjr1GidVOi3DfX1XH6JfM2hnHzB2xWO1OnCrsjr3GJzvjebWtG1lZWbRt25aP5i0nc9NMtO6+GENq4ijOI2fbHHJ3fYnG4EK6vw+vPzOYN996G7Z9gDX+DPcPepjX+zbggQceICcnh0aNGpUXpW7bti1ff/01Xl5eBIWEsj2hBP1PMqxKE46gdfel8PBaVLuV7I3TsednUnJxLxpXTxSdsbytojOi8wrGv/dYrs57Bqe5GBwOvNoNxpqZgC0zEZ+uT1Kam4q+MJtgTyN5Hu4URc/FqSp4BFSi+uUNXNZqOHr0KE2aNCmfge5OJkEkIYQQQgghhBDiDudi0NKjfvCfsq/TqfnM3BGL+ScBHLPNiaM0n5FPvMCF/VsBuHvgML5ZeBeVnp4PQMHhb/COegS3Ou3I2Tab+h3voc/dnfjsk48J8zXQtVl/2t5VNlzu66+/vul7O3XqxMmTJym1OjgV3At928LydVo3X9wbdsV67TL5MStR7TY0RhfcGnTBWKkOhYfX4d35MbK//ZCSuEOodisaVw9U1QmKBpxlFb/Nl09hy0nDaS2h4Mh6nKUFqAWZTJo4gVmzZpGdnc3kyZM5f/48J06cwN3dnebNm9+yv3ciGc4mhBBCCCGEEEKIX23xgctY7TfWWFKdDrK+/RD/Lo+SVFJWZ2nrgmkEdn+SvD1LrjdS0ZjcATC6e9EixIhWq6Vly5Z8//33aLVaunfvXuH3f7k/kaSs4huWKTo9vl0eJ3jQW3i3H4LGxR2dTyVKY2PI3jwTW+4Vik5vA40W1xqt0Hr4o5YWkf7lWFCdoNWj8w1F5x2E1tULjd4IioKpWlNUp8pXX33F5cuXKSkpYfny5QQHB3PhwgVKSkpo1qwZL730Enr9r68v9W8lQSQhhBBCCCGEEEL8aim5JTh/NtF7yYW9WK/Gkvn9fJ4c1Id3332XGhHVeGfKBAwmV0oTj+PRrDf5+5eTuew/uBSlMm7EQPR6PampqXTu3Jk2bdoQFhZW4fcvO5yC+WdBLKelpPxnS+o5Au79DzoPP8Ke/YqgB17Ds+W9uNdph3u9KPz7vICqOlAdNvQ+lTD6BOFesxVOcxGOgmtoPf1xb9wTv25PY0+PY/DY15g0aRIWiwVPT09MJhNNmjShYcOGNG/enDVr1hAUFET16tUBUBTlj5/kfygZziaEEEIIIYQQQohfrVGYN0eScrA6fowkudXriFu9jrjotSx/qjUNKnmVr6v+1efM+D6WuMwiqo2awYg21RjWOhydVkOlSpWIjo7+Td9fYnXctMySepbcXQux56Wj2m14tRsMgAIYdVosgKlaM4pObSN96X9QzcV4NLsHS9o5LClJWAtzUe02rNkpqDYLqrUUS+pZdO6+9BowmGZBKm5ubixevJh9+/YxY8YMTp8+jYeHBwMHDiQ2NhZ3d3c+/vhjBg4cCMDAgQPJyMjAaDSyatUqPD09f/O5/qdRVFWtuNU/UIsWLdQjR47c7m4IIYQQQgghhBD/r6TlldL1o12U2m4M5ug0CnWCPfj2ufZ/6fePXnqMjaev3pQNpdqtOO1Wrq15i6BBb+Ni1GPQani3fyPGf33ihhpOP3BaSsj8+jWqDJxMwc55ULcb2ZtnEnDfSxgCqqI67DiSj+M8tJSS3Ez27NnDJ598wpw5c/Dx8aFRo0Z8+eWX9OrVi9OnT3P06FEWLFjA7NmzKSkpwdXVlblz56KqKo8//vhfel7+LIqiHFVVtcWt1slwNiGEEEIIIYQQQvxqlbxd+GJYC9yNOtyNWkx6Da4GLTWD3FkwotVf/v2ju9TEqNPetFxvMNIvsiZ+7kbaRPjRyZSM5/fv8MFzD5H4QX+c6efJjV4AgKO0kMw1b2FJPYvlygXiZj1GSfYVPKo1RNGbyFz9Jlfmj6Lo9Hasdicl3tVRVZVDhw4RHR1NWFgYNpuN5ORkXnnlFXJzc9HpdDRp0oS4uDgcDgcTJkygQ4cOfPLJJ1y5cuUvPy9/BxnOJoQQQgghhBBCiN+kXU1/jr7clZ0XrpFdbKFuiCdNK3v/LfWAagV5sHBES55YdJT8Ulv5clVV2X4ugyBPI4sejUSnawuTn2T27Nl069aN0I79eWbwlwCUxh3EtUYkLhEtCRu9BI3JnZwts8g+uB6duy8+975IwcHVuDfoQvaWTwjtNJRAX9i2bRvdunXj7Nmz7Ny5k2HDhtGiRQuOHDmCw+Hg5MmTREREcOLECYqLi9m9ezdffPEFaWlpf/l5+TtIEEkIIYQQQgghhBC/mVGnpWeD4Nvy3f4eRkqt9huWOVQotTlJSS/EYneg0+k4cOAAO3fuZPny5aQXmDEGVcOaEU9J3EH8ej4HgNbFAwBTeCNyoxcSMvQjtO4+2PKuUhJ7gJLYA6QVZBLRvC4lJSWYzWYSExPp1KkTFouFRx55hMDAQPr168e1a9dYsmQJQUFBxMXF0bNnTypXrkylSpX+9nP0V5AgkhBCCCGEEEIIIf5Vlh1Kvqkm0g9UIPrCNVqE6Jk8eTLffPMNiqIQ4uXCQwPvZ8mKVeB0onXxwGk1o+j0AOTtXoR74+5o3X0AMFVuiDU9Fq/IAYR0fIhvXu7G4yMfIScnh82bN1OnTh0eeeQRqlSpcsvi4Hv37v2Ljv72kZpIQgghhBBCCCGE+FdJyy3F/rMokuqwk7F8MuaMRCY+9iCzZ88mJSWFvn37EhUVBcCs8UMovbQfl4iWANhzr5D+1TiuzHsGe2EW5qQTZCybhCXtPK512lFweC2+DdozsWdtTHotgwYNIjExkTp16vzdh/yPILOzCSGEEEIIIYQQ4l9ldnQc/90ei9l+84xrrgYt8x9pyV3V/W657YSvT7LmWCqOW4RD6gS707iyD2uPp2G1O6nq78YL3WvTu1EIAN999x1nz55lwoQJf+rx/JP80uxsMpxNCCGEEEIIIYQQ/yoDW1Zh5o64m5ZrFYUgTxOR1Xz/57Zju9Vi2/kMCktt5YEkBTDptbzbvxFNq/jwXv+GOJwqOu2PA7hWr17N9OnTWbdu3Z99OP8akokkhBBCCCGEEEKIf52jl3N4dOER7E4Vu9OJRlEI8TKx6NFIQr1dfnHbK3mlTNt2iU1nruJwqrSp7s8LPWpTL9Tzb+r9P9cvZSJJEEkIIYQQQgghhBD/SjaHk10Xr5FRaKZmoActq/qgKMrt7ta/mgxnE0IIIYQQQgghxB1Hr9XQtV7Q7e7G/xsyO5sQQgghhBBCCCGEqJAEkYQQQgghhBBCCCFEhSSIJIQQQgghhBBCCCEqJEEkIYQQQgghhBBCCFEhCSIJIYQQQgghhBBCiApJEEkIIYQQQgghhBBCVEiCSEIIIYQQQgghhBCiQhJEEkIIIYQQQgghhBAVkiCSEEIIIYQQQgghhKiQBJGEEEIIIYQQQgghRIUkiCSEEEIIIYQQQgghKiRBJCGEEEIIIYQQQghRIQkiCSGEEEIIIYQQQogKSRBJCCGEEEIIIYQQQlRIgkhCCCGEEEIIIYQQokISRBJCCCGEEEIIIYQQFZIgkhBCCCGEEEIIIYSokASRhBBCCCGEEEIIIUSFJIgkhBBCCCGEEEIIISokQSQhhBBCCCGEEEIIUSEJIgkhhBBCCCGEEEKICkkQSQghhBBCCCGEEEJUSIJIQgghhBBCCCGEEKJCEkQSQgghhBBCCCGEEBWSIJIQQgghhBBCCCGEqJAEkYQQQgghhBBCCCFEhSSIJIQQQgghhBBCCCEqJEEkIYQQQgghhBBCCFEhCSIJIYQQQgghhBBCiApJEEkIIYQQQgghhBBCVEiCSEIIIYQQQgghhBCiQhJEEkIIIYQQQgghhBAVkiCSEEIIIYQQQgghhKiQBJGEEEIIIYQQQgghRIUkiCSEEEIIIYQQQgghKiRBJCGEEEIIIYQQQghRIQkiCSGEEEIIIYQQQogKSRBJCCGEEEIIIYQQQlRIgkhCCCGEEEIIIYQQokISRBJCCCGEEEIIIYQQFZIgkhBCCCGEEEIIIYSokASRhBBCCCGEEEIIIUSFJIgkhBBCCCGEEEIIISokQSQhhBBCCCGEEEIIUSFFVdXb3YffRVGUa8DlP7gbfyDrT+iOED8l95X4K8h9Jf4qcm+Jv4LcV+KvIPeV+KvIvSX+Cv/m+ypcVdWAW6341waR/gyKohxRVbXF7e6HuLPIfSX+CnJfib+K3FviryD3lfgryH0l/ipyb4m/wp16X8lwNiGEEEIIIYQQQghRIQkiCSGEEEIIIYQQQogK/X8PIn1+uzsg7khyX4m/gtxX4q8i95b4K8h9Jf4Kcl+Jv4rcW+KvcEfeV/+vayIJIYQQQgghhBBCiF/n/3smkhBCCCGEEEIIIYT4Ff7fB5EURWmiKMoBRVFOKIpyRFGUVre7T+LOoCjKaEVRLiqKclZRlPdvd3/EnUNRlBcURVEVRfG/3X0R/36KonygKMoFRVFOKYryjaIo3re7T+LfTVGUntd//8UpivKf290f8e+nKEplRVF2Kopy/vpz1fO3u0/izqEoilZRlOOKonx7u/si7hyKongrirLq+jPWeUVRWt/uPv1Z/t8HkYD3gddVVW0CvHL9sxB/iKIonYB7gUaqqtYHPrzNXRJ3CEVRKgPdgOTb3Rdxx9gGNFBVtRFwCZh0m/sj/sUURdECs4BeQD3gIUVR6t3eXok7gB0Yr6pqXeAu4Fm5r8Sf6Hng/O3uhLjjzAA2q6paB2jMHXSPSRAJVMDz+s9ewJXb2Bdx53gaeE9VVQuAqqqZt7k/4s4xHZhI2f+7hPjDVFXdqqqq/frHA0DY7eyP+NdrBcSpqpqgqqoVWE7ZSxUhfjdVVa+qqnrs+s+FlP0xVun29krcCRRFCQN6A3Nvd1/EnUNRFE+gAzAPQFVVq6qqebe1U38iCSLBGOADRVFSKMsWkTew4s9QC2ivKMpBRVF2KYrS8nZ3SPz7KYrSF0hTVfXk7e6LuGONBDbd7k6If7VKQMpPPqcif+yLP5GiKFWBpsDB29wVcWf4L2Uv55y3uR/izlIduAYsuD5Ucq6iKG63u1N/Ft3t7sDfQVGU7UDwLVZNBroAY1VVXa0oykDKooVd/87+iX+nCu4rHeBDWcp1S2CloijVVZkOUVSggvvqJaD739sjcSf4pftKVdV119tMpmzIyJK/s2/ijqPcYpn87hN/CkVR3IHVwBhVVQtud3/Ev5uiKPcAmaqqHlUUJeo2d0fcWXRAM2C0qqoHFUWZAfwHePn2duvPofx//5tWUZR8wFtVVVVRFAXIV1XVs6LthPgliqJspmw4W/T1z/HAXaqqXrutHRP/WoqiNAS+B0quLwqjbPhtK1VV029bx8QdQVGU4cBTQBdVVUsqai/E/3K9cOhrqqr2uP55EoCqqu/e1o6Jfz1FUfTAt8AWVVWn3e7+iH8/RVHeBYZS9gLFRFmJkzWqqg65rR0T/3qKogQDB1RVrXr9c3vgP6qq9r6tHfuTyHC2sj/COl7/uTMQexv7Iu4caym7n1AUpRZgALJuZ4fEv5uqqqdVVQ1UVbXq9V9IqUAzCSCJP0pRlJ7Ai0BfCSCJP8FhoKaiKNUURTEAg4D1t7lP4l/u+oveecB5CSCJP4uqqpNUVQ27/lw1CNghASTxZ7j+fJ6iKErt64u6AOduY5f+VP8vhrNV4HFghqIoOsAMPHGb+yPuDPOB+YqinAGswHAZyiaE+If6BDAC28r+TuOAqqpP3d4uiX8rVVXtiqKMArYAWmC+qqpnb3O3xL9fW8oyRk4rinLi+rKXVFX97vZ1SQghftFoYMn1FyoJwIjb3J8/zf/74WxCCCGEEEIIIYQQomIynE0IIYQQQgghhBBCVEiCSEIIIYQQQgghhBCiQhJEEkIIIYQQQgghhBAVkiCSEEIIIYQQQgghhKiQBJGEEEIIIYQQQgghRIUkiCSEEEKI/zcURVmoKErq/1gXpSiKqihK158si76+bP8v7E/9hX1WVhTFoSiKVVEU///RJun6PlRFUZyKoqQoirJKUZQ6v+J43lEUZauiKNnXt3+kom2EEEIIIX4vCSIJIYQQQvyyQqC1oig1frpQURRXoP/19f/LMMqet/TAQ7/QbgvQGmgHvAK0AvYoihJYQd9GAy7AtxW0E0IIIYT4wySIJIQQQgjxy04BccCQny3vDyiUBYD+l2HAGSAZGP4L7bJUVT2gqup+VVUXAEMB/1t85895qaraHnizgnZCCCGEEH+YBJGEEEIIISq2iJsDOsOANUDxrTZQFKU1UAv46vr2zRVFqf8rv+/w9f/W+KVGqqo6f+X+hBBCCCH+MAkiCSGEEEJUbBFQXVGUNgCKooQCXSgLEP0vwwEnsOQn7Yb9yu+rdv2/eb+5p0IIIYQQfxEJIgkhhBBCVEBV1URgLz8GgYYAV4Cdt2qvKIoReBDYrqrqFVVVLwEHgCGKotzq+UtRFEWnKIpBUZQGwOeUBaBW/cmHIoQQQgjxu0kQSQghhBDi1/kKGHg9QDQUWPwLw8nuBby5MVPpSyAU6HqL9oMBG2ABTl9v94Cqqsf+nK4LIYQQQvxxEkQSQgghxP8ndkD7P9Zpf9LmVlYCJspmT2tAxUPZSoCdiqJ4K4riTVkBbhu3LrC9CWgJNAOCVVWtpqrqml/YvxBCCCHE3053uzsghBBCCPE3ygT8FUUxqKpq/dm60Ov/zbjVhqqqFiiKsh74D3BEVdXzt2qnKEoQ0J2y56y0WzS5T1EUD1VVC3+yLEdV1SO/5UCEEEIIIf5ukokkhBBCiP9PdlIW3Ol7i3UDgKvAxV/Y/hNgA/D+L7QZcv07ngY6/ezfGMAFeOA39lsIIYQQ4raTTCQhhBBC/H+yHdgGLFQUpQ5wEPAABlFWx2jEL9Q5QlXVvZQV2P4lw4BEYI6qqupPVyiKsgeYSNmQtvm/9yB+sr+OQAAQfH1RC0VRiq73VYpyCyGEEOJPJUEkIYQQQvy/oaqqqihKX2AKZcGelwErcALop6rquj+yf0VRmgKNgFd+HkC6/v0ORVEWApMURal2fda3P+J1oONPPj97/R+A8gf3LYQQQghxA+UWzzdCCCGEEEIIIYQQQtxAaiIJIYQQQgghhBBCiApJEEkIIYQQQgghhBBCVEiCSEIIIYQQQgghhBCiQhJEEkIIIYQQQgghhBAVkiCSEEIIIYQQQgghhKiQBJGEEEIIIYQQQgghRIUkiCSEEEIIIYQQQgghKiRBJCGEEEIIIYQQQghRIQkiCSGEEEIIIYQQQogK/R8IkWBRKNSFVAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -828,87 +372,36 @@ } ], "source": [ - "import matplotlib\n", - "import matplotlib.patches as mpatches\n", - "\n", - "unique_colours = list(set(colours))\n", - "norm = plt.Normalize(np.min(colours), np.max(colours))\n", - "cmap = matplotlib.colormaps.get_cmap('gist_rainbow')\n", - "legend_patches = [mpatches.Patch(color=cmap(norm(color))) for color in unique_colours]\n", - "fig, ax = plt.subplots(figsize=(20, 20))\n", - "im = ax.scatter(converted_data[:, 0], converted_data[:, 1], c=colours, cmap=cmap)\n", - "\n", - "#for i, txt in enumerate(range(train_x.shape[0])):\n", - "# ax.annotate(labels[i], (converted_data[i, 0], converted_data[i, 1]), size=10)\n", - "\n", - "handles, _ = im.legend_elements(prop=\"colors\") \n", - "legend1 = ax.legend(handles, cdict.keys(), loc='upper right')\n", - "ax.add_artist(legend1)\n", - "ax.set_title('Antibody species', size=18)\n", - "ax.set_xlabel('PCA 1', size=16)\n", - "ax.set_ylabel('PCA 2', size=16)\n", - "plt.show()\n", - "\n", - "plt.show()\n" + "colours, pdb_files = compute_umap(preprocessed_data, model, scheme='antigen_type', categorical=True, include_ellipses=False, exclude_nanobodies=False)" ] }, { - "cell_type": "code", - "execution_count": 25, - "id": "347caa0f", + "cell_type": "markdown", + "id": "255dd560", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde3weVZ0/8M9J0zRN0zRtUygQIC0VChQpUAq4yE1QRHBFrOD+ROqtsLoiXtD1CiJ4WV3F24riBbyACCi7yyICCghyx1ZppSCXthQobSilDW3aJj2/P+ZJ5jvneebkzMmZ55kn+bxfr746T2bmzHlmzpyZTOb7PUprDSIiIiIiIiIiIgIaal0BIiIiIiIiIiKiouDDMiIiIiIiIiIiohI+LCMiIiIiIiIiIirhwzIiIiIiIiIiIqISPiwjIiIiIiIiIiIq4cMyIiIiIiIiIiKiEj4sIyKqEaXUCqWUFv8urHWdKDweZxppRmObVkodY3xnrZTqqnW9iIiIKB98WEZERERERERERFTCh2U0aqX8lXjg3/8bRrknVyjvmHA1JyIiIiIiIqK88GEZUWVfVEqNrXUliIiIyI9Sqot/vCIiIiIffFhGVNkMAGfXuhJEREREREREVF18WEaU7nNKqdZaV4KIiIhqS2t9h9ZaGf9W1LpeRERElA8+LCNKtxOAj9S6EkRERERERERUPXxYRpS03fj8caVUR01qQkRERERERERVx4dlREk/Mj63Afh0LSpCRERERERERNXHh2VESTcB+JPxsw8opfaoRWWIiIiIiIiIqLoaa10BogL6dwD3iM/jAHwBwLtrUx1AKTUTwKsR5VGbCqAHwFoATwF4WGu9I+ft7wJgHqJRQiciClddo7X+mUdZewI4FMAeAMYDeBnAMgD3aq17HcvoBDAfwJ6lMroBPAngLq31tqx1StlGM4C9AcxGtN/bEH3v9QDWAXhQa/18iG0VTb0cI7GtXQEcAmBnAB0AehGdH6sA3K+1NsOrh7u9RgCvQXQ+7AKgH8DzAJZorZeG3JZl+wPHZxqitjnQLv+itX467zpkVTqf5gPYDdExagOwGVG9HwOwTGu9KcB2RlJfOeyylFL7I+rHBvbHJkTt5DFE7VVnrVdISqkJiPrYfRC1i4mIzt/1ANYgOn/X166G+RHncRei83gCon5yLaLz+Jkq1GEugLmI+k6NqG38A8B9Wuu+vLfvQynVgqj/3RtAO4CtAJ4BcLfW+rkMZcwHsC+AyQBeAfAcgD9prV8IVE+FqI+ejeg6OAnAWAAbELXvRwE8UoU+qQHAwQAOQNQP7ED0Xf+B6D6mpn0AEVGhaa35j/9G5T8AxyC6OZT/Ti7Nu8H4eT+A/RzLPblCucd41K8dwMUAHq9QnvzXDeBnAPb12MZCszxj/gIA96VtO2NZ/wzgfsv3WA/gIgDjLfU9CcCfLWW8DOArACZ4tom5pTrcBWDbEPtdI7rZ/AyAds/trTDKuzDnNl/3x0hsZzyA8wH8dYhjtBHAbwAcFmD/TQHwndI5l7a9JwF8EMCY0McZwOsA/La0D4dql58D0Jpne3Ko7xgAZwH4A6IHILY6bwdwN4CPA5iWcTvtGFl9pXNZKXV9FYAfAlg9xP5YW1puT4/94dWmASgA/wTgawAeQnRttdVxB4BHAPwbLP2OsY1jhijT5V+XY7llyznU7xAAv0b00MRWh0cQpYFo8djGHUZZV4h5TQA+CmClZdsvA7gUwJQ8+4gK9TbrsVDMmwHgpwC2pNS5H8D/AphtKX9PAJcjeoieVsatAOZ41n8qgPcDuBbRg8eh2tkGAFcBmOu5vSuM8u4Q81oAfB7RQ+e07T+D6JqeuY3xH//xH/+Nhn81rwD/8V+t/qXc+A48LNsP5TfxNziWO+yHZQDeB+BFhxst+a8PwH8BGJdhOwvNcko/b0cUkmrdpmNZzQCuzvA9/gJgulH2eAC/yFDGo2YZQ+yHcQCWZ9zf5i8Wb/VogyuMci7Muc3X7TEytvVmRDf5WY/Tr+H/YPMURA8XXLd1P4BdQhxnRG9Q3OrxfdcCODXPNjXE/vqH5/m0NcN2RlJfmbkso9yJAH6A6MFjpv2N6O1plWF/ZG7TiN6ysT2gGerfcwCOdNjOMcPYxsC/Lsdyy5az1KsNwC8RPQDM+r1Py3j+3WGUcUXp53sB+FuGba8BcGAV+w1z+wtLP/9/iN7+cqnzZgBvqVD2OxC9WelSxjYAb8tY94uR/dyT/36EDH1SaZtXGGXcUfr5vsjW/z4J4PBqHWf+4z/+4796+cecZUQVaK3/jugNBOmflVJH5LldFfkKor98Tsm4+hgA/wrg90qp9mHUoRXAbQDe6FuGKGssgP8BcEaG1Q4CcGMpbAtKqXEAbkR0s+xqNoBblVJNjsuPRRQG5KsNwHVKqfOGUUZN1NExQmlb/4bo7arOLOuVLABwdylENMs234ro7bRpGVabD+BOpdTULNuqsO2jEb1ldLzH6tMQtcuPDqcOWZT6sM8B+G8AszyLGbJNjMC+clhlldr03QAWIXuKjSZEb6D8Kuv5mFEbogdmvnYB8Eel1IJA9amaUkjtnwD8C6K367LYBcC1SqmPDbMOeyNKMXFAhtV2BnBHKTS/JpRS70b0h5gWx1XGA7hGKfVPooz3I3pQ2epYxlgAVyuljspQ1dkYXnqb9wK4feC66ksptReitpal/52J6Hr8muFsm4hopGHOMqJ0FyD6S+Q48bOvADg6x21+BsAnK/z8aUQ3evcgelukHdFfDs9AFNIiHQ3gv5VSx2q/XBjfRxQmMuBWRL/4PoYoDG8aogdLZzqU9R8ATihNbwdwHaI3J55G9DbD7ojeQHkXol9gBxyCKMTuiwC+C+A4o4zflcrYUirjzRXKmIMo/9xFDvWUNKK/vP8ZUZ6uJxGF8m1GdKO9G6L8H6cheTOqAHxdKfUXrbU5SESR1c0xUkq9E1EYpOkFRKEstyPKHTYBUSjaaQDegOQvp/sD+INS6iCt9WaHbc4H8CuUXy9fRPQ23q2I3vyYgKg9vA3AiaVlXoUobMhL6Re1W1D+8Gg1orfk7i9t+xVEfcIBiEJpjxPLNgD4T6XUSq319b51yeArAD5R4eebAPwfogdCKxHtvxZE/clBiPqxo+F+XzLS+krvspRS0xB9392NWT2IzsW7EfVjLyNqpzMBvB7A2xE9FBjwdkT77EMO9R2ufgAPIGrDyxC1iU2IwnVbEeXxOhTR+bSrWG8sgJ8opf6mtX4spex1AAbaegvKH0D+qbSMzStO38JB6eHHLYj6O9OtiI7R44i+/y6I2uW/IPm9B64vL2utzVG7XUxEdP7tVPq8HlG/djuAZxG9bbkHojD6dyF5HrYjeuvpBFTfPEQPgAc8BOAaAEsQfYd2AEcA+ACS+6sJwI+VUgcgym/2X4ivAw8j6j8XI+qHJpXK+KBRRiOAHyqlXq2z59lcC+CPiEJpHy3VdSOi9jsF0XXoDYj6anlNPALRNe79Gbcn63wtovx/QHQ9/g2iP4itRHSc90QUAfE2RA8WB7QC+J1S6gCt9SrP7RMRjSy1frWN//ivVv9gCcMUy3yjwjInDVGuVxgmojdRKr3C/2VYXs1H9AtOpRxGn3bY5sIK6w38WwWHkJchyhoIN1kMYB/Luv+E8vCIDYhu5gY+/wXA3pYyXovyPCQvAWh2qHsrgL8DOBeOoYGIbrzPRHQDLLf5KBzDmVCAMMw6OkZdKe38pwDaLOsdh+iXQXO9HzpsswnRLzvmur8F0GFZ73hED/DMfex8nBH9Uvucsd5GRL84jhli3aMrfOeXAeyec/s6rcK+0ogeBA2ZhwxRvp8PA1gxxHIjsa/0LasB0YMY85y+FMDEIdbdE5XzC77ZYbsrPNr0/ogekL0bwGTH79cI4CMozyF5s+P6XRW+3zGe7fuYCmV1Oaz3nQrrPQ/gBMs6rYjyyZnr9cDSx4r176jQJgamfwxgkmXduUj2XwP/DvXZbxn3sbnNgXpvAfAuy3oTAdxZYf33IxrcY6CMM4co464KZZzhWPcfI3ooNw/u9wD7IXrQbW7TKSQS5WGY8jj/HcCrLevujejBobnt3+V9nPmP//iP/+rlX80rwH/8V6t/KTe+5sOyDpT/crXEdiME/4dl91ZYb8hf4krrvhblSW+3Ath5iPUWVtjmwI38nhn3Z1pZS2G5MRfrf6DCugO/IP0Nlgcioox/q1DG23NuR/NR/ovcGx3XXWGsd2HOda3bY4TKOdV+4Pi990XlpPxzh1jv3Arr3Aig0WGbByI9Ef+QxxnRWx9ynReHqq+xfhfKc6x9O8e21YrKucPO8SjLun8xcvtKn7LOMcrYAZEU3WH9cYjePJNl/NVhvRUebdo5J1qFdU+tsL+GHHQHNX5Yhig0z3xYvh7A/o7b/G6Fbd7gsN4dKW3sm47bfX2Fdf/L9/hl2MeV6twP4PUO6+6M8j9ebRNlvM6hjF1Q/kehmxzr7tW+Eb3dZfZp1ziue0XKPnsapZyZQ6w/BdFDNXP9k32+C//xH//x30j7x5xlRBZa624AXzd+fCCiEIlgSqFehxs/vlNr/SWX9bXWdwG4xPhxE6K8PD4+oLVe6bmutAPA/9Nav+yw7I8QPVyQxooyNjqU8cMKZRztsJ43rfUDAC4zfpwl/1etFf4YKaV2Q/QGm/Q4oodZQ9JaPwrgvAqzKv1MOsf4vAHAu7XWfQ7b/CuiUMHMlFKzEOVXkxZprZe4lqG1XoHy7/fe4eToGsI5KM8d9l2ttXluDMm2f0dwX5m5LKXUGESh0NL3tNZXuJahtd4K4J2IHioMeLVS6vWuZWTYlh7Gur9FNNKhdPrwalQV56I8R9nHtNbLHNf/CKK3laVTlFIzPeqyBJVDpMtorW9B9ABHypK/K6RLS/Wx0lq/gCgEWxoIM/6G1voPDmU8jyg/mvRapdSQvy/5tm+t9RZEIaDSW4aZu2xR6bsMte31iN70NOv+gWFsm4hoxODDMqKhfQPRGxrSRaXE6KG8t8LPzF+ChvIfiEInpPd51OXvpV9MQrix9NBgSDrKCVLpZvZ/tdaPDKOMg1zWHaYbjM+5DgQRWD0cIzOHDgB8tvSLvhOt9S8QhZpKZyilJlRavjSYx77Gjy/VWg+V60j6PqKwuqw+jOT1+QHtl2/sV4jeVhrQgujtmDyYDy674fiLeUYjta/0KestiPKPDdiKKFF/JqUHq+a2T8paThXcYHwudD9bukcwc8wtQ/Q2kBOt9XYAnzJ+3ADgPR5V+nKpPFdmm5itlHJNsh/KNgBfy7D8TSllmH/0zFJGK/wHK3Gitf4LohGeBzQhyo3q4w6t9a0Ztn0/ys+tN5T+SEVENKrxYRnRELTWryBKYi7NRDLp7HCZf7FdprV+MEsBpYcQ5l9Ed1NKzchYF/Mvs8OR9Rf8Sn9tH24Zwxl9zdUzxudXKaXaqrDdEOrhGJnnx3pEyc+z+onxeRyiMFqXbQLlI+Raaa37Afw8yzolJxqfr/IoAzpKWn+H8ePgb4copfZBeXL5y0tvTIQ2UvtKn7LMdvI7rfVLntv/o/G5Vm8R2Zj97CEVlyqOg1E++uIVHm8g/R+ANcbPXpuxjK3I3meaf0QZgyhMsZr+rLU2v7tNpevT3aW3zoZTRi3uI3zbd6brVMmVxucGlA+IQkQ06vBhGZGbHyDKASF9Lu2tlCyUUpMRjXImOf9V0PD7Cj/L+tf3+z23HaKsSm/tDLeMzA+tlFITlVLvVEp9Ryl1p1JqhVLqRaXUdqWUNv8hCgk0dVT4WREV+hgppRSAw4wf/0lnH50MyHZ+mKF+T2utzT7AxZChP5JSaleUv8XwkMd2B6w2Pptvy4VwTIWf3Rh6I+wry5jhy0VvJwlKqQ6l1PuVUj9QSt2jlFqllHpJKdWX0s+aoXhTSqGoRVWpPWVur6WwZPNh5jylVJYR7ZdkeRO3pNIDpkkZyxiuIlyfgIz3ESryWqXURUqpG5RSy5VSa5RSmyu17VL7fo1RzLSM9R6Q6ZpT8keUh2Ka110iolEny4WWaNTSWm9XSn0eybdEdkaUT+TiYRY/C+U5Tf7iWVal9fbOWMZyz21XMmTODENPhZ9l+atypTLMv+ynUkpNB/AlAO8AMJx8IQAweZjrV0vRj1EHyvel7/nxBKIE0PIXn7TzY7bxeYnnNrOuVyn05u7omWEQU0MVJOxnfN4O/2NkM5L7ykxlKaVaAbzK+PHFSqnhXo8GNCulWrTWmwOVN6iUk+8/AJyC4d+HtiMaWKKIzOOzFZXfWnLxFyRzpbYA6EQ00IKLrP08ECW6NzlfTwMpwvUJcPzepdxmixCFzg73bTSfe4iXtNaZQ/+11puUUk8B2Ev82LwGEhGNOnyzjMjdVYhG/JPOV0oN95fPSjdE5l/5nWitXwTQ61C+zQafbaeodLNtUyk8ZbhlOD1lUEq9EcBjiJLdDvdBGVD9Xyp8Ff0YhTw/NIDnHMqv9HOfXzZRCovLEo6Y9xuJeTzENfvAtVprsx8KYST3lVnLqsabq8HbilLq3YhG3z0VYf5gW+R+1tx/L7gMDpKiUjvPcnxcBl8x7ajws2r/3pDp2pIS4hqijCG/t1JqCoA/I8pVGSJs06dte12nSlyvjUREowbfLCNypLXeoZT6NJLhRW0APg3gY8MoutINic+N7YCXkXzYY45QZ1XK0RbEcEY/C1nGUJRSxyJKZjwuZZGXEeUTWYvoF+xeJB/4tAB4o1ls4Grmog6OUR7nh5R2frQH3uZ4x2XzePNLCjkwyQCzzhty2AYwsvvKrGXl3U6AwG1FKfVOAD9Get/YDeBZRGFwW1H+MHMaynOpFbmfNdtryH4LyNZec7+O5iREvatxD9GCKJTxwJRFtiFq288CeAXRH1D6jWWORvIhuE/bDtnG+LCMiEY9PiwjykBr/X9KqbuQTK77QaXUpVprMzmrq0o3RCFv7ur1JrkqlFLjAFyO8gdlfwPwHQB/GCpXVSkx+FP51HDUK8r5MZxtZvmlp6nCz34zzO1L5si+ecirzylKWyiCSu3kLoQ9vsEeBiqlpgH4NsqP4d0A/gvRCH7Wt2JKf9Qwc3cVmfldQ7evemqvI92nUf6g7GVE+W5/A+AvQ41EqpS6E8MfWKNa1ykiolGBD8uIsvt3RK/aDxgH4AvwG8odiEb2Mw0nia65ru/oaKPFGUjm6QCitx/OyRAyU+2kx6NJrc6PDYjyEobYZpbk0JW+77la62eHsf28mTmj8nojgX1lrNK++IHWOuQInSF9AOXt4gta6wszlFFv/ax5jEK2VaC+2uuIpZQajyh/rfQ0gNdlHBQmRPsOeZ1i+yKiUY85y4gy0lrfA+B/jB+/SyllJrl2VemGZDefgkr508x8W7zhsXuz8XkFgA9kzC1TLyNf1qOQ54cCsKtD+ZV+vovnNtvhHoIJRKFoppk+264i82HZTqU3NkNjXxmrt3Zi9rP3ZHxQBtRfP2u2p50zjmApVWrn9dReR7LjEaVikM7xGD05RPv2uk6VuF4biYhGDT4sI/LzaSST344BcIlnWU+g/NX5SiPiuai03uOeZY0WBxmfr9Nab8tYxiGhKkNlulF+0+57fsxC+V/P084Pc3TCuZ7bNNvXUB6r8LOjPbddLeYIf2ORzznBvjK2HuUPzArZTkoPqV9t/Pgqj6LqrZ/9h/F5HMpHjnVlfvfN8BzcgoIz+/h1AG7NUoBSamd4Pvg3TFZKZR5cQCk1EeUP20OO9ktEVJf4sIzIg9Z6GYCfGz9+i1LqcI+yXkL5TckJnlWrtN49nmWNFjsZn31yj70uREWoXGnwgPuMHx+llKqUs2koWc6P+43PM0q56bI6LsvCWuulANYYP/5nj+1W0x0VfnZy6I2wr4yVzos/GD8+SilVxKTcU1Ge9sOnn810LpVUGtGxWrmZKrWn47MWopQaA+BY48cPDmNkTQrLvId42mPQm5D3ED7nybEoPy/MayAR0ajDh2VE/i5ANGKX9BXPsv5kfJ6jlMr0V3Sl1FgAZxo/fkZrvcKzTqPFGONzpjAZpdTe8PgFiDIxz4+pAE7xKMfMK7gVwAMpy95Z4WfvzLIxpVQDys9JF7cYn+cppQrbxrTWjyMKX5beX8rlExr7ytjvjc9jMbyRmfNi9rFA9n72BAB7e2x7c4Wf5dEuK1kMoMf42UKPck5CeXideR5Q7QzrHqLkgyEqUuJzzXmX8XkHkrl5iYhGJT4sI/KktV4J4PvGj48G8EaP4n5U4Wf/kbGMjwOY7lAuJa0zPmcN6/oWOIpU3q4EYI4kdnGWt8uUUu9AeSjTVVrrSr9MQ2t9L4BHjR9/RCmVJa/MOQD2zLD8gG+iPNzwW6VQmaL6tvG5A8BXc9gO+8rY1QDMESTPU0odUIvKWHRjGOGzpfP8657bfrnCz8zcTLkojX54pfHjA5RS5oOJVKUcZ18yfrwDwE+HWT0Kx7yH2DfLHwqUUmcAeE3A+hynlHJ+u0wpNQ/AqcaPf1/wQWWIiKqCD8uIhucSAJuMn70/ayFa64dQHrJxnFLqfJf1lVL/BOBzxo+3Argsa11Gob8Yn9+ulNrdZUWl1AUATgxfJZK01s8DuNb48WxED5WGVHr771sVZlX6mWSeP5MB/LgUFjXUNg9A+S+5TrTWSwD81vjxfgCuUUpN8ClTKdWmlPJ548DVD1Ge6P9DSqlzshZkS4LOvjKmte4F8GXjxxMA/I9Syhzh14lSaoxS6vTSwBRBaK37AfzN+PEil4e/pbczv4/ynGeu296O8rcej/Qpy9N3UP6g8BtKqX0d1/86gDnGz/7bI3k85ce8hxgP4F9dVlRKzQXwX6ErBODyUh60obbfjujBq/n7YB51IiKqO3xYRjQMWutulP/Fe6xncR9G+dsz/6GUusj2Bo1S6jQA/4fy0JILtdZrPesympgjm7YAuNGWJFcpNUkp9X0AF5Z+xNwx+fs0yt8S+YBS6odKqda0lZRSRwP4I4BpxqwfaK3/OsQ2L0N58vo3A/h1aTTFtG0eiyiUclLpR1nz1wDAuSh/a+iNAB4ole9EKTVPKfV1AKsQhY7nQmv9Cir/oeD7Sqn/cnkjTynVrpT6IMoTo5vYV8a+j6h9S10AHlJKvacUcjokpVRX6YHj4wB+BSD1nPJk9rO7ArhBKTXFUqfpAK5DHD7t28+auZf+RSlVlTyAWuvHUP7W5VQAt9ne/lFKTShdYz5szOoB8ImwtaRh+iOAV4yffVkp9XbbSqX5tyP6IwwQ5j5i4FozE8AflFLmg1a5/VmIBiIwl7lFa31jgLoQEdU93yGsiSj2DUT5Jswkr5lorR8qvalkvo3yOUQ3979ElOj8BUS/hO8H4HQAr61Q3B3IHpo0Wv0CwOeRDJd7NYBlSqmfIbqZfAZRf7kbouS5pyM5zPvFiB+cUQ601iuVUv+K8lH03g/gZKXUVYja/fOI3q6ZBeA0RA+YzDDZ5QA+6rDNbUqp9wC4G8mH4G8FcHTpnLyttM3xAF4F4G2I3jYc2Ob/IfplJFM4ptb6WaXUWxDlTmsWs/YD8Eel1GIANwN4EFEYUA+AiQDaS/U4GNEbNHK75uiJQWmtf6uU+hoA8y2vfwXwTqXUjYj21wpEozm2IHqI+WoA/4To3Bry4Q77ypjWuk8ptQDRA6FZYlY7gB8D+IJS6n8R5R96FsAGRG21HcDuiEbyOwzZR23N6tsAzkPURgccB+AxpdRPEbXz5xG19d0BvAHRuTSwvEZ0vD/vse1fIDr+A8YielD3PIC/A9iI8oEA/lVrbYbX+fokogTq8u24XRE9zPg9gOsRPaTsQRQefBSi/IiVwkXP1Vo/EaheFIDWeqNS6tsAPiV+3IToTeD3A/g1oj+6bEHU380FsADAPLH8HxHdYxw1zOrcg+j6NxfA/gAeVkr9BsB/A1iJqJ3vjmgAlrej/A8HGwEsGmYdiIhGDD4sIxomrXWPUupilP/12KesL5dCUz5lzNoL7r8k3AHgLVrrSqOAkaH0QORMRL/Ey7dSWgF8oPTP5puI8tJcmEsFaZDW+urSaH/fQfLN6F0QJTZ3SW6+FMCJabnKKmzzgVK+s18hec2ciujtr3Mtqz+JKKH3Qy7bStn2UYh+mTZDgw9C/g84fHwS0S+FZn81EcA7Sv+GjX1lTGu9Xil1JIBrEOXNlDoRPax0CgvLi9a6u/Tg4FfGrA5ED1eHCqM9D1Eop8/DspsQjRxqjji4C8oT5w/4OMpzUXnRWm9VSr0BwO8QPcSQ3lD6N2QxAD6qtWausmK6GMDrUZ4X83gMPQDQ4wDOQHmqAR99iB6C3YvoGtVUKvsMh3V7AJxUysdLRERgGCZRKD8AECSHiNb60wDeh+jNiyz6EeWZOFFrXSmpMaXQWt+F6C2kLPutD8BntNZDvqFE4Wit/wvAWwCs9lj91wBemzVxsdb6ekTtI8svzw8DOLoUqu1Na/0gorfEfonoHPf1MoDfDKcuLnTkAkRvBfn+0mWGNKVti31lidb6BUS/lH8B0dshvvoA/C+y9YVOtNbXIDpe5ijSNpsBvEdr7f3HqNLD0LcDuMG3jOHSWq9B9NbQL5E9LPs5AG/TWl8aul4URumPL29C9hEk70R0TQr1FiO01v8AcAzKc/XZPA3g9VprjoBJRCTwYRlRAFrrbfD7i3daeT9G9IbEJRg6f8+LAH4OYI7W+oNa6yy/iFBJKUfHgYhGxbPtw15Eb0ccrLX2SuBOw6O1/l9EoYafQHnicNMmRA+JDtdan6613uC5zf8BsC+A76I8kb20AsBHStsLMpqY1rpba/1OAPsA+B6iN9ZcrEQUircAwHStddVyHZUeMO6N6M3MezH0g76tiN7++SAyjFbIvjKmte7TWl+IKPT2M4ge2Lo8YH0J0TlyDoBdtdZv1lqbA9eEquOPEYWfXTtE3TYBuBzA/iHeptJar9dan4rozZ+vInqT+BlUDsHMhdZ6U+k8PhTR9x/qgeQyRLkaX6W1zv1BNw1P6YH1sYjeNh7qDwV/AXAWgGPzyJeotV4K4AAAX4T9jzyrEb0VN6c0AjQREQlKa5+8w0RUTaWRzQ5ElO9iKqLX5dch+qX5oXoPIyqa0rDvr0H0QGYKol+mXkQULvGA1npLDatHBqXUboh+Cd4ZUVhXL4C1iJLa31caES/k9sYiyrE1A1GOoX5E+ZaWaK0fCbktSx06EYVhdiDqE8YhesDwMoCnADw63LfaQlJKTUKUG2s6on6sGXE/9hiAv4c4r9hXJpX2+3xE58ZUROGwryBqK88AeBTAM7oGN4NKqTZEefW6ECU570N03i5HdKyCnrdFUxr19TBEDzenIcrh9yKiffAXrfWqGlaPhkkptT+iB8MdiHKDbUL0x5SHQv0hRSl1BaKHbgPu1FofYyzTgOj6+GpE7WwHouvVwP0MfxEkIkrBh2VERERERER1xOVhGRER+WOCfyIiIiIiIiKijGYp5TZqVME9D/xea31iretRJHxYRkRERERERESU0WYAZ9e6EgFcGIWNk8AE/0RERERERERERCV8WEZERERERERERFTCMEwiIiIiIiIioowU+AbSSMXjSkREREREREREVMKHZURERERERERERCV1E4aplNKHHHJI5vUefvhh+KxXTStXrsSee+45vEJ6e5OfG+NDq8fE00q5FzFuXDzd15ecN3Zs1grSUPr70+c1iMfa27Yl52kdTzc1pa9XZseOytOmMWPiaVsDGiXMc0F+zrT/yYts70CySZrnkGy65rwtWyovt3VrcrlGy1VSblsee1keEL4dmKcr25k/sz1J8vjK5Vz7anM923FyXW60sh0nybxEyfVCXL5s/U+IMlavTs7r7Mxeft7M/sd2Psh7xfXr4+nt25PLyT5zwoT0Mmz9sWTeJ8n1fM8v+b3N416rW6OpU6fixRdfHPzc2tp69Lx58xzPltpw7XNpZFmxYgW6u7t5hKnu1M3DMgB46KGHMq+jlPJar5rOXrQIP7jssuEV8sQTyc8d8civ21qnDE7bbjTMIrq64umXXkrOmzYtnm5AfAexw3hZUc4zmcu6rudanu+2Xdm+t8s65no9PenrNTfH0+bNtHxYY95Yy/XK9od8Oio3bjaS1ta4vo3G0yCLtP2T5dj6rJfl2Pq0kQ0bkp/XrImn5TkDAC3N2dtxkYQ+R23lu5a3rS9ZJ9lczXNINN2yeUuXVl7O7AenT0+vi/wFTx77iROTy8nzMATzDxvW8zyAEP2lTejrhO1aYM4zH35Lsm3J5Vz7anM9WzuwLZfHNdZVHu3Jlay/7ThJ5uUr8ceMxuFfQ8x6JB7COB4LWxn//u/JeV/5SuXyfK+jIZj9j7wmmn8okPeKv/pVPC2vmwDQ3h5Pz5uXnCfva+RyQPq5Yd4niVviTP2xLH9zb1y+2c5cH+LlcR/jqpbblmznsjxHs/R11eS7f0LX3/f+rNr7dWB78+fPG2LJ+se/c41MPK5EREREREREREQldfVm2UiloQafvNvePLI+/Zd/NgOwoz1+m6xX/BVcvkEBJP8iaP61R75NZoYmyb8sNjf7vTUUgu8bS5LvX9tCb7u11e2NB/PtJW/yz6u2P4uKebb2acr7rTDX9XzeALQx/7Itd135Gz9ubxNU87zJ8tZN3m94ZilngO3tENs5ZL5pIN+AkMfC6Eqd30KQoUK2t4vMU821fbq+oRTqzco8lW3XtoNy3nZjo9v+cn2zyXzzVDKvv8l6xNO245LHdS7EtSxvtn5Wfjb7Z9e3yWzkPjHbi+vbjbL93H13ctljjomnL77YrR627ZnLhbgGyjIeeihZhtz/Zv8p+8W3vS2evu++5HIXXhhPm+faovftSJ+Z0l/kEb6avO9Nr0be55Dr27CmvN8Yc2Wro3xzPOdLQdU5vwlmdnDLl8fTs2fH080ticV6Er/rpfdTuffxZeeoe0QKUREVo+ckIiIiIiIiIiIqgBH23J6IiIiIiIiIKH8KfANppOJxJSIiIiIiIiIiKuGbZQWgoFNjyJ1jy41EHWm5sOQIcEAyJ4CZH0CMRm3NwZOHEPmuQuRics3xkMfoOGn5GrLkq3BuP2LFPEZAdD2eeeedM4XI4SHzEJnHRqaeMOe1tbqNFhpiJFFfeeeC8zlu5miYUnd38rPst2SqDyA56qU8hma6EDnPPL/kSJm2PGLOI6X1bUtd0ZZbyyfvmVmm63kZagQua8WknPOduNZZtovt25PLjR8fT9tGyly3LvlZ5nOa0h52dNmqq2LeuWrfj9ik9c+23HhmXySFGLFzOMsOsJ0XRx6Z/CzzQZo549Ly9M2dm/551qzkPNnnNzm2rVB5meS+M7+byzom13rZ7w2LMzpxNUfYzHt0bleuuXu9c/xahu7eMffgwWmz3ws96rY34xwtah5MIld8s4yIiIiIiIiIiKhk1D8sGzNmDObOnTv4b8WKFWXLLFy4EDNmzBhc5jWveQ0A4IorrkBDQwP+9re/DS47Z86cwTK6urpwwAEH4IADDsB+++2Hz372s9hqDitJRERERERERHWpYQT8o3KjPgxz/PjxWLJkyZDLfe1rX8Pb5LjXJZ2dnbjkkktwzTXXVFzv9ttvR0dHB3p6erBo0SIsWrQIV155pXP9QodgbdmS/DxxYjxtvvkrw0722mt42wXsw5n7quXrvT6vn/uGIMoyzCgE+Sq2b5iVrR5y22YInGwz5ivgrq+E+4b6hT72IUI5bREi5rzNvfF6cl+5vqoPhA9p9e1jZF+RdyjASy+lzzO3LcPl1qxJzksLvTRDgGzlB482MwqU+9h2rjXVwZXc2rYcG413mKdkxtla6iG3197uFt46aVJyngy1dA3jMvmGH/n0+Vm2lVjWMVw2Sx/jWq+0UD9zvRAhcDau25Lh276y1NE1Qtb3e3d2eq2WcOKJ8bQZoinrXO1wvrQ26JsuwbyHkt/N9X4nSD9YQ2YXLNun7II3bEgvo/ycl6G61f29IO14mMdapokwrwXWS2BKnLntUmbrE33lkoKB6pJSqgHAhwGcDaALwDoAvwbwea31K45lnATgswAOBLAVwB8AfEJr/bSx3JtK23k1gJ1Kyz4N4GcALtNaW86EMNiCh+nkk0/GsmXL8Nhjj1mXa21txWWXXYYbbrgB69evr1LtiIiIiIiIiIiG7ZsAvgHg7wA+BOBaAOcC+N/SgzQrpdRbAdwIYDyA8wF8DcBRAP6slNrVWPwAAP0AflzaxucBPFGqw/8qpVSIL2RTB3+PzteWLVswt/RnrBkzZuC3v/1txeXOP/98XHzxxQCA/fffH7/85S8BAA0NDfjEJz6BL33pS0O+MdbW1oYZM2bgH//4Bw477LBwX4KIiIiIiIiIqm40vIGklNof0QOy32itTxM/fxrAtwGcAeAqy/pjAXwHwDMAXqu17in9/HcAHgZwIYBFA8trrb9SoZjvKKW+B+ADAA4F8MDwvpXdqH9YNtwwTAD4l3/5F1xyySV4+umnK86XtNZZq0hEREREREREVCvvAKAAXGr8/HIAXwHwTlgelgE4GsCuiEI2BxOMaK2XKKXuAHC6UuqDWuvtaQWUrCz9P9m96n5G/cOySt797ndj8eLF2HXXXXHTTTcNuXxjYyM+9rGP4atf/ap1uU2bNmHFihXYe++9nesSOi+TzJ8CJOPmbTHuZq6ztPj6LPVNy9lkKzNU3qq0/BJ5DMce+hiaeRxk3gLzGOaRt0CSx801f5Nv/oJq57hzHQ7ct/245vbyLV/Ke5/L72Km13DNp2U7t+W8yZbLotkGbXm+bOuFJuth7h+ZC8vWtlpbh/83y7y/Zwgh8pv45kfzzRMkc0Oa7dOWUzItt04e1yFXvv2sa14sXyH6QVe+7cAm9H1Alnsh2z1C6NyWrnmN1qxJLmfLvxRi275lhi6jCduMn1Q+WULcq/iW6ZubypXtWiyvlWabsN3P+tx/5p3z2KxTR4fjiuZN/h13xNML3zM4mZLKDECY9rN8efLzpk3x9KGHOhdf09zSlItDAeyA8TaX1rpXKbWkNH+o9QHg3grz7gNwHIC9ASyTM5RSEwGMA9AG4J8AfBLAiwDuz1b97Org1rn6fvrTn2ZeZ+HChfiP//gPbJK9idDT04MPfOADeMtb3oLJtt/2iIiIiIiIiIiqp0Mp9ZD4/EOt9Q/F510BdGutt1ZY91kAr1FKNWmtzb8MyPUHlq20PgDsBuNhGYCfAjhNfL4fwAe11htSthMMH5Y5kjnLAOCBB5LhsU1NTTj33HPx4Q9/OPHzY489Flpr7NixA6eeeio+97nPVaW+RERERERERJQfhRGTs6xbaz3PMr8F0YiUlfSKZdIelrWU/q9URq+xjPQFAJcBmAbgWESjY0611DOYUf+wrEe+85viiiuuqPjzhQsXYuHChYOfzz33XJx77rmDn1esWJG5Pq6hSL7M15/la87mUMbyFWLXcL4sdbS9QpxWZh6vpod45TxEeJxPyJv52TW0z7VOJvO1ctdX311Dac15tQp19WXWQ4ZnmV2NawirbR+4tp8QoSuux833u7gyy7f1IyHCkEPsuyD1uO2W+ENpUJpBIr7DbGdy/5j1SAsDtNYj53PNjECRx7stRFi5pcE0eMYPyn0iz/nos1eRw65HKLKNm7tOtjXz/sGlPCBMGKBPH1aUa8aQ5AkhLhoNxsXe9t3yTsfgwzwvZJcWIlQ071BdbzWMhQ/R/kOlQklju4eV/Y8Zoil3a4tjWpdqcz70njfasj+e0u64LaTfy82alVxO/kpbN/0n5WEzgJ1S5jWLZWzrA1FIpfP6WutHADxS+ni1UupsAL9TSh2ltf6zvcrDU9CrCRERERERERERFcBziEI1Kz3s2g3Rm2lpb5UNrD+wbKX1gcohmqafl/4/x2HZYeHDMiIiIiIiIiIiSvMgoudH8+UPlVLNAOYCeKjCOub6AHBEhXmHA9gI4HGHeowr1WOKw7LDwodlREREREREREQeGkbAPwfXANAAzjN+/n5EucZ+OfADpdQuSqnZSimZg+xOAM8DeJ9SqlUseyCAYwBcq7XeLn4+PaUeA3mv7nOrtr9Rn7OsCDRUan6FEHkXZJz/VCMVnhyY0zeVgm/semurW64wuQ/M/ZH3cPUhckLZuK4nl2tudm8TeecVcC5fJJgwa7+juVIex4zlW9iOYd450eR6tvYumXmBbHmlZP1fWJcsf+dpYfedjWteL/O7yXPWzLWVtr9s+8dWX9u2fYXOaWjNnygGmMG8ZO7VjRd+Y3D6s59NrnfMMfH08ccn5zXJ3EB5d6aObLmvguQhsny3PPJp+cjST+Wdz8mWE9A1T1nefPIKPrcm+fNdp8dlFCofj+NOLlSdHXR1JT+vW+e2nuu5ECpnmeu9eVH2f4h6rFmTPk+eJ0D43HCuuZJdcx4D6XUszP0xjDp2diZniot6w+pV8c9b90gsFvqexsy/aeYwo9FJa/2IUup7AP5NKfUbADcB2BfRw6s7AVwlFv8ygLMQJeS/o7T+dqXUhxE9dLtLKXU5gDYAHwGwDsAFxiaXKqXuBvAXROGZHQBOAPA6RDnMLg3/LZP4sIyIiIiIiIiIiGzOA7ACwCIAbwLQDeA7AD6vtR7yKbHW+lql1BYAnwXwdUQjY/4BwCe11ma+sm8DeD2ADyIKudwC4DEAnwbwba31KwG+jxUflhERERERERERUSqtdT+A/yz9sy23EMDClHk3ArjRYVsXAbgocyUD4sOyOuIbQiZfzZ02Lcy2Q7C9Mp/23fIIpXLl+tp9ltfSXcNH5HKhhvx2rVOI4cat44EHECTMzfW72RqhLTagscmpeLNNu+5/89ze3BuvJ8u0hXXahOgDbOerLeTCWobY5w3mTBH+22iE+4Y4f0OEaTtv77rr4mnjfJL77sILk6vJRc3TMFH/HDrTEOEvtutEiGNYTUWpV5b2aGsWocPkxelatm3ffivN9LQsKDkpSjoAW72eeCL+uRkm6br/fVJLAMC0aW77wAzXl32aGTbmuu1Qy6YJcg9l4Rp+6rpclnPDJ/Q1xD5ostwnFaWf9WZ2uubJWNJuKcLcB/K8Me+10o5HUUKL64UCE8GPVDyuREREREREREREJXxYRkREREREREREVMIwzDqSJYQs7bVvaxl925I/kCFlZniZ/GyL80mpU9m2HcMSQoWE+IR5+oYXuGw3azmuahn64VKn4WzLtY1bIyPF8XUe3crWCHOOC87SfmRVXKtlayO+IXAhwoZ9Rl01P5ftOdFXhQiTySPUJlFOR4fTOnmMUOj73UKPJhmiD85bHiFAoUPvQ43snNoubPGUGfrItP45jzYY+noYqh1Uc8S+6dMrh+5Xg+v3tIXrh75nClVmCK7tyR7KHE+H+l55jjS5rc89JNxH6FGGhyPvfkWeN7mkWrGo+7BYGvVGxcOyI484pNZVsBo3bnytq0BEREREREREGfGx4Mg0Kh6W3f2tebWugtWib62sdRWIiIiIiIiIiAh8CEpERERERERERDRoVLxZVnQK2ilOPEsuBZ/hnMsSAlQ7aUWOXPeB7SsXNZeFZPuetvrnnVOglnl8fJtxiDr75FgKta/S8u359iM2Nc3TZMuHZMmh6LUtR1lyoYTYdjXrX6R+MM98Ob58c0PWo9T97HjemWU0Nxcnh5CrtHw/Ra2vjS0fWIj8TiHywrmeX0Xqp5zzBnssZy5rO/V8c9j61sulHrb1fHMU+36XEO24mjkGTb7fe8OGeHpKu2/N0tVjX0gkjZynIUREREREREREVaRqXQHKxcj9kycREREREREREVFGfLOsADSUUzhJ3q+y5v16tW/9fV87tpURIjTGZ7hl333gemx8v2eIMMC894GN67HIEora1xdPNzVa6iwXNMdtF/MazJiClJiXar/G7xqaUctwzRDnjWu7yLKttPZj248h+h4ZNgEkm5LZzHz2na3+69Yll33llXheR0d6vaoZ0hsqBMunXfiGu4c472sZHhRC3tcGSXbbQLKPD5HOwPe7mPVqbKxcZpY27tOP+7alarfx0KFzrtdA3zDJPO6TQhw3Wxkh+kGfZfP4ncFVlvqnbc/3HDWvsdOmuZXR0Lct/mDci+5obUtdr709dZaXkZx6gEYntmgiIiIiIiIiIqISvllGRERERERERJSRAjCm1pWgXPDNMiIiIiIiIiIiohK+WVYACto55l2SIenmcNGhc3/45ntwLdNcL3Rehzzyb4Qo31UeedtcmTlUJNvQ3tXMW5BHrhvbd0tdMCUPGYDyfGY9PW7rFZRrLpfQ+UNCHeu09umbZ8S3DFeyzFA5Rh5/Ii6zuzv+uZkTTW7PbKo77xxPm9ehVGanIs6FBrMQS6E+uW6y9NU+12Ub13qZu0d2HbZ+ybb/Xb933nkFfXM9+SxnLmvbxzI3mI3ZjTc3V15vc2/y5y3NbvmiuruT640RryqMHx/Ps10ysuRcS6uHb+5PW5k25v6SXPuVvO+F8sjrO9zyQq1nKyP0vVze5eddjyC/nxgdSS9aBqeffDK56IoV8fTLL8d1nDcvuVx7e1O8bddrsWHV6vR9YOtzbOeore8jqgd8s4yIiIiIiIiIiKiEb5YREREREREREXngG0gjEx+WFZztNd601/+zlOEa3hQirMj3VWvfEKxtfenbS4SyyJgjI/6oYfr0uB7NLfAROoTMN4zFdch7M8xk06Z4ur8/OU++lm2Gsch9LKfL6tGzMf5gDnfdsdPgtBk2Iz+nbSsU2/6R27PVEUi2n7ZW1/CgeLqs/cj2miF8LY1v+I5UHkKW/t2mtIvvI8NSgeR36+iIpzN8r2qGgOYSEi4aW4PZ8CQRJ2mGUcj939mZXE3uSnlszF3c1RVPy0MBAE3YhjQ70FR5hu0ktcV9G0KED7rKO3xKMndP2nEyP7v2HeZ3ySPMOY21fKMPaBAXGNu1zEYuK7sUs7uR1zKz/cv9+MgjyXmHHlp5u1lCYuU+Mc+vxYvj6d13j6fNkCjbMQyRTsJG3mu99FJyXlroqFlH1+t2iD64HoQK5fcJVffles9dq7DLvLbtWqa8hLcYHYT8NHdu+no2sn+b0p48oVyvlbZQy+3b4+nx45PzfFMAENUDtmAiIiIiIiIiIqISPiwjIiIiIiIiIiIqYRgmEREREREREVFGCnwDaaTiw7IC0FCDMd22XBMN3WsT8xpEcgvXXEO+ecms9apljhPJSNjSJJIkWGPmRb4fM2dZlvw5w9bdnfwsk6qsXj042WAmB5g9O542Eg745PSx5WsR1QCQrLLMawQALWueij8sWZJaR8yaFU+bSZUsZB4HmUth2jTnIhISudMAy5drSF1szJhkEc8+G0+b++7kkysfj0w512TbDSBEXhSz/vJwm6dToh8x28XPfx5PT5wYTx95ZHI5s+GllV8H+WzK+mB5Ml58cTz9ox8lV7zuusHJz/7oqMSs/fePpz/57uQ1ZI/VT8TTs+PzUOYKNJXvx/QGm7bPy76npR2Hznfi2w6yXDuHq6EvmQeuSZw4jQFyZ/oul/t9gC1hTgCymZmbsuWelPMOOMBtW777w+w/d9klnjbzmYXYXgiyzpMnp89zLcOWF9RXplyRKfPq7XoCVDe/sO9xyntfFiVnlrycm/ndZK6/nceuT8xrWbEi/nDFFYOT6y/8dmK5++6Lp0880T3nnZw3pS++obXdB5SVIa9ZaR2o1s7lERVJMXoQIiIiIiIiIiKiAuDDMiIiIiIiIiIiohKGYZaseXEzzvvGPXjw0XUYN3YMunaZiEs/egQOfOf1mL1nO3q39WNiy1h88G3746w37Q0AuOLGx3D+d+7HbtMmoHdbH84+dV985B2vBgBc9pu/43vXLcOYhga0jm/EDz91FPabObnithW022vIGUKu7n8wfg4qX+Pv7AwzHLWPLNvyGu7afHdfvPPcYLwfLsuXr0M3ds1M3V6IEDVrKIB5fOVnGX9hvuu+Zk3laSAZotbYZK3nYD2M79l0842D0zPl6+AAcMYZg5M7Wo1XtptFSKUtfkQcpx2WOppfO+108G1nZWGAol6yjWzalF6eGYIiowfNaEHXEDVpc29ynnzbva01fHiZTxm2+pvHUK5nhiU0veMdlQsxjpNveFno7+28jhFOn+i3pk9PzJLnQ8Phh8czfve7ZBkifPnnP38pMetDHxKN0jx/5XkpTqgQfZ2tHPPn8tib4coTJsTTO09LDwN09t3vJj/LDf7bvyXnOYaF29q/675MLLd0aXKmqLN5LcM558TTc+emlh8iFMk13YNNHmGwtnokzrfzzhucbJJpDgDghhsSW0vbdouRpsBnv7qGRAHAHtddGn+QF713vjO5omvaCUe+KTuaGu3LDvVzoDwVhLSxJ7leWuSuWX/5+U93J8uYPj3+bF6nmxor3wNmOc990mFkESI81FZG2v0yYOyfDSJ80EwrItruxubkveLq1XGZU6fGP/dNqWHKO5TW516u6db/S3z+68knD07fYyz7LjE987HHUst0/RXR+r1FP9JwxtuT8+TJZqbDGDcunjZj1efMif5Xyq2CdYxvII1MfFgGQGuNUz9xC85609741SXHAwCWPN6NF17cgr12a8Pin58GAHjq2Y146ydvxY4dGu8+ZR8AwOnHz8R3zz8SL77ci30WXIO3HTcTu+/cin95/Syc89b9AAD/86cV+Oi37sXN3zqpNl+QiIiIiIiIiIic8CEogNsffg5jGxsGH24BwNy9O7D7zsk/Wc3crQ3fOO9wfPvXS80iMHVSM2Z1TsLz3ZsBAG2t8RsBr2zpgxoFT9SJiIiIiIiIiOod3ywDsPTJl3DIbEuYmHDwPh1YvnJD2c9XrelB77Z+vHrWlMGffe/aZfjG1X/Dtu078MfvnVy2TiXWV7QtQ82Yr9Xuu29cju2V9gRzJEj52RjdpEF+lu/+GmFEroKEUllG0nINDTOjGNvb4/VamnMesccWJtmaPq9BhgrZhvHyJV+3njcvOc8SupX4Ppb628ivY3412a5dwxwyhWjK+ottjx2bXE6GXpq7W342z0OfcAzbuewaFpJHOKKNaziPGRX10ENxX3rggfHPp1madNm2ZIij7dyw7NhQ7WmQLVbCaECJ8uV5+NWvppZ5yinJWOCBCAgA5eevkAhPMUeGdQyV9iW/trl75KEJEsL0lrckP8t2YYbBBggt9Ar7kSMcA8BnP5u+rOM1N1RorSR3nYy6Mm8l5KU571QQ5kiiiQZ14YXxtNkfiM99fck2boYWJrYXuP5mqH3L294Wf7Cch66jlxfVunXxtJnOQIb6tbYO/7uY0cqy/zGv4aHD9mwh6Gl1ylqmD1nGqtXp+3iPTsu25IluXFO3Ncaj+G5JZgpIhF6+8ko8/de/JpeTEfMyPB8ADjoonpYDrAPpxzD4tT2LY49NfHz9jXG6k9fLka8BfEUMc/nvIk640cg8I7s0eT4BwM6WkNbE/pH9pVGPBNt9TM6jGhNVGx+WZWSOfHvNbU/h9oefx2OrNuDyTx2F5nHxLv3ggv3xwQX746rfP4GLf/oXXHnBsSAiIiIiIiKikaH4f5YgHzyuAPafORkPL+8eekEAix/vxr5d7YOfTz9+Jpb9agHu+sGb8bFv34c1L24uW+eME/bCDXeuCFRbIiIiIiIiIiLKCx+WAThu3q7Yur0fl9/w6ODPHvz7Wqxckxz2bsVzm/Dxb9+HDy2YYxaBIw7YGWee+Cp861dRPrN/rHp5cN7//XkVXrX7pJxqT0REREREREREoTAME4BSCr/96utx3jfvxVd+tgTNTY3o2qUVl37kNXjy2Y046Mzr0butHxNbxuJDC+YMjoRp+uS7DsTB7/oNPr1wLr577TLc9uCzGNvYgMkTm3DlBcekbl9DOeWUyBJf39bqNlRyYp4ZZy5zDpjDQMvPctosQ37OI59WAHKfjBkT/vlxliHYfSRyl1jyCWUZrj5RfvuU1Hl5s+USkXz3o+s+aWyMyzdTNYTOBVRWnjxvjJ2QxzDoaXzze9jqmPycXr6ZwyZRRq94m9fMPeacsNFNkH3s2e/J87DBHLZd9MEXX5w8X2UX/D83JvexzAEjc5vNmdOWLENM22rvu3/kejJPZJb1nMkcjwbX/Fwm2T/YOOcVbG5JLify1OTNrKPMP3brrcllly2Lp2UVTzwxuZwtvU1wlj4Ss/Z2K8NyrJ2ZSRgd8/iUdVmW9iq5XgvyyLsVYtnx4+P6l3WRon9rMGeK/WrLpyj3j3kocs9PZWG5vLvr7U2f53ENtKTzs/dhlhs2+cl2PZfM4yT7keXLk/N+//t4+vjjk/OOOSae3tUvrbIX2+9bZh/fd8KbBqfNVjz35Djn9QsvxXOnGXnIZC4+37RhiX7ETP6WspyplucTUR6K8bSiAHadNgG//tLxZT/f8qf3pq6z8OR9sPDk+MHZrtMmYM3vzgQAfOtjrwlfSSIiIiIiIiIqBAWG641UPK5EREREREREREQlfLOsjvm86moNVzPfAZefzeHpOzoql2F75bsgYZc25uvheVfZJ0TTfONefg4RhRYqpDFEiKnP/rG++p6hTrKc0KGWtm2VCdwIfcOCfUMtXZmhWgceGE9bd4Fo5CHarmuoXDWkfZ+yMD0RJ/Pq6WuTC4u+esOGZHk77xxPyzC6Kav/lixDhGM8153ctjxuzc3h911RQjqqefnK4zvbzg15DZFhl+a83XdPzpNhQDJa0HYdqvbxdN2e3D9Borc946BCpG0Ice31ta0vuW153ti+m9xdZcutWBFPmxcKsWKI63S10xkEaWuWQpzTPQhm5K8tBN1lWyZbRpaxY+Np268dZoSgLNP115U87lltbPs8Ecp/7LGJeSf+938PTm8Tv6OUpd9plL8cuDes1HQAjtcMUx73AUS1xDfLiIiIiIiIiIiISor/qg8RERERERERUQHxDaSRiceViIiIiIiIiIiohG+WFYCCHozpzpIzyLbsmjXxtBm/n8aez6wp9bMt34/kG7fuk3PEV1Oje76rvL+3K8to3UG4Dm2ed46y4Szro5p5X3xzm4XeB1nKS8vzEirnlzksuks9fNUyx08QspNfvTo5T+SzmT27LTFLns9NfZvjD7c9klpGe+feiVmbNqVXqyVEPp4acu3ja8mn7zDXke3ATLUl+38zXVR3dzwt0ybJnwPJ/DbTp/v1D7LOtpxH1vLkijIPFoAGkQTJ3D+be+PPLc1+eY7yvl7Zypd5xBK5kQA09G2DmDnsepi5jDxTt6UXaqmjLfdY4rOlAbney/leK/MQunzzPrjJsVm45tuz5WmT82zN0eyLbHnVqplvMsTvAmZOUpz85sFJ+VVkvwQALUES4KWT+9i87sv7NeYoo5GmmHd/RERERERERERENcA3y4iIiIiIiIiIMlKlfzTy8GFZwYR6fVUO/+4ahmkLbbBJvuLvto4pxPeu9jDQads2t+s7LHlamTm/aV1WRzNsI23ZPMJRfPZdUcOlqi30vnMtI49wa1u9enriaVv/Y/ZvruFBtQyxdiY7hc7O1HnWrkPuH2PoehnzYvY/j4iIzV12Sc7bw6iKi6KGV/u2z7yF2F+uIUzm+dXRUbkMeU6ay4Vg1sN5H8gVzfMksDzasW+ZMoqxrN8LEKNmC5F1Zf1usgGZ8Xei/l7tIEs9BHnfaxZpCwHN4z4pjzQIobnW0Xa/6ZoSxHaP7Byqa2Grv2/ovs96ef8uYJL7fPLk5Lx6SFlA5IstmoiIiIiIiIiIqIRvlhEREREREREReRhT6wpQLvhmGRERERERERERUQnfLCsADTUY4+2bp8DU3l75OWiWvGQyz4VtOHBbGUXJlxBCLb9LiDwIVpZEIw0ew6pn4fp9bHkiXMuwtf9a5ryzqWa7y7IP0va/7360fU/bsbbl7fDNn+NSj2pI2565D+QQ8s3GsPNp+VTKypE70kh0aTuG++4bTwdIf1SmmjnjXPOS+ea6KSp56M1zxnYOyXnjxlUuD3DPD2gTYh8n23v6eWKqdm6g0HzqnyX3lZzX3Jx+vnpfC7q64mnLl8m7rwhxT+CbF8s1r2De+UlD5ESzrSO/i5mebsuWePqVV9LLN9crynUidPl5s9WjybjW2/IW5nFfQFRNxfhtkIiIiIiIiIiIqAD4vJeIiIiIiIiIKCMFvoE0UvFhWQEo6OCvCbsO6S5fVzbn2cIwt2+Pp6dNi6dDvT4cYn/4lOH7irNvKKHkWt9gbcU84AOMmJnQr32HCKc0l3Utw3wdPPQ+zxKiUJQwTynLsSlK6JlrKLkZGrBhQzwtI3tch50HarcPzO3aQp8ks/6rV8fTMnQ/S9icXNY1BDdUuoG8hQipqWYYaQjm+SSPr3luyPPL1mZ8wsTy4Nvf+/TVtnWypAMIwTUMKhnO7bct23q+1/paxsGm1dMWFmmGqIUQIt1JiP6sGmUOMA+73AdjxwbdVC6qfb8QIuVFCAy7pJGmeL+tERERERERERER1QgflhEREREREREREZXwZcmRwgipa5IjGIpRn8xwSvkquQxLqrSsZAyWlqt6CGPxDi+opRqFNoQadTLt2NvKt80z23va7vENFTWjXtNeVTfDO1pb3cIc8mh3eb/W39C3Lf5geXffdgxl6JCtDzNHyJKh5HI5W+iHGWqWZwhKNchw/RChE7UMO8kjjN21Xw8RolmUEB2TrV3Ieb7tpyihQ77H1+fab9tXeZxDtjI29sTbe+KJ+Odz5iSXCx1amHcYYN73YUUaIdW1H6lVepOh+Jw3IUbYzVKPoqTUCDHaabX7mNGkTn77o4xGxcOyQ95zfa2rYDV+4rShFyIiIiIiIiIiotyNiodl8758Wq2rYLXyFytqXQUiIiIiIiIiIgLfGCQiIiIiIiIiIho0Kt4s87H0xqVYduMyNIxpwJ7z98T8s+bjqbufwsNXP4yXVr+EU79+Kqa9KgqfXPv4Wtz1vbsAAFprHPKOQzDjiBnhK2VLImYm6xEaRGKaZpG/DEjmACjPlRRPu+ZbMoWI5Q8Ro++dU6mK2w6du2uo8htSDmKRcq75HLcsuRokc3ckz4d4vZdeSi73yitp6wCTJsXTEycm56XlPLENSZ+3quflcMxT5lsPmafM3N+yT5N9ncxlZn7OI09KCLLNZMkdFTrvjm/7seUaCtEH+Pb/jz8RlyP38ezZ9u35KGr+O1mXxsbk97TdP6Qtl7dq5zgt0vUyja1tyT7AzOsYQt5t2TVPmev5lXfuz1A5W4dbD1PofRIiN2SofiOt/mYdGzasjz90dycXtlwA0upf7f4m73x1vuqhjwxl9HzT0YUPyyro396Ph69+GKdfdjqaWppw1XuvwoGnHYjJe07GCZ86AXf9112J5afsOQWnfuNUNIxpwOb1m3Hdh6/DnvP3RMMYnjZERERERERERPWED8sq2LJhC1raW9A8sRnrV0V/aWhqacK41nEVl28cF+/Gvm19UFBVqScREREREREREYXFh2UV6B0aUMDiaxfjoV8+hNmvnw3VYH8Atvaxtbjz23di07pNOPYjx1bnrTJbWGbKmO7ma/a2EAtbyFFayEVfX7IM+Yq/uY4MZ5s8OTnPrEsaWf8Qr7fn/dq0rY5mJK3cdy3N6aEG1Q478ZF3HUOEF5jtU55e8rwx2+r48en1kqehLeRN1rHJ6JVd27GtbYUIDcg7nNh12+s3pPdT5j627X95fH1DyFxDgKTly5Ofu7riaXmem7KEEKcxv2eIMBfXEErbcrUMQZTbXr06OU+2kc7O4W+rliFYeexX2X7MVA2SPEfN/s2Hud/kcTKjp/borM010Hd/53Fu2NZraozndXamh8C51sO3jpt74/KXLEnOk1FvU9rdtp0lHYPtPtK2nivXesn+2Tyf5PXL1m+b985FTANS7XBB5+8md7Itb4NFUVIRZJH39bcov4cQ+WKcoMVBCw7CmT8/Ez1re/Do7x+1LrvTPjthwfcW4NT/PBVLrluCvm01TDxERERERERERLlSiB6q1Ps/Ksf9MoTmic3Y66i90P1k99ALA5i8+2Q0NjfipZUvDb0wEREREREREREVCh+Wpejp7sGGZzcAiEa7bN+tPXXZjWs2Ykd/9JrpprWb8PKzL2PizhNTlyciIiIiIiIiomJizrIUDWMacMslt0CNUZi0yyQcdtZhePrep3HPD+/Blpe34OaLbsbUmVNx0hdOwppH1+CvX/wrGhobAAUcec6RaG6zJCiysMaq25IemYk6UpKFNViSHUyfnvwsFzXzl+U9FHyIPAs++YTyzudkWrEinjb3aVrOOFvemyz1CJ0vx7e80EO6+x4LW74r28/bWsPmOAmxH0MJnS/HN4+MnGfri2x5Fk2yv7PlLNu+PX2ezz43+9lNm+JpM99MWhvMkvtKzgudoyyU0G3Lt7yOjuRnmavQtW2FyEtWpDyUrrnyZP9py7/pmo8UcP+usnzzGKbVv0jtWLLlFcw7t1De93Wu+bpsffzGHvfcuiHqFXo/2/oHWw5AeR2aNi1olcrqlaXPCtG/VfNe3VoPW0ciGlqI+tvqwhxfRMXCh2UpWia3YMF3FyR+NuOIGZhxxIyyZfc+dm/sfeze1aoaERERERERERUAw/VGJh5XIiIiIiIiIiKiklHxZtlNn7op8zoTJk7wWs9HR1vH0AtVIl8ZlvEi5jxb+GbKKr7M1/jlq/VmpGgIIV5XzuN1btfyJ0yIp8ePT85zDYlwrb9reFAtXwHPe/hy23rmtvMOSXHle3ylau/XENLqbDsu5jxb/VtbK5dvC8kMweyqe3vd1rN9l6KEbYTui0Jtz7V88xro0xayhBrL8uV0S3P6/rGmasiBa4iR6+2IL9u2ZdjnlHa/fjBEuLgv11Dpap7nobYlv5ts4+b3lG1k1qzkvNWr42kz7FKu19QYtj8whU4PYitz3LhkGWPHpm/P1k81if2cd+hx2rE2ud5b2UKSbYKkpDA7LfG5ltfbEPeDrqp9rSEqqoL8OpivZ5Y+U+sqWJ29aFGtq0BERERERERERBglD8uIiIiIiIiIiEJSYG6rkYrHlYiIiIiIiIiIqIRvlhWMd0y4mSQkMN8cMzLHgK2KZi6CvPNpueYnCZEHyrbcxInxdB65kkLkaAktyzHMezjtan5vU9r3yTuviC/f4dKLMiS6a/1D5KrLkq/FlrMs0WcuWRJPd3UlltvRPmVw2rfPCp3/y1Z+qD43xPkrj5Vr/jhbviWT7fs0Nlauf5bvVc3zy7X85uZ8c934XitDXM9t90IhcmfWI9s+kJ/T2ns0L542c491dMTrmedaNXOLhug/XU2e7L5siH3g25du64vXk/2neY6aueZcZMlB6rpclnyEw+V7rxsiV1iW71LNe1GiesQ3y4iIiIiIiIiIiEr4ZhkRERERERERkQdV6wpQLviwbKTwfA+7mmF6WYaPT3v91/fVYt/Xt13DC3z3ozxseYQT1Ptr1CFCt/IWoo3koSjhWbUMdZVcz+0Q9c1yLstlt2xJzpOhLE2yAzU2EPr45nHMQpTpmw7ARu5K8xqVFu5nO76+x8JWpgxv2rQpfblp0/INfwwhSz+etqy5r3xCvEIp4j4OwTfs3sa6r+TJZhzgnLOMJIQ4niHKCHU/mPd9gK3/TFvOppr3Krm0Y8FWvnlteemleHraNJ9aJWW5VrreC43Uvo5oKMX4LYaIiIiIiIiIiKgA+LCMiIiIiIiIiIiohGGYRbB1K7BmTTRtxhO4vuOcZfi1HOU9ElsoaXWRI/sAyV3n+0qy7Xu7HhrfV+lt66XVK8QoOkPN85FHCJbvtn3q4bs/8i7fVbVHevMJl/BtI6HD0bPUQ4Zevvxycp4cLbdJjoBZzSHghiHvMOQQbV5eOl1HWTRH68u7L5KHu78/Oa+nJ54ePz45r62G4YmS3D/mPpYhpuZoiWm3POZxt42yWG8296bvg6KmG/DpZ8u+S0HuU/NYr5psx8Y1ZYTJ9frYFOB+2VWo+9QQ66T1bzK00rR1a/LzvffG0wsWpJdv4xpC6TsiaFFGNi+yMbWuAOVi5NxhEBERERERERERDRMflhEREREREREREZXwYRkREREREREREVFJfSQ+Gem0jgPdXZOmmGTiDyA12UeWOP8QeViKlKcsTTJnSvpyrnk6suTzkIfb8RCW5Wcpyn60fe888nUV9XvnWX7euZF881xUMx9bHsO9+7ZV12Vty40dG2+7uzs5b/r0eHpHa0vm7Waph20535xuaevJPFtAst9tsaTmzJut/0/kKTOu04lvaV7DZaEB8jKZ1wW5L839Ws2cZa7npbkL5Gff258QfXCIPiZEH2lrItXMX7luXfKzzJ/Y3JzvdciWO9aU9l3r4d4hC9/26fNds9wHpF0789jHrtfpPO6TXO/jZR/84ovJ5WQ7NvvqZcvi6YMOSs6bNavydkPlDPZpW3nnpKtHCnwDaaTicSUiIiIiIiIiIirhwzIiIiIiIiIiIqIShmEWjRmLJ9/vNeMvbPELjuEeeYc3ObPFX4jv4jucczWHCrftxxUrkp/lYWpvT86Tu8R2qJs8QhQqlTPAbIJSqxHW4zsUeVoZWfgc37zDGPPmOix8pWV9yg+1bJ5l1DvZraeFXgNmuHjyWCdCBM34DlmoZxigbzhu2rJbtiQ/jx/vVS1ntvo7X0Zt8Y7y8+rVyXkdHfH0nDkOtbUz28ikSfH02LHp64W4Htr4lilD+sz9n3bcsoSJ5d0Phi4jcS4bXK9ftjBGW73uuy+eNo/FPvvE02YbdP2usg+zhXLaUlK4dmGhwvRC3Fvk3QZl99NnHHt5z2ZrB7b6F+W+KdkmLdfAqtYjuf+3b09fz9Z2J0yIpxcvTs6TYZjV7JvM7yk/b9qUnDdtWr7XF6Ja4sMyIiIiIiIiIiIPxXisTKHxuBIREREREREREZXwYRkREREREREREVEJwzCLQOs4GNxMCiUZAe+JHCS29YRQOYnS8ofY8lZZh5w2g/l9x5BP2baN3HSWlD6ueXzkVzGHY5e5ehzTtpXVsaMj3naWvA1puXrMfEKvvJJeRzPPWmghcuqllReqTFd5D7VdyzwRvkO6h8jlEvoYZqlj2vc2cwbJ89Isf8OGeNrM1SPPxa1b42mZBgsAmvrEimbOrM7OeNq4TuSdxyqNmaPMlqstBNc24pnSLcn8Mh6dpHksZI46sw+ePDlz8YVlXr/kcZPfuzynle34Zr8++uZE8+krstZluF5YlyxP5rkzc6pKXV3xdHluv/TvllZ/W35AW3revNVjviXb/WHavitKHrIsbPklq3ktc00Rbf5c5jYz+7BddomnX3wxOa+abVJ+N/N7ynuVvK/ZREXCh2VERERERERERBkpMFxvpOJxJSIiIiIiIiIiKuGbZUWwY0f8Tq5nnNuOxqbE51oNl17L8rOQdTGH2paaAgxTLkMUpk1LzrO98pz2ynkeIQmyzP7+5DwZOmob0r0l59eyXcM7fMML8mif9RjqkMZ1/1T7O/vWy2c9WxuU0+Y5atsnY8bE02ZogwyRevnleLosZLtZbPDpp5PzZGVkSCaM8Hcx7XsMXddzzBpQc6ltxOwI//GPeNqMMZ0+PXP5tv1otq1EaGFZw4gXzvs8ceXbtmxheq4pDKxkjFRrm3O9pFqFNZts4aZbtyb3vwy9lPvVvPWU56zvPYhr6JZZfkPv5uEXKsvL4djkfY9ma1v2MOTsGvq2pdfD+F2jmuT3dr03N6WFdpts5ZvHVzZB2Y2YTVNeNsxr4Jw58bSZScGV672KSS4r62juH3mvsn27Wz0q1YWo3oyc3+SIiIiIiIiIiIiGiW+WERERERERERF54BtIIxOPKxERERERERERUQnfLCs6S/KDWsaB577tKo4V7ptrIi0/gC03QEdH+rbXrEnflsx9YBtWPUuugLQ6m+VPnlx5W0Cy/r55Clz3nWuuG1uuBt8cFTauuSDy5rr/q51PIkSuM1sZrnmCfNqjbVt5MPuHtPP+ttuSy731ZPFBju8OAN3d8bSZa0ueELNmxdMZcjZVM0edbxux9THWdiH3j9yvZlIZmadM7kcg+LWsrDhLp+bTZ9ayP3A9vjIPaPTZbdsbe9Kvc02W3Fde1x7jXGtwzK1V7T4mrfmY+VVteQZDX+vLmH2aJL9QgHPN9zrqWqbv+eW971LKMPneX9Uz3+ZiW8+W90+ea+Y8WaY5b/2G+NhMaR9++7GR9Tf7BtkH2O6liUYaPiwjIiIiIiIiIvLAcL2RiceViIiIiIiIiIiohG+WFY35/q2F66vd2/ri5cqG5A7wSrVrPYoSrhaKT53NUAb5KrNtnu8rz65DSSfnJY+TfC3bFoph1tE3rDFNiHC+TFLic6sdfmHjU2aoeqTthyzl+xwrW5iMbxiva53NNh4iwm7s2HhaRvOZ5ctLg23Ydjz2WPoGzBgsGU4oTu6GWeknurkffcPYpRBhtt7bMkNT0+Y98UQ8bTaEefPiacs13Lftpq0DwNo3pUWvmf146L662mz7UR7CLVviafMQTml32wnO11HPk8G1fN/rnK0Ps3UVcjnzlGluTj9Hg1xv5AYtNyF5X29tqpg5JFOqCfnZ+ThZvoxvmKrrdaIoaSF815N9aWNreri4GZUt98+ECcl5sh+f0h5PZ7nfca2/rKPtONnambnewO+gWjtVgahw+GYZERERERERERFRSZ3/PZGIiIiIiIiIqPoU+AbSSMWHZUUwbhwwfXo0bby/GiJ0KO/Xw31DaOQ81/CUPELI5OvQtn2VxyiCcnsDTWBAWvhIluPpE7poG23T9up4eXhH9uNW1HDcao74l7e8R8MMMSLrUPPSthc6rDwPZh1bW9O319QoRgAUy51+7NrkgktWxNP33ZecJ+OpzE5m06Z4Wo6aacbv9fQMTjbMnZuc1zoFdcWMIZPDEMt9ACQ7P7kfjRi1He3D3wchQuzMryY/Ow7GWFMhRuszr0OyKcvDliW1gVcKgMYmrzKcy8+wnNy2OJUBJKMaXa/1IWQ61vIg2oYRdFUeR+pULynvdAOhVDM81PY9bfeKefdNPvs/j3tR2/eUx0mOQG9+9m1Loe+TzHZVzXZGVG2jonkfctghta6C1fixTUMvREREREREREREuRsVD8vmfXbe0AvV0MqfPjH0QkRERERERERElLtR8bCMiIiIiIiIiCg0VesKUC74sCzF0huXYtmNy9AwpgF7zt8T88+aj/t+eh9WPrASYxrHoG2XNhx97tEY1zoOqxevxgM/ewD9ff0Y0zgGhy08DLsduJvztvTYsYM5T2zDOZux6tUcJts3z5Hvcmlx+aHyLcn1mjLkKUub55uXSTJj/mUuEd+cDj5tJMu2XPMU+LbVWg4Fv6Nx+OHRMjeH2c7S2kK97B+fPD5553nJOx+ba3vPsl2vMm+9NTmzvz+ePvnk5Lx54s3qzs7kvLSkVmYnIJczEs745CoJkZvKm62jtS0rE17lnGTHt92aX01W0/Y1Q+zzavY/WbYlU9LJdFctzWHqGyLXnORahm9farYDW7uQZBdQ9Ty4coOOG7deCyxluOYJ9s0nnMc1ynY/69UmLQnqGjwPfhFzp+Wdo9j19xpTE7YlfyBy9u3o2ClzPSrVRXK9F5XLyXyqtjKAeD8rPkmiOsWHZRX0b+/Hw1c/jNMvOx1NLU246r1X4cDTDkTn3E7Mf9d8NIxpwP1X3I8l1y3BYQsPQ3NbM97w2TdgwtQJWL9yPW664Ca884p31vprEBERERERERFRRiNniLeAtmzYgpb2FjRPbMaGZzcAAJpamtB5UCcaxkS7bKd9dsIrL74CAOjYqwMTpk4AAEzeYzL6t/ejf3t/xbKJiIiIiIiIiKi4+GZZBXqHBhSw+NrFeOiXD2H262dDNSTfH33stsew15F7la379D1Po2NmB8aMHVOt6gLwfyU8xPaKGn4h2V6pDv1dfMsw33z3iDwor0vftvSZKWGG1Q6Vs6lmGJ3rq/tZykyulyxfrhfie+YRvuZ6brhuO0s/5ROmWstQdV9eYVxjx6bOumX2uYnPyx+Kp82hbl4zSzRQWximjF9zjdtC+NAV137cWqZ5wsrwSjltESoEy4dtH9giTF2vITLcbiiymeR9rvmWOX16PJ3YB+YXDRBaGzok0ywzhAynb4LtfiR0HcvaeFdX/CFECHSGG6o8jqkUIh2DjVc55g2P/OzZgGTYXt6h9r7hj7YyQnAu09z/IgwTIgzT9jtDHvUKkW5mJFMAqvubP1XL6GzRjg5acBDO/PmZ6Fnbg0d//+jgz//y67+gYUwDZh0zK7H8+lXrcf+V9+O1H3httatKREREREREREQB8GHZEJonNmOvo/ZC95PdAIDH//A4Vj24Csd97Dgoka2wp7sHt37pVhx73rFo26WtVtUlIiIiIiIiIqJh4MOyFD3dPYP5ytY+vhbtu7XjmYefwZLfLMEbPvsGNI6L33fd2rMVN190Mw5916GYvt/0lBKJiIiIiIiIiKjomLMsRcOYBtxyyS1QYxQm7TIJh511GK7/8PXo7+vHTZ+/CUCU5P+1H3gtlv3fMmx8fiMWX7MYi69ZDAA46QsnYXz7+OrVN+d8PK7lZ8nlUpRcZ77z0vgOOR1iaG3rkOtZ1quRardj19wKtt1oy9Xgk14lj6HlQ7DVK+88Ta6y5LsKvb0Qedtcl22YZ2YfizWuSH6WabjK0s2IhE7PbWiJ1zGWa2oVuQ+Nk6Ga56zvMSxK7jpb+8wjX2ZTSr/lux9DXKPyJnMjAcCuqX+/rO6XsR3rELk/Q7cfs3zfY+/63azXkNY2p+Xq4T64LpgHO/CJHyr3sI+i9GHW89eWV9NRlmtN3tehuj8fMhg933R0KUi3UTwtk1uw4LsLEj8744dnVFz24NMPxsGnH1yNahERERERERERUY74EJSIiIiIiIiIiKhkVLxZdtOnbsq8zoSJE7zW89HR1uH06muWEKMQoSt5Dwdu21YeYZ/VkmW7IcI8XedZt22OQS1Z3lu3tbPch5MvSBiv6yvs1R4uvd7Kz+NcrubxCLEt1/CFHV0zU8s4rnNb8gc9PfG0GRcsPt93X/zjOXOSi+09y+9WIe/wx7Tya3mu1ft57hM6DtThNdu4roUI8a0m3zbouo+zhFJVsy+1bbuWIdah+/ia8oxVrObvDHkoyj1l2f5vb6+4XlqYPRGFNSpOtWeWPlPrKlidvWhRratARERERERERBkV8NE3BcDjSkREREREREREVDIq3iyrZ9v64ueZ5pu5IULDQggR5ukaYlekkQJTR6oLVKcQr6A718Xy2r1rSEeI751lxMW0Np4lzKGWoaJp86o9UlQexy3EtkKHYFQzpCOPkK6GNc/FH667Ljnz5JMHJz9xWTJEc/XqKYPTH/94crW5c+PpWbPi6UmThqxqZnmHK9fyPLdtK8RIh7byfdjqaEbkF2X0uBBs39McRdOlDJs87gNkmRt7kvWQI93m3QaLynfE0dD3MbbyQyyXN+90Hp5luJSXhyzXIZ8w81Ch0iF+n3O9Fy1MmDxRgdTf1ZCIiIiIiIiIiCgnI+hvhkRERERERERE1aHAN5BGKh5XIiIiIiIiIiKiEr5ZVgAaajBOPFRMuE85thj9vPMP5BEL7xN775urQa6XJe9WaNXOKSBz6plC5IBxPR6+eSJ8ckpUu62GFmro+mrn7sm63aG2HaJ/81nPe//L5FEyQZEx74knkrO6u+Pp3t704l89J0x+FZ/lXMsP0eZ8v0s1c/CYx0l+bm1N1iPRzwZIOOZbRO45oXp64unVq9PndXYmZm3r2LViceY+bhKnlG/uTNvPXfui9RuS6zU3x9Pd3ek51+RyjY3Dv6b6CtHfv7AuWcfJk+Np1/sKm2rm6RxKWv9Wl/mhRKNssHUkZqcil5VlGMvtaGxyqkYe56jrsXEtw+x/1qyJp9vbk/Vqb69cRhau9ZL1mD49fbk8rpVERcUWTUREREREREREVMI3y4iIiIiIiIiIPPANpJGJD8sKQEGnvtIqXzkPESoUatjhWr1mW8tX031DunyHMw9RL1ehw6B8Vbud5T1Mdt5Dfqdty7d839ChEPXIW4j9n8d54hrOsKNjp3jGwvekrvP1ryc/y/Csjo7kPBn9IkO3fMNMbMsWtV1I1Qy1rCXb9/SI3BzW9rz6H7OSthCvFPK8qAaZssAWSmirvi0S2yZEWg5fPuWMHetXXj2mSEi7R8gjzNO1Hr5leHM8Z133Tx7HLPQ+sHVh27enbzvvlBFjxngVTzSiFf/ulYiIiIiIiIiIqEr4sIyIiIiIiIiIiKiEYZhERERERERERBkp8A2kkYoPy0YI16HOswyJ7sp3vRD5nGxlhM715JpPxXdI5VoOZ97Qty19piWfhC33Slpdsuwfn2OYZR/LZctHOnerv3POKc9z1JdPe7LtnxBDhdv2QR55Rnz6mFD5ukJz3VczN/wl+YPbbounZ81KzNrxlrcOTi9dGv+8szNZ/pT27Hnbssyrdv6Z4crSDnzOITOfVkuz4/YCJBwzi8g7Z59z39HaFm9rlnvCriaP3Iq+/aAvWb6Zi0xur2V69vIqfU4r3+XnQ5UXQnu7e11cuX4f3+uEbxvJ+7tVlUfuQFsZoXJ/Sr7XmtD5Z5uM3bNHZ/p6Pueb7332ztPcys/j2BAVVfHuQomIiIiIiIiIiGqED8uIiIiIiIiIiIhKGIZZMHkPXR/qddjQr46HCO/wDeGrZbiBjU8YozczBlGyvE7vs3/yHta7SGFbtnqFCHG0hVGHbj++55dtHds+CB164CqP72kr35XzvjLjuLq742kjvkmGX2/Z0jQ4bQ5d71PHSvUcrhBtJNS2XetRy+tL3uGD1ZR3W5LyOC7yMlqka5SPaocZ2oS+jvoKdV0dbnk+28qyvbz7eFchQiHrJZQwbdt5p65wrQfF6rtnpzQ8rkRERERERERERCV8WEZERERERERERFTCh2VEREREREREREQlzFlWcL298bQ5nLwr35wOIXKKuc4LMVy3KfRQzyHKzzvnTpbvmdi2pXEVMW+byTV3l628psZ88zH41ivU9ly2Za6Tdy5E1/4hxLZ86+GTV62WuT12zNo78bnh3//dab0DDoinLWkKg8jSBm3nSTXzWOUhSK5FmW/SOHDy/qG3Ny7fTGtnO94hcgeGyNNnK9/1RimPfDx558sMcQ2sN2XnucitaDZWn/2f9/1g3mzbMtPP9vTE0/LU8P19InRuNl8h8jtX+zzJu32G3rbtXiiPbY8EqtYVoFyMnhZMREREREREREQ0BD4sIyIiIiIiIiIiKmEYZgFoqNTXVDdtiqd9X5v25frqbN6hkDaur+AXZbhrU95hbtUss9qv5xflGPpyDZMMEQrsex7mPYx46L4j7/Pcd3+4hnL6hvkkwpRk3A2Aba1TUteTocctjmHIvu3HNVTatr1qX2tcwwB926cXM85KhiCWhWG2DE53d8c/N8MwbULsy9DXhm19yZ83hchXkQhnbUrMChF+57oPXliXLG/y5MrLVTtUupp9aRl5bOSxBlIbs7W+Gzakl2EJ87TxSVviy9Z/mrtnzZp4Wn7NPTot9TD7GLmtDOdG2nIh+nvXbfmq5e8MIbadJVS3sTHf39OI6h0flhERERERERERZaQAjKl1JSgXDMMkIiIiIiIiIiIq4ZtlBaCgU199HT/ePbRQch3xxWektyKp5ugytQw3DcLyar0tpsO1/fi+Ou4zImIocpc0sTf0lsfIsyH6H5/wR98QQZsQYaSJMlavTq4oG7KMuwHQ1NkZl9+5R+r2rHX83e/i6X33TZbRNTO1jND7pyijVdY0rN/sqy19t5wloxPNkX/r7dpmXsqa2tud1rPW3zGu0fXY+/Zf/f3p8/IIvazmiL6bxYisGZpx8oCbIZSJRt4CJ7YyssQoC0UZDdPcj/K8d24/nveDIbiGDzpG41rLLA9HHKp24dhG9N3h2I6LMjor0UjHs4mIiIiIiIiIiKiE71IQEREREREREXngG0gjE48rERERERERERFRCd8sK7i2Vr98Y65CD2OdR5x83sNHu+5H11xG1d4H1pxfS/8Wf+juTq44a1Y8PX16PG0kbvDdPz5qmTevpnmIHLfrmlvILCdE/+B6LGz1yLKPXXMB+eYDc53nI1hbkklV5Hm5fHlyue3b42kz6ZFI5tIg8peVeeKJePqOOxKzNp599uB028UXJ9f71GfSy6wi3/Omlnm4gmxbJiUytIny2/xSMSWEyBEa4lxrafbbb77b9lnPdx/IS/FQ5biW6Srvc0HmmTKbrezeyuqRlnzPmOdcfzPHnSVZlev9T09PPG37bs6sOWabUhc1t2Xr8msl7/u8EHnPyvOZVS93o2t+Vd8yQuRmy3IMB84NWz5GoiLjwzIiIiIiIiIioowUGK43UvG4EhERERERERFRKqVUg1LqI0qp5UqpXqXUM0qp/1RKTchQxklKqXuUUq8opdYrpa5VSs2osNzRSqnvKaUeUUptUkqtU0r9WSn1DqWUCvvNKuObZSNEHiFkPmEEtldzfUNh8g7pqGYYTtWHer7vvnh69erkvJT3831D/fJgC+FLCz3IUif5ar0pRJizjes5FHpb1Q47C92us4Qo5B3G67pfg9RDNviOjuS8FSviaTPESIZfy+XMZa+9Np7+0Y8Si4lgbhz57LOJebUMY0yTx3HP+5oqBetnN2yIp2U76OpKli860Cz7Li2kqbW1mH+H9T1H5fdsaixeezfZIvheein5efz4eFoetzzOaxkt3pohLHhHc0v8QU7Dr56bm6ckPsv7B99fiuQ+N/e/V5sxCxGfGxqT8xqNfZImxDGt5u8a5rbkfmxqtS+bJnGsjYNtO29sXO/lrPvKEk5fzWuP6zo+1wmtM1eBiuubAM4F8FsA/wlg39Lng5RSx2utrQ1OKfVWANcB+CuA8wFMAnAegD8rpeZprZ8Ti38VQGdpW48AmADgdABXATgOwPvDfa3K+LCMiIiIiIiIiIgqUkrtD+BDAH6jtT5N/PxpAN8GcAaiB1lp648F8B0AzwB4rda6p/Tz3wF4GMCFABaJVT4J4G6tdb8o41sAbgfwPqXUt7TWS8N8u8qK+ec/IiIiIiIiIqKCaxgB/xy8A1GKtkuNn18OYDOAdw6x/tEAdgXwo4EHZQCgtV4C4A4Ap5ceqA38/E75oKz0sx2I3kwDgDlu1fbHh2VERERERERERJTmUAA7ADwgf6i17gWwpDR/qPUB4N4K8+4D0AZgb4d6DOQSesFh2WEZFWGYhxx2SK2rYDXeEqtey1xDNj7DF9tyHeSRz8xHlnwMrvW3lS/JoceBZP4E2UTMPAtNtnxdu+0WT5t5jsQY9TvEUOTmcNq24d5b0ptuVXNyVfPcqHbeNte2Ve3hzIuilvVy7QNsuVBsuW6am+PzMpGXb9as5IK2BEAyb+GWLcl5EydWXueUUxIfj5T5zA4/PH1bNeS7/215C11z6eSRCyhtnjVnX+/m5IoyT5nsyM0dYl5UBPt3i7ctm5ZZXEvz8HPf1PI8t+yeql7nbJLbS8/v2Z/4+3zyuCXvM8K3cZkfzdyn1bzPy8J121PaA9fR3EGW87fBlogrsKLeB4Qg8/nJtgq459hL5jccfp1Mvr8r1bL8gdSoOTdNCqdDKfWQ+PxDrfUPxeddAXRrrbdWWPdZAK9RSjVprbellL+rWLbS+gCwG4BlaRVUSu0K4GwATwG4O225UOq26W7cuBE33XQTVq1ahV7jt3ulFD73uc8Nfp732XnVrl4mK3+xotZVICIiIiIiIqLRqVtrbXtw0gKg0oMyAOgVy6Q9LBsYkaRSGb3GMmWUUi2Ikv1PAHCK1np72rKh1OXDsj//+c845ZRTsEGO9CSYD8t8LL1xKZbduAwNYxqw5/w9Mf+s+bjvp/dh5QMrMaZxDNp2acPR5x6Nca3j0LuxF7d+9Vas+8c67H3c3jjynCOHtW0iIiIiIiIiKr5RkttqM4CdUuY1i2Vs6wPAuKzrK6WaAdwAYB6As7TWd1lrGkhdPiw777zz0NXVhcsvvxwHHHAAmpqahl4pg/7t/Xj46odx+mWno6mlCVe99yoceNqB6Jzbifnvmo+GMQ24/4r7seS6JThs4WEY0zQGh/6/Q7F+5XqsX7k+aF2qGeJV1DCuWoai+rySbItwMUMcJRkxYy4rXwE3oymtr3ofagkdT3mv3KyHDA/t7EzOyzJ8tA9Zvu+w3q58Q7WKEkJsyvvYSL5DjOcdUuATKp1FWpnm33G2e/7dKy1sobG1LfG5YZY4l82GvHx5PP3ii8l5Tz4ZT59wQjzd1ZVcbp74I+PcuZUrlRPX/t92rOUuyRIK4hNebw2TDBzWX1ameexdY/nTyhuCLEaGLZnVsO2DkRzW5Sr0PmhqTJYnr18i+0ImIe7DXEPZsnANg5XL2cKCi0KmxgCABnn+5nAz5HotrmbYdC37Bt9d7BOyXQ2ux9f3Xi6tvCzrUd14DsB+SqlxFUIxd0P0ZlraW2UD6w8s+2iF9YEKIZriQdnxAN6ntf5F1or7qssW/Oijj+Liiy/GIYccEvxBGQBs2bAFLe0taJ7YjA3PbgAANLU0ofOgTjSMiXbZTvvshFdefAUAMLZ5LKbvNx1jmsYErwsRERERERERUQ09iOj50Xz5w9LDrLkAHqqwjrk+ABxRYd7hADYCeNwoexyi0MvXA1iktf5J5loPQ10+LNtjjz2wdWtauOzw6R0aUMDiaxfj+nOvx57z94RqUIllHrvtMex+8O651YGIiIiIiIiIqACuAaABnGf8/P2Ico39cuAHSqldlFKzS3nGBtwJ4HkA71NKtYplDwRwDIBrZR6y0oOyGwC8AcA5WusfhfwyLuryYdkFF1yAr3zlK9i4cWOu2zlowUE48+dnomdtDx79ffym4F9+/Rc0jGnArGNmWdYmIiIiIiIiopFKIXqoUu//hqK1fgTA9wC8VSn1G6XU+5RS/wngG4gehF0lFv8yolDL+WL97QA+DGB3AHcppT6glPp3ALcAWAfgAmOTvwRwIoA/ANislHqn8e/VDtUelrrMWXbjjTfihRdewIwZM3DEEUdgypQpiflKKVx55ZVBttU8sRl7HbUXXlj+AgDg8T88jlUPrsLJF58MpdQQa1ePa2x/HkPe50HWa1tfXGff4czzjpmX9TBziMn6b9qUnCdfkFy3Ljlv7Nh4emDoZSBbToQGuaKFrP+4ccky5PZk2oyRJo9hrUPn2yvq+ZqHeth3aTn1ZJ4/0zgjpantJWmZB0rmQSvLWwix8TVrkjNlp2MmDZIJjGSeMnMDxxwTTxt9Soi+Ne/cfjJHUb3nT7HmnjGPrzymslHaEmt6quq1IUD9bfdCvvNs5busk0Ue5eeR4zHRj/eJNDZ5XHBdmclj03L7ATWrZ9kxDHCC+R5Tn/Wq/buGT/ktxi5tbs6eozLEcsBQOXPdygieG7Ksn43THmUpbzTdt44i5wFYAWARgDcB6AbwHQCf11oPecC11tcqpbYA+CyAryMaGfMPAD6ptTbzlQ0kzT2+9M/0BQB/y/4V3NXlw7K7774bSim0tbVh2bJlZfNDPMTq6e7Bhmc3oH23dqx9fC3ad2vHMw8/gyW/WYJTvnQKGsfV5a4jIiIiIiIiIspEa90P4D9L/2zLLQSwMGXejQBudNhWV+YKBlaXT3yefvrp3LfRMKYBt1xyC9QYhUm7TMJhZx2G6z98Pfr7+nHT528CECX5f+0HXgsAuOp9V2H75u3o7+vHyvtX4qQvnITJe0zOvZ5ERERERERERBROXT4sy+qmT92Uafm+bX3o39aP1klRSEPfpj7cetGtaJvallhu0zObBstun9aemHfv9+913l5HW8fg67O+w/bm/cp/LdlfTw77vUMMeez7qrsMuQKSEVO2MMy0ULBo2eyvTU+b5rRYLnxfWzdDX12FCDup5fkV/LV7x23lUX4IRamjGQ1n8/LLbsutWBFPm1FEM6eLk8HsBGTnse++yXky3FKE+ZSdC517pBYvI0BDRCyFOIZZ1rFdXySfUBizLq7Xad/7gDIydMt2fFPqMRRb+oEicr2H8u038ghz86qL0UE02BqvmGe/l8hejTJ9ln7K0j5dw7Sd96O5bRmibH7RACG+rmp5TXXtc0LcI9e7YP1zFYXo33zvl4t4r5iXYh59Gq46uL2Jbd++HWPHjsWqVauGXHaPPeKb+2eWPpNpOytWrMDJJ5+MpUuXZq6jj0WLzq7KdoiIiIiIiIiIyK6uHpYtXrwY8+fPR1dX15B5yfr7+72309XVVbUHZUREREREREREVBx19bBsr732AgD85Cc/KdRIlMOloAdfU83j9XPX8nyFeOXcVi/XkcyK8nq4WQ8ZKjpxYnJZ+bmz063MaocqptVjqLr0eYRn+ZYfQlHajynvkQKLGsId+rvl8V1kmfI8tw1Ca46UKc8NcxBKGc4p55llbGtsGZxuMgs59tjKGwOA7u54WoZudeyENGYIqCzSN1TLN8WAK1tf1NRYvZEyixKynWW5vMO5bdtKPX9tDc1ygjVYRhSU27LtgxD3ZFn2cVo51jBJOXRu2UyD2V84rJLlGKYeN8uIlGbYaIjw5QQzTj5EJyaYu19+VXPTWUL28+Sa0iFEqHE99IMhQhWz1EM2uxBhnrW8fx1NYZc0OtTVw7KpU6cCABYuXFjbihARERERERHRqDdyXuMhqRivThARERERERERERVAXb1ZJq1duxZXX301HnvsMfQar3MrpfDjH/+4RjUjIiIiIiIiIqJ6VZcPyx577DEcfvjh6O/vxyuvvIKOjg6sX78e/f39mDx5MiZNmlTrKnrLOz9RFkXJ2STlnXfId3uuOTVa0lOmeA9rL+eFGN49yz6Wy27rC99eknXx2z8hth0ip5Lv0OwjWejvmqU8n+PmmmvIdo6aOWpkiiXb+bv3rLjMF9ZZ6m4OTiNzEnV1pW9cTJu5nXa0tqXW0VbntH0XIieLrXyT/HuambaqqWdDXJ45MyXHlW+evzzye/rk2iritR0YRr1kO5Z5+IBkAkFLzjLJt1+q5n41U34l+hXze8p9YkmoaLuee99bpCUXzdCRBL8mWvKlubYRGzNt3ooV8fSsWcl5IXKWVbPd5dG/pa03ku+FQny3PPop19yQI/nYEJmKecc0hPPPPx/z58/HCy+8AK01fve732HLli340Y9+hJaWFvz2t7+tdRWJiIiIiIiIaARTAMaMgH9Uri7fLHvwwQdx2WWXYdy4cQCAHTt2oLGxEe95z3vQ3d2N8847D7fffnuNa0lERERERERERPWmLh+W9fT0YMqUKWhoaMCkSZPQLV4xnzdvHi666KIa1i4s3/Asn5CLenitNsuQ6z5hdFleMfcJ0fQN+QwRvuMbOuTKNRzLxlZHM5ojLVrC9zjZhKi/qzzqbxO6/KKGeJlC95Gu+9GMAHL1+BNxHe++Oznv+OPj6T2eeCK9kM7O5GcZkpUWLoXkd2ts9AvPquZ5aC7X3BzXuanRKEN+b8s+8L0WZ+nTBpj71LWMsu+WwhbKadZJHu88+iLLLvcL/TPj2jzC6mx9cLXvp9JCI237rSzUUnY6ljBMybUtDSnlIO5obEpdxdY+bZz3eYaG5Xrer98QL2fuYhn9HiDKE5t70/dHS3P4+8gQZbgeG9muzWtNiPJDlJHHPZrr/XnuoZeWdar5+wRRkdTHbzWGrq4urFmzBgCwzz774Nprrx2cd+ONN6Ld8WaAiIiIiIiIiIhIqss3y0444QTceuutWLBgAT760Y/ijDPOwN13343GxkYsX74cn/nMZ2pdRSIiIiIiIiIa4eryDSQaUl0+LPvyl7+MrVu3AgDe/va3Y/z48bjmmmuwefNmfPjDH8b73//+GteQiIiIiIiIiIjqUV0+LBs3btxgcn8AOOWUU3DKKafUsEbVkSVOPu8cPD55vmo5VLJrXpS88y1lKT8tT0HeOSN8FTWfja0Nhs67ECLXSlFzftm+m28uqbTyspQZgu/+9zlWZs4amWLJls9mxYp4esmS5Lx58+LpPY45xn0D4vO29p0Gp81zS+4fWy4jc38UpT+11rkj/t5l+bq8auXONWeZbZ1kzrLh18m2bdf+Mstxl9sz8/m5XpsbZBs3c5YFFiJnkG8ZyXbslocVABqmT0+dlyZLX53MM+VWTnluPKdqhWFuTHx2vQ6Zy/X0xNNmE9yjM/vxth0n23liU2/3gHm0kTxyA8tcgkU5Fnlsz/Veuqj3sES+2KKJiIiIiIiIiIhK6vLNMgC48sorcfXVV2PVqlXoNf7MopTCk08+WaOaEREREREREdFIp8A3kEaqunxY9sUvfhEXXHAB5syZg7lz5yZCMis58ohDqlQzP+PGjR98bdX3VVnfV4t9QwN8wq6yhLyFCFmQZfgOgx5i34Ue9jyP17fzHgbadV+Z8+TQ4bbwDlm+LUQhy1DkaXXOEi4YIpQzrU4htjUcadur92HD86i/rczWVrc2efzx8bQMuwSA7dvj6b+/uEdi3lRxeZxmqZc8b8xoTdfwPtcw5FD7OEQ5MtTHFvbtGn5q1snWd7Q0Z6+/eSysfZpjnGeIMPAQoTdmH287Hsn13MKD8g53D512wla+Oeh7NftdWyiwaxhalnuyPELnfLZl09k5/DJcTWl3L9+nTdrucfIOQ5btp6j3Erb2b2Nr87a+KcTvGj6/i/luq6Yh1kQ5qMsm/OMf/xgf/vCH8c1vftNp+bu/NW/ohWpo0bdW1roKRERERERERESEOn1j8MUXXxwVCf2JiIiIiIiIiKi66vJh2dFHH42//vWvta4GEREREREREY1iDSPgH5WrqzDMHTui+OlLL70Ub33rWzF16lScdNJJmDJlStmyDQ0j75Dnkc+sqIpYZ1scvmtOgaLG8tdySPG8h5l2zadS7ZxxIXKijRZ55wLylVaXLG06xLkxfnw8bbZxOc+eO81tuSyKdKzSyDwyrrnZfOW9P8raS2NTTerhmrtuKO45y9y25Zvz0SfHTx7XtRDHLUTOKbOP8c0JG1roXLdmOdW8DhW1Dw7RrouUe9WH2f7T7iuL9Dtb3vfZUlF/zyHyVVdNeOzYsYPTWmu8+93vrricUgp9rndZREREREREREREJXX1sOzzn/98ratAREREREREREQjWF09LLvgggtqXYXchQrB8hlquEiv/oaol2tom+sr4XJ4et965B3mU1R5vwIu93FLc771CHWO+qyXZZ3QQ8aHKD/vMkxFCW8NHXYypT09zG369OSyzc2VlzO3XQ/hL3nzPU5FDHXKUr6tHYRou67LmddH12uuT/hjlmMWoq+W9ar3MLQsfO5Fbap9n1rN8LUQ8tiPPmUWab8VMY2D772W6zp5sO1HOa/ZuAcvyj7PmwJzfo1UdXlct2/fjldeeaXivFdeeQXbt2+vco2IiIiIiIiIiGgkqMv3XN773veir68PV111Vdm8s88+G01NTfjJT35Sg5oREREREREREVE9q8uHZXfccQe+9rWvVZz35je/Geeff36VazQ8CnrwNdU8RnKy8Q3PynNb5rKur/76hsmECCVxDbHwLXO46wy1Xt5CvJ5fPsJO9lfr8x5NLESoX1FHwXItP+9wxyztx6ethQhF9T1HXev7kyuSyx1zTDw9s2OjsbSMiUhe8ovSx4QuM482GCK8yWdUxSzr2bZn64NDf7e8Q7yyLFerPsBWrxDpKWx820+I5Wx812vo2xZ/6OlJzhPD+O5IGf3V3La5fxLlN7r1kdY2kmU4wLTByBzrYW471Ei0rnxGC3W9Bvrea+Xx+0o1w0rNbfmM6B7imhoqPLlIIblEPuryYdnatWux0047VZw3bdo0vPDCC1WuERERERERERGNNnwsODLV5XHdaaed8Mgjj1Sc98gjj2Dq1KlVrhEREREREREREY0Edfmw7OSTT8YXv/hF/O1vf0v8/JFHHsEll1yCU045pUY1IyIiIiIiIiKielaXYZgXXXQRbr31VhxyyCE49NBD0dnZiWeffRYPPPAAZsyYgYsvvrjWVcxEQw07pjvvHC2+8fuhc0T57qdtfcn1ZNx/rXI7VVve+czK2qDMAyJZ8oqYZK6G3t7kPJGqxDtfTmhFOdY2ofLNhMh7kXeuOZ92Ue3+wOd4vPe9jyU+/+AH+wxOLzpxQ3Lhjo54W5Zzryj7x+Szf2qZM8u3/Dy2nVaPPPLx+OYo8i0zrfyyfFSBc205HwtL3irfXEzymmo7l8u37ZfLK41v/tmNPfG25PUbSF7fm5uT89DdHU8/8URy3pw58XT7FLdKyfKAZB606dMTsxrKKuPAvFmRzKRTcttiWzta2xKLpaU2A4AmpM9sENsLkSvMpprXc9/y8+6LQjCP9erV8XRX1/DLz+P3RVs/Ww/3xUQ2dflmWUdHBx588EF86lOfgtYaS5YsgdYan/nMZ/Dggw+iQ/xyQEREREREREQUmkL0UKXe/1G5unyzDADa29tx0UUX4aKLLqp1VYiIiIiIiIiIaISo24dlI5Xr0OOA3xDLebwOm0eZaXX23VaWkbxd6lQNaa81W8M0MrSRtDKDHU+508V0Q6v7kOjyOPlEQwxVfhFfD/etby3DHW1lVDX0aYi6hJZWfpZj4XNMDz10n8TnWbPEOp17pJZXVKHDZmx9ZFH7gzzO+xDr5NEnDFeIMJ8s11HbeqlC3HSYZHhfazK0MlFnIwxQXnNd65/HOWTbBfL6bj2eZvymY3hrghmGGUDiemX7ouY8+cUtNznWMExZpAzrLCu/JbWM3Ps+2xcIcG4UJRWHL1l/M4p33bp42haGGfralse9HFE94sMyIiIiIiIiIiIPfCw4MvG4EhERERERERERlfBhGRERERERERERUQnDMAtAQcex4RnyXITI0xF6vVCx6aFzDrQ0G+XJpACWfWwdnr2KXPOF2NbLMs9HWXmOScas9RDnQ1Njeq4zedo0NobJ2xBimHKf8nz55iULUa888kD57Ne8c7rVMm+h9MB96etk6h96N8cf5PkVIr9SDkLkkipSPpu0ND7m7g/R7lJSSA657SbHpuB7HoY493zyFYXqB1O355tk00bk68qU10twzV2ah7L7MFfTp1eeziDxvWfPTswLfv3KcOx3tLY5LWffd+IkbW9Plh84p6F3/9noljfP957VN69vnnzzC5un76GHupWftq2h+LSRLOUP/Lq1oziXXqJM6vLNsuOOOw7Lly+vOO/xxx/HcccdV+UaEREREREREdFo0zAC/lG5Yv75eAh33HEHNm7cWHHepk2bcOedd2Yuc82Lm3HeN+7Bg4+uw7ixY9C1y0Rc+tEjcOA7r8fsPdvRu60fE1vG4oNv2x9nvWlvAMAVNz6G879zP3abNgG92/pw9qn74iPveDUA4BtX/Q0/+u/laGxswLT2Zvzks0djz10m+n9pIiIiIiIiIiLKXV0+LAMApVTFnz/55JNotbyCXonWGqd+4hac9aa98atLjgcALHm8Gy+8uAV77daGxT8/DQDw1LMb8dZP3oodOzTefco+AIDTj5+J755/JF58uRf7LLgGbztuJnbfuRUH7d2Bh658K1qaG/H96/+OT3z3flxTKrtCBeK4CHPM4IzfZSh5v4Iceoj7ISXj79yWMz/bYlLE8OzmoUkb6nw0DZMcfLhu81jInW45F/KIGkv7PubxdX0V3vXcyCNM0vk8MbgeX+9j71GvLGFcPmEKvmFiteQdjtHdHU/L8J3A153h8Amrs52jeRxP3xBQGeIYOtQSSJ5Sct6mTcnl+vvjafPQN7YOf9/lvf9d2dqI6zXcvA9oCRxtmff+ySMVRy2PaYjw66K0ybzLr2aoelHbiy+fe7Qs37OoqSBCGLjNsP2qRVRkdfWw7KijjgIQPShbtGgRJk5Mvqm1ZcsWLF26FK973esylXv7w89hbGMDznnrfoM/m7t3B1Y8l7yjnLlbG75x3uH42LfuG3xYNmDqpGbM6pyE57s3Y/edW3HsvF0H5x0+Zyf84uZ/ZKoTERERERERERFVX109LBszZgyA6E2whoaGwc8Dpk6din/913/FJz/5yUzlLn3yJRwyu8Np2YP36cDylRvKfr5qTQ96t/Xj1bOmlM378f8sxxuP2D1TnYiIiIiIiIiouBSY82ukqquHZbfffjsA4Nhjj8X3v/99zDZGtKkGrZOfr7ntKdz+8PN4bNUGXP6po9A8LrlLf/G7f+ChR7tx52WnVLGWRERERERERETko64elg0YeGgWyv4zJ+O6Pz7ltOzix7uxb1f74OeBnGX3PvIC3vTRm/HG1+yO6VNbAAC3PbAal1yxGHd+/xSMaxqTUiIApeLkIgXKFRNallxMzjkALHmOEjkGzOXS9rMRVC+319ycvb5Dcc3lUpQ8BbnXw3KcirIPask7n5blPMk7D5E110djk7l4Rb5Dv4fOA2Lrw0LkQ/Ldj946O4fc1lBqmWPJZ9shygu1f0L3aba0fy3NO8S0Xz2K0gfXMu9cs2XfhT7Pbcv6XgtC5MSs9jkfIm+hLT9miD4hdJ6vENflUIqS81HKUg/X3yeKcq3xPYa+xybvnMt7dEblN7nd7hEVTl0+LAOAjRs34qabbsKqVavQa2RcVUrhc5/7nHNZx83bFZ/+/gO4/IZH8f637AsAePDva7G5N/ngZMVzm/Dxb9+HDy2YU1bGEQfsjDNPfBW+9aul+PIH52PxY904+yt34eZLT8JOU8Z7fEMiIiIiIiIiIqq2unxY9uc//xmnnHIKNmzYUHF+1odlSin89quvx3nfvBdf+dkSNDc1omuXVlz6kdfgyWc34qAzr0fvtn5MbBmLDy2YU5bcf8An33UgDn7Xb/DphXNx/nfuR8/mPiz49G0AgD2mT8D/fP3EzN+ViIiIiIiIiIqpGO9eU2hKm0m4CkoppQfqeuihh6K/vx+XX345DjjgADRZ3u1USkHfv6ha1fSy6FsrcdnPbwbgHuYz1Lw03mFcGcpMU+3XykOERNiEfl25KGGYIV5vz1qOS3m28n2G9a60rI9qh3X5lO8qS/8QIvwo77CTEPs/xHkZYv9ITzyR/NzVFU839axPzpShzJaw17z3v++x9jk21nX6tqVvzBbH6KkerhO+ZYbo4/MO6fMRZD8aKR3kuRdkfxsRFVayXefQxoPr6Ul+lrGvjvW3tjPbvjPibEOkyvC5DmU6L2RbM9pdWdzwMLedd5iwTd7XaUukbph+ynacxAbN63RavUJdR2X5TY35hWTOnz8PDz30kApaaIEcopS+r9aVCKAJeFhrPa/W9SiSOrhqlnv00Ufx61//Goccckitq0JERERERERERCNIXb4xuMcee2Dr1q21rgYREREREREREY0wdflm2QUXXICvfOUreN3rXoe2trZaV2fYFPTg67RZRoj0eS04VMhDUUbFsilKHV1DsPION3UtI9i2zdfMB2QYicpWXJPn6+hp285jH7iGDeQ9GlHefMMjihKC5XsMh7stXxdfnPx86aXx9JQlS5Iz586Np9unDHvbprzD3V2PjW3E1MR6a9akbyxldFDbtobDK7wmrV9F+ajP2/riOtui1/JOpWArI8Soul5haGbOW7GDGozRsr2O/d13Jz42HHOM02pmhGALNscfurvj6ZScvQDKv7P8bGnjNSW/+NKlyXmzZ8fT7e1OxVmPkxnHLk8OGdMOoMExjNHGtf14p1OR7cJs/7Ity+/i+b2cRwc1w93l8TXrKOfJY2Eea0saAdd9LDe1aVNy3ngxFltba4A+3jxH5Wcz1LijI56evmtillzUsflbf18058l90iSai3c4riUEfSRTqNM3kGhIdfWw7F3vetfg9AsvvIAZM2bgiCOOwJQpyV8AlFK48sorq109IiIiIiIiIiKqc3X1sOyuu+4anFZKoa2tDcuWLStbTqkRmz+QiIiIiIiIiIhyVFcPy55++ulaV4GIiIiIiIiIiEawunpYNlJpqMH4b2uuFYu8h2l2zlPgGeMeIi+QbdsydwuQTIsQYsjsEDlfqpk3xiZU3iGZp8A3T4dPjjezvGrmxQp1/trKTFvPO99JHvnqCsJnv/oeQ9d6hOgDzLxGifQzRk6iHSJPmXU9mffGyNnkmt8m9HXHd71QfUDe7bqp0bFetpxc8rNxgBs7dqo4yzycljRozrnOapp/UCb1MXMByfNBflEzL5ZMBjRnTmKWcx8s8zTdcENyQcecZS3NxrZWi/NS5toyz1FZf9tBM7heR3MnG+j06enLyX4KSHxv13uO8lxYjZWnUYV8Y7LNZDhuCWZbkOR+tXQCwXNPmhcbmSvStcMxv5c4vmYRaff0tmq9/HJynsxZtn5Dsowp7R59tdlW5T4wO2HxXc193N5e+fuEylHcZmk+ruTvWE1GO163Lvp/+/bhb6foinknTMNVlw/LVq1alTqvoaEBkyZNwsSJE6tYIyIiIiIiIiIiGgnq8mFZV1fXkHnJZs6ciU984hNVqhEREREREREREY0Edfmw7LLLLsOXvvQltLe347TTTsPOO++MNWvW4Prrr8fLL7+MD3zgA/jTn/6Ec845p9ZVzZXPK7i1DMHK8gp76PAX37fb8w7BKsoxDCHvsI08QoVChDFK1T4WPutlCqUNHIKSh1qGqVbz/JXRZWeckZwnQ7e2de2dmPfba+Pprq7keocdsDn+cPHF8fQb3pBc8IQTBiezDANf09C8NGaYauBjmEf/kNjnxv5PRGGiLTFvy7p4+pVX4mljFyS49qWh+OyTsnqIUOMGI8QusawM0zvyyMRyiTAi33Yrd97ChV5FlH23zj0qTq9bl1xs7Nh4uix6rQ7u9J/aEB/Dvr7kCPd794hoEhnKBgCzZ8fTrY59kxnmKXZQ3qHXZfcgrqGjljKsYZi2ebIe4nubkcySLWQvcb01tztrVsXlTLZ9YIk4T0Q12sLbZUijGQkpo5w3bEjOOyrZXaSTJ5v4zuZn2z6whZjKY2PuYrlPysK5LWRdbPfZsnxzueXL4+knnkh+t4GvvXWrc5WICqUOLqHlHn/8ccybNw/XXXdd4uef//zncdppp2HNmjW48cYbceaZZ+IXv/hFjWpJRERERERERCPZUFFvdUHrWtegcOoyF90vfvELvO9976s4733vex9++ctfAgAWLFhQzWoREREREREREVGdq8uHZZs2bcI68x30knXr1qGn9J5qW1tbxWWIiIiIiIiIiIgqqcswzKOPPhqf/vSnsd9+++GQQw4Z/PlDDz2Ez3zmMzj22GMBAP/4xz9qVcWqyDtfkU/+hFD5WtKWDZWvK4QQuS1C537LYz1Xeefyam4efvkh2k+ocyhtf+VxnEINMe5SfqgcXyH2Q62Ob5bvadt3Mo/S0qXxz996/MZkIb3xpfzu+1oSs37843j63//d2Phttw1OPved7wxO77p6dXK5Qw+NN9W6E9KYOWCqKUTOQV8h+j5bO7Dl6pG5dczDJteTeW+MtF6J41YP+a18z1G5j81jJvddV5f78Uyty9y5znV0Ks9w//3JOspj/U//lFx22jSvqgRnO09mdsXf+3Ej51GiUc6Zk5wnGq/zuWbJ+2e2/+C5TI1kTw0eJ1ze13MzF5Z3LjWP5WzfTe6qttbw95Qyp6d5WHz2eZYcxbJfN/v4Ke1xOa2tbvnFTK73aDIloFn+ihXxtLl/7rgjnpb5ywDg8MOj/zdvBlFdqoPbonLf+973cPzxx2P+/PnYY489sNNOO2Ht2rVYtWoVZsyYge+Ubvp7bFkqiYiIiIiIiIh8KVUff20ayvbtta5B4dRlGOaMGTOwfPlyfP/738dxxx2HqVOn4rjjjsNll12GRx99FDNmzAAAfOQjH6lxTYmIiIiIiIiIqJ7U7SPQsWPHYtGiRVi0aFGtq5KrECFNtQxVlGwhcHmE8IUOkyzKtny5hiDaXh33DWN0fQXcxnwlXH6Wr9Pbyq92iKPP9vIOZw0VIphWjq2NhArRdF0vxPH2KT9UO5N/pJw9W8ww4+06OwcnjzvG3HZc/0QZANAT/2DX88+Pf/6WtySX6+gYnOwzXtiWIXwhwqGzhK6ktWtbPcwQF8k3jDT0dcJcrqkxLr+xNb0MGZIJJJuJbEvmS/chwmd9jlO12Y7TzK542qyj3F+trX7XwNDefHJyu39fHtfLFnZZlPtBk9zne88y6zg9cxlZvmeIl0Fkv2KW19QnZpo3MnJhcSLazhPbvVDZthurd+6FuM/z2ZbJ9z7DDD8NUaZrGS2iD3ZNOdJUdqydqmEts7Mz3rZ5myHDVMUtAYBk1Pmjjybn3X+/X72IiqIu3ywjIiIiIiIiIiLKQ129WfbXv/4VBx54IGbMmAGlVOpySik8+eSTVawZEREREREREY06zFk2ItXVUW1rawMQjYZpe1hGRERERERERETko64elg0k7r/iiisyrXfk2TflUJtwxk3o8Irvr2UekLTt2dIxuJYBhM8FlHfuoqJybiOWMajl0OZF3Qd55ynzzUkRen9Zc8ZlOfnSyvDcdh7twjX/ia0eIYZ7t0krP498Le3t8kMy+dj6DXE9mo2cXMd1/C3+0NyZnNkqcgFdfPHg5I7GptR6mHmxxo2Lp6dNK0Y+J1OInDLVzMfj24+YXYCZc2aAmZtHfjbzl9nOr7T9kOU8tOVbqibXXEZFadOm/WbH9drWl57zLg/VPDdsXLdtud3xboMtzZZtN4qTytx4b0o+M6MPlnnztmxJ39TEicnPrnmsanncfPu3NI2NfuX55ncLve9886OFqIcsY4/O9OVs9TjooOTnv/41+p/vuFC9qquHZS5uu+02fPSjH8Xf/hb/gnD34mdqWKOhnT3CBykgIiIiIiIiIqoXI+5h2csvv4xly5bVuhpERERERERENJIpNTJyllEZHtWiMce1b7a8vi1Oymq/Qp22PfOV76KE7VlfXe7dHH8wOjpbOFKiDM/9Hzp8wbsM2bbMdiZiULKEO6btc9dQHpN5DZKfXV9Nz/sVdt9tu5ZhZbbdAOeeTyikrYxa1sNXVduPce7JEGgZWmWGmSxdGk8nwjUBvFrGTZozO+M4C9fjZJ6HW7fG0+blq0VcvvK+Fri3C/d6hK6zb8izZIu2njs3Oa+jI55+4ol4eq+9ksuZYZlpXOtvuxaY82xhYj7XkGr38VJRwhFfein5efLkuF5mSGboUHLbsSlKqJ8tLNUWQhzk/srsQFNOPnNbba2Vp0cC1/3aZLnn8wmht/U9ed/TZNleGjMlwpT24Zcf4rutWZP8vHBh9P8PfjDsoolqohhPMoiIiIiIiIiIiAqAD8uIiIiIiIiIiIhK6ioM86mnnhpymTXm+5/1Lm2kHMA9dqKKfMNHXMvJ5TV+EeoaIoTDN8ywluEjiYMRKOY+LbLTHG3NppohfNUcZWio7fksZ5bvGpoUOnQoyzErykh4rnI/D1esSH4WYZI9vS2D02Y05VFHxvV6aoWx/7vmxtOWUF25aRm+ByRHXzNDLSdMSC3ei2//6cqsv9Tc7HdOWkeltXHcYbJIOSoekPw+rqNcvvhicjk5gp61SjmPuOvKFu5bbWn9Z+5h9xaTJyc/y8Nmhp75bC/Ld6tVaGre/Uim+4WCXNx8R44uSphziG35tkfXNi/7JrOfks3AvA+2hZhK8lzevt29jnkfGxkSKkP+gbjO27blWoXaY86yEauujuqrXvWqIZfRWkMZ49MectgheVUpiPFZnh4QEREREREREVFu6uph2U9+8hOv9eZ9dl7gmoS18hcral0FIiIiIiIiIiJCnT0sO+uss2pdBSIiIiIiIiIiGsHq6mFZNS29cSmW3bgMDWMasOf8PTH/rPl46u6n8PDVD+Ol1S/h1K+fimmvmgYAWL14NR742QPo7+vHmMYxOGzhYdjtwN2ct6WhBmPNG8yQzO7ueDpDuObGnjh2va01fM6stLh/W4y+mWtFfp1aRqL65o5KywGQJTeATw4t8+dB8j55rijrYqazseUGcilvKCHyw6SVZ5aZR96VtHJqOSx5tfPtNTa65eZodB0y3mx0AToWn+/mnS9n+vTEx82I85TJfdCwYX1yPZGcasKEpuQ8xw7ijjvi6XnGy9iyCKOK2Hla9vPBtj/yzkUzpd0vd6DrttGY3P8+38dcpymRUjJZX1vOMpnb7vDDK68TlWmpTFryScuKtvYfoo/PIy2Mb7vLI5/lcDU1prefPPp4V3nnL8vjPiCtfNs5ZOaFK0qeL1ch8qv6luGbH8227WqeozJ/Yh65FGU7M3MThuDbH8j8aebveqMGc5aNWBwNs4L+7f14+OqH8c9f+2ec9u3T8Pjtj2Nrz1ZM3nMyTvjUCdhl/10Syze3NeMNn30DFnxnAY457xjc/s3ba1RzIiIiIiIiIiIaDj4CrWDLhi1oaW9B88RmrF8V/QW/qaUJ41rHVVy+Y6946LDJe0xG//Z+9G/vx5ixY6pSXyIiIiIiIiIiCoMPyyrQOzSggMXXLsZDv3wIs18/G6pBDb0igKfveRodMzsyPSjr2x4Pu2sOXd/S0SEWdB+S/rrr4un994/LPOig5HLm6/ppbK9D215Nl1FQZoiIfFvVFrIny8gSQmCLPkrbni1qyydkcqj1bNLWM19xlp9l2A0AtDRnHyo8S33lPn7ppeS8F1+Mp+WxN9uBbdvb+tL3qwxH8j02rssl21KgIekdw+NkWzXbp+v39t0/PmEzocJKbCHcUmurqGOGV+BDfzfbfrS1Y6mnry3x+e474uk5c+Lp1q4pqfUqC4tcsSGeltcTw4knxtNmP7JpUzw9fnxqEVYhwivzKN+2njxu8jy0XYrNJijbZ5ZtS3IfmH2Aeaxc2K6HZvmNMqzUCDGV5D4xz9f29rDhcWaYmyvfMDFbaFjofjHvkD3fMlzTPVQ7rDDtmIZKZ5BWvnkfEDr6Ko924NvGQ2/L3n/63YeNJK7HN0s/GDoE2ixj2rS4fPOa1NkZ/d+UfvkgKjQ+LLM4aMFB2PfEfXH7f96OR3//KPZ9w77W5devWo/7r7wfb/rCm6pUQyIiIiIiIiKqCeYsG7FG7qP5QJonNmOvo/ZC95Pd1uV6untw65duxbHnHYu2XdqsyxIRERERERERUTHxYVmKnu4ebHh2AwBg7eNr0b5be+qyW3u24uaLbsah7zoU0/ebnrocEREREREREREVG98XTNEwpgG3XHIL1BiFSbtMwmFnHYan730a9/zwHmx5eQtuvuhmTJ05FSd94SQs+79l2Pj8Riy+ZjEWX7MYAHDSF07C+Ha35C79O+KcIWYurT6R76TRyBfSLI6eGT/+lrfE0zJHlPmGaKi8DgPMWHWffDBAnMPNLNPMp2LmeJNsb8Om5fIq4jDeprbWHcbneNo/T0T6PFuZcr1p05LzZO4k31wxMqeeb1t1zTdjO/a+OXISzAOQckDMvFuuw4+HPpeB/PPxuB6bRF6yvm3JQuVuLMgr8GZ/tmJF+rKyf55u/K3l5JPjae88NV0znZYzty3ZcjkmtlXF3I1DbS8E2Zxs+yBDOtEEn2tPeU609Hk+ZfiSZWbJoxbimmtrB2vWxNPJewn3thM6r6ON2ZZq1qUZFWkSFTFzMNay2w19z+bap5j5fn37orz7sLylXcNttzuufal5HZW5EMcYaaFlLs22AP1ZUeWd09CX3PZRR1ZeRrml/q5vBbkHpbB4VFO0TG7Bgu8uSPxsxhEzMOOIGWXLHnz6wTj49IOrVTUiIiIiIiIiIspJff9Jg4iIiIiIiIiIKKBR8WbZTZ+6KfM6EyZO8FrPR0dbB3adHvb1WRluIF+PzfL6vHzl2RwKvqPDrQxbiIJcb0p7cl7ooeZDLGcq4uvztu/y0kvJz1u3xtPyeJrhKb5hUGnzsoSKNllCjV33fzVDaKzMEyXw69p5hEJmKcelXrY6Os8LtN/y7B/MMJPZs4dX3lBq2Re5hlj7tJdQ9fAly7GFYst5IcKxbPVfty75+ZVX4umuruQ82Z/Ka7h5Csnltm9Pzuvvj6fNcM0tWyovZ/bjcr0sqRQk1/7BvMfxkce1xlXVo3hErNu2xpbB6SYZvwok4rSbChRqlLbPsxxD12uU7/GV50NRQlbN7+LbP6etZ7vdMfsHGW4pm90TTySX27Qpnt599+S8vfaKp80wzBBtxCeNSVHTupjfU343M7w4RPlE9a44V7wcPbP0mVpXwersRYtqXQUiIiIiIiIiykIp5iwbofj4l4iIiIiIiIiIqIQPy4iIiIiIiIiIiEr4vuAok+UNUZlbxMwz4lqObz6ktFh/W76lELKU71rHqubFstTlv/87OU/mgzjttHh6332Ty7W2hs1lYZL5Ksyhwqe0OxVh5dsG0/i24xA5QUK0nyzHyXXbMh9SW2uYNu7zvUP0D1nKcM2FEoJrzh1bPhKz35bnm5wXIm+JWS8p79x4tZSlHj55HadNS/9sbrspkRfUrXyTrf3I+wKz705brrs7OU+kwgrCbLvTp2fPVxTiOlGU9mgq699uv31wuvugNw1Od0zfI7FcqD7BhWtfZ5uXpQzXa41r+eY8275L27aZe0+eX2aeP1m+777z5XOPY/YBMk+Z/J4yRxmQzLNr9jeyH8xyDUxj5mmWdTTnyZykLc3Fz0m6YUP655ldfmUyTxmNZHxYRkRERERERESUFXOWjVh8FExERERERERERFTCR6AjRB7hiSEekId+NTdEiEsWrq/n+4ZIpS0Xiizzfe+zbHvD+viDMUT2DkzJrU4A0JII93UPbXCd5zosvK1MWxk+IRzmerafVzPUOMs8SYZe+pZhU81X/LPs76KEWtnaYJOlH7edb2nlZ+G6f0IvZ5P3+ZVFiDBh2zyf8m3txyxf3iO0trqV77qcyTccvZbXXx+51EPEofX0NiVmtb4xDr3c9e4/xTPa5yXLaDRycRRQiPs11/JtQlxDzPtvGUpohiA2WlJlpJWfZf+EbpNmWpeOjnhafs8xY5LLdXXF0ztPc6+/T9qYNqOfauyMyzTDSJ1DLy3xoKHvcWzlTWlP1re9Pfu2GXZJowlbOxERERERERERUQnfLCMiIiIiIiIiyoo5y0YsHtWi6TNi4BxPvBCvSZsjvGzZEk+PHZuclzZSpjnKigy5sH2VPF77Dj0Koq9ajoYpWbcth/ox22C7XxhmHiFTaeWHCNH0bYMhyrCN1hSi/fjunxBhLXKeGT4i+w7f0VRd1UMIFlavTn5ubx+c7GtuG5yu9/uxPEKAfM+TovTPNrKOZvcsP5vhTWlCfc/kCH1u62QJw0wbrbWxMfz9gm//kPe9hVf779uWnCmGvm6TsWwA1m9oGZxuP/KozNu11cMUenT0oeaF5lx/80Inb4zNzlv08baO3TbarDynXNuq7z71be/y9wvzuzjuAvT3u20rj/5A9m97dHqmZBFfrtq/k/gc71B1LOp1lcgVwzCJiIiIiIiIiIhK+LCMiIiIiIiIiIiopM6DOYiIiIiIiIiIaoA5y0YsHtWi8T3RzEQmHmWauURkjL5ZfFp+Epl7wGTmRJOf5dDRQDInSYh4d89UcAm2XDp1H5M/fXo8bRxceZzM4x7iuuCaF8E8hk1V3HaIMmzLue7HELn9suQGC5G3TR43c8j1zs70MtPyuPnmNss7J5qtbOfjJM9DIJFrqEnsrB2tbXAV+vhWW4j6h877V+39kdxe+v4ov85VXtY3p5stX1oeWpqz56X0zcUUIgembVu+6/l4rrsp8blj1n6D001P/D0xb8qsWeLT8C+q5n2evGdIa49DWr48fZ7IwbajOc6/FirPWVrbcs4BCySTdJk3uynbMpmXhuHyvf755jOTv1+Yv2ukldnV5X4ehu6TfduILY9j3nnK8i4/LYek+bnufx8iMjAMk4iIiIiIiIiIqIQPy4iIiIiIiIiIiEoYhlkw3sNpm+++y3dixTvPWUIDkkO1O1crlfnqtfzsG84R4rXjPIZIDy3EUN7W72mJn21NnWOvR+hXsc02mBYeYQsDtIUTh6hvHkPc20KMQoQfuS7nGg5nliFDb8ywS9txS3utP0tYXrWHZx82s5HfeGM8/ba3DU5u6EuGYcq+NEuoUy1DC0Pwaf8h2sTm3vQyZOigKURIaVPjDuNz+rKh23/Ztl0vDhZ5t0Gf8vOoh0/IsLme63cxr3Py9rB99n6JeaG/q3mft3p1PC1DCc2uTtbRLCPBcrMYYh+HKLNBhIYCSH45z/r7nstp64W6VrqW71qG7V5iW1/lcEcAaBNtJu97URvfe0rX+zybvENRm5vr+36hKpizbESqs98kiIiIiIiIiIiI8sOHZURERERERERERCV8WEZERERERERERFQyKoJrDznskFpXwaq5eXxqTLp9qF4RP24meUiJm86Sl0CmVrCFYcvYdZlTwFzPTNXw0kvx9OTJbnXyz0UQ/rmway6REHljfHPd1DKnm0/5IfJm2HJm2dpxiDwX9ZAjq9rDl9uOr2tdfM8v3xw2rtLKD5UHsWHhwviDyCvY251cb0p7+vbMPllKOx/yaCN554vKO/eVmSNHsuUpk2qZUy95PXc/Z0KfQ77lhxCir8gjL1YIsvzOztpdh8zvuUdn5eWeWpGs44MPxtMnnJBcdoo8+WRSKE95XEOs5bW2VV4ww7Zs19HQbcuWQ9jMkRi6f7D147Z61TL/Ztr2QuWB88qbV8O8i6Z6uC8OQinmLBuhRsVRnffZebWugtWKX6ysdRWIiIiIiIiIiAij5GGZj6U3LsWyG5ehYUwD9py/J+afNR9P3f0UHr76Yby0+iWc+vVTMe1V0wAAvRt7cetXb8W6f6zD3sftjSPPObLGtSciIiIiIiIiIh98WFZB//Z+PHz1wzj9stPR1NKEq957FQ487UBM3nMyTvjUCbjrv+5KLD+maQwO/X+HYv3K9Vi/cn3QujgPQ2zGiMhXQUUhWV4/d32bVJZhriO3Z4Z+TJuWvXzbvBAhLr6v44cYejxLXVzXyft19NDhC758wxdcy5Dy2Md570ff1/N9QidsQg2l7lqm634NEeKSy/DuHR0Vf7zrdKOM666Lpw8/PDFr+YY9BqfNCKZOESJlGxa+VkPXD8WnjzTruLk3vQy5v6zRXzI+qNuIkZWfp09PzuvYyVJoZb4hLU2Nww93N8kQX3ntzyPcNES4fk9PPL1iRXLenDlh+2DfcyFEKF61z0MfM7uSdVy+PP4+27cbCz//fDy9++7JeQHCnkK0rXXr0ueNHx9Pm/2IT/XzDrFbYYTIyu5t9my/66PPfZi5nK0PLmKbD3YdTcmJ4/q7UcUyhynLeVLEY0OUBR+WVbBlwxa0tLegeWIz1q+KHn41tTRhXOu4isuPbR6L6ftNx8vPv1zNahIRERERERFRrTBn2YjFo1qB3qEBBSy+djEe+uVDmP362VANqtbVIiIiIiIiIiKinI2SISr8HLTgIJz58zPRs7YHj/7+0VpXh4iIiIiIiIiIcsY3y4bQPLEZex21F15Y/kJu21DQgzHdWeLAEzl9WlvdlrMM2+6bq8E3J1SIfDOJMoxxpRvE67DmcNdyPTktc5oAyRwJZs41W71chcjlkiVvQZo88qukCZUvp5Y5GHzWc23/RW1LNiHq7Jp7zDdHme+y1Rz2vOy7yXxXa9bE011dyeXuuCOenjMnMeuGG+LpffZJriZTaCW2LbeF5PVlR2sb8lTtXCgtzQFy0sk8MtN3Tc4zP9dIHueQvOTKaZn/bqjyQ+cDs5Xf2hrPM06TwnDdPyMtD9BJJ1ruI2WCW0viKtcctg29m5MrWhMSupFVNG5FE2x5fUMIkf900qTk561b42nzu5n31j5kmbbyQuQntfHN7RqC7forc5JuO+fcwemXXkouNnZsPD2lPUD9jYO9o7FpcDqP3LdERcWHZSl6unuw4dkNaN+tHWsfX4v23dprXSUiIiIiIiIiKgrmLBuxeFRTNIxpwC2X3AI1RmHSLpNw2FmH4el7n8Y9P7wHW17egpsvuhlTZ07FSV84CQBw1fuuwvbN29Hf14+V96/ESV84CZP3mFzjb0FERERERERERFmMiodlN33i+kzL923rR//WPrS2jok+b9iEWy/4HwDA5GnNmDyt9Mr2li2DZbdPGQdMiUfLvPe7f3TeXkfbToOvqWZ5tTX0MOK+r9XmHb6Ztt0yvb3Jz+LVevn6MABs2FB5NRnNBADz5sXTs2Yl54V4tVtu2/yDRFNj8cIMixT6kUdYkYtQ2wrR/mU7XrEiuawMM1q9Op6e2eVWp6HqlVZ/a/hLhjDwlNHSgw2JXg+hGejoqDxt9nXvfOfg5Hu+vl9i1vLllYsAgC1b4um2pffFH8x49Llz4+mcwzBDhOv7ChHK41t/13bme51Onk9+oZYmeV7KJlnLY+i77zb2xHW0ZLWwkx3yE08k58mbCQvffReib6p2GL5zeTJe3OjEzHs7J5awS5/rgsm8d6tm+zcvDZIMj7Z9z4kTk5/Hj4+n83hxxnZ9r5VQ9xlBymhvH5yUmRmeeSa5mMzOEKT+xn1Ag6iHTVGOIVEoo+Jh2TNXnpZp+RXPbcLJH7sZSzOu52vRt1ZWZTtERERERERERGQ3Kh6WZdW160QsvXpBratBREREREREREXFnGUjFo9qAdhGw6xm2I/vKFiSbz8RJGzDEjthli9Hxdq+Pf75Mcck15Nv/OcRWuI6ElveXEPlQsiyH9NGWwOCDGDlxfccdV0vS0j1lHYxPTe9HBnFkqX+IUaoTFtnKLIvCV2P4dSrEIzGv+Pw1wxO/+hw92IaejbGH2bPjqfNk80x/MLGN5ws7/Ayn5QFWQRPN5CBDM2WUYHmdc523XY9DxvFNdU3nDWP+x/XfdnWmn6cZIimXK6MDMO0xa8aQoS7+wo9inIu96ydnYOT6zck69sq2qdruH6IcOtqc0114NrsfM+1PO6DffpIG3MfyLDzPO4RgvdTxgjKDSLNgriVK0urIEM0bfvAJvFdPK/75rYvuyz6f+1ar+KIaq7OfkMgIiIiIiIiIiLKDx+WERERERERERERlTAMk4iIiIiIiIjIB3OWjUg8qgXjm8+j2sMaN+XccnzyOVlzCvRuTnxuEkH1O08W+X8ydHS1ym2RJddEPeQjsZUp21mINpdHDpwQ+yePnFxy2RbP/G4h8nTYztFq9luhcrSklVnUXDe2et10d9vgtExZNrPLPS9NUb53LfPO1TInmk1nZ1wvmd/GvMy5nqP10A5MIfIp2vKUJdbrmhlvt6vLabtZhMi3FLrfG2pe6HYxpd0vZ1botlvU9m5rq9v60veBvL+y5dL1zT3pKsR6vveKoXOn+W7bldmP7zo9398FXMsz6/Vv/xb9/7OfBa0CUdUwDJOIiIiIiIiIiKiED8uIiIiIiIiIiIhKGIY5QvgMPW7Oy6Mevq81p9XLVl/rkNbme8GO4Zahh8XOgy3Ewmfbebx+7v3qvhyD2nLMQoRY+NZRrue777K06zz51t81zMe271zn5R2GbO1HLMvWMiRTniZNfcmQ881oGZw2T6ETT3QrP0Qoai3DlvLedjWvo1nI491sCcV2Davz7fuKGrImhb5OZCmjln18iBDEWoZAS/XQzlzlsU/zSKeU5z6vZZ+S5b5ic2/82RbCGkIeqStCtLV16+LpZcuS8w4/vLSdkXN6VqYUc5aNUMW4whERERERERERERUAH5YRERERERERERGV8GEZERERERERERFRCYNrC8aWTyJEPpgQOYN8+W7bt4yEAHHkMi9QliJD556oZb4Q35x03sPQNzZ5lelavu38cs2Z5Von37xAtjJC5KRz7WNsQuS08m1bvvkafXLU5XHsXcuwSfRFjcnkVPJTWfm/+108ve++g5MbO2YmyxCFNDWGTzwSIjeN7/4PcXxdhcrp6cN2vQp9rtnWK2peOymP3JO25YqS7y2PeuTd99W7ouTF3daXXg/Z5xflOOXdX2b5nvL6WMvcpb7nb4h6TpsWTx9zTMp2RvrrOcxZNmKN9KZLRERERERERETkjA/LiIiIiIiIiIiISvi+YMHk8aq77+u3IYYUl8w6yrDGxsbwYQ+hh4Ivytu1WcJkgofPmrGocrkcdpDcXG9vcl5bq9h2gBC4PMKPbPI+v0KEVrlu21eI4xZ623mEuoZYz9rX3fCb+MMvfpGc9/GPxx8GxnAf8MY3ViyvteJPayN0+6z2NTbEtmWIlNnNhr4G1jLM31WWYyGXXbEi/vleeyUvKK+8EsdStTR7hkned188femlyQV/9avUMhLlLf978gfywjd3bmqdXNtBEY9nmSVLkp9/9KN4+owzErMaZJ/meg9i3kyI9XxTP4Tup0IdpxD3t76pFFw19G2r/HOjUkUKvRw28166u3twcsf0XROzXO9VZLM2+7DQihKOWygMwxyx6uCqSUREREREREREVB18WEZERERERERERFTCh2VEREREREREREQlDK4tAA01GHtuy7fhm0skxFDGeQwZb8tTFjrHRi2H566HHCHOdcwQj++Tw8NcR26u1TGRUpb9Xctj43Ne+n63Wuas8c1xEqLOrv2nnBciB1Qu+Tws+QJx8smVpwHrOeuzD0yhv6tvXj7fMkOsl3fev9D5hKqZZ9FWjzy2Zyu/qyueljnKAKBZfLTlAmpOrpY0b148beTWct7/06dbNuDGdp649oNmGbb6h8iNlyByswFI5n8LkRPIehDT5X29SisvSz3yKD90v1JW/5RjWpT7M8DvWmNtL+Z3Fue97+96tmbtcy+UdzsYcZizbMQq/m/xREREREREREREVcKHZURERERERERERCV8X7BgbK/b1vKVZN/Xgqv5Om6W0APXMlzLt6m7Yds9hQjVtck75GpbX7IeMupNvt6epXzffRJCWvkhwrnNcnxfwQ/xWr/3cPUpZdbymFmJ1/u96yjjyQA0OIYjhd7HRRIi1YGNc1hODteJ1O9mtoOennidjp2CbLvoskTitTSLfbdkSXKmDBmUIThGOLTz8W1vd6+YEKIP9j0Xcr+vcQwll0L1PT7l2PZdEe8JAP/7gND18FkuixD9fb1d14B8Un34lE9Uj0bub+5ERERERERERHkZyFlW7/+cvqpqUEp9RCm1XCnVq5R6Rin1n0qpCe67S52klLpHKfWKUmq9UupapdSMCsvtopS6RCl1s1JqnVJKK6WucD8ww8eHZUREREREREREZPNNAN8A8HcAHwJwLYBzAfyvUmrIZ0tKqbcCuBHAeADnA/gagKMA/Fkptaux+D4APg1gPwAPhvoCWTAMs46FGCnKJ0Qky7Z9R1DK+5XwvF/dTxMihC9UqNDGnsrr2Uad9B1ly8Z39B1XruEp5h9UfAa1KVIIX+jR71xHRwt1DH3C0vLYxyHCF/IOgZAhw0uXJsu44YZ4+owzWhLz9pu1Lf4gG7xcCUDDnDnxh1mzUuuxfkNy28uXx587OuKfy1EJAaCp0a39uPYxeY8kl0WIdhHiHJJh5n1ItoOWjvSYxBDnVDVHTPUlj9OaNcl5u8oBKuW5ACTCMnfMPXhwumy0O4sQoX42IUYsDNHH28IRQx/Tzb3J8m1ht64pO3yvQ65luh6nLPdaofuYvO9jqjmqYt5tMI9QYNmuH3kkudy++8bTrqPHm+W7ynIdHbg/0TrzZqiAlFL7I3pA9hut9Wni508D+DaAMwBcZVl/LIDvAHgGwGu11j2ln/8OwMMALgSwSKzyMICdtNbrlFIdANYF/UIO+GYZERERERERERGleQcABeBS4+eXA9gM4J1DrH80gF0B/GjgQRkAaK2XALgDwOmlB2oDP9+kta76AzKJb5aVrHlxM877xj148NF1GDd2DLp2mYhLP3oEDnzn9Zi9Zzt6t/VjYstYfPBt++OsN+0NALjixsdw/nfux27TJqB3Wx/OPnVffOQdrwYA/Gnx8zjvm/fgb0+sx6+++Dq87XUza/n1iIiIiIiIiCg0n5CU+nMogB0AHpA/1Fr3KqWWlOYPtT4A3Fth3n0AjgOwN4Blw6tmOKPiqA5Fa41TP3ELznrT3vjVJccDAJY83o0XXtyCvXZrw+KfR28ZPvXsRrz1k7dixw6Nd5+yDwDg9ONn4rvnH4kXX+7FPguuwduOm4ndd27FHju34orPHYOv//JvNfteRERERERERERD6FBKPSQ+/1Br/UPxeVcA3VrrrRXWfRbAa5RSTVrrbRXmD6w/sGyl9QFgN/BhWbHc/vBzGNvYgHPeut/gz+bu3YEVz21KLDdztzZ847zD8bFv3Tf4sGzA1EnNmNU5Cc93b8buO7eia9eJAICGBpWpLlnyJYTOkVPLXA2u6+WRDymP8tP4lp8lf4UrmdNA5jzyrcdwls1TNdtIliHjQw9JP9SyPnzyh1Q7b1jeOaiqmS/Ndnzt+fbi5ebONefF09OnI32mdPLJqcvZ9kd7e/LzvHlDb8rk28fInFy9lnxFMj8aYD9HQ3DN+5e2Tihy/9uORS1zK7oyr1fy+9iuZU88EU/Pnp1eZtl50t0dT8vke0DihOvtjX/cYuTIsp3Lcp4sIyqnNtfRUDmzJLmPzePU3Bz2XtSWo8xX3rk5Jdv3tLX/EDlta3nvVs28wVn2jc9+7OlJfpbHyTyvXa/1sl0fdFB6+abQ94pZ1hm4P1HZfh2m2unWWs+zzG8BUOlBGQD0imXSHpYNJE2tVEavsUwhMGcZgKVPvoRDZncMvSCAg/fpwPKVG8p+vmpND3q39ePVs6YErh0RERERERERUc1sBjAuZV6zWMa2PlLKcFm/6vhmWUbmaB7X3PYUbn/4eTy2agMu/9RRaB7HXUpEREREREQ04ik1WnKWPQdgP6XUuAqhmLshejMt7a2ygfUHln20wvpA5RDNmhkVR3Uo+8+cjOv++JTTsosf78a+Xe2Dnwdylt37yAt400dvxhtfszumT8329qCCHnyl1TfEy5z33Jp4ngwp8B1u3Pbad9o6Q/F5pd03TKmMfD9ahFg0GPEX2xrjY2mGR8jXoYP0j8ZOTht6Po/QO9fXt72Hq+8VfyTYsCG5oPje5v5ftaZpcHqc8TeIiRMrb9d1iPgh56XF8zQ2JT76humFCI/II/TPh2uIkS/X42brR/I4TskmEi/nHeZmdDINabFz5nKrV8cfjFjIOXN2Gpw2w0JWrY7rLMOyW1uTbVx+nSztpSnAdcK1v5O7R36XoYRu/3nIOxS4mn3YUGW6lG87v2zzurri6RUrkvPkaWO2n8aO+BxasyY5T16yQoT+mWXkfZ0InYrDxjUUOMt9sE8ZefC9L/PZr3n/Pp53f+Yq7/YYqj9Lu8+wXYfMbSVDlJPz0o63+TtJW2v1wmeznF9FSclCwTwI4PUA5gO4a+CHSqlmAHMB/MlhfQA4AsBtxrzDAWwE8HiIioZSjB6xxo6btyu2bu/H5TfEDzgf/PtarFyTzFm24rlN+Pi378OHFswpK+OIA3bGmSe+Ct/61dLc60tEREREREREVCXXANAAzjN+/n5EucZ+OfADpdQuSqnZSin5FtGdAJ4H8D6lVKtY9kAAxwC4Vmu9PZ+q++GbZQCUUvjtV1+P8755L77ysyVobmpE1y6tuPQjr8GTz27EQWdej95t/ZjYMhYfWjCnLLn/gE++60Ac/K7f4NML52L5yg049RO34qVNW/G/d63EBZc/jGW/WlDlb0ZERERERERE5E9r/YhS6nsA/k0p9RsANwHYF8C5iB6EXSUW/zKAswAcC+CO0vrblVIfRvTQ7S6l1OUA2gB8BMA6ABeY21RKfbY0OfDQ7dXiZ3/SWg/1Ntv/Z+/N4+wq6vT/53R3OjdNp9NJOqRJGmiSAAEjBAgQNGB00EGMjmw/0AEMLqijX5dBHXRcZ9TvuODufJ1FgZFVXBhF1JEZIjgsAhIUZQvQQICEJKRJmqSTdPf5/dG3+3zqc++prlO3zl06z/v1yit1b9WpU6e2c+7pep6qCL4sKzJvzj74wedPLvl+5y1vSz1m9apDsXpV8uJs3px9sOEX5wEAjj18X6y/4a/DF5QQQgghhBBCCCG1Z+/xLANGV5X1AbgQwOsAbAbwTQCfjON4Qt1tHMfXRVG0E8DHAXwZoztj/jeAv4vjuJxf2T+qz0cV/wHAZzCx9LMi9ppWbVR8/STuF2pQaRG1eLGf8tZ1/GfxAMjb78SKadCThKX3D4BWYWTS0t7hVA5vTzFLJXt7s1nw2bLcO39pxKJ8yQwjJWWq1NPjtrtsLp4IKe2RZRz6+Gl5+8JV2Rcibx8lH3zP5budfIjnIqMNlWHRbuFdYviGad+/3/52PLjtzLcaUUMiqS6vHIr18owXwpMxlBdN2nE2T6gs5Q8xhkLnUU/+MiHmSJ3jGDcpp5R3vnPLeHjLltlGnHxE0LevNJ7vN9tFWQk6I4e6LY/Q7Za3b5Uu72N95X12AaBtQx9SI0MYxU0iSp4zhsr7bI8o71XjmFo+g5jmXWacaOs8/BPzxnafaG0ZEWHzuLRr09WTh59xtfIjjUUcx8MALin+s6VbDWB1StwNAG5wPF+UrYRhqf/ZhRBCCCGEEEIIIYSQKsGXZYQQQgghhBBCCCGEFKkT4cXeTYxofPmsr9xCH7dyZXZpRpZlzEFkh4JqL6E2lo5veCaJ0Hs9i88hJEC+25m7yvnyZsegeW65dbVWQ6SpI0rKa9lf25AQqDXnI4U2uFAvS9PzkA34lD8PmVjehJB65DFOfObPLHUqu7whk9RjZtWq8WBfnxm1c2cSPuwwM07mmUf9pLWbbz/Lo459CDWnOKeVE60MA2iSfcFRSxvqHlIrKY61/FqifEOi8mjbnuxwfuab3qNyTaSXOgspf7T1Xdk0y5aZeTy2zu3eIKXXJecW98Pf32/K6JYu9Zsj0+YwLfGyda0Q/aCnx3KuDRuSsNaiigeNEPOD69zkK1V0JVT+aXLLUHOwkY+jhHLbgJmHHG/t7Ul5Z3W6/0QN0QeDPw8O7jC/EDfnpsWLjSjjXtn3mJnPBz4wHt79w5+Oh5VrifHMrceQlnamnds4L6WW2di7PMv2KurjlxAhhBBCCCGEEEIIIXUAX5YRQgghhBBCCCGEEFKEL8sIIYQQQgghhBBCCClCcW0dECEOrg2X2xDbCL3tcygvl7Ry5eLXJbYi19u9F4QHSVvBzU+ull4WeXtxFAqqfjx2bdfnlT4v2uaioyXdAyOtnFnqNLS3Ub16fkmylNHHm9B3jNqO8+3zrmTxmgudv638cmxIX5fu7g4zf+FbtbgzvRytm58xv9ggTE+kL9CiRWY6MUdmodE9T0LMMbbjUutHT4QSi8ejK43eLhrp87VhYJYRN/Uvzx8Pz33h4fHwrH/6iJHu3E9/cTysbWcefDAJH25aDRl1Ke+Pa9ZMWOyy6HMbbSUilyzxy98VWxfUZQzxHGl9ZpUGcOrkrs+Koe/FtfSOteH7DCKP055iEuv0I9pm26DplTbUn4T1c+PUqWWzyB1dN6keofBsX32h+r6ahvKlLDEnK6Lbwud53EYev+cmNfQsm7TsJT2YEEIIIYQQQgghhJCJ4csyQgghhBBCCCGEEEKKcL1gHRAjGl+mGkoitWlTEp4zp/wx5T6nEUKqZcNXIui7TDgtTu9K7nouW7oQdex7XN7yshDYl46nR/pIP3yvObRcWeMq08tj6XtoiaNv/YSei3TavPuI7zxoO1/afGQ7xiof6eoyI+Xnnp4kHFrPMQF5yHhd0/nkb+tnQSQnuhHFZ1v5Q1yblt/ZVCXVvIfY+3xSfq0Yltfz/JRDxsOzlCTK1uVt6qm09pbDKQ/yUPvIOt6+3byuKVOSsO9zkvf9t6U1NS4tzyz3NdfnJOf7iZLRNcnPuqMFmGt9ym8jRN+StgEA8OyzSXj//c04eRuqpopN15ucRzSubW/tF5aLM47TE84115TNQo/Das7HeYxzQuoVviwjhBBCCCGEEEII8YGeZZMSyjAJIYQQQgghhBBCCCnCV6B1gNwNM9ROflJ6mTd5SNRC70Lme16fpcZ5S1EbZRcmSTUlplna0GdpfSiJnU8eofpW6Dzy3inTtxw++Ve7fb3OpXfLElKe9evNqPXrk+tZvNiUM83qLL/TnqaakgvfOTjvXZPzlhfbCHGPDSHBykMqHQKZZ2tJ+ZOyyE3lZp15pnP+PosF8ugvedsBSEI9QwYZe32PJR+0ztZRxhj6GcQ6x+jdC6UmUUvhQ0ve9b3BOFebUxZtA8+ZX0gts+POyDqZTWqZNr5CzeOubS+rbvNmMy5vWbWNka593dJ5zg8hfsvUy+8QQvKAK8sIIYQQQgghhBBCCCnClWWEEEIIIYQQQgghWYkiepZNUriyjBBCCCGEEEIIIYSQInwF2sD4+If4egCE9l3Jkr9Nh+/qR5XlfK6k5Z+Hb1veXm0S3z5iO86Wx+6h9GuTf6TJo81CePDY8vNpN+9tyXMgRB/M+zjXfuba9nn4W/nORalxFp+b9nbzc3NzEtZWOp2d2T37GhHf8dvo7BhMrnv79uR7Xz8q2xiq5j0qC/IeYvgotXQa6WzXIi2bSj3RakMe9e06l2YpSxCfNYvhVTV9bN2vUyHL39kZpmBp59YrW4RfWpPsyPpGIdHGlx6eZa0tI+pzEnZtM3naUZLjsngrys/P9yd5SCs5wPQl09ZyVb03BFidVG1v420Dyfl0u411tTjOtQiE5EZ9Pt0QQgghhBBCCCGEEFID6uRvZIQQQgghhBBCCCENBD3LJi1s1UlCtbdqD00ImVKI5fhaEugqA/SVurpKFPJuw1pKaFzvLbXs4404hhp9O3Af+YsNLQ1oaclXRl1NZB1olc9LX5qEJ/NznOv8EKIvhZKo5W2DIPv88HD2YwB7nwl93/Ady1ryJZF1J8d8tWVKtcTW/13vE7b6ke2h28aiGE+l5NwyE9UhfZ4BQ4wn61yqNXyumUo8J+ttg63G50LnvuNh2zgxyEEq6kpadQDA1q1JeNo0M06qSm0yaomUXQJmlYe4V9rl3O59sFZy9yx2ErL+td3D2GfXexAh9QZlmIQQQgghhBBCCCGEFOHLMkIIIYQQQgghhBBCikxiUQYhhBBCCCGEEEJITtCzbNLCVm1gfLTrefg+Bdka3DN/X4+K0Lp/m6dAiHPl7dflm4fPcXl4LtTSc61Wvj1Z8pHt5OqhN1FZ8vbRSMtTl1/6DGpvEpv/SZqXTpqXGQBs2mR+njOnfLmq7Ye0YUMS1nYzbYXk3NqT0ZUQc3wIX0rXctnOZesT+jk3dLtV2xdLXk9zc3o5ZH2FeNbP+zrz+D1i6zO281WzTbPM3WlxNu9G1/uExtXryfs+EaDBQ7STbe7I4kFl4HFtrt5RtuOs9ZHFc80R17a3VcfMmenpbPO/TGuzYwvxTOM7j7gSwgM5xLl9+iDfI5FGhTJMQgghhBBCCCGEEEKK8GUZIYQQQgghhBBCCCFF9opFkSveeWOti2Bl6j7Jkucsy+xrtZ1wlvO5LgvOW2boWnd5LJMOvZy7VArgVn5buVzruNoyoryxSfh8trz3lXjlMX7T2iqLRDBvebErrhILKUecCCkVGBxMTyfj9tnHjJPtnSZnAtRYG9ptZuIz6aiO1tzcOh4u6bcibUtLK1KR+72rTJosZfSZu6st15eEkNRluWaZttryXNmMMqzL4SovC/EMUu06CHGuvOe6EM8/oe8njdhOtZT/+lqC+OD7LG1LZ+Rp03J6EqJ/yvoP8ZydpS3q5T7nS+j+mbe1TUNCz7JJy17Rqr+996laF8HKOy+8sNZFIIQQQgghhBBCCCGgDJMQQgghhBBCCCGEkHH2ipVlJCGLRMR2XL3sElbLHejS8JVU2I6TCiktmbHJyeSK4FY12s18mkS6MMurXZemh8jft86ldM51J8XS3cTKh/Mgj6XvIXaUDSELmeh8LnR3m59NmWR6XF9fEtYyxu3bk7DeSSutvUvmos3PJR9sg1RnKNPKHcpUHnOnSS3qgBFnFFrJMA1JqLxwVQ7X3SVL5azJcWb27n0i9I67TQ/+2fxi3bokrDvQokVJnp2zKj63b9rQMnmblNmWNoRMdWBAf5NuI+Ajha82IeRfeT9PuVpNuO6o6VsWaXuQ5V4ZQqaat0xSzn362nyeC3yl3o1A3uW3PaPVyv4iF9Rk2uQony2dgxM6PBW4tbQFqisow5yU7MU9mhBCCCGEEEIIIYQQE74sI4QQQgghhBBCCCGkCF+WEUIIIYQQQgghhBBShOLaBiKLFj4tra+WvJYadFfPlCy+STJtaN8zm1+CDe33Iz9Lj4GpU9PzyOLxUuovNEqr8ixI8xwB7J5Q2iMtjdBeB6E8I2T92OrVtp25RF+bz7Xm4YdnyyPvcR+6vXWfs3ljyXaT7Ss9ygBg48Yk3NvrUUDANBbUncnWudI6oR5scoLQhiTCs6ykj6RMTlnaJa0ebels5OH50jS4I/nQ329GyrbRni8PPpjkIS9Oe5sJP7kR5QtnQ86fMpy3V1ctPY/0tckursdeW6E2vqNZCP2s5Uvo8/n2kVp5xU6E63OG7RnQNofJuDS/04nyt33v6i9sw1YHrs8WefSDvMeQT5+s135s4OhRBpjX096e79zUEHWXB1FEz7JJCleWEUIIIYQQQgghhBBShC/LCCGEEEIIIYQQQggpwvWCdUCMyGm5sa8E0TXd3rRVdZ74rsLVx0m5ipSqDA+n55HlOnfuLP+9XqK9YUP5cgCG+shZOhRiG/hQx9lIk5j6tq/rGAp1LaEljiEkyiGkPTb5iM7fVT4iVXU9PWbctGlJePp0l9KWqZu0wQwYHaqkjttTZJJK6tdk0wDZNEGBqbYCwbkPyjoQslQAZtvICU2zeXMSXr/ejBPSziYt0dTnE0iZcC3VG3mPc4mWRtvUxa4WDCEIfV/Kex63zXWueQCmKlkquLu60tvJdx639fEQFhu+z8Gh+1keY9n1XpaHHUO94FquEPOI7zxoq2N5G2ptqV0d510HhEw2+LKMEEIIIYQQQgghJCv0LJu0NNbyIEIIIYQQQgghhBBCcoQvywghhBBCCCGEEEIIKcL1gnVANDyEpoFtox/UVsC19AYL4WMSuvx5+F25biMewu9Np5PWN9IvBABmz07CslvodNICqdV9J2nDi0l6KWzaZKZ76qn0PKSPSUd7ffja+fZVm2dc3tSLh4Qt/zz8KqpZfhsWWyn09iZh7z6RZoAHs8x6bDtv8S7ztHhy7R4y85OHuXoGNZpfJQC7L5nN703GtVsmV0/phWu9VtO7K2/fSJ3O5tuWlqeuq3rxAvIdG67PWjIuy7OQLX/ZreUwsc112wbS86jl/OA7TurF58u1TfPw/rTlF+LcPlTbI0vbiUoKhezXqfOTtpc9PWZ+ad6Bo2mTcJA6sd3nLOTx+4uQRoAvywghhBBCCCGEEEKyQs+ySUsD/omYEEIIIYQQQgghhJB84CvQemBwMNHjqW3nm2z6oMD4bt0tybK0u9FwXZqu09mkAVOnJnF6yfaUKUlY/rFCyyNkXBYZmpROyHPLpeIA8PTTSVh3R61ocqFeZUT6D0J5/4Eob9lGvVDL9g5RPzb1nTOOnWnnTvOzHOsWJSdanWWGTsXIvc20zEQWsS0P+bNNppqWDjAbwKbRseXhiO0eYrZ9vlLsesU2ln3vgfVIHnJo17qT41I/B0gpmI6Tw8Qmg62mnDhL/dRLH5HjXE83UgZYT4tX6kWi79OGWo0o63zPHjPOJktOa7d168x0NlW/HFM2GabEe66zyDB9LWUImcywtxNCCCGEEEIIIYQQUqSO/j5BCCGEEEIIIYQQ0iDQs2zSwpVlhBBCCCGEEEIIIYQU4SvQemDPnmTfYC1kr6JnWd7YtpyupWdENbf81khfMu1T4GqXE8JTyfbHEFkOZann9UcU37qqFy8aWz/O2yclxJbxmkbznvDtI65xWeo4dB/ctcv8rK1FxtDjzii/ZVD6/tEztI+Jba7z9Sxz7sctrcZHax+RBXM1rUlrtECU2s1Ur3/mje/8VkvS5o5Q88aOwSQfWxd0zdNWx662fDbfVJsfkitZ7vUh/HR90uWNrjY5Z+o4n2fALM/jPs/q1X5e8ymjrR51N7Z5hsq22bAh/XwyjzGb6jHuvjsJr1iRnkcQ1ABOmwP0tfT2Jul0/bTCUkGENDj1cVcghBBCCCGEEEIIIaQO4OtfQgghhBBCCCGEEB+4qm5SwlatB+I4WdOaYT2167LjasqI8s4/j2vxlbKFWK4vm9smsZBLo0u3FE/Cep6WEp22Qnr9yON0HrNnlw9PhI88Kw8JRCjZpw8+fTKUBKVe5CS+8g4fWUUe8hGJlg/K8SXHjdwGHgC6upJwa4tZDjmen31W518+Dxsh5C++fSePOTJvub5PGUvq2DaBBmayPYv7zG95P9NkySMtbZY8bNcj29smBbMx5vIxepx5LvkMIl0/bJJMPRc1De1OPjjKMLPMUz73iVB9xOc5xhfbNBJi3Nvq0fU6fesg73k8RJ5pY02jx8aePUl4+/b04+bMScJa4rhuXRI+55z0PHzr0bXd5HXbXIBK++MkuzERIqiPX1OEEEIIIYQQQgghhNQBfFlGCCGEEEIIIYQQQkgRrpusNzy3NnRd0p63XDPvHS9t+ctdowBTnuhbfte0vkvTpSRr9mwzj7SdMvXycJtcork5CRcKbmXUEot99knC06ebcT71Wm2pZVo5Qqat5JhK8ggiIavhjnmh+0Xe12bbIUtO3Xoat0loZJwc87Z09YrrjqNa3mG7tjzmboltN8A0ma03FomaqxTPRqPtfpkHvnOA6865jYjrY6V8ZrLJ0Er6o0xr8ZOw1XEIq4Y8nmGria1+tHxfYtuR20fKTOy2KJpp05Lw/vsnYW3HIO8v+h64aFH2c4fafV3mY7N1cc1vryWKGuNBjWSGsyUhhBBCCCGEEEIIIUX4sowQQgghhBBCCCGEkCJ8WUYIIYQQQgghhBBCSBGKa+uBadOA3t7RcAa9s5dmfP1683NPT/Y8LFTbB0HWwebN5rml95b265LHudajqx+GrxfHzJnpcbYtxaUv2fCwGSe9FDRp193enl5em49JLZHl0mWUHgyTzYsmNHnXTxZPmTQfliy+iCE8E/v7k7D2EknzC7RN47oOZNq+PjPt2rVJ+HWvS8Jz56RfZ6ktVuVeQL6k5anrR37Oow+6XpvNKybIWLB0jLx9Ha3ITqM7taePqiu+99VqlsP1uDw8YdPGb5b+aPO7kuweSs61c6cZJ7tBybnrxKcnxHNYCH9e3zxdjwl9rlBk8rmrA7K0oURfi7xvSH9hG93d5md5f7fhOyfa5inzM9fQeEPPskkLRwUhhBBCCCGEEEIIIUX2qpdlzc3NWLp06fi/Pv1nfAB33HEHjj/+eCxduhSHHXYYPv3pT+PSSy8dP6a1tRUvfelLsXTpUlx88cUAgK9+9asoFAp44YUXxvNZs2YNZsyYgaOOOgqLFy/Ghz70Ifzxj38cz2fWrFk46KCDsHTpUvz817+uVhUQQgghhBBCCCGEEAt71XrBadOmYa3UtZThLW95C37wgx/gyCOPxPDwMB566CEcfvjhuOCCCwAAvb29uPnmm9ElNH5XX301jj32WPzkJz/B6tWrx78/8cQTccMNN2Dnzp046qijcNppp42ff/Xq1Vi1ahXOPPNMvPMd7yhdk1skhIzIQO9XLMiSf1q5Qi1N97nueln9qssrpQ1bt5ppp09PwjYJkFzeLmVhEyGP0/m3ptSXLr+UZepl9iH6p1T92ORZtr5lk6lK8pZ0ZZGQBR/bjtjOFWIOsOVpqx/XuCz1b0OmldIJPb5knJ4+5XiQ6fR0LtPZ+qc+To4NKam2XaeWgUj5lE2OFUKGpklrwyxyHZ9x4nst9SLLzkNObG8nQZq2GMhdkqmRZZbFst0rbXnk3b55jCFJ3uWXY09bOsgxm/bsAPhfi+0417ZPm9P1cSGeFXV57XNa5bJJ13q13UddJXx5yyldn5OqbZvhK32VdSKfEXRflel0Hc+Zk16OEJYUrrg+c9PShOxN1Mnrhfrhueeew3777QdgdCXa4Ycfbk3/6KOPYmBgAF/60pfw+c9/3nhZNsa0adOwdOlSPP3003kUmRBCCCGEEEIIIdWGnmWTlr1Khrlz585xGeRpp51WNs0HP/hBHHrooTjttNPwL//yLxi0/ZUVo6vK3vSmN+HEE0/EQw89hOeee64kzdatW/HII4/gpJNOCnIdhBBCCCGEEEIIISQf9qqXZWMyzLVr1+InP/lJ2TSf/OQncffdd+M1r3kNrrrqKpxyyinWPK+55hqcc845aGpqwumnn47rrrtuPO7WW2/FEUccge7ubqxatQrdKVJLQgghhBBCCCGEEFIf7PXrBS+44ALce++9mDdvHm688UYAwMKFC/Hud78b73jHOzBnzhxs2bIFs2fPLjn2D3/4Ax555BG8+tWvBgDs3r0bCxYswHve8x4AiWfZww8/jBUrVuC0007D0qVLS/KJoyaMtLQCyEf3beSpl4jazAmk6YMS3zc5mkT5Xo9xnCyjLq8ol7ZTCbEadsdgeV8s3/yl71AWpI/S9u1m3JQpSVh7JEydmoRLyitXTa5fn5pJU0/PeFh7lfh4GGTxw/D1wkojhIdeFty36w5PaB8QX68wm6ehrRx5ew3JPAuF9PLbtoUX1pVW3zybL59kyRLz88KFbuWQcb7zoK+fjU/+efydzneM1iN5jFGJbsPBwdbxcIfF1zQPXPud7ONZ5oq8/cCaBrYl52rv8Mujivcy13yam83PcpxvGzCPkXOO9nxMs7kbHDTzsM2fPs9aO3em5+H7bGirV5svmQ0f709bHlni0vL3vZbQCrRG8cFKe5bQ86wcC1q05HOtjeLp1ijtSEgae/3LsksvvdT4/POf/xynnnoqoijCI488gubmZnSmPDxeffXV+PSnP42PfvSj498ddNBBeOKJJ4x0hxxyCD760Y/iC1/4Aq6++urg10AIIYQQQgghhJAqQ8+yScvk+VNsIL7//e/j0EMPxdKlS3HeeefhyiuvRLP+E1uRa665psT77LTTTsM111xTkvZd73oXbrnlFjz++OO5lJsQQgghhBBCCCGEVM5e9Qp0QGtXylDuRZekr69vPFzuxddXvvKV8fDKlSvHw9OmTTN2w7zsssvGwxHi1GWqxvd63a5lD225JNbY8jvLnuu2beJlpmvWJOFly8x0jpIO63Ji237LAt28IZbdy9NlkQimlcNWpba9JGxbuksZpq7umTMdCyax6SQDEEJiAYSXXYXYct03f1+qubw9D5mqD6Hq8fl+tzJLWZFNXmmb6lz7uJ4f0uYL25b0mzaZcdOny+Mql0rYrsVVApflNmTLr1ZjdPdQuoTMtz+GkB27t6FZftkeY5YQlZYlT7LMASHKL8+n79NtovJCy2Vric0yQo9f+cggHpEBmFL1Z59NwvrZZMaM9DgfqffwcJg69pFJerevTa9veRhtslSQnKts9egrZXadI22XJu9L9Tjf+GK7z2W5B7r2Lde+2ujPooRUm/q/YxNCCCGEEEIIIYQQUiX2qpVlhBBCCCGEEEIIIUGgZ9mkhSvLCCGEEEIIIYQQQggpwlegjYSn0YtpdZBBq257Q755cxK+/vokvH69me7MM5OwxbDLWe9uqQPtGRTiBb88navfgw2bF4TNokL6JmnPFOkJoveisHmuGV/09KQmdPW8cMV3W/tabottS1dN7zTffNK8nbKc29UvyrVMGp1H2rlLziU6ufZbsuE6ncqxJ8caYI43Oda0b5j0GdR5tLZk97rRc0Def8x07TO+Y8HX78fnfCHGbx71HWKcu+apv9fPBbVCl0vee+Qjh77PTZmSpJvVme99Qrd92pxj62el9rlJ3Nq1ZsyKFeXzsOUfwtNt504zD/n4Zuv/em568MEkfP/9SXjxYjOdzF/Pkb29Sdh13vZ9HnT2hBra7XcCG/JmI8OAeYNRlTCy6JDxsPaMk4d1dydhm3+uxsczy+ZNu327GSf7THu73/NmvXhmyXJk+r0lyMNTzPc3SggawaOREBvswYQQQgghhBBCCCGEFOHKMkIIIYQQQgghhBAf6Fk2KWGr1jmu8qOSraRF2jaINc5DlrXRvsi13evWmXHm+mojykdiZ1vOq5fn+ywn1vlLiZQrWeQREtuydamS1BIFmzzCWXpQaEsvl+U42QU1rR5dy3WJv40Q257bCLWk3Geb7yzl9ZG2VVvq6rMNeolEwdLJbdcjt6uX6Ox8JEA2SXUIaUla2QFg+nSdNnv+WaS6jYCPDM2an5ZgyfucrnDZ4HrCDPxgrbMfEjLGtoKfzLyWyOrRsrpqYpNW+WAbk3K+0dgsNUKj5xFXtLxSDg0pySztq0k4hKWGp2tJEHytDowL1zJMeUH6IVBgGyc+9wLfdLp9pfRy167042Rb19Nc5GsVUOm5fM/XiPdpQuoVjiZCCCGEEEIIIYQQQorwZRkhhBBCCCGEEEIIIUUow6wDYkTjS2YzLd92XZsu04WSfci13nK7Jo3nWnifnfxCUE/LviWuEhSbyifEMnvdB312CPWt47zbRpfXVTon09nqX++AZspnq7usX+K7XL9epJ2u5/K9TtuuYWnn0xLkEHUl87DJwwcG0sdovdpp5CGxDlGO1PbQFem6bXLODeA6H4cak6HneBuyikPtBJlGlp1/ffqgbfz29LhbNUhCzH0yD9ujm76XWTZqNJ5dli1LT7dnT/ljAKB14Pnkg56QRaXkLT0z1dbmLqi+8kR572+SlWLR42rbDHnuWYVBnVyczPF5XG9pKrF0DJtcWcp6tcTX9TlVtq9WqdqU8LI/hZibQktWfcmi6s97R816/e1UVaKofh+ySEVwZRkhhBBCCCGEEEIIIUX4sowQQgghhBBCCCGEkCJcL0gIIYQQQgghhBCSFcowJy1s1TonyHbFeWxdn7anu/aTcPQsq9dtjuuxXDZvAF/vK1+/kzw8onzy9x0nu4eye7lkyV8OEz0UfIZeCD8eje3aQnv12M7tGhfK8y6t/+TtH5cLholQhxG1YUMS1l5A7e315ztnI+/52PU6vf1Dc8A2fl2Llfc87kvwfudqRBkA37nadZ7S+dvayearmfaItn69+bm7Oz0P6RclvccAs5qXLEktojGFlTSNY1v53qdd+7+tGPJZwte20CizxZfM2pd046T1+Zy9FXUZ2/zsiw3kpeh+JvuP9tSTzOqsvBwhsM4P6gKa7r8/OW75y8bDtqbOYhddL/dVQuqVBvxVQAghhBBCCCGEEEJIPvBlGSGEEEIIIYQQQgghRSjDbCCCLGVVy6u9t5OX+cj1+Rm0ZvWyNNd3CbKPrKIeZZ31hK8cyLdeQyhxXJUNrsviQyml06hlH8wiTXKdm2zpfK41D7mpL6nn1joToZmatWiRETU42Bq6WMEJIQN0vp9IzZg+l0X65HUu+MnYQ0n4fAjR37W8vbWldvd6c34QBJpoXduwlrhemizz1KnpeWRx27Adl5aupLzyBJaLybvOQygXXe8v3mNZV7KH9Hg30u8ZrTnPMa7Py9Onm5+nTEnCline/zePI0GeRzZvNj9fc02S5/LlIsLMTzZ1vfy+2qugZ9mkpX7u5oQQQgghhBBCCCGE1Bi+LCOEEEIIIYQQQgghpEhV1gtGUTQbwJsBLAawE8AtAH4Wx3FcjfMTQgghhBBCCCGEEOJCRS/LoijaF8C3ih9/FMfxtWXSvBzATwF0iq8/COC2KIpWxXH8QiVlmAxEiL305Tb9u7S0sflESG1/oeDnk4KuriSs9dqBt2r38X/Jmk9aniH8MEL4IdWTF4oPefjx5FEnrn5FvudOGxo2Kx1fH4oQvk++1xnCa87Hvwxwn35CeKhUFW3K0tk5HhxpMf1m5Pxv8xbKwxcrrd2y1KPr+ZzvDXqABaZu+ogneXj25e0TZCP1fDl4y8jr1N2s1cM3LAuu9drS4jZO5sxJT6erznb/Sss/S7lC+5Rl6YOu85Zvvw7tW1iCRz/futX8PDychLu708sVeq7Qtzmbr53tPuc65YeYp2zHebehrAjjYsx7Pe2yagw9yyYtlc5srwFwJoAzAPxJR0ZR1A7gOgAzAUTq38sAXFnh+QkhhBBCCCGEEEIICUalL8teXfz/8TiO7y8TfyGAbgAxgMcAXFz89wxGX5i9NoqilRWWgRBCCCGEEEIIIYSQIFS6XvBwjL4IuzMl/s3F/7cDOCGO400AEEXRDQD+gNEXZm8CsKbCcuwVZFkCbl3SbqRLz8N2biOtzKS/3zxQftZro4V8U0uHUs/lycc+bpb/r/4qCR97rNu5bPKUetmm2VaObQNmHcimkUvYhaIrU/55yI/sspakLCGkANVuw7Sxp+XQNqrZB33lcKbUO0P+soPaOqUF24r4tOvZPaTLn3zW5TekVXruk+eylN9LIqu19aJgepzIpE1Du83IQZFY5FEy3/c/XzYdAIwU2sbDugpk0iFRr9ImAAA6O5O4tkLl8hfdhvLvgq22Tqjwlf+mUVL/orFkPVZ7LvKVl6Ud5yt5znJun3TVlMjoU4WW8IWSicly+fZ3mdb12VPjazfgKmPMmzwkmq75286VdpxNmjh9untaV3ye0TJM1QY2N5hcZJKhkdY2APD2tydhcXEFy3X6EsL2oJK0hNQjlT45zCn+/6iOiKJoFoCjMPoy7ZqxF2UAEMfxn6MouhnAXwA4vsIyEEIIIYQQQgghhFQfepZNSip93Tv2smx7mbgTMLpyDABuLBN/X/H/AyosAyGEEEIIIYQQQgghQaj0ZdnYy7BpZeJOKP4fA7i1TPzm4v+WvRoJIYQQQgghhBBCCKkela4X3AJgHoCFZeL+ovj/A3Ecby0TP/aCbXeZOFKGLHp6V98X1+3MtcfMwED596zzutS7T2lYZNtv3JEsdSB18j09Zpz0ZAjhRWP11rJ08aYAS3blubVXj9wCfNcu8zjdpmPM6qwT3wZFqR9Dcq0hVj4H26rdMY80r5gseYQuo60OfOvHxzcsC65eKL7lNX23zDjpZ9YhE1ouOohnk8XMRXr5ATAHupyPgVLvszQcr02zeXMSnjq1fHY6yyz9LK0u9WUa52oP749pO+75/qSM69eb5+7vTz53dyffH9KrOlrO0o7QXj1Z2kyOqXpRsIToB7X06ckyhtLKbMvD954Uok5853izn/ndy2zpdgyml0v6kPqeK4SfnIyzjbWSe4gHtfT/tfWRUj/LhLyfVZzR9+Vly8om02Wy/Z6TdaLvjz7ecFn64Nj5RurzpwUhE1Lpo8kfAMwHcEoURYU4jgcBIIqiRQCOw+iqsltSjh2TX26ssAyEEEIIIYQQQggh1SWK6ucvPiQolf6Z56fF/7sAXBtF0VFRFL0MwDVIJJo/Tjl2GUZfpq2rsAyEEEIIIYQQQgghhASh0leglwO4GKOrxFYV/40RA/h9HMf/rQ+KoqgXwEuKaX7ncqKmpiZEUTRxQkWhUMDhhx+e+bhq0tbWlrpsOPTS32c2mOd56qkk/MILZtre3iSsVwWnLdvdMWTKTNqktsSTENKqc881P+/cmYTlsuwsy8+dJRe2/ZwD/xVCSyu3bEnCug07O5Nwc3PQYgAwl3rLKnBVfmka8Q82waU4pTrAJKwbX4y9ENIPjeu1yXYrKYe8nv7+9AMt5C13knPCkJJwyCK3dLUl3282khljra1FybLz7tgyf5v+0cJIoW3iRDCvUyNPrYsRWvaWpUrzltdIKeq//7sZt2FDEr74YhHhK5etMiHqrl7mddd5xHWOzEOO6PoslHefDvFMliX/RrievOXEvnVQTYljHjL2EMj2cG2nLM9CVZVoOmIrbx62JfLxU9+uxs7n8ROekLqgoiETx/FgFEWrAPwCgHKFwnoAb0459DwR/h+Xc42MjCCO48xljKIIf/7znzMfV00uvPCdtS4CIYQQQgghhBBCCEHlK8sQx/Gfoig6DMD/B+AoAM0A7gNwVRzHKRbiOBzAbzBq7p/maUYIIYQQQgghhBBSn9CzbNISpFXjOH4RwKXFfy7p3xTivJORpoFt5heeu5Cl7c6o1R1yV8gpU8w4uZRWy2vSZJhaJbZxU1KO++4z4xYtSj9O7l7pK+GTS6M7SpYFl1+iHGInthJ8tprJcC5ZRrnrEmDusLZnj3mcbG/Xes2yk9D27Ul4eDj7uQDz2tLaTKfTuLZTyS6mge95rmUsSSfXt29W+r4A2g9XmYbrDlbWMaSlorb5zXHc5C1/scn75Lwo47SiVDbbkiWmVD1E37XKQALMP67n1uW1yTLzRI9lW78IIVOy7YYsq1/e83S5jGZSBa4bCVAAS4Es/T2ExDr0DpU+O2TbyjRRXKrMc/Nz5hddXU7ntmGrK+dxYhl8vjsv+1yPbafAPKT7tltZ6DFay51WbQS5XwXAlr/tOdI1T9exkUc7hXhe8O2ftvxtt4YxKwvKMEmjUp8zLiGEEEIIIYQQQgghNYAvywghhBBCCCGEEEIIKRJUtBJF0QEAXgdgGYA5APYB8J04jq9T6WYVg7uKEk5CCCGEEEIIIYSQxoGeZZOWIK0aRVEHgG9gdPfL5rGvAcQAfl7mkF8DWArgYQCHhSjDpEEPNMvAs+nHpTXQAw8k4f33N9P19qYXxcdXQPs8TZuWlFHbFW3YkIS1l5r02pJVYCuT9tMa08mXo62Q/dp8/QDkcdrLSPpc2Mrk6oOg82hrSYwEdqNVJx/HVlcSfW2y3bSdlmxfeZ2ybYHwnkEam5eCRPfB1hRvNV8fCm//Cll5asAadaf9Dh3x9ZFJK4cV2/yWtt+4yl+3k+x3um/5PLfY+qCe39L6yOCgWR9y3G/aZKadM0e04dBusywpdaAJMYaM82aYZ6UHjKuvXd7kbNNW0hZyjtH3Odmt3/hGM06mlX13pNCWem5fzxpfXxrrcQF+GOTtv5Tq+eXZV13nyFD9PXUOXr/eTCg8y1x9z8qldcGenxtZfNtcz+1KHvOUqy+irSyu6bKU0cdjL4SnXhD0w5vs83qilYaQAW4Apfe59GKFfj/iWsd5eFna8pTPXroOZHPopunsHM1TehcT0khUPMtFUdQN4B4A52H05VtU/Gfjq8U0h0RRtKzSMhBCCCGEEEIIIYQQEoIQfxL4MYCFGH359TsAfw1gyQTHXA9gVzH82gBlIIQQQgghhBBCCCGkYipaPBpF0RkAlmNUbnk1gPPjOB4pxqUeF8fxQBRFvwOwAsAJlZRhMhAhTpbMei4f1ktu+/qS96AbNybfaxlm3nS0J+V6+cvNd7MvvJCEt241j5NLfLU6Kw2dx8yZyfny3srbFd/l2nJpdKms0HKd4ovWAMvndb0NiaXqWmIqPwuFyIR5VppOX5fr8nk99GzSP0kIyZdxbZb17dtaZhlRso4P6HEcKBkILrGwVZbj4NDJZB10dppxrnNHaObPNz/LMvb1mXHTpyfhtoJ5cdsGyo97fV2uMmobUnYSSlZSL/Ns6HKU5udWd1omnNZumaSQMp2S8cpOI6WdvhI4744hB0CJ58I8vzyrSBAJumP+zn1V3VRteYTu//peb8y7OWvU8pCX1Wqe0tSyHPnPkekYfXf9k0mEvlnKvqTnESnDzJm87y++83+I/G2yYFv1y2GvH/PGjrO8Fpgc0LNs0lLpXf7s4v+bAbxj7EWZI3/A6Gq0xRWWgRBCCCGEEEIIIYSQIFT6suw4jK4q+2kcxzszHjtmczynwjIQQgghhBBCCCGEEBKESl+W7Vv8/zGPY8f0Aulb9BFCCCGEEEIIIYQQUkUqFdfuATDVM5+xF239FZahIpqbm/HSl750/PP111+P3t5eI83q1avxm9/8BjNmzAAAtLW14bbbbsNll12Gt771rVi7di2OOOIIAMCSJUtwww03oLe3F729vZheNKQZHh7G6aefjk984hOYOnWqkX+MaFwbrrfcld4QPT1mnE3HLvXjS8R2C9rTxzW/EMydY+Y/fXryrlZ78Oh6GKNQCOOh5OMR4rrduM0bQ3q46bT6OOkJIMN79ph5TpuWhG0eTXn4IMh+VuqlVj5Oex3Y2tSnjLZjWq0zlVkOOfZkf9R1LP0ZsmyrnlpOXUHi5B09nSW5pOHqpWPbkj6Er51trNl8smSfsdlAyHmxXuwi9Fy3a1Fync8+a6aV/ayly6zvdeuSsOwWS9QWOq0BvNlc6y5EHZfMRdJrS53A1n/S+qevX44NOQds3mzGyTlA+5L5EOxenDIp2+4FQe4Teg6TFabLZPEsc72v+pC3L1AWvM6tHwgFcl4FzCEV4nnH5lfUWuVJ2MvvrY4IMYfZ8BlDtnOH9ugDgKbBHckH6VOmO5r6bWZg6Xc+Zbb5gPrWo8+9rATjwchcaxLa/1dj8/iVFoq6KcbSNgW2wK1L6uUhlASl0lbdCKAdwMEex76s+P9TFZahIqZNm4a1a9dOmO5LX/oSzjzzzJLve3p68LnPfQ7XXntt2eNuvvlmdHV1YWBgABdeeCEuvPBCXH755ZUWmxBCCCGEEEIIIYTkQKXveW/DqEn/KVEUOcspoyg6Conf2S0VlqGmrFq1Cn/605/w0EMPWdO1t7fjO9/5Dq6//no8//zzVSodIYQQQgghhBBCCMlCpSvLfgzgfACzAXwKwN9PdEAURZ0A/kN8dU2FZaiInTt3YunSpQCAgw46CD/5yU/Kpvvwhz+Mz372swCAl7zkJbjyyisBAE1NTfjIRz6Cz3/+8xOuGOvo6MBBBx2ERx55BMcff3zZNFreIaUfllX3Jcvu589PwnMsWyjYluPaJFKuedhoKyTHafnR+vXlw1oCJ5f+zpxpxrmuhvVdxp+WNksemzalx0l5pZZeSlyv07VcWSQ6sj30smy5gl72a73tvJQt+S5Nd65zi36kpb3DKQvbtuG28mr1UUuL6HdShqaRlawyGRpy+xuFKZOpnbwjmyw1SbthQ3qerv2nlrKrA3qSc7W3m+WQY6O52TxOKlL0+ErDS/o7QVzuiEGl72VmsrCS7YmQ9195H9L3aXlvrpd6BGDX5QvyGb8pqDm4ad3DSf6LDqk4/yz3r7TjfNvQ9ziferXZNuShBJL3ED1PmedzO3koWa2P9Cy0pNd2riznawQZaYgyNm1+zvxC3uhkZ1q0yExn0/oJdH2n2YXoe6r5nGTP0yVO15WtD8rxa73X14nMT5dR/paZMqX8MSP1370JKUtFoy6O459GUfR7AEcDuDiKoikAPhPH8Yvl0kdR9HoAXwGwEKOryn4dx/HvKilDpVQqwwSAN7/5zfjc5z6Hxx9/fMJ84jjOWkRCCCGEEEIIIYTUG1FUNy8zSVhC/HnlHABbMCrHvAjAxiiKbhLxZ0RRdH0URRsBXA9gQfH7jQAuCHD+4FxwwQVYunQpTj31VKf0LS0tuOiii/CFL3zBmm779u3o6+vDIYek//WUEEIIIYQQQgghhNSOil+BxnG8LoqivwBwHUaN/tsAvBKjK8cAYLlIHhX/XwfgDXEcq33B6oNLL7008zGrV6/GF7/4RWzfvr1s/MDAAP7mb/4Gb3zjGzFT6wUJIYQQQgghhBBCSF0QZL1gHMd/KJr2vwfAuwH0piTdAOBbAL4Rx/FASpq6RHqWAcDvfmeqR1tbW/G+970P73//+43vX/nKVyKOY4yMjOC0007DJz7xiZK8I8TjWvZCwVzs19npVj698jPNpyzLltDW7calmYujL4oN7aPU2ZmURWrjtVeGjMuy1bP0zZJ56PrP20NC+pJpTyuzXOl5hF71m+Wa5bm1p56MG3Ac7d5eIrryXLFUrBx7rm1hqzub35J1T+60dKUfXQ/zIg+/K9kvZnWacWlVov37DL83daGyXDsGzfrXY73cMXkwqzPdm023U29vEtZ2e2loT0A5PWsfFkkQPypHbPmVevsFPbW1LLoOdu5MwrL+pXVOuc/1iO06c/dKko1o8Y0M4ofk6Rdl8yvywdc7baJ8XLD5aoZAPrdoqt23XP2iXOMqPW9WZL8zfEwt/TjLc3wIT7cgbZhmYguYlSAfJPVvC88HYXlqs77Ts3i+36wD6Zu6eHF6MWz49pm0ts+jH7geo/OXPmVp9RpFIKQhCfYYGsfxDgBfAvClKIoOAnAkRo3/WzAq03wwjuP7Q50vFAMOv+Ivu+yyst+vXr0aq1evHv/8vve9D+973/vGP/dJ00pCCCGEEEIIIYRMHuhZNmnJpVXjOH4cwMRu94QQQgghhBBCCCGE1BF8BVpndHe7p/VZ0pvlGLl0uc22lbFtXbMnUgLnuzzcdq2u26yH2E7eRkd72O3M85Y82PJvgymvWdCV9IvdPR3j4SyKSdfrGWlpdcvD0tjWa7P1f0eCXwvM/mNDLqDtyKCadi6zZZzYxq+UDErptT5OSjR3D/mNE93v0qatasuIDFmm0lAuWTJrPCyVKzY1yvr15mepatFS13okyy0k77aZPj0Jz59f/nvA3h554yvPyhXdiLYKkgNRa4gdfShc55+0Y6pNln7rWs68+6CrU0C18ZW3puEj2wXc5y3bfcjMr3b9MwQl91F5A9NSbKlrdPS8yNLWrm0jn5P0fVQWxXWezSLFrpd7iCSLlFk/v5VLSxkmaVQaezYmhBBCCCGEEEIIISQgXFlGCCGEEEIIIYQQkhV6lk1aKmrVKIoeC1CGOI7jhQHymRTksTxf5mmTMLnKEQGgSa4ZlkuqA+yMCaQvV/bd6UqTttK7aXCHmVBUyo6h1rQo606crrheW+47l/li0VfK+tHyApss07Y7VFoeeoV/FtlhaOpSIpXh3HmX2XW3X0nJWJP9x6KN8ZU5VHOXSD0Jt25+Zjzc3T0vOa+ep8St/P77zXlKTsmz1t1tHiY0mk3CA0Bfs8+9xpdaPmvq8ssdU6spkwmxa1o1jktFN6Ic6HrrULnNnN4UaenSstnnYVngKnvzfQbxtXRIS7ttwDxvoEcvp3Lo3ULztqtIK0ctsT23tA6aG4c1yfHQ0paaj23u89nV0pdc6th2oSkPAqHmpbR6te2Gqaeped357qBq1LnuXFITKrfItpBHG/qO81o+3xISgkofS3sBxBnSS8VyXPyc5XhCCCGEEEIIIYQQQnIjxN9ws1r2jb0co9UfIYQQQgghhBBCCKkrKnpZFsex09rKKIqmATgAwCkA/hZAD4B/jOP4U5WcnxBCCCGEEEIIIaQm0LNs0lKVVo3jeCeAhwA8FEXRpQB+DuDjURS1xXH84WqUoVHx1Xqn6cmlPQhg6vJtu71b9enSJEobuwSYOPLwYGhvT+rVKKLFh2L7dvPz9OlJ2NVba1LjaOqj7Ri2bk1PO2eO26llG9q8W2xbeWs/P1nOtoJbm9ryd8V6jOd+9bJOsswpPh4bIy2tqen0tc3qdC6KH6JcrZa6qhtPDd15xdwqm771t7810wkfk82bDzGipN3JgrvVcdITyrgZmG24t+A6fvMYQ4YfzNBuM6G8x1pu1CGeF7J49DmfT3Ze3cfl9WzenJq/q7eTL65zte8cX8vngrR6BMy6DFFG7aWW9liQpQ2bNiTejSUXILwWmxwzDeFDqT3ujFNr41RBa5eqkEL5svi2RQh/yRD1U5JO+pLpdkqZ33R7+npmpfkR6jzapJdxd+VzvPdY096N3/pWEv7a1yY874T5W7B5pxlnU31c+ljrZ0BCGp2q/0KI43gbgP8PwE4AfxtF0YnVLgMhhBBCCCGEEEIIIeWoyXrBOI6fjaLoBoy+NHsXgFtrUQ5CCCGEEEIIIYQQbyjDnJTUslX/VPz/ZXmfaMUJx+R9ioqYOjVdvua7VDoNm9TSGymryDBRhNhu3Pe41GJaKmTatPQ8XNspxJbxWfCRAHmXw/MmMWWK12EGtmvZW7a1923DELINV0LIVEvysPU7rYNIIfhYCIWQRg4J1UOrRcq2YoUZZUxpy5al5h8CXXdp6sHWlny3tdeEbrdQ+YWW/1a7f6bKSLOUQ8qzAvfHUIS4v/vWT9pxHe2ektgcMK+nTiTtgUirV33bMepA9WNb26TdvrQthMsxE1FTixB5z7LZtYiwb5/2qW99XOjfXhPlaaDrR9gsNALecn1C6pR6eAXaPXGSyvjt15dNnKiGvPPrfbUuAiGEEEIIIYQQQghBbf8EtLz4/4s1LAMhhBBCCCGEEEIIIePUZGVZFEV/BeC1AGIAf6hFGQghhBBCCCGEEEK8iSJ6lk1SKmrVKIoOcE0KoB3AIQBOB3COiLuikjLszfhsdS7tQQDT0sdm71MopPsE2bYJtpWxmv4JITTz2iMkz3P50gjeANqvaFan23Gufle+fgn6HpeHr5ILtuvUY03GVdv3z0Bu957zmM+Uh+XBJa1fDAyYn7U9mEsemhDX3VYQeSxfnpruaEv/f3L9SUbc/fcn4aWdSXhed3i/Fld860rev+rJ08f1HivjCgVznLe2V/4A7ttX5XHebS89eHTjyIcS5dUjy9LqWAV59E/ZNrW6L0yEa991rUdfbM9J3r523W5uLdWcj215aL8x6d2o7ahkf7KV33V+y/vavOcR8exi9Rn1xGfch5or0urLe6z19JifP/ABp/Pa5mqv5zJbO9kejFzzJ6RBqHTG6sPo6rCsRMX//wfApRWWgRBCCCGEEEIIIYSQIIR4rR55/BsG8C8A/iqOY5+XbYQQQgghhBBCCCGEBKfSlWW3wG1lWQxgAMBGAL8H8J9xHD9T4bn3emxL2htBjiexldd3Sbjr0l/fJcLekoIaUa9ldK3HvGWG9Vo/QQihUash1RxrNqmcnm9cq7Wa5dcSIFkufW1r1iTh2bOT8LxCv5lQSi4ssnuNlhzlSb3I41ylVEB6nylNV7m8zMe2IQvO/bqanSIDhtwd6TK6VqU+Sjsuyzi3HZf3fFHNuSmP/EPI70KPGz0XtbRnH79awifngFo+q1TT7qHa1hLVlPH64vqbR6cLPc5D/PaadNCzbNJSUavGcbwyUDkIIYQQQgghhBBCCKk5jbX8iBBCCCGEEEIIIYSQHOHLMkIIIYQQQgghhBBCilBcW2fk4aUgsdmF+EqtXT3FspQ3b3+D0Jp61+vM0r6hyeKlI7H55eS9TXkI6sVbwdb2ufvmBfBRqGXfrWY5Ojvd09aLPYWr18qCXrOuTjklOW6//SwHigmiKcNFh/DOrKU3pE/5dRnl/NnerlO75VFND9Is53b268p5oPjef13jfGzWfJ/lbMeF8JOr9jzu0zZ59EHXts/bz6maeeh8fMeGjcnkT1Uvz4Mh2n4y+7bVLfQsm7RwZRkhhBBCCCGEEEIIIUWcXoFGUfS9HMsQx3H8thzzJ4QQQgghhBBCCCHECdf1gqsBxDmWY69+WRYjGl/6WksJXx7Lal2X/9uWzNdSQpBWpizpqrlNs698x3flsI/E0VcW6btlto16kXi5njuPvuQ7Rqt5bpfvKyG0ZKGWMrosY/lVK9Ouu9Pr3HnMfbWUezjLDB3z0KT1iyz9xad+sszBrnNr7lLyAPhei82KwCf/vMdJNeebiQjdP33T+rZNo1Mrm4u8n+Xy+K1UL5YdrtST5Uuj1R2pjCiKmgC8H8A7AfQC2ATgBwA+Gcfxi455nArg4wCOBLALwH8D+Egcx4+XSTsDwGcBnA5gNoBHAXwLwHfiOM7z/RSAbJ5lkUOa2CGdTpP7RRJCCCGEEEIIIYQEZe/yLPsqgPcB+AmASwAcVvx8VBRFJ8dxbH1DGkXR6QB+COA+AB8GMAPABwD8bxRFy+I4fkakbQXwawBHAfgmgAcAvBbAPwOYC+DTIS+sHK6t+soJ4lcB+FuMvgR7FMCPMVoBm4vfzcbom8PTACwCMILRir4he5EJIYQQQgghhBBCSDWIouglAP4PgB/HcXyG+P5xAN8AcA6AqyzHT8HoS6+nAJwYx/FA8ftfALgHoy+/LhSHvB3AsQDeF8fxN4vf/VsURT8C8LEoii6N4/iJQJdXFqeXZXEc/yYtLoqi92D0RdkgRi/kuylJrwLwd1EUXYDRpXN/C+DxOI7/OVuRSTny3skmxJLePJbiuko4XGWeNvKQFPmWP8S508qRdx6+uErbstRVLXeZqyZ57HDUCH3GRjUlgtWUl2mqKTlqBLlFlntZtee0Wp23ljug1eO9rZaWF767ZlbzWcKXPKwU8ia0hC/vdstjJ8W87/UhLBdCyH1DW0345hfi90oW6tFOgtQ1b8LoQqivqe//DcA/ATgXlpdlAF4BYB5GJZsDY1/Gcbw2iqI1AM6Ooug9cRzvKUa9GcCOYv6Sr2FUlnk2gC/6XIgrFfX8KIpeCuArxY//n+VF2ThxHF8K4P/DaEV/NYqiIyspAyGEEEIIIYQQQgjJjWMxqhD8nfwyjuNBAGuL8RMdDwC3l4m7A0AHgEOAcW+0owHcW8xf8rtiOSY6X8VU+pr4bwBMAXBLHMc/dz2omHYNRle2vbvCMhBCCCGEEEIIIYRUnRE0Nfw/AF1RFN0t/l2oLnMegM1xHO8qUwVPF49vtVTTPJG23PEAML/4/0wA08qlLZ5/i0ibG5U60b0Kowb9t3oc+1sAK4t5EEIIIYQQQgghhJDqszmO42WW+DaM7l5ZjkGRZrfleKTkMajS2NKOpW9LiQtGpS/Lxt7mpVWIjbFj5llT7WXkvf1uFi18aK+bvP0HfMnD4yF0OUL4Vbj6M9STp0neHhI+25Rn6S+N4OFUL+ThjzGZtjPfPZRcS1+fGTcwkIS7usw4+blQCO85EqIe5bVpWltqt+X90FBajHmM3ACr2v3K5x5umwf3VlzvnY1QV5Np3puI0J5ituPyfgZ3LVOI/POglt6HPuTtDZal7mVaeT8HzPvQrM4KC5UB32ddmy8fmRTsALBvSlxBpLEdDwBTHY63pR1LbztXECrtwWNv+nx8x45QeRBCCCGEEEIIIYSQ+uIZjEoty73Amo/RlWm2RVTPiLTljgcS2eVWADvLpS2efzbKyzmDUunKsocALAewKoqiQ+I4ftjloCiKDgHweoxKOJ2OIYQQQgghhBBCCKkX4ti2Gn1ScReA1wA4DsKGK4qiAoClAG5xOB4ATgBwk4pbDmAbiu+G4jgeiaLo9wCOiqJoqvJJOw6ji77u9rsMdyp9WXYdRi+sFcAvoih6fRzHf7YdEEXRYgA/w+iSuhjADyosw6Qm1FJsn3QhJGq+5U9bDh1ii/hGxPfaQvSDEOfyLb/rsvgQ+WuquY247/J/n23n81gi7zNX+OZvIw8Zry3/NEKdV55PPoTNmJF+jH5Ysz28bdqUhKdPT8KFQmnakOh6lGUsKa+QjrY4PrHkIfOR5dLlCH0+3znA1v9t6XzL1QjyxLRy5X3PqHZ9uM7B1bzn2bD1JT0HuMqc87BSSMvf9X5br2SRa+6Nz92+zxIh6mrnTvPzLvF6wJBhDqrNAeVAabH5q/thrQMxaJvUDXKy9pG9mGsBfAzAB2B61r8Do/5hV459EUXRfgBmAHgyjuMxueRvADwL4O1RFH01juOBYtojMeplf2kcx3tEvlcDeDmACwF8U3z/AQBDqMJ7pEpflv0zRnezXAjgIAD3RlF0FYDrMbp96JZiutkYlWqeBuBNGN1BEwDWAfh2hWUghBBCCCGEEEIIITkQx/Efoyj6NoD3RlH0YwA3AjgMwPsw+iLs6cfBhAABAABJREFUKpH8/wJ4C4BXAlhTPH5PFEXvx+hLt1ujKPo3AB0APghgE4BPqVP+G4ALAHwliqJeAA8AOBWj75Q+G8fx4zlcpkFFL8viON4VRdHrANyMUaP+KQDOL/5LIyr+/yyAVRPoWgkhhBBCCCGEEEJIbfkAgD6MrvZ6HYDNGF319ck4jidchhnH8XVRFO0E8HEAX8aof/1/A/i7OI6fVml3R1F0MoDPYnTB1WwAjwL4P6jSgqtKV5YhjuNHoig6BqMFPh3JyzAbPwHwnjiON1R6fkIIIYQQQgghhJBqsxd5liGO42EAlxT/2dKtBrA6Je4GADc4nq8fwHuL/6pOxS/LACCO440Azoyi6DAA52JUW3oIgJnFJFsxatZ2G4Dvx3H8QIjzTkby9jrw1eHbPCTy2HI9xHbgtvx8NPR5+3nUSxnzIIRfSDXyzHpefe68vT1CeHLlsbV8PW5Pr9PW69iwIcvcJnzE2tavM9LNlR+6e4y43S1t4+Eb1GPJOpHNqlVJeNGirCVNQXqqiJvG4JDpp1JNL7IsebRKC5iWfPvS7qF0z6a2Qr5+hLKZbH51soz6uCERp/Nw9cCr9vNPNfMP4bXlml8ozzufPEP4UrZ6/jLxLWMIL7J6vb+Ebrc8PO985ik9R8o5xvV+4ksefmaSOXPSPT0NbJ5l7emeZbk/r5X8YAzvn0ZINQk6pRRfgv19yDwJIYQQQgghhBBCCKkW3KKCEEIIIYQQQgghhJAiOS9WJS5EiL2WL1dTUmCTYfrkpwmxdD/E+fLeUjwL1dzGPfR5s+Tvu917iDFTzXHnet15yxx0Hq5jKIR8sxG2EM9blhpkXC86xPgs52c9Nw/0J+Ff/MKM27IlCb/85RUXq+S6+wfbUlKaSAmNluz5zPFZjqnmPGLrFwMD5cMA0NMTdtzo+7mvz8rOnUl4eDgJ+8qgbPUa4h4bYv7UddXaUp/yuzRC9P9GJ0sdhK6fRrwH1qoO9FiTqsM9e8w4V6m3K7UcF/rcrSm2N02dneaBosKy9Okgv1/y1r42AHuTZ9neRv3P2oQQQgghhBBCCCGEVAmnV8FRFJ0kP8dxfEu5730Zy48QQgghhBBCCCGEkFrium5yDYC4GI7FcfJ7X2R+hBBCCCGEEEIIIYTUjCwvqaKM35OcCe1pZfMyKhTcFLs2LbzN96yWHgnyXLbyu/osbBsw00kvhUbzN6kG1fSGyONcvr55Pvh6YYX2fpsoz9B5hPKJC5FnGtJnSs910lokRP3bPE00e/Yk5zvvPDPu7ruT8MyZbmXS5bfdQ66/PomT8/0b32jm2dayW3yq/G9nuozS60bT5uh1E8LvSiPLJcPt7V6nKiGtzC0tZplcz6dtaebM8SlVOqV+YEm4mvcJW5utW2d+Pnxx+ePy9s0jo/jWecjzaiZze+YxD6ah5xtt0eVKaI/ium1fR9+wavpd703Qs2zy4vpUennG7wkhhBBCCCGEEEIIaTicXpbFcXxBlu8JIYQQQgghhBBCCGlE6BW2F+C6JDbL0lnXZcgy3eBgujxRrx722crYVv5Nm8zP06fLcgTYNlnQ12d+7upKwvO604/zXdYfZNtnC7uH0qW0Er11d4iy2M6tpUTJ937nCiHV9UVK+HT5Zb3a6t8mxfOdA0JIBPOQV7qe2zWtbQy5xsm2eeQR81z775+Eu9UckPf4lVI5m2xOSvFs/WD9evM4KY3pUHI+ea2bNyfhkn4sv8gwgF1lvLWURtjKmFYu21waYsyEmsNClEvWgZbLtgaSo47hOtZ0nLwPyX5sO65epUi+z1O1lJ6F7vPVvCfllafPuX2e2yfKI+/7Vxq+zxl5P8tVE9/fbL5y5bqVnxKSM3xZRgghhBBCCCGEEOIBPcsmJ431Gp0QQgghhBBCCCGEkBypysqyKIoOA/B2AIsB7ATwGwDfjeN4RzXO78KGLTvwga/chrse2ISpU5rRu990fO1vT8CR5/4Iiw/sxODuYUxvm4L3nPkSvOV1hwAALrvhIXz4m3di/px9MLh7CO887TB88E1HAAC+8+M/49s//BOam5rQPq0F//rRk3D4gpm2IkxIpuWxQs9gHKX0HcF3EpJ6MkWH2nIrhDzUdVnwCy+Yn6dNczrMuU76+5PvN2ww09l2GvOpg7x3fHLdvU2j1VNpMsksS7ltEh15PpnOd8ekWrJzZxIeHjbjpJTNd0fZPGS8af0kSx90Vd8Z5dI6KNsA03o2D1x3EpVybt2Gtp0y894V2JbH8uVuY1SWa80aM60cl6tWmfmdeoqrLK3ydrIRanfJ0Mhypc1nE1HNHQDzJoQdgw3fXYFluZYsqbgYuciZQjwjhLZOAMy+LKfjLBK4PHZzdjmXL77jrpqSxiz9oFby4lrWgW8/2yHsZvSjirRkaSv47ZZrK4cce/qn2KzO1MNSz+UL5ZpkslHRy7Ioig4A8MPix+/Ecfy9MmneCOAaAFPE16cBeG8URX8Rx/F6fUy1ieMYp33kv/CW1x2Caz53MgBg7cObsXHLTiyc34F7v38GAOCxp7fh9L/7NUZGYlzw+kMBAGefvADf+vAKbHlhEIeedS3OfNUC7D+3HW9+zSK86/TDAQA/vaUPf/v12/HLr59amwskhBBCCCGEEEIIIU5UurLsNQCWAYgB/I+OjKKoC8DlAFrLHHswgOsAnFBhGSrm5nuewZSWpvGXWwCw9JAu9D2z3Ui3YH4HvvKB5bjo63eMvywbY/aMAhb1zMCzm3dg/7nt6GhPLvnFnUOIoijfiyCEEEIIIYQQQkjViGN6lk1WKn1Z9uri/w/EcdxXJv49AKZj9GXa7wB8tfj9xwEsAXBcFEWvj+P4ZxWWoyLuf3QrjlncNXFCAEcf2oUHn+gv+f7JDQMY3D2MIxbNGv/u29f9CV+5+g/YvWcE//PtVaGKSwghhBBCCCGEEEJyotKXZYsw+iLs7pT4s4v/bwLwF2MeZVEU/S+Ax4rnPwtATV+WZSGOzc/X3vQYbr7nWTz0ZD/+7aMnoTA1qdL3nPUSvOesl+CqX63DZy/9PS7/1CurV1ApWJeGG8rDJ7i2XJp36fMp06kmYS410mIuPpTFl1nYPE1sdKl3oTZ/JIn0ALAdIy/NZpNk8/Mo9fxyKaE7vj4mtjLKa9VebevWlU+3ZIl5ro729HLJ43S9yq4m+8usznQvlBBeIjbPKRsl9S8ymjMn6f8W279c+kiIOcDVe0zjVX7ZsQCgpycJ607i6FnWNLTbqVBGOkVbITkuzQsMADZtMj9v3JiEtbdWT0+ST2tLeB8Q17aX193Zac7V/+//JWE9Ns45Jym/9BK0+RWF8FvKMs5DeDi5ns923TY/pxDnzoMQ7SaHW+h7ng3feU/fX0Ln79uXaundJcusfZrk/WzGjCQ8fXr6dQawmrSSpa/61KttdYnt+cHmX2krUz36iIXwLs3SFq6+diGeAW3Ia3n2WTNu6lSzVBKv+V91pq1bhaLpRTOpq2eZbU5vNA9MQkJRac/ft/h/n46Iomg/jBr6xwCukmb+cRw/DeCXACIAx1RYhop5yYKZuOfBzRMnBHDvw5txWG/n+OezT16AP11zFm79lzfgom/cgQ1bSvcsOOfVC3H9b/oClZYQQgghhBBCCCGE5EWlL8vG1uu8WCZuuQj/skz8g8X/e8rEVZVXLZuHXXuG8W/XPzD+3V1/fg5PbDA9y/qe2Y4PfeMO/J+zSrdDOuGlc3HeKQfj69fcDwB45Mlk+8Wf/++TOHj/GSXHEEIIIYQQQgghpDEZ8yxr9H+klEoXvQ8X/9+nTNzLRJrbysQ/X/y/rcIyVEwURfjJF16DD3z1dvzTf6xFobUFvfu142sffBkefXobjjrvRxjcPYzpbVPwf85aUmLuP8bfnX8kjj7/x/jY6qX41nV/wk13PY0pLU2YOb0Vl39qpVfZvJe9at2hR/7GdsX9z5uRckTJsD6vjFu71oxbujQJt5vSHinp6+4WyZRMyRUpAQJMaYAsYqsaEbaJQy4Xl2XUMrqbbkrC995rxh18cBJ+4xvNuN7e9HNXEymr6Osz42zXvWZNEt5HzBALF5rp2tvdpDw6rqUlOc5Q+KpGkz1cy31d21fmv918h445c9LzM6RzuoJEYilJlvWh89RZyPFgk+n5ziOucoA85FOmNEP0EV3J8nOWCSJtDnM9RuNYCffdZ37+4Q+T8PLlZpycE1xlFEHQ1yk63htW6uvsKJcMgDlu8pZJ1otExFumLSW+OpOcdWm+MmpJvdS/qwQrlEwyhPyxmnXn2z8l2wbM8spxr+cA2XWlNGzKFDOdTaYtCW4dUoX8XW8vTYNCmaLtBu4Wbjd33GEed+CByYc3vcmIG+ldkISrKdfUlgUWf4mWzlmpcZLQEso8ZIbyEeTYY804eT/UjjXyp5P+HZLGbrV33tNPJ+H58820IeY+QvZWKv2J8xyAAzEqt9SMmf//IY7jcrPk9OL/pbrFGjBvzj74wedPLvl+5y1vSz1m9apDsXpV8uJs3px9sOEX5wEAvn7Ry9IOI4QQQgghhBBCCCF1SqUvy+4F0AvglCiKOuM47geAKIqOBnAERv3KfpNy7EHF/zemxBNCCCGEEEIIIYTUJWMyTDL5qHTN6Y+L/08H8Ksoik6LoujNAISwBD9IOfY4jL5Me6jCMhBCCCGEEEIIIYQQEoRKV5ZdDeBDAI4EsAzmS7IYwE1xHN+pD4qi6HAAC4tp7tDxexsxouBeAq4afWftuhbYS/8BKcS3GWDoPcWFAVbTYlPJ29VlavHLnRaw2xW1Dm5Lj3Ssb59t7RctMj9/61tJ+DvfMfeSPuGE/cbDJ5eqgJ3w3crb8KTT/hKCFuHzpZtQboV9/LFmOXp7y3uKzZzpUtrSMprGZEDHUPK5Y/ODScSH/snMRBzXtGKFEdV6yinj4R1LjjPi0tpbe63IMkpvrQkRJ7CNf9nH9+yx5KcGx0h7R9lkoXw6QvhF2WzD0qaVDu2LKMd2Fm8nn8Gt08lCy36m0kmvPF186funfQrl5eTtOWLkrzxxDEOhHnNPnjeckswd2hMwrZy2PujrZ2abw1zHWgh0F3Fuq5S+BMDoCHm0faZ5ywPfucLHb8w3ztUbr8RLSt/wU/IzvVEtZdT9WD57yQlBPdO41k8If0n9HPbUU0lY+rACpX6xY5SUUdarmmNs87rrs64vPvOubl/n8bW5PwlLjzIAuOii8eBN6nl8mQh3Si9gAE3ippK7b5XNYFW2r5rfmoRZp76HGOk8x69rHq64PkMZHnQA2oQZc5t6ENgxlDyvtSLdWFCeSz+PyyqXXroa628Bz/qhDxqZzFT0hBTH8QiA1wG4B0Ck/q0FcF7KoReI8H9XUgZCCCGEEEIIIYQQQkJR8d+Y4jh+Joqi4wCsBHAUgGYA9wH4dRzHseW8lwPYHcfxXr+yjBBCCCGEEEIIIY0FPcsmLwEWZAPFl2I3F/+5pP9giPNOFiLE40tYdw+Zi/3kkvksS5C1imOMQsF923MjT7H9tMZ5+a2WQl5/fRJevdqI6uw5YDwsr+XBB41kxup8LWFqlWuUheQTADrk0vSWZPmzrv9WCEmEmgTTlovrun/ve5Pwhz60nxEnJQo7d5rHySXVsup8ZSzWdpIzvEWnobejti31TsteLx2XMjTrtRXajI9NsoK+/OXx4FU/+5mRTooB3vDrX5vnFh2oZakpw0wbQyWKXgs7BpPr2b7TlEXOneO69D3JY/p0M8aQGqs+jiVHlM0t1PbraaqxLPVj20pdxs2YIfJffLiRrm6W/8sCK9lQ/0AyVyxZYh4mVTPr15txcqzIcaJlPSHqwJCJ2aRmSjIv54sQMpks2GTaBlk6pSBviZdxLjG/NWWQndVL/89D3iQ7pZY2O5N285EDKkse+iEkRYZpy6LVJtXVE+FddyXho45Kwp59OoRtg5ZWymq1WQUY577pJjNS+lV84ANmnLRPUP0gTarrLKv1xPqsPrDNiJMp0+wRAJh9ctUqM27t2vHgyddcY8Z9/ONJ+LWvTc1e9sGtW83yS3uJWZ3p9bNxk3ncCy8k4Z6e5D7XpucwW38NoA0OYQvhinPf0lJU0YZ63hjsSZ7X2lrUvSyl7vRUJE9nk4rmMlcTMonJd0YhhBBCCCGEEEIIIaSB4MsyQgghhBBCCCGEEEKKBJFhjhFF0csBvAGjm7PMAbAPgM/Hcfxdle4ojG4CsDWO48dDloEQQgghhBBCCCGkGtCzbHIS5GVZFEUHAPg+gBXyawAxgBllDrkEwCsArAdwYIgyTBZsA822nbA+Lm23cYsVSqZyGRYDMtKWUJ/cspW0RB6mLQCkh1aJ7YHcmll78Ii4JuEHoH0c5u5KtnrW5R8o7Fv23Nu3m6c6pFf4nmnDrpbO8eCGF0xPrl27krCnPYnVW8Foqpbk3Nr66pe/TMKXXWbGySq++OKm1DixY3bJtWSxjjGQnUGYqLzGckjX5Zcbn3/cfv54+LcXm2lPOSUJy53sdT/r7XWrY+kJYk2o+kihe954uMQnok+kVUYyaZ4SNi8aHWfrP2l+Y7p9peXOYYeZcTKt9uyTec4odxepElb/E+Fb2CTqX3rVAcAdYhsbbXEkx4nNk1E2b5b5wNVfxZiCz32rkc7XO1OOe9me+jYhr0fPB673rCf7Ey8gPc3K+8TcmbuRihrcPt43+tq0P5UkhO9LCC8aX6+54N43uvJ8zRAlMk/5HGC58WjbsFmdohG1l1QKum7aNieGhCPCkxUwvQoPaFF1MHNmEhZl9vWuC+FZqevn7ruT8LJlZpwsvvEMe8UVRrqHhdfoIdLIUWdq6QdW7zdxnPabtd0D0+rV+qyuzSfFs0qTNteVE7sss85DPoRII1wAWLkyvTACWWb9nDdtmixSeh1s2WIeJ4eUbJq2ITUJ2zwlRSZNclzm4MvnOl/aPL808tLa5P1Kl1/MHRu3mn3wofuT8IoVpq9d01Byz2oSfaSlZV8jnexKefu2EbI3UfFoiqLoUAD3YPRFWST+2fhGMU1PFEWvqLQMhBBCCCGEEEIIIYSEoKKXZVEUNQO4HsBsjL78+jGAlwOY6M8Bv0CySd1fVlIGQgghhBBCCCGEEEJCUakM83wAh2JUbnlJHMcfGYuIovTFZXEc74qi6E4AfwHguArLMKnQkhNzKXB6c7W2mEuGu7qyvwe1LdvV0jOjXHINstZJynXBixebcXIpuZJEpC2PXrTILKNcOq5XeQ+1JEuZH+wyxXldYjl6twhPn65OuLFfHNRlREmJkUSulgcArFmThLU04OSTx4O9vaYMU7ap69LxLEuv5ZJ8KR3VTSjVAFrNeu+9w+PhFSuajbhPfjwpZ09PUi4tkdq0KQnL9gTMVewlCp2uBePhjosTDWWXXvq+ZMl48JmTzzeivnZOEr711jVGXGfnyvHwmWcm3+v6sckx5LjRxTLbVGDRnent6ltFZ3tyg7ms/4AUeVOTZZv2LNuNt7c3iXDyvVaPfPjDSfg97zHjjjoqCWt5opTv2HaW95UbuMqWfKRmWoot60fPG3LeWrHCjPOSzas5pkmeUA9gMTY6tDwoAPJ0a9emF0OqrLTKzVYHsu1lnr/9rZlOqpTmdqmTy/pR96gmR4247CNadmmdu+XkITuCumgtG6smoe43LvnpyXSkvSMlYfph+lnImDwsMkZZ/TbFmPOEr5EdVMkwpfz6gOXmjeKZ3peNhwv9yfd6XBQKlctlLV3QQA+L1avT00oJmVF3X/uake6QQw9NPrzjHUacaz8wrrPE8kLejNPHk2tdtRUs6dSzonFu3bnkZ6nX15PkS16ShI891oga6TLleBJ5PW0tSVsc/1I11grJ82epm0rStw5fbF734XLKlNeyweINox8SJOKeZIRhzoOh56UseegmlPd7YxwWzGd6Wa9PP23mIeeAk1aoa5N9QdTjokVmu+ufF2m4WnHUUp7fiMQxPcsmK5XOKKcV/38KwEczHjum0D6kwjIQQgghhBBCCCGEEBKESl+WHY3RVWU/j+N4eKLEijGbyFkVloEQQgghhBBCCCGEkCBUKsMcW2v8pMexY+s0g+zI2cjEiLyWDduOKZEiBMY4t1wir5bLG8txtURB7nhkW7sqlmzP01q2gvis8t82kJRR7zKXtuHOrMIOM6FcTq92G+wSMoX7xU42+jIXyBMomc/v+5J3xXrlvpQuupJl+bPctUcusx9Wr73f/vYkrDdd2rw5kV7qXbCk/HTWs8+Oh/tP+Gsj2f/+bxLWSjBbF5FLztcNJAtUN5zyDSOdXPE/41Yzj3//9yT8y1+uNOLOPTcJ23aUbRpM+syIWnZvk/PI62mRMqvOWanptm4183jhhdbUOKP/OMoXNK67Rcn5QI81WQf33WfGyR25PvhBM86sn/L56TibCkqTp4Rs7nSzs85dkXSajZvM88pdUl1ll7ocUp7bqitISjg+9CEz7stfHg+O9Cay5lC7Kq5YUV6qq+UictyradaZV61Mzq3l+gZ9Sp4lJ2998hTZXqgxlGphoO5zcixoGbgp9Xbr03nLa6y7Z9vOp+ZPW54SqaTVO/l1pOxOp+tRosfh8/1JnuvXmxK+IxaJZwbbhYqbp76W15ws51LzGeoacY+Szy36fivHkC6Ga9+1STklTQPbzC9sk3DKVtgb95j3uYdO/PskC60WF+3hukHiyCJ30YrP2C6xRJDP3LqQcl7R9SMfUOR8MHWqmU5OmkrLL3di1pJt494g87j+ejMP+QC66nQjTqpDdR85enHS//+wLhm/O3cuMNIdv8gyNuSAkINPDRSbhURobHOYluC2Od63h4bSx5cc2yUySdluwq+iU3Wzed1uu7radj03b0NuO71r5O8JfW5CGpFKZ54dAGYA8HFW2a/4//MVloEQQgghhBBCCCGkqtCzbPJSqQxzbLnI4R7HnoRRCefjFZaBEEIIIYQQQgghhJAgVPqy7BYAEYBToijS+wimEkXRXwB4afHjbyosAyGEEEIIIYQQQgghQahUhnktgHcCaAfwdQBvneiAKIp6AVxa/BgD+H6FZWh4hoYSOwLbduBa9+26zXfeyHLoJahS895kMwlRHg+Gz4I0NtKeMtKoQ+UhbR10udIsEnD33WZC4TG2A6afiiyK3OFaWwaNLE+2fi/x6hFF1pdm8xgITetQ4jsxr0tNC93J50MWmVF2rw9hwiAqWdtOyM/at01uO99WMA+UnlzS76HU+y0Ja0+0jvV/Hg8fcooq2FBnEt6c4i2kaFInaBPXrdvQdbm2rJ+5c8w6njOnvNdEtZHttGSJ6Zny3vcmYekDBwA33ZSE9bhJs3Cy9R+NzTPOZ860jkPpC6cbQ5zs0UfNKNkPpEcfAHS0l/f60L5nd96ZhAcG5hlxg4NvGA+/9cswWaQGdI7Mn5+E3/lOM27mzCRs8+TSXjES2TZyzANmHf954CQjbsOS5HOP8oDp6k/CZh8M5MliGo6NB3U/k/1Y92nX5wBzvjHzt9gEGUV09TNr1WPS8pBgvbMZ941kfOk6kLZPwh4TAHDssclxQ13J2HjgXjPdYYclYX0vXrs2CV9zjRn3T/+UPBcY/UAaPcF8DijxXbR4A112WRJ+4xuTsHzmqAbGtW1Wvn9ycOgbcMrzW99O07NM2Cdi9Wozi+XLRTn6lXNLys1Bj0lr3x1M952THmBybtLz1LxCf/JB+iAC5gOKnpxk55IdY7/9zHSyYyvPMklTie/iAUlYXptsF8B4ONX+p9LqUj9DXfWdZDzLy9ZFPH6l6DO6fmbPTsKy/DoT2bf0ZGdpe1esc5gPaq5rG0ra9+glZvm7u5N+dsUVZjZr1yZzh6yec84x08nn8yx1ILvdL36RhF/7WjOd7TmMvmRkMlPRdBDH8Zooim4CcDKAt0RR1A7g4jiOH9NpoyiaAeB8AJ8EMBujL8qujeP4gUrKQAghhBBCCCGEEFJt6Fk2eQmxXOWvATyBUTnmGQAeiaJI7mXz9iiK1gLYBOBrGH1RBgCPAHhXgPMTQgghhBBCCCGEEBKEiheaxnG8KYqilwO4BsCK4tcHYXTlGAAcWvw/EofdBuD0OI63V3r+ycDu3cmq9hkzzDi50jhvKV6WZesS+SZdywxl+Vs6zWX3TX2PlU8IYGAwWZI8S0qF9JbcFt2JXCav3/bL1d3GcmItwxRL5jcM7GtEyRXheuW7pGnzc+PhWXLJPWCWX0g+dabWLbPtezinx8m117Ky9DGiHHq7dEnJsnW5Xl+UsVs12dy56UU05B5SyoD0JfNdXWYZ5eV0FHYbcUbd3at0OQcdlIRl/ezZY6aTcgnVFnIM6WaSl2Zb3i7jbPIsrYyREj7fucMusxXI9u02ZZjLliVhnceiRUn+WnEhVSKyK2kViw09H0nk+A29I/2InuvEdeth7iynF1qzH91wgBH1nve8OB4+8cR9jLh3yT9JST0TEES6YkPmOXdO8r2eR6QMfEO/KXc3ZJjmFGBgmwZbW5JyDA6a577rriS8bp0RZVSX7He2+T4TKQ1eameQhLU09/n+dCm2zF6OheZmM52sYy0R1LdcJ/QFyJPriUqeXNXHSO+CsuXS1bZwYRJ+4QW3Ik6bZn426lWVccmS5N5/xhmWTOV1f+1rRlTTNUln6mgxK3lEWTxI5HzxD+cktgElDdOSdNC8nxW1Fk/2wQ0Pmkm3T01kzi8Vj3LHt5j34osvTu4b8p4BAE0PiuvWNwqpXRcDM1MdyPZWg3tQyDBt1h7z2sXg0xOJRD3HGA0sO7ZOJ2+IWkIpPysZbKuUd4v7UpP2RBAD7MUXzSg595Uo90X+8tR6jsEDQkS0Zo0Zd8wxSXjKlCS8aZOZTj6TqQeBkfaO8bDvvSz0uGmy6cX1b56hZK674QbzsOuuGx4PX3BBUrF6HnR+XlPIYsqmef3rnbMgZFITZGaI4/gZAK8AcDaANQD2YPTlmPw3DOBOAOcCODGO4+fKZkYIIYQQQgghhBBCSI0I9vf0OI5jANcBuC6KogKAxRiVXLYA2ALgkTiOS/7mF0XRAXEcPxmqHIQQQgghhBBCCCF5Q8+yyUtg8ckocRwPAlhrSxNF0TwAH8foDpo13MuREEIIIYQQQgghhJBRotEFYVU8YRTNBfBRABcCmAoAcRxrdXu542KfskZRhPjOCzMfV03eeck6/Mv/u270g/bzELr8kYLpa6Hl/JK5M4UfRABDHlctv5boS019iYb+QWFuoYx8dghfGWsegmc2mGWU/i3a/uGmm5Kw9GA4ou+nZkKxP/u2rgVGlCyX9MTRbNyUlMvqk6L/JCHaTdaHTmb4wmXYztnV38C17UvykD41wtfiXy8zPa3e+c5t4+HFizuMuAfuTOJs5jnSA0n3QVkn25VL4qOPpmcvrUukPUbJdYoGkdvMa3w9AVNOBcDuWbagt3IPKh/fQttY0PndcUcSftny9ONs7Wvr/zYrvrR5JUu75L5duryAb35zPPi3W/7eSPbVr/6v+HScEfef/5l4wJxyipm9ra3yZNuAWccdmxP/ysdgzrOyCsR0bMXaLtpPSHZebcgT2szOFzm4tRGfnJyUiY0cN/IytdeNjAtxySX1LwetnsTkZzUJP7O5/Hyq7+de41BPmNddl4Rf/WojamTRIeNhy20aTUPiuUvmB2DkTX/tVCzrc9J3vpOEjz8+NX/bHOl6bts8aLsH6g70P2uSfKQXWcfQ82YeFu+63Uj6gW62NO9JW5+QZQJMy6+TTzbTyuEl69VmR6Vsw4zPuv+0Se822yCV/UB768qHFW34JgZLpjaVyIvTvqzCV7Bp3cNJhDSDBIDhxHdLT+QjS49O8hhSvrISW/04YnvutdWP6xxpfRaSnUbWKWBej+5A0ixPHqc8SOU40ciy2K5TFrGtENb77bjjluHuu++OykZOAhYvXhZ/73t3T5ywznn5y6N74jheNnHKvQfvx6IoipoBLAQwC8CLAB6K4zh1louiaDaAiwG8G8A0JIb/1X1bRwghhBBCCCGEEEJICplflhXlk/8I4AwA00XUYBRF1wC4OI7jTSJ9C4C/xehqsg6Yu2LeAeAzHuUmhBBCCCGEEEIIqSn0LJucZHpZFkXR4QBuAjAX5ksvYHS12GoAx0dR9Mo4jjdFUdQL4AcAxvYFHjvmNgCfieP4157lnlzs2pUss9Vru4XkoqnbXHY8Z06y1FWt+MexxybLcaVkQcvQdu1KwjZ5gU3CJMm0zbzc0lot25VKE7kiuVWVQ0ocr7/ejJPL57VsQ6ptdu4UEWpZs6yUjoJaOOmoV7nvvvRyLF6clH9gwFxCvWdPEpZyQd1O8jr16u329vQl5yEkZEYeumBSGiDiVqzQuSTL8x+UW8QD2F04fDzcaimvbXW7LIZWMEk5rj5O7ki/enUSbtN937EfSCkt4CcDlJI0wCzz/febcQt6nYpl4CtBbGmxHCfavklKSQAsX35E8kFdnNwKXravrgM5fmfONONsEk3jXJ7SjNCUyBPlmNq4cTz4la+ZZRwYePl4WEsVpVpLy0J8ri3EvFFy/xCN09meGhUGPdBlB1IT9EjnrPGw7ndp6GuzlT+1Lm1P3Pom4ihHklna5NyGNQD8+kjJMcpCQmLIrlQlz+sSncG1I1g0iFKW2qrr7bWvTcLypooMc53kTW9KzSMT8mHl4x9PwupmL7u1rirdZdLwtWZoEu0mxwwArFwp0sk8+/rNTMX1/PgG81nossuSsG62T386CR++2K2OL77Y/HzXXY+Ph7/73YOMuLeuTvIcGkpv+//3/5LwCSeYcX/5l0l4yxYzrlBIrrWnJwnr3t4k+6SejBwnJ9tzhlWiKR+U9Lne+74kLDvelClmOvlZyd2vuCIJd3UldaCfFVuEzUWLmsOMe5tlgjOuUv1gsfV5/dsjDTk/WOdBIe0G1Dz429+ax8kOK5+hpH4YQIsYe/pZd1anOJe+TtGmbV/+cvL9299uJBvpOWA8bPu9mKa0H6mN6wMhFeP8FFSUXV4FwHbbjQAcBuDrxRVov8Hoi7Ko+O+3AF4dx/EKvigjhBBCCCGEEEIIIfVGlr/ZrgJwBEY9xoYBfB3ATwA8h9GVZmcCeC9GX8CdCWAOgP2Lx/4RwEVxHN8EQgghhBBCCCGEEELqlCwvy04X4fPjOL5GfF4H4H+jKPo9gMsBNAN4FUZfrH0Loy/KqOQlhBBCCCGEEELIpCCO6Vk2Wcnysuyo4v/3qRdl48Rx/P0oii5CsgLtxjiO319hGSc9w9PasaN31JtJe03YdOA2ewDp37VqVRLWvkbS50Jr3KXXk/bCkvYJUvY/f76ZTnoIaa8P6cGgNfTd3eUVwruVZ8T//m8SXrfOTCttEXS9al+fMf784L7GZ1kH3T7eMwBec3ISp8u/dWsSvuce8zjZHrIc+lqkhUGpJ1oSLvHaSiHT9uLSv0J10G0tiX/Chg2J14T2HLnyypkinWk6Je1nWpWXkSyn7IM235J5qn7e+94kD2WnZdSlLHOW+pFp9XW7+pTZkHmeeaYZ5+o/YyOLb00qosOOLDkiNdnuQofxeeumJCx9XrTvopxjpk1zKgYA753ngyPrce1aM27dumQMvfW9700ilJfIv8qBfua5ZiZzko7s6oeXxXfLB+2dJm8oLcoSR9970nDt4zuWv8r4LK9Nl0veH599Ngm/+KKZ5z77JOGDDzbj5NztykiL6dmEruS+lMVTT15PS3t6Otne2jdPWrrNmZOahfVHgnP/CdHxVB6yfjZvTr7v7jbnGwiPxCzzZVraEl8vX88yWQdj3rZAycA4oFt4HmlfvoEkrZ5nfapYP2t1dyfz1FC/GSf7v6yTga4FRjo59518spnHG9+YuYhW7rhDf3NQuWQA0p8zNGedlYSV5R3mzkna/sUXzX6xSdzn5Dyix5r08GyShqq6vHrucMT6PCJ/RFgG+khv0qZNvb3p6VT+8tlFPvfqbiyHtr4vtBj+vAo5buSNTtVj6Gcm29ysq7FVDkR5PwcAee+/++70TASZ7jsyHzm4b73VSNYkfBgHlQevHBtpv2Obqmf/SkhQsnTd+Rh9AbZmgnT/I8JfyVogQgghhBBCCCGEEEJqRZaXZWN/1thgTQVsFOH7U1MRQgghhBBCCCGEEFJnZFmA3YzRlWUTKXLH4+M43mRLSEaROme967lcSqt3bJZxetWuXBJrWQ1tSM10/jIPvaRXLjOXS6NtS/pLljXLpb/qwLSlzLqMsvx6Wba8blfJlb5OWUTLjvTOaJnP8HC6TE+WRe20bSBXmOsySslaoRBIFiKRhVZLwjsKSf6bhQRX7XZtSGLPOSf9VL5SRRuyjpctM+Nc5Sm2enStY9el+1oGIsuox8asTrc85bl9ZZch+pIuv5ShDA8nYdtY0G0WpI/njCxjZ6dZx3I8X3tvstX82XJ7d8C8cJtWyIKUQel7hpxbbfKLEnmlB7r4oduwrWW3+YXU5ikO6EluMANCnrhxo5lOyqeyVH/eUmlXpB3AmjVmnJScvu51ZpyUPbvOlyV9RHZy7QWh9WwO2OYpebvS90pTjpv5tCWZ5DL32LRVsh//8IdmnJDRterB3eL2ICPrVdt5yGbqaNmhjkzyt0kaly8XRQos+9ZkkTK7snJlepzMX1e/ts4Yw9o/LeVw7XdZrnlEyMBL5IMe/VyXUVq02Lq4xfVD1ZdZQy29yb0z777lirUcqlOMnHv+eLjpXGGzoDqJr7XHSGcio8YVV5XNT2O7T+fxrN4I0LNs8rJ39mhCCCGEEEIIIYQQQsrAl2WEEEIIIYQQQgghhBTxWZC6MIqik2zxY4Eoik4EEE2UYRzHt3iUw5lj3vqjPLOvmML0fVOlGzaJjkTvAHj44vLp9I6UWnqWhu/SZeuScCm5sOjLmkRY14Fcui/DgPtyWFlGvVti3suJ53Un507bARSwL3G2ydJ8yCQfkTsdWnZhWtCb5NnTky41C7L7Ygbk+bT0Rp5PSyIkrruMhkCPQzlsXKUltnRZJKU+7eG7W6gxLi16aL3brJzvrP3aURIeBF1+ce4jFpuVMDDQWi6ZsdMsAHS0p++4K4/TdZymgNNzp9w9Tsuopfyot7dyqbdvfTtLGvUgkpIXLQMUn+WOf/p2JWWqNimwbYfEEJJMjesYlbtpzzQ3JDYk0A89ZMbJa5V1YLMU0LsaG4kDbFFrqzvbM5RxXADPhWC7YUqE3rGkbbvnJef60IfMODmgpW+DytOGzELvVtk2tC35oLcwFLrDJks92qSv1ZR1hZAx2p4XNFI9a5urjd0G2yvf8dK3P7pK7bPsBCnrS0otdVeV9x4tX7XJN2fPTsJyrrNJ5r2l2IJQ83jTUGIdIJ+zbeMpU/4eEsoQ9iOENAo+08G7iv9sxMX/1zjkF3uWw5ll//eMPLOvmL4rnqh1EQghhBBCCCGEEJIBepZNXnxeUk24UgzJyzKXtIQQQgghhBBCCCGE1AVZXpY9ieQlGCGEEEIIIYQQQgghkw7nl2VxHPfmWI69mgjxuMbbphf39XOSy0JtS0SlVwAA7NmThOfMcStLJm8Jqbd3NEXL4psks8xbQx/Cb8a1fXU7yTbVvg3VvG7dt+Tntpbkg3bbaG0P3/ahsY0b3zFbTfL2l/Dt/zKtzfvNyF/5dNjGhmmHZPEQCryfvO4T0pNlaKjNiDN85wa2GXEvE56ShleJpY61z8uzzybhgw8246QHzPHHJ2E933/nO0lYeuwAwNKlqUXJxYcrjSD524xv+pOgbQ6W3l0A0N6efZ7K4ncVYh6Ul639qGTf3b7djJP+PzKPTHN1YN1KkPtCzt5pIfzMMuUv5zdHjzKNnFe0XxRaxCS2OMUwtwJcrzXEfOPaNvr7HYPJcXqOlNVve04KZEGViq8fVVod54GsA2F3BwCYPz8JT59uxtmmkbTbu57H5Vyn523pC5o7+mLk4Os5YDxo66uhn+s0Wbxvq/msTkge5OoVRgghhBBCCCGEEDIZoWfZ5IWvewkhhBBCCCGEEEIIKcKVZSncf8P9+NMNf0JTcxMOPO5AHPeW4/DYbx/DPVffg63rt+K0L5+GOQebWpWBTQP4wXt+gGPedAyOPO1Ir/OGkqqIHe+NJeF6+Xwrki2JZxXUK3G5JLxf7YWdov1rUuudrctv2zvS4wQhJGS+UrkQ8pfQUqSdO83PW7akp53VWfHpnNHbpcuu4Cohy4LPdte+SKlclr8cVVOGpvE5n21Zf5a40Mi+peWashzV7O82dB/54x+T8AsvmHHLlyfhDq0XEZ9d21P2VQDYtSsJS2k9YMpQ5DyiJS6rViVheW8BTNmhngNCyIrqReY8q1OeyyyTlLPq+pH3XK3ylPJ0ee/U1+xaB652DFlUx22FJH8tZU4rhzVOdxKtWZPItI6dKYs8KC1dCLLkF6J9bRKsEGNIN1s9kocFhityTGkptqsM0/Zs4TqX5tHHffqgq0UKoKwIcpYPyn6s5+NNm5LwAw+YccceW7tnOdfGz/teKe9tnZ3p56Lskkw22KPLMLxnGPdcfQ/+6kt/hTO+cQYevvlh7BrYhZkHzsSrP/pq7PeS/coed9u/34b9j96/yqUlhBBCCCGEEEIIIaHgyrIy7OzfibbONhSmF/D8k88DAFrbWjG1fWrqMX139KGjuwMtU1mlhBBCCCGEEELI3gA9yyYnXFlWhngkBiLg3uvuxY/e9yMceNyBiJqi1PR7Bvdg7Y/W4phzjqliKQkhhBBCCCGEEEJIaLgMysJRZx2Fw045DDdfcjMe+NUDOOwvDyub7p6r7sFL/+qlmDJtStn4aqD16NK7Z/369C2tO7rFa3C5PTFgGglozbz8bDFAsXkYSL8c7bMTgtCeYrX0zpH5T5tmlsPmPxPaC8UW15FDG9rI2zMuLW1Li9vW8vrcvlvS593vQmwn75q/b3mlb1Ko+sjTT056WAGmH9js2WacMX4DmHyZ3lrASSvS0z76aFIH69Yl3+syrrDkIZF5AOa83t0d3jcyDdex5ouu44Gu5HwPPmimlbfVRYvMuEWLyns5+vpuaaQ/jwzr+62M038Zl940Os7wpXS9jxbajM9NPT3pJ0/xcWsE/8dQhPD/CTGG8l4xEfo+7Xuf8D1OjgXbM1lri5nHjsHy59O3giw+g5USYv70HTN5PI+49t05c8qHq45ubGGC59t3Q8yfrn1Q/rYD8vl9R0g14cuyCShML2DhSQux8cGNqWmee/g5PHbbY7jzsjux+8XdiKIIzVOasWTVkiqWlBBCCCGEEEIIIdUijinDnKzwZVkKA5sH0P90Pzrnd+K5h59D5/zO1LRv+Kc3jIfvvupuTJk2hS/KCCGEEEIIIYQQQhoQvixLoam5Cf/1uf9C1Bxhxn4zcPxbjsfjtz+O2/71Nux8YSd++Q+/xOwFs3HqZ06tdVEnRG6PrLf/fn4wkUR09i4w4kJLD7JsPV5L2YMkhIwxNB3tZt20L0qXycjl0HoJdVvliq+aYvQRy/7rTQGkbTbybvtqSnxDUO368D1fnhJWPdZ6e8uHgSDKS4MSCc3AttSTLVnSWjaqdWiHmelQusZInk8r+WVSKcUIJcvwkQJrQvSDA3qSPLRMW0py9T1w06YkPHemmLeUjqVJ3sQVtmuT9b9nTxLeutVMN0U4SNgkNDYZZhDZVUtresK0YxSuMqU8ZGI2KW2I/NPOlSVP33LJeSsPSaBvu7leW4j8Q0gEdR5yTpBjTw951zkzj/tv6DxD5GeTitokxLK+s9x7G+E3icT3OclWj/q3R1r+lF2SyQZflqXQNrMNZ33rLOO7g044CAedcJD1uGVvXpZnsQghhBBCCCGEEEJIjvBlGSGEEEIIIYQQQkhG6Fk2eamedqyBmD53esmqMkIIIYQQQgghhBAy+eHKsr0A6adiw3XbYRs2XX9boXbbvds8DBptS26NzGNgwMy/vz8Jaw+MNM+yanszhPBTwebNSXj9ejOupycJ60rI2c/MRpDrdszflTzKIcdaqxprIbykqtlfbX4zsitpXzIbeZd/pL0jOdfQbiMu1YOk32JcpSZMWf5ly8z62b49Q0GL5DFHVpN53WZ5u7uT69F+YDt3ig+yXi3zUpZxnXZv27XL/Cw9y7SvWku6XZ2RVnq1tbbUZ5u5+ozq1QGtAbzZXHH11gqVp2v+tltl3veyEP6wvveatLgQz8uA+UhisSa04tNnfPuZqx9b3v0gC7Lv+j7y5X1troQYy77HueYpvTgBYObM0f/j2KtIhNQcriwjhBBCCCGEEEIIIaQIV5YRQgghhBBCCCGEZISeZZOXveJl2Y0fvbHWRbDS1dGV+1JpH2T+Us5nY1an+iJtz2bAkPbksV26DSmHkcuy06SJE5GHdCIENgmNJJdl5bKSZdtrrUFL63gwU59O09J2dZnppERThgFgyZLU87mWw1ZmU6aUnqeUME10vtDkvazfJsM049zqNVR9hJBVpMmctdSjbqSErprzkjEqjrM8DRYKrcZn1/knNLYH1mqWAzDbfmjI7NNSDmn0xwxaIZ97j01qqetOTuM2GaavhEyizy0/26rER0Znm8f1dbrOFSFkkq55VFuuHPqZ0jc/VxlgLfG9tjyeg2vVL/Joi9B5+t4namkVEKIOXMufZa6Tz0IvvmimHfu823SBIKRh2Ctelj11/1O1LoKVCy98Z62LQAghhBBCCCGEEEJAzzJCCCGEEEIIIYQQQsbZK1aW1TsRYq9lvGk7sfliK8OGDW47R7W3m+lapextwwbzwMWLk3ChzamMIaRgQLpkxHcXIB8ZSB7M6hxRn8Pmn2n5edoWRJbd9LLsxGN8kvnLnft0nGXdvWvbZ+mDruNSFksrRed1px9n64M+9ZpHPy4U0mUysivUcsdaX0m73vkwNDWTFdkqXI8hkVbXVZq8OO/5Mkt/ydvOQKKnJnkPl5v49vSkz7NZ7kOyqaQ0xiY/0vdGuWPn2K5maWnLlWmi88k60On27EnCcmfVuXPc5UGuMrG8pXOuuMr862m3wVruFBhip0wbadcWSo6blmeoa6lm27iW2VVunYflgkTfJ2Q5LLc5a/62NvS1vMij36Ud55u/nMf1rs9jEk05n09G6Fk2eeHKMkIIIYQQQgghhBBCivBlGSGEEEIIIYQQQgghRfiyjBBCCCGEEEIIIYSQInuFZ9mKY46pdRGsTC1M89KatxWq5w2ht5rX3itjaL12q0wYYm95CzatfZp3Tiismn9Zedr4QHzOezvqqm/l3dI6HnS9lky+cLIu0zqkLqMoU5ZyuZbRhh4b0tdBXooea1nKUmk6X3x9UeS1yq3HAdPicOlSv3LZ8PUP8aGWnj5p5QA8y2KZwzSuflGuZfL1o6oXdFV1Cz9Cm19Oq+eTmszH5g1mG4eLFiVhm2+PzatH5q+tS6VXW1eXGSc/d1u8G0NgG6M+4zeUB1renlyuVNPbL8u50wjRhlnTupxb4+OJZiOEP6lv/q591fUWknd/tz2Tad8t+fNFl1f6rIXwDXONy+JTG3qM6udUed/Q9To2x+/eHbQIdQc9yyYve8XLst8uW1brIli5sO+JWheBEEIIIYQQQgghhIAyTEIIIYQQQgghhBBCxtkrVpaF5LO//z2uffRRtDQ14Zsvfzm+sHYtfnbKKRXlOTycLPm1Le/V5L0sXuY/f74ZNzychOVyZSmpAICeno7xcKG3A6FxvU69pFrWs+9W1c7yiLVrk7DWmUiNS87Y5H22fuaa5/btZtyUKUl4Vqdf/iH6sa2dQowh16XvWkol60QeZ1GU5kII+ZFrHeg4uWS92tftSi1lk9WUiobAtRy2fhZCxqLne0lHu7vMs5ry2daWyttax8l5ffbsJPzCC+Zx8ra0zz5mnOu4tJVL5qHllFu3JuEszz9puM5hWfqg670+D2mb6zGhn/ny6O95j6HQdZAlT9+5r9L8spB3m/qWOS2PLJJ8H2yyck0IeV2I+6Nrflna2qcu9W89ib7/js3/TfXxmEJIZviyLAN3bNyIHz3+OO494wz88LHHcOavf43P1LkfGiGEEEIIIYQQQvKBnmWTE77nzcDtGzfidQccgJamJpyy//54budOrDrwwFoXixBCCCGEEEIIIYQEgi/LMjK1uXn8//n77IP5WrNACCGEEEIIIYQQQhoWyjAzsGzOHHzu3nsBAD994gk8s2MHNu3ciTnTplWUb3Oz0HRbdOYbN5nvNqUnlNzWOA/kuQDT82Tz5iSsLbkkest4mTaLd4DE1d9A+67Y/Lt8zi3ZPWR+31rF3VizeA+kLRcO5RMh2zSEL5avP0Porbxdvbt0HrbjZFvocdLdneShx4mRp25Q30GVln8O2PyQQtv5hfCUcfWz8fZTsbSha/+vpX+Zq9fKRMdVeu5CwTyvbSi4ljGEn5P1OIt+Y6Sl1SkPfe9Ju8/p+7T0BgswbWRi5swkLJ8lAPO5Rl6Lbt8sc3LodGleZ3nck0Lk6VtXtfREq6ZvZIixnfccbLvVh55LgWw+iZWWI2+fMtd2sv1GmDrV/Jzmgexajixp8/BMdM1f9jvdB+Vc3d9vxo09y/l6IxNSa/iyLAMn7rcfXtLXh1N/8Qu8ODSE/1i5Eqf/+tf41amnoq3aT5iEEEIIIYQQQgipGXFMz7LJCt/wZOSSE04wPv/1wQfXqCSEEEIIIYQQQgghJDR7xcuyFTfeWOsiWJlq0y4Kpk83P2/fnkNhBHJp7qxOM669PVmqK5cr6+2Ee3qSsF6aKyVYNjmW6xLhLMuT23JcDtzaopdCpw+z0Mvb7VK/JvW5fLilxV3iYluqLvOU6fKseyB/CYTv1vI2ZF3pMSSlSUuWmHGtyP5nrCz14yMrCiW/0P3QB1ku3VflYmDXhcGhJV0leK5QlteZgxrXG1eZaui+VToH+2HOi0GyTMdyAl9pkpS9DAy4ndr3L+OubSOfHQBTbt3dbabdubOyc2nykPznLRHMW/6btw1CvdAIZXQl77nINj/XUubviqtUWmOrV/kbJYSc0HoPVJP1SHtH5ScMgK1+5HOq/j03dk+J4/BlIqQa7BUvy3771FO1LoKVCy98Z62LQAghhBBCCCGEEEKwl7wsI4QQQgghhBBCCAkJPcsmL/W/npYQQgghhBBCCCGEkCrBlWV1hk1Pf9NN5me5Ve+cOfmUJw3pCbNzZ7ovkET7kdh0/2n+Elm2tLaly2N77Wrhey22+rZ5Ebh64uzZ43du13NpbD5rEtf6qbbXmcS2JbetXkdaWlPjXMeQkV+AcWLLI8u5ZZ8J7QsH5Ov74uvJpZHHyblVjyd5bdI7BDDvE/o4H1/EEBWXpT2r6ZWn60PWubzsevVdtHm1zetOjTIoFPzmgBBtofun9DmVnq316p9Vy3tIiOPqtV4bjTyeL/N+1nXN33U+ruUzt+84kV5bvb1mnLzHav/l5uby6WxezCHwfpbTP9TExGu7H9pWTdmudewZZMqU9DSE1DNcWUYIIYQQQgghhBBCSBGuLCOEEEIIIYQQQgjJCD3LJi97xcuyY44/ptZFsDKtUHBaXnzKKeGX4IdYGn38sUkeT65PX7art66Xn7u6zDhXmYttyXA9ygZque22Vk+FWNIuZTN6ZbdsX5lOy3xc0fmnydJsUjNfaYPEV0Jm65+yTvTyfymrW7fOjJPS5lmd1e3vPrKQEPXvK9XV/UKOh1rOFXKc2KQMNqluiAe0as6lvvck23HeMkBReU1qkuxwlNH4SphCzD95S59c28q1/9jKb5NK2/q4b59xzc+139ULeUvtq01oiWAW6qV+bOPLhuu86Ju/S37VJsQ8q+eb7duTsLY6kPft4eEkbHvmsJK31YHNL8fimSKLZbOCmDHDjBurHylXJaSR2Cteli37+LJaF8HKE1f01boIhBBCCCGEEEIIIQT0LCOEEEIIIYQQQgghZJy9YmXZZMG2Mte25NYmX5C7CIZYNn1Aj5nHY31J/nfdZaaVy5WXLjXjDu/uL38CrVMSlVIq4XC7NleZSQgpgI7bPZSep9zZrJbL4l2P0ztSyvaQS9j18m3XtnGVYeqdinzliTIfuex+0SI/GYstnWzrA3rMuK6u5Hx33GHGyXKtWFG5vMZXvhNaamnLX4/z9euTsG3H3WrKQrKcy7ZTrLzunTvTj5GfdR34YC2/bgA5UPT87LoNriCLRDOIBC6A5EVWiWWjMeuuvZIsUkvbcWn47ljri21+kJ9t9ZPn7rUT4SoxraZc0Fcq6t2+tgdJm97doUyaULvl+uZZTXzaptrXElpq7CoFzruP2HY/tkkttVWGnJtkWN8LZB7W8lvGUIg53jaZ2p61tm5NP5+8NrlzsTxusvt50bNs8sKVZYQQQgghhBBCCCGEFOHLMkIIIYQQQgghhBBCivBlGSGEEEIIIYQQQgghRehZVg9IobOvMYcW2Hd1jQelz5H2czrllCTcmkNvWNCb6OSHlD/XwEAS1pf98OZZ42HDj0dZ4rQafid+ZQzt6ZbF30GW2eZB4l1GWcka7S/kQZqnkmbKlPQidViKIa97z570dLKPtBXcvSxk/noIPfVUEn7xxSS8aJFz9kGQvhfr1plxsi51ubq7w/ZdX7+oLB5+LmzYYH7etCkJ63FS7bbywTZvyfl6y5b0dDNnuuVX6utoLVqCHBx2U67ULEL0F1tam6+XswebY4Xo/KWXy8aNZtrOziSs/eTSTpep/K6I69QtMdLSmnqYq7+WzffM1XNN14esL18vGB9PsSyebqH9nFxx9SjLEmfDOEo3lOO4CeHVZjuu2n57IfDJM8T8UO0+7pNHCK/hLMhbWU9PejpN2tyU6TeJuK+OFNqcDvF+XmvvsKYdQ5dfPmdMm2bG2R4DxuLk74DJCj3LJidcWUYIIYQQQgghhBBCSBG+LCOEEEIIIYQQQgghpAhlmPVAFKWu13Veuiy1HgqhyMShh5px1dyO/ZBF7ku777orCculu3qJq5Sa6d2WXZdw9/Ul32uJoJRx2eSCtvP6LmGX1yrLZduOur1dLa23SC1Dy+imTTPzGx5OwnY1qJssRy4Bt+ErUdB9S/a7ffZJwrK/AMCCXrdy+SLrQEsDZF/QEuvm5iQ8Z46fZMEmYQohSfGRUug6kO2WRTpRTZzH2tBu4/PAQCKPk0rI2bPN42Q/yDKny7TWtpCda/16M1JOvIsXG1EjnbPgQh7ypjRK+rGlwnYL6wAptdTIuWLuXDPOJpHNQx6diuU6bePcV7roiut92tavQ0vl8pALus6ltucHH0nsRKRdjy2PHYPmMXIKqOZY1ufLQ5on8c2/mv3Tdm7fY+pFKhri3LY85bOEfs6WNiNz5phxaXNTa0sGObpFemk8FwgfiibPBx7XttDppFVPq/ppsXvIr60IaQT4sowQQgghhBBCCCEkI9J+nEwu+CqYEEIIIYQQQgghhJAifFlGCCGEEEIIIYQQQkgRyjBTuP+G+/GnG/6EpuYmHHjcgTjuLcfhjkvvwBO/ewLNLc3o2K8Dr3jfKzC1fSrW37sev/uP32F4aBjNLc04fvXxmH/kfK/zah27tIqx2JJZDT3k9uu2PHLZrt6CLf/e3qQs992XfK/tcuT1tBVUfnI9rKofee5165Jzad8nWXc2by3btdx0UxIWdgMAgBUrkrD2vtKeCWPoNqyml4uNjvYR9TkJ27x/pAeY9p2b153k2ep4nVniJNreTdar7AfVRtbrKaeY1yL7k+6799yThKW1xRFL3DzK8sDXg2TduiQsfQQBoLc3/bg8vId8ziXjtLeH4RvW0mrEySlM9sHp0838ZR56jpTH2Xwdn9mQXh/t3YeMhzt0Awjy9gwKQZZySM+Z4eH0+4QcX7Z7rG8d+B7n40fli6+/oe0elXaczl+OE9t9wnc+cPUUs+F7jzIfY7L7l5XmYSmkhR1DydykpUZpZdS4zpE2QqfT5PEcXMv7qusYCpG/bx9PK2OoNnS9Vjk29POgfr71KYfENoa2bzfj5k4Rpr9r1iThM880zyd8z1znUo3rPK7jqul/TUi1Yfcuw/CeYdxz9T04+ztno7WtFVe97SocecaR6Fnag+POPw5NzU2487I7sfaHa3H86uNR6CjgLz/+l9hn9j54/onnceOnbsS5l51b68sghBBCCCGEEEJITtCzbPJCGWYZdvbvRFtnGwrTC+h/uh8A0NrWip6jetDUPFpl+x66L17c8iIAoGthF/aZPbpd3swDZmJ4zzCG9wyXzZsQQgghhBBCCCGE1C9cWVaGeCQGIuDe6+7F3VfejcWvWYyoKTLSPHTTQ1i4YmHJsY/f9ji6FnSheUqz+/kQjS9p1UtlOzsr36p6VqefPMJG3vK+uXOSPBctSs61aZOZLsTS39mz0+Oa3ZsxFala0ku7tSxKotNWSi0lUlLONGVKutTY95qlZFUvYZ85s3w6fT45TrJQzXrV+XV1Jed+6ikzrbxWWz+rJlmkQ1KueMii8POUrB/518AHHjDzmDIlCS9ZYsb5zD96O3kbUo4+IJQYWnIu60pKVgGz7Usl3OWlhfq6ZB5aRup6PSFkryFkXL5IOWtXlxnn3KZ6ApKfZaWrP0+PdM5KzTJEnYSQWfmcN0v+tjxDPAf4yslcZW6+bZEmocxSV62W41zLZbuH2FZTVFPGmMe58n7WraZU2pUs5/aZ16tZj1nO7XuPSusjtr4k7+cAcP/9SViPp7lLUjSamzcb6ZqkH4CljCGoF1sFQqoBX5ZZOOqso3DYKYfh5ktuxgO/egCH/eVhAIDf/+D3aGpuwqKVpnfL808+jzsvvxOv+8zralFcQgghhBBCCCGEVAnKMCcvlGFOQGF6AQtPWojNj46+wX/4vx/Gk3c9iVdd9CpEUbLabGDzAH79+V/jlR94JTr266hVcQkhhBBCCCGEEEJIBXBlWQoDmwfQ/3Q/Oud34rmHn0Pn/E48dc9TWPvjtXj951+PlqlJ1e0a2IVf/sMvcez5x6L78Ozb5kWIK94NRi+xlXLFOXOSOK0CaQsgz8p7mfo++yRhLSOyyvYctRkvvJCE9V8Fdu1KwnoHNHlu2w5ccmW0Td6kse2gJ5F5yqXcAHD33UlYb2K3fHkSDiHTcEW3mdzNUNeHT98aVnaBcrm7rn+fawu9nD0vZNsvXep2TNWlumLANanGsfVJiY9MDDD7mszjsMPSdxx1PbdvXe0YNM8tFRdSTqwn8haxC5beuVWON9t8I+XoL75oxsnj9BjKW17peq7QO0basNWBtRy2PzuH1t1noJoyt2r2lyzlCFEHIeYAfVyhUD5Pu1zTb6dD3zK77sjtiq8MsJb9IjRZyuEjLWwEGV21n0dC71ZsK7+e7g89NAlL6wcAGOncNznXu9+dRKgfJa47C7vvvqvKUUMrF0JqCV+WpdDU3IT/+tx/IWqOMGO/GTj+LcfjR+//EYaHhnHjJ28EMGryf+LfnIg//fxP2PbsNtx77b2499p7AQCnfuZUTOucVstLIIQQQgghhBBCCCEZ4cuyFNpmtuGsb51lfHfOv55TNu3RZx+No88+uhrFIoQQQgghhBBCSB1Az7LJS2PoiQghhBBCCCGEEEIIqQJcWVaG6XOnl6wqqxZZ/B1sGvE5c8qn8/Uoq6VPU9q1aLSvl9TblxwnXv+vXNk6HtaebtISQMf5WMxYdna2elTIa9FbTssy3nBDev6nnGJ+TtuGPm/vAV2P8rOuU5+yaF8m7XM3mZBtePDBZpz0gpNhG7n7TujGl+g/ydkMtjzw9aKRHmDaw0POOY4WiVb0Jaf5qqHFTLh2bRLWY+iOO5LwTTeZcWeckYSPOioJT1MOAq7XppswRJ1I8u6f2pdSfpbziG3ut/lX2g7M+x6b9xzvmr+Pv9JEcTYq9YOtNrZ5ylYHrmMthC+Tq+cREH4OyJu8+0Ue/pu2/F39tHzHZVoetfzNkPvYVp18pKW1bDJdDlknelzMnZNed6n12jkrtYi2PLKUKy2PLDSKzy8habAHE0IIIYQQQgghhBBSpMH+5kMIIYQQQgghhBBSH9CzbHLCl2WTBOft6vUaWxmnJVJCA1SyBLFO1tbL5b2Zlv+LSJlMq2Q2b3bML6VMEx3ns2xdyzDXr0/CWuYpt6OWcrIshJbv6Dr2kbNqpFwtsHqvhFAyohB1KfMoFMz8Fy1KwrLPtLeHL4fEep22QerYcFnKaxtfaW1l64/63FbJnQc2eYTB/fcbH5cuPSI1Tznuf/lLM+6hh5KwlPFq6bLsP3o+k81W7dtCWv1kGaMybWenGRdEwi37fM5SYxshxnkWaY9rHmn5TZTWNQ8fbOXwlZiGwLeON2xIwrqPp0q9J8gzjRBzgO+90rWdsvRBH0JJKF3jXCV2acf4nkunDVH/tnP55GEjSx7mzyhTdukqdXU5plxc2u8c/VtA3q98+7HMv7UlzHxWr5J3QlyhDJMQQgghhBBCCCGEkCJ8WUYIIYQQQgghhBBCSJH60NIRQgghhBBCCCGENBBxTM+yyQpfltUZWTw7nHX/FhMJY8vj9vLbHwNl7Mw8ek6ILctt+Nq/SM8v7VHT2+uXZxoh/E6kjxpgTs4nn2zGSb+iEJ4yefhuuZYlby8a3cdlPct61MPJ1S+k1K4ru5eIjbaCedyrVpYvR6jtv9PyKfm+vz/JQ2117lqWEOlc/U9stmq6DtK8vPRcFHzuW7w4Nd3D68wy/va3SfiOO8xs7r47CUt/w2OPNdOF8BWU5DFv5DE/pJHpvizusfpebJt/JDZfqRD+P675hcgjC66enj7eRr6+dvWKbY6XPmW+c1MIj6vQfTVr2jwJ0ed96ipLniGOcS1XlvKnXXfe3nJZ5lKbF1/a2Mujb/o+Z1TTc5CQyQZlmIQQQgghhBBCCCGEFOHLMkIIIYQQQgghhBBCiuwVCy5v/OiNtS6Cla6OrtS4EJKpEEvkXSWOrttKT3ScKyFkIT09Yc+Vt8RoyZIw25LnvUV6iPylJG5w0DyXlIaFkC/oPu7aL2zyF/k5TXZZ7rg8ydIPfOSbJflrbXMV8ZH9ZGmn9vawkhTnfmDRSixaZH6W40T3aanmdO3vIfAdo7bx5ZtHiHJIfK0TXO+xvvIm1zxCyBPzns98ZXquzyOaPOSDPoS4t9me0Xxlrz73EN9x4iqdq7aUM/TzlK8li2v72vLwJbSMNIT01/d8IfpgHvOsjNOPAa7Poq7l1N/L53GbHUkjythDQM+yycte8bLsqfufqnURrLzzwgtrXQRCCCGEEEIIIYQQAsowCSGEEEIIIYQQQggZhy/LCCGEEEIIIYQQQggpslfIMCcrPnp4Xx2+q949hJ9KtamXcoTy8XHN08ePKoTnRZb6lv5R0nvJdu68vUps17lD+arZvGJc86+mn0oWHxkfv6I8xppr2+fRx9N8OrL4zQT3eRnYZnye15nc5rtPbks9rq8vCXcpG03b2BscTMLax6S1Jey1BcFmKmLxgvOdY1wJMUbzppb3yhD+rb5jLYTfT708Z2hkueT9S3vouXoS+XqRpeXnm4etjNV+jvHJP+861lTbH8yFUJ5frsf5pLOlzfIc4Hpum79qaO9nXV55exwYMNN2WJ4R9hboWTZ5qZOnV0IIIYQQQgghhBBCak9DryzbsGEDnnzySQzKP20XOemkk2pQIkIIIYQQQgghhBAiiaLofAAfBLAYwDYAPwPw0TiON2XI43gAnwNwPIAYwG0ALo7jeK1K1w7gIgDHADgawHwAv4njeKXruRryZdnTTz+Nc889F7fccktJXBzHiKIIw8PDNShZdfFZchtiW/gs+YfaHrxSbOUKIa8JkYfvkm3X7aLzlhf4ynh9y7J7KMlfLn1uK5RJXKZMWc7lipau2M7tI2P0JQ9ZQlqetZQbhZCR2vCVebrOuyHkQTbNpC3/ri4/CVaWPl8pQaRtFqllCELM43sTPveJWtaVrxTbNQ8boSXbGtexnMf93JcQebpK6EPM45rQlim+hHhGyEM26ZNHLS0vbPmHOHfo3yu2fGz9TD9m5G1TQCYPURR9EMBXAPwGwPsB9AD4WwAnRFF0XBzHLzrksRzAGgBPA/hk8ev3Arg1iqKXxXH8R5G8C8CnAWwEcA+AuVnL3JAvy9797nfj/vvvxxe/+EW89KUvxdSpU2tdJEIIIYQQQgghhOxF0LNsYqIo6gLwWQB3AfiLOI6Hi9/fBeCnGH159nmHrL4BYDeAk+I4frqYxw8APADgEgCvEWmfBbB/HMfri+mU497ENOTLsltvvRXf+MY3cN5559W6KIQQQgghhBBCCCGkPG8E0Abgm2MvygAgjuOfRVH0GIBzMcHLsiiKFgE4FsD3xl6UFfN4Ooqi6wBcEEVRdxzHG4rf7wKwvpJCN+TLsmnTpmHfffetdTGCESMaX8Iaahe10Lvf1VJ+lHbMROfyWZqepR5Dy2vyXrrsKkWd6DgfQuzQZNuZx6asyvva6nXJeQh5n+vY9m1fH/lLKOmEzy55ecuIQsizfHHdbTaPcoSWANWynfKQx/neH9PqJA8Zlyt53GN9xlAeUsJ6mUdscdW+HzaCvLiac3Bo2wOdttpzU9q58j6u2rYxefeR0FLaLPUR+lmrEcY8qRnHFv+/vUzcHQDeFEVRexzHttVfE+XxVoz6k/3cu5SKhuzR73jHO/D973+/1sUghBBCCCGEEEIIaXS6oii6W/y7MGDe84r/P10m7mkAkUjjmwcwauIfjIZcWTZ//nx8//vfx6te9SqceuqpmDVrVkmat771rTUoGSGEEEIIIYQQQvYWJoln2eY4jpfZEkRR1AngAxny/EYcx89jVIIJALvKpBks/t9WJk4SIo9MNOTLsne9610AgL6+PqxZs6YkPooiviwjhBBCCCGEEEIICUMngE9lSH8FgOcB7Ch+ngpgp0ozth/zDtiReWhc88hEQ74se/zxx2tdhNyoJ78BH0+uPLw4QmzJHcJTyZdabrNuq7t69dmpNL9Q5cjbKyntukNsXZ+lLCH6ga/PhW9cGr7zp6t3WpZzp5XDhq9vWwivlTy8CUP4yOR9nM/4DeHTmeU4GyHuv6E9Q7PMI6G9ekLQCPf9UPnn7e0a2i8thA9utf3kbPh4A7t6E2YhtHdgCKp9vwqVNnQeaddabY9TXx9rephNPuI47sOoZDIrzxT/nw9gnYqbDyAWaVzy0Ix9V06i6U1Dviw78MADa10EQgghhBBCCCGEEGLnLgAXAjgBpS/Ljgfw0ATm/mN5oJjHv6u45Rh94XZPheU0aMiXZYQQQgghhBBCCCG1JI4njWdZnvwngG8AeG8URVfFcTwMAFEUvR7AQgCfkImjKOoC0AXg2TiOXwCAOI7XRVF0N4Czoij6RBzHzxTTzgNwFoD/ieN4Q8hCN9TLsvvuuw9HHnkkDjroIERR+uq/KIrw6KOPVrFklREhdloWm8fS1rxlUL7H+Sy3Dr3EeaL8897uOrS81bWO81jibyNE/fvKKlylea75ZcnfJ8+8+2CI5fm+uF5bNWWdWY7LeyyH6Et5S4yqLWEKQTXvc7WcP234ymtCUM3y+xK6j2R5lku7z+VxH8ojD1cpeYhyhJ6rddo8ZMgh2rfSc0107nqZ133tElyfJULXf5b8fZ5Fbel854e8f2+RvZs4jjdFUfQJAF8GcFMURVdjVDp5EYAHAXxNHfJejHqjXQDgMvH9+wHcDODWKIq+Wfzu/wBoKuZlEEXRezHqswYAUwAcGEXRx4uf74vj+Ge2cjfUy7KOjg4AwCte8QrryzJCCCGEEEIIIYQQUnviOL4kiqItAD6I0VVm2wD8AMDFDhLMsTxui6JoJYDPFv/FAG4DcFYcx/eVOeRDAKSHVy+AfyyGLwcweV6WHXTQQQCAyy67rLYFIYQQQgghhBBCCCFOxHF8GcyVYmnpPg3g0ylxtwP4C8fz9bqWrRwN9bKMEEIIIYQQQgghpB6gZ9nkpaFflt1333146KGHMDg4WBJ3/vnn16BEfsSIxvXfvl4KNvLwuXD1OarlFt2h8w/hK5X3dtch/GZC1VsIzy9XQvhR+fhCTHTuEP4Pob2w8mjfEF40eXh52crluh27jRDX7Zq/DXnuEL52rufS5O0LF4IQXlKNOEfm7StYzTnMRojnJN90vs9FPnO3730oj/k5hN9V3s81ruT9DJW355or9eJDZiNLGfP2EA5NHvfREM+woX3hCJkMNOTLsv7+frzuda/DHXfcAQCI4xgADB+zRnpZRgghhBBCCCGEEELqg4bczuJjH/sYtmzZgltuuQVxHOMnP/kJ/ud//gd//dd/jQULFuB3v/tdrYtICCGEEEIIIYQQQhqQhlxZ9qtf/Qqf+tSnsHz5cgBAT08PjjnmGKxcuRLvfve78fWvfx3/8R//UeNSuhMhrngJse/S8dDLarMs8fc5d94Sx0agltdZbemHa1nyliWEkOi4nrvaW3L71qPrdux5E0IK5pq/L77yqRD5V3Oc1CvVlgZXSrX7sW/9uMpI85C4p6ULMX9meZ7yOV8eEs1KyxSKemnDWtIIz6m+cvQQEsG8ZeZ5yxjrxW6glve1UJY+kwl6lk1eGrIHP/vss1iwYAGam5tRKBSwffv28bjTTz8dP//5z2tYOkIIIYQQQgghhBDSqDTky7Lu7m709/cDAA488EDcfvvt43Hr1q2rUakIIYQQQgghhBBCSKPTkDLMFStW4Pbbb8eqVatw3nnn4TOf+Qz6+vrQ0tKCyy+/HG94wxtqXURCCCGEEEIIIYQQ0oA05MuyT33qU3jmmWcAAB/+8IexZcsWXHvttdixYwfe8IY34Jvf/GaNS5iNGNG4pjuUV4aP9r6edOU7Bt3KctFFSbp3vMOMW7o0Cdvq9bY7kjw2bzbjli1Lwt3d6eXIw5Miby+j0OdyZeMmsxwvvJCEe3rMtIWCW56yvxQXnZbNo7MzPQ+b10Bri5vHTC19HLYNmPn99rdJWI4F3Y9dy+zqRWO7rk2bzM9z5yR5/PlB8zjZHrLddB/J2w+mmvNiiDFqu0+EaMN68qxJzVMN5qaW9EcdmYceQ2l90Iav718IXy9fzx3fvpVWrlo+S4TwEwrh4ebr+zQ4aH5evz45btGi5PtQz4p53/vTrtvXZ9e5vLoiXR8mApDHc0Do+3SW/F09Nxtt3IfyVvQ9X6Xk4c0WZOwFOq7RoGfZ5KUhX5YtXLgQCxcuBABMmTIFl1xyCS655JIal4oQQgghhBBCCCGENDr1s5SIEEIIIYQQQgghhJAa05ArywDgscceww9+8AM8+eSTGFTLraMowne/+90alawynu83319K9Uh7u1+e1ZTi+S4/18cVCkncgw8m369fb+Zx2mlJeM0aM07KZhb0ppdDyvZ0HnPnJmFf+ZqUCOr9J2T+c6fvMCNl41tkRCFwlYiEaV+zDw4MJGEtoZR1bjv30FC6lFZW3Z49ZtycOeXTZSH00nRXqRNg1tfatWbau+9OwlKBovtxaOmErfx33mmeq68v+bxhg5lWSqBl+XU7dXeHlff5yqdC5D+ZyUOKkZqno+xS43uPDYGvzMonjyxUc34Iga8MzXZMCHmlK1ot2NtbcZZBylUvNg7OBJJd5iEfl6Q9n+ddp1meMxqNeumroWSSPveGPJ4z6qVeCak2Dfmy7D//8z9x1llnYWRkBPvuuy+mTp1qxEdRVKOSEUIIIYQQQgghZG+AnmWTl4Z8Wfbxj38cK1euxJVXXok5cmkIIYQQQgghhBBCCCEV0JAvyx577DFccsklk/JFmZaBSImaxkcup/PrGBDap64uM9JRl+a7dNy1/C0t6Ut/778/Ca9cacbpXfPSkMfpHc/23z/9ONfrlmqAK64w42QZV69uM+I6Co29rDmtTqZPNz+77jJnQ46bxYvNOPmXHttffUrKKxKPtLSmpxPkvUxdl1/KkrWM8eSTk7DrzrA2Qizj12NUXo+UWwPmXCWlSDapbibkyeVcl2EnRVdsc4WtPaQsv709CV9zjZlOtq8eT3Ja11JdKWFdgMeSMukbhWwAdZOqpjQjD4mdz7mteehBKm0idOcVfWuke55b/lXGdb7z3RUvxLyS9464PoTaMe9BsUvwkiUVFSkY9VLHmmrKGPOglvfmRiAPuxDX40LvWhqEkh1f28qng/v8LJ85QjybEzIZaMiXZYsXL8aWLVtqXQxCCCGEEEIIIYTsxVCGOTlpyD9HfPGLX8TnP/95PPbYYxMnJoQQQgghhBBCCCHEkYZaWXbSSSeNh7ds2YLDDjsMBx98MGbNmmWki6IIv/nNb6pdPEIIIYQQQgghhBDS4DTUy7Lm5ubx8KGHHup83DHHH5NHcYIxrVAY15Nrfy7pd6U9iaTfzKZNZpy0c5Nxu3aZ6Tp63Ax/8vZE2D1k5i8tc2bMSMLLl5vHLVuWhLXfW2uLm3eArGOZH+Bs22ZFegVcdJF5nS++mH7cn4VXibS6WbjQTCfbWlsYSPS1pFk2tXpe87aB9D7SUdg9Hm4rmCfo6UmO02V09X+Q6XT5bZ53Rv6O66ezeDTJtCG2A9f1s2hREtbFl3Gyj9vyz8MHRNLRnl4/euzJ69m8OQmvW2emW7MmCS9ZYtax9PLS80OqF1mIQR8I2W59fUlYz4M23zZ5OdrH8YDObcmHAXEyleHulsQLZUjbpIjDdB+UYy9E/6mlD5FpPWb2M/FogilTWo24WZ2iAUo8ZpLK85nrak1aWUJ4//icdyLy9rQKcW06j7lz3dLZPImqOfZCnDtLPVbTr66W/oy+50rLJ1R5q+mXVsu5L+9+bGPHYJJPW0vyLK3vJ022Bz1HbD5l9XTvIaSa1M+vAgduvvlmr+OWfXzZxIlqyBNX9NW6CIQQQgghhBBCCMlAHNOzbLLSkJ5lhBBCCCGEEEIIIYTkQUOtLBvjC1/4AtavX49vfvObJXHve9/7sP/+++PDH/5wDUpWOXqZa6GQvM/s6ko/bubM9HymTWsSYfeyhNgqWeahFShSHqSVT1oylZYu9LLgLPmnSexsx0jJZLnPacjV1cPDZpz8S4ZehS0luHoD2dmzs5dDY+sjslwjLYk0SdePlMvq/EJIEVy3zJZlBEzp6yOPJGFdV729bud2RUuStexQsnhxEl6yxIxLUxNa6yAH+Y4NV/msVAVKOSJgziv6r3pSzq3rY1BIG6T0wCalDVEfWaQZssy2+T9tvtRoicVIe8d4uElkoss40J+E9+xJL6Ptr6q+8m5XnNvJVkiLBLetkOTZpmSvtvucHM/mDJOeRxZc71HVlNDkIc2qpfTSVZ5uO5evJN/n3lxPc5hPOUK0dag8864v1+cTW34+Etm85ZO17GcaXwlxpXmE6sfGbUl+UDd01/lHk2ZHop+JCdlbaciVZZdeeimOOOKIsnFLly7FpZdeWuUSEUIIIYQQQgghhJDJQEOuLHvyySdx8MEHl41bsGABnnjiiYrPcf8N9+NPN/wJTc1NOPC4A3HcW47DHZfegSd+9wSaW5rRsV8HXvG+V2Bq+1QMbhvEr7/wa2x6ZBMOedUhWPGuFRWfnxBCCCGEEEIIIfULPcsmLw35sqytrQ1PP/102bj169dj6tSpFeU/vGcY91x9D87+ztlobWvFVW+7CkeecSR6lvbguPOPQ1NzE+687E6s/eFaHL/6eDS3NuPYvz4Wzz/xPJ5/4vmKzk0IIYQQQgghhBBCakdDviw78cQT8aUvfQlnnnmm8WJs165duOSSS3DiiSdWlP/O/p1o62xDYXoBzz85+vKrta0VPUf1jKfZ99B98fhtjwMAphSmoPvwbrzw7AsVnbccNk8fiS3O1c8mi15fppWeLDbPL+m/NhFp1jGN7mWRxUdg0aIkLL2XtGeQ/EuGrjfpb6b7gfa5qxTtl5bmJSW9qAD71u9Z/LXS8rDF2fKX5X9BDO2jjko9xBtZDtnWgFmvOk4ivd9s+WtCeB7l4Y2UNvctW2Zey6GHJuFdu8w8ZL9bu9aMk3YfMpy3l0sWLPYkXth2lrf5bsnj9Dxi855My18Tos+4ev94t67sTGogNgmDwzZdybLhdJyoTB/voonSVtOnLG98fZ9cPcVCkHeervdD17na9bwaT9u/XOrH9TmgmuOk2n5grtfmOk5s1PL+6DtHhsDnfJnq2HhINr3CbGMqLX/v+rGcLMTcQUgj0pAvyz796U/jZS97GQ455BCce+65mD9/Pp5++mlcccUV2LJlCy677LKK8o9HYiAC7r3uXtx95d1Y/JrFiJoiI81DNz2EhSsWVnQeQgghhBBCCCGEEFJfNOTLsiOPPBI333wzPvShD+ELX/gCRkZG0NTUhBUrVuBHP/oRjjzyyCDnOeqso3DYKYfh5ktuxgO/egCH/eVhAIDf/+D3aGpuwqKViybIgRBCCCGEEEIIIZMRepZNXhryZRkAHHfccbjllluwc+dObN26FTNnzsS0adOCn6cwvYCFJy3Exgc3AgAe/u+H8eRdT2LVZ1chiqIJjs6XHYPJklit7khbBptleaxrWpsMsFZb1+tz1yu2ZdNpEiw9Gct0Qg1UgpZxuS7ttiHLr+WVafJf335gkyC6So2zlKWrK7me5cuT721S4yzI9pZtqmW23d3pebieO++xF0Le4UpbYUR9TsL63H196fls2JCEZ89OwnPmmOnWrUvCM2aY+cu0WeS/aYSYs7SE0iaTbNr8XNk82rq6nMslz6fnHzkufceoK851F2Li03nI+lI34xElqZG4Pljb7rGu0tdq3n+znMtXXhni3LUixFxhI+9nnyxDKES7hZDAVZMsMsm041zlxBMRQqbqc1yI54C8x4ktT9d7HmC3N3BGDKrQY2Ei0p5FbePc9juEkMlGw3fvadOm5fKSbGDzAPqf7kfn/E489/Bz6JzfiafueQprf7wWr//869EyteGrjhBCCCGEEEIIIYQo+MYnhabmJvzX5/4LUXOEGfvNwPFvOR4/ev+PMDw0jBs/eSOAUZP/E/9mdDOBq95+Ffbs2IPhoWE8cecTOPUzp2LmAYEd1AkhhBBCCCGEEEJIrvBlWQptM9tw1rfOMr4751/PSU3/5n9/c95FIoQQQgghhBBCSJ1Az7LJC1+WNTDbtydhm2a+lr5GhieOnkWkz4un4D2EJ4stj2r6qbiWX3uDSbQvkPyct6eAre5C9K0gvhAZaG1Jytyas9+S9MCYqRakynarth+Pj9dW3v3Ahs6/pyc5t/bsk8hxoqcp6Rln64MhrjPEHKb9VKxeYbZKSUGXsVCoD29IV5+XIJ56uiOIQZrFU8Z1Tg4xd9fSPzRvXO/Trse45pEHrv0zy7OKqw+RFZFJkyUTX0+lEF5Mvl5PtbxHuaYLXT++nmiTyTvQF5tvrW8/85nDbOl8+4u8NpsvmatXpi4XIY1IfTzl1hnT504vWVVGCCGEEEIIIYQQQiY/Dfmy7OGHH651EQghhBBCCCGEEELIJKQhZZiLFy/GK1/5SrzrXe/CaaedhpYJ1pXf+NEbq1QyP7o6usaXrVZ7y+AQWOVxNpmPox7A9bqz1M/AQBKW5W+1LK+2Uc1lxrZz2SSa1canTrK0YRBpSZ1gk8qF6FshlvhnybNW6DLJfqGnIh95lu5nafOIHod5t2FamQD7/NzS0lr2e13epoFtyQelzWgSnbery8yvXsZlCHnKSEpd+ZbDei7PeVDLZmTb14sUJov8K60ebPKgic5XD2SRKfnI3mzzYBCyNEAAQvddmwQuhISs2n3Op4y+liC+z+P1Mv9IQkgVffPJRXYsPBiaLDd+13Pbhrm2e3CVaE526Fk2OWnILv29730P//qv/4qzzz4b++67L9761rfiHe94Bw466KCy6Z+6/6kqlzAbF174zloXgRBCCCGEEEIIIYSgQWWYq1evxm233Ya1a9fijDPOwD//8z/j4IMPximnnIL//M//xMhI/f0FgxBCCCGEEEIIIYTUPw25smyMI444At/+9rfxpS99CVdffTW+9a1v4fTTT8d+++2Ht7/97Xj3u99d6yJmxrZ0WS+5nTlT7KwyuMPMyHHrQF95lrOcxCJdCSFx9F3KbEqmKs8vD5mVTV4jqeXy5x2DSZnXrzfj5DLtuXOT8Jw5Yc7dCEu985A/+hBC/pVHH89bXmM7t2se7e3px6XNIzby2IVPpuvuTpdg2aQTmzYl4eFhM495XeJCLZm4DslQ0t/Q8iNXXOdjTYjy6+qXu2LbkLuWZhknoe+/vrv8hZa35PFcYdvtLo+5yScPW57WPBwnuDx2Q/bdRdCVat6HbNTyecH13Lb6t41RbXGSJ3nIYPW8K/HZqT3LWH6+P/m8Zk3y/cknm+k6CpabvWMhXedZnZ3t90o92cMQ4kMD/NycmL6+PvzhD39AX18fWltbsWTJEnzlK1/BJZdcUuuiEUIIIYQQQgghZBISx/Qsm6w07Ove3bt348orr8RJJ52El770pfjZz36Giy++GE899RR++ctf4oknnsApp5xS62ISQgghhBBCCCGEkAaiIV+WXXTRRZg3bx7e8pa3YPr06fjpT3+KRx99FH/3d3+Hrq4uAMDMmTPx/ve/v8YlJYQQQgghhBBCCCGNREPKML///e/jbW97G9797nejt7c3Nd3ixYurV6gKiBCP69dtW6drjXvrkPAp89wmuB63c/bF5qVg8+oJdb7Q+Umdf97+XL6eVrLb9fSYaeVyZJnO13fF1xMqdDvp/Pv7k3Bfn5l26dKgp86dLHWV5nWTh19IHqTNrbby6yX28nMWr6o0XH0ibfeJ1hZbG5rHyXlx2rQkXHIt4ouR9g5L/tUlhGeWFdHATSLcqu63eXhcpZHFHyctbbWfCXz7tev4cr2n2M7l6suU5dw+2M6ddzmq3fbVzN+3Hn3GqK1vVfv+GMIzzobMUz6z6nvl7iHXe1TYMmlc69/mDTlzpk+p7OWwlbm9PQkvWWLJ1GZQajuXaKwW4TOd5XdHI3gIE+JLQ3bv9evXo7U13Th+jLFVZoQQQgghhBBCCCEhoWfZ5KUxlgAozjnnHFx//fXYs2dPrYtCCCGEEEIIIYQQQiYRDbmy7MEHH8Tpp5+OWbNm4eyzz8Z5552H5cuX17pYQci0pbtFj/HMhiStXMIrw3mQt0wgy9LltOXho58nPmaic4eQVoU+Ti511+hr9sm/5Bix1LtN/0nFo7OFWD5fbTo7k7BWhd9/fxI+Ykl46UE15UGu8kTfftYIEiN9bfUo58bAgPlZ3CcKhdbUpPJ2Yruu0m3h3eIkWcayTR6XRrC5wrGBQ8usssgAJVp501bIXi7fe2w1yeO8rvOP7zxlk8O5ykPT8msUQtRxiHNlOXfeMttqEkIu7kretgS+uOY5pJ6lX3wxCc+ZU71yjJYlCcv7tFWSrxrAKseVdgOWhpN56Hu9RfU5XpSRyeP6Q/YyGu9uC+DPf/4z7rrrLpx77rn48Y9/jJe//OU4+OCD8Y//+I947LHHal08QgghhBBCCCGEENKgNOTLMgA45phj8LWvfQ3r16/Hz372Mxx77LH4whe+gIMPPhgnnnhirYtHCCGEEEIIIYSQScyYZ1mj/yOlNOzLsjGam5tx6qmn4qqrrsKPf/xjzJs3D7fddluti0UIIYQQQgghhBBCGpCG9CyTPProo7jiiitw5ZVX4tFHH8V+++2Hiy66qNbFykSMaFwL7u0PUiIYbxsPbd6cfKs17tLLq9peCjb9u6sXkOu22D756TxdfWR86zGEV0nVt2+2mCbsGCxfTqvPQgNga9/OTjdvvCzU0t/DNr5kXB7eXfXiyRPaRy9LO6XVv81zBOvWmXFiwDUpU72WljZkxdbWecw/Ph5RudzLqj65Jtg8lWxec2n9J0u/dZ0DbLie2/ev2j5eWHn4Y7r6koUgS1v4tL0t/xB1l6U+aull6nrdkmrXjw++9yHfPH3aKQ8fU5/2rDZ6Hty+PQk734ZUQuu1Oj6U23ygZRa6/GOPJLt2OZ2GkLqjIV+Wbd26Fddeey2+//3v44477kBbWxtOO+00fPvb38bJJ5+MKIpqXURCCCGEEEIIIYQQ0oA05Muy7u5uDA8P41WvehUuu+wynHHGGWhry/4XckIIIYQQQgghhBAfxjzLyOSjIV+Wffazn8W5556L/fbbr9ZFCY7vkvImtYy2szMJV1P2lmUZ9sBAEt6500w7fXoSlquJsyhhpAxQ10GIbcpDb3WukXn29yffy3oDgKlTk/DMmWZca0v1lplvGzDrYP36JCzbrafHPK6tUJ+ShTSZcJY6bW+v7Lz63LJOAUCp6oITol59ZQ9paR9eZ9aPrANfpZzvdfpIpXerLeltW6779B9Ddw8YA26kYP5R6cG15c+l+9XWrenXI+ecEPONqxzddlyo+SCtHeV8DAB79iRhPQfLPhmiXFnk0K4yVVepZQh5osbW/+V9O5S9QbWw9eMsfTx0+UNIafUcZuvjaflnkdiFHtvedic5kNYvfOdB3/xt53J91g1hrWIrhy8+fVD/Zthnn8rL4TrOt24146ZMScLy/qLruFXWcZYKlxlZjnNtX53F3LnZi0RIPdGQXffDH/5wrYtACCGEEEIIIYQQQiYhDfmybIz77rsPDz30EAbL/Gny/PPPr0GJCCGEEEIIIYQQQkgj05Avy/r7+/G6170Od9xxBwAgjmMAMIz95cuyY44/proFzEihMK3WRSCEEEIIIYQQQkhG6Fk2OWnIl2Uf+9jHsGXLFtxyyy048cQT8ZOf/AQzZszA9773Pdx+++245pprjPTLPr6sRiV1o++KJ8bD2gtFeo9pDP372N68Rdq6u5MP/WL0qgxr5ecBmD5l09T7QjnhSAse6c8FaL8cM05ut6xpC+CFIskjD+kBJhdP2rwCrB4GOeDq+SDLqL0gpP+JLr/0Mwvl4SExvFCGdqv8E7ZubR0Pz5xplkP6NIUok/aku/vuJKx9M3w8y/KoRxum35tfHrLMGzaYcfKznPYAYNGi7PmH8MuxpdNbrrti9ZixGYYIMzI9vtK2e9fppIekJrQPSWhvnlB5yvlY28LJOtB1VUufFte+G9rDKctzRVofzJJ/aP9QX0+3ahLKwy3v+d+1bWrZP6vtUyap5TN4Gr7tlLfHrOt85lp+Wzo9b2svSp88Xctv9b0Uz6kthVa4Yj23x03K5o+p62DOnNH/pfcaIY1E/c3SDvzqV7/Cxz72MSxfvhwA0NPTg5UrV+I//uM/cPLJJ+PrX/96jUtICCGEEEIIIYQQQhqRhnxZ9uyzz2LBggVobm5GoVDAdrGE6PTTT8fPf/7zGpaOEEIIIYQQQgghhDQqDSnD7O7uRn9Rr3jggQfi9ttvx8qVKwEA65Qc0Zf7b7gff7rhT2hqbsKBxx2I495yHB777WO45+p7sHX9Vpz25dMw5+DRtaXPPfwcbv32rQBG/dOOedMxOOiEg7zOKxQzE2Isq9X6I611K7Jj0Hw/KmWfXV3p24Hb8JUmSTmbPleaHGPXLvOzlMDpPeinTGlLzT9tqbTeKyKlGktwrYMsy/9lHchy6TJJZa1reUMhy9/e7tZ/tNRYyuh0/z+gp/y5QmFIL7W2SlT6XDG+RlrakCe6DRcvTsK6fozyqwqXfU32Hylt1emy1HFaWt3HZfvK9syCnNa1NF1etp4GfXCVUQB+fVIfo8dNGuvXJ+EbbjDjVq1K8jhAdxLxWUt8r78+CS8TbgVa3us6r/jKd1wJUf/6HijRY0Mi62DGjPT8bfIUX3ylWnlL1FzLJe9lug+myfVtZJHlec1v6gFEypz1NcvrsT2/ZZlX8iREf7S1k63/hJbL+lJL2aUrpc/A6c/L9SgjtY5lm97acmAIGwQboeepLMgyl9hVyIL19SXhRYcYyWRb2OxafAlxL5jMxDE9yyYrDfmybMWKFbj99tuxatUqnHfeefjMZz6Dvr4+tLS04PLLL8cb3vCGivIf3jOMe66+B2d/52y0trXiqrddhSPPOBIzD5yJV3/01bj1n2810s86cBZO+8ppaGpuwo7nd+CH7/8hDjzuQDQ1c/IghBBCCCGEEEIIaSQa8mXZpz71KTzzzDMAgA9/+MPYsmULrr32WuzYsQNveMMb8M1vfrOi/Hf270RbZxsK0wt4/snnAQCtba2Y2j61bPqWqUk1Du0eQoSobDpCCCGEEEIIIYQQUt805MuyhQsXYuHChQCAKVOm4JJLLsEll1wSLP94JAYi4N7r7sXdV96Nxa9ZjKjJ/gLsuYeew2++8Rts37Qdr/zgK71XlWVZXi1352pv7zDi0pYTa5mhVJ41N5txYzuYlCtHiCW3UkKp80uTVmmlnHGhqvKkJMJ1CbLOX0q+OtorX+quVcJSgjWvW8uzkrBtCbixU04Nl+PrcxcKybVJ6eX995vHyf55zDFmnK9EMI2SftuS7CbUZNPQiErOu44NaTGA7m5bHbh17FouDe/qqjwP2TQWlaFVBuU6h1V7tztbf5I7xUoZ5tq1ZroVK5LwAVKmARiT2DU3zTKi/v7vfzoefte7khXZRVeDceR9wzb/5IHP7mK2OvWVqstxOWeOWSbLbchoQ1ueEts1eyqYcsFnZ7ksVhMhSCujdR7PUJGhrQ985x/fe6XrPJg3oXc6DFEOGyF22M1yvizSV9v5fAieRw4TVYj+Y9u1XcaV2rVkf5bIZCmQ8oPIln/e/SXLc1EjyJ4JsdGQL8skAwMD2LJlC+bNm4cpgfelPeqso3DYKYfh5ktuxgO/egCH/eVhqWn3PXRfnPXts7D1qa1Y87U12P+Y/dFSIjwnhBBCCCGEEELIZICeZZOXhjXVuuGGG3D00UdjxowZWLBgAf74xz8CAN7+9rfjqquuCnaewvQCFp60EJsf1UuayjNz/5loKbRg6xNbg5WBEEIIIYQQQgghhFSHhnxZdv311+Ov/uqv0NXVhS984QuI43g87qCDDsLll19e8TkGNg+g/+l+AKO7XXbO70xNu23DNowMjy4z3f7cdrzw9AuYPnd6xWUghBBCCCGEEEIIIdWlIXWCn/nMZ3DBBRfg3//93zE0NISPfOQj43FLlizBP//zP1d8jqbmJvzX5/4LUXOEGfvNwPFvOR6P3/44bvvX27DzhZ345T/8ErMXzMapnzkVGx7YgPv+8T40tTQBEbDiXStQ6HA3sogQj2u6tQ7cpsOXmnod19JS3utG69ilf8jwsBknl5MOKd+V0D4dmqah3ePhVlGQrq42I93DfYnnlL426XXm6gXX1ZX+/lh6xAFmHaR5zwB2HwHDJ04ZIbSKxC2FVvgQ2vMrC/J80ptNe1jJPjhzZnoevjzfn5xb+6XJ9li+3PT9axINPCK9zWpYjzZsHhIhfIIyeWwIQswVNt+z0PYnefu/ZEFe2+LFSbinx0xnbHMvEwLGRC69zQDgla9MfMpe//rk+9Yrvmeka12+fDw8svjwtOyd59lQdezjR+XdhmJ+blJai1YxwGz+mxofPzydnyyK71zh6vcWAt/xmve9zLVP2p610o4JVY4QeYQYG76eaJPJu8j3fqhJm8Oy+Bf7+KyF8uJ0zdPm3ZiGrQ5cvSw1ru3Upp5bXP3AQmAtf7VNHwOQt+9rvUAZ5uSlIV+WPfDAA/jiF78IAIgi03h/5syZ2LJlS8XnaJvZhrO+dZbx3UEnHISDTjioJO0hrzwEh7zykIrPSQghhBBCCCGEEEJqS0O+7u3o6MDmkm0RR+nr68McuY0jIYQQQgghhBBCCCGONOTKsle/+tX4v//3/+K1r30tpk8f9QaLogi7du3Ct771Lbz2ta810t/4kR9lPsc+bU1ex/nQ1bGv1zJVKf3zlWBJedPOnWacVAWuW2fGSWlVd3dy7s5OM533svuUdc5a7jg4mJxbvz+VZSmRgqWslW0rmOeV0sv+fjOtrDvbxqeyDmRdAUDb4PPJhwFVJnGCIPIF2/pgUd+h5AUp2aO3N71YNjmrKzYZ1NSpZtpduywZiQPrVT4ir9WQ4sHsr1KSrPtqCHlHiPz0+JLtZpvDQm91bs1Pj6EHH0zCixYl4UA6dVmWWZ3J92eeaV7L7Nniw0xThrkbiYT4jsvM/C8Tnw+49crx8DNve5uRbt4nPpF8+PQ/GHF5y2DrZuw5XqhS0xtdpqPdvJYQ8hRZLFvd5SHvCy3fdC1jFplVWtq8pUG17Mf6XiDnT9dyadmcrfuHvra6nQMs2OSmuUvEHcsVIo96lWmHfo6x5W/Lz7Ql8Dtv3nWs71FthfofX4TUkoZ8Wfa5z30Oxx13HA499FCceuqpiKII//RP/4Q//OEPeOGFF3D99dcb6Z+6/IzaFNSRC7/+RK2LQAghhBBCCCGEkAzQs2zy0pAyzN7eXvz+97/HqlWr8Otf/xrNzc245ZZbsHz5ctx5552YN29erYtICCGEEEIIIYQQQhqQhlxZBgA9PT347ne/W+tiEEIIIYQQQgghhJBJRMO+LJusuPptTBQnl4L29CRhrVWX1jo2mx3pzwUAzz6bhA2/nAxldPY7sZgYSP8rnczqfWDx6JJoHzcfZP4ldSzbI4DPkdXrw1Ihefu3yHIUCua5ZJ/cMWjGtbXsTj44ll8vg5aHHXaYGSfTNoIvig1dPdIDTHrWSO+rPPDtS3v2mJ9D7JCe+5blsgNJoyA1lkN7vmhvyKJ1JwBg49ZWI27jxiS8dat5nPQp6z/33PHwT9X53nXHHePhpqHdRtxISyuyoutA+iNl8azxad8sx6S2lWWuDu3hVg2C3KcbAFd/TN8+4vq85luPrseFsEzMexza8K2fIL6UFhxtX4Odr5r4+hu6pvWZF0P5u/nUv2+f9p3/XefgEOlcz52l/l09+whpRBrqse4f/uEfJk6EUbP/T0hDYkIIIYQQQgghhJDA0LNsctJQL8s+/elPG5+jKEIcxyXp+LKMEEIIIYQQQgghhPjQUC/L9gidztDQEKZNm4Y777wTRx99dA1LVTlDQ4lkqrMzzFbDcstiGdfS7pe/lm/+6lfl061ebX6WEtA8kFItKckE3KUIUq6ml1APDyfhqVPNONfl1jJ/TWfnrNQ4QzICIX3SGYoL/f/bu/f4Koq7f+CfSUIIIQkBEgMIGC4iIioqKFov1GK1iFa8PLUqim1/2tpab7WtfayX1ra21dpqH1v7+FisF9DWW73UeqlYUVChiqKCIkYFBbkKEQIk7O+Pc8h+d3J2Mmcye85J+LxfL17uObtndnZ2dnaz7ve7RT5i1zS+Q8hWrYp+bmgIpwcNis4r75f9EGXaL3qf8LE9SYd+2JZpek25jBB0DcNMov6yXjoZMlhba1feylXRNjD9zml79P9tKOPTlywJp7XjsMhHXJSgDwFydTIkU7f77toXcxdkXK5a/8IwrriEoelyGbpoCgHVz3MV4nxZJPe9ocJ6eJ/puPQdXpNE+IsMjU9i/DSxLd93KFg222UbwiSXM6VL8NGmPkIofbSBia9QVB+h2Kb2N6V4kGSbZ3OM+uaj/Gz6bpKMaUUSKD9ppvr7qIttKKSPyxGGVtLOpFPdLCsuLs74XabviYiIiIiIiIiIstWpbpYRERERERERERWCIGDOsq6Kz1ESERERERERERGl8cmyAlBUFB9D7uvVyTZlmGLQe/WKfh4/PpyWdddT25jydW3bFq6vd+/oPJn/wbYNysrscjbpy8r667k+5GfTPFPbueYHiK5PfNAb2ZCgxDbfmI9Xtev/R0XP3bODnlNJ5imrro7O29AYlr95c3ReXW3mPCP6vrDtS6585GxyWZdO7wYyh59rTijTtsWlcMomp4zp2LP9P3Sy/B49ovPkca8fNl5y8ckNMDS4zIuVzb6Iq1e/fvHV0I87OdbpeR0x+hutk9VisD519eroct/7Xuvk0mWlsevW21iuO4m8ZLbHnomsl3GsdtwAl76VzW9cxvVs2irpfHI+jkPb39kuJ49XIP5clk2ZtlzzXfnO75ZNGba5mHznP9XLMW2bZcpBY/lyPHN9gsR1/9ruNx/l68u5/q7QJZHjMYnjUC4r/6bK4k8BL/kxbcefpHPNEeVap7pZtnTp0tbplnTm9eXLl6Na/wsbwNChQ7Mqe8WaTbjwNy/g5bdWoXu3YtT3r8RvLz4Y+55xH0buVo2mrS2oLO+Gb5+8F846dgQAYPoji3HpTS9i19qeaNrajHOn7ImLvroPAOA3d7+GWx9ahJKSItRWl+G2y4/Abv0NmZeJiIiIiIiIiCjvOtXNst3bvMoLOOGEEzIu2yJfY9iOIAgw5ftP4KxjR2DmzyYCAF59ezVWrtmMYbtW4ZU7TgIALF2+ASf+4Els3x7g7OP2AAB8ZeJQ/P7SQ7Hm0ybscco9OPnIoRhUV4H9RtRg3u0norysBH+47018//cv4p502URERERERETU+QUBn6LrijrVzbLbbrstkXKfmf8RupUU4Zsnjmr9bsyIGjR8tDGy3NBdq/CbC8fjkt/Nbb1ZtkPfXmUYPrAXPl69CYPqKvD5sQNa540fvQvufPyd2PUXFwUoL0sdYL7CuFzCU/THyuUjvbW10XkTJmReTg+7bGgIp/UQFxnps0e0OSPr8/GYtymE0hRiUWp5hJjaeMe+9cYQK5TP1znbhjbo7VHeL2ZBtA2HsZH0I9+ubawfX3FhIU1N0eX0R+3j6NtdJX5nevW7r2PKpnx9njz2bI81vU/oEYNx9MPGNow60j6mQgwHgGnTXNq/T7XbPqupiX7eVDOidbpchFq2iYcWnbDGEH5kGwbiKonxTdbL2Ac9xCOaQpklvR65HNf1/WR7XPpaX67Ktw3ZA/y0QS77f9Lrci0/2q7x6RJMfJyv2h538eHicn2mscJ0rSLXZ7rOLinpeCi5q0IMlfP1N0/SIYhxkh63TX3JVH/XsPWk07oQFapOdbPsrLPOSqTche+uwwEja9pfEMD+e9Rg0fvr23z/wYpGNG1twT7D+7SZ939/X4QvHTyozfdERERERERERFRYOtXNskIQBNHP9zy1FM/M/xiLP1iP/73scJR1jzbpnf94B/PeWo1n/3hcDmtJREREREREREQueLMMwF5De+Nv/1ra/oIAXnl7Nfasr279vCNn2ZzXV+LYix/Hlw4ZhH59ywEAT720DD+b/gqe/cNx6F5abFV+vkISgOxCaOIeF9ejlORb2/R5MtysW7f4dUuujxaX65GLcuWOr6uMe8RaD6OTbWUK+TSVn8u3Ebm+AScJkTA9LRxxU1NYz40iYlq+JdOXJB6ndwmdSOItQ77DbfQ3z8pwUB9vXdUVi6FVH0dMb9v0sW6UhG+GTOJNdb7feFxTEx/6tH34CMQpat7aOl1VFh+asWpV9HfyzbdJhLLl8k1sLm/+1X9nEg3LdgsjMq3bdK70/YZEH2/1M5XjXIYYnIq0AWF7WXnrtJ5OwpQqIK5e+jhYYTkO6tcPrm/TjquXLq5vmfqIHnJo+8Zp2zE4m/CyOOY2jpYh37Td9s3sHT82TNtt2yY+Qi1dQxDjlnMtP598j6VJMI0Btmk5dJ1h33R+AQD7fOnUeeQvwVEBOXLsAGzZ1oL/ffCt1u9efvMTvL8imrOs4aON+N6Nc3H+KaPblHHw3nWYeszu+N3MhQCAVxavxrnXPoe///po7NKnR7IbQEREREREREREXvDJMgBKKTzwyy/iwhvm4Nq/vIqy0hLU96/Aby86BO8u34D9pt6Hpq0tqCzvhvNPGd0muf8OPzhzX+x/5v340bQxuPSmF9G4qRmn/OgpAMDgfj3x9+uOyeVmERERERERERFRlnizLG1AbU/c+/OJbb7f/O+vx/5m2uQ9MG1yeONsQG1PrPjHVADAU78/1n8liYiIiIiIiIgoUbxZVuBc8zO4xNf7yGNiylmmGz48/nc+GGP0ZQIIPUGAZKhYXLvqOS4iuSbaJjRrndwu8h/pTPsziTxQtuv2Tk9WIj9r+0K2q8yNlA2X4yub3A9yWdMr6eVypmMhiXwhtnlqTGWattM3vXyZYyabvIuSj3xLrseJbZkyB5LeR0qbNiDjggBQE77pubxMy9NkOwYYxiZJPw7j9oev/Cku45GPdevb5ZrzS5Zje9wk0T6ueXw6ui6dj3Wbcww6NLjGNq+gsXhDUiLbMcx23GiP7bgl52WTx8vl3OkjT1ibcVC0cVlZdDwzdQvb+tvuN9dtSzo/qY8yfF8f+rre8fH3kElcXVzLMPVB2/7DPGT5wpxlXRFzlhEREREREREREaXxZhkREREREREREVEawzALwPZAtb6K2zWMyHZZ2xCCbMq3DePS51U5vgI5rvysiIbeivgQI7k7bEPUSkvi23RtU3nks4wU0F8JvW1bON2tWzhdXZ1sCJNrHzH9Tr5q/pVXor97991wesyY6L4YNRyxZDs3i/I/WBatR3V1OF1VER/CuqEx+ju5b2pqwnn6/vX9mnXXMJD166OfZaRPv37+w3jjyijXQgRdj9GGhnBatsnAgdHlTMebXLepf/oOVXc9hkzlT58efn/BBQsiyw0atG/r9KxZVdFCl4WTeh+JC4U39UETfd/Hyea4cDmGTL8xHSf62CrbJIkQaB9cji9TPzNECGYVpm3LRzjhpqb4MPbItiE8/5Zr40bR+rWt0wOq9Y6cfZ6I8jJDWxku9EzXgEn0M1mmPAfq7Sjr5doPkjgWYs+Phg0o1erhI7TNRxu4pMbwJenwa5d6+BpvXK9hbcvznQ7AFOZf1Lw1nLF6dXRBU94bh3qZttPHeZqos+DNMiIiIiIiIiKirAVgzrKuibd7iYiIiIiIiIiI0nizjIiIiIiIiIiIKI1hmAVAqTBG3Rj73twc/WxIbuESI+4rz45LGbbrXrkqulzv3uF0Nrmkom0Z5slasiS6WN++4XSPHvH5bEx5k2Sd77orOk/mh/nCF6Lz5Lb16hVbvHe+clDIPDLz5oXf33lndDnZ5t/4RnTeqJF2Q9TGjeH0xx9H58lccGvXR/ehzIulp3+QubFqasJpX/kXfOTRkN1Yz8W0YkXm5QZrOb9M6zLlqIjLbZFN+6xaFU7L/g5E66wPfT74yDHjO9+bnjdvmcg3Vlcn5wyOLPfhh2tap1es6BuZJ/uBbtddw2k9Z6JUKDm5ssmhEkfmgtSZ8kXZSro9TOuz3U/6cnqesjj5zD1jqr/tfjMuJ2eaTgYa27yF9hWxk00/Mx1DkilvoW1dfOXFdRFZl2MbJ52XzLVMH1zP0z5ycvn4e8K3bHKi+aiXl5xr8oRuOml7WrePMnJ9TiTyjTfLiIiIiIiIiIic8MZgV8QwTCIiIiIiIiIiorSd4smyQ899LN9VMOreM4zxkqFrgP7a9njm3203LGf32nY9TEN+luvS39bt+9HllSuj83r0CKdLKtzu/ZY2bWid7tevKjLPR1iOrOPo0dF569aF05WV0XmNjeG0DEOT5QHRJ7HzGQKhk20n66g/OS7fdl1f77Yu2XZ6GXJ9ej829V0ZghvX3wE/fcSWvj9LxbprauJDk7J4Wj8i6RCRyPGrtaOMfJJRUTJ0Fohut+t25jVMQBzcZWWlkVlyuw87LJxevDgaszp7djg9fny0eL29pM8+y7zcoEHR5WQYsh6hViHG3aoKt3b00c9s96Ep3Ffvg/K437gxrOOWLdHluneX5buFCNpKIixY1jGX4xngFhpmGgd1skzjtsnBQ55821m379A82/KzOdfbzispsduWbI5X2xDQuDrlQq5DL+N+Z9tW2dTXpV6u25L09YKP1BVJ9C2XPp4VOR4tWhROT5zopfhInU0Xu0Q7qZ3iZtnsVz7MdxWMzjnn3HxXgYiIiIiIiIiIsJPcLCMiIiIiIiIi8isA0JLvSlACmLOMiIiIiIiIiIgojU+WFRiZP0W3qTmaz6bM8Kbz9evFciIvmb6cZMr3U10d/SzrKeclHeJeVxf9bFqfMXdATJKWPmVbI4ttLwnbXN83trldZB6fiROj96dlKgJ9W+QbouVy8nsgmk+oT3VuX4UtmdpnzJj438m+qud0s1Vetl1Mxy9XqvXx4cPD9pE5soBo/Zctiy9T/k5f99bmsHyZnw4A6mozt7++z6I5leLzkej5oioccvi55uMxlWFSZRhzZFtWV8ePYZs3Z54Govmp9OM1rl2N9deT3snOKw9Ex8RPpSXRddfXh/WS9R0xcFNkuRGnig+N0QNx6IqF4YclSyLz1k4+s3V6oVistjZaL9nm06dH502YEE6PH+8/Z6LvcUpvY1O+K9kv1qwJv9fHYHkO1PNqyq6gjzG2OfZccyrF/S6bnF+mddnmW7Kto4/xx1abbWkW5379gsfAJedUNlxyuiVB1uODZdF6yH6sX8fIz17ax3ChYV2+HLcBY/JSH+3v8jvXa7e85t+0lOucYnHr1tflmhMt7neJHK/ij4Gk2zHp3IREnQWfLCMiIiIiIiIiIkrjk2VERERERERERFljzrKuaqe4WXbAQQfkuwpGZWU9xLRbGfqT6S7l6L8xRRL17NmxdQHAhsb4BxvjXmGuhweZWD8WbNgA+TvbUBUTvR6mMLSamsxtoIehyf2kh97pIUdJ0vugjFiTYRp6qKX8nQynzAXZPnqIpgyhlG2sR+KZyGX18Kw6y74sQ3B18jjRwzBdHoV3faw/6Ufw5bZt3hyt42efhdOmfdOjR/SzbFcZddXUFC1fzivSB0U5dliGXm7Syi8Rod56CYP7haFhG5pEGL4+ZsmwIj22T26AFgcow7br6sJ6maLQ9P6YzfEQx3fISFblyQFI25hSsU8rKspjizC1QdKpCUx8H5euYZKuoWw5DeeJSc2gM4Vg+RgjbUO8fInbH6b16mOAHC9sI9Cz2c5o28WzbqtsLnZjyjf1Y3ntAOgh//GrLpSQ2yT6YD5DL+O4bmfO6yv768iRrZPZpIaxrrNjCgkp12MYUdJ2iptlYy8fm+8qGDXc+X6+q0BERERERERERGDOMiIiIiIiIiIiolY7xZNlhU4haH1MVQ/1k4+zmsI59LCZbdvC6RYRQq1H6BQXh9PdukXnmaISLCMWrJnKcH20WLZdEo+Au4QvZKMs8jbA+OV8tL8Pev+UoUnycfFs3kYnmfahqXxXsl379cu8LkALHdXiU0pKqlqnbd98p8tnGFchhiXo4ZRy3JLjnr6svt/iou/0MiL0gy2Lt+bF1cN4/IqKVTWLvtVsCLXUbB85qnX61aZRkXlz/xhOyzfW9qmIvhVYOvXU6FuZ5UtA225bJ3tDlmFnyO3UycNeL8L0pkBbtiFZpj4u34ptks1+sg0bsw1Z08fuuNBFH+dzPZTQlBLBxDa80ncYrK8wPZc3AOrDjezXpvOvjzrLN5TrrLelLBpS7bJvsvmN7fVyLkN1swmp9hHOLcci03nCx/Wba7h4Lt/oaKpjm3mizzcODM/hJVo7ern2NXRQud/08VOe5/Qi8hlSnHvMWdYV7Uw9mIiIiIiIiIiIyIg3y4iIiIiIiIiIiNJ4s4yIiIiIiIiIiCitQLIdFZ6FjyzEG4+8gaLiIux24G448KwDsXT2UsyfMR/rlq3DlOumoHb3WgDAsleW4aW/vISW5hYUlxTjoGkHYdd9d7VeVwDVGtOtx6rb5qjQ8yEtWhRODxwYv24Zd67nLJPx6a75lkxx+KYyXfIF6O1jel133O8KKa+OrEtFhV3uOp3TtukJJWR5Wr4QWaZefnkec235ILfHelu0jib3lcx7Zrtefd18JTdQVZFFrg8xz5QrzPaYcm1/+busxj1ZMZlYTetnsny5mF7EwoXReZdcEk4ffHA4feut0eN8xYpwWs/dJT/reUzkupMeD5yPBcuEQrL6+rGst3lc8bq487trzh0fsskHFreszEMGAKtXh9N6/y/L0/i2eXP0s23OMut9k1VywmS59B9T2+s5y+SmmfZhNnm4bOsSl5s2n8eQj13toz2SkET5cvxsbI6/1jWdp01/K/kYR1yupU190NiO2gmlSAygS1YPbp2ur4/+TOalTGLsNOV2dc0t3bUEYM6yrolPlmXQsq0F82fMx5d//WWcdONJePuZt7GlcQt679YbR112FPrv1T+yfFlVGY6+/GicctMpmHDhBDxzwzN5qjkREREREREREXUEnyzLYPP6zSivLkdZZRnWfrAWAFBaXoruFd0zLl8zLPxf670H90bLtha0bGtBcbfijMsTEREREREREVFh4s2yDILtAaCAV/76CubdNQ8jvzgSqkhZ/fa9F95DzdAafzfKxKP8RYbQG9Pr6uUj83pkgHyUVn/E2eWx2mwef/b9aK6+baYwTLluGTIiX2HdXhlx5SVBlq/XMW5bAL3+lvvGFFNUEQ3PyuertqXSQhnJDHEC5WX+X4luK5f7KZswDR91sQ1VN42RSfMSIigqnM12ynVXV8f/7uOPw+lVq6LzZBimTob5m0IzCjXc3UVpSbT+pYa+ZHs8+DhX6mO8bTiY6RwiQ2tlmA8AbNwYTq9ZE06vXx8t3xSO7nIcZhOGFjc+VFZmv972yo9wjMXzHTKWBNdroSTGgEIcS3yESZouw/Tj0DUsME4S/cfUZ+S2ynON3ga7iuw2tbV+6uUi8ZBefQB98MHWyerJ322d1tvH6XpfY5u6Qh8/C/E4zA+2Q1fEMEyD/U7ZD1PvmIrGTxrx1j/fanf5tR+sxYu3v4jDzjssB7UjIiIiIiIiIiLfeLOsHWWVZRh2+DCsfne1cbnG1Y148udP4vMXfh5V/atyVDsiIiIiIiIiIvKJN8tiNK5uxPrl6wEAn7z9Cap3rY5ddkvjFjz+k8cx7sxx6DfK8pV3RERERERERERUcAol00/BKSouwhM/ewKqWKFX/1446KyD8N6c9/DCn17A5k834/GfPI6+Q/ti0tWT8Majb2DDxxvwyj2v4JV7XgEATLp6EnpU98hb/WUeGRl33tAQ/5tu3aKfY9LlGCUet24Ios/1m9kLJUZfzzEjyTYx1XdTk3hdd0X0ycii9WvD6cYN0R/KZDQedkASr/zOp0Kpf67zyOSL6VXt7S3bkd8kxSU3ip5PS46ZAwdGcw5+61vh9PDh4fTuu0eLGDQofn2mPCZJj8lx7ZPEfnItM5d9Jpv+b0vuQ/30u3JlOL1sWTgtc5kB0f6k59mRn13zOrrkhSuPTy9pPA/5yBtpkkR/kXnnfORq1McYl23Lpm/6OEe5rjuuHqbybeuhlylzRX76afR3NeF7xNqkRjW1j+/8Wj7K18cROQbIsUNvA7ndvXu3rdkO+nknrn2SyD1mKt82B3KbHTxsWOuk/Ntu3broYr7Pt3p5zuXv2PAg6FB9Cl8AoCXflaAE8GZZjPLe5Tjl96dEvhty8BAMOXhIm2X3/8r+2P8r++eqakRERERERERElBCGYRIREREREREREaXxybIMKusq2zxVliSFwPvrx+Me95WvZQaA7t3DafmYt15GwciiPdqEIzksp79+OU4+QyxcxdVZhgIAQG1tn9bpNmGYnvlon2werS+k/eGbbYhaPsPETHwcU6aQiFyGn/pel7EM/bXzIu6qn5ZS8ytfCadra8PpPhVbtTLCye0l0VBOSR+e49o/6XDrJMYA131YKGG9Rc1in+oXAmLHlWqdpKQirL9+TSCvGUzhfT17htOmdA+2XNvUNVzNd5hh0mOAPq+qRMS5vboourCIv96AMAVDRYX9MRqZZ4qxEzu7SAs1SyIkrrORx0avXtF5emSelE1faKXHQ8sD0TDG6/s3stcMB7Pcv/pictv69w+n5TkJiI4jJkmPq8byRfsUaRtq+nsiUmZ1dXTml74UliG+bhuKWiD0vrUjDryFIYrUOfFmGRERERERERFR1pizrKvi/8ohIiIiIiIiIiJK2ymeLHvsssfyXQWjmqqa9hciIiIiIiIiIqLE7RQ3yz5c+GG+q2B07jnnxM4z5dgw5ceQIeMy/F2+dhiI5g7QcyKYcpZtasr8UKIpr4Jenly3S94Y/Xe5zj/lkmPDR64e/TelpqNYzx0gZ6E84/eVlfFFlPt473wWcprrKcd85GixfhV5DtnmDMrmd7Y5QrJphOjPOr4vbMfqbDj9Th9oxeeammgumuLicDqS/8QwWPvI15VEzq+kcx65rkv+bmtz9HeNjUViOvxeT1lTVZFw/zGc7GUZ+nEi6xlJeaQdhnLbTCmtUBYt3/eY5prfUJLbAphztdlKPK+dXukYc+eG04ceGp1XVuZYR8udWKi5M+N+5ysHply2T7XljwxjvPEi3KFOrkx9Wu8SchyR06bNNP09Yct5O02DmKH9fffxbLa5M+ZVJioUBfLnFRERERERERFRZ8OcZV0Rc5YRERERERERERGl8cmyAhBAdThcRV8u7pF5PQzTNoJJj+bbuDGc3rIlnNbDR2xDFAr1teG5fBV8ImT4RU00N97GVeG0DMHS+0HBblsM65A9IKexi659XFZ53broPBky67optuEjSR+jemh3XDRD21DmeLbhVKYQMtuoloI5TvRBV2xAqVbHysqY9nEM5Umij9j2yUIN45Khl/p5dNu2cDquPwJAlY/od1mo4UIgiVQBPv6/rOlc7JLGIZuwb5d+7aMM0++y2i/y3K9dB0iPPBJO77tvdJ5pjIxdsN2FM/MxjmTT/n76eHLrAhAdPJYti84zHdsx7b+9LJqGw7peWnk+jo34VcWXbUoTk/NrdeuDI1m5TEtgpF8/7GgTmfeBqBMpzDsUREREREREREREecAny4iIiIiIiIiIshaAOcu6Jt4s60SyCT0oL8s8T3+sWT4xbIpQ0+fVVW4KP4hQMP3Rbqm0xP/jz66PGne1NyvGMsTB1tWK+stH/Es6/jYlwE+IVCG2seub8GzpoVqrV4fT+kvNZPisKewkn4/nm9a9YkU4vWhR9HcTJoTTxjo7vg3TR+TEBvE2Q1M1fLwxz7ovaSEQpuPQw4vTCka+QjLbW7fpPCpTGMg+4uulw9bHekn4llR9/DG9BVH2n8h2axtaVeF2gHkJQfT8Oz0kNomQwThyXUmEmo0dG0736BGdZxrffL9pz1cIa6cjG3n9+ui82bPD6Vdfjc6TJ0s9DDNGEmOkaQxwOcma3vyuvwXeto+YxmrrY8pDqLGpXj7YXg8mse42drSPUsmuhyghO8kZiIiIiIiIiIiIqH28WUZERERERERERJTGMEwiIiIiIiIiIieFlzqGOo43ywqAQtAaQ67Hjptiya1ztIjcAUWG2Ho9B4Bx3mqRPEkkOSnSX0teoElxXHKhuOZ4yGUunU1N+naFOeTKmzZFZ8nkNIYkOa65UZLeVpd9uF3k5mlv2TimfA96mg7TMSWZUpXIQ7Zv3/jfmdaV81epx6xbT7Uya1Y4rQ8VMg1LEjmKKio6flw2Zh4GoQ+DLjmJgGhOt+rqcJ7eVoV4HOZCXD68pPMKZqOoeWvrdIk2/shjXQ7BVRWGMSyLbZPjgynn1Lp14bTMowZE+3LbfGbhdLnsk1nk8JHbYyrfVdLn386QV9O2jmecEf+bpI/zfI4jubxGM5+LDeQxVVcXndevX+bluhjTfjJe9+Wpb5nWa0rp1mZbYgZvX9sV13bZXDfuNHkFaafE3k1ERERERERERJTGm2VERERERERERERpXfd53U4qn48SZ/Xovh5n5FC+ZPuWadOj167tk3R4pY/H+rc2h+uSITNA9BXvxifw9ZiWmBgXuS4gum/0n5hCECVTvXyE2JlCsHzsX9dtc+mTehv3qY7v43rYkuQ7nMQ1lHDZsnB64cL4340fb1dmm3o4xmrF9Z9s2k2GzslpvUorV4XlV1ZG55mq39CQufzhw/UyRP1F2B8AYwd1OYZ8nId8HaMufIwHumiUjLZtov31fS2jqbp1s6tHNuEvsl4bN8aXuWZN/DzZ77Zti59XKHLdP13GjiT6fy7LMIXL2vbPJK5nba/DbNObtFemd3Ks1q+xJ0+2KiLplAu2+01PeWFiWy8ffx8lfa1uqoc8bvRryshYqs+U+RgGDnRaty3Tda+sv36ek11Xv+TY8bvthRex7lkAoCXflaAE8MkyIiIiIiIiIiKiNN4sIyIiIiIiIiIiSuPNMiIiIiIiIiIiojTmLCsAAVRrnHgS+RFk7oB8vubclMuisTG6rIzft30TtmteKVe5fMW4bJ/Fi6PLyW0bPTo6zyWnjKkd9W2W+c1kbiq9HJl+Q6+TnvvAtD4pkitG5mnSE6qIFbrm+5F54lq0lATyre2lJfHl6+0qly0V+7C6OlqnDY3xdayq8JtLx1SGqyVLwun6+ui8CRPCaUMqjoi166N1qq4Op33kv8uGbH/TvpY5oT77LDpP9h89p1VxcTgt05box5BsO/tMMbmV9HiZyLkzpv/rQ4z8rO/DcvFZHx9qazt+fJlyMcl+KPudfr6VTOdKPd9epB3K7MZSvX1kXfR58nelHs7hucznlER/9JE70LUN5LympmgZpryLtrkhk943ruXZ7lPXbbNdzkdeL1umvG1J5FV2+V0+/5ZxZcoxGxnrbAspK7det0t76dcx69eH0/K6CzCfN3Zcu+g5L7sm5izrivhkGRERERERERERJUYpdaZS6hWl1Gal1Eql1K1KqdosyzhIKfWUUmqjUmqDUupxpdSYDMvtr5S6Tin1H6XUuvS/l5VS5ymlrF6txJtlRERERERERESUCKXURQBuB/ApgAsA3ALgVACzlFI9LcsYD+BZAEMAXAHgSgC7A3hOKbW3tvj3AUwD8B8APwLwYwBrAPwPgEeUUqq99e0UYZgHHHRAvqtgVFbWo3V6UxaPt5vI8Dj5eKzr49U6369pNoXimcj22rgxOq+buF/cNvTPaXWJMrWp6bXM8lHpzZuj80xhenHKy9wes9cf2V69OpyWddb7tOu+iPQtuXJDGKaJqf6m0FRberVKY6qlr0uGKbV9jD/cH/q+9hGm4CPsR4YZ9u0bndcjHPrabLfsF7INsnmUP1+hPXrI2MCBYT30Y9Rk0KBwesuWcHrVquhyMsy5tCLZwa0zhr+4ktsqz6n6cSj7pD6+ufRB135rGjtkGK/OlPZAjoOm9cnjXCfroS8njwe9/rZpBGzbyzakzhRGZ9v/Tdda+jyXUD9XPo5f1+vSfI4dvkNkTfvCdT+ZwvTkNbLpmsk1VNTER7+Tx7Z+nMdtt/69TEtgCmFPug1c+4/puIn+nRYNxCySJ/iFC8PpsQfGlucjJYX+d5kcj7O5jt+xv4PAqUrUhSilagBcA+BlAF8IgqAl/f3LAP6O1M2zn1sUdSOArQAOD4JgebqMewG8BeB6AF8Uy94EYFoQBHJE+b1S6k4ApwM4FsAjppUV4C0D/8ZePjbfVTBquPP9fFeBiIiIiIiIiLISgDnL2nUCgHIAN+24UQYAQRA8rJRaCuAMtHOzTCk1HMA4ALftuFGWLmO5UuqvAM5WSvULgmBF+vvnY4q6B6mbZaPRzs0yhmESEREREREREVESxqX/OyfDvLkARiql2numvL0yFACbkMIdr8Za2d6CvFlGRERERERERLTzqlFKzRP/zvFY9oD0f5dnmLccqRtdAzLMy6YMANjVVED6htylSOVNe6id9e0cYZidSUND9LPM8aO/tl3GjOs5BWSsv4wz9xWj75JrxUTPTSJzGsh8J5s3R8tvEU+86nkQZD4kHznKcpn/SCfbZ/To6Dy53bY5XnyR7arnopHzZH/Uc+fIV1Dr9ddzP8WSB4PjztbzY8jXZMvi9e005aIx5TqLO7706st1yzoBwJIl4fT+Y+LXZcuUZ8eW/ptRI+PLl0xtJfMa1RrelyPzSgHmruA7h42JzCdXUZFNG4fLyvbRX9tum0PIdXx2/Z1rfifbMpLeh3H10vPmyXONnvPRR74fW6axQ/YZvb/0FCl1u2nvhpLjoj7+xK07m9xjtufppNsxl30piXxRubw+MeU1deUjp5tr+XHL6ZLIdyXnmY4vfcyXbC95bOtsqqMP+rWWvMaPu27Umf4eyidTP3OuoxxQRcLSpK9bSkui5VdXdyxvrX5uoYK1OggCY/4qpVQ1gAuzKPPGIAjWIhWCCQBbMiyz44gvzzBP6lAZSqliAHci9XKA09L1MuLNMiIiIiIiIiKirO1UOcuqkXoDpa07AawFsCn9uTsA/XVXO24nb4KZLENnLEMpVQTgNgBfBvDfQRDMaGddAHizjIiIiIiIiIiIDIIgaEAqZDJbH6X/uyuAJdq8XZG64/gRzGQZuh3ftQnRVEopALcCOBPA1UEQ2Lx1EwBvlsVa+MhCvPHIGygqLsJuB+6GA886EEtnL8X8GfOxbtk6TLluCmp3T8UDNW1owpO/fBKr3lmFEUeOwKHfPDSrdbU0h48hv/56dF59fTi9++7RebavIbamxU4UORTi/Ih8U/QmcElZ+ASlrJYepipDsrJ5lbGLpB9Nt3383xTSkvRj2aby9fAy2f4y9FI8RQ4g+qi9DDsGgDqxf00hgnJes/ba7VJDnYuat7ZOl5VFfyfrIh8f1/uZKcTC9Lp3231lel23KXQx0rCOz//76OO2ISim41WGXJjK0NvDdgzIZUim7XEORMNsZYjOXntFf6eHS7iQx6WvEBfbdnUNwYr7na8QqTgydBAw9zPf/ck0DurrkmPywIHh93p95WfTtuj9QI7rq1eH03rImClE01R+nCTCGJM+7ncWtudp2/FA/13S4aa29fdV/rJl4fTHH4fTvXtHfyevA3xf27bHpQ1M52L9OJdhmHG/0cu0TXGRDfk7PQTU5Rzo7W8G2RBDhriVYRBXL9v0O6YyiDQvAzgHwMFoe7PsIACLgyCIGREiZSBdxq3avPFI3XCbL78UN8rOBnBNEARXZVNp9u4MWra1YP6M+fjyr7+Mk248CW8/8za2NG5B791646jLjkL/vfpHli8uLca408dh/Nnj81RjIiIiIiIiIqKC8xBS4ZffSecOAwAopY4DMAzAXXJhpVSNUmqkUqrXju+CIFgCYB6AU5RSA8SyAwCcAuBfQRCsEN8rAP8L4GsAfh4EwY+zrTSfLMtg8/rNKK8uR1llGdZ+kMr7Vlpeiu4VmcJjgW5l3dBvVD98+vGnuawmEREREREREeUVn1A2CYJglVLqxwCuA/CUUmoGUqGTlwBYBOC32k++g1RutLMBTBffXwDgGQDPKaVuSn93PlIPgV2ilfFrAF8HsADAW0qpM7T57wZBMMdUb94syyDYHgAKeOWvr2DeXfMw8osjoYpcQnMt1xeEjxT3jz60FgmHMT0GrIcnykeIhw8Pp9u8XdAYx5VDegioCI+rri7Vl261cGE4XVMTnae/NTJSvsPbPF1DvKw5rqBQwkf0epRH3iAZtqsehinDEPQwTJcQqTbNJp/x15+tF7ENpWXRH9bFvHXR1EdM81xD2eT2yFAqILo5+psgSy3DMH286dA2NCabdcnflRvaLvomUf9hMnHryjUZhqOHAUbor1QTMXH6m2jlm123ZHqvUNqiRRmLA2AO74uTRMiGj7fkmchhRH8bpukNrfl8y2JceGUSYVyyb5lOZfrbhOXQlEQYnZM2GxB/DZI0WZVch9/55jukMRdc3kaaTT+W4cvy7e6mfe3aD3yc20zL6dcgcUxh4PKyJZvtNF3uxIVvNmv1ladO09tHXTmHMcqGSKBiSV/X7Ki+Su7PaOpEgiC4Xim1BsBFAG4EsAHAvQB+aBGCuaOMF5RSEwBck/4XAHgBwClBECzQFt/xZs99AdyRobjbAfBmmav9TtkPex6zJ565/hm89c+3sOfRe+a7SkREREREREREnUoQBNMRfVIsbrmrAFwVM28OgC9YlDEhm7pl0jn+104elVWWYdjhw7D63dXtL0xERERERERERJ0anyyL0bi6EeuXr0f1rtX45O1PUL1rdb6rREREREREREQFIwDQ0u5S1PnwZlmMouIiPPGzJ6CKFXr174WDzjoI7815Dy/86QVs/nQzHv/J4+g7tC8mXT0JAHD3N+7Gtk3b0NLcgvdffB+Trp6E3oN7t7OWlJJuYRj64YdGY8c3NYUP/5lyHul5oF58MZyO5Dkqiz5MWCJyceQ195VMyIP4/A/19dH6r1ljV3ybbYtJBCJzpQHAVoTto7/eWu4PU06l2PVq696u5UWJ2x+FkqMsG3KzFy+OzlsiXh48cmR0XmR/uCbqMCR9WdtU3jq9bWP0Z3W1+Wl/0+vG9SaQ+U4eeSQ674wz+rRO9/GQzynpXF768bV5c7i+zz4Lv6+vt1+373w/ehv47gt6ecOHh+uT22LMfycTjAHYMPqQ1mk9ndmAsrWt04NrwkI3NJdHlvvmN8PpU09F7Dy9jV3GsKTbOBtx+fD0nGWSPGcD0f1WVQErpjHAxNR28hylL6encpRKS8Iyqqujv5Ppc2Tf0tunW7dwurzMbX/atoFr2xWqpHOW5Sunnut+8lFH13VH94Vb/k19fJC5dk2pqWxznrr2dx/9wLZ/6svJbZVjkX5NIOfp5zI9Z3GcuPxlevnanyTGayHffVIvX/5tUKQnfZTLWe5D1xyzpjJNv9vRd4s691BMOzHeLItR3rscp/z+lMh3Qw4egiEHD8m4/Gm3npaLahERERERERERUYJ4n5eIiIiIiIiIiCiNT5ZlUFlX2eapsiQpBLGPt9qGLJjCE+Xj23q4hXzU2PTIba5DY+LK10PjJh3juIK4d1WvWBFZrLnf0NZp18e+NzSGbVdRoYVaRsIM419P3xlDLyXZz/R2W7YsnG7zGL9lDIrchRu1cMra2j4ZlwOA9dHdHbG9NtnwFFum47Bnz3C6oSH6O9mV+1Tbla9LOoRJ7l495EJuz8KF4fS0adHlZDiMDBlzrojekDLuU+uDce3jq78M6BeWs1W85l6LtIyM/1VabMnmzeH0qIoPoj+cNS+cHj++dXK9Fob58suftE4fcMAukXmySZIIkSoUVRXbxXR0nuwHemhP5LMp7keeqLV+ZhsObctUxzaZAirsQnbkGOPresHHtrq0nW1KBNfysxF3DZjEupIOtXeVdDoA+9/5X7c81A1DgJd1ubZd0qG6cSGmpjBM/TemMFXZlnp4pdSn2hAK6RAKX0jnMpfxwlf9C6kdksecZV0RnywjIiIiIiIiIiJK480yIiIiIiIiIiKitJ0iDPOx79+X7yoY1VTV5rsKRERERERERJSVAAzD7Jp2iptlH95+Ur6rYHTu7xo6XMaWLdHPEyeG03E5EQD715L7yGuUTRkuMe7OuSz0JC2CbC+ZHwqItpcpT4Ged0GqqggLyWdcf9K5SmQZhx4aXZdIlRTJGQEAW0XupGYt35htPj/Tb4bWZ12EMx/HiT6vTtxnv+66aPmmfmfLKd9PFg8sy0NPz2UX95p429fTZ0VWZPXq6LyBA2NXHtc+SeR4lPnYVqyIll9XF05XjRkTmVcrc7TMbogWKhO4VFe3TjYtiy526aVhnjKt+EjOQf1hdTl+yv2r70Mf7WObKybp/JumnDjQTzVxycIMnVyvr+l4i5unFy/rrOd1dOF6vZDN2NdRSeT88pHn1bZ9XPtBvvLN6vUw/c41X1TSTOce2zbWr8FN46LNunQ+jqFs2tt13I0j20eeejN9thXXt7I5hlwkca7Jb84+op1TYZyBiIiIiIiIiIiICgBvlhEREREREREREaXtFGGYO4PBA90ef7Z9rDxpvkP9gCzqL2NQtBgaWWadllpua7Nd+QP68RFnqarCvq/KyCQ9PKisrEhMh9+7hGcmxTXsxIXe/6tEV04iBNQH076SIbJJhMtG2qQsDPfF+EOsy/AdWmXrixNNx1BV5POqVeH0p/0Oj8yTYS3y+NLDXa69NpxesSI6r6EhnJbhsgDQr184bRhmdxpbURr5XFLdJ+Ny2fQJ3+OIfkz6CO8zlRGNPk02dNH0fdLXO66hkLbL2ra/KTQsn6GcPtrfx3nO9ncu4c+ZyPB62+NEl0hqAs+Svt5x4euY9z12uI6lPsKcbfdTrsfPzoM5y7oi9m4iIiIiIiIiIqI03iwjIiIiIiIiIiJK480yIiIiIiIiIiKitE4Q6U5xjPHkzVvDaZHQoFTb4105ztwlR0I2eRDick0k8WrnpPnOJ+GLKRdZLuvpIzdPEq90z2V/cs11U6h9XjJtS2eov0m3buG0nm9MkvnFTDlw5HJANJdOfX10Xk2NXZk+2O5DU64VH7mMTGzPv9n0waTHwSTyNEmyXySdS6qzH8s+JJ1vLInyC/H6RN9OUw5bH2Of7/EzmzHSxHe+Ydv9m89+0BnGEdfzXBLjZ6Ecs8kLgE7QNyh7O0sPJiIiIiIiIiIiahdvlhEREREREREREaUxDLMABFBWj6lmFcYV88y2r/COXIY9+Cjf9TXH8tH6pqboPBkiaHr9t/xds/aovtxNsjzA/6Pero9C+wixkGWYXoEu29GVHg5h+8p107qTfuzeto2z6cdJH3tx87Kpo+2+yWXoazbrsg1d8X0MmUKA9HGqujqcHjMmOm/16szryibkZ+BA+2V9cwnZ0fuc/FxSEj8+S0mPB0mEirrKZZinLV8hZHH0PqKHz8bx0Va5PNeY1u0acpt0G9iOs/o+9BHGaNo20zWglMQ1q0ufyWcooe3+zXX4no91d/Yw8M5QR6Jc480yIiIiIiIiIiInLfmuACWAYZhERERERERERERpfLKsE8n1G7JyGQboGibpmx7CJ8OUGhujy8q3wpVWhNP6tmzcGJb52WfRMmSIlB4m4BL6kcQbF03zbMuUIRF6O0ZCIStgTa5b7rd166LLbdkSX4Zs/2zWbVMnwP4tqXG/yVSmLdswSVcu5axaFf0s943cFwBQYbk/cvlmJ9dQS9c239QUlhkJ09ZijJqaSlun9dBKeXxVlWyKzKsqWy/KFCtojjb+VpQijo+3GfpgG0Kjh6lu3hxOV1ZG57mEbvk4dyV9/jOHP9uvu6uG7Oh9pKSi42GwpnBfl3NzNqG6tuOWjzfm2crmXOlSF1MYpmv50X0Yv1wSb9UtlOsA27bzcb3va3xx6a9J7MNchtMn/VbvnecNl0R8soyIiIiIiIiIiKgVnywjIiIiIiIiIspaAOYs65r4ZBkREREREREREVEanyxLW7FmEy78zQt4+a1V6N6tGPX9K/Hbiw/Gvmfch5G7VaNpawsqy7vh2yfvhbOOHQEAmP7IYlx604vYtbYnmrY249wpe+Kir+4DAPj3Kx/jwhtewGtL1mLmT7+Ak78wNHbdQRDmQjDlSDHF+c+dG1124MDM09kolJh0ud1LG6J1qqkJP5tyHBlzeIhEFDL3T+pzOK2XH8khZFBbG06bcuK4vtrcRy4C07425bexzatm2rb168PpsrJoPeTr2E1MdezePZzu1i1+ubXro+uW+9u2HkmwzXOxYkX0c0NDOC3HgMGO44GJ7Vih5+yTx5feR6K57eKP8wpDvsCkcwHFbbdrrjT9d3KfyvFmQMn6yHJVoiGroB0MjaKB9ANFJjiTSeO0RpY/04uQ9bIdD3Su55q4tjS1cZXWf6rK4geP7SJXm21ONFNdfG9ne/MkuW49J5dUVdHxXFWu+XKSuOaI2+7yMm2saNzQOl1SUhWd5yF/l+kcGJcXC4iO4/X1sjz/bZxEHiXfuSFtl9WvJfyUXxjXxNlwySnmUp4vvnOzdaRM23W5lK+XYRqT5TlWjlP6oLK9rNx6fXG6ah5Koo7gzTIAQRBgyvefwFnHjsDMn00EALz69mqsXLMZw3atwit3nAQAWLp8A078wZPYvj3A2cftAQD4ysSh+P2lh2LNp03Y45R7cPKRQzGorgKD6yow/ccTcN1dr+Vtu4iIiIiIiIiIKDud73+TJOCZ+R+hW0kRvnniqNbvxoyowaC66P+CHrprFX5z4XjceO/CNmX07VWG4QN74ePVqbeN1Q+oxD6790VRkUq28kRERERERESUBztylnX2f6Tjk2UAFr67DgeMrLFadv89arDo/fVtvv9gRSOatrZgn+F9sl7/1q1hNEyNVg0ZJSNDDoHoE7jTp0d/d+qp4XS/fpl/o0v6MWbXMjY1hfVaqN2nlJFDY8ZE58lIojaPTTdvDT+IuIeysmgYpiEyyTpssmjRm63T5XohIj6uUMJeda7hoZLc99u2RbdThmHq/b+0WTybboh7lXXUQ10jj7BrfXBDY1gXPYxRhi6WGkJ8TWF6phAsH4/uy5AdGa4DAL//fTg9eXI4fdqpsGZbR9N2ynBKGUYEAIsWhdOvvhqdJ8c+edjoZcjj3nUMs52X9OvYdbJfy+NkQD/toHz99XB68eLovLFjM08D2FQ9oHV648bw+95aPfSQtY4qqBAgUwx3SWn8PEu2YdRxv8n0WXI5Risq7Puxa+ilSxm29F1mG/4bCcNsWh+dKQ6wcv34gmXOBQPb/bR6dbStXnklnJbXcqa0EzqX9ve2z+TO8nExYSkSrgZELgS2a8e17b5JOh2Dy1hhKkMny7RNKeAqmzElejzH10N2H9OwrbMdH1zbIO53puvBrc3R38jzr05ud6m8MNLXJy6OskmtIst37T9EXRlvlmUpCKKf73lqKZ6Z/zEWf7Ae/3vZ4SjrziYlIiIiIiIiIuqsCvNRlhzba2hvzF8Uf7deeuXt1dizvrr181cmDsUbM0/Bc7ccj0tunIsVazYlVEsiIiIiIiIiIkoab5YBOHLsAGzZ1oL/ffCt1u9efvMTvL8i+lxsw0cb8b0b5+L8U0a3KePgvesw9Zjd8buZbfOZEREREREREVFXtL0L/CMdYwYBKKXwwC+/iAtvmINr//IqykpLUN+/Ar+96BC8u3wD9pt6H5q2tqCyvBvOP2V065swdT84c1/sf+b9+NG0MVj0/npM+f6TWLdxCx5+7n1c+b/z8cbMUzL+LgjCGHL99cEyD5Geo0J+Pvnk6LxDDw2nZZ4F3zH5HWEb8y5j+SdOjM6bPTuc3rw5Os+Y00M2tAjY11NqyJxlJsZcEzL5lSFnR9I5AEz5lkx5mUy5IWxzQchC6npEO3nd6IqMywEAmprj54m2lLP0Y8iQ6gxVFeF2jxzpPx+V6biROStkt8hmvfJ3o7V7+PJYGTbMushYrnmT4nKPAUDfvuH0kiXRed27h9Om3IGmlDiuOaJsyXyKpn4mZZM7beDAzPV6c5GWG3PIsa2Tw486NjLLdGzItqytja1Wm/wqkkvf9ZUvxzbHj7H8svLWSb19EDlNZD5edaZtM42tSeRDimsfHznKdKZziG/ZtJWsV59qMWOFtrNlMsRly6Lz5DncUL71dhtOqnre1AkTwmnbPGU+2t/UR+S4B7Qz9jnkLMtn/lzTdVIu88pmkx/TNA661NlHvjRTGW0u85oyzzP1K9N1qf47l5xi2XDJNaePYXXi/Gu8BpfjlExkmgXrfMtZtIePfHtEhYo3y9IG1PbEvT+f2Ob7zf/+euxvpk3eA9MmhzfOBtT2xIp/TAUAjBu1C5Y9crr/ihIRERERERERUWIYhklERERERERERJTGJ8sKQFlZ+JS//vjqIePDadPj1F+c6Bb+Ysv0qmFT+XGhZoD5sV35uc4QHvTFtg8DhuQjyqZ4SvEMeJFeScPzynH7o83j89m84z3LdQHJvGJcsg15MYYNyHbUn5EX7b9dhEQBQJFcVOuE8vXvsvg+1Vp9Tc/rix+awhd8hPOZQg9kF3Hd11VaN/vatLiV2/dpH9s9tD6+jLrKsBGOnxwfc2HbJq5hMnFhIIA59EmGiMs+aApz8BHmo9dRhrDOmxed169ffDkjR4bTg8s+CT9ox2gTqmLLkNvarIVrxh322YS/mMIYbX7THlOYatwx6jqkm8pfsSKs88ZoulSMG+e2Ppdzg49xMNdhOE5haP0GRD5Gfmebf8EX0QkrKqJhmI2NGRczXk8lzXRK1enn9B2SuG6JveYAIpWW1w7ZMNXZdK3rMsZn0z7ZhPbbLOd6DeIagljqMJ5apwAxyOaYcdluX8ek7E+RMqv7tF24nTq1KcPA1/XgzhOWGQBoyXclKAF8soyIiIiIiIiIiCiNN8uIiIiIiIiIiIjSGIZZYHy9rdL3W+Bc3zLn8CIkZ/obmspXrAg/6PEvIjYp6RAvL29sE9qGxHb87WUm3sM7DKGubUJoRLiEHiIrd6mcrq7W6usYciHbWYaXmd7QpHczU2ieh+hca6awEx+hVc59xPIVkkmHf8lqyLAnnX7sxb1B0tfbHiXZt+QLsfTPf/tbdJ4cBnW9eoXTg7csCj/U1ESWqxLxmvq2yPaSbz4FgJ49w+nosWB/vvIxTpnKkOE8bcYOD/WQvyvXurscV+SbnfWXMR40Ltk387qWkes3OLtwCZHaXhENO/YRzmokBpbSsujvIm/wFExvqNX5uPaS7WX75l/b8hJhuM7I5jzturqdUdJvYXWVyxDlJMT9HaJfj5hSpvh+Y6pJ0uUT5RqHdyIiIiIiIiIiJ8xZ1hXxdi8REREREREREVEab5YRERERERERERGlMQyzAKiWZhQ1bgAAbC2L5spwzYNgmycr6ZwjptwWLutuk5dM5Pcob94QmfdBxajW6cHr34yvmOH1y0m85lva0Bhfvtz30fxZ0eVk7qsk8maY1m1an8xL5No+pt9F9r3YnaacSnr9ZTfQt0X+btu2+DrKMlxzuej1kkx5KCQ9h43MeyRzWiVxzCeRz6yoeWvmGYZO55pTSS5XZcglZ8q1JdftWg+9HzQ0hNNyf+o5d4YPD6f32is6r3fvcFqkagSg9demMeH0+vXRBeUKy8ojs+T4o/d/2/HId17HbPq4S//UfyObR9/mUkMbyLb7xjeyroYzU84m01iUzbbZylc+G1/joFPf1XJIFlUYGjIm8attfiK9Xj7yziVxneEjN2FkXxgqWV7mf3xIOq+mSaHU0cfYbXs8+fqd5GPfuObONBJjQLRf2x0L2cyTsqmv7zGGqJDwZhkRERERERERUdYCMGdZ18QwTCIiIiIiIiIiojQ+WVYIPvsMWLQIAFA6Zow2M9xFpkdnZciYrqLC7rFg58eHY8IE2v2dg9Wro5+7dw/rXPfs45F5g485pnV6U82oyDz5GP6KFeH3FVoIlv7Zt4ULw2k9/EWGzsl5PXtGlzOFRLiENui/MYdaxq/LFJYWx0d/0UOMZPia3NcAMHBgOD2iPhr210fue8e4E9vtNrWjiQy9lH0JAGbPDqcPPTSc3n9MfHlJPy5vCv9qE1YU0+amNm0bJpy7fuejDL0NZs4M6y8jI0eOjP7ugAPC6RHD7esRCQMXKQCaa+LTAZiOBNfwrCTCeJOshx6lKs+/+jmjujqBsBxLss7y2NPrL+usX0vIY6qmJjovLtQ+mzDAuOXaWzaOjxAg1/Aj199Ezr96+LncIZYx/66pN0zXAa7HaC5DsDpjuJeP8EEf60q6Hj7CbG2Xcz1n+LhOTWQfyjGgurp1MpvzbaGcY4k6Ix4hREREREREREREaXyyjIiIiIiIiIjICXOWdUU7xc2yQ899LN9VMOpe3LP9hYiIiIiIiIiIKHE7xc2y2a98mO8qGJ17+ulh0pC2SXdaJ00x5+vXRyNq43JtZRNrbx3HnsB7xOPW3a9f9PPMmeH00Uf/V2ReXUW4PeWGbXv11fB7PQ3I2LHhdFVFx/Op6GTuGH3Xx+Upq6yMLy+JV2bLeaWOu1pui563Sra5Xr5tHg25nL4PZV4yUxu3mSkKkrnBfOSI05d17UsylcWTT0bnHXxwOD19eji9/2/ty/edx0TfN6Y2kP1ETuvtL8c6PeeXj/wntr9zbR9TGTLXnNzX8nsA6FMtfqf3Y9l42g4oKSltnV63Lvx+zZpoEXLcFSlT2lUoueB8kM2o5/Xq3j2c1s+9LvV37Y+mdck8neU1zbHLVVSURj67jFO+rjPiynHNiZZP1v1AH+AsDzgfY5GPfGY+xlwfuetM19I+ji+9DB/9zjanWCHxfY2QdG68fOZti1tXu+uLGQOS+HsumoLafpxlTjTqytiDiYiIiIiIiIiI0naKJ8uIiIiIiIiIiPwKgAJ5Ep784s2yQtCzJzByJAD3x4xNT+qbHqt1FhdXFxf/2QEy5EUv/tRTw+kVK6LzNjWF2ypDUIBoW06cGC43a1a0jNWr5br9P4h5wAHh9PLl0XmrVoXTMgzTFMpm4hxCE+1ATuXbhnj1qY6vl+mxb1MbVIk+s8/o+DJXriqPzNsi9r3cbD0U2Mfx5boPZb1k2KXu2mtdapXbsAoZkqx/fvnlcHr33aPLjRnjtu64emQj6fZJnxYAADU14bQx8l2Pc25oCKdlTDKA9U19Mi6mj7MJRNrHyio8xUMZtuVv3BhO6xFeckzQQ4FN9YqrRzYhLU59UO8jkhaGabuuXIYwZVO+j9BRl/JM5XeGMFK9HrbhWbbt6CvMMHZ9hkHLRyiwrz5oeXnlvO44SfSzpMeApM+3SaRScClDl/R4GtcHXduqUFInEPlSGGdlIiIiIiIiIiKiAsCbZURERERERERERGkMwyQiIiIiIiIiyloAoCXflaAE8GZZgdFfSS9jyaur4x8E1HPMyJQkMl9UZWV0OZnLy5gLRU/SolfUM1n/uPRoQDR/1+CBbnHysswJE6LzTPlnfKirDcuvrY22v8zZ5CNnkPNrsi1XrncR+bm2NvN0u+s2lC/zpljnSNAKKRKfe/eO5iyTOfDi+mOqHqI8xzwmrq/d3rw5nNZzqcnj3rQLXevhI5eUSVyd9aFH5var66HNlAOEVqCPnC1J52gZ0C/z+Nx2HBT10BtIJl7UklsOGBh+7tcvvnzZ5/XiDU3sJPF8XQam8lvENbDePvJzqXYu3toclqmPHXr+ybh6xNWpPbHLxq04y/Jdfpd0Ti7bfFS+ck655BtLuo190NfV2Bhum54jN5f56kxc65F0Lj7z7zKPD6Ul+lJ2/SzXfasQ8+3lWmfI0WXaT67XsEQ7i51zZCMiIiIiIiIiIsqAN8uIiIiIiIiIiIjSGIZZYPRwShlipDM9LlsuoixWrw7via5cGV1u9GjDI+Yy3kaPvZExgsOHx1fSRMauaGEhMjxUhtv5CPPRVVUUSNhA89bIvOrq0oy/0UN55D1vvX0K8RF515BDH6GEbQoRn/XiBw4Mp2VX9dUHXR531/d9jx7htAzpBeLD9uTxlGumbe5THf0sw85lePSaNdHlli8Pp+v0ochyZyV9nBj7Z9sDOiTqL/ehjKwEgJqacLqpbEBkXsWh4edSRMeYOHqUnjwPffppdJ4M/9XPXy7yOU6ZQvhkm+jtI0+Pzc3xIS62Y1h79epwGY4hyUmH6Ljuex/1ymW/yyacOG6eqYwkwvTkmKP3f0NUbyxTHV3r7zqOm34XN8/XsRCX6iPX5yHf4aZJ9ME28e+SSydMWKFcc7vylfags7dDdpizrCvamXowERERERERERGREW+WERERERERERERpTEMs8Doj7nW1cYsqDOE8jQ3h+F8r74anSdDzfS3bRaZ4k7k65AMsSVbm+Pvx5bKMg31L00i9tIz1zCWyGftEfOikrBNtpeVxy0WaTo9DCrpkDu53aa3YfoIc5ORvwCwbVs43bt3OK2/RcoH27cBJrFuST8UTGFvss3l2xJ9yeWb3+Q4WFkZXe+8eeH0aw1VkXkyQlyGdpvq5RombFpO9h/9mCyKWzC1cOuk7Gf6m09lKE95ieF1rU3aPDGYFC1bFn6vdaw6scLa2szh4Zm49BEfoR6+QqRkOTJMuKIiul2y6ZYsiZYhd6k83wLuGQziuIZr+hifbcOufLyF0tebDn38xnVMsF23bb82XWtJbccfu22Vod4mSYRQ5vJNq7ZvUy3UEDXf/TGbcnyM40aGUEuXt3qbMiDo4sJls1m3ZNvPXJn6p2ndpvYxvYF+5wq1jBOAYZhdE3s3ERERERERERFRGm+WERERERERERERpfFmGRERERERERERUVrhJ4MiO3oyIxFsLnNN6DlTZB4ovYgqmfvG8bXM8nXjxcXReT16hPdqqyq0lcvEXB5yliXxGmvvOZsMCahkGXq+HNd1x+UpcG0P01u9XfJJ6GU2NESXlbnD9tgjnLbO86exzcGgd0dTLgtr0aRWVou1t26X/tkZ8k7ouccaG8M6y9xRQLQp6+vjt800vBU1bQqn9R0Qc8zqee3kz2S6xzYz9R/KDSgJc4WVLlsaXU4eKHpyIblxen1lwrfrrgun6+ujy516autkkZ5oS5S/vSSaz8yyWzvLV3/Vj7uamrAe+i7Ucy3GKWreGj/Tc+PZ5o5qj4+cYia+xyYf+ZySyMVkOj/atsG6deF0rXYOXLUqfp5tm8ihw3C5ad1Vk+6DhcT3taKP/plEbkIf5fvIu2giT5X62Gy6DpA5K3Uu+U9dl83l2GS6ptf/Duls15HJYc6yrmhn7tFEREREREREREQRvFlGRERERERERESUxjDMrko8C19VET4eK0OWAGDhwnBaj9A59NDy1ulSPURkxYrMP9Sewa+urmqd1h/pleEqZWXRepU6hn1KLo+Lu762XUrkldmG8m3rnzQ9vMylHfTfyH6x667RZVeuzFxGEq+dl8eQvpxzuIE8puTxpMdKC23DMA3le+iHtiGzSfd5ExkVKMczIDoc6SEXcjzq1y+cbjP0yNhOvRC5cnEA6KFIcohs01Zyhbbjnt5HxArb9P/1a8MPegeS5XznO+G0PlgvWRJO620wenS4Li0EtLnZLpS5s5PjQ11ddJtl+Lje/COGi74g21Vvf8OYYBJ3jJrGSNcwH9vyffBRx2zKNInb7mzOxbZtJ6e3asdWt27xdaysjJ9nWw8ZeqyvW+/XkjzWCyU8K9fnKx/Hng+u6TB8l+9SXkfWbVtOmxQJHZTVOGUZy5xEu8aVWaX9TWi7f/N5PUiUhC52yUpERERERERElAsBwBuFXVJh/G8eIiIiIiIiIiKiAsCbZURERERERERERGkMw+zEZN4IPcQ9Lmb8+MnR71euCsv47DPDymTeHiCaU0Xms9GC/stlTp+yqsi8bdsM6/NMz6mRZM6cXL923jWPTGezZUv08+bN4XSLh7c1m/JcJJ4XzjJHRbljKj8fdSzU/iPzPpWUROvYs2c43aNH9Hdaeq1WerqocpnQTE9qEpNjrLzMPh+Myyvvy8pKY5drM9ZV94lfl9ye8ePFj7T+uHq1XHl8xWQiSgBlFdExP45rrpu4ZX3lLXQZr+tqo7+ZMCEs05TbKTJT74SmfDaG3xVFO034vZ6g1DNf57m4MSfXuTmTzv9ou5zcTplDDACqq+3awPVayNTGsgzXayvXaxWX32VznNvmpMtmfXHzksgjtjMy7V+ZB9d3jrIO8fBHiW0fSWL8LJQctkRJ4M0yIiIiIiIiIiInHv7PPRUc/q8KIiIiIiIiIiKiND5Z1onJyMj6ercyIiEjtYYFtRVsagrvs66vHtU6rT/WXL7s7XB6YLS7ldc6xpRZko8Clxp6uuuj+y58hPlkRYThFGnhU3IfxkSTdYjrI+Fx9LA5GUkkQ3r1iOGBA93CYpMOvdleIkLp+g3ocHlJsw0RyWcdh9ZH1y37+Lx50WXjQjD0CLV+/cJQwpLqaFihjJzwEWalk+26fn34vSl8REZMAtHjpk0YrwyblBuuh4SY4qwMsYW5DAN3DnUS9S9KID6/qiK+DWQqhVLb9td3sPy8YkV03uzZ4bQ8h0+eHF1OdCjX49c1/YDt2OE6z6V8276k/85HuG8S1yPyEN24MTqv1nTdF0OLto50Tx8Rvq5hYq79wHfqDNcwUh98XGOa2sdHqKhtHZO+ltCve01h8jLFQyL1kgeVXjHL81I+Q5mJujL2diIiIiIiIiIiojQ+WUZERERERERElLUAzFnWNfHJMiIiIiIiIiIiojQ+WdaJ5fO1xzI1isylo7/xfmhDQ/hBr7ApUZZMHiBXoMfum/K8GOw08fYyn42W9GvjxvLWadl0pvxu2ZB9QeZJqayMLidf5W3KBaF3F/l51qzM0wDw7W+H0926Ref1qY5dnTXXPDWSbKts8sf5yLXiO6+U7/wvHVFeFq6voiJaLznEyPbXhxE5hOk5TeQh1a+fZU4TvRCxQr3t5KLyUNbzAsnP+jBrHBZlZzMtuGhROD1wYHSe/lnIZZ4y636sn6RkI5vaIIHEjrIqjc1hPrw+1YZkOnr/MXVeSQ6MeifRc5h1UDY5j5LO2eS7zCRyurnUOZvcUTJvnj4OutC7j49zoGm5XPYRH7nxTJLIheq7b3Xl62PTecI0fJp+F5frTC8vst/085C80NAT9PbrF1+xGMZ+pq/bw7ktl/lJiXKNPZqIiIiIiIiIiCiNT5YREREREREREWWNOcu6Kt4sKzRZhOjoT9ImSV933FPB+tPDaBIhOqbwF92SJZkL1eOPLEMvk3gsOO4x501N8Y92l5Z0/BH8rEIUDGFWekhiR+m7U0bPyrdi6+uVVcxmP8VFJun1kE+319ZG51VXF0bohG1Esnx9eRJcXxnv+gh+LkM29x8TLU8ep6ZocTlsyT6dFVmI3kH1Mc1i3aah01Bc27FDLGzcF5bhmrkOv3Dqd/rBZgrDlAOXa6y0QVwo8NaK0shykfOGfvJtc9IVRo8Op015G0RFtpdE1+1y3LuOAUmEaPoOEUy6Hlub7ULDshk75bKmCCy5nOFSNCtx9fQVzpp0iGZc+fkc65LgGiJru5ysv49j0jUk1lQPeey1PU7ijw2ZZqRHj3BaPxdHxzqN6ULDIQzTyDIM0/Q3ptxmAKisjG/zHWNHENhUjqjwMAyTiIiIiIiIiIgojTfLiIiIiIiIiIiI0naqMMzi4mLsvfferZ8ffPBB1NfXR5aZO3cuLrjgAmzZsgVbtmzBV77yFey222743e9+BwB48803sccee6C4uBjHHHMMrr32Wtxwww247LLLsHLlSvTq1QsAMGvWLHz5y1/G0KFDsXnzZkyePBlnnXUWpk6dCgD44IMP0KtXL/Tq1QurV60KK2B41l1/JFY+mZvrt8zJp3aH1luGAeqPEsttNT3z7/jGy1yyDakzMsVWuW63CNHxEd6hM4U/xm2Or5fKyfrLaKP0IdhKhl6a6pjrrmUbQiZDsJJ4i5eJj3FFtrH+ptXovPy9KVO+yXLbtuhyMhJPD6uIPWT1GbIQzday8C2Ieh+U0RgffxxODx8eW1wyZAifdgC7hCOZhnsffTyrOhlSHRTFxLS6hoLp0TXys4ym1PuBMRzaNHCZYnIlsUOKsgiztQ2tcg3R9MElDFDvn6YxOK7fZTN2yt+5nodsw/VNEV5xYcGAfVfSuZxDsjmXuaQK8MHHmzF9sa1LPq8DTOLq6KuNXeqvn7JXrAin9fFBnhKt05voB7o8ELWV2+5D63On5SAj38ANRMeATz+Nzlu8OJzW/qxuHUu2bLFabSfHnGVdUWHeeUhIjx498OqrrxqXOeuss3Dvvfdi3333RUtLCxYvXoxRo0bh7LPPBgDU19fjmWeeQY24sp0xYwbGjRuHBx54ANOmTWv9/rDDDsMjjzyCzZs3Y7/99sOUKVNa1z9t2jRMnjwZJ598Ms495xzfm0pERERERERERA4Yhqn55JNP0L9/fwCpJ9FGjRplXP7dd99FY2MjrrnmGsyYMSPjMj169MCYMWOwfPly7/UlIiIiIiIiIiJ/dqqbZZs3b8aYMWMwZswYTJkyJeMyF110EfbYYw9MmTIFt9xyC5raeeXkjBkz8NWvfhWHHXYYFi9ejE8++aTNMuvWrcM777yDww8/3Mt2EBERERERERFRMhiGqbniiitw+umn44knnsDdd9+NGTNmYNasWbHLz5w5Ew888ACKiopw4okn4q9//Su+/e1vAwCee+457LPPPli8eDF++MMfop/D639Nr/L2wTbu3zVnwdaBQ1un9fqXY2v8DwcODKdFQgDX16W78p2XIqtcNzF5BbLZTrmsbf8x3R+WeZ4Ac26U6HLhtJ6zzDnXkCAPLdNh1s6977wxtYGPnCNx5SVVpmRKj5HrPGVxZEouXV2tQz4YH3mkEM0vJHOE6Mey6zFkvawcj7VtcxkjTc3jOo7L5fR8M9Hxx619TOOnnosvjmn8cc0JZRTX0ElcTBjY9k8fY5OPvEz6eS3pvFg+zoEm8ngoLrb7TTZdxPc5ypWpHq55n2y3xzXXYi6Z2sB3HZPoxz7+XjGV4XqNLK9pbXPybi8pjXwukkkrtYp4Hwct84527x793NAQTuvnK5mnTOZXBYBBg1L/tR17Oq8AzFnWNe1UT5ZlcvbZZ2PMmDGYNGlS63fDhg3Dt771LTz99NNYsGAB1qxZk/G3r732Gt555x0cddRRqK+vx8yZMyOhmIcddhhee+01vP766/jDH/7Q7o06IiIiIiIiIiLKr53+Ztmf//xnvPrqq3jssccAAI8++iiCIAAAvPPOOyguLkZ1zGMHM2bMwFVXXYWGhgY0NDTgo48+wvLly/H+++9HlhsxYgQuu+wy/PKXv0x0W4iIiIiIiIiIqGN2qjBMG3fccQcuuugilJeXo6SkBHfddReKY54dnTlzJv7xj39EvpsyZQpmzpyJgw46KPL9N7/5TVx33XV47733MGTIkMi8ACr2MVj5+LzrK8WlXL/SWj62u2RJdN7o0eFjyHroXGlZxzc26Vd7u4RO6I95y3CPpPeM/nh43CPnpkfRtzbbP8IuQ8hsH29PIpRWrnvjxug8+Spr/ZHz3r3DaVOYlW34Ra6PvTiu4Sm6uN8Zw1gM8Qs+2tFHGJQrYzvK7dbiF5YtC6f1cVC+un3dOrt6eHm1vM7x5OOj/7vsG9tQmGzIJnBt4xUr4j8PrU/2fBWh70/D/k163JLjs6mb+Qj1y2eYXtJM/bOioijjcqYyTKHpukJpA9sQ2aTPIT5C4X30cV9lmsqPK9P1WsIHH8eofqliOjbijpW21/uGFboefDGyaYO4vltZGV1ORorK6xYg2l4yJFPO214YwwRR1naqm2WNeiKTDGbOnGmc3yDu/rz33ntt5v/mN79pnZ4wYULrdI8ePSJvw5w+fXq7dSEiIiIiIiKiQsY7gl1RYTzqQEREREREREREVAB4s4yIiIiIiIiIiChtpwrDLFQKQWvMuB5nXlXhlsck7pX3ehy+jEzV8+X4yG/Qq1c4rcfvy896hGx1dbKvIs9XLinrnAVZsG0fvf1lX5C5kfS8OjJ9gt5HZJU3b47O08tx4WM/yTrqORhaxFue9ZfeynxmgweG0776i5d+LXeqTBIHRBNMWNbDlOfCNQ9INBeQJpKwqFSfG7vu2CJKcptPKK58PbdfqdwX2nE+cGDsrEjurW7dnKoYYcrTlESuG9u8dnG/8VUPyTQOmtrfxHZM0NLVRcdTUbGtiB4Lss7lCeRjMyUOSyLPkWSbpyyJdUu225nr/Fwu46xpm5PI55dPLvsjidyopvJ9LesirnzXcTaf+emSzoEpx9b6+mj5pr9X5DHlfHx5zllmst1wrWW6pDTlV5W/69kzOm/HdXYRH8+hToo3y4iIiIiIiIiIshYAaGl3Kep8eJ+XiIiIiIiIiIgojU+WFRjXx7f1R5Ll47IyxG7XXaNl6GEhvtXVhnVs1kKTFi4Mp/WQvbFjw+mRI8Pf6Y84+wgT8x1ipIdgSevWRT/36BFOV1nuiyReXS+fANfbWM7T+4t8HP2zz6Lz5LLFxeG0HgZVahmG4xKOotdRf6xc1kXfNhkeZ2KIYHKqv06WsWpVdN6WLeHj9NXVu0Tmyc1JInTCKQxC71yi8fQQ8bhwBr0N5s8PpydOjM6TYZm5DB+RYy4ANDaWt07r4QtyrNb7jzxu5NjdvXsHK9gBfsJxO55ewEQfY2S76vtGLqvvG8l0rokLadfp+1dG58rQmFKtfSJjpL5xtuTKs4lFlYOmqYEMXMduSVbZdM6wXbdrGFoS599CYbqOMXWfbPaHb3H70de1tM1vOiJfYcKuoai2qRpcx/h8iktfA0SvI/VrFccMKlb10Pm4jjSR5y/9XCa3W28Def2sp4yorc38PVFnUZgjFhERERERERERUR7wyTIiIiIiIiIiIifMWdYV8ckyIiIiIiIiIiKiND5ZVuBsY9f1OPYHH8wce/+5z0XL2G+/zOUl4cQTouWvXR/WUc9ZJuPfTelUZE4iV75fQW3KX6DH7Mt9Y8oRYs2Qz6ZUK7CkIlyfbG9TWpq27R8/T+bjkfmnstku3/nY9OaRn9vkw2veGn6QnbCiKrKc7Lt63jPfbwDX+8+WLfHr9sGUgyRunn48RXINIT6ZVJmhXzQ0ZC4PSPwt6070fB6mnFbDh4fTpSXRNpZjQmVl+L3MddgRsi1lTha9Lxlzv8mcVvpBVFaObGVzzMeN3XH57gBgQD+38k3nCTkGLFkSnSfHU7mvAaC8zCGflmkA1Tue2MGbSsJxq6ysNLJYUUVYZpt19wv3YdLXCKbybfNi2V4z6eOIHGOGD7e/JnDJmWXK++Taxr73jWkskvlmAWDMGLvzhOSrvi75xrLJOxdXfjbXjZ0hr13SubB8S6JN5TWffr3cpzqcNl3j+KCXJ88vgw25dF2OBZ28bndMUdlm32xqStVle+EfBkQZ8ckyIiIiIiIiIiKiND5ZRkRERERERESUtQDMWdY18WZZgdEfnZURLsZwIxlDA+CYY8KQi9mzw+8HDYr+zPcrj7PRpzp8JrdPRXx4lnz8f9my6GKyTbIJHYp7RfS8edEy6uvDaWP4jihED5OR9Zf7Aog+Xj1hQvy6ZXSNHmIUCU/JYofGvQbaFMIkQ1UAYN26cFrWVye7p/6IuTHEy5Lcn6bXeut1lHVp03TNmRfU69+9ezi9bVt0no9QAVmGDAUAgOrq7MNffLHdNtmu26GFf4ky5FgHRI9tU98aMbzwnu0fWh9fJxl+DpgP2UceCaffeSecPuWU6HJVZaaObMc8xtiNffrBkcuwPdvwOxPbY2bVquhnOY4P1MJkZOil7a7Rxxi5b6pM4daGwbtctkHbQbh1spBCxmz3h6nO0Wuo+PLktYV+LeESjpRNqJ9LmUVNm6IzTfkGDP3Cto3luV6ORUC0jxv7p2G9vvtdNqGupnQDcWW0tz7b8r33izwev67t41RnU04NU74QuZx+sSgHcr0MMSgUtfljLLyukUVof5ZZpzvRq/Xxx+G0KQzTlWx/19Q2kX2obXh5ui0L6dxClA2GYRIREREREREREaXxZhkREREREREREVEawzALjOmxXV3k0WvtkeER/TaE09MqMv4GyO0bcIzrsnyLoymMwtR2+pu0ZF1mzQrL/NvfostNmxZOD9Aemza1vyQfyx47Nn6eKfxRbouvR5nlm9jKxbpNfWSE9jY3GWKqt798U6N85FxvKt+P7ts+ga/Pa1NeXJyqdkzW9RZvzcziTXXbHd4UqJMhRnqIpoukxwNT+Ise2RAXYtemjobXOObyTV22bWfaTp0MP5VdSw/nLpsYhoFkEzImwytrasK20ruxsf3l67MsuZ6HfLxF0LVPyLGjd+/ovEPG241hLqHLQAJvus1j/gXv4Vgwt3HcuKiHG8k0CNmE6fkYY5zeem46mWURomYbylxbG07rYeAmLvvURx/xdS5LOjzUVi7DVLOph49Q6Tht6ijfUG7q/7q40Es93lFehOs5R+Je7w6gpMLu/Gt7rFVVRNvqoHHhdL7ePqoz7k/9j4Ed+2aneB3mzrCNO5/COOqIiIiIiIiIiIgKAG+WERERERERERERpTEMk4iIiIiIiIgoawGAlnxXghLAm2UFRo9Vt41P1/MfxcWTu+aH0sXl2pI5lABgoHjNsZ43LMKUsEvoU+0/X8gXJ4ZlTpxo9/rvbAweGN/mMg+a9b7Occ4LU74WmSZC3zdx+eWSeL24nGfqZ/o8ub42+TFkoiAx3bZ4u1wZ+jGqHys76IeCzC2n17HNG8yFzvZKeuecUxVVscvKVCXz5kXnDRsWTnfrFk6b2jSbnJJxsmnHMWMyT+tkX9LTsEimYVbmL9OZjhMplzkwc83UPlJBbYshV1W+ZNNHrPMWGvjIqWQ7z7Qu17xncfOKDPkZiyqS3ddJnwtc15d03kIfY58pV1g+xw4f114+yjPZXhLmBjPlCTbVJXJs6CdweYIfOTI6ryT+dy5jQDbz4vIW6r+R53553djeulz6nTHnXVzitgI5BxFlq4Cu6oiIiIiIiIiIiPKLN8uIiIiIiIiIiIjS+ExkgcnmcVjT47ixj+4bHn82vW1cJ5+ylWXGvaY9W74fRzeVJx9d1p8Slp+TDjHSw6fkZxk+ZRmx6qzNdpo6gngs3vRIuFReYleezkef0LfN5RjKiuhA+rplmKpt39J3xerV4XS/fv7Dc03tExca4IvLcWM6NvSw1x49wmlTF5f0MHkXxvAFjayzjPzQxykv4bgeQvZsty2bMDTb9bmGatmGx/kI57Pl61wTG6qkd/gCCY9JOhWBqyTOPXHzXNcVHQftxxibOgHA1uawzNJmw8WK3pfkoOxhXEni+LIdA3ylMbH5XdLXm0mEMpvK91FGRBJjmDzJOl5oJxJWK7dVXhTU7BJZLJvQy47KdSh258CcZV0VnywjIiIiIiIiIiJK480yIiIiIiIiIiKiNN4sIyIiIiIiIiIiSiuMRBXUypQ3TA+hlzHo8o3HALB5czhdWxu/PlmGvm65vlzHp+v5hXbQ3/RcWuIWoy+3Z+7ccLnhw6PLDRwYW4QXcr+99VZ0XosIfZdvsdb7QT5zB5jyM8SlfNiOaF6yXOa+Sjr3TNLlmHJVLVkSnderVzgtx4DOkmtC1nPlqnC/VVZGlzONU6WivY45xm48yGc+JL3+cel+ilZ8FC1EdITtZeXW5UfGf3Fcmi4Mkug/Ptrfd14j3apV4fSaNdF58jgc0C86LzZ5I5B4Asq4NtleEj8G25bho056mUnkhLKtc6GcG2zbwJQj1LVbmdYtyy+tKIufaZlLyneOL8B9X9vmk3OV9DlXlr+pKbptGzeG0/LcWW74e0JnyulpugaPq6N1++srlv1MH1cNnb5I/8PBRhY50OLGSF/jmRyvi2pqYstnXrJCwJxlXRGfLCMiIiIiIiIiIkrjzTIiIiIiIiIiIqI0hmEWgACq9fFZ/anjZcvCaT1EUNKfMrZ96tgU5hl5BFd/5Fk+opzAa+dlWIvpreQ+Yg/GjzeUL7g+/m+aVyX202efRcuXYT/iyesMoaixxUc4hy9Y7l/Tq+ZluKm+m2Q4QK5D4EzbHVf/6mr7EA4fISOm35SVxYcQ29bJth5Jh9/pZD3rau1COHyEeJmiO1zbzvU3MhxdjonlK1ZEFxQddFWvEZFZptCbaF06fuz5aB+TXPfBOHJfAEA/PfRSMoyfSYeOxq0rm3pEPusXKHJglPP0k5Th3Fwo4Y+25ef6HGVL75OxLMMkddFzeLQNSuXKTaFzCYQdx+2boqZN0QXFurM5Zyc9xvtWXhZ/jSBlcx71fYnfpn1kn4nLwQLY958E+pn1GJmAuPJzHZrOsEzaWfFmGRERERERERFR1gIwZ1nXVJj/i4yIiIiIiIiIiCgPeLOMiIiIiIiIiIgojWGYBSAIwpB9Pd/ACEMeIh/5kGxf+5xrsv56np0ImdRNJtUAUCSSOG2vqIrMk20n0//oeT+s84AY2OYVGDMm+lmmXTClYPCdF8sXmedCtqMpt5me7kQ/HuLI16XLV6UDQG2tVRHGPB2u/cCUB8RHviJfryaP+43v/uPaV43bInLiFGWRGykun9n69dHlZL7ABNIzRuh1lP0usm69IqKSn66OzurRI758ud35PBfY9lXb5Xz1W1lOba3b/1vcXlLqpS6t5SWQp8ZYpjxByvOtTp5/9ZxlI0eKedFzsS3XPDtxZWQz1hXqOdaJ4yBWXBxOt0lhWyHOZXr5MevT2817/j7HvFVJnIulztCXktg3kTLWr43OjBtX9HFE5jPTO6FMHJlwbryky3PNL+m6n1zOv0nn/SMqJLxZRkRERERERETkhDcGuyKGYRIREREREREREaV1mifLSktLoZTK+nd9+/bFueeem0CN/Fm6dAnOP7+w69gZLHnzJQzfrS7f1TB6ackHqNttsNcyG1c2Yq899vJW3ksLX0LdQL/taKpjPveby/7w3d6AnzZPol4+JNGfXBj74EsvYXhd+3Vc0tiI4XtlLsP3djZ+8AH2GuZ3rKCoJcsaMbxAjpn58+fjgAMOyHc1ClJnOLcnLZtzVaFcExTqed83H+NINm1ciOf6JPpILjnXv5Ofp3N5Dpw/f/78nKyIyDMVBEG+62Bl7Nixwbx58/JdjUSce+65uOWWW/JdjU7v0P0GYfYtk/JdDaNBZ92HSb86yWuZ866Zh/kv+jsHDRo9CJN+4bcdTXXM535z2R++2xvw0+ZJ1MuHJPqTC2MfHDQIsye1X8dD583D7JjrPd/bOe+y+zD/Nr9jBUUdesE8zJ5TGMfMqFGj8Oabb+a7GgWpM5zbk5bNuapQrgkK9bzvm49xJJs2LsRzfRJ9JJec69/Jz9O5PAcqpeYHQTA2JyvLA6V2CYCT810ND/7QpfeTi07zZBkRERERERERUeEIALTkuxKUAOYsIyIiIiIiIiIiSuPNMiIiIiIiIiIiojTeLCMiIiIiIiIiIkpjzrKdyKxZs3DWWWdhyJAhAICHHnoIvXr1AgBcd911uO+++1BcXIyJEyeid+/eeOCBB9DQ0IBevXqhd+/euPrqq1FUVITjjjsOn3zyCUpLS9HQ0ICDDjoIo0aNQktLC2666SZccMEFAIBXXnkF++23H4YMGYI///nPedvuTJ5+eTl+8n//QRAE6NurDM0t27FqXRMqyruhqmc3/Oo7B2H4oF646n/n4YFZDaiu7I7dB1Xh1v8+AgDw5e/9E8++8jH+9ouJmHjgQOd6BEGAJ699EpvWbEKvXXvhiPOPwN8v+zvWvr8WJ/32JPQakNo//7zmn/j4jY8x8QcTMXCM+/qSquPWTVvxxM+fwPbm7SgtL8WR3zsSpeWlzuvsyP7Z+NlWnPD9J7CteTuqepZixk+PRGXPtnUJggBrlm3Eg9970Nj2f//h36GUgipW+ML3vuC8Te3R2/mArx6AWb+dBQDoWdMTn7/o8ygqLsprX0iSzfY3b2n22s+SYntcA8Dqd1fj/ovuxzce+AaKigvz/191dLw8/NzUMVRSrDDjp1/ALn165HmLzEznyj322AP9+/cHkErKf/PNN6O+vh4//vGP8fWvfx2zZs3CU089hWuuuQa9evXCAQccgCAI8LnPfQ5XXnklunXrlvdt2NnO9yaFci1gYnuu2nFuGDzQ79v5giDAE794IutrgCTl4hohV4IgwJoP1rTu3/bO/b73rw96H7E9fxcKmz4O+LseLNRzapLnvp0Dc5Z1RYV5ZU6JmTp1KmbNmoVZs2a1DoAbNmzAI488gjlz5mD27Nm44IILcMEFF2DWrFmYNm0arr/+esyaNQtHHHEE7r//fpx88sl4+umnW8s86qij8Mwzz+DnP/857rjjjtby9957b8yaNavgLpxXr2/CT/7vP3jk+qPx71uOxy+/cyC2btuOO6/+PJ76/bH46blj8bVrnsWON8Vef8F4PPvH4wAAC99dCwD44w8Pw4Wnju5wXdY2rEVpeSlOuO4ENG1sQtOGJnzxR1/E0EOGRpY77LzDMPq4jq8vqToWlRThyIuPxPHXHo/dDtoNb//rbef1dXT/dCspwp1XH4l/33I8vnz4bpj+aOa6vL5kLVSxarftJ18zGcf94jiM+PyIDm1Xe/R2LiktwdGXH43jrz0elXWV+HD+hwDy2xeSZLP9PvtZkmyPawB449E3UDOsJg+1tONjvHz6fybj2T8ehzMnjcDtMcdjocl0rgSA2tra1u9vvvnm1u/uvPPONmXsvffe+Ne//oVnnnkG3bp1w//8z//krP4Az/ftKaRrARPbc1VS54ZtW7bl9BqgPbm6RsiV119/PbJ/O+O5X+8jne38bdPHAT/Xg4V+Tu0K5z4in3izjFBcXIwVK1ZgwYIFAIDevXvHLvv222/jyiuvxIMPPthm3vr16xOqoV+PPv8Bpn5p99b/kzhicDX615S3zt9raB8MGVCJD1Y0Rn73aePW1mm5fEds+WwLevbtieatzWha34Tuld1R3rtt2eV9/KzPhU0dS0pLWutYVFwEVaSc19fR/VPWvaR1+ZLiIhTH1GXdxi0oLilqt+2LSlLDZPPWZvQeHH9sdFSmdu5e0T1VB9Gm+ewLSbLZfp/9LLYeLS046YkncOADD+DmN97A1599NvsyLI/rtR+sRc+anujWIzdPG7nwMV52Sx9Dm7c0Y6+hyR1D+dK9e3d87nOfw5NPPhm7zGWXXYbHHnssh7XKbGc735sU0rWAie25KqlzQ9AS5PQaoD25ukbIlXXr1qG4pLhTn/sz9ZF8nL9d2fRxwM/1YFc6p3amcx+RK94s28nccccdmDBhAs4+++zW73r27Inf/e53uPTSSzFixIiMF8YA8J///Adjx47FoEGDsHLlSmzfvh0A8OSTT2LcuHE477zz8N3vfjcXm9EhH6/ehP59zRcdA2p6YsWazQCAS343F/Un3I3upcUYPayP38qk/scR7j3vXpRWlEKpwrl4aJVFHbdt3oa3/vkWhh8+3Hl1vvZP46Zt+NODb+G0ozPXJbDcrsZVjXjw0gfxxqNvoM9unvd/pEKZ6/PZms+w/NXlGLhf1wm5zCiL7ffRz+Lc9957OKC2FnO+/GVc99prOCIddpAVy771+kOvY/TkwnxSYAcfx+MHKxpx8NcfxO//+gb2Hp7gMeRRpnMlAKxatQoTJkzAhAkT8JOf/KT1+29/+9ut/7c9k9LSUmzbti2x+mbC871ZQV0LGNieqxJbf3pAy9U1QHtydY2QKzueIOrM5/64PpLr87cr2z7u43qw0M+pXeHcR+QTb5btZHY8XvurX/2qddADgKOPPhpPPPEE5syZg5/+9KcZf3v//ffj6aefxjHHHIPFixfjhRdeAJAKy3j55ZcxdepULFy4MFeb4qx/TTk+Wv2ZcZnlqz5r/T89118wHq/fdTI+WbsZTVuaE6nTabeehl332RVvPfFWIuX70F4dgyDAszc+i3FnjGv9P4oufOyfIAjwtWuexc++NQ7Vlea6tLddFbUVOOHXJ+CA0w7Aaw++5rBF2ZH1adnWglm/nYXDv3N4weaz8q297ffVz+K8v3EjxvTti+KiIuzVuzeOHuj+h4qpb3360acoLS9FWVVZR6qbOB/H4+B+FZjzfyfg6v93AK67M/ljyIe4c6UMRbniiital+/fvz8qKyuxaNGijOVt3bo1Z/nKduD53qwQrwVM8n2dkKtrgPbk+hohV7rCuT/f5++OysX1YKGfU7vCuS8/AqRylnX2f6TrPCMweSUHvc2bN2P58uUAgKqqqthB7eWXX8bs2bPx+OOP44EHHsADDzwQmX/ppZfi17/+deJ176hJhwzCnY8vwcbPUo80L/nwU3y8elPr/LfeW4f3VzRiUF3P1u8qe5bipM8PSSS3xaZ1qXX3rOmJlm2FOVDZ1HHeXfNQt2cddt131w6ty8f+ueKWefjcPnU4cqy5Li3N243btb15e+v/9S3tUYri0uIObVt79Hb+9+//jVGTRiUa/llIbLbfVz+LM7BnT3y0aRO2BwEWrluHbeknarLV3jGztmEtVr2zCo9d+RjWNqzFczc/16F6J6Wjx+M2cQxV9SxFj7JkjyHf5LmyPd/97ndx4403Zpz3q1/9CpMnT/ZcOzs78/nepNCuBUzaO1clLZfXAO3J5TVCrrQ0p9q0M5/7C+H83RHt9XFf14Od5ZzaFc59RD7wbZiELVu24Mwzz8SWLVuwfft2XHjhhW2WWbx4MXbZZZfWzyNHjsScOXNw/vnnt35XXV2NQYMG4T//+Q/233//XFTdSW3vHvjx1/bD5Ev+iSAI0KeqO0q7FeH0K/+FyvJSVJZ3w//99+FtHsM+7ejhOPqCf+CbJ47Cd69/Ho/M/gB/f+59fHPKRpwzZU/n+ny04CM89P2HUFRShC9c+gU89cunsOKtFfj0o0+x74n7on58PZ7/0/P44OUP8P5L72PjMRux5zHu60uijrW712LB/QtQN7IODXMbMOzQYRg1aZTTujq6f44/bDf88o4FOGSfOjzwbAO+MnEYvnVS5rps2bTNuF01w2rwzG+eAYqA4pJiTLhwAt78nzedtsuGbOcDzzwQ8++ej8ZVjVj48EKMPm40hhw8JO99IUntbf8uI3bx1s/inDhkCL7x73/jyWXLMG3ECHz/xRdx9xeyf+tVe8fMkEOGYMghqTdOPfyjh3HYeYd53Q5fOno8TjpkMKZe9QyKFNC9tBjTr5iQnw3xZEcoCgDsuuuuuOuuu1rnjR07Fn36hCExr7/+Oo488sjWN4L94Ac/yHV129jZzvcmhXYtYNLeuUpeJzRvbMaf/vQnnHPOOd7W73INkJRcXiPkypbPtlif+5PYvz64nL8LSXt9POP14KJlWa+ns55TO3ru2/HmZKLORu24O13oxo4dG8ybNy/f1UjEueeei1tuuSXf1ej0Dt1vEGbfMinf1TAadNZ9mPSrk1o/f/T6R1i+YDnGnTHOucx518zD/Bfn+6geAGDQ6EGY9IuwHZOuY77226z5H+H4Hz+Nr/55ala/893eQKrNx5w2pkPtnES9fND7Uxwf/czE2AcHDcLsSe3X8dB58zB7fuYy5HZ6OWYuuw/zbzup/QXJ2aEXzMPsOYVxzIwaNQpvvpncjfjOrDOc25OU7bnK97mgdkgtBh04KOvxrBDP+0no6Dgya9YsHH/K8fjqbV+1Wr4Qz/VJ9JFccq5/Jz9P5/IcqJSaHwTB2JysLA+UqgmA4/JdDQ+md+n95IJhmEREREREREREWWPOMltKqTOVUq8opTYrpVYqpW5VStVmWcZBSqmnlFIblVIblFKPK6XGZFhuvFLqb0qpJellNyqlFiqlrlRK9bJZF8MwifJowN4DMGDvAfmuhlFnqKOLCQcMQK/awnkVe1dtZ1tdafu70rYQUX7l+1xV1rMssSd+CZgwYQJ61Vn9zVawOnsf6ez1J+oslFIXAfgNgGcBXABgIICLARyslDowCALz2y9SZYwHMAvAcgA73jbxHQDPKaUOCYLgdbH4CADlAO4C8BFSD4qNA/DfAE5Or3OzaX28WUZERERERERERN4ppWoAXAPgZQBfCIKgJf39ywD+jtTNs59bFHUjgK0ADg+CYHm6jHsBvAXgegBf3LFgEAR/AfAX7fd/UEq9BeBXSMXO3mtaGcMwiYiIiIiIiIgoCScg9ZTXTTtulAFAEAQPA1gK4Iz2ClBKDUfqybC/7rhRli5jOYC/ApiolOpnUZf30/9t95XDvFlGREREREREROQk3/nGCj5n2Y5Y5zkZ5s0FMFIpVdHBMhSAA/QZSqlypVSNUmqwUmoKgF8i9XTaU+1VmjfLiIiIiIiIiIh2XjVKqXni3zkey96RzHd5hnnLkbrR1V7C3/bKAIBdM8z7CYBVSD1Rdj+AzwAcFwTBu+2sDyoIgvaWKQhjx44N5s2bl+9qJKKmpgZr1qzJdzWIiIgoD8rKytDU1JTvahARESVhfhAEY/NdiaQo1TcAjsl3NTy4u939pJSqBnBhFoXeGATBWqXU0wCOBFAcBMF2rcyfAPgxgP2CIHjVsO4fI3Xj6wtBEPxLm3ckgKcBXBQEwW+1ebsD2A1ANYCDAUwAcH0QBHe3V3km+C8Aa9asQWe5aUlUqKZPn46zzz4b77zzDoYPHx6Z19zcjG7duuHKK6/EVVddlZ8K5sCECRPQ3NyM2bNneylv2rRpmDVrFhoaGryUR0SZKaV4HUBdhul8vENHzi/19fU49NBDceedd7Zbj+3bt+NrX/ta1uvI5KqrrsLVV1+Nbdu2oaSk439C7Win9957D/X19R2vIFGBUkrluwrkTzWAK7NY/k4AawFsSn/uDkB/A2VZ+r+bYCbL0MWWEQTBOwDeSX/8m1LqaACPK6WCIAhmmFbIMEwiIsroxz/+MR544IF8V4OIiLqYXJxfpk+fjttuuy3RdXTEscceizlz5qB///75rgoRdUgAYHsX+GexpUHQEASByuLfkvRPP0r/N1OY5K7pRvwowzypvTKAzCGa+jb8E8BKAOe1tyyfLCMiooyGDRuW7yoQEVEXxPMLUFtbi9ra2nxXg4goF14GcA5SYZBLtHkHAVgcBEGjRRlIl3GrNm88Ujfc5lvWpwxAn/YW4pNlRLTTeu+993D66aejtrYW3bt3x5gxY9r8n+4lS5Zg6tSpGDJkCHr06IGhQ4fiW9/6FtatW9e6zK9+9SuUlpZmzD04atQonHDCCdiyZQtqa2tx0UUXtVlm+vTpUEph0aJFxvouWLAAU6ZMQd++fdGjRw/sscce+MUvftFmuaeeegr7778/ysvLMXr0aDz44INZbxOQCpORoSENDQ1QSuGWW27BFVdcgf79+6O6uhrHHXccli1bZqw7ERHRDvr5BQCWLl2KSZMmoby8HLvssgsuueQS/OlPf4JSKmO45syZM7HnnnuiZ8+eGDt2bCQFwYQJE/Dss8/i+eefh1IKSilMmDDBWKdVq1bhvPPOw6BBg9C9e3cMGjQIU6dOxZYtWyLLvffeezj22GNRUVGB3XbbDT/5yU+wfXv4VEZTUxMuuugijB49GhUVFejXrx+OO+64Nuf4Hed+uW319fU444wzjNtGRNQJPYRU+OV3lFLFO75USh0HYBiAu+TC6bdXjlRK9drxXfoptXkATlFKDRDLDgBwCoB/BUGwQnzfL1NFlFJnAeiF1Bs0jXizjIi6lJaWFjQ3N0f+tbS0fR3yhx9+iIMOOggLFizADTfcgL///e/Yf//9cdJJJ+Hvf/9763IfffQRBg4ciN/+9rf45z//iSuuuAJPP/00Jk2a1LrMGWecgZaWFtxzzz2RdcyfPx9vvfUWpk6diu7du+Pss8/G7bff3iaR9y233IIjjjgCI0eOjN2ul156CQcffDDeffdd3HDDDXj00Udx8cUXt7lJ9e677+KCCy7AxRdfjPvvvx/9+/fHySefjCVLwv+JY7NNJr/4xS+wZMkS3Hbbbfjd736HOXPm4PTTT7f6LRERkW7r1q046qijsGDBAtx8882YPn063nvvPfzsZz/LuPxzzz2H66+/Hj/96U9xzz33oKWlBZMnT8b69esBADfffDP2228/7LPPPpgzZw7mzJmDm2++OXb969atwyGHHIJ77rkHF198MR577DH86le/wrZt27B169bIslOmTMGRRx6JBx98ECeccAKuvPJK3H777a3zt2zZgo0bN+Lyyy/Ho48+ij/84Q9oamrC+PHjsWLFCn3VWW8bEVFnEwTBKqSS+B8I4Cml1DlKqasBzACwCMBvtZ98B8BbAKZo31+AVM6y55RSFyqlLgTwHFL3tS7Rln1MKfWkUuonSqlvKKUuUUrdD+A2AMsAXNVevRmGSURdiumGk3TVVVchCAI8++yz6Nu3LwDg6KOPxocffogrrrgCxx9/PADg8MMPx+GHH976u0MOOQTDhw/HYYcdhldeeQX77bcfBgwYgCOPPBJ33HEHzjsvDH+/44470Lt3b0yePBkA8K1vfQvXX389/vrXv2Lq1KkAgNdeew1z587FjBnG/JL43ve+h759+2Lu3LkoLy8HABx55JFtllu9ejX+/e9/Y/fddwcA7L///ujfvz/uvfde/OhHP7LeJpPddtsNd98dvkBm1apVuPTSS/HRRx9hwID23vpMREQUNX36dCxduhQvvvgiDjzwQADAl770JYwZMwYffPBBm+U3bNiAV199Fb179wYA9OvXD+PGjcNjjz2G0047DaNGjUJVVRWam5sxfvz4dtd/ww03YOnSpZg3b17kHPjVr361zbKXXHIJzj77bADAxIkT8a9//QszZsxo/a5Xr1649dYwQqilpQVHH3006urqMGPGjIxPmGezbURUiNr+j3mKCoLgeqXUGgAXAbgRwAYA9wL4oUUI5o4yXlBKTQBwTfpfAOAFAKcEQbBAW/xWACcB+AaAGgDbALwL4FcArguCoG1IkIZPlhFRl/LAAw/g5ZdfjvybO7ftU7aPP/44Jk2ahF69ekWeQjv66KOxYMECbNiwAUDq/3b//Oc/x8iRI9GjRw9069YNhx12GABg8eLFreVNnToVc+fOxTvvpF620tzcjJkzZ+K//uu/0L176qUtQ4YMwdFHH41bbrml9Xe33HILamtrceKJJ8Zu06ZNm/D888/j9NNPb71RFmf33XdvvVEGALvssgt22WWXyB8bttsU59hjj4183nvvvQEg4x80RERE7Zk7dy4GDx7ceqMMSL1B76STTsq4/MEHH9x6Mwno+HnoiSeewLhx49r9n0VA23Pg6NGj26z33nvvxUEHHYTq6mqUlJSgZ8+eaGxstDrH+t42IqJCEQTB9CAI9g2CoCwIgl2CIPhaEASfZFjuqvQLAqZnmDcnCIIvBEFQEQRBZRAERwdB8J8My92cXm5AEASlQRD0DIJgnyAILrO5UQbwZhkRdTGjR4/G2LFjI/8OOOCANst98skn+Mtf/oJu3bpF/l166aUA0Jp/7LLLLsNVV12FM844A48++iheeukl3H///QAQCac86aST0LNnz9ZX2T/xxBNYuXJl6xNkO5x33nl4/vnnsXDhQnz22We48847cfbZZ6O0tDR2m9atW4ft27dj4MCB7W5/nz5tc1V27949UlfbbbJdx46bgTa/JSIi0n388cfYZZdd2nxfV1eXcXnf56E1a9ZYnWPj1i3X+/DDD+MrX/kK9txzT9x999148cUX8fLLL6O2tpbnWCKiToRhmES0U+rbty8OO+ww/OAHP8g4f0c44cyZM3HmmWfi8ssvb53X2Nj2SeGePXtiypQpuOuuu3D11VfjzjvvxNChQ/G5z30ustykSZNQX1+PW265Bfvuuy82btyIc845x1jX3r17o6ioCMuXt/s2ZCu220RERJQL/fv3x5tvvtnm+5UrV+Zk/TU1NV7PscOHD8f06dNbv9u2bRvWrl3rpXwiIsoNPllGRDulY445Bq+99hr22muvNk+ijR07tvX/5G7atAndunWL/PbPf/5zxjKnTp2Kd999F//85z/x0EMPtXmqDACKiopw7rnn4o477sDvf/97TJw4EcOGDTPWtby8HIceeijuvPNObN682XGLQ9lsExERUdLGjx+PDz74AC+99FLrd0EQ4L777nMus3v37tbnzC9+8Yt46aWXsGCBnvIme5s2bUJJSfR5hDvuuCPjy4aIqCsIkMpZ1tn/kY5PlhHRTuknP/kJDjzwQBx++OH4zne+g/r6eqxbtw4LFy7E0qVLcdtttwFI3VS7/fbbsffee2P48OG4//778cILL2Qsc+LEiRgwYAC+/vWvY9OmTTjjjDMyLvf1r38dV111FRYsWGD9h8B1112HI444AgcffDAuueQSDBw4EEuXLsWrr76Km266Kattz2abiIiIXDz++OPo169f5LtevXrhqKOOarPstGnT8Mtf/hInnngifvazn6G2tha33nor1q1bByD1P+80bsYAAA4hSURBVJqyNWrUKNx888245557MGzYMFRWVmKPPfbIuOxFF12Eu+++GxMnTsTll1+OvffeG6tXr8ZDDz2EP/7xj6isrLRe7zHHHIMHH3wQF110ESZPnoz58+fjxhtvRHV1ddbbQERE+cObZUS0Uxo8eDDmzZuHq666Cj/60Y+watUq9O3bF6NHj8ZZZ53VutxNN92EIAjw3//93wBSYZQzZsyIJCHeoaioCKeddhquu+46HHzwwRg+fHjGddfW1uKII47A66+/3vrWzfaMGzcOzz//PK644gqcf/752LJlC3bbbbfWt29lI5ttIiIicnH++ee3+W6vvfbCwoUL23xfWlqKJ554Aueffz6++c1voqKiAqeddhoOOugg/PCHP0SvXr2yXv8PfvADLF68GN/4xjfQ2NiII444ArNmzcq4bHV1NZ5//nlcfvnluPbaa7FmzRrU1dXhyCOPNOYUzeT//b//hw8//BC33XYbbrnlFowbNw4PP/wwpkyZkvU2EBFR/qggCPJdBytjx44N5s2bl+9qJEIphc6yH4io49atW4fBgwfjwgsvxE9/+tN8V4eI8ozXAUSZTZ48GW+99RbefffdfFeFiBwppeYHQTA23/VIilLVATAh39Xw4KEuvZ9cdJqbZUqpVQDez3c9iIg6oARAGYBdAPQCsBDAtrzWiIiIqDDUIZU4ZwtSeZX7pP99AGBVHutFRB2zWxAEtfmuRFJ4s6zr6jRhmF35ACOinYNSahqAPyN14X9OEAR/y2+NiIiICoNS6tsAvgNgMIBiAIsBfD8Igv/La8WIiGin1GmeLCMiIiIiIiIiKhR8sqzr6jRPlhERERERERERFZbt+a4AJSD79zATERERERERERF1UbxZRkRERF4ppaYrpYL0vwkeypsgypve4QoSERERERnwZhkREVGOKaUaxM0f/V+zUmqtUup1pdRflFInKKWYNoGIiIiIKEd48U1ERFRYigH0Tv8bDWAqgNeUUqcFQfBGXmtGRERERMKn/wQersl3LTxYne8KFBreLCMiIsqvPwJ4V3wuAdAPqVcr7Zv+bh8ATyulxgZBsCy31SMiIiKiTIIgOCbfdaBk8GYZERFRft0TBMGsTDOUUqcBuB2p83UdgJ8CODt3VXMTBME0ANPyXA0iIiIiIifMWUZERFSggiC4G8DvxFcnKaW65as+REREREQ7A94sIyIiKmwPiOlKAMNMCyulPq+U+qNS6k2l1Dql1Bal1HKl1MNKqa/ZvCxAKVWslDpdKXW/Uuo9pdRnSqkmpdQypdR/lFL3KqX+n1Jqt5jfW78NUylVppS6SCk1J/1ig8+UUm+nt2Gf9uoqypkl1llvsfyOZRssllVKqS8rpW5XSr2jlNqglNqslHpfKfVXpdTJSillUU4PpdS5SqnH0m25WSm1KV3OvPQLHaYqperstpqIiIiIksAwTCIiosL2ifa5T6aFlFK7ALgTwFEZZg9I/5sM4PtKqROCIFgUU86uAB4BMCbD7F3T//YDcAqA+QDGtr8JmSmldgfwKIDdtVm7p/99TSl1MYCFruvoKKXUcAAzARyQYfbg9L+TAcxVSp0YBMHHMeXshVS71hvKOQCpFzrcly6TiIiIiPKAN8uIiIgKm/6U0Wf6AukbXLMR3ohpBPA4gDcBNCF1I+ZYAIMA7AHgeaXUAUEQNGjlFAF4EOGNso3pchal19szvY6xAPbswDZBKdUPwDNI3XwDgK1I3UxaAKAUwGEADgdwE4DrO7KuDtRxHwD/AtA3/dUapNrjHQDNAIYCOB5ADYDxAGan23W9Vk4FgH8g1f5A6o1TjyP1YofNCJ8YPAjAkOS2iIiIiIhs8GYZERFRYTtJTDcBWCxnpm9wzUB4o+wvAL4bBMGn2nLdAPwCwCVIPZ12B1I3pKQJCJ8UmwfgmCAI1mSqlFJqKIAjs9uUiN8jvFHWAGBSEARvaes4DsC9AC7uwHqcKKV6AvgrwhtlvwRwVRAETRmW+18AX0Xq5tmNAM7UivsvhDfKHgXwX0EQbIpZ7z4A9vKxDURERETkhjnLiIiICpRSaiqA88VX9+g3a5C6mbbjptf9QRCcpd8oA4AgCLYFQfA9APenvzpUKaXfLNtPTF8bd6MsXd7SIAhutdoQjVJqFMKbgM0AjtdvlKXX8TBS299uPrAEnAdgRHr6N0EQ/DBD2yMIgs+QCp18Kf3VaRlypsl2vTLuRlm6vNeCIJjhXm0iIiIi6ig+WUZERJRfX1FKybxfJUiFXh4JQCa4XwTgBxl+f56Y/qHF+q4HcGJ6+ngAz4l5xWK6h0VZrs4Q0zOCIHjdsOz/IbVdxhcbJGBHu24GcLVpwSAIWpRSvwNwF1JteCyA/xGL5KpdiYiIiMgD3iwjIiLKr2+2M78FqYTv3w2CYKWcoZTqAeCQ9Mf3giB4x2J9r4ppPTn/AjF9jVLqrSAI5luUma3PiekHYpcCEARBoJS6H8ClCdQjo3SIaX3649wgCDZY/OxVMW1q1xuVUl+x3FdERERElAcMwyQiIipszwK4RL9RljYSqWT4ADBEKRW09w/RFwTUauU9CeCV9PRuAOYppRYopa5TSp2olBrgaZtGiOlXLZZf0P4iXu0rpj9v2a5viN/o7Xo3gGXp6f0ALFZKzVVK/UwpNVkp1RdEREREVDB4s4yIiCi/Ph8EgQqCQCF1Xu4HYCKAx9LzjwTwQvppJ11Hb7L0lB+CINgOYBKAp8TX+yD1UoD7ACxXSr2llLpKKaXfEMpGbzEdmxdNWN2Bdbnw3a4bkdqn/0l/pZB68+WPADwMYJVSar5S6hKlVGUH101EREREHcQwTCIiogIRBEEAYGX639NKqRuRSnA/CMC9SqlDgiDYKn4iz+OLAWSbcD/TiwBWADhKKXUwUm9xPAKpG2Y78m6NBHAlgIuVUmcFQWAMo/Qk1wn+ZbvORepGYTY+1L8IgmBxOjfdRKRyxh0OYE+ktk0B2D/973tKqVOCIJjtUnEiIiIi6jjeLCMiIipclwCYAGBvAAcAuBjAtWK+fCpraxAE1/lacRAEcwDMAQClVBVSudGOAXAaUmGGlQDuUUrtFwTBG7EFZbYOqSfogNRTXO3lBLN50isQ08aba0qp8nbKku26yle7pm+GPpn+h3T45WFIPc13KlJt2g/Aw0qpEUEQrPKxXiIiIiLKDsMwiYiIClQQBNuQumG2w2Va+OM7SL0AAABGKaVkeKPPemwIguDxIAguBDAUwIvpWd0AfMOhyLfF9L6xS2W3TKOYrmhn2cHtzF8kpg9WSiVyvRQEwZogCB4MguAcALsDWJqeVY3UTUkiIiIiygPeLCMiIipgQRA8CWBHSF4VgB+KeesBzEt/LAZwZg7q0wjgBvHVSIdiXhDTU0wLKqVUe8ukyRcgjIhdKuXoduYvBLAiPV0D4DiL9XdI+gUOfxJfubQrEREREXnAm2VERESF72ox/S2lVH/x+SYxfUXMiwAySt+I6qjNDr+5Q0x/VSk1yrDsNADDLcr8j5g+MW4hpVQvRJ/WayMdLvl78dVvlFJ9LOqwYx35alciIiIi8oA3y4iIiApcEARPIXwaqweAy8TsGWJeHwDPKqUmxpWllCpTSp2glHoGqYTyct5vlVLXKaX2Mvx+VwCXi6/+bb8lKUEQvAlgx4sBuiGVo2uPDOs6FsD/IJqPLM5DCENST1VKnZChvP4AHkHqhQntuRHAkvT0UAD/VkrtH7ewUqpSKXWGUuo/0HKsKaVmKqWuUEoNMfx+FIDviq+yblciIiIi8kOl/ucpERER5YpSqgHAbumPnw+CYJbFb74I4J/pj1sADA+CYFl6Xh2A55DKe7XD60jdcPkYqf851hfAaAAHIczpNS4Igh1hnFBKTQdwVvrjuwBeAvAegI1I3YgbiVSS/25imTHp0EzElJNx+9I3ruYD2PGU3BYADwN4DUApgEORerkBAPwGqZcbAMDtQRBM08tLl/lHAOeKr/6B1NssAWAvAJMBlAO4BuENv/eDIKiPKW9PAM8AqBNfv4TUzclP0vWsReptoQcC6J5epjYIgtWinFlIvVUUAN5AKnT2A6SeHqtBKifb5xH+T8w5AA4LgmDHzT8iIiIiyiG+DZOIiKgTCILgCaXUXADjkbop898AvpWet1IpNQ7AHwF8Bam3Qe6d/hdnOVJvpZS2iulh6X9xXgZwsn6jzFYQBB8rpT6P1JNew5HappPT/3ZoRuom2esIb5aZXILUDcMj05+/lP4n3QDgCkSfjour41tKqQMA/BnAUemvD0z/i/MOUjf+JNmue6X/xXkcwGm8UUZERESUP3yyjIiIKMdcnixL/+4YpJ6WAoBtAEYEQdCgLbMXgKlIPck0BKknwpoBrEXqLZQvIfWE2rNBEGzXfluE1M24L6T/uwdST1WVA9gEYBlST4P9FcDfg5iLCJsny8SyZQC+DeC/kErM3x3AR0g90XVzEASvKKUmpD8DhifL0uUVAzgbwBlIPfHVE6lk/XMA/CEIgmfTy+2oe+yTZVq54wGcCuBwpMI4q5G6CbYKqbdnzgHwjyAIXsrw227p3x2J1I224Ui1aylSb/H8AKk3jM4IguBf7dWFiIiIiJLFm2VERERERERERERpTPBPRERERERERESUxptlREREREREREREabxZRkRERERERERElMabZURERERERERERGm8WUZERERERERERJTGm2VERERERERERERpvFlGRERERERERESUxptlREREREREREREabxZRkRERERERERElMabZURERERERERERGm8WUZERERERERERJTGm2VERERERERERERp/x9mpw8PU/bsagAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], "source": [ - "plot_map_with_regions(preprocessed_data, each_img_enl[labels.index('2xtj')].reshape(input_shape, input_shape))" + "## Region importance" ] }, { - "cell_type": "code", - "execution_count": 26, - "id": "951ea36c", + "cell_type": "markdown", + "id": "34fbd242", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZgdVZk/8O+53encNJ1OJ+lAEwJ0IIYAAQKEIA6yiRuCI2IEZ0Bw1OC4og46riiKy+gobiOKC7iACKi/kUEUFBRElsRESGSRJQkBQtKEkDRJJ+nu8/ujbne9de6t06dOn7pL9/fzPHlyb1fVqVPbqerq875Haa1BREREREREREREQKHWFSAiIiIiIiIiIqoXfFlGRERERERERERUwpdlREREREREREREJXxZRkREREREREREVMKXZURERERERERERCV8WUZERERERERERFTCl2VERDWilFqtlNLi36dqXScKj8eZxprxeE4rpU4wtlkrpbprXS8iIiLKB1+WERERERERERERlfBlGY1bKX8lHvr3r6Mo99QK5Z0QruZERERERERElBe+LCOq7DNKqQm1rgQRERH5UUp1849XRERE5IMvy4gqmw3g/FpXgoiIiIiIiIiqiy/LiNJ9QinVVutKEBERUW1prW/TWivj3+pa14uIiIjywZdlROl2B/D+WleCiIiIiIiIiKqHL8uIknYZ3/9DKdVZk5oQERERERERUdXxZRlR0veM7+0APlqLihARERERERFR9fFlGVHSjQD+ZPzsnUqpfWpRGSIiIiIiIiKqruZaV4CoDv0ngDvF94kAPg3gLbWpDqCU2g/AoYjyqE0H0AtgA4DHACzTWg/mvP49ASxENEroZEThquu11j/yKGtfAEcB2AfAJADPA1gF4C9a6z7HMmYBWARg31IZPQAeBXC71npn1jqlrKMIYC6AeYj2ezui7d4EYCOAe7XWT4dYV71plGMk1jUTwJEA9gDQCaAP0fWxFsDdWmszvHq062sG8BJE18OeAAYAPA1ghdZ6Zch1WdY/dHxmIDo3h87Lv2qtH8+7DlmVrqdFAPZCdIzaAWxDVO+HAKzSWm8NsJ6x1FaOuiyl1MGI2rGh/bEV0XnyEKLzVWetV0hKqd0QtbEHIDovJiO6fjcBWI/o+t1UuxrmR1zH3Yiu490QtZMbEF3HT1ShDgsALEDUdmpE58Y/ANylte7Pe/0+lFKtiNrfuQA6AOwA8ASAO7TWT2UoYxGAAwFMBfACgKcA/Elr/UygeipEbfQ8RPfBKQAmANiM6Px+AMD9VWiTCgCOAHAIonZgENG2/gPRc0xN2wAiorqmteY//huX/wCcgOjhUP47tTTtV8bPBwAc5FjuqRXKPcGjfh0APgvg4QrlyX89AH4E4ECPdZxnlmdMXwzgrrR1ZyzrnwHcbdmOTQAuBjDJUt9TAPzZUsbzAL4AYDfPc2JBqQ63A9g5wn7XiB42Pwagw3N9q43yPpXzOd/wx0isZxKACwH8bYRjtAXALwAcHWD/TQPwjdI1l7a+RwG8C0BT6OMM4GUAflnahyOdl58A0Jbn+eRQ3yYA5wL4PaIXILY67wJwB4D/ADAj43o6MLbaSueyUur6IgDfBbBuhP2xoTTfvh77w+ucBqAA/BOALwFYiujeaqvjIID7AbwblnbHWMcJI5Tp8q/bsdyy+RzqdySAnyN6aWKrw/2I0kC0eqzjNqOsK8S0FgAfALDGsu7nAVwKYFqebUSFepv1OE9Mmw3ghwC2p9R5AMCvAcyzlL8vgMsRvURPK+NmAPM96z8dwNsBXIvoxeNI59lmAFcBWOC5viuM8m4T01oBfBLRS+e09T+B6J6e+RzjP/7jP/4bD/9qXgH+479a/Ut58B16WXYQyh/if+VY7qhflgF4G4BnHR605L9+AP8DYGKG9ZxnllP6eQeikFTrOh3LKgK4OsN2/BVAl1H2JAA/yVDGA2YZI+yHiQAezLi/zV8sXu9xDq42yvlUzud8wx4jY12vRfSQn/U4/Rz+LzZPQ/RywXVddwPYM8RxRtSD4maP7d0A4PQ8z6kR9tc/PK+nHRnWM5baysxlGeVOBvAdRC8eM+1vRL2nVYb9kfmcRtTLxvaCZqR/TwE41mE9J4xiHUP/uh3LLZvPUq92AD9F9AIw63afkfH6u80o44rSz/cHcF+Gda8HcFgV2w1z/eeVfv6viHp/udR5G4DXVSj7TYh6VrqUsRPAGzLW/bPIfu3Jf99DhjaptM4rjDJuK/38QGRrfx8F8OJqHWf+4z/+479G+cecZUQVaK3/jqgHgvTPSqlj8lyvinwB0V8+p2VcvAnAvwP4rVKqYxR1aANwC4BX+5YhypoA4H8BnJVhscMB3FAK24JSaiKAGxA9LLuaB+BmpVSL4/wTEIUB+WoHcJ1S6oJRlFETDXSMUFrXuxH1rpqVZbmSxQDuKIWIZlnn6xH1TpuRYbFFAP6olJqeZV0V1n08ol5GJ3ssPgPRefmB0dQhi1Ib9gkA/w/AHM9iRjwnxmBbOaqySuf0HQCWIHuKjRZEPVB+lvV6zKgd0QszX3sC+INSanGg+lRNKaT2TwD+BVHvuiz2BHCtUuqDo6zDXEQpJg7JsNgeAG4rhebXhFLqLYj+ENPquMgkANcopf5JlPF2RC8q2xzLmADgaqXUcRmqOg+jS2/zVgC3Dt1XfSml9kd0rmVpf/dDdD9+yWjWTUQ01jBnGVG6ixD9JXKi+NkXAByf4zo/BuDDFX7+OKIHvTsR9RbpQPSXw7MQhbRIxwP4f0qpE7VfLoxvIwoTGXIzol98H0IUhjcD0YulcxzK+i8ALy993gXgOkQ9Jx5H1Jthb0Q9UN6M6BfYIUciCrH7DIBvAjjJKOM3pTK2l8p4bYUy5iPKP3exQz0ljegv739GlKfrUUShfNsQPWjvhSj/xxlIPowqAF9WSv1Va20OElHPGuYYKaXORhQGaXoGUSjLrYhyh+2GKBTtDACvRPKX04MB/F4pdbjWepvDOhcB+BnK75fPIuqNdzOinh+7ITof3gDgVaV5XoQobMhL6Re136H85dE6RL3k7i6t+wVEbcIhiEJpTxLzFgD8t1Jqjdb6et+6ZPAFAB+q8POtAP4P0QuhNYj2Xyui9uRwRO3Y8XB/LhlrbaV3WUqpGYi2d29jUi+ia/EORO3Y84jO0/0AvALAGxG9FBjyRkT77D0O9R2tAQD3IDqHVyE6J7YiCtdtQ5TH6yhE19NMsdwEAD9QSt2ntX4opeyNAIbO9VaUv4D8U2kemxectsJB6eXH7xC1d6abER2jhxFt/56Izst/QXK7h+4vz2utzVG7XUxGdP3tXvq+CVG7diuAJxH1ttwHURj9m5G8DjsQ9Xp6OapvIaIXwEOWArgGwApE29AB4BgA70Ryf7UA+L5S6hBE+c3+B/F9YBmi9nM5onZoSqmMdxllNAP4rlLqUJ09z+YGAH9AFEr7QKmuWxCdv9MQ3YdeiaitlvfEYxDd496ecX2yztciyv8HRPfjXyD6g9gaRMd5X0QREG9A9GJxSBuA3yilDtFar/VcPxHR2FLrrm38x3+1+gdLGKaY5ysV5jllhHK9wjAR9USp1IX/87B0zUf0C06lHEYfdVjneRWWG/q3Fg4hLyOUNRRushzAAZZl/wnl4RGbET3MDX3/K4C5ljJeivI8JM8BKDrUvQ3A3wG8F46hgYgevM9B9AAs1/kAHMOZUAdhmA10jLpTzvMfAmi3LHcSol8GzeW+67DOFkS/7JjL/hJAp2W5kxG9wDP3sfNxRvRL7VPGclsQ/eLYNMKyx1fY5ucB7J3z+XVGhX2lEb0IGjEPGaJ8P+8DsHqE+cZiW+lbVgHRixjzmr4UwOQRlt0XlfMLvtZhvas9zumDEb0gewuAqY7b1wzg/SjPIXmT4/LdFbbvBM/z+4QKZXU7LPeNCss9DeDllmXaEOWTM5frhaWNFcvfVuGcGPr8fQBTLMsuQLL9Gvp3lM9+y7iPzXUO1Xs7gDdblpsM4I8Vln87osE9hso4Z4Qybq9QxlmOdf8+opdyC+H+DHAQohfd5jqdQiJRHoYpj/PfARxqWXYuoheH5rp/k/dx5j/+4z/+a5R/Na8A//Ffrf6lPPiaL8s6Uf7L1QrbgxD8X5b9pcJyI/4SV1r2pShPersDwB4jLHdehXUOPcjvm3F/ppW1EpYHc7H8OyssO/QL0n2wvBARZby7QhlvzPk8WoTyX+Re7bjsamO5T+Vc14Y9RqicU+07jtt9ICon5V8wwnLvrbDMDQCaHdZ5GNIT8Y94nBH1+pDLPDtSfY3lu1GeY+3rOZ5bbaicO+wdHmVZ9y/GblvpU9Y7jDIGIZKiOyw/EVHPM1nG3xyWW+1xTjvnRKuw7OkV9teIg+6gxi/LEIXmmS/LNwE42HGd36ywzl85LHdbyjn2Vcf1vqLCsv/je/wy7ONKdR4A8AqHZfdA+R+vdooyXuZQxp4o/6PQjY519zq/EfXuMtu0axyXvSJlnz2OUs7MEZafhuilmrn8qT7bwn/8x3/8N9b+MWcZkYXWugfAl40fH4YoRCKYUqjXi40f/1Fr/TmX5bXWtwO4xPhxC6K8PD7eqbVe47msNAjgX7XWzzvM+z1ELxekCaKMLQ5lfLdCGcc7LOdNa30PgMuMH2fJ/1VrdX+MlFJ7IerBJj2M6GXWiLTWDwC4oMKkSj+T3mF83wzgLVrrfod1/g1RqGBmSqk5iPKrSUu01itcy9Bar0b59r11NDm6RvAOlOcO+6bW2rw2RmTbv2O4rcxcllKqCVEotPQtrfUVrmVorXcAOBvRS4UhhyqlXuFaRoZ16VEs+0tEIx1KZ46uRlXxXpTnKPug1nqV4/LvR9RbWTpNKbWfR11WoHKIdBmt9e8QvcCRsuTvCunSUn2stNbPIArBlobCjL+itf69QxlPI8qPJr1UKTXi70u+57fWejuiEFDpdaPMXbaktC0jrXsTop6eZt3fOYp1ExGNGXxZRjSyryDqoSFdXEqMHspbK/zM/CVoJP+FKHRCeptHXf5e+sUkhBtKLw1GpKOcIJUeZn+ttb5/FGUc7rLsKP3K+J7rQBCBNcIxMnPoAMDHS7/oO9Fa/wRRqKl0llJqt0rzlwbzOND48aVa65FyHUnfRhRWl9X7kLw/36P98o39DFFvpSGtiHrH5MF8cdkDx1/MMxqrbaVPWa9DlH9syA5EifozKb1YNdd9StZyquBXxve6bmdLzwhmjrlViHoDOdFa7wLwEePHBQD/5lGlz5fKc2WeE/OUUq5J9kPZCeBLGea/MaUM84+eWcpog/9gJU601n9FNMLzkBZEuVF93Ka1vjnDuu9G+bX1ytIfqYiIxjW+LCMagdb6BURJzKX9kEw6O1rmX2xXaa3vzVJA6SWE+RfRvZRSszPWxfzL7Ghk/QW/0l/bR1vGaEZfc/WE8f1FSqn2Kqw3hEY4Rub1sQlR8vOsfmB8n4gojNZlnUD5CLlWWusBAD/OskzJq4zvV3mUAR0lrb/N+HHw3iFKqQNQnlz+8lKPidDGalvpU5Z5nvxGa/2c5/r/YHyvVS8iG7OdPbLiXPXjCJSPvniFRw+k/wOw3vjZSzOWsQPZ20zzjyhNiMIUq+nPWmtz220q3Z/uKPU6G00ZtXiO8D2/M92nSq40vhdQPiAKEdG4w5dlRG6+gygHhPSJtF4pWSilpiIa5Uxy/qug4bcVfpb1r+93e647RFmVeu2MtozML62UUpOVUmcrpb6hlPqjUmq1UupZpdQupZQ2/yEKCTR1VvhZParrY6SUUgCONn78J519dDIg2/Vhhvo9rrU22wAXI4b+SEqpmSjvxbDUY71D1hnfzd5yIZxQ4Wc3hF4J28oyZvhyvZ8nCUqpTqXU25VS31FK3amUWquUek4p1Z/SzpqheNNKoaj1qtL5lPl8LYUlmy8zFyqlsoxovyJLT9ySSi+YpmQsY7Tq4f4EZHyOUJGXKqUuVkr9Sin1oFJqvVJqW6Vzu3R+v8QoZkbGeg/JdM8p+QPKQzHN+y4R0biT5UZLNG5prXcppT6JZC+RPRDlE/nsKIufg/KcJn/1LKvScnMzlvGg57orGTFnhqG3ws+y/FW5UhnmX/ZTKaW6AHwOwJsAjCZfCABMHeXy1VLvx6gT5fvS9/p4BFECaPmLT9r1Mc/4vsJznVmXqxR6c0f0zjCI6aEKEg4yvu+C/zGyGcttZaaylFJtAF5k/PizSqnR3o+GFJVSrVrrbYHKG1bKyfdfAE7D6J9DOxANLFGPzOOzA5V7Lbn4K5K5UlsBzEI00IKLrO08ECW6NznfTwOph/sT4LjdpdxmSxCFzo62N5rPM8RzWuvMof9a661KqccA7C9+bN4DiYjGHfYsI3J3FaIR/6QLlVKj/eWz0gOR+Vd+J1rrZwH0OZRvs9ln3SkqPWzbVApPGW0ZTm8ZlFKvBvAQomS3o31RBlT/lwpf9X6MQl4fGsBTDuVX+rnPL5sohcVlCUfMu0diHi9xzTZwg9babIdCGMttZdayqtFzNfi5opR6C6LRd09HmD/Y1nM7a+6/Z1wGB0lR6TzPcnxcBl8xDVb4WbV/b8h0b0kJcQ1RxojbrZSaBuDPiHJVhgjb9Dm3ve5TJa73RiKicYM9y4gcaa0HlVIfRTK8qB3ARwF8cBRFV3og8XmwHfI8ki97zBHqrEo52oIYzehnIcsYiVLqRETJjCemzPI8onwiGxD9gt2H5AufVgCvNosNXM1cNMAxyuP6kNKuj47A65zkOG8ePb+kkAOTDDHrvDmHdQBju63MWlbe5wkQ+FxRSp0N4PtIbxt7ADyJKAxuB8pfZs5AeS61em5nzfM1ZLsFZDtfc7+P5iREvavxDNGKKJTxsJRZdiI6t58E8AKiP6AMGPMcj+RLcJ9zO+Q5xpdlRDTu8WUZUQZa6/9TSt2OZHLddymlLtVam8lZXVV6IAr5cNeoD8lVoZSaCOBylL8ouw/ANwD8fqRcVaXE4I/lU8Nxr16uj9GsM8svPS0VfvaLUa5fMkf2zUNebU69nAv1oNJ5cjvCHt9gLwOVUjMAfB3lx/AOAP+DaAQ/a6+Y0h81zNxd9czc1tDnVyOdr2PdR1H+oux5RPlufwHgryONRKqU+iNGP7BGte5TRETjAl+WEWX3n4i62g+ZCODT8BvKHYhG9jONJomuuazv6GjjxVlI5ukAot4P78gQMlPtpMfjSa2uj82I8hKGWGeW5NCVtve9WusnR7H+vJk5o/LqkcC2MlZpX3xHax1yhM6Q3ony8+LTWutPZSij0dpZ8xiFPFeBxjpfxyyl1CRE+WulxwG8LOOgMCHO75D3KZ5fRDTuMWcZUUZa6zsB/K/x4zcrpcwk164qPZDs5VNQKX+amW+LDzx2rzW+rwbwzoy5ZRpl5MtGFPL6UABmOpRf6ed7eq6zA+4hmEAUimbaz2fdVWS+LNu91GMzNLaVsUY7T8x29s6ML8qAxmtnzfNpj4wjWEqVzvNGOl/HspMRpWKQ3uExenKI89vrPlXiem8kIho3+LKMyM9HkUx+2wTgEs+yHkF51/lKI+K5qLTcw55ljReHG9+v01rvzFjGkaEqQ2V6UP7Q7nt9zEH5X8/Trg9zdMIFnus0z6+RPFThZ8d7rrtazBH+JiCfa4JtZWwTyl+Y1eV5UnpJfajx46s8imq0dvYfxveJKB851pW57dvgObgFBWe28RsB3JylAKXUHvB88W+YqpTKPLiAUmoyyl+2hxztl4ioIfFlGZEHrfUqAD82fvw6pdSLPcp6DuUPJS/3rFql5e70LGu82N347pN77GUhKkLlSoMH3GX8+DilVKWcTSPJcn3cbXyfXcpNl9VJWWbWWq8EsN748T97rLeabqvws1NDr4RtZax0Xfze+PFxSql6TMo9HeVpP3za2UzXUkmlER2rlZup0vl0ctZClFJNAE40fnzvKEbWpLDMZ4jHPQa9CfkM4XOdnIjy68K8BxIRjTt8WUbk7yJEI3ZJX/As60/G9/lKqUx/RVdKTQBwjvHjJ7TWqz3rNF40Gd8zhckopebC4xcgysS8PqYDOM2jHDOv4A4A96TM+8cKPzs7y8qUUgWUX5Mufmd8X6iUqttzTGv9MKLwZentpVw+obGtjP3W+D4BoxuZOS9mGwtkb2dfDmCux7q3VfhZHudlJcsB9Bo/O8+jnFNQHl5nXgdUO6N6hih5V4iKlPjcc95sfB9EMjcvEdG4xJdlRJ601msAfNv48fEAXu1R3Pcq/Oy/MpbxHwC6HMqlpI3G96xhXV8DR5HK25UAzJHEPpuld5lS6k0oD2W6Smtd6ZdpaK3/AuAB48fvV0plySvzDgD7Zph/yFdRHm74tVKoTL36uvG9E8AXc1gP28rY1QDMESQvUEodUovKWPRgFOGzpev8y57rfr7Cz8zcTLkojX54pfHjQ5RS5ouJVKUcZ58zfjwI4IejrB6FYz5DHJjlDwVKqbMAvCRgfU5SSjn3LlNKLQRwuvHj39b5oDJERFXBl2VEo3MJgK3Gz96etRCt9VKUh2ycpJS60GV5pdQ/AfiE8eMdAC7LWpdx6K/G9zcqpfZ2WVApdRGAV4WvEkla66cBXGv8eB6il0ojKvX++1qFSZV+JpnXz1QA3y+FRY20zkNQ/kuuE631CgC/NH58EIBrlFK7+ZSplGpXSvn0OHD1XZQn+n+PUuodWQuyJUFnWxnTWvcB+Lzx490A/K9Syhzh14lSqkkpdWZpYIogtNYDAO4zfrzE5eVvqXfmt1Ge88x13btQ3uvxWJ+yPH0D5S8Kv6KUOtBx+S8DmG/87P95JI+n/JjPEJMA/LvLgkqpBQD+J3SFAFxeyoM20vo7EL14NX8fzKNOREQNhy/LiEZBa92D8r94T/As7n0o7z3zX0qpi209aJRSZwD4P5SHlnxKa73Bsy7jiTmyaSuAG2xJcpVSU5RS3wbwqdKPmDsmfx9FeS+RdyqlvquUaktbSCl1PIA/AJhhTPqO1vpvI6zzMpQnr38tgJ+XRlNMW+eJiEIpp5R+lDV/DQC8F+W9hl4N4J5S+U6UUguVUl8GsBZR6HgutNYvoPIfCr6tlPoflx55SqkOpdS7UJ4Y3cS2MvZtROe31A1gqVLq30ohpyNSSnWXXjg+DOBnAFKvKU9mOzsTwK+UUtMsdeoCcB3i8GnfdtbMvfQvSqmq5AHUWj+E8l6X0wHcYuv9o5TarXSPeZ8xqRfAh8LWkkbpDwBeMH72eaXUG20LlabfiuiPMECY54ihe81+AH6vlDJftMr1z0E0EIE5z++01jcEqAsRUcPzHcKaiGJfQZRvwkzymonWemmpp5LZG+UTiB7uf4oo0fkziH4JPwjAmQBeWqG425A9NGm8+gmATyIZLncogFVKqR8heph8AlF7uRei5LlnIjnM+2cRvzijHGit1yil/h3lo+i9HcCpSqmrEJ33TyPqXTMHwBmIXjCZYbIPAviAwzp3KqX+DcAdSL4Efz2A40vX5C2ldU4C8CIAb0DU23Bonf+H6JeRTOGYWusnlVKvQ5Q7rSgmHQTgD0qp5QBuAnAvojCgXgCTAXSU6nEEoh40cr3m6IlBaa1/qZT6EgCzl9e/AzhbKXUDov21GtFojq2IXmIeCuCfEF1bI77cYVsZ01r3K6UWI3ohNEdM6gDwfQCfVkr9GlH+oScBbEZ0rnYA2BvRSH5HI/uorVl9HcAFiM7RIScBeEgp9UNE5/nTiM71vQG8EtG1NDS/RnS8P+mx7p8gOv5DJiB6Ufc0gL8D2ILygQD+XWtthtf5+jCiBOqyd9xMRC8zfgvgekQvKXsRhQcfhyg/YqVw0fdqrR8JVC8KQGu9RSn1dQAfET9uQdQT+O0Afo7ojy7bEbV3CwAsBrBQzP8HRM8Yx42yOnciuv8tAHAwgGVKqV8A+H8A1iA6z/dGNADLG1H+h4MtAJaMsg5ERGMGX5YRjZLWulcp9VmU//XYp6zPl0JTPmJM2h/uvyTcBuB1WutKo4CRofRC5BxEv8TLXiltAN5Z+mfzVUR5aT6VSwVpmNb66tJof99Asmf0nogSm7skN18J4FVpucoqrPOeUr6znyF5z5yOqPfXey2LP4ooofdSl3WlrPs4RL9Mm6HBhyP/Fxw+Pozol0KzvZoM4E2lf6PGtjKmtd6klDoWwDWI8mZKsxC9rHQKC8uL1rqn9OLgZ8akTkQvV0cKo70AUSinz8uyGxGNHGqOOLgnyhPnD/kPlOei8qK13qGUeiWA3yB6iSG9svRvxGIAfEBrzVxl9emzAF6B8ryYJ2PkAYAeBnAWylMN+OhH9BLsL4juUS2lss9yWLYXwCmlfLxERASGYRKF8h0AQXKIaK0/CuBtiHpeZDGAKM/Eq7TWlZIaUwqt9e2IeiFl2W/9AD6mtR6xhxKFo7X+HwCvA7DOY/GfA3hp1sTFWuvrEZ0fWX55Xgbg+FKotjet9b2Ieon9FNE17ut5AL8YTV1c6MhFiHoF+f7SZYY0pa2LbWWJ1voZRL+UfxpR7xBf/QB+jWxtoROt9TWIjpc5irTNNgD/prX2/mNU6WXoGwH8yreM0dJar0fUa+inyB6W/RSAN2itLw1dLwqj9MeX1yD7CJJ/RHRPCtWLEVrrfwA4AeW5+mweB/AKrTVHwCQiEviyjCgArfVO+P3FO6287yPqIXEJRs7f8yyAHwOYr7V+l9Y6yy8iVFLK0XEYolHxbPuwD1HviCO01l4J3Gl0tNa/RhRq+CGUJw43bUX0kujFWusztdabPdf5vwAOBPBNlCeyl1YDeH9pfUFGE9Na92itzwZwAIBvIeqx5mINolC8xQC6tNZVy3VUesE4F1HPzL9g5Bd9OxD1/nkXMoxWyLYyprXu11p/ClHo7ccQvbB1ecH6HKJr5B0AZmqtX6u1NgeuCVXH7yMKP7t2hLptBXA5gIND9KbSWm/SWp+OqOfPFxH1JH4ClUMwc6G13lq6jo9CtP0jvZBchShX44u01rm/6KbRKb2wPhFRb+OR/lDwVwDnAjgxj3yJWuuVAA4B8BnY/8izDlGvuPmlEaCJiEhQWvvkHSaiaiqNbHYYonwX0xF1l9+I6JfmpY0eRlRvSsO+vwTRC5lpiH6ZehZRuMQ9WuvtNaweGZRSeyH6JXgPRGFdfQA2IEpqf1dpRLyQ65uAKMfWbEQ5hgYQ5VtaobW+P+S6LHWYhSgMsxNRmzAR0QuG5wE8BuCB0fZqC0kpNQVRbqwuRO1YEXE79hCAv4e4rthWJpX2+yJE18Z0ROGwLyA6V54A8ACAJ3QNHgaVUu2I8up1I0py3o/oun0Q0bEKet3Wm9Kor0cjerk5A1EOv2cR7YO/aq3X1rB6NEpKqYMRvRjuRJQbbCuiP6YsDfWHFKXUFYheug35o9b6BGOeAqL746GIzrNBRPeroecZ/iJIRJSCL8uIiIiIiIgaiMvLMiIi8scE/0REREREREREGc1Rym3UqDr3NPBbrfWral2PesKXZUREREREREREGW0DcH6tKxHAp6KwcRKY4J+IiIiIiIiIiKiEL8uIiIiIiIiIiIhKGIZJRERERERERJSRAnsgjVU8rkRERERERERERCV8WUZERERERERERFTSMGGYSil95JFHZl5u2bJl8FmumtasWYN99913dIX09ye/KxV/bmpyKmLHjuT3lpb48+BgcppjkZTBwEDyuzyE0jZjbGJ53CZOTE4rFuPPzebVrnX82TzAEg82NQh5SgPJa8g8xbdvjz8XCpV/DgATJqSvT5Yvrz3zkikE/rOU2VbI8tPajVDMfSzlve48uG6PnM/c/5J5rOVy5v5JKz/0+TIW2I6TVO3zP/T6du1Kfre1P7Vi7gPZtprT5HOH3LadO9PLlM+eANDSLFZgu4iEPNpI27Wct7R1T58+Hc8+++zw97a2tuMXLlzoeLXUxli7h5Cb1atXo6enh0eYGk7DvCwDgKVLl2ZeRinltVw1nb9kCb5z2WWjK6SnJ/ldvCUZbGt3KmL16uT3WbPiz319yWltbfHnAuIHmUFLZ0U5Xx6yrNs2ryvX7XbV25v8XvZyq8Q8neVx6+5OTps/P/48rcPY//IFq3mAJXGws2ynz/EOcf7kUcfQ50sosl55l28KsT6f+tvqZP7NQF5D5il+//3x50mT4s8rVybn6+pKr4t8Gb3//vHnyZPT5wvBbCtk+YlfLAOR+9zcx1JamzUS27F3PQddzyWzPNftkfOZ+18yj7Vcztw/aeWbZdjuNaHbWVPe920b1/NOqvb5n3bO+z5zrF+f/J7W/mQ5LqHvXzv7k+XJttXcPx0d8We5bU88kZxPvtySz54AsE+n+Auh5SKS22lrI7O0U2nbbZbh2ub43uds7Ygr32s5xPkj2a5lef2GaOvy4Ls/Qtff9/ms2vt1aH2LFi3MdT31gH/nGpt4XImIiIiIiIiIiEoaqmfZWKWhht+82/4aaX37L7t6ARgstg5/ln/1M/9ivXkzKs4HAM89F382u7Qn/0pXvd4t3vvHwvcvfaF79bS1uf0l8dhjk8uZ353JQh27vuTRQy8En94n5nffY2j7q7q8LPPopRWiV0mIXit5bFtambbyZFsEJI/HI48k500LpZM9IaIyU1eX+hfyLD3JfHqoGs2981+RXXvFZGErw/nYB+g24boucz7znEnj2rPJ7OQtmT1mkvWIP9u2Je8eRfXSe8Nk6yW6dWv8ecaM8L0mZBnm+RJ6f9l6svr2XgrdC968RG29LuW8ctvMUPVHH40/m+kkEg+qjg202Ub6ct1frvvfV1ovVHOa7RnNdVuqff5Itt57jc77Ocn2S1zqbOntVO5tfNkJ2lJ5PqIGUR+/6RIREREREREREdWBMfbenoiIiIiIiIgofwrsgTRW8bgSERERERERERGVsGdZHVDQqTHkzjkqjDh2uZyMXTdHepPM/ABiNOqyMHkZGx8qN0Qa1/wt1c7FlDZflrxetjwCabl0soxG57wPUkaUMoXIlxMqH0+I5ZKpkvz+diCvDfPYyO/mtNZi9pH8bPLIH5f3aJihR/IzR5KTx0aODAsk20LZhpltXVn+HOFFL4o/m6l0fBT6dyZ/kHJdhjjfTa6jCNquE992NfSZm6W99833lsbMWeaaa2ifWWFHlzUFyTtkJqR68MH4c2dn/Nl8KJDTAjDvc2n5B6uhmvc5l/WOdt4hWeov862a7WdaiiU5AjGQzOc3daoxc7MlkVuKUHmZ5L7zzaHl03Znyc1ZL0LnNjPl/TziyvUZP8vvAtZzRNw45Hxm7sZq5nhz/X2ibBpRA6rPFpeIiIiIiIiIiKgGxv3LsqamJixYsGD43+rVq8vmOe+88zB79uzheV7ykpcAAK644goUCgXcd999w/POnz9/uIzu7m4ccsghOOSQQ3DQQQfh4x//OHbs2FGNzSIiIiIiIiKinBXGwD8qN+7DMCdNmoQVK1aMON+XvvQlvOENbyj7+axZs3DJJZfgmmuuqbjcrbfeis7OTvT29mLJkiVYsmQJrrzySuf6+Q5Hndbd1wwDkV3kzS698vv++9vrOdJ6gWz19em26xsimHfoX4jybaEAtlC/FsuQ4i7rNdcth/U212fWy7VLeIjQId99bBtyPZWxkwfFsNi2Y2NO29ZXOXTF91qodlhkHmEWUtqx37w5fRlbuLj5dxAZKSajyw4+OL38yZPt6xs1x4vG9xzxvUZdeZ8TjhXxueeVyRDHLtcnQ81sRXYZEWNNTfFnM/QsrSpZ9mPoe6W1nTXDKxcurLic7R6Spb6u90BbCHSIe31anczysywXuh61JI+Ha5uyfXvyuwxfNo9ns+Xa85HH9eX6fGI+Q6U9g9jaeNs5WO3z0TWFjC18UJL7w3avN5uiEOkBfKWVL5/xgGSaiN12S84rny1aLc8V8p6xbl1ymrz35JEeJ+9nPqJ6xTN/lE499VSsWrUKDz30kHW+trY2XHbZZfjVr36FTZs2Val2RERERERERESUxbh/WbZ9+/bh8MrTTz89db4LL7xweL5//dd/Hf55oVDAhz70IXzuc58bcV3t7e2YPXs2/vGPfwSpOxERERERERHVTq1DKBmGmQ+GYY4yDBMA/uVf/gWXXHIJHn/88RHL0VpnrSIREREREREREVXJuH9ZVslb3vIWLF++HDNnzsSNN9444vzNzc344Ac/iC9+8YvW+bZu3YrVq1dj7ty5znUJEWtvy5skc0PYYtzN/BJpuXqy1FfmbjDrFTrPiC9bDonQw7G7MvM4yFwf5nHp7Izr2FqsjxwnvnkPaplvJrHTjQNQ6OyMy2trT0yT57UtX6Ar31xV1dznZj4SW/4NH2Y+G1v7Jg9VWR4cjzw7vjZujD+/8EJy2qxZ8bFpaR79OW471iG2M0Reu1Btulf5lp2QJU9Qssh4OdEcALDnlAxxPHxyOYbK/yjLSV6H1f37dPDcgRYh8qvWUz2qnetyyIQJyfrLY2i7LoLkLcxQZugyXNv4PM6rWh1rk+16lflDzWcJ1zxc9ZLPr/x53H3etImynZU50MzyQ7Tj112XnE/mff3P/3Qunqjh8WVZBT/84Q8zL3Peeefhv/7rv7B169aK03t7e/HOd74Tr3vd6zB16tTRVpGIiIiIiIiIiHLA8FRHMmfZggULsHPnzsT0lpYWvPe978WGDRsSPz/xxBMxf/58LFq0CPvssw++853vVLPaRERERERERJQDhdrnG2POsnyoRsmhpZTSPnVVStV9nrDzlyzBdy67bMT5Qgzba3bblV1uzS7CtjAlW+iTK9cyfLtUhwo1Ge26Qqw3rZu0+d3cj2nDkruuKxTXIdHzDqPwPifkTpZxAkAy1s/sSy/G8jaHEfcJHbKFkeZ9neRx3Gxcy7ed/77T0urhK+/2wbYu23b6rK/aocC2dYXer67blncbVk/toO3eI5tCM8xZyvsc9BHsGcAW6x2CjEWzPJTZ7gUhnoVCp8Yw74fyHDHD7eol3UC9pAcxhb7/5rFtrnWU54EZhinZnnVDpDMIIdN15/hAIq+bu+5KTps3L/48s2v0z4Pmo+4tt8SfX/+67OUvXLQIS5cuVV4VawB7K6UvqHUlAvgPYJnWemGt61FP+BKRiIiIiIiIiIiohC/LiIiIiIiIiIiISpjgn4iIiIiIiIjIA3sgjU18WVbnQuciMFNq2PKS2fjkwiovI+yQ91nknespRHmyXvKzud9cj0UeQ947lyHyMZh7bbC5ZfTlB2DNLyF3snkRyeRjZpIHsd2txfQcM5KZp6O1GDbfUhY+OaHMZWRKn127ksvNmBF/NvMhpbUP5nwyP4m5bnnYysuvWHwuQuR+cz2e69Ylv0+cGH82B2Ju8dgHhf7k4DbV3JF55MaTXPexbb4QbXC18yHZzkHzupFcU3SFPkWy7J+8z5lc8pRJjsktQ7f3ZnmubZgrn5ydldbtWg/f8yBtuTzut75C53SrZV5K2VaYuet8pdWrlu2sTdn+F/fcVrF/Nm5MPjvLnGW+ZB3b2pL1OPXU0ZdP1Ij4EpSIiIiIiIiIiKiEL8uIiIiIiIiIiIhKGIZZBzSUU/flLMOBp/Ht+p5Hd2Vbt/60bcsjlGpnf/p+tJXvGj4luYZa2oQ6Fq5d04OEseQcqhWijtb9ahvP3HZR9fTEnzs7k9NSwk+zXKO2czDtvPYdVt33vPMN1UrbtrJTyRLiK49Vc1t7snwZTigKzXIu+YRz5xH2LcucNcuvTNcQpkKAazlUGJ1ruH6IsPs8+IQ5h5ClPNd7oC+5D8ymVa7bt93yqUce54itfJ/7V5Y6us4rQ+Y7Okb/rJKlTvWYGgPIP7w1NNf2stppOXz2QZY6ynlzD712lGmf2hralGmnnZb8Lp8dzX0gM4SY4a2u6QB80jaMJwrsgTRW8bgSERERERERERGV8GUZERERERERERFRCTtV1gEF7dRdN0s4SlqXZ+/R1sz4CEmGqJkxZI7hTdUOS0gL65JhCECyu7ItDMS2bnuY5+hHv3Plu4/zHlUxRMiF72hu8tg7j4Zp9mGX14bZXd4MvZRl9m2Lv4jrxjUkOQvXyDnbOeIbtpH7qKsyvsA82LYQTXEcQ4cA+bZFvtdo6BCvegpn8gl3b8RQy1quyzfELvW8C5QvIa19ziMEUQoRohbquFfzXA41+qCPqo7ObVFPo1xKrueTOSC3vIZaxeN5tUNdfUIvyzNe5DsCvdQIo5uaI6Xbtkde23mEQNvUS1gska9x8bLs2GOOrHUVrCZO9EwkRkREREREREQ1w9eCY9O4eFl2x9cW1roKVud/bXWtq0BEREREREREROBLUCIiIiIiIiIiomHjomfZWOU7/LJPGWW5yGrEM/WJc8y8mbPDltPKdd+FrrPr8NmNIu9cNL77X7LWUV4bWa6TnK8pud2+Q8aHaGNy19Ex6iJC5+nIsj98cr/lUb6resrp49NGjjWu7WdV89BlaHRlGbacRNXOsZRWRjVzNVab7bD55kUMkjPXMl9amfXUTvnsA98cv7a8cyFyU4XIienK9ojk29b5Pgv5lB9KiPucbbtlruZpHVlqln3dRI2IL8uIiIiIiIiIiDyoWleActF43VCIiIiIiIiIiIhywp5ldcbWLThLt2PX7tyuXah9uyf7Dknvum7f+qctlyVkz7VLe+jhzLPsY5/u4nkPDZ53N/VQ10l/f/y5pdlSZzmj/Gx+N0+ulBiDvLusZxk2PPQ5nve5ZVtfiLAN2zTfMCXXfSLnk2ETQDL0prnZPbQkrc62+m/cmCxjx454mhkRaxuu3qVOvkKFYPmELfnei0PcH0OEeNUyfK2a6zKbatnG++6fEGFuZr3k9ewbQubTjvuGepvLhdgnaeVlKdP12nC9B/qGSebxnBS6jclShutzpE+7nsfvDK5CpDrwvUbNe+yMGW5lFPp3xl+MhmSw2Jq6XIBMFsl1sR8OjTE8o4mIiIiIiIiIiErYs4yIiIiIiIiIKCMFoKnWlaBcsGcZERERERERERFRCXuW1ZksuW76+uLPtiGWQ/DN9+BapmseBNu6XdeVpQyffEJZyneVR942H+X5VNLnrWbegjxy3Tjnr5Mz2hYyd141L+AcuOZyCZ0/JNSxziM3VtrPQ++DUDlGHnkk/tzbm54Tbbfd4s+TJyenTZ8ef3Y+jS3XQsEsxHJNpe3/UPnpqpnXUZZpS31oY9v/vnXOO6+prQzX4+uTq82WG8xGNtsAUCxWXm5bX/LnrUW3XGHPPZdej0mT4mkyH6DJN0diiBy5tjJtzP0lubYreT8L5Z0PzKe8UMvZygj9LJd3+XnXI8jvJ0YD1NffMvx59erkrE8+GX/evDmu44IFyfk6OuIyfPfoU+v9rkPbNFvbR9QI2LOMiIiIiIiIiIiohD3LiIiIiIiIiIg8sAfS2MSXZXXO1o03rft/ljJcw5tqOZx87nWUfZ6N+KNCd3dcfsc0t/J82WJtRChSiCGtsyyzsz9enxmCIsnu4aaurvizGe5SWHlf/GX9+uSCJ5+cvsLAbF3yN4lte/DB5HLz5sWfzfA1OQT41KktiWlz53g0v+Y5IlfY2Zm9PINv+I5UHmGXHvo0rUPsc3PnyR09Z078OcN21mMIqLyegGSUYVn5Ik6yIGecNStZx+b43DIvIbn/5XUIJEO5enriz2ZIxd57x5/N3d8CMVy9ETKZes6YoZXyxMgQ620L/w3NFsIntTSHD3eX7a5zeDjc908eYc4udaoGuW29vfHPzf1oNj+SDHt2DQn0jayfOjX5feXK+LO8fs0wTNsxtB17ea65hqKa5csQSrP96eioHD5uOw+ynOO2ejWyWj5zm1zXLe9tZhsmr4dahV2a686yT4Pvf+MkL4qvBx6YnFVeU+vWxZ+/8IXkfP/5n/HnaR1u900gef3edVdqFRPHUD6SAYD4ValMLY83UQg8g4mIiIiIiIiIiEr4soyIiIiIiIiIiKiEYZhERERERERERBkpsAfSWMWXZXVAQw3HdNtyTRT6tiWmFUQAed4x4aGHxc5SZuj5ysj8P2aQvm/yDME5R4JMGmRRMJOhyEQghmc2xuseGEhOk7mHbJspp23fnpy2Y0fl8gCgdd3D8Zdr740/v+hFyRll8gMj8YHtfErLn2buHrnPy/a/TAZx003J5cSGd5z95uHPMkeZWQ/zUMgcOSL9FABgzhyP/DDmgbIcex++15A8TmYVZW4d85glrg1zW+R5IQ9qhpxWNmnbmiVvW1oZ5vDrnZ3p+8davrwe5AkkTywk912/JSdaa/POxLTW/vj8nzk/LmOwrT21juXbHK9A5j4Bkse7ry99v3Z2xvkgzZxffrnyMuSFcySXc83tZLJtiyy/1WjDXPOTZlmfzzLW55Mccir5XKM2Zp4vydbE2OrkWhfX+cz2Ia0ZHKlerpI5y9zKN7dF1stIp+jcPLvmeAudh3KkMsdqHrQ88v/KY90IeefM7ZT3KzOHoWyDE7lWRyhTcj3P2o12qh3xvX/udZ8d/rzHu36UmG/FivjzCSe4t5GtxXjdr39d/PMtvell2J6zicYavgQlIiIiIiIiIiIq4csyIiIiIiIiIiKiEoZhlqx/dhsu+MqduPeBjZg4oQnde07GpR84BoedfT3m7duBvp0DmNw6Ae96w8E49zVzAQBX3PAQLvzG3dhrxm7o29mP808/EO9/06EAgMt+8Xd867pVaCoU0DapGd/9yHE4aL+pFdetoFO7sCZ+nmEscjMMaIgcerysfIPrUORymhEdZI0s7OqKy/AdZj1RLzPGS/QDLxh9wmX9B5tb4vnMHSTLcNxX3lFiZhxjGluBxsonT463TQ45DQBNTfHnGTPcVm3OZw3hkPEYctvMg+0ZTux7ziTIep16aups8th3dKR33TfrJMN+zKG1fUKbzVO8vz8+vu1tow8v82UL0ZHTzHAyOW2nET7Y4ng92K492R6Z56cMKZ40Kf5sG/LePL5p7aBZ9UQY4OZNSGWEoibaJnkCWeLEzPCRROjZ6tXJibKBFjurYJ5oshCzjRTTzP0ji5FVNiNu5f7xDQN05Rti5LqMb/ny/DfP1cQ5Yx4buTMdG0XfMEYzzFaG77gy1y3P1127kvNOnhx/dg1BLNv/Mn2FjFMyQ/67Zg5/Ltv/lueMgtgAWYbvuWou1/7IiviLbFjMeEePdQHu91HX67LF2HehU4SY9wmfEGtbiJ0tvMz3GPqUYfJddxrzWpb70TcUvtAvwvwtz+M7m1sTk557Lv48MJC+LtemzjesVp4Htnt4ELItAoAjjxz+mEy4A7R+5zvxl099avjjVEu4eAhlz5TyJp6WBwUoPzjBd179Yg+ksWn8nMEWWmuc/qHf4dzXzMXPLjkZALDi4R488+x27L9XO5b/+AwAwGNPbsHrP3wzBgc13nLaAQCAM0/eD9+88Fg8+3wfDlh8Dd5w0n7Ye482/Msr5uAdrz8IAPC/f1qND3ztL7jpa6fUZgOJiIiIiIiIiDwppQoA3gfgfADdADYC+DmAT2qtX3As4xQAHwdwGIAdAH4P4ENa68eN+V5TWs+hAHYvzfs4gB8BuExrbXlzGwZfggK4ddlTmNBcGH65BQAL5nZi7z2SWRb326sdX7ngxfj6z1eWlTF9ShFzZk3B0z3R3wTa2+IeAS9s74dSKqfaExERERERERHl6qsAvgLg7wDeA+BaAO8F8OvSizQrpdTrAdwAYBKACwF8CcBxAP6slJppzH4IgAEA3y+t45MAHinV4deqCi9Y2LMMwMpHn8OR89xCfo44oBMPrtlc9vO163vRt3MAh86JR/X61rWr8JWr78POXYP4w7fSQ7ykECOpAMnR11xZw0csoQdyWrvR/batOz7nAw1il87SL9u5636AkfV8R0pzXbf1OBllFMVXMwwwrYws56AZcpGoZ1F0tS+2ps9oIc8ZW3iclCmsSu4v1zBYgy0cQBZvdmlPCx+0nQa+oae+7UpottAkM4R79ep4mjx3bQOAtiA52uM0y+h3beIPGlKWdipt35lhLAnmBtiG3pPkwbeEQJgj/iXOmc7u5MS0kYDN+HlZiGVIQXN/yJBluZh5nCB2gQw9NdnOY9emO8v5HiL0yTWdgbX+cueZ+9/zviG5tv+29sd15GLbYM62a8963MSCBXPYYTl88fz5qRVxPi/MSor7RohRFTdtTu7HaSnDYYYKV3YdcVQ+8plNmM91Yi6zcWP8eaqRsUS2p7bnK9ftzHIJhQ4jNfe3fDa1PQfYpvk8ttqu5Syhron9I2c0drIs07x9yXBr2zOf63aGCLXPfTTPBQuS3595Zvhj669+lZi08/zz43oN6OHPXZa0N/J6AoA9ZmQfwbNsWyzHl8YPpdTBiF6Q/UJrfYb4+eMAvg7gLABXWZafAOAbAJ4A8FKtdW/p578BsAzApwAsGZpfa/2FCsV8Qyn1LQDvBHAUgHtGt1V27FmWkdbJ79fc8hgOPuta7Pf6q/G+M+ejODFuTN61+GA8+os34YvvPhqf/eFfq1xTIiIiIiIiIspTYQz8c/AmAArApcbPL0eUcu/sEZY/HsBMAN8belEGAFrrFQBuA3Bm6YXaSNaU/q+cED4gviwDcPB+U7HsQUsmemH5wz04sLtj+PuZJ++HVT9bjNu/81p88Ot3Yf2zZmpG4KyX749f/XF1oNoSEREREREREVXNUQAGYfTmKuUOW1GaPtLyAPCXCtPuAtAOYK45QSk1WSnVqZTaTyl1DoAPA3gWwN2Zau+BL8sAnLRwJnbsGsDlv3pg+Gf3/n0D1qzfmphv9VNb8R9fvwvvWTzfLALHHLIHznnVi/C1n0X5zP6x9vnhaf/357V40d5Tcqo9EREREREREZG3TqXUUvFviTF9JoAerfWOCss+WVo+PZ9GtPzQvJWWB4C9Kkz7IaKBBB5FlNz/HwBeqbXebFlXEMxZBkAphV9+8RW44Kt/wRd+tALFlmZ079mGS9//Ejz65BYcfs716Ns5gMmtE/CexfOHR8I0ffjNh+GIN/8CHz1vAb557Srccu+TmNBcwNTJLbjyohNS16+hnPIiZMslVTk3hO9w5mUJDmR+J0vOncSQ4jDni0+/0HkhTHmPXJx3/W3lp+W+MtnyKMky1q1LTpO5SuTQ2kDyNJjWkT5cetq6TOYyMj9JvYw+7Zo7B4BzpeViZu4uG3Of58k375mt/bGRecpkegxrGRlOkvR8Y8nvrvX3mQ8AIHJ0Oe8fsz0WyUpmzdo9MUmeW0/1tBjT4u9yH3d0mflV07nmaUru1/TjZLtH5Z1fz3aO29pW1zyV3rl0AjR+tnxRrvcveS8AgL6+eDlbWjtbfqT0cyRd2X6U+8dIzinn7Wtuj+tkrMv5WLjm6lm/Pvm9q8uv+Ob4B7Z7fR45+6z1qiaxLwvmhooEaq75Ds0iXPdJ3rk/XfOflq27d0v6jKJQ19yEpmTOQb+2TlbL3E45zZazTNbD1h6b56pruxL8/mJWUjzcbWmelph0x9L4vn3KWWclpjWLnGWSuZ0yDVqW/LY+210veXApFz1a64WW6a2IRqSspE/MszNlnqEk1pXK6DPmkT4N4DIAMwCciGh0zOmWegZTJ79+1t7MGbvh5587uezn2//01tRlzjv1AJx3avzibOaM3bD+N+cAAL72wZeEryQRERERERER1QWFcROutw3A7inTimIe2/IAMDHL8lrr+wHcX/p6tVLqfAC/UUodp7X+s73KozNOjisREREREREREXl4ClGoZaWXXXsh6pmW1qtsaPmheSstD1QO0TT9uPT/OxzmHRX2LGtgeXedtc4r+0279v+3zOcdHpoznxCgvLsg27qmm7J0xR5idu22DVku2UKMfI9npnA2j3UFP1bGDnKti9zHu3Ylp02alFq8s7zDTHxD5eS8HR2jv+ZDnGd5nKuSeb3Ka9Q13Lps3SI+rsU4SVpEmFJf0S00JhHWAyQahZ39ZhnVC5OspXoJA/flel6b56etbWpqij/nHQZoLUPmDli9OjnvsccOf25tljdPvwPq3EbKHAUZlO3HlSvj8ufPF/P5tRWuylN7pM+bCHW1Po/E85khvdb73B13xJ/NcNaFcbRQWYhmSh2zTJP7IcR9whae6Krs/LfEyKbV0/bMbdbJGgLqeD3LdsQ8R1zDMG2/dvj8SpI7syJiw9tX/i4x6dhjXxF/MY5nYdky8S19f4do32zkvd9MFyI3ta3NM90ANYp7AbwCwCIAtw/9UClVBLAAwJ8clgeAYwDcYkx7MYAtAB52qMdERJ2+po0042jVxxsJIiIiIiIiIiKqR9cA0AAuMH7+dkS5xn469AOl1J5KqXlKKZmD7I8AngbwNqVUm5j3MAAnALhWa71L/Dwt4ed7S//f5bcZ7url/TsRERERERERUUMZDz2QtNb3K6W+BeDdSqlfALgRwIGIXl79EcBVYvbPAzgXUUL+20rL71JKvQ/RS7fblVKXA2gH8H5Eo11eZKxypVLqDgB/RWm0TQAvB/AyRDnMLg2/lUl8WUZERERERERERDYXAFgNYAmA1wDoAfANAJ/UWo8Yd6u1vlYptR3AxwF8GdHImL8H8GGttZmv7OuIwj7fhSjkcjuAhwB8FMDXtdYvBNgeK74sqwMKejimO1ROMR9ZykvLUZRHvqgQ+ZZCsOXk8pkvFNc8Djayjma+AVv5MveEmcNA5icJkfPCl6xjeT3iOrY0VzdvntxfMjeHzN1iTrOkJgkiy7EI3QbY1i1zZdhy9fiqZtuRJZ+K83418/hI4gTq6GhxWpctqUxzMTmid/L6StbRvKZcVLv9bHSu567ruWRr4wcGktNk3qnp0yv/3Cyzq8vv+Mo6m+VPk+e/rZF0vPiC5KNqTl5r3s873d1+ywm29rPQL/IwB0j2ZMszlWW5BPPhIoUtd6Zr+zZoHLe0Mn3vlSHkcb+ybo9HYlyzPHnemYvIY799e/x5x47kfPJckvkSTWZ1ZT7UvO8ntmPT3zlz+HPL/OS09r4N8Zc2I9/hggVuKw+crM3cFnkZmpfkrFnxZ96zxz6t9QCA/y79s813HoDzUqbdAOAGh3VdDODizJUMaDz0GCQiIiIiIiIiInLCnmVERERERERERBmp0j8ae/iyrM7k3X01j1DOZBd/+/pc+SxnW8Z3O0MMFR6ab6ilb/m+oX9p9QoR6udbDzPUQ35vtgx3HeLYW8NMLPN1dFSu00h89l2WMHBXIfaj7Rj29MSf5b6qNK+Ud0hrmhAhyWaYSbGt3akM5/bf3JGWStv2cUvgtilEiOaW3vRz0Dwn6iUFgE2IZwZ5DG3H05wm95cMmZLXJOAcSejMPE6J0LmO9FHkQ+yrqp8TYmN974eyvShr90I/QHgWb22PZRhapxGiJlbgvE9SQgezlJHlXul6D7TNl3e6EyvL/vJhe4aV5+rzz6fPZ6vS5Mnp00I8U9qOje04JbbbTJ1gaXjTjncevy/azi15jdrulfXyuxJRKDyjiYiIiIiIiIiIStizjIiIiIiIiIjIg2XcCWpg7FlGRERERERERERUwp5ldUBDDcd4Z4lBdx8qPP65dVhjSz4nc5rMF+CakyKPfEh5c81vkHe8fjXzVWTJ/eaayiJEPrkQOTyynONyqPMQbNeJnBYq75+PLDkN0/Z/HvWVZZrHRebOMPeda564WvLZX+Z1J4dxLxaT+6el2eN4GDvSdh743AtssuRc85HHOVGv969kUsb0g2Nrf2QREycmpw0MxJ+bxJ/UzXQ8IfIDyn0cOheebV0jqWY+Id8yA6ecKmNrn9NOO/OckPOVbee8eekFiu95P2OGeLbzrYd8pjdZ912KLPvKdbtDtN3y/jVlSvp8L7yQ/G7LZxb6WnR9ns203pxzB7qy1dnW7srtLn+WHm2tiGqLPcuIiIiIiIiIiIhK+L6XiIiIiIiIiCgjBfZAGqv4sqwOKOjg3YTThmK2dceX8wHA9u3xZxluASS72XZ0xJ/zGIo5hLzDZGzd1EOHBti6yGcqLy0eKUMIVt7HyXe/Sq7DjVe7q3iI0KTQsoS6+oR7hDhfzDLa2vxCcDdvjj/L88J2jvjug9DbbQuHznIeJ6P0/I6TbX0hQtRCtz95X3d5h8nb1ldWXoBGzXZuyfOnntrWelDt88Cmmvvfdh7YwjW9Cx2jzHPCtr/yvhfnnWZEcj3UEybkWo26knasfI/FWGpviKqBL0GJiIiIiIiIiIhK+LKMiIiIiIiIiIiohJ0lxwo5HBqAgugHWyy2Dn82Qy1ll2cZllRpXkmGXuYhrbt4I4x2VG3e212HfaXz6FYuy7SFERmXUOLakCMK+tbRvJ7Sdr8ZLtjqGJZg1kuW4zt6XIhRsGzl+YySai4j96u5j+UxtYXfbd0af7aNlmiWkfcooD6hxrYyykN7RrfekeQRdiv57H/bvqpmfc3vvusOESptY9tfjoNtJuQx0p4r2/6u5Wjdea/bdeR0KdSozGnLhdqneT+z1eqZMMt6fUZtD1WX0NeGfYTy+LMZrhnicdZ3O9OWC9Ue+6QzyJLCJO82ZjxpvN8gyUX9/bacgyP/7fpaV8Fq0uQZta4CERERERERERFhnLwsW/j5M2pdBas1P1ld6yoQERERERERERHYY5CIiIiIiIiIiGjYuOhZ5mPlDSux6oZVKDQVsO+ifbHo3EV47I7HsOzqZXhu3XM4/cunY8aLovDJDQ9vwO3fuh0AoLXGkW86ErOPmR2+UrYkYmbCMRHsX+jqGv7c3NyKNGZ+AJmfxzXfUrWHMg6dzyYP1Vy3LReBa56CUPkpfPIsjGZeH/I8tuUzcx3m3pbvyizfNceG73nsk8PDNweGz3yhyrdtp8ytaOY46empPG379uR8AwPxZ1veM1ch8oXkkXsmBN/2OESb41pGln23aXNc5q5d8c/3mOGXdytvebSXskyzHZTXXpa2j6rLNW+h7Rjmse4QXHPausqjjBD31RB821nbPg6RczAtr2yovGSuz6KFvm3xF/mAACQvju7u1HLyON/lqp97Lv68R4YMPrX8Hahe7o/VMH62dHzhI0wFA7sGsOzqZTjzsjPR0tqCq956FQ474zBM3XcqXv6Rl+P2/7k9Mf+0fafh9K+cjkJTAds2bcN177sO+y7aF4UmXjZERERERERERI2EL8sq2L55O1o7WlGcXMSmtZsAAC2tLZjYNrHi/M0T493Yv7MfCqoq9SQiIiIiIiIiorD4sqwCPagBBSy/djmW/nQp5r1iHlTB/gJsw0Mb8Mev/xFbN27Fie8/sTq9ymxhmbL/sui7bB8OPFlnGXLU1JS+Kt/wC1n9YtGt23re3dlr2VXZHMJd7rvQoQZmOb5hSjZpdc5j2GopVAjE1q3xZ3k52ULIfMMEZJktRhm+YQ5p+zyPkGdfrqF5cprtOrGFbZjHRrY/rsPVm3yuy/Ly0/dB6H2eZdtcuYZ6u+6rEGHavm3ktr705SZPHn35eV+jvvXwJc+f3t70+eSzhNm+hZZ3qJnrvgsVKp13220Ls60muZ3muSTPnzzCBV2ff0KHHJpk+2w+3pv3tjTmMfQJY3fdx7YyfMuXstyfXOsl93FZW+Sal8OzHq5s+3HHjlEXb11f3qHSRI2IcYIWhy8+HOf8+Bz0bujFA799wDrv7gfsjsXfWozT//t0rLhuBfp35pD8gYiIiIiIiIjqgkL0UqXR/1E57pcRFCcXsf9x+6Pn0Z6RZwYwde+paC4247k1z408MxERERERERER1RW+LEvR29OLzU9uBhCNdtmxV0fqvFvWb8HgQNTNdOuGrXj+yecxeY/JqfMTEREREREREVF9Ys6yFIWmAn53ye+gmhSm7DkFR597NB7/y+O487t3Yvvz23HTxTdh+n7TccqnT8H6B9bjb5/5GwrNBUABx77jWBTbHRMMGKz5lmxJC8xhjlPGAy9YkgB0dSW/y9WFGsJ5tELlugnNd91m/iWfdYXINxAiL1beQuQLsXE9x/MeFt53n+ZxLELnywmRr87W9rjmdQGAzs7KPzdTk+zalV6Gzz631T/vfH55q2U+PN9zVS6XJeddmhBtZD3d52x1Sds/mzdb5mtz3x/1cv7nkTPURzXz2vnyyZEFJHN0mTnLkil4a7f/Q+xz15yn5j6Q96WOjlFXwyrvc9x2n0vLLwak5/Edqfy0MsrqISeaDwiiMtW+T9uqRUT548uyFK1TW7H4m4sTP5t9zGzMPmZ22bxzT5yLuSfOrVbViIiIiIiIiKgOMFxvbOJxJSIiIiIiIiIiKhkXPctu/MiNmZfZbfJuXsv56Gz37Fcr+6bLsbXNaY7xI7YQphBhl+ZQ2I4jMSfUa+iBb4hgiP0aYih71/COvEP9fOVxXtQq1NiUR+hHNdftyyf0KUt921LCwcx2yaedCiVI2JXYgObmlrRJ1hCX0Nd9qHBxn3KqHWJkm5Z2brU0u7fBeV+jrtehfAQx284Qbalt3XI/2vadqyz7tJohmtU81qG47hP5/GkLMzSfI9OeW7M8x9QyvDVtfcWi+7mU1o67rgsIf+7a7pu2OsrlbGGYubM0YnnsR1mmrfxWx1QToVMbhCqTqBHVya+D+Xpi5RO1roLV+UuW1LoKRERERERERESEcfKyjIiIiIiIiIgoJAXmthqreFyJiIiIiIiIiIhK2LOsznjHhNvGEw4Q6B8ih02WPCZ55CjyWVfo3ASueVeA8HlefId0t+VS8NkHWY5Z6DwaWcrzyUXjW77Lz33LC8V1uHfbcnnnwspSx7RpIfItZbmWnXO7rF8ffzaT+jgmnCzPmVh5/2c5Lr7tZwghrku5/818SGnM42nb/bZ9kLb/TXnnwnLlejzNfEsNl+vGNTEW6iefXwi+ubtsy6WVY9tvrcX0+4RvTq4QqpnbzExDbBM6l5fvfVpeNuZ9zdZGSnJbzO0KnZ/XNi3E83i9XMsjCf0sSjTW1McTGBERERERERERUR1gzzIiIiIiIiIiIg+q1hWgXPBl2Vjh2Q/bNYQmRKhBliq6dt3POwTINbzAN2zUNbzAV6N3ow59DmbhE+KVd5hhFtUMGfENe6jm8bUdm1q2dVIeodhStY+FT7uYpU0PfazMUKG0ENm8Q8HM7ZL1KD9H4nlbmuu/vc/j+Aa/d2YoMMR1EyJdQlqdfPmG3ZfZvLni58KsWcn5ZAyfEYMYum1qhOeiEM/LQJjnANf9bwuhdN2eaj6ruG6LrQybPNJ++Iai+qTKsLUBROMJwzCJiIiIiIiIiIhK+LKMiIiIiIiIiIiohGGY9aCvD1i3LvpsDoFjixGR05yHVMtXiHCsaggxkqVPnasZpjHSciHCDGsZRheijLxHXa3laK2hVfsaDR3mbFPLUFEZfbR9e3KabLpbbCMe16m0fed7LuVxLdhCHOX3xLFo9jvPfNlu9fL8aW6rz7AZ2yhzifobo4OmjaCXe7i75ZnJtk9D3Cd29ie3RVbFNjJ1NVnXbRsG0RzFVwr8nJpHW1Ev15PJtW3N+1muXkYqzWPdrvtVnv69vcn5bL/Oyb4rtlFAfY61rYyRlkubVq/XQq011boClAv2LCMiIiIiIiIiIirhyzIiIiIiIiIiIqISviwjIiIiIiIiIiIqYc6yejA4GCfusI23bOYzk8rHk6+8qgzvR0PkAQmdRyDEcMi+8s6T4ngIcx/Oudp5vWzqJV9XLdlyTYQ+x33zXITI41PNIeNNIfaj73IyT9PzzyenTZ4s5iu2+K0rkXirJX0+1yIs+VRMaedMvV7XtttvYprRWCe2xtaQe+ZlsuVVk3nuzDw4LTV6wrPdQ2z72JZ61XV9Qe6Pmzcnv9tybQkhzmvbKVLNHJvb+pLr6he51MxH0cT6LPtusGNaeh3FhofYj775nOqVb06x0M++tWy7q5k/N8tzcFqeMvNSSMvBaDKvL5/nkyzHwmffNeI1lDcF9kAaq3hciYiIiIiIiIiISviyjIiIiIiIiIiIqIRhmPVGjqMOJPv0mqEAtv76Hl3afbsuB+l+a263ZOm7nHfX69DMbtmSaxftLJE8tu1JD+1JH7pehoyNVH7a8fBZZqR5x9pQ8GlsoQEhusX7dt3PW+jrvJ64Xs/yVlAspl+jjXZOV4Pt/LGFASb2a++W+Is8GOaC5r2sszP+7BjOZ7JFck6YULka0bxhw7R92dYtz2Wz/mnHLZcQINsxdJRHugfJte3b2e9+jkurV6fPN316/NmWEaTs2kg558uOYd+2+EuxNbX4PI596HQGIWSpR3KXJ/dP2rHyTWlSS8ln1mSdWothj5ttm83mYetWtzKbmuLPviHnIbieW7Y6Pvdc8vuMGfV3DRGFwpdlREREREREREQe6uO1MoXG40pERERERERERFTCl2VEREREREREREQlDMOsB1rHweFmggGZyMpIVpLIs+Ca8CoHvsM5J5czpCXUsiT4yXuo5BBlmDnL5Obs2pW+nMxLY+4CmfOlpdl9H6TlMTHzFMj8DObpacuJEzpnVh55M2o5DHpotayva86XvPOqhThHQtTRVoY5Teb+sF178rO1ubcl3rKQ9QqVTyVtu6t9rrqeF875IG0zmgfH496cJZ+QLN5cVb3sf8m2Leb9K+2ctOVmMw+N13Zbk3L58d3/Idq0Rx6JP5v5luQ5I+crf86IP0+dmpzWArdnNFu70pLzM6zvfmyEXLg+u65e8pBlYWt2q7k95nksn89tXngh/mweM9nk2J4D2sM3TQm2dlb+/lLDXzmJqo4vy4iIiIiIiIiIMlJguN5YxeNKRERERERERERUwp5l9WBgIB772ezb2tXlVIQt7Me1C3jeoQHW8s3tlv2OnWNjasc3NMwWljBxYvzZFqIZYvfIMswwDdn12jYqfFtb+CHdfYQIq6Vyrvsnj3AX3zZMlhkivNLGVn/bNNcQDnsYWtoXd8n9kayva5Eh7kP1JFFn206wxapb4lXS9om5H22ZCFqwU8xoFCRm9r1+6+W4uZ6DnlHIyQUtYZjV3j+uobRymm2bzVQQaaFVU6Yk55P3+rLye/sqz2jMLBczj5O1/e/fmTotbWNDHae0/W97dgvxTJblPhr6Edm2vwebW9Kn5ZzWQpbR4rnNso7ms67cj+Y+tbXB8rqRz8jmOSK/m7cFWab5nJ0Whpllf9vO3bTnf3O+pqb0OsomU4bFV6oLUaNhzzIiIiIiIiIiIqKS+u+yQ0RERERERERUh9gDaWzicSUiIiIiIiIiIiphz7J6MDAQB4qbgeCWZARpuRSqIfcY9AYYlzgtf4gtV0ZHR3KazEW2Y0ey/IGB+LPMFWDbNVnydMhpMseAa2oeANi+Pf5spnlJOyermePFrIc9z0i++TZCyJIXyzUfUrWPhw9brp7Q6/YtP0QbbKb7SbvWly5Nfp8/X5bh1wZItjagPN+JX6620Fy3M9P5LzdW3pt7epLzycbPku/KlzUnkaVNc93/1cwt55vfM+1+lYW1fMtOtuU5au1ZF3+ZNSv+bFworuWHyA1pljFrVjyv2aaYj5xDzLbIelrLQh2fWTMdQ5lYzWyAOjsrrtv3PHbNu2jWX1arPBdWPG9L8+hzCOeRl9WnrWh0WXK92eaV0+SlYF4z8rZhS21pyxUWgrkt8pgWi+nPy7LOtnxvRGMNT28iIiIiIiIiIg8M1xubeFyJiIiIiIiIiIhK2LOsHvT3x93M581LTgvQdd+1u37e4Vm28l2nZdnOWg3pbpLTbKEMzz2X/C7DMmV36EmTnKvoPNS8nLZ9e/q2mKejrGNZeEox+/53DYHIUoasl1lHx+gRa/k2oc/B0MOvj0aIEDvf8MoQQrSfIfaBPO/M9kFOM8OiJBnObdrZn17HlpQYPjNkzLadsm3KOxQjl/PfbBQkuXHr18efzQ3t6hr+ONjckro+33uUdT5RF7P8tBC7HCJFa8r1XmwLw29xPHllRCAAtK5eHX+RYZgZLgbX9sc37Fve52TUIgBMnBh/lvdzs72Rm1N+H43P+VzacblCSx6KvO8ntn3uGqYXQpZUE/K7DLEzy0h8d/y9o1I5afPZU2CMXF4osvwWy3GxHWtbKG2rfKbsTJZhC9GUzN0/YYJbvSTfe41cd5Zz2vYcsK0vqsvg2IngpXGGPcuIiIiIiIiIiIhK2LOMiIiIiIiIiCgjBfZAGqv4sqwetLXFw5kZfeTrZTQxX65hgCFUu9t9WohgWffn3i3Dn81Qj8Fi6/DnqVOT5cvIAznqZBY+oYu2ME9zxE5ZR1s3e1euoaK+zBCadWIgMzNkSURWoaurUPHnI6llmGGaaocr2/iEYruW5ztv3m2uuV7bSLRp4R7z5yfrOK0jns8Mu7RFGbbIiCZLqFMyLDNZfogQozxGfkuwDVUnwyvNUS5lLFraZ5SHXiamOYbxhrgObSFYjTBaWd7nQYh9UBY+JZ7ZsoxQmSZE2Le9jU9Omzw5/izv/bYwqxAyne/yxi1DXQG/g1o+pG/2Mgyu4X3VVs3r3nZ+2u5DeYeF+7QdIdpjc9/L24btFDQjjS2RxzVjbptLyKZS+dWHKE911KTn58ijj6x1FawmhR4XmIiIiIiIiIiIvIyLl2ULP76w1lWwWnP5A7WuAhERERERERERYZy8LCMiIiIiIiIiCo2RpmMTX5alWHnDSqy6YRUKTQXsu2hfLDp3Ee764V1Yc88aNDU3oX3Pdhz/3uMxsW0i1i1fh3t+dA8G+gfQ1NyEo887GnsdtpfzuvSkVgx27wfAPpxzNfOXVZtrPrN6yreURuYoAwDIoeXNhFciZ5kZ8y/zOLgO5xyCmT9C5ksw83rZ8iykHcNqDg0OAH19cT3koQCABx+MP9v2vy03my0dksxREeLczdIG1OraCJV3zuf8CZEzKIsQZfrkIzFSZiVOwr6+ZP4sme+wLB9hWiIiSyPTCLmvyshKm9ssD4CRMzTRCMjcVJYcZVmknT+hriG5abbj1gj5QxPl9+9M/kAmnyw9S41Yhmd+w/aicf5kSWKZI9d20Tf/kby3Vb0NcD2RBTN3o1yskGEDfPLEVfvea8uX5nVtWxLUZdl3kjyEofPfmWzb7JrHMe/fNWzrLluXuPhknuNQXJ+15HxmPlXbPmfOMmp0jfjYm7uBXQNYdvUynHnZmWhpbcFVb70Kh51xGGYtmIVFb16EQlMBd19xN1ZctwJHn3c0iu1FvPLjr8Ru03fDpjWbcONFN+LsK86u9WYQEREREREREVFGY7er0ihs37wdrR2tKE4uYvOTmwEALa0tmHX4LBSaol22+wG744VnXwAAdO7fid2m7wYAmLrPVAzsGsDAroGa1J2IiIiIiIiIiPyxZ1kFelADClh+7XIs/elSzHvFPKhCsv/oQ7c8hP2P3b9s2cfvfByd+3WiaUJ1R7h07Wpdy+7htSwvj/Cs1G73MiQESMb6GXGMBdE3fbCtPTFNdhd3DZ0o2xbXPueWMpqb4+00QzTTQkWzCH5sjD7+zSJkyoyymj9fzpec1t0df3bd/2YY5saN8ecdO5LT2tri7S4LqxPkPsgSghgitMoWWpIWIm5bb5ZjXc2w87z3lauy8DJxUlrLF/OZodLynJwwwVihPOc92weffReqHfdJU1DIoxFLqZPJdo267hPbPjCr77M5Zhtmk9Yu5nG/tS4nKuJ8fpqxYLadJec1Y/lFGGYeaTNCPEOFqJctFUTo57yyc3zWrPiLbxyppxD7zrZcWnirGebmK8QzVIJnGym3Rz5T2viGQubxLOHTVge7LlKOh9lWu14avvdR2/aMl5RBNgpAdX/zp2oZn2e0o8MXH45zfnwOejf04oHfxiNW/vXnf0WhqYA5J8xJzL9p7SbcfeXdeOk7X1rtqhIRERERERERUQB8WTaC4uQi9j9uf/Q82gMAePj3D2PtvWtx0gdPghLZCnt7enHz527GiReciPY929OKIyIiIiIiIiKiOsaXZSl6e3qH85VteHgDOvbqwBPLnsCKX6zAKz/+SjRPjLsi7+jdgZsuvglHvfkodB1UHyMjERERERERERFRdsxZlqLQVMDvLvkdVJPClD2n4Ohzj8b177seA/0DuPGTNwKIkvy/9J0vxar/W4UtT2/B8muWY/k1ywEAp3z6FEzqmOS0LgXtFNseajj5PGWJd6+XOtt41TFL4hhLboggw7MHzsHjmmuinsiURHOSkdOJnA9m/geZR8yWC0LuYjMdUg6pPxJqmdfLJ5earQ0LsS15l5+HRJ0tJ4U8P4vF9GNhnoPy3C07j8UPdvaLMo3z1pY/x/fY10yQhtVP3nn58i7fddflfqzNioi8Yc55jowyrM8utkbeMVGQazuYtyw59aQ8cpJK1vuJ4z6Wy7XkfJn77seGkHNeuBA5v0Lk3vNdty/vXI4px8O2LSFyQ/rmjBvPGvzKpxR8WZaidWorFn9zceJnZ333rIrzHnHmETjizCOqUS0iIiIiIiIiIsoRX4ISERERERERERGVjIueZTd+5MbMy+w2eTev5Xx0tneOuoxG6C6bpY6u9Xft1lzV/SGHOQeSXajNEA4R6xdim7N0TQ+9j12Pr++56hteI5m92W3RNXKaaziAWYarEMNuu4b2hOieb5NHCEoedc47BM5nXb7hWXK+9jajHjIW2HJt9PbGn83rJO+QJhvbtZEW2hbqfuhzDXmH2lhU85r1jcAKfT/xlfu9viuZl7YeQ+5897HveV3LfVDNUO882ngzpL6Rhd7/1T6vQtTfdj563zfEfTtEqHG1r5N6bCOJshgXL8ueWPlEratgdf6SJbWuAhERERERERFlxNeCYxOPKxERERERERERUcm46Fk2VuU9CplrGSG62OYdwpeH1BAdM47FDMsMuK6R2PaPHP3ONeTQd10hhBgN1pyvXsLLXH4+Ep+QvdGsz2fdprE6olge4dCtRTGfOcyquIDXrkuuu6enZfhzd3dysbQRX31D8XyPWYjQvBD3qxCpAbKMyNoI97l60Wjhm6HKSzuvE6PXwn4P97kuQ7W/IVIMuPIdcdSWsiPEs3SIdqWaQty/8ngmcF3ONyRWyqUNFkNaDxZbneuVd6hxWvn1eG4S1ULj/jZCREREREREREQUGHuWERERERERERFlpMAeSGMVjysREREREREREVEJe5bVuRD5VXxzuYTINeGb52W08wF+eQt8czXY8tKkLTMSn32epXyRPiGhrc19vT77OI9hpV3Pcd88L3nnXXE9Z0KsO9T+D5EXJLQsbViI/RriGg19Pj39dPL7smXxZ/OaX7Ag/pzIiWYInVMsi9D7xzeXUaj1pbHVw7mOllx2ruVl4XoNubb/Zddo/87487p18YTVq5Mr2L49/nz44clpXV2Z62hlXESFb34zLv8/PpS6LtfnNds9aktv5Tyj5nffc8lX6Oe3LPfpvIXOyWWTd26qapLXLoDUtghAst0SnwvGMoPNLUjjc23brtFc9r9lH8hd0Nwc/vqt5fnU6OcyEXuWERERERERERERlbBnGRERERERERGRB/ZAGpv4sqzOVXPY7fEq7zAc33WnCVUnW6/4tPWFGFI8yzKhz3nbNruGzfjWMe+QLt+hzl1DFV3rknc7Va9D0vvuR1eyzL7+ZDhKUZzXZhTapElivqJb+b71CnH9ZjnHfeRRxngNM3Hdl0HCzGXjbZ7IyRgmrzp6s11UKfXwPV/kprnev33Xl2W/hW4DXNdlqsfntSxl5vG8HyIMPPf2zfFk9t0/odspG+v9yxJG6lpm3ukMQqTtIRpr+PaFiIiIiIiIiIiohC/LiIiIiIiIiIiIShiGSURERERERESUkQJ7II1VfFk2RrgOgew7VHIe8eg+OTzyyJkVIkbft/61zLEhU60khvnuN2bMkhzFcd2uy/jsV9+cDn19ye9y+G7b0PWu54zvNZpWnq0MWzlZrnPfa2O089lkyYnj08bk0Q7a6uHaPrvuu5aepxLfD20TJ3ZHR7JexWnDn+X5b6ZhCp230Pcc91lXFiHyD/rmvQlyD/Rsq21C5Oyzcd6eWbMqf87AVkfntsK4OAbf/V6vuqSt23YIW4t+54jPOZl37kBb+fLeO9K8IdZn43ofrXYuzdBlBOfbFonl8n7ezyJEzkFb+2PbXTv73dqHtHWZ8s6pSjTW8OwmIiIiIiIiIiIq4csyIiIiIiIiIiKiEoZh1pm8Qzjqqbu2a/hRNetRbT5DrtfTMawXeQy5nibLuRoi7KdeurfXy1DheQ9xH2I7Qx3PtHnNMMkEI9QS69fHn/uTMdbJehbSZkOL45NC3ueIrY0MESaTZd15LxeivLR9EiqELLRqHre8269QbUA93u/zvhZCnOO2+Uazvmqp131QL88B1VbL7ZT345bmHMLdKRju5bGJx5WIiIiIiIiIiKiEL8uIiIiIiIiIiIhK+LKMiIiIiIiIiIiohDnLxoFGyI2Udz6AELkabHleqpnPwDdnlkkOR93f3zL82RyaOnQjkSVfjus56ZuPR87bassD5VEn27rMcvK+9lxzupl1rGa+pXppf7LklvNpA8z5XIeFd913g8XW5HLd3fEXMxlZb+/wx9a2torlVfo+2jr6ljGaefMsL+97rLVe8phaTiB5npls551PnUPlREvN29m/M/mDzZvjz52dmcsD3I9bWRt5x5/i+Y49LnVdIc4tG9s9MLRQzyDOLOe4T77SWuYfzLstNa/zvr74s9x11ryXnvWyqXYu2TT1kqM4C99jlcb1OYZ5zrJTta4A5YJXAhERERERERERUQlflhEREREREREREZUwDLOB2Lq+N8JwziHqlMeQ97mHU4p+8IWyGMf0SzDvYyi752/fHn+eOtW9DN/QFZ8ysiyXp1DrTSsn1LWctlweQ9L7lu+jEcMofHnt856e5EQRlralryUxqb1ZhDeJUCeznWI4hl1Vz0lLKG1ZvI4Rkusjj/v2aA02J8/jgrlPcrRpc/JamHbppfEXEYZp45oewcYWOpu3EOHo3vd2+eACpMaoWZ8V5TVjlmEJ87TxDeX3Yds281JYvz7+LCLtMbMrTDhliP3jM18WPvu8nn6nClF/yWxjatmWEDUCXiJERERERERERBkpAE21rgTlgn8uJiIiIiIiIiIiKmHPsjqTR5ihb6hcPYbeZKqT6GpfeOSR5LSursqfQ61bsoSImOEkPny7h8uu1xMmxJ/N6rY0jz68IEQYQojlzPrL7uhmdIfcP63FfEfJ8ynPVI+h16Ys11Do0APX0CHf0VRd62Uu4zoSofP+MMMwhf7m3RPfd4owPXmd58E1vMY3/KVWoxPnIVP9HWNofENtqjnKnOu6zLa61fEeHqKO5uU17cgjK5afRyiePIb1dI671kWGsJrnowwRLCMfSuTIp0By9FPX5ykzDNO5IrFaPh9nCaOTEaZNAbq91HLk+v7KWQMAJLezXkfdlsrqKBo1c0Rr5zIE1/0IhAnD5CiaNJbxjCYiIiIiIiIiIiphzzIiIiIiIiIiIg/sgTQ28bgSERERERERERGVsGdZPdA6DiIPMGx1FqGHsc4jF01imb5tyR/I3BNm4L3MU3bHHclp8+fHn2WOCku+ClsuI2teI1Fm2bDwlhHvQ+QRsOVJSebhSs/dZXunvnVr/HnSpOR8clfmkc9G5l2w5XKRy23cmCzzmWfizx0dyWnmdx/VzCuTRz4z27WdVmaoIderme8tdI4N2z4wp8kUPGbzI89r1/ySBfPEFYU4puPJPedIPeXmTDR4ZqMbohG28DqvMyR7SpSf1mDCf/8ni8yev9KXbw5JG9d6menRBj/yseHPttyHrusyD69Pzj5f1nVZzh9Xsq3LdH+V65PJqQy2+iemmdeMpcwQuS29lD+IDWs2clrZmjB5vubcnDnLe9+FyHtWntersXJi2vax5XTPVGZa+aahX9MGBvzWS1RrddJ0EhERERERERE1DgWG641VPK5EREREREREREQl7FlWD3bsANavjz6b3cMtfdXzCLtyLSNt3Vm6V1tDY9L6SptDfq9bF3+WQ4gDyb7ps2Ylp9n6W+fI7Fnv2i3et/t8ahiOobUoV5A8ZrLOu3Yll3v22fiz2bXbNeTLRtbfDGGV9XJdl60b+MSJye8+9c8Sguh6DflKC/0LVb5r6IQ8blnOY68w7bxDYwyu+9VWj6GmHygP8fIKBbbEcrY053tfyKNMn3M303G3tf+B45Z861+vYT9y98j2uFisz7/D+raDct72APe1vNlOafMZRN63qxlqliUUbLC5Jf7SMS0xzaeeg23tmZcZSfD9ZR5E8exbaEtOay6mb48tRYWPPNom15QO8v7V0myfN43cH+YutoVo2m4Fct2+0cqDIrQ2jxDQEM9Tvoa2R+sgxRFVXX0+0RAREREREREREdUAe5YREREREREREXlgD6SxiceViIiIiIiIiIioZFz0LDvy6CNrXQWrSbYg+mQikOpUKCNbHpC0vEkjTkvbJ2Y+Hpnkx0zwI+edMyc5Te5LsVyWfAy2+ksyZ9P27clpEybEn818YHKa3BTvNDqWBV2GfQaAnp7kNFlnW46vPHJmuebikNNmGjmh5HdzH8jTTubHsJ0jeeR5ScuHAYTPR2Ljmw/MlsPDN79HPfIdrl428Zs3J6e5XveJY2POmPOOzePallzbWZvkPk+W0WzJX+SaS8dlmZF45/e0lGE9L9Lmy0De27ZuTZ+vteiXz08Kka8uxLnkur5q55mT65M5jgB7DrO0aWYZhQDtyG67yfKT01zv4dVWs3Wbz/vyQczI3dsid2bOvyfUa/7EEORuDbEbbc9Mvu1P3rmqQ+RhNQ39itXoz3g0fjXsqbtlyxbceOONWLt2LfqMjKVKKXziE58Y/r7w4wurXb1M1nzvoVpXgYiIiIiIiIiI0KAvy/785z/jtNNOw2bzz/Al5ssyHytvWIlVN6xCoamAfRfti0XnLsJdP7wLa+5Zg6bmJrTv2Y7j33s8JrZNRN+WPtz8xZux8R8bMfekuTj2HceOat1EREREREREVP+Y22psasiXZRdccAG6u7tx+eWX45BDDkFLS8vIC2UwsGsAy65ehjMvOxMtrS246q1X4bAzDsOsBbOw6M2LUGgq4O4r7saK61bg6POORlNLE47616Owac0mbFqzKfsKixOBWbMqTzO6W9eLEMMQO3fjtfWH7upKn+bYj9o1/MWUtg8sI37jmWeS02xVlF2W5WdbuGMI5tDytlNwxoz4c2dn+LqECpVxKd/c7kSIYNvoQ6RMeYcz5L3vXEPUahk9nkfYlQvzXJLfszTpaWGq1nA7yw4PsQ+ytJfVDNmxHWvfcF+f/eW7D0Kcq9Z15RzzLNMGmOd/seiWqsFUzWvWxjfVhKvQ14lZngypzPv5wUY+L4TiEzZWr6GEifOnOfl7TUEeOPMCC71ug885HmIf1/I42UKXbVqaQ6cNCNNcux5f32vIdRpRI2rIl2UPPPAAfv7zn+PII/PJRbZ983a0drSiOLmITWujl18trS2YdXj8Qmv3A3bH43c+DgCYUJyAroO68PzTz+dSHyIiIiIiIiIiqo6GfFm2zz77YMeOHbmVrwc1oIDl1y7H0p8uxbxXzIMqqMQ8D93yEPY/dv/c6kBERERERERERNXXkH0jL7roInzhC1/Ali1bcl3P4YsPxzk/Pge9G3rxwG8fGP75X3/+VxSaCphzwhzL0kREREREREQ0VilEL1Ua/R+Va8ieZTfccAOeeeYZzJ49G8cccwymTZuWmK6UwpVXXhlkXcXJRex/3P545sEo2dTDv38Ya+9di1M/eyqUUiMsPXqDYlj7es2z4Ms1D4Icnt463Lgl0L+a+ZvMIddtbGlk0nKWmUIMJS3nk/llgGQ6vVrmO/HNIeHKtv9d5Z2zSebDqFdZttl2rYTOMVPNHHG2nGXmeSVTjNnOOWvKqZzzUfkKnd/G9xi2FmuTuy4PIdr7UOSpJs/jUG11iNyokm9eJtdpPuvylce9xradvtuTaMf7tsUTQtxwbeuy7Q9bglIz52MV21NrneXDl+eDmG/b57pc8rpPLpP3s4vP+d9qHGrz2TdNvd5D8s6taGPb/2Ptd1caf+rnqTqDO+64A0optLe3Y9WqVWXTQ7zE6u3pxeYnN6Njrw5seHgDOvbqwBPLnsCKX6zAaZ87Dc0TG3LXERERERERERGRRUO+8Xn88cdzX0ehqYDfXfI7qCaFKXtOwdHnHo3r33c9BvoHcOMnbwQQJfl/6TtfCgC46m1XYde2XRjoH8Cau9fglE+fgqn7TM29nkREREREREREFI7SWte6Dk6UUtqnrkopzDp41sgzCv07+9Gztgddc7oyr89HZ3snlt2xHID/cLyuQ/U2YndYGYZpsvWQDzHcdYhQik2b4zI2b05Ok/WfODE5bdKk+HOI8Md6Gc7ZN0zGDO2RkRTtbeHDWiSfMJxqqOYw7t7bbYvJcgyVboR2yxaGadsFPT3xZ7M96+ysPO2555Lz7TEj7P7Jch3mHaUU+tib2+YaMui7nSHuQ1KWdjv0ul3V67Ucol5ZQjRd1+UTcm7dFhnuOBIz7NCl/AzHMLFtmzfFE8wLr6MjXqa5xWt9zvuxtzf5XT6YyUYXSN0/rvXIopqpArKs2/V3DfO+J8lQ+HoVun32feYOcY8N0caYRnteL1y0CEuXLs0/f1GNHKqU/r9aVyKAfYBlWuuFta5HPWmonmW7du3ChAkTsHbt2hHn3WeffYY/P7HyiUzrWb16NU499VSsXLkycx19LFlyflXWQ0REREREREREdg31smz58uVYtGgRuru7R8xLNjAw4L2e7u7uqr0oIyIiIiIiIiKi+tFQL8v2339/AMAPfvCDqoxEWS0K2qlbrG/3/1p27baxjmQptAQY1bKWIYiyF7+th3/okNKRhBjFK/R+tJVvniKhR8e0rbteRz+yCRLOE6LteOSR+LN5knfFoe4FS6xx6JExfbmGotoid8zzVs4rIpHKpsnlnn02Od+kSXG92os701du7v+0uJlia2oRjlG1wYQ+P81lWpA+kmiI676a5269jLIYYkRKb5YTtGA5QV3r5TrqW4hwTZNczowkTDSfMrbbnNncB93dFaeFOlcTIaGyQVu3LjmjmFZoS78Og4y6ZzbQHqGWJtux2b49/izTawC1HWFcCjGSYoDdWFN5j7rtuh/NkUN92gvbMvUaJk9UrxrqZdn06dMBAOedd15tK0JERERERERE497Y6cZDUuN1lyAiIiIiIiIiIspJQ/UskzZs2ICrr74aDz30EPqMUBKlFL7//e/XqGZERERERERERNSoGvJl2UMPPYQXv/jFGBgYwAsvvIDOzk5s2rQJAwMDmDp1KqZMmVLrKgbjGz+eR46rtPKDLCOH7gaSyQ9EUocsuVBcczDYhMj7ZMvjEHrY+SzS9k+WY2urf396KiCv8s2OsLLMPPICuR6bvIcbdy2zbvKqmTmDbIOlHHts/LnKyVtCHDfXZeS6zGtB5ikz2wpZTotYrrnZUnfHthRAMmeZ+FzoNHIGNbekr0+wDXmfdz4nZ2aeNpk7ydg/BZFTT/LN6xgi52aW8vPIYZYm73U5l28eX5nzVJzHoe4TrvsnxHktry9rzk6zkZFJtBxzQ9pY951ZMXk8ZL1qmeAqLVcj4P2wIvdJT09yP27cGH+WKeKAMLe90G2m73UY4llUnj5m7q6xJMRznm8bFiKfWR73GqJ6VSe/XWVz4YUXYtGiRXjmmWegtcZvfvMbbN++Hd/73vfQ2tqKX/7yl7WuIhERERERERGNYQpA0xj4R+UasmfZvffei8suuwwTJ04EAAwODqK5uRn/9m//hp6eHlxwwQW49dZba1xLIiIiIiIiIiJqNA35sqy3txfTpk1DoVDAlClT0COGyV64cCEuvvjiGtauNoIMp20IEXpmWyZRL2tMgZu8h6sP0e3Y9ziFCNOrtrQQLJss51VaFEfe3cOzlBf8OrHwPX+C7B95/ZohLuvXx5/NmJMAIUG+QoRA+5Tn29Tt7I/LvOKK5LSzzoo/H9rWi1TmRSO/e1YsLcqq0vchvqHkrst5n9OWfZBHqHfa6sz9Fvr8NMnyLVGMZfXyCQ8KlUYgQe5Iz/C+0Pco23aGOH+s0YJm+LCcWcZ9j1iQB1ucuTDY1p74Xs3nsCzniM9x6+xMnzZpkvOqgwgR4p53mHxaeLEt3cBYC/tz/R0lj9/n0srMcqzzuD8S1YuGDMPs7u7G+tIvYAcccACuvfba4Wk33HADOlJuzkRERERERERElI1SqqCUer9S6kGlVJ9S6gml1H8rpXbLUMYpSqk7lVIvKKU2KaWuVUrNrjDf8Uqpbyml7ldKbVVKbVRK/Vkp9SallAq7ZZU1ZM+yl7/85bj55puxePFifOADH8BZZ52FO+64A83NzXjwwQfxsY99rNZVJCIiIiIiIqIxriF7IPn5KoD3AvglgP8GcGDp++FKqZO11tbuhUqp1wO4DsDfAFwIYAqACwD8WSm1UGv9lJj9iwBmldZ1P4DdAJwJ4CoAJwF4e7jNqqwhX5Z9/vOfx44dOwAAb3zjGzFp0iRcc8012LZtG973vvfh7W/Pfb8REREREREREY15SqmDAbwHwC+01meInz8O4OsAzkL0Iitt+QkAvgHgCQAv1Vr3ln7+GwDLAHwKwBKxyIcB3KG1HhBlfA3ArQDeppT6mtZ6ZZitq6whX5ZNnDhxOLk/AJx22mk47bTTalij+uabY8MnB5h3PpK882hY5J0byXVdIfIhZVHLXF6ubGmUXE8RWy4Fn2sjj5xotvLrJReENQeP7WDI/Dnz5iWnWXKWpa3btv9D5HvzzdPhyjWvl1m+vBbuuis536teJb7MMfIVOa58sNiavpylCNdptTyPE+s28xXNmVNxvmpwzVnmWkZLgNtmlnWnHVPf/WjuD1kX673TsdJ55M6s5rlsyx8nlbWDtiRaKXxzwGYpJ61M37ygzsuZO0/ch1zvIbZ90N42aHx3q5Zr+b65CV2vUd9z2ne5tHPZ1h7koZrtfz3l9XK9hlz3T955g6nm3oRo8M9LjZ9fDuALAM6G5WUZgOMBzATwyaEXZQCgtV6hlLoNwJlKqXdprXeVfv5HswCt9aBS6joAxwGYDyDXl2XjqMcgERERERERERFldBSAQQD3yB9qrfsArChNH2l5APhLhWl3AWgHMNehHrNK/z/jMO+oNGTPMgC48sorcfXVV2Pt2rXoM4ZvUkrh0UcfrVHNiIiIiIiIiGisUxgzPZA6lVJLxffvaq2/K77PBNCjtd5RYdknAbxEKdWitd6ZUv5MMW+l5QFgLwCr0iqolJoJ4HwAjwG4I22+UBryZdlnPvMZXHTRRZg/fz4WLFiQCMms5NhjjqxSzfxMnDhpuNtqljCxegrJGu18vsO924QI+7Ht/9Bdl13lfdxrec6Z5cuhw1ua3fZxb29ymuy6XyxW91bmel6ECA/yDc3wlRbSUTBDK08+Of5sGanYtet+tbczBN/zQE6TTeQfbkkvb0tvMpwycf5b6ihDXsxwF1kvM9TPFvrnmwLAVej7kDXUOPC1DACtxdGfr7KNDBH+4hvqlHcIk+38dL2GfENF8w4l9GE+MtVr25cmS33H0vNVHnzCK/Nuc32Pi7y2zTDMaj5/5tGe+YbIhvhdw3XbQoRDZ5lGdalHa73QMr0VQKUXZQDQJ+ZJe1k29JBaqYw+Y54ySqlWRMn+dwNw2lC4Zp4a8mXZ97//fbzvfe/DV7/6Vaf57/ia7ZjX3pKvral1FYiIiIiIiIiIKtkGYPeUaUUxj215AKjU08m6vFKqCOBXABYCOFdrfbu1poE05OveZ599lgn9iYiIiIiIiIjy9xSiUM1KL7v2QtQzLa1X2dDyQ/NWWh6oEKIpXpSdDODtWuufONd4lBryZdnxxx+Pv/3tb7WuBhERERERERGNY4Ux8M/BvaVZF8kfll5mLQCwtMIy5vIAcEyFaS8GsAXAw0bZExGFXr4CwBKt9Q/cqhpGQ4VhDg5G8dOXXnopXv/612P69Ok45ZRTMG3atLJ5C4WGfA9o5ZtPpV5yMNRr/jVXrsPa27al2kNh+6hlTrQsy6XV03efBs/DN45Y94klT5mrauYCCpFLJ498SK7M81/mNrKtS+a+ClWnRr9WQrQJPvsgRO6xSuWMtjxXWXKvSub90XVa2r3Y5JtDzycPVLVzHlWz/Hq9rvPIU5uam7NOjkWo5XzlmTPOlg+zEYTK+RXimDJvGAV0DYCPArgAgAyDfDuiXGM/HfqBUmpPAFMArNVaD4VW/hHA0wDeppT6qta6tzTvYQBOAPBDmYes9KLsVwBeCeAdWuvv5bJVFg3VFE2YMGH4s9Yab3nLWyrOp5RCv+3JioiIiIiIiIiIRqS1vl8p9S0A71ZK/QLAjQAOBPBeRC/CrhKzfx7AuQBOBHBbafldSqn3IXrpdrtS6nIA7QDeD2AjgIuMVf4UwKsA3AJgm1LqbGP6fVrr+8JtYbmGeln2yU9+stZVICIiIiIiIiIaby4AsBrAEgCvAdAD4BsAPqm1HrErpNb6WqXUdgAfB/BlRCNj/h7Ah7XWZr6yoVEaTy79M30aAF+WDbnoIvNl49iTJfwij6HsQwsRcheiO7pr13pbGTJMybcejd6t3FfeXcDlPm4tps8Xoh6hQqTyDnnxuYaybFvokBff0C3f4dJdQyhDt595lC/LzDsMeSzL+9j7Ct1++l7nptBtmNl2u57XPuGPvqGWprQ2zFZ+o6ekyOM+4XvcQggRulsvQuxH323OOwzZV738PiRl+Z2kVuH0Jt/9WC/7PG8Kzjm/Gp7WegDAf5f+2eY7D8B5KdNuAHCDw7q6M1cwsIY8rrt27cILL7xQcdoLL7yAXbt2VZxGRERERERERERk05D9XN761reiv78fV111Vdm0888/Hy0tLfjBD6o6UAIREREREREREY0BDfmy7LbbbsOXvvSlitNe+9rX4sILL6xyjUZHQQ93U/XtDl6vIxiGDqHMY0TQEKEkriEWvut2FSKUJMtytjJCbJt9BLTsXcLzDmkMsQ8aZSTCvMMY09qARgjvyGMkNunizybne8Mb4s8HdW8z5o5v84PNLU71sI3aa06T381QOfk97/bHVl7o0SRtQmxnqBBB1zJCrCuPkQhd1+06Xy3D8EOEqOUdYpr3M+bOfr9w8UL/zvhLX19ymhju19a+2c7PRPlGxdL2ifU8yDLAWFoD6lgPc92+6Qx8+YwW6vp7ju+zVh7pX+rpuSNN6Gt5LIUnE41GQ74s27BhA3bfffeK02bMmIFnnnmmyjUiIiIiIiIiovGGrxDHpoY8rrvvvjvuv//+itPuv/9+TJ8+vco1IiIiIiIiIiKisaAhX5adeuqp+MxnPoP77kuOFHr//ffjkksuwWmnnVajmhERERERERERUSNryDDMiy++GDfffDOOPPJIHHXUUZg1axaefPJJ3HPPPZg9ezY++9nP1rqKmWioUcd/55EvKnj8vj0BVeY6NYpa5nnxma/abHkW5CmzdWtyuRkz4s9551rJOyda3mp57H3PzxA5wNLKCzGfje/56NpWXHTRxYlpmzd/cvjzV969PrlgV9fwx34kc/qkNbtGWiCItEBl0zZvjj93dCSntbXFn/PO0yRlOYb1WP5o1uez7mrWsZY5PUNce2XzPfhg/HnevFHXw7qcyK1lzT9YlnTQLZdXYl2BcjbJcvr64jJk2wDYcx+ipyf+vG5dcprc521uORkT5UUViz93diYmyZxoznp7k99tGyfnFQ3oYFt79vWa6wJQEOvzzXnnqpq5Y7OUn5bztCx3XYD2IQ/y9Gwthn8+Cf18Va+/axD5asgzurOzE/feey8+8pGPQGuNFStWQGuNj33sY7j33nvRadzsiIiIiIiIiIhCUoheqjT6PyrXkD3LAKCjowMXX3wxLr744pFnJiIiIiIiIiIictCwL8vGqizdgH2GWM4jTMy5TEuoZR7dgkPLo2uxreuyzz6o5XDXeXStl6fMpElexXvLO2TBZ72+xzfEkOKu52eoc9AnPKja7Ubexz49FPWfEvPtsYf4YsZCiovIFl4przUz8sg2beJE1B3bfvS9vvI+t0Jdl67LuZaRN5/96nuv9E0tkZjXDHG84474swwJLAuF9Es1kVi3vICNkENbHW2heGnXRpZryPU6sUU0yt1TVoacaMZvptTRSsaOB5LYB+aGyuPh2Lhmuo/K8q2NvGOYah4CpGGxcQ2vdD3Hs3BeLhGOmzwWtuMrD2mxOPpwaN9lQoTBEjUiviwjIiIiIiIiIvLA14JjE48rERERERERERFRCV+WERERERERERERlTAMsw4o6DjG25ZvwBAi10fo5fLO61XGOt54ynxAcrhuuZxZhs+w4Z5888vknmfBk2vOKZsWxMetpS15bGT5rqdBFq55jnxyB2Yp37UMK9GumPlUQlyzIfImhViX73Ihrr0Q+9G1HnrgROMnsh7TUpcz0/2kra/Fcg2Z0/aYkT6vjzxyd7mWUa/yvkZl+2neKl1vga7tYJb979Mu5nF8E/Uwcg0V3va2ysuY84Wol7iAreVleG6sZj6hlmbPfSBHuPcc7T6x3XPmJKYFv39leG4cbGt3Wq+1HjInXUp5WeSSB9GSL62abXI111X2vCCOU5br0ExD6iKPdta1fLO8oXuK1plXQ1QXGrJn2UknnYQHH3yw4rSHH34YJ510UpVrRERERERERETjTWEM/KNyDdmz7LbbbsOWLVsqTtu6dSv++Mc/Zi5z/bPbcMFX7sS9D2zExAlN6N5zMi79wDE47OzrMW/fDvTtHMDk1gl41xsOxrmvmQsAuOKGh3DhN+7GXjN2Q9/Ofpx/+oF4/5sOBQB85ar78L3/9yCamwuY0VHEDz5+PPbdc7L/RhMRERERERERUe4a8mUZACilKv780UcfRZtlaOlKtNY4/UO/w7mvmYufXXIyAGDFwz145tnt2H+vdiz/8RkAgMee3ILXf/hmDA5qvOW0AwAAZ568H7554bF49vk+HLD4GrzhpP2w9x5tOHxuJ5Ze+Xq0Fpvx7ev/jg99825cUyq7QgXifqoyPBCwx5R5xJvl3QXZVv7O/vR31t6hc8kxldMLNcNb5XfbfF1dwx/7kexGnjbUeT0Nk9xwIUdmDJBjfKWcZBZhCylz5ROSaS5X9WMhd0RPT/x51iznInxCq8r2j+0Ypl2Hlb4HFmIo9bRptWwDMm1XyrGpZlhtqPJt+983TM875KhK5YUqR54G5i1QXoa+balvqLqUR6i9D9djWK/pEXzlHerqK8S1V8vtCb3uPELV5XKuqSDM5zDJNxzXddtCpSpJK981hDLUsU0rJ++0N6H249A9ZbB+mg2iTBrqZdlxxx0HIHpRtmTJEkyenOyptX37dqxcuRIve9nLMpV767KnMKG5gHe8/qDhny2Y24nVT21NzLffXu34ygUvxge/dtfwy7Ih06cUMWfWFDzdsw1779GGExfOHJ724vm74yc3/SNTnYiIiIiIiIiIqPoa6mVZU1MTgKgnWKFQGP4+ZPr06fj3f/93fPjDH85U7spHn8OR89yShh5xQCceXLO57Odr1/eib+cADp1Tnlz5+//7IF59zN6Z6kRERERERERE9UuBOb/GqoZ6WXbrrbcCAE488UR8+9vfxrx586peB3M0j2tueQy3LnsaD63djMs/chyKE5O79Ce/+QeWPtCDP152WhVrSUREREREREREPhrqZdmQoZdmoRy831Rc94fHnOZd/nAPDuzuGP4+lLPsL/c/g9d84Ca8+iV7o2t6KwDglnvW4ZIrluOP3z4NE1uaUkoEoFSchMMyLLYtfryWuZJcc1lkyTPinAPANT+dOV/acmbCFsFW/7xzFNVLHrQsuYy8zrsAeavMReo110oaWz6MTPWXO8KSp8x3nzjnIRJDxpdtW7HVaV0h2jPXfCd5DLnums8sjzpaeVxfeeSDybK+NCHygeWRU6zqx9SjHsViQXxOLyPv+5D9+cEv71la25HlecpWvk8ZvvX3ma8R+W6bb+7MEG1C3nmxfMrIg2u9QjzvZ6mHa85KWxmhc3X6Pi/7HsM88n1Kvudne1s0b5Pl12CietaQL8sAYMuWLbjxxhuxdu1a9BkvOJRS+MQnPuFc1kkLZ+Kj374Hl//qAbz9dQcCAO79+wZs60tmqFz91Fb8x9fvwnsWzy8r45hD9sA5r3oRvvazlfj8uxZh+UM9OP8Lt+OmS0/B7tMmeWwhERERERERERFVW0O+LPvzn/+M0047DZs3b644PevLMqUUfvnFV+CCr/4FX/jRChRbmtG9Zxsuff9L8OiTW3D4Odejb+cAJrdOwHsWzy9L7j/kw28+DEe8+Rf46HkLcOE37kbvtn4s/ugtAIB9unbD/375VZm3lYiIiIiIiIjqU33EAFFoSptJuOqUUkoP1fWoo47CwMAALr/8chxyyCFoaWmxLQd995JqVdPLkq+twWU/vgmAfwiQb/hI6K77obsxj1SmTYiQCJvQ3d3zCAFyZYlQCDIUeR7l5X18XVWz636I8rOs2yeELMv+CB12kse1HPr8t3HdPw8/klzvnDmijL5tyUJFXF0tQxDzCHV1DVFLLNO/M31lHmGpI7HVxdbupvEN4fMNZ827fatV+GCwUKd16+LPMty9PxmZYAtHd61XYjlLygjryWSZVjcpC3p7k99d020I1vPMtu+MOGTndAOBn1Mz7X/jXEtwbFh8w4urGSZcy/u0V/3N4yK/m9Pkfbo5/Xda3zqFThnhs9yiRQuxdOlS5VxogzlSKX1XrSsRQAuwTGu9sNb1qCcN2bPsgQcewM9//nMceeSRta4KERERERERERGNIQ3ZY3CfffbBjh07al0NIiIiIiIiIiIaYxqyZ9lFF12EL3zhC3jZy16G9vb2WlcnqCxdl326BYfqWl833fUtZB3NHs+yZ3q9bIvrsc8SJmMjIxHkZzPiocXSSvh02c4ycuvO/vRj2GoZtc1V6JH2sqyrmiGUeYcq+oZH+IR3ZCnfdbt9RtLyZWuLTGl1/vjHk9+vuCL+3Lp6dXJid/fwx97+5OijMuKoBW6jxWWJ+Enbd773OduxsbUjieXWr09dlzlqrPOozI7M6DJZFdnudnVZ1mc5AGW1DTDaaWo9LPNmeW7xCXMrm0/uEzPELiWEz7v9NQ/iZz8bf77ssvjzypXJ9S1Y4FR8Wb3k9vT0pNdDHmtzSFP53TLiulT11AZyOx95JDlNxpk7hmRa62i2kZaRowu24WED896vMn+z2T7I/SW3xdI2hPi9w3oem9doWjy6eawt4Yk+zzi2e7H3sZCFmvcaed6ZK583L/7cNTO1yJbm0afcCfHca20fLKkgxjKFBu2BRCNqqJdlb37zm4c/P/PMM5g9ezaOOeYYTJs2LTGfUgpXXnlltatHREREREREREQNrqFelt1+++3Dn5VSaG9vx6pVq8rmU2rM5g8kIiIiIiIiIqIcNdTLsscff7zWVSAiIiIiIiIiojGsoV6WjQehhj8OnWMpRF6gLDH0tvwzCbYEOmJai5kjQcbQO8bTh8gBkCVfkW3dafWQOb5M5rrkZttGtLblLKul0LmkfNebx7XhWn5ivv6dyTJT8nuEyg3mk6MudA7GLPLICejTBpjXoc92339/8nsrRI4Qy5D02zemTrLnwhKVbm5ObqdsWi2rtgpxLdvOM+s+FtuWd5tipplaty7+3NFR+TMAtDa73efMXECDHdPgwtb+551uJkT7mcjZJD8DGJwzN/N6rcxniZtvjj/LnXfLLcn5HHOWlZHbI3N5mSeJzEXmkauu2sraY7lfbXnVjOMr81rJe571+Jr7Tu4vS77GEPevsjYmrd21HMOyfSdzezk+E5vlh8gfmmBeJzLfnjlNkg2OY366UJK7x3MfyELkNgPJnGVNTclpon0w1yXrEuIeFeJZy7k9BuLrWetRr7feMWfZ2FT/d9QK1q5dmzqtUChgypQpmDx5chVrREREREREREREY0FDvizr7u4eMS/Zfvvthw996ENVqhEREREREREREY0FDfmy7LLLLsPnPvc5dHR04IwzzsAee+yB9evX4/rrr8fzzz+Pd77znfjTn/6Ed7zjHbWu6qiFDgsJ0r0afuFH3swuvZIZ1yLJLtDmUOTz58ef5bDkli74efMeklvIEn0hy2kXvd3NbbaFIYQYgtoaNoCW1NnkobdFIcgu7LZ6uIbI5hEuGGSYcuM6KdhCWRx5h7bVCZ86ZgmJ9WkffPebDLF+z3uS0waLrXH53d2py02alF6+LMPkWucGiP4CZs1KfPU5hr4h+TO7kvuxq8s1TLtySDUA9Ms20jiGzSnhleZxskShGfUYfbi4L+tx6tw9rkeAds/KDOG7/vr4s9x5r3qVV/Fl29k1s+Jn26OPGTrrel1W87nOPF8e2yxDhpPhw/v1PhV/MUPbEs9v6ddJgnmOVDEUu+we4ho6aikj71hp53BoyayTaHdDtCNZUpqkldlvpC2Rj1BmBGi7Y0Ro4j664IjkRPN7Ct90LXK5lmb39tj1nLdFz8o69hZnJqb1rC4tv4OD71FjaoRH2zIPP/wwFi5ciOuuuy7x809+8pM444wzsH79etxwww0455xz8JOf/KRGtSQiIiIiIiKisWykqLeGMA5yy2XVkLnofvKTn+Btb3tbxWlve9vb8NOf/hQAsHjx4mpWi4iIiIiIiIiIGlxDvizbunUrNm7cWHHaxo0b0Vvqn97e3l7NahERERERERERUYNryDDM448/Hh/96Edx0EEH4cgjjxz++dKlS/Gxj30MJ554IgDgH//4R62qWBU+OUKyLBMih5b3umRwvEwkYAbvr19feRkAeOKJ+POzzyanzZuXuY4mn9wWvvlgQghxnLLUMW0Y7rJ6WHZKi5i3uS25blm+LLPFKM6aH6N/p6iGY76TDIIMuW47aaz53irLcgxd6++V0yRDma51CpGT0ZaXzLV82z72zdfy3HPx5xe/ODlN5i9qN5KtyLPHzMMi2XJa2epsy3eVdw6kEDnpbNvtW6Zkq6NPfh6zedi+Pf78wgvJaWZ6rSG2FEch8s7Va25U33ok1m3cJwoLFlReSOZFzcC1jo88ktwf8rwwH2/SzgNT3jnpZP5E8zzbrzsu/+FHLMda5igDEiez8/3KOIa2NiDIPdCSYK4gL0bHiy+Pe3jeZbiW73oOms95CeZzkfwu9rfZDspUdiGe1W15drM81k3rqLx/bJtp3T+OzHTRMl2geR+SqUDN5dati/7ftWv0dSKqhYZ8Wfatb30LJ598MhYtWoR99tkHu+++OzZs2IC1a9di9uzZ+MY3vgEAwz3MiIiIiIiIiIiCUqpBRjkaAd9qlmnIMMzZs2fjwQcfxLe//W2cdNJJmD59Ok466SRcdtlleOCBBzB79mwAwPvf//4a15SIiIiIiIiIiBpJw74CnTBhApYsWYIlS5bUuiqjpqBTuzlnCTlyXS5Pweok+0fLvtG2sDNzOHBb7IHsM2wZNtynC34WoY+TLYQsBHP324aSTgttcB2C22R2FJXhR1OnuoWJle2PAKGXvud82nL9za2J79Yh0UPEkFn4nD+hrqGcNy1XebS/M2akT7OF1bnWpcV2nVjIY+MbchiinXINBba1WSHOsyzH3nW7Zb3MUFo5bdKk9Glyu8123He700LtTbVMMRDiHl6r5ymbIxYk63Tfyrj+tkefam+L3K/yHm62WcViPN/cOWYduzKvK8t2hr6/lN0DZfyaefHJgyUu7sFi8jlALmZ7DjP3a6vl3hCa6/4PEg5tK9NyQF1TCmSpvyxTHgvX52PAPVTaFopqC720HZu0MFhbmKrZ+Ujuuy7jch0Ky2xqSq8fUT1ryJ5lREREREREREREeWiov9f/7W9/w2GHHYbZs2dDKZU6n1IKjz76aBVrRkRERERERETjTqOFQVTCnGVlGuqotre3A4hGw7S9LCMiIiIiIiIiIvLRUC/LhhL3X3HFFZmWO/b8G3OoTTgTd+sceaYKggxp7Skt7t+M0Zcx77ZcRtY8R7Y39Sm5x8oYiV5kPgi5rjzy6tQy34nPum3LmHlpbLmSXLnmobAd3ueeiz8PDCSnyUNv5vtJW5fJ9dj7lmHLJyTrbE5rCfBXLN+cPq7DvbuWuXFjcpo8jmYODJ/yXfnmnKrmdW7mL5Pnj3mNFvq2yYnJBVPOH1tOFlvayLJ1p+yTLHntbMfQ5/hacwA61iNLfX1y92TZLlsbnHaszPyPcp+Y+8d2nbc0Zz/n885f5rr/865HtR063/F5Kgeu14bMyzSUx2iIPO9suZdsXLfT3oblsG7bDUxejJaKybRntuvXzH3VankGl1yfgxuCuYPE94I4FqGuE7mczL2X5fm4XnIryjLMfHeu55JpKNfZWOh0RePTmDt1b7nlFnzgAx/AfffdN/yzO5Y/UcMajez8MTBIARERERERERHRWDDmXpY9//zzWLVqVa2rQURERERERERjmVLsPjdG8ajWG7P7sC0Gy/GizKNLdVqZsgvySLb1xfOWRweJbv22vsyWuDpbN2G5K1t61qeXZ4vbE0IMhV3NUImy9XnGJdhOwbTQwuY2v67v5UPNVy7f3JQQoaIhQg5NaXU2TznZJJjNw8yu9PiLEPUMcX7a6iG3Z8eO5LSnn44/yygW23lczbYuF7Y4dgsZomOeP9Oa5cWXfsH6ni+yymZ108KpQoS7+LI1dWZ98w7jDaHfcnjTwrM8HyXKt822ctcyLOolVNLWDqbVsZahbOXNSPXq7xraNq3Dq3hvsl5ZQo2DPKPZGsmhGDWDua6ZnqkIGoHzPvaNn015WCx43g9dryGzusl0CWYVs4dXmqkr9phRcbaqM0Osh57fJkyoelWIgqiPJxEiIiIiIiIiIqI6wJdlREREREREREREJQ0VhvnYY4+NOM/69etHnKehyP6sZp/elO7bZTxCJfJgdhl+8sn4c3d3cpqsZlvb6LvB23pvD3bNdCqj2mGSIdbtOpKcrTu6fz0qj6BnhoiYI+5IrmE4ttHckjXKd8TLLMvJUGPXEe3M+UKHSYbYNnM/2q69lSvjz+Z5sdtulcvIuwmr9khyCevWJb+L0X77EI/ga54H+8yK6yjD26OZ3ULJbZFCrmHOtmNjPc+qeICt9wLHNiCPkHZX5nViI1dna4Ndj2HZgjkfq9Aj7qaV7bpMlnJClOGrtZgsb2d/XBcz1Nhn3Vm2rVYjBufdjmd6XpOx8TV8BncNN82yXNp8vvVKMPNOyN+HzP1o28diWt6pJWwjm/tKG43aTF1Ry7B1ud0yLYScFmp/1C3mLBuzGuqovuhFLxpxHq01lFKJnx159JF5VSmISSGSKhERERERERER0ag11MuyH/zgB17LLfz4wsA1CWvNT1bXugpERERERERERIQGe1l27rnn1roKREREREREREQ0hjXUy7JqWnnDSqy6YRUKTQXsu2hfLDp3ER674zEsu3oZnlv3HE7/8umY8aJonN51y9fhnh/dg4H+ATQ1N+Ho847GXoft5bwuDTUca14wQzJl8LcZCy3j+dsseWlWr44/25KDGXxyONlSmjz/fHKa3FQzxn3KlPizbdNchQgjd82BYZsvRE6BWuYlMNWyLj77tZ72nay/zCNj1tE1H5vPek2+eV5seUBs2yZScpXls/DablshjlyHhTfnDZLLRe4QINFIyjtDoX9ncj6xnWWbbMkHJuss08F0dKQXYd6iWprdts163jW3OJVRtpxHPqr2Nvfj61UPY1t88uLYlikW03MC2k53Oc08htbLxJbsLOXmHOoeGDrPlGt5Vc1TWAXyGnVup4y21PcaTZSRc/6yENdyqFx2CQ2WxyjLPTBtPt8yEvc2W55mc5965N21tVO+56fMwZvH86bcTNe01dUg6yV/fwOACROi/40MSWMPc5aNWfXzm2MdGdg1gGVXL8M/f+mfccbXz8DDtz6MHb07MHXfqXj5R16OPQ/eMzF/sb2IV378lVj8jcU44YITcOtXb61RzYmIiIiIiIiIaDT4CrSC7Zu3o7WjFcXJRWxauwkA0NLagoltEyvO37l//Hp/6j5TMbBrAAO7BtA0oakq9SUiIiIiIiIiojD4sqwCPagBBSy/djmW/nQp5r1iHlTBrf/o43c+js79OjO9KBsciKMbikUjhKOrK/4i42QAYN26+LMRXnn3/a3Dn49edUc8wQjzCd21fuvW5LSh7rcjMbvtTp068roAe1dpW3hK2hDGth60vt3z8xhqO7QQ4RHmPk3b/+Y+9l2363I+8wHJ+ifD0PIdkt5kC58KsW7XczfEuswyurri8m3Xnow4N+eTx6OQQxf4vPdxQrE18TU1LMSynWVhkb0idK4s/i5u/20RLq6hfnnLoy11bRPS2oORmO2F67rT6mHyOR5Zlkk8I3RMS51P7hN5vQJAR4dfEEPo9sc3TMw1dMsmxLHOow1OJdN3AMCcuWHLDyTtmNZTyoV6ESKlQIh12drPZkt743ofqpdwa9/nWVs5cr7WYpjy0+az1d+WbmPGjMrrYoQiNSqeuhaHLz4cB77qQNz637figd8+gANfeaB1/k1rN+HuK+/Gaz79mirVkIiIiIiIiIhqgjnLxiz+6WUExclF7H/c/uh5tMc6X29PL27+3M048YIT0b5ne5VqR0REREREREREIfFlWYrenl5sfnIzAGDDwxvQsVdH6rw7enfgpotvwlFvPgpdB3WlzkdERERERERERPWN/QVTFJoK+N0lv4NqUpiy5xQcfe7RePwvj+PO796J7c9vx00X34Tp+03HKZ8+Bav+bxW2PL0Fy69ZjuXXLAcAnPLpUzCpY5LjuuJUMubI7M3NImdKMRm/X5wXfy88+PfEtEMOOWj4887D/02U51QlbzNmpE+b1pGMcd/ZXzkfDJDMeSLT7JSPFu2XyyVtKPU8chj45ipJW84314rc3ybbvnLNdWCW0d7mto/lNNs+8Mm5MFIZtmMjt6csD1SOzDq1FlNmNFQ7n1OI8l33q8z7FOpY5Hndm+2ZbNfLc64FXXWZwTa3ns62NsD1vuF7Dvrmg8ybrJftXuMr73tPNclzpKPDfTmf7c5yTqRde1mOZzXzOtZSYlvmzElMq2Y+sCzlVzWnZIDysjy/pZbRvzN9YpXDwNLOC1sOW9s9T85n/j5k5kKUZJnTOtLnawRmemqZ8zFE/kSbeimjYTEMc0ziUU3ROrUVi7+5OPGz2cfMxuxjZpfNe8SZR+CIM4+oVtWIiIiIiIiIiCgnDMMkIiIiIiIiIiIqGRc9y278yI2Zl9lt8m5ey/nobO8c/mzrnmx2SZYG5x2U+C6LkV1it/Ul34/a1ie7PG/fnpw2dWr82bfXqQynaikLTRr9e9y8Q8jqZWhyW7dsnzqGCIU0ue5js+u+PC9cwxeyhDnkHUITunzbsQkR7pvl+LrOG2K7baGXriG+5rQ8QwVsIckh1EvbA/iHWEsh2phqhsPlEWlRL+F8WUKI5bRdu9LLnDw5vQzz3u8iS9iuXJ+5bWnz+YbKVTM8Mdg5Ig5iH1qHP7f2GoNaidjawurVyWnd3fFnz4sjxHUv+R7Deg0JT/DcxyGeFV33a3nKlPQyZTsiQxDN00zON2tWcpot9Dv0OTJSOaMtQ4ZdmtNCnIN5pOxwLZ+oEY2Ll2VPrHyi1lWwWrLk/FpXgYiIiIiIiIiyUIo5y8Yovv4lIiIiIiIiIiIq4csyIiIiIiIiIiKiEvYXbCBtbcnvzrkVRKKO1mJz+nwG2ZtU5hwxp9n4DnPsk38p71h715xHtlwQIbbZxpaDwRx2W+aYkTnozPxQIfaxbb/KPDK2nGW+apnvwXXdrtdy3ueI77plLpHWYphcOj7XTYih1LOUUc3cHHJdrrmXzHltOadk/spQ+ZBc20jbMtXMjedbfujzII/cOa5lmueI+dyRNq/rOWneh8z8PGl8c5A2NxfEZ7fyQhzPWuadsylr35YuHf68uvO44c9z5uyemC+x7+bMyadyoxT6Xl+N8tPKNK+nZDueXLdvTs8QfPaJ2QbIPGVymvy5ydw/8rkjj2Nve06VOZar/Yzmw6y/3OfTOtzKYF4yGk/4soyIiIiIiIiIKCvmLBuz+GqYiIiIiIiIiIiohK9A64CCDt49OtE1urnFqwwZluMrxHDgvmFW1QzfcQ0rynvIZluZ1u7ViT7mxjRx/oQInzLnk6GWZniBS3lZ6lWvXeRtoRKhzwvbNZRlmmQLgcg7NCZ0mVn2d61CrVavTn6Xl293d3KaLSxWho/YhA4LrGVoa4hQXVM1zwPr/rHEbhXEDT1ESDiQ/CO6a0imL99wMp/2J49nAt8w0iDEAelH8nmw+dg49PKgpfeIKQuMQvL9dcH3OUnO63qO5B2iWcYxRlmWYT4L2YrweX7Isn98zl3XFC9AMtRbhgSa2yyjf22RwPmE8sdlyPQFQIbUE5acCK51tKVVcC3PDNt1Db0kGq/Ys4yIiIiIiIiIiKiEPcuIiIiIiIiIiLJizrIxi0e13pj9ewPEQtq6Rssuveaqt29PL1OOnijbBnP0Gtm92mxDfEJB8g6/yEPeoxEFYQ5PJHVM8yqyXsJbfUMzQoceuPINNfYNO8lj36VNM8MqbKPTpYXX+KqXURWt1q9Pfu/sjD+LcOgsISiJht1ohGVIlpxku0+YQj8bhhhxN0sZjdA+u44mXJZwIWUIt0Kgg5Y2mqqt+I4O9/LTzjszRC3vtjr0qMau68rCeh6LuO2WWbMSk3aidfhz88JFQethCrH/s0zLU6awy0ceiT+bz/TyeFguHNtojLYRa6UQI7Pn8Swtd4lsH8y2wje8O8So2PLQTOvw2z+y3fXdj75Nd4h94Kte76tErhiGSUREREREREREVMKXZURERERERERERCUMwyQiIiIiIiIiyoo5y8YsHtV645ujzEw4ljamO9JnM/Me2KqSVqQtx4BZRTnNXJfMSVIv8e62XFL1Ukdv8oAaByMtL40pRH4DW96q8nxX2ddXzdxXgF+OFts+cB0WfqQy08rPslzafLZ8V889l1xuxgyn4q11ymO/1kxXV+ok79x4lovW9QFANg+2vDF57MfQOXJyyQkld0oNH5YHm42sZW1lWcwA+O8D89j75hBy1dIcIC9lyrHJIy+TrR7VbG+e2Zis/4w5c+N1P/JwYlpLd7f4Nvpz1/4o6nktr1uXPk20mfL8D5XnzOu49fQkv8tkvjIPZQaueclc+T7HhDh3i8X0dcvfIczbYTWbWd9zxPa8nHfu5FrmZpbq5nmKKJD6uLKIiIiIiIiIiIjqAF+WERERERERERERlTAMs854h0SZ3b5l/1/R7TtLCJOtm7NrSJBjNCh6e5Pfk8PQu4U2hODb9TpveYfRDba1p04rBh6q2jWcxhTifMxbPQ5xn0WI88wsQ16/Ztil63HzmW+keRuZjOoBkiE6LcZ1Ejo82lZ+iJBYX85tXYDzpyzUGHH4V0sObbVtmnk8XNfnTMQ+tRg36pZEnJFnCom8ecRr1fL8tHENCRwYSH6Xh61NhGSGqpfUWkyWt6U3rrMtlNA13YMt9te3DQhx304cGzN+UG6QY+xyqHMwbbks5fu26z7ztYpdNXdOctrO/srhjoA9tLOaz17yUIcK9w29/101ROqKesOcZWPS2PxNgoiIiIiIiIiIyANflhEREREREREREZXwZRkREREREREREVHJuAiuPfLoI2tdBaticVJqTHoyvUFyHjmsetlw1ClJH7LkPbAN05wWuy5zCpjLmaka5GjgZg6evfaKP8s8R1lyTUi2etXLcO82vvmcXOv/yCPxZ/M4HTTPb7t98izYljHrlXYMQ0nbd7ZzxDcnUYh8JHmU7yPUutLOiyzXYYg8VtUs37U8M1/LtA635ey5IbPXw1eW/e16Xodoq7O0P1LiXmxRLzn1MrVT8sTo6PAq01p+zvK+9swcXbUi69/VVT9/B29vq7x/Hn4kWcf16+PPCxYYZcidHiAnUJbr0Od8LSuvY5pXvdKm+T4Hu6479P4YqUyfddna42o/x/vk57XxPb7V3M4sdRyruWPLKMWcZWPUuDiqCz++sNZVsFr9kzW1rgIREREREREREWGcvCzzsfKGlVh1wyoUmgrYd9G+WHTuIjx2x2NYdvUyPLfuOZz+5dMx40VRl6e+LX24+Ys3Y+M/NmLuSXNx7DuOrXHtiYiIiIiIiIjIB1+WVTCwawDLrl6GMy87Ey2tLbjqrVfhsDMOw9R9p+LlH3k5bv+f2xPzN7U04ah/PQqb1mzCpjWbgtbFOTSmpyf5XYZLiPG6s3Q/l6ElrsNKmz1Q5fr6jVDI7u74swzJBIDJkyuXYVu3bT5bz1jfYcNdu17nPWR8iK7Xc+dUr2u9rzx6N8uu/Ga3fhmi5hsGm3fIUYih2m1cj69tPhlBkxIdDiCf89r1uIU4htUM2Z7ZZZS/YkX8WTasAHqb4xAgW+hKgi3m2VDN8IsQ5fmGQjq3P+a+s10AzS0V61Ev4ZojMdMbDDH3ldwlLZ7teN2G+chnLzMdhgdb++PaTtUyZYQr85mjr89yDOUD4qxZweviGoJoIy9zswnYvj3+PGlScpp4PK8bZri+1Nbmd38MEeYp2xVzv/k+x+fJtx0P0dZV+1k0j9BdonrBl2UVbN+8Ha0drShOLmLT2ujlV0trCya2Taw4/4TiBHQd1IXnn36+mtUkIiIiIiIiolphzrIxi0e1Aj2oAQUsv3Y5lv50Kea9Yh5UQdW6WkRERERERERElLP67NtfJw5ffDjO+fE56N3Qiwd++0Ctq0NERERERERERDljz7IRFCcXsf9x++OZB5/JbR0KejimO0u+hESOE0seB998Sz7x9bZlbEOsd3Qkl7PlNkpbd1niMzmfOd57V1f82ZI0wicOv+znZj45SeaWc+y+65o/biShhxsfTV3Syst7SPcQPaZDDQ+eppr5Hny3xVbHVkvut7zzkrkuZ8v341O+LV9ILvmVZBtmNJ6bRfNjnu9yscR2m0lrZJmujTPCbHfeuVB8ctJZ5xN5yAAAbfF3M5dRv0c+vzzytklZyjdvq0PMW6o87/I4nq65vEK0b63N5kF0TQTox7WdynNd1XDofMtxckzs5ZzbtW9bcsEMbVoaWYQt/6ktr68r3+vXdV22nIN5SMtpmGVbQmx33ue/c5nmDl+/Pp7Utc/wZ/NXC3mZtLfVT/tQrzk3iVzxZVmK3p5ebH5yMzr26sCGhzegY6+OWleJiIiIiIiIiOoFc5aNWTyqKQpNBfzukt9BNSlM2XMKjj73aDz+l8dx53fvxPbnt+Omi2/C9P2m45RPnwIAuOptV2HXtl0Y6B/AmrvX4JRPn4Kp+0yt8VYQEREREREREVEW4+Jl2Y0fuj7T/P07BzCwox9tbU3R981bcfNF/wsAmDqjiKkzSn2qt28fLrtj2kRgWjxa5l+++Qfn9XW27z7cTTVL19bQw4j7dqsN0cXW1mXYuXv16tXJiTJGxAwrkt2cu7vjz0Z3fK8QDrML9ebN6dPkXyFkSKYhRJdw1zBba/hCoPMzBJ96lc0njkeL8Rchn/KzhBkG6eYvzyd5ngEY7Ny94iJZhlj3DeFOmy+P8n2FDn+pZhll5swZ/vjY6uS+kqeINZpJtpG2diqDEKHG9RLC4dvGyPqbu/G55+LPMqRmn/SsCkH2VZZ9agvBkrdLebsNEcqcB+9rT+wEM8y2IFM6yDb4kUeSZSxc6LQqM7S1aAljT5PH80Le67OWJ9OMGM9JZWHPLixhlyGuL1tzmXd4q+16bW52C1M1d0/eYZh5h2n7sP1O5U1e3ObvK/PmVZ4PSNyb5SQRnQkg+atMkPob9Sg4hivXS3tPFMq4eFn2xJVnZJp/9VNbceoHb8LKjMv5WvK1NVVZDxERERERERER2Y2Ll2VZdc+cjJVXL651NYiIiIiIiIioXjFn2ZjFo1pncun667lum7Ru2bZ2IvdQvAULkhPvuit9QdmV37FrsXNoiRmm0dmZvq4AozD5SjuGLRlGa3I9psnRjizntFGpfsT70uyZ7jhAVnkIbkoh1mtPrtwcgkhOmzM3dVW5hBfI/WU5l+RsMhRjpHXnHR7nE9pmrje5bX7l12vYgGuotCRDMUaSKMc24qXYsXm346YQo97ahCjf9Royl5sxw62MWp6f8pqy1bG5LT01g2wizfuOTMEQ4vknjxDQBx9JD/U7SERPJcIwbfcdg6yjGVolozxdR0zNIsT+yX0UTbkTHIV6lg4xqncIriN9uv6unmXUWFsbkFavEG1wqNGzfe6jrmVkKkdcwIPzDkqdrb/YnvjeIkI05WPv/PnJ5eSjaXkmBY8Q7kC/n2zcGP2/a1eQ4oiqrj5/QyAiIiIiIiIiIqoBviwjIiIiIiIiIiIqYRgmEREREREREZEP5iwbk3hU64CCHo4Tt8XF23IMhMiRkKUMM69V6PLTWPdPWzLOvyCT95h5pmRuEUnmFwOsDZ/z9hhDnVeTbX/55rZwJfeP8/liVKpFlCFz4liZyRock5tZc3HIXBOz9nEuI60827RM14nj+elzvQL555Ky5ThJm2au13XbXHPY+OYxqWZ+SZss9djSG9e/WIzzMmV53guRFy7ve0NoWfJihbhP571/fK5DWxmm1tql5vTOoyQdNM+xXe/eL15vluSBgrlY6HbFdR/Uaw49X77nbjWvPddlbEIct6o/xwQoI/TvQHmf47b6ms80aXUx8//OtKT2q+U1O5Sbc8KEmlWBaFQa745HRERERERERESUE74sIyIiIiIiIiIiKmEY5hiRR5dt1/XlHcLhMx8AYM6c+LM59LgZqpci72HDQ3eNNtcdIlTOV4gu//I4FVxjw2zzWY77YHNL+jTHban2dRg6P4Jv/V1DJ1yHnbdNcw2nrDSvj1qGL8hocRlNnCWs1lb/tAjlLPvU99hXU72Eilab3B7Z9JnNhm9olZyWR0hyNcOcq3l8s7RhefNZt+t54Fu+r0a8Rl01etvqU16We2+e9TD53gPrRZY0ApSBUsxZNkbxCiEiIiIiIiIiIirhyzIiIiIiIiIiIqISviwjIiIiIiIiIiIqYXBtA6l2zgJbHH7oPBe2dbuWYZ2WlpxnBLLMnf3JOqWFpvvmbWtEvrmkJOs+seQR89qvRnmyDN+cWWnlmUIMuW7dx465Emxl+LYjrnX23TaftmKkMnxy6uVyjlvK6+jIvq4s5aclRbPl78sj30ne+SzzzkUWYt1Bcjxa2JqH0NeabTnf5xjfvECuzxK+8n4WClHPEDk3Q+S3tWmEXE+usrSJPvdH3/PH934Y4hnBVYi8qSGEzuecR11C5XSrZhszpjFn2ZjFs5uIiIiIiIiIiKiEL8uIiIiIiIiIiIhK2F+wztRTV/QQ4QWS2U23ry/+XCz6vbcN0bXYtdu0b+/aanZPzhIm5hWeIg+auVyxaK+cA3PdW3rjOvb2Jued2ZW+XJo8uviHCBNzlSUM2VUtw2Tqcch731BLWxm+nOt4153pZcybF3+RcZ2VvjuodrhF6NCwPK6TEPch31BIn3XbQrCqHSLoI8Q5+NT6ZBkzu/zuIYl9sHRp/Pl730sueNllTuUXVt6X/EF/f/x5wQK3ephlBghHtwmeamLlyuT3X/86/vzqVyfXPX9+/MX1IU3uU2O5WoZs51Fm6DD5PNblGubZaKF+1mvUfKB95JF4uQVHpC9nIU/rlubqts319LtrzTAMc8xqrJaHiIiIiIiIiIgoR3xZRkREREREREREVMKXZURERERERERERCUMrq0DGmo4tj1LTiKf+P1q52uxLWdLcZWWAyNEPiHbukwhcjXUaw4Gr30cIC+Zaz0AoK2t8ucQ68oybyPkymiEOtq4XkNZttO1/XTNmVLN/HTW8vt3Jn/w4hc7LWfLGylTbWTJdxK6fc47J04ey4XI+xcin2IeOQ1Dy7KdaddliLauqyv53VZmMr+qMTElpxhOPTW1fOuxmDUrfZpF6LyaWfLaua7LeR/IPGQAIPMuhsgJ5FlGNfP35f3cmKX8IMfUUv5o5zOF+F0pj3tNYl+ZD7Si7fCtv+209rlPhDoPGv3Z1Blzlo1Z4+QMJiIiIiIiIiIiGhlflhEREREREREREZWwv2Cdqdfuqr7dakN3JfftOv7wI8lpnZ3x546O0Zdf6NsWTzCGJV+7uX3489NPJ8vs7o4/z5iRuuqGYA1RkPtHxrQAifjKshJkl2ZzObmfbTGacj5zuG6x3GBzS3oZQpZwi9BhG1nKCz3cu+38t60rdOhiqC7+PiEj9RLKtq0/ea4WHe/kZv1bRUiZbT+Gvi9lWZdriKzr+ozmOSGPCArX8MFqnluF3i3JH2zePPxxcNY+yXkDpzqox9QDI2ktin2wcmVyorz3yBBKIwzTmXwgMfX0DH8smPcy+TCRgWs7XtXjtnRp8vvJJ8efzz47Oe3jHx/+ONg1c/iz9X747W8ly3jpS+NpRgioz/3Rtu4Qz87W5S79SvIHd9wRf373u+PPJ5zgXsb27fHnj3zErSLm+SnamML69clpslEW11DBMyTZVC/nuPO9wEizUBDXvTzHbXzD3RM/37wp+QPRNmUJ0ayX5yYiX3xZRkRERERERESUFXOWjVn12Y2JiIiIiIiIiIioBvgKtA4o6OFuqr7hKa5cQ6lMvqFVvuFZIUbLWbsuniZ6MQNIhmHaOO9jMUSWWacuEepkrtf2R4jQIwuZtvRWDk0yo0CCdE1fty7+LLrjAwAWLnQrwzYSp+zWb4ZwPPFE/HnSpOQ0MYpgQY64hfCjPIUIIQs1gpUrn9HRajmCUoht9h1t0yZ0GIIZSigjlM22Tn6fMydZ3/a2lBBHI0ymIBsFy3W4sz9Zfq9oY2RbZ0ZNu55nNq5hID096eXN7AoflpN3Ga7bLY9Nb397Yr5ps9oqLpOHIO2SDOsHEm3+4LHHpa9Phoa1tafPZ2PcJ/Dgg/G6RSh/lucdOe2+lcljfeh8sZx4gNjZsXtivt7N8WfzHu4TypzlWTFEqH3iXiBHFQWARx6JP5vtj88w2W9/e/K75UHM5xnZ9x7oyixPPss98E8fSEzb8w3x9326jFGU0+p0wQdSp1nPa3mzMdJmyPDu3o5kqHdaRo2WnNuiEKGKodaX2k4BRqqS9PMs0bxZ7rHObCHhBpfRhAcZjUkNij3LiIiIiIiIiIiIStizrGT9s9twwVfuxL0PbMTECU3o3nMyLv3AMTjs7Osxb98O9O0cwOTWCXjXGw7Gua+ZCwC44oaHcOE37sZeM3ZD385+nH/6gXj/mw4FAPxp+dO44Kt34r5HNuFnn3kZ3vCy/Wq5eUREREREREQUGnOWjUk8qgC01jj9Q7/Dua+Zi59dEo26s+LhHjzz7Hbsv1c7lv/4DADAY09uwes/fDMGBzXectoBAIAzT94P37zwWDz7fB8OWHwN3nDSfth7jzbss0cbrvjECfjyT++r2XYREREREREREVE2fFkG4NZlT2FCcwHveP1Bwz9bMLcTq5/amphvv73a8ZULXowPfu2u4ZdlQ6ZPKWLOrCl4umcb9t6jDd0zJwMACgU14vo11HC8d5bcBqHz5YTIq2DLZxAiJ1qWXBCzZsXzmrnCZNqLRP4TW14sR2adWporfx6Ja64q31wKrpsaJIfNnDnxZzPhUghdXfFnMwdaU1P8eceO5DTLTvA5B/MYijzE9evLJ29blnqEOK/zHu7dVTWHR7el6Zk1K/ndSB3jRl5PBtv+Nv+omiHlSSrX/bqtL66Xuc3yMrdsWi7yuK/6kMcm03GROzPA/dGX3Fd9aE1Ma35xnKesz0j3UyzGyy1/IM5TdtRRyflkTreWvi3JiZ/6VPz5y19OTps/P1632FWtnrvKdRfnca1JWdrm4OexuXHiAc63vU+s27P3RzXvgVmedeX94PDDk9Pkpg4iPadeEPJB23jOK/TH+dLa2lpQK6655WqZa9L3YrY9F/g8y9lYyzCOfbEYHe9CfTyqEWXGUxfAykefw5Hz3DK+H3FAJx5cs7ns52vX96Jv5wAOnTMtcO2IiIiIiIiIiKha2LMsI62T36+55THcuuxpPLR2My7/yHEoTuQuJSIiIiIiIhrzlGLOsjGKRxXAwftNxXV/eMxp3uUP9+DA7o7h70M5y/5y/zN4zQduwqtfsje6premF1CBgh7u0lrtEK/QXXN9ux27djm37QNb+WZoQ+GuO+Mv110Xfz777MR8O+cfMfzZjB5sToRXWvadjM0wG1I5zey2LvtUi+VCDXft2qb7hlgkjo3c348/nlxQdjl/4YXEpC2veuPwZ1sX88S6zTirl788fUG5E8zYLTkOtzyB2toTswUPA5TDr5v1MneC3He2E9Qi9HWfpZ3yDdN2LaOaYRVBrFuX/C6Pb8rw8WWM82DOnDjkxRyR/qn18fYkTnHjNJOnUrXvE67zyvrbQtlChQmn8T1HQt+LM5HnjHkOPvJI/Lm7O70MedIYJ9Cg0WZKPttqO762+4QMUdu4MTltxoz4885isr4tMgzTII+brV6ubaTMWGAT6hxxPe9qGpbmyPVeEEKobXHdr67zmc+iPuUHCR23PH94Hwv5LLR5c3Ka7QYmibaukCGsPMRzjGv5tvZB7oKtyUxB2GNG9e4b1uvLOPZVv58RBcYwTAAnLZyJHbsGcPmvHhj+2b1/34A165Mt0eqntuI/vn4X3rN4vlkEjjlkD5zzqhfhaz9bmXt9iYiIiIiIiIgoH+xZBkAphV9+8RW44Kt/wRd+tALFlmZ079mGS9//Ejz65BYcfs716Ns5gMmtE/CexfPLkvsP+fCbD8MRb/4FPnreAjy4ZjNO/9DNeG7rDvz69jW46PJlWPWzxVXeMiIiIiIiIiIiyoIvy0pmztgNP//cyWU/3/6nt6Yuc96pB+C8U+MXZzNn7Ib1vzkHAHDUQbtj3Q3/Gr6iRERERERERFR7zFk2ZvGojhG+Q1rLuPMQubByz+njWI+RpmHhwvizGPodK1YkZmvpeWr4c3PXzPTyzHxRrmy5FYQQ+Wx8c3jI5R58MDlNbvahRnRyony5vxcsSM54xx3xZyORjNw9znmazNxjtn0s8/GYG3fqqRUXyT3/QqcxMq/cNtt5VuWbtG8uu9HOl0cZIXK0hGj7CrNmOZVpq++2/pbE96LltJCnWh6nT+j7QR55O0PLu30IkduvjDz4xjlY9j1tOUvbVOjfOfx5sLkldT5Xvvu4uTnedzJHWfl8ye8y55rPfTPLtFqq13pJvm217zNU6Pucbbk89n/D5YuyPePIHGNmblpXVXxOyiM/ptwF5qNukPzCVXxeo8allCoAeB+A8wF0A9gI4OcAPqm1fsGyqCzjFAAfB3AYgB0Afg/gQ1rrx4359gTwbgBHlv51ArhSa31eiG1xUf93RiIiIiIiIiIiqqWvAvgKgL8DeA+AawG8F8CvSy/SrJRSrwdwA4BJAC4E8CUAxwH4s1LK7JlyAICPAjgIwL2hNiAL9iwjIiIiIiIiIqKKlFIHI3pB9gut9Rni548D+DqAswBcZVl+AoBvAHgCwEu11r2ln/8GwDIAnwKwRCyyDMDuWuuNSqlORL3Yqoovy+qAhhruBlvtYe1DdwHP0kW+lt14ZShIoU1cBjJcEEj0eXYOY7FMM/eB7HFuFuEa6hoiBNdWDznNHK27tzf+PGtWsl4y+rFfhIYVi8kwnMIJJ8Rfjj02Oa1vW+WKwAiNkZW2hF2WneNz5sZlzJljn3doPs9z3DucQ25bgBCCLGFcPm1CHtd5iDDkEOFTjcAMzVi9Ov5sRtS1YKf4Js4tsxDZhhlhdLb9KouRp25Ls995Vi/HxjcU0nte0faVrdmjTbBeo75tTM7hTd7tiLhpFf7yl/jnr351Yja5T4xsAImQzW19yX0nw6Iks4w9ZoR91srjHEx7JgDsh7emz3KB24Q8wi596hgiVM62brOM4OF3lhPI/hwsns3rKNQv7/BE2/EtrI/TwQyKdDDmNZl2v630PVF+He3nhjZ+cpa9CYACcKnx88sBfAHA2bC8LANwPICZiEI2h3+L1FqvUErdBuBMpdS7tNa7Sj/fCmBrsNp7qI8nTyIiIiIiIiIiqkdHARgEcI/8oda6D8CK0vSRlgeAv1SYdheAdgBzK0yrGb4sIyIiIiIiIiIavzqVUkvFvyXG9JkAerTWOyos+2RpedtIPjPFvJWWB4C9slU5X+OivyAREREREREREVXUo7VeaJneimj0ykr6xDw7U+ZpLf1fqYw+Y566wJdldUBBO8WMh8gFFCoPgq1etvW5LpdWr7zznm0zrs9mkUvBzLMjue5Hc5ocyt5Wpq0Ml2VGYguzl/kkOjuT0+To3R0d6ctZw/htObksw4i75nSz5XEwS5Tk8ZZlhsoVIzctuZnpOXFCnO9Z8pK55lwLkfvQdm3ncc6nrSvLNNd6+LZhMiegPHeLxfQyzOtQpvBr6duSnLiuJ/4sT0J5YUcrTK2vbbvT8jnVS+6xagty/8ohJ0qI5wBXeZe/aXNyH//kJ9OGP7/3dYfEE664Irngef82/HHq1OSke8X4W0cfnnz+H8T/Z+/Nw/yoyrT/u7o7nU7T6XRCB5oQIYQAQaOEHR1AXAcRHUF4XQYEHUUdZ1zG0VFfZ9QZdQYd3J3frAKjsrgyio7bDIi+LAoSFWSRpcGAgSQkkJB0kk7X749e6jnPt8/Tp8731Hfp3J/rypWqrqpznjpbVVef+z7T/wFd+pyNnxdWxlX3jdA2aDx6zSZYtWelRYrnUOj41kwP3hR5x6YRep32tmwVYt/Vk6M62KgYR7pHtrrn3nZbsS08y3QfNex6k4859Dmbhj3Hs2wbgH08x3rEOdb1ADA38vqGs2e+sRJCCCGEEEIIIYSQEB7GuNRyuo9d+2N8ZppvVtnk9ZPnTnc9ML1Es2nwYxkhhBBCCCGEEEII8fFzjH8/Ok7+MMuyHgCrAdwccD0APHOaYycAeALA3fWFmJY9Yr5gO1P1lPzUEqMyecWkmSIN61hvjz/96DKQOkA1b7pD6pTU9N2q5WWhSMnXsmXh1yWZjWxINEOn06eQMTrXyfrUGYSmAVeCK5Pcvh3qvGK7u0SZxkhXYtMITS/FdWXkI2Yb8eiEU8RfZqywYvTJKsrE6MjHdYK+tptISpBaHlTmWGj6vvQsrDqs4pltSZpiJL6p4m9FKc7mze7+Bz9YbA8MHDC1/ZrTT3fOk/ei7RGOPFLstKPMRox1HUb8VhlYpGjzqWSTM/18urxC3xWD5cr6Pc/ypPDUx87RDu9pVdgxWFT9e0grdqnKZbbqpp09/Zw+8cRpk9CWC82UAjcrDtIUrgTwPgBvB/AT8fM3YNxr7MuTP8iybD8ACwA8mOf5pLTyxwB+D+D1WZZ9Ms/zrRPnHgHgFAAX53m+q+J7KEULDlGEEEIIIYQQQgghbUArfvlNTJ7nv86y7PMA/izLsm8A+C6AwwG8FeMfwi4Tp/89gPMAPAfAtRPX78qy7G0Y/+j2kyzL/g1AP4B3AFgP4AM6zyzL3j+xOWks/gzxs+vyPL8u3R3WMvtrlRBCCCGEEEIIIYTUw9sBDAO4AMCLAWwA8FkAf5Pn+YxTC/M8/2qWZdsBvB/AP2J8Zcz/AfBXeZ5P51f2d2r/yIl/APAhAPxYtieRaiU5SYrVJKOlTpFphuTVbKKmGltLTAUSu2pgLJY0I4WMN4n8QspMdBkHyiSDqeAvR1aSUqLZbax2ZNFo2YaPKlb0jT63Rf4CGDUG6zYu7kUfGhkpylx3he7AMkgh6Q2lChlsM2UhrfKca6Ssv9ESHZnf0qXusZuFe4qzmnOfWtrZoJFjcKjVRKlyjBjrGj08mvcjVwPUXhBCslbFqq5JVsMMXhq89Gm1KJsIGeVYj7vau5cNG5zdDmul5ApJNY43a0XTmvQ3P1bsyDYNoOOYY4qd4WE3oZUrS+eX4j0plSS/lX5vI2nI83w3gIsm/lnnnQ/gfM+xqwFcHZhfVi7CtLAFE0IIIYQQQgghhBAyQWv8aZ0QQgghhBBCCCGknciyllEskLRwZhkhhBBCCCGEEEIIIRPwE+gsoZl68ap9TCwdfqwXVhX+S968pFFQ4LLhgO3BUyWpPNFCvVaS+yEZvnCN9jKS+W3d6h7bvr3YnjPHn4ZsPmXadGr/qFhfxFiSePUY6VVZ96nauDfGEn+9lN1B2dmgq69+j59G9qGqx+0Uz7IqiL3vbcKvbsuW4ueLF8fFYfWhqn3WnDJQg2nHjTdObXc9/4XOseXL6m8zcqzuX/NTN+8TT5zarsIzy0esn1Bo+2/0O6VZdtKIThkvhvpRxRJadm78CusdMCDfmXDy1ukL/yvnXVSb+0mUn5bsAGMvenFQnB3rHnZ/IB4+Y8uW+/M2SPEclWnUWn+m7b81acjy195v8tiKFXXnXfX7jn6X2LKlyE+/z07aCuZ50hAIaRicWUYIIYQQQgghhBBCyAScWUYIIYQQQgghhBBSFnqWzVpYq7OURsoBqsaKP1YG4iuf2KnLZt7r1hXbWosnp2L3+dekb6TUtQwppA4xMoeaNAyt2Vhff3xw0xEpgZNSHgDYvbt81pa8L7TtploOPDbNmLyt+wwlheQitn+lGGNC49LNc2Cg7uSbSmjZpWiDVdeNxithSvTMlm0+ZryZCd+96b4mH3uLBsqnBwA7R4V8qssd03tPOGFqu4r3nfnzxc4xxyRPv2qqtqQIzTv2Wd8h343UABczBsTes2zX5mtAE39hfmKk29nvW3Ho1HbH6M6wRPS7qJAIBpfd4GDYeQrDRcN5tdNFHGpXIdNQit7kfUGOWQCwdaR3anvRsmXOMSfmLrcOWxFddrI+9K85k/tVPIMIaQSUYRJCCCGEEEIIIYQQMgE/lhFCCCGEEEIIIYQQMgFlmIQQQgghhBBCCCFloWfZrIW12kZYfkWhVOFXlIJYr4kUHl3hy4GHeRLVcOedxfaaNe4xObA+//nusZUrg2IMXe7dopHXVeFvZS3NLmPUHhIjI8W+tulIcW+bNhXbGze658owZfjaYyr22etru2W860LbXRV16ktTx79N1OGWLe65cgnzXbvcY9KHSPqXWeWtvTgMm0EvseO4VW/BXjpNJIWPplV2oe1R16EktD5TPIsbgWwLnZ3FdtXxV+GbJ9PU6Y+h8DCLbVtWGbj+PD2+06K9D2P8DmPrMIV3Y2ze0e0sYlCrvc+4rENplfdlawwbE15YZrzSSxewjcR8qAIPrXurnqx7Cx3/tdeWJPYZ5cvPGgfHEOdLFnqfKdpjmX4u79U33rfquwkhM9Gab3iEEEIIIYQQQgghhDQBfiwjhBBCCCGEEEIIIWSCPWJS5Ilv/G6zQzCZu1exxHKZqbOpp32nmHYcKpOZKb3U92al31AJzb77uvuHHFJsL13qHPLFJZe+BsIlZKHlX7WcoAoJkBO/UQhagiUVsnql88HB6SWauvylQmHdOveY3NdKBqGydVQPVh2mkFGnkACVjaVerDikrGLzZvc6uVS5Lv9584ptKd+U0k3AlW/KazShEqmOzY85xzqsNddlozQaRmi/TyGXih3jy4z/vutSSOZDpTxliL231Og4eno6xHbxcysm3U+6u/zlHyMJstKoQqIcSiNldLF2ErFjtSRUChX7nCiTZmpkHPK9qBGklsSV6SehcQSjZZgJSP3OneI9MlU5hkqlQ9F5y3fOXkNGWiZNH1U8w/cY6Fk2a9kjavWnt/6u2SGYvPGCC5odAiGEEEIIIYQQQggBZZiEEEIIIYQQQgghhEyxR8wsIwXW1OUy08ibKQGNuS6FfCGUmunzUtdy0EHuyatWFdvGMj1SnaVlMpZE0F1BzI3Lt8BRd81KY8V1ZVaYaqSc02rH8jwtwTr44GJ7eNg9tnZtsS0lk1rqZ0ktFywotpctc48tXFhsh87crlrCGpt3FRLfmPajpbShbN9ebOtVM3fsKLblCpoWNW1ww6PFjm5AoRiSzGauxBYqsUtBaPs3n2XD97k/kB1YNyAhjR/r6Q0LsgRVywxDpdiS2pUm08qKtNJ4VKxQrPOOWW220aSQfzWrn2hibTOsvCWhq/amsOwo864bWv4yfutdqOo+VLVcWa6aGZtGmThSS/isummaBUsJdPzSJkLKMGPrwloRuj9yzG2Hcm0IlGHOSvbgFk0IIYQQQgghhBBCiAs/lhFCCCGEEEIIIYQQMgE/lhFCCCGEEEIIIYQQMgHFtXs4oTrzZmrQUy/JXYYk6Z9wQrGt9ezCp2znqHuf0n9MegxoazPLK0Oi72VkZPpy7TY8C7SXwqZNxfacOe6xRQP+dJpFd5dbBgsX+tuW9KqyfOGe9rRie94895isD8OSLpjYvpDCl6zRxMSs/fZC05NeZLqNP/lkUBg2sgGV6cA+Y8EKiK3r0OdG6LOmijbYMbqz2NGGLbI+dN0I48IOWTfa20zUb5l4fR5IKcYKi2b2c31vsjq0nZ/sNo305StDjC9cGXzptNJYHUoz7Xys8SfUU6zqfimJ9RcOpUwaMX5UKfxJU7XpmLGjah9lC91P9HtlDK53b7VjRauO1ZWTZfQsm6W0/tOVEEIIIYQQQgghhJAGwY9lhBBCCCGEEEIIIYRMwPmCLUCOLGi68R47tVXQjmUw1tc/tV0mfjmbt7PTf56U72iZocX27dP/XE/RXr++2NaStIEBeV1w1g6p6zS2jPVUd58M01LRlck7VF4TSxL5miG/aGRfTCGhsZB1qpWPUnEXKsOpiUNeqHW84lhNGSee0m9Je6pe+j1WQpyknclK1QOVJa/csKHY1hpBiajTDjkoqvR1GYRK6FO0cYvU/dy6pqvLTV9WR9UKlth23UgZ1xNb/eUTml+Z+1y3rtiW7xnaoiD2ORdKaJqhY1hsGikoI6GMibnRdgytQmhcehyJaSMpxkGdhvWubtVN7Lt1KDEy2FZtI4RUAT+WEUIIIYQQQgghhJSFnmWzFsowCSGEEEIIIYQQQgiZgB/LCCGEEEIIIYQQQgiZgPMFW4Bs9yg6tj4xvqPE6aEeA1X4CaXwMUntBVGFht5KM9TrIDQufZ70A9u9271ONoX584ttbXnk+iB4w6jBtxy1tubZuNGfxq5dxbblE2GR2vsgtq1qPyptPTRJFbOsG+mjEZt+oz0qUniExKSh6ze5X4hqaDLmWjuz8uNn7DgVO4aloPKxQlaq4SlWY1gnsQzrrDTEsRR+QlUTW8bOdUY5ah8+6WGm+5qv3W3d6p4nqybUt7PmPmXMFQzyof1LNzNfGaTyrdI2fZPoIpBpWr5qlfsPVkDVPl8p3petZ3FMjGWeBTF5V+19WAX6+SuJeRbr9OS79dCQ389MD5+9Pc3z9fXRTA9bQhoNP5YRQgghhBBCCCGElIWeZbOW1vhTJiGEEEIIIYQQQgghLQA/gbYCIyPA2rXj20NDzqGaZeg9pJZdxhIr82kHQqem6/MsKee8ecWx7dvd/OQfKOS2lmnE/iFDSifktO8NG9zz5DHdHBcuLLZDp+c3c9l5i8rld4qq+1urkELOHZq+ph3KR6LlFz5phqUIjKVVZBSVxCE7t9Wx9SDgk1dag65xLPYZ4rYD95jVFppWp7oMLHmrga//Ws/AJFLyWj102HUJCJWRlsEaB31jjH4fWby4SENbNbgy2LiYQiWCVYz3rTL2SXmxLv+FC4t7a6XJK1VL9FPE4atfPSzZMkz/MXmdTHN42D3P985dJi9J9PuUYRUQXYfyFweftpuQNqW9fpMghBBCCCGEEEIIIaRCWujvE4QQQgghhBBCCCFtAj3LZi2cWUYIIYQQQgghhBBCyAT8BNoK7NxZ6L21n0qgZ1nVy/hW4S1keXnFnJcqrhhidf7Sm0B7VPi8RLTdgGwiKdqB9kuQ6evmGOOvUqasqva7isFqx7H3VsU1Mf2rahrtURbafqyyivXPicHyLQwlRT9J1Udj0oglOO+ubm/eNWUX41UV6c81qwlsyKF9r/I/3mtTLuUlK4l5PynT3reNFOnL5qibWazXmUxT37YPy9rPMd4CvB6BsX0+dnwLHR9SPA9jY5TlOG+ee0wWqx6WYoapMu/jVb+DpyCm3lL51G7ZUmxv3OhPX6K7icT6tS/J+5oKTKYp/de0f/HSpcV2zfgjBw96lpFZBmeWEUIIIYQQQgghhBAyAWeWEUIIIYQQQgghhMRAz7JZCWu11SgxDzjFtPJWnVItSbGkuEVoOZaRZ4XmJcfVOXP810l51u7d7jFrOndXV5Ffb4+/fGQc1tR0q3mmmB6eoow1jVyGPjb+dpA5xBIr70ghb0rdJneO6vSKfdlvtJxJyip0jFLO8OST/jgWLvSnIalaClwmvRRjpJV+ClLE6MRlvCzHxm+Nz1b6vntrpTHGisV3rJI2IgtWapFmIFTOHdtnZVhyrDB/J1Pxr9/SO7U9f757qpTwyW0rfa2y6hjZNn2Qiqrf36qwbUghMw/FklNade8WuRujlOfGts8Uz5tWtFOpvWZ6OSIQLnWV1+l62muvsOtCibXlCMWSg9bIvkM13IS0IZRhEkIIIYQQQgghhBAyAT+WEUIIIYQQQgghhBAyAWWYrUCWFfN1Y5djUTRranTV8g5LZqIlUnIKdBWrVMVMz7fS7+vzpyFlmHq6dmdnsa0lmvJYT0/YaoAxKyulIlbmkKL86zm33jQauRpgq6wqqvOuQuKSovxlXFphJPd9cqYyaNmGV5odqxFRpB7/y6xGmjr9FDKuWgXZ9DLbKmjkqrRW3q0k0YyhVca3KuIwZZhyTFANWUq4rXYshxFLFlaThszOeIe1xoOqLRdCqdrOIzbvbqPepN1GKO1uz1IFsl3rR6pPDg24K5fKhXN1H5Lv53q1U+sR7lsRN5XlwpjnOVfqtWLlyhInz1Lk7/JkVsGZZYQQQgghhBBCCCGETMCPZYQQQgghhBBCCCGETMCPZYQQQgghhBBCCCGETEBxbSswbx6wbNn4dgm9c+gy2Y4fyehONxGRXzt6GMi4tm5145fWGdrTIcbrJrR8rPNCl4jX6OXefWgvhVDPARl/jP+FTsOimd48VdDMvpG6LFP47MS2f8uP0PJUij0WGuPWrcW27k+mh1Bg+vI6mRcA/OhHxfaLX1xs7ztHmaHIRLq6zfxC40pBau/Mqj0NrTpspB9ndF0ok5wOsT82sMif98i2Ykc3wsHBuFgCaZn3DtmZ77nHPbZ0qf860Whi2651nXwemz6szhjgNuTurvJjX61/n5F3M41OBTKuWg/b9L6mEutZULU3pKSZ6Vttpt2snKx49THZ/KW/sEWZLiPPjX1OVO5Lmchvu62hZ9msZXb91koIIYQQQgghhBBCSB3sUR/LOjs7sXr16ql/w8PDNefceOONOP7447F69Wocfvjh+OAHP4iLL7546pru7m48/elPx+rVq/Ge97wHAPDJT34SPT09ePzxx6fSufbaa7FgwQIceeSRWLlyJf7yL/8Sv/71r6fSWbRoEQ466CCsXr0a3/nBDxpVBIQQQgghhBBCCCHEYI+aLzhv3jysWbPGPOe8887DV77yFRxxxBHYvXs37rrrLjz1qU/Fa1/7WgDAsmXLcM0112BQSBMuv/xyHHvssfjmN7+J888/f+rnJ510Eq6++mps374dRx55JM4444yp/M8//3ycfvrpOOuss/DGCy5w1xsWhEqMgmmTKaIxU4bb4da0wkVOr7bil+qajRvdY1u2FNtPPuke22uvYvuQQ9xjiwamz6tMO0sxtTtUytYqUuCWkQ1FYsWYIv4yUqQYKXmszNM6V7bBDRvc82Tfk/0JcJeCl307Vrk2MODuy/Fh3x0PFjuZf117vVy9T8IBwNv5YstREyMZSdG/YmWMrdJ/Y6XGNdqe0Iei1QEkFUsyNb4+qmWFSZ5RsqxWrPAfM6haJhwcfwJilZWx92JdJ8c0Ky6ZxqZN7jFpZaGLKvW7ozUGp7A6sLDSTyH1rtpGo5nvV7HlI9uPbGfz5vnPs9KwiP2dMPS9T8qVQ60xZkqfkHanDT4vNJZHH30U++23H4DxmWhPfepTzfPvvfdebN26FR//+Mfx0Y9+1PlYNsm8efOwevVqPPTQQ1WETAghhBBCCCGEkEZDz7JZyx4lw9y+ffuUDPKMM86Y9px3vOMdOOyww3DGGWfgX/7lXzCi/0SkuPzyy/GqV70KJ510Eu666y48+uijNeds2rQJv/3tb3HyyScnuQ9CCCGEEEIIIYQQUg171MeySRnmmjVr8M1vfnPac/7mb/4GN998M174whfisssuw6mnnmqmecUVV+CVr3wlOjo6cOaZZ+KrX/3q1LGf/OQneMYznoGhoSGcfvrpGPJILQkhhBBCCCGEEEJIa7DHzxd87Wtfi1tvvRVLlizBd7/7XQDAwQcfjDe/+c14wxvegMWLF2Pjxo3Ye++9a6791a9+hd/+9rd4wQteAADYuXMnli9fjre85S0ACs+yu+++GyeeeCLOOOMMrF69uiadHNmU/ruM7jvJUvOe9DRlvIZSpx+6HnUVPhTbRqZftl3vh/oIxFrK7NrlPzZnTrGtPZUWLy62zZWdpeGSCqoj0LwktI1Y1akJbTOp+0KZmEL9tGL9lhrpaVLmulB8nimthGzyup90dvqvk+fKNGLHHm0J9bznFduPzTlgavvGG93zjj662JZ9vgbd+WS/F/1c9/nQ/hvqOZjKL6dV21MMKTzdao51dYed19c/tdmxdKlKo9rXxNB20VA/S10GFps3F9sDi9LGoajCz8mXplXeVj+0/Lok8t1K55fiXc7yi4pt0lYZS6+nMun7yj9Vm455P48dn2N8t3Te7TCmWzH29BT3FtoXdJqxz4LU78Flxpt29/IlxGKP/1h28cUXO/vf+c53cNpppyHLMvz2t79FZ2cnBrTr8gSXX345PvjBD+K9733v1M8OOuggPPDAA855hx56KN773vfiwgsvxOWXX578HgghhBBCCCGEENJg6Fk2a9mjZJghfPGLX8Rhhx2G1atX49xzz8WXv/xldHqmFlxxxRU13mdnnHEGrrjiippz3/SmN+G6667D/fffX0nchBBCCCGEEEIIIaR+9qhPoFul5MTDdB+6JMPDw1Pb0334+sQnPjG1fcopp0xtz5s3z1kN85JLLpnazpB7p6mackTxBduaEusuux0nYymzlL3vvGjkl3pDAxS71LmFzC7FHwysNKSaQ7NjR7G9bp3/Ot3EpURz2TIjMGMhi7GeXuPC8jRUTqOoQiYZm3fqe23ksupAerlr6NLmsdIDfczX5PUQ8+STxbbVdhcu9B8LpbvLLYPFi4uYZd9eudK9Ti5Xb0o/9A34dKQGKSRGrUpoH9056r8vXYehz8oq8OVn1oup16+W0DGmcjmuauQyP/2cXhRYXinGMItmtjPf+6Zmy5ZiW76bALYUPnTMkffd1xcnIataTma8xke/j0t0/KHvsClsFkLj0EgJa6tI9sq0EV/MZX4nCW13oe84sTLJRlqaENIusCcQQgghhBBCCCGEEDLBHjWzjBBCCCGEEEIIISQJ9CybtXBmGSGEEEIIIYQQQgghE/ATaDtR4ot1aq8tTcfozukPqMxCfYiCibyZWB8E6Tmgs45J0/IR0D4dsg4tPzN53eCge2xoyJ+3N5EKyjjFsvY6jdTeFqE+FM307ipzrq/syvidhPrshBKbRhV+PL5mbjV/y57I9mQJi8lqSzJv7YUi/cx0XtJDSHrDjO93T23LctWeXCmeISnqTZdPTN9L0X/LlEeK54RFjIdNrGeTRRVeQ7JPbdhQbOs1l+bMKWJeNFCt51GND5HHO9Zqq9rXqzfCbzWFp5J1LLYdWGOk9imTyLo2fRebSIrnkDl2hD5EzPO6vYdCfy+o+h1H16+MS3rNNdPftgy+dpHifaeZxPpRt1LdEJKC1uiRhBBCCCGEEEIIIYS0AJxZRgghhBBCCCGEEBIDPctmJazVFsec9m3Mqfb112TTY31z5gcG0qTvocz05BQyse6uaqV+El1ncl/KK7UkQUpS5s93j4XKF8Z6eoPOq3p6fqikaLpYfD9PMV28VabFlyFmCfCqp89bdRN6LIXECKiVJE6i+4yUMlchB4q5Nx27JX2KoYr3vVgJU4q+l1oiXmNDIJ+HViPR8imPhM/CKo/16939Rx4ptletCiv/mnuTHgBa518xsh0mcAqIRpZXT0/9UmAdf0wa0f1CezrI9ppggAuVseuu4MrF/WmkeAep4nke23+d60IbdokO0EgJvVWusr63b3ePSXmujDfWMqLROHk7v5f5JbHB6SFNG495HywDpZdkNtN+vwESQgghhBBCCCGEEFIR/FhGCCGEEEIIIYQQQsgElGG2ADmyqWmxpaYdG/OrK58SK/OW8+flsmyAM+8+hYSy0VN9Q2ViVSDzkysElVmRT+53R/b2qqdvx8RhERujvk42694efxnI83T5S1VLbdeYftWnZkohy1DFCpX1Ert6k4WlTErdJkPT0+fJvr1txM3LaoPyWLfRBhspt24modKVmmdvBfIpH1YbmT+/gnIN1PhWsTqavK7fCCN2JciQ9GLTsND2DlVLjZ22m1qzrTCUxt7XRsAdm3SIHVufKHbUgCz7YhXlKNN0nU/StJGY56jVPjtGtvkvNB5mTpq6cgLTsN4VZd0vXAjvsdB2XBticUyHmKL/BqcRIa2vgqpXp2/EdW1HltGzbJayh7RgQgghhBBCCCGEEEJmhh/LCCGEEEIIIYQQQgiZgPMFCSGEEEIIIYQQQspCGeashbXa4iT3i7IMJWKRZhM6PWE+0WjPrxisGIP9bCJ9k9J4DPh9Iuyr4rySLGK8OBrt8SD9nbQHhuVVJYm1K2rkMzW0bZleKBX035g2n6oN+o5pL5q2QIzBXT39zqH16/2Xhbbxqol9zsWMwbGE9pMypI5ZeisCQE/P9GVplfFYV7f7A73fgjTTVzM079jnu6+N6LysvF2vLX99phjvQ18x9dhjWqklfljG9jUrjBSefaFpmOlZxrU+AzmdZgXeisGeuTp+eQhF29Xva7t2+ZOQ46D2C0xBat85jfTsG+srnu/ag1RWmx77U3g3xtIqnraExNKGvxUQQgghhBBCCCGEEFIN/FhGCCGEEEIIIYQQQsgElGG2EUmmsqaazi7TGRgoto259K20pHtq+UsSmaEx/Ty03qqYYh5LaolUiinhVhFrWYivyHX8UrZnVZMpMxHsHHXvM0WdNlPyHCtPiZE2x0qg2wHnPkd3ugc3bJja7B5yG+G8eb1T25YUOLSeytRnTJnHptFIqUesFDg0nVTPudD0UyDHVi2R6g8c+6qgkXYAzZSDWoS+9qWIOdaWQD5/a9PwywebRZlxKtQOwEo/GEtbH1h2NVJsQYpx1mxnIm9LUapvM9RSoAq5fui7bnD/0jcu9ZZChmlJnil9bAL0LJu1tM7TnBBCCCGEEEIIIYSQJsOPZYQQQgghhBBCCCGETNCQ+YJZlu0N4NUAVgLYDuA6AN/O8zxvRP6EEEIIIYQQQgghhIRQ18eyLMv2AfC5id2v53l+5TTn/AGAbwEYED9+B4Drsyw7Pc/zx+uJYTaQIW/asr6+VaWBEpr3wcG642gmlsdAQz1IEmjdU3nd+NJM4dVTRYyhWB4PwcWvEukQF1ptxPJLs86TnmhVe3LFph+bd+h1sb5k1vgWGoc1BlThfxIUl24k0jdSmbf0BJaBxFzGvsR9ph4/Y9unc53pDen36gmliudEbPv3nVv1OKLbWaxvYSgpYk79nItNP/ZeUvS10Pu20rfGGCv9nh7Lx8qfaNXvZb5yrfo9JrrPBJZVQ59XMyBjkZ6tse9roe9aVYxLqZ6dDh5DNu0NGerbRiqCnmWzlnqfMi8EcBaAlwO4XR/MsqwPwFcBLASQqX/PAvDlOvMnhBBCCCGEEEIIISQZ9X4se8HE//fneX7bNMcvADAEIAdwH4D3TPx7GOMfzF6UZdkpdcZACCGEEEIIIYQQQkgS6p0v+FSMfwi7yXP81RP/bwHwzDzP1wNAlmVXA/gVxj+YvQrAtXXGsUdQZspw6HTo0KWGg6ecyyWO1X6Hnp4qpEOhS1U3czlkq4zNuORcaVUG1n3HYMXxxFa3DjdvLrb7+ortRQN+KaqmaglEimnyMg3dBIMlI0YdhsYk5ZTWdfq8ZpZ/aBySWClkTfqyzCvQF/juR8pAAGB01N9+urtEGnrsk3nJDpYCXR5yX2lQnBFGy1M8FVIz3o/u9F4T0wbLSI1TtH9nrC4hk0gtnXPKUachngWxMsAUMjpNqLwvStI+Q5opnvcpLC5a6b1jpp/PdEzjkxa20j1vGyni0kOfL85GPhvryS8m/jLtM2aMrIJQO4PYcUSSwm6gmdT8XjCwaNrzpPsCEF9evn6f6t2z0X2RkNTU+7Fs8cT/9+oDWZYtAnAkxj+mXTH5oQwA8jz/TZZl1wB4HoDj64yBEEIIIYQQQgghpPHQs2xWUu/n3smPZVumOfZMjM8cA4DvTnP8lxP/H1BnDIQQQgghhBBCCCGEJKHej2WTH8PmTXPsmRP/5wB+Ms3xDRP/J9anEEIIIYQQQgghhBASR73zBTcCWALg4GmOPW/i/zvyPN80zfHJD2x+Ew/iUEZf75wbahpkoJco3rKl+M66e3fx8yWDylDCWsO54umqqf2uQs/Tt9xtlkGYV1to3tLbA3B9yXQd+o4tGgjKNhmhPim1xej3kvIR3eQStFXL8y6134kmtC9YXihljoWS2pNIx5FiiLHSkD6A/dJMx7iozLjkvTfZeQHXdFB3lFDvN+tGIwvSGvp8pPA30WOd64MT59cVe55sI+vWueP9hg3F9uBgsX3oshpTt7pjDPZVK+GF5UuzjNdNgteThnoPxeYVW/73DRfXLVtWfxxWftYzKbV3bBlPrl//utiWZQAAixeH+S2F3puFdZ5+95LEWG5Ge+Qa6TTSlyzFebFY9+k+k8LfF5rpbyZjlj6pvSXalfU7Ssy4W2aMn3wej7WmRRwhM1LvrxK/ArA/gFOzLOvJ83wEALIsWwHgOIzPKrvOc+2k/PKROmMghBBCCCGEEEIIaSxZRs+yWUq9f2b41sT/gwCuzLLsyCzLngXgChQSzW94rj0G4x/T7qkzBkIIIYQQQgghhBBCklDvJ9BLAbwH47PETp/4N0kO4Bd5nv+PvijLsmUAnjZxzs9CMuro6ECWZTOfqOjp6cFTn/rU0tc1kt7e3mozEF+6H17nfh+9885ie+tW97JVq4rtvfZyj82ZM/32tlFXZtKr1zaOoIrlzFOk6ZveXvOHBWMOfuqp3VvUUhvr1hXbuiqk7CeF/KVqKV5T/2ATqBUqUwYySbltSjYsXZs+JhKKlUeUkcr4kLIBEy0tlBiFkkJeJtHVK6+TkjrAldF1DRVj3+YNzmlO3+vtUs4DMQ3busbSWOjrAvOO7duht5ZaKtRMOZ+O/x7x58B//Ef3XPnM/fCHxQGtI+3zW7uGPsuqkGOlSLMd/hAfc2+p5Jry3ct9DNVvMxFLCouLMjz+eLG9Y0fy5JPcT6icOMX7pkUzLRGqjiNFPcU8k1LlHYuMOXS8TzHG6zSsVzT5yBoaco9Nxh/xKzwhLUFdryl5no9kWXY6gP8GsFQdXgvg1Z5LzxXb/xuS19jYGPI8Lx1jlmX4zW9+U/q6RvLGCy5odgiEEEIIIYQQQgghBPXPLEOe57dnWXY4gP8D4EgAnQB+CeCyPM+3ei57KoAfY9zc3+dpRgghhBBCCCGEENKa0LNs1pKkVvM8fxLAxRP/Qs5/VYp8ZyX2Ml7OoZjpuJaKS8ryAFf5NH++/5hEpy9ln/rWpLxArqg5XSyTdJdosR2jQu6UaHW60OscEgyeoTHOn++et//+xbaUywJuHYaGGCszlOi8Yldq9J2nCY25ZhVTGWdgP4zFXLDQWtJUogs2cAmuGBmXdZ1ZHjp+K0ZxLHR1qyreU2TeOlwpr5R5b1AyTLm/cqUrVe+OaLtjff3eazp0kUYUSqwEJUVfiF0FruqV3ixCVxrTzzV5zFFaqoZmlUGMBKgK2VCKlfB0HaZuTykk241eUVCu9uicN+qXc5eJMUbel3oVY52+RlqCxDp7VL0qZMz7VCyxq3lWQUy7qKL9hB6rou6j3oUS51sGy2qizHUS63fLSSsOyjBJu9K8t0tCCCGEEEIIIYQQQloMfiwjhBBCCCGEEEIIIWSCpJOFsyw7AMCLARwDYDGAvQD8c57nX1XnLZrY3DEh4SSEEEIIIYQQQghpH+hZNmtJUqtZlvUD+AzGV7/snPwxgBzAd6a55IcAVgO4G8DhKWLYE7D06aHade33sHq1/1iMr4D2FOvp8ccllwDXVkYyFse+xTCE2Tnq5tUdOGhVvSR3rOdOTPn39rjX9HYV5TXW5XolyaKc9BQoi2WhJaliKXVJbN3IMgj1LIvNa+tW/35nJ/xIMyPH2MiNK7gyFJbHRqj/RhL/PnVvT4wU7VUe0fUk/cAsT6hQrPaox7dFA9Oft3WrWx4y5k2b3HOlJ5HlR9VIj0SNFYc1vqXwOYq5rkwRxKSvy0DWr/UsO/98f5qy7eqxOjYuSexzLrUfUqO95Xz5lfHMaibevqcfKKKhVdEPfelpqujnS4aikkweh0Vq39dYT67Y+FO0kcr9/Ea2FTt6oJXvDwmegfr3iSp8fX2kGJuqqEPrdVMOR8PD7rHBwfE0tTc1Ie1C3b06y7IhALcAOBfjH9+yiX8Wn5w459Asy46pNwZCCCGEEEIIIYQQQlKQ4s8A3wBwMMY/fv0MwB8DWGVeAVwFYHJe0YsSxEAIIYQQQgghhBBCSN3UNVc1y7KXAzgB43LLywG8Js/zsYlj3uvyPN+aZdnPAJwI4Jn1xDDrUEvGh6Kn3D4hZEBydrJOvmp59aIB/1TgxzYXMWpplXcZYiNgLW9auLBIv2oZoEWo9DI0jtqy8d9nh/iBTr+rq/6p3aNiqvrmzf7rpBRJKwlj8/ZRZsq6LC9ddjIdS+EY2mV1+vI6ud2x9Qn3RFmwS5c6h7aNFDH2Ro4dFsllFVZHVMdCxyZZPLptxba1elm2zN2XsoRHHnGPzZ9fbPeqKpRSENnvdVXHjmEyfdnGreeEoYSvoeqxNZTUcVhjqS4POfZpmbDT7wPl0GZcozu9xyxpp0y/kjoTjaZDNyBRCLEy8BRUnVfyclWd1HqXSJ23fh6GWmU0kyqkoymoOu/Qd8yqx0hfTDXXSamllhrLhmc1wia2uRTjSOj4X/U4ZaW/a5c/Dd/7g/FZYHZAz7JZS7097RUT/28A8IbJD2WB/Arjs9FW1hkDIYQQQgghhBBCCCFJqPdj2XEYn1X2rTzPt5e8dv3E/4vrjIEQQgghhBBCCCGEkCTU+7Fsn4n/74u4dlIvELfsEyGEEEIIIYQQQgghialXXLsLwNzIdCY/tG2uM4a66OzsxNOf/vSp/auuugrLlOHM+eefjx//+MdYsGABAKC3txfXX389LrnkErzuda/DmjVr8IxnPAMAsGrVKlx99dVYtmwZli1bhvkThjS7d+/GmWeeib/+67/G3LlzvfFIrzEA2LCh2NY+OBY+H59W8pex/ISkVcF2MWdx/vzmLe8eupxzqiWbffYM2itg3rxi2yrTWB+cULS9hM93rta7K62XSKryl/cj+5Puvr09YR4PlpeR41MmO73OXFVwz8Aib34xS9RXsWS55ZlSprx8DA2Vv6ZqlgzpNljcp67eLVuKbe0juHbt9OnLewZqvc5ikOOsLkfL2y8JcrBQGcS0n1Rjm0xfdkNdL7IvK1tBE1+cycZmp1z9f5dM7uekB3/9cJBU4LUYQrQvXIIxMglGuaW4N+u+vJ6yJUjV5mJ8X1uJqsewGA+taL+xyJgdr0X9gJTIZ4N+2TUeTDF9tLsrrgxCSTGO6H5oxZwCa6ieM8d/3uR+R/N+fWscrfISSpJSb60+AqAPwCER1z5r4v/f1RlDXcybNw9r1qyZ8byPf/zjOOuss2p+vnTpUnzkIx/BlVdeOe1111xzDQYHB7F161ZccMEFuOCCC3DppZfWGzYhhBBCCCGEEEIIqYB6v/Nej3GT/lOzLAuWU2ZZdiQKv7Pr6oyhqZx++um4/fbbcdddd5nn9fX14Z//+Z9x1VVX4bHHHmtQdIQQQgghhBBCCCGkDPXOLPsGgNcA2BvABwD835kuyLJsAMB/ih9dUWcMdbF9+3asXr0aAHDQQQfhm9/85rTnvetd78KHP/xhAMDTnvY0fPnLXwYAdHR04N3vfjc++tGPzjhjrL+/HwcddBB++9vf4vjjj5/2HCn1AGz1gmTbiPvd0yfHKzNNWqapp9WmmCIupwwPDLjx33NPsS3LQMpdAGBwsNheuNA9JmfD6lWmXVlR3DT+FEtE67hCzuvsdI+FzvoNvTdLwqGPyXah24iUKkmJlyVjnCkWH42UX0jZazLkfHo9t15WsBogRnoKGWaoFK+Z8o5yEo7i3PXri5/u3u2etWTDr4qdVau8+VUtQ7aQssy+Pr/cV4/38r5D293OUTd92Xz0PctjMv2GKwlEhlYbqUICZCHH3XXrim2fPBYADljaRCmYpZ9NQHT5+zwFAHe8G9wHPmKfXzFYEqkU40iKdly1/NMqA7NZJWhzVYzVoc+rFHnHSuxC5Y9VP7uqflY6thOAK72U44F+4bd8RgQ6fpmkHH50cvK87shmHFpPVoyhXaiZij/9vm8N8ZOMtZ9KmhAAdX4sy/P8W1mW/QLAUQDek2XZHAAfyvP8yenOz7LsJQA+AeBgjM8q+2Ge5z+rJ4Z6qVeGCQCvfvWr8ZGPfAT333//jOnkeV42REIIIYQQQgghhLQaWUbPsllKij9NvRLARozLMd8J4JEsy34kjr88y7Krsix7BMBVAJZP/PwRAK9NkH9yXvva12L16tU47bTTgs7v6urCO9/5Tlx44YXmeVu2bMHw8DAOPfTQFGESQgghhBBCCCGEkMTU/Qk0z/N7six7HoCvYtzovxfAczA+cwwAThCnZxP/3wPgpXme/77e/Kvg4osvLn3N+eefj4997GPYIpc2E2zduhV/+qd/ipe97GVYqPWChBBCCCGEEEIIIaQlSDJfMM/zX02Y9r8FwJsBLPOcug7A5wB8Js/zQDeu1kB6lgHAz37mqke7u7vx1re+FW9729ucnz/nOc9BnucYGxvDGWecgb/+678289Ea+kCJfg1S6h/rrWXOJpUeA3feWWwfc4x7XuCy8FrbPzg4vV+a9ruSx6xlk0dG/Pcty1j6l80UY9WeIfLeZH1WbEtTyp9ClvnQUFh5yCWmgQrK0VrXvkRhue2i2LaatFV2um0551rmbz7DDdh+b6mx7i3W00R6dPUbK8HrNuMgy0TVfYdIRPs69vQ0xw+vv8/vzaab5377FduhnibaL8QdI3XOY+K8ME8iXR7SI81s4waxY0AjfefkeLBsmXtsaKhhYZi0TDlaY7Bl1Gl4loUS+pxuZNspk3dsHcZ4HsVipV+F31WMD1Ts86rRnnFuvTXOl8yiime9c6PanFmOCfJlV78LBTZsPfzI5KV/rpW8fl+Q8yD2XRxXBlabiem/ZcaRFN57VvpWzJPHssx/DiGtTLJHap7n2wB8HMDHsyw7CMARGDf+78K4TPPOPM9vS5VfKrYGOOhfcskl0/78/PPPx/nnnz+1/9a3vhVvfetbp/aHh4frjI4QQgghhBBCCCEtCT3LZi2V1Gqe5/cDmNntnhBCCCGEEEIIIYSQFoKfQFsMvVJyKIFqx1K4yygHLguv5j/HLne9aGBMbE+f3kxpSnnQrl3usd27i21ZdmX+KJBimnyojK5ZkrEZ0xf13TviztJcPlgU5lhf/3SXlM/Pg2wXo+h2jnVjZ9159SboX1bZOQ2vzHLpsu9VMAjElL++xpKBSzVGX5+/b8sxAHo28IoVQTHqdhcqe4gdw0JxZJlKorZ0ae/UtrxtK94y/SuUZkqCGolun7JLWVLLZv4xuWo7gCh0gVhjk2jzHSPbwq8LJMUYlpoydRZqo1F1G5RxlLGrqJpYmxGJdV2K9GUa8r0U8I/XVhm3JdK6RT/Dly4ttgNfyM26MJ6B8+YZl/kdL2wrCE9cZfpCFb/DhRITsz5Pv79Ndy5lmKRdmWWjMSGEEEIIIYQQQggh8XBmGSGEEEIIIYQQQkhZ6Fk2a6mrVrMsuy9BDHme5wcnSGdWUGbabsyUcL0IjW/Fv5ny6pBSMUMGZU1hT7E6S2gZ6KnXvtUNa2QgcjW90W7fIVummpiWkkQF6sFCJRxakhC6OpQ1fb67r0UfXr6yi10CN5JQCUqZ60KJulU9iA0OBl0WubBWU5HlL2UOHVufcE8UNzcy0u07hO4N69zrRAV0Cal0GSzZp159s9Wxni9Vj/FVyClDJWTJ87ZkmLrTy/68TrVPvezoBCneJWKlkFWkHxOHlvM1cjxr9MrgVWP1k5iVOGvasaBraImzLxWJ1vPQyTvRit/e9BNQ00fli5m1ZLOIP7ZdWcNPqP2Cfl+wLFN8cTZzdeIyafjOjX03LJMOIe1AvY/XZQDyEudLxXI+sV/mekIIIYQQQgghhBBCKiPF36LKWvZNfhyj1R8hhBBCCCGEEEIIaSnq+liW53nQ3Mosy+YBOADAqQD+AsBSAH+X5/kH6smfEEIIIYQQQgghpCnQs2zW0pBazfN8O4C7ANyVZdnFAL4D4P1ZlvXmef6uRsSwp+HztrAsQSydf7A+3fBSqMJry/Ka6MbOYtvwrXKuqzXNmtq0bBaq9uZpKZ8yH5FeW9KzQxe/tMaz8HnQ1UPMctqxXjpmXrJQdAEZhdcxNBQUY2hcGidO0TnGenq95+l7WzQQHEqBrmDLhEQc645dht44L3m/DG28X/yiu3/ssVObnQce5xxymsXate51oo10iP5bpo3IcbFmCPDUTUt5mFjPrMQvvqH3bY4BJdpxTH5lfGqC61HGb7XxDRvc9Jctn9qW7UwXQai3pSTWc0e/Q8lnlPQ1aqVntozfeMVJEvMTW9024avuMl2rY8OjxY5+EZNjWGCiqbyYvNfpGMV+h3qp6VHPy6A4jEqMHmMEKcqnY3Sn+wNZN/pB4RnfrPGmTD35fHKtNHqNYUqXjwxfvpJpZNWn6GtVtOPgNFQbl31vrKtbn01IW9PwN9Y8z58A8H8AbAfwF1mWndToGAghhBBCCCGEEEIImY6mzBfM8/z3WZZdjfGPZm8C8JNmxEEIIYQQQgghhBASDWWYs5Jm1urtE/8/q+qMTnzm0VVnURdz5ybSjQl803P33tvdTyJZk3OLI6V4lRAjuzLi12UVOibGTh1PQdXTtB0iHxIpni3yXvSU+6il32c4NySOZMgC0vILS5vkIVZKVcm9ha7jLtF9VF4X2ZhiZWhNY/58d1/c98KF7iGnyWhpboLxWo6LtcXfOOlldL0ZEqaqpTKpaXT79PWbmjisfinbYKjuvkWpYiz1lWt3V6QktgLc+6kgDkMqXTVRdarHWeM53ePpGtI+RdMd+eJexXgWnKbs59Yz3MgrFOs6ayhK8a5uva7FptnM3yFiiJbrE9KitMIn0OmNdRLy008fU3UWdfHGTw83OwRCCCGEEEIIIYQQgiZ4lglOmPj/ySbGQAghhBBCCCGEEELIFE2ZWZZl2R8BeBGAHMCvmhEDIYQQQgghhBBCSDRZRs+yWUpdtZpl2QGhpwLoA3AogDMBvFIc+1I9MezJhGrXpYeTtroJtYLQPlDOEt2BPiNV+MFY6aXWyctl4S2ozy+HtN9I4SmWZOn3JmLep/Yqkd4o1kPa8AZL4qMh4iqV3oYN3rgwODj9NUmMFv39VI+JoR4nkirakpPmOed4z+tWecuxe9ug+8iW99ojtrUfkkTfs1Udqcun6rG16jEgyfM2klg/LXlddPlb7wty3xibegO7fRVtRFpOLRlqTT+e0LbbXfHvcv19FfQh7QHmoZH+m1Y/6dCDojFIhvpl+vKaKa4YUnjq1Tw4ZT8v85CNiKPKa6ZDPi+7E9g2W3FZ/mXWWJ382VbiPaxV3q0JiaXeEWoY47PDypJN/P+/AC6uMwZCCCGEEEIIIYQQQpKQ4rN6FvFvN4B/AfBHeZ7HfGwjhBBCCCGEEEIIISQ59c4suw5hM8tyAFsBPALgFwD+K8/zh+vMe48nZjlha/azJRGJkSLpuKqYiptiGnUjl3Ouemp0men5KSQLMWXQ7jLJZlLTfkLlC1JHpJdtjyRJfQQOQFXLTiTWGNkqMhmLbSPhMkmpgpWq1+6ecJlMqIzIOq/R0qEqiX0mWc/fFNK50HqKjT+4/NvQ00UOn1oO6ivXWCmbplXadauSQn5nlXEjy1/mpft8bNtqJMExBo4BjX5XbKSMtwy+Z0ONXN8Y40PrJuY8Tau2z8qhZ9mspa5azfP8lERxEEIIIYQQQgghhBDSdFrDmZQQQgghhBBCCCGEkBaAH8sIIYQQQgghhBBCCJmA4toWI5WXgk9PbtkVxUqtq9C/x2jeq07fIoXOv2pi8253b4JWid9qg5X75pVY5jskrxnzC0UaZQVSdZ0lKKqGE9q3e3vcshsYKK4LHf/LPJNSj3eNHm9i4rfKwCrjWF9QK+96z5sp72C/rop9XGK98kKJGRNi3+Wq9pOr+l1Ik8IrKUUbDC3XFOWR4p0j1dhZtQdVO7wDhtIq74Mav2eZP/1Wacd7FPQsm7VwZhkhhBBCCCGEEEIIIRMEfQLNsuwLFcaQ53n+JxWmTwghhBBCCCGEEEJIEKHzBc8HkFcYxx79sSxH1lR53iRVTKsNlRdYU+ZbZQp4K9TRTFQtg9LETNNOJQPxtZEy99wOy7FLomMUU8Ot8k8hFS1TvzHln6r9VClTaOaS62UkY4sGfPmlkRL47qcd+loZUtslxMrQQikzRsY+w335xT7rQ0lRF/q8np7yMthGvy+kyDu13LcRxMRcdfm0EqHvYRZJpNgRlBlvUkiNU8u5U/UT3zO9mdYzZM8my7IOAG8D8EYAywCsB/AVAH+T5/mTgWmcBuD9AI4AsAPA/wB4d57n909z7gIAHwZwJoC9AdwL4HMA/jnP8yq/TwEo90acBZyTB5ynz6n8JgkhhBBCCCGEEEKSsmd5ln0SwFsBfBPARQAOn9g/Msuy5+d5bn6dzbLsTABfA/BLAO8CsADA2wH8vyzLjsnz/GFxbjeAHwI4EsBnAdwB4EUA/gnAvgA+mPLGpiO0Vp8zw/HTAfwFxj+C3QvgGxgvgA0TP9sb418OzwCwAsAYxgv66vIhE0IIIYQQQgghhJBGkGXZ0wD8OYBv5Hn+cvHz+wF8BsArAVxmXD8H4x+9fgfgpDzPt078/L8B3ILxj18XiEteD+BYAG/N8/yzEz/7tyzLvg7gfVmWXZzn+QOJbm9agj6W5Xn+Y9+xLMvegvEPZSMYv5H/8Jx6GYC/yrLstRifOvcXAO7P8/yfyoU8u4mdVttouV2zpvQ2c8WeKtKoetp66pU5q5B5piiDFCs+Vd3G22EafKpV8mIILf9mlmOrjIOa1P08VjJfJi5fGq1SphZVWxY0kyqeo1VII2PiipVZpZZ4xd6LFUcrWlfo/KpetTQFVYzxMe2nmc/iMoTmneI5UcVqv6HXpXiOxsbfyHfk0Dis9GdKh7Q9r8L4RKhPqZ//G4B/AHAOjI9lAJ4NYAnGJZtbJ3+Y5/maLMuuBfCKLMvekuf5rolDrwawbSJ9yacwLst8BYCPxdxIKHWNsFmWPR3AJyZ2/4/xoWyKPM8vBvB/MF7Qn8yy7Ih6YiCEEEIIIYQQQgghlXEsxhWCP5M/zPN8BMCaieMzXQ8AN0xz7EYA/QAOBaa80Y4CcOtE+pKfTcQxU351U++fI/4UwBwA1+V5/p3QiybOvRbjM9veXGcMhBBCCCGEEEIIIQ1nDB1t/w/AYJZlN4t/F6jbXAJgQ57nO6Ypgocmru82immJOHe66wFg/4n/FwKYN925E/lvFOdWRr1OdM/FuEH/TyKu/SmAUybSIIQQQgghhBBCCCGNZ0Oe58cYx3sxvnrldIyIc3Ya18OTxog6xzp38vxez7Fk1PuxbPJrnq9ALCavWWKetYdRte47lQY99DyZX5n4Q30cZN5V+3XNFEsIKcq7TBxV32dqL4Iq/EJi/cx815Up0z3RqyGVX0gjfVga6feTwotmdDQ8P7k4U6t4ruk45P10dTXW+6RqT7cUpPCqin2eN3MMa2Teoc/mWD+hFL5nocQ+o2JjTO1dWobUfnWxeVXdflLHlcoTzddmGulR1ghSvO9X8f4fStW/r4Q+o8isYBuAfTzHesQ51vUAMDfgeuvcyfOtvJJQbwue/NIX4zv2DJUGIYQQQgghhBBCCGktHsa41HK6D1j7Y3xmmjWJ6mFx7nTXA4XschOA7dOdO5H/3phezpmUemeW3QXgBACnZ1l2aJ7nd4dclGXZoQBegnEJZ9A1hBBCCCGEEEIIIa1Cnpeb9d/G/BzACwEcB2HDlWVZD4DVAK4LuB4AngngR+rYCQCewMS3oTzPx7Is+wWAI7Msm6t80o7D+KSvm+NuI5x6P5Z9FeM31g3gv7Mse0me57+xLsiybCWAb2N8Sl0O4Ct1xjCrqWJadgr2lGm1KZYzr7qsUstwylxntjNXW1V33jqvmOn/VvqaZklAY+URKZYUjyVWvlO1HKMKibgv/arld5JuuG9kY12Fl2qZl7UUEh3n3BG9WJGgp8d7SMas45eXpeivse3dGs4a+ZxOZUUQQytJNENJIaf3pWcRO+6lkCPGPgMbKTOvWnZpXVdGyhxTPq3UL1K0+RTtNcX7T+q22mg5vZW+jEU/A72vz/p5K0/ssvzVXVLUoXXenvL74h7ElQDeB+DtcD3r34Bx/7AvT/4gy7L9ACwA8GCe55NyyR8D+D2A12dZ9sk8z7dOnHsExr3sL87zfJdI93IAfwDgAgCfFT9/O4BRNOA7Ur0fy/4J46tZHgzgIAC3Zll2GYCrML586MaJ8/bGuFTzDACvwvgKmgBwD4DP1xkDIYQQQgghhBBCCKmAPM9/nWXZ5wH8WZZl3wDwXQCHA3grxj+EXSZO/3sA5wF4DoBrJ67flWXZ2zD+0e0nWZb9G4B+AO8AsB7AB1SW/wbgtQA+kWXZMgB3ADgN49+UPpzn+f0V3KZDXR/L8jzfkWXZiwFcg3Gj/jkAXjPxz0c28f/vAZw+g66VEEIIIYQQQgghhDSXtwMYxvhsrxcD2IDxWV9/k+f5jFMQ8zz/apZl2wG8H8A/Yty//n8A/FWe5w+pc3dmWfZ8AB/G+ISrvQHcC+DP0aAJV/XOLEOe57/NsuxojAd8JoqPYRbfBPCWPM/X1Zs/IYQQQgghhBBCSKPZgzzLkOf5bgAXTfyzzjsfwPmeY1cDuDowv80A/mziX8Op+2MZAOR5/giAs7IsOxzAORjXlh4KYOHEKZswbtZ2PYAv5nl+R4p8SXli/YRS+Hu0ko9DKM2MP7X3R9VeIiaO4U+4l0IrEutpUkW5pvY8iqVVPSmq9mxKguwb2oPE5/OlzuvoKtLoVtfImHXyMmt5WVdXpDeVflP0GX2pMUDmbcXY3dU8LxQZfk15JPZn1DTz2dnMvp3i1305iAABAABJREFU+ZviPSaUVn3fqfq51Mh7bbQvXyhNfb8KJLVvWJn0Y6iirELTtNpZrBdq6HU1nqQonpc7R4s0ui3Psj73GVv52GR9JWrzd35Cknwsm2TiI9j/TZkmIYQQQgghhBBCCCGNojWnAxBCCCGEEEIIIYQQ0gSSziwjcWTIo6bFppZPJVnKODCv6fKLIYU0wyK1RKGZZRAr10w9FT52aromJq6qJRwWzVxO2+rnsdKMFOVfNaFtq5FSVLPNWTJGqVXs6ysRWYFWbaRmrK+/7jR8ylPALuNYmUmSMSDwgWjFL6taN4Oenmr7TayK1Hc/qcb4ZkkZY8e62HhTjLMp2n/VUq1WletLUtx3M98zWrWvxb6DpCZGThmbZqr73Lq12N6+vdjed/GAe6IYyBvdfzvEg6Md+nkV7EmeZXsae2aLJoQQQgghhBBCCCFkGoL+hphl2clyP8/z66b7eSyT6RFCCCGEEEIIIYQQ0kxCJ9xfCyCf2M7FdfLnscj0CCGEEEIIIYQQQghpGmU+UmUlf04CyZFNabwb7rUisHTmMR5lmlotd5GfTr8K3wgfoT4OoelZ/m6N9mCp2jvA9DiRN26YJXUk8PsJJbr8DVOfRvbDFB59qfxUUnh+RaWRwkCxTH6BmCunWyHKgwMDcZlZZmTCR0xbnaXwMLPGgCe2Tl/GOo6O0Z3FTon6jPFzajQxeVvPwyr6Wornu6RMjKl9skLHN2sYseKX/kEA0N9X3vPLirGRz2ydd9U+Ryk8SFP4wpU5z5dfFc/pVqFMG4xpu6Fl10yfV4sU3m9WO9uJbufY5s3FdvC7RIm8Y2j3Nl4F9CybvYS+Il1a8ueEEEIIIYQQQgghhLQdQR/L8jx/bZmfE0IIIYQQQgghhBDSjtArrAXIkFc61btVpi6XIfXUfS03krOVuxP3Ap1XT4/IC/VLyJo5/V/f25Ytxfa8eW5czn3LHT1PWepaVHmM9fR685bIy6IlRZYux0i0ajmfJQ+qWgIa0/dSSSe8ees2kniMtOIPvTdrDOjqMuQXo355nCNV1MhGozKXMmenHwIYFbGE9hsdo0SPpTJNU54gxwAVo9wPla/p8wwV9QwH6ydGphQbRmh7r6KPphgHU4xvodfo9tjdFTbWWe04xbtKmTRj0k8hE2smsfcZ21Zj6i22rlNIkq2+nVryrNNMnV6ZGGPaRavKPPX4L20LQuXimhTSUUL2VPixjBBCCCGEEEIIISQCepbNTlrjMzohhBBCCCGEEEIIIS1AQ2aWZVl2OIDXA1gJYDuAHwP4jzzPtzUi/xDWbdyGt3/ievz8jvWYO6cTy/abj0/9xTNxxDlfx8oDBzCyczfm987BW856Gs578aEAgEuuvgvv+uxN2H/xXhjZOYo3nnE43vGqZwAA/vkbv8Hnv3Y7Ojs60DevC//63pPx1OULG3dDQorTYcjJGrl6UwUKl+A4ghfQM06MnbLt5LXV1GcFpWdR9TRyXTy7dxfbepUweWtOO7NkmDUyMb8M01dcpYox4s9AVawUJcNItNhjUExA9avRpTrXR9USgtCVRLW8UmIp/UIlXt2WFHhgURGTlmvKjqM6aa9elnKamPT+pk3uuXPmFNsDA+51vT2BdVPxiqZW8s7KY4F9rwqJVGgRhMqsGk0zVzqMQat9Q/F0mVJULYmqWvJZJm937ItbUVxi9ZPQ+PW7iqRmpd7ANKU8PdLRoRJSyHirkBdLQpXwjRwfUpSHbf8SPgbI56pMU58n26DOu1+060a+MxEyG6hr2M6y7AAAX5vY/ec8z78wzTkvA3AFAPFKjTMA/FmWZc/L83xtPTGkIM9znPHuH+C8Fx+KKz7yfADAmrs34JGN23Hw/v249YsvBwDc99ATOPOvfoixsRyvfclhAIBXPH85PveuE7Hx8REcdvaVOOu5y/GUffvw6heuwJvOfCoA4FvXDeMvPn0Dvvfp05pzg4QQQgghhBBCCCEkiHr/xvFCAMcAyAH8rz6YZdkggEsB+afbKQ4B8FUAz6wzhrq55paHMaerY+rjFgCsPnQQww9vcc5bvn8/PvH2E/DOT9849bFskr0X9GDF0gX4/YZteMq+fejvK275ye2jyLKs2psghBBCCCGEEEJIw8hzepbNVur9WPaCif/vyPN8eJrjbwEwH+Mf034G4JMTP38/gFUAjsuy7CV5nn+7zjjq4rZ7N+HolYNB5x512CDufGBzzc8fXLcVIzt34xkrCjnM5796Oz5x+a+wc9cY/vfzp6cKlxBCCCGEEEIIIYRURL0fy1Zg/EPYzZ7jr5j4fz2A5016lGVZ9v8A3DeR/9kAmvqxrAx57u5f+aP7cM0tv8ddD27Gv733ZPTMLYr0LWc/DW85+2m47Pv34MMX/wKXfuA5SWMxNfVSsG74YqXQlqdePr4KLH8Sx7NJlY/0ALC8FCzPBacq+vqdY6mXhbcI9Vmw8tJ+HqH+Lc5fW4QPGQB0D/oLVpblwIA/TVnG2qvB550GuPVtea1YWO3C8gPz+RW1qqdJ1YR6AlYRb2iaNX5gHk/Dvr5w/0SrncX4/Yx1uRO5O7o8HaU2g+IaozzmzXPjkP4/mze758pykO26pq7FuJjCz8kaw3QR+B6VFqF1oQluZxV7BGlCPYOsWJo5jsT4C8XGa3kNxfoctSJl4rV8mmTbsixaLd9O33k6zVC2b3f3pfeqjqs3MP1Q39FQPzbLH1PTTE9AX5opxqkq+pM1ZoX+LhPrPyvRz5DQ557THlUGW7d2i203jf7Ad/VYWvV3P0JSUG/r3mfi/2F9IMuy/TBu6J8DuEya+ed5/hCA7wHIABxdZwx187TlC3HLnRuCzr317g04fNnA1P4rnr8ct19xNn7yLy/FOz9zI9ZtrF2z4JUvOBhX/Xg4UbSEEEIIIYQQQgghpCrq/Vg2qV18cppjJ4jt701z/M6J/5fWGUPdPPeYJdixazf+7ao7pn728988igfWuZ5lww9vwV9+5kb8+dmratJ45tP3xbmnHoJPX3EbAOC3Dz4+dew7/+9BHPKUBRVFTwghhBBCCCGEkEYz6VnW7v9ILfUKfiYnL+81zbFniXOun+b4YxP/905zrKFkWYZvXvhCvP2TN+Af/nMNerq7sGy/PnzqHc/CvQ89gSPP/TpGdu7G/N45+POzV9WY+0/yV685Ake95ht43/mr8bmv3o4f/fwhzOnqwML53bj0A6f4A5CugKk0WFqz5iF0mnON/MjTozqMOfGx03RTTO+1pJGh8korzdA0atMLu7dGS/MkofICq4y3uN+dHRYvLqaOl5FgyWnsWlYhCZXgagmZlpP40gvsakmolZiG9d/YPtRM6ZCv3YXec6kM4jtwWBoCXYcbxKRmncTQ0PRp1NyncS9jPeIR2xP2uLXS76/pT93TnWamGSsxSiFF6u0ZU/tBlwWnb42RmkbK8C1iZZiSRsquyuSVuuystltFjKEyN6stSTsJTUx9l7EsiJEgxr6ThTJ/vv9YjKwTSPMeGUoV79JW220VubWk6vEmFlmf/X1+a4na54RRxlJTKbxPdqq189auLbb33ddNIniMCXwYhEpRJdrGiJB2od5fwR8FcCDG5ZaaSfP/X+V5vnWa45OPq1rdYhNYsngvfOWjz6/5+fbr/sR7zfmnH4bzTy8+nC1ZvBfW/fe5AIBPv/NZvssIIYQQQgghhBBCSItS78eyWwEsA3BqlmUDeZ5vBoAsy44C8AyM+5X92HPtQRP/P1JnDIQQQgghhBBCCCENRYrEyOyi3jmo35j4fz6A72dZdkaWZa8G8DVxzlc81x6H8Y9pd9UZAyGEEEIIIYQQQgghSah3ZtnlAP4SwBEAjoH7kSwH8KM8z2/SF2VZ9lQAB0+cc2OdMbQ/WTalDS+joQ/1GPBdM92+F5+BE2Br3CMNUHxf5/XP5b6Q8gNQPms1cZT3Cgu9lTK3LIvV8rqxllyX6PqU7SDUa2W6VH0xSrq7/J5icml2nYa0Y9B+VDpNN6ri2MKFYTFq5Lm6iXtsIqJJ4cej677M0uTT5TVTfhYpPNEk2lfHGnJ8lPHxierQgddY+ep6kX1btzNfdjWeQcK7pLvEGO+tN6vwVVDSl6VU+XviiH1GpfDSqcIfM8qPTXXsjsB2Fxq/jsnyAUxBirHCaiMxnl+6jMe6uqc/T6dRaxzpvc5JP9D3yfQjFNuWP6wm1DcsFJ2GLBIdVugwG9p/u1V6vnccKz0do1UmoWnGvCuWIdQjKkXeKcbSMmn43lXKtNVG+vrGvkN1jBSuQ93aW1T6j2kDXWFsOrbi0Ol+DMB9Z11Vuw6dF6eNRxakLBNfH82yqKQJaTp1vSHleT4G4MUAbgGQqX9rAJzrufS1Yvt/6omBEEIIIYQQQgghhJBU1P0tPs/zh7MsOw7AKQCOBNAJ4JcAfpjn3rUvugBcCmBnnuecWUYIIYQQQgghhJC2gp5ls5ckE1cnPopdM/Ev5Px3pMh3T8Oa1mxJ2+Ss2r6+cJmMM7W4rz8qrlh8sgE97Viip9Z3G1KiXqF3emKrLBO3fPp7hJRTlbEl25B4VBQ16NnPodJLJ6ZIGZSFlEJ2l5Aj+mSksm0CwPbtRhp9YZNfnRiNstLlI2McGvJfZ8kcLImRVfc+FY01xT+F1KCKZedTyEB0d5XtYv58eGmVpeytQpBlp+t9yVARv5aiuhLlYrsbO53zRkbEWGRImXX6vnG229KEGxWcSuIbmoYlXXQQMaeIybID0MVjjUeSFFIYC6d+S4xhoVTRD5NLcH0vRgAQ+DyveYCJjpmk7HTjkpIsqx8GtnHL2kBivUvEum1EScJhW2r42q4VfwoZaXC8+rrAdlZmLJUxhpZx7RAfJjfVcciyk3GEtjOdXzPlpqH9N/g92/YccY/1dU9/3nT7E9xzj7sv68K6typktqnTJ6SVqNaoghBCCCGEEEIIIYSQNoIfywghhBBCCCGEEEIImSDpXP8sy/4AwEsxvjLmYgB7Afhonuf/oc47EuOLAGzK8/z+lDEQQgghhBBCCCGENAJ6ls1Oknwsy7LsAABfBHCi/DGAHMCCaS65CMCzAawFcGCKGGYLVkfr1qZZAsezBsDw8PTn6eWEQ/1UgjG8bsro2EN9mgYHp81qHMsoS8S5YYPfQ6K/a12x0+cado32LZo2b10EvT2GH4m4UPsJ+Sjje5bCnyfWZ0T6J8htHf/AQLHt8/GaEZmoXnZb1FuHykDGrz2zfPHrGBcNhIUY7LFR00YCvXQUvnqz/Db0sVD/kFBPN4se5bVV+UtHAgMUn8+ULjfTKkl4xehhyusHo54F/bJNGn5puo3398m6Kc7b2eN6VFrFE+M3YyHLowzbRv39RIZf46UjAtN+Qr6YLX+9efPcY5bPY9XeLjJ981kvbsgaI630WxZZievE83zFCu8luh/2yzqULx3wl09N2QS2s5pWLOtDPMuq8J4Mvc6yVZPPcyB8aDWH40Dzz9D2qMcA2UdD/agsW8eadxBxcocuoEDPO2ucNe9b5i2CHB31P2/1s1imb70nOa/I+kTrASDrUMSox6xQP9rQd9YU78dm3rohi7Gjxp90c7G9SBvoigGpY+sTInn3Ob1A/Lad6t4kyT3dCGkT6u5NWZYdBuAWjH8oy8Q/i89MnLM0y7Jn1xsDIYQQQgghhBBCCCEpqOtjWZZlnQCuArA3xj9+fQPAHwCYac28/wYw+an8D+uJgRBCCCGEEEIIIYSQVNQrwnsNgMMwLre8KM/zd08eyDL/5LI8z3dkWXYTgOcBOK7OGGYVtoTJX12unAYYGppe2pNKpudd6ryMRjA0fcHgoBuvJX/sElKHrV2L3GPiXFPKOexf6lnPMp+kT38qlhVgSAi6AzWIsTIlC5/ca5wwSazGkZ8O+KVgsUuAO9IVuWNIbrWEZlSIXnz1qQk9TxMrT7SIURJa+ZZZDly2QylrKSPl7BjdKdJwb2BgIKydSzmD0b1q79unrU0wTlnDoHVMK3Rk+vI+x7p6/XGoBiplLf1dWj9VnNstMi/1XPDIfABg28j0dWPVU5nxwCcx1UOALNfukQ3uQSlxUeNDd81gPhFjn1s+Vvyh8iCrM8fKW33PCtnvAJgPAF2noXGlII2NgEDei+ono6JPmTLMmvSLOpXtvVc/zh29Wrf3UHefW96OJDpYyuw/ZskHQ58n+phUjcU+16x3uVEUdWO9JnnfS1UGWgIn846VcjrocSPwpSE0b32eZeHhvBuJOHpVjLKv6fYvxxFd/s57nsRqq1YlGnLlUELHDVNKWwLnXVSkEWpTArhlvqjH0DmLelu2zJVh6nrzUcW4ncDVou3Jc3qWzVbq7TFnTPz/OwDvLXntbRP/H1pnDIQQQgghhBBCCCGEJKHej2VHYXxW2XfyPN9d8tqNE/8vMs8ihBBCCCGEEEIIIaRB1DtZclKz8GDEtZNzd/fQCZsFObKoabGWvGPJ0PTSAAtLHmfKN+VUaTVtOnhKfqA2oLcnXBIik9yglDcyeTkbXctZHdmemrYuI9myxRsWnInSeqWxHldOFUKNhMaa/xw4H1pOs4+dRlyTlZg63isb18AS32k16gW5r9unLPP584ty7F22bMZYJ5Eha2WAr42kmmLu7fMlpAdWLFKaESMzmenc0HSkNKC2jP336lv9y1K0WP1Qr/CFvv7pTzQIldHpu5LSqlKrC4qbDZVp13RgWQF6lbalS6c2n9haxKX7oXnfhs5fSn1ke0wlxZYsGihirKlric5cPhx0GXtWH9TlEb2qtEciVavln/606fYlvmS05Nm5z8A+2UrIJlhzz/JexfP8iVH17BVVodOQfUN3L7fdGUEadSrfO/T4oN9dfHlZUmBnVdQafVxxcqjFQ807SBndZ8A1Wk62a5c/OVms3vdShe4zsuxC+7K54p++N62vrzd9g1oJZdHO+3tEvamGJeXW6za4cxjkqStXuunL1cDl7xojI27/cn6fMF73TXmrjDdylXZ5nW7voVYBoeO/ZWuhcZqMsYqm1DwPqBjl731lVj2XhMopa6TSlGGSWUy9TXobgAUAAt/iHfab+P+xOmMghBBCCCGEEEIIaSj0LJu91CvD/P3E/0+NuPZkjEs4768zBkIIIYQQQgghhBBCklDvx7LrAGQATs2ybH7oRVmWPQ/A0yd2f1xnDIQQQgghhBBCCCGEJKFeGeaVAN4IoA/ApwG8bqYLsixbBuDiid0cwBfrjKHtsaZuSk291r+7GnG/Pt27tLPC9HkxCF26vsbnwj3R2XX9lsI8VHT5bN0a5pEjlz3HunXuicIrYNuoG4dMY774VKzLY8zwRgr1oXA8BvTNSB8ibWQivQ400mNJbpfwPTO99qSZiIhLJydDrvFKctpMmJdXGU8omX6vNRo63kL+Bt+hyl+WpeWpF+rxYHlgtOr071gPDN/fcnQTtzxINm0qtrWf2bx5xbZhJ+RgtncxTnWMbFPHihsv5fvkMfR7ZLs7pjz5ZLHd06PHm2J/yYA6JOLqMzxZJDVeKJaxoNjvEv6Mlj+gRWhclnfUtsEDnP3RgWK/ZugLeC7PFJeJLC/DMGdUjH26n0g/p8WL3WO+JGu8qUr4JPqo2s8s1GdHezb19YkxUvSNtfe452kvJsk94lw5pgDAscd64lL+gGMDcWtZ+R7veswK9gmy/GENnPq1TL90evJcywhXoO/N8bGqMekLc4GR7cfx7gJU51C+sp52p8PohfiB9oYMrDjLF9EaH7pFo69pZQPyHVCUue4ogpERN5U1a4ptPbYuWlXEMjJSjCPaa0/eti4CmaZZBhLDNEu/h/mwvMfK+FCGxizfN/v73Azk71+PbHLH4ye7Dp3a7hK/ougiWL5M5BU5HsvxbeFC95jVfelTRmYzdTXvPM+vzbLsRwCeD+C8LMv6ALwnz/P79LlZli0A8BoAfwNgb4x/KLsyz/M76omBEEIIIYQQQgghpNHQs2z2Uq8MEwD+GMADGJdjvhzAb7Msk3+ze32WZWsArAfwKYx/KAOA3wJ4U4L8CSGEEEIIIYQQQghJQt0TJ/M8X59l2R8AuALAiRM/PgjjM8cA4LCJ/zNx2fUAzszzXAlj9kzGxoop3dbU1hQyLosyyxz70DO75Wzonh53arG1lLFv5n7g7GoArqJy7Vr3mJReWlP8x4Q8ZYNSaPqmldfIXi2NiHVzPumWNYfdmJo+pqQ2HfJe5baOQ+Qn5bEac8lvcS/6PCmTqZHqikrsdfSywOi84n5C5X01U+sdeaWh1bXWFI+UqfolUsHJe9MDyvUVH5a8IGZ80MiYtbxpzpxiW5aBJZnUbWvHjiJG3fX23rvYDpVhWlXvtLMUhQ+4lXjttVObF177Uue0H/2o2P6//9dN4qSTPOkZ6H4uy7WmHUj5qU5eaHE6+ooC6lLSdJmmPcb4Y/Y9M8av80t1pTx3xw73OtkurKE6WLJj/dnZqBsZf3ePm4Z8rtYo1ATWMesRYr2DtAqynmxbiGJbPU7c/gv3ObRiRVHG+l1C4vSNO+90j51wgv9CA1k3y4eEvLvmeTVQPkEA20bC5MsOasCUfXZEjbOjo0VfHxCX1VgiiP1unYjUweogly3zH/OhHwZSNqkbhpCP+1TTEz/xpx8jda1J3ngHkftaAioYG9ynyEvfp7hu5VJ/8jXOHuLerOe0x5WjHClelCpG9gU9jjjtQtVhl6gbaasAuO3O90wCSshBjXc5+QzU6VcttSekVUny5pPn+cMAng3gFQCuBbAL4x/H5L/dAG4CcA6Ak/I8fzRF3oQQQgghhBBCCCGEpCLZp/g8z3MAXwXw1SzLegCsxLjksgvARgC/zfP8cX1dlmUH5Hn+YKo4CCGEEEIIIYQQQqqGnmWzl0rmreZ5PgJgjXVOlmVLALwf4ytoJtKsEEIIIYQQQgghhBAST8NF3lmW7QvgvQAuADC30fm3Il35LvSPPja+s1l5HQhfgZ1wPacsm6kYYv1IrOWEpR9MrY9Msa218P2BHkIS6b0BuN4iq1a55y4Zmt4vrUMZLUgPrYEBt/xlmVt+XU+I5bR7+twluU2fL4G+N0mX9CJTvmSWjcOY8A3S9+2cJ8rH8r3p7lIHpT+DKKxtXa5f0fCwPM2Nf7mMX5rQAehbesC0cei/7Mgyrmnjwo/E2TawfBvK9CFfny3jCyHP7a34Tw7WvUmblIEB99iiAf/9yDFg34V+s6TYsemApWFlGZq+1V+lF1aZeM36lo3kbW+b2vzk8EnqxNdMbX3kI992jnzta8X22JDfK0yOdaOjbj+Ujg26DFwbGeWLGPpgEgNLl+qHMn2rXGVWVpl2r/mZs7+vzOCYY9yTE/jgODHXlI/nIp2vHEuVJ1G3MBHSXnnWc0Oyfn2xve9iw3Mz0p9RUmZ88z17aj3jhN9VYJUtGrCO+hOp8WySWB6YgejyWb5M7NwjXmpUOxg75jhv1lY3lHZgK1cW22WavlP+6lXivmGfJ5rfg7dfv48IX7LH4L5D9Yk4uwPb1oX/5qaxcWOx//rXu+ceuiLsGXv9jcKbbcAdZ5fK61Td9PeJmK2+Jgqvpq/JdzntReZhTL/vDBX7uuqPWh1WrvJeat7hHVNJtyAfWV/cj/QqHRhQ99mln0sFzfTT8nX7rj413ss6Ve+z8k6XL7MGmQJrzNXen1Z/lmV3wFL/eaG0qrclIbFEvwlmWdYJ4GAAiwA8CeCuPM93GufvDeA9AN4MYB4Kw//cdw0hhBBCCCGEEEIIIY2k9MeyCfnk3wF4OYD54tBIlmVXAHhPnufrxfldAP4C47PJ+uGuinkjgA9FxE0IIYQQQgghhBDSVOhZNjsp9bEsy7KnAvgRgH3hfvQCxmeLnQ/g+CzLnpPn+fosy5YB+AqAoyeTmPj/egAfyvP8h5Fxzy527Cim5Bryi26lb5JTlGtn/IctBx7asXVYvlWsdV6Gus9c5tg3jVefJ6ca6yXdZcydnf68HbTGQhRsvy7HQJ2CnG2ty2doqIjDqguZhl6VXDYLHZIsf2e6P9wyCJ02bdenmtbvkTV2qfu8885iW9fhm95USC2t4pZlostHlrFG9hu94rosV1lvuqwaOv1fdXQppUgRR6x8sEYuEZF+h6q4sYFCGqPrVCLlj1YbaYdl0LV0olve+CGHTG3e8vWFznlHH/3Jqe0/+AM3zQULim1r/OwWA1CvXpLekL/Icq0pU8+AUXOeyFvKQcfT9+cdxZo17r4sY6lDA5xBwJbCT789I7I/yweA1jLLRLXMyshQjltyW0rfAXcMPu2YDf709QMshf+DgU9mbo5T+kHqkXPH9n+dvKxCp9+ccoo3jehniJAj6npXqi4HS5mXQGnsFIoeK2TIEh2v3L/5Zrd8/uEfimfBYYe5133608X2ihX++pX773nPNSqan09tDQy8xznynveEtZn3iMtOPNE9dv75xbZuP/L9RFt9+Ihtu9Z1+tkj6Yb/5VTWt7y3GssCMVZI2SUA3H77tKdh9Wo3CautOvLr2F9sIvENkTVyaCGXxcqnOsecurEk3OKYtk+RdWH9nhBL6PuhLv7J/bHWe+UiJIjg34wmZJeXAbAE8RmAwwF8emIG2o8x/qEsm/j3UwAvyPP8RH4oI4QQQgghhBBCCCGtRpnP6qcDeAbGPcZ2A/g0gG8CeBTjM83OAvBnGP8AdxaAxQCeMnHtrwG8M8/zH6UJmxBCCCGEEEIIIYSQ9JT5WHam2H5NnudXiP17APy/LMt+AeBSAJ0AnovxD2ufw/iHMip5CSGEEEIIIYQQMivIc3qWzVbKfCw7cuL/X6oPZVPkef7FLMveiWIG2nfzPH/bdOeSgrHePuxc8dRpj0ktvGHFUeNBIo9JzwidxpYtxfaOHf40tDXJrl3TXzd3rnvefLEERAp7E+2rIH0u9L0tFUsgz5sXlv4v1rjpDw4WnlAyPY3lBbFiRbEtl2kHXK8Ya5CV1gS6HKXXVhnPOF/Mpq+U5ZWhbuCJkcI/YYOwwdlrL/cy6a2gPcukdYP2XJNI36oy7Uym/7vfucd8fj+aWB8cXzmbfjbKy2LraNE+e3qU35X2DInAuh9f/NpuY1T0Wd0epT/Vtp5FzrEt64vthx4qti3bJN223GXopw13PI4E/mWxachy1D4+GzbsM7V91L//e7H9R0c65+VP313snP73biLzThI7/gHhCdmW1JuB3LXGh5q2G+oJE236JfIKLP+x118QnKYcm+QYVuNFI9qg9ocyxyPRIUw/GMOb0Bp/5L48T/cFxxtI3dwjcwvfyMXqOon1/DKrVOanT/RcaNa1ukbet8xKj5dW+nK/33imWq/UMo7ad7nAWIyCXDIU2P5VO5M2fdFjmPBKsvqGRPcT6Su7apV77ILXl38OWeS7n6PSeN7UttW/rLy+971iW1eTfBZb3mCxpPDis37XsNqdz3ax2+gn+y52Y1x8ShG/fJ/Vz0MZRo2tY58sA4UcvCWWmZ+B9Y4W6qFqojuNLGT5kqxfqJYtn9rU5RP6LpfiXcg3jHekb/qENIQyTXd/jH8Au3aG8/5XbH+ibECEEEIIIYQQQgghhDSLMh/LJpfxMNbcAQA8IrZvKxcOIYQQQgghhBBCCCHNo8wk0U6MzyybSZE7dTzP8/XWiaQWS2qpp7fLGbh6Nq5P2aDTlzJJzW6h7LHylhLHGplVgiWu5RRhvRyynLKtJXxSXrB9u3tMznK25KbyvkPlBRY6fimf1WU3OFhsL1hQbMt6AdJr5C0ZQg3yhtTN9Ysp7sPD/jr8wz8sts85x5+VFUeoZFIjy/zpT/enaZG6jWsc+U6fK1Uc9Rc/BgbC/hYi44iRXWp0uTlp6iDF/rqRJc4hKXt+RPwJRsrKp8vPm3eL4sbolrEcc361uZDDPeP733cTkQ1ZDwiyzJU+okvI+3TVhCYv92vlFx55hx5MA/UqjZbLSsnd1q3FvaxXbza+58lM+OQvZaRlofcjz1s04B57ZH2R35U/OcA5Jm0WXvYy97oE6lm3AckHOuA8BKXUL3acCn5WpnjYG+i+Fvv8ikFK3wHUUXEiTVEfvVBlh7Ab2ndx/XnHkiINWW9Werq4ZZvUzc53nSXbtQgdV7SFg3Vdb0/9ZSfLwOoLVvm4v/N0O8e6hpYghBTvPynaUk1eUoYvf7FRv/TEvFNaxyw5ukWMNHo2QM+y2cue2aIJIYQQQgghhBBCCJkGfiwjhBBCCCGEEEIIIWSCmPnXB2dZdrJ1fHIjy7KTAGQzJZjn+XURcQRz9Ou+XmXydTNv/uKpac96erWc9trX5z92gLFSo2RkxE1DrphizcYPnalfagqy1CIY2gO5opqWlsn49QpKFr44n7rS3U8xnVjmddRq99jKlWHSQmt6deSCPsGEyqfG1FR3OR3Zqht5Xopp8BorzW6hKu8ede9tbMqm0Zao2aujCSyNdSD6Etn+Lfmss0qVIbGwyip0FT6znpTWeKyvKOO9lLRNxjk46F9JziL1Kk8pqFlJS8iiDlB9eUSsKCvrfufAPs555sqn1pK4AktKKNu/oZQz66ZbpmnJMFW8MdKP6LquXcpVhFW0VS0FXriw2NZlZ/UNX5yp2mromCnjf+Yz3WPW6nQSWW1yZUNAr4ptrJhqDbQJpFRyrDbrQq+eJzThoXVoxaVlsA1F31vgC4S5SvbItmJHL80uO0sFGlNvvzeet2XqMGbV8DJS4E2biu0nn/SfZ60EKfteqESzzBgTfG7gkri6fOSwKy1T9HAgx59a24lie+5c95gcfyzpeAoJokXoSvPme7CUo+sHUSClrFYSpE9IuxPzsexNE/8s8on/rw1IL4+MI5hj/v7lVSZfNw98abjZIRBCCCGEEEIIIaQE9CybvcR8pJpxphiKj2Uh5xJCCCGEEEIIIYQQ0hKU+Vj2IIqPYIQQQgghhBBCCCGEzDqCP5bleb6swjhIACmWS9c6f+l1oI/t2lVsL1bLejvLj8cuPW7NV5XHRPpVa+1jifXLCV12W6Zv2bpoe6Ik3gGeugBc/wTtZSTbz76L/X4w3dKwQnjDaELrvtQ9G15J8rbltryv8cuMuvclovIO9vyKxOqiqb04Qr3N9P6+aoyR5TU4WLQzy59r24i/7Gq8khroq+HzjwOAblk5yjPr0BXT+7zExq7blhxLXN8b9zrpFWMN28GWRHqgin2GCJLUp3UDoqx27HAPyfKRHm7jSZbvz2U8lVK0C1n8egiWllahdV9mDDATDfTbSz5mqkJoxfcMC7MdJPAoq0FW/sqV/vMSEOwVJt5NgBKeUJG+gvI6w/rQ8eQC3LFEnqet5WQRW11G+5n5CPXPKpNOh+FLJrHinzdv+m3AHVutoTqF/3KsN6GVRui5zu9XgPOg7hAVbMUY+x4mz9Ppx3rftsr4SUgslXqFEUIIIYQQQgghhMxG6Fk2e+HnXkIIIYQQQgghhBBCJuDMMg+3XX0bbr/6dnR0duDA4w7Ececdh/t+eh9uufwWbFq7CWf84xlYfIirG9q6fiu+8pav4OhXHY0jzjgiKt9U0iApr5Hbeop2N4rpvou61NzxHtE8Nijtn9TcybnRKgNzau7AIniRyyMbks9YaWooVacfg57GL5cb1/SHqVhsAuet69PkvtMOtE6pRfEpNLXEQlIzLV4m0sQ/OYWOK9a0/jLHYtKvQZTdBiFzGxpSaYjxoVc31VDNhSE1jmHnqF/uqGXU8n66DW1J1bJRqwjksG6oicOJLONU0qEY+vtk+m4ca9cW27p+99672J4/3z3W2xXW7kLvu2oJd6yc2zmmB1DLV0DKj8Qg3A7P9tg0UsviU6Upqy1Ybp0IS+JoyX9jiE0jVE2sy05et2XL9NcA7hhcpvx99xPbPmOlwPI6PY7Ie62i/UtCH/W1z7kwubuVt2y7Ov1AxXm4DDkBOkZpN7B0aePiIKTZsEVPw+5du3HL5bfgjz7+R3j5Z16Ou6+5Gzu27sDCAxfiBe99AfZ72n7TXnf9v1+Ppxz1lAZHSwghhBBCCCGEEEJSwZll07B983b0DvSiZ34PHnvwMQBAd2835vbN9V4zfOMw+of60TWXRUoIIYQQQgghhOwJ0LNsdsKZZdOQj+VABtz61Vvx9bd+HQcedyCyjsx7/q6RXVjz9TU4+pVHNzBKQgghhBBCCCGEEJIaToMyOPLsI3H4qYfjmouuwR3fvwOH/+Hh0553y2W34Ol/9HTMmTenwREWaA299KravLn4JqqXo+4fFCJ6abwC2CYJgaYJlp9KsE1QpL9NqK9ArJ9TzHmxfgzyunnz3PTl0uMpYon1O3E9fZpHqvKX53aLJtitvCWC21JEn9Hp679aSQ8M7U+Xul03cznwoSHjoGUEok0afSTwKZNIbw/AtXhcurTSrE1q28T0XkA6pt6eMF8s7Sfk+l2VH3NnIvUYFooe6wYGivzuucc9Vz5Wdd2vXCm8OUWMVl+rwptNdhvdhUL9kaLHQdm5Iw3xUj/ry6TfLKyiqrqNVI01xujmEzMGxPpvWuUa6u3X3eUfg6WnYaN94UKJfQ9o5vtITNvVdZiiT1l16qSvMpf+zvJedFuq+p1srl9c5ZDE15SQFoJNeAZ65vfg4JMPxiN3PuI959G7H8V919+Hmy65CTuf3Iksy9A5pxOrTl/VwEgJIYQQQgghhBDSKPKcMszZCj+Wedi6YSs2P7QZA/sP4NG7H8XA/gPec1/6Dy+d2r75spsxZ94cfigjhBBCCCGEEEIIaUP4scxDR2cHfvCRHyDrzLBgvwU4/rzjcf8N9+P6f70e2x/fju/97few9/K9cdqHTmtajKHTxeWSxFqG+dho/9T2opUr/ZlZ6xzLRI35t3qF+NTLRWtiZJNlpnanXpI7FC0B6uvzy/Sk/EtPhdayvUlipYqhVCGTDM0vRd5VL92t4/DJQYFaSWhILFb6KahahlyTX19/0HlV4LtXLUeUY51eIr7ymA29u2+5eiumMjJhuS/zipVJxkqAqmiTkiVDMg03LynL1O1i/fpie9/F4oB6WHb4KgrhZWCplWWz2LLFPSalQymkf2a8Xd3+Y4FpppBkhqZR5rrUMrQqZGJl5I9VUqafp5YoW3nH1r2VhtUvJY0s/6rfYVOkH5uGLG9jWI0mtp+Hykg3bSq2Fy8Ob48x8lZpnTCeX1j6lF2S2QabtIfehb04+3NnOz876JkH4aBnHmRed8yrj6kyLEIIIYQQQgghhBBSIfxYRgghhBBCCCGEEFISepbNXhq3nFkbMX/f+TWzygghhBBCCCGEEELI7Iczy/YAFg2MiW3/eeZy2paXyNCSaa/RaK+tqgldDjwFsd45qT02Nm1y039ELOI6OOhe5/Msm81oz6BQH5Aq2o/8C5Tc7q3Ym6Rq/yaNu9R5XCzN7F9W+rI9yba0YkXSbEuxc9SNsUuM3cF+dSXWfnf9Md28fW3c8jSpug6rxvUvA4aGivvRvp16f4oKDIpk+Vv+oTt2+NPQ9ebWaVrvKIsUfjxVe4+V8T2T56bwXKuC0D5btXda6HWxbUQT6k0bm36Mb1aZMg71Lg25ZrrrfH5ssb6XFrF+YLLtxvqUNbLv6fTl2Lrv4rTeh2XisLz35LNAe2NP/u6R53WHREhT4MwyQgghhBBCCCGEEEIm4MwyQgghhBBCCCGEkJLQs2z2skd8LPvue7/b7BBMBvsHo6ZKp0DmWyvN8B+TyMGhRuYpD2oNnJgPnXoadhlSyDVjp7QTl9jp/84x9bTqEHPw9VLYVUhqJLLfhC6n3WgZWqy0IRSfVAtwhwRdPvrcEGLlKbFlvGXL9D/XKrqq5aCSJMu2J1r7PbbNzyZk3W/f7m//TnssUf6hY5NPEqv39WPa6qOh0tpYfOmXGSN9x1JI2XQ6KdpxirxS3VtsmiF5pZC66jRDft4ImilF1TTy/cGS6aUgdZrWh42qrQKqqJeq7Sqs8Wft2mJbP0Mm34MtiT8hrcwe8bHsd7f9rtkhmFxwwRubHQIhhBBCCCGEEEIIAT3LCCGEEEIIIYQQQgiZYo+YWdbqZMijpuSmkEDIfK3VEdet868uI+PQq6F1b95c7Mh5ugCwcmWx3dM7U6gAqp9aHyz1m+GYlWaV6JVy9l3sP7eR0t/QsrLqN7jujc7Q3VX/ClBl2qCU41l9VPahdevcY0uG/NdZ5Roac4p2bKXR0+PPW5aPHCqA8BWsqpa8WOPsYtG/GtnPrbxqV8NMnLmxUmarruRn0ci4Fi5096UsRfZ7uYImEF+ulrzSx4IF7r68bmDAPeZrW2XGyFB5qCR2RbtYGmmzkGK1wVR5+4i1S6iC0NUqY0m9mmSZdFLQquNuvaSQ6lqy8hILQicv4yTvwZH5xcj69b62p3j88fH/d+6MDrEtoGfZ7IUzywghhBBCCCGEEEIImYAfywghhBBCCCGEEEIImYAfywghhBBCCCGEEEIImWCP8Cw78eijmx2CydyeeVE6dMt/KTVahy29hqzzuqW5SAVGIyk8NkJ9n0LTj/UsSLEcdZn0q75OErvkfRXl2kgsn4vJ5bQBt98MD7vnWZ5lMUt+txLSD0l7Kn3ve8X2+eenzzu0TIaHi/azbJl7LGYMTtHPrTZd9ZL3scSOAaFpSmLHmFRx+dB1s3Tp9OfVPEeNOrXiCvUs27Wr2N640T2m23y96Di0V6FEvmdIv7SqfYFS+G5V8R5QxbMsxTtU1aTulynGmDLXxLx/tur7Tgpv11i/txR9wfKU2rSp2JZ+koD764v+/UfuV1H+csyUeZUpx9TPevn+CgAbNvjPveee8f91mc426Fk2e9kjPpb99Jhjmh2CyQXDDzQ7BEIIIYQQQgghhBACyjAJIYQQQgghhBBCCJlij5hZlpIP/+IXuPLee9HV0YHP/sEf4MI1a/DtU09tSixVS0Zk+nra8dq1mPaYnoK6dGlvcd6KQ+uOycRY69maGmvJlix8U8Jrpj9vfcKfmU/PWgF62rRETjEvM43cJyXUaUoZUdUSCCsNfW/WUuG9PdPnnUJCAAD9njJftcqbRCVYUtdQGaxVxqHlr7uCr182WlJ66Iq0Y2mj45dlHDvWhRI6dsRKIa105HVa6ifvW0saQ6U9VdehTNOSXZYpH9mnBgeLbf0smD+/2J4zx59GCnR68jmxfbt7rMr2WqYNViEh9uUde03qd77Q8X4mGjnehT7LQtPQxD77Q9OISa/ZxEgjU5dVGawxRY59lmQwhdTOuredo275+GSYqcai0PqQ9/3b37rHOjuLbS3l33vv8f+rfv8gpCrYdEtw4yOP4Ov3349bX/5yfO2++3DWD3+ID7W4HxohhBBCCCGEEEKqgZ5ls5P2+NNFi3DDI4/gxQccgK6ODpz6lKfg0e3bcfqBBzY7LEIIIYQQQgghhBCSCH4sK8ncibmmczs7sf9ee2H/vfZqckSEEEIIIYQQQgghJBWUYZbgmMWL8ZFbbwUAfOuBB/Dwtm1Yv307Fs+blywPS2f+xFb326b0+mg0w8PFttTQa78lqVFft849Jj1UYrXsjkeFkUgVWnmfzl9Pw+02KqpqjxyZho5r82ZMe2xgwJ+evAZwvW/mzg2Lo4yXSNVLkct2oduI77pUXi4SWf7aT6inp4hDx1i1H0zV6Vtj2POfnzavFD4poT5B5nmGt6JFrIeNmXyMoZlxXmjfTtWXfeOK7DOthNmftNGaYKyn8P4sUz6+JPUYL5/hjfaVkflZPkHyPF2/qb0ty5zn8zpL4W9VRZqxz69GeqLF5t3IdmBdV7XfmPUIqaIMQt9Ty6QZQ4pytepJlqMxHNe867pjUz3R1aan96v2ywwt49273f2hoWL7ySfdY8uWjf+f8FdlQhoKP5aV4KT99sPThodx2n//N54cHcV/nnIKzvzhD/H9005DL50LCSGEEEIIIYSQPYY8p2fZbIVfeEpy0TOf6ez/8SGHNCkSQgghhBBCCCGEEJKaPeJj2Ynf/W6zQzCZK/WIBqmXcJ8JOTV3+TL32MBAMVX3zjuLn2up5dKlxbaWl0kJliXHCp0ibEmfGrl8eXdX+rzSyBfc8pF/Adm1y5/G+vXFtl4S2pceACxcOHN841E1b3q+jFlPu/e1yVApnj7XOk/GofuQlL6uWOEe644YwauWAKWQsQBppHQyLktCLMcpiyRyoMhZyKF5P7LeLTcpfahp07416a0YS8hIU0uTGinHsigzBgRjPOBD+55VNfKY9ddvS+odK5+1kP1cSnmA2neGevOKlTRWLU+smhRjdyPldlXQyLjKyBhjqFrIYrX/dmgHoVJpC13G8tmZ4nexMmOMHAf7m2i/I8tkwr57Cvl7grbynnze5Hk1cRFSNXvEx7Kf/u53zQ7B5IIL3tjsEAghhBBCCCGEEEII9pCPZYQQQgghhBBCCCEpoWfZ7KU1l4wihBBCCCGEEEIIIaQJcGZZi2Hp6W+7zd2fXI4XqF0KvmpkfqFeKNqPxNL9+/T7sV4QVXjMpPZk0F5VsnxS1K/2K5L7lmeWRLY5ANiypdjesSMurhR+Y5aHh1VPXV1F3lV7Alr3afnHWXHFeAil8uqJSaNM3rLNh8ah07DaSOoxM9bPKYVnkLxO+wrK+6zxLLPMIn1U7LlWhhReeRbSK0bedm9PtfcSi+WX2S2qOjavRnpfAf7yL5NGak/Mqv2oQuOo4roqPOlIXNk1+l03hReZ5Q3WyHfu2H5i+ZLJdwn53quR58U8XgGgY3Sniqu7dBpm+WsDV/GSYPnTyXubM8dNQt6rfkWYtOXuLn8bhLQEnFlGCCGEEEIIIYQQQsgEnFlGCCGEEEIIIYQQUhJ6ls1e9oiPZUcff3SzQzCZ19MTNL149eoSU+RFjx3r8s99jZ0aLa87+cTi549t9k/b1TN/JZPTdCfpDZTEVb2sfWqsGLVMVZZdivi7R7d5M+gWc6h7hsInnMrp1lIyo/elFCx2ivzIiLsvp8LPn19s6+nzofKgUHVZmbqw2qc81tNTHFu82E1D9pvhYfeYbDP9fY1t4zGykBQSJksaoNugREsiZH2nHh+s8VgzMlqMz7Id6HRkO9D30t3lP2aFIWXIoW21CkLHbuu8aEmmKJQONQj0B8poUkiYQrH6UGi9lemHoXUTem/2eW5esjqsX0Iq779tRtVS+0aT4t2ukX20CkLHQU3ouBibfitShVRavn8+/rh7TI5Tu3dP/3Mg3upj+/Ziu6+vfH3WoF+UZGBGkF3Ge4YcnxcsmD75jvZuVmQPZo/4WHbM+49pdggmD3xpuNkhEEIIIYQQQgghhBDQs4wQQgghhBBCCCGEkCn2iJlleyRivuzatcWPtdxRy34kMdPRFw2411z30yJ9LSGTU3qPUZP/Du0RQVvLQopEQiVGmtSreJWZGm2l6axsJueA67ndln4w9DpxXoeahm3FKJPQycup4zIMPcs7tMz1CkS+1Tc3bHD3DxgSKwuVWMlPxizzXrw4TsZinSfrevky99i2kSK/NWv8Ma5aVb+8Jla+U4Vsw5e+luN+73vF9ooV7jG5equu+oZKt6TsQXWAnh6/TN5337oPSRnm0qXuMXndpk3usYULp08jVdmklgBVshJh6JgQKKXVp8m6ks+kWKqWpKVePbKe9Ds7i+3IRViTk2IcrOI9oxKJciihS1MLyshBm7mSYivKMhsts40ZZ1tpHAk9d+eo/z1DjuP6GSuxrEliZZjyOZ2kHes+Km17xHX6WSbfrXUSUnop45Xp5LkZcttDz7LZC2eWEUIIIYQQQgghhBAyAT+WEUIIIYQQQgghhBAyAT+WEUIIIYQQQgghhBAyQYu4QOzhjO4uxO16Pd5QtFGTMCe7557ixz/6kXvaWWcV27FZW5x8YqGTHxx0v81KHyitf38QBxRxiWMDhu+Q4/EVSaxHQqx3Tmiao129U9ulvJekgF6L6RNXuPQoA1xPsfnzi23tBdFr+DjIkJ980j0m/SCkN9W8eSoRw0NFpq/9JeS+3F682JtcGlQ9jQo/JO37J6tQlsH4sfI+NSn8osp46cT4vW3Y4Ka3a1exrT3dVq4sn1cspi+QZThmIJuC7jc+dN5u/4obp2LrMLVvXiimX4seB0NNRuSDVLFl32dMbW/c6B6TNpvaMzTUhyt1mVh9NIXnUZn0Jbo85FjbSC8Yqwwq8c0T1HqvTn9eqEdZmWMWZjsIbMhVjMGp/dis+m1F/zJNI5/1VRP7zh1bT7IZl3k9tl6zYxjrcn1Mfb0rugy097PnnUR3a/n8srw5fel07AHTc+hZNjvZA5ouIYQQQgghhBBCCCFh8GMZIYQQQgghhBBCCCETUIbZCnR1euf8Bk9/1tNqBStWFNurV7vHZLZVTzF/6kr/1G49dfXmm4ttOb1X3+bSpUUalgzTKkdr2qylLoiZnl9m2rRPIqjlWFJup5tRhzGX3IlFTftOgYx/8+Ziu7PTPa+nJ0yWo+t+r72KbWvKvFVPlgzTJ3vTUsjly/x5R2E0Ol12Eq3Elsg2ogmV0cXKs1JIKeR5etn2Y48ttoeG3GOhMjeL0H5u3ufQkqC8ZD8B3DYoj2k5X6xMRpZPbBrB46DsbCkqBnb7DMYaXMWg84iQWmrmzCm2997bPbZwYbFdSkIvaLQ9QL15l8k3NP7Uz+IUMaVKQ56boo1U/S63c9SNP7WcOPZZk6JuYtNvB4lmbBuJubdmlpXVfkLLwFLra8mhbP9yu7cnfAwILi8RSEfsczTQCkKXT3fX9NtA86S6hDQCfiwjhBBCCCGEEEIIKUme07NstsJPwYQQQgghhBBCCCGETMCPZYQQQgghhBBCCCGETEAZpofbrr4Nt199Ozo6O3DgcQfiuPOOw40X34gHfvYAOrs60b9fP5791mdjbt9crL11LX72nz/D7tHd6OzqxPHnH4/9j9g/Kl+t+5Z2KjV+VFJPbmjXpb+NJVVvtMeATFPr3w8+uIjlppuKn2u/KOljtWgAXqz4167137f0R+rqqt/TR8cvfbf2Xewe81n8aO+uUC8XTQq/H5nG4sVuGvsunj59bQsk27iewrxoYExs++Ow0nf9JPxeK3PnutfJ/cWqbnx5V9FP+vuKNM84w41/7dpiW3uu3Xlnsb1sWbGtvQMlKeKvwrvi5z8vtqVHGeDemya1n1Osl45Et085Jutj0odu16649GUbt8Z/eZ3uhz5Plun2vSTyKQvBrBcdhzaA87Bb9C/tLSefE4Z9aDSt6oeUxM/PSCPUE022V/0uEROHdZ1Owxd/mfElxTPEyjvULtDKe9uI32NWjivWMes+Uz83ypRj6nffdvA2K/MsS/0emeI5mqL9WHHocUTuV+GpZ/nnOu++8kGtTpTeqFWMI0k8QglpQ/ixbBp279qNWy6/Ba/451egu7cbl/3JZTji5Udg6eqlOO41x6GjswM3XXIT1nxtDY4//3j09PfgD9//h9hr773w2AOP4bsf+C7OueScZt8GIYQQQgghhBBCKoKeZbMXfhqehu2bt6N3oBc983uw+aHNAIDu3m4sPXIpOjrHi2yfw/bBkxufBAAMHjyIvfYenyK08ICF2L1rN3bv2t2U2AkhhBBCCCGEEEJIPJxZNg35WA5kwK1fvRU3f/lmrHzhSmQdmXPOXT+6CwefeHDNtfdffz8Glw+ic05neH7Ipqa06qmzfX31S//k8sV66qyW7Eh80+ctUk0xlxK+lSuLvKUsCZhB2SM/8esLhVZmdLR3altPf5YKHS2DDUVKdrR8x5JFBa7uHE2o9CNF3ctjWgopy0S3R0t6KVm3rti++Wb3mGwGK1e6x+S+bHMWVnmkkBdYdHe56Q0NFfn99KfuubJcW+WvXWXa2RNbi/3jj40rR6uNy/KR/f5733PTkGPMWWe5x0LHZ5l3r+7XonKWDLkD2uDg9PJiS5I/MuLGJM+1yn90tLhu+3b32Lx5xXYZNWUKiZokVuqXgqGh6bd13ttU+cu+148n4D1oDPhjPb3eY1WXSUy9lck3NH0rzRQK39A4Qo/Flr0tMY0rqxQSMut9RD5/77nHPSb7inyfGhhI86xMLQ0LldlqYvP2XRcrIw2VJ8b20RRUbeui7zn0OZSiDmPvTT7fpb0GYMgwla9Lh34wRdDo3/UIaQf4sczgyLOPxOGnHo5rLroGd3z/Dhz+h4cDAH7xlV+go7MDK05Z4Zz/2IOP4aZLb8KLP/TiZoRLCCGEEEIIIYSQBkEZ5uyFMswZ6Jnfg4NPPhgb7h2fmXT3/9yNB3/+IJ77zuciy4rZZls3bMUPP/pDPOftz0H/fv3NCpcQQgghhBBCCCGE1AFnlnnYumErNj+0GQP7D+DRux/FwP4D+N0tv8Oab6zBSz76EnTNLYpux9Yd+N7ffg/HvuZYDD21/DTYDLl3SmvsKivu6kfFsfXr3evkKn9WXjtH3fR9socqZGgLFhTbeuEyUxopgzSWYJQyTL3inJZlSqQswZI5yBh1vJ2GWleWnS5/ibxNHa9sB3qVttC6iZnebqHbjrV6XGj6lkRElok+r+qp5KHyiNg4rJUOpRz1mGPC0mv4Kl6igXaohtEv+koVq7q6K+kWaZx1ll8mrP9qGLrKnMVYV/fUth6fH3+82JYrLnZsfsw9UQwsu3Z1O4dCVwoMlYRrKbAs81j5WorVxJw0pC4McCtHPURSSLd8tgcA3AowbA9kITd6pbGYZ0EzqWLV3hRlUIWMy+qzEt87Xz15hyJfr/Q4KN/fJHoste4zShpmLDtchZVC6r5R9RiQ6l29kWNV6pXHW2U8A9z+IJ/1gLpv+fxSnS2FZDjFOw0hsw12BQ8dnR34wUd+gKwzw4L9FuD4847H19/2dewe3Y3v/s13AYyb/J/0pyfh9u/cjid+/wRuvfJW3HrlrQCA0z50GuYNzLOyIIQQQgghhBBCCCEtBj+Weehd2IuzP3e287NX/usrpz33qFcchaNecVQjwiKEEEIIIYQQQkgLQM+y2Qs9ywghhBBCCCGEEEIImYAzy6Zh/r7za2aVNYoy+v/QpdTlefsunubkACzteuqluzWhvmomhtnQypXFj7XNhfQr2r7dPWZ5/PiyXrbMPdZleJ3Je5Xn6VuRMetjMsbYJcVT16kuYxmz9nQLrW/pS6bbqvTr0uUfQ9XlUwZ5r6tXu8fkquIr3IV7vVTh4bFmTbF91LLN7kF5A7riQjtYIKEeLToMuRq7Dsnn1RNbjovV+Lzv7odFBoVXydjAIm8aCxe6++YYM7pzartbnNjVl8bTJ3XfCC5Xq6JqvIwKz0rt+SjHf+lxZ3plamQFGBc20qOolbx6Qoktn3r9YGfKO3lZ6oe4aD9WHLH+Qim8S/faq9i2+kasP2nUO2bk8yNJfeqBRO6rQuio2KvQdz9l8orxjGvme1EV/msxvppl2rFsFsHPVOM9wHpOW++wVfiUNbMtEJICtmBCCCGEEEIIIYQQQibgzDJCCCGEEEIIIYSQCOhZNjvhx7JZgjlF2FoLWB4zNHzNXFo+SZobNrj7nnvr6XEnW8oi6eyE9xiMacyWGiBm2rpWEckZ/loCEZq3ReiU8FB5VoqYNHIKu5ZaWtIPC199GCqZGqqWJVhtd9WqYtttI2mWjA/FkYeuVfIU2RjkkugGZeK1yt9XH5aMSOctyzxWjmjejwhmrKs7KI2urrBl4cfPLdKsQrrio+q8OiI7va77UnJLH9bbcxWalwopI8GNIYXEPUVMVhxW+rF5O+NUYD+30OUm5cS6TcvxInQM0+fNn18cs2TgkhRlpeOyqFwKJn0Pbr7ZPSYLQfp+AM4LSxWSzNTlY5V/aD+JzSv0fSq2n1jsHPW/41sSRx+xMnDLUSBUymkhx4pFA2nG93aU/ZNqybLsNQDeAWAlgCcAfBvAe/M8X18ijeMBfATA8QByANcDeE+e52vUeX0A3gngaABHAdgfwI/zPD8lNC/KMAkhhBBCCCGEEEJIJWRZ9g4AlwJ4HMDbAPwLgFcCuDbLsr2sa0UaJwD4MYCDAPwNgA8AOATAT7Ise7o6fRDABwEcB+CXAErP/2uvP2sSQgghhBBCCCGEkLYgy7JBAB8G8HMAz8vzfPfEz38O4FsY/3j20YCkPgNgJ4CT8zx/aCKNrwC4A8BFAF4ozv09gKfkeb524jwlcZkZfiwjhBBCCCGEEEIIKUme07MsgJcB6AXw2ckPZQCQ5/m3syy7D8A5mOFjWZZlKwAcC+ALkx/KJtJ4KMuyrwJ4bZZlQ3mer5v4+Q4Aa+sJmh/LWoxKljM3fFEcfwzDK0Nr4yNX5XZoqI79hBO8h+4bLspR2yYtXVpVQBOIkbUj0L9GD8ayblLUSzOXeU7hQ6GR5WP5bejV3u+4o9ieN6/Y3ndf9zzp0aKrUKZveZ2Fen1YdHe51x21Om36KfyKxpYe4OzfdluxvSrMsqw2zQR+QjH1BLhtRnr/lOmHZvzCYEjm1d/nvxfpOTIelz9vGWe3OC+Fd1QVtIonplUeNccCfeEC7UOj46rCQ6je9GZKP4VHke+6Mtc003PHl/fD69wYh4b810hvRctvKTQOXT69Pf5jKcrOGiNTxB8Vo35hkL64ehCWZlKRPoXyPUYnEeqbmoIqPOJ8dVPF+6CVhpWfVcYxXm2x8ctngX5OpBjjd+2KiYqQYI6d+P+GaY7dCOBVWZb15Xluzf6aKY3XYdyf7DvRUSpa4w2YEEIIIYQQQgghhDSDwSzLbhb/LkiY9pKJ/x+a5thDADJxTmwawLiJfzI4s4wQQgghhBBCCCFkz2VDnufHWCdkWTYA4O0l0vxMnuePYVyCCQA7pjlncv5s7zTHJCnSKMUe8bHsu+/9brNDMBnsj9MfpZBEhMocQmUgrSrf0ci4xMrdJqnlBACCp+TLvAcG3DTkDP8yebfics46Jrlc98iIG79QqDnbemX20Pz6+tz0jz1Wn10uPY2U6ZW5LjVl2kEK2YDFqlX1p5FaXmbVk0a2u1hC45djsFWHoeNBGUKfE7GklgFWTexzLlTmE6nUCqbq53KryGX1dZbEq5Ey1TL48taWERZy7LDabgrZayqZvy/Nlhkr9OAvXzxWrHCPyQqI9MqwLkvxDE8xJsQ+J2LqNFbmmSL90PE/tkytscn3TqCPlZEry+sWL/bHIWWfZZ5RrfLcrpo9zLNsAOMrUIbyJQCPAdg2sT8XwHZ1zmSL3gYbmYYmNI1S7BEfy3532++aHYLJGy9IOcOREEIIIYQQQgghJB15ng9jXDJZlocn/t8fwD3q2P4AcnFOSBqayZ9NJ9GMpjWn/RBCCCGEEEIIIYSQdufnE/8/c5pjxwO4awZz/5nSOAHjH9xuiQtvevixjBBCCCGEEEIIIYRUwX9hXH75Z1mWdU7+MMuylwA4GMCX5clZlg1mWbYyy7IFkz/L8/weADcDODvLsiXi3CUAzgbwv3mer0sZ9B4hw5ythGrqU+jwQ/XurepRpmkVDf1jm/1Luof6IcX6UMT4UTXa10WWSYrySHGddZ9PbPX7qqX2GCxDirxDPX4a3bdC23EVbdw3tlbtaaXZJvz8enviyl+mofOK9dAK9YtqKCMj/mORfkIpPN1axTOrVftvCqx6ih13Q9t1as+1VL52Mn3pEarTt8outadhFf6wvnfima7zUZNG4AtKivGhTNv1nWd5WlXhB5aCWP+11O+6oefGvgeE/i6m/VVTvx/qeOWYoL25qvbZbAf2MM+yKPI8X59l2V8D+EcAP8qy7HKMSyffCeBOAJ9Sl/wZxr3RXgvgEvHztwG4BsBPsiz77MTP/hzjk8DeqfPNsuzPMO6zBgBzAByYZdn7J/Z/mef5t6242bwJIYQQQgghhBBCSCXkeX5RlmUbAbwDwGcAPAHgKwDeEyDBnEzj+izLTgHw4Yl/OYDrAZyd5/kvp7nkLwEcKPaXAfi7ie1LAczej2Xr1q3Dgw8+iJFp/lJ88sknNyEiQgghhBBCCCGEECLJ8/wSuDPFfOd9EMAHPcduAPC8wPyWhcY2HW35seyhhx7COeecg+uuu67mWJ7nyLIMu3fvbkJkjSVmym2sxKiK9GOmo7eKfFITKyUZGKg270YuuV5F3VhpSsmInPrcayipUrRxC0uJUYWMMVT2k0IeFCopaGYfTSEjtYiVeYaOi7GyjUj1oIOUUZSRYFmkllsm6b+RhRUr900hwY29rlWfl5KYGKuQusbmnSL+mDE4VXtxZV1h17XSO0JM+lXIwGPLJ1QCl4JY+WlqC4mqpeqx8aZun6neR1JbXsS+i1oy8HZ41hASS1t+LHvzm9+M2267DR/72Mfw9Kc/HXPnzm12SIQQQgghhBBCCNmDoGfZ7KUtP5b95Cc/wWc+8xmce+65zQ6FEEIIIYQQQgghhMwi2vJj2bx587DPPvs0O4xk5MimpreWkXCErk5kkWK1xBQyripWCqx6Vaaq5TWpscqnCilP6vK3VuYJlY9UQatOP49dOUoS2u9TSIJCx4dU0onQ9FPkZdHIVeYsUvShKsaKmGfDbKun2Oejr0zKPCtTl2uZ/hvT7qpetbeZqxpbxI7Vqeu30c/DFHL6KmwKUp+X4neBVnkXahU5dKN/30otE07xO5V1XRW/VxLSjrRli37DG96AL37xi80OgxBCCCGEEEIIIYTMMtpyZtn++++PL37xi3juc5+L0047DYsWLao553Wve10TIiOEEEIIIYQQQsieAj3LZidt+bHsTW96EwBgeHgY1157bc3xLMv4sYwQQgghhBBCCCGElKYtP5bdf//9zQ6hMlrJbyDGk6sKv4oUS3KnWmY9hmZ6Wlll16o+O/WmlyqOqr2SfPddxocitY9GiiXdUyyJPtMxH7HjZ6h3Wpm8fXFYxPq2WXGE1k2r+shUfV1M/41tt1V7Q1ZRdjF+fmXGkRTPntTPr2Y+96v2fUrh7VqFl1GK+67ap7MKYryBq/CdS+0dmIJGP69SnZs6Dd+9Vu2dZuVX5hlIDzPS7rTlx7IDDzyw2SEQQgghhBBCCCGEkFlIW34sI4QQQgghhBBCCGkmeU7PstlKW30s++Uvf4kjjjgCBx10ELIs856XZRnuvffeBkZWHxnyoGmxVUxtrVoGFXtdzHTr1FOcZ0o/tUzMOrdqiVQjl5bXpCj/WFlFGTlbSHpl0o9Js+o2mGJ6fiyh99ZIWWeZ66ruyynaUtUSo2ZKzmNp5HOumeOnRay8JgWNjD+W1G2kzLuc7zlXxXOoijRipOSxcaQeq/W5VciQU9RvvXnNlHerjOuxdgmh7xKpy79M+jHvotZ5seND1b9vEdKOtNXHsv7+fgDAs5/9bPNjGSGEEEIIIYQQQgghMbTVx7KDDjoIAHDJJZc0NxBCCCGEEEIIIYQQMitpq49lhBBCCCGEEEIIIa0APctmL239seyXv/wl7rrrLoyMjNQce81rXtOEiOLIkU3pv2O9FCyq8LkI9Tlq5hLdqdNP4StV9XLXKfxmUpVbCs+vUFL4UcX4QsyUdwr/h9ReWFXUbwovmiq8vKy4Qpdjt0hx36HpW8i8U/jahealqdoXLgUpvKTacYys2lewkWOYRYr3pNjzYt+LYsbu2OdQFeNzCr+rqt9rQqn6Hapqz7VQWsWHzKJMjFV7CKemiudoinfY1L5whMwG2vJj2ebNm/HiF78YN954IwAgz3MAcHzM2uljGSGEEEIIIYQQQghpDdpyOYv3ve992LhxI6677jrkeY5vfvOb+N///V/88R//MZYvX46f/exnzQ6REEIIIYQQQgghhLQhbTmz7Pvf/z4+8IEP4IQTTgAALF26FEcffTROOeUUvPnNb8anP/1p/Od//meTowwnQ173FOLYqeOpp9WWmeIfk3fVEsd2oJn32WjpR2gsVcsSUkh0QvNu9JLcseUYuhx71aSQgoWmH0usfCpF+o3sJ61Ko6XB9dLodhxbPqEy0iok7r7zUoyfZd6nYvKrQqJZb0ypaJU6bCbt8J4aK0dPIRGsWmZetYyxVewGmvlcS2XpM5ugZ9nspS1b8O9//3ssX74cnZ2d6OnpwZYtW6aOnXnmmfjOd77TxOgIIYQQQgghhBBCSLvSlh/LhoaGsHnzZgDAgQceiBtuuGHq2D333NOkqAghhBBCCCGEEEJIu9OWMswTTzwRN9xwA04//XSce+65+NCHPoTh4WF0dXXh0ksvxUtf+tJmh0gIIYQQQgghhBBC2pC2/Fj2gQ98AA8//DAA4F3vehc2btyIK6+8Etu2bcNLX/pSfPazn21yhOXIkU1pulN5ZcRo78ukV7XvgszP0oB3dQX6FPzjP7r7E353APCLvpOntrdudU9btarYHhjwJy/zHhnxx9jdVe1S2FYasT44O0f913VHjCA6PVlePT3uuV2B6T+yvkjz9tvdY7LeVq/2p6Hbmcy7Ck+o1D4OT2x107v55mL7aU8rthcvdq8LjTl0DLDua2JC8BSLBoo0fnWbe52sj6Gh6bd1HFV7oYQS2w5C22CZvGX6KeqwlTwTJU5cahB2rlKDjEzTGutCx6JY378U40Gs505s2/LlnWpsixlbU/gJVV0XVoy1Y0C1Xk+N9KZNMVYHX7d2rbs/OFjE1NMbl2YFVO2T5cural+vRtPI9+VW8cCsog5bZYxpR+hZNntpy49lBx98MA4++GAAwJw5c3DRRRfhoosuanJUhBBCCCGEEEIIIaTdac0/ERBCCCGEEEIIIYQQ0gTacmYZANx33334yle+ggcffBAjSnKRZRn+4z/+o0mR1cdjm93vl1IxoiVqoaSQ4sXkVQ8yzuHh4ucbNrjnLV1abA8NuffmSB71hWKurGw+eub+smXFtiXDlPHqepLpr1vnxijT7O/Z6V4YqvtJgNUuYsPwT/n356UlrH198iqrbRVpaqmfXPND16Gs3xTFXUau7DsWKnUCXNnwbbe5565ZU2zLe9MyzNSyCiv+25TU8s47O8S2e66UzK5bV2wLBTUAYGAgrUypjNw9NVW0QSkLaOCQUgnB9VviYSnTlJK3RpNCDt0qMmSLRlo4xOZXZgxIfT+6j8Y8J6ooYylRLjOOpCh/C+97htbri6DLPGNj4/KlWbWcODTNVpVTxhIjZ4191lt2Cb68dPqpZbVl8iaElKMtX53/67/+C2effTbGxsawzz77YO7cuc7xLMuaFBkhhBBCCCGEEEL2BOhZNntpy49l73//+3HKKafgy1/+MhbraRKEEEIIIYQQQgghhETSlh/L7rvvPlx00UWz8kOZlolpWZokdBq+nH6r0+sd2ezP3MjLN6U31dRxnzSms9M9zyofh/e8x90XMp3V4sdSlgfY0kuJdd89PUX8UhKowsDq1d3Osd6u6euwmSvLlJEv+M6tQgomh4JTTnGPSQmfRei9xa5Km6Le9F+t7rij2NZtS5bDypXFdqoVlGLu7Zhj3H252qyUjQJuvcl+qWW2oX00lmauQiZl+X19Yavq1q7GG5aX1Y5dKWdjV0aWJFmV2RgQOrR0KwWyQiz9TqzPQsXEjIuxqyXGklyKWlNP3dOfh8i+bbSDjpFt7jHZfqQvgerYVUtFY1bmrUHeix6opKeA7gtyJUtjDHDqIvJFI/T5XhPHaGGjYeVdtcwzNM2qpahVyP6svpZiVdfQMrGaViPl0bFy8Ua+sxIyG2jLj2UrV67Exo0bmx0GIYQQQgghhBBC9mAow5ydtKXj38c+9jF89KMfxX333dfsUAghhBBCCCGEEELILKKtZpadfPLJU9sbN27E4YcfjkMOOQSLFi1yzsuyDD/+8Y8bHR4hhBBCCCGEEEIIaXPa6mNZpzCsOuyww4KvO/r4o6sIJxnzenqmtOFaS27ZmMhzpd0D4FpbrF07/c8BoDfQ8KfqZYflsuSAez8yRGM1cNubR92nvB9ZxLGWNaHlc8IJ7r607dDxP7h2eq+5oSE3L12noaReRlx7To2MFGk+a3Xhw9KhGrX0YtLELLM+MBBePk761vxp4Vmj26rE8pIK9cew6kK3kcMPL7Z373aPrVhRbIeOI1V7VPT2uOlLPz/dN2R1SJup4WH3POnVpvuGVQaN9OOQ45lu71Y/lDFbach2V8b6SrblKrwEUxPrK2j3bePGXbO2qc0ntrrlbz2HuuUPtE9ThE9ZK/nIpPZDahmq7gw6fcvLK/Adrep2EZr+thH/GOZ4eekHs7zvSP++WD+tJD5cidtMM/uJ5YVVdVypfcksyqRXdf+yylU++/t7Cm88beDaIbz9qoiplZ49hDSSNng9Lrjmmmuirjvm/cfMfFITeeBLw80OgRBCCCGEEEIIISXIc3qWzVba4E98hBBCCCGEEEIIIYQ0hraaWTbJhRdeiLVr1+Kzn/1szbG3vvWteMpTnoJ3vetdTYisfspMc5VTZPWMdrn8+Ny5vd7zQtO3iJ2eb0lXjBXSo/JOdZ0kVL7mSD6VusBSG/j+QqF/7lEKNQR5b1otIqeOj/UUbdCaWq/bXIol0bu6wpbJllJLwJ3hLqV/eqb70qXe5IOxJNU//Wmxvffe7rFjjy22j1ETaH1tIXTZcMAty2gJnIE8t1f1BZnmsmXFz7UMU+7r8W3LFn/eo6PTj59VSA1CZbAaWYeLRh4WCQ6oE/0ZWP0rZryoVRI2b6n54HYnbzRQ1gbA7YzCz6BfpyH3dV3IvFtp8K6QKqRaKaRywe1TNXJpHZBCmlSThiVP9FwX29di7QCscUQ2Yz0+yDF44cLiGVtjWSAHSWPAtCSCoaSQ35XJN7RNxvabFG2w3vSqINU4EjN2NFp26dosuOc63cF4llnxx9S39T7eKm2EkEbQljPLLr74YjzjGc+Y9tjq1atx8cUXNzgiQgghhBBCCCGEEDIbaMs/ZT744IM45JBDpj22fPlyPPDAA3XncdvVt+H2q29HR2cHDjzuQBx33nG48eIb8cDPHkBnVyf69+vHs9/6bMztm4uRJ0bwwwt/iPW/XY9Dn3soTnzTiXXnTwghhBBCCCGEkNaFnmWzl7b8WNbb24uHHnpo2mNr167F3Llz60p/967duOXyW/CKf34Funu7cdmfXIYjXn4Elq5eiuNecxw6Ojtw0yU3Yc3X1uD4849HZ3cnjv3jY/HYA4/hsQceqytvQgghhBBCCCGEENI82vJj2UknnYSPf/zjOOuss5wPYzt27MBFF12Ek046qa70t2/ejt6BXvTM78FjD45//Oru7cbSIwtzon0O2wf3X38/AGBOzxwMPXUIj//+8bryLYvpdSA+by9ePP01mlh/gFAtfJnVwH32La2kkw+NJdZrRXphSR+QKv5ykaJch4bcfWHx4/hKLVsW7osly0R7oUjPKdm2tBdKbJvfsKHYvvPOYvuss7yXmISW8fbt7r5sB7JMNTUeMIJYf5JmelTI/LrFeHDCCe69SK82tZI6duwoth95xD0mfUHkdhVeLqF2VLpvd48W3pOOP0mZwTQBlr+kpNE+ODF+S9HeYPI63dDWrSu2tZ+ZHBgDTSvbwU+o0cgysazfNG7bNcYzmYg2jhT1ZD2jQp9lZpCBpGojvnSsNHR5b9oUnJ03344EY1qo/1cK3zmLKjz7JCn8qGLzS+1lnOq61GVepkx95+p+YvmShY5h1oEU/neEkFra8mPZBz/4QTzrWc/CoYceinPOOQf7778/HnroIXzpS1/Cxo0bcckll9SVfj6WAxlw61dvxc1fvhkrX7gSWUfmnHPXj+7CwSceXFc+hBBCCCGEEEIIIaS1aMuPZUcccQSuueYa/OVf/iUuvPBCjI2NoaOjAyeeeCK+/vWv44gjjkiSz5FnH4nDTz0c11x0De74/h04/A8PBwD84iu/QEdnB1acsiJJPoQQQgghhBBCCGkv6Fk2e2nLj2UAcNxxx+G6667D9u3bsWnTJixcuBDz5s1Lnk/P/B4cfPLBeOTOcQ3P3f9zNx78+YM4/cOnI8uyGa4OI0cWNRXeREzPrUJ6KZGDg54unHqp8xRTo2e6rlUIXE3eQQ/UMo3Q8oldVr2nx01v2bKZr5kJeT9yCXoA2L272A4tHysWSwYr09dtPEW7th6wshxlTGVoZBuvWuLS3+eXTw0MdDuH7rmn2NbyVimJkMq5Xbvc8+66q9g+7DD33kIl7qFjcI3coqtn2vOs9GvHAOO60Z3TH1CBhI6lWirtk8DVxBH5jIqRXXWUkbxJaZhsJFqGOThYbCs9+lhP79S2Lh+IfSss9xnr3qclv24WKWSAGll2+llgMWdOsS3LuF8/M+TBEpLAFONbahldmfe6GOmWbqsLF4blZb0rWmUeGlcjpWdlxvuYd1HrOVrmPkPf81K/Z1f9HqBppNx056h7TLZl+V6hHxOy/ev3DDlOVf07m5WmHGetYZBWAWRPom0/lk0yb968Sj6Sbd2wFZsf2oyB/Qfw6N2PYmD/Afzult9hzTfW4CUffQm65rZ90RFCCCGEEEIIIYQQBb/4eOjo7MAPPvIDZJ0ZFuy3AMefdzy+/ravY/fobnz3b74LYNzk/6Q/HV9M4LLXX4Zd23Zh9+huPHDTAzjtQ6dh4QGBf24jhBBCCCGEEEIIIS0BP5Z56F3Yi7M/d7bzs1f+6yu957/6319ddUiEEEIIIYQQQghpEehZNnvhx7IWIEMepfGWuvlQ/4dYLwsrHcuHomPDo8XO8LB7cOXKYtswnQqNI9W9+dK30rDOswZP6TcT63MhsXxvGr2cufTWifUwkPejfVFSP5R0jNKDTdoQpfJjkPFv2lRs6/u06rQVfUCsdlxJvIY/49KlRd7SVkojhx/drlatmv48wPUngbhPfV6ov43uozFePZZvYQ2B/l3RnmsJCG0zlfi8+DzL9PNV3PgTo73Ooc1ri+25c93LpIOE5Q8TO663u3eMbMsbNhTbuhznzy+2dVn5nhOmp1IZE0zTiKs6yrwvpPaV1ed1izS1n5Mvb10v3QmKLnYMaGQfii3j1O9vsek10heuXZB11dfnLx/5viDHLMDtD7oP+Xwpy7T30HYn33tLvUsQMovhqDcN8/edXzOrjBBCCCGEEEIIIYTMftryY9ndd9/d7BAIIYQQQgghhBBCyCykLSdVrly5Es95znPwpje9CWeccQa6Zpgb+t33frdBkcUx2D9Y6dTmqqdNm6usS+mKlF0CwXN6q14qOZQyS4VLpBxxTyL1kvdySWsA2L692JZtMNWS5SnkF6HtTEova6TMFccRm34ryjF0TLJd6HHKd99Wf7UkXuY42ERiVGKxfahVZRpJ+lCPkFf2uFJLRy641jlkSsklobJ+jS3zD06mYVhtS8uP1oqylOO/vuc5c4pt+coRS6n236RGX6aNxISYagyIGXN0XlVLIWOeZa30/AuV41X9LrF5c7G9a5d7bPHiiu0YAklRb5aUWY5N8h0VsN9HkiAGyQ4rA/0y7TnXkmHqJOQx/Q7V7nYAZaBn2eykBV+lZuYLX/gC/vVf/xWveMUrsM8+++B1r3sd3vCGN+Cggw6a9vzf3fa7BkdYjgsueGOzQyCEEEIIIYQQQgghaFMZ5vnnn4/rr78ea9aswctf/nL80z/9Ew455BCceuqp+K//+i+Mje05X7EJIYQQQgghhBBCSDracmbZJM94xjPw+c9/Hh//+Mdx+eWX43Of+xzOPPNM7Lfffnj961+PN7/5zc0OMQi5GqY19V0fi1khK9UKO6HTareNdk9t9/R1O8c6RnfWnVcjp8LHStliV97U05x9uNOfw66JRce4bl2xvWaNe66M5Ygjiu3Fi9PH1UiqkDTKsqpiynrq1V9jqWLF2tBrQvO2VkXVyHoLllUY+oWanDwd2rqXMvIOmY413lhlEMpskmJoqYXc16uuphifZfq6nqT0Sa8SKaVPFinGh1CsdxC5KjAA3HNPsS3LVS9WaS1e6SvzqlcbnCm/0LyrfpdLnUYVqyGHplH1+2y918xEFc/fFHYYMg2rfuXYpMepRr73VdGX5Risx3/5zLVk96Erm+v4n9ha7P/0p8XPV6xwzzt0maGTtDSg4oZGRt3f03wxpngnIKRdaOuPZZMMDw/jV7/6FYaHh9Hd3Y1Vq1bhE5/4BC666KJmh0YIIYQQQgghhJBZSJ7Ts2y20rafhnfu3Ikvf/nLOPnkk/H0pz8d3/72t/Ge97wHv/vd7/C9730PDzzwAE499dRmh0kIIYQQQgghhBBC2oi2/Fj2zne+E0uWLMF5552H+fPn41vf+hbuvfde/NVf/RUGJ+bqL1y4EG9729uaHCkhhBBCCCGEEEIIaSfaUob5xS9+EX/yJ3+CN7/5zVi2bJn3vJUrVzYuqIqwvBqq8JeoFx2T6Z+T2GDLKh9rCeRU+aVOr5GeANa97Bz1xzEwUGwffbQ/fendENuOtS9NqDeTjL+7K73PiPQMGh5272X1av91KXzKUnuclLnG57HRSB/BevCNrVb8sVPsnbwqWTPej7w3qy9X7XeYgoY/80SFd4jtblWHXV3VtnnLG0+OwbGeOCl8pSysNKW1zvCwe2zBgmJ7xYpiW5eBM64HPuwtX6aZzvVdV3U5WjG1qidgI+NqpjdnTBuZbch+2dnpHpPdsruCZ03V5S/jD31WpnqmynKV42DN+0iX4Vkm0RcK8+HeoaHp06uD2dzmyZ5BG7we17J27Vp0d/tNCCcZ1E67hBBCCCGEEEIIIQmgZ9nspS0/977yla/EVVddhV27djU7FEIIIYQQQgghhBAyi2jLmWV33nknzjzzTCxatAiveMUrcO655+KEE05odlhJSCEFAFy5jZxJa03dr2JqemgaoZKCMkusu2mEfRcuE2PM1OJYmVsoVUx3tmZid49um9runaf+pCJ0kymWdNdpNHoqvA8pg5Iz2AFgzZpi+6jVjZXJpJYEhcoTQ6VgM6WfOv4Uaeh7i1FUVi2f6hjd6f5ABN1MqWWKMSCFzKoUgQWWWmZlSdV1SJbyprenvLzYkkiFSujLtGmZ95NPusd8iiBTTm/UWZn3B0mK9yRrPEvdrquWGca+y8WWcdXPr9TPl6rzKpN+ivEoJo0dO9z9rVuL7YGB9OUTel1sX5PDSjNtXKQ0XZexgxWkrAzAfZGRviI6DfGyq2dQWTOqGuw8QUhy2nJm2W9+8xv8/Oc/xznnnINvfOMb+IM/+AMccsgh+Lu/+zvcd999zQ6PEEIIIYQQQgghhLQpbfmxDACOPvpofOpTn8LatWvx7W9/G8ceeywuvPBCHHLIITjppJOaHR4hhBBCCCGEEEJmMZOeZe3+j9TSth/LJuns7MRpp52Gyy67DN/4xjewZMkSXH/99c0OixBCCCGEEEIIIYS0IW3pWSa599578aUvfQlf/vKXce+992K//fbDO9/5zmaHVYoc2ZQ+3tKxmxp3ZVYyMto7tW1J1+WS97E6/FgfDfkFW3/N7ulJ67MQem+WV0YVfi2heYfkW5YkHg/CjEDHtX799JcsXhwefxX+P1WmNzTkxiu9GmJ9WGK9wlJ7o5TxUZLIoak30rsitX9ZGaz8ug0/yJj0Qr1ozDLQfiSicjqEj6DOLzauUGJ9vWJ8jippIwmMalL48VheOqp6g8s5ha+pla+Vxvbt08cBuPeT2vem6vZeJj+H225z91etCrosheea75p6SP2eFJq+RSpv4NTph6bRaA/P0Jhlf22mP6YmxbOhmfcj3/N27y629XjvYAWsB1N5rsxs7VrvdV09vc4hXxKEzAZaaDgLZ9OmTbjyyivxxS9+ETfeeCN6e3txxhln4POf/zye//znI8uyZodICCGEEEIIIYQQQtqQtvxYNjQ0hN27d+O5z30uLrnkErz85S9Hb2/vzBcSQgghhBBCCCGEJGDSs4zMPtryY9mHP/xhnHPOOdhvv/2aHUpyYqf/d6hptV1S+oRtRfo94R8Vq5Y7WTJMKd2KXbI5VKIWXeYVl4+MSyqr5MrOADB3brG9cKF7rLsrbYyWvGbdOvfcO+8stgcHi+0yMTZaMiLZOVrkLdtjf194XmKl7WAsubIu46VLi+0qyiBFmq5C3L233p5AaaHg7nvcNJYtK7Zj+3kjZS3bRtw4lILeIab91AymolB0Gcj2JKXvOl895kgs6Y2vTFLJoHznxkqeQ2PR5bFrV7GtxzfzmRXxoNP3Iq0UZjp3kjLlk0KSKNPQzXPHjmJbPicAYGio2Dbr0PZ0mDGmmdJPIVe2xiInzahOH05oH7Kuk89GwG2usX20VWimzF+WSSrbhtD0rbxC264ci1LLpstg3VvsO2Uz26ssS/m8HR52z1s0IHZs/x13X/6CIccfPRaJF4bRpcu9SbaSBJeQFLRlk37Xu97V7BAIIYQQQgghhBBCyCykLT+WTfLLX/4Sd911F0am+dP8a17zmiZERAghhBBCCCGEEELambb8WLZ582a8+MUvxo033ggAyPMcABxjf/mx7Ojjj25sgCXp6ZnX7BAIIYQQQgghhBBSEnqWzU7a8mPZ+973PmzcuBHXXXcdTjrpJHzzm9/EggUL8IUvfAE33HADrrjiCuf8Y95/TJMiDeOBLw1P6eO1n42l+3c09dIgCkCvNPIRM++0t5n0ntA681CfjlgPD8tTTLJhQ7Gty8PyywnVzTfao8KHjkO2he3bi5/r+5JLSeuBurviHm550cg4rXqSbVCnIT2tUvkQhSK91DZtl3m7cUgPsxTeSNqX7Cc/KbYPOcQ9Jj3LYvICqi9H2X9XrIhLw+ffB7i+HQsWuMcWLw7zGbHGutReZ3oMszzLouKIHAhlHJaHpMZcvl4SOOCXKdMU3pOh6T+xtUhftmnArdPaMXjMf9CHLvBIA6DQZ7hFzHVWXeiql7Y4sc/w1IY5HSPb3B+I8q/cu0gatUVS5p0spn6tZ70VS4r2aKU/m0nxPh6TV5n0LetA6fPY2eke23dx4+ow9JkR6v1WJk2L0Prt7ykKdtmy7rj0dYf1PcS1Z5m4rgofaEJalbZs0d///vfxvve9DyeccAIAYOnSpTjllFPwn//5n3j+85+PT3/6002OkBBCCCGEEEIIIYS0I235sez3v/89li9fjs7OTvT09GDLli1Tx84880x85zvfaWJ0hBBCCCGEEEIIIaRdaUsZ5tDQEDZPzOk98MADccMNN+CUU04BANxzzz1J8rjt6ttw+9W3o6OzAwcedyCOO+843PfT+3DL5bdg09pNOOMfz8DiQxYDAB69+1H85PPjWqk8z3H0q47GQc88KDivHNnUtNUyagtnWq2euu/RwEkpCeBKvmolTNPnlQp5r9Y0fqlI0dO3TYmLSFTH77ufMvICSYplvS3mzCm25ymLOxlj1ct1W/EODbn3Jmd2WzKlTZuKbSkpBYDe+hUpNjIYrX8Ux/YVsmYpG60CPfP92GOL7cFB91jH6M5iRzVWXxu3ZIaxEjgrXy2bjGHt2mJbl49sW/Pn159X1RICXW4DA34ZskTKWHQ/7+kxJBZiX6cfOl7IOgy2BtAkkMdZ42cKCbSVhrxv3Q8l5m2G6gwD+zLgPh91cs7zUZBKahzaV2SMWsIqY1ZuEg7y+VK59K6EDDbUTiJY8tUVLq2KIcW7Spn79PXR2HG2CplhM6WcPisL3QRdpbEbvzUGSCsLifWsKTNU++LX/Vz2bd2dfHYJZeolhcRXxi/fSwFg3rwifR2/z+4kmaWDfPhfffXUZt857kJ2obYoNe0/8DkkX75SvUfOJvKcnmWzlbb8WHbiiSfihhtuwOmnn45zzz0XH/rQhzA8PIyuri5ceumleOlLX1pX+rt37cYtl9+CV/zzK9Dd243L/uQyHPHyI7DwwIV4wXtfgJ/800+c8xcduAhnfOIMdHR2YNtj2/C1t30NBx53IDo623LiHiGEEEIIIYQQQsgeS1t+LPvABz6Ahx9+GADwrne9Cxs3bsSVV16Jbdu24aUvfSk++9nP1pX+9s3b0TvQi575PXjswccAAN293ZjbN3fa87vmir/c7xxFhmza8wghhBBCCCGEEEJIa9OWH8sOPvhgHHzwwQCAOXPm4KKLLsJFF12ULP18LAcy4Nav3oqbv3wzVr5wJbIO+wPYo3c9ih9/5sfYsn4LnvOO5ySbVWZNZ3VWshxY5BzzTefWkig51VhP+1640B9XAkWNIxGJnZIvy6C7xAprvvz01HEp+fJNZy+DXLkPAPbaq4hDrwjkk6mGrjzVaLTkZ9FAsS3rSZexbHd77eUeSzG1W64qKmezA8DgYCF56dYrAnn0gz5pUz3Ie5OSOgCQC9vWlkFYR5TjQdUrpGpk/LFY7V/2UUsiqKfHy315XaKFCIORddo94ra5x0b7p7Z/+9vi5095ipuGo8I3dACWRMCSxfsk1TXnptL2CBoti/Uh+72Uzs6EJdv2jSX6ni15ljymJcpVEyqrk1WvJawyfr26r7ZdiMEnTaop+6uuKrZPP92bnm4vUhJXxYpwvjT14yl4VVpFaJzyvFiZXmhfi5X+Vr0SZIq8Qt9FLcW2foeS7dqSiFvpW4Teq4xDWicAwG23FdsrV4bnLbHaUqy8WCLLxLJ0qJHI9k0/xmi5bOr3c6stxfbR0PRnOpeQ2URbfiyTbN26FRs3bsSSJUswRxo7JeDIs4/E4acejmsuugZ3fP8OHP6Hh3vP3eewfXD258/Gpt9twrWfuhZPOfop6Gr0b6WEEEIIIYQQQghpCPQsm720ranW1VdfjaOOOgoLFizA8uXL8etf/xoA8PrXvx6XXXZZsnx65vfg4JMPxoZ7N8x8MoCFT1mIrp4ubHpg08wnE0IIIYQQQgghhJCWoi0/ll111VX4oz/6IwwODuLCCy9EnudTxw466CBceumldeexdcNWbH5oM4Dx1S4H9h/wnvvEuicwtnt8CuqWR7fg8Ycex/x9EyzLRgghhBBCCCGEEEIaSlvqBD/0oQ/hta99Lf793/8do6OjePe73z11bNWqVfinf/qnuvPo6OzADz7yA2SdGRbstwDHn3c87r/hflz/r9dj++Pb8b2//R72Xr43TvvQaVh3xzr88u9+iY6uDiADTnzTiejpDze6yZBP6b3L+FxITbrlo6H9DSSLF/uPyemk2utJ7kuvDMc7Z4YYZQY1SxeLY8uWdU/3YwCuB5hcWl7HVeNvsOHRYkeY8AwO9sOH9L4C3HuzfKyC61QZIcgy6TKWkw/192imp4AsK+15JH1ptE9eTMy6nm6+udgWq24DcL0zXvlK1/evN9YEpk5i6ynUi6PRSB+l2HuzfFhi7y10tfRQkvh5qM4hW6D0frP8VCyTNctvzLpvWf76POfeAguvTFnFeNFUPdaV8VSyiiTG18ryMgpF51t1ecW0M8D16ZNtvjeBj2BNGciHgQ5SvvCoF6qOFSumTd8sU/0iI/OzjgksL8XYsaiKdhDqh9RIqvA2S+FhJt/brXF23Tr/GKN9/3xplBl7rLFVNlfpo6d/Z5DtVb9ayVdfd6yIK+MUz2I9xvi8D/W+vBd9nvS6LNVeZIE9//nh10WQoo3sqVCGOXtpy49ld9xxBz72sY8BALLMNd5fuHAhNm7cWHcevQt7cfbnznZ+dtAzD8JBzzyo5txDn3MoDn3OoXXnSQghhBBCCCGEEEKaS1t+Cu7v78cGz3Sp4eFhLLamSxFCCCGEEEIIIYQQ4qEtZ5a94AUvwN///d/jRS96EeZPzM3Psgw7duzA5z73ObzoRS9yzv/uu79eOo+9ejuirothsH8f7xTW0KWSrSmwe+1VbD/5pMpbyB62b3ePyemkUsoGAGvWFNty2vfLXuaeZy5lb+kxxDF5n3qB0a1b/VOjTdatK7aFdrRbzQ9/QqSvl2qX92YtfCrj11LR3q1CDqrSl5XTSMlC1RId3SZkvVly1lB0s5LtU0rZAOCee4ptLRvoHWr94XHnaFFXUpIMuHIAqTDSbbWMpCz0Ot95Vnp33unuy3axalX5fDVa0uGjTBuU5S/jtSRSJqrxdot73Vf8DciUPBiZ67Lrhhw0i7xjpYStJG9qFpZEp7fHvRdfPVppxMowrTYTWodW3aSop74+N305Xsv7jJXxmmOAHCR1BdxwQ7GtlQvyASP6XnQ7DqzQVHJxX1xlyriZdg+tMj6kKIPQ6/Q7VGqpdxlk3vL1WctB5TH9HuZLLxarfaZIU48jvt89DHeZchJTmZD4fSX2vpTji/Ncin0WEDKbaf3fBqfhIx/5CI477jgcdthhOO2005BlGf7hH/4Bv/rVr/D444/jqquucs7/3aUvb06ggVzw6QeaHQIhhBBCCCGEEEJKQM+y2UtbfhpetmwZfvGLX+D000/HD3/4Q3R2duK6667DCSecgJtuuglLlixpdoiEEEIIIYQQQgghpA1py5llALB06VL8x3/8R7PDIIQQQgghhBBCCCGziLb9WDZbKaO1D9WML1xYbM+b5x6T9jaWz45eHV2ur+Cx7KihCi+a/fcvtnftco+5XljqQqH7l95gOkbt4xaD9DWqKZ8NwjxA+aXFeGDElnHV/gOhvlWyrACgGzuLnUAzC+3HINvBqae6x6R1nemvF0gKj68yWEVy7bXT//wZq6b/eVXcN1yUiY5X+gD+9KfuMdlFpZ2Q6fWh58CnMEAxkP5mlh9SrJ9NaL+Uaeo+JIugJm9p1CfGnw41UIXG0Wi/sZhxq1QfDTWjCTsUTKwvmSZF+aT2JbPQ95l6rSb5bCjlKyhfnPTiUp7KMX299DX6oSWJNkCsjhTvpdZ1VYyRkth2LKspVR+NQfuBSarw6wpFvsLq3xmaKU+Lqe8y5Sbr3uquI/7X/aj2n8pTLEXeVhr0NyPtTlt9LPvbv/3boPOyLMNf//VfVxwNIYQQQgghhBBC9mToWTY7aauPZR/84Aed/SzLkOd5zXn8WEYIIYQQQgghhBBCYmirj2W7hM5udHQU8+bNw0033YSjjjqqiVHVz44dhRxsaCh8umroFFxHKtQXNx1WTzG/885i+5JLiu3Vq93z3v72YttaLjoWKdMopcAS0ssH1/plYhI9vTp02v3atf40loj59HqqsikjFVQ9xTn1svBS+QW4UkgpvQOARQPlhyhdxqKqa6a+SzmD7CdliJWoSVKUq7xPANh332JbK4diiI1RtmOtNpJ1r6Ul8jp3yXX3vG0jRbmuXdvtHNNSEEnU/Rh/NqyRVglStBEpWZXbADA4GDaG1eCTf6lOJPPT0vT5872XtaT8Qte7bD+jSsLa11e0p47RnQhBp2/Jc0Pl6aHnhcYVK9Gx0qwCb/r6ISIbve4AolGakmRLoykHEvlABzDWJdpIivII7MBVSLCqSN8d//3jVG9P/W08lDJt2neuHjrlu0XVfabMu0qK/OT9mFJ7USi9Nf2w2G/F5wKQJq4yv0NIUktFrXacQtndqnVISBW01ceyzs7OaX823c8JIYQQQgghhBBCCClLW30sI4QQQgghhBBCCGkF8pyeZbMVzqMkhBBCCCGEEEIIIWQCzixrAbq6ar2UGkWoj8mCBe7+iScW29JrSPuSSf3++vW1uU+ycKH/OveKMe++5Q2zU3nRyPQHBryXmVYoct8qO+0lJbGu86VvlYGVvnVerK+FLleJz1dD+yXsvbf/mPQT2rLFPbbv4unT1/kuGvCG2DJY7cD1rvPX/cCAm8Ypp9QflzU+WD5iEjk+6L+6ybqfM8c9ZlkI+eLQ45T02rKWapeYfaGUIViBW1Zxf6OyykCGpcvY3Xfz7pWDk3FvMm/tWWZ50qXwRrFI4eUlYzT/KhxZ9zFja6hvkj7X9BNqIsmfQ5EGoqbXk5WGNNNMMbBqAjtKaPmk8BtL5UnkK9bI7hR9b9bzKrRcg8cKg0b30dDnXOw7poP1whyTXoOp2htSjj/6WGh+oe9dVjurYgxoh+cQIbG01cey++67b2p79+7dAICHHnoIA9N87Vi+fHmptNdt3Ia3f+J6/PyO9Zg7pxPL9puPT/3FM3HEOV/HygMHMLJzN+b3zsFbznoaznvxoQCAS66+C+/67E3Yf/FeGNk5ijeecTje8apnAAA+cdmv8O//dSe6ujqweKAHX3j/s3HgfvOtEAghhBBCCCGEEEJIk2mrj2WHHHJIzc9e9rKXTXvu5Me0EPI8xxnv/gHOe/GhuOIjzwcArLl7Ax7ZuB0H79+PW7/4cgDAfQ89gTP/6ocYG8vx2pccBgB4xfOX43PvOhEbHx/BYWdfibOeuxxP2bcPRx46iJsvPRO9PV34/77+G7z7czfhyom0CSGEEEIIIYQQ0v7kOWfRzUba6mPZF77whUrSveaWhzGnqwNvOvOpUz9bfegghh92dV/L9+/HJ95+At756RunPpZNsveCHqxYugC/37ANT9m3D885ZsnUsRNW7YMvfe+33vy7OnP09413sBRTZ8tcJ4/paeVyiu/ixe6x53u++2mp3MaNxbZe7X14uNg+5hj3mFQ9SKzysaaVW9OVJ8u+Hqwyjk0/VLrSTCz5lw+5RPz4vv9cKfOc3yITM8v0Q1kmGza4x6SkQ0oE9XnyWLch19ZtZF/RZ4OXfq8AWd8675i+8ch6N41HHim29STjHTuK7VDlVuw4a6VhjT+h5d8tFS59/hi1FFJKUfXC0V0Le4ttI0YpH1m4MDzvUCltbBtMIRWTeXcneCOKHR8ksXGk6MtVjAep0xzr6XX2Y9Kvqaeubu+5HbJzSF05gI6tTxQ7hp9GComXxHpfq3pML5O+7171WIGesPe1WGypepG3Hqd896rl9Nb7j7xXLWOfN8+fty99nZe8rgp5azCJK64KGWCopL2KPpS631dd12WkujHpE9IutNXHsvPOO6+SdG+7dxOOXmkYSwmOOmwQdz6wuebnD67bipGdu/GMFYtqjv3Ht+7Ei575lHrDJIQQQgghhBBCCCEV01Yfy1qBPHf3r/zRfbjmlt/jrgc349/eezJ65rpF+qX//i1uvmMDfvzPL2lglIQQQgghhBBCCCEkBn4sA/C05Qvxtf+9b+YTAdx69wYcvmxgan/Ss+yGXz+CF//F9/CiZz0FQ3uPSwR+9LO1+Mglt+LH/99LMLe705OiSzOnz1urtOnrenrqn04s5WZaHpSCZq0ypOUFslzN1bgSxBG9ipEnvZnSSC1h0sjy0unLlTJlmS8aSFPGqVYDm0RLLHySixqpnLHqaoo2HipL0PgkAFL2BwD9QpmUQm43b557TJbj3LnuMXluFdIeX99LJSsMlkusfXBqu19p2LsMeVkMegwLlfJL2kHqp4ntJ6GkWDFVk0LKHzMOxq5YWEWMTpriQdGhGutYX39U3nIAknGsW+eeJrulJW/S42eKldJjVlO1Yoytw9AVfWvfodwc/MfC4ti0yU3j8ceLbaWyDX7XteRxsSsZ+86zVmYPJYVUcaZzresaSYp3uUbaolhjQOwK01U/vwgA5ADC/dJJ+5D2t8E25bnHLMGOXbvxb1fdMfWzn//mUTywzjXgGn54C/7yMzfiz89eVZPGM5++L8499RB8+orbAAC33rUBb/yHn+BbH/9D7LNoXs35hBBCCCGEEEIIIaT14MwyAFmW4ZsXvhBv/+QN+If/XIOe7i4s268Pn3rHs3DvQ0/gyHO/jpGduzG/dw7+/OxVNeb+k/zVa47AUa/5Bt53/mq867M3Yeu2UZz9vh8BAA4Y2gvf+sdTG3lbhBBCCCGEEEIIIaQk/Fg2wZLFe+ErH61d4nH7dX/iveb80w/D+acXH86WLN4L6/77XADAjz734vRBEkIIIYQQQgghhJBK4ceyFifWDyBGXx/rRSAJ9WUCgGOOCTvPItaLwOdjUkNgYDI97Tfj+EkYZhxjhrdQal8ynWboeZV7G4SadqjdRrcfH7p8ZFsYGPCfK+NYuNA9T95nFV5AoT41VpryvNi6CEV7+CxbVmxb3i2xZeA7LzaN2DSlj4ku4/+/vTsPs6I49wf+rZlhGIYBBpiRRcABRyWIigqKxoUYjAbRiMvNjUrUJDcmJsYtJjHXuCRm82pMNNeE3NyExAU1v7jE5bpGjAtEIYLigqKigqKswgAzMEP//jhnpt+uc7qmuqb6nDPD9/M8PPQ53ae6urp6oen3rciZQ0uWVC2SJZnOMSa255+amuT9xbRcZ3zkZOxqeUnK1Jcz5SHyUS+X8rxcUxMsZ8qF5f16Y9ng+mW62nROiynHeB7UrnNlogzbHFmm/pJkH9qet2yPX9PvbPPiGu+hbBnutfr1i54He/WKX5ftdpv2d2TbDOdIk0Le57kuV8jzVJLf+bjPczlnut4H6H3JJa9gKeUh832fXdqYs6wn2pl6MBERERERERERkREflhEREREREREREWUxDLMEBFBWr6mmEZ7iGn7k47Xg/pZDoruGidnaguqO6ZwhucW0bftUVsQvt7G1OvJ5qxhwtY9h0NRoyGG6IUyuoTCmfSGjTvRhsVesCKerqqLhEXs2bIstU7Zza2u47nUbovWQYXv6vpHbtrEp+rutW8NpGRqpl+EaRhTXXq7hNXrUiWxzGR7nK4w3rozKBFcV0/bIftG7dzhdXx9dznS82e4b3yELrseQvtw20a+vvTb8vq4u+rvp00d1TI8ZET1mtokgzWbt2JPhHrK/6NHQcrmc/SsWrtQPbvnDinDa9VrT2bI2v9GrGHecAH5CoNMOW/IRTi/n6fve1AZph9fI/u8UiqeThWgdoezm/+mYrtZPMqecEl+mbDAR5qyH3ZtE7h+gX/OSb7jt/ZpOtrfO9lgwsf2daxtEti3nZi78XK1dM2xDX32EL6dxHjGVb3ufZ/qNyzks7ZDqJOXb1tF3G5uY6q9fYyPn7qaN4YynnoqW8dnPJq6HqV5p3CsSdUd8WEZERERERERElFgA5izrmRiGSURERERERERElMWHZURERERERERERFkMwywxaeQEcc1L5pvrcONyWs+p4ZzHJJKYJcwzsn59dDGZR8w0nLkxT5nIhbVsWXSeLGPIkPh1F5KvPrJhQ/5pfVhs2QZ63i3TDpZ12SRyv61dG12uoUF+itZfpq3RcxnJPFlx6+0KH7ngJD3XkPws27XaMMR9klw3ceeVJO0j66X3C9n+vXpZF+ld2kO1l616v2N6W93wyLw1a8LpvfcOp/X2kO0oc5QB0X6tH1/y8JL9Rebr01XU6H0kpiL6Chz5zqHiJfeVJ176j4d8OXK3ueZMTENcXbzcJ+knnD32CKe3b09eXhLahkW2x0MHTXKe8pE7syRzGSVoRx/HkGt5vo8pH/sm7TyLpvUV8t8ohc7BaGLd5vJCPXKkU/mu2+3aL0ry/ECUQAndNhIRERERERERdSd8MNgTMQyTiIiIiIiIiIgoa6d4s+ywcx4sdhWMevet65hOEmZoO9x73G+6QtYzuu5o+XqkQ3RJu9AtOU+P8pHl66GQxm2Vw4g3h0MxVwzsH1lMbpttGxtWhaFD45fTwy5lKJQMuzKMiF5S4RFy35j6QU1NOB0X+tiZfv3s6qHvQ0lv14ED3X7nm+0+rNHC40x1tpV2WIKp7errw2kZxrtqVXS52tqwjqZ+prMN/Uj9GBKV1ttDhmEefXQ4LY8ZILqv9fNgVVV8+8jzqWxjvR4tLeG0HqI5cGAY9llZWxudGRfnqa2gkOEvSfqIrHJTk911SN83tucH2zZIoz/KOiY5n8Vdw5OE+diGXdlut3UYV0U0XLnssMPCD3ffHf2h7AhLlkTnyTj/2kFW9fDBV6icXFZPNRG3nH6fCsO9aNzxZqyjZfoFvZzu0uY+ftdVpvsDU1oRW8W890x7P/k4nyUiLzgyl8vEiU7FGf+dYLhOE+2sdooj4ekX3it2FYy++tVzil0FIiIiIiIiIiLCTvKwjIiIiIiIiIjIrwBAW7ErQSlgzjIiIiIiIiIiIqIsvllWYvRcKDL/ycamsth5TU3R38WFmuv5ZiSZFwuIjp5uyqfVJh6ky7w3ANDYGE77yIOg578whdRb5yYQhep1rBTlJ8knJ1VXhWVWaznLTDkMovlywmlTH+lfk26eCFMumhUrosvK9hleta5j+v3mQZHl5PaYcrqZ6lIt+kW1ISdRpbbPZL4rPYeH/Lx8ef7vAWDEiHB6UG20fWSfWb8++rsh9fn3ld7PZLvK9DiAOV9LpSGXXRwfQ6knyQmi7484Mu+W3v/l/jDlkjJxyY2UdNlYep4vQdZfngP0flbZLGa2Rje6GqKB9BN07fCOSXm86nm3ZLu2Gf7jdEdVdeRzpH30nRNZzsBz3pQk+0zmcJLt/8EH0eVkfj29unIfum6K7/w/pnNFKbHNEyTZXlN1kQxmo0dHZ8odpx+vYgfb7ifX3KKuOY985HuTTOdged9ooudHk03seh0qZt4/k7RzMpqOk0Juq4/2N12LfeQDcy3flo9jNKcMecC98UbH5JbxB0UWk9eaQm+L6z0UUXfAN8uIiIiIiIiIiIiySvT/E4mIiIiIiIiIShlzlvVUO8XDsgMPPrDYVTCqqgpjHE1hGqZ5+mvxMlLAFHogQ2r0UEu5PlMZrmEmW5rjX2xsjpmnhwd5YVlpH2GkOtPryjL0TIYA6ZFUcb8BUqiz1hHk2pqbI4Es0dDFsWHoZV1dtEi5T027Io3wAlmGHook++CaNeH3+rEwZEh8+XK/LV4cnfeZqXZ1lMf2a69F561ZE9bxiMPi28NHmE8xQ1dkKPMq7dxgOjfJ86AekinbNTrPPtzapU30cHpJP7/tWReGL2+pCo+hnGMhfmOiG6DNk+0qQ5L1esg21ttbFq9fh2SoVaVctynm2TFW0bnvxsW7AygTdamo6N8xrYeiyp/17RudJzfHc0QpgOKGv7iEXaUdkuZM7Jwdkw+NzIq0qxYLb9v+pu0uZpv46D/y0LYNfTedR1zDv9Lmeh21Pb2ZjhOXMkyS3Gu5lJ+E73s517DdtM+fch/q9+bGOsuDav/9OyY3bYpfTGe9bWlcpIi6uZ3iqJh42cRiV8Fo+S3vFLsKREREREREREQE5iwjIiIiIiIiIiLqsFO8WVbqFIKOV2T1MDrJ9IqtPhpmXGikPuKlDL3UR8qUy+rrjnvt3hQiqJOvEPfrF50X9yZwkjeE5aiC+u/iXkku5khCurgBuPRtKS8vSHU6JUeF1MnXz2XoF+AeRiH3r6l8W3o9ZL+Wo7rq5Eh4uQfAICSl71/ZrnrxphBEH1z6f5LwEVP5cWEVepibfk6T5HlRP79t3hxOm46vVEK/Y+S0h9jh1UPDDrkD0VEnTRsQ2R+18f3RNJJWZSSUMP541cNC5PWlUraj3sgphF5as1y3DB/XjzvTaKG2IawmtiO42V6/XMOs0vidDEs2jebs41os+65+Lh1UG+4M36Pu6WUm6bdp36u4hBaaRny1bTvXa1cao/yV4uh9eki7TAWht78Modfv1eP6nY8+nmRZuT16mhVZZ9v7tzTCb23bx7btDANAG0cgzhkNVowy3dwwrmO6bYN9vXwwXcvkPizZUPuCYM6ynmhn7tFEREREREREREQRfFhGRERERERERESUxYdlREREREREREREWcxZFmPJ/Uvw8v0vo6y8DLsdtBsOOvMgvPX0W1g4ZyHWr1iPGdfOQP0emWRFK15Ygef+/BzaWttQXlGOg886GLvut6vTel3zCAwYEP28YkU4LUc613MdyLwdem6e7dvj5/kYXVjmKfMx5LGPOPkkMf9x6/OVN0C2sWx/U1vp+8XHsPCR7ayojMyTZVZjW2Teng2iDO13cWUk4XuEa1OepuFDDT+UyRu0nVMjythvP7d69Bf7vqYm2udGjSi9XCs6H0PUy+kh9dHlTGXouRwlmbNM5haR6b98kXU05kDTk5zIRFmGA39jc2XsYrbHiWm5Lc3x+YrkZz1fl8wTJ/tuTk4Wx/OUS04uI33ni2O7siJc19Ch0fJNuWls299XDqGu/s6Uz8m030z5qEzHoWyfNHJJyTKXLw+/X7Ysupzcp+PHR+e55C8qa41eD207Qhp5h1xzzcUx3YPY7kNTzrIkuS3j1m3qq4XmkptQ5igDgA8+CKcHDozOi8tRnPnsd7tdcpQB0X9r6PtezpN5m/XTseu/E3yfB23p+0KeB1tby2KXrda2U7aX7Bf6vYSP+30T03XOpBRzAqYjAHOW9Ux8syyPtu1tWDhnIT73X5/DyTecjNefeB0tTS0YuNtAHH3p0Ri297DI8lX9q3DMZcfg1BtPxZQLpuCJ658oUs2JiIiIiIiIiKgr+GZZHls3bEV1bTWq+lVh3bvrAACV1ZXoXdM77/J1u4f/+z9w1EC0bW9D2/Y2lPcqkWEKiYiIiIiIiIjICh+W5RHsCAAFvPCXF7Dg1gUY+5mxUGXK6rdvP/s26sbUJXpQFkB1vD6b87qqeP9Wfw1QhrbVa6FJH38cTstXdU1D15vCa2xfi9fDU0yvn8shoq1fedbfAxbvZevbJhc1hj4Jej1kmaZtSeM147gy9dfqXYekj6XFzMgSd9T0j8yLvvYdz0f7mMowDcOdOtExcsJNRf/Rj1EXrmHCsh/LcLJS5qMvy+NeP3W4hDm79mPTMZoTriXFVMYUwmRa9zZD6Idp22xDpkzn2ei5NH7f+gh/8XY+lse2qJd+DFUatttHCJzrcrbHkKl/uoRd6SFk8pKi95ERI6yKdyb7nZzWU1eYjvvuJsm5My50y/X869oHfadVMEk7LMxHSKAeutynTzit991Ctp0r0/ElwzDluUO/Zg8V6TCSHK+2/dp3yhfTv6n0/Su3dUxD/O96987/PWC+xrpsW5J/L+48oZadYTv0RAzDNNj/1P0x8+aZaPqoCa8+/Gqny697dx3++ad/4vBzDy9A7YiIiIiIiIiIyDc+LOtEVb8q7H7E7ljz5hrjck1rmvDoTx7Fpy74FPoP629cloiIiIiIiIiIShMflsVoWtOEDSs3AAA+ev0j1O5aG7tsS1MLHvrhQ5j0xUkYOs40bB4RERERERER0c5FKfVFpdQLSqmtSqkPlVK/V0olSlajlDpYKfWYUmqTUmqjUuohpdSEPMsdoJS6Vin1L6XU+uyf55VS5yqletmsqxtEuhdHWXkZHvnxI1DlCgOGDcDBZx6Mt+e9jWd/9yy2frwVD/3wIQweMxjTrpqGlx94GRs/2IgX7ngBL9zxAgBg2lXT0Ke2TydrSShBYgIZ2y9j41etii4n4+T1+HQZG2+b80vmIdM55yCKSzqS8zmaL8pluO4kSiVGX89DJNm2wZbmsIxqfWeLTpOTN0/mMPOQOMNHvqJS5WNbvOSkM5SZRnu75v3zva2bNkU/y25ue37zwdjGhkQssj30dpT1d809Zsr7Z5sfRl8u7Vw6cX2kkDkk0/pddyDvLWTeITkNmPuPvAcx3T+YmM4Vsg/K/GgNDdHlZB46H3mN9M6fxrnblmxjfV/EbY9rfkwTWWZVlVt+WNvyk8yzlUb+QVmm3E+mc3wv7Z93ctli5iSV26bnzDLlD42j5/WS13C9HxcyP6Nr+SZyW02/k7lvTTnFfDCVl2hd7RUNgi7Vp/QFANqKXYmSp5S6EMAvADwJ4HwAIwBcBOAQpdRBQRBstihjMoC5AFYCuDz79TcBPKWUOjQIgpfE4t8BMBXAPQD+B0A5gOkA/hvA55RSxwaBuXPyYVmM6oHVOPXXp0a+G33IaIw+ZHTOsgd8/gAc8PkDClU1IiIiIiIiIqKSp5SqA3A1gOcBfDoIgrbs988D+BsyD89+YlHUDQC2ATgiCIKV2TLuBPAqgOsAfEYseyOAs4IgkI/pf62UugXA6QCOA3C/aWUMwyQiIiIiIiIiojScCKAawI3tD8oAIAiC+wC8BeCMzgpQSjUCmATgL+0PyrJlrATwFwBTlVJDxffPaA/K2t2R/Xt8Z+vkm2V59BvSL+etsjQpBPGvcHt+r1Yf0l2+xltXF53X0uKwAsN7wV7CrAxxPpVa+aawIlvdYUhuV3Htv25D9PtBcTG98B9iVOhQxbTr76MP+pAk/DHNdRc6PE72hc3ai916GJYN1zBhY6irh5NMpEw9diVyzoyGqkumOtqGqNluSpJrgW3ok1wujXBu13BlLyF9HpS1bgs/6HGSIkaqTLvG2p5PZZiVTOEARMPGXLu7S5iVTg/987HuuPWlvd/1Ml5fFq6vsTG6bHWF2PdrNkRn1tZ2TO6oiD8/uIY4RvqdVGGfNkOmidCXc7m+FPMewdZQLf2xqX2iYY3RbYv7XSVi9guQs28ipcftT21l+npNYbaiC0YuV+Xl0eXkecQUglgqYfj6b2zPP7bXx0L/+8R6ffrOae+gO3puSgKyNin797w88+YD+IJSqiYIgqY8823L+BKAAwE80Eld2hMzfNjJcnxYRkRERERERESUXI/JWVanlFogPv8uCILfeSp7ePbvlXnmrQSgssu83oUyAGBXUyWUUjUALgHwMYB7TcsCfFhGRERERERERLQzWxMEwUTTAkqpWgAXJCjzhiAI1iETggkA+WLX2t+Rrc4zT+pSGUqpcgC3ABgN4LRsvYx2iodlD176YLGrYFTXv67zhYiIiIiIiIiIiqMWwBUJlr8FwDoAW7KfewPYqi3THoS9BWayDJ2xDKVUGYA/APgcgP8MgmBOJ+sCsJM8LHtvyXvFroLROV/9auw8U54U0xDFMrZc5gDQ8/TI0HKZNwCI5kHQ172tNVyfLKOqKj7XgT5ctHlYYrE9jnk0bLnmuYjLI2CbQynJuk2/MebF0nMHCM2t+dtVTwsn84VUy8Q0BeCaJyhOsfKPAH6GJe8OXPM52ebEyWlHeWLRTipl4nPfvtHfrV4dTstcKPp50Afffdd0LioznGj187Ph9GBVj86USp/3cR4x9kHH3324Ovz88cfh93q+ov41/nMx2TLVX14rbHMq6X1Ofpb3FZ2VWUiyjnpKwNra/H0ryX1A3LoAT7mY9HNCzApMeaV852BL8ptW0S/0TUnjfB3H+hycYNvkstXieEp2rxjfPtu3h9N9+oTTldp9nmTqLtVV8cnIbPNZ6n1Lv+fMU3ROvUzXLttcsd7uB00HjiBzf1bURNsq7VtrHzkfidoFQbAcmZDJpN7P/r0rgGXavF2RiWV9H2ayDF37dzkhmkopBeD3AL4I4KogCGxG3QTA0TCJiIiIiIiIiBy19YA/qXo++/cheeYdDGBpJ8n9OytjMjIP3BbKL8WDsrMBXB0EwZW2FQb4sIyIiIiIiIiIiNJxLzLhl9/M5g4DACiljgewO4Bb5cJKqTql1Fil1ID274IgWAZgAYBTlVLDxbLDAZwK4O9BEKwS3ysA/4PMKJk/CYLgB0krXSIvue/cAiinkD7TcnFDFNdp6dFMbw/LV6P18Ij168PpFpFiT3+VuMBReyWvmK84b9HCLjdtCqf79Qun9Vfiu9tr2YWubyFDzVxDe0xsw0cKHVJnvR9NsVriBFdfH+3/y5fbFV/IMB8v9JOuaB+9TSPh7gbF7COlGH7tGoqqhze1if/EleF9eqhfTY1d+xvrJY8T/UZASCNVgI//l037vO4aQuZSvr4tPo6bPRsN7SPPCYabMnlfN3BgfHGJQjQdGkwvT1bZFCKYdhtLpvJdw7RtvgeQE4MYDY20S8myQ0tvElmfIcQxZ9sMaVLi2B7L+vVJ1t8Uhuk7ZLhTDn3cVA/931tr1oTT8tQtwzp1RU2BoLdH+wFcXp67LO1UgiBYrZT6AYBrATymlJqDTOjkxQBeA/BL7SffRCY32tkAZovvzwfwBICnlFI3Zr87D5kT4MVaGf8F4MsAFgN4VSl1hjb/zSAI5pnqzYdlRERERERERESUiiAIrlNKrQVwIYAbAGwEcCeA71mEYLaX8axSagqAq7N/AgDPAjg1CILF2uLtI3vuB+DmPMX9CQAflhERERERERER+RWgADm/eoQgCGYj+qZY3HJXArgyZt48AJ+2KGNKkrrlw4dl3UiS8Ii4efprzfJtWf215mo58mpzdOaQfuKH9eG70abRrEyvDLtyfdU4zdAeH2EsruToagDQ1ha+Iq+/AS1DL6srtok5fk4LvkegKxWFHnHOdp4pLMR1JD8fbNftXC/Lkah0MpzBtgi9jd9flb/OruHormH3kbaLG1qsC9I+Dl1DO51CmFJge67TQ8jkZxnuq4f+pr09csRjGZ4PAPX1duGJpjpWVxVvNE/bFBe2+7C/diz7qLNcn2kkv7TDy+Roifp50GXkXMDtPsA0+rrt6c1HKGQSxbzGSrbHmq8yYvevaVhXS6aR3/XjxEebFzx8M4bedBs25F9u+ND83wPJzm9x213Mf8sQlRIm+CciIiIiIiIiIsriwzIiIiIiIiIiIqIshmESERERERERETlhqGpPxIdlJUAh6IgF12PE0x7uWsrJldEkEqqYxuuWZeQMSV+aXcxHHg2XdfkqM87HH0c/r1oVTjc2RudF85TFs+2D+raknd/ANheNb0mGpE87X5dtPy6VXBy6ZsMpRuZtcq6jyJOil1FT0/WcenJId5mSxZRXJ8l+arIaF0jLieYhV0wSLn037VwoxcxXlDOvVZ5nKyPzVq8OpwcODKddcwaZdr28FshpIHqs6fNkHiu9fNnPqx1T5cn66+cAWb5rDsy0r++lksfHR45QU25F36eRJNckl7SUSa7TPtrOldN9TMrn9FJl2k+219VC7mtTnzPlANTvH0aMCKe3bu1ipfKwbQeZ21K/Rpm2tf06t3178roRlQKGYRIREREREREREWXxYRkREREREREREVHWzvkubwlLEqLj+3XinNAYffx6Ke4d4gSvh7uE75hevS70cN2FDAOUQ6evXx+dJ8NkcqJghZzQsJh9JdcFRHe1KbxM/13cqny1T9y+9xXiZQpvkuS25YZBJe+Tehk54dGWfPdD2/L09l+3Ifysdznb8Brjuc7UKQ18tI8Mj5D0cCY59HtVVbR9TNWXIXGyffr2jS4ny6g0jTuvn9MromGB7UzHkOt51rUMlzC6NMI8bUNq9H5cJr7Q+8XIkeG0Yzc2kmGNy5eH0++9F11ujz3Cab37mMJ+TGF7vrmef3yUYXtflnb5Jr7DiX0c53o5tmXqy9mGtaeREqGQYZlprCvtfyfESiFUNO3jxMdxbqqHKe1E5BpeES2/f1V4Uu5fE7ZrGv/mMd33yrQTdXXRdZt299Klmb9bWrpau1IXAGgrdiUoBXyzjIiIiIiIiIiIKIsPy4iIiIiIiIiIiLL4sIyIiIiIiIiIiCiLOct2Al5yFugB9vKzDLZ3zFNgit935SUfkkHa+dJkmU1N4fcLF0aXk201cWJ0XmNjOO267035xmSeMpnPAIi2v0yVVFNT2HxFtvTfyfrL9teHv66vD6f1XBOm/A9yWbmc3lflcN06ffhu33z0a5kyS9+2aL+wK0/mQAOAQbWFyymjk+s27WtTG8g8g/p5Ty4bd8rNoa9A/jAnqV5l3ll6EYXOB9lVvnL/xG233ozy/KDvm2pDLpqhQ7vernJb9RyJMr+lrHO/ftEy5P7u3Tt+Xfrvou3glptQdk/T71xzN0o+8pnZlp92bk5Xtm1gyj2WRFz9fZUft660y3DtS4U+l7q0SZK8bcXKG1zIXHK+1meb+zbZTDsu9dfra7qVkPTqrliR+XvbtsRV6IaYs6wn6l53wERERERERERERCniwzIiIiIiIiIiIqKsnSIM88CDDyx2FYz6iLgNGdYGmN++9f2qd1mr9o6saeVynuMrwtH6x4fAmYqX7eX8irMHhRyS2xTGsnVrdF7/muT10kOFJNthsYH40DNTqJkPSfaF6zDftmSf1MuosAxHlb/TQ0Bl2JVpv7nyEWIhwwx1si/kRAjGhCDqbRBhKiRlsq30kDE5zLp+jJqqKMNU5fEkw/705SqrDLGuju1hez62VegQGh9kG8jwRp0eTuwSrpUkDMqkLSYiRD8Hy8/6vJaWzssDot1MP9fJPj9wYHSe6dxaFQlhjV/Oto1tz2Fp9E8f59I0Qt4KmerAtV3Tvr+yvZdOI0RTLmsK5Xc979ruN9d/T9j2Bbk9+rbF3bub2sCUzsP3/vTF9M8m+Tnn/C//bSYv/rWDYtflY9tcU0boRozI/F1ZGb8MUSnbKR6WTbxsYucLFdE7tywvdhWIiIiIiIiIKJEAzFnWMzEMk4iIiIiIiIiIKIsPy4iIiIiIiIiIiLJ2ijDM7kTPhdKrVzgtc4IA9vmW9NjyWKYEAdaFuNGLj8v11Noav82mHACmTUt7qHAf5L6faIgq1vPlpE3myZJ5mXSm3F2mrmXKUyP5yEOh9xGZZ6e8PJzu18+uHp2Vb0v2VZm3CgA2bw6nxzS4lS/5ypUkybx5ru0j+0x9fXReZN8nSOxSyNwlsg2S5FqROemkRHn/xEnB1P4+cuL4kEYfdGXKqynJ67SeO9BXbqk4pvLl9aA9b0w++r2FJHMEmnKWSXpf6tPHblnbPD4++oQpd1Qhc5D6KtP2/sT1fselDFOZehmm3Fo+9o1rzrW43/nKjSpF73Wj8+Q5v7vnjdTvAeP+vaLnJ5Wf085968rUz2z/GWXcNyJnWZnpxK2x7bum3Ku1tW7ntAkTMn+brgNEpaxETi9ERERERERERN0Jc5b1VAzDJCIiIiIiIiIiyuKbZTGW3L8EL9//MsrKy7DbQbvhoDMPwltPv4WFcxZi/Yr1mHHtDNTvkYkHat7YjEd//ihWv7Eaex61Jw772mHO6/3ww/h5eoid99eOHUOY5OviehHWw5LLoZEBVFSEYwzLV7RXrYr+znYoY9sQuCShB77DLGyHuza9eZ32q/Wm8k39c9OmcFqGNwLm/lMpyrRt7yRhXLLfyT4HxIdbJolINkUy24aFmMIvXEM7bbn08SThTXKe6fQj+5apjC3N9mGeNTF9q5jHkN7eK1aE07L+jY3R3+mhf76Z+pltqLQr2/4jpbEPZf/Uzw2mvuu9LtrOkKHHenvIPm66HtqG7+u/ExFBxvO47bXYdG61DR3S2Z7DImWY8jYUkY/t9LGuJOuOK6dU77XSpm+LvL9dsyb+d/IYNd3r6l3V9zXcxHRsm+6F9HDLdjK83bSczrW/+E61kko/k42cwnnKNlTa9Dtde7WU6lrdiIqFb5bl0ba9DQvnLMTn/utzOPmGk/H6E6+jpakFA3cbiKMvPRrD9h4WWb68shyTTp+EyWdPLlKNiYiIiIiIiIjIh9L477ISs3XDVlTXVqOqXxXWvbsOAFBZXYneNb3zLt+rqheGjhuKjz/4uJDVJCIiIiIiIqKiKt5bq5QePizLI9gRAAp44S8vYMGtCzD2M2OhytJ7fzSA6niFVQ+xM4U2SKtXRz/LUUdkGTkhM6ZXeiXDys0/swxvMoSWmEaPM722LtsyJzxUhn0atq2QI5n5GOWpmPR6VItX7auqwu3UR3Q0jdxq2z7G5WQn0Tur6CT6SIqy/j76gW2Ikb4uWS19RDu5Odu0kWIrUbg+LsOx+mshXT5GITOF+snl9NEjZd/Sw3/jQs+KOeqt3j1l2Ln1wFcJQjPk9sj+oxch2zGNEXdd+2Ahz336CG6S6drscg5z5Rrm7EqWqR9fcfQQVnlezGkf2ejLloXT48fbrczAGK6vXaR21O3S5fXFrmsnYjvipUna5+c00j2YyK5mGg1TMoU520qUrsJ62+zaTq+vDLeUbSBHIe+M7b+VJL0NXMooOHnCdAzDTGOkW6KejGGYBvufuj9m3jwTTR814dWHXy12dYiIiIiIiIiIKGV8WNaJqn5V2P2I3bHmTcMrTERERERERERE1COU6oumRde0pgkbVm5A7a61+Oj1j1C7a22xq0REREREREREJSMA0FbsSlAK+LAsRll5GR758SNQ5QoDhg3AwWcejLfnvY1nf/cstn68FQ/98CEMHjMY066aBgC47Su3YfuW7WhrbcM7/3wH066ahoGjBiZe76gR0XhxPQ9RnM2bo5/1IZfjyquoqOyY1nM2mci49lZR5qZN0eUGiiYw5R0yJXSS6xo6NFp/U84yayLuv0zLAbCjqrpjWs+1JXP3GLctZl1AtM13ljwCMr8VEN2Hu+4anWebW85IJsHQyljXHO7f7VrfHVKfvP195FNJktdItuUbb0SX/cQnwmO7f03X8+GZ8nuY8qvYys1ll78thw6Nfo7mLIvOk8eoj1xbvvLUxNHbUbaJdc4yPbmWacPFspXiHKy3vWxX42GYwlD23e3cl3r+Na1NTTnR4vL+6bn9JH0XVlbE5wSUXUtewvUuKKtcXWXYTv0ksHx5OP300+G0nrxRHhz6NVZM7xD3O0aGfqtvm7znqa+3Kz4Rp5NAYdnmIrPt4ymcRoxsj1lTTivb41C/B4+7duq3xL3zjy/WKducodb7yXCxrzQmWgs3SD+PyLY0nUckfZ4pJ2y3JxtIvwESXHMg+86drPez9nN+GWPZqJviw7IY1QOrceqvT418N/qQ0Rh9yOi8y5/2+9MKUS0iIiIiIiIiIkoRn/MSERERERERERFl8c2yPPoN6ZfzVlmh6K+vml4/l6+9jmmIL0cut7EpPozCFGJkmidDwUxvYfsIYdIjiuTnJOFrkYaVG7BiRWSx1sZxHdN6hIh87dsUhvn+qnDddXXRMJDKSJihZYhINxQNlYvui+3bu16+3DcbNkTLb2gY1TGtv7q/YVU4nSSswlaiPumwLtkHP/44Ok+2SX9DJJ5LHYFoe8nooCRhaHJ/6OG5H3wQTg+0jGj3ErKXIL7Dxz6U9BC1hoawfNnGevi5DE/XzyKRfty8JTozNkQ5Wop5tHpZvqHt0o6lEtIIlzWGDxrWbRQXy6y3lWXbuW63KaTaFLIpyXDNyiQhz/LAX7QoOk9ej2XfWrUqupy8EdBPJFLtILs6GUKX9S7+5pvhtAzdd+4H+gq0e5IOnkIyfZzDbLfVJdxRZ3saSXIs2G+rW5oFWRd998Ztq2k7Te2Tc46PxNDH32O6hoFHbjRk2LReSRE6XaaFEsadY0zbmSRU1zYU1VSGjxQbpvIKmW6g0GHOOxfmLOuJ+GYZERERERERERFRFh+WERERERERERERZe0UL18++J2/FrsKRnX9dyl2FYiIiIiIiIgokQAMw+yZdoqHZe/96eRiV8HonF8tTzVeXcbGuw6vbKqfYSRjI5ecUIUeDlnG8vft67YuPb+QNHxouIJC5iwoprq66GeZekXPC7StNcyx0arl+ojLIaTnY5Cf9d/ouf66Ku19qJdfLY7nqVOjLwrL3ChyuHqZWyjJ+mxzbCTJ1SP3jX4ekWmDZB9J/TgxJUqx5Cu/yYQJ+X/3+rL4fV1pOsmbkpWI6ST5cuTnqpr+sfPSvtmwPd8XM1dMDtucZQamY9T2WHTNWeMnV4+wdWt0YZHnKDKtX0Ri+rHOWF9j4rbwOqQfXnpVrNZlYsr753hucrkXcj1OXHNgSq73qbb1cOUjt5Nehuw/lt04Z15kW5vi+0+ZY+7D2HUB0RyBy5aF06Z+rOXbqxbz5LoNqQNz6pEoR2AXpdG3XOqv18NHbl3fudmIegKGYRIREREREREREWXxYRkREREREREREVHWThGGuTMqa90Wfoi8em3/fNT3a80l+wqvfNd77NjILFnnIfXRn8nQNpN9x5fGdpdK+JEeBlgpuqdeRxl1kvtWf7isfKt/UG1ptLfO1P4+jjV9f8r2kW0XN0x7vjJs57kyhVmkvR9j21wLJTTxEYrqUv6ejaZQp8rIZ7nvWxHdtrj2TxIGJY9RGZFjKjNJKHB3YwoPyukXVdVWZRSSvm9Mfdk19FXaVhX2yYrPHheZ5xQyqB2/cefZnLItY+D0YyPuWEwSzrRDhHmW6XGd8iCNCVfLV2ZcXVyvQ6a2K5V7O9vzro90Hq4hz3r/kWXa3lPmRtOLOmohjqmT/VXmDdBv2BoawmkPcbZp388mOo87lmkrLkI/ST3kuvV7wEKGsPZ8zFnWE/EIISIiIiIiIiIiyuLDMiIiIiIiIiIioiw+LCMiIiIiIiIiIspizrISEEBZxYybYugjOcqAaL4AkfMiST6S7i7tPBqyLW3zGRQzt4frkPG2ZaSx3TK1RXVVYftuXPmubWDi2j6ueVLSXJeJnmvFJXdVGrlKTLlofBw3haS3sbR1a/w8U/44yZDOKWeeaVnfbPdhoc/BLueLNM6lvnMk6lzLlH0k7X3jo+1MXPebsfyYk3ep5AkD7HPXSab7WdOyhT7Pxm2P/r0p35jtedD1fOmjL7jsQwDR/tnYmHhdvvgus5j38Xr5pjyztmU4719LtvkOe7YAKKHzMvmzs/RgIiIiIiIiIiKiTvFhGRERERERERERURbDMLsR46us+vvbMa/uuw43rrN9Ld73676+QrBsQ+zkq/W5w3WH03EhmYA+gnZ0nmm0+rRf9S7kq9FyXaYwMZewPJ0eDmFaX9w+BNIfilxK+xV5Vy59JEl4jW3oShrhv7bhNaZ12Yb3+TjWTH1EtuP69dHfDRyYfxqInpvihqfvTCFDLXW27Wo6/5i2O27bSilcsFTC11zXlXaIo61Cll+q53jbfegj5CpJe9u2XbFSMwDme0ApjTBVHwrZJ0s1tYGPvmW775O0d7HCkNNIeUHUHfFhGRERERERERGRk7ZiV4BSwDBMIiIiIiIiIiKiLL5Z1o0ZXxmuqEy1fBeur90Xkh4WJkOaNm+OLjt0aDhdaQgZ27QpLLOlJVqGHIGutjZJTUOu4R1xyyYJsbB9rVy2azQsNarSckQ+fX2y/Kam6HKm9cn2T7JumzoB9qOkxv0mX5ld5as8l3L0EME28Z9wev/3EQLnO7TKNZTWtc23NIdlRiLrtVjC5ubwfK+fY+Si1dgSmVfZLA6WVtHg2tCY2xB/PSnkaIYmtqEqehhmzMDRznyH3Op89H9zaHrXQyjT6AeFDEXSrxlVVV0PoYyG+3Z9xN0koYq2561ChjsmuVa61CV3H8b/xrZ8U8i2jzBb5xFTDVxG9U5Snst9pO39vq/zSBr91WW5QoZi+7iPLGbIM1EpYW8nIiIiIiIiIiLK4ptlRERERERERESJBWDOsp6Jb5YRERERERERERFl8c2yrFVrt+CCXzyL519djd69ytEwrB9+edEh2O+Mv2LsbrVo3taGftW98I1T9saZx+0JAJh9/1JccuM/sWt9XzRva8U5Mz6BC7+wLwDgHy98gAuufxYvLluH23/0aZzy6TGx6w6CMBdCXJ4ewBznr+cgMZVjyzYmvZB5anK3062Okc+iUJn7B4jm/4nkDIJ9Gw+pz59byxffw9rrTPltKi3bQLaV3m4yt4jePnI4dhNZx+3bo/PkftPXLT9vbIquW/7Oth5psM1zoedoWbUqnO7bN5weUu+rZiHbc4WeT0vWubw8fl5NTVh+knObS86NJLmA4spwzTml/2758nBa5tMaVRc9KPuLvlozInoOK2vdFn7YoCX0W7Mm/wq05F3mHFfx82y55j9xyZlVrZ3HqyviN26HyNXmmjPLR64tH7mM5Lr1c4Xch6ZznY+8i0nmxXHN2yb7sb6dZaveDz/UDrden22dTceJ71xGrm2cdq65NMSVn3tcu52oZPlJ8vmVirh979oPirU/O5N2v3Y5d6dyPDVtDD9oF+YdtYNif2f778Vi5h0lKlV8WAYgCALM+M4jOPO4PXH7j6cCABa9vgYfrt2K3XftjxduPhkA8NbKjTjpu49ix44AZx+/FwDg81PH4NeXHIa1Hzdjr1PvwClHjcHIITUYNaQGs38wBdfe+mLRtouIiIiIiIiIiJLpfv9NkoInFr6PXhVl+NpJ4zq+m7BnHUYOif7v+phd++MXF0zGDXcuySlj8IAqNI4YgA/WZEYbaxjeD/vuMRhlZSrdyhMRERERERFREbTnLOvuf0jHN8sALHlzPQ4cW2e17AF71eG1dzbkfP/uqiY0b2vDvo3xr8HGaWsDmrLRMbW10Xmm4cal9eujn+tTCLWykiAe1PZVb1P4iKRFDplDP5q3xJQRDWGSm6OXbx1+tCR8uFqpx3I2NsbWsVTYbqcp9MMUyiD3qd48la2GmZbkMaX3uS3NYV1kRBoADB0q6iHawNfr/r5fd9+wIfr5oYfCadHN8Jmp9mW6DJeut4+s14gR0d8tWxZOy5BDIBqy2dAQTsv9AriHN/kYCj7t8CZ5/pH9c9QI7VgQM8uatFBLeeKqi17nttTs0jEtw3brtPNs/xrL+qeRD0DwcszodZQnoJw47ej1wIVLiJ3el2zLsD0Hy7DmpHVxWc51nu1vbNs1EobZqnXy117rmKyuWRGdN3Fi7Lpd6mGMg/Vwz6Tz0cbO5PlInItc96GR3MHyhAZEz32O9xJph6j5CEO2bVcfZZgU817IxCWtgi/O2yn7tbyh0vp4meE8JYvQTz/RlCN2VUqSroKou+PDsoSCIPr5jsfewhMLP8DSdzfgfy49AlW92aRERERERERERN1Vab7KUmB7jxmIha+t6XxBAC+8vgafaKjt+Pz5qWPw8u2n4qlZJ+DiG+Zj1dr8bywREREREREREVHp48MyAEdNHI6W7W34n3te7fju+Vc+wjurNkWWW/7+Jnz7hvk479TxOWUcss8QzDx2D/zq9tx8ZkRERERERETUE+3oAX9Ix5hBAEop3P3zz+CC6+fhZ39ehKrKCjQMq8EvLzwUb67ciP1n/hXN29rQr7oXzjt1fMdImLrvfnE/HPDFu/D9sybgtXc2YMZ3HsX6TS2476l3cMX/LMTLt5/aaV30dCr6Z0mmtujXz2ZL3fMUWOcc8ZDjxUTPG7Z6dTidk+/K1Ltj8tTo7VNb6+F5sky45JiPJG0+ci8Z6y86cqXWqYcPrcq7XOZzfJExxUdyXQFAWeu28IOW2KtadJoRI/pH5lVWFC4/iY99r+c7lPnB9DxfLlzzmMhcW4Nqo78ZMSI+H6G+H1245ojyXb5reePH5x/uPae+dWHusTItL9m21nDZpg3Rn7nmI4xT5jlHmS/Ga1RN/DXLNmeolHYenCTl+ciXVopc8yFVy3uEVq2vinw/uPrq6Lzx4j9Iq6pj12Xd3nqCTHnzoh2/xqSeloz5Wx1yWslzCtDJeURec/UbOEkebPp9gNhuY/1Nud9MN9OC631wQa81el5KuZzWxq75DtPkIyea63nQVTHbboe4ZpXJmznLPg1EDwfH00i0Tt3gOkHkS2ne2RbB8Pq+uPMnuZmvt/7jy7G/OWv6XjhrevjgbHh9X6z6v5kAgEnjdsGK+0/3X1EiIiIiIiIiIkoNHw0TERERERERERFl8c2yEtCrIsgJT2pnO4xvVZX/555Ow1jrrwV7CMsxvf48pN6xDFmvmJBMACgzvK8c1z45r5jbhh7o5aQc0mrLR6hZ5DVyfaZoA32bTWFdsp1lE/ev2hZdUIa86OEv4pX2SsvwBVOYVaFfTY+EGCEax3hCzfzww3tbw+nxn40tL40h4/dsFB9WrIjMqxb7ft867VhrrA3rZQh9sg2TsWUaVl0Xtz5f4ZnRMMD45eT6XlwSrZOsv74tMnR3zAhx3Ggrk2FX5lN8fPvL5fT2cW2vuGM0ST+Qv9vYFP3dVnHY9OkTTuvtWCrRp7btmKS9bcO4XMPQvFxfXELN9GuN3KennBL9odjhMvWDrt7yfiSnA8nrkn4Ckp/F9WpHTTRtgCuXUN0kt3k7RozKW35Z08bogsuWxRcydmw4rV0LrOtvCme1PIBdQ/F8XEcj4ayLFkXnyR0iQ4YBYOjwxOvTt8VHOLfpHso31/J91Mv3/Yguco/cMMaqHjpTSgHX873pPriYKWYKKwDQVuxKUAr4ZhkREREREREREVEWH5YRERERERERERFllUjwwE4uCDpeo84JQyvia99Oo/UZ3s/3Xd/OrNuQP0wP0ELuTGGSgusr1cbfWYZa2oZjJVHI0ZtiR6xyrJNOtk+lXr4cPSjBsJAur9Pbjl6r83Js6OE7Dz0UTos+vuOzxzmV7+UY1cIwIyO/6fUXYSdlQ+NHQ5N81DHtkLokx9P69eG0DAOU4YEA0NYWlrlqVXSeHBXVONqyHGFNawR5vtRDOGQZ+i40DU4XJ0kIh8sxmqSP9OoVTpsG6zONnOt7FDUfIauufBx7PkJAfVyTcsqQ9yoTD4rMkvv75ZejP5OXlCH1ltumHwzy2FuyJDpv+/ZwetKkcLoxGobpeu2xJdvLeTQ9eYJYvjw67+mnw+nBg6Pz5IjihpD8CP2+Tla6wHHTXsLxZBimfh2VYbzaaKplPobCNrDdttTDVB3X3dV6dOV3cUzXF9d2NP17rruPFkqUNj4sIyIiIiIiIiJywpxlPREf9xIREREREREREWXxYRkREREREREREVEWwzBLTG7Kr67nyfIRh2+dR0bLBbGluSxulv+0EVrCnBUrwtwWMm8PAAyq9bxuIY1cCpKPvEBdWV/cunWVKZ9dZDvLdeltapvvrZj5rkz5ZqzbsbY2+vlnP8u7WFGH8Z482X7ZmI6XJDeGSx4lU3u7lu+as6OlJZzevDmc1tP9SHqKGvlZT+MT6a+tYqbe9pGDKJpnUZZhmf4xh4+8N87EtlVVxeeQNOWN2dYaXy9TPjOpqMelkCT3VSHr7HvfJ6m73O7Gxug8/d4iTuSeTD9Xy0JWr47Ok4nzREX0+puugU73cp5EypfnFZmnDYhev0aPjs6zTJIWaWPHk5FrPicfuQSNZcj20Tvh+PHh9NixbuULSbbFxzUwbl4x82Clfa03lZdzDyJOymWWN5ku7e1Loc8xRGnjwzIiIiIiIiIiosQCMGdZz8QwTCIiIiIiIiIioiy+WVYKWrYBq1YBACoN7/SbXp01hcpVVdkNNew8tLNcuRbDUV3jt4vpdZRv8vdv2hCZt698U93wGr8MoUl7RHG9/nI0cF1NTFRUknBWl1fH9d+YypfzfLym7uN1bT2MSI/2kGT9++tRG4bQM99c2hGItqUpPLe7hYIBsA69kVzD2J232zLG13VI90WLwnky8ka/TMjP1VX2oSvR6od9vLUqPtTSVRohQC6/yzn/iO2utNxP+jlFfta7bW1tuuc7E9twG8MlPPJZ3zZ5b2Eb6pckRCduXpIQI5c2Nv1mlGXYZSIyVvrww6PzFi1KXJxLmwLu12brUD95oOihqPKGR5/neG4tJC/3NaYYaNk++gVAzjNcN037yUfqFpO0Uxa4cL3Xcj2+nMkTtKfwYqmQbU7UHfEIISIiIiIiIiIiyuKbZURERERERERETpizrCfaKR6WHXbOg8WuglHv3gOKXQUiIiIiIiIiIsJO8rDs6RfeK3YVjM4544wwJl1PPCTyD5hizjdtikbU9umTf7lU4ullPglTzoUEZAy9KS3QggXh9MSJwyPz+lvm7lm/PvxebzeZHsB1SHETmbPM1HRyu/U28LFPjcNYY5vhl2Fl0sh7YJsnQi5nyq+0fHn0s9y/NY1arhtRkGVqqkRs8/GYtlvWK5v2sINMXTJ0qFs+Et95TJL0EXkq3LQpnO7XL7qczNGl52azXZ9z3005yeGQIeG07KsyxRHQlZx0+XPerVkTXaquLpw2pZJLO99Y2uc6E9k+es4y2SZ6uiWX9aVxLjXVo1rU3zXfWDFz+tjmXi0m6/ywek6iyZPD6bSTqsp6JMhpZdyncUnv9HtdeeAk2M7YeuUmsLQqw8S1n1lfh0T+xJw2lSdl/QRdke59mInve4SC56z0XA9biXIrOuQpS+PfK6bymBONejL2YCIiIiIiIiIioqyd4s0yIiIiIiIiIiK/AqBERuclv/iwrBRUVwONjQDch5/WwwflG+jREDJPLxPKQmUsoeOwxvp2r14dTq9dG05nm6nDlClOq4uorw+n9ciAVNpOkOFN+pv18rNczjUSw/r181Yt7FLGHOkrN+zvuLBSU3REpWHbTK99m46NQbViekJ03rbWsEzZ59pLbderV/itHmaVRohmHL0N5Lr10DC5PbLO1YYwOl3aoQiSPI0A0f4vw63Hj48ut6/2WSrF4ep1pjqOHBlO254DklxD5PlOb39bvvtIovCUmN+l0W9l++jXCblvkoSjxC2bJITGKTRM3wCpqtpqXb647DfXUHIfZfoIRU20bsuLStoh86Z7Iev6y/sFPZ5bLqdfZA1tELtuD2GXpvJ99UHr+4doXoXoPL29BB/pHmylfQ6W0g7XTMLHdrv+28+FKeWLe0oHu3lE3RHDMImIiIiIiIiIiLL4sIyIiIiIiIiIiCiLYZhERERERERERIkFANqKXQlKAR+WlZhVq6Kfy8vD6fr6+BcB9dRRMn/R+vXh9MCB0eVkfLoxh4Ee5C4TuCxaFE7LYc4T0GPcP/44rMv8+fG/kznMbGPt9fXJ7dbTaJjqKH9nm7NAn9df7Leammj7m1KFubAeCt6Ul8xQET1nluwyplHhbfMb5OY6y388JMmXIOuyeXP8+mQTmHKupTF0um2+E/0cIOeZ+rVt3/WRU8O0bdu3R5eV7WrKrbWxKSyjf+u66ExD3/WRp8wpV4mpA2mGD02ej0pPRxXZ99q6+9eE65bnH72Kphwnvrnm/Eo7T0pcmk4gmrOsUjsOZZ1N5zAfOWCs20A/IYiKpZ0LyNSPfeQDsz1/ppH3zPQb277qI5eUaxmm5VpFfk/9lGW8NsgcqPKH+sEg+6TjDY+Pc7r1fVIXytTnJqbnKBNt5yNnlrd8e76ZLkRpJ4w16A45umQd08i/TNST8YghIiIiIiIiIiLK4sMyIiIiIiIiIiKiLIZhlhgZzgEAa9bEL2t69bd/Vfi6clNTZcf0ihXR5RoaDK9ey7g6PcZOxosuXx5OT5wYW6ccskwtLGTPxvzhQTIs1ZdSeYVar4celhnHNjzONvwlpz0sX28v4lvwzuS2ymNBZz28e8pMUQhjGuzCj3yEqvgi239IfXTeDhF2fuyx4fd6CJw8p42rsw9xjDvu02ifSJkVlZF5kTAlnUNnM4VQVqZwLKc95H2p9FcZ0auHum7dGk6bQlxM7eqjHZ2vBVqf7Go9fCnkvi/mulz2r94HN20Kp+v1c6mHUEJ9fZLpulRTE/atyLoNocB6TgEf9Zdcw2CN9ZD1NzWWtt225+ScPAsOTPX33f+9XBf0jqX/O0TSQ1NT5LptpXIts7WzbKdfzFnWE+3MPZqIiIiIiIiIiCiCD8uIiIiIiIiIiIiyumHgVM+mj+g4fKjlDw2xN83N4WvwMmISiL65XFurvX4uXxfXX5mXr45PmBBbLdNIYJWmIQbF5+FDw3X5GCnKF5cwLmN9tVf3y0Qb7xBhMgne8DeKC50whREleXU/bpRI/Te2oz3KUV0BoKUlnB4qjpPKlM9qevvL7dTbznf/NA1UqrMNwXVl2/99jCAmz4P6eUoOxvsKdonMaxDtox8bcfVKI7zAdxivqY56nzCOaiwqY+ovtnVOYyRClxC1NK4Lg2rDMvUQeXlu0lMdSAMGRD/r4XJdVczroe11L+1RKE28jyoK+zraLmc6huS1Rx85ffXqcLpfv+g8ee5zPT/LMmTIJxC9FvfuHZ0Xe43STypFDKMz9U+nPphgxGOXfuF7JOc0eDkX6e1muMH1Maq3iY+RlwsZuujax13PZ4Ucmbp0BWAYZs/EN8uIiIiIiIiIiIiy+LCMiIiIiIiIiIgoiw/LiIiIiIiIiIiIspizrIfYoQ39XiaGWK6rq+6Y1vMtbdgQX+agKkOinbo6q3rJ9enrqqoKn9UOqtXKlwuLpBdlCRL+eBm62rF8J4Z8DLK+st2SyN3mrtdf7l89j4nMm+KaT0KWv3RpdFnZRQ4+OJwekiQPkFhBmdb+pnx7Tgx5+SLThkRk+vFbXdX1fuyaCyXtHFFx9G1esyash56TUWps1L8Jf2c6rZQ1b8nzi6yYY1ZvR2POMlMSwpi+kChfiEPCNNe8PYm22wPfuXts+7GeW3TgwLCMXr2iy5qusZJtbrlS4iMnnYntucl3viIf9w5JdqFt/eXpZujQ+Hn6aUncDhrzXJrIMk3n2TVrop/lfYC8d3HNW2i7D9M4hIx1litIkH/N97XTJcdjErY573zkBstheY9sIvuFfuk15fx1yYWbJD+gqY9vaw0/69eeNJnue0v0klQCmLOsJ+KbZURERERERERERFl8WEZERERERERERJTFFyl7iJzXe8Vr4P3FvKFDo89H33gjnNZfrZ88OQzfrMa26My40KGcd9/7d0yWl0dnRUMDovWqdBhG3DUEyHVId9vlTMMyu7yCbyrfRwhKkhAsU+iHy+v5+m9kv9hrr+iysr+2iTefE7WxqLTtdiYRKVMPlZbH0JIl4fTkyW4rMyjkUOeu/dOVDK9ctCg6Tx7369dH57W0hNMyqjxnX69YEU7rMXVy5eKcJc9tQDT0KacNXOOiBBmmoZ/rXP5HzHuIOfTzsdt5MI16mcJfXMIyB9VG523fHpYp+1xO+bJvadfRHXW7WNUpjeuLqfy43/moh0mSfmAbwucajh73Oz1cyve69Vsw/f5K8hECGp0XraO8XdPr4RKulcZxLrmGqqd9LUt7u33fK5qWTdI+cWWkEsop6Ls67dBCY/uLPtiK6L2ivAVpaOh6H7Q9P+uhp8VKvUFUbHxYRkRERERERESUWADwIWKPxDBMIiIiIiIiIiKiLD4sIyIiIiIiIiIiymIYZgkIoFIfgr3doNpoecOGhevV0/FE4vf1JDwySYVMHqUVUt3QEH7oNygyTw4pnsaw3s3N4bbZpgXy0d6mPAu5QzGbcg0lz7WShG2bm+phGlo67lm8aTuTkP1H5m/Rc+/JHA/FpOeYqZbJseRxopHtU+0jd5qjtPOpuBo3NmyfNWuidZTHvewvADBwYP7ycvbT0KHhBz2XYkwyu/41Xc/7ZKqXvlqZj03fzqqqMP+Ja95FE9P22J5jTLlQXHItuubMSiPfXq9e4XSbaVR5eTLVOmEa+y1NvurhOx+Sj3xsrnznRNPv5WzLzEkr63CMylSNOtv7GF957eLKT5KntsywsI/6+8iLW6rXXx9cj404pn0jd3XaOcoSEZVxrVYx+xnzmVFPVkqnCiIiIiIiIiKibsT0P2LUXfXc/6ogIiIiIiIiIiJKiG+WlQCFoGivrY4asUNMxy+3ozYaQrl6dTi9GWM6poeOjf6uetVb4fRQLXYoJoQJQDSc0/G96f41onzX2APBx+vhq1bFV6OuTp/n4bXmyJDo0eGoTWFdcfRo3DVr4pfVw9na6RGHtqGFeniZDG+aOzf/NAD87GfxdZJheqYu4SOERt/OHXJ48KHDrcu0WVcabF/d15crZOjTEYdFf7OtNSx/wYLosnGh2fr3Q4f275iuqO0fmSf7TKS+hvONawiZPNb0c0WfPuG03sdlHfWh4CMLl2x8Sjyn41LfN/Kkpm13pEQ5z/aEiWi4nF5H2T8rZZmm9td3sKy/Xq+YTu4j1FXneizbhu8UM7THdtvSqGPcupNch2SX37QpOq++PnmZMuwbiF6L9Uj1uHrYXm87q5dLmG2S8l32qes9gg8+wltdw9F93CMX8j7GlFZE75+phxmK83qZls6mrs7u/tD6elgi/x4i6i7Y24mIiIiIiIiIiLK6x38fExERERERERGVlADMWdYz8c0yIiIiIiIiIiKiLL5Z1o2lPdS5pOeqmj07nJb5co49Nrrcnq497J57wukRIpnaWC0p2tCh4bQehy9pMfmFjLeX1dJTyFQZ0qpJkVxD+oKmRAsi0VGZluiouTnMmWWbgqd/TbRf1dTEt6PMa9fSYle+iamOy5eH0/PnR+c9/XQ4reeMmzo1nJZdycQ1n4qJj1wurn067WHb49aVpBzX81llRfi71tZovWRakA8+CKf1nHqSni5q8OBwur5e1FdP5mfqvCLJj952tinFZPGmnGU5bPOUycbStqVMfE7jvGq77039ONKX9AaSn/Vz60svhdMyaeJhh1nVqTNy1U2tYT68QTXbogvKepkSR+oJo2IuPju0/JWu4vZ3kpxHaedssmXqPz7q6OM6ISXJHSWv26Zrti2Z56yzuki2qZHSaH9T+bbr8pGvy3ZbktTRR99yPW6KlbsqjT7imrfW9f4tlnaNqhH3pi7Xw87Kj03g6oj5zKinYY8mIiIiIiIiIiLK4ptlRERERERERESJMWdZT8WHZaVGfz3WEOJi++qvD3oUkXwNX4bb5bzNO7QhnNa3TdKGSsaECeG0DMPUw0xsw4hSEPea85bm6H6S1RpUG/9q9LbW+N9F6O1oivOMWw4A0PVQHFmkKYy0d+9w2jQkt6vGxnBaj5CSoZd6N5OfbcMwda6v/8vtdg1P8c11yHjfoZxp0PuFPG8tWxZOt2n3Ok6nFS3kGXpYpiV5TJWX2/3GFPGZE7oiNs4c9lP6rPud3kCmBvMcnqKT+1ee1rfVRM/NMpw45xooP+udNeYmwXdYmy7JOcB3iGYa2+YjJNz2d7b3Aa5heoZbzFTYhuq6lpd2iKaP8kulH/tQyOu7a7isa0isPPZyj5Nwnn6vG5cuQb98GLdH/jDtg9Lypsb0TzbTeUQvvsD/NCPyrjvcAxMRERERERERERUEH5YRERERERERERFl7VQvR5aXl2Offfbp+HzPPfegQRv6bP78+Tj//PPR0tKClpYWfP7zn8duu+2GX/3qVwCAV155BXvttRfKy8tx7LHH4mc/+xmuv/56XHrppfjwww8xYMAAAMDcuXPxuc99DmPGjMHWrVsxffp0nHnmmZg5cyYA4N1338WAAQMwYMAArJHxQAlev5Wvtqb9yrb+Gu2//3s4bYwClHFu+kzTD2VoiZzn+D5vIUcE0neh7b6pbN0S/UK+6m16x9k0Ly7OB0BVVXXeeiRpA9Nr2lKvXuG0r1ey5WZPnBhOy6hdfTk9Gk6OZqi/Wp/2q+O+QxdtR8hKcq7wcV6R7Vpp6J463+2vb8sQEUo+dWp8+IX8rB/beshmB9s4DURDP/Rt3ro1nJaDMfpqG+t+Zwh39x2W4xoGZX08GRovZ92GkUrj1m2iD2Qpu4UpmjISBphk58cs62vE2rhlXUfnS2OE7+4QBmgbkm/bx03z9FQEMv2AaWBYU0RyIUc7db3OFXPUVR9hvCY+QhJdy/e9XrkuX9vlUn957QWi9476sSHvC5wj9+WBr4faW/J9/tTvl2U6lY8/jl82bkTx7dsTV6EbYs6ynmineljWp08fLFq0yLjMmWeeiTvvvBP77bcf2trasHTpUowbNw5nn302AKChoQFPPPEE6kROmjlz5mDSpEm4++67cdZZZ3V8f/jhh+P+++/H1q1bsf/++2PGjBkd6z/rrLMwffp0nHLKKTjnq1/1valEREREREREROSAYZiajz76CMOGDQOQeRNt3LhxxuXffPNNNDU14eqrr8acOXPyLtOnTx9MmDABK1eu9F5fIiIiIiIiIiLyZ6d6WLZ161ZMmDABEyZMwIwZM/Iuc+GFF2KvvfbCjBkzMGvWLDR3Emc2Z84cfOELX8Dhhx+OpUuX4qOPPspZZv369XjjjTdwxBFHeNkOIiIiIiIiIiJKB8MwNZdffjlOP/10PPLII7jtttswZ84czJ07N3b522+/HXfffTfKyspw0kkn4S9/+Qu+8Y1vAACeeuop7Lvvvli6dCm+973vYahMDmEp7WGaXYdYrrZMrbatZlDHtB7nX12xLf6Hsq1EQoBCDlsN+MmZYJ1HwDTesmw8w3KmnDt6wqXWmPwk+vNhOW9QbbQ9amrih9MuJNldTIdZkqGwZe4JU84R2/3rezlXaefc0Zly8FRW2B1faed80fPcSbbngMhyenIz+TlBPhKZ60/mGhJZAADYt6MzQyKWtPPluBw3puO8qsot15CpTNvroZ4Hx5QPL02u+8wlf1yS8tOQds4s32W65iIz0XPlxYm75UjCx/UljTa2vYakcX3sDrrDdrr+e8WlDBPTvaLreTzSPz1cDIz7Uys/rk1kjjIAWL48nJY5VIHoffeqVdF5u+4aX5WeJQBzlvVMO9WbZfmcffbZmDBhAqZNm9bx3e67746vf/3rePzxx7F48WKsXbs2729ffPFFvPHGGzj66KPR0NCA22+/PRKKefjhh+PFF1/ESy+9hN/85jedPqgjIiIiIiIiIqLi2ukflv3xj3/EokWL8OCDDwIAHnjgAQRBAAB44403UF5ejtqYNwHmzJmDK6+8EsuXL8fy5cvx/vvvY+XKlXjnnXciy+2555649NJL8fOf/zzVbSEiIiIiIiIioq7ZqcIwbdx888248MILUV1djYqKCtx6660oLy/Pu+ztt9+O//u//4t8N2PGDNx+++04+OCDI99/7Wtfw7XXXou3334bo0ePjswLoGJfg5Wv+5qi9Gzp6zFF9/mwZEk4rb+aO3ZsZce0HgZVWdX1yti+Vu4a4mUbOiHpoQ0VFXLdhoUNO8q4bvF+uL5c3JveeqiQtK01vv/YluM8tLYjWcdNm6Lz5Euj+rbIUDf5inkaYURplJl2/4/7nTGMRY9fMIRYy9ChuJDYzvgIGzOJ1lG0R+u2+AW1/3yR50U9vFIOte4aFiW3TT9+5amkmOFlvsNm0riWyfOla33ffDP6We77MQ2FC110LS+NEDXbexAfodi24fSlGqbnejzJc5OJbP8k1+nuEMLnO9VBqW5z2mkcbLneS6QRum9bF3kuammJzpPHhv7+hDxWXK89pjq67Lck/SDu2NBDLevrw+kVK6Lz5K1dY2N0XntbZt9DIep2dqqHZU0WiRtuv/124/zlImj77bffzpn/i1/8omN6ypQpHdN9+vSJjIY5e/bsTutCRERERERERKWsNB+iU9fs9GGYRERERERERERE7fiwjIiIiIiIiIiIKGunCsMsVQpBR8y4HmdeXeU3j4keZy6HAp48OTqvsqLrr5PK2H6Zf0enR8jW1nY9P0kpMuYzMM00zHNtH5mfQfYLvY/07RtfRp8+8fPaHEZQTmPIb9l0eg4GWUc9p96GDeG0zCWl74q08/4Z969cuWk8c8vyTbk+XPOARHMBaSKNVxmZZduWcbnNCkGuL5IbDNFtqZRJ77QN0/M1SrJ5TMeTbb4l25xQOt85olyP5TSuBaa8oPIaaKqzaZ48j+iHqOwWcmfv0I4F2Q8q9X3ocALysT9d6euW21PMfJClmqsqbn2mnGumbY7LVVpKklxr4uaZyjC13c7KR05AH1zuK1yX1ddVLY6NESPi8/MaUq+mcg/oY9+4XH/1HL/yHjly7UK0ffR/M7TfuyhltVqiksOHZUREREREREREiQUAHN4SoJLH/04hIiIiIiIiIiLK4ptlJSbJK7YuIWv6kMcNDeF0Gq8Pj2kI6yhDK4FoCOhrr0V/J4cebmgIf6fX0fbV4iSv5NuKezV6W2t0XbLOMiQHiL6+XW0ZHuFr6Hr52rQMJzMNiz1wYHSeDIHTX00vLw+ne/WKr4dtP3Z9PV/WUW9/SYZaAtHwOFM/s42Csg39MG3nlubob5qbw3Ctqqpo6JbsTmmEVTiFrugxQKLx9DBY/TX/dqtXRz8//HA4fcop+urSDS2JK3PNmujn5ub+HdN6P5PL6seeZAr18LFttv3YRzhuknkuZcpt0a1fH/388cfhtL5vBtUmr5N+HpTkdQ3Q2ll8MIUq5myc5Y5zDrM1hEr7lkZ4nO/j3sf119c13IXtNUq/1sjzT1nzFsTO9CBJe/juI77Ddgst7XrZpmoomXsO+LlGma4pvv/tVMxwdHn9ammxL1/+O0G/36+vz/89UXfBN8uIiIiIiIiIiIiy+GYZEREREREREZET5izrifhmGRERERERERERURbfLCtx1nlGtID65SvC3CIy95KMKweA/jWFy7ug5+PZdddwWo/5lykwZM4pvf4VFW75JXzkwor7XWVF/LoMKZtSH75cr29NTZmYRt5pnWk/mZZ1zengkvdC/43MW9W7d3RZmZNBn1fWui38IDphmbbRFRXVsXXxkf9ElqEP5b15czgt8w/6YjpO4uaZcrpVQkv8ITpGXI4yIJqnrE37jzuZB0rPSWcqM02m43zr1ug8ud9MbWzKhWVLnksBYMWKcFrWUe9L8lyR01dlxfQDPSbHVdp5dZKkUOrXL5yuroqvl21eI33d8rN+DYycY+S1wJAbrCynje1OruacO4bzVMp5ykxKJS+US74917oX+neR+osTRLV2IxBZ7vbbo4VMmRJOGy5EaeS0iitH3y+uOfvijntf92ul0sd91MNHbjAf5VvTTopl8rN2Ipc5hX3krU2SH03mNR1uuKdxyb2nk5st/+2Y77NNPYAwj3MQOFWJqOj4ZhkREREREREREVEWH5YRERERERERESUWIJOzrLv/SZ9S6otKqReUUluVUh8qpX6vlKpPWMbBSqnHlFKblFIblVIPKaUm5FluslLq/ymllmWX3aSUWqKUukIpNcBmXQzDLDH6q7MywsUYWrJoUeTjqtaDOqbla8G2r9GmQX81d0if8JX/IY3xoSVbWsMwEBk2BETDWvQQF9tX/r0MFS7jm/QdJcJY9FkybEwPs5L7zfSad6WHo9gU4iXX/dpr8b+TYbVAdFtlGfor5j7qb9qHsr3qk5yKZT1FITuqomGXzaZdb/lKfrTA6M4oE5+H9IuuYEd9WBdTCF8a4uqvfx/dv9EGkXXU+4Xtfhtety1+Zsw+TNug2h3a53B6Y5P9ftGPt3Z6pFO1ZdihHnZfWxvWZdWq8Ht9XxjPfYaLVE7IoGdxYSem+prayvaY0cN95Wf9OiQ/59TLc/vYngdLJfQL8HOdtv1d2mFiaYtsS9PG6Ex57OkXdDlP63ORNhGhl3obyFucZRO+FJk3oSGmPE3a/c61j5iW830fSbm89AtznHn+5fS8BPIiaIinL6ur04oP7/FdQjI7Y9o0H3yEb0a2R2vXymxDqKB0rjtUPEqpCwH8AsCTAM4HMALARQAOUUodFATBZtPvs2VMBjAXwEoAl2e//iaAp5RShwZB8JJYfE8A1QBuBfA+Mi+KTQLwnwBOya5TS5ASxYdlRERERERERETknVKqDsDVAJ4H8OkgCNqy3z8P4G/IPDz7iUVRNwDYBuCIIAhWZsu4E8CrAK4D8Jn2BYMg+DOAP2u//41S6lUA1wA4HsCdppXxv0KIiIiIiIiIiCgNJyLzlteN7Q/KACAIgvsAvAXgjM4KUEo1IvNm2F/aH5Rly1gJ4C8ApiqlbIb3eif798DOFuSbZSVGfyvYFHoZeT187NjIvEOXvxh+GDHeR9Vi1y0lebV4R03/8HfNW2KXkyOUybAhIPqasynywPRqsfydPtrgQHEI6eGCkfY3DCFpapMmEZK1fXv8uuW2pDGKlGmkH0kPL1u3IVxWD02S+vQJp02vpid5Bdx3SIdxlD+xca1V/SOL9a8SYYCGjbMdnUsfbVPufFNoTH/DKKa2vIyo5li+3nSxIXatWtil3E+G47CYYTJyW/QqmtrEFFklubb/8KH5z636vjCGN+lxhxZsRxZOIu0QO/3aLI1pKI3wrFIKr5RMoWw+6ux7dOtCh7Tbhg+aQp2MN0MOQ1PrbdB/1bKO6QMa9X+HeLj4CGmEU9quL43+6VIPXdqhxmm0a1fL8HadkMeDKSeIvDgvXx6dJ0Mv9Yt4TRiGaRtZb9q2yorodo4S6XNKJdzXuC/i4kZ3iuEwS/MaXEImZf+el2fefABfUErVBEFguOPqtIwvATgQwANyhlKqGpkHddXZ+T9H5u20xzqrdGkcdUREREREREREVAx1SqkF4s9XPZY9PPv3yjzzVgJQYhnXMgBg1zzzfghgNTJvlN0FYDOA44MgeLOT9fHNMiIiIiIiIiKindiaIAgmmhZQStUCuCBBmTcEQbAOmbe6AKAlzzLtr4BW55knuZYxC8BDAGoBHAJgCoC6PMvl4MMyIiIiIiIiIqLEAgBtnS7VQ9QCuCLB8rcAWAegPedSbwD6CJTtiUfi8zJF5/fOMy+2jCAI3gDwRvbj/1NKHQPgIaVUEATBHNMK+bCsxPSvccuVIfN/AUDZ+OR5ypLEwtsOj2wSiXk3JWcT9JxZPnIlyXxd1Vo1ZPlp5AoYNSL5kM1ehnY2MA1Tredtk+mKbPeNaz6YNIakN+3fSB46MZ3b3d0OgLh21ts4Uic9j4whVUyxcgG5ss5jIoZpBxDJF2Ki59RzSLVlzItoK0k7NjTYLSfTF+nn42i6ovg8KdUV8bn3TMeojz6S9jnNB3k6cD2HpZGrzcjHhboEFbqfmdYdV2aS/FO2x1ekjKFDY5fLyXtpydg+jXuG5S97PTpvhEiq5LhuH4qZs882p1iSeYXkI09cmuXpZeaUYcoXK+4ZIr/Tc4/JC6mWBzpSvva7uPyqOfVwnBeXt1D/jbw/kbmeO1uXSx80Xsvibq7KyxOvh0pTEATLkQmZTOr97N+7AlimzdsVmSeO78NMlqFr/y5fiGZEEAQPK6U+BHAuAOPDstI4SxMRERERERERUU/zfPbvQ/LMOxjA0k6S+3dWxmRkHrgttKxPFYBBnS3Eh2VERERERERERJSGe5EJv/ymUqrjVUOl1PEAdgdwq1xYKVWnlBqrlBrQ/l0QBMsALABwqlJquFh2OIBTAfw9CIJV4nt9+Ob2788EMACZETSNes57+T1EktdhTa/j2obASabwO1NoTxqvvvt+NT2N8Iu061GsCBp92OrosNvawlVhDkXTK+FyW0yhgyZp7EOXYygJU9iADIkrpbCiuHmm1+5dh4L3wfY4WbEi+llGC8ky9MiMSKhigSOMZFSIrK++nXqdpUKGJrmEknT2O9v12W5nkvbwEWLnwtv5IC78qMB8t0kxr+c+0gaYlnXdNnm9rarqerivHnIuzzmV+glHxribTk5FDNF0ZXuO8X1tK3T/sd0223N36udB/R8sPm6SPfTVtPdF9ECP5jBPEnrZVcW8npSunSpnmZMgCFYrpX4A4FoAjyml5iATOnkxgNcA/FL7yTeRyY12NoDZ4vvzATwB4Cml1I3Z785D5iWwi7UyHlRKrQUwD8C7yDwg+ySAzwFYAeDKzurNh2VERERERERERJSKIAiuyz68uhDADQA2ArgTwPcsQjDby3hWKTUFwNXZPwGAZwGcGgTBYm3x3wM4GcBXkBn9cjuANwFcA+DaIAjWdrY+PiwjIiIiIiIiIqLUBEEwG9E3xeKWuxIxb34FQTAPwKctyrgJwE1J6qdjzjIiIiIiIiIiIqIsvllWYvQwfPlZD6GXMehNhhcXTflsTFzykhmHE05g9epwuk2EgNfVRZfLya8VUxdTPTY2hcvpbWxKg+AjV4NMP7B8eXSe3PdyZHZ9VOZSyUWjt0dcygdffcSWXJ+PdbvmEkmbTBsDxI903h1zTcht0/uV/GzatvHj7fJMmXLXpZ23MDevXf7psg3roj8UO3iHyFOlr8+Ub6YV4e9MNwZp5O3xkefF937SyWvShx9G58lz8qgR0Xk5yZ+kIuVwSnIe9NGuPnK8pZL/x0P5PtZlm//RdC1zFVeO3jUj96ZDtXzJ8gRtSnbmUI8kv4u0nSGnVZL+n0YuRCspnDd8nLt93EMZy5D7Td+Hsk30Gx55k6P1uTL9ptmGhxxoru1tPF+Kfe8r92fsurrhvWLxMWdZT8Q3y4iIiIiIiIiIiLL4sIyIiIiIiIiIiCiLYZglIIDqeH1Wf+t41apwuqEhvgzXUEv52q4ppDGnYpLhdWXXEI6BA8Np+eZ1zqpkvSzrodfFtu1cQ0lMbVAt3qbXh3uX2719ezit74pKy6PYORTG8ZV/WX9TOLGsf5I6pv3K+bZWEaIm6l+doDl819HENtLANYwi9aHgNbKeg2rjw/R81L+QISiuYdry9Faph6CIOPzmulGRWZHfaecKWZeKisKFoZVq+Sa9eoXTQ4ZE59XXG37oIZzHB9uwH72NjaFtMv+DnKddVGXokI8w50L3Ax9hwnHl+WJ9mdb2YZkhPDHuZ/q5IhLmZgqdc71RFUzn4Ehf0nOTiHWXOd4rFpS+Q9esCaf1NpbbZrhPsr2/Svu+JadN5fVM5iPRb2rkZ9N5tUjh7WnpDucfop6sNO7iiIiIiIiIiIi6lQDMWdYzMQyTiIiIiIiIiIgoiw/LiIiIiIiIiIiIshiGWQJ27AjTOlRXRWPJxzQYfudhOHbfseu+8krJ/GmVpjQXMr+BlqegbMQIq3WtXh1O9+kTnechxUaEqT30nHTdIa+AaXvi0kaYcoPpTHn0ZDnrNoRl6OmcTLn+JH1bZEqMCkNeNdth59PIA+IjD5fpN777YJJzlnXbydw0hgO2VPK1JBG7OXo+HnGu09PZ2KbMMrVBIfuBj9/5qq8sp7bW8XrrOWeZa9s5nytkrqQVK6LzZD4qU26qsWPFvP6GWsaz3ae2fTdJH3fNvVqSDP3RdA6Q13O5qzPzRPvo5TvcRHm5rtkm8UywblM9XH9nXYZsdP38L3eO1v4u17Y0+njkGFr+VnTmokXhtOwvel+SN3d6J5Q3eiWSJ9LERx83/XurmOepksn7R+RJ6Z9RiIiIiIiIiIhKEh8M9kSl81/oRERERERERERERdZt3iyrrKyEUirx7wYPHoxzzjknhRr58/bby3DhhaVdx+5g2SvPoXG3IcWuhtFzy97FkN1GeS2z6cMm7L3X3t7Ke27Jcxgywm87mupYzP3msj98tzfgp83TqJcPafQnF8Y++NxzaBzSeR2XNTWhce/8ZfjezqZ338Xeu/s9V1DUshVNaCyRY2bhwoU48MADi12NktQdru1pS3KtKpV7glK97vvm4zySpI1L8VqfRh8pJOf6d/PrdCGvgQsXLlxYkBUReaaCICh2HaxMnDgxWLBgQbGrkYpzzjkHs2bNKnY1ur3D9h+Jp2dNK3Y1jEae+VdMu+Zkr2UuuHoBFv7T3zVo5PiRmPZTv+1oqmMx95vL/vDd3oCfNk+jXj6k0Z9cGPvgyJF4elrndTxswQI8HXO/53s7F1z6Vyz8g99zBUUddv4CPD2vNI6ZcePG4ZVXXil2NUpSd7i2py3JtapU7glK9brvm4/zSJI2LsVrfRp9pJCc69/Nr9OFvAYqpRYGQTCxICsrAqV2CYBTil0ND37To/eTi27zZhkRERERERERUekIALQVuxKUAuYsIyIiIiIiIiIiyuLDMiIiIiIiIiIioiw+LCMiIiIiIiIiIspizrKdyNy5c3HmmWdi9OjRAIB7770XAwYMAABce+21+Otf/4ry8nJMnToVAwcOxN13343ly5djwIABGDhwIK666iqUlZXh+OOPx0cffYTKykosX74cBx98MMaNG4e2tjbceOONOP/88wEAL7zwAvbff3+MHj0af/zjH4u23fk8/vxK/PB//4UgCDB4QBVa23Zg9fpm1FT3Qv++vXDNNw9G48gBuPJ/FuDuuctR26839hjZH7//zyMBAJ/79sN48oUP8P9+OhVTDxrhXI8gCPDozx7FlrVbMGDXATjyvCPxt0v/hnXvrMPJvzwZA4Zn9s/DVz+MD17+AFO/OxUjJrivL606btuyDY/85BHsaN2ByupKHPXto1BZXem8zq7sn02bt+HE7zyC7a070L9vJeb86Cj065tblyAIsHbFJtzz7XuMbf+37/0NSimocoVPf/vTztvUGb2dD/zCgZj7y7kAgL51ffGpCz+FsvKyovaFNNlsf2tLq9d+lhbb4xoA1ry5BnddeBe+cvdXUFZemv9/1dXz5RHnZI6hinKFOT/6NHYZ1KfIW2RmulbutddeGDZsGIBMUv6bbroJDQ0N+MEPfoAvf/nLmDt3Lh577DFcffXVGDBgAA488EAEQYBPfvKTuOKKK9CrV6+ib8POdr03KZV7ARPba1X7tWHUCL+j8wVBgEd++kjie4A0FeIeoVCCIMDad9d27N/Orv2+968Peh+xvX6XCps+Dvi7HyzVa2qa176dA3OW9USleWdOqZk5cybmzp2LuXPndpwAN27ciPvvvx/z5s3D008/jfPPPx/nn38+5s6di7POOgvXXXcd5s6diyOPPBJ33XUXTjnlFDz++OMdZR599NF44okn8JOf/AQ333xzR/n77LMP5s6dW3I3zms2NOOH//sv3H/dMfjHrBPw828ehG3bd+CWqz6Fx359HH50zkR86eon0T5S7HXnT8aTvz0eALDkzXUAgN9+73Bc8O/ju1yXdcvXobK6EideeyKaNzWjeWMzPvP9z2DMoWMiyx1+7uEYf3zX15dWHcsqynDURUfhhJ+dgN0O3g2v//115/V1df/0qijDLVcdhX/MOgGfO2I3zH4gf11eWrYOqlx12vbTr56O4396PPb81J5d2q7O6O1cUVmBYy47Bif87AT0G9IP7y18D0Bx+0KabLbfZz9Lk+1xDQAvP/Ay6navK0It7fg4Xz7+39Px5G+Pxxen7Yk/xRyPpSbftRIA6uvrO76/6aabOr675ZZbcsrYZ5998Pe//x1PPPEEevXqhf/+7/8uWP0BXu87U0r3Aia216q0rg3bW7YX9B6gM4W6RyiUl156KbJ/u+O1X+8j3e36bdPHAT/3g6V+Te0J1z4in/iwjFBeXo5Vq1Zh8eLFAICBAwfGLvv666/jiiuuwD333JMzb8OGDSnV0K8HnnkXMz+7R8f/JO45qhbD6qo75u89ZhBGD++Hd1c1RX73cdO2jmm5fFe0bG5B38F90bqtFc0bmtG7X29UD8wtu3qQn/W5sKljRWVFRx3LysugypTz+rq6f6p6V3QsX1FehvKYuqzf1ILyirJO276sInOabN3WioGj4o+NrsrXzr1remfqINq0mH0hTTbb77OfxdajrQ0nP/IIDrr7btz08sv48pNPJi/D8rhe9+469K3ri159CvO2kQsf58te2WNoa0sr9h6T3jFULL1798YnP/lJPProo7HLXHrppXjwwQcLWKv8drbrvUkp3QuY2F6r0ro2BG1BQe8BOlOoe4RCWb9+Pcoryrv1tT9fHynG9duVTR8H/NwP9qRrane69hG54sOynczNN9+MKVOm4Oyzz+74rm/fvvjVr36FSy65BHvuuWfeG2MA+Ne//oWJEydi5MiR+PDDD7Fjxw4AwKOPPopJkybh3HPPxbe+9a1CbEaXfLBmC4YNNt90DK/ri1VrtwIALv7VfDSceBt6V5Zj/O6D/FYm8x9HuPPcO1FZUwmlSufmoUOCOm7fuh2vPvwqGo9odF6dr/3TtGU7fnfPqzjtmPx1CSy3q2l1E+655B68/MDLGLSb5/0fqVD++mxeuxkrF63EiP17TshlXgm230c/i/PXt9/GgfX1mPe5z+HaF1/Ekdmwg0Qs+9ZL976E8dNL802Bdj6Ox3dXNeGQL9+DX//lZezTmOIx5FG+ayUArF69GlOmTMGUKVPwwx/+sOP7b3zjGx3/255PZWUltm/fnlp98+H13qyk7gUMbK9Vqa0/e0Ir1D1AZwp1j1Ao7W8Qdedrf1wfKfT125VtH/dxP1jq19SecO0j8okPy3Yy7a/XXnPNNR0nPQA45phj8Mgjj2DevHn40Y9+lPe3d911Fx5//HEce+yxWLp0KZ599lkAmbCM559/HjNnzsSSJUsKtSnOhtVV4/01m43LrFy9ueN/eq47fzJeuvUUfLRuK5pbWlOp02m/Pw277rsrXn3k1VTK96GzOgZBgCdveBKTzpjU8T+KLnzsnyAI8KWrn8SPvz4Jtf3Mdelsu2rqa3Dif52IA087EC/e86LDFiUj69O2vQ1zfzkXR3zziJLNZ+VbZ9vvq5/FeWfTJkwYPBjlZWXYe+BAHDPC/R8qpr718fsfo7K6ElX9q7pS3dT5OB5HDa3BvP89EVf9x4G49pb0jyEf4q6VMhTl8ssv71h+2LBh6NevH1577bW85W3btq1g+cra8XpvVor3AibFvk8o1D1AZwp9j1AoPeHaX+zrd1cV4n6w1K+pPeHaVxwBMjnLuvsf0nWfMzB5JU96W7duxcqVKwEA/fv3jz2pPf/883j66afx0EMP4e6778bdd98dmX/JJZfgv/7rv1Kve1dNO3QkbnloGTZtzrzSvOy9j/HBmi0d8199ez3eWdWEkUP6dnzXr28lTv7U6FRyW2xZn1l337q+aNtemicqmzouuHUBhnxiCHbdb9curcvH/rl81gJ8ct8hOGqiuS5trTuM27WjdUfH//pW9qlEeWV5l7atM3o7/+PX/8C4aeNSDf8sJTbb76ufxRnRty/e37IFO4IAS9avx/bsGzVJdXbMrFu+DqvfWI0Hr3gQ65avw1M3PdWleqelq8fjdnEM9e9biT5V6R5DvslrZWe+9a1v4YYbbsg775prrsH06dM9187Ozny9Nym1ewGTzq5VaSvkPUBnCnmPUChtrZk27c7X/lK4fndFZ33c1/1gd7mm9oRrH5EPHA2T0NLSgi9+8YtoaWnBjh07cMEFF+Qss3TpUuyyyy4dn8eOHYt58+bhvPPO6/iutrYWI0eOxL/+9S8ccMABhai6k/qBffCDL+2P6Rc/jCAIMKh/b1T2KsPpV/wd/aor0a+6F/73P4/IeQ37tGMaccz5/4evnTQO37ruGdz/9Lv421Pv4GszNuGrMz7hXJ/3F7+Pe79zL8oqyvDpSz6Nx37+GFa9ugofv/8x9jtpPzRMbsAzv3sG7z7/Lt557h1sOnYTPnGs+/rSqGP9HvVYfNdiDBk7BMvnL8fuh+2OcdPGOa2rq/vnhMN3w89vXoxD9x2Cu59cjs9P3R1fPzl/XVq2bDduV93udXjiF08AZUB5RTmmXDAFr/z3K07bZUO280FfPAgLb1uIptVNWHLfEow/fjxGHzK66H0hTZ1t/y577uKtn8U5afRofOUf/8CjK1bgrD33xHf++U/c9unko151dsyMPnQ0Rh+aGXHqvu/fh8PPPdzrdvjS1eNx2qGjMPPKJ1CmgN6V5Zh9+ZTibIgn7aEoALDrrrvi1ltv7Zg3ceJEDBoUhsS89NJLOOqoozpGBPvud79b6Orm2Nmu9yaldi9g0tm1St4ntG5qxe9+9zt89atf9bZ+l3uAtBTyHqFQWja3WF/709i/Prhcv0tJZ3087/3gaysSr6e7XlO7eu1rHzmZqLtR7U+nS93EiRODBQsWFLsaqTjnnHMwa9asYlej2zts/5F4eta0YlfDaOSZf8W0a07u+Pz+S+9j5eKVmHTGJOcyF1y9AAv/udBH9QAAI8ePxLSfhu2Ydh2Ltd/mLnwfJ/zgcXzhjzMT/c53ewOZNp9w2oQutXMa9fJB709xfPQzE2MfHDkST0/rvI6HLViApxfmL0Nup5dj5tK/YuEfTu58QXJ22PkL8PS80jhmxo0bh1deSe9BfHfWHa7taUp6rfJ9LagfXY+RB41MfD4rxet+Grp6Hpk7dy5OOPUEfOEPX7BavhSv9Wn0kUJyrn83v04X8hqolFoYBMHEgqysCJSqC4Dji10ND2b36P3kgm+WEREREREREREl1p6zjHoaPiwjKqLh+wzH8H2GF7saRt2hji6mHDgcA+pLZyj2ntrOtnrS9vekbSGi4ir2taqqb1Vqb/wSMGXKFAwYMqDY1eiS7t5Hunv9iSg9TPBPRERERERERESUxYdlREREREREREREWQzDJCIiIiIiIiJywpxlPRHfLCMiIiIiIiIiIspSQRAUuw5WJk6cGCxYsKDY1UhFXV0d1q5dW+xqEBERURFUVVWhubm52NUgIiJKw8IgCCYWuxJpUWpwABxb7Gp4cFuP3k8uGIZZAtauXYvu8tCSqFTNnj0bZ599Nt544w00NjZG5rW2tqJXr1644oorcOWVVxanggUwZcoUtLa24umnn/ZS3llnnYW5c+di+fLlXsojovyUUrwPoB7DdD1u15XrS0NDAw477DDccsstndZjx44d+NKXvpR4HflceeWVuOqqq7B9+3ZUVHT9n1Dt7fT222+joaGh6xUkKlFKqWJXgcgJwzCJiCivH/zgB7j77ruLXQ0iIuphCnF9mT17Nv7whz+kuo6uOO644zBv3jwMGzas2FUhoi4JAOzoAX9IxzfLiIgor913373YVSAioh6I1xegvr4e9fX1xa4GERHF4JtlRLTTevvtt3H66aejvr4evXv3xoQJE3L+p3vZsmWYOXMmRo8ejT59+mDMmDH4+te/jvXr13csc80116CysjJv7sFx48bhxBNPREtLC+rr63HhhRfmLDN79mwopfDaa68Z67t48WLMmDEDgwcPRp8+fbDXXnvhpz/9ac5yjz32GA444ABUV1dj/PjxuOeeexJvE5AJk5GhIcuXL4dSCrNmzcLll1+OYcOGoba2FscffzxWrFhhrDsREVE7/foCAG+99RamTZuG6upq7LLLLrj44ovxu9/9DkqpvOGat99+Oz7xiU+gb9++mDhxYiQFwZQpU/Dkk0/imWeegVIKSilMmTLFWKfVq1fj3HPPxciRI9G7d2+MHDkSM2fOREtLS2S5t99+G8cddxxqamqw22674Yc//CF27AjfymhubsaFF16I8ePHo6amBkOHDsXxxx+fc41vv/bLbWtoaMAZZ5xh3DYiIioMPiwjoh6lra0Nra2tkT9tbbnDOb/33ns4+OCDsXjxYlx//fX429/+hgMOOAAnn3wy/va3v3Us9/7772PEiBH45S9/iYcffhiXX345Hn/8cUybNq1jmTPOOANtbW244447IutYuHAhXn31VcycORO9e/fG2WefjT/96U85ibxnzZqFI488EmPHjo3drueeew6HHHII3nzzTVx//fV44IEHcNFFF+U8pHrzzTdx/vnn46KLLsJdd92FYcOG4ZRTTsGyZcsSbZPJT3/6Uyxbtgx/+MMf8Ktf/Qrz5s3D6aefbvVbIiIi3bZt23D00Udj8eLFuOmmmzB79my8/fbb+PGPf5x3+aeeegrXXXcdfvSjH+GOO+5AW1sbpk+fjg0bNgAAbrrpJuy///7Yd999MW/ePMybNw833XRT7PrXr1+PQw89FHfccQcuuugiPPjgg7jmmmuwfft2bNu2LbLsjBkzcNRRR+Gee+7BiSeeiCuuuAJ/+tOfOua3tLRg06ZNuOyyy/DAAw/gN7/5DZqbmzF58mSsWrWq07bobNuIiKgwGIZJRD2K6YGTdOWVVyIIAjz55JMYPHgwAOCYY47Be++9h8svvxwnnHACAOCII47AEUcc0fG7Qw89FI2NjTj88MPxwgsvYP/998fw4cNx1FFH4eabb8a5557bsezNN9+MgQMHYvr06QCAr3/967juuuvwl7/8BTNnzgQAvPjii5g/fz7mzJljrO+3v/1tDB48GPPnz0d1dTUA4KijjspZbs2aNfjHP/6BPfbYAwBwwAEHYNiwYbjzzjvx/e9/33qbTHbbbTfcdtttHZ9Xr16NSy65BO+//z6GDx9u/C0REZFu9uzZeOutt/DPf/4TBx10EADgs5/9LCZMmIB33303Z/mNGzdi0aJFGDhwIABg6NChmDRpEh588EGcdtppGDduHPr374/W1lZMnjy50/Vff/31eOutt7BgwYLINfALX/hCzrIXX3wxzj77bADA1KlT8fe//x1z5szp+G7AgAH4/e9/37F8W1sbjjnmGAwZMgRz5szJ+4Z5km0jolKU+x/z1P3xzTIi6lHuvvtuPP/885E/8+fPz1nuoYcewrRp0zBgwIDIW2jHHHMMFi9ejI0bNwLI/G/3T37yE4wdOxZ9+vRBr169cPjhhwMAli5d2lHezJkzMX/+fLzxxhsAMiNw3n777fi3f/s39O7dGwAwevRoHHPMMZg1a1bH72bNmoX6+nqcdNJJsdu0ZcsWPPPMMzj99NM7HpTF2WOPPToelAHALrvsgl122SXyjw3bbYpz3HHHRT7vs88+AJD3HzRERESdmT9/PkaNGtXxoAzIjKB38skn513+kEMO6XiYBHT9OvTII49g0qRJnf5nEZB7DRw/fnzOeu+8804cfPDBqK2tRUVFBfr27Yumpiara6zvbSMiIjd8WEZEPcr48eMxceLEyJ8DDzwwZ7mPPvoIf/7zn9GrV6/In0suuQQAOvKPXXrppbjyyitxxhln4IEHHsBzzz2Hu+66CwAi4ZQnn3wy+vbt2zGU/SOPPIIPP/yw4w2ydueeey6eeeYZLFmyBJs3b8Ytt9yCs88+G5WVlbHbtH79euzYsQMjRozodPsHDRqU813v3r0jdbXdJtt1tD8MtPktERGR7oMPPsAuu+yS8/2QIUPyLu/7OrR27Vqra2zcuuV677vvPnz+85/HJz7xCdx222345z//ieeffx719fW8xhIRdSMMwySindLgwYNx+OGH47vf/W7e+e3hhLfffju++MUv4rLLLuuY19TUlLN83759MWPGDNx666246qqrcMstt2DMmDH45Cc/GVlu2rRpaGhowKxZs7Dffvth06ZN+OpXv2qs68CBA1FWVoaVK1cm3cy8bLeJiIioEIYNG4ZXXnkl5/sPP/ywIOuvq6vzeo1tbGzE7NmzO77bvn071q1b56V8IiIqDL5ZRkQ7pWOPPRYvvvgi9t5775w30SZOnNjxP7lbtmxBr169Ir/94x//mLfMmTNn4s0338TDDz+Me++9N+etMgAoKyvDOeecg5tvvhm//vWvMXXqVOy+++7GulZXV+Owww7DLbfcgq1btzpucSjJNhEREaVt8uTJePfdd/Hcc891fBcEAf761786l9m7d2/ra+ZnPvMZPPfcc1i8eLHz+tpt2bIFFRXR9xFuvvnmvIMNEVFPECCTs6y7/yEd3ywjop3SD3/4Qxx00EE44ogj8M1vfhMNDQ1Yv349lixZgrfeegt/+MMfAGQeqv3pT3/CPvvsg8bGRtx111149tln85Y5depUDB8+HF/+8pexZcsWnHHGGXmX+/KXv4wrr7wSixcvtv6HwLXXXosjjzwShxxyCC6++GKMGDECb731FhYtWoQbb7wx0bYn2SYiIiIXDz30EIYOHRr5bsCAATj66KNzlj3rrLPw85//HCeddBJ+/OMfo76+Hr///e+xfv16AJn/aEpq3LhxuOmmm3DHHXdg9913R79+/bDXXnvlXfbCCy/EbbfdhqlTp+Kyyy7DPvvsgzVr1uDee+/Fb3/7W/Tr1896vcceeyzuueceXHjhhZg+fToWLlyIG264AbW1tYm3gYiIiocPy4hopzRq1CgsWLAAV155Jb7//e9j9erVGDx4MMaPH48zzzyzY7kbb7wRQRDgP//zPwFkwijnzJkTSULcrqysDKeddhquvfZaHHLIIWhsbMy77vr6ehx55JF46aWXOkbd7MykSZPwzDPP4PLLL8d5552HlpYW7Lbbbh2jbyWRZJuIiIhcnHfeeTnf7b333liyZEnO95WVlXjkkUdw3nnn4Wtf+xpqampw2mmn4eCDD8b3vvc9DBgwIPH6v/vd72Lp0qX4yle+gqamJhx55JGYO3du3mVra2vxzDPP4LLLLsPPfvYzrF27FkOGDMFRRx1lzCmaz3/8x3/gvffewx/+8AfMmjULkyZNwn333YcZM2Yk3gYiIioeFQRBsetgZeLEicGCBQuKXY1UKKXQXfYDEXXd+vXrMWrUKFxwwQX40Y9+VOzqEFGR8T6AKL/p06fj1VdfxZtvvlnsqhCRI6XUwiAIJha7HmlRqjYAphS7Gh7c26P3k4tu87BMKbUawDvFrgcRURdUAKgCsAuAAQCWANhe1BoRERGVhiHIJM5pQSav8qDsn3cBrC5ivYioa3YLgqC+2JVICx+W9VzdJgyzJx9gRLRzUEqdBeCPyNz4fzUIgv9X3BoRERGVBqXUNwB8E8AoAOUAlgL4ThAE/1vUihER0U6p27xZRkRERERERERUKvhmWc/Vbd4sIyIiIiIiIiIqLTuKXQFKQfJxmImIiIiIiIiIiHooPiwjIiIir5RSs5VSQfbPFA/lTRHlze5yBYmIiIiIDPiwjIiIqMCUUsvFwx/9T6tSap1S6iWl1J+VUicqpZg2gYiIiIioQHjzTUREVFrKAQzM/hkPYCaAF5VSpwVB8HJRa0ZEREREwscPA/fVFbsWHqwpdgVKDR+WERERFddvAbwpPlcAGIrM0Er7Zb/bF8DjSqmJQRCsKGz1iIiIiCifIAiOLXYdKB18WEZERFRcdwRBMDffDKXUaQD+hMz1egiAHwE4u3BVcxMEwVkAzipyNYiIiIiInDBnGRERUYkKguA2AL8SX52slOpVrPoQEREREe0M+LCMiIiotN0tpvsB2N20sFLqU0qp3yqlXlFKrVdKtSilViql7lNKfclmsAClVLlS6nSl1F1KqbeVUpuVUs1KqRVKqX8ppe5USv2HUmq3mN9bj4aplKpSSl2olJqXHdhgs1Lq9ew27NtZXUU5c8U6GyyWb192ucWySin1OaXUn5RSbyilNiqltiql3lFK/UUpdYpSSlmU00cpdY5S6sFsW25VSm3JlrMgO6DDTKXUELutJiIiIqI0MAyTiIiotH2kfR6UbyGl1C4AbgFwdJ7Zw7N/pgP4jlLqxCAIXospZ1cA9wOYkGf2rtk/+wM4FcBCABM734T8lFJ7AHgAwB7arD2yf76klLoIwBLXdXSVUqoRwO0ADswze1T2zykA5iulTgqC4IOYcvZGpl0bDOUciMyADn/NlklERERERcCHZURERKVNf8tos75A9gHX0wgfxDQBeAjAKwCakXkQcxyAkQD2AvCMUurAIAiWa+WUAbgH4YOyTdlyXsuut292HRMBfKIL2wSl1FAATyDz8A0AtiHzMGkxgEoAhwM4AsCNAK7ryrq6UMd9AfwdwODsV2uRaY83ALQCGAPgBAB1ACYDeDrbrhu0cmoA/B8y7Q9kRpx6CJmBHbYifGPwYACj09siIiIiIrLBh2VERESl7WQx3QxgqZyZfcA1B+GDsj8D+FYQBB9ry/UC8FMAFyPzdtrNyDyQkqYgfFNsAYBjgyBYm69SSqkxAI5KtikRv0b4oGw5gGlBELyqreN4AHcCuKgL63GilOoL4C8IH5T9HMCVQRA051nufwB8AZmHZzcA+KJW3L8hfFD2AIB/C4JgS8x69wWwt49tICIiIiI3zFlGRERUopRSMwGcJ766Q39Yg8zDtPaHXncFQXCm/qAMAIIg2B4EwbcB3JX96jCllP6wbH8x/bO4B2XZ8t4KguD3VhuiUUqNQ/gQsBXACfqDsuw67kNm+zvNB5aCcwHsmZ3+RRAE38vT9giCYDMyoZPPZb86LU/ONNmuV8Q9KMuW92IQBHPcq01EREREXcU3y4iIiIrr80opmferApnQy6MAyAT3rwH4bp7fnyumv2exvusAnJSdPgHAU2JeuZjuY1GWqzPE9JwgCF4yLPu/yGyXcWCDFLS361YAV5kWDIKgTSn1KwC3ItOGxwH4b7FIodqViIiIiDzgwzIiIqLi+lon89uQSfj+rSAIPpQzlFJ9ABya/fh2EARvWKxvkZjWk/MvFtNXK6VeDYJgoUWZSX1STN8duxSAIAgCpdRdAC5JoR55ZUNMG7If5wdBsNHiZ4vEtKldb1BKfd5yXxERERFRETAMk4iIqLQ9CeBi/UFZ1lhkkuEDwGilVNDZH0QHCKjXynsUwAvZ6d0ALFBKLVZKXauUOkkpNdzTNu0pphdZLL+48/fAjI0AAAZ9SURBVEW82k9Mf8qyXV8Wv9Hb9TYAK7LT+wNYqpSar5T6sVJqulJqMIiIiIioZPBhGRERUXF9KggCFQSBQua6PBTAVAAPZucfBeDZ7NtOuq4+ZOkrPwRBsAPANACPia/3RWZQgL8CWKmUelUpdaVSSn8glMRAMR2bF01Y04V1ufDdrpuQ2af/yn6lkBn58vsA7gOwWim1UCl1sVKqXxfXTURERERdxDBMIiKiEhEEQQDgw+yfx5VSNyCT4H4kgDuVUocGQbBN/ERex5cCSJpwP99AAKsAHK2UOgSZURyPROaBWXverbEArgBwkVLqzCAIjGGUnhQ6wb9s1/nIPChM4j39iyAIlmZz001FJmfcEQA+gcy2KQAHZP98Wyl1ahAET7tUnIiIiIi6jg/LiIiIStfFAKYA2AfAgQAuAvAzMV++lbUtCIJrfa04CIJ5AOYBgFKqPzK50Y4FcBoyYYb9ANyhlNo/CIKXYwvKbz0yb9ABmbe4OssJZvOmVyCmjQ/XlFLVnZQl23W1r3bNPgx9NPsH2fDLw5F5m+/fkWnToQDuU0rtGQTBah/rJSIiIqJkGIZJRERUooIg2I7MA7N2l2rhj28gMwAAAIxTSsnwRp/12BgEwUNBEFwAYAyAf2Zn9QLwFYciXxfT+8UulWyZJjFd08myozqZ/5qYPkQplcr9UhAEa4MguCcIgq8C2APAW9lZtcg8lCQiIiKiIuDDMiIiohIWBMGjANpD8voD+J6YtwHAguzHcgBfLEB9mgBcL74a61DMs2J6hmlBpZTqbJksOQDCnrFLZRzTyfwlAFZlp+sAHG+x/i7JDuDwO/GVS7sSERERkQd8WEZERFT6rhLTX1dKDROfbxTTl8cMBJBX9kFUV211+M3NYvoLSqlxhmXPAtBoUea/xPRJcQsppQYg+rZejmy45K/FV79QSg2yqEP7OorVrkRERETkAR+WERERlbggCB5D+DZWHwCXitlzxLxBAJ5USk2NK0spVaWUOlEp9QQyCeXlvF8qpa5VSu1t+P2uAC4TX/3DfksygiB4BUD7wAC9kMnRtVeedR0H4L8RzUcW516EIan/rpQ6MU95wwDcj8yACZ25AcCy7PQYAP9QSh0Qt7BSqp9S6gyl1L+g5VhTSt2ulLpcKTXa8PtxAL4lvkrcrkRERETkh8r85ykREREVilJqOYDdsh8/FQTBXIvffAbAw9mPLQAagyBYkZ03BMBTyOS9avcSMg9cPkDmP8cGAxgP4GCEOb0mBUHQHsYJpdRsAGdmP74J4DkAbwPYhMyDuLHIJPnvJZaZkA3NREw5ebcv++BqIYD2t+RaANwH4EUAlQAOQ2ZwAwD4BTKDGwDAn4IgOEsvL1vmbwGcI776P2RGswSAvQFMB1AN4GqED/zeCYKgIaa8TwB4AsAQ8fVzyDyc/Chbz3pkRgs9CEDv7DL1QRCsEeXMRWZUUQB4GZnQ2XeReXusDpmcbJ9C+J+Y8wAcHgRB+8M/IiIiIiogjoZJRETUDQRB8IhSaj6Aycg8lPlPAF/PzvtQKTUJwG8BfB6Z0SD3yf6JsxKZUSmlbWJ69+yfOM8DOEV/UGYrCIIPlFKfQuZNr0ZktumU7J92rcg8JHsJ4cMyk4uReWB4VPbzZ7N/pOsBXI7o23FxdXxVKXUggD8CODr79UHZP3HeQObBnyTbde/snzgPATiND8qIiIiIiodvlhERERWYy5tl2d8di8zbUgCwHcCeQRAs15bZG8BMZN5kGo3MG2GtANYhMwrlc8i8ofZkEAQ7tN+WIfMw7tPZv/dC5q2qagBbAKxA5m2wvwD4WxBzE2HzZplYtgrANwD8GzKJ+XsDeB+ZN7puCoLgBaXUlOxnwPBmWba8cgBnAzgDmTe++iKTrH8egN8EQfBkdrn2use+WaaVOxnAvwM4ApkwzlpkHoKtRmb0zHkA/i8Igufy/LZX9ndHIfOgrRGZdq1EZhTPd5EZYXROEAR/76wuRERERJQuPiwjIiIiIiIiIiLKYoJ/IiIiIiIiIiKiLD4sIyIiIiIiIiIiyuLDMiIiIiIiIiIioiw+LCMiIiIiIiIiIsriwzIiIiIiIiIiIqIsPiwjIiIiIiIiIiLK4sMyIiIiIiIiIiKiLD4sIyIiIiIiIiIiyuLDMiIiIiIiIiIioiw+LCMiIiIiIiIiIsriwzIiIiIiIiIiIqIsPiwjIiIiIiIiIiLK+v/nWalVrNpDGAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], "source": [ - "plot_map_with_regions(preprocessed_data, each_img_enl[labels.index('1dl7')].reshape(input_shape, input_shape))" + "### Inter-region vs intra-region" ] }, { "cell_type": "code", - "execution_count": 27, - "id": "7e88c373", + "execution_count": 13, + "id": "c749e659", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde3weVZ0/8M9J0jQNaZq2CQ2llBQKFCxSoBRwUS7iDcFFEdEVBVetrLqKuup6RfG6qz/vLniHXUQRb7vbRRQUEFSQIhWKlHtpC7S0lNCGNm2Tzu+PeZL5zvd55uTMyZnnkn7er1dfnSczc+Y8M2fOTCbz/R4TRRGIiIiIiIiIiIgIaKp1BYiIiIiIiIiIiOoFH5YRERERERERERGV8GEZERERERERERFRCR+WERERERERERERlfBhGRERERERERERUQkflhEREREREREREZXwYRkRUY0YY1YbYyLx7xO1rhOFx+NME82e2KaNMSep7xwZY/pqXS8iIiIqBh+WERERERERERERlfBhGe2xMv5KPPLv9eMo9/QK5Z0UruZEREREREREVBQ+LCOq7FPGmEm1rgQRERH5Mcb08Y9XRERE5IMPy4gqmwfgbbWuBBERERERERFVFx+WEWX7mDGmo9aVICIiotqKoujGKIqM+re61vUiIiKiYvBhGVG2vQG8p9aVICIiIiIiIqLq4cMyorRd6vO/GGO6a1ITIiIiIiIiIqo6PiwjSvuu+twJ4MO1qAgRERERERERVR8flhGlXQPg9+pnbzfGzK1FZYiIiIiIiIioulpqXQGiOvSvAP4oPk8G8EkAb6pNdQBjzAEAnos4j9pMAAMAngTwMIA7oijaXfD29wGwGPEooVMRh6uuj6LoPz3K2h/AMQDmApgC4BkA9wD4UxRFg45lzAGwBMD+pTI2AXgIwM1RFO3MW6eMbbQBOBjAAsT7vRPx994MYCOA26MoeiLEtupNoxwjsa3ZAI4GMAtAN4BBxOfHGgC3RVGkw6vHu70WAM9DfD7sA2AYwBMAVkRRtDLktizbHzk+PYjb5ki7/EsURY8UXYe8SufTEgD7Ij5GnQC2Ia73fQDuiaJoa4DtTKS+ctxlGWOeg7gfG9kfWxG3k/sQt9cob71CMsbshbiPPQRxu5iK+PzdDGA94vN3c+1qWBxxHvchPo/3QtxPPon4PF5bhTosArAIcd8ZIW4bDwC4NYqioaK378MY0464/z0YQBeAHQDWArgliqLHc5SxBMChAKYDeBbA4wB+H0XRhkD1NIj76AWIr4PTAEwC0I+4fd8L4O4q9ElNAI4CcDjifmA34u/6AOL7mJr2AUREdS2KIv7jvz3yH4CTEN8cyn+nl+b9Uv18GMBhjuWeXqHckzzq1wXg0wDur1Ce/LcJwH8CONRjG+fr8tT8swHcmrXtnGX9PYDbLN9jM4CLAUyx1Pc0AH+wlPEMgM8D2MuzTSwq1eFmADvH2O8R4pvNjwDo8tzealXeJwpu8w1/jMR2pgB4P4C/jnGMtgD4OYBjA+y/GQC+Xjrnsrb3EIB3AGgOfZwBvBDAL0r7cKx2+TEAHUW2J4f6NgM4D8BvET8AsdV5F4BbAPwLgJ6c2+nCxOorncvKqOtBAL4NYN0Y++PJ0nL7e+wPrzYNwAD4OwBfALAc8bXVVsfdAO4G8E5Y+h21jZPGKNPlX59juWXLOdTvaAA/QfzQxFaHuxGngWj32MaNqqzLxLxWAO8F8Khl288A+AqAGUX2ERXqretxvpg3D8APAGzPqPMwgP8FsMBS/v4AvoP4IXpWGdcBWOhZ/5kA3grgasQPHsdqZ/0ArgSwyHN7l6nybhTz2gF8HPFD56ztr0V8Tc/dxviP//iP//aEfzWvAP/xX63+Zdz4jjwsOwzlN/G/dCx33A/LALwFwFMON1ry3xCA/wAwOcd2ztfllH7ehTgk1bpNx7LaAPwox/f4C4BeVfYUAFfkKONeXcYY+2EygFU597f+xeJVHm1wtSrnEwW3+YY9Rmpbr0B8k5/3OP0E/g82z0D8cMF1W7cB2CfEcUb8BsV1Ht/3SQCvLLJNjbG/HvA8n3bk2M5E6itzl6XKnQrgW4gfPOba34jfnjY59kfuNo34LRvbA5qx/j0O4ASH7Zw0jm2M/OtzLLdsOUu9OgH8EPEDwLzf+6yc59+NqozLSj8/EMBdOba9HsARVew39PbPL/389Yjf/nKp8zYAZ1Yo+3WI36x0KWMngFfnrPunkf/ck/++ixx9Ummbl6kybiz9/FDk638fAnBctY4z//Ef//Ffo/xjzjKiCqIo+hviNxCkvzfGHF/kdk3s84j/8jkj5+rNAP4JwK+NMV3jqEMHgOsBvMy3DFHWJAD/A+C1OVY7EsCyUtgWjDGTASxDfLPsagGA64wxrY7LT0IcBuSrE8BPjTEXjqOMmmigY4TStt6J+O2qOXnWKzkbwC2lENE823wV4rfTenKstgTATcaYmXm2VWHbJyJ+y+hUj9V7ELfL946nDnmU+rCPAfhvAPM9ixmzTUzAvnJcZZXa9C0AliJ/io1WxG+g/Djv+ZhTJ+IHZr72AfA7Y8zZgepTNaWQ2t8D+AfEb9flsQ+Aq40x7xtnHQ5GnGLi8ByrzQJwYyk0vyaMMW9C/IeYdsdVpgC4yhjzd6KMtyJ+UNnhWMYkAD8yxrwgR1UXYHzpbd4M4IaR66ovY8yBiNtanv73AMTX4+eNZ9tERBMNc5YRZbsI8V8iJ4uffR7AiQVu8yMAPljh548gvtH7I+K3RboQ/+XwtYhDWqQTAfy3MebkyC8XxiWIw0RGXIf4F9/7EIfh9SB+sPQGh7L+HcCLStO7APwU8ZsTjyB+m2E/xG+gvBHxL7AjjkYcYvcpAN8AcIoq41elMraXynhFhTIWIs4/d7FDPaUI8V/e/4A4T9dDiEP5tiG+0d4Xcf6Ps5C+GTUAvmiM+UsURXqQiHrWMMfIGHMu4jBIbQPiUJYbEOcO2wtxKNpZAF6C9C+nzwHwW2PMkVEUbXPY5hIAP0b59fIpxG/jXYf4zY+9ELeHVwN4aWmZgxCHDXkp/aL2G5Q/PFqH+C2520rbfhZxn3A44lDaU8SyTQD+nzHm0SiKfuZblxw+D+ADFX6+FcD/IX4g9Cji/deOuD85EnE/diLc70smWl/pXZYxpgfx991PzRpAfC7egrgfewZxOz0AwIsBvAbxQ4ERr0G8z/7Zob7jNQzgz4jb8D2I28RWxOG6HYjzeB2D+HyaLdabBOD7xpi7oii6L6PsjQBG2no7yh9A/r60jM2zTt/CQenhx28Q93fadYiP0f2Iv/8+iNvlPyD9vUeuL89EUaRH7XYxFfH5t3fp82bE/doNAB5D/LblXMRh9G9E+jzsQvzW04tQfYsRPwAesRzAVQBWIP4OXQCOB/B2pPdXK4DvGWMOR5zf7D+QXAfuQNx/3om4H5pWKuMdqowWAN82xjw3yp9n80kAv0McSntvqa5bELffGYivQy9B3FfLa+LxiK9xb825PVnnqxHn/wPi6/HPEf9B7FHEx3l/xBEQr0b8YHFEB4BfGWMOj6Jojef2iYgmllq/2sZ//Ferf7CEYYplvlRhmdPGKNcrDBPxmyiVXuH/HCyv5iP+BadSDqMPO2zz/ArrjfxbA4eQlzHKGgk3uRPAIZZ1/w7l4RH9iG/mRj7/BcDBljKej/I8JE8DaHOoeweAvwF4FxxDAxHfeL8B8Q2w3Oa9cAxnQh2EYTbQMerLaOc/ANBpWe8UxL8M6vW+7bDNVsS/7Oh1fwGg27LeqYgf4Ol97HycEf9S+7habwviXxybx1j3xArf+RkA+xXcvs6qsK8ixA+CxsxDhjjfz7sBrB5juYnYV/qW1YT4QYw+p78CYOoY6+6PyvkFX+Gw3dUebfo5iB+QvQnAdMfv1wLgPSjPIXmt4/p9Fb7fSZ7t+6QKZfU5rPf1Cus9AeBFlnU6EOeT0+sNwNLHivVvrNAmRqa/B2CaZd1FSPdfI/+O8dlvOfex3uZIvbcDeKNlvakAbqqw/lsRD+4xUsYbxijj5gplvNax7t9D/FBuMdzvAQ5D/KBbb9MpJBLlYZjyOP8NwHMt6x6M+MGh3vavij7O/Md//Md/jfKv5hXgP/6r1b+MG1/9sKwb5b9crbDdCMH/YdmfKqw35i9xpXWfj/KktzsAzBpjvfMrbHPkRn7/nPszq6yVsNyYi/XfXmHdkV+Q7oLlgYgo450VynhNwe1oCcp/kXuZ47qr1XqfKLiuDXuMUDmn2rccv/ehqJyUf9EY672rwjrLALQ4bPMIZCfiH/M4I37rQ67z1Fj1Vev3oTzH2tcKbFsdqJw77AKPsqz7FxO3r/Qp6wJVxm6IpOgO609G/OaZLOOvDuut9mjTzjnRKqz7ygr7a8xBd1Djh2WIQ/P0w/LNAJ7juM1vVNjmLx3WuzGjjX3ZcbsvrrDuf/gevxz7uFKdhwG82GHdWSj/49VOUcYLHcrYB+V/FLrGse5e7Rvx2126T7vKcd3LMvbZIyjlzBxj/RmIH6rp9U/3+S78x3/8x38T7R9zlhFZRFG0CcAX1Y+PQBwiEUwp1Os49eOboij6rMv6URTdDOAz6setiPPy+Hh7FEWPeq4r7Qbw+iiKnnFY9ruIHy5Ik0QZWxzK+HaFMk50WM9bFEV/BnCp+nGe/F+1VvfHyBizL+I32KT7ET/MGlMURfcCuLDCrEo/ky5Qn/sBvCmKoiGHbf4VcahgbsaY+Yjzq0lLoyha4VpGFEWrUf793jyeHF1juADlucO+EUWRPjfGZNu/E7ivzF2WMaYZcSi09M0oii5zLSOKoh0AzkX8UGHEc40xL3YtI8e2onGs+wvEIx1K54yvRlXxLpTnKHtfFEX3OK7/HsRvK0tnGGMO8KjLClQOkS4TRdFvED/AkfLk7wrpK6X6WEVRtAFxCLY0Emb8pSiKfutQxhOI86NJzzfGjPn7km/7jqJoO+IQUOnMceYuW1r6LmNtezPiNz113d8+jm0TEU0YfFhGNLYvIX5DQ7q4lBg9lDdX+Jn+JWgs/444dEJ6i0dd/lb6xSSEZaWHBmOK4pwglW5m/zeKorvHUcaRLuuO0y/V50IHggisEY6RzqEDAB8t/aLvJIqiKxCHmkqvNcbsVWn50mAeh6offyWKorFyHUmXIA6ry+vdSF+f/xz55Rv7MeK3lUa0I347pgj6weUmOP5intNE7St9yjoTcf6xETsQJ+rPpfRgVW/7tLzlVMEv1ee67mdL9wg6x9w9iN8GchJF0S4AH1I/bgLwjx5V+lypPFe6TSwwxrgm2Q9lJ4Av5Fj+mowy9B8985TRAf/BSpxEUfQXxCM8j2hFnBvVx41RFF2XY9u3ofzceknpj1RERHs0PiwjGkMURc8iTmIuHYB00tnx0n+xvSeKotvzFFB6CKH/IrqvMWZezrrov8yOR95f8Cv9tX28ZYxn9DVXa9Xng4wxnVXYbgiNcIz0+bEZcfLzvL6vPk9GHEbrsk2gfIRcqyiKhgH8V551Sl6qPl/pUQaiOGn9jerHwd8OMcYcgvLk8t8pvTER2kTtK33K0u3kV1EUPe25/d+pz7V6i8hG97NHV1yqfhyF8tEXL/N4A+n/AKxXP3t+zjJ2IH+fqf+I0ow4TLGa/hBFkf7uNpWuT7eU3jobTxm1uI/wbd+5rlMll6vPTSgfEIWIaI/Dh2VEbr6FOAeE9LGst1LyMMZMRzzKmeT8V0Hl1xV+lvev77d5bjtEWZXe2hlvGbkfWhljphpjzjXGfN0Yc5MxZrUx5iljzC5jTKT/IQ4J1Lor/Kwe1fUxMsYYAMeqH/8+yj86GZDv/NChfo9EUaT7ABdjhv5IxpjZKH+LYbnHdkesU5/123IhnFThZ8tCb4R9ZRkdvlzv7STFGNNtjHmrMeZbxpg/GmPWGGOeNsYMZfSzOhRvRikUtV5Vak+522spLFk/zFxsjMkzov2KPG/illR6wDQtZxnjVQ/XJyDnfYSJPd8Yc7Ex5pfGmFXGmPXGmG2V2napfT9PFdOTs94jcl1zSn6H8lBMfd0lItrj5LnQEu2xoijaZYz5ONJvicxCnE/k0+Msfj7Kc5r8xbOsSusdnLOMVZ7brmTMnBnKQIWf5fmrcqUy9F/2MxljegF8FsDrAIwnXwgATB/n+tVS78eoG+X70vf8eBBxAmj5i0/W+bFAfV7huc2861UKvbklfmYYxMxQBQmHqc+74H+MbCZyX5mrLGNMB4CD1I8/bYwZ7/VoRJsxpj2Kom2ByhtVysn37wDOwPjvQ7sQDyxRj/Tx2YHKby25+AvSuVLbAcxBPNCCi7z9PBAnutecr6eB1MP1CXD83qXcZksRh86O9200n3uIp6Moyh36H0XRVmPMwwAOFD/W10Aioj0O3ywjcncl4hH/pPcbY8b7y2elGyL9V34nURQ9BWDQoXybfp9tZ6h0s21TKTxlvGU4PWUwxrwMwH2Ik92O90EZUP1fKnzV+zEKeX5EAB53KL/Sz31+2UQpLC5POGLRbyQW8RBX94FPRlGk+6EQJnJfmbesary5GrytGGPehHj03VcizB9s67mf1ftvg8vgIBkqtfM8x8dl8BVtd4WfVfv3hlzXlowQ1xBljPm9jTEzAPwBca7KEGGbPm3b6zpV4nptJCLaY/DNMiJHURTtNsZ8GOnwok4AHwbwvnEUXemGxOfGdsQzSD/s0SPUWZVytAUxntHPQpYxFmPMyYiTGU/OWOQZxPlEnkT8C/Yg0g982gG8TBcbuJqFaIBjVMT5IWWdH12BtznFcdki3vySQg5MMkLXub+AbQATu6/MW1bR7QQI3FaMMecC+B6y+8ZNAB5DHAa3A+UPM3tQnkutnvtZ3V5D9ltAvvZa+HW0ICHqXY17iHbEoYxHZCyyE3HbfgzAs4j/gDKsljkR6YfgPm07ZBvjwzIi2uPxYRlRDlEU/Z8x5makk+u+wxjzlSiKdHJWV5VuiELe3DXqTXJVGGMmA/gOyh+U3QXg6wB+O1auqlJi8IeLqeEer17Oj/FsM88vPa0VfvbzcW5f0iP7FqGoPqde2kI9qNRObkbY4xvsYaAxpgfA11B+DG8B8B+IR/CzvhVT+qOGzt1Vz/R3Dd2+Gqm9TnQfRvmDsmcQ57v9OYC/jDUSqTHmJox/YI1qXaeIiPYIfFhGlN+/In7VfsRkAJ+E31DuQDyynzaeJLp6Xd/R0fYUr0U6TwcQv/1wQY6QmWonPd6T1Or86EeclzDENvMkh670fd8VRdFj49h+0XTOqKLeSGBfmai0L74VRVHIETpDejvK28Unoyj6RI4yGq2f1ccoZFsFGqu9TljGmCmI89dKjwB4Yc5BYUK075DXKbYvItrjMWcZUU5RFP0RwP+oH7/RGKOTXLuqdEOyr09BpfxpOt8Wb3jsXqE+rwbw9py5ZRpl5MtGFPL8MABmO5Rf6ef7eG6zC+4hmEAciqYd4LPtKtIPy/YuvbEZGvvKRKO1E93P/jHngzKg8fpZ3Z5m5RzBUqrUzhupvU5kpyJOxSBd4DF6coj27XWdKnG9NhIR7TH4sIzIz4eRTn7bDOAznmU9iPJX5yuNiOei0nr3e5a1pzhSff5pFEU7c5ZxdKjKUJlNKL9p9z0/5qP8r+dZ54cenXCR5zZ1+xrLfRV+dqLntqtFj/A3CcWcE+wrE5tR/sCsLttJ6SH1c9WPr/QoqtH62QfU58koHznWlf7u2+A5uAUFp/v4jQCuy1OAMWYWPB/8K9ONMbkHFzDGTEX5w/aQo/0SETUkPiwj8hBF0T0A/kv9+ExjzHEeZT2N8puSF3lWrdJ6f/Qsa0+xt/rsk3vshSEqQuVKgwfcqn78AmNMpZxNY8lzftymPs8r5abL65Q8C0dRtBLAevXjv/fYbjXdWOFnp4feCPvKROm8+K368QuMMfWYlHsmytN++PSzuc6lkkojOlYrN1Ol9nRq3kKMMc0ATlY/vn0cI2tSWPoe4hGPQW9C3kP4nCcno/y80NdAIqI9Dh+WEfm7CPGIXdLnPcv6vfq80BiT66/oxphJAN6gfrw2iqLVnnXaUzSrz7nCZIwxB8PjFyDKRZ8fMwGc4VGOziu4A8CfM5a9qcLPzs2zMWNME8rPSRe/UZ8XG2Pqto1FUXQ/4vBl6a2lXD6hsa9M/Fp9noTxjcxcFN3HAvn72RcBONhj29sq/KyIdlnJnQAG1M/O9yjnNJSH1+nzgGpnXPcQJe8IUZESn2vOG9Xn3Ujn5iUi2iPxYRmRpyiKHgVwifrxiQBe5lHcdyv87N9zlvEvAHodyqW0jepz3rCur4KjSBXtcgB6JLFP53m7zBjzOpSHMl0ZRVGlX6YRRdGfANyrfvweY0yevDIXANg/x/IjvozycMOvlkJl6tXX1OduAP9WwHbYVyZ+BECPIHmhMebwWlTGYhPGET5bOs+/6LntZyr8TOdmKkRp9MPL1Y8PN8boBxOZSjnOPqt+vBvAD8ZZPQpH30McmucPBcaY1wJ4XsD6nGKMcX67zBizGMAr1Y9/XeeDyhARVQUflhGNz2cAbFU/e2veQqIoWo7ykI1TjDHvd1nfGPN3AD6mfrwDwKV567IH+ov6/BpjzH4uKxpjLgLw0vBVIimKoicAXK1+vADxQ6Uxld7++2qFWZV+JunzZzqA75XCosba5uEo/yXXSRRFKwD8Qv34MABXGWP28inTGNNpjPF548DVt1Ge6P+fjTEX5C3IlgSdfWUiiqJBAJ9TP94LwP8YY/QIv06MMc3GmHNKA1MEEUXRMIC71I+Xujz8Lb2deQnKc565bnsXyt96PMGnLE9fR/mDwi8ZYw51XP+LABaqn/23R/J4Ko6+h5gC4J9cVjTGLALwH6ErBOA7pTxoY22/C/GDV/37YBF1IiJqOHxYRjQOURRtQvlfvCd5FvdulL898+/GmIttb9AYY84C8H8oDy35RBRFT3rWZU+iRzZtB7DMliTXGDPNGHMJgE+UfsTcMcX7MMrfEnm7MebbxpiOrJWMMScC+B2AHjXrW1EU/XWMbV6K8uT1rwDwk9JoilnbPBlxKOW00o/y5q8BgHeh/K2hlwH4c6l8J8aYxcaYLwJYgzh0vBBRFD2Lyn8ouMQY8x8ub+QZY7qMMe9AeWJ0jX1l4hLE7VvqA7DcGPOPpZDTMRlj+koPHO8H8GMAmeeUJ93PzgbwS2PMDEudegH8FEn4tG8/q3Mv/YMxpip5AKMoug/lb13OBHC97e0fY8xepWvMu9WsAQAfCFtLGqffAXhW/exzxpjX2FYqzb8B8R9hgDD3ESPXmgMA/NYYox+0yu3PRzwQgV7mN1EULQtQFyKihuc7hDURJb6EON+ETvKaSxRFy0tvKum3UT6G+Ob+h4gTnW9A/Ev4YQDOAfD8CsXdiPyhSXuqKwB8HOlwuecCuMcY85+IbybXIu4v90WcPPccpId5/zSSB2dUgCiKHjXG/BPKR9F7K4DTjTFXIm73TyB+u2Y+gLMQP2DSYbKrALzXYZs7jTH/COAWpB+CvwrAiaVz8vrSNqcAOAjAqxG/bTiyzf9D/MtIrnDMKIoeM8aciTh3WpuYdRiA3xlj7gRwLYDbEYcBDQCYCqCrVI+jEL9BI7erR08MKoqiXxhjvgBAv+X1TwDONcYsQ7y/ViMezbEd8UPM5wL4O8Tn1pgPd9hXJqIoGjLGnI34gdB8MasLwPcAfNIY87+I8w89BqAfcVvtArAf4pH8jkX+UVvz+hqACxG30RGnALjPGPMDxO38CcRtfT8AL0F8Lo0sHyE+3h/32PYViI//iEmIH9Q9AeBvALagfCCAf4qiSIfX+fog4gTq8u242YgfZvwawM8QP6QcQBwe/ALE+RErhYu+K4qiBwPViwKIomiLMeZrAD4kftyK+E3gtwL4CeI/umxH3N8tAnA2gMVi+d8hvsd4wTir80fE179FAJ4D4A5jzM8B/DeARxG38/0QD8DyGpT/4WALgKXjrAMR0YTBh2VE4xRF0YAx5tMo/+uxT1mfK4WmfEjNOhDuvyTcCODMKIoqjQJGSumByBsQ/xIv30rpAPD20j+bLyPOS/OJQipIo6Io+lFptL+vI/1m9D6IE5u7JDdfCeClWbnKKmzzz6V8Zz9G+po5E/HbX++yrP4Q4oTey122lbHtFyD+ZVqHBh+J4h9w+Pgg4l8KdX81FcDrSv/GjX1lIoqizcaYEwBchThvpjQH8cNKp7CwokRRtKn04ODHalY34oerY4XRXog4lNPnYdk1iEcO1SMO7oPyxPkj/gXluai8RFG0wxjzEgC/QvwQQ3pJ6d+YxQB4bxRFzFVWnz4N4MUoz4t5KsYeAOh+AK9FeaoBH0OIH4L9CfE1qrVU9msd1h0AcFopHy8REYFhmEShfAtAkBwiURR9GMBbEL95kccw4jwTL42iqFJSY8oQRdHNiN9CyrPfhgB8JIqiMd9QonCiKPoPAGcCWOex+k8APD9v4uIoin6GuH3k+eX5DgAnlkK1vUVRdDvit8R+iPgc9/UMgJ+Ppy4uothFiN8K8v2lS4c0ZW2LfWVJFEUbEP9S/knEb4f4GgLwv8jXFzqJougqxMdLjyJtsw3AP0ZR5P3HqNLD0NcA+KVvGeMVRdF6xG8N/RD5w7IfB/DqKIq+ErpeFEbpjy8vR/4RJG9CfE0K9RYjoih6AMBJKM/VZ/MIgBdHUcQRMImIBD4sIwogiqKd8PuLd1Z530P8hsRnMHb+nqcA/BeAhVEUvSOKojy/iFBJKUfHEYhHxbPtw0HEb0ccFUWRVwJ3Gp8oiv4XcajhB1CeOFzbivgh0XFRFJ0TRVG/5zb/B8ChAL6B8kT20moA7yltL8hoYlEUbYqi6FwAhwD4JuI31lw8ijgU72wAvVEUVS3XUekB48GI38z8E8Z+0LcD8ds/70CO0QrZVyaiKBqKougTiENvP4L4ga3LA9anEZ8jFwCYHUXRK6Io0gPXhKrj9xCHn109Rt22AvgOgOeEeJsqiqLNURS9EvGbP/+G+E3itagcglmIKIq2ls7jYxB//7EeSN6DOFfjQVEUFf6gm8an9MD6ZMRvG4/1h4K/ADgPwMlF5EuMomglgMMBfAr2P/KsQ/xW3MLSCNBERCSYKPLJO0xE1VQa2ewIxPkuZiJ+XX4j4l+alzd6GFG9KQ37/jzED2RmIP5l6inE4RJ/jqJoew2rR4oxZl/EvwTPQhzWNQjgScRJ7W8tjYgXcnuTEOfYmoc4x9Aw4nxLK6Ioujvktix1mIM4DLMbcZ8wGfEDhmcAPAzg3vG+1RaSMWYa4txYvYj7sTYk/dh9AP4W4rxiX5lW2u9LEJ8bMxGHwz6LuK2sBXAvgLVRDW4GjTGdiPPq9SFOcj6E+LxdhfhYBT1v601p1NdjET/c7EGcw+8pxPvgL1EUralh9WicjDHPQfxguBtxbrCtiP+YsjzUH1KMMZchfug24qYoik5SyzQhvj4+F3E72434ejVyP8NfBImIMvBhGRERERERUQNxeVhGRET+mOCfiIiIiIiIiCin+ca4jRpV554Afh1F0UtrXY96wodlREREREREREQ5bQPwtlpXIoBPxGHjJDDBPxERERERERERUQkflhEREREREREREZUwDJOIiIiIiIiIKCcDvoE0UfG4EhERERERERERlfBhGRERERERERERUUnDhGEaY6Kjjz4693p33HEHfNarpkcffRT777//+AoZHEx/bkkObdScTBuTXcSzz6Y/T5mSTA8NpedNmpRM28okd8PD2fPkPt6+PT1v9+5kuq0tPU8epzJR5LbxlobpJmgPIJstkD43dDNubk6md+1Kz9u6NZluEn82GhhILyfPqSb15yX5ub09mdanjF5vvHR/LL9n0f2x3rb8bqG/ZzXo9iTJfSmX0/tA0vtArmdrP2Qn96PtmBW9T239T4gydP/T0ZG//KLJew4gfT7o/SH7wp07k2l9HyPp+5i2VrFBvYGMA1BEH7k7fzWCkW1GbmvmzJl46qmnRj93dHScuHjxYssZUnu6/cjvw98nJq7Vq1dj06ZNPMLUcBrqt+Dly5fnXscY47VeNb1t6VJ869JLx1fIgw+mP3cnI7/u7JgxOm177nH77enPhx+eTG/alJ7X25tMt7YkV77d6mXFJqirYgbf9XzL0Mv6kOWHKE/fJEvyuN19d3qefMi5YEF6njxOZftD3k3291feGIDdXTPgI8Qx9Ckvz7EooszxbquehDgeruW7lrdzKF0n2Vxtv2hu3Jie99vfVl7ullvSy8lzSv8SJ9dbtCiZ7lYDb+v1xkuerroesj8ORR4nvW353Xy/p29fndUH5ynP9uBLti25nL4eSvrhhlyv7CGA4/6yXWtC97O2bVebrKfcj7Zj1t6Wrq9PH2PbP3rbWfdUeltZ30WXofufE05wK98m9PVr22C6PHk+6P0h+8J165LplSvTy8l9ou9jDuvblr0B8dnWT8nzMs/f/7K+ty7D1u+GaINy//j+/dL3XA7RfiTL3/YLuX6F5rs/QvelRd+fhTJSzyVLFte4JsXj378mJh5XIiIiIiIiIiKikoZ6s2yiimBGn7zb/hpp/UuBepVBvg30tHijoqcnvdr69cn0jh3pefKvhfqNDfmXoZaO/H81A8L8tcrnL3aa71/6Qmxb6uhwe+PhmGPGvamY/HOeJdbD962P0PvHl+2tjBB1lOeC/otpV1cybXsjquj94/N2jp7nu63Qf822/eW5rS37HPrrX7O3Jd/wmT8/PW+vvZJpHdYsj+HkyZXLG4vrG6ryu8h2pcvQXN9ocaW7CtcyrN9TvhmtrmVDjm9Gu7YzvVxLi9t1SJ/bWeQ1VevrcyvD9l2KvsbW0xsJkjz2+ljIt4jmzBl//2NbR7eXrGV9307LepNsrHrZrmWh34K3vd2u+z4Z/ijbvz6X//QnywblAdadX0anoBcLwfZ2V9Fv+WS95arn2X6HcD32edqPT/vXbUR+H3mfVJbOoE77JlfObUQfYPkLmKVhb0z9rhfmPsyZ9RXt1mK3TVQwvllGRERERERERERUwjfLiIiIiIiIiIhyMuAbSBMVjysREREREREREVEJ3yyrAwZRZjy5c5y5JY5d5inTI17KPGU6P8Dq1cm0zlMjh/0uYmjzEKMHhcjF5JrjoYjRcbLy8+jUALbR1pzbj1ixiNwbrsczRF4FWxn2fed3DG35qWSqCb3tGV35R/KzCT1i1VhlhsiD4/Ndde43SfZZQLpvOumk9Lxbb02mZff59NPp5aZPT6b1sV64sHIZNr7tX+ZK8m0jeXLduNRD8z5/LQl5fEd+c+WaB0q2Jd0O5Hmu26Atz5H8PHdO2NFltSB5q3SyMJmgTe4UPRxs4IMYenTZMaUOYjr/Tta+tOWOstW/iBGafXNVZdF5U2WupClT0vOy7g9ljkcAOPLIZFqO4h0Xon8wtjy5Vn36gDzb9rm+28oouk8MwVZ/zZaPzbWMauYzc/1uefZBqo3onSASSMt81HoxnVO1qiyNstFzzRHxzTIiIiIiIiIiIqKSPf5hWXNzMxYtWjT6b7X+szCA888/H/PmzRtd5nnPex4A4LLLLkNTUxPuuuuu0WUXLlw4WkZfXx8OP/xwHH744TjssMPw0Y9+FDv0kJNERERERERE1JCaJsA/KtcAL/MWa8qUKVixYsWYy33hC1/Aq1/96rKfz5kzB5/5zGdw1VVXVVzvhhtuQHd3NwYGBrB06VIsXboUl19+uXP9XF/fdn3NXg7xDaTDAeTo3ACwdWsyffzx6Xnydd90mIn7a9JFh9zZhAh781nP9zVy11fwy8Oswr7+r0PgZPiRDi3xCZUpIpRWsoVBOZendvJuEZZjOzZ63paByuEdecJrfI/peJcD0vWU0Vm+IVKu31tGfmm28DgRyQAgHTYp+z7d18njpkMtQ7dxG1s/6x5C6bRY9fX1OS3m2kda94cOJZTUAc3qf/R+lOfvnDnZxdvm2YQIP/K95qXW0w1eHDdb+b7bdt3/ZWF7oQU+caodliT7wSLSZshUH642bEh/lv2zjuItIsVAVvm+96mu56gtjUBrS/VSh9SSbI9AdioRnRJBmjo1/VleE+V+rIasY7NtMH0ssqLWgfR52enY3ej7ffmux6JFbmXkEeL3F6JGxBY8Tqeffjruuece3HfffdblOjo6cOmll+KXv/wlNm/eXKXaERERERERERFRHnv8w7Lt27ePhle+8pWvzFzu/e9//+hyr3/960d/3tTUhA984AP47Gc/O+a2Ojs7MW/ePDzwwANB6k5EREREREREtVPrEEqGYRajXoMyqma8YZgA8A//8A/4zGc+g0ceeWTMcqIoyltFIiIiIiIiIiKqkj3+YVklb3rTm3DnnXdi9uzZuOaaa8ZcvqWlBe973/vwb//2b9bltm7ditWrV+Pggw92rkuIPFOSjpOXuSEWLMguX+czk+V45X1COp4/xFDqRbDlzPKJww/xXXTOJvlZ5yOROXLaPXNJ2chj75rWxTcXRy1z3KXyHKmEGzKPT0tHZ2YROr+EzzD01c4Z4bq/5Pmr85F0eubIyfretvxEug3Kc8OWL8qnHech66HP3wULku/W3pbdj/ueX1KI7+Z6rdFC5Im0lenMcrGx9U22Ost8OTrfkjzvdbo0eTxaxXQ1czRpeXI2ZectDF9/Wz9oa9ch8r7a1qvm9cuXLWeZT71CXGu2b09/1veY4912nvuM0HnJbFzzafnmFQxRZojvaWO795HtQOdY1jlDpXrMx6kvNfLexXo/qNNq6puqEn3OrFyZTB+1yK/9yHotX55eTn6fInKiEdWrOuxeau8HP/hB7nXOP/98/Pu//zu2yqz4wsDAAN7+9rfjzDPPxPTp08dbRSIiIiIiIiIiKgDDUx3JnGWLFi3Czp07U/NbW1vxrne9C08++WTq5yeffDIWLlyIJUuWYO7cufjWt75VzWoTERERERERUQEMap9vjDnLimEaJYeWMSbyqasxpu7zhL1t6VJ869JLAdhfHQ8RmmFLzyZGgQeQHWqp+b7+HGI48xDhACFeKy96W7J827Dbej/6hMgWEQJka8ch2ngRIS6Z4Tv6/Xk55r0m3rvf3J/+bvJYyeOki3c9v0K0LVuZRR8b33Yhw79s+0qHv+wccgtxdO1jXJfzPr4P3p980LGoojHpfSW3p7dVzdAw13a2ZSA7xM4WpppVXhGq3YeFDovKU15WqCWQDgOS4ae6ndWyDRYdhmn9ciEEuFGql3shWf7fVmWf5/pe1DV0sZrXqFqG1drUy/Vcc92ePJ30ve6uXcn0pEnpefL3FX2dqJVcfYq+MZBE7oadvXNHp2+9Nb3Yuecm02tWj/846f7+7ruT6WOPyV/+4iVLsHz5cuNVsQawnzHRhbWuRAD/AtwRRdHiWtejnvAhIhERERERERERUQkflhEREREREREREZUwwT8RERERERERkQe+gTQx8WFZHYhgMmPbQ+eP0qlu5FDMOt1G0bmSOjrGn1vBNe9QEYoerluuJ6dd91s1OOdyEckPympvycNS7dxDTnRDk8l6dJIHsQ9mdKXXy9q2LqKzwy3Pjs6JNqOrevlnbOvIHFR618k8I+W5vNz2j8xP4tpXVKpLpsA5iWw5m6zt8dprk2m1E7Zc8IHR6VtuSa8m8//Mn5+e11ondwDye9vSMhWRT9FWflYbt/VLRfRZRfeDtjZoywmo7yeyVPvanMWW+9PWz1oV/eV8E7rWuQUL0p83bhx/maFz/NrKce0rqs2Wc7Da+RRdy5NlyNNJ/n6i2VJ8abXKbeldvu5T5sxJZllWW7t2OPkwNJye6dhPyTq3taX325FHOhVBNOHwISgREREREREREVEJH5YRERERERERERGV1MnL8eTC9uqyK9ewibG2HSI0yfbKfNZ3Kw/V8tp0yrbB7DAxW/mur/y7hrK5vrJd9NDdIdoZgPTOs4SShAiXCFGGT0gpgHQsoZ4nY31kuCYAtLRW3FSeqBtZ564ut/BH32HVfdunLWxYcg1PlLsbQGofN+mZ/f1J+d17p8sf3JZ8KCvUUjEPvvsu1a7f8pZkWnWEss2cdFK6TFl9/VVk+a79Wb2EGwHuocC2dYoO7QyxrdD7PE95tlMjRL1soZGyXftuK6tdVzu6Metc0/Nc5dkfrsvedntSDx1y1doS9v5EL9fT47YPHl+fXk5eVotIHZLVfvKU4bWe582ua99XT328az8ul9MpBOSy3ikXaklU0jXE97jj0p8fe6w5KaOlOTVPhjn39KTXc003UC9pG+qVAd9Amqh4XImIiIiIiIiIiEr4sIyIiIiIiIiIiKiEL1VOELbX+p1fvR7Ykv7Bpk3JtI6PEOFNqSFrxKgtel7RoTG+r8XLV7TlVwbSX80Wvmbbtn4lXJIj/hXx6nuI0I/QoTahtuVapm3UJHnsra++O4aUlg3fZHn/P0QYr43ctC2UKqtOetu+o3+FCBtOlaEP6Lp1ybQOgxX9VJM+bnJoSNcdZOEbouNcflt7Zvnyc7v6KqFHKwuh2qHkRdTFlU8/5Rs2FCLMM0h4mT4PbbHA491WDr6j+vlsL9Q5U82QODlybrVD11y/54oV6c+LFiXTs3vdypCpN4B091/tkW4zWQ6AbcRaeWsOpL/bjK5kup764KzOT//aIUdntLVP17ZbT6Gortu2haLOFml29HeToZeuvy8SUWyPeFh2wvFH17oKVpMnT6l1FYiIiIiIiIgoJ4brTUx7xMOyW766uNZVsFr61UdrXQUiIiIiIiIiIgIfghIREREREREREY3aI94sq3cGkVOceJ6cQa75kFJ0Th9bHp+sBCsFJ7ooIpeLLFMOQ67n+eZs8s2fUMs8KY3AdbjxEG3G+Vh4bszrfB1DVh4W337EpojcH5nr6X0sc49ptkRQBfZVofZHiPwhofuRWuauc53XiHlXQjRH35xcwbeXIwegLKOjI3w/Uqs20ohtUOY10kL0aSHyXem0uFkpRG39lK15hrgP05zzBnssB6RzefX26qUTReem8r3PyOr8bOlhQ+Qf9D3WRbSR0PLsn/Xrk+nZlvZDtKfiwzIiIiIiIiIiIg+m1hWgQuw5r6EQERERERERERGNgW+W1YEIxilUIM9rtUFCb1pas8sTr027vtpd7eHebWVkrZcnFCZEeEfoMDfb9wz1yrlPGeNdJxTbtrcMZL+afrCM9JOhfQCwaVMyvWpVep4cx12HCy5cmLuOIeQZNjz0uZ2nDTqfX5aTdretD3MUOnTFNxxONrtly9LzjjsumdZhONU837YNZodAt7aEDdXKU0Y1j71t20WEK7tuux5DhbSi6yjPoaefTu+rWT3Zx8m1HYToKzZuTH/u6alcpm9fWnRodxEhcHLZBQvS82ypMrLKyLMPstbLcy77bLva4fpSEf1I0X2fTUOkNBGd08PrWlOzDujLqP/gYPrzL36RTP/wh+l5+qZBsIXu+tiT0sHQnoEtmoiIiIiIiIiIqIRvlhERERERERER5WQANNe6ElQIvllGRERERERERERUwjfL6oBBlBlTb4v9HhhIpm1DLIfQ6DkMQuc2891WPeVtcy1PtjOZggsAOjqSZWd0pct/fH0yT6ZWOKDPqRrefPexHk4+M4+DzpHV3Z1My+RRQHlOCUkm0MmTLK9OuOZyCdF2qylPnaqZj6qlJSn/1FPT83TbHS/fnD4yfR+Qvi7N6BIz9Hmxbl2y7a6u9Dx5flm2LYXIqWQrx7fduu7XDRvT5T/1VDI9c2Z62UmTkmm960LvH5ta5cAcq0xJdrn33JOeN2lRUobej9LOoey8fNLDq9PLZeYdQvp7f+hD6fXkub5gQTJv0aLsOtqE2P95+visefrnss1PmZJeVvYjttyHru2giPytrkLfr/luO88xC53zzlUR98u25WqZV+2uVUmesjPPTM+T99l33/2F0em2tvenlvvv/3796PSL39GVmmc7hvJefd99t49O77PPXqnlPv3pZPo5z0nXcb/9kml9P6J/NyBqNPX3mwoREREREREREVGNNN7rDEREREREREREdYBvIE1MfFhW52xhPq6hl0UMSZ81L1T4i2v5tvU292dvT+47WwSca5hVNfnWwzf0QO4r/Xq1bdh2WyiLK1mmDAfVn2Wkli1Mw0a3A/m9ZeiNrkdHR/L6/MBgesjvTZvaM8s/oCt/2yo7ZjKcLUAsnut5bpunI+y2bk3mDQ+n583uFd9Hx/hmfTfVsEL0P758wlN8+8GmgS2j050yngwAWrpGJ3W/t2tX8nn69PRqTz9deVt6Ods51bTpydHpub1dqXm7W1pRkS3mOUdIcjX75yDhU/q4ic+725K+Qu9/HZaWVWRZs8jYlbUMNyorX3aoq1en5y1cGHTbW7cm0ytWpOfJbmXBgvQ8uR/Xr0/PmzOn8rayfj6WT3wi/fnSS5NpHeWfJc+5kO5m/c6hbYPJenr/dHVVDm/V7UC3eR/VDBEsetvW+zV9osv1VJ9bzX0iQ2l37EjPs3XxIa6jRYfS2uoYIkx1/vxketmy9Dx5a3T99Uno5S9/mV7u1a9OpresPzk1z1Yvef98001J6KVuZrKO+v5eXtJtx5eoEbEFExERERERERERlfBhGRERERERERERUQnDMImIiIiIiIiIcjLgG0gTFR+W1YEIZjSm2xoLP7QzvaIIDPfNKeaau8Q1Rt91WPVKZY53OZ0saUZXEkRfdMy83HR5zg5Zp0KrUbavtgwk31vnH5DDUcucRLb93Wo5nnofZ6XQ8s01oVNaLV+eTMv8Yqee6le+bbmWlsp5VzRbKiY9T54rOdI02Tc4Tr75NuQxteW10+dGqh/RO1YeYNl4VeKe229Ppvv60se+pyezypnfVbdPuWnZDmxl3P9gejmZvyjIIVu5Mv1Z5HZav35G5mqzpm5Lf/7rLckHWcnp85FmaaDiuP3twXS+nAcfTKaXL0/2icyRAgBnntk5Oj13jvs1SpJ9sD5Ooa9D3tcTXRHxWZav+9mWjurdgufJZxYiV0+q856v250b11yFMi/W61+fXm7q1GTacphSfToANK1/PNlW7+zRaVueP9s+1rnOXvva7HlZ8hwL1zxltvYv+zRdR9drm1zOkpIriDz3ID7tuoj7zZ//MinzssvS/WxfXzJ9wQXp9Q4T+feKzutlyzsnj6m+fD3wQDJ90EHJthctSi9n+50kBHkN2bQpPU9es9rD3naVyky+z4IFqn0OJtft53UkF9WOjuemlnvf+z6WfGj7pPO2ZV91wgnZvzOEuI4SNSI+BCUiIiIiIiIiIirhwzIiIiIiIiIiIqIShmGWrH9qGy780h9x+70bMXlSM/r2mYqvvPd4HHHuz7Bg/y4M7hzG1PZJeMern4PzXn4wAOCyZffh/V+/Dfv27IXBnUN42ysPxXteF78We+nP/4Zv/vQeNDc1oWNKC779oRfgsAMqv6NsELm9wpojVut3NybPQWXYQNnrvYFfndWvLq9alUyrKEkcd1x2aFvWK//W+uo4PVFok4p9cn3N3HXbMpTBNqRyCNZ9oHZyR0f76LR+9V1GvxzQl0z7hkm6hsK4Lqfp8JeTTkqmvcMYHbmGYNmO9cBA+rMMUZPRR/rVd3lO9fZmb7tzaHP6B7Z4USFEH2DbP7YQJkmHcLeK0EKbgw5KpvX+37gxe70dO5LtTZ4sf55eTu5Gec4A2e1ahsUAKiRLd5JyA7aGLOfJjhVIxatcf33mLGDAEv9ii6XSXzyjXvp7yzYuQ3B1eI3cBdsGs0O8bGGArn1A06q/pX8gT7gFC9LzMgq11cPWf9r6Dtl1y5AcAGi68XeV6wsAixcn047nfJ4wK7m5QXVsOjsC3D+kN5CeF+DiKUOYWm+9dXR6ljq2u094QcUqAfYQ2dR9hwjD9KXb1nNXXCG21ZdMn3BCZhlFhAG6hufq/ZPVR9rKs53LtlQfvikdZNi27upc6+waIuh6bPT9grwcfvrT6XnytNch7lnbtoXY+fZvrYNbkhnqOtcqKrnvvtmpAuR30ftApg7xvW9xvY/X9yqFhyCKL9u0YkV6nkw9IW4Wj1P7Z8GCT4lP498/retWp2fKE0efKHIH6euQ43VpIuAbSBMTH5YBiKIIr/zAb3Deyw/Gjz9zKgBgxf2bsOGp7Thw307c+V9nAQAefmwLXvXB67B7d4Q3nXEIAOCcUw/AN95/Ap56ZhCHnH0VXn3KAdhvVgf+4cXzccGrDgMA/M/vV+O9X/0Trv3qabX5gkRERERERERE5IQPQQHccMfjmNTSNPpwCwAWHdyN/Waln5wfsG8nvnThcfjaT1bqIjBzWhvmz5mGJzbFf8Xs7EgScD67fQjGmIJqT0REREREREREofDNMgArH3oaRy+wvLssHHVIN1Y92l/28zXrBzC4cxjPnZ+8XvzNq+/Bl350F3bu2o3fffN0p/J9X5/XrwEvXpw/PMUafrd6dXqeHtauZLYKm5i9MAnn2daxd2qeLcIiaz9Y66jfPxdfXIf2yH1iG7XKJwSxqyu9LRlZUhZq5jliVta2bTtVDzQm94HvaKpZy9nkCfOUr+Fv356eJ0c6LGIknqyQhaefTi8nR4DS55o89vqtdRmyJk8vHSIiw2f12+wyVOCUE7JD5fKMcBeaa4iO3q/33ZeEEB9ySPLzHtXE5T6RIVcA0D7FMqxaT7K/9Hkp+YT42s7rsoPoM1ycDhcUDbQ8xEh80KGtslOQfYdn+JsOHzzppMojm83tvyu94vpke1t6D07NkueQbeQ+5+NkG1JQh+YF+Hui62jUcpeX9ZEy1FJzPFaufYAtjNoWhizp8Cn5uWw0SdsGQpD7x7If08cmx3EXHXmIlAVyBGsA6Dz11OSD2D++o5a61kuvkz4P0+utWeeWPkGPUivJyHIdzi37FVsZrvvEFkGWp8ys5fKMrqmP9wh9iy33v+7CUtdAxzZo+876flnSfXzqe8uGoU703W3J9XyK6h/kovL6pX7tUOGm7uH6PvT+CVGm3Fc64nxwKBkReoa+WRfh4zJcXLfjxx5Lph9end4/B/Tlv3dv0g3Nlkej6FwoRDXE1p1TFKU/X3X9w7jhjidw35p+fOdDL0Db5GSXvuPs5+AdZz8HV/76QXz6B3/B5RedXOXaEhEREREREVFRGK43MfG4AnjOAdNxx6pNYy8I4M77N+HQvq7Rz+ecegDu+fHZuPlbr8D7vnYr1j+1rWyd177oQPzyptWBaktEREREREREREXhwzIApyyejR27hvGdX947+rPb//YkHl2/NbXc6se34l++div++ezyUdqOP3wW3vDSg/DVH8cxUw+seWZ03v/9YQ0O2m9aQbUnIiIiIiIiIqJQGIYJwBiDX/zbi3Hhl/+Ez//nCrS1tqBvnw585T3Pw0OPbcGRb/gZBncOY2r7JPzz2QtHR8LUPvjGI3DUG3+OD5+/CN+4+h5cf/tjmNTShOlTW3H5RSdlbj+CccqLkGfIbDmku2vOFCudZydruHcdRC8SCbRDv3WXzAsy1LklZt41Bc/j69P1kF9b52qQfIdB9/neeshv+czbNhy4rf6ybckcWUA6d8bMmen67rdfMj27NzsXx7p1yc/1sTigL5nW7VMOFW47hnJbOmeTLUWRa24RmWurp8eSc00dgLa21srLIf3d5HHSuSxk/XVbSqXgKThnhG/eM1v/U96WE/I4yrxwZduShehGYtuA4Jo70Pd7ppZrac2cZ+2fxXplOazESXvuuUtSs/baK5n+2+p2pCWfZZ4gfar55muR16FOeWno6ksvKI6TXAdw3682qf1oyYul27hsPjLvlm5mrteXPPkaUwLk8rLlo7Kd27Z8jRs2JNOy+7HlVLLy7MNcr6ODLUleIM+0fOWyCtIXIsedUHaoO5I8QVl5NAH3Xed7Dtn2l0wXe/fd2cvJlEc6H9VW8bfpsm5b7Msm/UUd87jJeXnyUXnljs3B9bjJdqHbSIhcebZ8WpItb2Tqy1i+mOXXhJRNKuBH9sE6L2I6XVq6jrZ7X6nw/K0DW0an+wc6U/OuvTaZfulLZ6fmzV6U7DBZx/nz09/zxhuTaVuOsrJ6Zd3D6mMoPtcyDy5RtfFhWcnsnr3wk8+eWvbz7b9/c+Y6559+CM4/PXlwNrtnL6z/1RsAAF993/PCV5KIiIiIiIiI6oIBw/UmKh5XIiIiIiIiIiKiEr5Z1kBCRFn5DjfepEMI5HvUjq/t2niHhwYmwwkAv32uv4ttqHPbeln7QL9+Lj9PnpyeJ8PXbOT31PtAyhO6IuslI1Jso09rWaGQQHr/yHrZ6q/5vEpufcXc0mBs27JF6MjvJkPqgPKQtSyur8UXEWrpGqKs2+rC8tSQYxZSti1LyKOr0EPG28KnXMPhWtrS4ZRNYuYBbY+nV+xJTrgdO9Lly/6iqiO/BwgrzCNEiJSsclX3VSDOoYqD2Z937EjPk/vEdm2Q82z9g962DJ+y9TFNQzuTD/oEk6kghuTFM90GbWF6WctpqXp5tvGytip2SpP4Lrb7ihD3T3lCE23HfvnyZPqkk5Jpmd4BSIfulu26K5ZVXhBI5yLoSIe2uXI9piH2q+u+0z/37auz6mw7vrasK77blee2Ps937Uqm5X2jJeK2bJ7cX8FCrEMTX3z2gytSs17+8heMTk+dqtZrq9yX6PDSoxaNp3IllsYl07XokPxJk5Lpri7PdANEdYpvlhEREREREREREZU04N9HiYiIiIiIiIhqj28gTUw8rkRERERERERERCV8s6wOGESjMd2+OcX0ejIfhGuOKNdhtwGkcgE1OQ4nrNni2H1i3EPkk2htcd/HWXV0Xc6XLY+DzvXhM5x8d3e6/rY8ETKXxZaB7P3f15dM58kp5sr2PWW+NJ3LwpbbInTePJ33Q+bmaG5OpmfOTC83PJxM9/Tk2IBHYqU8bTUrh1CefsSWk66vr3IuI9ccgKHYciVJrvvON9+VdT2Z4G3TpvQ8sfN6e9O5zmSZqfrrMlyTU3mqVY7Ksch9Uu1258p137meo7qdyXxCOtdQ1n2Gzkclm8z8+elty+3Zmpbs3tavT5cxd44oxHaiWDZg2z+uORlT66l8id73AY7nm618eW1ua0t/N33P47Mt+b3l9QpI57/KygEIABs3JtP6nrX9wQeTD/JiCWQm1LLub534Vezj3eq4ufb/Nj79W557uaJz1LVC7GO9uzMqpsuT7W7r1vSyGzaI4h3zo+n9I+/zZJ8FAD094z+GNq77f6hr79Hp1gXpebPatiTltfnl3gtNfy95bHT+SnlvyhxlNNHU590fERERERERERFRDfDNMiIiIiIiIiKinEzpH008fFhWZ/K8vmoLG5BRNDLszRZm6BvFtW1QvuKfXcei2UIDQpRZzeHFbWV6jkjvLE+oYjo8zm29PGEfPiEQrvWoNdfza/r0ZNq6D1SBPvsuTxh40eT2ZAiHDgVbty6Z1uE727dnl28Nac3gG2JddPjO7o4kbKNJN3jRLlptfaS8AMjYKVVGtduIrW/12d7OIfcQRNdt1TKMNMQ+l4de3wfIsDo9TzYTeV7qMMxFi5JpvY99+nVbKL+1jTh2unlSXtRKnuMu+8Gi7x901yH7ZFs0ty3dQ6oB6U5eFOS8Tyx9pOuxt0Rylt3j+PRhXV3h7yNtrPcLvrkDMuoxfXr6u02dmkzLcMq1a7PLs93XTZmSPa+IsFqvEHfdiYnOtV7DGOU+16dhEb8DEdULtmgiIiIiIiIiIqISvllGREREREREROSheexFqAHxzTIiIiIiIiIiIqISvllWByKY0Rhv31h1vd6sWclzUBknr/O1yHk6H4nMQaJz/8gcA645oeop102WesrZFIJPnZuGdqZ/YMlX5HrsQ+T7CZEHwTYseRE573zofZonx9t45dkH1cxRkZW/DACmTUumdWqVSZOSaT2c/HjrUQ1e+9g3v4xlPd9zNHROtyL2v+wTfHddiJyAhcj4crq+LS3Z9WoWfyrXfZO8R7Dlo9J5rHzIOrfXaR5KqZ7uF+T9WhHkd50zJ92WsnKkzZmT/izPvbLz8KSTkmlLUlXn+zfPE912TyyLbPXMfWhbTt67++b9k3z7ohD3yPqeJrW/RK42fb8mP+uccXKf6DYX+lwM9XtaSoC8cKHZ6qvbeIj810T1im+WERERERERERERlfB5LxERERERERFRTgZ8A2mi4sOyOmAQBX9NuKcnmZavxOoh3eWr8Fu3puc9+2wyLV8/B9LDycshhIsYijmEokMibK+mh3ht3TUcK9f3zIpJVO9M+24va7085YUIW3INFXXlW0f9KroMFbCFh1ZTniHRs469bf+EOA91GT092ftf9mmyzwLSfaEthEwet6L7Kc0WehPCxo3J9NSpybba2+onhCx0aLzej0WHiBQdemk9vxy/nFxPh2ROn55MT5mSXk+GotlC/UL3wVo1w8Bdt+1bpyL6FNf9v2UgqbNvKFtW2KUuo6Mjx3kdIo43ALkf9f1y0UL0U6GvxUWQ37O7Oz1P3icV3aeEUPS9kFYvx5dhlxOfMaYJwLsBvA1AH4CNAH4C4ONRFD1rWVWWcRqAjwI4AsAOAL8F8IEoih5Ry50I4DUAXlDa1iCA+wF8A8CPoyiKxv+N7PgQlIiIiIiIiIiIbL4M4EsA/gbgnwFcDeBdAP639CDNyhjzKgDLAEwB8H4AX0D8MOwPxpjZavF/A/D3AG4E8D4An0U88OiVAL4d4LuMic9/iYiIiIiIiIioImPMcxA/IPt5FEVniZ8/AuBrAF6L+EFW1vqTAHwdwFoAz4+iaKD0818BuAPAJwAsFat8EMAtURQNizK+CuAGAG8xxnw1iqKVYb5dZXxYNlGooWGaxDvKLS2tWYulwiufeio9z/aauR7JKDTX14nr5bVjXz71r5dRG8fiE6ZXROiKrcz06ErZo3jJ0Zvy1FGWr0OZs15V18vN6HLblq6X3LZtdK48ZWbxHQ0wNfKq42iMeluyT+vvR+Y8WyTPpk3J9F57pefJETV1GUX3P1m7xLe96/WyRjWupz6lmv1/ta8hIervEyqd5/jKNqhDn3zConyvX0WPmFovI2EXEeptK2Nzf7K9ZcuSn595Znq5Tkt4Zeg65VGrvkqGJwO1DT1z7UcaoY90vWfS4b4hwjKLTjkSum/S5RWSrsVRI/7+VYT6uXMq1OsQp2j7ivr5dwB8HsC5sDwsA3AigNmIQzZH79KjKFphjLkRwDnGmHdEUbSr9PObdAFRFO02xvwU8dtoCwHwYdl4Hf2PP6t1FaymTO0ZeyEiIiIiIiIiouo7BsBuAH+WP4yiaNAYs6I0f6z1AeBPFebdCuAUAAcDuGeMckZe29kwxnLjtkc8LFv8ubPGXqiGHr1ida2rQERERERERER7pm5jzHLx+dtRFMncYLMBbIqiaEeFdR8D8DxjTGsURTsrzB9Zf2TZSusDwL6wPCwr5TV7G4CHAdyStVwoe8TDMiIiIiIiIiIiqmhTFEWLLfPbEY9eWcmgWCbrYVl76f9KZQyqZcoYY9oB/ALAXgDOGAnXLBIflmVYuWwl7ll2D5qam7D/kv2x5LwlePiWh3HHj+7A0+uexiu/+Er0HBSHTz55/5O4+Zs3AwCiKMLRrzsa846fF75SOoBfkkl3lKbe3tHprq50+5M5AHTxMifD00+n52XlZwiVP8InP0m95Byp9ra9y884iKH2o2ueBZui951rPp6WFrd2rc8h15w+sh76sPjmNfLJoeKbC8ubY54y289t33PmzGRa5ucCgHXrkmmZ/2SHunzLzzpPStF5anzaf55jGCLPi+u2i+bab+Wpo8zntEvcjs3qqc+8kdXsL4F0+7HdnoRuZxrz5fiTfZrMRVvLHFx5uN4D+uTBtbHtny0D2deo9rba9R0h7u2KyCsryb7Cto/ztE/nnF/9m5MP8gYBSN/MLVqUua2i+yKZh7WjI3x+wyLUy/WxGvaQb7oNwN4Z89rEMrb1AWBy3vWNMW0AfglgMYDzoii62VrTQBrkclhdw7uGcceP7sA5l56D1vZWXPnmK3HEWUdg+v7T8aIPvQg3/0f62MzYfwZe+aVXoqm5Cds2b8NP3/1T7L9kfzQ17yGnDRERERERERFNVI8DOMwYM7lCKOa+iN9My3qrbGT9kWXvrbA+UCFEUzwoOxXAW6IouiJvxX3xaU4F2/u3o72rHW1T29D/WD8AoLW9FdP3m46uOV1ly7dMbhl9MDa0cwgGpoq1JSIiIiIiIiIqzO2Inx8tkT8sPcxaBGB5hXX0+gBwfIV5xwHYAuB+VfZkxKGXLwawNIqi7+eu9TjwzbIKot0RYIA7r74Ty3+4HAtevACmyf4A7Mn7nsRNX7sJWzduxcnvObmYt8rka8CAV9xDd3f6c2tL8tquDjWbNg1inlu1dBVlNfQ8Gdqph+FudQzztIXXyGVdh3BuhDCiPK8029bzCXUNIdRw2rYyXcuX6+n22d+fTMvwFFs70+eJLbwyq4667bseb9f277u/iwjT8BnyXoe4yD7GFiap978MZ5Bdqa0Ps9XL9Xvr8mW9iu5/9CXDtX3a+PQxefoAWxtxLd9GLivPeSC9v+S1s+hQpKL51sP2vS2ZIFL7rj1HSGaIPid0SgdfrvXYNqj7t/H33TbyHnDx4mRbut/z6aurzSckU68XIkRT7zvZt9rKkP2Nra+2p3Twu78KcXxDnzeu90xjybrPK/s9Q+5YvZPlDcM46uJC70dZZ9nP6vsdG99rbAj1ct2jYK4C8GEAFwKQoXZvRZxr7IcjPzDG7ANgGoA1URSNhFbeBOAJAG8xxnw5iqKB0rJHADgJwA9kHrLSg7JfAngJgAuiKPpuId/Kgg/LLI48+0gc+tJDccP/uwH3/vpeHPqSQzOX3fuQvXH2N8/G02ufxo1fuRH7Hb0fWrKe+BARERERERFRQzPYM8L1oii62xjzTQDvNMb8HMA1AA4F8C7ED8KuFIt/DsB5AE4GcGNp/V3GmHcjfuh2szHmOwA6AbwHwEYAF6lN/hDASwFcD2CbMeZcNf+uKIruCvcNy/FpzhjaprbhwBcciA2rNjgtP32/6Whpa8HTjz49OgAAEREREREREVEDuxDAagBLAbwcwCYAXwfw8SiKxnyVMIqiq40x2wF8FMAXEY+M+VsAH4yiSOcrGxmZ89TSP+2TAPiwrBYGNg2g/7F+dO3bhSfvfxJd+3ZlLrtl/RZ09HSgqbkJW5/cimceewZTZ03NXJ6IiIiIiIiIqFFEUTQM4P+V/tmWOx/A+RnzlgFY5rCtvtwVDIwPyzI0NTfhN5/5DUyzwbR9puHY847FI396BH/89h+x/ZntuPbiazHzgJk47ZOnYf296/HXT/0VTS1NgAFOuOAEtHX6jZVuzeViC1Bfv96pfJmfQuvrS3+WIftTp2bPc6XzD0yalL8MW16mPOuF5lu+zE9iy3dl25Yt30CevB1ZZdjUy7Dnku+x0G1a5/fLqkeIfGPjXWc867mWGSLXWZ5cVVnr2fLB2LpIfT7tu2/l5YaH0591jjEpxD6X5et8M1l8j4VrH+OrlvlOQrRV3X5kWwu9r4D6uX7Z2Ooo989kMQj8Y+rvwnK/yhxc1VB0Pp4soc7RasqTA2m8dLuSObq2bk0vq3PaSiH2V+h8bHnyhmVd21avTi8nj43MoVqEou8ltNA542zL2fLHNckDoHeyaKBF5N21kXXu7XVbh3nCiMLhw7IM7dPbcfY3zk79bN7x8zDv+Hllyx588sE4+OSDq1U1IiIiIiIiIqoDe0LOsj0RjysREREREREREVHJHvFm2TUfuib3OntN3ctrPR/dnRnxXmOR72V3dWXPc3xPPU8Ik+tyMsTIMvKyN98Qr9ChGb7hNCFCCKo5zHe1X893FSJEUIdO1DIcRgrx3aq9bR+u7cB2XGxh5lpPT+Xt6bDLdJikc/GZfMsIcSxct+0b7m7jGhKep8/y2Sd5vkvoPkBvW7YtOd3eVuw+yMN2jZVkqJxOsRAivM+2bRnC57rvfPebbf+HOE9sba7okNIiypR1tvWlttQeWecJkG5bPiHbY80LfX+oy8sqv6Mj+37ElhrA1n5C3w/a+NaxbugGKT6H2I++9+3tfhl+vFT7WkNUrxqhyxq3tSvX1roKVm9burTWVSAiIiIiIiIiIuwhD8uIiIiIiIiIiEIyYG6riYrHlYiIiIiIiIiIqIRvltUZ75hw23jCARIE+OawkZvOkxMtq/w89XDNE+E6pLWtfFdF5Pzy3Z5PWwuRyyjPdoveX677J0+OE1dZ+6GWOcpsfHP12M7D0Mc3Tx2z5um+yNZ9ZuXgyZOvxZbLMdVn3nJLMr1gQXrBbre8l7b9L+ftHHLP31ftPs1n27blfPJq6v1hu7bZzkudJzFLLfexZPsurWKfdHX55bop+nsWkbMpdJ1rmRfINyea672Wa3vXeeey8p4VwbeN+LbxrPUKvqUvhOw/9XGSKcCKztvpewxt7cynzvVyLo8l9L0o0URTH3dgREREREREREREdaBO/z5BRERERERERFTfTK0rQIXgw7KJwvO95hBhaK7yVLERXv/1CeXUy7mGboXg+mp6Pe171zC6IoQOMa1lCG7R+ypE6Eq1Q7Cy9k+eemT1aXn6Orns1q3peTJ0pVUuuHp1ekEZB6iHvBfqJZwvj2qG8Vp2Xap/ti3ne67Jw6u/l9z24KBeL1lWh6/VozyhbK7H13Y8QiuiL63l9TdrH/uG3Zfp70/K2LQp+fmcOenlZMNWcc1N4uRwDeUsgm8YoE8/Fep+2adthTgPbWGYteTajm37v4iw8loeQ9d7oXr63YComhrvzpmIiIiIiIiIiKggfFhGRERERERERERUwjDMejA4CKxbF093daXnyXeBbcO05Rl+rUDVHknIV9aoN+Wvjlevzq4jzoV6Fdo1/CKEEHWu5Svgtax/6BFNfVV7lE6fsB/f8JFahorK0MsNG9Lzpk5NplsXLkw+6DDMwDHctRxtzXfkWd92Zuv/s7S2FBsOmoeMXmuvk1AnzTbKXHoE0vR+1LdDyVL1s/9DkN9n22D6u8jwtXoJg7LWwxZ/J0ft1Z1MiOEShXq5blZje673h66jlmo+oYv6EIbeB6FCHEOUIesi+2OdVmHSpGRaj6A8JEagtoWs+rbrEKO712u6lnrSXOsKUCEa+w6DiIiIiIiIiIgoID4sIyIiIiIiIiIiKuHDMiIiIiIiIiIiohLmLKsHu3cnge56XHgZvG4LZLetJzeV4/loiDwg9ZQ3wkWe4aJD7B9bvpysuuih00Pk6nHZbiXVzMVR7W3XC1uuidA5JGxDhTf6sQg9NHue8m0mTUq2PZK6csScOcl0W1dnsq3589MLul4b2tp9qpgqQvcPMn+Xa5/Y35/+bLvMhc43o+to6+8yc/CozjNVou1aXEAyuF27kmmd76q9rXrnpe0ckvNsqVe3b/fbtu34urafELkJQ/SRrrlL83DNZSQ9vl5vK/nc22spY9Om9EyRp2x314zs7YovHmI/2tqgbxupJd/26fPdQpxDRfDJzebL1n70vbP8bMtBqvOUSfKyoc8v1zr68mlbO4fSy+k8nnsiA76BNFHxuBIREREREREREZXwYRkREREREREREVEJwzDrjQ7hkO/36vgUx/gR11fai3jF35v83uK7FPHqdZ7Qy/HSYVZy2/oV7ax66VfAWwPUX5apm6Bke43cV4iQF9fvGeL1/Dxct1cvoSV51gl9boQY9rwRuUbab9yYTE+dmg6nbLcdC4/QP1uYiW8koSxDh2HutVcybdsHRbOFCDb1b04+6C8gv5wOQ5MxNX1946leWZ3qiU+oHwB0dCTnsy0Et5phdKFDf/OwhTO59n3lKR3crpW33Z4s99hj6XkLF2aXn7oH0e2/q0tUpDVz267h4kUc+xBh+KHTFORZJ90dpesh79lS/VmOtCL1eM2tZRigvkfWl4MRWalOAGBgIPuzPGWAdL8YIp2Ea9uy/S6gv3Nvb9iUIET1pE5vu4iIiIiIiIiI6lv9PVamEHhciYiIiIiIiIiISviwjIiIiIiIiIiIqIRhmPUgipLgdp20wzLsvIzZb61hohdbnLwt15A1vt4jSU614+Rd8yjJr/LEE+l5kyYl07acZVnTANDVlWy7vc19H8hyZB23b08vt2NHdhky30wR+z90rqo8eTqy5MmZUs02Wcs8Eb5DutdjbosQdbTlU9Hz1q9Ppm15TGQqIJ36qr3FkhzFsf+U39uWq8S2XnmupGQ6lZJIXa6mTk2mi2gTtvM8qx+00vvUllvUI9Fj+T7Irr/cd7bbgBB5mUKwHQuddyirben2KXNylR8av+tjFlv/ECKf0FjbG68NG9Plyev7Qw8l02vXptfbd99kes6c9LzWIbcOQx7DIdUPttcyWaEj2zEMkdfRl23XZdWlHvOQ5aG/l8/5lec8TLfd9LzJk5Pp4eHsMuS13nbM5HJAkFSXzmTfqr+nvAeReUaJJjo+LCMiIiIiIiIiysmA4XoTFY8rERERERERERFRCd8sqwfDw0m8jR4z2BLCIV9D3o30kNyuoQFZ64zF5xXuXKEfBb/HXnR4nyRDRGTYpaZDS+Rr2vJ1aFu4pi9Zhg67lKGjOkxMhmN05o82KpMnpDHruPkezyLOk4nE9XsXHd7hu/9DhFfa2qCctoWI6Hm281ee9zI0o7dXLSjPPVsspIX8brLP0kXYirPNk/2ZDkGpdthSFl2P1PG2xWvK+BTdQXd3Z24vqw26ho0CQCt2Jh8GVb3Ejs4THu1Sx2qztUFbiJRzdJ8tTtiRa0qKPLLuVWx9kW3/6Ov7unWVl9tnn/RyPT3JdNn52i9uDHSMptiXttPc2gYHtmRvPONYFRHyL8vYNuh+nWv16N/yXEdDR7A2De3MnLe7pTV7XsH9SDX7ojz7X4bC9/cn0/qeXl4mZs1Kz5Pn18aN6Xnyet/W5tfH+KRLKA93T6affTY9T9a/EdJtEOXBN8uIiIiIiIiIiIhK6uTvuUREREREREREjYVvIE1MPK5EREREREREREQlfLOsHuzenQSRO49dn1btmPDCt1cvSWwssvKH2OL1e3vT8+ThlrkO9Dy5O2z5fvLkCsjKUSSHwQbS+Ri07duT6Y6OYvNVuOaQsOVysZ1ernlF8uSyqMdcDdXOJxEi11k185345nYKQQ8RL1NYyumbb04vd87ZovHKxChqxSbH5Da2xXQeE9f1XLv0InIOWo+9rVOQ8+R+lQnkgPSXK0soN37WfWepvm+fWaQQudNk3h7A/RA+/XSy3qweVQ+xk3O1wVWrkjouWJBdKctBTN1LrH88PTOjPeXrL5NldQq9rFR8On2urEbZV5F5+iydgC0vopU89/R+lTnSHHP02bheH235nELkECviOhSizHq8p6kGeXxteYOzrtkA8OCDybTsKvSyum3Jy438PWHRIr/7fdu9ruxbbekBdf5iooms/p9IEBERERERERHVIYbrTUw8rkRERERERERERCV8s6weNDcn77dahpn3tXMo+7Xa0OFxeV7z9gnPKqJ8Xz7114fXNuS9fBVbztu1y7WG7kPNy3nDw9nP0HV4gRw+esqU9LzOjvxhb7Zj6BvOJ/edfnVcng+t6tV613ZXSz71CvVdssI28pTv2j5dfh5y21lyRFY5k2Xo/kGebzJEc+1aS4G2EEF9AstlZQiTjh8Rhoay978tNCnEvgrSdvVBlJ2CrqRcdt26ZFrvx4ULRyd3t7WnZrn2b67K1pHhgy2tqVkbNybTkyYl05bD2xD0IWxtSfbJTtU+dXqDEWXHwrGBlu3/W29NpmVsVY4GnyrTMYwxTyie3D86/FGGlMlpGd2oqyXbFQD09CRtvpBrpTxHLTFwzn26Z0cu25YtHUbRbNdK3QfLrypTZegyUp8dQ4YrlZO1nC1UWm6uXu61bPWwhTG2i3ah067Mny/npdeT7WnmzPS8DRuS6QceSKYXLcquh5Wl/buGENsulXretsF4P+yuj0NLlBvfLCMiIiIiIiIiIirhm2VERERERERERDkZ8A2kiYoPy+rBlClJjI16BzbE6GtFvx7uO8pc6NHvin592zeEpmlgy+h0qzoYLSJkR7+WLV+nl1EIMpxmzG17hC7q17BlyI5rqKivIo6hLQzziSeS6R070sdXfu9Zs5J5PT1u2wLSIS/1El5QRLiybxmuIWqu/WCeMlzDR6QiQglto8i2Y9vodFtv0lecc+hd6QVvFQ3bMhpmWZynjFGTJ76O5RGfO1V81k6kQ/8k1/3lG17mTIab6v0j94E+geX+kt9bxTHq0MvUPMv3CR3qrQ+bDJPfa69xF1841zQLtnal94EcOfaMM8Zfj7I2MmvW6GSIe5rdXTMyN+c7oqxt27LMffdNpnW0o6zH8HD2PNdRpXONzCjPUdtwngHY6mU7FjLUVSt6pGfJtjt8jlMetpHH5b2XTiUyfXr16uUqxHHR4e4iWt8axqtH6p0ypfJ+9f6dytJIXK/F1Qw7Jqq1PaK5H33s0bWugtWUSdm/bBARERERERERUfXsEQ/LFn90ca2rYPXoDx6sdRWIiIiIiIiIiAh7yMMyIiIiIiIiIqLQTK0rQIXgw7IMK5etxD3L7kFTcxP2X7I/lpy3BLf+4FY8+udH0dzSjM59OnHiu07E5I7JWHfnOvz5P/+M4aFhNLc049jzj8W+R+w79kZKokmTRvNU2IZzLiSXi6Oicy64xt4XkW/Jpx7WMga3pX8g8+XofBsi143OYSA/y+micwXoPAsyR4LOB7N9ezKtc5xk7TvffRziWOt0RQ89lEw3N6fnTZ6cTO/YkUzrXBy2/SP3icxfBoT5PtXMheLLNy+Ta/uxreOz7Wq3T33epNyyPClfnvjf+EZ6ueOOS6Zf+tL0vJF8mAB2DqW/S6tsvLaEPPKzOgFa2uojjYD1WNs6UHkAbAkbRd+9uyXMd85qM6HOXVl9WzsLfW9RdN9jK1/npfzhD5Ppl73MrQwr3X4OOqjiYvo64ZuLySfvn2Y7vln3GZrcr/oeIfQ9Sdl3sZ2jGXRfJ+vYZKmwa54mXUTo/IN5yO3pdqbvO5zoGxm5Lcf9r/ePrQsO3X5sx1B+Ncevkmt78ljY8pPq/iG1rNr/nUPJ5wULkpyGtjaeh8+9enub+33SyH5uYvZ7alB8WFbB8K5h3PGjO3DOpeegtb0VV775Shxx1hGYs2gOlrxxCZqam3DbZbdhxU9X4Njzj0VbZxte8tGXYK+Ze2Hzo5txzUXX4NzLzq311yAiIiIiIiIiopz4nLeC7f3b0d7Vjrapbeh/rB8A0NreijlHzkFTc7zL9j5kbzz7VDzUVPeB3dhrZjzU1PS50zG8axjDu4Yrlk1ERERERERERPWLb5ZVEO2OAAPcefWdWP7D5Vjw4gUwTelI5Puuvw8HnnBg2bqP/PERdB/QjeZJzWXzxsv2SmwjhGPZFB3qZAvfDFFmqgwdB6Jj/2Q9xHvgO1vaM5fzfl1cv+stZyEJJUqFKKj9IV/j16E8RYeH+hyb8nWS+uvwkQPLT+FR++2XTLvufx29ID/rQyFfyZf1ChEKPJ71ssoIESKep5+qZdi5jxBhOGXryUbT3+9Uxm1PH5z6/NCPk+kFC9LLHtXdlXyQJ7AtFjtA7Ipt/+QJJ8tatqztdCWhK9YwooK/W+hzUm9PV98WNpbFFmauZe2uItIluJahr1GvfnUyndoH+osFuICl6xim/wq973zboNw9+riHvscsaz/z52dvvGDyu3mFNGKsVBZJmVOnJj/XYW6+vI6NrRPw3P/y+xRxv2Cb59Pm82zbJ8VDrrBsce1vmZNcy/SvFjLLS57uzDdFRda8Rrt3C8UACP+bP9WDPbNFOzry7CPxhv96AwaeHMC9v7539Od/+clf0NTchPknzU8tv3nNZtx2+W14/tufX+2qEhERERERERFRAHxYNoa2qW048AUHYtND8SP8+397P9bcvganvO8UGJO8bTawaQDXffY6nHzhyejcp7NW1SUiIiIiIiIionHgw7IMA5sGRvOVPXn/k+jatwtr71iLFT9fgZd89CVomZy847pjYAeuvfhaHPPGY9B7WG+NakxEREREREREROPFnGUZmpqb8JvP/Aam2WDaPtNw7HnH4mfv/hmGh4ZxzcevARAn+X/+25+Pe/7vHmx5YgvuvOpO3HnVnQCA0z55GqZ0TalefWs4VLuUJ1a96NwuNq75hbz2q87pIPP/WPI96BwDtlwxWfLU12dIen1cQuQpKzrXgdzlc+ak58lDo3OJyHm23D+2XC67dmXXK2vf5cn3U83cEL55/6pZR9+8jiG2FyIPS5mFCyv/XCYnAVKJmqaqdiXbvE5FJst5vD/JmdihzoXOjuwTvV6OvbMq5zySbO2ziLxeMi9OXR6LAuicZeeKgclT+8dyfc2Vc02fiyW6f7cd66JzKvm0M12+72kTIh/t7o5Op+W8c0J5yHOtsd0/TJoUvGrjV3AfGaKv8+3PXL9aEb9TOZ+zupGUXbhjthyVRV9rbBo9/+x47DnfdM/Ch2UZ2qe34+xvnJ362Wu//dqKyx51zlE46pyjqlEtIiIiIiIiIiIqEB+CEhERERERERERlZgoimpdByfGmMinrsYYzHnOnLEXrKHuzm7cecsdudfzHVbZtbwQZbjyfS24mq8We5PxfbYYPkehXmlOh6RYYlJEHW1tJET7sfFt77b15Ne2HYpqlu8bhun66nue4xIifCeEaodEuAq9T2zH0LktDe1M/0COL6/DOUQcx2+uT7a1YEF6sblzxt8/SyH6e1uZofoin/pX+xoYQr2cC0XvgyKOjU+ZecKUQt+HFXHuhVAv94C+fUeIPt5nuxNZtcP3Qrcf336jliGUWdsdz7ZHylmyZDGWL19uxli8YR1qTHRZrSsRwHHAHVEULa51PerJHhGGuXbl2lpXweptS5fWugpERERERERElBPD9SYmHlciIiIiIiIiIqKSPeLNskYWIvTM9dXZar+e7xM2E+oV+SJH4ykrO8DIQt77WIZkqditnUNJma1yngrJDDGaVQghRtixjRZXhNaW/G286POwmueC5hsC2mh8RwW2rdc6sDn58KtfpWeefPLo5OOYnZp1663J50WL0qv19VWe1iMKNoIiwl9cr0O2dUKMdMiQrDB820WIa42vrHa9ZSBdJ3nOFj3aZr3yHXHUNrJziBC4ou/BQws1qr1PmSH2cZARWIvog1O5FFrHX14gWW28XtojUa013tWQiIiIiIiIiIioIHyzjIiIiIiIiIgoJwO+gTRR8bgSERERERERERGV8M2yOhDBjMaM++b0seVa8c3l4pMDQKtlroai83Rk7Z9Qw7YHz5OicpENDiY5EwbFtjo73LuFEN/VN8+Ijzx5KLLqladORdffR6h9XC+57KQ8fViI/i3EOepchswrOHVq5mLqNMfgYDI9MJC97MHzx5/nyzdvnk3o9lNEH2wrM0ROH5lfUqWeTOel1PTCDtvy5ZsTytn69cn0unXpebIh9/amZm3Y64DR6enTk5+X7UfXevX3pz4OzJw5Ot0+HI1O57nW2HKRyXr292fvY5kataWluteo0OdonnxsRfPJW+hbfoj8aDUlz0N1IWqSDVmffBnrNanldlvyfPn8nmM7R4vOT6ev0/La3NGR3QcUkY/NZ7k8+6ch2zKRwDfLiIiIiIiIiIiISvhmGRERERERERGRB76BNDHxYVkdMIgyX1N1DSMqWtHhcb71aLTtVT3kISMMxzZrog0Z77qe5nJOjlWGS3l56lFEGLVvH1N0eEoW3zDYEOey7dgX3VfvbOtMPrz0Fal58lyeu25Nat4/vDSJYdrZMSM1LzWSvWPoVp42ETyUPIA853yIUF1X3tuSB1/H9tSJ4P2P5bpmnVcAESFobbkylLa1ZfxtXIYmjqXofryWqRSkWvYdIVQz9YlWy/3qynX/FJFWIcQ+kGGkupeydVvVTBnRiPf/REXjWUFERERERERERFTCh2VEREREREREREQlDMMkIiIiIiIiIsrJgG8gTVR8WDZBuA6BXMuhkrWih8l2LdNnyGm9rM+28qznKk++ATnUfNPgtuTDYPaCeXI6ZC3ru49tbMOB28qTeWQG1fdua0vmyXwStrxGeerleo66KiJflO+54bpcNXNCuSpiSHTbfnTP2eS4f1asSH++8cbRydYXvjA1q+VlLx+dXr06+Xl3d7qIzo78+e981bIdhNi27/6xreec48oxX1eeviJE7kMb2Qdbq9/bW3l6DLNC9zFdXamPu4ejcRcp66Vzkcn92u74tfX3DJGb07W8EGz7wFfoXF71kscXqJ+cYqkTOE/uwIz18uxT33twVyF+X7H1kbYchKFzHYf4PaRe7teIqoGtnYiIiIiIiIiIqIQPy4iIiIiIiIiIiEoYhllnfEM4XF+jDfW6dujX4osI76j2PvHhM+R64fUdGvJarZZDU1cznC/PK+y2eoUIcaxm2w3x6n6eMM8QYaQ+ivietvJd6+Ic1TJnTvrzpk3J9FNPpWY1De0cnR4cTIa19+wCnPddqH489LnuG4acp0yqnWoeC72tVnH+NnoIUz2dC412HdWy6l/0vtLqJZVIvQr9PfO0VXk9liH5vvcSVBzu5YmJx5WIiIiIiIiIiKiED8uIiIiIiIiIiIhK+LCMiIiIiIiIiIiohDnL6lx/fzLd1eWXKyBETgcb1yGJbfN884uFyJMVYtv1kjsqTz12Dol8SG3tmWXUMteB67Zt+0CWocuT+R9aLUN3+9RJy1OvEHzyRel1im7X1cw151sP17xqvvtK5iNxzUtmbUuLjkov+9GPJh+6ujLL7OvLrkeIY+Nbhm0fh86dmWeeFPoam+t7DQ4m021tmduz5aFzzofnKM81xLZt57yd4sttHmhNzbrssmT6vRe63Y9YqR3ZdPXVSZmve/34y1dCXAND883b6c3SSfpcQ2qZc81WxxD9iOwOAGDr1mR6ypRkusN2v2PpLJo8O4tq55LNUi/56WrJ9T6mXurbSEytK0CF4JlARERERERERERUwodlREREREREREREJQzDrHObNiXTlgiamgrxWrkv1/CpepFnHxT9urh+XX9Ep2M44liKDlkIXb5vOK4v1zBJ13CMIurvs/+L3j95wlNCn0Mh+pTyOrntY9djUdYPzj/Yab32Fr+wn9Bhh0WEa/qu5xoGGDp0xdqOdcctczXo2KqOznHXJbMeVVgvK4x0aCi9f9ohw8bSYZhZ1znfdtukC/ynf0qmRRimrUzbtncOubWf0KGzeYQIR8/Vp8h9rkMEZZtvSY699VweGEiXIcOXLWGeNr6h/D5s3003z4ceSqa7u5Ppg+eHCQsOsX98lnPd1kTQmnFt9v2eWwbS+1WeQvX4exNRrfFhGRERERERERFRTgZAc60rQYXgI2QiIiIiIiIiIqISvllWZ/RrtdOm+Y326Doykk8ISj1xDvMZ2JL+geW1e59tWV+zt4zkVExYlxs1cJpT+UWHRbrWw5eO4Eh/zv5u7W3jD1mo5khaobYXWp72E2Lf+YxkWe16OI+AObgt+bByZXpmb2+ynJjWdqoQtZaWYr+ba99RzZGF81znsupf9LlmLU83GMeO3Ddsr5qjzLluq2ywvrbky83oStfjX/81/zXWOtqsCm1tOvPMiusVcf9Uy9BLG9djL8O/PJtxOjeJXrEl3b85lyHjE63DRGar5v2yLVRX79dUlKqYZ+3DLA2tiP45fYuc/d3kcjrc1PWw2UYItp1f1ezj9bHZNph8fvDB5OcLF2aXaWuP27enP8t9x9EwicrxTCAiIiIiIiIiIiqp079TERERERERERHVN76BNDHxuBIREREREREREZXwzbI6N6sn/7DMeYQexrqInEreOVP6+5Pp1avT87q6kuk5c5LpHLkasupV9j1Fma7DwmuuuUrKtr3+8eTD+vWpea0yT4eY3on21HIyN4SuR3pe9nDUvnnzspYDslPB2crQI8bL1CXTpqXnTZ2aWYyzeswblodP/oo857nPPN88Gnn6JtflXOto24+yTeq8Pa0YqrzgrbemF5R92OLF6XnyROyYUbG+ANInszpRmuRnlRNtd1u6v8hSNzkN9XeTHYlOfCM6Ftfy8/RhXvtEd8LyWlZlWbmG8uwDV/Jrd3bo8sefY8m1XjpXUvtll+Xerm1b+vCGrr9N0eeovCXL1WzlTvE8R1Pz9MYtN1iu9yfy9kpX0SsNmm5o8mRr68xcVH+V+fOz59VKed5Oz1yFGWzngmves/J8ZtXLq6m3Le9TL7lETH91Z3pBy7kg98n06W71CNWPj1xyh4edVyGqK3XSdRIRERERERERNQ4DhutNVDyuREREREREREREJXyzrB5EUfLebY73pF2HvPfl8wqua6iinucbqmV9L1u+86/ft5ahOFnxfAXQ1ZCbsw1j7Vqtsn21alUyrUNRjzsumRZhmLZd1dycnvfMM9l1lCFlrZ5Dcst5OoTV57DZ6jhlSva8IrieQ6G3Ve3Q0NDDj9v6mDz9Twi+IcTSunXJtA7XmTsnI/xowYL0grKvU+HWcr3WOZYTQJ7ougwZB6JOjKbeYk8Un32c65ohOzx90ge+HviG1BWdZiHEeSKbT0dHmPr7KOK+SK7XXvB1IQTbbZFORSDJ49baUuwxy3N9TYV696bDvn2O6U4Vjh7iNJf7XO9/r3ZnuRFr7VAbsITXu6aocBWqb3IpQ2+rvS18eLdkC2e18dm2La2ILV3IQw/l3hSA9D623Y8XYeS7RVF1t0sUCt8sIyIiIiIiIiIiKuGbZUREREREREREHvgG0sTE40pERERERERERFSyR7xZdvSxR9e6ClZTJk/OzFlWy1xDrmx1lJ9tuQ688yDYEleJPFxlyYBkwgzP5FRZ9df5KoZEri2di0DmAJP5v4D015FfRVfXmn9ADpGu8xzNmTM6KXOCbN+YXmzt2mT62WfT82Rd+vqyq1F0O3bNe9apmoH8rNugzF8h89QUkbPDxta2QucjsSkiH1iI/EL10i/a+4BkWqeikflIZP4yAJg8OSmzpyc5R5sWL04vKHOWabLT0R1QVmLE3t70crIDkn0KqnuN8m1zqXyHOl9RV/Z6rrl0XNYZi2t+T9v28lxjs5bLJylz+/bspWQ/69uP+NYxfb4l2wqVk7Lo3JM+uV1bWrLzIe3alV5veDiZlvtElxHi+0yenD3PO29twVy3PXdO4Drqe1bZx6v+vjXA/ayrerne+rLlIpPXYr371WUvk+1XEnn51f3ljh2VlwPSh/TNb06md7e0ppYrIiddiPJH9l3BKaGJCtOwTXfLli245pprsGbNGgyq3z6MMfjYxz42+nnxRxfr1evKo5c/XOsqEBERERERERERGvRh2R/+8AecccYZ6M/4a7p+WOZj5bKVuGfZPWhqbsL+S/bHkvOW4NYf3IpH//womlua0blPJ05814mY3DEZg1sGcd2/XYeND2zEwaccjBMuOGFc2yYiIiIiIiKi+sfcVhNTQz4su/DCC9HX14fvfOc7OPzww9Ha2jr2SjkM7xrGHT+6A+dceg5a21tx5ZuvxBFnHYE5i+ZgyRuXoKm5CbdddhtW/HQFjj3/WDS3NuOY1x+DzY9uxuZHN+ffYHNT5qvT9frKs0+98qzjHNpje+Vcvket36l22O5YsuqlQ7C2bk2mH3wwPU+GJegwzCw6Qsoahjl/fva8jH3y1FPpz489lkzr3S3rIiO1gDCvXIcI9XMtX4fHyePoGiKVp43Xa8iaK9f6F10PG9cwtNB0GIX8u45uZ3pZSYZmyPXautKhhE22GJH165Np20kpyvANxfDdx0WHEuo+WbLtEp/v41vHEN8zRPl5yH03aVIyrUOMOjrcUjUUQR57Od3eFiasPMR+Db0PdHkypLKnx6/MEOHWvtu2ca2XXE6f87W8z94ykNRLdtXd3enfa2bIPl5fRALwDfV2WcdXLY+LDle2kfWU9+N6X8n+R4Y/63mayJhSlk3FlfU8ERtvslwQbWW4ziNqRA35sOzee+/FT37yExx9dDG5yLb3b0d7VzvaprZh85r44VdreyvmHJn0WHsfsjce+eMjAIBJbZPQe1gvnnnC8WkHERERERERERHVpYZ8WDZ37lzskH9yDyzaHQEGuPPqO7H8h8ux4MULYJpMapn7rr8PB55wYGF1ICIiIiIiIiKi6mvIdyMvuugifP7zn8eWLVsK3c6RZx+JN/zXGzDw5ADu/fW9oz//y0/+gqbmJsw/yRLiRkREREREREQTlkH8UKXR/1G5hnyzbNmyZdiwYQPmzZuH448/HjNmpPO3GGNw+eWXB9lW29Q2HPiCA7Fh1QYAwP2/vR9rbl+D0z99OowxY6w9fj7DhruWl2e9apP12jmUffq2ttRH3iTbsO0yN0HGmBQAyvO8TJ+eTKeHdM8uo+z4yrxklqQIsv4yvwwALFyYTMvcCbpeRdPVt+V4CMHnuxUx7Lbk2t4nghA5cqQi+jpZR9ke9XkuU8zo81d+ts1btSqZ1qkIO1vEBvSJIfsAvQHRyF37yFrmwvM9hjI/lS2PTCMMbV90H+PL8VJTOL0P5PXMlocydE63oo9TEfdytvsu2YcNDKTnyXyl+hqV6scHtyUzbJ2dJ+f7ZVkPIP3ldC7XwJ2CPm7yvm/16uz1ZszvCr7t0OulU6ml19E5AkPzaf+d6lDre9/QbKlF5b7TKekcUy5bWfdPgDbumneUqBE1wK1huVtuuQXGGHR2duKee+4pmx/iIdbApgH0P9aPrn278OT9T6Jr3y6svWMtVvx8Bc747BlomdyQu46IiIiIiIiIiCwa8onPI488Uvg2mpqb8JvP/Aam2WDaPtNw7HnH4mfv/hmGh4ZxzcevARAn+X/+258PALjyLVdi17ZdGB4axqO3PYrTPnkaps+dbtsEERERERERERHVmYZ8WJbXNR+6JtfyQzuHMLxzGB3T4ndfh7YO4bqLr0PnzM7UclvXbh0tu6unKzXvT5f8yXl73Z3do6+t+r6uWq+hGa5sdbSFdOiQR9cyXdfxeW1dhyEMiXAGW+SBfkVbhjzKMAddRlYoWCyZ1+r4qrUOtbSFKYUIYarlsNLyeLe1+dWj6PPLVr4t7CR0vXxfrXetfwjVfv0/K/xan8tyGHrb2DQ6/KK5OZm+5Zbs5Z63WJx8uhOwxXBnDBlvOy4DA+nPskjfsGzXdhDieOr6y92l65/Vp+Xp61zD++RyvueMb2ihb8izXLZV7JPWou8sdRu3HBBbigTJdR8U0cf47P/yXSDKGEjn821yjPW23UvIcEF9Dsn7EytZqC5EdJq7W1pTs1xDs53vg/WX27Qpmdb7J0AMnG2/ynQbRxyRTE+aNO7N5uJ7nyHnbd2a/FymHwGA9t7x1W+iC30dtR0n3z4rdKj6RMS9MjE11MOyXbt2YdKkSVizZs2Yy86dO3d0eu3Ktbm2s3r1apx++ulYuXJl7jr6WLr0bVXZDhERERERERER2TXUw7I777wTS5YsQV9f35h5yYb1nzVy6Ovrq9qDMiIiIiIiIiIiqh8N9bDswAMPBAB8//vfr8pIlNViEDm9Fhti9KaiR4TLw1oX8a56e5tbeFCebVXzFWL5Fn9fX3qeDNfSoQzytexavv6cVY94ni0EtHIZmuvr/7awED2qkQ/fNhJ61MY8ihhVLXT51lFYHUP/XNVLyLlt1KuNG9OfZf+g+wAZoiP7Dh3BtGUwCVvqhIrRtJ2YctjOVEz4jLJFs7YtQ0aKHh3X9Rqo66hHGpZcw51CDIpXy5BtV9UOZfYKHbIdDB2jLJZtsqwnt2XbByFCAvP0dVnLPv10+nNPj/ggwwoB+2iPOu9CBln+1Knpedbrux55coSuo+g8mjrSBYYIX87aFgD7iMGOZB31qJZy98+cmZ4n+3i5j/OcdyGu4a4pHWzbmjIlmdaXnXpJFVPNeuS5p5TNzjbquWv9i/49wRYJXy/3YUShNNTDspmlq8z5559f24oQERERERER0R5v4rzGQxJz0REREREREREREZU01Jtl0pNPPokf/ehHuO+++zCoXrs3xuB73/tejWpGRERERERERESNqiEflt1333047rjjMDw8jGeffRbd3d3YvHkzhoeHMX36dEybNq3WVQwmxBC/Uqg49uAx6TrPiCRzjuQY0t01B4ONT74HzZazzCfHjy0PQp50G1n7J8+xTS+b3gcyp4GsV56cOHKezI+mFZE3zCf/Q558GFnLTrh8D/Lc1okuRHKvan9vnzyPrm3Xdqxljhog3T/YLl2nn55Mr1+fnpc671euSs+UidB0fiKZ3EscpyaV12h3S5ITrbk5u466G5f9W4i+1JVMxaY/63xyqTxBA1vSM9sqJ0MMcZ7nYeufXXNtuSrPRTP+fKi23JPyc1tbgPsTSzId1+tEqHxRrlzrsm3QcVv6xkKe55YchnKW7Vy2pUG0FppVYA6F5NGUdfHMWdY0tHN0+vbbW1PzHnoomT7zzPR6vnnKXIXOXWXrf4rOWVlNO4ey72fb28L+XubLtw8LkePalleNaKJpyDDM97///ViyZAk2bNiAKIrwq1/9Ctu3b8d3v/tdtLe34xe/+EWtq0hEREREREREE5gB0DwB/lG5hnyz7Pbbb8ell16KyZMnAwB2796NlpYW/OM//iM2bdqECy+8EDfccEONa0lERERERERERI2mIR+WDQwMYMaMGWhqasK0adOwSQxBvXjxYlx88cU1rF39KWII4eBl2sYhduT72rFveJDPK9X6NfUQw3rbVDO0TR8yn6Gk9T6WzUI3ET18fVYZIfaBbxk+w3wXUX+bwtuIjIHzDHEpgk+YrWvYg628p59Of5YRUjpEULb5Bx9Mpm+8Mb2cDNGc+8ADmdtGb2/6swy3tMVgdSRhRfq8s52j8nOr5dD77v+s9fR+lF9z1670vFQdLdsuItQ7K/uAvk4U3T6th75yJOqY28uiyxe3b6mI4bG2nclrpTRbHxyirfq2H9l9TpliWVCf5/KEsMTKyWOjzyEp1y7OWHh3R2fmKkXfy5VdhyxhmD7H7dBDs+f53gNKm/vT+0BWWe/uEOkkXMuwXd5DhAXaFH0fI8+N9gLCTV3bdRHpDFzT9ri2gwmXSoT2eA0ZhtnX14f1paQthxxyCK6++urRecuWLUOX7SpPRERERERERESUoX7+zJ/Di170Ilx33XU4++yz8d73vhevfe1rccstt6ClpQWrVq3CRz7ykVpXkYiIiIiIiIgmuIZ8A4nG1JAPyz73uc9hx44dAIDXvOY1mDJlCq666ips27YN7373u/HWt761xjUkIiIiIiIiIqJG1JAPyyZPnjya3B8AzjjjDJxxxhk1rFF15Mll5JMDIMRw6d55Ogoec9qWEq2InG5Z2/KN5ffJO5GnzHopT5cxJIbv1scwK29K+bHOboMhcgGFUMTxlULky/E+t+UBqXI+Idfv6rv/fY7VpEnpz319ybTO2ST7jnXrkmmds2zRomR67sknp2fKvlX3s+Lzzq69K24XSO+ftja/9llEzq8snR3Z5e8cStdf5swC0nmUurNTGXnRfZPMg+NbvmteOEnvf9lH5jlFfY6ppQli+/b0PFmXEDlyis49WTTZRmz5AYdUG29paU+mLeW75qfT55Bsx3rbki1Diqy/bI+FsCRYdb2GlLWJliTj4XPnb0vNeu4Csb0AHYlMAwqkzyFb31dEzqn0cRt/GbY+McSvCa6/N+lty7ar951rPx7id4FGUO28u0RF4xuDREREREREREREJQ35ZhkAXH755fjRj36ENWvWYFANr2SMwUMPPVSjmhERERERERHRRGfAN5AmqoZ8WPapT30KF110ERYuXIhFixalQjIrOeH4o6tUMz+TJ08ZfW21iDCxIsK6Qoc3NYWIcVHk9lpbxh9+kSe8L6sMHb7g81p2Ea8010uYiSZfu29vcwutUs/OU/vYN4RMyvOKuc++8z2XQ9djLM5lyjhDC9f9Wu3vGYKs14yu9DzbMZVt+dRTk+mFC7O39Zf1s1Ofe3vFtKWOcls63KXVM3yk6DBnn/V0/yD7dduthOt5qZeTn3V42Yyu/PXX+9SWUqDoMGRbvbLoS71sn/bQwuwyZb/uGi6e53u67sdqhhrrtrNlwO+4Zd162eqvj4UMny2lE65IhnnqezIZvmkLAy86bUaQ41ZwWpED+sZ/v5/nPkMuq9fLCv221cP1PLe1gyK4tjN9Ddm6NZmWaRZ0/W0hsjau/Yrr/aFezjWtjm2e6+9KRI2oIR+Wfe9738O73/1ufPnLX3Za/pavLi64RuOz9KuP1roKRERERERERESEBn1j8KmnntojEvoTEREREREREVF1NeTDshNPPBF//etfa10NIiIiIiIiItqDNU2Af1SuocIwd++OY6S/8pWv4FWvehVmzpyJ0047DTNmzChbtqlp4h1y11wcY61Hfsrj8JNp12Nhy7uSlfuhGmrZRlxzbNjyaNhS3tn2eVZ5IZYbS4hcOnuKauYCylN+1rK++ZBch6TXKXFs82SeINt36+gIv4/r8doj94f+XC9tK0/OIFtbc81FE7rP8S3f1lfrPEGSbPM++0PLU3/bsQnNVn418yHpPsaWT9SVaxm2YxPiOmE796p5HfIVol5F5EC25R+U1y9bHsd62f+6/cvPttyfUhE5E21C9PG+v+cUkJKaqKoaqglPEpkToyjCm970porLGWMw5PobMhERERERERERUUlDPSz7+Mc/XusqEBERERERERHRBNZQD8suuuiiWlehcHmGfvcdyt5nuRDl5xHidWtbeJNr2JtcTg5Pb2PbVnuxI4rXrWoO997Zkb1c6FfR9bbzKDrs0+ccyvPdQoe8hAqbkVz7gKL5hnHJ0EhbqIosv7c3Xb4tRK2aIWT1Is/1qtqh2VlC95++57kWev/o66Mt9C+r/KJDLV35hoNW+zysZtsNca9YRH1DhO7WixD70fc7285Def3yDcsr+j4jxLGW/VQRKTuker1m6766XusZmgFzfk1UDXlcd+3ahWeffbbivGeffRa7du2qco2IiIiIiIiIiGgiaKg3y0a8+c1vxtDQEK688sqyeW9729vQ2tqK73//+zWoGRERERERERERNbKGfFh244034gtf+ELFea94xSvw/ve/v8o1Gh+DaPQ11Wq/uu8bnuU6L3QIZREjgoYIJamXkAvfbYWoo2uIV55X3W0jKMmw2HoJaQwR6tcoIxG6jgRZzTY+nmWz1vEJRQ3VV7S2VD5vvn9ZerlTT02m587x6yNd62hTdChttfnshxD9bBEhgr6jDrtuq5oh1TYhRvosuh8PkZ4iz7Z9Q9V9lrPZOVQ5rBxIX9/1vKbBbcmHgYH0vK6upF4trZnbtrXPVPkqhizru+ZqI7YbGflZblvthCL6jhB8Rgt1vQb63muF+M71sh+LKKPo3/uIJpqGfFj25JNPYu+99644r6enBxs2bKhyjYiIiIiIiIhoT8NHiBNTQx7XvffeG3fffXfFeXfffTdmzpxZ5RoREREREREREdFE0JAPy04//XR86lOfwl133ZX6+d13343PfOYzOOOMM2pUMyIiIiIiIiIiamQNGYZ58cUX47rrrsPRRx+NY445BnPmzMFjjz2GP//5z5g3bx4+/elP17qKuUQw447/LiJPkGuuMGc6V4NkGUvaOZZfl+87PnVgIfIDhMh/Uq85BmzHd3AwmVapStDbm0wXnfOo6JxoRavlsfdtn645wFzLrOYxzNMeffKCvPnNj6Y+f+97+49O/+P5DhUMqIjcTOMtI88xrMfyx7M9n21Xs45F9NUh8qV5ly8vTB0dTuV553Id2pnUyZKfq/xeyC+XV2Y9ctRfLjs4mGxL7yp5rS/bjevXJ9P33pued8wxyXR35fQsZdatS3+Wx3DOnNSsJsdjmiK/jP6sj43ctsy/1jXDfXuWe+smcR/sm/POVTVzx+YpX65XRD7Oou+vPLoYqyJ+XwydM46onjRki+7u7sbtt9+OD33oQ4iiCCtWrEAURfjIRz6C22+/Hd3d3bWuIhERERERERFNYAbxQ5VG/0fl6uPVGw9dXV24+OKLcfHFF9e6KkRERERERERENEE07MOyicr2Oqzt1eIQw9X7ci4jQFikNYQpT/m2ccozVHPo6FDrFT0UvDOxv5tyDIkuF9Wvn7sewqLDW0OH/YQK4ctaL9T+yFo2Tx199n+efrDosNiiwxey5p188v6p5ebPR8XlNNdjUa/hxK58w0x8r7EhFNEHhwiNLJrPfs1zfENc56x17O9PpuVFyjMthPW7pWIVW92WA9DUkT8Uz7Uv0mz7yrYL5K6T4aZlK06fnjnPuS3JsM5AUn2F/qJtbcm04zz9XXYOZe/zVtnWdAio3LG20N1qKiBliut9QBG/Dzmvl7ppTR8LW72yomx97xXLd3/lfRfifjPPekT1ig/LiIiIiIiIiIg88LHgxMTjSkREREREREREVMKHZURERERERERERCUMw6wDBlES4y3HCAas4wSHyKESemj5ULHpzjlmZG4LW94DHaS/aVMybcsnIfZ/AWkWvNRrPh57PrnWzOVSn9VObpf7uC29w2UOD5mmQx7OSttzFTqnWxFlOH83sYOa1A4KXa9cecMsiedqmQvOtYzQbcQ199Lvrs8uI089mga3JR/0iRNA1v4pIsema662PO2zmrnbPNJo5uKaE0df51ybhevxzbNPs/Ls6P1TdG45a5ucM6fyOi2WnGK+xP2Itbwc943yuxWdW6i9zTO/rdzHGft7LKnvvXhxal7wPFa6/pYTendHp9N2W1ss9WhJTtLdbe1j128MRVwrUwrOnWa7TlezTy+rhyUnnW1/dXWNvy5ye62W/jNErl5dxkjfHUVORRPVnYZ8s+yUU07BqlWrKs67//77ccopp1S5RkRERERERES0p2maAP+oXEO+WXbjjTdiy5YtFedt3boVN910U+4y1z+1DRd+6Y+4/d6NmDypGX37TMVX3ns8jjj3Z1iwfxcGdw5javskvOPVz8F5Lz8YAHDZsvvw/q/fhn179sLgziG87ZWH4j2vey4A4EtX3oXv/vcqtLQ0oaerDd//6InYf5+p/l+aiIiIiIiIiIgK15APywDAGFPx5w899BA6LK+gVxJFEV75gd/gvJcfjB9/5lQAwIr7N2HDU9tx4L6duPO/zgIAPPzYFrzqg9dh9+4IbzrjEADAOacegG+8/wQ89cwgDjn7Krz6lAOw36wOHHlwN5Zf/iq0t7Xgkp/9DR/4xm24qlR2md27kzApGR4I2GMgPGI1in4F2Vb+tsH0M2tZfe+wE1v8nSxUh7fKz7IMPez2/Pmjk0ND6VfHZfGhw7FCKTrEyBb+kjXctX4F3LqSPB7qXfSs9uM6LHYetuPrGrLgG0LmTe4I2a/kCGMJElpli5/KaiSVlq1Qp2orPITDM9bbOwxN94sj5VlCeUKcQyGWs61X7TYSInRF9ou+9bf1fa7r6UugbILWvtsiRAiurFfOW7zcbCFSev+0Z9yiFX2eVFvwUMVAQpx7tax/6G2HuM/IEyKYRfdF8rNzOG4ORff5tj4sa9tF3PPV6+8aNiO3GcPDta0Hka+Gelj2ghe8AED8oGzp0qWYOjX9ptb27duxcuVKvPCFL8xV7g13PI5JLU244FWHjf5s0cHdWP341tRyB+zbiS9deBze99VbRx+WjZg5rQ3z50zDE5u2Yb9ZHTh58ezRecct3BtXXPtArjoREREREREREVH1NdTDsubmZgDxm2BNTU2jn0fMnDkT//RP/4QPfvCDucpd+dDTOHpBt9OyRx3SjVWP9pf9fM36AQzuHMZz588om/e9/1mFlx2/X646EREREREREVH9MmDOr4mqoR6W3XDDDQCAk08+GZdccgkWLFhQ9Tro0Tyuuv5h3HDHE7hvTT++86EXoG1yepde8asHsPzeTbjp0jOqWEsiIiIiIiIiIvLRUA/LRow8NAvlOQdMx09/97DTsnfevwmH9nWNfh7JWfanuzfg5e+9Fi973n7onRnne7n+z+vwmcvuxE2XnIHJrc0ZJQJoakrybfX1ZS5mGw65llzzkbgOQa/LlMrKtyQvSdVLj72cNRZzRg4fwF7/auZLqKU89bAOdZ5F72Tx2XXb3vnv6oQtH0auc17uCEueMt9+xDkPkRgmvuy7OQ5zH2Lod9f8IXnKz1rP1ldbc/9YGq9v3ifr9+l2e6Pau/wAQuQkCi1PP1jNetn6Pvu1uUlMZ5dR9HXIVseOjvG3/xDnqM635NoHZG3LVy3vB6t9zvvkOyzb/5bcmSGOVdE5YH3KqCXdF9n6Jp866/3jk1c2T242n+PhW16IfGa+6xXRfmZ0xeU3+r057bkatulu2bIF11xzDdasWYNBlXHVGIOPfexjzmWdsng2PnzJn/GdX96Lt555KADg9r89iW2D6QyVqx/fin/52q3457MXlpVx/OGz8IaXHoSv/nglPveOJbjzvk142+dvxrVfOQ17z5ji8Q2JiIiIiIiIiKjaGvJh2R/+8AecccYZ6O/vrzg/78MyYwx+8W8vxoVf/hM+/58r0Nbagr59OvCV9zwPDz22BUe+4WcY3DmMqe2T8M9nLyxL7j/ig288Ake98ef48PmL8P6v34aBbUM4+8PXAwDm9u6F//niS3N/VyIiIiIiIiKqT/XxXieFZiKdhKtOGWOikboec8wxGB4exne+8x0cfvjhaG1tta2H6Lal1aqml6VffRSX/te1AMKEALmuk3d7PuWH2FbRQyzXy+vuvsfQlx7ae0Se8MlqvrZuK99nWO9Ky/qol30QQp7+IUT4UdFhJyHOqSLCJST5YrRrqPr69enPMppSn7+u3y1EKGq9lK/7Nhn+Ue30Bbb6Z/XBvuGUvqGFtvKL7t9qlU4iWKiT/KOtTO+gDq4tHN21Xqn1VESFLcwwJU8+jFrRfwiX6TYcY7ms7cySbkOn9gh9nbMt63091G1BkvurimH+uc5zx46wltdpr35KHxf5WR8LmXKkJft3Wtc66e8sm7xu/vL+ochQySVLFmP58uWmuC3U1tHGRLfWuhIBtAJ3RFG0uNb1qCcN+WbZvffei5/85Cc4+uija10VIiIiIiIiIiKaQBryjcG5c+dix44dta4GERERERERERFNMA35ZtlFF12Ez3/+83jhC1+Izs7OWldn3Awi51eZJdeRnVx+nle9jLhjI+uoXzuWkQitdXIW+B5D32ORFYkwo8uruCD0d9s5lB1a1Z4RTaL3h1xPlyFHgRurLi7LuY7ClKf8EIoOd/T9niH2QYiRnHyPoQ/dBmXEkR6cMisk4rvfTX9+29uS6VnTdQxi+JCO8a6XJ0TH9djICJetW9NlTJ2aTLcP+YVg2bi2Yx1dtnp15U3rQbFTobW6AYnPZaOpesTUFB1G7VtG6BFrvfsevf+vuCKZfuc7k+kHH0wt1rRggVPxZfWSDVvGX2/alF7OFm4nPzvWo+rk91y+PD1v0aJk2nEEX+vxXbky/VneEKr90+QRtlrt0QxTbUGH/snQYNnJeIbjOp/nQzvTP5D10jefWeGJ+lhbRs/26R/0rpKb9hrNXRe6YkV63iOPJNPyuADA8ceLeTMyi3Q9bLqbkteadevS82SQ1qyeACl9snZsg6R98mXQoG8g0Zjq5DGBmze+8Y2j0xs2bMC8efNw/PHHY8aMdMdijMHll19e7eoREREREREREVGDa6iHZTfffPPotDEGnZ2duOeee8qWM2bC5g8kIiIiIiIiIqICNdTDskfkK6xERERERERERESBNdTDsokqghmN/9ax9tXMpaOFyEeSVZ5etpDcTiJuvrNj/MOl+9bfVYicQbZ8XTqNiU6ZkHdbY207q5yy7+k45L3OwSDzmdlS88jcEzo/nU8erjw5uFzbRTVzm+Ua0t2ynM93q2aeNr1treicgFl0W53dm78f0Sl3Jk0SH3S+kI7snGWux6bo4xZiH8tcLta8LpaUZUVfU3XOMnkcZX/c25terrVNdX6S7BjVBnb3zs5TvbLiAPe0Z77neZC25XgNCVKG3kHXXptMX3BBMn3DDenlfHOFyXxUssGo/HqpRqPrL/sEywGuZl9ddh2SdZwzJ3tFmbcNSOW12i3yM1rrX5YLS3QYat+F7iPL+hiPtlu272TnoY+v3K+W5Fc+OZBt9WrS1yGZKEvPy6qXY366uiL3v84r+NBDybRu4+LY6/2dlVvXdr3STem5C3eL6czVwtDfW1/QJjDmLJuYGvJh2Zo1azLnNTU1Ydq0aZgqM/oSERERERERERE5aMiHZX19fWPmJTvggAPwgQ98oEo1IiIiIiIiIiKiiaAhH5Zdeuml+OxnP4uuri6cddZZmDVrFtavX4+f/exneOaZZ/D2t78dv//973GBfCV+AvJ5Td739Wrbtl1DV7xfYZevNdteMbeNlfzAA+l5hx+eTMvwCMsr+CHkCXHxCQPUbOVnleMTmjiW1LZ0LJI8hpbXtbdvT3+W+9IWhdDSkh1GESIUOESYRpCQFx3aIMIZfMu3fbdaheYVvR/ztAOf88E3jFeeNvPnp9dLRWS1pMOzZPSLjmppbyv2GIYOVffZbhkVvha6XrbyDuhL16uvz62N70YSXqb7tyERejbU0Zma15JxedRhqvI64XNNAorpD7K2V/bzluxQ46z1yvaxawif3nmf/rSoh9h5J5/sVKex7J4zN/kgpnU0oqyWjtD0jUwtkt7Hv1uRjGrf1pYe4f55LfcnH2SHBgCLFiXTXen1MukQOLHziu6nvNudpYyyA+5Bfm99KyGDy5yvGbqfXXCY02qu+0D3gzLdhnuZ6WP99NPJ9Kwep2qU2S364KGXviI1b+jU5LM+J1PfJ/tWzhq1OyBSDHR2uPfH8tjr/ZpVvt62vM9ePzQ3Na+/FD2+bTsH36PGVIeX0LHdf//9WLx4MX7605+mfv7xj38cZ511FtavX49ly5bhDW94A6644ooa1ZKIiIiIiIiIJrKxot4aQhTVugZ1pyFz0V1xxRV4y1veUnHeW97yFvzwhz8EAJx99tnVrBYRERERERERETW4hnxYtnXrVmzcuLHivI0bN2Kg9K5oZ2dnxWWIiIiIiIiIiIgqacgwzBNPPBEf/vCHcdhhh+Hoo48e/fny5cvxkY98BCeXckU8oPNUNaDQ+ROKGNK9kNxFMnBeBsrrgHqZv0IuBwCrVlVeDgAOOmh89YPfsall7pAijpMtv0E6t0Kyr1r1cZKfVc4yub96VA4JWb78bq1qH1uPU6qSbnlvNN8cWq65zlJcd7hlW3l4DRlf5VxmobcXoo/0zftn2/aKFcn0SSel58kcM6vXp8tfuTKZPu649HrtHeLck4lRLB1VtfNW2bjuf1vuNFsOGFe++8R1f8njq/MJyVx2+jInUzPpVFuS46F3Vq+5UWUZurx0vp/s9cpyJcmcWZLMhToOWd/n+uvT9Z88OZl+/vPTy1pSgVbVzqGkzrqdnXJS8j1/o74b+sQBWbw4PU/kxnK+XrW1pz7b+oCsMvV5KO9xysoY2JJZlyaPky/P9dzn3NN9RYjfBULnWNb3eSlliR0rJ2y05W7MUy9JtgvdH8ucaLb7We3g+cn3lu1MryPz+tr6MNux2LQpmdbphWUaaJ0mT+ZR1e+yPPRQ/H95LjyixtCQD8u++c1v4tRTT8WSJUswd+5c7L333njyySexZs0azJs3D1//+tcBYPQNMyIiIiIiIiKioIypz9FU8tq1q9Y1qDsNGYY5b948rFq1CpdccglOOeUUzJw5E6eccgouvfRS3HvvvZg3bx4A4D3veU+Na0pERERERERERI2kYR+BTpo0CUuXLsXSpUtrXZVxM4gyX4t1DSnIs15ohYR4yafz8l1p/R6v/KzfC164sPI0APT1VdyWb/iILUxDfpUiwmBd+X43+X30d7O9Vi1f4d5rr2R6Vo5hzmUdtwyk6y/L7+3NboNy/5e1Vc/QS8n1PHQNzbO1H13fpqGdTnX0CWfSy5YNeZ9RTohzyMa1Hnm2bRO6fN86Pec5yfSzz6bnyTZycF+6TXR3J22m/NSzxOYJzu3Twvda5sq1DFufFeKPwnmOr2udsy6HANDVlUyXh4Yl0/K4yXAdvVyefZAVam8TOrVEHrZjo8OWstTLiwNvPDf9Xf54a7Jfu7uz16t2qLQ83jLYQ7fjtrZkuRefquuYHUea1Z7yfE+fY9re5n4dwvr1ybTuQOXBEifzbnWtt92H2cJI28V+LvrcC5GOwfU+qYjyQ5zbW7cm07bQStkkgHSotPz1BMj+3joUdZYI7fQN1ZX30joMU4b1a83NyfShh6bnPfVU+TJEjaQh3ywjIiIiIiIiIiIqQp38jczNX//6VxxxxBGYN28ejDGZyxlj8NBIRkEiIiIiIiIioiLUy6vH48GcZWUa6qh2dnYCiEfDtD0sIyIiIiIiIiIi8mGiKKp1HZwYYyKfuhpj8HeLLIHWdWBy+wz89lc3xx98xzKusqx4eJ0zxTZcvS2PUiofgSxUb0AG1et9JRMGqLHT5dDhoXMqabXMH+e8bVsiH3EQdfmu+czkoenscM9dJOu/bTA7Z5nMhTA8nC5T5vRxbY9j1cu1DJ88Sno/yjxTel4rRH4qPfqv/OKWOvm2f9c8aK77VefHkH/cksOsF537yvcY2srw5bpteejLctY8eFfyQScdkSeEJXFVVt4hXURrS/i+LsT+l2XYujqdhyirjDxt0Kct5PnOsk/QxyarX7GlTdJ57WReRJ1Hqejv5sr1eDRCDtgQdg6lv0sR56UPW38v213R9dX7R54P+h4h69jrMqy5aW0X+IyNy3tUANi4MZm25azUl315v1XN/J5F5BSz5WZLbU93hKKx7Z4zt2J5QJh2Z6u/rpbkeh0Nca9VdC5XvV9Xr47/f9WrFmPlyuUT9k2XxU1N0XLbLxkNwmzffkcURYtrXY96Up9PYsbh+uuvx3vf+17cdVfyC8Itd66tYY3G9rY3v7nWVSAiIiIiIiIiIkzAh2XPPPMM7rnnnlpXg4iIiIiIiIgmMmPqNhqMxodHtR40NSXv4OoYEfluep4Yx4JlvcYrh//Wyt8+T5bV/Yschr5Jfk/9neX+sYQO2erSun5d8kG/w65jUjKEeOU8xKvR3mXYYnQs7cx2Xdi0qfLPO+ZnhynZ6q+rISNrPatfOFuooqynPLV1E5Tz5LDkADCrJzv+IkS4k2v7tH1P17AEHaLwxBPJdI9lSHTX9uMrRLipM9XHy75PhiHrNr1yZTKth2c/1ljC2EWbcW0vtnPeOwTREk7f5NgH28h6DA5mf892tV9rGYKbxRbFlRF5XbZcrlsJcTzKvpstLipDnv2Ttf91CN+MrrHXGWuer6wyaxm6qfvSjo6kjjrEK0T9XftFOS2PWTXIOuqmKveJ7fol679+fboM2U2VfTd5wtnuYQW9/2eJayB6MGHZ2l3rkOy4cvz6KvaxLL81RxE+fYcMnQWA227LXvbYY5Pp6dPdwqht/aBWdLoZeSlYty49byT7Q2s6ip+oYYS/cyAiIiIiIiIiImpQfFhGRERERERERERU0lBhmA8//PCYy6zX70Y3AhnnrF/Rlu/T11EYpk/4oA7Le/DBZPqQQ7LXk68kl72O7Bj6YRsBrUWMjmMTYtTAPOv5lOHNsS1ZX5FXh6K3t/IIejpEpNMSZeUTGmZrEkWMeOlKrydDjW2RZvL19kmT0vNCjz5VRDvTYWPSihXJtK1784j2KkTh56HsFAGgry+ZtbpzdHr+/PRizzsuqdddK1U7nr/QadMyZGTq1PQ824iLsu16R0zKQlUhodtnVng4AHR1ufUB1j7e1uAtqQJs3802ILSNPIfketu3Z1er7PyyxW+6drwB2KrhI8+1wHacQo8IGqKN6/NQ7q9WPdppwSOaFn19cdluEdu2neZlbPHRVeSbLqGqqQgkHWcof7/T/Y0c0tcS6lp0e5SXsqeeSs+TVdTpEjZsSKb1iO7yXtp2LbZdv4o+92RdVq2qPG/HjkKrUHvMWTZhNdRRPeigg8ZcJooiGJMemfboY48uqkpBTJkAQ80SEREREREREU0EDfWw7Pvf/77Xeos/ujhwTcJ69IrVta4CERERERERERGhwR6WnXfeebWuAhERERERERERTWAN9bCsmlYuW4l7lt2DpuYm7L9kfyw5bwkevuVh3PGjO/D0uqfxyi++Ej0HxeM3r7tzHf78n3/G8NAwmluacez5x2LfI/Z13tbuyGDnUBxrXjayrkw2YRszXsVJbxlIYtc7W7YlMywhnyGGVdcpBuTm1q5Nz5NVfuih9DyZ4kHmz8kz1HPWtip9duGaAyNEXqw89fDN55Sqp2ecvayLbp6yLchm7J3XSHHNoyGF2P+hZA1hHur4umxXC5FvT69j+24yh4drDhi9XKpPCJDXMU8bydo/3vlyRsZYL9nWkuQpk+dN++BmtWLyPWfNak/PsjQaWc/Vq5Of77dfejm5z3X6nc6O/OdhWT0c80aWrZexPdv+Pnh+ep5rne2pyEQZLemruK0urteQ9rb0XEk2eVv/INtPruuhLUmOPIEFW/vPk/NIfnbN8Wjjeh4Wkd+nmtcendtV5ikrIqdqvQhRR9fro760tFiuczZZ/UpZft4q0vvA5/7Kt4ymQfH7ir6e9/Ym07ZOwNKhhco5m0Xm4F2wwL0dyK9qy6spv1pG9zsuIfoDvftHzhWVIWniYc6yCav+r341MLxrGHf86A78/Rf+Hmd97Szcf8P92DGwA9P3n44XfehF2Oc5+6SWb+tsw0s++hKc/fWzcdKFJ+GGL99Qo5oTEREREREREdF48BFoBdv7t6O9qx1tU9uweU38F/zW9lZM7phccfnuA5PH+9PnTsfwrmEM7xpG86TmissTEREREREREVF94sOyCqLdEWCAO6++E8t/uBwLXrwApsnt/dFH/vgIug/ozvWgbGArsHJlPD1/fjqEo1O+Z6tjHC2ve37xi8n0q1+dhOUsXJheLkS4gXwd1xaGOWlSet6UKcm0fqNafm3b6+22+su62IZSl+Xb3qD1Da+U64XY33ofy8/6tWxbiJRPCJMmQwhkGBcAPPhgMi33v3yTPk/5OlyhrS3sEOB6f8g2snVrMt3TE2hI+oz4Sv09ZT30vgsRVmRru6GHWddl9PVlh7VIGzdmz5PHoynHK/BZ380WPuK7H0fC7Mcy2DIj9XnZL5Ppvr5kurc3vVx7W1KvWW2qjoNucbyHH569mGyDtuPku+9c5Qnhc2Vbb9tg9rUtS7O69Ov+wnXbki38y4cuQ0ZXlofQiLDeXhXiK9jCiObMCRse1+kZhukbJuYTRlpEuGMRfbAr13QARYSw2mQd01Bho1nld3Wly7ftE9v5tW5dMi3vk2ara33ovlQLve9s6SR0dKXcJ7b+JnXfbtl2a5XbYJY89wuyT1bZGDLLac9xLSj6Xk6eD9OmpZcduXeZXPl9E6K6x4dlFkeefSQOfemhuOH/3YB7f30vDn3JodblN6/ZjNsuvw0v/+TLq1RDIiIiIiIiIqoJ5iybsJizbAxtU9tw4AsOxKaHLBkXAQxsGsB1n70OJ194Mjr36bQuS0RERERERERE9YkPyzIMbBpA/2P9AIAn738SXft2ZS67Y2AHrr34WhzzxmPQe1iOGDMiIiIiIiIiIqorJoqiWtfBiTEm8qmrMQZL/2dprnW2btiKn7/355gybQpMs8G0fabh5PecjHUr1uGP3/4jtj+zHZP3moyZB8zEaZ88DX+56i9Y8dMVmDY7CdQ+7ZOnYUrXFMtWEisveRSXfP5aAOW5RGSOou3b0/N6epJpHT++YWPyHHTq1OTnvvlOdB4lnzdNdR1t+WDWr0+mbaNFFz2EvKui84z41kNuW+5vTbYL37xMWlYOjKJzxWhFl+8ta8x4z9e4i94/tSRzfrViZ/aCAXKWhVhOH1qdz0+SfZjOOZj1dfIcl1C5e7L45Lopov5FtFW5bZ1nx5XrNTdUvzteWd3SWHyjT3yOm21/6PrL/GnyXPO9d7AJkbNMX6ddr80hpPq6IdXPigOsczDKY18v14xq54zzPUflva/cj7b26buPQ9wLua6n+0t5XurvlpXPTOZ6A9Lnsu5vZJlz59RHG8zDtu+y+oA8bbzonHcuFi9ZguXLl7slAG9Ai1tbo+V5kjLXKbN27R1RFC2udT3qCYNrM7RPb8fZ3zg79bN5x8/DvOPnlS171DlH4ahzjqpW1YiIiIiIiIiIqCAMwyQiIiIiIiIiIirZI94su+ZD1+ReZ6+pe3mt56O7sxsLF1aeJ1+XbWnJfrapX8fNCtG0veKvbdyYTD/7bHqefNNUlpEnXLO9LalXu3pztbc37FDzRahmaIwr23feujX9eceOZFoeT93OZJm++9S2nnzVXrefGV1uZfgq+tV0a/mBR83xDTPxDb+oZnhca4ssI73fXEN89TzXevks16oO7cHznYrwVsu+yGfbRYT+FnEuy3LaHcMpiz4WecKbspazhZTqlAhyvb32Ss+T1xBbmTK8WN9z2PZr1jG1HV99/WpuTqbld7Hdq/iG24U49r6pMryJHTE41Do63b5qZXq5BQtGJ1urXslsWfvcN91D0aGWetf5hAP7hpjarvW+1/Os9WxNRJ97su948MFkevny9HLyXnG+uqYutgSN+bQRXUdb3yGPYYhrj953vvdoWXQZ8vuk77XClE/U6PaIh2VrV66tdRWsli59W62rQERERERERER5GBP8j+BUH/j4l4iIiIiIiIiIqIQPy4iIiIiIiIiIiEr4vmCdk7Hftjh2V3lSTUyZUnnaVo5+A9V3mGOf/EshcgXkyaWTtT1bLohaDqt+223pz6tXJ9MnnZRM61wQbW1hc1lorrl06oVvGwkxJH2I9pPnOLluW+YS6ewI08Zdt+3bx7hsd6wyXHOhhGA7TvIc0n2wPDa635bnm5wXIm+JTRE5TWrZt0ohcq7Z2K7hrrm8bHmS9Dxb25LtR07r5WSdn346PU/mLAvRLvQ+6OnJf44WUY96Uda/rUxyk/X3JqO6tyxMj/Buiy6qZn5Y32tB1nJFlC/7XCB9Tum+NWvbOr9wVl8NuOdTLIJPPi3dB2zYkEzLfafbnMx9KKcBYHbv+PN6yb5u/fr0PJk/TR/fM89Mpjs9ctABxfdHkv5u8vNRi4JuimhC4MMyIiIiIiIiIqK8mLNswmIYJhERERERERERUQkfgdYBg6jQ19h9X+H1GdI61LazXk0PESKlVTN80zcUL4RXnG55/b9/czJjID0u9u62vYPWQ3/PGV2V66TZjn0R+zWrDfqGm/psq9LnkNvS5fvuYxl6WcvjFEKeetQq1Kq/P/153bpkuq8vPc8WFtvS4bbvfPdx1v6pZYhaiFDdIvikHigzlO67ZexWk7ig5zkPW8Vdol5PhoO5pniYPt1tOc03HN0nTKyWbaKQbYt20T/QmprVtSgJt5y98q5kRvcCVUjtfl0InZYjxH2pTVmfmzov0/sxq576fNq6NXt7MlWG677Ks398yrTtq6lT059lmhdbGGZvbzJ9QJ/feWL7LjJEdu6c9LyuruT7yOstkON3JUtMe+j7GFt5MmQ1/hy2fJr4jDFNAN4N4G0A+gBsBPATAB+PouhZxzJOA/BRAEcA2AHgtwA+EEXRI2q5fQC8E8DRpX/dAC6Pouj8EN/FBVs7ERERERERERHZfBnAlwD8DcA/A7gawLsA/G/pQZqVMeZVAJYBmALg/QC+AOAFAP5gjJmtFj8EwIcBHAbg9lBfIA++WUZERERERERElNcekrPMGPMcxA/Ifh5F0Vni548A+BqA1wK40rL+JABfB7AWwPOjKBoo/fxXAO4A8AkAS8UqdwDYO4qijcaYbsRvsVXVxD+qjUaHUQQ48WyvRsvN6RFqnhUvUtpGpZGvi+vXk7OWq1QXyTV8xzV8rZavDNfLaJhaqi6rVmUv2O0Xhll0eKtPGbUMPbBJv53vF2rsG3YSYjRM1zL0aKeuoVuh24FWN+elHmZLdLwDQ+2j0zrsY+HCZLrsu1iGwxxCEpLVYgm3s41Sm2eE5fEqYtTYeu2fXcm+o9U2U0w3ed5X6NsT+dm1HehN287LrBE28/SRWcuFCi12TRnhW76rVD2GdqZniuv7DDXc9YaNSb/Ss/C5Qeuh+e6fsu8j51Xxl1NZ/51D6fqnqqFPFHljbIstdPwuu3Y5LVbGZ9RPWxm+bH2F3AW9KjzQtY8p4t5TXnMPW+C5f1rKeuiqCTEyeDW3TXXtdQAMgK+on38HwOcBnAvLwzIAJwKYjThkc/QGNYqiFcaYGwGcY4x5RxRFu0o/3wrAEohePIZhEhERERERERFRlmMA7AbwZ/nDKIoGAawozR9rfQD4U4V5twLoBHDw+KoYFh+WERERERERERHtubqNMcvFv6Vq/mwAm6Io2lFh3cdK69teo5wtlq20PgDsm6/KxWIYJhERERERERFRXhMnZ9mmKIoWW+a3Ix69spJBsUxW/PxI7H+lMgbVMnVhQhzVCcV2otnymemkMukEH06b6+lJz5NDvOtNZ+UO0DkG5Hr9/el5MpWOzG0Wlz/+3Aqh2XJaFZ3joXBzxDjZXV2pWevXZ85KtQPfnF+2dWReEN0G2z1yJRVxLEKUKc9D37x8rvWylT/Wsi7L2fIibtqUXm+OGp49az3X/eNaxzzrVZXuWB98cHSys69vdHp3S477CMu49q43AO1t2bl6pKL7Y99jFiIvWb3kNrPlDdM5cVq6ZlQsI1T95W1HEbnrZLsLkVtR8s1f6VuParaf+1en20HfgiQXWeuqu1LzZi1YID6N/1cCfZ8nux+Zay5Xet5bb82et2jR6OTujs7R6VD3jVnHTddfatUz5U6x9Mc2+v58vIrIqRciP6xsI/r+wJZXM/Q55dtGbH1i1j2Nb730Pij6nkanVJVks2aOsglvG4CsZNZtYhnb+gAw2XP9qqvD3xaIiIiIiIiIiKhOPI441LLSw659Eb+Zlj0qS7z+yLKV1gcqh2jWDB+WERERERERERFRltsRPz9aIn9ojGkDsAjAcof1AeD4CvOOA7AFwP3jq2JYDMOsM9aQKNt7uzJWDki/EytiHPOEItkiObNeBdbLyc/6lWQZ0qdf3c8aJt43lMr1lX/fV6+LXAfwD/N0/j6WeLhev6gBL/q72Npg1iv/tjBA13BiX76hB758QzSzhGhnugxbWIXtuGWFXuZp73UZammjG/kjjyTToh/vH0yHYWaFOhWhtcVvH7uGqPlyDbsK0X4296d/vmtXMj2rp9i+Wu//VsttQej23zq4JfV5RpvceAFxmIG5hokVEUZUdH8v6awc8vZwzsLnpuaF/q46ylCG3st0G7qrkyFeZZGKttBFUZDrd8lzLc6ap/exvJdo1TcW8sJni6O2fJcQIeiSb/mh0zboMnX/JtnScrimbimaPPS6Hq59teuxKfp76vI7OupjH9e1iZGzbCxXAfgwgAsB3Cx+/lbEucZ+OPIDY8w+AKYBWBNF0Uho5U0AngDwFmPMl6MoGigtewSAkwD8IIoicVdVe3vEUSUiIiIiIiIiovyiKLrbGPNNAO80xvwcwDUADgXwLsQPwq4Ui38OwHkATgZwY2n9XcaYdyN+6HazMeY7ADoBvAfARgAX6W0aYz5amhz5S/Fzxc9+H0XR78N9w3J8WEZERERERERERDYXAlgNYCmAlwPYBODrAD4eRdGYrx1GUXS1MWY7gI8C+CLikTF/C+CDURRVylf2KfX5yNI/APgkAD4sIyIiIiIiIiKi2oiiaBjA/yv9sy13PoDzM+YtA7DMcXsmXw3D2iMelh197NG1roJVW9uUzJj0dF6E9DJyWHX09upCK5aXJ++BbZjjrPh6mVNAr6dzPDz4YDKthyQ+8MBkWg6Z7Zv3aWgo+3u75kQLkY/Bl2ueCNtQ0r45BnzXc/3e7scwe54tT5Mt71loeY51NfNpNfq2fNuxbw6bapZvLeNFL0qmRePdtTG9WCvEwEPqPNnd0prMKiB3o0//kGd/u+bR881HlVWGJq9f+vI6o6t21wYf3u3RkjsqdH8fSla9QuWQrJfcPbIeCxfWLlejzjk1u7fycnetTNdx5cpk+oUvTC87S3ZcARKN5jkPg/Rv3Xt71StrXhH5T23k7rflFLMJkdvSln+2lrL2f6g8c67lVzuHmauGyx3ry5g9JWfZHmePOKqLP7q41lWwWn3Fo7WuAhERERERERERYQ95WOZj5bKVuGfZPWhqbsL+S/bHkvOW4OFbHsYdP7oDT697Gq/84ivRc1D8ytPglkFc92/XYeMDG3HwKQfjhAtOqHHtiYiIiIiIiIjIBx+WVTC8axh3/OgOnHPpOWhtb8WVb74SR5x1BKbvPx0v+tCLcPN/3Jxavrm1Gce8/hhsfnQzNj+6OWhdbMMQp/T3pz93dVUsJM/r5/J1a9tycp5+AzW9vXQZCxcm0+vWpdebOrVyGb5hhrperm/K+gwpXkSI0XjrVBTX72p7Zd42nLZU9NvN5SFqbvs/RHhE0WGARb8+7xu+JoUIgc5TL1lm6GOYp77W9TIa/awetdwVP06mT0j/sWaw94DRad3G5fEo4vyS380W1u9TXij28O5k2jn6a9Om9GeZY6C7Oz2vo3N00tYO6jWMZdtg5Wu/Pr6yD2j3jKLzCccFskO39HHv6PAL403dvMyZk7meK1v/49pP1UtoqM1zF6bruFKEZQ4Pq4VXr06m588PXhfbfs2iQ683bEzW0ylHbNdAeateS3IfrFmXfQ719fldH133sa28PPcP9cC3H/f5vWCseaH3T6jfc4gaAR+WVbC9fzvau9rRNrUNm9fED79a21sxuWNyxeUntU1C72G9eOaJZ6pZTSIiIiIiIiKqFeYsm7B4VCuIdkeAAe68+k4s/+FyLHjxApimmg7EQEREREREREREVVCf7/bXiSPPPhJv+K83YODJAdz763trXR0iIiIiIiIiIioY3ywbQ9vUNhz4ggOxYdWGwrZhEI3GdHvnJunNGJ97jDJd84HZuOYiaG/Ljlvv7k6vl5WbwJoDQOeKEYkiWnUSCZFbZHdbe2a9fHIAFB2fHyp/TYh6uuZWkG8m58kHU3QOBlu+PZd1Qm3bppr5HorInSZzFPnmHLQJNTx7Vj18yrflE/JuPzL3le4gb7klmZbJIAH0i0Wbm9OrZebElNvSC3qGGRSRp8w1b6StbcncnL71SC3XvXf6B+JzWX40xzxuQdpPRnlanvLlZXXXrmR6+vT0cm2WPiB0/6bTt152WTJ94YVBNxXT50pgWX3kRMsD9A+vtbRxmetP933ixHHN+9c0uC1dhnNCwmw9Pcm0vt3s6Eimbee56/XQ9/x1bTOTK2ecAVDeh7nmnLWVkVVenu9SzXxdRbBef2+9dXRy6KQXj06vX59e7Iknkuljjwn/nUPkZSVqRHxYlmFg0wD6H+tH175dePL+J9G1b1etq0RERERERERE9YI5yyYsHtUMTc1N+M1nfgPTbDBtn2k49rxj8cifHsEfv/1HbH9mO669+FrMPGAmTvvkaQCAK99yJXZt24XhoWE8etujOO2Tp2H63OljbIWIiIiIiIiIiOrJHvGw7JoP/CzX8kM7hzG8YwgdHXHMylD/Vlx30f8AAKb3tGF6T+mV7e3bR8vumjEZmJG8u/ynb/zOeXvdnXuPvqYaKhTJ53V939dqQ7xiq0M0XctP1VkOLw6kX2XWrzX39Y1OylfC9SvlQcJfdFyIZHk/v+ihnn3C0PLUKXPf6Xfw5ecc4RCZ9dLlW/7S0zS0M3M51/1jW8e274KHBqjYj6zw4iLCYF2X8w1xLOI1fp/9X3TospXsK3QbP//80cnfDxyVXk2EashoJl1M6/p1yQd9zjiel0WE8dayjUi+11FbqLe8LMljMaPLrx6u4b+2fWXrnjX5fWQYpg5ttW0vRCi2XK+tLb2tBQsqL6ftHErWKwstEzthd0trettyA/Ja/6c/pct42csyty1t3Jj+LMP7ig7dL+L8DVLe/PnJtOrE9PFwYunPQvRFeaI6Q+87HQIqyXPDtt2pU9Ofp0xJpkO8OKPLKOJ3FB9Fh3KmytAHSjYaPU98fvDB5MdXXJFe7IgjkuljjgkQ7q5+b2qS9yAWDLukiWaPeFi29vKzci2/+vGtOP1912JlzvV8Lf3qo1XZDhERERERERER2e0RD8vy6ps9FSt/dHatq0FERERERERE9Yo5yyYsHtU6YBsNs15Hwst61dv2+nkRI8SlQjjUKHBYuTKZ1rEk4gu0dLi9xu8bQtYkO0/dkdawY806hu3qGPqGJchdLqfb+7NHLZXhsXqWrm9XV8aG9T6VoTG6HYiQDu/2Kcu0hIQU8oq/3CmWeKlUFVvc+5jQ4XF5QlFdRzocsowo6Lpf6zVsIHPf6ZDh4543On1CjvJTYchyRGVLKHMR16gQ4cq+IzsXfY21ld/pFtUS5ProynaJsn2Xjo7sME/ZBeusBLLLD9G2dEqHl77ULfxUho7q5QYGk37dGokkh6fTaSEs5Pa++c30PDmCZ+Y1D8WHXspLTYDBI/MRo5fb+F7LbHzOoRAjKuchy9fHJuu2IM+5ZusDsvruXN9ZdgqyofXOdtqWVn75yp9Sw7WMscrJpA6U/G5DXekRlVtPP310WgR944IL0kX+678m0yedlJ7X0+MRwu0YdjmWFSvi/7dtsy5GVLfq8zcEIiIiIiIiIiKiGuDDMiIiIiIiIiIiohKGYRIRERERERER+WDOsgmJR7WB2HIMBB/WeAw6r9V4yw+RW2h3W3u6TDnc+Lp16YVFPpEmORS5Gpbc1vE5769Acf8+bPvLNe+Ib74NmQOmdaA/e0GVp0yS+WfksOdWOtmELdGL4No+y/aHyFPmm+PLNRdHGdk+1feW5bR69vShcz3lyQuXNU9v1/W7+eZDcj2m1RzWPlRunr+sTNruvvsmP+/pccvjOJ5tF6mWOYPGqouP0HnhbOX75m601XFGV+XpPHX05Vp/27zODsd+fcFhyXYXLKiw9Ng+8Yn059DnlO8+1rngXMus17y7UuhcZ0W0Y9/+X14fdw4lZdh+p/c91t7XQ3GP5ltGiPsdWYYtR5kW4j7AVv+sfa5T+V15xfjzQPuybW/Rovj/9vbMRYjqGsMwiYiIiIiIiIiISviwjIiIiIiIiIiIqIRhmBNEtV+Ddx0uOkQIh89yANLhd/qdczk8tUWIV5l9Q/NCbKuWIQSpNiJDUVVYqvUVdhFa2OSaC8C2nA7RFJ91GK+PIsJArOR3DZArwbf+viEitvV8+hhbvVyFCOHzDfnU+vuTaXnaWMNMBgZSH7e1dI5O6yYyEh6h5dmnjRCCFSLMv15CTPOQ30d2fbod+IZWyXlFhCRXM8y5mtfpUP1DCI3YrrPUy3ep9jXE9XsXkU4p9D73PQ9rWQ/Zt/qGgFZT0WkK9K9XI+0uioJupv4Yw5xlExTfLCMiIiIiIiIiIirhwzIiIiIiIiIiIqISPiwjIiIiIiIiIiIqYXBtAwk9vDUQZphm33V8hnH3znmk8mTpvFlZZJly2G3ALzS92sM5F805l5TjzirbPy2to5M63Vhri8cw2aI8IJ0HzTdnVqo8z3wbruehdR+3tWWu51pGiGHPbdvz/W4+fcVYZbi2GZ98ab45QfR6Mu2ic/+v+ra2rOUAYOXKZLq3d3RyW8feqcXk6SvPO6B++rRq5pyybds3p1vR+XhsXXDoc822nu99TIj8ZdVez7W8oo+9a/uvZT3qJd9YCHn6G5/ro2/7sZ3n+v5Wkn1+veShHM+yLvJ8T9m3FpFnMcTvW6HLt+3vrFtRY3JvprEwZ9mEVR93uURERERERERERHWAD8uIiIiIiIiIiIhK+L5gnQkRTpmnzHoZbrmlxe+5bYjv5vratO/btdUMU8oz3LhrqGuKjoUUn5scwwBt9La3DCR1HBhILzs7iRoLEoJVRPiRz3J5ygjxyr9viGAI9RI6Z9tu6BCFPJzreP1vkg8qDLNp4cLMeZDzhPGfyf7y7LusMPmsoeuB8hCR0CGIRZwn8rvp65DPNdAWKlrtEMHQbPXt70+mP//59LxPfzqZ1qHGtvJT++BXv0qm3/nO9IoPPZRZZqq8X/1f+geTJiXTp57qVg9dpmMb9xW8/FWr0p+vvz6ZFvsAAJrmz08+uN6k6fsYsV4R18Oiz5MQ11HbrvNNpSCl7/fT80KnM/AV+jhZz1F9kVq/Plmv7wCneunQWVEE5s6pXZvbYzEMc8Lim2VEREREREREREQlfFhGRERERERERERUwodlREREREREREREJQyurQMRzGhse56cRO75AYrNa+Q73LUtT5lPHpk83y2rzBDfs1Fk7WNrngUdj+8Yn++6X/VyMsWSTre0pwiRc62WfM+bEHlwXPtP15xT1cxPl6t8lccniz1vpKX8goVoB7L+tr6iiFxDRef9880nFCKnYWi+OelC9AddXcm0zFEGpPexLn/16mT6gD61H2XuoRe9KJl+z3tSizkfi2OOya6YI9/cpbZ97Fr/IH3kggXpzz55yWwClBFiH9vYzuWic6gW8d1aLeeXaz2qyXfbzueQTp7Z11exDFtddDOeMye7Xj7XiVDtoF7vTYNjzrIJaw9pwURERERERERERGPjwzIiIiIiIiIiIqISvi9YZ3yHrtdCh9T4vlZbdNiS7yvDWfPy7P9UiMjgtuxKitetJ/LryNbQgKGdyQc1bPvutvbs9WxDbctyLHFX1jLEsdGztm5Npnt6MsobQ+hwCd8QJhvfkIiseoUKcwsxXL3PtkMcs1BkXdatS36u3/Tv7s6el+qn5HkIoFUsHOraU6QQ4V95vkuI713E9Xfc5fVvTv9g06bRyd3zDw6+7RAhlCHIetjSQGgiQqqcPDHlghdc4Fx+ijyZtQcfHJ1sGhhIz1u0KJnn2Qf7hlIF7zOXL09/fve7k+nXvS4979xzk3p0zXDbrjxmQCo+t8kz34Prviv8+vLOd6bLvOKK5MNXvpJMn39+ZhG7m03qs2xpncPD2duWbXL9+vQ88blp7dr0PFnm4sXJcjocN4Bahgs6H191M9ok48BFW93dOzuziCDXLnW/AMv9QohrM1G94sMyIiIiIiIiIqK8mLNswqqPPxcTERERERERERHVAT4CbSAhXmV1DaUaa9s+IS95yih6tByfkfCs9Mg2GUKE8IUKSds2WHlZ21fJ8+p1ivxri/rLi3OIjuM+trKUoWf5bK5eQ/iKCHMOMYKS77Zd1gklRHhfiDLkSFcqkjlFRmwAwC23JGWedFJrat7cORl936pVqeWaenuTD3JIQWXnULr+g6KPkedTa0v2tcDWzmxc9/HKldnznrswfFiOa7soIlRRlvn/2Xv7ML+K+vz/PpvNZrNslk1IyJIssIQAAQMEiBAUMCpVCmgBoaKC4kNRa6v41K+2tuqv6rdW8dletn5bsKiAj1TRolJBtAgKEjVKgAALBAgkIQtZkk2y2fP7Yx/Oe96fPe+dM585n4fN/bquXJmzM2dmzpyZOWfPzn2PvDdDrfOcdF1Lu6OU50MUWae2PRCdfmTZUbnlWe06MJCFtULte9cZdRY7NYbu6urdJnJXSEXscVLkXTH2u2mLkOIBAH70oyysH8zifSKvv6tkaLG2DfSsoybGLoIWVh7yXa71M//ixLV98pPZgeeql9YtW5zjLt96SQmr7qtSorxqlSrQzw4g9vO9jH4cBd3HhRxV9uuNSk0sFdwd7RHsMAqskrLu2/j7Spp6Z0dIQ8GVZYQQQgghhBBCCCGEjMGVZWNs3LIdl33qVvz67k2YNXMG+g6Yg8+862Qce9G3sezgbgzt2oM5HTPxtvOfg9edNWqAe+X19+C9n78dixfsg6Fdw3jzuUfina86BgBwy12P47JP34rfrX8K1/zji3H+i5fU8/IIIYQQQgghhBASG3qWTUt4VwGkaYpz/+bHeN1Zh+Oaj54OAFhz72Y8sWUHDl3chbuuegUA4IFHn8F5/+cnGBlJ8fqXHQEAeOXpS/CF956CLU8P4YgLrsX5L1qCAxd24qCFnbjy71fjk1/7Xd2uixBCCCGEEEIIIYQUgx/LANx052OY2dqCt5yXeV2sOHw++h/b5qRbsrgLn7psFd792dsmPpaNs9++7Vjauy8e37wdBy7sRN+iOQCAlhZ3C+apCNXMh2rvfX2NQn0VGtVjoF7eBKH1j50OcG0RLA8k3/wrfGREpiOdmetF6W2vL0aa0WiEx0ZLBE+0srciL5J/dB+ZEvqgL7F8+kLwbYMoXkzG/ZVxbVB9XPw1s6/PbQ9lP+aH8Egpgv6jqrSwCSXkWaanAFmv5curr1MRQvpFGWNItoF1XyrKlo3ZKH81Nzx9NI9tzPqF9CK74Yb8LK+5RmWyfn0WVl5Mst/JZIcvDbuH2ku0o3VXduDZ/jGeQ0XmuthzcMV7kuiwvmWV0VVDPX598wzF9Jlt7SheruFLGYXAfhyDMrwhfbHeJXzfM2TTSY8ywO0HZfuxmfkNDTmHbWMVS4r9OkxIw0DPMgBr79+KE5bNnzohgOOPmI91Dw1U/PzhjYMY2rUHxyydV3kSIYQQQgghhBBCCGkKGuTPhM2D3s3j2hsfwE13Po57Hh7Al99/GtpnsUkJIYQQQgghhJBpT5I0zuprEhXeVQDPWTIX3/rpA15p77p3M47s6544Hvcs++Xvn8BZ77oBf/q8A9Gz3+TLnvNIkE4saQ3dclqne2Ywi5OSiyJLcX1lLXnnTEXZW5GbbN48eVhtKb69NZMP6jaQS56D50eZqSogTxZYhvTOqr+3FM/QArRsfCw7kFoVwFmy3aIkLg+3ZhtjaGVAXvu36IvRa9V9UUvJxxlpzx/fRWTIefexyPL8MqR/IfjKC4oQW/YZKiWX5+k88oavJYsx66skw1J+ZA7StWuzc1R/P+OMRRPhTZvc0/64bvLnhCXviCFFteb7GFJjq6lahnflR6oTQ8aGVd/QPtgwWHp90Xah7wEWoXLonp7svKuuyn4uhgwAV8m5YYMb19N7+ET4wnPcuOuuy8Lq8eXgO0dWzh2Td+Yi70yh75FWebGx3gdDxk2t3yljvJfFaGPf94fQ+gbPYSVLL0PqVca7im8e1rtEDNFXrfu7U14ESxNCGgnKMAG8aOUi7Ny9B1++7u6Jn/36j0/ioY2uZ1n/Y9vwns/dhr++oNL05OSjF+LiMw7DZ69ZWxFHCCGEEEIIIYQQQpoDriwDkCQJvvvxl+CyT/8S//Sfa9De1oq+AzrxmXc+D/c/+gyOu/jbGNq1B3M6ZuKvL1heYe4/zv957bE4/rXfwd9esgLrHhrAuX/zE2zdthPf//lD+OCX78QfrrmgxldGCCGEEEIIIYQQQorAj2VjLFqwD77xsdMrfr7jljfmnnPJ2UfgkrOzD2eLFuyDjf99MQDguUftjw3XvyZ+RQkhhBBCCCGEEFJ/6Fk2beFdbXBC9e833piFFy/Owscd56bzHdemB0yj+qtYSFMeaYalPFk62j09HoaLb+9ekdY4z9s3rAB5+QT7ZljGdrK9tSGSPE+1Qa9vvzO830z/BOlXt3GjG7e8Um5dUa4ilo9MSHm1HocN478kveXUvQ7Zqr1I//ccvrnlalqUMV+ur53yNsMdd2ThSy5xomTz7NnjniYtGqVnWSxi+xxF8ZgpMD/7+gr6EssjJy8P3/nG8oQK9RpyytK+cGJOtjwfy0Bez4IF2XXqsSA9zFascOPkI+XKK/3K3T7ktnGojc+u4Syfsn8PK9uXzOKpgcn9EwGgrbV6z68Yz8oy2qeWXnBlE6WswHe52N6Htcbx3TWeE/J5vm6dm4f0TOzsLNezr5HajpCyoWcZIYQQQgghhBBCCCFj8GMZIYQQQgghhBBCCCFjUIbZAKRIJpbZxlraesYZky/d18v4Q+VHeefFkqdIylg27Vxra1uWv6FzMMv2lFAWyjMnXawt0UOW/2tpiauAa3PiZIsMD7eJdG6eZpsPPjN5YQBG5u8/eR4qP/M6ZR5KHhpbgmVtFV5LmXOR/hjSR2L1T29kQyp5YovU86hGjlGv0PmzarRO6eyzJ4JPbHLr0d+fhfv63NO6WrdnB8OifQYH3YRi0GoZndUGGzZMXuV53WH9LLSN6zmGLLzTyrlPSZNa5IQaqNPLlbRrrPyt8/LKKkDwPRTy+pabbpoI97wq31NWy5uWLcvCSintIJvgS19y4951WZhENk+eJWWLo/UKe0/KS1tERhpjfFntahF73i3DXiCkjr62AUUo413duTbPucOcP0O8DSIR+52gCE6bqHfdFmGzsO2I0ybCN9zg5rFyZRbWLiKLejzLluVSalkMepZNW7iyjBBCCCGEEEIIIYSQMfixjBBCCCGEEEIIIYSQMfixjBBCCCGEEEIIIYSQMSiubQASpF7a8CI+KR3t9dlG2fIriuE3U3M/JE+sdrTqH8PLwje/GG2lfUssHxNPCxt/tFdPzvXoNpD2D9pOQB779t1YbSzrJS2idLvNn5+Vp8d1yD0t4ktWS0+u4LGt/bskmzdnYeVJ50s9fUxkX5DhDmMgLlB5zJ2bhds2P+ZGrtuISdHmZtZAN+jtnfznNfV3Q/hzzneOCalH0bpMEHgvLJz2CfVcsc6roY/LrmG3jTdj0UR40cknT4RbPvnPTrqe9/zNRHjGDDfPs87Kwj/4QX7Z8jLf9CaPynqQ10dCPb4sZD/QzyHXnzR+2b5joeznle/zsYx3UfkesGOHm/+cOVm4o0D7h7SD9r2ULNAPGIkYADqPPXuysO670mq0vT07T3tbNj1yUClfsqHWrolwh4qTDSSf5298o5tM9pEyxiiZAnqWTVu4sowQQgghhBBCCCGEkDH4sYwQQgghhBBCCCGEkDG4XrDB8V1CrdP9+tdZ+LjjsnBba/UyLgDOcmJLthFb5hkqISsSl0cM+V2ohNKXGBIjiyJ1jLIDuJTYabld3pL2zi4nmVyOHmW7dL1E3nO9uy67szNrSym/kJIEIFxu43uvYvTJekoVTSzppZRoinvYYsk6DUIlQNYcGWMMOXO+bo+89gksrMj8HJJnDJl/qHzKuk++Mu1gRP8s0gZ51xar/o1igyDRXVd28acGl0yE5114YW4eWmr27/9evB6B00gF37s+ux933539/J3vdNPFUP/I+zms5Kw7dmRh/ciLbf8Qow8Wea75viv6zgEVVhzDu3LzlzdOvhPo9wCJlCpOVp7kn/4pC8s++fa/ys9/5878OE1e2VqufM01WVjLB089NQvv3u1fdgh1nbPkIFUThDOk2rvd804/fdIsTElsAUIsR3zzqyYfQhoFfiwjhBBCCCGEEEIICYGeZdMSfu4lhBBCCCGEEEIIIWQMfgJtMEKXn+vzjj46C0f50L1R7Zq2YUMWXr48C5e8BUs9d1HT+O6UFirRLHsXphCJbIyyisTZdREIaWSLlkkG7oKYSwl/OZLDRg8hKdGUMo0iNIpMsqF2s43dLwIJGnuGFFjLdwYGsjbv6Wlz4kJ2TbbirJ2AQwmRApfRz6JIuAPxnasbReZftpSzyHO5tTVL60jau3O2ap2Enh7vpFWj6796dVb/U07Jfq4fQ7Hn0li7bdbrPSNWe0R5D/Pcklvm0dsbOF7lCwOA97ynKy8ql4PwsPsDZ2vUvtzzZJucf74bJ5SEFX1LKhJlUXpnW20j40utLU7yynXy0DdD2Yc4SJsIT+uBMp5XZZRHSDPAlWWEEEIIIYQQQgghhIzBlWWEEEIIIYQQQgghRUkSepZNU7iyjBBCCCGEEEIIIYSQMfgJdJqg9eIdwvfI2grY1JlLTb3295HGAsaX9LL9WkK9dGJQtn+arzdBjPwlsfxm8vLR52wfytI51hhwvSwqysrbhtsw5qi1Z5Ysb9MmN+7ZZ7Ow5VlmeceUXf8QH6hYfdW3/4TmV2bbhW6d7u35ZXhD6ijpYabHl/TF8fUv09TSq6RsD7QyPLlqia6XvPebN2fhpUvj5F/2MyqPivskPKFG2jvstL555rF2rXM4svyY6vKbgq5OvzaO7csUy/8u5DlRcY7xvunrKRaKbx933jeHd7mRclL2XHlSpP84ZasHQNvgUxPheU6c4S8sJwvAbf++vtzTZJ27Ot04eex7b/TzSq7vsJrReo7K901t/RnLpy+vHg5NvgJJ35uNG/Pvzfivj2lacqUIKYnGfOMjhBBCCCGEEEIIIaQONPenbUIIIYQQQgghhJB6QM+yaQvv6jShlC195aDPW1c7WVwOocvirfqHLJG38pRLtAH30qxtq72vTa9djrwkP1Rq5tt/dLoYUgdDUeZdVoshc5Dn6eZvC5kBCzwMZXk7d/qdM2uWeywvrYg0ppYy2zKkeHn9zqq/NbwqdmrvLF5/vZW9zD90nootLdTjadmyLKy7bjO81/m2XYy5yHceDLUDsPK0iNFHfO91kUdU3rXpPLZuzcILF1T/HK2Yx30fIgbe9ylUwxqB0P4ee/7R5zwzmOWp59n29ixOytysMVRZR7+6hMrdfZHXprucM06KTKyelibW81ZmMTjY5sS1t8+bCHtL7Wv8YKiUW06OnEdmz3bjOg2Zp8xfhsu2uNC/T0hZ/KIetwPFGIe1RHeRnp4sLO+TPPa9z4Q0GpRhEkIIIYQQQgghhBAyBj+WEUIIIYQQQgghhBAyRhOIMAghhBBCCCGEEEIaDHqWTVt4V5uYEI+WQp47TT7oy/ba8i3LEepL0wLANb7oVHttC0K9dHyppXdO7LavoEC/lZ4S2oMk5Fr1+JI7sOvd2GV5Mjxnjn953lvZe/aRssdJEXzL3rQpC2/Zkp9O+2X09mbh1tasLGMYor/fPe7ry8LS/87yBbK8esrwIJF9a2goP12Qf18BQr27rPbJiyviaydp8kdeBXlzTBHPtRB0O86dGzX7ivzLHkNO+7R3OHEh5ZXhG+b7LNBzgPQUC207OWeaXl45dZqSgIFZ6Z2WhcuY66J4A3vmr9tOZmE9v7zHifQkjoR1v/OawPLY1HEx2if0HuZdmx4LslnL8C4tG982XrDAPW/8mTvdnq9k74EyTEIIIYQQQgghhBBCxuDHMkIIIYQQQgghhBBCxtgrFkWe8uYf1rsKJrP2ydbmxl4GrCm0DNZK7LlVu++y7xgykCJtl7ec2Fr2HVwPqXvQGgjPrcIllTKi/Ppb9SpbuhJSDyuttWzdt//o5l+/PgvrLt3TM7k0T+exY0cWfvRRN07L9iQrV2ZhuTzfuodFxknePS2y/N+3/cvGqoeUeN1+u3ue7xQmJTu6H8j7LbdH13jLBYd3OXHO1ejOJWXbhn6kRcYZFy3lplMkdfOvoaTdIkR2rCkyR4ZQtsSxSNlSYuerrNLPl7bW6udg3zxC266M+1Ymoc9A3zxDJG+xKCKPi40sq7Mzflkxns1l91U9x+dhPs/1g87SrnsSox9YtjEheRa5FyHvqTr/sq0OLGL3zyLtP37fksQr6+aFnmXTlr3irv7irkfqXQWTN196ab2rQAghhBBCCCGEEEJAGSYhhBBCCCGEEEIIIRPsFSvLSIa1dDaGFCCUeu4EI8v2XcJuUbG8XUqp9BJda2segZSJ6RXxlkRQFqeXgLtpszp3tMeRETXKzpmWNGPx4iysJZTr1mVhueuh3tBU7nKp21+qGQ491I2T8sEQORwQp31qKR+xytb5+5Yn2+6UU9w4eT+0vHL37iws73V3t5tOjjfZD3TZkso54KnsQG/TJtFxsmKrVmVh3dFkJQ29nW8/0/WX2es8ZFW2bXPj9uzJwrJdPVX8AMLk++azbP297g82bszC+gaLATzS2pabp2/ZoWlj7HLsKwHS91fu8CvllEWQeehdgYdF3KxZbpzeVa0RiSH/ij23Ws8JXylhGfO9NY9Iioz5vLRF3nV9r9VSI27dmoVnz3bjPF/zHIq8j5f+DI8sLSvjPUbeG32f8p43td7t29qVVr93O8j3AnkvpI8IACxf7lUP/Q4rmdftlUUFtZRbNzSUYU5L9uIeTQghhBBCCCGEEEKICz+WEUIIIYQQQgghhBAyBj+WEUIIIYQQQgghhBAyBsW1exmhWvJ6atBjb6tehJDztF9CW29vfqTQt0tfF8C1KZBh7esiKeIFpD0Txukw8tDnyGMt1e/y9Omo19byADB3blae9FcC3DaXniP6Fsrbq5FtUuTe5BE6FkI9TULOC80jhjee9tvwzXPhwiy8c6cbJ/09pM9ZIWQH0gNFdgzLkFCbqUki+GT4bP0+VdzMmW6c9O4J9UqK4ls4tD07kB5lU9Hfn+Uh75O+F+I+Falvns9OjLkilDIsV2Seuumkz90TT7hx0rOsnr6mFnn1KuNdq4w2CHn+htaxnnY+1nX6erVZ3mPyOaE9oeR1W+9XklB/YV+K5BHSR4r01RhjKMQDr4yx5nteoTleJpYXunSpdxayXt3d+Z6kMWjUubp0koSeZdMUriwjhBBCCCGEEEIIIWQMfiwjhBBCCCGEEEIIIWQMrhdsAFIkucuBy5YZkvjSP70K11niX2CJrlx5LeWOWi4oKdIPpMxQopdoS9WSPmf+/Czsuz162TKTInlYMknZ5vLadDqZRxlSyFCiyNcM+UUt55xQCY2vfOSww/LLlv1/zpypajp5PZxOoucAcTzS2ubmk6PxDR1DlrQnVA4tJRxapm2pT32J0s9kxfQAtqSumzdPHjYutEXnYehtWlsb4++Vsce5dU57u5t/DNVKyNwaKkMr8xzAUf4CAPr6srCvXLDItW0fytJK+aB+D5DduGw5aJF0vm3im0co8l0o792qGnz7biO9g8TGt17mO7hnHjHmQW2tIh8bXZ3+9yn394ZAvb6+lrac7Ov5zkdII8GPZYQQQgghhBBCCCFFoWfZtKUx/qxJCCGEEEIIIYQQQkgDwI9lhBBCCCGEEEIIIYSMwfWCDUAysifb2l5p0GN4VMjziuQRw8ckth+YlX8ZevrY7a/TST8kbYMjrW+krY72w5DH87rhTZ7H2KZN7vEjj2ThmTPduH33zc+/7HsviXHvdXvkraaO5b1ULx+N0PzL3ko9BqHto22mJJavnTfS2Et1IFln6RkEAJ2dWVyM1f3aQ8U3T9mOVh56DIW0V5Q+LttbV0T7wMkL0OeFpLPiFPLaLP+ysp9zeXUKPs9oA+2/I6977tz8PGUb6GeUZOECT9+q4V3uD0SdR9o7vPKwCPVEk95XOk7mGcu3Sg4NWbaeG2Sej21085DntbX6eyY2CjF8vuR1a783K78QL7JQzzXfsoq8B5T5nld2f9HTlHyX1v1fPot90e/qGzZk4eXLW3LT7tjhnrdwQeGibfSF57wIVCYr12+YkEaFH8sIIYQQQgghhBBCikLPsmkLZZiEEEIIIYQQQgghhIzBT6CNwM6dmR6vp8eJavHUsZS9NDqG7LKWsrypCKmL79J0nc6S0LS3Z3G+CiDdJUKlYVJ6JiWgmze76bZsycKqezqyGd8+2KjLtSuX3denHkVopDFVL2JIaCyi9APPvzbu3u0eyzlBjlE95mv5x8zQsuS1bN3qxs2enYVLaW95rDW3Mk6fJxta3gCrEQIbyHqGuM+GfBlsw8ytug08pan6tLzxO2dO/nneMt4CctkQQt/Jujr97qGnkmrKsmU9BwezdPo9oK8vi+vvd+PkkGqDX8ViyBGnytOX2OMm9N7LKWbbNjduzpwsj2A7gBLwlQk3onzckmFqrOdS3n278043nRwnuiwpvdR2J3kEt7Execg8Cz3KDKsJQpod/qZFCCGEEEIIIYQQQsgY/PxLCCGEEEIIIYQQUhR6lk1buLKMEEIIIYQQQgghhJAx+Am0ERgeBgYGRsN63/AaUmtPAcvLq2y/q9jXGuqVIb0ntEfIrFlZWHoiaLsB6aUQ6mFg2fbI/HX3tLaJz6NIWzWMB4/A6qtlX1uRc6zxlZeuGShyLZYPTl5cEb+Z2P3z2WfdY+nl5Yt1naF/9IzdR55+2j3esycLh3qWedexvcM5NPuInKAto6CS/a98/SwbFs9K+o69KJ5Nlq9dAXznWUmReeOpgSx/a2yEzkWy/vodJA9dD+d+bB5wI6VRk2jjWr/L+c4PZTwPQ97D9Nwv3wE1IeMh9H28Ed/JgLA66naT77d6zrXmYDlupJ+fdV/Gf+UbR3qYLV2af16U/qkqJvOU9diwwT1t2bIsrNujTTaCNjcmpMlprt+SCCGEEEIIIYQQQggpkWb4myQhhBBCCCGEEEJI49EUS71JUXhXGwFpClhgoPnKg5phCbUmr55lSKJ8lzXHaDtdlq/KRy7B11tOS7mm3nK6tTUrz9qS3pJhyqXpUlEBhPVBizKW/9dyG/pmGV+1pJb3vmz5iJZOtLdPvs26ljPJMaSly3Jsb9rknifztPKQ1FNW6yuh1HPMjBn5act+foW0V4Vcs+QXZGt+tijbziAGVl1KfQ8wGrJI+/g+50KfNbKaUvpkSu+UZm/Ttkx6rOV9eTYLWvYn66FlYi0DT+WfKIhx30LfOUL7fMh7TAw7DD2Xynuvu64bF2Y34Hudoc+XsufxGLYWsu10N7ZkmDJOvp/rMSrVifY9zC9LEmrL4ct+++XHVdTR0gkT0uRQhkkIIYQQQgghhBBCyBj8WEYIIYQQQgghhBBCyBiUYTYCUoZprK0vsow2L23oEuoYMqgYWPnvGnbLksuEy9ilyhffPLu789tK7pK3Y0d+nF4qLrtTZ6ffvdBSSykH0N2zUXYVlefpNgjpB0XT1osoErIaXmcZu3LGlmZb+e3enX88Z04W1hIaS1Yh4ypl1JOHy76H1hjShMiU9GZZvrIT67pjyLQrlSRZXJQdGI2G9ZXiEZsoY6PIACiZPBlmBcaW2XPn+pUln/1aci6pGAty3Ogts3N2wNT3Kca7Yow8YsylZUg+Lem9ll760Gy7YJeBbgNLBmuNQzlu5I6RegxZMmo9bCTPDE6+I26s3ddlPvI6rXmjIj/ugOn+Lk+mFZwtCSGEEEIIIYQQQggZgx/LCCGEEEIIIYQQQggZgx/LCCGEEEIIIYQQQggZg+LaRqC9HejtBRDuyWKd1yjeBGXUQ17n0JCbv/QEsLbTLnvLct/r1h4GeR4JliReeynMmpWfNu+6tbeZYYWCtoAtrsvoB7JeDWQ303TE8PsJ3Xbe8iP03XbeyiPUR2bjxiysfUykf2Co75Y8T247DwA33JCFzzorCy9ckH+dlf3fb7zl+ZaUQRH/rxhzR+gcnFePYIyGDb1Op16qA7WI45GeRX4ZauO2KGZt+YQ+V6umxg+KUG/F9vbJzzP7o5qo2jz7rvR91XOR9GWqKFuWV8cHboz3sBjehzHyD/X3rKfXquWp14jvYdb7gq/PKKB/1/BLp6dV/W6Rd17onOj7LmTV36Tk50RTQM+yaUtjfEUhhBBCCCGEEEIIIaQB2Ks+ls2YMQMrVqyY+Nff31+R5rbbbsNJJ52EFStW4Mgjj8SHPvQhXHHFFRPntLW14eijj8aKFSvwvve9DwDw6U9/Gu3t7Xj66acn8rn55pux77774rjjjsOyZcvwnve8B7///e8n8pk3bx4OOeQQrFixAj/47/+uVRMQQgghhBBCCCGEEIO9ar3g7NmzsWbNGjPN6173OnzjG9/Ascceiz179uCee+7BUUcdhde//vUAgL6+Ptx0002YL/b5vfrqq/Hc5z4X3/3ud3HJJZdM/PzUU0/F9ddfjx07duC4447DueeeO1H+JZdcgrPPPhvnn38+3nzppRNrcIvIiEJkCaFSzloTIp/Sq18bZTWsXJq+dasbN2dOFrZWMUtlzIYNbpyUS+hl8HI359mz3biunGXfur3zZCBA2H3SdZT1123gu7I7eOl4AI0iaw6liIwxdv5F5OJ5caEyTyvtpk3Zzx991E0nt38fU8tPivhbiZnOQu++LsfKzJlZ2LpOa47paFf3Rl6c0IGMtLbl5q9VelLm6Tv2iijgQuaY0DFaz2eeJPQ9oMXS8lvImyr7BODq72ostZHXJquo+7HvnOC0XRGdVclEkfBFuDd51g/6uMJ+QZyoryXPQqLI+6xlQ5H3nJBzOuC+/4QOE18q50gZDnvPjvHe0Yj2LJp6SkxDpa+yP4lfDSuklXlyzcmO8+K8nwUF2kqmlf3T1xqjaHmENBsN8jmhcXjyySdxwAEHABhdiXbUUUeZ6e+//34MDg7iE5/4BD72sY85H8vGmT17NlasWIFH9W9hhBBCCCGEEEIIaU7oWTZtacw/LZTEjh07JmSQ55577qRp3vnOd+KII47Aueeei3/913/FkP4TkeLqq6/Gq171Kpx66qm455578OSTT1ak2bp1K+677z6cdtppUa6DEEIIIYQQQgghhJTDXvWxbFyGuWbNGnz3u9+dNM0//MM/4I477sBLXvISfP3rX8cZZ5xh5nnNNdfgwgsvREtLC8477zx885vfnIj7+c9/jmOOOQY9PT04++yz0aM1NoQQQgghhBBCCCGkodjr1wu+/vWvx1133YVFixbhhz/8IQDg0EMPxVvf+lb8xV/8BRYsWIAtW7Zgv/32qzj3d7/7He677z78yZ/8CQBg165dWLJkCd72trcByDzL7r33Xpxyyik499xzsWLFiop8UiQT+u966r5jeQ355u+tf5eGFdpIw/DpsHwufHlmMKuX5XNhtYFMJ/2DitRLXsuMGW6c9EXQcdI/oaKpZKZyBaWqVIUPTg6+fURfs7XrvG+frKUXh9WPdw27ZVseLXmU7QURmn8MH6gy5jdf3zMLOS7lmAHsLd112nFC7YP6+txj+feVtWuz8I03uukuvDA/D3OOyZlbW9RJ1vgNwfL0sdpuOvuk+I4v059Le83leM/peWoYHRPhjm6VuGSfMt+527ffxfB2LdTPNm/OwvP3L1xWEaJ4m3nmqec22f7bh9xzZBeRHqQ6zp1u8p+VRfyc8uqvPVotvyhffN9HYtRfl+U7TurpRebbrtb4ahRftVDvNMvjN/ZUGuoBa+Hb/kXm2en0nCZ7J3v9x7IrrrjCOf7BD36AM888E0mS4L777sOMGTPQLQ1uBVdffTU+9KEP4f3vf//Ezw455BA89NBDTrrDDz8c73//+/Hxj38cV199dfRrIIQQQgghhBBCSI2hZ9m0Za+SYfpw1VVX4YgjjsCKFStw8cUX42tf+xpm6OU6Y1xzzTUV3mfnnnsurrnmmoq0b3nLW3DLLbfgwQcfLKXehBBCCCGEEEIIIaR69qpPoIN6ffgkTPahS9Lf3z8RnuzD16c+9amJ8OrVqyfCs2fPdnbDvPLKKyfCCdLcZarOz5V2xZLHySWxcif47u7ql+YWiYuC55f6IkvffbEUoHn5hy7R1ludS+St37IlP07Xae7c/Dhn+BtjY6Rn0UQ4hsRF5yG3oS972X2MpeKhUqEyJGS1XN5ehrzJyj8vrki51lbqeeNNj3OpsrKk2DEsKdta3Tq2dmb1l/LKl77UPU+Wrevv5Neq+qBcNR04z4ZgtWOtcdvLbR99P8apkDGKPDra88dJreUoeeXpfuBGliu7tLDmGMv2IPb7iVUP/ajssnTaOXnGsLWwKFuurMerfAeR75sAIKcYay6Vx7pJQyS4nZ1hErIY7whWfe35efI6TVUPK20MOxIL377r+1wq27bBl2DbGEEs2WVs25up0hJCXLiyjBBCCCGEEEIIIYSQMfaqlWWEEEIIIYQQQgghUaBn2bSFK8sIIYQQQgghhBBCCBmDn0CbiQJfrC0fqyhI445167KwNNYBKvcfFwTp5I2Lsa4zVJMvvTN0/iEeV5aPwJw57nnS4+HZZ7Ow3pxV1lHHyWOzvjk7vmpC/VRCvfGstvPy+YN/nX19KGJ4d1mE9lVfTwor/zK2IreIMYZ80fWfPdvvPLm/i57OZs2a/BzL3zDUL0f6kmkvFO0TlFe2Pq+zsy1LJ36u7DGdPGI8T/K8wIBwTzpfdPub/l05FGmDGJ5ZkhjtY7VB2XN8EeQ42rjRSpfVeUlfuf47egyNtHZMhK350vY9K16P4OeQmpxacjqz5a9q+cPqVwnZXjKdniMtS2HP15PSifEcCvFf02VbaWP4l5XxjiPL3rbNjduzJwtLX2XL86uRfLby+kXoO1Noe/u+L8fwPaMHGtmb4MoyQgghhBBCCCGEEELG4MoyQgghhBBCCCGEkBDoWTYt4V1tcJxltXoQGmuq5aGzlb2lDyqC1Ols2pSfn1w/H2ESKbI8OWQpsM7fkguFYNXfuU9G2n32cY+lnExvue697Lu9IzfOd/l2GfJBK129ZICxiCHpkMSQbpW9fL6IzDaGtMGK6+ycvE30NHXYYfIcO60PMaSuWiJlyZusuDwsmVUMrOuMJUHMy79InO85bcPS98DQDhk3J8bY27Ah/3jVKr88Woa2uz/YvDkL9/aGVSwQS95XS+S9sWS7vv2zQsoZ0K+Dn0lasy0rIya40DGv50iJNRfJV0rrXseQCJbxPA99lwi1qPAlxtwdUra+v1J6KW1FgHypbrPI+Zx6Or+XtVUmLpof4vRx32dsKM1yrwgJgTJMQgghhBBCCCGEEELG4McyQgghhBBCCCGEEELGoAyzAUiRTCyZLbRTXcjOkLH0NHLd9MyZQVmESMNqvdTXVyoXY1m/lYeUNmgJhy2zyvKMLSnVlL07Ti13EgJcWYi1K5NMp3cRlOdJNRPg7qxo7TwWu8/H2ukqtow0BjHGqKUkL1JeSNm+9deSbd+yrB3nfKVmZVCGLCo2Zn+3JogaEkWqWGQAlIxsZ2vHSGuXthh2DLHnN/0sjtH/feeOlghacl85t85e7iys1aDyWO78CwAtm5/MDlT9W8TYk9cZ6jhiPR/dXebjWHZEt2MYfCY/0tDIOn3QelAYeVjPELnbu96JWk6fbdiVHah7OCJkjfpdS2I9H0PxvjeRpfUWRXbdrifN8HyPQpLQs2yaspf0YEIIIYQQQgghhBBCpoYfywghhBBCCCGEEEIIGYPrBQkhhBBCCCGEEEKKQhnmtIV3tcGRunOt+7a8DnL16lroLwd2kUEu00qzCe1n4Gyj3PjdzfKr8PUxKeQ7Z9zfPCxvjFCvoVr6sXn31RrwzKCfx4nvfdJdXB5HsIoJxmpj69osv8CyfXZCxpfG6nd5cbX264qCmNdbDP8sfW15fbCMe23lH1pWXj6xfAvz+n+wp5Vq8BC/Iiud9vWSx9azzKmT8AUCgJbOrM6h7Vr2HO/9HI3wPlLGs9Lbb8zzfVDjPNtaO5y4vGaw/Df1s1Ie6zhpeTd3bhbWvlWWLyvg5wnotmP8edx6XY7h2RrF91XfANdoLQurRnbyj/Byouvb4WvrOJRviDc0nO9Z5njHKg9Y2bfK8O4NmcfNZ4i6hy3id6yR+ftPhHUbyNO6u8v1XSxCI/mnERJCE/5WQAghhBBCCCGEEEJIOfBjGSGEEEIIIYQQQgghYzS+Lo5MEGUpq5aBCMlFofxlPsuWZWG9zbyxnHs6Lc2NIaFpRmLIC3yJkYcltbQklBJ9ze3tfvXSQ0PXZRy9tN5bvmBQ9tbdvnJHTYj8KDTdrmE/CWJTMDjoHvf3Z+G+PidqpLNrImxds+99KnI/89KWLfc156W8gQcASoIYlL8ipP8HyzwNYt9DjSXFizGHheLODwLjYRDa3lGkuiXgO9f5ytG1TNK693n10HnI52NFfWVi42JkmxeZ333vTZ41gy7bqlfZEvcKvwfPtpPsUlJdSVuEfmxec3tWdkVfEse6/1iX5qqvi0smpyJv3Affa/0SuHZtFl79otzT5GvBvO6S7xOphJ5l0xaOBEIIIYQQQgghhBBCxuDHMkIIIYQQQgghhBBCxqjJesEkSfYD8GoAywDsAHALgO+naZrWonxCCCGEEEIIIYQQQnyo6mNZkiT7A/jC2OG30zS9dpI0zwfwPQDd4sfvBHBrkiRnp2n6dDV1mA4kSIO085aefNOmLLxggYhQnixiR+JiWw3neZZZ6SIQywfEV4vvvSV9DWmUekxFiF+RRRleH5ZnWS56W29xolUn7b+R5+2ifx6yLXkovt5g1nlF7otv2hD/MsD2z/GtRz3ngNzytKeJNPxRZi6uX4tfuVYbF+mD3m3n6SMWo3+axoURaKT5OaQusedVnWcZc1hQnT29r4CwOUB3szbPbhba/rH9Q4sMi7B5xa2H9qDyLSC6p6GRVpZVa0867zHkab5aRv1j+8oWmap9PcskZXtDFomLgX4tIDWGnmXTlmpntpcAOB/AKwD8QUcmSdIJ4JsA5gJI1L/nAfhaleUTQgghhBBCCCGEEBKNaj+W/cnY/w+mabp2kvhLAfQASAE8AOB9Y/8ew+gHsz9NkmR1lXUghBBCCCGEEEIIISQK1a4XPAqjH8Juz4l/9dj/2wCcnKbpJgBIkuR6AL/D6AezVwG4ucp67BUU2e599my/76By6XsRiYuTVi473bzZPVEe63X2vb1Z/koemldWPbdft2SAZr3k2mi1RNe67hCsejw14N7DjRuz8H77ZWFHtjsFZUuOZP6VspbJr9WqU/B28sY9zD2nouwWdZxzXnuYjLGeEk0LXxlgRf5y7pg/v+qy9fSTJ83bPuyOyaGhrI07O908HGmVrK+60BYpkwzEqa/Oz5ACt1n3LefmVMz3w7tys5BzmJaByGbYujULP/usm66nJ8ujo92tr+9zSabbNazHUHbcZuq9/PK30lm0DG13fyDaf6SzK0un2ztQ2pFX5yLztu91+1bRkkrrPEIl+rnUUCITS4qalzZ0PrbeY0L7u0yrn3N56Oe3VfYzg1mcHr4h7wFlIOecIs+5kDFaRD4YYnVQxjDxlTIHWWNMQV4+9fx9wkS/aKxePWkyPRYCX5Nyx17w7zxG/oQ0I9VOReO/Vt+vI5IkmQfgOIx+TLtm/EMZAKRp+sckSW4C8GIAJ1VZB0IIIYQQQgghhJDaQ8+yaUm1n3vHP5ZtmyTuZIyuHAOAH04S/9ux/w+qsg6EEEIIIYQQQgghhESh2o9l4x/DZk8Sd/LY/ymAn08SP65Z6ZwkjhBCCCGEEEIIIYSQmlPtesEtABYBOHSSuBeP/X93mqZbJ4kf/8CWb4ZCHIpoxLs6/dJ2tEojqPzuMDDgHm/ePPl31sP7ut0fWF5PdVyuGnubddNba3AwOyjBy0iWvX3Ira/0JdN+QnkWSwsXVO9/EQtrG3GU7LHhEKEAX6+YIr49sbc6t7xQar3Nekgeuo6mPVWOWZK+0zIPPYYGhU/NPOkzYvSXIu2YG6e9Dy0vETl563oV8O/KzcNAzj+SffYpXizg7+Oj75OktdPf+9MXX6/Ides6nLhHHsnCfX1Z+KTjgqph4u2rVvK4bgb/mhhzbqjnlM5f9h/5uhDLbylv/ixSx7x0FkXa58Ybs/CKFW7avr7ifkuhzzIr3datWZ6z1fIBbUEVUlYMz7tajr2y31ssrOt03yPz0+V54dUCXX/5K4T83a5NPYrndfvlKfMD/Ptn7N+bCGkWqv0N8HcAFgM4I0mS9jRNhwAgSZKlAE7E6KqyW3LOHZdfPlFlHQghhBBCCCGEEEJqS5LQs2yaUu3n3++N/T8fwLVJkhyXJMnzAFyDTKL5nZxzV2L0Y9r6KutACCGEEEIIIYQQQkgUqv0E+hUA78PoKrGzx/6NkwL4TZqm/6NPSpKkD8BzxtL8yqeglpYWJEkydUJFe3s7jjrqqMLn1ZKOjo7cZasxlivLvNeudePuuKNtIqylK6tWZWGtFsxbtvvMUJtz3NXbmx1U6ui8sJb0xl4WXMry9hCpUyBSWgkAGzZk4Z4eN04e+1bRkgZoZH+St76IJKFh/khjyIlHWtvgg9W3ZPbe0kF9oh7AYh/xUJlJEalMHqacQV6P1ux53vzgsZ2Tv/6xrP8Tm9yyHn1UnLc0k9gNqHEo58+uduU8ELmTV0iMrA7l28aefVwXJce6jCt7SizSpGVLgtaty8JvfKMb19+fhX/wAxGhfQ/EWNb4yrPKkGPFaLtGmeMbVTqU1z67hlty08WQE4fO/WWMJykb0485+QjRsjRfan09IdTzXdc3/xh1rGV7F5l76lnn3HdmPRg8H6y+162vOce5AoD7+qZ/1yCk2anqNSVN06EkSc4G8N8AelX0BgCvzjn1YhH+qU9ZIyMjSNO0cB2TJMEf//jHwufVkksvfXO9q0AIIYQQQgghhBBCUP3KMqRp+ockSY4E8OcAjgMwA8BvAXw9TdPBnNOOAvAzjJr753maEUIIIYQQQgghhDQm9CybtkS5q2maPgvgirF/PulfFaPc6UjL5ifdH0j9TuAglCt1777bjZNZyt24dNFaBZK3LFirxO5dLyWgrpRn+fL883RdxuloL7DcWVx4i7ETZ+jyam/ZRshWSAbWTk7d3W7c0qX5+cyYkYXnzPErW++2KdErwLdty8J79mRh3RyWjEget7bGv0/Wbpsd8npk/ylBQ2ZKaKQkK297QZ0JYEq3JCEyLus8c1xoeZm1g2TkcROKvB49TqTcQFZfyp8BV263apU7D7YF9N1C6ouA/lpEjmvhu9lvjN3orB2Jy35/tXbilPPsYYe5cTNnZmGnrVTfjy0BCpYNRWjYMqTevuWF5he6Y7BPflORNw22DT2Tm7DIdYZI58xzPPtIkd0eTzkli9OPNd8uWPaukPLZUMv5ptYU2WXUNw9fQt9VJNZ7pIXVf4LehWJQZFdsgX4lyEtb+fP8Z6zlstMoUmZCQmlMkwZCCCGEEEIIIYQQQuoAP5YRQgghhBBCCCGEEDJG1MXCSZIcBOAsACsBLACwD4AvpWn6TZVu3lhw55iEkxBCCCGEEEIIIaR5oGfZtCXKXU2SpAvA5zC6++W4Q0cCIAXwg0lO+QmAFQDuBXBkjDpMG7SY3Bh4lh5eWgPdcUcWPuAAN530DdP+MiE6c711d3t7VkdtVyR9fbTPi/QCcprE8MPQW6m3ybYz2jGKL5mBzENuga6rVciPLYeuTjePrvasvXbB9UqSTelbtm5GeT36/kp7LXkPy9hW2teXzMJMJy4gtE/o/imR/b+1U3niyMZbtiw3zwoPG09i+PF4t4nhHWiZ0VhjaPPmLJzndVgEaz7oUNNzR05f3rzZbQ9ZZ20719srfEaGd7l1yWmDWr+PxfZ9KpsSbAUddBvI8avnwQULsvD73ufGyTln8WKRf3tHbtmhz6sQb6oi5/lST78lSRHPrNj5h+bj5KEnEmFQWva12f0sDKteS/pqN3eEto/vnBOjH5QxB8TuI1FQL2Ut8mGvXwR6e7Nw4APA9bB121FmWbYnprcvXKv7Tl8kzzys/iOfczt2uHHy1uhn4Pg7ju+7OCGNRtVvLUmS9AC4E8DFGP34loz9s/j0WJrDkyRZWW0dCCGEEEIIIYQQQgiJQYw/8X0HwKEY/fj1KwCvAbDcPAO4DsDOsfCfRqgDIYQQQgghhBBCCCFVU9Xi0SRJXgFgFUblllcDeG2apiNjcbnnpWk6mCTJrwCcAuDkauowHUiQZktk8/YJR7Hl1WvWZGnlav3Vq93ztPQyNgf1ZvU64wy3/o88koW1DFMeu3XM77JyGfDoedkS5Xajp/tuQe27fN5akm2p0Cxk2bqt5Dfvii2hRQFt6jpDttBua3Xz2L07y6O/300rl2Jb0kvf5eGhy8h921i3nSX9kxhD1htZdsugklOKG/7wZleeJdv4mOURKqKILpmyGsvzRulkUs69zz5unJTA1RKllsWNN2ZhKYsH3Pmtq9O9uGcGs/aXsoe5c908QmUzeX28gBtAHBm7LFwXFiCp0VnElhXp/ORcOmOGm1b2yRUr3Lg8+XuoFLIindC9jBiSHVPiJbUzoXojMYe16AeYGABlSDRjWymE5h9d2qZe3iwZXeyyN21yj515tmyNWiAxJMoWoVL1WkoeY/SRGP3dvBebn8wO9Eu9nDssGWYgDdJVvftqGfOllb9snz178vPIe38wPgtMD+hZNm2pdqS9cuz/zQD+YvxDmSe/w+hqtGVTJSSEEEIIIYQQQgghpBZU+7HsRIyuKvtemqY7pkqsGP/bVJ3+9k8IIYQQQgghhBBCiEu1H8v2H/v/gYBzx7f98t/OgxBCCCGEEEIIIYSQEqlWXLsbwKzAfMY/tA1UWYeqmDFjBo4++uiJ4+uuuw59fX1OmksuuQQ/+9nPsO+++wIAOjo6cOutt+LKK6/EG97wBqxZswbHHHMMAGD58uW4/vrr0dfXh76+PsyZMwcAsGfPHpx33nn4+7//e8yaNcvJP0UyoQ3XW+5KvzHtg2Oxfn0WXrUqC8+fn39O2d4Ji3rc/GfMyL7VjjXTBLodxuns9PejquV2zr7ptEfNLrE9tc5PtoG0Z9CWL9IfQHuDtYk2CPXBsZC+BdpCQtZfWlXpdPqeSkLqGH5dbj3k2JNh7fMX6lkm+2fL0PbsQN9g0ZDdPfs7UVYfD/EW8e3jvvnpPIrkL5vBsq2S0/Xs2V5VLJ3Dl7rXOSi8x9atc9PKvtXa67bH2rUyjyy8Uu0hPa87pJYu0moolu1Q3lismIvkZKFu9kh75tMXOgeHIvOXVdT3UM4B1nPatx2D669vnCe2R04AxhzWKJTxPKwpxsuc9DoE3CGlfUfzsMbas8+6aaWHYptnJ4/lIWY9X5qB2HOYr1dYGR5uwecN78oOpAmpns9kn9cvXka/832PkcVZ40T7/eZdd6x3IV+fsrL7v5xH9Huw9OrU72Hjt0r7eU5L6Fk2Lan2rj4BoBPAYQHnPm/s/0fMVCUze/ZsrFmzZsp0n/jEJ3D++edX/Ly3txcf/ehHce2110563k033YT58+djcHAQl156KS699FJ85StfqbbahBBCCCGEEEIIIaQEqpVh3opRk/4zkiTxllMmSXIcMr+zW6qsQ105++yz8Yc//AH33HOPma6zsxNf+tKXcN111+Gpp56qUe0IIYQQQgghhBBCSBGqXVn2HQCvBbAfgA8C+LupTkiSpBvAf4ofXVNlHapix44dWDG2n/shhxyC7373u5Ome+9734uPfOQjAIDnPOc5+NrXvgYAaGlpwd/8zd/gYx/72JQrxrq6unDIIYfgvvvuw0knnTRpGinJAfzVC1LOB7gyHSkL0StErWW7Tw1keeoltzGW+y5ckOUxZ06+BE62gV6VLeulVQnyWvVW53KZsJQBFrku37RWOimtyttuGXCvW99DXxlg6Nbg1hJw2f5jKuUJ+vuz8OOPZ+GlS910sv7W0nRLGlZL+cU++4SdZymkzL80iEbu6nSvc8eOuPKCIoRsYV5EQiClDpYyY4m0zOzsyy2vnrKr41dkZXV3u/WQc4Ce77Xcb5xjj80vS87bgDu+bGnJ5OGaICq5vX2eEzU0kIV120li3E/dR+Rz47e/zcKyPwLuMzbW+ApC3bgQGbWVZ7AESA5aLdHcvDkLz3dl5qHPrLw8rHQx5Hy1nFP0tehm9T3Pt86++ceYPKL0W0VIP9DnWYRK7ELKanZaBp9xfyBfFuVcoV/qLR8ZgW7vvOkn1EJjqvLG8ZXEAu57QKx6lYn1+4r+PXY8bmTv6N5kGlLVUy1N0+8lSfIbAMcDeF+SJDMBfDhN02cnS58kycsAfArAoRhdVfaTNE1/VU0dqqVaGSYAvPrVr8ZHP/pRPPjgg1Pmk6Zp0SoSQgghhBBCCCGk0UgSepZNU2L8+eZCAFswKsd8N4AnkiS5UcS/IkmS65IkeQLAdQCWjP38CQCvj1B+dF7/+tdjxYoVOPPMM73St7a24t3vfjc+/vGPm+m2bduG/v5+HH744TGqSQghhBBCCCGEEEIiU/Un0DRN1ydJ8mIA38So0X8HgBdidOUYAIi9GJGM/b8ewMvTNBXirMbhiiuuKHzOJZdcgn/+53/Gtm3bJo0fHBzEX/7lX+Kcc87BXLl1ECGEEEIIIYQQQghpGKKsF0zT9Hdjpv1vA/BWAH05STcC+AKAz6VpOpiTpiGRnmUA8KtfuerRtrY2vP3tb8c73vEO5+cvfOELkaYpRkZGcO655+Lv//7vK/JOkE5o26V/FlDpFebLmA3blFheCuZqUmnaIo12tCGVFrbn0NHuitl7erJ6WV4ZvluiP/20e53335+FDz00Cy9Y4O9XEWPLb1l/3d6yTaR/k04Xe9VvkfrLOh52mNseM2dOfo61fXSwV4k0pbDMzQxPH92OebuU6y7t2156u3G3PHFgGVaoa5szx29flRh9xLpO3zh9f+XUMa/bPU/WedasyX8+mkn+BCHLfmZQe3nVx0dmSZ+bn/QY09cmp1PpaZI3tgDgvvvc48PEXtW6jeW1WXNMbCo8fbozn7LNyg9M3vup8onNs8JQQrZ/X5+bTnqW1ZPQ+bOmXkn6gS4bVnmW+dKIXk8xvK9C0Y+Q2O1jvdbV0xvS13cuNC6vrGpw/Wj9fM/KblPrHgaXLS9U+hQC7pwgX7z0L0Cev0/oV0A5xciirHfp7UNuG8h1ENJvORRdxx07srD1Cli2917oObLvNoPnGiFFiPZKnKbpdgCfAPCJJEkOAXAsRo3/WzEq01yXpunaWOXFYnBw6m92V1555aQ/v+SSS3DJJZdMHL/97W/H29/+9onjfmlaSQghhBBCCCGEkOkDPcumLaXc1TRNHwQwtds9IYQQQgghhBBCCCENBD+BNgJpOrEmt7fXT1alqbVsxsFYnRe6dFzK+zrEyusiS4ulvGnrVjfukUeycG9vfj2s+sdYCq/lp3l4rj6vIPbSfSuPea3uduDzhIRsV3tX1eW1GX18pDUbNy16MOj17jn5a2R5bRGWlVsyYV+pqK5vB3bJTHKzl9KDjgJ9KUSSUqSfyS3Gu7vzx/bCBZOXBQDoFAPYkODqKFf+kl/HsuUv87pFnmouXbUqGzdS+W7JHH77W/dYWmTO68xvH99nSNkSIC27nD271OJMpCJo5cosrNs/1C4hBrHkYFHRnUk+wPRAFJNTy/AuNy6nU1rXHCoJryVF6u9bz9B3BF9k/rq/13MxRYx76ns/ZDrL7cFCvy7LfOS8om0bysZqx5BnYMW7upReaim29BuQHc3o1Oa9Nu6NZX0i74W0iJiiKrn1sn5n0Pd3zpziecZ6FsewlJHo+WE8n5YGfFQR4gO7LiGEEEIIIYQQQgghY3BlGSGEEEIIIYQQQkhR6Fk2banqriZJ8kCEOqRpmh46dbK9gyLLXn2XnMs8H9uYv9tmoR2OenqyA0PPFFuyEypRWLDAPZa7ycml7y2bn3QTisjt6HCi5KWaErsINOJuX1Mi+oXVPra0wW/5v7sZptsnOtqzG1XrnbpiSPjM8yI8mEMlTTFkTCHytZah7e4PPNugGXdoaht8aiLc15ftGFnRBuJRfuONrpRf7tR4+NrrkRfZJsL13NHOkqOUjb5OuWOq7w5lMYglEQzdOa1q9JiUjacHvdSl6V3y5HtGBELnOovYuyf6jr1d6jlXSysOLeWvpaQ1xk6W1nmWBFGiu6pkUbcrmv76TQABAABJREFUM5TWEDt2uPPzzp1Z2JIIOtemZYyGjUMIpcz3UteoNY5ShikI7VeWCtzaDTPvHEDZJSjy6lmk/rK8ivb39YwQlHEPQ99nG9IqgJACVDur9gFIC6RPRDgdOy5yPiGEEEIIIYQQQgghpRHjb1HJ1Ekcxj+OFT2PEEIIIYQQQgghhJBSqepjWZqmXmsrkySZDeAgAGcAeBeAXgD/mKbpB6spnxBCCCGEEEIIIaQu0LNs2lKTu5qm6Q4A9wC4J0mSKwD8AMAHkiTpSNP0vbWoQ0NTwgDL05M/8oh7bPmwOF5eloY+LwyUPnFYXhPSGkX7DUi/D6eK6wfcAkTkwJDrWSbbp83XD0m3T05ZQBy/q5qiO1POtWqvla1bs/Ds2XaWefm3trYZCf3Q/UdW39eTLtTrybzX1vgyDDhaROO1t2f5F/GP8Pb4Eb5DI51duen0tS2KYUlk+Xk4vnn5c1FsP6FgdIcX7er0x+9+10135JETwc2bj3eiNmwQB9d/yz3v+c/Pwr29oh7uPYyN1d6Wd2YplOy56TuGzDnAMtoRx75+S771sNKZaQvMU06c01mBkZ5FuXUJwft+VrzHZM+XtWvdqOXLiz+na/08t31Bs3CMevX3u8fz50/+rlVknLcMPpMfGWBGGcOn02rHXa3uu6L1/pD3WDLvhfb8Eo050j0PeYT664X0iwpfTevdV/oWivtpzTdF6iS9by1vsDZxL+Z15+dn9R9tJycxfckksj0Ad1AtX+5VjzI8GC3fPOnLNxLhfZyQRqLmrntpmj4D4M8B7ADwriRJTq11HQghhBBCCCGEEEIImYy6rBdM0/TxJEmux+hHs7cA+Hk96kEIIYQQQgghhBASDGWY05J63tU/jP3/vLILOuXkE8ouoipmzaqd7uSAA9zjgBXso8gJQeodC0wUsWWGRfLIXRavt6oX66Y789Uv/hQ4qV4SoGj1yLlWvRp/5sz8U1wpZH5Rso46XS3lrDWXyxoSMt/rDpFq1RVDhmZ2IIPSx0IoYoIeFqqHtjlz3HTiut/0Jjfq0EPFwVlnuZHygeA5NxWR8eY1fxnvk1reLTFl1IaMsez7XaQtQ6jlfOfMN9YN1p1CapNqrsGNSxn3M28e13267L5k4faz+tUjlJDno3ztBdyuK60lAGDnzhzbD5WPzEPPZ3LYdBgv7mW/SwfPkfLCdf3lhRvzse/7oDUWrKkpxruizF9PdTHepcsY50H1MnTI3nJ9QpqERvgEGsO1xuQXn11ZdhFV8ebP9te7CoQQQgghhBBCCCEE9f0T0Kqx/5+tYx0IIYQQQgghhBBCCJmgLivLkiT5MwB/CiAF8Lt61IEQQgghhBBCCCEkmCShZ9k0paq7miTJQb5JAXQCOBzAeQAuFHFfraYOezMh20DPn+/GSdm5lqDL485O5VMgNfTz9w+qY8N4IEkML4iuzrD61tIzqxnoaB9Rx37nVXhl5D2UVEc2/XNkOmMb8VpiXqe+FsPjJ3ebb3VOaJ90+rWx3bvJwEB+nDBz8fZD0hhp83w09K7tlq9jXh5ljHNn3Jx9dm66Vy/P9wvZfvRrnLht27LwXNFUbZHqn2epV6R9aul3UsZ9s56xeena291rbvP08irDm1CeF3wvZP21L2heuknq4kOU/tLalht1jDG+JHLKBfzt2ELr79tWlqdnDJb0+fXBQnNAZ9dEuKJd/asWVHbeeV3Gc2HmTLdNH300C+vuL+d133uxq73LOTY9GSPj60fVojt8b28WDhwcvn5jvsTq+3meuUXeIZ26dLr3F8uOmrLcmlPA8Jq/95Bmp9pfB/sxujqsKMnY/z8FcEWVdSCEEEIIIYQQQgghJAoxPqsnAf/2APhXAH+WpmnIxzZCCCGEEEIIIYQQQqJT7cqyW+C3siwFMAjgCQC/AfBfaZo+VmXZez0hS9qN3X5NiUijUGTZdN629la60Lo0yjLjGNfZKNeiadR61ZLgbdtLGNzR74dnHYPbIAK+808Z800osrzhYbdeTzyRhWfOzMLz2pVMxpEC50vUNFJdU/Z111KKZGHde+v5G5qnpJ62B2b+lpS8CZD3TUur8t4z9L2OIZFtxHeOIsSos5SOA+V3rZA663oIRwFTcZgn55vsuFHwbh8p2/OU8MWQyxYhxjwbivX7St6rUWtr/rtQI72D7DXQs2zaUtVdTdN0daR6EEIIIYQQQgghhBBSd2rnnEsIIYQQQgghhBBCSIPDj2WEEEIIIYQQQgghhIxBcW2DUcSPJ8QDw7IKKLATcFA9itQ3L621bXU9dfhWPSwfgWbzW9I0pPeB8gxoFO8G696X7pvnuTW7b1lTlueLNHPxpOx7FjoP1hPfMdvV6bbd/PnZeb5dpJ6ea7WmyFw4jq6v9JXx7VvWc26qtLUk79lWUaeSfVxC3zN8Cal+kSnX12tIEsu/tez+E3JvrHRz5rjHeffGGkNltIHMU4/zGM+UGH28jPOmE43yPmgh/cuseakZfduaHnqWTVu4sowQQgghhBBCCCGEkDG8PoEmSfIfJdYhTdP0jSXmTwghhBBCCCGEEEKIF77rBS8BkJZYj736Y1mKJFgeEJNab4dsle275LyWW0s3wj2aiiLynRiELN2PJYHI6yNFrrlRZLy+BNdRLA232j+GVLTI/Q1p/1j9J7b0xjfvRpK7LOrJK6962e7eRGy7hLKJJeHLS2eVV08rhRh19M1fym+rIaT9Q/tVM0iwQh0FrPYpW8abVw+L0LLKyD+k35X5fJ0s/xhS49jjK9Y4kco+GY5hbUNICEmStAB4B4A3A+gDsAnANwD8Q5qmz3rmcSaADwA4FsBOAP8D4G/SNH1wkrT7AvgIgPMA7AfgfgBfAPClNE3L/D4FoJhnWeKRJvVIp9OUfpGEEEIIIYQQQgghUdm7PMs+DeDtAL4L4HIAR44dH5ckyelpmppfZ5MkOQ/AtwD8FsB7AewL4DIA/5skyco0TR8TadsA/ATAcQA+D+BuAH8K4F8ALATwoZgXNhm+d/WFU8SfDeBdGP0Idj+A72C0ATaP/Ww/jH45PBfAUgAjGG3o64tXmRBCCCGEEEIIIYTUgiRJngPgrwF8J03TV4ifPwjgcwAuBPB14/yZGP3o9QiAU9M0HRz7+X8DuBOjH78uFae8CcBzAbw9TdPPj/3sy0mSfBvA3yZJckWapg9FurxJ8fpYlqbpz/LikiR5G0Y/lA1h9EL+PSfp1wH8nyRJXo/RpXPvAvBgmqb/UqzK05vQZbW1ltvVa0lvqAwkRn3LyKPsZeuxJQVlyDxjtEEMGUXZfbwZlsEXqWPsOSd0R9xa0ijzoCb2OA+VzBepV14ejdKmFmVbFtSTWtsexJBply2zii3xCr2WGFLCeu5mW7aMNAZlzPEh/aeez+IixNi91fdaY6crcl6M52ho/Wv5juxbDyv/qfIhTc+rMLoQ6jPq518G8E8ALoLxsQzACwAswqhkc3D8h2markmS5GYAr0yS5G1pmu4ei3o1gO1j+Us+g1FZ5isB/HPIhfhS1QybJMnRAD41dvjnxoeyCdI0vQLAn2O0oT+dJMmx1dSBEEIIIYQQQgghhJTGczGqEPyV/GGapkMA1ozFT3U+APxykrjbAHQBOByY8EY7HsBdY/lLfjVWj6nKq5pq/xzxlwBmArglTdMf+J40lvZmjK5se2uVdSCEEEIIIYQQQgipOSNoafp/AOYnSXKH+HepusxFADanabpzkiZ4dOz8NqOZFom0k50PAIvH/p8LYPZkacfK3yLSlka1TnQvwqhB/88Dzv0FgNVjeRBCCCGEEEIIIYSQ2rM5TdOVRnwHRnevnIwhkWaXcT5y8hhSaay04+k7cuKiUe3HsvGveXkNYjF+ziIz1V5GLN2373bOoRp033QxvDmsn8uyy/brmqouPsRo79Dy6umzE9qXyvYN870fMfxU9hbfhtBxV7afX5G6SGJ7CYZ60QyJBei//72brr8/Cx95pBvX15eFOzurH18x5qlnBt08vvCFLLxsmRt3zjlZOIa/lVX/oaH8Yxlub3fz6O7OzTK655Em9Pnuk99UZU8nQp4FFkX6YOw23jXs5u+7QVsMP6RQyn6ulu2ZFdp/QvpWrd9fQ7zmQtu72fwri+DbRwYH3bjOzuL5FSEvnyLejSH5k6ZlO4D9c+LaRRrrfACY5XG+lXY8vVVWFKrtweNf+kJ8x45ReRBCCCGEEEIIIYSQxuIxjEotJ/uAtRijK9OsRVSPibSTnQ9kssutAHZMlnas/P0wuZwzKtWuLLsHwCoAZydJcniapvf6nJQkyeEAXoZRCafXOYQQQgghhBBCCCGNQpoCw8P1rkVN+DWAlwA4EcKGK0mSdgArANzicT4AnAzgRhW3CsAzGPs2lKbpSJIkvwFwXJIks5RP2okYXfR1R9hl+FPtx7JvYvTC2gD8d5IkL0vT9I/WCUmSLAPwfYwuqUsBfKPKOkxrypZwhBKyrDZ02XejLsWOIfuR6EnWVzohCZXqSopIRZ089AUMDIh0Io/5eat37fJ0fUPqH6N9yiCGTC+GRCQUa3m+jCu7TYvIm0LqUsaW9L7ndaxfOxE+ab2rwzzugtdMhNevd/OwXt62D2Xt1d6e/bxsSayWmdx2Wxa+6io3TtbrjDPiyzms9tm9OwvLOmvZZcvAU9mB1swYE7l3W8pKGvmVLeWPQZG+VaYMv2wJU6y5J0wuHnZtMcZ5y+Az+ZFibFjXZb0LxZhLddmxpZAx5Kyxn106/yL4tp1vHqH1qpd9Suh5obYTuv9LC4AO+Zwe2p6bcKR7nlletVTkt3lzFlYXMNJDt6VpxrUA/hbAZXA96/8Co/5hXxv/QZIkBwDYF8DDaZqOd9ifAXgcwJuSJPl0mqaDY2mPxaiX/RVpmoq3L1wN4PkALgXwefHzywAMowbfkar9WPYvGN3N8lAAhwC4K0mSrwO4DqPbh24ZS7cfRqWa5wJ4FUZ30ASA9QC+WGUdCCGEEEIIIYQQQkgJpGn6+yRJvgjgr5Ik+Q6AHwI4EsDbMfoh7Osi+f8F8DoALwRw89j5u5MkeQdGP7r9PEmSLwPoAvBOAJsAfFAV+WUArwfwqSRJ+gDcDeBMjH5T+kiapg+WcJkOVX0sS9N0Z5IkZwG4CaNG/TMBvHbsXx7J2P+PAzh7Cl0rIYQQQgghhBBCCKkvlwHox+hqr7MAbMboqq9/SNN0ymWMaZp+M0mSHQA+AOCTGPWv/x8A/ydN00dV2l1JkpwO4CMYXXC1H4D7Afw1arTgqtqVZUjT9L4kSU7AaIXPQ/YxzOK7AN6WpunGassnhBBCCCGEEEIIqTV7kWcZ0jTdA+DysX9WuksAXJITdz2A6z3LGwDwV2P/ak7VH8sAIE3TJwCcnyTJkQAuwqi29HAAc8eSbMWoWdutAK5K0/TuGOWSjFCfBV9fBOltA7g+Mr7lle2nVTZl+y2FeJQ1NNqYaJwCnmW+xPC8CN0+PrZ3XRmUXa9dw1keuh/HmANC6xj73pTt5VWBfPNaty4Lv+c9TrK2//3fifBR73ufEzfSfVBu9hvFn6v22ScLL1jg/5wwyX1zbHOOvvzlLPz+97sppQdbGe0v+6vuu/I5t2CBqIf0KAPcuU4/HD09xqQvjaYj8NmQN4YsTxxtuSbR58nLlv5uc+a46WSThPonxhhfMea6sufxGPnrLhcy9xV5V3TQnUQey47Q6s4BEutdKLhenvjmb81FRfL3KSsWvv2g1t6cecj3CiB/vgGAuXOzcJH+I6mnP7J8psyT/l8Anuk5fCL82Mas/os6832CoTzLSkc+RPaWL0ZkryHqr+djH8H+LmaehBBCCCGEEEIIIYTUivotdSCEEEIIIYQQQgghpMGYbsKvpiRBWvW2xGVsVW3JNqotqwiyXqFbrvtuSV+G3MtXTlb2duBlb7s9omQVLX19hfMoQr1kjUXKDamjPkeurL/vPjftccdl4dbWsL4VKs2IcW0h8qAy5C++hErIJIX6v9CTjJz/5xPhwTP+PC+Zt0QecJUTRc7zRc4J1jNk5sws/MlPunEhEr4ifSTEwmBESVxaursL56GR41yGAWDZsnzJWkh5llKuCLL/yLC8n0B438p7doa+B5RNjGdbjPmtjHp4p/UcC7WmlPk557xQqWjZfdz3PaCMMROSpyX71nFS+h1qaVLPMeSgLEx+8Yss3N+fhf/yLUozX7KXi/kc7e31Sjed2Zs8y/Y29s4eTQghhBBCCCGEEELIJHh9hk6S5DR5nKbpLZP9PJTx/AghhBBCCCGEEEIIqSe+azZvBpCOhVNxnvx5KDI/QgghhBBCCCGEEELqRpGPVEnBn5OSKXvLbIm1nbwvmza5x9LXpGybC1/PGssvxFeH/8ygm07aCHS0x9+aOrbXRIiPVC0oo+y6+lJ4Iu0r7rnHjTv66Czsa1cR6qeikedZfmkbN2bhnh7/eoXUo57909o5Pcb8Ka+zS+fnFOh2BMuHpbc3iyvDs2zDhiwsqyjsTQAAbdiVHRTwXfG935aPSJtncSG+Q1OR5/ml+0toH8+rc3t7izr2y0/fGms8hyDbAAA6RL1iz7PaF873HUT3pbbW6n3VJGV4K4Z6VpZJqDdb2fW12q6WdSzis+hbx9ieXEXKDkHPS/PnZ2E9F5Vs11U+YgJ6rOd4J+rGr2Zh2QYVBD7EY9zDvdWnTELPsumL7/TylYI/J4QQQgghhBBCCCGk6fD6WJam6euL/JwQQgghhBBCCCGEkGak2ReuTntiLPuu59bpsuxnn3XTyhXDeulqqKQsDy0BldtMd0SWH919t3t8wAFZ+CAlP4qBtbQ+tqRDt+P99+efd+ih2XkLFuSns/ru9qEsDynnA1zJzh13ZOFPftJNt3hxFr74YjfuwgsbQzYjJUFaiiSX3R9xhBu3Zk0W7utz4xb1FL+eWBJNibw2LduSkmVfqWIMGZqVpzWGfMeX7qvyHnZ3+8trvDEmTCvPEOnKUwP5Ej4tM5fSNiknrijXU7rgK5HS6eSY0mX7yjB9KfIslvWS7WhKbSJQxnPCV36i08njHTvcOCkXjSEXl9cp+yMAzOv2u296fm4T81a9JI1llF3Gs8AiVApWhrQwL39fdg3nW3GEUsu+ZY1lfS2x5w6rrcqwCsij1v1fot+FTj998nRlPOfKlhAT0ozwYxkhhBBCCCGEEEJIAPQsm57w8y8hhBBCCCGEEEIIIWPUZGVZkiRHAngTgGUAdgD4GYB/T9N0ey3K92Hjlu247FO34td3b8KsmTPQd8AcfOZdJ+PYi76NZQd3Y2jXHszpmIm3nf8cvO6swwEAV15/D977+duxeME+GNo1jDefeyTe+apjAABf+s4f8cVv/QEzWlrQObsV//b+03DUkrlT1qPWO/6FSvh85S8SLROLgbV0X37h37LFPW/27CxcZNchSZ40Y+dON10t/9JQ9vJnfW3r12dhLU+ZMWPy87QUr01qsFQmQ8NdE2EtbZPH73tfFn788Zc56X7/+6Mmwnfe+XEn7vzzRT1qvM5W9gspVdRSVylle/ppN07uNqh3c1uUs1NdEZmhhW9fW7YsP07KriwZplOvUM124Hm+O8lJyZguytops567ePnuzivv9d/9nRv3xBNZ+AMfcPvE8SuMHTwlgY3g2wdj7EbqW48iY0iOWd/nRJHndC3lML7118+J3buzsNwhu2z0jqy+1FIKpqn1LoshWBJE3/yL1CMkz7IldkND+W3g239iyI4trH6gp+PYO15aUmyLsuWsoTuJ5p0Xeg/182r16iws37lbhnc56YaH20TYzaOt5GegpAyZPyH1pKqpJ0mSgwB8a+zwS2ma/sckac4BcA0A+Rp0LoC/SpLkxWmabtDn1Jo0TXHu3/wYrzvrcFzz0VFx+Jp7N+OJLTtw6OIu3HXVKwAADzz6DM77Pz/ByEiK179s1DzolacvwRfeewq2PD2EIy64Fue/aAkOXNiJV79kKd5y3ugv6d+7pR/v+uwvccNnz6zPBRJCCCGEEEIIIYQQL6r9Tv8SACsBpAB+qiOTJJkP4CsA2nQcgMMAfBPAyVXWoWpuuvMxzGxtmfi4BQArDp+P/se2OemWLO7Cpy5bhXd/9raJj2Xj7LdvO5b27ovHN2/HgQs70dWZXfKzO4aRJEm5F0EIIYQQQgghhJCakab0LJuuVPux7E/G/r87TdP+SeLfBmAORj+m/QrAp8d+/gEAywGcmCTJy9I0/X6V9aiKtfdvxQnL/LafOv6I+Vj30EDFzx/eOIihXXtwzNJ5Ez/74jf/gE9d/Tvs2j2Cn37x7FjVJYQQQgghhBBCCCElUe3HsqUY/RB2R078K8f+3wTgxeMeZUmS/C+AB8bKvwBAXT+WFSFN3eNrb3wAN935OO55eABffv9paJ+VNenbLngO3nbBc/D1H63HR674Db7ywRdOmX8MPT2gtOyG0N/XjyfEv6xIWWVo2uVla38SX+8D6b9hnSP/mqA9ueR52s+jrTXMTy6EGF4W+touvDALDw66cT/5SRb+n//Jwuec46Y7qjff0El6+qxa5Z4nPcvOFt+iv/zlTzrp2tuzVaCyvrq41tZ8zztra3PfvqTbv83pn1nZ2ntMepzoNojhxRSjb/lu/a5ZsMAvnRw3baGmX4HzoINRtsxj2bL8MaQ9m+RxZ2e5fkKhtAxl9qK3397hxN1111fE0eucuK9+NbseX380sx4R5rAyCPVikvX09XYq49qsv4b7Di/Li0nmX2TOinG/ZR4xfKC0t2Vsv6IyxnlInwn1r9TvAbJfyGes1a/qOdeF+plZbZznTwq47SPDRepRtg9dSH4x5qkifcS3POu92vd3mbKfL7peHaJfHLNcRAy4g62zO1us0SjzCJC944zUb1gTUhXVjvj9x/7v1xFJkhyAUUP/FMDXpZl/mqaPArgBQALghCrrUDXPWTIXd67b7JX2rns348i+7onjV56+BH+45gL8/F9fjnd/7jZs3FK5Z8GFf3IorvtZf6TaEkIIIYQQQgghhJCyqPZj2bh28dlJ4uQaiBsmiV839n/gnkTxeNHKRdi5ew++fN3dEz/79R+fxEMbXc+y/se24T2fuw1/fcFynQVOPnohLj7jMHz2mrUAgPsezrat+8H/PozDDty3pNoTQgghhBBCCCGk1ox7ljX7P1JJtTLMPWP/7zNJ3PNEmlsniX9q7P+OSeJqSpIk+O7HX4LLPv1L/NN/rkF7Wyv6DujEZ975PNz/6DM47uJvY2jXHszpmIm/vmB5hbn/OP/ntcfi+Nd+B397yQp84Zt/wI2/fhQzW1swd04bvvLB1fkVkK6Aat1x8HJfT+2Et3xhSK2Y01qi8XRaYyHrUUA+ZcnjQtDVkkvhZTW0LFJuAa5lJvI8mb8uSzbV1q26Zln+s2e7MXnyhVovr5ayCktiobvE09n3YvT3Z+F169x0y5Z1TYR9ZcEAMH9+VudLLsl+fs457vg88/RMkjzS6u41Iq9Hbsk9mn8W3r07C8+c6aaTsskYCkEtw7QkHPI8XZaUC4XOI759LcaW7pq8freox9B7FSHkrSCCXk3fQyknXrrUjYshsw1CD/QN2abVv7m+24k6/uxMeqnl7nJO6Ai8bb5y9DKkMTHyDJVoxq6HRQwZpi9F8su790XaI4ZMsmyZW9n5y/urn9Mhc4y2k7DeEfJeAa33KYtQmaTvOTHaW1+LbHP5LjFZ2tx6yEzUQ6RFvDTsanV/pQp5f7YkjsHzmah/m7roYbEHnK+lQ4w5sdZy/eiol8XQOTIvj1D084QyTNLsVPsa9CSAgzEqt9SMm///Lk3TwUni54z9X6lbrAOLFuyDb3zs9Iqf77jljbnnXHL2Ebjk7OwX80UL9sHG/74YAPDZdz8v7zRCCCGEEEIIIYQQ0qBU+7HsLgB9AM5IkqQ7TdMBAEiS5HgAx2DUr+xnOeceMvb/E1XWgRBCCCGEEEIIIaSmSJEYmV5Uuwb1O2P/zwHwoyRJzk2S5NUAviXSfCPn3BMx+jHtnirrQAghhBBCCCGEEEJIFKpdWXY1gPcAOBbASrgfyVIAN6Zpers+KUmSowAcOpbmtirr0PwkyYQ4v4jO3NKn++bjrU/XRhTy2NeIItCzzPLbyPMNA4CW4V2TJ4S/j4PrG+Z1Cnp63GPpSfToo26ctJ7Q50n/H8tXxNfrxvL6cPKo+NNI5iehu8GMGVl4UY9bj4suyspbJbb70J5NmzZl4dmz3Tp2debXq00cr1iR+XToLoi1mUlaizYE6z5oIih91QD3foR4j2m0z0uIF5Dlh1c59Py8emJ4W4TmYY1tYZPlXHfoHFlByA2wzhEX02Kk6+x061/RX3MI8Y0pgpO/HujyRqm43/wic1IYac+3IA31ZfL2yDHme6seDeNbY/xJ2upPEutaZPbam7O9vdw2kOWFtrfV/4P6lppwrL7r5KEfYPqZUk2dJovL6xcF5i/Z/kMR+rueq+WUoJvD1xMtdE4r25MuJM+O9urHV8X7mux32vi1ry8L9y7xyr9I+wTdG91vZf1VB+oQL7vSV1b3M8vPzPJvjU3wO5T1wtYEWO98Mq5NtX9392jasu8LIWVR1VMzTdMRAGcBuBNAov6tAXBxzqmvF+H/qaYOhBBCCCGEEEIIIYTEourvvGmaPpYkyYkAVgM4DsAMAL8F8JM0TVOj3K8A2JWmKVeWEUIIIYQQQgghpKmgZ9n0JcqiyLGPYjeN/fNJ/84Y5e5tODITwFzTKqVtM2dm4RzFwKQ4y2zn7+9GimPvJdp6TbU41vI4uWxdnialWaPpsrBciQ4AbVIboLQAnZ3ZUu81a2SV3MWWUj5otb+1DPuRR7Lwzp1unLxsLVfIW6UdTYYmydO9AujqzK6zvc+/bFl/eW1axfKE2OJDX3PnUlGeWJ6vjzsGnsp+vkZJFGQ/2LzZiepall3b6acvQgjW0nTZd7dtc89bsGDyPCYrYRzdR0LkTTFkUEB+lymiLrDGtmyv/fbLzyO2JNGSF5gYEovtw1lf1ffwqGXVS9RCkeXdJv5s1dfnjoVF88WBMVGFylOiSOyMOSy25EVnb8mDtCQlDyk/itWn85pE1ymGpLoMvCW4vu0l5399o4QMU99fp73UM8T3pcq3/Svek+QDU449Q99o3UPH2sDAmgcttw2LMuTjeYTKYH0xbRWUVF3KqC25r4ls9Pnzc+O0xFoi2+Spgfz6W31En5cnwe3SU64sILQDGad4OiRUWyyAAu8IumAxtr1l34DbyKLtdsF9J7buvZV/yJxv5VHLcU5ILWictyJCCCGEEEIIIYQQQuoMP5YRQgghhBBCCCGEEDJG1L0pkiR5PoCXY3RnzAUA9gHwsTRN/12lOw6jmwBsTdP0wZh1IIQQQgghhBBCCKkF9CybnkT5WJYkyUEArgJwivwxgBTAvpOccjmAFwDYAODgGHWYLuiB5mjqjVE4rLTrjz6ahaUFxsqV7nm+fipmvWQBlleMNqvK0eGPHndMGqU9Bnp6Jq3uKJ5eIjfckIWlvxgAPG/F9uxA1X+kZ3KPK205ctJhwk9Lt4HwnngGXU6U5YPji68XwZDwVGpV3mCyaO0rJW9hn/Izk5YqGzfm5yHtN3y3ma9AFnDHHW7cihVZeNkyJ+rhocx7b4PaauTQQ7Ow9P3bvdtNt3ABcpH3UOYBGH5Lyu+ktXueXwHqvuX5Rlh+GzrO6j+yn+/YkYX1ULby72rPfAC7u93663EUnZwBVsRvw/HpEJ13u/I+7O/Pwr29bh6dneV6fZjePWt/NxFet+6Y3HQ9q7K5rkgd8x5Zqos785tsD12edS3bkT0zdN8RtotoG3omv5LqmaF9iSY7RZdX4VlmzGkh97uIp570sDGf9dI/VF3AiPaK9Cy7YZA3Sz58li/PPUXbki2S7xlLlzpxeX1St03b4EB2jprTpcfswrnqRsn6izkmlvdkXlG6H8vz9PiS700HHODG5T7TrUGkTvL1NHTi9CQjHky6T1tzTF4ft34pbpPvIypxi35pFXOOt++T9iwL8M3Tfdx3DtavsPLZJl+vugZVAfJ+6M4lMpX+xR0FrCattpNzXxmejPJ539Fu3DdxbZbvZQfUAJPGyuLeD/Yc5SSb142aYbVjsO8rIQ1K1bNGkiRHALgTox/KEvHP4nNjaXqTJHlBtXUghBBCCCGEEEIIISQGVX0sS5JkBoDrAOyH0Y9f3wHwfABTrQ/5bwDjf2Z4aTV1IIQQQgghhBBCCCEkFtXKMF8L4AiMyi0vT9P0b8YjkiR/cVmapjuTJLkdwIsBnFhlHaYVenWys3xV65sEbWqZ69Kl2XdQa7d03yXJZr3k8nm99F0up9dLxWWcKiBv2W5PT/5215VSUT+5wapVWfiUU1TCdeuysOdS94rb9K3rs7Bew3766RPBLiXvyNNexlpGLm+brpZkxowsrNUFebvaA/k7nVvLz4ORFfnFL/LjVBuvXZuFv/9997RLLsnCCwypJUScdS26+7iygTDk1uHmZC5lIIamt8h24FKqIbea1/1TShR0+3S1Zj/o6XGlMXkS68o2zs9f9sGKOSVPO2fMs5UlTy6l3bbNvRZDZRsuPc5DaaRapE7mq19104oB/YbLLpsIjyx3JZmhMgp53TKs5xur+S35oOxrMk+dv+xL8+5Qeuv77svCL3yhW7aSbY+jny1Wl/GWVhkaOF/JizU2JG3Y5f7A0Dy3GM+9MiRNeflbEkFZ/UoZuCCvQwIYHMrGrO4/i3LmotH8s3sqZbsV/VY+PJUMU9pmLJzrnvZM90ET4Xbj+eJr1WBZavhaP+g567nPzcJmH7f0ytZNDJECG5YXQfkpfOV2AGyrkrxnsx6TMk7JMH2l0nLcH97nppPvEpUK1qxf96nzlvTl/C6wUdXfejnKaR/ruixizEu+4wRwqy+lo1b9t251j59+OgsfPl+13e9/n4UPO2wiuHs/V4bpe91FJJS+xLCNaXbSlJ5l05VqZ5Rzx/5/BMD7C547/mvq4VXWgRBCCCGEEEIIIYSQKFT7sex4jK4q+0GapnsKnrtl7H/DvZoQQgghhBBCCCGEkNpR7WLJ8bXADwecO752dy9dsJmRIgla+iqX/Otlr1IWZckRJdaqb1O+KSUFSl4QexeUed2BO9WpevT3Z3FyJ6pXvvBJNxO5c6Na+h50batXO4fb+7Jl1O2eIyFWm8rl4sNCUmftkqR38pPHeoMmuROblAWvX++m+9KXsvD557tx553jea1SS/v//p8bJ9dFK3mHvB1aWiLlBrNn56eTA6dV7OJaBGe5vrH7ZZEl3lL+2N6e5V+k/1hpffORG9Dtq/ZGHp6ZtVe3Ut7kLevXEhG5O+nOnW6c7JNSSgK4u1f6zr++EqOFC9zBLHdMLVu6VtFA3/3uRPCW//t/najT3p8tCJfSy3hzzOT56N3WLHzba1FPVlZ3t3GOnPAB4Pbbs7Deyk/ItuUYjfZcy5NnGdpcS8au4+QutXI33nnd6mGTsyOfxve6zd2zA8+z5j6pNNYysQ5ZtnhgPbHNnavl3KFVdA9vyJe6LunNpG16J2kHIenVeRy/QsrY3Tzk81g+vrRS0XC1cKiQ4IpXcN93xZZhnYdAX5yUQ4pK7+p0n3Obh7Odqbu1nN5zN0NnV8veg3LTxUDvlCvfdyrGr+xQ1s2xLE3kscp/uHt/5CHvaYvsTDfe6KRr22+/7OBPznLipF2FHhtLerI6P7AxG1MDA0ucdHLz2Yo+GKDbs+YifW9k9tbOp7LrVuyoLJrcudfI34VS11HWS7+rOMNGD26pcxYNqTfOtfDdVdpSQ0us59DeKsMk05dqu/R2APsCKLDB7wTjb6VPVVkHQgghhBBCCCGEkJpCz7LpS7V/4n587P+jzFSTcxpGJZwPVlkHQgghhBBCCCGEEEKiUO3HslsAJADOSJJkju9JSZK8GMDRY4c/q7IOhBBCCCGEEEIIIYREoVoZ5rUA3gygE8BnAbxhqhOSJOkDcMXYYQrgqirr0PTs2JF5buyzjxu3YEG+75a0MNA+AlKTbm5xLdCePr7IekiPFEDVf2i7VbhzGMNDyIqTHgyv/NNnsoODj3ATXn75RPCZpcc7UXIbd+1h4HD66RPBXfMXOVFyAFa0j2gTpz2KrPP19MfoGspuYtd8wwxFYfnCSWTc0FD+vV28OL+OloGC9IIYQpcT1ypO6xhyVd8d67OOcFqvMl2bLY5lm/cPuOnEAGgRHkcA0NWZcw/d00x/QHms+5nMU3eLbduysOU9EQXHsML13JHXqf2E5Gnay05et/bDk0gvpjnqTzayDXT7yPnO8kZq9fTLQWfW72J4vVk8ttGth5zPli51/Wt63vl3E+HT9qh9eM45Z9L89XXGqLPvnC4tjgC3/aUXp4V+5smyf3Pka5y4tXuy4x7tW9ifhWUf1J5r5vzvizGvW34wsmyrjeU4tDx9Qv3GZB9pC3yztM6THpvb1TNEjvONG93z+vqy+WhYPH/773LTHXdcFtbXfMMNWVh6MALAm96U41OmPKdGxPyg29i6bmmxd+CBWVjP6dZ9csavYcZk9TMnD6OvjijfzpYNYnISZQ31up5la9ZkYelvBVR6pebWy/i5NTas9xjn3cKwFFvUKX4gJ2TAnTz0xeQNPt3G0m9MFd4m81Dva44HnryAm2928xe/RLSdfLITtW5ddq9mzHBPW/LCrC4bNmT3XvoIAuqe6kEq6y/q0RJomtXm+cKj77Uch235r70V+L4Htw1n7/gH9bgD7KnB7D7d/nt3DO3Zc+JEuLs/+7m0mQOABcIbtcgz23m9FfkLm8UKQp9DhDQjVX0sS9P05iRJbgRwOoDXJUnSCeB9aZo+oNMmSbIvgNcC+AcA+2H0Q9m1aZreXU0dCCGEEEIIIYQQQmoNPcumLzE+/74GwEMYlWO+AsB9SZLINQJvSpJkDYBNAD6D0Q9lAHAfgLdEKJ8QQgghhBBCCCGEkChUvcFrmqabkiR5PoBrAJwy9uNDMLpyDADGdW2JOO1WAOelaSoWz++9DA1lS/u1nFIuq9VLW62VxrlL5o21+kWWrcsspfTy/vvddFL1M3++u7S4bYNYgFixND1bkuy7lXERnFXsQmPxlNIAzZs1ayKs5ReyyuaS7XXrsnTX/ZMbJ2V7Z5+dW0CLpdOTWPIILa2S1yovTmve5Hbvalt7WZyW8Tr9STT4eac7yXDOOUK+NviMG7lRSA9UHxkRfUQuAR9udesh+0+H7kAy8pe/dOOkLkdeqNZfyDx1+4v8taRgo5DSSeWEVr3K4yLL2+XcEYqvvMBXq6WTSWWJVoXI616xIgvrOVIe69sr89fkzSWh256702x8GaOUrlx5pSvn/ru/y/bJ+eu/PsSJu+yyLLzkr/7KzbN0fW6GbAMtA2zb/NhEeGDIvTY5RI8yZCFWX5XH69a5ZX/mM1l44UI3z3PPzcIrV2ZhLSee151fr7w6AgCEZK0lT3YPJfPU848hk5d9Uraj9ddvnb0cX6XLawwNqCxbd9sjj8zC2goiJ7uKeyglUtg84MSdcUbWJ7VcXOL0O6krBNByyikT4Y5h1cjIv4dPP52FT5r5m+xgqNtNKC5I3ydnbKj+8szg5M8hE3UDnhrI8lh7h06cSchWCileV+suJ9WyZdnz/KAeNw4Dor10JUMnbIE1P8txI1+TtJp1UY+oo9VJenrc47z3c51OFqhljING+whG+pZMhFv0s0Dq79QksHq1K5l1EBOEZZcg53j5TgzAvVbrfvr6VTQKupPI+6bmut37Hj4R1u9Cc+dmYTGNOBYURdD9fVg8jy0Zpu97TJT3HUIaiChvPmmaPgbgBQBeCeBmALsx+nFM/tsD4HYAFwE4NU3TJ2OUTQghhBBCCCGEEEJILKJ9ik/TNAXwTQDfTJKkHcAyjEouWwFsAXBfmqZP6/OSJDkoTdOHY9WDEEIIIYQQQgghpGzoWTZ9KWXdapqmQwDWWGmSJFkE4AMY3UGzdloQQgghhBBCCCGEEEJySEYXhNWwwCRZCOD9AC4FMAsA0jSdYZ40el4aUtckSZDefmnh82rJmz95H/71C9eMHijPLOnTtKvV9fyStgK7d7unLVwgNOMyT234I4jhR6KtGrZuzcLSVwQAutb9KjuQpkRwvbGkFYGlha/w5DLSPtCfpZVNMm/zvW5C4aXw1HCXEyWtIRxPmRLYPjT59uWAbTvka3Xm267az0airTJahrZPmu6BjW4/lt1TdQO0bBQ+F3pL9E73fkycU6CPyOsx7HKcoivyt/6UJC9OpRvpyXxwnDyNG2yN0TJ8InznBMtX0PfaKnxYRNxTyDxT9Jb0MgtpAQi491f3f29/nghEuTdf/epE8M+vf60T9c1vfkYcnevE/c//HDwRftHqOnqJiP7/xFbX+3DhZ/92IjzykY85cddfn4W1rWMeZnvfoUyV5LiUxmRAFB+ckOdqRf3l2NCTsDTfUvWVflTWa4D09tNeXhaynr7Xac6fhh+b9KicMk8ftKHhdddlYWkMBDjmPdpvT9IG4bUlvFABOJ23SJ9oWffH7OALX8jCuq9ecslEUL4vAPY7grRWWy48xXTXN9vYeADc8ousLvL5rvOX3UDPzbJb6C4ifbJ838NknQD3mbJ6tZtWWqXKy9Sv6o88koUPOCC/jvp1oat91+SR+qbJl+vbbnPjZFrdd8U7bOg7vvMeppF+Y2vXZmFtvCVZtco53LUi87Vz3veHlXedxOpA+j1DUsKD33vuG3gqO1Cehk695EAE3GuTYTWRy7lJT2+Levzei12P37D3Bd0e41U++eSVuPPOO5JJTpkWLFu2Mv2P/6gwbWw6nv/85M40TVdOnXLvIfhNMEmSGQAOBTAPwLMA7knTNHdmS5JkPwDvA/BWALORGf7X9msdIYQQQgghhBBCCCE5FP5YNiaf/EcArwAwR0QNJUlyDYD3pWm6SaRvBfAujK4m64K7K+ZtAD4cUG9CCCGEEEIIIYSQukLPsulJoY9lSZIcBeBGAAvhfvQCRleLXQLgpCRJXpim6aYkSfoAfAPACeNZjP1/K4APp2n6k8B6Ty927MjWgeulxWKtd1uPuyy7uztb6iqlKgCwfHkW19srtn02BrJetivRE0DehKC3jpaSDkeiAFSuYxfk7YTdpprHkkS0tort0pWEQNZLVmN77+FOug5kUsJ57ar+ARIda7m2lhfINr7vviz8tNomQ7a5XmEu4+Z1+8sTJZbEzpE96E6Ro/2QsgYA2GefLKzboH1+JlUsY2fwHTuy8G9/68bJtpTykQ59WaJiFe04f/+JYIUCUR7IttMDUTSYbmLZXnI+AMKkSYXkQSL/9na/80baO3LjWrQ8TmgqNwoZpp42pIRG9395bEmRfCl7S3Qtn5J0CGnGR1wVCwYGLpsIGwqy+iLGyezZKu7GGyeCLUqLvXT5n8eth9bxyoGpGmukO7/f5WGpfPT4zZW5WHOpLsCYGPNOu/tuN92PfpSFP/CB3OyiUGGXIK/VaOQWw0LCwdDTy7Jb9IRwxhlZWErLKvJ05aByul7UI+6Fr2ZYUTHHSG35P/1TFlb94LGN2bXpJpDPXB2Xp+K15jo9T3WIMbQd7hyv56Nx1q1zj6XSWCv4pLpPz2dveUsWPki9W+TxoQ+5xzfd9PhE+CtfcTWUr70oa4fh4fw2/vjHs/Dpp7txsivo695336w/HXlkFtbTSIt8mdtvPzdSzmnazkD0ZUs2bf2S3yafzdu2OXEjr3pNlr98IdHPc4kcawCuuSYLy2G+cqU71uSQ1cO3Y1jM49YcLzu8/oUlEF85unyeYPWL3DykbYns8IDbaWT9lVxzqDXLXyt1zzsnt1pO2R1XXJFFXHyxky7P+kSj+9J484/U0QWCkGrw/s1oTHb5dQA9VjIARwL47NgKtJ9h9ENZMvbvFwD+JE3TU/ihjBBCCCGEEEIIIYQ0GkXWapwN4BiMeoztAfBZAN8F8CRGV5qdD+CvMPoB7nwACwAcOHbu7wG8O03TG0EIIYQQQgghhBBCSINS5GPZeSL82jRNxcJZrAfwv0mS/AbAVwDMAPAijH5Y+wJGP5RRyUsIIYQQQgghhJBpQZrSs2y6UuRj2XFj//9WfSibIE3Tq5IkeTeyFWg/TNP0HVXWcdqzu2NfPLV0dOtky46kwvNIaPb1AJUeZhddJMra7aZ79tks/ItfuHGyPGu7blm29pNw7QFc/4E2aWahfFfy7Em0R5n0C9F1lLYjnZ35imNZlm5j6b/RboyWUC8jaS+hbQpkXSwfHGnPoK1W9HEesv7aj0Te3wqPHekxoxrvmc7Mb2zDhsnzm+xYsnhxFl64wK+Ni/huzZyZhbUHhmw7GWflb/UD7XUm8xlpFWOj96DcPLU9UZ63H1Dp7xeCdT2y/nk7mwPudev8ZB67zni5E+d42Ij5TOcv5yLZzwBgxowsfNhhblzeHFO2L5lGtoG2WpHD63mrVkyED7/jV066H79JnKhNgnwngZw6aWK0T8V8Jo2H1ENEexzm4Vuv7We7HmhyTOnxJe/H+vVZWNsKyj547LFu3IIF+fnn4cwHACC8bqwxpOOkp6T0NDzwQCeZ02X0c1T6Ospr0WXrZ6fE2y8whjGlyiOvju3af0ccW33Jt4bWGDJs1SYp0K/ERT2izrqDDmUDbnDI9RTztYKT16P9kJYuFd5+G3RcFpb9QE9Lcr6/7DI3LqSO1j28sULjcsBkySrylPOWnsNknfW1yTlMv+fdeWcWnjs3C8t2A1y/q5ZTT3UjTz45t2J5bVLZPsZ7U57xHNwx1SHn7nPOcROKmziy1PUGfum+WfjRR7Owtj2T86z83QIA2nvE+NWR0vNLTOQjwlNW4/vuE4qeLzvk4FBeZL7Go/LWW5aJFb6R8mCO2LdPv5AsP2YiaM1hesoar5d8HyOkmSgy4hdj9APYzVOk+6kIf6pohQghhBBCCCGEEEIIqRdFPpaNf7bfaKYCnhDhtbmpCCGEEEIIIYQQQghpMIqseZ+B0ZVlUylyJ+LTNN0UUqm9ma1b3WMpe1A7NjtL2vWSbblsXS7N1avzJUcckR83e7Z7LJeVyyW3emm6KY0ZytduteRs966XLstjLcGS7WPJGPPyA1wZlN5l2jdPiW6PgYHs2rT8RdbfkiLp65aE6OdNyYzOUFZaXUCX0CLI61yzxs1C9l295bokxtJ3jbyHK1e6cZbMWSKlTkXI2268cnl7fv+fNSsL6/4jZVe+9QiVHlhL8H3R/VgqKVavnvznU5Vda0llCLKOQ0oCLeVOM2Zkcccdd6KTrk133hKJIdGsSCe9AtRNlNNsjPtZISWXA0cNvr4+IS8byH6+Uf3JUM4VUsUyFb6yMYuQNu/pce+hnAe19EmOy5e+1I3T7wXj6HEom7UNu/IL0A+HVauysKcWz3eeMlH9oEIWK8hTOVty2cq5evJ0FflYLx3y4fDrX7txQoM+T0+ghX4NGEWrs+RtOqj7GTeyPauzvDZ9O+UcH0ro/GONw7z3T92XpFLRsprQ7ziyL0ibFGuOmdet+oEoQPfVvDbR/cwaG1ICqumQ+Q+KCzXGa8vAU87xnDlZ/tJ6w7Kd0JI+d0y5Euv2FdnzMobSWyPvr2/++j3b6YPeunUX17LD/315pF1Isy967aT5aax3rTLe1ZsBepZNX/bOHk0IIYQQQgghhBBCyCTwYxkhhBBCCCGEEEIIIWOELEg9NEmS06z48UCSJKcCSKbKME3TWwLq4c0Jb/h2mdlXTfuc/b12ZluwIH95/jFq85Q8BgfdPOSKfC31k8tJfVcFF5KSSMmF3u1FyA3kkmS9q6VUJWh1gVwyb+3cIus8r9tN5ytlC5XTHLUsS7tsmZ+8SS9x1hLcajHrrxtSdgylU5U7lz5vVZbn8uVu/eXy+Rg7EBVp/zahKm8bdjWOu4azpfyWfHlR8c0GK5DNau20p8ehPLbkI44MqtVfgiLxla6ELsHfZ5/88o7y2wyqYrdcKUXw7tdl6DQEFTKrwUy2dPxy9wYPDmaSGil508Mwxs6nFlKCmLfTVTVI6ZC+T77jOVjSKC9A6ePkvVm8OJsP9PM6b+dcXZcy5jAL3/LkPdWyQtnX7r8/P86ap2R7dXcrmZh88dAd23cbRJmfKR3ylBDrfiB38rNkkp710u8ZUZCN/qd/mp9Oa0A9B7C8Neef78Z1DAlZndZoine7UHmZbVOQc5KxfXyRZ5S8b3pHa4l89mgJpbRL2LPHjZPNJZ/9+jrlbdLvij092ZjSzZF3raHvWmZ/l5OA3kFT3Cj9nB4Q1y2fNdqaQe5IrNtYyjflLuc6Tj5HQ59dlbsO+51X9i7TvpRy7wPSEdIshLxiv2Xsn0U69v/NHvmlgfXwZuX/fUWZ2VdN/1cfqncVCCGEEEIIIYQQUgB6lk1fQj5STblSDNnHMp+0hBBCCCGEEEIIIYQ0BEU+lj2M7CMYIYQQQgghhBBCCCHTDu+PZWma9pVYj72aBOmExjtUL67Pk0tBLT8kaRcivQIA1/JB+4G1DIvt30M9fmSm2jwg5wJaVFlWe3W0N5du3vf+btrkxkkPDGUbVuFPFYTsCNoHRHi5PLHV9aKR9VrUmfmkdKk8uuZ3i6P8vhTDz6wC2Z9UH5QWZtrmxbdsX+8GeZ96evyvxfEigzZzET4mxhCN4S8R6hcl0y5coCLFxW0fzq5Fj2tZ9tatbhauP4nhNRTZp0z3Cdl/dF9a1JPvmXXaKVm9gj25jHr5Iv1h9BQgp3HL47GIH14IUXxSDBObmWJ46WelnJP1s1J7jUry6lzEFytGv5BWUto+VF6Pvvd506evvyEAdxLT7R/gcRX8LJAor7QoeUbA91lj9p9AoyY5t86dqyJbu7PwihVB+VvI+m/e7F6bvFXt7SKuvSM3D6t/hnrSyfbRtm2yjpZMS76/aU8uOdZ0HnJc+t7eWP5Zufm0tk3+c9htsN9+WVhbFi5fnh9nIdvOakf3nLB+EIrvHDlitKvVx32x5hHZz6z3MGt8EdKMlGwLTAghhBBCCCGEEDL9oGfZ9IWfewkhhBBCCCGEEEIIGYMry3JYe/1a/OH6P6BlRgsOPvFgnPi6E/HALx7AnVffia0btuLcT56LBYe5uqHBTYP4xtu+gRNedQKOPffYoHJjLfWVcku5nFtLRDqwPQu3Kn1Qt+geG1Sc1KFILachX6hYmtt7EHxwJJ86ruSl0aVI/6rk6afdY71cX7KoJ0KBUgqjZDFyC3C9JbrzFxZ5npa8RZbAxUJWWY4bS5JZNvqvVo4Ms91tx5CxYUlQisRFQfSLDf3Zj5cuza/HwrlaiurZt2RDRuiPWq52xx1ZeM0aN+7CC7PrcSSZijLmOjl3yP6uJS49Yh7R/d+StcQY2r59q+xnwbzuLP/B+W6d5P3dssU9T8oatUy+q92v34XK72JgTP+59TDj9ODQmlZJzriMcZ1lP9tD8yhDYh1Dcvfss1m4QoZZMrL+egzJYRNDehaDpUvdYzmf6u6/e3cWlm3co97d5HVrqWUtn9Mx5iI9j8hrjW0LofF91OtnWVvk11TzWakj5Rw5f3+v/EPlxPI83VfXr8/Cy5eHzTeENCPs0ZOwZ/ce3Hn1nfizT/wZXvG5V+Dem+7FzsGdmHvwXPzJ+/8EBzzngEnPu/X/3YoDjz+wxrUlhBBCCCGEEEIIIbFozCUddWbHwA50dHegfU47nnr4KQBAW0cbZnXOyj2n/7Z+dPV0oXUWm5QQQgghhBBCCNkboGfZ9IQryyYhHUmBBLjrm3fh22//Ng4+8WAkLUlu+t1Du7Hm22twwoUn1LCWhBBCCCGEEEIIISQ2XAZlcNwFx+HIM47ETZffhLt/dDeOfOmRk6a78+t34ug/OxozZ8+scQ0ztB5delWtW5d9E9Ua/UXDwtxMCtIB14tMmyTIY8PIxPIwkN43OgunnoHGN7G9bkJ1+OaW0J7I8/bd162H3LLcKtvKM/QceWsW9VjbsWfbXbdE8igr2xdBXqv0q5jXnV+PIltm57W/lYf2i9qwIQsfsxxBhI4T3/Ni+OVoDxgH+ac83UC++8tH9s3TU+mmTVl4ubpPemotE93eAwOT3xs9H0u/ru7u/Psp+yPgXpt1XmyvoVC/Fl/koxFwPUJ/8Qs3TrbJscrK9LjjsnmxTdTRGmtleLNJbxr9l3Hf/uldR925ZGMGmt75+o81iqdV2ZTdR8rGemboLhHyHqPx9dqy2nXBgtwoh452N4/tQ1l5s2dnPzffiRUhz/BYnnp5+ZThvRdSD8CdVnw9y8q20jX7sYocET5ljk9tq38bhMyDuo6+r1OETDf4sWwK2ue049DTDsUT657ITfPkvU/igVsfwO1X3o5dz+5CkiSYMXMGlp8d+NsrIYQQQgghhBBCGpo0pQxzusKPZTkMbh7EwKMD6F7cjSfvfRLdi7tz0778n14+Eb7j63dg5uyZ/FBGCCGEEEIIIYQQ0oTwY1kOLTNa8OOP/hjJjAT7HrAvTnrdSXjwlw/i1n+7FTue3oEb/r8bsN+S/XDmh8+sd1WnRG45rb96P9Z60ER40Slqr2q5BlevwZdxnuuVi2QRQ0bgu+Q8hozOlRyWKw9cuMCt49y5WXn6/kr510ylEtZywnGKtL2VtmzpSm7+gVIeixiSQyutbzvqe5Z3D6266LJi36cYsssi5420ColvjXUCvvf7sMOy8LJlbpyhYo9SD6vt+vqysBwmbdilUmaRRWTCcs6X1xl6zfWUAlvnHL8iC3d2umXddVcW3rnTzUfKNxfNz5cTW/3atw3kvbAkdfoeynulp1YZF8XOQIzlIvjOpaHPet90MZ6HseRxscmbK8qgyL0JeY4WuYe+73a+/U7nsW1bFn722Sysh3wtH21lv8PGyL9IHnLeynsm1QKrD/rKSKWsv6+v3Pukx7lUzFvjpIRXcELqCrtwDh1zO3DBFy5wfnbIyYfgkJMPMc9b+eqVZVaLEEIIIYQQQgghhJQIP5YRQgghhBBCCCGEFISeZdOXctdwNilzFs6pWFVGCCGEEEIIIYQQQqY/XFm2F3DMcl+vDNcvxNHXt3d45WH5NugtsxuRWns1xPAZkdtHb9zo5r9+fRaWniOA7XfVdAwMTB4GnAsPbf8YW643CmV4illIj5AO5RESuy5ljC8rf9nVOjuzsPYlszw7YlynpNIvRHj6DG134jryjCMHlamVNHdRFyPrv2yZWy/tfxVC2V5MsTl8qVvfpUuzNpEekoDrUeS0q2GmEzr/5HkjAcA++2Rh6aMGuD41uh/LsS37mXwmlYGvP5SVtsgYahPXHfLMKEKo51oMrDax/J1ieMZZ9ZD3I9T/KLYXXBHPKYsFCyYPh9Rpsnr4epf6nFPkvDL6Z6jvXwy/zLKvzUL2+SV91XsfWnNkiNcz4I5R/QwZ99sbaa5HOSETNPdvfYQQQgghhBBCCCGERIQrywghhBBCCCGEEEIKQs+y6cte8bHsh+//Yb2rYDK/a35Nl0rnobeTb2/Pl4/s2ZOF5eRwUK+bzslUzyJCt+S7hN28rjruV2zVa9dw/rW1lVxF2STNMIkX6tN5FyT1cIDTB4dbXTlxSPsX2dZeytCs7ijH2lTlhWDJWEKlDSFl6zysbdx958TQ9okhq9i4MQv39GThcdlBtfmHYE57vhoUnU5mWmCeNdSbpdJIW9fLe79zZ76MVz4n2oz7VKQvyT4un9laHivbR78HyDrqasm0us/HwJV5yrCfjMjCmsfrKfXzfQbGev+L8u4VGV2W9ZyW9W9Ui4TQ9/jYZZWdZ9l2FbHztN6JrTkght1DjD5Rtu1EkTpu2JCFtRPK+HuSfrYQ0izsFR/LHln7SL2rYHLppW+udxUIIYQQQgghhBBCCOhZRgghhBBCCCGEEELIBHvFyrLpiiVhCsHarfL++/N3PpHh+fPddB1SpyS3ZgSAVauycGeXVx3N5cmt+bt5WrKcUGmDr4yr7J3BJAf1jqjjuPkHSz8ibGdVseTcc/c4GdcWQdZcRArgK0OTY1kOGQBY0pd/ntUH5bGWLfnmkZdfkTw6O/12WLN2TtTK2tiEyjuOWlaf7Z2KSIGDsDqroV1pUedZ/U4Se6exIlNMLXc5mz/fPZZ9Xj4e9a6ioWNPziuyLEt+pOWUUlLTq54nedLLIjtNWk4NeXXWOzuHEEvCVLaMLk9mWE+5naaeOwWG7HZahBgWKSHvTWXUv+z761tnX/ljrL4k62W9ilq2JUVkmXnEuJ4yxlrI/dXtI58T+h12/Hi7uxn3tIOeZdMXriwjhBBCCCGEEEIIIWQMfiwjhBBCCCGEEEIIIWQMfiwjhBBCCCGEEEIIIWSMvcKz7JQTTqh3FUxmtc/OjbO08JbHWGz0VsDSq0Rq+Sv02jKhNmwJ3Z89B0trH+o34OsJYGr+PQ0ayt4GOtRXwfe8XcNuOsd7wvNeh/rCWZ5loT4aMbqnNTakH8/u3Vm4v99NZ3mWhWzp3kjINtA+F3fdlYUvuCB+2b5t8tRA1n/yPJqmIrbPSKifTZQ5Rg8MY6CEzJ9F6hji9+PrCeVbVhH0NLVsWRaW84P08QKAjkBPUpnn1q1ZeM8eN12edxoAnHRSFg6dE2X+mze7cbI87U0oXxmWLs3CZcxnscdoLA+0UL9MX0LGaBFi1Dm2J1SRexNyH4u8Q+X1u0bx0CuSv29f9Z1Hyh4L+p1Mzk36d5799svCc+a4cb6e0aFzjJw/ZdsVeS7EnjPl8wRw39/08+u220b/f/bZqFVoOOhZNn3ZKz6W/WLlynpXweTS/ofqXQVCCCGEEEIIIYQQAsowCSGEEEIIIYQQQgiZYK9YWRaTj/zmN7j2/vvR2tKCzz//+fj4mjX4/hlnVJXnyEjlstVxrOW9ZUtGZP5SAgEAGzZMfo6WcCxbNm8i3L5iHmLjXKeho9NR8li2cejyfFNGtHZtdqClqL293uVVS94909Ww+pVuR7n0Wi9bl5e6qGfq+k1GbDmMvja5vF3X/6DeycsO3Tq9rdU9b1735OetWpWbRSlY0gBf2YDVxlac7E/77uvmqaUO9WJed2NKWH2RbRxZ+V5BqFzK6iMhsh85rjVdSurnK+2JLdPTyPmhLdA2QMfJZ9uBB2ZhLYXsEfOz7iMLFuTXRWK1o5ZXSuRzST9fZP1lnNU+MQiVf9VSOleGbUNoHw+RSpeB77PMN4/J8vE9L4+yZa+1psz7GytvmU9ra9auRSRzUrq+bZsb5yvD9EXXS76bWu/qZct4Zb1++9v8PPKeLzNnBlWJkLrDj2UFuO2JJ/DtBx/EXa94Bb71wAM4/yc/wYcb3A+NEEIIIYQQQggh5UDPsulJc/zpokH45RNP4KyDDkJrSwvOOPBAPLljB84++OB6V4sQQgghhBBCCCGERIIfywoya8aMif8X77MPFu+zT51rRAghhBBCCCGEEEJiQRlmAVYuWICP3nUXAOB7Dz2Ex7Zvx6YdO7Bg9uyq8m1pyTTvls784Q3ut81Zs7Kwr69IKFqTLzX00h+muzs/D+2ZZfmk+OJ4VBiZlOHVk6ft18tw25YvL5yHjovhc6HbQN5DGdb3UF6P9CgDgMcfz8KWH0Gol0gMrxjrPNmvtZ1c3nll+LNIz0I9Tvr6snroe1i2H0zZ+VvzRWzvthieMr5+NmY6w1vRjAvEzEJ2PJkwsFzfsV1kLIfMke3t7jlle7X5Yo6nPONSACPtHV557BrO92SULFzoHlvzoC++40vfC+lnJu09dZz7vlPAV0o2gsgwdG6z+qfvM7uIH1XsPEOfX43qiRabGP2iDL8xS94lx1Rsn1egmE9izHr4llXkvDz/MgAYWwsBoNKXTKI9GHOmmGCsObKeyD6oH1d9fVlYv8OuXj36/7XXllErQsqnQV4hm4NTDzgAz+nvx5n//d94dngY/7l6Nc77yU/wozPPREejvI0TQgghhBBCCCGkdNKUnmXTFX7hKcjlJ5/sHL/msMPqVBNCCCGEEEIIIYQQEpu94mPZKT/8Yb2rYDLLU/egJUtye14tw4yxzb0876BeN66zM8v/ttuyn69b56ZbujQL6+2E5dJiS47lu7y9yDbKZW4939aq27v6wnzvp32v3faRy6itZeRySbVeXi3zsLbPlvl3GUvKY0s9pkL+Fch3O/AiW8v73jdZj/Xr3TgpfV250o3raPXUZuTUaSpCJECx5E1aIhGCrJeWpMk2t+Yfie+1memsVchGnO99s/6yWTE3ycQlrI6OIU0K6U+Vc7AfvlKnUjAK8JVeammMnMvzJJm66NDr9L1PHWpeXb48q7+0ZgAq3xmKlmVhzeNFZMK1lAiGEmPuDrVBaBSaoY4WtRSvhI4N3zzKxlcqrbGsROQ7giWL9H2kFvl9ZWAgS2u9q3i/h0nfFcC9oNa23NOs50R/fxbW8/j4c2mkuYcg2YvZKz6W/eKRR+pdBZNLL31zvatACCGEEEIIIYQQQrCXfCwjhBBCCCGEEEIIiQk9y6Yv8bdsIYQQQgghhBBCCCGkSeHKsgbD0tN/61vu8T77ZOFe5SlWtr/BvO5MfD40lO+ZIlm82D22dP95evsiW1pb6crYXrtapDcV4HpmSZ+C0GvRXgfyWN436T0AuH1pxQo3TnrKbNrkxsltuH23vrbup/6LjTxubw/zU7HOi43vtekxZPpeGP4SvmPIyS/COCnixWGdJ/uMbz10HrJdd+xw086e7ZVlEKG+dhp5nrQZ0ePJ8t6T19naqeoVsie91SH1IBVpy/CsieGVZyF9vuRlW76LwYgCisyDkq7O/DbQvqO51dB9JGDsFenvsl11d1y7Ngtbz0BJRdk5fTxWfwn14qtlWaHvSZJm9/yqJWW8X5b9ruubf+izLAaxr0Uj55ijj3bj5LyrvRTlHDZrVhaeOzc/XQXGS2B3d9ekpxTqIzJPbS69atWkeUo/TF1FfS377Zdf9IEHjv7f0ZGfhpBGhivLCCGEEEIIIYQQQggZgyvLCCGEEEIIIYQQQgpCz7Lpy17xseyEk06odxVMZre3ey0vvvDC/IWAeklsLZfMn3dOVta96/OX7W7Z4p73xBNZWMtI53X7lR263Xu9sOqot1uOPel2YHtuAR3dmVSlu9t/wamUimrk/ZZSsM7OsAWtWp4oZWly+byuU2urnzzIuhZ5L9pa/fuS1T9lnGyTZcvcPDZsyMJr1rhxfX1ZeFFPbft4iCwkVFpinSPvjR4zss/MmePGyfsde36oyM8YzAODmZRWK8baxLwulRO6j0h27syP088JKUOO0gae+v8ic3WMfmYi7k2bqr/vcyhUwhTS//X8I/MoQ4Lle6985zqrDaTsVWPFed9vqZ/SvgSGZLiWUssYlC21rzUx3u1C72GjtI/vu67Gd14MzT82MaT1ZYxfOf9YlinyGa6tHkJcD3TZetqSeLeXnkxzPB5aDZuPffd1j/fsycL6d5nxOktrFkKaib3iY9nKD6ysdxVMHvpqf72rQAghhBBCCCGEEEJAzzJCCCGEEEIIIYQQQibYK1aWTRe0TMxZcmvsQhZjlxtfDl/q5nHrbVnZN97oppWKlxe/2I076cgczUWlxm4iqFcWS2lbjGuL0Y46Tu82I5Fym+Bl5Nb2pPIGiHQtqo2tsmUd99nHTSdXdls7+VntJdtH5gG4lyZ3OtQ7FS3pC7v3cqm9lMCtXh0mY7HSyXY8Sknsenuz8q6/3o175JEsfMEF1ctrQuU7Zcg28vLXXfqOO7KwlKUCwPz5WdicPyNgykdkpZXUr7OzLS8qV6Kmx4KUsWuZhixajw3ZPh2GDLmWxNpJ1JsIW0fLe6Mfxb67OPpStiSt1ruW5snRAffWWDJ5b2SHtwaDwldiWssdBYtIzaLsGmv5QrhbU3tlV2s5aNlyzVDyyivyHlk2IW0S+i5RhrVKXlqdv3xW6mes7NbaBkHOUzKspxhThpmXCdypSe46v2CB/31psbYdFhc+0j1vsh8DcC1BZs504+TOn3oqHd+hW0o1pyP0LJu+cGUZIYQQQgghhBBCCCFj8GMZIYQQQgghhBBCCCFj8GMZIYQQQgghhBBCCCFj0LOsEZBC5wL+KY4PRX+/G7l06UTw5puzH2tPH30cm+etkl4B7rdZ6fOi9e+/Wd81EZbyel3fNuFF0NVZri+ZrwdDES8O6VVl5Wnp4FtbDT8SbeQmkcYCsoAK/7vMU8nySXn6afe03buzsLyHukpdho+DrIr2T5DHortj4QL/fiDz19uBr107eZxunrbYs6gqYMeOrP2lP9doXBY++WQ3TnqdleFlFOK1Uk3acfR9kv1A3jMAOP306sqKhuFHYiF9U+R16+l+1aosLMcC4LbPrFn51aolVl8qw1/S9PeUx1aDSMMWxUDrkomwvjfSTy70eRu771rtH+oZl+c7NFX+Em2ls3p1FrYeZVEQBYx0djlRvtcWA8N+1rvc0DgL5yxdKc+JJLQfh/TBUMqem6Yqz4da+xbG7uOhPq++80ho/u3tWZ49PV5ZAHCfsYY9qY0Y+CPtHW6UmPvk82XBAjcL87plZfRLgjDWtB6H8vlV6RGdf954nP49bzpCz7LpCVeWEUIIIYQQQgghhBAyBj+WEUIIIYQQQgghhBAyBmWYjUCS5K7X9V7+bKwZlmo7Y3f00nElmbbM8IYbsrDcsllL8ZYuzfLoaK9+O3ZfCYTOs4yl77IuW7dmYS133HffLKy3km4xbrhTFyG1tCgioZH119twu+fl5ynvvZQz6fwloW2s85Nli1XquOsuN91Jz80tLgzV6eTSdb1luazz44/nZ9PTEyZZsLZxL0Mu55O/lrLJOUHH1VJmaEqFlKxCYlVRjhspv5DyNMAea3JcSmm0xneOrLhOQ7dRSwlTFKmQmgTkfdvYviQvmYOep/SxpIznhs95+hyrHX3bNVze51d/OR9b6bz7mfFsDGnTqfCdS605q2w5om8e24fc+st7U2sZY15Zmlo+r8quR5E86mWXUHYbFCk75DmhZYZyzpfvg4Db/62xYNVxxHgHlxYzUd439QUI5Pxj1X+eymLXMNfekOkLP5YRQgghhBBCCCGEFETaj5PpBT8FE0IIIYQQQgghhBAyBj+WEUIIIYQQQgghhBAyBmWYOay9fi3+cP0f0DKjBQefeDBOfN2JuO2K2/DQrx7CjNYZ6DqgCy94+wswq3MWNty1Ab/6z19hz/AezGidgZMuOQmLj13sXVaKJFdHv2lTFtbbBDtowyiBtOYwkpXiSWQh829TPXHFiqwuN96Y/XzDBjfdwoVZuEN7mggzoxZjq/Pfrc33TpM7LFveWpYvh4zTfkLS30DXX3smjKPt6aJ7uRRA5ql9sRb1ZHHSz0D6rwHA2rVZWN+mo5ZleVTcX4H0UNm82Y2T/V9uDa7L22cf9zzpD1ZkG/HYzOvO2uCSS9z6y/GwcaN7nhw3sv4vOd3PoyyU2NvMA8AvfpGFTznFjdM+bpIyvIdCypLoOcCwD3HSyrlb2y1JXyzdD+R51lbzT2zK2mPPnvw66XmwszPzWin7mRGKMw8azwKNvJ5hMYdpf0DplRfDoyzWeb7EGAuh/obWMyrvHUHnL5+VXcY7joWvx5L1fA/N3/f9wcJqf8NWMDcPzfbhbJxv25afx7DyLpLvJ62tfu8jMd5FY/i21brsUEK81ELHqG/+FqFtHFrHkPlN+oRNlV9evaxxaMn19PhaOEcYs65Zk4XVy89I97zcPJ06ej7zini/1dIflpBaw+49CXt278GdV9+JV37plWjraMPX3/h1HPuKY9G7ohcnvvZEtMxowe1X3o4131qDky45Ce1d7XjpB16KffbbB0899BR++MEf4qIrL6r3ZRBCCCGEEEIIIaQk6Fk2faEMcxJ2DOxAR3cH2ue0Y+DRAQBAW0cbeo/rRcuM0Sbb/4j98eyWZwEA8w+dj332G12WMvegudizew/27Db+NE8IIYQQQgghhBBCGhKuLJuEdCQFEuCub96FO752B5a9ZBmSlsRJc8+N9+DQUw6tOPfBWx/E/CXzMWPmjKCy9XLeBQuq3zLeV0IWYxl2LA7qzfJcuTJfYjdzppGJTLx+vRsnli8PDy+aCGuJlO9fCUIlWFL6p2WGUj7lu51z6FL0GHI1K4+21ixuz558KaElSbOQ0jMpPwRcGciKFW7c8uVZeOECv3tYseV3DceGbEfAlb5KOSvgSsUsaVgtKdLPpLT2tFOql9TosqV0a8eOLHz77W4ecg444ww3zpJAS2TZest1KRfXGUo5upT6zVv/K5VJNp9df0eXE7NqVW72jizqiSeyn8v2AIDZs/PzkMSYf0LHU9nSJzmG9DNVj8tc9AMg796rB8/I/P1zsyy7TUJkVkXKjXHvLXuJkHpYhEqwQvN3u0hY+1sSVt96uXJKN06+XmmrDDlvyXGj5dwxpLqx5cRTlZ1HkX6cl7Zs24xanFdtfmW8W/n2M2uc+PYRnU4+b/XvMuvWyXRu3MKVmDxSTg6TlOdTRyudRaNaLhBSBvxYZnDcBcfhyDOOxE2X34S7f3Q3jnzpkQCA33zjN2iZ0YKlq5c66Z96+Cnc/pXbcdaHz6pHdQkhhBBCCCGEEFIjKMOcvlCGOQXtc9px6GmHYvP9o38GuPd/7sXDv34YL3r3i5Ak2Wqzwc2D+MnHfoIXXvZCdB3QlZcdIYQQQgghhBBCCGlguLIsh8HNgxh4dADdi7vx5L1PontxNx658xGs+c4avOxjL0PrrKzpdg7uxA3/3w147mufi56jim+blyDNXdIaulxZLoWfNSsLP/20e95Sd3FcEGXL0OSOl1pOZsr25JZxv/+9GyfWQA8MZDJMtarZUc3s3u3GzZ2bhfVunhLfHXA0UtpjLQ+XaJWPXLGtpSoh8pEYMgddD9kH9903vy5WX7J24pFtotPVcpe5MsqS16Plcf/1X1n41FP98qu13NrZsVZdgJQlx96NC3D7odz5Ssq+AeCRR7Kwnh/ac+pYpK1G2jsmwnL3YwB49tks7Ej/DK3Txo3uH2tkna1xIqdLLRGR826oVNqXKHYA+gLkhasLCJnTdDua9973AZCnu68BMXaj86UMqVyMevjuAhdD6mShz8vbBTqGXFPn41tn3T1l2fr5rp/pPhTZETS3/tZkbeQxVV18qKdErdYyzzJ2v64XtZSp6h2t5XuwHkPyHaFlpdBkqhf+suXKZb/PEtKo8GNZDi0zWvDjj/4YyYwE+x6wL0563Un49ju+jT3De/DDf/ghgFGT/1P/8lT84Qd/wDOPP4O7rr0Ld117FwDgzA+fidnds60iCCGEEEIIIYQQQkiDwY9lOXTM7cAFX7jA+dmF/3bhpGmPf+XxOP6Vx9eiWoQQQgghhBBCCGkA6Fk2fZk+62cJIYQQQgghhBBCCKkSriybhDkL51SsKqsVRbTklmZceszIdAvn6s/efl1Afy2vpaXKggVZuJBOXnpUPPqoGzdnzkTwRauzPJ8ZdNt/48YsLP2DVBamZ5lEbqMOuO3ou6W7vhfSmsOy6Qj1sojtSaHtluTxqlV2XfKwfJlOOikLL1vmxjW7B4O81mOPdeNWr87C0ubCoow2kFuiHzVfeUnJDjo46MZp444q8R1fM2a4x0cemV8l1yeomtqNIue6yY7HGTnnPOdYXss557hppTeK9kRbuCA7b9H8bGLp7Gxz0vlem85/tnAikG1XujeMrrDnn3t1/bdsycLSM66Qb5scpNqoRlC290+jzHWhnnSh7VOtH2wtcO7N8C43UvQfqw1C558QvzpdD9mttW/qnj1Z2JrSff2WvAlskEYZG77PK43veWV408b2tw19Fw1tK+88jRdt337c2po/hnTXzW3X7nlTVXtS6GtHSDHYgwkhhBBCCCGEEEIIGYMrywghhBBCCCGEEEICoGfZ9IQfy6YJ5nJZS6Mm4/QoF2uBXVEOUMuuE2UpsNRTAu4+zQItE5BNoptOxu0abslNZ0lWQ5at6xXgO3ZkYS0PspQIIfKLGGgppD6uFt0+O3fmp5X30FdKW0RGVLakQ+Y/e7ZbtpS0SoVjd3dt6+jc3wFj/jEkapIi9bXGV954y5M+TlZ2e7uftC22xKii7qId+/o6nCjZx/UUv30oy6e9PZvlQxWwVttJYkmM8mgpcAGy7AUL3Px9r8f7+atvQGSpcdnEmN+sexjDAiDGfGbVw8o/hrx4pLXybato/rrdpNWBnmZ95zCrHvKZIuXKQP77TyPJYKMgH7LWb8xqzLd4ymyLjBuf82JJ4WX+vuMkVE4ZW+ZZBOcdv919xsp6hY6hDuNdXZatf5WRSPudUOTjyqpTEabdWCd7HZRhEkIIIYQQQgghhBAyBj+WEUIIIYQQQgghhBAyBmWYhBBCCCGEEEIIIQVJU3qWTVf4sazBKKLttjT7jteW0NdX+A0Y/hgSaccAuF5YlieXpK669Q98IDfqN2uydly82I2L7adV0QbCIKDF0+xM34sZM7Jw6PbxkhjbhhfB8oXz9cCQXg0nnODGPf10FtZ5yO27H+h3r3vt2ix8yilZWNsMtbXm+1XI+uuHqLzWGGOjq9PN4+VnZAXKcR5alq9fkelVorY6X78+Cy/1sywzCfUTktdm7Apf0QabNmVh6Rmn+0jsua8iP1FJ2W8Bt5/p8SXHTQyPGd3H163LwtIrSfsale0JlVeWzjPUE8psH+P5K7G85Xzn9di+RkXyKANfj6LYnk219p60yCv7sY1uHeWYsjzFdF+K/eypp2+nL6XU0dP/16IMT66Qa4sxVxSpf951h475kHKnKs/6PSfEq62IL6IsW47zrVvd/EPvm/XsIYRQhkkIIYQQQgghhBBCyAT8WEYIIYQQQgghhBBCyBh7hQzzh+//Yb2rYDK/K0x/ZC25lfIyibX83Fqm67vDve+20pOlrSWyLitW+J1TSn0Dluf39IR94y67/UPzt5a3Dwxk4cFBN38pIZPN+NznehVbQV+ffZyHtXxeHueNydLIadgi98lXXhCa/9KlXlkGEyIva2/3v08LFpRXD32eJVeW5y1f7lenIvg+J3S9QupSa+lN7Dys+vu2na+1QSixJF4h1NWOQVCkDRpFpirr0d3tf558f/OVf4WOw9DnhEWIPLHm/Wx+9T4CvjK9WHnGyF8SW0YaWt/Qex/a/32lo6Fl571Hzpnj5uH7LqqRecq5QtdDKo0tOXcj/a5XS+hZNn3ZKz6WPbL2kXpXweTNl15a7yoQQgghhBBCCCGEEFCGSQghhBBCCCGEEELIBPxYRgghhBBCCCGEEELIGHuFDHO6EqLZD9Xh+3oH1NMLpQj10tCX0T4x/HN82yOG50WRtpdb3vt6tBTJP8a289KjYGjIjbO8Ynzzl8Tw4ggt29eHIoafTRF8+3EZfTzPp6OI30wMn5ddw9l5bcPb3UhPM6zHNk7uWzLZscTXSy3Pf22KasVncDC/cE8PyTKo5/wQO48yKMMLK0bZvu8/sds11piR9dounl+hnkRle1X5YtWx1u8xIfkXaeOQPIt4WpXdr/PyDy03Rn3LeI+M4V1q+avGfj/U9ZVzjn6MdhnvCM3ye2G10LNs+rJ39GBCCCGEEEIIIYQQQjxo6pVlGzduxMMPP4whuUXHGKeddlodakQIIYQQQgghhBBCmpmm/Fj26KOP4qKLLsItt9xSEZemKZIkwZ49e+pQs9oSsuQ2VGJURv4hS3MbVSISImmsRdm13HI9dCl6qHROSka2bct+vnCBVzWiIZemW3K1GDLGUMqQJeTlWc8xGkNGahHaV33nRd/t3Svj5EGYlFD23SISLEsOlnc/QiVkUbaktwapZ9lF7nWo7CqkXlPVpREJsXsIJYZcMEYfDM1DprPmg9CyLRVyjHecsvtjPaW6oe0TYpkSStnSxTJkkyF5lPEuGkKs9xFfu4fQevm+i8o5Rz9G6/k7ECFl05Qfy9761rdi7dq1+Od//mccffTRmDVrVr2rRAghhBBCCCGEkL0IepZNX5ryY9nPf/5zfO5zn8PFF19c76oQQgghhBBCCCGEkGlEU34smz17Nvbff/96VyMaKZKJJayxdlGLvftdGbvMxVg27Zt/KDGWjsfYAScGVv5lSHlitI/Vx6VkxFc+YuUfSqMuOY8hbwqRBhTBdwfJGHOdb9m1lrWVcW0hFJEQ51HGXBHybKjnfaq1fEpiWR1YuwHG3jXZokgfD+l3ZcvdG2XX0iJ5+u6k2IzPw0axIyk7XYzfBcrelbCW8twybBXK/n3L95wy3qdCzivj90pCmpGm7NF/8Rd/gauuuqre1SCEEEIIIYQQQggh04ymXFm2ePFiXHXVVXjRi16EM888E/PmzatI84Y3vKEONSOEEEIIIYQQQsjeAj3LpidN+bHsLW95CwCgv78fN998c0V8kiT8WEYIIYQQQgghhBBCCtOUH8sefPDBelehNBrJbyDEc6oMv4oYW3LH2iY+hHpus261XaP67FSbX6x6lO2VlHfdod5+MbxWQvtBqM9FDC9ESej86eudVqTsvHpYhPq2WfXwvTe19qPKo9bzZcj4De23ZXtDltF2IX5+ReaRGM+e2M+vZnjux8o/5FrL8DKKcd1l+3SWQYg3cBm+c7G9A2NQ6+dVrLSx88u71rL99azyijwD6WFGmp2m/Fh28MEH17sKhBBCCCGEEEIIIWQa0pQfywghhBBCCCGEEELqSZrSs2y60lQfy37729/i2GOPxSGHHIIkSXLTJUmC+++/v4Y1q44Eqdey2DKWtpYtgwo9L2S5dQwJWZH8y97uOra81beNy95aXhOj/UNlFUXkbD75Fck/JM+y+2CM5fmh+F5bLWWdRc4reyzH6EtlS4xqLWGKQS2fc/WcPy1C5TUxqGX9Q4ndR4q8y+U958p4DpWRR4iUPLQesedqnbYMGXKM+1ttWVOV3Sjzeqhdgu+7ROz2L5J/yLuolS50fij79y1CmpGm+ljW1dUFAHjBC15gfiwjhBBCCCGEEEIIISSEpvpYdsghhwAArrzyyvpWhBBCCCGEEEIIIYRMS5rqYxkhhBBCCCGEEEJII0DPsulLU38s++1vf4t77rkHQ0NDFXGvfe1r61CjMFIkE/rvUC8FizJ8Lnx9juq5RXfs/GP4SpW93XUMv5lY7RbD88uXGH5UIb4QU5Udw/8hthdWGfc3hhdNGV5eVr18t2O3iHHdvvlbyLJj+Nr5lqUp2xcuBjG8pJpxjizbV7CWc5hFjPek0HSh70Uhc3foc6iM+TmG31XZ7zW+lP0OVbbnmi+N4kNmUaSOZXsIx6aM52iMd9jYvnCETAea8mPZwMAAzjrrLNx2220AgDRNAcDxMWumj2WEEEIIIYQQQgghpDFoyu0s/vZv/xZbtmzBLbfcgjRN8d3vfhc//elP8ZrXvAZLlizBr371q3pXkRBCCCGEEEIIIYQ0IU25suxHP/oRPvjBD2LVqlUAgN7eXpxwwglYvXo13vrWt+Kzn/0s/vM//7POtfQnQVr1EuLQpeOxl9UWWeIfUnbZEsdmoJ7XWWvph29dypYlxJDo+JZd6y25Q9vRdzv2sokhBfPNP5RQ+VSM/Gs5ThqVWkuDq6XW/Ti0fXxlpGVI3PPSxZg/i7xPhZRXhkSz2jrFolHuYT1phvfUUDl6DIlg2TLzsmWMjWI3UM/nWixLn+kEPcumL03Zgx9//HEsWbIEM2bMQHt7O7Zt2zYRd9555+EHP/hBHWtHCCGEEEIIIYQQQpqVpvxY1tPTg4GBAQDAwQcfjF/+8pcTcevXr69TrQghhBBCCCGEEEJIs9OUMsxTTjkFv/zlL3H22Wfj4osvxoc//GH09/ejtbUVX/nKV/Dyl7+83lUkhBBCCCGEEEIIIU1IU34s++AHP4jHHnsMAPDe974XW7ZswbXXXovt27fj5S9/OT7/+c/XuYbFSJFMaLpjeWWEaO8bSVf+zGBWl1ajl7a3e/oU9PS4x+9730TwpyveNREeGnKTnXBCFl6wID/74C3jh3dlB+pCa+lvUIafTR5/XOfm19+fhcdsCCfo7vbL8+ENWZ433pifxznnuHHSX0B7Dcjb0dbq1z719HF4asDN77rrsvDq1Vm4r889z7fOvl401nVt3OgeL+rJ8vjpze55ciz29mbh5cvdPMr2gyl7XpT5W30wxPtH5+87/+wadtOF1CMWQT4yaiJ3cmhvz81/+5BblrwfnZ1e1Qj2o4rRz0I9d0L7Vl7ZscZMyNwaw0+oSP1DzrPqWDkHlOv1VPZ4zruHpfs+bdjgHs+fn9WpvSMsT0/KeA+oZx0b9fcESS2fS83mganR9ZdzjvWuG0qjXHfZ0LNs+tKUH8sOPfRQHHrooQCAmTNn4vLLL8fll19e51oRQgghhBBCCCGEkGanMf9EQAghhBBCCCGEEEJIHWjKlWUA8MADD+Ab3/gGHn74YQwpyUWSJPj3f//3OtWsOrSUSspffGUgmtgSC+u8WMttOzuz8n796+znTzzhpluxIgv39lp1VIiGld1n3To32dKlWdiSYVpyESlpkpJDANh337aJ8MI523PraGpRDXyXz9dyy2wpnQUAsZkt7rvPPe+5z/Ure1DIdrUMU6oxhBIDAHDKKVk4sIkdfKWKVlyRcSivTexzAsBtB6k80zLM2LIKq/433uiWtWZNdnzbbW7aP/uzLCzlm1qaK8d9oyz3D5XTl9EHx/bCAVD5DGnLKTBGPTShMvCge6qkllY9rLkpNjGu06p/M8iQayn7Cy3PGqO+caHtpsdeyHOiSP19kRJlY3hNWZfY5+Rem7beEA0b4123bELLimGX0IyEvMMWsbaRWHYJeWWVQag1T6hUsFHerwipNU35sey//uu/cMEFF2BkZAT7778/Zs2a5cQnSVKnmhFCCCGEEEIIIWRvgJ5l05em/Fj2gQ98AKtXr8bXvvY1LLCW+xBCCCGEEEIIIYQQUoCm/Fj2wAMP4PLLL582H8oSpBPLW7u78yU0mhBJh9xlEgC6Bh7ODgosW8/b+SrWMl03n/zlw5s3Z2EtsXOkAlrjJRKvFqNAyi6ByiYJQS7RlvXVx7OXuzs0dbU3xpLnGPdU9hF9n448MgsXkXdI5H37p39y46RU0dpds+I6RWcbaW3LTWdJb2KPDb1b6/r1Wfj++924iy7KwlJuGkveEYLejfSlL83Ct9/uxsmxIeXWjz/uppM7ZRZCTiaeEp0ysHbEfWJT1uZz5+bLNa06S+llqLzSbar8fiD7IwDsu28WDpWxx5ZFtQw+kx8X6nUg0Q+pwcHJw4Az4Y3M3z+rRwPJXXwla6ESxBjzStlS1Oh56olc9IOWIWXHkJPOIoYU1So6OD953XqcyDg9Do3rzut3LRGsK3SeZRD7/SpGuY2yc7qVf+iOvha+12Z1rVLmbvncMJ5Rvr8TWs9w+TtiV2fjPIcIqSdN+bFs2bJl2LJlS72rQQghhBBCCCGEkL0YyjCnJ03p8PjP//zP+NjHPoYHHnig3lUhhBBCCCGEEEIIIdOIplpZdtppp02Et2zZgiOPPBKHHXYY5s2b56RLkgQ/+9nPal09QgghhBBCCCGEENLkNNXHshkzZkyEjzjiCO/zTjjphDKqE43Zhh+DjPr1r9245z43WxiovWKkh5P0bKqQu0tTLkOIX7YXwa5hN39Z5zlzsvDq1e55sn10Mzr6/b4+J05ejzxNe5bFQNZjxQr3OqVNh27+36zJ0krLAl1H6QFWxEsh756Gei480O/mJ5cjH96X+TJ1drY56ZYty8/Tty5trVm63l63HpbvnJO/5/ppyw+miJ+H77U5fVX1cenlpasv29WyYvL1VYvhxaE9MDo7s7JPP91NK69Hzgf33eem+/a3s/AJJ7htLOcL7ZkV6mkTwh/XZfVSUxE62vPrIee+jRuzsPbek+2okZdZueW9373XFksS2Sf7+9046Sc3e/bk5+g6akLGiXlOoE5i+1CWv/aelPNze7s7vy3p684OLK8qz+tsBj+zsn2NirRB7OdcSFkV6AEgO5Dqn7s6sz8Gt9Wxj/jmqd/l5Nh25lw96Et+/sYgtn9iaFkx8inyrM/zKK419Zz7yi5beoXdcYcbt2pV10S4Q9bDeJ6EIt8Vy/A+JKQZaaqPZTfddFPQeSs/sDJyTeLy0Ff7610FQgghhBBCCCGEFCBN6Vk2XWlKzzJCCCGEEEIIIYQQQsqgqVaWjfPxj38cGzZswOc///mKuLe//e048MAD8d73vrcONasevcy1vT37nnn00fnnaWlPy/Dksrd57Xpb8tpJL6WMBbClN3nqUH1O6LLg2Nt1++bX0Z5/fy0sKZUv1pLq0Hstz9P1ksqSkdasD+q2ajP6QYjswcrfyk/WEXBlb2vWZGE91o4yZKRWvZyyRb0GBty4m2/OwlpSumpVFj7lFDcub0W+2QY1XnYv8+8wFARLl2b1+v3v3Th5n/bsceOefTYLSxkgAOzYkeUpJZqWBCW0PeR90/fFd+wd1Fv9eI2BliBKGbhGzgm33ZaFpTwTAI5aFtauQfcmUKrS0Zo9U3t73blCjtndu93zpCytLVBqJmkGKUwZ/TOGtLNseaLVHy0pW4vRJ6XFQIy5KMYcr6WWsltbXVy+i1aUa3lqCGrdD2K/K1r5h46bkDrWeo6JXccyyo4xvnzRvw+tXZuF5bszYPyupMaJ7/yjybMj0e/EtWwfQhqJplxZdsUVV+CYY46ZNG7FihW44ooralwjQgghhBBCCCGEEDIdaMqVZQ8//DAOO+ywSeOWLFmChx56qOoy1l6/Fn+4/g9omdGCg088GCe+7kTcdsVteOhXD2FG6wx0HdCFF7z9BZjVOQtDzwzhJx//CTbdtwmHv+hwnPKWU6YugBBCCCGEEEIIIU0LPcumL035sayjowOPPvropHEbNmzArFmzqsp/z+49uPPqO/HKL70SbR1t+Pobv45jX3Eself04sTXnoiWGS24/crbseZba3DSJSdhRtsMPPc1z8VTDz2Fpx56qqqyCSGEEEIIIYQQQkj9aMqPZaeeeio+8YlP4Pzzz3c+jO3cuROXX345Tj311Kry3zGwAx3dHWif046nHh79+NXW0Ybe4zKjlf2P2B8P3vogAGBm+0z0HNWDpx9/uqpyJ8PX06e1VStqs1vb3S1+PKg+ewvNexEPgzyvKl0PeV4Rq5g8jX49fTpi1SUvD13HZcILa9u2/Dzc9q++HqFoPy3pJSXDPT1h90Lvkj0sfFPkdWtfOKssq8/LOku/pdWrzWpWjb5O6Qn1yCNunPQss6471J/E16OibC8L6dvzp3/qXsvJJ2dh7fcm2/IXv3Dj9tsvC8+dm4Ur59LqceZgA/1Xybx7WqQfS6z5wcpDzt3ab0wi+6MuT3r96XqE9p+8tGZ/LzBJOvUSN6dFdbR58ljnP1sM4M5ON04fk1wsf0w5zq2/7EuPUGu+DCV47gt4cMfynMrLx8pDeyrJY92l8y6t4p0s8OUlxNeqbG/Osj0lg/2oCuTZCMTwpwsl9PchiZ6Ltm7NwjNnunHyEbJhgxvX35+FpX+rrkcM/ztrLrLyb8T+Q0gsmvJj2Yc+9CE873nPw+GHH46LLroIixcvxqOPPoqvfvWr2LJlC6688sqq8k9HUiAB7vrmXbjja3dg2UuWIWlJnDT33HgPDj3l0KrKIYQQQgghhBBCCCGNRVN+LDv22GNx00034T3veQ8+/vGPY2RkBC0tLTjllFPw7W9/G8cee2yUco674DgcecaRuOnym3D3j+7GkS89EgDwm2/8Bi0zWrB09dIo5RBCCCGEEEIIIaS5oGfZ9KUpP5YBwIknnohbbrkFO3bswNatWzF37lzMnj07ejntc9px6GmH4ol1TwAA7v2fe/Hwrx/G2R85G0mSTHG2HymSoKXwzwxm51hqDiePArIP32W1cgm+lhvVc6thuTWzloA2wxbIeTup68lYrprWEr68/DQxZFCdnW4flrKrvHOmQl6rltjJOEsaZmEtK5f1v/DCLBxLviPLs2REy5dPHgYaR2JRy+X5XZ1ufl3tWYP19Lhbncvt2HW7SmnDAQdkYT2HSQnusmXutcl+Z12nr5xk82Y3bv78yZ8LbZsfc/MXld6ODifOGvctm5/MDuREohrBkqbK+V+2N+C2T+gY9ZXDeMtOCsi9vPuubC/1jB1pz+5HhZRctJ1VLXmenmet8+r1bIshA9TI8SvlTACwc+fk6TSyrQ4K7I9lEEtS6ZOflb/veXqOtF4r895PKuYloyOXLbmLTahM3vc5WqQ9fH+3iGHVUEus+ofOe1Yby3lFWoAAbl+Wz0P9PLfe82T3lxYsgGvFIYnV9nnvotbvTZX1b/zfqQgJpWk/lo0ze/bsUj6SDW4exMCjA+he3I0n730S3Yu78cidj2DNd9bgZR97GVpnNX3TEUIIIYQQQgghhBAFv/jk0DKjBT/+6I+RzEiw7wH74qTXnYRvv+Pb2DO8Bz/8hx8CGDX5P/UvRzcT+Pqbvo7d23djz/AePHT7Qzjzw2di7kFzrSIIIYQQQgghhBBCSIPBj2U5dMztwAVfuMD52YX/dmFOauDV/+/VZVeJEEIIIYQQQgghDQI9y6Yv/FjWACRIgzTe0sPJ14rM8kEoQ2feslF462gBvDa+CMDS7Pt6uVheBzH8cuTkqesU0v6Wf5DlT6SJ7TWh6x/Dw8CwUYr+UNJ17O728wQMRdZf+kT09LjpClgsRcf3vtXVA1A0UJsqW3qMLV7snrZnTxaWniDaV0ruFzNXLRZ2x3b1vn/aoyz33isTk5HWzKtt84b8pBXzQ8AcrK9Nemhpb5VZswpnP2V5Ielk/wz21JM3QzekON4+7PrmDQ3kn2ZlmZeunvNBrZHjS/v/SKxuLPPYvTsLF/GEMvuI9YDPIdTTKjQPq4rec7fIpEVl0iYOdyk/JzmfytPK8DwK9daK7RlnETqfxXhf831nbUSPsqko+73D6ruWd69EzmH77JOf/7Zt+XEWob52El9/ZKtOZfvWElJrGnPWqzNzFs6pWFVGCCGEEEIIIYQQQqY/Tfmx7N577613FQghhBBCCCGEEELINKQpF/QvW7YML3zhC/GWt7wF5557LlqnWKP6w/f/sEY1C2N+13yv7Z1jbBddJJ3v0llTyZO353EBQpcTW91i+1DLpOksiaPVHlaclaevBLTZlzH7XouvlAQAduzIwmXIJGU920qYKWW/k/W3pLqhlCEzCZljyu7Huk5SUqBlbnl1aVUyCkvClCeF12PeX2LtlcyRXWq0jNSSK8t8QmVoMq6vrzH//haj3+2CaPN2//a3+qAkRNavj3WclAQ1yjPE6ltawrdBSIrlWNPjRF63lrHr+xGdAF1sDClbkTyiS3cNfZYuK6TssmVcZUgcy8xvKkLeqcqYDwYHs7DuIvO6oxdXNTGkijofed2yPQBXeqktHebMycJyrgOA9euz8PLlWbitVd1DQyrti7wWPXfKdxx9bb6WAtMdepb5kSTJawG8E8AyAM8A+D6A96dpuqlAHicB+CiAkwCkAG4F8L40TdeodJ0A3g3gBADHA1gM4Gdpmq72LaspP5b9x3/8B/7t3/4Nr3zlK7H//vvjDW94A/7iL/4ChxxyyKTpH1n7SI1rWIxLL31zvatACCGEEEIIIYQQEp0kSd4J4FMAfgbgHQB6AbwLwMlJkpyYpumzHnmsAnAzgEcB/MPYj/8KwM+TJHlemqa/F8nnA/gQgCcA3AlgYdE6N+afgafgkksuwa233oo1a9bgFa94Bf7lX/4Fhx12GM444wz813/9F0ZGGuMvqIQQQgghhBBCCCF7K0mSzAfwEQC/BvDiNE3/LU3TfwDwKgBHYfTjmQ+fA7ALwGlpmn46TdNPAzgNoyvMLldpHwdwYJqmPWmangVgZ9F6N+XKsnGOOeYYfPGLX8QnPvEJXH311fjCF76A8847DwcccADe9KY34a1vfWu9q1g11jJhKTdoGdruRnqugw1dhuy9S54hF2oZ3pUdGEuGy9iZJ2SZcKiULWRHQcBdAj08nF+2vJZa75T21EBWr7Vr3Ti5TFsuHe/tDbtnvsubG2knHt/+WbGcPiePMnYJyysrNI96EmOusHZ71MTepTD0PrVseHgifPjS3ty0Wjoh547BwSyd3DUQAObOzeKsvjqdd2qU12ZJ+7Qk3HdXZl+2bnWPn3giv2z32RC2s3OMHdby8tN56v65Zk0Wlo4O2t1BHuv2zpPoly3Fm6o837J9ZXRlSzt9ZV1l2EnEsHGwqNeOl5oynr8h51lzgO/41XOk3F281nYMMcjbvRzIt9GwXGj0cJLP1fYet/55c9jDG9x0B3WKG6C3D166NL8y4uKGhvN/Z5NYv0Ppd/UybExI03IOgA4An0/TdGJP+jRNv58kyQMALgLwMSuDJEmWAngugP9I0/RRkcejSZJ8E8DrkyTpSdN049jPdwLYMHlufjTlyjJNf38/fve736G/vx9tbW1Yvnw5PvWpT2GpNTkQQgghhBBCCCGEBJKmox8Km/1fyTx37P9fThJ3G4BlYx5j1eSRYNSfLBpN+7Fs165d+NrXvobTTjsNRx99NL7//e/jfe97Hx555BHccMMNeOihh3DGGWfUu5qEEEIIIYQQQgghjcz8JEnuEP8ujZj3orH/H50k7lGMfuhaNElckTyAURP/aDTl4sh3v/vd+MpXvoKBgQG89KUvxfe+9z2ceeaZSJJkIs3cuXPxjne8A9/61rfqWFNCCCGEEEIIIYSQhmZzmqYrrQRJknQDuKxAnp9L0/QpjEowgcl9w8YFzh2TxEli5FGIpvxYdtVVV+GNb3wj3vrWt6Kvry833bJly2pXqSpIkE5o+Iv4LTk68NZ8AXmoV0/pRDa4KeKFEsPnq2yfi/b2ybejLsMXKNQHRHopSF8ywPU9kttih5bV3e0eh3iYxbhnuo6bxEbHd97pprUWt/rWJbS9Qq61yDl5XkYh/jvV1iWEvH6h6yjHm+5zvn1wl/Ac1OM3ynXKCU0ZqrQ45iL5vojW1u8yrgw/mBieerHLAuDc4BYR7lANFFov37lJtr+cSzUzZ+af51uPMrCuTfbBdevcODnny+eL9vBxfPSsQSkapMi7lu88G/tZY9FI3pwW9ZrHfc+Z6rzY+Zc91mpN3nDTzxCZrtYeViHtr69LzlO+nsdF3tVlvSxPNMsv0ylQT6bSlkhf3IbMzqmjV3ietudfgPbAtH5HmW59ngAAugF8sED6rwJ4CsC4wfosADtUmvGRpUzYK5B5aHzzKERTfizbsGED2tqmNiGcb7krEkIIIYQQQgghhAQy7lm2N5CmaT9GJZNFeWzs/8UA1qu4xRjdzfIx2Mg8NOM/m0yiGUxTfu698MILcd1112G33rKLEEIIIYQQQgghhDQKvx77/+RJ4k4CcE+apoOTxPnmsQqjH9zunCQumKZcWbZu3Tqcd955mDdvHl75ylfi4osvxqpVq+pdrSgUkQJYaeWWwnJJbE9PfnllbFsdO48ibSDjpKQRyF8eXaT9y5YEyTjfZetS7qUpQ77ZNvTMRHge1J9UFnRPBEOleb7yuHqyYEEW1lLUG2/Mwi85vbYymbLlpxJLohAqXYld/xh56D6Xt6X7VOdFR+rVtE5DHLe359s4+NZR/+XUkqnGkAHK+1ZLuSYA7wuILbOyLAX0+JK3W9sNaOl6Hq5Eyu+ZpOsViixb11++r8jrtupoUcZzKC+dlb9OFzI3xbiW0PJi5KGx2tj3Pcm3LIuy5a1lP4vLGKNWHnnyfT2WHcl/Z7nWMCH9RaNlhvI6YzzPK+ohJsL29qmVU8Ak87usmO/kD+TrPNUDfaR73qTJ9LF+RvnKVslewX8B+ByAv0qS5Otpmu4BgCRJXgbgUAB/LxMnSTIfwHwAj6dp+jQApGm6PkmSOwBckCTJ36dp+thY2kUALgDw0zRNN8asdFOuLPvjH/+IX//617jooovwne98B89//vNx2GGH4R//8R/xwAMP1Lt6hBBCCCGEEEIIIXs9aZpuwugHsRMB3JgkyaVJknwYwNUA1gH4jDrlrwDcDeBc9fN3YNSz7OdJklyWJMllAH6O0e9a79blJknyV0mSfCBJkg8AmAng4PHjsQ91Jg2yNqM4J5xwAk444QRcfvnl+NGPfoSvfvWr+PjHP44PfehDeN7znoef//zn9a4iIYQQQgghhBBCpil7k2dZNaRpenmSJFsAvBOjq8yeAfANAO/zkGCO53FrkiSrAXxk7F8K4FYAF6Rp+ttJTnkPgIPFcR+AfxwLfwXA963ymvZj2TgzZszAmWeeiTPPPBM//vGP8cY3vhG33nprvatFCCGEEEIIIYQQQgCkaXolgCs90n0IwIdy4n4J4MWe5fX51m0ymv5j2f3334+vfvWr+NrXvob7778fBxxwAN797ooVeNMCU2uvPmcPD2ea97Vrs59rT6X58/O9UGJj+R6Eet34EuqdY/nl5F1PLD+PEC+OIu0WxWdHdhpV+DODWZ7y/nZ3+5cl6zUw4MbJ/T2kb5imlp4jvb3utc2abGPjkupShteK5VNj+ShNJ6x2lF6CvmOoiC9i3nnmvV2vNhgSN6etr88tT3iY+dbLmmPK8GYL8TmKPeYBOBcXa6z5nmeNc2k3EzoOWwP6cShW/toDUNrueF9bgM+cpgzPL+/zPF+GinhThTzry/Ali5F/aHmhZYfMK6F9yzePWnt4+tZZjl/dbevpMRvj2VD6O45nA8l6VK5iEnmoZ71ZVp6/2ebNzmHL8C5RD9dXzfIuJaTZacqPZVu3bsW1116Lq666Crfddhs6Ojpw7rnn4otf/CJOP/10JEnIbqaEEEIIIYQQQgghZG+nKT+W9fT0YM+ePXjRi16EK6+8Eq94xSvQ0ZG/yxchhBBCCCGEEEJITOhZNn1pyo9lH/nIR3DRRRfhgAMOqHdVohMsgWh1l8TKVbUnnJCF58xxT7OWFpciZRFs2pSF9+xx4+Rybi3N8EXKAPV1yq3nQ9u87PbZNZzVS66GViujnfbp6XHjOtpLXq4v1l4/vMFtxzVrsrDsjytXullYdbSkfnLZdxnbscutzzeKTYgPX+pfliUP9WX7UFav/n43btmyLFxGfyxbyhnC/9/evYdXUZ37A/9OEkIISQiQSEAu4SIioqKCoEWlVqtFtF7qaWulatujvattbWuP9dLa1vZoL9p6ak+P1WpF25+X1ku9teIVVKioKFhRo4KiXIUIARLm90c2mXe92bOy9srM3jvh+3keHmZnZs+sWbNmzWQy77sefdw8TtOnR9O+oR75DGuR/RJgti1d/uHDo+ly132zhHFtKzP/qLSiKZqW4dE6KkOHQEu20BvJtX5yCYGLWzapMMm49a9Sg5K3iHNUHjNA9VMijAWAeazkgpaK1PtSVhYfIusayp9E2JiNXIdunrKfrasz58nrmfUYtrTEz0s4fspWd659nbX+Lcc+iWORS/hm3PfkNQkwq9i2/kRSP6Qs7fs62/ZknaQR6m1bv21bPsetmMIwJd8w2DTOPUne769fb86Lu4/U3V55lahk/cuAjeyE5cVf3wiI5VqrBhmzHC9fRD1Sj2zS559/fqGLQEREREREREREvVCPfFi203PPPYeXX34ZLVn+qvjZz362ACUiIiIiIiIiIqKerEc+LNuwYQOOPfZYLFiwAAAQhiEAGIn95cOyA6cdiGLWrzcPJUdERERERETUSzFnWe/UIx+Wfe9738PatWvx6KOP4tBDD8Udd9yBAQMG4LrrrsP8+fNxyy23GMtPuXBKzJqKwxs3NXVM69wwcSP6AvY8AoOqRG4U+eZdhZkAzBaHn0SuIVsZt26Npm15yVasiF9O5tnRZdyyJZrWMfTlCee7SoIuR7PIbSRTCthyvuiXLCsdn8MmUQd627L+ZR4f/WxY5mrQ+ybzmVVUJJ/jxGjjzRuNeTVieuGK6FNrq1mOiROiMiaRG2nZMnPenXdG05MmmfNkzjKfbQHpt3/ZPmss57lrjh/ZHwCA7O51vqgZM6JpWx6NtPtByfa3EduNljXHjNw53UmKRFC+N3Jy9fK81utMIldJLnXsmpMribK8uzo+d2BpaTTdv785b0i9KKM+AHGVpztTzz+oJX0N99luV2zXfuf25FE/tn6wU245UZC08+alnRspif4/l+bpmu8qn+2zmBRj7jb/4xR/L7dpU/y3jD4yAa7ld73u6+/5bttG5lEeONAtL6K128vlYhzXCVs2YMuPWYxtmqg7emSLvv/++/G9730P0zOZnYcPH46ZM2fij3/8I4488kj86le/KnAJiYiIiIiIiIioJ+qRD8veeecdjBkzBqWlpaioqMAm8SeLk046Cffcc08BS0dERERERERERD1VjwzDbGhowIZMvOKoUaMwf/58zJw5EwCwfPnyRLax5O4lePHuF1FSWoJRB43CQacfhNcefw2L5i7C+hXrceIVJ6J+j/bxfN/793t47DePAWjPn3bgpw/E6INHO28rRNDx2qotJCEn8h1Z8Srtxmbz+ejSpdH0iBHmKuTIw0m8Pq+Xq6uLf504biR42wjx2sCB0bR+ZThuf/T6XYdD9n1F2/V7slyWKKvk2o8HHQInyyKPrw41XrUq+3cAYKRap5REeEdJy+bog+47RLzfESKeb2OZOWR20nQ9zp4dTQ8ZYs4zwoVUA5V1ItuPDG3Vy6URAjdvXjR9/Gx4kYdG14/c7cbG+HlJSCKESYZbAEBjY3zoiiy/DD995x1zub32itZRo3dafNahMKtXR9M6fNBVWR5D2l3r31aOba3xfYU+NpK8nug2KI9bv36xq+h8oYsLw7Scy5o8tzunG3CrH9/+0zXcRpZxzZr45XSItdTQIPopS5ikqyRC5gHz+iXvmbr6nus8V773YXFs55rtPsMa3uoZAhe3Pl/5TkXgSnYHMn0BAJSVxd8v20Lh4/oAW0h+LqeTrEu5Tn2fJ89tGbYOAEPq3bfnwvd42vqpqqr4+pf3VK79pW051981ZJsAzN/vZL8EAOPGZV9HlxuUxI7briHFcj7lWxgyZ1lv1SMfls2YMQPz58/H7NmzMWfOHFx66aVoampCWVkZbrjhBhx//PHdWn/b9jYsmrsIn/ztJ1FeWY6bP38z9jt5PwwcNRBHXXAUHrvmMWP5QaMG4cSfn4iS0hJsXrcZ/++c/4dRB41CSWmPfHGPiIiIiIiIiGiX1SMfll188cV4++23AQDnn38+1q5di1tvvRWbN2/G8ccfj6uvvrpb69+yYQsqaytRUV2BdW+uAwCUV5ajb1XfrMuX9Y2qsXVbKwIEWZcjIiIiIiIiIqLi1iMflo0dOxZjx44FAPTp0wdXXnklrrzyysTWH+4IgQB49i/PYuGfFmLCRycgKLE/AHvv5ffwyFWPYNPqTfjweR/2fqvMNsKIJl+51a/Fy1CT5ubyjmn9avTKldH0Bx+Y82R4X1fl9CFfXdavxcvXnGU59KvRMoxIjyAjXz93DXPQo5zJsIpBtd1/tVhH+slXu4c17FDzomkZXqbrXtZVIV9/1uF9FQ3ZXwlfsMD8nnz1PRNN3SGJV7vXbYh/Nb2xsbJjutIWQyMqPY1QVzPExWyrcgTMznXgdiKaYZi5lq579AiePuLOBcAcMdh2bGyjyMpzSLcRGXKXdFgnYPZT5S1m7M3G5mgUVtk36XBxY98WLzZnZgbCAYCXm2qMWTfdFE2fdlo0Xa/CYhYujKZ1CKJe1kc+Qzh8j6E8TjIksCubW+KXrazIXhh9vZLH13bsbaNnp8E1rE7WuS6jLL/ugnW4VtYVdsE5xHHJkmg6h04r7TqPq+POIdt+51Bc/djCrHzD9JIIUct3iGbS23INgdahfrLOdYjm9u3RtAwXT4rrvso2qVMFyFG+ZUhgvvn2U/bBinM/91zDlXMh24xvSHhcmbr63q4aekm7hh75sExqbm7G2rVrMWzYMPTp0yfRde9/yv7Y65i98PCVD2Pp/Uux19F7xS6725674ZTfnIL1b63HvF/Ow4gDR6CsvMdXLxERERERERFlwZxlvVePTap1991344ADDsCAAQMwZswYvPDCCwCAL3zhC7j55psT205FdQXGHjYWa161ZKUVBo4YiLKKMqx/Y31iZSAiIiIiIiIiovzokQ/L7rzzTnz84x9HXV0dfvrTnyIMw455o0ePxg033NDtbTSvacaGlRsAtI92Wbt7beyyG1dtxI629ldQN723Ce+vfB/VQ6q7XQYiIiIiIiIiIsqvHhkneOmll+LMM8/E73//e7S2tuLb3/52x7xJkybhmmuu6fY2SkpL8MCPHkBQGmDA0AGYdvo0vD7/dTz5uyex5f0tuO8H92HwmMGYdeksrFq6Cs/98DmUlJUAATDjizNQUeOeGChA2BHvrWPCbXkcbLmqZP4KnYdL2n33+HkyL4LOkSA/yxxLOk5exvl3imkX76uW6CQYIilApViuocHMuWMbMlvqtG2ZvE18cfhwc/2SzH0FmPmR4obnBsxjuN72wqGq5HJRrrKqSr20E59cQEkNqy6/V1sbrVPnwpOHQs9z3bZcTubyA4Bbbommf/lL83vHHBNNX375MGNepUhasaMiqv+0czMkkW9GSyLPmm+7kDnGZC5FwH7eSGnkT5T9Z1yOxO6s34tKVCM/7bln/NeMMuqkYiIJ2+TJI41ZssuRx6lkzXvGclOm7Ba7bZm/RQ9l73p8XSWR8yiJ89e1v9d0W3LOp2VZh4+k+nhXssy2vkjvm7x3kbmYkshw0akObEl+LPcqXjkgOyc9yrotALEH3NYOfHMLpXHeuOZE62nSuE+S/actf3GzuseRTcaWsyxuW0nZsiWa3rrVnCebuO4DZF5Hud+2OvDpO/U6NNmvlKsyuubs8y1XElz7WRvfdizv7fJ6z1REGIbZe/XIJr106VL87Gc/AwAEgZl4f+DAgVi7dm23t1E5sBKn/PoU42ejDx6N0QeP7rTs+A+Px/gPj+/2NomIiIiIiIiIqLB6ZBhmTU0N1uhhETOamppQn8TwXEREREREREREtMvpkW+WHXXUUfjJT36Cj33sY6iubs8NFgQBtm7dil//+tf42Mc+Zix/77dvy3kb/StLvL7no65mt26HY9i+L8OKdDilDL2xDUf90EPmPBlFMHOmtZjxbO/qxryLrcNfvF8ll7F/ItyuptZc/7uro/W//358EfUr25J8rXmPPczyDlrxfPShSX1xwoSs6/Bmez845fem5Sv4kyeb8+Sr+53Cm1zjbGO2pbentz1vXjS9YoU5b/y4aEXFGjIiq0cOzQ4AS5ZE07NnR9O6rbqGtrmyrU+fr3L9zzxjLisHN9bHzXV7tm3HNScdvmCsX51D21CedX3e7UUVqlysZ4j4G5D1uEyaZH4WZa6p2GbMmjVZ/NFJbnvxYmO5GtEX7RhuhnJ+8YvR9I03mpu+9tqonKedFv28WM+nJOgIO9lkaqrM/ZbH0bWr0/2ba9iHrc24hrC6hp75Hl+Z0gEwI4pt9zuyDvQ1xDl0yxbrLW+OxP2C3viOsnLEMeok5eutLcrT9RjqkHnXIqd9bjtGqVqlUUaflBea6/dyCWV2vYbbzhPXfasWqZp1NgB52lhOoU79m6uk72Ns67f93iG7Cn0s5H7qY+jTfnxTdshffwBgUG3u29N1uquGXtKuoUc27x/96Ec46KCDsOeee2LWrFkIggCXX345nn/+ebz//vu48847jeXfuuHkwhTU0Vm/eqPQRSAiIiIiIiKiHDBnWe/VI8MwGxsb8a9//QuzZ8/Ggw8+iNLSUjz66KOYPn06nnrqKQwbNqzrlRARERERERERESk98s0yABg+fDj+7//+r9DFICIiIiIiIiKiXqTHPizrrXQMum+svXwVVI6IrvOSybh5W66Avfc2P8sh3eU6chlS2Rpvn3YAfEwCBV1GPfy15FpEmftD52rAcpFcRM9MoA5c86To/CRSecKHwpZzZ90GldPNY/hrvZsy39W555rzZJ4veZ74sp2vaedykbnfAOCKK6JpeY4ePxup0nXw+OPxy8pyyfxxADBiRDQt03DlcloknXNNK2/dHH0oixp2Tn2dB9t1Yl1rjTFPnm+VLRvNFd10UzQ9Y0Y0LRNWAkaSkxKVjObGG6Ntt7R8x5g3d+5PO6ZlzjKbXOrO5/jmdI7GxVRYGqGe5dpeXVN45jLPh63+bccijf6t0/UyhmsdyPsfW96nTjzyfdrO0RL9HZlkTG8rp4Jai5SXdfjes7rmbMrlHjOOb1uVh8n3PE+C63mRb/Jao3OWJZ0yN5dj6HO8fduxrAO9z679TxL3D7by2/La+eZLs60jiZxxRIXUox6W/eAHP3BaLggCfP/730+5NERERERERES0K2POst6pRz0su+SSS4zPQRAgDMNOy/FhGRERERERERER+ehRD8u2i9CQ1tZW9OvXD0899RQOOOCAApaq+7ZuBVatap9uaPB7XVW/9iqHNpbzamvdX82VT8j79TPnyZCpJ56Ipr/1LXM5/Sp20RDvsb+0LKoTW4igfm3a9dXxFSvivzNSxgiqmTI0srzM7dVo39e3XUMbkhgSfcUKs4zPPBNN77WX+b1BE7q3LQCoqIi2J6sbMMP7XIfyTiLMJFs5fcjjNnSoOa+xMZpes6bbm/Iur6zXBQvMeYMHR9O6/DJkQZbfFi77/BKzjuXx1bz2xxZXsbMTR+dQRd8Ynbi2pssuP1dV2dqnKsfixdF0//7R9P77G4ttm7Bvx/RD95mraGlZLj69bMx7993spcjlHHLtf4x5lj/v6hC4zS3R+ltVOHpNlVjWFoMluPbVgHu/4rOcXta3D5P1o3c7l331EXu89fEVYcKd1NV1TMrre6d1y+OrbwQsMVNJXB+N/XHsK+yhin7nl+v6c2k/ctdaLG2psqL711hXvueQ3BdbtGza6RjSTumQy7GPW1an78ilTbqUIw1JtDvZrnUbl+GzsrsBzHscffuQ9PngEdmdSjmIeooe9bCstLQ068+y/ZyIiIiIiIiIiChXPephGRERERERERFRMQhD5izrrfhOJRERERERERERUQbfLCsCZWV+MeRJ5z7Q8egy3l6k/QAAfOxj2Zfr29dcbvXq+G336RNtzzYUtu9w9XJ/dEoTWd8yb5LOzSbZhgq3xfLrujPKWFbeMa3/IpHEcNpe+X5yIPOq6fLH5YfRx1qmR9J1ta45qh+ZHgoARg7PfYjryor45ZIYdt43F5ONzG0h87rosuh8hxdeGE37DjVv6x9ch0GfMCF+OdlGdHuX+20rvyyXbj/yvNfrSCTXkCy03IAl/6Bn+jLrsZDzdB4pY9kydQJ89avRtCy/SgxnOxZf/OK4jun777/TmKdzWPrw6rdyqGRbjhnfdXaXrR+3LZt2XsS0q8C5vLogsmPRFwrxudzWUYl1dqpHncNMzksir5KtI/TYVlLXKJ/v2fLnmj/3Kob3vtlS0rnWq6UZOPPNZ+Z7vXLNSZf2vWK+848Viq0/tuXls93jyC5NphmdMsVczpqTUXA9l3PpK9K+DhEVUo96WPbaa691TLe1tQEAVq5cidosvcyYMWNyWveqtZtx7s+fxDNLV6Nvn1I0Dq3GL79xMPY77TZMGFWLlm1tqK7sg698Ym+cfux4AMD1d7+M869+CrvX90fLtlacfeJeOO/T7YmQf37z8/j9X5ehrKwE9bUVuO7CwzFqaLXnnhMRERERERERUT70qIdle+yxR6efnXDCCVmX3fkwzUUYhjjx2w/g9GPH45YfHQkAWPzvNXh37RaM3b0Gz954MgDgtZUbcdJ3HsSOHSHOPG5PAMAnjxyDX58/A2vfb8Gep9yKTxwxBiOGVGH/8XVYeMNJqKwow//c9hK+/euncGtm3URERERERETU84Uh36LrjXrUw7LrrrsulfU+vOht9CkrwRdPmtjxs8nj69D09iZjuTG71+Dn507HN3+1oONh2U6DB1Rg3PABeGfNZowYUoUPTxnWMW/6pN1w032vxG6/rDRETVXXJ1hSr8TGrdMWBqiicnDMMdmXW7XKXG7Zsmhav8IuX4vfe29zXn199jL6vlpse31+SH33Ozfbtl2OLdB5qO2ky5EGn1CKQbU71Of4ZTe35G9/XNuWjvLZsiWalu0WMM8pOTQ4AMhBfKur45dzDaHU4XcHTI6mZfmTekXe9djL0IPx4ywLOtrYbJa/qSma1ue5PFZ6nvzsHGKkVxITo2YLae+0zgRCFLxDe6Yf4rT+mtZtHdOTJ5cb88aOjaZleD4AjHM83r514BpiZFAXOmNvbAcqgRhEXV5ZFDltCxe3STo1A5DMdSlp1jBJx+PUqe1YUiJY68AxHt16T1ZWjlzZ7tcK2ae40tfRqqr47SUR/ivXIe8920XbtoVoxoWUZl9n9nl6Obm9igrX+53460sa4a02iaQzcFh3V1y3nUS6DV+2bcuuQ5/b8vM770TTOr2M/j0tjm84d9qhukTFqghvg+Kdfvrpqax3yavrceAES2Ip4YA967DsjQ2dfv7mqma0bGvDvuMGdZr3f39bho8dPKK7xSQiIiIiIiIiopT1qIdlxSAMzc+3PvQaHl70Dl5+cwP+94LDUNHXrNKb/v4KFi5dg0d+e1weS0lERERERERERD74sAzA3mMG4v/987WuFwTw7L/XYK/G2o7PO3OWzX/hXRz7jfvwsUNGoGFwJQDgoadX4EfXP4tH/uc49C0vjVljftlej7W9Yu46wpGOQmhsjKb16+0yfMqVLYTMtm++YS25lGUnHV4g60qPZui6/jRGSXJZX1frNEfh6/amO5H1pY+hDMeTdT6sIZlXwOOOrw5z6NPHbX2OEXw5jbpayHCbuNDmFSvMzyOH+5Qqnq4fM4zFnCf7o1RGMhPhU659US7rdw6XaN4YfbA1NF9iHZUq3FeGDumQ4TwOIOk/kqIjOaKpJkOgfUPhZaiNrR34jrhbLKExqYdWqZBGYx0iT4QOqd5RG0UF6FC5ctto5WI9shy6Hxwu+kFbeJMOrfIdyViyjcbrU8f6XHANAZVVbgsj7XwPJafdQtxt4cRr1pjrkKkP5D0rYA8PleT+2K5Rmut1KekIcd8+xjcVSj77H98+OIk68GVL2SFH+T744GjaNrhvGv0sdSUE4J4vnXqO/CY4KlJHTBmGrdvb8L93Lu342TMvvYc3Vpk5y5re3oRvXbUAXztlUqd1HLzPEMw5Zg/86pYlAIBnX16Dsy9/DH/776Ox26B+6e4AERERERERERElgm+WAQiCAHf89KM49xfzcfkfF6OivAyNQ6vwy/MOwasrN2L/ObehZVsbqiv74GunTOqU3H+n73x2Pxzw2dvxvTMm4/yrn0Lz5lac8r2HAAAjG/rjb1cck/V7RERERERERERUHPiwLGNYfX/8+cdHdvr5lkc/H/udM2bviTNmRw/OhtX3x6q/zwEAPPTrY5MvJBERERERERERpYoPy4qc7zDHPrlKbOtwpWPobTH1SecTsrHmApIJSnQiDceh4CWdU8PYN50MRSSb2GEZPt52PJPKj+Sz7cTZxl9XjUTm6bC1M1syEZ82rtuq/GzL7adzz8Tlx5D5KdrXEb9+KYk8I7n0AXHltx4LT3L9uv5lLiBbvrck8v7Z6sP3PHFd5+rV0c8HDjSXK5eJjnQfJseT9+xoXc+TSSpDge3ccF1/0kPUu+Ye02x5gXxz5Mh1uh6aXPY5blnfY+GzrXxv27oO2TlZDqjOmVUjvtbpXiJmPdZ+UF3nZP40mQPQJpf26Lqs+7nmlw9JXg9tudNc68BKJ38TB6SqyrzXKhUphfV56Nq25PfS2Ld83uf5Lpf0/WFS1wyffiWJa3gu65Dnhu47ZHsa7pgDtpjykPn26z0Tc5b1RrtSCyYiIiIiIiIiIrLiwzIiIiIiIiIiIqIMhmEWgRBBx2uqSYWcJP0Krusw07mEg9Y4DnvsNXx8Dta1VHZM69fnZRFdX+2urIgv77ubKo3PH3wQTffvH1/GPn2i6dpaS0hpDkpat0UfZDioLWTVwva9zS3RvMcfN7/37LPR9MyZZv1M22dz7PZkPa/bEK3/+SVmOYYMiUIuhgzcZsyTS25sMUMzZCiODI3UoVpyv3Opu7j2YwvhsK1j1Spznvw8aVK0nC5/En2FXMeg2vgy2s4hHT0o20V1dTQ9YYK5nO18cz02SYeq59IObPNkyODKldHP+6kBlsuGj4zW17zRmPfk4uiceust83uHHpp9uzoMTUZy1lSp8opx7gd1ilHO3sknFZbhc53Q7UxGxFVVxYevpRFGKpV73o0lEWIk25mOhJchQUmEN2m2dchy2UIJZf+vm2Cl/GxLqyCuh8NaVqgyjonfeAwddm+wpAOw9WeuXO/XNFmP27eb8+rro+lcrlE+y9mOtfN5aIlr1n2YPu99tq3Tb7iuI+kwSdc0HUmFMeYz3C/pEHG9vqTr2MZ2jtp+N0pbGilfiHo6PiwjIiIiIiIiIspZCOYs650YhklERERERERERJTBh2VEREREREREREQZDMMsckaMuE4m4jjWvGu+Ad9cVTZJ5LuS3l1tLjdwYDStczFZLVjQMTloypSO6XsfMvNWjRsXTdfVmduW6U9s236tKfreL39pzpO5gT71KXNeY2M0PWBA7Oq98vYAsCcG8WDLgyPzlF14ofm9F16Ipn/0I3PetKlubVykTcLSpeY8mTvmzVXm8V22LJpev9783v77R9MyZ1lS+TuSyMUn8y/JOgCAhQujadl1HDLdfVu2/iGu3enlZBl1XhdxGmLSJLMsbeJtdt31JcH7vBGSzuHx9iqzfpYsiaZl3jCdd2vx4mh68uQaY57sc/Qpv88+2cuh179lSzSt8/uUyOuQY5+SS06cpHOo6LZk5izLeXUF55qPyjenm5RUrjlXrpcoWxN0Ps/ljuuLSKNbzjLXY6ELaZRrhZkvzbiAOTbQXHIkynLKYuVye+Dc7uTJpi9Y4maoRCd8kxdgS8GMbTneH3f6noVvTisfvjkSk5BEP5LG7xOF5Ho8ks7fl5R8991STz/2RHxYRkRERERERETkhQ8GeyOGYRIREREREREREWXsEm+WzTj73kIXwapv/+gVcxm6Bqih6y2vn1u/J550b24xl6uocAt/keGCALBhQ/bvNDSY68spNNKhHO+/b87r109sK5cQGvlavwh7mDDBDLeQb/LrodRl1Ea55Uzq3z+aFhGfAMx61KGWMixQRi/IfdZl1GFuhRzWW7ZBGT2iIyxkuKkMe82FPJwyfFLP27TJnCfrrk8fc548HrL96+iOHKI9uk0fT3m8hw83l50uwi19w8vSfnVfHhtdjxMmRNPyPGlq0uuIyqj30zksKp90HKBoXFVVuxmz5L7Kc0Pvp6zHkuaNxrxPfSoKy9SXkLh61W1JRkytWmXOk2Gf+vyVmyuWUAzb+avrR/bx69dH7eeDD8zl5PfksWhff7LtLpcQO1dxfXU+JBFGWunYB1vXLyuhutp52/J83lFRmfN3AJgnlW6gMfd9rvd8XZHL6hDruOU2Nscvp4sr23+Ja0Oz1EG+w/vSDr30+V4uIZpxy9rCrZO4b0/7uCQRpppLOgCf5TR5zupoa0neEwN5rkt5s6vO0SRSVxD1RLvEw7LHn32r0EWwOuusswtdBCIiIiIiIiIiwi7ysIyIiIiIiIiIKFkhgLYul6Kep0jiUoiIiIiIiIiIiAqPb5YVGZ3KQoaMb24tN+ZViKOn88jIsHOZ10gvJ/MW2PK16DwscTnL9HK2XF4+OueD8VyRTK4jKmtMxTZjsR1lUZ3rHA+uQ6sPqY9i+z/1KfP5tDzeen3yWMn6Xr7cXK6hIZoe1pDfXBMyh8Hq1eY8mQPskOnROi+80KwDuW8zZjhv2jCodoeYji9jZYW5b9XV0Tydz0yWf/HiaFofp8mTo+kalYZF5giUeZ8AYOTw7PWsc9HI7+mcgPJY6f2urc39byG+OTxs67D1AeMtOerk/tj6MNnX6dyKsg50XyHPPSOvjq39+3YCtu+IgtVUmdueMiUql5EjEWY/NbJWXTiEk06Izwml87/tJPsUwDxHr7/enLdsWTR9xhnmPJ17JU7J8n9HH3SelIZhbitxpPsAu6i+3n03+unSpeZS9fXRtD7PZbvTueBc84O55udJIm+S7zXbVg7XXGRJ5CGysV1vy+UJppLvWes4iT5ANgR9kyPoa0OhyOshYBZZt2lZ51VV0f1Ube0gY7kK8dmal6/V7Pvi8pnZumrbOjptL4G8l/K4+TSXrrieQ2lLIldYGjkZXSWxflsblPcuOmeZ5bSPrVf9+6K89sTdX+bCdjx980sS9UTFceUlIiIiIiIiIiIqAnyzjIiIiIiIiIgoZ8xZ1lvtEg/LDpx2YKGLYFVR0a9j2vcVbR1+JEM/5Ku6+rVgW6ilbWhp+ap9bW00nUv5314V/2JjaWk0r030PbqMcnverwVbYmGSCE+R9JDc5ZYwHBlyJ4+hDkOTx1qH3uUWcpQ7Gc6wdasZJixDvBobo3LpUEsjvCyHIcvjjrc+1rZjL+unUoXpvbs6e4hpv35wJo+bDFcDgJEqJGsnfd7JV+t1+LMMTxw/zn2/4xTrq/UyPHGFCkV6Swx2/MEH5vdkGKDspwDzPBo8OJpuazPXL0MSk3gV++015nlSWhp9Hqja4AETNndMb0ZlNEN3tPKzJTZdH8Phw6M9soVMynY8fbo5T9arDsXu3z+aHlKPeLL8at9c2513OKI84VRcizxSZWU1HdNbt5qrkPttOzRp0+dv2uesT9hVEuGUvqzHQs5UccglLdF5uKOi0pgHkarBOYy0zOwDULebpWDZi5gU1+uopO83Zd+hb6fi7iN1CJktpYZxbjtWgvOxzoHr+aTDZW330kZ4qOU8saVM8WFbR777kULdW+T7fkfWub7e6vsTH337xs9z3h/v3DaRfLcforTtEg/Lplw4pdBFsGq66Y1CF4GIiIiIiIiIiMCcZURERERERERERB12iTfLil2AsOM1VTkqm2Z7O9b2Srvt1V85zzZ6kH69V4ai2Ub0soXGyJAy/QqyHIlQTtvo9W9sliPhmfWaS7hfocRFhRQyzMfGNYw3l9ESJVtYgpzW4ZSu9Pqrq6PpqVOjaV3fxgiGaii8sooovMZ15Dt9ng8ZEk3r8K+0Fcvr8/LY6L5C1qtuc7Jf1KMU6nDmOLJdl6dwssn+rbx1szlTDH1bKQuiTjYZGmY7ZnJ0ViC+D64sM0eLqxRDL59wgrkOWf933hm7adTXW8Ik5TCROdRxIiF9tu2JebKItlBpfZ7LevWNcEk6dDGN8CPfkSxlm7SlDUiiL5Jh6zqUsLwq3Qupbyhq3H4nFerkE+asBgs17k/0vVVVVfZ9tYUmpj0KX08IE7ONpKi7rLq6+NE24/Ytl/PVd6RbSV6LN20yvyN/n5D3U8V6nHz7Onlt0CNfu7ZruZy+niSSdsVyPZRtsvPI4/GrLGToff4xZ1lvtCu1YCIiIiIiIiIiIis+LCMiIiIiIiIiIsrgwzIiIiIiIiIiIqKMIsl2VHyW3L0EL979IkpKSzDqoFE46PSD8Nrjr2HR3EVYv2I9TrziRNTvUQ8AWPHsCjz9x6fR1tqG0rJSTDtjGnbfb3ev7frGwu+uNrdyZfZ5bSqcWuZB0DmnZI4BNZJ6InmyZA4YHXsfN5y2TS7DdfcEMvdHbW18ngJJHxdbrglX1lwKYoOVMPMcjRHHd0dZude2XSXRHnX9yNxnYxotX5QNTR0c+XHCBL9yDKmPpos1h4dNEm1Qfm+Y6ots61+3IZqn8zr27x9Nb9oUTQ8dai4n25Zv/cvv6b60pFWcNxssiUDiElHCzD2m8zPKr8nlAGDJkmhalmvCBPN8XSOuEzonl/xsG7rextY/2Oo48fZvSSxYI7Y1YYJZx+vXx69S5qSz5QWVfPMCaT7f880JJb+n91PWj85BKttnPvu3LVvMzzW2nJKikM5lcj3YShr77NMObOWw3Q/qbcXlxdX9sVzONe+WlkRurSTY8srqZiE/y5x6K1aYy9nu1eU5pLswuU4pjftBSR9feY3VuVc/+CCabha5hjtfa5LNtZjvflYe63dXu+Vt02y5D13zP7rSbVXmKdu+3X09PeE+NRkhmLOsd+KbZVm0bW/DormL8PH//jhOvupk/Pvhf2Nr81YMHDUQR11wFIbubf42VVFTgaMvPBqnXH0KZp47Ew//4uEClZyIiIiIiIiIiLqDb5ZlsWXDFlTWVqKiugLr3lwHACivLEffqux/Nq8bG/2ZZ+DIgWjb3oa27W0o7VOal/ISEREREREREVEy+LAsi3BHCATAs395Fgv/tBATPjoBQUng9N3Xn3wddWPqcnpQFiLoeJ220+uq4j3YEvVut3wFt77emGWEW8p5+rVaGZajQ2jkZ9/X4m28hojW73aL9899wy5lqJYlCieVOnAlt6XDrOQ8WyhquevZruq4RKxkR1WNMc8Ie9AVJNtuAnWl1+G8PykzQsiqzHAyWcRBtcnXgaskQiF9tpXLPF+2/ZFRjHqocxn2IJfTIS5JsIVOGOeb7oBkwcT5JcMt1CzrtltV/yA3Zwvv1nUXt46pU815MtRV6olDycsyyxB5wAyVtn1Pcz0XfcLQcmFrn7J56pAuOU/eS+hwX3kd0ueXbOJJcK2DgQOT3W4xSbuf1fcgccvpsthCLfMp7Wugbf1xYZFaU1P8vM6hltmnC0mXQ15vdSi27C/eeit+ucbGaDqXfiPueOQS9u1zTtmOxfvvm59l6pwDJue8KQBmqKvt9wQbWzi9vEew3S/sOmGX2ezK+9579bw71jza/5T9MefGOWh+rxlL71/a5fLr3lyHp254Cod++dA8lI6IiIiIiIiIiJLGh2VdqKiuwNjDxmLNq2usyzWvacaDP34QHz73w6gZWmNdloiIiIiIiIiIihMflsVoXtOMDSs3AADe+/d7qN29NnbZrc1bcd8P7sPUz05Fw8SG2OWIiIiIiIiIiKi4FUl0e/EpKS3BAz96AEFpgAFDB2Da6dPw+vzX8eTvnsSW97fgvh/ch8FjBmPWpbPw4j0vYuM7G/Hsrc/i2VufBQDMunQW+tX262Ir6ZF5QWS+mQULzOXkvHHjzHkyL4LO75HXfFEycN4y7nZZmZkvSsbU23IHyHwJtiG/tWLJmSXzlNlyDNjIYayrqyuNeZUt73VM66frOoeZwSN5Ri45JMjONcdG2vnMZJt0za0F+OUIsX1H592SfWSD4984UskZZ+mo5Pd0ukZJ9tUlrdvMmUb3afaRMgeMrI9ymOsYPtz8Xhy5Ps2at81T3HrSaMe+6yxUbkstiTrX15dVq7JP65xlw4dH07ody8+VFd0/v7S4OrFdvxO5DlnO5XyTx0b3dT77pnP2ue6bLe+Z7Trheo3ynecqjfyDcp3yOOnzRB63UktKZNv6k+jDXOtA52aTlzm9b/LYb90aTeu8XvI61zm/cPbceEB+c7a61pXuS1esiKYnT/brf6qrnRZzZrtfyyWHc0/MUeonBNDW5VLU8xTJr/vFp3JgJU759SnGz0YfPBqjDx7dadkDPnkADvjkAfkqGhERERERERERpWRXedxLRERERERERETUJb5ZlkX1kOpOb5WlKUAY/wprwuNAL1tmfpavAk+YYM7TYUtO9LvFSZRfrkPHFYp5eks6VCCOHILasnpnSbyq7yuX8spyyiG65evgADB8+G4d05XYbMzz2Z+068f3lW+fobV915GUJF5vz2ebTGVbos8psYQ+rVFjtOj+zkUqYcIenYzup4xyyFgewIiv1KHqsVQ/XimKuMN1Hbpclp/b2nES51vS68jluOezv7Buq0X03friLmKaSlTjkuFy+vIuQ6FkqKWcBoD+/aNpea3x5Vunvv2lz/Zy2ZZPO8gl5HBYlTjejy82F548uWNyc1mUVsHax9i2pxpJSUz8eJkthUPK0j42vmR4pb4+yfvUXNKFxJZf9wHGfbaZisPo+zqF+Yvj7Zj3Q5c3rh+x9Tc2BQ25tdyPyL5UHk+gcxocH7L6k6gD71/f1Dnf0QfoA0rUQ/BhGRERERERERFRzpizrLdiGCYREREREREREVHGLvFm2b0X3FvoIljV1dR1vRAREREREREREaVul3hY9taStwpdBKuzzzordp4tT4rrEMUyzn/GDHPe9u3RtB5SXKY00Pm/Nrdkz2NSVRWfz0anrrClN4jdH5UvR9aBb4z+oFq/vDdxZbTl40ki55H+TrntLN6wIXZWS8WgjmmZm6BOPbuVx62y1i0nhY1vvp8kcjDkO6eYtKsMn53342vJgyFzhtTWmvUvU3vJPlLnEkmC777J71WKU8/alnRyNrFzdXVmLppNm6JpWY3llqQ4SeTrSuM8TPv8cr3e2r63rdX83po10Wd5vR0wwFzHkPqUc+PZziFR/rIys/zyvJHXDb0peRmS9xzZtiY5pkBKhO34yurRVSXzENnuR2x9nZxnu0/yPm90nxBj8eJoesoUc54+9pLXfYzKfdWpzxFk/Wxsjm8jrnlqc8mZGPc91/vBbNuLmzekXqyv3nKvqBuJaJTbWs1ccHJRs67i69uyetRUuR0nTW5Ob1r/7pFtu7pcufw+ESeXvH/WgjkuV1kR7XhFg1lXcXVgk0Z+xrTzyhL1RLvEwzIiIiIiIiIiouQxZ1lvtGu86kBEREREREREROSAb5YVgRBBt8NV9HJxr8zr4ajl27G2KA0ZdgmYYRVyevBg83sDB8avsyjp14Udx072fp07bTLWrLHRmLViRTQth+vWw3Pntfyd6j8+rDdO2uVN49X3Qm7bNRQy32GkcWXJqRyiPTU0mG1p2bJoWobA6chleW64hvmkzRripeM5RHxKZYUuf0m2xeB7a5BG6Idr+8xnP5XLtuS10xbeZIuUk+FZ3uWyxdoLuaQKcLw8Ji7f11S5nz0yokhe+9V9gPTYY9H02LHmvOrqaNoa8qYbhb6hcGDrR2z17xrqauN7z21bv0+6gU7Lyc6jqcmcJ+q8bJwZhhlbpgozJN8M84xdfef9jLlHs91Ku9aB/j3G9Tz0DYlNRAK/M+hw/RUros/yfkRvqqC/a0i6g9hZ0NLS/JeFKAF8s4yIiIiIiIiIiCiDb5YREREREREREeUsBHOW9U58WNZLxb2OK0duAtQIaM3rjHmV8rXvZjWqi5geNry2Y3pbhfkKuHxN2DeEyfX19lykObJiEiNe+lq3wdx27YSJseUYP3xz9MEYMqk2kbJ4jXSo3itPIjwracU6qqXr6GuFDKe0nRve5Yob7gsww1PU1W7IkGi6Tdzf6FA5m5eWRWW2Rbm5jrCZSDtWYZi28ySfow0moZB9q42tjmW70G1Lhv/GjSyZD7ZQUT2KrBQ7UqOKkRpUW7hbTZ8UF7Z5leqcSaI/jRv1Vks6lFDbZ59oul8/9++lPWq1DEsrptGK49bh3SbkeSM7B8DMG7B8uTlv0qSs5QCAmtyjYDuH6xvDwZqzdogwTDnCaefgzNz7AL0vSZwbvqG6xrIpxJ/LbesQU9kU1q+Ppusdw/M13xBlbzvrKwjS3Q5RSorztz4iIiIiIiIiIqIC4MMyIiIiIiIiIiKiDIZhEhERERERERF5KY7UEJQsPiwrAgFC5/xXcaw5F0QSkhKVpKZctgCdI8HIWabmSWJeuR6WvKz7SXFc81blIjZvgSUXQRpDiiedc0ePKL5iRTR9zDFmOcrlTJXnSPItf6HyiOXSXnzKaDu+OteEzNPn2lZ1ziB5yuZyLFxzqBQy75POsSfJ3DTWMtryh4h5eh319X5tRlq1KnsxqlSeGN86fnd1tG1bDiHZRsrzPJy8Tx+cRu6xYsxfCQDliPL4lJaamXxk+5HtfVCtX3u09T8bm6Pvye0CZvt55x1z3h57RNO6b5Lt3MiNlENOH7k/tr5PSruPz0Wx5M1Lwqxjun+v5XqtyeWaJNt1Cumi8pr/1Lrfcuf0jsrPw4eb8yz3b72J7Tgl/XtC2tck3dfJw6v7vQkT4r8XJ4nfQ/R35LZ1XjuX61IYxi5CVNQYhklERERERERERJTBh2VEREREREREREQZDMMscokMRy3pOA3x7u+O4SNjt93lerKsryu28LW41fiGmqXB9dX9JF7n3twSbUuHWsrwHR3+Jd/W15G0g8aN63JbgHls9PptITRSXDgN4F8/ccfeFoaTy7aS2Lck2mQS4QVph5pJuky2epSfXeuxUzl0o3QU135yCe+Q4RGSPCcB4M0V0fp1cfWy0quvRtOlpdH00KHmckYUTlzfDDj3z7ZzKN/9rE/4e9phnrqKbWFi5eIHAwea82TWAlv7l3IJr5HzNmyIfq6vIXV10fT775vzbBkYkgiJszVXyfcYxtVPUqGcPiF8vuu3yWc4qC1c1tY+fUM5Xc8NG9c+rGhSFugLxZQpXqtJJMRU/p5gO4aOyyVxz6clcZ4k3cdo8ryR/TGgQ9rNcpS3Rl8sr4pOBtu9li/b/ZrM3DJ8uLkt27VgzZr2/137+p4rBNBW6EJQCvhmGRERERERERERUQYflhEREREREREREWXwYRkREREREREREVEGc5YVgRBBR5x4GjkRdlRUdkx7r18Hm8tEJjJY3TN/0Pr15meZ28U1L4otj0wSOS+0fA4xvjPmHwDuu89cTlb57NnmPJmWzLW8trwCeh22XGoy38Huu0fTOm9PWZlfboskcnHYcjzIJi7rX9ePrOPysvh8Lfp7clm5nG6rG5vj1zGotnDD3LtavTp+nmy7rl3H26vMMsl8XWnkQrEZ1pD9GOpcH/Lc6NvXnLfXXtG0rQ7Wro2mq6vNebJdlFeoDlMWxtKZ2vJuJcE375nPeZ5U3xxXTn18Zf+gc9DV1kbr0P1DY2PuOZxsOfV0Xyr7MDmt+5Ht26Npfextl3e5nm2t8ftiuxbb8hYa7dqzTfrktvSVSH4oJel8gb65pOS8TZvcc4q55ob03bek78N8y+V67NPO+ZhEu85lHT7t03U5Wy7jvOaP64JrHWzaFE3b8v51UhGfp8yVT33pMspriK38+hqyfHn7/1u35lyEHog5y3ojvllGRERERERERESUwYdlREREREREREREGbtEGOaB0w4sdBGsKir6dUzLsLb2eX7rlCER8pVY2+vVJc0bzZXImAvb+9CehZTb7tPHLJdrSJCsL/1asGQLLUkjdMKH7fVqGbqlw3ziQm0Av/3Rw1ZLtjLq+l+1KpqW9d2vn7mcZ+Ru4sfKFloVF3XcFdmO9bGR4Vlx3wHMIcZ1GWXYle24+UoiBKhNvJWuj7Vr12GrA5s0hq93WV+l2q9x46Jy6HZg09gYTe8MZQDMtgkAw4dbVuLYYF3bdRL1VkwhNK7keSnbo55n4xre5Huu2bIlyBAgrU+faLp/f3OebGt6v6XBg+PnyfAbGTYNAFu2RNO6/LJ/sIVhJh3aZgvFc227tmOddihe2nQYuKt8h8mnuX7bMfQ9vvK+PZcwN1e+18Mk9lWe23rf5DwZEq7D9uR9cH194dJ3+NL3vpLr72k2Se+Pvj+Tfbftvt32+xZRT7RLNOEpF04pdBGsmm56o9BFICIiIiIiIqKchGDOst6pZ/95i4iIiIiIiIiIKEF8WEZERERERERERJSxS4Rh9iQyLw0A1NVF0zpXlYwn1zHu69dH0/X10bR3TLtv8jRHet9kTgOZJ2X7dvfnu7b8AD7ymf9Ik8fwmGPMeTLfg2wv+SCbhcyvpOfJ4ylzmQFmmXUz07mf4vgeGzmvtdVch2x3MueCzg/lmotG5uKwlUPmIQPMPB06V9WSJdH0IdPj1+8qiWHntWEN3c/VI3Mv6XYm5ZLzMZ+5S1zroHM5sueezCn3m/iib/2n3fcVaw6nuP7BlltrUG18vqu06dwwsp3Ia4jOOSXzjbWpKBLZd+t8e3G5KHX9yJxomvxePnOLJpGXLBdpnHuuyxm5aRPYt8oKv3X41nEx5pVNqvxynr43kuQ9su7vfXJCFbIeZZ5CAHj//Wg67r4RMPsV3Yel/CtKImR/XCy5em3r1/ffFQ1+fdiECZnv94BjRJQNH5YREREREREREeWMOct6q+L8cy4REREREREREVEB8M2yGEvuXoIX734RJaUlGHXQKBx0+kF47fHXsGjuIqxfsR4nXnEi6vdoj2to2diCB3/6IFa/shrjjxiPGV+c4b1dHYYpw64mTzbnyVdacwl7MMgvFnB835IN64zPFbWDOqblkPdNTeb3hg6NpnUIotwd2zDc5WXxIVK28IW0h6uP25YcvjmXdSTBtv7a2vgQuBUromkdSiiPjT6GlWJfXUME9blQXmaZKT5XVFQas2Q9l5ZG0/r1eVs7iAtTAtyP1cCB0fTateY8W2inUbGe77/7tPFcwptc1y9DUGzrsBzeTn2API75DPNxPc8B83ogQ+B2hjXsJPswX7J+9KXAdpkoL+BdRFz7SSPES4ae1dW5nxdJt6dcQqXjQn30eWILCZLHW4dhylB1Oc8WJqa3LfmG6eRyTvmsg+x8wrRzubYkfWxyuUalff7KeyOZVkGfkzL9g05bIpdN4jbe9zotz21bqLq+F/rgg+zr0/2Bbf1SIdMNuC5XrKkHXM+FXMq/s00GQffKRlQoxXm2Fljb9jYsmrsIH//vj+Pkq07Gvx/+N7Y2b8XAUQNx1AVHYejeQ43lS8tLMfUzUzH9zASSBhERERERERERUcHwzbIstmzYgsraSlRUV2Ddm+1vPJVXlqNvVd+sy/ep6IOGiQ14/533s84nIiIiIiIiot6Ibyj3RnxYlkW4IwQC4Nm/PIuFf1qICR+dgKAkP++P7r67+Vm+rmwLldChbTIkQn7PGjJji2HSkg7ZVNsqad3WMV1fX94x/e675tfkSIH6lW1jJDM1wmA5tolP8ftiC/FKogqSCP8qlvARXQ45kk6DGEVHh9K+9VY0feih5jyf+ukUkiZj2XQsnohtKK81G9CwmHBX39fnfUc/ku1s3DhznmyT29RonuWOYZi+++P6Sr48l3eUlccuZ1t/jaXu5HIVFWY5ZBXYujOpkKPeajLMzTnURsb1AGq4WTPUWB4bIDo2elQ2WY86DLzco10nFYKSxqiIcfT5JdnO7XyOsmhbvzw3dDco+V7XZFu1hWHqUHu5bLFcyzrnbajMvpynXPazp4d1Sb5hXPkMpU3iemijr0PyfkieQ3o5GXqpwzB95BLO7V6vbnVnG/XWlg7Atg7b7U7ctV+PPF4kWWkKep3wDTd1SUfCMEzqqYr/6lpA+5+yP+bcOAfN7zVj6f1LC10cIiIiIiIiIiJKGR+WdaGiugJjDxuLNa+u6XphIiIiIiIiIiLq0RiGGaN5TTM2rNyA2t1r8d6/30Pt7rWFLhIRERERERERFY0QQFuhC0Ep4MOyGCWlJXjgRw8gKA0wYOgATDt9Gl6f/zqe/N2T2PL+Ftz3g/sweMxgzLp0FgDg5i/cjO2bt6OttQ1vPPUGZl06CwNHDsx5u9OmmnHgm1uil/9sMfR6SHeZw0wOOd2q8q5UVER5akqq/JqDLKMtb5iVSmQSF1/f2KjL77atTimbmrMnRihRyQ22VdR0TOu8cDJvRKVtyHtLsqQSsW1bDomiyeXiSVbBwoXmvMWLo+mpU815Rk4lywkg118OVd/ywKmG8GbzoI7pvtvNrw2pz17ntmOR9tDjOseGPO9fecVcdq+9on2rSSAfnndOHCMRSHzOMpmvZefWO74mDr3OD2XkJrQMV590jkG97STo9Y0bF21P7rclBR1w113Gx23/+ZWO6VaViqmyKcrnVykuFGvW1BjLyWMzYIC5Dls+uTi55DtJnSVRTVzOSnt6z/g8OJ2uEzHbzqVdudadzOVYVhX/Hb1v8ntV6nuyTcqcQTrll6zWygrLvukvxl07bUnRlCT6sIJef1NOpJR03lRdxz7rTyM/bBKSOBS2fJDyNljn9pP3m7ls27XNOx8ny/2svLqXV8T3pfr0lfsm72n07zWyrvT9gq4vSdaXaz9eLG0uDWnkZbX1ATv7/BLGslEP1Yu7g+6pHFiJU359ivGz0QePxuiDR2dd/tTfn5qPYhERERERERERUYr4nJeIiIiIiIiIiCiDb5ZlUT2kutNbZfmiX1+1hdvI117HjzPnyfAdudy7q+PXbwsxss2zvJVtSGKoah2C5arT+uSK5Pvcy5cbi7VOOqhjWodhyrqzhWG+vSZ6OV2/Kl5uhBnGh6j1dLK6ZVgwYA6d3unVd8f34uXr+mvWmPU4bvohHdP61f01Ytt6OPYd9emGp7h8p6t5FRXROttUqgQZ7lGj+gfX7fmELXX6TkVl7LIyrEKHXMhDr49NHGuIl43cmI6TaWiIpi1helJSYVsTJ3iEkL36qvFR1nHN8n+Zy86fH01/7GMdk83NZhimrH/dzraJ0H4ZspeUQobAyW1XWvp7eWyskYT6YikXlvP0hd8ad5u9HIBf2FunEEpLyKYkzz3ZL3VZDrlxfZGNqxPH+vC1Q/VZeW2D+gDIjtEWa5YA3/CsgoZRJ8D9PInfz3JxadD1YbvOyXm2UPu4UELNSF2hvpjE8S3R92Fx56/a0RLZdtUFXaaXKC2Nfm7rS31DdW3L2ealEboo2UL5466rvuddsYY59w7MWdYb9ewrHBERERERERERUYL4sIyIiIiIiIiIiChjl3j58t5v31boIljV1exW6CIQERERERERUU5CMAyzd9olHpa9dcPJhS6C1dm/ako1J4aMax840JznOlSyrXy2PGKuw1G75lpJPXeIqgSZN0LnTSqLyVGhy/jWW/GbGybSOBR0eHrBN++Njcy5MHu2uf4jj4ymhzWY29rWGuWOaVG5Pmqqci/XoFrzO4Mm57wKq3wfQ5knaPp0s15dcwnauOZc881nI8soU4MB8f2R3pbzkPc2siA6sZ0umIO0h2a3OuEE42NNy3vRh8WLzWWrq6Np0ZHrPn333aPprVvNeTJNTUuLud/yGMqUNTofj+065HMNyamOE07YYk2npc9J15xlFrZz1DWnjayCXKrD5zrd6fpi26C86MpGmUKSHd/8P17nsy1pUKekcdn3NZfyJtJHOkoit1mx5lByPS1th1dfTmQTt6Xls9WJkdPKls/M8djndC7EXTt1/kFJ7Vyl+CzzHdbXx2/Kt59KIr+ebxu3fc/WBcjrqi2Xq+9+FsvvHkTFimGYREREREREREREGXxYRkRERERERERElFGkLztTdxnDRxvvK8eHyWj5HA68oK8By3eZJ082ZslyjRxufm2bZRhxadpU274V3ymY9rHQoZCSbcj1LVvMZauqomXlIbStv5gkXc96fbah7F3X4TpPyqXf8Aml1XzrUZaztSwK9y2btK/Xtl33O40wZ8OMGfHbPuNzsduW/dnkOsTSUaryc1OTOa9//2hah4xIRhiRkvR1KI36t7UDMySr3JhXVpc9X2khr4cytBuw179vmgVJtruy4SONeUn0Oa7rSDpUy1omdeNl1KPlREkiFN7W/n2PdbGEcSVxnbOt01ZXtvtBebhtoXNyHTqU0zlUPd8xrDKkcri4Sa5TFxEZRp1DmLnkmyrGhy3dQ9q/G+nqWb06mv7gg2hatyXX/risLD5cP4n7qV0bc5b1RmzdREREREREREREGXxYRkRERERERERElMGHZURERERERERERBnFlzBpFxQiiI33ds1DYeQoA8xkTyJXgM4N05vjzJPIY2Ij69I1n0Gx5Paw8c3pk8Z+yzQXOr9V2m23u+dkPuRze0lsS+dhKfe4AqWRcyruXE5q/a7S3rYtD4trqhudJ0V+z5amxpdPzqkklvNlyx2oxZ1TSfWlccum0W/4rlO2n3wfm3xyzQdp6wOSzq+XSzlsksh5ZJN0Pjnfbdt+3uqYs8xGLpfv1GOJHEPZ4Vs6/2Lqf3zWl+9+qr4+KsvAgX7rTPscdd127xYCPeB3PMrdrtKCiYiIiIiIiIiIusSHZURERERERERERBkMwyxyzq+v6ne2Y4ZmziXMx/U15Hy+rpxL+X32TX9nc0u0nIxsBcy3zG1hXM3N0bR+VV8eJn3I0n5V2rVtub6+7TrUtq5H2XR1mLAPPYS73l7ctisrzG0nHfrhHFJdRK9x++y3rR3oMEx5PuguzDU8y7f/cQ2vsW3LNUTK9xxyXYds87K/AeL7qaQkEWrpy6d96v5AtkndB8eFQhVTuKBPP57Ecppvf1nIMP+49fuGi9vKKM9R23lYyOt+0vXoy3YNce0j9TFMIqzRtm/y/iGJOrbVge86c9lempI459OQRIoN1+PkG05fVlacv2/ZFNM9LZEPPiwjIiIiIiIiIvLSVugCUAoYhklERERERERERJTBN8t6MOsrw2Xlqa7fRy6vkRdq9BQZdgkAq1ZF0zq8afjwaHpQbTSt92XDhhIxba5Djh6nR5LzCf1Ie6Q03zBYGYKyaZO5XJ8+0bSsx67I9cvjputYHzdJ1nll9sjlTttyLRPgPkpq3Hdy2barpNbns541a8zPMiSuocGcFxfel1SImk/5fcMkfet8Y3O0TqM+VIxRc3PU38s+CzD7qXKYJ0OJPCAyBlF1RtsQrV+HN8mvFctog7bjrssv+wdbKLCrJK5dSbXbuPXYQtNjMjjkVJaePiKivmbU1nY/TF62Ox1K5ROWlkuoomu/5RPu6CuXa6VPWXQbl+06l/q3hXZKcp1phKv5rtNnVO9c1udzH+l6v59UP5J2Gg3X5dJOt1Go+52u7DqjYVJvxRZMRERERERERESUwTfLiIiIiIiIiIhyFoI5y3onvllGRERERERERESUwTfLMlat3Yxzf/4knlm6Gn37lKJxaDV++Y2Dsd9pt2HCqFq0bGtDdWUffOUTe+P0Y8cDAK6/+2Wcf/VT2L2+P1q2teLsE/fCeZ/eFwDw6LPv4NxfPInnl6/DLT/8CD7xkTGx2w7DKBeCLUdKvvN6ua4/n3lqOg8H7ldG47NYaUuLmetN5i7RuVxcc7uMHB5tq6Ehvry+Q5unPdy7LU+Ha141uW9bt5rzVq6MpismmOWQw7HbyDLqXCUy11Npafw63l5lblumbSovK1wuJtc8FzrPzooV0XRtbTQ9TOUGS4JrX6HLKI+VnrdlSzTdr19M7q4uJH1uuPbBSeUO0TnedqopM0/KQRXR50HP3mEuvFD8pXPSJHOePHHEPJ3zslUcJ31+yXPbtT/QfK9lPjmzairMuqtplQ3P7NR3oDLrOnMpbxK5tpLIZSTzRtqOYRJ5amx5jXKZF0dfk5LI7yk/V1R0P2eWZrtfSDqXkW8dp51rLg1x93I1ur49b7DM8kd153u/lm9xx943N2pej2cO0m7XPn23rY/R65P3PzVV6eYzs+XzK2TeUaJi1UO6+3SFYYgTv/0ATj92PG750ZEAgMX/XoN3127B2N1r8OyNJwMAXlu5ESd950Hs2BHizOP2BAB88sgx+PX5M7D2/Rbsecqt+MQRYzBiSBVGDqnC9d+fiSv+9HzB9ouIiIiIiIiIiHLDMEwADy96G33KSvDFkyZ2/Gzy+DqMGGK+wjBm9xr8/NzpuOrPSzqtY/CACowbPgDvrNkMAGgcVo199xiMkpIg3cITERERERERUQHszFnW0/+RxjfLACx5dT0OnFDX9YIADtizDsve2NDp52+uakbLtjbsO25Qztvfti0Kt6lTxZCvy1ZVxT/btIVVpP66uH087Y7JXF7vlcvawkfk68O2ULlOr5y3bI4+iPJXVZnhR0OGRNPV1fHbtlqwICqj/pIMfYK57cRZj1N57GKyzp33WZHHs7nZPBavvBJNNzaa36uUIVKO8Xe6vTeIsMOS1m3GvHXN0X43NZnfk5srF9O5vO6fz/AXGXYJADfdFE3vt180/clT3NfpE5qh93PVqmh6wgTze4sXZ58GgE2boum99opfhy2ELInwpiRC4HzJ8Fm5n9vKKo3lypv+3TH93mmnGfN2q6+PPixbZsx7cll0vbrlu9HPP/UpsxyHTI/2s9KzD5DSCEd0puN9ZQOVFQ4ADWY9+/Bpg7p+XPsOW2iVvD7W1rrXv2/oZRLzJHld8g3DtNa/uNBVdrpW5hD7neO2ADjfsPn2RT7nW2JpPjZsiKbF+eUbBmglj5u+IMobgVxi+YU00jHE1XMhwx2TODa+7dG33dn6B3nN8kmrkAZdRjMMM/57vtcQuT15bwX4pVJI416LqFjxYVmOwtD8fOtDr+HhRe/g5Tc34H8vOAwVfVmlREREREREREQ9FcMwAew9ZiAWLYvJpKw8++812KuxtuPzJ48cgxdvOQWPXXs8vnnVAqxauzn+y0REREREREREVNT4sAzAEVOGYev2NvzvnUs7fvbMS+/hjVXmu6pNb2/Ct65agK+dMkmvAgfvMwRzjtkDv7qlcz4zIiIiIiIiIuqNdvSCf6QxZhBAEAS446cfxbm/mI/L/7gYFeVlaBxahV+edwheXbkR+8+5DS3b2lBd2QdfO2VSx0iY2nc+ux8O+Ozt+N4Zk7HsjQ048dsPYv2mrbjrsTdw8f8uwou3dJ0sSMexy3QPOpWFLX+U61Dwku9w4zvK/HJtuZbLljPLlo/Nmn9AVqxYqc5JUV+fwPNkmWTJMx9JIhy3rXOKyVwKOqVPuWvqD3EQJ1asMmZNPFiUq6rBmAeV2iXOli3RtDy0ADByuKhXla9okDj2U6aoPFAJ5CextUF5rpeVdT/fw/Dh5meZ/23ECK9VGnzzmLz1VjQ9rM7MGTduXNR3rFEv9/brF03bUvq45myySTtXie8x1efbTjrtVnPd+I7p3WSyOgA47riOyZvvrjFmyRyZclr3szJvpOZzrSlkrpgdtSqvqPis+45mkfZI5vmypTwq5L5pSeRLKxZmXh2/88ma+01uQCew1IkS5fcc75MMurMTJ9yOut2MWa45Q13zmbn2kbb16f7AmhfXdgMh6TxukqwfW/llBenKsuVsFXzvg/N6fqWQ865Yz3sfugqS2Lek6073YQ0NyeZx0+WV95gDB8Z/j7nHiDrjw7KMYfX98ecfH9np51se/Xzsd86YvSfOmB09OBtW3x+r/j4HADB14m5Ycfdnki8oERERERERERGlpvf8KYGIiIiIiIiIiKib+GZZEago3xGFJ6n3h0c2GLFa8euocHt1PJfXauX39BvscUUpad2WfYbtS12oqfJ7Fdj6+rwsS0xIJgCUWOIe4l6N7vQavy30QIYoqG1tQxSi5ll1zuEXcp4u7qDaBF7FlvumY8hWRWGZO4aPNGaVVMXvuAwFqa6Ofj5koGqDazbEb1vsbHmtWf9x540tzMr3dX/f193l92pg7ttZLddHH+4TYT/TL4ldXxpDxk+bKj7Me9yYVyOOx0d1HKn8LGIE0wgXsQ07bwt9SprrvukwQBk1dneb+UZz7bxoesoU83uyio/s/GJ1B3na2Oqn1RKe5RpClsvx9bm26eVkP6Kj7155JZreY49oWkfl5bON2PjWgY1rHSeR7sFXIqFDsrHKmGRAx8z7rV/SDUaEZZao9VfKk10UQ6e/kO04lyL61J2+jNrCksvENd24jjZvNBdcIvL96h2YPLljshXmfsemMNAdlSy0LrDYnm8b9w3RdG5a8j51xQpzntwffR1NoL26tpGk+wrXMgHJp57x5Xstk9K4j5Tz5DmTSzkKWa89QwigrdCFoBTwzTIiIiIiIiIiIqIMPiwjIiIiIiIiIiLKYBhmMQjDjnexN7ear5hXIv4dbddXdZMYocx59Klc3s935Lqfy5aZnwcPjqZlmB4AVMgRp8S072v2rvM61XFVNDqdbTAoG+8RQQXX/XYcUAqApc1MmhT7OZfXtWVZNm2KpivrVYXEDfmn2Opqc0t8iIv8nMsgVfJzIqMN6hHWLr44mm6LXg3fcckPjMXSCN2K9bgZhokGMfqpbSjgGTOicqQwoqxcpa2N6+MbF37nWw7ncHe1/jGN2ae7Ets3qYLUiHBofZ7IOhER1QCAAQOiaVuoom8IU9y8XMJAZD8lR7wEzNBLeSnTo2YOa0g+dMuVT4hUEtvS8hkCmkSYkvWarUakTDyMSJ/Y8nxbuNCct3p1ND1VxLSPG28sZuu3kogclfXlHXYs7w9l2CUA3HdfNC2HcgbMMEzHPrLTvafML2GpkLTDhDXnYyPrTl/rZaXoexzHe/Akzi8pl3Ukke4hqbL4SKKN2FJBVFZkPzb6OjSoNn791t9DYuonifQgtvUT9RR8WEZERERERERE5IU5y3ojPu4lIiIiIiIiIiLK4MMyIiIiIiIiIiKiDIZhFoMg6EhcsGm9OauivrIABWpny2EQm99G5UfY2FIeNyvxHCfLl5tlfOihaPqTnzSXjcsB4CuJ2P5KlQdElkumq9D5DGS9JpGbRJM5ifS2bcOel1XlPiR9LuQx1HXnQ5dR5hGTOdF0/ju53765XGz56mqqHOtO53lZuzbrYgUdxvvCC+Pn6cYlE2DZGpqgc7+55lq0nYdSRUW6Q6LbqkCm3Kmq8iuHc19nS85WVh47a/hw82tJ90dJ5+nU69TpfmSdD6qNv2bYchoabVAdYFv+vXyynV62eWn3JUnnUYpbd3f45IwrkQ0LMCtW532NucDobcl+K428W3FFyvY5dtuyX1mvbnaHDImmJ0ww54lGWFFh9j9xbaTEkp/Uxjffkm8du7YfozMaN86cJ24CZR5cLa/5SXPgkzMrjTxYzsfCcR2aPXdm9mkA5nlT4fY7oW+OZV/Ovy8S9UDFcadGRERERERERNSjhGDOst6JYZhEREREREREREQZfLOsGLS0ACtWAACG6FAqwfbqrB5CuKwsWtZx5Ggr62u0lhiymqqUm5h4Pf/4TX8xZv2t8TMd0zoibUh9NJ3vV71dtyWrVUZm6FA/5xAIx23r79jWb0RnFUlv4nvMdAicDJ+S7cWXrVzyHPUNIbNFzhVr+IVBNyAd0+dA10FZlUcIjW4ItobtGB5qI4+hDC0GgGXLonny0qAvE7K/z+UYyvqS60CFGcrjumu2MOQ0Q+qSYgt5lmXW11v5uX9/c159vdjXsvgQsjTE1bMtnD6XUHsZluwahuMbopPP9pPLcUniGMrQuZJJk8yZy5ZF044nYtohZJ3CxFzJE2XoUHPe1q3RdEODOc+y30mEziXdj6dyXsubhFxuAgVbGZMofyLnQpFcG3zDKRM59roTXrMmWr84N2przeuJTbH8nkPUE/EMISIiIiIiIiIiyiiSd0GIiIiIiIiIiHoa5izrjXaJh2Uzzr630EWw6ls+oNBFICIiIiIiIiIi7CIPyx5/9q1CF8Hq7LPOipLQWBIP2WLON2wwI2pl3pQkcpZZ8/gUMnGV3N4ppxizji+Lz3HimstFrt6W48HI99C6LXYlertye3ok9TbxB4rS0mhap6tIIkeCdUhrRPvTKVeJZd+kba3RPFsdyzxhep1p5AGRp9umTeY8I9eQ4JtTzHU9ueT0kXW5fLk5r64umm5o8KvHpOs/l9wYccemXz9zOZlnSuecct2esVyZex6QtPs7mbbN1o/75qSTecpkfYsUKQDMtpRGOVyl0Qe4rlPWj75My+vtwIF+65dyOU9cc3nZck7Jz0nkG8slp49PH5NL/p2C5mEUnHOu6RNsypSUStSZa73mVKfyZJH7pm8EZJ4yXQc+/azlXrpT/Tv2+a7H0DcHlLWOdX0lsL0kJH2P4Jtbyyc/r285kmDtpxzzt/r2szZm+r5kck8yJxr1dGzBREREREREREREGbvEm2VERERERERERMkKgSJ5k5mSxYdlRWZHRWXsPNtrrjJMBgC2bImmExgVu/MX5UrjXrPvBhm2ZyuG9dVlC/k9uS3Lm/udXklOohxye2vXxs/bfffsZcqF8+vnOoy0uTma1vsmjrclSsAa4lVbG00PqkWsJEKAtIqKaJ1yVHsAWLUqmpZhsHHhmUnJ5XV2eWhkefVnWceVObSffIYw6fpfsSKanjcvmp40yVxuxoyoTnQYb9KhGWmwlTEuMsnWxeQSqiLbjzwvdT8o209X63ThW9++xzOJdizrRPd1sn5k2Ho7t1B1WcYkQhWt9A7Iz573IMUqru5824hrmGoudeUcoumxvlzYti3bv7xudrk9ecMiTxR9r2ibZxG7bd8bJcf1J5WOQdarmZJCLWjp9PPZBxdS2mGevpLon5MIMXVlu1e3pZ6RfOcR9UQ9r7ckIiIiIiIiIiJKCR+WERERERERERERZTAMk4iIiIiIiIgoZyGAtkIXglLAh2VFRuaQAczY8tra+BcBbSkeZO4indusssKSw0PmrtJB7jqpjQ9LMjVZD9u3R9MDB5qr6JTXoZts9WjLI+Oas0DPqxHbmzDBrH+Zw8k715xl27E5EvTGbAmLBN12ZROxjQqfRI4H53WodlwiCllbW2PMkzmcbDkejPXlkG/MtfxyOV0O2UYGDDDnvf9+NO2a4yrtYdttbVCe54BZZtm2bLnlRtapfkmuRFVCEjlbkmiDBlXGQbXZ+2e9CplP0ZZ3UX9xUG20PXl90etwbf++CpmLzJVsn7p+5OfKWvMYypyYuh5d0yr5nl+xEs5/lIu0cyW59mFJ5Zxy/Y4tJ50r19xmvueJbbkNG6J16vtIW5CKkcNPtjvbyeB5w+Ocl9Xz2Cdx3LLN7a70y5j893qTnlAHsoyu+ZcLeb0lKiYMwyQiIiIiIiIiIsrgwzIiIiIiIiIiIqIMhmEWmZoq8zXXt1f5hT7VVESvuG9Aecd0U5O53MQJlvXJ2CcdYydjoSZMgBdzLHJjlgwP2tic7lDq5WXJvlqcy6vLxuvzMuwVQG1tdNxkxELnkKhoHTp6Iekh6bUdlm3HhRj5hvp1Dj3L/r2cXhUXK9HllaGjSUQdJ/EKu60Opk2ND3E0h6cvnr+RyDoZUm/Oq6+PyvmpT0U/l2GXALBsWTQ9cobagEe4WdrnCcrKjXklLZujD5bQJHkMN20yF5Ph6dbQPsfwJr0OuW1bCKgWV8e+fYCrNMJFqquj6Q8+MOfJkO3t283y9+kTTduOjW+Ys0/oWafvqDbpWo4kwr/i1peLQm47iW25pm6I69MBs0/Q6SrkOepbV2+9FU3b+ofSUnNefX3Utoxt65VY0nKk3c5cQ8+s5bDfpEXUfstUKGmzlT+f57J3yoIc6jVNaffVvc2utd/MWdYb7UotmIiIiIiIiIiIyIoPy4iIiIiIiIiIiDIYhlnkhjU4vq6swyTFa+wtLdFr8DJkCTBHQJNhZwBQIoct1EMYyuGQLKE9ciQwrVyu0/K6dU1VcTZT1zAu2+vtxmc1zF+JeK28rKombjGDPkw+o4Xm8oq5PGy6CcZ9L5dXsuX6168357WJt511242l26ql7cbN0vUv6zzp0Vk1HWkwfHj8srLOKyqKM8TIRn5vTGP087o6c/0PPRRNP7m40pg3aVI07ToKaxKj5OmfWyKMzJk6tkosXFkhpy3r0JEqttBL8b0SuQ7V0Fzbj6472f/LYuQyYrCrpMOINBkupdvg0qXR9JIl5vdkVY4bZ87Tn30UcoQy137ddyTIfIbvJNHukljOFh4nuwcdjr5iRTQ9ebI5zxxo0q9/HjEimrZl5dCDZ8tuxbg+5nAtzmcbdx41XLON9GnZt6TbeNLtMZf1JDHiqyGHNuLa/9hHlY4vStKj2WpptwNb+eWyrqNue58nvVoIhmH2TmzdREREREREREREGXxYRkRERERERERElMGHZURERERERERERBnFmQyKnBgx4iKnFQCUtGzumJb5nOQQ9wCwYEE0PX26OW9YlUiQoZMlOQ7TLPNq6Ph3mS9tUK1qijIJhkw2ZEsqkGe+OUhiyTxwlnXIesuFa46BXPIxyNwlum3J3CWu+YR0mWSOlqYmc9kPPoim5XD1Q+pjV9+ZzNmk2pbMt2Qbsdy5Sep8VB5DnetVJDHsvG8+uUKpqTL3ec2aqMw6J6Ok8/jIvxXZDoXsS3VDKDGTAXVM6uMkP+ucPsZJpBu5TLomG9rDD5vL1YtGrxPZ2fJLyn5WJj1qbDQWK+lU6Ox0+5F9gpkCM5m8doVqr7oNjhgRlWPrVnNZeXht/UhJ67b4mQW87vnk2Ukqx1Q++6ZccnWmuW3btmR3o/N0WlIOGuehc35PRXYBup+V/ZvO6Wl2P8nnFYw7bpb0j4mcTtbcnB7X9k7ryGHbSa/D93tJnKNJ5PWyrUO2i02bzHn9+sWvs6Yqfp7ke2xsfd3G5uizzr0at44kzi99Dkm2a3hSeWt7JuYs642K/zcjIiIiIiIiIiKiPOHDMiIiIiIiIiIiooziiWmjZInXwGvEK7AtLfFhbvPmmas44YQotLMSKkTEMbaktnZQx/SWLeY8GRpQUWGWq9Ix7EfK5RXwuFeGbaGKrq8Sp/3KcS5ltNVJ3GErz6FXkIdJHzKfetDfka96Dx1qLisj1tp833wW8Ri6rmSoxqBat3AgaxusqDQ+GmFX8nzyaPtdyedQ5/l+5X6//aJp3YfJ8FwZEg6YfZ+MXOwU5iBjjt55x5w3dWo0bQmjloe0U/3IuChLjJQMCy4/9FBj3kZEfbWOACpvFWGkOv5Ifra1O1lZtnVYviaPha5j3z6sWAxrkGU2y/vQQ9G07nMnjhN9gLwg6vgXFRabT7ZjE3euFzIMx7W9JNWufO4lXNdho0PIYiLCAdhDt1zvcWTIv76PlN2W7n98Qh7TOOdlOTrtpzwxUw55tp0b+Qw1TiLc0SaXcz5ue2m3Ax12aTtPkmCtf3EP2FJmptV5/PFo+phjoumk0hfErUeHnrq2n10r7JJ2BXxYRkRERERERESUsxDgg8Jeqfj/ZEtERERERERERJQnfFhGRERERERERESUwTDMHkymOXKNtT9ipvmK6GtN0fPS1avNZY3UDTKfip65fHk0rZKy1EyaFH3oN8iYJ/NMJZEmQsfJr9sQ7ZtvGiif2Pt852vxHY465dQciZDNSafxicu55psTpKB5Fiw5y2S5Kv1GpE8k90ex5o6aNjWqn7Y2s4wyz53uI3VunZ10O6uU+aJ0RxKzEpnfR/Ntg7ILrq01c5osWRxNy/xr7Z+jXHmd1i87AfnFHDoH2/7kM9VWEkPXJ9E/mPnLgCOPjNYpT3MAZj3LhtdpQUF3fJacocb6U+jw43LYJNWX+uRFTCqPT9J8c1PFfW9IvV9+Ut2/xfWDtvXJ2zpN97Nx5U/qPinuezoPrtRp25ZzI4mcYq55TtPOI1askr73srUteajj2n53JNFeKpvfMz6Xle3WMS3P5VzyC0tptDOf/M5EPUUP+HWZiIiIiIiIiKgY+Y42RsWs9/6pgoiIiIiIiIiIKEd8s6wHmzcvmpbDCQPur+eOadwhpuOX29EwzPgsQzbfrYpeEdZhNzVNz0fT48x3nmsaEn4HWsUXDKqtiJ1nhqeUO60+jVfwpVReXZb7XVFpzPIJ483FttZov20js5eXxe93XJQYYJa5tDSaXrHCXG748Ozl0FzPmaTCfHbIdjd8ZKrbToLrq/tJDBmf63p2OmS6+Z2NzdH6//53c1kZoinpSMvGxih8vKzBDCWX7bPcsby+9bNkSfTz/fYzl5Nlbmoy58nzZFCtOQ8bNmRfie4QZD+iT2DH/jMNXiEvljDGTuFYcR1GDvE7MixTl1H2keWy/m3lWLXKnCcPuK0jFx1oSV2dMcv3/E0ixN1120n0u74pC+LWp7+XRv8cVxbf+xHdfOQ9m+s6dVYOeTroU0NeV233AZKuR58wRts6cll/3DFNKpQt7RBEH7nUXdLbtpUjaa7dffuyCYcZ6o3Jk0pelwFMmBD9jiXv2ztdzwVrmLMO8/f4BaA3hwUTaWztREREREREREREGXyzjIiIiIiIiIgoZyGYs6x34ptlREREREREREREGXyzrAebPDmaTmFUeIMKocdtt0XTmzZF0zNnmstN+0DE4eukU7a8LzKeX25c76iMtbfkotHbio231+vwqFhb3gPbsO3Ow0DrlcjPOveAyGdTouq/ubkm9ms+9H4vXx5NyzxiEyaYy8mcYrZcELq5NDRE0/fdF03feae53IUXRtO2VA0jVfPMJ1v+ODPPS/K5UJIY6lxKOg9Zd9RURdvr188sl+xW5LRsV3qebuPylGpsFPmndB4+eY7q81fkqtJ1J9uFTGnSpv54Kc8pnZPIml5LNjZbXyfzYql8VzL/VRp5TJJox0bOHd0JyM/6AMuOS+YUmzTJqUxdkZtuaYny4Q1rsHQC+mL81lvRdH29OW/79uzrUMfQV9zxziXnkVeeMttFVs0rySG/XBzfnG5x67DNc70FySV31KDaaNna2u6fozo3rWuduN5OWfMtJcD3GpVEvi7XfcmljGlft4uRbxuxXSdc8+jp78V1R3p9Rhn1l+TFQF2jRk5OOEeaTmzqcT2z9VM9rS0RdYUtmoiIiIiIiIiIKINvlhERERERERER5Yw5y3orPiwrNpY4PTnMPGCPREiajmSQr+HLN3qHDlVfrJocTdvecdb7LWP4ZFyUjlGT69SF9IlNzeE7ca99t7bGv9otw8IyC8sl3Tacy4GXr3Or8J3SvjXIyj5+duyiOrpJhue6yuX1bblt2Xx08efPj6a3bjXnTZnitu0kwkBsoRMJRAp14vMqvO+Q8UmHcuaybVfHzzbX8e7qaP3z5kU/18eib99oWrdxeToYp4buz2QMpSbC+2yR5LZITklH2NnCI0osIaDGcrJS0o759+Tc7vQ1xLZvaZyYQlzkTW1tubFcZYUol45jlxdjXV5biL6QzzA327LWcsiTQZ8o8vySobOA2clb2m7aoUPudexWDt8wPVsqAimBjBSdtp2EfIdoxq0/l/3yKWO+Uxa4ymeIne89mW9IrPwdS58nFRXxodLy1lreL+ioeKOvs11rPPsp5zajdy6GjviXxdLzZJYCbeeuhaHTZmkXEATBZwGcB2ACgI0A7gJwQRiGq3NYxzQAPwIwDe1PKp8E8N0wDBer5Q4AcCqAIwCMzvx4OYA/APjfMAy3owsMwyQiIiIiIiIiolQEQXAegBsAvA/gHADXAvgUgHlBEPR3XMd0AI+g/eHXRQAuBrAHgMeCINhHLf5tAGcA+BeA7wH4PoC1AH4D4O4gCIKutlecfyImIiIiIiIiIqIeLQiCOgCXAXgGwEfCMGzL/PwZAH9D+8OzHzus6ioA2wAcFobhysw6/gxgKYArAXxULHs1gDPCMJQxGb8OguAmAJ8BcCyAu20b26UelpWWlmKffaIHjnfeeSca1bA+CxYswDnnnIOtW7di69at+OQnP4lRo0bhV7/6FQDgpZdewp577onS0lIcc8wxuPzyy/GLX/wCF1xwAd59910MGDAAADBv3jx8/OMfx5gxY7BlyxbMnj0bp59+OubMmQMAePPNNzFgwAAMGDAAa1aLtw4tYR8yMhEwozHSfmVbvxUsR72UkR6dXsVdIV731cPMmcP8xW/QdcS2BEIsfF8xt4XUWY+NLLPt1WhZB7bQIFs9qnfH+8QMJFpWZoYASbYBfGyhYbL4CQ3EZuyajLTR65evxa9da86T7TWpsBNXsl3YRrmUIysmMUJWLn1FEv2KrFc94qtsMylHvHUypD7at4MPjg+/kKNLDh5szosL/y23xWmoHd3YHN93xI3E6dkNduIVuug6srCFPdI7+VHO1AZiP3cKwRLXrCTCX1arAAN5fOXIqrodWMN3bEMZO55UviHPPiP7eYdxxcY8w35RiTm+trLr9mnrg5PoI+U6fa87tlGT5Tw9Wq68BZb92ZYt5nI6pEzyHe3Uh+91Lu1y2MqUdEqB7pQl6fW78uk/09gv133RYYbyvkCfG/36RdPO97f6RNe/Hwlx7cfWzqws1wzZV+iIdnm//M475jyZ7mT//c15O/sV2+8IvQdzlnXhBACVAK7e+aAMAMIwvCsIgtcAnIYuHpYFQTAOwFQA1+18UJZZx8ogCP4C4MwgCBrCMFyV+fkTMau6Fe0PyyaBD8si/fr1w+LFi63LnH766fjzn/+M/fbbD21tbXj55ZcxceJEnHnmmQCAxsZGPPzww6gTPeLcuXMxdepU3HHHHTjjjDM6fn7ooYfi7rvvxpYtW7D//vvjxBNP7Nj+GWecgdmzZ+MTn/gEzj7rrKR3lYiIiIiIiIio0KZm/p+fZd4CAJ8OgqAqDENbYr2u1vE5AAcCuKeLsuz8E+W7XSzHnGXae++9h6GZLPWlpaWYOHGidflXX30Vzc3NuOyyyzB37tysy/Tr1w+TJ0/GypUrs84nIiIiIiIiIiqQuiAIFop/Sb7RMyzzf7YHIisBBGIZ33UAwO62FQRBUAXgfLTnTftrF9vbtd4s27JlCyZPngwAGD16NO64445Oy5x33nnYc889MXPmTBxzzDE4/fTTUWEJZZg7dy4+/elP49BDD8XLL7+M9957D7vttpuxzPr16/HKK6/gsMMOS3R/iIiIiIiIiIi6aU0YhlNsCwRBUAvg3BzWeVUYhuvQHoIJAFuzLLMzULcyyzypW+sIgqAUwE1oHxzg1Ey5rHaph2UuYZgXXXQRPvOZz+CBBx7AzTffjLlz52LevHmxy99yyy244447UFJSgpNOOgl/+ctf8JWvfAUA8Nhjj2HffffFyy+/jO9+97tosMSkx5Ex6DqGPgmuMe4yZ0f752i60pIWZVvDyI5pHa9eU7Y5+qDj92MSuORz2GogmZwJzrkabPnGZOWp5XZYcoyVyNwEKk/BdjFYrsxTsH69uY42EYI/rMGsj9raaN/08Y3Lt2TL6eZ7fGVzkdN627qMcp7OVWWmyovPOZJELiPXPBRp5A5JOx+JLQdPZUW6uRZd6TYjTZzg1gcY9ahzgshKUElNbKmY4k57vVzaOWtsiVh8tp1UXrW488ae/tG9PuKuv9vVQONDLPmcpA8+iJ/XKd9nEhwr2rf9JJ1Pzto3yc5aJxWTny0ns628thyS+cw5lcY9jr6mu2jzTL2TxPUljTp2PYau5c/3vWjakq7zXOrH99jE8V2HLZempPvx6upo2pZC0lqOqpqOyZJxbivJaT8t9yBxORP1vbr89VnfEuy1VzQdl1+7pHedMlmE2IVyltWifQRKVzcBWAdg5y/+fQGo7H/Y2eI2w06uQ7OuIwiCEgDXAfg4gP8KwzB7SKDS65tuV84880xMnjwZs2bN6vjZ2LFj8aUvfQn/+Mc/8Nxzz2Gtzgqe8fzzz+OVV17BUUcdhcbGRtxyyy1GKOahhx6K559/Hi+88AL+53/+p8sHdURERERERERExSYMw6YwDIMc/u18hPp25v9sYZK7o/2J49tZ5kldrQPIEqIZBEEA4PcAPgvg0jAMXUbdBMCHZfjDH/6AxYsX49577wUA3HPPPQjDEADwyiuvoLS0FLUxf/KdO3cuLrnkEjQ1NaGpqQlvv/02Vq5ciTfeeMNYbvz48bjgggvw05/+NNV9ISIiIiIiIiIqIs9k/j84y7xpAF7uIrl/V+uYjvYHbovkD8WDsjMBXBaG4SWuBQZ2sTBMFzfeeCPOO+88VFZWoqysDH/6059QWlqaddlbbrkFf//7342fnXjiibjlllswbdo04+df/OIXccUVV+D111/H6NGjjXkhgthXg+Uw35MmeewQzFdsbWForq8P52LBgmh6yRJz3owZUUjxztd0dyqv6n7T9BnWPpdX0X1CJ3T9V1TIbVvY3g+3hGF2eo9akK+Oy9W//75avTgUm1vih6TXRYwLw7TJJcTRx5o15mc5NLY+NuPGRdONjd0vk+/3ZN2V53BapN3+XYczN9ZpiXX1CbezLZcL3+/JNmOcyy3qDXDZkatw/GXLomnZ5gBg0ya5/mg65pKUldy3ba1m3clzu1jCy5LoA2wR7b7k38x8w3z0NbCpKZred1LKobQprq87LBkGzP7OFofsyNbXJR2mlwbb+WQ7l+vr3cLkLVkbnMtVrJK+hiR1rxL3Pd86TeP66Lo9uX7fe4mky5RLWWwpO+R5ojPqDB7c9fr0OjTXEHEb53pUJ3fcuaFDLeV98NKl5jwZmppJDd5h523fjuLvJih9fwVwFYCvBkFwcxiGbQAQBMFxAMYC+L5cOAiCOgB1AN4Jw/B9AAjDcHkQBAsBnBIEwffDMHw7s+wwAKcA+GcYhqvEOgIA/4v2UTJ/HIahsQ0Xu9TDsmZbIpOMW265xTq/Sdzdvv76653m//znP++YnjlzZsd0v379jNEwr7/++i7LQkRERERERETFjE8EbcIwXB0EwfcBXAHgoSAI5qI9dPKbAJYB+KX6ylfRnhvtTADXi5+fA+BhAI8FQXB15mdfQ/t7J99U6/hvAJ8H8ByApUEQnKbmvxqG4XxbuXeph2VERERERERERJQ/YRheGQTBWgDnof0ts40A/gzguw4hmDvX8WQQBDMBXJb5FwJ4EsApYRg+pxbfObLnfgBuzLK6GwDwYRkRERERERERERVGGIbXw3xTLG65SwBcEjNvPoCPOKxjZi5ly4YPy4qcjo33IePm77vPnCdzpnzhC+a8mqruv04qyy/zQwHm8MI6Nn5YAvtt7HgSSWsSoIth5qOylNGSQMSaz2D48I5Jna+oRTy/lwO1yjxzgHkMZ8ww5w0YEE3roeZlmibf6vfJeWSj25msfz3ctSz/mMb4cph5q/zKZTuGRt4enQRDfpZJ4gDnzsM135hvHhAzp4linKPxufdcj32+8wlVVmRf/2ZUmsvJZB+qkdhyUQ4cGE1PmRJNy3yDgHu+Jdt5mESumyTyztm4lsO2n/oUktkZ9Pnrej7b9mf16uzbAlR/JDoS3X5kHzOoVm3A4zqXdj6hXL5jq+Mk8jn55srr7nJJidueLWeWbZ9ln1KscunHfY5HGrlR850vM2lJ5O5Nm+81xHXfasRt9oQJ8fd5MpcoYF6Pfe8BbXyPTez6qmpi59luKeU98h57mPNk/cTdZ5cUT6pMopwUxxMEIiIiIiIiIqIeJQTQ1uVS1PPwOS8REREREREREVEG3ywrMkm90ry5JXoO+tBD0c91GMi4cdF0GpGK48dF+7NihflsVr7uO2+e+b1Jk6JlZRlzesVZ7JDttf4khuiW69DhjtKaNeZnuT+Dat0OQFKhZtu3R9PytWkZMabniahOAOZr2nrf5Pdk29JhUOWOoWG+oWCyzesyyrLo/ZbtTtJDist16vqRXMNmOu2nJU5sXUsUrlVWZYZu1aQcHuEVuqLDiUVlLllmhmHK8ETbkO6y/vUxLBQdct7cPKZjukH1YbZwdElWne6rk7huuEbz5dKXuoaG2dbvs6zuYyTdB7zzTjQ9YoQ5Ly6S2RaKrY+9THVQWmrO22svsc6K6PytVPVYKduMLRTbEue/wxLmnHS4exLXVE3WcWUO9wFxZdHbMlMixJc/36HeSbOd23Jf5D0kkE54mUs5upJEqK5P+0/quPe0MGHXVA22cvj2MWmH78v1625W3uvq8ESZgiSJ1DlJ9MG+65TpR2QKga7I/e7b15y3875Y/5yop+CbZURERERERERERBl8s4yIiIiIiIiIyAtzlvVGfLOMiIiIiIiIiIgog2+WFTlbnLkRh68C7K+/PspPIoc51sP9HnNMNJ1GzjLpiJlm3oB3V0f7tnKluazMzyNzlegyupbZlkvHN19LXB4Ene9ErlOnbJKHTec68zoeOqGTLJdKOlJfXyKmo5/H5eoCOuctkTl49DyZw8CWb8kmifwbsly2bevyl2Nb9KE5qteWVnPYbZlzSue5aGx0y+Fhze8hhvnWuTJk/iXbcfNly0Hieg4ZuYag2qeo9CFD4suxbFk0rY+hrJNiyVmmc0PKMuryT58eTeu+Q/YJOtdW7AZ0JyM2qLuHuPwk+jpRW5vs0PVa0uu05VcaOXyH+hy/rGtONJmXTLZVwMxD97GPmfPkoXK9DpXYLoK6YJZjL1VUFMffTW3twDVPmWsuMl1V8rjJnKm5bm8n3zad7+/Flb+yIr4vktc8AJg4Lj5vXtL1Y1uPb15E12uzTw5G2/qKSRLlSnvfUl9/y+aOaX2/PEzczzY0xPcxSdB9tcyDOd5yn5dE7kmZd1fn4J061W0d+jhtbG4vSxtfuqIeqjjukIiIiIiIiIiIiIoA3ywjIiIiIiIiIspZCOYs6534sKwIBAg7XlvVr87K0JjqavN7MnSi5L77jHm1tcd3TMtQDxl2CdiHSE/bkOrolechE9RM8Sr/5tYopFS//j94cDQ9cKBeRbLDWFtfAZdhUDoGqKKyY1JHSC1eHE3X1przZBijfC1br94IT/Ec312+Rq5XIefJcCPADOPSQ2bLaAwZlqZfWS9PoBeyDfkty6HD9Frjo0cAuR4xs0ItJ8Mf9TqSDm0YVGG+n187rjLrcoD7MO5JlMvVDnEuaLZX9CdNspSjVYTL5nBJS7N+Dpgcv763V7m/0P3QQ9G0DBM74QRzuTGNtbHrkPupQ6vq6qJ5OsRXstaP5STKZ1hOEsfTdi2Qu/nss+a8p56KpnVbtYXZxtFhOHLbNeoaIu0oKzc+x/XraRwX37CfJMj9cQ2vtIXS6uuEvm67sIX65RIGGLdOGTIGwDz3dAOy5CKI27YuowwDv+suc9nhX4raXU2Vub5ChR3a6tg3JUIS95G5rDNNvm0wqe0lvm1bvhZJnvi2eEd9Iyw6gRIZWw+gTPS78ne2tWvNVch7fH2/HFdEXSxbGKZkux/salmX71jXofJQ1GSOR2lQnCHIRF1hGCYREREREREREVEGH5YRERERERERERFlBGEYFroMToIgCH3KGgQBin0fzz7rLFz7298CANZtMJ9fyjeBL7nE/N5ll0XT5aveNGfKeMUZM6LphIa8dB0lzHm0yg3rzB/IHRfTcgRNrU8f87PrCIz2UcJEGVMIc3utKVpH//7mPB1WupMtlCeJV+tzeV1btlf5qjhg1rl85VyHm/qGNsSFtfi2QRu5Tr1+HdoWSzU0W0iiJPdTj5gq63xMY37DMOO2ZeMbGmDsixF2CTN+UDUuGZaWRruQfEKpuvreU89Ey8qQDt1nfehD0bQc2bYrcW3Lt25868BnHb58w6V8+wCf87CQ9eMriTDMXPoHn3U4jziaQDls60xi1O1Ow+PKGx49HK+8kfGJKUV+rye2bWtJhGKnHcKdBNf7pET6GH2NlZK+cFpYr5W2ISht8+TFU19I5Wed80XexKo4bTliuU3SodhJ8e0XY8UM3T3lox/FwsWLg5wK14MEwdAQOL3QxUjATxeFYTil0KUoJnyzjIiIiIiIiIiIKIMPy4iIiIiIiIiIiDI4GiYRERERERERUc5CAJZh3anH4sOyIjOoNj5XxuWXx39vW8NI43PZ8OhzGrHwcph1mcJADtMOANOnR9PWVBk6kVWMIfXJ5BKRdVIp0nnY1pdGrgCZZ8p1/bmUwyeXhS3dQ7nqMeRhczyEieQos83TZbRxrUuZJ66szK8dbCszc5StWRVNyzpXo5Ib7VOnC1GpMwxJ5JXJZ54a535K5CEDANTtFrusTEFy333mvMmTo2mZL9CW80umRwPc27yUSz1Oneq2nExRpNMVybal+2B5rpRD5qkxG1ra+Xh8t5XP3Eny3NPnYT7rx0p33vKzzFuVgjSORRL5qCTfdfhes1y37XPfUaIuFMb6PY+1dzuW7SzlnFau9wG+bLmkfO9PiqZ/cKSvsWnnvnUl82qW29pZWfz1yzg3dH8pL56TJsWvU11IXduI7zy5ftu2ZPFrqtzbYxK/exjHVN/E7pTHfHdESepZPTgREREREREREVGK+LCMiIiIiIiIiIgog+9EFhnfEJTvftf83mWXRdMVFW6v/+tRlGVIpX6rf9y4aFqGqI0c3lWp3aT92rpcv2sEQRqv+Eu2N8Jl/ScVTRMXFiKPZ6eC6RBNHRIn6Pa0U2WZJc7Tsr4k2oQ+hkm8Pu9K12tDQ+4hQbpOX3ghmp46tfshybZ5tvCUNEK9XZeV54kOM5Tnsw5PlJECep4k921QrVORrHIZMn716mi6ujqa1n2ALcTdud9KIJTKdd9yCUNz3Z7rfubSj/uUK4nrhHeYoe4/xWdjnfpik8DxzmdIbBr3B0nvi2+Yp+++mf2gex8TJ+76DQCVG1aZP7CF+8rOKYGbl1z6Tx+2vimfoZZpt5+e2A/mkmLDie73ZF4FWz4SiyTOZSvjOm3297mEXnZXPvv7noM5y3orvllGRERERERERESUwYdlREREREREREREGXxYRkRERERERERElMGcZUVG54mQ4ek6L42MQf/Od8x5GzZE0w0NbtvetMn8PHlyNJ3v+HRZ/u3bo+mBA83lOuXXElxzTTQ1RcvpEY9lCgPb+m1s25Z5RhYvNufJY7/33tG0TvuR+rGx5G4oETkfdH3EpSfZgfhhydPOC5dEvpOk6ttnPbpO99knmm5qMuf17x9N19d3b7uFIMv59qrouOl+UH625Tg57bT4diFzfdiGVU+j7mzr79cvmpbHvmTV2+ZKREe1o6LSef3Gvqrvxcklb49r3SWR5yXt47RKpGl66y1znjy/xjSqL9qSPyWVgDKG7LrluaBzm/nmYvLJVZjv/sdne75t0Dd3o+s1UH5Pr2PLlmjalsPQVWWFWY6NzWJ7+qZS3sjo9u6YDy/x896Sly+X+4A0ciGmSd4768/y/lbntXOlq9V2Dx7H+z5Mti2daNTSl5b4nBCeeRyN7SaU485o46JcSeX+jFMsbbpnYc6y3ohvlhEREREREREREWXwYRkREREREREREVEGwzCLQIig4/VZ/Yrz8uXRtAyL1GQYCOAe1iLfaratw/pqfQKvK2uDaqNtb26Jyt9pU8YwyuZM+ZZ2RYVZB/LV8cbG2FUYfMNRbN+Tb4f37WvOk6/Pr10bTVdXm8tVOkbyeL+i7RkqJOvfFk5shAcV8Pm9PobbWqOyyH0ZVOu+ziRCmGzfke1atuNcypTPMBPf4eqHNcT3Z7a+zie8yRK9k/cw3jVrspejUs4AjAa6pGW8MWv48Ghat11ZFtnefbv0tMM2iiUsZOhQ87Os405kZarGlXZ4oq3tupbDWi65P5ZrsS1cP9/9SnfXn8Q1Ko3y6vu3WJYOzrafMgy5olHdT8mLur7Ax4Uhe3Yyrv14iY5HFOUqsdzTpNE+80neOwNAbW3u6UJsbTyJ2/1OdSrbSNxFDzDblm7H8nMK4e3FEkqez/6np58LREnhwzIiIiIiIiIiopyFYM6y3olhmERERERERERERBl8WEZERERERERERJTBMMwi0Noa5afS+QYOmBz/PZ/YdZmXBjBD+zvFo+ucAAWihzA3yJwGTU3mrIYxWRfTZIoEneqgtrbr8iVl6lS/7xUyz5ek20/c0OS24a59hyVftyFah05V4pvLS7YZ2Q58h51P4zglNTR53HeSzlGRSw63uLqz5TvxzUUjp9evN5dzzgWUAF3G2P5HJpepHHcAACgpSURBVNEDgIaGjslVi81ZdXVu25bnmrUd2JK6eXJtq67LJdVu5XoaGvzO3x1l5dEHOe3Jtx/x7itkPiGZuErPk21S562SnXBFZfy2LHzLH/e9XPq6pHNPFpTn+SpPe5lLFwDGjYvqx3rNlm3EcnOVSJ26dnxJbdt2v2zJ2ee8bXmu6WNoOaY+9yC2ezTf+jHzya0zZ8oGJfdTtxF5s66vgbKP0f1PApI+z5O4d0vqOPlcf3Mpf4/rI4kUPiwjIiIiIiIiIvLCB4O9UXG8kkJERERERERERFQEesybZeXl5QiCIOfvDR48GGeffXYKJUrOG28sxwUXFHcZe4LlLz2NcaOGFLoYVk8vfxNDRo1MdJ3N7zZj7z33Tmx9Ty95GkOGJ1uPtjIW8rj5HI+k6xtIps7TKFcS0mhPPqxt8OmnMW5I12Vc3tyMcXtnX0fS+9n85pvYe2z3+4rbEihLb7V8RTPGFck5s2jRIhx44IGFLkZR6gnX9rTlcq0qlnuCYr3uJy2JfiSXOi7Ga30abSSfvMuf0HW6UPJ5DVy0aNGivGyIKGFBGIaFLoOTKVOmhAsXLix0MVJx9tln49prry10MXq8GfuPwOPXzip0MaxGnH4bZv3s5ETXufCyhVj0VHLXoBGTRmDWT5KtR1sZC3ncfI5H0vUNJFPnaZQrCWm0Jx/WNjhiBB6f1XUZZyxciMdj7veS3s+FF9yGRdcl21eQacY5C/H4/OI4ZyZOnIiXXnqp0MUoSj3h2p62XK5VxXJPUKzX/aQl0Y/kUsfFeK1Po43kk3f5e/h1Op/XwCAIFoVhOCUvGyuAINgtBD5R6GIk4H969XHy0WPeLCMiIiIiIiIiKh4hgLZCF4JSwJxlREREREREREREGXxYRkRERERERERElMGHZURERERERERERBnMWbYLmTdvHk4//XSMHj0aAPDXv/4VAwYMAABcccUVuO2221BaWoojjzwSAwcOxB133IGmpiYMGDAAAwcOxKWXXoqSkhIcd9xxeO+991BeXo6mpiZMmzYNEydORFtbG66++mqcc845AIBnn30W+++/P0aPHo0//OEPBdvvbP7xzEr84P/+hTAMMXhABVrbdmD1+hZUVfZBTf8++NlXp2HciAG45H8X4o55Tait7os9RtTg9/91OADg49+6H488+w7+30+OxJEHDfcuRxiGePDyB7F57WYM2H0ADv/a4fjbBX/DujfW4eRfnowBw9qPz/2X3Y93XnwHR37nSAyf7L+9tMq4bfM2PPDjB7CjdQfKK8txxLeOQHllufc2u3N8Nn2wDSd8+wFsb92Bmv7lmPvDI1Ddv3NZwjDE2hWbcOe37rTW/d+++zcEQYCgNMBHvvUR733qiq7nAz99IOb9ch4AoH9df3z4vA+jpLSkoG0hTS7737q1NdF2lhbX8xoA1ry6Brefdzu+cMcXUFJanH+/6m5/edjZ7edQWWmAuT/8CHYb1K/Ae2Rnu1buueeeGDp0KID2pPzXXHMNGhsb8f3vfx+f//znMW/ePDz00EO47LLLMGDAABx44IEIwxAf+tCHcPHFF6NPnz4F34dd7XpvUyz3Ajau16qd14aRw5MdnS8MQzzwkwdyvgdIUz7uEfIlDEOsfXNtx/Ht6tqf9PFNgm4jrtfvYuHSxoHk7geL9Zqa5rVv18CcZb1Rcd6ZU2rmzJmDefPmYd68eR0d4MaNG3H33Xdj/vz5ePzxx3HOOefgnHPOwbx583DGGWfgyiuvxLx583D44Yfj9ttvxyc+8Qn84x//6FjnUUcdhYcffhg//vGPceONN3asf5999sG8efOK7sZ5zYYW/OD//oW7rzwaj157PH761YOwbfsO3HTph/HQr4/FD8+egs9d9gh2jhR75TnT8chvjwMALHl1HQDgt989FOd+alK3y7KuaR3KK8txwhUnoGVTC1o2tuCj3/soxhwyxlju0C8fiknHdX97aZWxpKwER3zjCBx/+fEYNW0U/v3Pf3tvr7vHp09ZCW669Ag8eu3x+Phho3D9PdnL8sLydQhKgy7rfvZls3HcT47D+A+P79Z+dUXXc1l5GY6+8Ggcf/nxqB5SjbcWvQWgsG0hTS77n2Q7S5PreQ0AL97zIurG1hWglG6S6C//8ZvZeOS3x+Gzs8bjhpjzsdhku1YCQH19fcfPr7nmmo6f3XTTTZ3Wsc8+++Cf//wnHn74YfTp0we/+c1v8lZ+gNf7rhTTvYCN67UqrWvD9q3b83oP0JV83SPkywsvvGAc35547ddtpKddv13aOJDM/WCxX1N7w7WPKEl8WEYoLS3FqlWr8NxzzwEABg4cGLvsv//9b1x88cW48847O83bsGFDSiVM1j1PvIk5H9uj4y+J40fWYmhdZcf8vccMwuhh1XhzVbPxvfebt3VMy+W7Y+sHW9F/cH+0bmtFy4YW9K3ui8qBndddOSiZ7flwKWNZeVlHGUtKSxCUBN7b6+7xqehb1rF8WWkJSmPKsn7TVpSWlXRZ9yVl7d1k67ZWDBwZf250V7Z67lvVt70Mok4L2RbS5LL/Sbaz2HK0teHkBx7AQXfcgWtefBGff+SR3NfheF6ve3Md+tf1R59++XnbyEcS/WWfzDm0ZWsr9h6T3jlUKH379sWHPvQhPPjgg7HLXHDBBbj33nvzWKrsdrXrvU0x3QvYuF6r0ro2hG1hXu8BupKve4R8Wb9+PUrLSnv0tT9bGynE9duXSxsHkrkf7E3X1J507SPyxYdlu5gbb7wRM2fOxJlnntnxs/79++NXv/oVzj//fIwfPz7rjTEA/Otf/8KUKVMwYsQIvPvuu9ixYwcA4MEHH8TUqVPx5S9/GV//+tfzsRvd8s6azRg62H7TMayuP1at3QIA+OavFqDxhJvRt7wUk8YOSrYw7X84wp+//GeUV5UjCIrn5qFDDmXcvmU7lt6/FOMOG+e9uaSOT/Pm7fjdnUtx6tHZyxI67lfz6mbcef6dePGeFzFoVMLH3yhQ9vJ8sPYDrFy8EsP37z0hl1nlsP9JtLM4t73+Og6sr8f8j38cVzz/PA7PhB3kxLFtvfDXFzBpdnG+KbBTEufjm6uacfDn78Sv//Ii9hmX4jmUoGzXSgBYvXo1Zs6ciZkzZ+IHP/hBx8+/8pWvdPy1PZvy8nJs3749tfJmw+u9XVHdC1i4XqtS236mQ8vXPUBX8nWPkC873yDqydf+uDaS7+u3L9c2nsT9YLFfU3vDtY8oSXxYtovZ+Xrtz372s45ODwCOPvpoPPDAA5g/fz5++MMfZv3u7bffjn/84x845phj8PLLL+PJJ58E0B6W8cwzz2DOnDlYsmRJvnbF29C6Sry95gPrMitXf9Dxl54rz5mOF/70Cby3bgtatramUqZTf38qdt93dyx9YGkq609CV2UMwxCPXPUIpp42teMvij6SOD5hGOJzlz2CH31pKmqr7WXpar+q6qtwwn+fgANPPRDP3/m8xx7lRpanbXsb5v1yHg776mFFm88qaV3tf1LtLM4bmzZh8uDBKC0pwd4DB+Lo4f6/qNja1vtvv4/yynJU1FR0p7ipS+J8HNlQhfn/dwIu/c8DccVN6Z9DSYi7VspQlIsuuqhj+aFDh6K6uhrLli3Lur5t27blLV/ZTrze2xXjvYBNoe8T8nUP0JV83yPkS2+49hf6+t1d+bgfLPZram+49hVGiPacZT39H2k9pwemRMlOb8uWLVi5ciUAoKamJrZTe+aZZ/D444/jvvvuwx133IE77rjDmH/++efjv//7v1Mve3fNOmQEbrpvOTZ90P5K8/K33sc7azZ3zF/6+nq8saoZI4b07/hZdf9ynPzh0anktti8vn3b/ev6o217cXZULmVc+KeFGLLXEOy+3+7d2lYSx+eiaxfiQ/sOwRFT7GVpa91h3a8drTs6/upb3q8cpeWl3dq3ruh6fvTXj2LirImphn8WE5f9T6qdxRnevz/e3rwZO8IQS9avx/bMGzW56uqcWde0DqtfWY17L74X65rW4bFrHutWudPS3fNxuziHavqXo19FuudQ0uS1sitf//rXcdVVV2Wd97Of/QyzZ89OuHRuduXrvU2x3QvYdHWtSls+7wG6ks97hHxpa22v05587S+G63d3dNXGk7of7CnX1N5w7SNKAkfDJGzduhWf/exnsXXrVuzYsQPnnntup2Vefvll7Lbbbh2fJ0yYgPnz5+NrX/tax89qa2sxYsQI/Otf/8IBBxyQj6J7qR/YD9//3P6Y/c37EYYhBtX0RXmfEnzm4n+iurIc1ZV98H//dVin17BPPXocjj7n7/jiSRPx9SufwN2Pv4m/PfYGvnjiJpx14l7e5Xn7ubfx12//FSVlJfjI+R/BQz99CKuWrsL7b7+P/U7aD43TG/HE757Am8+8iTeefgObjtmEvY7x314aZazfox7P3f4chkwYgqYFTRg7Yywmzprota3uHp/jDx2Fn974HA7ZdwjueKQJnzxyLL50cvaybN283bpfdWPr8PDPHwZKgNKyUsw8dyZe+s1LXvvlQtbzQZ89CItuXoTm1c1YctcSTDpuEkYfPLrgbSFNXe3/buN3S6ydxTlp9Gh84dFH8eCKFThj/Hh8+6mncPNHch/1qqtzZvQhozH6kPYRp+763l049MuHJrofSenu+TjrkJGYc8nDKAmAvuWluP6imYXZkYTsDEUBgN133x1/+tOfOuZNmTIFgwZFITEvvPACjjjiiI4Rwb7zne/ku7id7GrXe5tiuxew6epaJe8TWje14ne/+x3OOuusxLbvcw+QlnzeI+TL1g+2Ol/70zi+SfC5fheTrtp41vvBZSty3k5PvaZ299q3c+Rkop4m2Pl0uthNmTIlXLhwYaGLkYqzzz4b1157baGL0ePN2H8EHr92VqGLYTXi9Nsw62cnd3x++4W3sfK5lZh62lTvdS68bCEWPbUoieIBAEZMGoFZP4nqMe0yFuq4zVv0No7//j/w6T/Myel7Sdc30F7nk0+d3K16TqNcSdDtKU4S7czG2gZHjMDjs7ou44yFC/H4ouzrkPuZyDlzwW1YdN3JXS9I3macsxCPzy+Oc2bixIl46aX0HsT3ZD3h2p6mXK9VSV8L6kfXY8RBI3Luz4rxup+G7vYj8+bNw/GnHI9PX/dpp+WL8VqfRhvJJ+/y9/DrdD6vgUEQLArDcEpeNlYAQVAXAscVuhgJuL5XHycffLOMiIiIiIiIiChnO3OWUW/Dh2VEBTRsn2EYts+wQhfDqieU0cfMA4dhQH3xDMXeW+vZVW/a/960L0RUWIW+VlX0r0jtjV8CZs6ciQFDBhS6GN3S09tITy8/EaWHCf6JiIiIiIiIiIgy+LCMiIiIiIiIiIgog2GYRERERERERERemLOsN+KbZURERERERERERBlBGIaFLoOTKVOmhAsXLix0MVJRV1eHtWvXFroYREREVAAVFRVoaWkpdDGIiIjSsCgMwymFLkRagmBwCBxT6GIk4OZefZx8MAyzCKxduxY95aElUbG6/vrrceaZZ+KVV17BuHHjjHmtra3o06cPLr74YlxyySWFKWAezJw5E62trXj88ccTWd8ZZ5yBefPmoampKZH1EVF2QRDwPoB6Ddv1eKfuXF8aGxsxY8YM3HTTTV2WY8eOHfjc5z6X8zayueSSS3DppZdi+/btKCvr/q9QO+vp9ddfR2NjY/cLSFSkgiAodBGIvDAMk4iIsvr+97+PO+64o9DFICKiXiYf15frr78e1113Xarb6I5jjz0W8+fPx9ChQwtdFCLqlhDAjl7wjzS+WUZERFmNHTu20EUgIqJeiNcXoL6+HvX19YUuBhERxeCbZUS0y3r99dfxmc98BvX19ejbty8mT57c6S/dy5cvx5w5czB69Gj069cPY8aMwZe+9CWsX7++Y5mf/exnKC8vz5p7cOLEiTjhhBOwdetW1NfX47zzzuu0zPXXX48gCLBs2TJreZ977jmceOKJGDx4MPr164c999wTP/nJTzot99BDD+GAAw5AZWUlJk2ahDvvvDPnfQLaw2RkaEhTUxOCIMC1116Liy66CEOHDkVtbS2OO+44rFixwlp2IiKinfT1BQBee+01zJo1C5WVldhtt93wzW9+E7/73e8QBEHWcM1bbrkFe+21F/r3748pU6YYKQhmzpyJRx55BE888QSCIEAQBJg5c6a1TKtXr8aXv/xljBgxAn379sWIESMwZ84cbN261Vju9ddfx7HHHouqqiqMGjUKP/jBD7BjR/RWRktLC8477zxMmjQJVVVVaGhowHHHHdfpGr/z2i/3rbGxEaeddpp134iIKD/4sIyIepW2tja0trYa/9raOg/n/NZbb2HatGl47rnn8Itf/AJ/+9vfcMABB+Dkk0/G3/72t47l3n77bQwfPhy//OUvcf/99+Oiiy7CP/7xD8yaNatjmdNOOw1tbW249dZbjW0sWrQIS5cuxZw5c9C3b1+ceeaZuOGGGzol8r722mtx+OGHY8KECbH79fTTT+Pggw/Gq6++il/84he455578I1vfKPTQ6pXX30V55xzDr7xjW/g9ttvx9ChQ/GJT3wCy5cvz2mfbH7yk59g+fLluO666/CrX/0K8+fPx2c+8xmn7xIREWnbtm3DUUcdheeeew7XXHMNrr/+erz++uv40Y9+lHX5xx57DFdeeSV++MMf4tZbb0VbWxtmz56NDRs2AACuueYa7L///th3330xf/58zJ8/H9dcc03s9tevX49DDjkEt956K77xjW/g3nvvxc9+9jNs374d27ZtM5Y98cQTccQRR+DOO+/ECSecgIsvvhg33HBDx/ytW7di06ZNuPDCC3HPPffgf/7nf9DS0oLp06dj1apVXdZFV/tGRET5wTBMIupVbA+cpEsuuQRhGOKRRx7B4MGDAQBHH3003nrrLVx00UU4/vjjAQCHHXYYDjvssI7vHXLIIRg3bhwOPfRQPPvss9h///0xbNgwHHHEEbjxxhvx5S9/uWPZG2+8EQMHDsTs2bMBAF/60pdw5ZVX4i9/+QvmzJkDAHj++eexYMECzJ0711reb33rWxg8eDAWLFiAyspKAMARRxzRabk1a9bg0UcfxR577AEAOOCAAzB06FD8+c9/xve+9z3nfbIZNWoUbr755o7Pq1evxvnnn4+3334bw4YNs36XiIhIu/766/Haa6/hqaeewkEHHQQA+NjHPobJkyfjzTff7LT8xo0bsXjxYgwcOBAA0NDQgKlTp+Lee+/FqaeeiokTJ6Kmpgatra2YPn16l9v/xS9+gddeew0LFy40roGf/vSnOy37zW9+E2eeeSYA4Mgjj8Q///lPzJ07t+NnAwYMwO9///uO5dva2nD00UdjyJAhmDt3btY3zHPZNyIqRp3/ME89H98sI6Je5Y477sAzzzxj/FuwYEGn5e677z7MmjULAwYMMN5CO/roo/Hcc89h48aNANr/2v3jH/8YEyZMQL9+/dCnTx8ceuihAICXX365Y31z5szBggUL8MorrwBoH4HzlltuwX/8x3+gb9++AIDRo0fj6KOPxrXXXtvxvWuvvRb19fU46aSTYvdp8+bNeOKJJ/CZz3ym40FZnD322KPjQRkA7Lbbbthtt92MXzZc9ynOsccea3zeZ599ACDrLzRERERdWbBgAUaOHNnxoAxoH0Hv5JNPzrr8wQcf3PEwCej+deiBBx7A1KlTu/xjEdD5Gjhp0qRO2/3zn/+MadOmoba2FmVlZejfvz+am5udrrFJ7xsREfnhwzIi6lUmTZqEKVOmGP8OPPDATsu99957+OMf/4g+ffoY/84//3wA6Mg/dsEFF+CSSy7BaaedhnvuuQdPP/00br/9dgAwwilPPvlk9O/fv2Mo+wceeADvvvtuxxtkO335y1/GE088gSVLluCDDz7ATTfdhDPPPBPl5eWx+7R+/Xrs2LEDw4cP73L/Bw0a1Olnffv2Ncrquk+u29j5MNDlu0RERNo777yD3XbbrdPPhwwZknX5pK9Da9eudbrGxm1bbveuu+7CJz/5Sey11164+eab8dRTT+GZZ55BfX09r7FERD0IwzCJaJc0ePBgHHroofjOd76Tdf7OcMJbbrkFn/3sZ3HhhRd2zGtubu60fP/+/XHiiSfiT3/6Ey699FLcdNNNGDNmDD70oQ8Zy82aNQuNjY249tprsd9++2HTpk0466yzrGUdOHAgSkpKsHLlylx3MyvXfSIiIsqHoUOH4qWXXur083fffTcv26+rq0v0Gjtu3Dhcf/31HT/bvn071q1bl8j6iYgoP/hmGRHtko455hg8//zz2HvvvTu9iTZlypSOv+Ru3rwZffr0Mb77hz/8Ies658yZg1dffRX3338//vrXv3Z6qwwASkpKcPbZZ+PGG2/Er3/9axx55JEYO3astayVlZWYMWMGbrrpJmzZssVzjyO57BMREVHapk+fjjfffBNPP/10x8/CMMRtt93mvc6+ffs6XzM/+tGP4umnn8Zzzz3nvb2dNm/ejLIy832EG2+8MetgQ0TUG4Roz1nW0/+RxjfLiGiX9IMf/AAHHXQQDjvsMHz1q19FY2Mj1q9fjyVLluC1117DddddB6D9odoNN9yAffbZB+PGjcPtt9+OJ598Mus6jzzySAwbNgyf//znsXnzZpx22mlZl/v85z+PSy65BM8995zzLwJXXHEFDj/8cBx88MH45je/ieHDh+O1117D4sWLcfXVV+e077nsExERkY/77rsPDQ0Nxs8GDBiAo446qtOyZ5xxBn7605/ipJNOwo9+9CPU19fj97//PdavXw+g/Q9NuZo4cSKuueYa3HrrrRg7diyqq6ux5557Zl32vPPOw80334wjjzwSF154IfbZZx+sWbMGf/3rX/Hb3/4W1dXVzts95phjcOedd+K8887D7NmzsWjRIlx11VWora3NeR+IiKhw+LCMiHZJI0eOxMKFC3HJJZfge9/7HlavXo3Bgwdj0qRJOP300zuWu/rqqxGGIf7rv/4LQHsY5dy5c40kxDuVlJTg1FNPxRVXXIGDDz4Y48aNy7rt+vp6HH744XjhhRc6Rt3sytSpU/HEE0/goosuwte+9jVs3boVo0aN6hh9Kxe57BMREZGPr33ta51+tvfee2PJkiWdfl5eXo4HHngAX/va1/DFL34RVVVVOPXUUzFt2jR897vfxYABA3Le/ne+8x28/PLL+MIXvoDm5mYcfvjhmDdvXtZla2tr8cQTT+DCCy/E5ZdfjrVr12LIkCE44ogjrDlFs/nP//xPvPXWW7juuutw7bXXYurUqbjrrrtw4okn5rwPRERUOEEYhoUug5MpU6aECxcuLHQxUhEEAXrKcSCi7lu/fj1GjhyJc889Fz/84Q8LXRwiKjDeBxBlN3v2bCxduhSvvvpqoYtCRJ6CIFgUhuGUQpcjLUFQGwIzC12MBPy1Vx8nHz3mYVkQBKsBvFHochARdUMZgAoAuwEYAGAJgO0FLREREVFxGIL2xDlb0Z5XeVDm35sAVhewXETUPaPCMKwvdCHSwodlvVePCcPszScYEe0agiA4A8Af0H7jf1YYhv+vsCUiIiIqDkEQfAXAVwGMBFAK4GUA3w7D8P8KWjAiItol9Zg3y4iIiIiIiIiIigXfLOu9esybZURERERERERExWVHoQtAKch9HGYiIiIiIiIiIqJeig/LiIiIKFFBEFwfBEGY+TczgfXNFOu7vtsFJCIiIiKy4MMyIiKiPAuCoEk8/NH/WoMgWBcEwQtBEPwxCIITgiBg2gQiIiIiojzhzTcREVFxKQUwMPNvEoA5AJ4PguDUMAxfLGjJiIiIiEh4/37grrpClyIBawpdgGLDh2VERESF9VsAr4rPZQAa0D600n6Zn+0L4B9BEEwJw3BFfotHRERERNmEYXhMoctA6eDDMiIiosK6NQzDedlmBEFwKoAb0H69HgLghwDOzF/R/IRheAaAMwpcDCIiIiIiL8xZRkREVKTCMLwZwK/Ej04OgqBPocpDRERERLQr4MMyIiKi4naHmK4GMNa2cBAEHw6C4LdBELwUBMH6IAi2BkGwMgiCu4Ig+JzLYAFBEJQGQfCZIAhuD4Lg9SAIPgiCoCUIghVBEPwrCII/B0Hwn0EQjIr5vvNomEEQVARBcF4QBPMzAxt8EATBvzP7sG9XZRXrmSe22eiw/M5lmxyWDYIg+HgQBDcEQfBKEAQbgyDYEgTBG0EQ/CUIgk8EQRA4rKdfEARnB0Fwb6YutwRBsDmznoWZAR3mBEEwxG2viYiIiCgNDMMkIiIqbu+pz4OyLRQEwW4AbgJwVJbZwzL/ZgP4dhAEJ4RhuCxmPbsDuBvA5Cyzd8/82x/AKQAWAZjS9S5kFwTBHgDuAbCHmrVH5t/ngiD4BoAlvtvoriAIxgG4BcCBWWaPzPz7BIAFQRCcFIbhOzHr2Rvt9dpoWc+BaB/Q4bbMOomIiIioAPiwjIiIqLjpt4w+0AtkHnA9juhBTDOA+wC8BKAF7Q9ijgUwAsCeAJ4IguDAMAyb1HpKANyJ6EHZpsx6lmW22z+zjSkA9urGPiEIggYAD6P94RsAbEP7w6TnAJQDOBTAYQCuBnBld7bVjTLuC+CfAAZnfrQW7fXxCoBWAGMAHA+gDsB0AI9n6nWDWk8VgL+jvf6B9hGn7kP7wA5bEL0xOA3A6PT2iIiIiIhc8GEZERFRcTtZTLcAeFnOzDzgmovoQdkfAXw9DMP31XJ9APwEwDfR/nbajWh/ICXNRPSm2EIAx4RhuDZboYIgGAPgiNx2xfBrRA/KmgDMCsNwqdrGcQD+DOAb3diOlyAI+gP4C6IHZT8FcEkYhi1ZlvtfAJ9G+8OzqwB8Vq3uPxA9KLsHwH+EYbg5Zrv7Atg7iX0gIiIiIj/MWUZERFSkgiCYA+Br4ke36oc1aH+YtvOh1+1hGJ6uH5QBQBiG28Mw/BaA2zM/mhEEgX5Ytr+YvjzuQVlmfa+FYfh7px1RgiCYiOghYCuA4/WDssw27kL7/neZDywFXwYwPjP98zAMv5ul7hGG4QdoD518OvOjU7PkTJP1enHcg7LM+p4Pw3Cuf7GJiIiIqLv4ZhkREVFhfTIIApn3qwztoZdHAJAJ7pcB+E6W739ZTH/XYXtXAjgpM308gMfEvFIx3c9hXb5OE9NzwzB8wbLs/6F9v6wDG6RgZ71uAXCpbcEwDNuCIPgVgD+hvQ6PBfAbsUi+6pWIiIiIEsCHZURERIX1xS7mt6E94fvXwzB8V84IgqAfgEMyH18Pw/AVh+0tFtM6Of9zYvqyIAiWhmG4yGGdufqQmL4jdikAYRiGQRDcDuD8FMqRVSbEtDHzcUEYhhsdvrZYTNvq9aogCD7peKyIiIiIqAAYhklERFTcHgHwTf2gLGMC2pPhA8DoIAjCrv7BHCCgXq3vQQDPZqZHAVgYBMFzQRBcEQTBSUEQDEton8aL6cUOyz/X9SKJ2k9Mf9ixXl8U39H1ejOAFZnp/QG8HATBgiAIfhQEwewgCAaDiIiIiIoGH5YREREV1ofDMAzCMAzQfl1uAHAkgHsz848A8GTmbSetuw9Z+ssPYRjuADALwEPix/uifVCA2wCsDIJgaRAElwRBoB8I5WKgmI7Niyas6ca2fCRdr5vQfkz/lflRgPaRL78H4C4Aq4MgWBQEwTeDIKju5raJiIiIqJsYhklERFQkwjAMAbyb+fePIAiuQnuC+xEA/hwEwSFhGG4TX5HX8ZcB5JpwP9tAAKsAHBUEwcFoH8XxcLQ/MNuZd2sCgIsBfCMIgtPDMLSGUSYk3wn+Zb0uQPuDwly8pX8QhuHLmdx0R6I9Z9xhAPZC+74FAA7I/PtWEASnhGH4uE/BiYiIiKj7+LCMiIioeH0TwEwA+wA4EMA3AFwu5su3sraFYXhFUhsOw3A+gPkAEARBDdpzox0D4FS0hxlWA7g1CIL9wzB8MXZF2a1H+xt0QPtbXF3lBHN50ysU09aHa0EQVHaxLlmvq5Oq18zD0Acz/5AJvzwU7W/zfQrtddoA4K4gCMaHYbg6ie0SERERUW4YhklERFSkwjDcjvYHZjtdoMIfX0H7AAAAMDEIAhnemGQ5NoZheF8YhucCGAPgqcysPgC+4LHKf4vp/WKXym2ZZjFd1cWyI7uYv0xMHxwEQSr3S2EYrg3D8M4wDM8CsAeA1zKzatH+UJKIiIiICoAPy4iIiIpYGIYPAtgZklcD4Lti3gYACzMfSwF8Ng/laQbwC/GjCR6reVJMn2hbMAiCoKtlMuQACONjl2p3dBfzlwBYlZmuA3Ccw/a7JTOAw+/Ej3zqlYiIiIgSwIdlRERExe9SMf2lIAiGis9Xi+mLYgYCyCrzIKq7tnh850Yx/ekgCCZalj0DwDiHdf5LTJ8Ut1AQBANgvq3XSSZc8tfiRz8PgmCQQxl2bqNQ9UpERERECeDDMiIioiIXhuFDiN7G6gfgAjF7rpg3CMAjQRAcGbeuIAgqgiA4IQiCh9GeUF7O+2UQBFcEQbC35fu7A7hQ/OhR9z1pF4bhSwB2DgzQB+05uvbMsq1jAfwGZj6yOH9FFJL6qSAITsiyvqEA7kb7gAlduQrA8sz0GACPBkFwQNzCQRBUB0FwWhAE/4LKsRYEwS1BEFwUBMFoy/cnAvi6+FHO9UpEREREyQja/3hKRERE+RIEQROAUZmPHw7DcJ7Ddz4K4P7Mx60AxoVhuCIzbwiAx9Ce92qnF9D+wOUdtP9xbDCASQCmIcrpNTUMw51hnAiC4HoAp2c+vgrgaQCvA9iE9gdxE9Ce5L+PWGZyJjQTMevJun+ZB1eLAOx8S24rgLsAPA+gHMAMtA9uAAA/R/vgBgBwQxiGZ+j1Zdb5WwBnix/9He2jWQLA3gBmA6gEcBmiB35vhGHYGLO+vQA8DGCI+PHTaH84+V6mnPVoHy30IAB9M8vUh2G4RqxnHtpHFQWAF9EeOvsm2t8eq0N7TrYPI/oj5nwAh4ZhuPPhHxERERHlEUfDJCIi6gHCMHwgCIIFAKaj/aHMfwH4Umbeu0EQTAXwWwCfRPtokPtk/sVZifZRKaVtYnps5l+cZwB8Qj8ocxWG4TtBEHwY7W96jUP7Pn0i82+nVrQ/JHsB0cMym2+i/YHhEZnPH8v8k34B4CKYb8fFlXFpEAQHAvgDgKMyPz4o8y/OK2h/8CfJet078y/OfQBO5YMyIiIiosLhm2VERER55vNmWeZ7x6D9bSkA2A5gfBiGTWqZvQHMQfubTKPR/kZYK4B1aB+F8mm0v6H2SBiGO9R3S9D+MO4jmf/3RPtbVZUANgNYgfa3wf4C4G9hzE2Ey5tlYtkKAF8B8B9oT8zfF8DbaH+j65owDJ8NgmBm5jNgebMss75SAGcCOA3tb3z1R3uy/vkA/icMw0cyy+0se+ybZWq90wF8CsBhaA/jrEX7Q7DVaB89cz6Av4dh+HSW7/bJfO8ItD9oG4f2ei1H+yieb6J9hNG5YRj+s6uyEBEREVG6+LCMiIiIiIiIiIgogwn+iYiIiIiIiIiIMviwjIiIiIiIiIiIKIMPy4iIiIiIiIiIiDL4sIyIiIiIiIiIiCiDD8uIiIiIiIiIiIgy+LCMiIiIiIiIiIgogw/LiIiIiIiIiIiIMviwjIiIiIiIiIiIKIMPy4iIiIiIiIiIiDL4sIyIiIiIiIiIiCiDD8uIiIiIiIiIiIgy+LCMiIiIiIiIiIgo4/8DcxiCqXQmDTcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjk0lEQVR4nO3dfZyVVb338c8vNAaFzFssUZAhjoIJCLIgURQoTT3hAyY30oOAt48dI/FQppzbzbYHPbeWmKfEXhmaUqEolVpHKjEebgwXMPIgDypMilompUEyOgPr/HFdM2z2zMDesGf2tff+vl+vebX3dV3r2mvWS+bXWtfav5+FEBAREUmaDxS7AyIiIi1RgBIRkURSgBIRkURSgBIRkURSgBIRkUQ6qNgdaAtdu3YN1dXVxe6GiIjkYPny5W+FEI7MPl6WAaq6uhrvfbG7ISIiOTCzP7V0XEt8IiKSSApQIiKSSApQIiKSSGX5DEpEZG/q6+vZsmULdXV1xe5KRamqqqJ79+4cfPDBOV2vACUiFWfLli106dKF6upqzKzY3akIIQS2bt3Kli1b6NWrV05ttMQnIhWnrq6OI444QsGpHZkZRxxxRF6zVgUoEalICk7tL98xV4ASEZFE0jMoEal41V9/sqD3q73tM/u8pnPnzmzfvn2v18yYMYMrr7ySQw45pFBdy5v3np/85Cd873vfa/fPLssAtfq1dwr+H1w+xg89FoBbL+pftD6ISOmbMWMGX/jCF/IKUDt37qRDhw4tnmtoaOCgg/L7s++cwzmXV5tC0RKfiEgRPfPMM4wcOZKLL76Yvn378vnPf54QAt/73vd4/fXXGTVqFKNGjQJg/vz5DBs2jJNPPpmxY8c2zcCqq6u55ZZbGD58OI888sge9x85ciQ33XQTI0aM4K677mL58uWMGDGCwYMHc/bZZ/PGG28A8NxzzzFgwACGDRvGV7/6Vfr169fUv9GjRwPwt7/9jQsvvJABAwZwyimnsGrVKgCmT5/OZZddxsiRI/nYxz5WsNmWApSISJGtXLmSGTNm8MILL7Bp0yaWLFnC5MmTOfroo1mwYAELFizgrbfe4pvf/Ca/+93vWLFiBc45vvvd7zbdo6qqisWLF3PJJZc0u//bb7/NH/7wByZPnsyXv/xl5s6dy/Lly7nsssuYNm0aAJMmTWLmzJksXbq01RlYKpVi0KBBrFq1im9/+9tceumlTefWr1/PU089xbJly0in09TX1x/wuBR0ic85txNYnXHoQqAa+CWwCegEPOG9n9pC2+r4XL9W7j0VuB040nv/ViH7LSJSTEOHDqV79+4ADBw4kNraWoYPH77HNc8++ywvvPACp512GgDvv/8+w4YNazo/bty4Vu/feG7Dhg2sWbOGs846C4iWA7t168bbb7/Ntm3bOPXUUwH43Oc+xxNPPNHsPosXL+bRRx8F4JOf/CRbt27lnXfeAeAzn/kMHTt2pGPHjnzkIx/hL3/5S9PvtL8K/Qxqh/d+YOaBOPAs8t6Pds51AlY65+Z575fkelPnXA/gLOCVQnZWRCQJOnbs2PS6Q4cONDQ0NLsmhMBZZ53Fz372sxbvceihhwLRTGjlypUcffTR/PrXv97jXAiBE088kaVLl+7R9u9//3tO/QwhNDvWuHU8l98hX+26xOe93wHUAMfk2fRO4GtA89ERESlTXbp0Ydu2bQCccsopLFmyhJdeegmAd999l40bNzZrM2vWLGpqapqCU6Y+ffrw17/+tSlA1dfXs3btWg4//HC6dOnCs88+C8DPf/7zFvtzxhlnMHv2bCB6NtW1a1c+9KEPHfgv2opCz6A6Oedq4tebvfdjMk865w4HjgMW5npD59z5wGve++eLtZNERMpbLtvCi+HKK6/k3HPPpVu3bixYsID777+f8ePH89577wHwzW9+k+OPPz7n+33wgx9k7ty5TJ48mXfeeYeGhgauu+46TjzxRO677z6uuOIKDj30UEaOHMlhhx3WrP306dOZNGkSAwYM4JBDDuGBBx4o2O/aEmtpyra/nHPbvfeds46NJHoG9SegD3Cb9z7VQttqsp5BOecOARYAn/bev+OcqwXcvp5Bdex2XOg2YcaB/TIHQNvMRZJt3bp1nHDCCcXuRqJs376dzp2jP9+33XYbb7zxBnfddVfBP6elsTez5SGEZjOQ9voeVOMzqOOBxc65eUBH4N74/M3Aqhba9QZ6AY2zp+7ACufcUO/9n9uh3yIiFeHJJ5/k1ltvpaGhgZ49e3L//fcXu0vt+0Vd7/1G59ytwA3e+/HAwMZz8Qwq+/rVwEcyrqklhxmUiIjkZ9y4cXvdCVgMxcgkMROY6pzr5b3fnHWuj3NuS8b7Kd77RxARkYpT0ACV/fwpPvYM8EzG+x20sIvPe18L7LWKlfe++gC7KCIiJUKZJEREJJHKMlls/2MOwyd026iIiOSmLAOUiEg+bnxs9b4vykMuXzEplXIbADfffDNnnHEGZ555Zrt+rpb4REQSasaMGbz77rstntu5c2fe9wshsGvXrrzb3XLLLe0enKBMZ1DFrge1N41f4m2kL/OKVLZnnnmG6dOn07VrV9asWcPgwYN56KGHuPvuu5vKbXTt2pUFCxbQuXNnrr/+ep566im+853v8PTTT/P444+zY8cOTj31VO69995mZdVra2s599xzGTVqFEuXLuUXv/gFDz/8MA8//DDvvfceY8aMIZ1OA/CNb3yD2bNn06NHD7p27crgwYOZOnUqEydOZPTo0Vx88cX8/ve/Z+rUqTQ0NDBkyBDuueceOnbsSHV1NRMmTODxxx+nvr6eRx55hL59+x7Q2GgGJSJSZLmU2wD45z//Sb9+/fjjH//I8OHDufbaa3nuuedYs2YNO3bsaDEDOURZzC+99FJWrlzJhg0bePHFF1m2bBk1NTUsX76chQsX4r3n0UcfZeXKlTz22GN475vdp66ujokTJzJnzhxWr15NQ0MD99xzT9P5rl27smLFCq655hruuOOOAx4XBSgRkSJrLLfxgQ98oKncRks6dOjAZz/72ab3CxYs4BOf+AT9+/fn6aefZu3atS2269mzJ6eccgoQFT2cP38+gwYN4uSTT2b9+vW8+OKLLF68mAsuuIBOnTrRpUsXzjvvvGb32bBhA7169WrK/zdhwgQWLtydWvWiiy4CYPDgwa3+DvnIa4nPOXcUMAMYArwH1ALXAc8D64EqYBvwfe/9A3GbiUR1nF6Lz9/rvb+zhXuPBKZ670dnHb82/ozeqBaUiJShXEtVVFVVNRUTrKur40tf+hLee3r06MH06dOpq6vj1VdfbQouV199Neecc05TuQ2InkPdeOONXHXVVXvc+847m/1ZbmZfuVsbf492L7fhnDNgHvCM97639/7jwE3AR4GXvfeDvPcnAJcAU5xzkzKaz4nrRJ0GTIvrO+VqCXAmUbJZEZGKkVluI1tdXR0QLatt376duXPnAtCjRw9qamqoqanh6quvbtbu7LPP5sc//nHTDsLXXnuNN998k+HDh/P4449TV1fH9u3befLJ5s/x+/btS21tbVPJjwcffJARI0YU5HdtST4zqFFAvfd+ZuMB731Ndg497/0m59z1wHeAWVnntjrnXgK6Aa/m8qHe+5UAKrUhIm0lqZuVssttZPrwhz/MFVdcQf/+/amurmbIkCE53fPTn/4069ata6rG27lzZx566CGGDBnC+eefz0knnUTPnj1xzjUruVFVVcWsWbMYO3Zs0yaJloJgoeRcbsM5Nxno5b2fknW8muZlMj4MvOG97xQv8Tnv/bXOuWOBXwGneO/rsu4zkhaW+DLO15Jjothil9vYG+3iEyk+ldtoWWPJjXfffZczzjiDH/7wh5x88skF/YwklNuwrPfjnHOjiOpBXZEdnEREpPiuvPJKXnjhBerq6pgwYULBg1O+8glQa4GLc7x2ELAu4/2ceAY1DHjSOfcbYBjQWLjw8jz6ISIibeCnP/1psbuwh3y2mT8NdHTOXdF4wDk3BOiZeVG85HcHcHf2Dbz3S4EHga947+d57wfGP8033IuItKFCVhOX3OQ75jnPoLz3wTk3BpjhnPs6UMfubea9nXMr2b3N/G7v/axWbvWfRFVxv+29z96e8qmselBjiba0fw04CljlnPu1914zLhHZb1VVVWzdupUjjjiiWeYFaRshBLZu3UpVVVXObXLeJFFKtElCRPamvr6eLVu2NG3VlvZRVVVF9+7dOfjgPUv/tbZJoiwDlHMuaNVQRKQ0tBaglOpIREQSSQFKREQSSeU2EqBW1X9FRJrRDEpERBJJAUpERBKpoEt8zrmdwOqMQxcC1cAvgU1AJ6K8fVNbaFtNVk6/+PhYYDpwAjBUX+oVEakMhX4GtSMuq9EkDjyLvPejnXOdgJXOuXne+yU53nMNcBFwb0F7KiIiidauS3ze+x1ADXBMHm3Wee83tFmnREQkkQo9g+rknKuJX2/23o/JPOmcOxw4DliY3VBERCRTmy/xxU53zq0iKrdxm/f+zwX+XBERKTPt9T2oxmdQxwOLnXPzgI7sfq50M7CqnfoiIiIloF2/qOu93+icuxW4wXs/HhjYeC67dLyIiFS2YmSSmAlMdc718t5vzjrXJ6vcxhSggai21JFExQ5rvPdnt1NfRUSkSMoym3mSy220RKmORKSSKZu5iIiUlLJMFtv/mMPwmpWIiJQ0zaBERCSRFKBERCSRynKJr9TqQY0feuxez996Uf926omISHJoBiUiIomkACUiIomU1xKfc+4oYAYwBHgPqAWuA54H1gNVwDbg+977B+I2E4Hbgdfi8/d67+9s4d4jgane+9FZx+8DHGDARmCi9357Pv0WEZHSk/MMyjlnwDzgGe99b+/9x4GbgI8CL3vvB3nvTwAuAaY45yZlNJ8TJ5E9DZjmnOuRRx+neO9P8t4PAF4Brs2jrYiIlKh8lvhGAfXe+5mNB7z3NcCrmRd57zcB1wOTs2/gvd8KvAR0y/VDvff/gKYA2Qkov9QXIiLSTD4Bqh+wPMdrVwB9sw86544lWubLK3O5c24W8Of4nnfn01ZEREpTW22SsKz345xza4FNwF3e+7p8bua9nwQcDawDxhWmiyIikmT5bJJYC1yc47WDiIJJozne+2udc8OIMpL/BhgGpOLzl+/rht77nc65OcBXgVm5d1tEREpRPjOop4GOzrkrGg8454YAPTMvius63UELS3He+6XAg8BXvPfzvPcD4x/f0gc658w59y+Nr4HziHYLiohImct5BuW9D865McAM59zXgTp2bzPv7Zxbye5t5nd771ub5fwnsMI5923v/basc5/Kqgc1Dvh/zrkPES0bPg9ck2ufRUSkdKkeVAIo1ZGIVLLW6kGVZS4+ldsQESl9SnUkIiKJpAAlIiKJVJZLfCq3ISJS+jSDEhGRRFKAEhGRRCqFchuzicpt1APLgKu89/X59FtEREpPKZTbmE2UJLY/UTbzfaZFEhGR0lcK5TZ+7b0P3vtANIPqnkefRUSkRJVEuY247cHAF4H/zretiIiUnpIotxH7AbDQe7/ogHsnIiKJVxLlNpxzKeBI4Ko8+isiIiUs0eU24vtdDpwNjPfe78qjvyIiUsKSXm5jLDAT+BOw1DkH8Jj3/pZc+y0iIqVJ5TYSQKmORKSStVZuQ5kkREQkkcoyWazqQYmIlD7NoEREJJEUoEREJJHKcomv1OpBFdLeNlxos4WIlBLNoEREJJEUoEREJJEKssRnadsJrM44dCFQDfySKP9eJ+CJkApTW2hbHZ/rl3FsOrA9pMIdlrbbgfOA94GXgUkhFd4uRL9FRCS5CjWD2hFSYWDGT218fFFIhUFEuflGW9pO2497/xboF1JhALARuLEwXRYRkSRrlyW+kAo7gBrgmP1oOz+kQkP89llUD0pEpCIUahdfJ0tbTfx6c0iFMZknLW2HA8cBC1tp3zujPcBRRAlns10GzDmwroqISCkoVIDaEVJhYAvHT7e0rQL6ALeFVPhzK+1fzmwfP4Pag6VtGtBAVAJeRETKXFt/D2pRSIXRlrbjgcWWtnlAR+De+PzN5FBd19I2ARgNfCqkyjC7rYiINNMuX9QNqbDR0nYrcENIhfHAwMZz8S6+VlnazgFuAEaEVHi3LfspIiLJ0Z7fg5oJnGFp65Vnu/8CugC/tbTVWNpmFr5rIiKSNKoHVWaU6khESk1r9aDKMhefym2IiJQ+pToSEZFEUoASEZFEKsslvkout5FU44ceq2dgIpIXzaBERCSRFKBERCSREl9uI+PYVOB24MiQCm8Vot8iIpJcbZaLLw48jamOOgErLW3zQiosyffmlrYewFnAK4XorIiIJF/iy23E7gS+BpTft4pFRKRFiS+3YWk7H3gtpMLzlrYCdVdERJIu0eU2LG2HANOATxeonyIiUiKSXm6jN9ALaJw9dQdWWNqG7iXYiYhIGUh0uY2QCquBj2RcWws47eITESl/pVBuQ0REKpDKbUi7UKojEWlNa+U2lElCREQSqSyTxaoelIhI6dMMSkREEkkBSkREEqksl/hUD0pkN21QkVKlGZSIiCSSApSIiCRS4utBWdrGAtOBE4ChIRV8IfosIiLJVgr1oNYAF7E7f5+IiFSAxNeDCqmwLqTChoJ3SkREEi3x9aBERKQyJboelIiIVK6k14MSEZEKleh6UCIiUrkSXw/K0jbG0rYFGAY8aWl7qk16JyIiiaJ6UCJlTqmOJOlaqwdVlrn4VG5DRKT0KdWRiIgkkgKUiIgkUlku8anchkjrxg89ttkxPaOSJNIMSkREEkkBSkREEqmgS3zOuZzKbnjvm5XdcM5Vx+f6ZR3/BnABsAt4E5jovX+9kP0WEZHkKfQMaof3fmDGT218fJH3fhAwCBjtnDstj3ve7r0f4L0fCDxBlB5JRETKXLsu8Xnv8y674b3/R8bbQ4Hy+2axiIg0U+hdfJ2cczXx683e+z3Kbjjn9lV2o0XOuW8BlwLvAKMK0E8REUm4QgeoHfFSXLbTnXNNZTe8962V3WiR934aMM05dyNwLZA64J6KiEiitdf3oBZ570c7544HFjvn9rfsxk+BJ1GAEhEpe+36RV3v/Ubn3K3ADd77PcpuxLv4mnHOHee9fzF+ez6wvq37KSIixVeMTBIzganOuV7e+81Z5/o457ZkvJ8CXOKc60O0zfxPwNXt1E8RESkildsQqTBKdSRJ01q5DWWSEBGRRCrLZLGqByUiUvo0gxIRkURSgBIRkUQqyyU+1YMSaVvZGy20yULagmZQIiKSSApQIiKSSAVZ4rO05VQHKqRCszpQlrbq+Fy/jGPTge0hFe6wtDWrBxVSQfWgRETKXKFmUDtCKgzM+KmNjy8KqdBUB8rSlk8dqEa3h1QYEFJhIKoHJSJSMdpliS+kQt51oDLaqh6UiEgFKtQuvk6Wtpr49eaQCnvUgbK07asOVO+M9gBHAXdktFc9KBGRClOoALUjXoLLdrqlrakOVEiF1upAvZzZPn4G1SSkwjRgmqVN9aBERCpEW38PalFIhdGWtuOBxZa2/a0D1Uj1oEREKkS7fFE3pMJGS9utwA0hFfaoAxXv4muVpe24kAqqByUiUmHaM5PETGCqpa1XSIXsOlB7c5ulTfWgREQqjOpBiUjelOpICqm1elBlmYtP5TZEREqfUh2JiEgiKUCJiEgileUSn8ptSCXIfg6URHo2JQdCMygREUkkBSgREUmknJb4LG1HATOAIcB7QC1wHfA80Rdnq4BtwPdDKjwQt5kI3A68Fp+/N6TCnS3ceyQwNaTC6Ixj9xOV4Jhrabs2/qzewJEhFd7K83cUEZEStM8ZlKXNgHnAMyEVeodU+DhwE/BRohx6g0IqnABcAkyxtE3KaD4nzrF3GlEuvR770cclwJlEX9IVEZEKkcsS3yigPqTCzMYDIRVqgFczLwqpsAm4HpicfYOQCluBl4Bu+XYwpMLKjPpSIiJSIXJZ4usHLM/xfiuAvtkHLW3HEi3ztZYY9vSschvHEhUnFBGRClXobeaW9X6cpW0UUbmNK0Iq1LXSblELz6BERKSC5RKg1gIX53i/QcC6jPdzQipca2kbBjxpafsNMIzd5TIuz7mnIiJSUXJ5BvU00NHSdkXjAUvbEKBn5kVx2Yw7gLuzbxBSYSnwIPCVkArzQioMjH/8gXReRETK1z4DVEiFAIwBzrK0vWxpWwtMB14nKtW+0tK2DngYuDukwqxWbvWfwCRLW5d8Omhpm2xp2wJ0B1ZZ2n6UT3sRESlNKrchUqKU6kjKRWvlNpRJQkREEqksk8WqHpSISOnTDEpERBJJAUpERBKpLJf4VA9KpLDaYkOGNlDIvmgGJSIiiaQAJSIiiVQK9aDuAxxRnr+NwMSQCtvz/D1FRKTElEI9qCkhFU4KqTAAeAW4dj/uISIiJaYU6kH9A5oCZSeg/FJfiIhIMyVRD8rSNgv4V+AF4N9z7IuIiJSwQm+SaKke1FpgE3DXPupBNWY4Hwj8KvNkSIVJwNFEpTzGFbjPIiKSQLkEqLXA4Bzv11I9qBOB04HvWNqOsrSNsbTVxD/NkgO2JqTCTmAO8Nlc24iISOlKdD0oS5tZ2v6l8TVwHtGuQRERKXP7fAYVUiFY2sYAMyxtXwfq2L3NvLelbSW7t5nvqx7UCkvbt0MqbMuxfwY8YGn7UPz6eeCaHNuKiEgJUz0oEdknpTqSttRaPaiyzMWnchsiIqVPqY5ERCSRFKBERCSRynKJT+U2RJKrLZ5nFZqejyWDZlAiIpJIClAiIpJIpVBuYzZRuY16YBlwVUiF+jx/TxERKTGlUG5jNlEC2v5E2cwv3497iIhIiSmFchu/DqkQQioEohlU93zvISIipackym3E9zgY+CLwlRz7IiIiJazQ28xbKrcxCugDXLGPchvZz6Cy/QBYGFJhUUF6KiIiiZZLgFoLXJzj/Voqt3GtpW0Y8KSl7TfAMCAVn8/peZKlLQUcCVyVYz9ERKTEJbrcRnzfy4GzgfEhFXbl0F8RESkD+wxQ8eaEMcBZlraX4wq504HXicttWNrWAQ+z73IbkyxtXfLs40yiHYNL4yKHN+fZXkRESpDKbYhIu1KqI8nWWrkNZZIQEZFEKstksaoHJSJS+jSDEhGRRFKAEhGRRCrLJT7VgxIRaXu1bfwoRTMoERFJJAUoERFJpIIu8TnndgKrMw5dCFQDvwQ2EZXLeMJ7P7WFttXxuX5Zx28HzgPeB14GJnnv3y5kv0VEJHkKPYPa4b0fmPFTGx9f5L0fRJSrb7Rz7rQ87vlboJ/3fgCwEbixsF0WEZEkatclPu/9DqAGOCaPNvO99w3x22dRPSgRkYpQ6F18nZxzNfHrzd77MZknnXOHA8cBC/fz/pcBc/a/eyIiUioKHaB2eO8HtnD8dOfcKqK6ULd57/+c742dc9OABqIS8CIiUuba63tQi7z3o51zxwOLnXPzgI7AvfH5m2m92i7OuQnAaOBT3vvyy24rIiLNtOsXdb33G51ztwI3eO/HAwMbz8W7+Jpxzp0D3ACM8N6/2x79FBGR4itGJomZwFTnXC/v/easc32cc1sy3k8BbiWabf3WOQfwrPf+6vbpqoiIFIvqQYmIyH4pVKqj1upBlWUuPpXbEBEpfUp1JCIiiaQAJSIiiaQAJSIiiaQAJSIiiaQAJSIiiaQAJSIiiaQAJSIiiaQAJSIiiaQAJSIiiaQAJSIiiVSWufjMbBuwodj9SJiuwFvF7kQCaVya05i0TOPSXKHGpGcI4cjsg2WZiw/Y0FLiwUpmZl5j0pzGpTmNScs0Ls219ZhoiU9ERBJJAUpERBKpXAPUD4vdgQTSmLRM49KcxqRlGpfm2nRMynKThIiIlL5ynUGJiEiJU4ASEZFEKqsAZWbnmNkGM3vJzL5e7P4Ui5n1MLMFZrbOzNaa2Vfi4//LzH5rZi/G/3t4sfva3sysg5mtNLMn4vcaE7MPm9lcM1sf/zczrNLHxcymxP921pjZz8ysqhLHxMx+bGZvmtmajGOtjoOZ3Rj//d1gZmcf6OeXTYAysw7A94FzgY8D483s48XtVdE0AP8eQjgBOAX4t3gsvg78PoRwHPD7+H2l+QqwLuO9xgTuAv47hNAXOIlofCp2XMzsGGAy4EII/YAOwCVU5pjcD5yTdazFcYj/xlwCnBi3+UH8d3m/lU2AAoYCL4UQNoUQ3gd+DlxQ5D4VRQjhjRDCivj1NqI/OMcQjccD8WUPABcWpYNFYmbdgc8AP8o4XOlj8iHgDOA+gBDC+yGEt6nwcSFKYtDJzA4CDgFepwLHJISwEPhb1uHWxuEC4OchhPdCCJuBl4j+Lu+3cgpQxwCvZrzfEh+raGZWDQwC/gh8NITwBkRBDPhIEbtWDDOArwG7Mo5V+ph8DPgrMCte+vyRmR1KBY9LCOE14A7gFeAN4J0QwnwqeEyytDYOBf8bXE4Bylo4VtF76M2sM/AocF0I4R/F7k8xmdlo4M0QwvJi9yVhDgJOBu4JIQwC/kllLF21Kn6mcgHQCzgaONTMvlDcXpWEgv8NLqcAtQXokfG+O9G0vCKZ2cFEwWl2COGx+PBfzKxbfL4b8Gax+lcEpwHnm1kt0fLvJ83sISp7TCD6d7MlhPDH+P1cooBVyeNyJrA5hPDXEEI98BhwKpU9JplaG4eC/w0upwD1HHCcmfUysw8SPaz7VZH7VBRmZkTPFNaFEL6bcepXwIT49QTgl+3dt2IJIdwYQugeQqgm+m/j6RDCF6jgMQEIIfwZeNXM+sSHPgW8QGWPyyvAKWZ2SPxv6VNEz3EreUwytTYOvwIuMbOOZtYLOA5YdiAfVFaZJMzsX4meM3QAfhxC+FZxe1QcZjYcWASsZvfzlpuInkM9DBxL9I9wbAgh+wFo2TOzkcDUEMJoMzuCCh8TMxtItHHkg8AmYBLR/3mt2HExszQwjmhH7ErgcqAzFTYmZvYzYCRRWY2/ACngF7QyDmY2DbiMaNyuCyH85oA+v5wClIiIlI9yWuITEZEyogAlIiKJpAAlIiKJpAAlIiKJpAAlIiKJpAAl0gIz297On1dtZp9rz8/M+vxOZvaHONt7HzNbbmbPm9mw+PxBZvY7Mzsko83Pzey4YvVZyp8ClEiRxQlJq4GiBSii7648FkLYCVxFlO7oYmBqfP4a4MEQwrsZbe4hym0o0iYUoET2wsxGxjOLh81so5ndZmafN7NlZrbazHrH191vZjPNbFF83ej4eJWZzYqvXWlmo+LjE83sETN7HJgP3AacbmY1cS2i6vheK+KfUzP684ztrt80O852gJkNMbP/H898lplZl3hGdLuZPWdmq8zsqlZ+1c+zOyNAPdCJKIt3vZl9GDgP+ElWm0XAmXGAFSk4/Yclsm8nAScQlR3YBPwohDDUokKQXwaui6+rBkYAvYEFZvYvwL8BhBD6m1lfYL6ZHR9fPwwYEEL4W2Z2C4B4Ke2sEEJdvIz2M8DF7QYR1dx5HVgCnGZmy4A5wLgQwnNxGY0dwP8hysY9xMw6AkvMbH5cDoH4sz4IfCyEUBsf+j5RMOpINJu6GfhWyPpWfwhhl5m9FI+PkvBKwSlAiezbc43lBczsZaIZD0SppEZlXPdwCGEX8KKZbQL6AsOBuwFCCOvN7E9AY4D67V5S5RwM/FechmhnRhuAZSGELXF/aogC4zvAGyGE5+LP+kd8/tPAADO7OG57GFGOtM0Z9+sKvN34JoTwClF6G+IgezSw3sweJEqH9H9DCBvjy9+MzytAScEpQIns23sZr3dlvN/Fnv+GsvOGBVouQdDon3s5N4Uo99lJREvxda30Z2fcB2vh84mPfzmE8NRePmsHUNXKuW8B/0FUYXY2UEuUj+3z8fmquL1IwekZlEjhjDWzD8TPpT4GbAAWEv8xj5f2jo2PZ9sGdMl4fxjRjGgX8EWiBMh7sx442syGxJ/VJX429BRwjUXlVzCz4y0qSNgkhPB3oIOZ7RGkzGwE8FoI4UWi51G7iALiIRmXHQ+s3UffRPaLZlAihbMB+APwUeDq+PnRD4CZZraaKMPzxBDCe/G+hkyrgAYzex64H/gB8KiZjQUWsPfZFiGE981sHHC3mXUimtWcSZSlvBpYEW+m+CstlyqfT7Qc+TtoKtnyH8D/js//kGgGdRDRjj7M7KPAjsblT5FCUzZzkQIws/uBJ0IIc4vdl/1hZoOA60MIX8yjzRTgHyGE+9quZ1LJtMQnIoQQVhLtPNzXUmKmt4EH2qZHIppBiYhIQmkGJSIiiaQAJSIiiaQAJSIiiaQAJSIiiaQAJSIiifQ/3mDnB0q6HKgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -918,41 +411,30 @@ } ], "source": [ - "plot_map_with_regions(preprocessed_data, each_img_enl[labels.index('5alb')].reshape(input_shape, input_shape))" + "# Proteins/haptens/peptides/carbohydrates (type_of_antigen: 0/1/2/3)\n", + "type_of_antigen = 0\n", + "compute_region_importance(preprocessed_data, model, type_of_antigen, nanobodies, mode='region')" ] }, { - "cell_type": "code", - "execution_count": 28, - "id": "c75b7dca", + "cell_type": "markdown", + "id": "86858115", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.19358166, 0.09423517])" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "pca.explained_variance_ratio_" + "### Inter-chain vs intra-chain" ] }, { "cell_type": "code", - "execution_count": 29, - "id": "306ff801", + "execution_count": 14, + "id": "f32e72ff", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e5wdRZ3+/9TJZDIZJsMkmUCAAANECBgkSAjBjXIRlUXwCyIL7oriDV3dRXRX/XlXvO6u6/2CsiquiqLoui6LKLhEjQoSJEqQcJMQAgQIISRDMiST6d8ffWb6U59zuqa6pvpcJs/79corfU53V1XX/fTU85RJkgSEEEIIIYQQQgghhBCg0uwEEEIIIYQQQgghhBDSKvBlGSGEEEIIIYQQQgghVfiyjBBCCCGEEEIIIYSQKnxZRgghhBBCCCGEEEJIFb4sI4QQQgghhBBCCCGkCl+WEUIIIYQQQgghhBBShS/LCCGkSRhj1hpjEvHvg81OE4kPy5lMNnbHOm2MOVE9c2KMGWh2ugghhBBSDnxZRgghhBBCCCGEEEJIFb4sI7stOX8lHv33dxMI9/Q64Z0YL+WEEEIIIYQQQggpC74sI6Q+HzbGTG12IgghhBAShjFmgH+8IoQQQkgIfFlGSH0OAvCGZieCEEIIIYQQQgghjYUvywjJ533GmJ5mJ4IQQgghzSVJkuVJkhj1b22z00UIIYSQcuDLMkLy2QvAW5udCEIIIYQQQgghhDQOviwjxGan+vzPxpj+pqSEEEIIIYQQQgghDYcvywix+Q/1uRfAu5uREEIIIYQQQgghhDQeviwjxOYaAL9S373JGHNAMxJDCCGEEEIIIYSQxtLR7AQQ0oL8fwB+Kz5PA/AhAK9uTnIAY8zBAJ6F1EdtNoBBAI8C+AuAW5IkGSk5/n0ALEa6S+gMpHLVDUmS/GdAWAcCOBbAAQCmA3gSwO0AfpckyZBnGPMALAFwYDWMjQDuBfDrJEl2FE1TThxdAA4FsABpvvcife5NAB4DcHOSJA/HiKvVaJcyEnHtC+AYAHsD6AcwhLR9rANwU5IkWl490fg6ADwHaXvYB8AuAA8DWJUkyeqYcTniHy2fOUjr5mi9/EOSJPeVnYaiVNvTEgD7IS2jXgDbkKb7TgC3J0myNUI8k6mvnHBYxphnIu3HRvNjK9J6cifS+poUTVdMjDF7IO1jD0NaL2Ygbb+bAGxA2n43NS+F5SHa8QDSdrwH0n7yUaTt+IEGpGERgEVI+84Ead24G8CNSZIMlx1/CMaYbqT976EA+gA8DeABACuSJHmoQBhLABwOYCaApwA8BOBXSZI8EimdBmkfvQDpOLgngKkANiOt33cAuK0BfVIFwLMBHIm0HxhB+qx3I53HNLUPIISQliZJEv7jv93yH4ATkU4O5b/Tq+d+rL7fBeAIz3BPrxPuiQHp6wPwEQB31QlP/tsI4D8BHB4QxwU6PHX+HAA35sVdMKz/B+Amx3NsAnAJgOmO9J4G4DeOMJ4E8AkAewTWiUXVNPwawI5x8j1BOtl8D4C+wPjWqvA+WHKdb/syEvFMB/B2AH8cp4y2APgRgOMi5N8sAJ+vtrm8+O4F8GYAU2KXM4DnA/ivah6OVy/fB6CnzPrkkd4pAF4F4BdIX4C40rwTwAoA/wxgTsF4+jC5+krvsHLS+gwAXwWwfpz8eLR63YEB+RFUpwEYAH8F4N8ArEQ6trrSOALgNgD/AEe/o+I4cZwwff4NeIZbc51H+o4B8H2kL01cabgNqQ1Ed0Acy1VYl4tznQDeBuB+R9xPAvgMgFll9hF10q3TcYE4dxCAbwDYnpPmXQD+B8ACR/gHArgM6Uv0vDCuA7AwMP2zAbwewA+Qvngcr55tBnAFgEWB8V2uwlsuznUDeD/Sl8558T+AdEwvXMf4j//4j/92h39NTwD/8V+z/uVMfEdflh2B2kn8jz3DnfDLMgCvA/C4x0RL/hsG8CUA0wrEc4EOp/p9H1JJqjNOz7C6AHy3wHP8AcBcFfZ0AN8uEMYdOoxx8mEagDUF81v/sHhpQB1cq8L5YMl1vm3LSMX1EqST/KLl9H2Ev9g8A+nLBd+4bgKwT4xyRrqC4rqA530UwFll1qlx8uvuwPb0dIF4JlNfWTgsFe4MAF9B+uKxUH4jXT1tCuRH4TqNdJWN6wXNeP8eArDMI54TJxDH6L8Bz3BrrnOkqxfAd5C+ACz63GcXbH/LVRiXV78/BMCfCsS9AcBRDew3dPwXVL//O6Srv3zSvA3AmXXCfjnSlZU+YewA8LKCaf8Iirc9+e8/UKBPqsZ5uQpjefX7w1Gs/70XwNJGlTP/8R//8V+7/KNnGSF1SJLkz0hXIEj+nzHm+DLjNSmfQPqXz1kFb58C4O8B/MwY0zeBNPQAuB7AX4eGIcKaCuAnAM4rcNvRAK6uyrZgjJkG4Gqkk2VfFgC4zhjT6Xn9VKQyoFB6AVxljLl4AmE0hTYqI1Tj+gekq6vmFbmvyjkAVlQlokXifCnS1WlzCty2BMAvjTGzi8RVJ+4TkK4yOiXg9jlI6+XbJpKGIlT7sPcB+G8A8wODGbdOTMK+ckJhVev0CgAXorjFRifSFSjfK9oeC9KL9IVZKPsA+D9jzDmR0tMwqpLaXwH4W6Sr64qwD4AfGGP+aYJpOBSpxcSRBW7bG8DyqjS/KRhjXo30DzHdnrdMB3ClMeavRBivR/qissczjKkAvmuMeV6BpC7AxOxtXgvghtFxNRRjzCFI61qR/vdgpOPxcyYSNyGETDboWUZIPh9A+pfIaeK7TwA4ocQ43wPgnXW+vw/pRO+3SFeL9CH9y+F5SCUtkhMA/Lcx5qQkzAvjy0hlIqNch/SH751IZXhzkL5YOt8jrH8F8ILq8U4AVyFdOXEf0tUM+yNdgfJKpD9gRzkGqcTuwwC+AOBkFcZPq2Fsr4bxkjphLETqP3eJRzolCdK/vP8GqU/XvUilfNuQTrT3Q+r/cTbsyagB8EljzB+SJNGbRLQybVNGxphXIJVBah5BKmW5Aal32B5IpWhnA3gR7B+nzwTwC2PM0UmSbPOIcwmA76F2vHwc6Wq865Cu/NgDaX14GYBTq9c8A6lsKIjqD7Wfo/bl0Xqkq+Ruqsb9FNI+4UikUtqTxbUVAP9ujLk/SZIfhqalAJ8A8I46328F8L9IXwjdjzT/upH2J0cj7cdOgP+8ZLL1lcFhGWPmIH3e/dWpQaRtcQXSfuxJpPX0YAAvBPA3SF8KjPI3SPPsHz3SO1F2Afg90jp8O9I6sRWpXLcHqY/XsUjb077ivqkAvm6M+VOSJHfmhP0YgNG63o3aF5C/ql7j4imvp/Cg+vLj50j7O811SMvoLqTPvw/Sevm3sJ97dHx5MkkSvWu3DzOQtr+9qp83Ie3XbgDwINLVlgcgldG/EnY77EO66ukFaDyLkb4AHmUlgCsBrEL6DH0AjgfwJtj51Qnga8aYI5H6m30J2ThwC9L+81ak/dCe1TDerMLoAPBVY8yzkuI+m48C+D+kUto7qmndgrT+zkI6Dr0IaV8tx8TjkY5xry8Yn0zzD5D6/wHpePwjpH8Qux9pOR+IVAHxMqQvFkfpAfBTY8yRSZKsC4yfEEImF81e2sZ//Nesf3DIMMU1n6pzzWnjhBskw0S6EqXeEv6Pw7E0H+kPnHoeRu/2iPOCOveN/lsHD8nLOGGNyk1uBXCY496/Qq08YjPSydzo5z8AONQRxnNR60PyBIAuj7T3APgzgIvgKQ1EOvE+H+kEWMZ5BzzlTGgBGWYbldFATj3/BoBex30nI/0xqO/7qkecnUh/7Oh7/wtAv+O+U5C+wNN57F3OSH/UPqTu24L0h+OUce49oc4zPwlg/5Lr19l18ipB+iJoXB8ypH4/bwGwdpzrJmNfGRpWBemLGN2mPwNgxjj3Hoj6/oIv8Yh3bUCdfibSF2SvBjDT8/k6ALwVtR6S13reP1Dn+U4MrN8n1glrwOO+z9e572EAL3Dc04PUT07fNwhHHyvuX16nTowefw3Ano57F8Huv0b/HRuSbwXzWMc5mu7tAF7puG8GgF/Wuf/1SDf3GA3j/HHC+HWdMM7zTPvXkL6UWwz/OcARSF906zi9JJGolWHKcv4zgGc57j0U6YtDHfdPyy5n/uM//uO/dvnX9ATwH/8161/OxFe/LOtH7Y+rVa6JEMJflv2uzn3j/oir3vtc1JrePg1g73Huu6BOnKMT+QML5mdeWKvhmJiL+99U597RH0h/guOFiAjjH+qE8Tcl16MlqP0h99ee965V932w5LS2bRmhvqfaVzyf+3DUN+VfNM59F9W552oAHR5xHoV8I/5xyxnpqg95z+PjpVfdP4Baj7XPlVi3elDfO+yNAWE58xeTt68MCeuNKowRCFN0j/unIV15JsP4o8d9awPqtLcnWp17z6qTX+NuuoMmvyxDKs3TL8s3AXimZ5xfqBPnjz3uW55Txz7tGe8L69z7pdDyK5DH9dK8C8ALPe7dG7V/vNohwni+Rxj7oPaPQtd4pj2ofiNd3aX7tCs97708J8/uQ9Uzc5z7ZyF9qabvPz3kWfiP//iP/ybbP3qWEeIgSZKNAD6pvj4KqUQiGlWp11L19S+TJPmYz/1JkvwawEfV151IfXlCeFOSJPcH3isZAfB3SZI86XHtfyB9uSCZKsLY4hHGV+uEcYLHfcEkSfJ7AJeqr4v4fzWbli8jY8x+SFewSe5C+jJrXJIkuQPAxXVO1ftO8kb1eTOAVydJMuwR5x+RSgULY4yZj9RfTXJhkiSrfMNIkmQtap/vtRPx6BqHN6LWO+wLSZLotjEurvydxH1l4bCMMVOQSqElX0yS5HLfMJIkeRrAK5C+VBjlWcaYF/qGUSCuZAL3/hfSnQ4l504sRQ3hItR6lP1TkiS3e97/VqSrlSVnGGMODkjLKtSXSNeQJMnPkb7AkRTx74rJZ6rpcZIkySNIJdiSUZnxp5Ik+YVHGA8j9UeTPNcYM+7vpdD6nSTJdqQSUMmZE/Quu7D6LOPFvQnpSk+d9jdNIG5CCJk08GUZIePzKaQrNCSXVI3RY/HaOt/pH0Hj8a9IpROS1wWk5c/VHyYxuLr60mBcktQTpN5k9n+SJLltAmEc7XPvBPmx+lzqRhCRaYcy0h46APDe6g99L5Ik+TZSqankPGPMHvWur27mcbj6+jNJkozndST5MlJZXVHeAnt8/n0S5jf2PaSrlUbpRro6pgz0i8uN8PxhXpDJ2leGhHUmUv+xUZ5GatRfiOqLVR33aUXDaQA/Vp9bup+tzhG0x9ztSFcDeZEkyU4A71JfVwC8JiBJH6+G54uuEwuMMb4m+7HYAeDfClx/TU4Y+o+eRcLoQfhmJV4kSfIHpDs8j9KJ1Bs1hOVJklxXIO6bUNu2XlT9IxUhhOzW8GUZIeOQJMlTSE3MJQfDNp2dKPovtrcnSXJzkQCqLyH0X0T3M8YcVDAt+i+zE6HoD/x6f22faBgT2X3NlwfU52cYY3obEG8M2qGMdPvYhNT8vChfV5+nIZXR+sQJ1O6Q6yRJkl0AvlXkniqnqs9XBISBJDWtX66+jr46xBhzGGrN5S+rrpiIzWTtK0PC0vXkp0mSPBEY//+pz81aReRC97PH1L2qdXg2andfvDxgBdL/AtigvntuwTCeRvE+U/8RZQpSmWIj+U2SJPrZXdQbn1ZUV51NJIxmzCNC63ehcarKN9XnCmo3RCGEkN0OviwjxI+vIPWAkLwvb1VKEYwxM5Hucibx/qug4md1viv61/ebAuOOEVa9VTsTDaPwSytjzAxjzCuMMZ83xvzSGLPWGPO4MWanMSbR/5BKAjX9db5rRVq6jIwxBsBx6utfJcV3JwOKtQ8t9bsvSRLdB/gwrvRHYozZF7WrGFYGxDvKevVZr5aLwYl1vrs6diTsK2vQ8uVWrycWxph+Y8zrjTFfMcb81hizzhjzhDFmOKef1VK8WVUpaqtSrz4Vrq9VWbJ+mbnYGFNkR/tVRVbiVqn3gmnPgmFMlFYYn4CC8wiT8lxjzCXGmB8bY9YYYzYYY7bVq9vV+v0cFcycgukepdCYU+X/UCvF1OMuIYTsdhQZaAnZbUmSZKcx5v2wV4nsjdRP5CMTDH4+aj1N/hAYVr37Di0YxprAuOsxrmeGYrDOd0X+qlwvDP2X/VyMMXMBfAzAywFMxC8EAGZO8P5G0epl1I/avAxtH/cgNYCWP3zy2scC9XlVYJxF76snvVmRvjOMwuxYAQmOUJ93IryMXEzmvrJQWMaYHgDPUF9/xBgz0fFolC5jTHeSJNsihTdG1ZPvXwGcgYnPQ/uQbizRiujyeRr1Vy358AfYXqndAOYh3WjBh6L9PJAa3Wu8x9NItML4BHg+d9Xb7EKk0tmJrkYLmUM8kSRJYel/kiRbjTF/AXCI+FqPgYQQstvBlWWE+HMF0h3/JG83xkz0x2e9CZH+K78XSZI8DmDII3wXm0PizqHeZNtFPXnKRMPwestgjPlrAHciNbud6IsyoPE/KkJp9TKK2T4SAA95hF/v+5Afm6jK4orIEctekVjGS1zdBz6aJInuh2IwmfvKomE1YuVq9LpijHk10t13z0KcP9i2cj+r8+8Rn81BcqhXz4uUj8/mK5qROt81+ndDobElR+IaI4xxn9sYMwvAb5B6VcaQbYbU7aBxqorv2EgIIbsNXFlGiCdJkowYY94NW17UC+DdAP5pAkHXm5CETGxHeRL2yx69Q52TqkdbFCay+1nMMMbDGHMSUjPjaTmXPInUT+RRpD+wh2C/8OkG8Nc62MjJLIU2KKMy2ockr330RY5zuue1Zaz8ksTcmGQUnebNJcQBTO6+smhYZdcTIHJdMca8AsDXkN83bgTwIFIZ3NOofZk5B7Veaq3cz+r6GrPfAorV19LH0ZKIke5GzCG6kUoZj8q5ZAfSuv0ggKeQ/gFll7rmBNgvwUPqdsw6xpdlhJDdHr4sI6QASZL8rzHm17DNdd9sjPlMkiTanNWXehOimJO7dp0kNwRjzDQAl6H2RdmfAHwewC/G86qqGoP/pZwU7va0SvuYSJxFfvR01vnuRxOMX6J39i2DsvqcVqkLrUC9evJrxC3faC8DjTFzAHwOtWW4AsCXkO7g51wVU/2jhvbuamX0s8auX+1UXyc770bti7Inkfrd/gjAH8bbidQY80tMfGONRo1ThBCyW8CXZYQU5/9DutR+lGkAPoSwrdyBdGc/zURMdPW9obuj7S6cB9unA0hXP7yxgGSm0abHuxPNah+bkfoSxoiziDl0vee9KEmSBycQf9loz6iyViSwr8yolxdfSZIk5g6dMXkTauvFh5Ik+WCBMNqtn9VlFLOuAu1VXyctxpjpSP1rJfcBeH7BTWFi1O+Y4xTrFyFkt4eeZYQUJEmS3wL4ifr6lcYYbXLtS70JyX4hAVX907TfFic8bl6iPq8F8KaC3jLtsvNlOxKzfRgA+3qEX+/7fQLj7IO/BBNIpWiag0PibiD6Zdle1RWbsWFfmdFu9UT3s78t+KIMaL9+VtenvQvuYCmpV8/bqb5OZk5BasUgeWPA7skx6nfQOFXFd2wkhJDdBr4sIySMd8M2v50C4KOBYd2D2qXz9XbE86HefXcFhrW7cLT6fFWSJDsKhnFMrMSQGjaidtIe2j7mo/av53ntQ+9OuCgwTl2/xuPOOt+dEBh3o9A7/E1FOW2CfWXGJtS+MGvJelJ9Sf0s9fUVAUG1Wz97t/o8DbU7x/qin30bAje3INHRffxjAK4rEoAxZm8EvvhXzDTGFN5cwBgzA7Uv22Pu9ksIIW0JX5YREkCSJLcD+Jb6+kxjzNKAsJ5A7aTkBYFJq3ffbwPD2l3YS30O8R57foyEkFqqmwfcqL5+njGmnmfTeBRpHzepzwdVvemKcnKRi5MkWQ1gg/r6/wXE20iW1/nu9NiRsK/MqLaLX6ivn2eMaUVT7tmotf0I6WcLtaUq9XZ0bJQ3U736dErRQIwxUwCcpL6+eQI7a5K46DnEfQGb3sScQ4S0k5NQ2y70GEgIIbsdfFlGSDgfQLpjl+QTgWH9Sn1eaIwp9Fd0Y8xUAOerrx9IkmRtYJp2F6aoz4VkMsaYQxHwA4gUQreP2QDOCAhH+wo+DeD3Odf+ss53rygSmTGmgto26cPP1efFxpiWrWNJktyFVL4seX3Vyyc27CszfqY+T8XEdmYuC93HAsX72RcAODQg7m11viujXtbjVgCD6rsLAsI5DbXyOt0OSPOY0ByiyptjJKRKyJjzSvV5BLY3LyGE7JbwZRkhgSRJcj+AL6uvTwDw1wHB/Ued7/61YBj/DGCuR7jE5jH1uais67PgLlJl800AeiexjxRZXWaMeTlqpUxXJElS78c0kiT5HYA71NdvNcYU8ZV5I4ADC1w/yqdRKzf8bFUq06p8Tn3uB/AvJcTDvjLjuwD0DpIXG2OObEZiHGzEBOSz1Xb+ycC4n6zznfZmKoXq7offVF8faYzRLyZyqXqcfUx9PQLgGxNMHomHnkMcXuQPBcaY8wA8J2J6TjbGeK8uM8YsBnCW+vpnLb6pDCGENAS+LCNkYnwUwFb13euLBpIkyUrUSjZONsa83ed+Y8xfAXif+vppAJcWTctuyB/U578xxuzvc6Mx5gMATo2fJCJJkuRhAD9QXy9A+lJpXKqr/z5b51S97yS6/cwE8LWqLGq8OI9E7Y9cL5IkWQXgv9TXRwC40hizR0iYxpheY0zIigNfvopao/9/NMa8sWhALhN09pUZSZIMAfi4+noPAD8xxugdfr0wxkwxxpxb3ZgiCkmS7ALwJ/X1hT4vf6urM7+MWs8z37h3onbV47KQsAL5PGpfFH7KGHO45/2fBLBQffffAebxpDz0HGI6gL/3udEYswjAl2InCMBlVR+08eLvQ/riVf8eLCNNhBDSdvBlGSETIEmSjaj9i/fUwODegtrVM/9qjLnEtYLGGHM2gP9FrbTkg0mSPBqYlt0JvbNpN4CrXSa5xpg9jTFfBvDB6lf0jimfd6N2lcibjDFfNcb05N1kjDkBwP8BmKNOfSVJkj+OE+elqDWvfwmA71d3U8yL8ySkUso9q18V9a8BgItQu2rorwH8vhq+F8aYxcaYTwJYh1Q6XgpJkjyF+n8o+LIx5ks+K/KMMX3GmDej1hhdw74y48tI67dkAMBKY8xrqpLTcTHGDFRfON4F4HsActtUILqf3RfAj40xsxxpmgvgKmTy6dB+Vnsv/a0xpiE+gEmS3InaVZezAVzvWv1jjNmjOsa8RZ0aBPCOuKkkE+T/ADylvvu4MeZvXDdVz9+A9I8wQJx5xOhYczCAXxhj9ItWGf98pBsR6Gt+niTJ1RHSQgghbU/oFtaEkIxPIfWb0CavhUiSZGV1pZJejfI+pJP77yA1On8E6Y/wIwCcC+C5dYJbjuLSpN2VbwN4P2y53LMA3G6M+U+kk8kHkPaX+yE1zz0X9jbvH0H24oyUQJIk9xtj/h61u+i9HsDpxpgrkNb7h5GurpkP4GykL5i0THYNgLd5xLnDGPMaACtgvwR/KYATqm3y+mqc0wE8A8DLkK42HI3zf5H+GCkkx0yS5EFjzJlIvdO6xKkjAPyfMeZWANcCuBmpDGgQwAwAfdV0PBvpChoZr949MSpJkvyXMebfAOhVXn8P4BXGmKuR5tdapLs5diN9ifksAH+FtG2N+3KHfWVGkiTDxphzkL4Qmi9O9QH4GoAPGWP+B6n/0IMANiOtq30A9ke6k99xKL5ra1E+B+BipHV0lJMB3GmM+QbSev4w0rq+P4AXIW1Lo9cnSMv7/QFxfxtp+Y8yFemLuocB/BnAFtRuBPD3SZJoeV0o70RqoC5Xx+2L9GXGzwD8EOlLykGk8uDnIfVHrCcXvShJknsipYtEIEmSLcaYzwF4l/i6E+lK4NcD+D7SP7psR9rfLQJwDoDF4vr/QzrHeN4Ek/NbpOPfIgDPBHCLMeZHAP4bwP1I6/n+SDdg+RvU/uFgC4ALJ5gGQgiZNPBlGSETJEmSQWPMR1D71+OQsD5elaa8S506BP4/EpYDODNJknq7gBFF9YXI+Uh/xMtVKT0A3lT95+LTSH1pPlhKAskYSZJ8t7rb3+dhr4zeB6mxuY+5+WoAp+Z5ldWJ8/dVv7PvwR4zZyNd/XWR4/Z7kRp6r/SJKyfu5yH9Ma2lwUej/BccIbwT6Y9C3V/NAPDy6r8Jw74yI0mSTcaYZQCuROqbKZmH9GWllyysLJIk2Vh9cfA9daof6cvV8WS0FyOVcoa8LLsG6c6hesfBfVBrnD/KP6PWiyqIJEmeNsa8CMBPkb7EkLyo+m/cYAC8LUkSepW1Jh8B8ELU+mKegvE3ALoLwHmotRoIYRjpS7DfIR2jOqthn+dx7yCA06p+vIQQQkAZJiGx+AqAKB4iSZK8G8DrkK68KMIupD4TpyZJUs/UmOSQJMmvka5CKpJvwwDekyTJuCuUSDySJPkSgDMBrA+4/fsAnlvUuDhJkh8irR9FfjzfAuCEqlQ7mCRJbka6Suw7SNt4KE8C+NFE0uJDkvIBpKuCQn90aUlTXlzsK6skSfII0h/lH0K6OiSUYQD/g2J9oRdJklyJtLz0LtIutgF4TZIkwX+Mqr4M/RsAPw4NY6IkSbIB6aqh76C4LPshAC9LkuQzsdNF4lD948uLUXwHyV8iHZNirWJEkiR3AzgRtV59Lu4D8MIkSbgDJiGECPiyjJAIJEmyA2F/8c4L72tIV0h8FOP79zwO4FsAFiZJ8uYkSYr8ECFVqh4dRyHdFc+Vh0NIV0c8O0mSIAN3MjGSJPkfpFLDd6DWOFyzFelLoqVJkpybJMnmwDh/AuBwAF9ArZG9ZC2At1bji7KbWJIkG5MkeQWAwwB8EemKNR/uRyrFOwfA3CRJGuZ1VH3BeCjSlZm/w/gv+p5GuvrnzSiwWyH7yowkSYaTJPkgUunte5C+sPV5wfoE0jbyRgD7JknykiRJ9MY1sdL4NaTysx+Mk7atAC4D8MwYq6mSJNmUJMlZSFf+/AvSlcQPoL4EsxSSJNlabcfHIn3+8V5I3o7Uq/EZSZKU/qKbTIzqC+uTkK42Hu8PBX8A8CoAJ5Xhl5gkyWoARwL4MNx/5FmPdFXcwuoO0IQQQgQmSUJ8hwkhjaS6s9lRSP0uZiNdLv8Y0h/NK9tdRtRqVLd9fw7SFzKzkP6YehypXOL3SZJsb2LyiMIYsx/SH8F7I5V1DQF4FKmp/Y3VHfFixjcVqcfWQUg9hnYh9VtalSTJbTHjcqRhHlIZZj/SPmEa0hcMTwL4C4A7JrqqLSbGmD2RemPNRdqPdSHrx+4E8OcY7Yp9pU0135cgbRuzkcphn0JaVx4AcAeAB5ImTAaNMb1IffUGkJqcDyNtt2uQllXUdttqVHd9PQ7py805SD38HkeaB39IkmRdE5NHJogx5plIXwz3I/UG24r0jykrY/0hxRhzOdKXbqP8MkmSE9U1FaTj47OQ1rMRpOPV6HyGPwQJISQHviwjhBBCCCGEkDbC52UZIYSQcGjwTwghhBBCCCGEEFKQ+cb47RrV4jwM/CxJklObnY5Wgi/LCCGEEEIIIYQQQgqyDcAbmp2ICHwwlY0TAQ3+CSGEEEIIIYQQQgipwpdlhBBCCCGEEEIIIYRUoQyTEEIIIYQQQgghpCAGXIE0WWG5EkIIIYQQQgghhBBShS/LCCGEEEIIIYQQQgip0jYyTGNMcswxxxS+75ZbbkHIfY3k/vvvx4EHHjihMJ54wv48bVp23N3tGcjGjfbnmTOz46efts91dWXHFb5zjcLISP65JMmOn3zSPrdjR3Y8Y4Z9bvr07FiVk4xu587cyzB1an6ydkuGh/M/y4YHAMaUn57dDdkWADuPddlMmZIdy3YCABs2ZMeykj/2mH1db2927GocfX3ZcWenfV1H5KHW9Zxl1zndT8n42rG+u/pdWd67dmXHssN03QPY9VWWk4vY9WUyIPNR9wEheRwjHUBYnXeF8cAD9rn99y8eftnoNuNqD7Iv3Lo1O968OT9M2ZcC9nzTd4wdGrI/yzYV2r5kGnW8sfs+2d9oRB8ze9YsPL5p09jnnp6eExYvXpzUu62h6DoucY0h/D0xaVm7di02btzYhpMEsrvTVjOylStXFr7HGBN0XyO58MI34NJLvzKhMH7wA/vzM56RHT97kePHgOTyy+3PL3tZdnzPPfa5BQvGDke6srdxFdhxjTgWL+pr83CF4cIVvgzTNx0uYjxnzeROIn8c/8//2OcefDA7PvFE+9zChdmxnHAC2DaUpVm+N1CXYe7c7NhVvo3Mb1f4RQhKi36pLD/Pn2+dGunIfiiU8dxWXDHqYMnoNMp0+ZZhZVi99JI/fHTZyB9d69fb5z7xiexYVvLLLrOve8ELsmNX4zjzzOx43jz7uv7IO3HrH5o9PWOHss7Fwqo/JfwIDa27ef2Kq57V4Op3ZXkPDmbHssN03QPYfbcoJwB2fsnrCtSXdmj3vjjLTeaP4w8WIz291qmQPkaTmw7AKkPvsnCEgYsvts995jNe4buIXg90m3G1B9kXLl+eHf/4x/lhnn66fU7MN73H2DVr7DBkX61fxjmw+pihbdkJ1de5+t2gcW5wS/5J3cc4+t2QOhOlvug6LnGMIa7fE5Iifbx3npc8hw1tv5JW7dN9+r7FS5Y0KjlNg696JycsV0IIIYQQQgghhBBCqrTVyrLJikEy9uY9dOXFkUfan49YIP76IP/qp/9iLf/6Jv9yrs9paZL4a2FF/JUrxl9ONL4rBkLjDlkdpa8NXSVn3af/WpjHy19uf5Z/wSuwskNG57uQITT/Y6wiDP2LmiuNQX8t1H+Vln8lVauXKgMD9a8DrAKI8VfLGHWw0IqcgPCLkHef8y/4umxk27jqKvucbCtyxc+xx9rXycbhal+yQYWuXAitgwJnGLqPl2n27Tv0dQGrGsr+63ihfty333WtlJDoFS2SZcvsz75xC0L74HZYgeZMh6xnuh6LzxW1ei/GnMRqo3pFUUAd3zRo92Gz+sS1n/xk7n2hcyFXHxPU/+i2IOeYrj5GrnzXqyz/7u+yYzluAthyykvHjjtU1F153Y9cjTYBrDxxrKKNsbLJwtU3uFb3qvtit23v8d01nuiyF/XJWr0X0D/Wo6HzGMd83LeO6OYlbXZmzsyu6+xQ4QX+FghZoa3PuRb+dscpRkKaBleWEUIIIYQQQgghhBBShSvLCCGEEEIIIYQQQgpiwBVIkxWWKyGEEEIIIYQQQgghVbiyrAVIYHI9DXy9DrQ9g6VBl7sAiZ2VADi9DrBiRXasd3eTu7FJ/5wCO7GF+GiUsQtNqNdEyA47pewy5PAp8PUjkRYSNdfJncY8d3zScfumo2y/LlfWefsqaC8I2Ta0l4hsJ2oHw5GBg8eOY/uG1QtnomFE92QJvM/yNNHceKP9WfqN6V3mLr00O5ZluHatfZ3sP3UfKXdtk2E0cVdI533aT0juQubZd2vPplYh1PcvaAdD7bkj8/Xuu+1zu3Zlxzt32uemTs3SccoL68c7ThpjjFG+effIY3Z4N92UHcumJpsMABw8EMHTU6LzPzKhu3rnjXkaXQ0sIu9sCIT5WTrv0fkvd90e79pRlC8Z3vrW7HjpUutUb1e2A7JvP1WkL/W+NrDvC/HWdc61ehrbB8eeB3vj8HmN4r2niOK57Ngd13fuOzxs3/fII9nx3nNEGK7dvwuQl64i+ejaFLsML2tCGglrMCGEEEIIIYQQQgghVXb7l2VTpkzBokWLxv6t1asKAFxwwQU46KCDxq55znOeAwC4/PLLUalU8Kc//Wns2oULF46FMTAwgCOPPBJHHnkkjjjiCLz3ve/F008/3YjHIoQQQgghhBBCSMlUJsE/Uktr6ikayPTp07Fq1apxr/u3f/s3vOxlL6v5ft68efjoRz+KK6+8su59N9xwA/r7+zE4OIgLL7wQF154Ib75zW96py9k+ba+z0JJwbD33tmx3P5bf9Zb3ucsR48l1YohVwyVNOVdF0NqFkWGqfPesWezSzLlKx+RYdRI4KT8SG9Z7imVCV3Gn3efK491drhUFXlbeWtlQG+PQ6Yh80TqlABUNj6afRDL53WZhdbjkLoWKl+TedLdFXer+hrWrMk/p2UIUqZw9dX2OSmbfPjh7Ph1r7Ovk+Wh9WWqTEOI0cfkhVeDzp+SJZVR+jtBjPzRUmxJZ4dD2uMqa9kPHnts/nW6/uQkpoh8J0jKHNjO58yxz0kVsm89dj2bd7p0vXXIj4IkcAXyNCT/dT76EjJviXltLmKs9x7PdZnJz9r2Q85BWmRu6KrHzvCHd+Sek9JLX1uLetdOlDLyx0LbAcgJhGzb99xjXyfnU6qOVOQ5bZfgSex8rJkvy8UYen5s2dn05gcq8271avuclC+XMLZTTkl2V1jzJ8jpp5+O22+/HXfeeafzup6eHlx66aX48Y9/jE2bNjUodYQQQgghhBBCCCGkCLv9y7Lt27ePySvPOuus3Ove/va3j133d3/3d2PfVyoVvOMd78DHPvaxcePq7e3FQQcdhLu1ATAhhBBCCCGEEELajmZLKCnDLAfKMCcowwSAv/3bv8VHP/pR3HfffeOGkyRJ0SQSQgghhBBCCCGEkAax278sq8erX/1q3Hrrrdh3331xzTXXjHt9R0cH/umf/gn/8i//4rxu69atWLt2LQ499FDre4MkVysfRSMufVGkRxkAHHlkdqy38pb36S2Kc/xbYvmS5fl8hXop6PtCwi8SX6m4vOV0uUiPnAD/snFx7RctiFGPY3jGaVzPLW00pE2WtolYtiy77+CBAl2qLCuXkVJkYtVxea5bWoQ4tnsvEleu19+CBfaNMu90XNLzZNGi/Milf0gZPl7r12fH2q9F9LuVQK8VbyKEH6P+xPI+CemDfX0KXeHXXCfrj66fsj0on6Y8jyLf8cqVxkZg+S+J53T5VYamN9bY70OoX1QMr6cY1KRReieV3cf4IvtEoHbcyKEMX8cYfmC+6dqBztxzsmsqwx/Kt34WaU9Bc0fdP8jPcsx+7DH7usMPzw9T1OtWaYc1bU3+xtJzPpEHw2qKYP38mifuu+MO+8LFi8cOQ30vXeUpi+bQ+WF1hJB2hC/L6vCNb3yj8D0XXHAB/vVf/xVbt26te35wcBBvetObcOaZZ2LmzJkTTSIhhBBCCCGEEEIIKQHKUz2RnmWLFi3Cjh32jjadnZ246KKL8Oijj1rfn3TSSVi4cCGWLFmCAw44AF/5ylcamWxCCCGEEEIIIYSUgEHz/cboWVYOu/3KskEtianD5ZdfXvf7Cy64ABdccMHY54suuggXXXTR2Oe1cptgT6ItH5ZL2uVSYC21zNuyGbAlI3rLe0ngtt5bBrNndag2nBIUF7G3iW+ZpcR6y3VZvjojAyRlzud01ZEI4ceQQISGoa/r6srCmT8/+16rRVasyI7XrrXjXro0k1x0D6m+RpabzFe1PL/iKW/1lTG6rnPhna9KehC7HdZIGzZvzr9W9HcjXd3WKUuaFCgh9pZgqW3uQwiW5cgxTpdNR74kKI8i9ce3DsbAd5yIIQN0tjWXxMgz/EbjLfPU8yVpAeCq4655hucYFSqHC7YY8E2H7K8d7SmGjDT4uiZKL33HCSxblh1ruXJAuZXdx4RShsq/kflT+jzY1Y/ItqZljNZvHnusl8T4PRHcFznaobzW9WjWyccfty+U/fH8Xq80Av59pJwH+4ZHyGSALxEJIYQQQgghhBBCCKnCl2WEEEIIIYQQQgghhFTZ7WWYhBBCCCGEEEIIISFwBdLkhC/LWoAEJlcnHqz9zvNAOvJI+7r+/vr31PucQ6iPg6eVizMuyy5EJTf2lt+NJrdOaN8DTx8EX08rJyqTXT4LEtuyxn4ul51KjLIJ8XzR1/b0ZOcWLbLvk01Ibq1dE37frNxzlWGxYcj69fZ9Awfn3ifzfONGO/0um0FffP2oXMg0dg5tsU/KTkBXoLz+R3mU7ejJ8rWzQ5Wv9FMctjdlie3jE+qNFJKPzq5Ze7jJGyM8845hO71lePDkEcO3arxr8+7zLd8iZZ+XriLhl+4Pk+d/Cvib2HjWu2ierTlhWmGo/kb69xUadyL4gob6KLnCzMPX0610TyvtTbVxY3ZcIE9D2lAM79tQ78+yidFOQsOP0j/LvkL3Ly7PMked8a0jsb0ui9wjr+3rs9Ml55x/3rjX2PERaq5YY6graGjbJmSS0Rq9OyGEEEIIIYQQQgghLQBflhFCCCGEEEIIIYQQUoUyzBYneOls3pJk17bMnukA8neCD5XkhC7fjiEBqpFnxY7AQYyl76H3+cqKfON2ZZVLcttM2YBv+C6JqWxS+robb8yOtXxzVp9Il8y8gQHvNMrbtOyyMril7oUjalv1GPXAdZ9VL1RFsO4TMihn3H191rknHsuOZ8yw0yF3Uj94wK6g24ayayMrMoPlFxqZP95dkcqf2LjSUbY0yVc2Eyv/Y97TSuEXwlPmH4ocfytaQizrsmcDCLUUcIUhnzNUBuvqZ+W5LYP2uRh2FXly4po0yjEjJOJx0uLMK+ln4MBKI2DXz5KtQ0JleiHx6aYgHy1S0ViE2gjEwDs+OUdQ8wWrjus5fYR60cw+Wc7trGbyiU/YF4qKUZNeORlSk8UYEk0CGHAF0mSF5UoIIYQQQgghhBBCSBW+LCOEEEIIIYQQQgghpAplmC2AQeK19DXGLlsupCwJsDcnkscAsHZtduxSkMnNbLq7wnYitL6PtLw6N3/02nexrNklXwuKC/7SjDIkh1EkNJGlnLHTBMC5Q5B9n0LUrQ6x5F9XOSm91PVfftbJ+MOqLEbZTrTEwrUZnbXTpN4JUhJbZ6goY6fAwUE7hjx+85v8MHbuzI43b7bDWLBAht48CUrZxOg7QmUasSUdMfqRGGkqQ8blu91p2f1s6DxD7pJqt127HU6dap+bVYKkLIRW6QNiSOyCrQd6eqOHGVInnfesWWN/FoOnc8fpyOUba56Xhx6ynfL3oW3ZB71DopzDzt3XK40uQuep8jrdP0iF4J57Zsd7Tw+U3EaQbLfqPEDO83R9d5ahkF761t1QyXmr5h0hoewWL8uWHX9Ms5PgZNq0cn/IEkIIIYQQQgghJD58TTg52S1elq347OJmJ8HJGz67ttlJIIQQQgghhBBCCCHgS1BCCCGEEEIIIYQQQsbYLVaWTVZiezBojwS5u7Daadjy+5FoqwBP6wB/yvBykWHKrerVOdd28t5xBRLsQVLy+/BmehN450kEvy5XW5PVx1XfdTIWLgy7Ly/uGqRXicMPxrcMG13Wvt49p57qd52rb4r9bGV4ZoX6woXEV3b4oYTmq7wvRtnE6o+tcCKMbY0uGxmfaxh1h5H5QVb6+73iKsNrKLTsQ+IL9f0L9Q4sm9D6GYQ2Bs0ZKGKUkw4nhtefb90tNG2RF+v8ccxh8+J2EaPe6SKTSba7wfxJQIyxoEgdaWT+uMKM0Q/WeD9LnztRGGX7FBLSLvBlGSGEEEIIIYQQQkgAptkJIKVAGSYhhBBCCCGEEEIIIVW4sqyN8V0yHCov6HTIlORS6djL1PW1jZSSVAroRsveaj4kD4qko+z0tyIxlu67GB7OP+crUY4lMdpdyjSCytZJGf3bRMMoQ4ZWtsykkTKWdqn7jZTJt4M0puz8aIc80LRLXR6l9Dx2SHVdcTez7H2l0qHzPOtzRyfKJEZ91M/Z0dGcOt5omxLfuYSvPFR/L+efQ0P2tZb0VU8+580rnK4yrCYIaVXaaxQmhBBCCCGEEEIIIaREuLKMEEIIIYQQQgghpCAGwJRmJ4KUAleWEUIIIYQQQgghhBBShSvLWoAEJlf/HeJnAIRp8YtsO593LjSNjfQl04T6RISWjW86ZHy+6W/0Vs++XhyS0Hx0+nR4xDvRa30oYHlXSp2ZaPiuOhi6HbsvoV4ZZfj5+aQjNMwytrx3heGMb2hbdiwNT7T5nqzYupJHNo0L9V30+T5W3GWMc9Z1wzvsk7I8HOaHof6kZXvlhdZr33TF9s8p8pyxx5Ca8PKMMFU9iNEHlz0Pc/bjss6rZ2sVr6QYY02MvqlsX8cYnphl9BUh1xW5L3b/X2gslteqNm95Ka9YkR1bRmRA54IF2Yeu7ty4avswcbz6TyIMNbYLv8CKPueY/I6U7KNHSNlwZRkhhBBCCCGEEEIIIVW4sowQQgghhBBCCCEkAK5AmpzwZVkLYJCMLcH1lZoB5cuPYsiWYodRSGKnpSwSuWR4/frseONG+7qBgey4b5Z33JIQGY6LWHJcb2nD+nXZh3vusU+Kpdg1y7L7+rJjsTV1RS/X3rw5O9b7Xc+dm90nJGMAgMHB7FgsDy9jO/DKxkezD2vW2Cfl0vcNG+xzMo3yOsDOH990uCQ6Mq7A8KPknS5DWd5aUiTrjyrfESEj2DGcpauI1FUSQ+IVKnt1SuzEA7nSZGerfZ1sepUND9npkv3b/Pl2oLIuy+O997avO/747FhJPxopiypbCuwtQ86TxiGS5ES3Id2vSGSDEP2sTksZUntfnHVEtgc1/lZE/x9lfJTltnatfU42IhEvgCCpqwuXlLPm3PLl2QdZvmo8iSFVd6XRRWVwS/ZBzxFkn6P6Dgs5fum5hBwnGjyH8qWMeUdIXGVbBbiw6oHuI8V8xNdypAw5dBnl5GsJIvs65zih+//rr8+OhQxz+NOfti7r+OMfs+OFz8pNS016ZXyXXpod63Y4e3Z2/Nzn2ueWLhUJyZdRE9KO8CUoIYQQQgghhBBCCCFV+LKMEEIIIYQQQgghhJAqlGESQgghhBBCCCGEFMSAK5AmK3xZ1uJIrfe2Ie1TU9wrJpbOP89XoJDPRclbRDu3Mpbpl/4k2mchwKsk1BNBW07l21HZ4cvk60eO4e8h/cBqvHOk35jyQ/rzxr3GjlddlX2/eLEdxKEDwsfE5Wmiy0b6LMgM6um1LvP1sNEeEtLC6YgFIg+075PME4fXSinIAnd5lFn548hjhbevncxj1zO7DMfUfdLfo8PlveTyunHE59tHymrm6nNzb4Ly8yuQJpkW2dS0taKskt26jYo6vm7Q9l28dvVzxo4XL86OFy3KT1chjzKRD86cE/kT2n/a3YMdRqjPncQaM2IEqJB5t6PL7sMwkH3uhKcXpyKG31joWOwMQ6ZZjjWKKL43Mi7pR+q6LpAi+e28VqZTedKFxjdRaspCjinamzNnPKgJQ45fDk/ARtPIfHVh+YHpAcDRhmq8ZKuU8ly+cws12a3IwU2mt+z+wIG2DXNNa7x/A4ly0lV8w4bsvnnz7P7/BztfOnZ83qezPE6+ucgOROajwtUHj4g584b3fmnseF/Y/qdWPVMZIufP+tk6O+hZRtqb1hgFCCGEEEIIIYQQQghpAfiyjBBCCCGEEEIIIYSQKpRhVtnw+DZc/Knf4uY7HsO0qVMwsM8MfOZtx+OoV/wQCw7sw9COXZjRPRVvftkz8aoXHwoAuPzqO/H2z9+E/ebsgaEdw3jDWYfjrS9Pt+u99Ed/xhevuh1TKhX0TO/AV9/1PBxx8My6cScwXkuigxVdYsl2RS1rjrEU21reO6wkIraGyb7PsXVy3rJmX5kSAPT0ZOdcqoodyNLRMXBwbjo0udtF6zwQke8YzpcHuVawu87JJc41aRLrobcN2/kti8al4Ns01J3dM2+JdW6ukFTqvJLqSikV1fXYtx7UZEKOtM1VR2qXh+dXDKl+yZXt6nTp8GSlXLnSPid1nlKbqqU2IowdC+ztwKXiTisWurvq5100eVDOdUW2rreuDZVAez6bS9kj25COa3g4IA9cnbXuqKSkRpd9V9b2ZPk61b5aPyLyUe5ADwDXXlv/Nlk1AWDBguzZtHpNVv9O3xlFgDwWCLcRkDz2mP156tTseFafX90tIkWV1/rWz7Vr7XMrVshPdn95yinZsUOl5ySGpMk3T/R169dnx6tW2c+2cGF27FJNusKX9fp738uOBwftuC76hxF50jo3oqT9Pukogiv9n7v20LFjqXCU5V4kHTHakDMMPc/ztOywwgiUE4dagvheG9u2xIkeJ1wTNtccJCcdjmHCOV929W8PCSmhdgOQ06Z9+xwReI7nMdqaRsYX+nvLtw4+8YT9+SMfyY4vu+xKdfXLxo7++79fKL7/iX3ZsmUTTpd87p+s2Nc6J6udroKyzugp8ix17WSGK5AmJ3xZBiBJEpz1jp/jVS8+FN/7aDoDWXXXRjzy+HYcsl8vbv3W2QCAvzy4BS9953UYGUnw6jMOAwCce8rB+MLbl+HxJ4dw2DlX4mUnH4z99+7B375wPt740iMAAD/51Vq87bO/w7WfPa05D0gIIYQQQgghhBBCvOBLUAA33PIQpnZUxl5uAcCiQ/ux/972SpaD9+vFpy5eis99f3VNGLP37ML8eXvi4Y3bAAC9PdlfLZ/aPgxjTEmpJ4QQQgghhBBCCCGx4MoyAKvvfQLHLOgf/0IAzz6sH2vu31zz/boNgxjasQvPmp/tNvbFH9yOT333T9ixcwT/98XTvcJ3LREO3tnQpbET6GXT99yTHWtZyO9+lx3v2pUd9/fb0obFi7PPWjYgV47H2GlSq/TksuDK0Db7pFhr3NGRhSklIQDQ15ed6+3xXPat1rBvGcyXAXqung/fnEvc2KXCkMutXUu0ZRoLbKRoyQC7O/I1cCPIl2Fachi9Xahe6z0Wnp1+9y6CfsvR7Z1J7Xv6+jKJTmXzJjsQqWdbutQ+JzVTN9yQHWut3E9/OnbYeeSR1qkDhHxz5HUXwociMsmGomUnMtOlBlE1Bpl+3X5lkLoNybo8d24Wht65yVXng2Q/uj+WFU3vCCrClxJH2S+Ni3jw886zT8k+WT6nzkeZ/a5+tkZaFbATW+gY6NtHzqzvhlAavtIzOQ5pOeWLX5wffsjzBEulNaKNVuQEQk4eALtwlj3POiXrllYRec8R8tIBoGveAWPHMh/lvAVQUrkaTwc/GWYM2ZgeQ848M5tT+uZHGX26zFY99G7anC9fk5+d6ZJjpWoAvjLYssey2DvDAnXmpqPY2mtbN6kbihhTfPPAubvjmj/bX0grkYFD805ZQ5seJ6z580Y1l5Nzu+XLs3SsWmVfJ+cEesvmU08dOxyZa8sHvdte5B02XeHtPdOeE3/1C9nx3LnnWuc+/OH/HTt+yel/nZ3YrOqB7Acd8yRXOuXcQlczX6muPtcyc0xCAuHLsoIkif35yuv/ghtueRh3rtuMy971PHRNy7L0zec8E28+55m44mf34CPf+AO++YGTGpxaQgghhBBCCCGElAVfC05OWK4AnnnwTNyyZuP4FwK49a6NOHygb+zzuaccjNu/dw5+/ZWX4J8+dyM2PF77V6LzXnAIfvzLtZFSSwghhBBCCCGEEELKgi/LAJy8eF88vXMXLvvxHWPf3fznR3H/hq3WdWsf2op//tyN+MdzFuogcPyRe+P8U5+Bz34v9TO7e92TY+f+9zfr8Iz99ywp9YQQQgghhBBCCCEkFpRhAjDG4L/+5YW4+NO/wyf+cxW6OjswsE8PPvPW5+DeB7fg6PN/iKEduzCjeyr+8ZyFYzthat75yqPw7Ff+CO++YBG+8IPbcf3ND2JqRwUzZ3Timx84MT9+JBPWyrs8SKR23eWZ0t+f71UlfUU00t5j/nz7nLQVKOK7FaJxd4bvuQ+0tsWaNi077vX0LmomRfx+ZB5b9WXDQ9Z1ndLASOejNC/RlUQa3UnvCW14svQ5eUm2K6GrDEXBVZQxWdfcg+sGp3HlnfSL6unJr5sjfbOszxXpKaZ8Vyo5nmvQPh1z5mTHOo9Pz/dCzPNXcfUBoZ47vvfVXCd9WFymYp59mPQeA9z9Vp7/Rgw/rUJ53NXtFb43AwMq/KzddF/1n9apA6S31Iknjh3O0v56jrbnyq+QfryM+imR3mBF4q4xnJT3dTh8F/PCc5zr6rLT4Tl8BePMOznAax8l2VdJwyLhH6TP6bjks+rn9G4PsgGrflWGsfcc5CPLt4g5Zw7a5/XggezYWc9U3PP6cq6TfSfgrCQh3oo67/X8UCKT3Ikd1rltQ1nbkEme1afKVtYz5VkmuynXFCTY2zUCwb5Mef2KroNyMFO+l9E9oXSaRNl0aj+5jmz88u6nXL6dchK+1V6wYNUR7Yv4hcz0q6LnRQvFAgeRr852WAa2+a19TnjVXvLPdv+5YUNmtviQ8A7cd25fblShz5bnX+a6bry4CWl3+LKsyr5z9sD3P3ZKzffbf/Xa3HsuOP0wXHB69uJs3zl7YMNPzwcAfPafHC8ACCGEEEIIIYQQ0tYYUK43WWG5EkIIIYQQQgghhBBShSvLdjNcS2f1Ena51fP8+fZ7VbkSW64sdm0b7qKZy3blami1wtx723PXOdd2y/KzSyYpqQzbMgerAPR20UIepMMPkWbUSD/ksni59TsAXH55diyX3b/iFdZljuRbaKmT9TyyoJQMp7sru667T6V/w+bsWGv25LOKpfudHQWWn4v7atqefNhnPCM7njrVvk4+j9I56y3SJ0oZUkvn8n9ZbrqzkA3TqiT5kjddNp0tOMJphYusBjuGK7nnXFh5nCfvBWxdPGDLU4R8cxu6rctkyVSG7E1sLJm/pxyxVXHWVUdhtIoM34UzjbKvUzJ2qx3qNirrk+w/9XXiXE3/IMezDRuscyPzDsiuc6VfNio9Rkk5mzg30mXXcVmPa2RiAbiaoYuacW7tX7IPUmLtKbuMhWvcs6TN6+0y3DCclaGsIlsG7XrQu2BB9kFJEK+9NjvWKnOhHrfmrEXmlCHjXuictSYu+ayyHus6mGNLoMMMld9Z92k/Fcck37uuyX5Ezht1+I89lh3rPDj88Pr3AHbl0pUkR3rZ6H57B7K2PQjbsmPWKULZpMr3wx/OjmfOzI7L/t1Ukz8yz/U4Ie9TnR9lmaTdYQ0mhBBCCCGEEEIIIaRKC/7dnRBCCCGEEEIIIaT14QqkyQnLlRBCCCGEEEIIIYSQKlxZ1gIkMGOa7iLeCSFeBL5b12tqvICEfUKoB4CvB9JE7ymCtgEJ8gxSDAsfoiJbm3t7irlM0ULQW5Zr/weJ9C3Q23zL+4QZ3LYFz7aD2FD3MgAFvA7kc+studeurX8dYHvkrF9vn5MeGDpPcvD2BdLpkuEvXpx/n/YSEejH9kyydx779k1F+hhne5YPIDxOKtrHxNf0LgK+fbDrOV2eZVGSr+uZDFT6AimkV1K3r89cAWL46rjytZleNLEp1E5izANkHdEdh+xYdu60z91zT/37li+3r5Pejaeeap+T9Un5RlrplA1HeZtZA4er4xNx6f6yN2dOA9hNylX9ZXq7uiJ5WnmanznryOCW7Fg9QJ7PYHAbUp1Yf192LKPuhPJe3SzKV3eSwutJd/95faarDW0byveG1HPdIM+vcdKSi0yI9lCVmVeCf6LVP2s/P+lTqccX3/FAXifnPgBw/fXZsWy/Og9ko3Wd0/1DBA/CGHQOZ/nY09OtzuZ70s0RWZfbJ8LtURwFGZ/uQMV8nx5lZLLBGk0IIYQQQgghhBBCSBWuLCOEEEIIIYQQQggpiKn+I5MPvixrAQySoCWzrqWucoWsrxyrdum7A7FMWC7x10uy85b4l0HoMnjP1e2FpDGSItnqFXcBrVbQUmxdYfK2NgecEhocfXR2LNKs1Zqu/PGWokp0+mW69PJ8+VlLHD3lL9648k6Wqb5u4cKxQ7n1OGB34C41RLRt7huIJRuTZaq3LJdSMC0Z1pIRiZRulSzflASqGC1qpZwirwpEECJdLFKXfGWqMeILlXK64moVOaerH4wieRl2SODk56lT7XOyvQmpNFavtq972cuyY9XWrDqo5w/ynEOi5qrHefmjh4mypUPB4ee050LhyQlhjA7IhZK89eRFN2TXs00de2X3qEulM4G2agixynBJZF35KoeT7i4l1xzOZKV63htSPyuR5h+54ReYz26Dlgxm5En2a8KTEsFFi+xzsjHK8VzP11xzUYlDdllGn+49joq211lzXYC0VlX+0scr2Xeohli6BJSQJkIZJiGEEEIIIYQQQgghVbiyjBBCCCGEEEIIISSAKc1OACkFriwjhBBCCCGEEEIIIaQKV5ZNUnp7cjTjtWY3+eekz4XeJlh6AkgfgZK9f0J9w1wU8SnLw5UOX884X7+cIr46IZ5EO4bzt1Wv6MySD+d4UJmOmaqazZwpwi/D68BVwNKDQXu5xK7LOry88JXfxkhPb3ZLgeCD/N4chHoCxsDyw9B+JNI7Q9dBlxdTAK7+x5XfMdqovE6XtbSL6umx4+7smHjZNHMr+Nh1q8iz+JZvKCHPFmMMrKmfLh8r2aZ025MVUV53yin2ddoPUsbtma/Wua58DyXf8It415Vt8xVCkfRb5Va2P6Ovj5K6zjWNlBZXvsNoGdieZWFh+LbXLUO275msg7V+V/nhx/BylB5vrmHU15tNzmkA5WEm/QjXrtUJyY7Xr7fPyQrk8DS04m2wt5Zv/hRq2wLfvjTKc6tO0QrT9TuTkDaEK8sIIYQQQgghhBBCCKnC172EEEIIIYQQQgghBTHgCqTJCl+WtQAJTKnLhLcNZWEPqaXdcnV+RW/TLKWXGzfa5+Qy5wULxg5jLf2NLX8pQ4bmK5MMXYGclwexlo7n5YlLzucbhr5PHnd05OdjFPmaSyqq9533lRjFQGt5ZFoiSARjUIbMOXZ4UpIJABVdphLZb+k8llvUy/4sQj2I1UalJNqVjFAlvJQVSalN2X1MaPihEqMYhNbdstMYMj4606T7qblzs2Mtc5ZzBN1uJJGtGkL7qTLKIobMLQRXW6iJy1NHGppG5/ibh7rOJS30lTyWUQ9kmFb1l50nEKVeyyn4FOUU7mvnEcM6RIchP3cGPqb3XE6OxTpP5RjuqtMly/5861mR8SqkH9HhN9MuwYKySzLJaJGWRQghhBBCCCGEEEJI8+HLMkIIIYQQQgghhBBCqnCtZIvju6y2dmOYnKXjLvTOM1LCtHOnfU5IL5u55DmGhM/3Hl+K7HJT9rLpRu/2M1FK2SFI1k+XxE5uKQjEkQ5JqYaWOec1TL3z7MDBXlHV5I+ULCjpYghl1CX5qK5+yik1k/2U7gjlOS3XlPkj+z61k5ZV9lKSBrtuhew8O961edVOK0qtolb3uNKVp2Rp5m6PReRloXkeQmj/0yppDMYld5IVzyXD9CSGDDBUqttMi4cQQqWENeFs3pR9WLMmO1682L7QcwxsplS67HitLOjIbxdF5nlyiiDHQN3s2kFyXjoyU3R/49n/xLIA8LmujDKLMScm5cFcn5zsFi/LjnnND5udBCddM/ZqdhIIIYQQQgghhBBCCHaTl2WLP352s5PgZO237292EgghhBBCCCGEEEIIuGKQEEIIIYQQQgghhJAxdouVZSGsvno1br/6dlSmVHDgkgOx5FVL8JcVf8Et370FT6x/Amd98izMecYcAMCjdz2KX3/x1wCAJElwzMuPwUHHHxQ9TY89Zn/etUukd3X+fccckx3PmOGIQHs2SX+eBx6wz5W8FXmMMBrpFRO6lXRI+O3mQ9YInJ5WLlxGWdJMRNZ37Yslvci0mZRsQ9oLS4YpzVBU2wp+tgCftbL9Zmo9s/y3rx/7fniH/YXrOQcGsmOd/9KfR57T/aBEeZbl4euzWAT7Pjt836JuVR+TstMVGn5lzZ+zD7I/WLTIvi5CO2nVPt5Kl65osv+U+aP7QXFdq3haxSK4f24gzjTKMvQ2uPWn7T37cnDV4x3D+fVAN6G8qXSj86qMMSsoLS6PWYmrL3KF70CW26232ueefjo7XrYsLHxfXGVh+5NOrr50MtCaIwCZKHxZVoddO3fhlu/egnMvPRed3Z244rVX4Kizj8LMA2fiBe96AX79pV9b1886cBbO+tRZqEypYNumbbjqLVfhwCUHojKFzYYQQgghhBBCCCGkneDLsjps37wd3X3d6JrRhU3r0p2COrs7Ma1nWt3rO6Zl2Ti8YxgGpiHpJIQQQgghhBBCCCFx4cuyOiQjCWCAW39wK1Z+ZyUWvHABTMX9AuzROx/FLz/3S2x9bCtOeutJpawqk8uAAVstpFUPUlU0dWp27FRP6mXNUnLk0vkI+UXFIb+wZBoAsHFj/bgAoKOzblSupe8xlpUXkVHElly45GXtIO8IvSf28v9o4cv66ZLzuaQrssE5rrPS2GPXfd888G0brVSXQuSDFS2TlPmqZRsuiZEsX9k3DQ7mh+FKlyOPrTIsEH5e2QcobEsjpI3GavN5eR4aRo3EWo5nsg/Q45wLRz/uOw4100YgVyKlP0s5uoue3qB0+eZBZWibHUZXd/3rVHhl95G+YTZcfifmWpX587MTjk6myDzMG9mmVq60zy1YkB07pHllSz59w3T1zzVhyOeWx3J80oHqubScZ3haBYybLk/y6rUzPN1/ymfLO9Y4fszE6D+nT7c/S9ubsnHNYW0ZZlj4k00KT0jZtM6vphbk6HOOxvnfOh+Djw7ijp/d4bx2r8P2wjlfPAdn/ftZWHXVKgzvKDCZJoQQQgghhBBCSFthkL5Uafd/pBbmyzh0zejCIc87BBvv3Tj+xQBm7j8THV0deOL+J0pOGSGEEEIIIYQQQgiJDV+W5TC4cRCbH9wMIN3tsm+/vtxrt2zYgpFd6TLWrY9uxZMPPokZe7u2nSSEEEIIIYQQQgghrUgLOZ+0FpUpFfz8oz+HmWKw5z574rhXHYf7fncffvvV32L7k9tx7SXXYvbBs3Hah07Dhjs24I8f/iMqHRXAAMveuAxdvS5zMEe8Dq26y4rAZRfirWtfvNj+LL0hdOR5fgGuyAIF9i4fCl8fEF9PliLa/Ri+JtpfxSInv0L9BiabT0GIB4zzHl2n8xqc9phyeZYFEFouZZRnSB13tdEiPkG59+n8luU2b15+wnR7WrQoO5ZGINoPRn8W5OW5y3+wpp4FmJDE9pdpNjHqbhTPKe1HKMfAyO1cY9WZAmOl7/joyuPg/M/zZFy71r5OnKu48lF5GVVCxkB1T6v4wnnj8nMqG6epbUaM/qcmDOnlqH0dPT0CQ+dCsSmUP3nlq/0TZV+kxzlPfzlXuqJ4PvriWacbPV7JZEn7Pk0z+wrPJloKsf2FCWkX+LIsh+6Z3TjnC+dY3x10/EE46PiDaq499KRDcehJhzYqaYQQQgghhBBCCGkBWvPPkWSisFwJIYQQQgghhBBCCKmyW6wsu+Zd1xS+Z48ZewTdF0J/b//4F6F25bJUicmdtfU572W7gVtOO5ESJr2sXFIjPeise1mRZdllbwWfF5fGubw9gsSiVaVVQVuKe4YRGqbzOl0WjZS/OIhRvjGkWo1uQzI+K42uLeNz+o268Ukpi+x/dF8k+zBdJ/IklL7XRaJV+4A8itSz2BJNJ66ycZWhSyYmrq1Jh6xbIoyRnl5XKi1KkVeGIGViWsPkK2FV+ZrXN9U818ZsA6aR/r1yg4/Rv/laQYRaRjR63MmbJ5Vdd2rauawjUiIPYN1QVqZaaB8yzyvbbqOIXM26VoxfFS0Jd0n5JY65dEPHCW1fINPl2R+EzlVi0N3VWFmhr13F7pIOQlqJ1vg1WDIPrH6g2UlwcuGFb2h2EgghhBBCCCGEEEIIdpOXZYQQQgghhBBCCCExMaC31WSF5UoIIYQQQgghhBBCSBWuLGsxingKSAsDZfEQ3SIn2EdGRl7Ag6EdtPFRfLIkJWwZH9uDKjS8UP+4Znk1NDruGP56rvQ31PfJcZ8rjTH8VIp4nFjnXH5jvqaPLt8zV1vevDn/nPCB+tPqLL0uWzWd3P32y47nzMmPSlKknZftI1OGD5GFzDzhfQUg34tMZ7Ic2xy+W5q8etcO459G+gVWpH8ZSvBKChwrY/s/Avl9WKx+PI9Q3y1fj7tY42GIV5v2nevZHBR10wj2q5PM0+5sghJ87YL7HNkWZf+pPctUnxBC2f1i7PCbOdeN4cvXzDkxaW2MMRUAbwHwBgADAB4D8H0A70+S5CnPME4D8F4ARwF4GsAvALwjSZL7cq4/onr9SQBmVeO8GcAbkyR5ZCLPMx5cWUYIIYQQQgghhBBCXHwawKcA/BnAPwL4AYCLAPxP9UWaE2PMSwFcDWA6gLcD+DcAzwPwG2PMvnWufxGAWwA8C8DnAPw9gC8gfY/lvyNSIFxZRgghhBBCCCGEEBKAaXYCGoAx5plIX5D9KEmSs8X39yF9kXUegCsc908F8HkADwB4bpIkg9Xvf4r0hdgHAVwort+rGt5yAC9JkmRn3CcaH74sazFClXh6J2a9AtqHUraVlg9QYBl2bGmPbxihW34HyxMbuE18Q7cNL4EiZRMSZhl1pFXwLfvQZ2tknsRKY57kqFB6Y7RfGcbgoH3OGhAymdvq1fZlK1Zkx8uW2ed2imnF9On2OT1u+NCqdTwY1xiVJ63VGSclZEX6Wd/6I+uFlopKSejcuf5xN4nQNmqh8y2kIkcir7yjSPGaSJRyAvDYY9nxgw9mx/Pn29cNDmZhaseOCAo+i0aP4b7SVwtf+T/c41dsq4MaZFuU7VC3yQLP0+qUYg3g8FIo2+rAdy5UdjpI2/BypO8FP6O+vwzAJwC8Ao6XZQBOALAvUsnm2OQmSZJVxpjlAM41xrxZvBR7I1LZ5TuSJNlpjOkGsLORL83aa/QmhBBCCCGEEEIIIY3kWAAjAH4vv0ySZAjAqur58e4HgN/VOXcjUlnloeK70wBsAdBnjFkF4CkAQ8aYXxtjxosrCnxZRgghhBBCCCGEEELy2BfAxiRJnq5z7kEA/caYzjrn5P2j19a7HwDE1lQ4DKkS8lqkL+NeBuAdABYCWF6VhZYKZZgtwOOPA9dfnx4PDNjn5ApnrbCQK3W17NK1O5ovIctsy5BxtYrsLXQJe9DOoY4wYi2lb+buOzHCL2P3xLLuKSv8dpP2FMG3zsfYwc23b/KW6nbY8wTnfXI3TC3DFPqjgYEszHvusS9bvjw7XrjQPrdrV37UueTtAgmUshObJLSdB7cFmeee24yOdHVbl/nWCx18p29WyjzXgaxfX/86oFbPViLeUjM9WRH1v8aWICf9Ne28gXYGZVMZ3GJ9Hump711cZF5U9pgl06KLV0q/5RxWz0tdXU4IZcw3W1WGFmMMDJUWWveJutpK+eMrlQ4JoyYcOZ5s2GBfKPsp3QBkP754cW74MXadD5IFRwp/sjOl2QmIQ78xZqX4/NUkSb4qPncj3b2yHkPimh0514xOoOqFMaSuAYAZSLP2O0mSXDD6pTHmFgA3AHg/gHNz4orC5JlhEEIIIYQQQgghhJCibEySZLHj/DYAe+Wc6xLXuO4HgGme928H0APgcnlhkiTLjTHrAJzoiCsKk3dZAiGEEEIIIYQQQgiZKA8hXX1W72XXfkhftuWtKhu9f/TaevcDtkRzdNmlWqoJAHgYwExHXFHgyzJCCCGEEEIIIYQQksfNSN8fLZFfGmO6ACwCsLLOPfp+ADi+zrmlSM387xLfjW4kMK/O9fMAPDpOfBOGMswWYNeuTOb+xBP2ualTs+N59apJFSl3B+LsIB/DnyHUN0L6V8SwI3H5OGzanJ3TNgLycyk6fPmg2uxDPrg41rmm/ZFaEd/tqIvc10gvjhhlH+ol4iK2l12oX5QrHaH+MDHC970uRj4G+y7Kdu7oyHv7ss7or/7KDm/ZsuxY255NESYarr7UKvuNG+2TsiN0dZItirMtu8w/hWec9I7Sl8leWVrQAUBPT/1jJy4DJx2IrDPKI2ekP1NKtIyPjK6EMv915fUk9lxCl29IFQ/ujx2RlT4Oyfpzww32jfvsk92zdKl1akdHZi+juzA5b913bn4/K5paTTVwtZuQfC4yzrVKuwmdj5Tta5o3dsbwLw79/RDqyeUK37pP98+ywsqxc80a+zrZtmWFB4Abb8yO9Y+9nB90sepmSN2qDNkqO+3juTtisNusQLoSwLsBXAzg1+L71yP1GvvO6BfGmH0A7AlgXZIko5Xml0hXhL3OGPPpJEkGq9cehVRS+Y0kSXaKcL8F4JUA3ojU5H807DOQrkS7LOKz1YUvywghhBBCCCGEEEJIXZIkuc0Y80UA/2CM+RGAawAcDuAipC/CrhCXfxzAqwCcBGB59f6dxpi3IH3p9mtjzGUAegG8FcBjAD6g4rveGPNdAC83xlwD4GoABwL4R6Qv3T5YzpNm8GUZIYQQQgghhBBCCHFxMYC1AC4E8GIAGwF8HsD7kyQZd3likiQ/MMZsB/BeAJ9EujPmLwC8M0mSB+vc8koAfwTwGgCfAbAZwFUA3pMkyUN1ro8KX5a1ACMjwM7qgsPHH7fPySXt8+fb5+TSdL0qOG8lfxGpmWtJdWz5l5auSORzahlFjKXpUnKh8y36EnytUZBorYF8WJlInQkOGaazbPKkPi4pjF467kkzZYy+dbWRcoVGhB/yPGXngaZVJC6h+OaXUwom2/3OnfY5eaPoO/ZW7fBFL8okgl/8oh3EwEB2fOSR9jnZrXRDfNBb3ksZiH6AyJr5RtdBK80OienatdnXuhuX49c999jnFi7Mjk85xZEO33zUaZR1oUUlsVaZqvGq4kh/3vheZB7T0VG/PrmUrjFkmKHsgJ0/uTXB9QAaaeMw7PBdfuMbs2M9KfuHf/AJvqb++1qCuKYdsWV7RSwdypYFhoRXg+ivK7peuPruBhIyX6tBPFtFNVIpkw+N23mPjE+3jbx5/dat9mc51j/2mH1OjrnXXmufu+CCvGQG4V23dKOUdUsOiAAqixZNKE2kvUiSZBeAf6/+c113AYALcs5djXSVmE98wwD+pfqv4fBlGSGEEEIIIYQQQkgAu4ln2W4Hy5UQQgghhBBCCCGEkCp8WUYIIYQQQgghhBBCSBXKMFuAkRHg6afT4/33t8/Nnp0du3wz9E7DedYERXyfQv0Z8q5z+0TY4UmpvHxul+VCqNeNyxPNhbdfmkPnb+EqYIevTkUWvvI9c+aJDFOmUfsUuAzlAj3MfHH5jQVtdx3B16uV8M2DUI/BkG3Wi/gJhdBK3m95+aq3Ve8Q26rXeAatXp0d33uvfe6gg7Jj6YsijbAADAxkfi3abkw2bdeO991zRb+iTZvkjbqfaqIPji/edcbxLPLUtGn55/r77XO+nk0ykJpx2lWI0pSuRT3LvPsR0U5q7pN1Uo1RFcckQXobjfTNyrvMoowq7dsH67hz886VSN1+ZR+jvVFlhb3ttuxYj/vyswr/sa1ZuTnzTnpOqXrc1eUZhoMYY02or2nscanQXMVlYNxAGupBqufBkX1xC4Wn29QoU6fan2U71OUkP994o52uC14Tlq4QZN/q6kf0QCfSP6J9Kdvcm5aQ1p/lEkIIIYQQQgghhLQYBpTrTVZYroQQQgghhBBCCCGEVOHKshZgeDhb4a5Xvfruxpu3ClgTazlsiDzLtYzclf6yVT4uhUunZ9zO5fm+cgkdeVeOLEqHJ66LIivUMsw1a7LjjRvtc7KClizJ1JS9HXu7LR0vQ1IaQ9bSKvnokrX4PqdLxm7dp6VgjnNOCY38fPfd2bHS3e+//75jx7oZSvWUVoHL4Ht6smfr1bp+GWgbyC4L4XieHcOVupft2mVfJxWyWp2yYEF+1HlttqYOyoJS6ZXSQj1/kEIl3/6hVdprDQ4rAquS6/L0HJdk3vnOpxpBXt/ktNTQ+SMf7o477HOjHiCALfvW+SYrsgr/STEtmD/fvs261NHWOjvyn23T5vrtELDLKmReqvGVP2qVquw/5bPEwvlskSus7Pc0ZTybd9/UKmOPTofs9O+5JzuWYzYA3H9/dqwHhqOOyo5/9jPrlOz+Xb9JvOu1mmdYsknp46B/C8jG/MAD9jnZ8JUMs93tTghhDSaEEEIIIYQQQgghpEqLvKYnhBBCCCGEEEIIaS+4AmlywnIlhBBCCCGEEEIIIaQKV5a1ANKzTPsgOHZEj0IMTyIXodulSwuGRtoUFIkr79lcnheVuXPtQKR3gC78vIRpLxFxrsh241a6XH4w8rP2VJJpDvQsc9WREC+pRntrld2GXOF7e9g4vi/bT6JsryTvthehbLzDCO20Fi60P8s2NWdOdqy8Azc7gpDNV9qpAMDOndmx7Jp6dT/VKl4xgbjqoMuzUn6WFi3SxhGwxyud/zLrguun7pNz0qiJ4S3aSA8zZx8vfHAqPao+ykx2FGLlnruy75W51tBQ9tyO7PZG+8d1O8KUz33F9+z8P/PM+mEU8laUz+ryezv11OxYm4/Jiq3CkJZN2j5LFk3unEOhn239+vz2az+an2dTqHepvE9no3wc7fnl6gPajSJ+byH3tay/lWsOLpFjp77uN7/JjmVbA+z2JX0EAXQObck+yI5FG2Q6kPn62BO2p5icWlhhurzZpFGnurYyvMOOW3mYEdJutPcMmBBCCCGEEEIIIaRJtOirXjJBWK6EEEIIIYQQQgghhFThyrIWYGQkUwosWmSfc8kBfJcuW0tiA+U0odIMX4mUJm/ZeowtvzWhUldfCY11bt48+6RLQyOlVnLpteseR9yuMrSeRctBZXy6QsqtpZXuZKSru25cocRYnu+sIzpf5bOJ5fS+0tZ68YXgG0aoBCKUvDBjSFyKXBfSFxW5z0LXkRjyRBmG7h+kjEMODkqGKYPQSXIprGUwstnPnZsvm9ASi9zImoiri9TnZB7o5Msu7Y9/zI51Pj7/+dnx3nMmLnOuucchY5FJ7oQqm/Ub6t9UI7NtM5mMKkTnWCMLWN6n2lBXz15BScnrm1xNwdX3DAzYn3NljEX6L5dcS+omH344O168OP+6DXa9muWSbkVAFlUMhXiMbry7Kz//OzqauA5BzlsA+2E9/U1C666Ldhg3nM/mSKPVLmUDPv54+8L778+OdfuSY/2yZfY5WaaiPIvMaaQ0+Kmn7HOWDFOmw6WpdlnKqLyqDFZlpLt25aaPkFaGK8sIIYQQQgghhBBCCKnSGq/zCSGEEEIIIYQQQtoIA65AmqzwZVkLMGcO8OIXp8d6CX6UnXM8lzg3ehes2DvghIbhu/OV986SKt8e2pCd6+npts719jgkmnIJtEsr5CBoJ0K9g4+slHqLL6nd0ueENMZXYleKlNCx42hFbmt34432fVJaIpbMV/R2dw7K3inTlxhtrWwpZxm7dLbizmM1/ayUMyh90Kbh3rHjWfOz/uBXGw61rhsWG1Pp/kwG79opU6KV2LLL6dU7EUYg9k5puotctar+MQCsXZsfjlS+LliQHeuuWksvJaEy4SB0HyzlO65djdtAhmnlo2sM1HkgC1g2AJUHMnsqQ9usc1Lm6ZvGzsBm8pylqr5Y6fQL1FnndNnL8f7oo7NjLd10bRtbMlL16ZKp+ra1IjLMkB25XZQ+z24RSaNz53TdRuUgJXe9bfT47arXAb+jKnpH2Ve8IjvW82wx3x+Zb4/vloRV5F2R3ZVl8l2qbKt+qnHB2Qe7vCAIaXN2ixp9zHHHNDsJbpLpzU4BIYQQQgghhBBCCMFu8rJs8XsXj39RE/njF+8f/yJCCCGEEEIIIYQQUjq7xcsyQgghhBBCCCGEkNiYZieAlAJfluWw+urVuP3q21GZUsGBSw7EklctwY3fuBH3//5+TOmYgt59enHCRSdgWs80rL91PX7/n7/HruFdmNIxBcddcBz2O2o/77j69kxw3LGpFlz7GZTt6eOibM8gX58a1/fNTGMemzbb96xenR1rC4NeuTOz3qZZmqjIc74ma6FoQx5pcCC90wDbe0KlKy9fG11vK9K3R/uSXX99dqyfTW7trU2cJPI+vW37wMH59zWJ0Dbk205itdEQr6cYHifO9HpuH18I6VWiPEIu/0x2vN9+Wfg//KEdxKmnZsfnnWefk9W4Ezusc0NDWXyy+brsSBrtbRkD2X0+9ph9Tj7bYYfZ52R/LT3LOjviPHN0PzNdcLLv1uPLBNOkaaQ/o84PaTXUqf2QZJ8vCnSkb1Z+BIG+oNZzK/+jkVAvpkDPWYnTk1Q2fJeZkRwD9XWRPYr0s8joYkx/ioThW1al+K0GoP31QtqinsZIeno8+39dJ1wDjE94ikLjkGyL8uF0Wwisx7lz3Z5e+zrpmaj7KYHO/8HBrO/Yd+7E804PBSFz9Zpnc8U9GuGUKV7pI6TV4MuyOuzauQu3fPcWnHvpuejs7sQVr70CR519FOYtmoclr1yCypQKbrr8Jqy6ahWOu+A4dPV24UXvfRH2mL0HNt2/Cdd84Bq84vJXjB8RIYQQQgghhBBCCGkpuMtpHbZv3o7uvm50zejC5gc3AwA6uzsx7+h5qExJs2yvw/bCU48/BQDoP6Qfe8zeAwAw84CZ2LVzF3bt3NWUtBNCCCGEEEIIIYSQcLiyrA7JSAIY4NYf3IqV31mJBS9cAFOxlch3Xn8nDll2SM299/32PvQf3I8pU/2XmyYwXsu0Q2SL490XSgzJRch9sSRdMpwYYcow5E71gK0C0Uq/rq7sPrl7dhq+QC8X98S1E3YnspOW/EtvF93j2BJaRqC1DfJcGfK1HPQzW0+j81HqrrT89MQT65/TEcjP69dbpyryXG3hZ8eLFiGP2FvXaxopoyuS/hjyFxex611efzAuom1ote/dd6PuOd1XyM/PmbfOPrlyff0LAfT3ZzJh2UQ9FXvBFMmfGGPN/PlZGGed5bouKHiL0HE6NAzrWt0Hdzj6bhnmsJDnujRYGlFRKp59fOn9jc4DqUMW5/RjWnU+UI5lP6eNq3+I0a9752uojlHmiQojdvnqMBYvzsIvo28KtRjwuWfc+/ImaZGkrXn1x5Wm7dvtz7vE3/5D81/K9sroA9x9pkDmq857cS6G3YDzHkcb0mzYkB3v258jKQWcvxN85ycxztU892g+J0nu/ZMBA4BC08kJV5Y5OPqco3H+t87H4KODuONnd4x9/4fv/wGVKRXMP9GeWW9atwk3ffMmPPdNz210UgkhhBBCCCGEEEJIBPiybBy6ZnThkOcdgo33pqtC7vrFXVh38zqc/E8nw5hstdngxkFc97HrcNLFJ6F3n9684AghhBBCCCGEEEJIC8OXZTkMbhwc8yt79K5H0bdfHx645QGs+tEqvOi9L0LHtGy57tODT+PaS67Fsa88FnOPmJsTIiGEEEIIIYQQQghpdehZlkNlSgU//+jPYaYY7LnPnjjuVcfhh2/5IXYN78I1778GQGry/9w3PRe3/+/t2PLwFtx65a249cpbAQCnfeg0TO+bXm4aAz0wYoTf7pT5bNoSRNoIFNo5OcCzItQryTfMShG/k4D0O/14QpEmG3LrbsD2cNL+D9LAyGXUIQtYm0nJ7cF1GAHeMWW0c1f4IXGF+lGFEiPNoX4eMXxMZJi6Spx/fnbc358d613n5Tl0dOWfVHVQfuwc2pJ9GFZ+KsrH0DoXIf/LRqZD+pc1mtC8Cj0Xy/eoaHihvjeavGfT33fKZKn6P7L0OXXD6Biq+3U8Yue9omyvxprwPc2qyugP5BBbhu+fi7xrdfiyT9ZF3xlQFcroK1xevfK+GTN8UlgbTqv4n9aQZ8jpMvVVNHKc0/MAa1rp8A6UtNRvwtE0G+O+bhIwuX4pk1H4siyH7pndOOcL51jfnffV8+pe++xzn41nn/vsRiSLEEIIIYQQQgghhJQIX4ISQgghhBBCCCGEEFLFJG2ylasxJglJqzEG8545r4QUxaO/tx+3rril7rnYS39DJRChS/dDZVYxnq0M2ZhP+NuG7PDkts977GFfO3Nmduyr2oi15Fs+t2s1emdH2LbqseWtvvIC5336QaV2Qi9pd2wj7h2+/Oy5VXiRfPRtozEkOzHKNzSM0LIPDdOXGOl3hWfd56qrgh3DdhiyCuo+Rn6urF+XfVBb0I/0hG1a4ythmmh4OsxY9aXsMXaicTUEVwUSxG4LjSZ2P+tqy2XL6V20Q/0sI39iywWLyTCLl30Z/VTZ422rtm1fYsxZy/jdEcM2JsbvORc+7WvxkiVYuXLlpNViHm5McnmzExGBpcAtSZIsbnY6WondQob5wOoHmp0EJ2+48MJmJ4EQQgghhBBCCCEFoVxvcsJyJYQQQgghhBBCCCGkym6xsqydcC3tDtg8b7emWbv06HIaGGhY1DX4Lpnv6PCTZIbGFYPQ8K379K5+Pfm7/AWh9BdyF8Fm7ibZSOlEK0ktY1O21NV1ztqJVm+HKc51Yod1yt4pUNVPGbeUXrbhYBNDoulLaD2I0V6LEPSsegCQdcZ1LnY6HBSROOamo+ZZ/MaC2LvKBbN5s/1ZSad94/a1A2gmMST/MaSFruu6uxrX7tvBEqEM64fYFOnHfa+VNgh6mO7tysbmiu47RX+0A3ZfFLKbqgvfZ5vMkltCitAav0AIIYQQQgghhBBCCGkBuLKMEEIIIYQQQgghpCAGXIE0WWG5EkIIIYQQQgghhBBShSvLWoAEZsIeJTG05TF8EIrg8oJo5BbOodsy53krxNp229dHwJV+l/9YJ7KT8q4OT+8WHXcosX0RCm0779jvfaRAPuQxmXwdYviuhJ6Lgat9udqQqwxj1E9XeLnXenpFAXY9dlidAT093mHmUfYYEsNbqFX9xqz6OGz7zmFwMDtW5ST9bXR/39UV4EMUaFpZ9lggs2DVKvvcPfdk9y1bZp87dEDkpXw29ZzDXVk+at8/11ggrcNm9fnNA5xs2GB/lo10/fr63wN2vXB4E7bDmFTZ8JD9RX//2KEui7x2H+pr553GAvkYOgdvN+T4MjRk57Gsrrrq5jVL6aULAJ0dcebWIdeFlI1zmNaD8Zo1Y4edc+fa5/TnBtEOPrKENALWdkIIIYQQQgghhBBCqnBlGSGEEEIIIYQQQkgAXIE0OeHLshZDL3vtFsuVW3XZa4wtokPjaqS8oNEy1Ri41VrNaf5NlUfope+xw28D2j39RYhdt1y4+qLoW7A7Grbedn5oMOfCAjSyjTazX/WNux3HAomzzum6VUDyG0JI3ukkSVmXM7nyZKTn8g5Gjj1ah+YbgTzu6/MPQ9DIfhDw79/s/jOfZo5frTp2hvSnMcqpyH0xiF13y0i7lIp21vQN4otazXzuuRjP3WibC0ImE+01wyOEEEIIIYQQQgghpET4sowQQgghhBBCCCGEkCqUYRJCCCGEEEIIIYQUxIArkCYrfFnWAhgkXnrvGH5dsba7DvF2KdvroEj4MbzO8u4r4k/k2urcl1CvJMm2ofzrurr88ipG+Rap43nPVhOv9obIY+NGOxzpISH8YYqUU4w8cBHbCys0vBh+XaFedrH7kdA21Kz0alQ1tj5rm6OeHvHB01MptA8I9QPzpZl5Hur3k3tdh+07V3H4U3WKuGs9cgJQJly+Y2XomFoZ3jF2rP32pP9Pr6irz1lqh6E/2/hlSqeVZv+MlG3ImQciX51j5dy5+ZEtWOCdrtzwFa3ih+SdBxFotL9SDH/eUGL4Tbruk+e6u0bEsX/4st8K7cN80xgjX2OMZSNd3fYXC47IvVZOYWX3XPZYPF6YZd9HSKvAGkwIIYQQQgghhBBCSBW+LCOEEEIIIYQQQgghpAplmC1GM7dlLkLZ8rI8iizn9Za8RJY/hsq4NCHLpptZf8qQAkuCn63D0c35SjRLIMay+Ebiyv8ypHN5cfnKLUKJLimKFGYo27dnx5bsUiPbgt66XsgCXWVd9nOXUQdj4CvzaWa9iC1FmsyEWik4ZeViHHJaBbjGqwZSRt1kHfSnDLuHUDmu732NLN8ybEvKiC+PImNB7O6hbFn27gxzb3LCciWEEEIIIYQQQgghpApflhFCCCGEEEIIIYQQUoUvywghhBBCCCGEEEIIqdIa5ggklx3D2ftMrVWP7QEWqt9vtBeZpIyt7H3C02GG+j3ECMOFM8zhHWPHXV2ZJ5G28Wqmt0hI3E5vM9WIpBcT5qqtvHPCKOL34FumMfLYN4xYvnZle3iEXBfqCRXb66zQlu6iHer6mdc/uMLfd659rq/PMYYMbcs+dHXlpkPSSr6ajfRXCe3HY/T/En2dy8+mMrglOx4ayk709dkXOsq7bC9KGXenZxhyXgQATzyRHc+caV97zz3Z8RELwuYLvuMoXL5kMXAUdmxv1EJ5EGGcdoW3bSi/D8ururK6p9dlYXR2TPzZQtt56QwO2p83b86OpWml7gMEtVau+XnXLGLMW0Ln9L5piTUWyDoeOtaEzEVjjfW7kz+haXYCSClwZRkhhBBCCCGEEEIIIVX4sowQQgghhBBCCCGEkCqUYbYYtctV426P3Mxtgdt9S+LQpcRbBvMlBFL5pGnkNtx2+P7lFEOaEWPL8pB4x7svpL7G2Iq8jLJ2PYtv/je6/YbU/1iyijxi1OkYOOURSn/ULToZKWcCgE5MHFc55eV/DNm6Kx2hlN32QmU48rOWSEkJ4vTp9rleKcnasCE7lnIswCnDbBnEg3eqTHjqqUxCP2NG7m2+waMT6iYh169pexs3Zh/mzvWKqyYMmf+ynACgv79+IguUWWwpbdnzEZ0/skvT8kqZPfKcLBbAVh0ODtrhyzD0nCyv/ZYtUw1GyzBvvDE7njcvO1661LosdA7oK0F03iPqtbTGaDcLkLLi7vRs6t55rhuHbACEkBraYIZECCGEEEIIIYQQ0loYAFOanQhSCu291IcQQgghhBBCCCGEkIhwZVmLk7cLChBHphdjF69m4lp2LJfk33OPfd3ee2fHc+Zkx2Xko3O3smbuJCeWu+uV+5KOHlHP5M5fsN+2WztLuuKNIC0Ova5GJiZ3A1T6DimNGenpzQ2jbHxlbjEoo/43Oi0h4Tdy18waPOVUso2uX2+fmzs3S9esnvzwtCRtR1cmX5O7nJXxnL75HboDl2/4LlmeS+7SKjIrXV209DL3YqEvG+ny2/m3ZVF99bx52fPo/HnWwoB67WiTuv50ynHC0VcHtykZocu3wUEjLR1cyN1Za3bzdNTJnTuz4wcesM9pRfEorqzS/ee0afn3tYo01aJ2q8/sWD+A1J+KzHL1s64hqezdkJ3hyUHQocd1pdEKXzfmCHL0MuapFuK5K45KXhO+fFY94acMkxAnXFlGCCGEEEIIIYQQQkgVriwjhBBCCCGEEEIICYArkCYnLFdCCCGEEEIIIYQQQqpwZVkLkMDk6tdjeAj5hhcaVyP9MLTUfvPm7Fj6TgDAnXdmx8uX2+cWLsyOTzwxO+7ry/c68PVq0N/LMC3PDgAYcjRB6Z8Q6KUgvTm0T4f0+pC2FnJ3cQCobN6UfdAeD6IAKjIQwOkhYYXv6TXkqlve923YYJ9cuzY71umfOzc3TF9K8bhqccrwVnThm8dl932u8Jx5cM892bH2DhGNdPv2zBNwzRr7MmnfMjTX9g6U1VpbnMhuZcdwlkbdzGX42iPIt2squy34+pTJ7AbsMWTBAjsM3SWMEqsuxciTPM8mANjRtdfY8XBPdhzmfFWHHEPOUnyNZPh9s+xTnnG5xhpZj13louv7SH+Wr1G8Gz3HHWceB3oxOcdR6e8Z6J2GjRuzY9W4pP+STof05Zs50w5SPlp3V5YHvapdyDD1HMfp++eLmJzu6OrNvUx6Q7rYNpTvfdvbpcpTTox1WS9bVvdcNE+9HIrM1yoRvMJ843Z6d8l06HMR5oMS7zRqRBsamXdAbpg14ctnU88S3WdNp390nq195ghpE/iyjBBCCCGEEEIIIaQgBpTrTVZYroQQQgghhBBCCCGEVOHKshbgqacyWU2tEixfvtOKW7x7b9k8zn0SuRpar4yWciS9tP7hh7NjLdGUq4HltuQuouS3fgApZ3BJJ6TWRm+57pB4rV6dHWvp1tKl2fHAQHZsyS4BW6ekl1FLbafWA8nPjm3hXWVvPdvwjtzr0NGZf86FzEvd+HI0WLHkCnn1qV2km77toRX7qVjEkBBbGnHZEAFLLz6zf9/cyySyuWp0lc5TnehmLrsml5RTE0Mi64tvWehuVn72HQvKJlQipe9bvz67T/b/UpkFuKWcTnIqUCU4wDBC6k8ZMrRm1fdxcUnPZJiOeYZTGuaLjLuArK23R8gr5+df55oLyc8HqLli2cis6/T81aX7YNmvD/fZ851ZLllsqGRW4Dt3jzEncIU30iPkrfK4QNxOZP3UA6mor6G/cyxcA5GUKwP2wO0pZXT2RY75uC+F8ns0zUky4XgJaQbt8auMEEIIIYQQQgghhJAGwJVlhBBCCCGEEEIIIQFwBdLkhOVKCCGEEEIIIYQQQkiV3WJl2THHHdPsJIzD9DFJt5ajy89dXSVsx+7A14vA5RXj9B/wPCfR9gvS9mL2bPvc8cdnx0ceaZ+TFgBz5mTHob5qrm2TK9IHYcMG+0b5QNojQZ6Thmw1xkOZf4VOo7xU2B8BABYsyI6lJwjWK0+TO+7Ijh95xD4nzeAcHiS+fkJOHOZIvnUQc/e1zsnPNWVvNb7u3Ot820noczu35BZ54vLR8CVGGI3GN43BnmIh6dDl5PJCkWZS2lhQtKnO/v6x4wULbM+arVvz0/XUU/lRyy4mhl9XaP2J4RfliqsTmd/hsxaok7JfUeU2gkAvxABCx1h5bsugfW7t2uxY1hFtWyUfu6+vQBnKGx1eOiPKX8g7fM97nH2wTJfsL0N9Lh1pKcP3LKgfV89m+X26vJJkh6DH2xg+dKIP8x3Pi+DbTkpB5E+nisvXp0yi57ouS6uuedn8pLsr/hykkUQpJ5f/r8tkUw6QBbzeZL7K7qa7Q/nsyvD1YCw7ZdlxA7bBsJgThOaV63fmrL4I9Ufn8eiPj+nT/e4npMVo25dlW7ZswTXXXIN169ZhSLV8Ywze9773jX1e/N7FjU5eIW770v3NTgIhhBBCCCGEEEIIQZu+LPvNb36DM844A5tztv3SL8tCWH31atx+9e2oTKngwCUHYsmrluDGb9yI+39/P6Z0TEHvPr044aITMK1nGoa2DOG6f7kOj939GA49+VAse+Oy8SMghBBCCCGEEEJIW9P6azdJCG35suziiy/GwMAALrvsMhx55JHo7Iwrldi1cxdu+e4tOPfSc9HZ3YkrXnsFjjr7KMxbNA9LXrkElSkV3HT5TVh11Socd8FxmNI5Bcf+3bHYdP8mbLp/U+H4ZvQCixbVP+fY5buh+C5pd8kjQpeAu1b/a0ViCJWhbdkHvXxYfPbeal4vAZdr5lessM/JB9BaKrlkWaZLLw/vya//C7TkKCdqC70E/Pbbs+M99siPYL7a0z32luWuretdS+sjhO8rkSpC2ZKIsuWhvve1ipQztG8KSr+WW69fn38uRyYGwK6T4ri7y75OS/QlTz6ZHWv5jkQqvWfOtM898UT+fa2Csz46JIKuASZ23XWl0be9uu5zKex0mUpk9hR6Zte4JPCWyTsIljvmlX3fLP8wAvCeL8Bd9iH1oiYMKcvs38u+dlhJxcrEYdUQSmi7aRlkIxULALpVe+rvz6TMru7MRRky1bbMcx8cc0rdz8rx0VIa6iBkwbm0kI7fIVHk0AppweAaTzo7wmwVJm0dIbsNbfmy7I477sD3v/99HHNMOV5k2zdvR3dfN7pmdGHTuvTlV2d3J+Ydnf2a2OuwvXDfb+8DAEztmoq5R8zFkw8/WTc8QgghhBBCCCGEENIetOXLsgMOOABPP/10aeEnIwlggFt/cCtWfmclFrxwAUzFWNfcef2dOGTZIaWlgRBCCCGEEEIIIYQ0nraU137gAx/AJz7xCWzZsqXUeI4+52ic/63zMfjoIO74WbYj4B++/wdUplQw/8T5jrsJIYQQQgghhBAyWTFIX6q0+z9SS1uuLLv66qvxyCOP4KCDDsLxxx+PWbNs7wljDL75zW9GiatrRhcOed4heGTNIwCAu35xF9bdvA6nf+R0GGPGuXvi9PaUuy25ROvKg7YsL6GpWZ4aSssfGp/1bIF+V3npqEmR9CKQ3kVA7fbREmki5NjS3VVOfX35/gMSK/3aV+SUU7JjbYIWwZcsBlH8s1w+EWXH7QjP+twxcX9Gl59EqJ9Qkfh84y7b5yK0PHLDkA1M+5JJUxPtOSLbmzYSlNeuWZMdK3/AoY58PxvpUzZlin1O+lg5uhjMmJF/rh38SEZ6svyp8Wjy9YyL3B+E4tvfA8BisRG4rAe62w71/rTGDU8vnRj1pYj/YEU+nCjrIp5ivnH73ld2HSkUd169VhOGbcP5Y4+sT67y3TaUxe0absuoI5Itg3YeuPq+0vu3HM8y3Shn9cf1qirluUrwlZV4j9lqnpRb/5VvodVXqGeR92kv6V27smO7G1TPLOf08hhwG9FFnmfr4PKCr/Usy46L9GGN7u8IiU1bvixbsWIFjDHo7e3F7dJ8vEqMl1iDGwex+cHN6NuvD4/e9Sj69uvDA7c8gFU/WoUzPnYGOqa1ZdYRQgghhBBCCCGEEAdt+cbnvvvuKz2OypQKfv7Rn8NMMdhznz1x3KuOww/f8kPsGt6Fa95/DYDU5P+5b3ouAOCK112Bndt2YtfwLtx/0/047UOnYeYBju2nCCGEEEIIIYQQQkjL0ZYvy4pyzbuuKXT98I5h7NqxCz17putph7cO47pLrkPv7F7ruq0PbB0Lu29On3Xud1/+nXd8/b39Y8uEQ5erFpFX+p5rJDr9cvlvZ94JABXH0m7vLcUjLA+34u3qtj5XXMurpS5qYMA+d/jh2XGeJHMc5HN3dHjWrfnlevFFq3OiLrjqgS+hMpxmtqGQuIvc47rWN7/c6oL8MLzbbxPJlV9rKbPUZui6unZtdqwzS7b1G2/MD2P+s8YO5TbwOgjfZOn8luVUI2OUXXJgO4xRz7zRGhopfdJSwjxpYaQxI08eFDqea6SqSB7Hak+t2i4lO4aF9E+MzUXmRY2U1vrK5F3p37TZDkNWV111rbYt41JStiHRbEKrv+zedD8lJeGdBcIPqYNaXiZV8jPV37iLpCUoctlBy3le5HnpePjWrUbbJbQKsthiydhzIyhZsurbn+lkhM7JdicZ5u7zpLsXbfWybOfOnZg6dSrWrVs37rUHHHDA2PEDqx8oFM/atWtx+umnY/Xq1YXTGMIbLrywIfEQQgghhBBCCCGEEDdt9bLs1ltvxZIlSzAwMDCuL9ku6bhYkIGBgYa9KCOEEEIIIYQQQgghrUNbvSw75JBDAABf//rXG7ITZaNIYLyWqcaQBrSSZEymX6uPrBXJPfm7MMXY0c5FlB2s+vuz42XL7HNy2b3aaVLLOeulqQa9xD+2xNS1BL/knZBqwpdyqgi7BTVaetOsuFyU0T/ITRx1NZDKY614axV5h3cfIB9O73Ql0Ttl7rdfdjxnjn1O9h1SHq3aQje2ZR9m2P2GvE03E5mUadOy471VMqyy0J21S+MVgRA5Sa1UVOSXlmFKXOlvB4lpYDraDZdtg1Q1A3axyf4mVE4WQyIbZazR9Vh0oHrTbZeETPYP0qpBhyEl3K6hXiN3wJQ8+KD9eerU7Fjv6hq77uqxRu4U69oB0Bs56AG21FvbbYg+fsRTJlwGoXXXwtMWJTRuX6JYz6hn6cg/lUuhPkZUykbmVTCO3xqtMp8lJBZt9bJs9uzZAIALLriguQkhhBBCCCGEEELIbs/kWcZDJHz9SwghhBBCCCGEEEJIlbZaWSZ59NFH8d3vfhd33nknhpQsxBiDr33ta01KGSGEEEIIIYQQQghpV9ryZdmdd96JpUuXYteuXXjqqafQ39+PTZs2YdeuXZg5cyb23HPPZiexEEmSyb9dW/W6aHe/JW3jI3015HGRrYxD/MZCt5N3+gjIfaWXLs0/px4uL/1OH4QInkFFytPOg/iUHb4L3/z3DaMMQrfynmhcLrSVxcqV+eekJZf2kWkkvvno288626h8aADYZ5/sWBoDAXZ7ln2H9MBR123ckHuqxq8oz8prxgw7/d1dYT41khh9cDDyD2q6Egp/uS1Dtj9mT44VYhRPnALX+vb/rvrp3VcU8KIJSX+tJ5TDD09UWFf9eeKJ7FjbRckhVttF5RE6pwntj11zlby8y3dyre1LpY+b7n7y0M1aftbFZKEKeGiofkpD+/sYfk6htoXerFhhf5aDoLaR0X2+B9oHTqbZak8lUIafVq73ZAljQWjbtnyUA+tI7N9lMbyYXWG6nnOkw9UDETK5aEsZ5tvf/nYsWbIEjzzyCJIkwU9/+lNs374d//Ef/4Hu7m7813/9V7OTSAghhBBCCCGEkEmMATBlEvwjtbTlyrKbb74Zl156KaZVt+8aGRlBR0cHXvOa12Djxo24+OKLccMNNzQ5lYQQQgghhBBCCCGk3WjLl2WDg4OYNWsWKpUK9txzT2wU+z4vXrwYl1xySRNTVxxjJr70O4ZsoAgu6UcIDvWFN0WWh8tl7PYS9rDwnTj2bfddyhwiKXWFoYmyPNxz2/Ai6agM78g+xKgkgYTIjfTn0K3ZfcvGVyJVhkRbVnFdTFIWJSVRQHOll3mULsGSmijAlugsWGCf89Wji886/11jiywPp7TKFWAMfYonrjpuSQ5Vv1qRFU3MF/Tnjr59c+P27YMLyfXz9GCqYVj3aR2j+DzS1Z2brrw0AeP0syItMcb6WpWnyB8tL5b50NObG+auXdmxbkLSlSNGGbqu9ZXrh8p4ZV7VZKRAy01l16FlmHnySpc6UPfbLiuIWX31n2dWX374ZUj9JEWmDr79+pbB7LreZcvskzt3ZseOQc/32Yp0syFzkFCp947h7FjLQUuff0bA1T9YEuiOsDmab9yaUBsQn/BccYdaz7RKeRISi7as0QMDA9hQNbk67LDD8IMf/GDs3NVXX40+/YuMEEIIIYQQQgghhBAP2nJl2Qte8AJcd911OOecc/C2t70N5513HlasWIGOjg6sWbMG73nPe5qdREIIIYQQQgghhExy2nIFEhmXtnxZ9vGPfxxPP/00AOBv/uZvMH36dFx55ZXYtm0b3vKWt+D1r399k1NICCGEEEIIIYQQQtqRtnxZNm3atDFzfwA444wzcMYZZzQxRe1L7K2ZQ7eWnzcvajJqUf4ew8OZp03JNjuWSUgRLX8Mn7JmegfkxV0oTQ5fllY0vAr1G/P1sCmjPEN9fCSWl45CeuQsXWqf8y3CEN+VIrjyIEb+WOg6Lc2BtFGQzCB5nw5DmA319/v5VgG2Z5l3+gM7TN88LgPpYVbRhk733DN22K09xObPz8II8K2qwVFuFq6G4fAsC0aWqTZ0iuxJp4OQWdDtCN9VR+bODfN1bBZR+hhV7vI+XY1lH+wqQtc5p2+eYAdsv0CZFld/I/2uQquZb/nqKi4/h47hlhXivCOsc71/r4z0Jkjn4Cb7C5FhIw5vvzLG0bxhyTUn0HHn1X9ZJwDbKyx0DAm9rtvhc2d5PrqQ5dQifVERyvbdJaRVYQ0mhBBCCCGEEEIIIaRKW64sA4BvfvOb+O53v4t169ZhSP111hiDe++9t0kpI4QQQgghhBBCyGTHgCuQJitt+bLswx/+MD7wgQ9g4cKFWLRokSXJrMey449pUMrCmDZteu650K2em0Xo0u4yFHXW0u4OWxqQF1+RLbPzcIYxtM2+WC7LVmn0LdPQsg8pq4bLp7qEpKzLlpflykK0tMklMQpJU4E8iJ0/RbbrLrv+SGS6enrs8F772ux4zhy/MFzpiiKFdFCkPPO2dHc+ywJbolNZ4JDoyLos665DijerY4t9Tt7n0jc55HZW+lU/JYkthdFxxyjfTYNqLJiflUeNvMnKk/zn9kbnv9THCZxt0tUPKnwVlFYel+BLINPYqYK3Pnf05QeSJ1kFUBF13FfiWPbYVXpf3b+XdU6W9ebN9n1S/qiHQFncLpmbnXcKEfmwkmHKtNiq8vxn9q2roRQpm7xzOoyDB8qtTxayQBVl1GtXnsg6I6WXoemQzVw3+Vl9QUFGwdl3yMbnGKd965YmRKZdpJ2UPdcqu68lpGza8mXZ1772NbzlLW/Bpz/9aa/rV3x2cckpmhgXfvb+ZieBEEIIIYQQQgghhKBNVww+/vjjNPQnhBBCCCGEEEIIIdFpy5dlJ5xwAv74xz82OxmEEEIIIYQQQgjZjalMgn+klraSYY6MpLrnz3zmM3jpS1+K2bNn47TTTsOsWbNqrq1UJl+Rh/pFle3xE0qovr7VcfoZaBMGy09o4p44jS7Psv1DgnD4Obk8y3yfJVZ68zwwWrW9huLyKfOlVfuKGOXh9EIZHMyOXd57DpMfb58mRxgx/BpDCfFBK1JHZBb39dXOJdoJnVfaH2yUsttQcD1w+U3mtQX12eW5FlofQzyuyvC2dJWbfOwD5oV5cvmmSfuryrmLHmEHBuqHmVc3J5IuSQx/KH2tq49p5NgcI+4y+oDQPJBp6e4aEcdhcZU9l9PhD3dkPpJDopvq6bHbSWxPMRe+9dgVvu91Neg5eAk+mIQ0kraqwVOnTh07TpIEr371q+teZ4zBsG6shBBCCCGEEEIIIYSMQ1u9LHv/+9/f7CQQQgghhBBCCCGEkElMW70s+8AHPtDsJJSCQZK7HDh0OXHIVuStJPGKIbvyXXbsu5w7eMm2lCwomY8MM3jJcwTKrgel1y2xzHvEIaVqpkxVx122dCKkDcWog0XCaBVZSyi+7ca3j6nJg76+7IOs4xH6xPHS1SrE7ptklmpijKNFrst7nrLLxfWcRepI7PxBT29+3J4S+mZKhovEF3JfjHlRGdLoVpxHho5DRc7lhV9GHvjKShspfY/FRH//NAJXnkhJcWdPWHgx5lqhhPQrrv6zRqa9m2BAz6/JSluW686dO/HUU0/VPffUU09h586dDU4RIYQQQgghhBBCCJkMtNXKslFe+9rXYnh4GFdccUXNuTe84Q3o7OzE17/+9SakjBBCCCGEEEIIIYS0M235smz58uX4t3/7t7rnXvKSl+Dtb397g1M0MRKYsSWtRZbVxpZ4FSFExlhkg5TYy69Dl7DHkGjG2L0pJE1F4g5Jh6aItMc7zOEd2QddgXJkOWUsTXfhW3/KlhT41sEiu4TFkHKGyrjy8rWIfCFUAupLXhixJNV5cob16+3P/f35Ych+trOjefK+Ivf5nmvkOBFj57RGPouOL8azlTG+NGtX7xi7xelrQ9MYMgdp9DwgimRejuEFdsjbMpjFt3mzfU72fXInRVfUmqGhLHw9rcjrM111ZMdwWFuWWRI6jraK1LsMYvefobYW7UjZu4eWMf8hpFVoy5dljz76KPbaa6+65+bMmYNHHnmkwSkihBBCCCGEEELI7gZfC05O2rJc99prL9x22211z912222YPXt2g1NECCGEEEIIIYQQQiYDbfmy7PTTT8eHP/xh/OlPf7K+v+222/DRj34UZ5xxRpNSRgghhBBCCCGEEELambaUYV5yySW47rrrcMwxx+DYY4/FvHnz8OCDD+L3v/89DjroIHzkIx9pdhInHTE8MLRnhPzs2BU+itZ+cND+LL0hXHHHwNfHZHfR+Rd6TllwuhDnzfOKLzT/Q4jRTsqm0fVMhj80ZJ+Tba8MvyvfdJVNbO+6a6+1P59ySnas81g2k06oNiQLQHaKLoNJl/mP8iEqu/7nhR/qRdOqfW47pNGXUF/WVqEm/XJc6ukdO9TNpNMx2/bNk23CW6uIP5crbl98vfecyLzq67PPiY5rpKvbOnXPPdnxihX2bWeemR0f4JgSPPFEdrx2rX3u6aez44UL7XOzVDJ9kHEBwK5d2fGUKfa5qVOz456e7LhImcnyru26s3Lz9awsw8urWeNtaDrKnlc0c27Yiv0qIa1MW7aY/v5+3HzzzXjXu96FJEmwatUqJEmC97znPbj55pvR73I7JoQQQgghhBBCCJkgBulLlXb/R2ppy5VlANDX14dLLrkEl1xySbOTQgghhBBCCCGEEEImCW37smwyYZCMLckNXR7bzO3YfdOsdwp3bZMde5nwxo32Z6k+kgsRiyx9b6TEqIxl07HDLEWC6NLIBm5D30jKXu5edh2MvR375s32533n5qc/xrO1Yhty9XW+/aBWIMtm4lJJ1hSAlEJJDVALEUX+5UnomOe6z1cSJMvNJZcKzQPv+xxa6TLyp5HjkG9chdIkJxcOGaaUw4VKUbduzb7v7sq/TjsW9PX5xR3SF7nCqAnHNZ6Lcy4VuBaOyHOuNEop5C232OdkN3jYYflJdCGfc/p0Ox0uyxHZ3Ow+wD9uGYbu4mW3HiIpDUWXRQH1fhC+baqRfZHGVb6xf2/FmI8X6UtDx0BC2oHW/IVJCCGEEEIIIYQQ0uJQxjg5YbkSQgghhBBCCCGEEFKFL8sIIYQQQgghhBBCCKlCGWYLMJIY7BhO31vqLadnzsy/z6Xzz9O1a+14jO2Rm+kLJL0aXHYYc+fanzdsyI7tPLfjkvnv8pFxeX000yPB15Mu1LvO6SeUs5+53hbehXWtus+KL9C/LHb+l1HWLi8j3zClj4n0ZwHKrwfynG6Ho/0e4F9spXs2OSjbL8Q3/FNP9bqsNvyeA6zPeeka6ejMD8R1zkEjy62I31KMPiC0n831KyrDPk5GoH3J9GeJGFjL9jiN3U70tTH6uhoGBure19XlX+d845szxy9Js/qa10c6PRldkzSBHgsWLqx/XAQ59px5pn1uypTsWM+5fefSEm3/6LpWe8+FIONzeYP51vki8xjf/On09JZzEaOv9u0DisTlm3cuH7oYZePC1/szNE+c4Y9OQJ2GqoS0Lm25suzkk0/GmjVr6p676667cPLJJzc4RYQQQgghhBBCCNndqEyCf6SWtlxZtnz5cmzZsqXuua1bt+KXv/xl4TA3PL4NF3/qt7j5jscwbeoUDOwzA5952/E46hU/xIID+zC0YxdmdE/Fm1/2TLzqxYcCAC6/+k68/fM3Yb85e2BoxzDecNbheOvLnwUA+NQVf8J//PcadHRUMKevC19/7wk4cJ8Z4Q9NCCGEEEIIIYQQQkqnLV+WAYAxpu739957L3r0GuhxSJIEZ73j53jViw/F9z56CgBg1V0b8cjj23HIfr249VtnAwD+8uAWvPSd12FkJMGrz0j3lz73lIPxhbcvw+NPDuGwc67Ey04+GPvv3YOjD+3Hym++FN1dHfjyD/+Md3zhJlxZDVszMpKpINautc9Nn54d66XpMbZbDiVkKbBWehQsprrIrdRd+aO305Zbq8t0yV3gAXvJ/6ye/P3MW3VrZNeS87IloFYmW3un58sw9Spt15brFrKwVSAVcS72Mn4dpkteE7r03SX/dSGzQfYrixYFBefE9WwuhaysIrp8PRU73vKCdkDX/xjS1HaQGsegmVL4UImyS6rnTY7cHYBdgWRjkz4E+pwemKVuO1CCGwWrIyk3HWXLqF33hcZVdt/XTBl1DFx2ACF5HjrWl41LYS3H1O6uMEsHTdk2LHlxFcFVbmXG7aojMaTkofjGXcTOwMnoeEMZ5qTBGFMB8BYAbwAwAOAxAN8H8P4kSZ7yDOM0AO8FcBSApwH8AsA7kiS5b5z7ngXgFqTvsM5JkuSqwMfwpq1elj3vec8DkL4ou/DCCzFjhr1Sa/v27Vi9ejWe//znFwr3hlsewtSOCt740iPGvlt0aD/WPrTVuu7g/XrxqYuX4p8+e+PYy7JRZu/Zhfnz9sTDG7dh/717cNLifcfOLV24F7597d2F0kQIIYQQQgghhBDSInwawEUA/gvAvwM4vPr5aGPMKUmSON/qGmNeCuAqAH8E8HYAewK4GMBvjDGLkyR5KOe+CoDLAAwBKMPdtS5t9bJsStWFM0kSVCqVsc+jzJ49G3//93+Pd77znYXCXX3vEzhmQb/Xtc8+rB9r7t9c8/26DYMY2rELz5o/q+bc136yBn99/P6F0kQIIYQQQgghhJDWxWD38PwyxjwTwD8C+FGSJGeL7+8D8DkA5wG4wnH/VACfB/AAgOcmSTJY/f6nSFeMfRDAhTm3/yOAZwL4VwAfmuiz+NJWL8tuuOEGAMBJJ52EL3/5y1iwYEHD05Ak9ucrr/8LbrjlYdy5bjMue9fz0DXNztJv//RurLxjI3556RkNTCUhhBBCCCGEEEJIFF6O9N3gZ9T3lwH4BIBXwPGyDMAJAPZFKtkc84BIkmSVMWY5gHONMW9OkmSnvMkYsz+AjyB9maZMk8qlrV6WjTL60iwWzzx4Jq76v794XXvrXRtx+EDf2OdRz7Lf3fYIXvy2a/HXz9kfc2ennkzX/349Pnr5rfjll8/AtM4pOSGm21aP2oQce2x+3EW06o30qfG9rqcnbCtmiX4u11bqMoy5c+379p1b3ztAe5tZvkmeBkJFvERibGUf6j/gG4avF1DNc0uvG0+K+PLlpquZZn6KEK+JWD4RMhtCfcpi+GO4imNW38S9Ynzv0/j2MS4vmhjbscv7Ojr8rmsVbzCgfH+eRvrgxOhLJ3KtDzVpFP5dFUdjG+kTq97lMeKM7zFw1i2HR6irHeb1HaHzqRh51UjfJB1fq3iiNbofcXln+tIqfbBGpkvPs6UFoZzPllEHY9f5IuGFpKtIGDHK23ceEDofDw2/9H59QdXiyNeIlrQ6xwIYAfB7+WWSJEPGmFXV8+PdDwC/q3PuRgAnAzgUwO3q3JcA/AXpS7pXFErxBGmdX5UF2bJlC6655hqsW7cOQ8rR0hiD973vfd5hnbx4X7z7y7/HZT++A68/83AAwM1/fhTbhmwzwrUPbcU/f+5G/OM5C2vCOP7IvXH+qc/AZ7+3Gh9/8xLceudGvOETv8a1nzkNe82aXnM9IYQQQgghhBBCSAvQb4xZKT5/NUmSr4rP+wLYmCTJ03XufRDAc4wxnUmS7MgJf19xbb37AWA/iJdlxphzAbwYwF8lSTKct8ljWbTly7Lf/OY3OOOMM7BZLwOqUvRlmTEG//UvL8TFn/4dPvGfq9DV2YGBfXrwmbc+B/c+uAVHn/9DDO3YhRndU/GP5yysMfcf5Z2vPArPfuWP8O4LFuHtn78Jg9uGcc67rwcAHDB3D/zkk6cWflZCCCGEEEIIIYS0Jq2z3nRCbEySZLHjfDfS3SvrMSSuyXtZ1l39v14YQ+oaGGP6kK4muyxJknqr0UqnLV+WXXzxxRgYGMBll12GI488Ep2dE99GfN85e+D7Hzul5vvtv3pt7j0XnH4YLjg9e3G275w9sOGn5wMArv/CiyecJk2MZceuMGMs6Y0hEyhCDEmEPDerLygZ3nGFUoY8KEY6fCVqefe4rqt3bd59ofXYN64y7stLV6g0oOx6V0Y6QsreV2ZVhND0B/U/evv0AHm3WkyNrq7snCv4GFJRF9G2ms8J0zuNji3qRzry5wuNbkOVoW3ZB1FQrjSG4srHGONvGXYAvu0yJB1FntlZLyx9X1Zu24bs8Lu7io+V+todw/l9gEtmKNVPLqm3i9gSVlcYjzxmp3HmzOzY1V26wpT3PfaYfW7q1Cy+HrW/WmfHxPuEGH2rC13XJHnKt2ZKDjV53bWuq771x3cOVcZYL+PWzyU/u8bwGGrFmvSKyCuDg/Y5Uenl2OOyXdHEmIeRtmEbgL1yznWJa1z3A8A0z/s/ifQ95P/nm8DYtOXLsjvuuAPf//73ccwxxzQ7KYQQQgghhBBCCCGTmYcAHGGMmVZHirkf0pVpeavKRu8fvfaOOvcDVTmmMebZAF4D4AMAZhtjZlfPj76sm2uMmQ/ggRxZaBTa8vXvAQccgKefLi1PCCGEEEIIIYQQQkjKzUjfHy2RXxpjugAsArCyzj36fgA4vs65pQC2ALir+vkApDtvXgLgbvHvX6rnP1/9fGSRByhKW64s+8AHPoBPfOITeP7zn4/e3t5mJ6et8N1lZbJR9jJ4bxwaqWbK7fSScElTN7BxrVvvydq+K0+cQSjJxURxLf9vByltaFrKTnMzpc1Bbc+lhYxQCdessT/Pn58dayvP/v7suHtInRRxDyOTX2ipU9ky1SjhyTx3bGs85JA4djv6uih9sE7XqlXZsdg9uLLQ3kTIJcu0q5pdpzulZYhrrHHIVi15aIA1QxkUGc/zrs2xvAVgFcX4bNiQHc87YOzw2mvty156Zn4QLgnxlqGs7O+5J/t+/Xo7DDlOyzavP8+blx+3S0IWYwdJF1sGs7j/93/tc6cIh5S5cyeeruXL7c8zZmTHS5fa53ytOcqeo7lYuzY73rrVPrfPPtmxrNe9gXMf3/mDrj9S+afbnhwSZXnqsg5Ns8RVx2NIbmWYsmsA7ParpcBHH50dy/G8CM56JzNdVhgAWLAgO+7J+pvQ3016itM9qqgbaWy7aDQGbboCqThXAng3gIsB/Fp8/3qkXmPfGf3CGLMPgD0BrEuSZFRa+UsADwN4nTHm00mSDFavPQrAiQC+kSTJzuq1vwdwTp00nAjgzQD+HekOmvdGeK5c2upl2Stf+cqx40ceeQQHHXQQjj/+eMyaZW+DbozBN7/5zUYnjxBCCCGEEEIIIWRSkSTJbcaYLwL4B2PMjwBcA+BwABchfRF2hbj84wBeBeAkAMur9+80xrwF6Uu3XxtjLgPQC+CtAB5DKrkcjeshAFfpNBhjRl+d35gkSc352LTVy7Jf/zp7gWmMQW9vL26//faa6xq9pSghhBBCCCGEEELIJOZiAGsBXAjgxQA2IpVEvj9JknGXECZJ8gNjzHYA70Vq4P80gF8AeGeSJA+WlOZg2upl2X333dfsJBBCCCGEEEIIIYTsViRJsgupBPLfx7nuAgAX5Jy7GsDVgfFfDuDykHtDaKuXZZMVgyRX/x26DXoM/xDfMEKu09e6zkkPgNqtmLPrtHeF1M2vXm2fGxjIjufNi/9sEus5tZhfJtphDhbsgeHYT16mS/tcSOSW9zoPXGWYl2bpTQLYXhbaK6ZbJlkVfmW4vh+PxpXFMbxFYvgAxtjGfcew8iuK4L/hmw5f37Nmegf6ehkV6S9z67/LSKdAO89Liyt43UfK9otV+WZnQ13ZTuA6iU5fIEcf00i2DQvPtT57V3OrLTj8GcvAKtONG+2T0sRmjz2yYzlAARjuyawmasfA7Fj2pQCwb1+Oj5vuaOW4pMcobYDlQWhbDu0HZZK7O7TZVlYvZF5p378pU7LjY491JNLh7yZPfeIT9jmXZ5lE+9NJb7LrrsuOpRcVYPscueZCvjzxhP15zpziYRRh+/bs2OXZpO2WpAeby3NQsv/+9mdpG+nr0erqqxs9zs2enR27mrbsH1z+XzHmI7ovku1Nd4MSmX7tWebCN12yG9TeaQf3iITpRuRpZCj7gIcfts/J3yGyvgPA8fWszqtEqTOiHx/p38txYRhyPj40ZPdh3WvXjJ6IHm+rsZt4lu12tOXLsnXr1uWeq1Qq2HPPPTFDOnYSQgghhBBCCCGEEOJBW74sGxgYGNeX7OCDD8Y73vGOBqWIEEIIIYQQQgghhEwG2vJl2aWXXoqPfexj6Ovrw9lnn429994bGzZswA9/+EM8+eSTeNOb3oRf/epXeOMb39jspJZKDImXL2UsHXeFKZcyS6WKXsUrJQo9aln5qlXZsd7G/bzzsuMzz8yOC20ZHxnfLbl9rwPglEXJ++bMCdv23PdameYbb7TPXX99dizLAgCes1h80IUvP0upkJZrCl1FR4ejzejwc/QYobJmF6FhykeVbQEADh6of4+v1K9IumLkSQyZZ6wwfQkKQ2s/ZD1TnZgVvijs+fNtmYNEKfhs3ZLWxogwe7vyZc1WPrp0gE2UYbrkUzL9oVLs0Ppi5d38Q+0whd7MVVc7Rdyd0DJAUYYdqnzv2ZAdbxDHy5bZ18lycwyC3nYDBSwXfHHJuWWZjiC/bcjHXLrUP3zrs5JJVkSbleG/9725yXCi8+eIBfWPazp8Vxl6agvz5gT6XKE5SA46jL3v/312PLTZOveHjS8cO9by2T33zI5dMkyZxoUL8+uPr31B6JgXI+80e8+ZuO2KhR6jJH2z8s8JZvXZz/WcpTkXKnznI3q6Joch/VtAWlTIpjFr+FH7QvmjQQeiO4wcZF06+mj73HFH70Au8gG0WlEGKh9cj7ee46+zzrl8b/T8QSLGl1lyUg8A06aNfz8hLUxbviy76667sHjxYlx1lb1b6Pvf/36cffbZ2LBhA66++mqcf/75+Pa3v92kVBJCCCGEEEIIIWQyM57qrS1IkmanoOVoSy+6b3/723jd615X99zrXvc6fOc73wEAnHPOOY1MFiGEEEIIIYQQQghpc9ryZdnWrVvx2GOP1T332GOPYbC61LO3t7eRySKEEEIIIYQQQgghbU5byjBPOOEEvPvd78YRRxyBY445Zuz7lStX4j3veQ9OOukkAMDdd9/drCQWIoEZ0+KX4c3TSGL5Iclty6VnmeanP80/95vfZMdyy2YAOPXU/PskUbxWhvO9gJweA5G9gGJ4ZdTc4+lvIH1d1q/vti6TNhE15SKfW/qSqfhGpI+M9pQRaa61W8rypNvh61JG+8rzgNFeHDILdPrltfq+vLrbyGcB3NXYda5sT7EYbdsb6dWh/WDmzaubJkClS3iCdIt79H1WfwPY7UbfJ9pKZaPwb9F+LV12m7Vook9ZlDLUjUri+Wxle+NZadS+L9K7auVK+5ysa/JZhFcaANvIp2TjzjI8m1zh5ZVNTbwyX3vy/9BaY22Z4+F0+un5aYySB9/6lv1Z7gCvB1JpZOio077tqUh688LUf+++fXDJ2PHJPb+1zskqqR9Ne2P50NvjmMd4/ixyWZzq/Nm0OcsDnf1dXfXPxfD2AwLH+0DfwlBC0qina5bll8Pe1no0/ZyLhUmuHgM9kemQv2MAYG+zOfugK8LGjblhjgivS+nBWzMWiHMjHfnejRqrTGU6dJpuuy07njrVPrdzZ3a8fHn9iLZs8U4TIa1EW74s++IXv4hTTjkFS5YswQEHHIC99toLjz76KNatW4eDDjoIn//85wFgbIUZIYQQQgghhBBCSFSMaeofD6MhX3wSAG0qwzzooIOwZs0afPnLX8bJJ5+M2bNn4+STT8all16KO+64AwcddBAA4K1vfWuTU0oIIYQQQgghhBBC2om2fQU6depUXHjhhbjwwgubnZQJs2tXtpq2p6dciUIsyliuL5k5MzteILZLd6xUtpQG+rNeMSyX8ruW8fvKSK3ndMl61NpxZ/g5y6gbLsf1Xd+u5WVyj3ch/xoYeLZ1mSyLZz7TDsLKYx2+qAwVWdg6/0Wed6q/+nRG6AFjSP3kue4OlX6RZp3eoaEsfJdqwLdeuCQcvm1ZX9fRkR+3JTvR8sGcC10SpiLyphh9q7fES+LoH5wy57lzxw63Ddnxynzs0DLkHk8pYf9efunylHHp+0KlitH7NNeKc9WIQtuNL77hbxvOynS4w5b99c4VdURL1R9+ODuWg6DuS+Vz6/rp+ku56P8rDhl7bIpIzfLKpuYeT+llAx/Tyci73mN9rqz4VfZBT4Yc/acVRgPl6I8/bue3HPtH5jzHOjcgjktJY2xpqmpDGzZk7VdPofbbLzuW896auYlrHibPqQo63JFJ6GMseimj/oTcp9Phera8Nqvn2BUhywydZ3Qim8fsPUP3pVn4W4bsuHvn58edx4ijzwpGzDNqxoLjj69/HWCPKccea5+79NL0/5tumnDyCGkGbbmyjBBCCCGEEEIIIYSQMmirlWV//OMfcdRRR+Gggw6CMSb3OmMM7r333gamjBBCCCGEEEIIIbsd9CyblLRVqfb2pktOTzjhBOfLMkIIIYQQQgghhBBCQmirl2Wjxv2XX355ofuWveGaElITj6SjH2vXpsd6R3e5rXQrkaffrwxtsy/0NPjQngXDw/W9mLRVwwtekB3rXaDlC/7DDrPP7T0nZ6tkbfzU1Y2iaB8EKfsv0uB8/X5iePrY+WqH19UlnqdHeTzI8tX+BsKnTNYDbauzaFF2bJUL1LO5/mIj/dF0JZH+LdpnIS8uReleHNJHSeejw0+opyern/qxQwitZ67ndFn4dXaI+0Y7wVGkB4bc0r1AulzX5fZhgf5ZzrKWdVe2C8DZR+b5FnYV6UisDsi+Mbb/TxEvqZDrouCokL7lq6+LUX/y4gLseUCtr50oUz1+Pf64uE489x132NfJwVN10DvEWGy1VwAjAeNjIT+/BnptucpXNlHfOh7Lxy4vnJrvly3zDtPnulJ8+ERGHjEQNleMgq5nDs+vvHzQ0xEr79RJ2eXrqOW4LY87tQfphg3ZsTbvle1ezXE6u/zKsaledr5YY1n+PPuJJ+zbnnwyO9a/sXzx7uNluhxp1GzanIXv8lGWlDJXkei5iiP8ylzRbvRkdLRv+slP/OIlpMVoq5dlPlx//fV429vehj/96U9j36249YEmpmh8/vZv39DsJBBCCCGEEEIIIYQQTMKXZU8++SRuv/32ZieDEEIIIYQQQgghkxljJodnGamBpdoCTJ+eKcVcy3T1ylbXqvXY0gBftCzDik89QEXKrJR8pFt0OF1zszC1hE8q7HR+yD6rMrzDPrkxi3tL117ZPfZVcAkD8mQbrjL0DaPe5/G+Hy98F0XSbKVFLDOv6ECWL8+Op00bO3zW3y+wwxDP43w2rbOVn2VdkpJGwCm99CVUZlVIcjSKllJJycX69dapTiFPnDs3TEJWNnIr9ZqJhHweLcO8+ebsWGh1tcTFF1dZlC4zEZ2TK/9dfbwlcXdJN1X424azNuqSb3rngauzaIeJYoHOLqRelC7ndumtTzzR/iw1R1KqvsDug2v6VoEsUinJBPIVvq5q4OwjPetPrVqzZPmgg7z4XM9Zel+kxkBpl6Cl3THic42P1vgu5wvN7Ct03J5pkc8iVZGAPWzP6rPPOVSeVtNzloWUxDnkcTFopuzSNZceGsrqj6sIp0/3i6uM53TNtWSzdE1TveeRKpCRnt7x75kAzj5SFpaey51ySvr/jBnR00RII2hNQyxCCCGEEEIIIYQQQpoAX5YRQgghhBBCCCGEEFKlDTQTGX/5y1/GvWaDXhvdBnRgGL3Ykn6QcjIAW3DA2LHeACdkJbaUKwDl74ZmLc1dvdo+973vZcfnnZd7X2XhwrHjDrHMGLCXtOtl2VZaVL7K8Hs7wuRNeXF1OnZJchFjF7XQ+2JsRDUy7wDrc0WWqay8ev25KlMrDN/6KTUQ6mFi5H9IeONe21F/l9GaHWVl3jVyxzCE7cjqzEctIfvkJ7Nj3XdLzbWsM0oyFrt8ixC7zqxaZX+WarlZa4WMTm3pNeJoQ95qJ5nHrnpWxA9AECoFji4h1vVMZFBF6/w90gTUyhNzgi8m05bIPNdjmTyny0I+j/Qs0GFo6bfAtcuclDu56pljQ9agHRh1FXQkP5fQ8dZ3V10XwfXAk20ddn/QPbQl+6B2tI6xA2ZTJe4lk1emuqtw1f9ZPQ4rghbBt5x8201oucu2rVwnrM+6q3NZsuhd1ieKs/3K3y5KRzpraHN2DG0HkOkwtw3ZbbRbPo/MICV3lL+VYtgBFBpv5Zhy6632udG5RYwt21sZepZNWtqqVJ/xjGeMe02SJDDGWN8dc9wxZSUpCtM7p41/ESGEEEIIIYQQQggpnbZ6Wfb1r3896L7F7108/kVN5P7L7212EgghhBBCCCGEEEII2uxl2ate9apmJ4EQQgghhBBCCCGETGLa6mVZI1l99WrcfvXtqEyp4MAlB2LJq5bgLyv+glu+ewueWP8EzvrkWZjzjDkAgPW3rsfv//P32DW8C1M6puC4C47Dfkft5x/ZE5uA5csBADtOfYl1qkeUkNbvu7ajlpr0TZsz3bneIT76Nvc6kdJMZMWK/HNXX22f23vv7Fj48wx32V4cTnm4K4NyzM6i5wfie+5Uhnfkn1QZ4htfqMzeyhPtR1CyP4HljyEfoMDDuMqmbK8Vl9WQhazHyqvKNgOyfS58ifGczjou0lXRZXPYYdmxNB0B7HL09MXSVkyyvwst3xg+LL4ccoj9eVaH8BqSD+PpMQUAnR2eaZaeZbqc5GcVd6hPk6QMr6RchK9LIXTGCqyWF9gHuxjp6h47rnSpftU1zklk+9LP4ugzZT/1+OP5QcogaseosL4pjxCPMsC/Dup6VcTDLC+MRqKrwQiyeVOQT169QD1pZP/piit2OrqhvEWtn1OqDwgYm9vR6y3GfGrr1uxY29vK6Y/LM87li+jC1Qd4I39P6HKf2408ZJdc2/RE3ZXtUM+ZIlMoD2SnvP/+9c9NmTLxRLUy9CybtHA3zDrs2rkLt3z3Fvy/f/t/OPtzZ+OuG+7C04NPY+aBM/GCd70A+zxzH+v6rt4uvOi9L8I5nz8HJ158Im749A1NSjkhhBBCCCGEEEIImQh8BVqH7Zu3o7uvG10zurBp3SYAQGd3J6b11Dfi7z8k+xPHzANmYtfOXdi1cxemTJ3kb9EJIYQQQgghhBBCJhl8WVaHZCQBDHDrD27Fyu+sxIIXLoCpmPFvBHDfb+9D/8H9xV6U9fSMSUM6BzdZp0b6Zo0d61Xwchn4CNTy3k9+cuxw1umnZ9/3LbDDj71tuJZhykRr7YRcd7xYbcKwQKRTyI+0pMi5vNqlc3PtZS+ILaHUBIW5caP9WWrP5s61z4n6E7rlt3ce33OPfe6220Q6+rJjx9LxmjTKclLSIbkcvYyyseITeoCK0jL7xu1Sqcoq2KklUrK8Fy3yjrvsuhtCjTTjnHOyD1pXIZH9iu5HRB0vYwV8SD7qemzJ0hyJ3Nuotn3p5dnx0qXZsWrnsi106uCllkX1g1ImUtF9hyeNrGdlSJOcbWhISK10v5uHKl9XvgaNv7r+O/pBK0xX45BjiKojvSK+I+zpQ34Ya9dapzpVv+VL7PrUKn1i2RI737Heee3q1fZnKV8uIMmM/axlyLmDcLQnnUaXwj0vyJp+PAKh45dvmE4Zo0tnKNh7Ttbf7D1TzYWs+1QGiUtHOuzfQyH1IoYtRxEpcEdHvl1OXtwjPb11v3fdMxGc45XsE3R/P3puWv0FJ4S0OnxZ5uDoc47G4acejhv+/Qbc8bM7cPiLDndev2ndJtz0zZvw4g+9uEEpJIQQQgghhBBCSFOgZ9mkpTWWG7QwXTO6cMjzDsHGe91/VR7cOIjrPnYdTrr4JPTuk/+2nxBCCCGEEEIIIYS0LnxZlsPgxkFsfnAzAODRux5F3359udc+Pfg0rr3kWhz7ymMx94gwKQshhBBCCCGEEEIIaT4mSZJmp8ELY0wSklZjDC78yYWF7tn6yFb86G0/wvQ9p8NMMdhznz1x0ltPwvpV6/Hbr/4W25/cjml7TMPsg2fjtA+dhj9c+QesumoV9tx3z7EwTvvQaZjeN90rvvsvuwPXfuby9INewin9SfQ+yvPmjR1u2my/95w19FD2QQrgA7f/LrLVfB41HgAuPxjpUSSes0bMH7iHfKt4ocTwUvCOS/omaTzLswyflyL+Kq0Yvi/apkNa/MgdtWfOtK+TReNqhqHP2So+Pi5kGrcM5qexSHfg+9xBXn+6oGR/pvtgR/8c22OmVdpvqJ9KGZ473jh8dmrKW+JZKRvp9+b043E9i+tcoPxE+uZpopRjnmFU6FxIEbuO6zy2fAV9yzAQGaau7rav5jb7ZKS8zCOkbRTxXo3taaXPuZpNnndpd5cjTfq3gKNeB9XPAu08dwzUaZRh6nm8vFYe698Fa9bkhy/DPPNMtBs7hrN8fOIJ+9ycOX5hxJ4HxB5HFy9ZgpUrV/oZgLchizs7k5WB3q+thHnggVuSJFk8/pW7DxTX5tA9sxvnfOEc67uDjj8IBx1/UM21zz732Xj2uc9uVNIIIYQQQgghhBBCSEm05jICQgghhBBCCCGEEEKawG6xsuyad11T+J49ZuwRdF8I/b39GBk4eNzrKg45h17VDOQsBS0ip9ywITvWy6EHBrJjma4i4cvl4lJqCWBk3gH59+VQZNl9CA3fijk2vsviI+3mkrvdtS4XqUPQ2o++WVHSkkcjJYg6W0NWa7uKJnRpvasOhkhXyshHKVFwqdqKdD+xJb5WeEpaVpH9pSMdOk9987iR8tkYsuYiErJGSkac9V2MV8FS+MA0ynqtu3E5jGo1nCW9F41Bt5POjY6xXkaoJxpSSy77bh2BrP8qjEp//9ixK19DpeTDXdmGS51wWBE4aGgddMhSY8cF2LL23q4sf1assNOxdGl23LlmtR3IwoXZcQRJps5vWQV18Hl9fBGZZMg8rMhYKafSumnIqW9nh2eZqkEw+jzSMXB6991FBmrZjyxfnh1/+9v2dbfdlh0feaR97lWvKp7GIpQgQZfIsp8zx7/u+hJbhkzI7sRu8bLsgdUPNDsJTi688A3NTgIhhBBCCCGEEEKKYEy0xQaktaAMkxBCCCGEEEIIIYSQKnxZRgghhBBCCCGEEEJIFa4XbCN8vSwA5WGQ41syLtJzQBtF5PkR+G4rPQ6N9EPyibde3M3S+Qf7+8httwHbSEMakigzrdheBzX3SK+bmu3Ay/UsCyE0/339SIp4rYRQpB57xy39PAr0U774dluuPC7DdygvzBh9nYsi3my+4cgwQvu20K3rfX3byvBryYtL31dG2/NFlo22DXPmubhRxl3TTmSfryNweZbJc3mVCbDnD/fcY58TnmWhflGucx0dsgw7c6+TlDHPaFXPoKuuyo5fc+L6seMXnqh8ZGW/vnixfa7keZnL/iqP0DwNnedpu1WJsuT1C18HKNuazpCu7rHDRtfdoDm+7gNWCw+8B4RtjvQyA4Bdu7JjnT8nnZSfDlfflIf2btRploj5c4x5Row5metcjWflsMjLCJ6DhEw2+LKMEEIIIYQQQgghpCj0LJu0UIZJCCGEEEIIIYQQQkgVvgKdJDhlOb5vunUgEZbjxlgKH7pcOTYxZBtlyzyd4S99Tu45a7X7ZvvcrL6Jb7nuzB8htaxomY/AJZEqQ1KTt9w9tJx87yuyJb2LvPSH5qMzjzvy5U3Rt7UvQIj0qcg9Ic8To53rrtql0HF1/77S4FahDHmor9Sy7D6mFHzl0eK6ESHpAmBJvGrSm9df6woqcWnSHDRSNhkjrlhpCh1fJFKx1j20yTr3mgv6xo6v/MHBY8dn2G4M6G5iX+FbHmW3J1ceu6bLruYgZcKSig5QdvJKglhzrQeh41wUSaaQXgMAFi2qf26ffezrzjwzO3YMdDVpdMxPJNZ9/XtZ56w8Xrs2/74IxJgrup6zU88JOib+W69VZeaExIArywghhBBCCCGEEEIIqcKVZYQQQgghhBBCCCFFoWfZpIWluhuQuzMmYK8Pl7sjAvZuMLoDkFIKKcXQO8ionRVz4/bsYBq9g1Xs8Ju5o6Yrrrvvzn+2447ND8NXnhgqg4qRP7F3k9SUvfy87DpStrzYOufQi8co+7JldL7hh7aFmh23ZD8r8qq7y+4vux0qCv9dTONPB0LaW+husDEkmqG7izUU3YakJMtTg+uSKbmi64Rn3K665JDaOyOXBNbVZkppy5YSyvu2DdnPsnx5drx0qb3D9KwND40dn3uOY74WkA5N6HPuGM7ui9FNhVodyPtkmjS62spuXSsmZRffDhsRBs9HZF+hM0j2CfI6/XtCfnZskRpaB53PJuIbWfisoLhbhbLn2ePFR0i7wRpMCCGEEEIIIYQQQkgVviwjhBBCCCGEEEIIIaQKZZiEEEIIIYQQQgghRaFn2aSFpdpGOOx+aqT90vvAsgjRDVl+Hhiwz8ktnF0eA3n36Pu0J9r69dnxggXWqUoRX5OIlKGtj+Fp4iKG34ncobsm62W5qfKtNHJgqGkA9X12yvZHaCVvhpCyL+IJFWXLeFluqqMambtvfkKld4no0ELzuJF+gcFhz58fNyHjEdJ+XQNRg4ntaxcjriLhx+i7rfJwlE2od6NdvI31tfMdX2L4Usbw2nJd18ixoXvtn63Pp52S9Ss/udYeN085JeuDu2P0iXoyKryeKnJiWqAfWb06O9a+XnLa6vJulMQoCzk8Ae75uJxCuWx8JTXjlZyYOfLKd5yLMd90URO+LDjfTNi8Of9zCb6FoVhe0C4PyUCPUN/+p/TfEJ7pp0cZmWywRhNCCCGEEEIIIYQQUoUvywghhBBCCCGEEEIIqUIZZgtgkHgtn+3osN9tytW+cpk6YK9ytnd0LyBFcmzNnItemiuX7co9sgE7kXJvbR2OZzpC5XFlb/UcY0lyGUuvJbpoLHomvp18FFTd8pXeyHaydat9bs4cv6jLliz4xl22hCw0DJmumjRKuaxDdumSbYTIoMa7NjZRJHWaHClqEWKkxcpXJX8O6ZtCy8klbYshd/duX1pnJcc5l7TYkRbvOq7l532zvMIPRVbBjRvt/Onp6c2S4RmeTlOM/s03vhjh+4bRzL6oRuIoLC9ecvqAdSr2GLWtZy/rXPfQpuyDHMP1XFFK7NScb2ioUxzbt8lH9Z3nxZDI6i5AqiT1fEo+qk6/xLfdR+/TC4QZmne+ZTPSL+rPMrsu5codgeDxMYSavBIFPCL6xBpyrEPqhul5TlK2XJPSSw/oWTYpYe0mhBBCCCGEEEIIIaQKX5YRQgghhBBCCCGEEFKFL8sIIYQQQgghhBBCCKmyW4hrjznumGYnwcn0aV1jxgvaj8TyWRjaZp3r6uoeO1640A6zvz87DpZQe/rlWDr5wS32SXmf3gb6d7/Ljn/zG/vcqadmx4sXZ3GJZy6C5XUANFRXHrhbtEXZXlVya3PN3Lnlxu3tKaN9WCSi3ejLZBXU1Ti2j0yjffNceRfDLyq2J9R4acmNW7TfGs+mwPAlsT3pXHlcpC1XcjqMQnVJNgjd0OVAkeMRVwax6kgZ3j254cvxUHkqhY5LIQT7LYl6kFev6oUn+8y5yr5SBhPiq6PvK8PXK9TvMA89vnR2TNwTzdvPybc/0xNC17UBvnkuuru092Rf/QtXrbI/L1+eHZ93nnVq8+bMB9DXSrdIOwmpF7otyHaiw9s3gu1rFK9Fz/Bccy3Xb5Tg+HKuq3ku2Qc7PMua6RdYhj9s2fOYGITMRScdxtCzbJKyW5Tq4vcuHv+iJnL/t+5rdhIIIYQQQgghhBBCCHaTl2UhrL56NW6/+nZUplRw4JIDseRVS/CXFX/BLd+9BU+sfwJnffIszHlGupXe0JYhXPcv1+Gxux/DoScfimVvXNbk1BNCCCGEEEIIIYSQEPiyrA67du7CLd+9Bedeei46uztxxWuvwFFnH4WZB87EC971Avz6S7+2rp/SOQXH/t2x2HT/Jmy6f1NOqA48l266pB5aXTNlSnY8Z07xJOn4vLch1vIUS0qllna/4AXZ8a5d9rkFC+qmw4VelW1nqb10PKTi+y6N1teVvSrXtfzZV1ax79yJS0lqwh8czI7lPutKCzkyd194oTIyL51SFjMuMo1aJqz3f29BfGWMkljyFO/rZNlL2Z/CKV0sIL3Mw/XcrnYSIoFw3VNox/uczsP3WQCgcs89+ZHL/lokRHfVrj6skRKR2HLZQjgLKkN2KfqzlpD15kjKishYfPt/KVUvko8uG4HKZjHfcendRR9QcfQBZSDT3wnxQbYLABUx59DIfCxjPA+p18Fy3MjpCGVk0bPtuKUMU3VAUrG5aJEdTl55FMkPV/+flyddXaqNbnhInsyPTCfYV1faSNassT9LCbcugBxiy14BYKSnNwvD8Vuj3YkxJyvDviB0rJ9MZUN2T/iyrA7bN29Hd183umZ0YdO6dDLY2d2JaT3T6l4/tWsq5h4xF08+/GQjk0kIIYQQQgghhJBmQc+ySQtLtQ7JSAIY4NYf3IqV31mJBS9cAFMxzU4WIYQQQgghhBBCCCkZro10cPQ5R+P8b52PwUcHccfP7mh2cgghhBBCCCGEEEJIyXBl2Th0zejCIc87BI+seaQh8YVqyV02Ar7+AL5eDUXCsK7r3yv3XI0PQl+fV9zS2kLbLEgLKu3ptkzswSCj0n4z8pz2qMhD6/OvvVaGYV/7zGdmxzNn2udCVvM2c9vqGuTDin3Wd3TYHnTDwkbJ0xbISZH0VmSEJXjplO09Ieu/9pnyzUtfry0XzvtEu3f1MdG88iZ4X6H6kxOGqw11dxVIr/QYkx2C6hwqwztyzzlNs0QlaVU/klB/m5DwYtDbM6I+TzxM3zHWhW9b0+F3yuqkO5k8z0ft9+jpVRjDS0dbT37729nxRf8gHsbhUVZr2hfm9yYJfc68siria9eK1KT34otzrxXTB6fFl28d1/M8OVZ2hvozikTq65y+f4Ht0vecxLsO6smDHIcchpbe/bEOQ3729EreMWzH5fKq9fVvdd1Tdvty9WErVmTHLzlFlMX69faFAwNjh5WS5YDt1t8QMhH4siyHwY2D2PzgZvTt14dH73oUffv1NTtJhBBCCCGEEEIIaRXoWTZpYanmUJlSwc8/+nOYKQZ77rMnjnvVcbjvd/fht1/9LbY/uR3XXnItZh88G6d96DQAwBWvuwI7t+3EruFduP+m+3Hah07DzANmjhMLIYQQQgghhBBCCGkldouXZde844eFrh/esQu7nh5GT8+U9PPmrbjuAz8BAMyc04WZc6pLlLdvHwu7b9Y0YFa2W+bvvvB/3vH1984ZO44hAdLh+IYZGneM5bgj8w7wiqve2VHkUmXA2q1e7xJvrTKXaowf/9i+7tRTs2OX1FWuIn/iifx0yNXs+rMOX0oPyt4u2leO65YXqLildEX8tWVISSBk/mi1jkvCJNOll+RbyRC9nM7/rVuzNM6Z04mJUiTvfNubVixIpLz4d7+zz51xRna8alV2/JylXtHWEKNuFZE2xJBnuYghHwwJo1A++mppXTofl9xMXCuDKCJpiSGljYFs27qdy2zsdmSpb9m4rgut46789x3Pne1EROCU6LgkUi6tt9AOjXTk96VlSJ/kdXockmOKM+82b8o+KBsI5zgnkPOM5cvtc697Xe5tdl83uMVOl0t3GJkYtgFlpGOpGLO0wlfK2n3T39Mz8X6qiCzSVWd8w/RGd34yfMd4YtVBPRFzhClxzVWsLkf1Pzsg+gurH8xPY4wFPA0fr2Q+yokvAIjfQFombH2Wk761a+0LhQyzjGeLbXlBSLuwW7wse+CbZxe6fu1DW3H6P12L1QXvC+UNn13bkHgIIYQQQgghhBBCiJvd4mVZUQb2nYHV3z2n2ckghBBCCCGEEEJIq0LPskkLS7XFcO00VvYuZIWWynru0uYKP4bMSspVzj3Xzo+vfCU71qvP99svO549Ozt+xSvs6+RqdFca5XLxvefY5xYvztKlN/l0bcDYikuXnTulaeSWPmJ9/qo19q6oUj4rZa8A8OwFDm2VyExZ7bQUQG4YpIMQq9ad9VPutPo//2OHceSR2fFpKv2S0F39XM8mFTrPfa59TtZ5KWMp0m8EtVHHTnKu8B2bbLnTIQtVNfTQHR5DwmgkNWnq6q5/IQD09Oaeks/dGSB502lxnStjt1N5Tu5WXGjHUc+4XNf5yjJrZNpD28aOO2U91tK7QFmjpb9euTI7vuACFb5jDHftdifqlpRu1aRJjgWqEx7s2XfsWO8kGoIO47zzPHfr7puVe52cZ2wZtPNAFpWUYWrrBxdWfNdfb5+Ug2KM7aJDcUm9I6Pzf8ECUYaizfz/7L19mF1Vef5/75PJZBgmwxAyMIQBhxAgQIAAAaINiooWNSoIVLSooVXEahW1ttpq1e9X/dr6/tLfZWtbsaKioNKKSiuViKgoQaIGeYsQIUAgAUIYkmGYzP79MWdmP+s5Zz+z9jprn3Nmcn+uK1fWnrX22muvvV727Fn3vSbI6iS0/1rEGP9D5pfg9z9zp8n89mNeT44BaixyJdCe+Snk0CSVha8+P7+MNfVmaEArnjt2lr7jpZynlfWMvPYhC90x8vzzs/PGsTiLGFrspPOdK3UdyCE5dO500M/iYx+b+P/BBxvPm5AW0H6/BRBCCCGEEEIIIYQQ0iL4sYwQQgghhBBCCCGEkCqUYRJCCCGEEEIIIYSEQM+yWUmSpmmry+BFkiRpSFmTJEH6i4tKKFE83viZTfjnr/ygblwMz7IydPit8vEp4v1w001Z+P773bTSK2xgIAsX2Zbc9E9oIqF+S6X7M+R4fmkvl2XLsrD0ENP43qf2JfO01PPOP9TvxPc8/cys7djlvep02h8vhBhtxHcM842L5X3l+2zKHmdD+uhDW91z5s7NwtruSvotaaT/krSz0f0k9lhR9rgUOlY38xkWycPCzH8kx/NRDQ6hfTQvne+YBbjttex3nND8yp7fY8w9MTxgfbH6Vyspow7apQ1aeQT7ico8hRdZK8dBK78m2ua1TZvWtPKd3sKn76045RSsW7cuaVaZms2K3t50nTQInqEkP/zhzWmarmh1OdoJyjAJIYQQQgghhBBCCKnCj2WEEEIIIYQQQgghhFShuLbNiSE/KkNGlJc2dHm4bxmL1MHJJ2dhLe976qksbElGJGUscS572XSIbKNIHftuVT0wkOWp5YGLBvKv7S679yuXsTt6jQRI5t+r5GuSUPlLjPZvyQ2khEnfW2zKkJpZ7S4vrohEyrd9WoTcW7R+vX17FhYPu7+/szZtzrWt+tGSzbw8fPPzzafZ1gAybsuW/DwWDeTHWcSQx4X0BetaAFDx1KDHKJcMW2N1EfmU7xgQkp/GdxzxfccpMi7FmEN8r20ROia2ozQsdJyK8Z5dZN4p4903t1yena/Ie3xI+UPzsywFYkulQ9t0M2X+Zc/TRfKUryp6/O/t2FnNoD2lrdFIEnqWzVK4sowQQgghhBBCCCGEkCr8WEYIIYQQQgghhBBCSBV+LCOEEEIIIYQQQgghpArFtTOIMnwifP1PYvv7THftEE80K66/v3k+FO3o31GPGH5Cvl5S2qfMt0ydcoRS5nIhW513Kz8zWcZQz6wYzzS0/ci0llebbx6aGD4gMe4t1HvMt33GfoZWOazzatL5dhxPasooje6E14bsW9PlEaONlD1myjwWLmzu3whD/K40oZ59jn9KnkHdNPlLYrTxrq6w8SZGO/Adx0PHKSuddU4MX7IY46Dv9ULrLoZvVRntM8a7qBUX2ztT5x+j31RGduZH+r5ceF7X1/sw1vVCKNv3r8i1Y/w+59t+Qr0z7VeVavupzPL1OfQsm7XM8pZLCCGEEEIIIYQQQog//FhGCCGEEEIIIYQQQkgVrhdsM5q57XCRdLHlWABQGRvNDjyXrjZbQmaRt3Q5lhQ1hDIkUhKp2gJcZWRPT+NSV01l+6PZgdybGgCGFtfNI1Yd5J3X7C3pQ/PPiytjS/QYecbaBj3v2jHK71uOWFLdEHncnRvdMi5cmIX7+lQbCZDXWNcuIg/yyW86cutHSbbl/GJNNWXPGb7Xq6kDeT8FZB6h7dU3j5B5L4YMMJTKxjunwg8feaQTt/+TT2bpVL+wxk/5aN72tiz8hS/81Em3e/dpueWSeV52WW4yXHBBFg615Wi2TDJkHr3mGvf4ve+VYfe8M8/Mwt1dfm1Qv8fILqW7V+wxrNljTB417wuec0Hw7yiio+gcpOzfGupivE/FGKeKyBPz0K+zGzZk4WevCpN6x5CSl/E7Vbu0+dKhDHPWsoe0YEIIIYQQQgghhBBCpocfywghhBBCCCGEEEIIqcKPZYQQQgghhBBCCCGEVKG4ts1opW+Pbx6aYA8DQ9sdsh17uzLT9fqyzru6GvfUGx3L93ypsc2Q+1Hbe1NP0cr6LsMzLrT/+m4HnneOPq9sYviAWHnG8EqK4cdjEeqnIlmypMB5AV5Y1nMqo/37+ig5NNk3xLdcZcyVsX0RQ8eYvDIVzdOH4HFJdI79H3/cjfP0bNLXHhnJ7u3YY7OfH3qo61Hm+5xWrnSP28UCp5n+j9KHDABOPz0LW4/JGitivMfE8NeLkX/Z/UsTxdNT+JJZdRDqKRmjfYYS8vuK9g9dtSo/v9jvYb7vWqHtrNnts22gZ9msZQ9pwYQQQgghhBBCCCGETA8/lhFCCCGEEEIIIYQQUoXrBduAFEnTlqnGWs4bJI2JkEfodsiVLQ+4iaWkT6zrD13+rKWFks7Nd2cH27a5kVIzFUFm2FYyWyHx2jGSLcH/wQ/cZLt3Z+Hzz/e/tq+CTKYbHnbjenqycOfYTjdSJl640KtMRdpPDBmg73lWmWL0ZUsCUfbYFipDy7vXZufhe17otvAmESQDMcoSQ97USqlHtOfhkX+R/PLazMiIm+6JJ7K4A/obl9CUMQ76nuM9vsnBf5r85Rxy+eVunOxCa9bUD9fLMw9vGbUsFICKKEgrx2CNvLavxKuy7WEnrls3WMnAQBb2tPaobLrbjRTzu24XMaTGZcvonGupunPaibxPIYvUeer3JJmFfk1tpdVESDmsa7XLOGXlE1p+33S+Y4xVxj1Gdkn2GPixjBBCCCGEEEIIIaQo9CybtfDzLyGEEEIIIYQQQgghVfgJtM0oIpGKIWMMlfbE2D3FeymwkZ+Zx/CO7MBYxh9D2iP/mFBTpsHBLCwlA/rEEoghjwiWEIh727w5+/Hvf+8mk9WjVn2b1SPjtm/Pwhs2uOkefDA/D7l72dKl3U5cxXN3NOecyMv4p8vT97zQ5+s7xpSxU29seWgoZdx3yLV80+kyyaFPN+m8fCpjo+4PAnfKjCGNiX2elhhJDGVeMLHlO8E74opn2j3mzodd/b1B+YeUIxRLHiQngPGF+3udN65kaBL9uiD7zbnnunFXXpmFu7salx3LuQwAFvTlvAup8vv28xiS5yJpfa8tH2mnlAvqyMB3JqcdDA3lpitD2uZbPzHkiKN9bvvPeze13tWtcTDGToftItNr5a6N0cdExHlfc87zlF1Od72p/pum+WkIaWPaY8QihBBCCCGEEEIIIaQN4MqyKlse2YlLPvkz3HTbVsybOwdDB87Hp9/xTBx/wbew9Bl9GBndjfndc/Hmc4/B615yBADg0qvvwLs+9wsc1L83RkbH8Mazj8LbX3UcAOD6Wx7EJZ/6GX6z8VFc/n+fj3Ofv7iVt0cIIYQQQgghhJDY0LNsVsKnCiBNU5z91/+D173kCFz+4TMAAOvv3IaHHtmFww7qxS1fOQcAcPf9O/CKv/khxsdTXPjSIwEArzxjMT7/rlV45PERHHneN3Du8xbj4AN6cMgBPbj0fafj41/9TcvuixBCCCGEEEIIIYQUgx/LAFx38wOY21HBxa84eupny49YiE0PPOGkW3xQLz55yUq88zM3Tn0sm2S/fbqwZHAfPLhtJw4+oAdDi+YDACqVpFBZQr1KQjwRYpXLItRLzTc/876l8YI28RBf/y2vj5Br1/xceosYPikWvl4T05bFI//QPLSNjGTp0iz8/Oe7cZs2ZWHtFePrISS3Mz/yyNxkhfKP4cURwzMrRt+L7XsWixD/nLJ9Ha1rl02M9qPP6YZs9J4+fG3019EYY5PMo6enue4Tvn2o9HYmn2kZ5mwGcm7QnnGyKFazk/UzBnce7RA+ZXoe6vRsyvI8/R5gvSOcf379MlpY45T2KPPN03p3CWlbsfycnOcm6nhszM1Plr9mHGyj8SiPGPXji+Xt6tuH9lRivBP4Ylgl1/gbxn42zWyP05031X+TYr8PE9IucOQEsOH3j+GkpQunTwjgxCMX4vY/bK/5+b1bhjEyuhvHLVkQuXSEEEIIIYQQQgghpFm0/59r2gy9mcc3rr0b1938IO64dzu++J5no2seq5QQQgghhBBCCJn1JElbrcon8eBTBXDM4n1x5Y/u9kp7y53bcNRQ39TxpGfZz3/7EF7yjmvwomcdjIH9ugtdP0Gauxw4VGK0cySL6+pq/+2QQyWOlsTFqR81gI2OFS+nKZEyNIijyJdeWuOqT5tohBhboks6OvLrR9b3I4+4591xRxY+/HA37sRlo9nBtm36gllYaHn6+93+t+++Vpnz4/Ioe+n+1q3u8ZNPZuG993bj+vv98ixbemD1wxgyutBzQmSkMeRHRe7ZdwyzsCTQnVLfpBPKY08tT9lSnkJS+8gy4VbKpi1i2Bn4lkuPP48/noW1ejOv3emfSzmSblpPP52Ffccza9z2HdMr637pHHfKQi9Z4sR1CZmnllZpOVUewe9GY6PTJwKcG/ftMzqt1c5ijOO+csHQMbhs2wDfa2uKPA+fc4q8t+S1n3HDEiS29B2AOUlZZZHIvqf7oZzmLEmyc93AfuKLbzkAoDK8IzvYvt2NlD4jchBWdVoJHAMkZbwnUf5LZjpswQCet2IRnnp6N7541W1TP7vpdw/jD1tcz7JNDzyBv/rsjfjL85bV5PHMYw/Aa848HJ+5fEPp5SWEEEIIIYQQQggh5cCVZQCSJMF3/uGFuORTP8dH/2M9ujo7MHRgDz799mfh9/fvwAmv+RZGRndjfvdc/OV5y2rM/Sf5m9cejxNf+2387ZrluP0P23H2X/8Qjz3xFL77kz/g/V+8Gbdefl6T74wQQgghhBBCCCGEFIEfy6os6t8b3/zIGTU/33X9n+ees2b1kVizOvtwtqh/b2z5wWsAACcfvT82X/2n8QtKCCGEEEIIIYSQ1kPPslkLn2qbE+oh0T38cHawcUsWXrrUTejZsUP17755lr3NsU4nb1t6H1S2P+qeKEwHxrtcLyyZ5/BIZ71TAOTbAhUh1HMqpH5MT5PN9+bmMTZwiHMsPczkfe+3n3veypVZ2PEo0ycODOReO297ep2FxvKdy/PRKNt/Qfv2SM+14eH880LHCl9i9POysfzAQn0RY1OGZ5xs47UeNSJSNyDpf1LCS17IvZY915RxXmxfviJ5xG5P1vhjNRE5fOpmJu0mt2zJj7M8y2I8+4os5JVXOumu/NjHpsLn/vjHbiarMs8ybx8i5TtUEb5DhdqErLDBwdxksdtZ2d6WNchGoyp546ZsLtavAXIIm4neSGWPMXmeuZ3GfGh5+vpOE7V5ZOXo7HCvnedFpj0SQ3zJQokx5hZqj+Jmx3t6868nxzA9mBrjg0XZ3rGEzHTY2gkhhBBCCCGEEEIIqcKPZYQQQgghhBBCCCGEVKEMsw1IkQQtabW2ya4sXJgdyG2H1Rrq2NuGF1kq7rvNdxnbgcs8e52l3n1e5+iy6OXiEkcipevHkB7IE8veEt189lLWtX69G3nffVPBzhe9yI2T9yaWi5+6apWT7KEnMnnrA9tcyYBsunqrcBknMWWXWqImy6i34ZZ9KFBLa/YNkaeUfOp0Us6ad89FKNJ+ym53ZWPVf16bt8apsomxXX2NDllKNVQDkhId2aotKXOUMip8ZeAxaKUkOVS+I4cpLXHs68vSxpAm6WcfMvTpdPJ4aMiNmzcvC8eQN+n6+cEPsvCvf53NNR/5q79y0p0rD6wJ3ShLZWRnFnHQQW7CJ5/M0lltXD8AIa2S0rbOjb9zklWExUaRMSw3roifgYF3XzHq3LIfCLlujDE+1jzqOw+FSmS15DEPN88wCeLOkXw7DGdsUhLlbnHcLd67xjtcOaIkUvN0KHuul+24pye/HajqwaWXZmnf8ZacDBVF5lHfNigpo/5nPPQsm7XMvN9+CCGEEEIIIYQQQggpCX4sI4QQQgghhBBCCCGkCj+WEUIIIYQQQgghhBBSheLaNiBBOqUZj+XP4uTTUX/raCDMN8z7utOcF+JTFsvPJu88x3MEcPXnSoseovOvqR/DpyO3jIF1Gsy2bVlYe5bJ8mtDrU2b6ma3E93O8e7dWVjahGl8/XhqfMn09tp5mSpTNKfdiWcfXMfa5EHUa2XjxuznqryVZcuyay892vtyvu2nSHstkzK8qiyPEN9y+OI7ThWJC0J3lIGBLKzaeOfwo3Wz6FTj0jjy55AY+HoqWfNL2d6WZfSFvGevhwpJDN9CC8tvzPc83QSF7VYp3kKyHnX+r3zuw1Phww/ffyr8iov3d9J9+7IP5BbSmVMM31fnxu+4Iz+dhZG/E7VkSW4WccYwhWFeF2PcsupHTIFt401V5D3Md46tbM/G44oeBAzv4dheWzXzgiyL8ZImm39lywNu5DYx98g5CXDnJfm+2ZPvWVZKOwj0pvWlt0dcT5vwisrTUU5R5IExBmhiz2W05qoDPctmLVxZRgghhBBCCCGEEEJIFX4sI4QQQgghhBBCCCGkCtcLtgEpkiDJnYVcxmvJ13yX48aQO4beS8i22/XS5uGsvO5yJYIxtrLfsCEL652eDzssO6+/340LkXnGkF/U5CmXzL/lLW6kXHKsJaWrVmVhUcmWSsxCr26WakW5cv+4ZSqh1AAprPt2l8Jn6eS1gCLld6VsFSlnkJJVLRtdscIr/9At6X37V2i7K3uMsTBUzk41y3SWXDNULigpo/7N/K0+6klsmU8sQtpMkTkkJI8i+eWl1WOdfGyhEl/vcmj5lyErkfmHKphitK2tW7PwBz7gxh17bCa3/IsLdkyFzzrLlXiNi7k/SntX805onpddloUffDALv/3t7nwiqzxGOxhV0uvOkazuQseRUHzbU2xbEZ2Pb/6yPQKuIle/jgwNiQMptZTWDIDbwXxfOgD87vb6Mt4jlhh14Ot5oXDqVZf/xhuzsHw3BArdT0zMubJsjDrW1bFmTU5CQ7Lt+66iCZozpsmjXd8fCPGFH8sIIYQQQgghhBBCQqBn2ayEMkxCCCGEEEIIIYQQQqrwE2gbIHfDtCgiOclb4Ru6PH/zZvd4+/YsvHRpFu7sKHe5bRnLeUP/EOBbd1Lu9dhjbpyzBL9NcZZ2q63YzDoQskO5vD2WVFS2cVeS6aY7/fSgyzn5SwWEpUAJ/qOSqwN044SOt6LW548r2XAeseXQVv5F8mjmbpsaqYL1fW5lyAtiyB6s/EbH8ncKjCEzD8kvFmXIrhq9lib2bqehfcb72p6yS+u0ZrcDaWHwl3/pxn3hC1l4Z0cmvTzrrPz8irSlELl7EWQ5faWupex2Fyi9DJGG1dSdsRtp2eSV2ZrLHn/cTSutGyzFoVNX+uXQ874f3e7W3X77ZeF99/XKAnduzn+vMOWbEm0fIbc01b+gyHsTjVzvTu/7vqPx7nuyg2k5eoA01byu9mQR+VeUFUfP4CGFr10GMd4BCZmJsHUTQgghhBBCCCGEEFKFH8sIIYQQQgghhBBCipIkE6skZ/o/r1tNKkmSvD1JktuTJBlJkuS+JEk+kSTJ3v7Vlbw4SZKfJUnyZJIkjyZJckWSJIfWSfecJEn+KUmS3yZJ8kSSJFuTJPlpkiSvSpIkKfCEguHHMkIIIYQQQgghhBBi8SkAnwTwOwB/CeAKAG8F8N0kSab9tpQkySsAXA1gLwDvAvAxAM8G8NMkSRap5P8A4OUA1gJ4J4CPAJgD4GsA/iXCvUwLPctmEDG2u7by1JpzKZuX/j5Ardw+L4/Y3iWt1MWHeuKsXJmdp20QfG1AyvbjsfKT1y5S/0Hl0hVk/JVD2qfJ7di1v55VplK8XeT1pNeK3kpdHlueZdIUUJqfAKiIG9f3EuPeQryqYvVRXy+g0Pw6Osrz4Wonbw/bhiWun5YvofOE71xW5Nqxy1Hk2iF+SEXGsMr2R7MDOaHLMaUARcrl4Gu2ZWBdS97n0qULnLi/+7ssbNkOeY9hagyueTnKKWMocjqI0e5820+hdhZQriLj4M6xzP+0y5pvRTli1X+I56Bu4tK+y/IsMzPxRLdx2e2feioLHzKIXG65xT2W5x2xxK8cox3KX6wnOza9jeVYIc2RAVT6xIHRma13IWdMVPk7JsIRximN034s3zbVSELer4rMsSF5WmNwzS+Ik2PkeHO9LEk5JElyDCY+kH07TdNzxM/vAfBZAOdj4kNW3vlzAXwOwH0ATkvTdLj68x8AuBnABwBcJE75GwA3pGm6W+TxGQDXAXh9kiSfSdN0A0qEK8sIIYQQQgghhBBCSB6vApAA+LT6+RcB7ARwwTTnPwfAIgD/OvmhDADSNF2PidVjr6x+UJv8+Y/lh7Lqz8YBXFk9XIaS4coyQgghhBBCCCGEkKJMepbNfk4GMA7gl/KHaZqOJEmyvho/3fkA8PM6cTcCeB6AIwDcOk0+k+tjH5omXcPsEU+13UmRBElzYizNtZCrhPWK4UFjCbfv9XzL77u0vohMwFd6EJKHRq701gqOgw7Kwv39bpzv8v9WyoqiS2+MdFb9y+3RtdTMOa9G5tmJPEZG6hdL9wXzNg1JgVuO/CX4jt5UhhW+7TNUStts+WBe+zfbnHxogPuwtIRVyKesewuR4RQhRp5W+QN2vC9E2TJVqw3GkF6GpCt7PC5ynvcYrMc+n3MA/zFZnqf74e23Z2GpSSuAI2nXMh8xLur6OEDNq5MUGc/krXUaY7BF6DiS1/5D8/CNK9IP5bF+NHL88ZW+h1L6HCVvrkZGl71L6Pdjb6sGkbDQWCcaaPd2d547ejDT8Y529ebnITj8cPf46ae9TnMo9M0gb2zSlhRyDtf1L+bzmrqS45EM+/4iE4jzbAG3/Oo9z3nexntpMy0vNJYlS0U+Kz3+T9637xxEWs3CJEnWieN/SdNUeoMtArAtTdOnUMv9AJ6VJElnmqajdeInz59MW+98ADgIxseyqq/ZGwHcDeCGvHSx4McyQgghhBBCCCGEkD2XbWmaWn/V6gZQ70MZAIyINHkfyyYNDOvlMaLS1JAkSTeA7wDYG8BL0zQN+JxfDHqWEUIIIYQQQgghhJA8dgKYlxPXJdJY5yMnD/P8JEm6AFwFYAWAC9M0/YlZ0khwZRkhhBBCCCGEEEJIUfYcz7IHABydJMm8OlLMgzCxMi1vVdnk+ZNpb6tzPlBHoik+lJ0B4PVpml5WtOCh7BFPtd1JkHppxi2fCF8K2JGYXjfyvNCxIcZ2xaGa/dz6tjyPDKwybt6cha++Oj+Pc891j5cv97q0d7lCsWwGTA+SHN+FWL5PMp/+/qwc8+e76Zxno55vZTjfQ6Krq/69mf4jI+qPIdKrZ4Pa2Vi2rTlzsvCxx7rphBdHEUI8Ac0t10v21rLKZSI72KZNbpxsvLt2uXGinivyWVj1rZ/h0qVZ2PCbkZRRj3m+N9Od147E8I208rDHM/98ZgTyhoSnTKj3W8i1AADLImxWZeUfQJF7lpceR76fUChl+yI6GC+BMcYH30dT5D7z5mIzz5LvU+dfEfkX8mbLGa8LtQOZhzF/dXb4eS3KaQ0Is5oKLn/gLyVmH8qb30v4sOFcW+dvPJsQH8wivw/F9jauyc+nDc6dW//nZKZxE4AXAjgFwNTKrurHrOUArvc4HwCeCeBaFbcSwA4Ad8ofJkkyDxPSyxcCuChN038PLHsQ7f/mTAghhBBCCCGEEEJaxTcApAAuUT9/Aya8xr46+YMkSQ5MkmRp1Wdskh8DeBDA65Mk6RFpjwdwOoArpA9Z9UPZVQD+GMDFaZr+a8yb8YErywghhBBCCCGEEEJIXdI0/W2SJP8E4C1JknwbwPcBHAXgrZj4EPY1kfz/AXgdgOcCWFs9/+kkSd6GiY9uP0mS5IsAegG8HcBWAO9Xl/wqgDMxsQptZ5IkF6j436Rp+pt4d1jLHvGxbNUbv9/qIpjM2ztbslqKPEJQZNWxpUD0VCcGb3Mc+769lyD73liBa0mF3ZIlbtqhofrhmnLJdfBaSigfqucy9Zr8jXSxV6oXaeO+bUbmYUo2tm93j9euzcJ9fW6eUjokJZpbtrh5yO3kf6K8Jn/84/yyvO51Wfi007JwhDYIhEnUrLShy/hjbHVuSizkkv/vfteN2707C2styb77ZmH5TLWOSD5fLSeTeRodRZb5oa1uHUhlwrp1TpSz07wcH7TKYcmSTBoWKlVvpUQzVCYcks6UUXv2DWsMK0NGFyzTk2OaaNc1ech2rPrJeIdf2zLLFSqfymOG+8KEvudFl8sGXiu4HQQSNIeU0UYsuaB4L6vouUa2/xLK5dR/YP7e71CBRGkjhpTWe+zOsQfReYS+p5p5eD6b0TH3POk0sXjIK4safCXKkuA6yLvPJLELOdPZczzLgIlVZZsAXATgJQC2AfgcgL9P03Tazpim6RVJkuwC8F4AH8fEzpj/C+Bv0jTVfmWTO3OeUf2n+SAAfixrlBtuua/VRTB540UXtboIhBBCCCGEEEIIIXVJ03Q3gE9U/1np1gBYkxN3NQDDyXsq3VDhAkaGnmWEEEIIIYQQQgghhFTZI1aWzSSKLG8PkUXF2k2yXYghE/MlRBIIALt3Z+cdc4yb9qijsnDNLlJyqbRch62RmiwtMxRLgiv6AkI2MNqReS9K1RkALOhSOzxKCsg+YxPUxtWOl1i1KgtrDdxVV9VPJ3e4BNwdEqVuDnC3lVq9Oj/OcwuxMmTasZ9T6BgWPDbJNnjeeW6clCzr5fGyf10rNuTRbUTmsWKFG+e55P53t2f3olW8MvuNG924G2/Mwm97WxbWeTz2WBaeP9+tt8HBLGwMAVF2OG4XrH7xX1e79SO776pVbpzckVjWXbN3ySxdfmdJiMVOq5aEyUT2NTVGVuSEo+cT2XgNYki8YuysXcauwyFy+hiS+SJ4n+cpW9fE2Dk9Cta2kHIw1buqRx5cY7wHaKmfxNo1M5Sm7vKq6z/n/cqSo4fKWc38ZbnUODg+eMhUWL+Dy1fOxYPGWCreXcw+o99TJSKPMsaKWc9Mf3kidZnZX0oIIYQQQgghhBBCCIkIP5YRQgghhBBCCCGEEFKFH8sIIYQQQgghhBBCCKlCcW2bE1sXHsOXoxmE+HQ0krZRrGtJ3xuNtGipDO9wI6WvgDQp6utz00mNfAEPsYrwT+jsyHwQenp6Vf4iT22msGlTFta+EAv3zy1LXrlieCRYbVx77lSkJ472IxkaysLSx2rrVjfd+ednYV0H8llZz82TGD41RfxsYvuZmc8m8FrOearNmW1GPu9ly7Lwgw+66WQb114oOejrDgxkZdRNRB6fdJIbJ63ylizJv97atVn4jjvcONns9LXbxafM188plIe2ZnncdpsbJ4fMefPcuBtuqJ9uyRK3THJ4sPx+asdg4Qcp25YeK6w8Ys9zZTQEmae+N8ObU/r4SPQ9h8wN2t5TetfJ4QBw+42unrz5K7Td7hh2zwvxyivDyzJ07nHyCGxbIc/XKn+R+nHyMbxFdyLzfe3qc+NCnkes8uflWYYvWdug2pl3XxTnFXlPynseNc9QTiLaG1WgX+Olva1zb9KvuAih5xGbJKFn2SyFK8sIIYQQQgghhBBCCKnCj2WEEEIIIYQQQgghhFThesFZgiWf8l2+Xbq8o2TKkB5Y+ect+dfpurs8pRl6+a5c8i/XZWu5oDge7+qGN1pSWaVzQK0BXy/0KXrLabk+3JAOSdqqDfouaZdL5vV9ymdjLP+PISMtQgzJTuz6D5W/+JbRkvDV5CGf1cqV+QW55ZYsrNtIzpJ7XQ6ra8hurqUx/f1+cvRdu7J0V13lpj3yyPrXAtwhQJaxGzvdhIa8u12w+s1TT2Xhgw9242TXlsprAHjyySws1bhawiebhSXRrMEYOySh8uWyx09f+ZFzjm5LsvJUHZRZ/qefdo9lX9DP1/Mxmcg60VO4vPaCsYfdyJ6sfkLmk2mR0ldh91DRnSGCdMtbrlnCcy+7n3QZbhVdXcXlj77v9EUIfQdpl98FCr0/C0Lk0aGWFM5zGlHzqBhYxgcW5eahh0jpFuJcS9mK+JZreMQ9L09dXEYbJGQmwo9lhBBCCCGEEEIIIUWhZ9mshTJMQgghhBBCCCGEEEKq8GMZIYQQQgghhBBCCCFVuF6wDXhqNJna2r6/341rts9RSP6WH0DZuvYYGvrQewvJv6aM0ghH+4FJsxtpWiB8RQC4Bhk9vU6UWX5pVCBNVDZudNOtX5+FLc+mJvrNFMH7GRrbwjv3ZqUz8O0bRTzdQq/tG9cuz1BSyhhjGUudfHIWDnz2sntpPxLHw0b17UqeT5Dqa488koU3bHCT3n9/Fj7hBDdOlqUTo9nBZjXG5Pkn6uM2kSCMjLjHsvjLl7txssjS20wjb1P7Xck8tB+VhTM3yEzUDVSkL6Ua473zj9BPQscmWScdHar/yoq1+qGsk9tvd+OE4d740OL8PAykRZduP76Wfb71revAHVb6gvLMO0dTk4ccY6Rxobpppxy3/87Nc8mSLF0BH6XYxHhfs/L0TdfT09z38ZB2EepV6nvtlvqe+c5DerCWZoX6fTbEk1f6AQLATTdl6c47z42Tc786r2Pls6a/Fkr4PVDPQzPAu5SQMmiPN1tCCCGEEEIIIYSQmQQ9y2YtlGESQgghhBBCCCGEEFKFn0DbgO3bgZ/+dCK8bJkbp7ehDyHG0mtruW+M/H0pW25aBqZMVeov9H7jeRJHvRzcWBpt1pfMRy4/13JQWS69h7WQcLTL8vzgNqj/IuS57L6V7DEySU9KuVaeFLIAhlrZlYJo/VdenOrzY2PdU2HdRbVkUOJKQEW/1/IRKY+LUB9lU0Qpaj2befOysJTpWXmEkivJBJxnXxne4caJOaRd58cof2yXmehGLurAeleR3WnuXDcL2cT1VByb2nEqK+MoXBljbtUV0Ip6j4ty7ld2DJVVq7KDdevc88TzGOtS5c+5gbIlZK2cG6NcWzVCZ0xoIzlc3vt/GfUf3ZZGyzBlnes4+T5oyTdlH7rsMjedHGS0nYqccx97rF5pC+E7DtacNybsGAq0szs3ZvkfsaT93ksJaYT2fLMihBBCCCGEEEIIIaQFcGUZIYQQQgghhBBCSFHoWTZr4coyQgghhBBCCCGEEEKq8BNoGzA8nO2Eru1gxI7cbUXZflR5ngPN9qGI4aNh5iE9AbSRgDyW/gY6nWg0hXxAZD6yHNqnQJr1LF3qxgX8FSXUG69d/Lla6QvUSh+QZpNXriLltdpPXlyRMSxKW5B9SPsQ6eMcNm3KwnrOOPzw+peqQfquWGORFdfCv6r6toveHvfYaiP9/Vncvvvm5+n5mMKR9WoZzihi922rb1h9KAqyDgJ98yzbJxlXxLMs5L51OuvxVrY8kB3I+1YJg+tcVoTvje+3X24e2u5Q2svJ+yyjjfjm2cr3SO9rG76FNQR4mLXSW7RsvN+Ddb1JT7Eic6Bs9NLPT49Tc+ZkYeUJiPXrs/AZZzhRsZ9Nj5oDnfzle8BNN7kJX/SiLKza45YtmW/qEW36eyshoXBlGSGEEEIIIYQQQgghVbiyjBBCCCGEEEIIISQEepbNSvhU24TJVb1yFfB0+C7/n03Lq2MRsiw+VGJhItdD67XRErk0WksljPMqIm584f5uZN6gLrfIBtyl6ob8xXfpexFZW9kyIosY1w7Jo5XyiBjjSBEpbTvKbM1yqO3eK7JvyH6oJRZCyjze1e3Gyf6st5OX+YvJ4dGR7txkZ57pZqGV07lY8j5LghL55bB02au+3thofmRHZxYUt1lTxq78clnVmlt1OsLSDzaR0DHAIuSZxmgjVjUWadJ51wudazr1tfNk2sYNbN3qHh+QbKufH+DO93ruzyvHaac5UQ9sy/qJfj2R7b+zo3l9O9Z84jtHRX8Ht3TC+hl6SuGt3xl877Nd5ukiBElfi2ixJfJdXT+LY4/NwlpWK8/z9N+x2pz1HlkzxuQhPRx0/uo9RhafkNkGZZiEEEIIIYQQQgghhFThxzJCCCGEEEIIIYQQQqpQhtkGJAkwb95EWO4cNB2+8iafn9cjZLl1qMwqhsQxxvLwIvnH3imzoiWOcgm3lGfp9c7bhMRCL+0WsoqKkliMC4lRRV5La4FF3GiHu/S603O5ftm7VMn8S1aJmcTe/bUMSm/HKv8Yu+TF6Pe+koWa/GSD0v1LSjWs3fqsRui7RZ8IT+6eXK8YuvvKLM268i1HmxLatpyxT42tTpwhd7eqRzYZPTZZynuHQOllu+wqLSllrBMVW1EPI+R6ctO6IpSyI6h89rIxqcYjm+7u3SqPhX1+1/L1AdENV4w/+h02bwdMa54ogu+uxr7XauVu1ya+c4gn7ToGtFTmKevRkiQbO9Jj1aosrLeGlf1XvyMsW5aFS5Dae9e57NtWHShOPTWgULONJJkR70qkOG06KxBCCCGEEEIIIYQQ0nz4sYwQQgghhBBCCCGEkCr8WEYIIYQQQgghhBBCSBWKa9uAhQuBF7xgIhwqVff1Wfj8593jNWuysLd/SoRyaGL4KI2Ouef4SsdjeFRE8VnQD0DewNBQFtaNRPsnSGRao0Ic3w9VDqd+jEtZxPYj0cgqKNuzrAzPr3bZjr3ZfmbWtWRa3y3vNdZ53nW+cWMW1h4e0oMkx1/MKhMAt4/qxrtuXRY+44yp4E9+0ukkk9Yoengw71OW3/InkZk22c+sqf3LmAQtX0SJrg7PZpF7LcC//KFeTHLulP53gNssYoxTRfLwfvYBbVDbD8osHnnEjevvz8+nbJ8sZz4WYX2OZZko/UktKtL4TPqkAo6fmb62vF4rLXucuWZs1I30LFjoHOhcr4WVEDzPWcgBz9egUSPmjXZ53zEp4hEn+6j1zi3jtLmffMePQJF27PSbkAkLwAH9M+CZlg09y2YtXFlGCCGEEEIIIYQQQkiVPepj2Zw5c7B8+fKpf5s2bapJc+ONN+LUU0/F8uXLcdRRR+EDH/gAvvSlL02d09nZiWOPPRbLly/Hu9/9bgDApz71KXR1deHxxx+fymft2rXYZ599cMIJJ2Dp0qX4q7/6K/z2t7+dymfBggU49NBDsXz5clx33feaVQWEEEIIIYQQQgghxGCPWi+41157Yf369Waa173udfjmN7+J448/Hrt378Ydd9yBo48+GhdeeCEAYGhoCNdddx0WinXnX//613HyySfjO9/5DtYIXeNpp52Gq6++Grt27cIJJ5yAs88+e+r6a9aswerVq3HuuefiDW94o7NrsCT2VuR6e98Yss88uVQjhNx32fI7jfe9yoJt2+bG5UgsapDamN/+1o2TmhG9DF4u7db5DyyqeymrvnWd+krsHPSDypOyAah4NtDAleMmIVvSlyKBiEyR8vvGWffpKz+yZANljDEOUmqp54itW7Pwsce6cbItSy3k8uVh5dBSDNH+f7e5dyp8xx1uMqmeqhlGLGmMLL/U22lJpq8MpwRC5oJg2benXE1XQRFZpg/NHjdkE5HNWLOgr/SiODj1IOfAAp4Ree3Hksvut5939vFlwsaLjHWtGDYaZibOGOD2E1l3NW03Z+ww50pdB/K9SWlMK3kd7Pbb3WN5nh7fQl+EJZYXRIz8PQmdbx2sAc2XAnnktet2fH+qi+w3Ul6p25nVv0Raq2/4vjMFj0u+fbQAMcZIQlrJHvWxzIeHH34YBx54IICJlWhHH320mf73v/89hoeH8bGPfQwf+chHnI9lk+y1115Yvnw57r///jKKTAghhBBCCCGEkGZDz7JZyx71uXfXrl1TMsizzz67bpq3v/3tOPLII3H22Wfjn//5nzFi/VUeE6vKXvWqV+G0007DHXfcgYcffrgmzWOPPYa77roLz372s6PcByGEEEIIIYQQQggphz3qY9mkDHP9+vX4zne+UzfN3//932PdunV44QtfiK997Ws488wzzTwvv/xynH/++ahUKnjFK16BK664YiruJz/5CY477jgMDAxg9erVGBC7CRFCCCGEEEIIIYSQ9mOPXy944YUX4pZbbsGiRYvw/e9/HwBw2GGH4U1vehPe8IY3oL+/H4888gj2q2Ni8Zvf/AZ33XUXXvCCFwAARkdHsXjxYrz5zW8GkHmW3XnnnVi1ahXOPvtsLK/jZVNJUnR2TGjBy9B27xzJ8tRboMuFc7t2uXEPPZSdd8ABbtz8+Vm4q6u471Aoelt7aQFQxurXKP4PsmDas0DGWaZr0lNJb0zx5JP1zwFMnw5ZlzJLba+xZAniYnlZlOzt4fs8rbTBW3KX7L8R3TunQJ6hfmZWHr5eVaG+js6zkX/I0H1IDnayHwLAypVZOG/7eMDf80v/QUX036NHHp0K//sH3IHwV9sOmQprm5TccQTA6JLMZkDOBXqYcp7hNKutm0lsT88YFLH7yWsKse4l1+tPPcPesex4aGiBE9dEuyUbUZAi9ZM3/ljdUL8nWeRZqRUZ752xyPNFJnSsNvORD1uPRaJcle2PunFy0NGmd/IdRLS7ijRaBOzxM8SQzXqfCnxZNOchWeZAzy+Z/5YtbtycOVlYt0/ftub9Phv6Mh15sJgJHrCA63VZke3dasdqDG7mu2IoM6GMhJTBHv+x7Etf+pJz/L3vfQ8vfvGLkSQJ7rrrLsyZMwd9Nb99TPD1r38dH/jAB/Ce97xn6meHHnoo/vCHPzjpjjjiCLznPe/BP/zDP+DrX/969HsghBBCCCGEEEJIk6Fn2aylPf4U20Z85StfwZFHHonly5fjNa95Db761a9ijvyTjuDyyy+v8T47++yzcfnll9ekvfjii3H99dfjnnvuKaXchBBCCCGEEEIIIaRx9qhPoMNaw1eHeh+6JJuEXq3eh69PfvKTU+HTTz99KrzXXns5u2FeeumlU+EUSe7ybvlzS4Jo0d0xOhUeGMjf8tv6IC6VSIC7gviqq7Lw85/v3kcROYMPVhnbSaKZi/XQ9A3kLeX//e/dY7leX0snpLZWLQnvEtlrRYTEV4bpvWQ+0lL9smVXsfMvQ1JQhvTSNy52OXyJJj9a98vsQPY13e9uvDEL6/4lJUd1JPZT+A5AOp08loOuKuOyZVm4c1hJpAxplczeu1u2UJfn21YLyYJFXeqzpLzGyWNkp3PcKSpyFPlzrIVV/ih2AFahxDPt7WpTeY2UAQZK4UNxrqfm6a6u3sLXLUPCFFuSPDpwiHMsm0xFjwFybNL6QTlWrVuXhaVcTR/rlw55PaNDOX1Bl9F42Y0u89dltGSZIq31HrZ7dxaufdc1yj82Wj9ClTF0/JE49a+va/z+VRHqnXaR00fBmitVXBGLkDxCx4B2eRclpF1h6yaEEEIIIYQQQgghpMoetbKMEEIIIYQQQgghJAr0LJu1cGUZIYQQQgghhBBCCCFV+Al0BlHEKsbRoAu/hK6u+h4sgGljUsPtt2fhj340P91ZZ2Xh7ghWNwUsAEr/wB/DRyB323bA9QERXnk1W7PL8wYH3bgDD8y9tqwf6Xmki+H48xgPINSzIHQ76tgeLaG06xbavvVj1b/vswn1NrPKmHdtnU7awXR2FCi/9h+bxBoItS9Z3lbw2rdHplO7K3u3f3me8n/p3PZA/nnyfpRnorxeR0fztoUv20/Fasc1bTBkojDOiTHvlD6mGN54zfa6MZGde+PG/HLI8i85oswS1cyBec/b8sbDtm1uWpnn1Ve7511wQd08rbG0iP9R3vPuhPa6MgwO5b1pX1b53KTB7THHuOn22isLy/cdAFixIgvnjdsanc7X5NcgZL4C4D0oyGlDV8ETT2Rh7SF8xhlZuPP237iR8tnI90PtGWcQ9B5g+W+q9i/N2iqyXBGeWbNx6irQGy/kWtPlEWMeta4dmg8hMwGuLCOEEEIIIYQQQgghpApXlhFCCCGEEEIIIYSEQM+yWQmfapuTJ5OZjtGxLO2mzd1TYb3yWq6mt1bW6/7/9NP1z5PyTMBVJoXKMH2X8HZ1Nb7dtRUXYymxKXPTlSyXoK9alYWHhvLTKRnmjr5s+/ex7e5pUtUlw7XykTCJTgih+Yc+m5DrBbcDvX18gPRJX9t3mbyvfKdsKW0Mma3Ow3dcrLlvLVmeRA+Er399Ftbn5L0YGc86CkrK6WBJpTvyZfjN3D4+VCYWQybsK0Oz2DHi1qNQEdU8Gvk4lHrWfIxByAlXH3teLIb0pog8yET2G/ny0uRfSKx5Oq9tmXJf61loqXdOOUKpjGl5pcCoV/PaYlyp6PcTea/yXWX3bjfdrl1ZWEsoQzpKgXNC5kBriA+V28nb1m4b/f1ZWFex89gsmWoEWaN339YVJAc/PRDm/CKyJ0n9fNuM7+8rzWam1z8hFpRhEkIIIYQQQgghhBBShR/LCCGEEEIIIYQQQgipQhnmDCJUHrHPPllYK3Ss3SXl0m69ovrgg7Ow3PFS7qqo8y+yND1E/hi6DDi2vLKIjMj72kuX1g8rana8FCocX+VKzXMypFuF8qli1UEZy8i9pVpy10/A0VaNDyzKfq47g9zZScugpOxB7+YmnmNFSEbKXkpfhmS1XZbgRymjHhQL9LeQa4e0/0qgnCZ0Dil7DI6RRxkS0LzztORfKr6K7NgcnSJbWgtCZdS+50WxMxAyzCI7QcYeT0Mlps55Xd256SrqJSpU+urkKcvo+SJgSbbN/DVSFvjyl2dhLcOUWmalM3zoiay+1EaQ+U08UApv3ouY3ztrdjr0rC9dLkFfX5aH3AAUcIvf25Pfxh/t2D8/f1FX1n1qlaTEmnpMW5E8OS7g3NyorEdVVZ1j4h1N7zgtC639Znx3UDUIGcPKeJdzrq3akuyzzX4na6UEtG1IEnqWzVLYugkhhBBCCCGEEEIIqcKPZYQQQgghhBBCCCGEVOF6QUIIIYQQQgghhJCiUIY5a+FTbXNCvT5kf9133yysLZWk5F33cStOWg7IsLYK8GUm6N0tr5IYviIx0G2k27CsmQl1XrY3RGV4R3awaZMbmbf1fBFfIBmnO0fOeZbnThFfqbK9+PIo4ukTsg166Hbyvv23UrqxlEtI29XnyLG6E6Nu4s2bs7Buu9LLpYl+J2X734W2OQt5XmeHm39Hj1+e1nt06Fxv+lGV/OIe8qxCPb9iMGJ4eMrjUG+2MjwBc8epIvUmb1x7ZuWYUOl3RTksVsbUGCN9O3X+cox55jPz08k8VJn2Mt5Fm4q8uCqI43lqNS7jBuQzXdDnxvmOWzr7XbuysDNPGPUYo45rymv49DlYz3pEROoGKj3MLNM1w7/M11/YdwwL9WmuvbUsbvGg6HtybgdQUV5/ZVK2NyQh7QRbNyGEEEIIIYQQQgghVfixjBBCCCGEEEIIIYSQKpRh7gHIpcxaYSTlJEWW0cp8li/PwnqFsyVtCKEMCUcMWY4vRZZee67cJwhbIg/A1SVo2WWOprgmf3metV29tURenrd9uypH/lbwIZSxXL4MGbKvBNQ7nZYOSYQEsV07m7zP0TH3Ph97LAv393c6cRVrAsjJX+Mr//Lte0WkxqGytzx0F5X4PvrQdmzlE0Ny3kxJYw1iAqsoGdR45DEsVKba0ZHVnTVUhxIskywbz5cJWX6rn9QgZZPWiWKufHS7244XDIqxSZWxy/NdyJQke2KOP1aeAXVck7+RzjdOq2q78qs1l+4ONVeKZzoOV04Z4z1Y0il1mNsLyCnljeuX6TbBd0x44gn3+IYbsvDi80WE4asz3qHeA1o4v7TVWFgm9CybtXBlGSGEEEIIIYQQQgghVfixjBBCCCGEEEIIIYSQKk1ZL5gkyX4AXg1gKYBdAK4H8N00TdNmXJ8QQgghhBBCCCGEEB8a+liWJMn+AD5fPfxWmqbfqJPmjwD8F4A+8eO3A/hZkiSr0zR9vJEyzAYSpFOa7iL6f9MfQ2rZhWlBzXbRYrvuivJokv4eGinLlp5lhiVO6X5jRfLzrecYOn9frLqTxNqyOcQTShNyntUOQp+hmYf0z5Hb0wOuT5lhuCe7k7aJ6OsT5bD8CvSJ8liep8pYkQ1DG5IYxPYSKQPf65ltVfh01NxxzjhYpByh28mXibYFmj/fSCzHdd0+I/hr+HrrNNNf0rpW2ZYioX5aFrHbVrS5OM+fSlVyZXhHdu2e3rBrCWKUP1Y7yG3jNaZoroeQT341eYbi6aElr9XVZbQ5nZ/lWZZz7ZrhuCPfXMt6VGXPWd5+jZ7P18rflyLvgEHtXPumSrpcz7KQ+re9RUX70e9Msp3pBmR5luWMUzHenYvkE2Uclw9U35d8Fwoc4GL0pz3Go0xDz7JZS6M994UAzgVwDoBbdWSSJD0ArgCwL4BE/XsWgK82eH1CCCGEEEIIIYQQQqLR6MeyF1T/vydN0w114i8CMAAgBXA3gHdX/z2AiQ9mL0qS5PQGy0AIIYQQQgghhBBCSBQaXS94NCY+hP0iJ/7V1f+fAPDMNE23AkCSJFcD+A0mPpi9CsDaBssxo0mRTC3PLbK811zq6rsU1JB1+UqTrNXPmzfnX3poKMujs6NciY5eVS7L7HvtUHlEZeOd9S8MYKRv0VTYUkhZ1/KWU47sdI7HxXJ6+dy6uyLJiHKWvocuD7dkLaZUQl5Pyi4B93moco2OZXnKrbz32iu/iGb9a9mAvJ6lwRXpgttgi+SCAHDv5ux6g4NunFWW22/PwkuXGhfwbU9SjgtgvG9B3WQ1UkvZb9S1pPRGZe/Q0xMmH5T1I8NWc9H93Ok3nnVVihTMyD80bW67zpMHAt5yuCL41o8cUwC3mOYz9ey/MeT0hd5BZHuyxjMxwdSUw2if3lJ7z/JazT+6dChUBjU26pWP1UdD+688L1hN5Hli7XuGMc9tfzQ7UO9QcgwuW9ZsywfFczPasS+x2mNeu9BjkfO+WcDuwRfvOrDe13y9Sox0ZUgmY0tRta3CihX1z6voFypx38G/O3qWMTRPQmYijX4s66/+/3sdkSTJAgAnYOJj2uWTH8oAIE3T3yVJch2A5wM4tcEyEEIIIYQQQgghhDQfepbNShpdYjD5seyJOnHPxMTKMQD4fp34X1f/P6TBMhBCCCGEEEIIIYQQEoVGP5ZNfgyrJ0x6ZvX/FMBP6sRPbvkWf70vIYQQQgghhBBCCCEBNLpe8BEAiwAcVifu+dX/b0vT9LE68ZMf2EbrxJEqwTpww+fIQW0DnVsO5aNRkQY9Qiff0eHmF7CjuF2OwC2btZ+QvHZnhM+11pbxOwaOqHvdesd5efr6D9T4FW3bloX1AxhaPBV0PcvUBbQRncTykMjzDfL0panJQ5Wj0uFn+CO92cZU+7T86mQxpU+Zr21GTTmUV1Kud5vhyVKTZwRfihheNxL92N/97ix8xhlu3Jo1+fn42qaYdWAYKnpbeRmRclzsEM+pbG+kyrX/4/5g+fIsrA0a5X0vXOjGyeOS5QO+Y3Vo/VhjsEOgZ1nwc9uyZSrYKcdjAJ2yfYqBZXThIjdd4KNppo+M73tGjSeX0RFDyl/GPTfTC6uixqnRrt6psNVFQ6/dTD/L4DHg6quzsDRwAlBZsiQ7MN57c15Z9WnTlyUP2bfVBSrCeyvUMyv0OeWlNduS5+8FRcsyiek5KMfn0LFa35wYY2rekSWy/RjXjjKHG3l0dbl1Kpu4c572dPO9nv6FSMxDvv6Vhepgsm9Y8zIhbUyjb8e/AXAQgDOTJOlK03QEAJIkWQLgFEysKrs+59xJ+eVDDZaBEEIIIYQQQgghpLkkCT3LZimN/hnpv6r/LwTwjSRJTkiS5FkALkcm0fx2zrkrMPExbWODZSCEEEIIIYQQQgghJAqNfgL9MoB3Y2KV2Orqv0lSAL9K0/R/9UlJkgwBOKaa5pc+F6pUKkiSZPqEiq6uLhx99NGFz2sm3d3ZkucYsiqLa691j+XK8ec/343r7xcHloZShDuVqnZgIFvKHLoCN4Y0wFqtHLy02BOhwqmRli0aKC6V0zjl15UsJR1aGiDy7Okx6lg+a5V/kISywLbeznL6UP2joMgffeT99EIsW9eqVE+94KPb3Xtbty47HhjIfn7csvxC6scrV9MrhReOWIK6WG0pxrL7jg73PqX0cmjIKwsAwCF9O8RR41ppLS3xbQpSjlEZ3uFGimffJTLUymXZ7kbHKrlx3sgGA9h9Q7ZP3VZb9FdQ1/hX/wABAABJREFUq50VkQLnts8IY4X3tWDPUVuQSSovvdqVV0oV7EWrH5gKa5XMgr4CBfUsl8RVQrrnWEN30Nzcpn95j/Ge4StpN9u4qmRZXaFy0JBxPNTyohSeEHuIWbYQBjmvrAAivfeVLDErW8ZuXct3DG5bfMccy3KhiZJ2fS09Jk8R6m3jmc58thvVOhf5i87KlW7c5JgW8Ds8Ie1AQ28taZqOJEmyGsAPAAyq6M0AXp1z6mtE+Ec+1xofH0eapoXLmCQJfve73xU+r5lcdNEbW10EQgghhBBCCCGEEILGV5YhTdNbkyQ5CsCfADgBwBwAvwbwtTRNh3NOOxrAjzFh7p/naUYIIYQQQgghhBDSntCzbNYS5ammafokgC9V//mkf1WM685G5EpWwJUP6h1SJNaS+WuuyX7+0Y+6591wQxa+/XY37oD+xmUtmzZl4Q0b3Lhly7KwXmYsVUadY9nuNaNqN0NrXNq6NQvPn+/GxdiJMxeVeRHpmQ9FJBxORRo3be0KKc97dNjdIehpoY44oB8uUkskw2pHPu9dnozyWzKTUAmBc17gsvXNm7Ow3NALcNUksh8uXZov09N9VOavpcZLlvhJb2LIkK081qzJ4vRGjZKaXfIE19+Q5bFqlRsn62BQrW92dooNlBVZ7SAvj/Xr3eM5c7LwUUe5cZaKN/d5LF3qHstyWRLNEl7kYstTiuSXN3boeVSiNwSV/VDOV4D7bHzHcT3PyTn38svduA99SBwIHXXXEleu6ezmZrRBrcqRxzGUqdau0r751/QZKXMuWerkO08UkZZF3ynTc0fQnSNufrL+i9RjXrlCd2MsIvP3LVPlRS/KDtT4Np7TfvS15PtzaP2Y53nuLByjvTRTEgiUsONlBEmplYdldZC7C/k0lG3XYpF7vQL34pRfDdYx3oWsXY3He6o7+soXIUJmEDNAbE4IIYQQQgghhBBCSHPgxzJCCCGEEEIIIYQQQqpE1WQkSXIIgJcAWAGgH8DeAL6QpukVKt2CavCpqoSTEEIIIYQQQgghZOZAz7JZS5SnmiRJL4DPYmL3y0lRcgIgBfC9Oqf8EMByAHcCOKpO/B6L9v3w7Xdacy79ut7ylix8+unueStWZGHt5RIDeT8vf/nTTtz73jd3KqwteJ7//Cx8wL5ZJVg7JVdGdjpxe+3VXTddveNJyvCJkH5g2ktBHpu+YQaOF0GeVwDieEiY9agNbaSZVMk+EeazMbwUvJ+paMhWXeld7aV31ZVXunGyulavzr+0zHPXrvx0lqdS6Pbusb05zGagIn+0Lmu70o9Njm2A6wWn/cyWLSvuM2KOAWqAzvPxWbvWPU+W/8AD3TjLsywE2eeLYPn9OBiDsOmn6HntGFj+WdYYpp9FXj76PmVf1n5psv/qfv7nfy4OnuqbCnZ36frIr2OJnkM6xb1Z51n9UtaBHt9i0Ez/H8t3y7f9lz2W+r6DaP9HaeUV6jfmSxQf0CL5i8mtxo/KK8c47cysu67u3KjYz74MP7kYxM5f+/JJz1Zh8QjA/V1G+7d6I70h9fusnBz0HJjzfhjDA1bnE+OdOHSedipdTwYPPpiFr7rKzX/58onAU0/5XYeQNqPhWTNJkgEANwN4DSbmraT6z+JT1TRHJEmyYpq0hBBCCCGEEEIIIYQ0hRieZd8GcBgmPn79EsCfAlhmngFcBWDyE/OLjHSEEEIIIYQQQgghhDSNhmSYSZKcA2AlJuSWXwfw2jRNx6txueelaTqcJMkvAawC8MxGyjDbCF0+rJfR3nxz9h30nnuy5bLvfa+rK7nggixsSTF8l+3qdIsGsnQXXjjXiZNylb33dvORq3Xl1uBmg1X6l15nK+98rVOoLCHGcusQma1eAe7ml38vMeQXtmRMRQ4OZmGj0L7lCt5uPIIE1JIfSZmSvpSUF69Z48ZJlepZZ2VhvfpfSvq0vE9KD6QMx0LXj1WvUWSwAqv96HLIsXByFT9QWz9PPJGFL73UjfvQh7JwtyHNi83Kle7xNddkYSnNBdz7rKkf2fCk7kpp5qNIwwy5somUrmgZeGifDUDm0dfnXx+y/1pS5rxrTf4kL4+LL87C++zjxvX3y6NB5OFbjzuG8+Whci4u0l5kE7Tkrda8JNU7uv8uWeI3xrRSXhZjjAzNPw/9LCwpXoy530FrjcV4NDLW6URZbSaEULuKVhJS/82UJxchtqRUc/em7LwNG9w4OQVK1R8AHH+8V7H8sebAwHnOlyLvaLExxzN539ZLsf5FdvLFZs6cmqSzCnqWzVoa7YGvrP6/DcAbJj+UefIbTKxGWzpdQkIIIYQQQgghhBBCmkGjH8tOwcSqsv9K09Swnq7LpE1zv5mKEEIIIYQQQgghhJAm0ejHsv2r/98dcO5o9f9OMxUhhBBCCCGEEEIIIU2iUXHt0wDmBeYz+aFte4NlaIg5c+bg2GOPnTq+6qqrMKRMR9asWYMf//jH2KdqONLd3Y2f/exnuPTSS/Fnf/ZnWL9+PY477jgAwLJly3D11VdjaGgIQ0NDmD9/PgBg9+7deMUrXoH3ve99mDdvnpN/gjTThmsduNQ/F9DJb9qUhT/xicw0YoXae7SIT5lPnOVF8O//6sb97MYsD+1jIj1OZBmVVY97PW2OEVk7HrzdskAXycrjV+vr14+2AzjggCzcX2CdZozt5KVPzWOPuXnM7Vo0Fba8+EJ9akLOsf3e3OOtW7Pw449nYe071N2VlV97xi1ZkoUtPyTZ7W+7zY276678Mg7m2xxF9zwJ9SAxy2EYIp24TD6sDpHMLcdLX5qFf/tbN3tZXzH6r4XM73mn18ZOcsMNbozsv2IqAgB0y46/cWMW1mNd3wLvcjrIDiENYbR5mmXMF0CRug/xhCrD++qBLdJLx81D+gXKPg+4fdTymfIto4Ue3/JsZSxPHMuPzRc9n8v3EY2uLx+KPN+8tGV7QhXJP6S9mnPqtofzExvvkd7vBHKsAGpfzFpEK33tmnmt0Pm2bO8r7/zVQPXocLZm4qabsp9L72LAHUu1R2v1V626eD8PUa7xnt7G8zOI8j6i6lH6O5fSBuU4ol8+5eSmx4PJ4z3Bz2tPuMc9kEaf6kOYcPU+PODcZ1X/v6/BMjTEXnvthfXacbkOH/vYx3DuuefW/HxwcBAf/vCH8Y1vfKPueddddx0WLlyI4eFhXHTRRbjooovw5S9/udFiE0IIIYQQQgghhJASaPTPDD/DhEn/mUmSeMspkyQ5AZnf2fUNlqGlrF69GrfeeivuuOMOM11PTw++8IUv4KqrrsKjjz7apNIRQgghhBBCCCGEkCI0urLs2wBeC2A/AO8H8HfTnZAkSR+A/xA/urzBMjTErl27sHz5cgDAoYceiu985zt1073rXe/Chz70IQDAMcccg69+9asAgEqlgr/+67/GRz7ykWlXjPX29uLQQw/FXXfdhVNPPbV+IrWEc1RYulkPS28Zf9JJWfiEE7Kw3nZbLgV+97vdPGUeUuoEuNKzvPw0elnws1Zmx49ud8/74hez8F57ZeEzznDzXLpUSAj00l9rm2MRVxHh0GXqvvet6+DOjdl5117rniePpVTlnHPcdLJ+iuArpbUkOlJ2qJfB+65GDpVOyPPkanR9XRkn5b06Ti/rnzs3C8sV5rq+rfrxlYRKVcv997vpZL3qax9zTG72uReTS/WnI4ZU18Toe86RqKBOJREcHMzuZ6mxt7JWDvX1NX4/vlKH550u07nXlRK1Aw90zzukT+n2fMo0Nur+wBrfZGeR2jndibR+MIcy2kgz5VO6/B/9aBb+u7/LZLBJ4moHr7kmCx+3rHnl1WhpnlbT5mHVsXz0Vjo5Fzz9tBsnp18t0dywIQsft8yNC5HgWviO1aHXCs3Dt9+Y+ctKDpQCxcjfGipi1I/veVqSLNtnGWOKNVf6Xm9PkZE+sM19B1m3LgtL6aWWaFtWFvJ515RfDjoyXEA+HGw1ITDbceA7WsvQdSfrVb9sTY4Xlg8KIW1MQx/L0jT9ryRJfgXgRADvTpJkLoAPpmn6ZL30SZK8FMAnARyGiVVlP0zT9JeNlKFRGpVhAsCrX/1qfPjDH8Y999wzbT5pmhYtIiGEEEIIIYQQQtqNJKFn2Swlxp+BzwfwCCbkmO8E8FCSJHKNzDlJklyVJMlDAK4CsLj684cAXBjh+tG58MILsXz5crz4xS/2St/R0YF3vvOd+Id/+Acz3RNPPIFNmzbhiCOOiFFMQgghhBBCCCGEEBKZhj+Bpmm6MUmS5wO4AhNG/90AnouJlWMAsFIkT6r/bwTwsjRNH2z0+mXwpS99qfA5a9aswT/+4z/iiSeeqBs/PDyMv/iLv8BZZ52Ffffdt9EiEkIIIYQQQgghhJASiLJeME3T31RN+98M4E0AhnKSbgHweQCfTdN0OCdNWyI9ywDgl7901aOdnZ1461vfire97W3Oz5/73OciTVOMj4/j7LPPxvve9z7zOtKjDHBtIiz/Eb3y8+ST66fTngjSL0Tnb33T2zmS5bNlS/ZzvZuw9kjLQ3utHHVU/XTaD0NK4Dut5a86TmrqxY1X1AV8vURCvZ1ksXT9r1qVhaUX0+Fq79nenrheLqG+QzU+dvLhWFYFEZYtW5448pFqywTZDHTblW1SPhuruLJfaCwvNasdyDhdfr21uvfFc2i6Z4p8WH0L3DhZZsN/cMuWbMzUHieS2293j1esqJ99Ed+5EE4/Pb9cehwc7cq2r+9cJgydfM2opsHxUJF5enqU6Tw0UbxcWsgHPiCP/mYqlKb/4qRbtmy/qXCM9hKrDcp2HcNbsVMPI84glvVD6feoy6HH582bs7D2LAtpCzH8oWIQ6lsVjKxkNZD49lHvOjHGB9+2Vb6vV7nPN9rzFH3I1z/XqrvQeo2Rh4WctqVPJ+COCXIO1z6yvu9hNR7F8kVPhnU7FseV7WojNlnoqs/1JL7zV+wxINTbrJSxSI45eR7RSQJCZiLRxLVpmu4E8DEAH0uS5FAAx2PC+L8DEzLN29M03WBk0RKG9ZtbHS699NK6P1+zZg3WrFkzdfzWt74Vb33rW6eON+kZgRBCCCGEEEIIIbMDepbNWkp5qmma3gNgerd7QgghhBBCCCGEEELaCH4CbQfGxqaWBncoKZKv2qaAasZBfgR/97vduM6xnbkX2DFcX4apl03L7bo1cimwXha8enVx+aPGLaO7XPmIQVGxxnbGIRKFIlvSLx7KjoeGwmQDZch+8vLX15JVNzysy5HV+YI+kX/g9tHWfVpSRbnqXsf57hwe449FVh5yBbuWEuo+JZk3z/Picll8V7fnSU1ADB4VSzrUk8kRpWwLcMdIvfpfDltz5rhxN9yQhaXk2RqzNHltsogU42ghscbVV7uJhWZztCebG3RbknnuHHPHui6jbzj5yMpSF3DGsLFRlUn7b3PvK93aocawP//zLPytb31rKvzRj7p5LBrInye2bs3CWjatpd8+5dWULZ/yHftk29LvI3Kc1Qvu5Xm6/mNYDEhC7RLKJoosKnCS8pZAy4eqJ86Aaxe555DnFjpne8s8zcFUIdNu25afTsyB2hLEIvTdNC+PIs/G99obN2Zh+TsDAKwUztZ59heAbZfgMJIfZWo55QuEftHwlMgGE+Els6UWBvLBqb4xJRfVL2GEzBDa522BEEIIIYQQQgghhJAWw5VlhBBCCCGEEEIIIUWhZ9mspaGnmiTJ3RHKkKZpeliEfGYFsZY/5y1bl9IjwF3+XLNzpaGWk+OBXC1uyaBiLBH2XUau0Suqu4QULU8KU+Tao2P513bqVS/dFxtM1Cy791yGX/ZudJYEQrYDKXcE3Fvt6xPnKdlWsLQhJ5lWiMg2qdunJXEMwXpk+tbyVG+6PVoS07IpfVm/3v7RAy3jkrJVq370DrtyJ2BfSq8P3YB+8pOpYOdpp+Wmk7soS7kL4LandevcuKGhLHzEUL4M00L2KX1aze6JLcKUcYkG1atu4DOfOWQq/E//FHZtKb302E+oML675pW9S1ve5rWAO87KNgcADz6YhW+7zY071XNXb0nI7n/T5RmD2Du+6ncOb4laDKxtyUv4ZbHs3XKD2pPuzEJeOTJ4hBPVId55Oq0XJVmvxs7sUtoNuLvPOpYXLUTX28aNWfnvustNe8YZWVg2n5rfSSTWu6Jun3k7NWqdp4xTL5LjA4vyyyLTNdEWpYjlS1NRY0A77XBNSAiNzmpDANIC6eW+sWn1uMj5hBBCCCGEEEIIIYSURow/ASXTJ3GY/DhW9DxCCCGEEEIIIYQQQkqloY9laZp6rTdNkmQvAIcAOBPAOwAMAvi/aZq+v5HrE0IIIYQQQgghhLQEepbNWpryVNM03QXgDgB3JEnyJQDfA/DeJEm60zR9VzPK0M48OToXd25bAABY0ufGhW4LL9NaEn2zXwvdv6XD13mWSRE/gN6u0anw0qWuT5b0PZo3LwsfsNcON5M8Y6ki3HhjFr7mGjduxYosLI0bEOZ9EMMboEg7k2ibCO0PlpefvN7wiPucrLbla5Mi7SpMj4exUSdOXmBceNyFYnmWyXJ1dLj1L8/TdWrtQj80JPIR5S/i1ePbBmW5urv8fQUrwszI91qWzUiRuGetNHyscvBNF9wP1RjgmEzKG1Dmk53CuG3zZtdbRbb/Sy91s1+9OgsPDmZ9r1t5xTj3ozrbFuEHqf0COzvqG5qNK99CSej440tlWI3xhula59jOrFwdYWOArJMAi74aAm0dTXy9bmqeTc7FDWvOmn74+ONZ+Kc/deNOPjm7Xsm2WA5WP9dWVb7vP7L8jz3m5n9Af7mePjF8QU1kHso0sZJnDFrgxVEWeUx5tXlau5r4tnlpN9bXt8DNY8uWqXD39gfcTPTAmIccI5H/HnDrre5psg6WL2+8fmJ4At650c1DeoTqJufWa345nN+HjDlEU8l5j6+5T/meNNB4wwr1RdR+hHLMseaQ0N8XfZF5Wv6wptccITOQch1N65Cm6Q4AfwJgF4B3JEly2jSnEEIIIYQQQgghhBDSFFqyXjBN0weTJLkaEx/NLgbwk2lOIYQQQgghhBBCCGkvKMOclbTyqU4uJH5W2Rda9cyTyr5EQySVvZp2rROX7lQ/CVtqLMcDuco+xpJ4wH/JsLWseedYtkxbKwHuu694maxrmePj0qVZWK5FB9w11ary8uogdGvq0GXZvkvy+/ryZQMWvul80c+iXbatLmMOlQoy374XY2vzUGqehdCRVvRW7TnlPOgg93gvMXzqOrDaVjPrIVjWImTaO4azPHp1YxI3umyZGyXVTqtWuXFDQ1lYZllkrJB1XtMGI/dtC3+JrGJwMMujp7fhcui66upqXX+TlNHe8/LUzVMeayn5Pvtk4TzF3kzBnmv85O6+ksB2mufc8iuaqJ+N8U7ji5QOAsACOZhu3uxGyjrQg6R8BxSDdWXEfVeXosOFC11JeOx3qDKQ85CWEsq4PHsKAKot5cswa86T7c5og2X3IUsmafH0041f23eMaaWVCyHtSjt8Ai399eiGz6yYPlELueD//aHVRSCEEEIIIYQQQgghaIFnmWBl9f8nW1gGQgghhBBCCCGEEEKmaMnKsiRJXg7gRQBSAL9pRRkIIYQQQgghhBBCgkkSepbNUhp6qkmSHOKbFEAPgCMAvALA+SLuskbKMBvYuzvFEUuKa7p9NeiuRYJhbKT3RBdU1DbfHR3CP6fHT4cf6hPheDd4+noBwMhIvr/H4YdnYXlrD2xzPWvkXfvudK7L9JvN2RbjfWde5MQJuxxvrxKLVvpRdXeF+RLIbaY7VR1b9yPPi9LuLKOdCPhmp9uB7Gu6DUqbFMuzLIZtjNU+u8W1C/lVyIIpMyO53bvMs79/moIKrHvNLZc2gLG2ms85TT4z7+vWQ9SB8+hXrnSSyXIdMjbqxglvl3POcbN/6qksbLUR676lz5S+t/GObpRJyHinfcnK9m+R3kbar2vRwHj9SGMs6izQf/PeEaw+asWFekLJcUtaeALuGGZ5lvmOWzHmQOs+e3rC/HjkfNXf71/G0bH895ggVCZ59VWk7TtplyzxOqeIj6PzjjCi3lPHxORjVFDw+6coy4K+/PzGkY11FdmoAXcQUJP4eJc4z3Ou1H1IEvqeEeMdU+a5ZImb7qyzsrD+VUNWSRnvJyHnBPuMRri2fn/wfeeJ/QytuCLzECEznUab+yZMrA4rSlL9/0cAvtRgGQghhBBCCCGEEEIIiUKMZShJwL/dAP4ZwMvTNA352EYIIYQQQgghhBBCSHQaXVl2PfxWlqUAhgE8BOBXAP4zTdMHGrz2Ho/vcllzaa6153TAftShS7tNAvfF1ttT+8Rt2+Yez5mThaXcFPC/t2XL8uN8l3OHbjnty9at+XHWEnBfKfBMx1empIn9rPS1urqaJ7v1XbpfZAyoLFyYHRj9vJT2H6BNDR3fypZtSAXf2FinE2fJxx98sH46S9Jb6PkG3HetvKl4/jFkJrONMiwSfPOQ3cvXzqCVFKmP3DlQjWdSDl2kncWQ0PvSzPZfZByRUtROrWW2BqvI+I4r8lkDysbEVyralS9hL6MZhM6xvm1GK1MleVN/TTlUveZRxrwcu28UeY/Mqx8t14zxnhTjnb6QFcdsgp5ls5aGnmqapqdHKgchhBBCCCGEEEIIIS2ndW7ghBBCCCGEEEIIIYS0GfxYRgghhBBCCCGEEEJIFYprZxChum/zvAhmIt4+DqHeNqJcsfyK8so1OOimC7HDKMNTTFKGL9zu3X7XK+J70y4+BbE9xUJ9LsrwDPLN37JRKNsPz8Lx8VGF9PXOCC5/XqUU8JyQ19b+IZKyvf18bR0P6NfXzsrlO9a1cgwI8XhshBjPzfLOdPIXD2CmzCF59aPza6KtlEkz/SVDvWt0OXyzCW2rIeNnkXqM0Wfl+NapO5SoIKsOmjkW1fQvw38s5HoxfCKt51SK97BBq2yemv2+Iyn7/bjZz7CVddk20LNs1sLWTQghhBBCCCGEEEJIFa9PoEmS/HuJZUjTNP3zEvMnhBBCCCGEEEIIIcQL3/WCawCkJZaDH8uqhG7ZbC2pDl2eH2Opd2xCy+97nl7hX2SpvU85mo1vGRcNhMlTmr2UXJJXrrK3A48hmSyST4w6bqZ8rYgMR6b1lfe1crt332s1W5Lsq6DX5ervj1uOMsbE2G2y7GdRxnjp24di5K/L7/usypjnQtpTqNQyRtstQwYoVT2hecRu/zGete87KwB0d8kylytzCm3vpVgF5FyvXdpBO9HM9+wY17LeB3VcZwQpduznXaQOKNGcfSRJUgHwNgBvBDAEYCuAbwL4+zRNn/TM48UA3gvgeABPAfhfAH+dpuk9ddLuA+BDAF4BYD8AvwfweQBfSNO0zO9TAIrNOolHmtQjnU5T+k0SQgghhBBCCCGERGXP8iz7FIC3AvgOgE8AOKp6fEKSJGekaWp+nU2S5BUArgTwawDvArAPgEsA/DRJkhVpmj4g0nYC+CGAEwB8DsBtAF4E4P8DcACAD8S8sXr4PtXnThO/GsA7MPER7PcAvo2JCthW/dl+mPhyeDaAJQDGMVHRVxcvMiGEEEIIIYQQQghpBkmSHAPgLwF8O03Tc8TP7wHwWQDnA/iacf5cTHz0ug/AaWmaDld//gMAN2Pi49dF4pTXAzgZwFvTNP1c9WdfTJLkWwD+NkmSL6Vp+odIt1cXr49laZr+OC8uSZI3Y+JD2QgmbuTfcpJ+DcDfJElyISaWzr0DwD1pmv5/xYq85xJDQhlLIhJb+hFy3enyK1u+0y5L2n0lNGU/p3bZDbNs2WgROWXZ0gyLmSaziLF7Uwx5ShnEkIlJCu3EVvK9lX0/rSSvXGWMMbHk3XsiIXUQuqNjaP8K2d1Xn1fG+0i77JLne28WZVsWlCGhjF3/7Sp5a+Wu23kUeRZlSC99rxViq1P2jqmheZJZwaswsRDq0+rnXwTwUQAXwPhYBuA5ABZhQrI5PPnDNE3XJ0myFsArkyR5c5qmT1ejXg1gZzV/yacxIct8JYB/DLkRXxrq/UmSHAvgk9XDPzE+lE2RpumXAPwJJir6U0mSHN9IGQghhBBCCCGEEEJIaZyMCYXgL+UP0zQdAbC+Gj/d+QDw8zpxNwLoBXAEMOWNdiKAW6r5S35ZLcd012uYRj+V/wWAuQCuT9P0e74nVdOuxcTKtjc1WAZCCCGEEEIIIYSQpjOOyoz/B2BhkiTrxL+L1G0uArAtTdOn6lTB/dXzO41qWiTS1jsfAA6q/r8vgL3qpa1e/xGRtjQadaJ7HiYM+n8ScO4NAE6v5kEIIYQQQgghhBBCms+2NE1XGPHdmNi9sh4jIs2ocT5y8hhRaay0k+m7c+Ki0ejHssmveXkVYjF5ziIz1R5GO+m+y/BuaBRfP496aX3zDC1L7HPaxdch1GvFJ78i58Ughi9QrPLHfr6tHDti3IuvT0cs8vJspXdaqA9RaFw7juNFzssjdFv70Dmjlb5Psft9s+/NunaZlN1GNGXMISHX9o0ru4yhfkhlzDUh5ShCM/26fOeQUP9fX1/cdvpdxpey23jsa7fSn3cmPl8SjZ0A9s+J6xJprPMBYJ7H+VbayfTWtaLQ6Kg9+aUvxHfsOJUHIYQQQgghhBBCCGkvHsCE1LLeB6yDMLEyzVpE9YBIW+98IJNdPgZgV7201evvh/pyzqg0urLsDgArAaxOkuSINE3v9DkpSZIjALwUExJOr3MIIYQQQgghhBBC2oU0BcbGWl2KpnATgBcCOAXChitJki4AywFc73E+ADwTwLUqbiWAHah+G0rTdDxJkl8BOCFJknnKJ+0UTCz6Whd2G/40+rHsCkzcWCeAHyRJ8tI0TX9nnZAkyVIA38XEkroUwDcbLMOMJ0Uytbw1lgSiVcv6mykXaVeKyAvaRWrZLoRKA2LkP931QmgXeVaM5fMh12o11n2XOR7FkjC1SvoUKlEr85xYeVrpypbyl33fZbTpGPLB0PeCdpT9xOjboe8E7VIHFrEl1dOdl2fFEUtOGdIGQ98zyhgf8spcpA36yiutumq2/DSPIuN/SP6+5zS7n/s+m7LbOJkVfAPA3wK4BK5n/Rsw4R/21ckfJElyIIB9ANybpumkXPLHAB4E8PokST6VpulwNe3xmPCy/1Kapk+LfL8O4I8AXATgc+LnlwAYQxO+IzX6sez/w8RulocBOBTALUmSfA3AVZjYPvSRarr9MCHVPBvAqzCxgyYAbATwTw2WgRBCCCGEEEIIIYSUQJqmv02S5J8AvCVJkm8D+D6AowC8FRMfwr4mkv8/AK8D8FwAa6vnP50kydsw8dHtJ0mSfBFAL4C3A9gK4P3qkl8EcCGATyZJMgTgNgAvxsQ3pQ+laXpPCbfp0NDHsjRNn0qS5CUArsOEUf9cAK+t/ssjqf7/IIDV0+haCSGEEEIIIYQQQkhruQTAJkys9noJgG2YWPX192maTruUME3TK5Ik2QXgvQA+jgn/+v8F8Ddpmt6v0o4mSXIGgA9hYsHVfgB+D+Av0aQFV42uLEOapnclSXISJgr8CmQfwyy+A+DNaZpuafT6hBBCCCGEEEIIIc1mD/IsQ5qmuwF8ovrPSrcGwJqcuKsBXO15ve0A3lL913Qa/lgGAGmaPgTg3CRJjgJwASa0pUcA2Lea5DFMmLX9DMBX0jS9LcZ1ZwsJ0ilNdzt5HbSjX0gRQuqkne4ztndAqJdI6HbjIemaXf8z3YciZEv3Mghtg7HbVhk01QvFetPqCJuuQ9pBGX4zMs/Rsfz8Am8zCr73PRPniVZeq13qqww/nhgeXWWPfbF9xNrJl7JVbatd/YQtfNtZs/1aWzWGhb6PlO3L5+sZ1079kJDZTNTX0upHsL+LmSchhBBCCCGEEEIIIc2Cn6UJIYQQQgghhBBCCKnSQsEDqUcZ8pdQOVYMiVrett6h+ZdNGWUsW2IRupW3zzn6vGZvB24RIpGaCTLPWNdqxyX67djnY9FMCVM7PtvpkGXWalMpvSzSRmLLQ33jypBgtasMuZXsqfcdQgx51ky03ii7zLHfg2NcqwyJYzvWYxn4yivLKG+UeVtOnh2d3tdqx981Zht7kmfZnsbMe+MmhBBCCCGEEEIIIaQkvFaWJUnybHmcpun19X4eymR+hBBCCCGEEEIIIYS0El8Z5loAaTWcivPkz0OR+RFCCCGEEEIIIYQQ0jKKfKRKCv6ceJIiCdKy+2rE21V7H8OjJcY20BYh57WTXr/ZW4DHzr/sZxhSPzPBe08Tw0+iDL+KVvqkxLh29Dw6/Kbkytiom4fwLrH8wELbbmg9/u72LK6rK/v50FB+/jH8wMw+r+rOwbP+ixDqU5aXLkY708yEMcyX0DZu1XFI3fl6I+k8yp5v28W3c6bMoyHeqI2kjU2jv1torL7Rrs9QEmM8Dq2D4PeRkZH6+an5KmQ+CWUm+qaWDT3LZi++b4ZfLvhzQgghhBBCCCGEEEJmHF4fy9I0vbDIzwkhhBBCCCGEEEIImYnQK6zNibFk2KKV0gxnB2TVEmfa0m5JDBlRaP7NfGb6uKPDLZevosm3HVjLmy2pmUVIXTZb8jybiV1fRaQ9zXxWMeQRjnzQ6Fy+/aRIOWRd7Rh246S8slPln6MemfZ6eYTKWJz8Y1QQaVvaVfJWthVE6PtD2fXVKql96HvSTJeXFZEQl3G9mcxMv5cYFhszvf0TUgZ8MySEEEIIIYQQQggJgJ5lsxN+QiaEEEIIIYQQQgghpEpTVpYlSXIUgNcDWApgF4AfA/i3NE13NuP6Pmx5ZCcu+eTPcNNtWzFv7hwMHTgfn37HM3H8Bd/C0mf0YWR0N+Z3z8Wbzz0Gr3vJEQCAS6++A+/63C9wUP/eGBkdwxvPPgpvf9VxAIAvfPt3+Kcrb8WcSgU9e3XgX97zbBy9eN+oZfZdSm7J3Kz8yl4+HyoJKhNrJ7kYeZSxU10r8f0rilWPvqqo0L/YUFkVhyhSwhJ28mslTe2jRkOW5ejucuNGx7K607LIrq7iz3TTJjdO9sslS9z8TlxeXCLlWw4gbDfPneh24mT5uwLH/2bKusrY0XQ2E3s3QAvf3bl98wgtSyt3943SHmO8iAXSrnLW0GvF2PHbN26mjzGx7QBilaMivQ5E32jlGGMxE3+XIcSioRkoSZJDAFxZPfxCmqb/XifNWQAuBzBX/PhsAG9JkuT5aZpubqQMMUjTFGf/9f/gdS85Apd/+AwAwPo7t+GhR3bhsIN6cctXzgEA3H3/Drzib36I8fEUF770SADAK89YjM+/axUeeXwER573DZz7vMU4+IAevPqFS3DxK44GAPzX9Zvwjs/8HNd85sWtuUFCCCGEEEIIIYQQ4kWjf655IYAVAFIAP9KRSZIsBPBlAJ11zj0cwBUAntlgGRrmupsfwNyOytTHLQBYfsRCbHrgCSfd4oN68clLVuKdn7lx6mPZJPvt04Ulg/vgwW07cfABPejtyW75yV1jSJKk3JsghBBCCCGEEEJI00hTepbNVhr9WPaC6v+3pWm6qU78mwHMx8THtF8C+FT15+8FsAzAKUmSvDRN0+82WI6G2PD7x3DS0oVeaU88ciFu/8P2mp/fu2UYI6O7cdySBVM/+6crbsUnv/4bjD49jh/90+pYxSWEEEIIIYQQQgghJdHox7IlmPgQti4n/pXV/7cCeP6kR1mSJD8FcHf1+ucBaOnHsiKkqXv8jWvvxnU3P4g77t2OL77n2eial1Xpm887Bm8+7xh87b834kNf+hW+/P7nNq2cMb5uh+jMy7aaKKK1D/Ef6Ojw19rn+cJpfD3jrPx9y1QG8nqdqvwdPY37qfj6JnV15cfF8OXTSK+nzg5xXmAjj7GVvb60U65ZjOM5NeLWo1X9ur065HVanaGvqZ4nNc9a5q+vJRp9DD8hnX1ev6nJX5iddXW5nl/r8mZ/AMuWZWU28zeI7QGzbZsbJ33cBgfduLzHG+oZFGMMKGX89x1ArQYksfKI8FLQbA/DEI+iWM8pr/2U0Q6i+I1pY0T5vH3bVoQxt5AnWoz8rfL7GteKsOX7FKP9l9F+gttnyEtyCb9s+NZxDE9DXf7xjnoCrAnku2iHka6VWPc2hf4FmpAZQqMj7v7V/zfpiCRJDsSEoX8K4GvSzD9N0/sBXAMgAXBSg2VomGMW74ubb982fUIAt9y5DUcN9U0dv/KMxbj18vPwk39+Gd752Rux5ZHaPQvOf8FhuOrHmyKVlhBCCCGEEEIIIYSURaMfyya1i0/WiVspwtfUib+9+v9gnbim8rwVi/DU07vxxatum/rZTb97GH/Y4nqWbXrgCfzVZ2/EX563rCaPZx57AF5z5uH4zOUbAAB33fv4VNz3fnovDj94n5JKTwghhBBCCCGEkGYz6Vk20/+RWhpdt7q7+v/edeKeJdL8rE78o9X/u+vENZUkSfCdf3ghLvnUz/HR/1iPrs4ODB3Yg0+//Vn4/f07cMJrvoWR0d2Y3z0Xf3neshpz/0n+5rXH48TXfht/u2Y5Pn/Frbj2pvsxt6OCfed34svvPz2obM6y5rFRN9JYdhxjy/u8clh5aBmjpMiq6VDpoi+xl6BbZRwezk8npYWWRFDWR420LHJlxaobrcaYRMsuQ+VHMs6RI6oLj3f5DTFbt7rH99+fhYeGsmst6Iq//N9XvlDbh4pLjYtICGK0hdAxJm9Z/9iYK0OQdWJJdWvI6zeW1MwaxHwvrvOQ7dWQMFWMdma1H9k3tGw699noMm7fPhU8YqEq44rMp1MX3x23ikvZpiPkvEMGC8iz5GEReWIegRKa0qX3Vhu32qfEktvJ456e3CxCZarNpAwJaGypsabm3VES+wUrhmzdaj8zEc85RMrtaqsx//n6Kl2bSaG+7FtoOf4EzsXNlHAXkQJXctoB4P4O0ddn5C/rR9VByDtmEUuT3EwklGGSGUqjw+rDAJ6BCbmlZtL8/zdpmg7XiZ9f/b9Wt9gCFvXvjW9+5Iyan++6/s9zz1mz+kisWZ19OFvUvze2/OA1AIDPvPNZeacRQgghhBBCCCGEkDal0Y9ltwAYAnBmkiR9aZpuB4AkSU4EcBwm/Mp+nHPuodX/H2qwDIQQQgghhBBCCCFNZVKGSWYfja5H/Xb1//kA/jtJkrOTJHk1gCtFmm/mnHsKJj6m3dFgGQghhBBCCCGEEEIIiUKjK8u+DuCvABwPYAXcj2QpgGvTNP2FPilJkqMBHFZNc2ODZZhVmDpwJSBvpr+H9bW8Uxq7dOT7CWm7Eymp97eDce9Z5qmtUEK2ew9N58sTT+THaS+v3LpT6eRW0kWee+xt6GvzyPIXlkc1z6lXHIf6acnzRrQNoqg7y+PrSbVNyebNWVj6RPQNufn71p3luWblYXkCmv0yxyPKKkcoUdqP9tXxNCPztTup8UTz9RjzNSQ0zD6c+tH5iQ4x3tObe6nQOg56voZ3mm50RwxmTgraH7BVPlPBHmhq/vIuf8lGQb73E1zfsi8MK9cMOXhbpnRWf5KDvk4XUHdFxjBfv8bQcTyvHKHXipF/DZYno8e1piuXk6fhSWdeL4Kfn/c7TYE2F5RnYP5jonvpd8WnnsrPQ1a5fFfxva6myLuzb/9y7cbcdLL8zrX1WLRtWxY25lHL8y7Uv1US4x3KmivlbQLAffdl4VNPFtfWCcV9Wl69VnlDfcqcPPPurdI8vzhCYtJQy03TdBzASwDcDCBR/9YDeE3OqReK8P82UgZCCCGEEEIIIYQQQmLR8J9D0zR9IEmSUwCcDuAEAHMA/BrAD9M0d+uLDgBfBjCapilXlhFCCCGEEEIIIWRGQc+y2UsU7UD1o9h11X8+6d8e47qzEkP+Mor8Zeo1S2fztnj3lR4pOsfUpqWW/jGnXLt25cdZO4VbO9cbOyWjsyMnIZQEy3Or89Al2/K+d+924+RSe10MWcTcZeoloLet9t0JvlM9Q1n+OXOysF5Z39MTJomV5XrssSz8+OP5ZVy4UF87Cw8OunEDA17FsmUa1pbxYqm6r9RDSyvls9L1uqAvNxsH36X1ZruzOqIv+gbksXhwPT2G1K9GJiailDxXyp6jyNcMGaZ8TqbMYXiH+wOpBRZ18GjH/rnF0HJuJ/8RNY7nFUaP6cZg7SufstpSDGmML5aMqEYKnIclUzXavyXfCZVaWnnktWtTgqXbhGzXVh+15HeWDDCChNVbQimer36f0vNXLkb5Q9uxU34j/xDZfQ1lSIbNea5+f6hpq7LvFRg/8+rZ7Au+LzWB7BzJf/bdXfljnxy7dTGk4s6zimvydwjshzVjpBgL5Xu1nhesJpKLlIAD7nyob1q+wEWQelsUkijnoOugU2hwt2xx31XuEM7eJ58s5tGbbnIzOflkr2uHykhD5e5lz+mElA1bMCGEEEIIIYQQQgghVfixjBBCCCGEEEIIIYSQKlHXpiZJ8kcAXoaJnTH7AewN4CNpmv6bSncCJjYBeCxN03tiloEQQgghhBBCCCGkGdCzbHYS5WNZkiSHAPgKgFXyxwBSAPvUOeUTAJ4DYDOAZ8Qow6xBe4II7f1Yga21O/MMDoaGwsqlvQM2bszCS5dOBSvKFEpq1bVfl++gIu0HtPWA7zbZpseMu6e1k2y8b0FulnkWRfq+Duj388qwPOlCCfEikP5fAPDQQ1nY2q17YMC9lkz75JNZWDdx+Qx1/rYPS/1703YV8+blx8lHL+0wALce9t03Cx+xJHDbcE/fjCJbs8sy7rWXnU+9/KbD26fM8iyTY5E2jZPo8wwPsFy2bHGPRQMd09uZS/8uy0DRIuc87Vkjh09t7eQc686xbl0WFuPs9oWuZ5lVrc59qq3mdy48ZCrseOkUMcXxxNtXKtBPxfK2tOy0xoQfUrfl/Wl5d1mTlNGeQrxufH1jrLT68crb7O0qMMnK+5aN0Jiod46585xsWaF2Zt7eiuK5dRhzu1kQX28nw7/S8nPSbwHSr8vblywQq22ZdSwHOF0/vmOH4X83MpLVimVH5duffH0WzTyNNqJfl+Xxfvu5dSzfLWSWegyTvq+F6iDvnVP/XB5bz0wXTN6cGAOGR9w6lo9XD59y2pYetn19hzjpelcKI1lVjvGe3vwyl4z3+CPo3P6w+4MNG6aCQ8uf50TdcEMWXr8+C58oX86BXP9EXcYYWPdZ9rUJaTYNt+AkSY4EcDMmPpQl4p/FZ6tpBpMkeU6jZSCEEEIIIYQQQgghJAYNfSxLkmQOgKsA7IeJj1/fBvBHAIy/4wIAfgBg8m8Lf9xIGQghhBBCCCGEEEIIiUWjMszXAjgSE3LLT6Rp+teTEUmSv7gsTdOnkiT5BYDnAzilwTLMKsaVvEZSSAgjpRObNmXhUJ2D1rHI/D31lDoLudLbX47ift/1VWrt7FKSC3Fed4+hoTTIU+jUSH7kGnOdv9juWhc/r05ibFutiyLDTz3lptu1KwtbUlqriVhSyxC1HQB0jmXysgP2zU7UclYpXdF1J1Vpt9zi5i9ljVIqoXHLr58NZKSKyy9XHvpZz58vJGRb7nYT9wwVzr9Q25IdWIa1nlVKCVeuVGXsqR8G/KVPcnzT+hfR8Gr65eZtddOZmj0L0RBGRvJlVrI/Ae6tdQ0sciMveO1UsLItk20s7tnpJBsXElNdBdu2ZXGPPebKWp4UavqVKw05okFo/43NE09kYa1OkQpB2Vz08YoV7nNbsqS+XKuipYmhlZA331jSzbHR/Py8JZ9uP++ytJDyXg2bBWuskLJkrZQWU6D5ehJ7DNPX6kTOhKgLYmG1AyfObVfyXaKzxz2vUz7vEc8yWjI64zzfZlxTxwMDuXFOOvEsaqRaQhZb2eTOZb3OXKM158UHHUeaDjg36y3RVBUk71tPIfL56vcrGSf7hlY7HnBAFramSinbBYDOnDFmtMO1JfAetrTcURw775Sq/FJ6qV8RpKuLvDfhPAAAGBjInk1fX76cu9k4MmqrHmVCXQlCazmy1JVhrl2bheVzOnHlcjcPT8lzlN8hLBlvjRVBfIuZdiRN6Vk2W2lUhnl29f/7ALyn4LmTAu0jGiwDIYQQQgghhBBCCCFRaPRj2YmYWFX2vTRNd0+XWPFI9X/DZZUQQgghhBBCCCGEkObRqGhicj30vQHnTq77bKFwoz1IkE4tgy2ya4gjx9BLwsXS6IrUOYRKRPS672XL/POp0tvjubMe4JZTrE3vtHZaMuRTY2oHLimF6uqSUhIXa3myPE9tMuewQK4/V/KdB7bkL92XuwJZ8gVr+bNVfne5eHYtvbOePNaPydoEUV57QV/286efdmtZrkbfbz83jwP6xYG1hZKog05dEFGxWj7V1ZW1C71R7MEHZ2F5mu6jIbtxAXAqr+Irm1F10C01d1LLADj6porR7313QLNw7vvGG/MT6o4i72fJEr9rDe9wf3DVVVl4+XI3zlgTPz54SG5c7rU9dwddAPc5LRjsmwo/ut1/jHf6lyHRl+XavNnN/8ors/C117rnffzjWbh7m5jGtdzOkFHIMtYOz3F3ZLXao7PrsJFO7iYGuM1Vj31yTLAkgbJ/FZK4yPYvK1IXRLZjrbOVCDlcDXKMtMZSPRAG7uKbc+maeULK5LWEKWQnVFOJJO6lc0SNI6aXQn6ZnOdrtQOjYPLdqOY8eXOWpYZ89kY7sPqy7+thjRQ4gv7ayVN3UjkB6zFexHnPV3oecnZyDZOMWW3cegXfujUL653IJVK+qd/D5PV03JiSW06yRakArVdpWWZn12So3VrFDo8L1BizYMmQuJb7nHSZJ9Fqd1lG3fz1kJaHtXGxL3pMN6WXeeiLi3FX3/eZZ9YPS6sNwLVj0GX0tv2wdISyzPqhGb/n7CkyTDJ7aXSG2wlgH4TJxQ+s/v9og2UghBBCCCGEEEIIaSr0LJu9NCrDfLD6/9EB5z4bExLOexosAyGEEEIIIYQQQgghUWj0Y9n1ABIAZyZJMt/3pCRJng/g2OrhjxssAyGEEEIIIYQQQgghUWhUhvkNAG8E0APgMwD+bLoTkiQZAvCl6mEK4CsNlmHGkyKZ0pDXbGktBPY1OnOpGbc8NsSW3BY13ioxfChkntZWw8rkwfFBkJ5EWgsvfY6055Eof29N/eRo6KUnCOB6WahrS6+VgYGsvDX+C9I/RN2ndKbR1Z3nMVDjFyLr0TKz0BcQ3jfSw6ZT+Z2MQm7XjVxq2o8siyjj3Lnu1uOyWPPVJ3fnvi2PBHmf2rzCKPSCrqy/nXq4yl+2GVFIvTW72w1VHxVeDWb/MrfdFsf6XuSx9qnJybOIL6IvznPSfoZWGaVXkn5ueXUizwFcQxh9bfEMpTeMpl944+lhSl5aP3vnEXZl7bpz891uJqJ93n676yEjq0cPYU88Ub+8uozSp0w3kf9z8QPivEW515ZjnfQ+0eh2nOdLZmG1wRh+ZvJ5Am59nXOOG7d6dRa2vHqscvn6/tWM3dJ/TLZ/Yz6vefh5hj/6epaxl2x4ls8f8se+22/PwtKHEnBvTXbXicvlt11ZDb6eO7X9V9S/vG9dSO3VJhE3OgK3b3SLLGW5tLVcX1+Ecdd65zPmuRhjvtP+dZsz2qtM2t1hzHPywWlfMvFsdo649yJbsm8b2dGn/Crlq6jVfoz32eHhbK7Xz142O/2Y7r8/C+8W26Rp20JZj3qqlFVpeQPLutPz4V57ZWH9OJ3hQt239APulDeu52nxDDdscKNkV5TXuuEGN531miSHsDlz3Li5c7OwZe1ntR/f8d+cv2Sh9buKqJ/ujb9xoi5aLn0LjXF8xSn51/ZFPkNrQqw1WW782oS0KQ19DUnTdG2SJNcCOAPA65Ik6QHw7jRN79ZpkyTZB8BrAfw9gP0w8aHsG2ma3tZIGQghhBBCCCGEEEKaDT3LZi8xlhj8KYA/YEKOeQ6Au5IkkduyvT5JkvUAtgL4NCY+lAHAXQAujnB9QgghhBBCCCGEEEKi0LDOLk3TrUmS/BGAywGsqv74UEysHAOAI6v/J+K0nwF4RZqmOSKTPYvx8WyJdbchowuVSVpLl6MgL6A+q+8UkoUOtX1wZ1e+NExWQ6c80Our5Tpqvb5dru1WW4X3ar3TJHp9+NKlWdhYZlwRFSuX7QMANolyqKXpnWIp9qMd+ztxMh+52rrTkunp9f+i7sZ7XPljRUpOZV0pCUSn0M1Y0gYtURsTz75LVN0CJUXq68vaRc2256I5der6l89e1oG1h7iuO5lWywakDkKEi/zlyO17alm/vLYsl15ab3VaQ5sxvjBrT0WkbRJf6YG8z+EBd78X2S3NMUzXf1796PpYtSoLa+2K6A9PPpkvLdx33/zsJZbKWRZ3gdKa7RjJ2rgaipxjLVGT5epE1m/+61p3LP3Qh7KwrA4AuOSSTHp5wQVunCND0e1OYLUDKUfXSNmP9Qh90eWQbTCvuQBAd0dWd08+6dadHPJ1/cvh35GQaTpyZP0aa4DLkX0DcO0Y9DiupZ15+efJ1gHs7MqsGrZtc+9Ftk9dLBl3xRVZ+NZb3XRyqjnmGDfuRS/Kwrrtnrjcb9wymq6LvAFDtj6qbBo6hCzZ91K6ny/oC5TxiuddWbEi9xyrj1pxct727pdqLrbykM9mPM/+Au471PjQYidOth+dv3yMnUb5ZR1s26beVUQ30WNAbp3UyJ/z32PyrgXku3To11kpm3zkkfz8uxfm2510iwscfHB+m9P9yRlj1A10dYlnKtuFqsjfbMiut3atm7+sr6efzsI33+ymk6+3uvuedZYskxuXp1DWeVj4SpkdCxkYlim6kJadikTejLoxXxmyifUualCGvQch7UKU1p2m6QMAngPglQDWAngaEx/H5L/dAH4B4AIAp6Vp+nCMaxNCCCGEEEIIIYQQEoto64zSNE0BXAHgiiRJugAsxYTksgPAIwDuStP0cX1ekiSHpGl6b6xyEEIIIYQQQgghhJQNPctmL2WI8pCm6QiA9VaaJEkWAXgvJnbQ9F/rSQghhBBCCCGEEEJISZTyscwiSZIDALwHwEUA5jX7+u1IpZJJwx/YvsCJ65Pbbncp3wlD1z7WkXlsSKsSY3fx2k/ihheZr659m7Ah0tfuRFawirqXXpn/uedmYW0yIK9tld8yW5EF09vHyzjD0CPPOwcA1t6eeTiNjLh+TnPU9t2Sww/Pws4u08azGO9z24/F+PITp8IVvVW7TGfcmzzWzVHGHXBAFu7vd31L5HmWJ5T0QAOA7gERaWVi/anH8/nmlWk6ZFF27XLjDujPri3ruKYOLB8WWWajc4f6SfhuiS7LfPvtbtzKleJAeuMBjgnJziXH5ebfPSxU++vXu5H33JOFn/tcN07USR9yo7yxdkeX+Wlvno1iyxvpvwO4fcMaZnHjuqngDTc8Kzd/3T7lszl6af4z3DFs+Q7ltx+rXRTpK2UyLjzFFo/d6cQtXp4VcnTgECdO+rFZfksWTv3oBiQ99qS/ZJc71lnDW09PVq5O/Sxyxj49T2wUvm1veUvdUwDU2Fk607H01zv/fDedbAd6irW85hyc+dx9Fr7eis442JXvYQhVbb75y3RHLMlPp5FeTHpcyvWkU3XgO1ZrHnssC/f356ez8reeW15ZtMep9LTVbVxbUeZd2/R+E3HWGKnxrcsFXTuz8FLDj0r1yY4+ox3m8IRye5bll+MBAPT21H84iwaK+Jj6GU4+gMwfc716D5CWpKtXu3HSQliOB3q4vO++LPzQQ27cD36Qhf/3f9046YWoxx9ffH8dcn/fUuOU9TuEHJNXnJKbzqof2VYtf8+aa8u4Ar9D5BHqkUtIuxL8sSxJkjkADgOwAMCTAO5I0zTXaTZJkv0AvBvAmwDshczwP807hxBCCCGEEEIIIYSQZlL4Y1lVPvl/AZwDYL6IGkmS5HIA707TdKtI3wHgHZhYTdYLd1fMGwF8MKDchBBCCCGEEEIIIS2FnmWzk0Ify5IkORrAtQAOgPvRC5hYLbYGwKlJkjw3TdOtSZIMAfgmgJMms6j+/zMAH0zT9IeB5Z5VJOn41FL77dvzpR5dA2qrcLlef8MGJ65TxC2Qa9i3q/Xmln7qwQez8JNPunEyT6nFUNtFHyLSaWkJ1gvt0A03uHFynbZcM6+WMTvSAK0RtPYDl3mI5f8VvUZbrHO2tmqX4QV9bhaXXZadJ3Z+BwBccEHdSwFw5RiV4R3Zgd6TXtTJmJIRWTtVS3xlelLuBbhNRlfdYYdlYSnvqIzsdNJ1C11aty6kyNQsozxPPWtnW3t1mlMWLRGU7UnqYA35jl5+3iueaW+XnkXFcxNRUq4AmE0XnZZ+pMdPNua73bgVJ9uuIxmGe2+dv/2tm+eLXjIV3q7ue86cLNx9v3g2+jldfXUWnj/fjRMFW6A7WMdA3XRlbIEu+7KWssnjXuxwIyHKLO77ne90U8lmcPrpbpwcnmvGsO2PToW3D2fyixopWKCswjnPksV7Yj2b3h7PMuoOJsrVqWX+oo86cjhL6m1pdTVSkyvn2xctqkmal31IVVY2ulLU44RUa3BwsRMnJVJnnunmI+ezTuQKC8xCSvmvVljfvSmLGxoS83TJMp/A5lkOOYUpIrOy2Gsvv3TO9VT7r8j5V7+H5Yyt+pdKKXmGuhfZTfR5sn36dj3dzuSQcMYZbtzgoHjHlGNAEdsSeax0+N257y7uzcyfn/985ZSo66BnSZg818G4Nykt3LYt66PXXONmIV9bly514xZtvD47cN4B+9x0h4rjY90bXbEiey/Tc6D89UVmH2scyXPDqJVrhvVRKdOWz1q2fQDo9rQ9CB07vOtL3/jkeLF7t9/5hLQZ3j23Krv8GgD9NukkA3AUgM9UV6D9GBMfypLqvxsAvCBN01X8UEYIIYQQQgghhBBC2o0ifz9bDeA4THiM7QbwGQDfAfAwJlaanQvgLZj4AHcugH4AB1fP/S2Ad6Zpem2cYhNCCCGEEEIIIYQQEp8iH8teIcKvTdP0cnG8EcBPkyT5FYAvA5gD4HmY+LD2eUx8KKOSlxBCCCGEEEIIIbOCNKVn2WylyMeyE6r//1p9KJsiTdOvJEnyTmQr0L6fpunbGizj7Gd4eMpz7GhtaOOL9lD57nez8EtfmoWVX4JzfOWV+XE6fymWl/5l2vBh5cqpYI0fmBT6a2MmGSfND1T+jkdXj7vlceeQIeAXxgW5vjqAc98VtQW3r85fVquylnM8v7Q1iaySI5YIfwbtuSOeU6cyrBjp8NsG2te3SvthyEeqfSgWIPNDwqbtWVj7kkmPE+13ErLPt3qGnaJi9b1JH72KvgFpFJHXXhRmm+hQ24iLfKTfz+Kh/HYmiwQAfX29ueWK4UVmkZe/fryW/09l871T4UXaL0q288svr/9zwO0oa9e6cdIoRRt8yLFExOnt3UPqRz+LxUNZeGjIyG+bO87euSV7vkece+5U+IDL/sNJ99kLRNtVc8goDO860aAO2SYMCbuG3HQ9C5GH4xup+0bJb46+HiqyjMPLn+3EOV5nqoON92XjZ8Xy95Rxup3V+KCJ/JefmB0sz01m+k2adSAHbBnWA4ko/3vf60YdPSh89CxTqBHDs8k4z2oisqsvHir+rK1rFfEls9p4Xv1bHqf6phf0eRbGuAFvPyH1LtfbU79x1cyVsg60x6xs83oOl3Fivu3uUB53m7OH3a36zLJlcf03tfeeb54O2thR1qtuXPJYN/hbbqmfTr37dIuoY49160Mm1badEqtOzPYjy6XvTTzvHuGTqru8nJbErwUTbB7KwnJsvfFGN52c69U8t0hUwktfmu9554uuj06nCvzeCYqMMVb99/Rk11uYPxUHjVOaCNaitSdONgZpREvIDKLIbwEHYeID2Npp0v1IhD9ZtECEEEIIIYQQQgghhLSKIh/LJv/EvcVMBTwkwhtyUxFCCCGEEEIIIYQQ0mYUWWQ5BxMry6bTVUzFp2m6NaRQexzz52dLimv3Gs7CVpyWkEnkknYtp5RrpS153Lx5btzJJ2dhuS5YLU03l33L87R0ZaOQBMlyqOW98nZqdyzPlvz3dux0I/PWGuv6cTN0DkMkQHpp+rViywu9VFxKBeQy7EVasipRz1DWlm95rXRHqMd0xMBw/YQAxoUstiLbhXy2gFv/amm9t8TLkgkYWNIYKcEKxdpNvqtL9A0h0bS6uW4/Mm2nHprFiSFtNTStWf0HHugef/rTWfiSS9w4OW5J3YaWqov+MN7hJ9eJRcjW85VNd7s/EA/1++v2d6IuuywLf+ADWX0fccEFTjr5LHT7eeyxLLzvvm5cp9Tv/PzndcsEAOMLs3JVxlz5VMWQOct2bcrdnXMal8Fa1MwFa4XUR8kTK6efPhUeFeNZp55v5byh5VmC2Pei8/SViFcMCdnRm3/pxq0Vfx/V+qm8zq5/Lp63lgVL1dUXvuCetnp1Fn6Wlm7lYNWBr3yqSJ559W+ODfplxWgzDpZGyp5s/PIX6PI7bVfLMEW7eLRvsRPVl3dpy3ciEGsclJcz781C9nPLb0C/R8q0ev6SY7Al9Rb5dystXve+ffXLEUihcaonswrYvD77sZx3AGDz5iys33UXL+zLDuTvAobk0/p9pVudd/SSsPdDX2JIF61xXOZpqPpNGbLvu4rVTyTBkt5ZDD3LZi/x39wIIYQQQgghhBBCCJmh8GMZIYQQQgghhBBCCCFVQhaMHpYkybOt+MlAkiSnAUimyzBN0+sDyuHNSX/2rTKzb5iu+ftnS1qNHfPM9b1an7ViRf10enn4smVZWEtL5HpSaxcsQaHl25b0QC5Nf8tbcvPvFfXTq4q4YzhLO9rR7cTlVuXgIc5hyHJia/mz3glPVr9Q/ABwN+uTuyWiw11+Pr7kiNyyOCn1+mB5bMg0nOXhWx5wI6VUQElpRzqy5fndMnu9nY84LtR+Ata71zxPKQldv96NO/dPpoJ68ziJ1YylFGH3bjcubzm9pdCxlDdmfUTZ4sglaKm9luBK6Y0la5G7WmoJ0Pnn517Od3c0q3qiSwr0rsNirHuxGre3r84kTUcMiF0JVRvZPtaLPKT0Ut+b07dPOy2LsBq17gyOlN8dZ3OxNFIK6xn6ShCdON3O5MB79dVunNDJP/acbDx4/HG3vgcGsuMeo3tZ8i/ftmphzT3eu93p8Vk+bz1GyvcJeZ5+XxBxHQOLnKjDDsvCWuVp7fwm8a2vUFmRbzvzzU/LYL3zF23XlDxbY7zeTdhzx2mnXEoy/9CurP3feqt7nnym3V1+bTx0Z2eJpYTsLDAFOtfryR9nKxvvzA6sOtZjn+xTcrt0rVWUbUZv5ykrOfBdPcY8JxWmRx7pxsl5qHNMSeE3CY2mrLvbbnPT/frXWVjPQ/JlWrf/vLHJs6401k6ZEt93jok8jPlrRNSXNQYEEmPukZRhN0BIKwn5reni6j+LtPr/Wo/80sByeLPi/51TZvYNs+myP7S6CIQQQgghhBBCCCkAPctmLyEfqaZdKYbsY5lPWkIIIYQQQgghhBBC2oIiH8vuRfYRjBBCCCGEEEIIIYSQWYf3x7I0TYdKLAdpEG/PDsu3SvssSPMk5Wcmt38P3ipZ+NvU+CVIPwJhPlEpsAV6b0/j3iIh6azz9H2+9gK/PEbHsvrevMmNs7aVdnwQ1IMaV/54eWWUTaRT+2js2jUVvHPE9XsbEfZUxw1uFxGumci48rDJo9lbVcv7lpZZugst6Mv3e5g7Nws/+aTfdWV+Gp2/1fectNLPxtM3qd71fOJqnoWssHPP9b62k+71F+XGOdceG3V/IK6txw55bccTMIIrgK4baUVz2zP+2ol75Vni2pdd5sS9+kzhT9KT9RPta/fDH2Zh2eYAd+i27Ik6BrL+a/q2Gd5y3u2nwDjeTMZXv8w5lvfzuBjP1q1zz5PjrrYLlbY4MXyxyvAach64biTy5nTDk+VauH9unCyjHj+ll6O0HQJcDySLGHVg+fbE8CnzTRdjnjPL7+lRVoOct5XnWr8Ia+/VPBwfpukQ44VvHWgP29KR70b6PUmOd7oDzJuXhffbLwtrf0A5kGzd6sZtFp5f2ns4B2+PR/i3yZ6eLJ35/j2i6kDWj2yf+oVW+mpKv1PANh6VxzJsaeYK/GIT8ruB6R+q+4Z4vtKjuMgz9MU8T75PRfK+JWQmwNZOCCGEEEIIIYQQUhB6ls1euGUFIYQQQgghhBBCCCFVuLIshw1Xb8CtV9+KypwKnnHKM3DK607B3TfcjZu/fjMe2/wYzv742eg/vN85Z3jrML755m/ipFedhOPPPj7oukUkUr7IFdv7LjvRiXPkR2p5/uhYdu3HHnPzfOSRLCxX5OtV075bEtfE9S3I8iiyXN/K04Myli7HkG9KGeDatfnnnHGGe3zIYP10gP+zcaSccotyuG2kS6l499lHHMg/tygZpq/8pZTtqJcsqR8G0CmuPTiYXVvvWC7R7aCrKzvPd9W6VQelLK2PgPmccuS++rxQXPWFupbvtWUHU4OYr0xVxuk2snp1Fr7vvn92Iy9/41TwlfpE1Vcm0Qqdhx7KwlplZdyak71U+fRYEiZDhhkqL5OUIS3xLYeVvxwetGPBz3+ehfVflqUqSqnXnKr0HR/KeEdwUDfg2CUEymflPKGVnPfdl3tpJ+2Cvvz8Q+qgbFl/ESlbCHpokI8mVEZnnVORD0M11ooxBjj5y/FNSgd1nrqjLFyYhY0bz7OW0JQyH8rBVUsE5aCsyy+P9903Cx9+uJtOapT1QG7gbZfgcc5051l5OOfpCUYcx+gnphWEJdeUcXqgMiZF3z4kszSm0dpI0f5j/K7h3f71gCzlxep9mZDZDFeW1WH307tx89dvxss/9nKc89lzcOd1d+Kp4aew7zP2xQve8wIceMyBdc/72b/+DAefeHCTS0sIIYQQQgghhBBCYsGVZXXYtX0Xuvu60TW/C4/e+ygAoLO7E/N65uWes+nGTegd6EXHPFYpIYQQQgghhBCyJ0DPstkJV5bVIR1PgQS45Ypb8K23fgvPOOUZSCpJbvqnR57G+m+tx0nnn9TEUhJCCCGEEEIIIYSQ2HAZlMEJ552Ao848Ctd94jrc9t+34ag/Pqpuupu/djOOffmxmLvX3KDrJEi9NOShPgL335+d99RTbtwh22/PDpROvlP4Lhywr9tU+vszb4jK8A4R4+r6ff1+TAJ9UtqRIlvSy7iBgew8ad8BuNYfORZH017b1xtMl1f6mUlfr1pEodUNhPoc+fpE+GI9i+6uLK5b2YVY15NNV9uYBKH/bGUYHXl70UT2QSvbq0djWZCY9yY7i/CAKdIe8/K//HL3WFrwDA+/0Yk7Sk4r512Se22JbkvzxKLno9Q01dslfClVBT2wpb4Xnx5yO8Vpvr5AmjL8B8tuWxJZ/lWr8q971VXu8bp1WfjMM9245cvr5xHNuzHPK1I/YGmmo8aYihyvjT+bW75Vlh3VySfXL6Iupu99l+F7GdtHKUZ+3R2j6ifF54JCyDaiHmLQu5w2V5RYpok9/u+YMfB+btJTzEB6AAJAZfuj2YGsE8vg0Mo/sJ/4UvZ5UTzRNHmeZRo5UJnGnX7oMvWGZqnbQpVmzn8A/I01C7ynEjITYAuehq75XTjs2Yfhodsfyk3z8J0P4+6f3Y1fXPoLjD45iiRJMGfuHCxb7Td5EkIIIYQQQgghZGaRppRhzlb4sSyH4W3D2H7/dvQd1IeH73wYfQf15aZ92UdfNhVe97V1mLvXXH4oI4QQQgghhBBCCJmB8GNZDpU5FfzPh/8HyZwE+xy4D0593am45+f34Gf/8jPsenwXrvk/12C/xfvhxR98ccPXSpFMLafVy3Z9twm2luPK1cR6N+QdQ8dNhXu33+tGyqWzSh9R6RCfz9euzcKnn64u3puFpc4HwEjXgqmwXmFeytbeAYQsaS9Sdt/zZNzLVrtxj27PL+PoWBZnrYQOlfiWveTfN09rx++nn87CWobsLY0U7b9GRhG5rcpnBgAdHeI4UAInKXvL+DKwrt3VFdj31HMMKUdefenx7PWvz8KvfKUb199f/NpDQ+51pXqnpg42b8nCSs7R15eNz3J8kPJqqxyhhEp1y5DYhdyPPufZq7LwmOq/cnpUU6AzrRrTLXp6AvulHBi3bav/c8BtsDIdoDXEuXExZFbdhtIsNP+8ObYMOXpsqZmJmtBjyBHN8gupeoj8H4ApJQyde0Jke7GtB3T+1nk1echBQfc9iZRDF6j/kHExxjtfaP6heZjPN28c1FJLw9Ohbd6NHDl9/rtolHdu3c7Ei0aQDDZNGy8TIS2AH8ty6N63G+d9/jznZ4c+81Ac+sxDzfNWvHpFmcUihBBCCCGEEEIIISXCj2WEEEIIIYQQQgghBaFn2eylyVtpzAzmHzC/ZlUZIYQQQgghhBBCCJn9cGVZm1FEB+6rk1+yJF/LL6832nWIEyfl6pWe/KYyvvpluXFOur4FzrF0rwjW/EsPFeWHUTF8HR7amt33/PnZz7Vniq8HgFV+352qQ1nQl11b3hcAbBF2RdLyAsj3hynkBdEmbNqUhdetc+OkLYWub9eGxfjbgae/VRGfiLy6LGOXbdkGOwPzD/X4MWxAHH822VYB10/O6odu/o2Pn0V8sfL61/nnu3kaVj0mIb4j2sOwZyAb1zvHdjpx3R2j2YFlmiXjmrwNfBl+h775h4x32rZTHutqlchqjdVenDlQzpVWZ9u82Y1bJjYr0h4/Ik95rRA/wCIU8WXKe4Zl+FZZZQo9Ly8PK10sPzaHwEbp6xknMT2nPMefZo8bwXUsDSdluIGySMp+Z/OdR2MQnKcct6x27OkFV3bb0jh9SJQ/1rMN8XWsubac3G6/3Y2bbNe7dzdUTkJaBVeWEUIIIYQQQgghhBBShSvLCCGEEEIIIYQQQgpCz7LZyx7xsez77/l+q4tgst/8hVMdrIjCJXir6hz0rtVSorZzxG8Rol7hLAcOveu8XBntKw2rWRYsL1ig8tauzcInnJCFpWS1CNazkIoXrWLp6wu6XC5PPeUey2c6b54bJ2WYofIOC/nsnd2uVRvp7AjbpjwvT6kaAtw62Hvv/GuHLq2X5+mJ8rHHsvDcuW5cX199CeKigca3ftdlkfkfMuim880/VEZkdUv5bLR08YYb8vOUhD7DGPJiPaZNIsdOnX8pEimBHmOc+u/wlFLph2bI3S1ZS97z0Pccow7KkMlEkacIurr85mxTEm6U0UQOmFpqKZ+3fhGQg4eesGTaQTWw+GL9diFlnoaePkb/8q3H0GcfY5z1HbP0tWLIVMuQh3rn0dGZWy7f/GNTZMwKKVes+4w9v/vmX4b8M3qevrp4ddwuViUxbD+KnOPc59iom1j6n2iZ/6RPSt4LEyFtzh7xsey+Dfe1uggmb3jDG1tdBEIIIYQQQgghhBACepYRQgghhBBCCCGEEDLFHrGyrN1JkmyFr1YkSDmGXhK7dWsW7u93z/NdFizjFg3kJsPtt7vfVaUaQ5ZZb+YjZWi//rUbt3JlFu7o8d+BTjIuludbVIZ3OMevPDuTDnnnEbgs/pBBv/NiyLO0EiZvR0GrHGVgqWVDd3KSfUO2R60UkrJM3b9i37e+N7nTqrUJk5TtyR0i6+UpsfqJPM9SSMWW0BTJX973kiXueXJDpaVLc7P3LnOoPELuMKvH2SOWFJd4xZYc6vy1skS2O++dUHWjk51KX8DYqS7kXmP0yTLGuijlGnF3I3VkjFLmo3S8wfK17duz8IYN9a8LuAOEnsQtGaZMK9qBuZuhbj9SmmPFybalBoQY/Su2DK1I/tZ7QKPXLZJP6DgeMjcUOSekfmIRIn0tIjMv+37KsNjwwXyf1S9i8lhMWLHKlFv/+qVMjj8FtrGPLb0MfacJra+8NmK2Y10/ck656y437o47Jv6XvxDOQuhZNnvhyjJCCCGEEEIIIYQQQqrwYxkhhBBCCCGEEEIIIVX4sYwQQgghhBBCCCGEkCp7hGfZqpNOanURTOZ1dU1pwTdudL9fWl49B/Q3b4viyy93j2WV7rtvFl640E0n4/S9SLuAUK8Mb+S280Y+oR4AVhl3jmTHxm7UNYRuE+9bLp9z9Hlaj59nKQPUVHnDWJ5c1rXk/WjPJvlstF2Otuepl1+9ckl82/jdm7I8Pv95N+7jH889LejZh3qPleElJf3ZLr7YTXvMMZnP4JNP9k6FLe+3It4hvmk//OEs/Hd/58YdoDzMJinbh8bK3+oLMXwR24nYXnAFbGpyMfuXbrzSK0xevMa8NN9X02xrcoDeuDEL68FOGqBO+stMsmZNFrY6n1VB0jtNmhECwI03ZmH9AiGNDIXJaRHvJd924esF5JtfGd5pzfbrCqGM+onxDPPSxbq2lX/I+20M/6nQfELbv3e/VONZJWfsiNEPTfQ4uGlTFpZejYDrz6hfDvNeFgtg1V3ee3a3Go5DfQV9y+TU+ebNbmLpianr9StfKXztmQg9y2Yve8THshtWrGh1EUzeKAdoQgghhBBCCCGEENIy2v/PVIQQQgghhBBCCCGENIk9YmVZTD70q1/hG7//PToqFXzuj/4I/7B+Pb575pnR8rdkl1IyBrgrXRd0qS3pLbmEJ3IJrlZOXHppFpa3L5cLA8Dpp2fhQwYbXzZdRCLorOxWBRvr6kU9tEwvZKtwfc66dVm6gQE3D6kysQhdfi7P0yuj5bFsLl1d+d/QpWIGAL7+9Sx8+OFu3J/+aRbuz5GrNQNr+fn69Vn4qqvcuI9+1C//GFuz7713Fi5jIaxVxhhyhlAJk26TkkMPrd9HfctR73pW2jw+/eni+YVKYWJLqgG3jrXaRY93XhTRkgcQQ0ZkaSG05Efmb91K2ZLVcUNqaZZD3qu+ATnhnHFGFpaSGQA44YQsfPDBbpyUHxmYc5SUV+qXHPlyoZ9bBC1/yNwZOo5b6XyleFY+zZRoWuVvJ/l2bGleDPlsGXLZsu8t1J4h9rXLqEcnfzlGmr80KGRaKSsHosgwJbquesUwGEOqO931cpEvE9qbR9aPnl8mfzm4997ihSOkDeDHsgLc+NBD+NY99+CWc87BlXffjXN/+EN8sM390AghhBBCCCGEEFIO9CybnVCGWYCfP/QQXnLIIeioVHDmwQfj4V27sPoZz2h1sQghhBBCCCGEEEJIJPixrCDz5syZ+v+gvffGQVI/RQghhBBCCCGEEEJmNJRhFmBFfz8+fMstAID/+sMf8MDOndi6axf699qrtGtKLfnate63Tekbduml3U5cd2RPiT/6I/dYeldJuf6yZW46x3JEGxRF8FWT9dPRYXz7Vd4nI8LCLLQYvjr/5cuzcGR7nxqsMnV3uOuDN2/LPHKkpZssLwBs3ZqFZZsDgLVrs7C0vbHKZXmhlOGbYeUp7XjOOScsP8vLxddPpb8/S/fq88M86WrtNxr3cinDe0XS25OVa+VK91rvfncWjtFvRsfc/GV9WWOAb9v19iTSW9ILP6cxuL5Vzn2LAlu+W5YNS009DucMhGUPVCXg9jW/dBNps2ej24jEtz+F+gJZ8o3ODmOMFF5nleEdbtzmzfUzXLXKPR4czMKGT1iU8dnyVbv2WjdOep2JF42K8lGzyiWbeE9P2JgYMn7qMsXw1gqt/xheiLHLH+q9WjbN9vTMu5Z5z8Yg32y/vbx0RZ5ZSP5FyCtXRU/8cmzSBsxy3tYeZdu2ZWE5ZhlY9aPnITn+x3iXtspi1rFsd/r3OWm2qz3LLr544v9Pfcq7TIS0EzPvjbiFnHbggThm0ya8+Ac/wJNjY/iP00/HK374Q/z3i1+M7hn4ywUhhBBCCCGEEELCSFN6ls1W+IWnIJ945jOd4z/VWwASQgghhBBCCCGEkBnLHvGxbNX3v9/qIpjMM5btyuWxesd1vXtxCNbyW3n8rne5S3ql5K6qTAVQqzCS6o5O/cnd2vLes4x55dXn6SXJeUqTGDIT32tp9KrmPPlUkSXyTt2pCxwxmNX/3VsyGe/GjW4eV16ZhW+4wY2Tslv9ePv7xYG8dpcrGZaUsSW9tTRd9qFf/9o97+STp88vFrLuxtQS/O7hh7MDtfxfyvYs+Z1vHwqVu1h1LMvVacw4ulyPPda49EaWRbfr9euz8FlnZWFfSabO35RHbH80O1Dj/biQ0ZkTsrwBObACQE/vVFAr76StptMnAbcDiHLJMmkq1p9OPVdYx5D5WHla5bfOk3MZADz1VBZeuTILa8l/GWOCxJyXRnZmB/rZSInjPffkX8DU6oprFZhjc/PQEqYzz8zCS5a4cTky0jJkeVb/jSFBjC0hi4X3cwuUf5XdN2YC0esggpKliGVESPtv5XMPtUsw61XO25bU0vP3Gl0OKb3Uv0cNDGRxUpIZircjjp5PLKuGdeuysP5ldVLSOs6xgMxM9oiPZTfcd1+ri2DyxosuanURCCGEEEIIIYQQQgj2kI9lhBBCCCGEEEIIITGhZ9nspXlbzBBCCCGEEEIIIYQQ0uZwZVmbUatVz8LS2gMAPvCBxq8X6itwxhlZ+EMfysLz57vpli8XB8Y2zWVvaV0Gsf1DrrnGPZbP/lkrI9ynYZ4m7Qe0t5P06jn3XDfu9tvzL+dYNxg+ZRZlbxkv73ufffzOCW2D1r3IutI2PUcsyffH6BTX1n5gedcr4ssX0i91HtLfqcjzfNe7/NLJ6+0YzvdL0xYbcqdzOTQV8WvxHn+ET1Pwdu9ygFCTwfDg0X7lUIwPHjIVlvZl2sLEGbotUzdPivjmleGxl8exx7rHciyUliyHHeam6+8v7vsEuOXvHBPeY9pURvp86TiZX9+C/Iu/6CU+RURlwH2+MTytvNFeQNdem4XFhFhk3u/pKXcOKXuOCvGLivGeZPm2TZc2j7I9SduFGGUqwxvP8hj09QOO4Wsaek7p7Uy+dJ9+uhsnx139kiZfLib9uXR+gDt3qiVIY2OZz+a2bfnFCvVPlJf77W/dOOnPK73Tapw/ZR3Mm+fGSb/JOXPcuMmJ9Rvf8CorIe0GV5YRQgghhBBCCCGEEFKFK8sIIYQQQgghhBBCCkLPstnLHvGx7KRTT2p1EUy65u01tfRVr9qVy2w3bHAXAsqVv1q+2d2RrePd0bV/dq18JWShJb0y7fVrs5//aK1bxl275LXcRb2y8entkOVSYAsp8dLl99zBuaXIMq9ebdyzXpctEdIVvUxdtott29y4Aw7IwoOD9cPTIaWLjz/uxskV2709+cv4fZeV60noscfqp9t339wsatrB0FAWlqvILUL7iSV7kO1Yl/HezVncIYPq2qKSxwOlrrEpIjOMIe+Q0stLLnHjpFx81So3TrbzGPKmYDmWeIaVLkMCt359FpbaaAC9S7Ny9I5td/OXeW7Pl/AtkB22q0/FNi69tAiV4Ut8n4UeR6x5Ytkyr2I5eej8LdWqU2bRf3U7kJnqfi7zqIyNOnHjHTVCmsKEyrp8zgGAiqx0LTGV9WDMgb7XlgopLc906jFQ/lUGMSR9vnNsK+/TwurbobK0PZ0y2njs+g8tUxS7Fj2Qy/FnwwY3TsrkZVhbn8jxTE02YyO5UQ6+71P6nkdGsrR33OHmefDBWVgq4fX8UekQdSJPmrhAFtYT5+SLdmfj8xEhraBNPyHEZcV7V0yfqIXc85U/tLoIhBBCCCGEEEIIIQT0LCOEEEIIIYQQQgghZIo9YmVZu5Mk+ctu5TJbnUYus120UGtLsuW/K5ZnP37LW9xka9Zk4Ri7Rj3vdHfp739cluUpd1sD3JW6K1a415Y7j8llwVoiKFc8awlH6A6MecSQAFl5Ws/X2X1n0yY3odhydGxwsRMlZZha2SN3LnXlKUaBFTKP3bvz01lSCV8pj14VP3duFpbV84tfuOlWr87C+tp6B0nJo9uzssh6XLo0bIm/lU7KkBcPuXFSknz3JvfafX1ZG1/Q1bisohSZYYHr+aB3YD3nnCx83nlunNzN8KyzwsrhWwe+8ibdjr3HKTkQyg4LuGOfMyjCbbx6q1s5KORJSVBEFp8fF7rbWmwJWRmSfLlR6Q03uHHnn5+Fly/3GzssqaJZB56yyyJjsO9z88V8vnryke1Q75QZQKgdQOxxMMY4UuQ83zws5BCjxzBpt9Hf3/i1y5bBzja5ZowdUy1iS4FD84/xnm1e19rxUo5FeqfMPHmlzsMYw2QWOpkzZ4nOVykwmcmk+jT5u9miAVEnWhYvfzHTO14uXVo/DGTvIE8/7VXWmQo9y2YvXFlGCCGEEEIIIYQQQkgVfiwjhBBCCCGEEEIIIaQKP5YRQgghhBBCCCGEEFKFnmVtwFNPZZLugYH8dKauX3vYCH39XXftmAq/7W1vd5L19PzbVPiCC9wspI9SKDLPK65w46RuXnpeAMr7TIjAd465nixSHx7qURbqx5Dn86Lzk34/pi+ZkT+Wn5idoxuJyFTnb+xUnevdozX3sh1o7weZv/aku+++LHzCCfK6/t/opWXCb3/rxknrtscfz8LaJkJ6lmksLylpryDvTds4dCsvOJ9rAcazVxfYtj1r15/+tJt0ckduAHjHxe55FfFwYm3B7oPlN1PEjyfPn0Tu4A4Ae+2VhT/6UTfO8uzzxaoDXy+UrVuzsCwv4Poo1SDHddkIdUOQ6VatcuOuu65+HgDw0pdOBccHD8ktxojI3nccCSV0PPZtW7r/PvFEFpY+iED+HKWf4ZIlWfi229w46WGm7eSkP2EMPzYLd3xz8yvDxy0P8/nqCjr33Cws226N8Z+fV5vpHdhRPx3QZI8ro2Bl9I0iuUyireWssdXbLyoCvt6oZXhwNbONhI4HZfvaxa7jWHXqnY9s2NJUWaP7qJx/5QRjDaxqIuoUnWhgwGhb8jzDYFg/Q1kUbSkm56+aCVKyYkUW1gbS8vcSPSBMjuuhL2EzCHqWzU64sowQQgghhBBCCCGEkCr8WEYIIYQQQgghhBBCSBXKMNuAefPy5Zfey4e1fEHwz//cOxUeGPg3J+7UU7Nw7er/uFs9v/I8N85X3lQRBese3u4mFPc9jnwphlleqdXSyD2cjSXV1pbW8rTgbeGHMyltzdJrcazzP1ott86jE+Lh16wjlntO59exLpa8b0vKadWJbIPz57txUoJ48sl++RVBXk+uHr/2Wjfdyzxlnt6opepyh27dzQ86yMhHSAMqBZbr51G2zMQ3f60ylNJL2SYAc1iMgm+Z+/vz45yx7ur/ciPlDUn96fnnu+nk89VSy9NOq5+u3rEHlsygiMy8VWiVyUMPZWEt8ZXylEP6xBisbnRwMJNKr1nj5iElm1qFEqPv+ebhK7Us8sxiyEMtnLLItqpuxpp/8ygiPTXnZs9r+0oEdcHypKPBlg6KvPOkfYS+dmVs1InrEO8FvuUIKdN0cRax66eVY1toHw3pJ0XT5lGG9DXkWqZUVDZyPY9KqaV+0ZBjkwiPDyzKL2SgbYyTv/Eure9Nvkvr4ss5sbMnm6T0GODkN7TYvfbIzty0hMx0+LGMEEIIIYQQQgghpCBpSs+y2QplmIQQQgghhBBCCCGkNJIkeW2SJLckSbIrSZKHkiT51yRJDA1G3TxOTZLk2iRJnkiSZEeSJNckSbK8TroTkyT5eJIkv0qS5LHqv5uSJPmLJEnm1sm6Bn4sI4QQQgghhBBCCCGlkCTJ2wF8GcDjAN4G4J8BnA9gbZIke3vmsRLAjwEcCuDvAbwfwOEAfpIkybEq+V8DWAPgVwD+FsD7ADwC4J8AXJ0kSTLd9SjDzGHD1Rtw69W3ojKngmec8gyc8rpTcOOXbsQffvkHzOmYg94De/Gctz4H83rmYfMtm/HL//gldo/txpyOOTh1zak46HjLTCgfU0NvmGxYWv6XvzwL6y3v99nnHnG0vxN3xx1Zm3W2FjauV8SXwNtDQhq9SN+AaZCWAz09bnmlhxZuuSUL797tZrJyZVamhW795FFzX7LMa9e6cdI8YNlx+fkYPgXmtQ0c7wZt1iMRhnpW/oODfl5kNd4GmzZlYWXq0ynqR/uv5XpPFDBVkud1qu4lj5cvr4hwfvZlcEB/Vsb3vtet43XrxIEeHzZurBs3vvTomMWblhheJdJWUPs7nnFGWJ55zcRqPqXvfG75J8qt2q2933Ue0rhNeZS53pDCh0hVQm+P343H8LYp4mkY4sejfey8fe22izpR81DvQFY/eq6RQ/7WrW6WrzyvuN9VEfLqLjS/WHOPb56ul5fhiyWfR08v2hFfHy5dH56vgLYXk3wZ8mzw+lq9EJ59W7Y7cRU5MGpTQOH7Wil9AM0o0lZjeAK2iz9jkfHTl3a5N99yBNeBfE/S7/viuMZzMMfL1/x9Tr9oyL5RayCdXSvHwxBw31mLjPHy0vK8TrjehOPWGNzEvk1mLkmSLATwIQA3AXh+mqa7qz+/CcB/YeLj2Uc8svosgFEAz07T9P5qHt8EcBuATwB4oUj7OQBr0jSVk9PnkyS5DMCfAngJgKuti/FjWR12P70bN3/9ZrzyC69EZ3cnvvbnX8Px5xyPweWDOOW1p6Ayp4JfXPoLrL9yPU5dcyq6ervwx+/9Y+y939549A+P4vvv/z4uuPSCVt8GIYQQQgghhBBCSoKeZV6cBaAbwOcmP5QBQJqm302S5G4AF2Caj2VJkiwBcDKAf5/8UFbN4/4kSa4AcGGSJANpmm6p/vynOVl9AxMfy5Zhmo9llGHWYdf2Xeju60bX/C5sv387AKCzuxODJwyiMmeiyvY/cn88+ciTAICFhy3E3vtNrMLa95B9sfvp3dj99O66eRNCCCGEEEIIIYTsIZxc/f/ndeJuBLA0SZLptmmfLo8EwEkeZZmUazxkpgJXltUlHU+BBLjliluw7qvrsPSFS5FUXEnrHdfegcNWHVZz7j0/uwcLFy/EnLlzvK+XIJ1a0lqzfDhQeimXyPb3Z+nOPNNNd8IJh+bm8frXZ+HLLnPjpCLIKlOMbb4f2prlOXeuuzS6z2jBC8YengqPKomp3BLZWUD9xBNuJuLPBMFL0TdvzsL33efGaU2ZB3rbdgdLp6HzkfcTUA4zPwstpZWyMSUR8V5KLvO0JKV6qbi4b9/+pNOVIU3Ky9+RDwNYuTKL2zHsSgF6pRzGW2vWOqx6lM0zhmQGAD7+8Swsm8UHPuCme+KJJ6fCUpoOAEuW+MnRvduBHHQB98+UQhJ+97A7ngkVILqHNzpxTh5KIuXML1KqpaVUhpTTya9kyY81v5gyNCMPb4w+JPO84QY3Tg5Nr3zRDjdSSDu3jCyoew4AHLEk7H5iSMh86zWUUGmVg9EmYxMqpwx9Fp1jWV8c7+jOL4fo5zWysL6sbdVIyHyfr6xj/Z5x5ZVZ+Jpr3Dj50rlqVRaWFhRooF/mYCjZCr2n+sq7iT++47gmhtTbNw+rn/iW3/x9TjdQeazfYaUVinj/78iRf06HpZh07jvw908y41mYJIk0efmXNE3/JVLei6r/318n7n5MfOhaBODOBvIAANMLq/pB7l2Y8E37TystwI9lJiecdwKOOvMoXPeJ63Dbf9+Go/74KADAr775K1TmVLDkdNfI69F7H8UvvvwLvOSDL2lFcQkhhBBCCCGEENIkZpEMc1uapiusBEmS9AG4pECen03T9FFMSDAB4Kk6aSb/MtRdJ07SUB5JkswBcBkmNgd4dbVcJvxYNg1d87tw2LMPw0O3T6zSu/N/78S9N92L1R9aDbmBwvC2YfzwIz/Ecy95LnoPbE+DWUIIIYQQQgghhJAA+jCxA6UvlwF4FMDkDm/zAOxSaSbXPKpd4GqQeWjMPJIkqQD4dwAvB/B3aZp+fZprAeDHslyGtw1j+/3b0XdQHx6+82H0HdSH+26+D+u/vR4v/chL0TEvq7qnhp/CNf/nGpz82pMxcHRxOVuKJHdJq7V82FxOLKR/X7j6kKnw6ae7yS65JAt3d+Xn99nPu+W7QOxfYCm8QpdUy/MeeST7+X775V+rBlEwvZpYylw69RahkgKyxlyk3OCEE9w4sVOUxnn228WHb10mKY/YqCRYUgKqtbPy2FiXHSrDyd0xVV9L1k+oXNBa3i7lZUpu6ruUvIwl5747yloSBamWk5uKAsBxspF7ymxjy0anzV/KnAP7Wqi86d3vrn+eUDsCALZty6SXUroJuOOIjBsYCNzRcdvDbqR8wOIZdhkSoxpJmoy09BeWzKrkna5iyAWdOC0jlelKuBd57WevMhIifzfSxoXw4YSOg00fLzzO8cWSWVmEttVQmf+YkF76jpChu5L7Snpr+pC0l9DvNMuWZWFDEo4uQ2KaUw6LmuxFkbWdgUWr3hHaZQdKoHwpdhm7KIekC5XcBpVf9yEpvbTehUSc3ll+vGu6BTn1L+0LJclkkjRNN2FCMlmUB6r/HwRA/cKKgwCkIo1PHprJn9VINJOJFU7/CuC1AD6YpqnPrpsA+LEsl8qcCv7nw/+DZE6CfQ7cB6e+7lR8623fwu6x3fj+338fwITJ/2l/cRpu/d6t2PHgDtzyjVtwyzduAQC8+IMvxl59xkcYQgghhBBCCCGEkNnNTQAuAvBM1H4sOxXAHWmaDtecVZsHqnn8q4pbiYkPbjfLH4oPZRcC+FCaph8oUmh+LMuhe99unPf585yfnf8v59dNe+IrT8SJrzyxGcUihBBCCCGEEEJIGzCLPMvK5D8BfBbAW5Ik+VqaprsBIEmSlwI4DMD7ZOIkSRYCWAjgwTRNHweANE03VjcgOC9JkvelafpANe0iAOcB+FGapltEHgmALwL4MwAfSdPUuYYP/FhGCCGEEEIIIYQQQqKTpunWJEneB+DjAK5NkuTrmJBOvhPA7QA+rU55Cya80S4EcKn4+dsAXAfgJ0mSfK76s78EUKnmJfkYgD8H8GsAtyVJcoGK/32apj+3ys2PZXWYf8D8mlVlzSKWH8D4YOZTdvHF2c+LbKctuUA1rVBrqRCWLs3CVv3sHHHL39WVbausvYB65Q1IIzejgoI1+tJHYOWznCh5P+azl+XV20rL4y1b3DjpH6K2as/zRSjiSxPkSWeVX3lryW2ya56NNF6QYe3PJY+Vn1PZHgxl+zrI2z5uifKzHBaR2q8uh9DyynrUj+lTn8rCf3PajW7kErGjsPba8jTWsJ5hyHgqxxtdrNWr3TjZ3WRXC/UMwmWXuZHSc1AYTA6I8R0AKhvFLtt6cJbGatrYTrYLeV7JHmUa32fo7RelxzZZj+rexgcWTYUrW5RVRp7foeXx6Okb02za1W/Gt1yh70Y+frDTXcvybArJ38Ly2jLroGTPRwc9yC9fnoX1GCPR7yCCGO1AnqenE19i9A05bADuM9XDs/fzDcTXG7XR/GLlH4My7k02+WElEpPP1GrHpvebbAg9+d6WznlqHoo9xseaJ9rJf4+0njRNP5EkySMA3o6JVWY7AHwTwLs9JJiTefwsSZLTAXyo+i8F8DMA56Vp+muVfHJnz+MBfKVOdl8GwI9lhBBCCCGEEEIIIaQ1pGl6KdyVYnnpPgDgAzlxPwfwfI88Ti9StnrwYxkhhBBCCCGEEEJIAPQsm53wY1kbkCAtdZmqlLJ1qqX6o2PZMltr+X/okvatW7Pwvvu6cR0d+UuSfZcT7xjO4tatc+OOOSYLH/CQkifKepBrqFX9SGmnVjnIQVGqfPTO6ZZk1Vfe4cRpqaV8UHKbdsAttCHT8N0aXD8LKTd4+mk37QH9OZloKYYhzXAwyv+bDVm51q/vdeLOF/ty6BzkM9TZO/UgE2qNhX7ggthL4QvJcETDk/08UK1TQ14f1fn/zbtEmZeucSO/8IUsLOXQBQiRSNVLO8mCPr9rAa4yL4pcWctlV63Kwr/9bXaOCAMAjj22fqEAt+3qsUPqSeQgH6uReOLbxr3nSV1+T/mXKeEORM6r+kV6/fosLOcQOWYB8aVP0aX1BWhl/qGESASLlEOm7e4KezYWjrxYvZBUxPuDb/7jHZ3OceWoo7KD5z7XTZwjWY71nEL6xkNb3XPmz8/CofUv+/KNym1AVoFUrALaicBzri9AXj6h/dB37IjRz4vIGIPk+kYemk5kg/eCPnd+8b3vvHMAAD299RNaWL+0FcC5b5lnJEuBdpL9ExICWzAhhBBCCCGEEEIIIVX4sYwQQgghhBBCCCGEkCqUYRJCCCGEEEIIIYQUJE3pWTZb4ceyNkNru0O9RaT/yeBg5i+h8+vsyI47DV8y6XlUhP483yrYHgMyzqoDabNjWh71L8uPkx5USvPfZWj2pS2O9J0IxVvXrzyzdq549lRYWxmdfHKJ5YDrU7Z7t18+Rdq0r7fFxo1Z+Oqr3bgzzsjC2oJItv8aL7ING7KwnAH1bChNSJR/WWj/zcvDPEf5yGDp0VlUhDL5+oFVRna6PxB+UXff+LATJZ/VW063r+dTxlCfoFx/OsDp6FYdRPGFO+us3GtL9HhsXa8iJwPZUQB3oli5MgurdhzbMyvWeZKyy+iLzr9bTCm6jHnjlvY1OnppmMePVa4QfMfnsv2oitxLjDK20nMntw5uuN79gfA3rDlH+pSpd5wovppDi7NyFfCNDLpWYH7yPOu91Dd/afcIuHaQ2hoygvVhMLF9U8sgby6O8f7ke93prmdNsjE8DYP8Dg2PstDxfrQj+51H33HZcych7QplmIQQQgghhBBCCCGEVOHHMkIIIYQQQgghhBBCqiRpmra6DF4kSZKGlDVJEgweM1hCieKxsHchbrnh5mnTNVsK4Ltk2JcYeTRyvUavHbps2ncpubfMrYDMIWQZe9kyikJ1LyVxeptsocGVZTRUdE1fRm4937x0FmXIEkLbp3c68UBG4UpFQ+SKZch4Yz8nTWi7y2vXuitIxfDSpW7cgi2/q58QcKWXg37zZJE6CKn/MvLwJcZzCkU+32AZr6Ls9h9jDoxBM8dZ33LEyjMXrQPMmQ/1tZstpfWllVLskOemz9GPQyLVcqF9O4Z9Qox+ErscMdIVKYcv7fT7Se5z0y8CoqGV8i4kr2dIQPOuveKUU7Bu3brEqyAzkP7+FenZZ69rdTEa5otfTG5O03RFq8vRTuwRnmX3bbiv1UUweeNFF7W6CIQQQgghhBBCCCEElGESQgghhBBCCCGEEDIFP5YRQgghhBBCCCGEEFJlj5BhzhZiePWUsaV7u/iWWNfT5fL1bsjLr16ePuhz3vzmLHzCCW7c61+ff+0YNNNDIhhp8CE8WaxrdwaOasH3Js2Gtm93z1u40Ct/61ryPKufl+354lv+mnQdmU+Z9Whi+ASV0Uclvl4ioeOsdV5nR5Z/R4+bbtmyLKytRMaXHp2VURuaSbZty8K6rxn+JBaxfY9C2788T9u8SLq64s+jvu26oyNsDI7hOeiLlUcZ/deXkDoIrUfr2mU8i9zzAvukb/7evknTxDVaJk2MNhIjf52upydsfvfFquMY/l2x0zU7f0kZfmwWsb0QfT0HK2oMiDHGmIjr7Rh2z+ntae7vd+1ImtZ6JpPZAVeWEUIIIYQQQgghhBBSZUavLNuyZQvuvfdejNT5U/Gzn/3sFpSIEEIIIYQQQgghhMxkZuTHsvvvvx8XXHABrr/++pq4NE2RJAl2797dgpI1lxhSQt/8fYm1/DkvbSyZRp60rUj+MSQ673lPFjZUht5L8GPITWMtsw/ZsrwQcr2z/GBuVaRBsIRPSkWF7DJW/r59autWN+6Afr/2GVuGHDoGhJbLN/+yJZoxJKyhdewrATLrR/YbQ97RSmKM/1pqaRHy3ELrKla/8cmzXZ4nEL+fl02McSQUZx7taN3re9lSvLJppa2FJva7rpWPZelQNrHHyFA5ZTOffZFyhIzxseYF3zYi0+nX7FLe8QlpE2bkx7I3velN2LBhA/7xH/8Rxx57LObNm9fqIhFCCCGEEEIIIWQPgp5ls5cZ+bHsJz/5CT772c/iNa95TauLQgghhBBCCCGEEEJmETPyY9lee+2F/fffv9XFIKRhBgfz42IsW5fEkLm1FZ47ZVrEWDreLsvP+/vd45Bdzix8ZbakHMreDc13d70YMrQo5S1wXux+OePHTrLHUmS35RhwbnCZ6fXRzN13i5TDVz5ICCFFmZGj9hve8AZ85StfaXUxCCGEEEIIIYQQQsgsY0auLDvooIPwla98Bc973vPw4he/GAsWLKhJ82d/9mctKBkhhBBCCCGEEEL2FOhZNjuZkR/LLr74YgDApk2bsHbt2pr4JEn4sYwQQgghhBBCCCGEFGZGfiy75557Wl2EplG2T43lOxTiSVTEN8Y3bainRtnl9yWGR4XvtUO3oy7Df8rXv6JdPDxCfS5C6y4v/xhbflv5+5ZjurL4liOUvHxijYO+9R9ju3rfMvk+w9A6LsOvKEYbbPSc6Qhpx0XOs/Lwzc86LzRP3z7k2w7aZRwv0kby7q3IvYQ8m5DnMl3+ZfuL+RKj/ZRRfiv/suvL8gWNnX/ZdWcR413alxjjcayylE3s9zALa3zz7UOhYzAhM5EZ+bHsGc94RquLQAghhBBCCCGEEEJmITPyYxkhhBBCCCGEEEJIK0lTepbNVmbUx7Jf//rXOP7443HooYciSZLcdEmS4Pe//30TS9YYKRKvZaqh0oBQOUAzJShlbPXcTDlAGTKfZm7DHUMy2eztuWPLBmKdJylb2hBS52UsiW+m5KKM52lJaGaChDv2eBZa3maPATGI0Yd8x8x2lWfFeF8IJXbdlTGWhvTDWDLPELuEIu0sJM9QqXrZ7TMkP02z33Fi30/Z83srpdih7b9V5S/ST2L/Plf27xoxLEcImSnMqI9lvb29AIDnPOc55scyQgghhBBCCCGEEEJCmFEfyw499FAAwKWXXtraghBCCCGEEEIIIYSQWcmM+lhGCCGEEEIIIYQQ0g7Qs2z2MqM/lv3617/GHXfcgZGRkZq41772tS0oUbmEeumE+hk00zcslFAPgDK9FUK3VZ8uH588imxxX7YnVN6zmQm+H7HyDPWQsMrlm38MYnvpWMTeHl3n6dsvdbqQcaSVHh2h48+e6lUSUif6nBi+dj7XbYTY3mZWPrH6aIw2Gbtdx/A0LJJHDE8xi7K9P2OXo2xivb9ZeebFhbbj2ONKu7xPlf0u2mya+T4Y6ukWY5wiZLYxIz+Wbd++HS95yUtw4403AgDSNAUAx8dsNn4sI4QQQgghhBBCCCHl0rpP7A3wt3/7t3jkkUdw/fXXI01TfOc738GPfvQj/Omf/ikWL16MX/7yl60uIiGEEEIIIYQQQgiZgczIlWX//d//jfe///1YuXIlAGBwcBAnnXQSTj/9dLzpTW/CZz7zGfzHf/xHi0vpT4J0aglr6PL50O26Q5dlh0gEQ9P6lrGdpE/tcq3Y0pt22fo9Zj5l5QeUL6GxaJVsJlSCVeY5Rc4rW2bYbLlvSBlnm9witMwhMsMYdgBl1H8MCZBFK6VOZV87dpuP8Z5UxHIhNs22UpDXs9pu6DtxK8e0MuYlSWw7j5BrNQPr2fv2IV9bi3YZY8p+F7Io+z1vJkLPstnLjGzBDz74IBYvXow5c+agq6sLTzzxxFTcK17xCnzve99rYekIIYQQQgghhBBCyExlRn4sGxgYwPbt2wEAz3jGM/Dzn/98Km7jxo0tKhUhhBBCCCGEEEIImenMSBnmqlWr8POf/xyrV6/Ga17zGnzwgx/Epk2b0NHRgS9/+ct42cte1uoiEkIIIYQQQgghhJAZyIz8WPb+978fDzzwAADgXe96Fx555BF84xvfwM6dO/Gyl70Mn/vc51pcwtbTzC3XQ88xrz026pXHJz/fORU+80w3bunSLLx5sxvXIVr+onX/lR1UVyxOccYZWXhgwKtM/3Ote1+Dg1n46KVu/YyO5ddBR0drPN30c7lzY3Y8MuKmPW5ZQBvZdLf7gy1bsvCyZW5cT49fpvK56dWlMg/ZKADXYECbDYhGMt7RCR/K8JHx7qOq/JXh4eygry/o2r74elLoKu7sEOXXz00mluVX/bBsvyXruT2wJUu7cGH28w5jZjU9xaw2GOhtE+K90k5+JCHPptY3JDvPfDYjO91jmZHvWKSI7SdXJH+fc0KvFSvPsr2BfNu4bzlC04X6qlU3fQcAVG16C1O2v6flKRZSjhi+rOvXu+mGhrLwgr743lqx/brKeF+IQdm+taFjWBltq8w8ghHvdRVjTipUx2Kes951Z6KXXTOhZ9nsZUZ+LDvssMNw2GGHAQDmzp2LT3ziE/jEJz7R4lIRQgghhBBCCCGEkJnOjPQsI4QQQgghhBBCCCGkDGbkyjIAuPvuu/HNb34T9957L0aUNixJEvzbv/1bi0rWGJXtj7o/kJoRteQ2ZDl0GVKJUMxl2fK+pYZS6SnfcfHyqfA3vtvtxMnquvpqN/uTTsrCi6QMcN06N6GUBRryL3kvq1a5WXR3CEnp2hucuE6hDdixcLETJ6ugqwvR8W0LUr4Q41oVrYOSckGtl9WyyTxkHjfd5MY9+WT+eTJ/Q58VKg0oXZqxbZvfibJ+Iowjuiy+UrnODevdTLTsWSLLKde2q85QERLNMrZEt/LMk16GSpFq+kYMZN1FyL+ZsssicZLg2yxjoBWUPT6U8WzKLmPZ7SmEImUKlVf6snx543lEseWQ1hiqg4VIgYuUIyRP/eogu3aR/Mt+vnn5N/1dQtDKMd4itm1McB7ajyRn3ggdR0xiSC+brBVsxzGekCLMyI9l//mf/4nzzjsP4+Pj2H///TFv3jwnPkmSFpWMEEIIIYQQQgghewL0LJu9zMiPZe9973tx+umn46tf/Sr6+/tbXRxCCCGEEEIIIYQQMkuYkR/L7r77bnziE5+YnR/KIu1al7fsVauepAJxyRI3znc3RkmRpd3eu0qJ7STHBw9x0n3+81lYyx+lavL88904Z9X0USJSbzclr+1Z/u4u/fMcSSkA7No1Fex9waATJXelCZUCxFi23uk5SnjvkCW1a4Db8NRydu/yy4d94YX5hTT+7KOvJZP+/+yde3gWxd3+730SQggBEkggIGiAgIioqKCoYKmllSJa8PDTtlKxB7VHta2t9m2ttrZVqz1pbfX1tbQewLYqrYdStRUrFVSoqFhQUaOCohyFCCEkeX5/ELLf+T7ZyeywmxP357q8nH1mdnZ2dg6bZe575K6NbV3/Er176pqa/s1hqbQEgEMHC0m3Zem+r0TnzTXh8f6DHe/FIqt96gVTRl15QBgeUCokQAn9051UUhQWhvdi2ZAyBx+5X6znLgpjSDS1DESiG4J89gsXmmURfU/KwOtVO5NZ6HtOWnZlG0eSkHNUV0fHVVbuff760cg5V6umZbsbWZX8TmNR8rg441KHkT5ZSHPXzDi41rGti+p3NNll5Y7fsu3oa8fB+b5Fx/fdxVvet+4L69eHYf1qP3hwmKexgzKi27iuH0katiK2OtFl9iHpftiWklJ9nMTOs7bzXPEe62K8p0psjgi2POScYvx9oQeLkr6RedisUGSc2Q/d5+J9ZcdLsm/SKT+WjRo1Chs3bmzvYhBCCCGEEEIIIWQfhjLMrkmndN279tpr8eMf/xivvfZaexeFEEIIIYQQQgghhHQhOtXKsuOPP745vHHjRhx00EEYMWIE+vY1l54GQYDHH3+8rYtHCCGEEEIIIYQQQjo5nepjWV5eXnP4wAMPdD7vyKOPTKM4iVFY2CNSry79VR54wIy74IIwrP0fpIXTkiVheMUKM90nPhGGffx3NM6+VQrt87J6dRiuqQnzHDPGTHf22WFY2zJJn4i+JZGXBiBO1J5Klkrx8laYMSM6Tl0rs0V4TglzuYz2tZMPW60BNp6Gvpco3yO9DbY0ttOIa99xhxm1YUN49a9fsD06/8rKyOydvS3EvUmvt9bys/lEuPaHKG8zX/Qy7s2bw3BpqRknH722w3NdD+7rESKv7YzF6+OQQ8yksv4ferRA/G4+XzmmzZ5t5tG3WHidqQca5WmT9jhoQ/ve5Ef4FuYg61X3a3lDagDdVDioObwrtE/MaWdJ1IkN1/rx9deTVaK7hR6OJNJjSdrD6PqQbVD3Q9lP9LXGjm35ukn5wXQUT7E084uTp80bL+n8becUF5vXlj5BH3xgpj3uuDBs64dJe1rpfiJ9DG19JrPhPfMH8b4ixzNtXSr7Ws+eZpy87zQ8DV3rznYt12fj+g6SlF9X0t5kSYzVrn8npO1fmZT/rCu2NpJZ93Z4oP7Y2zL9vOZwkXzvsnjR2thea96L7M967o8iTvuknxnp7HSqj2WPPfaY13njvjsu4ZIkS/Udb7R3EQghhBBCCCGEEBKDbJaeZV2VTulZRgghhBBCCCGEEEJIGnSqlWV7uOaaa7BmzRrccMMNOXFf+9rXMGTIEFxyySXtULK9Ry9XlVtmn3mmmVYu6dVL2uVS+OLi/s1hvXy+Vy+/cvqgl/7K8uvlyVHKvDirjv+5MLyeVlcOqohYFpy23ijODUi5pU33INHll//MobW6Mq2Wdkp04xLIpelaGS1Paywsis4/ZXyXgMuqkxKUovw6I52Ulvgu1Zdl1KrXb34zDE+dasZJ2WFOn8kPH4BrueLIqAss0pioPG3PwtbEJ04Mw1ruu3RpGJ4+3YwrKREyxnrzuWWkrq4sfl3FwrJnvLyevfuG6UpKzP4kqy6jxxhLPy+JqHP9nKQ8VKs8pZw1CRmyDd9nI9uWlg/bhnxpg/C3v4XhHj3MdFJ6qf9lWUot9bWirh1HLu4zvrW1LMZX6h2JrmQ5aOq5zHHOlVnqNi5lk3GeTRQ6jx49wjz0O5lsI7J/pSE5jLquPs55hlJDqd8zxHGRmKQai80xTL4vxHkv9WlbbS2/85Iu6jbu+G7qbF0RQybpg68lS9Q5rZXLR6KZdh1Yry1tVgDgz38Ow3LiAVA2OyITS5uw1Z3rnxO2PJKSCRPSGeiULfh3v/sdDj300Bbjxo4di9/97ndtXCJCCCGEEEIIIYQQ0hXolCvL3nzzTYwYMaLFuGHDhuGNN/beA2zFAyvw4gMvIpOXwQFHHYCjzjkKS363BG88/Qby8vPQe2BvfOhrH0L34u6o3VqLR655BOtfWY+RJ4zExAsmtn4BQgghhBBCCCGEdFroWdZ16ZQfy4qKirB27doW49asWYPu3bvvVf4NuxqwbO4ynPnbM1FQVIC7PncXDjvtMAweOxhHfeYoZPIyeGrOU1j+5+U4evbRyCvIw/hPj8emNzZh0xubWr8AIYQQQgghhBBCCOmQdMqPZZMmTcJPf/pTnH766caHsZ07d+L666/HpEmT9ir/HVt2oKikCIW9CrHpzd0fvwqKCjD48MHNafof2B+vP/k6AKBbYTdUjK7A+++873W9ANlI/bf0qBhQbsbZvG7k523p16V9jaR2Xft0SNn84MFmnLQBMbyALH48rjp5nb8kjoZ+3LgwbvVqMx/ps9O3xG2r6jR8Xly3FM/YHpTFD8lIq+Nc/dMcvTL0Ys+dO8PwkiVheMIEt8sC5q0pGwfDJ+jgg8O6GlC+954yALB5cxh+9dUwfOwEsz5cvTJc/TH0t37pwzV/vhl30klhuFyND64k4XHiiq1/2egtmupZZ5l5aJ8yibQl61viaBiVBo7X0v8qKY+lp481O1ukGoRd619m6blbfSpE9b0k/Fo0sn9JiybAtMkaPtyMk/OvvrZ8vkb5a7cb6TIiYWNx78gy+vavtEm8HNoXS04G2vRRVLqcRxurRkZmL8cNwGzztjqWcXGehU+f8q1T13co67y5YoV5/MILYXjoUDNOdg4xkOhySF+4NIbmpH2TkvJzisRSCW3dz9PwgkuzHK5eZ77v+9b6l4O6nihWrQrD2ltx0aIw/NZbRlTBqufDgzFj3MphQRdLjj+ufS/OtTvKPESIL53yY9kVV1yBY489FiNHjsTZZ5+N/fbbD2vXrsUdd9yBjRs3Ys6cOXuVf7YxCwTAs396FkvvXIpRHxuFIBMYaV569CUMnzg8IgdCCCGEEEIIIYQQ0hnplB/LDjvsMDz22GP45je/iWuuuQaNjY3IZDKYOHEi7rnnHhx22GGJXOfwMw7HQVMPwmPXP4aVf1+Jg048CADwnz/+B5m8DKomVyVyHUIIIYQQQgghhHQu6FnWdemUH8sA4KijjsK//vUv7NixA5s3b0ZpaSl66P3cE6CwVyGGHz8c7656FwDw8j9expvPvInpV01HEAStnO1GFkHzktbElquKtbRSyplfbC6dnTcvDOuV9VKyedZZ0ZdqzC/wKWEi2OpLLieuUt81pRwmiS3Yfbegdn7eWnopkTeq11fL87TWw0PrYLsXvap83LgwLCeQONuByyL26RMdV1oamYX3s5F5SimVDS2fMuRCWssskPXT0GDGSZnhRLV3iCyjr0RBEmdpfVTdpb3kXsqmAaBvYdjGGwuLjDg5pm3ZYpa3rKxvc1j2jCuuMK8nu5COKyp0ky25jjE2eUQBQrn7m2vMMVdKNIvy1dtaDDnPHvQz7CgyCl/pk4zLzzfvWfY9/aI7YEAYlnOIVgHut18YPuggM062Hy3vG1TR2HKkLoiQFmb0OKIHXkHi0rAE8JaQSXmllDMBuRUrkXUpH4aSYcpuYqnSHJKQnjmPszbLhRSuHYl+oZJtUmuNZTll/at0hYXhmKZvrT1lgD714yrVtZ2XhszT9zzXd9iOMsb4Yq1j0XYzNh2+lIQvXWqm0xLxKD78YfM4Qqft20Z0doaVjixjRYWZLqovA0Z/7qh2AIT40mk/lu2hR48eqXwkq9lQgy1rt6BkvxK89/J7KNmvBG8tewvL712Ok398MvK7d/qqI4QQQgghhBBCCCEKfvGJIJOXwcM/ehhBXoA+A/vg6HOOxj0X3oOG+gY8dPlDAHab/E/60u7NBO76/F3YtX0XGuob8MZTb2DaldNQur9luQshhBBCCCGEEEII6XDwY1kERaVFOOPGM4zfzrolWov4qVs/lXaRCCGEEEIIIYQQ0kGgZ1nXhR/LOhhxtN5SNp8jaZcmNhbkNvfSYwowPaJsW5tbbCiwfn0Y/ve/zbjjjgvD5eX2cu7BectmmB4YGp8BzdcPQ9qp6PopUsd7jb6APNZGIPLBWbzNfD3ppJ+TDVe/Fu1L1qtXGJa35rultT7Py8NG17/yfJDU1YfXkx5IuuvKcmi/LonvNug2fPz24pzj2qes5Rd1rtNVVYX5b9tmnhZl+TN7dvSl9DlvrwvzN/ynFK73aW9n4cV1s5K+lKiJ9hJJwucoEQ9Gz/xdz4tTDluVyDFG2jTZbMO09+ef/xyd/4wZYZmPnygy0ROUfIZ6jLHQ6b1i5EuOrFhdB9JUUncimYc2m4vA9r6jkY9K9sM0/LNkY43lC+Thdaab4ObNYbi01PSGRHF4nOM3Jn08LddOou5c3yXi9Iukff/a038tCTrjmOLzrpKDbLuqHct3ZMNTUnei5cvDsDSF1mm1J5r0QdPnCVyfTa43qii/fAHVvmRyYLTMQ52xjRBio2OOxu1MrwG9claVEUIIIYQQQgghhJCuT6f8WPbyyy+3dxEIIYQQQgghhBBCSBekU8owR40ahQ9/+MO44IILMHPmTOS3sqz8ocseaqOS+VHWO1z2+uijZtyUKdFLwHsX7/2y9UMOCcM2dYdNPmU7T0rnpOwSAD74IAxLuYvO03lJbwyJkdwdWZ6WK4Hb+yX4cuWyrYjWZ+gqvYkjs4qSYaprZSx5Wsssl5xL+cuUKY4FNNG7br/zThgeP94rSwNXCUecOIjl+VKOCwC7doVh2e5yZCyO7c5X3tGeS+aTvra+NykFLix0u+/Kyuh0On+LytYL1/owZJcam8ZcxUX17Y4qAdJEPZukyu8qxZbD5623mnFyTr/0UjNOjgmG3Es/Fzkm6+crNDUZHedox9CeGPdds9WMXLgwDFdXh2Gtk5T3bZEpuc6jceTiCSibvYgzX9nm8Chsp+TKuCwZxZAN7yEVub4lPx+rBn2ObZ5IQsrp+35iK5fPtaysWhWGtYRv7NjY2dmeUxLvMbHOkR1CNXgjH3nfUj4JmGOTlI7rODnWAcCSJWF44sTWSgogt37kELlypZnW/DswlFRntmyKvoB+IZf93Nm3pOtBz7KuSaf8WHbbbbfhlltuwZlnnon+/fvjs5/9LL7whS9g6NChLaZ/a8VbbVzCeJx33vntXQRCCCGEEEIIIYQQgk4qw5w9ezaefPJJLF++HKeddhpuuukmjBgxAlOnTsVf/vIXNDbSXJAQQgghhBBCCCGExKdTrizbw6GHHopf//rX+OlPf4q5c+fixhtvxKmnnoqBAwfi85//PL74xS+2dxFjc9hh0XG2Zcd66aerfDCO9NI1TlJbG5ZD73jZrVsY9pUn+i4Xj5K9xVEruC6tL0BdeKB3qhMXzKiHkboUKmqHNUuj0GWSu53qleOHHHJEc7how5s+JTTQG5mtXRuGk5Bh+rYzaxsUS/KLi80dxKSURbY7X7mFa7lsEpc413Y9z1UGkoTMJA1Jqe3aUolQVhams8kkZZ/R7NwZLfO0tZF318tdY/sacUZZHCWaGcsuWG0t0UxbJmyrkqi5IXe+DcNaJSOrUisEjzzSqYjmBbW0R+4SqfVwUuqjt/BMgETkZfVifpQyLgC4444wPGZMGNb6Zxmn568IKWpS46zreUnPL2nsfmxDW2VIXN+b0pYBpvHcfOo1ifKnIUX1kWS2ihyb5GCntbqOO7L6vFe0CVIzr+9Njq1y/NHSU8t7dmNx7+aw/lvAuLb285B5lPSNjJNVruch+diKsB1RGM9Gj6tR7QDwkmIT0pHo1B/L9lBdXY3nn38e1dXVKCgowJgxY/Czn/0M119/fXsXjRBCCCGEEEIIIV2QbJaeZV2VTinDBIC6ujrceeedOP7443HIIYfg/vvvx6WXXoq33noLCxYswBtvvIGpU6e2dzEJIYQQQgghhBBCSCeiU34s+8Y3voFBgwbhnHPOQa9evfDXv/4Vr776Kr797W+jrGlpaGlpKS688MJ2LikhhBBCCCGEEEII6Ux0Shnm7bffjs997nP44he/iErLNuGj9Na8HRS5dHNAuZ9nUFt7frnmb5OqS3uVJLZfj3OfRaJcSdSP1WdB3pyukJT3nbeWK+Lh5Hih1IYeBrqmSktDH64ePcw449YS8Mux7bQt0Z5Q774bllpa2wB+7d/m2/bSS2ba4yeElVBQb3pBlJSILbqlb48yZ2usGORULp+2GifOlaT8ZtL2JPHxW9JWJa7I51taWmDEOdqIWYcK3fecibq4ZeBO2xcujpdUlJ9QnHZsq1f5vGVYW4PJ44MPjs6/qsqM0z6ekcjnof26bI0kwq8rqXeCJPwIDQ+eBQvMODnIn312GFb3Jf1+dB/Nzw/7m6xG3/vURN23r+eUb5l8Pa1cz+sotkNt7UvpM0/Yxqm29nyUpOLppv2p9qDHKcd3Xde+lrpnmR5I5HuZvjeJvM+SEufLZWq2hgdLl5qR8sVV1rc28hWeZTZfTf2+8OijYfi448L3Uvl+D6gPBrbnmfLfNYS0NZ2yRa9ZswYFBQWtpiuLeFEkhBBCCCGEEEII2RvoWdZ16ZQyzLPOOgvz58/Hrl272rsohBBCCCGEEEIIIaQL0SlXlq1atQqnnnoq+vbtizPPPBOzZs3ChAkT2rtY3gRBuGo1znbg1qXRQvZTh3AVnl4dm7REU59TIK6nr+WzUjenTOIzfkZl6LPkPInt5K1yMscts/V5zhILKeeD+hqewDJ4G74KU9c2WKTyj5LSlpaa6Vwlas7bwqs6HtAjXBa/s7K3Effk0rDvHTvBcdl6nKX7ScigPK6Vg02j5phH2uVPIk/dxuWxtb2LyAJ13fz8aDm9ax+yVLkpXbGMkanLWiz4touo8iclgZPVJevYVt+HHGIejxjhdp7EOofYNKBS0gigsdCU0URhKjn95NDe6WSZq6vNOPleJ+5Tyi41tj7jW8a0pXjy2CafSts2Iw3aS6bqWo6WypImvtfylXK61r/tHGuZoybBV14x08k45aHh2r/a1JpBy0vXrQvDCdiK5NSxHMe1X4isYzlGemqj9RgpLU6eey4Ma3HW2LHiQNePPNaD2J532mw2RikJ6Th0ypVl//3vf/HMM8/g7LPPxr333ovjjjsOI0aMwA9/+EO89tpr7V08QgghhBBCCCGEENJJ6ZQfywDgyCOPxC9+8QusWbMG999/P8aPH49rrrkGI0aMwKRJk9q7eIQQQgghhBBCCOnC7PEs6+z/kVw67ceyPeTl5WHatGm46667cO+992LQoEF48skn27tYhBBCCCGEEEIIIaQT0ik9yySvvvoq7rjjDtx555149dVXMXDgQHzjG99o72LFIkC2WYvv6s+i0bsc79gReiUtXBj+rqwCjK3rdZyrx4P3Vs82jbvU78s4faMWr6RMDO8nF5LwMUmdBLZszvFSsPgi2K5m1IlpiuNVljVrzDjZfKqqorN39QlyRrdVsX33/srjodjirRPZZlR927xK6uqj/a6SwLld27wz5IOL4fWRdP9KwitG+zm55u/qMZOEz58eIiXFxeZ5Nq8qSdpeSb4+NTLPNDyPXC1hZBkLC81yyDyS9mYDYBrL6DnQ0eco6bHD6nmkx085kGuTHPlS4jif2+6lrf26oq5te5f485/N8846yy1/7/cwh3P0eXHqMep67elRZkub9lzj7D+bkKdb6vUvO5x8EdMvXo6DqW/9uJLIs05gwLT+PaHHQe0PtgfLmBiniPpvvz0sWWIe77dfGB5QbjEpVt6ZWL169/937nQvFCEdiE75sWzz5s24++67cfvtt2PJkiUoKirCzJkz8etf/xpTpkxBEATtXURCCCGEEEIIIYQQ0gnplB/LKioq0NDQgBNOOAFz5szBaaedhqIit12fCCGEEEIIIYQQQvaWPZ5lpOvRKT+WXXXVVTj77LMxcODA9i5K6iSxVHrmzDCsJTo+MhNv9ChiG1VknFzSq5cjR8k19bFlTXLasgTfupMSO6H0y6kCU4UTY8tvR1yXra9fbx6//3543uDBoSy4KN+vTN27m8fy8fpKUGzP7dFHw/AVV4Thz3/e/DD/2bMqwgPVzkoSHmEz9XXGcX5+QUTKNpbO2db8SxmmTlcR1p3rs7lrnvn79OlhOI7kNqp+0pB3yON315vl37gxDPfrZ+YpZfKu6Cq2PZqCiL6o6964t9rt0RfwlKckIdFsS4mdVpnU1obX1goao0osGtn6wmjJtpmfRSavJnQfSZP12Tv2DWs6PYHJyW3cODNOHNchHOvqVRbbtoXhhgYzTj+PqDK2p0RT8tZb6eZvlcg6npczBoh25y0nbkM6jG2Goi3LFedazuOIHH/E3A7AfGHT7+oR7zFp9FFnyb/+40haSKTgeWG6zZj32bdElEWWQ3uTlPV3upa+NTktSUmmHJoB4B//CMOfmqEGYZlplDw0Da8QQtqATtlyL7nkkvYuAiGEEEIIIYQQQgjpgnTKj2V7eO655/DSSy+htgXzw8985jPtUCJCCCGEEEIIIYQQ0pnplB/LtmzZgpNOOglLmrbqyGazAGAY+8uPZUcefWTbFjAmPVy1kIQQQgghhBBCCOkw0LOsa9IpP5Z95zvfwcaNG/Gvf/0LkyZNwn333Yc+ffrgtttuw+LFizFv3jwj/bjvjovIqWPwxh3VzeEcKb/jE1K3bPj4FCD0OeqrTJSeeibUxh9yiJmH/Ibn63NhoG9G3qztg+G6dWFYryKUW1UrNtWEPgg6+6LC9vG6iXOtqEFXV+OOHWFY32eBRw+P82yld8kHH5heXqtWtVyu/QcbyUwfLnXTjYVhnqWl5nm9ejkXM8zP5o20ZZNxPHly3xaL9dvfmud9dnZ8vxYb2g/plVfC8CGHmN4e0v8tbT+PJLyMtJeFq8+XTKe3OV+xIjJ7Y3jQ/SaqvhLxSdHjlOgAuh2//350NrLdRfmLaYosQ6n0QQSA6urwWNbPYNVHpTVKSYnZz/uWRLdBWZcd1SfIlSgbTcB83No3r3ex233LPPTYH2UB0xo+nm5JeBlZ89CT1KhRYVh78Igbt01lPnOBL77epa6ccYbbtWPN0zHGdScs45stf19vUV9fWdd0PvXT2cczTeLvwXoQq64Ow3oyHjW6OZh2vTr3IT2Qp7yoQc7v2ntYlrm2MHwvLap0f8G3jVPy1uSjGTvWzMN4bBZ/zIx+vnuMI+lZRjopHcPRNCZ///vf8Z3vfAcTJkwAAAwePBiTJ0/GH/7wB0yZMgW//OUv27mEhBBCCCGEEEIIIaQz0ik/lr3zzjsYNmwY8vLyUFhYiG1iK6RTTz0VDz74YDuWjhBCCCGEEEIIIYR0VjrlmsiKigpsadJBHHDAAVi8eDEmT54MAFi9enUi11jxwAq8+MCLyORlcMBRB+Coc47Ca4tew7K5y7B5zWbMvG4mykeUAwDee/k9PPHrJwDs9k878pNHYugxQ72uG2eVqlxWO3my+d1TbpfeKLZlNiRvAHr0COOkbA4AxoyJLpezpENeT2cilznbbvyJJ8LwwIFmnNRkqT3iq5e3nAwwpUrGUmwtLxDlaozY3jonDws2iVduHi3Xcffu5rGUoKSxytlaRrEUW+8ULldpGyvadR3L/an1DVQURUbJY18JQWbd2+HBAw8YcQXiAosWfbY5vHChJb8EJHx69b9su7790KjzQlNG59t2o8qRk85Rbm2VyIo8x44104l/K0G3buZ5Pv0hETmK5T61nLKqyvF6cn93Pc9JvanuX0LKtmGDOYbJMX/AgDCs+7KUusp0AHD44WH5XaWiaeAs32lhQ6A9NKq+IZFtScsiZZbWNmdpF8XiPK1gss5Rsl2oizeW9MXe4tovrcgyS1sFHbdokRkn7icjNEH19dEyIo2sS6O8OZ4X0fO7JOee5f1UDHI/LyJuWKVTMdoco/wWXbBtDkxCapkESVwrEWsSG7JfQ70N6kFGptWdQb9QuOQfdQ5auW+pT9d/UDz6aGT+GTnhxGhbrmV0xjZOyTLb6liOK3qMkXmqv1dkHvrxymLJqf/QMaoeXd/lhH0KAORHzHu6GUhZZurtvxOSzdKzrKvSKT+WTZw4EYsXL8b06dMxa9YsXHnllaiurkZ+fj5+//vf45RTTtmr/Bt2NWDZ3GU487dnoqCoAHd97i4cdtphKD2gFB+97KN44qYnjPR9D+iLmT+biUxeBts3bcefL/wzDjjqAGTyOuXCPUIIIYQQQgghhJB9lk75sez73/8+3n5794qQSy65BBs3bsTdd9+N7du345RTTsENN9ywV/nv2LIDRSVFKOxViE1v7jb9LigqQPfi7i2mz+8eVmN9XT0CBC2mI4QQQgghhBBCCCEdm075sWz48OEYPnw4AKBbt264/vrrcf311yeWf7YxCwTAs396FkvvXIpRHxuFIGP/APbeS+/h8V89jm3rt+HDF3+4bVaViWXUI6vUelm5bneLWG6t1oiOGRPKBuQqaZ1Urdh2353LpkmREkfbkt433oi+sEVSI+VrejlxpBxA78Yll0onIGnZtCVaPqJ3sZNxesW2RFZxGvICV+QOowBQVBY2IFPCqm5U3oBl+b8N204/mZqt4YFuL3L5v95ZdeXK5mBBTbhT5pQpe98ObOguU17umZHswBYZpg3XnaOs7U7udpcAvvXzzDPm8VNPheEmFT8AYM4cM923vx3/WnHIzL0zPNA60tNPD8M2GYhEyppV2rfeMqVmclyXj0nXsZTk9+xpxrnKodtSpmEtRwJadT1MuToK2KT8ErmDNQCgRvRf/Xxl37bsDm3Dd5dF5/NkpejJTJa/adOmZiLauW1jbY0hDZbzu8o7I98ttJzVNif6blXqSGQd26TYjvnl5GlJ5xqXtsSxLXcv19eWeFs/uFo12MZ4/Z4qO4DeyjgKm6+FxY4kR64c9YfCkiVmOulfMXWqGef53idJZLdf2zhl2w5ZxsnxWf/hJI+V14Gt/LIpyLk4KaL6l64r207bhHRlOuXHMklNTQ02btyIQYMGoZv+Q2MvOfyMw3HQ1IPw2PWPYeXfV+KgEw+KTNv/wP4449dnYPNbm7HwFwsx5MghyC/o9NVLCCGEEEIIIYSQFqBnWdel05pqPfDAAzjiiCPQp08fDBs2DC+88AIA4POf/zzuuuuuxK5T2KsQw48fjg2vbmg9MYDSIaXIL8zH5jc2J1YGQgghhBBCCCGEENI2dMqPZfPnz8cnPvEJlJWV4ZprrkE2m22OGzp0KH7/+9/v9TVqNtRgy9otAHbvdlmyX0lk2q3rtqKxYfdy1W3vbcP7a99HrwG9ItMTQgghhBBCCCGEkI5Jp9QJXnnllTj33HNx6623or6+Ht/61rea48aMGYObbrppr6+Rycvg4R89jCAvQJ+BfXD0OUfj9cWv48lbnsSO93dgwQ8WoN+wfph25TSsW7kOz/3wOWTyM0AATLxgIgp7u4u7swic9PZ6eWeBELLneDxIkftjj4XhXuZHPHnWYYeZ255L24LqavPaUpYvNfRa5p+fb/E0ETdk9ZH5/OfDsPY20L4dgr7Cu0HXj7QcKCwM44osfg+ZeuUj4+h9I6+trQ6k/4+sK430XYmzZXMS3iK+23XLZ2rNQ3q+2Hw6HMul7TYWLendHL711t5GnPS1u/rqE8z8hQdMo6dfXdoecs7+G46eIEn4weS0AzEo1NWbcT72Ub6WUz16mMcTJ4Zh2e1nzDDT9bL8u4esf3lvtr6c88zGjw/DlpszvERkwwXMfqO8UGSeI0aYUUOGhGGLZZNRPwlYfsUiES8amZ+jbxgArFsXhuWcp22qZJXH6fORafVkL49dDSxjXFfWse8YYPUvs41F8ljft/Q9EpWc7+sfKvuJxbNJ14G0GtqwwYyrrHTzgJR5aisjWQX6HUEWs7esOt3PI64VB1efsjjvHFF+SHHKmLRPWZx3qCiS8mCMzMfim5eRA5NOq+aGyOdme9eyeAFbPctsfl3yDwXlTeg6Jvt61/nMDZliN79lAOZ9v/JKGH73XTPd2LFhWNeP8JK1llfWt62NuL4bKqz+v5Y4S7H2GSjD7Lp0yia9cuVKXHvttQCAIDCN90tLS7Fx48a9vkZRaRHOuPEM47ehxwzF0GOG5qQd+eGRGPnhkXt9TUIIIYQQQgghhBDSvnRKGWbv3r2xQe8I1UR1dTXK09iyjBBCCCGEEEIIIYR0eTrlyrKPfvSj+MlPfoKPf/zj6NWkkQmCADt37sSNN96Ij3/840b6h751T+xr9CzKeJ3nQ1nv/pFxctmrlvY0QiwZtkkEBw4Mw3rpvtCTDMg389hUE+a/dKl52oIFYfjss8Ow3hHauhzXInswqIpetZcRS5m3luxvZi9WkusV5/Jbq1S1FJaYkopM7fbwQK+v9ZC8lJVFy0H1qmwp9XFeXm25tq5jX1lFVP6u5+WcY5ET25Z2R5Vfp7MpEOUO7Jktm8zICElu2rJXb7R+Z9WqMCyX/yvJQ9Jltkm89LMx0mpJtey04lnEKZO8tlDV5mQvkfJMjR4Cli5tWVqlm468ds4mybpgERh9ubAoMi5HIygK3bfYHOMbSwpaSparEBF15dv+fcewpLFd+8010fI7Y55Qbcdo11rCJCu22JSBa1nyHgr0A5B927G9aGz37Sq9SQLreKMlpnLcEpVus3TQki6j3Vm0xjKd7ufLl4dh/e+08pUqhouAgdFE3BTzOQll+bVKz6LYjJ6nLe+UbT3PyfrRz8a3ziUdZWySWN+JLVJ73a6d78f2smV715Vxslx6It2xIwyPGhVZxqRl975Y27jupLLuhgr1UWlp9AVUHuvXh+H33zevLYd8q2WNwDqO2waxqHNayFOyr0ovyb5Bp2zeP/rRj3DUUUfhwAMPxLRp0xAEAa6++mo8//zzeP/99zF//nwj/Vu/P619CurIeb98o72LQAghhBBCCCGEkBjQs6zr0illmJWVlfjPf/6D6dOn45FHHkFeXh7+9a9/YcKECXjqqacwaNCg1jMhhBBCCCGEEEIIIUTRKVeWAcDgwYPxf//3f+1dDEIIIYQQQgghhBDShei0H8u6EgGyzdpw7+2QtWBcepxIf4AYXgRSUj9unBknl5pKPX2b69bFNtk1SoavrXskffqEYXmfOT4I0n/G8+akL43N6sA1+zT8Qmx+JxKb90kSXkY2ux9dP9Kr5JZbwzzOP/8dI90xx4SefVddFVmMHPOTKB8T273o8ktriP1btkBrFXffOcWjj4Zh6QVk8QBMAl1G2Z60JVFBrfBmcvTRaO16Udi8bXzbrn7ee9Bjj2/fjiqXXupfsEXUne1i6kTpEbV5c3jtDz4wT5PPLb/Yb0F6R/EC0sg61+OzfL55eYhMZxBjnohMqi9gabxJeE92GHSFiPk91nkC2eQLxBjTWOGuQJDZazs518ctn01hYbQ33q5d5nk226MobO8+zrTxy5xtnvOpYxvefUE+KNsLSdpE+KnuFRbfM+fz5Jxt8c50rau29iXzvp4cr+WYpd9ppI+sqoNeItytm9tlvctveb6u84nNzyyO1xkhnYFO9bHsBz/4gVO6IAjwve99L+XSEEIIIYQQQgghZF+GnmVdk071seyKK64wjoMgQDabzUnHj2WEEEIIIYQQQgghxIdO9bFsl1ifXl9fjx49euCpp57CEUcc0Y6lSoDancCaNQCATFLLq8WyYLmVepxlxgX5YdojilcbcUdUVYcHS0R48OlmJnKpcQrL1OW9aYmXbSV5eXkYzmzZFB7oMvroJBWbN4dhvbxart4ugNqqXVx6e314n9u2mcl6ifXbWt4hcV0a7bx1fSu4Lr2WW2Zv3GjGyRXttuqfN08enWfELV78m+bwhAnR/auxsCj6Ao7oMkolQhJbolufoe3iUg6QsgxT/8ua/DeOyZPNuE/NEGXWHdgRKa3Vqq2zzgrDScictexSqk6WLw/DvkOddXwWFVugb0YWTD8AKclX0pi6kv7N4Z07o7OQ95Op3W7EyX6jz0tbyeUqj3bNo7g4Wh7X0OCWn5yTACDjWAnGs3eUXcbBt66214Zp9a3IdwQbrtIe23myba02X0f2vD4ByK26CRPEgWVys031w4eHYS3DlHXgep+27qvLH9V89DN0VbmlLlXUg4C4uYwci9SzaCzpG6arV+9CohIKEhhTvOV2tgclSEzeF5W/GmNsuPb7JCw8zPnRfJ8qtNmddBB8x6lICat+pxkzJgyrl4ki4VdRWDnMiPPps9ZzHHXatnZMaSXZl+hUH8vypGmI+K2l3wkhhBBCCCGEEEIIiUun+lhGCCGEEEIIIYQQ0hHIZulZ1lXhOkpCCCGEEEIIIYQQQprgyrKOQLd8r72+rf4Djj4pzhp37fUhj6UOX6fTJj8RcRnl/+Cjh7fdsrTKAEy7iSJ5oDOR9+NpwCM9xTRGlvpfJESkTKbzsxXLxxsiKc8y13LY6kc+Gtu/2Fx6qTy634iTvlVFhdHlsLU5122xbc3Hlbp6sxzS825AuXltq8/RjBnRcY5Yx4cI/xZdB7IYOZaMslw6Ujxw27ORvmEHHmjGCRsQI11L5fRBPt+xY8Owrm7Dg8f3wrbzpDeKHuzkeWo8lj6J3bsXiLDl0vkptCULSfuk2HxYdBXLavX9F2PXMrvWj6v3ZGv5uBJlx6OvnYYPkflswmv16xd9juzzALBqVRgeM6Z35Hny3rQvX2lp6L902GHR15bE8a2Sr3+2odr2rNP2B3RGFyTqhlS6JLzUXD0f9bWd83R8T0+iL8Tp567XtsUlMbYm4QvalvjWsTP675qKQeG1tS+faFvW9iNME3P+bnL0sovjeRdF6nVHSAeio0yvTrz22mvN4YYmt921a9eipIUJbNiwYTm/2Vi3cTsu+tmTeGblenTvlofKgb3wi68fg8POvgejDihBbV0DehV1w5dPPxjnnLTbIHvOAy/hkhuewn7lPVFbV4/zZx6Eiz95KADgZ3c9j1v/sgr5+RmUlxTitu9+CAcMtHwVIIQQQgghhBBCCCHtTqf6WDZixIic32bIZQuCBtetqwBks1nM/NbDOOekkZj3oykAgOUvb8C7G3dg+H698eztpwEAXlu7Fad++xE0NmZx7sm7lzCcOWUYbrxkIja+X4sDz7gbp58wDEMGFOPwkWVY+vtTUVSYj9/c819868ancHdT3oQQQgghhBBCCOn8ZLMdc6dXsnd0qo9lt912Wyr5PrbsbXTLz+CCU0c3/zZ2ZBmq395mpBu2X2/87KIJ+MYvlzR/LNtDvz6FqBrcB+9s2I4hA4rx4XHhctsJY/rjjgWvRBcgL89Jr2Vb9honLhItmZRLfLWGSepTbGuvN2wIw/oeRf5bazJRUaY8wnMZuW079sb8UGKRk7/l3lzrWF7b+iws0gCbFEaS9jJ7G1o+KFUPRRZpiawfmwTFdt9TxHfoj01Jvg5k11izJjqPqirzeP36MLxwoRknv/1LJfOaNWY6eTyg3Iwz2qCuoBzNY8t4y9wiHohug9OmRmdhXK+wKDqhYPly81gOK/rfU2wq8Ki+YhtL9RAmq8Be3fFl8UAM+aZNryyPdQcTcaWl0dIM1zZikyomIRNLQpqkz4kzb+wtVimzlB0Xm3JBX2mV6zm2uawghee2t3mUl5vPrFyMi/pVZdeu+PlLqRMA5JeFY1O5GoPlvOfaxnV92ObHSCzva66WAmmQM4ZFvbyoOnZ+yXG8tvVdTtVdRh7bBnkRzrlPJd01kPnr5yavZ7EEMe4nhYE2Cbl70lJgX8mtqwQ6jlTa9e8tW37Gsc2zQ7cRmVbaLKgJKiP/LrOQhIQyzjlpSPQJaUs61ceyc845J5V8V7y6GUeOchtkjjiwDKve2JLz+5vralBb14BDq/rmxP3fX1fh48cM2dtiEkIIIYQQQgghhJCU6VQfyzoC2ax5fPejr+GxZe/gpTe34H8vOx6F3c0qveNvr2Dpyg14/Lcnt2EpCSGEEEIIIYQQQogP/FgG4OBhpfjzP19rPSGAZ1/egIMqS5qP93iWLX7hXZz09QX4+LFDUNFv95L9R59egx/NeRaP/+ZkdC/IS7zcPktbrUtnHSWHgPtum7bdg2y7CErMTYyil03b6iNH5iAlAGL5c5xl2T71r6WKPsvWbUuoO9KONFH35ivjKsh3Wzpul4P6LT+X99Knjxm3c2f0eT16hOHKSjNOy4X20LNndLo47dMV7zYT9YC1vMYiMZfSlUZHGaYeUmS9atlcApvZtiKxjr/TYSwssh+JVG0UaSmGTecsjgscZTgdaRespHfKdL2WJpEdKcVA5duvfcvRljKZJOrKlq5vSfT19NAk6S2HqRhbn0baRKxebSYUGn3rOK53s/XYKV2T+E6Tun4cxynjXix52GRoOblHaKWt9yLtQQBzC1XtpRBR/zl1atlt0yavNI595ZUJ6x/TGOuSHp870rtuIvOQfPZ6S1/5kiPbY0LPPYnyU2oJAFkA7n7ppPPQcUabduSEcYOwc1cD/nf+yubfnvnve3hjnelZVv32NnzzV0vw1TPG6CxwzCEDMGvqCPxy3goAwLMvbcD5Vz+Bv/70RPTv2yMnPSGEEEIIIYQQQgjpeHBlGYAgCHDfNR/DRT9fjKv/sByFBfmoHFiMX1x8LF5duxWHz7oHtXUN6FXUDV89Y0yOuf8evv2Zw3DEZ+7Fd2aPxSU3PIWa7fU44zuPAgD2r+iJv15ncbomhBBCCCGEEEIIIe0OP5Y1Mai8J/744yk5v+/41+ciz5k9/UDMnh5+OBtU3hPr/jYLAPDojSclX0hCCCGEEEIIIYQQkir8WNbBSMqTyEeD3phf4HUtKxa/DVlGm/dPDPsQd4TWf9OW8Np6m/nS0jBOe2a5Istv2e09EU8l3+2crVuuO5JE/WhPGfk85LMA3OtL5p/Elujl5dHpdN0VF4fXGz8+Oq0sl86/tNS9nFG0qb9HhIdMi3g0+sGDzWPp6Rbn0lFt3te3sD09s6SjQl2+6f2WX1YkUiXvhWVcy2LH45t/u/ryOeJdxiQmgA5CEnNI2sjqtr5XaN8/HyzvPrnvAaLuXAcxS7o06t98vp7niTJb+3yMcTwK27tWzrORfS/OJBJ1AdWXk+4bcd7Vk24Lrp65SVw37fnKNw/bO4KvP6DR79X4Y9SrxQPW9XpJeEOSKOhZ5kIQBJ8BcDGAUQC2ArgfwGXZbHZ9jDyOBvAjAEdjt2HckwAuzWazy1s5byCAlQD6ALgkm81e19q16FlGCCGEEEIIIYQQQlIhCIKLAfwewPsALgRwM4CzACwMgqCn7VyRxwQAjwMYCuByAN8HMALAE0EQHNLK6TcAiLXrYuf+p0xCCCGEEEIIIYQQ0iEJgqAMwFUAngHwkWw229D0+zMA/ordH89+7JDVrwDUATg+m82ubcrjj9i9Yux6AB+LuP4pAGYCuBTAta7l5seyjkA226wJyFikGGls6Zv0cuU0tpzOz3dbDm1bHp5DYShN6ptfJy/mnEdUnC6HzNImU8rU15mRcgt5mVBJCJJY+p6ElNOK0LxklP6lQCw/tz1rG7Kq9K7wWrYnMcqvdRtSEyqWvjcWmjI3iW15vo7zlbZFIisBMLYfz1RVhdf1lHA4twtL/jntRdxcTvtftSoMizZSIO5ldxbJSvhs44jrGJPKmLt8eRhWMo3a4v2bw1pFJJv1jh3mtaMkvrY2p++trj7+/fjOBa51Z8tja020nLsoX7VBEZm2VNS1o/u2H+s8IcdkrU+0SOei7juxupJlsdWPTVMZMR7p4bKoLMzj+VXmOZWVYViroMwiijq2SDltt/LkcnN+GSM2X3dVYHm/B2zZFB0p3ztivCdFpVuvxDbPPReGCwvN+h87Ngzb6sBZAlfc2/xBH3uQsYwVacvZfN4z2vLvgqSul8TY50qc8iZeX7b2KAcc/bIrPSlcr5VAurhpyT7NDABFAG7Y86EMALLZ7P1BELwG4Gy08rEsCIIqAOMB3LbnQ1lTHmuDIPgTgHODIKjIZrPr1Hm9APwawG+w+2OdM2zdhBBCCCGEEEIIIbHJYrdnWWf/L1X2uDcvbiFuCYBRQRC09s9CreURADiyhbifYPcisf9xKKcBP5YRQgghhBBCCCGE7LuUBUGwVPx3XoJ5D2r6/9oW4tZi94euQS3ExckDAPaTPzZ5nH0RwEXZbPZ9t6KGUIZJCCGEEEIIIYQQsu+yIZvNjrMlCIKgBMBFMfL8VTab3YTdEkwA2NlCmj2mIdFeN2a8Ux5BEHQD8L8AHs1ms3e7FdeEH8s6AkHQ7AFh031bt8JOgFieXwnj7EWz7m3zB+GjYfOS0jwj1MqHHx76YxSsftm8nvQdUV5hiWyNLX2apEcWYD7wNt4m3hVnH5zq6jCs71MYwvRWdSz9kGw+L5Zdt404axm1iY3E2TjMxMe7x9vvRJdfen7J+xxzaOwytYZ3G5Q+XMqLzGj/bVj/vvhux270Ie0ZtGZNy5moPlQo2rweKlavDsN6DunRIwzbvBXtnpLR+UelS2Ouca1/XT/GvVqsr1xJ+16S8NTL8fiS7cnS15LoM6n4OTmOD9LiR3tfPfRo+B7wwgtm3EEHhWE9zMpLz5gRhoss72e6uHJ6fOIJM05OiXKIjNNHnX1NE/DNs7XBBQvC3+X0BAAPPBCGx6k/0+R9u/q2Jf1+DKTv8+WbX9LXTuM+bW0wkXdpR39V32u55infWdetayn1bmzvqc7EOMnZz6+DemOTDkcJdu9A6codADYB2N503B3ADpVmT4PeDjsyD01LeXwbQBV2+6V5wY9lhBBCCCGEEEIIIV603+KFtiSbzVZjt2QyLntWvOwHYLWK2w+7jd/UqhhrHpo9v+3ZIXMgdnuU/X73YVCl0vVr+u2dbDb7QdQF+bmXEEIIIYQQQgghhKTBHl3XMS3EHQ3gpWw2W9NCnGseE7D7g9uypuMB2L3a7HwAr4j/7miKv7Tp+OO2C+4TK8smnv9QexfBSvee4Xpc2xJ22wp55yX4NVvN8yxr2o08tXRO6BkyUnuj8xNbGWcsN+C8TFfJ9FzliTr/8vIwLJdK76+3XvaUf0WRU1yphnHVF2gJTcJlTGqZunEkn5tuS1InNmqUEZXvuKV7UWGjCDud0nQBUXf62UfIANNebu4tSdDr+seMCcOemhSf+4kls5Jl1mWUbUHUf3vKBGzpnKVOUnMFICPvW9dBlL5YpTOkxlLaDaCsLJSX7dplZi+7opSo6WG2pCS8Nz1MyXstLPSTv7hKaOLkGUVBfgwZmhhrZaka8wuMZInIfsS1dP62/OJINpvR9ykbUMLzSWtY+41jv3dtP7Lt9ob5LtSvXzjXHH64eZ7seitXmnEjRrRYXGs5Vqt/T1+6NAwfo17/ZV80pMxasq07rcD5/dDxHUS/R1rTirZVURG2a93MZPGFMwMA87mlMf+2lyQfaFuJmlEui2ZeW5okXT++Uuyk06VNdyUS69UrDBeteDr6xLFjjcPt9WG/WbMmDFdV9Y3MwrcNymYh36t1OkI8+QuAXwH4ShAEd2Wz2QYACILgZADDAXxPJg6CoAxAGXav/HofALLZ7OogCJYCOCMIgu9ls9m3m9IOAnAGgH9ms9k9f9m/3vSb5mAAVwD4A4D70fLOms3sEx/LFj37VnsXwcr55yW50QQhhBBCCCGEEEJI+5PNZtcHQfA9ANcBeDQIgrnYLYn8BoBVAH6hTvkKdnujnQtgjvj9QgCPAXgiCIIbmn77Knb/u+Y3xPXeB/BnXY4gCPb88/AL2Ww2J16zT3wsI4QQQgghhBBCCEmWLICG9i5EhyebzV4fBMFGABdj9yqzrQD+COBSBwnmnjyeDIJgMoCrmv7LAngSwBnZbPa5pMvMj2WEEEIIIYQQQgghJDWy2ewcmCvFotJdgd1yyZbiFgP4iOf1FyLGBgX8WNYByCJo1oKvX2/GSW8tq9eK3qP42WebgxkplNdmGdIMwuJ5gcGDzWNpcCP3Upe/A+Ze6gl4atTlm14K1eJ2dBGld5XOf1hlGN5aI/IvND2yrHXuiPXehDdNTjpRX4aviPIksnndpO3dIMulm2BhYVgWw1nB1paUkYlP+X19FbQVXD3CtrZhTfi7tgbTvg4So/xr1piRq1aF4SlTmoPba83yv/BCGNZeOkb71H4zVVVoiTTahLeXl2gLOXkUR/s2SaTHhrb8st6r9KNy9EbSNi+yzbhaDloT5pqFhWHRfuqKTa+SzWLeKC83661vvvAXKjGvvWlLy15k2mtF2wxKiouT9TFpyzGrNQyfTT1ARJ1T/Zr5g5wfbWZMMg+Ld2ki/mialD0NXed373uL6MsAjE7be+mS8HdV9+PHH9VSdgDMacliy2qMx67eaYBpzyitJvW1Da8w3Slt729Js2SJeSwnRV3/Iu0Rxo2q+WlKWJE2TyvnNiL7HWBWuipjEu3Ylp/xzub7jiMbpaX8rmNHnFE77fppS1zryobtPuUYMKBBvRT/dl4YXr7cjJs+PQwrzzL53iH9DUcO3m7mIcZxX184x2nOWndxfDUJ6QzQrY8QQgghhBBCCCGEkCa4sowQQgghhBBCCCEkNvQs66rsEx/Ljjz6yPYugpXCwh7N4Qbffqa1YVJ6KZds6yXy8lgv45dxOn+ZVq4R1jJPi7xJLk3fWmtKh6TC4C2xmelBB5nZW1bW458Lw+vJ1f8AMKgiXBbcu9hxW/UElhLHWRot5XhSUVBSYtZVEcKl2HqpqJZl+mCUUa3Rzojj2lpTIiubwoEH9m8ODyhVMlLZlvRDFNTVRy+ElUvf42wtL9MWqEtv2BCmlSvmdVsa2bLaEYBZ5vqy/Y24opJ1OvnudGoZ/AcfhOFFi8y45cvD/L9+UfLt0xVXmYwvMv//rjLzl8PPfvuZ5/XqFabVTaumpuW+sWuXeSyl8JbmaWCrg/XZ/saxfL4VSp4l1XEZMdhpybMcH+TQDwBFlkLLrmcbS7X8NAqbfC1tXOVZWr0m606Xv6QkzLNvSXgzuj7kcV990xb5FBxlnq79KxWJpiNpjwFWbA0t6v1Hv9NYspOPZmSVXz3K+hlUYcbpY6eCJSS79GoX2i9Eyotd9ejaskM8jxwprQ+WPHzbp7NMz2KVkUPEO3LOc7HmEc5lzvdmkV7HeYeKJMZk0F7v2XHex73ajK6DKPsaABg3LjIb+aiM90+dR0X0QOJaflvXo5yS7KvsEx/Lxn03ehDqCFTf8UZ7F4EQQgghhBBCCCGEgJ5lhBBCCCGEEEIIIYQ0s0+sLOtMWJQBVl6uNiVFIydMCA+kRkTvRCiWzDeWmDusSbmKXrFt7NAkl+ZqaYBtSb7Y3a24cpgRtWNHGI5SlAKmnFKzRez0pmUzUUuS097FJc4OMlE7cOl7KSwJ5Y85y/89y+WMKKReAS5XoO/c2fI5npfKyd+VOMvsZV+UK+Tz8qLPs+2WqBXKY8cdhZbQXebgg8Pwu++acZZV94mQhPyrujoMS1nb7uOWr2XLX9ePHJuMdgbg1VdbTgcAK1aEYVv/khv66p1PpXTXVeagpfayXRetedmMFA94k9hTVtYpYA7rOd0rP7xxufOvxpB8qmchdxa23aetT2qZcxK4juMSXT9658+9xjLHWnedTEGzKp9HGvXvJb3UUn7R4RqLe+vUsfPPVX+JHaflVpNaBpgwqew6XCjm+hR28nNmxAjzWO5qXGjaMWTkAOqxu6zGeQ63tCXfuvPOw2aFEoWeiPQLhCyLRQYb9Y7pu1uic/vJ9T0I87Dt5Oq5M68kiedrw1nuru/luOPC8OTJZpzeKVlQJGxGjqjcEkasMcewxopBkXm4Yq1+2SbVM8z4/vHa5aBnWVeEK8sIIYQQQgghhBBCCGmCH8sIIYQQQgghhBBCCGmCH8sIIYQQQgghhBBCCGmCnmURrHhgBV584EVk8jI44KgDcNQ5R+G1Ra9h2dxl2LxmM2ZeNxPlI8oBAGueXYOn//A0GuobkJefh6NnH439DtvP67pxbEukbr5PHxW5bl0YlsZGyuRoa23o51GoLCSkb5izjYD2oZDH+aavmsxUe20NKM8XYUv+oglrHwHpM+W6y7qvj4MtD1t+rt460obCVsUFqgH5eFRs2mKm27UrDJeXm89Q5lFUv92IGymse6SPSRz/CFv9FOTv/bOx5o+wTQ4qEZWsOoPMU/dfebyf35CAAeVhGcvLzfIfOibZOkjDZycBCxKjXPsrSyh5P9oKRe6srndZl55l8+eH4YkTzXQf+UgYLizce5+XsjIzj4KFD0efKHxAVq0Kf37nHTNZVVUY1m3QVj/StkmOkRUVZhld5yWbDVF+fvKeSlHjm62Na985/UyjkHnaPDz1teuLQ685XT+FjvXq2y9dn5vNO9OHHO9M2dB0JYjJLQ2voUytmJfmzAnDyqwuIytL+Qe5tl2bf6XNEzAqj6Rw9ZZzfvZywAHMdzn9DMv6txynPeOMd0Wz4fr4saVRjxJnjzJNrqlec9CoHzngA8DKlWF44EAzTjYu9Y6fifANTmOuN9DPV/5NopFxlntxfpFXtGW7MNATxZAhYVg/FzE527wbM0uXRscJT8Y4/TwyrW6r8iUqhudgm9Z5u5IFPcu6JvtKC45Fw64GLJu7DJ/46Sdw2q9Ow8uPvYydNTtRekApPnrZRzHwYHOiKuxdiBO/eyLOuOEMTL5oMh77+WPtVHJCCCGEEEIIIYQQsjdwZVkL7NiyA0UlRSjsVYhNb24CABQUFaB7ccvbZpUND//1v3T/UjTsakDDrgbkdctrMT0hhBBCCCGEEEII6ZjwY1kLZBuzQAA8+6dnsfTOpRj1sVEIMoHTua8/+TrKhpXF+lAWINu8LFYvVzWX8ptxcoWvlGoBANbF36par6rt0cMtC0PCoZcWRy0xB4wl1q7yuMb8aBmgPmfwYLeFk888E4ZLS824yspoiV3qy9gjrlVgkVm55qGRefTFJjOym0zX14gynr2uINGgkpCdpL0deE4ZHbd7N55NfW1kuvLyIuPYRxpglTcpyUJdfZjnmjXh75YdylNZLi+LlUSfsZVRDz+jRoVhrWqprg7DUmqpd3SX46AN13vLkQ+b+sfIOLkzu77PCKVNDnlqWpKyTNnE9VzgKnl2lTS25diZFLb+Gkd1ZeRZu73F36VsvaXruZKEjYBFHWeUPyPHItm5AGDbtjBcXm7GjR0bu4w2cp5FjRiTpbeEkCwB8NaL+zybJOwebNjyc51HrTIuy4Bjuzfr+0IcD5K9pD0lmjn3HYX0CQDMjignA8CcABzzT0SOa0OXQ85zelCU44X0GNCyy/Hjw7CuA0d8783rPD2myPvRMlXxx1591WgjSiYdJPPQ3hICXzuDqDIBMO/HUyrd9el87zakddi6LRx+xuGYdfss1LxXg5V/X9lq+k1vbsJTv38Kk740qQ1KRwghhBBCCCGEEEKShh/LWqGwVyGGHz8cG17dYE1Xs6EGj/z4EXz4og+j98Boc0ZCCCGEEEIIIYQQ0nHhx7IIajbUYMvaLQCA915+DyX7lUSm3VmzEwt+sADjPzMeFaMrItMRQgghhBBCCCGEkI4NPcsiyORl8PCPHkaQF6DPwD44+pyj8fri1/HkLU9ix/s7sOAHC9BvWD9Mu3IaXnzwRWx9ZyuevftZPHv3swCAaVdOQ48SR7MbR1x9wwAAFYOc8rT5qdgsPKJ8KLTXii9R+vdcCX30lveuPlmvvhr+Pny4mc7m7xSFzRMkjk+Eq+eA+QzN/KXXkM1L5NFHw98HDzZ9yUav+2d4jvKXeXdXmHZAufIwEP5yvj4RPj4I0odJH2tLKB98/WaSTqex1ZUcOzqqX5RrvWrfNu1jKJH3rdvF1Klh+KyzwnAc6yLDg8ezXuvGHtUctvkiVlW55Wcbf7T/mvYw21tc7XiS8stJov5d5wlfTxZre6oXFSYmtzht3Bmb+ZgjOZ6J0gxRmgJqg8D99gvD3bqZccJ3p7GsvxHlU+Sc5yk9fs49NwwrzyPX+cq17Wr/Ph+Pyr05z2DdujDsOAla68DiHeuM9j1LoH2m4ZuUSP0LrPPc6tVhWPtRyZdTXXdikNHv4EmU33WcNdLZBj49GUsvQXnf775rppOmwhZ/5Lb0v9OYdaWwlVHXicCoSum1qH3PIsqxuywJeK5J2rGOOy5ZAA3tXQiSAmztERSVFuGMG88wfht6zFAMPWZoTtojzjwCR5x5RFsVjRBCCCGEEEIIIYSkBGWYhBBCCCGEEEIIIYQ0wZVlLdBrQK+cVWVpkkUQuTzaczdzQy5hyAvWvGmk6yulCHpZrdQ8qiXPUeXVK4ktO4x7EWflr23puDweOzZMpxUKSciKXHFdNq3Tyceky1vgKN2V582bZ6Y766wTmsOjscmI04oaSUeV+0mSkIMZeVhkyDn5CdmJUQpbo9NxFkmNTDp4cBjuSFt8O5fFskV6fXEoBdbVI5U9eiyaODEMy3HWV4JlG29scVIqHed6EiNPKbkCkBFjfL6STw0cGIa7dw/D3vOOT5+JcZ6Nd9eHeepxSSrxNLZru47Brvnp84y5uVg0Xps/Qgzk9Wpqw2utVJt7l5eHYW09YLRPXSzZUOQgoySOxgPQnVQc624uT/NtW5KMZbz0aQdp4Hst2e3LytQ7QnFoy7F8kXmedFbo7fi+ZhvfdNOtrW35PaOo0P1lbv36MNyrlxnnO1btLbY68EbejJygAHOuVzfdWBLOgdqqJD/fzdJEPhstIZbU1bvZPdj6ec5kPGRIGJZSS42sA8t7UuLvdTEw1cRKrmwbBxEd1bdESmnFO+bg/c38xb0lISW3vlBZ0H8H7hnX6+pykhLSKeDHMkIIIYQQQgghhJDY0LOsq9JxlhgQQgghhBBCCCGEENLO7BMryx667KH2LoKVst5lrScihBBCCCGEEEIIIamzT3wse2vFW+1dBCvnnXd+czgRnTlgbkMvvVC0mFx6H1gMxrbWmNc2/Q0iTzPLWLvd/MGmfxdlifLW0vh6DIwe1bm8tfSztvlL2JDVL+0xdB1LL5TRo0qMuL4JeLkk7SGhm7HNNy9pLxprftokRPZFx35oy1Nv1R7VZjqSZ1kS25lv3hyGtZ+NbMvai0nuur58eRiuqjLrx8d3MY4nl6u3orNf2ooVZqTYar6wYpARJa2lXH3bbNfWdCXfwiTuU6eT/j81Yo4tLDS9bmLYO0Vim2710CQx26dCdo6oxgSYY53lYtpbri3bj60fRqXTadPwLo26liYvLwzrOVyOdVZWrw7DesCMYxjrQM59Kn+njoJru0gif+lBlZEegCqd9varWROGtV2g9Bx0fZe236djG9cXkGOCjosyldRjhRzE9IAm8rT5ybl6iyZBThGlp20cf1tHUn+3E3Uc51p76iGbTbpAhLQN+8THMkIIIYQQQgghhJDkoWdZV6TjLDEghBBCCCGEEEIIIaSd4cqyTkSspblR2iG9tF4ujbboNGwykEzN1uZw75y13e20r7fCWRZlWdqdhtzIWVplyT9qmT0A4G9/C/MYOtSI2lAyujksl+7rHcuTkEl2BjmWK4ndi+wrNk2EbJO2/d498ZUIJo6+NzE2NZb0jSxHN4uETKq/5PbrANA7Pzzx5fpQErFjh5mHHErTqCsjraO0xCqB0DocUY+6XPn5LecTpy8n0S6SkMYMKG+7MTgpuYvsvlFKJH1tjWtZZP7jx5txstlZ61+PNxHjT858a9OAynTaqsHV40Hm4dl+0paqpz2W2tr/sMqWwzlIPXpFhRlnk9EhOqp38d7fa3l5/LpL6hn6PKsk+qtOJ+cyrbTv3j0M68dmWDWIh6Ol3q73Kd83rXi+Sxtl0v1fviNY8s/JJ6Jvp9HPnetHYSuXlN26zhO+9+Y6TtnGWf3n557HWNAxldaEtApXlhFCCCGEEEIIIYQQ0gRXlhFCCCGEEEIIIYTEJgt6lnVN+LGsg5PE0n1jOa7agUWual69Wq+RLRBxZoxcFlxZ2bs5rCV8BXJZsGX3F1/aU96X9rWj8rctr5461TweNeqk5vCvznrSiBuU/3KYZ8XIyDx9l3MnLc/yvVbSS+295aZaUhAlMdJyRJv0QEju0tilLW2JnUF1tXk8apTTeVKeYtv1raQkWho2srKuOby93l0r8O76ME+5E2ecHWoTH0fGjnVOGqVcaetx1fd6Pm08iXuLI/Uz0qq+nZFbDcu+rXbCs8kRZf7ba81yyMtpGbKkoFZ0Ir3VntihLwcplRa7GeaoxYtDGXWcXfiSeP9JWl7ZlSwFcpA2HQntfunzDHNlvOH47FuupN8R0pDwySFAb1y/dGkY1jLMceOi83R977bdj01FLWWHcndf+fcD4P7Hpnkts0z5CewgmfQOx5ok7Bh0uaJ2qk7jvc4mB40jy5QUND38IHAsICEdDMowCSGEEEIIIYQQQghpgh/LCCGEEEIIIYQQQghpgjJMQgghhBBCCCGEEC+6sEx/H4YfyzoYcTTicfKJQvoD7Nhhxu3cGYa1F5D0JFm/Pgxv3mymk1t+dyQifQUct5+25mG5VhrIaz/ySNaIe+SRrzeHd+36pRH3mzP+GeZRVdUcjtMGbfcWFZdUXfl4VNiul4Qnjjb3kD4+1vxtZiXSsELvyS3Pyzc9QqLuLe32qDHuW9/bmjVh+PXXzTjhWeaK9koaMMCSWNSlrJNCNQTYntu774bhBuHrKqzkAMTYTl6NP9qDKgrD0srWfhLyIdpbkvKmStqDymc8aw3z3hT6We05JwFvHkA97uXLw/A770SfpDzLMpMmhQe6g5WUhOGy/s1Bi8VaDoYfla6PktDrLImxOg3aejyNum4i/pLjjoqMa8s6T+Natvbjc704voWu18rPj85D9ik9NaZgNdduuHoa6vpOwn8saT9L3/dZXY6ifPle2XYPOKc+jPfNGOXYM6430PyedE465pcMQgghhBBCCCGEEELaAX4sI4QQQgghhBBCCCGkiU6+YLdrECDbvNw1ztLiJJCqrqPHRy+5Pb5ynRknpRpyDbiWiQl8ZQOu0hjfbZo7CrYybdoS3ueCBWbc4MFh3D/+YcZNmRJKL6urzbjGySe0eC2ttJHf1IsKLfIF2/7ijku240gb0pbltJe8RmuYGot7N4ety+IdSVvarZHb3B86WJVXjiNDhzpdW5d/8OAwXFFhniebneu253HGYCm3lI9Ny9E3bgzz6NfPjCsvjy5jEbaHB6Jj1hX3RSS6TVikEx1xHGzrfucjn/KWi+txUDZex75sm0e1/DGz5s3w4G9/C8Nr15oJZUOW0krA7KO6jFpvnDA+7dO3/dieb9Iy9jjvQlFxSUmZXTHyr9lqliVC0p5YWSzvDz737dt/23Js0t1w4sTotEnct6s81J4ufpk0vlL4NJ69D0n0w5wyKosNl/wTsRXRfwysE38H6rHfpr1ftarl/LocWQCUmnZFuLKMEEIIIYQQQgghhJAm+LGMEEIIIYQQQgghhJAm+LGMEEIIIYQQQgghhJAm6Fm2jxFLx75HZw4ATzwRnU76lGlviTh7yCeN1Me3ZzkEvp5c0m/soovMdPLW5s0z46TFjO3Zy2vZrHOsnhH62Uf5Ezj6j8Shrj66/LJ+XOtA52OzWiguFucpbwnX6xl1p3z/MrXCt0rVXWOEl0VSJOG/UVkp6mfDFjNS+l5UVZlxhtdWQcu/A8js2ZYcQIEIAzA9oSz4+FYBQEVFy+etX28eS59B7as2dWoYLilRfj/SI0SEC3Rd2TynZOPVncPRS9C1Hfh6yjj3E89r+6SzoceDbdvCcK9eZlxhYUQ/B9BYYvGec8RaP2vWhOGXXgrDtufevbt5LNPqxivakzFOaWSFaV/TDRui49pwDvf1SooiEc8gT5Loh9Z71uOsfDZqTkrbS83HU6w9y5FI/aeA7/WSfr6uPrhpvPv43otz3dleJEUfsl1bvusWeP4F7+wrqOtf+lda/Klz5pclS3b//4MP3ArYqaFnWVeEK8sIIYQQQgghhBBCCGmCH8sIIYQQQgghhBBCCGlin5BhHnn0ke1dBCs9HJffxtmSO2pZsDWPPUtlW6K83DyW8iYp+7Esm05CQmMj594cJUau5dDld12mncSye1nFY8eacVItK1VbcZDl6G1ZXW2TKtbUmHGFhUXN4SLUtXwSYCzZtslUbfVYL5amS0nU7nJEnqbyMI83bw7DDQ3R6Wyr0W1Yt+iOKpiWIIp7s8kS0pDHudJ71dPhgZYIysrT0h7ZLmRf1ulknSxdasbJh6+2Oo+qkzj3HJW2vNzMW6omd+ww0+7aZbmAlr3tQbcXQ7Kqxj15rGWAjv3LVMO5z0NJ4DPO+s4ntmtt2hLmKdWNgFmtWoYpSUImZs1DD07ywcmw7oeybwwcaMbJm5WSSZ2nlgZL5HmjRplxUtqj27Usp2Ugt7Xj1Ovc4xzfeS6Jdu36Hmntd3rSS1nOnfYY43PtJOaJHET7z+i+INu/pyQ57bZlRd6P7PM6TmKR+2Ys441r34sjvU5EPutpQSKHdfmOv7+by0QOzs9MtzP5PqLnEIm+zz1p8/LcrktIB2Of+Fg27rvj2rsIVt64o7q9i0AIIYQQQgghhJBYZEHPsq4JZZiEEEIIIYQQQgghhDTBj2WEEEIIIYQQQgghhDSxT8gwOzNym2At6y8ujv7WKaX+0l7CqlWXJk0AMGlSGJ4wwVbMxImy4LGVf6vyzMoXHk5F+en6pdnyS8Jvo7IyDN94oxknH9uIEe7lkviW0WKHZNpSlIhnUb/VTCgftvZIEL5ntvIn4Rmk7X527mw5XRyPskTqXF5QDwLSC6hikFN2cTx9fNpFTn7jjnLLT/uYuFa09Fsa7GniIYgzHrj62UyfHj2Oyyavz9tUG7b/vnIQUF4uW2vD/qW7UL7Fy07i2jd0PylwHJ9dSWL89PWEspVl+fLw90WLzHRTpoThosLk+5dzHnoQlv3hE58Iw9pvZsiQMKz7nWxr2hRTXk+epxuJ8gs0kOflNt4WT0lizk6qjfhez5Wk308SuTfVRnx84Wz9vC09yloqSxRJ+CJaxzfpD6j7UJR/JeDlYZbG+6CBLr881nO9fI9x9DHNqQ9f89iEsbYRx7nYhnx/SOJdRWPkqcqbsbVBG1On7v7/z37mdz4h7Qw/lhFCCCGEEEIIIYTEhp5lXRXKMAkhhBBCCCGEEEIIaYIryyJY8cAKvPjAi8jkZXDAUQfgqHOOwmuLXsOyucuwec1mzLxuJspHlAMAarfW4pFrHsH6V9Zj5AkjMfGCifEuVt8QLjdWsoN8IUPTq5p9sC4B//jH9zpP3+XbmS2bjOMCIRNx3d5Z14+syiSkPWlsKW6cV7vd/EHcQKNYDm3ZMTtWWZKWsmhZsKx/QyWwQenQ5FJ7LQ8S7d9GgZDZFsBsCI2IXvpuU4BK5ZBM57vaP7d9ivpyvM9Mjkw1Wn4hl+vbVBo22YBr3/ZJl5PWthW5RKUzxoCxRxlxsg6qV5jZjBoVhi07uht4921xXmGh+3b1CxeG4XHjwrjBg3sb6VYsCcPyvgCgb8neS4dk+9F1lbZ8zUciFSfOlRWi/axebcadfnr0eYlImQXWcURfW0p3bRIam55eHmuZs5RlynFcDzg2iabEItdMXTZGnInzPhX13HLOifLecMwvDnHy8LlerPYoB5YlYiDv2dNMd9BBYVj3E3nsIclsE2S5dPmjXlZ0O5Dpcn1pmoNJzNMan3kojtTbNf8+fZyS5eA6T6cylu55NhmuzyGdE7bcFmjY1YBlc5fhEz/9BE771Wl4+bGXsbNmJ0oPKMVHL/soBh480EifV5CH8Z8ejwnntq2vFyGEEEIIIYQQQghJFq4sa4EdW3agqKQIhb0KsenN3SueCooK0L24e4vpuxV2Q8XoCrz/zvttWUxCCCGEEEIIIYS0K1zl3BXhx7IWyDZmgQB49k/PYumdSzHqY6MQZIL0LtjYGC4pVsuO5dK/viWW5dVqd5nehm4sXPJsXepr0zEqouSPBb4tSi+pNpbkF7T8O4Da+jBOb7AjVSe5G/OE5bftRueDr0Qh58lE1YEiiaXjSSzR1nFFUc1V6xgd5RfWZ2OR9kh1kE5m2ynWJpfzwSb1c32GOW1LSBJ1Htu2tdzGbdikAfra69eH4QcfDMOfnW3mmcROhLYymsfmObYNuBybXeLY6liqcADggQfCsGyr3dW/27z1VhjWMkyJbSdOid6EzNZPrO0zgd0ebfjkn3OOrhSJkEdL5ZDeHHr0qL2fN+TO17apOMY0bZdXupwTJ63c0c424GgppxjDZB0A5qNZuTIMjx9vZuEl1VUVmZG2Bym3Y1drCcBUuvpuRud67bTlrNZ+6NjufOVrvvg8e2sda7sNuc2u3A1TvydJ+wHb7rKO+I7juo9KjEeod1KU19P3JscL2eltknAdJyct2zumUSaF7aXAY1dp+7uKO7IoPXp4ZWGQxhjg1LeDFP+OJiRFKMO0cPgZh2PW7bNQ814NVv59ZesnEEIIIYQQQgghhJBODT+WtUJhr0IMP344Nry6ofXEhBBCCCGEEEIIIaRTQxlmBDUbarBl7RaU7FeC915+DyX7lbR3kQghhBBCCCGEENJhyAJoaO9CkBTgx7IIMnkZPPyjhxHkBegzsA+OPudovL74dTx5y5PY8f4OLPjBAvQb1g/TrpwGALjr83dh1/ZdaKhvwBtPvYFpV05D6f6lbhcr6NbsQZDjFaD9DaLQvitSv2/4Gpk0Sh2+py9WwZrXossh/Um0j4BEmXEY+vearZH555f0bw5rmxSbBYa0JjBtClT919dFZ+Lq7WLZ7joj6qRR+OMA0XUeZztqGzJtEr5DNowy6noT/ht1UG3Q9mxk+UXb1U1wx44wvHOnGbdrVxju1cvMP8p2x7s+YpkNOV5b9nNleDVgzJjmcCMGibD7841qIwDwwQdhWNquxPHjMa4tzXkAZNRxM2PHRuapq7RvSZj/xIl7v5DayxspRtq33jLzlzY1sl3rdtytWxjui01GXF193+bwtm3meUWFLZdzxw6zHLJe43j5RY1NafsMWfPXxnDSa0ubkYkxWUZZLBJzrm16eka3C9tw4GM9llMWcS9W3zZ1c8Y7QklfI056JhpjkcUHrlHlIS+3QS3gX7UqDC9YEIaHDDHTSQsnPWzI+hokXzNs92lDP3xphljWH0mzdGkYnjIlDLv6ULZG4vO7xafJaI+2TqTbjzkAReYfVabEsPppWd6f5XvkihVmZHV1GJbvyPvtZ6YbODAMx3j4Pn60uu5sdSkfo/a6lJSUWN4Bo8YRnaGsfx1n83GzmT66nONJnDboatXWu9jVA7lt/Zet8/uevkHPMtJJ4ceyCIpKi3DGjWcYvw09ZiiGHjO0xfSfuvVTbVEsQgghhBBCCCGEEJIi9CwjhBBCCCGEEEIIIaQJrixrgV4DeuWsKmsrcpa5WpZbG0tu9Z7iUVsgq6XLmeLoJuC8vXCUXAowl5UrGaZR/urXjLjMwoXhgVy2rradLzjrrObwIMu+6ltroiV2snpyZJeyvhx1nvoZPrk8lL+MHWtKLYtqhGRKyVNsebrG+aTT+G4zHSnBUnIFiwLIILf6w/xlHlpqVl7e8rUAU/YjpWyAKVHzlnTIG1IXbyzu7ZSF83OT284DZoVVDEIUvtLCysrwvF/8Ijqd7VpGG9EarEWLwrDs20qGacP13uSj0dVYWRmGdZePGmZ9pcxnqGln/PiWyzh3rpnOkKVJ7RqAAqEfHBCoOl4jMhV13NBg9lHdpySymdmUxr4SkTiy3ijkFDVIy6DkA586NTKPYZVu7do2hm2vNcsrm7xs4oa1AWA0wkTkZbqQFtmkIbW0YIxnjmObLsrq1WacPJZtSSrXALMNymEDMOu1okK0Qcu7la6eAtnvdV3JQgoZpq2N6/zlsX6dWik2YpdKM60YjhqLksK33Rn9Xr5f6Xq0DSQSRzuDOPOQ83uMLHPOC0k4ZhrWIYB5r7rxShmvbKy2fqcliOLdWr/ryuopsqg3XZ+vru7Nm8PwsmVhWD9e4QqBqipzfslEPXv9TmDD9W8lcQM57cDScVxtBCyvfFb1rJxj9buo4xDsjmcf8pH06vO6PvQs64rsSy2YEEIIIYQQQgghhBAr/FhGCCGEEEIIIYQQQkgT+4QM86Fv3dPeRbBS1ru89USEEEIIIYQQQgjpQGRBGWbXZJ/4WPbW709r7yJYOf+X1clnGqW916J5R6MLq8eDzUNIiPatunXt4/Doo2FYespoE4Aovwd1vR07zNPkrRbki3uxbVkeo34kcut3zbFjw+fh4//VGj5+ZnH8BVz9zGzpYuyC7kSDZa6SPmQAsP/giIQK7224ZZtRnn2JIPOcPduME31b2jRJ75A4JPGsrYwaZR7LuhNehWn4X9hsUqRnWW47SLYsNl84Gffd75rXHTFCHGjvRjmm6ZuTZiiivm32jDa/JZtXkq2N+PYv13Ynp4lBwucSgOnx5mn2JMtRYMmiVnmWyXLJrqzdK33bfFS9at9Iw5fM4l+Wk49HueL0ocMOC8Ny3JJ9EjAfm/b3ifL70WW32WRFXsx2gVauF8X69eZxaWkY1lZVkrQ9yyRx/MBkuQrkgWWQaVT+rd7zryPO7djyrI0y2vqQfl+uqgrD0pROvy9EGe0CqEPYn2u2mKdFvXYk4UULAO+/H4blUKqnGlkOeZsAUCKetzEWDY5+QUtiDknKO1Mim7jt7w7dR3v1is5Tev3psdtI53o/6uK+f1+45pF2/yUkbSjDJIQQQgghhBBCCCGkCX4sI4QQQgghhBBCCCGkiSCbzbZ3GZwIgiDrU9YgCJB96rwUSpQc5/+yGjff/jcAyclTnJfVtuHafeu96f3S5ZJz1y20bdqhVsrSYplaIWk5WHsuVU5DYud6P75ygLRJoo20J9uF5Euqmk+Z7i6xSAI5xMht5gGgXNg1JtFe4hApUYvRHpOWL9iuZ7vWpi1hnJbd2Layj5LoxJkKbPI1mU8a40hUncSZR+vqo8viWg9Jjwlp9ENX4kiwksjThuv1EpGBy/yE7AlAIu8SvnOsdKGQqjTf/G2kkUfUK2Ya82hbvsfkjDG128MD3V4c20+mZmt0QWwaPilh9egzOeWIMQbIOUW6qWzbZp4nrQJsr/RtOVYkkV9SWMslKrkuv6g5rJtBEn3K1g72tk6OOmocli5dGuxVJh2YIDgwC9zU3sVIgCnLstnsuPYuRUeCK8sIIYQQQgghhBBCCGmCH8sIIYQQQgghhBBCCGmCH8sIIYQQQgghhBBCCGki5Q2mSXth+kRYfBzS3mPcgqGNt22TLdEGOVGmO0jecyAJP4zO4HdlK2PSHgY6z/b06kmDJPyofJFdSPqUJeWLGIXOT44/cpt5ABhQ3jH6g6tPh2/7TOL52s6THjC2+t+yJTp/y1CaCGm0cdc+lITXVhLP3pa/y+8t5edTxjTGcVv+NtK+tlf+6r2oPctYVtby751lrox6xYwzD/mMHUm1cWfvUmnepW9aTsa2d27PQdjn3pIYRwCgqDA8b9SoZH3D4tCW79ZJtK1Y3pCFoU9ZQRt6/SXVRvYdskAn+BuPxIetnRBCCCGEEEIIIYSQJvixjBBCCCGEEEIIIYSQJijD7GD4Lu/Nld7sff5JLIt3Xqrruvw8ZdlozrJjsYW8lqwmvVV12riWN448wrYsOw3ZVVsSdW++9eNzrdbiksa3L7uWsbIyOs8k2kic8c1VeuCaf9KSZFu5dDrjWEnV5bhVVmaWUSqHfGlHJb+Bbz8pyPeTdUWRRDuIk4eP/NQ3fxtpj/Guc00SJCHbTSqusDDdMT+q/fiMnS3h0y5850DfdxVXrPcitfAW0ngP62x0lDFF4/tsJK5zeBrvckm8o/nmT0hXpoO85hJCCCGEEEIIIYR0NhrauwAkBfiZmBBCCCGEEEIIIYSQJriyrIuS9u6MaeefxO4yXmXUu23K7ePUDp1yB0+rnEzmqfOXGqYEduBKQhIYR+Ii80x7hzUrsl5t2jKtGRPHjfkFCRfKjs+Sf1sd++4S5koicusESGMnxSTySEMeFNW/fCU6WnKYX5zuLl5RadOWcSWFj0TNt58ksZNlEnOxrwQu7V2g21Lm7IuvrNxVYp30XBAnbVvu8p3Ee4z1Xcs3zwRI4p3YKsO3nOebv+t5rrT1u2Jbvp+41mNb/m0U57w07Aa6koSY7JtwZRkhhBBCCCGEEEIIIU1wZRkhhBBCCCGEEEJIbLKgZ1nXhCvLCCGEEEIIIYQQQghpgivLmli3cTsu+tmTeGblenTvlofKgb3wi68fg8POvgejDihBbV0DehV1w5dPPxjnnDQSADDngZdwyQ1PYb/ynqitq8f5Mw/CxZ88FADwr2ffwUU/fxLPr96EeT/8CE7/yLDoi2ezob+C8lVw9qmprjbzLCsL0wlvrTg4a9zr68ID7ROhfL72+lo1WyPz9/WcMjwGbJ5luh7FtTMWPwzDQ0vn7/lsJGn7wegiSwp8RpCaGvNY1E9GtFsAqKsPy6X9liLRnmW2ZyNuLlO7xYyTnnSFRW7XjkHiXjGyrQLAqlVhuKIizK/SHIuS9u7SyPLrtlQAMXbodiGP5ThSUmKmk75znn5LSZOYL9yGDWFYjjd6XJXpdDsQz17XnXwespsk5SmTtk+KPG97bRi3bZt5Xo8eYbh3YR2i0HOIq1+UK0l418XJM20fLldPt7b0u7LWXVSDB5Cp3R7mocZ712fj6x8X1Y4BcxgfNSoMFxa6txHXsiTRxuNc26VMcZDvCzU1Zl+Wr1rO7xJIp05cSNubMwn/xKRoS0/DtnyGtjLJtgoAmzeHYTlfAWbbNf4G0i9U+t0oCv2OLP+Ochwr4ngmtnV7IiRp+LEMQDabxcxvPYxzThqJeT+aAgBY/vIGvLtxB4bv1xvP3n4aAOC1tVtx6rcfQWNjFueefCAA4Mwpw3DjJROx8f1aHHjG3Tj9hGEYMqAY+w8oxpzvTcZ1dz7fbvdFCCGEEEIIIYQQQuLBz70AHlv2NrrlZ3DBqaObfxs7sgxDBpirfobt1xs/u2gCfvXHFTl59OtTiKrBffDOht3/Olk5qBcOHdEPmUyQbuEJIYQQQgghhBDSDuzxLOvs/xENV5YBWPHqZhw5qqz1hACOOLAMq97YkvP7m+tqUFvXgEOr+sYvQENDKDnSsjwhRcqRU0oZwcKFZtyUKWHYIvXz2bI8B7mk1yKB85VJSnkE1q0zI8WyYy3hs92bXgK9h3wtv5ASJiV9kvdjXdotl0pr+ZRNIuiIs0zApqcU96JVXFLhq1d5V1a6XduQU+pyyGeqnqFcml5e7ig7schlcyQ0WzaFB2vWmOdVVoo8/GSYrvJW12aQU34pgdZS7KuuCsMnnRSGv/hl5zImItEU/bcoRz64JQw/84wZ9+KLYfjgg8Pw4Yeb6WQfVbhKTdp6G3dntDQ1CinDlLotwGxcqm8YI/KWmsh0cnzoqJIKOfWsXWvGyWGld4maoyTFfnOUDZ92FkfG4iNhTSP/1LHMX7Z3i0ibBT3oygakxvuk2/ymLWZ+srvJrgwACxaEYTnUWYa9RPCVtOv2Ioew3vniXU6/T3lKWCXyEephcPjwMDyg3Ixzfb5J98Oc86zvaNF2A7ZytJeM1IYuv7xtxyqwpnN0f0kF13c+PbW/+24YVq/B5nRss1wYOza6YLaLy4r1/Tutg7QtQtKAH8tiks2ax3c/+hoeW/YOXnpzC/73suNR2J1VSgghhBBCCCGEENJZ6Zj/RNzGHDysFMtWbWg9IYBnX96AgypLmo/PnDIML847A0/cfAq+8aslWLdxe/TJhBBCCCGEEEIIIaRDw49lAE4YNwg7dzXgf+evbP7tmf++hzfWmVtqVb+9Dd/81RJ89YwxOXkcc8gAzJo6Ar+cl+tnRgghhBBCCCGEkK5IYxf4j2ioGQQQBAHuu+ZjuOjni3H1H5ajsCAflQOL8YuLj8Wra7fi8Fn3oLauAb2KuuGrZ4xp3glT8+3PHIYjPnMvvjN7LFa9sQUzv/UINm/bifufeAPf/99leHHeGS0XIJsN9eQ2P6fBg804KWTXWnWdtok0/GYai3uLMvWOTOe9xb3U1+v7knGq7uqFI09+vpm/s1WYxe9NYvWQEEZf7er3Y7lp+Ww2bDDL+MorYXjECL9Ly0ezZovp61dYFh4XWyyarF4c8gLKN68uP/Sf0VYNhYXhtYvGmM/a1WPP9Znqri2tJ6RHRSwbO5lY940x4qO+74MTePu1GF5AykxE9q9u3cw4eW96L3XHcrg+mygPQ10MjfTFMSzuCpPp5xmZqY1Ro8LwGPMfc5yfm2PD8x7HU0b6KerpUDbBt7eYc1ReXhgu18O9ODFj+LpE11VSXk9p0tblSCRPR88mjWFTZvGerMkP54L8aOvVJGxGc+wlZdvVQ+RZZ4Vhx9eRWPXj49flPN4D2LEjrPPegZiAVUVuqQnn2127zCxLS+Vp0eWV9aPrqkH4Vuvx3vWZuvqyapzbjKMv3/r1ZpycOktK3Hw6bbT1GG95fYtEtxFZB0WFyY9hPmOmfpzy3nSbGJO7BqPFfArke16ceUim1ebDEcQZtzuqlykhScCPZU0MKu+JP/54Ss7vO/71uchzZk8/ELOnhx/OBpX3xLq/zQIAjB/dH2se+HTyBSWEEEIIIYQQQgghqcFPwYQQQgghhBBCCCGENMGVZR2Bbt2adVg5S1lHjW4OWpdGjz3COE5aSqGXE0et/tVLqA1JgWsmUNKVsv7RBbPIKgqqXwsPtJxJlEUub88t4t5/T95eG+Zh261exyW9lNx1GXlVlRmnj13zl3kWiXZQW2umW7MmDB8/0bzn3lIPU6NktoWhnKoeYTvILzbbhJQ7ahmmlD8Wlpiyy+T7UPR26bbfN28OwwPKo8u0vdjsJ8tnXNsclqvuRyEa33u2SnTkxdVW540lofSpZsLHjLjCyeFxQb6bLMS3/DalqCRTX2ccL10athl5mxUVXsXIxdCQiQFCD7SyYat952XUjh3mab16hXVXJG88htYsCfmF69hke742ueM2YT/61lvmeVKeJcMAMKhM1IOsSK3xcqwvuywnep7wlf65SkAlvjLSqHP2Bp/r6XOi6k6Xsbg4PE8/J2P80ZOIkUm0DYVEdVFjDtRdWx5LqZarJDMVcv0MwrAa4weUhOG6/HCOkg4jADB3bhjWivwZM8KwfpWLbmtmO7A4dhhjt61ebe1R5q/nENkGrX1DnKivJdvIokWRp+G448y48vKWr52GbM43f1l+2/zrem1NEvfqc2/6vaXAs8/KuaFR2MtklPWG8326/u1lmQtIS2QBNLSainQ+uLKMEEIIIYQQQgghhJAm+LGMEEIIIYQQQgghhJAmKMPsCMjdMB134NP47gJnO0dKjvIdyyXlLvq4Vy8zj0LXpemOLF9uHh+xYXV4ILV4QO52aU3o1clJLFuXdaA39bMtOU9CXiaxtRHXa+k6kNIDXcVyR8BBFWGeo5QO0Ho9IbPV6eqFPEXWsZYqVlRE35u8Hy3NqKkJ4+Rz8pXH6mcdsWGtVrGondPM+pf3quU7sj9MnRpdLtdl965t0Lp0X2pJYO5iWqzk1vJ5+ErIXOldLMqoH4DU6Cj50WfOLkFL+O42uF1JlIsQvTuagaUj9hY66vp6yzhu0RFlLPKgpEljB65evcLw4YebcbK6Vq8242rEDn0jK4WGRg0Wtp1zbWWU840sh5aCOW5elgodZQdP2ziVdJvMkX3L5631g7KvOMowu3c3j+WznzcvOu6CC8KwlnIW5UvJtt97pA3rzrly8tGNVdTPBlF18+ebyS67LAxPnGjGjRsXhm0bBMt2oIsh60s/wiToW5JuX3jnnTAsd2EGzMehbTPkO0Jb7ljYlXdSTOLvrRzkGKNfRqPeg1W6jGXH4CTGcV8Zfmd7voRo+LGMEEIIIYQQQgghxAt6lnVF+LmXEEIIIYQQQgghhJAm+LGMEEIIIYQQQgghhJAmKMPsCAjPsnqYXhPSiyDONr5JeG1JHxZXDbrcphowLYref9+Mk94TBZaWKK/931XmdaX/lentBNyx6GPN4Z995MHIgtUPHtYc1lYcvhp9yYDyyCjU1Yf5a88psyxhuqL8OkRi2RLalTjtTPqpPPOMGSfbwqCK6Px8vRSkd1iRsI3R+Zn1qjyhRB7Sowww29N++4lz8pWfhKXOXduPtJ7Q2R10UBjWvnzl5WH+2udo+vQwvP/gdP1UbPcp49YPONSIKy0JwwXqWRdsCRvXpvzQz8zm3+TrlWGkK+kbnVDF+Xg22fqXHgPq80Ovkt7YHkbowU76JukGJLzI+upGItMWlkQV2ZkkvE/S2K5e2tBp78BBZeF4Wlxs8R6T86Gq40ztdp28mTrxDHOsaERZojwMgeS9wXQ5XKeNNDzK0vYjTCQ/WUEVFWac7lMRyLqT4zZgvsdoTy55LMe+nHcVj/c1nda5TvTFLearMk+bP6D02poyxYw78MAw7PreO3hw9L3YfM9sedrwbZ+u9T9kSBiWHm4AMGBAGNaeZT7l0Pi8o/n+vbK3120tbRLv9Emcl1MO6TOoPAfleG37W8nXezjqvKTe1dvS25KQNODHMkIIIYQQQgghhJDYZEHPsq4JZZiEEEIIIYQQQgghhDTBlWUdgY0bgUcfBQAUSO2Uwrp0tl5J88S63YxliXwS2CRkUrGg43yW5t5/v3ks1UinrvyRGTnxf5qD/xl4khE1tjIMFxh1ZxbSa9lxDI2LlCUItRQAoE+fMNyjRxiuU0u0c7a5FySxfN5oS+peKiszIhx5miE31eX1XaIddW+6+rdtC8O9eqnEQo7bV+mg+o4VB/JBbVF5yDpRGkHXeyuoD/V3BcXR/XXiRPOe5b0++6yZVvaN2sPD80ZWtd9y+eeeM48nTAjDBUrN1FgmpJeuF1A6RtexT7YlX4macV3PeuxbYp735pqwXIUVoZyvII4UTGoQFa59yLUOkpBQJiX9kEgZeO48Go6nvYsdy6v1suvWhWFVWfJZFRS6zy9JI5+pnmtk87E9e5sEyJW079lXiu18TnHv2Pm1hpTOXXihGXfPPWFYDme25xTnnr1ksPnRcmWNLKeUXur3hbKy6Dj5/uNjbQAk4lBhxVfGKNFllshXCynbBcz+a5vybHLEJOSJceT1Pvkngask09u+JoHxTbeDzZvDsJRw6/dxGz79XD8LyinJvgpXlhFCCCGEEEIIIYQQ0gRXlhFCCCGEEEIIIYR4Qc+yrsg+8bFs4vkPtXcRrHTPdm/vIhBCCCGEEEIIIYQQ7CMfyxY9+1Z7F8HK+TNmhCJ1i9FCEnpxX/8X6TmlimX4n2grF+mfoOycrGzaEl5P5vmFL5jppOdR7dX/Y8TNmBGdv3GvFk+fjCh0o/LpiNT2a0MY6WejKqGsbFBzWNsOyeM0vCacPQws/iS2ckX5sY3UW5uLNq+v5bodtby2tnEYUCo86aSRF2B4luWc6OoHIW9OP0SZh+rb8l5t3lq25yS9LBYuNOO+fXF437/6bXitkV+Jzj8J3xUbsr8CpkeUdWySvoKqHuvyQy+v/MIiI851zJTptC+Tzc/MSCsHqoR8IqOsyBpL+hrHxn3qNi7HH212o/LZg+y7uhw2ezRX4sxlrmld27Evcg7MaWfScEk9e9v46UoSY7wcimzPsKjQfZ6IqnNf7zqfZx3nvPbEtX1KTyIAmD07DCcxrPiO8a5eTxo5R8luoocpZRlqYPPyiiqX7V3U17/Md4xx9i7Nj65jWV+67qTnXdp9Ie2+155eYZI49+VzbdexGgDKy1s+z/Ys4jynqHec/PzON84Skgb0LCOEEEIIIYQQQgghpIl9YmUZIYQQQgghhBBCSLJkAa6+65LwY1lHoH//Zs2gljtCLImVS7Q1OfI1sY7XV3op0cuCpfJMqnz0UvooKWFr5VqwIAzffnsYvvlmM92SJWH4t78141atCsNafWQgpZFSlgeYa/eLLRJBueZfa1x+8YswPGaMEVVw9tlhWJ8npQcWOa7X1u8WtORBHufIQERkTa1ZPzKtlF/kXEDKYMv6G1F2CZyjZEf2jaqRRpyU2eboGGWjr6hoOQyYz9um77DEuW7XrZ9hjx5h+JJLVKbLVzQHv/b5sAM0oghRJDFW2Jb/9y6OTqvV0LK6eteKSKWvqS3Zv8Vzdh9HSxuiymjDKt9JSHop6Vv/XniwQXQAo0PB7ByLFkXHVVZGRkn0rcjjtKW6act8fPOT0ict8RozpndzOKdOLXN4EhJon/vR5Zdl7lsSfV4Sz9d3/rLl4ZrWVt9J2xnEyd8W5zOspCKXEi99GfWuYit/aWkYlnJBPYTJaVW9Jlllw1HXtp0Tp69F5R+n3VqfR9QgrN7p5f3IegRy61Li2j5dzmnpvKTlj66kcV3ffuMjUU6i/bjalMRBvuP45tFebYKQtGCLJoQQQgghhBBCCCGkCX4sI4QQQgghhBBCCCGkCcowCSGEEEIIIYQQQmKTBdDQ3oUgKcCPZR2ALIJmjbf0/9K88465EHD8+Oi00vvMZqdlQ+Zhs5mSGnftr+Grqd+yJbz2ggX3NYe/+c2ZRrobbgjD37nUz4ciIytIma5pL7jIPGzGIi+8EIb1A5CVpwyR2kv3n+v7FIZznpmI1HZvso1MmBCGG6HqVPmUSeSjyfEsi9GWI5GFXLrUjJNtQZqE6AoSzz6NZybz1F5Dq1eH4SPGqmcj26Snn5arF4evn5lkwwbzuE+fMNy7XJiySMNEmF1K+koBppeL7nrttg26foiWMQB33BGGpb/e9OlmOlknb71lxkljO3Vt6aEln42PR1BSJPJcdB1LVF9wvZ8VoQVgzlgnhwr5mAAgU18nyqUGscKW/QOT9ijT5NhjimKlPYalkYdPnSTmOeWRLg1PqEzt9vAgjfE+6qUPQCbKdwtALUI/P1uxpGeZr/1jGmO66xxoqQJIEY8e4o0cRaTOz7DPVf1XHqfhmWXDx6/LlxjDuhe+HpIybRJjQBLEGWPS9gWlhxnp7LAFE0IIIYQQQgghhBDSBD+WEUIIIYQQQgghhBDSBGWYHQy5FB0w5R7f+54ZN39+GC7KrzPipNBtVXV4pJdvV1ZGfy+Vyh65Ah8wl4iPrH1eRJh7WjfmhzKTnKW+8gJqDfWXLgibZkVFKL3UUq0GT3m4sXS8uLdTOo2xtFhWiJKJYciQMDxqlJmHuLYh1wGQEUvyfSUorsvKo86Jg267/fp5ZWMgm4WWJUiZsJY2OCPllVdfHZ1OXtzzYrr8UfLWOPVvlVXLtmaUP1panMRyfNsSfFtclTl0RKaD6q8yz3XrzLqT8rgcGa+of1sZk6gTq2RbjxeSyZPDsOxgWo8i8tx+8f8YUbKdFcAcY6LQTVzWna0da3zGH988jD4UIW9sKQ/XvifvUz8yKf+V0l8A6N497G+lpWbfK4i4nyTqKk4++fl+8iPXOFd8y++K7Vm3pSzbW2op3xH0S5nUCUvfA8BLo5ZTH7KR60Fg5cowXFpqRPUeO7Y53Fgc9kub3YNyw4iUi/sSJ4+o8UfnIYdkPT7k5YXhXr3MuMLCludjXT9a3u1D2pLJpN8x9TQn3/91E6ysdMrSGd82kgRpv4fZSNsCoOtDz7KuCFeWEUIIIYQQQgghhBDSBD+WEUIIIYQQQgghhJDUCILgM0EQPBsEwY4gCN4NguDWIAjKY+ZxdBAEjwZBsC0Igq1BECwIgmCsJf3gIAhuCYLgzSAIdgZBsC4Igr8FQTC6tWtRhtnB0Euv5dLiBQvMOGNJbI1aryzWga9ePag5/MorZrKDDgrDU6eacX2xKQwPVnovKQEoG9Mc1Et4zaXSZlyBTWMnOHVGtBwxaQlinDyMY7leXK8dv+CCMKzWiht5aI2prJ+Svi7FjUeU/MsiS81BPLeSElNOIKvBV/4i0+omIvPvW9J2OzLZt2SKln9pTGWnW5m1msYmPTDqwSK9dMW3DyUtfZLyWwCorg6Px4wx0/pIBJPYJS+OXM26k66U0soJ4J13zHSf/GRz0Lojsd6N0VFS7C1zFviOx+0pj5NMnx6Wf9w4M27hwjC8apUZJ+XFU6aYcYOUdH1vSaOuXGU5rnLrJK6dxnzuLIX0lGn7StQi3xEWLTJPXLIkDGsdo5RwO26JnlMOOdnIbZgB4NVXw7CymohCF8Mmw0+aOM/ep63pdxUpw8zdDTN+u0hb0h5r/krR3kPPZTYpqtfO3badqRWN4h0qjd0ekx6703iGvuw78s0sKMNsnSAILgbwMwCPA7gQwGAAXwdwTBAER2Wz2Q8c8pgAYCGAtQAub/r5KwCeCILg2Gw2+4JKfziARwFsA3AbgDcB9AUwDkCrH+n4sYwQQgghhBBCCCGEJE4QBGUArgLwDICPZLPZhqbfnwHwV+z+ePZjh6x+BaAOwPHZbHZtUx5/BLASwPUAPiauWQjgj9j9gexD2Wx2a9xyU4ZJCCGEEEIIIYQQQtJgBoAiADfs+VAGANls9n4ArwE4u7UMgiCoAjAewJ/2fChrymMtgD8BmBIEgVy3//8AVAG4PJvNbg2CoHsQBN3jFJofywXH2x0AAE0pSURBVAghhBBCCCGEEEJIGoxv+v/iFuKWABgVBEFrXgGt5REAOFL8Nq3p/1uCIPgXgB0Aaps80050KTRlmB2AANm91nQ3Kp+pjNhGfOzY0LNs6VLzvE984qfN4XnzLjHizpwk9PxKy//ylv7N4cqSyGTYvDkMf6BUyD17hh4AA8rVidJPSxoXxPBeknYERfF3To+HNOBQZhyNFYMQhfHcK6INbJLQ/Of4FMiHJUw2Yl1LeKhklAdakWGoFV4rjleGTFtYaMYVFbbsPWH1gNLIRmI7T5qQaEMSi8+FTKot4qTtn/TisPly6EsX5EfXpY+HRxp+Xb7eKFHn6XtesSLMY80aM+3EidHnuV5XeqTpZ1hcHMbJZqCtUGxNy/BCqd1uRspGIr2AtFldvqV/yUajCiLvzWIbadxbHP8y05cvDLe1Z0oSyDJqr7GysvB+xNQLwGwLsj1qtBefxLXtupJEP9f5+I4jSZTDh6R9quJcz+Z7Zq07+Y4webIZJ33K9PggG2UcY0dJWVkYvv12M27nzjD86KNmnLhepiIcf+K0Ede0afuV2vKXQ6u2jPPN0wffukrbB831Wrby2+z2nOtRzqnr1plxso1rysK/edJoZ0m8oyXxDCX6fae3qP+2Hj87D/Qsa4U9fxCvbSFuLXZ/6BoE4OW9yAMA9hO/Hdj0/3sAPAXgLOz2K/sfAA8GQTA1m82qicuEH8sIIYQQQgghhBBC9l3KgiCQS2tuyWazt8gEQRCUALgoRp6/ymazm7BbggkAO1tIs+efFlvbKS1uHr2a/r8KwCnZbDYLAEEQ/APAfwH8CLvN/yPhxzJCCCGEEEIIIYSQfZcN2Wx2XCtpSgB8P0aedwDYBGCPfKI7dsshJXvW5yqJRQ4yD01Leey5zh/2fCgDgGw2+0oQBE8CmBQEQU/bLpz8WNYBqN0Z4O11u5e0aiWebfmtjMtZ9iokO8NKwrif/CRrpsPTzaGLLzZjFn4ilA9ecYUZJ1fuS6llaamZTh736GHGyRXQpaXmvRVErLeOs2Wz3N181CiVP+rCPMXNJLG8WudRG61mRUHCPTDW0ugIbVWs5fkW6agPtmtZyxFHeiloLAz/8cE5f4sMU+eRnx/WpZZX7toVhh95JAyfcUZ0MZIgzhJ52/jjI/eIoWB1RtbjqlVm3Dgx3RfkK21khDyxUUm95TilJXZjx4Zh2RWK6vVmO+F4Zt3SvVD9g1qFaJ9CIrK93izjtm1huFR1BZtwXY5NUnKRl2emk2O37mq2Z+jzfH3HYNd2bRvffKUwH5sSxs2bZ8b99KehLGPyZLNiBw9uWUKs+0lVVbTUybW+rO8LCeNbRhs+9+l7XhISNV85uvO1hAVCq8jBydIpXcemTLduZqQcCPVLoM1XQJC01YRU2wGmhE9Xgasbg62Mcq63YWufbdkvbfO5r1WG67VdSUpWaOQjH75+2DYZpiNy7LbJ521/J+jxv3eh9DMQtg0ptxeb7NVGZ7RZIPHIZrPV2C2ZjMvbTf/fD8BqFbcfgKxI45KHZs9vUqK5BsAYAOtyk+Md7L6PPgAiP5bR4J8QQgghhBBCCCEkNlkAjV3gv1R5pun/x7QQdzSAl7LZbE0Lca55TMDuB7FM/LZnVVBLbpKDAdRj96q3SPixjBBCCCGEEEIIIYSkwV+wWxb5lSAImpfaB0FwMoDhAO6UiYMgKAuCYFQQBH32/JbNZlcDWArgjCAIBom0gwCcAeCf2WxWriK7C7t3Xvh8EAT5Iv1h2P3B7bFsNqukJyb8WEYIIYQQQgghhBBCEiebza4H8D0ARwF4NAiC84IguBLAXOw24P+FOuUrAFYCmKl+vxC7PcueCILgoiAILgLwBHZ/1/qGuuZLAK4FcCSAx4Mg+GoQBN8H8E/s9jb7ZmvlpmdZB+Dtt8OduC+5xP287bXht84cn4WSvs1BqRfPNpgS4yeX/Kk5rPXpwvYsx+Nh48YwvGhRGJ4yxUwnrTLi2AO4+oxIXwpdfnksfdUAoLy8ZSefJLT1Oo+i2i3hQa36eC39PDx9t1zJ8RFIwqtNmivoRiJNkGQ6/aBcjY20R4t8+LIxqXrM8YFyRZTZ8LHKj3aB0s9e3rbehltau0ya5FYkX48v363HffxUbPnrR5iE5Z30eLvjDjPOqPNisx1Edbda9ZwGi4XbuulG5dFY3Ns4dvWLsvZDYcJYNNhcTb7ug/B6vXoZUSgojG408n5s/iS2bu5DGh4mtrZq9WLyGPts5b/tVjPuJz8Jfco+UI4YUfY52m/J9LDJWOJMTC8my/uCkbvfGJCEL5mtLL7PN4lxqz2Juu/GUaONdEl4bjrnN3t2dJx6sYsqf9reXX1L3NuI66tXEmVMwjMxCZLKL+nnlkYeRhlt5nW2wdTy3mck85wf5bvR0qVm3KlTxEBeHJbDd8yyDQG+9Z+Evy3ZN8hms9cHQbARwMUAfgVgK4A/ArjUQYK5J48ngyCYDOCqpv+yAJ4EcEY2m32uhfTfCYKgGsCXAfwUu1e3PQbge9ls9sXWrsePZYQQQgghhBBCCCFeNLSehCCbzc4BMMch3RUAroiIWwzgIzGueQuAW1zTS/i5lxBCCCGEEEIIIYSQJriyrAMwbGgW376k9aWvenns8uXht84JE6LPsy2TPnaC25LbTVvM76pCEWQsH9Yqw3XCYk/LLm07imdqtzeH6/JD+ZSWssnraRnRsMrw3rbWREtXjGXTlv3GG9UybOflyvJGlyyJjquqMuOi1nNblopn1Dnvrg/vW8uzivLDfGrrw3vTl5VbomdqtpqR8oFoLYNcS15dHYanTjXTKUlZJLoByWPZEFQjqRftx7b8PGfrd8ctum1LzGX+tvYu5YhxrtWWsg1XbBKIOLJLH3nHZ8420729LszjgQfMtFEy8zVrzHRybHVVEOf0E3FiXb35zGyyDeO+FywIw9OnG+mGVVpkVgjjfLd0z+kbgiQkmu3ZjqPU4oCWSYZlLMh3l5ANKBfH5dHlKCkJ87BJYnX7lMd6+lq+PAwfeGAYnjzZTGeUUeFa/75jpKsMzTU/W1pbGV3L4Suj85UiRZU5Vr+QjVw3ksrK+HnKF0DAbLB6opPvTZbBoj0lfEm08aRpr/kb8J8n0iZxOZ9Nhmlpn0mUQ/8tI1+X9Z8Jp04P53BZRD0P2ZDvHfJ1HFB/elilqGGddJQ2QUhbwJVlhBBCCCGEEEIIIYQ0wZVlhBBCCCGEEEIIIbHJgp5lXROuLCOEEEIIIYQQQgghpAmuLOtgxPFusUnLk772vHnm8Ze/fEeL6TZsONs4lnZUM2aYaaW1RVGh0r8LUf1qhFuka7sN6Tukkfdj84Ax8DXdsT0M6ael/TyE75b2RJMYz16axAGm+YEyhVq4sHdzeOBA87QJE8LryXq1+Uo1Fvc2fxDHOR4G8uHLC+iH6OpZZkOa8zz7rBG1atKXm8Paq2HcuDAcx09LkoR3g2wiRXobe8NHw2378ji4lr+tfaWSyHNQRZjHnDlm+SdODMPS90l3L4m2FZRN17Dse/RRM+GUKWH+NWYfktZ7OR4ksq9InyBteOI4buXUadTNqnHKqDl1LZufmStJbzuv71Mea8842b20H5isHvmsq6oS+ndGcfEiUa11qp/L8UGXUXrd7NplxkmbuzvElH3ppWa62bPj+wPqtDZvMN/nGxVnm27r1fPVVpo++PgnxsEnzzjjcePg/ffqWjlYTHKtz9PRBzROnhJXX6mO8gx987B5iqVxb4l7hSWAzRvVhtGXcw163c7TdazNmvdgGXz0GCbfTaXXM2D2mwLP5yuvpy0Hjfca17+B9D2Le83U15lxvn9XEdJB6HgjICGEEEIIIYQQQggh7QQ/9xJCCCGEEEIIIYTEhp5lXRV+LOsAZBE0L/G1rGzFu+vNhYBSobNqlXmelCcmsS12RYVehHiACL/WHDrsMDPVQQeFYa0ckuUfPdiMfL4+lF5KCaWWXWpV417jrNdUy76lvKB2u5lQPMTGUaPhSuTz0GuoX3ghDB9zjBH17rtHNId37jRPO/DAMOwr6TXPM9tIgaxLqTWz1HGsLcujCi0bHexbcsv+5SvDtGErv7xX6yr1BJaw+0gUAHdZi6tMySad0ONDcXHL1/OV70hJGgDMnx+Gf/KTMFxebqY7WyjLdZOL7DdCdgko+bJNQaknAKnHkIP8O++Y6caMiciwFaTOUIZlfgDqivuG2bvnbpD2VvOu+evqkWOAnl/k43Ct1lhjmLyAaEwFamLLF31BSscBcxzv1s2MmzkzDFdWuhWjsDBG+T3S2c6zjTGyjLqbyKa7ebMZN368WzmSlpr5jlOuEibXuSUnrdZ4RU18tpdRCx2ln6dNrH6eML7XSkJOHKfduZ7ng++15Hk5z1C+uyu7kIx8b9V9Q2rj5dhtGXR1t5anJSEdt+H8vq/HCllo7WkifQqiJtkGfkginRPKMAkhhBBCCCGEEEIIaYIfywghhBBCCCGEEEIIaWKfkmHm5eXhkEMOaT6eP38+KtUy2SVLluDCCy/Ezp07sXPnTpx55pk44IAD8Mtf/hIA8N///hcHHngg8vLyMHXqVFx99dX4+c9/jssuuwzvvvsu+vTpAwBYuHAhPvGJT2DYsGHYsWMHpk+fjnPOOQezZs0CALz55pvo06cP+vTpg/XrQw2BXn4rlxPPnGl+2/zzn8Ow3lBQyhL6lrjUjp2xY83jm2+e1Byurw/DH/2omU4uLdabIPbFpvCgMFqa56jgs+K7LNsrf8811DlljForrZeAy0pWkgpbUXr0aDlsQxfJJlMqkD/IMsoHir2Qv8j85X0rPd9YcWkt243asFOnTWM3NDOfMP+310Xv1mfbODQJaUacuCSuJVf5L1xopp08OQzLx+srFdX1c+qMMHzNNeF5eiPLFSvCsN4NUz4bI3/VRzNGRzR3OsxseC880A1UVtCOHWF440YznbxenEFSNijPgTZpeU0iu5zFKJN8NPq8AlEN22vD/D0Vanb9i6XOZbm0TFJeW2cvh0gZ1uU3d+NNdzc93/Yi71PXd9R92soRB9sYE3U/cWR6RlwCO3Ln7PInH7C2cZD9Xk6CupEksWt1AriO8b5yQVueLr+3lH9bSjSTkELaxuC23mU0Kv9UduiUA6iWGUbNxYCXhlInkxvMuo5hcepb5jlggCWhrAO1szwGDgzD2vvn1lvD8Omnm3F7xpWtW1srZheAUtOuyD71saxHjx5Yvny5Nc0555yDP/7xjzjssMPQ0NCAl156CaNHj8a5554LAKisrMRjjz2GMvGCMXfuXIwfPx733XcfZs+e3fz7pEmT8MADD2DHjh04/PDDMXPmzObrz549G9OnT8fpp5+O8847P+lbJYQQQgghhBBCCCEeUIapeO+99zCw6et5Xl4eRo+2G7K/+uqrqKmpwVVXXYW5c+e2mKZHjx4YO3Ys1q5dm3h5CSGEEEIIIYQQQkhy7FMfy3bs2IGxY8di7NixmCm3iRJcfPHFOPDAAzFz5kzcfPPNqNVL0RVz587FJz/5SUyaNAkvvfQS3nvvvZw0mzdvxiuvvILjjz8+kfsghBBCCCGEEEIIIelAGabi8ssvx6c//Wk8/PDDuOuuuzB37lws1GY6gnnz5uG+++5DJpPBqaeeij/96U/48pe/DAB44okncOihh+Kll17CpZdeioqoLbotbK0Jv2cuXvwVI+7Pf76xOZzN7lJnhnvI2zTurrr/YZXmeed9vuU8dP519WHcVVeZef7sUqGNVx8lKytDXx+bp0wS+Hoe7e21WrueYTIg/RJ2qWd90EFhWPmBjRkThrUdUm8I/wDhl2MrU0F+tKdPDso7rKVrJYb0HlTGPaIKMGqUeZpsdjYfH9kGk9iyXCMf73XXmXEzZoTh/Qe7e4l0lK3sbf1LDomfOr3OiDvl9HAM+MUvwt8tu7F7j29f+UrL4ZbyjMrfGAd1ZxNtsqLC9CxDregP2qwkyuPKZtoUB9kXLf2ywLEt+bZB2xziWv9GOm1AKPPTz8aR++8Pwx98YMYJ9wV7G8xXz744PE6iv+pmEPVIdbOSQ3USHqeaJLyG5HhsK78eH3yu7ewv1lmQE4xtrJDjip4QZaX7jjcpkLZnoiupeGh5kER9pP0e3FHfVYw2bvOX1POL9PJy/DtPv0sPHhzWifScBqLHsDj1KLusbYw0KC01j6VRts5k6tQwrP9m3hPXrRu6NlnQs6xr0jFG93bk3HPPxdixYzFt2rTm34YPH44vfvGL+Mc//oHnnnsOG7WZchPPP/88XnnlFXz0ox9FZWUl5s2bZ0gxJ02ahOeffx4vvPACfvOb37T6oY4QQgghhBBCCCGEtC/7/Mey3/3ud1i+fDkeeughAMCDDz6IbDYLAHjllVeQl5eHkoh/iZ47dy6uuOIKVFdXo7q6Gm+//TbWrl2LN954w0g3cuRIXHbZZbjmmmtSvRdCCCGEEEIIIYQQsnd0nLXUHYTbb78dF198MYqKipCfn48777wTeXl5LaadN28e/va3vxm/zZw5E/PmzcPRRx9t/H7BBRfguuuuw+uvv46hQ4c6l2f+fHlkfoSTEruGBrflrdtrze+jcjWxUvA5r7S3Lf2VOw///Oemn1tVVf/msJSxAECx2+7LVnwkF3GWg3tt4aykDRnXPe9XrAjD5eVm3NixkafJppuzqtxRDmmeZ9apLHKm3pTRGdKPbdvCsKW8iaDqUUrIClQVb9sW3o9e+CmrZ9y4MGzbGdxXXiD7od6x3CY7lOjnm58fv/0nITG1ydC0sseQtyqJ2v33r24OL1xY1RyWzQow71N3Idf695WByLLI8bNgzRozoXg4Gf1AlywJw7pvyIYh5w0t9RA33lElLmnIlyPPs3VSC7ZryX4Zsdi8xTykRFC33T59wnB5ucd84oke+mW/iSMna8u2ZXukrsp+21jnKxVtyzqwvnPYxgDbJCIfvqMs20Zbjz8+72HtaeehiUrbUeW+rs83DVlqEpYyVuRLlHxnBcz+IK1PAKAqfD8x+lPuS1nkpeX4prtr0nXZq1d0/sbfJIMHmwknTAjDCxaYcXJyO+20luO0hQwhnYR96mNZTZSHkmDevHnW+Grxxvz666/nxP/sZz9rDk+ePLk53KNHD2M3zDlz5rRaFkIIIYQQQgghhHRkOuZHbrJ37PMyTEIIIYQQQgghhBBC9sCPZYQQQgghhBBCCCGENLFPyTA7A9rT58ADw/DJJ99vxEn5uNbv19W3vA3xAw+Y+V93XRjWu/0OqvDzKJJ88IE8Os+I+/KXRzeH+/X7sRF3xhmRWToj61JbBURZBySyZbbNp8C1IJopU5yS6fJLawXrpYTfQEZ5lWyo6d0c1jYmxrGWOUuTH92wHfHyhbOhns2AYEtzeMqU/kactIl74YUwfMghZpayf2mLB1t7klUi7R6kPxpg+ldoz0Fpq2H2NXevM18fEB9PQNu/z+jmU14e+oCsX/9Oc3jbtoFGugcfDMOnn27mUVwc/97itDNpHSbPqxs8zEhXsOr58ECPDxMnRl9APkQ5BkiPFMDauX36UBzfIb924IdzHr7jrEK2yS9+MQzrcVA+Uv14v/vdMPzb35pxt98ehmfODMMFtaozyIJUDDKi5Diifb1kWWQV6OFYjiO6qmQenlZwnYK2bMdxiCqXrY9ay6j9DhMg8Xm6E+Bd/4oO43nXgfKMe93W4px91crCd8DMxz9uxsmBUL+syIHRc5C0WYX5+OHZ6qDIVkR5n/LlFjD9VY87zoyT/qojRphxe+rLcx4mpL1hyyWEEEIIIYQQQgiJTRZAQ3sXgqQAZZiEEEIIIYQQQgghhDTBlWUdgGw2XPmqV/COHx+G/zrfXQpz331h+Kyz3mgOn3HGAUa6Sy8NwyUlTsUF4L7c+oTJMt0fjLgvfCGU9734onmevG+pRIojkywqdKuvJJY1m0vRFbZlzfKBOz6AONtIS7lQzjOTy6blsnK1VLqiojeiyNRuDw/0veXlheGePVu+FgAUh/mnIveyLZ8X+scCFXfE2MoW89+0xSzHmjVhWC+ftyEfvVTYiU10AZhFnj/fjJNyqrPOcr+2K67L/13T6T4pZaVSrgaY3WH16lB6+eijZrrPfS7Ux9XW/saI+/znw3BBG852UlYLACg5tDlYocpRsPzp8MCmo5ONS6Xz3lo+Qqdnk6ymLTHyvheJTe6hNIjPry5qDuvhQVodSPR9rVoVllm3T9kWdH49eoRhWeTGYjXmimMtobQp3KW8srw8DGupqJRwv/++GbdoURiePTv6Wq7EaROyLURJSuPkYcN1DIsjUe6QuMrEbHYSFtKuH9d3hPaUy/q2cYlv+ROxEolB0nm61qOvZYRznqr9N+YXNIdr8vsacfViDO5r+bvDlTa1LNDICUtaqQDmZLNzpxkn/1DTY8UeqwntX0BIJ4ErywghhBBCCCGEEEIIaYIrywghhBBCCCGEEEK8oGdZV4QrywghhBBCCCGEEEIIaYIryzoAQRBtB+GqO8/UbDWOzzrr++JodXPoT3/6uZHuuuuqmsPaysJV5+/qkZBtMPXqTz0jwk+Z50k7LSmT12VMolxJe01YvT30DVjSpu61Ik2hRDiW54Usv/Zck9tHy/u2+Bb4+hVZn5s0Ilq92oyTvhQWH6hMfV1zuKSkwEgn26qnzYtR/hxvrcKwHGPHmlHSXkJXq89245ok/KNknRTArKDCwrAupeUFAKxaFYZXrAjD2qOpsDD0Kbv1VjPu7LPFtS3140tUHrqMsgl2727GlY87Kjp/0e4M/xDVVtevD8OlpWYeRhvUvoJRDUiZ72VEJrpN6DYv8fGJS+K52NptLYqM46pwCnS2c6qrN/NfsiQMX321mbaiIgz/z/+YcdOnt5y/rQ4KC81ry+ervfLk2DSgV+gv2bvYvNHi4ug5cKSonyR8geIQNS4mMS4ZfQsw+1fVSL88E/A9a+uxOtKnSU9eMk7NozWDRzeH9TwU1S46i/dbVPltnllx7i2JZ9+WxPEKc80jijh9yJUoH0QAqBUeqvLdBDD/WLZZi0ZdKxY6QzmQl/WPPC2RMVhOWDNmmHFywrK83Or5saBm0+5AA1ddkc5Jxx+ZCSGEEEIIIYQQQghpI7iyjBBCCCGEEEIIISQ2WdCzrGvCj2UdgABZpyWzVnncpZcaxxdffFNz+Oc/v7k5/Je/VBnp5IpbjVz5qxchSsWd81beWzYZcUd3qw7Dp6uClJU1B+sQLofOkU5YZHTOElaZTutYpDyx0JTvRBVD11VBvshfaxTWrAnDSrtVW9zycmubXNaGq1Qxo+WIYstso7yAWWato5P5mI0peeQD0Bo4uVxc6xgt7Udms2VLWAf6ER55ZBgugNk+G2Eu5ZdEPg8llSsQx4dWlBlxY8aEbSRt+Zpv/lKxM3pU9JTz9bPeVr+EY8KhY8Jfx4wxy/ipGaG8LEe+IPWPxZbBzpMo2UOVOcw6S21y6ljq+154IQyffLKRrLRi/+awTfrbqCQcmag+6qkn1snSkOa55G+7VlEMu4GoZ7V0qXm8eXMYnjPHjJs8OQy7yjyt2tZ8JQ8Sda7nc3lcJ+SnNVvMdHJMy893FxxE1U8c+VESkiwbkTYOurGKuT5X6h3/uolYOljyfHe9eU6PHmFYq61lO7C+P4i2lVN++W702GNGVO8vhAOebc7zHQ+83uVSuHbaMsk0rAGi5KFpSKXbUkKs++i2bWFY9gXA7OryPP26L6fbnj3NuCFDwvCoUWZc35KW61K+fgBWBxITPTaJv4faVMoc4wZkWbTbCdAXAFBbz08OpHNCGSYhhBBCCCGEEEIIIU3wYxkhhBBCCCGEEEIIIU1wTWRHQ8kvpATOKg244goj7mc3Xh6GPwglmo2W3ST1kt5+/ULtdbdueUac3J2uqsrxm6vaLbFx7BFhOTa8Z6YV9VBQGDbTunpzib+M896KcPnylsOAoaHJKJmhrC9DamlDl0k+RBXns0Oqt0xALK+27kA0eH/jWCq3tiiFZkXVoc3honwln3XE6151xeVb2oiof52fXKL/jNi59eMfN7Po1UuUKT9agqIvHbW7W6bMlFoakmS1y9BmsQtieXn0kvy0pSS2PLVkQWI8X6Uh85HYaY3Ruzt6N4dLVf1HKd1y2qplJ0hJKju5jhH6UymB0FJdObY6az2AxuKwfiDDClv9u+54mYbEN4ldjV37hlSk6DZ97ARPmW0UrnOX52l64+L2xEcGq3HdPdRa/2KcLUpgx7+0d0Rcu9Y8lq8n2vVAtgu10a0zm4rDub/4C1+OzD8JkuhDcZ5Z0nNiKu9oCWNrn3F2OE6ib0Sh63G72K1Syi4BoFu3MLxjR3Se778fhnU/ka9e8+ebcePGhWEtd+9b0vK1fHcod90tN04785p7PHeu1/W657WssWNueJsw+8RN7nN0jFGbEEIIIYQQQgghhJAOAD+WEUIIIYQQQgghhBDSBGWYhBBCCCGEEEIIIbHJAmhoNRXpfATZbLa9y+BEEARZn7IGQYCOfo/nn3cebv7tbwH4b7nu6/EgPQAWLjTjqqvD8IwZZtzSpWFY6vzzTGszHHJIGC4qdNdyS28mKaGP42ni422R+NbL8PdnSMLbIgl/D+lfEcebJOraaXgXJeIXZfELjDwnxrVt50k/pBiWU9Znk4RPWRJjjA1Xv6Ik8v/Tn8y4u+8Ow7LumobiZqS/0xrtyye8S1z7RhpjjNGAdEFkI1GeblGemIUWb0sbSXhM+ZLEtdt6rHYdI5Oor47ileRL0mOMbx27+glpXK+dRP7a2zLxsUkZ6NblF8W+Vhx8nn1S7T3p56txbZ+upDK/WIgqZxrvBC7Xba0s8jztAy19amUYMN/LpJWo67V0nI005jKfNhgnnYyL8rw75phxWLZsaRB5gU5OEFRkgVntXYwEuG5ZNpsd13q6fYfO/fZECCGEEEIIIYQQQkiC8GMZIYQQQgghhBBCCCFN0LOsA5BF4LTs1rY8VqpwgGgpl77O1Klh+IknvqJSH9Ec+vOfP2vEzJ0bhsvLo8sorxdHxvWVr7QcHjPGbztw67bttdvDA60hEMe+S6p9l6PrZ7qHODK9JKRscqm6Xl7dtyR+njoPeVyk5F+u+C5vN+pHPfuk5Qy29tPb8Zm+u97M4557wvCXLrC0cU85g0/78ZVHxIkzsGhRZdT//Z952tVXh2FXGezgwW5ljCWhsWlpo/QMOp3nFu8uRQKAgnxLpCiLqzwxDZlh2lJgl9+TIm0pleURpk6ce3OtZ195nE85XOXicd53fGRXOeeIQSy/uLdTfhrreC/yf77azF+2Jz0USal6nHcX53JFpOssbdynr/u+Z7teNwmJYxJjpJYTS7SEUloHuD5rbTdQWRmGZbsFoqdiTRLv3LbnK+9bvy+7vsv54jq+RdV/0GUFmHugZ1lXhSvLCCGEEEIIIYQQQghpgh/LCCGEEEIIIYQQQghpgh/LCCGEEEIIIYQQQghpgp5lnQibRlx7Qbhq5aVvz7p1Nxpx0s9Ma/td8fULueKKMCw1+tqnoKjQzXfB6h+yalV4oE2Jysqc8rdhfRZRxmQAiiN8R3z9TtLw2fHJ02IL573dtY00vLaSwMfborTUPJ4xw5J4w4YwLNpxW/stJeI75OkrWJAflmXBgnS3cbflbfUSyS9wK5O4z7fXmfmVlIRhPSa6bmVfVC/Gonw94Is6FuXV6PK7jv9J+Ly44uuXJodq3QSL8uvC/FX9yPNyPR+jy+VDzr0YfnhhuWS/SOraNpLy7tlDGvOEazmS8AWKU6aovpFzz+IlLYn6yKlj8fI1ZkxvFReOz29vKYoqlnlOAj6aNmyeZXGu3V7vV/rVUJa/sDC6/etyRHltFVj++tP1s7Um+t5c/VZt+Ud5cumyr1kThqurzTibN15lZZi/r5+ZJA1/TBsyrXz2tnEwifbY1u/EXQN6lnVF2BMIIYQQQgghhBBCCGmCH8sIIYQQQgghhBBCCGmCMsxOjOtScplOL2uWKsNx48w4uVzZtm2ybVmz7zJeWS65HD1nabQhM8l3jTIZM8Ypoau0Ks4S/4xcL75lixlXszU88N1z3bFcEl1G10vrNrJuXRiW1TqoIroe48jXkt5y3Ya5XbdfGTdtMdMtXRqGp0xxW56v5VODKiISApESYt86sGF7hr5yG0NSUFjU4u+tXdtH+qfPeeaZMHzIIWYeUhJhu0/fuKiBt6YmWgpZVLjF/EF2YCURNOtg70laGt1a/klINl2lMbZxsBHRz8NV9iNJrI+Ki7u2Qdu1tA2CHOPlPD1ggJmuvNytjpN4vmnbDbiOP75yPp8yATD6dhpjvHzAGan7hjk+D6p52YjbXjKyOSyHMy0lTAJ532vWmPmbMr3kr+37jhyFHm+kBLF7dzPO1r9scktXehcnK43X7VFKKuV8q20nKivDsK4fWcd9+kTH+eIjcUzKUsDnbw0bibyTca0N2YfgxzJCCCGEEEIIIYSQ2GRBz7KuCT8NE0IIIYQQQgghhBDSBD+WEUIIIYQQQgghhBDSBGWYHYC33gJ++9vd4QsucD/PR1u+erWZrqoqDNt0/bZtuG1cfXUYnj3bjJMeEvpepDdTSYnF72TBguiLTz2lOajLb3g/Sa8wbYpmMapJyo+gGc9KdvUfSNr/S6OLO3hw62UCgEx9XXig6iBj279bIp/hhg1mnGzkFmx1UORYDI28174lZv4fm+KXZ1T+NmxeE77+Fa55uJ5XV29eKz/fzedIerlUVESXV/u9RfWNTO12I93R46MffmQeCdQpoNq/MLkbKX0WYXoGba/ta8TlR4RzylXc27lcrvj6JEblEcevLopVq6LjRleaplxGqRzHIn0vttOi7tvWR119+OKcZ/M1le8MixaZcdKnTA67euw/7bQwPKA8shjpeG1F5O+bt48PYpw8bXXgm38iyAlemtUByLzwQngwaZIRJ9vFO++E4YMOMrOXr1pJjJ+O035i13P1LPO9lqy7Hj3MOOntJedNG2l4B7qme+oZM/977mk5nX6GcixSTRBTp4bhqHfPvcFnvIhzjmvfdn2XS2N88H0fpL8Z6ezwYxkhhBBCCCGEEEKIF238jxikTeDnXkIIIYQQQgghhBBCmgiy2Wx7l8GJ7t27Z+vq6lpPqOjXrx9OkxqADsjq1atRFWfNOGmR1f99GlUHDGg9YTvy9Oo3MeCA/RPNs+bdGhx84MGJ5ff0iqcxYHCy9WgrY3s+N5/nkXR9A8nUeRrlSoI02pMP1jb49NOoGtB6GVfX1KDq4JbzSPo+a958EwcPT3asICar19SgqoP0mWXLluHII49s72J0SDrD3J42ceaqjvJO0FHn/aRJYhyJU8cdca5Po420Jd7l7+TzdFvOgbfccsuybDY7rk0u1g4EQf8scHp7FyMBftOln5MPneZj2bhx47JLhWdLV+L888/HzTff3N7F6PRMPHwIFt08rb2LYWXIOfdg2rXJfrxdetVSLHtqWWL5DRkzBNN+kmw92srYns/N53kkXd9AMnWeRrmSII325IO1DQ4ZgkXTWi/jxKVLsWhZy3kkfZ9LL7sHy27r2P/Q09mZeOFSLFrcMfrM6NGj8d///re9i9Eh6Qxze9rEmas6yjtBR533kyaJcSROHXfEuT6NNtKWeJe/k8/TbTkHBkHQpT/C8GNZ14WeZYQQQgghhBBCCCGxyQJoaO9CkBSgZxkhhBBCCCGEEEIIIU3wYxkhhBBCCCGEEEIIIU3wYxkhhBBCCCGEEEIIIU3Qs2wfYuHChTjnnHMwdOhQAMBf/vIX9OnTBwBw3XXX4Z577kFeXh6mTJmC0tJS3HfffaiurkafPn1QWlqKK6+8EplMBieffDLee+89FBQUoLq6GkcffTRGjx6NhoYG3HDDDbjwwgsBAM8++ywOP/xwDB06FL/73e/a7b5b4h/PrMUP/u8/yGaz6NenEPUNjVi/uRbFRd3Qu2c3XPuVo1E1pA+u+N+luG9hNUp6dceIIb1x6/98CADwiW/+HY8/+w7+/JMpmHLUYO9yZLNZPHL1I9i+cTv67NcHH/rqh/DXy/6KTW9swmm/OA19Bu1+Pn+/6u9458V3MOXbUzB4rP/10ipj3fY6PPzjh9FY34iCogKc8M0TUFBU4H3NvXk+2z6ow4xvPYxd9Y3o3bMAc394Anr1zC1LNpvFxjXbMP+b8611/9dL/4ogCBDkBfjINz/ifU+toev5yE8eiYW/WAgA6FnWEx+++MPI5GXatS2kicv91++sT7SdpYVrvwaADa9uwL0X34vP3/d5ZPI65r9f7e14efz5u/tQfl6AuT/8CPr37dHOd2THNlceeOCBGDhwIIDdpvw33XQTKisr8b3vfQ+f+9znsHDhQjz66KO46qqr0KdPHxx55JHIZrM47rjj8P3vfx/dunVr93vY1+Z7Gx3lXcCG61y1Z27Yf3Cyu/Nls1k8/JOHY78DpElbvCO0FdlsFhvf3Nj8fFub+5N+vkmg24jr/N1RcGnjQHLvgx11Tk1z7ts3oGdZV6RjvpmT1Jg1axYWLlyIhQsXNg+AW7duxQMPPIDFixdj0aJFuPDCC3HhhRdi4cKFmD17Nq6//nosXLgQH/rQh3Dvvffi9NNPxz/+8Y/mPD/60Y/isccew49//GPcfvvtzfkfcsghWLhwYYd7cd6wpRY/+L//4IHrT8S/bj4F13zlKNTtasQdV34Yj954En54/jh89qrHsWen2OsvnIDHf3syAGDFq5sAAL+9dBIuOmvMXpdlU/UmFBQVYMZ1M1C7rRa1W2vxse98DMOOHWakm/SlSRhz8t5fL60yZvIzOOHrJ+CUq0/BAUcfgJf/+bL39fb2+XTLz+COK0/Av24+BZ84/gDMebDlsrywehOCvKDVup9+1XSc/JOTMfLDI/fqvlpD13N+QT5O/O6JOOXqU9BrQC+8tewtAO3bFtLE5f6TbGdp4tqvAeDFB19E2fCydiilG0mMl//49XQ8/tuT8ZlpI/H7iP7Y0WhprgSA8vLy5t9vuumm5t/uuOOOnDwOOeQQ/POf/8Rjjz2Gbt264de//nWblR/gfN8aHeldwIbrXJXW3LBr5642fQdojbZ6R2grXnjhBeP5dsa5X7eRzjZ/u7RxIJn3wY4+p3aFuY+QJOHHMoK8vDysW7cOzz33HACgtLQ0Mu3LL7+M73//+5g/f35O3JYtW1IqYbI8+O83MevjI5r/JXHk/iUYWFbUHH/wsL4YOqgX3lxXY5z3fk1dc1im3xt2frATPfv1RH1dPWq31KJ7r+4oKs3Nu6hvMtfzwaWM+QX5zWXM5GUQZALv6+3t8ynsnt+cPj8vg7yIsmzethN5+ZlW6z6Tv3uYrK+rR+n+0X1jb2mpnrsXd99dBlGn7dkW0sTl/pNsZ5HlaGjAaQ8/jKPuuw83vfgiPvf44/HzcOzXm97chJ5lPdGtR9usNvIhifGyW1Mf2rGzHgcPS68PtRfdu3fHcccdh0ceeSQyzWWXXYaHHnqoDUvVMvvafG+jI70L2HCdq9KaG7IN2TZ9B2iNtnpHaCs2b96MvPy8Tj33t9RG2mP+9sWljQPJvA92pTm1M819hPjCj2X7GLfffjsmT56Mc889t/m3nj174pe//CUuueQSjBw5ssUXYwD4z3/+g3HjxmHIkCF499130djYCAB45JFHMH78eHzpS1/C1772tba4jb3inQ3bMbCf/aVjUFlPrNu4AwDwjV8uQeWMu9C9IA9jhvdNtjC7/+EIf/zSH1FQXIAg6DgvD83EKOOuHbuw8u8rUXV8lfflkno+Ndt34Zb5K/GpE1suS9bxvmrW12D+JfPx4oMvou8BCT9/o0Atl+eDjR9g7fK1GHx415FctkiM+0+inUVxz+uv48jyciz+xCdw3fPP40NNsoNYOLatF/7yAsZM75grBfaQRH98c10NjvncfNz4pxdxSFWKfShBWporAWD9+vWYPHkyJk+ejB/84AfNv3/5y19u/tf2ligoKMCuXbtSK29LcL6306HeBSy4zlWpXb9pQGurd4DWaKt3hLZizwqizjz3R7WRtp6/fXFt40m8D3b0ObUrzH2EJAk/lu1j7Flee+211zYPegBw4okn4uGHH8bixYvxwx/+sMVz7733XvzjH//A1KlT8dJLL+HJJ58EsFuW8cwzz2DWrFlYsWJFW92KNwPLivD2hg+sadau/6D5X3quv3ACXrjzdLy3aQdqd9anUqZP3fop7Hfoflj58MpU8k+C1sqYzWbx+K8ex/izxzf/i6IPSTyfbDaLz171OH70xfEo6WUvS2v3VVxejBk/nYEjP3Uknp//vMcdxUOWp2FXAxb+YiGO/8rxHdbPKmlau/+k2lkUb2zbhrH9+iEvk8HBpaU4cbD/Hyq2tvX+2++joKgAhb0L96a4qZNEf9y/ohiL/28GrvzCkbjujvT7UBJEzZVSinL55Zc3px84cCB69eqFVatWtZhfXV1dm/mV7YHzvZ2O+C5go73fE9rqHaA12vodoa3oCnN/e8/fe0tbvA929Dm1K8x97UMWuz3LOvt/RNN5RmCSKHLQ27FjB9auXQsA6N27d+Sg9swzz2DRokVYsGAB7rvvPtx3331G/CWXXIKf/vSnqZd9b5l27BDcsWA1tn2we0nz6rfexzsbtjfHr3x9M95YV4MhA3o2/9arZwFO+/DQVLwttm/efe2eZT3RsKtjDlQuZVx651IMOGgA9jtsv726VhLP5/Kbl+K4QwfghHH2sjTUN1rvq7G+sflffQt6FCCvIG+v7q01dD3/68Z/YfS00anKPzsSLvefVDuLYnDPnnh7+3Y0ZrNYsXkzdjWtqIlLa31mU/UmrH9lPR76/kPYVL0JT9z0xF6VOy32tj/uEn2od88C9ChMtw8ljZwrW+NrX/safvWrX7UYd+2112L69OkJl86NfXm+t9HR3gVstDZXpU1bvgO0Rlu+I7QVDfW767Qzz/0dYf7eG1pr40m9D3aWObUrzH2EJAF3wyTYuXMnPvOZz2Dnzp1obGzERRddlJPmpZdeQv/+/ZuPR40ahcWLF+OrX/1q828lJSUYMmQI/vOf/+CII45oi6J7UV7aA9/77OGY/o2/I5vNom/v7ijolsGnv/9P9CoqQK+ibvi//zk+Zxn2p06swokX/g0XnDoaX7v+33hg0Zv46xNv4IKZ23DezIO8y/P2c2/jL9/6CzL5GXzkko/g0WsexbqV6/D+2+/jsFMPQ+WESvz7ln/jzWfexBtPv4FtU7fhoKn+10ujjOUjyvHcvc9hwKgBqF5SjeETh2P0tNFe19rb53PKpANwze3P4dhDB+C+x6tx5pTh+OJpLZdl5/Zd1vsqG16Gx372GJAB8vLzMPmiyfjvr//rdV8uyHo+6jNHYdldy1CzvgYr7l+BMSePwdBjhrZ7W0iT1u6//8j+ibWzKE4dOhSf/9e/8MiaNZg9ciS+9dRTuOsj8Xe9aq3PDD12KIYeu3vHqfu/cz8mfWlSoveRFHvbH6cduz9mXfEYMgHQvSAPcy6f3D43khB7pCgAsN9+++HOO+9sjhs3bhz69g0lMS+88AJOOOGE5h3Bvv3tb7d1cXPY1+Z7Gx3tXcBGa3OVfE+o31aPW265Beedd15i1/d5B0iLtnxHaCt2frDTee5P4/kmgc/83ZForY23+D64ak3s63TWOXVv5749OycT0tkI9nyd7uiMGzcuu3Tp0vYuRiqcf/75uPnmm9u7GJ2eiYcPwaKbp7V3MawMOeceTLv2tObjt194G2ufW4vxZ4/3znPpVUux7KllSRQPADBkzBBM+0lYj2mXsb2e28Jlb+OU7/0Dn/zdrFjnJV3fwO46H/upsXtVz2mUKwl0e4oiiXZmw9oGhwzBommtl3Hi0qVYtKzlPOR9JtJnLrsHy247rfWExJuJFy7FosUdo8+MHj0a//1veh/iOzOdYW5Pk7hzVdJzQfnQcgw5akjs8awjzvtpsLfjyMKFC3HKGafgk7d90il9R5zr02gjbYl3+Tv5PN2Wc2AQBMuy2ey4NrlYOxAEZVng5PYuRgLM6dLPyQeuLCOEEEIIIYQQQgiJzR7PMtLV4McyQtqRQYcMwqBDBrV3Max0hjL6MPnIQehT3nG2Yu+q9exKV7r/rnQvhJD2pb3nqsKehamt+CXA5MmT0WdAn/Yuxl7R2dtIZy8/ISQ9aPBPCCGEEEIIIYQQQkgT/FhGCCGEEEIIIYQQQkgTlGESQgghhBBCCCGEeEHPsq4IV5YRQgghhBBCCCGEENJEkM1m27sMTowbNy67dOnS9i5GKpSVlWHjxo3tXQxCCCGEtAOFhYWora1t72IQQgghabAsm82Oa+9CpEUQ9MsCU9u7GAlwV5d+Tj5QhtkB2LhxIzrLR0tCOipz5szBueeei1deeQVVVVVGXH19Pbp164bvf//7uOKKK9qngG3A5MmTUV9fj0WLFiWS3+zZs7Fw4UJUV1cnkh8hpGWCIOB7AOky2ObjPezN/FJZWYmJEyfijjvuaLUcjY2N+OxnPxv7Gi1xxRVX4Morr8SuXbuQn7/3f0LtqafXX38dlZWVe19AQjooQRC0dxEI8YIyTEIIIS3yve99D/fdd197F4MQQkgXoy3mlzlz5uC2225L9Rp7w0knnYTFixdj4MCB7V0UQshekQXQ2AX+IxquLCOEENIiw4cPb+8iEEII6YJwfgHKy8tRXl7e3sUghBASAVeWEUL2WV5//XV8+tOfRnl5Obp3746xY8fm/Ev36tWrMWvWLAwdOhQ9evTAsGHD8MUvfhGbN29uTnPttdeioKCgRe/B0aNHY8aMGdi5cyfKy8tx8cUX56SZM2cOgiDAqlWrrOV97rnnMHPmTPTr1w89evTAgQceiJ/85Cc56R599FEcccQRKCoqwpgxYzB//vzY9wTslslIaUh1dTWCIMDNN9+Myy+/HAMHDkRJSQlOPvlkrFmzxlp2QgghZA96fgGA1157DdOmTUNRURH69++Pb3zjG7jlllsQBEGLcs158+bhoIMOQs+ePTFu3DjDgmDy5Ml4/PHH8e9//xtBECAIAkyePNlapvXr1+NLX/oShgwZgu7du2PIkCGYNWsWdu7caaR7/fXXcdJJJ6G4uBgHHHAAfvCDH6CxMVyVUVtbi4svvhhjxoxBcXExKioqcPLJJ+fM8XvmfnlvlZWVOPvss633RgghpG3gxzJCSJeioaEB9fX1xn8NDbnbOb/11ls4+uij8dxzz+HnP/85/vrXv+KII47Aaaedhr/+9a/N6d5++20MHjwYv/jFL/D3v/8dl19+Of7xj39g2rRpzWnOPvtsNDQ04O677zausWzZMqxcuRKzZs1C9+7dce655+L3v/99jpH3zTffjA996EMYNWpU5H09/fTTOOaYY/Dqq6/i5z//OR588EF8/etfz/lI9eqrr+LCCy/E17/+ddx7770YOHAgTj/9dKxevTrWPdn4yU9+gtWrV+O2227DL3/5SyxevBif/vSnnc4lhBBCNHV1dfjoRz+K5557DjfddBPmzJmD119/HT/60Y9aTP/EE0/g+uuvxw9/+EPcfffdaGhowPTp07FlyxYAwE033YTDDz8chx56KBYvXozFixfjpptuirz+5s2bceyxx+Luu+/G17/+dTz00EO49tprsWvXLtTV1RlpZ86ciRNOOAHz58/HjBkz8P3vfx+///3vm+N37tyJbdu24bvf/S4efPBB/OY3v0FtbS0mTJiAdevWtVoXrd0bIYSQtoEyTEJIl8L2wUlyxRVXIJvN4vHHH0e/fv0AACeeeCLeeustXH755TjllFMAAMcffzyOP/745vOOPfZYVFVVYdKkSXj22Wdx+OGHY9CgQTjhhBNw++2340tf+lJz2ttvvx2lpaWYPn06AOCLX/wirr/+evzpT3/CrFmzAADPP/88lixZgrlz51rL+81vfhP9+vXDkiVLUFRUBAA44YQTctJt2LAB//rXvzBixAgAwBFHHIGBAwfij3/8I77zne8435ONAw44AHfddVfz8fr163HJJZfg7bffxqBBg6znEkIIIZo5c+bgtddew1NPPYWjjjoKAPDxj38cY8eOxZtvvpmTfuvWrVi+fDlKS0sBABUVFRg/fjweeughfOpTn8Lo0aPRu3dv1NfXY8KECa1e/+c//zlee+01LF261JgDP/nJT+ak/cY3voFzzz0XADBlyhT885//xNy5c5t/69OnD2699dbm9A0NDTjxxBMxYMAAzJ07t8UV5nHujRDSEcn9h3nS+eHKMkJIl+K+++7DM888Y/y3ZMmSnHQLFizAtGnT0KdPH2MV2oknnojnnnsOW7duBbD7X7t//OMfY9SoUejRowe6deuGSZMmAQBeeuml5vxmzZqFJUuW4JVXXgGwewfOefPm4f/9v/+H7t27AwCGDh2KE088ETfffHPzeTfffDPKy8tx6qmnRt7T9u3b8e9//xuf/vSnmz+URTFixIjmD2UA0L9/f/Tv39/4Y8P1nqI46aSTjONDDjkEAFr8g4YQQghpjSVLlmD//fdv/lAG7N5B77TTTmsx/THHHNP8MQnY+3no4Ycfxvjx41v9xyIgdw4cM2ZMznX/+Mc/4uijj0ZJSQny8/PRs2dP1NTUOM2xSd8bIYQQP/ixjBDSpRgzZgzGjRtn/HfkkUfmpHvvvffwhz/8Ad26dTP+u+SSSwCg2X/ssssuwxVXXIGzzz4bDz74IJ5++mnce++9AGDIKU877TT07NmzeSv7hx9+GO+++27zCrI9fOlLX8K///1vrFixAh988AHuuOMOnHvuuSgoKIi8p82bN6OxsRGDBw9u9f779u2b81v37t2Nsrrek+s19nwMdDmXEEII0bzzzjvo379/zu8DBgxoMX3S89DGjRud5tioa8vr3n///TjzzDNx0EEH4a677sJTTz2FZ555BuXl5ZxjCSGkE0EZJiFkn6Rfv36YNGkSvv3tb7cYv0dOOG/ePHzmM5/Bd7/73ea4mpqanPQ9e/bEzJkzceedd+LKK6/EHXfcgWHDhuG4444z0k2bNg2VlZW4+eabcdhhh2Hbtm0477zzrGUtLS1FJpPB2rVr495mi7jeEyGEENIWDBw4EP/9739zfn/33Xfb5PplZWWJzrFVVVWYM2dO82+7du3Cpk2bEsmfEEJI28CVZYSQfZKpU6fi+eefx8EHH5yzEm3cuHHN/5K7fft2dOvWzTj3d7/7XYt5zpo1C6+++ir+/ve/4y9/+UvOqjIAyGQyOP/883H77bfjxhtvxJQpUzB8+HBrWYuKijBx4kTccccd2LFjh+cdh8S5J0IIISRtJkyYgDfffBNPP/1082/ZbBb33HOPd57du3d3njM/9rGP4emnn8Zzzz3nfb09bN++Hfn55nqE22+/vcXNhgghXYEsdnuWdfb/iIYrywgh+yQ/+MEPcNRRR+H444/HV77yFVRWVmLz5s1YsWIFXnvtNdx2220Adn9U+/3vf49DDjkEVVVVuPfee/Hkk0+2mOeUKVMwaNAgfO5zn8P27dtx9tlnt5juc5/7HK644go899xzzn8IXHfddfjQhz6EY445Bt/4xjcwePBgvPbaa1i+fDluuOGGWPce554IIYQQHxYsWICKigrjtz59+uCjH/1oTtrZs2fjmmuuwamnnoof/ehHKC8vx6233orNmzcD2P0PTXEZPXo0brrpJtx9990YPnw4evXqhQMPPLDFtBdffDHuuusuTJkyBd/97ndxyCGHYMOGDfjLX/6C3/72t+jVq5fzdadOnYr58+fj4osvxvTp07Fs2TL86le/QklJSex7IIQQ0n7wYxkhZJ9k//33x9KlS3HFFVfgO9/5DtavX49+/fphzJgxOOecc5rT3XDDDchms/if//kfALtllHPnzjVMiPeQyWTwqU99Ctdddx2OOeYYVFVVtXjt8vJyfOhDH8ILL7zQvOtma4wfPx7//ve/cfnll+OrX/0qdu7ciQMOOKB59604xLknQgghxIevfvWrOb8dfPDBWLFiRc7vBQUFePjhh/HVr34VF1xwAYqLi/GpT30KRx99NC699FL06dMn9vW//e1v46WXXsLnP/951NTU4EMf+hAWLlzYYtqSkhL8+9//xne/+11cffXV2LhxIwYMGIATTjjB6inaEl/4whfw1ltv4bbbbsPNN9+M8ePH4/7778fMmTNj3wMhhJD2I8hms+1dBifGjRuXXbp0aXsXIxWCIEBneQ6EkL1n8+bN2H///XHRRRfhhz/8YXsXhxDSzvA9gJCWmT59OlauXIlXX321vYtCCPEkCIJl2Wx2XHuXIy2CoCQLTG7vYiTAX7r0c/Kh03wsC4JgPYA32rschBCyF+QDKATQH0AfACsA7GrXEhFCCCEdgwHYbZyzE7t9lfs2/fcmgPXtWC5CyN5xQDabLW/vQqQFP5Z1XTqNDLMrdzBCyL5BEASzAfwOu1/8z8tms39u3xIRQgghHYMgCL4M4CsA9geQB+AlAN/KZrP/164FI4QQsk/SaVaWEUIIIYQQQgghhHQUuLKs69JpVpYRQgghhBBCCCHk/7d378G+VnUdx98f8SAXMeUSKKNc5H4URFDRhDgERYJEiIAEgk5l2sQUWGE1qJNONoOYqMV0mUBLBEa0jgqGCigJESAXuUnK0SBEwAv3m3z7Y609++HX/u29z977nL2r92vmmbOeZ61nrfWs88fe893roqXlqcXugNaA1T+HWZIkSZIkSfo/ymCZJElaUEnOTFL92ncB6tt3UN+Z8+6gJEmSNA2DZZIkrWVJVg2CP6PXk0l+mOSGJB9PcmgSt02QJEmS1hJ/+ZYkaWlZB3hev14CHAtcn+ToqrpxUXsmSZKkgZ98EVZuuti9WAD3LnYHlhqDZZIkLa4zgG8P7p8JbEE7Wmm3/mxX4MtJ9qyqO9Zu9yRJkjSVqjpwsfugNcNgmSRJi+ucqrpkqowkRwNn0X5ebw78KfCWtde1uamq44HjF7kbkiRJ0py4Z5kkSUtUVX0S+PDg0RuSLFus/kiSJEn/HxgskyRpafvMIL0R8OLpCidZkeSMJDcl+VGSx5LcmWRlkrfO5rCAJOsk+bUk5ye5PclDSR5NckeSa5Kcm+Q3kmw15v1Zn4aZZL0kv5fk8n6wwUNJvtW/YdeZ+jqo55JBm1vPovxE2VWzKJskv5LkrCS3Jbk/ySNJvpvkvCSHJ8ks6lk/yduSfKGP5SNJHu71XNUPdDg2yeaz+2pJkiStCS7DlCRpafvByP3GUxVK8rPAPwAHTJH9gn4dDPxBkkOr6pYx9WwJfA542RTZW/Zrd+CNwNXAnjN/wtSSbA98Hth+JGv7fr01yYnAN+faxnwl2Q74FLDHFNkv6tfhwBVJDququ8bUs5w2rltPU88etAMdPt3rlCRJ0iIwWCZJ0tI2OsvoodECPcB1GZOBmAeBC4GbgEdpgZiDgBcCOwL/mmSPqlo1Us8zgM8yGSh7oNdzS293w97GnsDO8/gmkmwBXEwLvgE8TgsmXQesC+wN7AN8BPjgfNqaRx93Bb4CbNIf3Ucbj9uAJ4FtgUOATYG9gMv6uP54pJ5nAxfQxh/aiVMX0g52eITJGYOvArZZc18kSZKk2TBYJknS0vaGQfpR4NZhZg9wnc1koOzjwAlV9ZORcsuAPwNOos1O+wQtIDW0L5Mzxa4CDqyq+6bqVJJtgf1W71Oe5qNMBspWAa+rqptH2ng9cC5w4jzamZMkGwLnMRko+3PgPVX16BTl/gZ4Ey14djrw5pHqjmAyUPZ54IiqenhMu7sCyxfiGyRJkjQ37lkmSdISleRY4HcGj84ZDdbQgmkTQa/zq+q40UAZQFU9UVXvBM7vj16bZDRYtvsg/YFxgbJe33eq6m9n9SEjkuzCZBDwSeCQ0UBZb2Ml7ftn3A9sDXgHsENPn1ZVJ08x9lTVQ7Slk1f2R0dPsWfacFzfPS5Q1uu7vqrOnnu3JUmSNF/OLJMkaXEdmWS479czaUsv9wOGG9zfAvzhFO+/Y5A+eRbtfRA4rKcPAb42yFtnkF5/FnXN1TGD9NlVdcM0Zf+O9l3THmywBkyM6yPAe6crWFU/TfJh4B9pY3gQ8LFBkbU1rpIkSVoABsskSVpcvzVD/k9pG76fUFV3DzOSrA+8pt/eXlW3zaK9awfp0c35rxuk35fk5qq6ehZ1rq6fG6Q/M7YUUFWV5Hzg99dAP6bUl5hu3W+vqKr7Z/HatYP0dON6epIjZ/l/JUmSpEXgMkxJkpa2S4GTRgNl3U60zfABtklSM108/YCAzUbquwj4Rk9vBVyV5LokpyY5LMkLFuibdhikr51F+etmLrKgdhukV8xyXG8cvDM6rp8E7ujp3YFbk1yR5P1JDk6yCZIkSVoyDJZJkrS4VlRVqiq0n8tbAPsDX+j5+wFf77OdRs03yLLh8KaqngJeB3xp8HhX2qEAnwbuTHJzkvckGQ0IrY7nDdJj90UbuHcebc3FQo/rA7T/02v6o9BOvvwjYCVwT5Krk5yUZKN5ti1JkqR5chmmJElLRFUVcHe/vpzkdNoG9y8Ezk3ymqp6fPDK8Of4rcDqbrg/1UEA3wcOSPJq2imOP08LmE3su7UT8G7gxCTHVdW0yygXyNre4H84rlfQAoWr4z9HH1TVrX1vuv1pe8btA+xM+7YAL+/XO5O8saoum0vHJUmSNH8GyyRJWrpOAvYFXgrsAZwIfGCQP5yV9XhVnbpQDVfV5cDlAEmeQ9sb7UDgaNoyw42Ac5LsXlU3jq1oaj+izaCDNotrpj3BZjPTqwbpaYNrSTaYoa7huN6zUOPag6EX9Yu+/HJv2my+o2hjugWwMskOVXXPQrQrSZKk1eMyTEmSlqiqeoIWMJvwrpHlj7fRDgAA2CXJcHnjQvbj/qq6sKp+F9gW+LeetQz49TlU+a1BerexpVavzIOD9LNnKPuiGfJvGaRfnWSN/L5UVfdV1Wer6jeB7YHv9Kzn0oKSkiRJWgQGyyRJWsKq6iJgYknec4CTB3k/Bq7qt+sAb14L/XkQ+NDg0U5zqObrg/SvTlcwSWYq0w0PQNhhbKnml2bI/ybw/Z7eFHj9LNqfl36Aw18PHs1lXCVJkrQADJZJkrT0vXeQfnuS5w/uPzJInzLmIIAp9UDUfD0yh3c+MUi/Kcku05Q9HthuFnVeM0gfNq5Qkp/h6bP1/oe+XPKjg0enJdl4Fn2YaGOxxlWSJEkLwGCZJElLXFV9icnZWOsD7xpknz3I2xi4NMn+4+pKsl6SQ5NcTNtQfpj3F0lOTbJ8mve3BP5k8Oirs/+SpqpuAiYOBlhG26NrxynaOgj4GE/fj2ycf2JySepRSQ6dor7nA5+jHZgwk9OB/+jpbYGvJnn5uMJJNkpyTJJrGNljLcmnkpySZJtp3t8FOGHwaLXHVZIkSQsj7Y+nkiRpbUmyCtiq366oqktm8c4vAl/st48B21XVHT1vc+BrtH2vJtxAC7jcRfvj2CbAS4BXMbmn1yuqamIZJ0nOBI7rt98GrgRuBx6gBeJ2om3yv2xQ5mV9aSZj6pny+3rg6mpgYpbcY8BK4HpgXeC1tMMNAE6jHW4AcFZVHT9aX6/zDOBtg0cX0E6zBFgOHAxsALyPyYDfd6tq6zH17QxcDGw+eHwlLTj5g97PzWinhb4SeFYvs1lV3Tuo5xLaqaIAN9KWzn6PNntsU9qebCuY/CPm5cDeVTUR/JMkSdJa5GmYkiT9L1BV/5LkCmAvWlDmj4G397y7k7wCOAM4knYa5Ev7Nc6dtFMphx4fpF/cr3H+HTh8NFA2W1V1V5IVtJle29G+6fB+TXiSFiS7gclg2XROogUM9+v3v9yvoQ8Bp/D02XHj+nhzkj2AvwcO6I9f2a9xbqMF/oaG47q8X+NcCBxtoEySJGnxOLNMkqS1bC4zy/p7B9JmSwE8AexQVatGyiwHjqXNZNqGNiPsSeCHtFMor6TNULu0qp4aefcZtGDcL/R/d6TNqtoAeBi4gzYb7Dzgn2vMLxGzmVk2KLse8NvAEbSN+Z8F/BdtRtdfVtU3kuzb72GamWW9vnWAtwDH0GZ8bUjbrP9y4K+q6tJebqLvY2eWjdS7F3AUsA9tGedzaUGwe2inZ14OXFBVV07x7rL+3n60QNt2tHFdl3aK5/doJ4yeXVVfmakvkiRJWrMMlkmSJEmSJEmdG/xLkiRJkiRJncEySZIkSZIkqTNYJkmSJEmSJHUGyyRJkiRJkqTOYJkkSZIkSZLUGSyTJEmSJEmSOoNlkiRJkiRJUmewTJIkSZIkSeoMlkmSJEmSJEmdwTJJkiRJkiSpM1gmSZIkSZIkdQbLJEmSJEmSpO6/AbTFNz9fJw6gAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkLElEQVR4nO3de5hU1Znv8e8rYQBvk0SMimAaiXfERheOiEY56MTM4IUEj3qME8zxOnG8DScmModtORqNEkPGJIN5kqgxTqJxJBdMJpqhGRGT0SW0FwQJIEbwFjFRiKCI7/yxdzdFdRdUQXX3rurf53nqSdfae+1avR/pN2vtVe9r7o6IiEje7NDTAxAREemMApSIiOSSApSIiOSSApSIiOSSApSIiOTSB3p6AF1h4MCB3tTU1NPDEBGRCjzxxBOvu/vupe0NGaCampqIMfb0MEREpAJm9kJn7VriExGRXFKAEhGRXFKAEhGRXGrIZ1AiItXYsGEDK1euZP369T09lIbWv39/Bg8eTN++fSs6XwFKRHq9lStXsssuu9DU1ISZ9fRwGpK7s3r1alauXMnQoUMr6qMlPhHp9davX89uu+2m4NSFzIzddtutqlmqApSICCg4dYNq77EClIiI5JKeQYmIlPjqGeNrer1/vGfWVs/ZeeedWbt27RbPmT59OhdccAE77rhjrYYGwJw5c5g2bRqzZm19nG2mTp3Kxz/+cU444YSajqVYQwaoV5cv3ew/sBHjTgLgxAsu6akhiYhst+nTp/OZz3ymqgC1ceNG+vTpU/OxXHvttTW/Zikt8YmI5MicOXM4/vjjmThxIgceeCBnn3027s6//Mu/8NJLLzF27FjGjh0LwIMPPsjo0aM5/PDDOf3009tnYE1NTVx77bUcc8wx/PjHP97s+kuXLuWEE07gsMMO4/DDD2fZsmUArF27tsNnQhqIRo0axfDhw7ngggva2ydNmsR9993X/nlJknD44Ydz6KGHsnjx4prcCwUoEZGcWbBgAdOnT+fZZ59l+fLlzJs3j0svvZRBgwbR0tJCS0sLr7/+Otdddx2//vWvmT9/PiEEbrnllvZr9O/fn0ceeYQzzzxzs2ufffbZfP7zn+fJJ5/k0UcfZa+99ir7mQCXXHIJjz/+OM888wzr1q0ruww4cOBA5s+fz8UXX8y0adNqch8qWuKzgu0JTAdGAe8AK4DLgSeBxUB/YA3wTU/8zqzPJOBmYFV2/DZP/GudXPt4YLInPr6o7Q5glid+nxXskuyzhgG7e+KvV/k7iojUlSOPPJLBgwcD0NzczIoVKzjmmGM2O+e3v/0tzz77LGPGjAHg3XffZfTo0e3HzzjjjA7XXbNmDatWrWLChAlAGsS29pktLS3cdNNNvP3227zxxhsccsghnHzyyR2u/alPfQqAI444gvvvv397fv12Ww1QVjADZgJ3euJnZm3NwB7AMk98ZNa2L3C/FWwHT/z2rPs9nvglVrDdgOesYPd54i9WOcZ5wCxgTpX9RETqUr9+/dp/7tOnD++9916Hc9ydE088kR/+8IedXmOnnXYC4Nxzz2XBggUMGjSIH/3oR1V95vr16/n7v/97YowMGTKEa665puz3mNr6lxvvtqhkiW8ssMETn9HW4Im3ApsFGk98OXAlcGnpBTzx1cBSYK9qB+iJL/DEV1TbT0Sk0eyyyy6sWbMGgKOOOop58+axdOlSAN5++22WLFnSoc/tt99Oa2srv/jFL9h1110ZPHgwP/nJTwB45513ePvtt8t+XlswGjhwIGvXrm1/5tRdKlniGw48UeH15gMHljZawfYhXeZ7qky/Y61grUXv9yGdNYmIdLtKtoX3hAsuuIBPfvKT7LXXXrS0tHDHHXdw1lln8c477wBw3XXXsf/++2/xGnfddRcXXnghU6dOpW/fvh02URT74Ac/yPnnn8+hhx5KU1MTo0aNqunvszXWtiOj7AkFuxQY6olfUdLeRPqcaHhR24eAlzzxAUXPoF4DDgDOL1r6K77O8WzhGVRR2wogVPIMasiHP+iXn7hpvVbbzEVkSxYtWsRBBx3U08PoFTq712b2hLuH0nMrmUEtBCZW+NkjgUVF79ueQY0GHrCC/RIYDSTZ8fMqvK6IiPQylTyDmg30s4Kd39ZgBRsFfLT4pGxGNQ24tfQCnvhvgLuAyzzxmZ54c/ZSXXYREenUVgOUJ+7ABOBEK9gyK9hC4BrgJWCYFWyBFWwRcC9wa2fLeJmvAOdawXapZoBWsEutYCuBwcBTVrDvVNNfRETq01afQdUjPYMSkWroGVT3qeYZlDJJiIhILjVkstg99v1YbreJiohIZRoyQImIbI+Hvv2Nml6vkscLPVluA9Lkr+PHj2fixEo3bcPRRx/No48+WvOxtNESn4hInZg+fXrZzA8bN27s5tHQpcEJGnQGVVoPqlJaFhSRnjZnzhyuueYaBg4cyDPPPMMRRxzBD37wA2699db2chsDBw6kpaWFnXfemSuvvJJf/epXfPWrX2X27Nn8/Oc/Z926dRx99NHcdtttnZZZ//73v8+0adMwM0aMGMFdd90FwMMPP8wtt9zCK6+8wk033cTEiRNZu3Ytp556Kn/84x/ZsGED1113HaeeeiqwadZXbszVlngv1ZABSkSkni1YsICFCxcyaNAgxowZ015u45ZbbqGlpYWBAwcC8Oc//5nhw4e3Fw88+OCDmTp1KgDnnHMOs2bN6pB5fOHChVx//fXMmzePgQMH8sYbb7Qfe/nll3nkkUdYvHgxp5xyChMnTqR///7MnDmTXXfdlddff52jjjqKU045pUPw6WzMpRnYq6UlPhGRnGkrfbHDDju0l77oTJ8+ffj0pz/d/r6lpYW/+qu/4tBDD2X27NksXLiwQ5/Zs2czceLE9iD34Q9/uP3Yaaedxg477MDBBx/Mq6++CqRZ06+++mpGjBjBCSecwKpVq9qPbcuYq1HTGVQIYSPwdFHTaUAT8FNgOTAAmBVjnNxJ36bs2PCS9tNJvxh8EHBkjFHZJ0SkoVVSbgPSek5t5dzLlcZ48cUX22dRF110Ee5edumt+HPbviN7991384c//IEnnniCvn370tTU1GnJjUrHXI1az6DWxRibi14rsva5McaRpLn6xocQxlRxzWeATwEP13isIiJ1pbjcRqlypTGGDBlCa2srra2tXHTRRYwbN457772X1atXA2y2xNeZN998k4985CP07duXlpYWXnjhhRr+RlvWrc+gYozrQgitwN5V9FkEEEKHLxmLiHSJvGadKS23UazS0hiHHHIIU6ZM4bjjjqNPnz6MHDmSO+64o+xnnn322Zx88smEEGhububAAztUVOoyNU11VLLE93yMcUII4XhgcoxxfAjhQ8Cvgb+NMb5S0reJTpb4io7Pya6z1SW+0lRHldIuPpHeSamOuk+ty21UY12MsbmT9mNDCE+R1oW6sTQ4iYiIlOquJb652Qxqf+CREMJMoB9wW3Z8KuWr7YqISC/U3c+gloQQbgCuijGeBTS3HcuW+EREesSWdrdJbVT7SKknvqg7A5gcQhgaY3y+5NgBIYSVRe+vAN4jLYK4O/BACKE1xviJbhqriPQC/fv3Z/Xq1ey2224KUl3E3Vm9ejX9+/evuE+vqAdVKW2SEOmdNmzYwMqVKzv9fo/UTv/+/Rk8eDB9+/bdrL3cJomGDFAhBNf3eUVE6oMKFoqISF1RgBIRkVxqyGzm21puo5ZGjDup0/a8fkNdRCRvNIMSEZFcUoASEZFcqmqJL4SwJzAdGAW8A6wALgeeBBYD/YE1wDdjjHdmfSYBNwOrsuO3xRi/1sm1jyfL2VfSfjcQgA3AY8CFMcYN1YxbRETqT8UzqBCCATOBOTHGYTHGg4GrgT2AZTHGkTHGg4AzgStCCOcWdb8ny9E3BpgSQhhSxRjvBg4EDiWtJ3VeFX1FRKROVbPENxbYEGOc0dYQY2wFXiw+Kca4HLgSuLT0AjHG1cBSYK9KPzTG+IsYo8cYnXQGNbiKMYuISJ2qJkANB56o8Nz5pLOezYQQ9iFd5qs6MWwIoS9wDvAf1fYVEZH601WbJEqTWZ0RQlhIWvb96zHGbckn8i3g4Rjj3O0enYiI5F41myQWAhMrPHcksKjo/T0xxktCCKNJE77+EhgNJNnxLT5XCiEkpMliL6xivCIiUseqmUHNBvqFEM5vawghjAI+WnxSVjZjGmkG8s3EGH8D3AVcFmOcGWNszl5lE+eFEM4DPgGcFWN8v4rxiohIHat4BhVj9BDCBGB6COGLwHo2bTMfFkJYwKZt5rfGGG8vc6mvAPNDCF+OMa4pOTaupNzG6aTlOV4AfhNCALg/xnhtpeMWEZH61JDZzLe13EYtKdWRiEhllM1cRETqSkMmi91j34+p+KCISJ3TDEpERHJJAUpERHKpIZf4iutBlduskFfaRCEiktIMSkREckkBSkREcqmiJT4rWMV1oDzxO7M+kyipA+WJd6gDZQU7HpjsiY8varsDmOWJ32cF+y5pPSgDlgCTPPG1Vf6eIiJSZ7Y6g7KCtdeB8sSHeeKb1YHyxEd64u11oKxgm9WB8sSbyepAWcGqqQPV5gpP/DBPfATwe0APaUREeoFKlvjGAhs88fY6UJ54KyV1oDzxsnWgPPGq60AV9X0L2gPlAKDxUl+IiEgHlSzxbXcdKCvY1upAHWsFay16vw/Q/k1bK9jtwN8AzwL/WOFYRESkjtV6k0SHOlBWsPY6UJ54uTpQcz3x5rYX8LPig574ucAg0hIeZ9R4zCIikkOVBKiFwBEVXq9DHShP/BDgWOCrVrA9rWATrGCt2atDcsByPPGNwD3ApyvtIyIi9auSADUb6GcFa68DZQXrUAfKCtZEmTpQnnh7HShPfGbRbKlsHajsmmYF+1jbz8DJpLsGRUSkwW31GZQn7lawCcB0K1iHOlBWsM3qQHniW6wDZQX7sideWgeqHAPutILtmv38JHBxhX1FRKSONXw9KKU6EhHJt3L1oBoyF5/KbYiI1D+lOhIRkVxSgBIRkVxqyCW+4nIbXaE7nmvpWZSI9HaaQYmISC4pQImISC7VQ7mNu0nLbWwAHgMu9MQ3VPl7iohInamHcht3kyagPZQ0m/l523ANERGpM/VQbuMXnrh74k46gxpc7TVERKT+1EW5jewafYFzgMsqHIuIiNSxWm8z76zcxljgAOD8rZTbKH0GVepbwMOe+NyajFRERHKtkgC1EJhY4fU6K7dxiRVsNPCAFeyXwGggyY5X9DzJCpYAuwMXVjgOERGpc7kut5Fd9zzgE8BZnvj7FYxXREQawFYDVLY5YQJwohVsWVYh9xrgJbJyG1awRcC9bL3cxrlWsF2qHOMM0h2Dv8mKHE6tsr+IiNShhi+30RWU6khEpHbKldtQJgkREcmlhkwWq3pQIiL1TzMoERHJJQUoERHJpYZc4uuqelDdsTlie2hjhYg0Es2gREQklxSgREQkl2q6xBdC2Ag8XdR0GtAE/BRYTlouY1aMcXInfZuyY8PLXHsyaX2p3WOMr9dy3CIikj+1fga1LsbYXNyQBZ65McbxIYQBwIIQwswY47xKLxpCGAKcCPy+loMVEZH86tYlvhjjOqAV2LvKrl8DvgA0XtoLERHpVK1nUANCCK3Zz8/HGCcUHwwhfAjYD3i40guGEE4BVsUYnwyhQyYMERFpUF2+xJc5NoTwFGldqBtjjK9UcrEQwo7AFOCvazdEERGpB931Pai2Z1D7A4+EEGYC/YDbsuNT6bza7jBgKNA2exoMzA8hHFlpkBMRkfrUrV/UjTEuCSHcAFwVYzwLaG47lm2mKD3/aeAjReesAIJ28YmINL6eyCQxA5gcQhgaY3y+5NgBIYSVRe+viDH+uBvHJiIiOaF6UFVQqiMRkdorVw+qIXPxqdyGiEj9U6ojERHJJQUoERHJpYZc4uuqchs9rZpnYHoeJSL1TjMoERHJJQUoERHJpdyX2wgh/DNwKvA+8BowKcb4Ui3HLSIi+VPrGdS6GGNz0WtF1j43xjgSGAmMDyGMqeKaN8cYR2Q5/maRpkUSEZEGl/tyGzHGt4re7oRKboiI9Aq5L7eR9bse+DvgTWBsDcYpIiI5l+tyG21ijFOAKSGELwGXAMl2j1RERHIt7+U2Sv0b8AAKUCIiDS/X5Tay9v1ijL/L3p4CLO7qcYqISM/LfbkN4MwQwgGk28xfAC7qpnGKiEgPUrmNOqJURyLSiMqV21AmCRERyaWGTBarelAiIvVPMygREcklBSgREcmlhlzia9R6UN1pSxsytAFDRLqDZlAiIpJLClAiIpJLVS3xhRD2BKYDo4B3gBXA5cCTpBke+gNrgG/GGO/M+kwCbgZWZcdvizF+rZNrHw9MjjGOL2m/JPuMYcDuMcbXqxmziIjUp4pnUCEEA2YCc2KMw2KMBwNXA3sAy2KMI2OMBwFnAleEEM4t6n5PlkR2DGnS1yFVjHEecAJpFgkREeklqlniGwtsiDHOaGuIMbYCLxafFGNcDlwJXFp6gRjjamApsFelHxpjXFBU+FBERHqJagLUcOCJCs+dDxxY2hhC2Id0ma+SzOUiItKLddUmCSt5f0YIYSGwHPh6jHF9F32uiIg0iGo2SSwEJlZ47khgUdH7e2KMl4QQRgMPhBB+CYxmU12n86oYh4iI9ALVzKBmA/1CCOe3NYQQRgEfLT4pq+s0Dbi19AIxxt8AdwGXxRhnxhibs1fclsGLiEjjqngGFWP0EMIEYHoI4YvAejZtMx8WQljApm3mt8YYby9zqa8A80MIX44xrik5Nq6kHtTppFvavwDsCTwVQvhFjFEzLhGRBqd6UNIppToSke5Srh5UQ+biU7kNEZH6p1RHIiKSSwpQIiKSSw25xKdyGx1t6ZlSLen5lIjUimZQIiKSSwpQIiKSSzVZ4rOCbQSeLmo6DWgCfkqa3mgAMMsTn9xJ36bs2PCitmuAtZ74NCvYPwOnAu8DrwGTPPGXajFuERHJr1rNoNZ54s1FrxVZ+1xPfCRp6qPxVrAx23Dtmz3xEZ54MzALmFqbIYuISJ51yxKfJ74OaAX23oa+bxW93QlovG8Wi4hIB7XaxTfACtaa/fy8Jz6h+KAV7EPAfsDDZfoPK+oPaVqjaUX9rwf+DniTtC6ViIg0uFoFqHXZElypY61gTwEHADd64q+U6b+suH/2DKqdJz4FmGIF+xJwCZuyoIuISIPq6u9BzfXEx1vB9gcesYLNBPoBt2XHp1Jd8cJ/Ax5AAUpEpOF1yxd1PfElVrAbgKs88bOA5rZj2S6+sqxg+3niv8vengIs7qpxiohIfnRnJokZwGQr2FBP/Pkq+t1oBTuAdJv5C8BFXTI6ERHJFZXb6CWU6khE8qpcuQ1lkhARkVxqyGSxqgclIlL/NIMSEZFcUoASEZFcasglPtWD6r1GjDtJGzVEGoRmUCIikksKUCIikks1XeILIVRUFyrG2KEuVAihKTs2vKT9ZuBk4F1gGXBujPFPtRy3iIjkT61nUOtijM1FrxVZ+9wYY3tdqBBCNXWhHgKGxxhHAEuAL9V2yCIikkfdusQXY6y6LlSM8cEY43vZ298Cg7tgaCIikjO13sU3IITQmv38fIxxs7pQIYSt1YXams8B92z78EREpF7UOkCtizE2d9J+bAihvS5UjLFcXaiyQghTgPeAu7dviCIiUg+663tQc2OM40MI+wOPhBCqqgsVQvgsMB4YF2NsvOy2IiLSQbd+UTfGuCSEcANwVYxxs7pQ2S6+DkIIJwFXAcfFGN/ujnGKiEjP64lMEjOAySGEoTHG0rpQB4QQVha9vwK4gXS29VAIAeC3MUbVhBIRaXCqByUNRamOROpPuXpQDZmLT+U2RETqn1IdiYhILilAiYhILjXkEp/KbUhXGjHupIrO07Mwke2jGZSIiOSSApSIiORSTZb4rGAVldnwxDuU2bCCNWXHhhe1XQOs9cSnFbVNBm4GdvfEX6/FuEVEJL9q9QxqnSfeXNyQBZ65nvh4K9gAYIEVbKYnPq/ai1vBhgAnAr+vxWBFRCT/umWJzxOvusxGia8BXwAa71vFIiLSqVrNoAZYwVqzn5/3xDcrs2EF21qZjWFF/QH2BKZlfU8BVnniT1rBajRcERHJuy5b4sscawVrL7PhiZcrs7GsuH/2DAor2I7AFOCvazROERGpE139Pai2Z1D7A49YwaoqswEMA4YCbbOnwcB8K9iRWwh2IiLSALrli7qe+BIr2A3AVZ74ZmU2ss0U5fo9DXyk6NwVQNAuPhGRxted34OaAXzcCja0Gz9TRETqlMptiFRJqY5EaqtcuQ1lkhARkVxqyGSxqgclIlL/NIMSEZFcUoASEZFcasglvt5cD6rSB/jSfbRZQmTbaAYlIiK5pAAlIiK5VNUSXwhhT2A6MAp4B1gBXA48CSwG+gNrgG/GGO/M+kwireO0Kjt+W4zxa51c+3hgcoxxfEn7d4EAGLAEmBRjXFvNuEVEpP5UPIMKIRgwE5gTYxwWYzwYuBrYA1gWYxwZYzwIOBO4IoRwblH3e2KMzcAYYEoIYUgVY7wixnhYjHEEaT0oLeiLiPQC1SzxjQU2xBhntDXEGFuBF4tPijEuB64ELi29QIxxNbAU2KvSD40xvgXtAXIAqgklItIrVBOghgNPVHjufODA0sYQwj6ky3xbymDeQQjhduCV7Jq3VtNXRETqU1dtkiitLHhGCGEhsBz4eoxxfTUXizGeCwwCFgFn1GaIIiKSZ9VsklgITKzw3JGkwaTNPTHGS0IIo4EHQgi/BEYDSXb8vK1dMMa4MYRwD/D/gNsrH7aIiNSjamZQs4F+IYTz2xpCCKOAjxafFEJoIi3X3mEpLsb4G+Au4LIY48wYY3P2ip19YAjBQggfa/sZOJl0t6CIiDS4imdQMUYPIUwApocQvgisZ9M282EhhAVs2mZ+a4yx3CznK8D8EMKXY4xrSo6NCyGsLHp/BnBTCGFX0mXDJ4GLKx2ziIjUL9WDajBKdZQ/SnUksmXl6kE1ZC4+ldsQEal/SnUkIiK5pAAlIiK51JBLfHkut6FnRFKOnlWJbE4zKBERySUFKBERyaWaLPFZwTYCTxc1nQY0AT8lTW80AJjliU/upG9Tdmx4Uds1wFpPfJoV7GbSL+i+CywDzvXE/1SLcYuISH7Vaga1zhNvLnqtyNrneuIjSVMfjbeCjdmGaz8EDPfER5DWg/pSbYYsIiJ51i1LfJ74OqAV2Hsb+j7oib+Xvf0tMLiGQxMRkZyq1S6+AVaw1uzn5z3xCcUHrWAfAvYDHi7Tf1hRf4A9SfP5lfoccM/2DVVEROpBrQLUOk+8uZP2Y61gTwEHADd64q+U6b+suH/2DGozVrApwHvA3ds9WhERyb2u/h7UXE98vBVsf+ARK9hMoB9wW3Z8KhUUL7SCfRYYD4zzpAGTB4qISAfd8kVdT3yJFewG4CpP/Cygue1YtouvLCvYScBVwHGe+NtdOU4REcmP7vwe1Azg41awoVX2+wawC/CQFazVCjaj9kMTEZG8UbmNbqZUR1KOUh1Jb1Wu3IYySYiISC41ZLJY1YMSEal/mkGJiEguKUCJiEguNeQS36vLl/LQt7/R08MQEWloXb2xRzMoERHJJQUoERHJpXqoB3U6cA1wEHCkJx5rMWYREcm3LksWmwWetlx8A4AFVrCZnvi8Kq/9DPApNuXvExGRXqAe6kEt8sSfq/mgREQk1+qtHpSIiPQSdVMPSkREepe6qAclIiK9T+7rQYmISO+U+3pQVrAJVrCVwGjgASvYr7pkdCIikisNWw/qezde19PDEBFpaLVKdVSuHlRD5uLbY9+PqfibiEidU6ojERHJJQUoERHJJQUoERHJJQUoERHJJQUoERHJJQUoERHJJQUoERHJJQUoERHJJQUoERHJJQUoERHJpYbMxWdmawBV4d3cQOD1nh5EDum+dKR70jndl45qdU8+6u67lzY2ZC4+4LnOEg/2ZmYWdU860n3pSPekc7ovHXX1PdESn4iI5JIClIiI5FKjBqhv9/QAckj3pHO6Lx3pnnRO96WjLr0nDblJQkRE6l+jzqBERKTOKUCJiEguNVSAMrOTzOw5M1tqZl/s6fH0FDMbYmYtZrbIzBaa2WVZ+4fN7CEz+132vx/q6bF2NzPrY2YLzGxW9l73xOyDZnafmS3O/psZ3dvvi5ldkf3becbMfmhm/XvjPTGz75nZa2b2TFFb2ftgZl/K/v4+Z2af2N7Pb5gAZWZ9gG8CnwQOBs4ys4N7dlQ95j3gH939IOAo4PPZvfgi8J/uvh/wn9n73uYyYFHRe90T+DrwH+5+IHAY6f3ptffFzPYGLgWCuw8H+gBn0jvvyR3ASSVtnd6H7G/MmcAhWZ9vZX+Xt1nDBCjgSGCpuy9393eBHwGn9vCYeoS7v+zu87Of15D+wdmb9H7cmZ12J3Bajwywh5jZYOBvge8UNff2e7Ir8HHguwDu/q67/4lefl9IkxgMMLMPADsCL9EL74m7Pwy8UdJc7j6cCvzI3d9x9+eBpaR/l7dZIwWovYEXi96vzNp6NTNrAkYC/w3s4e4vQxrEgI/04NB6wnTgC8D7RW29/Z7sC/wBuD1b+vyOme1EL74v7r4KmAb8HngZeNPdH6QX35MS5e5Dzf8GN1KAsk7aevUeejPbGfh34HJ3f6unx9OTzGw88Jq7P9HTY8mZDwCHA//q7iOBP9M7lq7Kyp6pnAoMBQYBO5nZZ3p2VHWh5n+DGylArQSGFL0fTDot75XMrC9pcLrb3e/Pml81s72y43sBr/XU+HrAGOAUM1tBuvz7v8zsB/TuewLpv5uV7v7f2fv7SANWb74vJwDPu/sf3H0DcD9wNL37nhQrdx9q/je4kQLU48B+ZjbUzP6C9GHdz3p4TD3CzIz0mcIid7+l6NDPgM9mP38W+Gl3j62nuPuX3H2wuzeR/rcx290/Qy++JwDu/grwopkdkDWNA56ld9+X3wNHmdmO2b+lcaTPcXvzPSlW7j78DDjTzPqZ2VBgP+Cx7fmghsokYWZ/Q/qcoQ/wPXe/vmdH1DPM7BhgLvA0m563XE36HOpeYB/Sf4Snu3vpA9CGZ2bHA5PdfbyZ7UYvvydm1ky6ceQvgOXAuaT/57XX3hczKwBnkO6IXQCcB+xML7snZvZD4HjSshqvAgnwE8rcBzObAnyO9L5d7u6/3K7Pb6QAJSIijaORlvhERKSBKECJiEguKUCJiEguKUCJiEguKUCJiEguKUCJdMLM1nbz5zWZ2f/pzs8s+fwBZvZfWbb3A8zsCTN70sxGZ8c/YGa/NrMdi/r8yMz266kxS+NTgBLpYVlC0iagxwIU6XdX7nf3jcCFpOmOJgKTs+MXA3e5+9tFff6VNLehSJdQgBLZAjM7PptZ3GtmS8zsRjM728weM7OnzWxYdt4dZjbDzOZm543P2vub2e3ZuQvMbGzWPsnMfmxmPwceBG4EjjWz1qwWUVN2rfnZ6+ii8cyxTfWb7s6yHWBmo8zs0Wzm85iZ7ZLNiG42s8fN7Ckzu7DMr3o2mzICbAAGkGbx3mBmHwROBr5f0mcucEIWYEVqTv9hiWzdYcBBpGUHlgPfcfcjLS0E+Q/A5dl5TcBxwDCgxcw+BnwewN0PNbMDgQfNbP/s/NHACHd/ozi7BUC2lHaiu6/PltF+CISs30jSmjsvAfOAMWb2GHAPcIa7P56V0VgH/F/SbNyjzKwfMM/MHszKIZB91l8A+7r7iqzpm6TBqB/pbGoqcL2XfKvf3d83s6XZ/VESXqk5BSiRrXu8rbyAmS0jnfFAmkpqbNF597r7+8DvzGw5cCBwDHArgLsvNrMXgLYA9dAWUuX0Bb6RpSHaWNQH4DF3X5mNp5U0ML4JvOzuj2ef9VZ2/K+BEWY2Mev7l6Q50p4vut5A4E9tb9z996TpbciC7CBgsZndRZoO6f+7+5Ls9Ney4wpQUnMKUCJb907Rz+8XvX+fzf8NleYNczovQdDmz1s4dgVp7rPDSJfi15cZz8ZsDNbJ55O1/4O7/2oLn7UO6F/m2PXAP5FWmL0bWEGaj+3s7Hj/rL9IzekZlEjtnG5mO2TPpfYFngMeJvtjni3t7ZO1l1oD7FL0/i9JZ0TvA+eQJkDeksXAIDMblX3WLtmzoV8BF1tafgUz29/SgoTt3P2PQB8z2yxImdlxwCp3/x3p86j3SQPijkWn7Q8s3MrYRLaJZlAitfMc8F/AHsBF2fOjbwEzzOxp0gzPk9z9nWxfQ7GngPfM7EngDuBbwL+b2elAC1uebeHu75rZGcCtZjaAdFZzAmmW8iZgfraZ4g90Xqr8QdLlyF9De8mWfwL+d3b826QzqA+Q7ujDzPYA1rUtf4rUmrKZi9SAmd0BzHL3+3p6LNvCzEYCV7r7OVX0uQJ4y92/23Ujk95MS3wigrsvIN15uLWlxGJ/Au7smhGJaAYlIiI5pRmUiIjkkgKUiIjkkgKUiIjkkgKUiIjkkgKUiIjk0v8AB4p2N4q6rL0AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -962,263 +444,81 @@ } ], "source": [ - "plot_map_with_regions(preprocessed_data, pca.components_[0,:].reshape(input_shape, input_shape))" + "# Proteins/haptens/peptides/carbohydrates (type_of_antigen: 0/1/2/3)\n", + "type_of_antigen = 3\n", + "compute_region_importance(preprocessed_data, model, type_of_antigen, nanobodies, mode='chain')" ] }, { "cell_type": "markdown", - "id": "45143cac", - "metadata": {}, - "source": [ - "# UMAP" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "071b0173", + "id": "b5d2d210", "metadata": {}, - "outputs": [], "source": [ - "reducer = umap.UMAP(random_state=32, min_dist=0.1, n_neighbors=90) # result for general\n", - "#reducer = umap.UMAP(random_state=32, min_dist=0.15, n_neighbors=16) # result for heavy" + "## Residue importance" ] }, { "cell_type": "code", - "execution_count": 31, - "id": "4d02ad99", + "execution_count": 15, + "id": "276ccfb3", "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "
UMAP(n_neighbors=90, random_state=32)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABA9UlEQVR4nO3deZxdRZn4/89DICYdtokoYAQTUQi7kEJ2aEXZFRXRCAPEhYEZUGQRcRTKYpftBxgQEQygIF9EGBbDviOLVEABIQwKGBy2QNhDFsjz+6Pqdk7fnHv7dvouDf28X69+pe85p+qccwe7pqqeekpUFWOMMWawWaLTD2CMMcaUsQbKGGPMoGQNlDHGmEHJGihjjDGDkjVQxhhjBqUlO/0A73UrrLCCjh07ttOPYYwx71nTpk17SVU/VH3cGqgBGjt2LDHGTj+GMca8Z4nIP8uO2xCfMcaYQckaKGOMMYOSNVDGGGMGJWugjDHGDErWQBljjBmUrIEyxhgzKFkDZYwxZlCyBsoYY8ygZA2UMcaYQanlmSQkSAB2BBS4Qr0en4/fA8wHRgG/V68nlJRdEZisXneTIJOAo4An8+nL1OtkCTIPuDu/y0vAHur1rap6JgHj1evh+fMIYLp6HStB1gfOAeYAXcCR6vVaCbIR8A31enDdF3zhETh5jf5+Lea94NDHO/0ExgxpLe1BSZCVgD2ATYBNgW9JkA/n01ur163yuX1yY1TtB8AvC58vVq/d+WdyPjYrf94CeBXYs5+P+SiwiXrdGpgInAqgXu8H1pEgK/ezPmOMMU3Q6iG+V4DngJH5Zx4wG0C9zsvXdAHPkhqXal8Abm3kRhJkCWB5QPrzgOp1vvqefe//DXigcPo6YLf+1GeMMaY5WjrEp17nSpBbgOmkhuMM9fomgAQZBtwMrA1cQGq8ekiQFYA56vXdwuHdJcgm+fdD1Os0YLQEuQ1YE3gk11WmWLZXwyxBJgBnAKsD3y2cmg58pfE3NsYY0ywtbaAkyDbAZsC4fGiqBLldvd6bG57uPB80FdiO1GPpKU6atyq6uDKPVDBLvXZLkOVy+ZUlyHzgwnz+qOqylTmoSgW5odtcgowB/ixBpqrX1wfw6sYYYwao1UN8w4DX8jDafOB1Uo9neB6SA5hLGvbrFdigXmcCXbmn1Sf1+hpwNHCiep1RmKu6pV653FhVvJ6fZ27+vAbwUCP3N8YY01ytjuK7EdhFgtxN6hE9DFwPfAL4lQRZAAwHpqrXO0vKXw18NtfTJ/U6VYIcI0HWVa8PN/iMX5Ig/wW8S/o+vq9eKw3UjsDedUuvuA4cavtBGWNMszXUQNUKCZcgVwKfBm5XrxML168JnAQsm+8xHdg396IAHge2kiD7Aa+r14tzTyYAWwALSHNSPwMOkiB/AKYBIyXI7aS5rD/kuuZIkDtIw4HzgZ3U63NVr/A0sH3lg3qdU+g5XQEcAKwFnKter8rvsBOwinp9tu6XY2Hm728Wam5MxzQ6xFcrJPwA4BvFCyXIMsAfgWPU61bqdTPgN1Q1hhJkKWAScEk+dBKwFLClet2SFPI9C/gv4FH1+hn1ugmpR3O8BNmsUN22OUz8LuDABt+pYj7wdeDQ4kH1+kfg3hxAYYwxps0aaqBqhYSr12dKLt8ZuFe93lsof6t6fbvqus8AD6jXBXk+ahLwE/W6IJeZqV4XGTtTr0+T1irtVXLv0fQ/zHyBev2/GqevIq3jMsYY02aNDvHVDQmvsgowo4Fq1wOeyL+vALylXmc38jzAP4EvFj7fIEE+Rmo4P1+jzGdzOHrF6AbuM53UgzPGGNNmDTVQDYSEF80ANmig2mIY+UxglATparCRWpXejeC2+d/LgdUlyKvADfnYOaRe3y1V82TPN3AfY4wxHdLnEF8jIeFVrgE2LiyKRYJsJUFGVl33ECmMm5zJYQpwTOVeEmQFCeJKnmdV4GDSvFYP9ToHOAz4/9TrvEKY+cV9vWMdFmZujDEd0kgPahw1QsIlyBnA5sAYCXITKVLvHzkC7iQJsiypEZwO3FNV763A0RJkiTzvdBgpiu9OCfIuqTH8Yb52LQlyKwvTJR2hXv9U/aDq9REJ8qwE2Vm9XtPolyBBLiUNX47KjeIuOeHsLsCZdQtbmLkxxrSEqFYna2jjzYP8J/CGev1txx6iBgnyUeDk4rBgGbfKCI0HfqxNT2U6wkLNjWkpEZmmqouMmDV9oa5zrmdtVIxxYuH4RBaGgJ8ZY/ytev1FPjcSeAy4JMZYncoI59yKwOQY427OuUlUbbsRY5zsnFtk240Y41tV9UwCxte4R69nmHD1hFeAZd3VbokY44LF/T6MMcYsnlakOlpkbZRzbnngSOBzwDbAj5xzHyxccijwYJ06F9l2I8bYnX96tt3Inxd3241ez5Abtz8DX+5nPcYYY5qg6Q1UjLFsbdTGwD0xxrdijLOB20lJZHHOjcnnr6xTbcPbbjjn+r3tRp1nsHVQxhjTIe3a8n00aW+oildIa58AjgOOqFXQObcCMCfG2GvbDefcbfmnkulhtHPuNtL+U8tQe9uNMrWeYTppvZYxxpg2a/mW79nLpM0AK0YDLznnNgbejTE+6Jxbv0bZ0m03SuaRZsUYu51zPdtuOOfKtt3opY9n6FwEiTHGDHHtaqDuA05zzo0i/dHfCvgx8O/AJ5xz1wFjgFHOuUdjjJVGhRjjTOdcl3NuWFUvqlSM8TXn3NHAiTHGXYHuyrkcJFFt4zrPMJ6+1kFZmLkxxrREK6L4etZGOeduAvaNMf7DOXcUKV0SwPExxlmkXWzPyOUmkSLsLiyptl/bbsQYpzrnjnHOrRtjrN52Y6JzrhLOOCvG+LU6z7AL8LtG7mmMMaa5mt5AxRi/V+PUmqQNDJWUrw8A59xapEzmXaTM4mWmkIbtPpo/7+6cq2SquCxH8lXmoCph5ltWh5lni4SyO+d6bSeSj32IlIdv5ZovC7bdxlBha6GMabu2DPE551YiRcNV/pJPd86dRwqW+AWwa4zxpTpVTMo/FTXnoPL9zieFmZ/d4CNuHWOc55xbKj/blBjjC865s4AvAX+oX9wYY0yztSuK7xVSdN1IFqYrmk3aX+oN4Bzn3O3OuW/VKN/SMPMYY+l2IliYuTHGdExbGqgY41zgFlLY9uPAhTHGN0lBCRsB+5G2Vz/AOddrvKwdYebOuWG57N9JAR2VBsvCzI0xpkPaNcS3DWlh7rh8aKpz7nZS+Pn9McYX83V3khqE4oB/S8PMAXLj1+2cq95OxMLMjTGmQ9oVZj4MeC3GOB/AOfc6aS3UXcC4nAdvLjCBFBDRo9Vh5s654cA7Od9e9XYiFmZujDEd0q45qBuBF5xzd+eIuZeB62OMr5Ny9N1ESvR6bYzxLyXlK2HmDYkxTiU1fOuWnJ7onLsp/1xK6tXdlof4/gTcG2O8M19rYebGGNMhA95uQ4KsQe9ErpsDG+S9mXqFb6vXE3KZ8cCJpGAGJQVR/FC9Pl5VtwBXjZs27qDlXlzujL/s8JctgAfy6b+r1+/kbdy7SD2fpYB91OujVfWMBS5Rr8VNFO8FJqrXp8uec8w3xnxomZeW+dvrH3p95WcvfrZmz8222xhCLNTcmJZo2XYbuVHphp6G51L1+kg+vbV6nSdBlgKmS5ApwNvAH4Hd1et9udyqpMah2k7AX5+86sm/S5D/IjUy3SXX7aVep0uQSaQeWd09nEos8pz6O31BgliYuTHGdEiz56C+SWEOSb2WhW9/Bbi30jjl62bUqG934LR+3H80/Qgv7+M5IYWZ/wRroIwxpu2a1kBJkGHA10lh48VjN5O2U7+AFL69CvBM4ZrLgVVJQ2s/q6p2PeCJwue18pAewG/U63n59wslyHKkNVbb1HjEYlmAtfp4TrAwc2OM6Zhm9qC2Bx5QrzMrB9Tru0C3BCmGb88APlW45it5aG58SZ3VIeaP1hriI61hOhtwwBO54RtN6gVdXl02z0HVe04LMzfGmA5qZhTfJArDexJkuASp1F8M3/4jsIkE2axQtlZD+RAL0yPVpV7fAX4EHCVBPqBev6Jeu9XrqfXK1XlOaCTM3BhjTEs0pQclQUYDn6b3Vu/jgF9JkAXAcGCqer0zX78TcKIEWR54k9QwhJKqLwa+SMru0Cf1OlOCTAX2ASb3dX1fz0kjYea2DsoYY1piwGHmzrnVgXNJw3HDgWNjjFflc4GUwkiBK2KMx5eUXxGYHGPcLX/eCfghoIp+4NHuR5eZs8yczSZcPeFKUhDDnPzvrYCPMc52zv2UFFDxLLA0cFyM8fKSez1N2k5jTuHYTqSQ99WAT8UYpwOsv9n6//3YVo/tOn/k/I3U64Ka729h5kOHhZkb0xK1wsybMcQ3C/hyjHFLUlLXM6FXBvNNgE2BbznnPlxS/gfkdVTOuY1IjcXXYoxbC7Lp2retfYh6fS1fu1eMcStS2qSlgVMK9Zyas5l/FTirH89/Dymw497iwaXmLXXGejetN69e42SMMaZ1BtxAxRhfijG+nD++DVQWtdbKYF6tmKn8O8DpMcbnc90aY7yu5J7zgEOAPZ1z1WHl/Qo1jzHOijEu8lw5me1M55xF8RljTAc0LUgiNxS/AI6GuhnMi2WqM5WvQory61NuVN4CPpQPHeycm0bK7/edgb1NDwszN8aYDmlmFN9k4KkY43mwSAbzscDnCrvgVlSHkc8AGprQcc51kbJPVMLaT40xTgD2J2WgwDl3ZN6So2wbeWOMMYNYUxoo59zppJ7QEYXDPRnMcxbzSgbzHjHGmUCXc25YPnQucGCev8I5J8657UrutxRpruqiGGOvKI8Y4xRgA+fcejHGo2KM3THGvRbz1dbAwsyNMaYjBhxm7pz7HKnXclfOCA6wMymD+S7OubtJPaWHgetLqqhkKr8xxhidc4cBlzrnlJT89dJCuQudc3NJc1p3kKL9ypxAysn31ZJzU51zlcCH04Dn8/XrA792zt0YY/TOuaWBlWKMtt2GMcZ0wIAbqBjjTXXq2V+CXElaI/XPnLEBgMrx4Z8dft+6t6y7L6lBI8Z4DXBNvmZF0tDhadO+MO180qaDT5LWTj2pXt+SIPP4AncDS0qQ7YE9NOoVwBWFe00CxmvUsfnzCGC6er1GgqwCLEdqRC9Ur2cDvLXcW8fOGjPr+T6/gBcegZMbWkts3g8s1NyYtmnHflAH0HsBb6/j80bNmxNjLOvpQCEEPbs4Z4foVq+Vhbiz8uctSEle9+zn880EdqAqKe1jNz924IurvThSgqzcz/qMMcY0QcsbKPX6TH+OVymGoNeV0xUtTz+zmavXOer1pRqnrwN26099xhhjmqNdW773mwRZAZhTHBYEdpcglUjAQ9TrNGB0zlK+JvAIKRt5mWLZRhvm6aTtQYwxxrTZoG2gWDQEHdIQ3+FVx2ap1+683cZ1wMoSZD5QCS0/qrpsZQ6qRc9tjDGmCdoxB7VY8rYdXXmvpkauf420SPhE9TqjMFd1ywAew8LMjTGmQ1reg5IgZwCbA2MkyE3Avur1H7WOVxXvCUFv5F7qdaoEOUaCrKteH27w+ZYCrgU+DsyVINur1y/l0zsCe9etwMLMjTGmJQaczbyVJMhKwGT1WivKr5X33gjYXb0eVO86y2Y+RFm4uTFNUyubeTt6UPOAu/PHW9TrUfn4RODAfPxM9frbkuKafyprmSrroAAuU6+TC/UvCbwE7KFe3ypW0rMOqmoOSr2OlSBfIS34nQssIPXkKn99Bm/rbYwx73PtCJKYVb1Ne96o8EjSNhcK3C9BrlWvL1eVLVsHVRokkes9n7QO6ux+PN+DwJbqdZ4E2Rk4HviKer1fghwrQVZWr8/1oz5jjDFN0I4gieUkyG0S5FoJskE+tjFwj3p9S73OBm4nJZat1o51UE+p13n547z8U2HroIwxpkPa0YNaNW/FviFwqQRZg5Q09pXCNa8AKxQLtXsdVO7VHQdMKhy2dVDGGNMhLW+gcrg46vUBCfIq8BHgZeDfCpeNJs0fFbVtHZQEWQa4EjhSvT7S/7c0xhjTbC1toPIf/tnq9d2clPXDwAvAG8BpEmQUqRHaCvhxsWzudXVJkGFVvahS6vU1CVJZB7Ur0F14jkl1nnFpUnLa09Xr1KrTfa+DsjBzY4xpiVbPQa0DRAlyB2nbjG+r1/l5Ue1RwM2kXXePV6+zSspX1kE1JDcw4yTIuv14xsOBtYHv5bmycwvndgQu60ddxhhjmqRt66Ccc4H0B1+BK2KMxzvn1qB3lN7mwAYxxkdg4TqoCVdP2B+YHGPczTk3iapw8xjjZOfcIuHmMcZe4ea57PgY4+FVx+8B5pN26P19jPGEEYeN2HLUK6MuHPfguNVijAuowdZBDWG2FsqYpujYOiiAvEPuHqQhM4DpzrnzYoyPk4finHPjgUsrjROAen0e+Kq72p1MVbh5dSMDzIoxVuo6n/6Fm28dY5yXd+qd7pybMifOudM5dwHwZeAPjb+tMcaYZmhXLr5XgOdIO+GOJIVyz6665pvAlBrlGw43d871O9w8xlgJLe8CniXtKwVwFalhNcYY02Zt6UHFGOc6524hRc4JcEaM8c3KeefcMODrpIW7vTjnVgDmxBh7hZs753rCzWOM04DRecv5vsLNF5HvfzNpLuoCFq6Fmg6s12g9xhhjmqddQ3zbkBbijsuHpjrnbo8x3ps/bw88EGOcWVK8NNy81hCfc64n3Nw5VxZuvojc+HU750YAU4Htch2W6sgYYzqkXftBDQNeizHOB3DOvU5a+1QxiRrDezHGmc65LufcsKpeVKkY42vOuaOBE2OMvcLNc5BEL8654cA7ORBiLmnosRJcMR4LMzfGmI5oVwN1I7CLc+5uUo/oYeB6AOfcaODTwDfqlO/XthsxxqnOuWOcc+vGGKu33ZjonKtEi8wCjgB+5ZxbAAwHpsYY78zndwF+18g9jTHGNFfTwswlyJWkhuZ29TqxcLw0a3mtLOdVda5ICjP/7pxRc67+22f/tiJNzmZeuGZdUuLYndXrdV2HdG059oGxF3a90WVh5qachZkb0xTtCDM/AFgN2K/npvWzli+S5bzED4BfxhiflyBnUmhkCgaazbziGNKiYQBmnzL7TgnyBLAiKQLRGGNMGzUtzFy9PlNyuF7W8rIs59Vans08l/0S8AApxLzIspkbY0yHtHoOql7W8kWynKvXnqG0dmUzlyDDgYOAHYCzqspYNnNjjOmQVjdQNbOW18hy/q/Cte3KZv594NfqdbaEfne+jDHGtEirG6j7KMlaXifLeY92ZTMH1gdWkCDfANYF1pEgz6vXv2DZzI0xpmOaNgclQc4ATgG6JchNEmS1OlnLS7Ocl1Tb8mzm6nUP9bqdet2eFMb+k9w4gWUzN8aYjmlmD+pjpGG624ph5qT1TR8jhZ//FkC93iNBfsbC8POVatQ5hTRs99H8uTiPdJl6nczCOahKmPmW1WHmjciN2r8Dl+TPewOj1Wt14ERvLzwCJ69R9xLzPmah5sa0TDOTxR5A+WLbRY4Xws8/B2wD/EiCfLCk7CR6b8F+sXrtzj+T87FZ+fMWpCSvey7m8/cKM1evFwAvS5CVF7M+Y4wxA9DqMPPFCT8vsjBzY4wZotqV6qhavfBzwMLMjTFmqOtUA1Uz/LzAwsyNMWYIa9eGhdXuAzaVIKMkSBcp/PxPxQvyOqkuCTKskQpzxGAlzHxGYa7qlj6Krk/qXV0HfB44RoJ8Kp/rO8zcGGNMSzStB5XDzDcHxkiQm4B91es/6hyvhJ/DwvDzav3KYq5ep0qQYyTIuuq1Oot5rTI9O+bmXH6XVIWZ7123AlsHZYwxLdFnAyVB7gHmA6OA36vXE/LxXtnL1ev3JMhYUo9jGHCRBJkLnKFev1dS9f8jbae+h3p9XYKsCZwELJufazop0u8GCbIkKYBhlAS5BDhcvT4tQbqBJfIc1NLAtep1w5J7dZPDxwufb8vvsRNwIinR7afU6/R8/HTSYmILMze1WZi5MS3TyBDf1up1K2ATYJ+8BQbUDit/VL1+Rr1uQup9HC9ByiL0dgL+mhunZYA/Aseo163U62bAb0hzVZcCp+bhuo3ydVdKkKVyPbfkbOabAN+QIOMbefGCe0jZ1u+tOv5jUoYLY4wxHdBnA6Ve5+Vfu0i9mFfz8dKw8qqyTwOnAnuVnN4duCr/vjNwr3rtaSTU663q9e2SOn8DvA1MqDrVBYygn2Hm6nVWDnWvPv4mMFOCrNef+owxxjRHI0N8w0hzRWuTQrjn1S+xiH8CXyw5vh7wRP59FWBGP+tcFXgR+KwEuRPYkDSc+FiNMidKkEoE4GjSuqe+TM/PaYESxhjTZn02UHkdUncOzZ4KbEcK527UqpQ3PsUw8hlArT2h6tU5gjTEN1GCrAOcm4f+dgAOztdW1jEdpl6vA5Ag2wMTMcYYM2jVHeKTIMNzhgaAucBsoOE8dxJkVVJD8ZuS0w+RwrgBrgE2LiykRYJsJUFGltS5OykgYlrxuHp9BLgD2E+9XlUIMy+LDmyUhZkbY0yH9NWDGgf8SoIsAIYDU9XrnVAeVg68C6wlQW4FRpKGA49Qr38qqfti0tDffer1zRxNd5IEWZbUcE4nBTAAHJy3w+gCngJ2Ua/zSxbWngrcJUHOUa9zG/kCJIgDTiCth/q1BLlRvXoJsjSwknq17TaMMaYD6jZQ6vVx0iLasnNloeOQwsR7yT2hx0hrjCrzQOsA/yVBPktaXHsFKViiWG5FYG31unre0+koUg/u1xLkMvU6WYLcUJXNfP2Sxuk2Umj5dYXPZ+ffVwWWAR4GFpAaToBjgedrvONCFmZuylj4uTED1q5MEocCD1Y+SJD1SWHmHyQtxA2551TtB8AvC59bkc38QdIWHVsBJwPHA6jXA4GRls3cGGM6o+UNlAQZQ8pefmXh8BpAVK8Lcij5U6RFv9Vans1cvT5VCKWfR+8oRctmbowxHdKOZLHHAUeQ5ngqHiLtAdVFCnjYmIVDa0D7spkX7rd8ftZJhcOWzdwYYzqkpQ2UBNkYeFe9PpiH9QBQr9MlyJmkHspMUkTe/1UXpz3ZzMmZLK4EjszRgMYYYzqs1UN8GwOfyJnCDwG+JkH2AlCv5+Z5n/8gRef1SjXUrmzmOVrvGuB09Tq16rSFmRtjTIe0tAelXs8AzgDIUXjj1euF+fO1wAeAOcAB6vWdkipans0cOJyUJeN7EuR7wN/V63fyOctmbowxHSKq1aNog4cEWQmYrF6/2oF7bwTsrl4PqnedW2WExgM/1qanMu9pFnpuTCkRmaaqrvp4q+egVgfOJc0nDQeOVa9X5XO9tuuoUYXmn0oP7CjgyXyusg5qHnA3C9dB7aFee2W7KPTees1BqdexEmQV4HLgk6RtPM4uFB28rbcxxrzPtXoOahbwZfW6JSlk/MzCuVrbdRS1Yx3UTFLuvtOKB9Xr/cA6tg7KGGM6o6UNlHp9Sb2+nD++TUqFVDnX53YdtGcd1Bz1+lKN07YOyhhjOqQd66CQIAL8ghRl12iZtq6DqsHWQRljTIe0pYECJgNPqdfz+lGmbeugjDHGDD4tb6AkyOmkntAR/SmnXmdKkC4JMqyqF1Xr+tckSGUd1K6k5LCVZ5jUz8eu6HsdlIWZG2NMS7R0DkqCfA7YH5ggQW7LP0vnc2cAp5A2Q7xJgqxWUkVlHVRD8kLbcRJk3X4841J5u5C9gAMlyP8UTu8IXNZoXcYYY5pnQD0oCfIjYBfgHeCUvGUGEmQt4CRShohb1Ou2JcWPJa1xmpDL7CRBppCG9T4AXJrreFiCPEVa0NslQU4CvHqdLUF+Crye56CWBo5TrxuW3OunwPiqzz/Nv59G2pn3BVLS2m/l57mRNCz5bN0vwbbbMANha6OMqWmxe1CFLTM2Az5P3jIjb7n+C2Bv9fqZGo0TFELI86LYE4GvqdetgU2BR9Xr88DfgL1yWqTNSA3RKYV6TlWv3cBXgbMW41UOUq9bqNdNSVGGu+Tjx5J2ETbGGNMBAxniq7VlxibAG8A5EuR2CfKtGuWLIeTfIeXCex5Avap6va66QN4W4xBgzxwZWDSafoaYF+qshKkvRdpYEdL28TuU3McYY0wbDKSBegjYOgcyfJiUGPaDwBhgI2A/0hzOARKk1xhYSQj5KsCMRm6qXmeTdtX9UD50sASZBtxFauhquaEyDwbsXvU8PweeIDVyz+T7LCAtNB7TyHMZY4xprsVuoNTrdFJmiOtIQ3qVLTNeBu5Xry/mlEN3AutVFa8OIZ8BNJTQLu8hNYqUAQLSEN8EUjDGTvmaI3NjdGGh6LaVLBRU7T2lXr8LfAK4H/hhI89hjDGmtQYUJKFezwXOlSAfJEW73UsKjBgnQUaS5nAmAFOqylWHkJ8LXChBrlSvz+dhtW3V6/XFcnl+60TgIvWqEqRY5xQJsp8EWU+9HsXC9U91SZAROZuESpBXSQETlSG/0UD9IAkLMzfGmJYYaBRf2ZYZr0uQI4GbgGHA1er1LyXFe7bSUK9RghwGXCpBlDQXdClQaaAulCBzgZGkuaFavZwTgCNJARONulKCfIDUq3sG2Dcf3wq4Pg/1GWOMabOBLtS9gxT1NhxYnRRxB/A7Uobx+aRGqswU0vDgR/Pn4pDfEiw6/Fg5/27VtQdLkIksDDPv79YcfydtRz8s37MyL3YhjaQ5sjBz0wwWbm7MIpoeZp5PVzKMd+fhtjKT8k/NMPPCtZ0IM9+LvjYrNMYY0zKtCDMHWC4HKVwrQTaoUd7CzI0xxtTUijBzgFVzr+bHpHmlXvexMHNjjDF9aUWYOep1Zv73AdImgh+pKm5h5sYYY+oaULJY9Xpunhv6D1J4+b0SZBkJMgwgb6f+YVKeu2K5maS8epUAinNJiVpXyuVEgmxXfb/qMPOqOqcAG1TCzHNjtFdf75C33iDX9yqpd9Z4mLkxxpiWaHqYuQRZBzhLgrxBmtP5tnqdX1L8/RFmbuugjDGmJUR7d0QWi3OuV1bzGOMVhXMjSYEHl8QYezYbzL2lyROunrA/MDnGuFu+fidSA9ST1TzGeKpz7jZSL21O/vdWwMcYZzvnfkqaV3qWHG4eY7y85DmfBsbHGOcUjn0L2AeYlw99M8b4ZNfBXX8Z89iYM5649olf1333VUZoPLCh0Ulj6rNQczNEicg0VXXVxwe8H5RzbpFwc+fcsoVLDgUerC6nXp/Pa5Z6spo753rCzWOMpeHmMcaa4eYxxm76H27+2xjjpvl+F+bnYa071tpiuZnL7dOPeowxxjRRMzYsXAOIMcYFMcZe4ebOuTGk6L4r65RfJNw8xvg8qVKNMS4Sbh5j7Ak3d84NKNw811Xxb+TGNMb4JjDTOVedR9AYY0wbNKOBegjY2jnX5ZyrDjc/Dqi51btzbgVgToyx3+HmMcZFws2dc42Em5c9x7edcw+QMrDfVzg1nUUT3RpjjGmDATdQMcbScHPn3MbAuzHGRYb3ChY73Nw5t0i4eYyxV7i5c+5I59xtzrkLa1RTeYfzYowb5rK/bOT+xhhjWqsZPShijOfmuaGecHNST+oTzrnrSMNxX3PO7VVVbibQ5ZzrFW7unFsJwDknzrlFws2dcz3h5jHGXlEeMcYpwAbOufVijEfFGLtjjDXDzZ1zIwofZ5HDzLM1SD1EY4wxbTbQZLEAOOd6hZvHGN8Bzsg/OOcmkaLnynoyPeHmMcbonDsMuNQ5Vxpu7pwbaLj5VOdcJXT8NGDL3NtbQIpC3D8/89LASjHG+g2UhZkbY0xLNKWBijHuUOucBLmHLzAfGCVBXlWvJ+TjPwJ2Gb7NcFn9ntU3BW7MdV0DXJOvWRGYDJw27QvTzift8fQk8CbwpHp9S4LM4wvcDSwpQbYH9tCoVwBXFJ5hEjBeo47Nn0cA09XrNRJkONBN2rtqCfKQ41vLvXXsrDGznu/z5S2buWkmCzU3pkdThvj6sHXONrEJsI8EWbGYCX1e17zuR7Z5ZOlCJvSinhD07OJClvTJ+Vglc/oWpEwQe/bz+R4EtszPeDJwPMBjNz924IurvThSgqzcz/qMMcY0QcsbqEq2cNLc1LOkRqReJvSiYgh6XTk10fL0M6O5en2q8IzzWLhgF1Lgx279qc8YY0xzNGWIr56cb+9mYG3gAlID8BDwo5z4dWlSQMXFVeWqM54D7C5BNsm/H6JepwGjc4byNYFH8j3KFMsu0jBLkOVJYfGTCoen08imhcYYY5qu5Q1UbmC687zPVGA79XqdBKmEps+kkAm9oDoEHdIQ3+FVx2ap124Jslyub2UJMp+UFQLSvFWvspU5qJ4bBVmGtJj4SPX6yABe1xhjTJO0dIhPggwv7AU1F6gsri3NhF4sW5LxvC71+hpwNHCiep1RmKu6pY9nXJoUlHG6ep1addrCzI0xpkNa3YMaB/xKgiwAhgNT1eudUJ4JvaR8Twh6IzdTr1MlyDESZF31+nCDz3g4afjxexLke8Df1WslE8WO9LXtu4WZG2NMSzQlm3mrVDKe56Sy7b73RsDu6vWgetdZNnPTVBZmboagWtnM2xEksRZwEmkYb7563TYfnwfcnS+7Rb0eVVJc809lLVNlHRTAZep1cqGeJYGXgD3UazEbxMJ1UFVzUOp1bA55P4eF23gcqV6vLdzfGGNMB7S0gco74P4C2FW9vlR1elbefr2esnVQpUES+X7nk9ZBnd2Px3wU2ES9qgRZjTQfda16vV+CHCtBVlavz/WjPmOMMU3Q6nVQmwBvAOdIkNslyLcK55aTILdJkGslyAY1yrdjHdT8wvbx/wY8UDht66CMMaZDWj3ENwbYCFiXFL13pwT5k3p9HFhVvc6UIBuStnpfo7i9ejvXQUmQCaS8gasD3y2csnVQxhjTIa1uoF4G7levLwJIkDtJ+ys9nsPIUa8PSJBXgY8A/yqUbds6qNzQbS5BxgB/liBT1evrA3lxY4wxA9PqBuo+YJwEGUlaBzUBmJIXxs5Wr+9KkFWADwMvFAvm3lWXBBlW1YsqpV5fkyCVdVC7khLAAj1BEqUkyAj1Oid/fD0/59z8ue91UBZmbowxLdHSOajcCzkSuIkUaXetev0LsA4QJcgdpO00vq1e55dUUVkH1ej9ppIaxHX78ZhfkiB3SJBbSZkuvq9eKw3UjsBl/ajLGGNMk/TZgyoLB5cgq5M2FxTSAtxj1etVEmQsqccxjbRn01zgDPW6ebFO9XpPnnu6ihQW/roEWZMUjr5sfq7ppMbtBgmyJCnR7CgJcglwuHp9WoJ0A0vkOailSQ3ghiWv0Q1cUvX5tvz7WsCI/KzPkRpTJMjppF7es3W/INtuw7SSrYsyQ1gjQ3xl4eCzgC+r15clyIdJDdJV+dyj6vUzALnBukGCPKde766qYyfgr7lxWgb4I2lh7L257GdIc1iXAs+r17Pz8T2BKyVIZVHXLep1Ym7EpkuQi9TrdBp3sXo9Mtd9MvAdUsDEj2kwg4Uxxpjma2SIb5FwcPX6knp9OZ9/GyidI1KvTwOnAmVbru/OwkZtZ+DeSuOUy96at+KorvM3+Z4Tqk51kXpC/Q0zLzZmPdttqNc3gZkSZL3+1GeMMaY5GmmgVs09qB+TwsF7ykgQIS3EPbpO+X8Cq5YcXw94Iv++CjCjkQcuqfOzOTrwOeA36vWxGmVOzA3tbcCJ1Sdz47s9vcPUp+fnNMYY02Z9DvH1EQ4+GXhKvZ5Xp4pVKW98imHkM4Bai3Xr1TmChUN86wDn5uwVOwAH52sr65gOU6/XAeSt4Sf2PEiQtYHzgK+U9dqMMca0X90Gql44eA4imKNej6hTflVSQ/GtktMPkcK47yOlFzpOgmxSmIPaCri/pM7dSQER04Ce4Av1+kiOCtxPvf6chcOHSKg96peDMy4CvpaHJIvWAH5bszBYmLkxxrRIXz2odYCzJMgbwFLkcHAJ8jlgf+CuPGQGaR4JYK0csj2SNJ9zhHr9U0ndFwNfBO5Tr29KkJ2AkyTIsqShx+nAPfnagyXIN0jzTE8Bu+TnqK7z1PxM5xRCxfvyK1KDd06ur5KEdmlgJfVq+0EZY0wHNH27DefclcCngdtjjBMLxycCB+aPZ077wrSLgKs/ce8njlpu5nKenO08xrhtSZ0rApNjjLs55yZRldU8xjjZObdIVvMY41tV9UwCxscYq7NR4JwbCTwGXBJjPHzYEcP+e5W/rbLrCjNW2CjGuKD6+p5ytt2GGUwsLN28B7Vzu40DgNWA/SoHnHPLk9Y0bUSad7p/wtUTrgW+TFp3tGuMsTrbedEiWc1LGplZMcbufL/z6X9W80OBBysf3j363eOcc8PzM/6hH/UYY4xpgqZnkogxPlNyeGPgnhjjWzHG2cDtwGYUsp075253zpXNVUE/spo75/qd1dw5NyY/45VVp64C9mi0HmOMMc3T6u02KkYDrxQ+vwKswMJs5/uR0god4JzrlZbBObcCMCfG2CuruXPutvxTWQ812jl3GyncfBlqZzUvcxxQFuxhYebGGNMhLd9RN3uZtNdSxWjSPNEc4P4Y44sAzrmebOeFa0uzmtca4nPO9WQ1d86VZTXvxTm3MfBujPFB59z6VadtR11jjOmQdjVQ9wGnOedGkf7ob0Va+PsOMC4HKPRkOy8WjDHOdM51OeeGVfWiSsUYX3POHQ2cGGPsldU8B0lU2xj4hHPuOlKPbpRz7tEY44XAeCybuTHGdETTGyjn3Bmk9UljnHM3AfvGGP/hnDsKuDlfdnyMcVa+vpLtfBhwdYzxLyXVVrKaN5QbL8Y41Tl3jHNu3Rjjw1WnJzrnKtEis2KMXyPl3itG+VV6XbsAv2vknsYYY5qrKWHmzrkfkf6YvwOcEmO8Ih+/B5gPjAJ+H2M8oaRsTwh5/rwT8ENST+sDpGSxFwMPk9ZAzSGFpN8K+BjjbOfcT0m5/Z4lrWk6LsZ4ecm9niY1QHMKx74F7EPOwQd8M8b4pHPuv4FdAQszN+9dFnZu3gNqhZkPOEgiz9vsRIrK+zwQnHPL5tNbxxi3IkXr7ZMbo2o9IeTOuY1IefK+FmPcGtgUeDTG+DzwN2CvXN9mpIbolEI9p+Yw868CZ/XjFX4bY9w03+/C/DyQelXz6jVOxhhjWqcZUXxrADHGuCDG+Dapl/Np0sFKr6SL1Lt5taR8MYT8O8DpuUEixqgxxuuqC+R6DwH2dM5Vh5OPph8h5oVnhBTI8WA+/iYw0zlnUXzGGNMBzZiDegj4kXOui9Sr2Zg0JIdzbhhp3mltUth3sTEoCyFfBbiikZvmob23gA/lQwc75/YB1gS+3p8XcM59m5S6aVnSsF5FJczc0h0ZY0ybDbgHFWOcDpxJCu3+BSmJ6//lc+/mYbdVgA2B7aqKV4eQzwAamtDJDeIoYGY+dGqMcQKpodkpX3NkXit1YY1qKu9wXoxxw1z2l/WuNcYY0x5NWagbYzw3zw39B2k4717n3PCc1QFSCPls4K2qcjOBrtzTgrSN/IHOuZUAnHPinKtu1HDOLUWaq7ooxtgryiPGOAXYwDm3XozxqBhjd4yxbMPESl0jCh9nVT3jGljvyRhjOqIpYebOuWtJEXdzgANijO/kjBC/cs4tAIYDU2OMd5YU7wkhjzFG59xhwKXOOSVlUL8UuD5fe6Fzbi4pU/odpGi/MieQcv99teTc1PxMAKcBW+bFugtIUYj753daGlgpxmjroIwxpgMWK8y80YzlMcbf5uNrASdRkrHcOXcsKXJu2WL4d9X9TiCtkfpTDhWfQWpQIG3zcSiLGWZeOPdfpKHKkTHGOc65a4CHYoz/Xfe7sDBz815iYedmEGp2NvOGMpbnntXrpLmpWhnLdyDN+3wJuKT6ZA6kcFWpjbatWssEaQ7qbOfcWOBeYJEGqpb87LvQe+ffiTS4MNgYY0zzLdYcVLMyljvnNiPN8ZwC7F3jdl8BbujH4/UrzDz7KSlhbE930sLMjTGms5qZzXxxMpZPAs6NMT4NqHPuoyX1rgc8UXXshhyd9/PCsYOdc9OAu0jrqRrinBsPfCTGeHvJactmbowxHdLMXHz9yljunJtBCgdfNQ/RrQjsRerJFJVlM9+2ZB6pMsT3zVzv1TnP32eBGXUi+X5GmsMyxhgziDSzgepvxvKvAOfEGAP0bLl+D4s2UA+Rwr0bEmOc4pzbrxJmTo1tNgpWA35eaCSvcs5tn1McrQH8ttF7G2OMaZ7FaqCakbHcOXcy8KNKnTHGt51zM5xzm8cY/1S43eWk4Imf9eMRGw4zjzGuU3ivp4EvxhgXWJi5McZ0VlOymde9QZCekHT1OjEfW520KFdIa6SOVa9XlZRdEZg84eoJ/3hmrWfefXG1F/cEnsynL1OvkyXIPOBuUmP7ErCHen2rqp5JwHj1enj+PAKYrl7HSpBVSI3gJ4HD1evZAGtus+bps8bMGvvChS/sUu/9LMzcvKdZ2LkZBFqWzbwBBwDfqDo2C/iyet2SlCz2zBplfwD8MsZ4+IurvfgEcLF67c4/kyt15c9bkJLR7tnP55tJCnU/rXjwsZsfO/DF1V4cKUFW7md9xhhjmqDlDZR6XSQkXb2+pF5fzh/fBmrtlFvMdF6XBFkCWJ5+hpir1znqtWx9FqT8grv1pz5jjDHN0a4t30tJECEt4j265NwKwBz1Wmy8dpcgm+TfD1Gv04DREuQ2UhbzR0hZ08sUyzbaME8nBXMYY4xps442UMBk4Cn1el7JubLw8osr80gFs9RrtwRZjtTjWVmCzCdtPggLo/gurp6DasobGGOMaYl2zEGVkiCnk3pIR5SdV68zgS4JMqzsfMn1r5F6Yieq1xmFuapbBvCYls3cGGM6pOU9KAnSE5IuQW4C9gXGkbKG35WH5wB2Vq9vVhXvyXTeyL3U61QJcowEWVe9Ptzg8y0FXAt8HJgrQbZXr1/Kp3ekdgqmxMLMjTGmJVoeZj4QEmQlYLJ6LVvP1Op7bwTsrl4PqnedhZkb8x5jofWDTrOzmTd+45J1UIVzI4HHgEtK5pYgzUFpvnYSaT6pLeugCvc3xhjTAZ1aB1VxKPBgnbI/oPcW7G1bB6Ve7wfWsXVQxhjTGR1ZBwUgQcaQtui4sk5xWwdljDFDVCfDzI8DjgDWLztp66CMMWZo60gDJUE2Bt5Vrw9KkNIGClsHZYwxQ1qnelAbA5+QINeRNjQcJUEeVa+VRgX1OlOCdEmQYVW9qFLq9TUJUlkHtSvQXTmXgyQWR9/roCzM3BhjWqLlc1B5HdQpQLcEuUmCrKZez1CvW6nX7fO5S4uNU0FlHVRD1OtUYJwEWbcfz7dUXp+1F3CgBPmfwukdgcsarcsYY0zztKMHtR8pDHw6cId6/QfUDz8vmEIatqtsBV+cR7osR/JV5qAqYeZbVoeZ9+ELwDLAv4AFwA/z8+0NjFavz9Yt/cIjcHLD+ykaY94LbK3UoNCOBmqWeu0uOX4AaTfb/eqUnZR/KmrOQQFIkPNJYeZn07gHSY3aPAmyM3A88BX1eoEE2UOCrKxen+tHfcYYY5qgHeuglpMgt0mQayXIBpWDtcLPq7QjzPwp9Tovf5yXfyoszNwYYzqkHT2oVXPAw4bApRJkDfW6oK9C7Q4zlyDLk0LfJxUOW5i5McZ0SMsbqJyVHPX6gAR5FfgIab6nL20LM5cgy5AWDB+pXh9p+OWMMca0TEsbqPyHf7Z6fTfnvPsw8EIjZdsVZi5BlgauAU7PUYBFFmZujDEd0uo5qHWAKEHuAC4Fvq1e50N5+HlJ+ZaHmQOHA2sD38tzZecWzlmYuTHGdMiAelCFTOIAt6jXoyTI6sC5pCG64YBXr1eVFD+WtJXGhFzXThJkCmlY7wOkBu0k4GEJ8hQwh7SB4Um5ztkS5KfA63kOamngOPW6Ycm9fgqMr/r80/z7hsD/AiOBP6rXo/Lz3Eja7dfCzI0ZqizcvKMG2oOqZBLvrvxhB2YBX1avW5Ki8M6sUbYnU3nee+lE4GvqdWtgU+BR9fo88DdgL/W6FbAZqSE6pVDPqTnM/KvAWYvxDger181y3TtJkPXy8WOBuYtRnzHGmCYYaAO1SAi5en1Jvb6cz78N1Jo/KoaQf4c0B/R8rkPV63XVBXI4+CHAnhKkOpx8NP0MMc91Ts//vpuftRJmfgewQ8l9jDHGtMFAG6hVc+/lx6QQ8p768h/2XwBHVxcqCSFfBZjRyA3V62zgLeBD+dDBEmQacBepoavlhtyY3gbsXvJM/wH8o9BgLSD1Bsc08lzGGGOaa0ANVDGEnLRZ4EcKpyeT5nDOKylaHUI+A2ho33QJ0gWMIm00CGmIbwKwP7BTvubI3BgV8/ttWxmOBC6uqnMisCv1GzhjjDFttNgNlARZRoIMy7/3CiGXIKeTekhHlJXNDVtXpTwpqOJACbJSLi8SZLuSey5Fmqu6SL32WiOlXqcAG0iQ9dTrUbkx2quB99gN2Jc0bza3cHwJ0rBh/SAJY4wxLTGQKL51gLMkyBvAUuQQcgnyOVJv5q48nAaws3p9s6p8JYT8RvUaJchhpGFCzfVdClyfr71QgswlRdrdQU7oWuIE4EhSwESfJMhIUm/qr8BUCQLwE/V6F7AVcH2fWS9sHZQxxrSEqFYna2jyDWpkLZcgkTSsNwP4vXo9oaTsiqRQ9N3yYtujgCfz6cvU6+RCqHslm/ke1dnMc9nx1Zkk1OvY3Pu7HPgkcLh6PTtfUwkz/4967+dWGaHxwIZGJ40xpr4hGtYuItNU1VUfb0ey2AOAb5Qc30y9fgjYBNgnN0bVekLRs4sLYe2T87FKqPsWpHmwPfv5fDOBHYDTigfV6+eBsRJk5X7WZ4wxpgla3kDVylpeyCDeRZrnebXksnZkM5+jXl+qcdqymRtjTId0ast3coDEzaQ0QxfQe5uLtmczr8GymRtjTId0rIHKDU93ng+aCmxH6rFUtC2buTHGmMGnHXNQi5AgwwuLeucClcW3PUpC0etSr6+RFgWfqF5nFOaqbhnAo/adzdwYY0xLtLwHlbOWbw6MkSA3kdYcLQn8SoIsICWUnape7ywp3hOK3si91OtUCXKMBFlXvT7c4PMtBVwLfByYK0G2V69fyqd3BPauW4GFmRtjTEu0ej+o1YFPkXpI/wTOUK//yOeWAuaTMpe/U6OKKaRhu4/mz8V5pMtyJF9lDqoSZr5ldZh5H1YCliMtyi2Gme8NjLZs5saYIa2Doe+tHuKrl9l865yhvF6Y+SR6b8HezjDzC4CXLczcGGM6o6UNVL3M5hZmbowxpp62RPGVZTa3MHNjjDH1tCvMfJHM5hZmbowxpp6Wh5mXZTa3MHNjjDF9aXUUX2lmc9ImgBZmbowxpqaWZzMfiLw/1GT12tD2GU2+90bA7ur1oHrXWTZzY8yQN8BQ9FrZzNuxDupc0nzScOBY9XpVreMlVWj+qWyZ0bbtNgr3N8YY0wGdWgdVb31UUSe327gfWMfWQRljTGe0tAdVtb6oZx1UreMlvkDt3XN7Gcg6KGBO3k23WmUd1Bn9qdMYY8zAdWwdVL3j+ZytgzLGmCGsY+ug+jgOtg7KGGOGtHZkM19kHVS94xXqdaYE6ZIgw6p6UaXU62sSpLIOalegu3CvSYv5+H2vg7Iwc2OMaYlOrYPapOy4en2zqorBvw7KGGNMS9g6qNr3bmwdlHMao/WgjDFmcdVaBzWoG6j3AmugjDFmYGo1UB3Z8t0YY4zpizVQxhhjBiVroIwxxgxK1kAZY4wZlKyBMsYYMyhZA2WMMWZQsgbKGGPMoGTroAZIRN4ABrZb13vfCqS9uIYqe397/6H8/jDw7+Bjqvqh6oPtShb7fvZ42QKzoURE4lD+Duz97f2H8vtD674DG+IzxhgzKFkDZYwxZlCyBmrgzun0AwwCQ/07sPcf2ob6+0OLvgMLkjDGGDMoWQ/KGGPMoGQNlDHGmEHJGqgBEJHtReRxEfm7iBze6edpNRFZRURuFZHHRORvInJgPj5aRG4UkSfyv//W6WdtJREZJiIPisg1+fOQeX8RWV5ELhOR6fm/g02H0vsDiMhB+b//R0TkdyIy4v38HYjIr0XkRRF5pHCs5vuKyI/y38THRWS7gdzbGqjFJCLDgDOBHYC1gG+IyFqdfaqWewc4RFXXBDYB9s/vfDhws6p+Erg5f34/OxB4rPB5KL3/6cB1qjoeWJ/0PQyZ9xeRMcD3AKeq6wDDgIm8v7+D84Htq46Vvm/+ezARWDuXOSv/rVws1kAtvk8Df1fVJ1V1HnAJsEuHn6mlVPU5VX0g//4G6Y/TGNJ7X5AvuwD4UkcesA1E5KPATsC5hcND4v1FZFlgK+A8AFWdp6qvMkTev2BJYKSILAl0Ac/yPv4OVPUOYFbV4VrvuwtwiarOVdWngL+T/lYuFmugFt8Y4JnC53/lY0OCiIwFNgDuA1ZU1ecgNWLAhzv4aK12GnAYsKBwbKi8/8eBmcCUPMR5roiMYui8P6r6f8DJwAzgOeA1Vb2BIfQdZLXet6l/F62BWnxScmxIxOyLyNLAH4Dvq+rrnX6edhGRnYEXVXVap5+lQ5YENgR+oaobAG/x/hrK6lOea9kFGAd8BBglIv/e2acaVJr6d9EaqMX3L2CVwuePkrr672sishSpcbpIVS/Ph18QkZXz+ZWBFzv1fC22OfBFEXmaNKT7WRH5LUPn/f8F/EtV78ufLyM1WEPl/QE+BzylqjNVdT5wObAZQ+s7gNrv29S/i9ZALb77gU+KyDgRGU6aGLyqw8/UUiIipPmHx1T11MKpq4C98+97A1e2+9naQVV/pKofVdWxpP9736Kq/87Qef/ngWdEZI18aBvgUYbI+2czgE1EpCv/72Eb0lzsUPoOoPb7XgVMFJEPiMg44JPAnxf3JpZJYgBEZEfSnMQw4Neqemxnn6i1RGQL4E7gYRbOwfw3aR7qUmBV0v+Ad1PV6knV9xUR6QYOVdWdReSDDJH3F5FPkQJEhgNPAt8k/T+6Q+L9AUQkAF8nRbU+CHwHWJr36XcgIr8DuklbarwAeOB/qPG+IvJj4Fuk7+f7qnrtYt/bGihjjDGDkQ3xGWOMGZSsgTLGGDMoWQNljDFmULIGyhhjzKBkDZQxxphByRooY5pERN5s8/3Gisju7bxn1f1HisjtObv7GiIyTUT+KiKb5vNLishNItJVKHOJiHyyU89s3lusgTLmPSgnKh0LdKyBIq11uVxV3wX2JaU9+ipwaD7/n8BvVHV2ocwvSLkMjemTNVDGNJmIdOeexaUi8r8icoKI7CEifxaRh0VktXzd+SJytojcma/bOR8fISJT8rUPishn8vFJIvJ7EbkauAE4AdhSRP6S9ygam+t6IP9sVnie22ThPk4X5SwIiMhGInJ37vn8WUSWyT2ik0TkfhF5SET2rfGqe7Awg8B8YCQpu/d8EVke+AJwYVWZO4HP5QbWmLrsPxJjWmN9YE3SNgVPAueq6qclbfL4XeD7+bqxwNbAasCtIvIJYH8AVV1XRMYDN4jI6vn6TYH1VHVWMZsFQB5K+7yqzsnDaL8DXC63AWmPnmeBPwGbi8ifgf8HfF1V78/babwNfJuUpXsjEfkA8CcRuSFvn0C+13Dg46r6dD50Jqkx+gCpN3UkcKxWZQJQ1QUi8vf8/QzVpLumQdZAGdMa91e2IxCRf5B6PJDSRH2mcN2lqroAeEJEngTGA1sAPwdQ1eki8k+g0kDdWCeFzlLA5JyO6N1CGYA/q+q/8vP8hdQwvgY8p6r353u9ns9vC6wnIl/NZZcj5VR7qlDfCsCrlQ+qOoOUDofcyH4EmC4ivyGlRTpCVf83X/5iPm8NlKnLGihjWmNu4fcFhc8L6P2/u+pcY0r5lgUVb9U5dxApV9r6pOH7OTWe5938DFJyf/Lx76rq9XXu9TYwosa5Y4GfkHaevQh4mpS/bY98fkQub0xdNgdlTGftJiJL5HmpjwOPA3eQ/5jnob1V8/FqbwDLFD4vR+oRLQD2JCUxrmc68BER2Sjfa5k8N3Q98J+StlZBRFaXtDFhD1V9BRgmIr0aKRHZGvg/VX2CNB+1gNQgdhUuWx34Wx/PZoz1oIzpsMeB24EVgf3y/NFZwNki8jApI/QkVZ2b4xqKHgLeEZG/AucDZwF/EJHdgFup39tCVeeJyNeBn4vISFKv5nOkbOVjgQdyMMVMyrcwv4E0HHkT9GzH8hPga/n8OaQe1JKkiD5EZEXg7crwpzH1WDZzYzpERM4HrlHVyzr9LItDRDYADlbVPftR5iDgdVU9r3VPZt4vbIjPGLNYVPVBUuRhX0OJRa8CF7Tmicz7jfWgjDHGDErWgzLGGDMoWQNljDFmULIGyhhjzKBkDZQxxphByRooY4wxg9L/D2gbPLxMhY6BAAAAAElFTkSuQmCC", "text/plain": [ - "UMAP(n_neighbors=90, random_state=32)" + "
" ] }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "reducer" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "cf35e494", - "metadata": {}, - "outputs": [], - "source": [ - "train_x = preprocessed_data.train_x\n", - "train_y = preprocessed_data.train_y\n", - "n_filters = model.n_filters\n", - "size_le = int(np.sqrt(model.fc1.weight.data.numpy().shape[-1] / n_filters))\n", - "heavy_length = len(preprocessed_data.max_res_list_h)\n", - "each_img_enl = np.zeros((train_x.shape[0], input_shape**2))\n", - "#each_img_enl = np.zeros((train_x.shape[0], heavy_length**2))\n", - "labels = preprocessed_data.labels\n", - "clusters = []\n", - "\n", - "for j in range(train_x.shape[0]):\n", - " inter_filter_item = model(torch.from_numpy(train_x[j].reshape(1, 1, input_shape, input_shape).astype(np.float32)))[1].detach().numpy()\n", - " for i in range(n_filters):\n", - " each_img_enl[j] += cv2.resize(np.multiply(inter_filter_item[0,i], model.fc1.weight.data.numpy().reshape(n_filters, size_le**2)[i].reshape(size_le, size_le)), dsize=(input_shape, input_shape)).reshape((input_shape**2))\n", - " #each_img_enl[j] += cv2.resize(np.multiply(inter_filter_item[0,i], model.fc1.weight.data.numpy().reshape(n_filters, size_le**2)[i].reshape(size_le, size_le)), dsize=(input_shape, input_shape))[:heavy_length, :heavy_length].reshape((heavy_length**2))\n", - " if train_y[j] <= -9:\n", - " clusters.append('high')\n", - " elif train_y[j] >= -9 and train_y[j] <= -7:\n", - " clusters.append('medium')\n", - " else:\n", - " clusters.append('low') " - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "e61ae9cd", - "metadata": {}, - "outputs": [], - "source": [ - "scaled_each_img = StandardScaler().fit_transform(each_img_enl)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "id": "889fa9b7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(669, 2)" - ] + "metadata": { + "needs_background": "light" }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "embedding = reducer.fit_transform(scaled_each_img)\n", - "embedding.shape" + "# Proteins/haptens/peptides/carbohydrates (type_of_antigen: 0/1/2/3)\n", + "type_of_antigen = 2\n", + "compute_residue_importance(preprocessed_data, model, type_of_antigen, nanobodies)" ] }, { - "cell_type": "code", - "execution_count": 35, - "id": "a6fed598", + "cell_type": "markdown", + "id": "dba59b81", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "669" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "train_x.shape[0]" + "## Distance between Top 10 affinity-relevant correlations" ] }, { "cell_type": "code", - "execution_count": 43, - "id": "3847d008", + "execution_count": 16, + "id": "5af57e03", "metadata": {}, "outputs": [], "source": [ - "cluster_according_to = 'antigen_type'\n", - "db = pd.read_csv('../data/sabdab_summary_all.tsv', sep='\\t').loc[:,['pdb',cluster_according_to]]\n", + "# To generate distance matrices again, make sure to set: renew_maps=True, cmaps=True and cmaps_thr='all'\n", + "distance_matrices_gaps = Preprocessing(dccm_map_path='distance_matrices/', modes=modes, pathological=pathological, renew_maps=False, renew_residues=True, mode=mode)\n", + "each_img_enl = get_output_representations(preprocessed_data, model)\n", + "top_10_dist = []\n", "\n", - "clusters = []\n", - "for i in range(len(labels)):\n", - " clusters.append(str(db[db['pdb'] == labels[i]].iloc[0][cluster_according_to]))" + "for i in range(preprocessed_data.train_x.shape[0]):\n", + " symmetric_matrix = np.tril(each_img_enl[i].reshape(input_shape, input_shape), k=-2)\n", + " indices_of_top_values = np.unravel_index(np.argsort(np.abs(symmetric_matrix), axis=None)[-10:], symmetric_matrix.shape)\n", + " top_10_dist.extend(distance_matrices_gaps.train_x[i][indices_of_top_values[0], indices_of_top_values[1]].tolist())" ] }, { "cell_type": "code", - "execution_count": 37, - "id": "b487e322", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\"clusters = []\\nfor j in range(len(labels)):\\n if charge[j] == 'unknown':\\n clusters.append('unknown')\\n elif float(charge[j]) > 0.4:\\n clusters.append('high')\\n elif float(charge[j]) <= 0.4 and float(charge[j]) >= 0.1:\\n clusters.append('medium')\\n else:\\n clusters.append('low') \\n\"" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "'''clusters = []\n", - "for j in range(len(labels)):\n", - " if charge[j] == 'unknown':\n", - " clusters.append('unknown')\n", - " elif float(charge[j]) > 0.4:\n", - " clusters.append('high')\n", - " elif float(charge[j]) <= 0.4 and float(charge[j]) >= 0.1:\n", - " clusters.append('medium')\n", - " else:\n", - " clusters.append('low') \n", - "'''" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "9c928627", + "execution_count": 17, + "id": "1ffa2a81", "metadata": {}, - "outputs": [], - "source": [ - "'''\n", - "cdict = {max(clusters, key=clusters.count): 0,\n", - " max(list(filter(lambda item: item != max(clusters, key=clusters.count), clusters)), key=list(filter(lambda item: item != max(clusters, key=clusters.count), clusters)).count): 1,\n", - " 'other': 2}\n", - "\n", - "cdict = {'IGKV1': 0,\n", - " 'IGKV2': 1,\n", - " 'IGKV3': 2,\n", - " 'IGKV4': 3,\n", - " 'IGKV5': 4,\n", - " 'IGKV6': 5,\n", - " 'IGKV7': 6,\n", - " 'IGKV8': 7,\n", - " 'IGKV9': 8,\n", - " 'IGKV10': 9,\n", - " 'IGKV14': 10,\n", - " 'IGLV1': 11,\n", - " 'IGLV2': 12,\n", - " 'IGLV6': 13,\n", - " 'Other': 14,}\n", - "\n", - "cdict = {'IGHV1': 0,\n", - " 'IGHV2': 1,\n", - " 'IGHV3': 2,\n", - " 'IGHV4': 3,\n", - " 'IGHV5': 4,\n", - " 'IGHV6': 5,\n", - " 'IGHV7': 6,\n", - " 'Other': 7,}\n", - "\n", - "cdict = {'homo sapiens': 0,\n", - " 'mus musculus': 1,\n", - " 'Other': 2}\n", - "\n", - "'''\n", - "#cdict = {'Kappa': 0,\n", - "# 'Lambda': 1,\n", - "# 'unknown': 2,\n", - "# 'NA': 3,\n", - "# 'Other': 4,}\n", - "\n", - "#cdict = {'high': 0,\n", - "# 'medium': 1,\n", - "# 'low': 2,\n", - "# 'unknown': 3,\n", - "# 'Other': 4}\n", - "\n", - "cdict = {'protein': 0,\n", - " 'peptide': 1,\n", - " 'Hapten': 2,\n", - " 'protein | protein': 3,\n", - " 'carbohydrate': 4,\n", - " 'Other': 5}\n", - "colours = []\n", - "for i in range(len(clusters)):\n", - " if clusters[i] in cdict:\n", - " colours.append(cdict[clusters[i]])\n", - " else:\n", - " colours.append(cdict['Other'])\n", - " clusters[i] = 'Other'" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "id": "d032ca3c", - "metadata": { - "scrolled": true - }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAASFCAYAAAAfCU0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hVVdbH8e8+t6aTSk8g9N5Cr4IidlHs2Os46qvj2LGNMI5l7Dr23gVFBJUq0kF6r0kI6b3ffs77x4VAyE2hBdD1eR4fyKn7XBL1/Fh7bWUYBkIIIYQQQgghhBBC1EU72QMQQgghhBBCCCGEEKc+CZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCHEX5ZS6imllKGUanOyxyKEEEIIcaqTEEkIIYQQpwylVKRSyrk/2Jl4nK55sVLqqeNxrVOBUupepdQNJ3scQgghhPjrUYZhnOwxCCGEEEIAoJS6C3gNSAX2GoZxxnG45sfA9YZhqAD7zIAZcBmnyf8UKaVSgVTDMEad5KEIIYQQ4i9GKpGEEEIIcSq5GfgNeAUYqZRqdyJvZhiG1zAM5+kSIAkhhBBCnEwSIgkhhBDilKCU6gv0Bj4BvgA8wI21HGsopT5WSg1WSv2ulKpQSuUrpd5XSoUectxC4PpDzjnwzw37twXsiaSU6qmUmrP/ugVKqU+UUjEH7htgPFcopZYopcqUUpVKqZVKqQlHO+46PiMDSMAfsB36PG2UUhuUUmlKqRr/f6eUunz/cdfu/3rUgc9BKXW3Umrn/mmEO5VSd9dy7w5Kqc+UUllKKbdSKlUp9YJSKqS+cQshhBDiz8F8sgcghBBCCLHfzUAFMM0wjAql1CzgeqXUE4Zh6AGO7w3MBD4CvgRG7b+GDty2/5gp+P/SbDhw7SHnLqttEEqpDsDi/ee9BmQA5wK/1HL8ZOAx4Ffg8f33Hw98p5S6yzCMN49i3LW5FngZyN//bAfkAe8BrwNnAbMPO+8moASYetj2u4FmwDtAGXAV8JpSKsowjKcPecZ+wAKgeP+xGUAv4B5gqFJqpGEYnnrGLoQQQojTnPREEkIIIcRJp5SyA5nADMMwbti/7SJgOnCuYRi/HHa8ARjAEMMwVhyyfRYwFog0DKN8/7aPqb0n0lPAk0BbwzBS92/7FrgMGGYYxtJDjv0GuBz45JAx9gXWAM8ahvHoYdeeDowGWhqGUXak467js0olQE8kpVQE/s9wlmEYlx+yvTX+HlPvGIZx5/5to/BPGywHuhiGkb5/uxVYAvTZ/5kc2L4BsAH9DzzL/u3jge+BGw3D+LiucQshhBDi9CfT2YQQQghxKrgEiMQ/le2AWUAu/iqaQJYfGsTstwB/pXWboxmEUsqEv+po1aEB0n7/DXDKNfhDoQPT3ar+AWYAYcDgEz1uAMMwSoDvgIv23/+AG/H/P98HAU774kBQtP8abvyVTmbgAgClVA+gJ/6qKdthz7gEf/XY2KMdtxBCCCFOHzKdTQghhBCngpvxT8lKV0q1P2T7XOAypVSMYRj5h52THOA6Bft/jT7KccQCIcCOAPsCbesCKGB7HddsetjXJ2LcB7yLvwfUROAVpZTCHyKtNwxjTYDjtwXYtnX/r4n7f+2y/9en9/8TyOHPKIQQQog/IQmRhBBCCHFSKaXaAmfgD2N21nLYRPwrth3KV9dlj3Y4dewL1ANA7d9+Th3j2XLY1ydi3AAYhrFMKbUZfyj3CjAGf3XTXbWd0oAxHPj6v/j7PgVSdEQDFUIIIcRpSUIkIYQQQpxsN+IPKm7F37j5cJM5GIocjSNpAJmLf3pWpwD7OgfYtgsYB6QZhhGoqudEqO953gNeVUoNwP+5OfGvdhdI1wDbDlQeHaiY2rX/V59hGPOOZKBCCCGE+HORnkhCCCGEOGn2L0d/A7DJMIz3DcOYevg/wFdAd6VU/6O8zYEG21H1HWgYhg//KmwDlFJDD9t9f4BTPtv/67/391OqRikVd4RjbYhyoK5n+Qx/cPQA/lXiphmGUVzLsdcopVod+GJ/Y+378FdLzdy/eR2wGbhDKZV4+AWUUuaGfLZCCCGEOP1JJZIQQgghTqaxQGsCN30+YBrwFP6qmj+O4h4r8E/nemv/KmgeYKVhGCm1HD8JOBv4VSn1BpAOnIe/XxIcUglkGMYfSqkn8fcKWq+U+g7/CmnNgX74m3Rbj2LM9T3PzUqpZ/D3NNKBnwzDqNg/piKl1FT8UwAB3q/jWjuBlUqpt4Ey4GqgP/CMYRj79l/PUEpdi7/590al1If4p+gFA+3xN0V/BPj4uD6lEEIIIU45EiIJIYQQ4mS6ef+v39d2gGEYm5VSO4ErlVL3GYbhOMJ7fIV/yforgcvwV2LfCAQMkQzD2KGUGgG8CPwf/qqemcDf8U/xchx2/L+UUmuAe4B78TfmzsVfvfN/RzjWhngMfyXS34Em+KcCtsU/De+Ad/GHSLuB3+u41utAOHA3EA+kAfcahvHqoQcZhrFeKdUHf1h0IXAH/tApFX94NP/YHkkIIYQQpwNlGEfSJkAIIYQQ4q9JKdUPWA08YhjGf072eOqyvx/SSuBRwzCeDbB/FPAbcKNhGB836uCEEEIIcdqSnkhCCCGEEIdRSgUd9rUCHtz/5dzGH9ERuwv/tL2PTvZAhBBCCPHnIdPZhBBCCCFqWq+UWgBswj897QJgOPCNYRhrTurIaqGUOjDObvinsr1rGEb2yR2VEEIIIf5MJEQSQgghhKjpR/yBzLX4/38pBXgceO5kDqoesfj7P5UDUzlYOSWEEEIIcVw0ak8kpVRr4FOgGf6VRN41DOPV/cvCfgO0wd+g8XLDMIoabWBCCCGEEEIIIYQQok6NHSI1B5obhrFWKRUGrAEuBm4ACg3D+I9S6mEg0jCMhxptYEIIIYQQQgghhBCiTid1dTal1I/AG/v/GWUYRtb+oGmhYRid6jo3JibGaNOmTSOMUgghhBBCCCGEEOKvYc2aNfmGYcQG2nfSeiIppdoAffAvP9vUMIwsgP1BUlwt59wG3AYQHx/P6tWrG2m0QgghhBBCCCGEEH9+Sqm9te3TGnMgByilQoFpwL2GYZQ29DzDMN41DCPJMIyk2NiAoZgQQgghhBBCCCGEOAEaPURSSlnwB0hfGIbx/f7NOfunsR3om5Tb2OMSQgghhBBCCCGEELVr1BBJKaWAD4BthmG8dMiuGcD1+39/Pf5ldYUQQgghhBBCCCHEKaKxeyINBa4FNiml1u/f9ijwH+BbpdTNQBpwWSOPSwghhBBCCCGEEELUoVFDJMMwlgCqlt1jGnMsQgghhBBCCCGEEKLhTkpjbSGEEEIIIYQQQghxepEQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCGEEELUS0IkIYQQQgghhBBCCFEvCZGEEEIIIYQQQgghRL0kRBJCCCGEEEIIIYQQ9ZIQSQghhBBCCCHEX4Zu6Cd7CEKctswnewBCCCGEEEIIIcSJVOmp5M31bzJt5zQqvBW0CGnB33r9jYvaX4RS6mQPT4jThoRIQgghhBBCCCH+tDy6h+t/uZ7kkmTcuhuAzIpMpqyawr6yfdzd9+4a52wt2Mpra19jdc5qzJqZsQlj+Xvvv9M0pGljD1+IU4pMZxNCCCGEEEII8ac1f+980srSqgKkA5xeJx9v/ZgiZ1G17Wtz1nL9L9ezNHMpLp+LCk8FM/bM4LKfLiO3Mve4jGlLZgkvz93Ji7O3s2ZvIYZhHJfrCnGiSYgkhBBCCCGEEOJP6+eUn6n0VgbcZ1ZmlmUuq7btX8v/hdPnrLbNZ/godZfy7sZ3j2ksPt3g7i/Xcun/lvH6gl28+dseJn6wiokfrMLl9R3TtYVoDBIiCSGEEEIIIYT40zKou8rnwP6UkhS+2f4Ne0v3BjzOZ/iYnTr7mMby0dIU5m3LwenR0Q0wAIfbx5rUQl74dccxXVuIxiA9kYQQQgghhBBC/Gmd3eZsVmWtCliN5NW99Izpya1zbmVd7jo0peE1vLVey6cfW7XQe4uTcXhqrg7n9Op8uSqNh8/pjNkktR7i1CXfnUIIIYQQQggh/rTGJoyleUhzLJql2na7yc5VXa5iysoprM1Zi8vnwuF11HodTWkMbTn0mMaSV+aqdZ/Xp1Puqj3AEuJUICGSEEIIIYQQQog/LavJymfnfsZF7S/CbrJjUiZigmK4r999XNbhMtbkrKnRdDsQu8nOnb3vPKaxxIbZat1nMWmE2mSykDi1SYgkhBBCCCGEEOKEy8zMpG/fvtjtdrxeL9nZ2UyZMgWAUaNGMWrUKPr06cPFF1983O8dZg3j0b6TWHzpUlZcvYJn45/ljZvf4Pyzzifji4yA5xQtKmLHP3eQ8W4GvWN788k5n9A2ou0xjeO2Ee0IsphqbLebNa4ZmCBT2cQpT52uSwkmJSUZq1evPtnDEEIIIYQQQgjRAE6nE4fDwfjx45k3bx5mc82qm5dffpmwsDBuueWWOq+Vn17Gqp9SyNxVjNlqosvg5vQZG481qOY1c1JLWfzNTnL3lgEQ1SKETqPC6ZLUhi0lWzj7krOJPCcSe2t7tfO8ZV76hvXFO9vLN19+c9TPvSunjLcW7mFFcgEhVhNBVhO7csvxeHUMwGY20b9NJO9f3x+rWUIkcfIppdYYhpEUaJ/UygkhhBBCCCGEOCF8Hp20rQU4K7zEtQkjukVk1b7U1FQmTZrE559/XrVtxowZfPvtt7jdbsaOHQtAcnIyU6ZM4dprrwUgY0cRM9/cgNejgwGuSi/r5qaxa00Olz/aH6v94Gtu3r4ypr+0Fq/7YDPrgvRyVnxZQag9kj79+mAxW0CDnGk5VGyrQFkU8XfFExYZxoQOE5g2d1rVuU899RSpqamkp6cTHx/Phx9+WOfzr0gu4MaP/sDt1fHtL+AIsphoExXC2d2bAoozOsfRq1UESqmj/6CFaCQSIgkhhBBCCCGEOO72bi5gzvubMQAMA0OHuLbh6Hrg2TC5ubkopYiNjQVg4cKF7Nu3j5tuuolLL70U8K+O9sl3MygMKSK6siXhrmj/dq9OeZGLjQvTSRrXpuqay3/YUy1AOkDXDea8v4WYNR46WDtQaBTizfOSOCkRDLCb7Vzc/mJ6x/ZmGtOqnduhQwc+/vhj/va3v7FixQoGDRoU8HkMw+Der9fj8FRf0c3h8bG3sIK4cDvXDExoyEdZqz+y/+CjzR+RVpZGm/A2XNLhEgzDIMgSRP+m/bGYLPVfRIgjICGSEEIIIYQQQojjqjinkl/f3VQjwMlOLqEoqyLgOT/++CMXXXRR1dcul4tbbrmFd955h+DgYNblruPe+fdS1qICDIWueWlV3Jkzd12HRbfh8+hsX5ZVLUTK2FFU6xgrnKW8/PQT3H/Nf8hxbGbzsFWENg0lNiiWyztdTlLTJPbu3VvjvD59+gDQu3dvdu/eXWuItCWzlFKnJ+A+h0fnq5VpxxQivb/pfd7Z8A5OnxOAvaV7+T39dyyaBavJikLxzNBnODPhzKO+hxCHkwmXQgghhBBCCCGOqw3z0/B5A1QAeQ1clV5K8hw19k2fPr1aU+177rmHe++9l8TERLLKs7hj7h0UugvxmFx4zE58mpf0iO3M6/Bp1Tk+T/V71jZDzKf7+GTBs4wfeDt6mR3vniiyfi3j7eHv8cLIF0hqmlTr9LINGzZU/dquXbtaP4NKtw9THVPUyt3eWvfVJ6M8g7c3vF0VIB3Ko3uo8FRQ7innkcWPsCV/y1HfR4jDSYgkhBBCCCGEEOK4yk4pxTgsQ/L5vLw+8wEyCvZwwcXnkZOTU7WvtLSU4uJiEhL8lTn79u3jq6++4rnnnmPUqFE8/uHjePSaVT0+k5f0JtsptRWgNIjvGlVtf3z36IDjW5f8O2l5O5i+8j1emfEPHA4HYdZYkvoMZPTo0ZSUlDBz5kwmTpzI/Pnzq6bTAWzbto0xY8ZQWVnJ4MGDa/0MurYIx6PXDNIALJpiRIfYWs+tzy/Jv6Af/gEH4PK5eGfjO0d9HyEOJ9PZhBBCCCGEEEIcV6GRNvL3lVfbZjKZufv8F7DYTFx0bx+atg1n4MCBAISHh7N06dKqY1u3bk1paWnV11fPuhpPfuCpYZpupiAkneiKOPoeMpUNYMj49qRvLcRz2LS6pPajSWo/utq2xGbdMFk0bn9tJEopzj//fM4///wa97vuuus488z6p4iF2szcMKQNnyzbW6MvktWscevwxHqvUZsSd0nAUO1wBgZbCqQSSRw/UokkhBBCCCGEEOK46nlGa8zWwK+b9lALcW3Cjuh60UGBK4oAUAZxkTGM/2dfImKDqu1q0jSYyx8bgC2kYfUTPq9ea+Pvw+mGzsa8jby65lUun3E546aN48FFD7KjcEfVMQ+e3ZmbhrYhyGIi1GYmyGKiXWwIX982mNZRwQ26TyB94voQbG7Y+RHWiKO+jxCHU4bRsB+QU01SUpKxevXqkz0MIYQQQgghhBCHMQyDxd/uYtvSTLweHQwwWzQ0s+Lif/QltvWRhUhLMpbwj4X/wOGt2UspyhbNb1csQFO110hUlLj44cW1VJa68bh8tR4XHmPn2slD6h3PH9l/8PDihylwFOAzDl5PobCZbLww8gVGtR5Vtb3S7WV3bjmhNjOJsaH1Xr8+Xt3LhdMvJLM8s9r9D2c32Xmw/4Nc1umyY76n+OtQSq0xDCMp4D4JkYQQQgghhBBCnAjZySVsWZRBZambFh2b0G1YS+yhR77svGEYPLH0CWbvnV0VJFk0CxbNwv/O/B99m/at9xq6brB3Uz5blmSStqWgRs8ms1Vj1DWdieyhMWPPDHIqcuga3ZVxbccRZD5Y4bSneA9XzrwyYFPrA8KsYfx+hX+ltBMl35HP/QvvZ0vBFkzKRKW3EoXCwP+OH2QOondsb9468y3MmnSyEQ0nIZIQQgghhBDiT8EwDLweHbNFq3X1LPHnZBgGSzOX8s32b8h35tMvrh/XdLmG5qHNj+gaq3NW8+uyReRudtChpA9BvlB03WDA+W1JS1zPMyuewTAM3LqbYHMwFs3CR+M+okNkBwAeWfwIv6T8UmcFUIglhJdGvcSQFvVXNR2rfWX7yCzPJNQaypL0JSzOWEyoJZRLOlzCmPgxmDTTCR+D+HOREEkIIYQQQghxWvN5dVbNTGHzwnQ8bh2r3UTP0a1IOqcNmklavf6V6T6dtC2FFOdWEhZlp03PGEzmmt8TRc4ibplzC+ll6bh8LiyaBZ+uc1vru7lp8EQyXelM+GkCLp+rxrlxwXHMnTAXTWmMnTqWrIqsOscUYglh8tDJnJlQfwPuxrKjcAfJJcnEBcfRKbITBc4Cou3RhFqPfXqd+HOpK0SSmjYhhBBCCCHEKc0wDGa9tZHMXcX4PP45SK5KL+tmp1GQXsE5d/Q4ySMUJ0thZgU/vrIOj9uHz6NjMmtoJsUFd/emadvwasfev/B+kkuS8epeAHw+fyXRBxlvMrSsn7+6SA9cXVThrmBV9ioGNR9EmDWs3hDJ4/PQPab7cXjCY5fvyOfu+Xezu3g3yrDg8nnQlRO7yY5u6IyOH80Tg58gzHpkfarEX5NE9kIIIYQQQohTWnZyKVm7S/B4fGyzePkyxMWHYU5+MTnZsC2PvH1lJ3uI4iTweXWmv7y/WbbTh+4z8Lh8uCq9zHh1HW6Ht+rY9LJ0NuZvrAqQDuXyufh4y8eklKbgNWruB9DRySzPBODyjpdjN9lrHZdNs3Fmwpk0C2l2jE947AzD4La5t7EtP5ni9HMoK4vBt/8ZnT4nbt3N/LT53PDrDbUGaEIcSkIkIYQQQgghxCktZWMebreX70PczA72kGHRKTAZbLT5+MDuYPaSfTXOKS9ysWNFFrv+yMFV6TkJoxYnis+nU5BRzpbFGbWutKbrBjtWZVd9nVaWVmuTawODXYW76NCkQ63HKBTxYfEAXNLhErpEdwkYJJmVmfMSz2Py0MlH+lhHTNcNFu3MY8qsrbw4ewc7smuGqevz1rOvNJ3S1BvxueIwBaWjtOpBmUf3kF6WztLMpSd8zOL0J9PZhBBCCCGEEKc0pWCHxUe6WcdzSC9tXYEOvLRtH9cYXVBKoesGv3+5gx0rstFMChToPoOBF7Slz9iEk/YM4tgZhsHG39JZ9VMyhu6vRNJ9gXv8et06BRkVVV83D2mO21tLmGiAragJV4y9gq+2f4WH6sdpaEQHRdOvaT8ALCYLH4z9gJnJM/l257dUuCvoHtOd0fGj6d+sPxG2iOPzwHUoc3q44p3l7Mopx6P7P4M3ftvNgDaRfH3bIDTNXy+yrWAbrtJ26K44rFHLQQUO3Sq9lSxJX8KIViOqthm6gSu5GF+pG0vTEKwtpXeSkBBJCCGEEEIIcYpr2yuW9Ut3VQuQDuU0DDZllNCzVRNW/5zCzlXZ+Lw6vkMKLlbNTCE00k5xbiWbf8/AVeklslkw/c9vS2Lv2MZ5EHFMNv2ezorpe/C69XqPNVkU4dEHK4XaRrQl0tGUXOs+DK168GTWrXTaPZQYLY7nhj/HQ4sfAvzT3ILNwYRYQ3jnzHeqrQZoMVkY32E84zuMP05Pd2Qe/WET27PKOPyTWJVaxDXvr+Sr2wYDEGWPwlPeGQwbhm4GQwNV8/MzDMWsjfnc1dtDuN2Ce18Z+Z9swfDoYBhggDkumJgbumEKszbCE4pTlYRIQgghhBBCiFNa0zbh+OwaeAKHByaTosThQffpbJi3L2DI4HXrLPhsG7phkB60i7QW29B0E7u/6s15+SPofWb8iX6M05bH52F1zmocXge9YnsRHRTd6GPQfTqrZqQ0KEDyU3Qe3LzalnN238J3Hf6L2+zEY3KhdA3NMNErczTxlZ1xlHsYnTCa+c3nMyd1DgWOAjpEdmBEqxGYtVPn1bnM6eHXzdk1AqQDViQXsievnHaxoYxsPRLUMkDHW9YNW9yvgU8yzORkduHhqRt5fXxP8t7fhHHYVEFPVjn5H24m7p4+1QI18ddy6vwkCCGEEEIIIUQASinG9G3BVyvTCDQZx+3V6dYigpy8StYoN+U2nVifRqJXQ+Pgy67D62RWl7fID8nAq7lRKDbqC1i3YQGfDXmboGCpsDjc3NS5PLHsCQwMFAq3z81F7S7i0UGPHlWw4vA6KHYWE2mPxG6uvTn14Urznfh8DahAMmug4MwbuxIcXv3PMz66FVeve4Lk6PVkhu0myBtKx7z++PIM/vnDeL5Y3wObzca3336Ltlnj9ktuB6BTp040b+4PpN566y26du3K+++/z9tvv83TTz/NeeeddwSfwLHLL3djGIGn8QEYwOwt2dw5qj1B5iD+MXIUU34owfBG4i4cijVqOUpzHzxet+At7YnX2YLZW3LIappOkc+HC5041MGfIR28BQ7c+8qwxYcHvrn405MQSQghhBBCCHHKu21EO75fl0Glu3qMZLdoXNSrBSuS8/nHNxvwWXU8gAWwG3BVuY0I3d8fZnnCD+SF7MNn8s9zMzDwmjzsidzAB0s+5a6xtzTyUzUuh9fB8szluHwu+sT1qXf1sI15G3l0yaM4fc5q239K/olgSzD/7P/PBt+70lPJs6ue5ZeUX9CUhmEYXNDuAh7s/2CDwiSLzYRRx+JhVruJNj1jiGgaTNchLQiNtNU4Junctsx5v4IO+Ul0yE+q2l5szmVQ32HM+X0GAKmpqXz//fdccsklAMTGxrJw4cJq1/r2229ZsmQJdnvDg7DjJS7Mhl57hgSAx3swcLul/xks3LSYlcnFuPPGoTtbYo1eiGYtQPdG4C4YgbfE3+/JZxhcu3gn6V4vGhCM4g5snIc/kDMM8GRVSIj0FyYhkhBCCCGEEKLRGYbBun3F/JFSSLDNzLhuzYgNq/nif0B8dDCf3jSAu75aR6nDg0lTuLw6F/Vqwa3DEzn/jSU4vToHiiY8gBeYGuLmpjIbPs3Ljtg/qgKkQ3lNbqbnf8td/HlDpB93/8iUlVOqAhyv7uXsNmfz9NCna12R7N2N7+LyuWpsd/qcfLPjG+7sfSfBluB6720YBrfMuYUdhTtw6wcrYGbsmUFKSQofnv1hvdOjQprYaNIsmIL08hr7TGZFjzNaMeiidnVeo23PGPqf25ZVM1MoN3tZFrmG3PCtBFfqrJu9guHDh3PJJZeQl5fH3LlzGTVqFN999x2FhYWMGDGCLl268OqrrzJz5kxWrVrF2WefzQcffED79u3r/QyOpxCbmaHtY1i8Kz/gfqtJY0THg32+lFJ8csMwPlyawodLUsku7Ym3rGet109xH/wZcWHwMk68GFyEDaUpTCGBv1/EX4N2sgcghBBCCCGE+Gspc3qY8PYyJr6/khdm7+Dfs7Yy7LkFPPrO9wwZMoThw4dz3333kZ2dzZQpUwB4//33uWPCWCb1cDCi7DeMHyfx9rhInpvQiy9XpeELsEqXoaBMM8izK6xxOnXFFEW+guP2fAWZ5WyYv4/Nv6dTUVwzhGlsq7NXM3nFZBxeBxWeCiq9lbh1N3P3zuWl1S/Vet7m/M0YBC55MWkm9pXta9D9V2WvYnfx7moBEvgbV28p2MLG/I0Nus7oaztjsZlQh7zFmswaoZH2Bq+813dcAsFXRvNRt8nsbP0tJVFrSY9bS9xTLej6aB/mzpvLlVdeyVlnncXChQuJjY1lyZIlLFq0iISEBN59910mTJhA7969mT9/fqMHSAe8PbEvIVZTje0mBUltIundukm17WaTxm0j2rHi0THEhB7ZtE0n8A5uvBigwN456hhGLk53EiIJIYQQQgjxF7Ynr5zrX5xKWEI3miT2ZOi5E9i+czcTJ06sceywYcOOyz0fmLqRTeklVLp9eHUDh0fH5dX5bruTKe99y+LFi8nNzSUvL4/HHnsMODh96Pzzz2fL6mVsXvcHo4cNAmBHdlnVMueH0zRF85HNmfjASKij2qVpSNNjfi6fV2fWWxuZ+uxqlv2wm6VTd/PZpOWsnJF8zNc+Fu9sfKfGlDTwVxRN3TmVSk9lwPPCrbVPWfLongYvZb80YykOryPgPqfXybKMZQ26TlxCOJc/1p9OA5sRHGElPMZOv3MSuOzR/tiCGjbJJjW/guc2PoOyFKFM/lDLZNXQgnwsy15Ky/4tmTlzZrVzoqL8ocn48ePZvHlzg+5zooXYLKx6bAxndonDrCnMmsJu1rh6YAIf3tC/zsqu20ckHnEQ4MFgr2bweTMzD/6wieV7CursyyT+vGQ6mxBCCCGEEH9Ra/YWMvH9VbjcVqKveh6Azb+8ws3vLCC+vqYrR6mg3MVv23NxB6gc8tgieG9ZOmd0a4XZbMZkMjFx4kQuvvjiqulDl112GRs3bmTUqFHMnDmT0NBQEmNDWZFcQIBLYugGraKCCAsJ5uJ2FzM9+Qe8ylPtmCBTEDd1v+mYn23Z97vZt60Q3/5V5PT9VTzr56UR1SKEDknHHlQdjR2FO2rdZ1ImMsszaR9Zs6Lmys5X8vKal2sEUApFx8iO9fZUOsBqsmJSJnwBmhqZlAmLqeHTo5rEBTPm+q4NPv5w7y/djArahTpkmXufw4cpyASam5nzf+bryV+yadMmANxufxNrm83G0qVLadeu7ilzjSnEZuH96/vj9PgorvQQGWLBZq5ZnXS464a04bs16ezMqTk1sDYe4BHNQWZqOSoVZm3KYlSnWN64qi+aJiu1/ZVIJZIQQgghhBB/Qbquc/e0Gbit2zDMB6tEdM1MemEF67Ync9FFFzFo0CBSUlLYlF5CZrGDV+ft5Jqbbufrr7/mjDPOwOfzBwOXXnopubm59d53X5EDq7n215Dlewp4a9p88vPzCQ7299s5dPrQXXfdRY8ePVi4cCGhoaEAXDc4AbMpwDUNf3PtjO9TcTu9PDz0Qfo270OQKQiFwqRM2Ew2zks8j0s7XHokH18NXo+PrUsyqwKkavvcOmt+ST2m6x+LJrYmte7z6B6a2APvv6zjZfSI6UGQOahqm81kI9wazr+H/bvB9z8r4axa+y6ZNBNnxp/Z4Gsdq+15WWBU/16p3FnJ7id3s2fyHoxwg2HDhlFYWMiECRMoKipi8ODBjBgxgp9++ok777zzqO89e0s25722mK5P/Mqw5xbw/uJkvA1Yca4+douJZhH2BgVIADaziTev7ovF1PDwxwtkev0/6wZQ6fbx2/Y8pq5JP4oRi9OZVCIJIYQQQgjxF7Mudx33/XY/pZEl2JtoKOWleFkkudP3YI5qidcSwr6MTDavWszKVX9w7k33w7DbyCxx8sTD/yS0dVfCvB0444zR/PbbbwwYMACPx0NcXFy9924Wbsftrf3F2eso45/3PcT076c2+Hk6NA3jlg7NeWdrBgbgU2AxwGzApeU2sCj2rM2jy5DmvD/2fTblb2JJxhKsJiuj40eTGJFY5/Uzih0s31OAxaQY1TGOiOCagUhliTvAmQeV5tecTtZYru5yNf9d/d8aFUWa0ugR24OYoJiA51lMFt4d+y7z9s5j2q5pVHoqGd5qOJd3upwoe8P74nSK6sS4NuOYnTobh+9gYBlkDuKidhfRJqLNUT3X0egc25rthdVL1sJ6hRHWKwyAxLCumEwmZs+eXbV/7dq1Na5z+GpthzJ0g7x9ZbgdXmJah2EPsfDWwt28Pn83Do8/iKl0O/jvnB0s2Z3Ph9f3b/Rqng5Nw+jYNIxtWaV1rvSmoJauWODw+PhgSQqX9299IoYoTlESIgkhhBBCCPEXkl6Wzu1zb8fhdaC0qsXMaDKkmNDuZ5D5aQGOPX8Q1LQNZrOZZUVhpKWmEDvQh6cwA2WyYB5zGwt35HJlpyF8883XZGRkMH78eLw+nd925LE9q5SYMBvn9mhORFD1wKVZhJ2+8ZGsSi3g8CIMQ/eRP/NFmoy6ic83lPCvMQ1fPn2gLRhfqZ3NVi/lyqC5rtHJbcKCwuvyUVboD1CUUvSM7UnP2NpXpzrApxs8PG0jMzZkYtIUCvDqBv84qyO3j6w+rckeasGo423cYjdhGEa9q5CdCBM6TuC3fb+xLnddVW8iu8lOsCWYKcOm1HmuWTMzru04xrUdd0xjeHro0/SK68XHmz8m15FLs+Bm3NzjZi5sd+ExXfdI3TikE99/2Q8tfDVKO2ylPkOxt3wHA74YwNiEsdzT9x7igusPRg+VsbOIuR9uwe3woTTweQ1aDYjjlR17a4SnDo/OqpRClu7JZ3iH2FqueOL875p+XPK/pVS6fVS6fWgKrGaNtjEh5JQ68XgNurYIZ2N6SVX4dbi88pPfOF40LgmRhBBCCCGE+Av5dMuneHzVewLpHh3N4sEcvgHN3gaTxYpRmI7X6+Wd6QvQIvy9byyRLQnuMpLi3z5Ejb6ZGSk6zTMz+fbbb3nujfcZ/vxvlDo9ONw+bBYTT/+0hVev6M3Z3ZtXu9+rV/XmwteXkF1a/QW0cvsS3Fm7KFr4Ed8t/Ihr2r7Z4OeKahFCpMXEYFfNkMZiMxHZtP6l6A/38tydzNyYheuwl/9X5u2iTUwIZ3c72BPIajfTtncsyevz0L01wyRnuYfvX1zLBXf3wmpv3Ncws2bmrTFvsThjMT/s+oEKTwUjW4/k4vYXE2YNa5QxaEpjQscJTOg4oVHuV5t2saE8MeQR/rXqYbTg3Ryos1HKC8rAZ/hweB3MTJ7JkowlTL1waq2VWocryq5g5hsb8Lqrf7/8ujYDFRQ4YKx0+7jho1UEW82c16M5953VkabhDQ9Pj0V8dDCLHjyD6esyWLI7n8hgK5clta62slu5y0u/Z+bWeo2OcaGNMFJxKlGna0f1pKQkY/Xq1Sd7GEIIIYQQQpxWLvnxEnYV76q2rXRtKfmz88HQMIV2I27I7cSs/ZDoJhHMX7+b6PP/iSWyOdmfP0izic9TsvxbUBoRgyZwf6sUFsyfT9GQe0grrKwxNSbIYmLOfSNoHVU9xMkoqmTkCwvx1lG9c2aXON6/vn+Dnsvt8PLxI0vxOGtWTNhDzNzwn2GYLA1vCevx6fT511zKXd6A+7s2D+fn/xtebZur0sO0F9ZQmufEF2DKnmZWtOsdy9hbujd4HOLEyC1z8sHK5WwrWscO1zQqfaU1jrFoFq7qfBWXxV7GwIED6dKlC1arlTlz5gS85vxPt7FjRRbGIX/0hmHw5LRbMSWdT3Dvs+sck1lTRARZ+OX/hhPXSEFSQzzy/UZ+WJuB87Dv6SCLifevT2Jo+4aFbOL0oZRaYxhGUqB90lhbCCGEEEKIv5BwW81l28P7hpP4SCJtH+pIy/E38X/jh7Fk0e/MnPkTHW99FUukv5Ko2UT/Cm4Rgy8nYtAEIoMtmDSNAWdeSF6ZK2BvFa+u89mKvTW2t4wMpmerupeIX7Qrn+LKunsNHWANMnPhPb2xBpmx2EwozV+BZA+1cOG9fY4oQALIL3fh1Wvv3bQnr6zGNluwhSsnDSA8NnAAoHsNktfn46zwBNwvGk9cmJ1HzjyDKeMuQyfw95hH9zB1/XR+fWcTQweOZOHChbUGSACZu4qrBUgAm/YuIzIoskFj8uoGJQ4Pry3YVf/BjeipC7sxvGMsdrNGkMVEiNWEzazx8DmdJUD6C5LpbEIIIYQQQvyFXNnpSrYWbK3qjXMoQw/CUd6C/y3cw/I9BXxy0wBuGNKGdxcn4zxs1TG7RaND/jJ+WLyUG595B+PnnQHv5/EZbM+qWeUB8N/LezP6xYW48lIp/PUN0DTMTVoQfe7/oZTCYlLkl7toEmwF4JZbbmH79u188803tGzZEoDSAgeOMg9N4oJolhjBjc8PJWV9PqUFDiJig2nbKwZTHavB1SYiyEIdGRI+HbJKHDSPCKq2XTNpOCsCVy+BvxqprNCJPaThy9qLE0c39Dr7VHk0NxsKN7BgwQKSeg/kmuuvJLW0nO2xLajsNwS17He6lxeSsXolF/W6B1BMXfomAzqeRXxsR1bvXsDAxFFs1H14zFqNap7DeXWDmRuymHxxj+P8pEfPZjbx3nVJ7M4tZ1VKIUFWjdGdm9bodyb+GiREEkIIIYQQ4i/krISzmJk8k1XZq6qCJEPXADPOjKsARaXbx7q0Yr5elcbdYzqwem8Rq1IKq6ae2c0aIzrE8tY1T2A2aSzbnU9t7+FmTZEYG7hvSkJUMJ2ahbLN14pm174IQP6sV3Bn78LWvCNen0GzQ0KaHTt2sGTJEgBK8hzM/WAL+RnlmEwKn8+gY/+mjLiqIx36Nz3mzynYamZ0lzjmbsnGF6DCymcYXP3eShbcP7JGCBEaacNRGri6RffqhETYjnl8x2pfYSWfr9jLtuxS2kaHcO3gBNrHNU5/pFNJ67DWBJuDA4aqGODV3Czv8z3terTjwvS/8cnML8i58EqKp/9ARJd+lMyaQcrt9zE4OIz0vHXEWvqSUbiH+Ni/s3XfH3Ro3gtNM5FksdBhcAKfr0xDN4waoeyh6prieTK1jwulvfRA+suT6WxCCCGEEEL8hZg0E6+e8Sr/GvIvekT3QXc1xVM8kIrke/E52lQd5/D4+GT5Xn7ZlMXavUVVq7iZNQUKbhrWFrPJ/zoxKDGacHvgqgSzSXHt4IRq2wzD4IsVexnw73nszq1AmQ7+3bYym0HXyf36UZj3EiOHDCQ9PZ1JkyaxceNGzj//fObOns/IQWfy5Ft38vL391FUXITPo7PzjxzmfrD1uH1WUy7uTlgtz2UYkFvqZHlyQY19fc6Kx2yt+aqlmRQtO0USHG49bmM8GvO35XDWy7/z4dIUFu3M5/OVezn/9SV8ubLmtMM/O01pPNj/Qeymw6YgGoACQ9PxBXlwh1UyrdMr7Ovajsq8XPSyUvSSYvTyMjwxsazomsTCTQsp0JPp2LIXAMu3/8yQrudgMmv0GN6SR8/ryronzmLufSNpGh44SNQUjOgoU8TEqUtCJCGEEEIIIf5iTJqJcW3HManvG6iMB3DlXIThiapxXEG5iwembsTp1fHsr47w6v4qils+WY1z/7Lfmqb4+MYBNAm2EGw1Af6lwm1mjX9d1J12h1UivbsomcmztpFf7q6quqjctZLMD+7EqCwhOLwJdt3Jut9/5h//+AfTpk1j8uTJ9OjRg5kzZ5K2pQCXx8Wd5/6HoV3OZ+m2WQD4PDp7txRQkld5XD6n6FAbwzrU/kLv8Rlsy6rZG6l9vzg6D2qG2aJVVWhZbCbCou2ceUPX4zK2o1Xu8nLXl+twenQ8+0usfDo4PTqP/7iFT5al4PIGXs79z+rcxHN5dviztApthTJUVYB0gM/h/zx05cO35htssSZsQ0ZS+vIUbINH+PfZgyiw2FiTOYs7/3EzzRLDKajI4ouVk/kjYyYffv4O27dvx2Y20ToqmKcu6IY9QJ8uu8XEfWd2bIzHFuKoyHQ2IYQQQggh/qLaxATjq2XqjAKaBFuocAcOFAzDYPaWbC7q7e9N1KlZGMsfHsNPGzPZnFFCs3A7l/RtRbOI6hUeTo+PV+fvwuGpft3gDgMJ6zQI84qPuCg2h4zhSQTbLLRs2ZLdu3dXOzYnpZRWUe0AaBXTnu0Zaw6OW1Nk7SkhIrb6anBHq1VkEBZNVYVoh9INg4igmq9USilGXt2ZbiNasmNlNh6nj9Zdo2jbMwbNdHL/Hv+XTVm1Tj306QaTZ23j5bm7+OzmgfSop/H5ibYnr5xJ0zezdm8RhgHdW4Yz+eIedG1Rszn8sToz4UxigmK4/pcbMKj+vVm5s5Kc73NQFkVwhxCiYn+nsO1DlL/1X8LvexQAL5Aw7nxS33mNc68cwW87cukX+hF78iowti1gSGIkHTp2qrrmOT2aoxRMnrmN3HIXhmHQpXk4Uy7uQYemf71pheL0ISGSEEIIIYQQf1HBVjPXDIzn85V7a/RosVk02saEkJIfuKrH5dXJLnFW2xZkNXF5UmsuT2pd6z037CvGdFiKYXg9KLMFn26ga3YSm0WRufvgMYZRPcAx20ykFyQDkFGwh5jwFlX7lPJX/RwvV/SP56OlqQRaes6rG/y0IYsJ/QI/b0yrMGJanVqBQF65q85KI4/PoNjhYeIHK1n56BjsluP3WR6JFXsKuPr9FdU+9rVpxZz/+mLevS6JM7sce9+rw32w+QN0an42Yb3CCOt18M/R8GSheYuw9h+MFuFfeS3EpNEtLJjhV1/Ne4v38NKcQ4LSNsNZYjLx9y/X8r9r+lb10BrXvTlnd2tGXrkLq0mraiAvxKlMprMJIYQQQgjxF/bwOZ25uHdLbGaNUJu56p+XLu/FsPaxBNUSItgsWo1pag1hNmkYVA9kHClryP7yYbK/fBhvRRFjx46t8xptukdjMZt5c9bDLNoyg6FdzqvaZ+gG8V2jj3hctWkbE8J5PZrVun9Fcj47c2pOaTtVdWkejt1cfzDk9en8sjkLgAqvj7fTchnzx3ZGrdrOCylZFLhrX4HuWOm6wR2frwmU26EbcPeX6/D66l7l7GjsKNzRoONcWW6KnniU4EuuBvwv1b7F8/n9rde55IqJvDh7Z41KO4fHx6KdeaxMKay2XSlFXJhdAiRx2pBKJCGEEEIIIf7CzCaN/1zak/vHdmJdWhFBVhMD20ZjNWuUVHr479yaL9YKCLWZGdUp9ojv16tVBGZNg0MqPoI7DCK4wyDsFo0Hz+5MYmJbPv/8cwBGjRrFqFGjAKpWZotNCKNblx6Man81XvfBMMFs1Rh1dafjWokEAYuQqri9Br/vzKXjaTIFaUSHWJoEW3F4HHU+V4XbR3JeBcUeL+es2UmWy4Nz/wkplS4+zihgdlJHWtmPf/ixKaOEUqen6uvSVT9QuXM5zSY+D4DL62NVSiFD2lfvV5WamsqkSZOqvncAsrOz+eCDD3jsscfqvW9scCxZFVn1HhfcMpRmb7yJTbPgMQzaB9v54B93Ev/YfUxdk45JCzxf0OH28f3adAYlHr+QU4jGJpVIQgghhBBCCGLDbIzt1ozhHWKxmv2vCRHBFj65cQDhdjMhNhMWkyLEZiIu3MaXtw6qWp3tSJhNGs9c3L1GU2GrSdE8Iogr+tc+Fe4ApRSJfWIZeXUnYluHEtLERpse0Vx0bx86DWoe8JzKUjerZqbw/QtrmPXWRlI35deYJlebYGvtf/duAKtTixp0nVOBSVN8fdsgEqJDsJhqaY4EBFtNtI4M5sWUbDKcBwMkAJdhUOzx8sjO9BMyxjLnwSonw+vBnZdSbb8BlLkaVgnVrFmzBgVIANd2uZYgc1Cdx9hNdm7tPpFHY3Zyfeg6Pu8aytz+nYgP8q+25vT40Gv5vjKg1h5jQpwupBJJCCGEEEIIUaukNlH8MelM5m3NJavEQWJsCCM7xtVabdEQF/RqQXSIlRfn7GBLZilBVhMT+rbi7jEdCLHV/4pyaHVS51pCI7fDy6bf09mxIhuPy0dlqQsU6Puzh/TthST0iOHsm7uh6nmWIe2j+XJVWq37t2SU1jvmU0nrqGAW3D+SRbvyuPWTNbgDTA1TwHk9mzNp1VbcAUIRH7CwsIxKn07wcW4W3qHpwWmS5RtnE9J9DCWLv8BbkkP+z69iDg7nn7PKqHjqCd5++20qKyuZPXs2AJmZmUyYMIGUlBR+/PFHvF5vjeqk2pzd5mwWZyxm7t65OL3OatMug8xBYECnqE58tPkjNOV/5u+3vsa5bc/l6SFPoymNwe2ioZZsMsRq4swucUf0WaSXpfPtjm/ZU7yHxCaJXN7pclqH1R+0NhbDMKp6PIm/BgmRhBBCCCGEEHWymU2c1zNwWHO0hrSP4fvDpiMdL65KD989u5ryYhc+T+DeOV63zt5N+exem0uHpLqbNLeLDcGkqVpXsnPW0aj6VKWUYmTHON67Pok7PluDgYHToxNk0VBK8d71SYTYzFT6aq/WUoDjOIdIny5P5cXZO1CA4fPiTNtMbN/zKVn8BQC6s5wrn3qX0bY9fPLJJ8yZM4d///vfzJ49m759+1JUVMS8efP46quvmDZtGhdddFGD762UYvLQyVza4VJ+2PUDpe5ShrQYQreYbiil2JC7gZfXvIxbd1c779eUX2kT3oabe9xMu9hQRnSMZdHOPJzeQ6ZaaorIECvn9mj4z9Gc1Dk8uuRRdEPHo3tYlrWMr7Z/xeShkxnXdlyDr3O8lbnLeHP9m0zfNZ1KbyUJ4Qnc3eduxrapu5eZ+HOQEEkIIYQQQgjxp7L651TKipzo3rqnq3ndOpsWpjcgRAojyGKiPMAUKk3BkHYnJgxrDCM7xrLs4dFMW5tOcn4F7WNDubRvKyKCLQB0D7WzvswR8NxIi4mo47h62+cr9vLsz9urmlJXbFlASNeR1Y5pndiBt67tz7IlDrp37w5AixYtKCryTyns2rUrmqbRsmVLdu/efcRjUErRt2lf+jbtW2Pfvb/di9PnrLHd6XPy0ZaPuKn7TSileP3qPkyeuY3vVu/DpCk8PoOh7aN5fkIvbA1oag5Q5Czi0SWP4vK5qrZ5dS9evExaOokBzQcQZY864uc7Vk6vk4k/TyS9LL0qTEstTeWxJY+RU5HDtd2ubfQxicYlIZIQQgghhBDiT2X7iuw6AyQDg0yTTrpZJ6yolEHFDlo0qb0XjtWscdfo9rw6b1eNVbdsZo0bhsVR6akk2BJ83J6hMUWGWLlleGLAfY8ktuCGTck4DqvCCtIUd7YMZe7eudhMNgY2H4jdbD/qMfh0g//O2VHt8/UUZuDOSaZs/S/4CtO4u10Jm8piqnp2HTqN6kB/q0DbjgfDMMiuyK51f4W7AofXQbAlGJvZxDMXd+eRczuTVeIkOsR6xKuv/ZLyS737r+lyzRFd83iYlTyLrIqsGtVYTp+T19a9xqUdLz1tfw5Ew0iIJIQQQgghhPhT8dbRvNiNwdRQF7kmAy9g1r3Me3EhfxvZjnvP6ljrebePSEQ3DN5csBul/FPbwmO2ENT0F25ZWIhhGCQ1S+KxgY/RJqLN8X+ok2RkVBj/7dSaR3Zl4DMMFOAzoJfawLuLX8Fi8lcsGYbBpEGTuKDdBUd1n/SiSsqd1Su9IkfdWPX7vC8f4ooJ49m0fs1RP8uxUEoRYY2gxF0ScL9ZM2Mz2aptC7aaaRcbGvD4+uRV5lWrQjqUy+cipyLnqK57rGYmz8ThDVyZZtJMrM5ZzYhWIxp5VKIxyepsQgghhBBC/MXszCnjjQW7eHXeTtbvKz7Zwznu4tqE17pvTrCHbJOBR4GhwGOAy6vzzqJk5m2t/cVcKcWdo9qz5vGz+Pq2Qdx3SQl69NcUuHLw6B68hpeVWSu5+uer66xYOR1d0iyKzUO781WvdnzaM5HbgxeQnvYabt1NhaeCCk8F0XnxrHuriDf/toB37/2dRV/vwFnhafA9vD4dTy09pwA63fISbdq0qWqQPWrUKCZPngzADTfcwC233FJj/1NPPYXL5SIoqO4V1xrqis5X1AiKAKyalYvaX4RJO35T+zpFdSLYHLiiJ9gcTKeoTtW2ZWZm0rdvX+x2O15v9TBu4cKFPPXUUwAMGzasxvUCbauNbhzs8+TOc7Ptnm0kP5tMygv+FfQqXD42Z5SQXlRZ7bwPP/yQtm3bMnHixAbfS5yaJEQSQgghhBDiL0LXDe7/dj0XvrGEl+ft5NX5u7jq3RVc98FKXKdhc+hAskocGN0iUOaaK0Y5lcFOiw9fgMWkHB4fby0M3EMnrTSNmckzWbhvIUrz0rl5CJ/ueL1GfxwDA4fHwYebPjwej3JKsWiK/hEh9Ak1M23nl9WevUNuEmN33kx0RSswwOP0sWVxJt89+wduZ80+UoGsSSumrjW+EqKPfIqUx+Ph1ltv5dJLL63allKSwsOLHmbkNyM5a+pZvLHuDUrdDVtd7/aet9Mjpke1cCfYHEz7yPb8o98/qh3rqvSwfXkWGxbsI3fvka/eNzp+NEHmINRhn4pCYTPZOCvhrGrbo6KimD9/PoMGDTriex2JcW3GYTcdnLYY2i2UxEcSafPPdhSnn8W9Hzm58t0VjPnv75z32mL25JUDcOGFFzJ37twTOjbROGQ6mxBCCCGEEH8Rny5P5edN2TgPWbHM4fGxKqWQ/87eyaPndTmJozs2bq/OA1M38OvmbCwmjTYhipFlJkJMJswm/4t47IAYbFvTqPQGXrEttaB69YTD6+CB3x9gRdYKTMqEUgrDMLir9114fIGrbLyGlwX7FvDooEeP7wOeIjIrMqsFG5puYljqBCx69Z4/us+gosTNliWZ9Dkzvt7rllR6MGkKby3VSK2jQo54rBaLhUWLFlV9vSV/CzfNvgmnz1lVUfPR5o+YmTyTb87/hghbRJ3Xs5qsfHD2ByzPXM6vKb+io3NWwlkMbzm8WhXStmVZ/P7VDjRNofsMlAYxrUI5/+7e2IIa9gpuNVn5cNyH3D73dspcZfgMH5rSCLOG8c5Z72BWFlI35ZO8Lg8UtO8bR+su1Rtt33TTTaSlpZGQkEDr1q0BKCsr46qrrmLnzp28/fbb9O/fH6/Xy2233cbatWt56qmnOP/882sd10XtL+LdNTOoLLXidWRRsS2Z5H8nE9JhBIYnDxW2AktUS7I/ux/X/33FkAm38/m/7uSskUMpLy+vdq2nnnqKjIwMUlJSaN++PS1btmTWrFmce+65PPHEEw36nETjkxBJCCGEEEKIv4h3FyXXaAwN4PTqfLFyLw+O64T5OC7X3piemrGF2VuycXl1XF6dzQo2h3lopUw8f0lPBvZpRqnby6QtabVeo0VE9cbQTy59khVZK2r0pnll7SvVGjgfzqSO37SmU02ENQKvfrC6KK48HlXLLDSfR2fnimxi+sawNq2IUJuZoe1jsAdY0a1HqwisZi1gP6tgi4lh7Y99Bbwnlj1Bpbd6UOjW3eRW5vLR5o+4t9+99V5DUxpDWw5laMuhAffnpJSy6Ksd+Dw6hz5JbloZ8z7awnl39qr12k6Pj1KHh8gQKxaTRmJEIrMvnc2q7FWkl6XTKqwVA5oNwOcx+P6FNRRmVuBx+e+ye3UuMa1Dq5qJr1q1CpPJxLx58/j3v/+N2+1vhL1v3z6WLl1KSUkJt99+OzNnziQvL49JkyYRHR3N2LFjaw2RSio93PbZBjL3XYfPcOP1OGhxy0SaJi5iy383EDZgJI6UNeiOUqzNOuDOS6Miaw9bXZGcFfCK/tX03nvvPcaOHcvZZ5/N448/TlJSkoRIp7DT878QQgghhBBCiIA8Pp3MYgdlzpqVMjllgRv1Anh0g9IGTj061ZQ4PExbm16twgoABZnKx+c7szBZNCJDrIzoGIPFVDMACrKYuG1ku6qvCxwFzE+bH7C5sUevvdePRbNwbuK5R/8wp7jooGh6xPZAU/tXSEPDqCVP82LwaWUJZ770O4/+sIn/+3o9/SbP5ZdNWTWOjQuzYQkQYCoFQVYTF/RqcUzjzqnIIbU0NeA+j+7hpz0/HdP1D1g7Zy/eAJVuutdg39YiKopdJOeV88O6dBZsz8Ht1SlxeLjvm/X0enoOI57/jd5Pz+G5X7fj9eloSmNQ80EMCR3CnefdSXBQMEum7SAnvYgtYSuY1/4TFiZ+xV7rDnL2llJW4OT777/nnHPOoU+fPgB88cUXVeNo3749oaGhtGzZkpISf5Pw6Oho4uPjCQkJwWSqPQC97bPVrE0rwuXV8frMKC0MZYqmJONSwjsOxFuWjydvL66snYT3vxhX+hZ0Xef33UW1XrN79+4AtGjRour3oaGh+Hx/jum1f0ZSiSSEEEIIIcSfgK4bvLVwN+8sSsbrM/DqOsPbx/LspT1oGu6vsIkNs5Fd4gx4vllThNlPz9eDf/37OdI//YrYq5+vsU83YH16MaNGjWLhwoW8MKEXl72znKxiBxVuH5oCq1nj0r4tuaBn86rzkkuSsZlsNZYyB3/vo3BrOGXusmq9gUzKRBNbE67ret2JedBTxJRhU7h61tVUeirJDUlDMwLXJswN8bDL0HF7DVyH5JP3fbue1lHBdG/pnz62OrWQ6z5chfOwKiRNQZuYED64vj9B1mOr7nL5XHVWiNW2EtqhUvMrKKx00y42lIggCwUZ5az+JZXMXcVY7Wa6j2hJfnoZ1FaZZYGbPlvN+pxSzJqqqmYLDzKTX+bG7TsYPn20NIX0wkpev7ovcLDn0fjx41mzaiffd38Zp6UCj8kFBuyOWUtCUTcqSlxMmzaNFi1asGHDBgAqKiqqrrt7924qKiooKSkhPNzfgL6wsJD09HSioqJqDW925ZSxIb0Yj+/gw+muSjRbMLpuUJ62hdC+F4BS6M4K7PE9yf7yIewJPQmz+1fwc3t19hZUculby3B4vHh259Ot78FA9tDqvgMVVeLUc3r+V0IIIYQQQghRzTOztvL1qn3Vpqv9vjOXs5+ZSuan99O1SxfKKn2Yh9xBwdrZRAy5guwvHwZAU4rLbr0Xi0lj1KhRzJs3D7P59HhVcLlcpO7cyuHvnIaho/ZXy0SFWDnQjSUyxMrse0ewYHsuS3blEWwzc2GvFnRpXn1Ft2h7dJ0VR63DWnNP33t4de2rbMrfhFWzck7bc7irz11E2iOP5yOeEgzDYHXOauamzsXA4InBT7CvdB8L0xdS0H0bzbf1wvAcDAGcmsE2sw9fgCzA7dX538I9vHlNXwzD4P++Xk9lgGlsFpPGrcPa0jbmyPshHa5laEtsJlvA5ek1NAY0H1Drubtzy7j7q3Wk5Fdg0TTcPp2rEmJpvqkcn0fHMKCyxM3y6XvQAlS5HfCjyUlqdiVun8GhkVW5q2YFoNOjM2drDnNnJ9My1E5812giIyMxDIP5rT+nTCsi5cVkDJ+BOcxMq9tbMf+D6bhyXGgbXVitVlwuF2PGjMHh8D/zPffcQ1hYGDfddBO7d+/mrbfeAiAmJoannnqK9evX1zqNbGtWKSat+rO50rdQvPhzlMmCvXVXbC06YY1rh+4qR5ktKM1EeEI3ruzfmu+n/8it9z9OSW46tuQcYsc/SllaEQ9N3UCfQSNq/czEqef0+C+DEEIIIYQQolb55S6+XJmG67BpND4Dypxe2vUezBsffsLTP23hj9QiIoZcUXVM2+v+Q6/4KN65sfaX6BMps9jBqpRCbGaN4R1jCbXV/4qSkl/BipRslhV8ycyvP4Q2oNYWgPEz2V8vxmQPI6hdEoauU7l5Lr3PHFN17syZM3nyySdJSkpiy5YtLFmyJOA9Epsk0jKsJcnFyRiHlZYEmYO4usvV9Gvaj0/P+fSYnv904PF5+Pv8v7M+bz1OrxMDgxl7ZtA5qjPvnPUOdrOdbcsyWTkjBUeZv3LL19yOucxJoLoW3YAN6cUAbMsqo6iyZrUXgMur88WqNK4amHDMz2DSTNzd525e+OOFGqvqWc1W/tbrbwHPK6xwc+n/llPq8GAATnQwIGhdCV69eqjiD5QUygTGYQ9erhkkm30cySKIPo/Od7P30M9rwdCh24gWeA0vmeG7Mcw6CfcloFk1cqblULmzkjYPJZDzWh4blm9g9OjRfPzxxwAMGzaMoqIiBg8ezGuvvVbjPitWrKh3LNEhthqr5wW1609Qu/4oBUkJkWzOKEWNuKYq0G1740sktYlkbLdmfFjUg9irnyPskCmnYUOuxlBw/7fr+XH/WAEWLlzY8A9JNDoJkYQQQgghhDjNrU4txGLSaoRI4H8RX7diKQMGD8XeYTDBHQdTvOgzYi74J0rT4OdnoGMbKie8hT3q4OpOX375JStXruTVV189IWP2+nQemraRnzZmYdEUKPDpBpPO68rEQYFDA6fHx11frmXxrlwsrf6HYUqncGsh8WfEk/tDLraYhRiuLGKu+BiA3C8e5KpnPuLGjjqPT3oMgGeffZbff/+doqIizjjjjDrH+NLIl7j2l2tx+VxV052CzEGc0foMxiaMPX4fxnFU5vSglGpQGNdQ7258l7W5a6tN+ar0VrKlYAuvr3udB/o/QJchLeg8uDmuSi+GYfDKY0vw2Wu/5oHxVbi9mOpoUl5+HPt0Xd7pcnRD5/V1r+PVvfgMH81CmvHM0GfoENkh4DlfrtyL0+OrFiM29SmsgRf4Q/caBIVZ8Lh8eD3+wMli0yi1GditZsrdR/g8XgOv23+zrUsyKSupxGqy4HG5yfw4E0+RB2+JF2tTK+VbywnuHITVWn2lvJ07d2K323nllVeO7N6HGJQYhdVsAlfNFMxuNvHQuM5YzRqvL9jNxvRimgRbuX5wApcntcakKT5fsbdmzzLAMGB7dhnZJU6aRdTxDSNOGRIiCSGEEEIIcZoL1JD4AFNIFHE3v40yW8ib9gz2hIOrQ8Vc9AhdOrXmwiZ7mTx5Mi+99BIAX3/9NatWrQpYtXC8PD97Bz9vysLt1Tm0DmXKrG00CbIwoG0UsWG2an1SHvl+E4t35eO1b8NizaJkaT5NBjU5eLLyEtwW+iSaCHJpZPboyPs3DMLjOXgHTdMIDQ0lNDSU2NjYOseY2CSRny/5mWm7prE8czlNbE24pMMlDGo+qM7V2U6GFckFPDVjC7tz/RP3ujYP56mLutE3/tin1n21/auAPYNcPhdTd07l/qT70ZSGUgp7iIUdK7KIxkSkrsjTDA4vYdEMSMkvZ3duGZ2bheHRAycyZk0xpN2xr8p2qCs7X8mEjhNIK03DarLSKqxVtf0ZxQ6+/WMf+wor6doinPnbcmqEsxYUq3bOYe2OueiGzg1jHqFJiP97aWfmevaVbOWdz15m2/IsnOUeVEQ5M79+Ff0Ie2UZQDvPwT5OXreOq0jHoumUbyrH2tRK6ztakzM1BwxwZbjQN+uMGzeOLVu2MGnSJCZPnkzHjh256qqreOCBB3jxxReP6nMzmzTeubYf13+4Cq9u4PbqKOUPkCYOiiepjT+Afu+6pIDnlwWYsnfw2opSp0dCpNOEhEhCCCGEEEKc5ga3i8anB25Eq8wWFP7GtkHtB+DY80fVPlNQGOv3lfDhtRdWTX0Bf7VObdO8jgenx8fnK/biCFCZ4PD4uPurdVjNGnFhNp66sBtjujSlqMLNz5uycHl17GGbUCY3rmwXzjQnhb8V4sxwUra+DE1TXDO6kvGJ4xn65VMYhs66deuqrq/rOhUVFRQVFZGXl1fvWCNsEdzU/SZu6n7Tcf0MjqeVyQXc8NGqapUeGzNKuOa9lXxz+yB6tmpy1Nc2DIMSd0mt+10+F06vk2BLcNW2ilI3Pq/OBR4rX4a68AJehb8qB4j2KbKVwZRZ2/joxgFMHJjAFyvTqvXzAn/D89tHJh712Gtj1swkNql53Wlr0nnsh034DAOPz+CXzVm4AzR1yqzMxZu5kXsuqBnIaJoiIjaI2PgwYuPDAEhNTSVqppW4MBupBZU1z1Fg0lS1ptVmA/o5zYTuX/rO5/Py1i+PsC8vmWavxxJ0dhB5M/NwpjrRgjSsTa20GteKl557iWEthzFs2DAmT55cdb2bb76ZZ599lueee46HHnroyD80oH+bKBbcP4rPVqSyJrWIphF2rh2UUBUg1aV3qyb8tiM3YM9xw4D4qOAAe8SpSEIkIYQQQgghTnPBVjOPn9+Ff/20FedhVRMHVlACcKVvJazfBXjy06r2mewhLF+2jHbtDi5v/8knnzBx4kSmTp1KUFDQcR9vVomzRn+VQxn4p+HtK3Lw9y/X8r9r+hEeZMZqPjBlz/8q2uzyZlXnJE9JJqx3GK4UF4ZhYDabufHGGxkyZAgjR46sOu6hhx5ixIgR9O3bl2bNmvFnMHnW1oBThRweH8/+vJ2vbht01NdWShEbFEueI3DgFmIJIchc/XskumUoJrNGtMvgljI7m6xeUsw6dgO6uk0km31kmw0W7czHMAweObcLSsFnK/Zi0TR8hkF0iJVXruxDQvSxN9VuiH2FlTw2fRNOr06iR2OYw0qMrnAr2Gz1ssTu9QdhQGnqWspNHl6eeT8tm7RhwpA7+XLRSxSV5xIT0Yzh5/UG4IknnuC3336jT58+ANza0cO9z39C9Bk3UlFWQsEvr9Lmyic5t0cz2sWG8smyvRRWuglzGwx2mOl8SBWSyWTm7vNfwGIzccNLg/nHwn+woou/l5GmNHRD564+dzGs5TCAaiHwgd8/8sgjx/w5NYuw88DZnY/4vP87swPLkvNrfJ8GWUzcMqwtdsuxrb4nGo+ESEIIIYQQQvwJXD0wAZdX55mZWzm0KOnQFZRsrbpiCmlStS/n60cJCwnmpdVx1SqRevfuzQMPPMB1113HV199ddxXaosMtlSruqiL0+N/po9vHIBn/xLonrIemMO2oEwHp6klPuavLGnztzYMbzkcgDvuuIM77rgDgMzMTPr27cvWrVspLy/HbDYzatSoWu+bmprKpEmT+Pzzz4/mERuN0+NjS2ZprftXphRgGMYxTb+7qftNvLr21RoNqe0mO9d3u77GteO7RGEPteB1+wgyFANcFga4wMDApWBWiH/VOwMDw/BX4Tx2XlfuGdOBnTllhNosdGwa2qhTBr/5Iw2fbtDDZWKMw4Jlf8wZZECUT/ljSwN/766KYhyGl5Y3PIv5l09YuHUaJpOJJ299i80VP2MJVmRlZbFq1SoWL17M559/wWfTZlAc3pboyr1M7NWSaVN/J2HgaJ69pi/DOsailOJvo9oDsPibnWxZnIHvsLodk0Wj2/AWWE1W3hjzBnuK9/BH9h/YTDbOaH0GTexNGu3zOlK9Wjfh9av68sDUDXh9Bgpw+3QmDorn3jM7nuzhiSMgIZIQQgghhBB/Euf2aM5/ftlerYfLgRWUDhVzwT8BSLzl9RrTnQ6sjDRq1Kg6Q5Zj0STYysDEKJbtzg+4BPzh9hVVEhFkoX1cKFszS/GVd0Z3x6HZslHawV4rdpOdC9pdQPPQ5jWuERUVxfz58xk/fvxxeYbk4mTm7J2Dy+tiSMshJDVNOil9kpTyVwtVLYl1GO04jOnqLlezq2gXs1JmYRgGBgaa0hgdP5qbu99cc0ya4uJ/9OGn1zaQn1eJrvvXt/MomBbiwrN/SEltotAOWTY+zG6hX0L9U6NOhL0FlRheg9GHBEjgD7rmBnnxHfIxarYQ7PHdqcSg/yVjiClOY0hMZ656aCCzZxezfPly9u7dS8+ePdlbUMGLaz2kphSye85OCrQ43p21EPuaJVw35iG2/W8bCbeaiO8WXXX9QRe3I2tPCcU5lXj2N7K22ExENgtmwIUHp+G1a9KOdk0OVhCe6s7q2pTVj53Jun3FONw+erVuQkSQ5WQPq0GcFR6S1+fhcfpo3j6CuIRwAHTdQ3bOj2Skf4nXV0pk5BAS4m8hKCj+JI/4xJEQSQghhBBCiD+JpuF2ktpEsjK5EO9hPZLsFo3EmBC2Z5cBMCgxmkfP7UL3lhFHdI81e4v4cGkKaQWVdG0ezk3D2tKpWdgRj/WFCb246M0llDq8NXrhHM4w/M1337iqL5f8bxkOt4/Kvbdhi5uNpckfKM1LlL0JN3e/mYldJ1adV1zp5sf1maQVVtKxaSjn92xRtS81NRVN07j88svZtWsXjz/+OG+//TaVlZXMnj272v2nT5/Of/7zH4KCgnjyySdZYl/C9N3Tq1b4+nL7l7Rr0o73x75frTdQY7CZTSQlRLIypbDGPqVgVKfYYw63NKXx9NCnubnHzfye/juGYTC81XDaRrSt9Zzw6CCufmogvy/bx6vTt1Go66SZdfa3+MFuMfHouV2OaVzHy5KMJWxTL9OuuQWj7DrQDzZ4LtQMHFr1nyVbyy6UbZiNy6szd+lKbhjYip3J2wCq+m8lJCSwceMmJr6/ksw9W/H6DHwG2DsNpXjzPHzKi0sLxur08cs7m7jqiYGEx/inBVpsJiY81I/UTQXsXpMDQIekpiT0iKkWup2OzCaN/g3ooXQq2bwonSXf7UZpCt2no2mK2Pgwzr2zK1u230xp6UZ03QFAZeU+srN/oE/vT4mI6HOSR35iSIgkhBBCCCHEn8grV/Th0v8to6DcRYXbh0mBxaxx1YB4nji/a9VxRxMsvPnbbt5YsBun14dhwNasUn7ckMFzl/Tkoj4tj+hazSLsLLh/FD+sS2fO1lx25fiX+Q5UT9MmOpgQm5kQm5mFD4xi6up0Fu3MIzzodi5PeoaktmHYTNVXcvttey53frEWAwOnRyfYamLyrG3YDlklqqioiHnz5vH111/zySefMGfOHP79738ze/Zs+vbtC/gbcU+ZMoVFixYRFBTEj7t+ZMaqGTWWu99RuIMpK6cwZdiUI/tQj4MnLujKZW8vx+GuPgEqyGLi7tGBl64/GvHh8Vzb9doGH6+UYtTQeEJahvLUjC2Y9geYXZuH8+SF3ejduslxG9vR+mr7V7y0+iWcPietVGdQ1b8DfdRYXA5r00Q0s5XsLx8mJDySR6a/yW233caYMWNISEggPj6e5s2b06xdF7598x7MsW2qzrW17kb+Ty8SOfQqNli9DHNZ0H0GG39LZ9hlB/+sNJNGYu9YEnvXvYKgOLEydxezdOpufIf0ctIxyE0t5Zf3FtKk18EAyc+Lz+dl85Z7GTJ44Sm3iuPxICGSEEIIIYQQfyKxYTbm3z+SeVtzWLw7n3C7mfF9Wh1VtdCh9uSV8/r8XdUad/t0A59u8NC0jZzRJY5w+5FNTQmxmZk4qA0TB7UhvaiSc19dTKmz5lLgaUUOflqfyQW9WxBut3DTsLbcNKz2Kpj8chd3frG2WoVTpdv/+5SsMlxe/++7du2Kpmm0aNGC7t27A9CiRQuKioqqzsvLyyMhIaGqwfhHWz7C4T30pdHPrbv5NfVXHhv4WKNXI3VrEcEPdw7l+V+3s2hXHrru74Gk6wYT3l7GwLbRPHtJD1qfpBWw+reJYtY9wylzelBKEWo7NV5DKzwVVQESQE5oCia9eoPnaF2h7e+FdKjI0Tdj1hSXJ7XGarVW6yl2wFnX/R8ros6q1kxaKY1Wf/8EgFy3f7vuM8hJrb2vlWg8bncJpWXrMZvDCA/rztpf9+J1V28GnlmYwleLXkLTFIndMrnltjB+/bWMa66J5PXX87n77hjc7kLKK3YQFnrkTchPdafGT68QQgghhBCiXuXucjSl1RtSWEwa5/Rozjk9avYG0nWDcreXEKsZ0xFMjZm6Or3GFLkDNE3x6+ZsLk9q3eDrHa5VZDDjujfju9XpNaqR3F6dp2Zu4dyezQOO2eH2MXNjJqtSC4kOseLTDfRaegQZGMzbmkOvqOrVWIf+3jjk3NjYWNLS0nA6ndjtdrLKs2p9BrMyU+AoaPQQCaBTszA+uKE/L/y6nQ+XpuLw+Kr+vJbvKeDiN5cy//6RNAm2NvrYDgg7wpDxRFueuRyTZvKXGwEes4u1LefSJ/NMLLoNABOK4S4zv9u9Vb2cDrBbTPxtVO09iVo0Car1Z0wzIFLfv09BWJTtmJ9HHD2Pp5SNm+6guHhl1TalzOSmvQZU/75tGtGa+y9+Hc3iZNqmW8jL83LNNZEA3H13zP5zTXi9ZY02/saknewBCCGEEEIIIeq2KmsVl/x4CcO/Hs6Qr4Zw1cyr2Ji38Yiu4fHpvDh7Bz2fnkO/Z+bS46nZTJm1taoqpz755a5aQyS3V6e40h1w36Feeuklhg0bVuv+xbvyA05nA39QtCevvMb21PwKhj+/gCdnbOG71em8vziFD5akVGsuDmD4vOR8/RjO7GQevOVKcnJy6h0vgKZpPPLII4wcOZLRo0dj2Vt7EOIzfEQHRde6/0QrcXh4f0lKjR5TPsOgwuXli5VpJ2lkDVPgKOA/q/7DiK9HMOTLIdz3233sLtp9wu7n8rmqBYYAa1vNYXnCj1RaSvEpL5pJcUmX5kw6tzPRoVbsFg2LSdG7dROm/W1IndVdw9vHYDcHXrpeA3q7/TUdZotGj1FHH8CKY2MYOn+svqRagOTf7gVrao3jTab9tTi6BVuQD12HZ/+dC8D//V8GbrfBP+/fXVWFNHr0aDwezwl9hsYklUhCCCGEEEKcwv7I/oO/z/97teXVNxds5uY5N/PJuE/oGt21jrMP+tvna1iyO79qao3H5+PDJSl8tWofCdHBnNujGdcMTKi1UqV/myhmbcqqmhZ2KKtZq7dBt8vlYsOGDXUeU1ddVKXbx7UfrOQfZ3Xk8qTWVZVD1324ivzygwFWbUGXMplpeqW/X5HJauKPyig+/fQzoPpKdDfccEPVOZ9//jkA48ePr1rV7ac9P/HMimdqTGmzalbGtRl3UqqQDliXVoTVpNUI0ACcXp1fN2fz9zPan4SR1a/AUcBlP11GsasYj+5/4V6QtoClmUt5f+z79Iztedzv2b9Z/6p7VVGwtdlStjZdRrAvlG8u/oo20QkAXDs8kaxSJ0EWE1Eh9Vd0mU0aH984gKvfX4FPN6h0+zAZ/u/zMystRKFhsmj0GtOa5u2OrMG9OH4KCxfjcAQOWKM6ziWzqDWGz15t+6a9S/h53ce06egkPLz6n53dHkzbtp1ITc3B58ukffv2WCynVhXesZAQSQghhBBCiFPYc6ueqxYgHeD0OnllzSu8O/bdeq+xOaOEpbsLqvVmAfAZUO7ysiWzlD255Xy0NJUZdw2jRZOgGte4oFcL/vPrdhweX7XV5M2aomWTIAYnHqzAcbh9vL5gF1+vSqPU6SUxNoQO+Uu5/vrreeKJJwC48cYb2bdvH/Hx8cTHx/PUU0+R8t7fqQhthTNrN02GX0P5hjn4KoqIveRxlMXGhi8f5qZ3NV7t2YNlMz7nmZlbSCusbOhHWaXS7ePNBXvYV+jguUuPLJw4P/F8NuVv4vtd3+PVveiGTpA5iA6RHXh04KNHPJbjyWrSaq3kAn/Yd6p6b9N71QIkAB0dh9fB08ufZtqF0477PeOC40gIT2B3cYBqJ2XgsThZlP07baKvA/zTNlsG+NmoS49WESx/ZAzT16WzOaOUuGAr3d0mPBmVhETY6Da8JbHxx9avTBybgsKlVM1pPEyeeyWvzFqB7m5CTFhLzul3HbPWvM/N597FQ6+9wbMvfMLq1X+glAmTKQyFRosWl3PHHUP4+uuv8fl8XHXVVY37QCeYhEhCCCGEEEI0Iq9Pp8LtI8xmrne57kpPZeAX3P1WZa9q0D0X7sjFXc+0NadXx13h5vHpm/nghv419gdZTUy9YzC3fLKa7FInJqXw6Dpdmofz7rVJVZVBHp/O5e8sZ2dOWVVFzI7MYlbM+pU+464EYOXKldhsNubNm8dzzz2Hw+Gv6vGWF9Fu4n/JTdlG/ty3aXb9y1RuW0Tl9sVY4tpij+9Bk2HXkGdSrEwu4NNle+t8JqX8/aHcASpzHB4f09dlcNcZ7Y+o4bRSikcHPspVna9i7t65uHwuBjcfTL+m/U76Skz92kTWui/IYuKKY+hZdaL9nPxzzaqg/VJLUsl35BMTFHPc75vUNKnWnzEDA69Rs9H7kQrd30BenJpMWu3BYHy8hf99qHAWxfL8f7Ihcgm2Jikknvso2QVtiI1NolWrUeTmzKJXz8cJD7+XTh2foEN7neeffwGfz8fjjz/eiE9z4kmIJIQQQgghRCOocHn598/bmLY2HZ9uEGw1c8vwttw5qn3tzXdV3ZUj9e2vOk5T/oCjlmbTB+gGLNqVR6XbS7C15qtCYmwo8+8fyeaMUrJKHCTGhtA+rnoVxS+bs9mTV15tSlXFlgXYO4/gxTk7iNQNUlJS6NnTXwHUu3dvli9fDkDHDu2Zev9oHvkEpq5thVIaptAoPPn7sLfujmvfZvJmvEBEh/688Vs0vjqeR1NwXo/mpBVWsiG9pNZjFu/K5+qB8XV+LoG0jWjLbT1vO+LzTiSb2cTki7vz8Pcbq1Wd2cwaibEhXNi7xUkcXd28eu1hjaY0XD7XCbnvGa3PYMaeGVR6a1a0mTUzQ1sMPSH3bSy6bpBe5MBkUrSIsJ/0oPNUFBd3Lql7/0egaiSz2f952SPTCG+WR1SXfDJ+yWPCBB8ezy6GD9+OUq1YsGAr48c/yPLlK1m6dCkzZsygZ8+elJeXc8kllzB9+vTGfagT6NStZxRCCCGEEOJPwqcbXPHucr5bk47To+PxGZQ4PLz1224emlZ7g2y72V5rLxiFYkSrEQ26/1ldmmI2NezlUSkVsO/Roft7tIpgbLdmNQIkgO/Xptc431OYQdm6n8n46nE2b97Cjh072LRpEwAbNx58fqUUzSOCeOrCbrSKPFgdZAAYOk2GTyT2wgcoXPk9xZUeaml/BIBJU/xtVHsSY0PrelhMf7I3oov7tOTDG/rTv00kwVYTcWE27hjZjql3DMFuCdzk+VQwsPlAtFpeT8OsYTQPqbnS4PEwqMUgEpskYtWq9ziymWwMaj6ITlGdTsh9G8PMDZkMenY+Z7+yiNEvLuSMFxeybE/+yR7WKcPrLWf7jidZveZSapvOBrBsWQW33LyP4mIf4eEmNJNi6rQE7r03hvbtKzhjdDbffdeKIUMdxMe3ZsiQIaxYsQKlFLGxsVx00UWN91CN4E/2r0whhBBCCCFOPfO35ZCcV1FjWpXDo/PThkzSCmrv6/PwgIcJMgehDmk7raERbAnm3r73Nuj+HZqGcW735gQ1IEQIs5mJauAy8F6fTlpBJXllrkO21Ux2IkfdSNMrniHhmim0bteRJ598EqfTyZgxY9i4cWPAprMtmgQRYj04XlfWTrI/f5CsT/9BcJvejOoUW+fz3DYika4twrmwdwuCrYGP8+kGZ3SKa9Cznk6GtIvhuzuGsPVf41j12Jncd1ZHgmr5DE4Vf+/9d2zmmsvc20127k+6v8FVd0dKUxofjP2AC9tdiM1kw2ayEWwO5srOV/LSqJdOyD0bw6+bs/jn1A3klrlweHy4vDqpBZXc9PEfrN9XfLKHd1IZhkFu3jyWLB1MRsbn6LqjzuOHDAnh/Q9aEx1jZsWKChISrGiaIjrGTHmF/9/pmzYX8tmnGxg/vg9KKRwOB+vXr2fz5s1/uhBJHb6k4ekiKSnJWL169ckehhBCCCGEEPW6/9v1TFubEXCf3aLx2LlduHZwm1rP31m0k1fXvsryzOVoSmNEqxH8X9//IyE8ocFj0HWDj5el8s6iPeSUBp4aFGQx8cg5nbluSO1jAf9L2KfL9/LyvJ24PDo+3aBz8zCeu7Qna9OKmDJzG5WewKu4LXt4NDGhNrxeL2azmeeee474+PgazWe9Pp0L31jK7rzyauFbkMXEhb1bcPPQtlzwxpIaK5EpoG1MCPPvH4lSCl03uPLdFWxML8a5/1hvSQ7Zn91PfGIH2jdrwrvvvsukSZOqVmMTJ8fGvI08vfxpUktS0ZRGmDWM+5Pu57zE8xrl/m6fm1J3KRG2CCza6bualmEYjHj+N/YVBQ5HhraL5otbBzXyqE4NhmGwY+eTZGZ+h2G46z3e7TawWv0B/ocfFBIbZ2bzJicXjw/nxRfyqKzU6T8giKxML0893YyYmESGDJ7PLbfcwldffUXLli3ZuXPniX6s404ptcYwjKRA+6QnkhBCCCGEECdYbT2PDliwPZdPlu1FKbioTwuuHdSGiKCDL7EdIzvy5pg3a5zn0T2YlblBfU40TXHTsLbcNKwtAFPXpPPUjC2AP3jx6Dp3jmrHtYPrD6Y+WJLCf+fsxHFIULQxvYQJby9j+p1DiQq14i5x4j1kvlmQxcTVA+OJCfVXm9x8882kpKQQHh7O1KlTa9zDbNL49o7BPHtIH6kQq5nbRybi8uic/8YSDv8LcQWE2Mw8OK5T1WeiaYr3ru/HhP8tZ1duedWxYYl9mfrTVPomRJKamhrwOQ3dYNfqHDYs2EdliZvoVqH0G9dGlmM/QXrG9mTahdPId+Tj8rloHtL8hFUgBWI1WU9I8+7GVlzpIbu05oqOB/yRWtSIozm1lJSsISvr+wYFSAB//FHJtKn+nmotW1oYd04Ymzc5adrUzN/ujGLLFhdLllRSUa7z+OPZaCqfNWt0nnnmGX788Uc6dOhwIh/npJAQSQghhBBCiBPsvJ4tmLkxK2CvIadHZ+nufNz7p4G9Pn83X65I46e7hxEdWnN6D8CPu3/krfVvkVWRhdVk5fzE87mv331E2Boebkzo14oLejVnzd4ivD6DfgmRhNjqfz1weX28Mm9XtQCpap9H5+Nlqfz496E8OWMLc7bkoJR/Zbe/jWzHbSMSq4795JNP6r1XqM3MlPE9ePrCbjg8PkKsZuZvz+Wer9YFXHHNAMpdXu77ZgNZJU5uHOoPzB6etol9hdWnDJalrGfY8OE8dMd1XH/15QB4PB6uv/56br/9dl544QVuPnsSubucfLPwDZLaj8bYbnDn05fRo1dXsgrSWLt2bb3PII7cnyHIOZksZq3OHvoW81+3uXZG5tfoeu0B2+GGDg1h6NCQatseedQ/BTYqykxSUgjZWV6uvLIJr72WT3R0FB9//DE33XQT3333HfPmzas676qrruKhhx7CZDLxr3/9i+++++74PFQjkxBJCCGEEEKIE2x4+xh6tW7CurSiaqtmmRT4DKoCJACXVye3zMXzs3fw3KU1m2q/v+l93tn4Dk6v/0XI5XMxY88MVmev5rsLvyPI7F+uWtcNtHoqoGxmE0PaHdkL+66c8lr3eXWD33bkMmV8D964ui9Oj48Kl5cmwdZ6q7HqYjZphO3vgP3mb7sDBliHcnh8PPvLdi7o1QK3V2fethw8h3zGppAoWtz6LmaLha9++C/jzx+Hx+Phhhtu4LbbbmPkyJGsWLiWGT/NICnxTPbl7+bSIXfyv18e5baxzxAeGs6/1l171M8jxIkUajPTJ75JwIojs6Y4v+epu0rfieZ2F7K/Vf9xkbzHRUmpD5tdUVxsMG/+N8REB54q+Morr3D11VejaVqDQvRTlTTWFkIIIYQQ4gTTNMXHN/bnjpHtiAqxoiloFRlU66uMVzeYsT6zxvZydzlvb3i7KkA6wKN7yHXkMnPPLL5elcbQ/8wn8dGf6f7kbCbP3Eqlu/bl04+Uzayh11HmYDMfbOBst5iIDrUdU4B0uNSCigYdZ1Lwy+ZsNmeU1FjFTZktaFY7ujKhEvoxc+ZMFi1ahMViYdSoUQC0i+zPut1LSMvbSXysf0qK011JZGgsdlswrVu0OW7PJMTx9szF3QmxmTj0R89iUkQEW/jHWR1P3sBOsqjIQWiavY4jNJSqXmujaYErQktLfbz+egH//GccJi2IPn0G1BogATRt2pTExEQSExNp0eL0DfIkRBJCCCGEEKIR2Mwm7j2zI2sfP4vkZ89jzn0j6uxl5PT4avT8+SP7j1ob/jq8Dl6fl8rTP20lo9gfMpW7vHy6Yi9XvLMcj6/m9K+j0T4ulCZBgcdgM2tM6NfquNynNs3C63oBPMjjM6hweTEMA99hKZLuOji1LXf3BsaMGcOYMWOIj4/n9ddfByDIHI7H62LFjtn0bjsCALs1mOKKfFxuB3v3pRynJxLi+OvcLJxZdw/n4t4tiQy2EBNq5ZqBCfzyf8Np2sCfoT+jFi0uR9MCrz6plJVOHZ+ha5f/EhbaDbO5CWFh3QkOTqxxrM9n8J9nc7nt9ij69f0n/fvPICQkvs57b9y4kbKyMnJzc9mxY8dxeZ6TQaazCSGEEEIIcRKUZ1VysdtOkEMnX9NZa/OSaz4YdnRuHhYwZDJqqV/SvSHsS++IYVSf6uX26uzJq2De1hzO6dH8mMetlOL5Cb249dM/cHr0qtFYzRrNI+xc14DG3Mfi1uGJTJq+ud4pbVazRlJCZI3V2wBc6VsoXvw5ymQhMrEnTZs2BeBf//oXd955J19//TXdug2jZ+JgZq/5isuG3gXAOX2v5Z1fJxHXpCWtW7U+/g93CnN5ffh0g2CrvEKeDJs3b+a2227DZDLRvn17Pvzww3ob6reJCeGlK3o3zgBPExZLE/r1/ZqNm/6Gy5WHUiZ03UVk5BB6dH8VszkUgGbNzq8657eFXWtc5/ffK9ixw8V77xXx3bdf85//9Ku2/4MPPuCtt96isLCQoqIiXnvtNe6//34+++wz3G43d9xxB7NmzWrQoginGnX4326cLpKSkozVq1ef7GEIIYQQQghRZXduOZszSogItjCsfQwWU+DC/02/p7Ns6m68Xh0M8GGgA/ODPGyy+bBbNP53TT/O6BxX7bxydzmjvh2Fy+eqcU1VNgBn9njc3sAvJeO6NePta/sF3FefUqeHnzZksq+wkqbhdvbklfPj+kwqXF6UUoTbzVw1IJ47RrUj3H5il0Y3DIMHp25k5sYsf7VWgGOsJo3OzcP48e9D2ZNXwbmvLQ7YiBtgYNsovrl9cI3tbqeXz59YgbPMXdWk2Kf7sNosxLS18/K0+1m6dOlxfLJT086cMp6asYWVKYUAJMaG8Ph5XRnRMfYkj+yvwTAMHF4HJsOEzeqfVnXjjTdy55130r9//yO6lq7raJpMRgL/51pevg23O4+QkA7Y7bVPL1v4e098vsDTaJUyM2L4aszmsBM11JNCKbXGMIykQPskRhZCCCGEEOIYlTk93PH5GtakFmHSFEopTJrizav7MqxD9cbV5UUulk7dje/QBtsoTMCZDgt5YRoPXty1RoAEEGoN5Y5ed/DOhndw+g72RbJoFoKsEXg1M24CV+jUVsFUn6W787n109UYBoGrfwwDh8fHkHYxJzxAAn8l1AuX9eK6wW2Yvj6NbSXL2VmxEIfXhebogbu4D8Pat+Cly3ujlKJ9XCiJMSHsyC6r8QkEW01VK7gdzmo3M+HBfsz5YAv56eWYzIptqRuZt/ULTME+nnzyiRP+rCdbSn4F499aSqXrYFi3K6ec2z5bzVvX9GV056YndXx/Zl7dy/ub3uezrZ9R4anAZrJxWcfLuLvv3dhsNvbs2cOPP/7I5MmT+fjjjwHIycmhe/funHfeeUyfPp09e/YQHR3NL7/8Qnl5OVOmTKF3794n9blOFUopwsJqVhgFEhd3DllZP0CAf7eGhfX40wVI9ZEQSQghhBBCiGN091fr+COl8OAqawY09SmeeX8NV5/VDiPIRMemYQxKjGbnH9k1eh0dYDFpvDWiA3371t5X6JYet9A0uCmvrX6PfVmxaHoTkuLjeWjslVz4euAl54OtpqNakamk0sOtn66m0l331DGnR+fh7zey+MEzGm16RqfmQeze9CJ72I7LVolmA2tYGnGtl/DcBV8TcUjfpreu6cul/1uG06Pj8PhQCoIsJi7o2YKzu9UehITHBDHhoSRKCxw4Sj1cGzeEl0LubYSnOzW8PHcnTrdeI3xzenSe/HELZ3SKOy2n45wsRRVuyl1emkXYa61SPODhxQ/z+77fq8LitJlpPL7ocaZYpnBG3zOIjo6ucc7VV1/NY489xnnnncenn35K+/btiY6OpkmTJnzzzTcn5Jn+ChLb3kt+/gI8nlLgwCIFGiaTnU6dnjqJIzs5JEQSQgghhBDiGOwrrGT5noKqAKmpV3FRhZUgQ6EDxVP3kmrVeTnCR0SYjUdbNkP3Bg6RDJ+Bp8JT7z3trgHs22xGKYXD7WNViYnrdmzigp7N+XlTdrWKIatJ0ToqmLO7NTviZ5u+Pr3WwOtw+WUuUvIrSIwNPeL7HI1PtnzCloIt1ab2uXUnhU4v/1r+L14b/VrV9sTYUH5/8Ay+X5POol35RAZbuKJ/PP3bRDYoBAmPDiI8OuiEPMep7Lcdufhq+fPfV+Tg8embufesjsSEBl69SvilFVTy4LQNrNlbhFnTsJgUfxvVjjtGtgv4/beneA8L9y2s+t7WPTrOfU60EI2OT3bEPN/MsmXLqPRUsjh9MXtL9tI6vDWtW7emsLCQgoICXC4Xzz//PB9//DH9+h3dNFbhZ7c3Z8CAn0hJeYPc3J8xDB/R0SNIbPt/hIS0P9nDa3QSIgkhhBBCCHEMtmWVYjVruLw6ITpcUW7DRvUXwzZujdFF8KO3kk/LsxhlM+Fx1azusdhMxCaE13m/jGIHd3+1Fuch0+EqXD4q3T5WJBfywNkd+d/CZAor3FjMikv7tuLhczpjNR95L5TkvAocnoat6mbgXxGtsXy9/euAvaG8hpclGUuo8FQQYgmp2h5ut3DD0LbcUMv0NVGTVk/A9s0f+/h1Szaz7vlrr/hVl4JyFxe+uZjiSg+g8Ph8ODzw8rztlDu9PDCuMwDpZenMTp1NhaeCvIpCHMVdcFe0QpkqKFv7MxEDI8j7KY9KZyVzf5nLHObg8DpY1mMZqb+m4spz8eB/H8Rb4mXcpeO4YMwFTJw4kTPPPFP6IB0HdlszunSeTJfOk0/2UE66Rv1uUkp9qJTKVUptPmRbb6XUCqXUeqXUaqXUgMYckxBCCCGEEPnlLmZuzOTXzVmUOeuvBDpUdKgNff8S8r1c5oD/g21GkeDVCPMqNhlusCgOfz9XGthDLLTpUXOayqG+WLG36n6HMgwornTTuXk4qx4bw5Z/nc3Wp8cxZXwPwo6yV1FibAhBFlODjlVAu9iQeo87HvLKXBSWWTH0wH8nblImytxljTKWP7OxXZtiqiNH8ugGRZVu/vPL9sYb1Gnmo2V7KHE44bBg2e1VvLN4N6VOD2+uf5OLf7yYN9e/yXub3mP67p8wLJl4SvriyhlJ6bqmuAu74Ex3kvx8MqFdQmn/XHsMZbDhiQ1UZFbgLnfT/IHmRN8YzerFq1kbuRbdaFgAfKxeeuklhg0bBsAtt9zCsGHDyMjIqHHcwoULmTRpUqOMSZw4jV2J9DHwBvDpIdueB542DOMXpdS5+78e1cjjEkIIIYQQf0GGYTB51jY+W7EXq0kDDLw+g3+e3Ylbhic26Bp945sQHmShwu0j3qthIfBbtw4082mkGgbWs5sTtqyQ0gIHSlMYukFEXDDn3dkTrZ5eKTuyyw72Xjr8Hgak5lcypF0M9gaGP3W5uE8rnvt1R4OOHd+3JeZ6xn6s9hZUcP+3G9iYUYJXvx3d0LFGLcEaOw+lDn4mZs1MdFDdYZyo371ndWTO1hzKnB4C5JYA+HT4eVMWL59mS8lvzNvIjD0zKHOXMbTlUM5uczY20/Gflvf9+j0YRuDXbq/h4sM/FvBl2ifVq+o0N5q1AHuLb8j/uSUhXc7A2qwfthYr6fRAG1I/SGXbv7ehTIroMdFoVo2c73NIfjYZdDBHmEn2JBNeFs4NN9xw3J/pUC6Xiw0bNlR9vWPHDpYsWXJC7ylOrkatRDIMYxFQePhm4EDNbgSQ2ZhjEkIIIYQQf13vLkrmy5VpuL065S4v5S4fTq/Of+fs5NfN2Q26hlKK16/qg9WkmB3s4eNQJ0tsHipUzbdupzIwmzSaNQ/jqicHcsk/+zHm+i5c+mA/rpw0gLCo+qcERYVa6xgLtIo8fr17IoIsvH9dEsFWE3ZL7a8OQRYTT13Y7bjdN5DCCjcXv7mUtWlFuL06um4Bw4a7cDiunPOrjrOb7FzX9Tos2olfKe7PrmWTIGbePYyxXetehc3t0xvcO+tkMwyDJ5Y+wc2zb+a7Hd/xc8rPTFkxhfO+P4/siob9zB+Jcm9RrfsUMCt1Og6vo+Y+zYc5ZA+eohTK1v1MzjfP4Mpw4v7NTXCLYBIfSSQiKQIMsDazEtotlJbXtwSg1a2tcPlcpJakHvfnAdB1g8LMCoqyK3jvvfe4/vrrAZg0aRIbN27k/PPPJzMzkzPOOINhw4Zx5513Vp27YcMGzjnnHEaPHk1h4eHRgDgdnAqTI+8FXlBK7QNeBB45ucMRQgghhBB/BT7d4H8L9wRctt7h8fHyvJ1VXxuGgdsb+EW50u1l0vTNaJqiyGSQZzZYZffyYZiTIu3gdBJdQZpZx6TB6M5xAMTGh9GuTxwxrRq+RHRKXkWt+3TdYGj7mAZfqyGGtI9h5aNjePKCboztGofFpLDt769kt2iE2sx8cetAbOZjr3yqy5cr91Lp9tWsiDGseIoHEEQMVs3KBe0u4PZet5/QsfyVtI4K5u1rk2gbU/tUxR4tI06bVdpmp87m19Rfcfqc6Ph/Piu9leQ78nl48cPH/X7NmqWAqtm7y8/AYdpa+8mGieizz6XpFc/Q9PJnsMcl8N9/vkTRmiL2vrwXd74bgKD4IMwRZjI+yUCZFO5c/3aPfmRTcxti56psPn5oCVOfW81Xzyzn0ze+JzGmJwCTJ0+mR48ezJw5k5iYGObOncuSJUsoLS1l165dADidTn755Rduv/123n333eM+PnHinQqNtf8G3GcYxjSl1OXAB8CZgQ5USt0G3AYQHx/feCMUQgghhBB/OkWV7oAB0gHJeeX4dIN3ft/De4uTKXZ4CLWZuX5wG+4Z06GqUfXbv+8hJb8Cl/dgYORT/ulrs4M8XFZh9f8+zEOwzcQH1/c/qibXAE6Pj/X7imvdrxsGJu34v8yH2S1cNSCeqwbEk1vmZNqaDPYVVtKleRgX92l51D2XGsLt1VmeXMDUNenVPuND2c0WLo3/JzcNHEBscOwJG8tfkdur8+uWbFo2CWJfYSXew1I8u0XjoXGdKXV6eHvhHr5bnY7D46NvfBPuO6sjfeIjT9LIA/t066cBK398ho/tudvIWrELyy4PyqQR3DsWe+co1DH8TA1PbM3uvQXo7lgwDvk5UW5CWsygbZN41ufVUpGjfBieJlVfNrvmvzw738yg54eQ66heNRV3YRxxF8YdPBXFhKcmHPW4A0len8dvn23Hu7/Z/vLts+mdMIrZ723G7fBWO7ag4P/Zu+/oKqq1j+PfmTktvRcSQgKhdwi9dxugYAdUbNjrVa+Kvb5er12xXRUVGwiKItKk9957GpDe2+kz8/5xIBByEkJIEHV/1rprwZkzM3sm5+Q6P5797ALuuusuiouLSUtLIzPTM+GoW7duAHTt2pXFixc36PiE8+NCCJFuAh44/udZwP9qeqOu658AnwD06NHjr1EvKQiCIAiCIFyQ/M0GapuBE2Ax8vAP21m0N7tyhbIyu5tPV6Ww/WgxX9/aC0mS+GHjUa/hhi5BplGjvJkPeRFGrmwVwjU9mxHqV/N0tDM5/QH+dOp56KMbGWDhriGJjX8iYNGebP41awe67qn4qolBVhgQ14MI34atwvqnyy21M27aWoqtTiqcJwNXgyxhMniq0F68oiNd44IZ/d5qMopsOI9/CFceymdTWiHTJiUxtE1kTac473KsOV5f91d9eDv9MdyHslGPF/DY9xdgjPEn4rZOSPUIfpPzyvl2aTiW2HdwlXbGXdITXTOjWDKwRCznvn4XYdQd7M7fgfu0X0a6pqBaE9HVk1WKqqZztNBOnGkCPmEf4tbcNVYbmRUzd3Ru2Iq8tXMOVwZIADnFRzlWkMzqvfM4kr+f9957r3Lbt99+yxVXXMHkyZOZcP0EkrflkrYzj9+Xr+CiDntJd2wmMfHcf49kZmYyevRo9u7dS3l5OceOHeOpp55ixowZte43efJknnrqKVq2bHnOY/inuRBCpExgMLAcGAYc+lNHIwiCIAiCIPwjWIwKI9tHsXBPttdwxihLLNidheO0JtYOt8bWI0VsTi+iZ0Io5bWEGyajwg13diUu1LdBxuxvNhAX6ktqvvcpbd2aBTfIeerjzTffZM6cOcyYMaPyIc6laszflcXMzUexOzVGtI/k+l7NCPY9GaTV9DC3O6OE+7/fht115mRMkiR6JoQ2+DX909333TayS23VwkmDLPHoRW24qW8Csizx0YpksopPBkgn2Fwa//5xJ+ufGI7cCBVyp9uwYQMPPfQQiqLQo0cP3nrrrWrvaRncklxrbrXX78y+hkhHaJW2+LpTw3msnLLlRwkcEX/W4/lkZQpOl4J65A4skfMxJ77uqS5y+6E7mvDl7hlUuIvROfV3jASaEd0Vgi3zmmrHVDWdtKwg/M0hNAnVsBgsVLgqKLIXeRqDS54qpOf7PU/niM5nPeaaOO1uSvPtVV67os+Uyj+/OfcB7rvvPn744QcAhg0bxo033shPc34iK7mEaEcGqltDVyXue3oybs3JnJ/m1Hs8ruOhZmhoKH/88Qfjxo2r97GEs3NeQyRJkr7Ds/JauCRJx4BngduBdyRJMgB2jk9XEwRBEARBEITG9sQlbVl9OI8SW/UgKK/cUeOKVDanyoLd2fRMCKVzbDDrUgq8vs+oSDQJOtksW9d1rE4VoyLXe0rb1Evbce93W6uFKxajzL8vaVuvY9aXrutIklRthSYAh1tl4qcb2JtVivX4A9+erBI+XZXK3Hv6nzFY+2DZ4Rqnr53KYpR5ZVynet9PwbusEhvbjxZ7rW6zuzV+25nFzf2bA/DjlmPYa/hZlTvc7M8uo31MoNftDSk+Pp6lS5disViYOHEiu3btolOnTlXec1un29iasxW7ejIQMWoGBpZ1x+jt8ditUb4+q14h0qbUQlQdUP2wZ10NWVdiDFuGOXwZkl8yZZX37GR0JaFzVWgFi3bfSYVaUx8qHbcjkhzrDvyMfswaMwuLwcKOvB34KD70jO6JUWnYKaaKIiMBNdVCPnqVpwrpxMps3bp1Y9euXexeeYw1Px7G7fRca+uYrpX7bP0pmw49mp9VP63DW3LY8GsqJblWQCIyPoCB17Su9j6Xy8VNN93EHXfcQWxsLHfffTcOh4ORI0fy1FNP1fl8QnXnNUTSdf36GjYlnc9xCIIgCIIgCEJ2iZ0rP1pbGXCc7gwzxyo9NLI12z7fUC3U8TEq3DOsZeWy979sz+A/Cw6QVWpHlmB420ieHduBJkFnt5raiPZRvHlNF577ZS9ldjc6OhH+Zl4a16laNc62I0X8sOkohRVO+iWGcWVS03r3Lyq1u1i0J8cztcmhMnf7MVLzrfiZDTTLXsXd10/k/156AfBMMek34jL2HEgmfNxT2A6vRwmMxBUay6Gv/8UN5rn0KV7K+CvGAp4qpt27dzNkyBBeeMFzjO1Hi2ucbigBfmYD3ZoF88DwVvRICMWlamxOK8LhVukWF0KQr1id7Vxkl9gxGeQag7zM4pN9hZy1hH2yJOFw19x77FxZnW6WH8ij3OGmZ0Io0RZPaGswGFAUhWHDhhEaGkpqaipz585l6TdLGRo0lKX+SynZUoItx4Zjn53SIeWEm0N4bsm7jO94EZ2j21SeQ/MSMtdFiJ8JTqkalC2ZmMOXI8k1H08CjrkkEoOPkVUei+rtOyCBZChBR8fmtvHprk95vt/zDG82vF7jrAvFKNO0XQhH9xZW+15KMrTs7n3K4p6VmZUB0ulsFU4KMioIb+p/xvOX5FmZ9/5OinOsp7yqk5Nays9vbcVlP/kZc7lcTJ48mSlTpjB48GCuvfZaPvvsM+Li4rj++us5duzYGc8n1OxCmM4mCIIgCIIgCOfdv2ZtJ7/M4f0h7Qx8TAoXd4wGoFfzUN64ugtP/rQbVdORAJemcdvA5kwZ2AKAr9el8cr8/ZWNvFVg0d4cNqcXseihwWfdJ+nSTjFc3KEJRwqtKLJE0xCfKv+ar+s6z/+6lx82HcXh9qxotupwPm//cYgf7+xHy8gzP7Sdau62DP49eyeyLOFwqVXuWZnVzqqVK3C1GYl2/OmyqKgIv2texz9gAdaDa7DEdaRi/yo0Wymm6FYcPLCfrauXMPGuhwDo378/06ZNY/To0WRkZBAbG0uon4msEru34WBUZObfP5BmYZ5qpvm7Mnl89i403fMQ7lQ1bugTz5OXtjsv06j+juJCfWutBEs85TM0vF0kM9an4/LyZdJ1nXZNvFch5ZbZ+WxVKgv2ZGOQJcZ1i+XGfgkE1jHonLP1GFN/2o0sg657pnoNaBXOnR0N5Ofn4+vrS1FREUuWLOG7775j9uzZTJgwgalTp/LHp38wduZYrnzoShz77Sz+fS3XtruEvXnJPHdKgARgCLXUMILa3dg3nr2ZJZU91Uwha0GqPZDSkDjqlJnQbD3rs/qguk+/pxqSbEfxTQM8DcGXHVnG8/2er9cYz8bAa1vz4/9txuVQ0Y7/rGVFwuxroO847/2NnI6aA0RZknDZzxzQOW1uZr+2BVu59/5PbqdGSf7JUHPlypVcdNFFDBkyBIADBw5www03AFBcXExGRsYZzynUTNR8CoIgCIIgCP84BeUONqUV1SlAOj2CsBhlkuJD6BF/ctWpyzrHsPmpEXxxc08+nJTEpqkj+NeoNp6pXm6V/1twoNpKcJruadT91dq0el2DLEskhPsRF+pbbTrIioN5zNx8FJtLrayosjlVSmwu7pyxpdqxyh1uNqQUsOtYCdppJVj7s0v595yd2N0aVqda7Z5V7FmKT7vBHCuyUVjhWVq8ffv2lDk1DAFhaPYKjBEJuPLScWQdJLDnFTiO7cGtatz+9XZ0/eSKTZ06dSI1NRWAm/ol4GP0/rjiVDUm/m89n69OZc3hPP41cyeldjflDjdlDjcOt8b0tWm8+vu+s76vjcnqdJNVYqu1cudCEe5vZmibCExK9RDOx6hUaa5++8AWWIxKte+Kj1Hh/hGtsBiVasc4UmBl1Fsr+XxNKukFVpLzKnhv6WEueXsVRcc/R7XZeqSIqT/txuZSqXCoWJ0qDrfGip2pjJt0K5999hng+SzKskxsbCzFxcXExcVRWFiIu9yNv+rP/UPv564b7mZ5/lY2ZO2id9MuVc4jGWUCR9RvZfDLOjWhQ3gKZsVx/FiFSNKZfunohBp04oOL+PfFbTAbZCpnakoOkO34xE2vchxZOj+P9cGRvlz3dC/aD4jBL8iEf4iZzsOact3TvfELNnvdJ65tCKcPz2YoY3PsAma2fJMXUp5k6ZGlaHrN34n967NwOmoPm5xWN/rx313Dhw+nWbNmlY2+27Rpw3fffcfy5cvZsmULPXv2PIurFk4nKpEEQRAEQRCEf5zCCidGRaKWntiVJMnTSNit6QSYDdzYN4H7h7eqFtwYFdlrc+fdGSXVHq5PcLg15u3K4sGR1Xt6nIsv1qR5naan65BRZGN/diltowPRNJ3/LDzA9LWpGGUZTdfxMxt485quDGjlWensf6tSaw09XIUZOHNSKNv+O2rOIX799VckSSIywIRnHSwdSVZAktDsFViadSb7239jie9MmcNFXrmdHTt20L59e3bv3s0999wDwJXdm/Lh8uQam4gfLbLxn4X7kZGqBXTgWcnu01Wp9GkRxvB2UWd9DxtSidXFU3N3sXBPDorkaQR+Y994HhnVpnK644Xov1d34abPN7Ivqwy3pmGQJVQdHrmoNf0ST66EFxPsw5y7+vHv2TvZnVGKIkuYjTIPjmjFTX0TvB77qZ93UWpzVZk26nBr5JbaeXPxQV68omOtY/tg6WHsp/3cdU0l4+f/EDHoBiyBodjtmdUq9ADGjh3LnXfeyZgxYwDw9/cntEUUXx74hUe63YRkko8fTydgcFN8u9Rvdbmy0s3c3fljNmcnsuJYf3L0QJy6hF5LkGSSYHCgTJs2LzIoMpHh7aL5YdNRZuyah8OwD2PQdiTlZMhmkAxclHBRvcZXH/4hFgZf34bB17c585uBbqOacXBjDq7jFUmFPpn83PEdVFlFlV1kZ6WwJW8zfZr04a0hb6HIXgLHvYWoLu/3TFXdTPv9CY4VJHPxJRfzyiuvAPDCCy9w99138/333/Pyyy9zyy234HA4MBqNzJ49u55XL4AIkQRBEARBEIR/oNgQH9Q6Nj3SdDBKEsv+NZj4sOpVP2fieX/N52qM2Van9qs5nUGRyC110DYa3l5ykC/XpmF3adjxBEUVTpXbv9rMnLv70a5JIPuySmvtDxUy5ObKP5f/+CRjxoxhw4YNFFmrTj0xRSaiOcqRDEYkWcEc2w5dB6tDZcWKFUybNo3BgwfTtGlTABRZQtVqr9ipy8pt9367lS1Pj8TX9Oc8+rhUjfEfruFIobXKdK/pa9PIKLLx3oTuf8q46iLAYmT2Xf3YdrSYzWmF+JkNXNQhmnD/6lUnraICmHN3fwornFQ43MQE+6DU8OG2Ot2sTS7w+rlyaTo/b884Y4i0N6u02rfKun81zqxDFCz7ghHDZ/Pem6973ffqq6/m4Ycf5sMPP6x87brrr+Opp55iwP9dheNwEcgSljahKH71761VUrIZXbeRFLWTpKid5LslXsu24NK93xejpDM8LIyre79GSEgfAOLD/Hjs4rYM6FzIA0t/wK6eDJBkZAJMAdzW6bZ6j7GxBUX4MvbBriz5fC8VJQ6WtPkSp2KvUuJpc9tYn7We+anzGZM4ptoxzLX0N1MUA/eNfp1mHUIZc19XAHr37g3AtGnTKt/3+++/V9lv+vTp9b+ofzgRIgmCIAiCIAj/OL4mA9f1bMaM9em46xAmGRWZgzllJITXtFpSzTrFBiHXEDxZDDJXdI0962PW5ZwpeRWoXjpTO90aLSP9sbtU/rc61WsVj8Ot8sGyw7w/oTtNQ3zYk1l6xnP6GBVemjGXhIQEPvzfF3R7YTGWZp2xNPMsMx48cGLle6MnnXy4f+ODT0g6ZWrgqbz12KmPBbuzGd+9aYMc62wt3JNNVom92rXYXRqL9uaQll9Rr8/V+SJJEt2bhdC9mfef0elC/Uxn7PHlcGnUlsWeXmHkTUSAuVrPLL/2g/FrPxizQebnfw2maYgvffv2BWDIkCGVPXIALrroIsLDT1ZTSZLEhAkTMASbMfSIPuP560JRfJEkI7rumc4WbtCZHObgywIzEqChgKRgUkwMbzacie0m0j6svddj9YvpxyejPuGtLW+xM28nBtnAyPiRPND9ASJ8IxpkvI0lunkQE1/ow47kfXy6rgi8ZL82t43v9n/nNURq378JKdtya2zQbTAr9LuyZUMPW6iBCJEEQRAEQRCEf6Spl7Ujt9TO77uza6kT8tDRCfY9u+bXJxgVmefGduDJn3ZVqZwxyhKh/iYm9jn7pcPPZMrgFvy+OwvbaVNATIpE/8RwYoJ92JNZUmO4pemwMbUQgFv6N2fRnpxa75EiQZi/qTKoMRnqNkXLpWpkldgA7wHF0DaRzNx8tE5BX02cqkZOqaPe+5+rxXtzalwBUJI8Dc8v5BCpMQT7GgnzM5Nd6r1xeqfYoDMe49YBzXl8zi5sp91bWYK20QE0DfH1ut/+/fu57bbbKqc9AcyePZu33nqLuXPnnsVVnFlE5MUcTn6tympmHXw0XoyxsddhIazpLXSOHkD3yO51qnDsFtmNry75qkHHeL5IkoQe6MCoGHFo3r+Pmfk5qG4N5bTfHzGtgmnRLYKUbXnVgqTwOH9G3tyB0Jh/1nfoz3ThTsAVBEEQBEEQhEZkVGSmTUpi3v0DGNw6HHMtwYev0VClkfbZGt+9KR9OSqJ9k0AkyVO1c2VSU369dwBBPg2/FH3b6EDeuKYLviYFP7OC2SBjNsh0jQvmneu7AhBoMeJWa54O5m/2/Htz7xZhdI2r/aG+Y2wg02/uWTllzGxQGNwmAuUMD8YuVefRWTv5fHWq1+13DUnE7KUp8+nMhprPYzEqtI6quhqdW9VIza8gt4YQoyGZaul5JCF5bVz9dydJEo9d1AYfLz9bi1HmkYvO3G9nTOcYRrSNxNd0sqG3j1EhxM/Ee9fXPEWwbdu2rF69mkGDBlW+duWVV7J69WrCwsLO+lpqYzFH07z5A8iyT5XXfQ0+jG09kZu7PEBSVNJZT5H9q2oR1AKX5n2FNUmTCC2IY/Hne6pvkyRGTG7PsBvbEd0ikIAwC827hnPVv3tw7dReIkA6zyTdS4nrX0GPHj30zZs3/9nDEARBEARBEP4mdF3n4Zk7WLgnu7JyxKhIGBWZ6Tf3olfz6k2z63ue8/XQ+GFqNv/dmIbu0iDYhH+IhTfaxDEy3BMKXfT2Sg5kl1Xbz2KUeXRUG24d2AKArBIbw99Y4bWixiBLmAwybk3n4ZGtuHOwZ1rJsSIrY99fQ7nDfcbVyHyMClueHuG1b9H+7FL+/eNOdmWUeO2hYzHKfDixO3fN2Ir9tPNIEkQFWljz72EosoSu63yxJo13/jiES9VQNZ1Wkf68fnWXGpehP1erD+Vz+1ebKpd5P5XZILP638OICPC+stXf3Vfr0nh94QF03fO9sBgVXrqiI5d0alKn/XVdZ11yATM3H6PU7mJw63CuTIqrDEAvFAWFq0lP/wirNRWLpSnxzW4jPHzE3y480nWd1RmrmXVwFkX2Ino16cV1ba6rMt3u2TXPMi95Hk696gp8BtXIuN0PEemK47qnexEc6b2STDg/JEnaout6D6/bRIgkCIIgCIIgCB66rrPsQC5fr0snv9xJ7+ahTO6fUOPUmAvZN5n5PHUoA9tpyYuPLDGza0t6BvmxJ7OEaz5eh9OtVfbs8THKtI4K4Ic7+lZZmv1AdhmPzNrBwZwyVE3DWy7kY1R47/pujGjvWQ0tv9zBF2tSmb8rm6xiW7WQ5wR/s4H3J3RjSJuaV8HKL7Pz8YoUZmw44gmE0LEYFF67sjMj2kex81gxN32+Eaeqoao6iiwR7Gvim9t6V04X+3hFMm8vOVStD5SfWWHBA4OIC234n3NBuYMBry2rdk5FgnuHtuShUW3IKbVzpNBKkyDLX/Kzdi6cbo29WaUYZIl2TQJrbMYtXNh0XefxVY+z7OgybG5PY3+TbMKoGPn8os8rez05VSe3TL+X3fImZM0A6EjIDD80ifjijhhMMgOvbU37/jF/4tUIIkQSBEEQBEEQhH8QTdfpsmYPeS631+0Dgv35sZunYiij2Mb/Vqaw4mAevmaF63s246oeTTEbvE8jSy+oYNRbK3HUEAh1bhrEL/cOqPb6+Glr2Hqk2Os+/mYD703oxtBaQqQTbE6V3ZklmA0yHWKCqoQOLlVj5cE8MotttIjwp2+LMOTj2+0ulaQXF1NRQzXVtT3jeHlcpzOe/2zYnCrjpq3mQHZ5tZ5SJkXm5XEdmb8rizXJBZgNMk63RuemQbw/oTtRgZYGHYsgNJRjZcdIK00j2jealiGe3yN/pP/BE6ufqAyQThXrH8vv43+vrLxa/Pketm4/QK5/OibVQpPSlii65/eN0awwZFIbWvdsmObmQv3UFiJdWHV+giAIgiAIgiCcs1ynmzK15hWutpRWVP45NtiHZ8d2qPOxdZ1aq0VS8yq8vj62Swx7s0qrNBc/wa1p9Eyo23RBH5NS43uNiszwdlFetx3MKatx+pBb01lxMK9O56+rrBIbY99fQ16Z9ybCTlXjmbm7cWs6LlWvnPK3Nb2IKz9cy9J/Dalzg3Lhz6NpTnJyfiMzaxaaaic8YgRNY6/HaKx/D7ULVbG9mEdWPML2vO0YZSNuzU2zwGa8PeRtvtv/ndcACaDQXsi+wn2V1Uht+zQhdUc+/oXB1d6raTrxHcOrvS5cOESIJAiCIAiCIAh/Mz6yxGkryhNoVemz307rTBe6IrHFlkanIU0xWc7ukSDEz4T79IOfIszf+yp2V/WI49NVqeSU2qustuZjVLhveMtG72NjNihotczCqK2xen088P12CsprXxXOW58kVYeiCieL9mYzurOY0nMhU1U7W7dNoLz8IJrmCVDKKw5w9OgX9OwxBx+fuD95hA1H13WmLJ7CoeJDuDU3DtXz2T5UdJBJ868jxBJR476KpFBsL678e9N2IcS2CeHY/sIqq60ZTDL9xidi9hExxYVMRNuCIAiCIAiC8DcTZDSQFOhbuWpVeKnKHQtKSTrsIKRCI7RUZdNvacx8eRMOm/cpbzUe28fIoNbhGLxUI/kYFW7p39zrfv5mA7/c258xXWIwKTKKJNEkyMILl3fg7iEtz/YSz1rrKP8aV8KzGGSu7tFwD/zZJXZ2HC322gi8LiqcKuuTCxpsPH8XmZmZdO/eHYvFgtt9dp/bc+V0a2in/UCPHP2c8vIDlQESgKbZcbmK2bvv3+d1fI1te9520krTcGtV77sOVDhLKHPU/Hl1qA5ahbSq/LskSVxyZyf6X9WK4GhfzH4GYloFceldnek05O8TvP1diYhPEARBEARBEP6GXm8Tx2VbDmLTNEZvLMfk0qv8C7Lq0igrsrPl9zT6jT+7EOe1Kzszbtpa8ssdWJ0qEp5pZv0Tw5nYJ77G/cL8zbx1bVf+e3UXnG4Ni1E+bytUSZLE61d14favNmN3q5woSjIbZGJCfLihlnGfrbwyB0ZFrrFv1JkoMjUGXv9koaGh/PHHH4wbN+68nfPnbcd4Y9FBMoptGGSZMV2a8OSl7QjzN5OR8R2aZveyl0ZJyVZcrqK/zbS2nXk7calOr9scukTeKZVGp4v2ja6yQhuALEt0HBRLx0GxDTlM4TwQIZIgCIIgCIIgnAf7CvaxKG0RTs1J/9j+9GnSB1lqvIkBrfwsLO/Vlo8OZhFeVOh1CoLm1tm/LuusQ6QwfzOLHx7Egt3ZLNmbg49JYVy3pvRpEVqnUEiRJXxM3ht3N6YBrcKZdWdf3vnjEBtTC/E1KVyV1JQ7Bifi14DT6ZqF+uJS6xcggae30xXdxMM1eBqirzyYR6ndTde4IFpGngxl0tLSuOWWWwgNDSU1NZW5c+dit9u58cYbMZvNjBw5kieffJIuXbrQpUsXduzYwZdffknXrl3rdO7/rUrhjUUHK1fWc6oac7dnsj6lkIUPDUJ1l9W4rywbcblK/zYhUqApEAUdb/VfEjoyEjV1YdP0+n8XhAuPCJEEQRAEQRAEoRFpusbU1VNZkr4Ep+pEQ+PHgz/SPKg5n1/0Ob7GxlvSPcZi4tGmUXxrSK3Se+RUNb1+JmaDwuVdY7m8618r7OgYG8SnN3pddKjBBPkaGd25CfN2Zp11NZKPUeHGvvG0igpopNH9dSzem8NDP2wHPCsOappOj4RQ1FOmlRUVFbFkyRK+++47Zs+ejZ+fH1OmTGHy5MmcWIk8OzubDRs2sGXLljqHSFanu0qAdIJb0ymocDBz01G6BLSnuHhDDUeQsFia1OeyL0jD44fz4rpnvW5TAEmiWh+2E3yMPo03MOG8Ez2RBEEQBEEQBKERzT44myXpS7CrdjQ8gYLVbeVQ0SFe3fBqg58vo9jGu38c4ok5u/h2Qzr4KBhqqfqJbhHY4GPwRtd1VE3n911ZTP5iI9d8vI6PVyRTYnWdl/Ofby+P60TfxDCvvaNO5WdSGNQqgrgQH/olhjFtYneeuLTdeRrlhSktLY3wiEguv2QkyV89QbnDjdWpYndrbEor5HBeeeV727dvT25uLsuWLaO4uJioqCiefPJJoqKimDFjBgAtW7bEYrEQGxtLcXFxncawJb2oxp+d3aUxd3sGLZo/iCxbqm2XZR+aNbsdWfbeZP6vKNAUyD2th2GUdCROpEU6JklniL8LP9l7WGpRLFzZ6srzN1Ch0YlKJEEQBEEQBEFoRF/s+QK7Wr1vilNz8nva7zzZ50l8DA3zL/XfbzzCs7/sQdM9y8bPNSm8tuAALw1pTuaijGpVRwaTTK+xLRrk3N6U2l28seggP245SoVDxWKU0XQql7NfNX82j+76gw4xAfz3tVf58MMPKx/8T/i///s/5s2bR1RUFF999RV+fn7cd999vPfee4027oZgMSpMv7kXvV5eQm5Zzau0OVUNq9PNikeHIp8hcPoniWzbE8fAe6pUHQE43BolVhfZJZ7vlCRJREdHM2nSJJYvX85///tfDhw4wI4dOxg/fjw33HBDlSmWei0r9J2u1ndKEiEhvWjX9lX2H3j6lOO7iI29nuYJ99T5PH8VNyY9h6V8JYuLbGQ6ZUINGoMD3LS2aLTx0fgk34xbPxkxmRUzzQKbcWVrESL9nYgQSRAEQRAEQRAaUZ41r8ZtkiRRbC/Gx7/uIdLujBLm7czE5lIZ0iaSwa0ikGWJw7nlPPfLnirTp6xOFVB5cUc6H41pxebf0jwbdDBaFIbd0I7o5kH1vLLa2V0q4z5Yw9FCK87j81zspyxp7y7Lpyx1J5HXvkRsfAixsdWXs8/KymLVqlWsXr2a2bNn87///Y8HHnig0QIkl6qxeG8Om1ILCfY1cUW3GOLD/M7pmM4zTGdzqTp7s0pZm1zAgFbh53Suvypd11l+MI+Zm45SanfTMcBB8s6NSGlp+Lbuh2/rvuTPfwfF4o8tdSsA7RPjaB7fjHbt2pGWlsbLL79Mr169KC0t5dJLL8VqtRIYWP8qux7xodUCrBMsRplxXT2f1+josURGXkxx8SY0zUFQUHeMxuB6n/dCZjQGM67fT7TcfS/l5XurbGtl0Xgo0s7iMh/S3H74m0O5qtVVXN/u+gYLyYULgwiRBEEQBEEQBKERNfFrQmppKgCaKwDdHYRkLEI2VIAOoT6hdTqOpuk8+uMO5u/KxuFW0XT4cfMx4sP8+P6OPsxYn467hofeCqcba4Ift74+kPyMchSDTFiMH1IjVr78vC2DzGJ7ZYB0OnvqVtA1sr57kiUR8WT1fpUjR49x+eWXk5OTw3fffUdubi7t27cHoGvXrsyaNYsHHniAAQMGsHr16gYdb1aJjas+XEexzUmFQ8WoSExbfpj7hrXk3mGtat231K2yML+EMrdKzyA/OgWc7HPVrVkwyw/k1VrVYnWqLNyT/Y8MkVRN555vtrLyUN7x0BM2SSqxt3+MKhvIm/0ilvguaPZyoq57Ceu+ldgPrGb9soX8PP192rZtC0BUVBR33303ycnJfP/99wAMGjQIoPKzkpCQwPTp0+s0Lh+TwqMXteH1hQeq9EUyyhIR/mau7nFyKXpZNhEa2v+c78Vfga9vPLEx13Hw0EvoetXV2mJMOjeFWYmMHEKnjhd2paBQfyJEEgRBEARBEIRGdFvn23h+1ZsUH7kC1ZYAkht0A6aAQ1wxwIlZMdfpODM3H2X+ruwqD7QVTpXDuWU89dNuSm2uGkMkXYeMYiuKMZyohPPTA+mnbRnVmhKfSq0oRlfdRF33CiUrvmDMo29TuieZ9vd8wiVNrPzf//0fL730Ehs3bsTtdrN06VKKiooabbx3zdhCdqm9svrEpeqAzgfLkkmKD6VvYpjX/b7PKuDxg8dQJAm3riMDXQJ8mdG5Bf4GhQdGtGZdSkGVKqzTScA/dSbbz9syqgRIAE5dQTIoKBL4tOyFLXkTxvA4JElG8Q8ltGki7ZoEsDEmpspnIiQkhNLS0sq/y/K5tQC+ZUBzIgLMvLHoAOkFVkwGz6p5j1/ctkFX8/urURQfJMlQLUTykDAooin835lorC0IgiAIgiAIjeji+MtwHb0f1doCdCNoPqAbcZW1YcfOQXXu0fLJqhSvoYxT1Vm4J5vESH+MSs1JRIsI/3pfQ31oZ7gu2eyHpVlHAExxnVGdDozhCRQ7NOakG1m0fgcRERFMmjSJESNGcOjQIaKiohplrKn5FezPKvM6fcnmUvnfqpTKv6ulDkqXHaVo9kH2LU3lpT1HsWs6FaqGQ9OxaTrri8rp8NMm7v9uGwEWAx9M6E6Qj7HG85ds/Ik37r+OR2ftIDW/otr2Nm3aMGTIEIYMGcLevZ5pRF9//TV9+/bl4osvJjs7uwHuwp/ji7WpVQIkAM1hRccTrrky9+ET3wUJCYtRxs9k4NLOTSr7HJ36/fH19cVms1FeXs7GjRsrq9jOxZguMSx/dCiHX7mU/S9ezGtXdibE7+/TMLs+wsOHA94DYlm20KTJ+PM7IOG8+ufGp4IgCIIgCIJwHizZl4vq8uX0hy5dVzicW8HWI0UkxYee8rrOgaIDpBVlk50fhL8hgv4tw8gprd6c+wRFlhjZPpJvNqQfr6A5SZYgMsBMj/iQBr2uMxndOYbdGaU1ViOZY9tRtmMhAM7cVJAkXPnp6JpKafZhbEoo2SV2br/9dm6//XamT59OUlJSo4w1o8iG0SBjr6F/UVqBJ9ip2J5L0Y+HAB3cOiaDxI+6zj09fNkTfMoKeLKEI8TMr6uyWbIvh5l39GXr0yO5c8ZmVhzMr9InSXe7cOal4lZ15mw9xm+7svju9j50iQuufE9ERATLly+v/Lvb7WbatGmsXr2a7du389prr/HWW2815C05bwrKq1ezOI7toXjVDBSjiWGDBxHZsy3LDy7iwRGtaWozsH71ihqPN3XqVEaOHInFYuHLL79ssHEq/9RSMS+MxiBaJj7B4eTX0DRb5euy7ENkxCiCghrneypcGESIJAiCIAiCIAiNaM3hfCqc3oMUm0tl5eH8yhDpYNFBHlr2EJnlObjcEkhudGsbXD9fh4+hehB1gqbrdGkawvvXd+e+77YhSZ7G1j5GhSBfI1/f2rvKClXnw1VJTfl0VQrZJXav0+xMUS2QDSayv30cxSeQ4ME3YUvdSt6cl1CtpcSNf4yVh/KY9drDFBYW0rlzZ954441GGWt8mG+NDbAloGWkP+5iuydAOuV9ZreOGXh3q5WLhvjjPjVo0HRUXwPWIidP/rSLX+4dwMeTevDVujTeW3qIggoXAOU7F+LXcTglq77BUZxDxvy3GTEnkER/N9999x3NmzensLCQQYMG0a5dO9555x1KSkpo2rQpiqLQpUsX7r333ka5L+dDx9ggskvtnFq45pPYE5/EnpgNMt9MHeGp4rrv0uNbExl98UgAJk+eXLnPiVX9RowYwYgRI6qdR9d19hbuJaU4hWi/aJKikpAlMTGnvuLibsDPvyVpaR9SUXEQsymSuGa3EB019rz/rhHOLxEiCYIgCIIgCEIjCrAYUCTw1l9ak+CLnEKmuFVc7jImL5hMmbMMAOlEYYvvAZTor7Bm3oZRkapVGpkNMuO6xeJjUhjRPopNT41g/q4s8ssdtI0OYHDryD+lisLPbGDuPf156bd9/Lw9A2+z20KG3Vrl79ET/q/yz2aTgixJzJo1q9p+Df2QGhfqS9e4YLakF1ULvHyCDpDn/w2jfs0kOjaUa/JH0aOiQ5X3GDQYkOdmedQpU9ZkwOEJ/XYeK+GxH3dw5+BE1qcUUnH8dV11Yz+ym4juoylZ9Q0AankRoRNf4ckhAbz22mt89NFHrF69mtDQUF555RU++eQT7rnnHlJTU6moqGDt2rUUFhY26P04n+4d2pJVh/Kq9YyyGGQu7xZb6zTAM9F1nc05m9mas5XZh2ZTbC+u/OwEmAL4YPgHtAltc07j/ycLDelLaEjfP3sYwnkmQiRBEARBEARBaERXdItl+po01BoqXUrDTXyTVYBS/CtOtfrUHkl2o/imYpNzMWmRmA0yOqBqGiZFoWuzYJ4dczLU8DcbuOaUlaP+TGH+Zt66tivju8cy5avN2E4LCk5kW976gbs1nSFtIqq9/tBDDzF8+PAGH+sHE7tz/SfrySy2YXWqmAwySth8zGHrOFTqACDPt4CDTdO5Jn8UEwourdzXoEET2ykXoelI5W5k68nKsdlbjjFn6zFkWa6seqrYsxS/9oOrjMMUkYDBaKB5mw4cPnwYgNBQT6XauHHjeOutt1AUhWeeeYZLL72Ubt260bp16wa/H+dLl7hgXr+qC/+evRNZktB1HbemM7xdFC9c3uHMB6hBdkU2ty26jdyKXGyqrdp2q9vKLQtvYeGVC/E3nd9+YYLwVyZCJEEQBEEQBOFvLbfUzs/bM8gpddApNoiLO0ZjMSpn3rGBtI0OZGjXJvy+LbNKOZIuS7hbBqAaZWZlF9G8aAMO1eH9ILqMwfcIUkUUs+/qx/qUAhxujf4tw+l6Su+cC9XAVhHcM7Ql7y09jKbpuDQdP5NCmL+ZQB8Dh3LKcZwSsvkYFW7un0C4f/WV6xqr90+4v5mFDw5iTXI+W9OLUZUcvjm2DqdW9WfikJ38EL6AESV9iHR7wh23DOm+xxMxtwaqjnFH1eqg44u9gXbyOl2FGThzUijb/juu/HSshzfiyk8HTaM04zCJiYk4nU50XcdsNrNmzRoSExMBGDt2LGPHjmX58uVs3LixXtdc7nCz82gxZqNMl6bBGJQ/Z3rXmC4xjGwfxapD+Vidbro3CyEu1Lfex9N1nSmLp3C07CiaXvOqeC7VxbyUeVzX9rp6n0sQ/mlEiCQIgiAIgiD8bc3afJSnft4NgMOt4WdSeHHeXn64oy8tI89f9cHEYS1YpNlxpZQh2dxofgbUFgFoYRYAVF0n1BKKhISOt1XNJHTVB4BWUf50jA06p/GsOZzPe0sPcTCnnHB/E7cOaM5VSXGNOu3t3mGtuLxrLHO3Z1Bqd9MjPoRhbSNxazrv/nGIbzYcodTuommwD/cPb8VVSU0bbSw1kWWJga0iGNgqgg+3L0E96vb6Ph1YFbiVKws9vXcsvkYiE0MwHs5Dz7OjZNmQvJVXnSZkyM2Vf86e8Ri+LXthP7gW5Y//8q/FVr755huKioq45JJL8Pf3JyQkpLL3z3333ceePXuIj49n2rRpZ3Wduq7z30UH+GxVKkZFRkPHKMu8dlVnLuoQfVbHaigWo8LI9g2z+t72vO3kVOTUGiAB2FQbO/J2iBBJEM6CCJEEQRAEQRCEv6XDueU8PXd3lQqXCqeK1aky+YuNrHps6HlrANs9yB89yhdnhKXaNrMsMToimIE+V7L06FJs7upTbwBkexsu7dQEs+Hcqqi+XpfGK/P3V66aVljh5Llf9rJsfx4fTureqPckLtSXe4e1qvKaQYHHLm7LYxe3bbTz1kd6USGq7r2RuUtyY5cdSGYFySQTdXtnPor0ZVN4KE/M2cXhOgRIp2sy6T8YbPl0bN2cDYt+rvJz2Lp1a7X3v/fee2d9jhOmLU/m89Vp2N3aKSvSqTzw/Ta+ua0PSed5Jb+Gdrj48BkDJACDZCDK92RwlZaWRu/evWnXrh0mk4lFixZV2yc1NZUbb7wRSZJo2rQpX3/9NYpy/iobBeHPJtrRC4IgCIIgCH9LX61Lw6VWf5DUgaIKJ5vSis7bWHwVmUeaR+FzWqWPAgQqCpObhtMjqgeXJFyCj8Hn5Fg1GV0zouVOIC4kkOfG1L9HDECJzcVLv+2rDJBOsLlUVh7KY11ywTkd/+9C13VW7QpCV01etxslC7069Cf0mtY0ebw3xkjP1KueCaEseXgww9pEcjZRnNkgM2VQC+bdN4DWUQGNGuS5VI2PViRX+wwA2F0a7yw52GjnPl+ifKNQ5DMHO4qsMK7VuCqvjRw5kuXLl3sNkACCg4P59ddfWblyJc2bN2f+/PkALE5fzJW/XEnS10kMmzmMj3d87LXHmSD81YlKJEEQBEEQBOFvKTmvHC8ZEuAJko4WWunVPLTBz1tU4SS71E6TIAvBvidDiLubRRFsMPBaahZFLhUdGBYawCutmxJq9Pxn+XP9nmNYs2HM2PcNacVZYG9GNKO46uIeXNwx+pyrkJYfyMUgS3jrvGRzqszeeox+LcPP6Rx/hmNFVrYfLcbfbKBfYjgmw7n9W3lyXjmFeS2QLEHIUiGSfDJw0TUF9HCGXDy6xrDnsUvasDalAPtpQY3FIONjUnC6NSqcKhLgY1IY0DKcxy5uiyJLldPVGktGkQ21lkqp7UeLG/X850O/mH4Y5ZpXdZMlGZNs4u4ud7M1Zysvr38ZSZLoYerBsmXLGDhwIOPHj+ehhx7ihRdeYOnSpciyzOeff05CQkLlcQwGA4qiMOX/prBw/0IChwZiP2onbVkapTeXsi5rHZ+N+qxOgZYg/FWIEEkQBEEQBEH4W2odFcCGlMJqS7afkBBe/8a93pTYXDz24w6WH8jDqMi4VI2hbSP5z1WdCbR4HmgnxIRxfZNQitwqPrKMz2mNjCVJYnDcYAbHDfZ2inNmc6pouvf7oeNptPxXYnepPPTDdpbuz8WgSEhISBK8fW1Xhrerf3+dEpsLg6xQnn4nlpgfUHxTQFdAUnFXtCLIemOt1UJtowP5/KYePDRzO2V2N7IkoWo6tw1szn3DWrJ4by6L92ZjMSpc0S2W3s1Dz8vUSl3TydlXiMPpfZoegJ/5r/+IaJANvD/8fe5YfAeqpmJX7Sgo6Og0DWhKz+iejG4xmufWPUeuNbdyCukWfQvd3+zOjLEzmHDVBIYNG0ZGRgbLly9n3759vPrqq3z88ccAZGZmsmTJEu5/7H6mZkylcFshgUMDKdlcQmDPQByqg30F+1h5bCVDmw39M2+HIDSov/5vCEEQBEEQBEHw4sa+CXy38Ui1EEmWICLATPdmDdf3RdN0rvtkHYdzy3GpemUfpqX7crn+k/XMu29AZUggSVJl5dH51rtFGDUVofiaFIa1jTy/AzpHT8zZxbL9uTjcGqfmX/d8u5Wf7+lP2+jAeh23ZWQATlVDV/2wHb0FSSlDMhaju0KQ9QB6d4k54zH6tQxn/RPD2ZtVis2p0q5JYGVAc1nnJlzWuUm9xlZfuq6z8H+7Sd9dQJRJIlPROX3OndkgM6F3s/M6rsbSJaILC8YvYM7hOezN30sT/yZc2epKEoISAHh69dNklmfi0lyV+zgkB5nOTD7c9SGjR49mx44dLF++nCFDhgDQpInnZ1ZuLWfcdeO476X7WJ6xHLOvGckg4S5zYz1oJfJyz/fI6rbya8qvIkQS/lZEiCQIgiAIgiD8LTUP9+P1K7vwyI87kCRPvxc/k4K/xcBXt/Rq0MqP1YfzOVJgxaVWTWicqkZqfgXrkgsuiGlizcP9GNImghUH8k5pqAyKBIE+RsZ2if0TR3d2CsodzN+VVaVx+gkut86Hy5N557pu9Tp2kI+Ra3vEMXPLUewuDV0NQFcDADAZZe4aklin40iSRIeYc1tJr6Ec2VtI+p5C3E6NS9wmZvg7cAPq8a+Bj1Ghebgftw1oUbmPfrxq7Xw1oG9owZZgbul4S7XXVU3l97TfqwRIAKpNxenj5KdDP9FqTStuv/12Ro0aVdnE3OVy8VvKb0yePJmQpBA+yPoA+1E7SBDYPZD8+fmYokxIp/Q+E32RhL8bESIJgiAIgiAIf1tjusYwoFU483Zmkl/uoF2TQIa3i8KoNOz6MuuSC6ioYYqQ1aleMCESwLvXd+OFX/fy45ZjldPueiSE8MbVXfEx/XV6txzOLcdkkL2GSKqus8NLbx9d1ylyFGFRLPgaa5/O+MyY9rg0jTlbMzAZZHTdU6nzznXdaBUV0FCXcd7sXZ2J2+H5jIZqMreUWdhqdpFs1DBKEtd3i2PKmLZYjArFOVbWzjlM+u4CdF2nSctg+o1vSVRC/Sq7LjQO1YFbqz5103rQSs6cHCSjxKArBjF48GBWr17NkCFDkCSJPpf24efynyncVIg110rG7xmEjwonMCmQwG6B7P9qP/H3x1cez8fgw6iEUefz0gSh0Ul6DXOiL3Q9evTQN2/e/GcPQxAEQRAEQRB4f+kh3l5yyGv/JaMs8dCo1tw9pOWfMLKalTvcZBTZCPM3Ee5v/rOHc9YO5ZQx9v01XlcZA0iKD2H2Xf0q//5r8q+8vfVtiu3FaGgkRSbxTN9naBZY+/StgnIHuzJKCLAY6BoXgiL/Natyfn5rGxkHvK9IaLQoDJnYhtY9oynOtTLrlU24HCqnPioaTDJjH+hGk8QLo7LqXOi6zrBZw8i35XvdHhcQx/zx86u9ftPvN7E1d2udzmGQDTTxa8JPl/+EWfnrfb+EfzZJkrbout7D27aG/ScYQRAEQRAEQfgHurRTkxrDBVmWuKzT+e1/Uxf+ZgNtogP+kgESQKuoAGJDLKe39QE8/Z0m90uo/PsPB37ghXUvkGvNxak5cWtuNmZv5PrfrienIqfW84T5mxnSJpKk+NC/bIAEENcuBIPR++Of5taJbu4Jh9bPTakWIAG4nRqrfjjY2MM8LyRJ4s7Od+Jj8Km2zaJYuLvL3V7321e4r8ZjKpKCn8EPs2LGKBsZ3mw431z6jQiQhL8dMZ1NEARBEARBEM5Riwh/buybwIwN6dhOmdbmY1K4qW888WF+f+Lo/r4+mJDE1R+txenWKns8+ZoUhraNrAzuXKqLt7e8jV21V9lXR8fmtvHV3q94tOejVbbtzihhwe4s3JrO0DaR9DpPq6edix1Hi1mbXIDZIHNxx2higqsGJB0GxLJt0RHcrqrT/xSjTHzHMALDPe9P35lfLUA6oSCjHIfNjdnnr/8YeU2ba8ix5vDV3q8wyJ7rcWtupnSewujE0V738TP6Va7kdjpZkpl/5XxUTcXf5O81oBKEvwMxnU0QBEEQBEEQGoCu6yzck81HK1I4WmilWagvdwxO5OKO0Q1yfKvLyoc7PmTOoTlUuCpICEzgnm73MDJ+ZJ2PcazIysxNRzlWbKNTTBDjk5oS5GNskPH9WQrKHXy78QirDuUT7GPk+t7NGNI6ojL02VOwh1sX3kqFq8Lr/jH+MSy8ciEAqqbz4PfbWLIvF4dbRdM9oVTHmCC+urUXFuOF1zPK5lS5Zfomth8txqlqGI5XS00Z1IJ/jWpT5b2FWRUs/HQ3pfk2ZEVCdWm0TIpiyKQ2GI5f20f3LUd1Ve8zBSArEjf/ZwAWv7/2Z+ZUJY4SNmRtQJIkejfpTaCp5r5PH2z7gM93f45Tq9osW5ZkekX34tNRnzb2cAXhvKhtOpsIkQRBEARBEAThAudUnUz4bQKpJalVHmAtioX7u93PDR1uOOMxfth0lGfm7kbTdVyqjo9RQZElZtzWm65xwY04+j/XgcID3Pj7jVjdVq/bmwU047fxvwHw+epU/rNgf5WV6wBMisR1vZrxwuUdG328Z+vRWTv4ZUdmtQbjPkaFt67t6jXELM6xYitzEhLth8W/aiD027SdpO303isoNMaP65/p3XCD/4uxuqzc9PtNpJWlYXd7KtvMihlfgy/fjf6OWP+/zuqGglAb0RNJEARBEARBEP4k5Q43C/dkM39XFoUV9Vvue0HaAo6UHalWAWFX7by77d0aq2xOSMuv4NlfduNwa7hUzz8i21wq5Q43N3+xEZfqvfLk76BVSKsapxaZZBNjEsdU/v3jlcnVAiQAp6ozc9NRnF62NbS8MgezNh9l5qajZBZ7nzp1QrnD7TVAAs/P94Nlh73uFxzlS5OWwdUCJIA+V7TAaK5ecWUwygy8plUdr+Lvydfoy4zLZvBEryfoGtGV9mHtuaPzHfxyxS8iQBL+Mf76k1kFQRAEQRAE4QI19addfLvhCACSBLIkcVPfeG4b2AKDIhMRULemu78m/1pjLxZFVtiYtZGhzYbWuP93G4+gqt5nIDhVjZUH8xjeLqpOY/mrkSWZZ/s+y2MrH6vSF8kgGwjzCWNCuwmVr+WWOmo8jkvVKLW7Gq0Rua7rvL7wAJ+tTkWRJXQ80+uuSmrKS5d3RPbS1Du7xI5Blqhp1EcKvVdf1SYsxp/xj3Zn1Q+HyEou9rwW68+Aq1oR2ybkrI/3d2NWzIxvNZ7xrcb/2UMRhD+FCJEEQRAEQRAE4Rxkldj4buMRknMraB0VwHW94ogKtPDIzO38uDWj8n26Dpqu89maNL5cl44sSSSE+/LyuE70TAit9RyqpqJam+EoHITuDEc25WEKXYXi6wmoNL32Cpm0ggpcmvcQSVV1MkvsaJrO6sP5bEotxN9i4LLOTWga4nuWd+PPsyezhI+WJ7PjWAnh/iZu6pfAmM4xyLLE0GZD+WjkR7y79V125e/Coli4rMVl3NP1nsoeOC5Vo7ZGH6pOo/aP+nHLMb5Yk1atquinrcdoFurLnYMTq+0TEWCu8ecKEB1oqddYwpsGMO5f3XG7PKu0GU0XXi8oQRD+HCJEEgRBEARBEIR6WrA7iwd/2I6mg9OtsWRfDh+tSObV8Z2YfUqAdDq3pgM6B3PKufGzjfxwRx86Nw32+t5l+3PZvrMv1qJw0A2AjOaIxF3eBlPkQswRm+kR7bV1RaX2TYJYfiDP67QnRZaICjBzyTurOFZkpcKpYlQk3lx8kHuHtuS+4Rf+FKbpa1J5ef4+3JqOrnsqcPZl7WLR3hzev74bkiSRFJXEl5d8WeMxyu1uFFlCrSGUkQCj0njdQN5behibS632us2l8dGKZKYMbFGtGinIx8iwtpH8sS+ncpriCT4mhSmDWpzTmAxnaCTuUjV0HUwG0SVFEP4pxLddEARBEARBEOqhoNzBgz9sx+7SKnvlONwaNpfKoz/uqLWq5VQ2l8rrCw943fbximTunLGFwsImoJs4+Z/vMugmnLkXc0XCTQSZg2o9x/W94pC9LFEvSxDmb2bG+nRS8supcHpCDJeq43BrTFuezMqDeXW8koa1e/du+vXrx8CBA7n55ptJTU1l0qRJAHz99df07duX4SNHccmrv/Dcr3vJ+uVNMr98mOxvH6di73JsLpVl+3NZUcfxB/oY8a2l4qZpSOMu2X60qOapZxUON+VOt9dtr43vTPNwP/yOj12WwMcoM6ZzE8Z3b5w+PfuzS5nw6XraPrWAtk//ztj3V7MprbBRzlUXW9ILefD77Vz/6XreWHSA3FL7mXcSBKFeRCWSIAiCIAiCINTD3O0Z1DkpOoMNqdUfwPPLHby5+ODx6qHqARCAIhmI1C6t9di6rrP1SBExwRZS8iqQJE9/JotBIdjXyNvXduW6T9dXq2QBT8D18YpkBrWO4EB2GZ+uSmHXsRKaBFmY3D+Bwa0jkLyEU+fC4fZMoWrTpg1r164F4OabbyY/37NimNvtZtq0aaxevZqhT0xn85zPCRl+OwDhYx7BGBJTeSyrU+X7jUcZ0ibyjOdVZIlb+zfno5XJ2F3VVzq7v5ErsoIsRoptLq/bZEnCt4aqoCBfI78/MKgyMPMxKYztEkPH2NqDxfo6lFPG+GlrsTpPVk3tPFbCDZ9t4Mube9G7RVijnLcmr8zfx9fr0rEf/9xsTS/i89WpfHVrb5LiRQ8nQWhoIkQSBEEQBEEQhHrIKLZ7XckLPJU8EnXPmAxemiYv3pvjtXroVKomUWz1Hjyc8PJv+/hm4xFsxx/6dR0MksTwdpG8fW03th0txmyQa1x5LLWgonLankvVUTWdAzllbEwr5JoecTw3tkMdr7J2B7LLeP7XPZ5ATYfW0f48fVl7+rUMx2w2o6qe8RcUFNC0aVP2ZpWTa4zGnrn/+BEkCua9iewTQOjIuzAEeYKjkhqCGW/uG96K9EIr83dlAZ6qHk2HSX3iuSqpaYNcZ00m9mnG/1alVptyaFIkxnWLxVDLVDpFlhjRPooR7Ru/Ofp/Fh7wOu3O7tJ4/te9zH9gYKOP4YRNaYV8vS69yngcbg0HMOWrzWycOgLFy3dLEIT6EyGSIAiCIAiCINRDm+gAfE1KlYqME/xMCpEBZtIKrGcMkhQJLu4QXe11u0tF02vf28+k1FptcTi3nBkb0qtV1rg1nQW7s/lP8H4W7M6mzO59qhRAbJAPD8/cUe0YVqfKD5uOcnnXGLo1O7eKj8O5ZYz/cA0VjpP3cl9WGddMfQ/Ttpl07diOsDBPhUt4eDipqalsSc7CmrYDzV4OQMiwW1F8ArAf20PR0v8RMe5JLEaZQa3D6zwORZZ469quPDC8FSsP5SEfD9uaBDXuVDaA+4a1Yl1yAfuzyyo/U74mhbgQX6Ze1q7Rz19XKw/mUdPH8mBOGaV2F4GWxmtAfqqv16Vj9xJogSdM2pBSQL+Wdf/5C4JwZiJEEgRBEARBEIR6GNM5hpd/2wdUf4g1GxXm3N2fqT/vYtGeHHRAO6Vh84k/KTIEWow8clGbasfo0yKM2gqRZAnCA8y1TtWatyMTt5dpagBOVed/q1KPN/mumVPVahyHw63y/aaj9QqRdF3n63XpTFueTHYNPWwMzXuR0HMosemzmTdvHgCKovDMM8/w1CM3U6FEVU5fU3wCALA07UDxck8DbbNB4bqezc56bAnhfiSE+531fjVxqRofr0zmi9VpFFqdRAVauHNQC27sm1DZLNtiVJh1Zz+W7c/llx2ZqJrGpZ1iGNUhqlEbep+tC6muJ6vEVmNIq6OTX+E8r+MRhH8CESIJgiAIgiAI/3hWp5tl+/OocLjpHh9My8iAM+7jY1L49vbe3PjZRuxuFadbQ9N0NN3zoP3l2jRev6oLL1+hcazIRmSgmTK7m7eWHGTlgTxkWeKSjtE8MKKV10qXdk0C6d08jPUpBdWmOElA56bBfHJDUq3Tdcqd7lpDojMFSOCpCKrpFJruaTBeH8/+sodZm495nRoFoLtdSAYjx4psdLH44uNz8h6NHTuWiy69jLa3voHms88zFocV2eyLq+AYssWP+FBfPpvcgxA/U73G11B0XeeOr7ewNjm/sporu8TOawsOsC+7jNeu7Fz53vM5La2+BreJZPHebLx9dNpGB5y3KiSAHvGh7DhaglOtPhVTVXXaNznz91gQhLMjQiRBEARBEAThH23utgwen7MLWfZUC+k69G4RxkeTkvCpZbUugA4xQWx4cjhvLznERyuSOVH0U1Dh5MMVyfy+O5uf7+lPp6aeJsdRgfDBhO51HtvHNyTxzNw9zN2egUGRcLo02sUE8tzYDnSvQ/VP/5bhfLfhSOWqa/Wh6nqNIZKPUaFf4tlPFzpWZOWHTUerhWOnsqVuoXTTz0hA/rCe3HfXHaxevRqA++67jz179tA2JIqU3tehKRIZv76OZq9AkiQm/et5Pn1w6FmPqzFsTitk9eH8aj2nbC6Vn7dlcOfgRJo3YNVTY7G7VBbuySY60IwsSdWmWlqMMs9f3jD9serqxn7xfLkujdM/3kZFoktc3cJgQRDOjqSfYZ71hapHjx765s2b/+xhCIIgCIIgCH9hO48Vc83H66r1+zEbZEa2j+L9OgQ+qqbT8+UlFHqZOuNjlHn8knbc1C/hnMZZ7nCTVWwjzN9M6FlU1miazsXvrCQ1v8Lr6mt1EWAx0DY6gB1Hi3GecgwJCPIxsuKxoQT5eKpPHG6V/VllGBSJdtGBlVO1Tvf1+nRe/m1vtfvuTZvoABY+OKjy7xtSCnh7ySH2ZJYQYDEyunM0drfGnoxSYoJ9uKlfPEnxofW61sZw+fur2XGsxOs2RYZwfzMlNhchviZu6pfArQOaX1DT1wC2pBdx8xcbcWu61x5gJoPMpzf2YHDriPM+to2phdzx9WZcqoaue0LPzk2D+fSGHgT5nr+qKEH4O5EkaYuu6z28bROVSIIgCIIgCMI/1rTlyV6rYRxujcV7c8gvdxDub671GLsySnC4vVf62FwaMzcfPecQyd9soFXU2VdVyLLEzDv68sisHaw8lI9JkXGqGgFmAwV17BcTFWDm88k9uf+7baxNLsBkkFE1nahAC5/ckFQZIH2xJpU3Fh0EQNN1/EwGXruqE8PaepmaVcd/yLYYZV68vGPl3+duy+Dfc3ZWhk+ldjdfrkunXXQgP9zRF5Phwgpfckvt7MrwHiABqBrklHqmA2aV2Hl94QH+tyqF+4a1ZHz3pgScx6lhNSmzu7jp842UO2puvq5pOr9sz/hTQqRezUPZNHUEa5MLKKxw0j4mkNb1+K4IglA3F9ZvWUEQBEEQBEE4j7YdKaoxzzAZZFLzK854DIdLRa6l3bCjhp4/50uwr4n/3dSTdY8P41I2E7r0JT65MQmL0fMoYD+yk+LV3wCQPeOxavsfLbKSUWzji5t78ce/BvPe9d348c5+LP3X4Mpg67sN6fxnwQHKHW7KHW6sTpW8cgd3f7OVLemF1Y45uHWkl/vuBtkK6Eh4woHvbu9Dr+aeqiKHW2Xqz7urVS/ZXRoHcsr4bVfmOd2nusgttZNRbKOuszmW7MvFcBZLzKuaTn65k1fm72fAa8s4kF1W36E2GE+T79qv163p/Loz64zvaywGRWZQ6wiu6BYrAiRBaGSiEkkQBEEQBEH4R3pz0QHyympuCu1SNSLOUIUE0DE2CJfmfVqWUZEY3u7Pa5JcbHVidapEBVrwN0JO2kEMskRSfCgfTOjO47N3kWdQcNayDJxbgz/25dI2OpCmIb40DfGtsl3TdN5YfNBrg2y7S+ONRQf59vY+VV43GWT6J4azJjkfh1vDGLIGc8QiACQJgi2+3Nb3qSqrvi3en4bdbQOqV+dYnSo/bDrGuG5Nq21buCebNxYd4HBuOX5mA1cnNeWhka3PqspnS3oRT87ZSWqBFVmCYB8TT13WjtFdYmrdz13D5+JMHG4Nh1vjlumbWP3voUi1LdPXyA7mlNXY/PxULlXD6dbO2EdMEIS/NhEiCYIgCIIgCP84248W8+mqVK8rTAHIEiRG+NdpmXc/s4G7Bify0YqUKg/bkuRpPH3LgObV9tm9ezdTpkxBURRatmzJ559/XmNQkJaWxnPPPcf06dPrdG0AyXnlPD57JzuOFiPLEr4mA51K1nHjjTfy7LPPAvDN608QdOQIceFNyIzyJ+eU/QuXfIw5pi2WhK7k/f4O7/wusadvd6ZNm1btXHnlDsrsNU912nakuPLPRRVOHvh+OxtST06LUwxlGENXIyknA71ip4Opq6cSbA6mV5Ne2Nw2Xln/H9z6KLyFSOBp/Hy6r9al8er8/ZU/lzK7mxnr01l5KJ959w3AYjxz4LE3s5RJ/9tQ5Web7bLzyI87kWW4tFPNQVL/luHHf671q9AptjrZeqToT+3xFB/qh0GWzriSnyJJldVtgiD8fYlvuSAIgiAIgvCP8/W6tBr7GIEnGDqbVdTuH96KB0e2ItBiwNekYFJkusUFM+fu/kQFWqq9v02bNqxdu5ZVq1YB0JALxuSU2hn3wRo2pxfhVHXsLo2CUis/zV9CsjEBgI0bN6IoCkuWLKFH53Z0bhpcWUFyIkDyaz+YkvWzCB9wLfMWLCYgIIB169ZVO5/FqFRbqavqds8jh67rXP/petaleKqPyuxu3JqO6vbFduQ2dL3qo4ldtfPutncB+D31d5zG/aB7D33MBolR7atWfNmcKv/3+/5qVTROVSejyMZP2zJquYsnvbHogNeAyu5Seem3fbVObUuM8Gd4u8hq4YoiUcsEyFOuwaUyd1sm2p80TQxgXLfYGlfnO5XZIP+pFVOCIJwfIkQSBEEQBEEQ/nEyi+01ViEZFYmpl7arUxXSCZIkccegRLY8PZLfHxjI2ieGMefu/rSM9K/yPrXciW13Pu7kMvTjwYTZbMbhcNCvXz+GDh3KK6+8AsAzzzzDwIEDefPNNwHYsGEDjz76KAD5+fmMHz/e61g+XeWpiDo126jYsxRL20G8s+QQmq6TkpJCt27dAOjWrTuKLNEmKgB3UQau/CP4tvOshqYVHsO9/humXDuGP/74g8zM6n2HgnyMdGsWgrf8wKhIXNndM8VsXXIBRwqtXlaJU9BVP1xFvXEW9sdZ2BfNFQzA3oK9APxx5A/seiGK317g9KonDYNBY0LvZlVe3ZhWiFxDqGFzqczZeszrttOtSymosY6ooNxJbi1TIgHeua4bN/ZNwNekYDHKGBWJ1lEBNA/3w6jUHrpoOszcfJSHZ26vcx+mhhbiZ+L9iWcOVE+deigIwt+XmM4mCIIgCIIg/ON0axbMlvQinGr1njUGWaZrs+B6HdeoyMSHVQ+fdE2n+JdkKjZnIx1fvn3R/lW8vvkL2nZpz759+5gyZQqTJ09G13WysrLYuHEjq1at4ttvv2XRokX07t2bJ554Al3XmT17NldddZXXMSzZm1MtqHEVZuDMScG2cwFS3mEOHDhAZmYmyw7kcvtbP+Jw2IkKKMcYGktQxyEUL/uclmPuIrFbR1597B569fSs9Ox2e5+29ur4Toz7YA02l1p5brNBJjLQzH3DWgGw9UiR14oeADQLjpzRIGmAjiP3UozBG/GPWw6ArAZgTb0fzRmG59/BT1yfhtHvKE+MbUGwr6nqIc9QvVPXJtC1NcbWdB2TUvu/yxdWOBncOoLLu8bw+65sPl2VwuG8clyqXqdqJLtbY+GeHLYeKSYp/vwGNetTCvh8TSoZRTb6J4axNtl7oGYxytw3rOV5HZsgCH8OESIJgiAIgiAI/zg39I1n+to0nKdlGgZZom2TANpGBzbo+UqXpGPdkgNuHf34NLqRzfsxqvUAXkr/EpPJxI4dO5g4cSKTJk0iJCSEzp07A5CUlMSiRZ6m0wMHDmTNmjX8+uuv/PDDD17PZfQSaoQMuRkAP5OCecHzPPvss4y9egKjLx6FFBCBITCCcocbXYeQbhfTN2cJfUxbuWXaf5gyZQolJSXIssynn36KISiKudszKLK6SIoPYWT7KBIj/Fn40CA+XZnC4n05mBSZ8d1juaFvAoHHG1j7mQ0YFRmH21uzaR1QqkxXcxX3pGV8PAApB4egORxUe3yRVHyjFnF5uxnVjtgjIQSXl5AQPKHHmM61N8U+YXTnGGZuPuq1J1C7JoGE+Jm87AUVDjcPzdzOigN5mAwyDpeGS9WqhDB1rS2yuz2VU+czRPrvwv18tjqtcjqgIksYFYgIsJBVYkeWwGRQ0HV44fIO9G4Rdt7GJgjCn0eESIIgCIIgCMI/TpMgHz67qSd3ztiCqumVVSltov357KaeDXou3a1RviYT/ZSl6R1uJ2aDCd2lYc7TiIyM5M0338TpdNK/f39++eUXdu3aBcC2bdsq95s4cSJPPPEEQUFB+Pl5n253VVJT3lp8ELuXsMbHpLBx/VoAwi59kMjEvCpBRvSk/2BzqSTHjGTmIyMxKjI//fRT5faPVyTz5uIVaLqOS9X5ftMRgnyM/HhnP2KCfXhmTAeeGdPB67gu69SE//t9fw13yUtNjm7icGoiRwutHM7W8froohuIUycTYKq+rHuAxcg9Q1vy4fLkKn2RDLJEiK+Jq3pUX8nNmwdHtmLR3myKra7KIEmWPL2gXr6iU4373fH1FjalFVautHYudN0TSp0v+7JK+d/qVOynfGZVTUcFCitcLHxwEHsyS7EYFQa1DsfXJB4rBeGfQnzbBUEQBEEQhL+9DRs28NBDD6EoCj169OCtt96ib2IYm58awapDeeSXO5EL02gR7kuon4nt27ezZcsWbr311nM+t1rigNP62SxP3cCnm2YC0Dw8jtLSUgYOHIjVamXSpEk0adKEpKQkBg4cSJcuXSr3a926NUeOHOGpp56q8XwT+8Tz/aajZBTbcJ4SXliMMq9d2Rl3dgUV67MYd8hKK8z8jJPc02pi3Jqn+fSpfaE2pxXy9pJDVQKRCoeK3aVxx9db+PW+AbXeh8hAC49e1IY3Fh2s05LxADmlDtIKKjyVPF6DGBm7reaVy+4b1pIwfxNvLzlEsdWJhMSoDlE8O6YDARbvq7xVG3eAhfkPDOT9pYf5dUcmbk1nUKsIHhrZipaR1cMrgEM5ZWxOLzzn8OgEP5PCkDaRDXKsupi56WiVz86pZAn2ZpVyRbfY8zYeQRAuHCJEEgRBEARBEP62HG4Vp1ujWbNmLF26FIvFwsSJE9m1axedOnXCqMgMa+tZ1Wv69D/YesRN9+7d6dq1K127dm2QMcg+BvTTehRd1GogF7UaCIASbKbJtb249tprq7znpZde8nq8sLAwLrnkkhrP5282MPfe/ny4LJlZW45idap0jQvmX6Pa0DqtnLxvD6O7NLqj0AmZqzHxBFY2czLYcas6fuaqjwr/W5XqtaeRqukczi3ncG55tUbip7ttYAs6xgbx8YoUDueWERfqy+Y0772pAEJ8TcQE+9Q4LQ0gLsQXzaniyqpANisU+ykczq0gIsBEy8gARneOoV10AEaDQpuoAEyGs19bKDLAwguXd+SFyzvW6f3bjhYj1anj0ZkZZIkQPxOXdIpukOPVRX65o8bG825Np6jC2aDn8xbynu7rr79m2rRpBAUF8d8X30Nx+fHi20+Qfuwwkiwxbdq0yimggiA0HhEiCYIgCIIgCH87RwutPDt3DysP5QEQHWTh3xe3ZUyXGAwGA6WlpUyYMIFvv/2WSZMm8eCDD/LJJ59QUFDAsmXLuP3221myZEmNQc7ZkH2NmJsH4UgphtOzEKOMX58mdT7WZZddxvDhwzGZvPfhOSHQYuTfl7Tl35e0rXzNlVNBzuIjcEqFiREJI/AavlxCGU48E8vaNQkgIsBc5Zip+RU19vAxKBJHi6xnDJEA+rQIo88p/XOe+nk3szYfrVa1YzHK3NQvgcQIf1pG+LM3q7RasOFjVLjO4kPWi+tBlnC4VAo1jXdMTrZrbkwGGbtLw2yQcWkaCWF+vHd9N1pFea8gagg2p8quYyW1Bl+1USRPryRfkwGXqtG7eSj/vaYLZoNyxn0bSq/mofyxPxfr6U3D8PRG6hIXXOW1A4UHeH/b+2zI3oAiKYxKGMXdXe4myi+qTueLj4/3GvKe4Ha7mTZtGovmL+X9qTN5YMqTXDPoHjr6XcLwfrG0u8SP559/ntmzZ5/TdQuCcGYiRBIEQRAEQRD+VnLL7Ix9fzUlNldl6HCsyMajP+5g7+5d5Ofn079/f+bPn88dd9xBTEwMPXr0YMqUKbjdbm677TaWL1/eoGMKuaoVue9vR3eolb2RJJOMsYkfAQPqPi3ot99+q/cYyjdmVwmQTmUC7sPMu4oTs0Hh9au7VHtPyyh/DuaWnT4zDwCX6glo6uPJS9uy61gxh3PLqXCqSHh6NyXFh3DXkEQAPpyUxFUfraXM7sbqVFFkzyp6E2NC6Li3pPKemoBoZF50mrkCJ6XHr/dEpdP+7DJGvbWSAIuB/i3DeWBEqwZton6syMr4aWsps7u8NuI+wahIuFQdP5NCoI+Rdk0COJhTTqifiZv7JzCsTSRZpXbC/c2E+5trPE5jGde9KW8uPojNqVYJDo2KRGKEP11PCZF25u3ktkW3YXfb0Y+/+5fDv7DsyDJmjZlVY5CUebiYHX8cpSTXRlisH11H+GFpZsFgMLBs2TLuu+8+wFOllJaWRtOmTZn/wS78tRhSMvfgdmgEmSOxl7tYPuMgaA1T+SUIQu1EiCQIgiAIgiD8rXy2KpVyh7ta1UpFaQkvPPky+9cuBODOO++kefPmpKenN/qYDMEWoh/pQcWmbGx7CpCMMn49ovHpGIZ0ympqJ5all2tZVr6+1GJHjdskJEZJJor7RHPboESaBPlUe8/tA1vwx76cKs2WARQZ2jcJpHl4/UIkX5OBn+7uz4pDeSzcnY1Blriscwx9WoQiSZ77EBfqy4pHh/L77izWJxcS4mdkfOcY/D7aXaVh+QnFaNhrOJ8OlNrdLNyTzfIDeXx1ay96JtTcV+ls3PPNVgrKnajekjbA16Qwsn0UXZoGU2p30SUumMGtIrz+vIN8a682a0z+ZgOz7uzHlK82k11qR5ElnG6Nbs2C+XBiUuXPBeDF9S9ic9uq7O/W3ZQ5y/hwx4c81++5asff/HsaW35Pw+30/OwKM8tJ2Z5HZA83+fn53H///dx///189NFHjBw5kvDwcA7uP0xOeAEHj+3C6iircryf1nzKHVPuaPgbIQhCNSJEEgRBEARBEP5Wft+djeu0HkS6ppI/779Ej7iVYt2POODxxx/nnXfe4ZlnnuGzzz7DaDTicNQctJwr2WIgYGBTAgZWXxXscG45r/y2jxUH89DQ6RYXzNTL2pEU3zDhBsAhdwb3ff0QsqyQEBzLG5c+XiUM8ENi6qh2yOaq06YqKioYNWoUMTExPPnw67z82z4AHG4NP5NCZKCFj25IOqexybLE0DaRtIkKIL/cQXyYX5WxgWc1tHHdmjKum+f+OY+VkVdD2HYADRNg87rVQ9PB5lJ57Med/PHwILaV2ThgtRNjNjIwJABFOrsg70iBlf3ZZTUGSIEWA29c05UR7SKrXVtjyMzMZPTo0ezdu5fy8nIMBgO33XYb+/fv54cffiA2tmoFnNVq5eqrr6aiooKgoCBmzpzJH/8azJ7MUnJK7SRG+FdptA5QZC8iuTjZ6/nduptFaYuqhUjFOVY2z09DPSX803UoKS3m/558ggen38W3+77FP9OfZcuW8f333yNJErdPuJ9333+c2NCWRAad/A4t2zmbqKBmRPu0Occ7JghCXYgQSRAEQRAEQfhbUbz0TbbuX40z6xC5f3zOLft+ZPyYy4iPj+eee+7hgQceYPHixfTp04fJkyeze/durrzyyvM23tT8Cq74YA0VDnfl1KGtR4qZ+L8NfHlzL3qf0j/oXHQb15+fD3wIwMO/vcqO7P10bdLu5BsUCclL0+kdO3YwcOBA7nnsGTalFfLC5R0otrmwOlS6Nqu5kuZsHCuy8sB329mdWYJJkXGqGmO7xPDiFR2xGL33ApLMCjV1f/ZFqrF/0+kyi20MWL6bbAVAR5YkLLLMjM4t6BroW+dryCmz17KKHAT7mhjZvm49ghpCaGgof/zxB+PGjat87cCBA6xevdrr+xcsWEDv3r155plnePnll1mwYAGXX345HWOD6Bgb5HUft+auNRBT9eo9lfavz6qsuDvBpbl4c/29BEz248uML1EPuEmdlsoD7z5Q+Z7LLh2NKacFe1K2kJ67H4B9RzeTkrOHW0c+TUCIpeabIQhCgxEhkiAIgiAIgvC3MqZLDB+vSKnyMO/XfjB+7QcT5mdi/dQRKKeEHu+8807ln1etWgXAwoUL8fGpPqWrMfx34QGsTne10MPu0nj2lz0seHBQrfurFS7sewvQnSqm5kGYYqo2t84qzyKrIoumAU3x6RSObVc+ZoORmIBI3l4znTXpW5Fliff/9Trf/Pc/dOzYkcsuu4yff/6Z5ORk5sz5iZ0Hkvl0dRrRwyYjSaBq8OLlHRjaAMvOVzjcjJu2loLjK4Kd+Ln9uiOTEpuLT27s4XU/Q7gPSpAJd371iWttkakeX3jn1HXSrQ5UP+PxV3TKVY1rth9mU9/2BBnr9sgUH+aLs4YASQLaRDdeM28Ap1vjt12ZzNx0DLtb5aL2UVzfK75y+1NPPcXOnTsZPXo0v/76K3fffTcHDhzAx8eHGTNmkJiYyJYtWwAoLi4mLOzM4WW4TzjhlnAyKzKrbZOQ6NOkT7XX7eWuaqsV/lz0PvkZOZT96JnC59/eH0eBg3fufYfZAbPZu3Evb3zyPEt+XUuwTyTXDvSES7PWvIfF5Mc7v/6LvuXdGTzh87rfMEEQ6kWESIIgCIIgCMJf2vqUAj5ekczh3HLiQn2Z2LsZwb5GCsqdVZobW4wyL17RoUqA5E1GRgYvvvgiH3zwQWMPHYBlB3JrXE49Oa+cYquTILMB69ZcytdlotncmOIDCRwah/1QMSULUpFkCV3TkSQJU3wgYTe2p8BdyKMrH2V3/m6MshGn5iT2cBMOTt9H8+CmFNiKyS7LY9ZN75NiPcaH277n6eefYerUqVx22WXMmjWL1157jW3WEPZLiwgYcAMVp6zW9fTcPcSH+51zP6Gfth2j3F69h5XdrbHiYB4peeW0iKi+6pskSYRe25a8T3eiu7XKle9s6GRWtng+M10G1af6Y5FL1/khu5ApcXULyiIDLAxpE8GyA3nVwiSLUeHOwYl1HNHZs7tUrvtkPQdzyipXVNuXVcqnq1MxHR/LSy+9xPLly5k3bx6//vorzZo148MPP+T333/no48+4oEHHmDDhg106NCByMhIXnvttTOeV5Ik/t3z3/x71b+xq1XDPIvBwr3d7q22T5OWwRzcmIPL4RmnjkbZxTm0G922yvsiL/fc92i/aADe/+B9Mh8sYt77O9FUHdWt8eyEL1EUmR6XJZB0ccLZ3TRBEOpFhEiCIAiCIAjCX9b/VqXwxqKD2FyeB9KjRTa2HSnmul5xWJ0qv2zPxOFW6RgbxGMXtWVAq/AzHjM2NrbGKT+NoYYWOpU0VSf/8904j5RVNpG2Fedh253v6RKt6pWRiY6OI62Ewp8OcoPhIbIrslF1FYfq6fV0LDGTpI96EfCtD2lyLuuzdnL9b4+iBBhpEhNDXFwchYWFFBQUUFxcTFB4FCsO5nld1M3mUnl/6SG+vKV3va+92F7MN/u/hOidWNz+uIp7odoSKrfLksTmtCKvIRKAKS6A8luCWbryD+RslRal7VguGVlq0ugaHsyI9tHsPFbMlrQicssd1e610SDjbBkIXoJFm6aztdR6VtfzxjVdufmLjezOKEXTdRRZQtV0nhvbnqT4kLM61tn43+oU9meVYj/lB2V3abjcLsrzyqu9f9++fXz//fcsXLgQt9tN3759+fLLL7nooot49NFH+e9//8uMGTO48cYbz3juYfHDeI3X+M/m/5BnzUNHp3VIa57q8xStQlpVe39i9wjWzjmM26mi6+BSnLhlZ43Hz6nIQdc9AWlMqxAmPt+HPasyyE4tJSDUQsfBsUTENW6VlyAIJ4kQSRAEQRAEQfhLyi218/rCA9V60NhcKt9tOMJvDwzktSs7/0mjq7shbSJYuCfbazVS83A/LMklFJ0SIAGe8Mjt2SEVlcNohCLRFQXFDdadeTja2Kr0pNFcGi6ji0MVyXRo0gFrCzOXWMbw3nvvAeByuQAYO3Ysd955J2PGjCG9wIqhlsqtvVllNW47kwOFB5i8YDJWyYHB34WuSxgCd+Eq7oEjZywgIcsSvmbvPZFsbhsPL3+YDZkbcao6hEsQoWHPvhyjrQ9dAyzcMahFZc+enceK+ffsnaTkVaDIEmaDzIi+cfxkduFQq6dkBglizWe3QtqJVc12Z5SwJb0If7OBEe2jCPIxnnnnc/DN+iNVAqQTVF2nzO6m2OokPPDko1+bNm248cYb+de//gV4fvaffvopoaGeqrLw8HBKSkrqfP5h8cMY2mwoBfYCDJKBYEtwje81GBWufDSJ+R/upCTPhkHxQdYVtBomIAaZg6o2gA8202tMizqPTRCEhiVCJEEQBEEQBOEvaf6urBq3uTWdudsyeHjUhb9i0yMXtWHloTysDrXKFCyLUea5sR0oX5LhdRn7UnSewMp+VE7ELBYkXsGH1hIE2nzJtxRWvr98Vzn5C/ORkDC3N/PZW5/x6quvMmTIECRJ4vrrr2fKlClcffXVPPzww3z44Ye4jeYqUwJPF+pXv2XodV3ngWUPUO46WSUjSTpILozBW3CXt0etaIWqaQypoe/S8+ueZ2P2Jly6E+mUfuCW6F+wHYlgxUFYfiCPoW09+3duGszvDwwip9SOzakSF+qLU9f5ac1ur8c3SBITY+rX1Ly2ZtSNoczurvaarrrJnfUsztxULh99KW++fnJ62tixY7n//vsZNmwYAA8++CATJkzg2muv5euvv8ZoNPLDDz+c1RgkSSLc58yVfgCB4T5c93RvCjLKKSu0k5V/Ob9mzMWpVq1IkjHRN2Ismqafc/N2QRAahgiRBEEQBEEQhL+kCqeKy0sFCXhCpBKbq9HObXVZOVZ+jFBLaJ0fnGuSGOHPT3f356V5e1lzuAAdnY6xQTx1WXt6NQ8lZ94Rr/v9+3iAdOpVWtF5CCvfqL6UGiuqvD+weyCB3QMxK2buSroLWZaZOnUqU6dOBcClutiTv4eK0gpGXTSK8HDPdfXqN5BtTTtWq5TyMSrc0j+hXte8O383RfYi7xslJ6aQNeBsy/OXd8DfXP2RpcRRwuL0xdVCB8/+Loxhy7AeS+D7TUcqQ6QTogJPruLlg8RnHZtz865U3LqOU9dRAKMs8VSLJrTwNdfr+s63DjGBbEgtrPKapBiIuu5l/M0Glj09EpNBrpymKUlSZQXaqRYuXFjvMewt2Mu8lHlUOCvoG9uX4XHDMSq1V2CFxfoTFuvPY65HOLToAIeKDmFTbZ5ph5oJp60Z81a0I+/IJj69sQcGb0svCoJwXokQSRAEQRAEQbigOd0ayw7kklNqp2WEP30Tw5AkiW7NgrEYlcpGwqfyMyn0aVG/KpLauDQX/930X+YcmoMiK7hUF50iOvHKgFeI8Y+p93FbRwXw1a29casaOmA85WHZ3CoYV64VTlnRKhmVQ6cFSCeowC+BUGay4m2GkK7rjEoYVeW17/Z/x7tb38WaaSXl0xQSr09k2ZFlDG02lLev7cq4aWuocLixHa+I8jUp9E8M56qkuHpdb4G9AFnyHghIEgT6W3l/dK8am3YfKT2CSTZ5DZEkCRRLNgDF1jMHiYNDA1jduy1fZuSzq9xGMx8TN8WE087//KzO1xAeGNGKW6Zvwn5axZqPUWHKoBaYDI0Xvui6zgvrX2Be8jycqhMNjQVpC3jH8g5fX/p1nUJWX6MvX1/6NVd8/jkHy9aiI+Mu7YRqTQQk1qcU8t3GI9zQN6HRrkMQhLoRIZIgCIIgCIJwwdqcVsitX27GrWm4VU+j4gh/MzNu603fFmEkhPlxKLcM1ykBiyJ7plmNaB/V4ON5es3T/JH+h2clquMBzbbcbUz4bQLzxs3D3+S9AXRdeau08O8fS8WGbHT1ZCJ0CJWaJvc4gUMhFia1m8S3+7/F5rZVbrMoFu7vdn+VB/ufD/3Mm5vf9FxTBCQ8mYCKymMrH+OjkR+RFJXEskeGMHvLMZbuzyXAYuTqHk0Z1Cqi3lOMWga3xKWdDHiceU6SX0zG3MSMYlB45NOrqwVICxYsQFVVLrvsMsJ9wqvsfzrdHYjZIDOwdd2qxGIsJp5IrH8I+GfrlxjOK+M68fTc3UjHPxkuVeP6XnHcO7Rlo557YdpCfkv5rcrqbFa3FWeFkydXPcknoz6p03GKKlzsT4nFqV5ZbZvNpfLxyhS6NQuhZaQ/FqP3PlmCIDQ+ST/TchAXqB49euibN2/+s4chCIIgCIIgNJLCCicDX1taZVl58Cyk1TTEl+WPDKHU7uLB77ezLqUAk0HG6dbo0jSI9yd0J/KUaUsNIas8i9E/j/Za/WJRLDyY9CAT201s0HOe4Mwop/D7/ajFDpAl1rmcPIuNCq36dD5ZgnHdYnnjmq6sOraK6Xumk1GeQfOg5tzS8RZ6RvesfK+u6wyfNZw8W57X8yZFJTH94umNck13Lr6TjdkbcWkunHlOcubkEHdHHBaDhVmjZ5EQlFDr/pPmT2JX/i40veo90DUTjqzx+Dh7sPzRofXu2/RXZHepbEwtxOHW6BEfQsh5uPbr513P7gLvfaVMsomFVy2sUzXS4dwyLn9/TbXv+6n8zQY0XeeuwYlc3DGabzceIS2/gngfM2NbRtKhQwRmH1EnIQjnSpKkLbqu9/C2TXzDBEEQBEEQhAvSzM1HUb38g6emQ0G5g3UpBfRvGc70W3qRXWLnSKGVmGALTUN8G2U8W3O3YpAMOKkeItlVOyuOrmi0EMkU60/0v3rgyrWi2dyMCbfw0n+Xg616iGQ2KEzsEw/AwKYDGdh0YI3HLbQXUuKoeRWuXfm7ah3X+pQCPlyeTHJeOTHBPkwZ2ILh7SKrrKblTbnDTTvD3Wy054IxDQWw7reS/mo6N117E0UpRTz5+pN8++23TJo0iQcffJDdu3fjdrsZMWIEt9xyC37BfqRsSyFqbBTZf2SjO3USHm4Fro7E+/Tnw1uT/lEBEoDFqDCodcR5PWe2NbvGbUbFSK41t04hUmywr9fv+6nKHZ4G4m//cZC3lhxEwjPLU9bhq23H8J0JRrPCkA5R3DOsFS0jz60yUBCE6kRnMkEQBEEQBOGCtCujpFqPlxPcms6hnJPLy0cHWejVPLTRAiTwVBvVFo74Gf0a7dwnGCN9MccHYvYz8dENSfiaFEyKZ0yS5OmBc1O/eLo3C6nT8SwGCxre7zGAWam5sfT0Nanc/MUmVhzM41iRjY2phdz//TZe+m1frecstbsY895qPvwjg8LkW6lIuRe3YxytHnqeNYsPk7I5BUVRaN68OXfccQcxMTH06FH1H8SLioqY++Nc3n3+XUJ2h3Dbe7eRNKgnIyrGMffa95l370B2ZZTwxJxd/GfBflLyymsYTcPRrC7sB4twpJWg17Ki3d9N86DmNW5zqS5i/WPrdBwfk8J1PZthMZ75EVXVPGHyiVmsmuT5X7kMRS6VudszGfv+arYeqaF5uyAI9SYqkQRBEARBEIQLUrMQX7SSHDK++hfGsKZIipGoa18EPIFJzoGtPLf4S5577rnKfdLS0njuueeYPn06S5cuZerUqVgsFr7++muaNm16TuPpG9MXVfM+1cbX4Mu4VuPO6fhnq0+LMJY8PJiv1qWz9UgRTYIs3Ng3nqR4782ovfEz+pEUmcTG7I3oVA0+jLKRMS3GeN0vv9zBq7/vx+GuGkBZnSrfbEjnmh5xtIkO8LrvtGWHySi24Ty+r+aMwumMwiXBC78dZvTo0ezevZs777yT5s2bk56eXu0Y7du3R5Zlmjdrzqg+o3h56MtMT5+OqqqYDQqD/rOMCoebCqeKQZb4bHUq9wxpyf0jWtX53tSVrukUz0uhYmMW0vGeVpJBIvSaNlja1P1nkV/uYOm+XFyaxoCW4cSHNX4o2RBu63Qbu/J2VemJBJ6pbMObDSfIHFTnY029rB0FFQ4W7clBkSVsTpX6xHEans/iIzN3sPSRIfU4giAINRGVSIIgCIIgCMIFaUjbCDTAJ6Er0RP+rzJAArC7NDrG1v5w+uKLL7Jo0SL+7//+j1dfffWcx+Nr9GVq76lYlKq9liyKhaSoJAbEDjjnc5ytmGAfHr+kLTPv6Ms713U7qwDphKf7Pk2AKQCjfHI5drNiJsIngru63OV1nwW7s6mpp7bLrTF767Eazzdry7HKAOkEzWFF12H70WKWrVhFYmIijz/+OO+88w7PPPNMtWOcWhF26p91Xef2rzaTX+6o7K3j1nQcbo0PVySzIaWgxnHVV8mCVCo2ZYNbR3eo6A4VrcJNwYx9ODPrVgH1zpKD9P+/pTz36x5emrePUW+t5IHvt+FWa64Su1D0i+nHPV3vwaSYsCgWDLIBi2KhY3hHnuv33Fkdy6jIvHd9d5Y8PJgXL+9IREDNlXB1kVliI72g4pyOIQhCVaISSRAEQRAEQbig5NvymXVgFnP3r8Uc4cB+dDvZ3zyGb+t+BPa8gvz5b6OX5fPW/jYM6NoWgGeeeYZly5bRrVs3AKxWKz4+PgQEBNC7d28ef/zxBhnbFa2uoGlAUz7Z+Qn7C/cTYglhYruJjG81vsYl6y908YHx/HT5T3y550uWHlmKQTYwJnEM17W9jkBToNd9KhzuKivinUrVodRW88ppdi+Nkx3H9lC8agay0cTIcReTlZVFfHw899xzDw888ACLFy+u07XklNpJL7LibTaZ3aXy2ZpUercIq9Ox6kJzqlSsywIv0y51t0bZsqOETWxX6zHm7czkoxUp1aq6Fu3J5s1gHx67uG2DjbexTO44mdGJo1l6ZCk2t42kqCQ6hnes9/HiQn2JC/Ulv9zBW4sPYnfXL0wzyDIVjpobdQuCcPZEiCQIgiAIgiBcMLbnbueOxXeg6ioO1YG5qU7r/zTDVTyEjE/XYopuiSTJNJnwMgG5SwHIyspi48aNrFq1im+//ZZFixZRVFREYODJAERVG+5Bskd0D3pEe1205i8r0jeSR3s+yqM9H63T+3skhGAyyLi9BEJ+ZoX+LcNZl1zAxyuTSc2rICHcjymDWtC/ZThd44JZk1y1IsgnsSc+iT0J9TPx3tQRKLLEFVdcAcA777wDwMcff4y/vz8JCQnMmDEDgCFDhjBkyBAAJk+ezLIDuXz/3TbwkmHpwJECa91uSB25c63UWJKlgyO99IzHePePQ9hc1e+jzaXx5do0HhrZGqNy4QeU4T7hXNPmmgY95o19E5izLYNDOWVeg8G6SIz8a0wLFIS/igv/t5EgCIIgCILwj+DW3Ny39D6sbisO1QGAYpZQfDTMUavwbdsKtSwfU1QiJkWmd88euFSNtLQ0OnfuDEBSUhIAISEhlJaefICX5b/Gf/bu3r2bfv36MXDgQG6++Wb0GlaruvzyywkODmbJkiXneYQe3ZuF0DoqANNp4YYiQbCPifSCCm6ZvonlB/JIL7Sy4mAet325mff+OMTDo9p4bZ7sY1R4cEQrFC+hzLZt25gxYwZDhw6tdVzNw/yqTZU7QQJC/Uz8Z8F+3v3jEIdzz73ZtuxjqLWJtlyH5ebTawm2VF2nsKL6aoD/FD4mhZ/v7s+kPs2osaW9fvx/p+9rVLh3WEvMBqURRygI/zx/jf83FQRBEARBEP6W8m35pJem49JcbMjagEurWkKi2o5XaEhunDkbMAQ3wZmbiqbr/Pf7hUxbnsxdc4+wcNVGdF1n27ZtAPj6+mKz2SgvL2fjxo20b9/+fF9avbRp04a1a9eyatUqADZv3uz1fR999BEPPvjgeRxZVZIk8dWtvRjcJgKzQSbAYsBskOnWLJhL+2TyxuK91aprbC6V95cdJjLAzAcTuhPub8LPpOBvNuBnUnhoZCtu6BPv9XzdunVj1apVxMTE1DquhHA/ujQNxuitOkiCrUeKmLY8mXf+OMTo91bxzNzdNQZ1dWEI88EQavG6TTLK+PVpcsZjhPqZatym6RBoMda4/Z/Ax6TwwuWdmNw/AR/TyUDIIEuYDDKXt4jgSr8AwiUZkyxVfqbuH96SOwa1+BNHLgh/T2I6myAIgiAIgnDepRSn8PSap9lfuB9FVjBIBvrF9kPTT1vt66CVnDk5SEYJ34SmhCS0o3z7fNK/fgI5MAJDYATF+FOuNCGxU08uHdKnct+pU6cycuRILBYLX3755fm+xDqzu1SW7Mshq9hOYqQfg1tHosgSZrOZuLg4brnlFo4cOUJ8fDxxcXE899xzNGlSNZxwOp2MHz+eiooKIiIimDlzZqOPO9Bi5NMbe5BbZudooY2IAAPPbLyPb7cHouvDvO6jaTq/7sjk7qEt2fjkCPZmleJUNdo3CcRibJiKkWmTujPx0w0cLbLidGsYFRmHW0WWJOzHexepmo6q6fy4+Rjdm4VwRbe6LUPvTdj1bcn9aAe6S6tcc14yyRhj/PHvGX3G/W/ql8DbSw5Wju0EoyJxUYeoKsHJP9mzYzowol0UX65LI7vETre4YG4Z0LxyFTtd10kvsGJ1qiRG+v0pFUhHCqzsziwh2NdI7+ZhXqvqBOGvToRIgiAIgiAIwnmVU5HDpPmTKHeVe5aVP/7svOzoMjSt6oN0QJcAAroEYJCM9AgeTzM5nu94BOtpvXj8B0zCaJB5+ckRBPl6KjdGjBjBiBEjzss11deW9EJu/mITqq7jdGuYDDKulI2w+Xs6tmtLeno6iqKwZMkSXnnlFZxO71Objhw5Qnh4OPPmzTunypr6iAywEBlgYWHaQvYV7MPp6k9NjxkuTafkeNNtWZbOuMJefYT7m1nw4EDWpRSw42gJFoPMq7/vx+llpTOrS+U/C/cza/NR8soddG8Wwu2DWjD360+YM2cOM2bM4KmnnqrsweSNMdqP6IeTKFudif1gIbLZgF+vaHy7RiDVoZfRrQOas+ZwPlvSiyo/134mhaggCy9d3qn+N+JvqH/LcPq3DPe6TZIkEsL/nP5HFQ439367lbXJBZX9q0wGmQ8ndm/QRu6CcCEQIZIgCIIgCIJwXn2992vsqt0TIJ3CqTqRkDBIBty6u8o2o2Lg5RFTeOjblGoB0sn3yKxLyefijmeeQnQhKLG6uOnzTZQ7Tl6rS1WRYpOIbNuPJlk/k5KSUrniXFJSEuvWrfN6rJYtW9KpUycmTpxIUlISDz/88Hm5hlPNPTwXq9uKwTcdV6ET9OrLs/uZFXomhDb6WCRJol9iOP0Sw0nNr+C/iw5Qw8eGzGI7mcV2AJLzyvlpcxrN9284q/MpgWaCL20OlzY/67EaFZkvb+7FmuR8ft6WgVPVGNU+mos6RGMyiO4jfwX3fbuNtckFONzayVX2HHDz9E0semgQTUN8/9wBCkIDEiGSIAiCIAiCcF6tPLayWu+jE3wNvkT4RpBdkY0syUiSJ1R6e+jbRPpGIpFay5F1qLn97gVnztZjqKdVXuluFxiMlDvdFLkMHDx4kMzMTIDKfk/eOBwOHnroIWRZZtSoUUycOBG3OZB5OzIptrrokRDCkDaRldNr8ssd/LYzi2Kri85xQQxuFYF82tQbTdN5b+khvliTRpndRYDFyC39E7hjSKLXqUI2tw0Axe8QsrEYzRnGqY8bsuSpWhraNrJe98sbl+picfpi1mWuw9/kz5jEMbQPq9r/KiLAjLuOS3upGhRv/R13kySiczOqbOvbty89evRg5cqVPPHEE8ycOZPDhw/z9ddf06VLFz755BM+//xzhgwZwvr161m+fHmN53GrGjaXir/ZgCRJyLLEwFYRDGwVcdb3QPhzHS20siY5/2R4dAqXqvHFmjSeHv3X6MkmCHUhQiRBEARBEAThvDIr1StUTtDReXXgq0iSxMHCg4T5hNE3pi9G2TNFbVy3WLYeKfJajeRSdfq1/OtMHdmbVYrttD44ttQtlG76GQkI6dSOGR++yS233MLw4cOJj4+nWbNmANx///3MmzePX375hTvvvJMhQ4Zw66234na7adGiBT/tK+OtJVvRdXCqGn7rFCIDzfxwR1+W7c/lmbl7kCRwuDR8TQoRAZ5tUYGeJtEOt8qot1ZWWTms2ObirSWHWHYgj1l39sVw2lStYc2GsTt/N3bVjk/8J9gzrke1xYPkBt1A12ahfDSxFw3VJibXmsuk+ZMocZRgdVuRkfnx4I+MSRzD032eRpI8J/I3G7i0UxPm78ry+qB/Kl11Yz+yG6nHGMp2z66yraCggKeeegpVVenevTtpaWls3bqVzz77jDfffJPPPvuMNWvWsHHjRtavX+/1+CU2Fy//tpe52zNRNZ0gXyP3Dm3J5H4JleO9kBWUOyiscBIb4oOvSTxKgud77Om75S1E0tmcVvgnjEoQGo/45guCIAiCIAjn1RWtruDtLW9jV+3VtlkMFtqFtkORFTqEdai2fXSXJnyyMoXUgooqS7mfWM77r7SSVbMwX0wGucp1+Lbqg2+rPviZFB4d3wlZlpk+fToAy5cvr6xueffdd3n33XerHO/Eim7rUwq4+YtNVR5qK5wqRwqtTP58Iyn5FdW22QutTPlqM3PvHQDAO0sOel16Xgd2ZpSwZF9OtWmDV7S8gs93f47L7gJDBb7x/0NzBWFQo+kb1xrNkM+on+9HQqJ/bH8eTnqYFsH1Xz3r8ZWPk2vNRdU9gaKGhl21My9lHn2a9GFUwqjK9750RUfS8is4kFOG1alikCVU7fQJlVCxZyl+7Qfj1vQq0wwBIiIiiIqKAiAxMRGLxUJMTAxFRUXk5+cTHx+PwWAgKSnJ63gdbpXx09ZwpNCK63gD7oJyJ/9ZcIDMYhtTL7twq1WyS+z8a9Z2NqUVYVQ89+6apDieGt3+Hz/lLsTXVG1q7qkiAmoOzQXhr+if/Y0XBEEQBEEQzrvxrcYTFxCHWT75cCUhYVEsvNj/RRS55lWVzAaF2Xf3Y2LvZviZPe9LCPPl/67sxD1DWzb62BvS1UlxNVblSJLERR3OvLKXN5+uTMHmql6ppWqwP7usSmhVuU2HAzllHM4tA+CLtek1Hl/VdGZtOVbt9QBTAN9d9h09o3tikk34Gnzx93Fxecf2bC1awrqsdai6ilt3s/LYSib8NoHk4uR6XWNORQ478ndUBkinsrltfLm36mp8fmYDc+7ux+eTe3Lf0JY8NLI1g1tXb9DsKsygbNt8cmY+Q0bqIX799dfKbadWCp36Z13XCQ8PJz09HVVVa5x2+NvOLLJK7JUBUuV4XSpfrUsnv9xRt4s/z6xON1dMW8P65AKcbo0Kh4rdpTFzy1Ee+mH7nz28P12P+BD8aqjK8jUp3Ng34fwOSBAamahEEgRBEARBEM4rH4MPMy6dwZd7vmTOoTlY3VY6R3Tm7i530ynizKtR+ZsNPDumA8+O6YCu63+JaUDeRAdZeP3KLjw6eweaDk63hsUoI0sSn93Uo9qS90OGDGHIkCFnPG5qfkWt22tqD2SUZVLzrbSMDMBWUxfq47IqvK8SF+0XzaejPqXYXkyps5Rov2huW3RbZb+kE3R0rG4rb255kw+Gf1DrubzJs+Vhkk04Ve/jyK7IrvaaJEn0aRFGn+OrZX1hUlh+ML/Ke0KG3Fz5Z+vsJxkzZgwbNpy5ybbBYODmm2+mX79+DB482Ot7ft2RWWNTeIMiseZwPpd3jT3juc63udszKbW6OC37wu7SWLIvh/SCCuLD/pxV0S4EsiwxbWJ3rvt0NW5VA4yABpILyX8//8/eXYdXcaZ9HP/OzPG4Q0IgEAjuUBxSpN5SaEvdt+7d7W671Zd2q9ut7LZbb+lSF+qCu7s7gUAg7jk6M+8fgUA4J8FCkN6fvfZaMvrMSWCZH/dzP22Tu5/oIQrRoCREEkIIIYQQjc5ldXFHtzu4o9sdx3SdxgyQTNNk4Z6FfLb+M3Irc+mc0Jlr219LamTqUV/zwm7J9GoZw5eLstleWEW7phFc1jOVmDDbUV+zZXwYW+sJkhQIOfkmYJikxjoBsDot+N2BEEdV69i6/hXWoh3RRDui8ek+VuavDHmMicmcXXOOKghMCU+pM0ACSI9KP+Q1BmckYNMUfAenI4DdovD3978lLS2N8ePHAzB79uya/ft+feD+22+/ndtvvx0gZNin1dMMSkFBPUnD0CnrcqkKUdkG1c+0YFvRYYVIAd3g3Vlb+WB2FgWVXhIj7Nw2OJ0b+qcFNXU/VXgCHiZun8iETROwt9yIUtwPvaoliqUCW/R8lLDNXPLTL8y8fCaqIpOAxOlBQiQhhBBCCNHgDMNkT5kHh1Uj9hgCkVDyy70s3FaEzaIyoHVcozX4fXHRi3yz6Zuaqpr1ReuZsHkCr2W+Rv+U/kd93aZRTu4bntFQw+SWwa2Yu6UwaEqbRVXISApnW0FV0D5VgRZxLto1iQSgb++mzJyZHbTWnQkoFoXr+zQ/rLGYe//T0GIcMWSmZjI9ezo+o3aY5NAc/Knzn6jwBpi4Zg9FlT46JkfRt1VsrbAqPSGcfunxzNtSUCtIUgCH1cLlvQ7vGQ/XyG4pzN1SWEdTeINBbYKn150M6vv9Vf1Z1T39dB/TNLnr06XM3Jhf00w+t8zLS7+vZ01OKS+P6dZAo20828u2c92v1+EJeKobu1vBkfh70HGl3lKmZ09naPOhjT9IIY4DiUOFEEIIIUSD+nrJTvo8O4WhL0+n77NTuOg/s1mbU3bM1zUMk8e/W83AF6byt29W8sAXy+j59GQ+mV93/56GsjxvOV9v/LrWtKyAGcAT8PCXGX/Br/uP+xgOV99Wcdw/vA12i4pt7wpqYTaN1FgnH910Bn8+KwO7RcWqKTX7EiLsvHtdr5prPH9mW5S0cEyo9V8cKl3ObUmnqMObvmTX7HSIrbthdO8mvY+6mmzsgLF0iu+E0+LEqlpxak5sqo37etxHUWEqvZ6ZxGPfreaF39Zz87hFnPXKTPLKazdz/+81PRjePgm7RSXCYcFp1UhPDOebO/oR5Tr6Ju37GqAf6JxOTWiVEIb9oEbUTqvGXWe2JtrVsGFrQ7m0ZzNcttBBkW6YZLZNOOQ1VuwsZebGguDVCP0G3y/PYckptoKZaZrcNeUuij3FVAWCG9AfbOqOqY0wKiEah2KaDf8vA42hV69e5uLFi0/0MIQQQgghxAE+X7iD//txTdDLYphN4+d7B5EWf/S9U16ZtJF3QjSNdlg13r62J0MyQr/MmqZJIK8KoyqAJdGFFlZ/OOAOuPl126/8tu03NFXj/FbnM2fXHH7e+nPIqpowaxgvDn6Rwc0GH/WzHQ85JW5+XJFDqdtPr7QYhmQk1kypyi6q4rvluyis8NGjRQzndGwStMrW/JIKbly8Cc/uKvCbmIl2eqXE8EHnlkRaDl19ss+yvGXcOvHWoNX4nBYn484ZR/u49sf0nGsK1rA4dzFh1jCGNh9KcbmN81+fheegn0FNhY5No/jhnoFB18gr87A5r4L4CDsZSRHHNJ76VPkCvDZ5E58t3EG5J0DzOBf3D2vDqB7Njts9j5Vpmtzy8WLmbK5d3ea0avz9vHZcexiNo1/4dT2vff4LRZPfBVXF1qQNscNuqdlvURXeuKo7Zx+04t/JanXBam7+/ebDCpAAeiX14sNzPjzOoxKi4SiKssQ0zV4h90mIJIQQQgghGkJAN+j1j8mUVAVX5agKjO7RjH9e1vWoru0LGPR4elLQsuv7dE+NZsJdA4LPy6mg6LP16CVe0BTMgIGreyIxI1ujhFiavMRTwlW/XEWBu6Cm6shlcQHU+cLosrj4e5+/M7L1yKN6tpOZbprMK6mgwBegU4ST1i7HUV3nl42LeH7qb+RVFmEJ20K31Cge6fMwHeM7NvCI4fHvVvPZwh0EQnQQd1pVJtw1oGba3ol0KjWF1w2Tzxfu4MO5WRRWeMlIiuCeoW0YeJhT8J79ZR3//WUJqiMMxWIj/8eXiOp7GbaEtJpjHFaV6X85kyZRR/cz1pgmZk3kiblPUOmvv4n9PinhKfx2yW/HeVRCJz/1aQAA1NNJREFUNJz6QiTpiSSEEEIIIY5IUaWPqevz8AZ0BqTH11QXZRVWhVw+HqpXBJu+Ie+o75lX7kGva1kxYGNuedA2vdxH/tsrMb17qyf2ZltVy/Mx/QZxV7QLOuf5hc+zu3I3AWN/WFUVqEJTNFRUDIKfzzANOsY1fBgSyqbccoqr/LRJDD+m5tuHS1MUBsYcfWWOaZo8+8s6Pp5XgGH2RDdM1NKz8RJJUnI8ZSt2oEXacHaOR3U0zKvJ2pyykAESVDeC3pJX2aghUnZRFePnb2fd7jLS4sO4rl8LWidGnDIBElR/blf3bcHVfVsc9jm+gMF/p2/m43nbKa70YQmPqanjU1QN96YF6GUFONN7UbVpAZUlu7jz73MZ1qEJN954I+eddx4//vgj69ev57bbbqNdu3asX7+epUuXHp+HPAItIlugG/WvYHggaaotTicSIgkhhBBCiMP25vTNvDZ5E5qqYJpgmCYjOiTxyuXdsGkqRj1V7lbt6F+kIp1WAkbogGrf/oNVzM3B1EOc4zdwry5AL/OiRdoP2Oxn0vZJtQKkfXQz9AujVbXSKb4TrWNaH8ZTHL31e8q4+5Ol7CrxYNEUfAGDi7om88yoTtiPYGpZY/tp5W7Gz9+B94BwscqnsyKrmCd3rOARwwk2lZIfthB7dXuc7epf9e1wpMa6WJZdTKgcyTCpqXQxTZOlO4rZWeymZXwYnVOiGjzYmbhmD/d+vgzdMPHrJnO2FPDl4myeuKADV/U5/EDmVGMYJtd/uJBl24vxHBQs+/K2YVSV4ep3OWULvqkOkTbOJWrAlTTp342fxj/G3Llzeeihh4iIiGDs2LF89913xMbG0qLFyfGZtY1tS1pkGuuL1x/yWKtqZVjzYY0wKiEah0SiQgghhBDisExcs4d/T9mMN2BQ5dNx+3W8AYPJ63J58bf1pMY6SYoMPRXFpimM6p5y1PdetqOkzlWgHFaVa0NUSHg2F0MgdKilaCq+7Ipa29wBd03PI8MXi6+oL76ivhi+GABUVJJcSbgsLsKt4dg1Oz2TevL60NfrHPf6PWV8umAHP67IobKOqXiHkl/u5bK35rE5vxK3X6fcE8AbMPhxRQ4PfbXyqK55tI60Fcab0zYH9bAC8AGTDD9VmOAzMP0GRZ+sQy/zHvMYbxiQFtTfCapXEosLs9GjeTRb8isY8tJ0rn1/IX+fsIor3pnPOa/OIqfEHXzBo1Tu8XPv58vw+A38e1d/0w3w+A3+78e1DXqvk824eVkszioKCpB0dzlFk94i7tz7sMam4C/ZjeH3opcXEh6fTNukSK655hoWL17M+eefD0BJSQnNmzcnPDycjIyGW8XwWL029LVDHqOi4rK4uK7DdY0wIiEah1QiCSGEEEKIw/L61E0hAwGP3+CTBTv481lteeGSLtzw4UK8fqNm6opVU4gLt3Pr4FZHdd/x87L4xy/rQ97bZdNo3zSSmwe1DNqnhqhOOpDiqB1KRVgjCLOGs3vbmQTKurN3PTK8eedjjVpCu4wV/DDqe1bkr6DQU0ib6DY0jwy9DHyFN8At4xazLLu4pveNbpjcmZnO/cMzjqji5X/zs0JOE/QEDH5fs4fdpW6aRjkP+3pHyjRNPl2wgzembyanxEOU08o1fZtzz9A2h1zefWdx3UGJBhRi4EKruU/lwj1EDj+2apNuqdHcO6wNr0/eRMAwCRgmLpuGTVP54IbeeAMGY96aR1Glr1ab9M15FVz+9jymP3RmTQPyY/Hrqj2odXyfDdPk6yU7uXdYm2O+z8nE49e56aNFLNhWFDT91DR0Cn76JzFn3oQWXh3MOlI7Uzr7ExwtuqAqChd2jOXmf7zHmDFjGDduHNdffz1RUVHs3LmTmJgYNm3adCIeK6Tk8GQGpQxi1q5ZIfcrKPRt2pfH+j5GguvQK9gJcaqQEEkIIYQQQhyWbfn1N5HNL/fSt1UcX9/en39N3MiCrELsFo1R3VO4+yiXMK/wBnjml3VBK21BdbPua/q24K9nt8USYqpc+BlN8GWVYvqCz1U0BXtaVO1tikIH7W6yy6xg1g6g/KU9aG/ph6IodEvsdshxP/jlcpbsKD4g/Kl+oX5tyma+WJTNJ7f0JT0h/JDXAZizqbDWdLADWTWVFdklxzVEGvvTWj5fmF0T4pW6/bw/axsLtxXxxa39UOsJXJpGOyjPrQi5TwfiDpwYETDx7Tm8RsWHcmdma87u2ISvFmeTV+alZ4sYLu6eQpjdwjdLduLx60Hr7OmmSVGlj5kb8zmzXeIxjyG/wosnRPAJ4NdN9pR6Qu47lT31wxqWbC8O2b+sav1sfLs3UTrjIxQFEofeiKvdQHZ/cDct73ibN67uzusvPM3DDz/MsGHDOPfccznnnHN4/PHHueiii8jIyKB589Ch7YnytzP+xrKfluEOuGumvKqouKwuPj7nY9rEnl4hoRAgIZIQQgghxB/Gxx9/zLhx49B1nU8++YSUlNrTy2644QYee+wxWrcO3d8nNtxGZVHoypKAbhLtqg5eOqVE8cGNvRtkzLM35WOpI6QwzOpgK1SABODoEIc9PRrvlpL9QZICikUl9op2KFrt65qmyaL1MWD6gi9m2pi+ygYXHXrMeWUeZmzIr7PJ+J4yL5e/PY85Dw89rH5GUa76/8oebq+/4upY7C518+mCHUEhlidgsCanjJmb8slsW3fgctvgdB77bnVQFZkVGIwFFwd8DzQFa4KrwcaenhDOw+e2D9q+LLuYSl/ocMft11mTU9ogIVL7phE4bRqV3uB7Oa0qLWJdlFT5jipcPRlV+QJMWLarzsAzrMMQwjoMwW5R+eXeQazOKWVzbgVJf9rKhV2TiXJaGfrqqzXHT5o0CYCkpKSaZtqZmZnH+zGOSIvIFnx90de8tfwtpu2choLC0OZDub3L7TQNb3qihyfEcSEhkhBCCCHEH8CuXbuYMWMGU6ZMOepr3NS/JS/+viEoELCoCkPbJRDhaPgwwxswgipGDhRqits+iqoQd20H3CvyKZ+bg1Hlx948kojMZliTwkLeq6QqRIC0V165F90wDznVaXN+BTaLWufLNIDbp/Pb6j2M7HboPlFXntGC+VuLqAoRfGiqQp9Wx96Mui7T1udT1+NW+XR+Wrm73hBpdI8UFm8vYsKyXfgDBroJTiAVlYc4qHpKUQg7o0nDDX6vCm+AaevzqPIF6J0WS2KEA6um1PQpOpDdohEbZg9xlSM3JCORaKcNt88d1OTb4zf41+SN/HPSBjqnRPH8JV3ISDr6VfBOBrllXiyqQn1drTQFLujSlPTEcNITD68S72SXEp7C0wOfPtHDEKLRSIgkhBBCCHEaKvYU87+1/+O3rN8AiF4RjekzGTZsGB06dODVV1/lySefZNq0adjtdr799lsA/vWvf7F69WoyMzMZO3YsTz31FFlZWezcuZNmqan0G3In87cW1gQaYTaN+Ag7z47uclyeo2+rOAIhXvYBXFaNczol1Xu+oiq4uifi6n7oyhK7RcVp1eqsUolwWA6rV05SpKPOMe9T6dNZtbP0sEKkYe0SGdg6nlmbC3DvHZumKNgsCq9e3u2YVr07FMM08ZXkkf3B/VjjmqFoVuLOuZuSmf8j/sK/1Jq2NHDgQGbPnl3zdU5ODhdccAFr165l6vsLmLS1GJ9FYVCbBDquKkY1qa4QsyiAQsylbbDEhG7MfrS+WJTNkz+sRlMVDKP6eXqnxeztVRT8PTIxOb9zw1SQaKrC57f25boPFpJbVj11LaAb+PTq9u37QsZlO0oY/eZcfr1vEKmxDVeJ1djiw20EQi2JdwBFUXjhkqP/s2L69OlHfa4QomFIiCSEEEIIcZrJrczl8p8up9xXjs+orqxZsW4F/l1+Vk5cyStjX+HVV19l69atzJkzp9aKWwMGDODNN9/kggsuYNeuXQC0adOGjz76iDvuuIPr2ga4eWAvJizbhduvc1aHJM7p1OS4LTOfFOlgVPcUvl+5Eb9jNYrqQ69KQ/GnEOmyMqp7swa7l6IoXHlGc/43f3tQFZHDEnoFuFDSE8JJi3exfnd5nVVUdotKYuThVbyoqsJ/r+nJTytz+GhuFkWVPno0j+H2Iem0bXJ8q1eGZCRgmibOtG7EX/gXAAKluUB1gHhePYFLbGwsv3w0gVEXXUzy6mJuNqt/RpSVxdhaRuHsGId/dyVatJ2wHkloEQ07rWtRVhFP/bAmqJ/W4qxiOiRHsm53GX7dRDdMLKqCRVP452VdiXI1XEVdaqyLqX8ewtIdxWzMreDpn9bi02uHlCbVDanfmrGFf4zq3GD3bmwRDivD2iXyy+o9dR5jmGZQVZYQ4tQiIZIQQgghxGnm5SUvU+ItqWn0CmA6TOwZdl5e/DLDhw5n/vz59O/fH6DWSmHdu3cHoHPnzmzbtq3Wtm7durFlyxau6dePAa3jG+tx6Nx+Nb9V/BPNUAADUIhU0vn0oncIsx/9X2c9usHskgqqdIMzosJoYrfyl7PbsnRHMev3lNdUW7lsGp2So45oJa03r+7JqDfnUFLlr/OYiw+jCmkfTVUY2S3lsCqXGsKirCL+NXEjK3aWoACeHSvZ88lfcWX0x5XRD6OyiMIJz/DYxACtP/uMli33r45377330r9/fy6//HLMn/dUf8t0k309tE2fgW9bKWE9kogZGbr/1tHaXepm9qYCNFXhy0XZoVcTDBiszSlj/J/68PWSnWzNr6Bdk0huGJB22M3Oj4SiKPRsEYvTaqGuRfkChsnU9XkNfu/jLafEzfLsEiIdVvq0iuW5S7owcW1unRVJ8eF2bJbjVzknhDj+JEQSQgghhDiNmKbJ5O2TawVIAK7WLopnFDN5x2Qid0SxMjeHrNmz2aEl8v5LT6ObYA1U0WtAJv/617/49ttvGT16NAArVqzgvPPOY8WKFZimyXvvvQfAokWLyM7OJjb2+PXkWbRnEa8ufQUdP8oB755edStvrnqOF4e8eFTX/WZPEX/duLOmrXPxrz/gmvYrrRxWnnn6Gcb+9h49rn8CBTivc1MGto7ns88+5Y033iA2NpZPP/2UyMjIOq/fMj6M2X8bylPfr+bbZbswzeqKE02tXlFt7MhOJEY27NSthvL76t3c98Xymgoe0xFN6m3vgmYh95uniUrvgUsvZ+OCBaxbtYIXXniBt956C4D77ruPfv36ccUVV+DbWY7hDoS8h+kzqJifg6tr6KXPl5dV8XVuEeUBgzNjIzgvIQqbWnf4YBgmT3y/hq+WZKOpCgrUOS0Rqr8HTqt2TFOrjpTNUj2lri4FFV4GvjCVvq3iuCMz/bgEWg3F49f585crmLwud+90ShNNVXn1im48eWEHnv5pHT699sNaNYWAbtDm0V+IDbNx04CW3DywZZ2N8ffZ9+fR119/zfvvv8+jjz4aNHVSCNF4JEQSQgghhDiN6KZOwAh+cXe2cFJiK2HjPzbyPD8Sf9EDlFQWsXrsYyhWO4mjH2P3R/fx91fex8hewf333Uvv3r35+eefWbduHcOGDSM1NZWPPvoIgIKCAi699NLjGiABvLfqPTx68FLoPsPHlB1TKPGUEO2IPqJrLiyp4C8bsnHvrZbQ8/OoWrGYyBfeZHByPKlWP0mRjloBg9/v56233mLmzJl88803vP322zz00EP13ifcbuGfY7px55mt+XheFhtzK0hPCOf6/i1onXhyNlHWDZOHv11VawqYYrFiAg6ryqiLLqR9XBEr+/Ui0uWgW7dubN68GYCNGzficDh4de8KW4Y7QJ1duQGjMvjn1DRN/rIhm29zi/EaJgbwU34Jz27dzc8925BgCz3V7O2ZW/hm6c56m5kfyK8bxIU37qpo6QnhxLisuEtDh1t+3WRnsZsJy3bxy6rdfHTjGZzR8vj+/jpaf/92FVPW5eINGAd85jp3jl/Kd3f154YBaXw0Zxu6YbKvPZhfNynaW5mXW+bl1ckbWbitiPeu71WrGtIb0PEFDMLtFnw+HytWrACgSZMmPProoyHHYxgGaj0hoxCi4cjvNCGEEEKI04hFtdAqqlXIfU2vaEqLB88g8bK7cTSdSsr1RbR6og2p95yNJaoMe2oHArqOx2+wfPlyfvzxRyZOnMg111yD1Wrl6af3r0D0ww8/cNFFh7He/THaXLK5zn02zcauil1HfM1/btmNb1sZtrm52GblEvhpMvh1ch64ldf+9hfKfT527drFyJEj6du3L9u2bWPjxo107twZi8XC8OHV0wGhuvJmyJAhDBo0iB07doS8X6uEcJ66qBOf3tKXpy/udNIGSAArdpYErVpmeKuA6hXFps+czYjhw1m9ejW6rrNixQrS09MByMjI4Morr6wJ16xNwzDrCnVUsLeKCtr8fV4JE3JLcO8NkAAqdYMcj4+714b+fA3D5O0ZW+tdqe9AmqLQOSWKplHOQx/cgBRF4YVLu+Cw1v8KphsmVT6d+z9fVqtf2cmisMLLz6t24wnxvfXpBm/P2Mqtg1sRbrfW2//I7TeYt7WQRVnFAGQXVXHjhwvp+MTvdB87iUEvTuO+p17m+uuvByArK4trrrmm1jVuuOEG7r77bs4555yGe0AhRL0kRBJCCCGEOM080PMBHFqIqVKmhr+kJ2EtX8UavQDNkYfFtQN7wu+olhdRlGUkX3chtsQWvPzeZ1x44YVUVlbyyiuvcOGFF5KamlpzqQkTJjBq1Kjj/ixJrrpXX/PpPuKdh9+bqdJfye9bprPw161YNpahlgdQqwKYO3JRd5cT+3//QXM4GP/NBPbs2cM333zDa6+9xgsvvEBJSUnN9LWoqCiKi6tffJ977jlmzJjBk08+ydtvv31sD9vITNOkqmoblZVbMM3qQMAfMDi4dsi7cw27P7qPPf/7C9aIOJKSkkhMTOTiiy/m3nvv5a9//WvNsTfffDNxcXG88MILGHaFq7//K+vyN3PNl39hWc7amuMUi0rEoOD+Tm9m51EVYs5XAJhfWkG+L7jHVJnHT5Uv9LS5mvvt/V+XTSM23MarV3Sr9/jjZVCbBD6/tR+D28TjsmlodTVJAkrcftbuLjvuY8rKyiIpKYnMzEzOOuus0GMpKalZwXFjbkWdfY10w2RZdgnvzdpKhTdQZ2P5fdw+nR9X5JBX5uHC/8xmxsZ8AoZJwDDJLihn/He/8tgCk+2FVeworMSvG2QVVGIctBjAxIkTj+rZhRBHTqazCSGEEEKcZoakDuGp/k/x3MLnCBgBTNPEHXDjzhuOLWYBiuardbxeGWD3+BxS70zFEvkViuqm1F39sv7mm29y7rnn8t1339UcX1FRQUFBQa1mysfLdR2v44k5T+AOuGtt1xSNzgmdSQqrDpn8/hICgUrs9iRUNfivuB+u/pA3l7+JO28oZtVglANyCs0WhtqsE9bVxejdzkBx59dUHe2brhUdHU1ZWfULfVlZGdHR0QC8+OKLTJkyBb/fT/v27WuuaZrVU5MAmsU4a03XORkUFExj/YbH8ftLUFDQLC4y2jxB52ZnBzVFdqb3xpneG5tF5U8DW5KWlhZyqfV9PWoeeeSRmm3Tl82m+NtNVK3MR7GoYECFS+PXs5vw49btmFtgZGIM16fEEW21sNtbdyNym6KQ6/UHTWlz2Sx7P9/QkUWE3cLwDkmUe/yc2S6Ri7ulHFND9mPVLTWaj2/uA0DmP6eRVVAV8jhNUaj0Hl511bEaMWIE48ePr3P/vhBp9OjRxIbZCOh1x0NxYTZ+Xrk7qCdSKCbV1UvvztpKpTdQq3Kpcs1UXO2HkFPqIb/cyzXvLaB41W5WvT6LbTtK+NvXK9ENk549ewKwvbCSSq9OemLYcVstUgghIZIQQgghxGnp/Fbnc3ba2awvXM8/Fv6DNQVrMPUwFK32C6upm+x8ZydNLm+CNdoK+DEtxbRrGoFhGDz99NM8+eSTPP/88zz55JMA/PLLL5x77rkNPmaf7mNZ3jICRoCuCV0Jt4VzdouzmZ8zn5+3/ozP8GGYBi6Li0hbJC8MeoGqqizWrf87paVLURQLqmqjZdo9pKbeUBPc/Lz1Z95c/iYe3UNlUddaARKAPaU95St+Ryn3E128icjU+KDpWhkZGTXbJk+eTN++fSksLGT69OnMmjWLSZMm8cknnwAwdX0uj3+3hsJKLwDxYXaevrgTZ7ZLbPDP7HAUlyxi+/b/Ulm5Cbu9KbGxg9i+/S0MY3+vKd1Xxdp1f6VTJwd3nZnOG9O21JoepirgtGrcOODIgkPFohI7pi1R57bEn1NBkU3hqt05FJaV4NmbGGzdvocPdxXwe68MWrvs5NdRVeQzTZo5gvsY2SwqF3ZN5vvlu4Km4jksKjcMSOPPZ7U9onE3lgHp8ewsyg65mpnfMGjf9PhMfdySX8FHc7JYm1NGlF7CxMlTGTRoEKNHj6Z79+5MnjyZZ555pqYH2saNG5k0aRKZmZk8//zz7P70YTx+HV/uFpJvfhNLZHWDdAXIbJvA54uyD2scLpvG2R2TePL7NUHfO3/RLny5Wylf/iv+gu1UbF6IaUKVT8c04bvlu/BtLmBDbgV3/jSDncVVWFQV0zS5IzOdu85sfdKFt0KcDiREEkIIIYQ4Ta0tXMvdU+6m2Fs99coatQwOmqxUuqgU9zY3e77cA0CTy5qgqD40xeT1119n1KhR3HbbbVx66aWsWbOGjh07MmHChDob3B6t7zd/z3MLn0PZOz6/4efGTjdyZ9c7ear/U1yacSk/bPmBMl8ZA5IHcFbaWaCXM3/+aAKBcsDANP0YhpstW19m055c/jm3Pxtyy0HxoUWehT1xEqYRIoRIaoVqsZH7ySP065TGpQ/czsSJE7n44ovJz8/nk08+wWq1cssttzBo0CBiYmL49NNPiYiIIDw8nKFDh9KlS3UT7jmbC7jzk6W1GlPvLHFzxydL+OD63vRvffjT746FaeoUFE5nx44PKClZBFQHQh5PDqWlSwlVtWMYHjZveo67zpyEy2bh9amb8Pp1dMOke/MYXrikCwkR9pD321lcxeS9S7sPbBNPuya1V67TImxobWN5cd0Ocn1+Agfc3mOYFPj8PLV5F/e3aMLysq01Tc/3sSsK58dHEW0N/fry+AUdWJ5dQk6Jm6q9q7K5bBrtmkRw15mtD/NTa3y3DU5nwrJdBA5aSc5p1bimb3MiHKEbiR+LX1ft5oEvlxPQq6eNKbqf6OvfYMxZ7fntX39G04KreG699VZ27NhRU600d9ZMht3/ChUb59cESFD9U/Xf6VsY3SOFzxdlBwVDB7JZVFrFhzEkIxFVXRu0Pybzxppf7xn/V1ytz8CXs6FmmzdgUFzp477Pl2FENNm7tfr33RvTtmAYcO/wNkfy0QghDoNyMjZrOxy9evUyFy9efKKHIYQQQghxUiryFHHet+dR6a+s2Vb91z4V5eBSnIOYpsafUr7g/hGNU70xN2cu9029L2gVNofm4L6e93FN+2tCnrd5yz/ZseN9TNMXtM+r27h/+j/w6ftCjwCKtRTVWoRelU6o1qARDgtLHx+xd8nyo3Pe67NYmxO6j03nlEh+vGfQUV/7cPl8RSxZegUez24MI/RUqbooisaQwcvRNBe6YbKnzEOYTSPaFXolM9M0eebndYyfvx0AwzTRVIVBbRJ446oetXrnmKZJ2syVeOvotmxVFLKGdOGd7Hye37YbFdBN0BToHhnG/7q0JCxEwFHz3AGDX1fv5pdVu7GoKiO7JTOsfRJaPSvEnQyWZ5dw/+fLyC3zoqkKumFyff8W/PXsdqgNPPYKb4Dez0wO2YTcYVG5KnIDprsUv9/PM888w4cffoiiKGRmZvLI3x/lgvue5fOF2ezJzmLN1/8iYfQTKJbaQZdNUxickcC0DfnoIb7XmgJWTWVk9xSeuKADYXYLL0/cwL+n1t1EH8BfuJOyhd8Sd+69tbbXNZHRZdNY+vgIHFaZ2ibEkVIUZYlpmr1C7ZNKJCGEEEKI09A3m75BN2q/KCoKmKaBaagoauggyTQVAmUdGb8zu9FCpP8s+09QgATg0T28s+Idrmx7JZoa/CJYUDA5ZIAEoBsqaZE72Fi8rxLBghmIQAlfC+4WYNYORZxWjXuGtj6mAMmvG6yvpxHy6pwyArqB5RjucTjWrvsrbvcOTLPu/kL1UZTqVwRNVUiJrn8Fs2+W7uTTBTsOWOa9ein3WZvyeen3DTx6/gF9ogBfPct16aaJ3zC5o3kilzaJ4beCUioDBv1iwuka4TrkuG0WlZHdUhjZLbhh98msW2o00/6SyZb8Sso9fjKSIo5bz6aJa/Zw8Awvw1uFancRMEwm/DaFt557jHfeeQeAVatW0aVLF3RUZm7IZflPa6msqiL/m5eJO+++oAAJwKebTF2fF7QyW1KknbEXdaRnWiwRDkutvkU3D2zJW9O34K/j58PUAxT+9m+i+o0J3lfHs6qKwvo95XRLja7z8xBCHDlZnU0IIYQQ4jS0Mm9lyGBGUcAIhGEaGqa5rzqpmmlomLoLb975lLpDhzPHw4biDXXuqwpUUeQpCrlPVUNXxwAoioluHPQibtow3C1xpnyKopWD6sVqCeC0atyZmc4tg1od1fhrxqMo9fZg0RQF9Tj3aPH5CikumnOUAZJKbMzAej/Xg715UO+kfTx+g08WbMd/QHNlVVFId4WeDgeQ6rDh2BuwJdisXJscz+3NEw8rQDrVKYpC68RwujePOa5Nv4sqfbW+J7B/9b2d4/6MFh5H7969ycnJ4bzzziM/Px+Aydu8lJQUs+PLZ6haPwd/0S4KfnqZPZ8+jF5RHHSfUFlQuSfA4IxE4sPtQY2vc9ybGdg1D6WOSEjRLDS5+gWcrXrW3l7PsxqmSZhNqpCEaGhSiSSEEEIIcRpqEtYEFRWDEBVHeiQVWXdicWajRazF4toGKPjLuuAvGoSpR9AyKazRxhpmCcOnhw6tDNMgzBp6LE2bXEpl5ZZaDaL3CRgWtpU1Dz7JVLFErCcu6l9EmB14ou9Y+qQl47Id+1+LNVVhaLtEpqzLDXqJVhUY3j6xwacnHczrzUVRbVDH51kXRbGgaS4yMh4/ovN2lrjr3GcYJsVVPhIjHDXbHm3VlDvXbg/qeeRUFf7equkR3VscuY7JUVg1Fb++P/jbt/qey6rxwPntUVWVX3/9tdZ5mS9NI+GysTVfh3cedsT3VhWFGRvzOKfT/u+zbuj8bdbfmJE9A28ggBp2LXpVy6BKQYW9AfgBPzZOq0bX1CiWZ5fU6kG2T2yYjdaJ4Uc8TiFE/SREEkIIIYQ4DV3W9jK+2/xdyGqksPAiIsKSyC2LIVDRBe9B+62awv3DMxpnoMCoNqMYv3Y8PqN28KEpGn2b9sVlDV2Jkpx8GbtyPsXt3o5xwLle3crHay/HMGtXIVg1k2bJhaQl9eLcludyQasL6rz20Xrs/PYs3FZEhdfPvoIPi6oQZrfw9/M6NOi9QnE4kmt9FodDUawkJ48hrcXtOBzJR3RufJiNnNLgnzGonmYUeVBj6HMTonkozcuzW3ezbw02Bbg0KZaRSTFHdG9x5Pq2iiUl2snWggoOLEhSqJ4OeHH30FMBK7yhV8w7UKig50CGaVLuqX2dT9Z9wozsGdV/TingTP2IQFkXAiX9iLQ0YUBaSwa2iadfqzgWbCvi7ZlbyS310CzWxV1npjO0bSKj/zuXrIJKPHunVKoKWFSVa/u2wBswpCeSEA1MGmsLIYQQQpym3l35Lu+sfAef4cMwDWyqDU3V+PfQf4O7NTd8uAiPX681gUQBHjwrg3uGNt6qRlX+Kq7+5Wp2lu+sCb3smp1wazifX/A5TcKa1HluIFDB9u3vkLP7S3S9ksiILqwuH8Nzk+21pllpCsSF25n0wBCiXA2/4tWBdpW4+c/Uzfy+pnrFu3M6NuHuoa1JPkR/oYayavU95OcH94syTYL64QCoqoPevb8jPOzIv+fvzdrKPyduCKoEqe5PlMxLl3attb3YHyBz4XoKfQEOjBOcqsJzGc24omncEY9BHJm8cg9/GreYTbkVaGp16BMXZuODG3rTJiki5Dm3/28JE9fuCRkQWVSFzs2iSI52Ehdm46vFO0NOcbRbVH69bxCtEvZXBw37ahh5VXkh7+m0OJl75Vwsav11D26fzrh5WXy2cAd7Sj34dAOnRUVVq6dGvnBJZ87vcmThqBB/dPU11pYQSQghhBDiNLa2cC1fbPiC3RW76RTfiTFtx9SEMlvyK3hr+hbmbClAQWFgm3geOqst8XUs4348eQIeftzyI99v+R6/4eesFmdxacalRNmjjup6Xy/O5uVJG8kv96IoMLx9Ek9d1JGkSMehTz7FBQLlLFt+AwWlK7Bg1qxwVtdMOk1z0TZjLE2bjjrye+kGd36ylFmbCvAEdEwTwmwaafFhfHFbP8IP6u/zr217eG17Lt4Q7yBRFo3VAzphPclXUztdrN9Txtb8SppEOeieGl1vP681OaVc+t+5uA8KC51WjdsGt+L+EdWVi6VuP5kvTaPE7a/Vb81uUemfHseHN55R6/xuH3dDN4MDJwCramXamGmH/WfA49+t4qslO4MCTYdV5Ytb+9FVGmwLcdgkRBJCCCGEEH84pmlS7g3gsGi1lpr/IzBNk6enXU9pySK8pkkru05npxEySNK0cDp1fJX4+DOP+l5LdxTz44rd+HSDEe2TGJyRgBbiZoMWrGNT1cETKKuFaypfdk2nR1Tj9eNqSFkFlbw8aQNT1+ejAMPaJfLgWRm0iDs1n+dgMzfm8+CXy3H7dFRVwa8b3DigJQ+d1bZWr69tBZXc9clSthZUYNVUfAGDszs24YVLuuA8qNH18K+Gk1uVG/J+LouLOVfOOWQlEkC5x0+vZybXWiVwHwUY1j6R967vfWQPLMQfWH0hkvREEkIIIYQQpyVFUYJ68vxRKIrCZV0f4bpfr8Oje9jhU2nn8GIPESIpikps7IBjulfPFrH0bBF7DCOudmr+8zZszqvg4jfmUOUL1Ez5+mnlbqasz+P7uweQnnDqN3genJHAwr8PZ9WuUtx+nY7JkUSE+P3VMj6MX+4bxLaCSgoqvLSKDyMuPHR1440db+TVpa8G9W6za3Yub3v5YQVIAFkFVVg1NWSIZAKrdpUe1nWEEIf2x/onGSGEEEIIIf4g2se1559D/kmkLZI8M5KlbideY39QoyhWVNVJp07/RlVt9V6roVycGI29jmlTmqLQJaJhG503ln/8vJZKb6BWzyDdNKnwBnjmp7UnbmANTFUVuqZG07dVXMgA6UAt48PonRZbZ4AEcGX7KxnRYgR2zY6maCgoODQHvZJ6cU/3ew57XDFhVvx6iJUo94oNa5yfbyH+CKQSSQghhBBCnNb2VO5hdcFqXFYXvZv0xqr+caqThqQOYfrl01mWu4xKfyVpNg9led/j9e4hKqo7qc1uwOVq0WjjualZAh/nFIZsrP1U6+RTsh+SbpjM3FhQZxXVtA35zN1cQP/W8Y06rlOBqqg8O+hZbup0E9OypxEwAgxqNohO8Z2O6DrNYlxkJEWwOqeUg7u1OK0aN/Zv2YCjFuKPTXoiCSGEEEKI05JP9/Ho7EeZumMqVq06OFIVlecHPc/gZoNP8Oj+uHK9fp7avIuf80vxmyatnHYeS2/KuQnRJ3poRyWgG7R57Neg8OJATqvGD3cPqHP1M3HsthVUMurNOXj8ek1zbZdNo2+rON69rlfIHl1CiNCksbYQQgghhPjDeXzO4/y27begfisOzcGn539Km5gjX9JeNBzDNMl2+/hgVwG/F5ZiV1WuaBLLdclxhFm0Q1/gJHLRf2azcmfdfXc0ReHCrk159YrujTiqP56SKh+fL9zB1A35RDosXN67OcPaJdZq/C2EODQJkYQQQgghxB9KiaeEYV8Pw6f7gvapisq5aefy/ODnT8DIxD4bKz1csGQjbsPAv/eVxKEqNLPb+LVXBhGnUJC0YGsh176/AJ9e97tV0ygH8x4Z1oijEkKIo1NfiNSojbUVRflAUZQ8RVFWH7T9HkVRNiiKskZRlBcbc0xCCCGEEOL0s6V0C7Y6mkUbpsHKgpWNPCJxsAfX76Bc3x8gAXgMk2yPj/9sD73s+8mqT6s4nh3dmfrqXcLt0o5WCHHqa+zV2T4Czjlwg6IoZwIjgS6maXYE/tnIYxJCCCGEEKeZGHsMASNQ935HTCOORhys0BdgZbk7ZDNqr2ny2Z6iRh/Tsbq0Zyot48NC7nNaNa7u07yRRySEEA2vUUMk0zRnAgf/P8IdwPOmaXr3HpPXmGMSQgghhBCnn1bRrUgOTw65z2lxclW7qxp5ROJAlbqOptRdt1NVz3LtJ7NXr+iGy6ZhOaAHj9Oq0rZJBFdKiCSEOA00diVSKBnAIEVRFiiKMkNRlN51Hagoyq2KoixWFGVxfn5+Iw5RCCGEEEKcal4a8hLh1nDsmr1mm8vion9yf85tee4JHJlIttuw19PsuFdU6Iqek12XZtH8fv9grjyjOWlxLjomR/LY+R344ra+2E+hHk9CCFGXRm+srShKGvCTaZqd9n69GpgK3Af0Br4AWpmHGJg01hZCCCGEEIdS6C7kyw1fMjdnLpH2SC5tcylDUoegKifDv6X+sb2Xnc8/tubgNmr/td+pKnzTrTU9TtEgSQghTnX1NdY+Gbq77QS+3RsaLVQUxQDiASk1EkIIIYQQxyTOGccd3e7gjm53nOihiIPc3Cwej2HwyvZcVMAAwjSVl9umSoAkhBAnqZMhRPoOGApMVxQlA7ABBSd0REIIIYQQQojjSlEU7m6RxM3NElhT4cauKnQMd6LW0ytJCCHEidWoIZKiKJ8BmUC8oig7gSeBD4AP9k5r8wHXH2oqmxBCCCGEEOL04NTUU7YH0qnC49f5YXkOv6zajVVTGd0jhREdkrBoMq1TCHFkGjVEMk3zyjp2XdOY4xBCCCGEEEKIP4LCCi8XvzmHgnIfbr8OwJwtBbRtEsFnt/TFYZWG30KIwyfRsxBCCCGEEEKcpp74fg27Szw1ARJAlU9nXU4Zb03fcgJHJoQ4FUmIJIQQQgghhBCnIY9fZ9LaXAJGcLcQT8Bg/ILtJ2BUQohTmYRIQgghhBBCCHEaKvP4qa9PeZk70HiDEUKcFk6G1dmEEEIIIYQQdTAMk+kb8/hm6S7cPp0RHZIY2S0Zl+3U+Kt8wAhQ6a8kzBqGRT01xny6iAuzY7eoeANGyP0tE6ShuRDiyMif4kIIIYQQQpykArrBTeMWsTirmCpfdU+b+VsLeX3KJr6/awCJkY4TPMK6+XQf/172b77c8CUBI4BFtXBpxqXc1+M+bJrtRA+vQazeVcq2gkqaxTjplhqNUl/ZzwmgqQq3DUnnP1M31+qJBOC0ajwwvM0JGpkQ4lQlIZIQQgghhBAnqfHzt7NwWxEe//5Kkiqfjjeg89DXKxl30xkncHR1M02Te6bew5LcJXh1LwA+w8cXG75gY/FG3hnxzkkXuByJnBI3N320iO1FVWgKGCYkRtj54IbetEoIP9HDq+WOIenklnr4fHE2VlUBBQK6yf3D23BOp6YnenhCiFOMhEhCCCGEEEKcpD6cm1UrQNpHN2DelkJKqnxEu06+qp5VBatYlrusJkDax6t7WZG/ghX5K+iW2O3EDO4Y6YbJ5W/PI6fEg27ub1i9vaiKMW/PY/bfhuKwaidwhLWpqsLYiztx99DWzNtaiEVVGZQRT6TDeqKHJoQ4BUljbSGEEEIIIU5SRZW+OvdZNYXiKn8jjubwzd41G4/uCbnPE/Awc+fMRh5Rw5m5MZ+iKl+tAAnANMHt0/l19e4TNLL6JUY6GNkthfO7NJUASQhx1KQSSQghhBBCiJNURlIES7YXh9xnmFBc5aVou5f2TSNPqkbbmqKhKiq6qQftU1BO6Qbbq3eVUuUNfi6ASp/Osh0ljOreDICSKh8/rdxNcaWPTilRDM5IQFODp/HN2pTPf6ZuZlNeBQkRdm4e2JJLezRDDXGsEEKcSKfun95CCCGEEEKc5u4b1obb/rckqCmyTVNRFLjmvYWoioJumNwyqCUPjMg4KXoNZaZm8t6q99D14LDFptkY2nzoCRhVw4gJs+GwakHfE6iuDkuMsAPw/bJd/O3blSgoePw6LrtGrMvGF7f1IznaWXPOR3O28cJvG2quV1Tp48nv1zBjYz7/ubL7SfH9FEKIfWQ6mxBCCCGEECepwRkJPHJeOxwWlTC7hsumYdUUdMOgyqdT5dOp8AZw+3XenbWNf0/ZfKKHDEDb2LYMaz4Mh1Z79TiH5iAzNZN2se1O0MiO3QVdmmJihtynKgqjezRjc145f/t2JR6/gduvYwKVXp2cEg83fbSo5vjSKj/P/bo+KJBy+3Wmrc9jUVboKjQhhDhRJEQSQgghhBDiJHZdvzQWPTacFy7pwtiRnRjYOj5khOH267w9cwueEBUyJ8Kzg57lvh73keRKQlVUEl2J3Nv9Xp4f9PyJHtoxiXbZeGF0F+wWhQNrhCwqPHR2W5KjnXw4Jwu/HqIhummyvbCK1btKAZi8Ljfk9Dao7q/0zdKdx+MRhBDiqMl0NiGEEEIIIU5yEQ4rF3RJBuCF39ZjhC6EQVEUthVU0r5pZCOOLjRVUbmmwzVc0+GaEz2UBtczLQaH1YJf97Ovv7amqnyyYAdjeqeyYU85ITKkvcfBtoJKOqVE4QnoGGbob6YJVHgCx+cBhBDiKEklkhBCCCGEEKcQl63u5eMDhkG4Xf6d+HD861//YuDAgSH3ffTRR7z33nt1nvvYhNWUe/y1wjxvwGBXcRWvT9lEy4QwtDp6GRkmNIup7onUp2UsdcyMw2XTOLNd4uE9jBBCNBIJkYQQQgghhDiFXHVGcxyW0H+NbxEbRmqsq5FHdOrxer2sWLHiqM6t9AaYs6UgZDWYTzf5eslObuifhtUSHCIpCiRG2OmWGg1A68QI+reOD/p+aipEO61c0KXpUY1RCCGOFwmRhBBCCCGEOIVc3z+N9MRwnNb9f5W3qgphdo2Xx3Q9gSM7uVX4KpiePZ0Z2TN44+03uP766wF44YUX+PnnnwH47rvvePnllwGYMmUK5513Hueddx6maTJ27FgyMzMZ1L8fuz79e533qfLqdEyO4pFz22O3qFi16jApzKYRF2bjgxt6A5Bf7qXU7efNq3twcfcU7BaVcLsFm0WlX6t4vrtrAA5r3VVnQghxIkitqxBCCCGEEKcQh1Xjmzv68/nCHXyxKJsqv87gNgncOrjVH6oKyTRNNuVVUOEN0DYpgrCDpvH5AgY+3SDMpvHeqvd4e+XbWFUrRsBg0yebePn96rDoqquu4tFHH+X888/nq6++4oUXXmDy5MkkJiby2Wefccstt7By5UqeeOIJnnjiCa699joqbV3x1jGujsnV/aiu75/G8A5JfLt0J/nlXrqlRnNe56ZMXLOHq99bQGGlD9M06ZwSxbOjO/Po+e3ZVeImPtxOfLj9eH50Qghx1CREEkIIIYQQ4hTjsGrcMKAlNwxoeaKHckIs2V7E/Z8vp6DCh0VT8OsGN/ZvyUNntyW33MNTP6xh6vo8DBMinAaBqIUQ6cereCmeWUxEnwjeWPo2uwrKGPnhOtbPXc/6xyfgz9pNSkoKAJ06dQIgJSWFkpISoLqPUo8e3Tm732j+8fM63AethOewqvzl7LY1X6dEO7lnaJuar79dupNHJ6zC7d/fdXvpjhIu+e9cfrl3EO2anPiG6EIIUR8JkYQQQgghhBCnjG0FlVz7/kKqfHsDHH/1/3w0NwuPX+fHlTkUVfpqehaVVCpQORJyLsAavQjP7vfw7Cgl/1cX3uxsvLO+xdm6D2u+epmIVt0Z+9NaWlC90t0+pmkyY8YMli9fzscff4xpmpR7/Lw+ZTMWVcEEVBWeGdmJAa3jQ45bN8y9wVPwsm1un85/pm7mpctkOqIQ4uQmIZIQQgghhBDilPHWjC14D6oAAnD7df43fzuqQoim1wpgwV/ai8jeqcSf9zueXdew53+PE9nzQnRPBcVT3yP2rDv5ZMEO7kj2EWGr3T527NixlJeXk5mZSbdu3Xj11Ve5oX9LlmeXYNUUuqZGY9Xqbjm7vbAyqHJpH8OEqevzjvCTEEKIxichkhBCCCGEEOKUMWdzAXqIldEAAqGWTDuQacXwJeAvGgSmlSbXvFizy9myB5orClWB+B5nc23fFgA89dRTAGRmZgZdzmnT6Jced1jjtmoqhln3+Cxa8GpuQghxspHV2YQQQgghhBCnjHD7Mf47uGnH8Mey71XIX5hN/tdjieh1UfVus3r6WkNrFuMkKdIRcp9VUxjZNaXB7ymEEA1NQiQhhBBCCCHECefx62zYU86eUk+9x13dpzlOq3YMdzKw2EpRVR8A1rhUmlzzIo7UTjVHDMlIOIbrh6YoCs+N7ozTWvsVzKIqxLhs3DakVYPfUwghGppMZxNCCCGEEEKcMLph8vLEDXw4JwtNrV5prV2TCP51eTfSE8KDjh/TO5Vvlu5iw57yOnsM1UfTdK7rl8L8tXFszqvEG9jf6NphVTm/c1NaxIUd0zPVpX96PJ/f2o9/TtzAoqwirLZyOmfsoG96BNlV8cSGda3V0FsIIU42yvEo1WwMvXr1MhcvXnyihyGEEEIIIYQ4Bk/9sIYvFmXXCoQUBSIdVqb8eQjx4fagc7wBnS8XZfPsL6FXO6uLw6LSLTWaT2/pi9uv89yv6/lmyU4ChoHLZuHmgS2568zWaOrxD3LeXfkub614C0VRCBgBbJqNtjFteWvEW4RZj0+IJYQQh0NRlCWmafYKuU9CJCGEEEIIIcSJUFzpo+9zU2pVA+1jt6jcNqQVD45oW+f5j05YxecLd9TZaLt7ahR55T5ySt1EOa1c27cFdw9tjd2yfzpcQDdw+3XCbBbURgiPAGbtnMWD0x/Eo9eeumdTbQxtPpSXhrxU57lew2BBSSVew6B3VBjRVplcIoRoWPWFSPInjhBCCCGEEOKEWL6zBJtFDRkieQMGU9fn1Rsi3dA/jW+W7kSvoxpp3e5yXri0CyO71d202qKpRGiN2yr2vVXvBQVIAD7Dx9TsqZR6S4myRwXt/3pPEQ9v3Mm+qMtnmtycEs9j6cmoMg1OCNEIpLG2EEIIIYQQ4oRwWDTqmxjhstX/b95tkiJ4+qJOde73BAz+PXVzzdflvnL+t/Z/3DXlLh6b/RhLc5cGrcRmmibe7WUUf7ORwk/WUbloD4bvyHsv1Wd72fY699lUGzkVOUHbZxeX89D6LKq8uVT4SinXDbyGyYe7Cvj39twGHZ8QQtRFKpGEEEIIIYQQJ0SvtBjqKgJyWjWuPCP1kNcYlJGA3aLgDYROo3YWVwGwtXQr1/16Hd6AF4/uQUFh4vaJnN/qfB7r/RjZ64opL3ATvbkYdUc5ZsAAEzwbiiidtJ3EO7thiQ7uz3Q0moY1pdBTGHKfz/CR6Eqstc00TR5b+C6uvC8JM/1gGgRsLSmP+xNuazL/2ZHHnc2TsDbSdDwhxB+XVCIJIYQQQgghTgirpvLipV1xWlUOjD8cVpWOyZFc0CX5kNeIdlkxqTs8iQurDn4enPYgZd6ymmlkJibugJufNv/EE8++xcT317Dt+63om0sw/dUBEoDpMzAqfBR9tv6on/NgN3S6AafFGbTdolg4o8kZxDnjam1/b9V7FOR+gmpUopg+FAJYfJuI3vN/qIEidBNyvL4GG58QQtRFQiQhhBBCCCHECeHXDbYVVOK0VTe6VhVICLfx0Flt+eSWPlgPo1eRw6pxfuemWLXgIMlpVblpYEs2F29mV8UuTIKrlTyGhyXRU/B7dFpawBKqt5ABvl0VBEq8R/6QIZzV4ixGpo/EoTlQ976SuSwuUiJS+MfAf9QeX8DDu6veRTFrh0QKoJg+nOW/ETBNIg9oFi6EEMeLTGcTQgghhBDiFJeVlUWfPn1o3749NpuNiRMnhjxu4MCBzJ49u5FHF5ppmvxp3GIWbCvEs7cxtmlChVcnv8JbawW1Q/m/kR1Zu7uMnUVVVPp0FKV6OtyA9Hiu79eCxXkLsagWqKO1UaW1FAB7PdPBFE3BKPdBA0xpUxSFR/s+yqUZl/Lztp+p9FXSL7kfmamZ1eM8wLqidWhK6M9CIYDdvYwe0bcSI6u0CSEagfxJI4QQQgghxGlgxIgRjB8//kQP47DN21rIoqyimgBpH7df58M5Wdw4oCWJEXY8awopn7UTvcSHJdFJRGYqjvToWudEOqz8fM9Apq7PY/K6XGyaykXdUuidFoOiKLSKaoVPDz3dSzEU4iurey+V6yZOpTrkOZipG2ixjkM+l2maLMoqZvK6PaiKytkdk+iWGh3ymm1j29I2tu7V5wBsmg3DDL36HICqWnm57aF7RwkhREOQEEkIIYQQQohTUFZpFpN3TMYT8NDU25ypU6cxaNAgRo8ezQMPPMCNN95IdnY2zZs3p3nz5jz11FOUl5dz3XXXsWLFCsaNG8euXbvYtm0bN910EzExMezevZvvvvuO8PBwxowZc1zH/+OK3VTVseqZqsDkdbmct9tP1dJcTF91iKKXevFllRF5ThoRA1JqnWPRVM7q2ISzOjYJul6iK5FBzQYxa+csfEbtMEkzLXTLGQbARo9BXLgW/JJkUXB2ikcLs9b7TN6Azo0fLmJ5dglVPh0FGDc3iwGt43jrmp5YDmN63sHax7bHYXFQFagK2qepdu7oNIbmzoZp+C2EEIciPZGEEEIIIYQ4hZimybMLnuXSHy/ltXnf8MoPJg9+7cd65avYRj7FV9//wowZM7Db7UyePJm2bfdXuuzZs4d33nmHN998k3HjxtG/f3/mzZvHwoULyczMZN68ecybN4/+/fsf9+fwBeqYWwYYJjiKvFQt2R8g7WP6DUp/3YZeEbqyaFeJm7E/ruGcV2dy2Vtz+W7ZLgK6wbMDn6VHUg/smh2nxUmYNQyn5mTYtmuJr6oOpIp0k9VuHd008ZsmWBQUq4q9ZRQxo9sE3cs0TRZsLeSTBduZuj6Xl37bwNLtxTXhmEl1ZdXszQW8NWPLUX1OqqLy9ICncWi1q6Bsqo3mEclc2+74hn1CCHEgqUQSQgghhBDiFPLT1p/4bvN3VFVFUbXtFjCtKJbqfxveUuDB7WrLNzNX4I9K5eeVu2nXsTPLFi8EoHXr1jgcDlJSUigpKSEmJobCwkLmzp3LX//6V6ZOnUp2djbNmjU77s9xVscm/LZ6D5V1VCP1qjAwA6GncSmKgnttIeFnNK21feXOEq58Zz4+3cCvVzfRXr2rjK+X7OSjG3vz7lnvsqVkCyvyVxBhi2BgykCyl5Qydfx6TMPE0E12Ggq5boMRI1KJTnBiT4vC2iQsaAw7i6u45r0F5Jd7MUwTVYFKX+jxevwGH8zJ4u6hwUHU4RjcbDDvnf0ebyx7g1UFq3BanIxqPYqbOt+Ey+o6qmsKIcTRkBBJCCGEEEKIU8j7q9/HHXDjzbsUTCugYnirUO3VYULl9jV8Hd8K99q5LHD0Im/ON2S2igJq9/oxzeqQJTU1lalTp/LII4/w+uuvExcXF3TP42FYu0RSY11sza/Ap+9fNc1hVRnRPokIRaUqeDE1AEzDxPTWDp9M0+SeT5cFhVJuv86S7cV8u2wXY3qlkh6dTnp0es3+jD5OmqRHsWbWLkpy3cQ1C6PjwBTC6mmgbRgmV727gJ3FVRh1jPFgRZU+TNMM2RvpcHRN6Mo7Z71zVOcKIURDkRBJCCGEEEKIU4BP97Fwz0J2lu8EQK9sw77uFN6dayiZNR5Fs2Jv1gFbclvKlv3KlnF/RQuPY5qeypLtxSGv279/f/Ly8lAUBbvTjtpC5ZFZj5AansqoNqNoGt405HnHyqKpfHV7P576YQ0/rdwNgFVTua5fCx4ckYFvVQHulflB09kAFFXBnhZVa9vG3Aryyr0h7+X264yfv50xvUI3oI6Md9JvVOvDHvvcLYUUVngPO0ACSIiwH3WAJIQQJwsJkYQQQgghhDjJTd0xlUdnP4qJecAqY/sTDGd6b5zpvWudE3fuPSiqRun8ryEigTenbWb27NkApKWl8dFHHwFw4403cuONN7I8bznbL9yOYRos37ocq2rlgzUf8ETfJ7io9UXH5bkiHFZeHtONf4zqTLknQLTLinVv82mtUzylv2Wh+70HPipoCtbkcGypEbWuVebxY1HrDmlKq/wNNu4NueX49bpXTDuY06px66CWDXZ/IYQ4USREEkIIIYQQ4iS2vmg9f5v5Nzy6p9Z2S8RaAmVdqWutnMJfXyNQkotqdxF58SOs3V1W5z18uo87p9xZawUwv1EduoydP5aeTXqSEp5S1+nHzGHVcFi1WtsUi0rinV0p/Gw9vuwKFIuCGTBwtIsl9rKMoGtkJEXgqyPY0RQ4o2Vsg403McKOVVPx6cH9nBRAUxVMTBQULKrC2R2TuHlgqwa7/4yicl7Yupu1lW7CNY2rmsZyX1oSYZp26JOFEOIYSIgkhBBCCCHESey9Ve8dUH20nz1hEoGKdmDYgODwIP78B2t/HV53j5+ZO2diGKEDGMM0+Hbjt9zT454jG3gD0CLtJN7WlUCpF73UiyXWgRZuq1kV7ccVOXgDBsPaJzK8fRJjejXj6yU7cfurnyVQXkj+N2PxF+zg5h159d7r/vvvZ/ny5QCsWLGC4uJi3n33Xd5//30A7r33Xq666ioARnRI4uFvQ1/HZlF58+oerN9TjqLA8PZJZCRFhD74KHyxu5CHN+7EvXcunccI8PbOfCYXlvFLzwwcmizALYQ4fiREEkIIIYQQ4iS2umA1BsEBj2orIqrVW0RWXMvu/HhMU8Fp1aj0Bji4VY/TqnHzwP3TqVavXs2tt96Kpmm0bt2aoX8ZWlN5dKCt/9hKq0dbkV2e3dCPdUQsUXYsUdUhmG6Y3DF+CbM3F+D26ZjAL6t2kxzt5Itb+6Ib8PXSndg1lYAaTcKfXkKZ9E9aJ4bXe49XX30VgGXLlvHyyy8DMGLECG655Rb8fj99+/atCZEcVo13ru3FLR8vRjdMvAEDi6pg0RQeP78Dw9onMax9UoN/Dh7d4NFNu2oCpH28hkmW28u3ecVc1bRxGqOLxrWtdBsbijYQ64ilZ1JPNFWqzsSJISGSEEIIIYQQJ7EYewy7KnaF3GdzlDJ+TCYtIlsAkF1Uxag351Dp1XH7dRTAadMY1i6Ri7om15zXtm1b5s6dC1T3RPJl+bCqVnxGiIonzU7b2LYN/2BH6X/zspixMR9vYH+wVunT2VpQyd3frKC8UzSVYYl4KwIMiI/ghd7pXDv7NQDeeOMNWrRoQUZGBn379qWwsJAnn3ySCy64gDPOOAOACRMmMHr0aKC6dxSAxWJBO2iq2IDW8Uz/SyafLtjBmpxSUmNdXN23BekJ9YdVx2JhaSV1dX2qMkw+310kIdJppsxXxgPTHmBF/gosSvXru91i59UzX6V7YvcTPDrxRyQhkhBCCCGEECexq9pfxdPzn8YdcNfarqDQPLJ5TYAEkBrrYvpDZ/Ltkp1M35hPpMPKmF7N6Jhq5d/LX+f7zd/j1b30SurFnd3upG1sW+x2O+f2OJfHr3qcsrwyrHFWrLFWkkYlYXgMst7O4pXSV+j5cU+6devGe++9x7hx4wB47bXX6NGjR73jN02TeVsKWZRVTJhd47zOTUmOdh715/HOzK21AqR9dMNk7vp8PMkWsGnosRozDB9nL91I9N7Knf79+/Pll19SUFBA7969Wbt2LcuXL+fxxx+vuc5vv/3Gww8/XOvab731FhdffHHQPRMjHdw/Irg/U0OqDOhMKSqnStfRD7EanK+OKYni1HX/tPtZnrccv+HHS/Xqg5WBSm6fdDs/XPwDSWENX/EmRH0kRBJCCCGEEOIkdl7L85i8fTLzds+rCZLsmh27ZuelwS8FHR9ut3Bd/zSu658GQLmvnDE/jiGvKq+m0mha9jR++ekXjF8MunboSvaObIa2HErunbls+HYDfo+fMEsYgdIA3/3vO5RdCuPGjaNZs2b88MMPzJw5k+LiYm666Sa+++67OsdeWuXnynfnk1VYidunY9UUXvp9A/cMbc3dQ9sc1eeRV+6tc59pAj4DLNV9gXSgLKBT6a1+7i5duvD4449TWlrKgw8+yKxZszAMA6vVCsCmTZtISUnB5XJhmia/rNrDsx/9wOqfx9H/9uf5fvkuLuqajKLUvQpcQ/p8dyGPbNyJpigYJuiY+I3QSZJDVbggIbpRxiUax5aSLSzNXYpuBjdwDxgBvtjwBff2uLfWdl33kJPzBTm7v0TXPcTFZdKi+c04HMlB1xDiaEiIJIQQQgghxElMUzVeOfMVZu2cxTebvqHUW8rAlIFcmnEpMY6YQ54/fu34WgESgImJo6uDZgOakTwtma1bt9K/V39uu+Q2XvW+yqy5s7i9/+38X8f/Y2DaQLLIoqSkhK1bt7JixQrOPPPMwxr7g18uZ1NeOf69JTQ+3QRM3pi2hS7NohmckXDEn0dwfmOghW/EEr4W09QwKgfjd3asOTBgQrEvAICmaaiqSklJCZmZmTzxxBMMHTq05koTJkxg1KhRADz7y3o+nLiEnd+8TsIlj7Mut5KHv1nFku3FjB3Z6YjHfaQWlFTwSE0D7f3BkYXqFeAOjBU0BSI0jWuSZSrbqazYU8yEzRPYWLSR5hHNWZK3JGSABOAzfCzLW1Zrm65XsXjxZVS5szCM6tUcd+36hN27v6ZXzy8JDz95pqWKU5eESEIIIYQQQpzkVEVlSOoQhqQOOeJzv9/yfVCvI8NvoFpVCtwFpDvS2bhxI3v27EFTNYzdBt0Su3FOy3N4Rn2m5hzTNGnZsiW9e/fm66+/BsDvD27GvU9+uZfZmwtqAqQDuf06/52x5ahCpFiXjdx91UiqF1fzt1FtBSiaD9NUsLqX4C/oRFn8fZi6TsnDdxPYvIGzzz6bZ599lu7du1NSUoLdbsdisdC/f/+aa//00098//33bC+s5ON5WeTO+AS9qpj8Cf8AIPGy/+PLRdlc168FrRMbbsW1UF7dnhvUQBsgAFgUiFJVvKaJbsLgmHBebJtKtFVe705Vi/Ys4q4pd2GYBl7di0WxEDAD9Z6T4Kz9+2dH9kdUubdhGPur9UzTj677Wbv2Ic4444fjMnbxxyJ/ygghhBBCCHEa8+nBzbIrVlVQ8HsBmqKR1iuN1198nZtvvplhw4aRnJxMu3btQl4rISGB888/n8GDB6NpGkOHDq3VT+hAO4ursFnUkP2LALIKKkNuNwyTOVsKWL2rjBiXlXM7NSXKZa3Zf13/NP41cQO6CfakH1HteShq9cu2opgo+LB6VuMsn4g78hwS/vk2lzeN5eV2zQHo06dPzbXmzJlT694zZ84E4PPpWzAMk7hz7g4an98w+Gnlbu4ffnxDpLUV7jr3OVWVL7ql08RuI1xTCbfISl2nMnfAzT1T7qnV9+xQAZKCQrQjmit/uhKA81qdR3LR52CEnu5ZWbUZj3cPDnuThhu4+EOSEEkIIYQQQojT2IDkAfy49cda02Iie0QS2SOSCGsEn17xKaqq8u6772KxWHjhhRdo3rw6cJk9ezZQvUrZRx99BFSv5nbjjTce8r4p0U58dQRIAKkxrqBtuWUernhnPnllHjwBHZtF46kf1vDipV24qFsKANf1a8Hni3awu7QMa+TymgDpQKrpw1n+K57Ic3BpKve1OLLmw16/TqCO3kO6AW5f6ClGDSnBZiXXFzpI8JkmiTYrTezWkPvFqWXqjqkYHFlTdAWFCZsm4NGrp61tLtlMmOLhgUQID5EpKooFPVAB9oYYsfgjU0/0AIQQQgghhBDHz61dbsWuBb85OjQHd3e/G6taHUTcfPPNDB48mFmzZtX0BToWiZEOzmgZi1UNbkLttGrcNqRV0PabP1rEjsJKKn16TVjjCRj89ZuVbMotByDCYeXHuwdyae94lDoXvAdVL2NITAS/9MqgufPI3pz7psfhtIWu7gmzaQxsE1/ztTegU1zpw6gjdDpatzRLwBXis9OALhFOkh22Br2fOHFyq3LxBDyHfbyKCgo1ARJU/7okoPBDSV0/FwpOZ/NjHKkQEiIJIYQQQghxWkuNTOWjcz6iXWw7bKoNp8VJtD2aP/f6M1e1v6rmuHHjxjFz5kx++uknHA5Hg9z71cu7kRrnImxvIGNRFewWlRv6pzGsfe3qoPV7ytiSXxFyGXt/wOCDOVk1X0e7bDx9UR9ctrorcdIiU/i8WzqtXUf+LH1axpKRFIHNUvt1yaYppMWHMSA9nqJKH/d9tozOT06kz7NT6PnMJN6ZuQXTbJgw6bImMQyNi8Sl7h+DS1WItVp4s0Nag9xDnBxaRLTA5PB+buyaHRMTwwyuXNIxWVqlcfCPoKo6adHidlRVgkdx7GQ6mxBCCCGEEKe59nHt+erCr8ivyscdcJMSnoKmHv8+OnHhdiY9MIRp6/OYt7WQCIeFi7om0yohPOjYbfmVaKoKIab16Cas311Wa5tVtXJ528v5dP2nePXafWCcFie3dbntqMetKArj/9SHv3+7it/X7MGiKvgNkxEdknhudGd8usGoN+eQU+Lev/JclcErkzaRW+bl8Qs6HPW991EVhXc7pjGruILPdxdSpusMj43k0iaxR90DqdzjR1MVXDZ5DTyZ9Gnap859pqGie5phdRQSYYvg6g5j+O/K1+s8XkfBYosHowrQMM0ALZrfQlqL24/DyMUfkfzpIYQQQgghxB9EguvIV0M7VpqqMLxDEsM71N+XKDnaiVFHFY+qQIu4sKDt9/S4h+1l25mTMwfDNFAVFROTMRljuKDVBcc07nC7hdev7M6CrYXM21JIs1gnF3RJxmHV+HJRNnll3qCV59x+nfHzt3NHZjrx4cfefEZRFAbHRjA49tiaeM/cmM/Yn9bWNDPvmhrN2JEd6ZgcdcxjFMcuzBpGrCOWIk9RzTbTBAw7VdnXYrhb4wZ8FpWPt1uIahpGqRq6MX1TVzxDBk6hvGIthu4hIqIDmhbcf0yIoyUhkhBCCCGEEOKE69IsisQIO9uLqoKm49gtKjcOSAs6x6paeW3oa2wu3sycnDlYVAtDU4fSNLxpyHvkVOTgDrhpHtm8phdUXUrdfm76aBFrc6oroFQVnvh+Da9d0Z2fVu3G7Q/dXNuiKszbUsiFXZMP/dCNYPqGPG4fvwSPf3+F15LtxVz21jy+v2sAbZKO7ypz4tAUReGe7vfwwsIXavoc+Yr648s/G8z9YaQnYJBf7iVMPQ+afglBPcFMRsbHoygqkRGdGu8BxB+KhEhCCCGEEEKIE05RFD64oTeXvTUPt1+nyqdj1RRUReGBERl0TY2u89zWMa1pHdO6zv2rC1bz+JzHyS7PRlM0NEXjjm53cE37a1CU0M257/pkKSuyizl4gbl7P1tKl2Z1jwVFQQvREPtEME2Tp35YUytA2sft13l54gbeurbXCRiZONglbS4hryqPD1Z/gKZYKM8/D8zg13XdVCgr7Up4k684+EfXApjKka3yJsSRkhBJCCGEEEIIcVJolRDOnIeH8uOKHJbuKCE+3MalPZuFnMp2uLJKs7j595upClTV2v7vZf/GNE2u63hd0Dkb95Qzd0sBoRZc8+kGqqrgsmlU+YKrkQK6wYDW8cEnngDPPP8SC94cR9LVLwbtM02YsbGg5usrrriCPXv24PV6cbvdLF++vBFHKhRF4c5udzLCcSFfTP6N98x6+l6ZGtVVSLV/QAMobPQ1TFN8IeoiIZIQQgghhBDipOGwalzWK5XLeqU2yPXeXfVuUONtAHfAzX9X/Jcr212JVds/tU03TG4fvyRkgFS9H0qr/LROCGdDbjneA0qVnFaN+4a3JspZ/1S548UwTMq9AcJsGnrAz9rVq+o9/oCF3/j8888BmDBhAkuWLDmewzzlGIbJDytyeH/2NvLLvXRoGsldQ9Pp2SK2Qe+zdXk+U9/fQow/negIDyVaHT3CbPkoSvA+BYgLb9OgYxLiYBIiCSGEEEIIIU5b83LmoZuh+xeZmGwt3Urb2LY122ZszCOn1F3vNVNinLx+RXf+PXUTny7cQbknQMv4MB4YnsH5XUL3YzqeDMPkvzO28O7MrVT6AmiqQvM9s7nv2uv4fd4KqjYtoGzRBAB8uzeSev8X5E94lji7yZh1H/Dll1/WXGvChAncf//9jf4MJyvTNLn/i+VMWpeLe2/lWW6Zh7lbC3hmZCcubaCw09ANpv1vPYG9Uw8HeSz86vITOHjKmmlii58U8hp2zcFFrS9ukPEIURcJkYQQQgghhBCnLbtW9yppuqHjsNSe/vPLqj3kzfmGqo3ziL/wz5TM/B/xF/6lZr97zWTiIpvjtPXir+e046/ntDtuYz9cj0xYxQ/Lc2qafft8fubNnonW6WxSY134OvTH1aYP5ct+wZnWHaM8H0d4NHOnfkezGGfNdQKBAKtWraJHjx4n6lFOOvO3FjH5gAAJqieRefwGj32/mrM7NUHzmWgWBbvr6CvQ8raXo+v7q9ra+S143CYznIH9s9YUyHRbUYsyWBC+gYDmqzneaXEyosUIuiZ0PeoxCHE4JEQSQgghhBBCnLZGtRnFOyvfCTmlLdGVSPOI5rW2Bfw+fPnb6rxeq/hwWieePCuaZRdV8d2yXbWm1VWumYqz/RC2F1ahGAZf3taPh978mjnZq0ge9TBndWxCdEoBD99zCz179uTBBx8EYNq0aWRmZp6gJzk5fbU4u1aAdCDFhLFPzSa9orrHVELzCDKvbkt8syP/+dD9RtBaa918Vjr5LOzRqr+3TXUVDQUlbzBpYWls7jKbLaVbSHQlcl2H6ziv5Xl1NooXoqFIiCSEEEIIIYQ4bV3d/mp+3PIjOZU5+PTqyg1VUbFpNp4Z+Ay6YTJ53R5+X5OLVVPImf8TsV2Hkzd9fM01TD1Awc+vENPjXMb0T2XKlCl8++23APz888/85z//QVVVbrzxRs477zx+/PFHIiIaJ2iatamAgxeD8xftwpe7lfLlv2LmbuLb91/Fv2Amu+b/RGRkJF6vF6u1G6qqctZZZ3H11VeTlJTEhAkTuOKKKxpl3KeKMo+fOtpjEfAblLn96IHq1+rcbWV8+9JSxvy9N9FJriO6T0KLCIwQjbgsKDTT9zfZtto1bE4L19x0OZFxNxzRPYRoCBIiCSGEEEIIIU5bYdYwPr/gcz5e8zETNk/Ao3vo06QPt3W5jSRnC87/92x2FlVR6dMx9QDFk6fRYsyj5M+oDpFMQ6fgl1eI63ku140+n5jSxSQmJvLZZ59xyy23sHLlSu6++27OO+885s6dy0MPPdRoARKApsLBa73HZN5Y82v/d4+hqirZ2dlcdNFFALzzzjvcfPPNBAIBWrVqRWJiIqZpMm/ePP7zn/802thPBZltE5i7pTDkSnwm0CxQ3Z3ci4lXMYnwmyz6eRsjbup4RPexOSx0P6sFyyZuJ+DbX1WGAja7RodByeh+g6ato2nVLQHNotZ9MSGOIwmRhBBCCCGEEKe1MGsYd3S7gzu63VFr+0NfrWBbfgU+vboCpHLNVBztBuPXDcLsFlw2jT3Zq4lq14H7bxrMA5kdGTduMZ06dQIgJSWFkpISFEXhmmuuYezYsXzyySeN+myZbRPRv18Tcp/LpvHGd79zZrtEHn/88Vr7Zs2aFXT8smXLjssYT2Wjujfj1cmb8Pj1Wiv2WUxo4VexmPBVmJdsS/V0NM2E/utyGG52OOKpZb3PT8Nq11jyaxZuw41XcdMiJZkR13aqt7LJNE0wQTm4JO0QygrdeCsDRCU6sTkkGhCHR35ShBBCCCGEEH843oDODytyagIkqD0NzL97K2c6fqKwq4IzKYtXP7ycmaU9OKPiDBIdiTXnmKZJZWUl7733HmPGjGHcuHFcf/31jfYcSZEObhqQxri522saawM4LCqdkqMYkpHQaGM5HYXZLUy4cwD3fr6MtTll2CwqXr9BhkdloFvj4wgvbgXMvflNQIHZpo9nf1nHo+d3OKJ7KYpCygAH76tfMmfXXDRFxWaxUZp3Ezcl3oSq1K4+clf4mD9hCxsX5hLwG8Q0ddF3ZDqtutX/PS/eU8mkD9ZStLsSVVMwdJMOA5MZcGlrNE0qnET9JEQSQgghhBBCnPQ25Zbz5vQtLM4qItJp5fp+aYzukYKljpdewzDJyyrD79NJbB4RtHJWuScQdM6B08DyvriFDU02oJs6MSNjyPk4hyW/L2GlsZI7OteuaHr00Ud5+OGHGTZsGOeeey7nnHMOSUlJDfDUh+dv57QjPSGc16dsYleJmyinlWv7teCuM1ujHmF1igiWGutiwp0D2FXipqDcS4s4Fz+/sJSJgVJ8BwRI+/gV+Hjedu4+sw1RR7BiW6W/kit/vpJCdyG6qRMwwevz8vaKtyl0F/K3M/5Wc6zPHeCr5xZTWeLF2BuEFu+uYtIHaxh4WRs6DkoJeQ93hY9vXlyC11296pvur96+bk4Ofk+AYdcfWfAl/ngU06yrTdjJrVevXubixYtP9DCEEEIIIYT4w9N1g23LC9ixthCrXaNtnyYktohssOvP2VzAn8Ytxhcw0Pe+vzitGj1bxPDRjb2DgqTtawqZ8uFaAn4DRQFdN+k8JIX+o1vXTPkJ6Abdxk6iwhscJqF6ich4BhR/0C6LYuGytpfx9z5/b7DnE6eenE3FXPbOfHZpRsj9EXYLr1zejeEdDj9M/GTdJ7y65FU8uidon021MfmyycQ4YgBYNmkHC37Yiu4Pvr/VoXHzS4PQrMEB6+Jft7H4l+0hz9MsCtc+05+waPthj1mcnhRFWWKaZq9Q+6RWTQghhBBCCHHU3OU+Pvu/BUz9eB3r5uxm5bSdTHh5KVPGraMh/sFaN0zu+3wZbr9eEyABuP06S3cU8/Oq3bWOz99Rzm9vr8Jd4cfv1fF5dHS/weqZu1jw49aa4yyayo0D0nCEeNF2hu3BroWuIAmYAebsmnPMzyVObcltYmiSWncDda8nwKR3VvHbO6soya06rGtO3j45ZIAEYNWsLMldUvP1xoV7QgZB++zZVhpy+/bVRXWep1rUOs8TYh8JkYQQQgghhBBHbcq4dZQXevB79/bjMSHgM9i8JJeNC3OP+frLs4tr9fo5UJVP59MFO2ptW/xLFoEQL8kBn8GKKdkEDlhl675hbTi7YxPsFhWHtfq/FlWhR2oiaj1vSi7rkS3fLk5PVw1Iw2XTQu4zgWSPwtZl+Xz53CKKcioPeT2rWvfUN7/ux28cUBl3qHy2jv02R+jx1ozBXv9+ISREEkIIIYQQQhwxPWCwc30R2euKanqyHCjgM1g+aUeIM49MhVdHrWeVqzJP7Slnu7eW1vkCragKJXn7q0IsmsprV3Tn53sHkpEUQUA3sWoKK7a4qPKEbh/r0Bxc0uaSI38Qcdq5sGsy6Qnh2C21X6stJgyrsmJBwTTB79GZ882mQ15vZOuROC3OkPt8ho+x88ayprB6Jb7WvRJDTlcDwISkVqGnk3YYmIyljuBLAVIyYg45TvHHJiGSEEIIIYQQ4rCZpsmKKTv44C+z+PnNlSEDpH0qS7zHfL/OKVH4AqGn31g1hcFtaq9EZa+n0sLQTWzO4HBo/PwdbMwtJ2CYuP0GFV4T964xmIYV5YBXJofmID06nVFtRh3l04jTic2i8uVt/bgzM53ECDtWE5IDCqMqbXT21/45y15XhGnUXz50VouzSI9Kr7MiqcJfwZU/XUm/T/vxP+trVMbkc9CCbVhsKn0uboXFGvr3QcuuCTRtHYXFdsCJSvV5Z17XHs0iEYGon/yECCGEEEIIIQ7b6hm7mP/9VnwenYCv7p4sAFFJxz7tKzbMxiU9muEMUXVhs6jcMCCt1raOg1PqrNCISXIRGVe70qPKF+DzRTvwHDQFTq9qTVXWXUQaPUlwJpAWmca9Pe5l3LnjsGvSeFhUc9o07huewfxHhnF/mZOrKxykBYIDHNMkqEdYRbGXTYtzyVpZQMCnY9WsfHjOh7SPbV/n/UxMKvwVTNs5lS8yXsLesxxVU1BUiIhzkHl1O7qemVrn+aqqcMFdXRh4WRtik8NwRdlo2SWeix/sQeseiUf/QYg/jNA1mkIIIYQQQghxEMMwWfDj1kOGR1Bd2dDznBYNct+xIztiURW+WJyNzaIS0E2aRDn495XdaRpVOxTqPKQZm5fkUbiromacmkVBs6gMvzF4+fLsIjdqHbPlDG8TqnZeyezHRzTIc4jTl6oqJKVFkrutLOT+pLRI1L2rCOq6wbSP17N5SR6qZe8PnwmZV7Ulo08TYh2xh7yfgYFbdzMx8VM++/fn6AEDax3T1ILGqql0HJRCx0Eph/dwQhxAQiQhhBBCCCHEYSkvdNe7IhRUh0emAT3PTSOtc3yD3FdVFK5KiiPdVUl2hZdmzSI4/8J0ElKC+75oVpVRf+7BhgV7WDs7B79Xp3mnOLqemUp4TO0KohXZJTzw5XKq6gnFYsP2Ty3yeQJkrSzAWxUgqWUkiS1C9505lKyCSmZszEdR4My2iaTG7q/Y2pxXTk6Jh7S4MJrHSQPvU8mAS1rzw2vLgxq7W6wqAy5pXfP1nK83s2VpHnrAQA/sP27a+PXs2VaKVhGNxWolQO1+X6FsLN5IoaeABFfCIY8VoiEoDbHs5onQq1cvc/HixSd6GEIIIYQQQvxhVJZ6+d+jc9EDod8hrA6N/qNb07JrPGFRDTPlyzRMfn5zJbs2FtdUFilKdVh09p86kdbl6IKqbQWVnP/6LKp8oVd+A3BaNR47vz1X923BpsW5TP14HYqiYBgmigJxKeFceE9X7K7qoKnc42d5dgl2i0b35tFYtdrT6nTD5K9fr+CnlbtrnsM04bJeqdw2uCV3jF/K5vwKrJqKL2DQrXk0b17Vg7hwmT53qti1sZiZn2+kJLe6gXtMExeDxmSQ0ra6YbXPE+DDh2aHXEEQAAUqrCV83u0fBDTfoW9oQrgawdNDxjK8xfCGegzxB6coyhLTNHuF3CchkhBCCCGEEOJwffnsIvJ3lAdt1ywKXYc3p9/F6Q16v63L8pn00RoC3uCXbrvLwo0vDUTTjrzV61++WsGEpTupqy+406rSp1Uc713Xi5LdlXzzwpKgF3/VopCSEcOF93TlnxM38P7sbVhVFRNQVXh+dGfO65xcc/yb0zbz76mbcB90HadVRVMVqnw6B/ZetqgK6Qnh/Hb/IJR6VqgTJx9PZXUVkSOsdpPsgp3lfPvPpfg9dYeXANlR6/i97QcoKPi1Qzeotyl23hzxBn2a9jn6QQuxV30hkjTWFkIIIYQQQhy2ode1x2rXaq0KpVlVwmMc9Di7YXogHWjN7F0hAySo7tGUs7HkqK47e1NBnQGSpir87Zx2fHB9byyayrKJO9D14DEYger7v/brej6YnYXHb1DuDVDhDVDmDvDglytYlFUEVDdVfmfW1qAACcDtN6j01g6QAAKGSXZxFfO2Fh7VM4oTxxFmDQqQqrfbMOqo5DtQaml7rl/8DIO2XsagwLl1rti2j8/08uzUF/nhtWVM+mANOZtLghp5C9EQJEQSQgghhBBCHLb4ZuFc8fgZtO+fTHiMnagEJ73OS2PM33tjdzZ8y1WvO1DnPgUOWdFRF3sdK7gB2DSVwRkJqKpCUaWPCdvy+MXuY77dT6Vy0Iu5Fd6btx23P3gcHn+AWz7/jjWFa6jy6VR46n6Wul73vQGd5dklh/FE4lQQHmMnvnk4h1NYZjXsZBT05sy8y3i993+JcTep+wcF2ObfTPa6YjYuyuXH15cz64uNEiSJBichkhBCCCGEEOKIRMY7OfOadlz/3ACuebofvc5Nw3YcAiSA5u1j0ayh37j9Xp2E5uFAdY+jFdklVPnqDmoOdFmvZtgtoV+HEiPttIwPY87mAgY8P5VJ/ipW23XmOgK8E+lhs2X/PUoMA73OF3WVkrIobvztRrLKN2Kr4371sWoqUc76q1DEqWXEjR2xh1mx1BNk7qOokNA8gt4tejJmzV9QzbrPsRh7f05MCPgM1s3dzc51xQ01bCEAWZ1NCCGEEEIIcQL5AgYzNuZTWOGlQ3IkXZpF19rfaUgzVkzNRg9R6YMC4z5cyQTFTU6JB4uqEDBMru+fxl/Pbouq1l3ucUP/lny7dBe7it14A9VTzFQF7BaNly7tSqVP59aPF9eqMNL3Xu7HMD+3lWm4UIiLcaD76+5Zo6ge3AE3d75wB56JXvJKqoi94M9UrppCVP/LKZr0Fk3OvZOq3Zsp+P2/oChED74OR2onADx+A1+g/hXxxKklKsHJNWP7snbObravKsDq0CjL91CcW4l50Lda01S6DkvF7rTQunMyzUrbkR21DlOtHVyqhkbr/B61tgV8BiunZZPaIfZ4P5L4A5EQSQghhBBCCHFCzN1cwO3jl2CYJvtaDqUnhDHupjNqViRzRdq44O6ufPvS0qDzS0yDj/IL8B2UFY2bm4VuGDx6foc67x1ut/DD3QN5f9Y2vlqSTZVPp396HPcOa0NGUgRfLs6ub+YQ62wB+pt2Lr2jG5O+W8HirKKgnkYofqzRC/EX+1m1cBU7F+Zx9fsL2LCnHEv/ywFodv5ddG0WxcrJE1BH/g0c4eRPeLYmRAJ48bf1dEuNpnvzmHpGJE4ldpeV7iOa031Ec6C6EfeP/15OUU4lpgmqpoAJI27uSEyTMAAyr27H1lev5YOIp/HjxVCrA07NsODwh3NG9vlB96ksPYwV3oQ4AhIiCSGEEEIIIRpdTombmz9ejNtXu8Jo/Z5ybvpoEd/fPbBmW0WxF6tdw++tfexie4BQk9fcfp2P523nnmFtiHTUPRUs3G7hvuFtuG94m6B9u0s8VPlC91sKKGCxwjCbhXCrykuXduGi/8yh1FMF5r77+QEdf0lvKlblY3jnceF5Z9O+fXsuHXkdzz79f1x0//P8/Oyf+HTRfPp95MUXlYDfMDH9Hgy/F9VaHaR5AgZvzdjC29eGXCxJnAYcYVYue7g3edvLyNtejiPMSlrnOCw2rdYxtz9yPn2WtuZ/az9mBQuxWi0029aFjjmDcATCal1T0RSS0iIb+1HEaU56IgkhhBBCCCEa3fj520OueBYwTDbmVrA2p6xmm+43QlYFZVkNjDpmrNk0tdY1jlSrhDDCDniBP5AD6GqxYAWqVubTIi6MKX8eQovmG1HtOWApBBQwbZiBGAIlVgLlqQy673XCwsLIXTWb7s1jeG50ZyIdVhRFwRERAyXZ6FWl+PO3Y3gra+5nmrB+d/lRP4s4dSS2iKTT4BRa90ysFSDto6oKPXu149XrnmXadZOZeOVvjIq4ChfhQcdqmkLXYamNMWzxByIhkhBCCCGEEKLRLcsuwaeHnjCmKrAxd39oktI2BjPEsbZ65psZpkmY7egnXpzVManORtgaMAIrGCbm3uqo+HA7b445n9hW40GPpHrSR/X5qj0Me2oXPl+0g/SufXC73UHXfHLsM+T89jZFv7+BNbElmrN2BUnTaMdRP4s4vZ39p040TY/GYlWx2DWsDg2bU+Pc2zoTneQ60cMTpxkJkYQQQgghhBCNLiXaSZ19rxVIiLDXfBkR69hbmVH79aWrv7oaKJRwu4WOybWDmKysLJKSksjMzOSss85iz549/OMf/wAgMzOTzMxMunfvzsUXX4zdovHpLX2J1nR2/ucafFnLcQERwL9w4UJBsanYW0XVXL9jXEeuTH0R9aD12+0p7fHlZeELGHwzaTZKiPXdz+zTjWEPvk78OXdhiUxA0fYHYE6bxs0DW9V87Q3oFFf6MIKaMIk/IpvTwsUPdOeyR3oz5MoMzrqpIze9NIjmHeNO9NDEaUh6IgkhhBBCCCEa3bV9W/DTyhw8/uApbQ6rRt9WtV+Ah17XDleUjdUzdmGaJqZhcm6bRPaYFWzMK8e99zqaomCzqLxyebeQq7ONGDGC8ePH13z96KOPAjB9+nQAXnnlFSIiIgBo3zSSa+O28FGTdPooVgbjZCAWbCigKWixTuzp0bWuH2lJQFMKOXACni2pFarFRs4nD2NNbsK/H3mDsWPH1jrv/fffp+CLjynN89DkrDsIsH+1uMt6NmN4+0SKK3089eMafl21B4Awu8YdmencMqhVyGBK/LHEJocRmxx26AOFOAaKaZ6a6XWvXr3MxYsXn+hhCCGEEEIIIY7Sa5M38t8ZW/AHTHTTxG5RsWgK42/uU+dKZLrfoLLUiz3Mit1pwRvQ+XzhDj5ZsINyT4AzWsZy15mtyUiqDoJMwyR7XRE5m0soKNnNrQ+PIb11OqNHj2bUqFE89thjtUKlM888ky+//JKEhAR8Ph+XXXkNelgSTRzpXJbQjY5a9TQ2R5sYYi/LQHXVroVatqOYq99bELIpd5hd49lRnRnZLaXOz8Tt0/lxRQ6zNhcQ7bRyWa9mdGkWjcevc86rM9lV7MZ/QAWS06px5RmpPHFhxyP67IUQoi6KoiwxTTNkJ3+pRBJCCCGEEEKcEPcNz2BY+yQ+W7iD3aUeerSI5orezYkPt9d5jmZViYx31nxtt2hc378l1/dvGXSsp8LPhH8tpbzQg9+ro+PnbyPfp/e56fzjnQcYNmxYrePz8vJQFIWEhARM0+SyB55libUTVds2YG/WhDlJbrokWPjgmp6ExTiD7gfQLTWadk0iWL2rtFbPJ01ViHJaOadTk3o/E6dNY0zvVMb0rt0Q+YcVOeSVe2sFSFC9Et0nC3Zw55mt6/3chBCiIUhPJCGEEEIIIcQJ0yklin+M6swHN/Tm7jPbNGgQMunDNZTkVuHf2/xaw4oFO6um5NCvRyY//fRTreO///57Ro4cCcCEJTuYOmUSlrSeGKaJYYLbb7A8t5xnpm2q856KojDupjPIbJeI3aIS4bBgt6j0bB7Nt3cMwG4JveJbfUzT5LMFO0JWNwFYNIW5WwqP+LpCCHGkpBJJCCGEEEIIcdqpLPWya0MJxgHVQB5fFQ6bi4DPYNIv03jxzSdZu3Ztzf7vvvuON998E4DXflyMrzSf3C+fIFC8G/eWxdiatMbrCGfC0l08cUFHnCGWYAeIcFh559pe5Jd72VFURZMoBynRoSuXDmVXiZvr3l9AVkFlvcdp0hNJCNEIJEQSQgghhBBCnHbKizxoVgU9sH/blj2r+GnRh1g0K+3SupGUlFSzr6ysjJKSElq0aAFAgRlG0+tfAaBk9ifYm3VEc4QDoKoK+eVemsfVv3x6QoS91ipzR8owTK56dz47i9zo9bSyDegmA9vEH/V9hBDicEmIJIQQQgghhDjtRMQ60P21k5eOzfvQsXkfAFIyovF6vTid1RVCkZGRzJkzp+bYpCgHW/Orq3+iB15d6zq6YRIXbjuewwdg7pZCCsq96PUshuS0atwzrDVRTmudxwghREORnkhCCCGEEEKI005YlJ2UjGhULXial8Wm0unMZG655RYuueSSkOffNrgVTmvwdDWbpnBup6aE2Y//v8ev31OGXzfq3B9u13jpsi7cmdn6uI9FCCFAKpGEEEIIIYQQpyHDE6BPu2iKN5fgNkwCJqiagqIqdBvRnNbdmzBz5sw6zx/TK5XFWcX8sGIXvoCJCVhUaBLl4KmLOjTKMyRE2LFqKj49uKG2VVO4rl8aF3RJbpSxCCEESCWSEEIIIYQQ4jRjVPnJfX0Z/lm7ONOp0sul0dqh0s6lMea+bvS5sNUhr6EoCs9f0oUzWsahqdXVTAEDCit8XPHOfMo8/uP9GJzVoUmd+1RF4fLeqcd9DEIIcSAJkYQQQgghhBCnldJJ29FLvZh+A0VRSLKqdHRotLEoGLN2Bh2flZVFUlISmZmZnHXWWTXbP5m/ncVZxQQMk9L5XxEoL6DSp7Mlv4LHv1t93J/DadP47zU9cVo1bJbqVzdNBYdF5dHz29MiLuy4j0EIIQ4k09mEEEIIIYQQp5WqZXmEXM7MBM/mEgyfjmqr3e9oxIgRjB8/vta292Zvw+2vnkoW1feymu1+3eS31Xuo8gVw2Y7vK9XgjASm/mUIn8zfwZqcUprHurimbwvaJEUc1/sKIUQoEiIJIYQQQgghTiumP3Qz6hUE+Fb3U/LufLpEOhldqBNbGiA/kM/USVMYNGgQo0eP5oEHHuCxxx5j8bgJGKqFxFF/p2jKu0T1vxzVEUH+d89isdoZvexNHn7oz2RmZh7X52ka5eQvZ7c9rvcQQojDISGSEEIIIYQQ4rRibRqGf2dFrW1v4uFbfHgBNbuE8/HgwkoAiA2EMf3qcUR0SuJP3/ydHj16sHXrVgY++CYb9pTXuk7Fyt8J73IWCd2Goy/4V+M9lBBCnASkJ5IQQgghhBDitBJ1dhqKdf+rzmoCfIsPD2ACd2BnEFbsKGgo2C02XDYn+sYyRnQdwtZt22jdszeXD0jDZbOgKErNtQIle4hIbsOY3s3o1bNn4z+cEEKcQBIiCSGEEEIIIU4rjjYxRF/aBsVZPfHi+70VSAA2YCQ2nOwPhiq8VTW/nvzrVMZ6rbzy22SeripGaRGORQVNVbCoCs7YpqSSx9/Pa8+yZcsa8amEEOLEk+lsQgghhBBCiFNWQDf437ztfDB3G0WVPlonhHPf8DYM7ZqEPS2KPS8upEA32ddmOwmVgzsmLdy5gn/Oeh+bZqVL8y4szuiImdSUnLtvAKuNJo++SPqSCC4Z1Iqhdw/nkbtu4OIL52K32xv5aYUQ4sSSEEkIIYQQQghxSjIMk5vHLWbBtkI8e5tpr9hZyl2fLOPPZ2VwY9dmoCh0QWMFOj6gFBPrQdcZmt6Poen9ANjhUvgFCL/57pr9PqBQ9XPDkLakpKQwffp0AJ566qnj/YhCCHFSkelsQgghhBBCiFPSzE35LMoqqgmQ9nH7dV76fQPlGmhRdkZiq/nX8zJMlhEgUFObdMB5Knze/OCICdwTfyS/vIKUlJTj8RhCCHHKkBBJCCGEEEIIcUr6dukuqnx6yH0WVWHGpnxiRrYmzmrhFVzEoeACXsVDMSbeA4IkU4EVsRrfpNqCruU860KaP/d60PannnqKzMzMhnocIYQ46cl0NiGEEEIIIcQpyeMPHSABGCZ4/QaOjBjibuhIx4/WMMFfPa2tCJMqTBL2/pu6FmMnemRrxlXko5e7g65lVWB0Usxxew4hhDhVSCWSEEIIIYQQ4pQ0okMSLpsWcp9hmvRLjwPA2iQMDBMVhe5YGIaVFuw/z/DoONvF8mK75oRrKgde0aYoxFmtPJjW5Hg+ihBCnBIkRBJCCCGEEEKcki7smkyM0xo0vcKhKpzdIYnUWFf1hoABilL3hfTqnkrtw51M6d2WMU1jSbBaaGq3cmtqAlN6tyXeJpM4hBBC/iQUQgghhBBCnJJsBrwdcPEcARYSwAKYwCjTxn2Ks+Y4NdKGFmZBL/WFvI69VVTNr1s47bzSrvlxHrkQQpyaJEQSQgghhBBCnJIql+YS7Td4ARflmJRhEo+C3VQIrCkiUOzBEuNAURQiz21JyTebMA9ayU2xqkSOSDsxDyCEEKcYCZGEEEIIIYQQpyTPuiLwVYdCEShEsH/KmqKCd1splhgHAGHdEsGE0p+3Ynp1TNPEEuskZnRrbCnhJ2T8QghxqpEQSQghhBBCCHFKUu2hm2oDoCgo1totYMO6J+LqmoBe7AGLiiXKfpxHKIQQpxdprC2EEEIIIYQ4Jbl6JqHY6nilMUwcGbFBmxVVwRLnlABJCCGOgoRIQgghhBBCiFOSIyMGW8soOKjiSLGqRF3Yqv5KJSGEEEdMprMJIYQQQgghTkmKqhB/XUcqF+2mYk4ORqUfS5MwIoc1x5EefaKHJ4QQpx0JkYQQQgghhBCnLEVTCO+bTHjf5BM9FCGEOO3JdDYhhBBCCCGEEEIIcUgSIgkhhBBCCCGEEEKIQ5IQSQghhBBCCCGEEEIckoRIQgghhBBCCCGEEOKQJEQSQgghhBBCCCGEEIckIZIQQgghhBBCCCGEOCQJkYQQQgghhBBCCCHEIUmIJIQQQgghhBBCCCEOSUIkIYQQQgghhBBCCHFIEiIJIYQQQgghhBBCiEOSEEmI/2/vzuO1rOv8j7+/Z2MHRUQUN1ABN9zQ1DQzl7QsU8tMbW/KdvvZ3qRTTTUzlWXpmDY55mg2mjVqmqnlmmmh5g5qLrgg4MbOWa/fHxCJHLhAgXOU5/Px8ME513Xd1/25z7mbkZfX9b0BAACAWiISAAAAALVEJAAAAABqrdGIVEo5q5QyvZRydzf7PltKqUopw9bkTAAAAADUW9NXIp2d5KAXbyylbJLkgCRT1vA8AAAAAKyANRqRqqq6Psmz3ez6fpLPJ6nW5DwAAAAArJgeXxOplPLWJE9UVXXHChz74VLKxFLKxBkzZqyB6QAAAABIejgilVL6J/lKkhNX5Piqqs6sqmpCVVUT1l9//dU7HAAAAACL9fSVSFskGZXkjlLKI0k2TnJbKWVEj04FAAAAwBKaevLJq6q6K8nwv3+/KCRNqKrq6R4bCgAAAIClrNErkUop5yf5U5KxpZTHSykfXJPPDwAAAMBLs0avRKqq6l01+zdfQ6MAAAAAsBJ6ek0kAAAAAF4BRCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFrLjUillJGllH8ppfyklPKZUsqQbo7ZupTyh9U3IgAAAAA9rWlZO0opmyeZmGTdJDOSfDDJF0opx1RV9fsXHDo4yT6rc0gAAAAAetbyrkT61yTTk4yqqmpEkm2TTE5yeSnl6DUxHAAAAAC9w/Ii0t5Jvl5V1ZQkqarqviRvSPLfSc4ppXxsDcwHAAAAQC+wzNvZkgxL8sQLN1RV1ZnkuFLKc0l+VEoZlOTa1TceAAAAAL3B8iLSlCy8he2GF++oqupLpZQ5Sb6d5LeraTYAAAAAeonl3c52fZJjlrWzqqpvJjk+yUGreCYAAAAAepnlXYl0ZpKjSinrVVX1THcHVFX1w1LK9CRvXC3TAQAAANArLDMiVVV1a5Jb605QVdUvkvxiVQ4FAAAAQO+yvNvZAAAAACCJiAQAAADAChCRAAAAAKglIgEAAABQS0QCAAAAoNYyP50tSUopw5Icm2TLJM8n+WVVVX9d/WMBAAAA0JssMyKVUsYmuT7J+i/Y/IVSyturqrp4tU8GAAAAQK+xvNvZ/jXJgiSvTzIgyfZJ/pzk5NU/FgAAAAC9yfIi0muSnFhV1fVVVc2vquqeJB9JsnkpZf3lPA4AAACAV5nlRaSRSSa/aNvkJCXJRqttIgAAAAB6neVFpJKk80XbulbgcQAAAAC8yiz309mSfK2U8vQLvi+L/vxGKeXZF2yvqqp676odDQAAAIDeYnkRaUqSrbvZ/miSbV+0rVplEwEAAADQ6ywzIlVVtfkanAMAAACAXmyVrG1UStlsVZwHAAAAgN7pJUekUsqAUsr7SinXJPnbKpwJAAAAgF6mbmHtpZRS9k/y3iSHJemXZGqSf1vFcwEAAADQi6xQRCqlbJ3kPUmOTbJRko5Fjz0+yWlVVXWtrgEBAAAA6HnLvJ2tlDK0lPLxUsqfk9yd5AtJHkvysSTjkpQkdwhIAAAAAK9+y7sS6ckkzUmmJPlWknOqqnogSUopQ9bAbAAAAAD0EstbWLs5C682mpXk+SSz18RAAAAAAPQ+y4tImyX5apI+Sb6T5LFSyuWllKOS9F8TwwEAAADQOywzIlVV9XhVVd+sqmpcktcm+WmS3ZOcl+T+JFWSsWtkSgAAAAB61PKuRFqsqqo/VVV1XJIRSd6V5PoknUl+XEp5sJTy5dU4IwAAAAA9bIUi0t9VVdVWVdUFVVW9OcnGST6fZG6Sb6zI40spZ5VSppdS7n7Btu+UUiaVUu4spfy6lLLOyswEAAAAwOq3UhHphaqqml5V1feqqtohyS4r+LCzkxz0om1XJdmuqqrxWXib3Jde6kwAAAAArB4vOSK9UFVVf13B465P8uyLtl1ZVVXHom9vzsIrnAAAAADoRZqWtaOUMmUlzlNVVbXZKpjnA0n+d1k7SykfTvLhJNl0001XwdMBAAAAsCKWGZGy8IqgWUl+l2Te6h6klPKVJB1Z+Olv3aqq6swkZybJhAkTqtU9EwAAAAALLS8inZPksCxcw+hXSc6pquqa1TFEKeW9SQ5Jsl9VVeIQAAAAQC+zzDWRqqp6X5IRST6eZKMkV5VSHi2l/GspZcyqGqCUclCSLyR5a1VVq/2KJwAAAABW3nIX1q6qan5VVedWVfXGJJsmOS3JW5PcV0q5uZRyxMo8WSnl/CR/SjK2lPJ4KeWDSU5NMigLI9VfSyk/fkmvBAAAAIDVpqzs3WOllJYkJyb5YpJLqqo6fHUMVmfChAnVxIkTe+KpAQAAAF6VSim3VlU1obt9y1sT6cUn2T3Je5IcmaRfkguz8CoiAAAAAF7llhuRSimjkxy76J8tktyYhesXXVBV1ezVPx4AAAAAvcEyI1Ip5cYkeyR5MAs/qe3cqqoeWUNzAQAAANCLLO9KpD2TzEoyLcmBSQ4spSzr2Kqqqn1W8WwAAAAA9BLLi0jXJ1m5VbcBAAAAeFVaZkSqqur1a3AOAAAAAHqxhp4eAAAAAIDeb3kLa79hOY/rSDKtqqrJq34kAAAAAHqb5a2JdHUWron04tW0F6+TVEqZmuRLVVX9z2qYDQAAAIBeYnkRad/l7GtMslGStyc5u5TyXFVVv1mlkwEAAADQayxvYe3rVuDx55ZSLkjyuSQiEgAAAMCr1KpYWPv8JDuugvMAAAAA0Eutiog0O0nLKjgPAAAAAL3UqohIr0ny6Co4DwAAAAC91EuOSKWUplLK4Um+kOSCVTcSAAAAAL3NMhfWLqU8lqRaxu7GJMMWPf7qJP+66kcDAAAAoLdYZkRK8vssOyJ1JJme5Jqqqq5e5VMBAAAA0KssMyJVVfW+NTgHAAAAAL3YqlhYGwAAAIBXOREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAALAKVFXV0yMArFZNPT0AAADAK9nV907Lv/9uUh6cNid9mhty6I4j84WDxmXogJaeHg1glRKRAAAAXqILJj6Wky6+J/PbO5MkC9q78qtbH8+NDzydHxy1Y35z59TMmL0gu20+NEfssnEG9W3u4YkBXrrySr3kcsKECdXEiRN7egwAAGAt1dbRlZ2/cVXmtHYsta+xJKWUdFVVuqqkX0tj+jQ25MLj9shWGwzqgWkBVkwp5daqqiZ0t8+aSAAAAC/BHY8/v8x9nVXS0bUwICXJ/LbOzJzfng/+bKK1k4BXLBEJAADgJaiqpKzM8UmentOaOx+fubpGAlitRCQAAICXYNSw/mnr7FqpxzSWkmmzFqymiQBWLwtrAwAArISqqvL9q+7PGdc/lK6VvDWtvbMrWw4fuJomA1i9RCQAAICV8N9/fCRn3vBQWjtW7iqk5saS8Zusk9Hri0jAK5OIBAAAsII6u6r84Or7s6B9xQNSU0NJc2NDthw+MGccu8tqnA5g9RKRAAAAVtBDM+ZkxkP35Lnf/yRpaEjLiK0ydL9/qnlUlU/tt2WO22eLlLIyS3ED9C4W1gYAAKgxZ0F7DvnhDTng+9enafDwbPCub2XEMf+RznnPp23GI8t9bEdXcs6fHl0zgwKsRiISAADAclRVldf+2zW5+8lZSZLGgeumNLUkSUpDY1Ia8tT5X86MX38rU8/+dDpmPZ22aX/LjEu+kyR5+tLvZuqDd+eNb35LnnvuuSTJ8ccfn1tvvbVnXhDASyQiAQAALEN7Z1fedMr1mbmgfal9bdMfTte8WWlo7pOuBXMy7G1fzKBd35Z59/8xLRtskaZ1NsgzV5yaxoFD02fDMXnr247IRRddlK6urtxxxx3ZZRfrIwGvLCISAADAMvz0xoczedqcpbZ3zp+dZ6/6cdY7+NNJkuZhm6SUhjQNWi9dC+YmSQbteHDm3HllBk14azZet1/ed/Q7cumll+aGG27I6173ujX6OgBWBREJAABgGc7+4yPpqpbcVnV15unffDfr7vuBNA5cN0lS8sIFsxc+4Lnrzs7Q/T+cOX/8eb552PYZOHBgBg8enFNOOSXvete71tArAFh1RCQAAIBleHZe21Lb5k26MW1TH8hz1/53nvr5FzOkmpPB/Zrz7t03zb8dsX222XBwOh+6JX3W2SBvfMd786adR2X2325Lkhx11FF5+OGHM27cuDX9UgBetqaeHgAAAKC32nRo/zw4fcnb2QZss08GbLNPkmT9gS3581f2TymfWrR3+7zviEOWPMk/7b74y1JKjj766NU5MsBq40okAACAZfjkG7ZMv+bGbvdtum6/XP/5fVNK6Xb/i1100UX51re+lQ984AOrckSANaZUVVV/VC80YcKEauLEiT09BgAA8CpWVVVOvur+nHn9Q2koJV1VV6oqOXDbEfnBO3dMU6P/Lg+8upRSbq2qakJ3+9zOBgAAsAyllJxw4Ni8e4/N8of7pqe9q8reWw7L5sMG9PRoAGuciAQAAFBj+KC+OWq3TXt6DIAe5dpLAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtdZoRCqlnFVKmV5KufsF24aWUq4qpTyw6M911+RMAAAAANRb01cinZ3koBdt+2KS31dVtVWS3y/6HgAAAIBeZI1GpKqqrk/y7Is2H5rkZ4u+/lmSt63JmQAAAACo1xvWRNqgqqqpSbLoz+HLOrCU8uFSysRSysQZM2assQEBAAAA1na9ISKtsKqqzqyqakJVVRPWX3/9nh4HAAAAYK3RGyLStFLKhkmy6M/pPTwPAAAAAC/SGyLSJUneu+jr9ya5uAdnAQAAAKAbazQilVLOT/KnJGNLKY+XUj6Y5N+SHFBKeSDJAYu+BwAAAKAXaVqTT1ZV1buWsWu/NTkHAAAAACunN9zOBgAAAEAvJyIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACo1WsiUinlM6WUe0opd5dSzi+l9O3pmQAAAABYqFdEpFLKyCSfSjKhqqrtkjQmOapnpwIAAADg73pFRFqkKUm/UkpTkv5JnuzheQAAAABYpFdEpKqqnkjy3SRTkkxNMrOqqitffFwp5cOllImllIkzZsxY02MCAAAArLV6RUQqpayb5NAko5JslGRAKeXYFx9XVdWZVVVNqKpqwvrrr7+mxwQAAABYa/WKiJRk/yQPV1U1o6qq9iS/SrJnD88EAAAAwCK9JSJNSbJ7KaV/KaUk2S/JfT08EwAAAACL9IqIVFXVLUl+meS2JHdl4Vxn9uhQAAAAACzW1NMD/F1VVSclOamn5wAAAABgab3iSiQAAAAAejcRCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAIBaIhIAAAAAtUQkAAAAAGqJSAAAAADUaurpAXhlaevoymV3PZkLJj6e9o6uHLTdiBy56yYZ3Le5p0cDAAAAViMRiRV226PP5eM/vy3PzGlNW2eVJLnnyVk58/qHcskn9sqIIX17eEIAAABgdXE7G7Xmt3Xm3f91S95xxk2ZOnPB4oCUJPPbO/PMnNZ8+Vd39eCEAAAAwOrWayJSKWWdUsovSymTSin3lVL26OmZWOif/++u/PmRZ9PZ1f3+ziq54cGnM6e1Y80OBgAAAKwxvel2tlOSXFFV1dtLKS1J+vf0QCSzFrTnN3dOTWvHMgrSIk0NyewF7RnYpze9pQAAAIBVpVf8jb+UMjjJ65K8L0mqqmpL0taTM5FUVZWr752Wzq6q9tjmxoasP7DPGpgKAAAA6Am9IiIlGZ1kRpL/LqXskOTWJJ+uqmruCw8qpXw4yYeTZNNNN13jQ76azWntyB/um5bZCzqyz9j1M3KdfvnCRXfmkjueTMcKRKR37bZJmhp7zd2RAAAAwCpWqqo+EKz2IUqZkOTmJK+tquqWUsopSWZVVfXVZT1mwoQJ1cSJE9fYjK9WXV1VvnDRnbnw1seX2L7Juv3y9Jy2zG/vXKHzjN1gUH73mdetjhEBAACANaSUcmtVVRO629dbLh15PMnjVVXdsuj7XybZuQfnWSvMnNee/U6+dqmAlCSPPTd/hQNSkkx5dl4mPzV7VY4HAAAA9CK9IiJVVfVUksdKKWMXbdovyb09ONKrXmdXlbf/+KY8/PS8VXK+psaSJ2fOXyXnAgAAAHqf3rImUpJ8Msl5iz6Z7aEk7+/heV7Vrrt/eh5/btUEpCRp6+jK6GEDVtn5AAAAgN6l10Skqqr+mqTbe+5Y9W64/+nMb+9aJedqaijZcdN1stl6IhIAAAC8WvWaiMSa1a+lMQ0lqfvgteaGpErSsag3DWhpTFtnV5obG9K+6M/N1uuf04/ZZbXPDAAAAPQcEWkttdOm66SUkizn0/kaS9LU2Ji2jn8ssD2vvTN9mxrzgdeOyuB+Tdlxk3Wz6+brLjwXAAAA8KolIq2Fzrj+b/n+lfenq+YypM4qS31CW7Vo29X3TcsVx79udY4JAAAA9CK94tPZWHPufPz5/OCq+7Ogoys1d7It18NPz830WQtW2VwAAABA7yYirWV+dtMjae14+Qtql5JVch4AAADglUFEWss8+sy82sW0/65hOcscDe7bnJHr9Fs1QwEAAAC9noi0ltlmo8FpWk4d+vueAS2N2XL9genX3LjUMf2aG/LlN22dhuVVJgAAAOBVxcLaa5n3v3ZULpj4WDpedDlSQ0lGDRuQfccOT1tnV/bbeoPsveWw3PnEzHz5V3flwRlz0lAWXoH05TdtnbftNLKHXgEAAADQE0q1nI94780mTJhQTZw4safHeEX63d1Tc/z/3pGGkrR1dqW5sSEbDumb8/9p9wwf3Lfbx8yY3ZrWjs5sNKTfKrkCacoz8/L03NZsMWxghvRvftnnS5Jn57ZlfntnRgzum0ZXSQEAAMBKK6XcWlXVhO72uRJpLfTG7TbMX7ZaP7+7+6k8N68t22w0OHuMXi+lLDu8rD+ozyp57odmzMknz789f5s+J82NDWnr7MqhO26Ub7xtu/RpWvrWuRVx/7TZ+cJFd+buJ2amsaGkf0tTTjhgTI7ZfbNVMjMAAAAgIq21BvZpyhG7bLxGn/P5eW05/PSbMnN+e6oqWbDo090u+euTmdPamf88ZueVPufjz83L4f95U+a2dqRK0t5ZZUF7W/71svvS1tmV97921Cp+FQAAALB2srA2a8wv/vJYFrR35sV3UC7o6Mrv75uWx5+bt9LnPOO6hxae80Xb57d35uSr7k/bolAFAAAAvDwiEmvM9ffPyIL27qNOU0PJrY8+t/j7k08+OXvttVftOf8wafpSi4T/XVUtvNUNAAAAePlEJNaYwX2XvYB2KQtvsUuS1tbW3HHHHd0e9+STT2bnnXdO375909HRkebGJddxevbqM1N1dabt6Sl56Kz/l/cc9sZ89atfXXUvAgAAANZSIhJrzDt32yT9W7pfPLurWngL2u/ueSo/+s8z8t73vjdJctppp+U3v/lN7r///gwdOjTrrrtu9ttvv2yzzTZ58MEHM+1/v5rp538xz9/0i1RVV7pa5+a5P/w0037xlQwcsVn22HWXnHLKKTn11FPX5EsFAACAVx0RiTVmn63Wz+u2Wj/9m/8RkkpZeCtbW0dnvnjRnfl/50/M135yYe6pNkmS7LnnnrnyD9flO+dckhFbbJvf/PH2TJ48OQMHDsyJJ56YH333W2lpasrcv16RWX/+deY/dGv6bLxN1n/dMamm3J73v//92XXXXXPeeef11MsGAACAVwURiTWmoaHkP4/ZOf962HbZfuSQjFynX7bdcHAaG0o6upI5rZ2ZdttV6Tdun/zntX/L03Na88dn++esS6/LL397bZ7f4sB88vvn5y8PP5MqJZMnT84/f/HzaXvq/gwbtl42GLNjSkn2nLBjzvji+zJ39sy8853vzGtf+9o0NnZ/BRQAAACwYkQk1qiGhpLDd944l35yr/zxi2/Ic/Pa0/qCT1Brf/aJzL798jxy3lfy4ORJ+cZ3fpCulLTNn5PmjbfPc7dfmdZBI/PQ03MzduzY/PCHP8zbDj00jz9wT+49/RMZNrBP/v3tO+Tnp/1Htt5669x3332566670tra2oOvGgAAAF75mnp6ANZe7Z1deXLm/CW2rfv69y/++qlzP59+Ox6S1tkz09U6J6WpOaWhMU0bjctzT0zKCV/6aj7/mU9m0qRJedOb3pSLLrpo8WOrqkpTU1MaGhoyZMiQPProo2vsdQEAAMCrkYhEj2lqKOnT1JAF7V3d7h9x7H8kSdbZ+5jF2zZ417cz/cKT0jb94Xz6k5/IKd/7j/zoRz/KueeemyTZbPRW+e2UKiP3eWcmnfXv2XfffbP11lvntttuW/0vCAAA4FVu/vz5eeihh9LZ2dnTo/AyNTY2ZvTo0enXr98KP6ZUVbUaR1p9JkyYUE2cOLGnx6DGY8/Oyw9//0CuvHdakuTAbTbIp/bbKpsM7Z8k+fKv7sqFtz6W9s4l34fNjSWD+zbnmblt3Z63T1NDbvzCG7L+oD5JFl559MWL7srFdzyR9s6udHUl/Voas/3IIfnZB3ZL32ZrIgEAALxc99xzT4YNG5b1118/DQ1WyHml6urqyowZM/L0009n2223XWJfKeXWqqomdPc4v3FWm0eenps3//CG/Oq2xzNzfntmzm/Pr257PG/+4Q155Om5SZIvHDwumwztn34tS0ae9s4q89o60tRQljpvU0PJa0YNXRyQkuT8P0/JJXc8mQXtXensSqok89o689fHns+//ua+1fo6AQAA1hadnZ0C0qtAQ0ND1l9//ZW+osxvndXmG5fdmzmtHXnhRUadVTKntSPfuOzeJMmQfs25/FN751/esk0G92vKC5PR/PauVEkaSrJOV8kb5zbn4zP75iMz++bd/YZk3qx/XKV0xvUPZX770m/+1o6u/PK2x9La4VJLAACAVUFAenV4Kb9Hv3lWi66uKtdOnpGubu6W7KqS3983PT/6w/2Z39aZvs2N2XTogHR0Vnnx4Z1dVYZXjfng3H7Zvr0p/auS/p3Jg3+cml/8658zd+bCT117auaC5c7z9Oy23Pn487n10WezoJvYBAAAACyfhbVZLbqqKl3LW2+rSn589YO54u5pueije+aqe5/K/Lbu487r5zSm4UVrJnV1Vlkwpy23XPJQ3vDurbPB4L6Z8uy8dMx+JjMu+nranp6STf/fL1MaGtPVVeUtP7ohrR1dKaWkq6ry6f23yof3Hp1Slr5dDgAAgBWz49evzPPz2lfZ+dbp35y/nnjgKjvfi33pS1/Kt7/97drj9tlnn1x00UUZNmzYapvllciVSKwWTY0N2XajwcvcP7yz5B3Pt+Sx6XNz0W2PLzPmNFfJRh3dv02rruTBidOTJMftMzr9mhvT2G9Qhh/1zfTZaOzCxzeWdHZVeXZee+a2dWZOa0fmtXXmB1c9kHNvfvRlvkoAAIC126oMSKvqfB0dHcvcd8opp6zQOa677joBqRsiEqvNl9+0dfo2L/0Wa6qSfRc0Z52uku1nl/zvXx7LgdtssNTi2knSWPPhgZ2dXXny+flp76oybsNB6du3b1r6DUyS9GtuTNvf/pwnzvtinvr5FzPle4cnSab+zwl54vLT8pHD9svPf35+Dj/88IwfPz533HFHbrnllnzuc59Lkjz99NM5/PDDX+ZPAQAAgFVl8uTJGTVqVI444oiMGTMmBx10UGbPnp2RI0fmc5/7XHbZZZecffbZOfPMMzNmzJhstdVW+djHPpYk+fjHP57W1taMGzcuhx56aJLk9NNPz/jx4zNu3LgcffTRiwPUyJEjM3Xq1EyePDmjR4/OUUcdlS233DJ77bVX5s6d22Ovv6eJSKw2e24xLD96+44Z0lXSWC0MQkM6S942tyWbdjSmOSXj2xozv60zu40amgmbrbtUdGprSOaUZZek1iFN2fe71+bbl92Xe5+clc6urjQ3NqRk4XpKZfNdM+Lof8uArV+XIXu8M0nSNX92huz5zmx01Ndy/GeOz89//vP8+Mc/zk9/+tO85jWvya233pqqqnLRRRfl7W9/++r8EQEAALCSHnnkkRx33HG5//77M3jw4Hz3u99NkvTt2ze33npr9t9//5x00km59tprc++99+a2227Lueeem9NOOy19+vTJpEmTcvHFF+f222/PhRdemL/85S+ZNGlSGhsbc8YZZyz1fFOmTMmnP/3pPPjggxk8eHDOOeecNf2Sew0RiSRJR2dX7n1yVh6YNjvV8tYyWkmvGblOPrqgXz40q08+NKtP/ml2n4zq+McVRy1VyX5bD08pJf/13l3zkddtkXX6NS/e35Xk2n7taV9qye0kjSUXd85La0dXFnR0pbWjKx1dyYKOhZ/q1tbZlSRpfWJSFky5K4P3OHLhw/oPSeOAdVMGDM3o0Vukb9++2WijjfLcc88lSfbee+/88Y9/zKWXXrq4TgMAANA7jBgxIgcccECS5N3vfnduuummxV8nyU033ZQ99tgjG220UZqbm3PUUUfluuuuW+o8V1xxRe6+++7ssMMOGTduXG688cY89NBDSx03cuTI7LHHHkmSnXbaKQ8//PDqemm9noW112IL2jtzwV8ey39e+2Cmz25NQylpbiwZ0q8l3z58++w7bvgSxz/27Lyc86dHcs+Ts7L5egPy7j02y9YbLnvdoyQZuG6fNDU1ZnBb92FqRkuV4187KknS0tSQzxwwJp85YEyO+M+bcuuUhVHn/pauNFTtecOC5jRXSWNDyTrr9s2lzQvy8IJl3+uaJJ1zn8vzN5yT9Q/75xesu1RSSrLzpuvmicZ/dNS/x7NjjjkmX/rSlzJkyJAMGDBguecHAABgzXrxmrp//37QoEFJkq6urhU6T1dXV4488siceuqpyz2upaVl8ddNTU1ZsGD5nw7+auZKpLXUgvbOvOPHf8o3fnNvnprVmq4q6eiqMr+9K0/NWpCPnndrJj7ybJJk9oL2XPCXKTng5Oty9k2P5Ka/PZP/nfhYDvvPP+a//7j8AtvQ2JAJb9o8TS1Lv9U6S3LYsdtk+OC+S2xv7ejM7Y89v8S2SX0685+DF+ScQa356YAFOfQru+S2tqX/h1t1dmTaL76S9ukPZ/oFX83s23+bjllPZ/pFX89TP/9ikqSUZHDf5vzbEeO7nXnMmDGZMmVKjjzyyOW+NgAAANa8qVOn5ve//32S5Lzzzsuee+65xP699947N998c6ZOnZqOjo5ccMEF2XfffZMsjECtra1JkoMPPjiXXnppnnjiiSTJ9OnTc//996/BV/LK40qktdS5Nz+a+6fNSntX91cILWjvyjcvuy/r9m/JDQ/OSHvnksd1dlXp7Kryb7+dlDeMG57N1lv2FTs77LdJ2hZ05vbfPZrSWNLVVaWxqSH7HjsuW+48fKnjF14QtOTzdcyclqnnnJCn1ts4pbE5nxrVN+XhW5LNdlviuNLYlA2O+maS5Nmrfpx19jo66+x1dFoaG7LhkL5paCj5yBm/zAf2GpUNBvfNjTfemCTZfPPNc+655y4+z3rrrZeDDz54ma8JAACAZJ3+zav0E9rW6d9ce8zo0aNz1lln5aMf/WhGjRqVE044IT/5yU8W799ss81y0kknZZ999klVVdl///1z9NFHJ0mOPfbYbL311tl+++1z8cUX58QTT8x+++2Xrq6uNDc350c/+lHGjBmzyl7Pq01ZlevfrEkTJkyoJk6c2NNjvGLcN3VWTv3Dg5n46LMZ1Lcpz81tzzNz22of11iSzpq3SL/mhnxwr9H56Ou3yIA+y+6SbQs6MuPR2WloasgGmw9KQ+OyL4Q79LQbc8djMxd/3zFzWp6//n8y7C2fTZJUM6dlvft+nXl7fywL2usvVRw2sCV//vL+aWgotce++c1vzutf//rFn9IGAADAQnfeeWfGj+/+ro41YfLkyTnkkEPywAMP9NgMrybd/T5LKbdWVTWhu+NdibQWuP7+GfnI/0xMa0dXuqpk2qzWFX5sXUBKkvntXfnJDQ/lqvum5eKPvzZ9mxu7Pa6lb1NGjl13iW1zWjty/i1TctFtj6ejs8obt9sg73/tqJx4yLY54vSbljh2wZQ789R5n0//MXsm82bmuXtuSr+pT2TIIZ/PjFt/l/kP3pLS2Jxhbz4+jYOH56lzP58Rx/5H+jY35D/ePn6FAlKSXHbZZSt0HAAAAKxNRKRe7pZbbslnPvOZNDY2ZsKECfnK17+dk6+6Pw8/PTfbbjQkx71+iwwb2CdJctttt2WXXXZJe3t7mpqacsopp+S8n/88906dnUH7fCB9Rm692uZs7ejKlGfm5aLbHs/Ru26arvkdaejbmLKcq41mzmvPoafdmKdmLVh8NdGUG+bl57dMySHjN1ri2MYBQ7PRP52Z0tScGRd9I0Nf994Mf+7Z/Pnu3+W3EyflE1f/MK//8k+SqZPywJ8uS/99j8uMhuR1Ww3LZw4Yk502Xbe7EQAAAHgFGTt2rKuQepCI1Mttttlm+cMf/pC+ffvmNQccmvHH/zQt62+eJPnTQ8/mp398OCe/Y3wO23mTnHbaadl5550XP/bss8/OT359dd71g8vzxOX/meGH//NqnbWtvTNzr56SJ3/7RKr2rqShZMBOwzPkzaPT0Gfpq5NO+f39efL5+Zn37FOZes4JaV603tEG7/xG/ufmR5c4tjQ1p2ThvbH9ttgtrX/7S9qSfOR/bs3Nt9ycmX03zD1PzExr69A889BD2fGAhmy70ZCc88HXrNbXDAAAAGsLEamXmtPakWfmtGb40PXTt6Ux906dmXuempPBmzXkqfO/lIaW/umc+3yGvfVz+X8XJuu1z8gmm2ySv/3tb4vPsenmo/OtS+7M3Nmz09hvcLfP09RQ0tRY0tlZLXOR7RX1lfTNPnOSqupcuKGzytzbpqXt8TkZ/okdU150O9lFtz2RtkX3y/XbfMfF6x11p6t1Xhr69E+StD5xbwaNf2MemfFI5kyekc6moWmd/nDaOqu0PvVAypANMvX5BXl2+pyX9XoAAACAfxCRepmZ89vzz7++K7+7d1qaGhZ+ktlhO4/M7X+9I13zZqWhuU865zyXDT74r2l76sHMuuWXWe+Nn8j/O/GbueK8M3LttdcmSdo6unJfw2Z5+KvvTNXVmeHv+NpSz9XcWPK+PTbPYTtvnHltHXn46bn52qX3Zk5rxzLna2lqSEdHV168lPUmacg+aU6fF3eojiodT8/LgsnPpt/W6y3e3NlVZe4LnueF6x31H7NHnr78lDT2HZiOmdOy/uFfTfuMh/P0b05OVXWmadD6mffoX9P23BN58r8/mfWPODELHr0jU3/2mXS1zcugnd+SzqpKa3tn7nlyZrbdaMjK/hoAAACAF1n2gjWscZ1dVd55xp9yxT1Ppa2jK/PaOrOgoysX/nFSrjv737PewZ9OkrSsv3lKQ2Naho9Ox3NT0/7sE5lTtWTYsGGLz/WrWx7IYzdflo0+fGZGvPvkPHfd2Us9X5+mxnxg71HZZqPBmbD50IzfeEjmty07IA0b2JIz371LPrnfVun3osWzd033i2knSdXWlfn3PLP4+xsemJHdvnl1uhZ9MuDf1zva4F3fzoJH/pqu1nnpWjAnw972xQza9W2Zd/8f09BvcPqP2SObHn9BBmy9T0pDQzY46ptpHrZpOp+fmr6b7ZAhex2dvhtvm/5b7Z6qoz0NzX3y6DPzVuhnDwAAACyfK5F6yG/vmpqTr7o/Dz09NwP7NOVdu22ScSMG5YHpc9L5gtvKqq7OPPF//5F19/1AGgeum46Z09L+9KOpujrTNv2hNK2zYdpnPJr5T9yfgw46KHfeeWeOO+64NL32/akaW1Iam9PQp3+q9iU/kW2DwX1y9vt3y4ZD+i3e9vtJ07OsG9paGhvy64+9NpsM7Z99xqyfWQvac85Nj6ZzUQjqSpb52CSLb2W7f9rsfPicWzO/vfMf+1643tGWu2X+3/6S5mGbpJSGNA1aLwuem5qO559KywZbLJxlxBZpfXJSGvsOTNf82Wl9YlIGv+aILJhyZzpmP52mwcMy49ffypBt98nIdfqmvbMrzctZ4BsAAICXZq9f7JWZrTNX2fmG9BmSG4+6cZWdb1kuv/zytLS0ZP/990+SfOc730n//v3z8Y9/fInjJk+enEMOOcRi3ouISD3gzOv/lu9f9cDikDJzfnv++4+PpLOrK50vuk9s3qQb0zb1gTx3zX+nSrLuPu9NQ/8hmfGrf03nvFkZ9pbPpmXdDTPxf07MegP75PWvf31+/OMf58v/d0/6jdo5U//nhKTqypA937X4nH2bG3LCAWOz9Yb/WCepo7MrP772b1nWskibD+ufTYYuXJPonidn5Rd/fmxxQEqSP6Ujn1zG6+1oLPljc1d2m7Ugp1/7t7R1LPkiX7jeUfuT92bQzm9J+9NTXnBElaZ1RmTOnVflsJ02ys9uvnDxnqZBw7Lg0TsyePd3ZPatl6ah36AkyQaHfzmD+jblnWfcnNaOrmy4Tt986g1b5Z27bpJSllybCQAAgJdmVQak1XG+Zfn973+fgQMHLo5In/vc59bI877SiUhr2OwF7Tn5yvuz4EUhpbXjxasMLTRgm30yYJt90thQss2Gg3L7vQ+kadCwJRah/tbh22e9gX2SZPGaSG/bcWR+s8+7Mm+PI5c6Z1Ulb9h6+BLbps1uTduLC9YLPP7c/MVff/Oy+5a4kihJpqXKr9OWQ9OSfvlHpFmQKnd2duTLtzyUrlseSt+mhiXiU5K0Pn5Pnr/h3DQ2t+QtB+ybLV+/Q0697Tfp39yQzsaS1iR77P6a9Kv+mjvP/GyqmU3JgIXrK/UZuXU6581MKSWlpW/6bDQuLQ1JZ0rmtXakfdFLevL5Bfnapffmiefn54QDxy7zdQIAANB7TZ48OQcddFB23nnn3HXXXRk9enQuvPDC3HHHHfnMZz6TefPmZejQoTn33HOz2WabZbfddsv222+f2267LXPmzMl//dd/ZcSIEfnZz36WhoaG/O///m9OOeWUXHnllRk4cGC+9rWv5cYbb8wHP/jB9OvXL7vvvvvi5+7o6MgnPvGJ3HjjjWlra8uHP/zhfPazy/6AqFcjEWkN++ODz6SpsSTLXnqoW11VldOP3SW33jMon779goweNiDbbDQ4X37T1tlonX5LHb/HFutljy3Wy00PPp357f+IQ/2aG/Ox12+RYYui098taO/IgvZlR6SBfRa+Vaqqyi0PP9PtMaemNQ+lK+9JS0akITNT5cK05fy0pXPR623vJpb122LX9Nti1zQ1lNxWknsf6sjGh38+Jck/HfmWvGb0+7LZev0z9qM/SyklH/jWf+dXl1+1cK7xB2Tg+AOSJOu/5XMpSQ7fZZNc/NcnMr99yVg1v70zZ17/UD7w2lFZd0DLMl8rAAAAvdcjjzySM888MwcccECOPPLIfOc738mll16ayy67LBtttFF++tOf5nOf+1wuuOCCJMncuXNz++2354orrsiHPvShPPDAA3nve9+7OBolyZVXXrn4/B/4wAdyyimn5OCDD85xxx23ePspp5ySwYMH5+677878+fOz66675pBDDsm4cePW7A+gB4lIa1hXVS137aBlGdSnKRuv2z8b77VjDr35itrjSyk549hdcu7Nj+anf3w4z85py2bDBuRTb9gyB2234VLHn3zlsu/vbCzJMa/ZdIlzp+r+VVye9lye9mWeq0qyrId3di382bR3/qOwnfXHR/KLvzyWJFm3f0t+cNSOGT6o7zLPv+E6fTNt1oIlwtkLNTc25MYHn85bdthomecAAACg9xoxYkQOOGDhxQTvfve78+1vfzsPPPBA3vCGNyRJurq6Mnz4P+6+OeaYY5IkBx10UObMmZOnn356med+5plnMnv27Bx88MFJkve///35/e9/nyS56qqrMmnSpFxyySVJktmzZ+e+++4TkVh9dh+9Xto7Vz4jLXjR7WMroqmxIe977ai877Wjlntce2dXrrz3qWXur5J8+HULF7UupeR1Ww3LtZNndBvDSkmaGkqqKulYxgJLDSXp09yYeW0LX1NLY0lb57Lj2t+Pm9c2P+/56Z+zweARWWevY7o99pk5bVmw3sr/rAAAAHhlePE6twMHDsyWW26Zv/71ryt0/PLWya2qapn7q6rKySefnMMPP3zlBn4V8ZFVa9jQAS15/56bp19z4xLbmxqWv9hz1zKu/FkVFrR3LuvCokXPnfRr+ce8X3nz1unfpzEv/t9Vc2PJcftskUs+uVcalvN6Rq03IN8+fPvsNmpott5wUA7dcWT6tazYW7GtsytTZy5Y5v7mxobsteWw9G9p7HZ/e2dX9tpy2Ao9FwAAAL3P1KlTF18ddN5552XXXXfNs88+u3hba2trbr311sXHn3/++UkW3rI2aNCgrLfeehk0aFBmzZq11LmHDRuWgQMHLr697Wc/+9nifQceeGBOP/30tLYu/PTzu+66q9tzvJqJSD3giwePy+feODZDB7SkpbGkpbEhB28/IiO7Wdvo7yZsPnS1zTOwT1PWG7jsNYLGbDBwie+3HD4oF3/8tdl/6w3S3FjS1FDy+jHr55JP7JUvHDQuW48YnNePWT/NjUuHpP4tjfnw67bIoTuOzAUf2SO//fTrcsKBY9O17OWYltC5rI+PW6Sjqyvv2m3TjBjcJy9+9pLknbtuYj0kAACAVWRInyFr/HyjR4/OWWedlTFjxuS5557LF7/4xfzv//5vvvCFL2Ts2LHZdtttc9111y0+ft11181OO+2Uj3/84/nJT36SJDniiCNy2WWXZdy4cfnd7363xPnPOuusfPKTn8yOO+6Yfv3+8ff0448/PmPHjs3222+frbbaKh/60IfS3r7s5VxejUq1Gq9wWZ0mTJhQTZw4safHeFm6uqrMWtCefi2N6dPUmN/d81Q+/Yvbu13g+m07bpR/eeu2Waf/6gkgv/jzlHzt0nuX+tS1fs0NOeWonXLgtiNW6nzPzW3LEafflGmzF2Rua+fCW9iaGnPgthvk+0fuuNSVSm899cbc9fjMFVovapN1++XpOW1Lzdq3uSFH7rJJTnrrtnnDd6/NlGfnLXG+UpINB/fNdZ/fN82N+ikAAMDKuvPOOzN+/Pgee/7JkyfnkEMOyQMPLHtd3xfabbfd8r3vfS977733ap7slam732cp5daqqiZ0d7y/SfeghoaSdfq3pE/Twluv3rjtiHzvHTtk3f7NSx17+V1T8+Yf3piZ81ZP5Xznrpvkk/ttmX7NjRnUpykD+zSlf0tjvvLmbVY6ICXJugNa8rvPvC7fefsOOXLCxnn37pvl5//0mvzgnUsHpCQ5+cgdMqhvU1qalv+W7NfcmA/uNSr/+rbt0q+5MQP7NGVAS2P6NDXkgG02yD8fsk2uv39Gnp7TulSQqqpk5oL2XHXvtJV+PQAAALC2cyVSL1NVVfb97rV55Jl5S+1raWrIh/cenc++cexqe/65rR2Z+OhzaSwlEzZfN31ftHbT8hYZe7mmz16Qs//4SK6ZPD1dXVUefmZeurqqxQt092tuyNgRg/K/H9kjfZoaM6+tIzc88HQWtHdml83Wzcbr9k+SfP+qyTnl9w8u83k+uNeofPWQbVbLawAAAHg16+krkVi1VvZKJJ/O1ss8/tz8PDWr+4Wj2zq6ctFtj6/WiDSgT1P2GbP+EtsWtHfmB1c/kJ/f8mhmLejIRuv0zSf23TLv2m3TJYLSySefnF/96le58cYblzrv2WefnbPPPjtJcscdd+Saa67J2G22y5vefEha58/NDdddm+GD+ubj+26ZoQNa8uvbn8jG6/TLwL5NeXZuWwb3bcrRr9k075iwyeIrt/q3NOWN3VwlNaRfS/o0NaS1Y+nbApsbS7dXegEAAADLJyL1Mq0dnWlYzpU+bd2EkdWps6vK0T+5Ofc8OWtxlHny+QX5xm/uy8NPz81X3rzwip7W1tbccccdyzzP+973vrzvfe9LR0dHdpkwIZc81pxzzv7fzHhyfjY47Mv5p3Nuy1fevHU+8LO/ZNqsBYvXherT1JBBfZty4XF7ZMMhy154/IUO2WHD/PsVk7rd11BK3rbTyJX5EQAAAACxJlKvs/l6A9KyjEWfGxvKUlcJrW7XTJqeSU/NXuqqnvntnTnrj4/khAv+mnNueiSnnn5G3vve9yZJbr/99hx99NG59dFns9lr3piR7/tBxvzzb/PJn9+Wiy67MhkxLj//85Q8ddV/Zc4jd2bqpT/I9Q/MyFtPvTFPPj9/iYXFWzu68uzctpx08T0rPPPwQX3zlTdvnb7NDfn78kulLFxP6f8dOGbxbW8AAADAinMlUi/T1NiQz71xbP71svuW+vSxPk0N+cQbtlyj81x655OZ19bZ7b7OrioX3fZELvvr45l68S9z9WXHJkl22mmnNK+zQfY77NhUzQOz7oit0tbRld/cOTXn/f6M9N1qj7S0d2Wd1707SbLewZ9KR1eVjmU8T1eVXH3ftMxv60i/lhV7y75nj80zfuN18l83PJQHp8/JqGED8qG9R2WXzYa+hJ8CAAAAICL1QsfsvlkaSvLdK+/PvLbOdHZV2WqDgfm3w8dn9PoD1+gsK7Lu+tN/vSp9xr4u7//vv2RwVaWqqkweuntm/vWHGfnRsxYf11VVmTPl7gza90MrPUdXlRx37m056327prGbT3frzo6brJNTj955pZ8LAACAFfPTE67Pgrkdq+x8fQc05YPfe91yj+nfv3/mzfvHh1H96Ec/ysSJE/Ozn/1spZ9v8uTJufbaa/ORj3xkpR+7NhKReql3vWazHLnrpnny+fnp09yQ4YP6rvEZFq5N1JmSZHktqf3ZJ9I27aHMu/OKZPqD+dZ3vp97/+/SDN3/w3n+hvMy7E2fTpK0Tb0/LRtskdLQuJyzLdufH34m5//50Ry7++Yv6fEAAACsWqsyIK2O89X529/+ll/84hci0gqyJlIv1thQssnQ/j0SkB6cPjv7n3xdrr5v2nIDUpKs+/r3Z4N3fiPD3/G1bLDZFhkxcmSahwzPoJ0PSUNL38x/+PYkybwH/pT+Y/Z8yTPNb+/KT2985CU/HgAAgFe3888/P+PHj8/WW2+dPffcM48//niS5IQTTshhhx2W3XffPZtttllOPvnkJMmXvvSlTJw4MePGjcvXv/71dHR05Ljjjst2222XMWPG5Lvf/W6S5PLLL89uu+2Wgw46KKNGjcqhhx6arq41+8FXvYErkejWp3/x18xesHIFuF9LY770k4sybsTgbPXosDw1a0GG7v+PmrvuPu9b4vimIRtk2Fs+u1LP8cyc1pU6HgAAgFeX1tbWjBs3bvH3M2fOzIEHHpgk2X///fPOd74zDQ0N+f73v5+vf/3rOfPMM5Mk9957b2677bbMmjUrO+20Uw4//PB8+9vfzne+851cc801SZLvfe97GTx4cO6+++7Mnz8/u+66aw455JAkyX333Zc77rgjm222WXbZZZdcffXVi593bSEiraU6Orty5b3T8uvbnkh7Z1fetP2GeeuOG6Vvc2NmzG7NvU/OWulztrZ35Ru/uS8tTQ0Lb4MrK7am0srYYg2vCQUAAEDv0qdPn0yaNGnx939fEylJHn744Rx22GGZPn162tvbs/HGGy8+7uCDD86AAQMyYMCA7LnnnrnxxhszdOiSH7501VVXZdKkSbnkkkuSJLNnz859992XPn36ZPz48Rk9enSSZLvttsvf/va31f1Sex0RaS20oL0z7zrz5kyeNnvxJ6/9+ZFnc+o1D+b/Pv7a3PPkzOXewtbYUNJ67zV57o6r0tnZmQ3e+tk8e8PP0/7M4xl26OfTOmjYouMWHtvRVaWrSmb9+deZd/+fMuLY/6idsbt1mPo1N+ZT+2310l40AAAAr3qf+MQncvzxx+foo4/O5Zdfnn/5l39ZvK+UJT+kqaFh6RV+qqrKySefnMMPP3yJ7ZdffnlaWloWf9/Y2JiOjjW7flNvYE2ktdBp1zyYe6fOWhyQkmReW2emzpyfky65O+0193U2zHs2+637TE74wbnZ+Nh/Txk4LO3PPp4Rx/5HmhYFpCTp7EqaGxty+rG75P8+smvaZjy8QvOVJBsM6Zs+TQ3p19yQ/i2N6dPUkBMOHJN9xw1/Sa8ZAACAV7/Zs2dn0003TZKcddZZS+z77W9/m3nz5mXatGn505/+lD333DODBw/OnDlzFh9z4IEH5vTTT09r68KlVO66667MmrXyd+q8WrkSaS103i1T0tqxdChq76zyu7un5RP7bpnGhoURqDttj96euX1a873jj03j0E1SWvqmbfojmf7Lr2X9I07Ms1f+Z9qffSINTS1Z7y2fzZ2Pz0z/B6/OqScen09+9ktpbEgaSklH58JrjV58xVGf5ob813smZECfptz80DPp09SQN4wbnnX6tyw9DAAAAD2m74CmVfqJan0HvLxM8dWvfjVHHXVURowYkQkTJmTKlCmL9+20007Zb7/98uSTT+Zzn/tcNt9882y44YZpamrK2LFjc8wxx+QrX/lKHn744Wy//fapqipDhw7N5Zdf/nJf1qtGqVb1ojVryIQJE6q/3/PIytnyy5eno6v733ufpobc9MU35J/OmZjbpzzf7W1tM/90QdpnPJqNj/h8pl51VvpsODaz/vJ/GXHsf2Teg7ekfcajGbLHkZn/t4npePrhfOOfv5hrzzgxF1xwQfbaa6+cccFleWrmgmw4pG++edl9uXXKcykpaWgo6eqq8h9v3z5v2WHk6v0hAAAAsNLuvPPOjB8/vqfHWGknnHBCBg4cmK997Ws9PUqv0t3vs5Rya1VVE7o73pVIa6FR6w/IA9PmdLuvX3Nj1unfkh+/e5ccdebNeeTpuXlxb2roMyB9Nt0uC9qr9N10fNqeenDxvvZnHsvc+67P/IdvS7q60n+TrTPv3mty9NFHLz5m242GZNuNhiRJzvun3TP5qdm5bcpzGdS3KW8YNzz9W7wtAQAAoLfxt/W10Gf2H5MTLrgj89s7l9jer7kxH9lndBobSoYP6psrPrV3xp14xVKP7zNy68y+43dJkrbpD6dpnQ0W72seunEGbveGDN7t8PRrbsyH99o0T/3hZ7nqN/+XH//4x7nnnnvyox/9KJ/85CcXP2bsiEEZO2LQanq1AAAArO2+973v9fQIrwoi0lroTdtvmMeenZeTr7o/TY0LV6fv6Kzyzl03yUdet0WSZF5bR4464+alrkJKkpYNRqehqSVP/fyLaew3OIN3PTSzb1t4j2i/LV+T564+I/P/78QMXad/ttj1c/nMv//74sfutddeSwQkAAAA4JXBmkhrsZnz23PjA0+no6sre2yxXoYP6rt43zd+c2/+5+ZH09bNAtx1+jY15OJP7OXqIgAAgFeZV+qaSHTPmkissCH9mvPm8Rsutb2qqvziz1NeUkBKkuamhjw7t+3ljgcAAAD0Ig09PQC9T0dXlXltnfUHLkNbR1fGbDBwFU4EAAAA9DRXIrGU5saGDB/cJ9Nmta70Y/s0NeRN22+Y9Qb2WQ2TAQAA0Js88fU/pZrXscrOV/o3ZeSJe6yy83XnS1/6Ur797W/XHrfPPvvkoosuyrBhw1bovJdffnnOOuus/PKXv3y5Iy5ldc28slyJRLc+se+W6dfcuNT2xoaSpoakb3NDmhtLWhpLBvRpzMA+TenT1JD9t94g3z58+x6YGAAAgDVtVQakVXm+jo5ln+eUU05ZoXNcd911qy3GdOeVMLOIRLeO3X2zHP2aTdPS1JD+LY3p39KYPk0Nec8em+Wuf3ljrv3svrn7a2/MPV8/KGccOyHfefv4XPPZ1+e0Y3ZO327iEwAAALxckydPzqhRo3LEEUdkzJgxOeiggzJ79uwkyciRI/O5z30uu+yyS84+++yceeaZGTNmTLbaaqt87GMfS5J8/OMfT2tra8aNG5dDDz00SXL66adn/PjxGTduXI4++ujFMWfkyJGZOnVqJk+enNGjR+eoo47Klltumb322itz5859Vc+8LCIS3Sql5KuHbJMbPr9v/uWt2+Zf3rJtrv/8vjnpLdumX0tTRgzpmz5NjWlubMheWw3LwdtvmI3W6dfTYwMAAPAq98gjj+S4447L/fffn8GDB+e73/3u4n19+/bNrbfemv333z8nnXRSrr322tx777257bbbcu655+a0005Lnz59MmnSpFx88cW5/fbbc+GFF+Yvf/lLJk2alMbGxpxxxhlLPeeUKVPy6U9/Og8++GAGDx6cc84551U/c3esicRybTC4b46csElPjwEAAABJkhEjRuSAAw5Ikrz73e/OD3/4w8X73v3udydJbrrppuyxxx7ZaKONkiRHHXVUrrvuuhx77LFLnOuKK67I3XffnR122CFJ0tramuHDhy/1nCNHjsweeyxcq2mnnXbKww8//KqfuTsiEgAAAPCKUUpZ5veDBg1KknR1da3Qubq6unLkkUfm1FNPXe5xLS0ti79uamrKggULVnTcpWZ88fe9debuuJ0NAAAAeMWYOnVqfv/73ydJzjvvvOy5555LHbP33nvn5ptvztSpU9PR0ZELLrgg++67b5KFQaW1deGnkR988MG59NJL88QTTyRJpk+fnvvvv9/MyyAiAQAAAC9J6b9qb3BakfONHj06Z511VsaMGZPnnnsuJ5xwwlLHbLbZZjnppJOyzz77ZOutt84OO+yQo48+Okly7LHHZuutt86hhx6anXfeOSeeeGL222+/jBkzJvvuu28ef/zxVfqaXqkzd6dUVbVGnmhVmzBhQjVx4sSeHgMAAADWGnfeeWfGjx/fY88/efLkHHLIIXnggQd6bIZlufzyy3PWWWfll7/85RLbe/PM3f0+Sym3VlU1obvjXYkEAAAAQC0RCQAAAHhFGDt2bK+8oidJtthii7ztbW9bantvnnll+XQ2AAAAgJdp7NixGTt2bE+PsVq5EgkAAACAWiISAAAAALVEJAAAAABqiUgAAADAq96PfvSjvPe9713h4ydPnpytttrqJT/f5Zdfnn333XelHjN58uScccYZL/k5VzcLawMAAAAvyXXX75KOjudX2fmamtbJPq+7dZWd7+/a29tX+Tlfqvb29jQ3N3e7729/+1t+8Ytf5CMf+cganmrFuBIJAAAAeElWZUBa0fOddtppGTNmTMaOHZvDDjss559/fsaPH5+tt946e+65Zx5//PEkyQknnJB3vetd2WuvvXLEEUckSZ544onsvffeGTVqVD772c8uPue//Mu/ZKuttspWW22Vb3zjG4u3d3Z25qijjsqWW26ZvfbaK3Pnzs29996bbbbZZvExd999d7bddtskyUUXXZRRo0Zll112yYUXXrj4mBfPMnny5EyYMCHbbLNNttlmm1x99dVJki996UuZOHFixo0bl69//evp6OjIcccdl+222y5jxozJd7/73Zf+w10FXIkEAAAAvCLceuut+e53v5ubbropG264YaZPn55SSt75znemoaEh3//+9/P1r389Z555ZpLkzjvvzJ///OcMGDAgP/rRj3LHHXfk7rvvzsCBA7Pjjjvm0EMPTSklP//5z3Prrbemqqrssssu2W+//bLeeutlypQpOe+887LHHnvkTW96U84555x89KMfzaBBg/KnP/0pe+yxR3784x/n6KOPzrx58/Lxj388V199dbbZZpsccsghS8z+wllmz56d66+/Pv3798/dd9+do446KnfffXe+/e1v5zvf+U6uueaaJMn3vve9DB48OHfffXfmz5+fXXfdNYccckjGjRu3xn/2iYgEAAAAvEJcccUVectb3pINN9wwSTJ8+PD8+c9/zmGHHZbp06envb09G2+88eLjDz744AwYMGDx93vvvXc22GCDJMmb3/zmXHvttSml5E1velMGDx6cJDnkkENyzTXX5O1vf3tGjhyZPfbYI0my00475eGHH06SvP/9789PfvKT7Lrrrrn44oszceLE3HHHHdl4442z3XbbJUmOPfbY/OQnP+l2lra2tnzoQx/KPffck4aGhjzyyCPdvt6rrroqkyZNyiWXXJIkmT17du67774ei0huZwMAAABeMUopS3z/iU98Ih/72Mdy//3357TTTktra+vifS8MSN09tpSSqqqW+VwtLS2Lv25qakpnZ2eS5D3veU/+8Ic/5IILLsj222+/OEy9+Pwv9MJZvvWtb2X48OG57777ctddd6Wjo6Pbx1RVlZNPPjmTJk3KpEmT8sQTT+Swww5b5nOsbiISAAAA8Ipw0EEH5eKLL860adOSJNOnT8/s2bOz6aabJknOOuus5T7+hhtuyPTp0zN37txcfvnl2WefffKGN7whl19+eWbPnp1Zs2blsssuq/1Utf79++f1r399jj/++HzgAx9Ikuywww55/PHHc++99yZJzj///GU+fubMmdlwww3T2NiY008/fXGcGjx4cObMmbP4uAMPPDCnn3764jB21113ZdasWcudbXVyOxsAAADwirDLLrvks5/9bPbaa680NDRk++23z1e/+tUcddRRGTFiRCZMmJApU6Ys8/ETJkzIkUcemUcffTRHHHFE9t577yTJ0UcfnZ133jnJwquM9txzz0yePHm5s7znPe/J5Zdfnre97W1JFoalU089NW9+85szdOjQ7L777ouD0osdf/zxOfzww/PrX/86e++9d/r165ck2XXXXdPU1JSxY8fmmGOOyVe+8pU8/PDD2X777VNVVYYOHZrLL798ZX9sq0xZ3mVbvdmECROqiRMn9vQYAAAAsNa48847M378+MXfX3f9Lqv0E9qamtbJPq+7dZWdb3U66aSTMnPmzPzgBz/o6VFeshf/PpOklHJrVVUTujvelUgAAADAS/JKCT6r2oEHHphHHnkk1113XU+PskaJSAAAAAAr4corr+zpEXqEhbUBAAAAqCUiAQAAAFBLRAIAAACglogEAAAAQC0RCQAAAHjFeOihh7L//vtns802yyabbJIPfOADWbBgQf70pz/lwgsvXHzcCSeckJNOOqkHJ3318elsAAAAwEuy9Q135bmOzlV2vnWbGnPf3tsvc39XV1fe9ra35UMf+lA+9alPpaOjI8ccc0yOP/74bLvttpk4cWLe8Y53rJJZOjo60tQkm7yQK5EAAACAl2RVBqQVOd9vfvObtLS05FOf+lSSpKmpKT/+8Y/z85//PCeddFIuueSSjBs3Lj/96U+TJPfdd1922223bLzxxvnmN7+5+Dynn356xo8fn3HjxuXoo49OR0dHkqR///45/vjjM378+PzhD39Ypa/t1UBEAgAAAF4R7rrrruy4445LbFt33XUzcuTInHDCCXnrW9+aSZMm5YMf/GCS5IEHHsh1112Xv/zlL/nOd76T1tbW3H777bnwwgvzl7/8JZMmTUpjY2POOOOMJMn8+fMzfvz43HnnnTnwwAPX9Mvr9VyXBQAAALwiVFWVUkq327vzxje+Mf369Uu/fv0ydOjQPPHEE7niiity9913Z4cddkiStLa2Zvjw4UmSxsbGvOc971l9L+AVTkQCAAAAXhG23377/N///d8S25577rk89dRT3a5f1KdPn8VfNzY2pr29PV1dXTnyyCNz6qmnLnV8S0uLdZCWw+1sAAAAwCvCW97ylixYsCCnnXZakoWLX3/0ox/NkUcemREjRmTOnDm15zj44INz6aWX5oknnkiSTJ8+Pffff/9qnfvVQkQCAAAAXhEaGhpy8cUX56KLLspmm22WUaNGpW/fvjnllFNy8MEHZ/LkyUssrN2dnXfeOSeeeGL222+/jBkzJvvuu28ef/zxNfgqXrlcowUAAAC8JOs2Na7ST2hbt6mx9pgtttii209O69evX+6+++5lPu6BBx5Y/PUHP/jBxYtvv9C8efNWcNK1k4gEAAAAvCT37b19T4/AGuR2NgAAAABqiUgAAAAA1BKRAAAAgBXW1dXV0yOwCryU36OIBAAAAKyQxsbGzJgxQ0h6hevq6sqMGTPS2Fi/kPkLWVgbAAAAWCGjR4/OQw89lGnTpvX0KLxMjY2NGT169Eo9RkQCAAAAVki/fv2y7bbb9vQY9BC3swEAAABQS0QCAAAAoJaIBAAAAECtUlVVT8/wkpRSZiR5tKfnWEsNS/J0Tw8Bi3g/0pt4P9KbeD/S23hP0pt4P9Kb9Lb342ZVVa3f3Y5XbESi55RSJlZVNaGn54DE+5HexfuR3sT7kd7Ge5LexPuR3uSV9H50OxsAAAAAtUQkAAAAAGqJSLwUZ/b0APAC3o/0Jt6P9Cbej/Q23pP0Jt6P9CavmPejNZEAAAAAqOVKJAAAAABqiUi8ZKWUz5ZSqlLKsJ6ehbVbKeU7pZRJpZQ7Sym/LqWs09MzsXYppRxUSplcSnmwlPLFnp6HtVspZZNSyjWllPtKKfeUUj7d0zNBKaWxlHJ7KeU3PT0La7dSyjqllF8u+nfH+0ope/T0TKy9SimfWfT/q+8upZxfSunb0zPVEZF4SUopmyQ5IMmUnp4FklyVZLuqqsYnuT/Jl3p4HtYipZTGJKclOTjJNkneVUrZpmenYi3XkeSEqqq2TrJ7ko97T9ILfDrJfT09BCQ5JckVVVWNS7JDvC/pIaWUkUk+lWRCVVXbJWlMclTPTlVPROKl+n6SzyexqBY9rqqqK6uq6lj07c1JNu7JeVjr7JbkwaqqHqqqqi3JL5Ic2sMzsRarqmpqVVW3Lfp6dhb+BWlkz07F2qyUsnGSNyf5r56ehbVbKWVwktcl+WmSVFXVVlXV8z06FGu7piT9SilNSfonebKH56klIrHSSilvTfJEVVV39PQs0I0PJPltTw/BWmVkksde8P3j8Rd2eolSyuZJdkpySw+PwtrtB1n4Hx+7engOGJ1kRpL/XnR75X+VUgb09FCsnaqqeiLJd7Pw7p6pSWZWVXVlz05VT0SiW6WUqxfdl/nifw5N8pUkJ/b0jKxdat6Tfz/mK1l4G8d5PTcpa6HSzTZXadLjSikDk1yU5Piqqmb19DysnUophySZXlXVrT09C2ThVR87Jzm9qqqdksxNYi1DekQpZd0svHp9VJKNkgwopRzbs1PVa+rpAeidqqrav7vtpZTts/BNfkcpJVl429BtpZTdqqp6ag2OyFpmWe/JvyulvDfJIUn2q6rKX+BZkx5PsskLvt84r4BLkXl1K6U0Z2FAOq+qql/19Dys1V6b5K2llDcl6ZtkcCnl3Kqqev1flHhVejzJ41VV/f3qzF9GRKLn7J/k4aqqZiRJKeVXSfZMcm6PTlXDlUislKqq7qqqanhVVZtXVbV5Fv4f4p0FJHpSKeWgJF9I8taqqub19Dysdf6SZKtSyqhSSksWLoh4SQ/PxFqsLPyvPD9Ncl9VVSf39Dys3aqq+lJVVRsv+vfGo5L8QUCipyz6O8tjpZSxizbtl+TeHhyJtduUJLuXUvov+v/d++UVsNC7K5GAV4NTk/RJctWiK+RurqrquJ4dibVFVVUdpZRPJPldFn6qxllVVd3Tw2OxdnttkncnuauU8tdF275cVdXlPTcSQK/xySTnLfoPPw8leX8Pz8NaqqqqW0opv0xyWxYuyXF7kjN7dqp6xV0fAAAAANRxOxsAAAAAtUQkAAAAAGqJSAAAAADUEpEAAAAAqCUiAQAAAFBLRAIA1hqllLNLKY8vY9/rSylVKWX/F2y7dtG2m5Zzvmo559yklNJZSmkrpQxbxjGPLDpHVUrpKqU8Vkr5ZSll3Aq8nm+VUq4spTyz6PHvq3sMAMBLJSIBACzf7CR7lFK2fOHGUkr/JIcv2r8s78nCf99qTvKu5Rz3uyR7JNkryYlJdktyQylleM1sn0zSL8lvao4DAHjZRCQAgOW7M8mDSY590fbDk5QsDEDL8p4kdyeZkuS9yznu6aqqbq6q6qaqqv47ybuTDOvmOV9sSFVVeyf5Rs1xAAAvm4gEAFDvf7J00HlPkl8lmdvdA0opeyQZk+ScRY/fpZSy7Qo+318W/bnl8g6qqqprBc8HAPCyiUgAAPX+J8noUsqeSVJK2SjJflkYiJblvUm6kpz3guPes4LPN2rRn8+v9KQAAKuJiAQAUKOqqoeT3Jh/RKBjkzyZ5Jruji+l9EnyziRXV1X1ZFVV9ye5OcmxpZTu/v2rlFKaSiktpZTtkpyZhQHql6v4pQAAvGQiEgDAijknyZGLAtG7k5y7nNvJDk2yTpa8UulnSTZKsn83xx+dpD1Ja5K7Fh33jqqqbls1owMAvHwiEgCwNulI0riMfY0vOKY7FyTpm4WfnrZd6m9lm5fkmlLKOqWUdbJwAe72dL/A9m+T7Jpk5yQjqqoaVVXVr5ZzfgCANa6ppwcAAFiDpicZVkppqaqq7UX7Nlr057TuHlhV1axSyiVJvphkYlVV93V3XCllgyQHZuG/Zz3RzSGHlVIGVVU1+wXbnq2qauLKvBAAgDXNlUgAwNrkmiyMO2/tZt8RSaYmmbycx5+a5NIk/7GcY45d9BwfTbLvi/45Pkm/JO9YybkBAHqcK5EAgLXJ1UmuSnJ2KWVckluSDEpyVBauY/T+5axzlKqqbszCBbaX5z1JHk5yRlVV1Qt3lFJuSPL5LLyl7ayX+iJecL59kqyfZMSiTRNKKXMWzWpRbgBglRKRAIC1RlVVVSnlrUn+OQtjz1eTtCX5a5K3VVV18cs5fyllpyTjk5z44oC06Pk7SylnJ/lSKWXUok99ezm+lmSfF3z/8UX/JEl5mecGAFhC6ebfbwAAAABgCdZEAgAAAKCWiAQAAABALREJAAAAgFoiEgAAAAC1RCQAAAAAaolIAAAAANQSkQAAAACoJSIBAAAAUEtEAgAAAKDW/wd1EKXV0aPLpgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAELCAYAAAAoUKpTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYWklEQVR4nO3dfbRddX3n8feHkGBQEUh4agiNYpYKUtFEho66BnBaqKMC7VhxRmVaR6zFUZa1LVjXmHFN1tjVqh3HYsXqCFpRfACpowWkVmyrYlSGS4gMWFRSUkhRlqCUPPCdP/a+cnJz7t0nMeeec+99v9Y66+zzO/vh+zvn5n6yH+5vp6qQJGkm+426AEnS+DMsJEmdDAtJUifDQpLUybCQJHXaf9QFDMvy5ctr1apVoy5DkuaM5cuXc80111xTVWdMfW/ehsWqVavYsGHDqMuQpDklyfJ+7R6GkiR1MiwkSZ0MC0lSJ8NCktTJsJAkdTIsJEmdDAtJUifDQpLUad7+UZ40jrZt28bExMSoy+jrhBNOYMmSJaMuQ2PKsJBm0cTEBKevu5zFy1aOupRdbL/vLq5ZB2vWrBl1KRpThoU0yxYvW8kBRz551GVIe8RzFpKkToaFJKmTYSFJ6mRYSJI6GRaSpE6GhSSpk2EhSepkWEiSOhkWkqROhoUkqZNhIUnqZFhIkjoZFpKkToaFJKmTYSFJ6mRYSJI6GRaSpE6GhSSpk2EhSepkWEiSOhkWkqROhoUkqdPQwiLJyiRfTLIpycYkb2jbD01yXZLb2+dDepa5KMkdSW5LcnpP+5okE+17706SYdUtSdrdMPcsdgC/U1VPA04Gzk9yHHAhcH1VrQaub1/TvncOcDxwBnBxkkXtut4LnAesbh9nDLFuSdIUQwuLqtpSVd9spx8ANgErgDOBS9vZLgXOaqfPBD5WVQ9X1Z3AHcBJSY4CDqqqr1RVAZf1LCNJmgWzcs4iySrgmcDXgCOqags0gQIc3s62ArirZ7HNbduKdnpqe7/tnJdkQ5INW7du3ad9kKSFbOhhkeRxwKeAC6rqRzPN2qetZmjfvbHqkqpaW1VrDzvssD0vVpLU11DDIslimqD4i6r6dNt8T3toifb53rZ9M7CyZ/Gjgbvb9qP7tEuSZskwr4YK8AFgU1W9s+etq4Fz2+lzgc/0tJ+T5IAkT6Q5kX1je6jqgSQnt+t8Zc8ykqRZsP8Q1/0c4BXARJKb2rY3A28HrkjyKuD7wEsAqmpjkiuAW2mupDq/qna2y70W+BCwFPh8+5AkzZKhhUVV/S39zzcAPH+aZdYD6/u0bwCevu+qkyTtCf+CW5LUybCQJHUyLCRJnQwLSVInw0KS1MmwkCR1MiwkSZ0MC0lSJ8NCktTJsJAkdTIsJEmdDAtJUifDQpLUybCQJHUyLCRJnQwLSVInw0KS1MmwkCR1MiwkSZ0MC0lSJ8NCktTJsJAkdTIsJEmdDAtJUifDQpLUybCQJHUyLCRJnQwLSVInw0KS1MmwkCR1MiwkSZ0MC0lSJ8NCktTJsJAkdTIsJEmdDAtJUqehhUWSDya5N8ktPW3rkvxjkpvaxwt63rsoyR1Jbktyek/7miQT7XvvTpJh1SxJ6m+YexYfAs7o0/6uqjqxfXwOIMlxwDnA8e0yFydZ1M7/XuA8YHX76LdOSdIQDS0squoG4AcDzn4m8LGqeriq7gTuAE5KchRwUFV9paoKuAw4aygFS5KmNYpzFq9LcnN7mOqQtm0FcFfPPJvbthXt9NT2vpKcl2RDkg1bt27d13VL0oI122HxXuBY4ERgC/COtr3feYiaob2vqrqkqtZW1drDDjvsZyxVkjRpVsOiqu6pqp1V9QjwfuCk9q3NwMqeWY8G7m7bj+7TLkmaRQOFRZKn74uNtecgJp0NTF4pdTVwTpIDkjyR5kT2jVW1BXggycntVVCvBD6zL2qRJA1u/wHn+7MkS2iucPpoVd3ftUCSy4FTgOVJNgNvBU5JciLNoaTvAq8BqKqNSa4AbgV2AOdX1c52Va9tt7sU+Hz7kCTNooHCoqqem2Q18JvAhiQ3Av+7qq6bYZmX9Wn+wAzzrwfW92nfAOyTPRtJ0t4Z+JxFVd0OvAX4feDfAO9O8u0kvzqs4iRJ42HQcxa/kORdwCbgNOBFVfW0dvpdQ6xPkjQGBj1n8R6aq5feXFUPTTZW1d1J3jKUyiRJY2PQsHgB8NDkSeck+wGPqaqfVNWHh1adJGksDHrO4gs0VyNNOrBtkyQtAIOGxWOq6sHJF+30gcMpSZI0bgYNix8nedbkiyRrgIdmmF+SNI8Mes7iAuATSSaH2jgKeOlQKpIkjZ1B/yjv60meCjyFZnC/b1fV9qFWJkkaG4PuWQA8G1jVLvPMJFTVZUOpSpI0VgYKiyQfphla/CZgcsymyZsRSZLmuUH3LNYCx7V3q5MkLTCDXg11C3DkMAuRJI2vQfcslgO3tqPNPjzZWFUvHkpVkqSxMmhYrBtmEZKk8TbopbNfSvLzwOqq+kKSA4FFwy1NkjQuBh2i/NXAJ4H3tU0rgKuGVJMkacwMehjqfOAk4GvQ3AgpyeFDq2qEtm3bxsTExKjL6OuEE05gyZIloy5D0gI0aFg8XFXbkgCQZH+av7OYdyYmJjh93eUsXrZy1KXsYvt9d3HNOlizZs2oS5G0AA0aFl9K8mZgaZJfAn4b+MvhlTVai5et5IAjnzzqMiRpbAz6dxYXAluBCeA1wOdo7sctSVoABr0a6hGa26q+f7jlSJLG0aBjQ91Jn3MUVfWkfV6RJGns7MnYUJMeA7wEOHTflyNJGkcDnbOoqvt6Hv9YVX8CnDbc0iRJ42LQw1DP6nm5H82exuOHUpEkaewMehjqHT3TO4DvAr++z6uRJI2lQa+GOnXYhUiSxtegh6HeONP7VfXOfVOOJGkc7cnVUM8Grm5fvwi4AbhrGEVJksbLntz86FlV9QBAknXAJ6rqPw+rMEnS+Bh0uI9jgG09r7cBq/Z5NZKksTTonsWHgRuTXEnzl9xnA5cNrSpJ0lgZ9Gqo9Uk+DzyvbfqNqvrW8MqSJI2TQQ9DARwI/Kiq/iewOckTh1STJGnMDHpb1bcCvw9c1DYtBj4yrKIkSeNl0D2Ls4EXAz8GqKq76RjuI8kHk9yb5JaetkOTXJfk9vb5kJ73LkpyR5Lbkpze074myUT73rszebs+SdKsGTQstlVV0Q5TnuSxAyzzIeCMKW0XAtdX1Wrg+vY1SY4DzgGOb5e5OMmidpn3AucBq9vH1HVKkoZs0LC4Isn7gIOTvBr4Ah03QqqqG4AfTGk+E7i0nb4UOKun/WNV9XBV3QncAZyU5CjgoKr6ShtWl/UsI0maJZ1XQ7WHfT4OPBX4EfAU4L9W1XV7sb0jqmoLQFVtSXJ4274C+GrPfJvbtu3t9NT26Wo9j2YvhGOOOWYvypMk9dMZFlVVSa6qqjXA3gTEIPqdh6gZ2vuqqkuASwDWrl077XySpD0z6GGoryZ59j7Y3j3toSXa53vb9s3Ayp75jgbubtuP7tMuSZpFg4bFqTSB8Z0kN7dXJ928F9u7Gji3nT4X+ExP+zlJDmj/fmM1cGN7yOqBJCe3h8Ne2bOMJGmWzHgYKskxVfV94Ff2dMVJLgdOAZYn2Qy8FXg7zcnyVwHfp7mXN1W1MckVwK00N1c6v6p2tqt6Lc2VVUuBz7cPSdIs6jpncRXNaLPfS/Kpqvq1QVdcVS+b5q3nTzP/emB9n/YNwNMH3a4kad/rOgzVe4L5ScMsRJI0vrrCoqaZliQtIF2HoZ6R5Ec0exhL22na11VVBw21OknSWJgxLKpq0UzvS5IWhj0ZolyStEAZFpKkToaFJKmTYSFJ6jTQPbiluWbbtm1MTEyMuozdbNq0adQlSHvFsNC8NDExwenrLmfxspXdM8+ih76zgaXHrh11GdIeMyw0by1etpIDjnzyqMvYxfb77hp1CdJe8ZyFJKmTYSFJ6mRYSJI6GRaSpE6GhSSpk2EhSepkWEiSOhkWkqROhoUkqZNhIUnqZFhIkjoZFpKkToaFJKmTYSFJ6mRYSJI6GRaSpE6GhSSpk2EhSerkbVUlaQ9t27aNiYmJUZfR1wknnMCSJUv2+XoNC0naQxMTE5y+7nIWL1s56lJ2sf2+u7hmHaxZs2afr9uwkKS9sHjZSg448smjLmPWeM5CktTJsJAkdTIsJEmdDAtJUqeRhEWS7yaZSHJTkg1t26FJrktye/t8SM/8FyW5I8ltSU4fRc2StJCNcs/i1Ko6sarWtq8vBK6vqtXA9e1rkhwHnAMcD5wBXJxk0SgKlqSFapwOQ50JXNpOXwqc1dP+sap6uKruBO4ATpr98iRp4RpVWBRwbZJvJDmvbTuiqrYAtM+Ht+0rgLt6lt3ctu0myXlJNiTZsHXr1iGVLkkLz6j+KO85VXV3ksOB65J8e4Z506et+s1YVZcAlwCsXbu27zySpD03krCoqrvb53uTXElzWOmeJEdV1ZYkRwH3trNvBnr/pv5o4O5ZLVjTGtcxcjZt2jTqErQP+PM1PmY9LJI8Ftivqh5op38ZeBtwNXAu8Pb2+TPtIlcDH03yTuDngNXAjbNdt/ob1zFyHvrOBpYeu7Z7Ro01f77Gxyj2LI4Arkwyuf2PVtVfJfk6cEWSVwHfB14CUFUbk1wB3ArsAM6vqp0jqFvTGMcxcrbfd1f3TJoT/PkaD7MeFlX1D8Az+rTfBzx/mmXWA+uHXJokaRrjdOmsJGlMGRaSpE6GhSSpkzc/kkTt3DGWl4OOY00LlWEhiR33b+GCj29h8bL7Rl3KLhbiJarjyrCQBHiJqmbmOQtJUifDQpLUybCQJHUyLCRJnQwLSVInw0KS1MmwkCR1MiwkSZ0MC0lSJ8NCktTJsJAkdTIsJEmdDAtJUifDQpLUybCQJHUyLCRJnQwLSVInw0KS1MmwkCR1MiwkSZ0MC0lSJ8NCktTJsJAkdTIsJEmdDAtJUifDQpLUybCQJHXaf9QFaDC1cwebNm0adRm7GceaJO17hsUcseP+LVzw8S0sXnbfqEvZxUPf2cDSY9eOugxJQ2ZYzCGLl63kgCOfPOoydrH9vrtGXYKkWTBnzlkkOSPJbUnuSHLhqOuRpIVkToRFkkXAnwK/AhwHvCzJcaOtSpIWjrlyGOok4I6q+geAJB8DzgRuHcbGxvHQyo777xl1CX1Z156xrj1jXXtmmL+75kpYrAB6P4XNwL+aOlOS84Dz2pcPJrltL7e3HPjnvVx2rlpofV5o/QX7vBAsX/vZd/ws/Z122bkSFunTVrs1VF0CXPIzbyzZUFUL6hKfhdbnhdZfsM8LwTD7OyfOWdDsSazseX00cPeIapGkBWeuhMXXgdVJnphkCXAOcPWIa5KkBWNOHIaqqh1JXgdcAywCPlhVG4e4yZ/5UNYctND6vND6C/Z5IRhaf1O126F/SZJ2MVcOQ0mSRsiwkCR1Mix6LIQhRZJ8MMm9SW7paTs0yXVJbm+fDxlljftakpVJvphkU5KNSd7Qts/Lfid5TJIbk/zftr//rW2fl/3tlWRRkm8l+Wz7el73Ocl3k0wkuSnJhrZtKH02LFoLaEiRDwFnTGm7ELi+qlYD17ev55MdwO9U1dOAk4Hz2+92vvb7YeC0qnoGcCJwRpKTmb/97fUGoHfc/IXQ51Or6sSev68YSp8Ni0f9dEiRqtoGTA4pMq9U1Q3AD6Y0nwlc2k5fCpw1mzUNW1VtqapvttMP0PwyWcE87Xc1HmxfLm4fxTzt76QkRwP/DvjznuZ53edpDKXPhsWj+g0psmJEtcy2I6pqCzS/WIHDR1zP0CRZBTwT+BrzuN/t4ZibgHuB66pqXve39SfA7wGP9LTN9z4XcG2Sb7TDHcGQ+jwn/s5ilgw0pIjmriSPAz4FXFBVP0r6feXzQ1XtBE5McjBwZZKnj7ikoUryQuDeqvpGklNGXM5sek5V3Z3kcOC6JN8e1obcs3jUQh5S5J4kRwG0z/eOuJ59LslimqD4i6r6dNs87/tdVfcDf0Nznmo+9/c5wIuTfJfmEPJpST7C/O4zVXV3+3wvcCXN4fSh9NmweNRCHlLkauDcdvpc4DMjrGWfS7ML8QFgU1W9s+etednvJIe1exQkWQr8W+DbzNP+AlTVRVV1dFWtovm3+9dV9XLmcZ+TPDbJ4yengV8GbmFIffYvuHskeQHNcc/JIUXWj7aifS/J5cApNEM33wO8FbgKuAI4Bvg+8JKqmnoSfM5K8lzgy8AEjx7PfjPNeYt51+8kv0BzYnMRzX8Ir6iqtyVZxjzs71TtYag3VdUL53OfkzyJZm8CmlMKH62q9cPqs2EhSerkYShJUifDQpLUybCQJHUyLCRJnQwLSVInw0KS1MmwkCR1MiwkLThJ/leSbyZ59qhrmSsMC0kLSjs0xuHAa4AXjricOcOwmMeS7GzvoLWxvWvaG5Ps17739zMsd3CS3569SnfZ9qreu/gNuMzI6h2VJA92vL9Xn0mSdUnetPeVTbvevj9vw9pez/qXJvlSe3MzAKrqx8BRNAMsvrudb0mSG5I4Evc0DIv57aH2DlrHA78EvIBmLCiq6l/PsNzBwFz65Xswc6veXaSxX1fbHjqYIXwme1tXx8/bMP0m8Ol2yHYA2rGTDgQeAHYCtDc8ux546SiKnAsMiwWiHcL4POB17T/4B+GnI1f+n3bP45YkLwXeDhzb7pX8UTvfVe0NVjZO3mSl3QvYlOT9bfu17SintO+/MsnN7bo/3La9PM39oW9K8r7e//H12D/Jpe2yn0xyYM86+y2/S71Jfi/J69v535Xkr9vp57fDVk9bR7/2rn72mqbPb2w/21uSXDDls7sY+Cawcpq2zs+r33czzXc4XZ//IM29578APKXP+geua5qfp132hPptL1P2KJO8Kcm6Gb6Tvtvp4z+y+6irbwH+GNhIcwvlSVe186ufqvIxTx/Ag33afggcMfke8GvA+3vefwKwCrhlynKHts9LaYZBXtbOtwM4sX3vCuDl7fTxwG3A8snlgacBfwksbtsuBl45ZTuraG469Zz29QdpRhBluuWn1ktzn+1PtNNfBm6kubXoW2mOU0+3npnW37efU2rv1+c1NKPdPhZ4HM0vqGe263wEOHlK33/aNtPn1fvdzvDd9H4m0/Vtsr4DgYOAOyY/772sa7efp956p9ten3rfBKyboe6+25lS9xLgn/r05Ws0Nzt7D/DqnvcWAVtH/e92XB8en1t4pt4ebgL44yR/CHy2qr6c5JA+y70+ydnt9EpgNfBPwJ1VdVPb/g2af4wApwGfrKp/BqiqHyT5DzS/LL6e5i51S+l/Y5a7qurv2umPAK+n+Z/g86dZ/oYpy38DWJNmrP+Haf43vBZ4Xruu6dZz0Azrn66fvfr1+RXAldUcJyfJp9s6rga+V1VfnbKO3rbp6pxquu+m13TrOrSt7ydtfdPdw2XQunb7eZqynucNuL2uuj/asR1ohuG/f0rbfwfeVlWVZBNNwAPN3QWTbEvy+Gru1a4ehsUCkmb8+530/MKpqv+XZA3N+Yz/keRa4LIpy51CcwOdX6yqnyT5G+Ax7dsP98y6k+YfMzShNHX8+wCXVtVFHaVOXW7ydd/l09xX+9GZq7anuWPabwB/D9wMnAocC2yi+QXUbz3/ZYb1T9fPXWbtU/tM9279cUdb5+fV8d1MraNf3y7oU3NXrdPW1e/nqareNnW2Puvfwa6HxSf7MO22BtjOQz3rIcmJwK8Cz03yp+17E1OWOQD4lz71LXies1ggkhwG/Bnwnmr3udv2nwN+UlUfofnf+7NoTvw9vmfxJwA/bH8ZPZXmME+X64FfT3MykSSHtm3/Ps39gklyaJKf77PsMUl+sZ1+GfC3Pevst/zUeqHZG3hT+/xl4LeAm9q+T7eeQevbkz7fAJyV5MA0l2ye3dYz6Pq66pnuu5n6mUy3rhuAs9NcNfR44EU/S13T/Dz1mm579wCHJ1mW5AAevaS177YG2A5V9UNgUZLJwPhD4EVVtaqaO+o9g549i/Z721pV2wf4DBYc9yzmt6VJbqI5Xr8D+DDwzinznAD8UZJHgO3Aa6vqviR/155w/DzNCcHfSnIzzTH5qYdOdlNVG5OsB76UZCfwrar6T0neAlyb5oqa7cD5wPemLL4JODfJ+4Dbgfe267y13/JV9dXeeqvqd2l+If8B8JWq+nGSf2nbutbTr76ph3T2tM8fojlvAvDnVfWtqXtD06yvb51TPq+/os93M/U7rKrfnaHPHwduatfbGWQdde328zRl2W/22167N/g2mvMJd9LcBnambT1hpu30uJZmT+IR4LFVdX1PLfekOVF+aDV3kjsV+FxX/xcq75Qnad5K8kzgjVX1igHm/TRwUVXdNvzK5h4PQ0mat6rqW8AX0/8S7Z9KsgS4yqCYnnsWkqRO7llIkjoZFpKkToaFJKmTYSFJ6mRYSJI6GRaSpE7/H8UD+RDNrFosAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -1228,946 +528,11 @@ } ], "source": [ - "import matplotlib.patches as mpatches\n", - "import matplotlib\n", - "\n", - "fig = plt.figure(figsize=(20,20))\n", - "ax = fig.add_subplot()\n", - "\n", - "unique_colours = list(set(colours))\n", - "norm = plt.Normalize(np.min(colours), np.max(colours))\n", - "cmap = matplotlib.colormaps.get_cmap('tab10')\n", - "legend_patches = [mpatches.Patch(color=cmap(norm(color))) for color in unique_colours]\n", - "im = ax.scatter(embedding[:, 0], embedding[:, 1] , s=50, c=colours, cmap=cmap)\n", - "\n", - "for i, txt in enumerate(labels):\n", - " if i % 10 == 0:\n", - " ax.annotate(labels[i], (embedding[i, 0], embedding[i, 1]), size=8)\n", - "'''\n", - "# Inverse of the chi-squared CDF\n", - "conf_level = 0.75\n", - "inv_chi2 = chi2.ppf(conf_level, df=2)\n", - "ellipses = [] # Store ellipse information\n", - "\n", - "for label in unique_colours:\n", - " label_points = embedding[np.array(colours) == label] # Subset of UMAP points for a specific label\n", - " n_points = len(label_points)\n", - " \n", - " # Calculate the centroid using all the points of a class\n", - " center = np.mean(label_points, axis=0)\n", - " covariance = np.cov(label_points.T)\n", - " # Calculate the distance of each point\n", - " dist = np.sum(np.square(label_points - center), axis=1)\n", - " \n", - " # Sort the points based on the distance\n", - " sorted_indices = np.argsort(dist)\n", - " \n", - " # Calculate the number of points to include within the ellipse\n", - " n_inside = int(np.ceil(n_points * conf_level))\n", - " \n", - " # Select the points that fall within the ellipse\n", - " inside_points = label_points[sorted_indices[:n_inside]]\n", - " \n", - " # Recalculate the mean and covariance using only the inside points\n", - " center = np.mean(inside_points, axis=0)\n", - " covariance = np.cov(inside_points.T)\n", - " \n", - " # Calculate the eigenvalues and eigenvectors of the covariance matrix again\n", - " eigenvalues, eigenvectors = np.linalg.eig(covariance)\n", - " angle = np.degrees(np.arctan2(*eigenvectors[:, 0][::-1]))\n", - " \n", - " # Calculate the scaling factor for the ellipse based on the eigenvalues again\n", - " scale_factor = np.sqrt(inv_chi2)\n", - " \n", - " # Calculate the radius of the ellipse based on the eigenvalues and the scaling factor\n", - " radius = np.sqrt(eigenvalues) * scale_factor\n", - " \n", - " ellipse = patches.Ellipse(xy=center, width=2 * radius[0], height=2 * radius[1],\n", - " angle=angle, fill=False, linewidth=3, alpha=0.7, color=cmap(norm(label)))\n", - " ellipses.append(ellipse)\n", - "'''\n", - "legend1 = ax.legend(legend_patches, cdict.keys(), loc='lower right')\n", - "#legend1 = ax.legend(legend_patches[:10], set(colours), loc='lower right')\n", - "ax.add_artist(legend1)\n", - "\n", - "#for i, ellipse in enumerate(ellipses):\n", - "# if list(cdict.keys())[i] not in ['unknown', 'Other']:\n", - "# ax.add_patch(ellipse)\n", - "ax.set_title('Antigen type', size=18)\n", - "ax.set_xlabel('UMAP 1', size=16)\n", - "ax.set_ylabel('UMAP 2', size=16)\n", + "plt.hist(top_10_dist, bins=8, edgecolor='black', linewidth=.4)\n", + "plt.ylabel('Frequency')\n", + "plt.xlabel('Distance between correlated residues ($\\AA$)')\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": 48, - "id": "f75dcfcd", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde5wcVZk//s/pmXQ6w2SYhAkZkggJRAg3CRACuCgX8bII/kRk0VUk3oKrK6K76OqyoqzXdVdFdGUXL7Aiinj77maRFRQQFBAwKEHuEEKAkAzJkAzJZDIz9fujO1NPPd115tSZU32ZfN6vFy+qu6pOna7LqZrKeZ5joigCERERERERERERAYVGV4CIiIiIiIiIiKhZ8GUZERERERERERFRBV+WERERERERERERVfBlGRERERERERERUQVflhEREREREREREVXwZRkREREREREREVEFX5YRERERVRhjlhljIvlfo+tERERERPXV3ugKEBHR5GaMaQNwCICXApgLYDcAEYABAGsBPAzgz1EU8aUEERERERE1HF+WERFRcJUXZKcDeBuAkwF0jrPKJmPM/wH4HoBf8MUZERERERE1CsMwiYgoKGPMWSj3FrsWwBsx/osyAJgB4C0A/hfAH40xr86tgjkxxpygw/eMMfMbXa9WYYz5lNp3qxtdJyIiIiLaNfFlGRERBWGM2d0Y83MAPwSw7wSKOhTAL40x/2GMKQapHBERERERkSOGYRIR0YQZY+YA+BWARTVmjwK4DcD/A/AEgGdR/seavQAsRDlccykAo9ZbDuAgY8wpURRtyanqRERERERECXxZRkREE2KMmQng1wAOqDH7xwA+HEXRWksRXzTGvBTA1wG8Rs07DsB1xphXRVE0FKTCREREREREFgzDJCIib8YYg3LYpX5RtgPAX0VRdOY4L8oAAFEUPRJF0WsBfADlkTKl41B+kUZERERERJQ7viwjIqKJ+AAAnYx/GMBZURRdm7WwKIr+vVKm9l5jzCke9SMiIiIiIsqEL8uIiMiLMWYGgM/UmPWpKIp+5ltuFEXfBPCfNWZdYoxh+gAiIiIiIsoV/+ggIiJfHwKwu/puFYB/CVD2xwC8AUCv+G4hgLcBuDJA+ZOCMeYQAIejvJ/aADyD8iAKt0dRNNzIuu3qKiHKe6M86MU+KF8rUwD0A9gI4AEA90VRNNqoOoZmjJmL8vk4q/LfMIANAJ5C+ZzcnuO2DYCXATgE5cFDSgC2ALgjiqI789ouERERTU58WUZERJkZY9oAvLfGrAujKNox0fKjKOo3xnwewCVq1vswzssyY4zOefbOKIquyLJ9Y8wyAN9VddKjddZcTnmi/Dd8upRyPwXgIvHVk1EUza/MawfwNwA+DGBBSrF9xpgfoNzLb6O1AsntngDgJvX1giiKVruWUSnnCgDniK9uiaLoBIflpH1qHEutZrmNYozZA8CbUB6o4gQAPeOs8oIx5joA/xJF0b2O2zgXwGXq6wOjKHowW20TZT6A5Ei2N0ZRpMOr09btRvlcfBPKL6rSbDPG/ArAF6Io+m3G+t0M4Hjx1ZVRFC0T2/97AO8BMLvG6lcC4MsyIiIiyoRhmERE5ON4AHPUd+sA/G/AbVwFQPdEOcYYk/aCaNIzxuwF4HYAX0P6izKg/JLmgwAeMMacWo+67eqMMZ9B+Rr4TwBvxvgvyoByb7O3AlhpjPmWMWaqwzpXAdisvluepa6SMeZ4JF+UAcB/OK77EZR7Mn4S9hdlADANwKkAbjPG/MQY05W1rjW2/0oADwL4R9R+UUZERETkhS/LiIjIx+tqfHd1yNC/So+oFY7bnvQqvZZ+A2BJhtX2BPAzY8yb8qkVCYswsR777wZwkzGmZFsoiqIXAfyX+vqc8dazOFd9Xgfg/9lWMMZMNcZcDeDfAHR7bPNNAH5rjJnnse7OOpwA4JfgSzIiIiLKAcMwiYjIx8trfHdbDtv5LYAz1HfHAvhmDtvysRrATyrTswC8Us3/BYCtgbZ1Bcp52wAgAnBdZduPAdgGYC6A1wJ4C5IvMNoB/NAY8xdRFN0VqC6h3AWgszJ9EIADxbytKO8/m/vzqFQA6wH8GsB9KOcm24hyb7ApAGYCOBjlY3USyrnmdjoWwKWoHeIs/TuAvxWfZ6Lcm+2qLJU0xvSg/OJK+o4tlLqSG+xnAP5SzRoBcD2AX6Gcu3Ajyr93DoBXADgbwB5i+UMA/LxyXmbNZTYbwLUAdvbEewHAjwDcCOBpAEMA5gE4rlIvIiIiokz4soyIiHy8rMZ3ebyIuafGd4flsB0vURTdDOBmIDXf1/uz5vtKsTfKSeKBchL/v46i6Ba1zF0ov3z4NMp5ml4j5k0B8G1jzJEhcsqFEkXRNwB8A6iZp21DFEVvbkS9PL2A8kvc7wC4J4oiW7616wH8mzHmIADfQvkl2U7vMcZ8O4qiO9JWjqLogUoerxPE1+9DxpdlAN6J+IUTAIyi9ki00oWoflF2A4Bzoyh6ImWdnxpj/gnAvyLZk+1IAJ8H8BHnGpfJ3qXXAvhAFEUb1DJ3ofxSj4iIiCgzhmESEVEmlXDA6errF6IoWpvD5u6r8d38HLbT7HYOArAJwKtrvCgbE0XROpRHEtXLHIrqkDsK5z1RFL0/iqK7x3lRNiaKoj8DeBUA/WLsww6r/7v6/BfGmINdtguM9RDTPdj+L4qiJy3rHIzkC00A+DaA11pelAEAoigaiKLofSi/MJPeX8nF5+NqAG+p8aKMiIiIaEL4soyIiLKq9Yet84iLGfWj3NtF6jLG7JbT9prdxyovWKwqYW3noByeKf1NLrUiuL4gq7HeNgAfUF+/0SEH2c9Q7mUoZXkZehKAl6rv9Cib2keRDBu9F8D7Mv72f0A5Kf9OU1EejCKrtQD+Jooi3T4QERERTRhflhERUVadNb7rz2NDlT/Ct9SYtSu+LHsM5V48Tio9hPTLj4OMMccErRVNWBRFfwDwlPiqCOCIcdYZRjmEUzrbGDPNcbP6xdpaWEazNcb0ojxyp/SJrIN6RFE0AuAS9fUpWcqouDSKIj0qKBEREVEQfFlGRERZFWt892KO2xuo8d3UGt9Ndt/36EVzZY3v9CAE1ByeUp+PdFjnPwHIl1XdKA/wYGWMmQ3gjerrb1VeZKV5Fcq573Z6HuXRKH38Wn0+1BgzI2MZ3/fcNhEREdG4+LKMiIiyGqrxXZ49vWr1ZMs6et5k8KusK0RR9EcAferro8NUh9KYslcYYy42xvzcGPOgMWadMWarMSaq9R+qR5idNd52oih6GsD/U1+7hGK+C8kXXyOo7qWmHa8+rxzn5ZqNzm9YALB/lvUrv52IiIgoFxwNk4iIsqrVi6w7jw1VkpDrwQTS6jDZ/XEC671KfF4UoC5UgzGmAGA5gI+jPILpRLj2tPp3AGeIz0cbYw6rvCitkpLYf4XDyycdFnpy5SVfKHtkWPbB8RchIiIi8seeZURElNWzNb6bmdO2ulF9r9oSRdGu9rJsaxRFL3iuq5PAZw13IwfGmJkAfgvgm5j4izKgdo/KKlEU/RrVL49svcteA2CB+m68xP4A0ONSnwnIcl7251UJIiIiIoA9y4iIKKMoivqMMQNI/jG/uzFmXhRFOrxqog6t8d3qwNtoBRNJZK5fsvFlWWDGmA6U83AdlrLIEICnK/+9iPIopTqE8XgkX0iZDFX4JpJJ899mjLkg5aWyfpG2Gm65x7L0/PIxZfxFxuxqL8uJiIiozviyjIiIfPwJ1TmWjkJ1LqKJqpXk3DccsZVNJNwty0sX8vMJVL8oewHAfwD4KYA/RFG0w1aAMeYW+A++cCWAzyHOHdgF4K8BXK62MQfAaWrd/3QcOEIP7PEggPuzVzXV6oBlEREREU0IX5YREZGP21H9suwvAPws8Hb+ImXbeWu2F0y7T2DdLvV500Qq4qjZ9l9ujDHTAHxYff0EgFdFUfREhqK8j3EURS8YY65GMhfZuVAvywC8G8lnvx0AvuO4mY0AesXn26Io0rnPiIiIiCYF5iwjIiIfv6jx3V8bY4L9I0wlB9SpNWZdn7Uoj81P5OVUHjqMMb51mqM+216W1erBNhn2X55OBtChvntfxhdlwMRzgn1DfT7SGDPWM7My+MB71DI/j6LoOcfy9aiq+2asHxEREVHL4MsyIiLycQuqE/3vBeCUgNt4G4Cp6rs7oyh6fJz1BtRnp0TpSu/4i9RdWj6srOvZRhLU+w6YPPsvL4erzxsA3JClAGPMbABzJ1KJyuiXv1Nfy/xkf4nqgQdcEvvv9JD6fLQxRl+fRERERJMCX5YREVFmURQNA/h2jVmfMcZkSdRdU6UX1cdrzHL5414ntJ/tUYVjPNaplfcpZDjiSVlXMMa8DNU9lu60rFJrxM1M+6/yAmVxlnUq9P5rlVDOPdXnJ6Ioyppj7lWB6vLv6vNfG2N2huG+T817BMBNGcq+UX3eDeVedURERESTDl+WERGRr6+gepTGQwH8fYCyP49yTzXpMQBXOayrBxlYnGXDlSToOh+bi601vpvmUU6atxljsr5AekeN735jWf4ZVL+0Wpxxm29AdY9AF3r/hdx3eWpTn31CkT8QoiIArkW5Z9tOu6F83rwE5Z5l0n9kfKlXa8TMWi+0iYiIiFoeX5YREZGXKIo2AvhkjVmfNsa8wbdcY8x7Ud0LBgDOq/RoG8896vNJxpjpGarwCQA+veNq9crS+cImYiGAd7ouXHlB8jfq6z9HUXRH2jpRFG1FdZjmGzNssx3l/edD7789WiTMb4P6fGAl6b8TY8xb4PdytkoURUOo7vF5Lsq5yuRLve0ArshY9uMAfq6+/gtjzLuy1ZKIiIio+fFlGRERTcSlAH6tvpsC4FpjzJuyFmaMORfAf6A6BO9bURRd51jMLerzNAAXOG7/dADvd9yOthrAkPruOM+y0vyLMeaA8RaqvGS6AtWJ57/psA29//7CGOMaAvqv8AvBBICH1ecCgGM9y6qnP6jP01D9krImY8xiVIdOTtRlSPYOPAzAR9QyP46i6HmPsj+F6kEgvmmM0b3WnBljXm6M0XnfiIiIiBqKL8uIiMhbFEWjAP4KwKNqVhHAT4wx1xhjxk1cbozZzxjzC5T/0Ncvym4D8LcZqvX/AGxU333cGPNWy/bbjDHnAfhRZftZc04hiqIdAFaqr88zxvxF1rJqFV/5/x4AbjTGpL6EqySL/zmqc5ytQvlF5HiuqPHd940xh1q2ubsx5jsAPqTqm8UfAOxQ333JGKOT0jebXwN4UX33eWPMX9lWqsy/CcCMylcuvSbHFUXRkwD0i2U9SEOWxP6y7D8C+Iz6ughghTHm88aYGTVWq2KM6TbGvMMYcyuA3wI42Kc+RERERHnxyatBREQ0Joqi540xJwL4FYD91ey/AvBmY8xvAPw3gCdQHkXToJyTbCGA01FOqF8rH9dvAZwSRdH2DPXZboz5MpJ/1LcDuNoY8w4AP0S5F9MQysnrjwFwlqj7dpRfJnwI2V0F4GjxeQaA24wxqyvbHIB6kRRF0Zsdyl2D8suu1wOYB+A3xpgVAH6K8ovK7SiHfL4GwF8D6Fbr7wDwrsoLPasoin5vjLkRyeTtvQDuMcZcifKLmKdQ3qdzAZwI4K0AZlaWfRTAnwBk6lkYRdEWY8x/AzhDfL0EwBPGmPsr29ymVrs/iqKLsmwntCiKNhtjvoZk/q4igGsqIcU/AnA/ynWfhXLPuzNR/m07/Rrl/fnKQNX6dwCnpsy7P4qi2yZQ9kUADkLyOBUA/AOAvzXG/A/KvRMfR/mldQHl83E2yr3cjgTwFyjvIyIiIqKmZLIP2ERERFTNGNMN4HtI/yM9q28B+NssL8pEXdoB3I7kCwkXIwDegnJPnO/KGVEUjZtc3xjTAeD3yNBTpla5xphPofxSYqcnARyF8m/az7XsimEAZ0VR9FPXFYwx81HuJdedcVsbALwC5RdH54jvb4mi6ASH7R4I4C6UE9O7cCo3C2PMMmQ89pXj/huUXwRl9TDK4brXAjhefH9lFEXLPMpDZSCIR1D7XDkviqJLfcoV5U8B8G8APjiRcoSzoyhKHbzDGHMzAu0bIiIiIhcMwyQioiCiKOqPoug0AG9DOX+Xr1UAXhtF0Xt9XpRV6jKMci+r2zOstgnA/xdF0Y99tlnZ7lYAp6AcOhpUFEUbAJyA6lBPmw0A3pTlRVllW6tR7jH2XIbV/gzgL6IoeijLttR2H0C599xTvmU0QuW4vx7lnpBZ3ALgFZVjG7I+EWqH3G5F+YX2RMvfEUXReSj3yHxigsXdhXLPOyIiIqKmwZdlREQUVBRFVwN4Kcp/SP8PqvM51fICgGtQ7pX2siiKfhmgHptQ7o3ytyiHMaZ5EeXE9wdFUfS/Aba7BuVwulcC+BrKPY6eQY0QTI+y16Ic5vkR2H9TH8qDLyyKouh/PLd1L8rhdl8BsNmy6NMAPgbgiCiKHvHZltruLSifP3+Fcg+vewCsR3UIZlOJoug5lF8wnodyT0CbP6Dc8+7EKIrW51Slq2t8d00URf2hNhBF0Y9QDl8+B8CNKL+MG892lHO1/SOAA6MoWhpFUZYXwERERES5YxgmERHlqhISeQjKf1TPQRxiNwBgLYCHAPy5MlhAnvU4BMDhKOeNmoZyT7IHANweRdFgntvOqlYYZhRF82ss9zKUc2D1ovwPYOtQ7unz20rvulD1aUc5t9v+KO+/Asq9zv4I4A8RHyaqGGMORjkMuAfl820Lyj0u746i6Ok6bP/tqO5FdnQURb/PcZtFlH/zS1AejGIGyrkBt6B8bj4I4NGQ5yYRERFRHviyjIiIqMm4viwjSmOMuQXJAQPujaLo8EbVh4iIiKiVcDRMIiIiokmk0qtNj6x5WSPqQkRENJktNCZyyUHQ7J4F/i+Kotc1uh7NhC/LiIiIiCaXj6rP/QBSR5skIiIiP1sBnNvoSgTwqXLaCBKY4J+IiIhokjDGHIHyiLTSt6Iochlog4iIiIjAl2VEREREk4Ix5lgAPwHQJr5+EcCXGlMjIiIiotbEMEwiIiKiFlPJS/bpyscSgH0BHFhj0S9GUbS+bhUjIiLahRiwB9JkxZdlRERERK1nFoAzxlnmLgBfqENdiIiIiCYVvgQlIiIimnx+D+D1URTtaHRFiIiIiFpNy/QsM8ZERx55ZOb17rnnHvisV09PPvkk9tlnn4kVMjiY/NzeXns6QxFTp8bTw8PJeVOmZKgbORkdTZ9nTDy9fXv6evq4WI9TFMXTIyPxdEG9Q9efd3H6OMldx+sif/K0BZLXhj428tSVxwkAtm6tvdy2bcnlisXa29KfZXvZ1pZczucS2muvvfDss8+KehT3WbJkSQTY90He9LYbVY9QXH9PWnNpW2e8eRNtWvfff388/PDDie/a29vR0dGBmTNnYubMmUuNMeuXLFkysQ01mUaegyGuPVsZL6ohGHbbLXv5ebPdAzV5Txwaqj0NJPeJbHOBZNvqSj+zyjbZ9xyRdaz3eSa1YjsrTebfRulWr16Nvr4+HmFqOS3zsgwA7r777szrGGO81qunc5cvx39cdtnECnn00eTn7u6xydGePZ2KePDB5OeFC+PpTZuS82bNiqcLiJ+cRlVnRTnPxnc9Wxm28mzLurL9bh/6ZaUk33fqQy3Xmzs3OS/tOAFIPk0ODMTTpVJisdFSR3rFLPI+hj5lhChTH6ctW+Jpub+zlN+sQhwP1/JdyxsaTtZJXhv62MhTWZ7iACBvC/IP0vvvTy43b17tbeny99svnp4+PX25EPQfgrJeeZxz8jjpbafVIwtbnV3PQddzSZfn+nvSmkvbOuPNcz0vfO+xoe9z9ZZWf9sxK7an3+t9f4vt/E873rZnDlsZd92VnHfUUW7l24Q+D7YOJsuT90BN3hPXro2nV69OLif3yfz5yXnys+v53t+fnNfZGU9naafk9uS9R5fhWi/f+5yURztrE+L8kbJcv83Id3+Ebkvzfj4LZWc9ly6dXP9oUwu7FkxOPK5EREREREREREQVLdWzbLKKYMbevNv+NdL6LwU9Pcn1umeOTct/BZf/ugYAGzbE0/pfe/r64mndY0P2nCiVJv4vt77/KhfiX4196pHHtuV+BJLHQ/5L4qJFE95UdaH6xBB8ey6E3j958Kmj7g0ij5P+1+zubrfeBHnvH5/eOXqe77ZC/2u27V+ebdeQ7pEpyVCh3l5dZjyt/0VfhvbIMrL0JPPpoerbsyB0DwHAXhfnY5/W2GXgui29XHu72z6RVdyhMoDJY6/bAEn2UrSx/Za877GtQLel8vlEtrlA+OcCfb6kXb+2faqfp+TtN60nmd6WZruXhe4FL3uIAclnTH35TpsWT8vzX4dW3nlnPK33T6FPDOSqn1VSGlsRXBGMvRdq2F4+tmYwy7OE6zkpZTl/0n6bbVu23+bbe68VOPcE0wdY3lTkid2ejFeW141+Fqrrvqs6QYu1lyNqEa31hERERERERERERJQj9iwjIiIiIiIiIsrIgD2QJiseVyIiIiIiIiIiogr2LGsCBlFqPLlznLlK0CDX6+yM34nee29yNVvugHXr4mmdJiIZG+9WxSxcc0m55lIINUrnRJfTbPVIOzZZRqNzPn/EinmMsONzPH35joTnmrtIk9eGLZeOntfVmX0kv3rzzXXmyue32kYJk20WkMyLs3hxct6qVfG0PIZ6pEPbKGpylDZL2r8E6/k/PJT8IuW6zOMccS0zRG6e6va4cVzbC3ns9Win8jq35SzTZJlzepvjurceQ51MKu0hwTGvlC9b3sgQ8h5x1NZW5DHqs08dbfWQI6UDyXNet5Fpv1XmMgOAQw6Jp3XeSJR6kFWoNlLuO9/T2KfttuUe881ZWU95jEDfLKM/uv62LPsgcY7odlYkXB095uVj064j89adqkgzPdMS+WDPMiIiIiIiIiIioopd/mVZW1sbFi9ePPbf6tWrq5ZZtmwZFixYMLbMy19efrN/xRVXoFAo4E9/+tPYsocccshYGfPnz8ehhx6KQw89FAcddBAuvPBCbN++vR4/i4iIiIiIiIhyVpgE/1G1Zum02TDTpk3DvTo2sYYvfelLePOb31z1/bx58/DZz34W11xzTc31brrpJvT09GBgYADLly/H8uXLceWVVzrXzzf0Jq27r23Ich1+JD9XdYvPuF0gWyiDT7dd3/3j20XYZ70Q+0d3tZZdsau7ZYft/q9D4GzhuKG7hOfRBd825HoqtZNHxbDYtt+s520drB3ekcfv9D32NrKeyXBW5yJSy7PZtCl9ngy7BAD5bxP630HS2r4DDkguN2VKPK3PcZ+wHGtbp3Ze+j5u4LDwFt6hNo4njWsbmSmUUFIHVJYj97murvzcoyLG2triaR2+6co3HNrnurduS5/wIg7Ztv9977eu9bKFNYYIgbPN8wnByiPdgG3/5J02Q2UBcaLDldeujaf1NRQihM+1PL1ffcJibevoZ6i0ZxDfUGDXfZVHmKQr/Zya9vywYUNyOfu9uHEhmmnl62Mtn13kbwGSbVgRSso9y3Yrc00L4SvvUHWiZsIzeIJOPfVU3H///XjooYesy3V2duKyyy7Dz3/+c2zcuLFOtSMiIiIiIiIioix2+Zdl27ZtGwuvPP3001OXu+CCC8aWe9vb3jb2faFQwEc/+lF87nOfG3dbXV1dWLBgAR555JEgdSciIiIiIiKixml0CCXDMPPBMMwJhmECwF//9V/js5/9LJ544olxy4miKGsViYiIiIiIiIioTnb5l2W1vPOd78TKlSsxZ84cXHfddeMu397ejr/7u7/DF7/4RetyW7ZswerVq7H//vs71yVErL3MB6Dj/GWuCZF+pIrOZ5YWD5+lvjKeX+eACZHfI0ScvC2HRKPi8PWxkLk/dM6mGTPi6WIOV7tPfqoQeXV8eefpkDu5ry9ZpkjoN9rZlZgn94/O0+GaOyZETiLfc9W1fPk7dR6NDs8cOWm/W57TtnoAycNmy6mX95Drsh56//T0xL+t2J6eL0fnKfORxzVk45rPyZfXeW258GzXl63O8tjofEv6uk+ulz7PVd65sFy3bcupF4Jr/jJfab8FSF6Xjbx/SVn2ge0cDJ0f1j0fWPh7ki13V5Y8dC7l++Y20238ROuUhes+yCNvqmTL+Sifb/V4aNOmpZchNUsOT11H52cX/ZDw6KPx9AknjU2Gvq6B5LHXeQVlHbs6m2MfE9UDX5bV8N3vfjfzOsuWLcO//Mu/YMuWLTXnDwwM4P3vfz/e+MY3YoatxSQiIiIiIiIiooZheKojmbNs8eLFGBoaSswvFos477zzsH79+sT3J554Ig455BAsXboUe++9N/7jP/6jntUmIiIiIiIiohwYND7fGHOW5WOX71k2oGPaarjiiitqfr9s2TIsW7Zs7PN5552H8847b+zz6tWrM9fH1nXct9u97Dqrwydt3XhltIpryFiWOrqGoIQOM/EVYmjkEPXXx0KG/di6t7uy/Rbf8kOE0PiGBrhuzxq2IS8cfdGsWxev06naExGiOTiYLD8tlFkXbwtpcr028t4/cp6trQgRPqXPORmxoOclhmNX4S96WPc0Ia7Z7u4AIZRr18QfdKyfawNtk3bTUHzDm2whUq3Gtg/09Zp3iG/ebOGJ8vFJpnTQbCGaIcIAQ6dcsLW5VfWVOyGtUccEnmNSrsssZViq1bDnK50yYuHCeFo3ZyHq1eptjo3P81Wo57DQ54w89rpNkZeC7W+XPFKOhOAcOmpraC109OZE6f2vwzJdNUtYLJGvyXv3ICIiIiIiIiIiyogvy4iIiIiIiIiIiCqatLMqEREREREREVFzYw+kyYkvy5pABJOaP8A3r0BabLxOdSNzWfjmVgkxRLGtTNfhwOudk6Ke23PNiZMlN1WIPALOZYhkCgVL4jNbHX3r63uOJHK5yDrb8kXppA4i90RXZ/J3p9VF551wHaI7j+Prk4tPr7N5ID3nkcyJoX93qVR727qMjlL6tuVh0znKfHImaqGvIeu2brwx/jB7dnLmK14RT9sSFNnYksDIXEnDQ6nz8tYseYd88wPmIfT29D625QS05SmT8j5FXPeB67WcaZ/6Xm+uWj3pXYpZs5Kf5a3T9pN9nhsnwvXZvFnyMoXIT6pvBfKzvN9mKdOVLceyr7Q65n3MspSfeN7Uz5hvfnM8b90z8felOd51S2O7hlzbe6LJpjmePImIiIiIiIiIiJoAX5YRERERERERERFVTM7+3ZTKtxttVXfilOHMfcvU3X3Tuk3r7uEyJNF3OHkdnpUsP329EMN1+3QDD9V13LVrepBu9noseMfyQwxr7xNKWMU2Zrn8bfp3rlsXT/f2Jue1F2tuKlTowdbB+HfL87jYPvFw1ixcf4/edWnXV9U1aQvxFfPaO7uS5ctwQsdQYM31/Axyzb7lLenzLNeXM8drtGofe/ANT3Etp1nCNbVmrZeN7dQKHeqtQ7FDtFuN4hvyX/2ME0+HSEVg89yGuB46TNK1DN/lurvd9teGDcnPM2bE0zpFheu2Qy2bxus5xnYxWNrgEGGqlkwZQfiGTbvei1uxnU3QO3zevJqLdVuK0PtgYCCe1s9kafu1WUKLW4UBeyBNVjyuREREREREREREFXxZRkREREREREREVMEwzCZgEE04nMQWOuc82poe5Uz225XTANDXF0/bRgoUn0dTws50HcerpyvXLtuy+nowQxmCokcBct2WPcxz4mGGNrbu/0HCEz3qEWpbrue4bZA/vfU0RVsIhA6XkGT3eVWRQv/G+INtWNoAIc+uq9nOEd8QYu/zR/xu69mzdq1bGToGXYTFhg73zSVcSjRGWUIT8x7N01U9R7NtpvCRvO9lPtsOFTKces7bhtOrivEq1lwMSN5/c7++mkQjB7+UIY315npsnn46+XnKlHh6ZnfYUVEbKkNovXzG3LQpOW/atHi6SzxmNHQkSH2hy2co8bsHh5N/M6SNkO2rmc6DECP62nRajn2ItpVoMtslXpYdd+yRja6C1dSpAfLNEBEREREREVFdMVxvctolXpbddsmSRlfB6txLVje6CkREREREREREBL4EJSIiIiIiIiIiGrNL9CxrZbZ8La55R5xj3HWyDJnjR481LPL9WMsIzLd4132gf6bcnm/OJtc6h8jH08ghs+u97dD738aa00HmFrHlGbFdXzaeP0BWJUQ7YpPLsXf93fPnT7i80Hk6suwPn23nkVvOVd7lZ+GTk4vCHcPU9arykrlde52dzZNDKLRWqL+tyQ2R3ynEM45+9Ey75fqe43m0b855gz23JY/brFnpy7nmsPV9xnR+ztAnmn7wrihZzsfc62jRyHtgHr9b5mqe2e1bM6LJiy/LiIiIiIiIiIg8mEZXgHLBMEwiIiIiIiIiIqIK9ixrMrbuvVm63/p0C7Z24XUMifKtv02IsENbl3MpS8Sba7f1EF20XcOsXH+nrV6+IXWuxymPLuu+IQS2rulydPNiu+Mw6HpIdPlZn1wZhoZ34bpfs4RfhD7Hs5yPzueM5aINHVpim+e6H7NsO40MmwCSUSx5tGHShg3Jz9u3x2XoyGLbcPUudfIVKkzGZ/9kaWPSlvOVR6hcs4QY+UrbJ7qplm28bxi1731OLjs0nNx22vWc5Tj5tOO+51LeIXBpGUDGE+L3+O6fvJ9/Qhy3vNspn3Y9j78ZXNX7PiSX1fdYGVprPYbDQ/EH1cCNljpS13PNCOKqkelgiPLAM5qIiIiIiIiIiKiCPcuIiIiIiIiIiDIyANoaXQnKBXuWERERERERERERVbBnWZPJkutmcDCeDpz+qIprDoMsuQJseRx88y+5bCtLGa6x93nnoglRxxB0nhffoeZDyyMPiHPuJ7mgbSW98+p5AefANZdLiGs0j5wveeQkSfs+dA6VUDlGHn00nt60KS7/hReSy8ncY3IaAGbPjqedT2PLtVDQhTjmpJNC5adrVF5HW+pDG9v+z/semHfeQp/l9LK2fdze7vY7ZbMNAKVS7fW2Dia/7yi57Z++vuTnNtFVYdq0uEx9HUq+ORLzyJGbNk9/r/eXZDuvXXNtudRpPHnkBJxoeaHWs5UR+lku7/LzrkeQv09UAzQ4XBybXr06uaj8/OKLcR0XL04u190dl+G7R59Z53cd2ua5tn3UOowxBQAfAnAugPkANgD4EYBPRlH0omMZpwC4EMBhALYD+BWAj0ZR9IRa7vWV7bwMwJ6VZZ8A8F8ALouiSN2Vw+PLMiIiIiIiIiIisvkKgPMA/AzAvwE4sPL5cGPMyVEUWd+QGmPeBODHAP4I4AIAuwM4H8BvjTFLoih6Rix+KIARAN8G8CyAaQBeUanD640xr4miKAr426rwZRkRERERERERkYddIbeVMeZgAB8E8NMois4Q3z8B4GsA3gLgasv6UwBcCuApAK+Iomig8v0vANwD4FMAlu9cPoqiL9Qo5lJjzDcAvB/AUQB+P7FfZceXZU3O1o03rft/ljJcw5tChBX5drX2DcHSQ7BLicie/v54emAgsVyhpyeuh2XoZZvQIWS+YSy2Y2gLT9m0Kb0u06bF0zqMJS06saoeA5vjDyrGZbRnz9R6yc+ukZC+ZJ2rw3Bq16l62WJiXldnXFF7eFA8XXX+yHNX94P3CO30Dd+RqvdB+m+b2S1+j7r2Er9NXIdZflfo680n3MhW3rhlyPBEfeJJIi5Th1HI/d/bm1xNhnLJ8C+9i+fPj6floQCAIsRw9eriS/2t+iKVJ0aGWG+fECxfeYdPSVnaMNddZ9tXeYQ5p7GWr++/4gS13cts5LKyeN3cyGtB73/5+cEHk/N0KNROWUJi5T7R19eqVfH03LnxtA7DtB3DEOkkbOSzln5eSAsd1XV0vYeHaINbQahQfp9QdV+uz9yNCrvMa9uuZcpbeEcpeZLLj4cemr6ejXxkmtmdLN/1Xmlrt3bsiKfls/946zXyeFMu3oryeAZfVd9fDuALAN4Oy8syAMcDmINyyObYnTiKonuNMTcDOMsY84EoinakFVDxZOX/M9yr7odnMBERERERERERpTkKwChUb65K7rB7K/PHWx8Abq8x7w4AXQD21zOMMdONMT3GmH2NMWcD+BiA5wHcman2HviyjIiIiIiIiIho19VjjLlb/LdczZ8DoC+Kou011n26sn6xxjy5/s5la60PAHNrzPsuygMJPIZycv9HALw2iqJ+y7aCYBgmEREREREREVFGBpOmB1JfFEVLLPM7UB6RspZBscxQyjI7cxrVKmNQLSN9GsBlAGYBOBHl0TH3sNQzGL4sawIRzFhMty3XRKFvfWJeIp+WY64h37xk1nrVMW9MFs55X0S+H/9CAtBJVGQCGjGvoOskk5y0++UpkHTxM0Q0uM5HIqtclcto9cPxh7vuiqf1/pYJGnRSJcGWD0znb3EmCi2sXZucJ5M4LZH3jeR+XLcunm5rSxbxwgu1iwOAY46pfTz0/rfmFrGdux5C5EXR9ZfHRp/iiXZEH8Rbb42np0+Ppw85JLlc4H2gNSo/IwAUZCKQu++Op3XipNe9bmyyp3fv1PKLAxsTnzs+9Q9j03MWLYpnvP3tyRX1xZ0QH/Ctg8n6y2t0cDB9n/T0zIzr2O6Xb8kmRE6uLPfOiSoMJ58x5T/RjrYn/8HW9RYVIm+V63OAN++GPHvxOseO3I86R5Ccp29RhcGtNQv1PSf08ZTN2wxLZhbf/Z+W+9NWvv5tcj1dR9fzUy6XIW1h7hqVB62R+dd886XV8ziFyulWT7a8XrL+HcPJB6WOtavjD1ddNTa58R/+JbGcfEQ4+WT3/SPnzUT/2PRo98waS49fRlNdwJSHrQD2TJlXEsvY1geAqVnWj6LoPgD3VT7+wBhzLoBfGGNeGUXRb+1VnpjmebNBRERERERERETN5hmUQy1rveyai3LPtLReZTvX37lsrfWB2iGa2vcq/3+fw7ITwpdlRERERERERESU5i6U3x8tlV8aY0oAFgO4u8Y6en0AOLbGvGMAbAbwcI152tRKPdy7QHpi38iKdc9vxflf/h3uemADpk5pw/y9puOrHzkWh739J1i0TzcGh0YwvWMKPvDmg3HO68uDNFyx4iFccOmdmDtrNwwODePc0w/Eh9/6MgDAZT/9M77x4/vRViigc1o7/vPjr8RB+9buQ28QuXUhtoQb2dZPdrNvXNflLNvyCmFQsRMFy1jkacPQFzz3cVrZWZatCkOTbPNkbJvq/jzaE/eU1aElHSldwvXvLN5289j07GefTS78l38Zb6tdtVfz58fTllDRROhKe3pOSN2FPa1Luy1UqIqsy7x5yXki3kaWofejDL3UISjysy7eVZawKB+hy7DVV5/GtvUKr3iFWyEWPvtOr2MLNXPdd4nlVq1KzpTXrAyFBDBaitM2FBYurL0OkNgnOowx4ZvfTHx8+PLLx6bni++LX/1qcr1PfSqefuMbk/NEm6mvSXmtyCrrZlZehr5hgC7fA0jGquiKJcKt4Rw+Yj2Pfc6RRx9NzlyxIl5ut92S8047LZ62NDKhw1mB5nl+sJ4zMkzyttvGJosqtHh08RFj0/39yTLm9MbbntOpYskH4/Mncb06hj2NN2/fFV+PP8j24eSTU8vIcqxDhPHKOhdVeT7nXZaoLZ9Q4KHh9DBSzfXe5npMQ4RDh9h2iHZWL1sY2BzP0DkX5H1b3cN9zpFmCqf3+ttg9erkTHFf/fV99yVmLRbTMx96KLX83Xd3qoa9vuJiKHz+s8l5s2bF0/J5BEgeU/nsD4yTxmFy2UV6IF0D4BMAzgcg8qXgvSjnGvv+zi+MMXsB2B3AmiiKdt6MbwHwLID3GGO+EkXRQGXZwwCcAOC7URTtEGX0RlEkEt6MOa/y/zsC/CYrviwDEEURTv/oL3HO6/fHDz9bfgC59+E+PPf8Nuw3twsrv3cGAODxpzfjTR+7AaOjEd552gEAgLNO3hdfv+A4PP/CIA448xq8+aR98ZLZnfjr1yzE+950EADgv3+zGh+55HZcf8kpjfmBREREREREREQeoii6zxjzDQB/a4z5KYDrAByI8surWwBcLRb/PIBzUE7If3Nl/R3GmA+h/NLtVmPM5QC6AHwY5dEuL1KbXGWMuQ3AH1AZbRPAqwG8CuUcZl8N/yuTdpGXoHY33fMMprQXxl5uAcDi/XvwktnJf/3Yd24Xvnz+Mfjaj1bpIrDH7iUsnLc7nu0rvzjt6ox7yLy4bRjGmJxqT0RERERERESUq/MB/D2AgwF8A8BbAFwK4NQoisbtahlF0bUA3oDyiJj/CuBjKPdS+4soinS+sq+h/ILsAyiPhvmPKPdW+wSAY6Mo2hLg91ixZxmAVY9twpGL3LqJHnFADx58sr/q+zXrBjA4NIKXLYxD0b5x7f348g/+hKEdo/j1N051Kt85ZCxDOb7d7BNdddVQfgXZhVjE3lhHarR0xfXtmp6oo2WoGT1Km1y0WUbRsXZ1tx1EGdOkw7ME20g8VjI0Sccgiq7XVV33ZUil46g6IbrI+4bBQoeApoSEZhmwTUYizOxO/jYZCqJHypRkSFD1SJNxGTJUSMs7lNPG9Zjq0Kf+/q6xaTkCnT6NE+XrUGzL9ZD3yHupdPiCpC7SxG+T7acOF3S9uN/5zsTH/U88sXYZIlwNALB4cTydIVS9uzs+vnJ3F/WI4uIw2UKxg4w6qUJdbcMBum7P9Rx3vtZ0GIscndQ2XKIn3xGt5bIpgzdX0dXN/f4rz+tjjomnLfdUPdjsHDkCpiUEOsRv0c8qHTLsWWwrVBhd2np6HXlMbU2n7zUqR5WuGlnbElrus899wzxdl8sSZquP907ragUdVegRWUslxzBJx+t8Y3/6PP0ck/jd8lpT96QhMabvsHqMlJeUfBbqV/WQx023I3KfWFMRNImhefsmPhdvvHFs+qTPfCYx77ZLLx2bPk7cG0qqKRoZiac3bEjOmz0LqVLTwajnhcQBsD1zeP+xQa0iiqIRAP9W+c+23DIAy1LmrQCwotY8tdzFAC7OXMmA+LIsoyhKfr7mxsdx0z3P4qE1/bj8469EaWq8Sz9w5sH4wJkH4+r/exSf+e4fcOVFJ4KIiIiIiIiIJgeG601OPK4ADt53Bu550NK1Q1j5cB8OnN899vmsk/fF/T88E7f+xxvwd1+7A+ue31q1zltevR9+fsvqQLUlIiIiIiIiIqK88GUZgJOWzMH2HSO4/OcPjH1315/X48l1yTDY1c9swd9/7Q588MxDqso49tDZOPt1L8UlPyznM3tkzQtj8/73t2vw0pc4DlNCREREREREREQNwzBMAMYY/OyLr8H5X7kdX/ive1EqtmP+Xp346odfjsee3ozDz/4JBodGML1jCj545iFjI2FqH3vHYTjiHT/FJ5YtxtevvR833vU0prQXMGN6EVdedELq9iMYp7wIWXJUpOUm8M1lUUXmBpLJLPTQ9TL+3TaUdM5sIfReOWUsZWThsz3btoZR1F+Mcc3joHNoDA7HuaPaS12JeXK3Fi3noCxTpz3TOTAmSqeUkWkWQuSUKWZoNWVOMRt5aWzalJw3ZUo8rc/jeo7I7Zv3zPf6SkslZS0jQK6MEG1Aljo6t88il1eh0+/WPdo7J/H56z+OP8tz6dRlRySW6+pMz3Xjmp8ned2k19+2D4Lkt7Lcd2znuGy3dM6j9vYAOTclfR7rJEUebPmKrPeUlHxC+rPcJ/oxIHQKG++8lJ1dqcvJ32ltV11zxOkbneNOqFpM78wK233Oxvcacs1TpnNtyX0pn0GqnjPE7tK/rdifcqIBieOR93NYPXN/2o6v3gWFYZUDMm1FuY6lvoOWY6OfaRLFW05C2+kpV9ttt3ha/8kg98mzzybnybZo7txkHWfMiKflOZjlXhaa3lWbS3uOTXepnGXH3XxzzRVLqgyZWtS3zU3cby33nUbmwSWqN74sq5gzazf86HMnV32/7TfvTl1n2akHYNmp8YuzObN2w7pfnA0AuOTvXh6+kkRERERERETUFAwYrjdZ8bgSERERERERERFVsGdZCwsdwmctT4ceyP6+ku776xgbECw81IPrcNqu+ztUF+S0uuju+TraQ3Ltii3rPDyc3gXfZliFIq1dG0/L7vRVPbvlBiwVdj1HbKfckPptcl/a9pXvOSLrYltPhrjo+st66VAY19DavMNMQoR626KbXEOMQoTh+O4D1/1jC6/R52fa7/YNH9HLve51cTny3Opa/afkiuKiHezcMzGrVAocJtmkQocS1pvrtaHbe32+SvKanTo1fTlbGLWsl952R8ktnURaebZl9XKyjgsXphbv3j7kcMLIbdvaxBDPT1n2saTDMOXnRYvSj7UM16zadXc/GE/rG4VYuGDZ57Y6Bw/1ttD1SKuyvte3tcXT1cc+/WRI+92232kLQ64KAXW8d8p2xNbGvPhi+rZszwiy/ZFhl7XK2ane96vE9tRO6OzsGJseEqlPAKD485+PXx6AjnbZWLv/ee/aRko6RFbSobqT+bmAdg3sWUZERERERERERFTBnmVERERERERERB7YA2ly4nElIiIiIiIiIiKqYM+yJmAQjcV0Z8mX4zrMvWvqDGuei/Zi8nNn/Nk1Z4Hmm/8nTYhhoG372DcXSt5DikueKeOs69iGjN+2LZ7evj05LznceDw9p319csFHRVKTQw5xq6SF3j+23Ao7dqSvJ/dle7vbee2as0PXS+Yj0Xk5ZB1tx8KaDMtRlnM1Lc+La26Y8bbX3V07v43MkRVKPXMk2g6Lz/UK+OfckbmZCoNb4w+P9icXFElsdBsjj42+Tlxz6kl5t59Z+N7b6sm1Xq45qPQ5KI+vbmL6++NpmedI562SZc6fn15f27OK3PamTckyZs+a+L1e6nDMX6k1Muepbb2tg3G9dPtZGB6KPwTIMWvLuWkrXj5L6POgKA++LkR8trWDic+We2WI60nzaTv0vT7vHHWST7sN2PeJvDfoZ7LVq+Np+Sw0bVpyOVuO2ZGReFqXb8t1FoJPPsgOS2Onj/Xo/H3HLa9cZr5/0sv9ry8huY+Zo4wmm+Z8+iMiIiIiIiIiImoA9iwjIiIiIiIiIsrIVP6jyYcvy5pMqO6raWGYWUI5XQ0Np3fBr2d33Dy21cgwnLRt5zAifYJrKIymu8zLbtmJMlf3JxfUfckFn/AyWxiIZVPjlhOaa/lyGHTrPlAF+uy7EGFEocjtydAhfQz7+uJpW7iFLWzAVTOFCIaQqL88f3Q4tCX+19YmFANfQyH2v7xfabZr0jf8Lm/1DPPX5Gkhr0t5TQLAfvull+HTrss2cVfie6ytxzTwjU63qzI817ap6dMty/X2pm9AcN4/loq4liFDW3WROozR9hyZtr3OzjBtis+9P+9n6Z6e5G+ToZcvvhhPyzBvwL1tsj3D5vE7Xf9OsNXL5zjl/beAJs9x/UjQCikLiHzxjCYiIiIiIiIiIqpgzzIiIiIiIiIiIg9t4y9CLYg9y4iIiIiIiIiIiCrYs6wJRDBjMd5ZYujty9Z+D6rztcgYdJ0PQH7WeYJkrLxr3Hwz5UNy5ZrfIO94fd/yffar6/DfgDWVUXqZ8+YlZ4p8JLbfZsv1YVtPnuO2nCl55yizsdXRdxh3H1lyGqbt/zxyO6XlLwOS56Bui2S7FeL45p3Lxca272Rbra9Rrzw+Ki+Qax6WvPdxs94nmrVePvQ1JM+tqVPT15PzdBMv81H5kvs4dC68LFrxOcYnt1GW/IC2fFRp29bf23LrYv78eFo3MuJzHscmrUz9vOza9rnWQy9ny7Xo84zgey8OsY91fWfNisuUuW9t563+m0Tuf71es+TTatb2IY2tvroNlvvV99ogalbsWUZERERERERERFTB971ERERERERERBkZsAfSZMWXZU3AIArePTctPM7WHXZgIPl5x454Wg7nDAC77RZPW7vPO8rS5d9H3t2fs4QPSg39nWnjcKuTxCcUzyrQeNeu27N1z09bLg+6fNcQ1nrKEuraqCHpdRnd3W7hiZoclt41rNx3H/j+bhl60wohxFraNZplf4RuP+u9r/Ju/32uryyhSLYwWxkyJefNmJFcbjKF4dhC1W3HwnWf5/Gs4rr/tw7GdfS9TdvWs4XTexfaILmc05YbVnt7ccLFh74Xh5J2Xuh9LHdPm8qkPmVK9m3lzdYG5FGPZgkRn0ztPRHAl6BERERERERERERj+LKMiIiIiIiIiIiogp0lm5xzt10ZUwSgmIidiKdto2HqMEz9WRIDGDZU6G7N9R4px6f+vuEdVQL3lfatV4h97joCo61bvz7fQ4RJ2kaUTdv9OhKjy7Eeej/KcnxHjwsdOlQVxjg8FH9wDP/V25L7dcuW5LIyfFwN8JgIM5dl2I67npd3WIXrJSqbf11HPTqmlHdoRh5ht1LeIb4h2EKZQ9Q/j9BLyXYOyjbGNVIu7/BE1/JDHeu04xtqtMG8z+vNA/H27r47/v6YY5LLdQSOhAy1/xs1umHukaEZns98Rm33lfc9w/bMJPe5DAHX83z5hjHWM8Tat73P+1mlmcJ6G4k9kCanXeJl2ZHv+kmjq2A1bfqsRleBiIiIiIiIiIiwi7wsW/L5MxpdBasnr1rd6CoQERERERERERHYY5CIiIiIiIiIiGjMLtGzzMeqFatw/4r7UWgrYJ+l+2DpOUvx+G2P454f3INNazfh9H89HbNeWg6fXP/wetz6jVsBAFEU4ci3HokFxy4IUo9EHLgO4JfB/X196YXMmxdPt3ekLqaLl7lvdD4n13QKofNJ2PJ5NMuwyfXedujyQ+3HtGPjW0Ye5Hmsc16kjeKuLzX5WV8Xe+wRT0+fnpyXlmNDb9d33/mkpAuRlyMTj0ra6jEykvws85Tp/S3bOzlv27b0bYfIY5dF2vHQ+2Ddunh6/vzkssX2fHNmSb75xUK0Oa5lZPmdG/vjMmWOu9mzAuWNbAFyf+n8d/LyTWsv9XJ5a2TeURvXZ5V6k21fT088Xc9jNhGh92tDy2gvBt926Gdk39/mem9IpFu2nIN6nm1Z17yFiRyq+kFPNnDyb6pxygytWf/OsWmm9i5vu84v3bW0yO2wvkZ2jOCeH9yDsy47C8WOIq5+99U47IzDMGOfGXj1x1+NW//91sTyM/eZidO/fDoKbQVs3bgVP/7Qj7HP0n1QaONlQ0RERERERETUSviyrIZt/dvQ0d2B0vQSNq7ZCAAodhQxtXNqzeXbp8a7cXhoGAamLvUkIiIiIiIiIqKw+LKshmg0Agyw8tqVuPv7d2PRaxbBFOwvwNY/tB63fO0WbNmwBSd++MR8epXpOAcdNymlxHjprsq2EAsZcqTXSw+5cA/TkNV3DW9qtZDGLFy7V2fp0mxbz/W35h3mGaL8PIb8lqHHMpxPTgP2Ictt15Ak61hUy/kOSy7XCxFul0eYhs+Q91sH09sYfSzkZz1PHl9bU+p63EKEGvgeG9f2U/9O+dv0eefKtY3JI2TeNUzVlT63pBkzJl5+lvDT0PLY//L80akaJHl+ZjnPQt97miVMyVaPoWHdvoUNldZkmPbChfG2dLvn01ZnIctfuzY5T4aHdpTctm0LObetV+9UBPK5OG0asD9L2+6BrlzD5Ou5f7KEAgevl/sfPXVNheLLN0VC3tsmagWME7Q4/MzDcfb3zsbA+gE88H8PWJfd84A9ceY3zsTp/3Y67v3xvRgesiTwICIiIiIiIqKWZlB+qdLq/1E17pdxlKaXsN8r90PfY5YE+sKMl8xAe6kdm57clHPNiIiIiIiIiIgoNL4sSzHQN4D+p/sBlEe77J7bnbrs5nWbMTpS7ma6Zf0WvPD0C5g+e3rq8kRERERERERE1JyYsyxFoa2AX372lzBtBrvvtTuOPudoPHH7E/jdf/4O217Yhusvvh577LsHTvn0KVj3wDr88Z//iEJ7ATDAce87DqUuv8QB1nxOtsQ0tqQ7aeUpvb3JzzJkX286LZdA3sPH++bryluIPB2+2/LNN+A6nLZPGfWQd36MtMtN5wSx5VDxqaPv78rjWITOdZYlX13aerYh413bKSDZ3tnarR070ueF3ueu+0d/39ubvn/qKe98eDYh2kF9bct96bpfffOShcoj5iJUG5+2f/r7Lct1Nsc9g3l0qvnmu/Khzyv5CKsfZ2X73Mj7XB7njMxJJ68TnbdtqhhfTOZPzINtH+fxfOKT+zNEjrKq+608ADo5rW09tiVEkxpflqXomNGBM79+ZuK7BccuwIJjF1Qtu/+J+2P/E/evV9WIiIiIiIiIqAkwXG9y4nElIiIiIiIiIiKq2CV6ll338esyr7Pb9N281vPR09Uz/kK1yJgj3WVYznOMHwnRBd822rJtaHlXzdrdOUTXcV+uZfqGB+XNt3u+T9f9LBoZziY1MrStnteb6zG0HRc9z1b/zpRwMFtIZr25hgfJ3121nIhp6lCN/NBwXH49Q9RCha37lJN3u5clhCntXCu2u4cY1fNY2bYtrydbqLQv236V+zHLvgtRj7T943tcbPsq72s0jzJ92vV585LzZLOlQzTTnlt9w/TybmN0eWnlT52aLGPKlHja9pxt4/pb8mgjZR1t57hcTv+ueoYJ2yqZx36UZeb97OYdptqkf38R5a1J/hzM11Ornmp0FazOXb680VUgIiIiIiIiIiLsIi/LiIiIiIiIiIhCMmBuq8mKx5WIiIiIiIiIiKiCPcuajHdMeG9v+rwACUN8813JTcs0auOpZw6wLPklXNfzWUfnZ8g7z0uz5B9w3cchhnT3zSGRRw6PtDo3MkeZjW/OONsxrGfePNf6h7juslzLMgePa66nUPstRPmNbGN8c69I8ljpfEhp9H6z5dKx55qbeP3rybUNLpX8ct3k/Tudz0fLBZx3G9bI+7JvTjTbeq7lyGtB552T5ftea658n/lCH7cZM9yXzftZ0ZVsP33zjcnfkiUHqetyrs8qIZ7Hm+Va9l2vWf5GIGq05ngCIyIiIiIiIiIiagLsWUZERERERERE5ME0ugKUC74smyw8+2G7disP0UU7SxXTuv9mGfLbpbyJ8Nk/thCOEF3ps2w7rR7N1PXato996pklhMYnxMsWglLvUKp6HtMQoSv1DsFK2z/1buvkskFCsXUsYV9fPN3Tk5hVSImNCXUsfNrFLO146GOld4c+HrXW0fJIDWALFZXha7r+zdSW75TH8Q1+78xQYIi2oxnvv75h91X6++Np2RbNm5csX57k6kQuiOPRaiHJvkKd0/U8t2whlK6/p57PKrZzKUQb73uu5hFOHCJtTLO0TUT11hx3HSIiIiIiIiIioibAl2VEREREREREREQVDMNsBtu3A+vWladtQ0bqGAtb/E7acjmr90hCIcIe7LsubJ2bKUwjrS71HPmx3mXkse28R26t58iwjSzftr0QYc42oUNFs9TDNoJYMqzF8brU7b1luM20diVUuGPavsvjWvAtU+5zvf/lZ7nrbKP15cF2C9+yJX1eh+MIdHmz3W+Tp2dyP6aNoNfIUXXzIH/P0HDyt8hjn0cb7LPvrPWwDYMow8BtJ3WAZ9Y82opWCEOzXRu+o5aGCIdu5MjI9RwlVZ7+AwPJ5WxhqrId7O4Oe78db56rZgwXbzZtja4A5aK1nzCIiIiIiIiIiIgC4ssyIiIiIiIiIiKiCr4sIyIiIiIiIiIiqmDOsmYwOhoHrNuC/m35zHRwfMqyWWLVQ+QByTuPQAhpeWm0vPOkuKada6bhnEPkuWh1zTLUeQi+eS5s+6BZrnPXczWPfDa2eTJPU39/cp6tyU+l7wUyGYpjvfSxtrWRPm1Ave8Lruex/m2pOWZUY50o0Z54zl7RFLZ7w8hIPK0PdT1zltmuITnPto9tv9Mm+Dnj+DyVB9spEiJ3oOu85zbobcWfZ82ylGHZd6PdM9O3a/nhPu2za+6uLGU2ku9zQIjcuiGeA0JwzbkW4jkpy/N+Wp4yfT+Xp/jUqcl5zz8fT+vmRufIdJHlWPjsu1a8hvJmwB5IkxWPKxERERERERERUQVflhEREREREREREVUwDLPZ6DgK2ae3uzs5z3Hobddu03l08XfmGIOYR9ifLUomdNdiS0RUFdfwlKLncN1pZdq2VcoQ1uO67+p53tU7NDR0yELeoSW+XfdDcA0Vaqbw3hD7wHadp12LVe3U8FD8YdWq5EzbRSsapNFSx7jbnYxs+1/OKwxsjj/oUDP5ua8vOa+nJ55euHDCddTHvq0tfZ4UItTYxjcMuVSK66X3f9p1nyVMLHXbtpO8gWGYIZ5xqs9jt2N/513xctu3J+fNn++0af9YcvlwZGmzfO9ztnMkxLWR973eJnm6Jushd2WiPcsQZthM99ydhoaTdfIJVbSx/Wb9HL9lS+3lbPcTfX3JMvQtZE5valW8uJ5btiZy06bk51mz8r2/EDUSX5YREREREREREXlovtfKFAKPKxERERERERERUQVflhEREREREREREVUwDLPZ6FwNaQkHoPIs5JxTwzVXUpbhnJPrKTJY3paIxVJHV47FW7fnmtMhLbdBFlOmJD93dsbbzpK3IS1Xj87HsGNHehky30zeeXDqPRx4CPXM3dDIPBGuOV9aYbjxLHVM+922fCq6fJn7Q1978rqU0/o2UZQfdMITW54skV+o0CMbwmLVoj7Srt96H3fX69z3XpBYUR8cj3tzlnZqxozMxTeU7bfo+5dcNu1aAJI5uaql3B/1wbZdYB5C5bAKcY9KphFLlidT4T73XDy9bVuyjF6RN0nv/+KwWzLW5HqqjQywz/PWyDbMRu46W54sqRnzkGWhf1fev8fW/uhn8jT61iyNjMTT69Yl54XOWWZj+52yHWmBy5UoGL4sIyIiIiIiIiLKyIDhepMVjysREREREREREVEFe5Y1g9HROP5G922Vw87bimhPhs3ILuI+Q2vnwVq+d/yLn7zD+yRb+bLrtWv3eS3ErpNl6LDLF16Ip2V9geTpWaxza5IWEuF7PJsprKIZue6fZg1tDREC6hqOniVERIZw6DYgLTxal5+49mzhZatXJ+elxVV0zkws5trG2PZxK15fznWW8TX6Ht6bHkOTVr7ej7asBInQQn0CiUe8Vtz/ku0ctIUOOYcLyQssQ+isa3vnu/9dQ5lt7Y+8pz//fHJeWmiYDu+17hK57/Qzq6iMrJY+Ttaw1cGtNcur+TmlvBBtkW09j8whVlnuo3J7Ibbt+zybtxBtWFpot5ZlP8o2Rt5SZYoFAHjxxXhahj8DycvGFq5p49o+2P7WkJeyDsVua4unBwaS82T7oMPiW/3eQ8SeZURERERERERERBXsWUZERERERERE5IE9kCYnHlciIiIiIiIiIqIK9ixrBlEUB5EPqiG4HQPn6x0THjrnV5U65zDz4ZMza9q09PKSw7un58CwlZElL1NanXX527enby9Zx+bIU5AlV4NU75xrobke+xC5u7IIkessRB1D5G607TvfdlDmE9J5TGQuFHlr2LIluVzHdHFi6+RC8qR/5JHkPNnoiNxa7d3JnGVpxQHV171Uz/w2rm1dJvLHyiQt69Yll5MHypKjzJfv7TDvfFo+fPMhyfVs55xtXz2zLl5PH6aCJWeZtV7DQ24bt0g8S/z8p8mZr3tdPE+cZ1nay+nT3fKmzp4dT8+alVxO5lSq+pnJhEVO9bIdwyr64cihYnnnthwaTq+/rY3M4z7kyrlMy4NSoQWezX3Zfpqcp/MgynnyUtDP0jJl6Lx5yXm29NS2XGSu5HpFpOe2LJXSz6205xGgJf5kI/LG05uIiIiIiIiIyAPD9SYnHlciIiIiIiIiIqIK9ixrBjIM09YX15Nrd/28w7N8y3ftgtys4WWSLUJq6tTkPBn+aAsftHEdSlrOG7aEF8iho4FkV2zdDds1rDFEWIJkO98zhWE6jgWfd/igjU/5oeoUIsTO9fx03W6W3+YT2pAlBNHVlCm1p8vlx9Oy7dBDuifomba4kKefjqdFmKHrsQDs11To0Iwg566usK0Rk8vK0Eu93MKFY5OjpY7ELNd7bIiQydH2YuKzjBwdtkTqtnoIerE9fT/KfSDpMKIOvVNSVK0Ht/uETeKY6visABeRDJ/Sp79sLmTzoB9FZTX0Pu3sjM+7XO55lhBZKUS4mo0sv5FhZ1lSTcjPMsROl5H4nOF5xzXdg+PjVF2fmWztnq09lu2N1tkZryfDmoHUrAcAkteobf+43iesx0k3YuKaSnvm0Gy3Sj1v62C5LqONycxCNGHsWUZERERERERERFTR4v+eSERERERERERUfwbsgTRZ8WVZM5g6Ne56n2EUptBCjLKi2eofOnzNNwTLdx3n8MHBrfEH1T+5XYTNzJiRXE/2lLaGXdm27RG6qLtQ27piyzrqEYJcQ3t8QkWzkN3DdYiCDCfpU+GnU6fGx0aGpzhG6zSteocr24QOUfMtX7JtK0Tojd6ubfSpIuKR9tpFqFPXuoeTC74oKvbcc8l5clg7ES4IINmwWC6U5AhoyfrmsU+kIPfAvr54Wo+sJz/rBkLGoslpfZ9WoZeJeY73wBDnuy3ETof4NqMQ54HeB/LQ6wjHRPnt8THcsCE5b/Ys2yiO8QUQ4plmdMlSp+WsZVjbuuQ8eW+TYWP6fi75poVIr9M45DWqhwz2aYCq4+nHJm31soWa5d6GeapnuKjtd+rIPynvZyqf/R/i76EZM5LbPeSQeNp1RE1dZpBzyXJxu57H+rxyGUnUGKfaETWdXeJl2ZFHH9noKlhNa4WnWCIiIiIiIiKiXcAu8bJsyYVLGl0Fqye/80ijq0BERERERERERNhFXpYREREREREREYXGSNPJiS/LUqxasQr3r7gfhbYC9lm6D5aesxR3fPcOPPn7J9HW3oauvbpw/HnHY2rnVKxduRa//6/fY2R4BG3tbTh62dGYe9hc521FxSJGe/YEYB/OuZF5DzTXXFKu8e+2XFW270PkFfCph7Xs4aHkFzLfhk5GIPIQ2XKF2fKHhKaraMv5Jeus65+27xqZ20MPeS/z2ejflpZHQ38vc3FUlxE2L1+z8r3ObUKcP3JZ5xyDnm2A7/GU13ZVGTffFs+TC954Y3K5E06Ip2ViFPV5qD2ZW6soLwDHxDH1zIETjNx3tkZM50OSn0XOslDtVNo5E6ptkPmoXO8hIfID5q1qW+KYDg8XE7NWr46nZc6yYnv6dS73m6bXa9RjtG9bmiVXkiQvm7rn7bQ9aKQYUjlI5WoFSxm+OStd73N55AyVZehcsV7XsyUpnW3f2dia4NBsv9mWdy7E9pLHInlsu7sdnyX03xDyIbOzK3sFNfXDfZ61bO1n2uaYs4xaVSs+9uZuZMcI7vnBPTjrsrNQ7Cji6ndfjcPOOAzzFs/D0ncsRaGtgDuvuBP3/vheHL3saJS6Snjtha/Fbnvsho1PbsR1F12Ht1/x9kb/DCIiIiIiIiIiyqh5uio1kW3929DR3YHS9BL6n+4HABQ7iph3+DwU2sq7bM8D9sSLz78IAOjZrwe77bEbAGDG3jMwsmMEIztGGlJ3IiIiIiIiIiLyx55lNUSjEWCAldeuxN3fvxuLXrMIppDsP/rQjQ9hv+P2q1r3id89gZ59e9A2pS14vWzhQSGGLLfJOzwu71CnEOFZtjITZehYv3Xr4mkVv1CYJ4adLyVDpCTv7uK2/u7txZpf6/3R3p4+XHQIocN3qstLD0GRh0MPbS6irpxDmPSh37Ytnh5R789LpbheMtrLdp3XO4TVtm2fEPEs7VSI3+MbAtqwbemT8IEH4ml5AukTTVyYQ4uXJmbJMDRtf3niyYvBcqEHCVXPoR23nlvyt8lYPCD5WwPEu+d9jdr2gS2U37VM2y1Dz5O7K+9nENcy9D6YPz99Xlr5tvD5xP0cSNwoZIia3h++7UPodivEPVyXEbqOVee4PIj1zEmB8KlQ9DU0OFj7+aQ63NeP17HRlQwQgyt/j3ymzEOIe1SW9sw3xYMzeb8XYZi2jAJZhKh/s6YMqicDIPxf/tQMds0z2tHhZx6Os793NgbWD+CB/4v/aPnDj/6AQlsBC09YmFh+45qNuPPKO/GK97+i3lUlIiIiIiIiIqIA+LJsHKXpJez3yv3Q91g5EfLDv3oYa+5ag5P+7iQYka1woG8AN3zuBpx4/ono2itAAkYiIiIiIiIiIqo7vixLMdA3MJavbP3D69E9txtP3fMU7v3pvXjtha9F+9S4v+v2ge24/uLrcdQ7jkLvQb0NqjEREREREREREU0Uc5alKLQV8MvP/hKmzWD3vXbH0eccjZ986CcYGR7BdZ+8DkA5yf8r3v8K3P+/92Pzs5ux8pqVWHnNSgDAKZ8+BdO6LeOPCwbRhHM+5J2Px7X8LLHq9c6/lFa+axy+N49hz31V1TfA9lo9F4HcBTrdhpyn8z84pnCypjzasSOeblPJDNLKzDK0vO08Dn2sfPP+1fOcyZLXMcR5HTpvW9VJ8YqUkH6d20zk9NHn8e67x9M6bx6643/cGWoXORNVGbb8Ob7nZz0l6uGZcycE33yEvuWnbSsLeT653k7qfqxFxXQV950fuC66kQ9wj807p5LrPFuZvj8zRD7aUZGnyfW3FXP+68Y3h7CW8yOhH12pwJVsZB7lRrZh3nkdPe5Zed9rfLc92e06v3TX0ozNdFPomNGBM79+ZuK7t/znW2oue8RZR+CIs46oR7WIiIiIiIiIiChHfAlKRERERERERERUYaIoanQdnBhjIp+6GmMw7+B54y/YQD1dPVh52z2Z18t7qHYfocIwfbbXNGE+w0PJmTJkSvcB9xgGPVSX5sT+0rFbcnvtRacysoQPugpxjtvKcA0x8g1d8Sk/jzBM32PhU0YeXe7rHRLhKvQ+sR1D53NJtz+2FcXnZ9bF29JRH12d9Tt/XMvTXENis9TD57iFCOnNWyOv0WZ8bpmItN+TpT0OvU/y2Md5h1LV8x7lWl6WMkO08T7bnczqHb7XLPs8j2fpRtZjZzlLly7B3XffbcZZvGUdaEx0RaMrEcAxwD1RFC1pdD2ayS4RhvnUqqcaXQWrc5cvb3QViIiIiIiIiCgjhutNTjyuREREREREREREFbtEz7LJqllGIQvRVdq1u2+oLvK5hgTpUKcmGn1NSpwjgUfNrAefc1wvl/eIWXIUQddzsN7Xaz3DcvIIgaunvEcFtq1XHN4afxi0DN2q61KKR7nUg2iWUkaK9YgOL2/L85iFDrf2DZt2HWlPlxFiVNoQowa62lVHK2tkCGjoMMOtg8nfIq/ZEMc3j3QPjRzl3PXY55HOwPf5pFHySKdSz/bNVZb7RIj7UIhQ3WZNSUE0mfEKISIiIiIiIiIiqmDPMiIiIiIiIiKijAzYA2my4nElIiIiIiIiIiKqYM+yJucb456WJ8I3Rt83pr2RuRryyKUmpe2fUHlRQgxJj2GV20gYHC4mSt2po+Rex6HheD3XtGdZ9oHrORgiX5Ft275C5Cvy2Qe2efXOV1TPHCRZ2jCf9i3Evsp9/6sLUeYpW706uei8efF0V2f4PF+uZeSxXpo8cvS55jpzLV832/JzqWTJpaNXTGmUbb/FsQhrmSH2RxV5Iq9bl5zX1xdPz5+fmDXUvefYtOtv0fnAstwTd8pyvsjPmwfSc5Ft2pRepvxt7e3u10webdpEl9P7QOZTbMW8XjY+z+pNSzYeqiEpJE9QpzL0Hh5tL8KF6zNgHrmMXcvQ7axs0rq708//EH+Lubb/+jD5np8teS4TCexZRkREREREREREVMGeZUREREREREREHtgDaXLiy7Im5xpGVM96aPUcdjjv31zvfZx7CISlu3vanDzCcZuFJSrVOUTHV95d/H3PXd82Jm1e3udIljqGDmtxDYHOox0ZLXWMTcuINAAQkVoorHsmMa9DxHB0d3ellx8gTDJEiGne9xrf8LhWb/tchWgHfcPdva+bvBvvAOS9p+hZ3SlT4mkZngnYd0He7Xg9w/xDhITnkQrCl+s9xFW9w8zrKXRaBa2Rbbzr9duKv42o1fHqISIiIiIiIiIiquDLMiIiIiIiIiIioorm77tORERERERERNRkDNgDabLiy7JJwha/7xrnnyUvQYhcQKHL0FzLdK1HiH2Xd060LHkJZI6EwvBQ/EHn9bLlPZNleOYqcT2GvvtY0j9F5pEZGNDLxuXI/DC2vEa2uvheo2nl2cqwlZMlf43vtTHR5WzyzokTYkj0LPvRtX0eGnb8nStXps6ac+CByS96549Nbh2sfb5PhE8+pEbm5qx3TrQ0up0qtjcud5dr2+SbV0ee1zqnZIc4D2XOvsL8+c7lFz3On46S3znnuw/ksiLFYFWZM7uzlzdeXVzbMNfyXNnK7+wM3waEfsYMdR9q5G8LTrY/lrbI2saL9fLYp3nk5nQl19N5C+f01t6Wbdu+9xrb/pfPvaH2Y9Ocn0Se+BKUiIiIiIiIiIiogi/LiIiIiIiIiIiIKhiG2WR8u9XmMWR23uXkHd7hU4968xly3TeMzkrHv0iOoT31DMWbDEKHOOatkeFxtnpIIeqUx+8MEZ7lGOEC7LVX8vPatfG0jjUeHBQf4jA33RzIMMBGhlDWOwQ3dOgN+WvW/Zh2bev6yrCrZmnTfeV9LeSREiTv+0ZoedQpdNqSLOtNdJ1QZfjei5vxHMnC9be2+u9stNZu2SkNjysREREREREREVEFX5YRERERERERERFV8GUZERERERERERFRBXOWNTmZO0YO6Qv45RjIIzdSiBwAvrksQuTJCrHtesb5Z8kZYZs3NCzyIZXifEV55wUKJW3/Z6m/zP3U1Rk+Z4fr9VbPXHxZroW8c05JjTzPbG2Ya15BWxm28zNxHTrekW31GF18RHLZ+fPjD3oD4gbT0em2D7LUK3QZE1nWp4zQ+XhyOceTDwmJWVsH4+3J9HSdnckibOedT51922BdD+e8nTIXn/5xjvWQZcr9BgClUupqXu1sFj7XTd7PI6Hugc7lDw/FH9RJ4vP82cj8g3m3pTrfpLzu5a6zndO+9bIJ3faF+Hul3vm5muVZ2vc5xlez/O56MI2uAOVi1zmDiYiIiIiIiIiIxsGXZURERERERERERBUMw2xyttCJZtHIIYnz6DKcp3qHGNnIc0vqCnSe5R2ykHf4S9bthionS4iLTyhwlvr77P+890+W8JTQ11C92zrX9s26ve7u1DIKA5vjDyJ+p6BCnVqhbfUVOpy+7vtKxl2pGKzBwTi8vq8v/l6HYNnCMPMOdbVJ25cydBkAipYHpbyPR4gwVWnzQLK8Zn3uk3yuoUztmTyv9YNLyg6yhgLLsF0geUFYwjxtfEP5fdh+m949a9fG0+JWgDm9Ya7JEPvHZznXbfnK+1kiC599YluuFdsYokbiyzIiIiIiIiIioowMgLZGV4JyMXn/uZiIiIiIiIiIiCgj9ixrMrqrb6nk1+XWdcQX15HempWtjonfJkdTAtyHnfPZli2EIIfwJt/u4bLrtR5BKa38EKOK2uQ9aqmW/N3J5eShChFGlPf+aaawAR951NdnJMt6j3rrOhJhYXBrPEPG1gBAT088LWNtFH2dt3d2xeXnHNLuWr7veex6nFrhuvCuo+N9LctIeI1Ms5BGn8dFyzkvudbRtn+qtt3emFQQofa384ijAba9Zm28LR365XgIxwmhLPqVYRuSNUUjn491GLKkqy93T5vo9hIinDIPrs9r+jp0bdN8j1veobTyB41azuMQYc7btiU/hwjDbLWUOERZ8IwmIiIiIiIiIiKqYM8yIiIiIiIiIiIP7IE0OfG4EhERERERERERVbBnWZOT+TBsfGPoQ8fe1ztWPZHHRydrkGNo9/cn58kgfc98J2m/tSoXhKiXzjXhkTrNqmrbfevjD319yXnidxdFzqOh4WS+BFs+MzlP59fzyfnlml/Ptwz9W2TqElvOi6LncWqF/Eg2IYYst5VRz/2TJU+W63Jp9c+yD2znYKL9l+2ZzlmWViCQyGfWXupIX6+O8siP6Xwu6XuBbBR08pYsyb0c6pHL+W+pY1oumjz2v2tOnxDb6ijp8tMbaJ99bFunvT1Zf5/fbdsH+piFyFEUhCX3qit56U2dmmFFuT3L+e6cZ03vZMvvcc1tubE/Xk5X0aMZsT54taucVvLWoH/KvHm15zXy2STv/Mi+ec/k/vHNieaq+l4Qlm0fz5hhX3a872ux7fOdjyQjI87FETUVviwjIiIiIiIiIsrIgOF6kxWPKxERERERERERUQV7ljWDkZG4n6pt3GfF1u01l6GNHbZt6/obpL6yvzlgj2GSy+o+1WnzQsdFKq4hjboqrtWq2o8yXOvZZ5PzDjzQqR62Lv5yCGq9nvNQ8J5CHLbEqPOqjJxPBedrKPS2QpXvG7qYp7zDO7QQoWfr1sXTOjqot1eUL2fOn59eqUcfTX4WJ3Khd+KxJHmcn677LsRyVWyNcmC+IXW++1yG8c7sFjPUb5apArJcM7IYeZ/o7Mw33LqR4dy5nIOB2U5p/QjlGOEY5IYrnwl0KJjNqAw77J6ZmOezn4dKXYnPed/rvc4Fy4NYQR2o9vb08PrQoZd5XHuu6Qxke6ZTY4S416e1Z4D92vDZdvU1Gp/jw1Xbnni7ItfzTSvia+dvjaL6bpcoFPYsIyIiIiIiIiIiqmDPMiIiIiIiIiIiD+yBNDnxuBIREREREREREVXsEj3Ljjz6yEZXwWralGJ6kok65tPyZcvTIT/bch1Y8yDY9oEt4YbrPM/9aqu/NDQcz7PlC5Hp1wCgrS2enj49ns40hLXMc7RgQXJeb+/YpMwJovMlyOHebcNpT5uWXo08crm45uKw5Wpob3cbYlyuV+98Oa75MPKuRx75wPLOu1hPtt9iS5+4aVPtaSB5fXV3x9doYd489w3IC0U3QCkby3Ks887T5NrO2sg2uF3lPHLdtpTHeZvLPk5LwmO5iWSrf1wvW76fDrE533bEN99b2qOVzH80Xhk++QjrmasRSNZR39dcc6UmH7XUPsj04FGbzsmYKN/xHl5vrtue2R02H1hBP5fKg6MeFovdE3+eddVq92VN7h59XWzZEk/bnmdtbH+uyHZRbgsAtm9PL1Pf7ncK9iwqKp3ID6j43ot35ips0j9hicbVsqfu5s2bcd1112HNmjUYVE9mxhj80z/909jnJRcuqXf1Mnnyu4+OvxAREREREREREeWuJV+W/fa3v8Vpp52GftnlRdAvy3ysWrEK96+4H4W2AvZZug+WnrMUd3z3Djz5+yfR1t6Grr26cPx5x2Nq51QMbh7EDV+8ARse2YD9T9ofx73vuAltm4iIiIiIiIiaH3NbTU4t+bLs/PPPx/z583H55Zfj0EMPRbGY3m3Ux8iOEdzzg3tw1mVnodhRxNXvvhqHnXEY5i2eh6XvWIpCWwF3XnEn7v3xvTh62dFoK7bhqLcdhY1PbsTGJzdm3+CU9uSY2lIdh7XPwqe7r3cXYVvf3bT9Nt56KbJ0LU77PZYRv9HXl5xnC8NMo3+WdRjotP7bQGoojq6HfCetwyjkZ1uIha96hrLYLrU8QqR8rgdbhJ2W977zDYuqpxAhfD70NSQ/6xC1kZH0cnbsiKeT4R3Je16hU5wICxcmC5EbXLcufWMyLLvUkbqY67UA1Ddkx7Yt27Ud+hryDdHM5VyVx94xDDOLtGwGen+7pmrQQuyH9DDMCRdtleV3+eyDLGGLMqQyj/u0K9vjmi/X+69czhaCW28yRFzeJ0qlZBvfIQ+cLZzek2u7Vc+0EI0M+czyp1dheGhsuigaQltIuL7vu24vyL1Bb0x8rgr/Tdm2LZw+j5QdRI3Uki/LHnjgAfzoRz/CkUfmk4tsW/82dHR3oDS9hI1ryi+/ih1FzDs8fvGw5wF74onfPQEAmFKagt6DevHCsy/kUh8iIiIiIiIiIqqPlnxZtvfee2O7LRviBEWjEWCAldeuxN3fvxuLXrMIpmASyzx040PY77j9cqsDERERERERERHVX0v2jbzooovwhS98AZs3b851O4efeTjO/t7ZGFg/gAf+74Gx7//woz+g0FbAwhMWWtYmIiIiIiIiosnKoPxSpdX/o2ot2bNsxYoVeO6557BgwQIce+yxmDkzORS8MQZXXnllkG2Vppew3yv3w3MPPgcAePhXD2PNXWtw6mdOhTFmnLUnTg7jG2Jo7UbmlPElczrocPpE/S0JneqZv0kPuS7Z8pLpNBQyRcWUKW71qDq+jrlpZP1LpWQZc+fG07NmudUjC9ecI7acDnnkn2nGYa6bKdeKK99cTL654FzqEUra79HXuby29XnV1hZP6+Hq5XW/aVM8PWNGcrkixMWhLxSZdFBXLOcERqHz2/gew45S+jmYzAXnVXxdZcqJFig3mQu5qVCpVkPkRpX3M1kv32ch23pynm/uOtdl83iWk2XI5y4g+Vyjn1XksbfmMhrcKgtMFhLg4nO+Z1hyNtXzmtFsz4cd3aJennX0fQ52XS+5W5Pr5P3s4nP+d6jdmNZWVJXv2cDZcvzKa8q3/XQ+/3O49kL8fUrUrFrg0bDabbfdBmMMurq6cP/991fND/ESa6BvAP1P96N7bjfWP7we3XO78dQ9T+Hen96L0z53GtqntuSuIyIiIiIiIiIii5Z84/PEE0/kvo1CWwG//OwvYdoMdt9rdxx9ztH4yYd+gpHhEVz3yesAlJP8v+L9rwAAXP2eq7Fj6w6MDI/gyTufxCmfPgUz9p5h2wQRERERERERETWZlnxZltV1H78u0/LDQ8MYGRpB5+7lfrLDW4Zxw8U3oGuPrsRyW57aMlZ296zuxLzbv3m78/Z6unrGus/6dlcN1eW/UVzrWB1pKX53e3Ko7RAhHCHCN7dtc1tOD6suP8su27rHtK2OPqFseQzvbuMapqd/d4hQH9fwWVsd876+bOXbjm/oeoX43XkPKd7IYyO3rUMsZKiljSWSHKtXp6832/bvMrKQefOclrPVw3bd+UZz1PP+pUPI5Gcd3SR/j+9vc23f5HKu1/y4ZCqCzi7LgrXrkWVZGQqfR1h8gu0EVdLqmHdqhixChJynhjsCKNhOXsd0FcOWSG9nckV9IYoHjyztuM/1VfUDbHHyHhd+lnNLFt/bm3lTwfg+Z8h5tnOkmG/Ef33lEK+fdwqAEG2Mb0qNVvgbNJTmuatQSC31smzHjh2YMmUK1qxZM+6ye++999j0U6ueyrSd1atX49RTT8WqVasy19HH8uXn1mU7RERERERERERk11Ivy1auXImlS5di/vz54+YlGxkZ8d7O/Pnz6/aijIiIiIiIiIiImkdLvSzbb7/9AADf+c536jISZb0YRE7dVF1HYbKp54hw43EdrajoOaqla9fx0PS2pk2Lt9XTk1x26tR42jbSpOuxzhCd4iXLfvQZZc61i7/+nHfYj2uoq9bIEE1XudffMsxTIfBojHnvb9fwIP2z5Gc94pkcAVO3DzIsUJaxfXtyuSHEIehV14KMq9YX4qOP1q5Y796JxWzhNfUMH9HS2kUd4RUkhMxRq48KVu/2zPU+nZhnO+nk6K+auBZ8nwl8QwJDjAosWQe2te0Dve90o5OymJRlMMbC8FDtQnUdRaF6FO8Q4csJOY/EuWFDcp5sr3WaC3ncfEeMDHHNuqZ0yJIqw7X8enLdVyGeKbO0MXLf6fPA5++VRoaZt8J9jiiLlnpZtsceewAAli1b1tiKEBEREREREdEub/J047EzxhQAfAjAuQDmA9gA4EcAPhlF0YuOZZwC4EIAhwHYDuBXAD4aRdETarnjAfwVgFdWtjUI4GEAXwfwwyiKoon/IjvmoiMiIiIiIiIiIpuvAPgygD8D+CCAawGcB+B/Ki/SrIwxbwKwAsA0ABcA+BLKL8N+a4yZoxb/IoD/D8DNAP4OwOcAtAG4GsB/Bvgt42qpnmXS+vXr8YMf/AAPPfQQBlXMhTEG3/72txtUMyIiIiIiIiKiycEYczDKL8h+GkXRGeL7JwB8DcBbUH6Rlbb+FACXAngKwCuiKBqofP8LAPcA+BSA5WKVjwG4LYqiEVHGJQBuAvAeY8wlURTlmmi+JV+WPfTQQzjmmGMwMjKCF198ET09Pdi4cSNGRkYwY8YM7L777o2uYjD1HuLXp/wgdAIOGcAvpl2Htx6Pa/198j1oMv2GLSeRK1sehBD5g7Ic2/qeZ255w0JcM7bys/DJmzfp8j3I3DQ6YZS8APJOfmUROk+T7Vjra15+bmtLL3Phwnha5+RK7LoBNdPWyMh295FHxiaLKrHOUKkrvQzBls8sj3xOabZsSX5+UQQF2FI2dWBrcmZ77X0XIudUFra8TLJ815x6NrZj6Fu+a+7JUslzX8nzeO3a5Dx5/uuEUSmy7DfX4xuijXHOvaev+XXr4mnHfeBaD2Ccpls2VnJBn4cfBLo/2k5CT7JeTz+dPNbylFy8OLle4LSdVULku3LNC9fe7vcs2izPQnnnfg7995xveaHzM9Iu560oR5x+VX1/OYAvAHg7LC/LABwPYA7KIZtjN+8oiu41xtwM4CxjzAeiKNpR+f4WXUAURaPGmB+j3BvtEAC5vixryTDMCy64AEuXLsVzzz2HKIrwi1/8Atu2bcO3vvUtdHR04Gc/+1mjq0hEREREREREk5hBOTaw1f9zcBSAUQC/l19GUTQI4N7K/PHWB4Dba8y7A0AXgP0d6jGv8v/nHJadkJZ8WXbXXXfh/e9/P6ZWhhIcHR1Fe3s73vWud+GDH/wgzj///MZWkIiIiIiIiIioNfQYY+4W/y1X8+cA6IuiaHuNdZ+urF+sMU+uv3PZWusDwFxbBSt5zc4F8DiA22zLhtCSYZgDAwOYOXMmCoUCdt99d/T19Y3NW7JkCS6++OIG1m7X0MhhidP4htH5hlr6hE7orukhhvV2FTrUbDxpIVhZ+AxTHiIUySaPEB3bOiHq7zosfC5kGGYDQy1DCBGWIG5XAIDVq+PpefOS86ZNi6e3bYunR0aSy8lQwqLex+Jz1bklV5ThUirOs70zDsPUEUtpUVa1Po9t1zEk2Xe96dOTn+V+lKcjkKx/R2f6+RmiDdbSor/0fss7bGZoOD1M0vWS9d0/PuePVYBcByHChG3nqm+qA+cwNx1qKQ+qZximrEdHll2aEmc4Wupw2lbVeiGeY/TOs5wjPsettzf5eceOeLryb/wTsnkguQ9s0a2hQ9x9y/B7Xg6fWsW1jHr/jeN6Xtfz+d+3HWSIZsvri6JoiWV+B8qjV9YyKJYZsqyPlDIG1TJVjDEdAH4GYDcAp+0M18xT873xcDB//nysq+RgOOCAA3DttdeOzVuxYgW6A+RkICIiIiIiIiIibAWQ9tq/JJaxrY+UMqzrG2NKAH4OYAmAd0ZRdKu1poG05MuyV7/61bjhhhsAAB/5yEfw3e9+FwcccAAOPvhgXHLJJXjXu97V4BoSERERERER0WRXmAT/OXgG5VDLWi+75qLcMy2tV9nO9XcuW2t9oEaIpnhRdjKA90ZRdJVbdSeuJWNiPv/5z2P79nLvvb/6q7/CtGnTcM0112Dr1q340Ic+hPe+970NriERERERERER0aRwF4DXAFgKYKxnV+Vl1mIAv3FYHwCOBXCjmncMgM0AHpZfVl7M/ayy3eVRFH3Hs+5eWvJl2dSpU8eS+wPAaaedhtNOO62BNWq80PH643Ed6tk534PnMOKubHlY8s5NIH9aI4eczlve2/JNd2U7B/MeKtynzGbMBwhM4NqWB06HyHsc1Cx5NFyPm2+uEp9jpdui3XePp/fYIzlPpvuRuc4GBpLLyTamvT2Z6qF9sPZyABJJ0kbn7Z1S4yTbIbPNyyPnV5qOUnr5nZ3JY1bJ6AAAeGYwmZNW5h7Ko84qNdyYlDRPNcnzqejZRsrjluWS9Dmmunz5W33v0wVZSJadl6K6Hq2Vn6dqX/XsmbmMLHnD5P7S+y7t0S4tXx+QLVeVlyx5HT3u03N6R9XnjPUbp3yZvxIApkyJp21tXx45p9Jy8oa4LnzzJ9r45sOzLWc7l6Vie/3aikY+R+adN5ga7hoAnwBwPsTLMgDvRTnX2Pd3fmGM2QvA7gDWRFG0M7TyFgDPAniPMeYrURQNVJY9DMAJAL4r85BVXpT9HMBrAbwviqJv5fKrLFryZRkREREREREREeUviqL7jDHfAPC3xpifArgOwIEAzkP5RdjVYvHPAzgHwIkAbq6sv8MY8yGUX7rdaoy5HEAXgA8D2ADgIrXJ7wN4Hcq90LYaY96u5v8piqI/hfuF1Vr2ZdmVV16JH/zgB1izZg0G1T/PGmPw2GOPNahmRERERERERDTZGbRoIng/5wNYDWA5gNcD6ANwKYBPRlE0blfCKIquNcZsA3AhgH9FeWTMXwH4WBRFOl/ZzpE5T678p30aAF+Waf/8z/+Miy66CIcccggWL16cCMms5bhjj6xTzfxMnTptrNtqljCxRnZtDRHelCgjRP9qRW7Pt/uzbf+7hqDI5YaG04f8bpZQy1bpQp12bunQpmSIUfih0237x3XfuZ5nNiHqkYVzmfPnx9OW69x1v9b7d4Yg67X3vOS8efPSj68M75C7UYYOAslzXodo9vTE0zokSu7ztHAaIFl/HepnC/3LO8zZZz3XMDG9rOvv1HWy3QO7Oid+vso2rd5hyJLveq63ftewPddwcVt9bee/TT1DjfW5U8+wK30s0sKJbfQzmX42kkKEzrlq1nuINHuW3/6Qvy3LPrWtl9YuhmgP6n0sXNsH2/lva898w+R9/tbQbL/NNa2ObV6IZ1hqHVEUjQD4t8p/tuWWAViWMm8FgBUO25qfuYKBteTLsm9/+9v40Ic+hK985StOy992yZLxF2qg5Zc82egqEBERERERERERWrTH4PPPP7/LJ/QnIiIiIiIiIqLwWvJl2fHHH48//vGPja4GEREREREREe3CCpPgP6rWUmGYo6PlGOmvfvWreNOb3oQ99tgDp5xyCmbOnFm1bKEw+Q65ay6O8dZrFvXM7xGC67D2tt9iy7vim88gtHofi9D5DHTOCFsuJsknv894fK5RW76Qlsz9ECAfoW/ODp9zOcs6actmOU624ytzocjcWm1tyTKmTEkvv7Oz9ra0PNqfZmzX9enY3R1P511f3xyGvvXyyUUTQpZ8Njay7bblBUq7F2u+OfR88kCFaqvzfs7zaVv1/ndtY2x888pKIZ4pXe+/zdJWhFrPtwzX89yeczB72Y28t9jOfylUOxjit4Zoj3z/zskhJTVRXbXUKTxF/EUQRRHe+c531lzOGINhW8tMRERERERERERUQ0u9LPvkJz/Z6CoQEREREREREdEk1lIvyy666KJGVyF3WcIvXLvM592FN49hvUPUP0Rom1xODk9vY9tWR0kvvWvIO3xQ7mMdTlZ0DNFxFeoa9ZFHCGjaOuOtFzrkxTdkwXc51xDK0MfQVr7eVqlUO/Rp9qz0fSXD1fR6ef+2VpBHGG/e+zF0+5nlHAwRCuW6nG675bbTQp10+XmHWvryeeYItW2bvMP2fEPofbblK0TobrMIsR9DhAvqMlxD8fI+vnn8ble+225UOL0vfaybtZ6hGTDn12TVksd1x44dePHFF2vOe/HFF7Fjx44614iIiIiIiIiIiCaDlupZttO73/1uDA8P4+qrr66ad+6556JYLOI73/lOA2pGREREREREREStrCVflt1888340pe+VHPeG97wBlxwwQV1rtHEGERj3VR9u4M3sptrHvVyHYEoxEhRIUJJmuW45REuGyKEr5GjhKXVKY9t1Xs0xnqUk7X8UKF+aedMlvMn77CKtPMi1EhscoQ4131QyhDqnVaObTQrPc822qz8nHf7kwef8yfE7wwVIhg6lDmPsOzQ4Xe+4dy+YZKh2wCbvENMQyxnMzScPqKmTWF4KP6g4swLosEbbS+mlmE7PxPlq4ql/Vbrfc53gDHLTsmj7QjBZ7RQ1+dl32etEL857/2YR/19y/AZ1bvVwpOJJqIlX5atX78ee+65Z815s2bNwnPPPVfnGhERERERERHRroavECenljyue+65J+67776a8+677z7sscceda4RERERERERERFNBi35suzUU0/FP//zP+NPf/pT4vv77rsPn/3sZ3Haaac1qGZERERERERERNTKWjIM8+KLL8YNN9yAI488EkcddRTmzZuHp59+Gr///e+xYMECfOYzn2l0Fb1lya1ly2ETIl+Ga64wZ7Y8Do4JLHzj5BuZEyePPC9pZYRYrt5C59zJ43jmnRMtb4089r7nZ+gcYPU8hqHam9D5nFzLGxhIfpZ50HQz3t8fT3d3J+d1dmbfthZ6HzRr+Xlsu55CtONZykwrvyofVeB9F+I89s3FJHNr2fJzVScd9MvllSbLPpXLDg7G25JtA5CssszVCCDZyKxenZy3aFE83WnZJ1JfX/KzzIPW05OYVciSBLJWeYA9saOcJ/OvlTqyb1eXB6Agtpd3W1fP3LFZyvfNeWor06dek1keeYmJmkVLntE9PT2466678PGPfxxRFOHee+9FFEX4x3/8R9x1113oUTc7IiIiIiIiIqKQDMovVVr9P6rWkj3LAKC7uxsXX3wxLr744kZXhYiIiIiIiIiIJomWfVlGYUIU6lmPTGOF58xnP+TRtdjWddmnjnkMGe8tLezWFj6ihKijb0hc3iELrkKEQ7vuR9/wINv3IUInXJfLOwRrvLrUi+95q6OD0iKMdFMtP+t5U6embq6uQoS+Bkk34Cn0ddJMQt/nbOXbuD4LhWgHs5TpLBHOl7yPJsoPEIpn+52+15ototH58VDHbzpuO0GGdQaSOLeyNKC2EE3XxeRMWyOf4dkrV1VhwhP/28D1OSCPlCx5p25wPEWCh4jn/SxH1Cqa5+0FEREREREREVEL4WvByYnHlYiIiIiIiIiIqIIvy4iIiIiIiIiIiCoYhtlsXJPKeMoj71OI8jVb3HyCYzC/HHIdADAwUHs9XUbg/W/jk3cly3pZcj35qCo/JT+GdVv6/BfHqaBGuZX1T54GYXLihM7plkcZzr9N7NeCOqfz/m2h84DYtpVHnp0Q5bvKOwearTmT2+5KTwtUZfasCVSohjxyDPrmtWtUTjqbEOeZThlku426phPKIx+YD99jFjqvTh652UZLHW4LWi5023NA3rmFiu2e+0De+z1Hu0/87oULE/OC378yPDemPSdp1n0nc9J1djlvO00e98oEW749i1bIMSvZ2oAseb3S2uBQ561PG5DlWOy8v0SRc5WImkpL9iw76aST8OCDD9ac9/DDD+Okk06qc42IiIiIiIiIaFdTmAT/UbWW7Fl28803Y/PmzTXnbdmyBbfcckvmMtc9vxXnf/l3uOuBDZg6pQ3z95qOr37kWBz29p9g0T7dGBwawfSOKfjAmw/GOa/fHwBwxYqHcMGld2LurN0wODSMc08/EB9+68sAAF+++k/41v97EO3tBczqLuE7Fx6Pffaa7v+jiYiIiIiIiIgody35sgwAjDE1v3/sscfQaRlaupYoinD6R3+Jc16/P3742ZMBAPc+3Ifnnt+G/eZ2YeX3zgAAPP70ZrzpYzdgdDTCO087AABw1sn74usXHIfnXxjEAWdegzeftC9eMrsTh+/fg7uvfBM6Su345k/+jI9+/U5cUym7RgXifqp9fcl5vb3pFQ8w3HLoLsl5h1hUkWF7uuu73D86vE9+ti0n9v/gcLLruNxc6HCsUPIOMXINvZFhPkXbaavP/3Xr4ml9XYuQFNfhtPMIycy7+3+Q80mGHWcJEQkQWmWVdh3W+uwgS2iDT51zD+HQ8XGO+yB06GIeYbWumiVsOovQbUAe9ZenlmwOgORlqJvZjI9TNYVogx0zLnhzvU70I0JH4EwNzRoW3Mg2wSbEtdfI+jfjM3iW+2gafSuTvMNxHeUSAm1pw9L2Tx7nVbP+rWGz834zMtLYehD5aqmXZa985SsBlF+ULV++HNOnJ3tqbdu2DatWrcKrXvWqTOXedM8zmNJewPvedNDYd4v378HqZ7Ykltt3bhe+fP4x+LtL7hh7WbbTHruXsHDe7ni2byteMrsTJy6ZMzbvmEP2xFXXP5KpTkREREREREREVH8t9bKsra0NQLknWKFQGPu80x577IG/+Zu/wcc+9rFM5a56bBOOXOSWNPSIA3rw4JP9Vd+vWTeAwaERvGzhzKp53/7vB/GXx74kU52IiIiIiIiIqHkZMOfXZNVSL8tuuukmAMCJJ56Ib37zm1i0aFHd66BH87jmxsdx0z3P4qE1/bj8469EaWpyl171i0dw9wN9uOWy0+pYSyIiIiIiIiIi8tFSL8t22vnSLJSD952BH//6cadlVz7chwPnd4993pmz7Pb7nsPrP3I9/vLlL0HvHuVcSjf+fi0+e8VK3PLN0zC12JZSIgBj4iQc8+alLpZHHH4IvnmNbPH2zjkAXBOquCZi0QlJBFuqp7xzBzRLboIs9ZDHypqnTNLnv+V6aAU+OYpyya3Sk95zNkQuNdc8KVVtgMg7Z2Mbct11PRvfnEpp69naamvuH0syphB5n6q255H/pN73obxzAvoI1R7ncUzTyDxBM7vT62GT933Itg/a27O3N3rZENdoRyn9Oca3HUxbzrZsI58H633Nu27PegwtSe9C5GOrZw5Y1zIaKUteQZ866/3jk1c27xynWcoLkYusWfN9zuwul59HrkmiemjZU3fz5s247rrrsGbNGgyqFxzGGPzTP/2Tc1knLZmDT3zz97j85w/gvW88EABw15/XY+tgMkPl6me24O+/dgc+eOYhVWUce+hsnP26l+KSH67C5z+wFCsf6sO5X7gV13/1FOw5c5rHLyQiIiIiIiIionpryZdlv/3tb3Haaaehv7+/5vysL8uMMfjZF1+D879yO77wX/eiVGzH/L068dUPvxyPPb0Zh5/9EwwOjWB6xxR88MxDqpL77/SxdxyGI97xU3xi2WJccOmdGNg6jDM/cSMAYO/e3fDf//q6zL+ViIiIiIiIiJpTc/TrpNBMpJNwNSljTLSzrkcddRRGRkZw+eWX49BDD0WxWLSth+jO5fWqppfllzyJy753PYAwIUCu62Tdnk/5IbYVoktyM9VrovVoZCiMVs9u67by6xnOpDXLPgghS/vgGoJoKy/vsJMQ11SWkCkfluigVL7X6HCys3Rie4XhIaeK1PsadT02zr+zidqH0Mc+j/CdvNu3ZkknYRMiFNg3DDO1fH2Su55MrRALpdNh2HJgpLCeZ5Z0G3pbIY6bTZDnGH0uSI7HuxXChBt5n/aqv+242G5SjmHCWX6zPOX16S+z0shw/RD3emnp0iW4++67jXOhLeZIY6I7Gl2JAIrAPVEULWl0PZpJC9w1qz3wwAP40Y9+hCOPPLLRVSEiIiIiIiIiokmkJXsM7r333ti+fXujq0FERERERERERJNMS/Ysu+iii/CFL3wBr3rVq9DV1dXo6kyYQeTVxbde69TSyLA3V7KOutux7OXsPFJjzly7rWcZwcdmYKD2912OA4zquljr4Rgi4vvbXEc5a6RG1ivvcEff8IgQ+yD0KFKuI2n50m2R/KwH6U27VLKcS3Le4GByvcT21q2Lp7u7k9vrjO+ztugvHS2Vtu986287NrIetva+Yzil4QPcR1f2pNvcvr54erfd4ulZs5LLWa8T8cP1aKqhR7l0bZ99R8X2DmP0CUPLcCJ7tVPyegJQ6O11Wk1XqwgRHi1PGH0yWcK4Ep8d61F38oc/+mhy3vz58bTjNWo9ZqtXJz/L/aNG4C6khIDmkQ7D+34o8zfrE0juL/lbPMNxnUcHlWH9QLJR1nWU82S91H0I7ekpd3yecWzNhgxHzEQWKq9XIHmc9PUrz/EcRi+Xm1ZNE+bOjadni3uPd7j44NbkFx5h1K3IoEV7ING4muQ1gZt3vOMdY9PPPfccFixYgGOPPRYzZ85MLGeMwZVXXlnv6hERERERERERUYtrqZdlt95669i0MQZdXV24//77q5YzZtLmDyQiIiIiIiIiohy11MuyJ554otFVICIiIiIiIiKiSaylXpZNVhHMWPx3PYdwH0+QXCIpy+llbfNc87VU5WAQ8zpKEz/Vs9Q/NNdjr5ez7Z6c0/Mk6yJyTRQGNicXlMkUVKUKImdFHrmkfHP1uM4LMex86BxjvrnTfOvfyPyGPvs1VE7ANDp9R0cpeztSPeq82z7W25blFNeulQUmliuI61JuS5ehc4W5pioJsY9llfV2Ez/HkrIsRM47G33c0lINzZiRXC6RV9OWa0vnwemeWXMxy62yqvi8082EaD+t+ZB03qNa6wDJg6HyVtmk1lHnxXLMFVaVK6lfHFN5jeoDI3+n7QBb1LOtrr4PCZacTYnjBCSeGUblc4at/lW5sNLzvbnuE9f9lcdzi2yfre2DJUGm6/Os8/Wqry+ZKMt2PsrzOu3azVivNPoykc3nsLrPyfu0M90e62RhkmND63v+zOkdFdNeRSRY97f63UPtHQCAKJr4dpsdc5ZNTi35smzNmjWp8wqFAnbffXdMnz69jjUiIiIiIiIiIqLJoCVfls2fP3/cvGT77rsvPvrRj9apRkRERERERERENBm05Muyyy67DJ/73OfQ3d2NM844A7Nnz8a6devwk5/8BC+88ALe//734ze/+Q3e9773NbqqExY6PMs3BMu27bxD2ZJ9o4fT5+luzLK7vgxfAJLDNMuQC0sX/BCqw6fi6RDhcJptdPC0cnIfEv2OO5Izr7ginj7hhOS897xnbNI22rgtpLSRYYCugtRLhT2kDXmfRegQlLyFqEeWNjd0SI2tfHl4t2xJliHD9oqWa97W/mw+5OVj0/rUKTruV1t7U09VoWySaixCt3e28mZ2J+vVvdgjTFuEmgHAMMTnzo7EvIF+MS1ulToi0BKFll4PJY82wPk5o7Mrcz1GxToAMFyKP9vOd+fzRT5jwL0trSpfhNJiydKxSf1II09rfT/0uS5DPSum0eX95o74PJ46dU5i3tEL1scf+vqSBcn9rK6NVDrMU+ygvFNq2Np472fAwPd6HUEpdbhuSp+ECxfW3JaWdzsibR1M1kNGSeprZt/5btuSocBYuH9i3vD8+LM1Utpyn5bHxppWwXYPVOTxsEXI2s4LWZe1A3sm5g2sG399ombWJI+22Tz88MNYsmQJfvzjHye+/+QnP4kzzjgD69atw4oVK3D22WfjqquualAtiYiIiIiIiGgyGy/qrSXsCsnlMmrJXHRXXXUV3iN6nEjvec978P3vfx8AcOaZZ9azWkRERERERERE1OJa8mXZli1bsGHDhprzNmzYgIFKvEFXV1fNZYiIiIiIiIiIiGppyTDM448/Hp/4xCdw0EEH4cgjjxz7/u6778Y//uM/4sQTTwQAPPLII42qYiYGUd1y/mTZTh45tJzJwHk9VLhkSzIgc1vol6sZhoZP45PbopE5ffI+x2y5DtrFMNwFfV2uWBFPW46L3ncyJUamHDCCT+69LJyHWXc9NradbJnn+9uc8//kkBcuRC5EH1nOpbzz/slD+uij8bROuePKltpGlj93bnLerFnpv8eW76pR15ftOOl5ch/7ts++539avXQZso4678u2bfH0iy8m58n1bGXI3x0g/VHu+a7yIB8l9la3Ia8cSyoxXOjnqRUrknWSt86jj04uO2uWU5G5GxqO66yvtVceF//uX9+s9rc8KVUuODnP+X7lmtvMUmb17Tb9txUGt6aX73HBZWlLfc67Usnv+s37bwbv5yT5WexvvevlNWQ7LK77X7ezMtfotGnJebId12bPqn1sbD9TPnNrtv24aVM8PTKSnPfUU+nz9tsvntZ/bj3/fPn/Q0OpmyVqai35suwb3/gGTj75ZCxduhR777039txzT6xfvx5r1qzBggULcOmllwLAWA8zIiIiIiIiIqKgjGmeUY4mYseORteg6bRkGOaCBQvw4IMP4pvf/CZOOukk7LHHHjjppJNw2WWX4YEHHsCCBQsAAB/+8IcbXFMiIiIiIiIiImolLfsKdMqUKVi+fDmWL1/e6KpMXBTF/WfVW+kQ4WX1FKx7uNwP3d3xtOvYxUCyT7UO7xMhErYu+T5haFnk3b1d1itEaIze/WlhPgAgO3bKkMmZL3lJcsG3vCWefuMbvbbd2em2//MIXwgR5ulcL3WuFoZFv3bLv2j5hsPZQsPSyvE9z3zDLvNuB0OED/rWQx5S18hx2/631WPxYr/fKetoK9/3XubKNzRG8v1HYd/j61rnYntcfrtq62zhQi+8EE/L9lKH/Eyf7lSNKq5hPzZ5hOe60MdMh17alm0G739fsk5/uDfej7awy3r/Fnl8ZYiXPudkeNlJJ+g6dsJFHukA0shrEgC2Dqafx0WZSkQ/KMmHIzGtn0ttz1q28L4ut10XRIj9n8uztGjYbeXLttS3/vK5Vx+nKVPS58nroaPkdh8tqvuV/Oz7rCtTLuhwSvnorusvz7tDD03Ou/vu8v/b2pyrRNRUWrJnGRERERERERERUR5aqmfZH//4Rxx22GFYsGABjDGpyxlj8Nhjj9WxZkRERERERES0y2HOskmppY5qV1cXgPJomLaXZURERERERERERD5a6mXZzsT9V1xxRab1jjv3uhxqE87UaTPiQPdOlWDAMQ9RvaXFw+s4dteX7FV5dtJyMekC5fDsep78rPbraKnDrWKWOrqq53HyzksmDlzVrxT7UQ8pbsujkVIE0NOTnHnyyfH0Mce4laG2Z8sTIfNQ2PL7hMip5Huss6TiS5A7xVaIhW9OMd88aGll6sGL5XGUaQt9y3eV5Rim5WjJ45q37QPbtefK9Xjq0yzZPLu1P1naKZ9cf1ny2vnUI0t9ffK4ZTlv5f7X+Yqeey6elnnKZC6zWutJtvNC521yoctI5j3LXBwA93PXZ7lWccTi9N+W9+9xvTZkLjWdD0kee52LyZXr73R+VrHQ+9ia78rWeMsGNXExJHOWyXxvL76YLEKmRNOPVzJnmes534rnf4K+SYkdVBDJP32vE9tytvy5tudlW54yyfcY+twDZ6vch65l6N+2c5fLnG1EraSlXpa5uPHGG/GRj3wEf/rTn8a+u23lUw2s0fjOfde7Gl0FIiIiIiIiIiLCJHxZ9sILL+D+++9vdDWIiIiIiIiIaDIzZnLkLKMqPKrNoK0tDhO0xTH6xjgKoUIP0pbNMny8HGq7OoIy7oJekDN1TJoMr1SF2H6r3JXFwc3p5Tvu4xDDZIfo+u5dhmdcgu30lKEBiYjYY16eWM61zroaOmI5rR7Neu9K65Kvf5eMKNDRBTO7xQcdahxgsGPX89MW3uQa0qfDMOX5I6NY6h1iVNeQFLUTCuKYDg2nt5dyP1Y3YX7hg2mybDstnMp3n4ZYb3jY/brIO4zXh27fbG3HwoXx9JYt8fT06cnlXNvIqt/mEUOpy7CF3Lmme/AN28u6XSBM2HredFsqQ8Ncw7NCPNPYytEhXnmT9dKnquv9K8jzld54Soim3lZif9V539WTdR+7PqfaHhZlypEMD4c+9wJ9Ha5dW7MaAIBFi9zOT0k+IwHqeVDxbbd89PUlP+8MwywWq5clagUTvyqIiIiIiIiIiIgmCb4sIyIiIiIiIiIiqmjSAKXaHn/88XGXWbduXR1qEpiIcx5VI+AUBkSIoI7Bkt23A4QL5h02oEc/Wr06np4/P329GTPielWNvuX4u20DBbZ3djmVkXf4RUNH5wpw/nSoEKze3vj32EIJ9XqST5dw209p5IiXej0ZHpcWUgok95f+bSFCREKHAmu2yIn77ounR0aS82RIX4gR81xlOeeC768HH0x+XrRobHJdf9xOyUGAAaCrc+Ijk8r22RamZxtt1nZsrOdZHQ+wDo2RbCOZSdY2PsRQe0rayL9Asn3QEV1pI+nqNtjW/lhXzPlYhRhxV/Id0bSeZYZoU/TxTKSdcAzxsslj/4SW9/OsDoGT11rVM43zBZYv33QJDRtFVu9kW+Nt+3tIzMv7fLSllrCNhilHO53lOQplI/+GkIdK/m0HxPtkaCjXKjQec5ZNWi11VF/60peOu0wURTDGJL478ugj86pSENPSnmiJiIiIiIiIiKiuWupl2Xe+8x2v9ZZcuCRwTcJ68qrVja4CERERERERERGhxV6WnXPOOY2uAhERERERERERTWIt9bKsnlatWIX7V9yPQlsB+yzdB0vPWYrHb3sc9/zgHmxauwmn/+vpmPXScmD52pVr8fv/+j1GhkfQ1t6Go5cdjbmHzXXeVgQzFmteGFZB3bYYfdc8L575YHxybOjqys0991x6GU8/nfwsUzzMmOFUDSv9s33Cyl1zYITKhZJnGYCqp2ecvayLzsGQlqcsVNSxTz6bUPsuhMS1Lva/rY4h9l0eeQtteUBkjhxdvu3atqV+SqVzKjnusNDnhXe+HJW8cWt77XyKxeGt6pt4Jxc8r2XZBs9Vt69p0+JpvUur8kimsJ537X5jyqcdN9u2dL63EBL10HlHPXLF2K4hmesQSJ7ytmvGllvOesrIQh2TnYXK25m2nm9aGNd6ZDlmjXoOsMnSBofIqeoq73xRIeroetyynIM+9apnfrfxtu3zfOVbRmFQ3Nt0gybzkukbUYC8uyHWk/nqSr3J3xz63pNHKjzf9kDu/ra25LI7D1WheR6/88GcZZPWZD91vYzsGME9P7gH/9+X/j+c8bUz8PBND2P7wHbM2GcGXv3xV2Ovg/dKLF/qKuG1F74WZ156Jk44/wTc9JWbGlRzIiIiIiIiIiKaCL4CrWFb/zZ0dHegNL2EjWs2AgCKHUVM7Zxac/me/XrGpmfsPQMjO0YwsmMEbVPaai5PRERERERERETNiS/LaohGI8AAK69dibu/fzcWvWYRTMGMvyKAJ373BHr27cn0omzHELBhQ3l6+vRkCEeH7Lfb1+dc5p13xZ0GZ8yIy1y4MLlciK7esjuuDsOU3XF171QZ2tPTk5yXNgp0lhACGTGit+0TmeobViHXC7G/9T7eti2enj49Oa+jlH2o8Cx1lPtRn57r1sXTsse87jruG5oROqRD74+06KPOTs8QOx1SkHIS2sJZ5XWRadsWtnM39D7WZcybF5dvi5iUw5Lr5WTYg2+Yueu17dsGuIagDJT2THy+8fp4Wt4Keno6Est1OIZC2upxyCHxdIj2Mg+u7axNlvN4aLj2vS3LPtDthU9d5O/W579PaI+uv+1e2S7DSrtnppYpz5FNm5LzZs3KntIhyzxXvmFitpD/tHrZlgsRopl3OJmveocPph3TUKGuaeVkiQK0XV9p80qlibcbWYTed7bnKf2MI393e0nc20rJ+5w1NYOY55oaIG+hQrHTyil6hgLn8Swn73M6vcbOv+8YoUitiqeuxeFnHo4DX3cgbvq3m/DA/z2AA197oHX5jWs24s4r78TrP/36OtWQiIiIiIiIiBqCOcsmLeYsG0dpegn7vXI/9D1m79U10DeAGz53A048/0R07VU7KTMRERERERERETU3vixLMdA3gP6n+wEA6x9ej+653anLbh/Yjusvvh5HveMo9B6Uw1BbRERERERERERUF+wvmKLQVsAvP/tLmDaD3ffaHUefczSeuP0J/O4/f4dtL2zD9Rdfjz323QOnfPoU3P+/92Pzs5ux8pqVWHnNSgDAKZ8+BdO6p42zlbLRCBgZKU/L3DwAgO74feawymfTKXImJIZbBnDggXGsvy0XUOghzG35U2bPSsa4p+WDAZL5rmyjRdvyOth+dyOH5Z6ors5R9Tmeth1PW74H157DtuGi9bGf01s7B4YtV4zvsPauspQvf5ve58GJxCVFdeLOcXz/HiKfk+96vuXLnHo23aIdLAwPJWfK87pJusDra03ncJKmTImndU66N76x9jp5tF+2PC/t7W73Cd9zMFRul9Dk6aRzLYbgk0emOqfYxOthu1e6kvWYNct9PZ9zOcs5IZ8t5O90PafH217oXEAyhxUQ5ti4SvwW1c4WxAFu5DWp5f2MkLYtnS/Ktp7tGCbPyXGrV6ZPkkTSr/RC8jhuabnObM+ben+k5YfVP7Pq76OUMl2fmRrJ9hys/x6S+cB88ifWg9z2/gtrL2PcUn+3tiZ5BqWweFRTdMzowJlfPzPx3YJjF2DBsQuqlj3irCNwxFlH1KtqRERERERERESUk+b55yEiIiIiIiIiIqIG2yV6ll338esyr7Pb9N281vPR09WTGr4ou7bKsEVtVA2xLCNGbGXYeozKrsDbtiXnyaGBfXudyrCfmd3JeTLsylfeXZKbKRRhJ9tv1l27d+yIp5PH02/Ie9962YYU7wgQglLPEBqrPOKnBNf627ruZzmnXZcNPky52m+uIb56XugQU1uIzuwMYWk+QrRFvteCb4i15HsOutbDl+2YumrkfSKtbdVhUDLcacuW5LydKSJqrSfvIXI53Y7L8GLd7Nna+LRjmiVsV9ZZ1kvXw7f9dJ3nqp5hl5rcP8W1a5Mz580bmyzkEGrkG8Kdtp6tLbItGyIkXC9nO++8eJ4ktnbW936etl6W3ynbH5mC5dFHk8vJtmmvvZLzFqaE/gFhzhHbc2ra4fC9D+mQ/xD3RymPlB2u5RO1ol3iZdlTq55qdBWsli8/t9FVICIiIiIiIqIsjGHOskmKr3+JiIiIiIiIiIgq+LKMiIiIiIiIiIiogv0FW0iWHBtpuWKy9BCVy06fbq9LGt9hjn3yh+Qda++a88iWC6KRQzuvXp38LHNDyHwPOn+eHLbaJkv+B8mWC8LGdb82S76HEDlBguf/GqdertuWOUc6SvU9x/M+vo1qi1y3Bdhz4oTIlxM6V2GWa6ieufHy4FMv3/NYb0vmWZPTtrxeWdIhyXNLtgG29IybNiXnlUph/81W7wOZg1PWI0RbnaUezaKqfRvcOjY9OCxy387bN7Gcre2oZ3sX4l7ve4/1vdfYzjudI3Yn/Swkry99zcj8v773L18++2TDhuTn556Lp2V+ZPmbAWDKlPQy5/SGfQ7o709+fuSRePqFF5LzjjsunvZ9/sm7PZL0uSXzGev80WmYl4x2JXxZRkRERERERESUFXOWTVp8NUxERERERERERFTBV6BNwCBy6iptXUb1q5VDe/t2lw0xhHnorrpZupjXM3zHtct/3kM22xyx2BJ60L8xnqG6aI9iptf20n63/p0d4jxzDQnMMs91WHhXocLEGhVeZruGssyTZOiBbxl58Nl3oUMOQ5H7ToenrF0bT+sw6q7OibeRocICx/t+IttyVe8wJR+N3D9Zti3/Eb2z0638GTPStxciJFzzaX8aeU7kvW0ZcgUAnZ1x6GWXCMlEe4AHwAxC3CfyDoXP4/xJW1aHZ8prTYfRpYVy+mwX8G8jXY/htGnJz7Nnx9MjI/G0bitkupA8jq8sU4cjHnpo/Hv6+pLznP9WsuREcD13XdMq2Pa/DNsF3EMviXZV7FlGRERERERERERUwZ5lRERERERERERZMWfZpMWj2mx0fI1r/17LBWrrGi279Oru+fKzLr67u3YV5QiLtuVq1UXyCd+xLdvIkVuaZTRMLVEX2a9c9/Hv9gvDTN1WBiHCW/Pe/yHOs2TXer9QY9/QrRD7zrWM6vCReNo3TNVVI0Ognen4DhHbNtweh0vpttQ3PCUtpMN2n9BCPxuGaCuylNGs7bMk66jv03L0uNmz3MoL9TuTI/S5raPPF9t16Xp++oSJaSFGOQ5xL8jl/BcPZl09PYlZG/uLY9Pd3XEb08h7tm29LPPShDg21jJ0gynbddvDtKUxtY02m1ZHzWfUT1sZWdjuITIsU7Zneh05QqUtdDCP1Cqyfdt7nmc74pgexzavniNah3oGa9b7KpErhmESERERERERERFV8GUZERERERERERFRBcMwiYiIiIiIiIiyYs6ySYtHtdk4j0Gs6EQm8oK1lCkXk6kTgORQ8Dp3QFqRKh1GYj2ZbwBIVlmvVyo1Jo+MLW+SLU9KHjke6koeAHVw5XGT5wQQJo+M7zo++zVUnhTXMl1znLgOAa7r5HPeZckNFmLIeNkGbNqUXG/2rOxDpIfKO9SU16VuhFevHpsszps3Nj0q8pdNhOtznVzOlnsmj7Y69HHKIxdTiPJd2R4RhoaTdUw7vs2UQ8ZWF52/MU2IvHM+OTCz1KOe7c1zG5LbmtU7Z2y6sHZNYt5M2a4EqKNOuyvPQdfjWeXRR9PnyfqX3HKu5Z7TUOeelJ97e522pclnrxB/j+eRU8/1GUc/R6YtNzKSvlyI500b33Mk7blFL5eHvMt3zV3aTPcXohCa8K8FIiIiIiIiIiKixuDLMiIiIiIiIiIiogqGYTaZTCFRsk+sGBocQDKcR8RtZAkNSHafT6+LLEMvZ4sGlVXUIZppXfd9Qxt0aIBrtGvo8Epb1/EQQ9dnWS9Bh3/JWZ6RwaHlMSR9Whm+Qg9xD9T394Q4z3QZRXEtz56Vvm1dflq3/pYPtbTRDeiDD8bT4hodVmGYeafJkPu1aAkt8Q1VDHGcQodN25bV9ytpZneYbafN0/u/aAlpCh7COjyU+NyRqMvkeZzMI4yonqFJ27cnP8vztXve3ol5rukkXOlnq8S2u9PXk89oVc9ntgZOzPNtA4Lft3WopS2nieO2fENYQ6RjcF0uxPnTIY59h9qNMsy8+pm+MalbNN9wxBAh3HmHotr+FqMK5iyblFrsLwkiIiIiIiIiIqL88GUZERERERERERFRBV+WERERERERERERVewSwbVHHn1ko6tgVSpNS41JT6Y3SC5TlLHROkdCSlKuLDlMXIdAlrHrtqHrdY4BmWZN54CZPz+elnku/IeLnvhw73nE6IfOE6GXC1H/vHNthcgLFyI3j+u5ZdtWHnnnbFyPbz1zd2XZlk+OmSznY4g8Vg0t/+ST4w+yTbcM4R5C3vlIQp0jafnS8miz5P1Q3147Sm7ba2ROveT93DPvkCUfS6Py6own7/tQs+TukfWYN69x/w6u90daDr8/P5iso0zPeMIJyWVn2i4+D1muw7Tjq1OPyUujqrzOLq96pc3zfw6euHrmXm2Wa2s8Ps+KNr7HN++/V3zPwZbLHevLGOYsm6R2iaO65MIlja6C1eqrnmx0FYiIiIiIiIiICLvIyzIfq1aswv0r7kehrYB9lu6DpecsxeO3PY57fnAPNq3dhNP/9XTMeml5aLfBzYO44Ys3YMMjG7D/SfvjuPcd1+DaExERERERERGRD74sq2Fkxwju+cE9OOuys1DsKOLqd1+Nw844DDP2mYFXf/zVuPXfb00s31Zsw1FvOwobn9yIjU9uDFoX52GI+/qSn2XsopjO0v282J7e5TatDN0DNbm9ZBky1FKGZALJkbZtXLsd+/aM9RlSPI8u8q6/s1lDXHQIrtQx8aiKIKrDKpq/67jr8c47dMI1fM12HeYRAu0aXhMixCWXkOeUkCPZNk9E6rEZGEivhzqI9Qy/CFGebyik/NnW+4ned7Lx0ze2UofTtkOECRdtYWKedNqFnfT+kbugVHK/vvIMc9aHqbPTL9VBaL7pANLas2Z10KJkHW+7Lf49Vc8L8vlWpxxxZGuffY6vboM39rutp5v0AFGlQch98My69N/S2+t3f3Tdx7by5D7Xz2fNeM773mvySE3SyNQKzXhsiLLgy7IatvVvQ0d3B0rTS9i4pvzyq9hRxNTOqTWXn1Kagt6DevHCsy/Us5pERERERERE1CjMWTZp8ajWEI1GgAFWXrsSd3//bix6zSKYgml0tYiIiIiIiIiIKGfNH2fUQIefeTjO/t7ZGFg/gAf+74FGV4eIiIiIiIiIiHLGnmXjKE0vYb9X7ofnHnwut20YRGMx3VnyYSRyMMgEYJblNFseAZ/4ets6HaX0uPXu7uR6rrnaEtvTSUhEQp6iToLR0xOX0V50K19Jq1fV93LbuouuR5fdUDlTQuQRcD02Mi9HYXgoueCg37DwPvW37bs8ek+HyD1Rz3wPIXIjabZcSXnnJfNZzzfPiG0d75xoMqlYMvFTcjnHk1dvO7Wd1e2lc8KupBC5nvLOhRI6L9ZoZ1fyC/3Zg+9+TLu+QuWZS8tFWZWazdKsh87153rt2fKi9vcnP8/srl1eFr6/0+cY+sqj/Xe1/D2Wc7xPHCxL++O8j6sTlDrV0UamCc4i7fz0zeUXor3U1+uOHfG03nXFAM9NskzX3IpZ7tOtkDMrUUfdAN1229jk8OveMDa9aVNysSlT4umZ3fm2D75tGFEr4suyFAN9A+h/uh/dc7ux/uH16J7b3egqEREREREREVGzYM6ySYtHNUWhrYBffvaXMG0Gu++1O44+52g8cfsT+N1//g7bXtiG6y++HnvsuwdO+fQpAICr33M1dmzdgZHhETx555M45dOnYMbeMxr8K4iIiIiIiIiIKItd4mXZdR/9Sablh4dGMLJ9GJ2dbeXP/Vtww0X/DQCYMauEGbMqfZS3bRsru3vmVGBmPFrm7V//tfP2err2HOummqVrq2vogc/QzuOR2wvRxVaHaLqWn6jzunXpG9DdmkUYpk2QIeN1eKgk++5b/kUiRDdy1zBbW/f2IOenjt1Zuzae1rEx8/ZOLd+nXiHCX1zXGa+MIKEBMn5BnWej3TNrrpIlvMMnhDtU+T7LZVHPED7vdWSbYIsbC+HBB+Np3T5mCI+WQoQahw6D9eXbxoQ4x0OEUPpeQzrsSpKnp2zWGxki5dr+6DrJ+leF1NlCoNOWW706OW/RQenrCfpxQV72zRi6n4eq+s+bF0+rdtCWRiNVgGetUCGCPtv25XqftkX5O3ecyRDqWoRIzZFIy9GRWK6e+0er6/OCfkbesmVssq8v/lr/ySOz8QQJqVb1KDg+BzDskiabXeJl2VNXnpFp+dXPbMGpf3c9VmVcz9fyS56sy3aIiIiIiIiIiMhul3hZltX8OdOx6gdnNroaRERERERERNSsmLNs0uJRbTJ5hI/4btsmLTTD1k7k8dsS3cplV30gGd6nye7FnW7d+L271suuywFGwwwlbSSzDtXT2jfsR54jcrrj7ruTC152WTx9zDHJeed/pGYZQIZdJ3+oLkSEdFjPT9nffdWqZBnyvLOE2uQeiuTZRT70qFuhyk+bp8uXh1SfE6FHOmyW8KYsbbV1H8uRaRctCr5tV3lfG40cKc019C9xS1IRt+3tfvtcZh+Q05bBs6vYRqaWI9eVSumpE9J+JwDM7IwvYB1SF/rYuI7WrZf78+o4HExfJqlhS/o+53hv0KvJW6Ktic97NGFbO5s7ERe7dTBZ31JKXbKMSJy2XDOxhVDKefoRR36W50+W+7StDUirV6bw2Hvvjaflc/sb3+S0rfG4phzxKSNrOS7lDffMSXwuvvWtY9O94nudLUGGaGZ5Xk4bjdQ3/YK2M8ND2t8cRM2OgcVEREREREREREQVfFlGRERERERERERUwTBMIiIiIiIiIiIfzFk2KfGoNgGDaCzmPcvQ767DybvKUkbR48zJUr5rvqLEPD3MdK+I7tex9yKBS8E2ZnyAIcarEtAE5pvHIS0dQaicRMX2uC7FdSIPhc759brXxdPLliVmyd/jnLdHJ2vwzLuQ2K/iXBrtnVNr8fJynvndfI+hTTPmesqSRyZtni1vku+2bVyPaR65btL2vz7FZUo9ncdE5yBMcHywC3Ee1DNPkG9+SV+uv03XSx4b63Hy1N0d18t2G/K5Dm1laB3t8QnbUdLJdHL44Sl8r/mDLOn8Evuke2Y8/fZ3eG37hBPsdfER4vyX9/Ms5Ye+tmVuufG27bqcTx197/V508dJ3h+HhuN62Zp+vY+lXJ5jliyJy1iy1KuM0H8DZTmGPr/btpzrM40+hnN6/Y5biPc7tvJ35nkMlAKNqO4YhklERERERERERFTBl2VEREREREREREQVDMOcpOoZHpR3CIfPcgDcwx91TJPg050+1HDUoYUIl8oicY7IY/HGNyYXnDcvnh4YSM6T4bI6viytT7frGNlV66UPdR4i1MPG+xoNnB/Bt/6u7Y3rsPO2eVnCKUNcv40MqZGXgzzd9WGXl0ZH+1Bi3ijSz2tXtv3ve+xDa7VQ0WbiG1ol51nPA892Ku/nmHpq1nOr1fer1Cy/JcQ9JMt9zvV355FOKe8QeqmRofy2esjHSp8UNVnkkXIn9DOOfozf+ewSRUE303yMYc6ySYo9y4iIiIiIiIiIiCr4soyIiIiIiIiIiKiCL8uIiIiIiIiIiIgqGFzb5Oo55H3ewzRniZNPm+ed88g1f5mFTneVFpreyBxHecuSxyGxbHd37WlNHaehUtfYtN7/HT7DfKu8ZLKOvjmzbFzXc70OrfvYMVeCrQzffBiudfb9bT5txXhlpK2XpR6h8wDq8tKaLb1cqSTLTz8PquorcgLKpGijpQ7nMkK0d3nns8w7100e57/rtlzLtzUPrvXy3Y+JOloq0kz5Al2FaAN8nsN826IsZbqW73t/9KmH63qNbA/yrn+W7bmWMzScXkaINEw+dcyyH0O3FVn2f+g0VXk8Z/jkvPN9Jkt7bjEmdZXJgTnLJq3mfxIhIiIiIiIiIiKqE74sIyIiIiIiIiIiqmB/wSbj2wXctwtyI4dbHhyMp5NhROnyGE7bRpbR3t7875az7B/XUNcEHQsp18uh+7Es0jWMKO/QnTxCFRvJN/wrhHoeN9u2JddwTZsQYTiab1tnPW62kOgU9T5Orvtk80C83Nq1yeXkz+ztTd+WLQwwj2OTtpxv2PFkEzrM2afs8bZVGB6KP/zwh/H0hz6UXPH5TW4buPnm5Od58+LphQvdylBa4f6YKGPdM8kvHn00ntb7wHZBp5WfQzh0iG271kOXEeI5z/X5thVDpUMIEUaaWE4/S8uUCD17etVDFlls9wvjdU3LEeIamnQYhjlp7aJnNBERERERERERUTW+LCMiIiIiIiIiIqrgyzIiIiIiIiIiIqIKBtc2gQhmLMbbd1h4m9BlaM5DxqvlbHnK0nJs+O6fPOrfKKHyAaTtY2ueBUs8vnOuj5t/nfxi9ep4etmy9G07yuM4hRiavd7D1TcyH1haPbS86+XTdoTOddhM9P4eGIinS6V42jffie+Q967ruA5Xv2iRX/m+y+bdPrhqZBm2ay1EW9TIa8r6HCCTr8r8We99r9/GjjnGbz3BN3ep7TjV9VlI5yHzyEuWtxBtnebbVoTetm/59WzrbNvOux0M8neafpbu6clcvq6jLV2WTx1DtCO1ypm0mLNs0tpFzmAiIiIiIiIiIqLx8WUZERERERERERFRBfsLNpnJNmR83t31XbuOr1qVXG/27Hh61iy3/ZppGGjhd3cXx6bXrUvOW7IknpYjxDcrvQ8sPzuh2BcPBb/mVa9KzLtXTL/h5JOTK8qdojcmP8sYMk2Gyci4MwDo7h6bHEIxMSut+CzndOjQS9/u7SFCIV3DPEOFuYUIsZ5MNvbHv1Of7q7nZ2F4KPG5qzN+BKjnvSfLtkIMZe+6bdfrK+90BqHajdRrSLaJQLJd7NnTe3su9dBc7+F5tDFeZdxxR3LmZZfVnj7hBL+N2e5lFq77J49QKp/2IdSzoc81mqW+oe/TeaRjCHHsXZdz3nf6eU2Ep+n7UGJZuZxnSFse57jPfs2yH63l92+MP8j2odQRpvyUv2UK+j4hch14l0/UgviyjIiIiIiIiIgoK+Ysm7R2jX+SJyIiIiIiIiIicsBXoJNUWrdX3xHz8ugenkdomDQ0HM8T0XYAgOnTa6/j3V24PT2cSYZaWnqmW+uSx0gzWwdrr6ejQGzlO/8jyoMPps5a6FhE1cbk5/7+9G3p2FfpkEPGJosLkzVpb5/46EHyeGcZYdBWZj35jI4WagQln9Gt8h7pMI8wWNfyZBtmi0jetClZhhxs9qUvTYYaz+xOCXHs60ssV5BDTVrCxGSbCwADA/FnebnK4vS2beeZjes+Xrs2fd7ejqHwWa5Jn/tqsPAdMU8em2Ekw3c6evxC/1yFHk0v1Hpe5A0dAN7znrHJUUtYVN4jHSYj2cKPzhpitMQs2/MpP+18B9yfVUKMqu57D3Rluw/p3y0VHfeB97GQz2HqJjUqwruHVcoLtMef5XHK+7rO4zwOQu5HILFTnumP2xj9aCsfYfU91pntRm1hO2d2ngpR5FknogZjzzIiIiIiIiIiIqIK9iyrWPf8Vpz/5d/hrgc2YOqUNszfazq++pFjcdjbf4JF+3RjcGgE0zum4ANvPhjnvH5/AMAVKx7CBZfeibmzdsPg0DDOPf1AfPitLwMA/Gblszj/K7/Dnx7diB/+86vw5lft28ifR0REREREREShMWfZpMSjCiCKIpz+0V/inNfvjx9+tjwa370P9+G557dhv7ldWPm9MwAAjz+9GW/62A0YHY3wztMOAACcdfK++PoFx+H5FwZxwJnX4M0n7YuXzO7E3rM7ccU/nYB//f6fGva7iIiIiIiIiIgoG74sA3DTPc9gSnsB73vTQWPfLd6/B6uf2ZJYbt+5Xfjy+cfg7y65Y+xl2U577F7Cwnm749m+rXjJ7E7Mn1NOilUomEx1CZXbwHUoaZ/lbHzzkrmulyXHgMzb0dur57mV4UOXJ/NE6FwiIY6Nb/1dR6h3Ll8PMy0dd9zY5N5nn52Y1f+978Ufbr01ud5b3+q2bZnQSeUeS9Rr27bkPMtOCDFkvC13jG+Z9eR6Dkp55A0LnfPFxre8EMfJlotGztO5Z+Rys2Yl582YEU87/6NnT0/qrCw5DHWuSB+u+zWRk8uSG3KeJS9ZHvkBffKx5dHet7fXng5VvpU8IPo+IdtgS8VC51fNcqwTZeo6inubTz20Rx9Nft5/fiIZWWr5thybIfJi2eaFzivo297LeXmc43nk+A1937A9c+T9TGlLrOlax7yfd3xyoeZdjyqWG2evSCOmb9P17NSU5TjtPN4m25/DRE2DOcsArHpsE45clP7HgXTEAT148Mn+qu/XrBvA4NAIXrZwZuDaERERERERERFRvbBnWUZ6NI9rbnwcN93zLB5a04/LP/5KlKZylxIRERERERFNesYwZ9kkxaMK4OB9Z+DHv37cadmVD/fhwPndY5935iy7/b7n8PqPXI+/fPlL0LtH+vDh47GFGebdtX68uoRex2eobdcwJf25Kvyxb338QQ6PrMLyXEN79Dypo31I1EkJEHaStk4ozttW+y5xbAa3xjNk2CWAr4rpC9/+9sS8rae9bWx67drk9mQ0j+yOvvc81Us0JUwGgP3GNlw7/CWXrvtyW319yXlyGHE9lLctpsxRiHPGdh26hqv4DuPuWkbe15BsK7xDgNRY8IW0tkmFshUsQ7zLkM1n1iX3wQ9/GH+W0cv6kpFRIaHPF833/HEOMxweSp032l601iV1vZw76Yc4d52PmzoHE591eJA8D2Ubpm+IAwPxtD5XZePt2J75noNbB+P9eNVVyXny8tLn/7x58XrF9hzC1wSdRWDzQHxOptySAFTvVp961TPc3bbtLM/BzUKeW/rY2M6ZvENYN/bXrleX5XwJEuas2lLZBGi2cze1EF2gLMRWoLiICpYbRagw2zTyeQFIhl/rJli2CbbUBl2d9bs2sjyvNes1S/6MMQUAHwJwLoD5ADYA+BGAT0ZR9KJjGacAuBDAYQC2A/gVgI9GUfSEWm4vAH8L4MjKfz0AroyiaFmI3+KCYZgATloyB9t3jODynz8w9t1df16PJ9clc5atfmYL/v5rd+CDZx5SVcaxh87G2a97KS754arc60tEREREREREVEdfAfBlAH8G8EEA1wI4D8D/VF6kWRlj3gRgBYBpAC4A8CUArwTwW2PMHLX4AQA+AeAgAHeF+gFZsGcZAGMMfvbF1+D8r9yOL/zXvSgV2zF/r0589cMvx2NPb8bhZ/8Eg0MjmN4xBR8885Cq5P47fewdh+GId/wUn1i2GA8+2Y/TP3oDNm3Zjv+59UlcdPk9uP+HZ9b5lxERERERERER+TPGHIzyC7KfRlF0hvj+CQBfA/AWAFdb1p8C4FIATwF4RRRFA5XvfwHgHgCfArBcrHIPgD2jKNpgjOlBuRdbXfFlWcWcWbvhR587uer7bb95d+o6y049AMtOjV+czZm1G9b9ojzS31EH7Ym1K96WtioRERERERERtbJdJ2fZWwEYJLPoAMDlAL4A4O2wvCwDcDyAOSiHbI7FU0dRdK8x5mYAZxljPhBF0Y7K91sAbKlZUp3sEke12RlEYzHdrkPLA/YcDzK3xcBAPM8W7x5CvWPTvXNx6DGXd1J5EIoikUl7qaiXjpeDyIOjG8tBS0KzAA1r6KHHbeeczqUgz7O9VbqZRL1kQpizz04s93KRw6x9ypTEPJl6YtGi9G0ncoLYkstpthwYvb01V8nlHJd11NuVF60t8Ued5Z1rxYdvGa7nv61810vZWr469mnLFtotbYqFSiuIZcviaXmthXreC53nyDWfmXU5xzyRWcoPcf7Y+OTe86bbH3mv1PsuLVmnzLMIJG8c+iYi27QAORhtbHnJPvOZeFr/LHmdNJLt+c333Mr9fErZlq7vmrXxPP141jEg8njqneCYTzTvXIu6bXWV9zPzzO7s5edxL5Y50qryXcmctrb8hq55yWya5GWGroZ8vtV5C9OqrB8H8z7/8yyPWspRAEYB/F5+GUXRoDHm3sr88dYHgNtrzLsDwEkA9gdw/8SqGQ5zlhERERERERER7bp6jDF3i/+Wq/lzAPRFUbS9xrpPV9ZP711SXn/nsrXWB4C52aqcr+Z4xU5ERERERERERI3QF0XREsv8DpRHr6xlUCyTNvR4R+X/tcoYVMs0Bb4sawIRzFj32RBhGgDQ3u4Weukb3pF3l/a8yWGbiwMb4xm6L73o/2z9zbYhqEvp17zsRq2L6CjVHi7dFqrre1zk/rBF2sjhrQFg9ep4+rjjkvWSv00u9wYVhvOM/KBiLRPd8wcHE/OKaSe2+gFy/+jwmkF0xR86uxLzZCd/uZ7eP65D3ttCpWWZVcdQnpO+sR5Clq76jbxGpRDnuG84qG8ofAip551nKIm+ZBLXl3wc6FfxHSLkZbQ9+Q+Gtv0qL1lZ5UTYNNz3ne9yoUNG6hnuAiBxIhRsYeYhQoxUO5s4CXXok9yeXM5yH62Kp/cNp/Igj83ChcljeOGF8fQdd9SrRuOTu0fWf/NAQS3n10amLSufCQD7qRXinLdG4A6n3/d82oQs9XUNxfYpwyZUOxKi/rbyUsuxtFN61sBg/Ixc6oyn5TNwlvJDyDvM0PacURzemlx41YNjk0OHHDE2raPdbbeComX3hD5Hdlm7Ts6yrQD2TJlXEsvY1geAqZ7r111z/CVERERERERERETN6BmUQy1rveyai3LPtLReZTvX37lsrfWB2iGaDcOXZURERERERERElOYulN8fLZVfGmNKABYDuNthfQA4tsa8YwBsBvDwxKoYFl+WERERERERERFRmmsARADOV9+/F+VcY9/f+YUxZi9jzCJjjMxHdAuAZwG8xxjTKZY9DMAJAK6NomhHPlX3s0sE1zY7g6hhw/qGyAXky7a9tHqFykWTCCsXiXyeWafzgMTTXZ3Z6zteHWWeEVuZruW5lqH5htnLPCN6uHeZTyEx7x/+IbHcsre8ZWx685vflZjXNbC+doFAajI+nWtl06Z4esqU5LJpKXeA5H6WOQBtshwbmdOtr09+n9xWb288Pac3/JDujczJZauH3LZrW6ElcnIFyPdm45u7zvbb5Lk7bVo83dnpnjcssVz/xuQXcp/Ii8GS6DLL+ZO2y+udC8/3Ppe2rK3+oY59qrxzovheJ7JeOg/ZwoW1l/Pke/7I/V1UuYcXLYqvqfnz09fzrVfoXIt5pHqz1d+Wt9NWhm+uyATHH9ss9yvN9f41kEgVmSxfXpY652No+hlKcr18tw6rwfAs549MkyinO3qRLud2pKH5unTeyLVrxybbF8c5y/RlkfMjDo1nF8lZFkXRfcaYbwD4W2PMTwFcB+BAAOeh/CLsarH45wGcA+BEADdX1t9hjPkQyi/dbjXGXA6gC8CHAWwAcJHepjFmZ1bRnS/dXia++00URb8J9wurTf6jSkREREREREREE3E+gNUAlgN4PYA+AJcC+GQUReO+aY6i6FpjzDYAFwL4V5RHxvwVgI9FUVQrX9k/q8+HV/4DgE8D4MsyIiIiIiIiIiJqjCiKRgD8W+U/23LLACxLmbcCwArH7ZlsNQyLL8uanG+IlOzOnTb0eK3PzSKtXr4hZNZ5Ir6gt7dYY+mJbQvr1sXTqnt1QcTYjZY6MFF5hADJEMRjjknOk6EZugv4IYeklXic+hh/rupF3iniN3VomDzJRYhm+7y9E4vNmpVWD3eFYRGyo7vIe4SIAEB3d7xfZZHJUAz/cBvXMBTfEEfXMlyFDlMCYI9LkDtadp1X6+QdIm8LEUw7d73DUi3hlXnw2Xe+bZjruRoiFDLLfShEONhoe/p9KUQbHyKs0SpwaIrv+Z+41ix16ig17rnIN2wxxHmWLDNZni0Ms95h1ZLrs6LkG0LpHM6tU0bIPAsqX4Vsk2VaDl2EfEYoZngmaFSKF/nYCwCrV8fTOsxZp/CoF9s1FCrli1dd9H365JNrrqMXC/0MFeq+0Mj2gSgEviwjIiIiIiIiIvKxC+Qs2xXxdS8REREREREREVEFX4E2mSzdVW3LBh8pSXYjB5J9xEWfah0u0qxhngniXwJChXkmyP7oeshF0f/cddu+owZmCf9KW0+PCmkblakoWpdk9/b0kCLdILmGzcjzsaDDJOVIbL7ktnP4lyMZ+aevXXnplUru+19qZJikVO/QBqs8hpPz4BV2pdsRx3PStz1rtXDcZjrPQoSi+god/tLIUSFdTeYQIN9Rt33oJiXEbc979HV5E9SxZ6JieYzu7vMcVpWqQYb8O440LNM0ZKK3LchUH7b9U+xfnzrPFjMp94kcKR1IjuptO7fkrU2Pyuk7CqjP/StI+HyotscxRUse57+rlvhbj8jT5HmKICIiIiIiIiIimiD2LCMiIiIiIiIiysoY5iybpNizjIiIiIiIiIiIqIKvQFuYT/6QTLlcZF4ynWchJS9CHnHrvnH4ecfvO+dBWLQofaZMVqXXC5w/wVa+5JsTbbxy0sgcFToVk2X3JHNOyfNTj7luqVPeeRbk9nS15Gf5O/U/TMkUIXr/FC0teOj8Ua77Lu98S76/q57H3jdvknMeIsu/XupzRKbL0deT9fpyVM9rKI+8eVKInFwh+OaX1ORtesuWeHrWLL962a4h131S7zY4rY6+v6VZcvNkOQd9fluIHIYh6gHAeoN0zSnmy+s5TDesIq+va67MLPcQa25Xke+t0C5uBpbcY4k8u0DypmJZT9a5iOSNKJHDtj09b23aZoHqnLku9dCf5b7Sf8Z0iMNW7/yboe8p9W5ntw7G20t7jo+iXKtAlBv2LCMiIiIiIiIiIqpgzzIiIiIiIiIioqyYs2zS4lGdJHIJG5AXvS02zLFx8O0WbFvOtYu867b1UNXyp3mHJci+3rrftwwfdAzJzINvCI0P/Vtk13rbqWQ9hpbh2OV6WcIYEwvLimWIXZNF6EOf9lt32y19Odum8wiTdD3n8zg/XcOnXOn9Xyplr79vO+sTzupbD31eWS6NluC67/IOjUzb7njbDnFv9r2+ZPszMuJVhFXab9PtrLz2ujr97qOu4fqNDJNslhDNLELXWR8bGcBie56yhsgGTlfh+5vleazbWfkcU8jS6KY9Z1jYfufmwWSIY6lnzth0sd3xd4e4aQR4aaCLSEtdoT/b9o88hiHSENjovydkSoSZ3W7PC1qz3ufkvpS/E4j3+WjrNY9EABiGSURERERERERENIYvy4iIiIiIiIiIiCoYhklERERERERElBVzlk1aPKotzCd2PVP+lJwv+hD5JVx/j17ONdeKZMtvZc2bIQP4165NzpPDiMvhxdW8vIeyzzt3jhQq50IiZ5bcjxkSUcjhrvVqVUOwO9A5KjZtiqdlvg0gPReZThdiy8fjPJy8WC/L9VTP/Bha2rZ1/Tf2x8vpXBm2PEe9vfG0zDdjO302bEh+njUrfdk0WY5h2nq6jGfWxWXYzp9GCpHjzrbvGpW/rJnJNqatLZ72PQd9tgskb3MhyvR9NAlxn/O9F+edu871XqDbwUSuLc96yPJdj02mc87jgFf/zsxF1IdjxVzbN9u15twGy5zEgbgeb9vusKVSc90/edwP07Znyx+aRw7nRuWR1dLOQXkPImolfKIkIiIiIiIiIiKq4MsyIiIiIiIiIiKiimbtmBzUcede1+gqWE3dLe7y7Nt1NpewE1t/Zce+zK7dgvMOm3HddvVw4AG2JfeV7t4u+2WrfeoaKirDKLLUK+8u2z718JUooz05dHpye8ltydBIvV97emqH5tlC/datS87Tn6VFi+S24mnbOZdlX6Ud0yzd/23d7ht1zuh6yC7/jzySXsbISPKzPKa24eTlPH35ymNvC2dKXGvDQ4l5iV/z4IP/P3vvHmdXVZ//P3tmMjmZTMIkZEgIAwwkQMAA4SKgBUSrFhGt4VIvBQFrUav1UqtVf1q1VeuleLe1FwWKclFRqmhVbEH0y0VBoga5BRggQCAJGciQTJKZ2b8/ZjL7sz5n9idrr7P2uUye9+uVV/Y5a+211l63vc+e9TzLzWDDhqkzVwUZHl48ZZl0WWKMtdB5pAw5fUg5yqCR9zYL2ZflsVUm3X86O/zmgNA2tOTFMawaYhNLQiwp22ZBEiqTDB3bVpq1pmed5/tcVARfKXCMe2Ws+3RQ+iVoFcu+D5WdRsj8Vu/7kEXssVe2lL8loWfZtGW3aNVf3vFIo4tg8qYLL2x0EQghhBBCCCGEEEIIKMMkhBBCCCGEEEIIIWSS3WJl2e5AjKWz9ZQCxEo/dPl/3nkxVtBW5SUT1TouqSEzMpdSMC2TkSvmrR2g9G6ebtw2ES/O8upmWoK+E2t3Ir1bpVTAyWbS8eTnHTvcMLnjYl+fGybbzbfflS5hLZB32fjmJ+vu8MPdMDludB3L/i83qdU7Ocl4sj2nSnMnVXPA0DPZB0vHKwsMuJ1w6dLcjGXf6hzZotKX2iElUR4WcT01RkWkeLH7jG//N+9lAw+4X8g61oNUzNdjqu5iULY0JiRf3fQxZEVyl2Dd/eW9p4xdNMsmZA7W9Vi2pCxEmhcqUbPOc2Xr3snn5mXlV7ZMTD9rWdcWsuOoxqrjkHlE7gS+M3QnXZX6Pu/Hfo7x3Qm13tJBmZ++1QfVuZpM2zwnzOo5OGNu4JzL3agnoAxzWrIb92hCCCGEEEIIIYQQQlz4sowQQgghhBBCCCGEkAn4sowQQgghhBBCCCGEkAkorp0mlO0V00gNegzPlNBtt6PUozTGMtB5S0+DzZuz4xkz3PN8tzPXaM+EnXQangVFfDq0R1oeoV4HIefp9qxUsvO03cPWrTJedjx7thtP2tBVe5Xkh4UQ6isYWj8h51lpxNqqPS/vLrXjvWxfCzlE9biQ/h66/3tTqfiFaU/D/v7s2PA37MT27IM21RMX11ZCB7XaKa/ti/TjGPcex5tNepTtCmFm59SdntNF2xQpr+xP8tjqLjGIMVcUQVadnmfl+NJdV8aN7pmoM1u1KjtetswNMyb5vHIF16NhuBQ6l/o+44R4mxUtS6MI7fPyPN8pUntCyfGs70khnmsxxqh1LTH6SGj/tMoRSkj6ZfsoR5njC5g6ynJ1d5f7e64V5oNSSBJ6lk1TuLKMEEIIIYQQQgghhJAJ+LKMEEIIIYQQQgghhJAJuF6wCUiR5C4Hjr1lfKtTxvL/siWmodKJvNW8O3a4n6Vqo7PDP30pM5ToJdpSraIlalKN5Lv62GrDRvZjXX4pd3VlFPlplCGFDCWKfK1siXIErPHlKx/p68tPX6r2fFUPVXVjyR2lzKqj003HV6shJ4F169wwmYaWeMnBLaVmJegAQyUvUfqZvG7diPKzllfKxrcmQlFfbYZEU9PR0SaOc6M1lJD6t86R1wyY6mJvguZWPRZkW2upbsiNrkjeoj89NTI3N+vYckoA2DKcxZVdvKfHTSPGlFDk+SSPWDL/2MhuoetKhsWQ98WwY7C6cbPc2zW+5dLXFtJHYjzvWNYqXRX/Z8XY7dE2st39IqczNOszHyH1pkkfzwghhBBCCCGEEEKaGHqWTVsowySEEEIIIYQQQgghZAK+LCOEEEIIIYQQQgghZAKuF2wCkrHRbGt7ZXbgq7UP1ZaHemCE6v5jE8O7wTf9GFuP63hyi3HtITZrVnY8Z052vHmzG0/6IHT67yTtpC+RviWAa99SxLckdh2XTQk2TQ4xvFbK9pAow08u9nlWvwqtH8uLzLIbC8KY46utsHy9mATaD0lMMmN9+7nnibJovzQ3/TA/JF+i+/npOpANJ73ZdJg+Ly9eJHzrtZ5zZNnjXMeTHmZ6HObVj7xvauZ2B/aRpUuzY52B583Buw11XxLp66kodh/RachLk0NDF1Gm+dSgm4b0N2tFX6PYXqO+83aRvKx7cUgZQ++joXmHUO++pO+/Et82ldOKTk/aiS5dmv9bQE9N83u8si6d0N9bhLQ6fFlGCCGEEEIIIYQQUhR6lk1bKMMkhBBCCCGEEEIIIWQCvgJtBrZvz7Ruatv5NksfJONFWAJrpRFDdlm2JLNIHYTIinyXput4ljxCSlBmzIAKm/pYyydD/5Ahu5ZcLq5lmHJ5uFajyM++y/PLWK7tK6Mokne9ZZkhlD2mYlOGjDSGhMai7H4QBTkJGPeManViJr20xnlnHZ8UoswPelL01dJa56l7c2yse4jbbm5YZ8f0lb/kjV9rTHrPMTqRvr7sWHoPBFJIrib6WWcJ90ffedB6Dujry9KQcjLAnXJ854oith958XaVpi+xn0lC05P1r+dqKQNspsUree1WtmWEVQ5fdB1LixP9PG7NObLd5PF997nx5LO7lmhKGxaddx5l1HHwM5N8gPD83UpIq9Bav7QIIYQQQgghhBBCCCmRJvr7BCGEEEIIIYQQQkiLQM+yaQtXlhFCCCGEEEIIIYQQMgFfgTYDO3ZkHhn6rfQ00n5bHh7N6nflS6jOXzb3jh35YdJLQTNvXn45fK/NsvSRXVDb9oTUXSw/Et+8y/YjsXw6QtOsNZ4uS9m+Xr7U26PM8sHJCyviNRS7b2kPFfnZ+oOlU/4FC9xAYbai/a3kedIzpdq6y68OGukZ5J238GnTeVf1EV/DOt1wdaSe/bNsfMdelD/eW21bwLMsr4yx5tVnhrJ05L1Yd7kY3nXapywPXXVOe0jvIiD3GTa0b4Y+B4R604YQ4zlMIz2udLwQX83Q5/FmnVNCyqjrUT5LF5nS5fP5xo3ZseUvrMea/Nzfn59XlHlFXbhMU/YzPQ1KW8eq+YeeZWQaw5VlhBBCCCGEEEIIIYRMwJVlhBBCCCGEEEIIISHQs2xawlZtNgosX40hs2rWJdV55SrjWnyXNZdRV3JetbaLHh3NjvWW0/I8Sz7VVckvvzzPWtKvw3zbI3a8IljjJLY8MVQmOZ0JlXeEyCrKlo9ohVGlkqVvSSzktK7lUlLOIKWQOk3vZzCtlQ54eAtVFRaRsOZR7/tVjDK2lfyA7Jt8s97PLawyl/ocoG9mvppnI7/Q+ca6HlkU7yKqATw0nEmPLQmfnDqsOUDKsQCgbXiL14n1vL+HSiGtcpV9z7bm+xBJPuDfP32vM7QOypZyhqRZfU5WRssSwcKSy+pbc176vrLasp83rZ+jVbJv/cOEkGnE7vFrjRBCCCGEEEIIIYQQD/iyjBBCCCGEEEIIIYSQCSjDbDYCdxHxXXJetlwzhgwnNP3tI25ecgl0o3ZO3FWaMkxKugC3/FL+pVc7y896qfjMmdmxTj8PvQRcftbLyuu5i12RnQ5jUHafadQurLHkKTGI3YYxrq1IOfI2gDJ3i0N+mJZih6j7xgrs9iixZODeeZc8Rq30Y8i4qqU2U8tsC2Hpd0Siu4ssu2yC5wBfLwKDsq0aTCme0c98L0fOYVpynlem8bxzElFY80EZ80MIZe/Y7HuevhZrt9PYcvfdFWsKyBuHgLvr5aJF2bF+Vpfn6WFiSTRj7Ljr+9tPXqdVpirkhe+uJAk9y6YpnC0JIYQQQgghhBBCCJmAL8sIIYQQQgghhBBCCJmAL8sIIYQQQgghhBBCCJmA4tpmYObM6r24PQjyRbjtNvfzihVZekpr3QqeBrIOhofd8rpeW7V73fh6uoV6cVi+ItLfoL3dDRsdzT/P8iHKu27tbea7ZbZFPbdfJ+GU7flVxBdRxrW2nQ8N82VwMDv29f6xbCvK7v/aJ8XyKpS+RBEsm6oI8SMM9dWMUQ6r3YK9jDw9TBo6R8pJXptVFTKuKU4Mr9Qg9HXKTr9unRvm+XwW2o+tuPLZxduHVfW5zoBnnK1b3TD5DFKVd6wJo0ZiPIfF8D6MkX7Z/sJl4GnP2BL4+owCbvfX4ybvPO1Z5mtXHXqfiPEsZNIkc0BDoWfZtIW/WgkhhBBCCCGEEEIImWC3elnW3t6OFStWTP4bGBioinPLLbfg+OOPx4oVK3DooYfiIx/5CC6++OLJczo7O3H44YdjxYoVeN/73gcA+NznPodKpYKnn356Mp0bbrgBe+yxB4466igsW7YMf/u3f4vf//73k+nMnz8fBxxwAFasWIEf/vSn9aoCQgghhBBCCCGEEGKwW60XnDVrFlatWmXGOe+88/Ctb30LRx55JEZHR3HPPffgsMMOwwUXXAAA6O/vx/XXX48FCxZMnnPFFVfguc99Lr73ve/h/PPPn/z+pJNOwrXXXoutW7fiqKOOwsqVKyfzP//883H66afjrLPOwpsuvBAQ6UmiL+vXcgJjyWgjt9AOWTLcCqtfLeWHVX65vH3jRjdMyq527HDD5s2bOi8A6MpZNa3rW0tYJbGXdutl/L5tWk8JU6ztuhuFVaayx7w1T/mGhco8rbhyXGoFlhxfepqW/VX21ZzpfJdoKUZe/7fGyYYNbpgsiz4vbyv7InNpqDy91vTKoFnGaxlyYjMN2cl1B5KULMnUyDLnjbUiaTjXrW+IMtEAWwwr31hxi0gva8Wyd7AIvRbrPNk9LbWXTEPK5/V5uqpiPztWS+Gz4xhWBxZW+s1ih1F2HYQSWj+y/8yZkx3PmpUfz0rDwtd2QuP73Cef932tMXaVPiGtTgu8XqgvTz75JPbee28A4yvRDjvsMDP+/fffj6GhIXzmM5/BJz7xCedl2U5mzZqFFStW4NFHHy2jyIQQQgghhBBCCKk39CybtuxWMsytW7dOyiBXrlw5ZZx3vetdOOSQQ7By5Ur827/9G4b1n4gUV1xxBV772tfipJNOwj333IMnn3yyKs6mTZtw33334eSTT45yHYQQQgghhBBCCCGkHHarl2U7ZZirVq3C9773vSnj/P3f/z1uu+02vPSlL8Xll1+OU0891UzzyiuvxGte8xq0tbXhjDPOwLe//e3JsF/84hc44ogjsGjRIpx++ulYtGhR1OshhBBCCCGEEEIIIXHZ7dcLXnDBBbjjjjuwePFi/OhHPwIALFmyBG95y1vwl3/5l+jt7cXGjRux5557Vp37u9/9Dvfddx9e8pKXAAC2b9+OAw88EG9961sBZJ5l9957L0488USsXLkSK1asqEonRTKp/w7VfZt69JHt2QdtiiONQLShjTTyscx0Apedel+rLJde6SfKVYYPxZbhqbdtD00/tEyyKTZvdsO2bcs/T3plVHl95PnUqEK2RX7Ja/kg6Pop288jJK8iPhGlb9ct8E0/1GsihkdFEb+0sutOplmp+I1z7YMjh4Y1Jfr6LXV25F+nnIvWrnXDpMWS9kuT+d1yixt2wgki75Etk8djHV255dC3iby8NDH8cnz7YBFvvGYktPy+42T7iJvGSMfcyeMuPd1bJlER8L022beizAdWZy1yz3Oek+bmRgvxZ6wHefnpRz6JnIsAt4tYvqySYSMNTchzk/Zv9fWHtfD14ywyZELuc6HPIL5phvbB3VWBlvcsEZpGqL9n2fNIET9a3/MIaQV206kt4+KLL3Y+//CHP8Rpp52GJElw3333ob29HT05prZXXHEFPvKRj+D973//5HcHHHAAHnroISfewQcfjPe///341Kc+hSuuuCL6NRBCCCGEEEIIIaTO0LNs2tL8f2KtM5dddhkOOeQQrFixAueeey6++c1vor29fcq4V155ZZX32cqVK3HllVdWxX3zm9+MG2+8EQ8++GAp5SaEEEIIIYQQQgghtbNbvQId0uvDp2CqF12SgYGByeOpXnx99rOfnTw+5ZRTJo9nzZrl7IZ5ySWXTB4nSHOXqTrfW/tRG2xH5+Rxpz7Fegsu1+FbuqLVq7PjpUvz0yhAiERzeLjTCYqx7N6ST3m1GfyX5+9iL4lJnn7a/WypZU3yCmPprBRlyBpj5N2MtPpW261W3l3xxPqsPUZHs+9195cK5Zkz3TA53rT8URI6/+TNHVolJtPftMkNk1vZ6+nZmQJG/ApZ5FrqOUZj5OU7RrWMUWJJaX3zLiJX9kWe19FhyLYqflLCRlLvuVTmp+/TXTn30XrXVWzZuvUsoS9Zzplbt+afJ+dSKw3L9cNCXveMGW4fiTEHl96mBZ69JG3i4vTYyEtS10fo/Ok7R8pxo/OW0sVmmWOKSF3zzitSp77P0jFsP6z5swwrIEJandb6tUkIIYQQQgghhBBCSInsVivLCCGEEEIIIYQQQqJAz7JpC1eWEUIIIYQQQgghhBAyAV+BthIF3ljn6drHOlxfL0dnrtO38pPmEzfckB1rg4QVK/zSs5DnGUYa2gMjxgt+y/csr46L+M3INCxbOFnd2pNoxoypyztVmrlIwyV1UrP4DtXTl6Ye+cUgpIyhXhZl1I/lsZGXd6zyz5o1dRp6P5d167Lj3l43TA4VOV61PaY1j4R4nOg05JywbZsbJj/nbOxclaiexmPMpbH7y1Sffc4L9aKRNNMfj0PmTP295WFWz3lQ5yV9j+Q9sHrPpSzewt5yy1v1HKCeqSa/N9qlen7I4sr5BgD6+qZOM3Qe1OSFPTPkpmF5mMk6kR6JALB5c3a8dm12bM1FOi9ZB75jL9T3LNQTKtSrykF2DG2OJy9IXdxTg/n9R1639Lq02rNI38oLs35OyD4BuJfa3Z2fRtnPI2XjW8YynrlbzeOXkGaCo4cQQgghhBBCCCGEkAma6O+jhBBCCCGEEEIIIS1EMy07J9FgqzY5zrJvS6enwuRy386hwSzA0unFkEnKdfYAsGzZ5OFYd/6W9Jq85crWUmKr+KFLtDs74i7tLlJ++XmffbJjvXzeknhZS+2dclW6/CKWQIiUyqKIzCqkX8Razp4n6Shb7mjRTFKG2PWj40m5h0SPoeXL5Tn56edJMqdK05e8a9OyOSl9ypOXFilHGc97vhIy67xQQmRoZnoj290vpI7IusdqaZWIG2Ps6X43PJzV3dzuuHVQD/IcGOr9e0TWjyVZ9cXqIqZUWlC2rEqXMcZ5vm04e7b7OaS9G/mbNVgia1WQUbEyaM893TDLpiO3HAa+8fRcJD+PjrphsozysmPP27UQRWYbkFdofs0ku2ymshASAnswIYQQQgghhBBCCCET8GUZIYQQQgghhBBCCCETUIbZBKRIJpepFlq+7bvO3NLpha5Vl8vFpU5J7qqo8o6xtLhZd0QMlRhZeck05S58ekc+iVb5+C5pt8qRV6ZdEaNOJGXvJKTPk3XZVcnPW8YzVFYYHHTD3A1I6/d3ixjjUJ/XLDKuGH1XT4mWLCovv07PnXN909NpWNO4JQHV/dO3HLFlFM0qy/DdTbXq3mvdYyUla8OsYpUxXkN2hA7FkpHKcsSQsZe90562d5D5+VonaHznDt9rsbpqtdw3/zzZB5cuzY63bnXjyV17581zw9qGnpk6QZVh2fOK63wSp4/kzitGR9DXKZ9PumBM8h35OkynHMNb8tMwtJyWXNn3Z4hvP9Y7ysr+pHdklXnX81m07Oci617frL+VpjVJQs+yaUpzPrESQgghhBBCCCGEENIA+LKMEEIIIYQQQgghhJAJuF6QEEIIIYQQQgghpCiUYU5b2KpNTpTtiqVgX4vcQ8kzICiw33hsjXsMDX0Rr54Q3wIrvRh5VSphfSTU68n3PMszJYYXWWhf2jKcpWn5jVnI7m95cWgLknreU323YLfGUBk+ViFbwxdpa6vf5YXV0z+uCP5eQ/nee3r6l5+lz1q9PcVC73N5dRJa/uBx4juYVbzYXpe6XL7F8h0n9Sb2PVaZToUWKyxvzzQ0eW2j87LylnPA5s1uPOmB6lvfeh6R/lHt7W5Y3j1Q31+1B1VuIgax55Ei6cR4PvFNo9BcIRvL6P9OmhHGhi6jvL9oT09f8i4FcD3vRkfdMOk72uX/E8WbkHnc/L2iHkbb1q3Lzus/cPLYup/r3wIxvBtDoZ8ZaXWa81cBIYQQQgghhBBCCCENgC/LCCGEEEIIIYQQQgiZgDLMFqKMpazBMhC5TLuvLztuoNaskUt967lN8+60pDmGBEJiqZCNHekddP1L2Zux27sZJqmWg9be9mVLqUJlXCHyoxjxWhHnOke258bTkkBLVtrhKb30lTfFkPCVLgM0JoGxjk6zLLv6fso0A/p/qKVADClnKK5Eyi1/V6V+90crzJLLxpaVN9N8Iy971qza09P3Silz08Mrr8r193nOHhPf7DpBlF/nMusi81RdZc66cQKkx9vRmRvWGWGuqOfzmpV3rGfpvHEf3NZak3zDDVma5/c7OfuUaVc001zV0tCzbNrCEUIIIYQQQgghhBBCyAR8WUYIIYQQQgghhBBCyAR1WS+YJMmeAF4HYBmArQBuBPCDNE3TeuRPCCGEEEIIIYQQQogPNb0sS5JkLwBfnvh4dZqmV00R548AfB9Aj/j6XQBuSpLk9DRNn66lDLszvluFO9p+5ckipfHd3YFbDUvPshbE8hiI7UFS9hblrUARP54YW65L34tqP7Ds2NtqQBlpSB8c33LozzJvXcaOCFuu+1Lv/hmSZpEy+tq1xPDrKoPc/KyOrOjsyMpv+Zf5UsQLpRnnz7JplnLUG9/x1VDPzQD/pl0Ru71D07PGmjMHdPulX2SsyenH8pmy0jTnpsg+ZUWuLa9eQ30FrbKE+p6Z5NSdVX59e5Ft2tPjVz+huN6Hbpi8FOOWZ/ZBSaw29E3DO319ARs2TBnWoX7P+V63b7l213tZMPQsm7bUOhJeCuAsAGcCuFMHJknSDeDbAOYBSNS/5wP4Zo35E0IIIYQQQgghhBASjVpflr1k4v8H0zRdPUX4hQAWAUgBPADgfRP/HsP4C7OXJUlySo1lIIQQQgghhBBCCCEkCrWuFzwM4y/Cbs0Jf93E/5sBPC9N0/UAkCTJtQB+h/EXZq8FcEON5WhpEqRey3OLbEHvK7eRS5lDl6Y7y04HB90T5fJhvW560aIs/Y78rapjLI3eMuyWv8NvJ3KzHN7L4g3pR+xlzlY5dB1s3pwdz5mTHVvL2zUxyh+61baMa0kBrKX7Vts7ZZG6BOOkIjKTvGS6u/V5uUnWVd4UKon1VT5VpS/nkp4er7wttLSkqzL19ehxMjKSfdb9x5HF6u3eBW26UWvF6shaiyEuvGo0hehaIsxh1fIaPym8Jq//bx/RY03EKyCTCJX/5tE2st39QlTEWKXLK68yKPJs4XNeqOS5SN558byfVUoghiTNkp7l5VVLWGx5dKjUW16nLqOck/U0FVtCFjr2YuQXIsnU54WWS8bTfS7GsPG9tpBncysN3zI1Ffp559RTs2NxcbFms7z7XKz6oZyTtDq1jrXeif/v1wFJkswHcBTGX6ZdufNFGQCkafqHJEmuB/DHAI6vsQyEEEIIIYQQQggh9YeeZdOSWl/37nxZtnmKsOdhfOUYAPxoivDfTvy/X41lIIQQQgghhBBCCCEkCrW+LNv5MmzWFGHPm/g/BfCLKcJ36vMi61MIIYQQQgghhBBCCAmj1vWCGwEsBrBkirA/nvj/rjRNN00RvvMF2/YpwsgUFNGPy63C7Xh+6Wm/nw0bpn7Put8i9e7T8nqq43JVK+vYfg/ac6TT8G1ri+DFJPPWXj2bxMgbHXXPk+WcMSM7zvNy0nntirxtrGM1u7zW0rtSBCMNX68YnXyUrcg9y2V5odR7m/WQNCy/Ol+sc6rtwLL85nqa/RXxh8qtH6uQerJety471mVcsCA/Hd/8DEK2sg/1N7HmYPm5Ugnz57KwzntmKMtv7VrXm3PDhuyzsPDEwf2exlUFsPzXYnv3FLmn+noaxsg7xnmh8Xz7ta9nWSx8Pb98vYxCvS2tsIGB7FiOEwDo6fHzW5Jphnp++Y5zjbSsjNF/ivTxEB8961YWY5zEurY8rOt0x1f+80JD/cx0AyxfPmU0XUbr95ysE/2IUMSn2Ad6lJHpRq234d8B2AfAqUmSVNI0HQaAJEmWAjgO46vKbsw5d6f88okay0AIIYQQQgghhBBSX5KEnmXTlFpf/35/4v8FAK5KkuSoJEmeD+BKZBLN7+aceyzGX6atqbEMhBBCCCGEEEIIIYREodZXoJcCeB/GV4mdPvFvJymA36Rp+r/6pCRJ+gE8ZyLOr3wyamtrQ5Iku46oqFQqOOywwwqfV0+6urp2HSkSj61z349KheDWrW7cvffOjmfOdMP0551sGXFlJl16zbwgROJYZGm0tRV2jPS9l7fH2Avbk01K8LxxY3asFZ9SGhBjq21LXiOJVQWxJXah+PbjKMv6LX2ZDhMNXIZ0yPe6vaUNg4P5Jxr4lsNXmq6zledpqY2cPzsWZXPfZrXlzZw52XFXh3IeiN0pdXpy4AdK4UNlFSHzSgwJR5EqLVtuI/vIlVe6YWvXZsfvfKcI0DqZ7nxrV9/7V/B1GjrJGHXXjH+ILyKV9sX3PN9nlRh5hVJG/VjI4aCHRgxiXE9sOXFoOcruI6F11SzSvNC2qXefrxWrvL51YD3T68dN+czT2wtCphU1Telpmg4nSXI6gP8B0KeC1wJ4Xc6p54rj//PJa2xsDGmaFi5jkiT4wx/+UPi8evKmCy9sdBEIIYQQQgghhBBCCGpfWYY0Te9MkuRQAH8G4CgA7QB+C+DyNE2Hck47DMDPMW7un+dpRgghhBBCCCGEENKc0LNs2hKlVdM0fRbAxRP/fOK/Nka+0xK9xtyQ8PnKL7aIHdssdYfeEUVKLaWMaKq4O9FLc2UZpeREp//ss26YVG/Ky/bdvRMA2oa3ZB+M7V5i7JJk4rvjnIHvEvA5c9x4cpdLjawS391wQnfDdHejc+P5SofKXv5ftYup7Gsl3ADzrq3qWuSg1VJFC0O6JQmVceWdZ44haxsmXcc5nbLecg6Zny5SnsJRyp8B4Amxjc2yZa5UvTOydKVNFzLCVlehO6bWmpdO03ecW7twli3FtnYz7NPr7wVOM6k2axoJUISKLTJXx+5PMdIrW+am5eJ5+TnPN4DTZ4pcZ4i8r4ydkK0y9/dnx6HTWex+oAmxtQilkZJG33YrY86KITkPrTur//g+C8UgxrX5WlIUYXQ0P6wZZaqEFKE5ROSEEEIIIYQQQgghhDQBfFlGCCGEEEIIIYQQQsgEURcLJ0myH4CXAzgWQC+A2QC+mqbpt1W8+ROH2yYknIQQQgghhBBCCCGtAz3Lpi1RWjVJkrkAvojx3S/bd34NIAXwwylOuQ7ACgD3Ajg0RhmmLWLgWXp0K+zuu7PjffZxw+QWvzF05Zan2MyZbhm3bcuO169340qbL8ejwjCE2T7ipt9ZgoeKDzpbXy+dGD4CXRU3ja6OLMOxDtcrSZYltO2tLd2lvVYE2ySTUF8yKyyvL8fyofBOR1aeNPOD2+c7R5SHjScx/Ki8r8Uak4bHmkxf9zNry/KQfm2do/vE/J6p4w0Pu/Uhx8KmTW7c3t58H5ay/U9iYPnIxPA5Cjmv3p5Bcu4YUtsaSW/OU091w2Rflvc8PVdLQu9XId5UANAmK9OaQANpVL+O4Y1XhNCxkDsHaP9KcW8oYxzmpacpY5zLebbs/hJaft85J4ZnVjP1zxh556Lmm7YNG7IPeqKVhpARHjj17wlrGox9v2kWXziNvF/pOpDNsWaNG7Zo0Xialq8ZIc1MzTNbkiSLANwO4FyMv3xLJv5ZfG4izsFJkhxbaxkIIYQQQgghhBBCCIlBjD8DfBfAEoy//PoVgD8HsHwX51wDYOe6opdFKAMhhBBCCCGEEEIIITVT0+LRJEnOBHACxuWWVwB4fZqmYxNhueelaTqUJMmvAJwI4Hm1lGHaEbh8WC+5fWowew+6bl32vZZh1pOFvW4ZnxnKl1blqj2M9c56VXZ3dyZlsTq67xbUZSz/j7F825HiaSmnyEBfZ0dH8evRaYyIvLUqRLZHjOsMlRFZyHKFymdjyC+cazPWt2/vnu8ESUnfwt74WtfofT5CR9BJPCtcL+fN03Hjyo980fOsHAuPPuqGzZmTHXepJtwyPPUcqRWroRJuOXesXZt9LyWBOr8iEpRGbRmvyxS7HNXpZfWo85afdf/MazdLDm2Wa2S7+4VorLFKl1d6VWGywUPHrxwAugP1uHNabGLMYTHSiD4W1LOiJaOLIUeX6Vc/a4kPJWvUypCXxWib0GfFvLzLlpvGkGtaBMvFNzyZfZCyS8D2/ZAyzJIp+/4SOv/HwOrH8rq3bs1PQ/+M3Xme8VpgekDPsmlLrbPxqyf+3wDgL3e+KPPkdxhfjbasxjIQQgghhBBCCCGEEBKFWl+WHYfxVWXfT9PUeM88JTst3XvNWIQQQgghhBBCCCGE1IlaX5btNfH/AwHn7tQL5G/7RAghhBBCCCGEEEJIHalVXLsDwMzAdHa+aBussQw10d7ejsMPP3zy8zXXXIP+/n4nzvnnn4+f//zn2GOPPQAAXV1duOmmm3DJJZfgDW94A1atWoUjjjgCALB8+XJce+216O/vR39/P+ZMGNKMjo7ijDPOwIc+9CHMlHvJK6SPF+D6QIVK8pcJoav0x2k00udCe+RIO4L167PjOXMas8084L8du+XHoD1qZFx9nrT+0PYMEtd3K9/roGwfBF1G6WkgPQx0POnTFKOM1jmdxkyl85a+LPJaZsxwz+vpyc87yKdMG8KIz53KDGLevC7kEeItElp+yy/HN0zja5Wk545mQPszjo5m16ltWDZvzo71+B0YyI7luFm61E2jU3mYhSDz0vUt5+pSLDmMxg7pP7HmtjzfQukVCLhzgpwPQgkuv/aLyjFbtObZ6rAA9CSvDS1l+qLCipSrVoJ94QrMYaVidDT9HClvGzH8lrRfkfZQDMEa52Wc1yzEnsOCvcIi+7YVOk96LUqT5Sp/w578RIwbU8gYtXxAy/AwbEpfRIVlqS3vgTrezs9tjfv5Vj/oWTYtqbVVnwDQDeCggHOfP/H/IzWWoSZmzZqFVatW7TLeZz7zGZx11llV3/f19eHjH/84rrrqqinPu/7667FgwQIMDQ3hwgsvxIUXXohLL7201mITQgghhBBCCCGEkBKo9T3vTRg36T81SRJvOWWSJEch8zu7scYyNJTTTz8dd955J+655x4zXnd3N7761a/immuuwVNPPVWn0hFCCCGEEEIIIYSQItS6suy7AF4PYE8AHwbw/+3qhCRJegD8l/jqyhrLUBNbt27FihUrAAAHHHAAvve9700Z7z3veQ8+9rGPAQCe85zn4Jvf/CYAoK2tDe9973vxiU98YpcrxubOnYsDDjgA9913H44//vgp41g7JRdBLou3Vi77LtstY/m2PK+nx01frsR+4onseNs2Nw15bVoKIFfDamWbK0uofRl/qBTAV15p4RsvxhJt3Q8secfTT2fHo6PZ8YSaWaQRJtOTeF+bVeGVfEmj7HezZuXn7SsrBFS/k4E50ikAVeUfEWW2JKaSRkpVis0jWVxDxYX5w49lH7oX5ebXyO3YFy/K8uruzpf76nlq7dqp09MyzFBcCXecNIMQmVt9pGwZkUYON9kHdTvJOa2hUjBLJ2NgzrOebeN93Xp+kw89C/ZCHrHlZfoc33t4I+cRqxzWbSMG3ul7TiT1Hue+9+nQ9g21GwjJqwzqKWdtG3rG/UI+8Eu0x4Kn54KvpYn+zSDjWc9ToXYA1vOILFfgNF5XrDJKawnJWOuppAkBUOPLsjRNv58kyW8AHA3gfUmSzADw0TRNn50qfpIkrwDwWQBLML6q7Lo0TX9VSxlqpVYZJgC87nWvw8c//nE8+OCDu0wnTdOiRSSEEEIIIYQQQkizkST0LJumxLDbew2AjRiXY74bwBNJkvxMhJ+ZJMk1SZI8AeAaAAdOfP8EgAsi5B+dCy64ACtWrMBpp53mFb+jowPvfve78alPfcqMt3nzZgwMDODggw+OUUxCCCGEEEIIIYQQEpmaX4GmabomSZI/BvBtjBv9dwF4IcZXjgHACSJ6MvH/GgCvTNP08VrzL4OLL7648Dnnn38+Pv3pT2NzzvrToaEh/NVf/RVe9apXYd68ebUWkRBCCCGEEEIIIYSUQJT1gmma/m7CtP+tAN4CoD8n6joAXwbwxTRNh3LiNCXSswwAfvUrVz3a2dmJt7/97XjHO97hfP/CF74QaZpibGwMK1euxIc+9CEzn9mz3c++29Br/XveStBQL46q86Rpi8wsUGyv09ceZnnJy8/WVs8jI2560iZF1rH0z5qqXD6Eel7oNsur1mZa5SvrvK8vvw9KLwi5xbQmePtsy/PLqjBhFNGmOpf0lvLt4s4W6IqODncPFO++ZTR+Pb0trPKGepxYHiHeflqGD50s1/YR3T/r59Eimdvt5iXLoVkkLNjK8CSS1y3Hr/ZyyTsHcOtVX0sMT0yLststr9/p+mmWv3/53sPr7rtlGYhKDM8yi2b0eopVxyFjQ/fP2PVT5B5ez7bx9d2KcS8LflZRyHnduieV7Snm+9sgOG95oXoOkGHSl8wyIi6AfETYujU71s9PMvktw277ynUQC3vdOojRHiH397K9FYukL+tO+/ruDEsSENKSRPvZnabpFgCfAfCZJEkOAHAkxo3/OzAu07w7TdPVsfKLxZD14DbBJZdcMuX3559/Ps4///zJz29/+9vx9re/ffLzwMBAjaUjhBBCCCGEEEJIU0LPsmlLKa2apumDAHbtdk8IIYQQQgghhBBCSBPBV6BNRm9vffOzlpJLeY0lcbT2PA5dvt1VyeJ2CSlSkaXFsvxSdgm4S54tyZFV/hhLr+V1WlhSLUnpW37r9EVFdg27qzQPXJBNL9src+Pkl0ee5lNjrbs38u6KIHe06s4ph9UhVfl968d3S3RNiCTFGifWdukd3flje66sEi27lLINQ4JrqXOtebDsMeXMAerali3rmjzetCn7vgz5rUyzFbauLwNLWiK7maaRf0y2+m4sqVhhdIV4dqgqGfs0+it92XNM2VXle4uqN9b9xRfftpHxirg9SCwxi+u40KCxi5LmjcHB7FhXQl9fduzpeRFaRi0RlMg21Y8ZlvRYEvqbx5oiy5bg5tVlEbmy7K95MnDKMEmr0rjZmBBCCCGEEEIIIYSQJmP6/NmOEEIIIYQQQgghpF7Qs2zaUlOrJknyQIQypGmaLomQzrSgyBLbspf15+3SA6idA6XGUa1Nb4swcVhLkH2XYutiyGXC8lLahrfknrhlpDMvyJapRqCRu315o3UJ4nOnoduwpQ1+y8+dflDpcsLMuot9YyuSXl7cOt9sQ+eRGFKNILmflnB4aoJCpYVlSyAcVNt3Dj01edzbOz8rR9Wuq7X3GVmNRbqgpXouIvltBqz7S9lzfF6+teArUYsuu7JuuHq8Sr2T9kuQ28FGpuy5rcizSsgcXL27b4HCBSDLocd1w+S+itD52Ronedemb0OyGy9eoJ6DxfGIeo7csSM7tnaAdq5NawS9t472I8Z9rsoyRVaYrrycHb9j9SuZfJ77hXUOYFum5JWzSPllWbwtOwzKlmvG+q1KSCtQ66zaDyAtEF8qltOJz0XOJ4QQQgghhBBCCCGkNGL8LaqoZd/Ol2O0+iOEEEIIIYQQQgghTUVNL8vSNPVaW5kkySwA+wE4FcDfAOgD8I9pmn64lvwJIYQQQgghhBBCGgI9y6YtdWnVNE23ArgHwD1JklwM4IcAPpgkSVeapu+pRxnIOM8Mue83c6wCqsJMfbrU04fup20Qqr3vRObr09/facQUDOeXX9tEyPopw5unrl5JoVjbfOeYGWmvFWlfYVndVOH4OPi1b5WPhuFVIpOP4ldkjA2zrS1TKNkpdf2LOpH1WsQ/wttLR5RjzPCM09cWNG50J7H8PESY5Z/oWydW/4mC73y5Zo37WXo79fT45zc4OHk4Vwy2MTWerOuUXbBqvOa0Tat4mNRz3g2eAyLUq6+3WahnqDlPiT6ovYzGFi32S18Qo820J6AcD2vXunH7+jzTbOA93LedYpRx/Xr385w5Wd6h1lqOl6weC56elZIYPp3Sa0zz1JA7f8oub51n+lZJ5JjRJy5Y4ASFPEfGuM9V+f9qnzJJzvyg79mhz8Tac9knjS7D49TqP55TdbH2Xb06Oz7xRK9yxPDvM8PUDyLZVvr5gZBWp+5PrGmaPgPgzwBsBfA3SZKcVO8yEEIIIYQQQgghhBAyFQ1ZL5im6eNJklyL8Zdmbwbwi0aUgxBCCCGEEEIIISQYyjCnJY1s1Tsn/n9+2Rmd+Lxjys6iJmbONNb7BuK77D7KuJbL4Os8UfguNfZeklwlZevwCTIJXTpexvbdsdN30BUUQGj38ZVONFTOGmNsWGv8DXzrJzSNumINREuiaRAqQysdIal0ZMEFJiP7emrHkvLLR4yypZcx2q0MmW09JafeEpoS8vOeZy2rhgBJXTNRxlyaV6/aGqBVpM3NSMj9cc4c97OcB7VUVyoQZ87MT0cOBW1XIama/w2CJJQF6iM3rjXOPe/hoX3aOs96DCv7WdE7TcsTpwUIlusT0qQ0wyvQRbuOUhu//MKxZWdRE2/6wkCji0AIIYQQQgghhBBC0ADPMsEJE/8/28AyEEIIIYQQQgghhBAySUNWliVJ8qcAXgYgBfC7RpSBEEIIIYQQQgghJJgkoWfZNKWmVk2SZD/fqAC6ARwM4AwArxFh36ilDLszIT4sgZY+VVsvO9sE98wvXKa64Onj45TZOKerEuZ7s9vgeZPQ0eb3BPYZmZDsyKpTt3n6Pei+29mge16VJ4jlyWXgXI+sE5VG6Jh1xpDc7r1IenKLdH1tef5FRfw7Ary81I7oZnZ5aZQxDzoeRf39ueUolLfwRJMU8RypZ/2UPbeW0W7G1JQ7hen7bWeEB3DfPmK1fXD9W8Z2sg+qzhTSHqG+Yc55HZ1OmGyb/fr8xsb69e7n3l6vYgXXcSOfvWTeC43rDJ2nxipdk8dVY8g7lYwYdWU9D/b0uG24YUN2rG9rMh3ftpfP3EB929733tCmL7SvLzvWjRjBkytk3MS6n7hegrWnN9Y91/3i2ON2mS9gz9XR/SxL9s0jpJmodVgPYHx1WFGSif//D8DFNZaBEEIIIYQQQgghhJAoxHitngT8GwXwbwD+NE3TkJdthBBCCCGEEEIIIYREp9aVZTfCb2VZCmAIwBMAfgPgv9M0fazGvHd7Ym9zbEkyfVUgRZb+xiC2LMdKz1ry3CzLjGNstV32tTRLXbUiwePLkGGGEqUdPctSZFyWibdMps7ljS6xCMzb97rLuE80y7xShlQ0VFroGxYD7/QjSK5iUKSd5PSpZVZ5/frpp914C3vz60eeZ0l1y6DV7v2WTL6Mugopsy6HLKPV/WPL+eqBd/3k2SrESDvSeTHm2Xpi3Ud1WDP+Xpl20LNs2lJTq6ZpekqkchBCCCGEEEIIIYQQ0nB2UydyQgghhBBCCCGEEEKq4csyQgghhBBCCCGEEEImoLi2yYi13W+e9t7ySwiVWvuWo0h5QzT1ZadvUc/rjEVeHyni5dI03gey86qO3Kx+VzLvGB4bZhoRfBRK6bt19DHxpUkslQoRw2vFty8VCYvt31Xv+Sak/LqMHR1t4jj/PBlWpB7LvJftijyPnKoylezjEnr/9SWk+IsW+cf19aoKLX/ZfoEWIW1jxdPzc17bWGOo7DrQZSzSF/KI3ccbOcc0K83yPBiD3cW3ramgZ9m0hSvLCCGEEEIIIYQQQgiZwOsVaJIkXy+xDGmapn9RYvqEEEIIIYQQQgghhHjhu17wfABpieXYrV+WpUhK2W6+KGUsq7WW/1t5x5AEhVCGhKOelC2D0oQs3Y+1/DyvjxS55lbbTju4jGJpeJHtxkOkokXaN6T+Y/WfGO2d19dC55FG9sEy5tm881phrBUhtl1C2cSQWlrxrPxC7/UxCC2jlNL6pt/dHda2ofNb6D3Qytsnr3oTwy5EX2fZMt68cljEkNzGSt933Mcey0XmmxhS45DrtGiW+aweZSG7F0mStAF4B4A3AegHsB7AtwD8fZqmz3qmcRqADwI4EsA2AP8L4L1pmj44Rdw9AHwMwBkA9gRwP4AvA/hqmqZlvp8CUMyzLPGIk3rE03FKv0hCCCGEEEIIIYSQqOxenmWfA/B2AN8DcBGAQyc+H5UkyYvTNDXfziZJcgaA7wD4LYD3ANgDwDsB/L8kSY5N0/QxEbcTwHUAjgLwJQB3AXgZgH8BsBDAR2Je2FT4tuoLdxF+OoC/wfhLsPsBfBfjFbBh4rs9Mf7mcCWApQDGMF7R1xYvMiGEEEIIIYQQQgipB0mSPAfAXwP4bpqmZ4rvHwTwRQCvAXC5cf4MjL/0egTASWmaDk18/z8Absf4y68LxSlvBPBcAG9P0/RLE9/9R5IkVwP4QJIkF6dp+lCky5sSr5dlaZr+PC8sSZK3YvxF2TDGL+RrOVEvB/B3SZJcgPGlc38D4ME0Tf+lWJGnN6HLaustt2vUkt5QGUiM8paRRtnL1mNLCsqQecaogxgyimbdnaieFClj7DnHt/6baQfZZmnT2OM8VDJfpFx5aTRLnVqUbVnQSOopx91VWGw7hlCZVWyJV4zdZkOlhPXuZyEy3kZaXpQxx4f0n0bei4vgm3eM+0TseEXOi3EfDS1/PZ+Rfcthpb+rdEjL81qML4T6vPr+PwB8EsA5MF6WAXgBgMUYl2wO7fwyTdNVSZLcAODVSZK8NU3THRNBrwOwZSJ9yecxLst8NYBPh1yILzXNsEmSHA7gsxMf/8x4UTZJmqYXA/gzjFf055IkObKWMhBCCCGEEEIIIYSQ0nguxhWCv5Jfpmk6DGDVRPiuzgeAm6cIuwXAXAAHA5PeaEcDuGMifcmvJsqxq/xqptY/R/wVgBkAbkzT9Ie+J03EvQHjK9veUmMZCCGEEEIIIYQQQurOGNpa/h+ABUmS3Cb+XaguczGADWmabpuiCh6dOL/TqKbFIu5U5wPAPhP/zwMwa6q4E/lvFHFLo1Ynuhdh3KD/FwHn/hLAKRNpEEIIIYQQQgghhJD6syFN02ON8C6M7145FcMiznbjfOSkMaziWHF3xu/KCYtGrS/Ldr7Ny6sQi53nLDZj7WaUrfuOpUH3jSfzK1J+Xx8HmXfZfl27KosPMeq7SDnKvs7YXgRl+IWE+pnlnVekTndHr4ZYfiH19GGpp99PDC+akRH//OTmTM3iuabLIa+no6O+3idle7rFIIZXVej9vJFzWD3z9r03h/oJxfA98yX0HhVaxtjepUWI7VcXmlfZ/Sd2uWJ5ouX1mXp6lNWDGM/7ZTz/+1L27xXfexSZFmwBsFdOWEXEsc4HgJke51txd8a38opCrT1455u+EN+xI1QahBBCCCGEEEIIIaS5eAzjUsupXmDtg/GVadYiqsdE3KnOBzLZ5SYAW6eKO5H/nphazhmVWleW3QPgBACnJ0lycJqm9/qclCTJwQBegXEJp9c5hBBCCCGEEEIIIc1CmhZb9d/C/BrASwEcB2HDlSRJBcAKADd6nA8AzwPwMxV2AoBnMPFuKE3TsSRJfgPgqCRJZiqftOMwvujrtrDL8KfWl2XfxviFdQL4nyRJXpGm6R+sE5IkWQbgBxhfUpcC+FaNZZjWlLEsOwa7y7LaGNuZl11XsWU4Rc4z+5mrrao5b51XyPJ/K31NoySgofKIGFuKhxIq3ylbjlGGRDwv/bLld5JOuE9kYx2Zl2qRh7UYEh0n7rDerEhQqeQGyTLr8svTYozX0P5uTWf1vE/HsiIIoZkkmr7EkNPnpWcROu/FkCOG3gPrKTMvW3ZpnVdEyhxSP800LmL0+Rj9NcbzT+y+Wm85vZW+LIu+B+Y+Puv7rYzYYfmru8RoQyve7vJ7cTfiKgAfAPBOuJ71f4lx/7Bv7vwiSZK9AewB4OE0TXfKJX8O4HEAb0yS5HNpmg5NxD0S4172F6dpukOkewWAPwJwIYAvie/fCWAEdXiPVOvLsn/B+G6WSwAcAOCOJEkuB3ANxrcP3TgRb0+MSzVXAngtxnfQBIA1AL5SYxkIIYQQQgghhBBCSAmkafr7JEm+AuBtSZJ8F8CPABwK4O0YfxF2uYj+TwDOA/BCADdMnL8jSZJ3YPyl2y+SJPkPAHMBvAvAegAfVln+B4ALAHw2SZJ+AHcBOA3j75Q+lqbpgyVcpkNNL8vSNN2WJMnLAVyPcaP+GQBeP/Evj2Ti/8cBnL4LXSshhBBCCCGEEEIIaSzvBDCA8dVeLwewAeOrvv4+TdNdLkFM0/TbSZJsBfBBAP+Mcf/6/wXwd2maPqribk+S5MUAPobxBVd7ArgfwF+jTguual1ZhjRN70uS5BiMF/gMZC/DLL4H4K1pmq6rNX9CCCGEEEIIIYSQerMbeZYhTdNRABdN/LPinQ/g/JywawFc65nfIIC3TfyrOzW/LAOANE2fAHBWkiSHAjgH49rSgwHMm4iyCeNmbTcBuCxN07ti5EuKE+onFMPfo5l8HHxpZPlje3+U7SVSRd5do4CXQjMS6mlShm9DbM+jUJrVk6Jsz6YoyHGiPUjyfL5UvLaOLI1OdY4ss05eZi1P6+gI9KbSYz7P6EvNATJvq4ydHY3zQpHFr6qPyP6MmkbeOxs5tmPcf2M8x/jSrM87Zd+X6nmt9fbl86Xuz1cBxPYNK5J+CGXUlW+aVj8L9UL1Pa/KkxTZ/XL7SJZGp+VZ1u3eY0ufm6y3RC3+zE9IlJdlO5l4Cfb/xUyTEEIIIYQQQgghhJB60ZzLAQghhBBCCCGEEEIIaQBRV5aRMBKkQctiY8unomxl7JnXVPmFEEOaYRFbotDIOgiVawbXQU4nCV2argkpV9kSDotGbqdtjfNQaUaM+i8b375VTymq2ecsGaPUKnZ3FyhZhlZtxGase27NaeQpTwG7jkNlJlHmAM8bolV+2dS6G1Qq5Y6bUBVp3vXEmuMbJWUMnetCyxtjno3R/8uWajWrXF8S47ob+ZzRrGMt9BkkNiFyytA0Y13n0FB2vHVrdrywt8eNKCbyeo/fNnHjaIVxXga7k2fZ7sbu2aMJIYQQQgghhBBCCJkCr78hJklysvycpumNU30fys70CCGEEEIIIYQQQghpJL4L7m8AkE4cp+I8+X0oMj1CCCGEEEIIIYQQQhpGkZdUScHviScpkkmNd929VgSWzjzEo0xTreXO8tPpl+EbkYevj4Nvepa/W709WMr2DjA9TuSFG2ZJbRH8fnwJrn/D1Kee4zCGR18sP5UYnl9BacQwUCySnyfmzulWEWVgT09YZpYZmfAR01ZnMTzMrDngqcGp61hfZtvI9uxDgfYM8XOqNyF5W/fDMsZajPu7pEgZY/tk+c5v1jRilV/6BwHA3O7inl9WGet5z9Z5l+1zFMODNIYvXJF4efmVcZ9uFor0wZC+61t3jfR5tYjh/Wb1s+3odMIGB7Nj72eJAnmH0Op9vAzoWTZ98X1EurTg94QQQgghhBBCCCGEtBxeL8vSNL2gyPeEEEIIIYQQQgghhLQi9AprAhKkpS71bpaly0WIvXRfy43kauXOyKNA51WpiLxGjEBPGrn8X0tQ5DbWs2a55XKuW37Q65RlomoZ+Vila/LYkozJ04IlRZYux0i0bDmfJQ8qWwIaMvZiSSdy89Z9JPIcaZXf99qsOaCjw5BfjOTL4xypokZ2GpW5lDl3qvlmRJTFd9zoMkr0XGoNewc5B+g5UXz2la/peIaKeheBtRMiUwothm9/L2OMxpgHY8xvvufo/tjZ4TfXWf04xrNKkTRD0o8hE2skodcZ2ldD2i20rWNIkq2xHVvyrNOMnV6RMob0i2aVeer5X9on+MrFNTGko4TsrvBlGSGEEEIIIYQQQkgA9CybnjTHa3RCCCGEEEIIIYQQQpqAuqwsS5LkUABvBLAMwFYAPwfwtTRNt9Qjfx/WbdyCd372Jvz6rvWYOaMd/XvPwef/5nk48pyrsWz/HgxvH8Wcrhl461nPwXkvPxgAcMm19+A9X7oV+/TOxvD2Ebxp5aF412uPAAB89bt/wFe+cyfa29rQPasD//7+k3HYgfPqd0FCitNmyMnquXtTCQoX73J4b6BnRAxdsu3kNazSjywBqvcy8m3bsuPRUTdMqqmcfmbJMKtkYn4yTFfmlh+vioA/A5WxU5QsRqTNHr3KBJS/G12suHmULSHw3UlUyysl1jD3lXh1WlLgnvlZmbRcUw4cpaPu0ttjTlEm/XnTJjfujBnZcU+Pe15XxbNtSt7R1Ere2XnMc+yVIZHyrQJfmVW9aeROhyEEOCAAqN5RNoSyJVFlSz6L5O3OfWE7ikusceJbfm0nIdH9wpLnSqQ8PdDRoRRiyHjLkBdLfB+D6zk/xKgP2/7Ffw6Q91WZpo4n+6DOe66Yt+r5zETIdKCmaTtJkv0AfGfi41fTNP36FHFeBeBKAOKRGisBvC1Jkj9O03RtLWWIQZqmWPnen+K8lx+MKz/+YgDAqns34ImNW7Fkn7m447IzAQAPPPoMzvi76zA2luKCVxwCAHj1iw/El99zIjY+PYxDzr4KZ73oQOy7sBuve+lSvPmMwwAA379xAH/zhZvx4y+c1pgLJIQQQgghhBBCCCFe1Po3jpcCOBZACuD/dGCSJAsAXArIP91OchCAbwN4Xo1lqJnrb38MMzraJl9uAcCKgxdg4LHNTrwD95mLz77zBLz7C7dMvizbyZ57VLC0bw88vmEL9l3Yjbnd2SU/u3UESZKUexGEEEIIIYQQQgipG2lKz7LpSq0vy14y8f9daZoOTBH+VgBzMP4y7VcAPjfx/QcBLAdwXJIkr0jT9Ac1lqMmVt+/CccsW+AV9+hDFuDuhwarvn943RCGt4/iiKWZHOYr374Tn73id9i+Ywz/95XTYxWXEEIIIYQQQgghhJRErS/LlmL8RdhtOeGvnvh/PYA/3ulRliTJ/wPwwET+ZwNo6MuyIqSp+/mqnz2A629/HPc8PIj/eP/JqMzMqvStZz8Hbz37Obj8J2vwsYt/g0s//MKoZTE19VKwLoXyynAjhrY89vbxZWD5kzieTcowQXoAWF4KlueCbIpK91wnLPa28Ba+PgtWXtqvxde/xflri/AhA4DOBfkVK+uypyc/TVnH2qshzzsNcNvb8lqxsPqF5QeW51fUrJ4mZePrNY87jgABAABJREFUCVhGeX3TrPIDy/E07O7290+0+lmI389Yh7uQu61DJKLNenLM/qz6mDXLLYdMcnDQjSvrQfbrqrYW82IMPydrDtNVIOvY18fKty003v2sZI8gTah1Zmy/w1BC/IVCy2t5DYX6HDUjRcpr+TTljS/dzyzfzrx4Ok1ftm51P0vv1QXq7+adnuPBt/wWsk4sf0xNIz0B89KMMU+VMZ6sOcv3t0yo/6xE30N873tdsr+rDIaGOsWxm8Zcz2f1UJr1tx8hMai1d+818f+ADkiSZG+MG/qnAC6XZv5pmj4K4McAEgDH1FiGmnnOgfNw+90bvOLece8GHNrfM/n51S8+EHdeeTZ+8W+vxLu/eAvWbazes+A1L1mCa34+EKm0hBBCCCGEEEIIIaQsan1ZtvNvMM9OEXaCOP7xFOF3T/zfV2MZauZFxy7Gth2j+I9r7pr87td/eBIPrXM9ywYe24y//eIt+Ouzl1el8bzDF+LcUw/CF65cDQC47+GnJ8N++P8exkH77lFS6QkhhBBCCCGEEFJvdnqWtfo/Uk2tgp/Rif9nTxH2fBHnpinCn5r4v2uKsLqSJAm+96mX4p2fuxmf/K9VqHR2oH/vbnz+Xc/H/Y8+g6POvRrD20cxp2sG/vrs5VXm/jv5u9cfiaNf/1184PwV+PK378TPfv0oZnS0Yd6cTlz64VPyCyBdAWNpsLRmLQffZc5V8qOcEdVmrIkPXaYbY3mvJY2U6CX3vluY+0o0q9Mrfm31lunlyR0BW1Yh42523zs79PZmS8eLSbCyutOyirwyamTf0hIyuYxdXptOz3OoRaG6/v3Gb+gYaqR0KG/c+F5zoQzCB7BfGgLdhhvEomadxKJFU6dRdZ3GtYxVxC224ne7tdKfWzWesvFrjUOrP/pKjGJIkeZ21y7fsdBdxOoW9ZThW4TKMCX1lF0VySt23Vl9t4wy+srcrL4k7SQ0Ie1dxLJAph/7eSqUOXPyP4fIOgH/eiwyP+RRxrO01Xdjy61jtGHZ800osj31vUbmV90PjDqWD6figXO72jtv7drseOFCNwnvOcbzZuArRZVoGyNCWoVaf3Y/CWB/jMstNTvN/3+XpunQFOE7b0/VusUGsLh3Nr71iRdXfb/1xr/IPef80w/B+adnL84W987Guv85FwDwhXc/P+80QgghhBBCCCGEENKk1Pqy7A4A/QBOTZKkJ03TQQBIkuRoAEdg3K/s5znnHjDx/xM1loEQQgghhBBCCCGkrkiRGJle1LoG9bsT/88B8JMkSVYmSfI6AN8Rcb6Vc+5xGH+Zdk+NZSCEEEIIIYQQQgghJAq1riy7AsDfAjgSwLFwX5KlAH6Wpumt+qQkSQ4DsGQizi01lqH1SZJJbXgRDb2vx4BvGibWfuASrXEPNEDJS97ye9BZtQ0LhW+VEUVWP9Z23b4+GnnnAO5W89o7RPoV6SqWXliWN5hEt6e8Hl+vlalSzUO2h7zO8XJm5z0rtgBZv95Nw9223c2rq5JfLpnfvHn5XhAWMq7ealu2R3eEbbd128t29PW60W1vXWvelvdWHylCDE80yZZhN41167LjvLGgKeLjEzSgIxgG6iTk9eh+lpedvs7hkcy7pKLnQc92csbyNd9xA5ctm/oYri9Ld3eB+hdYnjgxPHJieJ35UnUfCvFjUwO7zbPfhd73LR/AGMSeK4rMYbn1r264Y4afn5OGZdxpEMX3SeRd1SeMPuLrG2Zh+S3JKtHV4Ttl+taJvq/lPeNY6RW5j4akWSR93/rxnbtj1/euyKsfK32rDS1i1GNd0fO4eODv1AVesCA7vu02N2zVquz4jW+cPJS/HwD3GXZ59T50uTht6FmRIe2bJP5lIqSZqOmpJU3TMQAvB3A7gET9WwXg3JxTLxDH/1tLGQghhBBCCCGEEEIIiUXN7+LTNH0sSZLjAJwC4CgA7QB+C+C6NM3d+6IDwKUAtqdpypVlhBBCCCGEEEIIaSnoWTZ9ibJwdeKl2PUT/3zivytGvtMRLQWTS9o7sT33PL10Nvq2yt1z8/P2XM5dZNm3lPBJ9LJjWT9SqgXA3W5Z1U+XiDwmtl/W9e9s/axmwbEOd9vmnVgSET2RyiJu3uyGzZ6dHctrs5ei+8ugfOUFUu7YacgRq6RhQpohpZd33umeJyWaM2e6Yb7yIKeM0BVkyVOy9Pv68tO36tySGMnztHonT9pp9R8tdQ0h1rbz8nrksR6HvhIs3f/lNuhyLDQr1niSYVqmtHhRFvfhtW79/M//ZMeHHpodHzHyGydeZcXRk8e6r0pJhFWuG27Ivn/p6tVuInL+NPQdsSS+vmn4S8n90tNjNA85bwNunev+P9eYM3PLXIKmyJXM55ejSP3INC01Yt79XOftSyG5dR5VcspMhln9HCA+WA9pgZjllw89ssLVDWTMeEaThN5DZBl1e+oqkfje554azNLU53Suezj7oAZYm4jsazth9WPLRkNizksbnnTTEH1ke8Vtp7y8i0jHfdtUnmfZQmhkWfR5rgTXeFYxHqLk7xfredlXbup7H4olRc1Fd7SBgexYdfJnKntNHs/95S/d8z75yez49NMnD9esWZybXenXpogiMyekSSnXqIIQQgghhBBCCCGEkBaCL8sIIYQQQgghhBBCCJkg6lr/JEn+CMArMb4zZi+A2QA+kabp11S8ozC+CcCmNE0fjFkGQgghhBBCCCGEkHpAz7LpSZSXZUmS7AfgMgAnyq8BpAD2mOKUiwC8AMBaAPvHKMN0wfJ+6IRhqJJnDAHXL6q3N6BQUyDL2d0ttOrDW9yI1n7aAbS3u5+Ny3YDdcWKGU36JWzY4C62nDss/EJU+Ue65+cF5aLtTZYuzY6lnQEAbNs2ZXGrLkXmrevD1+/HjDeS75Unfdt0uaTVyuhodqy9wZYty47nzcvNykaaNUizKwDo78+OC/RBmaT005oxw403v8cvPW9rG323zfHGA+AUckx47hTB6ge+HmMbN2bH2rPpifVZGnr+kXn39rp5yXqWaVp+JLoPbt1q5C37dYS5yde7zspKzwFfE39mevObs+MjBm5w8xadq1MOqF3QtubeyePbbjt48njkhH9w4r34xdmxLr7vPOL7EGn5W8XAukcND7tjLc/D7JFH3M/Sd1FON4DtWeZLqB+MjOv4lBlmQCMdXXlBVfWxY8fU+eo+7ngx6fqXE2PV3Df1YIniiaNuljLrW9S2Uy8V/R8LFjhheR5LpmdTkflGGuSJB4ZY3pO+yDrXzSTHg55nHd9dw1tr3brsWD8jdMqJcdEiN9C5v2fj17pPOF60CuseaNWB06Rr1riBmzZNHnZK80nAvdhhY5IUFVmo/+c8646M5N+jrGcVPQfIe65znjYYlhENc0jpQdepxmin4zXs71uYd4+K4n1ooSvy2GMnDx9e595rbrgmO379Kac4Ydvf/e7J484rr5w87jjhb5x4srqCr82Yp2LchwhpRWp+Kk2S5BAAt2P8RVki/ll8cSJOX5IkL6i1DIQQQgghhBBCCCGExKCml2VJkrQDuAbAnhh/+fVdAH8EYFd/S/0fADv/zPAntZSBEEIIIYQQQgghhJBY1Ko9eT2AQzAut7woTdP37gxIkvzFZWmabkuS5FYAfwzguBrLMK3QK8xd/PUcctnrxo3ZO1Etc5OSF70y2lJQSmWAs1JaBuhAvSTZkCLkLdtdaMhI9ZbWEFt0j3S423XnLTPXEhqsFtoA1TiyvuSldKm0rSXIUhpz8NLcaA5a9hcqq/BlzJA2SLQEVH6uqtccfLf8Btz677K0QoHyl65KVhY5TiyptMZX2uCgy9+d1X/V0nqRqJSxAG539V0Gb9W/DpOySSm90SrY73wnOz71VF3GLA0t39SfpyqTzu/uu924ss713NeZN4C9G8ofR4ZmtMXJJ7phP/3x1PHG8DdTBwBoG3rG/eKGG7JjrWO/557Jww+8KmucsWWH5aZfRY7MBwC2DE8tUdMSJlnlRRRqvrIQJ54hAZqf1+kUst8CtsTULGNepVTpGPPnAIvcuEraPTySfR5W85tsG109efImXR+O9FJPVFKGpk4csyTonjh1brT9kJDg6nnEkWEa6UtpW6fux/LG4dnPAGB7fyaPjuGb4ql0NdFyyuOfW0OBJpDqcX2P3X7CyVneULYQORdgjRNfewoLna1znn7gsaTG8mK1dFEix4m6R5nXk9Pnu7TETtg46Md4+fyjn/McSavMSzeiTFRf5333ZcezZmXHK1a48YQEuk3JoWWd+EoQq+ft/Hr0vYfnngR7jnSaSQUOiOODV6+ePO5/jZtGkWfTvHJZth++lguly1ublDSlZ9l0pdZf2Ssn/n8EwPsLnrtzxB9sxiKEEEIIIYQQQgghpE7U+rLsaIyvKvthmqaju4qs2GkJPd+MRQghhBBCCCGEEEJInah1VffOdbAPB5y7c11mlB05pwtFlqv6LiWXq7etJfdydzvAXQ2tl17r3Yomy7RocW45LAmEqcvxRF+btRxWLld2JJQjSsIkl3qrSphbmbqttBzUV+YQulQ5xhJna3m17y5DFr7Lz/VOeFIKqetV9tfhGZnMdv7y5bl56/LKz9XtJiU1Wbyq3S8d+ZS/bEhed6Ui8u52JcPWTqiDg9l5Wt0ku668lli7GOX1mdtuc+NJFeA++7hhsg2fq6Q8eao0XQc335wdy10JAWfzqWr5kapnH8y6k3JEHRZht03vcmik5OWTn3TDPve57FjooAqlnzeZAugSc6YcX5bkv2zGety/z4XMn/qcKsmdL7LupExJS4yEFDtUZS7P02lI2aEcM0AJqmQtIZNzZqDs0p1L/SLqfiA3G3/Vq9wgOb9pidr87kwWWKkY5ffcyU+H5bVp6H3f6qtlSxd9sZ7lpGQYcB/LfKXYoVJU3/pp034qlr9K3i6RuiNbOnYxbqz7nCPRVzt2ton+OdyxnxMm+7xWmHZ1ZBk+sTmTcj49cqATb+kKkdda9ZNRNoC8AD0P6s8SUXdtuu5kmMir09M2AKj+DRSC7J8H9rthb3yj6Fvr3B9YB3/0o9mHt71t8rBHXebiRWEyybwyFiF0s19CWoFau/QWAHsACHmc2nvi/6dqLAMhhBBCCCGEEEJIXaFn2fSlVhnm4xP/F3ADnuRkjEs4H6yxDIQQQgghhBBCCCGERKHWl2U3AkgAnJokyRzfk5Ik+WMAh098/HmNZSCEEEIIIYQQQgghJAq1yjCvAvAmAN0AvgDgDbs6IUmSfgAXT3xMAVxWYxlanrE0qfJL2om1XbGvT4eztbNBb2/Yu1PLC6WnR/g4aLMPY096S1MvkXWi62doKN9nZP367Pj4w8W29pep7viSl0webulx/dhklbvbx7tJOFud6y2zpRFCDFOEIuR4YFT5PURG9xHptXXwIuUZd1tmptNx7HFOUG/v1Gk+M5Tfd+ZWVOOIzDv1dedt964vQPphKG+SLmM787wktd+D/Dy/x+3jcnxpWxRphaKGV3Rk/z/2WPc65bWtXOkEYWAgO9aeaxI5NPT4Oumk7Li93Q179NH89GWdyGPLz8acl4RvTNvwFhVWronHvWuyct1wg+vF9qY3vW7yOP03dXHbthXOq8pvKW+cAE7jd1QyPxs91Mr2dWxa8nyIVIXI69a+jhJdr3IOkMfa+ufEE6cuhsb0MBzMHDU6LWM1VciqsSIx5k+J9SzkeEmJga6vRXpRal9K+Xwm/d0A4IQTxLj39MyyqHcfz/Py0mMyxJ9U4+uB2VXuI0iha5PXI/uZ9vidI5YLVJXf10BXDkx9087zNwTQJs6reo7JK4e8+QLOzXPxSW7ePT3ZPaVqrnauLd+zr21EPAevXesGyjLLm321SWt+WF4aOkzWq6qrrkrYfdryxfXFOU8/zH3wg5OHci5ap6pR+qDF8qb1PSfYt5OQFqCm7p2m6Q1JkvwMwIsBnJckSTeA96Vp+oCOmyTJHgBeD+DvAeyJ8RdlV6VpelctZSCEEEIIIYQQQgipN/Qsm77UKsMEgD8H8BDG5ZhnArgvSRK5zcobkyRZBWA9gM9j/EUZANwH4M0R8ieEEEIIIYQQQgghJAo1L5xM03R9kiR/BOBKADsX8x+A8ZVjAHDIxP+JOO0mAGekaaoWMu+ejI1ly7utFdS+y/hD0ctqrfzy1CNaZSivp7LIlTFK2Ya1FXYocpW2Xjp+zz3Z8fG9Qp/1z//sRhT7ZG+oHOwEyRXzctl9V0UtaV4zkB2vWpWbPpYvd8NC5JCGhqxKPmXpZwVjQj5VhLyl3fqynBXzP/uZG/jJT2bpXXmlW67+bGtyWedy+2/AXbk/V1epvG4tS5ANbNRP7jmwt6uX5ZL9UysI5GdfKScQR3rpLS8QBenrc8dun9gF3ZEkA9hjjyzub3/rJinrRKahFQqyyvU4lzJMrdrIq58Yikk9ZmJLq7TU+Nprs2Pdjb/2NdHpX3OOG5jzZ1BtC2DZAchrdaQ2gHNDaOvO8urodqWiMs08SwLAlnpYfbVp5ZtycMuJ0eiEnR3utUhZpm7OvPu0nitk1tqyQI6vqvrPy0AnkjfZAe6AVpPfMyNZ35KnmfeQEpB5L1kSlobTB1UDbO+Y+jqrzisBOS+WUY+utDNMotlI8rq1vp/MmiU+FJAhOzci2fi6I/h6FsibpWKsZ/7kcZuO9/jj2bG6uK5FVsfIyimlqPPmqWirV2fHa9a4YXIOsOYRWa9aS75sWXbs25FVHVvPa5ZEOc+qoew+rcvhm3ezjjVCmpUob1/SNH0MwAsAvBrADQB2YPzlmPw3CuBWAOcAOClN0ydj5E0IIYQQQgghhBBCSCyiWfKlaZoC+DaAbydJUgGwDOOSyw4AGwHcl6bp0/q8JEn2S9P04VjlIIQQQgghhBBCCCkbepZNX0rZvyJN02EAq6w4SZIsBvBBjO+gWfLeN4QQQgghhBBCCCGE7Jq6b/aaJMlCAO8HcCGAmfXOvxnpSEYxt2Ni+/TBfGOd7WpbZr11taRSEdp16SNjeKH4epRppD2A9hMy37JLPwLt45DjWVZEa59nBQG41ge3rs+8r45/4xvdiL29U6Y3VZp5PLMo8zqrvMr1PdP+M3loH668cnQU8HobE75BbSWbvsh227DBvRZpRXbqqWc4YYctuiT7oP3M3njh5KHVd2Wf3D7i1s+mPbL2mLHAbZs8H7GqPig6+ZhR/7q/SMsQJ001aMaM7dgluglj+1KYnonGdZ98oijHhkEnbGFv5jvy0hPyt4LfItpN25hIexU9/0gbwBheZHX3+sgxhFyzzvV/POGE7Fhf5ymniA9qnnU8TtbcO3ncuXSpE0/6iGnfKtfLxe0Hbb6VLibkDuX3JtMP9e10rlN6ZWr0IIrQaawyt4X4Uuo0RJ/UbSOfA2bPzr7XlynrWI8hSdW1yPZesFdWJu0nlJeZYouan9cOZMfy/qvL6HsfNbFMiQRVXkyeyLobhtvHB4XXq1X/vukXYe3a7FgO+0J+SKLu9JgfEv6Ksg2ru4HfM441B/v6FhapK8tPVCKvZ7uawzoqU8cDbB9GB/nAYD3QajO1nEKPrTja/WJFftbmfU+UpWtQuOtoXzJ54c5NCfmeZQXmX+vZS2L1A5m1toWT1ap/C+QX37+fmXUsHno6RUH2U75z8nos31Ezb8PE0NcTrWx/bULqTfCTYJIk7QCWAJgP4FkA96Rput2IvyeA9wF4C4BZyAz/07xzCCGEEEIIIYQQQgipJ4Vflk3IJ/8RwJkAxN4nGE6S5EoA70vTdL2I3wHgbzC+mmwu3F0xbwHw0YByE0IIIYQQQgghhDQUepZNTwq9LEuS5DAAPwOwEO5LL2B8tdj5AI5PkuSFaZquT5KkH8C3AByzM4mJ/28C8NE0Ta8LLPf0YseObJmtsad7Z7fbXL292VJXveJZrp7t6cmWJ2/e5MZ79tnseP16N2x0NDvWxZLLkPOOdTmqlu3KRNUMI4NClSrWpHXWWdmxUDcB556be87cilo46blEXC7n3mMPN0y2oV49n7ckXLeFVLwUqn9B6LJpR+Kr08xZFq/bU5b/hhvcsGXXfD8/b3E9zwzl16Ml/di4MTvWy+6lbOmoo7LjKtmEZz8whrYdsbszN0hKsZ2t6wF0dE/dprH6QZCsxZIBSj0QAPT3Tx4ODmZ14IxXuDIiKbsE7DlA9gs5TmLINUOR/RgA5srquv76ycOjV6504t36+0z2c845bprzezwlateJ27HqaB3Lj8g9zZRI5Qw+U8al5pQi0vI8nPx0B5KdRPQ5wJ3D9LwicaXw+WHByPYokIEMmiP+tKnnETn3KQVuEKb0VJdX1H/XkLtJ+mE9U+tDzflGD3qRnzPf6HuXUceuXNbNW57WZTyryD4o5bGAew80MSRqMkhXgfUMJbu8r9xR20J0IctQ24XoZ5KdbFLPovJ5s73dDZPSV0vaFiqTN/urSHNkJD+evA/p9pR1oKefmTOz+nKuU5fDakQ5gPX4Ejc3656t5wRJ10j+5OfYechKuOYaN6J8+FVa4yc2ZXUwY0Z2XOXOYsyzvlhSQvls19cXZksTZb7XN5tVq7Lju+7Kjl/7Wjdez/zcJORzQFV/lxd0223Z8bHHuvFEWxd5VtyZfEodGWlRvHv7hOzycgCWo0IC4FAAX5hYgfZzjL8oSyb+/RLAS9I0PZEvygghhBBCCCGEEEJIs1HkHfjpAI7AuMfYKIAvAPgegCcxvtLsLABvw/gLuLMA9ALYd+Lc3wN4d5qmyqGbEEIIIYQQQgghhJDmocjLMrlN3evTNBV72GENgP+XJMlvAFwKoB3AizD+Yu3LGH9RRiUvIYQQQgghhBBCpgVpSs+y6UqRl2U7XXt+q16UTZKm6WVJkrwb2Qq0H6Vp+o4ayzjtGZ1RwZaexQBsOxLDiqPK/0HKzuUuzVL6ruNpvyipedfbmUspuww78kg3nvTDmDfPVf12GvuU57kzFNHJW149Mh3pJ7F9ZD8nnqzziu/Wy4qDl+aHSY8iaUUAuH5yll3FwEB2rHaSNrc6l/j6T1Vdp9jSWpteDC/Yb8poukzSP04j67+zI78e53aPieP89DT9/dm16nLNnJkdy+5ZqH4E2s9GpuOkKXwhNHoOkD4vuvyh/i2+aeTVgy6j4/FmdMjtSw9zPktvFzlPbd3qnie92lavdsMsrz/pb7ZiRX4RY9SjhaxH7T25bl3m33LaSSdlAd/5jhPv+Be/OPvQYzkluMhr+/6+b508XqrmumU55dXosDZfk5kIZjS+7bS9/+DcrHUasv/IY+0HI/uM9vzynYMlVXVcyTzpdBmt9pBzphyH25X3kr5v1BU5YeiKzXkIMdta9R9ZPzK57m7lhSc+W+nr7ml5PeWVw3qWM69NZqY6ltPWg8oYC1ncLehyQuSzhe98L+djAFi6NEtTX5t8PpTXOWOGG++JJ2R6bpi8Nt/5J9a8nfesqHGeFdW9Xn7W9SOfjeS9TM8b0j+xTQ9YaZLmafKr68fygrN+KrqefSJvXUZ5w1UNPEekIX1YrXlW14/3GPLEngPCPH4l5nOSbsMAI0mrr1qeoc6DlzLybVuaVbq+h/jc3hPtdE5Ii1BkxO+D8RdgN+wi3v+J488WLRAhhBBCCCGEEEIIIY2iyMuyncsd1pmxAPH3IazOjUUIIYQQQgghhBBCSJNRRO/QjvGVZbtS5E6Gp2m6PqRQuxtS56yX5sqlxnpJslxmu+++bphc4i6XwS9b5saTK6VPPNENk2WRuz4DrrxSIre+BmzpnNWT8mSBug7kamW9DLiIZDMvDZ1fXt4xmDPH/SyX5MtV9rqPyFXTOsx3W/sy6OrYnpWjkkkILAlKV6X2rd+LLMGX+VlbhVuELvn3lb5KLOmBlgPJ9vaVjobILjXmmDfYoJRDct6SKoQiUuOyJZQxkGVcsMCtY6mC+L81maz5Ra95TfRy/Ou/Zsfnn++GWSoQOZ6rbQRyxqXurJ7SyxjtWdU/dccTLFq01+SxLLI+JUAFFY2QMavrwJIVxfBgMZtX6tC0vk9UrO8cb81TUsKty+S0m+qfYxVXuiiRFgC+6O7vLdW1KlI+rNxyixsmJHBd2lMj1/Qin7Vr3c/SlqNr+CkVO7u4MWTPAVomJusg9FnOd36wpMxWmGw3XUZ5X9LtK8eQfnaWcWU8OSx0ft3dbn9sE523SgqfUyc6ntW1xjry+39X3rze3u5GNOTWHZXMekI+92rkafY8639t7llh9xfrHpiH1cfbtJS8L7v3txkdLeSZElDz21l/NmV6Gl3+0LynE/Qsm77snj2aEEIIIYQQQgghhJAp4MsyQgghhBBCCCGEEEImCNl2akmSJCdb4TsPkiQ5CcAu979I0/TGgHJ4c8wbri4z+ZqpzNkrdxm+XNra05O/vHqxWlmvP8uzJFqWmUcpy5itLRJFhnJJcnd3nPe7vuXUdZ5HqAxQSjgOU22Rl6Ze4hx7J7NCbZgjk9H47kzaSHzlFxpT3irXZOv12RH0WtZOZnn1WkSCEnKerwxEo1Ub8rxFi/Kl2JaEyXtcygYuWUdn1c9+fW4Zh4envu5nht2d/EKkYJp3vSs71rJLWT1aHmRJxCXObl+WDFM1qG//Cd4JT16AlrUMbxHRMqnK7NluEtJ+IIY8pZ47sGp0G8p+t2OHGyZ347WGjQyrVFT/l3o8fTOztnTLwaq7hb3ZsTlPKZ2tlD75tqGVfpEdmx2MSh4Tuyi3nX56fhpaQxww3+nku4aezD7oLX3FQ2ab0Z6dlgzQcydRByNikWcO2W7Wvf6pwSxNXcXSxkTvAirjyl3tt21z48ndubXtipTv+0pYQ6XM5twkf1AY2wLrnRTlHGPda2Rd6eeAPffML5a0OLE2Xg59FrL6bl761bthGvmJ+5CUTLbVW/MvKFI/hLQ6IS/L3jzxzyKd+P8Gj/TSwHJ4c+w/nVlm8jUz8I2HGl0EQgghhBBCCCGEFICeZdOXkJdUu1wphuxlmU9cQgghhBBCCCGEEEKagiIvyx5G9hKMEEIIIYQQQgghhJBph/fLsjRN+0ssx25NgnRS4x3qFVDEgyQP7QEgvQP0buNtI9uzD76GZhrLPCCn0FVbKod6K7QAeV43up0k2r+pnt431nbpcztEoPYFsvaM98y7bGzrMU+vJGMgNnLb7Rh9xPL6sMLkZ+knBMCpr+7uzKPL8r97Zih/y/gqryRZlsjeH7oNZdPrcSJ9GHX9HLx06n5Rxrh+6Yvz03xsXb7XisS7Gg2PylCi1IlxAXIK035C69Zlx9qWKcRns4jvX+x+oZtCNpXV9l2VCGXUnmX6wcODKPNnBCPQRvrOmf1HevQVQPpHVVmPdYs0A9P3fZbbtMmN5/oFirAO19dRplHkWdq3HdeuzY7lfAC43cl61J01Kzt++mk3njxP30PkZ8vDUxLr2dlJR/hphSKnYD385ecit+y824s1nzl9CWHj2apj85anG/juu7NyrFiRm75vH9fkPX9azzHaY833GZCQVqRUrzBCCCGEEEIIIYSQ6Qg9y6YvfN1LCCGEEEIIIYQQQsgEXFmWw+prV+POa+9EW3sb9j9ufxx33nF44JcP4PYrbsemtZuw8p9XovcgVzc0tH4I33rrt3DMa4/BkSuPDMo31tJ9KdWTy8O1uqATmZxyfoda+tsjuscGpf2Ta/Llsnu1Pt9cmtszXxc7QyyhdySfCt/6Cl1yHip9LZOtW93PGzdmx3rZ+vye0osziV45nrvMXAcESrB8l46Hjil5npRS6euUVOUdcG1FlrC7y+L908zDqrsiYVEQdbdByFoWLVLlEPPDXC3N8K1/WZERJIH6r4sDA9nxhg1u2PLl2fFcQ0LTSFmXnNb1tQVVV2AdN1J2L2WGPT1uOeQ9Vt4aAfP2iK4Ov37ne91ljEMpt9HSJF+cttETqHxYMTRqci6NcZ1l39tD04hRriL3kFawq5DlnzPHDZNdJsa1hKYhx7Ye5/K5TM+f8rMcCjoNOY8UkSDGnh9iWMXoYS6vNbYthMb3Vq/byXq+8s07OH3PuS90fshDl3HTpuy4t7f2chDSKrBHT8HojlHcfsXt+NPP/CnO/OKZuPf6e7FtaBvm7T8PL3n/S7D3c/ae8ryb/vMm7Hv0vnUuLSGEEEIIIYQQQgiJBVeWTcHWwa3o6ulCZU4FTz38FACgs6sTM7tn5p4zcMsA5i6ai46ZrFJCCCGEEEIIIWR3gJ5l0xOuLJuCdCwFEuCOb9+Bq99+NfY/bn8kbUlu/B3DO7Dq6lU45jXH1LGUhBBCCCGEEEIIISQ2XAZlcNTZR+HQUw/F9Rddj7t+chcO/ZNDp4x3++W34/A/PRwzZs2ocwkztAZdet8MD2fvRPWW1nP7xGtwHSiNBKz95A0DBcsvQVqXmB4METyEYhDDqyGGf9aMGW45rOop26tEpmH7oxUw2cgh1Achdv13qUvxTt93T3cDbfezeXN2vNC1UIzi52elF9IeoX5y2ovPQf4pT1eQNn7JI/IcIz2sANenTBepiP9MbGR7WF4uvmW0fAul31Usn6S8dGL5FuYxt9tNT3qY3X23G1f2hf5+N2zZMuHNKcpojbXQa7HaV4bpv4xXKn7j3LuMujPJz4GGeDHuv63m61WkqmKUf8eOmpMw8fXW0t3Hdw7wzdtKx4qn/YDzkB6AALBFPJ9bj9W+t6hQD15fQp8DGvk8ErLap+yfHTp9p5/pxpfGpoIYz2QWuowzGvcTl5CG0hxvIZqYypwKlpy8BE/c/URunCfvfRIP3PQAbr3kVmx/djuSJEH7jHYsP33qCY4QQgghhBBCCCGtTZpShjld4cuyHIY2DGHw0UH07NODJ+99Ej379OTGfeUnXzl5fNvlt2HGrBl8UUYIIYQQQgghhBDSgvBlWQ5t7W346cd/iqQ9wR5774HjzzseD978IG7695uw9emt+PE//Bh7HrgnTvvoaY0u6i6REia5NTUAPDXcNXk8f+nS/ET063JfeZNAS3TkSuMyZA6+S5KtZfa+0ox6bpU8v8ctY3d3ft6Dg9mxXlI9t3ZVYF0J7SOybWJIaX3zCkWXw5KA6s8x8quVMuRMZttUsjmsSr5QMr7tLedgLdeJLfeokiCObM+P3JHJAENlPnlSTv1ZNo2UZE6VZkjeFmVL7BYvkmm4eQ0MZMe6fuT8PL87X07cZki4fetA33/z2LrV/SzbLcY93Cyv6I9FCJFaWvF0O3WKsRHal2LL0PR4LVsqOm9eqck7FBnnvm0a43ktxvODZUcij3X7+s7PMSToZT/Pxkg/NA1ZxxGcMaqIMc7LuK+FyFv1OfJnX9kSUEKaCb4sy6FrXhfO/vLZzncHPO8AHPC8A8zzjn3dsWUWixBCCCGEEEIIIYSUCF+WEUIIIYQQQgghhBSEnmXTF66bnII5C+dUrSojhBBCCCGEEEIIIdMfrizbDXD9VPKxvA7GPL1ELL1+V8XfE8rbZ0G+xlemDo3yFLOI4SehkVuRP7HeTf8JsYnrwoXuec3iWebrOWIy4uf3s33ErZ8Qn6YifcnonrnxOiPNyiF9vgzfG+va6rntfIxrs/xmpH9Tf79/mmV7Dcm5W/uXxchbpqH9E0P+ylrGHFlP9P120aLserRnqOMPJicIY7IIvZfJvLZtc8Okd8+zz7phvb3ZsbYEdNs3K5e8J5VBqLeo7zlF8g6JZ/XxGJ5roVh1Yt2/YperDE+x2O2t0wtNP8D+t1DfyitXKf6hJffP0OcA2XdDfcrKvjZfyvBEy0vTmmd1GvJeoO9zO+s8TXOLREhT0xxvEAghhBBCCCGEEEIIaQK4sowQQgghhBBCCCGkIPQsm77sFi/LfvT+HzW6CCYL5i4IWipdT8mRXlabNyHM71FfGPI4az20d3346ug8KUOaUU8J6Oho3bIqhSISLGdZvCVhEv2uU+uIArCWpusuPjiYHS9YkJ+mLHK9ZWgxlvVbuFLU/KX7oTKf0PqJIauQ7SvlNLqbNY2UMPJ8GSu7ZpHJl4Fs+61b3euUksexXtEfjXmqSF+S9SrvDfp+LtFzmIyriyXjhsqbLPLmhxhzpDWP637r+6wVox/HyCu0j1jpx36mtNKL8dwba04JuU80UoraLBLBMub02GlaLzZ8n0eAOPOPL428V1rtu2FDdqzvLzufk7a7LhCEtAy7xcuyR1Y/0ugimFx44ZsaXQRCCCGEEEIIIYQQAnqWEUIIIYQQQgghhBAyyW6xsmy64ith8sVaFrxuXb58Sh7r3dA65drcdevcRJcty/JW+o68pcZFliDH3rXKkm2ESgpio3diW7yoblkHE13CGii1jCHv0FlLaZ7vbphyyAB2G/rKE313RoohjdHxKhW/HdZCJRExCJU2+O40PK3QDSUap5E7pYVSz3LNm+d+lrtSrl2bHff1BcrRVTwpk5SSYcsRQcspLRlmnvTSGk+6++iySJzdQgVyh85YNIssyncHumaR5wP1lYY1cu7wrf8ynlNDidFn6mvVUDzfXZFXLv1ckfe7Zqq4PulrYu8+HVoO3/OK7Dos5/FNm9ywp58e/1/vwjzdoGfZ9IUrywghhBBCCCGEEEIImYAvywghhBBCCCGEEEIImYAvywghhBBCCCGEEEIImWC38Cw78ZhjGl0Ek5mVWblhlt9AZ0f9vBu0r0ieLZTWa3daZiiCGJ4XMTxHLN+n0DR8zeXK2KrdSr+exPAyKsNTJsaW30U8zCTSC0h2i/b28LLUGq/eyHlFzzGyfvr64uftWydPDWbtKz3oihC7D8byJsnztSujv/h66BXJOy9ukfTzPKGKlsUHPf3Lfm355XQGPqnJdKRnmU5f3pq138xBB2XHod6BcmxrT8bHH8+OZ6lHITneZF3FaJdQX6nYY1njO0ZjEcOPqgwfpZA0yrgflv2MkDfvNouHXpE0Q/tq3rxS9ljQ86B85pDHgO0/62uTW7a/oVU/sX3n5P0EANavz45HR92wu+8e/9/yp5wO0LNs+rJbvCz75bHHNroIJhcOPNToIhBCCCGEEEIIIYQQUIZJCCGEEEIIIYQQQsgku8XKsph87De/wVX334+OtjZ86Y/+CJ9atQo/OPXUuuRd9vJ/Kz8tg9JSip2sXet+7uubO3lcWToXsXGu29jr2VoaGyotyVvyXLX8eWAg+6ClqIsWhWUegF42LQmVl8l61UusZb12eS5TL4PQpfshko4iY3Su6AryPN8l/bGw5HchEtlQ6YS+7nXrcqPWlfk9cefWestr5Li0+lY9pW1FpJC+6cjzLLmHnous/lm2NFXia6vgK+kC3PaW93B9L1iwIDvWtyjfe4NVj7IcMq+pyiKZOdMv73pSRGLnS0gaZUiGy+jv9bQA8L2X+aahiSE3jS2HazRltm/ZfafIs38zyuti/SbMS0d/L+vgvvvy08u7v4T+1iKk0bDrFuCWJ57A1Q8+iDvOPBPfeeABnHXddfhok/uhEUIIIYQQQgghpBya8aUqqZ3W+NNFk3DzE0/g5fvth462Npy67754cutWnL7//o0uFiGEEEIIIYQQQgiJBF+WFWTmxFZ1M9vbsc/s2dhn9uwGl4gQQgghhBBCCCGExIIyzAIc29uLj99xBwDg+w89hMe2bMH6rVvRq/c7r4Gyt+COhfSEkVssawsuqVHXHkTSuyRUy+54VBiJlKGVz2sPvQy3s7+/cBo6rAyfC9mGvr5G+trkeVu3umFyWMTwQinDSyQkzNe7a1fpS2S9aj/ABQuyNHQ/LtvTo+z0rb62dGncvGJ4yvj6BJnxDG/FKrMtUUFyntX1Zs1v5tznO/A9E/Tt/7HGct68Uqk0z71SYo4nw2htrNLllcb2Efe6ZZ+RzbZwoXue9CmLcS8ugux20t5Th8n7SXd3Ab+unD5ets9rrGe52GkWuX/5hvkS+hxQT9+z0Ht4qDdqCNYtJEZdFamDkOekUGLUq287Wb6X2ktR1r/vbbTez8G+ZfGt49FR97P87bdxoxu2fPn4/xF/KhNSV/iyrAAn7b03njMwgNP+53/w7MgI/uuUU3DGddfhJ6edhi46FxJCCCGEEEIIIbsNaUrPsukK3/AU5KLnPc/5/OcHHdSgkhBCCCGEEEIIIYSQ2OwWL8tO/NGPGl0Ek5l6L/UAythGXKYxv8cNkzIIKZ3QUku5NFdKQsbTmPrYKkeR5eDyvHou4+/s0HnVPsx85Qv2dbr14yvDlGGbN7th27bl5yaXXMu/tnSWLCVsJrmyL7J+9BiSssxly9wwpy4tbYagbAlQDCkAUN1PQpDlsmQVsaUTZjxrFbJRkFWrsuNDDnHDenuz4/Xr3bAZM7Ljnh6VqOwz8tgqo2c/A+JLk6LUfyAx+riJ0fa+0kvdNPK+Ku+/1l+/QxfJ+9aJlshKl4I99nDjPvtsdizLXPb9vIjUqZ7PFqHEmLvLkH/Vk1j3pWagbCGL9SztO4+X8ZvEF0tGapXfqlcpvZwzJ7houeVoxn6msepHPrfq54ydFi1jzX+JhEzJbvGy7JePPNLoIphceOGbGl0EQgghhBBCCCGEEILd5GUZIYQQQgghhBBCSEzoWTZ9aT29EiGEEEIIIYQQQgghJcGVZU2GpafXnl/S4qTem3FKX66ODr93rtK/DLB9gvL0+6Hbepft6RaDwUH3s6wfeRx6LdoXTn6Wfw2xPI/mzXPDZJ/U/VPi2z+L+Bq5Fkthfir19Dez8pLXor21rHHipNnR6YT5jiGrjCF9PNQ7sN6eOGXOmUXq0dczSHqW9fW5YdKz7Ikn3LC8eQQAOipzs2NRH8Geawat6CMmx6K87Bh+ehrLe8zXU6+rkl8H+/XlBjnoudS3XkPbQtar9LkEXD9U6x5o0eZbeYE0yz0kxnmt7kvWLJTxfFn2s65v+o18nop9LRr5TCy9FAF3TtbP6u3t2bG8Z+hnbu9bp3qYHuvO7tOhdeCct3atG1k8UFj+dLIO5DUDto/bzt9+0veNkFaCK8sIIYQQQgghhBBCCJmAK8sIIYQQQgghhBBCCkLPsunLbvGy7Jjjj2l0EUxmVSpeS2u7u+NLzWIsFz+wP0ujp8dfRrphQ3a8YIEbNlctX87Dd0vrZpEQWGXU2y3nUehaxMzdqRtArAnvFOvFKxX/BadymfmOHW6YzE4uP+8qIL+V9aXliZs3Z8dSvqOXvpct1bLwzU/WuZbYyXGyZo0bJqXN83vqe20hspAi0pK8uisisciT0enPsftFVXrGE9TwSCaf1WNPpiPLq5OTn3XYpk35YVJOsmRJdrywF3XFtx9Y8YLHuaiUNtVJrLkqL2+N771ZZm3JdXR6UjZZht2A77VZ7WRJsWVc3T+lBYCe//PSN5GJGPLMUAlcs1C21L7exHi2C23DZqkf33lQ4zsvhqbvk169iTF+9Vwkpw4tw5TztWl7YP3i9nzLEtKeVenrC5A/PvQDdA5adimT17/ndiappZuEtAq7xcuyYz94bKOLYPLQNwYaXQRCCCGEEEIIIYQQAnqWEUIIIYQQQgghhBAyyW6xsmx3R+5u2KvkNbElaloK9sT6LH25mxvgyugOPdQNO6JvcOoMjO1lqncRjHttlnwhdGl06dJR3y0qReXp3cOsMlo7mcmV3q76Jeyadftu2zZ13tYK8yLIZeWyGucHpmchd5fVu9YtWJDV1y23uGHyWk84oXZ5Tb13ugqR0Oh+IDd20jvuyumioXIaQw9aqXQiD3nd+tokMskVK9ywdeuy4xtucMOkXEJK3mJJtWJLgEqRx0XYFtVS0PjuFu1L2ZK0eu9aKj/re4O8Fc2eHaEcla7cclj4SkzruaNgkbEQ5TnP6uQyzHP30XrLQcuWa4YS0jb1vpfFrhPfto81T/mmL2/T8vcJ4D5jaquMvFuITsMcGoYOP86u5AZi/FqyeGkJoq9ZPmfrZ+6dz8+jo1YhWh96lk1fuLKMEEIIIYQQQgghhJAJ+LKMEEIIIYQQQgghhJAJ+LKMEEIIIYQQQgghhJAJ6FnWDIyOZWJ5T7+HKqQxDeAY3Nx+e/b1Kae40UKz82Vhb6a1X7bMfTcr/ZZ0Oe7dMH/yeI89su97VY+VWv6uSu2+OhZRvD4KeBHkeQdorwCzXJaAXla6jKfP6cg8lSyfFNu3JzvWNmpzu/3qVXtVyXSkN5W2tbPqJ8+XTOcnt7yut9eKLMfAgBsmy79smRvW01PcCyWGX1TZ9aE96WS76fpZvrzUojiY3jOyET23ZtenSe6+2/0sk9TbtufFA9z6kX6Tum1DvWNi++b5Yo5RPVFZk6tEGrYohiqLJ491/5ReW9oz1JfYY6qIZ1bI3GHNFVZf0s8Bck7LGwtFMPuBaHurDkrxzQvA16OsSJiFc5YeJ56+f6H92Le/xhgnMe5zRebLRnlp1t0b0kg/pBxl+C7K+afIbyM5NwV7VkXw/ZNU1YEco9oA1dPYVz5b6GcJWWQ9HewMi2AP2vTQs2x6wpVlhBBCCCGEEEIIIYRMwJdlhBBCCCGEEEIIIYRMsBssimwB2ttyl916L382tDf9/dlxI5eIHtjvv7T717/OjuUS523b3HiLFmVpdHaELYu3FIjWamjv5f/G2mMrDVkWWQdbt7ppzJmTpaHL22b0C6dOhNSySp2Sd47CUmZIaZKO193t18f1teVtVR26BF/LfPLGSrWMNCg7b+R1y7EMuGXU8i+JlGRqfGV0ZchPQ6QUWkEg60CH1RNTlrNgL680tJo+r32PPTY/Dd2PpVzixBPzw0Lxngd95Y4FsPqnN5aGRlTQM92LkYe8Gq1oseq4DHl0bELyLtIWvnI2q8sESfGMBEMldqFphMrS8tIs0idCZIbbR9xzfJ+9mrGvxsqrUXLKXRHDLiHk2pppzgq5T+j7qPys5/i83wmWxUhVOTxl4PIBtC30Bq7Pc+7N2W8Ba1x3qiT0nEDIdIIvywghhBBCCCGEEEIKkqb0LJuu8FUwIYQQQgghhBBCCCET8GUZIYQQQgghhBBCCCETUIaZw+prV+POa+9EW3sb9j9ufxx33nG45eJb8NCvHkJ7Rzvm7j0XL3j7CzCzeybW3rEWv/qvX2F0ZBTtHe04/vzjsc+R+3jnlSLJ1dFLfyQtM3d07Ib/hvTxsSTu9fZgsNLv78/Kcued2fdr17rx5PXM71GJiPWwbUb9rFuX5aWX0Mq6q1TC3i3LetW+UrJY2vtKeybsZM6c/DSsvK0ty58Zyr82X88d7T0m/RqsOli/PjueNcsNk2no9s0bM6HeRZY/nefO2qXQVcnq4JRT3GuTdff00+55q1dnx7IfH7zUz6OsmVizJjteutQN6+vLPy+GJ5QvvnnpcS37XXu7G7ZhQ3Ys+6C2IpSf9Rwpw3Q/zvNy0d5psox6PvC2H2uWfeN1OTwH98hgdqznMKuOJaHjK/S8GH5FvumHjjXfe1SnaDadhhxTXcY87ov1LKTLGOM+ZNVBiEeaPieGXeCWkczLqHoOyy+jnDt8+0uMZ9FYY6aeeccghl/XrtKsNf0yPPus9EOuWz53jX/OT8/Xu9GW6OX/DukaET8EV63KjpV56Vila5dlmhIxKfj61OqwZrm9E1IG7N5TMLpjFLdfcTte/dVXo7OrE5f/xeU48swj0beiD8e9/ji0tbfh1ktuxarvrMLx5x+PytwK/uSDf4LZe87GUw89hR99+Ec455JzGn0ZhBBCCCGEEEIIKQl6lk1fKMOcgq2DW9HV04XKnAoGHx0EAHR2daLvqD60tY9X2V6H7IVnNz4LAFiwZAFm7zkbADBvv3kY3TGK0R2jDSk7IYQQQgghhBBCCAmHK8umIB1LgQS449t34LZv3oZlL12GpC1x4tzzs3uw5MQlVec+eNODWHDgArTPaK8K80EvndXSNl/kEtn5PX7LapuJhb1ZuZ7uy8osZUnALpb+yshaNyB1aejKjRbjrwRSsqPLr+VUEilfiLHE2VqKLqVVMWQgVpiWbEip8ah6x+zb/2U7bdrkhj37bHY8e7Yb1tubHctxUoR6bpGu05s3L8t7YMCNK/ua091Lpkh9WMv65VbklnQ0FJmfHPdS8gm4sjpL8ukrJ6uSiYnOu7DXHei9vVmaMu/5eMpNoyMr5MCAW4/WPNLRkcWV41DXgcy7yG71eXUSKgfynWPKQPYDS85q4nuDUd+P9czPTTJGncSWWVkUkd/5nmdJ6EMoWyJoYUlMfa0gdJksCatv+a15REq/tYRb3nssW4sYEuUy+mcMqbFv+lY8X8qYI8t+jolBjOdUmUaoFNuKl3e/Bap/G0gOlL8TNm/OPanNekBxC5IbFKMeCZlu8GWZwVFnH4VDTz0U1190Pe76yV049E8OBQD85lu/QVt7G5ae4prnPPXwU7j10lvx8o++vBHFJYQQQgghhBBCSJ2gDHP6QhnmLqjMqWDJyUuw4f7xN/j3/u+9ePjXD+NF734RkiRbbTa0YQjXfeI6vPCdL8Tcvec2qriEEEIIIYQQQgghpAa4siyHoQ1DGHx0ED379ODJe59Ezz49eOT2R7Dqu6vwik+8Ah0zs6rbNrQNP/6HH+O5r38uFh1WXO+UIM1d0hq67Dtv6b5+690Z2APquVRXyn722CM/rAq55l9vESfWQA8NZTJMucJZRatCyhIsmYMso95FzaKzI6u7LcN+u03p9GX5tXTIkl76EiJR0JIZS4oagt4VUq5U7+93w0KuO9YuZ2Vzww3Z8fLlfufUU1IKwJmo2lTHsMaUxFdWYcWTO18tXermJfuPnj+jyKM7sl3m5O6mgCtLdsbJGqV1EoN5aKgTefju+Kp3HJVhcl4CbOlKXjxNdHmTNXGrm0YM6VbwOJcdqoFb7sbeja5sYpSjyE5vlrQqL81Ykre83T3tHS/LvUfpec993nTDZLf2XXVRRAqZG1Zgso593yu7f9aSTh5lpx+Dsp+n6ilT1b9drB1rx7qzBRhtL3tZFqAe+L3rR2UgzzPL0cDnWUIaCV+W5dDW3oaffvynSNoT7LH3Hjj+vONx9TuuxujIKH709z8CMG7yf9JfnYQ7f3gnnnn8Gdxx1R2446o7AACnffQ0zOqZ1chLIIQQQgghhBBCCCEF4cuyHLrmdeHsL5/tfPeaf3/NlHGPfvXROPrVR9ejWIQQQgghhBBCCGkC6Fk2faFnGSGEEEIIIYQQQgghE3Bl2RTMWTinalVZvSii/w/ZSl37zfhST18CjbQeC952XppqKJYty4611Y20BNBhIdvV652dOzy3dJd56UuR5dJh0hdhbref11C9vQhkHei/yrQNPpV90BcnOsbQUP6W3Hlb1wOt78Eg6+7QQ92wFSuyY+3VlkcZdfDrX2fHx++b77VV1XCmIWFxfD1gdB+UXmHaw8Py9wiht9czopy0FLLdAbdaf/lLN+yQQ7Ljhb1ZfSxa5O89FjonhxDcPz3/3KujySlHtm/I3D/lieJz2ffYVp/rQuunVj/YXZUjtj9V28h2N1B0PKsOQuefEL86XQ7pS6Z9U3fsmDqexuqfQXVcR4+yKqz5RpUrL79Y80GM9EN8zxr5m6EM/zVfPzzffmx5G+uum3tez/zc8obOU9Y80gq+doSUAXswIYQQQgghhBBCCCETcGUZIYQQQgghhBBCSAD0LJue8GXZNKHIVtsOcmTrUS4kIs0q2/Be3mtoKOW1dXe76WlJgcR3q3bfZc2+16LViLKMs2e7YZbsIUR+ocmTclrn6e9l3VXVVaXHq4xS3aSvOVSektceephIabNVB2Vs4e5Kdd30pRzPkZN1x5cRWRz/XJH+6g1uoKxMrVEW+JaxSP3ntYel/rT6ru84iSIx0hOTqMf9FvU4QVtGOieP77jDPU1KTHt7wxaah0gsypZztBWQ8Mqy6Hk8ihK4gCSrTGLLBWOlaaVXz77lWw4r/dC8nXmqozM3LHQeXL8+O543z43rO4fllQkAenqyNOScMp6+Xxotj5yT9fwsK0E/oHhOMqHSUd++G/p8EmLnEZpXbJlnkTS2j8jn1NrHqI7XadwKZDnlTxl9a5FdK3R8ya5r/X4owrQb62S3gzJMQgghhBBCCCGEEEIm4MsyQgghhBBCCCGEEEImoAyTEEIIIYQQQgghpCBpSs+y6QpfljUZRbTdMba/dvwxlA5fon2ypEeULzH8PILPkwZOit+tzupx4UI3zLBRqr1MgDOztnn61+i2kKfNmRNasoxQL4hqL6/ayxKCtqeT7NeX77fxzJB73WvXZsfSVqTKE60736dDpm/sNh4F6Z0GAEevmLocsfyigvxzlh/hhK1alR2vUGMtpJyhfkK+7aTrQPY16f1jzY8x5m3LTOSmW9z0H3kkO776ajfuo49mx3vumR0v7K3dO6oMyvbdCvWEMsPEfdV3fjDsQ0snSv8skKaVvq9HUYg/UpFzmtFz54n1bhl7e7NjXd45c/J9QWNcW1fFz7ezDBrWNnqQ+g7gOvoUAv7esb74juUi94y8cV7GXGSlYeVnNVuIV1uoL6J8FtW/BWL4xPmmR0gtJEnyegDvArAMwDMAfgDg/WmarjdPdNM4HsDHARwPIAVwE4D3pWm6SsXrBvBuAMcAOBrAPgB+nqbpKb55NccTMCGEEEIIIYQQQgiZdiRJ8i4AlwJ4GsA7APwbgNcAuCFJktnWuSKNEwD8HMABAP4ewIcBHATgF0mSHK6iLwDwEQDHAfgtgMLr/7iyjBBCCCGEEEIIIYREJ0mSBQA+BuDXAP44TdPRie9/DeD7GH959gmPpL4IYDuAk9M0fXQijW8BuAvARQBeKuI+DmDfNE3XTsQz9EdTs1u8LPvR+3/U6CKYLJi7YNeRpiCGZMRX5uArA/HdVnqquCHEWEq+fHm5eZl4LsmXeS9aFLYgtGx5RKi6wLcP+vZP3/bUeXd3u+kvW+afjk/6UqZnxSubIv0ghnzTwlBHRyFE/mW1k0ZKIsogT6ZnSalOOMENk1LyGTPcsGOPzY6ljEvjO0ZDCZXphVBv+Y5vPNmmdVZqlU6ry3nq2T99yzFvnv958v7oK/8KlcDFeC610iyjLYLaTQ/SBQumPi6Ar0wvVpox0peUfZ8ITd+3fUP7f17cWH08L0x3QautfdteOjzocvg+g7SCjL0M6FnmxasAdAH40s4XZQCQpukPkiR5AMA52MXLsiRJlgJ4LoCv73xRNpHGo0mSfBvABUmSLErTdN3E99sArJ06NT+m2SPZ1Dyy+pFdR2ogb7rwwkYXgRBCCCGEEEIIISQ2z534/+Ypwm4B8NokSbrTNLVWf+0qjTdg3J/sh8GlVNCzjBBCCCGEEEIIIWT3ZUGSJLeJfzFX9Cye+P/RKcIeBZCIOKFpAOMm/tHYLVaWEUIIIYQQQgghhJAp2ZCm6bFWhCRJegC8s0CaX0zT9CmMSzABYNsUcXbu79o1RZgkRhqF4MuyFsZXUx9Dh++rdy/Dp6AMGqWh1/WzXmySO2uWG9fXDynUhyLEj6qenhf1OC8kDes6twy7YZZXTEj6ZddPEc+42FvSh+Lbj8vo43lzaxG/Gd/52Xvr+uEtTth+i7IT+17VmZvG6tXZ8cKFbjksPzOLvGtr6H1ieDg/zNecUxHDq6cMr6cyy1FvYs99sTyPfPt1s3iEamS5to/k+yGFeCrFKFMoVhljPMfE8MstEs+q45A0LU+rMvzAfMvlG69IG8Z+1vWNG+o75/sco/1Vy54j5Zygvbk6+TZhd/Ms68H4DpS+fAPAUwB2PqDOBLBVxdn5ALYFNjINjW8ahWD3JoQQQgghhBBCCCG5pGk6gHHJZFEem/h/HwBrVNg+AFIRxycNzc7vppJoBtPSL8vWrVuHhx9+GMNT/KX45JNPbkCJCCGEEEIIIYQQQsgEvwZwIYDnofpl2fEA7tmFuf/ONDCRxn+qsBMw/sLt9hrL6dCSL8seffRRnHPOObjxxhurwtI0RZIkGB0dneLM6UXIkttQiVEZ6Ycs129WiUjIMm/A3f49VFYRe2l9I6WQRdKX1yPlI50d5fZxC0vFVYaMMYa8L1SWkJdmI8doDBmpRajM03deDJVtOBid0CqHlF7OmZN/XpEyxZYMRhm/gVLLULlvqOwqpFy7KkszEiqtCqFseV/otYTMwbH6iyvr8juvVZ4R8ihDyhxaPzFkwrXmtav8yraQiPFsGlL/ZT8PlvE8EmMchj6LyvP0XBGjXGS34L8BfBHA25IkuTxN01EASJLkFQCWAPiQjJwkyQIACwA8nqbp0wCQpumaJEluA3B2kiQfStP0sYm4iwGcDeD/0jRdF7PQLfmy7C1veQtWr16NT3/60zj88MMxc+ZUslVCCCGEEEIIIYSQctjNPMuCSNN0fZIkHwLwzwB+liTJFRiXTr4bwN0APq9OeRvGvdEuAHCJ+P4dAK4H8IskSb408d1fA2ibSMshSZK3YdxnDQBmANg/SZIPTnz+bZqmP7DK3ZIvy37xi1/gi1/8Is4999xGF4UQQgghhBBCCCGE5JCm6UVJkmwE8C6MrzJ7BsC3ALzPQ4K5M42bkiQ5BcDHJv6lAG4CcHaapr+d4pS/BbC/+NwP4B8nji8FMP1els2aNQt77bVXo4sRjRTJ5BLWWLuoxd79roxd5mIsm/ZNP5QYS8dDd7iLjVU/ZUh5Ytd/jJ0Cy6BZl5zHkDf5jvsYkiDf+SGWdMI3/Rh5WcTYZS5GuawdLxu5Q1w95SkW9dwN0MrbInQXuJBxGEqR8RvS78retTfGnFh2/7TCYuwUGFqOMmgWO5Ky48X4LdCsz0Ih55Vhq1D2762yZcKhYzn2s1ZDd7smLUGappfAXSmWF+8jAD6SE3YzgD/2zK/ft2xT0ZI9+i//8i9x2WWXNboYhBBCCCGEEEIIIWSa0ZIry/bZZx9cdtlleNGLXoTTTjsN8+fPr4rzhje8oQElI4QQQgghhBBCyO4CPcumJy35suzNb34zAGBgYAA33HBDVXiSJHxZRgghhBBCCCGEEEIK05Ivyx588MFGF6E0mslvIMSTqwy/ihhbcsfaZj2ERnpaWXXXrD47taYXqxxleyXlXXcRz6DYPhqh/SC0HDG8ECWh86evZ1ORvPPKYRHq2xbDa6XeflR51NP3Bggbv6H9tmxvyGbx4Soyj8S498S+fzXyvh/b/2hX54VcaxleRjGuu2yfzjII8QYuw3cutndgDOp9v4oVN3YaeddatnealV+ReyA9zEir05Ivy/bff/9dRyKEEEIIIYQQQgghpCAt+bKMEEIIIYQQQgghpJGkKT3Lpist9bLst7/9LY488kgccMABSJIkN16SJLj//vvrWLLaSJB6LYstY2lr2TKo0PNCllvHXuK8q/TL3u46trzVt47L3lpeE6P+Q2UVvtI83/SKpB+SZtl9MMby/FB8r62ess4i55U9lmP0pbIlRo2UnIdSz/tcI+dPi1B5TQzqWf5QYveRIs9yefe5Mu5DZaThKyWPUY7Yc7WOW4YMOUb71prXrvJulnk91C7B91kidv0XST/kWdSKFzo/lP17i5BWpKVels2dOxcA8IIXvMB8WUYIIYQQQgghhBBCSAgt9bLsgAMOAABccskljS0IIYQQQgghhBBCCJmWtNTLMkIIIYQQQgghhJBmgJ5l05eWfln229/+Fvfccw+Gh4erwl7/+tc3oERhpEgm9d+hXgoWZfhc+PocNXKL7tjpx/CVKnu76xh+M7HqLYbnly8x/KhCfCF2lXcM/4fYXlhltG8ML5oyvLyscvlux24R47p907eQecfwtfPNS1O2L1wMYnhJteIcWbavYD3nMIsYz0mh8UKfi0Lm7tD7UBnzcwy/q7Kfa3wp+xmqbM81X5rFh8yiSBnL9hCOTRn30RjPsLF94QiZDrTky7LBwUG8/OUvxy233AIASNMUABwfs1Z6WUYIIYQQQgghhBBCmoOW3M7iAx/4ADZu3Igbb7wRaZrie9/7Hv7v//4Pf/7nf44DDzwQv/rVrxpdREIIIYQQQgghhBDSgrTkyrKf/OQn+PCHP4wTTjgBANDX14djjjkGp5xyCt7ylrfgC1/4Av7rv/6rwaX0J0Fa8xLi0KXjsZfVFlniH5J32RLHVqCR11lv6YdvWcqWJcSQ6PjmXe8tuUPr0Xc79rKJIQXzTT+UUPlUjPTrOU6alXpLg2ul3v04tH58ZaRlSNzz4sWYP4s8T4XkV4ZEs9YyxaJZ2rCRtMJzaqgcPYZEsGyZedkyxmaxG2jkfS2Wpc90gp5l05eW7MGPP/44DjzwQLS3t6NSqWDz5s2TYWeccQZ++MMfNrB0hBBCCCGEEEIIIaRVacmXZYsWLcLg4CAAYP/998fNN988GbZmzZoGlYoQQgghhBBCCCGEtDotKcM88cQTcfPNN+P000/Hueeei49+9KMYGBhAR0cHLr30Urzyla9sdBEJIYQQQgghhBBCSAvSki/LPvzhD+Oxxx4DALznPe/Bxo0bcdVVV2HLli145StfiS996UsNLmExUiSTmu5YXhlla+/LZvvI1OXXevBKxdOnYPVq93NPz+Th7wb3mzweGnKjLVs25SlVyLyHh92wjo6sjJ0d5W6FbRHqgxPbA0anZ2n8O8QMZfX/LcPZ8dq1+ektXZofpsuRl3eoJ1TZvg3PDLnp33Zbdiz78aJF7nm+/czXi8a6zvXr3c8Le7M0frc6/7wFC7Jjq/xle6GUQey52honoX5CZfvN+OI9h6lJuE0O5g73sUemmXffmeI0v3IUiBujn4X2pdC+lZd3rDET0u/q7elW9hgqe+yVPZ7zyl+679OGDe7n7u6sTJWusDRLoFHP6mX7etWbkOuJ5a0YQiP9Q61n8CK/UXxp1t+ZsaFn2fSlJV+WLVmyBEuWLAEAzJgxAxdddBEuuuiiBpeKEEIIIYQQQgghhLQ6zfknAkIIIYQQQgghhBBCGkBLriwDgAceeADf+ta38PDDD2NYSS6SJMHXvva1BpWsNp4adN9fVipTHxehnltyx1puK6WLcs8GLbHr68uO+/vda3OWE999t3vi8uWTh1u3Zl+vW+dG6+/3Ka1br7qd5LLcJ9a7ZZwzJzvu6tien4GvBkjh2/Zl9Is8+YVepiylr/oyhXLClJDJ/qKR/UemB7iSvsAqdoixZXwROdDEPicAqrv4r3+dHctr0zLG2G1vlf/++928rr46+6zLf8op2bFU1LS3u/F6e+PKlCxphq9so5lkB3J86bmps8WeALzr1bhZWv09xhwQSiNlORb1nB+ahSLXnDc/xKq3vPoKtewIrX8pUS4yTmLI4yxyr037ZohCly25bSaJXYhdQiw7mHpSTzmrZdkRO68i+D6rhEoFW2HuJqQMWuxReZz//u//xtlnn42xsTHstddemDlzphOeJEmDSkYIIYQQQgghhJDdAXqWTV9a8mXZBz/4QZxyyin45je/id7e3kYXhxBCCCGEEEIIIYRME1ryZdkDDzyAiy66aFq+KNMrx/XujBLfpdLW8tvOocH8zBtInsROq2sGBrJjuWMeAMzvER9OPdUNFAkdJb4+6CA3mpbt5WG1hSz/00+7YRs3Zsf9/Z1OWFdl6jas91Lo2LtW6SXrsk1DZVDyPCnN1WFawiepKq8YLGMdnfnxBGVLEvT4ldJFKTcFgJe8JDuWu2HGkndIWY7vDkorVrifZbm0DFPOfVIO/eyzbrzg24CsTKPjFZGk5BE6fuUur3LnX31fkGNI78Yrw+QOqQDQ19cmjrPvi/Txes5HMfJuGwmTuwfPwbJBqrdKztLvnhuWfsn49oVQCWKz7Cznm16onYGTpqHjquqfcrB7PqOVMUatnam9kf1f14H8rB/0DFl1Xr9ri2BdodMsm3ruUBnrOaaeNi/WHFy29FXmbXWtus7dVTf7rqnjwd+2pFl2viakmWjJl2XLli3DRvmWgRBCCCGEEEIIIaTOUIY5PWkOZ8aCfPrTn8YnPvEJPPDAA40uCiGEEEIIIYQQQgiZRrTUyrKTTz558njjxo049NBDcdBBB2H+/PlOvCRJ8POf/7zexSOEEEIIIYQQQgghLU5LvSxrF4ZDhxxyiPd5xxx/TBnFicasSmVSG641/76eWU8NuudJawvp66UtL+YHemBIYujapf8RkG/TsWhRfhqGrYVZkXIQlG3bJr2XANdyQPsgPDAwtUeR9BkCyi+zr4fBM0P5fWRux5YsDdVQ0ospFFkunZ6u87zzfNdPW34wRfxOQvyudB+Rnl+6+EuXZsfW2Aj1qJBl8b1O6cM3Xq7svGOPdc+T1zM4mB3L+QwAfvnL7HjpUrccy5dnx3oKCPW0CUGWv7vbLaPl9yaLuG5ddqzbU8bTl2X5+e23IBuXkPYnKgNPe7fSCfHPqsLwDfO9OGuu08ztFnVpeFXVk1ieVnnnle3rGCP9ItcckqY+x/TTsry8Am7wZXgN+aapn+Ucr7OKMRashyFBkftvbMp4Ds47L5b/V146Rbw4ZRpljC9fGumhVXbectxs2OCGLV6Uk7e6l+ln6zzoRUZIMVrqZdn1118fdN6xHzx215EayEPfGGh0EQghhBBCCCGEEFKANKVn2XSlJT3LCCGEEEIIIYQQQggpg5ZaWbaTT33qU1i7di2+9KUvVYW9/e1vx7777ov3vOc9DShZ7RSRcckwvVK/bTiT11TEdsKeq3R3mXdIGkXUL1IyVfY2zfXcrltLrjq6/dKw6qCREilZB5aqontR1gfL2PLbNz1LGoOOTidMSufWrs2OFyxw01xsSINDpJZScgsAt92Wn7eUGWoZY95Y951TAH+JS6iUU8btVH1Xfq4sytJ/5BE3npQsaJmhrMtq5dPU82cZEgXZFrocvvOI75xozfH6PjFWyR+XeVTtVl8Ja/sYBPU7S6dq0Db0zOTxXD3ZicYZU/OIlNd0esowY8kk82ikXC0US+JoKfgcGaB13bJt1CTcJgZOjLapSkMW0hjAofOsmXeE8suq0/ODRErQq6SonnLoektwY4wVX/lm6LiJ0Ya1plcGseaRkOewesouAfcZU5NbLnVDj13+su9DhLQKLbmy7OKLL8YRRxwxZdiKFStw8cUX17lEhBBCCCGEEEIIIWQ60JIryx5++GEcdNBBU4YdeOCBeOihh2rOY/W1q3HntXeirb0N+x+3P4477zjccvEteOhXD6G9ox1z956LF7z9BZjZPRPDzwzjuk9dh/X3rcfBLzoYJ775xJrzJ4QQQgghhBBCSPNCz7LpS0u+LOvq6sKjjz46ZdjatWsxc+bMmtIf3TGK26+4Ha/+6qvR2dWJy//ichx55pHoW9GH415/HNra23DrJbdi1XdW4fjzj0d7Zzue++fPxVMPPYWnHnqqprwJIYQQQgghhBBCSONoyZdlJ510Ej7zmc/grLPOcl6Mbdu2DRdddBFOOumkmtLfOrgVXT1dqMyp4KmHx19+dXZ1ou+ozBBnr0P2woM3PQgAmFGZgUWHLcLTjz9dU75TEaK11ywyPJVC8/bdSlqmIb1tdkWeZUUZ/mKxt/wuEs/yq5D+S5YPiIX1Vw5ffzPf69RWK9L2Zf367Li3N8wHQXs85PnUdFXCtkTXyPIPDGTHy5aZxayZrVvdz9KWQm8pLrGuO7T/19PDw0Lmffjh7rXIRcbSZw5w+//vf++GzZuXHcs6LmOuKOIVKZH9WnqWhWKlYV23p51Q3X1w8tI0y1HE2FFOMnnHgNPx2lQld8rOpTuC+CyvRc910jFDF3938ZGx/E/luG9vt1LJ0ljYa9SbnkhEG1r3EMvj0fRfCjAbLTLWivhU5qUh0dUjP2tfxLxLM33bChDia1W2F1MZnn2SIu0b29fX99rKqOMY/m6+xBhf+vl706bseNYsN8zyV/XFqh+nzJ7emRb0MyO7Ey35suwjH/kInv/85+Pggw/GOeecg3322QePPvoovvGNb2Djxo245JJLako/HUuBBLjj23fgtm/ehmUvXYakLXHi3POze7DkxCU15UMIIYQQQgghhBBCmouWfFl25JFH4vrrr8ff/u3f4lOf+hTGxsbQ1taGE088EVdffTWOPPLIKPkcdfZROPTUQ3H9Rdfjrp/chUP/5FAAwG++9Ru0tbdh6SlLo+RDCCGEEEIIIYSQ1oKeZdOXlnxZBgDHHXccbrzxRmzduhWbNm3CvHnzMEuva41AZU4FS05egifufgIAcO//3ouHf/0wTv/Y6UiSZBdn+5EiCVoKbyKW1Za9dFlKIrTKpOytjC3kpBW6rLmReO4m78SLIbssgiWzzZP/hvYDfW1SrtjbG5SkOTYWLMiOV6zIjs161IWUg0PJs2R+8rTRUTeJpcY7+RhS4NiUvTxfy027xNjo6XHzlvJZjZS0yrbWMqJ167Jj3cdlXF+5tcZX7uHMpcNb3IhignhmqC0vqFrCN/TM1IFqwvGdd7U8zpVv1i4Fts7zvjcUmQjz9Kd6Qrb0siJsrKPTCZLj3pq7rXusr71BPeeAInmF9C0tA7RsCmS9ShnUQn3PkG0oJ4RdUPZzTUj6ZUvU9BxpybtltVr92BqXZV9PCNZ9rpAENycNK/0i9eH72yLEWqVoWYpStkWKdZ51XVuG8++xUk6p5ylLaimfZ/fdN7+MUepbZS7TlGXU4zrvmXU8yeaw7CCkDFrwFYLLrFmzSnlJNrRhCIOPDqJnnx48ee+T6NmnB4/c/ghWfXcVXvGJV6BjZstXHSGEEEIIIYQQQghR8I1PDm3tbfjpx3+KpD3BHnvvgePPOx5Xv+NqjI6M4kd//yMA4yb/J/3V+GYCl7/xcuzYsgOjI6N46NaHcNpHT8O8/eZZWRBCCCGEEEIIIYSQJoMvy3LomteFs798tvPda/79NbnxX/efryu7SIQQQgghhBBCCGkS6Fk2feHLsiYgQRqk8Zbby1fZPeT4P9RbS942+FT2QQv4pamVZcol0yvBL8HyVYvhl2N5p1k+FxLL78eN5xWtqlyhaUh0+WN7GOhyzZkzdbxQzywdT3oB9fV5pqcLaZm5CKSXi7bLaaTfXki7WWOo7PlHp9/Xl+WtfXYkspn0uJDn6bZwPaeyvPR05utnpvtu7rxizJfScwTIt90C4N0/Qz3FYhDDly+4jHk+ZbqTGMZwVt5m2wTEm27IataPDxI5RvXQkHOrrDvzPuE5LkKJ8RxTJI0o/q2iIttUJXca9ZpX/5oY94nQOSDIN7JkP60ynnVj+Bc3i39cI32xrOf47m6/cTh7dn5Y6AsX7/ZVGbSJC5Llr/Ylm/pYU7ZvLSH1pjlmvSZjzsI5VavKCCGEEEIIIYQQQsj0pyVflt17772NLgIhhBBCCCGEEEIImYa05IL+ZcuW4YUvfCHe/OY3Y+XKlejYxbryH73/R3UqWRgL5i6YXLZaZLlqlKX1ETAVlFLOoCNa+yiLz6HLvq06yZMGaLljDAmQr4Sy3sSWYVqEyhd8pSVlEHvpuHUtluonRjmKbAUfI81Gocsk+7KWYeZdtyUjsqYwTyV5FKy6l+XVlL3dez3roAhRxlClyyueJV3xLYfVjzVWezdje1gSHWktAQDr1mXHWl4skfOnHueW9CmkjDGIbR+xK6Lf03WnMzpaSB8su/5DJY6h47dsQuSnsZ7DJFIqvWOHG7aw1zu7uhHrt4VMR843es6S8888tf9bnq2IRVUbGlJpB61p194fE1j3Mj0F7K5WARp6lk1PWrJLf/3rX8e///u/49WvfjX22msvvOENb8Bf/uVf4oADDpgy/iOrH6lzCYtx4YVvanQRCCGEEEIIIYQQQghaVIZ5/vnn46abbsKqVatw5pln4l/+5V9w0EEH4dRTT8V///d/Y2yMZoKEEEIIIYQQQgghpDgtubJsJ0cccQS+8pWv4DOf+QyuuOIKfPnLX8YZZ5yBvffeG2984xvxlre8pdFF9ELuhllkWbC1yrbsHei805Ryyo5OlcbU8YrkFbqM2lcaEGN5fujSfbnM2ZLchi5/tjZ38+WJ9VmZ77zTDZPlX7YsO+7vD2sza0l4sxJb3hFKDPlIGXLQsuU1Vt6+aVi7WwWNPUO/0GbtsiiwrkXu3KrLZY1zKYHT8hEpc4u1W24rY9WjtVNaaP+X+enus2FDft5Skij7cSOl15YETl/bmjXZsXstbrwcFVFVXDmcyti11zeNIjJAXxld6dI/z4HfyN2QQ+ugnvchizLuvyHnFSlH3vjVc2Qr9AML69ry7o/WvKSHU2dHfp1sGc6uZ9Wq7Pvly93rnFsxdJJy8jO06sMj7u80iWw3uVu8SqKqfjpb4FmdEItp0YUHBgbwu9/9DgMDA+js7MTy5cvx2c9+FhdddFGji0YIIYQQQgghhJBpSJrSs2y60pIyTADYvn07vvnNb+Lkk0/G4Ycfjh/84Ad43/veh0ceeQQ//vGP8dBDD+HUU09tdDEJIYQQQgghhBBCSAvRki/L3v3ud2Px4sU477zzMGfOHHz/+9/H/fffj7/7u7/Dgol1r/PmzcM73vGOBpeUEEIIIYQQQgghhLQSLSnDvOyyy/AXf/EXeMtb3oL+/v7ceMukUdI0oO4eFREwfQoi72tfxAslz7ukSJ2W7XOhPQHKRPon6HJILyON3P56xQo3TG4dLrfFDvWVCu0usvyWL4QvuoxyF+6BATeurhNJbj1YhlElU6RP542bImOobI8037x95wDLL2rRouzY2lq+akt3y5AwAMsza2Qk32dEnqe7XLP4A5bhmWUiKqhNNH6nakPtx+mEefpRWeWS9a+7j7Sf0e2UN3XUe9xZaco+uG6dGzZ7dna8dGl2rOvAmdcNHUyn9FAt4B8Xo758Pcx8+3jZ/o9VBE4Csb0uQ/1hfe9RvmmEPo83q3djaJ3I4dbePvVxvYnhXaqnkc2bs2P53GtRZMjI59RNm9wwmZ/1nOF8oR9WLNaunTzskhkUeOi2rrUVfqsSYtEkj8DFWLt2LTo78x9Od7LAclckhBBCCCGEEEIICYSeZdOXlnzd+5rXvAbXXHMNdsilK4QQQgghhBBCCCGE1EhLriy7++67ccYZZ2D+/Pl49atfjXPPPRcnnHBCo4sVhVjbQ8tlr3J5ryXRKUI9t4HOy3dXYbJcHR21S2F0+mUvuw85z5JMWsukfSVAVecNPTN5PB/qTyq9PfknCnyX/4cu5S5bQiZlUPvs44bJbb6PXuHZnoF607KlVVb6lpLQN29rfMUof4w0dNPIxcu+/axqnorcQeWYBOAUulLZ9Yrssggdv7LdQvtSFGTjqzaLMU/lpafT1N1FftYK7rndU9dX6H20DCsIOXdo+ZGU78vrDJXTF7luiW/7hkr4QtIoQqOe16xyaKw6DilzqKVGkf4fkoZvOSyK9MEYY9RKI+/2tW2b+1nOTd3djbNf8E1/eNgt48aN2bGvDLNIOTpFPc6b52eXYD46WIH6RiHvbdJbQuv4xcOuXkFlqT7r6CRCSCm05MqyP/zhD/j1r3+Nc845B9/97nfxR3/0RzjooIPwj//4j3jggQcaXTxCCCGEEEIIIYQQ0qK05MsyADjmmGPw+c9/HmvXrsUPfvADPPe5z8WnPvUpHHTQQTjppJMaXTxCCCGEEEIIIYRMY3Z6lrX6P1JNy74s20l7eztOO+00XH755fjud7+LxYsX46abbmp0sQghhBBCCCGEEEJIC9KSnmWS+++/H9/4xjfwzW9+E/fffz/23ntvvPvd7250sQqRIpn0BCii13fiKsH4SEdXdmz4CYV6WYR4ePh6HgH5cvsib72lT1mwn1CAX0sMHzgrnRD/iKmI4g1h+Pg8M5SVU7ab9PjaFfJarbYv25dMYtVbb6/bNrNmBWQQ6WJi+5QV8VHyTaMVsMrcJbp/DA9D37nUrMc1a9zPYsC19fW5+XVkHmaxfbc0oemH3F+i9bOSJ5YQLyNdH8YU3JRjT5dfzuszZrhxpdeNt5WjZ5vV2xvMu/6l0SUArFhROG9NyNiz5vsYdRerP4a0VZG8Q8ZQM6UfIw3fOpZeXtrDqp7PaJqQOrY8uWJci+2x7MaVFmNRPMt0mDRflRe6bp0bT0zCHZUuJ0jO1brtdybDPflIq9KSL8s2bdqEq666CpdddhluueUWdHV1YeXKlfjKV76CF7/4xUiSpNFFJIQQQgghhBBCCCEtSEu+LFu0aBFGR0fxohe9CJdccgnOPPNMdHV17fpEQgghhBBCCCGEkAjs9Cwj04+WfFn2sY99DOeccw723nvvRhclOqHL/9uURkE2bCOXP1vIpbq+Mkz9vfxsLZv2lnAUoGxZi+wLchm2teuz3qK5s6Pk5fqiAZ4adPvuwEB2LMuo26Kr4ifpsPpxs0iMNCFbZlsyJbmrNwAsWpQdl1EHMdJ05QvutVn9My9vKe8F3DpuZD+wpE4ybIvakt6Sd0TZct3Q6Q0OZsc7dmTlknIaoHrOkcgy6vLntUcMKaoV11fSvivy0tf14SszL0M+ZdkNhNS/JoYk19eCQaqBgALzm/UwkTOIilgu5MULxeyfepKPjO8Yss7bPuKeI/udr3yzDKl3DOr5XKfzKzL3+ZKXfpG8fPOWc1GRZ+563rd9+50uv5yL6o0cX3KO1FNdp+8PP31xeT+W9M1s7dos7/6Dc8uok9+ZTHt7fpEIaWaa9DWKzXve855GF4EQQgghhBBCCCGETENa8mXZTn7729/innvuwbB2EwTw+te/vgElIoQQQgghhBBCCCGtTEu+LBscHMTLX/5y3HLLLQCANE0BwDH2ly/Ljjn+mPoWsCCVSsiWeYQQQgghhBBCCGkk9CybnrTky7IPfOAD2LhxI2688UacdNJJ+N73voc99tgDX//613HzzTfjyiuvdOIf+8FjG1RSPwa+8dDksV4kZ+n+HZ3/6tVuWH//1Ccp/44YvhGhfgNyUrHk9dJXR2vetbdOXvrV2v7m87jS9Si9jbZuzT9PbsdsehiUgNV/8jwMdJ+WaVjtVLrHiXGX2zLSOXlseazF8EbSu3WvWpUd9/W5Yb4+GmV4ofgix69VXl8fK+0XJcfGjBnudVr+Ub7lCNl23oqn+7/vw1VwGxo3EXk72LQpP4kpFm9PmYaJ54RfpD+W7YEk05deedpWSlZxkXu4d+MHGo+G9F1NyHlF2sKqH+/LlonU+ddK9H53bO3Pq0U8AUPa19djVqdftidXK9KM3m2xPB8l8r6t+8vcCN6cId571jl6XtJ+irVSpE4dX9aR7ZPHYx2dU8SeGudeoBsgz9fUeICy/DF1ve5Mvq35ujohXrRk1/3JT36CD3zgAzjhhBMAAH19fTjllFPwX//1X3jxi1+ML3zhCw0uISGEEEIIIYQQQghpRVryZdnjjz+OAw88EO3t7ahUKti8efNk2BlnnIEf/vCHDSwdIYQQQgghhBBCCGlVWlKGuWjRIgxOaHv2339/3HzzzTjllFMAAGvWrImSx+prV+POa+9EW3sb9j9ufxx33nF44JcP4PYrbsemtZuw8p9XovegXgDAk/c+iV985RcAxv3TjnntMTjgeQcE5estu4RaVqv1WTkJSWkfAIj3jOjtLVeSqcMqlfwt7+Uyfynj0pe1sFekqfRZw5ibW5a85deh8oJ6outALtEOVOsEI+ugu9utU6kEluWyZHSzlH1fp7E8P0r9S82U2BZbh3UtWyYCyq1kvfJ9xYrsWEve5JJ83fh5fTyGzNCKq/PV7R2ClKbqMSrHg7ckMJAY8hR9jh43ech5cGDADVu6NEtjrq4E0S90+aXMed68/PlYtmGRe1ReOUKx6t9Xemap9Cx5vrxuS95b6DI9I1tyITmF6eRC7AaK9HFf6ZOsc2s+sMJ6esQ8Jec9wL3wGDdB40HAmt/mdofJgp24PfO9z5PEkIhLrH5gVbHvGLXqp2zbgDJkhrHRcu6ODr/nZUsel3eORqdhPSPkza1a1v/009mxvkXNrXh6sngSwxpGz0Ux5OJuOxW4l8nOIC13jj3OiWbd52QZt4/o54CcC9DfCy1qrOfI6USa0rNsutKSL8tOPPFE3HzzzTj99NNx7rnn4qMf/SgGBgbQ0dGBSy+9FK985StrSn90xyhuv+J2vPqrr0ZnVycu/4vLceSZR2Le/vPwkve/BL/4l1848efvPx8rP7sSbe1t2PLUFnznHd/B/sftj7b2lly4RwghhBBCCCGEELLb0pIvyz784Q/jscceAwC85z3vwcaNG3HVVVdhy5YteOUrX4kvfelLNaW/dXArunq6UJlTwVMPPwUA6OzqxMzumVPG75iZVePI9hEkSKaMRwghhBBCCCGEEEKam5Z8WbZkyRIsWbIEADBjxgxcdNFFuOiii6Kln46lQALc8e07cNs3b8Oyly5D0ma/AHvynifx8y/+HJvXb8YL3/XCaKvKrOWszpJetXQ/bydIKbsE3KXRM2a4YVJqYi25tb63ym/tdChX/1oyEykr7VJru0MUWdbSa2sXRF+0DFZej5bM5G1Qo5FhjVz+rMsvJZRPDWbXfd997nlz5mTHehPXGEu7ZRrV0oauyeNOra2SureSkdcm5cmAu4NkdR34TeFyDih7h1SN746dFnIXXL0jru848Z3D6o1vvx4SuzHqruks/ddbNYp+PVJxpemWtEcip1YtR3HOK6Lt8ST2js1a/uKLnN+kJHBX+EpvJPqaZRp6DpNhIbu/1oKvrE42vZZg+e6KnZvgLpDlkuOmake+QSHD17YWAstOouwdWa17mSxHkXtliFy/yFD2vYeH3utjy79CdlWMhTUW5Gc9zQaNoRKQ5ZC/LQD3tlQlaayj9DLGPKXHnowrw6x2KjRXy4J5SiFDxyghpJqWfFkmGRoawsaNG7F48WLM0G97auSos4/Coaceiusvuh53/eQuHPonh+bG3euQvXD2V87Gpkc24YbP34B9j9kXHfX+VUoIIYQQQgghhJC6QM+y6UvLvk6+9tprcfTRR2OPPfbAgQceiN///vcAgDe+8Y24/PLLo+VTmVPBkpOXYMP9G3YdGcC8feeho9KBTQ9t2nVkQgghhBBCCCGEENJUtOTLsmuuuQZ/+qd/igULFuBTn/oU0jSdDDvggANw6aWX1pzH0IYhDD46CGB8t8uefXpy4z6z7hmMjY4vh9385GY8/ejTmLNwTm58QgghhBBCCCGEENKctKRO8KMf/SguuOAC/Od//idGRkbw3ve+dzJs+fLl+Jd/+Zea82hrb8NPP/5TJO0J9th7Dxx/3vF48OYHcdO/34StT2/Fj//hx9jzwD1x2kdPw7q71uG3//hbtHW0AQlw4ptPRGWusc+wIkEa5H9geVVJb5S1a+X3bhpaly+R2vvNm933qtKPQPoPaH8iWY6qaxTrVduMvbCXLu0U6bnRbrtNfnLLuGJFdqyvs214iyykiNeJPJ4ZctPP80qyfASqPbOy486Ku363zYmXXy5fHxDf88rYVl3W/95758fTXhYheettse+4Izv+yU/cuNI34o1v3MsJczzw6mgEEsObTdNIHxNZjaHXNm9efljZ1+bryxQy1oogrEqqvBV37BAf9CQsJh3tK+jrVSLz1vXtXJtnYxSpqxAvGuucQm0hNRWi0tv0RCU+W/6bmhCvGMvLyBdrji/b97KIF5Ps5zF8F2VeVfVmmQjJgihPwE5htOntn6Uv1KiEsZx7f5XvkzwncC6KNm48ytJIf9UYhD4nWfEsP0V53oh6xvGVfvl6N1rd08Ly65LPATPVXmnSy9cao773Yl9sT2X3s6wvy4tM1oHlbabTkPlV9S1ZEYafoi9lPzPtrh5olGFOX1ryZdldd92FT3/60wCAJHGN9+fNm4eNGzfWnEfXvC6c/eWzne8OeN4BOOB5B1TFPfiFB+PgFx5cc56EEEIIIYQQQgghpLG05OvfuXPnYoPe8WuCgYEB9Pb21rlEhBBCCCGEEEIIIWQ60JIry17ykpfgn/7pn/Cyl70Mc+aMe4MlSYJt27bhy1/+Ml72spc58X/03qsL5zG7qy3ovBAWzM1e7oXKU6zzZs/Ojp99VuUt5DXW0uJ77nHD1qzJjqXqR6YH7GK5rxUowuZ25y+Vnjkzu+5t29wwczmsfNkq5Bed3W6ZpPRSS59MSYdAtlN3t9tOnRseyz4Mq0SMLaJDaBvZnh9Y8rpsmbxWiUnaNjzpfiErXchdiiDfneu8c965j2PpXJoEOe7XrXPDpARArtzX8oLYMt7Q9AYG3M9y3rL+/hFjy3hfLCn5CPLl4jHoqmR59/XlS8IxT8k0PHUBofIgb+mZJ2XIwIPTlw2Zp7tXWPdR2Ya6LDKelYZlnWARo/+XIT2T6H6Wp4QPfU7S918XQyMl/R70g4C4qbQZclzvflzyvdi3XNrOwNdqomx5ZYz5oYwyxqgD/3Fif5bUUxInp8g993TDRkez41mz3DDfZ2kL3+eOGG1j3Q/zbhlAuETPKX+E+UFPYfI3lu/curtKLcnuSUu+LPv4xz+O4447DocccghOO+00JEmCT37yk/jd736Hp59+Gtdcc40T/5FLz2xMQT150xcGGl0EQgghhBBCCCGEFICeZdOXlnw13N/fj9/85jc4/fTTcd1116G9vR033ngjTjjhBNx6661YvHhxo4tICCGEEEIIIYQQQlqQllxZBgB9fX342te+1uhiEEIIIYQQQgghhJBpRMu+LJtOpEgm9d+WF4TGVzMu/X5CvQL0bsU5ll9156CDsmPtPyX9Aqp8CmShhTGKrtOtW/3KYfkgaO8PB2ksFWpGIzD7hNHAVhmlP0MMvwftmSW3De/UZbz55ux47Vo37MQTp8xL9wN52imnuGHSuyHUosx3HJbt5aKXf69ePXW8A/tLLUZVfdx9d3ZsdXHdvHLO8d2zpe4+GqLSOytZ39XliO3pY3nWPLG+0wmbNSv7rKu/bXjL1IkE+qKU7Te2q/yiIwdVYP34RrWSL1va4etTY7VnGW0d275r/frsuNA+UPLm8PjjbphnIU3fIaOBZdx6zm+hdR9axtA5MiS/0L5qjcOSrebqmldo+nKYFPHryssv1nwT0t6h/Vhet77mwcHsWP9u8s2vDE+xvLFXxBuSHmZkOtNSL8v+4R/+wStekiT40Ic+VHJpCCGEEEIIIYQQsjtDz7LpSUu9LPvIRz7ifE6SBGmaVsXjyzJCCCGEEEIIIYQQEkJLvSzbsWPH5PHIyAhmzZqFW2+9FUcffXQDS1U7o6OZHExvbR66DDlvWa29dXo+ekn1wEB2/I1vZMfLlrnxzjorO16+3M27s6N22YZcyqzLaMrqhB7sqcGsXHo5uNzuWqfnu1Rdysv0OftpfavAV5ZQZKl0HvWUEGjkX2LGeuY7YW1SZ7toUW4af7g7q4PbbnPDpPTSSMK7rmLITCxCJSILFrifly7NjmP8tSuGzEqXQ6qQ9VCYPduvHFJCvGmTG9eSWkWXjQlNb5vSm8q2jyFV1FJj2fZz5hRIaM2a7FiWWTXG0HAm5dTSdJmfniPrKc1w6lF2LMCZ4LQETvYfPQ+25Q0cY8LU97UYdVBvSZxvGiFzZhT51Lp17mc5ILTWu79/8lD21aq08yS3gDuZSu0+gLGObGwEzylW3jnEkkHlnRf6zGFh2T3IcVP2vGHNwVa9+koJY4yZIsRIM7TMTpjRj6WdR2iZYtddGf3MktNbljXWFOArjbTmWRnm6/hSxhxASCvSUi/L2tvbp/xuqu8JIYQQQgghhBBCCClKS70sI4QQQgghhBBCCGkG0pSeZdMVrqMkhBBCCCGEEEIIIWQCrixrAtraduGvVWbenlp4rbU/9tipw7QnlNTea5+d9vYsv3nz8s+TaA29/Fyp5Jf/mSE3LG+La52v5T/g61GhvaQk0u/EwvIiCPGu04R6QVgeJLJ+rPTNvr9ixeShriuZ5p57Zt/LvgkA+/XF9bko28dBpyH/UqX9kKz+L212tIWTL9b8YJVLIiyDqpBp+M6BuhzSQmjWLDduyFbthcaCtU98AL4eLfpaZDH0OVuGszRlfQDA/LzGUZOdTF97lsnL1v2s7PtabltZk/UuojpEaF/feTd07rDS8E2/5bxptOmObBvlKSZNQ7sMj1DZEZ5Y717zwnk92QdxT7Io5CnmOVBi3MPL8Nz07WcB1mxmXpoy8vZ9xvSljHHo61Vl5RXFD8yo2JD0m3Lu2QXWWOiq5IdZfTKGb16Me42F732IkFakpV6WPfDAA5PHoxPO648++ih6pnBNPPDAAwulvW7jFrzzszfh13etx8wZ7ejfew4+/zfPw5HnXI1l+/dgePso5nTNwFvPeg7Oe/nBAIBLrr0H7/nSrdindzaGt4/gTSsPxbteewQA4LOX/w7/+d93o6OjDb09FXz9gy/A/nsXcV4mhBBCCCGEEEIIIfWmpV6WHSR3xpvgVa961ZRxR+U2hrsgTVOsfO9Pcd7LD8aVH38xAGDVvRvwxMatWLLPXNxx2ZkAgAcefQZn/N11GBtLccErDgEAvPrFB+LL7zkRG58exiFnX4WzXnQg9l3YjaMOXoDbLj0DXZUO/OvVf8B7v3wrrppImxBCCCGEEEIIIa1PmnIV3XSkpV6Wff3rXy8l3etvfwwzOtrw5jMOm/xuxcELMPDYZifegfvMxWffeQLe/YVbJl+W7WTPPSpY2rcHHt+wBfsu7MYLj108GXbC8r3wjR/fl5t/W5KaMqadFFk6G7LVsIVWCUipmzzWMhyhgKiSAMnd35ctc8O0nNMHa/m5Lr9crmzVfafnCLHqcW532OTpK6FsJKFSColV/74y1YW9Y+K45iJVlyOCvEOrgySyf27a5IZJaWGnseW37iOy73Z0Z+WPtUTeV4YspQeaEDnA+vXu540bs2OtzpJl1PKFvLYKnWdlgmXLR/ScIvOz5B07drjpbKnMnTy2lGByjM6bl39tev6Xn630Q/tgrsTIGoiqIzgpWOd5TnahbW/Jmn3TLOM+ESPN6OXSA11+tiZaA2kp8MQTbtjCXtH2ylehbWR79sFThhZjfrDmsxj1HSoX9JUBVpe/3DnTuhfIWUA3obweX1sCjQzT8VwbEL86sNq+FaWLjaLez9W+bWO1r5zerN81FjHut2XYuhDSrLTUy7LzzjuvlHRX378JxywzjKUERx+yAHc/NFj1/cPrhjC8fRRHLJ1fFfa179+Nlz1v31qLSQghhBBCCCGEEEJKpqVeljUDaep+vupnD+D62x/HPQ8P4j/efzIqM90q/cb/3Ifb7tqAn3/1FXUsJSGEEEIIIYQQQggJgS/LADznwHn4zv89sOuIAO64dwMO7e+Z/LzTs+zm3z+Bl//Nj/Gy5++LRXt2AQB+9qu1+Pgld+Dn//oKzOxsL6PohQndbUef57sr0MKF2fGMGW6YXDKsVRV5hErIqqR+UgN6yy3Zsdrpaqw/2yii0O5WeXlpnZKQdIx1z0VsYuxAVPpya1knastUWZKxvv2csFwJ1tqH3S8GBrJzTjxZpV+/XeB8d1qdMyc/niZkWby+rlC5TQza1j2WfVDa67xy6R0v5f4uWpZg7XQbg7z6t+aKMiRSbZcIi4JTTnHCOsQc5rvrsIUlEfSVujZULhjYEazr9LFRCM0rFmWPZd8+XsaOwQ7qPurIJNesyY71NtXdmSogxlxh7h48/IzKO3sA8q2fWPNZ7F0KrfTKqNfccgxvcb8QNwMtd7QklCH9NVTN7bvTYRn1GFsKr6nn/BOjHGXY3vhitW/oM00jn/N2H1IA/n7ppHWguB3Ai45djG07RvEf19w1+d2v//AkHlrnepYNPLYZf/vFW/DXZy+vSuN5hy/EuacehC9cuRoAcMc9G/CmT/4C3//Mn2Cv+bOq4hNCCCGEEEIIIYSQ5oMrywAkSYLvfeqleOfnbsYn/2sVKp0d6N+7G59/1/Nx/6PP4Khzr8bw9lHM6ZqBvz57eZW5/07+7vVH4ujXfxcfOH8F3vOlWzG0ZQRnf+BnAID9Fs3G9//51HpeFiGEEEIIIYQQQggpCF+WTbC4dza+9YkXV32/9ca/yD3n/NMPwfmnZy/OFvfOxrr/ORcA8LMvvzx+IQkhhBBCCCGEEEJIqfBl2TQhhkdODN265RmkkT5l1nbdoR4A5vXIzK+9NjtevdpN441vzD4oT6W89KvKK/d6vu46N+y5z82Ojz0ut7hl+EL4plm614H0KfvBD9ywbduyvF7zGrdcixZPXQ5Z3wAwOJjFG3zKTaOnevfaosi+a41DPRby6q7LGDMWvu1UZK4ove0Ns8K8OUCf4ut36OujFOq3ZKURYw7ePpKlX+VVcs012fEll7hpfv7zk8ed2pMxYA6wrq2726+/xOpX9fRbkuj6L9unJrYnjkUp91vPeKVcm6xYw+BQRuvrC0zfF+GjCQBYXm3tsZOy2z62n6JGpim9wsr2yMLdd7uf+/uzY3XfjzH2rDSkp2HZ40sTY44Pef6M0VeLzBW+cUN8XndFrn9u4LNWkefIPBrpC1r2Paq5oWfZdGR37tGEEEIIIYQQQgghhDjwZRkhhBBCCCGEEEIIIRNQhtkEjKXJpMTGdzk44C8nKUPCF2O5tVyaXnZeVUjt1tve5hfPk6p6lPLNl73MDRPSAK0elMh+YS3DLiIx8paRepxTE1LzImWpALBqlVdZpERtpP8wJ17X0qXZh+FhrzQAdxt3WefWOAyVBsSoV73tvLxUKY8LlQhq8spfpP+Mdc/Njbt+fXY8S2worIdkDFlXqIQsL/0i/cAX2b5f/aobduJHvj95fPTa77uBy5ZNHm4Zdssl+7VMf9MmN4k5c7LjKpmw6Gidany5+9xnx2XIa3zP0UV0x7mbniWxLlqmqQjpF6HyIN961POIr8w8FCsNU3oskG1aHU9cW/dek8ddf3SUG0vI9rp1J/nGN7LjF74wP3Mp9VM4zzvK0sEpxz993P3igguyMOO8GOj5QWI9dwTNn7fd5gZeeWV2vGSJG3b22VkaCxbkpu/0JR2v4jf/WJR9rynDGiPkOa8IpTwTRiZ2HZRhs+Cdxsj27IOwGAFQ3ecDKFuWTUgrwpdlhBBCCCGEEEIIIYVJQc+y6QllmIQQQgghhBBCCCGETMCXZYQQQgghhBBCCCGETEAZZhOQJJnPhqkR135LholEGT5lIelbecXwxoqhr9+y7OjJY8uvZUR5isnqt/zXpC/TuiHXo2ndquxY7mqv0/e1TmsmjwHpN7NuXfa9toPZY4/seOGxx7qB0s/M049Bt+EzI52Tx5VKpxO2QZRL2z/suWd2LNsilqdbbA8kfd36c0hepfgF5mCVd+vW7LiIjWDZHjNRxpu48LEOt3/qsbITXQfXXZcdLzr3lU7Y0FoRZlgebdiQHQv7JgCuFVN/v+ojcpLUBbaMpjyx5viQ+tdF3LEjO7Z8mSxi+zyGet5Z5WhFL5o8vzR9nTKe7nLS46fz4v+YPL5c+WHOF8d/UOV42znnTB7fq8IeFsenXXpplq84pwp9L/vP/8yOf/tbN0zePOV5gWPLeg4LHa7e/f+SS7LjW25xI152WXa8cqUb9opXeJXDyUs+O0SijOfqEN/FWuKGULa3oi9lP4NYePvPDm/JAvSNVA4w7W8obupV87/0KZPzgf7RYFDPuivD25KQRsKXZYQQQgghhBBCCCFBtMYfokgx+LqXEEIIIYQQQgghhJAJdouVZSe+6UeNLoLJzNnZ0nopXQOUDMFYI2+dJ9ESlErF733pkJIgypXAMkzHk6q6LiVx8ZV4lb2E15LeSGlYiKwNcK+zpyf/Wtrb3c9PP50dy3bTbWtJBGMshQ+VADkSVlF3AwPueVItsbBXJWrpxgRSBttpyPT0OJHl2rw5v1yyX+v+EkFp5o3VFh0d7rUVkSvmEWPs+fYfXY/z5mXHUiK4dq0bb8GCrIy6bXznmLrK0vQkKQZ3m5JnDQ9PfW1nnZWfpFZ4yX5gzXWrV2fHuo5nz85PY8GCTDraqWUheZOAaux6yjT0uDCK5YQNDWVlrL6P5qevx2UIvhLK0H4sz7PKW4bMM0TqrdOXZTbzFtKn173sZW6YGDinSl0z4MgCe/71X93TctI3WbPG/bx+fXb85je7YfJGJDqo+awYWP9W28t4/397dx5fRXX3D/xzkhBCCCFAIgFBA0ZEREUFUetCKVYfRCsuTx8XXNo+2tpat9pqH+vS2s1Ha6utLW0fi3XB5edWl7pWrAtUoYqigqJEBUVZhQhJSDK/P+5N5jvn3jk5Mzlz7034vF8vXs69M/fMmZkzZybj+X5nU2P4uvVzKHBs5P7ROyp5s1hfH5wn+pUk7nFMkk5pkq8QR9P9bGmB/mXoOnWFq3DBQDnyBDDkVvlkazAlSz8xnXHvJi84r7/uT+t9WEyB+ltepwspTJgoaQXaJbr1/Csf5rsKRmeddXa+q0BERERERERERNhOHpYREREREREREbnlAWjLdyUoAcxZRkRERERERERElMaRZQVGz4UiY9c3NZWGzpM5xPRyZD6VjRuDy5lyTcjQdT1PjVyfzCc0b15wOZmiYif3b/J2whRPH8jdUGaXF86kvCy4rrLa8OfVbeJ/UMicRPqxlqk/KivCczDY5g2I+9pzve3K/TO6zi+zVcu1Ysqj5JrMbQYAtWL/Z+Ya8qf1PGuSTClTqZWxReSckucJAOw0Ivt+1nPRbNjgT9fUhOdr0bfNxbGPk8PDVS6L0kDqj/D9KHPNZfaf/u9M/Zt1ziMXTEkHDYvK7azRcvvJ814/Zra56+S6xo4NztPXF6a9rDzwObAv9YMTWM6yYg7o54k5P49fM3nt1PtgmZrG1I8YUtgYc6eZ2mTcPDJh4vb/cZeT67PdzijraoV/3/RK9VGd082XHBVY7tCJW8SPtIRO4kCN+K//Cs4T+bXaa4d3Thv3o95ITjwxa3k6eW3Qq5jL3Jl6TkO5OfqmyXuXvntM7ZweMCC4nDwXjHn5WluCX4gNt85VpZcRUp5el7g5rZLOyVgoOaFc5ArL57Y4yYlW4vc3TbWjA7PkfaT+t9iECYYVypNd/DCRPKxiXe0lpaGLFUwOWKIc4MgyIiIiIiIiIiKiNI4sIyIiIiIiIiKKjDnLeqvt4mHZfpP3y3cVjMrK/JcGm4bSRxlmb7usHN1rCtfRh/zL0L/aWn9aD5Hq2ze8TP3148H1ZQ/v0982Lrcz6VeK6+E7LpjqKEPP5P6XYQ365zItVDSJOksynKFJCxMOHje/XnqUiekV5iZhw8CjHHe5fwZXBefJEEpZR72+pvrLfbB0aXCebVjy55+Hz+vTx6/j4Krgdsdp/4U0tF7WRYYvy5BJAGhu9qc/+yxYxrZt/rQe9iPDGuU8PUxY9osu9sGm1mCoouzD9IDMyhI/NKxkQDlsxA2jk+HEsk8HwsMFgWD9M0Ox/fJLTYWYYhAtWYfy6OuWHag2T9a5pKQytAhDhGmsMFid7bYlfQ2My0Uomwv9/FstDBqkzQyciNqZKA5w+8GHBmYFmq5h3YHtFuGaUZjSZrhmajt6ex8yxJ/Wd51+vxJWhikdQ6D9J7HhlmXGDdOz7d5yeZ7Y9je6JPqUfPVTcbfTNl2F6TphCsnPIC8i++wTWr7tqWHc3w7Or0K9DhHFtV08LJt42cR8V8Go4bb3810FIiIiIiIiIiICc5YRERERERERERF12i5GlhU6Ba9zmKoeRieZhunq4Y5y1K4pjFGWKUOWAKBPH3/aNDJXrkuvY0aoQwhT+bZvS9SH+so3R9kOfY/CRRigidxuOWRb35biYieri0dUxhRuJNug/sZO89vofKYh83I4um15XZH7eYQhZDIQ/qi/4giDO6ds27F+fPVzNpdchHLGfctfWEiKqZ1t3Rr8LN8oK8MugWB4q21fl3PitYvlsmJanKR8a1Xct5HKN8Pq56ikh8FK+j6WYW+l8rjpO9lB6GVsct2G8FB5HkaJIpXX5ly3rbBrYCGFUtmGmMYtX14P6ur8delvdHSRAyNOfxa3zCRCnWxDfPVrkrzPM71x2pZp/7gIEdTf8uf6fIibWsIkLJwVCP7dYHuNdfHm2SjLyn3S1BT8jbw3ku3H1MbzGc4dl7xs24bnA8H22lo/zp/W2pmTtCuGvs6UjsQ2jLr3Y86y3mh7asFERERERERERERGfFhGRERERERERESUxodlREREREREREREaYWUnaWgLHl4Cd54+A0UFRdh5/13xv6n74/3nn8Pi+YuwoaVGzDz2pmo2bUGALDylZV46a8voa21DcUlxZh8xmTsuPeOsdYbN4/AgAHBzw0N/rSW3iZA5kHQY+hlDjN9XlhYu+1y2ZaVcpkryTZnii7p1yHL8isq/Dra5r4CYm6bIeGGKdeHni9hcIVfjv67nkBuz+Aqw4KGhlYhjtVuu9mtVz9OleI86W2v5LbNPyOnK7V+w5TPTObKM5GHLUruDescOZY51zLKi5LYpJsCq9L6gC2t/vlrSjfWpqXrkDnkZB+mb2dO+2B9A0xJN4Vy0R+MGBFsB6Z2FidPmWn/mJa1zQ3jImdWlPJt94+eD89F/ybzti1c6H+v5yyT7VPPUVmUw2RzSfTpcXIGmeohc6gCwWOoryssB5Weg0ueelFyW0qmfiSXeZPiNhdZRz39qdxfeo5ic7o9u9y6rvsO/TZS9gH6PLltsr56d+wiH62rXG029ONinX+5tSX4hdhBqxv9PLj67YHMXadvp4t+xXQMTdvW0+9T7XlgzrLeiSPLsmjb1oZFcxfhK//7FRx/w/F4+5m30dzYjEE7D8Lhlx6OYXsMCyxfVlmGIy47AifeeCKmnD8Fz1z/TJ5qTkRERERERERE3cGRZVls3bgV5VXlKBtQhvUfrAcAlJaXom9F36zLV+/ivxpo0E6D0LatDW3b2lDcJ5+vKSQiIiIiIiIioqj4sCwLr90DFPDKPa9g4e0LMfbLY6GKlNVvV7y4AtWjqyM9KPOgOof/ZgxXFWNdM4YBijG+cvht6rM/LYfMm4ZGm8JrbIfF6/WQnLwG2jB2vxXxQv2C+yS8HnFDA1yQ6zKFqsiQE0CPELQMcTHFzFQE97ExfErssKRfa+9ieH5sYjvbKyqD88T+H1qT7D7QhZ1TuR4S7yIkJS7ZD+p9X58+2Zcz1Tfuvou9z6urs35t2jdRQkUD568M/dB2QqtlGJ0patTUF4XVCchxezUcfFkvPeS81LDdtiGUJnH3ge25Z7oWy2uKXp48pk1N4SF2kh6uo4f0JUmuu74+OC9uP6W3hUKQRMhhWFoI03KmuuQwsjVDLlNo6GyPjR6GKc810zkTd7/Guh+PwFQvGa4vt1v/TXV1eIimqf4u+tk4+8R2m3WVTRuDXzz5ZOdk32mndE7rt+qx7vc1cjv1eybbdBXbT9hlNtvztvdeDMM02OfEfTDr1llo/LQRbz3+VpfLr/9gPf51y79wyDmH5KB2RERERERERETkGh+WdaFsQBl2OXQXrH13rXG5xrWNePJnT+KL538RlcMqjcsSEREREREREVFh4sOyEI1rG7Fx1UYAwKdvf4qqHatCl21ubMZjP34Mk06bhNpxhldPEhERERERERFRQWPOshBFxUV44qdPQBUrDBw2EJNPn4wV81fgxT++iK2fbcVjP34MQ0YPwfSrpuONR97Apo834ZW7XsErd70CAJh+1XT0q+qXaB1NMfS14pmdjDtvaAguZ3oVsHw9tSkXjVRelrvXMnfFNneDbd62QqXnKZNk/U15BLaIfDNlWt6too3r/enGTcEf2iZ7MnCR0yfJ8rqzPtftJ4ltM+adcyCYRyN8ubivsrel5/dw0HQTl9M+U+4E7WJQIXIV6tcJSc9jkvR+zWVevpznq3OwLtftRz/2Gzb40599lv17ABg0KLxMeV6a7h9MbPvgiRPDy5C5x5LuZ3NN5oEy5buKm9vJdttMuVddMNXfxXmYRP5BWaY8TnreP1PuYdN9XtLXdynu8W1u9qfldpu2U0/naZsHM5/7QNZ/27bg7wLbql9Ihw3rnJR9qd7PJn29jZunLJ99X255ANryXQlKQIH+iZB/5YPKceJvTwx8N+rAURh14KiMZff96r7Y96v75qpqRERERERERESUkO3lcS8REREREREREVGXOLIsiwFDB2SMKkuSghc+hDXmuFoZ2iBDKFeuDP+NPqxZDo22Zhg37WT4syHOpzRm+a7DsaIMOc7nK5bD6qm/sryqanDndEYYpsP15kIS4TVxXsmdhLjlJ90GbUOBTfQQSqm8pCX7yhAe4gIAI0bEqkpBCuxXU+yKQSBURfuNbXiNbf8ZJYwr12HVNvWIst5CqX9RqzhP1movLJLXae1GQB5vvWn16eNPDxzoT+tpG0zX2DjX3Lj71DZUK8q8sHUn3d9HCTkcXCY60CXLgwvX1XVOboKfgkE/htbr0xpJUUjcdklZeeCzKbzbdRhdod6jyXNh6NDgvAED7MrQty20/vpFVa68pBRhAv2IzvJk1heTbc1UhCkMUMpryK1oyPp1tKzM8tpZpp18U6b4y4mvTeHtLsT+e0jvAzraWhtDFKln4sMyIiIiIiIiIqLImLOst2IYJhERERERERERUdp2MbLs0UsfzXcVjKorq7teiIiIiIiIiIioB1JKnQbgAgBjAWwC8BCASz3PWxOhjMkAfgpgMlLD+l4EcInnea9qy+0L4GQAUwF0vKVxOYC/APiT53nau2kzbRcPyz5c8mG+q2B09llnhc4z5Wow5ceQ+XlkPgA9T4+MSddfKS5TGujrbmnNnsekvCw8Z5ApRYKeryI0tl/LpeAiN4F8ZbyJvo/j5CRxUV+9jFLTWWxIBNLUmj0vhZ4XQh63cj2RSQxx8/0kse+SJuuvHwr5OZAupIf3ykkf34z9Y0p2I/oLvenKPlK2edu8KLkQtk+MfU9m0kF/2kHjcpWvy7U4eaWiiJuPyvS7LU3Zr496GywvSzafoukcMuWrk/U05R2S26bfBwQ+a9f9JPtCfZPlfYDp+Or1D+sv4p4nsk3o5ce+fjU2+tOGnbpcpDMbPz44z5TvLU69otzHuN4/UXImhv3OdD8YZX/IZSvFOVRRYcg9Zkji2dIazAXXJPaX3FfhWcnM9yr6Pb6cadqPpnNZ/9vDph7Gy36JYd9ZivQbU2UE2ceUavcjca6VUfrHpK+PRh37x/Pcl009jlLqAgC/AvAsgPMAjABwIYADlVL7e573uUUZBwCYB2AVgMvTX38HwHNKqYM8z3tdLP59ANMAPADgTwCKAcwA8DsAX1FKHel55sbZw/8sIyIiIiIiIiLKF+YsM1FKVQO4GsDLAL7keV5b+vuXAfwNqYdnP7Mo6gYALQAO9TxvVbqMuwG8BeA6AF8Wy94I4AzP8+T/ZfitUuo2AKcAOArAw6aVMWcZEREREREREREl4VgA5QBu7HhQBgCe5z0E4D0Ap3ZVgFKqHsAkAPd0PChLl7EKwD0ApimlasX3L2gPyjrclf7v+CzzAjiyrAB4UKFDZOMOK6+q8suTQ3XFW8IBhIeC6Z9l2CUQHNUvR4S3akPHHUTt9Qi5Du+zJg5Ue9XgwKyNa/3papE2T28HhbJttq9Ez2d944Yh5DP00jZ8JOmQOlP5MgwtYzlDBIR8zX1VVTDwZOVKf1r2Z337BsuoqQkv33WYsC1TGFFRhDjSsLAi07HIdRspxPDrKOWFpSzQP8s2qCt3ERosO5na2uA8QyiVaVvD+q3M37htFy6Op15307nsol3nq68AELzAy2lNQ4M/XV8fnCf3l7GLMd1IWoq7v10cQxehnHH7T+NysrNYvTo4T+zjkhE7WZXfXhYM1wysz3BNzdi2ElNAZ3b2KRfC96Nl5COAHJ97MW/mXF/ncpkCIYO+DzribHt6jhFyYVL6v/OzzFsA4CSlVIXneYY7oi7L+BqA/QA80kVdOhJTfdLFchxZRkRERERERES0HatWSi0U/8ITq0c3PP3fVVnmrQKgxDJxywCAHU0FKKUqAFwM4DMAD3axPo4sIyIiIiIiIiKKzkMvyVm21vO8iaYFlFJVAM6PUOYNnuetRyoEEwCasyzTEadWnmWe1K0ylFLFAG5D6s2YJ6frZcSHZT1IlPAI+XYZ09us5KjYosZNgXmlgWHfwRGRg2XspYy1rAiGd8g6m97oZXyjo0HcocZJhvZEOU6ufbAyuO7WVj/0slrbxzISR4arueoWXAx9t/1dLofZuxrebjsi3RQqbRsSl8/h+bbr1sPQZLdiPL6GN4MFdlhFMFwkLER8W5cvkfYFo2H8Ouplxw1Hj9WWtZXl6629rtbnIqQpaab2KZug3lTDQi9dvZHVNr1Di3g3XmvG2x7tQstNx0Je+6OElLro1233gW070+vvoj81lR9nXXH3lQy9jPumvSTurWQos+25EfeNtXE5v8bqnYWMkV2xIjhv1Kis9QCCb9i0pb8hvjQQlxn+xvtgKKcWJxkjBM/0xlT9bwbbfR43VNfYRhyHF+r1kNcJ23sJY6qGBMLMabtTBeCKCMvfBmA9gC3pz30BbNWW6ejdt8BMlqEzlqGUKgJwM4CvAPgfz/PmdrEuAHxYRkREREREREREBp7nNSAVMhnVR+n/7ghguTZvR6SG530EM1mGruO7jBBNpZQC8GcApwG4yvM8m7duAmDOMiIiIiIiIiIiSsbL6f8emGXeZADLukju31UZByD1wG2R/FI8KDsTwNWe511pW2GAD8uIiIiIiIiIiGJq7wX/EvUgUuGX30nnDgMAKKWOBrALgNvlwkqpaqXUWKXUwI7vPM9bDmAhgBOVUsPFssMBnAjgH57nrRbfKwB/QuotmT/zPO9HUSvNMMwCoOBZ578Km6f/PvBZ5D4oMiV80HMkyJwDGzeGLyunZbK0rtbXw7jOmdKdMsMs1wa1Ll3qTx95ZHBeJUSOOsNxilv/npI7LCpTvgc9TYfM/WFb3yipPmz7gHzmfTKtW3Yrppxlseso2rVeRlWVXZ4dU/3Xru1ytV2Wb1rXlqbouXp0cbfNVpwycp3XMZ/tP5gPMpg3T7Yf2d5N+T1N26L3HfLSLM+v1tZgGfJ3ehkyt6U+T7bJKLnIJLk9+i1InDaf6+tVoeTNc2Gv8d3vK2z3f5TjZMrbaVtG3Htp15zkxRo2LDivurqbteoZrP/mMfzOxPWxj9JXS3obl/1gEvlnbf/+lHXW89ox7xnZ8DxvjVLqRwCuBfCUUmouUqGTFwFYCuDX2k++g1RutDMBzBHfnwfgGQDPKaVuTH93LlKDwC7SyvhfAF8HsBjAW0qpU7X573qeN99Ubz4sIyIiIiIiIiKiRHied51Sah2ACwDcAGATgLsBXGIRgtlRxotKqSkArk7/8wC8COBEz/MWa4t3vNlzbwC3ZinuFgB8WEZERERERERERPnhed4cBEeKhS13JYArQ+bNB/AlizKmRKlbNnxYVuCcD7k1xHi1V+8Quu5ALEa2crKU15U42xM31My0bhfhlbKMJIbxy1en66Ffcoh2XV1wnjwcGYcm5B3ULYYQHT0sxhSCGFaPKMPlbcNm5O9chXjF2TZTGXG56ANctMm4oYQy/Gur9qLotjZ/2vRKdOP5qoV+2wrbr1HCO4YO9af79PGn9fPkkzV++QMGBOeZQs1Wrsy+nB514zra3XQOuWiDUcqwbXem8l20f9uQmpISbd2ig9CPkzyOtscwSniZPPcaGvxpU7ijXg95zsrzNduy26M49xJR2me+QshMTKkCTO0zbiinqZ3FCe20Dck0lZE4faPr62MV4yTEVP6dYHsMS0q7XigtTh+fsb48nie26w7LXgNoaScCoftAqcxXYQi5dZ1WQT/PN2zwpwcMCK7L9LfGmjWp/27b1u3qFTgPQFuXS1HPwyBjIiIiIiIiIiKiND4sIyIiIiIiIiIiSuPDMiIiIiIiIiIiojTmLNsOtJeVd047i9d3kLNMcvHKeF2c141HkctXjMvcM6++GlxObtvEicF5o+vc1lHfZpnfbPXq4LJy/8s0CxUV8Z7Ru8hHEqV8WX+5//W8CzU1/rTpddr6KSOXlcvpbXVLU/j2lJfl7zX3tmS6Df08l6kQTTnLpE2NwTpVVuQuH5tuaE32Y6gf63Xr/OnPPw/Ok/tA7/dkOR9/7E/rbUSeX6Ux+zp5nPRjoefhKnSu+uaw9q8fX9mu9WMoj4feP9TWus1pqB8nWU95fPX2Y3utNKUH1HNdhpWv7x+575K4Tkv5zPkYl+u8tXFzcsl5Tdo1ydR32+aGdJ3fM9dl2OYGc5J72LIeXdXFRRlJ3HvZyOc5qbPdB/r9jxTs+7SOUHaagc7afV44Sb/ONTf70/36BefJ+uu/W7Uq9d/en7MMYM6y3qln3QETEREREREREREliA/LiIiIiIiIiIiI0raLMMz9Ju+X7yoY9RNDbPVQBlNYQpyh3i6GaANwEi8RXHd4+IhpVXJ/hUWGdlWGk1drO2Aavi3rr4c8mF5HHYceKiTDiEx11Pd/WNiPHoZj25RcvF5cZwqdM4Ve2pJl6semJCQc1RTilVkPv4wkQjJdhFj07etPZ4b3+dOmUGx5LEznuYmzvi+ELE8PhZThdvoxNLV/GaIp9488t4BgeFyUMMywPjhuXxpvvYUrrP1H6WfjhL3FDZXTj5v8bLqmyvNS759l2LAMw9HLlKHAuq1bw9dtCsOUdTG16zgh+nGvE7b3XT2ljccRN01G3H2S9L6Mc0xNbS7utdIUyizF7YPj9isutjWsL8r2uYPsNwCgTx9/uqqq+9uS63PU9rzJuFeRP1y71p+uHR5ahott09uZvM+wTZsB+NtdxOE51ENtFw/LJl42seuF8uj92xryXQUiIiIiIiIiisQDc5b1TnzOS0RERERERERElMaHZURERERERERERGnbRRhmT7JyZfBz//7+9KBBwXn6a+IlmeNHxpbbvgK6S47f8a7H8sscBsF8ReE53fQqmV5lHKf6cfM9uCCP4YQJwXly26LkEXBB7kc9Z01YPqrVq4PLyTwIejuwzb+URB6KsLxEsr6meuj0/BvyWNnmiNJzVX32mT89pj68DFtJ5PUaWtP916rL/aPvfxevq0/6/B1cFb4PzOvOvm1x8/6ZyPaol2dqn673XdK55ZIg95ee8zFu++xuPYDg/UNdnT+tXyfkcjIvEBDMsSfzl+nrM11v+/XLWl0A8fL4JNEmXJTvIsdjXLb3Jy72nd7GbZn2sWnfFUouuCRy3sl5pjypAwaElx+n/8/nftSv9fJzcbE/3aZFtMnPLu7pk2Bqx6a+zrrvEDsribyLptyrYXl2uzJiROq/+rWFqKcokO6FiIiIiIiIiKgnYc6y3ophmERERERERERERGkcWRZiycNL8MbDb6CouAg7778z9j99f7z3/HtYNHcRNqzcgJnXzkTNrjUAgKZNTXjyl09izTtrMGbqGBz8zYMjrautTWFLU+q5ZUNDcJ4MOdJDGZyH3EUY1+x6WHxR05bgqsvKs1ZLD+GrrfWnTaFJphAvGVJgCgEyDZ93wfZ116bjns9XrFdUhIfIyrddy1ADnR5iF2fYd5QwrqLWFvGpNDAvbD/bDqXv+KaDfv6GDXc3Dd2PFGogT5yYMQpx2rjpPDHNM+1XOc9Uhn6em0LDZJm5DPOxPc+B8PNGhtQB8cOipA0b/Gk9XELux7ih0nHZth8pifAUyTZ0MGpdXKup8adtw7hMXYVexubN/rQ896LsHyla32o3z7YP6wnhvi62MwlxUlQU6r1Wd5a1oW/LmjX+9KpV/rTpXNDPQ9chiEnsf9M1RA857SBDMgH7MEwXqRl0cdpBIu044VwrcUOlTTqOjVLdqxtRvnBkWRZt29qwaO4ifOV/v4Ljbzgebz/zNpobmzFo50E4/NLDMWyPYYHli0uLMemUSTjgzAPyVGMiIiIiIiIiInKBI8uy2LpxK8qrylE2oAzrP1gPACgtL0Xfir5Zl+9T1ge142rx2cefZZ1PRERERERERL1R4Y9Qpuj4sCwLr90DFPDKPa9g4e0LMfbLY6GKcjN+VIYVAsHhyqZh2Xr4kXxrnnHUrhzLbPtKPtgPrbf5TbZ1y/C4qio/PE5/G6Chika2YUtJhzYEhjwHQgJhvUGFEj6i16NctNfaWn879VBa2XZNTdC0PuN+lLFsOvEKT71NlIacN6Y2oc+Th7CyIt5xkmV0vFWog9xfLdqbYkstwzBdtHEZIlip7be4Q/fl78otw7P0NwTbdm9SPt96awrjNb2tMkC/GFjGxDU3+9MyHAgIvulWv0a5ELcNOkkBYFmGqS2ZdrHrEN8o7VMum8Tb4mS4rinVgaTfj8h6ZewfuaPlChyEImX0lzm8JyiUa3au2b7x0iTp/jnpvkjvOz75xJ82paiQ/bOe0iFOxoVI6Sost81235nqKEMt9TBM+dn0xua4+yBpsdunbZy8A7Z1jBJiyjBM6ukYhmmwz4n7YNats9D4aSPeevytfFeHiIiIiIiIiIgSxodlXSgbUIZdDt0Fa981jE4hIiIiIiIiIqJegWGYIRrXNmLjqo2o2rEKn779Kap2rMp3lYiIiIiIiIioYHgA2rpcinoePiwLUVRchCd++gRUscLAYQMx+fTJWDF/BV7844vY+tlWPPbjxzBk9BBMv2o6AOCOb9yBbVu2oa21De//631Mv2o6Bu00yHJdfs6TcWODceAyr4YpVF3PgyBzHwTn6Xk6uh8Lv6nRL3Pr1uA8+ep6I0MOEhkbL3NfAeY8RPJ3ZWXaIEqZ/0Rsd5FWYHtZeee0ni9NVrnUdtfpudnEuttLSoPzQnIH9LZ8Jxs2+NNj6rVtW7jQnx47NjgvrM3o7Vgeay250JZWf5/rhzAsh41p/yedz0YvX26angtuxAi/7ZbHbDOmHDPW+cACyURKQxfLzNeSfV/qh920vyzTdVmLkufFBZkfTO5G43YtXRr8XF/fOdleURmYJesv8+HFzg2pNwQH+VXy2d/J4x035538ne11wlUfI8uR6zbV0VSGfh2V7dDUH8hmYMwNpic+k52C7OBEm86oiNaRyBrL9q+vKixHZVdVlCkxd9JySjphuH654CKnnm0usrh5vRJO02R9TsXJi6WT9zt6mVVV/rR+nTPlrHSxf6yPk6GzMO5FUUk9t+iAAdmL11e1bVv4vKTbSD4Fjo1sJKblYl5DkugDOvp85iyjnqoXdy/dUz6oHCf+9sTAd6MOHIVRB47KuvzJfz45F9UiIiIiIiIiIqIEMWcZERERERERERFRGkeWZTFg6ICMUWVJUvBCh76ahhbL31RqQ7bHjs0+HFeGTAJASYXdcFxT+FF4yGdwXkVF90OYysu6P0QYQHjYxsqVgcVa68d1TuuhSbIIU3jNJ2v87a6p0UItW1v8D4YQtZ4eeilDb6qrDSFAMqYFAF5+2Z/W4xJEWKY8Nhs3BsuvqxudfV0AmgLtM6PakUU5TmFD4aO8wj0jvFjYvNmfLjdE78Qdri/7JhkZkPEbQ7uWEUZ6GKb8PHCgP206TsYQLxPZMPQ2KGMhNXGOYRSVFdnLkX0KAAwa5H8ubWgILizjK7UwzDB6lJs81pnhL+Jao8eoyU6yB8bJyONoOockmTohg+kCKemNXKYK0NqWbINxw4RNoU+mPkaS5551WgKdvj9kxy7n6Rdj2QHpYchiXlG9v1/1+xFjLKrow/QmPn++Pz3ixPAwKOvwWX0Fclurq0Wd3J9PcUMybcO6XKQpSIL9eRJef9nm9T5ANq3PPw/+ToYWyu4ybsStizA6I1OaC3nt1M8n0XaLtP5ND8sMKyJKtSQXbTCJ0MVclafbnkJYc485y3qjwrxyERERERERERER5QEflhEREREREREREaVtF4MvH/3+vfmuglF1pe0rI4mIiIiIiIioMHhgGGbvtF08LPvwluPzXQWjs3/TEDrPRey6jLVPIg+CIaVPaEoWwM0ry5MmY/n79w9fzrQt69aF/25oTXgumnyJm/fGlp53rq5OrK9Jy9Vz9NGRy9fzMcjPek6rwVWRiy8ocnvq68PzpMgcKlHyetnmLZSi5ASRdZTpeIBgXyVTEiV+nuidlqykZXKPpPObfPZZ8HO/fv506YQJwZmWr5qX9OuErPOWpvB2VqblRAvsutBauGHqg5M+HrJ8YxPRc/DIfD9yZ0VIoGg6R23PRXm8o+QJirPvIl1f5H6wTeikH4CQZeMed734GvH/OqPkmwyl5ywLSxgYIdFQnDxNce8DXJxPhZpDydTs5P4ynUP6dU52z6YUj7Y5uUwJqWyPTaT+Uq5P5tcz5a/UdmSpqKPMXxb375Wkxc3zmnT+Phf56nKZm42op2AYJhERERERERERURoflhEREREREREREaUV6GBn6q6i1hb/Q2D8tv3zURfDhGUURSJDeGOGJQTISo4dG5gl6zxUSy2nvx48zLixPWvocq6HWgfWp427bx+xk1UZMpRhcFVh7u+kw1v18mQ4g4yICHtNe1d1SqJdmKLNkj6OgeNRUupP14+xLiNOWIWLdjCm3hS6Vhf4KMMmyyy7SFMYo97Nyi7YFHYvT+0oocAuuAh/cRFe0y7bGQDUDu+yvFzTj41xeyxTKdiWgeodAvPihI0V6WHIluSx0dux7Kf0PmvqlOjh6Kbzq0gPmw65x4nSjzhpu4ZjXSjhWbbndpT6hm23vi7TrahtCKUplNNUfqCOuY5hlR37iBH+tL4Bsl1rdXTxt0bS91OyjkmEULpge57r94AutqdQ90nuMWdZb8TWTURERERERERElMaHZURERERERERERGl8WEZERERERERERJTGnGUFwIMKjfe2zUMRyFEGBJMUiSQbUfKR9Ah5fMe43Je2+QwKJbdHLtjmszGJm4clzm+szzXHdeoO2/W5eAV7obzqPIncb6ZcNLk8Z5NYd3lZeBmBfGaijZiOtanLjZKrxzXbY+i6vUSZpwvbz0lfQ5Jo04WSdyjuOWTK6ZN0H2BsuyEnURLX1LjiXOtNOaFMy+b6Ghu2Pfr3rSKHrYt+L9e3trHv12RF9Xx7FuvSxT3WrttFPu/jXdxjGvMi5vjvkB7/d6Y1D9iO/sbbnmwvLZiIiIiIiIiIiKhLfFhGRERERERERESUxjDMAmc9fFUfsx0Sd5Xr1427Hu7rKkzJNuy1RQyt19+ELXd5WEgmEIyI1Z9PyzL0Q5j0UOk4Q6Oj1Mn2leiSHiYchzxmXa0veAy7vWojF2GeueaijZiPvV24n4t+ynZelHXZhvfZHt+4ZZj6KXkpyAwdyj4dJQQoj5Hw1u3T1AZN252vbXMRyun6N9nY1tPFPULS9xmy/Lhh64USimqSdLhjnHPSVA992XymQTCVL8PdXbTVuGGqceXyvqOQ7nEkF23L9jgV6j6QXP291RO2lciED8uIiIiIiIiIiGJpy3cFKAEMwyQiIiIiIiIiIkrjyLIezDhkuKQ00fLjiDvsPpf0EL61a/3pYDglUF3tT5f6LxzN2JbNm/0yP/88WIZ8eZDli4QyxA3hC1vWtO/jDsuWoU76fpTkfuyKXLc8bhs2BJdrM/yPHvGiWOO6XYROxB3G7/o8dFVenHJMx0Zv/2EhcK5C1OLUP26YZNx9Hva2Sj2WsKnJ7+83bgyWIfupcgRPvsqmRlGm2OEVwZOhBeHXE9tw2aTZhpDpYZghL46OzcW1K+mQK9vQdFeSfmOta/o1qqys+2HywXDfeH28qY+J2/+EXaOSDneMcq2MU5fMYxj+G9vyTSHbSb/9O+mUI3HLi3MfaXu/7+p6ksvw6EJJt+HiPtJVH7D9vA2Teiu2YCIiIiIiIiIiojSOLCMiIiIiIiIiiswDc5b1ThxZRkRERERERERElMaRZWmr123B+b96ES+/tQZ9+xSjbtgA/PrCA7H3qfdi7M5VaGppw4DyPvj2CXvg9KPGAADmPLwMF9/4L+xY0x9NLa04e+buuOCkvQAA/3zlY5x//Yt4bfl63PmTL+GEL40OXbfn+bkQTPlCTHH+jY3BZXOZeyWfeWri1jHwWSSikLl/Up/9af118ravlx9aI3JrDXL/fNrF/o+S40cqtexBSktEHcuC6wrkFtETjYikce0jdgrMktttqqM8Tvr5JT/L/FD67wqljZvqoe+D1av96b59/emhNa5q5rM9D5ubg59lv1VcHJwXluPH9rwD4uXciJILKKwMVzmnwvL7lTduDHyuXLnSn/744+DCu+7qT+sXBpmUsbbWn9ZOlFZDnkHJtj/Qxc1pYpvHSi5XrrWf8pLwzqNd5GqLmzPLRa4tF7mM5Lr1diUPd6CvNpRhuy7AvA+SzkUWdp9UWaHdE7S2iE/B+wAXuXtM93aucxnF3cdJXOeSvnaGlZ95XsfrnGT5eq65niDs2MfNaZWv49mVpNt1nL7JVe7SQBmyn9Ju+trLykN/F5Z7DyicvKNEhYoPywB4noeZ338Cpx81Bnf+dBoA4NW31+KTdVuxy46VeOXW4wEA763ahON+8CTa2z2cefRuAICvThuN3158MNZ91oTdTrwLJ0wdjZFDK7DT0ArM+dEUXHv7a3nbLiIiIiIiIiIiiqbn/W+SBDyz6CP0KSnCN48b1/ndhDHVGDk0+H/hR+9YiV+dfwBuuHtJRhlDBpahfsRAfLx2CwCgbvgA7LXrEBQVqWQrT0RERERERER50JGzrKf/Ix1HlgFY8u4G7De22mrZfXerxtL3N2Z8/8HqRjS1tGGv+sGR19/W5ocHVFUF55leNy6JKBwAQH29/J1dPXL9el/b0BLb8BF9O42hH01bsq63rCwYfiGPhx7BZLtfscR/uFqqx5CJA7W9vF5Z32+BIeFLtQfRDzzQOVn0zW8G540YkbXMfv2Ci8njprc5GXq5cWPwd9WiSzCFl5lCaGzDj1zQQ7Gfesqfrqvzp4dOsS8zTmiGvp1r1vjT4pABAJYu9acbGoLz+vTxp+WxqNa66rjhsi7CTpIOb5L9T+A80eMo5s3zp2+8MTjve9/zp888MzCrvXZ457Tc/9VaN6WHrIUyxXc44OSc0esoTxy9fy4JXg+6K9chdnKenK6osO+L4oZeupgnuUgHIPv4yhLtZkKsoLyi+yF7RvqNjGVsuYtwXFvO7kfEtprCxJzUX+5XGWIOBC8cUWL5hSRC1GzTAdiW4eK65uJeJW6fErfd2fYPcdIqFBR5vdJu+orEDZa+LXL/mNL22PalUdJVEPV0fFgWkecFP9/11Ht4ZtHHWPbBRvzp0kNR1pe7lIiIiIiIiIiop+oBj9GTt8foQVi0dG3XCwJ45e212L2uqvPzV6eNxht3nojnZh+Di25YgNXrso9YIiIiIiIiIiKiwseHZQCmThyO5m1t+NMDb3V+9/Kbn+L91ZsDyzV8tBnfu2EBzj1xfEYZB+45FLOO3BW/uTMznxkRERERERER9UbtveAf6RgzCEAphft/+WWcf/18/OKvr6KstAR1wyrw6wsOwrurNmGfWfeiqaUNA8r74NwTx3e+CVP3g9P2xr6n3YcfnjEBS9/fiJnffxIbNjfjoefexxV/WoQ37jwxZP1+ahc97l6mYMhIpyKOXm1t+Dwpbk6fJHIM2JL7RN8HpjwFRnLHip1VWhbcP1VVDrZNJowy5PDJZ5y/XHdLa3CbTW3QhUCePpngCggmUnr11eA8kZ9BtgO9TQT2q5asoVxsUFltMD9R0sdD7mcXr+7Wj43sE/T+IY64eUxWrfKnh9YEfzNihF+mnrNMMuUmlOLWsSfkKpHb/RGGB+atnnJh5/S+M2YEfyjOky0I5gySTWZ0XffzVhU5zlEWhfWx1vOQVfl5RvW+ozVwmch+vnZVjzi5XFy1x7B1u8hRlmtx+0i57E4yZ+JGLW+YvBAZcorZ3gsZ66gnyJSdt5a41vrci3ndCPudqTz9HsF42tvepJmWEysw9vFyP8a8WYySEzC0HhHKj0XbFlO/a9smC/W8D5PRVwfyOwfnudi2pPedbS61Ij2xtSW5T/T8y0RkxodlacNr+uPun03L+H7rP78e+pszZuyGM2b4D86G1/TH6r/PAgBMGrcDVj58ivuKEhERERERERFRYnrW/0ogIiIiIiIiIiJKEEeWFYCSYg+VFdmH+JZaDpcdXBX87HpYsElgyLA+NtrB8PDSEtM8Q8VEKEWRKYY1JCQz6++EsP2TMYzfNObZMHY8LEzPlbDwAn1dYW1TZxsCZxpi3v4fRwWXPfBA/4MWGhNW58FV2nplyIv+zmwxpL2oIrjhcc6hKL8JO/RRQj3k5/KS4Lk3vW559hWgPrT8JF4Zv+8E8WHlysC8SnFM96rWzhMZbmAIg7INk7EVoQuz5iJ8R9K7pYUL/eklZWMC83YTWQN2391QqCFMqRWloYsF90/4dprC6OKGkIVdQ0xtxNT/rNXe8yO7jiFD/OlBg4LLuW4jUdpgnDBPk7hhpHHD0FzUOVaomQi/zfidfp0QJ5w+S362DnfX7wn0sExZr5D7Bz2cOG7fF6f9mNpnRgRrRWX28vUFZRy+3uDr7a5Zxvob8klkhGaHiBuKZ/qdKXwwQNY/Qhiv7TE19Z9xzi8XfYWJDItPfe5++a77TxfnpHGe1oeF1UOn7zvbdduWn0Qf3zN4ANryXQlKAEeWERERERERERERpfFhGRERERERERERURrDMAuB53WOxdaHgycx7Nv2N7HCO/RQOTEEP2mbGoP7o6LCf/NbUdMWaDOzTxskEeYgj7fp7T5S0iGZuqTfkmRsW4Y3/8imJvdVRuiyKKPdMGxdF2f/W77QC0ACbxbVw1qWLPGnRRhL3CHyTobS63Fu8tzT6796tT8t3uhoevOXizq6CMM09aUmtn26HkZx6qn+tNxtOn1b5C4v37g2dMHS6urQdcv9pR9CyfYNXFHap+vwDv3Yh52j+naaQtVt+1bTG32jvH3TZl1xubjncHFPE3dbbEPNUL1DYJ48HqZQXRdvHcbSpeHzxJu1W6uDb8Q1XXtcXGtMqRpihRJqIfl45RV/etiw4Dxx/TK8qNQ8Q4byW4ZdumJqr9bXF7nheiywPAB6R5vwG4pt05HYSuJ+JF9vlI1LP5dlKhpTuL4pZY3t2zZNcnqvSFRA+LCMiIiIiIiIiCgW5izrjRiGSURERERERERElMaHZURERERERERERGkMwywwmblKcvc6cJ0pv0domVqeCJlaQU8h4SSVQmCHBfNQzJvnT0+ZUh6YF8hh5jh5VJT9bcpDJPePKS+QXC6J9BSmXDom5a5zcmWUn30/621V7i9TTiU9PVrYsqbcY3H3f5RcZ6H0XCUnnJB1sXzmk2ifsG/ovIx6mZJvhZXvIB+bqd3mNd+bEOU8lO1ab0uBz3JBmYgJCJ4MZcG+VJZhm5dM5yKnm2Tc39rOkyXW1obnMgrLGwMALa3h9Qrkkcm4wJdmXa7UUT8etr9MOdGi9EWu23Uuc2dGWZfcbpE+EUAgjZh1mUWmvFJ6Pio5T1xs9PxEss2Y+qm4fVhYlboSKN+Ud0v2P3ryN9Eoy8rCz1HjPg6rUxeSzndlfa8ubzT0mxWxraZ8bElcr1znTLTdH0nk0nVxrF3kdczo/wNJAe3y7ZnqkUSbdt3HEBUSPiwjIiIiIiIiIorMA3OW9U4MwyQiIiIiIiIiIkrjyLJC0NzSGXJUqo/xF0xDZ03hZWVl3X8du3EYrVy5FsNRWeG2iWWE2LX6Q5IrX/1nYN7EiYd2Tusj/isrxGvE8/jM2LTusNBLYyiVJs4QedNvoqw7Tiiwi/AR/VyQb6jX31YvTZ0SLK+yxC+opaRcX7xTYIR8zOYufxc3RESPnJNRKKZXiktJDJePfX7poTgW9GNv6vukQgkTML3SXU4Prgqvb6UhFFI/FoG2K8Mra8Pbe1xJh6xa/047SeU+KbUMr9GvJ6Z0A1VVYp9rITQu2p1tP2sK5Zd1Nt9LBD/L1AFJh+HY3qu4WLfpN65CZKV2ce4VybhOwHzRCmGqf9IhZEbyRNHDJPv08acjpMYolL7byb4z3UyY4t0tbzxMfYWL1C0mrsM1XTDtA1dlOiE65SLxN1WUND2FuP+JegqeFURERERERERERGkcWUZEREREREREFAtzlvVG28XDsoPPfjTfVTDq23dgvqtARERERERERETYTh6WPf/Kh/mugtHZp57qx6QbkomYYs43bw5G1Pbrl325KLksrGPX4yZqMmhpzb5uPffSwoX+cjJHGQBUltnl5rDNB2a9f7S8bab9I1N46D8LK0IvznU+GF0pWgy/9CuT9KuqbXOt6OlOqqv96bVrg/PkPt/SFKxjuSzIcGziCsvBEyXnjmy7r74anCdT39TVxctHknQek7B1AcFtk9P68S0X53l5Wbw+rFDyFur7OGy74+Zl0peTOU/kuaDn5JIpclzkSIz7u3zmJ5LHYuvW4Dx5bKqqgvNc5yWLu5y8dpaWhXdoJRXhedVs212uj5NtPrN8sq6j3sHV11uV76Kvtr3GRipfdixy2/ROJkKeMqt6RbgPi3N/EqWdWZ+/Iqdhxj4OuyACWgcdPH+T5voeIelrSOJ5+SxFuobrOeosfhP37zkX+YW7Wpaop2ELJiIiIiIiIiIiStsuRpYREREREREREbnlAQXydl5yiw/LCkF5eedQ+4zwQzGSXA9BlAYM0H7Wmn06yquGjcJidkKGC3dFH6a7erU/Ld+cPnFicLlDD443LF4OGS4ryx6K1FUdw+YVRQhLlYtu3BicJ3drbW3230RhPQy7VQu7lBXRVy6Ot20YaRS2Q+ZNQ8AHV/nTBx0QnCdDL2Wb6yi1gynMykUUsm14h2meXi+5PbL9lEeIdkk6rEJuz5o1wXmffeZPL13qT+tRSePGxlt3WD1yzTbM1hSKLUUJM5GfN2zwf9em5aiV7T+JMHApbohp3HAg22U3b/anm5uD8wYNsivPVfisbfkBpjhbqWpwt+uRNBeh5C7aWVdl2pYfJ7wviWNhWncwJDzCvpMdhimeO+ZFNnTdDsIuTeXHbYO64P25oZCw/QgYQ1jD6hm3/ReKpMM1o3ARiprP8NDWwN+Zdr+JmzKFqCdiGCYREREREREREVEaH5YRERERERERERGlMQyTiIiIiIiIiCgyD0Bbl0tRz8OHZQVm7drwebW14QMB9ZQFMr+EzF1UXR1crrzMMoeHnpBK5jyJm7NMlKnn+WoSuaQWLPC/17dz/Hh/OVNON1umnBFxX8VsIvf/iBHB8kypwuKwrr++Mj1/SAg9DY5sgzJnVlf1shVW/yjlyWat54yTbc32rfZJ5PiyzXeiHya5Pab62+bbcJFTI8o5I5uh6Tit3+iXObhkU3CmIdmWi/M3Vq4SvS81nNyDq7qfy85WTU34PHkuJy1uzi8X556pfJnHzdTXlWqXQFlm5qHvfq4bKVbuqChlJMB1rh7b9uMq51QcSedbSiI3nrwny+yywvdPKVqyzzDlLIt5w+PiOJmuv8kcN8s6W+Zgc50HMUo5LvZVT9QTttWUFzGsafX0vHZErjAMk4iIiIiIiIiIKI0Py4iIiIiIiIiIiNIYhllg9DDJlSvDlzUNiS0v8eM9mppKQ8urrzcMmw4LtQSCsVAyxi7K8HlD+OaYer+cE05I9pluoQwtLmoNhitUVJSGLBlkG8biOpREp4f6uQ4d1etv/cp1g8oKv/wJExy83j1hehiXNLrOLnwz6XZgYjrXhmphgO01fj379/e//+yz4HLvvONPT95dK9RwsMLqksT+CZRZEjyv9fM+QNTfFAppGybsgimUUJdEaGSSTPU1RaNv3RosJYxtOHSUepnKCG3jJXbXlq7q4TrsyjYEPYlrdi7bWZTwprBroN4fyM96lK2LcF+ZIkTvVuWtXHFxcF5Njd/WisJi63XaBiTdzsLWpS9rrIfcHtO2aZ2AdfoQBzcepvq7Djd1HV4NoGAugolsWy+Wz3vO3GPOst5oe2rBRERERERERERERnxYRkRERERERERElMYwzAKjD8keXWf5Q33Yt/jc2uoPg29oCC4mwz6rqrTh56bXAcofGoaHt7SGv0GpyPTmTFH/nUb4Pyykt7PECeMy1lcbYl4kQmnby8rDFguIMhI9LFIgSliV7fBq0/B829AA/S2IMvRDRgKXJtCrmSIs5D6P1D5jxHbqi5lOoaRDcG3bv4uQDhmiOWBAsHz5tt9/L68MzBs71p+Wb561XW8UpnZsfagNb8oM1D/jdYyiUFMnoHceYlnTdpeVRT/PATdhdHFCEJO4Lsj9X6a9mXrNGn9aT3WwebM/PWxYcN6IEa5ql13YPon71lvbdelswwyTlsSbAm33V5xrpf47efrqb06Xn+vrg/OCL5qM1z/LWz5TVg7Ll2dHupi5biNR3qqbdAiZ6/Jdt8e45SRyXsuGrF0r47zVO8KLqa37T1tJt7O4bTzuW7cZfgoAHhiG2TtxZBkREREREREREVEaH5YRERERERERERGl8WEZERERERERERFRGnOW9RZ6sL1IbiHzoujpbLZt86f1PBSVImdW3NcyyzLlugCgXz8/l1plhRbvLhNwiCQYRYakAnFj/l3kKHLCMmeHbf4gUxkd38T7XXaGtHlO8gnpOVpk/j3ZLIbXwp6opN62bI+v3E7ja+D1fFHyszz2hjauF2Gbh8skbm6zpHNEhdG3ubHRr8fHHweXld1WXV1w2+RuNuYqadoSPjMk55e+H405y+RBNSVRkdN6Yiy5oTK5kKG+SYi03QmsL1f09l5T49ejX7/gsrLf6tvXUGZrS/jMJHaepTjntqv+IMm8i0nn5omSD8m2LzWd5rJ8/VZC5nWsjXJ9FGSZevcjt/XDD4PzZA4zee/iqo2EHSvT/k/kemV7QdHEqYuL9plEbkIX5VvXv6S064WykO1C/5vHdHksT/bS6eS4JX0fFvd6vn3lM2POst6II8uIiIiIiIiIiIjS+LCMiIiIiIiIiIgojWGYvZUYM18phsBWasPz31ya/bXkADB+fHnndKkeIiLfFS7H42rjmCsq/DL08uUQ6IoK7TXHplAiS3J9+pBh+dkUAhEn1CzKa5ldhLjEeWV23PJN9NAP1+EAAwcGP8smIoeHt7QGyzOGRlqOJbeNXjMOkTcVImNK6+vtVhZB3GHwcdpTrofcjx3rTy9fHpwnd/nmzcF5zc3+tGxLGYdJxhzJfg8IHisRb6SHAMkyM/aPIfxaCpzndXXBeWXlCFO0+iP/g6m9JxzqFwzhiNcP5ivssitFhmtsa2v4NTaw3bJt6QvKXAox2YbvRDnnw5Z1cZ1LWtzrnKkcWYZ+3bHd/7b10JuIiamLsb1/kNvTql1jZf+phxrH6VZcnOeR1hsjvixuGzf9Lun+zfW9okmUcz5sfa72R1g5+qF2naUgUshk8A8i+985YFumvG4XYp9OlBQ+LCMiIiIiIiIiiswD+BCxVyrM/01LRERERERERESUB3xYRkRERERERERElMYwzALgQeUt/49MhaK/RjkQz796bXCmTJgh30su3xMOoFSuoKwyME+midBz/JTGaJn6vmpq8vepKZ+Wi1cxm8oz5RaRr1K3LVOvU9w24uJV6vpxkzZs8OvcJt6mrDUR6zwRbYY3Mq9dm30aACZMiJerzXa5uK9SL5IHQN8pIeuL+/pyF7k/CjVf1Og6f//07x+sY58+/rTezgYNyl6efr6Wy4Q8ekcS0nhNefLi9jdr1vjTgwYFc5Q1ib47Iw9L7fDw8mWnL7dFKyRufhvbvEG2eSNNTH1w3P4tTs5K3eAqy5xEsjONkpBK/C6jdFmO4fjass2X6eq+Jck+J0rZLrbHxT2H/J1sV12VaWpacfJxyjyROr28sO12dY7GyRVmvBYnwHRscplHrFC5/jvH1LZk3i3XOcq6RbZB7Sa2vXqHrD+JnXdRv3EX647bzlxcK4kKFR+WERERERERERHFYvi/+tRj9d7/VUFERERERERERBQRR5YVAAUvb8NWKyvCX3kvtYtQHiA4lH9j2ejOaT2arHz1e53TpSOCY54HV1k2P1Osn2He4CqxPj32oCT6+GvbofQ6OdRbRqwCQHGxP11TE77u2O1DhFkVaSFkW0SYqim8T657U2NwO7du9aebm4O/e/hhf/r11/3pk04KLnfwweHrlmQ0HBDcr88/708vWBBczhQyIke+66G/Yfs8yqvfTfPaS0r9DyHD7HX5HN5uGyLi4pXxUcvpMLQm+JuWVr/8JUuCy8rTQXYjemhGbe1gMTM4Ty4bN4zXRO6fN97wv99jj+ByMtxU72Nqa/3pjD6+MSR+Uw9Lkjso4ZClKGxD2wL0a4Zh2wIlJrDdsn2WygZp2v8bNwbnyc/6da6hwZ+WKRHq64PL6eHFllyHFpqWc933xQ15M/XxLuoYN6zflp6mQDYL2zL1JijvY0yhbbbdSJTwsjjXnijlxzmmuQ7xdc023FrnOlQ06X0T5TLnPMzQ1FfrYtwfGo+FfgLrN9cWenNYMJGOrZ2IiIiIiIiIiCitcP4XMRERERERERFRj+GBOct6J44sIyIiIiIiIiIiSuPIsh7MdZ6FKFau9Kc3bPCn9TD80XJBPaGZ/lmSMfVheXWAYKy9KbeZlkgjl685ltWSuT0AYMCAbhaof9b3j8yDoOUlaK0I5qGzIXPcAUBFhb8f9WrJXGTyUPftG3m1ADI3LSwX3CuvBJd79VV/Wk/VMGGCP11bm7/zKZ8poWLlfTLIZ7+kKy3x11dVFayX7KtkHh89fYc8hfQ2LpeV7SdjO+XK9E5SnBz6vpPtVXalesopU75DeZ5k5FuSCc1MZB+s9aVF4nMSeUzi5CHKyA8o+3t9/+ufw8i8XqbETBHIVW/YWtk5PXSQVr5sePJYAJlJ6qQPP/Snly7NXh4ATJzYRU2zCzveUXIeOclTZrr2O+hQXdwvxM15GiZK7qjBVeH9YBx6t2G7T2wPhSkvnAtJXKNsj6Ft+VHqKJeN2wcXYg6quPlhTUxl2ObR038X1v3o5QXqqP9IXuC1m5A4bTLjN3J9euLCGDnLTAqxLRF1B1s0ERERERERERFRGkeWERERERERERFFxpxlvRUflhUafWiuYVxwLkO39CG91dXZByVmjuYV7yXXw11MoRMytEQWqoduyg2PuRPihliELbulKXxo99Aa+9CJ0HqZ9ptO7nM9fKcCdgwNTc4yRTPJsA1TyFgUsioyLO2QQ4LLyRHnW7cG5+m7xEbcsCFT6ETc8BTbdduK+8p416GcSRhdF6x/S6tfT9l29Qg72cY3b7ZcmX6OyoZmOH/1Wdu2+dPLl/vT48cHlxshutkK7bw2ta0PVvr7QHatehmFeUSDrNudfoDlZ31nxekgIpD9UXOzP92C0sBypWWiXvJgA5kxcZJsKKa0B45vJqL0AdbXX1lH/USR8cp6rP3YsZHrkQTb/ln2S0D44YgbppdxGxByHxDhVtTI9X7NdYhmEtfVpH6TC/m8vtv2FXFDYsPuCQCgrCw85Yi8L+jTx5/Wu9xg/TXyOhTlHj8Oy/L1vkL2AXo3a7q8dPzO86xWS1RwesI9MBERERERERERUU7wYRkREREREREREVHadhWGWVxcjD333LPz8wMPPIC6urrAMgsWLMB5552H5uZmNDc346tf/Sp23nln/OY3vwEAvPnmm9htt91QXFyMI488Er/4xS9w/fXX49JLL8Unn3yCgQMHAgDmzZuHr3zlKxg9ejS2bt2KGTNm4PTTT8esWbMAAB988AEGDhyIgQMHYu2aNX4FIox1l296yzXrtys1iqHFeoym3FZ9WLAckizjBByEWibxO7mcHuVj/Zaepi3hM2WhUd7EZggxkh+N21lSGjrLFBkjVy0jhUxRQ6bwkYxqifrLl7lpp3SAPnTc9mWASbANXYwb4ujiDW4uQkFkuygtMc3L35sy6+vDQyxkGK91CLFeiIzp0M5DGbatn9rr1vnTMgxTD4+IG0WnR/SFMoS7F0qYlfV5YthBGesOi1GLST9uMvRShrHoVQycy/pM0wEPmxfljcoGcd7sF7u9mFIumGKAHEg6JC5OSL5teYD5RXiyictuSm8iplMh7ttO47C9R0i6HlEk/fZ1FyGJccu3FSc0Montst0W00uHTfe6/ftbVkS/2BvCxV2EnwbmWPaX+ouW03/eAsi8l16yxJ/WN6WjX5HXu96LOct6o+3qYVm/fv3w6quvGpc5/fTTcffdd2PvvfdGW1sbli1bhnHjxuHMM88EANTV1eGZZ55BtXjwM3fuXEyaNAn3338/zjjjjM7vDznkEDz88MPYunUr9tlnH8ycObNz/WeccQZmzJiBE044AWefdZbrTSUiIiIiIiIiohgYhqn59NNPMWzYMACpkWjjxo0zLv/uu++isbERV199NebOnZt1mX79+mHChAlYtWqV8/oSEREREREREZE729XDsq1bt2LChAmYMGECZs6cmXWZCy64ALvtthtmzpyJ2bNno8n0ij+kRpWddNJJOOSQQ7Bs2TJ8+umnGcts2LAB77zzDg499FAn20FERERERERERMlgGKbm8ssvxymnnIInnngCd9xxB+bOnYt58+aFLn/nnXfi/vvvR1FREY477jjcc889+Pa3vw0AeO6557DXXnth2bJluOSSS1AbI0FSlNeDxxH3Fcu289prh3dO63H+pa0t4SuU+0rE9if92uoo+XLi5DPTBcqPkovGtnyZJ05LOhKWb0x/PiznyVx1QPB12np19ZwP/m+0OsbMySXJTTPlVtG3zUV+GBfi5GWKIp/9iGkf2+YpSzrni6nN6G1eCq2X3sjlTtDyhZj2j2yvMn9I377B5eR+NB0LvQ+2bv+GHZR0vpw4+fxM/49L9llx1x23DW7dGj7PcXq0FNsDrDcMwUXfYdvHG6+/pgSZ8mITMxGlqY65zDmVxD1O2LU4CXFzDnb3N12Jm/cpbNmk70VzzfU+T2L/uPh7Jcr1MYx+fZF994ABdmW067mAq3fonHRxLDLKMNyDhO0T/TZm2bLQIgK5gleuzD6vuDjranoRD8xZ1jv1rt4+hjPPPBMTJkzA9OnTO7/bZZdd8K1vfQtPP/00Fi9ejHUyy7Lw2muv4Z133sHhhx+Ouro63HnnnYFQzEMOOQSvvfYaXn/9dfz+97/v8kEdERERERERERHl13b/sOwvf/kLXn31VTz66KMAgEceeQSe5wEA3nnnHRQXF6Mq5M0hc+fOxZVXXomGhgY0NDTgo48+wqpVq/D+++8HlhszZgwuvfRS/PKXv0x0W4iIiIiIiIiIqHsKJAipcNx666244IILUF5ejpKSEtx+++0oDhk7euedd+Lvf/974LuZM2fizjvvxOTJkwPff/Ob38S1116LFStWYNSoUYF5HlToMFjTG93jhAbkeui4HI7b0BCcV1/vD0OW0YIAUFrW/aYZZ59EGf4cJ3QiMwxKrtuwcNx4Qfk7beVlIWE/plChltbwV9LrTK+hzyVT9M7mzf50nz7BeZZv144dpuQ6xCtuOXHbf9jvjGEsevyCZYi17bkWd9+5DkXNKM8QFyj7SD2CTL6eXYZ66G1VMm1LU1Nw38kwC9uQ2ChcHLc416xCCa/W6YPU5fHdaUSy4awB+g7S421yyPoyJ2fGrL/pHI0bpiclET4YVn6UelRV2bWfuM0g6e12IelrSKEolG2Ley/hgotQYFPKDv3vlbB7xShpD+Kmuglj3AfaiR52bujbJe9P9FBLGeo9dmxwXse+bO/ZpxZtxwr0ljIZjRaJG+68807j/AbxxGfFihUZ83/1q191Tk+ZMqVzul+/foG3Yc6ZM6fLuhARERERERFRIeMTwd5ouw/DJCIiIiIiIiIi6sCHZURERERERERERGnbVRhmoVLwOmPG9ThzUx4Z2zh/uZwehy9j6vVX17vIbyBj3vV8PDJsXo+QlTk2YtfDRc4vx6xzskRg3D8iuYLeXlpFWzDllhs4MLz4fv1EeVp+hg0b/GlTjiXJde4iwJzqRtZL5g8CgG3b/OmhNd2vh85J/hC5003vM7eshynPRdw8IMFcQPHE6etS68tdDiFJz+1XKjs/rRGOGBE6K5AbZcIEf1o/tLb5lkxNIolcN7Z57WwlcTxN+RRtu2Tb7dFzQgVywoiKtKA0sJw8tSv1YxjnOqdvtKGMotaW6OVrTPvHVKSLvI62x8a2zFzntApbnynnmmmbLS8LeRWlHw+bZyrDtO9s9fTcZrq4uUtzKe41xHbbykX/XFcXnp/XkHo1kT81XB+b9pLS0HlyO/W/y1av9qflfQsQ3Cf63wxtban/FnF4DvVQhfEEgYiIiIiIiIioR/EAtOW7EpQAPuclIiIiIiIiIiJK48iyAhNliK1pSLIcSiuHzvbtGyxjwIBI1YusssKvY2V9cN6bS/06L10anCdfPSyHQ+thLMZh2WI8dJQh+bbChkbrIViSPqxZDtnOCK+xWK++bhPbyBt9CPWgQdmngeD26GGMMkRTlq/Xo1TMixsKZvqdqY6yXnrbqqlBXthuCwC0tvrD6cvKgkPr5eYkEVYRK5RO38miMbRqoWdh4Qymc0gvPl+hJbLPBYCmpvLOaT0cXS6rb7P8PHGiP62fo3G3LU4En4tw3Cjz4pSp9zFy20wvxZbXqyjrlSEoeh9jIkPiZGhMqbZPS+W1wdSR6+Q8/eSQ5AboMUYyLl/GAsP+/HJxjY3LNkzP5jfZfleoIWth4kbq5jKTRRJhtrbrcx2225WeFiZsm6qhYO454OYaZbpWuj43XKX6iFOmTJ+iX8vkpUHvHwIpBTQd9zy26ViICg1HlhEREREREREREaVxZBkRERERERERUSzMWdYbcWQZERERERERERFRGkeWFTjbvBp6TP68ef7vZAz6gQcGy5B5mXKde2PIEH96xx3Dl9u82Z/OzBUQL99DWG6FKLkCwvZXaUn4ukxpY5zkKdDzzQil2spLKvz1ydw5+iuhA78x5GrQt03Ok7ny9DJc5Lkw/a6szC9fz9nX1iaXM5Qp9muRtuCWpvDjVm443mFMbVXPtyRzSsg8f66Yjo3tOSRzW5Tqx17kaTJdjGTaJD1Xhpy3997BefnKO6eTx23t2uC8ujp/Wu87ZP5D2ewyck1aJh/Tc5DIfGmyP9b3m/EclRuX0Qlkf0V90tcaUz9rm5cMsO+T5TFdvjw4r7ran67X8naWl8XIp2XqhPUOQvRbLSV+3rwS7bgUiYQzGeueMNhfLuE8RHr5cdYXNxeZ3HUVFeF5mVxIIoeq69yrel8t+6KVK4PzRo8I73+SzmPloo3Y5tuTv7PN3WUqr5C4qJeL3GAuyo+rqLXF/6C1Y9O9XJztibItpnuosDLj7mN57dfvA2zvMfVt67hHbi/Mpk/UJY4sIyIiIiIiIiIiSuPIMiIiIiIiIiKiyDwwZ1nvxIdlBUYfOhsMDTD8cOnSwMcRI8Z1TsuQlI5X+HbI55DwoQO2+NN7ajPFEOgtrX7IiD78X76uWH91se0wZLmc6XXpxn0lD5QeJlPmh7/o4UEyZEc/vjJ8xxRlFRiWbYg/0veHDMmS0/p+lEXKkDcgGPWph2/KeZ995k8PGhRczsVrt03HWpYfKSxP7nS5Mdo+NoV8SdahH1ojLBLrHl4V3Fm1tX7bMoVJJiGs/vr3sn2a6qRHEMv9KkMVdWPqWsJnyl3p+v3uBjuNaNc++9ObGoP7wFStV17xp5ct86enTQsuV1br95GmfmpwVbv22Z+OHTok26vedhPe52FhJ0lf1/TrhAzvnjAhOE/2p3HrZRuGk3EREZ9LQ8LKAQROtih1zOX9QxLhlZJtioRc97Oh9di4PjhTboB+fGW70M7JsH1nuhfVw7nb68L7n0JsI7Zhl1Hmxbnf7KrM7UWsfaB3wqabZPlZnhv6eSL/wNDLMPyx0SpC3PVIeEmeojI9CGBun8Y+34Gw66jpnsxUht5BdOydonbtmBH1EAzDJCIiIiIiIiIiSuPDMiIiIiIiIiIiojSGYRaYKMNeA0PytddsjWt42/9wsD/PVchAWDmRhlPLjdOHVAvyjWHV1fHCuEzkiGH5djggGFpYqUW4BPa/IUbWtE9qa/0yTCPHrcNBDfTfyRAs23CsMfXZ33IDBN9aqpMhpfp2xg1tiLMfIoXZhsSdtFQMDixWivA3KJmEnkN6GaJtmUJp5TGMy8Ub1aKUb3pTrHWInTzxDedh3LYUd9vC6FU0/U6GDffp408bXnqYEd5hYhuaZNx3ety2hSRCkZJ+E5ukn6JDa7rffqKsr9tsL46OxN0HcULb9HYgQy9Nb4tLOkrbxXXOFOoUyLFheCt2Rp4Fi/UCwOAyv8zBE3LbfuKI0qfkMoTbtG4T2/bjoh/MKEPcOLkIrY9bx8DvTDdzphBNUxim7Be11DaB80t/s3yVH4ZpOr1cvK0yl2Hf1mGXOn2/5jAFRv4xrLo34sgyIiIiIiIiIiKiND4sIyIiIiIiIiIiStuexkYSERERERERETniAWjLdyUoAXxYVmBkfi4gQs6OktLAZz2HWef3juKpTW9pjsWykMqKePvHtN1hubv08pPIFSC3J+6rx23ZHntD+riMV1gHX4Xd/XokvW16/U3HtyjkVeGZLTXeCSDTOsjmb3pNuCnvXFfLxpHLXC6xc61UVFr9zpTixLbdmcqwFWU/1tXZLSdzmOn5zGQdjeeo/KG+oHZ9kVy0kaTP+6TF7bsTr7/zC3U8LvJsuu6LXF2HXOQhMgnNbal1DoH9Uxsvp5ix/mV+Xqai1pbw5RJoZ7bH3vU1Ty8zbj1ymWfKhYx9EOOYus43q5dZZLqYafUN/Z1+QZfzJkwIL1NLTGbbB8SdF5a3UP+NvKfU/5Y0rStO+zRey2R+N2m7yl1GvUnP6sGJiIiIiIiIiIgSxIdlREREREREREREaRwTWWBcDf8PHbrvKPSgtCTZ8BHXw9ZN5dlGqiQxxD+sHkBwSLUcHR53JLPtMO+MYysroodoitAMXeBn4neVZYbXehvK08VpI/oxjHMOxaWvuzxGpEwS4Ry24SSmYfcuXlcfl+35q7/NvKLCrvzguRGhYg5s3OhPm0KeTdti3W85CJGIE0rS1e9s12e7nVH6cRd9TBzOwllF+GygTBfxxHkU9z7JRZlJ98Fxyw+GYHW3Rl2kY1i9OnymqXOyzdWQY7b3xbm8zkXpA+K0H1ch4GH7J/F+0EUfpv9Ghlfa3iBoEgnLltu6dq0/XTs8sFiU0MvuKpQUCIWFOctsKaVOA3ABgLEANgF4CMClnuetiVDGZAA/BTAZqZ3/IoBLPM97VVvuAADfAzABwND01+8DuAfArz3P+6yrdfWsOyQiIiIiIiIiIuoxlFIXAPgVgGcBnAdgBIALARyolNrf87zPLco4AMA8AKsAXJ7++jsAnlNKHeR53uti8TEAygHcDuAjpKIqJwH4HwAnpNe51bQ+PiwjIiIiIiIiIiLnlFLVAK4G8DKAL3me15b+/mUAf0Pq4dnPLIq6AUALgEM9z1uVLuNuAG8BuA7AlzsW9DzvrwD+qv3+90qptwBcA+BoAHebVsacZURERERERERElIRjkRrldWPHgzIA8DzvIQDvATi1qwKUUvVIjQy7p+NBWbqMVUiFVk5TSoW8kjXg/fR/B3W1IEeWFRg9DD+QzklL9yBj0Bsbw3+nveXYet0ynD/X8ekyJYasl/5GYlPuNNtcE42N/nJ6mgJTGgQXuSFknpGGhvB58i3x+vF0lt8mBlN+hrD0JO0oDXyWryVPop3JekXJuxUn71+uhaWyAIL7X7aZQqq/rbDcXfpn07ZVVOQuL5ZteTq9/LA8ZUUb1wd/KDqu9pLg+WWqf+Aa0urnCyzT+j350VXeS8lFnhfXx0kn26CeskmeX8P1WzQ9WZ6UpxxOehtxnbMpiTJ6grg5rWxzPZmuZfJaYCrfxJSfcUuTX2bpiBHBmfLk0Nu7ZS4p5+e94YY2yv5JIheiFVPSOMM+Nf0NIX9WUuJmrESc7bbe//rGyD909D96DIl9i2z/CJIc5HF0da2U/XWR+CPIVe7PML25r04Oc5Z1YVL6v/OzzFsA4CSlVIXneY1Z5tuW8TUA+wF4RM5QSpUj9aCuPD3/l0iNTnuqq0pzZBkRERERERER0farWim1UPw7y2HZHW+lWJVl3ioASiwTtwwA2DHLvB8DWIPUiLL7AHwO4GjP897tYn0cWUZEREREREREtB1b63neRNMCSqkqAOdHKPMGz/PWIzWqCwCasyzTMSy5PMs8KW4ZswE8BqAKwIEApgCo7mJdAPiwrCB4UJ3DZ/VRxzLcQ4bi6WK+5TgwbNcU0hj3Nc1xwy+qRfOVo60zVhs2xtxQD70utiO0o4RP2f5OjhzXd7GMbJDT+rHWwyXi1MMoZqiQPG5y2zJDXQt/gKuMLCkrsw/hiNtmbH8j950eomxbp1yGmUQpQ9ZzcFV4mJ4phC9OeJNtnboqM0yU38jzXvZT5XIGEDjBWqt2CC1P7yuCdXEblp2EfIaFbNvmTw8ZEpxXU2P4oYNwHhdMbdx0nTaGtsmO0ZAzokh8zvU55IKLMOGw8lyxvge0vJfTtzMQCl+rHUPRObW0BueVtm7JXg9H50XYsSnS+0hRx6KY94o5pdcx7FwDAuebfh9ve3/luo3brgtA8GZR5pPQ7z1lI9f3j/ycp/D2pOSr/ymYc4EKURWAKyIsfxuA9QA6Lgh9AehvoOw4cUMuGp1kGbrQMjzPewfAO+mP/08pdQSAx5RSnud5c00rLIy7OCIiIiIiIiKiHsXD9pKzzPO8BqRCJqP6KP3fHQEs1+btiNRO/Ahmsgxdx3fZQjQDPM97XCn1CYBzABgflhX+kA4iIiIiIiIiIuqJXk7/98As8yYDWNZFcv+uyjgAqQduiyzrUwZgcFcL8WEZEREREREREREl4UGkwi+/o5Qq7vhSKXU0gF0A3C4XVkpVK6XGKqUGdnzned5yAAsBnKiUGi6WHQ7gRAD/8Dxvtfg+a5IapdTpAAYi9QZNI4ZhFoDmZj832fDaYEz46Lrw37nIh1SoMegy78LgKsOCDQ3+tJa0o8gyiVMgF4eW6iCXqQ/q64Ofx471p4355PLIlOumoiJ7+9SXkzlO9FQc5WV22y1fa6+/ud5FTrq47cCUayJuPr+w8nVxclsknaMiSp9lnadDHPAiw4GyXbeecyeXKaf0Osq2G6iHXinR9zU2hs4yqqywy/0WN3+lFDfviu3vXLVbWU5NTczrrYMGlHSeGmP58gIpk6gCwbZgyFkWSLha1lXu3uyS7ots++oeL2Z7LC72pzPTgRly38ruIiwJI8x5xGKptsrbnCF2O9P7RUlsW+z7dnljE2Ffxcl3lcTfBYH7nbWfBmfK+3hJv3mT7Ue/0Rsxwp8ukDyRJi7u3fQyXNxT9qq+jgqO53lrlFI/AnAtgKeUUnORCp28CMBSAL/WfvIdpHKjnQlgjvj+PADPAHhOKXVj+rtzkRoEdpFWxqNKqXUA5gP4AKkHZF8A8BUAKwFc2VW9C79HISIiIiIiIiIqSIU5sKGQeJ53Xfrh1QUAbgCwCcDdAC6xCMHsKONFpdQUAFen/3kAXgRwoud5i7XF/wzgeADfQOrtl9sAvAvgGgDXep63rqv18WEZERERERERERElxvO8OQiOFAtb7kqEjPzyPG8+gC9ZlHETgJui1E/XYx6WlZaWQqnoL14YMmQIzj777ARq5M7Klctx1VWFXceeYPmbL6F+56H5robRS8s/wNCdd3JaZuMnjdhjtz2clffSkpcwdITb/WiqYz6PW5zj4Xp/A272eRL1ciGJ9hSHsQ2+9BLqh3Zdx+WNjajfI3sZrrez8YMPsMcubvsKClq+shH1BXLOLFq0CPvtt1++q1GQesK1PWlRrlWFck9QqNd911z0I1H2cSFe65NoI7kUu/49/Dqdy2vgokWLbJOuExUU5XlevutgZeLEid7ChQvzXY1EnH322Zg9e3a+q9HjHbzPSDw/e3q+q2E08vR7Mf2a452WufDqhVj0L3fXoJHjR2L6z93uR1Md83nc4hwP1/sbcLPPk6iXC0m0pziMbXDkSDw/ves6HrxwIZ4Pud9zvZ0LL70Xi25221dQ0MHnLcTz8wvjnBk3bhzefPPNfFejIPWEa3vSolyrCuWeoFCv+6656Eei7ONCvNYn0UZyKXb9e/h1OpfXQKXUIs/zJuZkZXmg1A4ecEK+q+HA73v1cYqjx4wsIyIiIiIiIiIqHB6AtnxXghLA114QERERERERERGl8WEZERERERERERFRGh+WERERERERERERpTFn2XZk3rx5OP300zFq1CgAwIMPPoiBAwcCAK699lrce++9KC4uxrRp0zBo0CDcf//9aGhowMCBAzFo0CBcddVVKCoqwtFHH41PP/0UpaWlaGhowOTJkzFu3Di0tbXhxhtvxHnnnQcAeOWVV7DPPvtg1KhR+Mtf/pK37c7m6ZdX4cf/9294nochA8vQ2taONRuaUFHeB5X9++Ca70xG/ciBuPJPC3H/vAZUDeiLXUdW4s//cxgA4CvfexzPvvIx/t/Pp2Ha/iNi18PzPDz5iyexZd0WDNxxIA479zD87dK/Yf3763H8r4/HwOGp4/P41Y/j4zc+xrQfTMOICfHXl1QdW7a04ImfPYH21naUlpdi6vemorS8NPY6u3N8Nn/egmO//wS2tbajsn8p5v5kKgb0z6yL53lYt3IzHvjeA8Z9/7dL/galFFSxwpe+1+VbimPT9/N+J+2Heb+eBwDoX90fX7zgiygqLsprW0iSzfa3Nrc6bWdJsT2vAWDtu2tx3wX34Rv3fwNFxYX5/6+6218eenbqHCopVpj7ky9hh8H98rxFZqZr5W677YZhw4YBSCXlv+mmm1BXV4cf/ehH+PrXv4558+bhqaeewtVXX42BAwdiv/32g+d5+MIXvoArrrgCffr0yfs2bG/Xe5NCuRcwsb1WdVwbdhrh9u18nufhiZ8/EfkeIEm5uEfIFc/zsO6DdZ3Ht6trv+vj64LeRmyv34XCpo0D7u4HC/WamuS1b/vAnGW9UWHemVNiZs2ahXnz5mHevHmdHeCmTZvw8MMPY/78+Xj++edx3nnn4bzzzsO8efNwxhln4LrrrsO8efNw2GGH4b777sMJJ5yAp59+urPMww8/HM888wx+9rOf4dZbb+0sf88998S8efMK7sZ57cYm/Pj//o2HrzsC/5x9DH75nf3Rsq0dt131RTz126Pwk7Mn4mtXP4uON8Ved94BePYPRwMAlry7HgDwh0sOwfn/Nb7bdVnfsB6l5aU49tpj0bS5CU2bmvDlH34Zow8aHVjukHMOwfiju7++pOpYVFKEqRdOxTG/OAY7T94Zb//j7djr6+7x6VNShNuumop/zj4GXzl0Z8x5JHtdXl++HqpYdbnvZ1w9A0f//GiM+eKYbm1XV/T9XFJagiMuOwLH/OIYDBg6AB8u+hBAfttCkmy232U7S5LteQ0AbzzyBqp3qc5DLe246C+f/t0MPPuHo3Ha9DG4JeR8LDTZrpUAUFNT0/n9TTfd1PndbbfdllHGnnvuiX/84x945pln0KdPH/zud7/LWf0BXu+7Ukj3Aia216qkrg3bmrfl9B6gK7m6R8iV119/PXB8e+K1X28jPe36bdPGATf3g4V+Te0N1z4il/iwjFBcXIzVq1dj8eLFAIBBgwaFLvv222/jiiuuwAMPPJAxb+PGjQnV0K1HXvgAs/5j187/kzhmpyoMqy7vnL/H6MEYNXwAPljdGPjdZ40tndNy+e5o/rwZ/Yf0R2tLK5o2NqHvgL4oH5RZdvlgN+uLw6aOJaUlnXUsKi6CKlKx19fd41PWt6Rz+ZLiIhSH1GXD5mYUlxR1ue+LSlLdZGtLKwbtFH5udFe2/dy3om+qDmKf5rMtJMlm+122s9B6tLXh+CeewP7334+b3ngDX3/22ehlWJ7X6z9Yj/7V/dGnX25GG8Xhor/skz6Htja3Yo/RyZ1D+dK3b1984QtfwJNPPhm6zKWXXopHH300h7XKbnu73psU0r2Aie21Kqlrg9fm5fQeoCu5ukfIlQ0bNqC4pLhHX/uztZF8XL/jsmnjgJv7wd50Te1J1z6iuPiwbDtz6623YsqUKTjzzDM7v+vfvz9+85vf4OKLL8aYMWOy3hgDwL///W9MnDgRI0eOxCeffIL29nYAwJNPPolJkybhnHPOwXe/+91cbEa3fLx2C4YNMd90DK/uj9XrtgIALvrNAtQdewf6lhZj/C6D3VYm9T+OcPc5d6O0ohRKFc7NQ6cIddy2dRveevwt1B9aH3t1ro5P45Zt+OMDb+HkI7LXxbPcrsY1jXjg4gfwxiNvYPDOjo9/oELZ6/P5us+x6tVVGLFP7wm5zCrC9rtoZ2HuXbEC+9XUYP5XvoJrX3sNh6XDDiKxbFuvP/g6xs8ozJECHVycjx+sbsSBX38Av73nDexZn+A55FC2ayUArFmzBlOmTMGUKVPw4x//uPP7b3/7253/tz2b0tJSbNu2LbH6ZsPrvVlB3QsY2F6rElt/ukPL1T1AV3J1j5ArHSOIevK1P6yN5Pr6HZdtG3dxP1jo19TecO0jcokPy7YzHcNrr7nmms5ODwCOOOIIPPHEE5g/fz5+8pOfZP3tfffdh6effhpHHnkkli1bhhdffBFAKizj5ZdfxqxZs7BkyZJcbUpsw6rL8dHaz43LrFrzeef/6bnuvAPw+u0n4NP1W9HU3JpInU7+88nYca8d8dYTbyVSvgtd1dHzPDx7w7OYdOqkzv+jGIeL4+N5Hr529bP46bcmoWqAuS5dbVdFTQWO/d9jsd/J++G1B16LsUXRyPq0bWvDvF/Pw6HfObRg81m51tX2u2pnYd7fvBkThgxBcVER9hg0CEeMiP+HiqltffbRZygtL0VZZVl3qps4F+fjTrUVmP9/x+Kq/94P196W/DnkQti1UoaiXH755Z3LDxs2DAMGDMDSpUuzltfS0pKzfGUdeL03K8R7AZN83yfk6h6gK7m+R8iV3nDtz/f1u7tycT9Y6NfU3nDtyw8PqZxlPf0f6XpOD0xOyU5v69atWLVqFQCgsrIytFN7+eWX8fzzz+Oxxx7D/fffj/vvvz8w/+KLL8b//u//Jl737pp+0Ejc9thybP48NaR5+Yef4eO1Wzrnv7ViA95f3YiRQ/t3fjegfymO/+KoRHJbbNmQWnf/6v5o21aYHZVNHRfevhBDdx+KHffesVvrcnF8Lp+9EF/YayimTjTXpa213bhd7a3tnf/Xt7RfKYpLi7u1bV3R9/M/f/tPjJs+LtHwz0Jis/2u2lmYEf3746MtW9DueViyYQO2pUfURNXVObO+YT3WvLMGj17xKNY3rMdzNz3XrXonpbvn4zZxDlX2L0W/smTPIdfktbIr3/3ud3HDDTdknXfNNddgxowZjmtnZ3u+3psU2r2ASVfXqqTl8h6gK7m8R8iVttbUPu3J1/5CuH53R1dt3NX9YE+5pvaGax+RC3wbJqG5uRmnnXYampub0d7ejvPPPz9jmWXLlmGHHXbo/Dx27FjMnz8f5557bud3VVVVGDlyJP79739j3333zUXVY6kZ1A8/+to+mHHR4/A8D4Mr+6K0TxFOueIfGFBeigHlffB//3NoxjDsk4+oxxHn/R3fPG4cvnvdC3j4+Q/wt+fexzdnbsZZM3ePXZ+PFn+EB7//IIpKivCli7+Ep375FFa/tRqfffQZ9j5ub9QdUIcX/vgCPnj5A7z/0vvYfORm7H5k/PUlUceaXWuw+L7FGDp2KBoWNGCXg3fBuOnjYq2ru8fnmEN2xi9vXYyD9hqK+59twFen7YJvHZ+9Ls1bthm3q3qXajzzq2eAIqC4pBhTzp+CN3/3ZqztsiH38/6n7Y9FdyxC45pGLHloCcYfPR6jDhyV97aQpK62f4cxOzhrZ2GOGzUK3/jnP/HkypU4Y8wYfP9f/8IdX4r+1quuzplRB43CqINSb5x66IcP4ZBzDnG6Ha5093ycftBOmHXlMyhSQN/SYsy5fEp+NsSRjlAUANhxxx1x++23d86bOHEiBg/2Q2Jef/11TJ06tfONYD/4wQ9yXd0M29v13qTQ7gVMurpWyfuE1s2t+OMf/4izzjrL2frj3AMkJZf3CLnS/Hmz9bU/iePrQpzrdyHpqo1nvR9cujLyenrqNbW7176ONycT9TSq4+l0oZs4caK3cOHCfFcjEWeffTZmz56d72r0eAfvMxLPz56e72oYjTz9Xky/5vjOzx+9/hFWLV6FSadOil3mwqsXYtG/FrmoHgBg5PiRmP5zfz8mXcd8Hbd5iz7CMT96Gif9ZVak37ne30Bqn084eUK39nMS9XJBb09hXLQzE2MbHDkSz0/vuo4HL1yI5xdlL0Nup5Nz5tJ7sejm47tekGI7+LyFeH5+YZwz48aNw5tvJvcgvifrCdf2JEW9Vrm+FtSMqsHI/UdG7s8K8bqfhO72I/PmzcMxJx6Dk24+yWr5QrzWJ9FGcil2/Xv4dTqX10Cl1CLP8ybmZGV5oFS1Bxyd72o4MKdXH6c4OLKMiIiIiIiIiCiyjpxl1NvwYRlRHg3fcziG7zk839Uw6gl1jGPKfsMxsKZwXsXeW/ezrd60/b1pW4gov/J9rSrrX5bYiF8CpkyZgoFDB+a7Gt3S09tIT68/ESWHCf6JiIiIiIiIiIjS+LCMiIiIiIiIiIgojWGYRERERERERESxMGdZb8SRZURERERERERERGnK87x818HKxIkTvYULF+a7Gomorq7GunXr8l0NIiIiyoOysjI0NTXluxpERERJWOR53sR8VyIpSg3xgCPzXQ0H7ujVxykOhmEWgHXr1qGnPLQkKlRz5szBmWeeiXfeeQf19fWBea2trejTpw+uuOIKXHnllfmpYA5MmTIFra2teP75552Ud8YZZ2DevHloaGhwUh4RZaeU4n0A9Rqm63GH7lxf6urqcPDBB+O2227rsh7t7e342te+Fnkd2Vx55ZW46qqrsG3bNpSUdP9PqI79tGLFCtTV1XW/gkQFSimV7yoQxcIwTCIiyupHP/oR7r///nxXg4iIeplcXF/mzJmDm2++OdF1dMdRRx2F+fPnY9iwYfmuChF1iwegvRf8Ix1HlhERUVa77LJLvqtARES9EK8vQE1NDWpqavJdDSIiCsGRZUS03VqxYgVOOeUU1NTUoG/fvpgwYULG/+levnw5Zs2ahVGjRqFfv34YPXo0vvWtb2HDhg2dy1xzzTUoLS3Nmntw3LhxOPbYY9Hc3IyamhpccMEFGcvMmTMHSiksXbrUWN/Fixdj5syZGDJkCPr164fddtsNP//5zzOWe+qpp7DvvvuivLwc48ePxwMPPBB5m4BUmIwMDWloaIBSCrNnz8bll1+OYcOGoaqqCkcffTRWrlxprDsREVEH/foCAO+99x6mT5+O8vJy7LDDDrjooovwxz/+EUqprOGad955J3bffXf0798fEydODKQgmDJlCp599lm88MILUEpBKYUpU6YY67RmzRqcc845GDlyJPr27YuRI0di1qxZaG5uDiy3YsUKHHXUUaioqMDOO++MH//4x2hv90dlNDU14YILLsD48eNRUVGB2tpaHH300RnX+I5rv9y2uro6nHrqqcZtIyKi3ODDMiLqVdra2tDa2hr419aW+TrnDz/8EJMnT8bixYtx/fXX429/+xv23XdfHH/88fjb3/7WudxHH32EESNG4Ne//jUef/xxXH755Xj66acxffr0zmVOPfVUtLW14a677gqsY9GiRXjrrbcwa9Ys9O3bF2eeeSZuueWWjETes2fPxmGHHYaxY8eGbtdLL72EAw88EO+++y6uv/56PPLII7jwwgszHlK9++67OO+883DhhRfivvvuw7Bhw3DCCSdg+fLlkbbJ5Oc//zmWL1+Om2++Gb/5zW8wf/58nHLKKVa/JSIi0rW0tODwww/H4sWLcdNNN2HOnDlYsWIFfvrTn2Zd/rnnnsN1112Hn/zkJ7jrrrvQ1taGGTNmYOPGjQCAm266Cfvssw/22msvzJ8/H/Pnz8dNN90Uuv4NGzbgoIMOwl133YULL7wQjz76KK655hps27YNLS0tgWVnzpyJqVOn4oEHHsCxxx6LK664Arfcckvn/ObmZmzevBmXXXYZHnnkEfz+979HU1MTDjjgAKxevbrLfdHVthERUW4wDJOIehXTAyfpyiuvhOd5ePbZZzFkyBAAwBFHHIEPP/wQl19+OY455hgAwKGHHopDDz2083cHHXQQ6uvrccghh+CVV17BPvvsg+HDh2Pq1Km49dZbcc4553Que+utt2LQoEGYMWMGAOBb3/oWrrvuOtxzzz2YNWsWAOC1117DggULMHfuXGN9v/e972HIkCFYsGABysvLAQBTp07NWG7t2rX45z//iV133RUAsO+++2LYsGG4++678cMf/tB6m0x23nln3HHHHZ2f16xZg4svvhgfffQRhg8fbvwtERGRbs6cOXjvvffwr3/9C/vvvz8A4D/+4z8wYcIEfPDBBxnLb9q0Ca+++ioGDRoEAKitrcWkSZPw6KOP4uSTT8a4ceNQWVmJ1tZWHHDAAV2u//rrr8d7772HhQsXBq6BJ510UsayF110Ec4880wAwLRp0/CPf/wDc+fO7fxu4MCB+POf/9y5fFtbG4444ggMHToUc+fOzTrCPMq2EVEhyvwf89TzcWQZEfUq999/P15++eXAvwULFmQs99hjj2H69OkYOHBgYBTaEUccgcWLF2PTpk0AUv+3+2c/+xnGjh2Lfv36oU+fPjjkkEMAAMuWLessb9asWViwYAHeeecdAKk3cN555534z//8T/Tt2xcAMGrUKBxxxBGYPXt25+9mz56NmpoaHHfccaHbtGXLFrzwwgs45ZRTOh+Uhdl11107H5QBwA477IAddtgh8MeG7TaFOeqoowKf99xzTwDI+gcNERFRVxYsWICddtqp80EZkHqD3vHHH591+QMPPLDzYRLQ/evQE088gUmTJnX5P4uAzGvg+PHjM9Z79913Y/LkyaiqqkJJSQn69++PxsZGq2us620jIqJ4+LCMiHqV8ePHY+LEiYF/++23X8Zyn376Kf7617+iT58+gX8XX3wxAHTmH7v00ktx5ZVX4tRTT8UjjzyCl156Cffddx8ABMIpjz/+ePTv37/zVfZPPPEEPvnkk84RZB3OOeccvPDCC1iyZAk+//xz3HbbbTjzzDNRWloauk0bNmxAe3s7RowY0eX2Dx48OOO7vn37Bupqu0226+h4GGjzWyIiIt3HH3+MHXbYIeP7oUOHZl3e9XVo3bp1VtfYsHXL9T700EP46le/it133x133HEH/vWvf+Hll19GTU0Nr7FERD0IwzCJaLs0ZMgQHHLIIfjBD36QdX5HOOGdd96J0047DZdddlnnvMbGxozl+/fvj5kzZ+L222/HVVddhdtuuw2jR4/GF77whcBy06dPR11dHWbPno29994bmzdvxllnnWWs66BBg1BUVIRVq1ZF3cysbLeJiIgoF4YNG4Y333wz4/tPPvkkJ+uvrq52eo2tr6/HnDlzOr/btm0b1q9f76R8IiLKDY4sI6Lt0pFHHonXXnsNe+yxR8ZItIkTJ3b+n9wtW7agT58+gd/+5S9/yVrmrFmz8O677+Lxxx/Hgw8+mDGqDACKiopw9tln49Zbb8Vvf/tbTJs2DbvssouxruXl5Tj44INx2223YevWrTG32Bdlm4iIiJJ2wAEH4IMPPsBLL73U+Z3nebj33ntjl9m3b1/ra+aXv/xlvPTSS1i8eHHs9XXYsmULSkqC4xFuvfXWrC8bIqLewEMqZ1lP/0c6jiwjou3Sj3/8Y+y///449NBD8Z3vfAd1dXXYsGEDlixZgvfeew8333wzgNRDtVtuuQV77rkn6uvrcd999+HFF1/MWua0adMwfPhwfP3rX8eWLVtw6qmnZl3u61//Oq688kosXrzY+g+Ba6+9FocddhgOPPBAXHTRRRgxYgTee+89vPrqq7jxxhsjbXuUbSIiIorjscceQ21tbeC7gQMH4vDDD89Y9owzzsAvf/lLHHfccfjpT3+Kmpoa/PnPf8aGDRsApP5HU1Tjxo3DTTfdhLvuugu77LILBgwYgN122y3rshdccAHuuOMOTJs2DZdddhn23HNPrF27Fg8++CD+8Ic/YMCAAdbrPfLII/HAAw/gggsuwIwZM7Bo0SLccMMNqKqqirwNRESUP3xYRkTbpZ122gkLFy7ElVdeiR/+8IdYs2YNhgwZgvHjx+P000/vXO7GG2+E53n4n//5HwCpMMq5c+cGkhB3KCoqwsknn4xrr70WBx54IOrr67Ouu6amBocddhhef/31zrdudmXSpEl44YUXcPnll+Pcc89Fc3Mzdt555863b0URZZuIiIjiOPfcczO+22OPPbBkyZKM70tLS/HEE0/g3HPPxTe/+U1UVFTg5JNPxuTJk3HJJZdg4MCBkdf/gx/8AMuWLcM3vvENNDY24rDDDsO8efOyLltVVYUXXngBl112GX7xi19g3bp1GDp0KKZOnWrMKZrNf//3f+PDDz/EzTffjNmzZ2PSpEl46KGHMHPmzMjbQERE+aM8z8t3HaxMnDjRW7hwYb6rkQilFHrKcSCi7tuwYQN22mknnH/++fjJT36S7+oQUZ7xPoAouxkzZuCtt97Cu+++m++qEFFMSqlFnudNzHc9kqJUlQdMyXc1HHiwVx+nOHrMwzKl1BoA7+e7HkRE3VACoAzADgAGAlgCYFtea0RERFQYhiKVOKcZqbzKg9P/PgCwJo/1IqLu2dnzvJp8VyIpfFjWe/WYMMzefIIR0fZBKXUGgL8gdeN/lud5/y+/NSIiIioMSqlvA/gOgJ0AFANYBuD7nuf9X14rRkRE26UeM7KMiIiIiIiIiKhQcGRZ79VjRpYRERERERERERWW9nxXgBIQ/T3MREREREREREREvRQflhEREZFTSqk5Sikv/W+Kg/KmiPLmdLuCREREREQGfFhGRESUY0qpBvHwR//XqpRar5R6XSn1V6XUsUoppk0gIiIiIsoR3nwTEREVlmIAg9L/xgOYBeA1pdTJnue9kdeaEREREZHw2ePAQ9X5roUDa/NdgULDh2VERET59QcA74rPJQBqkXq10t7p7/YC8LRSaqLneStzWz0iIiIiysbzvCPzXQdKBh+WERER5dddnufNyzZDKXUygFuQul4PBfATAGfmrmrxeJ53BoAz8lwNIiIiIqJYmLOMiIioQHmedweA34ivjldK9clXfYiIiIiItgd8WEZERFTY7hfTAwDsYlpYKfVFpdQflFJvKqU2KKWalVKrlFIPKaW+ZvOyAKVUsVLqFKXUfUqpFUqpz5VSTUqplUqpfyul7lZK/bdSaueQ31u/DVMpVaaUukApNT/9YoPPlVJvp7dhr67qKsqZJ9ZZZ7F8x7INFssqpdRXlFK3KKXeUUptUkptVUq9r5S6Ryl1glJKWZTTTyl1tlLq0fS+3KqU2pIuZ2H6hQ6zlFJD7baaiIiIiJLAMEwiIqLC9qn2eXC2hZRSOwC4DcDhWWYPT/+bAeD7SqljPc9bGlLOjgAeBjAhy+wd0//2AXAigEUAJna9CdkppXYF8AiAXbVZu6b/fU0pdSGAJXHX0V1KqXoAdwLYL8vsndL/TgCwQCl1nOd5H4eUswdS+7XOUM5+SL3Q4d50mURERESUB3xYRkREVNj0UUaf6wukH3A9D/9BTCOAxwC8CaAJqQcxRwEYCWA3AC8opfbzPK9BK6cIwAPwH5RtTpezNL3e/ul1TASweze2CUqpWgDPIPXwDQBakHqYtBhAKYBDABwK4EYA13VnXd2o414A/gFgSPqrdUjtj3cAtAIYDeAYANUADgDwfHq/btTKqQDwd6T2P5B649RjSL3YYSv8EYOTAYxKbouIiIiIyAYflhERERW248V0E4Blcmb6Addc+A/K/grgu57nfaYt1wfAzwFchNTotFuReiAlTYE/UmwhgCM9z1uXrVJKqdEApkbblIDfwn9Q1gBguud5b2nrOBrA3QAu7MZ6YlFK9QdwD/wHZb8EcKXneU1ZlvsTgJOQenh2A4DTtOL+E/6DskcA/KfneVtC1rsXgD1cbAMRERERxcOcZURERAVKKTULwLniq7v0hzVIPUzreOh1n+d5p+sPygDA87xtnud9D8B96a8OVkrpD8v2EdO/CHtQli7vPc/z/my1IRql1Dj4DwFbARyjPyhLr+MhpLa/y3xgCTgHwJj09K88z7sky76H53mfIxU6+VL6q5Oz5EyT+/WKsAdl6fJe8zxvbvxqExEREVF3cWQZERFRfn1VKSXzfpUgFXo5FYBMcL8UwA+y/P4cMX2JxfquA3BcevoYAM+JecViup9FWXGdKqbnep73umHZ/0Nqu4wvNkhAx37dCuAq04Ke57UppX4D4Hak9uFRAH4nFsnVfiUiIiIiB/iwjIiIKL++2cX8NqQSvn/X87xP5AylVD8AB6U/rvA87x2L9b0qpvXk/IvF9NVKqbc8z1tkUWZUXxDT94cuBcDzPE8pdR+AixOoR1bpENO69McFnudtsvjZq2LatF9vUEp91fJYEREREVEeMAyTiIiosD0L4CL9QVnaWKSS4QPAKKWU19U/BF8QUKOV9ySAV9LTOwNYqJRarJS6Vil1nFJquKNtGiOmX7VYfnHXizi1t5j+ouV+fUP8Rt+vdwBYmZ7eB8AypdQCpdRPlVIzlFJDQEREREQFgw/LiIiI8uuLnucpz/MUUtflWgDTADyanj8VwIvp0U667j5k6S8/eJ7XDmA6gKfE13sh9VKAewGsUkq9pZS6UimlPxCKYpCYDs2LJqztxrricL1fNyN1TP+d/koh9ebLHwJ4CMAapdQipdRFSqkB3Vw3EREREXUTwzCJiIgKhOd5HoBP0v+eVkrdgFSC+5EA7lZKHeR5Xov4ibyOLwMQNeF+thcBrAZwuFLqQKTe4ngYUg/MOvJujQVwBYALlVKne55nDKN0JNcJ/uV+XYDUg8IoPtS/8DxvWTo33TSkcsYdCmB3pLZNAdg3/e97SqkTPc97Pk7FiYiIiKj7+LCMiIiocF0EYAqAPQHsB+BCAL8Q8+WorBbP8651tWLP8+YDmA8ASqlKpHKjHQngZKTCDAcAuEsptY/neW+EFpTdBqRG0AGpUVxd5QSzGenliWnjwzWlVHkXZcn9usbVfk0/DH0y/Q/p8MtDkBrN919I7dNaAA8ppcZ4nrfGxXqJiIiIKBqGYRIRERUoz/O2IfXArMOlWvjjO0i9AAAAximlZHijy3ps8jzvMc/zzgcwGsC/0rP6APhGjCLfFtN7hy4VbZlGMV3RxbI7dTF/qZg+UCmVyP2S53nrPM97wPO8swDsCuC99KwqpB5KEhEREVEe8GEZERFRAfM870kAHSF5lQAuEfM2AliY/lgM4LQc1KcRwPXiq7ExinlRTM80LaiUUl0tkyZfgDAmdKmUI7qYvwTA6vR0NYCjLdbfLekXOPxRfBVnvxIRERGRA3xYRkREVPiuEtPfUkoNE59vFNOXh7wIIBTcglAAAAPxSURBVKv0g6ju2hrjN7eK6ZOUUuMMy54BoN6izH+L6ePCFlJKDURwtF6GdLjkb8VXv1JKDbaoQ8c68rVfiYiIiMgBPiwjIiIqcJ7nPQV/NFY/AJeK2XPFvMEAnlVKTQsrSylVppQ6Vin1DFIJ5eW8XyulrlVK7WH4/Y4ALhNf/dN+S1I8z3sTQMeLAfoglaNrtyzrOgrA7xDMRxbmQfghqf+llDo2S3nDADyM1AsTunIDgOXp6dEA/qmU2jdsYaXUAKXUqUqpf0PLsaaUulMpdblSapTh9+MAfFd8FXm/EhEREZEbKvU/T4mIiChXlFINAHZOf/yi53nzLH7zZQCPpz82A6j3PG9let5QAM8hlfeqw+tIPXD5GKn/OTYEwHgAk+Hn9JrkeV5HGCeUUnMAnJ7++C6AlwCsALAZqQdxY5FK8t9HLDMhHZqJkHKybl/6wdUiAB2j5JoBPATgNQClAA5G6uUGAPArpF5uAAC3eJ53hl5eusw/ADhbfPV3pN5mCQB7AJgBoBzA1fAf+L3veV5dSHm7A3gGwFDx9UtIPZz8NF3PGqTeFro/gL7pZWo8z1srypmH1FtFAeANpEJnP0Bq9Fg1UjnZvgj/f2LOB3CI53kdD/+IiIiIKIf4NkwiIqIewPO8J5RSCwAcgNRDmf8B8K30vE+UUpMA/AHAV5F6G+Se6X9hViH1VkqpRUzvkv4X5mUAJ+gPymx5nvexUuqLSI30qkdqm05I/+vQitRDstfhPywzuQipB4ZT05//I/1Puh7A5QiOjgur41tKqf0A/AXA4emv90//C/MOUg/+JLlf90j/C/MYgJP5oIyIiIgofziyjIiIKMfijCxL/+5IpEZLAcA2AGM8z2vQltkDwCykRjKNQmpEWCuA9Ui9hfIlpEaoPet5Xrv22yKkHsZ9Kf3f3ZAaVVUOYAuAlUiNBrsHwN+8kJsIm5FlYtkyAN8G8J9IJebvC+AjpEZ03eR53itKqSnpz4BhZFm6vGIAZwI4FakRX/2RStY/H8DvPc97Nr1cR91DR5Zp5R4A4L8AHIpUGGcVUg/B1iD19sz5AP7ued5LWX7bJ/27qUg9aKtHar+WIvUWzw+QesPoXM/z/tFVXYiIiIgoWXxYRkRERERERERElMYE/0RERERERERERGl8WEZERERERERERJTGh2VERERERERERERpfFhGRERERERERESUxodlREREREREREREaXxYRkRERERERERElMaHZURERERERERERGl8WEZERERERERERJTGh2VERERERERERERpfFhGRERERERERESUxodlREREREREREREaXxYRkRERERERERElPb/AdwyPzLB8YF6AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_map_with_regions(preprocessed_data, each_img_enl[labels.index('2r1x')].reshape(input_shape, input_shape), 'Output layer')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "175b62ae", - "metadata": {}, - "outputs": [], - "source": [ - "import requests\n", - "from bs4 import BeautifulSoup\n", - "\n", - "aromatic_residues = ['W', 'Y', 'F', 'H']\n", - "aliphatic_hydrophobic_residues = ['A', 'V', 'L', 'I', 'P', 'M', 'C']\n", - "charged_residues = ['D', 'E', 'K', 'R']\n", - "polar_residues = ['N', 'Q', 'S', 'T']\n", - "aromaticity = []\n", - "hydrophobicity = []\n", - "charge = []\n", - "polarity = []\n", - "\n", - "def extract_paratope_epitope(pdb_code, region='Paratope'):\n", - " url = f'https://www.imgt.org/3Dstructure-DB/cgi/details.cgi?pdbcode={pdb_code}&Part=Epitope'\n", - " response = requests.get(url)\n", - " soup = BeautifulSoup(response.content, 'html.parser')\n", - "\n", - " table_headers = soup.find_all('td', class_='titre_title')\n", - " table_rows = soup.find_all('tr')\n", - " residue_row = None\n", - " for row in table_rows:\n", - " if row.find('td', class_='titre_title') and region.lower() in row.text.lower():\n", - " type_row = row.find_next_sibling('tr')\n", - " residue_row = type_row.find_next_sibling('tr')\n", - " res_chain_row = residue_row.find_next_sibling('tr')\n", - " break\n", - "\n", - " if residue_row:\n", - " type_text = type_row.find('td', class_='data_r').text.strip()\n", - " residues_text = residue_row.find('td', class_='data_r').text.strip().replace('IMGT Residue@Position cards', '')\n", - " res_chain_text = res_chain_row.find('td', class_='data_r').text.strip()\n", - " return type_text, residues_text, res_chain_text\n", - " else:\n", - " return ''\n", - "\n", - "for pdb_code in labels:\n", - " print(pdb_code)\n", - " paratope = extract_paratope_epitope(pdb_code, 'Paratope')\n", - " if paratope == '' or paratope[1] == '':\n", - " aromaticity.append('unknown')\n", - " hydrophobicity.append('unknown')\n", - " charge.append('unknown')\n", - " polarity.append('unknown')\n", - " else:\n", - " epitope = extract_paratope_epitope(pdb_code, 'Epitope')\n", - " paratope_list = paratope[1].split()\n", - " aromaticity.append(len([residue for residue in paratope_list if residue in aromatic_residues])/len(paratope_list))\n", - " hydrophobicity.append(len([residue for residue in paratope_list if residue in aliphatic_hydrophobic_residues])/len(paratope_list))\n", - " charge.append(len([residue for residue in paratope_list if residue in charged_residues])/len(paratope_list))\n", - " polarity.append(len([residue for residue in paratope_list if residue in polar_residues])/len(paratope_list))" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "id": "36b9d963", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1a4k\n", - "1aj7\n", - "1axs\n", - "1bj1\n", - "1bvk\n", - "1c12\n", - "1c5c\n", - "1ct8\n", - "1cz8\n", - "1d6v\n", - "1dbb\n", - "1dl7\n", - "1dqj\n", - "1dzb\n", - "1e6j\n", - "1eo8\n", - "1etz\n", - "1f4x\n", - "1f4y\n", - "1f90\n", - "1fe8\n", - "1fl3\n", - "1fl6\n", - "1flr\n", - "1fsk\n", - "1g6v\n", - "1gaf\n", - "1hez\n", - "1hh6\n", - "1hh9\n", - "1i7z\n", - "1i8i\n", - "1i8k\n", - "1i8m\n", - "1igj\n", - "1ind\n", - "1iqd\n", - "1jgl\n", - "1jps\n", - "1jrh\n", - "1kel\n", - "1kxq\n", - "1kxt\n", - "1kxv\n", - "1m7d\n", - "1m7i\n", - "1mfa\n", - "1mfd\n", - "1mh5\n", - "1mjj\n", - "1mlc\n", - "1mpa\n", - "1n64\n", - "1n7m\n", - "1nby\n", - "1nbz\n", - "1nca\n", - "1ngw\n", - "1nl0\n", - "1nma\n", - "1nsn\n", - "1oau\n", - "1oay\n", - "1ob1\n", - "1op9\n", - "1p2c\n", - "1p4b\n", - "1pz5\n", - "1q72\n", - "1qfu\n", - "1ri8\n", - "1s3k\n", - "1sm3\n", - "1sy6\n", - "1tet\n", - "1tzh\n", - "1tzi\n", - "1uwx\n", - "1uz8\n", - "1vfb\n", - "1w72\n", - "1wej\n", - "1y0l\n", - "1yei\n", - "1yej\n", - "1yy9\n", - "1yyl\n", - "1yym\n", - "1za3\n", - "1zea\n", - "1zmy\n", - "1zv5\n", - "1zvy\n", - "2a6i\n", - "2a6k\n", - "2aep\n", - "2aeq\n", - "2b2x\n", - "2bdn\n", - "2bjm\n", - "2c1p\n", - "2cgr\n", - "2cmr\n", - "2dd8\n", - "2e27\n", - "2eh8\n", - "2fjg\n", - "2fjh\n", - "2fl5\n", - "2fr4\n", - "2fx7\n", - "2fx8\n", - "2fx9\n", - "2g2r\n", - "2h9g\n", - "2hfg\n", - "2hkf\n", - "2hrp\n", - "2i5y\n", - "2i60\n", - "2iff\n", - "2j4w\n", - "2j5l\n", - "2j6e\n", - "2jb5\n", - "2jb6\n", - "2jel\n", - "2jix\n", - "2mpa\n", - "2ntf\n", - "2nxy\n", - "2nxz\n", - "2ny0\n", - "2ny1\n", - "2ny2\n", - "2ny3\n", - "2ny4\n", - "2ny5\n", - "2ny6\n", - "2ny7\n", - "2nyy\n", - "2nz9\n", - "2oqj\n", - "2or9\n", - "2p42\n", - "2p43\n", - "2p44\n", - "2p45\n", - "2p46\n", - "2p47\n", - "2p48\n", - "2p49\n", - "2p4a\n", - "2pcp\n", - "2qhr\n", - "2qr0\n", - "2r0k\n", - "2r0l\n", - "2r0z\n", - "2r1w\n", - "2r1x\n", - "2r1y\n", - "2r23\n", - "2r2b\n", - "2r56\n", - "2r8s\n", - "2uzi\n", - "2vir\n", - "2vis\n", - "2vwe\n", - "2vxq\n", - "2vxs\n", - "2vxt\n", - "2vyr\n", - "2w9e\n", - "2wub\n", - "2wuc\n", - "2x89\n", - "2xqb\n", - "2xra\n", - "2xtj\n", - "2xzc\n", - "2xzq\n", - "2y06\n", - "2y07\n", - "2y36\n", - "2y6s\n", - "2ybr\n", - "2yk1\n", - "2ypv\n", - "2z92\n", - "2zpk\n", - "3a67\n", - "3a6b\n", - "3a6c\n", - "3b2u\n", - "3b2v\n", - "3bdy\n", - "3be1\n", - "3bgf\n", - "3bky\n", - "3bpc\n", - "3c09\n", - "3dvg\n", - "3dvn\n", - "3e8u\n", - "3eba\n", - "3eo1\n", - "3eoa\n", - "3eob\n", - "3eyf\n", - "3eys\n", - "3eyu\n", - "3fku\n", - "3fn0\n", - "3g5v\n", - "3g5y\n", - "3g6d\n", - "3g6j\n", - "3ggw\n", - "3ghe\n", - "3gjf\n", - "3gm0\n", - "3h3p\n", - "3h42\n", - "3hae\n", - "3hi1\n", - "3hi6\n", - "3hzk\n", - "3hzm\n", - "3hzv\n", - "3hzy\n", - "3i02\n", - "3i9g\n", - "3idx\n", - "3idy\n", - "3iet\n", - "3ifo\n", - "3ifp\n", - "3ijh\n", - "3ijy\n", - "3ikc\n", - "3iu3\n", - "3ixt\n", - "3k2u\n", - "3kdm\n", - "3kr3\n", - "3l5w\n", - "3l5x\n", - "3l5y\n", - "3l95\n", - "3lev\n", - "3lh2\n", - "3lhp\n", - "3lqa\n", - "3ma9\n", - "3mac\n", - "3mj9\n", - "3mxw\n", - "3n85\n", - "3nfp\n", - "3ngb\n", - "3nh7\n", - "3o6l\n", - "3o6m\n", - "3ogo\n", - "3p0g\n", - "3p0y\n", - "3p11\n", - "3p9w\n", - "3q1s\n", - "3q3g\n", - "3qsk\n", - "3qwo\n", - "3qxt\n", - "3qxv\n", - "3r1g\n", - "3rkd\n", - "3rvv\n", - "3rvw\n", - "3sdy\n", - "3skj\n", - "3sqo\n", - "3t2n\n", - "3u0t\n", - "3uaj\n", - "3ubx\n", - "3uc0\n", - "3ux9\n", - "3uyp\n", - "3uyr\n", - "3uzv\n", - "3v6z\n", - "3ve0\n", - "3vg9\n", - "3vw3\n", - "3w2d\n", - "3wd5\n", - "3wih\n", - "3zkq\n", - "4aei\n", - "4al8\n", - "4ala\n", - "4am0\n", - "4bkl\n", - "4cmh\n", - "4cni\n", - "4d9q\n", - "4d9r\n", - "4dgi\n", - "4dke\n", - "4dkf\n", - "4dn4\n", - "4dtg\n", - "4eig\n", - "4eiz\n", - "4etq\n", - "4f37\n", - "4f3f\n", - "4f9p\n", - "4fab\n", - "4ffy\n", - "4fqi\n", - "4fqj\n", - "4fqv\n", - "4fqy\n", - "4g3y\n", - "4g6f\n", - "4g6j\n", - "4g6m\n", - "4gms\n", - "4h88\n", - "4hix\n", - "4hj0\n", - "4hjj\n", - "4hkx\n", - "4hlz\n", - "4hpy\n", - "4hs6\n", - "4hs8\n", - "4hwb\n", - "4i18\n", - "4i2x\n", - "4i3r\n", - "4idj\n", - "4iof\n", - "4j4p\n", - "4j8r\n", - "4jan\n", - "4jkp\n", - "4jlr\n", - "4jpk\n", - "4jzj\n", - "4k24\n", - "4k2u\n", - "4k3j\n", - "4k94\n", - "4k9e\n", - "4kfz\n", - "4kht\n", - "4khx\n", - "4krl\n", - "4kro\n", - "4krp\n", - "4kv5\n", - "4kxz\n", - "4kze\n", - "4lar\n", - "4leo\n", - "4liq\n", - "4lmq\n", - "4lqf\n", - "4lu5\n", - "4m1d\n", - "4m1g\n", - "4m5z\n", - "4m62\n", - "4m7j\n", - "4m8q\n", - "4mhh\n", - "4mhj\n", - "4n8c\n", - "4n9g\n", - "4nj9\n", - "4nja\n", - "4nm8\n", - "4np4\n", - "4od2\n", - "4odx\n", - "4onf\n", - "4p59\n", - "4pgj\n", - "4pou\n", - "4ps4\n", - "4py8\n", - "4qci\n", - "4qti\n", - "4qy8\n", - "4qyo\n", - "4r8w\n", - "4rdq\n", - "4rgm\n", - "4rgo\n", - "4ris\n", - "4u6h\n", - "4u6v\n", - "4uil\n", - "4uin\n", - "4uu9\n", - "4w6w\n", - "4wem\n", - "4wen\n", - "4weu\n", - "4wht\n", - "4why\n", - "4wuu\n", - "4wv1\n", - "4wy7\n", - "4x7d\n", - "4x7e\n", - "4x7f\n", - "4xgz\n", - "4xh2\n", - "4xi5\n", - "4xnm\n", - "4y8d\n", - "4ybl\n", - "4yhm\n", - "4yho\n", - "4yhp\n", - "4yhz\n", - "4yk4\n", - "4ypg\n", - "4z5r\n", - "4z9k\n", - "4zff\n", - "4zfg\n", - "4zfo\n", - "4zpt\n", - "4zs6\n", - "4zs7\n", - "5a2i\n", - "5a2j\n", - "5a2k\n", - "5aam\n", - "5aaw\n", - "5alb\n", - "5alc\n", - "5anm\n", - "5b71\n", - "5bk1\n", - "5bo1\n", - "5boz\n", - "5bvp\n", - "5c0n\n", - "5c0s\n", - "5c7x\n", - "5cd5\n", - "5cil\n", - "5cin\n", - "5cjq\n", - "5csz\n", - "5czv\n", - "5czx\n", - "5d1q\n", - "5d1x\n", - "5d70\n", - "5d71\n", - "5d72\n", - "5d8j\n", - "5dd0\n", - "5dfv\n", - "5dfw\n", - "5dmi\n", - "5dmj\n", - "5do2\n", - "5drz\n", - "5dwu\n", - "5dyo\n", - "5e08\n", - "5e2v\n", - "5e2w\n", - "5e7f\n", - "5e8d\n", - "5e8e\n", - "5eoc\n", - "5f3b\n", - "5fcu\n", - "5fhx\n", - "5fv2\n", - "5ghw\n", - "5gkr\n", - "5grj\n", - "5gzo\n", - "5hdq\n", - "5hgg\n", - "5hhx\n", - "5hvf\n", - "5hvg\n", - "5hys\n", - "5i5k\n", - "5i8c\n", - "5igx\n", - "5ikc\n", - "5imk\n", - "5imm\n", - "5ip4\n", - "5j13\n", - "5j3h\n", - "5j56\n", - "5j74\n", - "5jds\n", - "5jhl\n", - "5jq6\n", - "5jyl\n", - "5k59\n", - "5kn5\n", - "5kov\n", - "5kve\n", - "5kvf\n", - "5kvg\n", - "5kw9\n", - "5l6y\n", - "5lcv\n", - "5lhn\n", - "5m2i\n", - "5m2j\n", - "5m2m\n", - "5m63\n", - "5mev\n", - "5mi0\n", - "5my6\n", - "5myk\n", - "5myo\n", - "5myx\n", - "5mzv\n", - "5n7w\n", - "5n88\n", - "5ngv\n", - "5nh3\n", - "5nqw\n", - "5o03\n", - "5o05\n", - "5o0w\n", - "5o2u\n", - "5omn\n", - "5otj\n", - "5sv3\n", - "5sx4\n", - "5sx5\n", - "5t5f\n", - "5t6l\n", - "5t6p\n", - "5t78\n", - "5te4\n", - "5te6\n", - "5te7\n", - "5tfw\n", - "5tkj\n", - "5tkk\n", - "5toj\n", - "5tru\n", - "5tz2\n", - "5tzt\n", - "5u4m\n", - "5u7m\n", - "5u7o\n", - "5u8q\n", - "5ush\n", - "5usl\n", - "5utz\n", - "5vm0\n", - "5vob\n", - "5vpg\n", - "5vpl\n", - "5vyf\n", - "5vzy\n", - "5w06\n", - "5w08\n", - "5w0k\n", - "5w1m\n", - "5w42\n", - "5w6g\n", - "5whk\n", - "5wi9\n", - "5wt9\n", - "5wtt\n", - "5wux\n", - "5xj3\n", - "5xj4\n", - "5xjm\n", - "5xmh\n", - "5xwd\n", - "5xxy\n", - "5y11\n", - "5y7z\n", - "5y80\n", - "5yhl\n", - "5yoy\n", - "5ywy\n", - "5yy4\n", - "5zia\n", - "5zxv\n", - "6a0z\n", - "6a67\n", - "6aod\n", - "6axk\n", - "6axl\n", - "6azz\n", - "6b08\n", - "6b0a\n", - "6b0e\n", - "6b0g\n", - "6b0s\n", - "6b14\n", - "6b3k\n", - "6b3s\n", - "6b5o\n", - "6b5r\n", - "6b5t\n", - "6b9j\n" - ] - }, - { - "ename": "UnboundLocalError", - "evalue": "cannot access local variable 'cdrl2_b' where it is not associated with a value", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mUnboundLocalError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[55], line 56\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m pdb_code \u001b[38;5;129;01min\u001b[39;00m labels:\n\u001b[1;32m 55\u001b[0m \u001b[38;5;28mprint\u001b[39m(pdb_code)\n\u001b[0;32m---> 56\u001b[0m cdrl_parts, cdrh_parts \u001b[38;5;241m=\u001b[39m extract_cdr_lengths(pdb_code)\n\u001b[1;32m 58\u001b[0m cdrl1_l\u001b[38;5;241m.\u001b[39mappend(cdrl_parts[\u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m 59\u001b[0m cdrl2_l\u001b[38;5;241m.\u001b[39mappend(cdrl_parts[\u001b[38;5;241m1\u001b[39m])\n", - "Cell \u001b[0;32mIn[55], line 47\u001b[0m, in \u001b[0;36mextract_cdr_lengths\u001b[0;34m(pdb_code)\u001b[0m\n\u001b[1;32m 45\u001b[0m cdrh_parts \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28mlen\u001b[39m(res_l[cdrh1_b:res_l\u001b[38;5;241m.\u001b[39mindex(h\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m 33 \u001b[39m\u001b[38;5;124m'\u001b[39m)]), \u001b[38;5;28mlen\u001b[39m(res_l[cdrh2_b:res_l\u001b[38;5;241m.\u001b[39mindex(h\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m 57 \u001b[39m\u001b[38;5;124m'\u001b[39m)]), \u001b[38;5;28mlen\u001b[39m(res_l[res_l\u001b[38;5;241m.\u001b[39mindex(h\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m 95 \u001b[39m\u001b[38;5;124m'\u001b[39m):res_l\u001b[38;5;241m.\u001b[39mindex(h\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m103 \u001b[39m\u001b[38;5;124m'\u001b[39m)])]\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m l \u001b[38;5;241m!=\u001b[39m h:\n\u001b[0;32m---> 47\u001b[0m cdrl_parts \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28mlen\u001b[39m(res_l[res_l\u001b[38;5;241m.\u001b[39mindex(l\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m 24 \u001b[39m\u001b[38;5;124m'\u001b[39m):res_l\u001b[38;5;241m.\u001b[39mindex(l\u001b[38;5;241m+\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m 35 \u001b[39m\u001b[38;5;124m'\u001b[39m)]), \u001b[38;5;28mlen\u001b[39m(res_l[cdrl2_b:cdrl2_e]), \u001b[38;5;28mlen\u001b[39m(res_l[res_l\u001b[38;5;241m.\u001b[39mindex(l\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m 89 \u001b[39m\u001b[38;5;124m'\u001b[39m):res_l\u001b[38;5;241m.\u001b[39mindex(l\u001b[38;5;241m+\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m 98 \u001b[39m\u001b[38;5;124m'\u001b[39m)])]\n\u001b[1;32m 48\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 49\u001b[0m cdrl_parts \u001b[38;5;241m=\u001b[39m [\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m]\n", - "\u001b[0;31mUnboundLocalError\u001b[0m: cannot access local variable 'cdrl2_b' where it is not associated with a value" - ] - } - ], - "source": [ - "cdrl1_l = []\n", - "cdrl2_l = []\n", - "cdrl3_l = []\n", - "cdrh1_l = []\n", - "cdrh2_l = []\n", - "cdrh3_l = []\n", - "\n", - "def extract_cdr_lengths(pdb_code):\n", - " res_l = list(np.load(f'../data/paired_hl/lists_of_residues/{pdb_code}.npy'))\n", - " h = res_l[1][0]\n", - " l = res_l[-2][0]\n", - " \n", - " # Problems beginning CDR-H1\n", - " if h+' 26 ' in res_l:\n", - " cdrh1_b = res_l.index(h+' 26 ')\n", - " elif h+' 27 ' in res_l:\n", - " cdrh1_b = res_l.index(h+' 27 ')\n", - " elif h+' 28 ' in res_l:\n", - " cdrh1_b = res_l.index(h+' 28 ')\n", - " elif h+' 29 ' in res_l:\n", - " cdrh1_b = res_l.index(h+' 29 ')\n", - " else:\n", - " cdrh1_b = res_l.index(h+' 30 ')\n", - "\n", - " # Problems beginning CDR-H2\n", - " if h+' 52 ' in res_l:\n", - " cdrh2_b = res_l.index(h+' 52 ')\n", - " else:\n", - " cdrh2_b = res_l.index(h+' 53 ')\n", - " \n", - " # Problems beginning CDR-L2\n", - " if l+' 50 ' in res_l:\n", - " cdrl2_b = res_l.index(l+' 50 ')\n", - " elif l+' 51 ' in res_l:\n", - " cdrl2_b = res_l.index(l+' 51 ')\n", - " elif pdb_code in ['4hkx', '5d70', '5d71']:\n", - " cdrl2_b = 0\n", - " cdrl2_e = 0\n", - " else:\n", - " cdrl2_b = res_l.index(l+' 52 ')\n", - " \n", - " # Problems end CDR-L2\n", - " if l+' 57 ' in res_l:\n", - " cdrl2_e = res_l.index(l+' 57 ')\n", - " \n", - " cdrh_parts = [len(res_l[cdrh1_b:res_l.index(h+' 33 ')]), len(res_l[cdrh2_b:res_l.index(h+' 57 ')]), len(res_l[res_l.index(h+' 95 '):res_l.index(h+'103 ')])]\n", - " if l != h:\n", - " cdrl_parts = [len(res_l[res_l.index(l+' 24 '):res_l.index(l+ ' 35 ')]), len(res_l[cdrl2_b:cdrl2_e]), len(res_l[res_l.index(l+' 89 '):res_l.index(l+ ' 98 ')])]\n", - " else:\n", - " cdrl_parts = [0, 0, 0]\n", - "\n", - " \n", - " return cdrl_parts, cdrh_parts\n", - "\n", - "for pdb_code in labels:\n", - " print(pdb_code)\n", - " cdrl_parts, cdrh_parts = extract_cdr_lengths(pdb_code)\n", - " \n", - " cdrl1_l.append(cdrl_parts[0])\n", - " cdrl2_l.append(cdrl_parts[1])\n", - " cdrl3_l.append(cdrl_parts[2])\n", - " cdrh1_l.append(cdrh_parts[0])\n", - " cdrh2_l.append(cdrh_parts[1])\n", - " cdrh3_l.append(cdrh_parts[2])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "894daada", - "metadata": {}, - "outputs": [], - "source": [ - "import requests\n", - "from bs4 import BeautifulSoup\n", - "\n", - "cdrl1_l = []\n", - "cdrl2_l = []\n", - "cdrl3_l = []\n", - "cdrh1_l = []\n", - "cdrh2_l = []\n", - "cdrh3_l = []\n", - "\n", - "def extract_cdr_lengths(pdb_code):\n", - " url = f'https://www.imgt.org/3Dstructure-DB/cgi/details.cgi?pdbcode={pdb_code}&Part=Chain'\n", - "\n", - " response = requests.get(url)\n", - " html_code = response.text\n", - "\n", - " soup = BeautifulSoup(html_code, 'html.parser')\n", - "\n", - " cdr_lengths = {}\n", - "\n", - " # Find the table containing CDR information for the light chain\n", - " cdr_table = soup.find_all('td', string='IMGT domain description')\n", - " cdr_table_entries = soup.find_all('td', string='CDR-IMGT lengths')\n", - " c = 0\n", - " \n", - " cdrl_parts = ['0', '0', '0']\n", - " \n", - " if pdb_code != '4k9e':\n", - " for i in range(len(cdr_table)):\n", - " if cdr_table[i].find_next_sibling('td').text.strip()[:3] in ['V-K', 'V-L']:\n", - " cdrl = cdr_table_entries[c].find_next_sibling('td').text.strip()\n", - " cdrl_parts = cdrl[1:-1].split('.')\n", - " c += 1\n", - " elif cdr_table[i].find_next_sibling('td').text.strip()[:3] in ['VH ']:\n", - " cdrh = cdr_table_entries[c].find_next_sibling('td').text.strip()\n", - " cdrh_parts = cdrh[1:-1].split('.')\n", - " c += 1\n", - " else:\n", - " cdrl_parts = ['15', '7', '10']\n", - " cdrh_parts = ['7', '6', '8']\n", - " \n", - " print(cdrl_parts)\n", - " print(cdrh_parts)\n", - " \n", - " return cdrl_parts, cdrh_parts\n", - "\n", - "for pdb_code in labels:\n", - " print(pdb_code)\n", - " cdrl_parts, cdrh_parts = extract_cdr_lengths(pdb_code)\n", - " \n", - " cdrl1_l.append(int(cdrl_parts[0]))\n", - " cdrl2_l.append(int(cdrl_parts[1]))\n", - " cdrl3_l.append(int(cdrl_parts[2]))\n", - " cdrh1_l.append(int(cdrh_parts[0]))\n", - " cdrh2_l.append(int(cdrh_parts[1]))\n", - " cdrh3_l.append(int(cdrh_parts[2]))\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cb0a6756", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/notebooks/[Tutorial] Predicting affinity using ANTIPASTI.ipynb b/notebooks/[Tutorial] Predicting affinity using ANTIPASTI.ipynb index 3cc73054..d30d3f03 100644 --- a/notebooks/[Tutorial] Predicting affinity using ANTIPASTI.ipynb +++ b/notebooks/[Tutorial] Predicting affinity using ANTIPASTI.ipynb @@ -55,38 +55,41 @@ "metadata": {}, "outputs": [], "source": [ - "modes = 30\n", - "n_filters = 2\n", + "modes = 'all'\n", + "n_filters = 4\n", "filter_size = 4\n", "pooling_size = 1\n", - "n_max_epochs = 552\n", + "n_max_epochs = 935\n", "\n", "mode = 'fully-extended' # Choose between 'fully-extended' and 'fully-cropped'\n", - "pathological = ['5omm', '1mj7', '1qfw', '1qyg', '4ffz', '3ifl', '3lrh', '3pp4', '3ru8', '3t0w', '3t0x', '4fqr', '4gxu', '4jfx', '4k3h', '4jfz', '4jg0', '4jg1', '4jn2', '4o4y', '4qxt', '4r3s', '4w6y', '4w6y', '5ies', '5ivn', '5j57', '5kvd', '5kzp', '5mes', '5nmv', '5sy8', '5t29', '5t5b', '5vag', '3etb', '3gkz', '3uze', '3uzq', '4f9l', '4gqp', '4r2g', '5c6t']\n", + "pathological = ['5omm', '5i5k', '1uwx', '1mj7', '1qfw', '1qyg', '4ffz', '3ifl', '3lrh', '3pp4', '3ru8', '3t0w', '3t0x', '4fqr', '4gxu', '4jfx', '4k3h', '4jfz', '4jg0', '4jg1', '4jn2', '4o4y', '4qxt', '4r3s', '4w6y', '4w6y', '5ies', '5ivn', '5j57', '5kvd', '5kzp', '5mes', '5nmv', '5sy8', '5t29', '5t5b', '5vag', '3etb', '3gkz', '3uze', '3uzq', '4f9l', '4gqp', '4r2g', '5c6t', '3fku', '1oau', '1oay']\n", + "scfv = ['4gqp', '3etb', '3gkz', '3uze', '3uzq', '3gm0', '4f9l', '6ejg', '6ejm', '1h8s', '5dfw', '6cbp', '4f9p', '5kov', '1dzb', '5j74', '5aaw', '3uzv', '5aam', '3ux9', '5a2j', '5a2k', '5a2i', '3fku', '5yy4', '3uyp', '5jyl', '1y0l', '1p4b', '3kdm', '4lar', '4ffy', '2ybr', '1mfa', '5xj3', '5xj4', '4kv5', '5vyf'] \n", + "pathological += scfv\n", + "\n", "renew_maps = False # True to compute again all the normal mode correlation maps\n", "renew_residues = False # True to retrieve again all the chain lengths \n", "stage = 'predicting'\n", - "regions = 'paired_hl'\n", - "test_pdb = '1t66'\n", + "test_pdb = '5cjq'\n", "\n", + "dccm_map_path = 'dccm_maps_full_ags_all/'\n", "test_data_path = '../notebooks/test_data/'\n", "test_dccm_map_path = 'dccm_map/'\n", "test_residues_path = 'list_of_residues/'\n", "test_structure_path = 'structure/'\n", "\n", - "preprocessed_data = Preprocessing(modes=modes, regions=regions, pathological=pathological, renew_maps=renew_maps, renew_residues=renew_residues, mode=mode, stage=stage, test_data_path=test_data_path, test_dccm_map_path=test_dccm_map_path, test_residues_path=test_residues_path, test_structure_path=test_structure_path, test_pdb_id=test_pdb)\n", + "preprocessed_data = Preprocessing(dccm_map_path=dccm_map_path, modes=modes, pathological=pathological, renew_maps=renew_maps, renew_residues=renew_residues, mode=mode, stage=stage, test_data_path=test_data_path, test_dccm_map_path=test_dccm_map_path, test_residues_path=test_residues_path, test_structure_path=test_structure_path, test_pdb_id=test_pdb)\n", "input_shape = preprocessed_data.test_x.shape[-1]" ] }, { "cell_type": "code", "execution_count": 3, - "id": "e8d34b9f", + "id": "4d142318", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydfZxVVb3/P2sYhnEchuFBGRFxRERERFRUNFQ0LS3sWmnZzYq6Zs9lj7fbtbJuz/XrVtfKym5082allTctLS0xySxBSUFBUREVARFGQJ6Z9ftjnzn7s77n7DX7nDnDzMDn/XrNa9Y+a+2118N3fdc6+6zvdznvPYQQQgghhBBCCCGEEEBdXxdACCGEEEIIIYQQQoj+gl6WCSGEEEIIIYQQQghRQC/LhBBCCCGEEEIIIYQooJdlQgghhBBCCCGEEEIU0MsyIYQQQgghhBBCCCEK6GWZEEIIIYQQQgghhBAF9LJM7BM451Y45zz9XdnXZRK1R/0s9jb2RZl2zs0ydfbOufa+LpcQQgixr+Gcu9LMxyv6ukxC7Cn0skwIIYQQQgghhBBCiAJ75GVZxq/EXX9v7EG+s8vkN6t2JRdCCCGEEEJ0h3NuXmS931t/K/q63kIIIfZO+sPOsv9wzg3u60IIIYQQojqcc+368UoIIapH5m5CCNG/6A8vyw4D8I6+LoQQQgghhBBCCCGEEPV9XYACn3TOzfXeb+7rggghhBCi7/DezwPg+rocQoiKuRPAugrSHwpguvlsAYAnK8hjbQVphRBCiNz0l5dlBwL4IID/6OuCCCGEEEIIISrDe//pStI75+YA+JH5+Nve+7m1KpMQQghRLX1phrnTXH/EOTeqT0oihBBCCCGEEEIIIQT69mXZNea6BcAn+qIgQgghhBBCCCGEEEIAffuy7HcA/mw+e7dzblxfFEYIIYQQQgghhBBCiL72WfZxAHfT9RAAnwHw1r4pDuCcGw9gKhI/aiMBbEbiPPRxAAu99529/PyDkDg7PQzAUCTmqqu99/9TRV6HAjgRwDgA+wF4AcASAH/13m/LmcdYACchccK6HxLHrY8BuMt7v6PSMmU8oxHARACTkLR7C5J6rwfwHIB7vffP1uJZ/Y2B0kf0rDEATgAwGsAoANuQjI+VAP7mvbfm1T19Xj2AU5GMh4MA7AbwLIBF3vvFtXxW5Pld/XMAEtnsksv7vPdP9HYZKqUwnk4CcDCSPmoBsAVJuZcBWOK931SD5+xNurLHeTnnjkaix7raYxMSOVmGRF59peWqJc65/ZHo2CORyMVQJON3PYDVSMbv+r4rYe9B47gdyTjeH4meXItkHD+1B8owDcA0JLrTI5GNRwHc473f1dvPrwbnXBMS/TsRQCuA7QCeAjDfe7+qgjxOAnAUgOEAXgSwCsCfvfdralROh0RHT0IyDw4DMBhABxL5fhjAg3tAJ9UBOB7AMUj0QCeSuj6KZB3TpzpgX8E5NxTAyQDakIz3BiTjbTWS8VYTPeecGwTgCKT93YLkYJIXkcjeCgDLvffP1OJ5fcmeqmt/+T4wUHRfxnMPADADwHgAzQCeB/AMku8VlRy+0as45w4GcBySMXoAgF1I+vgpJGXd3ofFEyLFe9/rfwBmIVkc8t/sQtyN5vPdACbnzHd2mXxnVVG+VgCfA/BImfz4bx2A/wFwVBXPmGPzM/EXAbgn69kV5vVPAP4Wqcd6AJ8FsF+kvK8A8JdIHi8A+BKA/auUiWmFMtwFYEc37e6RLDb/HUBrlc9bYfK7spdlfsD3ET1nPwAfBfCPbvpoI4BfATi5Bu03AsB/FcZc1vMeA/AeAINq3c8AXgrg14U27E4uPwmguTflKUd5BwF4C4A/InkBEivzTgDzAXwEwAEVPqcVe5euzJ1XRlmPAPB9AE930x5rC+kOraI9qpJpJF9kXgLgq0hOl9vdTRk7ATwI4L2I6B3zjFnd5Jnnrz1nviXpcpTvBAC/QPJlLlaGB5G4gWiq4hnzTF5zKa4BwIeQnOwX09PfADCiN3VEmXLbcsyhuMOQOF3fmlHm3QBuAjApkv+hAH6A5CV6Vh63AZhSZflHAng7gOuRfMHqTs46APwUwLQqnzfX5DeP4poAfArJy5is5z+FZE6vWMb25j+U0dEsixXkUw/gUiSnccbWlLuR6PxLANRVWeaJAL6dU+48khcVPwdwMcqsx8rIVqV/86qpR1/UNeMZ07Bnvw8MSN2H5Mcem9csij8VwK3Inut3Avg9gFOraLMrTV4rqmz7ViSbYh7spo+3FNr5Jb0l2/rTX96/PfOQ+MuyyWUG9o058+3xyzIkk+vzOSeBrr9dAL4DYEgFz5lj8yl83orEJDX6zJx5NQK4roJ63AegzeS9H4BrK8jjYZtHN+0wBMDSCtub/14A8JoqZHCFyefKXpb5AdtH5lmvQrLIr7SffoHqFzLnI3m5kPdZfwNwUC36GcnC8LYq6rsWwKt7U6a6aa9HqxxP2yt4zt6kKyvOy+Q7FMD3kCw+K2pvJAtFV0F7VCzTSHbZxF7QdPe3CsDMHM+Z1YNndP2158y3JF2kXC0A/hfJC8BK6/3aCsffPJPH3MLnhwN4oIJnrwZw7B7UG/b5cwqfvxHJDog8Zd4C4IIyeb8Byc7KPHnsAHBhhWX/HCofe/x3DSrQSYVnzjV5zCt8fhQq07+PAZixp/q5v/+hBi/LAJyLZAdvpXLwACr8QQfAFUj0eLWyd0kO2ar0b14v9U3N62ry76vvA2XlDf1c9yHjZRmSH8Y+j/zzXSeSH6PrK3j2lSaPFVW0+4cAbKiin38JoGVP6CP96a/c3555SORlWSH+R2XiT8mRb9UvywrK5Us9UNIeySK5Nefz5pS5vxnJL/7dPitHXoMB/KGKOiwA0FjIdwiSnSmV5vEggIac7dDcwzbvUvSXVyiDK0weV/ayzA/YPqI6vBfd70aJ/S0GMLbCZ74G1X0JegTJToOq+xnAGUh29FVb390APtSbclVGh30Slb8QCP72QV1ZVV6U51h0v8uyu7+fI7/OrFimAUzpYfk8koX8Rd08Z1YNntOeM9+SdBllOgjAoh6UpxPAhysYh/PM/XORvHRfU8WzN6CK3YdV6g/77DlIXGBUWubtoF//kez2qlQn7QRwegVlv6EGcnc3CvNqzmfONffPQ/JCNO+OG/7bhCp2d+yNf+jhyzIAH0DP1ikbAJyZ81lfrYHcDYiXZb1VV/OMvvo+UCJvGAC6D9kvy75eZdv9HGSZ0c2zrzT3rqigvYcg2dXbk35+EBV+n9Cf/mr119c+y7r4NJK38UPosy8h+fLaW/w7gH8t8/kTSH6RvhvJbpFWJL8cXozEpIU5A8D/OefO9NX5wvguEjORLm4D8H9IfiFbj8SG+0gAb8qR11cAnFMI70SymPwdkvpsB3AIkh0ob0ZistXFCUhM7P4DwFUAzjJ53FLIY2shj1eVyWMKEv9zn81RTsYj+WXvL0j8dD2GxJRvC5JJ9GAk/j9eC2AC3ecAfM05d5/33h4S0Z8ZMH3knLsEyS9PljVIJr07kPgO2x+JKdprAbwcSd90cTSAPzrnjvPeb8nxzJMA/AylvhSfR7Ib7zYkOz/2RyIPFyL5RRmFMvwoT90ynn06kheZDSbqaSS75P5WePaLSHTCMUhMac+itHUA/p9z7knv/S+rLUsFfAnAx8p8vgnAbwHcjmR30fNIzIQOQOIf4iVIdFde/b+36cqq8yr4ArkbyThjNiMZi/OR6LEXkMjpeAAvA/A6JC/Lu3gdkjZ7X47y9pTdAP6ORIaXIJGJTUjMdZuRLMBPRDKextB9gwH8t3PuAe/9soy8n0Pyqy+QyNh5Jv7PhTQxXsxVixwU/N38AYm+s9yGpI8eQVL/g5DI5T8jrHfX/PKC996e2p2HoUjG34GF6/VI9NodSEyUdiHZ+fcKJHqax2Erkl1P52DPMx3AZXS9AMmXqUVI6tAK4BQA70bYXg0AfuicOwaJGdB3kM4DC5Hoz/uR6KFhhTzeY/KoB/B959xUX7mfzbUA/oTky9TDhbJuRCK/I5DMQy9Hoqt5TjwFyRz39gqfx2W+Hon/PyCZj38F4DdIxtguJOZYs5GMrf3o3mYAtzjnjvHer6zy+fs8zrmPA/himaiFSEy4FiJxCbATiV4/Ccl3jUmUthXAr51zx3vvH4886wwAHy4TNQ/JOu4hJLpuO5L+bS08ZyqS8XxQpCr3Fu4BEmuboyhuC5I1Xowl3cRXRC/XNYu+/D4wUHUfkLTHe+n6EQA/KdRhLZIfkY9DYnZ8jLn3dUjW8ZdX8dxcFPxJ/hqla4PdSExG/4jkh/X1SHT2GACnIVl/jaT0UwDc6Jx7iZcvM7Gn2RNv5NDNzrJCmnJvxl/RTb5V7SxDMmGW273yRUS25iNRLOV8GH0ixzPnlLmv628lcpi8dJNX168Z9wM4MnLvS1C6RbgDyWKu6/o+ABMjeZyGUlv8DcjxKy2SSe8hAO9HTtNAJJPPm5BMnPzMh5HTnAn9Y2fZQOmj9gw5/xEiW6GRfBl5psx938/xzAaU92HwawCjIvedjXAHh/1Vr9t+RvKldpW5byOSxVP0VzckX7ZtnV8AcEgvy9dry7SVR/IiqFs/ZEgWIR9AN78OYu/UldXmVYfSnaGdSPxNDe3m3kNR3r/gq3I8d0UVMn00khdkbwUwPGf96gF8EKU+Y27NeX97mfrNqlK+Z5XJqz3Hff9V5r5nAZwTuacZiT85e99mRHQs3T+vjEx0hX8IYFjk3mkovwPtxGrarcI2ts/sKvdWAG+O3DcUiV8oe//bkRzu0ZXHm7rJ464yeVycs+w/RPLFdDryrwEmI3nRbZ+ZyyQSpbt/uJ8fAjA1cu9EJF+e7bNv6e1+7u9/qHJnGZK5d5e579HudA4SPf4ulPr2XICIDzMkaxFOvw7AGTnr6JDMpT9CN2beqJFvqB72yZ6qa199HxiQug/l51jWQ1ciw7SyIPcfRukuzN3Iscu1WrlEYv1gy/wHAIflkI2ry9z79T09HvSnvz3zkHwvy0ah9MvVopjyQ/Uvy/5a5r5uv8QV7j0NpY4ftwMY3c19c8o80yNZyB9aYXtm5bUYkYU53f/uMvd2fUF6ADlsw5H8kmHzeF0vy9FJKP0id17Oe1eY+67s5bIO2D5CeZ9q38tZ76NQ3in/tG7ue3+Ze25GDp8KAI5FtiP+bvsZya4Pvuf57spr7m9HqY+1b/WibHWdbmTr+s4q8oq2L/ZeXVlNXu80eXSiMnOhIUh2nnEe/8hx34oqZDq3T7Qy9766THt1e+gO+vhlGZKdDfZl+XoAR+d85lVlnnljjvvmZcjYf+Z87svK3PudavuvgjYuV+bdAF6W497RKP2yuoPyeGmOPA5C6Y9Cv8tZ9qrkG8nuLqvTfp7z3rkZbfYECj4zu7l/BJIXA/b+2dXUZW/5QxUvy5D8uLbS3LMQFfhJRbKL3744yPR/hVJfVm/spfa40jxnRR/0yR6paw/L2JPvAwNS96H8HNv19/GcdbfrGA9gQW/IJZIf7ewL7WtQmc9Waw68LY++1Z/+avlXh36CT46z/Zr5+FgkJhI1o2DqNcN8fKf3/gt57vfe34XEkSLTgOSXqmp4t/f+ySrvZTqRTGgv5Eh7DZKXC8xgymNjjjy+XyaPM3LcVzXe+78j+aWBubg3n1lj+n0fFY5yvtB8/AiSl1nd4r1/GOW3dJf7jHmnue4A8Fbv/a4cz/wHElPBinHOTUByIiJzmfd+Ud48vPcrUFq/f3HOtVZTphy8E8kXL+Yq770dG90Sa9+9WFdWnJdzbhASU2jm2977uXnz8InpwCVIFtZdTHXOvSxvHhU8y/fg3l8jMWFiXt+zEu0R3o/QDBxIfI/lNVH6IJLdCcz5zrnxVZRlEcqbSJfgvf8Dkhc4zOlVPLMWfKNQnije+zVITLCZLjPjr3vv/5gjj2eRHFTDnOac63ZdWq18e++3IjGDYi4omO9Wy2WFunT37PVI/SIx7+7Bs/dV3ojQFP5FJC+6OvJm4L2/CckOReYj5dI650YiMTNnrI7cKxgode2F7wMDQvdl8Bfv/ZfyJCysE39nPj6hsN6rNR9DaPq+CMmPupXo748jOQSiiyHYM+4rhCjSb16WFfg6kh0azGedc4PLJa6Sfynzmf0S1B1fQWI6wVxaRVkeKnwxqQU3F14adItP7OLLKfSbvPcP9iCP4/Lc20NuNNen7IFn1oqB0EfWhw4AXOEr8BHgvb8Wiakpc7Fzbv9y6Z1zpyD00QEkC5fufB0x30XyS3OlfAChHvy7r87f2M+Q7FbqognJ7pjewL64XIecX8wrZG/VldXkdQES/2NdbAfwqUofXHixap/9ikrz2QPcaK77tZ4trBGsj7klSHYD5cJ7vxPAv5mP6wC8rYoifbGQX16sTExyztkvrL3NDiS/4ufFfuHqysP+6FlJHs0I/RHVHO/9fUhOeO6iAYkvpGqY572/rYJn/w2lY+vlhR+pRH4+ZK6/XeUPKV831zOcc8PLpBtU5jP7Yn5vYSDV9UZzXe08NdB1X6U/Ftt5DqhunsvEOdeGxD8g84k8P4Az3vvdAL5pPu6PayaxF9OvXpZ5719E4sScGY/Q8WJPsb/YLvHe31tJBoWXEPZXgYOdc4dVWBb760RPqPQLfrlf23uax7gK76+Gp8z1Ec65lj3w3FowEPrIjo/1SJyfV8p/m+shSLbN53kmAPxPJQ8rTKg/qeSeAuea659WkQd84rR+nvm45rtDnHNHotS5/A8KOyZqzd6qK6vJy8rJLd77DVU+/0/muq92EcWwevaEsqn6D8cjdZDdxdwqdiD9FsBq89lpFeaxHZXrTPsjyiBU5yS7J/zFe2/rHqPc/DS/sPOiJ3n0xTqiWvmuaJ4q8GNzXYfSA1FEBoUXi/YAj2rn7aUIf+RyKD/en0di/sW8pZpnDgAGUl1r9X1gIOu+J5EcpJMb7/0DSHZ5MbVeh7wU4aFGzyPxVVYNds10TMZLbSF6hX71sqzA95D4gGA+mbUrpRIKg+tI83HuXwUNvy/zWaW/avytymfXIq9yu3Z6mkfFk5Rzbqhz7hLn3H855+50zq1wzj3vnNvpnPP2D4lJoGVUmc/6I/26jwqn1pxsPv6zr+6EnkrGhzX1e8J7b3VAHrrd/s4458ag9Je8BVU8t4unzbXdLVcLZpX57OZaP0S6sgRrvtzf5STAOTfKOfd259z3nHN3O+dWOuc2OOd2ZehZu6gdUTBF7a+Uk6eK5bXwq7ddmE93zlVycviiSnbiFij3JWtYhXn0lP4wPwEVriNcwmnOuc865250zi11zq12zm0pJ9sF+T7VZHNAheXuoqI5p8CfUGqKaeddkY3VxduQ+IKtlm71ceHHuDvNx//POffpXnS30Cf0ZV378PvAgNR9Bf5UpVm61V2TnHO1nHPsOL2/IFvVYMdoHZJDU4TYI1SyANwjeO93Ouc+hXCXyGgk/kQ+18PsJ6B0O/F9VeZV7r5KB+/S7pPkplufGYbNZT6r5JeVcnnYX/YzKWzR/QKSbbo98RcCAAPlF4b+3kejUNqW1Y6P5UicoPLknzU+JpnrRVU+s9L7ypnezE/eGdaEkd0nqZjJ5nonqu+jGHuzrqwoL+dcM4AjzMefc871dD7qotE51+S931Kj/IoUfPJ9BYkz657O961Ifh3uj9j+2Y7yv9zn4T6EvlKbAIxFctBCHirV80Di7NmSez6tEf1hfgJy1rvg3+cyJCZFPd2NVs0aYoP3vmLTf+/9Jufc4wAOp4/tHCiysfN2I4Bde2De/gqAl9N1PRKn5x93zv0ByY9Cf0Zi5t9Zq8L0EXu0rv3g+8CA0n2GRVXcU+4+h2RdVpH1QAQ7Ts8uvOCsFb2xvhaiLP3uZVmBnyLxjTOVPvuoc+673vueLNbLKVH7xjoX3vvnnXPbECr2SpV0RzXPzqDcYjtGOaXV0zxyrVacc+ch8fFUK/PJPf2lolr6ex/Vcnx459wqhH2cNT7s59V82YT3foNzbiuSE8/y0Ns7EnvjJa5dIKz13luTiVqwN+vKSvPaEztXhwOo6csy59xbkfjyG1KjLLtOYe2PWHlaU6lvFKKcnA9H/pdleQ5fsZT7wrmnd/5XNLcUdHxv5NFtvZ1zI5CYzNpdydVSzRqiqnmqwCqEL8tqPlc4574D4MAKblnivf90rcvRC/TJvO29/5Nz7kokL42YRgCvKvwBwEbn3F+R7M76Y8ER/YBiT9a1n3wfGDC6rwzV6qFVZT6rpR4aiOtrIcrSL1+Wee87nXOfQGhe1ALgEwA+3IOsyw2uaha2XbyA8AugPaEuSsFHW03oyelntcyjO5xzZyJxZpz1Be4FJH4I1iLZXr8N4QufJgDn2WxrXMxeYQD0UW+MDyZrfLTW+Jl5X5b19i9TtTyYpAtb5o5eeAawd+vKSvPaE79g1lRWnHOXIDnpLUs3rgPwDBJTkO0o9VFzAEp9mPRnPWvltZZ6C6hMXnt9Hu0lalHuPbGGaEJiynhsRpIdSGT7GSSnJG4FYM1/zkD4Za4a2a6ljPXGF79XADi0gvQDxZ1Fn83b3vvPOOeWInHkPjYjWQuSXVkvBwDn3BNITje/yuc7xbxfsCfq2o++DwwI3ZdBtTJVbp6rpR4aiOtrIcrSL1+WAYD3/rfOubsQOtt8j3PuG95769QxL+WUaC0V3EBdJO8RnHNDAPwApRPjAwD+C8kvU1FfVQXH4I/3Tgn3efrL+OjJMytZKDWU+exXPXw+Y0/27Q16S+f0F1noD5STk7tQ2/6t2ctA59wBAL6F0j6cD+A7SE7wi/4aXfgSY3139WdsXWstXwNJXvd2PoHSF2UvIPF3+ysA93V3Eqlz7k703KH1npqnRIjVx8+j9HCdnhA1Q/Pe/9w5dyOAi5CYa5+B5KVNFocB+DyADzrn3ua9v6lWBe1terOu+j5QM6rVQ72tg+w4XYrqXSOUY0UN8xIiSr99WVbg4wD+QtdDAHwG1R9xu77MZz1xaGjvrfZ0tH2FixGaHgDJ7od3VmAys6edHu9L9NX46EDil7AWz6xkK3+5+r7fe/9MD57f21gzuN7aii5dmVKuLb7nva/lCZ215N0olYvPeO+vrCCPgaZnbR/VUlaBgSWvey3Ouf2Q+K9lngDw0goPhamFfNdynpJ85ceO9Q3e+wv3ZAEKB3hcC+Ba59xgANOR/LB/GpLDRsrtqhkF4Ebn3Ou99zfsscL2kF6sq74P1IZq26DcWrmWemg9gDa6nu+9f3sN8xdij9EfT8Ms4r2/G8BvzMdvds5ZJ9d5KacIDq4mI+fcSJQ6otSCJ86rzPUKAO+u0LfMQDEVGIjUcnw4AGNy5F/u84OqfGYr8ptgAokpmmV8Nc/eg9iXZQcWfqGtNdKVKQNNTqyevbvCF2XAwNOzVp5GV3iCJVNOzgeSvO7NnI3SnS3vrOL05FrId1XzVIG8c2PVeO/bvfeugr9ZtS5DL2H18aF9eVKv936n9/6v3vuveO/PR2LCPh3JDiu7g7cOwPdqfOrgHqPGddX3gdpQrR6yOgiorR6y47Q/r5mEiNKvX5YV+ARC57eDkCjmaliO0i2r5U7Ey0O5+8odYyxSjjPXN3jvd1SYxwm1KowoYR1KJ8tqx8cElP5ylTU+7OmE06p8ppWv7lhW5jN73HV/w25jH4zeGRPSlSnrUbrw65dyUnhJPdV8/NMqshpoevZRcz0EpSfH5sXWfQuqPNxC1Byr458DcFslGTjnRqPKF/+G4c65ik/hdM4NRekXx1qe9ru3Y+ftwUh2OPULfMJC7/0VSNZB15okIwC8fs+XrPb0sK76PlAbptXoPo/arsvsOD25l37YFaLX6fcvy7z3SwD8xHx8gXOu4lOQvPcbULooOafKopW77+4q89pXsCczVeNr4KW1KIgopXB4wD3m49Odc+V8NnVHJePjb+b6sIIviko5q5LE3vvFKD3u+5+qeO6eZF6Zz2bX+iHSlSmFcfFH8/Hpzrn+eBrTSJS6V6hGz1Y0lgqUO9FxT/lmKidPZ1eaSWGHypnm43t7cLKmqC12DfFEFYfe1HINUc04OROl48LOgSKb28t81i/nbe/9FgCXonTX1czIbVaPDgj/dlXUVd8HasOZrsyxmjmwumup976c0/9qseN0f1QxJwvRH+j3L8sKfBrJiV3Ml6rM68/meopzrqJfJwp2+28yHz/lvV9RZZn2FexW+YrMZJxzEyFl29vY8TESwPlV5GP9Cm4HkHWs+J1lPrukkoc55+pQOibz8AdzPd05129lzHv/CEodm7694Mun1khXpvzeXA9Gz05m7i3KmSNVqmfPATCximdvKfNZb8hlOe4HsNl8NqeKfF6BUrMWOw5E39GjNUSB99SiIAWqmXPebK47EfrmFRG890sBPGk+vsw5V9EJy3uKgs8v27/2RRFj9eie0qE9psK66vtAbWhH/OVrCc65KSjd2Vfrec6urQHg32r8DCH2CAPiZZn3/kkA3zUfn4HSI4PzcE2Zz75SYR4fQei4MCtfEfKcua7UrOubGCC/sg1gfgzAniT2uUp2lznn3oDS7fE/LfzyWIL3/q8AHjYff9A5V4k/incCOLSC9F38J0rNDb9ZMJXpr3zLXI8C8OVeeI50Zcp1KP3F/HLn3DF9UZgI69AD89nCOP9alc8u96t0Ob8oNadw+uGPzcfHOOfsi4lMCj7OvmA+7gTwox4WT9QOu4Y4qpIfCpxzFwM4tYblOcs5l3t3mXNuOoBXm49/388PlemP/Ke5bgHwjT4oR16s+Zl9sc9YPTpygJmv5a2rvg/UjkpdE32xzGf/XYuCdOG9fxzAjebjlzjnqj2gT4g+Y0C8LCvweQCbzGcVn6zhvV+AUpONs5xzH81zv3PuJQA+aT7eDuDqSsuyD3KfuX6dc+6QPDc65z4N4NzaF0kw3vtnAVxvPp6E0sVpWQq/9n2zTFS5zxg7foYD+GEex72FFxb2S24uvPeLAPzafDwZwM+dc/tXk6dzrsU5V82Og7x8H6WO/t/nnHtnpRnFnKBLV6Z477ehdIG5P4DfOOfsiV65cM4Ncs69vnAwRU3w3u8G8ID5+LI8L38LuzO/i1KfZ3mfvROlux4r+sW7h/wXSl8Uft05d1TO+78GYIr57P+qcB4veg+7htgPwLvy3OicmwbgO7UuEIAfFPygdff8ViQvXu26uzfKtLfzPQCrzGdvcs59ptoMnXPtzrlXZsRNcs6dXGW+B6DUtNv6WGSs36g67EGfbHuwrvo+UDtOc859JE9C59ylKHXdcZ/3PsvyoydcidI5+bvOuWo2ugAAnHOnOucq9U8sRI8YMC/LvPfrUPqL9+Aqs/sASnfPfMU599nYDhrn3GsB/Bal26Kv9N6vrbIs+xL2ZNMmADfHnOQ654Y5576LROkCgHzH9D6fQOmvm+92zn3fOdecdZNz7gwAf0JyQhLzPe/9P7p55tUodV7/KgC/KJymmPXMM5Fs9+46calS/zUA8H6U7ho6D8DfC/nnwjk33Tn3NQArkZiO9wre+xdR/oeC7zrnvpNnR55zrtU59x7EF+2AdCXzXSTyzbQDWOCce1vB5LRbCl/KPorkS9HPAGSOqSqxenYMgBtjZkrOuTYANyA1n65Wz1rfS//snNsj/oS898tQuutyJIDbY7t/nHP7F+aYD5iozQA+VttSih7yJwAvms++6Jx7XeymQvwdSH6EAWqzjuiaa8YD+GPBtCnr+ROQHERg0/zBe39zDcqyT1H48WIOgN0m6lPOuf9zzh2RJx/n3GDn3HnOuZ8imQvtrr8uJgG4xzl3d0HXZ65JTP7jANyMUh1vf5Bk7kPpnPvVag6TqJI9VVd9H6gNXXroK865T2b9AOqcq3POXY7SHys9kjVw7QuWrPs/Zz5uQNLPX3Q5/b4W1qtvds7dhcTM9+gaF1WIKNUerd5XfB2Jv4mYvX+3eO8XFH6ZsLtRPolkcf+/SBydr0HyJXwykhNdTiuT3TxUbpq0r3ItgE8hNJebCmCJc+5/kCwmn0IilwcjcUD5eoTHQ38O6UQpegHv/ZPOuXeh9BS9twOYXVhYzkPygml/JKcgvRbJCya7LX4pgA/leOaOwvbs+Qhfgr8GwBmFMXl74Zn7ATgCwIVIfl3seuZvkXwZqcgc03v/jHPuAiS+0xopajKAPznn7gdwK4B7kZgObAYwFEBroRzHI9lBw8+1pyfWFO/9r51zXwVgd3m9C8AlzrmbkbTXCiSnOTYheYk5FcBLkIytbl/uSFemeO93OecuQvJCaAJFtQL4IYDPOOduQrKYewZABxJZbQVwCBIfISej8lNbK+VbAC5HIqNdnAVgmXPuR0jk/Fkksn4IgJcjGUtd6T2S/v5UFc++FuHpZ4ORvKh7FsBDADai1IH1u7z31iSnWv4Vyc4G3h03BsnLjN8D+CWSl5SbkZgHn47EP2I5c9H3e++X16hcogZ47zc6576F0PdNA5KdwG8H8AskP7psRaLvpgG4CMB0Sv8nJGuM03tYnLuRzH/TkHx5W+ic+xWA/0PiU6sTyfiaDeB1KP3hYCOAy3pYhn0W7/1tzrkPovQF+auQrFNuQ9LXDyKZA3cg0cUjkKwTjkPizqW1gseeUvj7vnPubgALACxCok83IHl5MwyJz8ezkLx8s2aJ13vv7a4qrtcm59xvkKypupgO4Ann3BIka+St5rYl3vta/0DX23XV94Ha8F0A70ayDv4sgDc6536CZL26Dom8T0PiX7HcrvFvee9702fip5GsC1me6wB8HMB7C2umO5Ec8LC+ENcKYDSAY5G4dHkJEj0vRN/gve/1PwCzkCzA+W92lXm9r0xe/Dergry+0E1e3f3dAWBYzmfNsff3oD17nFdf5YHkS/T2Ktv760h2clTc50heGvA9V/ayzA/YPqJ7343kl9tqx8eDAA6usLyvRfKraqXPWo5kEVV1PwM4EcmusJ7ohGJ5elO+CuV1AD7T07LmfNY+qyvL5DkayYu/WsiJBzC2m+dVLNNIvlRUW573o/yc3Z7juXVIXtJW8rySfKt9fuHeNiQO/6utfyeAyyuQBysLc6uQqfYy5ZhVK12R8Uz7vDkDIQ8kL/4XVNm3y5C8RKu4zwDMNffMQ/JjyboqyrEJwEt6s38Hyh/K6OhK5Khw/9YejHf+uybjGRfUKP8FAEbkqNNRSF7o5813Xg37Y4/VFX33faBqeevLPLLqi8TNSTVt+AsAg3KW9Upz74oK6jkYyUvtWsiVB3BJb+kj/eXu039Dsmv08UrlweTzCiQ/PL2I5GXp9QAOy0g7DIm7jWcAbEPyw9i7ALjeru+AMcMkvgfgiVpk5L3/BJKjjtdXeOtuJH4mzvW1PWp3r8d7fxeSFyKVtNsuAP/uve92h5KoHd777yBZOD1dxe2/AHCar9Bxsff+l0jko5KdJgsBnOETU+2q8d7fi2SX2P+i1LyjEl4A8KuelCUPPuHTSHYF2dPB8mJNmrKeJV1ZwHu/BskpXJ9BsjukWnYBuAmV6cJceO9/jqS/7CnSMbYAeJv33u7UqOS5nUh20dxYbR49xXu/Gsmuof9FsoirhFUALvTef6PW5RK1wScHxbwSlZ8geSeSOalWuxjhvX8UyZfVFRXc9gSAl/ne3c2xz+C9n4vk0IaetucKlJrZd7EFpTtiK8EjOYBklve+2znUe/8wEhl/qgfPrJY9Vld9H6gZlwP4KvLPdx7JuuyffeLntFfx3u/03r8fyY94Pf3+fi9KXbaIPc8XkOz2fAzJTtOKcc69Bonp9n5IrGS+imTt9hfn3BiTtgHJbtN3Avg5ko1Ty5DI8aerq0J+BtzLMu/9DlRnHpKV3w8BHI7kAIHu/Pc8D+AnAKZ479/jk2OSRYX4xEfHsUhOxYu14TYkPn2O995X5cBd9Azv/U1Ifj3/GEodh1s2IXlJNMN7/3rvfUeVz/wNkl9Wr0KpI3tmBYAPFp5Xk9PEvPfrvPeXADgSwLeRTAR5eBKJKd5FANq893vM11HhBeNEJDsB/4ruX/RtB/BHJCbtuU8rlK5M8d7v8t5ficSE5N+RvLDNs+jcgGSMvBPAGO/9q7z39uCaWpXxh0jMd67vpmybAPwAwNHe+x/V4LnrvfevRmI+8WUkO82eQnkTzF7Be7+pMI5PRFL/7r6MLUHiq/EI732vv+gWPaPwwvpMJLsgu/uh4D4AbwFwpu8Ff4ne+8UAjgHwH4j/yPM0ErOxKT45AVrUCO/9/d77mUheXP4C+X5s80jMCr9WuG+89966nujK/w9IdqzOQfISfkXOom1Ass490Xs/x3sfOwXTPvNOJGuv1yE5GGIhgLUoNcGsKXu6rvo+0HMKP5x+DIkc/xHZL812IXnhcFphXbZHfb5573+BZK36FiTrgi05btuOxDLh3wEc5b0/yXt/f++VUuTkcO/9SO/9OSg9bKVbCj5+/wvJ2vA07/13vPdfROIWZDRKzasvRbKe+5D3/kPe+x9471+DZD39CefcoT2oS/flLWxtEwUKJ5sdi2Sr/kgkW6GfQ/KleUHhl3NRI1xy7PupSBYFI5B8mXoeiV+Zv3vve3VhICrDOXcwki/Bo5GYPW5DsoBbCeAen5yIV8vnDUbir+AwJAu43Uh8Zizy3j9Yy2dFyjAWiX+TUUh0whAkLxheQLIF+eGe7mqrJc65YUh8Y7Uh0WONSPXYMgAP1WJcSVeGFNr9JCRjYyQSH2AvIpGVpwA8DOAp3weTrnOuBYlfvXYkTs53IRm3S5H0VU3HbX+j4PT4ZCQvNw9AYsr3PJI2uM97v7IPiyd6iHPuaCQvhkch+ZV6E5Iv+Qtq9UOKc24uki95XdzpvZ9l0tQhmR+nIpGzTiTzVdd6RgvuPYBzziHxIzcRiS7uclK/Cen6cplPDsup9hkHFPIfX8h/fyTrk41I9MqDAB7dG+bBPVVXfR+I45xrR+nOrDO99/NMugOR+Js7DElfbUBiunZ3LXfW9pTCbqHpSHw7jkSyNtmBZJyuRrI+Wb6nX+qJynDOLQbQ7L1vr+Ces5G8uP2U9/4/TNwfUZjPu9amzrn5SL6HjfTJAS9daU8D8GcA/+q97zWfyHpZJoQQQgghRAZ5XpYJIURvkfdlmRB7kipflv0bElPOc7z3t5u4zyPZ6T/Fe7+k8CPUZiQ/bM40aYcg2aH4K+/9RT2rSTYD7TRMIYQQQgghhBBCiD5ngnM+j11pf+fZxC3FNvro+97779f4MV0uYMrt/O767GAkZRmOZMd4SVrv/Xbn3POFtL2GXpYJIYQQQgghhBBCVMgWAO/o60LUgCuBbd776b38mKbC/3J+CreZNLG0XembMuJqwoBz8C+EEEIIIYQQQgghBhRdm/CGlIlrNGliabvS9+qmPr0sE0IIIYQQQgghhBC9SdcJmuXMJ7s+6zK73IDkFOCStAWfZSNR3pyzZsgMUwghhBBCCCGEEKJCHLQDqQLuLfw/BcDtJm4GkpN2HwEA732nc+4+AMc554Z479kc8yQkzb6gNwurfhVCCCGEEEIIIYQQNcE5d5BzbpJzjv2K3QngWQCXOueaKe2xAGYBuN57v5PSX4fEL9llJvvLAewC8IteKHoR7SwTQgghhBBCCCGEEJk4594E4NDC5QEAGpxzVxSun/Te/4SSfxHAWwCcCWAeAHjvdzrnPgDg5wDucs79AEALgA8CeA7Ap80jfwDgrQC+7pxrB/AwgFcAeDWAz3nvn6hpBQ0D5mWZc86fcMIJFd+3cOFCVHPfnmT58icxatShZeN20nvVXbvCuIMOSsNPPx3GOZeGN21Kw52d2ekaG8O4QYPKpyuXtovBg8NrLv9++4VxXB8bV0d7HrkcdWYvJNfH1i0o/66dYSQ//MUX07CtwLBh6DHbtmXHUUPaZJs3l8/Cptu9Ow3b9mluTsO2atw+nKdtx3rSEt5nx7W2mjj+UYDbeMcOZGIrEHsAs359GrYDhQvNlQZCwa436nD//YvBbbvSOJsFt53NYr/BVJadRgZZ6LnRua2AsINt53N72c7huAMOwB5jw4bwmhvFKhK+tuVvaEijBqdhm8UWcutp43ZmiCAQNjmLJD22JB3rUiAUNU5n9eMQcktKYlXyPCs/XB8O22HC5dhi3JweeCD2eWL6k7H9y/LD9/GQBEL5sTLIfWVli/t77Ng0bHUw6/GSCvB4W7s2iPIkGFw1U3ywxjTTBAZF4hq5AiyEVlfzZHawcTtCDbR9/xFBFFfVqvWgjFRIq0ay+tum4zHa1FSadtiwkXjhheeLnzU2Np8xYcJ0zzKSV80+9VR2nK0n6xKWg6FNphfXrEnDsUWCLST1FcvdCy+EyYbvnwr5ThcKctY4AUK9y+nsdBhbx0yahIpZtiy85vXP+PGV5wcAz5BXnKFDwzhuO9uHPNXberOs8X1WF8XGAj/7iCOQi8cfD695DB1a/usIAGDVqvCa+43DQ4wrbq6nXe83bNtY/sbnngsTsowbWOwarQDRYN9IYbOUC/Rbg+3gMWOKwU2+OYjK6pvYfG7jeJzb/u0a91OmTMHixYuDuIkTJ94xfXr3BxfyEtk+m5srmGvWrQsTklB6zhAAqwt7ZGGXWHQA2OK9mSHFAOVfAJxhPvuPwv87AfwE3eC9v945txXAFQC+hkR0/gjgX733z5i0O5xzZwP4HIA3IPFT9hiA9wH4dg/qkQvn7Yqhn+Kc89WU1TmH/l7HCy54B9785u+VjWNdZfXWJz6ezpAf+3g4ObAynDcvDfOaFQgV9IQJYRy/J7IvWqZMKVtctLWF16tXZ9/D9bFxXC5edzc1ht8itmxL620Xaaz0G9aZGZ4fvoBMnUePDtOddx56zNKladjOUtToDy0N+/Cee8pnwWEA6OhIw/aL+CmnpGH+MmbT8sLStuOoUWnYLvR43X3BBWHciG3U5lwZ+2aXaQ4XIUHn2wcw112XhrlBAGA7Td0lb/SoP0aODOOo8R5aPSIz2ZIlaZjbCgCmttGXVx4MQCj03OjcVkA4aG3n51lhAcCll2KPccMN4TU3in2LlPVlGwgEdkfbuGK4oT7UAfctSseNHV7c5DzMgbBZV6xIw+3t2enmz8/On7vQfrlj3WrXtfw8Kz/8BYZ1sB0mXI5Fi8K497/XvHnZB2HdaocQy8ztxnMGtyvfZ+fRJ55IvyU2NoZfwfiLoZUt7u8vfSkNWx08Y0Yarlv+SBj5s5+l4e9+N4jaRhX4M32+ESG8tDBTOFoicZN5wufGevWrw4Q8cLiiQPDl+PFT3hhEcZvb9Q/Dan3r1jDOvjTpwqobHqPTpmWntdMXV/uyS/ONtfdfnr1es/Xkcs2cmYbPmm568WtfS8NWyFlg7VxA8yqvp266KUz2+lNWFsNrhowL4vglkn00T2fcVnY65CLaaeLu+ZXrsNNnhW3MovqLn1WnEz9xRZrnrFlhHJffLkGOPjoNP2PcUPN8wH3P63YgPhZY5m/5bb66ve7isH14DH3/6uw8PnVleB/XldvAfp/gMWXX++OW/qH8jVdfHaTr/OpXi2HrQ4i14kT7oosU6u20iDXTKMZQeNw554SRV1xRDP5p1+lB1PLlaZjl2n4f4nFu53peM9j+PXVGz+fwn/4sbTH7bB5vp8+kZ82dGyYkodzxk/BdyK0UXo6QLk31fQCr9uKXZQc759/d14WoAVcAC7333b+B3YeQzzIhhBBCCCGEEEIIIQoMGDPMvZnOzmxTgbzmIzETBY6zefBOIftreQz+5YN3P9idHVmmhEDpL8BM1rbmHbuyf5G18H0NdisGP4B/Uhs+PDvDauGfl0w51jyX1sf+msS/2HFx7e4uZrvd/0yUmAjSjgfbPFn32TLytnvenQMAzVPS3+ka+NdC+7CY4MUKxsRMNLmQdlsY/wJp8tjSmO4ms3VjeKeBrcrUKfQTnhkA6zt4R1Rqo9Bif47kRrc/CXLnWLuN2ODoTayAxuwSsuy5TVzYrqEO4F9ybfbcdNb0ic2DOA9bJB6HVv65S2P6jJvApuO6xbqM4yppYhH2qe1fbjvbrlnzb+l8u7NsOgDYvj2dIGO7o3hngd1BHWwz+etfwzjatdVhtuvw4zoobA3hWatYq12+HmHiApsv1p9WTzF26xE1ynjeCg1g/LntxfADi7PnSu5Tu2Mpq99sHrHdabyr0+4aslbnebB5sMq3uw9559FZM6nnbrw1THgrXVtlx5nmXOgdcoj5gLbmjjZ7DkZPSSvQ2BiaaHL7x+ZRThebFvJip1HbrtUQW8ZkLSmBcK1l43iocJyVY9bry83WnZheycLqsLzrf9s3Wcvbk08O0518Iuk0WzleREV2otdxAxlzl1ZrsklsJsXO1bbNxqq79bbbgrgW2ul+1pfCreNjx6ZakndS2rmYx73VAdwklXwXy0vMimh8O/UNWwZYK4FbbikGjRYH2+7Ynctdu5Ot2asQAwXtLBNCCCGEEEIIIYQQooB+gxZCCCGEEEIIIYSoEAftQNpbUb8KIYQQQgghhBBCCFFAO8v6AQccAMyeXT6OfRM8+mh2HtZFiHUJ0IX1pxLzg8YuAawNPefPJz3bU8ljvrbYj4MtB9vUNzxNZ1zbipEh/oiYfyt7H/t3Ykca1pEAH0NWLXzUszmScjQ5fHihLTyv/uCD03DMX1EMfpz14cHXsUMV+dmxU/isjHCfNsSckLCDGHvsal5YmNhHmcUKaJbDEISudVhErGswHqOlB1Kmv0e0tYUniC2az+nS8PTpk4N0Y8aSB4iYUy47iHrD8UUe7BiKxXH7GwHd0Zr6AVlMfkCsfxZ7QiXDae+9N4xjMeGmsn3IRbZqhIvMYy12Epg9aY/TWj3OXcpdHxtrMXdR+yrjkc4h7AcLCP1gxoYXy5n1vdTRkeq3TZteDOL4MO6nngr9OW3enOq7plt/lUZYp0T88LvuCqK2kYCuRAifEMfDpt2k4+vJ1qnSmWemYSu8c+akYW4UexwsKzg7Ed14Y/kwEHTIVD5+cJIRcirz46vDeZTnS/bpafuQx03MdaltntgaKgvrP4tPSzzqqDBuajvp/7l08qk5LnEXKbi1CBnD86+tOAl5Eym/U8caRfgNevazz4Zx5OBssl0zzUj1eNaaAwj1bMy3WV7sWqXWftAGGQdMMV+RXB97KjO762LZ4mUjEMpn7NDwvNjT0fPOG3wiKxCu/9kFrFUBrNNWNU8MosaQHvnNzak+nnbp8UG6cezAz0zUB958c3phKtdMR0RPpmNeFyGE9WWDiZvyox8Vwy2msyfSF7gJl7yqGLZyzNf25HrWOTEf1NVy9tlpuGXp38PIG+al4WuuKQZXmi+d3D72THteGtlTk7u8Fw+BEAMT7SwTQgghhBBCCCGEEKLAPv+ybNCgQZg2bVrxb0WZn7TmzJmDww47rJjm1FNPBQDMnTsXdXV1eOCBB4ppp0yZUsyjvb0dxxxzDI455hhMnjwZV1xxBbbHjisUQgghhBBCCCHEgKFuL/gTpezzZpj77bcfFtEW3Sy++tWv4sILLyz5fOzYsfj85z+Pn//852Xvu+OOOzBq1Chs3rwZl112GS677DL8+Mc/DtLUYxdaSg7bTZgypSVNF+ktax3B7/zYTMCaMPG13abO91lTA94mHLN+5DythR1vHbd5NOzakl7w/vyY/ZHdu8wPt43HheGCVLOfvTtof3tn+/ggiqsTO4Ket8gfcUQYx21n84gdSc/XbAoWO1LcygGbpT1t9mVzuaZNS7fd19k2tiZHTN7+4ArEzA/N9vwt9en4shaCvAOd6xYz07Ptw+MwZsrM1XzqqTBd81FpGVtsJ7JcV3sWfK1hWwwgHGt2HPIYNUqAi89h209sxWt/i+D7Yta5XKxYEa3pypFHpuGDDkrDtpt4HFrzixhZJl4xU+nRo/Pnv88QmQQbaPBNmBAa37Ba4SysHLBJ1rJlYQfH9Gdg+jR3bhq+9dYg3UqyJbTacgeFO0wc1/RACrebdJOPOSa9eO97w0gyMXp825gg6uYb0/CECWRmbkzNXsFrp2uvDeJWk6I98MMfDuJYzBte/er0YsqU8AE0EMeff36Yx3Gp/mSday0JGTuPWut9phqzZys/xx2XhidueyCMnDsvDZMpGB57LEgWtJV94GmnpWHbdgwLq/X7wZOZrfSaNWnY2CdOpsq1z0rlx675+NqaKlaDraa1/q0G1ut2nmBPENZcn106PPdcGMe6nE0cDz88TMdiHVsy5eUlLwmv7bSdxelT1ocfcGEWr0jDNywN09HEPebKK4Oo+xalY/SWW1A2DAAXXZSaONrvK6d+bVb5AgNBB7AzjCYyyQSA2ylsTdp5NTX1Bz8I4tqoDepIyY83/nV27UpNxK38sBz0xteQlg6qEZusAsHccx8tQG0b8LWRgmBOOd7EdVnkfqa7QgrRT9FLxB4ye/ZsLFmyBMuWLYuma25uxtVXX40bb7wR69dbNSOEEEIIIYQQQggh+gP7/MuyrVu3Fs0rX82/XBo++tGPFtO98Y1vLH5eV1eHj33sY/jCF77Q7bNaWlpw2GGH4dGYp34hhBBCCCGEEEIMCPrahFJmmL2DzDB7aIYJAP/8z/+Mz3/+83jiiSe6zcfz0VhCCCGEEEIIIYQQol+xz78sK8db3/pW3H///RgzZgx+97vfdZu+vr4eH/7wh/HlL385mm7Tpk1YsWIFJk4Mj03Gtm2pUyRjyN4wNr1ubg6PRA/LYJ+VhtkXhPWZEvOnEvNZxn4XOM76aoj5AmJ/MPZchba2tK4NXAHrdI0N/W0hY07e2CkAny3fG0TOgWa/C9ZnBPtA4iawvjf42rY/+9iwflIann48DUd8v7VQW02fPi6IY/mxR6lzs7K8HHDAgUG6upjfuZhDPIZ9qFiHDyQHG3eFY2g1+SKzLr5efDENDxuWnY7rGfNVYqvCMs9Ftj65XnghDU+YEPoMGj+FbrT1toXZU1TiV43SbmwO67aI/NY8+GAathbv7DLFZh/z18jNxeNwiDnfnPOwrnrY1RNX245R1nU2jzFtnemF6fymVuOYpcCO+lCOuYnrVq8yqWvgrGegwwPRdgAJwkTuKMO2GWmbP/xwGMc6gccrEPq/ev75MI7lbhf5z3k8TBZ4NLVu7HjU2J5eQWGu2WTr+PLyy4vBHZe8LYhi92mLF4e3zZuXhnl+sVPvpI+fWgyPvzgcpG3sh8vosC2kwxr4x0irhHncGAdjE6dPT8PtqRLeti307MU6fvhwZGL1eGyZkQUVKSnXrofSC+PTDXfdVQxuoR92O0yeOzLCADCKlVjMWRK368KFQbJt995bDDdax1vc5lYJk7PIJhp7p88IG2HLrrQ/eLhWix3K1fiWs0yelOrqjZvDPRgxP748FbNvMxvHc1nMx6ldL9eibrn9ZMXW4Cxbdh1AMnjf8pYgav78NPyPf5S9BUC4RrZz7KhRI4phu9Zt4rKQg+dm47OMR8YWhKzISAcAO+64oxgexwrfCPJE9mFmK8cdsNSs3dpmocd86UvF4K7vfjeIeiAj3GGy4OsRJo6bfKp99pveBABwv/1tN4UUon+il2Vl+BEv3nIyZ84cfOUrX8EmfktFbN68Ge9+97txwQUXYHhsJSaEEEIIIYQQQggh+gyZp+aEfZZNmzYNO3aEv901NDTg/e9/P9auXRt8fuaZZ2LKlCk46aSTMG7cOHzve9/bk8UWQgghhBBCCCFEL+DQ9/7G5LOsd9jnd5ZttnudyzCXj3Qn5syZgzlz5hSv3//+9+P9739/8XqF3SudRcQMk7fqjp80KYyj7rNRvMOXd8hbyyw2A7G7q/na7qy35iRdDB4cXvP2cFs13kZtt5E3bKYTQ7vaxoaB0GbK7m9nrG0bw43VGyaZ9Oy6beHm7gZq2La2cGs678rmsN29PaIxzdOa6nIbN2zbGMQFHcyyatuABGjM9NC+oK0t3Yxty8UbKFkurCw1xExE8mLPEc9gs5H/WNdzObn81sxq+/Y0bMcQi6utGsfFTJjYgsC2cUDMjnpPYnfXcuNZfUsDv3FUaIaZJQoxCywbx9c2jvMfObJ8cW06q6fY1IdNq6xJC/dh3S5jJLWuI7uQLNcUbjDmmZ28xMk5FvYprG0tw+PEzi9kTzV1UioIra2hCR/LTGwetbA8LeJ7TDqWGLuYZY3fYuJYA4zniJkzw4QkvNYEjpvErh9YXLmeduyymdX4i2eEkXywkrFv7aQHdpIJYidC6tnvrJ3rQx8AxeCUKS9DFlZ1ZlmaAXHRyuLgg80HS6hhrQ6gMjcdckgafuqpsIwZYQChorI2almLi8MPD5I1sunulClhHmx3OMP0LytGasjO+nAMraMmqIUZpjWV5vXIqaaIeXlkefZXSZYLO05iniZ43LCZs82D13LWCpbdAeTFLpdNd2dD5rgAQuW3//5p2MoZVeCem8MoHr4xfRnTMbyEtWawbP7LsttoGm4i+XuwZpjcHQ0mjkfsLqpMPY1XAOFCY82aMI7HodUBs2ahx5ASXm6ieIsHN7/9dtxK4XEmLnAudN55YWRX+f/852gRheiv6CWiEEIIIYQQQgghhBAF9LJMCCGEEEIIIYQQQogC+7wZphBCCCGEEEIIIUQ1aAfS3olelvUH6upSPzN5j/UGAht360uHr9kU3qZj237rYo3jYu6Q2JeC9cfAz4650ilxr8QPj52LzQ+0D+D7YhXnNrcVqAXks+ORp0OfYnxc/YsvhrdxsZrqU681jcZfDtalcjFkSJg/V6fBtg8/gMPW5wv7pDCONPi47uXGEQInjfm/O/LI1NuB9aOxdWsaHl3iqSblgcXpFBUbQtYfRsxdGsexuETcbpUcZx6D8+Suifk0sWO0sTHt7/Yp4YHddZUUppYcdVR4zRWylSNnXtZdFIvh7t3Zj7P+SZgsEQfCsXfQQWnYDhPWYbZJ2RcZ+yGychz4KbMF4QfYymQ4bus0S7LAF6J1dmMdqO2LDB2ahm0HxwYfCyUphHHc8QA2b07749FHwyxi0xfHraLP15t0LAVNJo5ng8ij0HTOOenFxRcHcY80prrjll+H9y1cmIat/uHrDRvSMPtJBczYjilo8wCW5MAvUJgDWsiJ06h585AJjYUxpg+5M1ZhRBCVNRcAZfyP5WD08w+FH9xMTpxuuCGMIx+QW6ggdjZsJjmut2OendrmnRdifl5tHE9SdiHAjUeTZ93o0UGycSQ05557Ur4yRrBunmIubfMycULa6us7Qh0cW0bG/F6yus5atwOhKzjrFvTEEzMKHOHss8PrpuUPpBcHGJ90zJ13ZsexLj3yyDCO/IONHBl6vMpadlsxY59udi3Hj7bfJ0aNSrXkqRdcUD5DABPIZ9njpiw83laZOC4mV2XqrbciEztP8xjN4Uu7UjZT3cxSK6gPP9kurVopbH2WjWOfhuTLGwBw4YXJ/+98p5tSCtE/0UtQIYQQQgghhBBCCCEK6GWZEEIIIYQQQgghhBAFZIbZH2hoSPdfx0zlIvZGdrsyb0PmE5xtFjErT8ZaLPAOYs7Dbn9mMzq765jLzEdHA0A9HSs+dmxqItJqdofXdZDBin04mRts2Ra+F2azEDYfsSc9j4mY/uVlVUdqOGPbgLvXWkc07dqYXtx2VzFYt317mJBMV0bzMe1A2OF2rzsfAc62NtYejvOYNi2ImnrppXQ1Jojjvn/ssTQcs+CwJgpDhqTh0ca0h+Eix8ZCDHvS+YQJaZirbWU1lj/H2XLxUB80KA3b5mfuvz+8pp31JaZPY8ceWAy/7Oyey3Fe7usYH1zHTCGX356GrYlXhgVcGVPU7LKw6MZMKI8+Og2zSSYQ6sUpRv+cPoEMGJaR+VHM1MwqU8YqaK445VFnK83CZUxLAvOOfRVWvBmmrQBChQOE7cr2lUaRT6Y+3XZOqAdZv40cGWbP1qFjf5SGQyPA0OTFxjW/613phdH/bQsWpBdkevn42NODdPNoHP7jH2H+PA6t+Rc3JU9LVtexzvzvueFc/LaPfzy9MLZhk7/4xfSC7dKWLAkfwA3LihsIJxVWHnacUGXGWBu+Uel462wP3SDUrSCDrQPakYvbbw+vr7mmGFxtGpkMuIMFu5XiZrZVtzZ8MVt11jEcXrMmTEemriWTHne4nUjZLJPDdrJ/yUuKwelv77kZ5smHGGO5YNzHDJYjzJ9fDI6YOTOI2rErlWs713BV998/jOOmi3UTw+spIPSUcfy0fHnYteh4229ZnHFGeM2LZp7njC7qbG4phpdcGWbBc2zMbD221uI8Yt9lVq5Ox+84YyraRAu9A81CL8skHABWUHgLh3fuDNJNvemmsukAYNTSpcXwRqMDWtBz7qbwUhPHZv8814wx6Q6k8PH2yxJ/F+gyuyzw5/nJ2OgF69J+hYN2IO2tqF+FEEIIIYQQQgghhCigl2VCCCGEEEIIIYQQQhSQGWZ/wPt0+3Jsn6o1H6G93rFD1GKHfWWZglnsfVzMrIMlu4Pvs1vTeSt2NM+IDRZvi48dcsnWC3lN9iqB29VaR4xvo83Y1v6O98kvW5aGbWfnlRnbkGwDxFhbG7YTsA1E29an2uOVqG/22y/tC2v9EpPPvMT6LSbjbHJnD29iRr+YmtpsnhCaGXKZrfkRW/3EzDDZhJJNKgCADw2zJ6batExfbXm3fRE7VTd26G2Webc1ZWNsndkU2KoKzj922mZsCGXa2VpB5oJYuGCxk+pymuTL7LIMbJpnByILjY3ja7YztLqTFHtjY2i8EjMT5i5lQ2lriRScPHbeeWEkn2xp7YRZedBxesvnZZfDimDsJOC8OoaHgzVjv2/a8cXw8RcbE0qeE3k+fP75MB0rdluorDFqj9NjIso6agKdFzvHUhmtyRWrnAaeKOyiiU4bLDH15uuYLw6um12snHZadhz3jXHVEOTJfWPbkSZjdo0BxF0wZNIbpwDTJLVxc7jXgJvRWN/ldhUQc9vAFtVksVdCXjNMtqoFgPFtkUIy1t8D9TebWtpDabnrrSsFbjvWP3ZNwO1orUZj7mYYbtdxPGYA4Pzzi8EDzeJqGrktsZqDlzU886816fh6hYlrIJ3QYeJegZ7DImNPW2bTfp5rrGFuoJ3tiZdkuv74inBsdMl1557zBiJETdknXpbNPOWEvi5ClCFwfV0EIYQQQgghhBBCVIjM9fZO9omXZfO/Ob37RH3IOz6/uPtEQgghhBBCCCGEEKLX0UtQIYQQQgghhBBCCCEK7BM7y/o9zuVz9lWBQ6cs9zZDhoTp2HWGPQl4v/3SsPW5kOUTzfokykpn46zPoKzTzK0fh9bWpmK4mcIAsJnS2vvYJ4Y9QpsZ354dlxd2dVPiu4Ifbh05sL8WjrOOHNgZhO0AvrYPZ8Fg/x7WERb7h7GNRUepl/gIIecTo0ZNzCwGF9GKeF4feOwjxDYBP89Wjf1jjN5vYxjJQkMOOCZemO1ca9f0EUEUlz/ms4y7NDbMbd04T+snJSbXvclTT4XX7OLE+knh/rCuhrg+3FbDh4fpuI1t/3Ie1tUKu/FhN192eHH+hx8exmHJijTMFY8pNAuPG+tshQtDjbCjPtR1DXyb9VckwnZ89tkwjn1X2UHKcTwwra6jvpkwa3JWFI44IvM2sCfEUIsAeNe70vAFFwRRK9tPL4aXLwpvm37aK4vhxRGfRzFXVRwXc3fF4yTm4zTmi2nnztBj18mzZ6cXjz6anUlWQYCwAhxnlRFP1HYu5vtsA/E8bf11ZWF8rnWSomqyaXmSOu64NGzHOT/blpEdOsUczcUccLKStI7tOE/2D2jzyfJfZq5HD90SxiGnPy3GToAsvDEnYjFIDqyM2/k369FWPFk1cZPYeYjX7jauGvdsdj6M+pNjTN9vqU/H7DoaCtYFb0zsuPyxunAbx/yS5fWtOOncqcF1wwXUqaaRR5FfxFELFwZx66hgvIq0j2WRsSuCVZH7agH7KbPzC3s5nUHhZuvTbebMNHzppUHUxtbU29mi28PbupY/1fokFqKv0csyIYQQQgghhBBCiCqQB/K9E5lhCiGEEEIIIYQQQghRwHnv+7oMuXDO+WrK6pyD/9tlvVCi2vGOb67A935yS18XQwghhBBCCCGEqBnTTzoJCxYs2Gs3X41zzn+srwtRA94HLPTe9++TEfcw2lkmhBBCCCGEEEIIIUQB+SwTQgghhBBCCCGEqBAHYFC3qcRARDvLhBBCCCGEEEIIIYQooJdlQgghhBBCCCGEEEIU0MsyIYQQQgghhBBCCCEKyGeZEEIIIYQQQgghRBVoB9LeifpVCCGEEEIIIYQQQogCelkmhBBCCCGEEEIIIUQBvSwTQgghhBBCCCGEEKKAfJYJIYQQQgghhBBCVIiDdiDtrahfhRBCCCGEEEIIIYQooJdlQgghhBBCCCGEEEIU0MsyIYQQQgghhBBCCCEKyGdZgdXPb8HlX78b9z78HIYMHoT2g4biGx86Bcde8ktMOrQV23bsxtCmwXjPhUfjLa+cCACYe/MyfPS//oaDD9gf23bswjtefRQ++IapAICrf/UQvn3DEgyqq0PzfvX4/r+djsnjh/dlFYUQQgghhBBCCFFDtANp70QvywB47/Hqj/0Bb3nlRPzs82cDABY9sg5rnt+Kww9uwf0/eS0A4PFnNuI1/3obOjs93nr+kQCA1589Hld9dCaef2Ebjrzo57jwrPE4ZHQz/vllE/DO10wGAPzmzyvwoW/+Fbd+8xV9U0EhhBBCCCGEEEIIkQu9BAVwx8JVGFxfV3y5BQDTJo7CIaObg3TjD27B1y+fgW/9YnFJHiOHNWLC2GF4dt0WAEBLc0Mx7sWtu+Cc66XSCyGEEEIIIYQQQohaoZ1lABY/tgEnTBqVK+3xR47C0ic7Sj5fuXoztu3YjakTRhQ/+/b1S/D16x7Ajp2d+NO3Z2dn2tkJbNuWhHftCuPqqYsaGzOzuPue8L3nU0+l4YMOSsNdj+li9eo03NERxm3dmoZffDGMs/lkFZHT1RtpO/bYNLx7dxg3c2Ya3rw5O49mep/Z2lq+TACwaVN4/cIL5fO35Z88qTM705xs2Zb2TRO2hJG33pqGH344jONG4Y6aNClMN2hQGj7nnDCOK2QbaPnyNDx/fvkwACxdmoZXrAjjuCwTJoRxbW1p+KUvTcPnnRckW/l02j7cF0Aok6fOyO6Lv92b5jF0aBjHxbLyU3fzb9ILW28uzIIFafi97w3TcfufeGIQtWXsxGL4xhvD27hrpk1Lw3YccrfZ5rftxbDIXHZpz+U4L3+aF+qiWPlHkdq1fbNuXRoeOzYNL1oUpuP7+B4gbEubP5eL829vD9NxP9k8JjauTC+efjpfQew45AdwQWxaCm/c1RQk43JZ+RnTtuf6vr+yY1cqkw0rHgkjua82bAjjnn8+DWcNWCAQmvsWNwRRnL2Vf+63t31janoxa1aY8MILi8GN004Pom65JQ3zvAaE6pl1RUyNW53Cc6xdnjA819s8+Hk87dj87dg799zycU33/ClMyA9kfQwAhxyShnkus33ICtMWhDqqs21MEFXXsT69iC1CGJ5PAGDu3Ow8WEh4MrPpuMx2ITMq3/o26MT77w/jBg9Ow83hD8lB+9u2Y6Hhzrf9dOaZxeBDK0L9Vs06rNPsBajbtSO9sIo8L6RcN9aPCKIiy/OgWa1+5mmDm8dOITt3puFly8I4FoWvfy1fW33n6rB9TjghDZ98YnYeDy0N72NR5jI/+mh4H6/L7PcHFpmYGDMjR2bnH1tLcFtZUW2qJxmxiuqOO9LwY48FUZ3/+Z/F8Eb6fDVCJpEums9f0gDcR+H1CLnSfkGqgu/TeDOrDNDXLbS8+tXphdWR9MVs1aSzgiiWazu/dLV5bL0qRH9GL8sqxPvw+ue3P447Fj6LZSs78IN/Ox2NQ9Imfc9FR+M9Fx2Nn/5+OT73o/vw40+fCSGEEEIIIYQQQuwdyFxv70T9CuDo8cOxcOm67hMCuP+RdTiqvbV4/fqzx2PJzy7CXd97FT78rXuw+vktJfdcfM7huPHOFTUqrRBCCCGEEEIIIYToLfSyDMBZ08dg+87d+MGNqRncvQ+txZOrQ9u9Fas24SPfugfvu2hKSR6nHDMabzr3CHzzZ4k/s0dXpvYQv/3LShxxyLBeKr0QQgghhBBCCCGEqBUywwTgnMOvv/wyXP6ff8WX/mcRGhvq0X5QM77xwVPx2DMbcdybfoltO3ZjaNNgvO+iKcWTMC3/+uZjcfybf4VPzJmGq65fgtvvfQaD6+swfGgDfvzpWZnP73SDsKM+8dFQb2z065D6DmC/KwDQUJ/tV4DdSzDW1UTMlYVNm0Ve9w/WT4H1g8awbTu7vLA+U7iMMf8GFm6fSu6rhsBPmXVEwY1nfZAccEAa5ooefnj2w2yncYPZjmKfYuwriZ3JAWED7b9/GMf+YKzPMu7w7dvT8OrQk0Mb+YCJuXqKsd9+adj6smhYtyq9sG0QEy525MN1mT49Mw/2UQaEbtCsry3u7pjPKX5czO+WjcvbdrXGjqeYHhkyJA1bncU6gEXG+sNgkWQxA+I+lrKweop9xZTo1bbWNBxzfsiNYJVuzClaTh9IXGYzvDCmDfs8i+lMnilTwjHawP3BDoSAULGwMNn+DQQt9FnGSe1tLP8ljjUz8rd+X2JzGefPRbQ6kqcCK/8sgjaOr3mcxMQ4qHMkDxvXtI08+Vh/QjF/gUcfnYaNr6EAVphWadF13bq1YRwPuLw+y6wS4/LbZ7NjJZ6TrB6JPZs7xAoQx3GYnd3a/G0ZuaNsuVjwuI1tP2XcUi3PPRdeDx2ajsumyNo5xo7m1E/ZZlP8WJlZrm3zZ/n6s/N3zP+vdXWZB+v69rjj8t03eezG4Lqjo6UYjrUBd7fVAQy3lRUlrrf1TcviacsR08HMDtLdDXY9G1lQ1dEY3UVj27ro6iA/ZTY39lM2ArWHR2yriWvhxuSxbcc5TRQxNZL1PbNaV4FC9DUS3QJjDtgfv/jC2SWfb/3zv2TeM2f2kZgzO31xNuaA/bH6ljcBAL754VNrX0ghhBBCCCGEEEL0Cxxkrre3on4VQgghhBBCCCGEEKKAdpb1A+p270TD5sImXLtHmPa6NpRss0+7z57wy7v6eRd/A3YE6TZuS7cdWwsU3nVsH81xMTMo3m5tj7XnLdZ223TWlnO7jZe3+9ZtM4crUFuuXh2+F2YrCA7beo6rYnu75W8Ppsegv/jiuCBu0vT0eszZpvy8z5mPvLd702P2dnkbj/O052lzo9it6XSUdBA2z7v7nrT9F98cJstr3XTqDGQyb17ZxwIAWltTM0+7PXxs+2uK4eNnzw7iVq1Lx8aYC1YWw/etC/uQm2TBPWH+t96ahq3lDZtBsImCtTDisWDHKI89ayJoTZr2FOZE9KD81oyL28TqDhbrmDUxWxCw1Zy9L2YZGTPh4Gtr+hGMUQ5bQYudV09pO83vV3W7SF+TkLQ0moakRhkxqsMUsgZKbIDDY7Q413YRM1F79tk0zAPMDmYyxZsy7aQgimU+Yt0HPPNMGr7HKBKysxpjzMBHjUrNoOz42r07DfN4ssXnsWet42Jjg5+3dWsafv75MB1bKlozYR4ORx0Vxh0/gUy+vnFVGr722jAhVWi9UXytFGb1GWrx0Cyq9e1vDyN5fmSbVSC0r7/mGuTiAx8ILh+nRjnwppuCuObTTksvWFZHjw7z5MazC5mY7Rl3InewFSYWILvm4IlpivHpy2lvpsmfbaOBQPCmzpmTUdj8jHbGXLYx4nMkJ6w7mptDY7lY0/GcyGMSCOd7Hht2rLEOs3rELF1ycVb9n8MPPn5jGv7a17JvvPzy4PJU6qtpF59eDNvyc3fbdQy7ZOE2sObiTCVWwqzWWb/ZtQQP84bNHWEkd9Qf/xhErSX983f63IgBHqLw4yaOtXorag9L6w4Tt45cAIzi7xp2rUJjud6oQTZ7tvNL1212XAgxUNDOMiGEEEIIIYQQQgghCmhnmRBCCCGEEEIIIUQVaAfS3on6VQghhBBCCCGEEEKIAtpZ1s/obGwKruusD5UMmhD6uxo7Ns2nYXXqb8k6DGkhQ//JE9qDOPZnZn0AcDYcZ/2dsE8A9ktgsf6VOJ9hw9Kw9ffAfgrqW8O266Ay2mPE2Y0G+0/oDZt6tt+3J9ezGwTuM3s9dQo1ZCW+RBjroCHrPO0DDgjT8bX1YTAjdST2/bkNQdSGDWn4H/8o/zkQ+p6w2ceOGGe4D62vjJgrKZbjY48Ny8/+r17/+tTDjR2SfG3ljP342Gdzd7CbiPnzw3TcNXZ8HXxwGj7kkDCuxMXhHsL6HuP2saLL7WXHBsNtZ30ese+3mE+omBsxcglVIp+sc6x8YmmGkrGNT9cb0RJEdZDslroVTGUyuMuOcxZ66zCEKydK4QFmO4D9lPEkZR3zEQ3GpyRrlSlTxps48h7Dgmx9TLGfLFPGmE9AHnssMnaMsl6xOobziPksY6x4crpBg8I4bq4SncWyzEreyjj1jfFIB64O37XKpOOqzGJnk0CoaM0ipPPee4vhupw+yxYZJcbeu9pN2ml33VUMN7NzWusbjOdpKz/VTAYx53Xk4whAOB5sBy9ZkoZ/9KM0e9MGga8knjgB4F3v6qawZfjZz8Jr9qlqnfzmhRZsjcY3YWypzv56rYrJ8qFl55qzz07DVqXX3fCL9OLCC7MLwli/ZCRnUZ9l7HcOCAraRAN9+vSXBcmy/IbZOBaL2HrcfhfgPKyvM9Z3vA6w+iwzQyD7SwOAjZyMszBZssSPN3Hs8bfVLuZqAHsbtl/8g28ePNdYv4ikV2zb8fc723RdaaPtLUQ/RjvLhBBCCCGEEEIIIYQooJ1lQgghhBBCCCGEEBXiCn9i70Mvy/oDgwYV9wbb7avNow4shq2J1+gDOovhletCE77wJO/UhKzFmIjsqE/vs8c5c1ms1QNvleYd/88+G6bjrdJ26zXv8LVmIbzNPLYVm6tjd//zfXbLdlaesRPWq4XN+Wz+XH67dTzYAc0dYPcyZ3UGEO7rt8LF97EJhDUxitnPkunHpEmhWQLL05o1adgWn00tY1ZQMbjasa3eMesma/bAVi2jt5Mp85HjgnQ8Dg86KNysy3naMcR1zbKIBcL62C7kcWPj7HjYU8RMwawOY7mw5pUMWwBZPcI6h8caEJpc7L9/GMftGrNS4vpY66Mm7kQWVtsI1KnWHDSGHQ/l8gMQmohYm3aBlnpyU/C0EbS8HcL9a+bRmP1UJ23gX740iEJra2qkOebBB9OIoUPDhKw8Fi8OotraUr1rdQAXhUXSjkMmNn6zzGuA/DrYVo11cElXsFI49NA0bJU1TZ4TFi7MfHYDjY0DTVwnX8RM2UwD1cUUVwYjzDXPGltM3AoKT7n+eopYESZkHTBhQhg3a1YajnUO183mz8rPLtg47TPPhHEkr1uorWw9g/xja4682AUtl7FaM8xHHy0GG6ZPD6Lq69NetPMJqwer03me5nDMktZWbRy5w8jN7NnhdYmPgQzs2GDZogFspyG2ZDYqLFMkK/Eqwti2Y7HmdmTdAwBNKx5KL6wpNpn1dpDpNQDQXYEZuDUJ58c1mTjyyIJmswafhJ5zH4Xt1xzWhTNsvZnnny8GJ34kLFU9fZe0KrFr3vC++3IK0R+RGaYQQgghhBBCCCGEEAW0s0wIIYQQQgghhBCiCvrIoEP0MtpZJoQQQgghhBBCCCFEAe0s6w/s2FF0xNNinR08nTroGW3PiyZsFPsAaGmk4+k3G4ckzamdufVVwv4CrA06X3ORrauJmC+m4cORCdfH+hVg2HVMzPWMjeOyxPxJ1IKYzym+JncAAML2Gc2NEOsoW9Esx1j24ewswzp+ivnqId8fS+eGURs2pGH2M2V9TsV83cT81TFcFXvqPLtXYf9oQNjmduix65UJE1I/ZYuNS5y2tvQ3B+uLY9myNBzzv8FNbNuAu9B2L5d52LAw7qCDsp/Xm9hyxMY5Y8cG931sXLLOsfonNjRYLjj/mAxaGRk9ij7gh9mxRtdWpq28MpltF3MsZX0GiVDp2LbjTrVxfM060nYaOeLasSv8DZKzsLovSEfhHcY53qT//M/0YtGiIG7qFVcUw+1nHx/EtWxbWwxvGJ16pjFZ4LHHMrMPym+bJ8vXUExPGVdPuOSSNDxi0Z/CyE9/Og0vWVIMPm3ap4V8SZX4wiK4+VtM3Ages9anFVdo+fIwjp0x5cQ2G0vMqkhcGy28Rs2bFybk8luHUdzodkHFuoM71Aor+zW1gsBxtoPJ/xL3zY4wFXZR3ertZNBfIOe3nWavQUyPx9zasd9OXvfaMdSy7vE0bCfE229Pw3PmZD+MWbAgvLYDP4tf/zq85nmPBvrJ731vkOyY8ycXw//4R3ZRuOt5DWk55JDwmsXa+mtln8Xcrk2NnWFCXsBxmyL0U7bIlIU82gZ+yqxvQu5S6zesncK98cWcn91h4ng0N5HumHzTTUG6evalNin0WdZ+4euK4fnzw/y75D/mLlGI/ox2lgkhhBBCCCGEEEIIUUA7y4QQQgghhBBCCCEqxEE7kPZW9LKsP1BfX9wbvKM+PFC4gfZlr1odDsMxbekWYnvKd3i0dHo8fWNjuDG4g7aHx04itzvys3bux46k563QSVnSsDWPY1OuWLqYqRabWdntv2ylwNuybf61IGbmyeWKWQChjQppKxOzdeUH2gdwp7L9WsyewNihddazbGXftv/+adhacvK1NXOL5ZmVh20eltVYfrbvbVm6sOYRLEu2f9msIm/drJVMbOs652lN9rLK39tYK14mZh5hYXGN9VvMVJfvs5Y93I8xGeH2LzGlnZQheLbx6WGbjGlJljmozbKBC2wT8liO2fvuq9jJjeHOt8qJzf14gNl01Df2UZx9OC+HsjuNPrdWW9uoTxtvvjmMnDmzGGyJmMedfOGFxfCaNaERIouMFS2Os2OI5ZPvs7qU9eDJJ4dxI+b/Jr2wpmALyea9vT3Nz5hh4sQTi8EW2zdUyLZ77kk/P/vsMB3lX2JKyFgFbU0eczDe2JB1kHnTCpOWzboeovAI0wYTr7++GG5gs0ggaJ+SCSxrEWJtByl/Y7wWmLceaBaBu0iAWDqt14z6mC+CarDCagdfNVC71q0ODWZHs8435R81Kh1vdohyd0yYUD4MAHj44TR8zDFhXEniHMyeHV7HZJ55wxvCax4PrPzuvz9I1vTEE8XwlCmvDOJ4+mIrZ54bgbhLE45jUQICK/lgmJfYC86dWwyuvuWWIIqNVq0ksfyz9hln0k2msDUDH0UF64zNV1XCz9to4tZSmL+B2hcEzaSfx119dRBXRwunGTNeFcR1yXxvuLkRYk+gl6BCCCGEEEIIIYQQQhTQyzIhhBBCCCGEEEIIIQpoU2Q/wA+qR2dzskl2gzFjHDw4fZ9pd8WPod3P1vyRtzVnmUoA4VZma73DcXbrOJsqsYldzJTQmmdxuaxlAG+j5jLH8ohZD1p4WzY/K3aiZrVwW8UsIGInpTU2ppuohw0LN3CPnpltqsuWAU315vwpfjgX0haEbedOOSWIYqsZexub2LEFE7c9EJro2FNd81q4sCWAlfGYqS5f23Jx88QOAst6FhCOjbxmkdYCha9tHJsUWOujvjLDjBzaW0LMfJbFjmXJWkHFzL9YX8T0G1voWDNM7lNbxtbW1Ghh1Kjx6T1mLGyj/Ks6/RLANtIBI1pNIWMmmiJuIssCFTFj39E+sRi2JkCs++whczHLNs7nLPrcmmGymcxmoxQnf+lL6QWZZALIND07++K3Bdds4RVbI9h676SyDKaJ1OoAtvB6/Tnrw8hZ6Wme1oZ1KeU/iU68LOknVoRTpoRx3Pfc1xEzzDUjJwdRPDfYR9dVc3KjefbkH/2oGI6ZSK2gsD31k1cFbQ8+GMQ1xI5jzDqO2kzoa5EN92ijUbRcTl6dWDO0Turrulh582In41qYYXK57IInenR3WlsrLjwH8vAdsXllmPCXv0zD1kyP7RWtDsjCTmZ2AZEXXgSyWaNVhMQ/zz8nuN62LXXnwU0c+95hiZ0azsM+sFi9OTRX7iTTS3OweTD27FKdlyR8RuQ0k66VzaGtknzpS4vBOj6euEbMJP281Mwh3Ao8Xo2mDualhjvuCOLaqGEnzpgRxD09ITmJOa9blYGMdiDtnewTq+oT3vbL7hP1IY1DD+w+kRBCCCGEEEIIIYTodfaJl2XTv/javi5ClBXXPtnXRRBCCCGEEEIIIYQQ0I5BIYQQQgghhBBCCCGK7BM7y6ph8c2LseTmJagbVIdDTzoUJ73lJDw+/3EsvG4hNjy9Aa/+2qtxwBEHAADWPrIWd337LgCA9x4nvOEEHHbKYbmf5XbtQt3mxFPF8OGhJwe22Y+5xrAuDNjkPetkcJtnzOWC9feTZXtuy8j3WV9D7CIh5m+J77PpuBwxXyvWlxHnH/N1UAuOPTZf/tZNB5drw4Y0bNuY/drZOG6fpkbjo4I7J+ZAjgrS2ToiiOLnxVxecPtbv3PsuqFaP1vsIiEmB9YHGvsUixHzW8XNaN2YcJvYcvF97J/LNj+3iR13k8hBRuy+PUlwNDvCNrdl4voMGxbGcTtzW1ldFPPJyPnb8cVl4TytKxEee9Y35OjR5fO3/RTzW8jlsGMoy/3YDjQE1w2ZTlkEAODZZ7Pj2JeRFV7qLE5m3R8tX56G7703jHvxxTRsZZf7+7Jp04rhsewHCOGvmiXLABZK9hkEoIPiWmkgNhnBete73lwMW79599+fhl94wcalfnBYr9txfvDBdBFzbMoKDcA4bsyLLsp+wBlnpOHTTgvjeMBRx21snxok4ybZbvQ4+zW1emS89X2Wh498JLhkdXEq+S8DgIcozGJnfZs9QmHrX2z6zTenF1Y/sMLjCcwI6yoKW39jLE12adhywAHpBU+4tp+4HBdeiB7z2l6wKGH5jClrI+McZXUAX7Ne6WgeF6Qbf8EFxXDn7FcFcfy4JnQiD49MeU1m3MRYHpdfHl7zgCAdVjLO6UvKmg3h/JX1HcU2MbsjtGLMrtqs28IxbVSfG25Iw5/7XJDuzxQOvZmFfsrsUpeXDNMoHPgoA4BLLqHI1jCut+ftE04oBkfdc08QxUsS1ivWNxvrFbMMRtMPflAMt5hF8llz5gAAhroq/DsOMLQDae9EL8vKsHvnbiy8biFef/Xr0dDUgJ/+y09x7GuPxfBDh+OcfzsHd33nriD9iENH4NVffzXqBtVhy/otuOEDN+DQkw5F3SANGyGEEEIIIYQQQoiBhF6WlWFrx1Y0tTahcWgj1q9MzgNpaGrAkOYhZdPXD0mbcdeOXXBwe6ScQgghhBBCCCGEEKK26GVZGXynBxxw//X3Y8H/LsCkl02Cq4u/AFu7bC3u/Nad2PTcJpz5wTMr2lW2bXc9Vm1ONrZ3GPMO3qLNph4AcDptO162LIzj7dy8s96a6eW0vsPWrWEcp+U8rPkR52Hj2DzLmhtxnlxmm86aVzJ8mnaMLJPM3sC2caz92fyLzV9sH/K1tTY64og0vPPgpiBuNG/7jtkZUqMsNXvT+Xm2/Nzf3MZ293nMDM0WJQu24LDl4Pax+bHpkO17ti7gPGz5eYxas05uYnsfj+fYOOH7bP5ZFi5AqbnrnsLWk0XLjknuq4MOCuPYfC1m4sjtHzua3JpQZpl52vJzOWweCxemYe5Da8rJVpLWHJ3bYNOmMI7Nv6wJMTP6gNb0wpoSCmDo0DRslQx1wOOrQx1ZX59es4WjNcNcvDgN23ma5T9mIo43vKEYHMHlBQLB67RKmNJ2GgFlk5p6Mu1snjs3SNdCduCXXfqGIO6BxelaxpqZz5tH+UfmznPOoYulK8JIFmxjP9XE9un/9E9p+JBDwjzI/OuR1aGR4NPUH2PHpm4EFtwcJAuGTWwdY/ueDW/Gt+czgXu8cXJwPZ5MBhvMBD/++uuL4S30ufWaETORCiZuW4EsPwhWUUXgri9pgZEj0/Bh5J7Emq9yOWqhw+yEUtpxlcOD2Q4GVuTGBJGblZvDxnG1S9Y+lNC6XeH58dQZyAWPXfu8iRGLwIc2h+ahYyel18HIe/TR8EYq5OgDQik59th0DHHdrCUnm1paq8Wpo8hQ2PbNfJL/q64qBh956qkg2eMUtiaIPGtMMnGstVrPOy+9sDI+e3Yajvlj6A0fGjS/jNq9O4iaSuburEes0STPJ+tNHE2BmGJMyVu6xt6qVRBiICI7wQjHXXQc3vSTN2Hz2s14+PcPR9MeeOSBuOjbF+HV/+/VWHTDIuzakfNbvhBCCCGEEEIIIQYcDslLlYH+J0pRu3RD49BGHH764Vj3mP2doTzDDxmO+sZ6bHhyQ/eJhRBCCCGEEEIIIUS/Qi/LMti8bjM6nukAkJx22Xpwa2bajas3onN3sq1409pNeOGZFzB09NDM9EIIIYQQQgghhBCifyKfZRnUDarDHz7/B7hBDsMOGoaT33IynvjrE7j7+3dj6wtbcetnb8XI8SPxis+8AqsfXo1//Mc/UFdfBzhg5jtnorEl4jzHPssBXa45rK8Mdl9hj5xmrDsGNsV/7LHy+QFxn1nsD8yYuAfXMZ8sXObYSdv2vix/V+PGGo8YMadWnKmtOMNOZmx+06dn35eT0dtXpuEJYSNs3JX6xIn1Pfsve+aZMB23sS0+58G+lwBgB/lv2UZNZfNglzLsG8Pmad2MsE8JdkdSt9r4LeBCrgudVDRwH06yniJSWp5+KL0wji5aWLCNkI+YlPbHDoTHmXM2sTbmONvGDLvfsflzNa2rGL62vrBa6smLjVUQq6lde/tYcqJu+SPBdRMN4HGtoZCPGpV6ObHF5/ZhEbFDme+L+QS04ybLxYx1F8JuoFiXWqybKSbmgoR9zdk8mhpTfddJv23ZNtiyLY1r2oN9PWDgwRdxSNVhNpBzO/Mca92G3X9/GrYywjJo57lgrHO/zZoVJqQ5aoRVMiRcdaZgG0l5d9DnU9kBGxC2ifVnw3p3bGsQ13juxGKY62l9Ko2oJ283Vo+fckoaZp8+AHDCCWn4tNPKlxdAZ3OqR6x+5vGb5acQCPs65q7L9iHLxfj27PsYch8HABg7+5XFcAM7ogTQQkr/1BtuSJ9r/C1xlmsRsuLBB4vh9v/8zzDyy19Ow5ynUVp8ZaYh1LMPOXYsBQAXXEA3pneun3RqkIxdXC0z/uTefEk+X3DM3duOD64nzUyvR5R6VssHy6fRs52N6VqubteOIG4n6Yc1a7KzZ7lgP4gAMG3a6cXwvJ+FcSzXeX2W2fzzusmK+UtrazupGG5/9UlBuqbjjiuG/zQv3KfBcyDPxeSKEADwmnNpvWMH0bU3pmE7uEkvrrzrrmL47jAVVlJ4nIkbT+HTTVwd+ymbMycNGx+MW9rGIwtWKw29MYfzuDQ+3Q6keaKZ2tW43wR79LTfvFicdpi48bfdVvZzIQYKelmWQdPwJlx01UXBZ4edchgOO+WwkrQTz5yIiWdOLPlcCCGEEEIIIYQQey8y19s7Ub8KIYQQQgghhBBCCFFgn9hZ9rt/+13F9+w/dP+q7quGxrpRWLgwCW/aFMaxSYfd/syYHfmBORhva7YmCmyKZE0P2GzSWq6wyR2XefDgMB3v9rUmZFwWW65nny0ft3lz+H63sTE1nbPmEWxGOnx4eJw802Btt2oN72+PmI3a8jPbt6dhNosEwh3nNo+8ZrwcZ4/r5uaxxWeZsTvHA5NZ3qtvbYa50PbhsUZhWNBsHtwINj+6r8HEHT8tNRdqbU3lzo4FJnbUeUtjuAl9v/1S2eV2teasLD51HebA7s2RwZ237WqNbSASoB31TUHUJjIvtmaqrH+4TUaPDtMNG5aGrRkjN4ktFl+z/Fs55vaPmdlyHtZMksXf1pPLYVXRsGH5fs9iy7l1u8I2LjFd3xc55phicGNraGDDMnLPPeFt3G9srW/n4hdeSMMRK88S2R0+nC7YxOvss7MLYm1AWWiMeeWU664rhrfxfVbJsE6eNy+M40Yxk8ipbHJEA2f6dGNutDRtvFVtoXncmI98pBh+oD6Ma55GRVyRhnluB4DBVHw79rhvGKse+Tqm4y1W5+fBzsVsEtc6KjRfG/9eUoRk1jX26quDdGvvvbcYtpqfzcvarfkaKziWJWMO2v7rX6cXRxwR5hEzISa53kKGXPfMC5NxsWJeM/Jixyj36YhpVWZK9bRz2TYqs/XCctRRaZjXckCpzu/Cfhe49dY0bFVANTJoXWrYdWUWZNELIBxfrEvt94kZMyYXw7Z/WWT4O8TxzaFLB3zkG2l4wYIgahvJv11ls9Ehq/gVJl07hU81cRPZ1PiKK8JINi2nRR+7RwDCNrf6h9c7u4xLkKb6ns/hO6akutWudXHkkemzli0rhqfeeGOQbCJ1vh2ibNJq47ocr+QUMSH6HfvEy7KnFj/VfaI+5DWveUdfF0EIIYQQQgghhBBCYB95WSaEEEIIIYQQQghRSxzk22pvRf0qhBBCCCGEEEIIIUQB7SzrB3R0pG5BrC0/uxKxPgyYyGnygW28PR6a/QocfXQYxyb6bE8PhCb6MZ9Z7Ddi5MjsOHvf88+nYa4bHwMPGJ8vBvZlxPkBof+K8Vy5vOdnV8DKjtRfmm3HFeQHx/qQ4L7nsE3H/ipsG8fcsbGssT8e60+Fy2zj2PVNybPYgQX7FLNCHnOKltfvFjeCzT/ms4wb1nYOCcnYsakPnoZdW4Jk2yakvkv4CHQAaFl+X3phjuueyueis0ByZ9gy27qxvEZ8he1RzHPZT81q466Ou9s2P+smztKm4y60w5fztz4Ts/Kw6Xi8mS4MuorTWR8yHGfzX7MmDdsuzCqz9QeTNZYB4G1zyuexL/HQ5tRP2YJ5YRwPL/YLBGT3vZWDTZtSp3EHHBA6pWOdfNxx4X0s13cvSP3UdHSEPmva29M5pG1mePL2iFbyZ2P1Aw2AxuuvTz+3zkXZEdGjjwZR20iY14Z3YRw72yJfPU3WbxUNsLbLQ79kaJtWDC66Nozi+Wbr1jRsi291AsPrDB5flfhvZRmxc2DMF2ieMtk8rO5g/28zL07Doccs4HjKdIdZKAXielF4ynswiVNF12wKnzD6Xe9KLw4/PMyDF4vTpwdRf16Q5sN6lkUHCMdUrD/zUot+sqzanI5DO7sG097msBNbVq8ohk+fZoSLHZCxwj9nTJCMdZOd56zP4mqI+eNkeL4C4rLLsGo699wwru673y6Gj2cHb1d8LUj39C23FMOPm/x5aRHz8MXT4yQTx37Kxp12Whj53vcWg6tmvi7Mk/1Zkg6LrUfs8ozd/tl2nGwLWgUsP+3tU4O41tPS63EXkW9d8pEIAI00aBuN78NpN91UDD9knt3V9bshxMBEO8uEEEIIIYQQQgghhCignWVCCCGEEEIIIYQQVeD6ugCiV9DLsn5AZ2e67daad+Q9EtpuW+ed9Wx6ENv6a3bcBnnY/Me0pRud13dkb1DkbciDQuuUYNu3NYmw7ZAFlyt2FHOMXVNGFMMbQgsUnHxiz49s5hOuuU2B0CyBzUwsXDdbL247mz+ntSaabMrC+dt25GtrJhazWt24LTUlauGCWdsyFspqbSU4fztouAI2jm0DbGUobWB6aYRz7NjUxKth28YwD05rbYjZFoefbcuYZY+YPLwY3GGOG+dHj4kaJtSWNTtHBNfPkylbJRamXFWWuxHNO8J0k9J6N2xeH2ZCg2PU2QdmlpnN7ayMP/ts+fLaMnLd7Bjl++w4z2vGwuPcjmXGtqMI9Sz3JwDst18atu2fZTZTauGcTm52HmV1d8IJYdzQoWmYTalipk5WPhsb0/l3yrRXBXHjzj47vWDzODvhsk0cT1gAGu+9N73N+ADYTOabzWyDbvU4Fbpu0X1B1MpRqVlmbB3A9d5t7Hn4PjtG+T6OGzIkO51t46x03aXNm8fOnWk45oqDLfaO574FgIsvLgYbjKIdE1mEbKlvQTmsqehoNq3lhSMQzF9bjIEotzOvAe0Y4utJNTA7s+PwyCN7nifr9QaE8xCeprFh5Z/NnHnQA8Dtt6dh6pvjja3i5pmTyyUDUNpXeWAvEJVg5zbuN9aftv1ZZBq++vkw8nvfS8O03llNugcAHqHwKlOuxkgcrwpYcmeYdIHpJZldAgAuvLAYXHBzGMVjlLs+tqaxeirvOqBarPuWLJ4ela6nTr3ggjCSTO2t0I2j8AgyyQSA5sKXjRar4IUYIMgMUwghhBBCCCGEEEKIAnpZJoQQQgghhBBCCCFEAZlh9gOcS7fk5jUhsOSNs6YH1jQyixJTA9pOW1/fUO7jivKP7c6NmVgwsbaz5c/K0+6QrwVsYWe3sPM2bWuWwGaqfLJnrA2sJSFfx04O5XSxU8Jsf7KFYHAqm81oHVU0r61ZuessOM9KzDBjZp98H9sDmTwCE02bH9vX2CPcuG6cZ6wNrCBTGXf1wtb9arAmUnm7m5vKxgV6y7RPQ2Okfwk7vurINHXrsPR3o5gOsOYuWWPbPovLz2Z/Ns7q5yxTcpsHt3neA2T3JVhkrHzGTovOIqZiYuZlVrZ4OMcODM56ls2jtPypSdw4touyFWA7IqtjKK0xPAsN7o44Ig1bGyw20TT2X0/fk4atqRBbrsfmr5wqMpi/7BiKnZTJcfbE42rGW8Tiv+TZPKWw/jl+UsT3RsyedfToIKoJNH9RZYYODc36sTvbH0NnYyoJ68yJx2xSvH17GrZrCTsue4ptguC0xwOqy5P7qaE+0lEWPi3UwnbabCtq3FWsIxNcqx+qMdurtv1tu/KzuQmsuTtbBo8/8cQwcuHCNEyTXqsxw2SpC88kD0987TBxI1CekumV7X+NLfCq1ekaIXYiPber1UU8v9t5guf63jDDjB2OnjXfrFoX6oDW1vSE1qZJpnKk15vnzSufYd4jVwcwOb/yigGGdpYJIYQQQgghhBBCCFFAL8uEEEIIIYQQQgghhCigl2VCCCGEEEIIIYQQQhSQd5N+wM6dqUsJazu+aVO+PGJH3m/YkH3fCy+Uv8deW39C/MDGxtSu3frvYL8gsSPX7X1cb7bzjx0Zb9uAr62PEPYrwK4hYm1VLeyLwPogYh8P1uUFl//559Mwux8BQpmJ+Vqx/pDYhRa7rLH55z7t2VaAr/kBtqO4UezDWDCMD48AdiIR8x1iBZkbNubwjZ2zxQabHcCcvy0Xdw7naR1jxZQAPa/JlL8pcFIRcVhRY8a0Gd91OX+TOfjg8Jr9OwW6Y7lxisP1tsJL8lPHfQigk8rF3WTJGodA2FVLyaeMHecxv4Wx4+SzfKFs3Rqm42pb8RGhenjqqTCOh+zTRrS4XXmYx3Si9Q3D/WbFk3Uyyw+HgdDNlPXdxa51Dj88jAt8pN0wPw0vWhQmvPbaYnA1OwoDsILCj4d3gTXhpJ/8pBhuPO20MCEL/ZlnBlHNzZOLYas+lyxJwzF/cjxO7Pji8cB9YduR8x85MozjdrRud2L+5bKwcsZ5LF4cxrHaYvmZNCnwGIfJ7Ccu1ljGf9aO+jQfXv/Mnx8kw+RLZxTDDy0NdXoHyaud5rg+XH47Fmrtp4l9ZFnGt1eX58MPp+H29rD9R7PPOCsU1skVk+HXdEt9S5Ds0UfTsJ2HYnXNYtmyyu8BSuWTlyf8fcL6RAvEbkJrGMmdT2211jx7FYXtsNtIYZM7xlCY/S6WfAGOTNRcbzs2snwgG7dnQfbWZyLfl3vNXQGxscf6iOcv+52NRXyidfhGmaw1a9aOwv9+4la313DQDqS9FfWrEEIIIYQQQgghhBAF9LJMCCGEEEIIIYQQQogCMsPsB2zfnu48tlvYeTtu7Ohfu102y2rMmihETkrGhAlpuKHDbIhenO77boiY0U2alJpYWBMjNo+w5o98xDiX36ZjUwqbP1+XmJFm5GG3J4+u8ohxhrfI2zLGrBP5OmaJx01u5YCxJqx8zXJn2yAmd0F328rlPQub01Vj0wLEzU4YWw62qbEVzbK7smWMNV4sjjsr1gZsg2WJ7Jnf0ZiacTTAmkb2Hlu2hb/BcJNHrCRLupDHZd1mMrKI2TBVYINYR+01YcL4smUCQnMJawnMZY6Zlccsg/OaXHCe1oSMm8C2sQh1sDU/4qFnRYv7jfvXqgq+ZlMVe82WckDYp7//fXY5WEbWrMnOw1gaB3LxmrPPRiZkY9R0221BFI9mq8XZLJON0sbedVeQrukAmkiNDVPjrHSNYNcnWVg1zmbJ1Zowxe7LMrOqFVwfq/55PLOcLVgQppt88az0wgqQtdsm+Hls3mdNge++py4zjrF6nMucNZ7sfXacVIMdh7yerRaeC9iNBYCwIa3ZJZs928ngllvS8JNPFoNNRtBOOeWsYvjZZ8MsqpFJO5flXXpZ3cf9yObKxxwTpps2jS6umhvEbaQ24JXKfebZLNUbTRwbrTaZOFYX4yjceOKJYcILLigGH1g3JohitRUze+X2iekz244sFnnd71QC6xHb11n1iXlMmTFjRBB36uzZxfCBN98cxB1YMO2PfD0Rol+jl2VCCCGEEEIIIYQQVSBzvb0T9asQQgghhBBCCCGEEAX0skwIIYQQQgghhBBCiAIyw+xnWL8Z7A/AHsXM2KPOs44bt34i+Oh6a0PfUE/eA2zBshwcmHQNbevTC2MA39aW+gQYNizMhn1n8G2x9qkE9j3R20c2c/mtDwB+nnVlwdfsp8Y2/VNPpWHrL4TrZtuK/bixSw3r84jT2eOu2TXHpEnhUed1u+iQ7pjTlyzfYOXSZhFzUGedteXJAwgHBA8oW8Ysx1VAOGjtfVxO9iljBYEHg3Vmwc6rzLMb2jPK2Ms0bVsfXLe1pb4tbNW4ia0PlYZ1dFA8Dxzrj4f7zQ6OWPvTfTF/LTF/YDz2Yv4HYz4TY0ODfdOwPxhb3pjPIxHqKevvh9uu4FqF4lKfhps28fjKnoxjfW/lgPs75taR09l5mn0xWb9MwXhjR1O33homJD9l1n0Ne1/aYuLYbxAX/3GTbhQ17PSrrgriJpKfoGnTDgzi7rknDceGOav4mO9PhscTELYV+0y11zGfYnmxvlc5j1h+XEaeswGgvb2hGG5tHR/ETT3zzPTCzBP8PHb5yK60gLD9rQrm6dH6vs1a49i5gPV/zE9qXqpdSsTgMpf4o+I51nZirIO5I1lYDz00SDbhranPMts+1o9hHvbfP7yO6Z+8+XCbnHBCmG4yfxe47rog7gEKc7dZPcL6ptXE8fJhjInjqgUjY/r0MCE5VltuVCT79bIu6VjWuD2sD0lOZ7/PxcZGLeC5jZeUQDjus1zpAmH5S+Qlsgbfcx5zhegd9LJMCCGEEEIIIYQQokIcZK63t6J+FUIIIYQQQgghhBCigHaW9QM6O7PNdNhMkk9ft9hjso8+Og3z7li7rZaP6B5XvyqMXEB77e2+Yzbp4H3H1uQtYmLXPiPdLG23HfNW4JgZI9fNbrOPbSt/MbWuCapmzQtqQWwHPpt0xExMedu93YLP99lt3zELwaxnscwBobmKbWO7lZ/ZgdQspIEFz1Sgszk136zrCE34cttOcP62IWNmnnwdM1WM7T/nTrXjhAXN2u9k2U7EBNfawXJb2g6uhS1LNZQIaBq0VYsWkduLFUTMBsKegc7yY3UTDZYR0zIGG4ARrWnc0UeHvy8tXpyGuavtuGCzBzu+YmZ6nCcXP2bWWa1p+t4MixK3KQAMHlw+DADbtqU6bPjw1G7GzrdsQjZjRhjHppEnn2gMUkh2+VnW2prF36ownrPuvTeMW7IkDR/8ntSMa/S5ZqKjTNuvvz6IimlgNpPimq016YIRxWsHIFAKsfkrKFMFK9csVxZW93C6WP42rprxxtbzQCiTts58zWVm0ykAmD8/Ddv11KWXTi6G2425+2bSYVkmmQAwbx4yyfJYAGSv5WwZ2XzTjqFqsGaAo3fz+tYUMic87kvMMJevSMMPPmjiaF7iSQPASgqPorHR9PvfB+nGXHRRGp7SHsRt3tyASjnkkPDa6r4srHyOHp2GWa5PPNHcePuCYnCV6Xye0XkFuBEh7Oij3cQdT+EDTRw/re2889KLyy8P0v3PDU3FsDVz5m6z65hazLm94QKG4f6Nmarz8irmNsPOURP+7VXF8Lj3vS+Iq+t6wP/8T87Siv6Oc64OwAcAvAPJcHwOwC8AfMp7/2LkVjjnZgG4o5tHzPTe/yVH+t9672fnLHbV6GWZEEIIIYQQQgghhIjxnwDeD+DXAP4fgKMK18c558723sdc1T0M4E1lPh8C4PsA1gH4e5n47wO4y3zWC1tcStHLMiGEEEIIIYQQQogq2Bd8WznnjgbwPgC/8t6/lj5/AsC3AFwM4KdZ93vv1wC4tky+b0DShP/jvS9nP/FX733JfXuCfaFfhRBCCCGEEEIIIUR1vAHJeQbfMJ//AMmh2ZdUme+lhf/XZCVwzu3vnNvjzka0s6wfUFeX2pNbfxjsp8z6gmCOOCK8PuqoNMy26jaPMY3kIWCR8SXy7LNp2BqvZzniijneMpVrIY8EjW0tQRz7/InZ8uf1FWDdRfF9XPynnsqXXyWwDwDr74HLZf0IZNXbyghf2/aIuetiv0f8bOvaKa/vNz6aGgC2b0/D48amgre+I3xHv43aZ9SoEZnPbokdQM1Og2LO62LyaTuH8tnRnJarYdTmzHQl54FznnnPA7edmOX0BYg6/Qp8xu3Jw7tt+0fGb9T3UJazwlg72jh+gHUYmKUESsqfVuCgg0I9xX5rOGyzeOGFNFyBW8dAd3NX2zxYX441PolEHNbBdujt3Jl2APev9VnG1+x7qeTa+uuiDm9snFoM2/mcn80+0ABg2rQ0bFUY+51iv3mjbQXOPbcYHPHoo0HUCJrAJhh/gQsozFp9BUJYrJ82DvfG3nRTMTz5nHOCuAsumFgMsxsoO58zGzZkx/G4sWMt5huV5cLeZ1V+Hqyc8fi18sP9zb5oFy4M07Hqsy6z7rknDdvy833heiRUMuvWZfvsY9+3JEoAgIZttM5rTPWn9Q/70pem4aY7fhtGsp+pnIx+5r7wgwUkrZdeimoI/Pp2GCXPFbrzzjDu4YeLwc1mfLGXTfaqduBdobXR+K99Lb049tgg7vQ3vIGuWpEH1htAqY+uLNhHGRD6Jps5Mw3XfffbYcKf/7wYXBDGBD7LeJYeY9JNpPA0E9d6/vnphfmi08aV+8hHisH7Nk8M0nEyO0Y5Syv/sXU8w2PN5s9ft/L6j6sWuz4p8b+XQez7FrfduAsuCCO7JqZbbsn3INHfORGJm9LAVNJ7v805t6gQXxHOucMAnAlgvvd+WUaybwL4USH9owC+DeBb3ntf6fMqRS/LhBBCCCGEEEIIIapgLzHXG+Wc43fa3/fef5+uxwBY573fjlKeAXCqc67Be7+jgme+DclutXK7ynYC+A2A3yH5TWEMgH9BsrNtGoC3VvCcqtDLMiGEEEIIIYQQQoh9l3Xe++mR+CYA5V6UAcA2SpPrZZlzbhCAOUgOwL3exhdOxfwnc88PkLw8m+Oc+6H3fr69r5boZVk/YNeudBuvtSLKa7llt7Sz+QVbfljzhUFHpuZlo3kvPRA3IcvaJ2xMLIL9ymbv75qt6Zb87SZ7NhmJmUfwdSXHN8cs82oNP8u2P1u12Dhucj553G6h5r63ZrZ8HbNOZHmxXc1mJtb8i4/Ttu3P9zU3p7+32Hpy+0fN8iJ00u85Jb/scKb2AWzbZk0aaW86t8/EsWbPOlf8sMOyCxmz7YnZWPMe+dhZ3kaQ+bKhDzV9zMyQm8SaT43menM9Dz44THjQQdkP5zY+/PAw7pBD0jDZOm3c1hAk4zKzvAOhbo2NUR7n1uSBVaZVqxEr9oChQ9PwsGHZ6fZVuO1iMmgtddnH7IoVaedYVcF5WHMmft7MmZODuLpd6Voypg7YFG/WrDBuchu5UjDK9fA544rh0S88kl1IroAVQipMk9E/bXQfG3pvCXMghwvAWhM39qqr0guT/ys++lG6SsflmjVhHlzt7VlLeMR1Eedh42L32TmxGnj8WnU2nb6ynH12djouvzXlZJM7a6bNTT5yZBo+7rjQvpSfbeWf4xqWPhBG0uQ5ZeariuEhQ8Jko7evTC+sjWkVZpjBpA2ECrpaeLFl7aF5vRyxdQ1nl3CssDmiteYbT+bKJesAXmfnbCsrB3mbh13DAKFpcMM9f04v/u//gnTryaw0NOYOTS95ehxh0vEUWLLO4za3ipwnYDKJnfaus4Jk9usLE/kqE5g5s9jFXKsYi3Y880z2s2sBi4wVT55vWKxtPVmPsMktABw/jWaAuYvCyC5hiylnMZDYAuDAjLhGSpOXlwMYC+B73vtc93nvO51zXyzc+woAvfqybC/ZMSiEEEIIIYQQQggheoFVSEw1h5SJOxjJzrRKTDD/pfA/07F/BisK/3N63asevSwTQgghhBBCCCGEqBCH5KXKQP/Lwb2FpCcF9U9OqZyG0jM8MnHOHQjgfAAPeO9z31eg6yikNdFUNUBmmP2AoUPT04SsiRpbRtqTrpjZs8Pr8c2psUN7e7pbsqXRvOzlvcB2H3bsyCner8xHItp9zHavMTF6GpmPDA1t+KZMaSqGecuwzZ63hNutxWwqEDskj7dK86l1tSJ2WGjMRJPh8vLJWUBo1mXjYlaGfM3bsG264cPTsO3OLFNRIKwbi0jMktBu++a0U42VMMPmce3t4RlKMROs+oiF4+YV5fNvbm4K0rH51IjYsUKxY0a5Eax9DedpbV35PiNAvW1enIl5cEtz2gGtreFUzDqtxLJ7ew0qEDuqLsOucevW7FvYTAkITVliZlyM1ePWYoTJMp2IHepqzWRE3MSR+82aJjU2lnc3YE1QWC5OOCGM45Mt61avCiNJB0ybNj4zf14HNNz6mzDyWrIBMvpnNC8MWN5tRdnWzwooXxt/DxN/8pP0gnwn1JljpWmmh5km0EK2zGOvuCKIa3zssWL4FZdfXgyPfP3UIN2SJZlFzPQmYee5rNOhgdC02argvCfJMdbjBcvgjBlh3MSxZJVy863F4LSzXxOkY1MwO0/zQZAx81OeomL1siaUQZusMAptfmodM4JsvE4+wgzEL5E5LpscAoCRi1xwgwDRtWhuuPGsALFisZ1IcQ133BFETaJyPk6f22nhPir/mOtDtz5tfMJmTjPMlpv+N7h+1UUX0VX2V8M5c8Lr4NTLL3+5GHzA6ACum9GCwamXLBXWadIYHszBCaCmYHYxd++9xeCOt7+nGL715jAZd+lZs8ITxNvb07XL6OHh96jGxtS4lteKVuRi633uwt4+DdOqeDYxZbNadocDhGJ9/ISNQdyq1albnTHmSNyVu5Ie3tEYniYuBiw/B/AJAJcD4GN7347EV1lRuTjnDgIwDMDKDBPLNwMYjMiuMufcSO/98+azIQCuLFzeVHJTjdknXpadcPIJ3SfqQ17o2K/kGGQhhBBCCCGEEEKIvsZ7/6Bz7tsA3uuc+xUSR/tHAXg/gDsB/JSSfxHAWwCcCWBemezehsRF47WRR97qnFsFYCHS0zAvQbKz7L+893/vUYVysE+8LJt+RexQh77n1n9/sq+LIIQQQgghhBBCCJHF5Uh8hl0G4JVINsP+F4BPee87s29Lcc6diuQl20+99xsiSW8AcAGA9wFoBfAigPsBfNp7f11Vpa+QfeJlmRBCCCGEEEIIIUStcX1dgD2E9343gP9X+IulmwNgTkbc3cjRZN77LwP4cnfpehO9LMtg8c2LseTmJagbVIdDTzoUJ73lJNzzo3vw5N+fxKD6QWg5qAVnvP8MDGkegqfvfxp//5+/Y/eu3RhUPwgnzzkZBx97cO5ntQ4HXvKSJMy+nYDQfjwG25wDAFanvhVamuklb4cxlGcfDNaQnQ34bRw7tNhAL4Qjx85bZxlbGtODoZsawxfRnH2WfzFbxJifIOtnhP2TsJ+ODDdGPYL9iFlXClzmDea9Oh8nz3lYn0TsU8zKAedhu5DrysdFW59N++2Xhq1/JfYP8+yzYRy3K99n+5Dd51g3IOzXIeazjI/rtnKQ1de2XCU+y+jZXM+Y27C2tvA05frG9Hr8ueaoeWoI9uXQUB+OhVWrU18ZrSYLLv+4sWHBdnWgb7AdTDQ3hz4rYkep148dVwyzTI62PllYWdgBEHFWtaM51T/cjsbVSiAz1s8I+zLiMbRpU3YxYr4DrWzxGOVqWpdTfKT7WTPtIUSa5s8+Ow1bEeGxbf00cTuzjrE+p7gPWV+WYB2mkdJ5/evTj0f/5VdhuhvI6dQ1xrXHc8+l4UmTwjiuHDucMc4tVyIda/WzLwvi2AcPWsPsZ9z5oWK4ZXPqiWjij34UJvze94rBXWaAsf3E4whpp3wm0uA7mfyXAcARF5xaDFtXVdxXWT4AgdBnkI3jZY3tQjsW8/CaC8wP76wzv/a1MI4rdMstxWDLBz8YJHvZJZcUw7M+cnwQR27hSvQP6xium3UTdvpMXkd2hJE33JCGb701iNrx618Xww0sTGawbSb/dyZ3VNHEwNy54XXMf2VebiYnV1YQeIF1sFn/87g0C7EJrDDIn5kdC4sobP2ZdS5KY8cgJ7/8ZXjNi0XrBJmou+EX4Qckr3fT2H7A3MfT+zQTdzqFR5x2WnphhZB8Kz60ekQQRU1QoscnvOFlxfDyednpTm19KL1471VB3Ggeo4FSBP75058uhrdc8cpi2Lree+aZNMzzCRCuLbgragWrf6uzuLvr5v85vTilPUzIY/vapUHUmHe+M72YEC5UFxdui/mDFaI/o1V0GXbv3I2F1y3E669+PRqaGvDTf/kpjn3tsRg7bSxOevNJqBtUh7/N/RsW3bAIJ885GY0tjXj5FS/H/iP3x/on1+N3n/4dLpl7SfcPEkIIIYQQQgghhBD9ipynhO5bbO3YiqbWJjQObUTHMx0AgIamBow9bizqBiVNduCRB+LF55NtYKMOH4X9Rya/1A4fNxy7d+7G7p27y+YthBBCCCGEEEIIIfov2llWBt/pAQfcf/39WPC/CzDpZZPg6kKz2mW3L8PhMw8vufeJu5/AqPGjMGhw/i3fI0cAs2Yl4e3bw7hxWBm5M91LW7I1mvf08l5ja1/Ae/Kt+RRvF4+dlx4xuwrKYWz4mvjZJm4yb+Ol/NtmjgvSsQmBtQxgrPlgVpw1waoFbMLBFjNAaLJjTQS5ySPWZEEbWBNNtraJHQXP27LZbNFi25gtG9asCeOytlxbUzYuo42L9RvD1kYWFnmbP2+Ft3Xj8vMR2pWY4YTPawjiRo1KrzcH9Qx/w7BlZgKzYZOwtbWPjum2nUblGm/NxKhz1jc3BVGB+Ti3yXYzbcUGB8cZ85d1ZBfCTffCC8jEmjAdcUQaZvM+e+R6Xjm2ZuB8H5fRqlyOq68P5Sxsx30Tbi+rBzlu5swwjqch1jFkDQQg7LememMGyw+wY5k6bvRdqYkdfvjDMB2Z/aw1kwj3blvMzp/HhlFabMJklwhswmfj+HrSpNQAbDybUgHAsmXFYDOZ2wHhItSanm3kdNdfn+b/4INBuhHnn18Mv8J2ztWLisFxbK9sBKH9nLOKYTufxMyoRzRu4ZTIBZlTAggnbmPiFfTbmWem4Ze+NEi2vj01vVxsTFF5njMWUpmuLKwuemBxqoMbG0MTuIkXXJBeGBPEBpZ/tgVbvjxIx60YzgRVws8CSk2Uq2HOnGJwzf7jg6gXO9Jw25mvDOK4XVusPwxqrwm06Ggy9sSs8lchhMfJhcjHSjKPBYBxZAJaMoERnWwvDoCM9gLTy/XmPp6Zx5u4Eeeck1780z+lzzr7ZUG6e+9NwwsXhnmwSrCm9uzigYeXXS5Me+fkYripyzdOF489Vj4TIFg8Nq1ITTnb2ycHyXi9sGBBEIX770/D1o1DLeBxbnVY3WaSIG5I+70vsp7qnDCxGOZ+AtL5ZcsW7NU4ADUw9hb9EO0si3DcRcfhTT95Ezav3YyHf/9w8fP7fnEf6gbVYcKscNWxfuV6/O3Hf8Np7z7NZiWEEEIIIYQQQgghBgB6WdYNjUMbcfjph2PdY8lP/I/88RGsvHclzvrwWXAu3W22ed1m3PaF23Dm5Wei5aA+2tEhhBBCCCGEEEIIIXqEXpZlsHnd5qK/srWPrEXrwa14auFTWPSrRXj5FS9H/ZB0j/r2zdtx62dvxYlvPhFtk9sychRCCCGEEEIIIYQQ/R35LMugblAd/vD5P8ANchh20DCc/JaT8csP/BK7d+3G7z71OwCJk//T3n0alvx2CTY+uxH3//x+3P/zxPD8FZ95BfZrjZ0hn9KAHRjt1iYXrcZG/HYybB8yJIxjvyPWhp5hBxzW6cjo0WnYnlds7dUZ9vcROszJvifm8MTGse8VCrdYhzN0X2NbuKOPi2X9PvHj+FHWZ1wtYB9gMX9IFnYJwNW2PrI4zjZPlt8zIHSlw35MbBfGXNKxnzJ7FDb7/OJ6b9gQpmP/CcOHh3E2bRbs/sS67QlcBhk54GETE09uO+vPhvvJthX7wLN+KA45pHy5bJ1ffDENs383IGyvQceG8r+9Iw2Pi/hVqzmRMVoiXHS9ekUYtW1b+lsO++5qbw/9FnaQP5JRo8YEcYGK6bD5p+GYquMi27HHPk+4b+xYYBcwMbdSFvYJyG6NYn7z6lYbjzbN+gGHRdL6a+Fr67OspSP1GTpxJrUjO/kC4jLOWH9FPPD/93+LwR3sPwgAi4j9hTPI8cQTw8gjj0zD5MtrVUfoFYqrY/3rsc8yqz9Z77JLqIsvPj1IN/696QCbdtttQVwDORRaihB2ccP+zDqXhiknsD8h4zOrgwZjKw8ik27EJz+ZprvgNUEc17tl9SNhIe+hSYR9d8X43OfC68MOKwZ3kG82AGg45pj0guWHnaEi1GeVLLXseOjCqnHWWyX3bKaH20mcxwP32+23B8lIjaMmGstOxlZpVkNkomAZMe7Ygrjp06cGcfVT0mse22PY0RaAA0mOrQtM68MsD/eZ69XUwSdF7rvbXHNV2U/ZCJOOaz2VFz8AcMUVxeCOGanumHtNmIzFx67D+Nr6/+X5N+bfluftyexgDACeeSYNm77BX/5SNnzypZeG6Ui5Trok9MeW1/9ytXT5xQbK+NmdR98zyb9kifM3HvjGByD3zd/+Ft7WNR564/tVf0M7kPZO9LIsg6bhTbjoqouCzy7+/sVl0x7/+uNx/OuPLxsnhBBCCCGEEEIIIQYOegkqhBBCCCGEEEIIIUSBfWJn2e/+7XcV37P/0P2ruq8aRtU3ZZtRPpyewon9jFnneeelYbstOGtvvTUR4a381kSEtq13jjWmTx1peER7+UcBCG067LM5zpafH8DprB0IbYuvM3YDfER384QDg7g6dBbDu3al74zZZLJWHHVUGmaTOqC0yRneAc0WBPaekSPTsLWk5SaPWQdx0w0yZx9zme2ubN5WbcvFebL1ghVNrtuwYWFcrMwMP9vmz/WJmaDYOBY7tuiwZkosqjYP3rkfg80GrPUIt53tX25jtjAqV5Y9hm0gHtuRQtlj1rneMZPqmHqImRBzWrZwt2awrCJt/jz2Rg/fQTENQbqDDipf3u7Ikmsr4yyDrW2hKSrrun0VliVrXsY6pmWzMWjKsu9+9NEwHc/N9gHcWRE7+V233FIMm9kw6EF7fFADC6jNn5TCjvrU9NKaCfOwjEyxUbh57HKm7ezUsKvpTW8K4ib/4AeUR0cQx2ZdbO4VpgKepom7xVRuLYXHPfdcMTyKwgBw4Lx5xXCdMdlrmTYtvYg1Xl7sxECmlg3WXHDOnDQ8ZUoxuGNWaMa14NY0zC4QgLAP7ZzKcTxX2nQx87XW1nR9uKs5XCtO/cY30gvuX2MLNpXkAOefn/2wvJBpHwBsmZ6a9zVVqRPvfnpcZhzPNTEzuvvvD695fTXtvDcWwyPMen/GlVcWw00PPhjEPZD9uEy2mOuHKBwzw7TmmzxGuUcnmHSn8uLxIx8J4tYcmfbNkvnp53YuZrm2eonXjnYtmuWOxMo4L1XGTg9bIdC71gyf68ZxVpnec08x2GQqMGlS2gbWjLcW8NRQt3ljGMkNwYJsv7DwmDWNx25GbLW7pkD73UKIgcI+8bLsqcVPdZ+oD3nHhRf2dRGEEEIIIYQQQghRITLX2ztRvwohhBBCCCGEEEIIUWCf2FnW79m9u3Tfahds52ZOP4qSta02RuSYMLutnLcrN09Iz72xFglNrRETBa6zPeaP62pPAWViRx1mmaIC2EGml1lNXyvymkBYuPi8+9luMbemkVnEDhzl/G1z80mWtpvYmsTmz3XlNrbiyHF213de0Y2ZQHD+9kRKNomLnRbKh8bGiJkI2r5nKwtuO2umFzO/4/ti5mVj9uSBiLYg3JC2AtTo1hKb+4PbxLZPbPxmnWgaK1ZMzdqxF5heku3E6AnGCCXo/PA3Ks7TjiGOi5kr94b5+N4EN3/MRKdECJ99Ng2zYrFmdJxJbL6KwGK9w8SxCdAIe5IcmwjykWdAcMwxV82OIdbrtvg8NqwOY3nl8WQtFcnCEa9473vDyEMPLQZPNXFsjcTmlNaSOTZNcNoOCreadOeyGaDVU2wP9tvfhnHcCDmtBFY9FVo7jLnppvTCyiBD/WlN1LgY1mNHTP6zXEE01YdS2NiYmpZbfcPPtsVvnzG+GG7pICM+q+z41M+zzy5fqEogk1UgtI47dUZ1WXLd7DTH2HULV9WODT5RnE1dZ88OT2Qd8d5Ukqd+4ANB3Ma8CyUuk7leWzZVKevNNZ96yecjnmpv/PKXi8HOC18XRP12bhpm62huGyD8OmR1EbuosMM3S/7tPMrNaM2OJ/MEbE2lWTD4JGM7uG64IQ0bQTj1G9PoNmts33OalpOxrh2kxiS9iB3oLPRmAGzP8CQEpM0gM0wxUNHOMiGEEEIIIYQQQgghCmhnmRBCCCGEEEIIIUSFOGgH0t6K+lUIIYQQQgghhBBCiALOe9/XZciFc85XU1bnHPp7Hd9x2WX43tVX93UxhBBCCCGEEEKImjH9pJOwYMEC19fl6C0mO+d/0teFqAHTgYXe++l9XY7+hHaWCSGEEEIIIYQQQghRQD7LhBBCCCGEEEIIIapAO5D2TtSvQgghhBBCCCGEEEIU0MsyIYQQQgghhBBCCCEK6GWZEEIIIYQQQgghhBAF5LNMCCGEEEIIIYQQokIctANpb0Uvy/oDGzcCCxaUj7vnnjS8a1cYd/nlafjSS8O4xsY0vG5ddh7t7eXD9nrKlDBu7Ng0vGJF+ecCwNNPI5Nt27LjWlvLp5swITsP++xRo4rBx1eEKoxv4ya2xf3UFZ3ZZczJJ65In714cWYR0dwcxnGTT5qUhtvawnTcTQ312eXdsi1sg9Wry6erN1ph8+Y0bMWHxfZnPwvjuI05j46OMN10OqDYihkT64vL3pnWzYoBP9uyaFEaZpGzHHlkGj7kkDBuxozsZ7FscV8DYV35Ph5OQNiOtv15GNqhwWnPmtVzOc7LmudCORs9dEsxvAVNmfc9+GB4fcABaZjbJ9ZPVna5Dex9W7eWf9bSpWE6lqfxrevDSNatPKCsINPDrS669940vH17eBvXm8f9rFlhOq53S+OO7Mh9lN/cnLY561IgHF9T8UAYyUI5eHAatoqcM7EKmts/9vArrkjDzz0XpjvmmDR8xhnZceeeG0Q9sqKhGJ4/P/3cznOsk60OszqH4THFYauLWPe9bJaRT55EuA0A4I47ikEqPraEqTCCwhtN3CMUbqGw1Yiv4nQXXRRGcptfey0y+ctfsuOIRYMGBdesLeyXrbovfzm9eOc7i8G/PdwSpIs9mtvfqiYrkl00mVb+w/xUd1uVsv/+2c8++bC16cVtt6Xhq64KE/Jk/OpXh3GxNs/ihhuCyx0XvK4Yjq2TYjywOPurMI8Tu8bhOLvO42mDx9BZE1aGCb/2tWJw3X/9VxBFywzM3r07s4xBdkYGedhfGcnjK+a+Ayk8mcIn2Qn3xz9Ow0ZP/ebWVE+x/rFrVL62eonb3Oofhud3K7e8DrBq/Oyz0/DExb8KI3kdcM01aZgXhwDwk5+k4be+NYja8aWvF8P33x/edvKJNVi/cRmtEPI8RJPDmtFTg2SPPZaGrYyzGrdrqK7HPflkzrIK0c/QS1AhhBBCCCGEEEIIIQroZZkQQgghhBBCCCGEEAVkn9EfaGxMbens/na2l2C7IUtsWy3vV7amj7yX1tpm8H1m63Wm+ZG1geP8bd24zLb8vAeayrGx8cAgWWNrGrZV20zFslXL2HUctRqtFjari5Uj1gTPPpuGY804alQ+MwF7vWFDGmZrIyDsQtvGfG3j2JKIzcvs9m0WpZjJZAx+thVVrmfMTM+Wf9iwNLzffmnYmlNmiCqAcGjYbf1sKsBtZcvx1FPZ+XN72bbbtAl9wosvhtc7hqfmO0+vCOO4P154IYxjkwiWcduODSCzrphptxG8Fs706bTxxo4dl1lGPL0OmWTZpAFYtTodl1YHPPNMGi7RYdSnXA6bLpBJKwgxu9V9BG6SdaYL+XrqrPYwMmv+qsSOkbE21jt3puFLLknDbJIGhLZy1g6c5tzO+oYgiutm9S4TW1owsbmHxYzNwwFjFsX2oEBYV9OubLDJw94uXPlxHSaOVSZPsdaUs4UVizV1ZWVksX2aA2OIGpTRGlw1LV+eXlBbHTD29CAd940Vwbxmthxuas7+emCXeTHzNVx7YxrmvmYfBQColhh73XXh86oxwzR+IRrY5u688yrPD8DUSWnPrVoXjjVuY7tG4Ha17cPX49tIKq8MzVR3kenlfaZcxmAzF1ZLNZdNVYrtXpaSVRReaRTOuLlz0wuzOJl1/huLYVYBVg2yurTrDH6cXQOyVWlszcprX6vDonAnTpuWhq3N82mnpeELLgiiWC1aM8aTT6ygLBk8vjn97vTcE2HcAQeka7S2CalR+99uD9PF5gmea2y7dsl/TgvhAY12IO2dqF+FEEIIIYQQQgghhCigl2VCCCGEEEIIIYQQQhTQyzIhhBBCCCGEEEIIIQo4731flyEXzjlfTVmdc+jvdXzHZZfhe1df3dfFEEIIIYQQQgghasb0k07CggULXF+Xo7c42jn/874uRA04BljovZ/e1+XoT2hnmRBCCCGEEEIIIYQQBfSyTAghhBBCCCGEEEKIAnpZJoQQQgghhBBCCCFEgfq+LoAQQgghhBBCCCHEQMMBGNTXhRC9gnaWCSGEEEIIIYQQQghRQC/LhBBCCCGEEEIIIYQooJdlQgghhBBCCCGEEEIUkM8yIYQQQgghhBBCiCrQDqS9E/WrEEIIIYQQQgghhBAFtLOsP+A9sGsXAKCzviGIqpv3p/Ri69bwvvPOS8NXXBHGbd7cfRgARo1Kw42NYVxraxo+/PAwbujQNLx6dXYeMcaOzY6bNKnsx6swJrjmx9mqbduWhp9+OowrNDcA4P770/CyZWG6/76mM7uMOXndxek76RUrwjhuYtt0U6akYW6qtrYwHXehjYt1x7PPpuE1a9JwvdEKmzal4eefz477/e/DuI6O8s+1n3M9p08P47gPv/C57L5413vSNh4+PDsPy+LFaXiQOcaGRXzkyDR84olhOi6zbW/O/+CDw7ijjkrD3CZWRrifdu8O47jM7e1h3AsvpOGXnd1zOc7LmufC32BGH5A++/EVYdz++6dhW+8jjkjDO3dSfoPXhwl5MFvh4jgOA+HgIza2jguueTw0dawKE/Pgo/xXrmsKknEfPvNMmAXLiNVhPL4OOCANX3xxmG7yhB3phW0DLuM+yv9cm8qdbQ6evi68MIxr6ViZXjQ3p+H588OE3ObcaUA4aDkPIJzTDzkkDd9+e5iOFYtVaJzn7NlB1PpJpxbDt92Wfv7ii2EWXB2r/9etK/8oAJgwIQ3zHPXKV4bpRj//UHpx5ZVhJBVspZFdkmrwysiuHOpOOy29MO2z7t57i+ER9LnRBmj46EfTi0suCSNZV9x1VxjHiwZbtyzsRDFzZhq2ssVCOW1aMdj5kY8Fya6/Pg1bHcP685hjwjief1lF2rUEF8uOIV6uNa14KIzMaJNdXGAACygcak9gqp348mAn3IsuSsPf+Ebl+QHAokXF4I4pxwdRPE5s97JeH1dv5hBu9JtuSsMf/GCQ7G7qxL+bYnVQ+MqcbfUds+DhWW92JI/55r4VFOaZOVypA6dyHMkxAOBzn0vDp5xSDP558YggGTV/oLcBYOnSNMwyDYT9wcN38OAwHa/lzj47jOMiN1399ewbly/PzuSee4rBjee+Loi65po0bL+vfP1rPV+//e7WdA60SwQev1zPW28N07EatHPBDTekYW4CANiwIfn/6KN5SipE/0Mvy4QQQgghhBBCCCEqxEHmensr6lchhBBCCCGEEEIIIQpoZ1k/YOPmOty3ODEysGY4p8+YkV5k2bUBpWaLbNPEe2ft3uWYCRObM1gTpiFD0jDbe8VMOa19B9twGJOoLa3pJm4uFu1iBhBuBbbWKfw4u62Z03JTWVOwWsDPthY6jN3WzLLAedhm5LpwtwDAfvtl38c77dmEwML5W/Hh7ramGXwfp7PWxDFsmbPg7fRWBDkPm1/MEpjNULhvWGyB0PyxpTncLt/YmP4eYZ9Vt+Lx9D6KHDIkNMVmYmZ627eHcbE+7U2sqS7/JmO35w8bloataRgTmNYuMpmwbrICGhM2tmskoWmZ1hqm20b5mw7YMSrVUxs2pf1m9Q3X2/YL6xzbv1btdhHTI6IUnkNsG3NfLVgQxk2alBonbaM8xlszIs6E7YHsw9keFwiU8Mrz31MMj7M2cAyZFdo87CTCssbJrAUy624bx1naOG6G0aMp/OLjYUK24TNmjJupfay6b6FwKz+MXVAAJeanzKi5c+kirWiD1RUXXFAM7pg0NYhqqCe9zvbzQKltfB7OPTe85vWbVRAsP2SHVrf8kSDZIYdMLIZ5SQaEMm91StYyzy4HWQ6seDatI3Nla0LMpoVkarwjTAUelqZnMBWVs9r0b9tPfpJeVGuGSXVrMAueMTzBmwlgBC88rG0bpyVbvHvYdhYAWesHZpcA0JpR3BhmGYPjy6YqZaZZYLWQALH6NGo2KH8d21MCaPvxj9MLmhBPf/vbg3TNzekca036WHbtWotll+dbK+PcTVGXJnahzYtACq9E6NJh7IXp9c0/C7PgaSNr3u8JnH9sbchi9+CDYRyrPvt9hcuc9V2gTttzxABFoiuEEEIIIYQQQgghRAHtLBNCCCGEEEIIIYSoAu1A2jtRvwohhBBCCCGEEEIIUWCf2Fl2wskn9HURomzbtl/RV0rXEbtd1Nenh2g3N4cHak9tIz8a9ojiLAN460yHjdetMxfrBIyxDpK6sE6h2MmJNWSn85231LcEUezihNvkH/8Is7BZMuxjwFab82QfS7YJagE3oz2qmrvG+ingsnAeMd9gNo67yfoYyMoj5vvtuefCOHJBUuLPhv1B8LNtPTl/6woiLzG/Ovw8688sKx0Q+r3g/GP+MKwAtbWlcl232hwZzw1EhR46NDwunbHDi/vXym5vyHIerD8M9q9l3TlxX9n2Z1kO/CFZQY45pGJhto3HaTkupvfMs9ktTsz3IdfbFpHby7ipwdChaZh1B/siLMnUKruYktxH4CZ46qkwjueCxYvDOJZJTtd4WuiLZsx0cnBj5YyFwSpQGsDz5qUfX3LJSUGyOtBcb531ZM3FCPUdjzU7hGLTNGPv43F50EEUsdT4FeQ2ML6ktlDYar5G9iv4rnel4QsvDNL9aVF6p9UjL/taus6IjhNaj1jfipMmpb8r19kJJqYvsqBnAQgLbZUA+cnaRXH1ZiI69Z3vLIZHjRofxHF9Yu7wWF4GDQrjTp1BMmgb6Oab0/APfhBEPUDtM4ZkN/TuCXC3bcwuYm6M1zxspHliIqrkuuvSsHVeyvOQnejYp5VVMtSWK0k52fLz6mGMiTPSlIuzzHX9+96X78ZvfjO4nHrVVcXwFnJytdbcxqPNqpg29mPI48tMpG1tac/ZeXTkSMrfPICvuSvs0J01Kw2Pf/rPYeTijjS8cGEYx5mSY69WUw5WObb8XG2uS604+OA0bNvHuuDsgtUvEKotq0di7dp1ndcHsRD9jQEruhs3bsTvfvc7rFy5EtvMyHTO4ZOf/GTxevoV0/d08Spi/pee7OsiCCGEEEIIIYQQQggM0Jdlf/nLX3D++eejI+N0SPuyrBoW37wYS25egrpBdTj0pENx0ltOwj0/ugdP/v1JDKofhJaDWnDG+8/AkOYh2LZxG2778m147tHnMPGsiZj5zpk9erYQQgghhBBCCCH6P/JttXcyIF+WXX755Whvb8cPfvADHHPMMWhoaOj+pgrYvXM3Fl63EK+/+vVoaGrAT//lpzj2tcdi7LSxOOnNJ6FuUB3+NvdvWHTDIpw852QMahiEE994ItY/uR7rn1xf8fPWr09NMKwJE5sI2m2vU2lL7APrwo3ZU6fRfnreW2+3z/N28UpMNLNsvKwNBO8tNuYLnc2pidrqFfmK1WWu2gVbIuy/fxjHJky2XbOK3xvbhLn5easyEG5XtiaCbJLIlja2LpyHtRBhs5msrdFAuNvdpuM8d+8O41gmrXni4YenYe4LY4UTtLltH/u8LI49Ng3breOcf8wU1cL15jYZ37YlTPg0dYgxG2jgh9vxxS/7qVObTCFPnzmjGN6yLZyKzQnsAbad9xRWfnisWdllmbemASxPIxqpze80Ziz8AKvfuDC287PszWINZ+7hLuW+sL/jxI6F5zaxcWx6yXnaIo4enZqh7TchNGZrKTF42vdgsbBjZl328MU996RhltUXXwzTHX10ugY5+QhjnsWdGrGNZks2O06am9Nx/0//9MYgbvTwHcXwmg3hWmj+H8s/y+pqNsOxFoI8hKzlWd0tv00v1pCynjs3TMgDhScDAAeyfdApp4T3kV3UqrPfXAzfemOY7N5707B1dbB6dbrOGDUqDU+YEK6ZNtMYtZaQPN6ajYljywUXoGI+8pHsuNmzw2syUatfsiQz3frWtFxL5wdRUSvPLHcPdiwcfngqg8ccExoyNvHEbfqXDZZbTzstvTAL2rOuv74Yvg89Z5y53lI2VQ+wypoXp1/6UhhH5tfLzeTweEbYzkLc4uNN3Awr9Dmo/+hHww/e+95c962/8LLgegTNiTM+/OFieJURIJ61S0xkaYCNIzPe8cacdczLX56Gja6Y/r7UsLRplzHkJf3TfO7kYvi228JkPDdMuvj0II67bbyxW3xocypty6miMa8Qdnzx/FJFd3bLsmVp2M4vrJ5j1sSsB3l9b/O0Zp1dQyXmBkWI/syAfFn28MMP4xe/+AVOOKF3fJFt7diKptYmNA5txPqVycuvhqYGjD0uXWEeeOSBeOLuJwAAgxsHo21yG1549oVeKY8QQgghhBBCCCGE2DMMyJdl48aNw/aIU9ue4js94ID7r78fC/53ASa9bBJcnQvSLLt9GQ6feXhGDkIIIYQQQgghhBBiIDIgzWs//elP40tf+hI2bqzFmTnZHHfRcXjTT96EzWs34+HfP1z8/L5f3Ie6QXWYMGtC5G4hhBBCCCGEEELsrTgkL1UG+p8oZUDuLLv55puxZs0aHHbYYTjllFMwYkToo8U5hx//+Mc1eVbj0EYcfvrhWLN0DQDgkT8+gpX3rsTsz82Gc66bu/OxY3tqC25tydmGPnakO50uDgDY+pK0TV4g69AJE6YG6caf255eWCN6vrYFe/bZNLzffmnY+gWaNCkNGx8VMXdpfB3z6WOvGXYXxf6/LNyulfi0ygv7eTn66DCOfdJZe372b8AbKa0fBPYxYH0lcftYf2xbt5a/z+Yf8+PGZbZ+cLi7hw1Lwy8Ya2V+nvWJk5fjjkvDsXFifbrV7Ur9/XTWh/5+6sjX05rnaAqJNZDtxFjDcloORzq4KYzBqFHpOLdjwfo43FPYMcTVifmssHLGvnU6W9Oa19lOZGeFsQFgBYPzYeG1+VOh19cfGESxDns4/T0FduMzF8vWk9vExrE7p+HD07BtY/btZ8WnpRd02kCD2ys2Z8SmQHbFZPMIfciF65Hjpp9aDDfYjmMlf2dWfqFI2jIOHpzqLSt3LFusD6ye5eumFQ+FkVzZ6x4M435LPsv4YTwYgHAAjBwZxrHyfulLw7jzzy8G76E1zmLjttDOKcxf/5qG2Z+lXXNw19i5LDbHNjamOmH8qHz+Ae9eGsrIoEFp+JAJoa+kMVwwdmZklAX7dZwyJZwpOKlVbyxPXA6rR9gtWVP9jjCS14PGKVrrIYekF+SDLggDaCAhnHHVVegpY/m5ANY/9VSP8wywzjmpDToefTSIWsXlMNmsoDAPezt987Fh40zd8K//mlnMTK68Mrj80z2pzJw1NluO2bciAMye/ZpieMTn0kXlGNOHW8gBpPVZxu3DS4Q28tcHAE3k+w1PPhnGxRzzkcOu4y9uTT8/x/gtJJm3czHHrR8besRbvojC5B/TFoP1s82f9XNvfA+J6YCsdHYNyeUyrgkDX5czzRl3Xflcc023xRSiXzIgX5bNnz8fzjm0tLRgCTs8LVCLl1ib121GxzMdaD24FWsfWYvWg1vx1MKnsOhXi3D+F85H/ZAB2XRCCCGEEEIIIYQQIsKAfOPzxBNP9Poz6gbV4Q+f/wPcIIdhBw3DyW85Gb/8wC+xe9du/O5TvwOQOPk/7d3J6T4/vfSn2LllJ3bv2o0n//YkXvGZV2D4uOGxRwghhBBCCCGEEEKIfsaAfFlWKb/7t99VlH7Xjl3YvWM3mocle053bdqF2z57G1pGtgTpNj21qZh36wGtQdxfv/tX5MXtHFU0E7RmSnwd25pr7+MtsmyiU2IGxVuX7bbyrHQ2U8bmsWlT5sNHHlo+GRBuE+ZH2+3DbN5ntwVznN3yzHnyVuPeONqY87e752MWrNyUXG9bRt4ebs1HOK21fuEu5GOgrUmLzZPhrdejR4dxvOWczWBffDFMx2YtMRPKGNzGLc3GhIA7uyPbxLEuIiSjuWAr7KHuhLWfitnv8PP4Prt3n+2FTOe3taXmPNZsJrbVvjexcpx3/Fr5YZOputVkqMGmGEDcBpEfbgcOtz8Ptsh57yMmhAI6dmxqnsvdZNVlXtVq72Orq5iqZtMPa6b35kuyn72vwKb8MStqbm8gWwdbOebr4eY3soZ60kcRG1DOw6oRnh/nzQvjHnssDVsRZzcO06enYauKxrRRGa3LBU78j3+EcWwPyROFXR8ccUQanjYtjLv44mKwc8apQdStt6Zhtmyzfch6hOdUS16XArZ/+T77bO6b8e3Z+TPWIpDnxIULw7gTTji+GD7u8jRsx/nqBWnYmpiyCWWsDXjut6aufN/YsaHLgpe99a3phR1EfOOFFxaDj68L19Pj31ljH8CXXhpcjrC+SqrhXe9KwxdcEMbRwLR+f0g9w64e2ASRjQLbTbpxZJIcDGYgMFfOy+OrQ1NdqxOysOlYx8x6wxuLYdsGE3hg3nFHEMdGvVsobDQRxrHfA6vsDqUvFFYGeUBwuD40w+S62DHEc6zVD1nzi13TxEwc2RS+N76H8LrMrh+4/Fxvm46nLztHsccdq2O6ls8x3bO3IJ9feycDSnR37tyJwYMHY+XKld2mHTcutSl/anFlvgpWrFiB2bNnY7FdLfQSJ5zwjj3yHCGEEEIIIYQQQggRZ0C9LLv//vtx0kknob29vVu/ZLuzdj7loL29fY+9KBNCCCGEEEIIIYQQ/YcB9bLs8IKt2H//93/X7CTK/sD++6dWCtaEg80L2CzJYk3ssrb7lpyQt6IjDUfMj0pMw/jYJH6YtcHirdcRuzB7ihcTO8WF2ySvKSoQbiXnUyF7A25Gu4Wdm9w2HV9zva2pIm+NZrNIS+w+DlsrHJYZKyJ2mznDdeX8bR6xE4j4ekzkdMewXcON0Lt2pSYjI6wAxWybs/bWx47T43Fh84/dx51jBZlsaLbUh6Yry8kqwW6Zz2tWUWtiasSWkU+DtZYTBx2Uhse1UfscdliYkPvJ9q+1784qWN7jKo1txqRJ6Q7mmCUnZxE7sNPGZZmI27HMcbGTf/dV2MQlZlpidR/HsSkbh4FQ79q4wF7FPoBkjfOIjSE7Ttgcz9ZtaYZ+KD3pMNWZ06aHpzE2baPz+6x+47HCdji2nmw2ZhYhW8ZOLIZXr8jOPrb+4bk+Zn7OcVb1x+bYGDET6yxKZISwbgo4LZv0jhoVznNZVuVA2G12Gspy9WFPTGUr25JTq7PsuIBQIZFAjmd5AYClkXFSDQsWhNf33tvzPOlExxIhITNPa2rJJ2CuMnFsCDiZwiXLHW506xujCvs2u8zIe3q2XfPxYdQsWw3HHBMmPPfcYnCCWXSPo3Zlk8xmNt8GwmMWbYFPPDENx04lJ7nbvAiZWFXH3W11DI/RmFuUmFeImG6qBbH5hbuDyxGZrrBhQxjHZqo8TIC0+bdsgRADkgH1smxk4Y3QnDlz+rYgQgghhBBCCCGE2OfZe7bxCEa+6IQQQgghhBBCCCGEKDCgdpYxa9euxXXXXYdly5Zhm9lz7pzDD3/4wz4qmRBCCCGEEEIIIYQYqAzIl2XLli3DjBkzsHv3brz44osYNWoU1q9fj927d2P48OEYxo6+BgCDBqU26taWnH1txXwQ8fHxQKlfk6w8pkwZXww3WCN69rVijfS5oBxn8yD/AFsaRwRRS8iu3bq54PefMTv/2HHv7Mct5h+A01l/IbWAfQVYNx3PPpuG2e8KELpb4v6M+Uix8sP1jPkDY38M1ucRl8u2I7uki8Ux1kccH1dvh26WHFvYfUVD4PXCsK4jvI41JsdxY8Ua0jodtB3CcENzB9j8yYHFLpNdzFVJfzym25Yp5saN/WUMGZL6nRttHf7EnBRxH7JzFSAUriznYOa6c+y4IOpZcoPD5Y35xapEh3FVYz6V+Dqv75l9CfYd89xzYRzrfNtvWf72eGoEsv0+AcCECalXopZJ2QLfSnNgbFxY96Ex2eK5JybiXOYSvcEPsEqdM+WJ1DpRpXSdEyYGUSvIrxr7XwOy3UbaYuTVdTH3qhxn24fbvBb+hOy8FnOJGaSlBglXU8CItrRgY8c2ZeZv24rXhKxjpk0L050+M/WXVrJgmzcvDbOjPAA49tg0TA1r/W82Tj+pGK6zglAN1rHaokU9z5PrbctI9TatA07ZbuJGZIQn2Mng4ovTsHGGtXJXqmPGoRN5sDostlRhrH/hZ55Jw/x9ZcqUqUG6lhkd6YX5ItJAbdnA9T7qqPBhMcdhMXgxTRWfNi2UQV6S2THKPhNj+jk2lvna+kRjlZm1du4JrNNi5WfRsmuJmO9VXqvY9UnX0ivvel6I/saANMP86Ec/ipNOOglr1qyB9x633HILtm7dimuuuQZNTU349a9/3ddFFEIIIYQQQgghxF6MAzBoL/gTpfTDvQfdc++99+Lqq6/GkMLPAJ2dnaivr8fb3vY2rFu3DpdffjnuuOOOPi6lEEIIIYQQQgghhBhoDMiXZZs3b8aIESNQV1eHYcOGYR1tTZ8+fTo++9nP9mHpKsf7dFus3R4bO+6dsTvCeYtv7Fh1Pv53tN07m2ULCWTb8Jk81tPG8hVmdz7v1re7+vk6tq05r0mENa/hPLOs7XoDW37e0m4t+HhLO/dhrcoYM0nJSmdNgLgdrXxyXWMmxGwOEDsRfURrdh5srtPY2BDEcZlHH2BknLEVyJJ/m44LaQdYrJH5mitu8nhkeboB2JpO8LiPtf/LzsYeg48QB8Jy2TjuGysjWbI1eMqYIN2ICdSndoCxYNj2zzvwKS5mIhUz4+Iutf0UM5tks21WrWOaN4YJF6cN2/Dww2HcG96Q/YB9hJfNTM+sb24OTdR4TNXCUsv2L5udt1gZJIFiEyBraczzoc2CxxTP5wBw0EHl09n1wqOPlk8HAG1tBxbDU6afFcS1kJ3nluY0XdO29UG6xzvSdcA2sw5gCyk7T7PMx0wJGTv2mIiaDe6ryEy1CqyJY922VD5LlMzPfpaGFyzITkeVazAmiCNmzy6GO5tDA86s9pqMh8IPPj43DVtTy5tuSoto8jn++uuL4bo77yyGm97yljAhm9wtMLlceGH5Qsa47rrg8hEa6BNt2pz8/bbbiuFRFAYQtJZtg9MpbJY4YPUfGFCy3R8QDlozaVRjGhzzJlHJfVnlKEnHA90quPPOK3/jGWeE6Y45Jg1b+ec24XkfCAc7pWtpDF12nHwcXVhFOIEqZ59NimrN1tS007pWia2DeS0R02HVcvjh2XFs9snzoW1GbmLbPKy7bVxXva0LFiEGCgPSDLO9vR2rCyP6yCOPxPU0Gd98881orcSWXQghhBBCCCGEEEKIAgNyZ9k555yD2267DRdddBE+9KEP4eKLL8b8+fNRX1+PpUuX4t///d/7uohCCCGEEEIIIYTYyxmQO5BEtwzIl2Vf/OIXsb1gv/a6170O++23H37+859jy5Yt+MAHPoC3v/3tfVxCIYQQQgghhBBCCDEQGZAvy4YMGVJ07g8A559/Ps4///w+LFHPaGxM3U3E3OrE7NitCwB2d8BWqf+fvbOP76o67P/nhhBDDCGEQCIEGhEREDEqClq0aNH5QDttdbWdtnbr2rp1m926/tqt7bqu7dpfu9Y+7Ff7sGnXB+201U1abbWDVmqxolJFRXxCBARFDIgQMeT7+yPJ93zOJ7mHb0J4SPi8Xy9fnptz7r3nnsf7vZzP56gtWbRFsZoMVCc0+pwZvoE8QCVdUi/P+veUJZr6mDDs6aPqW86K+sjwcWq76IEgtds1P5t6F3H++byUZ4TWL1dTBWJ/BmwPN29sDD4LKW88vXdK8ZzanjoPbeOlejewR5/6qjEd8u8+kVdMylAiRakGOqmHSzwoR+n4wOXP7RiIPe/2J9oGU15M3P71PH42Dveo3zz/RI3TesrzLEvUZ0X7juh4woTgf5WyeOQ+xdYtQHpL+lw7yNbEgNbfdjyUIfOVo46aFEVxn9K5huuDm4XWE7drHccjL8rE2Kp9g0k1T67u1PjMccNkyytugzrG8Pijc0M1+Zm1ktdNVWNtlK6N4lLehArfm/3GdLhM+QXysyZeVeK5Uvo5ykOkziEvvBDCDWIzlUePubE8jCMVlR1xHDeo170uhLdujdM1NISwTsx0rOVdU033K9WbUwuZXsQaxc+sjBs2D2L6ssXp1Ly0P0gZ1KjhZz/gavuZxLG902yJO+vMM8MBv7QCwLnnhvBDD4UwGw7qeVI+bf14tL68yzEpj01Gi3vyqaeGA21bbOLHA4S2A24jOpBwh054lnVU57/r8iXKUu9rqb5BpH42HUi063G+uH5TbUTbgfpO93bevvaENmZf4RWDxhhjjDHGGGOMMcZ0MWi/8373u9/F9ddfj7Vr16JN/jk4yzI8+eSTByhnxhhjjDHGGGOMGepk8Aqkocqg/Fj2z//8z/jHf/xHzJw5Ey0tLZEkczCye3fYUleX7ZYqZVNZBS93zZPzAbIEP6VVTGkhS8xkKlnqufsj5+tvXvaFDDOltuP6YBWFxnEdpmSGKXlKSmbbnqje1PXzZEqaNiWrTW0nzWnHJ5b/syIlJemNZMcAalI64bz92Puytj6vECRuF8lwtC5K7Xoqu9wX/aYU9L6cr1TbTeWX20iXXWWRXe3h9aQi1QhTNyhV7y6VMXJkqLeUjIWnKL08K5M0+5MaSTrNOgfVuLB851e/iuOuvDI/Y4cKVF4NLfFA8uqrFcWw1g23Vx07mJS8r6JtWzhQ6RC1yd27xyGP1DibUsflzT2aLm+oA+LXgGefzY/jPA4bFv9k4PvpeMZynieeiOMOP7z3eynxveO4kSNDmJ8z9cz6aszSSx1GUu0ijx4yT344lZCtWRPCL76Yf1EeGLWQ6biysgq58MOl5NyJ6/eA85+n9wLiTrR8ef71SmSHyEG5VEtUEvaAR12pJbBKfoaeuHBhCKveev78EOYy107KnUMmm/rGWFpeCjpfabPLIzX+6DtsREpemWP5sqs2HhM5j9qOX6N3hIYpU3IzyV1Niziy5dABJyXDpGcb2xjyVYZYUs3vKtpl+JJaxhXJsao0+LdNj+uXh3xub88f61JzzZgxIazvot3PVuYvSWaQMig/lv37v/87/vqv/xpf/vKXD3RWjDHGGGOMMcYYY8wQYlB+533xxRcHtaG/McYYY4wxxhhjjDk4GZQfy97whjfg97///YHOhjHGGGOMMcYYYw5hyobAf6Yng0qG2dHRqau++uqr8Za3vAVjxozB+eefj7q6uh5py0gcPe/Uk/ZbHvvD1m0jip5Luv0u69pT2+6yLQQQa8aTlm5sAqA6fM6M+lewMUhi3/nW9rBNs+ZxxYoQFnuJyJKHt2ZXOJ1aQYwaFcKbNsVx/Gisy1crhbdcmH/vUuHnfPnlOC7ltZWXL/UKSPkhlbWT55FaNtENqujEysqyvGQpq4Yenhfcdrnu1auB60LLnz1rZsiO68zKlflxTE/fm+BX1Ng4PorhllzTvqW0i6oRTol7hb/0UgivXx/HcfvRPsTtP2Ux887LSsrGgHDnnfExF4/2c25b7HkBAEcfHcJsQTJzZpyO23/DbmnkXEDawbQzdsPjmSKNt7I5zD18efXhY6uhVD0lmwvfWz3LfvObEL7xxjjuhhsSFz1E4I6jgwxCv1dPPfa74uainixMjzrkCtd6o87xxMapuVnk7E+YEMexlZGOwWwLxXHaFbhpqZcRH+scyx5FPMdqOu4P6vF17LEhrMXDXZH/fVTLOFW9PHbMaCZPoo2tcUJ6wdpRHXslsbVlxfZ4LqjgCpg9GyVx883xMfdfGSS3LV5cDNNsHnlkAQCOOy6E586N42jQrJgmEylXPjeSpUvjdLfdVgzu4EkJAOd4tWSLX1tr6NlmynOO/853iuF1MjY3XXcd+srtcsxNS6aQknmQwrMkjn3Q1P5r8u2UG22gXObf+EZpGXn726PDigULwkFLS0mXGF+/KzrevLkiJ2VMaoxpeHVtONAXPa5D9nAD4h83VD46HnA/13EqGmOmx35m3H/5faQG26J00WC6aFEcx4OOvshQIZRx/xIDxQp6qakQX7XK+vAuoWMMUIu9pW4z9UydAKhS6+bNoz/HvwXY43pdexzH7zhab93FmvfKZczBzqD6WDacHAoLhQLe/e5395ouyzK002Cw9CslvsAcIM78wDMHOgvGGGOMMcYYY4wxBoPsY9knPvGJA50FY4wxxhhjjDHGGDOEyQqFwoHOQ0lkWVboT16zLEPhnvfugxwNHO/7yhp883u37TmhMcYYY4wxxhgzSJh9yilYvnx5dqDzsa84IcsK/3ugMzEA1AH3FQqFg1uSt58ZlF5ur732Gl555ZVe41555RW8psYjxhhjjDHGGGOMMcaUwKCSYXbzp3/6p2hvb8cPf/jDHnHve9/7UFFRgf/4j/84ADkzxhhjjDHGGGOMMYOZQbmybMmSJfjDP/zDXuPe/OY345e//OV+zpExxhhjjDHGGGOMGQoMypVlzz//PMaNG9dr3NixY7GJ9zA3xhhjjDHGGGOM2QcMyhVIZo8MynodN24cHnrooV7jHnroIYwZM2Y/58gYY4wxxhhjjDHGDAUG5ceyhQsX4p//+Z/x4IMPRn9/6KGH8JnPfAZvetObDlDOjDHGGGOMMcYYY8xgZlDKMD/1qU/hjjvuwEknnYSTTz4ZTU1NWL9+PX73u9/hyCOPxKc//ekDnUVjjDHGGGOMMcYYMwgZlCvL6uvrce+99+KjH/0oCoUCVqxYgUKhgH/4h3/Avffei/r6+gOdRWOMMcYYY4wxxgxhMnR+VBns/5meDMqVZQBQW1uLT33qU/jUpz51oLNijDHGGGOMMcYYY4YI/ohojDHGGGOMMcYYY0wXg3ZlmTHGGGOMMcYYY8yBxCuQhiauV2OMMcYYY4wxxhhjuvDHMmOMMcYYY4wxxhhjurAM8yDg9w9meMdlnd8t162L4xobQ7i2No771jUdxfCXro6/e7a0hHBzcwhPrtwQX2T58hDevDmO48xs394z492MGhXCRx8dx82cWQxuaZwRRd1+ewivWJGfreeeC+H16+N0/JxNTXFcdXUIP/tsHLdmTQi/+mrv5wDAgys6sLecMT/UzbRpcVxbWwgfe2wcN3JkCHMdjhkTpxsxovd0AFBe3ntY0apn2ttDWNtnZWUIc5nqNfm8F16I0734YghTcwEQ18ffXJVfF1/9eihjzhMQ51/Lh+G+BgC8qe6kJrq3Pmhra/5FudNqOq58evAN22uiZHfdFcJPPhlfYtWqENYuyse/uH3v23GpXPkX8VjE/eu3v43TctttaIjjTj89hLldzJ8fp6vZ/FQ44IEDiBseNwQAeO21EM7rbEDcoLRxzZ1bDD64qqIY3rgxTvbEE8iN42xpFunymDIlhGc1b4sT3nRTCPPACgA33IBDnW3bQ5tctiyO4z6kXZTHAB4/dayYPTuEx0Pm2AceCOHHHovjqMI/2/7hYlibIM+POkauXBnCOj7zEMPPpvMcpzvqqDhu9OgQ1vmL88LjPZeHUle9K/4DdY4dzfE7QlVlGLd+eEOoQx3ruAw0jyedFMJzjtsRDhKT2Y76SXE+yinPOlnyzRcsQEl8/evxMTdKHiwAtN57bzHMw0P9ccfF1+CB8Q/+IIradvoFxbCWHbfxinKaJ5YujRPyRPTLX0ZR2xcvDqfFZ0W9YRyFJ0k6HllXStxbdu9GX7l62LDouJXCn+zH9QDg/9E1z5A4KkbI6IypEyeGA30BOvnkYnALlXHilQxT9cfA5ZeH8NVXJ84kbrstOtx1dmgjUTsQ7l6W/1uj6povhQOd6L73vRA+++w4jgdUnugWLoySbcD4YljnSu42On4efngIP/xwCGsx8nl1S/8njuT29KtfxXH840N/iOTdgAsOwI62UK7ReAOkX95LhcctnQBoUHhwY+ilOlfyeK+vwTyP8nzCaZ96CsYMSgblyrKzzjoLq7hnEqtXr8ZZZ521n3NkjDHGGGOMMcaYQ42yIfCf6cmgLJclS5Zg2zb9t5tOXn75ZfxKv/obY4wxxhhjjDHGGFMCg1aGmWVZr39/8sknUa1LTEtg44s7cNWX7sa9j76Aw4YPQ/MRI3H135yK4y/7Maa9rhZtu3ZjZNVw/MXFx+JdF0wFAFy36DH83dfuwYSxh6NtVzved9F0fPDtswAAX/rhg/jOf69CeXkZxtZW4j8+9ga87oiRvd67ujosb2VFIxCrGnXJMKPSJJYiVG2kta9LRaaUWjubkpexHIl1VrrGn5b+1k2Ll3YfdVT4Vqu34hXDhx0Wwrp6niUEWnYs8Ro+HLnwvbQIBgJ+NlFYRGj98mp0XoU9dmycjsugRgUA0VJ16e5Uh7W1oS50eTsfa9fiuMcfj+NYMshLtnV1PqvhVOXGy+dTPPpoCGtdc52+/HIct2lTCOvqeV4l39gYyqcipfPU5fJcOVp4LAOiuDWiQeFyXClxqbabUk7vS155JT7m4tK64eLiYQSI889FvHNnnC4SrWrd8A30RIYbRkquqRIaqrdZpFGorq6IknHd6OV5fNA6yz0vNWCmxm3To5+/9FIIq3yHj7kp8dgMABWrHgwHOsjz4MSacyCq1Gq6pso8eW7g+VBJTeHcRLQNcrvTYWrr1hBOqYH4GjoXs8q5sjnuG1WU6aq2LfGJT4QxcubMWcVwKv8qw5wzkYSAN91J15Z6okqtEvlXdANVNSxZEsKlyjC/853osOOhh4phKQE8T2GW+vVoyKyREommzrlMfX1OhDYm7gxSyNU0MTXLGMm35mfbgRj+l3sRMveLVjmuHYBrcrecLHFVVCaNOgZffHEIa7sjzXIdvSjtEO+QtRSukes33nhjOChVhvnv/x4dVvDEzfkVTpsmLXQ5vZSwBYDOxfzyrgMc+w1QO9s0bHyUbMV9IaxjkcoCGU7L3VffubnJn6b9i/1gVIrN44PKuxmOk+u/XAjyx8qx8RhZhgGw0UgN8jSg8msSz41A/Ng6pqRce7rT8quUMYOJQfWx7IwzOl0CsizDe9/7XowcGX982rlzJ1auXIk3vvGNfbpuoVDARR/+Bd51wVTc8JnOl50Vqzdj04s7cdSEGjzwvbcCAJ5avw1v+T93oKOjgHe/6RgAwNsWTMbX/24eXtzahmMu+REuPmsyJjZU44Sp9Vj+3begqrIc3/jxI/jw1+/Bjz5T4ouUMcYYY4wxxhhjjDkgDCoZ5rBhwzBs2DAUCgWUlZUVj7v/GzNmDK688kr8u/yLyZ5YfN8GDC8vw/vfEsxlW6bWY2JD/PV98oQafOmqufjqf6n9KDBmVCWmNI3Cc5s7/73szNnjUVXZ+S1y7sxxWPf8Kz3OMcYYY4wxxhhjzOAkw4H3G7Nn2b5hUK0sW9y1486ZZ56Jb3zjG5im6+37yconX8JJ0/LWoseceEw9Vj3T2uPvazduR9uu3Zg1pa5H3L//zyqcd+rEHn83xhhjjDHGGGOMMQcXWaFQONB5KIksywr9yWuWZSjc895kmq/+aCWe3rANX/7gadHf12x4GQv/9nasvP6S4t9e2vYqxi/8Pnb++k+LnmXjRo/AY2tb8e2PnlGUZ3bz/dsex9dvfBi/uuZNOKwi3sq6m/d9ZQ2++b3beo0zxhhjjDHGGGMGI7NPOQXLly/v3XB8CHBSlhXuPtCZGAAqgfsKhcLsPac8dBhUK8uYbdu24Wc/+xnWrl2LNjEizbIMH//4x0u+1rGTR+Om/31qzwkBPLB6M6Y31xaPuz3LfvvQJlzwN7fjvNMmonFMFQDgzt+tw2euewC/+kb+hzJjjDHGGGOMMcYYc/AwKD+W/eY3v8Gb3vQmtObs+tXXj2VnzR6Pv//G7/DtWx7Fn104HQBw7yPPY0dbvOXSmg0v40NfXYa/vGRmj2ucelwDLj/3aHzlhpX4l784BQ88thnv+9xduP3q8zGubkSP9MYYY4wxxhhjjBnc2PNraDIoP5ZdddVVaG5uxre//W0cd9xxqKio2PNJCbIsw82fPwdXffm3+Nx/rkBlRTmaj6jG1R88DU+u34YTLv8x2nbtxsiq4fjLS2b2kFp283/eeTxOfOdP8PdXtODvvnYPtu9oxyV/37lV+aTGw/E/Xzx3r/JpjDHGGGOMMcYYY/Ytg9KzrLq6Gv/1X/+F888/v5Tz9uhZdqCxZ5kxxhhjjDHGmKHGoeBZtuxAZ2IAqLBnWQ8G5YrBSZMm4dVXXz3Q2TDGGGOMMcYYY4wxQ4xB+bHsH//xH/G5z30O27ZtO9BZMcYYY4wxxhhjzCFIhs6PKoP9P9OTQeVZ9s53vrMY3rRpE4488kiceuqpqKuri9JlWYbvfve7+zt7xhhjjDHGGGOMMWaQM6g+lt11113FcJZlqKmpwcMPP9wjXZYNWUm0McYYY4wxxhhjjNmHDKqPZU8//fSBzoIxxhhjjDHGGGPMIUWWZWUA/hrA+wA0A3gBwH8B+EShUHilhPOXAHhDTvTJhUJhuaQfBeDTAN4CYAyAJwF8HcA1hf2wU+Wg+lhmjDHGGGOMMcYYc7BwCHl+fRnAXwG4GcC/ApjedXxClmULCoVCRwnX2Azgg738/Sk+yLKsAsAdAE4A8DUAjwI4D8D/A9AA4JP9e4TSGZQfy9auXZsbV1ZWhlGjRmHkyJH7MUfGGGOMMcYYY4wxQ48sy44F8JcAflIoFN5Kf38awFcBXArghyVc6pVCofD9EtK9B8DJAP6qUCh8retv386y7McA/j7LsmsLhcIzfXqIPjIoP5Y1Nzfv0Zds8uTJ+PCHP7yfcmSMMcYYY4wxxhgzJHk7Ojf/vFr+/m0AnwNwGUr7WNYt56wG8HJCTvkOADu6rs9cjU5Z5tsA/N9S7tdfBuXHsmuuuQaf/exnUVtbi7e+9a1oaGjAxo0b8eMf/xhbt27Fn//5n+PXv/413v/+9x/orJbEM2szfPXrnYs3N26M4+bNC+ExY+K4OSfTKse2tjhy1aoQfuKJEF65Mk63eXP+Nfi4sjKO4+NyakYNDXG6iRNDeObMKGrHtBOL4Yceik/7zW9CeN26EF6+PE43ZUoI19bGcZwtLgIAWLOm9/DOnXG6na+UspI0zbjGsDC3XHpcdXUIH3VUHHfCCSHMzzltWpyOn7upKY7j++m9X3ophF98Ebm0t4cw14Vy663x8WOPhfBzz4Xw+vVxOi4Dbu9A3Mz+87r8unjHZaGMtalu3x7Czc1xHD9PfX0c19ISwnPnhvCMaZIP7mtCx7QZxXBZ65Y4khsl9Y37V1VFyZYsyb8Vd1+tX4773zv3vh2Xyoc/Ei9E5/pdujROy21X8z9/fggff3wIzzlhV5xwxYoQfvzxOG7TphDmhgDkj2Fc8QoXqqalTrr6ibgMHngghJ98Mr4Ejz+trXFcY2MI8/B5xRVxuopFPwkHjz4aR370ozjU+cWdoT60GXCfkimqx1jbzdR66cvcBrX8ecDTCqbB9T/nfasY5rYPxNO2Ns9nnw3h++6L43he5XZ2xBFxOh4HdQ7h8V/jtLy6Offc+LiufFs4uPPOOHLZshAeNSqOe/XVEOZGLxn5xZKK3DyNf+Cn4YDrSTsiF+yll8Zx3Gj4GgBw++0hfM01KAnu2ADaX3ihGJZXQPBox2dVfVDUK1Q+G+pnRVGcZX2PPPro3rNY1/pU/AceI/VF7JZbisGO730vilpE4QoKb0PM8xSWURaf3L2790wm+OqwYdExt5i39ON6ALCOrtl0+eVx5OzZlHBdfpy2f37x+PrXi8FlL78cJVtN4RrJ12QKzyrx2dqkfCrf/vZw8P3EYg+No+d5nupef1zuoHCTDqx875NOCueceUGUjIcKHcd5jMwbt4GeTZfh8965UMZ4HkCpngDE/Zn7Cb/8AMDhh4fwlVdGUQ+uzP+d0OOdsz/Q77lNL8fvmKNHhzCXDw9tQFw+Wv7arJnu7pB4VTaDi5MBdAD4Hf+xUCi0ZVm2oiu+FCYA2A5gBIAdWZb9HMDfFwqFYkvp+ph2IoD7C4WCfKTA77ryUer9+s2g/Fi2evVqzJ49GzfddFP090984hN461vfio0bN2LRokW4/PLL8f3UoG+MMcYYY4wxxhjTT/akehsUFAr1WZbxZ+VvFQqFb9HxeACbC4XCq+jJegCnZVlWUSgUdvUS383TAH4D4EEAuwHMAfABAG/MsmxeoVDo/qe+0ej8mLZeL1AoFF7NsuxFdH5026cMSi+673//+3jPe97Ta9x73vMe/OAHPwAAXHLJJfszW8YYY4wxxhhjjDGDjc2FQmE2/fctia8C0NuHMgBoozS5FAqFdxcKhX8oFAo/KhQKNxUKhb8DcA46JZlfknthD/dL3msgGJQfy15++WW8QMvWmRdeeAHbu9aH1tToYmVjjDHGGGOMMcYY0wd2ADgsJ66S0vSJQqFwF4BfAzgzy7IRcp3U/fp8r74yKGWYb3jDG/D3f//3mDFjBk4iffvy5cvxD//wDzjzzDMBAI+rf81ByujRwatJrQ7o8dKo2Rkbjbz2Wv55rKlXfT0L59XQiY/ZW4E9yoBYyy+GUWzfojYL7GWk2WLYy0u9qrgIUqj2fqDhIlDLI7aNeFW+m3P+2epAn5OvX1Mt3gZ8ETFCGD06fCsfMSL8PeX5pbCNg3qRcVtmX522tlfkKuHhxKaj5DrkctX8czvT67G9kPr4cHHFFjnxvzHMoEa4o70iilu2JIRra+uiuGkzTymG2b6MPcqA2EOCy1vzqF30sLypZR+j3oGcL/WM4/rQvsHth59z+PC4jFtmh3Is00Lgi2pD5otyRlKeZVoBOfeqrh4XRY0dG8Jbt8ancba07NhfiPt5RZs4/nD+dSAxURtU3y2eHrXqJ1WTbw1PRKtkouZBRnfi5ptrBZOPzDvPJdemO+6I83H66eFgXTzX158Q2v8rMrTyWMhzrFqn8euD9kNuWtr8uY/yvXScbWkJ/3A5iydtIDYiUh8xNvtLeKiec+GF4WCpGJRed13v11OjTi6UBQviOC6UlGdZiTwi/9hLd4bagub9k+9kNWKlShwvxm1PVPc+1wNxUUbFumJNnJDHS20kVHZlPNgBqKRnbaW/qzcbO0TJKN4vxstxjr1en2jivn3ZZXEk+5JJR+loCf68ZToJin9dNyf+y79Ex60UTvmBlYq2syk331zaid/5TnxMxohcp/pUtXzwpjfFkeS3t+mwScXwT2+Ik7EvmY4x+hMoD266WhXHHEMH2s/JlKvj2mujqLLhw0O+aEIp17rl9iMdcZb6JEZUJuJKhGyLGvRHFZkKn3ZysH9qes8pUTKeytR/jIcjjeseujv2n3Wu2bdsADAjy7LDepFiTkDnyrSUBDPFGgDz0Sm/3Angpa7/95BaZll2GIAxAH7Vz3uVzKD8WPZv//ZvWLBgAU455RRMmjQJ48aNw/PPP4+1a9fiyCOPxNe+1rmz6PZ9/RXEGGOMMcYYY4wxhyZZ1nN3hsFIaoFNJ/eiUzJ5CoC7uv+YZVklgBZ0rg7rL0cDaEfXv58UCoWOLMvuB3BCLx/nTkHn6oXEth0Dw6CUYR555JFYtWoVvvGNb+Css87CmDFjcNZZZ+Gaa67Bo48+iiOPPBIA8EHdLcgYY4wxxhhjjDHG9IUfASgAuEr+/mfo9A/7Qfcfsiw7IsuyaVmWVdHfRmVZNkzORZZlFwB4PYA7ZOfL67uu+1455Sp0flj7r34/SYkM2k+gw4cPx3vf+168971adkMLVgrosuMGWu2+o3FyFFfF64v5S7dKdFh6kNI7qnyElxdzxlRiQekeXBXLp1jCkVAURJdX+QjL9lR+l2LnzhBmdYequAaCCbR4VPPIRa5Fx1V43HH56So2bwgHTySkZlK/FZSZioRWsY7S1c3UxfXhe3tKqctL39va8itK5bil/iMNy1n1H0W4flNoE+djLnOWxAKIdHTt5bHUMtV2uUy4vavUiY9ZhgDEVaoyhL70h4FE88/PqXG8+FeVPQzXoY6DXAbNzfE4WMGRegO+KFeONhhuhLpamc+juPEza6Nk7VPC2KeX5yzqs3G7iySCK6QhsGRk6VKYmBOnkVBJKqCyMvRZlWhiFXWqVEXxsc6jPElpHOeFwyLl3FEfpEnttZOiuFtIqqTjA48B3PxTfY3nRkUfm5s/j7vL5d95ea5f1zIrijv/qqvCgXaOW24JYZYW6kDCg3VCUdBBg6RK16pZoqk6Ii4UfVlhj4ESERE11lJYc88lEs2+994bJ2T9vkycM1vOKoZ1fqzikthMd9dxhMtVJGrtJBtujc+KnofeVHqk45lzHPYeVXyV+BqQZAP15fEqv83rDADapgUZZtW0aVHcU5uD0HYyyX8rpJ2deOONxbC+qVeg70zRP6TsBxiWmwLA3LnF4CyWPJ97bv41PvKR6PCex0PtsxJbuyGPI/q+xmPdMPkZzu+V/F6qj3z00XSwSISqdHNtS9uovrm9V8hLWRUd1/PYphnTBzjvPOw13F51HuK+TT88mqSqy9qDsm779rjVcX3k/c7RxzKDk0Kh8FCWZf8G4ANZlv0EwM8ATAfwV+iURP6Qkv8LgHcBOBPAkq6/nQngS1mW3QrgKXR+8DoFwGUANqPnR7hvA3h31znNAB4FcD6AiwB8ulAoPD2wT9iTQfuxzBhjjDHGGGOMMcbsF65Cp7/YewFcgM6PXF8D8IlCobAnd7rHANwHYCGABgDD0WmjeA2AzxYKhcgBu1Ao7MqybAGATwN4Ozp9yp4E8JcA/m1gHifNoPpY9vvf/x7HH388jjzySGRZlpsuyzI8qUaxxhhjjDHGGGOMMQPJoeFZhkKhsBvAv3b9l0p3BYAr5G+PArikL1kqFAqtAD7Q9d9+Z1DVak1N53LlN7zhDcmPZcYYY4wxxhhjjDHG9IdB9bGs27j/OtbFl8C89/1sH+Rm4NhVqC/K4dUOI8cSBwAwiyw8aFdjAEA1bRV+7LHBL6FBjaXY+0O/iL/0UgjrfuOseWeBupi+PLUm5EP9VPhZ14k9QJ6nipYBP45msdQP/OxB1dBQ2jl9YeLEEJZd1aM86i7THMdWLloGdSmvOb5IysQqVVgUt217vCcIW7lo09JtubvZvj3fuEDLQH0p8uAyVl8dtv9RTyJ+bM0vp+U2InZCQHt+2XGZaBHzMYf1mbl6tYwPOyyEafdyAAfOs0zLn9urtl0eYlJ+SDweaPlwnJYP++31OJEzozdnuAK0gTLUYDZsjv08aGf2HrZMnEWts6OOCuGqVnL8UYO6lDGciT2WpJHU1ge/HC3W8eQvtKU1jH2V9bFvWFWqXfBEp5VPbbCjKVyzTCbAVBtndIzhtBxWXzL1Uyz1+nzM/xjd739c1wGaB+X580NYXhhWtwevwqmXSl3Qg5fRGFCtD833El+paKwgjyYAPRtNCcyUY9as6KsPP+kaCtfKfZuvvTYcyLPVkfnhrsa47WJ7jnejjiOLF4dTJI5f7TT/nJK92molHddaDfYe9ZViX7hZ6B/8nONvuy2O5PqQ/lvFprMyBkzmtnbdkt6vh3g3tqrIXAul+40xV14ZH7/+9aWdd9ll+XHcL9Vcd9myEJZnO/roMAazrXLKmlCnc57CjzgijuP3JPYv4yEFAKpW3B0Obrghjnz00WKwNY6J+i9nq0rSRfPETBkF8kx+Bwp+j9F5iO+3aVMxWLZubZyO6nf27NOiKB4i83yC9R3VmMHCoPpYVgp33nkn/uZv/gYPPvhg8W9LH+i7Aev+5KKL3negs2CMMcYYY4wxxhhjMAQ/lm3duhUPP/zwgc6GMcYYY4wxxhhjhjJZNjQ8y0wPXKsHATt3huXGuuw4JWFi9DyWE/JeByNbRD7Ca5f1BnlraTUtX0OWD1dWhk3AVS2YUj5xXFuOSkBvp2MUS5r0PF7qzfJNXqI9UPC9U2Wgxc0SNa5fTVdfH0QL1dWxgKGaykDLm/PSXh7OUykY3+8J2cp769YQ1mXxfB7fm3ZfBxCXuaqZUgpThs/TdsD5SMk8NY6POY895I3UFWqq401gmpuDeEKfpQJhG+625iDbU0UFdzUtYy1LZl+05VLQ50x5hbKkVeWtXP4cZmmixtWVb4sjWRaSahh5snI9T2Ri29qD0IL7hqooOBsvvBDH8fijWRwzhg6axxeDDSrhIIkIJkyAEajjdEyZGkU9fm8IkwIFANDUFPovK4e0iTRT3WgfrWM1kkr26EKrqP3MUDkiNdWqti1R1MyZQcLEciMAGD06hHkMTo2rOm5wN0lJ7fn6s2fH6VhpduLMXXHkt28O4RNOiOOoI21rC2PkzsMnR8mW/TyEn6iPxU/zF7y5GK7iB094OuxonhFFRWWe0ouXSPV550XHJ5Kk7ylJu4PC23LCANBObatcB6DUu1yePEsnxFdeKQalBqM8qiiV88lvJyIGBTfJRG5LRrdje34ArhmV+Sp5GaKy65AX8rJbb82/KPuTkMVM67OxIoZE+KiXuH7JMPWcs88u6bRtU06Mjms2U4vlPsWySwC7qI1XyPxVN29eMXwGaSPb2uL3WR53da5MvSfx7yF+96+KWi7iifrpp+M4av+xGQkwjsLlXK7sDwIA9JxYsCCOY9mq+tIMBCwf17GP2zKPB1rINK5EthCI50Cd5rqHSMswzWBF+7wxxhhjjDHGGGOMMYcs/lhmjDHGGGOMMcYYY0wXg0qG+dRTukC9Jxv7sTPRwURi1Wtytb/uNMmreFmGqcUzc2aQM4ySnSAbptFie122y1IEWvOsu8DxJmS6spjlSKoS4HIYRpsnRrIkxCuGVVqSkprwNVMywIGAV16rjIWLVePyVGJKntxRGZa/CWVE6hoKL4vXVf158lm9PstNdZOnUnd05BXmKbWd7nbKS/JT7YfzUdYei1A6SPqq3SQlG9hBsiI+T/PBq/NTUteU0mZ/oipAUi/02HE01cb5Wbkcuc6AeFyprY1lG3V0w47KWJ5Vtp1ENXSDjvJ4DONx6pVX4jiuN86HtnHOv+7Uxf1e65c3UYskI69Kx2C5R4/tWg3LTMpkoD366CCiURkmz5cc1n7OcT37b5CnNE8bH8VVVQaxWDnvhC0Xaef7yUDCfUhlLtzfOJ1Ko3l3TJbWA3Fb1vmX2zWP46nXsNdei/vQnDPPLIZ7yB+pQ7DSWJ8zJfNfvjyEz+CJIjHR9dixtjZIXct0p8y+TJjd/PEfx9enOp1x111R3HaaPFn4tEYuybmYeuONUVw1Sb4qLk5sp8ovnPzyBmAVDYQqEuM38w0Sx4Jifr2SPUVRT1uFd6hWvR/o9dfs9RXjMu4hlCPppTb/2b//fThItR/qYLXyMlrLDVt3slRJXwnsuOy90fFDD4XwnHoVsQZEXYnGxvAbYtZHPhIieEAAUMGDxbnnxhehMXlXZZjDtR+mdgbny6c2mozm0ZtuihPefnu4t8hso91I47NQzhP39OkhrC88xx4bwjrZ522PPlDw/VSmzS/o/CLDgycQV778oJhxMuV57rgorrtuFi0qLauDFnuWDVkGVa0erb+ke6FQKCDLsuhvJ805aV9laUDYuWPEnhMZY4wxxhhjjDHGmH3OoPpY9h//8R/9Om/2x2bvOdEB5NefeeZAZ8EYY4wxxhhjjDHGYJB9LHvXu951oLNgjDHGGGOMMcYYY4Ywg+pj2f5k5aKVeHjRwygbVobXnfI6nPKuU/DU0qdw3/X34aV1L+GiL16EsUd3eiyse2Adfvefv8Pu9t0YVj4Mc66YgwnHT9jDHQJjxwELF3aG1deLd6B+4gnkon5Uef45sqN10ueosTF4i5SX1+WmY7m75pHvpz4mnC+VebPUn+PUU4yPUx4GKY8Zzgf7Qw0UbCehHlx8b43jutFnY9iKQH3t+JpqrVJRHnwpKrbTiVJY7DUxbVrsRcD1e9hh+XlM2TGMGhXCauNQqmdZytOtVDRfee1zW1vsucNlrv2Ly0S9triYuT1qHfJxysND83/44TggjB4dH48glbm2Qe2XDD93qox5DBCbETQ1BXcRLbsJE4I3Ctt8aZtL+S9xv+QxS9sjX1PH6oaR5KGilb+UzChTnejZZ0OYzWdMJzfcEMJsfgWgjozh3tw9EXfRQU41PLfpPMftWu1gGJ3fR40K158zlpyf7oxNSCezCc/yNVFc05Szcu83tSm0rfLy0Be0TbNXm/YvHre0/z72WAjzc7NFExDbNGkfnXNV6MDqN1ZFFz2OBALs9QYAtbWhHDWPPL9EFaeTDVFZH3sf8jUrtO8NxORDg1OHjAF5jmjPJy6nL/az2CyIfduAeBDjsWPx4igZV5sOiXw8XuImU5i9nmolHeerLFE3pTKNPNAAoGkAfNCm8vXUj4oG+SZt5DyuzJ8fx3H5s5mgmltyx7zwwihqR/2kYrgK+X5jTH/tnfUdPOoOTeRQpy/T69cXg081x2MWz813XhPC6sXMXU19yXiM4WwAQFkbzbHsw7VkSZxw6dJiUIunPScMAG3UZ8fx9XWs4Dpks2RNq4PwQPww4cKk5wQQe5HxJKVtnNu1Phs9zwzxpGvremcu9X1+0GLPsiGLd8Pshd2v7cZ919+HP/zCH+KtX30rVi9ejVe3v4rRrxuNsz96No44Np7EKmsq8Qcf+wNc8rVLMP+q+Vj85cU5VzbGGGOMMcYYY4wxBzP+BNoLO1t3oqq2CpUjK7Fl7RYAQEVVBQ6r7n3pTP1R4V+GRk8ajd2v7cbu13Zj2PAStx80xhhjjDHGGGOMMQcF/ljWC4WOApABD9z4AJb/YDmmnTMNWVm25xMBPH3306ifXN+nD2VVIwqY3Ny5dLqpKV7sl9oqmdGNQnklLS9PTknNVL7AagBVGuTJTlRFxKvKddt5lWsxnGeWaunyal7WG8ktEK9y1mfLkyfui2XCrChQdUEkJ1GNTjs9+KrWEE5oZ+t0bTqo4qrl4bji+N5aiUSVVMCMJlqTL41kR1toyyxz0+xzm1Tp4IgSN4rlctW6Zimktjm+t/Yvfpyy1i29RwDYeRjLleNr8HPrqnsuBw7rNThfKlvkrCSqbb+i5c/oOMLHGsfPw9fU5+SyUwkcjwla/gz3+5QCSOtmUjW1C86I9mWuOL0IP5AOQBzHUgwdCFm/dvLJMAJrjnQAevLJEBaNLM/GU6dPL4ab5k+O0qVkwnw77RuRNJvrPqXjlbiUlQK3u8MPDyK4lJIw1U80/9zMU0XM5z33XBy3oS1YPGjZNZAMiMu4vD5+T+LnSZYx95vUSw3yoyr0PNWllQJJfwEAs4PGtEy0qJNJIsV33oKYbRSW0QezHn88HOhzsrTqnnuKwfulEtdQuFWuzyUwWeJaKMwGBuVnnx0nZKli6mW3VC6+ODqsVmlkP5jGB1qH3Ef1hZykl0+1T4qiniBF3Dl/9mfF8I722O6hat3qYnhDeXyNjfRoJ7ZorntHZZjJcYTYuTM+5vFiS2PIl87FU6k+bvx2HMd9lJWR+r7DU6C+6vK8Hb2vAfHDsWWB6OnbKU7FrDziqClN1Fr5x4vKGPlYZbap8X8g4GvqmMWFx4OpVgBLmbWCuVylcU2Y0Nkuhg8vMa/GHGT4Y1mCEy45AdPPnY7F/7oYj/78UUz/g+nJ9FvWbsE9370HF/zTBfsph8YYY4wxxhhjjDkg2LNsyGLPsj1QObISR51xFDY/mXDtBbB983bc8dk7cOZVZ6LmiJpkWmOMMcYYY4wxxhhzcOKPZTls37wdretbAQDPr34etRNqc9O+uv1V3P6p23HyO09G44x+LMk3xhhjjDHGGGOMMQcFXi+YQ9mwMvziM79ANizDqCNGYc675uDp3z6Nu791N3Zu3YnbP3U7xkweg/P/6Xw8/NOHse25bXjgRw/ggR89AAA4/5/Ox4jaEg2XtmwpCvV1W/ITyctibX0V8lCLB7aoYLm++v3wsUrQWUI/LGHB9uKLIaxWPXxvleEfe2wIq3yf/Qj4GupTwJJ6tfvhOPUhyvOLOuooDDjjq8lNpE1NX6jQtQI4Y2wU0RdTmbzrAXHlc2FpI0mZunHDk+tXUdrq6vBdPuULp3GlWjdwOi2ClF1UyrMvz6dm00uxlwj77OhW5+yZtWlTHMd9JeVZlmcnsae4fWF7UQrqTcg0NMTHqabMthccTnlC6TOzJYnWL1uLsIWH7tKeqptJ83JM49jbAwDWrw9hNnIE4gE0ZZjGfic64LNHzkBsMz/U4PrQumEvo5RXEhnrVM2vjaJaycWGrVuAuOrVJ4jHuzPK14QDnUi54clFpl7YUgw3N8djE25ZUgw20OR57LEzomTc7FKegNq/OCs8zqa8FdnHUe/do/nTheqpWVe0bYuS1daG1fw6jUZQgasnVGUlHSd8NXe1x//GXJHqs3loO5swIYQnToyiasmzjIs1Za+qfmbRGLNiRRyX07akqUY+ZbUSx/9ELG6KqBs7NhywKWlLS5ww5fXUH17/+viYy7ifVHGee/jDEjrZkFfeE3fGUdzV+d1C57k5J4cOsGZZHKf9rRT6cw7Q03eK53C+Zg8PNOon3BwVfm7tJmw5yM0FAGZMI5exZeJPx/XBHpX8Qwmx1188wsToq1U0IvCgfphsCqeDH5MaQAcCHqx1kGefRG6QMg+1UeVULl8eX4MHXvlB19D1M3Z4YVeJmR3EWIY5JHGt5lA1ugqXfP2S6G9Hnnokjjz1yB5pT3zbiTjxbSfur6wZY4wxxhhjjDHGmH2EZZjGGGOMMcYYY4wxxnRxSKws+9lHf9bncw4feXi/zusP9a+8BtxwQ+eBLr8lGeYk1TC9/e3F4DsvjBcNNzUFWcJZU9ZyRJTu/hXhe6nurJ1aCawqkW5k1/NoNb1KOM47Lz/uxMYNxXBH4/hiuGzVI1G6GtZPybrvyvrxyIPvp8vdBxxe8qxr00li0aMCWEPGy8U1wyxzuPTSOG7BghBWuQgvm2b9oGynHTUErag5c0JY5CPc1sorw4by2q64eHQFMxfXJNV3EKyseuWV/GuoAo4lBbqbdkX7jnBAZT6yOZYwjUiorbduDWEtVi7+lByUu6yWHcuj9bkP1GpwfmYgllJonlixoHGsGuC4557Lv7d2L1ZBqDpx7twQZkl4wwgRYPBFte+95+shfO+9IczaOwBtNDBWaj/kQpguOy6z7IcbKM0LAOJ+2R9Z2FCHyvh5kaFRL0fNF74QxbGcbRKFK7jxABh/wgnF8NvOPTe+9wfC8YOrYulf1J+53lRjxMcyBt+9LMzhKkFcePEfFcPcPH/60zgdN2tOB8QyKx3+H300hNuizhf3od/+dlwxrJYLt9ySf/0ZC8NzR8ODyIhqaincKANJNM+FQaUqMUBWqf6L0+ognPKJyEMnA0be0Srf9KZieArda8pdd8XnkcRru0qNL7wwhLWQr7mmGGxfvLgY/p1k6xQKqzPviTyGnXlmHMljGA/qmo/UJNgf+L0I6Pl+0h+oLjBvXhzH/Vee7ddL89+z86wCtHiam8sonH/rUjlnvkjiojLPF/meODM+j+XMfAn9jcBloEpg7qJPPx0GnOeei/1f+PeFNpGVK8P15807Lfe85vedUQw3yDjezIORShW57WqB83jB87TKLlMvuxynL6oDAffR+fPjOO6j/DtTnrOSJawnnRRf47jjisG7102Kop79bef/X3pFbAKMGSQcEh/Lnl357J4THUDep5OuMcYYY4wxxhhjDm6yzJ5lQxTLMI0xxhhjjDHGGGOM6cIfy4wxxhhjjDHGGGOM6SIrFAoHOg8lkWVZoT95zbIMB/szvu9P/xTf/PKXOw9EiL+tPGxJv3NnfF7D2LBVMvuWALG8nr16VOfP9hsax6tJdWUpp+VrqMw/hXpEMezJwPfScziuUmwWUl5Vr74awuxrNHp0nK6ivAN7DWeyx37ayI8rtZA5TguIvRS0gPj6fM2UX4heg401tJHQcUdlVTFchrhMd7Xnf7Mvufw5z5KPDvo3Ab13hHrR8HW4bsTHYUtrvmcQF49e/qWXQpjbo8LX0HbMlhip/httq76PWf1EXJ8pK5pEteU2SbXjYdQ/LuXlwl0jZfmVymPN9uCtmBxMOU5vwG1LjWqYVCY5Yzo+2MMsNslRMx0uf/GLitKyb5iaBlHdbHohbv8vvtj7rZTIC0jaD4+fCvcHHUcmNYZrsrdQqgh0DEu1/zyvSH1OboIax7ZBKb9GvndNdR/Gs1Ln31LnvdRAq/NjHjoZ8LHmMW9cUf9EPlZTKPZiEr+i/3frrcXw8/T3j8VXQPkltDu8vmewdyl5FwGIB9rEONhRH3ztdAirq91/81cS7jgJX7tdiL2Z2Jcs9fo2alQIs1cgEBe5NhFudpObSysrfm/Ra1RV5l9jR1t8HvuB8Rigz8ndhC1ygdh7lcdLnQ65yHUIHjMmhBtG5/uqVbFLpRrIsQnj0UfHcfxAKU/DlBFranzgtDrGpH4slQo3wpQ5cCqPXAZaOXS8o7Z3v+h582bj/vuXZ3vI6aBl9mGHFZZPmHCgs7HXZE8/fV+hUJi955SHDhbXGmOMMcYYY4wxxvQVe5YNWSzDNMYYY4wxxhhjjDGmC38CPQgoDCtHR3UNgJ4ysfbWENZl2YyunOUV7qWqEPpCnkQzpQ7SD+6HHx7CKp/KWwlc6ipmPdZVzXw/Xk1c1rYjTlheoqyiVPQBOJOyrDmSD7bTsnKtRNbcpqSWel5e5ejyar6mXJ/lBlr+3Jajdi35SG4m3ZbYSz1KR9eUjJSlGkJCQtNRHnJWRnEp2Whq1f2weBf0iJTUKdXmUxLN4cPzz9uXpKTSKTl06rlTcuuUeool1qnxMyUVTY2Z1Y1BbhD1USUltUy03dyMpdqxZZc9YQllqoFq2XFdkZ/BrvJYFvkSyRG3bo0vkbIDiGDZenk8KpY6b3N712tWUhNRFRHnKzXMavPMk4alFO2pOCVPHaRjMF+jh9S+1H/pP5ArAvjhtAK4TZYnKjFPVw7E8imRGrP0chyFy888M77GwoW514j6V8qqIfEuMVDvpt0MiL2DkrK1YGR4TrlV5PW3vlgW9KfpDlRzz5tXU9fXpstlMHZsCKeG49Q1er4UVPQep5mcODGEdZ7g45SVQup9s1RKlXP3hbx+2Jd7pySmRJ6Mt8zLc8wgxU3XGGOMMcYYY4wxxpguvLLMGGOMMcYYY4wxpq/Ys2zI4lo9CNi1K+wq9eqr8WI/3nxHd6l6M62KX7YsjuO03HdVCsZyxJQMKiXz5BXIqQ0dlZRyiM/j1cOa/1KlZqlV05H0UrfwGYhdaFgmqYXMGZNC5qy89hrLcmKJzvD6mrxLlEwb6nLjWL6jAwbXUw9pAz9AqpGkJpeUPIVJ7SZW6r2EshzJhV6CJUwpdZySp6orVcUCxMvdVXZSAZYF7r+hXquJq0bzzxIO7dtcJrzjlsq4Uhs55W0oq8d8jYaG/DxyVwbi4WHYsNAvVVZeXx/ihvXY1Tix016pjYTYtj1uB33aOfBQIOEVsOklGVubZhXDa2jjNG0H3D55NzegdPnUCSfkL/SPZC3SkKukrUWsXFMMllFG6niLbCAaHrYMr0EeddWx1HjD5lBezz4b/q5yUN65btOm/DjdpTNvw+bUboDl5XE5xhu4hWdTSSzvhK1zGVsipLpoVWq3ZWLTzriMWXqm41QNl3lqx90lS0L42mvjKNopcwliPnnlleGAK+Cyy+KEqR19+YVTJJrRzpDV4T2Dd4MG4nahO7/PORl9RjcL5XlpfH9f6xJ2DCmlPReXvmJyWg7zxoxAXPzaT3gcmSQK2Tx0w1S+94kt+edpuebtWp2SbKuEkocjfjYdpirWPRUOlsqWmgwPRgCquHHxA9x4Y3xeS0sIf/CDcRy3a63gPBsTrezUCzpX8L7+4KLXz3sZ0omOK0fHH97iNG+3aC0PYwYJlmEaY4wxxhhjjDHGGNOFP5YZY4wxxhhjjDHGGNOFZZjGGGOMMcYYY4wxfcWeZUMW1+pBwCuvAI891hlWL44nnghhlXuzZ5n6D6jvRTcqM2cJ/eGHx3Hso6FxnM+UlwjnI2U5ldrpPLVddN6u6nqcVx4AMKmJCkG9OAYC9jqQAtqBqmL45Rfi09j7Js+6COhbuTLsEcXeb+rlwmg5chmX14tnVmWOF1NfjL34hlr5eelS1y/VRA/I3Q68TNK98kp47pSXTopUtrg+NIvsm9LDL7A8eMVUqZ/cPkTbCPdljWOvJ/UfzBtXdBxMeZbxsdpv5PkupsYi9WvJG1d0GOF06s0WL/COPbPGjg3HnMf2PnhDGsSeSolx5Mkn42MuV7ZrEUucyG8pZcuibYuPI5+sHhMpHat5KZsB6Xn8YlBiI6mbOTM/UjrR9rZJxTDPV5pF7ttsbQPk+xUB8dSZ904AxI+mRcBZ5qrnsQeIvQnr6/NFF/psfL/JzbmnRahv28iRIVxTGfvCRYa0Dz0Uwv/931GydXfcEcJyvyUUnq+Z4UJn3zP1a73llhAeMyaOO/roEF64MIqqmE93pAF5ePWkKF1qnhgIUu9CJbMqGBdWiC9TRTVNNjIItJMn7HPPxZfkdsftff36OB3PZfy7AIjfEc4/VzPdO/qbgees/nqW5bwyAYjLX+/NaTlOrzGVJz4dhB9+OISXL4/jKNMbXggv2lKMmER9rfnTn44jp00LYWnjUV/hdKkBPzUe74sJnQtTGxBXKnc+au89ztOXrbvuCmEdO7oNIV+QHznGDBIswzTGGGOMMcYYY4wxpgt/LDPGGGOMMcYYY4wxpgvLMA8CRo8G5s3rDOvy81GjQlglIowqS/JUaSkJky555mXgGsf3Y1mCbvn9yishLDuKR9fQnYY5jlcuH3UUchkxIj7mvPBSdyB+7m3bwzfjmsp93CVk6XI51Y3mn5fFp2Qm3EZYCrOHW6OulmQ/JcokX3stlolxG9F8HX54kJgOHx7CtVPGRen4dhUQCYpeNA9d9s0k9Bc72vL/vSCSF1BYi4dXpqckCtqHeIU7P6ZK+PL6AhA/dkqeW5UonoFGx7BSq1DTsTqIwyqDYplVSvWgEi8uu5RS96WXQljlU3l1o+MZj31av2Wbn+89IwCwprUYrKIM7yivipJF0i2WbQFhcjmUue66ENbKIV3saRddFMfRoPngyvyxYuvWENY5NiXLjNoC6xNV/sKDN0vxAODUU0NYG+/tt/d+M5YKAZEW8p4H4jGe5/Da2lg6x8o8zrJKni+4ALlUbXyqGD7mmMlRXMPW1cXwluapxbD2cx4TdBzJe8d59dX8dNzngVhGquNbf+R9OgZUrbo/HPz2t3Hkd79bDO64995ieKlck1vMFoljZd5cbf8sKaOMbf/2t6Nkt1C4TuRUTVT5k2+9NYqrvuSScEADZt3FF0fpziC55oaNe//v+FMr18Z/uIv6zXnn9e+iV18dwgsWxHHcR6XTV1/6zmKYxwogbrt5cxKQliv3R7aq55Sq/NN0bCvATUvzz0POokVxHKsmb7wxhFWyfdllM4rhWefJC62+QDPU7upvu60YflCS/ZrCq2ScrafjWZxJABXHHRcO3va2EJ4+Pb7B3LkhnPLo0JecgbCHYYn1Uhk9SMLNbbdNBnLuUXWI4Tf38ToIT5zY+f+eHhRDD3uWDUm8sswYY4wxxhhjjDHGmC78scwYY4wxxhhjjDHGmC78scwYY4wxxhhjjDHGmC4OCXHtSXNOOtBZSDKsbETR90i9MtiDKuV9ouTtUKxyapbNH3ZYHNe9229v57GEnr0P1AeBJe8qu+d789bXQCzZ5zJJ+YWoHJ59ylRCz9fha9TXx34ts2Z2YG9Jed2kYM819kzRsmK0jXAZq9dEbW3IV1mJnmXqt5G3bTgQ1wfXRcqqobExLv/KynBch/y62NJe01t2O/NI/h7axvV5mLx+k9oSfcyY/Dj1tmEfK26Pev2U52CJ1Ybx+9GzTP2KuF2oFUfKJ4XP4zaTGkfYvw+IxzBtd+w3xn1K07EVSsqfiOtQn5PROqyvH9drOgCoaa4thtlfT/taVTtdVCvAxB1TzTOpUje9HHvBvUr1yMWa8ghK+eZp24racsqYkk9Usy2+QcroiBu8eDzuqg1tkD3KNCv63JwtLmJ9Tu6H2kfZgKlhXnMc91go9MqmqciD86i+qQwXlc4FqSLm+Vfpj51QD4vNO1eE8G9+E0VtI5+y1fT3pxDDPmXqJxS1+He/O45kMymq4Gr2uwNQRj5l6onWnhMGYn+ncn5wLThq/+O1gBpnos9I/iMDrP56lrEfpPr+cYMSc8uK9h3F8JQp8RjD7W5yY0hXWxunq2sNNb55Zuzt9+yzyVz3io5T/fUs4/mRi0THgIqVwZdv9uwTc6/J9l/aRKK5c5qM4zyu6yRL42LF2LHF8Djx3uNH0zbOI6vOsI3kZ1bBhaADB+dRjab5YUs1eu0LXCZqrsuG2PTirh8I+O1cX4WitN0eZd10l4l6pQ01ssyeZUOUQ6JWZ39s9oHOQpJHvvXMgc6CMcYYY4wxxhhjjIFlmMYYY4wxxhhjjDHGFDkkVpb1h5WLVuLhRQ+jbFgZXnfK63DKu07BU0ufwn3X34eX1r2Ei754EcYeDdmlgQABAABJREFU3bmct21bG+74/B144fEXMPWsqZj3/nl9uteIEWHLZV0azfKFFLoi/LnnQjglIUiRJ+UE4iXWKVnd4YeHcGp1quaRJXy8zLsv12A0/yzV4NXJmm5WP1b/K3z9lIwlpbzhchw5Mk6XqicuL5WdlLXTZs98c80IHVdWxpIxvp9KAVjOU6oUWMuH8zznZOTCCoseMszW3u8FALwKX9sPr4rnsF4/1SZZuqXp+Fn7K1XUlfyl5mtfksq/1m+q2XHZcVyqjbPcV0nJ41L9JCWj6x6393SvlIyXn6fHWEqRLEnukW4lFdbjj/eeqUMZ1tVpA6UKaRixLY4bHsq/fUoQt6mUkI97yAwTRPM7S2NY7gXEDW3VqjiupSWEVb7GAxel23R4LOO6hxRrS5bEl0hJijnL3Ee1/fM1Zuqc+kCQMPUYBEhKV5XQQDe3BFmX9i8uuoZXgpRt/MnNcULqaxs2x3YAfE0t4qrNa8OBSnxzqFjyi/gPt9xSDO669dYoajmF6U49pWAUnixxTWefHQ4uuyyO5Ifjinr5ZeSxS46fz00Z/8iooUG9+dpr44Q8ibN8GAC++MXEHXKgMgUQyX37DcntelwvrxyBaOJTeWU0n61YUQzW6US3aFExeNp73hNFdczNlyjnsXBhfCyKxFxe//r4mMewqF2rX8gvf1kMzv1kLMOkx45Yvjw+5mJdsybuo7Nnn1MMz5gnv8H4RBoHT7zmmijZOJI8ywgcyTIfkTieNWay/FfHMx6PJ0yI46ZPD2GVSfYYNPsBFzK3YwDPU11VUVhHXC7xSv0hwg3qwgvjuHPP7fy/jG3GDBb8sawXdr+2G/ddfx/eds3bUFFVgR/+6Q9x/FuPx+jXjcbZHz0bd/2/u6L0wyqG4eQ/PhlbntmCLc+o0t0YY4wxxhhjjDFDDnuWDVlcq72ws3UnqmqrUDmyElvWdn78qqiqwGHVh/WafnjlcDTOaMTW5xJu4cYYY4wxxhhjjDHmoMcfy3qh0FEAMuCBGx/A8h8sx7RzpiEryw50towxxhhjjDHGGGPMPsYfyxKccMkJmH7udCz+18V49OePYvofTN/zSf1g164gqVepOnvTJCwkevjs0O7Ikd8V/x1Ib3vO99admBn2F1u/Pj9fW2Xh3Usv5V+T7Q5SnmW8Xb1K6NnyYaMYfLDdBPsoqQfUOQvy81gq7Lug5chlzOUIAEccEcJshcLloaT8tHr4OeUtF04Yq2k74zLm3aeB2CYiz58LiNsnbxsut056lrEdgz4W9xttI9wO1GuI+wp7Amo9cR71+nxvrbc8vzptI3ltFYi9gVI+We+4FPsNHcNScfw8+txcJlxWOmY1NISw7ljO/Vn7Nl+zVC9ETcdlzmOW1lPK9ynliVZfX9Frurpy8dZ64okQfuyx/JsdqvAAqr5S1Ll3lNdEUVXkRsNjnfobcrtLeR8qUZu8i4xGtaNww0tNZjpA8zE994svxsnYLkpvzccpv0Buu8ccE6ebTRuSnzZNrCo+9/MQ1rbL/j88CEtHKSNjsqamujhu44ZwwJOxdkqqqGGjYg+omuqOcKADFfvLXXwxSkL8tDrIy+d+ScoOdewN1izp2NVoht7vD/8whLVBciWywdvpp0fJTrnjjmJ4h1z+KQp3SNwKCnPvapV2XENlILZwqOqHZ9nzt90WHfNuZgmrzyTcYnpcg18gEi/MdbVxCVVXU85uWRrCYuTVfv31xXC5+KWVsW/hhz6Ue29m8rpfx8d8jR5uVQH2/QMA/J7mnk9/OoR1sly8uBisEU+xuQvfUgyz37J20dS7EFs5zp4d+8I1N08qhqdd+ifFcJwKaKI2OV5MeHnUUo8+vs5meumrJw+0royEsJYPv3CmfnD1Fx7I2VAYAA/r0a5/8kJVy2Vy1FHx9efPD2HxLPvfpZ3vMS/vkJdnYwYJ/li2BypHVuKoM47CplWbDnRWjDHGGGOMMcYYc7Bgz7IhS9mekxyabN+8Ha3rWwEAz69+HrUTag9ofowxxhhjjDHGGGPMvsefQHMoG1aGX3zmF8iGZRh1xCjMedccPP3bp3H3t+7Gzq07cfunbseYyWNw/j+dDwD44Xt+iNd2vIbd7bvxzD3P4Px/Oh+jJ43ew116kpI5qMSLUfkRL1HmXbhVgVJBm4DvQv526bqttKzizf07SwlffTWO4y2ndUk1y0RSMhaWYaqEidGP/Szx4qXd++IfBfjZUruNa/5Ztsd1yLIzAGgYSaKIenkAblD6cK2UMV7vntCKNsyMG9CYMeF7u6xaj1Z9b6KFmTt3xum4jaiESaWFeTz6aH4cy39VasmqH14hr8ydmx/HbVAlplys2v5ZgsXnqQyK5QWqwOL+rP1EZYf7C5VXc51qP+f+kOob/CzajPn6KYms9i9uW3x9bf6cZx0/JzWG8ZMztnZd/O9Q3A60Dvl+KYVUHQtBVq6KE3Kj0RuYuIJ1kqWGUEXzIQBgXSjLqVNCug75d8ay9nDeppfieZTnOR0fInnfra35CXlw0kGRJC9bqidFUXWnBxnpPY8GEdySJfElWPGlY6lKNpm8+UuzuHQpx8UyydPe9rZwoIMkZ4xfQjbJSn/qmGUpmSTLHxtF7EeTbMPHPhbHbaU2s0r63g03hHCJMsxt3/hGdHw3hUXkFkm+xlF4kqRj4WjVyeJZwP4GWjk8wCVeSHjoa5V787Cur1DckkkQCxGSR8+mTE7E5aHK9/H9uIYS9Wx9YeBj8TvZUh6e7jV5l+ahe84C8v1gXT+Acp7otI2LZLMkvv/9+Jj7SUrKKRLiCM4Xa68B4LzzQvjcc6OoO+8M4YcfDmF9J0jNlSk7FT6P5+JzWDoIRP135pe/HEVxv1QZMs+4PIM0ylzc/LWvFcPVInPGZZeFsD74QPDAA8XgLvlBxzNiFff7SJoLVE2YEA7e/vb4+pcGr4+f3RnPgd3qd33/M2aw4I9lOVSNrsIlX78k+tuRpx6JI089stf07/jOO/ZHtowxxhhjjDHGGGPMPsQfy4wxxhhjjDHGGGP6ij3LhiyHRK3+7MM/7vM5h1eV9eu8/lBfMxbjG7vlGLG8Y3x9WNTb1BQvbWVOmx3LR1hSWbGOFhAvXROfSEtuK3TtMi3XH1kbL2JntUSenAmIdzrU1f+sNNHluTze8HJrTcfy05S6QCVYfMyqnH2xCQ1fUyV2/Gyp3fo4roccl2+QGqhTcVwIKlNKbCs6YkRoF7rbKct3+Lm1jHmXTlXGlLpsW3dhZXjZvcoweRNBLR7eSI6vkVBx9Xi21PUZPo93gwJiWaPuDsV55L4G9FRy7S90108un5R0Qp+Nn4fP0w3/UvJrrqtSZdpav0wPaSv3B3qYSbxzH+Idz7ReuO5TMt7GmUG+VqaNiQtIO5GJd1KUQWVHe5grqzavjc97/PFezyvTgYkqroE18wDwYoirUB3vutYQ/uUvQ5h3bQRiiVdCX63Zeu2wIL3k3Yp1HuJ2puN4ahzJ6zepHX1Vro8jabU+S8E0o9/5TjHYIQ9QxjI0iWulG3JMNdctgCl877e+Nc4H+0uwZgxA+803F8OlvlDfLcc0TfSQD7I88cScMABUsCzq9a+PI8lHYFtb/B5Zw5XIg7W048pLgtKiUSpxHJVdmQzy1dQY+Dl1R0GWZea/6ZaOyjprVZraD2rOPDMcsGQSSI4xy6lp6dDNqt6JF4ZaHX+6dGbefVBletwmVV6Zw45vfzs65umxLCXD/Nu/jY9pvtlF82GFzIHcBlevi/eh5OGO35n0nSD1fp54Tc21QZgyJRb4TiYpYY2U8Ywbbwz5kHvzTpl8lu4My+e13HVXFFfNXh/74oMLPbi+4kT9jX9gJHaOhkhYH1wT5pq8YfxAvZMas7ccEh/Lnv3uW/ec6ADyvq+sOdBZMMYYY4wxxhhjjDHwbpjGGGOMMcYYY4wxxhQ5JFaWGWOMMcYYY4wxxgw49iwbkrhWDwJea8+wpbVzkZ9q9Kurg5o8qfeWDhodpczBdu4M4YSpT1VtvFlybW3wHEhtGc/HugU9Z1m9CPK8qhJWMT3uzaRsuFIeRQMBP6f6LeXZhQBxubLXVpVuXJ0y1Cr1BqnGlTCjqa8PnmWpuudbaRkMG5Z/a02bR54HHRAXgfpp8XnqpzV6dAizZZAW1aSm4EzR2hov1mV7Ic1XyosvD03H3oFsqwP0fNb9Rcp/UMuO0+p57FnGYX2uMWNCmOsMiMtY65frnr0hhw2LHXO4jKu2i9MO+5rww4lvWHV1HfIodSwq274tPyE/HDdWAwDYReNUReWWKI6rrUrnQPZv4QaqDfmFF0I4ZZ6p8HXYs0br8P3vD+GZM6OoXywNczH7HwHx+MNx3Kb1dpr9/rz7azHyY953Xxw3duxpxfDc958WxVXlPEDZokXxRdhfSwqBewrPnD1q5bXXwuV+9as4jufY66+Poh6h8Cy9Zg5iqRT5lKkjHbsqnULhsje9KU7IHlotLVEU+/L1eE9qzTF2ZI8sPRaT0DLuJ1L5k2+9NdyK8yTZYHekgXBd7DHiqpdgf2DPJvEO3NUe5v4K6TSp9x+OYyu48dLPofXNJHwM81BZUUciLkI9MSlfFTzWXXVVnI6eZ9lNcRSfxu+6WgScLuXxq1mkro3hw0NYf3fsagk9rOJd74riKqjjzL322iiOx4DVFFb/QS7j8RJXzeOWeoUNAHzvKi4EyLx32WUhvHBhfBEq2NXlM6KoRx8IYZ0eu+vK35HMYMUyTGOMMcYYY4wxxhhjuvDHMmOMMcYYY4wxxhhjuvCiyIOAsrKwhFilQjW0oXZND5kh/UG2mi9jmQ4v79Utp1kDt2lTHMeZkfXKNbzOmdZGT9a10RTXfG68TTMv1dWt7DmbvEL4uefys6jSj5T6hdOWqkbsL1x0Kn9hSRkrYoFYacUS1tGj4223K1J6Pl73rGugua4SEtwoTq6xcWUIa9nlScpkBXh0rNnQtKVkUe+bV9dA3PxTEkFunyqjYPmFXj9PigoADQ2951kVWFwGWh5chbpyn6WL+xMdAlJS1FTdsOKFhxsdI1mqwRIOIJZlVrRtQy5rgjCqQeQ6HfxvSitk/ORGk9BQpuSVKSkqn9fQELZmb0hpUHQgMYgVLrFAi+eauiYZI3m848rYKEI6PlY9dKk2CNzIEwPJlrZ4/C/18jwPaTruUym1vo59eeOzTjVcdHr9WAbbEUfyAM2VyHo1IBrsdrEkFrHkkaV/rfEVkBQ+USN5RCaKJyhcqgxzjRw3U1gliCxMLbvyynBw4YVRul3zzymGtXm2UiZ53gGAhhE5Vg3HHRcn5HFR/UKOPRZ5VFLlz7rttmJY/6W+hsLlY8fmXq9UyjT/LHPuL69/fQgnfD86KuM+yklZEgjE8/Tu3Yl7c6dauTKOW7o0cWLvPCjHbD7QkjhvgzSu8bffHg4mTAhh6Yc8kKQsOzis72QvvRTCarmQc6se1+HhecWKOB2/57W0XBDFTf7QkeH6cr8T77yzGK6lsUl/YLMBwGTVirL8cR9YKZR98IPhgL0rgNhugOTcm8bEUktWX8tPzmge1fFH39mGLFlmrekQxSvLjDHGGGOMMcYYY4zpwh/LjDHGGGOMMcYYY4zpwh/LjDHGGGOMMcYYY4zpIisUCgc6DyWRZVmhP3nNsgyFe967D3I0cLzvK2vwze/dtueExhhjjDHGGGPMIGH2Kadg+fLl2YHOx75idm1tYfkZZxzobOw12a233lcoFGYf6HwcTHhlmTHGGGOMMcYYY4wxXfhjmTHGGGOMMcYYY4wxXXiPU2OMMcYYY4wxxpi+kmVAuT+rDEW8sswYY4wxxhhjjDHGmC78scwYY4wxxhhjjDHGmC78scwYY4wxxhhjjDHGmC4srjXGGGOMMcYYY4zpK/YsG7J4ZZkxxhhjjDHGGGOMMV34Y5kxxhhjjDHGGGOMMV14veBBQNurGTZs7PxuuX17HNfcHMK6urMMHeFgzRq5aFsIP/10CG/aFKfji9bWxnHV1flx9fUh3N6en661NYT5YQDsag/fajX769b1nkW+nF6Ss6tp+XoAsHFjCPO9KyvjdJ/4WAf2ls9+Ljzns8/GcSNGhHBDQxw3fXoIt7SEcFNTnK5s3dpwoA1IH4jRuso7hypgFyqiqFWrQvimm+LTuIw5/NprcbojjgjhY46J40aODOE/f39+XXz+C/nf/V98MYT1kTn/Wq7cxBcsCGFtZ9wG+Tn1+lqsfH1unytWxOn4mtqOOS98PY37+4/sfTsulR/dGNfF6NEhrOXDfXTz5jhuypQQ5mfT8uc2w+0FAKoq6bl18OAxkm+uDYErbuXK/GvwQDVtWpRsV3VdMcxtAojrlIdSIH5WHgPqtq9FLlqQfOIhyoMrQ5vUcXbr1hCeOkX6CU8OXNfakLkStaPzeWPGxHG7d4fwueeGsLTV1a3jcm/NSTWOs8LNgrME9OxTDI+ZKYWJXpN54YUQ5vEeAA47LIR5zgOAmTNDuGzF/eFg+fI4IQ/CS5fGcTygUn22PfRQlOwpCs8488wo7onFi8Pl4quDR4RPcn0m+MmwYdExDXWYIWnLL7ooHFx6aQjPnRul21E/qRhODXWNjXFcFXb0nsknnoiPeUDWG3DD03eQJUt6D1OZAgAmTgxh7gsAcM01vecxxcc+Fh/Pnx/CPKH3BWp326adEkXt3BnCY8fGp3FRaj/JO29y9fNxwltuCWEdY/gGn/wkSmLChPiY+9BvfpN/3vvfHx9zWfIAIXW4pa2qGNY5kIdZ7hranbjs9H2H0fe8vLFPr8HFqq8Bk5tpbrjzzjjy3ntDeNGiEF6/PkrWQT8Ayt797vgaV12Vf/O8d/W+wPlKXH/T4ZOLYf1d9uqrIayvGXz80ktxXPc7IM8Dxgwm/LHMGGOMMcYYY4wxpq/Ys2zIYhmmMcYYY4wxxhhjjDFd+BPoQcDw4fmrbCuwKxy0iUaH1wzr2m7V83ST+uot0oCS4XvpfRMyQM6KykB4eTSn0+zzeXorPi41jiUhAwUXq8rE+N4sV9O4JKk6TRUyH3O9yY1ZLpu6vLbhvGahTZXP0zJIyYMYLVeGl45rmfK9E+rTSCqh8PPkdbs9xR1+eAjrM7NyK9W9Ro2K41jiuz/R+3Ie9dlSTZfrhs/rUx9NjU39uYZmuMR/RUyNYVw+qmBion7Tl8HORP1XpT1RfWgbKbVz8yDfl39Zzmuf0lHKt/eeTNExgMdF7jc8JurtVCbP10g9Wn+7Wkraw+rWSanJnklpq2ig3Sancfe6XySCLHoWITZmou9Mk+MZnMfLL48jFy4M4XnzisFt5XVRso0i0We46HrUob5XdqPvAeVBRlfRKOWf9y6hN+RBXfWgLPMcCOk4yy6BWNPbXyiP2gRT7yqpuLx3o23146J0NSx3VBlsf97dxRalZLQBcZ3SNTe0VkXJuG/rPJfXPvVWiSEyitN3BM4il3GqXtTygteWNC84J47hCw0fHsKiYyxj+bi2ceoPHbVx344sd/oL9y+RYXZU1xTD61eEv+s8kXoV4u6c957NRWPMYMIry4wxxhhjjDHGGGOM6cIry4wxxhhjjDHGGGP6gz3LhiReWWaMMcYYY4wxxhhjTBf+BNrFxhd34Kov3Y17H30Bhw0fhuYjRuLqvzkVx1/2Y0x7XS3adu3GyKrh+IuLj8W7LpgKALhu0WP4u6/dgwljD0fbrna876Lp+ODbZwEAfv3Ac7jqy3fjwSe24IZ/fiMufuPk3HvzBho9rDhSAn4mtY8yC83VUChlOlWqqRhdn7XvSmrbYPWxynvslK+U2jak/Jzy/FX2xT8K8HbgqeLXKuQ8swdDD/+CVD2V2n4SpE7jMlYLkjwbJbU04edOXSOFnldKPhRt/uwjlvLtSfnzpMqO2zz7KKW8OBRuT6nuuz/RfHDbTTXP1HPq+MBs3RrC6keF2opisEo7WJ4fVWqQ0YfLy1ii8FO+eam0UfnU5hekjsED4ncyyOF+ovME9/Me5A0Yqcaq53AbSbSfbe2xx08e2ox57EtZ6nE2Xn45Tsf9ptS5WEnZu7FFTiqP6jXE1kxNM6cWwz3+lZfLXAuIvZnoguPEIPP+224rhjfI5dmzrEXi+uOENePss+M/cAGxNxUATCOHM24/4vuUegVMepblVWrC0GlHW1wD5ZVhzNHLlXH+OZLNOAFg4sQQFk+lfsH3BdIFVCLsJaWlxuOs+rzymFOqf1kPX6/m8Buix5jen2f74Afj49QLOnPBBfEx++jRGLZ9Y5yMn03fx7n7luqL2JefKyVaQyZJWURXcWbYG2yjFAI3BI2jsalMB9DUC26p8GAq7aWMHq6W3pn64jGbarvdVFT0/ndjDnb8sQxAoVDARR/+Bd51wVTc8JnOF5UVqzdj04s7cdSEGjzwvbcCAJ5avw1v+T93oKOjgHe/6RgAwNsWTMbX/24eXtzahmMu+REuPmsyJjZUY1JDNa77+Hx88QcPHrDnMsYYY4wxxhhjjDF9wx/LACy+bwOGl5fh/W+ZUfxby9R6rNkQ//Pr5Ak1+NJVc/G3X1lW/FjWzZhRlZjSNArPbd6BiQ3VaB7fuRSlrCzb9w9gjDHGGGOMMcaY/QvLxMyQwrUKYOWTL+GkaaUtYz7xmHqseqa1x9/XbtyOtl27MWtKXc+T9kBZYTcq2ncAAGprRYrB+y2ntmzWraQ5La+J3bkzTpfayzelf8xZk5xSp6hEilck66OVupV0Sl7A2x7rY+7P8Sx1r9SzcZ6TWy7nrTHfww12IayJruCoHtcI6crad8nlQ1yq7lNZLDUuRUoClJLwcdfQJecpaRKTt/W7Xl/JkwCU+szAgKhs9zncdlMy2FLzn2ojWv4sNysvV+lQGGt56/eOynw5XFlKg5tohNxvKitjLUKpw+zBWr+DDZXCR+g8yvMvox2bj1NtJKFBrGklsZ8MDuWN4b3iiSfiS3CWVWKa96x9mYtLHY9KbZ+qPuJHVWkVWxiUPbE6HNx7b5yQH0jrbOXKXm++i2SXQKxqXIuYSTlhAJhy5pnoMy0t+XGqC6aC3fRCGMO0DrmeVM7K9JDw5U3AUvGlzu/aNSorQ9ut4srWxsnSsL7o4/KQa+xoJ0l+ef+k6TzEV5XH70JcCO2I5xCeA7Xe+Jrcl1UqzXFTpsRzWUWkVy5Rwqqyy1/9KoSvvDL/vN/8Jj4mOXP13NOKYZ2L16wJYR0r8ua51PuC/pRhUlLvUu0edCrg5vnaa3FcVNupl77160NYxyk+r1T/kb6QelGiY34/0WR8iZdeiuNY1a7l093VM68dMYMUv373kUIhPv7RnU9h8X3P4bG1rfj2R89A5WEuUmOMMcYYY4wxxpjBinfDBHDs5NG4b1XOvyALD6zejOnNtcXjty2YjIdvuAR3ffPN+NuvLsPGF3fso1waY4wxxhhjjDHGmH2NP5YBOGv2eLz62m58+5ZHi3+795Hn8czGeB30mg0v40NfXYa/vKTn/kenHteAy889Gl+5YWWPOGOMMcYYY4wxxgwxuj3LBvt/pgcuFQBZluHmz5+Dq778W3zuP1egsqIczUdU4+oPnoYn12/DCZf/GG27dmNk1XD85SUze5j7d/N/3nk8TnznT/D3V7Rg1TOtuOjDd+Cll1/FrXc9g3/89n14+IZL+p65lBcKG3yoEQinZbMATacmIQyL9CUdb43NDjzqB8C+DsOGxV497OOwdWt8HmvlWb6vOvnUtvN8DbUHWLcuhNnSZF+ME+wxw/cFYluN1LNNmEARWshsrpAydJKHK68np4XWfJ+FsoR/wvbtoU5XrIjjuMy5DNTSobk5hGfKd2i+9fnn5mYDy5eHsBYB50O3LH/44RDWnea5yad27mZ/Bq1D9RdiOJ9chfwsQJx/bcecL909fl/YXpSCtnHOV8qmg4cpPY/7ScrXS+O4jNX3j9Oy50jKn65KGy+PpxynlUF9r60tHge5TPTeudY9mg960DI1W9GGfYijYzx7A9W8kqhfrhz1++EynzgxjuNGqA2Ur/n44yEsfk5V8+fTJWJfVB5jtH/lWZdq80nZn5bqm8ePqZ417B+q1+fxf86cOG5y/bZw8LUbQ/jnP8/P5JIlUdTzlJkt9PcN8RXA/8yp/xyactB6ZPHiYnhGIh2z5gtfiI55yppy9dVx4ssuKwYbPvKR8HcuOAAbNodx5ZVX4kuwT1Z9vfhd5WVSGlNlU3BrK2vbkZu2St8pV1DJfv/7ISyecTjhhBCm9g4A+MAH8nKZz6JF0SH3oZJ9vYSq7c8Xwx3146K4dirJtsQwou8n3H95ONBhe0YzlfnyFXHkLbeE8Oc+h5L49Kejw22UyZobbsg/78tfjo9pMCmjazTNf0uU7NGwFiEa6oB4fEjN9Vw+2sx4bNLpl8/jsL7Xcd3o3MvXrFr+6ziSy/8b3ygGt8uEzq92Ld/+dhRXO3t2ONDK72d7jbjzzvzrUUGMnzevGN6AeK559tkQfuyx/FvpPNRddjssvDKDFH8s62L82MPxX59d0OPvO3/9p7nnXLHwGFyxMHw4Gz/2cGy87XIAwMkzxmHdoj8e+IwaY4wxxhhjjDHGmH2GZZjGGGOMMcYYY4wxxnThlWUHA7teK65bLdO1v6n9lnkp7apVcRyvX+Zr9He7YlnXXMFbb29uLQarauW8dWFZdoMu/aU1z7VT4q22WaqRkoFwtjSOpQj93Up6IODra/EzKkXlMuC4kSNj4US0HbvqaxL7cHPSmoQcN5Lcypbr/Dwqv+P856nVgLQUVXeXz4PzofXJ19Q4ztfhh8dxeRJBTcftTOUvXAYqE+aq4bBKmFKktlnPlfDtY1LyBSUlseYmyWWucsqUbCOvjAFpC3Tiy7FVZURV6gYJyXOK1PjDccOGUURChpkcZA5RUmXMEqAe5cqNgbVsL74Yp+OOPnJk/s1VZ8vH//3f+Zmka0y5+I+iKB53VcrMzZDTpeTc2g+5v6Xm0dTrQ6prNDSE8JzjRKdz7fdC+POfLwafkk7KQ84aufcjFObHVuOBMyg8T+IqzjuvGH5e5IM16DuitEekBpMJYArr9LidSUGyRCpq04jnnmgcAdDAc2xi3OKmWtUXvwpubNRAt0tjrV6/Phyk7EFKRT0Q5s7d+2smBpI8qZ8e6xCTN1z3mL/ZL+Q734midl17bTFcUaIM806xZOGjy5DP7fJwJ37ta8XwuLvuKobrpA6PPvqsYpirGojfb1NjBZddappTeeXOnSHM72ipaVSbYGQRogMtHW+h8tEhkY/l8qX7fvQXfQFl8t4fqmMZJtfTc8/Fl+AxR4un+6efjktDjm7PMjPk8MoyY4wxxhhjjDHGGGO68McyY4wxxhhjjDHGGGO68McyY4wxxhhjjDHGGGO6sLj2YOC1XUEnrmYH7FGRMiFSnTTr38eMCWE1rOBt7qdMiePIY2xb7aQoauMTnGx8r9kFgMbmycVwT6+q3E3Lo+yXbQ/bxzc3xw4hHAexk6ivD2m1WBnW3qsf0kDA9gNiExHFjRoVx7EHDId72Gak9sxmpP20t/IBXVQqqoJv3qY3D2WcaoIpbzmOU7uflA9OXjotH76m3pvP03vn+YxoGx87NoTVJoW9G9Qygv3Y2FNDvesYHQJSNhcHyrOMPYiAuH61Prks1YOE07LPSKovp9qLepBwO2lqCp6J6r3HjJ47OTqu4IukzFYoTj3vuJ50eGYi/77d8qD72nhxkMNlXFUZ+y4edhj9m6FOUnkmK9rQeI496qg4jieVyPgmvt/2G28shvXFrJI6h/4L53zyMNNscbNI9Q1urvrIfKzNjM9LWeJwEei4xK8gWC5uXj//eTHIPmWr5fr8JrFB4vJ8ynR4HE9h9igDAFx6aTE4Tk3d1KiyBGrlmOtUvdSilwaeUGSunzgx/12L663kdxyp7CqQn9z2xHuqvoNwhdMgHLvUIt2H+kPifbbfUP61jFPvCClPVa5ejtN3iaktlH+Z7PvzQ07Lv9SVE61yzP1rHJuRyYReTs1Cy47nXB6ndD7krqbzKKPv0mw3yWOWphs9OoSbm+O4mjUPhoM774wj6fgp+rO+jdOvFayVuEnLliEXbcv94Ve/CmFthPxyRP1k/MKFUbLx8+cXw5WV8e83HpryrJOzrMS8DlbsWTZk8coyY4wxxhhjjDHGGGO68McyY4wxxhhjjDHGGGO68HrBg4EdO8Kaa13CuWJFCKuOaMGCEOZtpYF4yXlqj+WUdIjWQ6eWnKdkUUxNuWwLv7GVwqJPZEgnWcaaNyCpM6mhMpg2bVwUx6vYU1t+DwSsSlAJCi8Dj2RWiB8nubKXIxNamx1t8bdxrkOWxFbINToqewgmirDcQMsuL1taBlwXKiUsdUVzf3ea5+uTygdAvOSfJREpGak2Yy4fzSPHpbohyw20fHh1/rRp+eftT6ZPj49r2reEg/rS2xa3GZZp6FjE7e611/LzlVBGRtfU6zMaV8eZ5JsnMjm2Od6O/cUXe8+TXobbS02jCDxSDcgkVaqR/FrnStVT5aXjQY01P0A8sCd0kqz+VYOCSYsXF8Pl0tHLqKOfJvLBbdvDmJ+as1kGrnJKfpzU/MhFoI/JccccE8e1tNDBp2+PI5csKQZZlaZKaZ7ZWiUuT3qpEqmoV+pAy4N3pBtFv14aGhPHPXrvhReG8Lx5xeCmYeOjZCt/n3+/1Pxb10R/4I4iZbB2M4/V8bh9WEMovcdESTt77lnhLGqEZXl9C5BG0U/4/RjAPQ+FPM85uUNTl8Svl4drqNqU3x9YjQikmwgXA/fDHq/tXHESSTNsj3adh05z23pN1RN9U6+l8PgXXgh/598uAGrnBrm4vgvlTVk6lPY3jps110XK8kLzFMlgVaM5d24x2HTHHcVwo2ied9E7Qg9RMEuP9WVuIGALAG2QPEBw26L6BBBNIo2N8XsM29n4FcQMNdykjTHGGGOMMcYYY/qDvxQOSSzDNMYYY4wxxhhjjDGmC38CPdhQvUjOTkI90N2DeJkwh1VjcfTRISw7rmx6IXxLXbUqPo2XjrP6SJc/82rfxsZ46X5VLR3omnPWjKR2m+KtuvTZqOz0qzDLp6ZNK23XzP7CVaPKA1bLqnSFJZpc9T3ySCfuqox3C41khrKimqkoJ1mC7HRVxheR9llJMjpdmc4yBa5eVajx6nC9Rqn/SJPaLIg32crb3A7oKavQNt8NSyWA+Nm0GXNarV9Om1LSsupHh4CmhDKgv9LUvaWn3Dp/K7Ay6qNNTfGOu1wmLG/V9s/tKSW1TEkuOJ3WIcdpm5g7N+S5jDOihc/yo/ZdUdSYMfm7AnNb4OFtlwj12um4UsbZMvRPcjSUSO0EGcWpRk23du1G65cHD5Lk6DWf2hjXTW1tkLKwtFB3auTabtJGOGFCCItNQQ3d+6STZvSWJQDxvKR2ADyG6VTMfaNfu7oilq9VJTToHZRQVbXbc8IA79cMsBnDVEk3LrVrKQ+0JIUEkLa5yEHvXcH1po2V2lNHY5Bevipa1FItHZLzQmJn7facXRuBeExmORYQKWlxPksjE1LmDSdcEEWN78cY9r+rYpkqd5s5J/f5cgBiO4aUXLm/8BylG8M2NoaWfM4VV0Rx9SJ5LIUT5bjUH4Mq8+Q+VcsvISKlZaeYlAKXxw7enVLRbsJNV9+F8mT4qXfWHu+eqReNEl9UU3Lxuocfzs+Yjkf9gb0seOtKIB68dRtWhsapqTLPlZ8c2qfuuNv9G7HU3e2NOdjwyjJjjDHGGGOMMcYYY7rwyjJjjDHGGGOMMcaYvpJl9iwbonhlmTHGGGOMMcYYY4wxXfgT6MHAzp1BQ84GYEC8B3XKUGvTpviYPTD4mmpWQse8zbxeUiXu7CGkWWbYf0C9MqrKE0ZBbHzx5JMhrKL3lBkHGx4kym4y+QFoGQwEXBVa/Jxl/QcJzn7K04oNXPQx+Tz11IjywieqqRhfRB6AT9P859W9pmNbILUIKtUHRMs1j4RNSg9fC27XGxN+LewPs058ZF58sbR8cZ1q+XAc+68BcXmpzUXZdt4MvsQCGgh0sOBC0cFi5MhisGle7FmmzbAbLf9U3aTaZ9698u4LAI2N8TF7r0QbqacyIjcYPbqu12RA7GHDflEpXym9dc1+rPqDFbK+6lH+0YivAwRXMBuxaDvmwU4Go13lwaeM2yoQ1xVHqYsd5QJVixdHcXWcZzXmowbbcGEYSF5tnhwlYz8hbf9cBCk/Px7jdTzmfqP2Ow1P3h0ObrkliltHBcZDaytiuNtoc6dsgV2smiUd5s8PYTWw5ONp0/TMPlOhvnbTp4ewegZRwZa1bimGm5qiESeqC31H4DgdHzqoB0T+hpKQi0A9pzip+tqxT+jqdaEvTOXylotyewSA8TLuloLaeOm01B94KmMbOyCeX1I2dlr+6oHajQ4xyQUr/TCDqpXjmt4SlQC/ZUS/V8R0be5H/qgY1nGQy5Xf+VLlqL6IPCdq9+WyS7zORl07fn8CcOtdIawNlDIauVKedFKUbMqyZeFAjb040wNhgKdww3tBDIyffbYY3EyVU3/77XE6HuTlGpMvuqgY3ii+qd3Fk2WlZ9eYgwmvLDPGGGOMMcYYY4wxpguvLDPGGGOMMcYYY4zpK/YsG7K4Vg8Ghg0LOhFdmss6rtRSa13bnacl0vXzdFzdGG+1XerK7pQ6hemhhKyl5qcSSl6bntJ3pNZUpySadN6W1rDAUpd910zBXsNLzFVhkZJ86TL/bvQxq+rpORNK3dRW20mdJ8WpTJWX0+uz5cnjtB3wc5Iqr8d5KfheOldxk9fmz9IMfWyWIfOq+FIln3siTxqg5aOSBYbLS5+tujoIKypYXrOv0YJMFRhJD1TCyn2Dn037TEpilBqP8tLpNUptg9FzJ+TuO8pjwcuaxE7tXPc8hOlwxmNwTfV+rOtBAkvBMDaum0iGpgXLDY+1nNrZ+AbSgStqQ7sYNiweP7nfc63J1SM2yHHtQw8Vw2VTZMLK6UTlImt7+eUQTkmktI8yPI6rJJy7w+TGHXHk9UFWup2eBQCeonArhXWa4xFHRxsu110U1ql3HNebarw4TgsoZY+Rx6pV8TFpFzukDMpYmkoVUCZ61qaZJ+bejuc5nR95fKvgOGnjNbUhXNkYj2EV5aGUW1viNj5hQgg3vEI1euedcUbo2c75mGh1+/FTRVWeogrsF9qumdQ8wU1EZZf8bpGSK5/VEiS4+OKiKK7jriARLFUupF15S6+peqL9hl+Zn6CJdMqtt0bp6i68sBg+9tjTojhWNXL3Ssm+U3YVqVcQjtP3g7LNz4cD7aO/+lUIy7NxBbN4s0Z9OHii1sbEA+hAvWQyKU8Wyifnv1akluVcJom5sq2tqteofaEuNWZ/YBmmMcYYY4wxxhhjjMkly7KyLMs+mGXZqizL2rIsezbLsn/NsuzwEs4dnWXZX2dZ9ouu83ZmWfZYlmXfyrJsYi/p52dZVsj5b1Fv9xhovLLMGGOMMcYYY4wxxqT4MoC/AnAzgH8FML3r+IQsyxYUCoWUxGFO1zm/BPB1dC5QnQngfQD+KMuy0wqFwiO9nPctAHfJ3xLr3QcOfywzxhhjjDHGGGOM6SuHiGdZlmXHAvhLAD8pFApvpb8/DeCrAC4F8MPEJVYBOKZQKDwp1/0pgDsAfArAxb2c99tCofD9vcx+vxj6tToYKB8WzIfUKyNPbL8n8vYRT/hRlYmvUXl5UOnqabzLsW7TzIwdG8KN4pOCja0hrOYEvP84G6po+bBpU2qQUkMJ8hioayS/jdaBVyanvCw4Tm1wuMzZD0zrorWxohhW+5RU1fPx5s3hGocfPi5K9wp5SKhnTcpPi+E2op5THDdmTBy3dWtp1+dukrCL6tFEOC+psuO60XJkDxK9N7d5bf9s+ZCqJz5PbS74uK79+ThyIz1QngHeviDVSPThqANMmhf7LbE/Hl8iZeehHiQ8jKRsHdlyKuUjqMPU44+H8AknTM5Nx/TFk47jUm0w9r+LxzB7mMV1uumFuHy47ielTIl4oHruuThuYlAOdNTWRVFcb5F3GuK2wKOu9OTIJ2htfg4xc5EoEk46KYQffbQYHC/eZiNGBA8qtaLhtpwaWxsaQnjatDhd5B/15S/HkZ//fDH4uzgGayjMZaBDQC2FdaTj2uannqwGmX/wByF88slRVMeUqb1erzNjiQEjjzPPjI+pwMr4fQeICzbhj5byBeUspuZAHjuqmyblXl/Ht9racJ6OwSNG0MHohLEdv+ToHJLqlznocw6EDRSXa8qqLvXOx+/EytFHh/DcuRJ5000hfNttURSXVlxr+WgWq3pN1ZMKOeamsIbCZeL5Nfnqq4vhOR+LK+PFBbOKYbbsezL6KR231f50OyBunzoeR5X67LNxHA/kWvlUcU08ab/rXXG6Z54JYX0nuzh8G9hRGc8hVQPhOfuHfxjCOsjfe28xWL5iRTHcY6xjDzM2mgOiQaG+Pva/TnldmkHJ2wFkAK6Wv38bwOcAXIbEx7JCobAm5+93Zlm2BZ2rzHqlS+a5u1Ao9MMstP/Ys8wYY4wxxhhjjDHG5HEyOvfOif59q+sD1oqu+D6TZdkoACMBbMpJ8hV0/rvZzizLVnf5nmX9uVdf8ccyY4wxxhhjjDHGGJPHeACbC4WCrs0EgPUA6rMs00WopfAxAMMBfFf+/hqA/wHwYQBvBvB+dG6QfTWA/+jHffrMISHDnPe+nx3oLCQ5rKwK6JZF6Npx3mtXNWqMLlNn7RbLR3T5LS0FZtkTkF5mzjIgznJqx3Vdml6RyhffgC+SSqd6UE6ra/Bz1smnls/3l1QZ8FLylHSL0+mjpCQWnFaLh9PyCnNd3s4yQ1ZK6Hn6bHlK4FQeI8kGYhldCr6+NhHOh+aR868y2FGjes+HXl/zzBxO+8JMlD1e8qSXWr98P63D6JhlzQcSHTi4wvXhEtLyvG3itfxT8hreqV3rl6+Z6qMs25Cd1LFmTe/31XabGldSEtM8CZwqtbht1ZTvkDv0Qb4/ROFmpnXDddp08tQoroxO7CBZWlnjhihdR2OQnegYyW1Lx3hug6xc1ObSSmGVYbJAp0o0cI3LloW4444LESJBbGh4czGsYwyrbTT/3K75FURfRya3kVfvV74Sxd1JjVkdfbdQmOVlUyTdZAo3qd6dK5z1oCy7BIDLLy8Gn9pcE0VtpzKorY3bSBNlRq0scnnrW+Njfs/jMAD8/OchzIPFwoVRsqoLw8RdJWXQSnnW+ZfbJ/cTfZaKJ4KsbrwOVMvXFINztAHdsDSEOU4Hzzvu6D0jAPDJT6KvzMKD8fGlucqeklmwIIR1LuBmpu2f+402Tz4+f962cHDLLXHCj32sGGyVm+/qPbtJVK6pfSqPM+SYxZbsKNAq6dpvvLEYnirt5/xrrqGj8BtbZZgp2xLmpZfiY27z3AR7uFPcemsIfz+2RtpBY6mOwdO4LbP0XeTceNObQlgayf1PhDFHm/8MkbX3C9b4PvZYHEeFya//rXEqlJFEs4rCAFBBY+usD8R9bd26zt+WQ97Oa+h4ltVnWbacjr9VKBS+RcdVAHr7UAYAbZSm5KEpy7KLAfwtgJ8DuJbjCoXCbwD8oaT/NoCfAbgiy7J/LxQKS7EPGRK1uieWPvDsnhMdQN73R390oLNgjDHGGGOMMcaYQ5PNhUJhdiJ+B2KbVaaS0pRElmXnA/gBgPsA/FGhUCjs6ZxCodCRZdm/APgDAOcD2KcfyyzDNMYYY4wxxhhjjDF5bEDn6rPDeombgM6PbSWtKsuy7FwAPwHwMIBzCoXCtj2cwqzp+n9im8GB4ZBYWXbQU13dc/uobniNfEpvlNKecVxCxlgjy+7HjAnfUnW5MmeFs15VKTIEzofsjhOtNdYt4fKeNSXjSkk0U9oDWiNfWZn3sXxgSFWhqtd46T7vJpO6Bm+cBQCjR4ewNjG+H60w7yEZ46LTKuRrqLyAi5/vrddPyXdKXdHM52lb5Wuo8oOlluvXx3Gcf5YipdS+mn+uK9mADofRNMNSztT1q1pj+Rc20qJ53Z2IH1xvvi/RrY9Yx5vSIUvjqqMKmDs3CK0qZGV3fX2QbWh74T6kdc9DTqm7oqqEj9UMm8iSNLH5bo9hivPBsl29Juejx87C0fXifc1ObPFumKwYSY2zqoBrbAxipTVLwt+nTIl3+9qcuD4fa/uMZIwk2ami3ckA4CkKqwSI//lWlfy8p1oVd4Cl8T/Czvn0uSEfzbHVCI9pqU0KW1pCePzG++OEn7u6GPydSMj42bYghvNPt8KJkq6aJaYXXhhHciGfG54Ts+N/OL/nodBvdJc8HqtVispysFmlKv3e/vbocEdbeNeq6rnVZAhzQ+ZnAYB584pB3fF1HY1TOj/y2MdFtXRpfI0pU2YUw63SDo46JvQT3WS0iguIy1wbE89fh/X2G6yPyINGZazvqSXCEuu+7MbIc7pOxdE7w/UkA1yyJErXRv1Gl2z0xxyogmV5QMk7ZuubBO/cuyvn70C8U+akayOVFSqPOqoYPv+SS4rh5qtiyTPPlaICTO7ay/Mlj8E96vCII0J4+vQoqoomh2n6IvyhD4Uw9cP7a8+Kkm1vDeHWJfElaLPiyD4CGBgZ5j2FU4rhOR+SC1Ldz/g//yf8XV9oqQI69DcbDx7ysjVtWuf7W8J1Y+gwNGSYe+JeAOcAOAXAXd1/zLKsEkALgF+XcpEsy/4AwM3oVHMvKBQKL+3hFKV7EMvbEGDA8MoyY4wxxhhjjDHGGJPHjwAUAFwlf/8zdHqV/aD7D1mWHZFl2bQsy6J/xc2y7BwAtwBYDeCNhUJB/62M0/YwbO9a1fbJrsNbNX6gOSQ+gRpjjDHGGGOMMcaYvlMoFB7KsuzfAHwgy7KfoNNofzqAvwLwKwA/pOT/AuBdAM4EsAQAsiybDeC/AWToNPM/L8syvQfvsHF7lmUb0OlptgGdu3Fehs6VZV8rFAq/G+BH7IE/lhljjDHGGGOMMcaYFFehU139XgAXoNMF4msAPlEoFPakc5+JsBHAl3PS8MeymwBcCOAvAdQCeAXAAwD+sVAoXN/nnPcDfyw7CHi5bTgeXNfpzqFy56aWsFGz6uvHs8eY+nSQUcrqjWFL4jbd+p1k56rzZ68V9WFRX6U8OsqDm0KZmPV0NAWfix56YL4Bh1NmPWoGlNKOs3ieCnZfyM3ztq0Gem5xzbAHA4fVDynyvWmO49iGQuuXj9mCIeXZpFYNfA21vOCq4nypbwGfV1Meu3E0Nsb+S3mwD8j4evGVpAKqrY2vx/XB/m5AXA5sr6K+cOxzlHo29Srh63MdahMva6fnUZ8IblzsDQbERmgHEjax0T7KDShhxsflU9EWD4SVlcHZKDUupYquVF8p9T0T+6UiWvR8Te0nKUs3juNraLqDpaoPVl57LYSflc2xX3wxhLULjR0bwuyRM2FCnG7r1hDWMSDPmxCQ9vrpTxeD4665Jk53883FsM6VrRSWoTvyACu7445iuIZNKoHIvLFBJpE3n3ceXa8uiuPuXLaUbEruvDNKt+173yuGpRuCXRjHS9xkCp/F4wj76gDAmWcWg5uOOi2K4tO4Dp8V4Qb7A+o8ys+pVls8BpTqWfaz2+Na5DZz1ty5ceKnnw5hHoAefzxORxdpkEFm5OxQkjq+6ZjWjb5vcpmwDRkANAynlrZGaviBB3q/iHYU7gzcofqLPFhVJeUrzyN4Dxx/fAhvEpccnl/YCxWI22CP+X3Z3eHgpz8NYS43AOx6XYOYap1XS+H974+Ptd3l8fWvR4enfexjxfAj1DBkior8FKULYcr36XcxPcuMN8VtZMbMcNzUFPsL8xyubZe7w6Qm+t2kxmc33RTCv/1tHMdGYjpAkGHjlpbgU7b0+3EybiNqTcjsC2+v3/8+hIcPj1vQiewlePbZIayDBf0AUE+6Rp6zxD938hvfCAA47JVcpd3QIMsOFc8yFAqF3QD+teu/VLorAFwhf7sOwHV9uNfnAXy+j1kcUOxZZowxxhhjjDHGGGNMF/5YZowxxhhjjDHGGGNMF4fGesGDnO3be6xaLcJLi3Vp7viEIpHX+44aVUPhOBmvLK4r34Y8Zs6Ml+2WraEN35fTompZn1/G0ipZFl9GWyz30DbkyDB3VMdLr1mO1JqQWSksx6uiLG4UmWGyjEsktdyay3/YsDiO88/FqhIsXtp9+OFxHB/r0nS+DssrNR3LBlR+wWoGWone496cTmWekYJgc3zz6trSZJiRnEn1dnTDGtFAzKDl+Y2NcRvnpst5Pu64/HyoumNyMy35107OFczhWyQd67iefDKO4+dhPZnG7U+043HDTmm9dQygeqxqyt8zfjLLR56I676G9BdTLpwRxXGb57C2cX6cJ57IzWJy6/qUzJOl2Crt4b7I19R2xulUKl2qNGwo88tfhrDWIdeNdhmec7muU1Jdldny+KbqHa7TtbXnFMOTvhhrtsu6ZCwAcMr3Y23PNpJU6r9+VvNgxQ+j8qPf/CaEv/KVOO6b3ywG6/Thli4tBreQvnW15IN7tr7qnEhhHbFOYR3sX/91CH/wg1G6pzaGeWLlPfE1WFrLUqSUnYHKuRMKcbz6an5cHsuXx8fcf184KZaRTjwyHJ92XZDE3r0qlsSyvHiNKMiOOCKEdZ7mds1DMKmCAQC33BLCL78cx518csjLBRfE+ZrzZ6Et/+zOCuRx/mWXhQPtpP1gx7QTo+Oq8l05KUvnHmpbKVsLll0C8Xhd9oT0jhtuCGGW/sl8Hr356kB1+um95jeJNgSW4qV405vi42eeKQZnkNx6l7yH8Zvd/XLJbTRpjfvAB4rhJunnXJBTKR0AgH9PzJUJksa7jqbQLjY2xm1kPEtMdSJNSIh/dEdo8/dQv9FXGu43bN8BAEcdFcL6Dj4Q0FDd41V0RUsohz/h9qiDJEl3GzkdEPuM6Dt49yDZsScrK2MOTvyxzBhjjDHGGGOMMaavHEKeZYcalmEaY4wxxhhjjDHGGNOFP5YZY4wxxhhjjDHGGNOF1wseBLz8ctCQp/yo1LNsBsny/3dp7AUxbdrUYviuJeHvqa3rp03L92zSfaArOKOcMTXeYsOWhoY4jj0AxABiQ1vwAODLP/5QfAn2/FIvLD5P/SU4m1XkL9GfHbj3BJexWr4891wIv/ZaHMcWb7yyV/1C2PNId1xnP5WElVd0L/VL4HtrOab8ePhZx1fSltG6LfZGyogYRlXwzROVU7F5QzhQowh+IDWkIurEB2TmzEnFMPtRpfyitH4j3wv1YeHn4YLlRgHEBihaiWPGIJcDtRw81UjUDIgboXbgvPxrR0ntGU/HZe2xZ011dRgzeaxIjQGaRa4ODmu1pMYpjtNH5rxwWOcCPt4XfieDncjbsjU/3aOPxsc8fnK5ah2m4HEx1bbYU6a6enIUN/fsvyiGp15ySRRXc9114UDNaI45JoTJ6+x56UNtt91WDMvoidoXXgj5kjgadbGGwq2SjkcttdCbT+Gayy+PIz/ykWLwqcrgObhE7HK4btijDMivw5TnlFpCcfvRdzQqnpJRH1M+1jieU7ZvD+9F6numQyszkwpdX8O4THgc0WmI86VjDE+5aqs5fHgYZ9Uqj2lqmlUMz1rQnJ+wRMQiF42NIR91tf3zTuK2NVMacspfOPIp0zmcC4Uvoi8aCxaEsL5ssV9XiWyYdlZ0vHJJCJ+zIL98frZyUnQ8/5P/txiuuvjiYriF/b8AYEm4wTI22EM85rBz8hoZpyofCj8AZn/sY/H1uQzI4xEAcN99xWAZVdz4+fPjdOS7tWVa7B14xx0hvH59fBr3Re4LOo7wq5y2EbaXTM1R/YXfLRL2sNi4MayhaWqKf1fOm3dGMTz5MnlZuemmEBZfzSL8Y8WYQYQ/lhljjDHGGGOMMcb0FXuWDVkswzTGGGOMMcYYY4wxpgt/Aj0IGDYsLMlNyTtSH6x1SS/LPXjbcJUeTJgQwnXtz8eRa1pDWNfds16F90BWjWAqLrHWmKUOvPxfZYZcXiqP4GfVcuW0I0eGbedVUjG5OTeLJcP3HjUqjhs7NoRTW9DzLuJ6DSYlhVSJIOeL47RaOE7bD+82rjuRR2nXbM6JQNywtSGXilZ+HtoQEm2whq45e3aQRY1vjCUKO9rCvzlUrJFt4Z9+OoR17Tvfm8tk06Y4ne4xnodqvFK6nH2Jag/42bQRpvRHXKfcMbV8Hn88hFUfwdeUNjKJ8lI9N0hLUhIIbT4s9UlJOfnWKSleaoznYtRuwvlSGZqJy1XLODXk8JjM0lrtWlw3Ks/iJj93bn6+Fi0KYe0KPHQ0N4+L4i790IeL4bI1T0Vxu5rCuFVBk8O4T386StdGcvG18a3BWdkmcSwsfz6RjkcEVarXfPzj4eDCC6O4X6wL0kvua6xuB+I61PmRX11Y1aXt4LDDUBIDMaym+rkqabnueRh87LE4HbczlSDyO6Cq2PMkym1t8fvgkiWh3Wn++VjbP5MYjiM1YlNTbAlSh77LJvV1U6el/sA2JocfHsdNbqY86iTyW5qjtOJYA8eTg86VLBkkuSAAbDo89POGEstKXSF0zCn1PK7HmTNPKYYnv+c9cUKShNeJhJLHC35L0ifhkW+HvKxX8QO88kp8Ys7L7o5pJ0bJWEmofYhUpD3KivsU2ypINSHlKsLv7vtChslzlOaf65Sbo451bBVw4YWxTPX8j9DD6u/F7hsuXlxibo05uPDKMmOMMcYYY4wxxhhjuvDKMmOMMcYYY4wxxpi+Ys+yIYtXlhljjDHGGGOMMcYY04U/gR5k6EfpUreo192o2eeCtfdqF8Va+9EnxF4oFWwEoiJ6Ntvii+gN2HdBhfIs2pcHbc/xT0h5ZaRsq1LbxFdhRzE8cWIVBhr2ItBt29WDjcnzOdLnZI+ElB9PypuHyyPl/aYeBnxcV7kjjtzcGsJ55k57unmpZk/cAbSdsXkJm44AwHPP5V+T7t04N3iCaF+orK3r9ZweabUzczlwH9Jr8HnqBcHX54YA9DRt2V/oc5ZqHqhx3Jj52bQz837s2kb4ODEIcLGmmmCp2R82LE7Hx5rF/vTR1Die8j48VOHy0vJPDT8MWwfqdMh1r3MxN2ON4/rmYUs9uVLXZ4+oWU21yIX9/J58MopaQ2H1LONRvULi8vzMaiQd52qq5mvBgmJwQ2PsIbTouhDmNq62hSlfzVLfoVLzKDMQCwdSQ7x6JfHzpMYp9tBSf66Uz1q+F2Jci3xNnYb4mC0kgfh5NI7hMtAyfsel+eflcd998TG/a52zAP2Cn0X9qHbvDmsPavmdAED0VqmVwRfiQhb/vrXTzimG9bXl4SUh/CdXoCTYIw4o3SdLPcv4twb77V166RlRusnvDs859ZvfjOI6nn22GOayWiP33sL3lbhJd91VDFeqeS97x5L5WBWb7gJobg7vedoPuXx0fM6bX7Qdcxx7YOpxqRa8fSE1buX5Oqa8V3vAhUJ10SPOmEGIV5YZY4wxxhhjjDHGGNOFV5YZY4wxxhhjjDHG9Ad7lg1JXKsHAW1tYSmzLm/nZfEqL2B0yTCv9E4tr2ZpSY8+zpnRi/C2zSxt03W6iQfY1hZEHe3tscCDl3pzNlSCwuitU9IDvmZtbVj4rY85fgC2G2d5jS5rTskqmFQ74GvqM6fi+H4TJvR+LyBWBuh26dE1Uw2NG1dKhlmqZqYvqDyR4Q6g96bGVrZxQ69/B4CyRjpvnYgDWPqkjZfXu3M4JUfUSjziiBBOSaD3J3pfakCbdsbSntFNQa5Soe2CnzvVLlIyVY7TsqPrN04J+UjJMFP9i7OvTS6VxZTMk6s0pdRl6aVe38RlouXDEllVcPNxnhwOiJtqyipAu2ieRFPnc65v7SakKkL7vFj+xcPRm889NxwsWxalm3zzzcXwBsTwiLZF4vKkl+MkXTOF6yZOjOI65gW51orb4/NYKsZ9TYfSlESZp6XUkJL6jcNlnnrFGQhSEk0O63NysbJLBhAr/VLlw/N7pTwYD+s61fO4OHp0HMd5Tr0qDvTUr8+Zeh8sFbbR0PbC70llm5+PI1n2nPJM4UYuWn6WXqoMWV87SkHHulLnDT0vbwxT5V39vPHFcI1oEMtIhtnB90rkY6Ucs1x81ve+lxtX/cor4UCkruXVQYap7XPnzhB+jSdjAO3tvb9jptq0OoLwO8NAjylA+vdF3vtJqi+rHBcXNoewDkDdA4Y2HmMGCZZhGmOMMcYYY4wxxhjThT+WGWOMMcYYY4wxxhjThWWYBwFlZWHZbalLZRVd2c1LZDmc2imqp4orLJuum5ZYw85rhjWT06aFsCzB5aXjuqQ9rxw0j5wuJY/QJfh8nRoSkzQ16T5eew/LF3SXKs5zSp7Fq75TSjOVR6TKh+El4Sk1nJLcHYczkxcG0uv/OTO6/RTDsuDUVnX6MJw2tWVqXp6AtNaVdS16PV6qnkrHedZtFvMaCbBvJK2lkNAxqvQgSd4WsKwZBuLtZrV+DzsshHkskuunNmtN7VTH0hge3vQape5yqdnn5pSSYudJzUwnXI6jRsVx3A1ZNQ3ky+90iEntlMbDmw4PeTuhanvhPPPmr0A8v5zY0hHFTZtG/x765VtDeOnSKB0rakRAFh3rSF1LYRaA6kg9ng/mzYviuOxSO9CVukNlqe8S+2LHuVLRoZpJycA5rBv+cbHq+DC1kvY4rY9fQtgCg/vC9On511cJFpf5Sy/FcSwZ5DEytXH0StXY9YMeMjHixJb+XZOfRZ+T38Grq2Mhcg1vWXvUUfGJXBDHH18Mdpx3QZTsnq+HsI4/qWfNQ38zlNof9LUiT+K+fHmcjtvIOZdfHsVNpUGziW7QKvfmnXo17hEK63TLJi9bHnqoGJ503XVRutM+2VwMt82P9+3lMn7yyVh2mTf+9GV3+n0hvWRSdgB584tsFhr9flm4UG5AZblFdsPsbmoH6I10/5FlfgEbonhlmTHGGGOMMcYYY4wxXfhjmTHGGGOMMcYYY4wxXfhjmTHGGGOMMcYYY4wxXVhcexBQVRXsmNQ3IOVtwbBvCZDvdaOwx4D6IETbrNdWRHHj+YacUC6yqz18j62Qh2NLIg7rJfPyq7dTLwXW4au/R10tebusCGYENZowcmXpH3zJiu1borjGxuD0os+WV2+pLddTdmAvv5yfR94WO+WZovUSXbNWLpqXsdSe3Gpqlecbprz6ak6mAPBW4drQUuR5kUnFbGuvKoZr1JTuiCPyr89p2YtMC5nLUfeM5/Jify4gfu6Wlvx8DDS6jz3lv6Y+YbinJipMqh1wnJpC0XFHY+ScFNncsVdSytdRs7h1awinPF+4yWgT4Wam987zKdOq5uazr71PBiM8F2iX5PJXOzzuijyWahlznM5D7G2k7Yevw/NEyvpzzJg47sIL6eD666O4Kn64m24qBldz4wfAFlFrEbODwtoL2adsV04YEK8zGR/qEObEpqa6KI5tKlPWqNzt2f4RiPtNysOzVH/P1HmlwtNVX0jZ4XAb7JGnmWHQ2bI9fpfLe259H8nzptpTHtmnTJpdxHCygdIppD+oj9dAeNTxPKFTKvdtbZ+nsWeZFtDu3SFMg4DmP/WunqqPPPpbHjr25V0nad2kP1hogKuigmxOvBPINAp2a5ym73mU6Ta+pqajgtVXCZ5DUva2KW/RUv3M9oXtVSpfo0eHMFeN2rxy3OTKDXHkihXFYPwrJ3iWlfhzdvBiz7Ihi1eWGWOMMcYYY4wxxhjTxSH1sWzYsGFoaWkp/rdGt14CsGzZMsyZMwctLS2YPn06PvnJT+Laa68tnlNRUYHjjjsOLS0t+MhHPgIA+PKXv4zKykpspWUGS5YswahRo3DCCSdg2rRp+NCHPoSHHnqoeJ26ujoceeSRaGlpwb33/nR/FYExxhhjjDHGGGOMSXBIrRccMWIEVtBS0d5417vehf/6r//C8ccfj927d+Oxxx7DjBkz8O53vxsA0NzcjMWLF6Oe1uhef/31OPnkk3HzzTfjiiuuKP799NNPx6JFi7Bz506ccMIJuOiii4r3v+KKK7Bw4UJcfPHFePOb39djyW83pS6VbmiIj/OWBev1ePk2L5fXtLrsu3pmLJfopqY+blK8HF1lmNW1IVzVFi/cbW4O1y+jBdY72uLvu5xnXYrOZVBXLcKQjXTic8/1fhLQN9leDhXtJGSRMkjVDR/zSv2UPELrkOuNJWMKK/ZSUlddgr9+PR2cLAvjufJ5abI+aEqTUqoMs1R0iTRfX+ua1pyv3VhByeK2z9/cp0yJpX5VrK3Se6sUIS8fXI5aOVzhKXnH/kSlE6wl1/ynNMT8PNzwVKqb0pyT5lFlLZxNrsOUzETlQSyxK1WGmZKJsdQDKL0KU2pcE8tMdK7luuF0QFz+XL8pGaY2Y0b/fY7bQp7kEABmzw5hdQooW/Q/4eBHP4oj6ULP07vPKskXC2p2SFwVhXXEGkdh7vX6r7CtfLBK7n7bbcXgnAV/HEVxefFQp2XMQ6YODyxR5jpUi4u86UrPU5V/qr7zUJkeX1+nvDw7iVQ71jGmVPi5udz0+lo+KReBUmXhKYlaf0jJoftLyvYjNU3vmh16is4TkVSaHlzLLe83Qm/3K4X+lrHOUXnyPpXwsRIVi1rjSNbg0pzdJO8SXHRTEBONW2efHUdS5VTecUevfwcQjU2zLpsdRZ1wQhjVHn44Pi1Pypxy1NBxg4/7U597IiXD5HHl+ONDeN68OF1Up9ctiiMXLy4Gn5d7b+v6/wF6IzVmrzmkPpaVwvPPP48jukxNhg0bhhkzZiTTP/nkk9i+fTu+8IUv4LOf/Wz0saybESNGoKWlBeujLwvGGGOMMcYYY4wZtNizbMhySMkwd+7cWZRBXnTRRb2m+eAHP4hjjjkGF110Eb75zW+iTf/lQbj++uvx9re/Haeffjoee+wxPP+8flMHXnrpJTz++OM444wzBuQ5jDHGGGOMMcYYY8y+4ZD6WNYtw1yxYgVuvvnmXtN84hOfwPLly3HOOefghz/8Ic4999zkNW+44QZceumlKCsrw1ve8hbceOONxbi77roLs2bNQmNjIxYuXIhG3QbNGGOMMcYYY4wxxhxUHPLrBd/97nfjgQcewPjx4/Gzn/0MAHDUUUfhyiuvxJ/92Z9h7NixePHFFzFG92sH8OCDD+Lxxx/H2V36+F27dmHy5Mn4i7/4CwDBs2z16tWYN28eLrroIrToftPo1JJ3a8bVpyDlg8CMHBkf520BnvLX6IvXBF+H9e+NjVVROr73iS2x48lO2ka8Zne8gq9sM63Qo5tVSSYnkZFDR1NNfI128ilTsxg2H3ryyRBWk6Ap6ozQD9gsSQq1jI6rq+P853kM9MVWjYtLF0ny9fkaWu85lhoA4nawpTX+9l7HF2JTk5TZhz6MGtDkUaq5nz4AG4EkPMueezT/VmyroZefwb5kGslGEVwG+lH9BeooKROM/u4FP9CkBhmNY786zX9e3UgZbCkn56TacVHcOup6alfJVoU8PIwdG6dLeZbxcJHyDOLpo0vlX4QfU6cZ9hJM2bZxnObfxMO4dqGUaoLH2lT3Yj+tlG+kXoOb9VVX9X4OAJwxL/h29vD8uummYrDt1ltz83g/hddKHN+uVuLYhXGmxPHs+BSFmyVdtN5+duwFxJ2vYXTsLTpnTvCK3LQp/H3nzvgS/P6jZcxpuT+l6kJ9/7iNsL1Sf9E5nPuvej3x+MCvjzOlMthfqKJVFA4rw8BVJ+80rx0e3jv4XiefHF9i/vwQ1qmS3/O0btgrLFV2qXG2P+gr30D4QKV8pTiOp2wg7rJ63mlUcezJu3JJnC7l2defqV896Up91VLPRO5TKd+5KI+6CIEfiBph3e23R8nqaDGC+pLV8ASvZlt8fR4jly+P0/HLnBTQpZcGP0X1v+Oxies3z5YWSHsODrRVLxC/Vmq+eMzhfj617cE44fepvL7+9SjqESrjDYjpbrpiE2nMoOGQ/1h27bXXRsc//elPcf755yPLMjz++OMYNmwYanO+Rlx//fX45Cc/iY9+9KPFvx155JF45plnonRTp07FRz/6UXz+85/H9ddfP+DPYIwxxhhjjDHGmP2MPcuGLIeUDLMUvve97+GYY45BS0sLLr/8cvzgBz/AMP0nmC5uuOGGHt5nF110EW644YYead///vfj17/+NZ5++ul9km9jjDHGGGOMMcYYs/ccUp9At5ewDru3D13MGlrb3duHry996UvF8HxazzpixIhoN8zrrruuGK6sDMtidfltqTJMXRrN5/FyX12uzauTU+op3S6dP56nZIApIunoysS6e17Truv4KdNlqb21VRuTt6ZdH3Sg0cKitddav3lbUKfksqnl+HoetzXOll6Dr6/FyKjsoXpmEPBUTJwYInS9P2suNJOqh8mDdW8q88zZlhxA/HDSida2BnnKffflJotUtlo+jecGWWDdlLhzb2gNkuXa2nCvKr3Ba7R4PbU+f1/sN94fZLv3qE9p/+Vn03aRpw2WMuDmoxIgbpMrV+Znk6/x4ovIhaWbQH4fVVk8H6ckWFoEW7eGMDdrlUoPxHg8lOEy0SGA6zBlK8rThA5T3O9TMkCVl3HcrCk7woH2oS8GqSWWLInvfdttxfAK5EPDFHQY55lzksSxKnCqanxJ7jRt0aLw96OOipJVsg7tzjvjayxdGsLc4AHMYTkVvU9t2B5bFnCZ6zzEfYr7to7V3C/VjYH/vVSH2f4Mu/quxfc+5pg4jqeDN70phFWyXbGOhLDafhKeGjwkJ6ZDTJgQwikZoErU8uR9LN8D4r43EDK01DjbX/gaWu/8mirNOHpH0NeT5uawZoHHKZXK8fOkpN6lonYApTJ9enzMr93cZsa3PRUnfIi8LNh+AYgLlmXCCxfG6XjgVSkn65IXLIjjePw57rgQ1srgsUniamhQ+Mu/fGfuaawGfU10h/zYGvfQQyGs7yBnzcdew4+jUm8u8slP/CIc6O9hGqsfefzxKGoN30vu3d1EDqkPDmZI4ZVlxhhjjDHGGGOMMcZ04Q+9xhhjjDHGGGOMMX3FnmVDFq8sM8YYY4wxxhhjjDGmC38CPQgYUfYqJlV2bfXdJoYnZAiwtr0CeajVFtmj4dlne/87kPYsY427eiSwpp69M1JbfpeXx99m2abgRDVoYOMR3pdZM8mGCWriwWYc6uGRZ1iUs5nDXsHPkthPu7Z2fBSV5ymmXhwpn528awBx0aW2uE79Q0nKU499TCr4Imrqw8cap+YxpaB1yPdW4xIuFCmgdeRxxe1fy4ObjzYzrpvGxqoojn1M+NZnzG2JL8I31PbPHVErQP049hep+2ocN1D1QyIDlG21wUlJxyK2PNLLc9fTXeK5uPia6tXD6dQPafToEOb+pM0sbgdxHPc97Yd5NozaTbiJsP+I6eTEmbuK4W1T4nmU61fLm/szp0vNlToGpLzmovux5xd77ADATcGzbAeb2wDgKff5+CxsoTB3G21W3GROlLhxLS3h4OKL40g20Zo7N4TZ4ArAuE9/OhyIod+2e+8thmvY8AfI9RMdr8ZJNIAedszkKIrrLeVbxUORzrHcv9RGsz9eWDoG8PivfkJs/zajknygHpOXLS47bT+zZ+fmpbYl1Dg/ywUXxOnmjHykGG6+YEYUx/5j6g3Jr2F5Yy4QlwG/s/YX7aMDseCDr6FzDb+q6PjMz8rzPhC3NR4PdK7h8tF7s2VrqWgbL9XrkocDIG7LFe3ku7hc2ic3Em2P5Df2SPvUYnjMMWdEyRp4gtSOwqRMPcksrE18t1ZTePLixVFcNZnxVUkFv5nGxYaG4KfIP12AuB1oefOxep4OBFzkp83eFUcuWxbCX/xiMbjjjjuiZOxC9whiUvNLd4nsg19XxuwXvLLMGGOMMcYYY4wxxpguvLLMGGOMMcYYY4wxpj/Ys2xI4lo9GNi2DeiWIqjsjNbmTuKtkTsjiyHeDVk5+ugQ5iXxQMkKwR4KL5aa8Hl6fV7qrdeIliGnbsCZ1LX7fJ5qUfkGuiY/b7/3/sj+9gQXZErfIXBSXuquS/D58hrH56nEiFe086p1zRJfU+UFLEHUIuaqmsQ30xtwXajGpdQ95HkfdF3DzplWjRq1kQ2t+TJJfk4tY26qWj6kMMLEiXEcN+tYphfLxKZynrX952lcejveX6QGEi08bngJiSw/tspT+DglR9eiy2vXmkU+HjEijstThWgz42OVeXK/LGvdEsXV1tahN/Q5uZvo9Q2iDlwj7ayG2lnj3HgM0DGtG5VaclcTlWSkPtIuGQ13110XwiIBeoIa4VrNC4WliUcyTB7+VcA0j8KVl1wSR77rXcXgjjNjbd6dd4bwuVfNQh4V3El/9KMojvPcIbIfHgmruGBPOCG+AXWwhnPPjaLmzQuSQVYqphThCjcZnV7ypNIpRKUazQ1vfGMc1zBiWzj43m0h/OqrccKUpwaPyTI+l6GjGK4qDwPhySeL7cdNQV/ZMF8eujEUXnt73Ify3i10POZxayDcMLReSpUZ9uWaDLcffQ/Ie50F4vJRiSPDr//advvTBlk13ZdrTNp8f/yHZfSi9MILIfzYY3E6rnx50E2jgvTy1uvC33nsBIALLzyrGF6zLI479+J3FsPatiYtoBcsGt8qb7wxSldG8uV4JgbaafCoveYa5DFn4cJiePXocVEc172ON9zm98X3lujno4yz+OlPi8GNFLdGrsFzjUr+WVneInHdr0n7QF1qzH7BMkxjjDHGGGOMMcYYY7rwxzJjjDHGGGOMMcYYY7qwDPNgoLIyrMNPaYB0aT2tK6/aHIsz5pwc9EGvvhq+iepSa5Z/qQoqtYMPy494+bzu5sZLjefNi+OqKsPyf9wW70oT6VV4TbuupU/tpsdbBKm8Mm8HRt56aqCg9c876idFUSyn0g2s8jbsTO3EpjIfrm/dMWnUqBDWZesMbR7UY7fT1O5WnHZSC2VE15indIylaidSW0Ux2sjpOLWZZGrHPC5XlemxOlT7BmeFr9lDRreOClYrnytHy64/27Tta/oi0aQG1Dw/yDS0/Fn5ocokHre0OLjZcbGmdqlKNJ+kbJ37gl6fpRn19bHsMm93YS0DvrdKBGepev8QZG152CFxe2sc10blleoyXKd92ZGY21ZSPtWe/zpGe8xhm8Rt4DxKXF1OOIlmkh4gmrMBNDWFd4uK7SRc0nGKJFnbE7t56jTExTP5vvvCAQ+sQNLvoaY65Jl35E5tyrxzZxzH7UIl0P3ZdFhfR3ju1DFsy/Cwu14dTw68Fa9mUidjlr1JI9/0QiiTV18N0kvdmPTcC/+oGNadhRkdf3iKSk31/GgDsZGzjrMDMR1y/nUM5jzznATEMlvdxJGrhncsVEeKhk0P5mdsFbV51VfmoMnK2nmHxMRPQ93udMmSEOZ2xx4UQFwh8jLUQLtJnn56eEfWXVFTu8Jzv+w5bwZp8CQuZHkfmUm79nZwwwVQxr8v9GWOKnVbZZBealHxsKjtMfUqdIb8duoP3GfPOvXUOJK27UypcTnL2kWnUlivUdk1QWapHxpDgSyzZ9kQxSvLjDHGGGOMMcYYY4zpwh/LjDHGGGOMMcYYY4zpwusFjTHGGGOMMcYYY/qKZZhDFtfqwcBrrwUxuxo5sMZbOyGbPKipGInejzkmqMlV58/HqpNnyX5qW3WO0yyyL5b6nUQCft0jmjPDZZIaiMRjIDIGUYOAvEyrF8pAQIY26qXAj6ZeKAz7V6T8itQriR9T/bSGDw9hLgItKq4K9T3jKlSfDvaX2NAaPCOqq+Ot5WumTAkH+gDqDZFDR3PwJCrTxkoFtK08du7ZvCaEdUt39id56aUQ5jYNxM1MvW6eey6E1YOEvWk4y2rrMJ4rPGWO9OKL8bGOJfuLlBmH9l9Oq42L4lJ+Qlz+OoalioCzkhrDGC1+PuZmnPI9S9m2afPn41S+OG7MmPx0Jk3K54in28QQ02Mc4TFS+3Y0ll9zezG4WuaypyisdjzcZHSa5svPoLCOqpWXXx4OyD8IADoWvrkYvuWW+Dyez8ppbJ05Mx5ny8i3U94CIu8bsbvC8xTeQWUy4+ab4+sfd1w40AGaJqa5510Q7ptvzZa0ONV5VI9LgYoDQNzOJiH2n40q+MknQ1jnRj5OjbMJUu8ZFdhFcRVRXOryHKd+bAx72upU0B94PB4ouEx0DMjzr9Tj1PsVX7Ouelec8KdkOqUTBb+slOhZVnbnL/IzsnBh/ok33RQf3x7GrV3UR7fEqdDIedSBkB6c+yE3dyBuP/qTJ+WHx9ecxM+mlUjeY2U6kPML7tKlcRw13hqq4ClTTszNY8ojWt8VB4KoP6iZGhma8fwiLTCiVo7Zs6zy7LPjyO7y+eY3k3k05mDFMkxjjDHGGGOMMcYYY7rwxzJjjDHGGGOMMcYYY7qwDPNgYPfufA2eSgvz0DW9pCcZnpDY8Wp9lSXwkmdd9c1pWbqiUjxeWjx8ePxttrk5SDXqVJfw9NMhzGuotTx4vTLrCoF4ibU+OB8PGxbCqj0YCCgfuvqcb63SjzwJkKbj8k/JfFS1wdecMCGEVVaidc+wenbr1jiOl5yvWhXCWhWnzaW91LmuAeyqDm2kooeAJ8ByoNracbnpdOk+n6db3rOEkkkphrUPcV2lzuN7aR3OnFkTwvPOiOLK1pBAS6U3qlfcX2hDy5NUA0BDQwifcEIcR5KI5cvCn3U7+RUrQliHUVamqgSas1WqhEZletyHjjkmhLUPcT/Ua+SNpRrHpIazfSE/GuxMagpjx672eB7i8a2H9CmyMwj9UKcaHrZkCIvaj/Zt7rIraG5bFSfDBgpvkziesVReWUNhlslUnXdenPAjHykGH2yfEUXd9oUQvu+++DR+Hh5bVQn2jiuuCHkSCWXtstC5W+PTIklQ6l92xz/0UDFcp3P4+vXhGjQIz7/4j6JknP+UnFuVW/2xqGHJIQDUVe4IB5/8ev4NWP6lmnAaL3vouHhMlvNGjgxhHkcaxsp8e9MtxeBUHviAqBNNmj07jqPCmzatrrc/AwAqVvyuGJ448RTsLSedFB+nJKCl8vrXhzCXm6LvEvxerGMHz2ePPx7Czc2x1LWB61Tn9tRLWqmZ5IykZJg84QLYQuMWt5ge/XXs2BCWAeKRjaFd8OVpaAAQz4/6yNyeUq8gW1pDzur0IjR4b5GXiai05IfODBo/uexm8d8BzJpHv3OkA2zYHkbrlO1Nf5m0imS3V18dxW2/7bZi+H76e9wC4zpV5XUlV84b3hBHXnJJ5///67/2nNHBjD3LhixeWWaMMcYYY4wxxhhjTBf+WGaMMcYYY4wxxhhjTBf7Zb1glmVjALwDwDQAOwH8GsCthUKhsD/ub4wxxhhjjDHGGGNMKezVx7Isy8YB6DZY+HGhUPhRL2leD+B/EO80+0EAd2dZtrBQKGzVcw45duzouUdyN6n9zFn3r4Y8pB+vawrq8srmmigZa/nVBoEtEtRfguX8LPtXrw/2dUjaKqT2cWdjFM2IlgmT0o7nGRHtC7053au9PXYB4FurBQlnhdNpEXCc7nbNcSmfo5pK8uoR052a2mCg0NJSFcVxs1M/Hr4+1722g8hDQkybtlNW6uKoCL53ym9Gu0nqPPUYK+ZJ8s/1pHFsA5LnP6WopwkXiXpaTWJzDn04NU/aX2hDY5/BVP8Vo44dbaFd8KNs2hRfgutQH7nUdsF1mBoC1A6J/cHYck2vwedpHI+l6nWW12bU04S9D7WITUxFW+z6VVdN7XXlyjgxdegG7mtSiS0tk4phbYNcVy+9FMdxf2avmC2SZx5WaiSO7XkmSxyP1lXHHRcO5s+PE5Lf1ZpFcRT7/qknILdPfm6dh1a3Bh/JqZddFsXNJmMidaVkBzn2DNJXCR75Zi5eHMU10nE5mWeqrGLqggXF8I7KuiiO7Z207/Wnv9VtfCT+A08cPU0rQ7ilJYTVmIk9yxQegPQB8uYlncz4BSVhCvXU5riFRl2FLtnDHpauL7ZYGH9uTh4T6Cv1QEyHZH8HtW1LvQekvEvZ/uqXvwxhLZ/3vuft4WD58jjymWd6zW8S7aTsh/fRj+ae9ryYhpLbHtgttoo9ygDgPe8pBned++Yoasl3Qpi9A1PvWtrveGzVd2kep7gv12mfITPBugceiKLKaOxQ38g2esep5PGH+ysQm/eKZ9x49vrTlwQ1OewPt9wSwuRRBsTzDdenvgpxsfZwBj799BA+9dQoqmNKl2OmvhsONexZNmTZWxnmOQAuBvBWAA9rZJZl1QBuBDAaQCb/nQbgB3t5f2OMMcYYY4wxxhhjBoy9/Vh2dtf/ny4UCit7iX8vOj9GFwA8BeAjXf9tQOcHs/OyLJu/l3kwxhhjjDHGGGOMMWZA2Nv1gjPQ+SHsnpz4d3T9/2UApxYKhRcAIMuyRQAeROcHs7cDWLKX+RjcZFnQ0agGi/U1qSWsuvST09L686raOFl9fVgyrztJs4RSV+6zZJOXOLPiSs9TlRgvM++xHJrXWPOe3ynNw+GHx8e8FlvLhzPGkoJ9sGfzhs1BeqllwOij8ePokn+mpj0soq5tieUjqSZTsZ0WX6f0lFQmk1h3BqCpKdxPn43lBRxWGQLnsakp/n7PbauuBbmooiDvGtrG+VjLiutj4sTerwfE9aQypTwpZwotfpYiaP6nTQtta/bcM6I4lZvtN1hOAMT6F23k1Ec3lE+KotasCGGWZjz6aHwJLi+VbXBdpYbIhMIuyrI0/0hlMbWJBAzamDhjlfEY096e/29WnBe+pA5THNez3vfBPvSDDS5/1WNxIWvn44GLO7fM03U0fU2ZErdjllrq5XmK4qgdcbKoBsdL3AwKT00N+Bdf3HsYwK+XhjaoCi9WDqm0La9/aTZIaYmp550XxZVddFExPPnmm6M4LhOWCrUiH51iWco5niRSlapzoweoEplqfX2Y52rKpXaiQUe1hTncdFN8zBNYKo4LNjGWpjwXdsl4w0nL2ujZuOI1H3pvKoPJCxpz46KXhBVSU9S/Zp7+x9hb2KUE6Dl39gce77WIU1L41PsJvyPw0KTX76C1DT1mjFI9Hhit34ceKuk0nV3YWCSaOlk+DETvBap25/mdx8jnnovTpaxcePzh9zWF62LGPGmrPMHLC20HlVerXJOPK6gSp33xi3FCbkBaZ6kfBwMhw/zGN4pBqflonOWmWyHpWGA9SX+rch5l/Owe/5NWPMYcxOztx7JuUXoPw60sy+oAnIDOj2k3dH8oA4BCofBIlmWLAbwRwJy9zIMxxhhjjDHGGGPM/seeZUOSvZVhdn8se7mXuFPRuXIMAH7WS/zvu/4/qZc4Y4wxxhhjjDHGGGP2O3v7saz7Y9iIXuK6t8MoALirl/julZ/WiBhjjDHGGGOMMcaYg4K9XS/4IjotNI7qJe6NXf9/tFAovNRLfPcHtl29xB1adHQEXy725wLiPadTvgQpQ55EulJXjPZ3ZSl7N/TJVoETpy7CRhFcVppWHyBvD2oV1Q+Ahxl71uiW1ikvMj6vpu35/DxtDI4DlU35nmU9/AK4DLis1NOHTxQzjilTTss9jS1h2O7nxRfjdPw42mxLbXd8DfUL4Wto0XH56725SLgu1PuE47Zuzc+jWjxwvtj3bIT80wNfn8NA3PwPGlKVppVDhVwpdj9cHxzW8uE4HR44K6khMtUG2YdR2090zB1Ab8ZGLFKJNYmbt9cH15DUs3CxllfXRHFl6MAhT95YB8SFp4NYnukgG3rKNVJTTWp8YyesKrkdj+ri7ompPLCcfXYcyc/GvqAyEdXSEM/+fUBcXKkxki+pdmA8hawtnxzFTXr/+4vhceLbM/Pee4th9tl5HjH8EqnTXC2FE46nsRGrTpa18bwax9Xmx5V6Dheeej6+8Y0hzOcdcUScjiez1GAnhRCND6nJkv2c9MWFGsLqdXHrbW8Px9NaxoX7aiOhPC65PY5652XoM+qLNRB+Sdw81b+SUe9eflQdYrhq2E9Lfc6+//0Qnj//lChu0oJ+GLKxfxbQs8By0DdirsVy9iP849h3btPr31IML/1RfA0uE25206fH6fLeCYC4C+kYdthhIRx1Pb0Il4m0/zp6ia1ZsSKKYz/FqJmpiS0/qHrGsT+mzi8DQG4eEc83PNKpA2M0cp97bhxJHWJHW+++iGV7uzzHmAPE3n4sexDABADnZllWWSgU2gAgy7IpAE5B56qyX+ec2y2/3LSXeTDGGGOMMcYYY4zZv2SZPcuGKHv7nfd/uv5fD+BHWZadkGXZaQBuQJBo/iTn3Nno/Jj2RE68McYYY4wxxhhjjDH7laxQKPT/5CyrBPAo8k367y8UCif3cl4zgKfQ+bHss4VC4eN7utewYcMKHR19l5NUVlbiyCOP7PN5+5Msq8K//Evnfu2PPhrH8RbIumr9nAVUHrqEesmSEL722mJwlSwf5iMtXV6qq9/K5+XETVZ5wemnh/AHPhBFbZt7TjG8aFF8GmefV0rrR3tWLKjEkaVtqm7lFdC8PF/L+J2X7b2E6VvfCd+kXxJB8u9/H8KjRsVxvASdd2U+EffHCfkBnn02jjv11BAW6cTadSFfqX8MWb48hFmpAsQqpaVL87PFq9GPOy5ON2ZMfhzX6Ykt+XVx97LwLCq34LpuaIjjfv7zENamywomXp0vu2JjcjWJgkRmuHr7+GJY21bd5tXF8Jb6qcUwt30gLn+VgDKqmuGy+/uP7D8p3v+7Jv43GK57VbVx3ag6jmUuXP4LF8bp6pb/IhxoI/ze94rBp0TXwkXJsq4z4itE26WvkLjZLJe4jLRCl14apVvdGK56883xNXhs0jqcOTOEud1VrHsqTsgNQxsyy+8OUX69NH+s4yFz9Og4jst/fPW2cEDtCgDwsY8Vg8tFZ8Wj9WbEsHxw8nfDu5iqlVn+pTIuTisqxuh9gtvZMcfE6VjRp3H8DqJzLDct7r861vHribZxjlP5FNcVN2tVT3EZ9Bhnt6/tPZMqg+KLpiYDHYQ5kzo45XH99fExT/b6AFQoD64M7XjZsjjZE0/0HgbielIF5fHHhzArenU8vp2kkQsWxHEsc5tzssw1PCazHF0bKzdsjbvmGvSZq66Kj7lxfehDfb8eANx5ZwhrQabkuFyYWjl5Vh8kQQYQd2B9yeGXqCuvzM8H841vxMfc0VPtWOuG4frVdszPqYMY1w33S5m7HlxVgTx4rBs7No7j4r/llhDWn00pmS1X99y5+XH8KNokxteHEX/1mvhZHngghPU96U+u2Pv3t5/dHsYOrUIe3vh9U6XAXL06PnCcdo3uprBs2Wxs27Y8wxBl9vTpheXf/e6BzsZek82Zc1+hUJi955SHDnu1XrBQKLRlWbYQwG0A5DUH6wC8I+fUyyn8v6Xcq6OjA/35sJdlGR555JE+n7c/ueii9x3oLBhjjDHGGGOMMcYY7L1nGQqFwsNZlk0H8EcATgAwDMDvAfywUCjkWWrOAPArdP7Dap6nmTHGGGOMMcYYY8zBiT3LhiwDUquFQuEVANd2/VdK+rcPxH2HCoVCWAarO+axMkBlehG6LJvXxK5fXwzqhpRlOWEA4EXCumUpCVKi3XF2yfLqCl5K/vjjUVwNaauqq8dFcfzcurMQk7dpJhDvuphaMpzaNHMg4HulNprU+uVV69Fy7pUJ+YJKRDiOMwKgtjaUed7moJoPhTcgZSkGED8bKwi0DPjeGlfqZqR8L5W65u20BMTPmtqpLrWjKdbRDaShNU0JMsyqaL87RHVVR2v3Gxvj3cRSO33yscblbYi7r9ENoFhSoMMUp9Wxj5+bpQ2RrAqIZT6iYd1BOgI5K9odqpXCa+Jk0TioApRmeoB61nSIxKtpdpBh6kZX3Ie0/XNb5rCoifO39jQA0mMAtzuNi5REq9aE8DPPROm20w10p0YeEXQe5baVkrg891wIp3bclSEem2j7pJRUkXeYVQkQ5yW1kWhqLtZ2zXCeU+Mzh3Wu4T6kc3hdbXXvkTpAprbaS928P6S29BXt1rbt4c2Myyo1z/VhQ+tctC5S7YCPdSe8Kr5QamvVlN9Gf0htS9tfqnPaUl+un9qum8PaRhj1w0ilzSP1YyNFan7J20Jcz5MG1FEeRsKyxLbP/NiafX7H1PbJ7xmpd0V+fdYxkvuejrOp3bSZetrdWt+FOP+l9tG+wGWiz83ws/G8A6R/U738cvihVl0tldPFvnguY/YH3sjVGGOMMcYYY4wxxpgu/LHMGGOMMcYYY4wxxpguBlR0lmXZJAAXAJgNYCyAwwFcUygUbpR0dV3BV7sknMYYY4wxxhhjjDGDB3uWDVkGpFazLKsB8FV07n45rPvPAAoAftrLKXcAaAGwGsD0XuIPKaqqwjbFuuUub19cs+ZBOZP2tb/hhjiKvMKeeuGFYni1XIG9xyZJHG9vqjL8E9m4iQ1D5s+PEz70UAjrfs7kNTR77luiKB5v2EdAxyEuL/UYYJ8C9gPQtOwdoNcYCLioUr5YM2fGcRdeGMJVK38XDr7//TghG5ToDbiAxDCghqKivaTFjOCs+WGfbPZPAeKtpXWb6bxt6FNWJcOGxXH9mXe4OSp98fxST4ZudOf3WU3UaMTPY8mdHBV7kc2dG3ys+Jq6nTlXb16egHS57k9S9ilqY6K+HQz3RT5vW208UtXMmRMOpBNVkS/iaV/7WhTH3lJcpc35WeoxfvJ5O+66qxie9OyzcT7IePGKd/9FFMdD5JNPxtefODGEo+FzfWt+JlON5BCF2w/73wFxPxlfLo5jtywJYRp32269NUpGrnl4Su7N3nh1EsdddBpt1K5jEfcFHWe5D6W8dHgeVV9BHv51zKXXB4weHcfx/TjP6uvIFn4axz5EKc+4yLewtiNKt6s9zEsV7eINuWxF75nUgTbVSLhQ2Linv3CBA0kfqMopM0q6ZKrbpzzLeJ7mvjBjSuyw19gY/Ja0jfD1tX3O4ArnhGpGm2cS2l/GjImPjzlm76/J7ULyuKuyphhWT6gRtaHn18yUwqPyidqxTo7cZvSFNjWR5qH+ttyAFizIP0/7TZ6pqnT0La307lg5PopbSQPozJkzev07APz2tyGsnmVsiXzEEXEcF88DD4QwezoC6ffBlG/ttGkhzL/ZtFuXrXmK0k3OzeO+mMLpVajH7xy+X6nDm6Z7+eUwXqxbF1dO97PtUtNOYwYJey3DzLKsEcB9AC5H58e3rOu/FF/uSjM1y7LZe0hrjDHGGGOMMcYYY8x+YSA8y34C4Ch0fvz6HYA/RrTkqVduAdD9TyPnDUAejDHGGGOMMcYYY4zZa/ZKhpll2VsBzEWn3PJ6AO8sFAodXXG55xUKhe1Zlv0OwDwAp+5NHoYCI6sLmDWzS1agS6OXLA/hm26K4667LoS//e0oajutq2Xxpq6CZbFBs8TxSuMKicOZZ+pfuk6S9ckkTcKdd8ZxtF5/vKxXHt8Svreu3h6WbOvydl2KzaS2OeYl1ixzS+2KPRDo9SdMCOHTT4/jqhaTgvk3vykG22+8EXmU83pwIH5wXVfOD87aCd0vmqiR+p02LSwlVwkQS29YcaESDs7iK+JgWKq6gNPpOaki4OXoqtpgOSGn42IDgLUksWiXuNS986RPo0bF6VhZqPIppr9lN9BoO2Bpz8iRcdxRR4WwStBPPjmEJ1duCAcb5cG4o+v4Q5qICrlBE7V5Hhd1CGilsE6YlKtIbrddtEgzvvjFYrhKBq05CxcWwyNGxPIUbhfclqpUY8sakYGQMA0xDjsshCc3ySzIA9Xtt8dxdPz84sXFsAiRInnuFoljxctkiRtH4SpKmBqqtV+n1GuHHx7C3GR03sybDxUdY/IUWJp/7g7adFlRlpKSR88mmazghFpAfMw6f52I+Djll6CTuD5sKej1+ZoSx+88qbphUkOAPjbfOpp7pC9MmPDmvCz2kF4yjfPCmFZHErUeEwXXE3fY/jJdHF5OOGGvL7mlOlgAtGkzo1d3fY3nMp45Mx7j15CWn+t6jr7LccVpG2ctc38ptR2nXkK4YUgjWUfDrGaXlZ38mGp5wTYF2gbXrw9hteLg4uLXBX3k1BCQN5YC+d23DLFcnEldY1/8DmEFsf4e4mN+D1a5JndZVQKzXL9QiCtg587OcbcjvziGBvYsG7Ls7cqyt3X9fzOAP+v+UFYiD6JzNdq0PSU0xhhjjDHGGGOMMWZ/sLcfy05B56qy/ykUCn39p43u79Bjk6mMMcYYY4wxxhhjjNlP7O3Hsm4VgW4AVQrdWogeCj9jjDHGGGOMMcYYYw4EeyuufQ3AYf28TveHtta9zMNeMWzYMBx33HHF41tuuQXN4m1zxRVX4Fe/+hVGdRk6VFVV4e6778Z1112HP/mTP8GKFSswa9YsAMDMmTOxaNEiNDc3o7m5GSO7THp2796Nt7zlLfj4xz+Ow9SPYePG4Eem2zKzn8ott8Rx5Fm2WUToXCGsjVUpPHuoTFXToPNo7wXeDxkA3vOeEGYjjdSe4scfH8etWBHC/JxyPPXcc8PfjxChv27xTpSXh2/B6nXGnh7sD6CWRwMBb9msu6WzjUbF8rvjyB/8IISpXayV67MDz1QpxzI2fVAjBC6UJUtCWA1I2AyCTdYAVNADzJ17WhTHHg8pP5tcX5pespwHp1NfF47T5smeDKNH55/HzUybKnc99SpZTpaDajPCadkr5rHH4nR8b/ZRA+Ly0usfKOsq9bngY+1fXB8aFx1vDIW8pX5qlK5uYbjBg+vqorjqKecUw5PZIA2I2vnkH/84/F3GwXGPPloMT1u2LIrj0XoNhdWPoJLv9fWvx5Fk9jHrkkviOC687YlOxMfqBZQYIw8V2P8Oi8SXbOnSEL7hhihq87PPFsNc8zoGs09ZncTxzDlP4qq5k1bSvznKQNU0P3gl8bQJxMN1ytNKfXwYPq9UXywg33dRx4CUp1XCrit67ShbSe6rambE71T6oFxg7FnG5kVAbNaTmojUcClVsHloIT/9dAjLQN4wP/Tfxsbwb8v6LrF1a/7t8jyJgHjuaRhLI5d4lp3+sTcjDx5ydB7iR63j+tUxLG/C7S/yzroBwStsfMJLKgW3d4WfU5sno+XDr/xxs4hHkjkntIQDLbvUDfPQa+jLSx5sHAbEdUWT9o72eB0EZ/Hxx+NLkCVvNFboY3FX1ndDLjv9ucLt84UXQn894ohhUTp+vdVr8Bwye3YcN7Wa3EuXJeqC5pOKo+N5+kQ2p+3he7X3PlgVS35RDM/Q/tVYWwxWvin0k6OPjpPxuP7QQ3Hc5s3hhf/ll+Pfo+qRNqSxZ9mQZG9rdRM6v78cvaeEvdD9y/rZZKp9zIgRI7BC3z574Qtf+AIuvvjiHn9vamrCZz7zGfzoRz/q9bzFixejvr4e27dvx3vf+168973vxXe/+929zbYxxhhjjDHGGGOM2QfsrQzzbnSa9J+bZVnJcsosy05A8Dv79V7m4YCycOFCPPzww3hMl4MI1dXVuOaaa3DLLbdgyxbdL8sYY4wxxhhjjDHGHAzs7cqynwB4J4AxAP4RwD/s6YQsy2oB/Cf96YacpPuFnTt3oqVLJ3fkkUfi5ptv7jXd3/3d3+HTn/40AODYY4/FD7okcmVlZfjwhz+Mz372s3tcMVZTU4MjjzwSjz/+OObMmRMi1q8HvvMdAEDHHXdE5/BnNV3cO5fCj0gcb07NX0RnSLqpvD31Bz4QR150UTG4aVi83fWPvx/CjY01xbCo9DDnDW8IB6rFuPfeENbtqHlJOK9TV30HSzRFOlFdP6sY1qXvrLTi5dv7YstmXs6tMpOKRT8JByyFBIDrry8Gd9CfdyCfMpXS8nJrXXrNhcLrpLWeONNakF0yYwCokuXHc46jZeWoyr08b0Gt0pJSl29zupS6Q8ufi0uVN3zMYVXQsDRDZQPcjFXCwc/KclxVac+ljs7SVgCYODGEnz2ga3QD2sx4iJkxTeQvXGDaMFZSW6NKrb5wcpRsw+YgV1GlOjfXSy+9IIprPjWE66ZPRy4kw5zKkmQAu6jQW+nvrYjh8bld9AtTeexTSddJJ4UwayJ0oErpcU0s4Vu0KI689dZicKVIkZ6nMBuztsr1eVbSOZbF6ZV/93dx5OteF8I8z8lAVUd9qKVlUhTHVZ9yQeAmo+MqP7Y2H06bktjx9VNNUPPIMkCd3ss2kryJB7jnnsu/gWrVOTN8g9SAn+pfA4FqzsfSPldS9x3lFb1G6VTPMkzNPhcdTdkAxH6Ay+qBB6J04yvD2+iOylgiyHWqKnAe1hvnhvfIKtW58UUGQIa5a9qs6Hg5qUrfvLB/1+QumpIBpmTH2vfY1oGvoU1k4sTQDsZr+Wihl4K26VL11/oALEumOtT3MG5aqoDmdyNu4/rOVOrUpvdmRo4M0kvtQ9wk+b1F43ScwmbKGM/nOhYxWo5chxqnfaU/cGHq9emBZswNDa+6Ol5Pw++s2v751WXVqngM624W8vpkzKBhrz6WFQqF/8my7H4AJwL4SJZlwwH8U6FQeKW39FmWvQnAlwAchc5VZXcUCoXf7U0e9pa9lWECwDve8Q585jOfwdPsO5FDoVDoaxaNMcYYY4wxxhhzsJFl9iwbouytDBMALgXwIjrlmH8LYFOWZXdS/FuzLLsly7JNAG5B8JTfBODdA3D/Aefd7343WlpacP7555eUvry8HH/7t3+Lz3/+88l0L7/8MtasWYOpU6cm0xljjDHGGGOMMcaYA8NefwItFApPZFn2RgA3otPovwrAmehcOQbEasGs6/9PAHhzoVBIrKU/cFx77bV9PueKK67A//2//xcvq5ywi+3bt+PP//zPceGFF2K0brtnjDHGGGOMMcYYYw4KBmS9YKFQeLDLtP8vAFwJoDkn6UYAXwfw1UKhMKiMVdizDAB+97tYPVpRUYG/+qu/wl//9V9Hfz/zzDNRKBTQ0dGBiy66CB//+Md7XLuweTM67r8fQOyLApS+9E8V7ePJzKiSDCuaVKR/5ZXFYMeVfxFF8c7h6sHAcXneTgBwwhf/uBiu2LwhjvzlL/NP5O2p2UtBt7dmLb+YPY0/NYjqx8/M9+tqnxn8N7R4BoKaFbSHhX5M/T6Zv915ZxTF9lfcWXR7CLHhimGTATVyyNnrfJd4KlWkDE/YB4G3vgaiRjPnwguL4bFj471AUn456tGVR8qyiT1xNPvsC6J1X1e9KxwsX14Mzp17WpSOPTbU9oOvr/4b7NvBcZp/Lp9XROCe8uYYPjw/bl+iq9AjC56U6ZEa1nHhkUGGdJPoEr/9bRzH5aUeMOxJ8v/Ze/fwvqoC63+dNE3TNE3TkLZpWkpIL5RSSoECBQsWBK1YGUAYcAYEHRz1HcfLqDOjP+dVZ3RGR1EUHH29gQMqKAozoqIwgsBAkQIFy70toTda6I1S2jSkOb8/knzP2is5u99c2jTp+jxPn+6Tvc8+++zbOTnZa+2zF9LfdLSh2JNF9oyv4q3g6edqtddEYXFtQyuNk1lf+1oYedZZWZj9GRcsCNOxB4l4DeGtb8VBT4cnKAC0fve7QRRZBnXx/uTeuo3C1ZKOXcRkFkT529+eHVxySRjJkw55p2HYsDAdDXQdJjEfH+7zPEdqF2fUzibmWcZx7GHz8sthOp7r1DeSHxvq+Th5YeZxVTKRJkKdaHmgq+ljXiXEJqqYZ5me1xvZTexFQ65dQjMGewjpZTlLnesYjStrJRdUmotaliwJ05GnakWHz28n06ZlPpL6isZ9hMMVavxEBXu2KXxHmFGts+beifmH9hYdlkysG3B3LdazTPPjd6ETTgh9CxsX9MJsl81QgfikwKh/Vo7R19L7wmTs93ZfJI7nGLVi27qVPT3Dxoh50zLc7XQY8juB2sLxcRdv46epoNyI+sLGxAaKzm/94VnGHU0nAf69hOKmSCVsOzIbl+yRCIR1mWd7HBs/xhzI9Ju4Nk3TnQC+DODLSZIcDuAYtBv/l6Jdpvl0mqbLI1kMCDuKcIy87rrruv355Zdfjssvv7xw/KEPfQgf+tCHCsdNMZdPY4wxxhhjjDHGDF7sWTZk2Setmqbp8wD27nZvjDHGGGOMMcYYY8wBhD+BHgBsB/BIR1gldrzatzqSR73+4OKLC8HJtHwef/ZnYTqSx+mmoLwSWOVeeTup67JpVhnOmxeWcg6tyutycdaa8PJhXa0X29Kd9zJWiSAteZ48N5PVlW17KUzXZY/oXsBljkkhDzkkiJpMS6P5rJ0IqeCDU08NI488Mgvr0msuCy3JL2PZmaJbYcfWree0TUz9ohKF/ia2nbmuiq+cli05L6N+oHnweapk4PvR83isxGSY3H10dT7XZWyX8v2Jtm/QDbSS+eb0ROpbW5BJpZfcHCbjOlFpAA/fWN/aSaOoQjUWhx+ehd/0piBqCslz55EkswUh3C30ocvF2iQNXMvzIo81lWFyZ3rmmTDOMkyAnoG6vJ0fWWIUEEgvWfjUIOnmULj29NPDSJJetsycE0Rxs9XHJDs0QUyYGz6Ths+uyq6dr2wL0MctD0sdhptyFEZAOFfxPK5zHQ8pLRMr+lQWVbJ2dfcF0bpSbWoxqCYopt1iojrzItE8uMJeFCtfqrwZXHlSyaUzszlyyuRQtrhtWybf7KIAZb0ivWutlmTTWJYpUtdpb81kmCp/5CLXsJxygzzoggdfDfqK9sGYZUGxsI2DOmrE8o/JMPkRyF1S07HVcZcux3UXeydmtMDFjiF9P+RxSRPJ5MmhVJT7ncowX6drr1mT+Uc0N2uZWigu9OiI3TYPN54jVd3Ij1UdJ1NK6enQJH1369YszL93qBcGH2t9cyH3xYsw569SdYbbUzranGnVFBX85hEk1de8zrhilb7GHGj0x26YxhhjjDHGGGOMMcYMCbyyzBhjjDHGGGOMMaan2LNsyNKnVk2SRDdv7A1pmqZT+yGfQUszMpmOyjBZVRFbBqgrwIOGZQniyScH6TaOyJZKs9oRCJeHq7ySd7ti+ZfOE7yauIuikTMVXQjLYapod0bdjqGOJaa6Nr3LljXdX7uC11urhkDlTr2B5Quy9L3trrsKYb037gt8Z3pXlbz+XHapCipd16mzNoC3WlI9H5dZNYLchjGNI5Vj8tzjkIfKfHbvzk0akLfjlly6S//M2XARAFC2g1qA7qVc+jFfT7tgrPq5umI7yrJUQKuYm1uXuPeH7KQ3qBq3pplGs+ywlrutrlBz5pmFcF1dVRCnfYbhLpi3QxMQKqCnTw/l4pXTsuMyrdTHHisEG2iXRVUb8FkylQayahVfVDz3XBbmG9COxpUQq5CDlB30DNG24fbYJnHVFObpYbykq6Xdp4NdSwFg4cJCkFS77eWi/lkfmwQiW701a4ciOBue62K7JeoUz9Iw7f55z3edg1m5pXH8LqHynYb52ftJSUyaxH1eXzRYO8dxOuHzcWw3TKU3vxyxpBoIK1bvkxprZ2tmDVCB7UGyQFkleZSWZpKpLmo7fv+hxu+JEJJ37GxtDd9U+blUV5fF1c2clZtO30Vn9GIzQJ3v9R22N7D0UhV2rL5TYhJljuO2YWUfENaJdrnKedk4qeqy33IO+q5YrHyTrT2AoH9ur8yelStEasntq108SbLK5OE6XCr59dezYy1u7F2L4frWeZCHfZf3p1rKVOcYTsw3EJNox7TqMSuU3hKrID7mcujDIFKxnP2kSWFcZzMO1A7txvSVvn4CbQCQ9iB9QuG047gn5xtjjDHGGGOMMcYYs8/oj/WCyd6TBHR+HOvpecYYY4wxxhhjjDHG7FP69LEsTdOiNghIkmQk2jeTWgTg7wBMBvAvaZp+pi/XN8YYY4wxxhhjjBkQ7Fk2ZNkvrZqm6S4AzwB4JkmSawH8CsCnkySpSNP0E/ujDAcylQA6HSzUt4pdHSrYF0UovfLK8Afvf38WJrODnTNDv6jHyFdA/ULYV0DH/7hxWThmacUWYHfeGca96/LLswPxTwhcg8hTo/KBB8JMxIMtgP0CYn4nbGahnkr94VnG+2SLn1DML6eFwuxuUCHpAh8B3RKaGydmYsU+ZerXwqYya9bkX1vzz/FIKJE6mEJt39oQOqXELB8YtuWL2c1o3JRq8n1RU5Pl1HmpDia/M99zTf26uAp0fPFY4XKNCndED8ZezDJu+fIwju97lljk7Eu0HK0zs9F8HHmPAQhNQ/TmFi8uBFetzbx6tJn4NO0vxVoNsd+MThV8XK8NfNhh2bWPProQZp9FAGCXNXWU4dvREcrddQ77OuqNcSWwj6MBANxN4Wcljp2fGiSOW5vtbWar2c3FF2dh8Sxb35o5nOkcEPhHHU2TWMSQZ8uOsiBK82RKmjNHvIaG7MmhYyhm78ldi5/7QL53acwfSsu7eXMWVk839kubOHFGITz5zBlBupIdWSu2VYaehjx+2XNK/TD50TlS5pFd5B/12mthHD/2Zkwrzi/q8bXhc46nFfXErKA3gYpm8tGUiXYCT37kdQgAp1x4YX5hNmzLwmQstV2S1dx6a3agDUwT6IIF5wRRXBQuonqKPfRQFl65Mow7ZzF6jNo+FWvJFSP2usmvNfoc4qlbLSX5HYH7kvazp57KwjqGuC7fc3l+GZn/vjscJw0NcwrhORHfs2crw/efDfSaxOVQ3znuMvqoz7MSjHmK6aOYvV01juuVr6X2koG/qr7PNlGh9QL8MhEzmeUb0heN2C9S/QEPAPZVA8LJMFYOKvMM8V1saMieS3m/avz618UU1JgDj6JWhvUnaZpuB/DnAHYB+LskSU7d32UwxhhjjDHGGGOMMaY7BmS9YJqmLyZJchvaP5q9H8C9A1EOY4wxxhhjjDHGmF5jGeaQZCBb9YmO/0/Z1xdacPLx+/oSfaKk+VV0LmCVFfih9PLcc/Mzoe3pAeCRpzPJxbRp2bLpDWuRi+6GHFPY5W2xvFby56XXuuz+wecyKcJJUv5Aj8GTj2bCS5lVGsCF0XXxfMxLjfUG+gNeMy/l4CpXJQwPzjLec/moo8KEJ5yQhadPD+P4ejGNGi8dV/0C62QmTgzjdDl6Xv68Pb2Wg9o3phSNwefp6naW3igtdZkUoaxOpkPuF5EysnxHb43TFispVfkFd3nt4lzF2nVj0qp9ia7cDyQjM6vDSO53wiPLs2X9LOV58cUwHbe3Sm24e+r8lhen7RTIZurkAiS95HEyPtDXIdCkvBTGBMu7tfuzFKqFpJ1lLIkCAp3PpnvDvz3pM+VghOtc5WUsRtK64uNAdPL2t4cJWa4v8pRmGpfaP4O+xs85nWSok1dWhjLM6LxCnbeyMnsn0Pf52PzJ/Z9llwDwyitZOCZlZrS8hxyShXWMsuyT59mSiExM4yrKuw/vbM4XVsSeQ1p+looWiz42a0DyyrUyyfMEyg2nWjyuPG4MIH5DnCfdXBe7B75RfRDR3FQzf34QdcIJmQy5ZEUmgq6Rxm4+Onsf5Ned3sJTMwCMHdv3PKeUkkxPyj9iRDYu9RnI1goxhR3PDzpG+RVKVXQqVywGHWvFvp/EXiO5X+t98nn6bsJpuauqZJUfq7F5RPPnrsv5d/muwQXRSYz7vMbleWpoISON31KZ9f8ybZz+YMKELMyaeSCsaL63mCeFNA6XubQ0nFtjzwNjBgMHwifQXkzzPeO+r8/b15foE5ee/chAF8EYY4wxxhhjjDHGYAA8y4jOPz+9Fk1ljDHGGGOMMcYYY8x+YkBWliVJ8mcA3gogBfD4QJTBGGOMMcYYY4wxptckiT3Lhih9atUkSaYUmxTtlkwzAJwPgPZZxw19KcNQoGJkORoP7TDnYHMDAPjAB7Kw7nNM6HbOS+/OwmrzlYfqymMeBuxTwBZXMS8C9Rr63//Nwq+8Ei5yfPMll+RfnOEL6o3y1uoxowg2e9L9rvuBNjJ6UeeQMjKf6OIRwkYU7O0kniCYOrX7dECuHwmAsBHZI+HII8N03MBqtsJxbGADhB1qBe0vrm1BxzPY+0fzQDXymFKZeb5Uz6sJ4qoqycNGvVu4vdUngtNGDMDY/iG2Pb1WHVcDe2qotwrHaf4cp9U6Zkx+WfYlW7eGx2z1MX9+2MtfH9VYCKuNxnMPZeGVK7Ow+tlwt9Z75ibVdxj2P9EyM2wN1NoazlMz2GsxYnw2/q67svDDD+cWRJyA0ELhwIlJOxPNfU1hjD3LAKymsL60jKfwQomrZOMjbusrrgjStc2eUwg/9FAQhd27s7CO0aBPcptGTELLxJOrsjIiEKD5s6o26011dfm+Z3pp9gJSbyQe2zxF6n3GfILYiynmVcXWmbt3h/c8YkTmPPeaDCJ+hPC1o20RQS09ed6aMA5F0cVfcib5FemLGFceT0aaCRvKcWUBYUPFzGmpD46fOzdMF/ErwmOPZeH77guiStjDj8+TOYyz7w+/TZ0iY/aqRcP3xh0XwAQaHBPmhnW8Y0f23NNm47HHTaP9k+2L1TJOj4tBX5c5jxn5VqLBqxyQ73eor5v8ahrrWjF7Pe4XOhdx/hrHY5v7QdW21WFCNkdV37+Y+S1fgBtRxtr21i5v+QVW0K8rs2fPCOJ0zu8V/CyLdSBuDL1nfphpHtRhZ85sDKI6syzWF8+YA42+fgJtQvvqsJ6SdPz/ewDX9rEMxhhjjDHGGGOMMcb0C/3hWZb04t8eAP8PwJ+ladqbj23GGGOMMcYYY4wxxvQ7SV++VSVJcjeKW1mWAtgBYCOARwD8V5qm6+OndLlWr76rJUmC9MG/7vF5+5P3fb0J/+/63wx0MYwxxhhjjDHGmH5j3oknYunSpcneUw5O5h13XLpUZOiDkWTUqIfTNJ030OU4kOiTDDNN04X9VA5jjDHGGGOMMcYYYwac/pBhGmOMMcYYY4wxxhgzJPDHMmOMMcYYY4wxxhhjOujrbpjGGGOMMcYYY4wxBx9JApT6s8pQxCvLjDHGGGOMMcYYY4zpoKhPoEmS/GAfliFN0/Sv9mH+xhhjjDHGGGOMMcYURbHrBS8HkO7DcvhjmTHGGGOMMcYYY8wBSJIkJQA+DOB9ABoAvAzgpwD+b5qmrxWZx9kAPg3gGAC7AfwPgL9P0/T5btKOAfB5AOcDOATASgDXAPh2mqb78vsUgJ55liVFpEmLSKdp9vlNGmOMMcYYY4wxxvQrB5dn2dcAfAjALQCuBHBkx/GxSZKcmaZpW+zkJEnOB3AzgMcAfALAGAAfAfC/SZLMS9N0PaUtA3AHgGMBXA3gKQBvBfAfACYA+Gx/3lh3FNuqp+8lfjGAv0P7R7CVAH6B9grY1PGzQ9D+5fA8ANMAtKG9om/reZGNMcYYY4wxxhhjzP4gSZKjAPwtgF+kafoO+vnzAL4B4GIAP46cPxztH73WADg1TdMdHT//DYCH0f7x66/plCsAnADgQ2maXt3xs+8mSfJzAJ9KkuTaNE1f6Kfb65aiDP7TNP1D3j8As9H+oawZwHvTNJ2epuk/pGn64zRNf5em6W87wv+QpukMtEsud3ecc1RHHsYYY4wxxhhjjDHmwOOdaF8IdZX8/LsAdgK4ZC/nvxFAPYDvdX4oA4A0TZcBuBvARR0f1Dr5i458vyv5XAVgOICLelL43tCn3TCTJDkawFc7Dv88TdPv7+2cNE2vBfDnaK/oryVJckxfymCMMcYYY4wxxhhj9hknoF0h+Ef+YZqmzQCWdcTv7XwAeKCbuCUAqgDMAAreaMcBeLQjf+aPHeXY2/X6TJ8+lgH4P2j/qndPmqa/KvakjrR3o10G+oE+lsEYY4wxxhhjjDFmv9OGkkH/D0BtkiRL6d9fy23WA9iUpunubqpgXcf5ZZFqqqe03Z0PAJM6/h8LYGR3aTuuv5nS7jP66kR3BtoN+u/txbn3AVjYkYcxxhhjjDHGGGOM2f9sStN0XiS+Au12Wt3RTGlaIucjJ49mSRNL25m+Iieu3+jryrLOr3l5FRKj85z6aCpjjDHGGGOMMcYYM1DsBDAiJ66c0sTOR04een4sbWf62LX6hb5+LOv80tcb37E5kocxxhhjjDHGGGOMObBYj3apZXcfsCahfWVabBHVekrb3flAJrvcCmBXd2k7rn8Iupdz9it9lWE+A2A+gMVJksxI0/TZYk5KkmQGgLejXcJZ1DnGGGOMMcYYY4wxBwppCrS2DnQp9gsPAXgzgBNBNlxJkpQDmAvgniLOB4CTAdwpcfMBbEfHt6E0TduSJHkEwLFJkowQn7QT0b7oa2nvbqN4+rqy7Gcd/5cB+E2SJLP2dkKSJDMB/ArZkrqf9rEMxhhjjDHGGGOMMWbfcBPaFzt9RH7+XrT7h/2o8wdJkkxMkmRmkiTsK/YHAC8CuCJJkkpKewzavex/lqbp65T+Jx356kYDHwHQiv3wHamvK8v+A+27WU4FcDiAR5Mk+TGAW9G+fejmjnSHoF2qeR6Ad6J9B00AWAHgm30sgzHGGGOMMcYYY4zZB6Rp+qckSb4J4INJkvwCwK8BHAngQ2j/EPZjSv5vAC4DcDqAuzvOfz1Jkg+j/aPbvUmSfBdAFYCPAngZwGfkkt8F8G4AX02SpAHAUwDORvs3pc+nafr8PrjNgD59LEvTdHeSJG8DcBfajfqHA3hXx788ko7/XwSweC+6VmOMMcYYY4wxxhgzsHwEQBPaV3u9DcAmAFcD+L9pmrbt7eQ0TX+WJMkuAJ8G8BW0+9f/D4B/SNN0naRtSZLkTACfR/uCq0MArATwt9hPC676urIMaZo+lyTJ8Wgv8PnIPobFuAXA36RpuqGv1zfGGGOMMcYYY4zZ3xxEnmVI03QPgCs7/sXSXQ7g8py42wDcVuT1tgH4YMe//U6fP5YBQJqmGwFckCTJkQAuAfAGADMAjO1IshXtZm33A7g+TdOn+uO6xhhjjDHGGGOMMcb0J/3ysayTjo9g/19/5mmMMcYYY4wxxhhjzP6ir7thGmOMMcYYY4wxxhgzZOjXlWXGGGOMMcYYY4wxBwMHk2fZwYZXlhljjDHGGGOMMcYY00FRK8uSJDmNj9M0vae7n/eWzvyMMcYYY4wxxhhjjBlIipVh3g0g7QindB7/vLdwfsYYY4wxxhhjjDHGDBg9+UiV9PDnxhhjjDHGGGOMMUMSe5YNXYr9WPbDHv7cGGOMMcYYY4wxxphBR1Efy9I0fXdPfm6MMcYYY4wxxhhjzGDEu2EaY4wxxhhjjDHGGNOBjfWNMcYYY4wxxhhjeoE9y4YmXllmjDHGGGOMMcYYY0wH+2VlWZIkRwK4AsBMALsA/AHA99M03bk/rl8MGzbvxEe+ej8eeupljBg+DA0TR+OqvzsZx1zyc8w8rBrNLXswumI4/uaCo3DZ22YAAK677Rl84uoHMWncKDS3tOJ95x2Jj75zDgDg2794Et+8+QkMKylB5chSfOeTp2FW49iBvEVjjDHGGGOMMcYYsxf69LEsSZIpAG7uOPx2mqY/6CbNuQBuBDCcfnwegA8mSfKmNE3X9qUM/UGapjjv73+Hy942Azd+4UwAwLJnN2Hj5l2YOqkKj17/DgDAqnXbcf4/3IG2thTvfvsRAICLzmzENZ9YgM2vNOOIC2/CBWc04tAJlfiLN0/D+8+fBQD473ua8HdffwC3f/3sgblBY4wxxhhjjDHGGFMUfV1Z9mYA8wCkAH6vkUmS1AL4IYCybs6dDuBnAE7uYxn6zF0Pr8fw0pLCxy0AmDujFk3rXw3SNU6qwlc/Mh8f+/qSwseyTg4ZU45pk8fgxU07ceiESlRVZrf82q5WJEmyb2/CGGOMMcYYY4wx+400tWfZUKWvH8vO6vj/qTRNm7qJ/xsAo9H+Me2PAL7W8fNPA5gN4MQkSd6epukv+1iOPrF85VYcP7O2qLTHHVGLp1/Y1uXnqzfsQHPLHsyZVlP42Td/9gS++pPH0fJ6G37/zcX9VVxjjDHGGGOMMcYYs4/oq8H/NLR/CFuaE39Rx/8vA3hTmqY/TdP0pwDeCuD1jrgL+1iG/Uqahsc33bkKR138MzSe/xN8+KLZKB+RfX/8mwuPwspfvBNf+uBJ+Py1j+znkhpjjDHGGGOMMcaYntLXj2XjO/5v0ogkSSai3dA/BfBjNvNP03QdgNsBJACO72MZ+sxRjWPx8NObikr76LObcGRDdeH4ojMb8cSNF+Le/3cOPvaNJdiwueueBRefNRW3/qGpn0prjDHGGGOMMcYYY/YVff1Y1qldfK2buPkUvr2b+Kc7/p/cxzL0mTPm1WP363vw3VufKvzsoSdfwgsbQs+ypvWv4uPfWIK/vXB2lzxOPnoCLl00HV+/cTkA4LnVrxTifvW/qzH90DH7qPTGGGOMMcYYY4zZ33R6lg32f6YrffUs29Px/6hu4k6hNPd3E7+l4/+KPpahzyRJglu+9GZ85GsP4Iv/uQzlZaVomFiJqz56Clau245jL/05mlv2YHTFcPzthbO7mPt38g/vOgbHvesX+NTlc3HNz57AnQ+tw/DSEowdXYYffmbh/r0pY4wxxhhjjDHGGNNj+vqx7CUAh6Fdbql0mv8/nqbpjm7iR3f831W3OADUjxuFn/7rmV1+vuuev8o95/LFR+DyxdmHs/pxo7DhN5cCAL7+sVPyTjPGGGOMMcYYY4wxByh9/Vj2KIAGAIuSJKlO03QbACRJchyAOWj3K/tDzrmHd/y/sY9lMMYYY4wxxhhjjNmvdMowzdCjr55lv+j4fzSA3yZJcl6SJH8B4GZK89Occ09E+8e0Z/pYBmOMMcYYY4wxxhhj+oW+riz7CYCPAzgGwDyEH8lSAHemafqgnpQkySwAUzvSLOljGYwxxhhjjDHGGGOM6Rf6tLIsTdM2AG8D8DCARP4tA3BpzqnvpvD/9KUMxhhjjDHGGGOMMcb0F31dWYY0TdcnSXIigIUAjgUwDMBjAO5I0zSNXPeHAFrSNPXKMmOMMcYYY4wxxgwq7Fk2dOnzxzIA6PgodlfHv2LSf7Q/rmuMMcYYY4wxxhhjTH/SV4N/Y4wxxhhjjDHGGGOGDP5YZowxxhhjjDHGGGNMB/0iw+wkSZI3ADgH7TtjjgMwCsC/pmn6fUl3LNo3Adiapunz/VkGY4wxxhhjjDHGmP2BPcuGJv3ysSxJkikArgewgH8MIAUwpptTrgTwRgBrARzWH2UwxhhjjDHGGGOMMaav9FmGmSTJEQAeRvuHsoT+xfhGR5rJSZK8sa9lMMYYY4wxxhhjjDGmP+jTx7IkSYYBuBXAIWj/+PULAG8AULmXU38DYEdH+C19KYMxxhhjjDHGGGOMMf1FX2WY7wJwBNrlllemafr3nRFJkr+4LE3T3UmSPAjgTQBO7GMZjDHGGGOMMcYYY/YraWrPsqFKX2WY53X8vwbAJ3t47vKO/2f0sQzGGGOMMcYYY4wxxvQLff1YdhzaV5X9Kk3TPT08d3PH/zV9LIMxxhhjjDHGGGOMMf1CXz+W1Xb8v7oX57Z1/N8vO3IaY4wxxhhjjDHGGNNX+vqhaieAMQDKe3HuxI7/t/SxDMYYY4wxxhhjjDH7FXuWDV36urLsxY7/Z/Xi3NPQLuF8vo9lMMYYY4wxxhhjjDGmX+jrx7J7ACQAFiVJMrrYk5IkeROAozsO/9DHMhhjjDHGGGOMMcYY0y/09WPZTR3/VwL4ejEnJEnSAODajsMUwPV9LIMxxhhjjDHGGGOMMf1CnzzL0jS9O0mSOwGcCeCyJEkqAfxjmqarNG2SJGMAvAvA/wVwCNo/lN2UpulTfSmDMcYYY4wxxhhjzP7GnmVDl76uLAOAvwTwAtrlmO8A8FySJCso/ookSZYBeBnAVWj/UAYAzwF4fz9c3xhjjDHGGGOMMcaYfqGvu2EiTdOXkyR5A4AbASzo+PHhaF85BgBHdPyf0Gn3Azg/TdNX+3r9IcHLLwO33dYenjw5iGqbe1wh/PTT4WmzZrYVwvfcF3733LYtCzc0ZOGZM8M8ynZkm5G2VdcEcSXNO7OD0rCrbG8uK4R37cp+vnJlmP+mTVm4qSmM4y/wr78exnGZd+/OwvPnh+m4uio2yILGp2jR4tFHB1EtdVMKYa7XOZWSBxekt9x8cxbmhgHCBtEGHjUqC48cmYWrq8N0lZVZuLY2vxyxuA0bsrD+aYTzjyF9hPNpm5zVdwnagmTPrsj6LhdDL33c3PA85pFlxeWhVVBXl4X1PK5mPm/HjjBdOe0FvHZtGMd5atMzPE40fz5P8+cy3n13GDd7dhb+wffy666/efOicC7i7qTjlxkzJjx+5ZXu89Duz22jw5WPNf8JY1uyA67YctncmS+gDZDXqNygmk4b+L77srBMki133ZWF6edlCFlC4d9L3Gf37Om+jAcRS4cNK4QbJK721FOzg4ULw0jubEcckYWPPTZMxx1UJ5lY36K+0DYz2yepZMf2INl2VBXCOs3+6U9ZePPmMI6fj9y1VqwI03H3fPnlMI6fv83NYRzfNs+zI0aE6fjxpY+TCy7oPj8AOG5m9g6yvbWiEK6qDOez7TuyOUfzL9mwPjvQG2eo3bgtlJJNL4U/4PadOzc/f+YnPwmPn3kmC+uLEj9E+IHF/REApk/vPh2ALbNPK4S1/wR1yR3hmmvChByn9fjQQ1lY3rXwKr3mr1uXhXWy5rGnHeiTn0SPWbQoPOaxfOONPc8PAGgewYUXhnFvfGP31wKw/e1/WQg/JVoabvozz8zC2o+rVjySHcjvCQGx9zxGn118Qe0kRFtkjQWPte2V9UFcVXn2BPvBDeETjOccfu7r45bnH62f2HtA3jzF9Q0AU2rpdx7t47EJNO8FZdKkMN3w4VlYfhl7ZFP2jizDF/V1/fD+xu8dOsfw7x784qgFoQbYOCxs340bszC/0gBZ9bwkU6cxg4X+WFmGNE3XA3gjgIsA3A3gdbR/HON/ewA8COASAKemaephY4wxxhhjjDHGGGMOKPq8sqyTNE1TAD8D8LMkScoBzES75LIUwGYAz6Vp+oqelyTJlDRNV/dXOYwxxhhjjDHGGGP2NfYsG7r028cyJk3TZgDLYmmSJKkH8GkA7wFQHktrjDHGGGOMMcYYY8z+YJ98LIuRJMkEAJ8E8NcARuwl+cFBTU3Br6GtsiqIYluBiI1AFwsDlpqzlp89ygAE3jolakiix0QVZVo1OivYyNkVQTqWyauPgFr3MPx1nsN6DhexQvX1ZE6ws3J8ENVElgOc5/aGxiBdFfrBK4BNWeQGuL1LtILU36YT7QhcCbFOkpcfEPclYy+X0tBrIubDxZdrpnTNzaH6m4uvViWx22HY805vk/PQv/rwtTVObac6YdsSzT9md6XdM+9asT6uXYTrS728BuovXGr7xHWi9cN1Emu32M+5jidMCOPGjs3CZc2hDxQ2bMvCscmIG0fnRB43HI6ZpigRn6OyG27IwtdeWwj/pww8dlo8I/9KBy3zPve57EAnrSuuyMLaTtzZuKNpZ+U8NX/uW5HBHUzj5eF7wK6tWZg9xIDQDyzyCAy6pE73fNvaxdmTVO3v+DyeizRd8CzIf63o4l26flv2PsFV11obPkP4PJ0fKnhi5EqIjOWS1hbkEpvki+XII8NjbkSdO/IMaKdNC9Nx4+vDgOpO/d4C+DweF0DYAM89F8addFIWPvTQMG7Nmiz8wgtZWOuNvZKKffDHUEOq3rST8s53ZuE3vCGMY682GWDcZfiZBOTb4vK4A4Cq2ADuBS2VoUcxD4dYH1FPQ7bhqq7LfKy2id9Ya2X27qj3zF2XLe60izM6DGPetHmPX+1mO5HNNxXcH4HwlywtWN77g7YTX1DGaAMljb2q9xq+tj4o+IJ0n23l4e9zzG5pX75V9cbuvHRFfnbGHND0+omUJMkwAFMB1AB4DcAzaZrmvmEkSXIIgH8E8AEAI5EZ/qd55xhjjDHGGGOMMcYYsz/p8ceyDvnkvwB4B4DRFNWcJMmNAP4xTdOXKX0pgL9D+2qyKoS7Yi4BQH/yNcYYY4wxxhhjjBkc2LNsaNKjj2VJkswCcCeACQg/egHtq8UuB3BSkiSnp2n6cpIkDQB+CuD4ziw6/r8fwOfSNL2jl+UeWpSUFJbBlojs7/XX87dEZ2ISrwrQdsibInIjXbrPy3ZlvfKWbSSDoMlBpWtc5pjSSRUReeoXXb4dLBfXe6PtkSu2LQuiZvE64Toq5O13hnmwhLK3kJRKG7Fk3rz88/KkCFpZMS0kX4+3oNf8eYbXNeAcJzLMmLyG4yrKqZ2kHPWTs4RbEEoDioWVH3qb2q0ZLqNWd7FSYJYcaf/nponVD8dpc3I6lanyeFB5h6oI9heLFoXHfD+6PJ93LNf62UrSM65jnQdjkgWWrNXWhtK2ismUUUz2U6yOlzuG6kAic2nAiy+Gx3fdVQg+TRW5KkwFFo/Pz8/94GXBgiy8VvQjLK/RwZc3MLUNue1j7RubjHIuC4T9PyZj1EuPGtV9XExtqvIvRiWgebcdk5Jr+ekxHa260aPz41jF2DWPnLGnCWMVxMQaoFh0EuMXOPXU4LLQpB6z7CiPtG+Xewue7xGpFqP9mBtHX9K4vpYvz8+f7q1FZMhlvbHDuPji8LjIsReF3we1/BGZZEzJz9XPY0HHUF1d9m6kY5Srf9bM4upK31V6K/3jfLj8+h7G+esUnDfuef4CQsmnDqExY7IwzwdAWF+ch1pqcFtsfDmUeo8dm9V/2TS5OA8+bjit1IjvR7HTT29pKc00kGWR3yVZeqm/j7a0lmjyAnyr2m6d76b9oa42ZiDI7/lCh+zyxwAiT1AkAI4E8PWOFWh/QPuHsqTj330AzkrTdIE/lBljjDHGGGOMMcaYA42efOddDGAO2j3G9gD4OoBbALyE9pVmFwD4INo/wF0AYByAzvUefwLwsTRNZdmOMcYYY4wxxhhjjDEHDj35WHY+hd+VpumNdLwCwP8mSfIIgB8CGIb2TblSANeg/UOZlbzGGGOMMcYYY4wZEqSpPcuGKj35WHZsx/+PyYeyAmmaXp8kyceQrUD7dZqmH+5jGYc+q1cD11zTHhZR94TFiwvhtoZG5KEeACtWZOHJkzMNem3tlCDdMNL5r3s6iIpq6NmPgOP4ukAo31c7GLaQUJuOhQuzcGMD6eZvvhm56J7Wv/pVFn7qqTCOTa7ISGnHd78bJKtks5hesuyyywphtYWYyWYTRx0VRp58chZmfwz1BGGDADV2YY+EmGcHG09E/HhKxEijgo4r1EjjmWe6z/O++8J01Pg1ul09G1e99a1dy91BfdP9hXDl7FOCuKpS8uxTDwkyzarRTsjQfW4cUx9EcRfRPs7HbNcC5D9UtYhcLPUsmz49C7NfCADUP/377KBuYfcX2weolQvXQf3y3wVxw455cyH82mvhebffnoV5XlEvF64v7eI8VNRHo6EhcyE48siwTRkeGo0z5QJsusY3qvMNNw6PCwD42c8KweViaLOMwjy1ihsPZtKN75BOGLoMHpw0v+lNhbB6T5QdfXR2MHduGMkdiMPsgQYEnX5n5fggivunPqLYZ7A14lsYe44GXlUyd0ybloVj8xSfp15DjPoc8fTMXkD6PsLl1zy4jPro4Tge2+r7xHE6znfvLqN02TjfJX5Fe3g+3hbGhbZeFUFcOfn/1BTprbVxzIzgeAL1H/UiK9m2pRDe0prFVUuegUco+9QC2Mll1gk0z2zu7rvDdNz/Ywaf4te48dXs2hPmZ5W1szqcc+8k3Yn2wb+W14JieGRT+K5bui0Lz5ndCw80IDTdlMHG96N9nJ/9T8t7Nt8rV6uOIe7jr78exo0bl4X/+bMoittuC4+52c4/N/+8hx8Oj7mceWEg9BjTdyG+N65W9SXjdPqsnzo1C/NcBIR1zN140qT8Msa8G7fsCJ+qNVzo2NeSiMlvVfVO5NNLQzmirHl7dqBzAJW5pLUlN10ZlV/nQa67V14Js+9sj7ZeDjtjBpqiPcsATEL7B7C795KOfkPDV3taIGOMMcYYY4wxxhhjBoqefCzr/JNW5O+OAICNFF6em8oYY4wxxhhjjDHGmAOMnsgwh6F9ZdneFLmF+DRNX44lNB2sXw9cf317WLVItFS3RGV6JEtTBRnLlng5sS4B51W2KuNidEkyL7PlVce69JqR1fk44ogsfMIJYVxjEy1Q3EBLkJcsCRPysnjVluRpRIBQD0MSiBb0Py9RWBY/Y9OrrxbC1XJvjXRcwfd51llhJqxVUXlQTKPWnKP7efHFMB3HvfBCfpx2rmXLur1225o1QbKSU0/NDrjNAGD3bhQFrbOvmrkljFtO5VL5CEtCuR6BrvuKdzDy1FA+wlWg8qC8dEAo1eCxoTJGblJtwpq1jxfCG8rnhJExWek+RLtBID07vDqIm/DKs9mBaG8WLTqtEOZmUhXvc89l4dgwV448MgvzfMZb0APARvrzT2trKL+YwQ3Ck+7//E+YyW9+Uwi+JPe5jMKrpIycknvnTJULnn56IVj2ta/BhNxPYZWlVv3pT4XwNAoDQAXrnLnOJ0wIMyHJvD5HedzL1BfIMOfNy8KxeUTpjUeKnsPX02tzWo3j15U8NR8Q1oHG0SMQI0eGcZyWH2U6l8YkQDzP8qNNX7W4/Cr/itUPc8bC/DhGpWyTJ1d1nxBAbW1NIcxtUVMZvq1UlNMNNIVzTDlbeLTKMzCv4fRdi+ctfUjRPLgToTwrGA8N2bNz5bIwC1aur1uHPqPPIe4/c2b3MlN9RyA2UfWoDDP2jsDHLK/UPs7p+sMXSeepYvNUiSx3GX7exsofUwKHkucwHc8VOkZZZq7vAZpPHiUkox4+PH8tibbhzups/JbWZmGtUz6uKm/Jj9TK0/HWG2IdKK+C9EZV509wlpp9Z79O072UcZBjz7KhS09WlhljjDHGGGOMMcYYM6TxxzJjjDHGGGOMMcYYYzroiQyzk6lJkpwWi+8MJElyKoBkbxmmaXpPL8pRNMe/5+f7Mvs+M2LLq9j+/DIAwHaJm/ytb2UHqlUkGWbF048EUXV1xxXCvHJWl17zxmy6k2VsN8y8ZeW6/JxVSrqCndV39Wv/GEZedVUW5vXWqsFijZouJY7pJVau7LaQ+2LnON4ARr9Or6aw7oXDZaknTUFlbFdLlWdx48fqh/Wzql/gOJEpBdswsR4OQDOtmefF2yWRpdxddDh6nAcvU9f6iW2vxHXCa/x7AFdjLAuVMud1T62exsm0XF8HGEldZy2Qe1vRlIUj8pH+RpXAZSxuvkbGL09IUiGNH6ymTDOJKat7gVCpy5JJIJR7aPfnrsVdJrIZbBf5CEBl5nt59NEg1XrSrsjoCqSXagjK4ou5HPH5z4cJJ04sBMu0gkww774kcVzn2rwzaE6rZY3RbNFxkVyztbUmiOJuoVMr97s3L8zGSWlp/pNI54fY9FbRnEnSy+uycuk0wnOTqs9jO1lyXOyxxGgZWYqqEmhWknP+qkri49g8y3Gx14PYo7LrHNBzVGXF14vNP9zWtbVhH+HdVKukMbjrThhb5M56Oo/wNoLa2DQe9DQ+3rw5C2tf4rjYjqzFEpsGY7s9xrh/Ke+sGsbFdoLk45hMO7br7SGHZGHd9FyPi0HHoR7noXYqefJo3Ug+JkXl9o7t+sn1E3Po0F3DVZrdib4WjR6dPSn02vw7UGwO4PkzJiuvrAzHbwl3Eq2g/pBh8oDTxs7bzTOiGa6uDuXWMTr7wlCXYZqhS28+lr2/41+MziFxdxH5pb0sR9HM+7d37Mvs+8zKS78z0EUwxhhjjDHGGGNMD7Bn2dClNx+p9rpSDNnHsmLSGmOMMcYYY4wxxhhzQNCTj2WrkX0EM8YYY4wxxhhjjDFmyFH0x7I0TRv2YTkOalJkvlbbJG48GRyUitlByY03Zge/+U0Qd9ylZCxAZgHlJ8wJ0vH26eqzwBL32FbwjPqpsH/RokVhXP1dP8oOHnssjPzlL7Pw29+ehdm4AQg9utRMgePUCIRvdt68QrDyzjvR35xBYfXLeSQSt43C3DQzZUv3evZfU8+ymBkTNyKb6dx8c266nWx+AqCCPMs0jlcjl3M5qL4BhB1j/vwwrtg1zTNnFoLbd4TOcFXcL9SDgfPnwQCEnZ7MbqpKQ3e51trMu4Gso7pkz/ZuQOjpMWFCFu5iT8HjXtuQTH121jUGUaWTs+OywDlv37J0aXjc0JB5c9SroRn3QTWZobHYuCBrt5NOOjFIxnUsQyPX7wcI/Yti3Yy7D9v2AABuvjsLX3ddIbhKvP14nK+XLLZQWJueW3Q234B2NKZLIQ0/GdQXlOddfSHiLvMS9dVZ114bJiSjmjnvfncQtWtqfSGsfkXBczWYm0I/G+6r+uzlPHR6a2jIfMo20ENE/aL4PPX34fx1nOTZ22g6jlMvoK1bs3DMryvmicZDQz3LOE+ec/VafByz9FFi3mfFwnnE/NK4DvS6wXmxCa1YQ7anngrTLVyYf3EqmPbPvD4Sq/9i/e9iaBv2dztpFev95MXpveWNL81v+PAs3Fu/MUb7tPp85RG7TyY2Byg8J8Tyj3VrjtN74XuN+Q+y56y+DrJHGs9Zmr96PuaVsUTfyThSfxmj99te8/zzWVhfRvmlkzuTdizqvJukiEzeHGCJohms7FOvMGOMMcYYY4wxxpihiD3Lhi66OZ8xxhhjjDHGGGOMMQctXlmWw/LbluOJ255AybASHHbiYTjxshOx6r5VePgnD2Pr2q047yvnYdz0cCnrjpd34Kd/81Mc/87jccx5x/Toep0LclUi0kThnRI3lw++8pUwkvfhpnXHjR/5SJBs7bQZhbCqoHiJsi5X5q2eedm0SshYFXjKNBEafvr7WXj58iBqBYWn3XsvcuGCqQyTJX0ax9fjdP2x/l8oIxnpZNGJNZF0Uf8gsY3CvEnzFklXSXlU9WRPeobXpq9ZE8bpHuAMrTmPSZgwaVIWPv74MCF1kvXbwu2o+a80UyrzpYQbX8/kRhtlefic2ZlUsYsWgPuFtj3XJYXbymXL7Ig0I29beC0KSyy6SH5UM5UTV9Eazh47UVUIl+3HmV5X7tfXtmQHj4ZS3WDSEelinublhAtCGSZL22L1T4pVAGG35jrXbsBxNa0yh1H5t1P5V4WpQNNll/FbQ+EZEjebDy68MAvrzTAqdTWYzQNMdIA8q+jzl0cezxxqiTDjppuyA5G4HH3JXxfCDz8c5s+yH54gqurCQVRamv1dU+eHmDSMpw5W9sSknCoxYjlSbCoqVoam88PIkVlY3x/4mNXFmq5sRzaqJowNLzBuXCZpZacAlVkxsTrWuN6sJOiJUjrvGaLPEy5HZcP4IK7pIT4K/0Y+YRzdUJ5eDQgtMGSS3Phq9kzUPqKy2Jwsgjrpjaxwb/nH+m6x8Huvwn1L0xUrP+WwvrJy/Wj/6Y3yXt0wYo8UZvbs8DivXmPzgfZdzqPY83oio86TsbP9BRCXisb6JMs+R4/OwjH5dvSFsD80wwrfOBdSiWiG12/I5o4XXwxP4/lUf4XonONbWmDMoMQry7phz+t78PBPHsafffnP8I5vvAPP3vUsdu/YjbGHjcVZnzwLE4/q3i/m/u/dj0OPO3Q/l9YYY4wxxhhjjDHG9BdeWdYNu7btQkV1BcpHl2PL6va/WJZVlGFEZb4DZtOSJlTVVaF0hKvUGGOMMcYYY4w5GLBn2dDEK8u6IW1LgQR49GeP4ucf+jkOO/EwJCVJbvrXm1/Hsp8vw/EXH5+bxhhjjDHGGGOMMcYc+HgZVIRjLzwWRy46EnddeRee+u1TOPItR3ab7uEfP4yj/+xoDB85vNv4vTG8ogI149s9nRqfey6Iq6bw+lgmKo5nffpdd2VhMfs47YorCuHWc+uDOLbXUo8Tjov5/QS+CLFP7rwtOYBpt96aHVx6aX4eZ56ZhdVUgE0YInvBbxyW3feEuftgSLzlLVlYzCXmXX11IRy6tgEs72efI/XV4bjTbrwxjGRTBjV5YBObpUsLwZfEL6GMwtqCFdQxynQ76qlTs/All2Ths84Kkm2vy5yaNqwIoor2LnnllSysHhqPL8/+JlBbG/qN1bO/0wq5OHdsMhcq2RG2QE11Vsjq6vDvD+xjot4ted4cYoeElktOyS1idUMWXh7a4QVD5exF3V9rX6BlLC3NetCst741jBw7NguLn19QQeSXo3MRdzudfzgL9k8Ewrlp8eIsXNUqrmLcob4djq/mb32rEL6ffv5smEMwRsWKBjwj6wbx43m+PuKILKzzYMywxQQ+ieOln/F0oX895FpeHUlXSn51jf/2b0FcBXmkXf7uvwnieAoOOra0YSv5D2r/5/lC4/iYx6V6KrF3GtudAsVb6ZB9JXbvDuN4CMU8v9SnieHz1J8xuCG5ALfVBJ4gaiPPesmjrbQsJ2HvVhLoXMTDV62MuH25HmOeZdoP2J+xiwUpZ0QnNksm5ez7JzfNeepzjednti6dKG4mXOVjxqDPqI9XzAurWLj7jBoVxvHY0CmYq0ufUTwHcDotL+ep44TrtVimTQuP6+vyPWGZKZM1XTbCYpa/Od0MQNiv+T51bAUejxF4LgLC90Oe34r1MQXCX520fSeMpbd1notkwqziRo1N1hrXH6xbV1w6ulGd97idVq4MT+PbfuyxMK7ztmM+kcYcyPhj2V4oH12OqadNxcanN+ameenZl7Dq/lV48LoH0fJaC5IkwbDhwzB78ezcc4wxxhhjjDHGGDN4SVPLMIcq/liWw45NO7Bt3TZUT6rGS8++hOpJ1blpz/niOYXw0h8vxfCRw/2hzBhjjDHGGGOMMWYQ4o9lOZQMK8HvvvA7JMMSjJk4BidddhKef+B53P+d+7HrlV24/Z9vxyGNh+Dsz53d94vV1wPntMvU6m67LYyjtcDj7703Pw/VRyzPRH2baB1/7Q03hOlovfIZ7353ENXQkMkTdck/7yLOsKoKAKa0rsoONkT27tb9qHm58rnn5p9HMrqW1lAcE8jxtoWnlVdOKYSfIf3jyLnhlutVKG5pepRTT83Ch4a7pZbTGvxZt9wSxO2kMMu41iIkWCi9bFkYyWvOYxoakgrppMCr0btMGLzu/kiRKbPO7fTTC8GWhhlBsqans3BvV59z/4zJU1TaUDezsRAu0ROpTsASFK1HGqOVleGydd6hW8cGw7IK/csUy3C0eVlu8MwzYVxMErEvURkpV9err4ZjdOLkTGI65eKG8ERe108dQyUoRx2VhefPzy/XIpGictqy2/+722sBCG/oa18Lov5IYZrpIEJO1FBYpZaNFK5Xfdaxx2Zh1hVpJ4lp4U0w/4zX9n06m4BU4s5zMNsgSA54ksLNMgBmfeUrhXDF8NCqYcZM6g0cFp3PJspSZeZ8vHZtfhzLMHUKY3lTT6Qy3NV4utR5luO0e3JXVulT0dI5zlRP4vbmG9cxFNHKlXCecl4w4xc59iqadYbIqJE8dtRmcyY/orQNY8/OPJkbANTXlncbWc4PLyDU+kkmXBZtQ56v+fWnvrYlSMdyfZXH9QZ9pdRy9QZ+79XqYemx1jF3H+0ieXWnMlI+VgmlSlqLoYvskjtQrB9L/x8xIms3rh99TnNc7FWU215ll3xebJjH5hh+rdB3FR4n2gcDBbfKxfMGZuRdsUuH5Avou2h/wNcbOTKMo8rc3py1pz5r+Bmidht8rPXaicrzjRks+GNZDhVjK3DhNRcGPzv85MNx+MmHR8+b9xfzovHGGGOMMcYYY4wx5sDFH8uMMcYYY4wxxhhjeog9y4YuuqmTATB6wuguq8qMMcYYY4wxxhhjzNDHK8sOBCpGAlOntofJgwtAoHmvXLMmPw/e1xgI9O/su9Ly3HNBsrL/+Z/sYPr0IK6RPafEg2HHqZnTDsvru3xVZyMBNVpgf56FC8O4zvoAQvMJ8QBoo++96mEQ+8KvWvxO1CqgqrL7dD2CvWjUiIKokDY87VvfKoSb6OfqZrCNwsvZHAbA7FtvzQ7UP4Fvlsyw1KUt2DKe2wUIfcrUW45MoZ5F5lO29dEwGfsYxGwcYsSsILZuzcLaR9i/Yu7cOUFcTU5btdWGvnYlrZn3ivY57mda/exrwk2R5/cABFaEAOI2F+qbsr/QOub7Vj8kvp9NdfVBXG1tdjxldlbHy+8M8+Bm0mlwwoQsfNps8Qm6/b4sfOON3RcYAJ5/vhBcJcZAZLeHlygc9pDQl+xEias6+ujs4NJLw0i+OTZK0QmMK72LoYrB4sVZWNp3PM1vVX/6UxDXRGGeVkK3JWA1hfUvkJU0oKeoZyg/2z796dwytrZWFMK7doVZcJdUzzLuFux3qF2c5y2N4zxiYzvmW8XWmWqXM2pUfv4cF3TrtdL/YyZINH4D70k1+eKLq2ERT6Yxc7CYaSKzdGn+tWUSm0LvDy++2L1/GRC2vRaR02r/yS0He5QB4bNeGngHNYe2IbdbfTW9jS5/OkhXz3U+re9zWOPkcJTu2FGWk7J4tO8ysXHC1RXzMxsxIgvruw8/CvQ1bMJofssv0pxNXya40+jvIYyYVU0I3uuzOtb3GPZ4i72rc1jfF/ixp3MMTwH6COTzuFw9ed/k+u/if8d1xy+VOi/x+/m4cWEcd4x98Qxng9tIA/D8oPNIzO+Nny/ya2Zh3MSmaWMOZLyyzBhjjDHGGGOMMcaYDryyzBhjjDHGGGOMMaaH2LNs6HJQfCz79Sd/PdBFiFJbWQOcd177AW1xDyBcP8yyReWjHw2Pab3rlCVLsp/zUlwg1KjxOlogXNcvS69PueSS7GA+SUl0jfmSrBw7y2uCqIqLLy6EV9WG4qRyWtm9glbr6zJpPuQl7EB82/m8HeT3xTLhjVuzpem7d4dSgLpF5xTCZaohoxtoIJnY6pdfDpJtp3CX4rP+Qvd6ztnPvFbXvrMc49hjw7ijjsrCZ54ZRG0clsnoHr07+zkrYYCwy2j3KfbBk7eMHwiX8quMgoeX9q3ymVWFcAVpCEqaVuVevK5uRhDFCgWVzXD187J+LX9su25erR/bpXx/oveZt6s6EE4xWl7uC/PmZeNG82B5BE9LAFCzjdrqs1eFkXfcUQi+9HQ2yWiXY4HLIxK3nsIsIp0p6Xh2K//AB8LImBydK4U1EdpJ9sVW80MJljuqhPWQQwrBcpHRzbz99kK4gmwQtiPkWQrrHMx9pOLee4O4Wnrmrvr4fxTCO2Sc86NZ5wCWw6gMk8dKTMLEc9GYMWHc2LH5cRMnZmHunjG5ZkxhpLKfPEn69OmN3Ueg6zxewhMJF0Qri8dUTybP3vx21BOdHuU/fDi/S+RnH5sO9uwJj9tKszyDujrhhDAhyyTlAlx8dS8IjmNa0ZjUVS08ikFkhnN4Dujlrz4RRxC8+moW1u7D6jseM5qWq2emPES4+nlMttOL+9FC6vtnHtIW/H7L71r6nkfTbJfuz03P961TNcuyDz00jOMuo30wz65Cfx3iNtRhzXFarikzqe745rQfc6Za37EX4f6AZdRaQdQXHnss+7HOv3z84othHN+qvmd3Zu/XFDNYOSg+lq1ZHvH6OgB43xVXDHQRjDHGGGOMMcYYYwzsWWaMMcYYY4wxxhhjTIGDYmXZgc6rO4fh8RXtu13xrlcAUEc7xNVfElmKzjtXAuF6WZb5sCQTQCvpO0p1yTCtqX5JpH/jH6UtDd/61iysu0jR1ioVWkY6fuhnYdQrr2RhXu6uq5N5ybauKo/tesPLqGMSvsYG9JmHH87CvJQbCJetz5sXSlHn/CPVJW3rd9rXvx6ka6O2KeEthwBg0aIsrPoXXpvOcVoJvOxe5RDU3o9sCHcz5B1xeGm3FoPbVFeH6zL5PGIblMVUMtytdYk451nBhb777twL1EwLpT2nUP3MuyKUaPJqfZZfqESB1SQxeZMyUN4J2mYsFypWZgWEKgXuFzqNVNz3uyysGZKMbsMttwRRvBcbC2t1N1j+i9JqiZtFYS5Wo2rBWCb//vcHUVtKs70ztfg83c1gqcfTT4cJubGL3UL2IOLZDZmkegbvjAmEO7+pNO+YYwrBKbxztOxmWEYSTWmZQIa5QeIm0wPh/tuyn+tcxNJLlQDxHKDji2+HdznTeZalYfoI52NVDnE+MZkny0hjz2mdsziOn5UbNyIXfb7MnDmlEK6k8pfFJtOYH4DeQG8mWh2jVMk7K8O9dDdRp+H23CCdieO0/3Ab6q1xPpWV2TO86oMfDNL9/r5MbjdtWmipwW2vfaSqdCe6Res/ZhnRGxnmU0/l5x/b7TECWzBUSBtWjM76xdjZ4Xs832rJ2vApMuXMrHG2bMueNjXN65FLU2Tr62LllEqROzCu3xRaifCcEysGx6mcm3fLZamrSv2eeCILa3G5/7PkEwh/n+BuoNO9jimG3911/tm2LWvv6upsvpk0aUqQjl/P9VnfHIzDqiBuRpe3kp6z8agzCuGVK8M4nsJuvjkLa33wsT6HOE7bvrOtYu/pQwF7lg1dvLLMGGOMMcYYY4wxxpgO/LHMGGOMMcYYY4wxxpgO/LHMGGOMMcYYY4wxxpgODgrPsgXHHz/QRYjSlo4s6OhVI84a76by0AfhlPmZjn193XFBXD0L/1lELX4tpSw8jxgKtd5xRxC1k7zPKsaNyyLYnAQITU3Eh2J1Zeb4w54FQOglwBYhqgfnIqsNCNel2oywbwHHxTygegtXsXqJ8PXUw6C2lvzq2BdODBNKYmYl7PWhZlJsVMOVoJXFhidqaENpa2U24fpnfwn1TIldWregzmPEiPw49sfQa0+fnoXVFqWe3Ya4o6nRBRdatqtn35SyQ9XNKGMKmTxcfHHoXXcbeRlp+bm5dWwUaUHS7+i29rHtwrnq1MKGyz9pUhae8vTvwoTf/nYWvuuuIOolajdpmcA/qizn5wDAxZ8icTzrNrI35HnnhQkvvrgQfHJT6EnE3Ul9QLi9S0uzUjaqKQg3/kA1/AEMz0WlpeHfCMvLM/+l2pmhF1Pga8XPsje9KUg344YbCuFq8QXlbq0uRGS5ie+TxRJ77ABh+XWc8xjSpufnC6djr08gbkvJt63TP3fDvGe2Hut8wMf6/GVPSX7sxfLXoZHnqXTEEY1ButF0nuZf0tqSHWgl68RVBG1zw/c1rru1YtfFcNvH5stRo8I4bsOYpVXQt8TYrnVZTjpBrx0UlDuQvrBxuv4wN9L8++Pljm9c86PjMmzLPy9iOljDZdZ03HDSB3fSHFZRpL/VzsmhhyrPMY3V+XnI9BbAxdc+EvOm5fewmtLthfCUyeELz8SJ2dzdk/d99j7jcqn1J/vs8q81ijYN5xPrxrHfZfgddl/4XrFPmb6m8vW4HrX8fG8x7+E8a+N164oq6qDFnmVDl4PiY9l96gh9gPHny14Y6CIYY4wxxhhjjDHGGFiGaYwxxhhjjDHGGGNMgYNiZVl/8vlHHsFNK1eitKQEV7/hDfjSsmX45aJFfcqTl27qym6WKMTkTLqceMfkTLIzg1fWxSQDunZZ5WZEBadlyaeuzaW4nQ2zgqin78vCuqyZ7zVWZI5TlaFuH50H34rK3PoDrhKVC6rchuEl0PUxrQ0n1E7C+13zvtUAsGtXFs7T6wBhJUtjtNEW15tEPpInGYnJMGNxMfjWhg8P41gWGMuvi0qjgWQP3EFjGiDVBsT0QTkSLx12fGktI2cRK9b+RK8bU67weHjttTAukKA3ZeGTzpKVwgsWdH8xALW//GUhHG7GDnA1b6ewTrPcJVWcEgjjDz88C6vOhMZsc1MYxW2oXYQlTcGw3yFr/bliY/KdgxSugpg6S6fPQBbFWiHVhx95ZJa/6JQ4yxaEcL/jeUufeb1Q+gEI59PYfBCZ4qMy+dh5eahMhc/TOJ3Li7lWb+sqChdMC8nHRU66JTKTjBiR/d06Vsfcnq+/np9O8+BurO9JuVL40vLcdDqGmC7ytW0RnS3T3w23e3d4vGdP3/OMyUNjHZnROuiND4jUVW+kX3pOb1Wq3A9j5dB+xwS3E3lhqKysoHCYB9tt6KsuU5fzWgfEbV1ic2ne7w2ajutA64q7576wgyl2moqNc25rHV6x8zrrp8TLc8wgxR/LesCSjRvx8+efx6PveAduXrUKF9xxBz53gPuhGWOMMcYYY4wxZt9gz7Khib/z9oAHNm7E26ZMQWlJCRYdeihe2rULiw87bKCLZYwxxhhjjDHGGGP6CX8s6yEjOtbRjhg2DJNGjcKkLlv/GGOMMcYYY4wxxpjBimWYPWDeuHH4wqOPAgD++4UXsH7nTry8axfGqX9JD9m9O9vaeIX4PrH2O6YzV414sHXvdXdn4RtvDBPencW1iAkGe/rITsOYSaL6Gd/6VhZxwglhQjIBqJD96seMmVII69JV9iiKeQXEtqrmZmF7LiDckj7PF6W/YF8Etbxgf6qtW8M4LvO08zK/tzL1Q4qZBXBa9lQCwm3cuZDih7G9OmsnLf8O2mZ62bIwjreg5rC2BftLxHaTj8HWbOqlwNdWuzfeKlz71rZt2d8SZs+eUwiXrVkTJlSzLYbrWG+G65zaSeuY+2rERrBL9vvC96IYYj4gem88zrXd+O8Qgd2M3ih3KK4sAFu4XFLObTnhGknHx+o5FZQkMg63l2a5qL8kt5PeWtF2YzFDS9NlbmW4v6qvztFH1xfCFdU7swgdiNSRdYiupvCqSBz3g5ifUEzmod2A576YpxUPG56yNM9iPRNj3pOxOV7Py7PSVO9PfobrHM/3w/lPGL0zTMgX07mTKyHmWxUz82LkRW8Czf979pQFcdze3J762OE23LgxjOM61vphjzFOt2tE6PLIRdY+wlVX0iqzJBe6WBNefZlYuDA/bR5PPRUex4ysioUrOWYSGvO10wckx3GdxMxL5UFRxe95ldI4OVRtWx0cz5w5JSdliL5+8q8NEydmYZ0rgrE3Vp+kxIrIC1tp5lmmVbx5c36WXBauVv19azn9oqN9nIe21gHnH/M9Zv/cWPMqx83NjysWzl+vzc89Ttf5e2knMV+1PI9iTtsSaXZjDmT8sawHnDpxIo5qasLZv/kNXmttxX8uXIjz77gDvz37bFTsE1dZY4wxxhhjjDHGHIjwZn1maOEvPD3kypNPDo7/knfIMsYYY4wxxhhjjDGDmoPiY9mCX/96oIsQZeewWrzySnuYZUlAXGbI6Hm8TLhm9uzsgMMAQJKyVtEHsUhhC0Iep3AJyRLG33FHkK6KJQuydnnsgvcUwmr9lrdCX5f+xlbFR3agDpZs83lF7vzeI3ipt5aD202XYXMZWVJ6zgUXhAl5TbXKFw49NAvLkvbtyGQWpXVZWMvx9JIsrHImVjbovXEbxracZglNbGl3scQUEAqXXxeH8tjj+56gmfDNrVsXxuVpUYFQzkNtOOfMM8NkJ2fyCFWScBZad8UqgvqbmDpF65j7NUsUAODII7PwvHkUcf31YcIf/rAQXM26WgDLKKwSuG0UrqZwKD4KaZTj8Swtv/jiQrBl0TlBultJ/X7ffWEeLIFQRT9PmWPGZOGTThB9JnfyorWbBw88z+oQ5ekzLu3JJEDz558RpKt5Ryb5arzrriCORXX6HB2fU0Z9/vFxbJ7SOJ4fOJ1KjLifiVsCjjgiC3eRLq5oKgSncL+TG5g9e0peVLT+ufwx1V5MypkXV1tbEaYrz451DiuJTWK9Qcbo+k1ZL9HHBMP1o3XFz1GNi73j5Mn1VaLG5RK1ezxDLkyss3ID74vlGezVsC/g+1apLsfF3gO4g8Y8F2Jav2KRPLhNJ4xDLlp8zoabTYsYvH5q5+IT+fcQeYmp4clpW9hHZs7Mns4laAviRo7MLDV47tNixIZ5rHm5+DE1Lp8Xs6vYF/CvBnrffK8svVRpa8wSh9HnS+dxWVnXtMYMBg6Kj2X3qcfQAcbZZ79voItgjDHGGGOMMcYYY3CQfCwzxhhjjDHGGGOM6U/sWTZ0Kdl7EmOMMcYYY4wxxhhjDg68suwA4PXXM08k9eVgyX5MIz5tWnhcs5ZcxdgMRYXxdPyS5MlF0Y/l6ynMnUgl6bMeeqgQbpC4GQsWFMKnnjojiHviCXRLzLdEv+izx4Cex/YVnG5fbGrK1a92HuwdoB5TnHYJ+Yap10p1dVZ3sxbkG0W0SOs89WgWZm8C9aTgMmofZB8KrX+uc/Yp07bg89RWpFjfrddey8KRLt4lP25vbXu+V84/MIdR1AyC+dOfwmM2T+LzpIJO++AHC+ERI8K/b/A4UR+ZfeG/Vwwxz7KYj4labdH0gBk7HskOvv71IN2T5FO2HCHs+rJd4qopzLOPbFYfnCd2TsBZZ2VhKjCPVwBYujQLizVkgNbdrl1ZeAKZ5R19dNgPKqhjb9wajvMJ40L/loORlSuzsM5TMWsgnoO5bbSv1rDpl3hzjqcHQI3kz9nwtbSMPDfF5mCF53Iee1r+iRPz48axf9GGbfkX4ELLHDZlXpZpW2nYP3k86POR5+5I9lFiczwTew8oi5kZ9cNLA187ZvnFcep5xHVSrC2WxvG1dA7jdpIuHvTJthNC18eSvAdAzNApz0itL8Se28XCpqGxB6zG5b1w6jHXiTYw1x0/GIBw0KphVB4yiEZW6+zUPXprXCx+v6qplucOt+/zz+dfgCdkrSu+Txl37FPWVuQ6kJjPrlbxnj1ZWMcQn8dxI0aE6bjIOodxc+/r30PU45qv1+mfDcS92fS5w96r6kHdWSclXp5jBinuusYYY4wxxhhjjDHGdOCVZcYYY4wxxhhjjDE9xJ5lQxd/LDvAUBlasbtp67LaOfNpuXJMy0nrb+u/+90gihdR18v1WEnEm8nr4vkWPlBtAK2B1iW9uoy3E126zPI+XVIdWyXPq+n3xZLnPHT5Nh9rOTqluUDxS7QvvjhsqcpIn2EVYGxbaa7zSZPCOG43lokB4TJ2biddms7qiJEjwzhe2h2D21rbnbu/yjC5/lXKXF++pRDeOIwkCtrR+AY0jgfmww8HUS2vv14Il/GNLhcxIR0feeScIIrloXrfA/XQjkldY6oKlfYE7XF71inbSHYJhDJJlZJzXJXENVL4RAqrGIXFMOPPOy+M/MhHCsGb7sjOfOyxMBlLmlRdw2MoNra5rTWPurrs7l6RaXbCOBz0xNRNfKyyE35kcZw+yqrf/7ZCuPGjK4O4MppQT7z66iCugjp9bLzGJJQ8TrT/8Hjj8XX88WG6I4/MwjMm7wwjn27KwiqfYn0rF0wrkgpWIg/B2bNnFcLaNnn1T1NnF3SO4edorB9wnOY/enQmwqiITXBF0lIezkYxBSJnz1Wn70x8HJtn9R2EHz1cB7qJPJdDn8v87Clplv7DmcZeePK0bL2FX/K0HL0lpumN+X7w5K0v+XkvsTG/ipi+r1ikH3MfrIpUf0whGxQjNpnqLyyscYzZxnDH05dFokTurYoKNnfu+EJYJfh8bzrMY3YePJdwswX2HRIXk1vvC9img+dEIKzKmFKaFb76vsbnnXpqGNc5N+X9XmfMgY5lmMYYY4wxxhhjjDHGdOCPZcYYY4wxxhhjjDHGdHBQyDCPP+n4vScaQF59dWRhB5KxY8M4Xuoa2+TmzDPlBzfcmoVZp6HL2ymu7NBDg6hGWrdbLmuGWaLJe1s1STH4uFTW9Td+73uF8IxLLgni3v72TBjFS6UffTRIFkgPxoxBLiq5yNv5al8shebl27GNtFRew/cWkwpxnO60x3mqdIJXxXMd6xJtZpxIujj/mbJVIK+sz1umDsR3yix2N0xuN21DPtb65/JPmSy7Ny1rKgQnzKWCqIyCG4R2fwUQbDP6kmh7tlC4jKQHKocupzFbde65QVxDw2mFcEzVsj+JSV21jBw3b14YV/XLH2UHX/lKIXiPXI9VwzLMg50tx0vcXE43f352IJ18/L33ZgeLFgVxW6ozMefGjcglJm1gdGyzVJqLpelYlaMKlxkiLz4YefHFLKztFJPA8TE/X2K7oXWZCGmSqWC9OwAsXJjlSVJd7SM8pg45JIzjdwSVYrP0JrJhZ/huoRpTnrx5staCckVqB+UHjFRe3fxZyIOT8vSpc1uxO14ysd2bNQ9+lqFa9vymfCrKi9t5Vp+xXMWx52/eMxUIn+9aP7GdVrlJudl0R3LuWytDpXHwrrKlOdytu4Y615bWTH5aWR1KUctqqdDq6dAbtJP3xw6bnGds++xY51J5KDdqbNtbPlYJYj94iRSbRey2g7gdkclU9YlM7GUuGIiR8xQqWGyuKHa3XN0pM2/XZB2HsTkmtmt4fxCzO+Gqi5WD4/Q9j49VIt75COyPDWkPZOxZNnQ5KD6Wzfv0vL0nGkDu+MwLA10EY4wxxhhjjDHGGAPLMI0xxhhjjDHGGGPMPiRJknclSfJokiS7kiTZmCTJ95IkKWo7qiRJypMkeW+SJP+VJElTRx6rkiT5SZIkR3aTviFJkjTn3/LurqEcFCvLjDHGGGOMMcYYY8z+J0mSjwL4KoA/APgwgMkA/g7AyUmSnJimaUSnDQBoAPAdAPcB+D6A9Wjf4P4DAM5PkmRRmqZ3dXPeLQB+IT/bVkyZ/bHsACBJMv36MceEcbwF7ykzt4SRqC6EKq79ZhhFfmA44YQsrBfgvXxnz5bss/zrV6wIoirIm6kF+bBkX3Zpxvirry6EK8Un5ewvfrEQfrIh8wVSD4CYtj9vR24g9D/h8L7Q1HP+akNxxBFZmJsJAObOzcJqI8NwnPqexbyS2PuGLZvUS4F9b3RL6KlTs/CEPevDyLn1hSD7KKmvGvukaBmLtRmJ+ZJxHUQs+7qaPfExmzCocRvfgJq5kJHMzjAGL+WEpRYx/2tfK4RLpYIaP535I5VPC125Yn1mX6J9nL10Yv1/whO/DyPJp+wR8np6Vq7H9aW2jjyjVUnclOnTs4PFi7NwzA9GfHD4ftg3Um3tuJ/xeAJCX7Ll8jcunju4m8X86LQbm/BZoH2QmzT2POE5kqzGAAD15fRsXiYDjydaPXHBgkKwmuZFnffYD0Ytj7jM6kvJaWOWR7kZAuHcp5WXZ3bD7xVAaIomebD3VszvhZ/NMa+hmM0R12vMn07jOE+tY6aiPD+O6fSo7YR9ysjmsktZ8uYDIKyDmGeZ3hs3B3sxxTww1S+N43QOmzw5m3n5maS+RtOmZe95JXqB3qDvs/3AxmHZO83Y6jCurJT86vTmYmZY3JA8V6gpVPCyIhRr7srIOGzd1n2yvcH9iZttSp3UAc8rxT6ktB5jkzW//Mp5La2ZiGob/SKiz+mYpxjPAWrdmId6m3H+emvsO6px/QF3EbHPDSzkirR+C8qr5PkGp2m0iEMCe5bFSZKkFsDnATwE4E1pmu7p+PlDAP4b7R/P/nUv2bwM4Ng0TZdJ3j8C8CiALwPozn/r8TRNb+hNuS3DNMYYY4wxxhhjjDH7gnMBVAC4uvNDGQCkafpLAKsAXJJzHijtZv1Q1vHzJwEsR/h38oAOCWdFXnwe/lhmjDHGGGOMMcYYY/YFnRqqB7qJWwJgZpIkvdoPNkmSEgATAeTtTf8xtIt8XkuSZE2SJP+cJElkjWSGZZgHAGXDs2W382Th4CnzSOR43c1h5BVXZOE//CGM4y3qWW7EYSCUR+i2zBwna/6reckz6erqn3suSMeL6ZvC3ANZVMPPfhbmT+uQZ33wg4Xwq28It5lnOYPKC/LkF0AoT4ntVN0fTJyYhXUlPUt7OAwAFdsygdmzld1LGgFgLS0rV4kXX1vvjdNupKlFl4DzeVqPgWz1waVB3CzSkc5amGVaXh5+1FdZZt61Y/DycF2dz8oGrf+ypfdnByoxItomTymES2LL/7URaZ1/FY9JACyaZImmqidZ1TKbpMsAUMpS6XPPDYs19zgMBKJUDJb/q7Sh7Gc/yg6+/vUgbnmO9FJlqvUUVqHKiRQu0bnvwx/OwpdemoW105GcZ/XMNwdRS2/Pwtx9VAHE40QVM6Roj0qf8uQue4sz4Zyg8hGeI3XuY9kYt5um27KjphCukTlge92MQrjq6KPD8yqzeWUy9SWV7xxJlrUTJoRxrOxUeSUrxnlcNpbLKGqiG9UHjBaGYQ0xozpAfn8Qr4PGC+g9Q+bWTZvKus1C4dNiireYNJ2LzK8+midLJoFQkjWhKHvirlLFBx/MwlrdnH/sPjlO7Rh4btLHXF599URmtSHSfV58MQuzS4GOIa7/49iDopdsHNUYHPPYqEIbesMTT2RhfZcYMSJbezB8eFkQVxObPFgLyGND3zM4Dx1fsU6fQwvK9p6oG2KvP0GcDjbuNNwplNhA5/vUQRrx2yij8yZPzu5b31X49wnt4zG7kFiR8/KfOTOM29e/h8Ty5PcHrROGq1VtY7h76mtwTXX7eKvo8XoeMwTpfGXv7uVhHYCkI406rhTDB9D+sexf5OdtAH4P4FYALwAYB+DPAfwT2n3SFvEqt+7wxzJjjDHGGGOMMcaYHpKmQ8azrDZJEl798J00Tb/DCZIkqQbwkR7k+Y00TbegXYIJAN05/3V+tu3xZ9UkSU4BcCWAxyGeZ2margbwJjnl+0mSfAfAewFcDOBHiOCPZcYYY4wxxhhjjDEHL5vSNO3OIJ+pBvCZHuR5A4AtyIQ0IwDosvXOdc+6H1qUJEmOB/ArtAtPzk7TtMit4fAFtH8sexv8scwYY4wxxhhjjDHG9JY0TZvQLpnsKZ0eEJMArJC4SQBSdHVbySVJkuMA3AHgFQCnp2ma4w3RLWsA7AGw1/1n/bHsAGDceGDx4vZw44b7w8gv35WFxdMn8Cy79dYgajuFq9jERgwrdjZkHmAVVzQEcas2ZCsh1atq1gUXZAdkOjX7i18M0u245ZZCWF0inqTwSxI3+1vfKoTr6eInffzjQbqNVH71yuBbVZsItjtg+wf2/+ov2IeO/WUAYNba32UHn787jCQjhBl04gzJpKEhc79S/y/2GFCbC64T9h846qgwHXu/1W97MoxcTn3rxhvDuLvvzsJU4WeQBx0AjBqVeUhs3hxm0ZslzeqpwfYnJdu2hJF30fhiIzuhpGlVIdzWEHqhBB5m2sDUhjVibFFDHZacCSElhNR4wNyrrur2WgBQcgVN72qitQ+pL5XRvJQ6pTbO5z9fCD4infcRCvOwFKsPzKBwF6+bT34yC4vJzLOVmafb0tuynw8bFmbR0JD5lK0LbfmCMXTafGrF++4L0k1hjxbxeWqkPnPCCScGcZwNW97pWOa5rlj/lIMJ9tWZOjWM47mvsXZ7ELelNXPWrFn7eBZxa9hXa3iSlz6+gl4Ht22bEsTx84Y9bPR5y11XPe/Gjs3Cal3E/jPBM3CbTKxc5phhlxpeHXpoFuZCv/56mG5cvpnXzvLM7y32Qhrz5NI6YfI8N7WIHKfPndhzSMdiMegYZZ+y117LT8vl0DqI+Zlx/YwZE8bxY4/rQD2JuK9qfXMZ9T2M82QbK60DLvPrr4d+Wied0HOPsf/93/z8z1nc4+wAhF5zo0aFceyJpvd2xBGZs+aEefIySoO0rS5LV9IcLq7Y+Gr2Pj5W/NLYR29CkX5s+q7L/XiKTAEx+Dz+VaOhIZzruI9PeOtbiyuYzjc8iclLfVtlNlerdy/7/nF/VI9HHlM6rjlO52eO436m8wYXWb3BOE7Hdn/AjygtP49Lvra+CzGx+UdpaW3380vTvRTSHAw8BOCvAZyMrh/LTgLwTJqmRT1VkyQ5Fu0fyl5F+4eyF3pYlkYAw5C/IUABfyzLYflty/HEbU+gZFgJDjvxMJx42YlYcu0SvPDHFzCsdBiqJlbhjR96I0ZUjsDaR9fij//5R+xp3YNhpcNw0uUnYdIxkwb6FowxxhhjjDHGGLOPGEKeZfuS/wLwDQAfTJLkx53G+kmSvB3AVLSb7hdIkqQW7Su/XkzT9BX6+bEA7gTwGto/lD2fd8EkSQ5J03Sz/KwEQOdf63+5t0L7Y1k37Hl9Dx7+ycO46NsXoayiDD/+qx/jmHccg8lzJ+PEd52IkmElePC6B7Hs5mU46fKTUF5Vjrd8+i0YdcgobHlhC379mV/jkusuGejbMMYYY4wxxhhjjBkw0jR9OUmSfwLwFQB3JknyE7TLLz8G4GkAV8kpH0S7N9q7AVwHAEmSHIb2FWVj0f7h7ZQOg3/mljRNO9dpfzdJkioA96NdelkL4B0Ajkf7x7ub91Zufyzrhl3bdqGiugLlo8uxZXW7KKqsogyTj83WJo8/Yjyev7/9Q2bt1Gz97NgpY7Hn9T3Y8/oeDBseWcNKVOzemskvv/3tMJK0N1tkbXENhVtEUxBsJcH6Dl6LC2ApyYpGjAg3oOBtsnVZ+drZ2ZLn2bMz6VD95ZcH6SppvW/tb34TxPE6y6Yw+2AhecW11xbC1VKQCRdfnIXl3lqOzeRyumR4zrRsiftOqi2WOvUXi2nJ/5TWVWHkDTdkYa1k1jrQmv+W6vFBsrUkDdCl9bFl5Qwvkd8oC1ID6cfcWUFcCbfUvfeGJ7LcbMmSLCz7Sp9E0rknm8I+yMv6Y/A29yoRYQllF30Kr88/66wwjirvyR2ZpGBTqLADaAv20z7ykTCKNVhaMCrLHBobW7iuEEo0VchfRtvOz7j66jB7brhrrtFC7zu4TwOhllDW/y8h6eVyhHBXZlWICkpns/RSZNrbF/15IbxCFnzfd3sWfuqpLKxq3JUrs7D2R1asNTRk/WCKtjXrd+68M4yjftB4pshOFswpBHn8xuQR2sVNKL2cPj2Ma5xMI+y2sG1qWFbNDSCVvLMue9awpAUIu7/2H87yEvr7mspkuItXlIvMiucLObGRO+jT27KwauVinYb1Qaq1ydP/6p/XuVIkroIfUhI3e3ZWr1xEfc7l2SropTlO5Y4cp/XPaFxvZM/aR7Q5mFdeycJc3apQ46ZR2wlOq/Mb1yuHdQrjpol1F+3jfK8c1nRcRu0+J4kktBj43RYI66e3Mkx+hqiMjtE+wdfevTuUmE6enEkv+RV/+PDwXYjfy4YPD/PX494Qk9Exet88fLl9qypVDlqSBXdLB8rreNrJ6bilvCqIaqVxqXYenH1Mcc6X0zmGx73KPDkuZokQi4vJN4+biz7DvyJGqjVw7IjNAep4wfVatk2sODa0V1DyeguMSdP0yiRJNgP4KNo/dm0H8FMA/1ikBPNwAId0hD8bSdP5lP8VgEvRLv+sQftOnE8A+BsA307TdK/adb9Wd0PalgIJ8OjPHsXSHy3FzDfPRFIS+tg9c+czmLpgapdzn7//edQ21hb9ocwYY4wxxhhjjDGDD8swiydN0+vQsVJsL+k+C/kglqbp3ejB5gJpmn4fwPd7ULwulOw9ycHLsRcei0uvvxQ7XtqBp36bLT145KePoGRYCaYtDF02t6zeggd/+CBO/T+n7u+iGmOMMcYYY4wxxph+wCvL9kL56HJMPW0qNj7dvgb62f95FqsfWo3Fn1+MJMk+bO7YtAN3/OsdOP0jp6NqYlVedt2zZk0mv7z++iCKV/zHFrCW6XrZY4/NwosWFYKPrwiXdvNSdd0diqUBuqyZlyjz0vRzzz0nSFd/VSYBnSPr7msfeqgQXhZmH+zmuZrCZbS7JgBUsN5AbqBsena9OapLuCaTKLMM5JQFC6QkDegrU5b8NDsQCVYbtXeJakVPP73b/HjnIyD8S0ZMmqFxeehfRrhr6Q5Nwdpx3jYTCDvXc8/lF4TWc89iLRKALXWh5DQP7u5lrVLGG+/OwtoP8jQiQKA3aKauq3I+XoLf3FwTxE2blkmUGz8u+zhy45BUukYkkxUkb1UZJu8Yqcqh43is7E8ZpsoMH3ggC4v2iatSN6JlhcRxFJ6t27TRDrzrZ54RRN1OTgQqdeJ25KZXaQbLJVTixWODp7cpOpZ5UPFYAMLxIDuCNtJ4WLTotLxkQfa6250BePO1qk0ihb9tWRbWvsuw1ls0S/w8fPTR8DRW4OoUw7C8SaV+FZvoKaid8HnytVVtIReMM9U8+H5iW0uqVouPYw8ijov96V1uvKa6e3VEZWWJHGdhlTfl3bY+R1nuGBu+mn+xVgGMjl+W2GkV51WrljG2mx6fd8ghYRw/trnpVWYVk1DyeVo/PO/yebGxoM/Yv76i+3QxxM0gGL74x57nB4RT90x5nPOrkN4bt6k+h3ijZO4HOky4XrX+eWfOYiWrWsf83GhsyD9P5yY+5jKWl4djNNxxMdwpk1/dx86sRzGoTJLrgNwpAIQyVR4nk2QfNh43OoVx/s88E8bpq28x6DQb2w25P+Bdk3WO4b7LMkx9F+JyVW1bHUZuoMlVO2/nxNtiGaYZnHhlWQ47Nu3AtnXbAAAvPfsSqidVY83Da7DsF8vwlk+/BaUjstll947duP2fb8cJ7zoBdbP2wZ6/xhhjjDHGGGOMMWa/4JVlOZQMK8HvvvA7JMMSjJk4BidddhJ+/uGfY0/rHvz6//4aQLvJ/6n/51Q88asnsP3F7Xj0pkfx6E3tf1Y++3NnY2T1yIG8BWOMMcYYY4wxxuwj7Fk2dPHHshwqxlbgwmsuDH528Xcu7jbtcRcdh+MuOq7bOGOMMcYYY4wxxhgzePDHsgOBFzcAN94IoKtvDyu8o05o48aFx2w4MX9+IbhWttNmDw/1QWAPD/UA4LSs7V+2TMo1d0YhWH9x+LGxnjJdLSYe/HH+jxTW+pn53e8Wwo0ddViA/cd0r/Nf/jILH310Fl6zJkz3yU+iz3ClHHZYEFXC/kuLZT9zajcsXFgIPnFfmCyvLYB8Sxklz3dC44DQ8459KE75+MfDE7kP3keFVrOPXbuysHjp1DSIx1gxaFtPm9Z9GAhMGdbXhR+8m8jTg/09NHs+jvmZ7WgIRzDf6uxFf14IV8kFFtA4WSUDbAuFxUEC5dQ4s7D/ePY3vwmOmygsbnKBZ5m0THB8HPeZD384SLfxqMynbOmDYR7sD6M+Mtw27GfD3iQAsHs3cuE8OP/VtaHvyhQey3ffHWbC40QHH5mocLl0nPNpPG+bdniK6fIcjRle8aTJBi5iOMNtr55EjPqCjh6dhWvWPp4daAOzAdMw2WmbDXTU7IbnEg4HBk4I70fNdKgPttTm+wmV8bV1kowZLrH5kMbxJEn5d/EEvC9rgCls/gZg8vzQH6kTnQ/40mptGbu13iBFDPJXPyGuOm6amAepdhHud+qvlGcnF3tfUMu7YuO427GHEhDWeSyPYtE8dGj3BvbujeXHPmRA2G7af7htYnM3t7c+o7Q/FYO+CumQyqOx8qXwB03ZwJkVMd7aUVmRFxXUJdsuxvqgepZxHbP3GxDWOY8v9ffkPHQcTpyYhbWdOH8ee5rHhAlZWKdg7gf7YnUSjy+d4rmcjXX0lraiKUgXeGNrA3Cj6gTaWUFJ0RsYGnNAYc+ybhg9YXSXVWXGGGOMMcYYY4wxZujjlWXGGGOMMcYYY4wxvcCeZUMTfyw7EBg2rLCuerys7S7jtdcnRPaEVgnfuecWgqubxxfCugRctwZmYsuVR47sPp3KNVnVWH/55WEk7VE8/9OfDqJaH3qoEP41/VxX57NoY7xcvJKkfyskjheSV/3pT4VwA4UBoLI/ZJg/+UkW/tu/DeMuuywLf+ADQdTGl7OFn680ZT/XyZhXPGs78dLxmHyEJQtbt4ZxLNtQ6QrLDtesCSWaxx57TiE8g2VoqlW87bYsvHx5GMfamHnztNgFyrZRi6o+hTQK6xHKiJqas+MNstW8KoI60THD9aor03k4qzyLpWHcpnPPPD9IV0XjpPGLXwziGu+6qxDeIhdgte7+lGGKShhtFFYZ9VwKn8v7uwPAmWdm4c9/vhBsmR3KZZ+hdlPpDXcFlZnkSZRjkhaVj+TJolSGE8gw3/e+MJIl9PdJ7VEHmtD0u0J4z+w3B8luvbX78pp2gq6lHYEbbtGiMI4lsnye6GtaqWOztBIIVecqywmOecLRyTpvMgLCTq8PBz7m+9SCsCZI50861v7Pc9iEmEaQT9S4HKlllzgOa/3w810mgZLmTFZUXV2RlyxaREarWCVNxaAqJZ5zYlYKHNZ0XCXaBxktL1cd56FNodLOvDLGysXSS+2CnK4/JJNafpVA94Y8uR0QzjH6KIuVK0/aqem4z6gMkKWLEEeWPHr9S70WLA8Zo3w9bV8+jr2nct/qSfk5bV5/BICy5u2FcG1tKNjncaNVwO/dKnNm+FGv6datyz+vP+D+H1Hahy+qYo8TdEJ9JnEl6+DujEvTIkpqzIGHZZjGGGOMMcYYY4wxxnTgj2XGGGOMMcYYY4wxxnRgGaYxxhhjjDHGGGNMD0lTe5YNVfyx7EDgkBrgqDcAAMrU7IaF7TGDMTZGAQIROmepPh08sHUr45iNCUvSWf8e88roomNnEb2YeJRSRuxFJjlgBoXL3vrWMJLqa9ovfxlEVZH5VhkX8b3v7VLsPvO5z2Xhiy8O48jk6pFl4UJP9gdjnwX1DYtNzuzJELOR4TzVioCvrX4Ssa3mOc9p0zLfvBI1THj++SwcM3OJ0FKd5V/WujM3nZaRfUdi3jN83zoMOc+YZ5bmz/WvYy/3AgqZo8iG7pCa3G+ouxK3hs5ggctdh29jAa48qlitDq477T6cVvs1Zx/zK+I4vXaeJ53mMXp0NrZnnXVWELd+UzYD1X9wbhB30y1ZHPudQKxEuIxLxHvPAN/+dhaeOzf0Vqyry46PY588AFvKM0/DbdR/msV8j+c69ePhOUYfgUGXjxllcSdXs5tijXx4ElMDJ85TjUdp4FTJDVSNpDyb1JGw+zy6GPrFrs1lLnIe7PKQosFRWZm1tc4VTE8s3TRtMcR8LzV/7k957116rFUQ6yJ5VRer7pj3nl47z89J8+BX2NirbrGwTSTQP7/EchkPPTSM43GubThtWn6eec8hLe8hh2RhfS2aMK4NPUXzCN+bInORvuTw2GY/WjH2auQLNoSNv31H9nyMeZYx+h4cmz7zvEu7vCtSmdWzjKem2NwRI89/EAj7vFZxf8DvD7H3eJRTZMxYUDsoP1P0Idh5nj3LzCDFMkxjjDHGGGOMMcYYYzrwxzJjjDHGGGOMMcYYYzo4KGSYv/7krwe6CFFqk3LgTW9qP9Dlq7y2fuLE/EwWLgwOt9dlAsWmR7Ofq4Ijtt14bBtxXp3LUhJd3rt7dxZmuREA1J96anbAGiYgWCs989prkUfZCSdkB294QxjJNytrtvl2tlG4+u67c6/Va3j75bUiVaH23SDSKk6ao0jrEheTX6jUL287bVXoFLtTuKbj4xKQTICX6gPAY49lYd5HHQhvViRSTNnaVd2fI8e1c6fkZh9svy7EpKg8RHX4xuqO2yamIgoSqtaAjlWIsT7/0vsUFcGy6E3/OtPAByefHEYuWJCFSf+idczDXOuO5ylVDXDbcDimPIip17gvaRl5CmhtDedBPq+2Noxj6QRLgFSCwuUvVsZyMMESKZ2Cua1KS+uDOE4bk5yzEknHfEyyEzxzOaFegBPqBYrVzsUmI+2wDE9OOv/wtbkSYlpCfQnhMo8cGcbxYMzTUgHhvYmGb3trNgOxAnTjxjALHocxSZdW1a5d+WnzUEl4ntQS6DrndBJ71sdkkhrH953XnEAop9Rr87Gq6fne+H0wpubrDxmadnctV2+I1SPXAd9nd2nz4vi+tQ44T31N4idrsZJMnQdHjcrGyYTySB6qkeWOx3OYdiBG5qmqypyHls5nVCl1dTVBVEVQ5vBNg+f/iuYt3eYHIOg05bXj86K6wHE8H8Rsb3TeyJPj9hcvv9z9tbocx154+Aa0kCqhZzqfIUPc0MueZUOXg+K1es3yNQNdhCjvU68tY4wxxhhjjDHGGDMgWIZpjDHGGGOMMcYYY0wH/lhmjDHGGGOMMcYYY0wHSTpItnJNkiTtTVmTJMGBfo/v++u/xv/jve2NMcYYY4wxxphBzrwTT8TSpUuTgS7HvqK2dl56zjlLB7oYfebaa5OH0zSdN9DlOJDwyjJjjDHGGGOMMcYYYzoY1Ab/GzZswOrVq9HczdYhp5122gCUyBhjjDHGGGOMMcYMZgblx7J169bhkksuwT333NMlLk1TJEmCPbo9uTHGGGOMMcYYY4wxe2FQfiz7wAc+gOXLl+Pf//3fcfTRR2PEiBEDXSRjjDHGGGOMMcYcRKQp0No60KUw+4JB+bHs3nvvxTe+8Q1ceumlA10UY4wxxhhjjDHGGDOEGJQG/yNHjsT48eMHuhjGGGOMMcYYY4wxZogxKD+Wvfe978X1118/0MUwxhhjjDHGGGOMMUOMQSnDnDRpEq6//nqcccYZOPvss1FTU9MlzXve854BKJkxxhhjjDHGGGMOFuxZNjQZlB/L3v/+9wMAmpqacPfdd3eJT5LEH8uMMcYYY4wxxhhjTI8ZlB/Lnn/++YEugjHGGGOMMcYYY4wZggzKj2WHHXbYQBfBGGOMMcYYY4wxxgxBBuXHMmOMMcYYY4wxxpiBJE3tWTZUGVQfyx577DEcc8wxOPzww5EkSW66JEmwcuXK/VgyY4wxxhhjjDHGGDMUGFQfy6qqqgAAb3zjG6Mfy4wxxhhjjDHGGGOM6Q2D6mPZ4YcfDgC47rrrBrYgxhhjjDHGGGOMMWZIMqg+lhljjDHGGGOMMcYcCNizbOgyqD+WPfbYY3jmmWfQ3NzcJe5d73rXAJTIGGOMMcYYY4wxxgxmBuXHsm3btuFtb3sblixZAgBI0xQAAh8zfywzxhhjjDHGGGOMMT2lZKAL0Bs+9alPYfPmzbjnnnuQpiluueUW/P73v8df/uVforGxEX/84x8HuojGGGOMMcYYY4wxZhAyKFeW/fa3v8VnPvMZzJ8/HwAwefJkHH/88Vi4cCE+8IEP4Otf/zr+8z//c4BLaYwxxhhjjDHGmKGKPcuGLoNyZdmLL76IxsZGDBs2DOXl5Xj11VcLceeffz5+9atfDWDpjDHGGGOMMcYYY8xgZVB+LKurq8O2bdsAAIcddhgeeOCBQtyKFSsGqFTGGGOMMcYYY4wxZrAzKGWYCxYswAMPPIDFixfj0ksvxec+9zk0NTWhtLQUP/zhD3HOOecMdBGNMcYYY4wxxhhjzCBkUH4s+8xnPoP169cDAD7xiU9g8+bNuOmmm7Bz506cc845uPrqqwe4hMYYY4wxxhhjjBnK2LNs6DIoP5ZNnToVU6dOBQAMHz4cV155Ja688soBLpUxxhhjjDHGGGOMGewMSs8yY4wxxhhjjDHGGGP2BYNyZRkArFq1Cj/96U+xevVqNDc3B3FJkuD73//+AJWsF6xfD9xwQ3t4zZowbvr0LFxbG8YtXJiFm5qCqC3VjYXwbbdlP5eqwo4d+XGMLi2trOw+XFcXpisvz8Lz5oVxNeU7s4PvfS+MXLYsK9e11xbCO8NUqJk/Pzu48MIwcsOGQnD7l78cRlF4G4UbJP/xe/agzzRQrhdcEMbNnl0I7rz4PUHU0qVZeNOmLLx2bZgF1z9fCgCmTcvCI0aEcbt3d5//hg1huli/eP31LDxxYhjHTVN22y+yg/vuCxPecksWPv30MG7mzCz88Y/nF+TWW7Owdla+ocWLwzgaU483VQVRXM+04S7Gjg2z4D7P9QiE42vCBOTCdTcFq8PI22/Pwp//fBC1ieaL2xDSROHP9kc/LpJrhg0LjuspLNWDBRSepZPHeedl4fe/vxBsmz0nSEZTRZe+y+3BbQGE/ZrTTZ5cXDoAKKUnaHV19z8HwnHI07amLbv7d2EkD2jqkOtnnhEk4+lTHgX4wffacLDz4EPZ3wVfeSWM4/rXLsj7BfG0wvMeAKxcmYW1j/D8rHMp95lPfXA7crn77izMkxEAPPNMFo51cr4BfjBrQfQ9gyuFO7Lm8/zzWXj06DAdV4rOz9wAOnB4/qdrtdRNCZKVNWd1t6U1nMefey4LP/FEFta5gquOHstdiM3xn/rH4sbaB/4m/Dv1xo1ZWJuGj7lp5s4N0/G8pc3EzVtR2hLEbdlRVghzndx8c5gHT0Uvvohc+F4AYPnyLNyxLxeArmNh0qQszO8mAPD7O3s+hx03L6xjrrvf3d67OfHPL87y1FcJ7rraR7gba/fntuH60f7J5/GcAoT39uYzi7u3m34W1s+4cVn4jIX5eazfkF+vXGZ9jvK96TDPmwLKEPZVHmwtlTVBFM8B63eEcwBTX/pSt/kBCCp5e92MIIrblPs0ED5z+T51nPC0eMghYRy/A+rY+Osr+v4M/9cvZu3G/REI+9Ob51L98MsVEE5G+qLBN64dtLNeX365mKIac8AxKD+W/dd//RcuvPBCtLW1Yfz48RghXwGSJBmgkhljjDHGGGOMMeZgwJ5lQ5dB+bHs05/+NBYuXIgf/ehHGMd/DjHGGGOMMcYYY4wxpg8Myo9lq1atwpVXXjl0PpSVlWVrcnVpKx9rXESGWTM7WwZbXT2+EGZZCdB1uXgeMRkmoxKCMWOoTDtEXnbb3Vm4U4bayZ/+VAjyQulqveAJJ2Rh1XkSVbLcuoqut4NkLZXvfnduHr3miiuyMK+5B4IGqdiwKoiqq8uktLzCmcNA2Ia6vJ2XyGvbbN2ahVk6ocv/86RmQLisXGUhZff9PjuIySQ5E5UAqa40D+6QqlPlNfOqDaB+Mefii4Oo0tJMnsLjRpfIc/1rHNe5TlecNpB/3bokTPi1rxWCy0SmzXfaFJ7VRVK8v1ABBEunGyTuWQo3S8eb861vFcKl1AlLLr88SFdXd1whrKoKHiuqXnvttSzMbajjhPPUrsVw19L5kcdQRWsot9tJNVYm+qknm7M5oLk6k4VsEhkI568SEQP8z/9kYW0bbjedHhiVXjLcz/SZynE69fEc0FKeLx0q44k3JmNU+Ga5IDpQYrCsetSoMG748Cy8bl0W1kGkDy2G9UgjR+anozy1+NXVWd1tawrjeJzzeTHFqsJVvmtXGNeTquyuTEDYZ2JVHOsGfKxl4m7QQs81IOzXnIfmz3mqTDK2moK7D9ex1jc3vap4e4OO87x31t6iw47vU+Ni1+ZXHB4m+q4VU7mpxUYxaB3HphEmNv1wOUp2hM+5mmoqtE6SnGmedBwIOmFZgxSMzuP5QMuItTtyIhDMMTrOY+/g/OrC79Uq+Wc3DJX886O/2N/LegL3Ty0/H7edmf2+WBLz1dFCcrtp5XVOGG22hDCDk0H5sWzmzJnYvHnzQBfDGGOMMcYYY4wxBzGWYQ5NBuVumP/+7/+Of/3Xf8WqVav2ntgYY4wxxhhjjDHGmCIZVCvLTjvttEJ48+bNOPLIIzF9+nTU1IS7oiRJgj/84Q/7u3jGGGOMMcYYY4wxZpAzqD6WDSPR9RFHHFH0ecefdPy+KE6/MbJkGDB9evsB+34oMcMc3aOYtPjTpmUadLU9i21HzXExDwb2JVOLKY7Dr+4MI++7Lws//XQQ1UL699rOugG6GmORz1Tb/FOCKC5/mfqZUT6VfO3589HvsM6fvbuA0GBIPJtmkDdT5bzsQ7F2A/ZiUh8Qtg7QNmSPEG5PtQ2LxfFx1a3/GUZec00huOWhhwrhijAVytmcQ71u9DgPrhQdC0vIA0zNXNiMTIwcZlH9NzVlHhjq+8f1qv2fLR8aJ4fboO9szbxjypb9MYuQPrKE+ufjYfZYT2F17NsHPbko3nX00eEPuFOK8dNSmpCelHy45Wddd112IGYu9R/MjKaaJ48P4vKsUIDQPyTm1RPzcuHuyeNEH0+zZ9PB7bcHcRU8iGRwz5qb9dctDXMKYfXPmjo1C7OVpWnnTW/KwtzuQOhTpvMb27LEnofPPJOF1XOKHSP0PJ6OHn00v4yn8HNJHwBcsJdfDuPY8IqfLzEPMR0AbFClZlt8Q9wptRLYl4zLBAAzZ2Zhme+315FPH7WFvC4E2bP/JhBWF7//aBXwbcfi1IeoN/5C2oR8rP5T7HUZ80fjpohYMaGsNPQNGj48E5jwedqEPL9pF+H6ij2yuYvovXA96jjsDVqO/vAsi72qcN3F/NJi/r+x9uX6Uf9N5qQT8uMYfY/hcpy2IP+8Zcvyy8Xh2bND37DWbVl4Sq1UUN6N60Obj/UcOq5Qr628FwE1hqPj18S7ly+nYz5vatV5hMc2P7O1iPsCnrp1CuZxyXNko3ioBujN8QDQuM4HWpLspZTGHJgMqo9ld911V6/Om/fpfOP3A4EXvqO/JhpjjDHGGGOMMeZAJk3tWTZUGZSeZcYYY4wxxhhjjDHG7AsG1cqyTr70pS9h7dq1uPrqq7vEfehDH8Khhx6KT3ziEwNQst7x6p5ReLy5XW4wZ5Gs7ea1vywnU3Q5Ma0TrqaVtDGVm65c5kur7IflZixjmVG+Okz4TFMWvu22MO6ppwrBFllXXsbrhFmC8pa3hHlQnC4P51XB5eWh+G/G4sXZAUs0VebZH5BUtAtcSF1yvmZNIVhLVaBtyEvAdUt3blOVj+TJTmIyikmTwuMJe0gIeKfIbJ97LrsW/bicZbUAcMklWVjqqm1aJsMpQWTbaZby6LbVPDaefz6IaiZ5aLkuOSddwpmXvKcQ5v4OhE04q1w2HeE17Z8N66eCdS6//W0huOree4N0vO50PULqKSzFQu2hh2JAWCAaDu3XRM211xbCZRLXRGGeH2b/y78E6Uqp8zZecEEQV0vyZZUVRYoVwPIUPYfnSO5mKqPj8VWvHYgHKfdjAFvKsxa+4478MvK4jynsDlZYJqn1E5v7+JnC7at9qdg6j0l62YFB85s8ORsdkxsag7iSmD0DF5of4noB7sixOJ1buaOzNimmedMXDZ535TyePmMyTH4u6UbpLDfj/GKSt5jMLTYHFIvKuLhcWnU8tnnq0DxYuiiODkFca2n4N3IuP983jxmg65yWl4eWf/ToLMz3ovXG7yP9IcPUPGRq7RXcddVygdHXcU6rc0DF2mcL4Soq9OTJoRcz11dMBlsssXkwhlq58P3Exk3QHvqyzh02dqM8/2zdmn+xmKcM36jMRdtbs98TVNHOc47WQd48pX2ci6WK9rx0/QXPW9rWfK98n83N4e9N/Hxs1PcYrmOdnDov3hZ5hzfmAGZQriy79tprMWfOnG7j5s6di2vpFzBjjDHGGGOMMcYYY4plUK4sW716Nabr6pQOGhsb8cILL/T5GstvW44nbnsCJcNKcNiJh+HEy07EkmuX4IU/voBhpcNQNbEKb/zQGzGicgSatzfjji/dgZefexkzzpiBBe+PuGMaY4wxxhhjjDFm0GPPsqHLoPxYVlFRgXU5u0auXbsWI3Q7oR6y5/U9ePgnD+Oib1+Esooy/Pivfoxj3nEMJs+djBPfdSJKhpXgwesexLKbl+Gky0/CsLJhOOEvT8CWF7Zgywtb+nRtY4wxxhhjjDHGGDNwDMqPZaeeeiq+/OUv44ILLgg+jO3evRtXXnklTj311D7lv2vbLlRUV6B8dDm2rG7/+FVWUYbJx2Ya7fFHjMfz97f7Hw0vH466WXV45cVXus1vb+zYASxf3h5uWDwliKsqfyk7iJkKrFwZHpOIvp7MGqZNmxUkY78B9XSIbYl+zDFZeMLYluzgutvDhOyn8pvfBFE7SETfpSOyycO55xaCLYvPD5LdSZfTrbDZI6HLNuWzMy+guros/PJDYbqTTui7xn7jiKxNJ6gnWt6+9vJ5pfkAAPD+SURBVEDQpmVPP14Iz58fSpDZRyC2m7P+xYPjuK7UUob9Nya8Jp5cDzyQhcVriwszngu5cGGYbtGiQnDjmBlB1LplWfi4ucilbf4phXCJeimw2Yr4+5SzdwbfCxBUWBmPobmnIJfviS8ft6l6upHBxwpK92yYCuwCOEXieDTP1QH80Y/ml3Nf8vGPh8dsliGGLY2PPloIrxcfk50Uju0XPJu8K0sl/yrqvCedMDuI2707cyFgr5Vx48L8Y/MIw9ZLbIMIiL/NUjkxYtazjbor+/2op8nIkVlYu78B+O9n6mXE85vOkRzHbahzJPvPqCdR57Nd8wPC/sRTk87jnIfGzeFnSszIisNaEM40Zqajpm5cYRyn6fh6hxwSxs3OxuXO1tC5sInGCt+aenIx6inGNkexIjLss7U3Yj50eajflXrCMmPHZuFivYx0nuI6YDtYheNitk/afbjOdXzxfBSxiwrqpD/8xWaH0z2mTu17nlxGrR/uTxpXVUnvkdo4OeaZFeXhu2d5eb5rTswrLA9dUxDzpGO0+NymfCuxZ2WFVlDeJKx1U+zA1PN4kNK126pDX7i15Nel02DkNabLeMj7OZ+nz2keN7G5qbfotMvkPYe0GrnZaufXB3FVsylSH6SdN7cvbsyY/cCg/Fj22c9+FqeccgpmzJiBSy65BJMmTcK6detwww03YPPmzbjuuuv6lH/algIJ8OjPHsXSHy3FzDfPRFKSBGmeufMZTF3QD09fY4wxxhhjjDHGGHPAMCg/lh1zzDG466678PGPfxxf+tKX0NbWhpKSEixYsAA///nPcQwve+oDx154LI5cdCTuuvIuPPXbp3DkW44EADzy00dQMqwE0xZO20sOxhhjjDHGGGOMGYrYs2zoMig/lgHAiSeeiHvuuQe7du3C1q1bMXbsWIxkLUo/UT66HFNPm4qNT28EADz7P89i9UOrsfjzi5EkyV7OLo5XSYapy14bGsYXwmd85CP5mVx8cXh8xx1ZmPRB5dvCZEcdlYVPOCGM46W5wTJyIJSUsSbi5pvDdDxzyPr/Sl5rf/TR4Xkkvdy5KJNe3i4qt94s/wdCyeaaNVmYpU4AcJLUSW/47W+z8Ny5bw7ipn0xO65oyhebbZ+cCe6eFjUfb/Wsq5xjy/N52X1st26Wv0yZL9oJbtNjjw3jLr00C0+YkIUvvDBI9uSmrI83ixVhsau2uR+UTw7FiiWXXJIdcGUB4ZpzvRjLMu+6qxCsuE06IVXYhi9/OYhiJYIIWLGdwqwqUvXziRRWdUrjO9+ZHdCYAQDMn4+BYGddY3Ace3mo+qd/KoQXXHVVELeFZL2P089FbR3U8byvfS2IK+eOLbqc06i+qqunUDjMn+cRlZYsJZmYdi3mvvuycENDKONtphvacB/CuJzt3lXGFVPYGeAVckgQJXYw/2/cGMZxWu4HPJ0B4XPjiCPCOJbnqjSMH53cR/R5xfIXjautrcrCk6uCOFaBz+CL66DkhKrH4gvqAOBjnj9VpzRsWBYWCVZbaSa93CaTH1+a60plmDGHihyVG8aMCY9jEkS+Hb21mKwxj0mTwuOYDHPixCzMfVDLwU2q9RFT1vJ5eXIsvZ7OMXw8Tf6GzHLLWD/mOU2dGnqD5qFzZm9gxbPK6FQ2GcAPB73x55/PwtyxpRPOm5c9N3oju1QOPTQ8jkmbmZiKdNSoLKxjqL6O6meJPMVffDELb97cfeZA3HOEL6hyTe68lIdmwXWgcXysYy/P7kTT8e2o6wrfmj4n+gN+Bmob5rW9lp/Hss6fhx6aPXvq9Zexzkrh54Axg4hB+7Gsk5EjR+6Tj2Q7Nu3AtnXbUD2pGi89+xKqJ1VjzcNrsOwXy/D2f307SkcM+qozxhhjjDHGGGOMMYK/+ORQMqwEv/vC75AMSzBm4hicdNlJ+PmHf449rXvw6//7awDtJv+n/p/2zQR+fMWP8frO17GndQ9eePAFnP25szF2ytjYJYwxxhhjjDHGGGPMAYY/luVQMbYCF14TysUu/s7FOamBv/jeX+zrIhljjDHGGGOMMeYAwZ5lQxd/LDsAGFaS6dVVO84a8e07wq2jo9tRs8CezCdmzgz9hNhromTpH8P8+UALxp5lfK0//SlMF9urfdy4LDxvXhhHhhOcper8ufwxD4+YDxfTm23g90bMrmLZsiy8YMGsII49MXZtzcLqF8JeHOwZAYR+J3neLUDoeaTeHkGdqJFJxBOKPbTa5h5XCLM3DxDaVXCX0HLF0GIxzc3Z9uDT5oZ+URVXUKWwARUAPPpoFn7hhSwcMXxYL9fmEavV/xKFuTvqLc+gcOOpp4aR5GPYMvfEIIqH7BRE/FT6GfXuYj8e9QSce2bmR1glg7SGTqxZsqQQ1nrkmUnrv5G9G3XyII+TOer3xizN/FUWLAjrOM/vR+cRnm94zANh/ahnFsOWLDoHcJx6xRhg69b8uJifU169jpVF4+zfotaN3EdmNewM4rY0VxTC3FX1ecVjWf2tOv1Oga6PWPbm3LAh8wabNy/sxxU86etkyhN0zMiHO6UaeXH+0nm5jPqM4jEV+FLKfXJ96djgdyh+PqpnE+ehvluM2u7E+k8eZ50VHnP7ah3w/cQ8PGOeZcX6LcV+HvNi4rHB9a1xfC/ax/m8OdPCcQIUaV5KnDJfnnnBc7t3kyR7zXWpN244bUS+WY3jscINLO8ZFc1bsvDYsPy7G8rQU6ZODY+L9YfVdzI+T+dFpqU1exsq00Fa7Is3n6f2Oxyn+XMhqaM1iXUavyJofYwYkYVjnobcj7UY3PQ6x8SK3x9wufT3H36m5M25QNiNn3gijON3l4ULw99lqjrnf/0FxZhBQsnekxx8jJ4wusuqMmOMMcYYY4wxxhgz9BmUH8ueffbZgS6CMcYYY4wxxhhjjBmCDEoZ5syZM3H66afj/e9/P8477zyU7mUJ768/+ev9VLLe0dZcW1j6qmpHXgarS2ffdUkWfvDlUF550tvfXghvqZxSCOvS4pKnn8wOVD+VI+UEAJAsKljDq9vO83pi1afw3t6LFwdR9yzPpHNcLFVSsfIvtp15TKUa2xa+P2AJkEoPuFr12izDjG05zf1CJRB8nubPdcL1oWUMlpgvmBHEVTTQDUyYEMS1zM6kl0+TVIhVPUAoY1EZZrHSAC6jtjXXjy6fb+QOpDd+993dX+w3vwkO26jyVAbIQpAmidtC4fE5YQCYxhKmt7wliNs5O5NTqaSAt5efItvc70t06T4fv/xyGMftdsoFF4SRNPDn0HyjghOWs7ZIXAsNljKdm1h2y4NNdSY0KU8WtTjfG8/dMRmdxnEfV/kUx3Hf1XHBRS5WunwwwU2vdczzhT5jOY7D2o/50abzbCBrXxJKvWtowt64MZtbd+1C0XDf0vmN47hfaB1UVEYmWq481RxyRiwniz1spJCldGm97zxlW0weFHt+sXJL3xf4PB1fnIfGxaRnebCcT/PXtskbz1oHsfkh9hzla7PUTJswR8nWJU7lZRWlLZQum721nYL7ZG0x0NWmoxhU784VNn9+z/MDMGE4PbXlPSP3hQoA1qzJwqq1z9O9aQNzBUnnra4N3/+LQd+1XnmluPO0X7AsOWYHUNa8PTvQiZbrK+ZFwOhcFBukXJdUd6WlgdlMdB7haVBV5gz/OhQbQyvkfS32jtDYkH+9YuHfNWK/Z3JY36Vj8xTfWxffrs7nS8mgXJ/TI+xZNjQZlB/LfvCDH+A73/kOLrroIowfPx7vec978N73vheHH354t+nXLF/T7c8PFBYufN9AF8EYY4wxxhhjjDHGYJDKMC+//HLcf//9WLZsGd7xjnfgP/7jPzB9+nQsWrQI//Vf/4W2tv1nZm2MMcYYY4wxxhhjhg6DcmVZJ3PmzME3v/lNfPnLX8ZPfvITXHPNNTj//PMxceJEXHHFFfjABz4w0EUsith2s7GV3cxjj4XHDQ2Z9PJhUkyyNAsATjgh27Wk8czqMJLX7eqyeF5DzMvDeftFIFyTr3oClj7Jsuk8aWSxcgIgrDutX96UhaUZ+0KGycvdJ4scjq+nu1DmLWuOSSxiO13pRjQcV6wERftPBScWfWXZikziO2daA+VfEaSLyYiKlWHyvek5rFiYUidCvTseysIq2+DdMKkStstArKIGHi/6LM5xC0JqKMzdosstjx6dhUV6kCdxAbq21UDB7aEbWAXtrWv+uVPS4BgvOmSur7BnAWWsl1DtE3cMnpsi6+g1Km83zNhOWrGdLHWnvby5KbazrelKTKLGxJ6xHKfpuJupRI0fo6eJnIx3wyxWvhHrW/qI5WcKP4rrq2W3wRVNWVgtF4qVkOXt6geEFSaF5KS6Wy73c85CZbAxuIhcVyr5jL0HxHaY5bQzIrtoMitXhsf8DNRpkOG5Q8vEba1x3Paav+6u2knsdU37eOz9oaU1ey6x+k6VeHx8XGw70mLRl63YltnFEtPpxfRr2rGLyTOyrWtbXX0Q9RS9xpx0Qv6lmNgr/ZvPzD9PbUDyJOPaR6omU8eIySTzHqoap4M0JmHlTk4TyRy2ggGwa1fWV9W1IbZLJB/HVKT8+qa3xl1+XzzfY3mW5zSNdsG854ke1+xYHUau3db+f0/8BYw5gBjUH8s6aWpqwuOPP46mpiaUlZVh9uzZ+OpXv4orr7xyoItmjDHGGGOMMcaYIUhs4YsZ3AxKGSYAtLS04Ec/+hFOO+00HH300fjlL3+Jf/zHf8SaNWtw++2344UXXsCiRYsGupjGGGOMMcYYY4wxZhAxKD+WfexjH0N9fT0uu+wyjB49Gv/93/+NlStX4h/+4R9Q27F2fOzYsfjwhz88wCU1xhhjjDHGGGOMMYOJQSnDvP766/FXf/VX+MAHPoAGNXoiZs6cuf8K1QeGD8/8IVTKz0s6Y34qTz8dHrNnBXsMqCcO24yMekPogzBhdnV2oIL3uXOzMJsTHHZYmO7kk7OwmmBQ+zy5IvRbYpsU9ieJbcWscviYvQFv9z5mTBZWT6X+gKtKdf5c/hnVL4WR3OB1WYNumRu2E1txqA8Cew5oHXD9sL1H42Tx9eJyLFkSxl11VRbeujWMO++8LExbtc9YsCBIxh5msfaNwe2peZQ0kz9Pk/iW/OEPWfj224OoR8hIpuKXvyyEH5drT6MOukri1lO4XuLY0mMKhbvY45x5ZvdhAI8/nY2b2Hbg+5NifZ+AcG6qrAy3cW9cvLjbE2vuvTdIV8OTH/u7AcEcA30e8LzFlaXeNtS+ZU3PBlFz584ohHnO1amO/eN023keo+rFlLdFfew5oT4jBpg9OwvrKwPXnT5H2UeJ61zHGre9yjB4Tt4prnqcP9vqiDVhgLY9+zWqNRLbSHJ3r6sLy1HDkTFjPoVvnD0BtRPyTuUyDpffmYVjdmlc55s35xdJ4Wc6F0vrqthnf0+qJw+dm/P8QxV+x+mJR2vetRRuTh4zQPiepM3L81vMzylm+cXPhrbqmiCuBL3YtCtmXtofxDzLemt6x+NQzmmpzd4gNsg4WbeODor0LNM5TD3kij0vr6/poxjI3lUa9UWYfzHhdtMXBp7s1FSM21cNevlBSg/n7c3h7x2xeYXvU33+uKm4GPqs4fcdfUfgVzt5Re4X2C6T/emAsJpj/YDnGE3HdTBrofgFdrZp3guNMQc4g/Jj2dq1a1FWVrbXdLU6GxljjDHGGGOMMcb0A/YsG7oMShnmxRdfjFtvvRWv523jY4wxxhhjjDHGGGNMLxiUK8uefvppnH/++aipqcFFF12ESy+9FPNJ5jXYGDYsW6UaW+IfW8k9YUJ4nLcUWJVIvNS+bJvIAFfQemtdDp1XGF1mG0gJw72kW2hZtsoveDk0S1K0fngFu8oouE50efX+lKjx0mVdwh7IMOtENsCJac1zjazRrp49vhDW5dXcTCrR5LgpdSS9vOOOMCE3wN13B1Gtd91VCJcefXR4Hncu2qJbJbe8nFu3Gy8WVYAyu3dnkqO6hhlBXNkb35gdSKeo/9OfCmFuNp00WZgqIwg83BoljtOyyKTLyOIBLOv614psjInNF/sSVb/wFKDjl8e9ntc4j6QaPKGpvoPlGIccEsZFZPq50kudHDh/mahmkgwzJnnmsadTaUwWVeyW7tzWsfwOVmIKLG5uXYzO9cpSdZWg8HN1sihQAlm76Dxn0AXHjlWhdgZLBvUZwgqmjRvDOE77yiv5ecydmz1DGmaOD+IqeFKOabf4xqUTttC8u7YpzIKlSbHncmx8MVr/3KZ8K6oEY+UWy/qBuB1Ab8abyqxiKnC+b547WPqox/q+w3novRQrAeX+o3NYTF5ZU5093UqnZX+f1/rncpQ8/WQY2RtLFX0Z6g9i3h5csTHPC/0jP6flhpLBUNa8vRCeMjl8uDc393zdg/7KVOy7lzYFz5ERFWnYL4pV/Wih8qwTNE+9ONXrxl2Z3cODd4fJli7Nwqrk5NdgLT7PF1xElTLz68i4cWEct0fF2tDuoctg6QVsB6NjlB9LXK063cfeY3i47dgR9seGhvZnyq7X/XJiBieDcmXZk08+iYceegiXXHIJfvGLX+ANb3gDpk+fjn/5l3/BqlXqGmSMMcYYY4wxxhhjTHEMyo9lAHD88cfjqquuwtq1a/HLX/4SJ5xwAr70pS9h+vTpOPXUUwe6eMYYY4wxxhhjjBnCdHqWDfZ/piuD9mNZJ8OGDcPZZ5+NH//4x/jFL36B+vp63H///QNdLGOMMcYYY4wxxhgzCBn0AuKVK1fihhtuwI9+9COsXLkSEydOxMc+9rGBLlaPqKzMtO3qK8Wa8ZifR7B1NEJ/CbZEUK09+2OMGhV6lUyYWZ0dqNEFG4NEtp3fXj2lEF6+PMxizS1ZeOXKMI59WLjM6j3D/gmxncLVSi3PC2hf+Dyxb4HmH1hbqBHOmjVZmI1dJJMSutEZvD80ELTHzurQK6yinJyyli7LwsuWBemCziSeO9soXBszQ6GwtmHezuk9gf3qtBixHd0Dswkx/uNstlBYd9Zm77HxEscOaceJSUXbyy8XwiWnn55FSBvuvOJDhTB3Az1WL5GB2gxY7TW4W2sX5/KrxUx5eU0hfNqnP51FXHBBmPDee/MLw3Ve7IYwasbBHUgKWUPzYM20hvw8qeNt2Zb/Nyrt/zEbHMaeZXG4T+7aFcaxH5j6XfHjjNtGpsEgrkv980M9MkdyGWlqANDVg4phSz29tzw/Kh2H/B6gf1luaMi81Kr4nQAIxkpbXZZO31VWUH2pJxeXRa+tPqSdxOa2mGcZx6mdIXsU6ftCzqMMQNzPLA+9dllp9iyurg7nhxEjsjC/5+lzlOtObR15flAvJr3XTtTTivuWlp/HUJd3KOr/Vfxzbezyfn75ihnc9hYey9GXOaFY0zjurFL+tsqs9vT3hN548Gpxi333jfk/xuYYprY2fFOqmZnzkh/zJdPndMTUsKU08619jcoV+51B75NfJXT+4VdHHk/HzW0L0q3fkI1tre+KFY9nB+SXC6BfPMvmTM7eYktLa4K4vDbVn/NcFJsjtWk6+4JXLZnByqB8rd66dStuuukmXH/99ViyZAkqKipw3nnn4Zvf/CbOPPNMJEky0EU0xhhjjDHGGGOMMYOQQfmxrK6uDnv27MEZZ5yB6667Du94xztQUVGx9xONMcYYY4wxxhhj+oFOzzIz9BiUH8s+//nP45JLLsHEiRMHuij9QpJkS1hjS/pjKiKVZ+XJd3Qgs6pI5QvTpmWyvVkNEkn60JbaTH6hS7uX3ZdfRl5hreXKkxXFVrprHqxi1CXDsW3i+5s8GQgAlDTvzA7uFJ0qa29Y56AaHW5sWbbeVk4fkaV+2siykKWc0HHFOp/YGnxdOn777d2WsZ73sAawc/L47pIBKP7BU1VJy927bLlOmoUN28IT77wzC99wQxDFrcE7aK+Xa9dTWNVBLNqbJu1WxXUZ1XFlaH3wsUozOG6ObGG+L9FyxOYfbu9YW7eVZnNRiQ6i6dOzcGxsaN/Nm1BV+hHT8dJxUMZNL4XpqBzV1YEYKZgDSuvy/+jDMihWRgOhbF3nuopeyMSGGnmyeyD+TOGm5zDbI2icymu2VWeSl2nTQvkL58PSlddeC/PgsaH5c9vrs4yPWTrX9VmfhVViVNVKIvS1+TdeQhVbIWOtsjJfeszlV+kWH3P9xNpMpags++T8dKpgmZVOFVznOj1wXGNDfrmYRx8Nj8eOzepHZar8aOApS/sBH+tc2tiQPR/bxKqY07IctLw8TPfqq1l4wtiWIG57M819rWEcywe57l6VdtpMD8tZ6inQG7ST90arqHDH0/z0wdfX/KUT8vuz9hF+jy/2WX/ffeExj40zFuafpy4dTOxdN/Kamv/LQMwSQeP4WCb5MjpurKulZPnPW51j9HIMv57za/vGl8MxxO2k4/e4crogv3P3F3RDMSl5zNKB47T8LEU9+ugw7pBDul7HmMHEoPxY9olPfGKgi2CMMcYYY4wxxhhjhiCD8mNZJ4899hieeeYZNHfzF6N3vetdA1AiY4wxxhhjjDHGGDOYGZQfy7Zt24a3ve1tWLJkCQAgTVMACIz9+WPZ8Scdv38L2EPa2nK2fDLGGGOMMcYYY8wBiz3LhiaD8mPZpz71KWzevBn33HMPTj31VNxyyy0YM2YMfvCDH+CBBx7AjTfeGKSf9+l5A1TS4nji/71Q8KVQr4xi/bp0K2+2T2DPC12E9zRt6a6eYk89lYX/1BBq+8eNayyE15L3gerYOU+9NttSqN0Dx3Ee7G8ChN4NMR1+sdulF7t9dk+YgtXZwXV3hpF8c9dfH8aR+UEbGYaU6J7u7NkklFDHqOCOAAAr6Nq33ZaFZfzgoYcKwVWS/z0UniwNPOdb3yqEx7M5z5veFKSrOO+87EDKuGNH5vlQU418uANpZ+JO/uKLYdy11xaCz8oAyPMsmyGX5hLXSBxbNFS9/e1yorRHJ9JZK5bdXwjPnHdKEMf9Xx/SW7d2n/2+RucRLpd6PfEYFSu7IK6kKet5bQ2NQboSnizOPDOIY88Q9YHK8y0sO/TQMCH3J52gqQFKeMJ84okwHZkNlYweHcbR2K7SiZyuV3XssYXw7vL6IBlbnOxrD8bBSNmyP2YHOj/QnDDlyCPDOH4gbMhMfaoXheOQ/WxifkIc1vNiz2n211JPLo5TLzsufswfsNNTBuj6HK2qo0winpVt5M2m43w5TaZLl+bHqS8Ql5PrRIvBx/ps5zz43nQ+YM8yhfPQ+u8N7HEE5HvMKjzOY/6VXfKgyBKJLONDaoAKacQKNrbrYkyZtf2WHWVBFLcbv79p/YfjJvR6mjWzDT2FvXSB0I+t13BHi/hXdonjSlDjJhqkG3dl/m6bm8Jk7BWmz1j2533P5SgKfi0Ciu/X+grF7chtqGXk7qTz2+zZ2e8XDQ1TCuEyfSGP1XEsjszUWkqza8Vs52LZaxPqY7uTCbtXhz84Ykp+3Ge/koV5UgSASy7p/gI94eabC8EZCxcGUZVz6fc5akMd5uyZqHM814+2fSf7worNmP1BvuvqAcxvf/tbfOpTn8L8jo8GkydPxsKFC/Gf//mfOPPMM/H1r399gEtojDHGGGOMMcYYYwYjg/Jj2YsvvojGxkYMGzYM5eXleJX+Mn/++efjV7/61QCWzhhjjDHGGGOMMcYMVgalDLOurg7bOpaLH3bYYXjggQewsGNZ6QrVOfSS5bctxxO3PYGSYSU47MTDcOJlJ2LVfavw8E8exta1W3HeV87DuOnt6/ZfevYl3PvNewG0+6cd/87jcfjJhxd9rddfz1a/69LfmAKI0fM4LS81VokIx02aFMbxUmNdPpunINOfcx66dJnTahxvO81l1nLwUmBdsV2stIFRmWe/wI2o65O5v65bl5tFCe/FfPLJYSTr10TLxtu265LqKq5klnbqenxK13jLLUHUkxReL2XmJq2l87p8oed7kw5UbLsF+h1dW891LPW/mo4fkSx5lTmXaoqk453adauRoE5IzgoAIFldoG24994w3WOPFYJli0LtxNkXXFAIP7m2KojLWwq/r+lmv5VcWNlz3OSX8jO6NZMJl+ie9MymTcHhBNJHrC8PRbIsH+Ghd9zc2UE6nmTWI5T2VGfZo6J1e365+GJaQcWaXNAEt62puFMAoD5nrj6o4ImEJDkAwvoXPU1LZdZnyihu+ZIwC35GSRcMxqE+o3ja4ueVztUsEVRLgYkTs3Ds+ctjTYfQlGrqu/qScDcdq06S6rWELl4vBVm4MJP5aPVzGVXa89xzWZibSeuYn9s6vPIksrF3DpWEc/4bN4ZxXK45MnXkQYooAGG/UPk8d0nuByr94vvpYifBHUpuvK08k6WVcJyOBWTyytLqcC5dS48lfWbz45fbV7sZt9NsqcdZM9Fj7rsvPJ42LXvzmDK5d5LM7SQ3rUJkvtdKiM3x1JknNGQN99pr4ZtSzGmCHDuKhl0DgK7S4Dy0/3OX4bHH0m4gHF/avjMaWrID7hjaSbgeI3NRl0mGKqyMCtwofXzbthIKh1mw3F3nqbU5U+TcueHbIqsrL7ggjKvnSUcnp/6ALCo2jgivvezhLMxtGFPB6vzDbjAzZbxWNG8BAJSXDm1DrzS1Z9lQZVB+LFuwYAEeeOABLF68GJdeeik+97nPoampCaWlpfjhD3+Ic845p0/573l9Dx7+ycO46NsXoayiDD/+qx/jmHccg7GHjcVZnzwL9/5H+MtszWE1OO+r56FkWAl2btmJmz98Mw478TCUDBuUC/eMMcYYY4wxxhhjDloG5ceyz3zmM1i/vn3Nxic+8Qls3rwZN910E3bu3IlzzjkHV199dZ/y37VtFyqqK1A+uhxbVrd/ES+rKMOIyhHdpi8dkVVja0srEiTdpjPGGGOMMcYYY4wxBzaD8mPZ1KlTMXXqVADA8OHDceWVV+LKK6/st/zTthRIgEd/9iiW/mgpZr55JpKS+Aewl555CX/4xh/w6suv4vSPnt6jVWWvvZbtTMNSCaDrct88dOln3s5XKuXkuJEj8/OPSUvIMq4LvIxX5RF5O3XpcUxewPejEhTeuUXvjfOcMY2W5Ov6dvTD9pi87dAS0e9QA+/kAgOoyFvXfPzxYR60g9t2hFI8RJbul1Zn8osKXlN9wglhQq5k6Wgn/vKXhbDKGFmCyOLBaSLlLGMJqOhfWlvlfvLgOtal+6x5kfpvyikjAPBK8uMoPEN3H73ssiwsGoW6u+/ODi66KDyP65m3utJtqu66KwtHdNqz3v/+IKq1NdyVbH8Rk4srwVJ+HRt5Wu/IjpEat3ptNg+rQp+7ModXNYVzdzntPKl58HzU0JD11RrdUTO2FVhMt5qzfVRM5aPyEcswEfYl7aDUiOubQ3nZNmq2urpsPGkd89yqKnZuK31OcxxP8fo8ZFVRbCc2HRrcP+srSTamN7B0RX6cHuddgF8SpINW0fHMmaEEiOtON4HjocESRB0yLPHSsfGnP3Ufp3JHvpUuz0o6T6ujJ7LzTlQiz22q+efJ47Qbcx10mYM3UKZSQSyf5Q6q7xKtdJ+x+Ufrgx/Hxe4M2x9SJn6kAmGdTIko+WNwv6iCvisSsRdalQjSs6EN+TJArkf9vSD2Dp6H7pxbrPIvJqPm+tF3bh5fXWTCPHfEGr/L+znBFRb7RYcHn3TW2bNnFcLaP1mGGdt5nMcrnwOEz4b62pYwMqbX7w+4TiLPKH4OjRkTpuOdhvX1rL58S3awQt7BO7dr1S1wjRkkDMqPZcyOHTuwefNm1NfXY7juGd5Hjr3wWBy56EjcdeVdeOq3T+HItxyZm3b8EeNx4TcvxNY1W3H3VXfj0OMPRWnZoK9eY4wxxhhjjDHGdIM9y4Yug9ZU67bbbsNxxx2HMWPGoLGxEX/q+PPhFVdcgR//+Mf9dp3y0eWYetpUbFq5ae+JAYw9dCxKy0ux9YWte09sjDHGGGOMMcYYYw4oBuXHsltvvRV/9md/htraWnzpS19CmqaFuMMPPxw//OEP+3yNHZt2YNu6bQDad7usnlSdm3b7hu1o29Mu5Xv1pVfxyrpXMHrC6D6XwRhjjDHGGGOMMcbsXwalTvBzn/sc3v3ud+N73/seWltb8fd///eFuNmzZ+M//uM/+nyNkmEl+N0XfodkWIIxE8fgpMtOwvMPPI/7v3M/dr2yC7f/8+04pPEQnP25s7HhqQ147F8eQ0lpCZAAC96/AOVVxW/9y0s3R8geAjGrA0a9zvg81tPrElGW+avXSp6nD9DVs6ITtdjhMqufCm/fPaUuv2Arasd3fzGE9k7q8cAeHux3AgCNDeRTpnuMMwsW5McVC5sfsIcVgBbyKRMHA1RwI9K2zzjrrCDdzsqsfjaIVYB6DjDcpm11mS9TScwUZ3T4EXg8NUD1c88FcewuwTW8TcpxCpuLiBlHTTV7SkQGwA03ZGHxvlpF5WqS0+6h8BkS10DhKVwHl1wSJjz99CysRjhcl+LHFhzzgFKzFaqT5p/8JMye+5b4dMw591w62gceGDmolwX7qWjXqt9ATne33ZafEU+M4jPSMrmxEF4hdm/s86I+Qdz/uYwxDyLp4sG8wvPPwoVzgnQl7EGi8w37sOjF2QOPJvm6ullBMj5tX+w6P+ghT5yW2vogqoweUjvEC4itdLiO9VnD05b6e0asvIJjzj/m76nvAfzsD55rmtGKpiwcM0TSG4j5BPGcM2xYfjqiZmZ1cDx5cuaNpdMn1ysXWYsf8+zjIbRuXRbWOmY7ncniaZVnzdbd9YpB5xF+b9Jy8b3xlCgWp3E4k7yXNyC40RXLcqO6ZBGrA25DnoOfeir/nDy7yp6g1qXF+v/G4DzqZ8tA5DrWSThWQXReSSu/BYaeo7Fmy7G2jKLDuljvvdjcxGVU2zA+7uKp17St+4LFJtNYwWL1zXnIZFpGb+Exz1ctxosvZuHNm/OLwf3nkeVh/sfx7xqxxu4lz27I5lkdCzxWeOzFvJ6jvoh6452VMsQ1ipZhDl0G5ceyp556Cv/+7/8OAEiS0Hh/7Nix2MyzVS+pGFuBC6+5MPjZ4ScfjsNPPrxL2hmnz8CM02f0+ZrGGGOMMcYYY4wxZmAZlDLMqqoqbMr5C0NTUxPG6TIiY4wxxhhjjDHGGGOKYFCuLDvrrLPwb//2b3jrW9+K0R2ysCRJsHv3blxzzTV461vfGqT/9d//vMfXGFVR0qvzesOIZHxhNXBsZ93YCmTdaXjUqO7TjR0bHvNq35hERBUWujy3GLqWP/tWW1oaLkkeNSqTFrKUUMvPS4Z1WTDXSRdpUmypd3/DEr7Fi4OoMtJ7lGkhFy3KwrREe/UGWR4ekWCNLtI6L5AAoSaIK63LjqsuEb0vlX/+974XxpGsbgXp3EQoFO5VvXx5GMdrmi+4oEu5O3np+usL4UckjldFL5W40zislfXBD2bho47KwiecECRrm5atKtUl2GXTp2cHokNetTZrx7r5mQi0QhuR6rj83nvDuMNppatOAtyv98VW5Dmo3DomQwNoAMvYCGSqVP7tpWH/XEFdRqUlfL3YlveMziM8No7M3xA5gOXh7XlmUtH6C0RjpHohhuUMNE62NYXJ+L61jmuq87M/aKC6Y+UyAFRWVuXG8XiOqRH5OaT9LPaM5ef0K690n5/mqRLB4Hoqf8mTJsU0V7EHqd5AFy3OXn7eDXw/+ihmiWlsOuM6iMlg+LY13SGHdF8mIC5tLla+xhx7bH4eaofB82nMWoLfkyrKuzxl88mRaKrMk5te607tQxjuClz+WDtp/feGCRP6nkeM7c3he1hlZXZcom853IEiY6itNF/6F7Nh6cFwKzBvXs/PAcJXISB8J+d+rO8B0TGaN8fo4IrJE9lLIfaw57BO6jTJTJ4cyvV5XOrvaXl9WecNntf1sc8yzDaxnunSn3oBv1rHJNwx6x9uporW7WEkT9DcFkBWQeQvbsxgYlB+LPvCF76AE088EUcccQTOPvtsJEmCL37xi3j88cfxyiuv4NZbbw3Sr/nhOwamoEVy7v/3wkAXwRhjjDHGGGOMMT3AnmVDl0Epw2xoaMAjjzyCxYsX44477sCwYcNwzz33YP78+XjwwQdRX1+/90yMMcYYY4wxxhhjjBEG5coyAJg8eTK+//3vD3QxjDHGGGOMMcYYY8wQYtB+LBtKDB+eacPVe4BtRmK+GQr7n8S2zI4tGeXrxTzL1GODGT48C8c8F9Sjhe2j2PtgwrhQu7/x5WxxpFpOBZr6JjEIYAH/DTfkF/Lcc7svcE/ga6lHAjfwEUeEcWTcsWVH5mXB21QD4X1rH4lZPOTtJh/zfdLFqFXccGwwAwBTp2bhZctycgB2fuYz2bUlbvx735sdRDzLxlM5XpIOv4rCatPRwAfz50skxU6cmIVlkHJ9qWXQFGpD9Zprauo+jzns4QaEBi48oICwb6mRD5tisP/aPqZi2f3B8ZTAqEYScyWoYRF10LbqzKfsqYfCZCtXZuFY39W24WaM+Upt3ZqFeV7VtDwP6rzKx/V1Mkh50EbqIPRvqQiS8X1bBtAN1FBqp8Jo3eU927Qvcf1rH4w9t7kP8nSjefDUqn5OVTvWZwcx0zUea3qjekN56AsK58NGOOo1xMcyP1dNztqmoSHs11ysmGcWP7Z5vCp8nvaDmFUSo20T87LLQ4d5zEuN5xwus5Zx9+4iL64XoBtvo6ezbirPjx71POIyarm4ufmRpJ5NMVuv3sDPBaB4/9YYPIT0ccuecfqWM2FsdSG8ZVsYV0MZcX/XfhXrI70h0g2iaD3yfXMeWj/8O0T0WrGHMaMTK1eQxvEx37hWAlV6qZSf+7+expfmcahjIfac4Ey7eN/2w3go1luR59L6OvFK40z0dyoe6Po86Tzes6e4QhhzgDGoPpb98z//c1HpkiTBP/3TP+3j0hhjjDHGGGOMMeZgxn+sHJoMqo9ln/3sZ4PjJEmQdrO7hj+WGWOMMcYYY4wxxpjeMKg+lr1Oa79bW1sxcuRIPPjggzjuuOMGsFT9iy7Pjy7bJWJLqnlZbWx1slLssvhcpRC6yjeZ2E72L7+chXn58/Dh4RJ2jutyL81UaJWPsOaFpYS92YN7b7CGRivyzDOzsOhrVmNKIbz26ezn2ta8LH7UqDAuJi3h42LTqaR39uxZhXCZyiTnzi0Ep11zTSG84667gmQVdAOrRRvT+t3vFsL13/428vgdFWyVxDVSWLtx4/Tp2cHFF4eRtJV3oCkQfUE5ZTpiRJhFW3kmK9KmzxuXLDkEgBKWAuuA4kHEUtFuyrnf0OvG9oxn6avsZb9qQ1Z325ZlP1e5EQ9ZvXRpZArIk2FqHtw2MSlPbAzxvP748nAOa2jIxnmVauyofbe3VnT34y7XK1ZucTCxfUdW56+9FsaxMkSfv3nPR/059xnt4hynw3fs2O7P64mcvmjZEk9Omk4fHHnEXiA4HJt7IjcXe4/h03Qsxy6XZ/8Qm481Pz7W8aVzfjFomWISO5a58fwTm8+6vCzmeS5IXAnFlZeH8xTXQU+kxnnd4pBDwnT8Ltcfj64ejaFeEFtBom4J0XLkFCw2FvSUnli0dKJDPlZmRtuGLVl4LtUyxmSMuTenmcR+oWBiPghMRCcZmwNi8z+/wsbaRZ/hG4dlG9NtFjX9LHHm6A3FqlSj46TYZVPaTp2TZJIUd74xBxiDajfMYcOGFf6Vdoxo/hn/M8YYY4wxxhhjjDEDT5Ik70qS5NEkSXYlSbIxSZLvJUkyrgfnX5ckSZrzr4vBdZIkI5Ik+eckSZ5PkmR3kiQrkyT5dJIkRf2ZYFCtLDPGGGOMMcYYY4w5EEhTe5YVQ5IkHwXwVQB/APBhAJMB/B2Ak5MkOTFN09di5wuXdvOzP3bzs5sA/BmAHwB4AMDJAP4FwDQAl+/tIv5YZowxxhhjjDHGGGP6nSRJagF8HsBDAN6Upumejp8/BOC/0f7x7F+LzS9N0xuKuObZaP9Q9tU0TT/W8ePvJUmyDcDfJUnynTRN74/l4Y9lBwAlJZmkW/XixfosxLTxrKdXn4u8HZU1LlaumF9OsV5YCl875mXBZS5pbQkj2YBGzWieey4LsxGXmnL1B7femoWffz6MY+80ubm6mZmXUayu2NOEPXAAoATZ1s/qQZJnDRHzferRduMcOTMzXdggnmX1ZPJQh5BfU/gvIpfiWe4UiXszedK9pO3LnlnqF5VntiKDrblIL0FVh+f5HGlbl0/O+kHJsceGkU+TmZ2WP2ZyuC+RDtRSmnltle14KYwrr8oOSsuCOPYtVJ8ypjfzFJBv06RzKVlldiHP90yvxVXC4xUAqlq3ZAdLng4jqb9WUT+uawh7OZdxX9guDna4jqdNCz0Bud2K9WJSvxlOp3nE/JdiPlAMx+m1KyePL4RLNBNOHOsYxZrWqEHXuBzVRJ3M5JRnS219EMWP5rVrkRsX8/UqlpgdUrHWb/1B7Nqxe+O4qC1TzBdLO3VOpqNGhfNxsfUTK1fsvP72XdR5u7+9HIu9FwBoqczqUscvu+Fwf+fnHxC+muowjz2j8lDvxmJ9z/Te+H44rGOZ0bqbPTubE/idNfrCGRsoMVOumPkYHcds/2LFYg+3nozzjRuz8K5d6Hf4fUf96WK/BwbEflGImXN2d745WDkXQAWAqzs/lAFAmqa/TJJkFYBL0IOPZUmSJABGA9iRpmlbTrLOXx+vkp9fhfYVbZcg/DWyC4Oq565alVl37+lwkly3bh2qu3kJbGxs7PIzY4wxxhhjjDHGGLPfOKHj/we6iVsC4J1JklSmaVrsX/tfQfvHspYkSe4B8Ok0TR/s5prr0jRdwz9M03RNkiTrqUy5DKqPZdN557oOzuWd4og9vC2LMcYYY4wxxhhjTD+Tv7hpUFGbJMlSOv5Omqbf6ae8O5eRrusmbh2ApCPNs3vJZwOArwF4GMBrAI4B8BEA9yZJcnaapnfKNZ/MyWcd2j3ToiRpmu4tzQFBkiTpddddV3T6yy67rPM8pA/+9V7Tb9i8Ex/56v146KmXMWL4MDRMHI2r/u5kHHPJzzHzsGo0t+zB6Irh+JsLjsJlb5sBALjutmfwiasfxKRxo9Dc0or3nXckPvrOOQCAr/74cXzvv55GaWkJxlWX4weffiMOmzi622u/7+tN+H/X/6boezPGGGOMMcYYYw505p14IpYuXZoMdDn2FUkyL+3eW36wMezhNE3nxVIkSVKN9o9TxfKNNE23JEnyPwDOADBMZZNJkvwzgH8CcGyapst6VOT286cDWAZgfZqm0+nnewD8b5qmp3Vzzj0A5qRpWh3Le1CtLOv8ANbfpGmK8/7+d7jsbTNw4xfOBAAse3YTNm7ehamTqvDo9e8AAKxatx3n/8MdaGtL8e63HwEAuOjMRlzziQXY/EozjrjwJlxwRiMOnVCJY2fUYukPz0dFeSm+9fMn8ffXPIibOvI2xhhjjDHGGGOMGURUA/hMD9LfAGALgJ0dxyMAqDtfp3veTvSCNE2fS5LkpwAuT5JkRpqmnavTdnZcrzvKi7leyd4SHAzc9fB6DC8twfvPn1X42dwZtTh0Qmhg2DipCl/9yHx846fLu+RxyJhyTJs8Bi9uaq/z0+fVo6K8/Vvk/NnjsfalnuyEaowxxhhjjDHGGHNgkKZpU5qmSQ/+reg4dX3H/5O6yXYSgJTS9Iamjv9r6Wfrc67Xec3uJKEB/lgGYPnKrTh+Zu3eEwI47ohaPP3Cti4/X71hB5pb9mCO7LQFAN//76fx1pMP7WsxjTHGGGOMMcYYc8CQAtgzBP7tUx7q+P/kbuJOAvBMD8z9u6NTfkn7y+IhAJOSJAk+xHQc1wNgf7Zu8ceyHqIWbzfduQpHXfwzNJ7/E3z4otkoHxEqW2/4zXNY+tQmfOKSY/ZjKY0xxhhjjDHGGGMGnP9Cu/zyg0mSDOv8YZIkbwcwFcCPOHGSJLVJksxMkmQM/WxUkiTlEJIkORbAhQCeStN0JUX9pOP/j8gpncc/wl4YVJ5l+4qjGsfi5t+vKirto89uwpEN1YXjTs+yB/60EW/7u9vx1lMORd0hFQCAO/+4Fl+47lH84Vtvx4iyYTk5GmOMMcYYY4wxxgw90jR9OUmSfwLwFQB3JknyE7RLIT8G4GkAV8kpH0S7N9q7AVzX8bPpAH6TJMmtAJ5Dthvme9C+NC7Y1TFN018lSXIbgL/r+Oj2ANpXtv0VgBvSNL1vb+X2yjIAZ8yrx+7X9+C7tz5V+NlDT76EFza8GqRrWv8qPv6NJfjbC2d3yePkoyfg0kXT8fUb2/3MHn1mE973xXvx319+C8bXjNy3N2CMMcYYY4wxxhhzAJKm6ZVo//hVA+AbAD4A4KcA3likBHMDgDsBnA7gswCuAbAYwE0Ajsv5+HUhgC8AOBPAf6B9R87/i/YPbHvFK8sAJEmCW770Znzkaw/gi/+5DOVlpWiYWImrPnoKVq7bjmMv/TmaW/ZgdMVw/O2Fsws7YSr/8K5jcNy7foFPXT4Xn7j6QezY2YoLP3UnAGBK3Sj891cWdXvezl0JVjW1f7dsbg7j1q7Nwhp3zuJs19Vf3Bp+9+S0w2hR27hxYR6l1ANaW8O48i6LHLvPc/fuLLwj0s1ffTU/7v9n79zDqyru9f+uEDYhhBBCICEEDBARERA1KFpUtFhRsZWqp9ZK1d60PW3V2p7W87PWtvZ67NWeWltb7dGKViu04t1WrCiooCiooIARAbkTIEIIIev3R3b2euebrMlO2CEB3s/z8DArM3vWrLmu7Mz7Tk/zfWJxcRQeODAKD8nbEl9Ie3OuvKoqN24JHdJwxx0t5wcAr7/eYnnbxIc+FB933XVReNIkJ2pVdX4qXF0d/TzbjNqSkihcUODGZdVGh3w05OQ6cdzenOe6dW4eXK22D/L9ioztX252XXQxZ04qWHfmmU66RRS2ro4cd+PeeC39PdQhJ5m40s9/PrqYbE6kpTrfkj3AiYobG3nuuR9Ondgu6Oue/DkO2/bluHHj3Lis2f9oOSHg9vmvfx37jaeecq+50HYcVkanU2+pducwHqK+/s/Xdvj2oPNvbPfhtL48uFp3mbN7+vZtOQ8uL+D2GZv/kILt0cUCY53AGdHDbDnxHCcZT3V2Hj92XAMOeage19Y29xVtYvly97pHzPlJH5jzenzjnNvetg3HcdjmUV7ecjoASFRviC64IwBu/+FMu5md7ryI2xswNs5O+q39HEBdnlv/XCy79vA1152d6vh2duxxm27a1PJ9AXcto2kJgDu2OQ97vy9dmd5Y++rV7ly3Z08U5qYA3PW9oiIKH3WUm+7ww6NwYfZ2N5ILbduQOy/FvbzILaOvjrkubRxPaVwM29a+Nfb/7mz7HPbF/3TLz/XztavbNyfed3+U55gxbhz3H9u3uO7sc/PnuH54/QPcfmznEb7+4U3pPdt/fcutH67zG66Pz+O3v3M/x91n48YoPNjYNHMdcJ8G3PmNyYenH1u449n5hwtp30EYqoSd5aOcKG63l15yorBtW8tFtGs9j3N+dwCA0c33YKQ4acK+r+GPPBa1mx1fvM5xWxQHGxCLbQu79jBNA8JODgclHe75dVAQhuGdiHaK+dLdiMYvxPhn6wBMb+P9agFcn/zXZvRlWZLS/r3w1x9ObvbzXf/+bOxnLpt6BC6bGn1xVtq/F9Y92th+T/3mnLiPCSGEEEIIIYQQQoguimSYQgghhBBCCCGEEEIk0c6yLobdtsvb/638iLGyBN4Gzlu07RZ/nwwzToICAN27t3xvn9TMlp+3Avfu7cbxtSMt3FTtJuTt1rYS+Npu/6Utww20LTvL6lQzAVeWrYT33ovCZltzdk4+WqItEq9cul8W7FburBbj6uvd79B9fZD7iCO7BNzt7rRvPWFKsYrCRnmAcUiPsylsVA7I/sMfUuEBU4wUmiqzsMRUXowcqcHzNwafDNkn32GslHbQoCictfwtN5I1Lrb/+yQLHcnSpe4116MtE/WRQlPfRUWRLJbr1fdYvjnGSih5juFxY+vfJ0OOUwbbdHFlAuCf2HmAWd0Gwc9m53gBp4FrTP/xrYF8zeGtW910PMXbcd2rVxS2/YX72siRLRYXAFBYQHO3vQHPs1YKwx2DtaO2z/HD2YHCHgk+jXiaWvJEkVvJPO6zy+KtArhYtp1YVeprQ5+kmuvcjl9+HDvH++wl4vC9J/nScjo7zp08ijwvkvZmVP91tPb7LAVs3cV1A5sPd13bjbkNfVNiuliptG9tbk+etp/xc9s4lt/ZuDisUtr3Pp6J+koXOzfx/MbPZpWQvO7ZNTZWql7jGcy+OSzdX5Y8efiy4PneZumTi/uKyPLHjlArxq1lFscSZ5Nn0NhC+rwymuLS7fxCdDH0ZZkQQgghhBBCCCFEmwkhz7KDE8kwhRBCCCGEEEIIIYRIoi/LhBBCCCGEEEIIIYRIIhlmFyCRiPT91s+Gj2L2aeitHwMfc8xx1m/Ap6/nsvi8qtjHwZaDvS2s5Q4fg249DDguUU3HF8+b5ybk87vtA/DZ24895sbNnJkKLqIfZ3OFAxiLfeflZ59Nha01ycinn06FCy+80IkrvfLKKDxpUiq8sip9TzGngU3jJGI6VF6e65XGfcb2n6x1a6OLP8x0I//851RwA3mWPW/uxz5l9vTs0hZL2Bz2QRtpDPB2sqmMPY/9gQei8LhxbtyECVGYOmRtgVsqHmv2WHj2obBjg62G2PfDHqte/O6L0YXtx7fcEoXtWe3tMdPJBNY3qV+/KPz6624ce/YZE55R1P937Ii8jOzJ71znPs8ya7HBcw73a1v/Ps8ybl/Ow/q1cLr8pS+6kbMXReG770Ys1AcLbx7pRPXsWZgKe6zNDl3mzk0FR/C4BlyfmopCJ4r98bjt7TjfvDkK2+7v88Lq0ycKc3+0c0VJSTTnF/oMf+wA4DHFmfq8x3wvGvbe/HC81tgXGUrXQF6EgDsubd3xWPf5FvJUt369G8cWitxuNg8es3b8cpXY+ac9/kJsNQm4nlbW166srOV0vm5QVOQ6g1qf0HTweXJt2+bGsYefrZ9Fi6Iw179Nx8TYhbYJeuUA4PeFSxfun0cdFZ/Ozg/cf2wf53rmOlm2zE3H9ZgJ6yfbB22fj8O+QnFb8XNbX0del+z8xs/jrsXufJzlm6d4INoX1ThjX5sHxfk8Zn3zFH+O3+sAdzq29c3XHWHt5ftdL87LMd8WxNYrw5OTrdemBm+wvslCHBjoyzIhhBBCCCGEEEKIdqEvBA9GJMMUQgghhBBCCCGEECKJdpZ1Aerqoq27dvs5b3f37YD1bWvmsJUM+Lb/+445jj3q2cDHENttxywvsHGJ2u2p8PacSLaRf8wxTrqd5aNS4dzsOjcTLjQ/KODsOx776KOpcAZOF28GV91KE8d/gxh1//1OnLMBnRp42JQpTro6ElnY7dWJHLq7T9tAHywsMH8Z4X3lS83+c6o73HSTE/Ui5UlKmGZ1MI7C55k406KxkBgUJUZ+yIqIhu98x4njnfaVM2Y4cYlp06KLD384Fcw1ctm8vKh/2n48pGhnKlxbm+vEvf9+FB44MAqPKtrgpMMvb4/Cc+Y4UbU0oHPOOsv9nNUT7i8uu8y9Zk310KFuHGukXnjBjSPdyQmVlanwBx+4oiLu87b/87C3cTxn+uRN/Dk7z/I1S+pGuipJJKreii6efNKNXLgwChvtUAPdPMuj5+N+V1qiv2w2g7VDdh6kuiybdHpsFrzOsXoYiJdrAn4ZL+cZJ1eznysqcv/GOXp0tAbm287LeiHWCtkFndPZBd33AsF1yYX0yHd8Mmor8eLpgW9ti8FTjI1juRm3hU3nk3lyddm2sXKzdLB1wPOPUaOjW7cozO9MPllhMyVtmjLbRHY0d7D0F/C/f3JzWxk4l5/ZscOeGscPZPRr7aB7d/ea3QDaC9d///5unE+9zGuDnX54yPreq7lPGreQZn0mHXi+seXwMX++e81l5nnRrpU8Rn0yZ+5nWTXb3YQ+zTNXkO9huGC2Meja3oqnSCvD5Gsuhn1OfjW1/SWxKXqLHVLWse9u9tn4muW/fSeMcNJxmbPshGAbXIiDCO0sE0IIIYQQQgghhBAiiXaWCSGEEEIIIYQQQrSZEIDdMSsOBg6JL8smXvFIZxfBS1YizWNohBBCCCGEEEIIIUSHckh8WTb3lfdaT9SJfOYzV6Qk9lnL33LiJpBmPD97J1wizfi4cW4MexqsWROFrScI+yZZzzLnTkaeznZIvhPjWbNPtkMAgFPGkR/B8uVu5AOLUsH8qVNjb+DasLheRuWjj02FEx6/rmx6mIJMnC9uGEuVV2PyZ2sU0zQ4ljzM8txz4Z10CTJI2rrHPWrb1gnjeLyx34DPVMYaVsyenQq+aJ7tNQqzxcMwU46T+ML4niXGj0c6VHzxi9EFG90AwNNPp4JWd851XmDiRs6c2fLnDj/cSVc6eXIULjJGI3PmpoIjJk50otjDbPRoirjV9a7DXXelghtMHfMEnmNNMMz99hvGsKuBai+LjUsAYNasKPzQQ24cP+uECang6VdeaZJF9WinEfbisD5E7B/C/jbsswi485vNY9CgKMxePYnlb7gJqQ/ymAHgTtDGaCeLjXG4PY0fXU51FG4wvTxLpzPFe2sBznyXtehlJ2qIMzAjNm5059X166Pwrl1uWm5ea+vSo0cUPu64KGxsFx18nmjNPMvizEutIRIX2mdeauGbczr7oLQG2ncJn50WX/ua0Of1xHGcX7rp7LUtv/XGSoc07UMBuPMR39uWnz9nPYkKuV94/OR47vB1JVsHPn/b3r2jMD93376umdmuXZFPGc+r7cVadlqPsfbAz+2rAwu3oW37XmTPxt5mtvz82mfr2GflFYdt33Q9y+xz8zWvgfY5OZ29F6d1PHPXecyYbSX4GofTckWad+mGktJUuLrKzYKnSHtr9sPjW1vPMn6Vbra08Ls1LwwAYP1o2wG9QjV7j+HfC/nZ7DTO3or9+w9w4rLKy6OLuEUqEf/7iBBdGXmWCSGEEEIIIYQQQgiR5JDYWSaEEEIIIYQQQgiRWeRZdrBySHxZdtwJx7WeqBPpmZMTbT1e4p5Lns+ypdVm7yydY223BbOSgrc8223BvmPtGburOe44cJvO7iZ24BvagtEH6wqi7b4J1DnJqulYeFsmrpOSMvcI5Nwz6GLMmCj8XgdIdkmWVmDO666m8ErzMW7S0XfckQrn24aaNCkVLL7oIieqISc/FW52snM95cP6taeectPRHu0GkiYCAIvNXAETwD2ZTlzHSJNuAEstL7zQjeSt3T6mTInCJIsEgIqtW6OLFSucuEWkd7Iy2C0UHkHPPcDqI7g9rBaD97fzufMARo4clQo78i/WdJn8B1j9AktCL7vMiaqbeHoqnNiPUrwnnnI3LPOcUFLibt13pKlz5rgZ8ZwQdzY7gPLyIamwlaOwdMJzSrwTtl2O5xErj6Ohh+JtJKG/80434bPPpoINRsrMw9KKFJzplPqWlVpyHWetXuVmYvrdIQnPb9yXAFe2bTsQ9zWKO4GtAQAAkRTYrsUs01vnLu8OLFezcDFs8bnIJSW5TlxZWTQ2isZFYVvGRMXa6MKuL3wDu8DHaLfqikqda1b2v/KKm5anZFs//NxcZlt+fs+wrxJ2um7CFp3TxX0GaF49tizpYNXoPukTS7x8UlF+/2G5FACgt0fDSmTVRlYfpbWmMWhi3Fnrzj88L9olkOvSV1fc1gMHxqdLFzuPZ2Ia5DxtP0vXwcPWwe7dUXjbtihs15p039XTxb6b+6TBjC0/l4VftXyv0rbuWIo6cGDUt0pK3HkkwR+0leDRP26vjVbWfLaJMA/Dc6tdCridbF2xfJYZPNi95jo5aYJ5J/sWvRfYQZQBGWZpTfR+UjranYB27YrqnJ/TyjW5fdleAAAqKqLfsewykWo3bmghDiAOiS/LKq+vbD1RJ/Lu3VWdXQQhhBBCCCGEEEIIAXmWCSGEEEIIIYQQQgiR4pDYWdblqd8b7bG22299x7nRvnKfbICztDKHdLdeW8kCb5Pn3dB26zvvhm6mqOPn8RzN45bZFSrxtmZ7KhVLUfl0UAAYPJi2DI+OwoWjtyDjfPKTqeAos3c5lwrmCkzdkzK5CvL5ZD3A3fNsTkDkE2pyclyJjiPrZZnSggVuOpISGoGXc+KlVRhxlxxL4ePtHu1LL43CppPsrI/aOzfbIyX0yTXPPTcKm+MSy2bMSIWrzcdYFssb/ieTJBaAW19WGsDamOHDnajEO+9EFy+8EIXtkbX8bCef7MaR5HR75elO1CLa1X/KfjwY055Iyc3Np+8CwIhzSTJrJMpO3b3+emy6UZW0jI1zZRuchT3lMu6EOyvX4TnMTsHFe0m+xvJKO4ZIa2YPTXNONLUTOctsjzgiFfSdfpbbHl3YoYRPaulbIFmjY+abMWOOT4U/+CD+dlYeFyd5YTmWTWenGJZr+R6Nl1i77peXR+OmsMTMsz7tKEM3sFJCrjpbP5y976RPX7fevDkK21eouFMc7SsHj3NbP3zvTMgw7XLF5bJ1xxIvLqNVNPH7jq3jur7R2p8ocNdf57Ririyr96W5Kdeu4ZSH7+R034GF3FczcRqmWW6bSf/ag+80Up9MmD9XXJxe/laKyn3GN87TxZ4O2qxJY/D1f15j7XrLa7G9F/ddlofaemyg9/8smILwgDYf5LbaUhPlYccav7u0xZYmTh1q3yWc+3lOpW32EpUJeKI1BevZM5offKc381pjD03mtHHrS33QjqODDzjkWXYwop1lQgghhBBCCCGEEEIk0ZdlQgghhBBCCCGEEEIk0ZdlQgghhBBCCCGEEEIkkblJDEtmL8Hrs19HVrcsHHb8YTj+0uOxcu5KLJyxEFtXb8W0m6eh/+GNov/Vr6zGi//3IvbW70W37G444bITMOjodpouWLE3X3tMF6xnAdtNsHcDn5oMuDJ5Pt7dYv094o6Ltjp/Lr4t45Qpo1Lh1ebeJ50RPetqsv+x5ejbNwpbHwG+tt4H7PnAZc6uKHTS5cPjk5UuRx0VhS+4wIkqnzs3FW5YvNiJY/c0ckZCrvGQKWMPrdGj3XuTh1nC9i32WLr77uhexhONnUuq3BzwFoVHmDj2KRs9fnx08bGPuQmnTUsF1291PenYq2eI5+j3htHR3awVROIianxTdxPIW2rD2287cS9SmOtgk+3kL72UChaYcmWfdlp0MXSoGxln9mfb8PzzozDnB2BVfeQ1tGSuE9Xs6Pn9hc/7hNsTAJ5fFHllnPStb7mRPGhpnGwZfYqTjH2gli51s2AvIzsHcJVz2M6RWTXbU+Eh9WYSuyPyvMPChVH4zTfddNQYCeNLlmDzjzFj4gtJJjC2jp0uaQeAcI2ffKY71gyIF0XuXBUVTrJcqvOJE09y4njZtnaEXJRKOrTbrnO8nlsLMfaYWb/ejYvzJLVjgS1sCgrcv6EOGhTNMb17x+ezqYrCZpiwhZ+tYn42+4rD1cx1Yq394nyxALeObb0yPs8yHlK2+7RnuF19tXvN5bd1t2tXFPbNZ1wuW8euV5vbvpxPgh+GDWEBd10yD927d34qbOd47tc8DK2nFQ+1TNgunnHGvudh4T7i8yyz+PyveMzyWLD5+2xZ2Q8sXS66yL1O17PsvPPca/aq4n7H/RZwPa7s7xpx7+PWl4+9+EpK8p04p/7NGOI5k+9l24zT2Xv7XtHGjYvCWfXkPmz8VU+5hD44d74T56wvvl/G2svs2VHYTBBjeZAimu/tXMQfs0X0FblpfvN5rR4chJBn2cGJdpa1wN49e7FwxkJ87H8+hvN/fT7eevot7K7Zjb6H9cUZ152BgUe5zps5+Tk48/ozceEtF2LS1ZPw9C+ejslZCCGEEEIIIYQQQnRltLOsBXZV70JuQS5yeudgy6rG/T2J3AR65PVoMX3R8OjPTX2H9MXePXuxd89edOvejj/3CCGEEEIIIYQQQohOQ1+WtUDYEAIB8Mr9r2DBXxZg5EdGIsgK0vrsO8+/g6JhRW37oqxmR6TPsDoi3pNs9Rck6eNtwIC7hfvII+Nv7dsWy9ur7ZH3vHWc8+hhvk9kVZE9hpi3tDfbwk56lQkTjk2Fs2p3OsnKyiIZl82fy2XlF7xtfdu2KJyflwHZpaU7HZfMkkwAIMmj3QXPgsQNFC7wpBtgdT68vdr2rVtuSQXraLv4yyb/KgrbE8pHUfh4EzeEL6ZOjcJnneWkayiJtn1vNkXkfuyTYfJJ27YfVFREpcy3Grvrr08FBzzwgBM19aGHUuGV9PMiko0CcDuazX/KlFRw/XBXnsWSptwyErTa88Zp3K/vVupEbaIpwUo9unfSKd1WzsFjz45DR05ldCcN2XRMPE0WRtng3M/GbdwYhQe6G4LRr18UZtlVVvUWNyGXi3UyAPD661GYpJf1Zq6uprCVUTO5XGDAndipkD7JOUz/F3A1X7YNWf5uF0TuGDzJ2DHqkdmWlw9Lha1UhdehUdXPR+GJ7jyyqiayB7B9nBW/LFOyxWRJjZXXMHaZ4DHrk3vxOmrz983PnL+tVpY7sSTTvu8467aZCBtyoncEllQ301o6fgzuCwnPRZlQOR87us79AVVQaVGBG0f9af3GSAxi5Y5cfJY72rT2XSsBKgs3zgsvuAnZRsDoZcvLI0mcz4qD27D5u1b0bHaItgf7nLbf7Ss2P35uO43zWuwbG3ZsMzz2+vd346wsOR2srNOOvTg+9CH3muc0Di9b5qbjNuVnBty24jjfELXl5bS2//PcxHnY1zWuE1unnLbZO8KsOVGY1xD7oNwx2LYBcGXPdhLOBPfeG4Xt7wkTJqSCY9kqZpxbCWtro3WIpfWA26/jHvvQcIjogN8hRacjGaaHYy48BtPvmo6aDTV48/E3W02/ZdUWvPDnF3Dyl07eD6UTQgghhBBCCCGEEJlGX5a1Qk7vHAw/ZTg2rfD8KRZAzaYaPPnDJ3Ha1achf2C+N60QQgghhBBCCCGE6Jroy7IYajbVoHpNNQBgw1sbUDCoIDbt7prdeOx7j2H8p8ejZFQ79kMLIYQQQgghhBBCiC6BPMtiyOqWhSd+8ASCbgH6DOyDEy49Ae/MewfP//557Nq2C4997zH0G9YPZ3/3bLz+8OvY/v52vHLfK3jlvlcAAGd/92z0LOjZyl1SN4tMZ6ypD5vReM52tlpwvmYtv8/HyHpNeCw8HH2678hvtoqx+bOHgfV/KCVDAv5crrlBDl3ao6p9+vi9Maf7Npjvj7MyoT83/h4O48engqV8LjyAPPI3YM8yewr5Wgo38yzz+CDsJIMM9uRaCRd2Z7BPUs7hwYPdSPZLI08EazbB7Wu7eLoeB9wt/F4lbvvmc7nId8hmNGzmzOjn1jCHb+AcwQ3nuZd57AgrKkakwlXmRPGKisjzaOmriMXaLdmppLPwtaFr35XrxPHzlJREvnNzXWs5xyfxpZfcOJ7v+vZ14/jaqasqY5jDD2DNOF55JQqvWBF9xE3lLLS5dhLmm7PJIwAcdlgUponcejc2N30UDsXFUdia9bz/fhS2bcOLCs8P1neOF1kTl0/3y8vz/H3SY/oyhMy7sivdcRJXXMD1NvJ1EZ6L2vIewEODi2/Xc05nvYb42noIscUnP0t+tun/NXQDz3sSP0BdvdsW7P3JHmWt4Xh+pftKbSdFrjDbAFSxxTxX2OcsKUAcW2riPdcS9TGNbxuRX9hMGXOpXCNHDogtR24NvcnUuAUpKytFJrH9LBOeZexjZfPj5kj3fdzCcTadz+OX/TfTxXafdJcQu46yT6Lv9wvuunb63Lq15c/YerTzWxw9za9e/L7Pz219yXiZKN671o2cS3OyfVdk40hfJXCcbbTDD4/C1nwyE/CDW+M8NsvjSdiYB5ZSXGWl40rs2KDFzf9BetbfBzAhgJhfLsUBjd6wY8jtm4sLf3Oh87OhJw7F0BOHNkt77CeOxbGfOLbZz4UQQgghhBBCCCHEgYVkmEIIIYQQQgghhBBCJNHOshboXdy72a6yDiUI4vdA8z5ku/WXyK93jzKuqIiO+M2qioR1o0cPc9Lxba2Mi7fS2i3hcZILu22ad/Q2Uw3QFmi7LTtd/R0ns0ep8/NYSRqrCDr8OGPeP28rgbUCRh6UIBmmR1gCp+oWL3YjH3889t7c46oobA7FRiGFy02co3QgqVCza25sI0utraYymWHgU9TEpfNJIJq1NZeFt8EDbgfi7ehW38Eyrl693DjqeOmWy6pwuBg+KYnNP926yzR8xD3glsvGsdrAzj/cF/hzto+wPMvC81ZFhRvHc1N+9arognXlFivDXLMmFdy0Z08qbP8K5TSNrQSenGzf4jh+GJ/OLRN6o4MN1uVY+Qt3IFt31KZ11EETRtLuDNpBg2KLUVl5knPt3G6+pw3pOi/PlWH65r64OJs9r+c+hakde/zY/DmbP8fZMvIUbOO42Zyp1d6AC2JeVrK4EihdosBMkDVRXJZ9ULpO2Fe12voW03mxk7xvkeI8fZpYT9yePfGy0tz62pYj7Etfmjre7ALPxzbFv3jleWSG7cHThBnLMw7bhD4FN79acJx174hbCgCgd+/0yhWXX0t5xtGnj3vNEkrbrRmWUPrqgCWTdqnkd3yrdvTJVON+R7HTiLP87va8sMX5uNib2/dBxjbAEUdEYV9Fthd+B6d1DYBbEfwiZtNRHnnlrgyTq8e+yzU9Tof/riVEB6Evy4QQQgghhBBCCCHajDzLDlYkwxRCCCGEEEIIIYQQIskhsbPskese6ewieClKpLn/WQghhBBCCCGEEEJ0KIfEl2XvLXmvs4vg5YrPfCYSy1ujIRbiWxMDYovjLOXaKA05JhLi2xOD0z3S2t6a/X98OnR+HOsPwNZA5oRi9DkuOkZ8b3X08+wi13uD7QGsBQD7D3iqzskja9MGN9L3wXRhAb81U6isjMLmHOucceNS4Yn3358K1xlDgOcp/IjxOmi4667o1qZY3Bx06jMqTbpyCo8wcYnTTosuLrjAjeROwvVoOkIhFaywzO2EDWlufm3vke4NOeTtZz3XeECwec7EiW46bg9qMwBYuTrRYjJbTu4WdizEWdYA7nPbrmWPRd9fDB7sXnOd22Pnt22LwtbHhH1eeN6ycxh3rYED3TieA2x9OEN7ncdwgzuQrWTyJClifw/TDxyDlUozwjh/NlID3AfyGdtxuTJhznOw4RsoPLbZWAdwTPUSnM4a4HEb2k5Icd6m4c5q3wNocdu11Y3y2dvErc0+b0i7jrLtDlcB4FaXz07L53/qG15cfvY3RFlBfEJTd3X10RqSyGvn2PBVMse11yiSP2fz4EpJ90XGVKT1d3KIazjbx/nethHp2ufNmesZAJm2aeqIaTALDalwTo77bsL3a8u7NHuA8edsN/B1rfZ4QVk7qnTzsN7AbN/Fedg+x3OHrR+eczhsn5n7iF3P+XO2jrltPFOF22d8pnf2Bux7yROm9TbzPRxXUHtM6FqD3zvsOw7jM5GkOvBVT1z/z5KWTRyg6K1aCCGEEEIIIYQQol3Is+xgRN/zCiGEEEIIIYQQQgiRRDvLugLdukX7Vs3+1Z31kYwru9yVWiZoS7iVJvHuX87D7qrl25WXu3E+6QTTr1/L9wXcrdIbN7pxvBPYbsFfsyYK+5QHCdRFYSOxqKlJ77vgDlct+eQLvBXbSrf4miQ6CaNXmzR7dir88nuu5JhFq3NNsTgXFiB+xKTjLpOwZbzkEirIJDeOn9unIaDGZ8mMJeFpJ+7XPhmIxZFCFpQ6cbnjCqILepaGCleMytKMVavd8nO/9kkDGN9YsxIpztOeUp4JBXF7sPIIn9TbJ9NmuQfHFRe76VjGYhWOXBaep2y5nMqyCX3yu2nTWs7DFoRxzqc32AaO0xDbzuObY4Qrb7USFF97cMfjNrXtxHrEww934yitd27iMpqEdTSTWykkF99Kq1jNw+u77SJ27DE8vnzqIF6W7HrO0nKrNOaqtE3B3Zq7/PZa146hnt5xasy7EJOXR+9TZgjlFUTvV7adfGtPu7ANwBOVb63kyjKFbMiOno3XJMDtF83bMGa+sLYEXEbb/+k62yfn88xN/Nh2Cm4PuTluHWQXZWBvAHXsXNtONIjKyvKdKG4q28e5H/IYtePct5536xYfF4e1REgXOzbilIW2vB63Cuf3l0GDorCVcnI/tnYPfG/f/MZh33KLeo8O1n4wznLEYn/Jiiuk9aTIBGwfYid89rzgMtrG9lgK8PRg5/+m5bG9KnUhOhvtLBNCCCGEEEIIIYQQIol2lgkhhBBCCCGEEEK0mRDyLDs40ZdlXYC9YVZKKml3vfJuWbvVurg/YuFdwrwdvaTE3UyYyI7i8vLcOL43SzEAd6cub6G22295R/KSJW5cjx621C3fm7dU2/wd6aWpPJZcWJwTMFmy0BGaTN9JdVSRVoKYiNOgvPOOm8e8eangBiPD5LM97cZuVsvxrvXE5z8fXw6roSFpUl3ZMCfKOWTLORGrzknH7cb9EUj/NEyuHt8JR77xZanPy02F86mdmp/alRUbx/e2/Z37NZfLjnOf+o6vrazCN746EisHtadn7Sv9zbzHqjercuCDCa08NFFNo4Mnsc2b3YTcIFbCF6cxtQXhTmnj0tUQ+06wEn64bZrp7zxxcScZ+9JZTwSKyy93o/LLorl1e00k3co2c9jqqijskzjawzx5TuBi+bpxW6QyvnmX4Thb/jiJlP2c78BIztPOeyw7dKR59mabokwSVsflG6NcmVaeFYeVWfkagMqydl201nTr5r7f8Dxr3+WsPUZa97ZyMs9prdvJ8sL2QZbS8cnXtiNwnfftm1nJJAAgO7fldG3B935IdeKzfrBZ8PLC0kvfaZieLpI2dj1M99XXdvG4ZclWv69O+Hm4DtryOm4l6HFxPOx9S2qvXq7tTTHLkn0vYr7Jjq9tRaZ7nGp7sRYSDJeLn9OUvy4nWqOqqtwseEqLW1+885AQXRjJMIUQQgghhBBCCCGESKIvy4QQQgghhBBCCCGESCIZphBCCCGEEEIIIUS7aGg9iTjg0JdlXYCsrEjmbo/8zs6ONv/5PEGsp5ijDSezkmZeHLWRkUBOjnvcNXspWJ8g9sfgdFbK7zvOmfP84AM3Lu70Zet7sLM2qp/sbNfDg+9tvbBi8RkrtBc2SfAcxZywcWwyw4YAr77qJKtetChKZm5dReFhJu7YmHTNfBaOOioK2/O66dkS9TudqGzy/Gru80VwQ5k6yErTTIfHTU6Ou2HW16RxfiGA6a+ro5rNKRtiyhh5sFmfPPZusH28PT5Bth75xG9b/s46ptt6lHGZfX5yPispDls/DP6cr58lYLzyeEyx1x9XKuCaHlk/Khp7WL48CtsH7dcvCvt8yXwmLfxwdoLkSrFeTB3hf3KgwW1t68cxVzT1z+395ptRmI2YANc4zHrDcF+w+VNZ8sqjGdrn62Xtrtg7xj4a+xL5qoCx3ZOtdWxX4sfhLujzVXv/fTeOfdVsudgik7t8W/ycsmq2RxfkS9bsZj5fsrh07cXnZeTzS0O0vth5lpN511tL3Ad9hk7mBtnkB2Z9iZx1qdZT/9TR6uvddTTRnt9UTDs5tZiB33ysxyyX2Vd1tvuwRSZPN9bSyjeNtAc7TtJ9R7b3jus+xj439jmB+FdknzWkr4+zvZ79nL13XDnsMOxeHvVxW3e5cT5lvrXG9x5gycQanuaL2E7qx9k57jjkeZxfdwB3feF0jM9XToiujGSYQgghhBBCCCGEEEIk0ZdlQgghhBBCCCGEEEIkkQyzCxDsrY+kAmbbbi7vQ15q9raOG5cKFgcb3Lg82mZ71/1ReMwYNx1tx80bd7wTxbt2HSkDgNraSLLJ26utgomlE3ZHMsfZY4jjdjX7Tmy2uFuq05Pm5XaEds2nEeH94Xbv8oIFUfixx1LBTU8+6SR7nsJV5tblFB5g4liU5tTO/fe7CZcujcJ8rLS9NlvFs2gv/I5dUX+p72nlstF1c5VqFGclygxLIrZudeNY/mj7C/ctK2N0+jx10CwrgaM2tX3c17z8rL16ReEVK9x0LMewEgKWWdmuxVKEIUaW0JHY7fn8nFYuzuPep0zidrMyLla9WYmaI2Wxlcf9eu7cln9umT/fuVxAEx5X/2jOD3Dmalx0UXwhrYSPxxR3Lp8OTTSHO6EdiG+/HYWtto1lts8+G5t9A88PrB0EgMMPj8ITJ7pxgwalgrUl8TJMn4yIx5Dt/5zWl863jvJ0Z6VhcXOTncf53nYO4PnZxsXJotqikky0nKx5Jfv0X3zt07CmS1skWHRvn6MD9xHbTlx8G+dkxJk89ZSbjucmUz+1JMP0SRDzWQxpH4DyrG+LjDRNMqGebSCrD1vGdBWszZxQYlR7PluCXbvcuM6c/uNkmNZ2gn83sGs4p+XntEOU5y3bnpzWN3/ydH/kkW46rkc7F8XZQgBAbpyE29PHm5HpOcbCleDpMNxOdjnkeXzx4vi4ZcvcuB49Gv/viMfqWoQA9raaShx4aGeZEEIIIYQQQgghhBBJ9GWZEEIIIYQQQgghhBBJ9GWZEEIIIYQQQgghhBBJ5FnWFdixA1iypDHc9H8TbBhi/HIcH5w5c9w49pdYuDAK9+4dm4f1GnKPsc534h59NAqzVt36FPCx8FYmn7/uLSrGCCeusHplKryFvFzyc+qcdNtrIw8J6+PAXmr9+rlxfLw56+hHVGTgiGYL38CaxXBFzp7tRG2n9n6Nfm56CDjHY03cKRQu4P4COBU0h875fswYPpS89FIqXEphwPig2b47YUIqWHzBBalwXU6hk8zndcPeEIUFiIV9yrjdLdZrgn29cpe+7Eby81j/FoY6dkVlvO+f9RriOPYes34b7DFjuw8/tx17mfBoaQ/WfzBd7HHvbOHBcWwjBbgWYz6bnYsuKnXiRvF44EJbwxkavw3GlHFdTHipOSN9AI2bcWYM5ffvz4V0780PMHx4FLa+edzYtqOVl+OQZ968KPzMM24ce0Catq+ha56D3dXQfZGqMJ532YMHRxc80AGA4nJXR+thrmnf8vJozrTzg89LJ10vI16ibPf3Wd3wNacz3d8ZXvxOALhd3HZr9hTie9n3ANewCPFxPE5sZfk8AXkysr5D7Zlo7b19Pkd0nZcX68DmFMv6LW3bFoVt/8nlH/ACc++9bsLKyihsyl8w6fRU2FoCOj5FJfHvV1uqo7/d23VulLEBTIftZpRyHxxrrFfTZePG+DiuY1sHPt9dfs3gd3A7Fngat3G8Po4wtpdx2GWiqCiq/0R2vD+shZdEztP+PsH17/tdw+dLxl5ndp7yDVFOy++HPkuxgQPdOK7zwgJTP3OronCcCR3gzv/2Afhlzr5EWS/T9sAvR3b+oeti9twsctPV1ETehHYe5yLHTWEN6XerAxh5lh2MaGeZEEIIIYQQQgghhBBJ9GWZEEIIIYQQQgghhBBJDgkZ5nEnHNfZRfDSs74+2ods9yfzNl4j73Cw+75ZRuA7b5ywO3N5l7BPacAqIrs1l7eON5OEPBvJkQpPNF2RtFaFU2mPudnWXA9X0sfw83Tv7sb17BmFeQt4Xb37/XFbtqPHwhVp24kksjVGZsuiRm55o1AAC3tOMnEF3/hGdHH00W7kc89Fn7v11lTYiBEdVctaE8dimDKWlALudvTRke4hwXIOALUkpbXyC5Yg+mSYLIGw8oKmY6uBFo78rtkQXbz5phvJej8+b5wkqwCcAZC1aYMTVVYWCVWtdIKrh8cJPzMA8K54K6Hha3vMd2cd0+2TiVlYlXDUUW4czyWJ6qheJ0xwxL/O3GTrmLGqB4yjecWng6UOlcWTHYB80uVw9naM8jixM1Yh5WFlzg5cRttJ4uZ70ciKFVHY1PF20o/Yvx7upDD3CivDjBfHwW0r2248OEhLtb0+10nGfdcnP/KpB/lWVg3KY8hXRCtv4jjudtYSgeG1t6U8GZ7L+V4FBW6N87Udvtk5trVavm9uSV18JNHg+RtzFtJ7X6grGeJcJ2ji2gm37eNkbraIRiHuwG1jJZqx0jCf5tDAH7PTD18XFUVtkVdkZJL0wmPbsD3Y9wBfn0wXXmP5vaIt+MYQjz07lnmM2jq2z5oOVunn2pGk/zmWNfosNfi5rS0KPytLSn152HnKR9wcaeXi3I9tnfJz7xnkzgHF/ALns0Tgh/PJMPd2gJTPtwDQ/NNQFL1f2SLy+7nvNaNXL/e66fevbt3SKKcQXZBD4suyyusrW0/Uibz7C88vSEIIIYQQQgghhOiChJBn2cGJZJhCCCGEEEIIIYQQQiTRl2VCCCGEEEIIIYQQQiQ5JGSYXZ4PdkZeZeyTBDheT14PCZ/R0cc+FoXPOMNJ9lZ1pE+f/YCbhbXXYmwxm7D+RHwsNhcJgKvLt15tc+ZEYdb5GzOLwokTU+HtNe53v5y99Sbgo5/z8ujI7NrtbkKf4VK6cGUZX7KamTNT4bnmY6sozF5hZSYdV2uRaV9MmBCFrU8B+fgkqP/UG6MCrvFVcOGUO43hWMmMGalwPhtFGB+HYVOnpsI1pg19XnlxWE+Qww+PwoV5dW7knbOiMB+tDTgegQ2LF6fCWbaO2czCGDkUUv2XlZU6cfxs7NdlPX3yq15LhSsuGevEcVUuWOB+rj11lwnskOFux9YeADCinNrjySfjM/3ggyiPcf/hRPHUYT022ObR1semTZE30JSLPp0KJ5a/4SbkOae42Ik65Ve/SoWraH5e5OYAnlWqTBy73OWb+SGPH4jnwcmT3Uz44ZqZswln3n39dSeK69/O9nzNXnPDTLrcMWOiC5rPAADnnZcKriw63onipjqW/RNzXN8qntOs7wt7J1nPPu4yPAXbLuLzQ/L5zLAXqC9/9h/0+RD5/K54GNp0/NzW6ynOe9X6YvXpE/meWY9Tfn+w3pDMELs4x2Bfd/r1i9qb/TcBd47nMsf5AgHN68DrAcaJ+T3STtbcEZoZ0Eb42pA/ZrNgW1Ca7gEAJ01Am7F1nIn1kOvRrnOcv72Xz8Yqrl/7fMnsOG/Ps1nrVc7D51lmx3acJa/1n+VfX2z7+uqO4Tq3nnG9e0dhOzY4T34fGTjQTefzt+U5wI7R4pKC6IIbzr6Met6DsWxZFLadNxPEGUACwKBBqWBWffROlpNjvSGjsP11gh/Vzp9Nj/3ii+kWVoiuhb4sE0IIIYQQQgghhGgz8iw7WJEMUwghhBBCCCGEEEKIJNpZFsOS2Uvw+uzXkdUtC4cdfxiOv/R4rJy7EgtnLMTW1Vsx7eZp6H94fwBA7fZaPPmTJ7Hx7Y0YcfoITLxyYiu5Gz74INILxekbAUc21wzWGwHuPm3WI5rtt6tJJml3BfOWaruNP247ut0eztejyozE8TckjbHblVmSxVJUS2V00ml2titd8SgFnL3jRUUksLF7xys8+9HThbWoJLsEgNcobDdec3OwgG+USefUzpQpbiRrX8uMRoT3plNjV/7hD04yFi5WmXtznOmBTvnH3nFHKpxn9QXUgYpGnh5bRB+sGLHtXrjprehikdEW/+Y3Udh2cpJXZvEef9vJ+Rx0G0fPapXSXA0sU2omA5w1K4obvtiJKh08OBUeOfIUJ8525f2FrUZuwz59TGKWW//lL24czwnUR0ZMdOfXmpJodNjqZ+mHPfKey7VrVxQeM8YdYQUkNyi93GgP1q9PBctvuSUVtnJlrpINJo5n5LUmrozm9dx0G5QfRjRCspY6o8nntrEvRAUU5nbKNemcNepDH3Kido6OpJdz7nU/xnNAxWWRJcKbb7rpWPq31/zhun9/W5gInvJ5/rFTMA81O37TjWOsYwRPkT4Jlk9Cyd3fty5s3epeb94chbn89ll8EiOfBIvzSVeGadTW3jrmay6jXc5ZembbxSeRasiOpFZZ/DLH/gWA6w9gFjN+d7TvkSz34zjbhjw/x/WrtmBfiTORJ78T+/qqlSqygtU+N1clr187drjpeA6w49dnmRKH/XWC+/Upnl9hbL1yWWzbM/wKxe87gFuX/C5n2yxuLNg8bNtYa4smfC4rdh7he69ZY+Py6d5RuM8g13pjPbXTWOtLwxOcbeBMMG5cFLa/11DcqnXRfGDrn4tl5fnsUBHXx72/kwnRhdHOshbYu2cvFs5YiI/9z8dw/q/Px1tPv4XdNbvR97C+OOO6MzDwKFfo3i3RDeM/NR4TLm+HsYIQQgghhBBCCCGE6DJoZ1kL7KrehdyCXOT0zsGWVVsAAIncBHrk9Wgxffec7igZVYJt729rMV4IIYQQQgghhBAHIw2tJxEHHPqyrAXChhAIgFfufwUL/rIAIz8yEkFW0HE37NYt2g/MegXAldH59gxfcIFzydIP3kprD/xjOYDdXs1byX3SKt6a+/77brq5dMRjUVG+Ezdq0qTowmqkeM82P4CVGFHBcvPc7pxbX91iOgDO0YH5vJ/bymCvvhr7zJ13RtmbvfUsuLM72FlRNoTCY026PD7xkmSpjZlEudTluPWfYB0HyYhyxo930uVQ2xQZfQ3XqlUCkPgRvCt79P33O+n4lLnSH5e7mTi6uvj+n1gaCVqH2P35fD+joammUy7dc3+AXNar8Li0p4SxBMvqAKnf1Xpkzhy2J+05x1zaQUr72kdc7+pyyiqb5bRfsPIgljQV9zcvEjwBPf20G8f9kDLdWeBKGxY9FoWtDIQla1bFyJIAnn7iJBsAUF7u3nvsJZdEFzQpVt56q5OOx7mVaO6kcJWJY5nz6HnzogufTMPq3ITT+FbBx+O+0MTl0FivYD3fZZe5CS+6KBVcW36SEzVnVhR+6aX4IvJ6a6V+PgkZy+942QTiXQSsTIxfLXwSTfs5XlY5na+8dqnnMWqX6ThZl03H064tPx8sx68Pto5ZIt6W0wxZrvVRcxBqHLYf8Jxjy8/zFB1a57W8sK+KLJnik8CbwQ1nOw8XxNwgJyYZ4MpgeWqy8zG3kz3psD3YAwW57toLV48to8+OhPuPnZ7j5INWWsnXdny159B2e3q2XbfjsPXKY9G+njDcB60Mk1/Z+Fnsc/Fz29c8rnM7fvm1le9tX+VinEkApC835Ta0v87xWBhbYR6OC+k7gri9cAMbnfnO7Oh3A64DW/9cx7b/c73aU0abPteefipEV0AyTA/HXHgMpt81HTUbavDm42+2/gEhhBBCCCGEEEIIcUCjL8taIad3DoafMhybVnj+lCCEEEIIIYQQQgghDgokw4yhZlMNqtdUo2BQATa8tQEFgwo6u0hCCCGEEEIIIYToMoQA9raaShx46MuyGLK6ZeGJHzyBoFuAPgP74IRLT8A7897B879/Hru27cJj33sM/Yb1w9nfPRsAcM/n7sGenXuwt34v3n3hXZz93bPRd0jfVu6SpG53ZOBgDQ1YKG/PM2eMSQLr7Vlfbz0F2D/Eekiwdt13VLvvOHa2ABs+3I0bdcy4+JvzWe3sa2SNBNi4wBq2cJ7WKOXRR6Mwe1PZCsqAZ9l88il7y8Tx01jLiFEUZp+yvGnT3ITHHUeZmFzI5CGR7fEq4c9NnmwKGZWy1JqtUN1lkf8X4Po0Vcf8HABGkadY4amnupGDB0fhqR5DGO5o1mtl2bIobIwucimcGDPG/Rx7kXGepn5WrotyWb3IiUJJSeQFYbsWX/P4KrlglJMul401bCb83GZ+yOUyW4+lDuTsCVvcH7DR0a2PunGzZ6eCDWYOyOK2In9Dng4A1//HTg9x3or2mr1E7FTk8yoZeUnkDZmYEn0w12QyeubMVNhMkeDasvuXuX/i9dcRR0NZ5GqYZY+kFw729PoCCjezVBk6NAofc0wUZr9NAHWVkU/ZszOdKCxZEoXXrHHj4jxcrO8TL+/sUQa4y571yCkONkQXPBhGx3srNuTlx0U1Gxs8tH1+NOxvw8st4C71ez2/Z/jy50ez7yBxPmW+cW49lTh/3+fSZf1695q9mOy7Frc914/tI4yNczyubAXFmWbZeYQLYt4zasnHys6RXF9cDvtKxn63vn6QLjzugOZ+e+2Bl1/rG8b52zrg/m/7D/dr37s09zN7b59HYBy+9bC9sNWW9f70WN451+mms8/Mrwu2rbks/Jrk+5XK1j/f27Yv34/L5fNgXFvtrO4o5Xdda/qVCfh90Dw490leXwqztzvp8iqitcE+W3525L7ap4/7bE1etb45S4iujL4siyG3by4u/M2Fzs+GnjgUQ08c2mL6i2+/eH8USwghhBBCCCGEEEJ0IPIsE0IIIYQQQgghhBAiiXaWtUDv4t7NdpV1KIWFkazDSsjoSPpm51ETz68b5lyzOothyQPg7qa3W2T52n5u9+4ozLIB39HyL7zgxnXvPiIV/tAnRjhxxSyB44KQbCuZSRS2+9ufeioKG+1WzXvvpcJ19POVbg6oxL6ziMKmhOBWG2vixvG+cpZeWjkiy/Tsedq+ff3cn1hyYeUXrG074QQ3jqRh5ab+d9JR2NX0c1vH/I39SX/7mxvJGhqfDPMXv4jCVqbK5TJagwT3H7snn8ci1XFDjrvF3CcB4muflJnHjT2afSw/t5XZOvpNU36rQ9lf2EmAy8wTBwB87GOpYNa4cW7ct76VCr5RG42U+bPcZCyhtN2fr63MhIcNF7FPHzcdV7GVwHHXGmKkeUwO3WDivfc6catpnCwwnyMRHZaSnHvkAjelI1m1Ut2JE2PLdahQR3WXYLkLgAF8MWWK+8EJE6JwcXGU3xnnOMleeSUKs9QPiJ9mAVc2yePeLmWMT4JlnQiwiSYgn46LxmxWgTuJ5VLasrLC2Huz1Gzr1vgy2vpximvkTVxkO7cyLJGy45ylrz5JNeO7l0/mmS52iuS6s1MkD23fcs5Yy4VEPSW2N497r+S+b9LtrHX/zs7ta6VzcRJT206+fpEJMiEB47XBrjVxalbArQNer2w+3Jd8lgLt6XMW2//TrR/7OS6Xrw3jpJaA++rC6WzX5GubB6/ntox8za91ufWuzJAbKjvbfc9jfBJZrg87Fvhzdpku5fcfz+967eWt+ugdqta8Y/KUwG1R3NtdJ3zjHFXRolVs31OXVyVv7Jm0DhrkWXYwop1lQgghhBBCCCGEEEIk0ZdlQgghhBBCCCGEEEIkOSRkmI/8199aT9SJFDV0bz2REEIIIYQQQgghuhAhJMM8ODkkvix778/nd3YRvFzxpccjAbvVdLN5iUfHbvX7nA3rzO2x7fw5PvbZfs5anPDR3qzRt95mnM76sLz9dhRmvwEAKGbh/GOPRWHrWTZ3buzNd5JP2RvupxwPLcZI+TPiWcaPbU+qZqe2cdZwZvr0KMwebtYPIO7scXttTUK44ThszTh8/gnccKYRR82YEV2QQUOeKaNj5eUz9vIxlE6ptZ2J8+R6BFxfFusXyAZDVMfWS4Sr1fZxjrOfIxsl53PWb7D4zI9EYWt6xFgvmgceiMI33xz/uUxz++3uNZf5llvcuE9+MgpPnuxErcqOPDbmzIl+bj3duB7t/MZN7/Nk5C5vhyF7CNk49hpyMrR98IgjorDxAhrw0ENRFu6nnK3fzqixY5nnADt+hfuiY+dIXmvSNASzWXC/s1nEeU4BQN++UZi7hR3KpUXkrGlv4EwyZgJi38I48yiLMaOpI++eqio3Kc9pvEysX++m46FhvW74c3Zpi8vDVgF/jiwAAbj1z95Fdq7mPO0Q4upin7mW0qaDXWo4D9s0HMd118wzyAdXnq/t0zTe8nnT+nzn+FlsPXIePs++dPF5a7WXFSuisF0LfHXAWK8qrmZ+bjvWfH5RvnETh32VsEtWHNbKjp+bPT3tWsyv57b/8JrO9eGz17Pdk9vX1j/nw3kMKXDT8QeLi4c4UWRZ2Wz5jfOmtfMUe81Z/1PHExCuX1ouGrCvcH1ZX1auk9KCndGFzxvVPhxXum8CFeIARDJMIYQQQgghhBBCCCGS6MsyIYQQQgghhBBCCCGSBGEYdnYZ0iIIgrA9ZQ2CAOELX+iAEmWOK35VhdvuerSziyGEEEIIIYQQQmSMyuOPx4IFC4LOLkdHEQRHhMBvO7sYGWDywjAMM+FCdNCgnWVCCCGEEEIIIYQQQiTRl2VCCCGEEEIIIYQQQiTRl2VCCCGEEEIIIYQQQiTJbj2JEEIIIYQQQgghhHAJATR0diFEB6CdZUIIIYQQQgghhBBCJNGXZUIIIYQQQgghhBBCJNGXZUIIIYQQQgghhBBCJJFnmRBCCCGEEEIIIUS72NvZBRAdgHaWCSGEEEIIIYQQQgiRRF+WCSGEEEIIIYQQQgiRRF+WCSGEEEIIIYQQQgiRRJ5lQgghhBBCCCGEEG0mhDzLDk60s0wIIYQQQgghhBBCiCTaWZZk3eaduPrnz+OlNzeiR/duKB/YG7/82ok4+pK/YeRhBait24veud3xnxcchUvPGQEAuHP2MnzjlhcwqH8v1NbV44ppR+KaT44FAPz7lfdx9S+ex2vLt+De738YF3x4WGc+nhBCCCGEEEIIIYRIA31ZBiAMQ0z7rydw6TkjcO8PJgMAFr21Ces378LwQfl45a7zAQAr12zHx7/5JBoaQlx+7hEAgE9MHobffGMiNm+rxREX3ocLTh+GwcV5GFKchzu/PQk3/+W1TnsuIYQQQgghhBBCCNE2JMME8PTCteienYUrPz4q9bNxI4owuDjPSTdsUD5+fvUE/PqvS5rl0a9PDirK+uD9TTsBAOWlvTH28H7Iygo6tvBCCCGEEEIIIYToBJo8yw70f8KinWUAlqzYiuNGFqWV9tgjirD03epmP1+1rga1dXsxtqKw7QV4913gl79sDOe5X9Bh6tRUcC1KnajSkoZU+F9z3O89X3opCu/eHYWLzGPW10fh6mo3rkePKLzXjB/+nC+P2lrEwmWZONGNmzIlCmf98ufRxS23xGfYvbtzueHtt1PhuSYpF2s7hdeZdDfaB28Hv+vWLRWuNHGVvXvTzW50I6ntUVKSCtbl5DvJEtlRP0BNjZsHN0C2Ge7ccERD0YAWfw4AWWhwrrfXRP0uv36Lm/jRR6Pwww+ngtUzZjjJVlF4bP/+bh79+kXh11+PLRfOOy8Kjxzpxm3aFIW5TgG3E44b50St3xXVM3cDXxW/+aYb17NnFF692o3jscLDvqDATXfEEVH4hPFu/eOBB6LwY485URvuuCMVHpCBfpw2tv4nTUoFa/7wBycq76abootPftKJe35dJF2fMyf6+To7SImcHPfaTqcMNz3XOQ01AG572/wrKlqOs/fNr90QXSxa5EZSG9r6qaNwgsJ5993npNs+5T+ie21a6eZfXo5DHl5QbP8sK4vCEya4cZS2riCaFxcscJNxH6mqcuO4L/BUBLj97tPn0UpkO9DSpVHYztuc6fvvu3ErVkRhWoea9Qleh2z90EDZnu2+3/Ccxs/y3ntuFjyt23cEHm/20eKWL5uO87DzLFcdt41Nx/mPHo1YbBXz+9UN15v5OYZPX+a+r9l5heF65XCleZngOhg7ss6N9L2kUaZ12bmp8Nat8WXibgW47cRzNQDMnx+FuQuuX++m4zFk+8+uD9KrV6a0zK1jnu9fW9T2/ADgq1dHedKy1gzbt3g42/kh7nPcbwG3Ce30wMP5T7en92xfuNKtH54Gff34vvvj91gsWxaF+fcHAPjggyhsx2+fPi3nN3iwe81ltK+zw4dH4c2b3bgdO6Kw8w61fLmbkMbGztHHO1Hcx+38z2OF5wPffGbfM3g823fMUSPb11+Z5+dH7WbvzfNPaT29kT/7rJuQJyB+UMCdV+wa0lRB27alVVYhuhr6sqyNhKF7fd9TK/H0wvexbFU1/nDdKcjpoSoVQgghhBBCCCGEOFCRDBPAUcP6YuHSTa0nBPDKW5twZHlB6voTk4fh9XsvxLO3fRTX/no+1m3e2UGlFEIIIYQQQgghhBAdjb4sA3B6ZSl279mLP8yKNFQvvbEB767b4aSrWrsDX//1fHzlwuZ79E8cU4zpUw7Hr+5t7mcmhBBCCCGEEEKIg5GGg+CfsEgzCCAIAsz8yUdw9S/m4cf/twg5iWyUD8zDL685CSvWbMcx0/+G2rq96J3bHV+5cHTqJEzLNz99NI799IP478vGYem71Zj2X09i647deOjZd/GdPyzE6/de2HIB9uyJ9N5W5E6a+tLKAvPBSGhuvcj69o3C7INg7SoYG8e+CD7vMesdwPDjWA8D9lkwdlHImv98dPHUU1E5jOFDDovtjRCfvwm27ly8j5CdtoyUPyOQrRGG2UjW9ptK2F4yIhVmWxrrZ5CTEz1pWZnrZ5ZbFG/a1EA1xO203HhluO3rfr/OZSkvd/1sCtlwgtrJlojbpmHjRicuq1cvtBnbka1RUBzGCGSbxxuL4TrwWTLYoR3n+2fHiWPjZv2uyBCmhjzKAKCKwvEudJnnLfIKBIABdG2sXDCavbeMQcm4C6LRwtYitjl37YrCdi7iecuOG65z3/zGn7P587VvHjziiKgFiq0hEvXXvMWL3TiuE/YLmTzZSbaE/kaTl+fOMmP18gN87nNRmI1vAHfcm4V0Z17Ubqurop9b3zzuI9aviJvNTk3OnMAXtrNypnv2uHFsIGULFjf3WQ9DLiQbS5my5Fe4nZzXm/zsaFd9QUGuky4XtOPeLrLOADNxZS17yW6pdteh/Lyoj/N62HgdhbnqYiw7W42zVj2+uSMO+xnuF3Ye4Tjuurap+XPbaxNOXH4eRRpTzIYc8imj5Zf9p2z+1uqJn8fXBXmuZg8rwG0n9vpsL83fk/Y9Tx6GNn9et23/4dcY+0rDz8r1aKcphq1cgfbZUtr8ffdjrI8YT59sG2y9V9P1GuV+Zn+v8fkb8u88tm85Y8r3SxAltPlze9u2Z/89jvPNI77+2J45pTV89c9TfulgqizjA+1g65Gv7c2a4uzaJcQBgr4sS1Lavxf++sPJzX6+69+fjf3MZVOPwGVToy/OSvv3wrpHpwMAxo8agNWzP5X5ggohhBBCCCGEEEKIDkMyTCGEEEIIIYQQQgghkmhnWVdg7Vrgrrsaw3yEO+Dqa+yZ05dckgqOLd/uRNXXR/IIn5ySr20cbxP2Sch8UiTemu7IyeBuHS/FWjeSpJf1jz6aCq90UyGHCp1v6ucNCpvcUU1hFg/mo2NJ2B/wtmSzrTm/PhKI5tOhEttr4qWQPurq3c/FbRG3bcj9xyp0vFI23jN/3HFR/maL9rHUvvj859080tUGfOITUfjww9047hdGvsYP99Zyt374OHDejW53kvvGEMMSFCC+/q3Mh6trWLnRMJGMN8/MHQU7XM/F/YVVF9RReLuJA8sOTb9g6VZeXiQVSlf2ba997cZxvjnSSktYJsLzpZWPFNbQcez23Hm+XrjQjeM5gSdQM+gLCqJZrKICwsLy5aVGZ27k10zuhAmp8Agaa9njXMk5TzF2Pub+avuWc2vOxGp0uB/YOF/H45vzzaxuiz/H1gCAM4/bOZIldmVl0Ri1ddCvXxRnX3FyuQ6sbJTnBMq00LbZkuhzw8yzFUyIVnWuqoED3Sx4rrDLTtz7DtA+yZRVYnMevvy5/Fauz3Vuq7GaZKtFRa5Etp4+x2uP7SKcp0+Obt8ReM4sLkYsLEe0r7rtYdCgfc/Dws/pk9jZ/r95c8thm6fPMYKll0ce6cbZIZsONLUBSP9Vq7LSvU5kRxLo7OyWrT0AgB02rF0FD3Pu47Y+4iS9gPu+ZvN3lN40d5cZ65BEbfSG4msLOwVzv+Z69P1OZd8l0rW9aS88Hliy2gxuOPug/A5iJZpcCbaDNjVAe2xVDihCAHtbTSUOPLSzTAghhBBCCCGEEEKIJPqyTAghhBBCCCGEEEKIJJJhdgWysyNtgtXQ8H59u/+ZWL/LFRDGHfhiDox0dtnaE3Z4W7zvFC/Owx6CwvImuzWaTxZaO7rUiSsluVz27Nmp8ICXXnLSbY8JA670strEFVCYq6QjBgTfK88eJXTWWVHYtO8WEojuoS3sdvczyx7aIlGLw3dKjz1EjfN87z03rmBMdJpn7hlp3tBqA+xe9Th427ft5LS/fWe2O07WVUVhu/XdyiGbsPXPRbTDl+vHp5DyyXxYiV1U5I6TESTFtidlltx6KzqDIfYH1B7b7QRx7rlR+IILnKjXlkdyIZ4rbP/k+rdxLG2w0hiO69PHFrplbBvytVeSzAmtBosfzmqfeMDxADNSwvKJUa0n1q1y4tLW1xzM+LTqPF/4JI7UYaqr3GSsLrHTDze9lfY4/cl3jBpPCm0ZAPw5Tmf7BBfEdHI+edJWI1/zO4JPimrXkNySlusYQPzE6FvMzOArKIrmfNs2cbey45zfYzIhw/SdXujLn8topVS+LuJTVnH+LO2061/MUADgdi0rb+X2Tnc5zwTWjSETB/HxsPE9i60fn/wurv4t3N6+YZ4uvqnOh70Xn6ruG6L83pTu8LX3stJLhvuZrz7SHa8+Sxk7j/A1f87Og/yubm1puP7TfR9pC3w/37soqjxrJTecb662N2h6uPZ0VCG6AOq5QgghhBBCCCGEEO1CnmUHI5JhCiGEEEIIIYQQQgiRRF+WCSGEEEIIIYQQQgiRRDLMrsDOncC6txvD9txtFrLb86Hpurj3Tidq70j3ePCWsrPXPp8Rn5cCF9lK1VnWbuXq7O9UWm98dtjbiM+cNqzkj5i45RS2J2uz89MoCjcg83D+zTy52LzEYxrBfgzWS4Tbzfpp5eXFH+XNn2MfB7ZQAlyPDduGnKf1ouEmLCuP/MsSJ5qOxoW2fTxdIw3ueJ4zua1fBT+r7ePsL8RZ2tOv2YbO+qKsWdNyEU2xHL8fW8dx7QQAddnROE9cdJETl289JfYX3/2ue02VXHHvvW4cdyBj6DRy3LBUmPuS9X3iLGwbxvnOAW7XYn9G64vCdd7uI925EX0PYDsXF5JNa0wfz63ZEF0sXuzmIc8yoKoqCttGTLeBqc5LSoY5Udy8mze7H+M+aaczp79+QP3AZ+pjJwjO1PafOJMc2yfIdGfVuoQT9f77UZjnMyD98eDzu/JmyNdxRqytpOO/CJeVDWixTIDf14vjmuxlW7p1ulhvSx+cP/cz62vE6699jfRVI7cHL8X2ORm7lnH9+Ly8+HMdbV9k69hnW5guxcVR2NePbf/hYWnrZ8eOKFzvmQJ4yNrh254p3tZPaUl6b79Z69a6P6CGLCmJxpetb1727JixS2JcOh/cd32vjVzfW7e6ccX9+aXMjeN3BNv/GZ7Tfd51tr4bOnjvis/aMpEd0/a2s/IHPeuQ9QbOTvpGhtnmFxRxyBIEwacBXIPGX8+3A3gIwHVhGMb/wh99thzAO60kuyQMw7+kkf71MAxHx8Sl0JdlQgghhBBCCCGEEG0mhDzLWicIgmsA/BzAMwCuAlAG4GsATgyC4PgwDD9oJYuNAKbHxP0GQE8Aj7cQNxPAg+Zn1emUWV+WCSGEEEIIIYQQQoiMEwRBEYCbALwE4MNhGO5N/vwlAP9A45dnP/Tlkfwy7e4W8j4RQB8AD4Rh2NJ+1dfCMGz2uXTQl2VdgN17G7Auud84b9EiJy5v6dLowp5XPHVqFH7gASeqdPLkVDhnXCQ6tFvwfVvTebvytm1uHG+P5q3GVgXCRbbFd7aO3/2UG7lkSSq4miQ0VTDJKFxt4niX+fEmjjcJF7EU0uoYM0AuSy+pXQC4lWK2POfQNnze8WxlYr5t30x+Tp17nRdlur2m5eO/bf5WarmctK52Kz1LQVhSMGK02fHKkbaTpCvDpM81ZLsyIkfGUu1+jGWYVgEap86yW/B5TK1f78axLNOOPa4vHoe2/jmdlWZ4pSy2LvcXVgNElVzDkwqAvLlzo4u333biElTRffpEsjcrzfAdJ89pbVfiuuMwTweAK7O1efCjcnU3U9EtoY7GczrgjvsxY9y4I45oOZ0tJA/8I4+EMPCcs2CBG8cDk/sj4A5MauzSMWbhpPzr6+PlNHYd/YD/fsqTkR1DXEbbuXiSsesXf86jj+M5074TcJntHO8bXwx3z2Zjg39gBzeXn+vH5ylgtVUDB6aC+RVRIXPKXKkQf4wlV4A7x9jnbI8M064hvjw4jucp36uKLb/tdwznyc+WW+3K7fLyovdI2z25+m3/4fL7pK6MT4WcLnZdyIQMk+vRl59PMWzj+Nosjw5x9Qik/5rENHtX5MHt0xmyJ4LJKK8iXobJ2Li4+vK979i4dGXU/NzNbBooYY8e7nskf872LR5vvrZwpM120Oe0bJ2TKXj6z6re4kZyWbgfxOljAa+nT9x8Zn9/EIck5wHIBXBL0xdlABCG4UNBEKwEcAla+bLMw+eS/98elyAIghwAWWEY7oxL0xIy+BdCCCGEEEIIIYQQHcH45P/zWoibD2BkEARtNlxOfuY/AKwC8GRMsmsB7ATwQRAE7wVB8L0gCDyO7BHaWSaEEEIIIYQQQgjRLg6K7XNFQRDwFvzfh2H4+wzl3bRFeU0LcWsABMk0b7Ux308AyANwcxiG9sSKBgD/AjALwLsA+qPxi7Vvo9EnbQrvcmuJQ+LLsolXPNLZRfDSLUwAqGs1nRBCCCGEEEIIIUSG2RSGYaUvQRAEBQCubkOevw7DcAsaJZgA0NJZ9U0C3vZokj+Hxi/F7rARYRiuAvBh8+M/BkHwewCfB3ARgL/4Mj8kviyb+8p7nV0EL5ccdhiqt6wCAFiZfx6Jv0usnwpjfVjoXOi8ynjPMr628nT2FbBx7AFgjzCPy8P6mSVWr4wu5sxxI599NhVkXzLjluD4lBWYOJ9j03YKF7EHQ0f4PLG5iO/ccGPkkMueAHlR2Hri+HyruJ0SOdmxkTk5kT+Dtavg/K0XAV+zdQ7g+hNwOXbWu14QznPa+knzfHnOs9YMonR9w6wVBzeHz3OHr60XB8el6xtjH5mPeD92nPmDyfz5Udj4FuKll6Lw1VfH3zzT/P3vzmUdleMNk7SI+v+wZ55xI2nclJ8aeZbZeuQ29R1X38Oz2TrOFwhw29B2z2aeJ0maHcXOBSMPRgD+ztW/f8s3N4N0S3U0J+SUDHPichFzLPyhBHu82fpnfOZR3NgeUyKbBTc9224BxvaF1wJrSLV5c3rlsvDN2TDHLOhZ1Lfy8lwvLy6jHRtxflc+T6Vm1mlcl75JOF0jKGvGFNOmtoxcjbb6Oc5nl5YuPs8mawW0cWPLeXgs6Jp5Kvk8wOIs43JNQTjOzsHprqN8r3793HTcPX1NnS7WP9Rnv5QuPHXwumzx3ct2xzhvYN+rj+0jPq/adPNAdZrme7Zx6IGy6P25oMCdR3zvOHHeh+31LEvXR7At3nic1k65ce+6dpw46fLc7wNq7C83RG4Gfi3hcZjvM1bjyrMTic84jxonr9yNakqaJeOng4kCAN9pQ/q7AWxBowwSAHoAsI7DTR2zTX5iQRCMAjABwOPJL8bS5Qdo/LLsHOjLMiGEEEIIIYQQQgjRXsIwrEKjZLKtNJ0cMwjAchM3CEBIadLls8n/Y439Y3gPjbpZz4kmjeh7XiGEEEIIIYQQQog2E6JRCXig/+tQmqQmJ7YQdwKAZWEYpr1fOwiC7gCmA9gI4O+tJLcMA9ANwPrWEmpnWRdgByKpod09zLurR7OsCoCzC/wPf3A/WFycCiZov3523ign2fvvR+GlS90seDu93VrPsHKxrMyN492+xf3NIHzg0Sh8111OFItKuVjV5t7lFLa74kfaghIbKFxLW4vbcQJ36/C29UWL3Di+ttvbWQsyMnqawtGj3XQ5US/ZXutKHHmntJVvsvSSyc2O989LZLtbr8vKoq3kI02FDymhfLgDVZl5cPHiKGz1BKw18Wwd90kWuN9t2+bWAZfZbt2POyrcjhOu4yVL3DifbIDvxyoxDgPA5Ml0MWOGG0mSx/r773eiWGpciP1HtZmnWHlWZdKyWqXEzGG5pGUppj7fp487h3Gdv/22m7+V4sTB3cwOr7h0gNtHhoB2fy83fzBjiaxtQ25wK7fjyXXChFRwe43bj1keZIfQCI9c6JCBNSh2MaNFcN17rmVDyaxZ0QXPz7aTUBvu2TPEieK2sdM/zw8Xl5NGx+oA+d7durlxH3yAWOLkiVYnRh27qMSVT3EW6UrD7FzHUnivst6n82e9Ws+e8ems3ppu2EAS03VVbjKWO7L6GXDrwBaRq3KsZ+5gfPOUnWNYustxtow+SRmX38ofGadtVrvjJK8sWkVsHfCQss/GUxqX374rcpydPtuDXYt977Dp8sorUdg6dnDd2fLz9GPrjtvGN9a4vqyMN13Zoe8zCZ80L92MqNA+ubKVFvMY8hWD8+TpAPC7GTDc/5vVG5XfSi05rX1V5/dDnpqs4p/dE+w45zK3tyl8OEtBmbGEyomus7jj+ST+vhdaQ25O4zu4ZJgCjV9o/RrAl4MguKfJWD8IgnMBDEej6X6KIAiK0Ljz6/0wDFsys/kYGg37fx6G4Z4W4hEEQb8wDDebn2UBuCl5+VBrhdaXZUIIIYQQQgghhBAi44RhuDEIgm8DuBnAU0EQzECj/PJaNO6N+aX5yJfR6I12OYA7W8gyHQnmH4IgyAfwPBqll0UAzgdwHBq/vHvA81kA+rJMCCGEEEIIIYQQQnQQYRj+LAiCzQCuQeMus+0A/grgW22UYJYB+AiA58MwfNOT9GE0SjW/gEahzW4ArwP4TwC/C8OwVe2pviwTQgghhBBCCCGEaDMhGv3iRWuEYXgnWt4pZtPdCODGmLjVaPQcay2PPwL4Y1vKZ9GXZV2AHgCa7A+srQL7Dq00cWxFs9LoxYf9+c/RBYnjSz7v+v2wvt563aTrT+Lz+5kyhS5+8xs38kc/SgWfN/nzs1ZTuMBNBraNKDdxRewFZAw+CshXKfuss6IIxyAqQ1x2WRQm3yEArlmD9WGJMzEwDbWlJvIes74c6bYhpysoaNnLrPEzblycJQ4A1CFKy34Y2wtcT598MnLYnjMgNv8hBfFf/lt/EmbPoMgoYevW+HQ+HxDX+81N5/Oa6NUrCvs8Zo4+OgqPGeOmS8x+MLp4/HE3kkyQqt0YmOboNLharRUHH3ljbWqGzJyZChfQJHPC17/upOs9JZrTbB9kjxlr7RTnQ2T9SHxH3jtpSzxGI76BOHhwFD7ySDfugguiMM0dVaa/cznsWJBnGYCLLoqPowrLs4aEvIbw4LaeX9SB+vZ1o3ic72nRUaOF/G1/4WvrZ8Y3sJ+LM8mxBaE8mvxlmsjLy6IwTFwUth5UccXIrTYHXXFdskGXhTv5XvMLCQ9gj4dbVk30RlVivNl88zg/p43z+SPFMXCge81FtnUcdy+7XrFv0ooVbhxXMbcF4FYl55k30nhDzo/Ctpl8fmDc7fjZbDkqMjxPDR/uXlurv47EDkN+butVxfXAXdzWD78j2NfIUmclNWZqMeRXr3J/wI1qb86w0THg+lrRg+YbU7eKiui9z44hntK4rmwfZ2wdc/ta+yxOy2PN9lue6+x7gG/scZx9jY8ro2/eaM+c0hrplr/Q1/Y+4zzq2Lb+67Mb67Whw73jhegYZLcnhBBCCCGEEEIIIUQSfVkmhBBCCCGEEEIIIUQSyTC7AD0BDEuG7a5j3s1qZUofobCVaGbT+d1DSP6YOOYYJ11Z2UmpsFWW8K5su62WtxPzlmq79b1wKQksb73ViXue9kC/5n7MkaPy7vyRJl0ly2SmTXMjJ06MwmZLePZTT0UXJL1smHCSky4LGdg3zFpUu++b5KAsqQPgno19xhlR2GggCseNS4Wrc4Y5cdxutn15u/ugQVG4mUyG97Avde99UiXpbp980v3cs9VRmLbq57O0DEBdQSS9XG06OVfBEI/Mh5/Tyi16947C3F0AoDjYkAqvrHEloJwnV7lVarH8xR4nz8eUs9oOcLe+n3D4lujisTluwm99Kwqbs8jrSE5VZLUNn/wkOoOCyy93ric8EB00U2/Oe3+EwqZaHWHJ2DvuSIVLzXOOIllmVZnb/1mGaYmTeFj5hU+C5UiHuP8//LCbkOpguZHAVTxEp1afe677OeqEK6viJSI8RHv0gPBhNS40pra7MchbvDi64IHP+mrA8R8YcYGro1teUpoKWwWls66OpNXNdjRuVKvjWrMm/nPceXlyshomyrPB8zdUm32cRNlm7zynzYSlPXaR4oz4c7b+eUBYPSh9riEvkl7WVrvJuIw+qaVPhp8u9n3Kjue4OF7beN0B4uWU9trGcRfh6s5a574H5ORE/dhKRX0ytLj68SmNfZLedLFSV1YLthe2UvCNBZ9c2X4uLg9bByzvtlNAMw+GdLAN4CsYY/0kuDNzwUx+9dTvfLfu0yc+nW+MMj7XA85j48b4z/mknHa88pLue+fmMtu1wOO0knHsHMDlLOR1yCSsyytMhRP1O9247NwoPyPTbno2q54/ODkkHvKQQzvLhBBCCCGEEEIIIYRIoi/LhBBCCCGEEEIIIYRIIhlmFyCnuBilxx0HACikE+AA4C0KW6klYxVFLGkqJPlI3vz5TrpjL4l0ROPGuTI0lhgtN/I4VnTwyTyFT/3VTfid76SC841+jaWX9jAlVrOxsKrSpMPJJ0dhexRnZZR6bbZ7AmPp58qjOETygkWPuVmcPQX7zMu10alSg45yT5gqZsma3ffN2r+pU6OwOTZqS0FUQ1WL4stht47z1mtWh1ZUlDrpeCd2SYnbR6oWROGTjMTX0V/Qzd5a555CxuXwnUDkgz9nt+f7TupCWUEqaE8Y5Obgrmu3sPP2fHuiF0spRhUYeSvf4O7ZUXjBAjcZSartXzcSrDHl7fMAQPLc/UpyLktBDZBtdAkDSIa8BS58Vhc/d66RcxdQnmebkzIrrjk+FbaSiGefjcJ8QpbvQEGWiABmyLLO1rbFeedFZZozx43j03KNRHllUVR+/piVE3OfN0pdAeCJJdGc9hHTR3idcGc+uGOIK/bNN+NvZo4jHTcuytXOZ85cUtlsdYuIkyMCbue18sTDD4/CrO2xxxlSwbKq3ZFYUlLYUjIA7tgozCYRq+8Yu0VGcO07YY1fNFjiZU9s8x3rHbOIWCmbnR8YrnJb/emq1xgrseP3K1tcnmM2b47CVsbFUjDfqdi+OK6DKjMa5s5tuUyA251s9cfVj7Us4CkzEydX2uHkO+QvXbjMNj+uR9uG/F5g525WWG/b1vJn7L1zq95wI7lRbcXGYRcK26hx2JN0+XNcDjOgRk2gCjP3Ki+PJHxcfNtX+SBOW3yW2fre0RgeT4Bb/z65tY3jKuE8bPl5erZl9L3DXuw5zDld+Fc/O754Camvj06xz8kpdNJxk3KbAe7z2PI3NffBfxpmCMkwD060s0wIIYQQQgghhBBCiCT6skwIIYQQQgghhBBCiCT6skwIIYQQQgghhBBCiCTyLOsKDB8OfOMbAIAc4zcwdsaMVLjWc764tYVg1xF2UJlwyy1uQhKaZ5l7n0I+O9bPLD+bjg1mM4t773XSvUFmT6vgwnJ+67IwlsIncbmuv95NeNZZqWBd2TAnin1AjFUbysoiPw72PrA+CJnwLHvyySjMFjIA8PEpdINFi9xILgybH5jzrgvHRwYKlZUjnDj2GLDHZLPHA/u3WMsLvrX1eXG8V2z/ZFMPMuCoMm3BfifWW4L9PHz47Da4/M18S+iG1iOEPRh8x4Gzj9WkSW5cAnXRxWzPg88mzzLTUGyPkWe9sE48Mf7mxv9qvzF9unvNJi3GaGfCVVelwmuNpyE/N1d5lbldxf33p8J5pvOO+Fw0M44ocmfJomnRWNm6Nfo5e44ArpfOkDJjusH+crNmRWE7lhnrrXj00ang2rLjnaiXyFeNu4vtBoz1MhKujVifPu7fCE9gXzL2hgTcCYPb1PRV3H13FDaTZOmV0UTy0YkTnbjtOdG6+kaV6wHDlJQfGxtXGOfrBeCNpdGz1tI8OHK060e1Y0cU7mnm4JrqKGy9epz5mo1q7ITM5TKGXQ0V0Ths9tdbnjt44rULERfMLiIx701ZtTud66KiqP6tLROvQ/37x986Xaxvlc+2jT3AeJ7yYaufu4itjn79Ws7DloP9ovr2deO4DqxtHteXz9+T68Q2b3uw1pmZyJPnXduGjO2C3L5HHBH/OfbQsvln1ZAnoOd3gbRJ19jLMnBgfD48X5r8dtZGozvXdNAePaKxl6iNnrOgwPW35ce2fZCnB5+PIL9erV/vxvGjWF8vXldtX4qrOvv+ytaKPjLh2WfhKvd5Z/peXfhd2v6uxG1TXOzGNT33rl2tFPKgQJ5lByPaWSaEEEIIIYQQQgghRBJ9WSaEEEIIIYQQQgghRBLJMLsA25GPl9Eoszj2xz92IydMSAWPv/XW2DysSIMUiBjCEVZjx3tpSfIJAJgzJxXMt/q1l15KBRtI42iEZlgZUyYAGBVXRgATeL/7F7/YchjA+o3R970frHaiHBnmcnNzfmzelr23A3bQvvpqFLbbvvfsiSQoY8a4EspRJNF8Y3W0Hd0ezc5KsNoFbhyntbvu33svCvP2f5u/e1x0fP5Tpoxy4qqMUqkJlkTZ/I1CJ20ZJm+DZ0mRzb85Uf+x28o5T1Zd2TIOHhyFE8vNke68390+OO9357CRKOSxpuDII908WNZlZJhbaiNpQ2HO/juze22NK50oPeOM6MJ2ws9/PkpnJNzlNMdwE75m7kfiFJQZmfkwlkZaieaVV0YXkyengjvHuLNRbhW1ab2rHdo5OpJN5l5PcXbC4U5jNBvPL4+keI/9zv0YSxt8Khkeh+mqaQ4l3n47CtsuuGxZYSo8+aKvOXE8d4y9O+ojuOMONxPW5fCED7hzAEmGASCfdPnzV38kFbYyIu4+dn4uHBfdm6VOgCvd5c/lmvkgl++32l1I86lDlRaZzrWE+jlXrNX8c/2YRTDLI9+sQyIVzi6JpKMsBwLc+soxRcylW3MR801Cll7a9wCWRWXBrbtEO8abbV8eszaOr1l6ZqWW3M3smsdTn5VgffBBFOZ6pdc/AO4aeNRRbhyXf8wYNy5OYmrX0dIcMg9ZWuVGslQ6TU4Y77bT4Yfv+94ALoZ9F+I6sHH8Opu7+i03kib5Yh4ns8z7At/Avqy0R2NqJ0L7u0EcdgKK86gwUtFcvp95FyrmzkDPlm86yViyMBhtpOS85Prkylx1/N4LuFVixyHbM9g1Ns6yw45RliTbccjjy977Exdin2G3HNv0DHcD3xxjy8jzp5WqN6XVu4k4UFHXFUIIIYQQQgghhGgzIYD994dpsf+QDFMIIYQQQgghhBBCiCT6skwIIYQQQgghhBBCiCSSYXYBtmyJ/CHeftv1+5l05qdT4eK4M74BDCBvMwCoIx8xbuTt9HMAAF0bGxCUkIjensTMaVfFhAHXp8ycFI7RFB7Fpg4A8Mc/poJbRp6UCj/m2ho5J1VbKwXW1/fp48axb8Hu3VG4IzT1bONgvQLYHmbFCvO5iVFf4DxGj3bT8XPbauTnsf4DfM11YNNxGX1+KuydBrg+QZy/PfWcj5O2thm9eyMtuBz2eGquO5u/z6MiLs76kTjt8ZQxamMvEWsk8847UbhXr5gM4fqSkbcWAKw/4pRU2NqYsMfGR9yPdSjWruu99xJ0VejEDSaPqNKpU524sVdfnQrXPPpoKmz/wsO1arou6smYL8EmfQDK+YIqL5frGwAeeywKDx/uROUec0x0wZ3EeDyuqo/8VRaYKZjt6thXBHD7K49t2wcZX9yhCs8/tn/yfGTnZ27SkZdEbZiwlfzMM1H4oYfcuGefbflmADB+fCq4ujLyLLPrEH+suVdMNCJ4zAOu7xSvE/X17ijiuIoK17OP75fINhITntM83mMYODAK9+zpRDWURffLMhM0txVnby3RGOuXU14eeTc6rwhVrjcb+yaxVxpg2sMapvGzpjn4sqpWOtcjRw5Lhe2zcZ98//0obH2Z2HvM2M55i2W9k1q6b0vXDDebvRf7fHFVDSurcxMuosZeatbRdniW2cm0kOfkAvOilCb8mu2zCbPdP7eW/Nhs4/ALC3/QpnMHsLecadHePNJ9cDuJ+V6uuSwctp+hScAW39Y5wx6E7FNmq5i7nbVp5vvZOPY05Gayv5PwOLHeuvyomWheC9ePvTfD97bLFefhq//u3d24pnqw7+ZCHCjoyzIhhBBCCCGEEEKIdtEBp8SJTkcyTCGEEEIIIYQQQgghkmhnWRdg795oC+sLL7hxLB854ohznLgT+NSN66934sp+9avogrdN2730Tz2VCr7BZ//ClTdZWG65KSYMACMoXG7iRk2bFl1cdJET90K3SHq5glRQ5sRpVJC2k5VsgFt3dlswK0FsXKbhLdoWlpnYrdEc55Nh8lbyc9wu4qhf7LZpVpOwhNLK+bjL2G3URx7ZchkBd7u7b3c+t4WVGKULP9te84cd7tZ2qz4/m5VospyEP2dVelmraTRYjRff3MatWROFuZPYCuLj043GhWVXVoLlkyV0JL46tn3cObp93AgnrvTKK1PhPOoYRTNnOulYzFNlykLiF+SbuMKXXorieI60MhMeEHbwkS7nkceivz2tNpJkmmabST8YW3fcJ1nSYadxTmclIsJfdzwsbdvwUGS57Kc+9Skn3QmnndbyzUymdfff70QlSKL5/qBmxU7BZbaWAuvXR2E7x/PnbLEYjsvP3ulGrqOJ3epyWLfElcV6QcCd38wEncXvMWbu4/mC1xebPWPn/7g1pdRM+DvrI+ml147BRvpkaXHYxqB2MipVZ/rnj/H7DeC2tZVy8uds8eMkX1bmyfVopa5cBVYxWZq9Iboop8lptZGz8guJkcy3C7vecv7WryJNnGepj39Zya01kwyvIb4XLK5km44r2TZaeyZ922+5o3nYmTfAuc7lDsUTqO9FwLYvD3T2I7F50L0S5plHjx6VCttpiuE4q/blKrFVykVpLoVvOZ39nYSbzY7fTKtsLZwnS7Z95bLv9L73c46zXaupLjv6dy0hOgrtLBNCCCGEEEIIIYQQIol2lgkhhBBCCCGEEEK0mRDyLDs40c4yIYQQQgghhBBCCCGSaGdZFyA7O9KrW08uvrYWDCeMp4uzznIjWffPXg0PPOAkW0lie2uls53C9lvVLTHprHMCH0I/wcSBPIm2VH7Eifrbj6MwewBYLwLr38KwX4D1o+J8fCdVZwLr78GwLYX1nGLvFV8Z+Tl793bjevSI/1ycl5rP08T6LLCHmbXYiKtj2xZ8P2vl4vPZYdgvoS2+Z1xGn7cc221YP4kEP4DPv8Z6grDxzpgxUXjyZDcd+fm9sTzhRC1eHIVt/+ksrNcN+2OsMzY1XK+2/5x33kdTYfYXGm0myQFvvx1bFrbcqDNx5D6DfPIvQ2Wlm5Ab3Jpa0QNkZ0euaLYOuJ/ZOmBvFOuTwl2G/RltOvaZGj48F8JlEPmBWb8WXl+sRQ7PJdyGbDcIABhIfcQ28Jw5qeBK87EEZerzc/HNwewrY/3YOI59dexYY0pK3P7j+Pl5PIScxcYuRLwImjx21sb/zdb6jzVh64qfzc7jsWuDeZnILaAL6xlUSz+wLyHpzv+MMQMqq4h8oGwb8hrIXmS2mzHW98y3PsYV39hjOv6SNo7no9IiM9MuqorC/Nz2AdjHio342ovt5Nw/M5GnnYS5Im0f4T5vG5gHN8fZdL6X0/YYlNrPpJmH9x3ZZ7bFg9QOYL7mG9jBzHGmIL53ZI7jsLFp9ubB47BfPzeOxxR3izjvLqC5/y/TEX6z6fqN8XPb+olbD21a65nYVK82PyEOFLSzTAghhBBCCCGEEEKIJNpZJoQQQgghhBBCCNFm5Fl2sKIvy7oAYRhtU7VH9fKWWLsrm/nXHHeT4OnnnRdd8PnIRkZUThKmDXBZRWG745+ll/kU9skwsyYYIebEiang/DluFMvLeIe23Z7MMiUrPeC6s7vD47Y5t0XCly6cpy2Hr4xxJ4rb46j5mqVa9nP2mQcOjMJ8krpv+7ndVt63b8v3AtKXeXL5bR7pKifitpEDzftFHFY5ZOWiTSRWGzEV70e3g5Sv7eDmjs0Va268fmskvbQqQJZe+uaH/YmVuXH12Crga9s/WW1ZOoE6KHdWAAmaw6zUkuctu9jxcGugQo74xS+cdDupYLlWX0CS2by8kxAHP5tPqeKTSKUrf0m3vx9KcJ1YGSPXq5XG8Nznk9J65Xc0EdohymunR03swHOuLZeF54t6j5LQO3fwB+0g5QrjyrKTP9eP6cisbLPZs/UEx9l5hPEpvLiIIyrcebauPnqHSmQ3uJnwzTPxkmD8BXwqPYZlqbYYnKVVCHL1+z7HTe2zj7Bro/M4Pgmib0LjBdg3SaaLrchMaNt4/vf1A9tBuU527HDjuFF9XhB8P/tiFPey4sN+xmprY7B2MCUlhalwIWfhW+ztS2wc9mXCMzgS9DwJz0JaUBCNc/vO53uP5C7pk/JzU9ticPFtHpno8j58cwyPX24mll5bfO8qcfJ5IQ5UJMMUQgghhBBCCCGEECKJviwTQgghhBBCCCGEECLJISXD7NatG8bQqXOzZs1Cudl6PH/+fFx11VXYvXs3du/ejU984hM47LDD8Ktf/QoA8MYbb+CII45At27dMGXKFPz4xz/GL37xC1x33XVYv349+iSPZ5wzZw4+9rGPYdiwYdi1axemTp2KSy+9FNOnTwcArFq1Cn369EGfPn3w3nubcM45jfe3p//xbmXfzuVmO6hZJzJ3bhS+6y4n2SIKV5ks1lJ4u4krpDBLSYaYdM5G7/Hjnbjt9dGpW1bWwluUfbvdeetvWyR8cfLHjjgNk9vUdwKOvTdLKVheecYZ8Z8bUeK2VENe1DpWQRa3c9/+nFW8vsOJrESQt6PzFnDbx32n76S7ndu3hZ3r3NZ/nEwJ8JyUOcFUEH/Q6mBZ/2JPw+SKJUmyPQ3zhdlR+M033Sx4nFiVSboniWYanxLV1j/3SZ8Ms6ws6sejWGIOoIAmj2P5VEu4fw1aCxcuJrUE8jxynZr5853rAXffnQqf9PWoX+SdNcxJx3IG2898Mmc+7ZfHZWGBkYlVRdqJ/DI7YR5Sy3yLcB37pDFWvsbrKs9T559vbnD77alg7YwZTtQbFH7ZfIxbhmXxPkm+b56yY4/XVY6zp7lxnrYPlpdHq33pSM+kwh80FVlXPiIVtuvc6qeisE/aw23oW6dt+XncOHOiWbCaSbeYdDWgdo6Pw7zw5FN9ZRe5p5Fa1V5LRQL8cnefejBOIWsfhfPwvif59Gvt1eS3h45YEH0vJFyx9l6+ARZ3EqRPA2e15HGdxId9IeTx4JFk2vdD53FWx3iHAO6cMHiwG8f1xS+BNt3o0VHY9LP1u6J3hO4e2xV+7bIHpvK1fde1kk0mbuqzdcXXdq5OV5naXvjV1GcHE6eaBtz3TTsUOE9zYHmqTjrilM+uhzSoByOH1Ft0z549sWjRIm+aSy+9FH/9619x9NFHY+/evVi2bBlGjRqFyy+/HABQXl6Op59+GkU0I86YMQPjx4/HzJkzcdlll6V+fvLJJ2P27NnYtWsXjjnmGEybNi11/8suuwxTp07FBRdcgClTrsj0owohhBBCCCGEEEKIdiAZpmHDhg0YmPwTb7du3TBq1Chv+hUrVqCmpgY33XQTZpi/KDfRs2dPjBs3DmvWrMl4eYUQQgghhBBCCCFE5jikvizbtWsXxo0bh3HjxmHatGktprnmmmtwxBFHYNq0abjttttQ28q+0RkzZuCTn/wkTj75ZCxbtgwbNtgzJYGtW7fi7bffximnnJKR5xBCCCGEEEIIIYQQHYNkmIYbbrgBn/rUp/DEE0/gnnvuwYwZMzBnzpzY9Pfeey9mzpyJrKwsfPzjH8f999+P//zP/wQAPPvssxg7diyWLVuGb33rWyiJMYnKzo4079YnYtCgKOzTzA+rf8v9wZNPRuHHHksFzanP4E+tMnE7KZxv4vhJfKfO81eNCeNRkV8bfbFYUTHAiRs5MgqzFt5q7dkfgP19ALe+evZ049gigb8P9Z3cnQnssfY+z7U4CxX7/S3XyXbTUrvIlmLbNvdz7JnATePznLJlYgsS34nxHLZtmIkjs319hL0VrM9CXB3Ya/aTeKPK9ZQZVVEeXdjGYaMIn1kSzQ3ba+L/hmH7D2P9JTrCfy8dfN6Bffu6cdwn7fhlHxAnT+v5QnVcunixE8V/7CiEC7vKcIuWnnWWm5A7lF0/rEddU97GsoaLbON8Xkw8bzlxvkHjMyQ5RPFVAfctn80Ot2HxXuOAtzxaWetM/s4aaOI4bWVlfBnZksjaFfH4snM8z2FcB753CZ8XVk6O+wSFXEFxi6ohq8b11Swpidas4mI3LWfPbWO7ON/O5lEc0B8wq2PMi+zNfJ5TdqFrD9bgkzpXrrl3TklpKsw2Vj5rMFs/Pm/LdNdfXjvtO4JTFp83GJtW2nrMtGeZJROeZe2dyPnaPnfci579OdeJtwHSZNky95ob2ONZVli90v0B+5SxF1+6L7SAW68c9ph+1dW770lryCfLVx2+bsbv//Z3Bp/9LDc9xzX3f4zCtgkzMa344Kr0DS/fesif8/0uYGmyoQtDbxEPAkLIs+zg5JDaWdYSl19+OcaNG4ezzz479bPhw4fji1/8Iv75z3/i1VdfxeYYo83XXnsNb7/9Ns444wyUl5fj3nvvdaSYJ598Ml577TUsXrwYt956a6tf1AkhhBBCCCGEEEKIzuWQ/7LsjjvuwKJFi/DII48AAB5++GGEya+/3377bXTr1g0F9s8DSWbMmIEbb7wRVVVVqKqqwtq1a7FmzRq8++67TroRI0bguuuuw09+8pMOfRYhhBBCCCGEEEIIsW9In2G46667cM011yA3NxfZ2dn4y1/+gm4x2rx7770Xjz76qPOzadOm4d5778UJJ5zg/PzKK6/EzTffjHfeeQdDhw514rKyIimFVfXwNUsTm3H//e71Aw+kgltoR5sRHoAd1naaOEeaZOKGUJgFBfbbVz4gPf+VV9zIWbNSwYmf+4ITRaoWR7Fgty7z9me7bZrlBbz7H4jf0d4RiiW+t5UB8v086jJHIWK3gPtkklwHPtWAT6HAcb6d9Olit4Bz+a3EKF01Rpzk015byQmfUm77Frcb58F9EwD69YukScVGNrB+RzSKim3DxXwJb9uC255VDoBb5kzIWTOBrxw+mRtLzgHgqKOi8LASmp2shIn3//fv70SVvfdeKmznJhZ+O8Pe6uG40t9+241jTceCBVF5J7oPOmFCNIPaNvT1XcapV1vJVLENOa5MOAsN8ZkeIvjkIz7VD6+548ZRxK0z3YT0HmCa17EpyDVxLGosKEcsLMNkSR3gPo+VafOz+cYl14+V0/AaZfMoGF3aYlyiwO3IPE8VmjWWy1/c3+2rPXtGozY/L4prMKOZ8+d0AIAFVVGYC2kHIuN7EbAvE3ZRTwdbyXbxIbjIPiXe1q3xcRvJjsH28bh+YdchXx/huPVbXaluMU/yXDB74BUXJBMvGnZ9tetve+A8+LkAt8Lsvfl5bOXFvWDZFw3+nPWMaI+Gz/b/dF9+q6rca25TLoev/m3n4jjOw7TZqtXRuLd9nIvlexR6JWhWjfz+6ZsvfTYLcdJxAMjPiYT3BQXuOOEy299lMgGXK90pzNYx15d9Nt+7dGv3EaKrc0h9WVbjeSFp4t577/XGV9GM/M477zSL//nPf54KT5o0KRXu2bOncxrmnXfe2WpZhBBCCCGEEEII0ZXRHycPRg55GaYQQgghhBBCCCGEEE3oyzIhhBBCCCGEEEIIIZIcUjLMrkp+PnDMMY1hqxRlz5Tc5a+ZT46Ogv/8pxPTQD5lVfTzVSaHLRQuNHHs6TPCxI2LSTfMmKZsZyH7iSe6mZBnQtamDU7UuHFRrj6t/cCBUdhaJPhOe2ffDo7LxOniFi6j9SRiXzJ7WjepeB3rhiHVth8Qi9wbFHIHKnEfrqYm+q6c69j6PcRYawFw686ncuZuYC0A2fvAd+K6j3TTWR8K9v+xfmnsz8BtYy2zRtMwrCsb4MQ9NzsKjxvnOv8NI2+shpGjUuGXXnLzX0pGg/be3J9sHWTC9qU92PtyuXztZP2WuD12kttT7uTJbkLuUDxoACTI96X8oYfcz3HHXrEiCnsMSeqNX0s2e1bOnx+FjbfZ6ZdfHn3mArcfxPkzAm6/czzdbEIiq3qL+wPfAD5E4PnNNi+vBUcf7cYV76YV8zezovCttzrp3qJ+sdLcm1sq38TxXyvZE83OUzwX2aaP87SycTxXW7sizt/e2+dtyXM+D8PycnceXEFz2MiRbi341o38bPIqXB49eJYpZD738XUmwyVLojBPQNYTymcYyJNazOnobeL9993r4uIo3LevE5VwXgxcnyPG57fE65yNi5uTrUcuWTJ65/Ft29zrYu406b4wZGLx8hlkthfPYNhO71O7drnt1LcomvMT5aafcd/lirUea9xwtgHSNXdlrGFXuqandtww/KJnzfHijL0ArA+j+aKYJsJVNe5vJfPmRWH7vsbvSX36uHHslfX661HY5wFruyd3J7uk8hC1vtMOtE6UlY2Ii+oQhg+Pwrb83H18HtF8bbucb1rs3bvlzwhxoKAvy4QQQgghhBBCCCHaTAhApxgcjEiGKYQQQgghhBBCCCFEEu0s6wL06tmAEeXJI4Xt1ujZc6PwY4+5cbffngpWP/20E8VCnDco7IodXQnlEBPHu/Cb7SyePj0VHMbyI7sHmWVKb77pxnGZzZb2YydMSIVHTzkpFbbbpn07xzmt3f4bt8s/XTlfW+BH69HDjePd6Fb2cPoEkqDw/ufZC9yEXGir5aS4unr3u3GuAy6jVStwHfMue8A9/d3WcdxJ51Zux8W37ZmuMoDvbcvhy5+3o/v6COdhZVCsSrByX1bj2borOTeSXtbS5+zx2tyktvxcZp98an9ix1ZcPwNcpYZVnYytoP7PGiDfXn6StgJwB5Wv8Vmq5dFRZNvOS9qJOpK+J2wnoUY95aKLnCiWY1gJLteX0y9sJVPCujxXupLQ6UwOdorkfpc7/19uJOt+aL19y2hmeI214jIWHVo7A27F0gLq76avFhVFudim5+FgZTP8rFxkK8PxyWv42r6exI1tO0z4c3YedNZcu8DzhMoTrS0kP5C9AX+uV6+W8wbcB/AW0pDuIsXYSZ6vzbPVkfTSFpnhj/n6iLWy4Efjzx07zp03Zs+O3h98MmGeSgGgbMqwVDjXJ4Plh8uEDNO+UNm1oR2sqqU3ZjPFx73vAG73HDdumBMX9546zJafB6mtO3vDdPCNNR+sdwTiOxD7jwBuJZgXgWX0K8Teimj9sn1p2bIobKcAnt+sDJMlm/zYdr70WUb45Oj8aIka+u3L9mOq4/ym3/lSeUTjvCN+D+G1oEkW2UScnYetH99aw49qp7emz4VhWkUVosuhnWVCCCGEEEIIIYQQQiTRzjIhhBBCCCGEEEKIdiHPsoMR7SwTQgghhBBCCCGEECKJdpZ1BbZtizx5nnrKjXvggVRw+eLFTlQFeaiYT6GawmytYN14RlG43MQVjh8fXUyZ4kZOnBiF2fTFeCmwrUANe5sBWEXh0dde68TlkV9D4stfToWHnHaak66uInoCq6FnDwNrx8D6ep8nSyaIs3QAADolu7mlxr1R26NbtyhsvevYQOG449w4rsci9+ZFRdF35bnZ5J9g/JbYY8N32rv1wYmrf2vn5PNB2Lgx/n4M59+W46kHDYrC69e7cVyt3G72iO+5ZCtobUbYu8HnE1FYvTIVPqnSmHfRmBo5cpQTFWfpY+P2J9xVAbeOrY3JkBxyUTTzA35H/Zx9UqypHne8I49043iA2Y7BJh5sjsKfAVyDHvJSBACQTxk7wOSyWR2AojvuiC6MV8ywK6+MijhmrBO3Y0cU5rmptMKtgy21uanwamMpM3Y0BME+eQCQu/Tl6OLuu91I6heraeC/4aZyXOGsVSC36LD+/d1IHhw8YI0pVG5BFC4pyXfi2F7Lzp9xXmG2Djid9cvx+UHGzTG2HNYni3HWRJshX3vqx3m4nj3jb8ZzhTXW4UqxkzUvBr6HSRdr0Mg+ieYlgddL33rIH7NrMbepfew4b067UBcURK62tvo5qe0jXK3Dh0d5FNt5lg1dreldezAvVCtrS1PhYe30cWQLw7593Tju89YOjOvAtk2ch9awiRXxCe0Abo9vnn0ZTdcoy3cvn+kXPfj2GnefBvcfHmr2fZynADvHbN0aXywuMofb4q/KcT7vWBRFH9xem3DS5VO7sRdha+XKBDyk7LNxU3H/9K0Ttow2bUv5Z2l7jjhAUdcVQgghhBBCCCGEECKJdpYJIYQQQgghhBBCtJkQ8iw7ONGXZV2BnTsjDRXJegCghqSXRr3mSCptXDWFecP/SSZdOYWz7Lb4j30sCp9xhhvHe25ZItUkJ03ChyOvggtfbzdxIynPIb/6VRRhZBqJ06LrQpZVARg5shRx8FZj3s7t28rdXnh7td2Zzooyu7U7wYVkfZ+ViLCko8Ldur+2JpLsVBt5Fldlt27RlvCBA92jzZfPicK2/Lx93ipLeJt2nNrI5mnzt5KRdPBtD7dHijObN7vX3B6sgLDtxNdWYsFd0ipkC2toBDz6aHwmCxemgqUsfwZQSh1o1ARXA7olewA6g7POcq/z170VXVQZfcqsWVHYzH31Tz+dCu/k/OwNfVrm0aRBNBrZLWWRQK6g8vhU2MpZR5xHHdszAIbMnh393HZyLoftoNTetUZ2YvtkExUVuc41yyOsTFgyTLd+bPsey/3CSnwnTUoFy2gSqH3vPScZf8q+VOWxdNeuo/Z+TXh0boX2M9uqU8FiI93q0SMSD/BcZJZKrwyT10cri+LlhudZuxbwcCje9pYTV8wffMosUlwY1jrZQrLGiOV8gFvHgwdHYbuOxj0M4OqW7L3Tla8xZi5qIHm9bXpefz/4IAqz8tQWw1ckm3+c0nUTyS4B4M03o7BVuvL6aO/NQ4WbsHjSuPiCtadODTtL3PeYKlL5DytvX54rVkRh28e5+CyfB9zuZOufl3vHwsDqWX0NbHV16WDnkXTr3K5fcRpHO1lQJ8k39xo9OnpX4bnJ9vG4dzJbLN+jcLXaZbpXryjsqx77OVexHL1L2zKOGxeNqdVVblycZD5T8K9pvndYrkdbB8XFUdj8quF8Lk7h+8476ZVViK6GZJhCCCGEEEIIIYQQQiTRl2VCCCGEEEIIIYQQQiSRDLMr8NZbwDe/CQBYa/bt8qlbVeZjkyhcbeIKYsKFJl0Wny754Q+7kRdemAquzB7hRFWRlOV0Oq0Sw4c76cpoP3rCnHbH0sudcGGhRj2dLDfsppvchHyEoZFglV5wQSrc7ShXtlTcM7p7dnYk7OqI0zBJydNsZ/2I7OgURCwxN+djFrlgdg84Z2q0Ad26Rc/mk4ByuBBbnHQFlVGv8SlQ4hRFgF+qyAoC3wlE6WK3mHMZWcYC+E9648/5TmhimZI5sNbpnvb0pqOPjrbkn8DaRVsJrMWzEiPWuJgHd2TJBeXYXziySwCYMycKLzUyK5YumqPe+LyyfJZZnXeem8epp6aCOy/5ghPFhwuXl7uyVJY3cVXZ4ZWXF8kqSn36NW4Lq7+I0yIBQL9+qeCxRsO6c9KxqbA9RZaJO81KNMJz8Iial93I381JBev/53+cKJ7u1saEAbPe2knLd6o0j3W2MPDpZKz+i/uTufeYMa6ULiaZk721IuA5zPZBHis8NOwcyUUsnViOWOxz+/TFDA8A1goBbqF5cPjqON0T/4D2LVImjyya7RJw783zD8vEbDG2bYvCdi3mavQdJsyPctJo1xxj9er49yQ+INTOn9x/WL65s9b9W30uF8x3tF6a2KWGVf6nT2pfnjyN21Of2TLCdlWOsxI7Xt55nPTs6b6tj2Xpru9I8XSx/dZ31DnjO2bb8zLXUBLZotj64VcEnt7ModLO56xFgWcadIYzF5/HE+CqtO00y7/asK0IAPAhxzwP2jGaS7/plJXFWyl0BOwEYeGm5/nAlsl3Iqgj4Y55ljD0lfBgoX0n7YqujXaWCSGEEEIIIYQQQgiRRF+WCSGEEEIIIYQQQgiRRDJMIYQQQgghhBBCiDYTAtjbaipx4BGEB4iIOAiCsD1lDYIAXf0Zr/jCF3Db737X2cUQQgghhBBCCCEyRuXxx2PBggVBZ5ejowiCkhCY3tnFyAA3LwzDsLL1dIcOkmEKIYQQQgghhBBCCJFEX5YJIYQQQgghhBBCCJFEnmVdgA8efxzLk+dQv2HiVlHYnsZ7I51Hfbs5x7qCwnwCcsXll7uZXH11Krgyb6wT9dhjUXjxYvdjfBw4H0l8zjluuhM2PRxd3HSTE/fi/Pmp8Fr3Y841P8swk65i/PjoYuJEN3LSJEpY4cYtWBCFL7ggum+1e5xzaUkGjgH2nQl9441ReN06N27u3CjM51bzOdUAwEeKX3SRE9Uw7thUeONG92N9+0bhRNVb0cVLL7kJe/eOwvaI8gkTorB9Tj4KnsL/XuDWMWNPL+fjqT86Nb4t7rk3+t7fHmnNxbDF5zhbfD5Cm7HV0717bLFij+S21+edF4Xz88xz/vKX8ZnwWermqHZU0i5qHgsdzaxZ7vUDD0Rhc+T9pmefTYVNsyFB4ULu82Ye4fH7f7MLnSg+kp7bGnD7As9hJSVuOv7cSeN2upF33x2Ff/SjVLCG2wXABgpvd3MAz7pZF17oRl56aSrYcFY0udqpgvuZ7f+jRuoocyxfHoV/8xs3jvrr/Pfec6LyKWzbjZnAk4CZg/H1r6eCL+xy19ht26LwR9b9X3SRk+PmwZ3VrmWM7bw0X6yqicaGnQe5u9q+9f77UXjFCjeOi1leHoXtVMR90k5FPKWVrns5vZvbB+DrsjI3rro6CvNAt3XsewAupLl3Q060nmUhzbFmFrq1NVFPs8Wi1yTs2BGFeVkG3Db0LRNcBYC7TPBrZPFTf3HSrTr5U6nwkiXxZTRTn9MluYrt61pxcXweJ4xv+xz2pzvdvQBcxt//rn1z4sWXRHnya5dl6VL3mtcQ2zY83rhbVBoR1OTJUXhskXljfuWVKHzWWfEFY2bMcK/5pZ5+L2jGzTe719n0a+QRR0ThMWOcZC+8PyQVfv11Nwtep7m/2LmI32H3Gmso7rs9e7pxu3ahRQYPdq+5TW078bRrpwcuM//OsH6j2weL+9a1XBAAdfTGk8jugDWb3724zQC3g3InNA+6cnWixWQA8OabUdi2b9OcxtP5wYk8yw5WtLNMCCGEEEIIIYQQQogk+rJMCCGEEEIIIYQQQogk+rJMCCGEEEIIIYQQQogk8izrAlQDaHKn2mLi2CfFWO44lJtrtjvIY++AKVOcdDsrIg+VpXPcPNgfw8JSdrbwWLbMlOvMyGen+IubnbjjydjhNfYVAcByeLYtMI5ByCMDqRJrrMaGB+PGuXFsukFGGqXN/GCMB0x74HtZTxmf1wqXmY1GbDo2AjFxnL31eGAfmQR7Fgwd6iZkfwPrFcPP4/F52V4TfS9vs+jTp+UytXTdHvh+pps517ZcDD+a9YphrMeG796cJ9vT5eS4f8M4/ZJLogtrrMYVZG/g88rrSKwxBftFmTHK81upySaH561PfCIKX3aZk+75BZGPhrFEc7qu7Uu+bs1wXDNPQ/bsI6+YPGPqk+3xZuPrhDXEI+OarCOPTIW79XLdG32eOAKuAafx1NtJPmUb4MLOMTxz55t0jukgeegBwPbyaI1d85T7MaffsVGT8SB1Jm8bx35ptpPTgBhCfXXtpoSTzE7dcdjs2bfGN4YYm865tzXC2UzvDDyf2XScqTX94rQctr49/HC+hcd8zllH2/lGzXWQn+P6GpWVRW3F9/K1Wb9+7jUvDda7kavLeTT2sAIwpCh6+9pU4s6D/NrkW+c4bKuf2bw5Pi5dfGt9e+H6t13Q9zzcPa13LL8zcDqfLyUqCtxIa9KVDvYzvgeILQiAHj2i8O7daWWRbtvYuuLsfe+R9lF4iozzWQTc12w7vjjOTg+FBbRS0Jzbv2yIm3BTNeJI+Mx17ZzWHnzGpnzN86ypyGE00Ouy3TmAszBTR6r46XaxAxt5lh2MaGeZEEIIIYQQQgghhBBJ9GWZEEIIIYQQQgghhBBJDolNkV2dOgBNG1/NBmdH7mE29DqMMtd506ZFFyznM+d18xHXrJYCgDVrorDdVhu3o9fu7uUd2p9gqQrgnOU94tZbnSg+GLsmJtwszmxdzuOzjO22Zn5YPlPcnvn9uc9hn3nggShsNRBPkS6nVy83Lk6LYPcy835x0wC5OdH28Po897vx3GySe/DWa7v/n7H75Xl7uEeXkE9yzcmTR8Rmb4+MT1faw9vp7We4yq0ykavcKgjiFKa2j/P9bP7cVLZaOS1Xo1Xqbq8ckArn56WpFwSAt9+OT9uR2D5CsrE6U0YWgzUTGvC8ddppqSDLLgGAFI4w6kds3RqFrXyW25SLbLsxt7dtw9IS6lzciOY5KXuYLgIWXRWYAVB2++0t5l/85S876Rro715Zi152b2Al6IcitL5UkewScNvDtg33SZZkFtr8R46MwiSdBdylxs5ve/bQRZxeDXD7k9XZspzKynW4w9KEk5Pjip5jpXhwJUwWLhaHfWPILrF871GsdbKRLD/94AM3Heu1rLaKH4jzN2txQ0GzVk3hyvXd+YefdYR1cYhhVbUr5HVlkonYOH4Uu06w9JIU2wCAbduisHVxcCRkfLMFC9yEdD16wilOFNfBokXux3id425t3zfjXskA4GzXPSQt7PLne61JF+6Odqhx2/gUvnZsxMkwbT1y+9bXuxK4iZNOT4WznJnKw6RJ7rVtkDjM/OY0KsXZPv7661HYrtM8L/L01gY1tLO+2+mT24qH/fDhbjqWE/uUkPxeAQB19dH6y3JK29Z5RdG7XFatayrjrOGZ8B9pC3y/uEkdcCohYSagioqovePmeN9aIkRXRl+WCSGEEEIIIYQQQrSZEPIsOziRDFMIIYQQQgghhBBCiCT6skwIIYQQQgghhBBCiCSSYXYB9iLy3rKngbOLhvUlY0qtgQX7g7EQ3/h05JGmvrjYzYK9AyqMFwdL3Nk7wGr02ffs5eWuh8Gx5AeWYwwlxs6cmQqvpJ9b2wlW9ls/szwWzu81W2N37Gi50B1xtjGbHVjDEPaQs23I5WJPHNsY3KbGrIF9ELyPxnn4Gtt6GHC5LFSWLdVROaqr4m9tSffEbLazsc/JNizWTottOuzn+JqrwOdVYr0yOM4+Z1z+1jpk9uwoPHq061w4ln1HrElLnOddR2M9lQYOTAUTJq6MvYcuusj93JVXpoIrS05KhRfMdpNxFtau6Oij44vZt28U5mPnqbgA/F40zrMed1zLPwdQQh0vYdopKyYMwDXV85hDZvG4pKPrAcizDHA6iXX04SFrXav4ehiFs844w03IXlhmHs8mzyafnRZ43DtmZq3AmdjJKWZitOu0zxsy3fnNN058+XvteTiS13BbPz4znDjDKFNXWZ7FJi8v8ohKd03yYdcCrlfHQ6yxZGnlwY/m82xiH1nAeCX5GpvqMZHtlrGsLMrD9nGG4+yrEGNfhdrD4MHuNfu2tRcus7WYZetAW37fOzL7X7Fvqm1fXq9s02TVk/Nluu+wHeGLRQO9Rw/3fZ/ry5Y/7hW2LcOcl1xbd3Hvb9bHlMtox3midnsq3L+/+2xZNVEcN3B+kX0Ztb+lUBmzozkm0RG/h/jgCdpnQr2/vdSE6CLoyzIhhBBCCCGEEEKIdpHmARvigEIyTCGEEEIIIYQQQgghkgRhGHZ2GdKiR48eYV1dXesJDf369cP555/fASXKHMuXL0eFlb6JNrP8jRdRcVhx6wk7kReXr0LxYUNaT9gGatbX4KgjjspYfi8ueRHFZZmtRy5jV2qn9rRHpusbyEydd0S5MkFH9Kd0aEt9LH/xRVRYHXpL6WpqUHFUy3lm+jlrVq3CUcMzO1cIl+Wra1DRRcbMwoULcRxLeUWKrrRm7E/a+77QVd4JfOU40Ns003NHW+q4K671HdFH9iftLv8Bvk7vzzXw97///cIwDCv3y806gSAYEAIXdHYxMsCtB3U7tYcD5suyysrKcMGCBZ1djA7hiiuuwG233dbZxTjgmXjMYMy97ezOLoaXwZf+DWf/NLNf3i64aQEWvrAwY/kNHj0YZ/8os/XIZexK7dSe9sh0fQOZqfOOKFcm6Ij+lA5tqY+Jgwdj7tmtl3HiggWYu7DlPDP9nAuu+xsW/qlr/6HnQGfiVQswd17XGDOjRo3CG2+80dnF6JJ0pTVjf9Le94Wu8k7gK8eB3qaZnjvaUsddca3viD6yP2l3+Q/wdXp/roFBEBzUX8Loy7KDF3mWCSGEEEIIIYQQQrSZEI1H9omDDXmWCSGEEEIIIYQQQgiRRF+WCSGEEEIIIYQQQgiRRF+WCSGEEEIIIYQQQgiRRJ5lhxBz5szBpZdeiqFDhwIA/v73v6NPnz4AgJtvvhl/+9vf0K1bN0yePBl9+/bFzJkzUVVVhT59+qBv37747ne/i6ysLJx77rnYsGEDEokEqqqqcMIJJ2DUqFHYu3cvbrnlFlx11VUAgFdeeQXHHHMMhg4dijvuuKPTnrsl/vnSGnzvjy8jDEP065OD+r0N2Li1Fnm53ZHfqzt++uUTUDG4D278wwLMnFOFgt49cPjgfNz+/04FAHzs64/jmVfexwM/mozJx5e1uxxhGOLJHz+JnZt3os+gPjj1K6fiH9f9A1ve3YLzf3k++pQ2ts/jNz2O919/H5O/ORll49p/v44qY93OOjzxwyfQUN+ARG4Cp3/9dCRyE+263760zY4P6nDefz2BPfUNyO+VwIzvn47evVouRxiG2Lx6B2Z9fZa37v/xrX8gCAIE3QJ8+Osfbnc9toat5+M+eRzm/HIOAKBXUS+cds1pyOqW1al9oSNI57nrd9dnrH/tD9Id1wCwacUmPHjNg/jczM8hq1vX/PvVvs6Xp1zROIayuwWY8f0PY0Bhz05+Ij++tfKII47AwIEDATSa8v/2t79FeXk5vv3tb+Ozn/0s5syZg6eeego33XQT+vTpg+OOOw5hGOJDH/oQvvOd76B79+6d/gyH2nofR1d5D4gjDEM88aMnOv39IJ1ytPQO0BHsr/eD/UkYhti8anPqXaS1tX9IWdc7fdH2kXTX8a5CumMtU++DXXVN7ci179BAnmUHI13zzVx0GNOnT8ecOXMwZ86c1AS4fft2zJ49G/PmzcPcuXNx1VVX4aqrrsKcOXNw2WWX4Wc/+xnmzJmDU089FQ8++CAuuOAC/POf/0zlecYZZ+Dpp5/GD3/4Q9x1112p/MeMGYM5c+Z0uRfnTdW1+N4fX8bsn52Jf9/2Ufzky8ejbk8D7v7uaXjqN+fg+1dU4jM3PYOmk2J/dtUEPPO7cwEAS1ZsAQD87lsn4+qLRu9zWbZUbUEiN4Hzbj4PtTtqUbu9Fh/5749g2EnDnHQnf+lkjD533+/XUWXMys7C6V87HR/98Udx2AmH4a1/vdWue+1r23TPzsLd3z0d/77to/jYKYfhzofjy7F4+RYE3YJW637qTVNx7o/OxYjTRrT7udLB1nN2IhtnXn8mPvrjj6J3cW+8t/A9AJ3bFzqCdJ47U/1rf5HuuAaA1x9+HUXDizqhlOmRifnyn/87Fc/87lx8+uwR+LNnTHYlWlorAaB///6pn//2t79N/ezuu+9ulseYMWPwr3/9C08//TS6d++O//3f/91v5Qe03vvoSu8BcezZvbdLvB/s2b1nv70D+Nif7wf7k8WLFzvvIgfi2m/7yIG2jqfTx4HMvA929TX1YFj7hMgk+rJMoFu3bli3bh1effVVAEDfvn1j07711lv4zne+g1mzZjWLq66u7qASZpaHn1uF6WcdnvqL4oghBRhYlJuKP2pYIYaW9saqdTXO57bV1KXCnH5f2P3BbvTq1wv1dfWora5Fj949kNu3ed65hZm5X3tIp4zZiexUGbO6ZSHICtp1r31tm5we2an02d2y0M1Tjq07dqNbdlardZ+V3ThN1tfVo++Q+LGxr7RUzz3yejSWgeq0M/tCR5DOc2eqf6VVnr17cf4TT+D4mTPx29dfx2efeabteaQ5rres2oJeRb3Qvef+2W3UHjIxX3ZPjqFdu+tx1LCOG0OdRY8ePfChD30ITz75ZGya6667Do888sh+LFXLHGrrfRxd6T0gjrAh7BLvB+He1suxP+bo/fl+sD/ZunUrumV3O6DX/pb6SGeu420lnT4OZOZ98GBaUw+ktU+I9qIvyw4x7rrrLkyaNAmXX3556me9evXCr371K3zjG9/AiBEjWnwxBoCXX34ZlZWVGDx4MNavX4+GhgYAwJNPPonx48fjS1/6Er761a/uj8fYJ97ftBMD+/lfOkqLemHd5l0AgGt/NR/l592DHoluGD28MLOFafzDEf76pb8ikZdAEHSdl4cUbSjjnl178Objb6LilIp23SpTbVOzcw9+P+tNXHxmfDnCNJ+rZmMNZn1jFl5/+HUUHpbh9ncK1HJ5Ptj8AdYsWoOyYw58yWWLtOG597V/pcPf3nkHx/Xvj3kf+xhufu01nJqUHbSJNPvW4r8vxuipXXOnQBOZGJOr1tXgxM/Owm/ufx1jKjpwDGWQltZKANi4cSMmTZqESZMm4Xvf+17q5//5n/+Z+mt7SyQSCezZs6fDytsSWu/j6VLvATGku0Z1eDmSE9r+eAfwsT/fD/YnTTuIDuS1P66PdNY63lbS7eOZeB/s6mvqwbD2CZFJ9GXZIUbT9tqf/vSnqUkPAM4880w88cQTmDdvHr7//e+3+NkHH3wQ//znPzFlyhQsW7YMzz//PIBGWcZLL72E6dOnY8mSJfvrUdrNwKJcrN30gTfNmo0fpP7S87OrJmDxXy7Ahi27ULu7vkPKdPHtF2PQ2EF484k3OyT/TNBaGcMwxDO/fgbjLxmf+otiW8lE24RhiM/c9Ax+8MXxKOjdejlae668/nk473/Ow3EXH4fXZr3WxidqO1yevXv2Ys4v5+CUL5/SZf2sMkVrz52J/pUO7+7YgXH9+qFbVhaO6tsXZ5a1/xcVX9/atnYbErkJ5OTn7EtxO5xMjMkhJXmY98fz8N3PH4eb7+74MZQJ4tZKlqLccMMNqfQDBw5E7969sXTp0hbzq6ur229+ZU1ovY+nK74HxNFV3g/2xzuAj854P9ifHAxrf1dZx9vL/ngf7Opr6sGw9nUOIRo9yw70f8Jy4MzAIqPwpLdr1y6sWbMGAJCfnx87qb300kuYO3cuHnvsMcycORMzZ8504r/xjW/gf/7nfzq87PvK2ScNxt2PLceODxq3NC9/bxve37QzFf/mO1vx7roaDC7ulfpZ714JnH/a0A7xuNi5tfHevYp6Ye+erjlRpVPGBX9ZgOIjizHo6EHtvk8m2uaG2xbgQ2OLcXpl6+XYW9/gfa6G+obUX30TPRPolujW7mdLB1vP//7NvzHq7FEdKv/sCqTz3JnoX+lQ1qsX1u7ciYYwxJKtW7EnuaOmrbQ2ZrZUbcHGtzfike88gi1VW/Dsb5/dp3J3FPs6JvfQGMrvlUDPnI4dQ5mG18rW+OpXv4pf//rXLcb99Kc/xdSpUzNcuvQ4lNf7OLrae0AcXeX9YH+9A/jY3+8H+5O99Y11eiCv/V1pHW8PrfXxTL0PHihr6sGw9gmRCXQapsDu3bvx6U9/Grt370ZDQwOuvvrqZmmWLVuGAQMGpK5HjhyJefPm4Stf+UrqZwUFBRg8eDBefvllHHvssfuj6O2if9+e+PZnjsHUax9HGIYozO+BRPcsfOo7/0Lv3AR653bHH//fKc22YV98ZgXOvOpRXPnxUfjqz57D7Lmr8I9n38WV03bgC9OObHd51r66Fn//r78jKzsLH/7Gh/HUT57CujfXYdvabTj640ejfEI5nvv9c1j10iq8++K72DFlB46c0v77dUQZ+x/eH68++CqKRxajan4Vhk8cjlFnj2rzffa1bT568mH4yV2v4qSxxZj5TBU+MXk4vnh+fDl279zjfa6i4UV4+udPA1lAt+xumHT1JLzxv2+0+bnShev5+E8fj4X3LETNxhoseWgJRp87GkNPHNrpfaEjaO25B4wYkJH+lQ4fHzoUn/v3v/Hk6tW4bMQI/NcLL+CeD7f91KvWxszQk4Zi6EmNJ0499N8P4eQvnZzpR8kI+zomzz5pCKbf+DSyAqBHohvuvGFS5zxIhmiSogDAoEGD8Je//CUVV1lZicLCSBKzePFinH766akTwb75zW/u7+I241Bb7+Poau8BcbTn/aAjaM87QKbZ3+8H+5PdH+xOe+2v31GP3//+9/jCF77Q2cV2aM863pVorY+3+D64dHWb73Ogrqn7uvY1nZwsxIFG0PTtdFensrIyXLBgQWcXo0O44oorcNttt3V2MQ54Jh4zGHNvO7uzi+Fl8KV/w9k/PT91vXbxWqx5dQ3GXzK+3XkuuGkBFr6wMBPFAwAMHj0YZ/8oqsdMl7GrtNOchWvx0W//E5+8Y3qbPpfp+gYa63zcxeP2qZ47olyZwPYnSyb6V0u0pT4mDh6MuWe33icnLliAuQtbzpOfMyNj5rq/YeGfzm89oWg3E69agLnzusaYGTVqFN54o+O+iD+Q6Sprxv6m/wX3YvCJw9s8j2R6Leg/tD8GHz84o+U40Ns0k3PHnDlz8NELP4pP/umTaaXvimt9R/SR/Um7y3+Ar9P7cw0MgmBhGIaV++VmnUAQFIXAuZ1djAxw50HdTu1BO8uEEEIIIYQQQggh2kyTZ5k42NCXZUJ0IqVjSlE6prSzi+HlQChje5h0XCn69O86R7EfrPXcGgfjcx+MzySE2L/k9Oqe8R237StHTpcox8HKpEmT0Ke4T2cXY5840PvIgV5+IUTHIYN/IYQQQgghhBBCCCGS6MsyIYQQQgghhBBCCCGSSIYphBBCCCGEEEII0S7kWXYwop1lQgghhBBCCCGEEEIkCcIw7OwypEVlZWW4YMGCzi5Gh1BUVITNmzd3djGEEEII0Qnk5OSgtra2s4shhBBCdAQLwzCs7OxCdBRB0C8EpnR2MTLAPQd1O7UHyTC7AJs3b8aB8qWlEF2VO++8E5dffjnefvttVFRUOHH19fXo3r07vvOd7+DGG2/snALuByZNmoT6+nrMnTs3I/lddtllmDNnDqqqqjKSnxCiZYIg0HuAOGjwrcdN7Mv6Ul5ejokTJ+Luu+9utRwNDQ34zGc+0+Z7tMSNN96I7373u9izZw+ys/f9V6imenrnnXdQXl6+7wUUoosSBEFnF0GIdiEZphBCiBb59re/jZkzZ3Z2MYQQQhxk7I/15c4778Sf/vSnDr3HvnDOOedg3rx5GDhwYGcXRQixT4QAGg6Cf8KinWVCCCFaZPjw4Z1dBCGEEAchWl+A/v37o3///p1dDCGEEDFoZ5kQ4pDlnXfewac+9Sn0798fPXr0wLhx45r9pXv58uWYPn06hg4dip49e2LYsGH44he/iK1bt6bS/PSnP0UikWjRe3DUqFE477zzsHv3bvTv3x/XXHNNszR33nkngiDA0qVLveV99dVXMW3aNPTr1w89e/bEEUccgR/96EfN0j311FM49thjkZubi9GjR2PWrFltfiagUSbD0pCqqioEQYDbbrsNN9xwAwYOHIiCggKce+65WL16tbfsQgghRBN2fQGAlStX4uyzz0Zubi4GDBiAa6+9Fr///e8RBEGLcs17770XRx55JHr16oXKykrHgmDSpEl45pln8NxzzyEIAgRBgEmTJnnLtHHjRnzpS1/C4MGD0aNHDwwePBjTp0/H7t27nXTvvPMOzjnnHOTl5eGwww7D9773PTQ0RLsyamtrcc0112D06NHIy8tDSUkJzj333GZrfNPaz89WXl6OSy65xPtsQggh9g/6skwIcVCxd+9e1NfXO//27m1+nPN7772HE044Aa+++ip+8Ytf4B//+AeOPfZYnH/++fjHP/6RSrd27VqUlZXhl7/8JR5//HHccMMN+Oc//4mzzz47leaSSy7B3r17cd999zn3WLhwId58801Mnz4dPXr0wOWXX44///nPzYy8b7vtNpx66qkYOXJk7HO9+OKLOPHEE7FixQr84he/wMMPP4yvfe1rzb6kWrFiBa666ip87Wtfw4MPPoiBAwfiggsuwPLly9v0TD5+9KMfYfny5fjTn/6EX/3qV5g3bx4+9alPpfVZIYQQwlJXV4czzjgDr776Kn7729/izjvvxDvvvIMf/OAHLaZ/9tln8bOf/Qzf//73cd9992Hv3r2YOnUqqqurAQC//e1vccwxx2Ds2LGYN28e5s2bh9/+9rex99+6dStOOukk3Hffffja176GRx55BD/96U+xZ88e1NXVOWmnTZuG008/HbNmzcJ5552H73znO/jzn/+cit+9ezd27NiB66+/Hg8//DBuvfVW1NbWYsKECVi3bl2rddHaswkhhNg/SIYphDio8H3hxNx4440IwxDPPPMM+vXrBwA488wz8d577+GGG27ARz/6UQDAKaecglNOOSX1uZNOOgkVFRU4+eST8corr+CYY45BaWkpTj/9dNx111340pe+lEp71113oW/fvpg6dSoA4Itf/CJ+9rOf4f7778f06dMBAK+99hrmz5+PGTNmeMv79a9/Hf369cP8+fORm5sLADj99NObpdu0aRP+/e9/4/DDDwcAHHvssRg4cCD++te/4r//+7/TfiYfhx12GO65557U9caNG/GNb3wDa9euRWlpqfezQgghhOXOO+/EypUr8cILL+D4448HAJx11lkYN24cVq1a1Sz99u3bsWjRIvTt2xcAUFJSgvHjx+ORRx7BxRdfjFGjRiE/Px/19fWYMGFCq/f/xS9+gZUrV2LBggXOGvjJT36yWdprr70Wl19+OQBg8uTJ+Ne//oUZM2akftanTx/cfvvtqfR79+7FmWeeieLiYsyYMaPFHeZteTYhRFek+R/mxYGPdpYJIQ4qZs6ciZdeesn5N3/+/GbpHnvsMZx99tno06ePswvtzDPPxKuvvort27cDaPxr9w9/+EOMHDkSPXv2RPfu3XHyyScDAJYtW5bKb/r06Zg/fz7efvttAI0ncN577734j//4D/To0QMAMHToUJx55pm47bbbUp+77bbb0L9/f3z84x+PfaadO3fiueeew6c+9anUF2VxHH744akvygBgwIABGDBggPPLRrrPFMc555zjXI8ZMwYAWvyFRgghhGiN+fPnY8iQIakvyoDGE/TOP//8FtOfeOKJqS+TgH1fh5544gmMHz++1T8WAc3XwNGjRze771//+leccMIJKCgoQHZ2Nnr16oWampq01thMP5sQQoj2oS/LhBAHFaNHj0ZlZaXz77jjjmuWbsOGDfi///s/dO/e3fn3jW98AwBS/mPXXXcdbrzxRlxyySV4+OGH8eKLL+LBBx8EAEdOef7556NXr16po+yfeOIJrF+/PrWDrIkvfelLeO6557BkyRJ88MEHuPvuu3H55ZcjkUjEPtPWrVvR0NCAsrKyVp+/sLCw2c969OjhlDXdZ0r3Hk1fBqbzWSGEEMLy/vvvY8CAAc1+Xlxc3GL6TK9DmzdvTmuNjbs33/ehhx7CJz7xCRx55JG455578MILL+Cll15C//79tcYKIcQBhGSYQohDkn79+uHkk0/GN7/5zRbjm+SE9957Lz796U/j+uuvT8XV1NQ0S9+rVy9MmzYNf/nLX/Dd734Xd999N4YNG4YPfehDTrqzzz4b5eXluO2223D00Udjx44d+MIXvuAta9++fZGVlYU1a9a09TFbJN1nEkIIIfYHAwcOxBtvvNHs5+vXr98v9y8qKsroGltRUYE777wz9bM9e/Zgy5YtGclfCCHE/kE7y4QQhyRTpkzBa6+9hqOOOqrZTrTKysrUX3J37tyJ7t27O5+94447Wsxz+vTpWLFiBR5//HH8/e9/b7arDACysrJwxRVX4K677sJvfvMbTJ48GcOHD/eWNTc3FxMnTsTdd9+NXbt2tfOJI9ryTEIIIURHM2HCBKxatQovvvhi6mdhGOJvf/tbu/Ps0aNH2mvmRz7yEbz44ot49dVX232/Jnbu3InsbHc/wl133dXiYUNCiIOBEI2eZQf6P2HRzjIhxCHJ9773PRx//PE45ZRT8OUvfxnl5eXYunUrlixZgpUrV+JPf/oTgMYv1f785z9jzJgxqKiowIMPPojnn3++xTwnT56M0tJSfPazn8XOnTtxySWXtJjus5/9LG688Ua8+uqraf8icPPNN+PUU0/FiSeeiGuvvRZlZWVYuXIlFi1ahFtuuaVNz96WZxJCCCHaw2OPPYaSkhLnZ3369MEZZ5zRLO1ll12Gn/zkJ/j4xz+OH/zgB+jfvz9uv/12bN26FUDjH5rayqhRo/Db3/4W9913H4YPH47evXvjiCOOaDHtNddcg3vuuQeTJ0/G9ddfjzFjxmDTpk34+9//jt/97nfo3bt32vedMmUKZs2ahWuuuQZTp07FwoUL8etf/xoFBQVtfgYhhBCdh74sE0IckgwZMgQLFizAjTfeiP/+7//Gxo0b0a9fP4wePRqXXnppKt0tt9yCMAzx//7f/wPQKKOcMWOGY0LcRFZWFi6++GLcfPPNOPHEE1FRUdHivfv3749TTz0VixcvTp262Rrjx4/Hc889hxtuuAFf+cpXsHv3bhx22GGp07faQlueSQghhGgPX/nKV5r97KijjsKSJUua/TyRSOCJJ57AV77yFVx55ZXIy8vDxRdfjBNOOAHf+ta30KdPnzbf/5vf/CaWLVuGz33uc6ipqcGpp56KOXPmtJi2oKAAzz33HK6//nr8+Mc/xubNm1FcXIzTTz/d6ynaEp///Ofx3nvv4U9/+hNuu+02jB8/Hg899BCmTZvW5mcQQgjReQRhGHZ2GdKisrIyXLBgQWcXo0MIggAHSjsIIfadrVu3YsiQIbj66qvx/e9/v7OLI4ToZPQeIETLTJ06FW+++SZWrFjR2UURQrSTIAgWhmFY2dnl6CiCoCAEJnV2MTLA3w/qdmoPB8yXZUEQbATwbmeXQwgh9oFsADkABgDoA2AJgD2dWiIhhBCia1CMRuOc3Wj0VS5M/lsFYGMnlksIsW8cFoZh/84uREehL8sOXg4YGebBPMCEEIcGQRBcBuAONL74fyEMwwc6t0RCCCFE1yAIgv8E8GUAQwB0A7AMwH+FYfjHTi2YEEKIQxKdhimEEPuJMAzvDMMwCMPwMH1RJoQQQkSEYfi/YRgeGYZhrzAMc8IwPFpflAkhxMFBEARXBEHwlyAIlgZBsDcIgnZJHIMgOCEIgqeCINgRBMH2IAgeC4JgXEzaHkEQfC8IgneCINgdBMGKIAiuD4Kgezr3OmB2lgkhhBBCCCGEEEJ0LRo6uwAHAtcB6AfgFQC9AJS1NYMgCCYAmANgDYAbkj/+MoBngyA4KQzDxeYj9wH4GIA/AZgH4EQA3wdQAeCy1u6nL8uEEEIIIYQQQgghREcxCcCqMAwbgiCYjXZ8WQbg1wDqAJwShuEaAAiC4K8A3gTwMwAfaUoYBMHZaPyi7OdhGF6b/PHtQRBUA/haEAS/D8Pwed/NJMMUQgghREYJguDOIAjC5L9JGchvEuV35z4XUAghhBBC7DfCMKwKw7DdW/CCIKgAMB7A/U1flCXzXQPgfgCTgyAooY9cnPz/lyarputLWrunviwTQggh9jNBEFTRlz/2X30QBFuCIFgcBMH/BUFwXhAE2gkuhBBCCCEOVcYn/5/XQtx8AAGA40z6NWEYvscJk9drKb9Y9PIthBBCdC26Aeib/DcawHQArwVBcHEYhq93asmEEEIIIQSx7XHgoaLOLkUGyAmCYAFd/z4Mw993WmmaU5r8f00LcU0/G2TSvxGT1xqkIQPVl2VCCCFE5/I7ACvoOhtACRq9HY5O/mwsgH8GQVAZhuHq/Vs8IYQQQgjREmEYTunsMuwvgiAoAHB1Gz7y6zAMt2To9rnJ/3e3EFdr0jSFW0rblD43Ji6FviwTQgghOpf7wjCc01JEEAQXA/gzGtfrYjSe4HP5/ita+wjD8DKkccqQEEIIIYQ4YCgA8J02pL8bQKa+LNuZ/L9HC3E5Jk1TuKW0Tel3xsSlkGeZEEII0UUJw/AeAL+iH50fBEH3ziqPEEIIIYQ4NEma9Adt+Lc8g7dfm/x/UAtxTT9jiebamLRN6VuSczroyzIhhBCiazOTwr0BDPclDoLgtCAIfhcEwRtBEGwNgmB3EARrgiB4KAiCz6RzWEAQBN2CIPhUEAQPBkHwThAEHwRBUBsEweogCF4OguCvQRB8PgiCw2I+n/ZpmEEQ5ARBcE0QBPOSBxt8EATBW8lnGNtaWSmfOXTP8jTSN6WtSiNtEATBx4Ig+HMQBG8HQbA9CIJdQRC8GwTB/UEQXBAEQZBGPj2DILgiCIJHknW5KwiCncl8FiQPdJgeBEFxek8thBBCCHFI8FLy/xNbiJsAIASw0KQfFATBYE6YvC4FwP5sLSIZphBCCNG12WCuC1tKFATBADRudz+jhejS5L+pAP4rCILzwjBcGpPPIACzAYxrIXpQ8t8xAC5E40tJZeuP0DJBEBwO4GEAh5uow5P/PhMEwdcALGnvPfaV5FHl98I9YamJIcl/FwCYHwTBx8MwfD8mn6PQWK/lnnyOQ+OBDn9L5imEEEIIcUgRBEERgCIA74dhuA0AwjBcnjyA4MIgCL4dhuHaZNpSNL6T/isMw3WUzQwAn0Kjx9q19POrk///pbVy6MsyIYQQomtjdxl9YBMkv+Cai+iLmBoAj6HxFKBaNH4Rcw6AwQCOAPBcEATHhWFYZfLJAjAL0RdlO5L5LE3et1fyHpUAjtyHZ0IQBCUAnka0Rb4OjV8mvQogAeBkAKcAuAXAz/blXvtQxrEA/gWgX/JHm9FYH28DqAcwDMBH0fhCNwHA3GS9Vpt88gA8isb6B4BNyXxWANiFaMfgCQCGdtwTCSGEEELsf4IgOBfRwVUVyZ9dn7yuDsPwN5T8y2j0RrscwJ3086vQ+O74bBAEtyR/9hU0Kib5CzGEYfhwEASzAXwtCII+AOahcVfaZwHcHYbh3NbKrC/LhBBCiK7N+RSuBbCMI5NfcM1A9EXZ/wH4atNf4ihddwA/QuPLRCGAu9D4hRQzCdFOsQUApoRhuLmlQgVBMAzA6W17FIffIPqirArA2WEYvmnucS6AvwL42j7cp10EQdALwP2Ivij7CYAbwzCsbSHdHwB8Eo1fnv0awKdNdv+B6IuyhwH8RxiGLRrLJr+gOyoTzyCEEEII0UU4H8Cl5mffT/7/LhrfC72EYfh80t7jpuS/EMDzAC4Mw/DVFj5yIYDrAVyCxp37awDcAODH6RRYnmVCCCFEFyUIgulo/ItZE/fZL2vQ+PLR9KXXg2EYXmq/KAOAMAz3hGH4dQAPJn80MQgC+2XZMRT+cdwXZcn8VoZheHtaD2IIgmAUoi8B6wF81H5RlrzHQ2h8/lb9wDqALwEYkQz/PAzDb7VQ9wjD8AM0voC9mPzRxS14pnG9fifui7Jkfq+FYTij/cUWQgghhOhahGF4mecggHKT9sbkz+9sIZ95YRh+OAzDvDAMe4dheGYYhi/H3LM2DMPrwzAsD8OwRxiGw8Iw/H4YhnvSKbN2lgkhhBCdyyeCIGDfr2w0Si9PB8AG90sBfLOFz3+Jwt9K434/A/DxZPijAJ6luG4U7plGXu3lEgrPCMNwsSftH9H4XN6DDTqApnrdBeC7voRhGO4NguBXaPS/6IZGyev/UpL9Va9CCCGEECID6MsyIYQQonO5spX4vWg0fP9qGIbrOSIIgp4ATkpevhOG4dtp3G8Rha05P29hvykIgjfDMFyIzPMhCs+MTQUgDMMwCIIHAXyjA8rRIkmJaXnycn4YhtvT+NgiCvvq9ddBEHwizbYSQgghhBCdgGSYQgghRNfmGQDX2i/KkoxEoxk+AAwNgiBs7R/cAwL6m/yeBPBKMnwYgAVBELwaBMHNQRB8PHniUCYYQeFFaaRvyYeiIzmawqelWa+v02dsvd4DYHUyfAyAZUEQzA+C4AdBEEwNgqAfhBBCCCFEl0FflgkhhBCdy2lNng1oXJdLAEwG8Egy/nQAzyd3O1n29UuWXnwRhmEDgLMBPEU/HovGQwH+BmBNEARvBkFwYxAE9guhttCXwrG+aMSmfbhXe8h0ve5AY5s2eWoEaDz58r8BPARgYxAEC4MguDYIgt77eG8hhBBCCLGPSIYphBBCdBHCMAwBrE/++2cQBL9Go8H9YAB/DYLgpDAM6+gjvI4vA9BWw/2WDgJYB+CMIAhOROMpjqei8QuzJt+tkWg8zvtrQRBcGoahV0aZIfa3wT/X63w0flHYFt6zPwjDcFnSm24yGj3jTgFwJBqfLQBwbPLf14MguDCdI82FEEIIIUTHoC/LhBBCiK7LtQAmARgD4DgAX4N73DXvyqoLw/DmTN04DMN5AOYBQBAE+Wj0RpsC4GI0ygx7A7gvCIJjwjB8PTajltmKxh10QOMurtY8wdLZ6RVS2PvlWhAEua3kxfW6MVP1mvwy9MnkPyTllyejcTffRWis0xIADwVBMCIMw42ZuK8QQgghhGgbkmEKIYQQXZTk0dbX0o+uM/LHt9F4AAAAjAqCgOWNmSzH9jAMHwvD8GoAwwC8kIzqDuBz7cjyLQofHZuqbWlqKJzXStohrcQvpfCJQRB0yPtSGIabwzCcFYbhFwAcDmBlMqoAjV9KCiGEEEKITkBflgkhhBBdmDAMnwTQJMnLB/AtiqsGsCB52Q3Ap/dDeWoA/IJ+NLId2TxP4Wm+hEEQBK2lScIHIIyITdXIma3ELwGwLhkuAnBuGvffJ5IHOPyeftSeehVCCCGEEBlAX5YJIYQQXZ/vUviLQRAMpOtbKHxDzEEALZL8Impf2dWOz9xF4U8GQTDKk/YyABVp5PkyhT8elygIgj5wd+s1IymX/A396OdBEBSmUYame3RWvQohhBBCiAygL8uEEEKILk4Yhk8h2o3VE8B1FD2D4goBPBMEweS4vIIgyAmC4LwgCJ5Go6E8x/0yCIKbgyA4yvP5QQCupx/9O/0naSQMwzcANB0M0B2NHl1HtHCvcwD8L1w/sjj+jkiSelEQBOe1kN9AALPReGBCa/wawPJkeBiAfwdBcGxc4iAIegdBcEkQBC/DeKwFQXBvEAQ3BEEw1PP5UQC+Sj9qc70KIYQQQojMEDT+8VQIIYQQ+4sgCKoAHJa8PC0MwzlpfOYjAB5PXu4GUBGG4epkXDGAZ9Hoe9XEYjR+4fI+Gv841g/AaAAnIPL0Gh+GYZOME0EQ3Ang0uTlCgAvAngHwA40fhE3Eo0m/90pzbikNBMx+bT4fMkvrhYCaNoltxvAQwBeA5AAMBGNhxsAwM/ReLgBAPw5DMPLbH7JPH8H4Ar60aNoPM0SAI4CMBVALoCbEH3h924YhuUx+R0J4GkAxfTjF9H45eSGZDn7o/G00OMB9Eim6R+G4SbKZw4aTxUFgNfRKJ1dhcbdY0Vo9GQ7DdEfMecBODkMw6Yv/4QQQgghxH5Ep2EKIYQQBwBhGD4RBMF8ABPQ+KXM/wPwxWTc+iAIxgP4HYBPoPE0yDHJf3GsQeOplEwdhYcn/8XxEoAL7Bdl6RKG4ftBEJyGxp1eFWh8pguS/5qoR+OXZIsRfVnm41o0fmF4evL6rOQ/5hcAboC7Oy6ujG8GQXAcgP/f3h2rRhFFYQD+16CG2PgKgsQifbCSoAg+QRCJhbXvE0tLCzsbrQKpAml8ABsRsRFS2igei3MCy+JGEdTm+2BYZrh3GKYafv6993mS+3N5d4513qWDv2XL73VnjnXeJHkkKAMA+H80ywDgH/uTZtnMe5BuSyXJ1yTbVfV+ZcxOksfpJtONdCPsW5Kz9C6Up+mG2nFVfV+Zeykdxt2b31vpVtVWki9JPqbbYC+TvKo1HxG/0yxbGruZ5GmS/fTC/FeTfEo3ug6r6u1isdib8+SCZtncbyPJkyQH6cbXtfRi/SdJnlXV8Yw7f/a1zbKV+95O8jDJnfTfOK+nQ7DP6d0zT5K8rqrTn8y9PPPupoO2m+n3eiW9i+eH9A6jL6rq6FfPAgDA3yUsAwAAAIBhgX8AAAAAGMIyAAAAABjCMgAAAAAYwjIAAAAAGMIyAAAAABjCMgAAAAAYwjIAAAAAGMIyAAAAABjCMgAAAAAYwjIAAAAAGMIyAAAAABjCMgAAAAAYPwAWb0vfZSyrWAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ5CAYAAADcN4iwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e5zdRX3//5rNZrPZbDabzSbZhCSEEDBg0AiBooJGxar18lOqVSwqXku921Iv1bZYpV6qVSutWmy1arXerVrlq1gugqAEiRAgQCArSUgCuWxCslmWzc7vj8/Z/bzmvWdmP+fs2eyezev5eOxj53M+M/OZ+8z5nHm9x3nvIYQQQgghhBBCCCGEABomOgFCCCGEEEIIIYQQQkwW9LJMCCGEEEIIIYQQQogSelkmhBBCCCGEEEIIIUQJvSwTQgghhBBCCCGEEKKEXpYJIYQQQgghhBBCCFFCL8uEEEIIIYQQQgghhCihl2VCTEKcc5c65zz9rZvoNInyqK7EROGcu4bb3kSnp1ZM1XwJIYSob5xzF5k130UTnSYhxPihl2VCCCGEEEIIIYQQQpTQy7KjhHOu2/wS4Z1z251zM6uI6yrtZBFCCCGEEJYy683x+Oue6HwKIYQQ44lelk0siwG8daITIYQQQtQCSVSEEJMVSbyFEEJUgl6WTTzvcc61TXQihBBCCCGEEEIIIQTQONEJEJgH4C8B/N1EJ0QIIYSYaLz36yY6DULUOc8u6G8hgK9VGfZw8eQIIYQQ9Ydelk0O3uWc+6z3fvdEJ0QIIYQQQtQv3vurivhzzi2vNqwQQggx1ZEMc+L4FblnA3jfRCVECCGEEEIIIYQQQmToZdnE8bcAjtD1m51zSyYqMUIIIYQQQgghhBBCMsyJ5G4A/wngdaXrZmQv0N50tBLgnDsVwBMALAAwC8BuAA8CuMF73zMOz1sI4EwAiwDMB3AQwJXe+3sKhm8AcDaAFchOEh0AcC+Aa7z3j4wSdgaApwB4PIA5AHoobH81+SnF2wjgcQBOBdAFoA2ZHY+9AO4BsH4s8U8kzrnpAJ4KYDmyvPUBuBPAtd77R0cJ2wrgHGRl0wpgTynsDd77I6mwBdO2CMCTkdlbmQtgP4BdAG723v9+rPGXnjEfwNMAHIc8D7cD+HUt8lDmeZ3I8tQFoBNAL4CHAPzWe393rZ9XYdoaAaxF1vfmIyuPg8jGizsA3OW9r+pkMefcCaW4FyDrm3sB7ARwo/d+19hTP+J57cjKeRGy9tOHrE3/toI4ViHr84tLad4N4L+99/tHCTez9OylyPLrATyMbD64eTza1SjpWY5sTDwe2dg1iKz8twK4abT8TGZozD8eWVkfQdafNgP4Ta3L2jnnkLXjNcj6yGFk7fh67/3WWj6rWpxzpyMbk48D4ADcj6ztJ01AOOemAfgDZOuFDmR9fwuA//PeHxpDehyAk5D1pSXI2mA/sja4BdlY21tt/InntiCfn9qQje0PIFsP1Px5xwKl9dkZyOpzPoCZyMbFB5D1gTGVq3NuJYAnIhtzZyMbqw4B2IGsrWwcbV0yWSjNp6sBnIZsrp+FrN0/gmzs3QzgHu/9YBVxL0Y2pq9ANjc1IOtPO5CN6Q/XIg9lnjupxpbIc85CXuaHAGxH1jZ31uo5FaZpUq0HhBARvPf6Owp/ALqRDYRDf0sALEP2RW3os8cArCwQ11UmrnUVpKMFwAfKpMebdFwN4FkV5pHjuIY+fw6A/4fs5ZZ91jvJ30Xm3kWlz2cAeD+A30fS+wiADwNoKpOmVgAfQfZyrFzYHmQHLEyrIJ+dAC4G8L8ADiTK0SP7wvR1AKdVWJaXVlvHY30Gsi8PH0f2xbJcnvYAeCcAVybO+QA+h+xFT7mwOwC8psr0OgAXALgF2UI5VuZ3IHvpXLhOzXNOAvDDUj8oF/9OAH8FoHGsdUV5ugnZl/lYnu4H8LZybXw8/wCcDuDbBdr5LgBfBHBmwXgbAbwZwF2JOAcB3AzgpRWmuZvi6KbPzwLwPYRj7tDfp8nfOnPv0tLn0wD8OYANkfSuSaTpbAA/SvSLoX71KQCdFeT1Go6jgP9mAOcjM+j94Ch1egTAdQCeXyDe5aPElfob0V8qzZcJuwrAN5F96UqV9ecBLKog3otMHBdRH34T0nPq9QDOHue+Gmu3DUj3tUeRjdltZeKcjmys2xkJexjZ/DqzgnTOBvAqAN8t1UOqbfQD+DGAp1ZYFpeWa2PIvoz/C+L98CCAKwDMG8+6mkx/5fpuheGXAvgCsi/5sXrsK9X34yuMuwnAJch+eBxtHHkUwA3I1nMzTTy2PRT9665xWS8A8M/IXiKO9uz9yNYhLx8lzmnI1thXIFsnjBbvbwG8EpWtedeZOC4tfT5pxpZEGhtLbWJH5DlHkH0/KbxGR2QuqCD8uKwH9Kc//Y3P34Qn4Fj5Q5mXZaXPP2M+/3qBuKp6WYbs15ttBSZT/vtWBZMVh7sG2ZeIT40S/zsp/IgJCNnLl5sLpvUXAGZQfCuQ/UJTJOzXUWDxgGwXU+wlSupvAMAlFbSXS6up4wrb5IhnAFiJ7FfNInn6GuiFGbJdFaN9AR/6+3iFaV2AbCFcSZnfDuCECp/zKmSLtCLxX4fsl9uq6qrUPm+pME93VpqnKtvGrFL9VtrOewrEfRLSL8nK/V2Dgl9gUeZlGYC/QPpl5Kcp/Dpz71IA7TAvcMr8rSmTlhYA/1VpGQJ4TsG8Bmkq4H99FXXqAXwDiXkAk+RlWamuKhmfD6Lgy3uUn59mA7iy4LMeA3DhOPbZcu22BcBPCqbvNgAdFN88ADcWDHsNgJaC6SzyoqDc3z+h4Bd8lJ/bHo9s106RZz2ECl/Q1esfxvCyDMB7UHy+9MjG4L8uGPdSZD98VdNWVpq4bHso+tddw3J+JoB9VaRh2yjxfqfKvP0CxefUdSbspZhkY0skjW0Yfd4e+usH8JaC5XGRCXtRwXDjuh7Qn/70Nz5/slk28VyGbDvwEK9wzj2h1g9xzp0H4P+QbZFmHkMmR1yP7EWH5WUAfl6S1VXKh5HtQBriUWQvr9Yj2/7sRwk/A9nurbX02dZS+LsQ2nwDssXIpwDAObcA2e64k+l+N7IXb/eWefYFyH7lGo1pGClfHkS26+13AH6N7IWGPVJ9GoB/dM69p8AzJopOAD8DcGLp2iPbDn8zshdolj9FqcxKsrSrkEnbgKxMNpfCdpcJ+1fOuVcUSZRzbimyAzGeUub270vPuL/0TGY1gBtKcuMiz3k5gC8j233DHASwEVn9siztXGS7rlyR+M2z1iJbLJ5ubnlkebm59MyD5v4pAG4sSVLGBedcF7KdMH9a5nYvsl/5f4OsDyblz2XifiKyl56rzK1B5PkuJ6N9OoDrS/LbinDOvRHAJ5Hb6BxA3jYfwMhxxDINwP+U0jDEfmT1swHZL8DlntuJbKH+yjK3d5TC/hbZjgxmDoAfO+fOHyVd1WDbNpD9sn8Hst2NtyGT7FheAeA7JdncpMQ59wUAf4eR4/M+ZGVdrj/NAvBl59xfVPHI6ch2BzyHPttdetYGZLsxmUYAX3LOnVHFs6rBIXvJ+Tz6bBeyF/QbkX05ZE5D9oJ8SKb4c2Q7IIbYjmzuvRMj+8zTkb3MKoJtgx7Zj3i3I2uDG1F+XHkXgMsLPsOyENnuEbYLuwNZfu5Ftg5i5gP4qXPurCqfN6VxzjU4574I4KMYWZ9DY2O5sbwBwGXOuU+OEn8zsvWEnbs9sjH7FmRrrbsQzsmTktIa5H+R/ejC9CNrfzcjb4uVSknLjem7kfXTXyNbt5QzZ/BMAFeV5OqVMlnHFpvGbyOct3uQlUe5uWA6gMudcxdX8azREzM51wNCiCJM9Nu6Y+UPkZ1lpXuXmXs/HCWuinaWIXuBYX/NPQDgHQDajd/TkE0w9teN/yiQR/a/C/lOjvuRvYxqMf5XgLY+Y+SvNVtK/weRSWZONOE7kW3x5jBHkC2wfla67gPwDwCOM2GXIpNkcdhDGGXLc+mZHtmi4P3IXuQ1l/E3DZm9r2+ZZzwG4EkFyvLSSuq4yjZpnzFU3o+Wymyx8b8MmZSCwxwsta+Npev9yGQT80zYU5DtxOKw2wFMHyWNDQB+WaaOPwtgeZl2/mFkCzX2fwdG2R2J7Nd1K9vaAuCPQdLHUr0+F+Ev3ltQQV0h2yVnd+DdA+C1GNkfpwP4I4yU/t2CcZBkIvtCf715lkf2RfNZ9pml+jkVwLuRvWjpScQ9CyPlNI+W2uHCMmPD5zBSbnsVysh/Tdhu8r8fWb8eGpMuLlPGXQDOout15pks37gW2eJ7monjyQDmm3L5uYmnB8DfAFhaJs1PwsjxaD+AFaPk9RoOU6B+NyL7svnJUn22R/ydjOyLsJWsvjXivxnAeaW/j5swH6d75f7m1iBff1amza5H9oWwgfw1IZOhWrnSEYzeby8yYe4j93/D7CxE1pdeipHynxtr3W8j7ZbHpW8DeILxPxtZ37N97DkA/o3KJTb3fr5MGa4ukM6DADYhG6ufCqC1jB+HzPbbFzByR+gLCjzj0kRZfB9GcoVMnvlXyMeKob/7UXDHXL3+oYqdZcjs69q6vwLZOOaM3+OQjSV2x2dUXo9sDcF+H0bWxzsi/peV+uf3UMacCbL5ZGi8+Z2JOzU21WR3ITIpMT9zA4AXgpQQ5HfIntlfIPtBbWuBuB8G8K8AXgCah4y/pQDeh5EmST5RIP3rEv1pUowto6TxdgB/CJq3kc0FL0U2H3K4fpufMs+6yIS5aBT/R2U9oD/96W98/iY8AcfKH9Ivy9qR/ZrP95+ciKvSl2XfN/4fArBqlDB/bcJ4AM8dJYz175H9UtxesIzsBDQ0Sb5ylHD/YcLcWfp/KFU2yF58/MKEffsoz5qZqptImNeaZxSR2l5aSR1X2SbtMzyynUPPTIQpN+kPlfcuJBY0yLag32nCvmiUNL6jTHv4k1HCPBMjv+R/ZJQw5Raz0XZbagfXRNr8aP3xf43/b2KUL2TIXkb8jwn3jnFoE39vnjEA4OIKwqfazqdM3IcAnDtKfBdi5IL7z0YJ012mTu5FmUVpJPy6SL1+DqO8qKM4/sqEvQPAsgLh3mfCfX8U/0EbLBD/01CZrZrTEc5ND6Bkqy8R5iKTh4uqaIeF84XM4Ld90f29VDqRyXOsJPX3SLyALpOvob9k/0C2i9Lapkl+GavmL9Fu3ztKOPvi465SnzuC0e0lfdmE/aeC6SzUj0r+n4PspfrQM35VIMylkbL48CjhzsBI+4wVmQyotz9U+LIM2Y4gtj97AAXWJwCegXBe3oEyL4tKfn9D/voAnFJBfpaizAtYul94bKlR+bYhfFG4CRW8gB0t78h+qBnxg+0o9b2F0nMIZX6wMGEm/diSSGNgnqVMuA5kL9M4zK9HedZFxv9Fo/g/KusB/elPf+PzN+EJOFb+kHhZVrr/XnP/6kRchV+WIbNBZb9snlcwzXaH2VWj+LeT1H6YHV2jhLcTkAfwjwXCLUZ5e0SjfskvLTQ4zJXjVP9s/6kfwOxR/F9atI7HkCb7DI8CNhuQ2b4rtyhJvkwthb3AhPl8wm8DRu7a+lDBvL3FhOsBMCvi92Tjtxdm11okXAfK299J9cezjN9fYZSXDxS2FeEhF1tQ5SEGkfjbMfKL4l/VKO45yKRVHPfrC4b9RxPuHiS+bGPkWFtoNyeFX1emTn9dtKyRvRTmdtGDysZB3r15BMBJCb/XcDpr1RbMM95QST/H0X9Z9iHzvHtR4Msjsp2o+03YqE2xMvnyAD5bMD92t917xqGeyrXbbxcI14zytpQ+WiDscQjn3k3j1AY/bNI22o99l5bJz88KPutPTbj9iMwdU+EPlb8s+6nxP+oBIBT2bSZs2TkA4e6nn9Y4v+M+ZprnrRnvvl9Fms4zaRrthf+kH1siaXwIBX6sR7bz0P7AGv0hDxXMcTiK6wH96U9/4/Mnm2WTh39GZjtmiHXOuWfXIN43ILSp9GPv/VUFw/4lQvsBz3LOnRjzXIZ/8d5vr8C/pReZHDCJ9/5BZLsEmAeQyQJGC3sjsgl1iCdVksAK+Cq5pyN7aTLZ2IZM9pLEe/9rjLSB8Svv/ZUFnvEjhLbFUuX9h8gW8kM8hALtocTnkP2CO8QcAC+P+H2duf5X7333aA/w3u9FJqGuhHfZa+/9QJGA3vuDCG13LEe2E6JWvB6ZfGKIDcjkerXgAmQv+4a4DdmO0CJ8ENmCe4iTkO1SKMq3vfe3VuC/HH/jix/j/ipkBoyH+EiF4+Dfk7sBwEsqCDsefAPhPPDUiUqIpWRD7Q3m4/d67/tGC+u93wHgY+bjN1Xw+MPI2mYR/ttcHw27ZR6ZzCftKSurn5mPDyGTzo0WdjsySfgQJznnZlWSyIJ81VxX0wYvKeLJe/9fAHi8aAPwJ1U8b8pRsk36XProSu/9/1YQxecRrrf+OOJvJrmtPbl6Y6a5nvD8lL4D7KCPKu1P9TK2fNh731PgWfcjWzMydl6plqm2HhDimEMvyyYJ3vtejPziXekX8XKsM9f/XjSg9/4BjJzonl7Bs79egd9yXOW93ze6NwCZLR7m+xV8ueWwC6o0eDoaW8z1eL2UGwvfK/riBtk2cubbRQKVXvh000fLEt7XmetveO/twQmx5wwC+NIo8Q1hX7z8Z5FnlPgaMknKqDjnGhB+0dhcevFYCbY/nlth+BTPMdf/XCrHWrDOXH/Je++LBCy1GfuywcaXYqzj0MPIdvMW5fnm+muVPMx7bw0y17KOK8Z7fwhH5weFangcMptzQ+wG8MMKwn8J4YvAPygZFy/CL7z3uwv63YhwnFhaMNxYuN17v2l0bwBGzp9XFfmSOfQccjcgNKJfK8Y6f97qvb+tAv92Dqjk5fxU5o/MtX2JmcR7/xiynV1DPKU0L1r4sKmnOedS64TJjj0460+cc9MnJCUh3eSutD/Vw9jyGLKTJ4vyZXNdqz4/pdYDQhyL6GXZ5OLfEE5gZzrnqv4VofTShydBj+xEzEr4hbl+csFwjyCzTzUW7G6xFPZEulvK+ioWdk6RQM65Rufc85xzn3HOXe2ce8A5t985d8Q55/kP2SmgTGcF6TtaTER5p8r6bHNt2+JojNp2nXNNAJ5IH+313t9u/cXw3j+MkS8OY5yG8DSsm4s+h7Cni51SRRwjcM41YuRpoz+pRdwlxr0uE1T6QtJyc9GXhqWdTvwr/Y4qd9c+QO6a1LHFOXe6c+5DzrkfO+fuc87tcc49Zseu0vjFp5BOprHLtqvrSl/IC1HaXXYXfdSE4ru+Cvdf730/MvnNEIXmmDEy2edP55w71zn3cefcz5xz3c65fc65gTLtz54QWGkbvGaM/ifjTvCJwH5Rr6SNDcFz2BxkZjQsPzd+rnbOTZaXTBXhvf89Mmn4EH8A4ErnXM136DrnTnbOvd859z3n3N3OuYedc49GxnSeQyvtT5N6bCmx0Xtf9qTqcpReSvGP80urOX2bqaf1gBAijj1iXUwg3vt+59wHEe6I+ZBz7n+q3OHRhWzxP0S3994eZz8avzPXRX/h+30NdqXYI5RT9NYwrN02PwLn3KuRbSWvdjKdW2W48WQiyjtV1seba9sWR2MjMsnn0I8C5drucQB4J6H9FbQItyF84RbDLnIucM5dUMXzmI4xhh9iIbLTKofY6r0vd9x8xZQWjLyT5jGELyiKUO04dLD0QnMs3F+B34UI62RR6YvJWKhVHQMAnHNnA7gc1UsBJ9PYNdYxYijMarpeBuCGAuEeGt1LwCHkX0pHnWNqwGSeP58P4NPIbKpWQ6VtsPAPICXuRLbjcFrpekWF4cvinJuL4v1un/e+khcLRwM7h92dDe9jogOZCQjmH5HZjmspXa9AdhDOfufcz5C9zLwRwG0VKAgmkksR7nJ6JoBnOuceQHbS9LUAbvLe31dN5M65U5CdEP6sKtNXaX+atGMLUWmfB7L1H78QPgGhXLVSJv16QAgxOnpZNvn4KoB3I1+UPB7ZiXBfqSIuOwEWlYwwdmIrOqlW+lKuHKPanRmnsNHVX0kycAVG2rmqlPGQeo6ViSrvGGNqv977R51zB5Dv5mpyzrWUJM9DtJtg1fSRor9ezhvdS8W01ygem7ZKXwSkmINwF3NPBXLfISZyHKokjslcx3DOvQ7Z+DWWXeWTaeyayDluXOaYGjLp5k8AcM79HbKXB2Oh0jZY6dzxmHPuEeR9b3qZuaManohw11SKa1GZ3PxocFTGN+/9vc65lyKT37fRrTkAXlb6A4ADzrlrkZ1++70qfgw+Knjvv+6cOwHZYSTcP5YBeGPpD8657cgk/98E8PMi86Rz7rnITrwvKh8vR9PoXgIm5dhiqMVarr2KOJhJvR4QQhRDL8smGd77I865vwHwHfr4UufcNyqRl5RoNdeHqkiSDTO7rK+RTLgR03HirzHyRdkjyBa2twDYCmAvsgUBl8FCVGirQATt11f5ReUQwsXFbIS/VlqDsdU+owjto/qonFpJ6W2/PlijeIH6H4cqiaO9Bs+z1OTFinPuaQC+aOI7gmwX1a+RmQDYhWzssrK3ryEbwyYbE9m2RIU45y7EyBdlfQB+iUzW+gCyl5d9yE6NZoq+ZCrHeMwdxyLt4xBn2TnMe/9T59ypAN6P7Afjcv2yDcALS3+fds59AtlJi5X+GDPueO8vK+2K+1sAz0O+a5E5DsBrSn/3Oefe572P2oN1zq1E+RdlNyM7aft+ZDujDmPkS6pPAnhCFVmpF2qxlhvrXNA+xvDlOBo/tAghCL0sm4R477/rnLsF+Xb9E5D98vSvFUZlv/BWc0qVDfNIFXFMCZxzC5C9LGM+BuAy732yXJxzjxu3hE1dDiK3UeGq/GV/tPZrF0ctqJyi/cqm/cuozABtOYoegDEa9hd5+xJiLBxL45Ct41uR7RSeDPwTwoX2TwFcXDrIJUkNpCPjxbHUtuqakr2pfzQffxnAX412UEINDt2pxbiudpGNb0M7vY4ge+kz1rEhKp0u2Xd6s3PuL5FJF58B4GnIbPHa7y9zkO3cerZz7rlFDwM6mnjvbwbwwtJa8tnIdg4+DcDJZbyfCOBbzrlPeO//KhLlRxG+KLsZwEXe+1HtBTvnpvqL38nQ5yfzekAIURC9LJu8vB/AlXT9AefclypcANgv0tUYZp4/SpzHEi9CaDPhCu/9ewuGlZ2BytmH0KBrJ0JDp0lKxvtZwtFf5mVbj7mupo8U3WpvvxA+WjrCfTKw11wvqGHc+xHajmt3zjVW+Ot/vYxDto5bJkMdl3YgsK2kOwC8uGR4vgiTyU4Zozmufng6wpNLf+69f23BsGOdPytqF6UXe7yr5LEaSDDhvb8G9b0zZDfyOXUaslMRd473Q0vr3v8t/cE5NwuZgfrnAbgAoe3YpyF7KfvW8U5XtXjvH0L2Q9l/AcM/xD4d2Q65P0b4oucS59yvvfesNhkqgxfQR7sAPNd7b+fyGFN9TVqLtVzPGNMwKdcDQojK0GmYkxTv/ZDRzyEWAXhbhdHsQChlWO6ca4t5jmANl9vT+I4l7GmB/1JB2NWjexGGbnNdxIg+cxrCMa5c292OUHJWTT0VlTJsMdfVGlgfD3Yi3KWz1DlXE9md994jfMk5HZWf6FQv49BOZJKXIU50zh2Nkw9Hw45dVxR9UeacOwmTy04Z022uKx0jyoWZrG2r3pnI+fO0Cv0/HqFMrpJDPqYyk2IO894f8t5f5b3/S2SHfFxmvLzJOVc3cmrv/UPe+29771+NLD/2JOpLygQ7A+G4/I2iL8qcczORKVamMpX2eWDkOGPbe6VM1vWAEKIC9LJscvN+c/2eSgba0peh39JHDtk29kqwp+vcWGH4qYR9eXB3BWGfWcuEHCPcZK4rLcNR226pj7AMpMM5V9iOh3NuPrIvVkX4DcJt+Wc4544r+qzxpHSimD0B8I9q+Ihxr8vJQMmuJJdjI2pbjtVyNMcuewryeO6kse3qXOdc4R3zzrlFCF/c2jlT1I6JnD8rXfc83Vz/ZozPnypcba5fNCGpILz3j3nvPwDgevp4OoA/iAQJxidXg+M8a0lJkvxKhCYiziwjRR5Lf3oasjKaypzmnCtsYN8590SEO6i3eu/HchLmZF4PCCEqQC/LJjHe+xsQ/sLUgfK/MKW4xlwXPsXRObcUwB+aj6+r8PlTCbuoKnSCkHOuC8D5tU/OlOcac/1K51yhE59Kp5ZeZD6+tozXcs95dZFnlLgQBeXspRdzv6CPHIC/rOBZ482V5vptNfwicY25fm3RuEtyk1eYj2N1ORn4qbm+ZBJ8Iat27HIA3lzhs2phB7AQ3vu7ke2gHmI+MilTUS5CuIPo19778TjZV1TfBpsx9tOn11TyIwhGzh32JdGxih3bXlVa30wG7I89Vl49xFEbn6rFe78fwEb6qAEjZZNV9acSb6kmXXVGI4A/rcD/Rea6Vn1+Mq4HhBAVoJdlk5/3IzSg+k7EFwHl+KIJ/yLn3LqCYf8R4ReJq7z391Xw7KmGtc1xbsFwl6Pyo7lFdvpZN10vAFDURtybEO4Y6UF2HHs5/sNcv9k5t3y0BzjnOjDywIfR+Li5fotzzsqTJor/QGZfbIgnoXYv876BUOb5RGQnfhXhbxD+4nsPJveX1y8itHt1Oib+pWi1Y9dbUfmJaVYKtKLC8JXyRXP90SIG4Usy4/eYj79Qs1QJS7Vt8DLUxobiJ4p4cs79KYA19NEjAL5Vg+fXPd773yL8wWcmgH+bJF/+rY2qmO3Boz0+Vcto+amqPznnhk4PPRZ4v3OufTRPzrkVAP7cfGznlWqZjOsBIUQF6GXZJMd7vwHhQq0VFXx5Kb3c+oH5+L9LdmiiOOfeDeDl5uNCi80pjP3l8sPOueSvks65jyEz2CoqxHs/COBT5uMPOOdekgpXehlsw33Oe29/UR56zt0If/2bCeD7KclzabfD91ChEVnv/fXmWU0A/qeCF9hDz3+Gc+7fKgkzGt77A8iOk2c+6px7UwXpsnJJjvsK8/HlzrknjxLfBQDsSWCfLNlBm5SU8vpR8/HHnHNvryQe59xJzrkv1Eiqa8eui51z5U5g4+e/GNWN+beb6xeVDtsYLz6HcLfIyQC+6pybFvGPkj2jHyI8QOT3AL49LikUwMg2+N6SYfMozrm3AHhXjZ7/bOfch0d53ukYeer4F2JzxzHK3yA7CXOIFwL4z5IdrEI45zqccx8ovbix905xzn1+tPHJhDkBwMvoo0EAGyLeN5rrl5X1VSOcc690zr2/9ONa0TB/jOw0zCHuLLPjdT1Cm8TnO+fOGSXepwD4atF0TAEWAPhO6scT59xcAP+D0P7beu/9L2uRgEm6HhBCVIBeltUHfwugkpPjLG8BsIeuFwK42Tn3NvtCwDn3eOfcfwP4mInjS6VDB45lvo/wKOk1AK61O4Occw3Ouac5565Gfkz0XUcniVOOyxHaIpmGbPHzaefc8ezROdflnPsggP+H8Dj1OwH8/SjPeStCe2JrANzqnDu/dDLa0DOmOeeeg2yhOmTXprt4dgBkMk82It4J4Crn3Fedc0/h59FzW51z5zjnPuScuwvA/2GkRLoW/ANCqfU0AF9wzl3pnHumTZvLOMU59x7n3O0AvpuI+28A3EvXswBc7Zz7W/ul2Tl3gnPucmSnhfE89QuMfOk2GflHAD+i6wYAn3HOXeece7ErY3zaOTfdOfdE59w7nHPXAdiEbIfkmG3LlH40+RV91ArgOufcK8rU6arSi9jvInuZ+xDC+WO0Z+0GcCt9tBLAr51z73LOvdA5d575G9NJmyW7Mn9hPn4ZgBudc+tcJskGMFzGL0H2Rfos8j8I4KIKTgcVlXMdwrFyCYAbnHPP4zoCspdWzrnvIhv/HcY+fw499/3Oue855wJD3s65uc65SwD8EuEJyr8HcOkYnz2l8N7fCOB95uNXAdjonPtzl9kBDCjNEyuccxeW6nUbgA+h/EnSMwD8GYBNzrlfOufeWRoXR5g7cM61O+feiMx2IdfbDxOndNp17Pudc19xzr3GOfdcMzY9NRJHJSwA8GEA20pt71Uu28k0AufcMufcZch2YjMjfhgrnc7KJ2Q2APiJc+7N9sWlc+5459xHke3InoPM6Hx3tRmqE7pL/5+F7PvOs81c0OSceymyuYDHgwEAb6xxWibVekCIseKce59z7tvOufudc945111lPH/knPuVc+6Qc25vKc6yh4845+Y45z7rnNvunOtzzt1RmnPGfWdzYUO4YuLw3t/jnPtPAK+vMvwOl+3Q+AFy+wxzAPwzgE8457YAOABgMYByv1r8CkBFv4JMRbz3e0svY3i3xVpkC/6HkS2spyM7zaid/OxEtvg7lu29VYX3ftBlspj/Q/5LawOAdwB4u3Pu9wAeRmbP4wSM/AFgJ4CXjWaHyHt/f2nR/VWK4wRkLwweKU0ERwAsR1i3P0O2UP/bCvK02zn3RwD+txQfkL2UurD01+uc24pMOjoTmQTxuDJ5qzne+yPOuT9BtvvtSXTrOaW/Q6W07QcwG8DS0v8hWMZp4z7knHsZMnntkJR8BoAPAvjb0ji0r3RveZkoNgF41WTeVTaE99475y5EtvuQd9udW/o7UmpTe5HVfTuyOh7PUyf/EtkYNLTYXojsS1mvc+4eZO17EbJ5YIgjyOSyn0f5L7YxPo7wC98ahNI25hkYadOuIrz3/+acOwPZl4khzkT25XBvaZxoRNauyp2S91fe+zGlQaTx3j9WeiHFX/BXIrPLut85N2TiYSlCUxMHkRk85xewlfIeZLtmlwB4CYCXOOe2I7N314ZsrLdfQg8CeIV2lY3Ee/+PLjvchnf9rkC2K+9fnXPbAOxGtvOpHUAXwpdZRXAAzin9AcCjpXj3IXu53YmsP9t58SEkTo733t/mnPt/yOYzlMK/qvRn+T3Kz0XVMBOltgcAzrn9yNYnPcjGpuOQlZPll8heGpfjbwA8H/kO2dnITpn9lHPubgB9yF7WHW/CvR3ZWmN5VTmpD76C7JCH5yA7GfNnAPaV5oJpyPp8a5lw7yopemrGJF0PCDEW/gFZe/0twu9EhXHOnY9sPfA7ZHPJHGSmpm5wzq313j9IfpuQfXd4EoDPIvsB7XnI5pyFGOcftfSyrH74ILLJrarB03v/c5dJpL6D8IVYE4DHJYJ+B8CrvfeHE36OGbz3nyy99bYGUuejvC253yNbzGjBXSXe+wdKv/B+HwDL9hyyxd7ySNCNAF7kvS90/Lf3/uulAfnzCPvZbJQ/hvw6AH+CKmRC3vs7nXNrAfwnsvbBtCDdJ4d4oNLnFsF7v8s5dy6Af8dIKfYsAKvGEPfvSnX5QxPPNGRfnGNcC+CPvfeFdzhNNN77Ay7bhfgPyNoIfxmfhuzl74nlwhK7ER49P5b03OScey0y23Qsi2xB+RdZhwG8xnt/ZaU/3Hnv/9s5dwqAD+Ao7WD33v+Zc24HMjufvLbpwEjj2EMcAvAW7/1/jnf6BOC9/65z7r0APoLQQPkcZLZ8LHsBvMR7v2GMPx4/hOxL8/9D9sIMyNZBMUnTbgDne+/taauihPf+3c65Dci+uNj+tQR5OcfoQ1YvRZmB0cfLOwG82Hu/bRR/r0EmvYudmHk0mINQBl6OHwC4sHRa9QhKP/L9MbKXMPwysgnl1yxHAPyF9/6LpZc3UxmPbH32PwDWlT6bi9D+KTMA4C+997EXk2NLzCRbDwgxRk703t8PAM65jSj/4jmKyxQNnwWwFcC53vuDpc9/CuAWZC+/+MfPNyD7AfTt3vvPlj67orRT+a+dc1/y3rNip6ZIhlkneO+3IrPNMpY4bkJmz+VvkP6ifQTZl9PzvPcv04uyEO/9W5H90n1vwtt+ZFuvn+C9v+OoJGwK473fBeCpyE43uhXhoRWWOwFcDGBN0Rdl9JwvI7MJ+L8I7bIwDyHbqfCs0qlVVeG93+O9fwGApyB7EXhwlCBA9mvKpwE8xXv/tGqfXSBth7z3r0D2cvJHGH2Btg3ZL9qjGhn23t+LbCH/VmS7xaJekcld/8R7v66eXpQN4b0/4r1/D4CTkP0CVuQo+h3Idji+BMDiUtuvVXr+C9lOjdQBCQPI7GQ+wXtftQ0v7/3fIavnjyF7sbwT47zQ995fiqz/fhuhrNqyD5kx/5P0ouzo4r3/GIDnIlsQxziMTG79eO99TXZke+/vRHawyOeQvagpRy+yl8mn1Mpm0VTGe/91ZD9WvQ/psXyIgwB+jGx+XuS9/0kZP7chm+s/imz8L2KC5FZkP2A+sTS/jJbuofXES5DtQLoN2ZjwWIFnVcoXALwImZTyngL+B5CdTP187/1LRtvZ6L3/BbIvkT9AfF3kS3H+gff+nwumu+4p2Qt7NoBLAMTm0UEAVwE4Y7zLZrKtB4SolqEXZWPg6chUDF8celFWincDMqXBy11oIuSVyOZna4bl08hePNsf9muKqwNFixgnnHOnIls8LkC2u2APgAcBXO+975nApNUFJZ30acgWKvORvXzejexlza+99+Ox8BIASnZRnoxMttCOTEa8C8BvavXrgsvsaD0N2S/ks5D1j9sB3BT7pXeMz2tEJus9EZnEZDayyWEfgPuQGfndXevnFkxbM7KXestKaWtCZr9vK4A7inxBScR9ArJ8L0T26/g+ZC9WfjUVF4alHVerkY0Zc5FJlQ4g24V613j+OmbSsQzZF8bFyCRC+5H9APCr0peMusZlRp2fikyCNB/Zl6KHkOXxN+PRh0VluMyI+9nI+v50ZJK0TQBuHMuPdM65SwH8HX30DJbZOudmIXtp/Dhk4+w+ZP3vGskuq6c0L5+FbE05JNt+BNkX/rsA3Ou9r8j+rssOUToV2c7jLmRz8RFk49XvAdxasltYFzjn5iHLzwpkc+lMZC9ve5C9TNtQ7fhLa5alyMrpIID7kfWnh8ec+EmMyw5J4h+BPlj68WTo/jRkbfMJyNrmYQDbAfxyItvPZFkPCFEtQzvLvPfLKwjzPmS7LJ/tvb/K3LsMwF8DWO29v6Nka/AggN96788xfmcg+570Pe/9uB3WopdlQgghhBBiSjDayzIhxNRitJdlQow3K53zqe3s9cIO4A6Eu6//zXs/4pCRIap8WfZZZOqSU733d5l7b0amVHmO9/5npR8YdgP4lvd+xA4y59xDADZ7759i79UK2SwTQgghhBBCCCGEqJBeZCe51TuXAn3e+7Xj/JihwwYfLXOvz/hJ+R3y3xK5VxNks0wIIYQQQgghhBBCjCdDm/DKHVrYbPyk/A75H9dNfXpZJoQQQgghhBBCCCHGkwdL/8udSD302fbS/33IbAyO8FuyWTaP/I4LkmEKIYQQQgghhBBCVIiDdiBVwM2l/09GdhotczayQy7uAQDv/aBz7rcAnuScm+G9ZznmWciKff14Jlb1KoQQQgghhBBCCCFqgnNukXNuVelk4yGuRXZK8hucc63k94kA1gH4tvf+MfL/DWR2yd5kon8ngAEA3xqHpA+jnWVCCCGEEEIIIYQQIopz7lUAji9dzgfQ5Jz7QOn69977r5L3jwB4DYBnALgGALz3jznn3gHgmwB+6Zy7AkAbgHcBeBjhadYAcAWA1wL4J+fccgB3AfgjAC8B8GHv/ZaaZtCgl2VCCCGEEEIIIYQQIsXrATzdfPah0v9rAXwVo+C9/7Zz7jCADwD4BLLTLn8B4D3e++3Gb79z7jwAHwZwATI7ZfcBeBuAfxlDPgrhvPfj/Yya4JzzZ5xxRkVhbrnlFpxx8pxxStHY2byjHytPPnWikyGEEEIIIYQQQtSc7u5u7N692010OsaL45zzb57oRNSADwC3eO/XTnQ6JhN1tbNs/frK7Lc557D+C+eOU2rGzgs/tA0/+vlvJjoZQgghhBBCCCFEzVl71lkTnQQhqqKuXpZNNQYHHXr7sjMWdu8O7w0M5O6dO3P3wYPl3QBw/osHh93f/HZ+dsPMmaG/w4dz96N0pgTH19cXhnmMzOwdORL3x3AeWlvDexyus7NYmEZqrRyG3QDQ3l7+Odu25W4uAwDYvz93Nzfn7ldfOIix8q+fz+uipyf/fNq00N/06bmb071kSeiPy2X58tzNdXTSSWGYDuzNLziDpuHtmrFs2H333fnnmzbl7u7uMO7GyCjCdWkfy3X25osrL+OvfC1+Ngmnx/YR7ksxfzY/XV25m8ue2xMQ5pfbINe57S8chp/LZQUAM2bkbu7P1t+b3jD29loEHl94PLDlzfnle7ZtpMaRIWy98DW7ueyBeLvjerFwPXPcNgw/i7sStxkgzB+nh/1x2wTCfsZhUu1zDm2kXrQo9Mflf+qqo9NOak3/QN7u9u3LP+c2CIRllypjrjOeE3g+sHBdcjuZNSv09/KX5WV8f3eeblt/y7r68wv+QXDjxty9YUMYiCvzyitzt8lgL00yFBv62U8Yc7AoXEBuM9QE95rY36pVoccnPSl3r1yZu9esKf85gMHVTxh2c5Zs/XF/5PLn+c+OSVznp6+pbT+4bWNezzw3tzWaUuaMcN3aAYbbQ2xhs25dGMaW/xB2ULrppvLx8cLkvvvCMPPm5W6uVxs3d8C77srdF1xQPm0prjIHpXHZXXjh2OKzEyg3js2bc7dd9HB5sT9m9erwmsuI3dxQAOC888rHZ+HxgReJdgJkuDNwnrZuDf3dcUd5f9dfn7tvvz0IwmMKrTbxkEkC97gecnOrtWNNux3gI9xDbffk2EQLAE9+cu7m8ua6OOecIMgDO/NRjov+kUfi6Ymt6e2YxHPC6y4qNibxGvhxj8s/P+WU0F/bznvyC27fZ58dj/zTn87dPL8AwM9/Pux8gD7eQO7fmuguLVh/QkxWdBqmEEIIIYQQQgghhBAltLNMCCGEEEIIIYQQokIctANpqqJ6FUIIIYQQQgghhBCihHaWTSCDPtexp2z42HtFYK28NctQhJgdKpsemzZrC2wIazeN4fQVsV1kn2vD8HWsHFMS+mrKO0XR+LjM2RaONUHB19ZeWywMNpOtAi5wY3hr4dm57Yv9+/N36WzqIGV3i+2mHToU+uP81bqMY+mxsO2v2bNzN5tp4c+B0EwLt+NUOcT6nO0f3A5j9ssmO6nxIFYXXA9APL9cLzym2TApm2WpvhSjqD+OO2UDjfsFpzU1zlfTR2LtaarA5cX2Nov2F9svU7bgisTB9Z+aZ61ZooBuGoO3FXADgY2h3ocfHna3mKh7yH2A3IvJ3WHCcBw8vdhfVlu4k/BgbztPbLLmDmNsZzbszi0ddXbm1tFsm47ZebT2ThlrL6iWRNtQ0c6YGgRiRh+LDhz2cx6UeKDlSY4nPwCYPz93cz2nFinWeGKlWKOt1SxoY/GlBoTUhFxksj7uuPA6VnbV5qeaBVXM6LFdEMcWozEjuQjtFnaRXblmMzHyOMJ3uqr5ImDguAcpjoaUsUMee2LGZgG0ti4o661o9aXWh9Ws99gMG3extmCkB3Dvvbl7+/bcnbJZxnb4ODwALkkyZRzYKTs9HrMQdYl2lgkhhBBCCCGEEEIIUaKO9i8IIYQQQgghhBBCTB60A2lqopdlk5SYxKgovEO6FvKeepL0xNQFjN0Gzbu+x7rL3xKThNh6ZX9c3lbhwBI2DsP5bhjgg7wRl3Ps2xf6o63nc+bkAh2We1oZS0oSy4xVGsxUK7tiiSWXXUx1YMNwfDbu2Db7VN9hWWasrQIjJYiTFVsvfJ3KX+xeKt+xMdLGFfOXakOxe6n8cb9Mte+YLNT2nZg/GzfLMTiMlWiPp/zsaMH5i0n+gXRbGy9S/byhZ29+YSu6uzt3x6SXtvJonO6lj60Mk+8tJzc3DZZP2evGlB6Z73FHtfljORPLoWIDsLnXtCQv2GVLuoy3hnJB0LT7wWF3hxnQG5e0YbxglVrLAMmhuI6BsEy4nh95JO6vqOY3Js+zDZSlsxyG9c0pbTnXpY2b82QkthVjJXRjHchS4WM2JYrKMGM6cQAguXTgz8gZC8NlzOmJ2eawYdjNaQPCMuf647Kzk3OkTbbb8YAWVG383NNOK//8CmBJ+SC5+00amjnvsWcZ7XzHyma6lY8hNnux5lVrGSariQOl8sbu0CNLL4uWK5XPoBm77iH3r8j9FHKvKvYUIeoGvQQVQgghhBBCCCGEEKKEXpYJIYQQQgghhBBCCFFCMswJxA/mW3hTJ+vF3Kmd+HygkZWV8XXsNLZqD2+KxWe3GRc5uSolc0vJTO3u93JhUhyt0zBTMkzOuz0MitUvHSB5D++K39YTBtqyJXfzyUebNoX+5s4ddi5clW+mfnS5PTMth7ed8479Wsh/Y6RORUsRk7YVPU0xdXoet32+x+VjpWOshEn1vyoPhxo3YqfJpuo4JcONySNTY1xMElv0NMyUwowPgeO8WkVRrJ5Tqh2mmtMwU1LQasbweiKmcrKnq8baWqrOY3WZSgPHnZR+btiQu23FbNyYu9evz918IpkZp3eSXO9++twKsHhqZfFhS+xkPiBs/EuX5u6UTpg7hu20sVMcOYwtvJhNAkMHS85YMpjojM3t4yfDDCh6pDiXqz1CmvPEbtZeW6lkbLJITSoxSSy3EyCU+LGb05OKuxpWGVHXWCfDlStzt22rXJZ8L2V7gsuBJ3hbdsxY7azY9FVzGmaqHGN1xp/bMuFxhNPD4xgQpnvHjtx9yim527angnRQGgapLs1ZwljJ0kJOH6fbnkBMcXeRDNMWvbVsMgSvI2zRVWOWhFWiDZtJHHn77aHHm27K3Xfdlbs/8IF45FdeOez8jbn1f+R+JrlPJnd1tTc10A6kqYnqVQghhBBCCCGEEEKIEsf8y7Jpz/ox1rzhuuG/7p29uGbDbsx5wZV40huvw6pXX41LPndn2bDdO3ux+rXXRuP+xDfvg3vGj7F7f3/UjxBCCCGEEEIIIYSYPBzzMsyZTdOw4YtPCz7r3tmLc0/rwI8/chYOP3oET3rjdXjJOV146mlxKZpl60OH8fP1u7Fs4cyon0Gf74S2O+ljaoWiBwFxGCv9ip0wl5Ipcpii6oLU50Uka0WlqVYSFpNnpWQ7TOpeNcTSY8sxduKdVckE19uowFKRcwVyY7Nb5HlvN8W3bE3+0IGB8B170TZZyxNHbfZiEqiUAoTlrRzfwoWhv5mRLpySzRWV0DHcPlMKickgtYsdrmoPc+O+yXWUkhIyHCZ1+FbR0zC5b6fGF053UalkSnYek/nGTrMF4ione9iZObRrmKaB3uC6t9melVjfcL3YuuT5LzWvxQ4EtPGNWerKUks72bP0kuSa/Vu3DrvDmgQ4htSqJJBesqSSpWi2QXFj48aaWqRwgVmtMp94x7Ir7tA2Dbt25W4ekDkPQDiI83P5mWYCbWK515o1qCUtm36bX6TmWW6UfM9OjJx2LiOuP3YDI+02FIk7Jjm0nSd2sqU9ZY9lbtx5qilvK4erVrY4RGohkjrumuEyikmGEyfYRqXJAPCCF8Sfy/C4wRNbqoyvuip3p04zjS3QUwtTlm/zosmWY+xodW7HVZ6Giec9b9jZQHEsufrq0B/njyXu/FybP6q/BuoH9jThhTx+xsqu0yxMg7ZinhuhpZs2cXBbYNklENT5AM0pqV50D/X7K82955L7LHI38ELkpJMSsQtRfxzzO8tGY+aMaVizcg62767MTsK7/uUOfPzPToEbp3QJIYQQQgghhBBi4nDIXqrU+58YyTG/s+xw/xGsecN1AIATFs3E9z90ZnB/3yP9uHfbITzticV3lf3whp04rrMZT1x5lAzJCiGEEEIIIYQQQoiacMy/LCsnwwSAX96+F094/bW4e+shvPeCE9HVUUw31tt3BJd9bTN+9o9/UOukCiGEEEIIIYQQQohx5ph/WRZjyGbZPVsP4py3/wovObcLj/YP4s/+KTuW9+9fezKecOLInWP3PXgIW3b24oml3WrbHu7D6W+6Dr/53DkjXrh5n5sKSB07HzvVO2W6gWXz1m5TzCZXzJYZEDflYE0dxMxdWLtisZPd2dSIJWZzzKY7VkZcDrZMUiYWxkrMhIGtP5b8s7mEtoMPhh439eRutrEQs48AhAW+fXvutsdMx+xJECuMkaTB5fmuSy5Xa3YiZaajUqyJm1hfSJlpYdMuba2D+YW1kULtjiM8dWV74G2wMbdewXllm4HchoG4GRNb9DFTMalxYzzhcoz1MSCsZ64L6y8WnzUbwsTs0dm2wc9t6MutP82fH7fh1XDwQH7RlT+oP2GvL9X9uJ44ffy5tZPF40bMDQBNB/eWf7CxMdXSyZ2kPqf+2Php+/+cObl79uzcXbR92vGpiJmk5JhGtshGVDTbzKE6oxEJ7fPnB0GaaKJs4QwaWp7xjPwiZufKdhgeGLnA7CDE+eDBPmW/itskx2cLL2azyE72MeOuvPiwYazttVpSdECP2XuzxAwXxurIkmq4PPhwHJweOwDHjNemJtrUIF4EO+CNdYFGZdo7EFqcamzN54Sm5QWfw+0uNlEDob0+bid79hR7jmWs5Zqyccv3eDBdtCh323GDr1PjBqeb+wWHT5VjinXrcjfZAmzmsgfCLyT33pu7ua3xuAUUt5XHeYq1VdtnuT2cc06x59x6a+5mm2U33hhGTXbKeGW7OhH118n9SnPvZB4DnksWzHhMsnYUhahz6nPFfBQ5eWkr3vfKlfjYN+7DN/7m9GAXWvdOa3YXOG1FGx76/h8OXy9/xS+w/gvnonOONQMphBBCCCGEEEKIekY2v6YmqtcCXPyi43HdbXuwZcfIl2N3bz2IJS+7avjv29c8WCYGIYQQQgghhBBCCFEPOO/9RKehEM45X2lanXPwVxc8hnkCeOGHtuFHP79lopMhhBBCCCGEEELUnLVnnYX169e7iU7HeLHUOf8XE52IGvAXwC3e+7UTnY7JhHaWCSGEEEIIIYQQQghRQjbLhBBCCCGEEEIIISrEQTuQpiqqVyGEEEIIIYQQQgghSuhlmRBCCCGEEEIIIYQQJfSyTAghhBBCCCGEEEKIErJZJoQQQgghhBBCCFEF2oE0NdHLsgnkUK/Dr2/OutauXeG9gYHc3ddX3t3ZGYZ50QsGh90/uTLvsq2tob/29tzd3Fze3WhaBsfR1jqIGHt78uc+9lj++aOPhv56enI353Xbttx9+HAYZv/+6GOjzJmTu48cyd1cBhYuh2eui+e1KD+7Ki8TTo/llFNydxsO5BebNoUeufAefjh3T5+eu23j2LEjd99xR+7+2tdCf+vW5e4lS3L34x+fuxctCsOQv/7lJw+7uS4BYOfO3M11/rRzKi/j/7smnJK4zhhbz8uX5+6WngfzC06sTTh3Bu4IqUbU1VU+cSahvWgZdnO17t4dRtfdXf4xXI4AcP6Lx95ei8DjC6ebxycgXnRcPPaai4ibsR2TGgb6yyeOEwSEhXTwYPkH2Qewv0Qiehvbht2xOgLC+uRuxUmzdclledxxuXvh7N7QI3csLkgTIae1pfnotJNac8/mvN1xN7VVyU2A73HZ23vcnW1b4+umxrzsBmlpbOuP/WHVqtz9yCOBv16qP27RnITW+fODMAM07jdy3Dy2A8DFF+fulStzN4/nS5eGYWiQHGzN20zDzgdDf1zIW7bkbtsRfv/73L1xY+7evDl324Fj1qzczRVj08p9M9a37Ti9enXuvvBC1JRvfCN383x8772hP04Tlw/XkfXHZcKLBbPAG+xcMOy2QyHTcfCB/II7hp18GK4nbvC2w3Dn5DzZdUkBevvCuZ7ztLir8nHszk15fKYrBsyenbtt3+bszpuXu7mbNvSZcZrb+9atufu++0J/b31rPFHM5z6Xuw8dyt2XXBIP84pX5G7OVGpC5kVTzG3C9A40DbtbEJYDr3l4HjpwMK+XtmYzt9v2FSM2vlx5ZeiP2/GGDbmbGxePE0DYR2LjDhCWy4wZuZu/gNgvZRxH0frner7xxmHn4E03Bd5+S+4fk/tSTo9h47Rpw+5V5l7j2WfnF897Xu7mNmPLjsMIUYfoJagQQgghhBBCCCGEECX0skwIIYQQQgghhBBCiBKSYU4gDvlOfbvL2G77HsLu+I3BypyiEhVOQ0qG2d7eEPUXk1dalUUsHynZAMfB6bZlxfdmzizvz+6CjsnFagHvTmZVhU13IG/tS3RN3gLOmeWEW7kD+2NN7DnnhP5imedt/jbhVJlNJCSaNasp8MZJsu2hUqyyJibDZIkEYORnMf2gbZyxMk51Wr6XkGH2URJSkrwij5mMcFpZlm2LmK+Lto3m5rx9cdxz5y4o4zujqZXkzaats9ynheQ9LC23xX2wJ3enxhdu+yuWl5cOWbkRl0NHM0lZrMyNZdpWTkO0sByquXI51GSAlTD79sX9cV2wUj3VX1gxw/OGpbm52G+MJ7Oijsaafk4QABILkUAJ6AgfGoRpZKnPSSfFE8ENj90sEUxoTgMpmZ2cWa7H9/bsCf3xYoSkUf0kTbSCak5RM+vhOC4glGXyPZIRjZgseLCptQzzhhvKf25NKXBdpBZrfM19m8KzVNZGF1szjYDrj8cXOxhz5FyOdsLiNs6SzJe+NJGI8rRs/E14HYxxRlddgFNX5ePvrofDvsxLo9Rajcf3pgEem6l8rJyV2wBLBNkNFJfh3XJL7i76xeDmm3M3y/DsQonHlNhixDYo8tfCA/VB04aa81GO5zzOQltrlQubmDzS6u9Zrklteie12y4zTgdjTWKeDcorZqoj9aWsKCwfpbZwp/HG0ssXFIyaS6vRSt9ZAs7lwLYiqpBbTxXcRCdAjAvaWSaEEEIIIYQQQgghRAm9LBNCCCGEEEIIIYQQosQkF/FMbRqm5du57a5elhUx7I8PR7LwYVesuACKnYBplRmxw6UaEEqKOjvLv3+1u/ljhyolDnOL7jRPybb49EmW1tjd0UUlONXAh5U19R2Ie9zYnbs5s3abPlcGNxQ+isnqwDgMZ9YWBEsmWEbA6bEVsXBh7qZKW2i2vi9cnm/N5tOSqsEexBSTmNiTmLCpO3dzubK8xJ6GyVvKubzt1vmYxitxzGwH1VNHe+7u6gqlNVxNY5Ww1gIu/9SJYszcubnbngprDvsbZsSJYgwPEM1Urj0JSQq3XVN/Ldxndub3uI6spKSNKmZxF/mzlcRtgNsdfd5iGjFL8rC5vJQNQNheUxrd2DGjdQT35+XLW6L+uK1xlbNSBIirEVNyTS7Gwn2RJusmE2g5daA2ThBPHPY0MU4gT/YWPt2YZbg00e7tC8txtxn+hliy/NTgumU59U0e621n5kmd+lITSb+aWOYPhAUbO77bXrP0kqWbscFlPIgtUuzR3jz2cF+08zbL47gcyF/KDAUzQhGWOPQymp7YicE2EdyOk/rPAqRsEowxvunTw3UIyzC5yuxp7rwMmD497z8d3A9svmNto1pbCjw+FJXxnXZa7k6dGMtjBU/2/ExzciufcrmTxpDGxkBQjp7IdMUMDITfI5YtKXbq6YHWxcPutpVUrla+zdA6d8HVV+dxmXG6jePgBmDrOfaslJ2N1Am0MW69ddi5mdLzHeONhc+nohjta9bkF09+cnjzqU/N3dyeqJ0cQLh+bUN9nr4txBB6WSaEEEIIIYQQQghRIQ7AtFF9iXpEMkwhhBBCCCGEEEIIIUroZZkQQgghhBBCCCGEECWmvAzz1AuvmegkRJnW1F7IX8yuirVFFguTImanJWXyquEg2d0yuv4WG3AofHvcvgybcuA0FLUHkzJpEbNTZk32tDSTpj548BjtbQBo6nkov2D7QtbWwdatuZuNZFijUByO7bFwBq0NCq4Xtm9h7E4E/vgIeU63rRiOjxtewl8LV0Bz5faTOlr7ww9iRvCsLYjYke2cP2uzjO2QpGxCFT1ineHyZns+xohhV9eCYfdksFnGpnSK2nfiKg/6GxC385HKLJc3l6OtB05gUfs3HCZlpIrjS9nw4XDcXwJ7aMamDV9z+XC/tPdSdmimAlQvR44UC8JFXzRMqk2znc7GxoK/N9K42G/Gc7Z7F9gHOvPM3L16dRgf17O9x9C9/s7cng83mR07wiB79uTu1Hy8cGE+py+0RiRjaY3ZvrT9P2YfyM6FPN9wwvlza89prDa0UnC6ecCzCzKeU7jsrP25Jz0pd9OccH933u5S01DMTBYANC9ZVtZfG68JUh2BjXql7HeOdRyy4a2B3wo50JfbKbPJ5mvOgjU5F7Nr29eZx73YppMj5wirsVdlE1gNPPfYBTEbd4zYL9v1SLim5+6XMhHGxcBdm8vUtttlofnbKHfdlbuXL8/XTAutzcfIeqGB6qXtvvuCIIMPP5y7aRyyM0ADjy9F1we89i/IPVSQX6fPLzT+VvLYc8YZxSI/99zcvXZteI/mpcGVJw+7edls55Q/OBNC1DVT/mXZnU//xkQnIcqzb/vkRCdBCCGEEEIIIYQQVSK53tRE9SqEEEIIIYQQQgghRIkpv7NsMjNtGjBnTuaOqBcBxFUMqTC8i9oeex1TGKVkmA0DJHtjPYbdLx05HrnBRkj32igRbZ2RBAHo7cvf7fJj7FZ6vsc7+APpnt36zpFw/vgI5WrZsCF3815lWyZW/jeE1QDMnp27Y5WZahwsD7AyzJiEkfe3Wz1OTOtB29YBhJJRTsM558TTGoMllOXSNITdDx6TYbJuYMuWMEysY6QkfdzwZszI3VYHxnUW6+gAWpbk+YtJnUsPTtyrHQvn5n1p/vxcetJgjwiPtSfbZmL6F65XKzuJyVBS/lKSzFh9xiSU9l5KZsH3WEaZkihxefFzN20K/dk0DXH88eE1t69ajGsTAfXTQOZk6rx/oLxMzaqNYjQ1hu14kH9XpDpvbI6bFwhYtSqPe5o5L2vRotzN4/ETn5i7TzstDMNjQEKGubc5l152b8w/5yZjJVN8L6VA5mnp0KG8fJYvXxH4C2RJLKOMTdRAmD9+8L59ob/YuM9lbMfL8dSx85zHebLST04Tt2OeI829vT15GceU3EB8uKtKfZoaS3kus4tMTtRY5YKpcbqKuGNTrr3mx9hpm+9xc+LwvF4FzLw9d27uLjooWThcUfMCLP/ldsd2FQDghBPKhjmAtmH39u1hEG6T3A1s2fFUyGXH3aVodiycJlYfzl61OPDXsooewANgwtxIA2XwHtKPWlFwOyeCGwTN+31m0CVDLViGYrD08pXkXmnHUpZyF533/+APyocH0Lskl15201KEi87OKZJhinpHL8uEEEIIIYQQQgghKsRBcr2piupVCCGEEEIIIYQQQogSzns/0WkohHPOV5pW5xz8K380TikaOy/c9En86OZfTHQyhBBCCCGEEEKImrP2rLOwfv16N9HpGC+WO+ffP9GJqAFvAm7x3q8d3eexg3aWCSGEEEIIIYQQQghRQjbLhBBCCCGEEEIIIapAO5CmJqpXIYQQQgghhBBCCCFK6GWZEEIIIYQQQgghhBAl9LJMCCGEEEIIIYQQQogSslkmhBBCCCGEEEIIUQXagTQ1Ub0KIYQQQgghhBBCCFFCL8uEEEIIIYQQQgghhCihl2VCCCGEEEIIIYQQQpSQzbIJ5NF+4P7u7H3lwEDcX3Nz7u7ry91z5oT+Fs4fHHbvejh/D/roo6G/GTNy9+zZ5Z/TcPBAGIgfvHNn7j54MJ5YzlRnZ+iP77W3lw/f2hoEOXAwz9Phw/nne/bEo+bHdnXl7obdD4WBdu8uH8Hq1Rgz11+fu7u7czfnFQjLNQVnZMmS3M3ltXJlGKaRujqnYdu20B9fb9yYuzdtyt3cFmzcXF62zjnd7D7vPFTMhg3hNaeJ68+W6fr1uZvzxGXCnwPAmjW5m/NnyyEWpjExzMY6I5cPACxfnru53dg2ZMt8vKC8Dza3DLsbMBj1lxw3Ym0/VcbTpuXu2EAGhP0i1k6AeNnx+GTTyXHbPDH83B07cvf8+bm7pycMw8/ie9xWgTAf3O9PPDH0x89auzae1skM5fVAX1MRb8GQxt0IGNlUhmga6A0/4D7MdWHmqGjk73xn+QQBYbs7/vjcfdppuduO5/Tc/q5lw+6mxrD/PbAtnzO52XBT5anPXnMW5s0L/c2dm7t5uFq4MPTH65LonGLbNF9zeds+wv2KE75qVe62dcR1+fnPo6ZceGH5NNhxjOuT/bEbwAMHO8pGwU3IDlucPQ5j/fHUs39/7ua6tEPa4s7+/ILrksc0AJg5M3dznuy8VgRTdrseyeeboG0VZGjNXSbqoHnxPesvtibnqYKXZva6YdsD+cXmzaHHdetsksvz05/m7l27cvdFF8XDXHpp+QQdd1zo75RThp2Dy1cMu7lb2i4b66Z2mo1Nk9xNbZd95SuK1fNXvpbXLWfPjvt83bD+N/nFzTfn7rvvDgNRe++7+upht5kp0BFZxz10772524T5DrkvPXIERXiA1j/LOEM8bwDhWMP+3vrWeOT8ncV8B+IxicchHn7tnPK6iyrvp/WIg3YgTVVUr0IIIYQQQgghhBBClNDLMiGEEEIIIYQQQgghSkiGOYF45FuU7VblmCyTtzCPUHeRyoallyklE++WZ38tNnK+ju1Bt/c4E0Xjo/3XvX3hu1yWXnL+UmUXczdZ/U0s3bUgJi21e825LFliZuG9/uyOlWnR9Nj4WLfBe9pTcjPWBs+aFd5L5b1SUvnj+ktJ8mJ5tZIEDpMqO64/9peqS96yH3uOvVe0nscTSkPYXcI+25QqL6aW7SE11sTcNo5Y2rjN2Hscnx1DOG7uPxzehondK1qO3LaAkWmvQ/qRSy9Z6mOrkrsiF7cdumJDfUd7ol+lZNUxUu2T702fXiwMXXNem0zTiOUvNi+m/KXUQak4BmlMaIj1v8cei0fIFW31PTGtHLurqa9q4XTzuG/nwtgcbvr2QVJix7LH6yIgbEKxfmCTyvdiUkQAGOzK+18Dp5UXkkC67VaKGZcf3R3xV5CUvDKm0i+6xkyp/IP1Zy3aJHfIomtWTiD3OW40QHR8qWbcSPmLLZlS31lSxOrCxsftvS3WF+18SWvEZkpsn4n8pkceGXZ3kZub7Y9Nul+KylnAF0uXlk0ngOT4EiURpi9isaZonQtRjxxzL8t2Ht6Hd95yBW7eey9mNEzH8lkL8Okz3ogn/vTtWNW2BH1H+jG7cSbecvLz8ZoVzwIAfPn+q/BXt34Jx82ch77BfvzZyufiXatePCLua3bdjk/c9T38eN3fBZ+//qZ/xvq998IDOHn2Ynz57HeidfrMEeGFEEIIIYQQQghRP0iuNzU5pl6Wee/xkusuw2tWPAv/fc67AQAb9t2PXX09OLG1C7c+7zMAgPsP7sT51/0DBr3Ha0/MjI+/fNm5uPzMi7Hn0QN43I8vxkuXPhVLZ82PPov51BlvQNv0zCjpX9zyRVx+z4/x3se/bBxyKIQQQgghhBBCCCHGwjH1EvTqXbdhekMjLj7pecOfrZm7Aktbwm2rK1q78E+nvx7/fM+PRsQxb0YbVrYuxo7D+wo/d+hFmfceh4/0wzlXZQ6EEEIIIYQQQgghxHhyTO0s27j/9zij48RCfk/vOBGbDmwb8fkDhx5C35F+PGHu8oqe/dqbPo2fPHgLTm1bik+e/joAgB/MtfTW7gTb5OIjvg8dyt0pswesyU/p//m5gYmbWthUKGpbKWKnzJ4SHzuO2poxYfix7K+rqy3wF7w1rtZgQgw+Lj1le6joc2P2QGpRZ2xnJVZ/KXtMbOtgvtl5ybYUxmo/yYaPGdawZRqzScGNy9p64k6SssMXw9oDYYras4vZMzua9ngIth21L/G7wcyZec9qS9U55y9mb8i2u2rynoov4m+wkez0FLUll4Lzx33Cho+lz9ok4fhS9kmmgM0ybmu1tlnGcQwmfkcM7hRtT6kJOWYwKuY2z2rj+cXAprJiJvDs2iPW/VJDUspUXsPBA/lFLE/794eBYuVlbZsVmTNT81WtSdnxYnhRV+s5nEjZbSrizxZdYNeWyzFVpmPMk+2LY7WHlCqTamwwFa2+4F6qkItStHJjYfjLhB0Y6bplyeCwu7U1rwtb5TFTsSnbbbVeyhY1Txpcx8qf+ygQJpbWto1btwbeVpF7I7mvIvcLzKMWoHKaedxPZTZluDBGYtJsbe0gd/nH1PorlBATzTH1sqwSvLn+5gO/xNUP3Ya7D2zHFWe9Dc3TmsqGi/Gls9+JI4NH8LZbvoBv/v76YXmnEEIIIYQQQggh6g9X+hNTj2NKhvn4Ocfjlr33FfJ76977cEpbfgLgy5edizue/6/45Xkfw1/e+u/YeXgfvr/1Rqz5ydux5idvx/o9944a57SGaXj5snPx3a03VJ0HIYQQQgghhBBCCDF+HFM7y5658An46999BVds/n9448rnAABu3nMPegceDfx1H9yFS279D7zt5BeOiOPJ81fhVcufgc/c/UN8ZM1r8JKlTx6+d82u20f4997jvoM7sHL2Ynjv8aPtv8Eqegk3hD2WPbalteguWpYcprbS8z3eld3ZGe6ca6att00peWXsaGIjAeKt9TFlRmJneEA18gIbV9t4SjNiUjsri4ptq7YZZBlWRMbFclYbXVNKPsEaGo6bG4qVwjCLFuVum7/UsdyVUvQIbOtv3rzcHdP12m3sXEZcRzZublT8HJbj2LhjsjkjrepvzmXDgTzENI221kEcDTirPG7YsYbvgcaUNislZDiSWB1ZqpF4WqjMeXx6+OHcy9y5HRwCByl5jY0tw27brbjaR0g5Y7A/loTY8EU1DxMk2a0lPE9a+SDD7Y6lm9WqaFmdzm0gHDbCObMJg3wzd6cm5Jj8xU5YnBEObzLIwznnlYdw23xiJiBsF4tNQy3oDT1yH+aFCX++c2cYhv1tI3MYRvI0QIlv5Lyz/tRidaK1hPOxZOQ6b5iUBC4C1xk3Ibt25OtqpFEpRVdLY39+welO2cLge1XM+4GMF8CsWW0Rn8VIDb8xCbIth9jygz+3U1xDz978gtsJt+9K4HC2/xQJw9j+womn+uvsXFDuYwDxIS41bcfK2yogi1J0iovKMHnwsx0rkhH76QZyX0Nu1hLZ1c+Ck04qG3eS5ctzdzUTWVHMwBGz1FLU6o4Q9Uj9r54rwDmH75/713jnb6/AR+/8DpqnTcfyWQvx6dPfiPsO7sSTfvoO9B3px+zGmXjbyS+MSiXfc+of4/Qr34m/fvzLMHt6S3DvF7tuw5LvXzR8/c1z3o133/plHHisFx4eT2w/AZ87683jmU0hhBBCCCGEEEIIUSXH1MsyAFjcMg/fOue9Iz4//PLvRsNctOI8XLQif3G2uGUedp7/1RH+1i08rWw8N/zhx6tMrRBCCCGEEEIIISYrVezdE3XAMfeybDLhXL511e6OTZ0mM0RqWz3vkE+pPpjUDl3epT1/fr4N3hq9G2zle7kM5cDB+IlGRU/ujJHadRxTHI7YRt8TSURRuV+KmM7UJpwLIvXcAnuf+xKqnaZUgcX2zxetGNZG2b30nL+x7tO20pVY+uznMY1KKq9cFyk5HOtk+ARMDmNPxqziCKhqDuSsNbHnFk1P/0A4HjTFyiF2hJ/1V1SGmeh/LF2OydNTB9wFUmf0hzcPUptiyUxMTgeE+sE9e8qHt9ep9hQ7tbaOYHUQV2VqeOIub5tQTAGXasex+Oxwt9AcBjzqQ4GwjmKn8FZALB+pA3o5TGwYs/6CodBWBl8/8kjuTp32ydpnat/9Ju7giu613Ue2ae04PZ4aoY10/l1qDufC5MWVkW62tuayt9h0lTptMNVsYsWQOqA3GGs2by7vBsL8cTmsXBlPUAwjHVy4alXEYzHYQoI9hJXLmNfDVpHHwyeXMX8+wiTCJio7LscdO1LJjROTN6fgZ3EDsJpRjo/GqybKYGtr/JAz251jFG2rY8W242B+5sRyW+vuDgNR3z5AcvBN5lnXkHsduVeT24ZZXlRGy/AYF9OzWlLmL5jUaa0F3galLLUIUY8cUwb+hRBCCCGEEEIIIYRIoZdlQgghhBBCCCGEEEKUkAxzkpA6DZMpehpm6hSk2GkmvCs79Rw+TKrF7OUPdwPn72LtyWVFTmyy6eY0cbptWmMHSaa2fAcysFrvB49J/OxzuJA4PSxdAcK9/tHt1/Et8kEYu1+et9/zln3eJp6Slzz6aPxeLfWDRcMX1aikjkrl8o41XHtvrJj88aO4mVg5VctROoWI0xDrl6kwI2QRMU1QNZoi449PtmxIyBRjXamq4SClfWd5ZUoPx/rP1MmBm0jUEZOwAiNOWK1HmhpzaRPPL5ZY17ZdNtZei56wnGyeLMNkSQ/XFxC2XW4bLJlJneDI/kwds9youTmfE4qqdmKSTCBUD7Y0k+Rsm5GEcXuNlYMtE/J3kDQ9dlnCRd5D7i6aM5vN/MlHMtX61+IBkmc1st4vJe3n+eWEEwJv7UtyGWZsTVatDDO29gvkgzYCrks+mdSessiRj/X0UTvecRuvQk7OyQlOa0a4Nub2bqf2WJ8JhtzU2orL6/e/jyU1DUtfi56oeccduTs1CHC5Rk4AnzUrb5tAdcu78ZRhJg/H5brgdszj0F13BUH6b7992E1ia/zMRP1ccrNguDHyOQDspTGqA8XoIal6G7kb7FjDeS1aMdyezDpi7pplw27uP0WVwFMZB+1AmqqoXoUQQgghhBBCCCGEKKGXZUIIIYQQQgghhBBClNDLMiGEEEIIIYQQQgghSshm2QQybVpuGsCa7InZWSlqF4DvTTNH/RaxF2ZhexmchjlzQttYrGFP2UCL2QRKmdzhfLDdCVt27C9mzqXp4N4wUOwYe3OUe1WwzQ122wrkwps5M3enDGaQe7A5t8bS1xMPEhRYqhGx0Q5uHNZOSKwyrf0yzkfK7lkRrD2QWONNGSnicuA82eO1ueGwO9VpOQ7Oqy3vWF0YfzGTXrHPxxtunpw9mx5uDknTNdyOG/MxJWVjjG2RcXNobAzHpIPU5To728qmzcYRM4Fmw7C/lkY6jn6nMeDBNkD4yPdYZEA4aLJBEGvDh22rJMorMNyydm35NEx2yKbMylWnDrvJZMsIuBjtsFPUbCH7IxNawZCW7Is8bhx3XHiPI5lPhs44Qht5akyJEJtbU2WSGhY5qUGB2cLjgo3ZdbRzCtn7aqV5scna7yT4l99gukv4qzUHyN1B9qH6udEAaOK5lStm6dLAXxu1m3nzcmtGXBe2+mPrKVt/vLQJ4mC7TXb+3LAhd//ud7mbbdEB6UmhUjZuDK85seecU3F0LbsfGHavWB6u72bNylsHz3HW5i63fS6ilgFqAZu7w0BcRjye27VMNRQtY+5nPCHbPsv9LGKvduHqsEHNnJmXXWxctXBVzpiRuxctiodJwW2cszp3rvG4gebjPXtyN9uBY/tuAO4hN9sp+0MT9ankbjP9eRgzYfWlCikCrwJ4CB9hs4wZ67ob8SU0u8dqprCe0Q6kqYnqVQghhBBCCCGEEEKIEnpZJoQQQgghhBBCCCFECckwJykx2QfvsDU7+wN4Z7fdlRuTFbHb7spmaSPfmzMn9MdKwpg6r9x1uc9Tkq6YlBQI1UYcZt++3D1/fnhAc0NK8jJWWO/AcbM0B4gf123PZI5IAbnOCx/DbT1ypfFz+POVK+Nx8D54q/tgbN4rxcpjuVHG9okDYRnzPe5MNm5O6/LludtuaeeGyHHwMxMyTJYV2v63m1QDqT6yrAaq4SIUVZFwsdo8Ma2tuXQyPNG+qYzvjNh4lZIlMXbciKhNkvkL5Wx5WjusrIwfRhKzQKps+0tMD5fSj6b6FUu/6pVIZVp1X0yJklIIpkwS8HVMOZ2cNtijrQeWAW3dmru5zm17isVt2xBJ6hbz2NWZJ7az08iWqYz4sS19xnTBRhqUOBBLmYBwsGCJ37335u6UrJ4KttHIMBsogS0UBwmiYVtM4zhq17kke2nwe8j4W3777fkFF/KqVaFHqs+Fa9YMuw8tIZMLpq1yEbG0zWa7Bb35RU+k/my9sCSS69JKw2uJbU886FYhwwzkkGayWBhZd7XNNnP95rztt3AcXA5btoRhuLw4T9wPKoGfxYvbFFyfPNbYeuYy5sGV9ahmLG6jdnzqynwh0o9wfOHmzmpEHharXR7y0jQwu7Lt/tAj10XEvdN8wfoOuV9K7pNNGppOOy2/WL06d3M7MZ222a7xC7CKCmyQ08rzCRAWbNHnWFk10UBj0mJyN6/KTVyk1npC1CN6WSaEEEIIIYQQQghRBZLrTU1Ur0IIIYQQQgghhBBClNDOsgnEucoVf7w7OiW1S512xTt2eYdu7HMgfsialb8Ulv9F4i7yOZAuNz7FiGHFk90m3EwnSTZ11rhbsDSGE546mSaV+YheqL1zQTR4WzMJU7b15G4rnwiPFczdKUlQ0VMl+cTD1nzLdgMGUSn9jS3BdRPJiljO2GALIlbmXKa2AcXyZMshIkfltI6QI0e2q6fkYtX0sVoTk4lbeHxIpTsmgUt1g1gabJiChwVGu2asG9gwyefEjoritma1Jxxh0RPTJup41KMFNY6GvlxG1t4ejgcx1WLqwNHUIWJF6jlZ9NygbD3HJGzVnJhnTzmNnb5MiW0zhdXWSWmNnchq08TaP5tWvub42GaDPT6NjxuksmuwAyONs+18KmxKmlztUXsFaGUZJeVvMUveABZAooVleCwJA6KnSq4gSeaBg+Fv3lxNKYVuILXick3J82LtMHVqeEpCXATb4ezRlJXCbXWEvYPd5d12cIjpzFgOaU8DZ7heq22P3K5TJi+Yxz++mL+YjQOufzseROxDNJn6W748X6dysjl4RysLqYGiX1VXLOETqWnssyeq8jVJYu+ktvEtE/fF5O7iL0i2TJ/0pNzN0ne2ZWPbRjUnotJzG7ZvH3YfMCdttvHiiE/lTsEyYbtw4/5M/b6D3V3kB4BeNYh6RzvLhBBCCCGEEEIIIYQoode9QgghhBBCCCGEEBXioB1IUxXVqxBCCCGEEEIIIYQQJab8zrJTf/zGiU5ClMbZs4Zt7aRsFLFpAJbhp2ysJE7HjtoO4vhYXm9h8yI2bs5HzM6ZfRabb4h9DkRNQiXjZvMWbD8pdbRxe3t+1PXirsrtaVn2omPY3dyZu9l0BgDMXZLfY9MXC5eEGRxsz/2x3Z7kcc18M2aDwsKFzG4+DhsIKoDtc6VOk++jeyevjPuLYU+2bm7O3/tzO5k1qy3wN705v+5YFbFfZhMeMfzS2xjGzcRMe9i+F6sz+7ltK0NYUz/VlGU1cPlzW7U2DLkvsk0nWw4zZpSPg8MUtY1mx42YLSnb9GP2q9htw8RsSK5aFbaNliXkkRsEP9TaVuI+FzNEZONg7AQxVttBkwG2e0h2Jvt6Qm8xc0O2/mJ9c4RtwcicyW2ranNxbGOG3dzJUnZjuJ289KWhv2uuyd3cvrjh2nbB19y27LgYW4xYu1tc6LfeOuzsp8+bbOEtXZq7U3Y+OU+xgcgOkkXtO1UDp5vKp8nYLONfqe8nfytuuimMLzaAUj9oYztpAA425+sXDtLSbNYyW7bkbrYfd999udvapeI2GUsbEE5YRY1GxkjNx9Wwa1fuZtt4QNjPuHysHdMdO3I325/iz/fsCcNw2aX8FYXtTxUdfPhZXEdc/9YflwM/k8sRiNqysjSQHa/AXiL37c3Gtpa1xRiD+w/3uRtuCP1dffWw834ar9hO2Z+YqLt4HOE+t9IsuthOGZcDL3Is1dgsY9toVP+txmbZTuqnXdZ2W4yf/zx385gGhGnl/HE52Dll3bpizxVikjLlX5bd+T8FB9kJ4Ll/t310T0IIIYQQQgghhBDiqDHlX5YJIYQQQgghhBBCjAeybTU10cuyCWRaQ64Q4JOIgVByFFNMpGSYdLJ4UoZZxG1J7YKPpSmVhpiUKbWzfNas3G13yMfCcdpS0s1UuVZDTN5l4bwHeTJ10XDwQH5BMom2lLyEpQwxXS8AzJuXu1mLy3EbKUz/QD49sBLG5rVo+ypCKu6iNHeVl1G2GNlrIP1qzCUuj4S73QOKtqFYX7Jqo5i/sSpSqoXTx2lIyddSaY3FkYo7Fh+PDUDYl7gZ23GC4+duwFiZKceRUiUN0hKqgaVjHMjIMA/05W2tdcmyPLyNPJYIK+2YCjJMqqSGnr3D7g5TJo97XC7R5LnV9ksuotQcEBu7UqYGAliiYsfpIvVnJboxWb2FE8uyKx7biw4itt1xJ2EpmpUl8XxDbbAplT+W9/A9K2ViGR2bB+Bn2vJOSMTGDMtgeW41MrJGll7eeGN+4957w/h4MON8JOpvMeeP20a3adQsC+SBLWbvwl7zc+fMCf1xe7CTWaWcfXZ4XbXeuUTRSYAHDttHuN1xGXN4K/GM9ZdqF5wvfnHuTkn8mFe8Indz/0uNIZx37ou2bcQWBWwLBYjLzlnmaOW/RWWYLAFnyaiRhj9I11+hz19N7hXPfnYYN49rLMO0iwWWLfKcm5osqpFhsrSR+nyD+UIUSC+LrgF47LIy9pSNnyHGU+ouxASgl6BCCCGEEEIIIYQQQpTQyzIhhBBCCCGEEEIIIUpIhjmBNDT44ROK+DQ/IL4bnEnt3OXdsXaHdkxSwioN3iUOxHeKF5VdpXa7x0jt3uedwTZuVi6wuoDzUPRUwlrA9ZSSpcXkmsuXdyBGG+127qeTHpsGesv4LsFbsa385bjjcvdppw07eztzGdhmc6AO54nlw/v3h/4KS5YKUG19cbmyAiA8TTGXcAHxtFoFa5F+ZeF+llJSxMaAsSpSqiXVlxi+x2HsyZaxfhqLy5I6MC8m8y7ahlKneMbupdLaFBnYegeagmtuX/yczs4Fgb+WldRArXyFmSjNbi2JneRr8ja3Kx+vmtA/7D7QGJYxR8FtMnU6NauKWPGSLF6WEdnIuXK5/ljuYjs6x8FyIwvLj2KdpKg+uig2f9wZYnMPnyBnr1lWaPsOy324w3DZpaSEtYbtX3Aa7PHiXK4s1zOLuofodL8FfGIhl7GdHLi8U4vEO+7I3TENcuoUVq4/K+/itI7VroWdQKuRrDH2KG2G88v+7OQcqwt2pybnyAnbFcHhYnYDLCxVjpnmAMIyZjeXiR13Iqe1jhgPYhMytye7uGLJaYof/CB3b9487LzNyJu/R+43kXsxyyu5LwNh2bE/K+umeulHPt+k1getpPBsgDm1NgbLMLns7Jidkh3HOOmk3G37S2yc5XKw48FFFxV7bp3joB1IUxXVqxBCCCGEEEIIIYQQJfSyTAghhBBCCCGEEEKIElNAl1G/eLjhU9LsTvWY+oF30aYONkkcXhjdpc87uXmXuQ0Tk1YBI+VVQ9gDVTgcp5XjLnrAT0opwvHZQ3mYoidWVgPvcOe4bb1wfllZMWLLNofbnSe8KXUS3pYt5RNnK4wrih7E0dlyjB3sxCdjWuwJppVis5c6NZGJKUxSW+S5XlLpjklsOcxYTwGdjFRzYmWqz7JiifuBbap8LzUuxk4TTh0qGVMu2DbN91IHFPL1jBm5XHpma+7e1h2GYZUL58G2/c7OXKbdviR3t1h5z1SQYbI8L3E0dJDV3T3DzjbTOJYsyWUyPK7t2RM+NibfLSyD5ufaBsppZ1kLP8jKpHg8v++++HNjUsBFi3J36qhqlvcU1Ten8heT7qVkmBSmtzE8wZijbl+zeNjdEGsnAPb25L8RdxSVPBWkd/VZw+4WToPNH9cLlyNJxwBgwZVXDrsHb7992B38ym1NKcROV02NByyh4s+tfJTbTUwqCxQ/rbUIz3hGeJ1aWBSB5XS2rcZOtrTEpLMcfuHCMAwvBLjOqz0tlE8JLXrKIYdhOd3D5mjvXbtyN489PAnbQZLzEZPL2+fyJMftuEqp7eBPf5pHTZ9/z/g7n9yLuX2xvPKcc8JA1G76l6wYdtvmeIgeHGtCKXMOK5aXD2Nh0ygtqxOyVyYl2Weo3/eZhdc2ul5CY1IzS13tmHQM4SY6AWJc0M4yIYQQQgghhBBCCCFK6GWZEEIIIYQQQgghhBAl9LJMCCGEEEIIIYQQQogSU8CISf3iBgfR0NcLAGhJ2A1pb28p93FSmp6yzROzm8XxpcyYsDtmo8xi4+M0sU0ods+dG48vZofIxh2zRWbtkrHdrVqb9uH4UnEfOVLebc03cNoXsx2SlPEoLkwuPGtMbmV+hvVe5PaP2MwEm7OohJiNqWooeiq7LQZurzGzKvak+pipEWvmg9sQ+0vZwIvZ6OOysvEVbU/jyaxZuTtlV4zbccxenL0Xi4/jsnA52PJmszspfwzbr0qVcawubJiY/cVUmFg7tuN+zMRQy9yEscp6JWZw0+St4eCB8v7MwNHcnNssi9kcLBN9xRzozG3cWJuPC9eRvSe2ZcVju7U1wzZh2I6UhW1Jxewx2QbFAxt3EmuXiuEBytrG4sbPdq5i9q8AHGgsP/dY022cDU5CV1cevmdTGIaz1LEGNYWrb/nyBcPulpWJQcROJAyVS/DLNtsHsvXHExhPSqmFUpHPgfjCKxV3rced1ERQhNTCmccKrhf7TB5oOQz7S/UDvletfSfqjwcG8u8IbQk7fHtbcztXHaspDdzJgLhxVu6AKcOcHN/WraE/tnXG9yjMgOkTRZc5bPHv6+R+nfG37KST8gu2Tfa4x+XuNWuCMGwjbDONKan1eYxa2CzbRGk47rjcXuNCa2uN25et5xgvfGGeNjO/rLj66mE3t7RBynhD0edMQaaN7kXUIdpZJoQQQgghhBBCCCFECb0sE0IIIYQQQgghhBCihGSYE4lzw3qPwcam8B5d8+5mlnDs3x8G6WjP3bxb2p5MHTvVmbcP2+OQY3KqIluObXig2M781M73Ip8DYXlxWlM7yGstbYuVd0rtwPIzW8Ycbtq0vJ2w4mLZErO1nyNhyYRpHP2d+Xbu7o355ywvsYogLq/YqfVlHjUmirY764/7DLdBVq6kJJBz5uRuK0fl+GJ9JNXuuexs2+D2UEs5a7VwW2N3Sl6ZGjeKjCk27piE0bYzvua0puSM3B5YqWwluocO5W7u2zYNRcY7mx6Or+iYxO2hd7aZU5BftySkOpMaLthE4+9tbBt2t3SV/xwAdtJYxuWfkvuxv1SfZXjMtO17+vS8XjpYnsXjtE0QD0SpxrVjR+7esIEfmqfHaKdJwIp20vo0WbnY0qXl07pqVehv4cLczR2QC8x0mB5S8fBaJCV5ipmXsH2Wk1Br+FnsbpnfHnrk8po/P3fbDLI8lQeBefNyt5XHcnxcKFYWGJP/sVywqMbMDlDsLyUzLYJdjNq+UClcMbbvcH63by/2TJacpeSnfM2TeLULoyrkrUFX5/HKxhUbDDfSovDmm8MwXOe0YOwxaeDx5SFyt1E74c8BwAgLo7D08pXkHiEgJ3MjQf/hMc30D54rUtLwGDFTNkB13zl4Tc71OvOUBYG/tuURrXoKLh+z4G+gsauH+ste8jNoxomTiz1ViEmLXpYJIYQQQgghhBBCVIiD5HpTFdWrEEIIIYQQQgghhBAlnPd+otNQCOecrzStzjn4q18wTikaOy/80Db86Oe3THQyhBBCCCGEEEKImrP2rLOwfv16N9HpGC9Ods5/dqITUQOeC9zivV870emYTGhnmRBCCCGEEEIIIYQQJWSzTAghhBBCCCGEEKIKtANpaqJ6FUIIIYQQQgghhBCihF6WCSGEEEIIIYQQQghRQi/LhBBCCCGEEEIIIYQoIZtlQgghhBBCCCGEEBXioB1IUxXVqxBCCCGEEEIIIYQQJfSyTAghhBBCCCGEEEKIEnpZJoQQQgghhBBCCCGiOOcanHPvcs5tcs71Oee2Ouc+6ZybVSDsOuecH+XvqQX9/3h8c5ohm2UTyaAH+voyd2O8KnoHmobdjzySf75/f+jv5JWDw+7fbsjfgzY3h/5icRw8WN4N5Mm07oGBaLKDLLW2xv11dpYPM29e6G/mzNzd3l7ebZ/F+di5M3dzHgCgpyd3z5iRu//gzEGMlV/dlNcFP8dWOZcl19HcufG4lyzJ3Zyn5ctDfx2NB4bd/c1tw+4m9Af+du3L29rdd+ef79iRu7dvD+Pm9sV1YdsG1wu7//C8ysv4uuvj7/m5XG075jbA6Xv44fizuPw53RwXADz2WPkwNg0xOG7bZ7lcU/3qaeeMvb0W4dc3ly//I0fCa26TXA6HD4f+Dh0qH4brqNqxJtY+uY8BwPTp5eOYM6d8OgGgqyt3c7p5TLPpmzYtd8+fn7u7u8Mw27ahEPwsHg/amsO+nZpj6obNm3N3osP0NncMu1vQO+ze9UhL4G/PntzNY/Pu3eFjue1xO+Yk2OJ90Qvyvpgar7jOeNxu2HRnfmEHG07Q9dfn7ksvDf299a25+9Zby8dnGh43uyZyL+AOAoSNf9Wq3L1yZeiP73EGE2Hu787LKzVvx+qCo7bjLxfdqatqO15yulcsp7i5cQFhmXObtvW8fn3uji1snvOcMMwpp5T3Zwelm26Kpy+WHo6DC5kbsY3vrrty95//efnnpLj88niaPvzhyuP7yEdyt108crp5AWQHBC5XDsPj0OrVYZgTT8zdixblbi5HADj7bBSCJwhb/hEOHMzbZ9vA3vyGnXy4zrgceKy58cYgyAB1TooZdvnTQ27ufQ+R+zcmzKV2YRHheppcuRQbzzwz9Lh2be4+77zczeW4Zk0Q5MHd+WjIXZbXxikefTR327UMN5tXvqLYmPS9H+R1yd3Srv2XLaH4+MGp9QDXM48T9t6GDbl769ZhZ4+Jrr1g/U0FjqEdSJ8C8HYA3wfwSQCnlK6f5Jw7z3ufash3AXhVmc9nAPg3ALsxchhA6d4vzWcFV8pjYwqsnoUQQgghhBBCCCHEeOCcezyAtwH4nvf+j+nzLQD+GcArAHw9Ft57vwvA18rEewGy941f8d4/NiIgcKP3fkS4o8Ex9BJUCCGEEEIIIYQQQlTIBcgO//y0+fwKAL0ALqwy3jeU/n8x5sE5N8s51xy7P17oZZkQQgghhBBCCCGEiHEmMhV1IJX03vcB2FC6XxHOuRMAPAPA9d77uyPePoNM2X3YOXePc+4dzjlX6bOqQTLMCcXnGvKEQZ6W1ryaGhuLvd9kDTvb4MriyN1shoR189ZmUsz2kE12TAZvTUNwOL7HabW2ujhNMftXANAwkNvqaW5uivpj+LnWNMtYYRtFXD6pMmb7bLZM+ToWX1HzRIONTcE1mxbgOuLPU+nhvLLbps/mvVJsm46RSmvKBhYT85cq45gNrVR/SbXpmM2ysZZjtcyenbtTZcptOpVu7nPV2Efk+Gzb4L6UKi9OH9sp47zasSFmsyrVPmN9LJWelO02tr0W2nAK+3YDjo49u3GFC8UasCJaWsleW09eKHPnhjbLippSKdKOU22L68Xayouxgo3PpAxcLlwYj4QXAmwgjzNkEt5A94I7bKMMCI3jxAyvpe6RnTK29QWEJpTYnqS1GcjFEDNhl7IZeeqq+L1qYHNazc15ntrbOwJ/LV2RBZVt09VkKjaAJvpLdAHEAyEQtoGYGwjTHbOHVhQbd9GJO0ZqQI8ZrrRlF1ts8ec23UuX5m7uE9bGX0EGlywbdrP5ssBGlYFtbS1fnrfJjpVmfOH8srEtfpAxqtlIHbWF6tzWFvd0juG35D4L1bGA08Pjnf0CwnUTMfq592A4f3LfZjtlbPcSiK/PU3N4NU2ahwB+jjWvx98ZeU3Q1ppYD3CZ2HYcu0f135caa6Y4U2QHUqdzjgxm4t+89/9G14sB7PbeP4qRbAfwFOdck/e+v8z9GK9Dtlut3K6yxwD8EMBPADxYev7rke1sWwPgtRU8pyr0skwIIYQQQgghhBDi2GW3935t4n4LgHIvygCgj/wUelnmnJsG4CIABwB829733t8A4P8zYa5A9vLsIufcv3vvr7fhaskUeQkqhBBCCCGEEEIIIcaBXmQnV5ajmfwU5TkAlgD4hve+ULjSaZtDRxv/UQXPqgrtLJtIXEO+bdvILAbpPSbLEHhHtN1uu5B2HfMOaSsPiZ16zZ/bXf68q/bw4fLpAeLStNTx7Rw3S/f27w/D8K543lX9mDkzY/bsfKsxS15SR9BzORSVMBZl167czXWWkmGy2+4gj0nOWFI0b14Ypm12+UxZaVZfX97uuM443fY0+aLqEK4/q+6oFLv1PYaVPHHaud1wHVliUi3b/7hNc9ypI8OZWbNyN0sHgXDnO/cRVpQcTbgcU8o4vuY+Zv3FlEhF5QkxOau95vhsW43lg6VfNgzXM/uz+Yud2M51yeM8MLKflXumJTWGDwzkfbujvU4lmTFZmhm0WULTQZ1npzlknOU0XH+2LngM4HbMY3NRSXRKyhsoXngS37QpDMQN6pZb4g+7Pv+xdeDqq4fdB8iLbWZ83U7uJVu3Bv466bqBG2uqkzBUeF1dy4JbXP4cnV1vxNQ+XBcpafh4wn17RNvgRPEklRoYixKTBdqBschCx+peOa0pXVlskVkNtSgTJjWpcFuNTV5AfGHJ5c2TNhBO8Nw4rD97HaGhZ++w28p8Y/B4FcwBm80osGUL3SPt5saNw87+e+8NgnCtcGx7EcL3NpL7dHKznLISeFwLBhE7mfJ1xI5Bo+kusTWdbZ4xGWZKEV2NOQ1ukimzD1znLc0F531e3HL9A8Bdd+Xum28edj5AXu430Rkhp6h/HgRwqnNuRhkp5nHIdqZVIsF8fel/1LB/hO7S/2KD5hjQzjIhhBBCCCGEEEKICnHIXqrU+18Bbi55DcwLlk6pXANgfZkwZXHOLQDwQgC3ee8LhytxUul/YrtDbdDLMiGEEEIIIYQQQggR45sAPIB3ms/fiMxW2X8NfeCcW+ScW+Wca0F5Xg1gOhK7ypxz88p8NgPApaXLHxVNeLVIhjlJGDTvLYvIgKwMjEnJ/fheTLaTkmHGJJlA/CTJlCyJSW1H5jDszyoFWMLG8hneRp06jabWMkwmdXIgX6dkoVw3XA4p6SafAsf139oatrtYG+B6Tqkgip5SOZ7ETnsFwjZQ9FTCmGQ4JS3mehmrCsU+i+Ou9cmtRYmVSUqNkzoRMCZhTCl9mJQU1I5RQ6TqJab2S0kuUv0vpoxiGa2V1MbGQvs5P4vlzfa0q96+KfDbWOQUx8HmcB3WE6hu8nyz7BII5dfcHuzcWkRumzptOTY22OtAJlNU024bG0MNj2uf9RFWldgTuWenRe6OXSTJarAZZG0pT870eYvJw6JFbcNuHqdtGbPSik/PPu643F1UulkL+JDDhbPJ9MrOntAjy8BSNgVipytyY+VT/4BQxhcejxv64zKPHambsjXA4W1b5YrZuBFjwoaP6dOLwuGtPQiuC5ZB8/GsQJC/fqoL7iMj+gGXnbUxwqxeHb/HkDyujU+ZbY0rklYsZ+klyeuszPu++8rfI9mdrYUecvO9h4w/FvVxTlmIXa2RgEC+GTt9FIgv8qkuW80hpdzNuJlUc6p6LU4xj60DU99feA2QlGSmjmZftCh3U6G0U59oj8cspgDe+9udc/8C4K3Oue8hM7R/CoC3A7gWwNfJ+0cAvAbAMwBcUya61yFbanwt8cgrnXMPArgF+WmYFyLbWfZZ7/1vxpShAuhlmRBCCCGEEEIIIYRI8U5kNsPeBOD5AHYD+CyAvy0Z3x8V59xTkL1k+7r3fl/C63cAvBjA25C9iz0E4FYAf+e9/0ZVqa8QvSwTQgghhBBCCCGEqAI30Qk4SnjvjwD4ZOkv5e8iABdF7v0KBYrMe/8xAB+rOJE1RC/LJhDvHAYbs1O7rCSIpQK8azx1KiHDO6ztlt/YCZj76L1uSrpQVBrFpGSdsTjsiY4sU4rJwCx8j3e+p+RitSYmYUzJMIuemsk7pFPqCVZwpKRDReo2dYpgSmbKCpyxSl1TdZ6S5Nl2Xc4fH1RlYTmWlfexXCgm10ylm+NLpZulrlaBc7SIjRU23ewvdapk6qTMIWx7irUhq6yJ9W2rfuL4uV+k2hPfSymeUoeklXu+vY71MfusQMppEjswEDMZUUdQ5gdbc6menQtZNcVqMaum2r49d3MbtPNxTIbJdZlSQ6ZUkytZ7sOSJz51zB7Xy5GwXMxC8kg+lY6Lq8cE6Yvcs9MBx8dhFt9+e+CvmU8B5ImJBzLTVpetXTvsbqV6tv2Po+axcKEj8Vd7OIH2N7dhvFjWRQLXTbQIsw0qtpBL6bO4zrlBpU5TTDU8vub0cAO3Cwke5Pg51hYGt8mxyjBtp03ZHykC10VKKsnSVHM8bi/Fwf2Ah+auO+4I4+YFAte5HfgvuMCmuDwbNuRurpd16+Jh1pP9bD7N8u6743GTm0887DZR95Cbx5cHjT8e7viURJZQVquUDno2f4Gw9Rw7rZXacQNLWwEsWZKnMGXCocgaOrWOKEqsa9tu3tJHLTQoh8RYk7JJwImnPsJbiaaAwQchAtSmhRBCCCGEEEIIIYQooZdlQgghhBBCCCGEEEKUkAxTCCGEEEIIIYQQokIcgIQVF1HH6GXZBOLg0VBSejc3h5v82EZKzIZSyl4Yh7d6eJacsztleyhmY4yfY+HjjFP2eGK2eTi8vcduWz58jyX67Lbp4XvW3tBYYTtCRcuYsWUcs4fF9qFSNqHYXbRtsLmNVLtL2VaK1UU12PAxmw9F7Vyl4DjYzA6XSSpMUbt+KWL9Yqy236qF08DlYNNTTVqLll3sXuo51fQ/bmvWTywNtn3GTmJvacxtHLW3N0XDpPIUiw894SDQ2jkFbJZRBTQUtJISm+PsvZRtwdi4yHYGU2Mah0nNmUEkbOTRGqJhezrGtk7A0qV5FGT7qZe8UIsBENr92ZvwF7MrlBzuuMOkJhW65iKx/YCLiO2XBZOcmdCbgklqjBORhe37pIzgxRpbkAmEaWcbTFx2tm3EBo7UhMz3uIGmjM1yXm2HKWpctwg2fMpgVBFSBmE5bjZqaZ7ZG3FzCfebjt7Eds940VptflLtKwbXJ9uZS7VPusdjQMqGIdspW2z8sW2yDnLzuFPtsqadL2jsGzFG8njDg0hi8dFEuW9uzufqouuaVFesZh1X+HshjQe9A3m6W5A4sJDtEbLBYyDs61u2DDvbqZ/2jbWPCjHJkAxTCCGEEEIIIYQQQogSelkmhBBCCCGEEEIIIUQJyTAnEA+HwdL7SruLneUisd3SqZ2u+/eXjwsIT8Hm3fxFZShFZWWxuG0cfI+3FqfkkEWlNbFd1bWQ5xUltv266FZsK0dlYqqWonIx+0wu/5g01SoX+DolU0xJZ2tJqoz5ubz7PiV5Y2UMh0nJrsbanlKyZVZ31ELiWQ2chphELXWP5WtA8X5aJD22Xnh8SEnIOX3cTlJh7LhWLoyF+wg/dMaMUIYZky3btsWKiWBSMIlrYLnWROl3a8gg/dZn211sLrNzZmw+Tc1XMekljw0WVtCxOggAmnaTaImkkti2LXfbDHKlF7TH0EgTSTN93omQWMuwnx8gNxeXHRZbt2/PL3hSYHmPnRCorbYsWUKJCFOxfHku6mprJEHc+ntzt60YLrvVq1FTuP7YbRveI4/kbpYF2kUP55ftOXB5GRnmgYN5v2huzqXXA6YJtfCzOD4eMDmdQFh/LI+0gy7f27oVY8LKMGN6+aKkFrN8Tf6sBJmll9wPGiOfA0AH5aOBF/Vcr5WwefPYwsTcQCCvO0htgFoqaHQCAHSTezm5O0Jv6Iq4W6kdN1cr42O5JY8vtl8VkUtvMzmk9rBkyYphd8qUCc8j7G+sTRgA5s/P3ZxVq5rkfARjaerrPyfcLtZiYxLRcQzLMLUDaWqiehVCCCGEEEIIIYQQooRelgkhhBBCCCGEEEIIUaL+tRj1jM93fVt5T61P02OKnGSXkq+lJHQcH/tLqX6qkeSlpGjVSLqOlpwtldeY7Cole+Td5ZyHVBjG7k6fOzd3s7qD47ZhOO6UZPRoKb9ip6sCcRllSmbKO81jJ61aYtLUVBlMhlMuq6EWY1VRqXKR8LZeuPxTsjkeu1KSOiZ1UmaMVB8pQlK+PZ4TxxQgVXbcTmzRcd1y2yjaVlkyE8hmAWATSYJ27MjdLGWxjYulaSnJS0Rb3EQTqLV2wL+gJs5LQ1PkcytZC+w+cIdJ2ZSInWZpCrl1JZ2tt5PCsMzN2gOo9XHXTEx3nrKzUVSfzv5SR3tH2uGI9hk77pqxg1XqCGimlmOPXTSN9Sjt1GTP98j+QpMpB+4/HAPLkW0JBGf3xuwYVEKqfcUoqjuneyw5ZUHs/SbqFeROif3ayR30RBokG6stk1jbSJ3qGjn5c8SYRB2obXlem4fnNMS8BaTWpdWs93h9zjL/lqDGEEpO+UGBJNPAYfhUWCA9L5WIzQ1C1Ct19JVMCCGEEEIIIYQQYvIgud7URPUqhBBCCCGEEEIIIUQJvSwTQgghhBBCCCGEEKKEZJgTyKDPJd9sYgMIZeH79uVuNmnCsnILh7FmJzhu1tGzdN/aUIvZIkvBYawJCzbNYfM+hDUZwPL4lNmRonZoYmHG014U27thsyWp9BS1P8ak7Lhx3LYc+dqcSB/9nG3wpI7H5nvjarcpAZfdnDm5O9W2YuXAfczC9cz9ypYJ97NUHmJttxZHkFcD9+2UyZ1Y3q3pm1j+uExGmOZJ3IuRGrti5r7sWMg88kjuTo13TMzGmLWTxu0wYkoHANCw88H8ImVPJGU0pV6gDpwyLxObG+3nfJ3qp7H2ELMZaVm+PHc3bL4nvLl+fe7euDF3d3fnbltfKZtVDDdKsgnUunVrNEg7P4bcxhJOAP/qutPc66DCbL333jwMd0ZbgZzuhG2dBq60bdtyN5epnTA5vrVro3FXBdcfp8c2PK5Ptj9n88qTT1dX7qZJd7CT7LYB2N2du1NrhcU8cbPRI24bNoJYp7NtcMuW/Bb5q2rUsQvEWtos43wDYXmfcELuNguWzttvH3Zzng6Q2/bKHnKzTa72DRviaU2xaVPutja5Ytx0U+6mOgriAnCQ0sd3NpB7jYmaWifYLKO1X7WML848M3evXp27eeyrBI5v5crcbSdx7o/s3rw5dy9cGIZh24vUfxdyvwSAJe3Dzn7KfWyuMdEVhrPXxi1vc3fokeuWJ7aiNsvs2Mz9h8cQ/nysC3whJhl1umIWQgghhBBCCCGEmDgcJNebqqhehRBCCCGEEEIIIYQooZ1lE4j3cQVFTPrDu1urVdLEJIecFrvTPabgsWngXb4pKWHqXpEw1eQ9FZ7zV+uT5Vnul1IQcJp457Pd5c3+eBc0k5Jusvql4eCBwF9nZ9uwm+uS1QlWURKTKVopE/sbqwrM5o/ltim4vNjN/crmh2VvLJ1NnCwewNJEK70t2q8Yrr+xKlKqhdOQktdy+lJ5Yn/cbvg5VroZKwdbf3xv9uzcnZJBF1W5cXypMYSv25r784ttPbmf5R1BGM4Hu9taBwN/2EAyLtZ32ISnBpV6gRpHI5VpSpadUp/G6jk1P8TmyVRfbNj2QH5BUkQAoUyGZUAsz7MNyg4+MSIyvkaWn9mEkx64K5YeAJ20SOHisgrYveTmKaGT8t1gOzenO6U1Z3+cVnYfzUGS5WNcXikZJuv5rT4rthihz23xxIrLyrdH6ATLYTsCL0w5rVZ/T+2TRrvqvnDYxbCVTlZKbEKw91g7bdpQI+Wvk+R5TVT4tni5BbRwXCZ/hZefCSl1FO4X1FZ7TKO5jdz/R+5nknuViZrz1Mrlaidklj6volhYV5iSCKZgKScv8FI2a7ifsjTVpmHPntwds7MBBONsE/XTxV15enr7wn0q1QxRbX0P5Rcs+eY6Lnc9xDnnxCNnez92QOFy5T7Cn1dbf0JMUvSyTAghhBBCCCGEEKIKJNebmqhehRBCCCGEEEIIIYQocczvLJv2rB/jtBNy6dkPPrwW3Tt78f99YD1WLGrB4UeP4AVPXohP/PmpI8J27+zFC953MzZ+6enB53/zH3fjf27YiQbnsGBuE778njVY3Dlyn+3gkXwHLx+0AoQ7ftnNO4ZTSgw+QMjupOddw0XlKrETFIueSlj0pD9229MGWeKVOvSN/XFaOd8pqWXq9LuxUlSKFjsJDwhP4Iud/Jl6TnDqntlC3kSJ6OrKT/LhZ9od1pw+rouiMsXxxMoCY4eLcdnRoXEAQvkK96vUaZ+xNl1UMmPbYEwyWPQUyFoTOw3T5qfoIV0xWXZR2XJMMmz9pdRdnFZ+LrfjlOyc6yxZDkU06ClvtlBjp9KlNIf1Ckk9eC40CsFARcJ9xxZd6gTMGLH2mRzfWGp5yy3hvdhpmDzonnRSGKaoDDN2vHFqguHrhL65LSIDazdpYxled+TzDiNNbeHOtHRp2ecACNs7SyBTp2GO56DJkicuB7vAW7Qod8cWLEA42Ubcu0mBZR/L2KgXrqIJkDsCLzhZZgWEnYTL1XYs8teCMWInZD6lshpY+nfiieE9lg9yG7T2LrgNUYEHfYLLEUAj9WeWJu9FSFEZ5gANeo2xI+VtGDrFkw1wmPN5o9LL08ndaifa2EmituGtWZO7ufw5TFG7Ghau29Qin9Maa/vbTMfiAZ5tQFh/3E8jdj9abNq4Pdk+F4PHGpaPbt8e+uO5p+gifP/+8mkD4uXKC+qJWpgKMU4c8y/LZjZNw4YvPi34rHtnL849rQM//shZOPzoETzpjdfhJed04amndURiCfmrl6/Ah173OADAP393C/7+K/fg83/xhJqnXQghhBBCCCGEEELUlmP+ZdlozJwxDWtWzsH23QV/dgbQNiv/pfBQ3xE458YjaUIIIYQQQgghhJggHGTbaqpyzL8sO9x/BGvecB0A4IRFM/H9D50Z3N/3SD/u3XYIT3tisV1lQ7z/i5vwlZ9tw5xZ03H1p84u62fQ57vVrcwqJm1iZUZKNlL0XtHTwGJyv0DSN0ocsfhi8jVLSubExORUsefba3tA0ljh+GLSMSDcsc1SCrvbPZY/rgtbjtF6sYmgB/NW8Za5eaAlS5o4RLArOyVZi8k1q8HuBC96oipf8255PrF04Xxz2iAVXu/sPO9WeRJTpXBe7aFhMfVEqnxqcSLuWGEVQlFiJ17ae6lTeZlY3lMKjpTEs0hZFpWd27iD9sqdhNwNplHzybRNB0msY2UfLD9LSTy5UcaOsK0jUvLf2Km1dlzkcNXMXUU+BxBKYTZsCO/deuuw8yAllmsv2TRTdRk7oYwzy4MfEMreYkeyAtEO3WYGtQGauDkGVs6GZzIDS6hNt7GsyOrTudDvumvY2cMSNRN363jaWbj55txN5TDACzcAjaxj53K1fTYi43pwZ/6VzMouiyp0ewfyuaylqESX4RMGjYy2n8c1+ryq6cp27rEeV87h584N78UWYXZRyGNpbEFmbECwDJMlyA+a5C0bkeDycP9pobhT31TuJ3c3uX9l/D2X3HzqZSvn77TTwkBcrnyypR03WIbJskmW8VVrMoDj47HBLrxiMszYyZhAuFhL2XThdsMnt7L02obhMamoDJPmjUB6aU/+5L5p5cQxYl8SgTBP7Ga5fDULRCEmMcf8y7JyMkwA+OXte/GE11+Lu7cewnsvOBFdHZUN3pe9YRUue8MqfOS/NuPy73fjg699XK2SLIQQQgghhBBCCCHGCe0YjHDuaR247d+fjtv//Wn43A9/jw2b9+PXd+7DmjdchzVvuA4/vGHn6JEAeOWzFuO71xXzK4QQQgghhBBCCCEmlmN+Z9lonLy0Fe975Up87Bv34Rt/c3qwC617Z2/ZMPduO4iTlmTbbH/4q11YtWxWWX9CCCGEEEIIIYSoX7QDaWqil2UFuPhFx+MT37oPW3b04oRF4UHYd289iCUvu2r4+lNvORX//X8P4u6th9DQABy/cCY+/67TbJQAgMEjufTd2plg2Tnf4xN9i9olK2p/haXpVlLPdoDYpMks8x4w9qyULTKWt7M/a8eNiZmMsGngdLOZkKI2k2pB0fiK1gWbW+CyY38p20otzWSTyxZEyqhaia6u0KpGrOysmYiJIGWXqgX5y262yYZuYxOKMtVCdjWWLGkLvPGzuM+yOQpro4ztzKXKi03ecHwTdUJ3rC/ZJsPpS9mEipko4baeatMpG3+x+GxauYy5XlJjKeeJ68WOSYEJj+XUUVP2imIPShkk5EHADs5TwE5Zb2Pe59i8jDXTEjELV9VcaO9xEafG6QC2K0e2tQCglxLYQ58vYE/WzhY3yqI2y9jNGWK7M0BoW4fbUKoDxow0IrTV1EqVxr6s3SZ+0gHKu7EmiWXr1w+7e+k5ZOEPdohcTnXRhBrDjZLqZUSz4zLnBRXbbQICO3Pc9rm927GGxzEepy0cR2fn4mF3C9ubspHzNUdg2mcTt/exjjurV6evK4XtWnFegXhabTnwmBuzBWkGEbYr1kntxLbpovBP9Zy6lM2yB8jNdsqeYvydTO52ttd24om5m8sRCPPO5WrnoUj57+3JXzN0FLXbZWG7jIydIGK26WxaGe5YHJ+1bcZtg5/Diz/7HGPfrhB79uRuHndsW435S5FarHF74DbOeR2rXUEhJhnH/Muygz993ojP1q3pxLo1ecefOWMatn/72SP8Le9qwWNXPX/E5y9bt3jEZ0IIIYQQQgghhBBi8qMdg0IIIYQQQgghhBBClDjmd5ZNJB757vWUsiYmtarmePuUv5jUBAh32/IOYnvydmzbf0oyyrD0MiV5ShHzx1IoK7PhPNV6B3FMtmNOkw/8pdRZMbVWqs65TAbpHXlDqpAj+roOKxWhe52duVTE1kNMtVMNtgxidWY/D7Ib25K+bVv5z00EHUtMIqgcGiPlYPPNCgC+Z3fl871UPz1acPkXVQ9yWu3J4ryzn4lJjoG4csEqaVghlOrnsTQwKXle6vMgrdyvEo2jiRPI96xm/+GHyz84VTF1SqzoUvMnhylaJCzfB8L6i7X9ZNyJ+uOkcxRNHCFL9YBQ8mLHY4ZlSSxt4nZiw/M1t8GUpi+mewWCvLfRmNvPXkx0BzhqclvJWjtNouzvoUhcQLjoXYHawmKvTioHm+4GblA8YFlJLNUfK7/YbddWvIbie3b8tNU0xLJU2+J7qUmc2+5YZZj8zHLXY4nPpG3vwVyYG6xzbCHHKoAL2ZYPtX2WI49xKQQA4BXLqqgv4Hpyn0PuZcZfYGCCx40TTsjdKQkr37MTLd27vztfiwZy+ZWhmLStoFh11yO5mRzuYiPWrHzNdZlaBLCckcdC25G47ce++BRd1KdI2SFguE0W/WKY6rM8p3Ddxj4/xnATnQAxLmhnmRBCCCGEEEIIIYQQJfSyTAghhBBCCCGEEEKIEs57P9FpKIRzzleaVucc/NUvGKcUjZ0XfmgbfvTzWyY6GUIIIYQQQgghRM1Ze9ZZWL9+/ZRVKj7eOf/NiU5EDTgNuMV7v3ai0zGZkM0yIYQQQgghhBBCiApxAKaN6kvUI5JhCiGEEEIIIYQQQghRQi/LhBBCCCGEEEIIIYQooZdlQgghhBBCCCGEEEKUkM0yIYQQQgghhBBCiCrQDqSpiepVCCGEEEIIIYQQQogS2lk2gfT1Ody5KXtfuXNneO/hh3P39u25u7ubw4dh/u3zg8PuV1+UvwdtNLXM4Vpbc/fAQPnPAaC5OXe3t8f99fTkbn4uxw0ABw+W98dps+lmurri9zo7R/c3Z054PXNm+fCLuwYxVh7cmdfFNDoqhevVPnfz5ty9fHnob9u28s+JlamNg5/T0Xgg9BirDHIfaF0cBOE2wPW/e3cYNbchjvrklZWX8f3d4Xv+WbNy95EjuZvbqn1uB/bmF5xv2xn5HhXeAbQF3jh/+/bl7j17cvcjj4RRHzqUu7mPcF0C8X5l8/eiF4y9vRbhJ1fm5c/t0fZzzi/3MeuvyDiUGg+4vOyYxPEtWZK7eYwFwv4Yaw42bu5LzBOfGF7PnZu7T+6kdsedxFYmP4wTYdvnrbfm7tmz4/GdfXbujiV8kjNIv+/dfHP+Oc+LAHD33bmbi9i2Ie5XjK1nhvs5+7PF/fa3Ul/83Ody97XXhh45IzxA8aB9yilhmDVrcve8ebn7ggtCf1/+cu5euDB38yBp2wJnhDu3LeTYYoQnLyDsgDfeOOzsp8LPXRlNKI9Z8qBr6dJh9+DWrcPuB8mPmeHAs1c7l0MNGKQJvmH+/LjHtWtzN9fzi18c+lu9etj5IKU8tQ7kcS01F/JjeVxs23lPfrFhQxjopptyN49Dd90V+uNJjyfnO+5AxbziFeE1l90ll1Qe3/XX5267uOK+wG3fTsic30cfzd07duRuHoSAoCwHbr992P2QSd7igm1yE7W1/6bPL02Ev4rCUJVjgfHXwfPIqlW5mxsKj0FAODCuXJm7bcOjNn2gOX8yj8XLllS3jjlwsPz+j7Y+U8qxyeN//id323Tfe2/u5r5tOyDnndsTlx2XFRBOTBddhEJ84hO5OzaRAeF4XLTv8Lxx+HB478lPzt2cbv6yZSdaW5ZC1BnaWSaEEEIIIYQQQgghRAntLBNCCCGEEEIIIYSoEAftQJqq6GXZBOIa8t24vFMdCHf28o7dmJQthZU88XVEaTcC3oUeCw/E5WKp+DhPjz2Wu3knuI0v5gbi0i1bDkzq3liJxc15BcKy5PJJSfK47GKSN5uGoM4649vBB5tbht0NA/3D7p3dYRAu71geLGMtbxuelQep9slpal/SUfbztiXxhtvfmJeJLQeuC46P1So2PVaWOQQrO2y4om16IkjVC+/mt0oR7gt8r+gYF9RrezxN3Fb37w/9xcauVBqKykQD1UWqgTIcYWwSAIDp08uHt5VRtDAnMQ19vcPu2bNbyB36mzEjd3NxpebCovNDLL5U/QeyHWsbgO/FNHSpxLGW21KkUdtBiDsQS5Ss3QAryxzCyoQj6eEc2aJjgXsDte9BO2mSjI6/pLSTJLMFIe22sdSQhpjdh9RExHVk5VRUlu2rchkmV5ENEpO7W2kxx9HWmPerpPSW77G+2bYNbsd2vKoUlr8BY5d0cZ5s2rjA2J9dzNx3X+7muuW2b8uO8tFDHxvRMhajGCy9fEXUV8iyyOe95rqNxoRG6ksBKVstTMK8QNvKvOe30npshK0RljAmaGPRNY93tpOwTJgXWyk7MGxLIWXGgNPKeeexwZYV22cpSkz2mLJxYb9oFsEuRrkvFF2YSoYp6hy9BBVCCCGEEEIIIYQQooRelgkhhBBCCCGEEEIIUcJ57yc6DYVwzvlK0+qcg7/6BeOUorHzwg9tw49+fstEJ0MIIYQQQgghhKg5a886C+vXr3cTnY7x4jTn/A8mOhE1YCVwi/d+7eg+jx20s0wIIYQQQgghhBBCiBJ6WSaEEEIIIYQQQgghRAm9LBNCCCGEEEIIIYQQokTqsHMhhBBCCCGEEEIIEUE7kKYmqlchhBBCCCGEEEIIIUroZZkQQgghhBBCCCGEECX0skwIIYQQQgghhBBCiBKyWSaEEEIIIYQQQghRIQ7agTRVUb0KIYQQQgghhBBCCFFCO8smkMcec3hwZ/a+cvfu8N7Onbm7uzt3b96cu22Y//ji4LD7T14Rfw/6yCO5e/r03N3Xl7ubm6PB0doa98dxNCZaF/vj+Jj29vCa41u+PP6crq7c3dlZ/pmpuDnM4q5BjJWhOgaAadPyz7dvD/1xWd5+e+7mvAJhe5g5M3dzm5kzJwxzyim5m/O+rKs/9EgF0dvXUO5j3HprGGTu3Nw9MJC7uZ1Zf1wXT1hdeRnfszls37H2OmNGeL1nT+5esiR39/Tkbq5/IMz7vn25+777Qn+cBs7f1q25+9FHwzCx/sKfA2G5sr9580J/L3/Z2NtrEX7447z8t23LP+d0AmG5croPHozHXXQcYji+2HgCACtX5m7uL0BYT9yvOG6bHu6bfO/ss0N/xx2Xuxfuv6d8IrhBAmFD5ILkAgeAm25CWWzjP/fc3L16dfkwkx3K+4ONy4bdmzaF3jZsyN08T9p2x8Vv+1wMbsc8ltpx4+Mfpb7405/m7muvDT1ec03u5sF91qzcfdppYZhzzimfoHe+M/T33veWT2Cqw3BD5vTYdnfvvbmbFxK2MmjS203tmGeepjAEOjk+HuS4HwDAM56Ru++6a9h5gNJtV0Kt8+fnF3YQGCtUZwPUoMywiOalS/MLHhxe9rLQIw9Yz33usPOBnXmJ7dgRBtm1K3en5gpuUi07788vrr8+d3PbBIAbb8zdNJn2PPxw4I27GS/Puo4cQaUM8qIJQAMPrjfcUHF8uPTS3L1mTXiPF4/cjm274zLiSY/7i+kHOx97bNh9G33+K5u8gmV0HZULtRIsToR/gML0ctqMvxXk7iB3K/dLW3Y8bnC7tYvtM87I3dwIuez5iw4wckKNweF4XON6AcL64wniBz/I3ZwHIOxoJ52Uu23+jj8+dy9alLt5fk99OVq3Ln6P+drXcndqkuN2yOX41rfG47788vJxA8DatbmbF/k8ptnJ9Lzz4s8Sog7QzjIhhBBCCCGEEEIIIUpoZ5kQQgghhBBCCCFEFWgH0tRE9SqEEEIIIYQQQgghRIm63VnW29uLDRs24KGHHsLgYGin5/zzz5+gVFVGw7RcVm8l3mxzit0sw7c2oZiUrZ9YODa9YGXvfI9MLwS2fQDg8OHczeYNUrbN+B5L+a2sn/1xOVjTPGxCoKjNo6MF26zicrTs31/eDYR2t7gc2J6WzTfXX2ifK7QWM0D1wqYKuC6srTXOU8ruFrcVa9uqUmz4ovHFbGix6RprnoTLkvsF27gC4vljGzLcPwCAzYtMtrZalJT5jdi9VP1xGadsm3EYbmu23bHJG65bW8+HDuVurheOz5jPiWLrMhgnuT+nGi4XHkdobaSwLaqYQcrRnlUvUKW1r8xtltki4XGRx1nbNriIU+NxbIxjt52HAthoJA/gQNgQOeFcX9YgWsz+mKUvMqDHBndLykgqD4CzZw87B80Co4HaLs82bCmt2bZVtoeUyivb3qPntHGZ2rhPPBHjBtkyaqRJpdE2PO7PPNjY/HGZU566uhZEg/A4xo+hKgIAtDSS1Ti2R8f1am092esCcKvpivqK85C57rI28SqFw1t7fVyYMcOHALB+fe6muu0n22095rFkqTKwU/aURFJTnEru9oJhuPy52dhdE/yNqofcAzRItrNhXSDsZzwGsLFaID7ecBnbdlbUZhmHS40bMUOkbNivy7RWbiurVpV/DhDaJuM42J1aoBeFbapxuu38wnEXHftSdiI5Pn4W178NI0SdU5cvy6666ipccMEF2GMHBQDOORypwoioEEIIIYQQQgghhBB1KcN8xzvegec///nYtm0bBgcHgz+9KBNCCCGEEEIIIcTRwE2BPzGSutxZ1t3djR/+8IdYvHjxRCdlTDQ0jNwFPgTvVGYJCG+xT8E7fu0OX4676O5fVhFYVQPD92IqInuPJTSpo85ZRsA7n20Zct45vtjOayAsh6JSq6LE4rPlyDKgonXE/jg+KwmK7Xy36hBOQ2wndUqmGFMRWVLKnyLY8LHysmng/LJslfNky4TzxPesPDbWN7ndFe1vKQky37PSmqMFp4dl4qnfKmKySXvN/YXjq4WKMCW1i41XMTcQtg12p/wlG2iRBNkBjwfQoo2/XqGO2oLeYXdnZ0vgjeeA2BwLhEWUkpDH5jyuFmuSIGD58txtJUEsWeK6ZFmSlfpwpqy2OwZnqqi+mdNg7TfE9H4WGqTa+HOupBNOCMOwDJP92XTH5JoxOw82vlrD8ix+bkqGyQOe9cflT7LOJmqs8+Z1BEG4+riZWKlyYHuA3azYMPLDQUofy2vD3heyO3GvCIP2g7FKvFJafCYmWwYAkltynXHr3Gui+z9yP5PcJ8dTkKST2xDJf1M0nXnmsLuD5LbNXP8AeObgO9yTBkxbbeC2wfHZRQFLfmOLhx07bNKLwXHzZM9fooCwk8yalbsXLcrdqXGCJZA8tgPhOERxDLbn/TT1naxhZIsvD8s9uXOnJqKlS4vFzfHZCZQTz3MCt0fTnoSod+pyZ9lTn/pU3H333ROdDCGEEEIIIYQQQggxxajLnWUXX3wxLrnkEjz44IM47bTTMN387Hv66adPUMqEEEIIIYQQQgghRD1Tly/LXvrSlwIA3vSmN424V08G/p33aBjITiRqbTWnEtJOV94RG1MaWEZsuY/ACo6i6qCipE62ZGIyJ3uITkzyZPPKO7uZonmqdfOJnaxX1J8NE6unlMSM4Tq3qpbY4WmMVS5Uc+LhWCkaty27mCQydThc7GQ9lnECcQkypyFVBiydTclMY5LMo0lR+VlMepk6HbcosbK0nxeVdcbGq6In9Baul1ggI3cYbKQ5geaHBhs5yzGYlPSrXokc69veHgrBYiqS1MmBRcfPmHQzVef3d+eb+FfwCY42UfPn526WFFkpDEt/Up2H6zwmP7Ph+d699+ZuMzH2UYE1070Gq1llOdNxx+Vulo6xrAkAHv/43M3SqNRpmLGKTh2XXWti6UlN4nzPNqKYdJYmrLnLQxkmt+mUmgo7KT6uc36OldrxBdVrk6nzJpJhLU4d216ANnPdS+6U/DNKTH5qr2+9NXebw8Qe5BMw6XM+p/Mm89hXkJtrbEHKrkkKklSOkALGWLs2d1P9tdgTRqkcBqj+uOzt8pBbbhtLhu1BbDwhc3vnhlutjI9Pw+S4U7ZVeMzlcrRjEo8jfLqxLXvqdAcO5j1mdzeicFKXRaZzS29nfhp0yxKSbqaOhrZ5isFjLh/nbmF5K0uTj1EZpgNQYys+YpJQly/LtmzZMtFJEEIIIYQQQgghhBBTkLp8WXb88cdPdBKEEEIIIYQQQgghxBSkrl6WPfbYY5g+fTq+973vJf2df/75RylFQgghhBBCCCGEOFapy1MTxajU1cuyffv2YcGCBcM2y8pRTzbL4P2w7Qprh6a5uYHc+ecxu12W1L2YiROWn1s/nLyits1S92K2XlJ2f9jsAJsPsKZ42IZSUbtGKRthY4Xji5kGsf5iJk3sPYZNX1g7UlyWKRMZHHfMdEnKZhnXi+2GHN9YbW0VLRP7OaeB3WxiwZq3sLbzhti/P56+mPmclJ0sbsdF66iWduAqIWa3qRbpidnuG08beJZYvVisOaQYnI+W2CBuBm02ARLawwst9bSxTaiITS8AU89mGblt1mLzn7VnyXYHuY5SS4iUiakYXJc8twPA4pi9oaITUcofDz5sA41tkZl2MkjXbJfIZpXtF3VRBu2XhQauHLanw7b2rC0dtgkUa98A+rtyuz1NMftstnEcLZtlsfTY65T9OL7mSYo+b+LyAdDZmVv5amslW0Y2bo4vlh6b7tmzczfberJlOmtWnoYNGzAWbFfuL+urAtiGmjXMSvkdIDte1j7Xg+Rm60zryX22CbOA3EGeVq2KJHQUuM+ceGKxMGwLMGVTj+wRNlJ5cdnTaAIA4F7GduZajDHIBdQeGmJGcmMGc0eDba/x4GwnhNiYOW9e7l64MLzHC0Eq+70DoVW9g1Qwsa5k1y48VBS1WRaatMxH3cVs2BoI8jrYnK8dGjCIQtjE8mTGieDytjbwhKhz6upl2YIF2XQzOFiwkwshhBBCCCGEEEIIUQHaMSiEEEIIIYQQQgghRIm62lnGDAwM4De/+Q0eeOAB9PeHG7Nf/epXT1CqKiWXYdqtro2NTeTOP+ftuikJUEpxE7t3+HA8DFNU/hST56XSE3MDobQwlCXFn1vkc0ut5V0cn9mRHvU3nlI7TkNK9VHEDYTpS8mXYtK98cSWdxG5ZkqiO9Z0p9pqKu5YXzpa5Wgpmm5OK5erlbrGTnnnMaCoNNymJyZptf5iEvCiZZySowbXLAlJDHhHeshN/cqWXRtLoFJaj5Q2v14oKCWN1ZltCzynpOaeIslJhWHJtpXId61ePOxuiOng7UDGUhuSvI2A67ygFn8g4k79strI8VlJHssEOd0sP11itEcUZrCLyydc67FaazE/h9223Y+nHJmfy/Vn6yjWcKyEivtzQc130PZTi4dYGrj+jMQzaId8z9Y5JaL5vvviaSiCSUOTlYZWCstHbdugOuOS6w19gVPA0su15Lbiyo5YGmIy7NHgclm0qFiYpUtzN08qtkxpsm0juW4/fW7LhKfn2Bhir5uKLjKLwuF4orT1zNfc57jz2DKlNt7bmEsvdxo9amwIT5njqCa7PPZx+ObmpsBfB7UTVlAunI84XCa2b3NGeNyYKJsgkwgH7UCaqtTly7JNmzbhhS98IbZs2QLvPaZNm4aBgQFMnz4dM2bMqKOXZUIIIYQQQgghhBBiMlGXL0Hf+c534owzzsD+/fvR0tKCu+66C+vXr8eaNWvw3e9+d6KTJ4QQQgghhBBCCCHqlLrcWXbzzTfj2muvxaxZs9DQ0ICBgQGcfvrp+PjHP463ve1tuO222yY6icUYHMz3z5p9uE20TbizMz/BJLbF12JP/WJiW375oKPUaXypLcMxySjHbeFdvrHd0al7dpdwS2Mu1RikLckpOWTsxNFawGnl59j6Y5UF58mqL6qRiHHeU6eexkiVD19zum3aYuVQDQnVR0DqIDQuk5TCJVbeqbIvKs+KqV9sGceUAql+Pp7EyjHVr4qcUmvvxVQVQNiOYzLO1L2iklhuG3Zc5AOyUmNXWyOJVvgUusQJYJ2d+flpSQnz7p7czXIaPuoRCCvDyt7qBc4flVeTGRD4REAuOztuxE4nTvXZWF2kwnA7tuM+X7dxw2GZla10lm6lTo7jE/NiOmFTKE1btw67O6it2uwFgkg+0c8WREyuF3MDQWcKTpJtrkITbRlPuVBMSmbtE8SO+U3ZaWCqmfhTNhf4hMjY55aUHJLjKJqnGDxeIpT7VbWMoPY9YqKl0/166OP7TRTXk/sccreTOxTDIb4oqNaWQlGbLLEwiZOYg/5IktF2Kjvbi3g8aIm4ATNWx8aGavtokbEGCNsu5z1liyZy+nI1ZhqKmo5JEZtvbHfrb81rYM+e/PPCMkwrxea6ic09kmSKKUZd7izz3qOlJRsA5s+fj+3btwMAlixZgs2bN09k0oQQQgghhBBCCHGM0DAF/sRI6nJn2erVq/G73/0OK1aswFlnnYWPfexjmDZtGq644gqs5F9ShRBCCCGEEEIIIYSogLp8Wfb+978fhw4dAgB8+MMfxgte8AI84xnPQGdnJ771rW9NcOoqwCN6GibT1kn7bbvy976pna586I2F5VAsAeEdtXY3cqm4ARSXYbI7JZtbuDB3s6zJ7v6NyZxamgdDjz15phpor3IrbUcumodaEDvRz+585/pMSRZZ0RHbuZ5QtQT+bNzhqTq5m7d2pw4XS21Pr+a0uRhFw6fSwHlNSQRjbTp1CB0/JyWV5OemZJh8j6WE3F+OJkWlyrHTBi2xg/qKnsIai8s+l8vLSiq5jcfklVbiyf00pWpBT+RI1Sr0HLYcmmINZypKIWKyMiMJ61pSXoZpJZCxsTBxOFwQR7LOI8+xaWCV2QCZXOhgqaypy/6BfB3QlOpYMSkSx23bHXWE5thkA6CJOwz/SGknH5Zo8mR/yinlwwPYO1D+tLnm5vB3bz7dbYDKZBnHdzRPgY39WGsXVDyQcGOzgxLXDevOGdOgWni9yBJtO3BwuNgx1ik7BiwFtos1Zqzj0GmnhUliGWU1cF5tvZDslAVm14e+AunlCnKz5LBrvtG5rVmTu3niWLsWVbF6de4ueqJmLA12DIicottI9d+1aVMQpJ/Gg0CCascDLhe2z8JpqEWfTR3Nzos3buN8Aqa1pUDXPO6kVPCx0zBrIcOMmaiww0TqFM5CJE6MjZ6GOZ4nDgsxAdTly7LnPOc5w+4VK1bgzjvvxN69ezF37lw45yYwZUIIIYQQQgghhBCinqnLl2Xl6OjomOgkCCGEEEIIIYQQ4hjBQTa/pip1+bKsr68Pn/nMZ/CLX/wCDz30EAYHQxle3ZyGKYQQQgghhBBCCCEmFXX5suzNb34zvv/97+NlL3sZnvKUp9Sv9HLwSK7/tvYkIse889Hy8+aNOJx6GJbbW516TLeesuMVk//buGKnWafsXLF9ILbvZE0GcBwt6M0vdhsjMJFjoZva84+bzBH0zc15WTY1GhtoY4TT2tyVW7VI2cZiswDWTlLM7hmf8m5PEo/Z3UqZqoiZjdi/P7xmkxQpMxi2PsdCUZMWtuwipjiSpp5i5cX2uGy4mA2uouWdsllWa9Me1RCz15YyuRMzb2Gvi9rV6IuYAUvZLIulx16zO1b2QNim2V/D7odCj2yYihPOn1ubUPSwplQDZbtEbEDFGlPhSmPbNfXEjh3lPzeVybYquRy7usId6FwVRdsgm+oqanKuqE0aHvc7uuKdO/SXsBfF9zgRnAlrUyjWEawNJi4ktktmM8t2yjgOatODrW1g+tiOWxVjQ4BNT2qhM1Y4braHZQ0JsRFYO6HG4uN1DddZyhYZh7H+eHzYRobhuruHnQPGLlUj28Zie1N2MI1NtNXAYySAfspTfAUc50EyONXOxqcA3EPuH5D7pSYOXsq0kzvI6bx5JlBnebftf0UpajCR4XriMDYN3Ge5nXAb4jEEQBO3aX6OLQduN2w7sRZGbblc7eKP4f4Yy5M1LklpmjmzpdzHI6Ioap60mi4Sq/Kia//CpOqC65YXf1PRXqo4pqnLl2U/+MEP8O1vfxvnnXfeRCdFCCGEEEIIIYQQQkwh6vJlWUtLC5amjnsUQgghhBBCCCGEGGdks2xqUpcvy9797nfjn/7pn/C5z30ODQ113DQ98u2qRaUBtL114Qj5RV6diVPnozux2W13IPN1TLpi4+btwCy1tP545zTv6l0438ghORFFj0SPYfYjBzKnPspULXRulJ4GKjArIejszKUoqTJmWArI/ninO1B8K3aRbeO22cXUBXYXfLVqg3IUrZaUbI6bCX9uT5OPySht3AORZsPulPSPy9XmLyZvnagTurk/B7Jl01jb2/NWnjo6PSbZjo075a5jxMa7lNyW/aWkxVxnTQMkDU8NoLEObT9PFRgTaxC2ccS09PUKd1SWmwHRwatjedixHjsub5+xdgKEVcFydx5/U32Rq9a22337yoeZMSMuMtuzJ3e3rlww7G6CmTNXrszdMT2xlety5rmBWx09Z+pxj8vdVp/O0j2Oj9ysAgTC6mS3lRixmorrqL8rLxNb3q2tebk22PIaK1xG/GCbCG67XC923Ij5swXBxHSrqYUE1zktHhtZXgsAJ52Uu7kujz8+9MdpHasky6Shycr6KoS79kZz7yfkfjG5V9tFT0xKyHnlvgeE+eD4rL+icLiUFJvYO5CvMTuWJwYsrj9eAPFzON9AfL6yCz++F5PxGYlnYWLjnR27Ygta/tyGoevDpN61SY1Ns0VNRRSF4+DhxSq++ZrnrhT9jbnMtMm2rdi4Nma9pxCTl7pq0S960YuG3ddddx2uvPJKnHrqqZhuDOX88Ic/PNpJE0IIIYQQQgghhBBTgLp6WTaPfoV4yUteMoEpEUIIIYQQQgghhBBTkbp6WfalL31popMw8RTc6sq7wa2sLHb4S0r6V3Rnf+xEwElxOEoqEbGtxTWWYUYLCKEUtLGxmLy4aL0UPfWtyMmBRU8RtP4a+kimNsYt2w0D/YX88SmnNk2c96Kn2jFWZsrXHEfsc3udKpJYmiZqt3v0uaZBNZDHVJu2p2gOweNT0VN9U/JYdlv5ROwUKx4/UyegBi0tpRnlCFkXYaWERSuXw7GkLiVNrFdY48LuVIehfA82huNB7FC0VPVZmUsRUuOilcwPwX0ilZ7gZMx2E0lgXiAyr9mOxO0zpi2397hjpDpg5HTH9vbwlFImdfovR8eqqaae/DTaJhuIT8+u5RHNQKgn3bo1d1ttFutoi9pZYOklN5rUUeOpI4hZphY7vdIOzOb0yCjcSazGtlK4HIHgtM5qeIDcPzH3/ojcJ/MNlhIDYb2wTC1lAsSOx0NUu8bksZ7rzMojiY5WWjfF5g0gnJe4k/FixqY7toCxMkxux/aE3SGqlWHys2LtG4jXRcr0QcQEzqFDDTFvUTMSqTV0UWIH4tqsVlOUwbomlVhOBH8+nicOT2IcZLNsqlJXL8uGuOOOO3DkyBE84QlPCD6/7bbb0NjYiFNPPXX4s1MvvOYop644M6bX4EWMEEIIIYQQQgghhKgZdfmy7E1vehPe8pa3jHhZduedd+Lyyy/H9ddfn3/29G8c7eQV5oW/u2yikyCEEEIIIYQQQgghiLrcMXjbbbfhrLPOGvH5mWeeidtvv30CUiSEEEIIIYQQQgghpgJ1ubNs2rRp2L9//4jP9+3bB+/9BKSoSjxycXhRo16kC+/tC991tjTnx6CzCQIrH4+ZteHPrekF9peSo7NsPWYuBQBmzSofns0EzJ5t8xcxLFXUtk+qjIsesV4NMZtl1hYA3RsYCG3rMIcOlY9i37541DEbTNaftcNVLryty8I2EYoamRpLXIaGEXGX/32gmurnerCwiRqufmvviM13pEyXxPqLrb+mozSih2WUl6m1b8FjVMzOElDM7JZtdynzMEzMRIqNj/PE9cRNyJoe4jhamiM3gGIZtLZdYkYfbQPduTN3b95cPm6gNvYXJxq2f8SDVWpSonJMtTsuRmvCh8NxGC7SlN0Zrkrbl9nkEY+lHe35fG7nek5D0t5NzGgOf160M6YMYcYGKBuOn0XtvW1lOHA1d7UNu3lesyaOOKkdzWQTcwP1g6KGzmrBpk25+957c7cdONgfk7I/xraorPHEWBjG1h8XHverDRuGnQfMj89cS8F6bOnSMG5O6623RpNahN3GRhnVLM6uIr7vkPul5t4ycveQu+W++0KPPPZwm2abbtYYIXd0Hutt/3vxi1EIbkPcphM2ywJ7b9y3bXvkNMWeY9PN1yn7VZz3mK1DtplWCby4Ta0rY3bvuEwWLgzvcX1SX+rqWhZ446TH1pK1sFnGQxcXcVuzsedL5bBnT7H9MS2NFMfunvAmJza2CDtGbZYBdboDSYxKXdbr05/+dFx22WU4QguQgYEBXHbZZXja0542gSkTQgghhBBCCCGEEPVMXe4s+/jHP45zzjkHK1euxDnnnAMAuP7663Hw4EFcd911E5w6IYQQQgghhBBCCFGvuHqRLTrnPKd1x44duPzyy7FhwwZ473H66afjzW9+MxYvXsxh4F/5o4lIbiFeuOmT+NHNv5joZAghhBBCCCGEEDVn7VlnYf369W6i0zFenO6c/+VEJ6IGtAK3eO/XTnQ6JhN1ubMMABYtWoTLLtNpkkIIIYQQQgghhJgY6tK2lRgV1asQQgghhBBCCCGEECX0skwIIYQQQgghhBBCiBJ6WSaEEEIIIYQQQgghRIm6tVkmhBBCCCGEEEIIMVE4aAfSVKUu6/V1r3sdHnnkkRGfHzp0CK973esmIEVCCCGEEEIIIYQQYipQly/L/vM//xOHDx8e8fnhw4fxla98ZQJSJIQQQgghhBBCCCGmAnUlw9y7dy+89/DeY9++fWhszJN/5MgR/O///i8WLlw4gSkUQgghhBBCCCGEEPVMXb0s6+zshHMOzjmceuqpI+475/DBD35wAlImhBBCCCGEEEKIY426lOuJUamrl2VXX301vPd45jOfie9+97vo6OgYvtfU1ITjjz8eixcvnsAUCiGEEEIIIYQQQoh6pq5elj396U8HAGzZsgVLly5FQ4Pe4QohhBBCCCGEEEKI2lFXL8uGOP7449Hb24sNGzbgoYcewuDgYHD//PPPn6CUCSGEEEIIIYQQQoh6pi5fll111VW44IILsGfPnhH3nHM4cuTIBKSqCvr7ge7uzN3XF95rbs7dXV3Dzr19LcPue+8Ng/zBmflLw59cme+6s1Hv3Jm7H3kkd3Nx8ucAcOhQ7h4YQBRO9owZuXvu3Li/JUtyd2dn7l6+PAzT2lr+XsNAf+hx9+7cTYdABBFYOEE9Pbm7vT0epijbtpV/jom7d6Bp2L1+ff45lyMA3Hdf7uYsDTUlICxTICyvgwdzNzWtEfFt3lw+DXffHYbhZ61ciSjsj9tQU+PgSM+jMGgsAzRgsOw921Y3bSofH+c1xWOP5e5du8J73NTYzc1x2rQwzOzZuZvrgpuJvcdwfwGAZUsqL8tqeGBb+TK26eauxOMQdwkgLCMen7it2nGM73EabH+ZPj13H3dc7uYxzcbHXZPddghZs6Z83AuPPBh65IbHmefMPv7xYZhFi3I3F6wtCG68/BzOEBB2wLe+FXXJhz+cu1etyt2rV4f+6N6Bg3lbveuu0BuPpVwV3B6BsCjZze3BThV/f2neF399c56GpUtDf4ub9+YX3JA5QaajH2jNzU20DVB4m4jrr8/d3Bm5zdh2wu2T/dnGz/HxwG/bJ08+3I7nzcvdJ50UhoktCrhMrD+eAK+5JnfbMuEyfsMbUFM+8IHczWVny2Tr1tzNZWLLgdN+3nm5mycEHoQAHOjL1xFtOJDfsI16w4bcfdVVufvGG4edPewHAI9qC8jdghC+5qF+SRVr82vMpHkNuS+tIr6bKL6z7U0aN/ppLG0ybaiP2n4z1V8/1bNdJgdlxPHxOAYAN9wwIs1lufji3M3975JL4mG+/OXcze1h48bQH48JW7bkbjtpMtzGOX92kRJbMPL4Ytsqj/spOH/8XLvwuuWW3M19ifvs8ceHYWbOzN2cbjv3UN53PZyP+1x0vD4EwjXLwvkF13Bc3hyhHSOJBxuXDbsXdyWew+VvF2tct9xu+HMeiwHgwgvjz5pCOMhm2VSlLuv1He94B57//Odj27ZtGBwcDP7q5kWZEEIIIYQQQgghhJh01OXOsu7ubvzwhz+sypj/zsP78M5brsDNe+/FjIbpWD5rAT59xhvxxJ++HavalqDvSD9mN87EW05+Pl6z4lkAgC/ffxX+6tYv4biZ89A32I8/W/lcvGvVi0fEfc2u2/GJu76HH6/7u+DzP73hE1i/dzOmN0zDWfNOxhfOegumN9Rl0QshhBBCCCGEEOIYwznXAOAdAP4MwHIADwP4FoC/9d4ntqAOh78GwNMjt8/03q/nD5xzcwB8GMD5AOYBuA/A5QA+77331eWiOHX5xuapT30q7r77bpx44okVhfPe4yXXXYbXrHgW/vucdwMANuy7H7v6enBiaxdufd5nAAD3H9yJ86/7Bwx6j9eemG19f/myc3H5mRdjz6MH8LgfX4yXLn0qls6aX+i5f7p8Hb72lL8EALzyV5/AF+/7Gf78pD8CGly+Bd/uy6Utyf2N+QZu3mFrZWAM+7MKAN5Vy/d4562Vr1mlxhA22RyO3SyFss+NqSPt5xwfK0Cam5sCfy0x6SQn1maQr22BjRWOj59jMtjYGOYjBkcRkwfZ+opJ1lKS2piM1tbLrFnlw1hYLls0r9G4YLaQU0YaqJ6bRnSrfDMtNwduMrZNM1yVVpEQC8cKANsPihJrkqn6G09i3cWmh+Xcjz6au2375Dhi7sOHi6XBwpuNU2mIjXGp/hJVbBs5agAXCkdgGxTf48bFnwOh5IHdtlCsHKYe4c7EA48Z8/f25P08NWfyPZ4XU20j1t5T48Z8Wios7jRmA9ZHtOH79kXja+6kHwp7EoNATCOdGqi5ndi2VuQ5NgwXLPvjOrNtnyuG5ZpW3nPKKbmbNbYsP02ZUqi1DJOfa+1kMFxGLFO1jYjTznIxkrLtPRjOpYEViiVtw+4W2/05Pq5zsg1ghzGWorDYy7bANnLfT25jHaIQ15jrdVXEwQSWIqytD+qoTWyXxNhBaI4M/E3Ubk0vDySsDRR+wU03Bf4Ky31uvjl3F+2n/KyUDJPHiocfzt28gOHx14ZJyTC5LGMS7dRgmmLhwtxtbb8wPI/E7EOkviPEFtRAkL+F1E8H5+e9YsT6NZirU4sHgiWjqfUB3WtfvQyFSC3quJ74ywDXc62/Q4nJyKcAvB3A9wF8EsAppesnOefO894X0RPvBvCuMp/ztAHnXBOAnwN4EoDPArgLwPMA/CuAhQAurS4Lxamrl2W//e1vAQAXX3wxLrnkEjz44IM47bTTMN18Az399NPLhr96122Y3tCIi0963vBna+auQPfBcAW9orUL/3T66/GXt/7H8MuyIebNaMPK1sXYcXhf4Zdlf3Tc2mH3WfNOwrbe3QnfQgghhBBCCCGEqAfq0rZVhTjnHg/gbQC+573/Y/p8C4B/BvAKAF8vENUh7/3XCvh7A4AzAbzde//Z0mdXOOe+C+CvnXNf8t7/vqJMVEhdvSw788wzwbvt3vSmN43wkzLwv3H/73FGR7HdaKd3nIhNB7aN+PyBQw+h70g/njB3ebFEE48NDuCrW67GZ84YmW4hhBBCCCGEEEKIScgFyM4z+LT5/AoAHwVwIYq9LBuSc7YCeCQhp3wlgN5S/MynkckyXw7g40WeVy119bLs/vvvH91TjbA19s0HfomrH7oNdx/YjivOehuap1UuI3vzzZ/D0xasxrkLHj+6ZyGEEEIIIYQQQoiJ50wAgwB+wx967/uccxtK94twHICDAGYC6HXO/T8Af+29H7ZNUXqZdjqA33rvrb73N6V0FH1e1bijYBetJjjnKrbh5pyDf+WPhq9/sfN3+ODt38B1z/5o4K/74C684Nq/x8bn/8vwZ/+383e45Nb/wG+f9xl8+f6rsH7PZlx+5sW48eFNeP61H8Sdz/9X3Lh7Ez54+zeA/5+9tw+v6yjPve8ly9uyLMuyLFuyIhsltoOT2IkTnJBAAqFAgZJQoFAKpx9wCi1tgaYUWuDltLTlnLanED57yim00JaSEihwIC3QQgkJhZQ4xGAnsWM7UWI7tmPHdhxZVhRZ6/1DW5p7Hu1nvLT3lmXJ9++6cmXWXrNmzfeMlud+HgCfeuZb0T88WNHAPwD80ZabcPeRXfjSNe9BQzZ6UPP6bR/E1+789qTKJIQQQgghhBBCzAQ2XnEFNm3alE13PqaKjVmW33nqaGc8DcBdeZ5v9O5nWbYFwLI8zzsr3LsZwKsBzMvz3Jpu5Hifxqgpx58AOAngmQDeglFzj1fneb6lHG8JRm2b3Zzn+WsqpPMogJ15nj9rEkWcNDPqZNkYf//3f1/x9yzL0NTUhNWrV+PSSy+dcP+nOi/Ge3789/jkzm/iTatfBAC487H7MTD8ZBSvr/8A3nH33+Kt518/IY2rlq7FL/U+Dx/Z/lX86YZfwStWXDV+79YDWyrm61M7v4lv7vsRvv1T7x//UCaEEEIIIYQQQoiZTZbNgm+Bed6RZRl7o/zrPM//mq6bATyJygxSHPdjWZ7nbzA/fTHLsq9i1KfLjQBeSOngFO9rdu7VjRn5sey3fuu3MDQ0hKeeegoNDaMfn0ZGRsYN/T/11FMVP5ZlWYYvX/Me3PCjT+LP7v0imubMRe+CTnz4sjdhV/9+XPr138bgySEsbJyPt55//QTj/mP8/oU/h8u+cQPec9GrsXBu3EbfPvAT9Hz59ePXX7j6XXjznf8HT1uwDFf92zsBAK9ccRX+YP1r61EVQgghhBBCCCGEELVwKHWyDKP2w5Y595oozqTI8/z2LMtuA/C8LMvm53l+gtLxXHg3VfOuyTIjP5bdfPPN+KM/+iN86EMfwuWXj0pV77zzTvzu7/4u3vve9+Kcc87BG95gP1qO0t28BDdf/a4Jv594zT+773v9eS/A688LH866m5dg/yv/YUK8azvXV0xn+LX/75RlEkIIIYQQQgghhDgDeQTAhVmWzcvz3J74OgejH9vcU2WnoA/AtQAWAzgB4Ej5/+fYiFmWzQOwBMB3q3xXYWakJvDtb387PvKRj+Cqq65CY2MjGhsbcdVVV+HGG2/E7/7u7+KSSy7BBz/4wenOphBCCCGEEEIIIcRM506Mfj+6gn/MsqwJwAYAmyo8U5Q1AIYBHAaAPM9HAPwIwKXlj2PMFeV81PK+QszIk2V9fX1obp4oUW1ubkZfXx8A4Nxzzz3NuRJCCCGEEEIIIcRZQ5YBjTPys0rMU0+dKsbnAbwHwA0Abqff34RR+2H/OPZDlmXLASwC8HCe5wPl3xYB6M/z/CQnmmXZSwE8G8DXjefLm8q//xqAj9HvN2D0w9rNxQpWPTPyZNkVV1yBt7/97di/f//4b/v378c73vEOPPOZzwQA7NixY7qyJ4QQQgghhBBCCDErKHuq/EsAr8yy7EtZlr0xy7IPYtQw/3cBfI6i/ymA+xCfQnsegB1Zln0ky7LfzrLst7Is+zsAX8Wo58sbzCs/CeAuADdmWfbB8vu+BOCVAP4sz/MHp6CYETPyE+inPvUpvPzlL8fKlSvR3d2NLMuwd+9enH/++fjKV74CADh+/Pj0ZlIIIYQQQgghhBBidnADRu2L/RqAl2L0I9fHAPxBWTqZYjtGP35dB6ATwFwAewB8AsD/yvN8L0fO83woy7IXAHg/gNdi1E7ZLgBvxehHuykny/P8dLynZrIsyzmveZ7j3/7t37B9+3bkeY4LLrgAL3zhCyO3rVmWIX/d16Yju4W4ftsH8bU7vz3d2RBCCCGEEEIIIerOxiuuwKZNm7JTx5yZbGxoyDc1NZ064hlOduLEXafwhnnWMSNPlgGjH8Je9KIX4UUvetF0Z0UIIYQQQgghhBBCzBJm1MeywcFBNDU14cYbb0zGe/vb336aciSEEEIIIYQQQgghZhMz6mPZ8ePH0dTUhI997GNunCzL9LFMCCGEEEIIIYQQQlTFjPpYtmTJEgDAgw9OueMDIYQQQgghhBBCCJ8sAxpn1GcVUZBZ1aoPPfQQ3vnOd+Lmm2+e7qwUJAeGh0eDZoAd628YD/f1hd937kTF3wHg7TcEBxTveW94fuwVYxw6hIr3Dh70c/rkkyHMWbW2DJ96KoTnzw/hlhY/7a6uyvF6euJ4/K5Vqyq/BwA6OyvfO3HCf4brob1lKFzUY+IbHKyY3uH+khvtjjtCuKMjTm7bthDmOtmzJ4S5TgFg9erKWevtja/nzQvhAwdCmNtl8+b4GX4Xh7k8QNye3BadS0/lOGUih482RNdFbWrymOEyeb9b+vsrPwP4XWX//hDm8QEAc+eGcFubn5aXJ9vOz7py8nVZDf91Z6j/xx/34x05EsInT4Yw1wkQ1yvPT1xf/DwQ9y8O277Adcn9/ejROB7nadEiVGTx4vh63boQ5nF67bVxvNKeB8IFD6B9+0L4ggvih7hxeYLiCrLp8SRgecYzQvi1r/XjncncdFMIX375eHCg5/woGlcJV5cds3zN7W/nLp6vuB/ymC3/W944f/WXYSyOIIyXhq0/iSPyZM8v5g5qJ+orrwxhzvjVV5tM/BUq8tBDlX8H4sHIGw5bKbt3hzD31b1743h874knQnjhwhC2iz2XlyuWFyUgHoC8MH7rWyG8YEH8DL/3G99AXbnoosr5sXAezjknhF/4wjge18vLX17x94cPNUeP8JSydGkI231E6yGak7i+br01hL/+9eiZ/XbSLGN/5Wuu4ffZSbwA35ozJ7peS+GeKtKL+tPznhff4/reujWE7Sb6zjtDmBbxQerfx8xrH6EwL++mWdBVtEzcr3m83HOP/wyvAdSWw2Zi5PwNUJh3rI08+VlWrAhhu0nhMcthTo87MQD8xm/472K4v3Lnt3MX93HeMPA4sHMS933Ot91c83Mc5gFo+xNf2/ry4HWDn7djlMvOGxM7ITCbNoWw3VNwX+P1gdOz7TdT9xtClGk4dZSZw9GjR/HP//zP050NIYQQQgghhBBCCDFDmVUfy4QQQgghhBBCCCGEqIVZJcOcaeTIMNI4erDZnspl2QffszIuD5Ye2bT5HodZGWBh2SKfWraSJ35XKh7D94qqHvmkOtcVABw/furn7Xuiaz62nNLkFYVlLURbx7Lo2juJbU9LO0qIKNtWecLySm5Lm3Zz0wjFC9/SW1vC7/398Td2ToOry7YLp9HYWNt3etufON+R5AmxLHHJknCPT+lz+1t1QUoBx3Ads2y5KKmu5o0Lo1A5bbB8lLH55HgctmUtIqO181hRGSbDfdXmldPn/Hm/23cl5zFOxNP02QHDA50LaCUOLMPjucZmoppOeabhLEQpVYutVsYzKZBcHwjuD6n1s2Hn/eFiy5b4JktZOOP8Uisj4nZOdXie5HhR4HpMLbo8YOzCw/d40rQ2DriSvEFr+zTXA/dvq99mWDa3Y0cI24ZJycdqZdeu8SAvFaZ7op3keiWeA2xbcF6pHocag/TSdg0e5txN7J6gldvF23CwnA5AG/UBLt8jiLmNwi9GbZxnrnsqxpoEl14awiynA2IbHt5G2V7T+GuiftxEfQEAStTmvCO0faMw3PBFNr2AqzWfYLyB+l0zzy/cH889N36G68STHwLA058ewmx6gPtjtWN0zZoQ5nzbjRvf40HCtmjsouKZOLADkKXmnHZK9shpFJVh8nznzatA/Edjql0YnuttPXjzBqc9lXPsmYxsls1adLJMCCGEEEIIIYQQQogyM+oT6Mte9rLk/WPHrElNIYQQQgghhBBCCCGKM6M+li2x7qYq3D/XHg0+g8lGRtDQP/qBr2SOunYuDkdd588PPmj4RK0nhQLiE7FWBZiSaHo4Dh0nyJI4f6x+sEoR72Q3h60zGpa5WedgDCtPGoaHKkeyleJp7dauRc04MpuGnjgPJaqUnp7u8TCXG/AlYik8tRefGAeAZk+KRPXV1tYaPcOnuUv9h8fDrQtNo/cFCUAzN3RTGyZL8+Dh+IejoYM2JDp4Jx8bpzK1tIQy2b7q9X3bLqw+4vouKq9MTW9W2TRG6iT9VMLVmJJbe5LhVB17v3txLEVPwVsJaxFJpVVIsCM7npMa+h6II7JkYvv2EE7pej0pA3shBGKXjnwvJYebqTjet1rXxWXr7W0fD3P72TXTmz9Tqkd+hueApJSY25IXKMB3B80Zt+sQy8dSA4PjcQbZrasdMFxYTttONpweu49NLfaeJLOovtlOKJ5Ujhs65bK7zgxR2ry625HHu5IS58d2yNQ9B+6TqW6HnUdDmOehhOyVy0QjMZJdAsBzKNyG2rD/BM7eGZtRBSyns7JerjweB3Yu9iSD3EZGGtlsN1u1wg16ir+NxnEkfiXrJpjljLxQ8rxhN+jee+w7PRetKVsYRfE8Ttr5hTXJ3h8tKbwFAShm7iDlbrkonAfutykpd6rNGG4z2xa80eG5ldP2Nn5CzFBm1MeyT3/609OdBSGEEEIIIYQQQgjZLJvFyGaZEEIIIYQQQgghhBBl9LFMCCGEEEIIIYQQQogys/684IW3vGm6s+Ayb2FT0HZbDTtdt5IOf8WKYL+M7SJZWLqfsqXimScpatbDZpvNG7CU355M5XhsTiDlPZrvTbC/QTQcPVz5BmfIZrwaQ25F8WzKJIzJpezseGZauJ2tuSLPBtMEEw2U1+FhsghCld9vPGhzMdqLHkGudx0ziTwMDYd/HyhRmY5Smaz5CDZBwaYYHn88jscmSrh4/Iy1c8Zty+M5ZU+ryO9TjTd+bfm8Zi5qsyxlssezZ5aqk1S38+zR8RhhUydAbMKFw3jI2CJjm0DcIVK2TxiucDu4eaJkm2X79vl5mKmwjSEuq1ksetZVtllm8dY/OzV762HKbmgE58/a8OEyeQYpbaf21jJrm4fv8TO2gAz3z5TtmaKDm/Pk2RSydeJtBKzdNLaTww2dsrU2hZTItlzvtm0hOyYej8QWbn9rO4rLRPdKFKWra2X0CFc/V2vDoUfjtHfsCGG2BUj5PnbwYPTI/RS+lcLXxiljNYVr/SPDPl+zzTKeN6zNMobbwvZPb1zw72bSYJu03H6F7WRZ2B6hY4tsAuvXhzCPETuR8ZjxjLambCXy/GLrivuUZ6PRtsuGDf67GDt+vDwcOBDCRTcSXMdst2vVqjjeihUhvJpGgmevEUjPxx7cRrw/eOyxOF41f9twfdlnuG14T8HvsfVdrQ06Ic4QZv3Hsnv/38bpzoLL9f/jwenOghBCCCGEEEIIIapBNstmLZJhCiGEEEIIIYQQQghRRp9AzxRSX6PpHp+ITZ2o5RPg1XzothJPT/Vh0+ZrTsPG8xQhLH+ycjhOg5+xp6VLXoE9iYtNpN7/MuC5WjZHk0eagqhg/+bwu1XWeGVPyV4Ly/Uo4qG+8PPRo+G7uj3pHsl3z2kdD9s+1E31EMkhMVIwc4GhlvboutQW0hihfwOwzcx5b2ysXKZU83NZ2QN96jnvpHrqGdteKck1095WLF6tsOTUUzEAvszNqHsiSaunUkx5W+f6sZI5Vi1yf7Ae3osoFOwznKcjR0K400q/eA7gDLIchOMAvpv35cvja0+XbaUQNv2ZCA8Mlg4lBi0/YuXNjGdCwOLdSz1zbDAIr1ptu3pSMB4kti15UuHnbb/jiY0zyJOXzTi/KzUxch64TDavLF/yJKNWpsPPcNjG4z7NmweeOGydTOW//F91VQhTXpuMNKqbJZBcJ7buuJ1YPkhlaLXlawv7iNLgsfC7lXpxnridKWyWOPwbhX+awuebeLxlOYrasK3FYtJqBLYDVN/NdiFiuI2eeCK+x2OO09i7132GdzkNPCktWZLIbQJu96IyTB4vPH6tRJ/7JMv5ec5NbSo5PTtmPZMELEe1c+J11/nvYrZurZw/2/c96Ts/Y9dLLgdLYK1E1Jm7BobDGmCrrmF4CJOG38tzuN2gp/4w8EjNSQz3DW5XO65Ini7ETEQny4QQQgghhBBCCCGEKKOTZUIIIYQQQgghhBDVIJtlsxK16nQyMhKOB6c8y9Ax2pWRhMM/GMgniK2Ei08d88lZVjGwzAqIT+KmsspSFj5VbU+aszSKTy3zyXKrNuJ8tzaST6Sj5og1Z9ZqGItQ78nOk0kZ+Yt3Wtpmx/MeynVn65uvWUqWOknvtXNKamdlagxLL7mspTpUt5d2yoOi57EyBSvobD14zutSnmW9dk61eZHfpxouX0rm5jnPsqoInqM8B5G2LVkRklKHeHm17cLzH3vb5XFl67uzs/IzOGAK6Hke8wZz6p6tPE8jb6UsU+mB9nTBsjRuGCP1aaD6aqdwb28s3+Z+x+1vHY56zt1SzcfwOjvcFuehnSUq3iSSSryoZtSb/FITekrC4xXeDkBvAHHYynR4n8MbBNv3vT7AY8zKwKbyj5mrr678XiNza2C3uiyHZKklEEv5tm8PYe64RobZyvXFkiwrtWMPmPfdNx58gN55c/wEfp7CvBNtte7JKQ9dtkyTpNdcJ7afhYhGS2KjO0x115jaKHmLj5FGRtJLbrNq5fEbyXlZ0TS4f3pSRKCYrQ87b3iuq208nkB5LPKYsK7Gi8J9jdvFLvbeJM71+PSnx8+wl0uWYXIYsdxyPy1XKfM1LS3hme6ugmZJ2NNmag1I2azx4PqydefJaBnrkVOIGY5kmEIIIYQQQgghhBBClNHHMiGEEEIIIYQQQgghykiGKYQQQgghhBBCCDFZskw2y2YpatXpZORk0JOn7Ms47nlXTrBT0DYeuvTS8Ks1GVDE67yVovP1iRMhnLKH5ploAGJzHp55ktbhw/FDXJC+/ZV/B2KNPr8opdf3bAJZeyfVwLZBEnkoUeHXrTtvPNyA2IZBU1MDhSunZet78eIQ5uI1DA7EEelmV9eyimlb8whcRSu7hvyI+0PHK0WGpCbvAL7Uf9i/lzD+1dPTPB7mbsNmGWyf9my3sUkMm4ZnxiRllorHgW1XzzN8c1NB+xZ1JrKrwe1sbQp1hYKMNIW6T3mT53s879ik7fUYdq/CdbloUQhbu34MmyfhdrHt1z78aLjYSnPStm1xRLYd5BmAtGsAw5ViO6RnDG422izjei1qcJEarZPtvABYuGHleJjnTDaNBsRNxn2Vs5DaIyf3z9ypPJuWKbtbdrJnTHnH4U7NCzoQ25vhgts8cP44D7Z/ehMgl8Hmk9I7Nhjs+TS1NUfRBqm7t3IeOL1UvusN78n4PXYsepPX5s1+ekUmSQvbcDpwwH3Xfgr/PUX5ZZPceWyIlvNmbc7xgmVtpU2Spmuuia/ZjlsVtK5fHy42bIhvUps1sh22lE0w7t+p8cJ9nxcfXmwmA9ssi2wZJ2D7WtxGKZtl55xTOa2UgVo2AGk3SjzuPVuM1mhkUbjO2R6d3dR582zCDqb7t4SZ3Ied/SJHs0tXVbZnvY2pnd+K2iljuL5sW3BB2LA01089/m4S4gxCMkwhhBBCCCGEEEIIIcroY5kQQgghhBBCCCGEEGUkw5xOcoQjs0Xdt/Mxb3v8/tprx4OlnfeGsDkmzHKFnp7gxj7lEZjvcdZstj0ZppWRcbxI0sUvYukSENfDkSMhbI9YczzvCLL9vcjR8Grxjm97UgwADUd9mWF3R2XJaNPa0JYT5HkUr72Nnj/qS7qaHGWNrZ6oe6X0Rp4EpxpSR8sp7ZHGUnTrKVJwFD3F7nUnWw+cXqQyLSjDTCmGm0FyWa67/sQAnEq473phIMprA+WtuyuWjrG0mItXVIZZVGHN6hALS5VdObjNBEusWc6WkqKxpIe1u1bqk5KEMPwuT1IC1CyHOiPwZG6ptSIaL3H7NfceHQ+fT1Kmrq72KJ4nwyxK6vlB864xunsTGk9u89Rcyv2O6yQ1F7N8iQdCSu7J/dOmx9ecHuXtwBOxvPLxvhBO1fecOSG8eHHreLhn7WXjYbuX4SppR51l7FdfHcJcVpsJzw6Flaxt2RLC3Me5EFbiye/atavy8wD6vva18fBn6Pc3U7jLyhQvuCCEeSwmZLRJeXkRaF8LoPZ5LCVf5PnBs5EAxB2Ppak8LlMyPu4bRSWUliuvHA8eGw7jpzXRpx8e7h4Pd6wO4WY7trkPefYKWK4NxHXCe3K7oeJ1kte/esDS0MT+Oho/3He5Xex6TNdDbcFEyU5jcYG7gLfHtPsVjtfqKOctxxorrxutnvQeKC6P5P5Q1P5Fyj7P2YJsls1adLJMCCGEEEIIIYQQQogy+lgmhBBCCCGEEEIIIUQZnRecThoawlHv1PFYPhLNx4xTx9H56Ls9FkrpsQfGbspDV1crGE9plVIbcdgWL/LCuMfRf6aOUTN8/DuVCS9c6bqeeG1ry8eVye7Y7DF2R1bU7LlMtGl43ptsevSeZpIktPcmpH6cXkqOU+tRZfO8lVuOYauOpXbs5GfBghC2J8i5mVLZLqKMsipJb4xYD6gT5LJnElzJKQ1rgnaqmJbVQVKSUnh6sleLp0ydIHVtJE+uPH+yfMlOeJ7EyM5JLGXhhuZOaMcvx+NCpLTvLMGwmtPTJdGdSi65JIRZLpiYx5LriOPJtdVIo1oTa+MYnuQGiJVWNjuFlh47jnjtT73Ym3M9eWYqnpVqeR7h7ORH6Y+0tVf6OWrKSlnyfudhxvdSJiUiGWZb5fdUy4EjYR2KPK/avZpnZoNl3UAs8bv77hDmucGmzfW/aVMI33FHFO0zFH49hbuuvz5cWBkml4nntDVr4nicv6L7OI8Xvzi+rlXWyVJZuzfzPIvavu/ZG+GxmLI9QvcGhuO9S3NBafAjR8M6ydm+cO3EuJXiMR0d3dF1JMv01g3b7zwTI3Z+8kzJ8Dio1hsmk9JDcl55EuGNYMJmhqfyt0l7v9s4/NqiuMv5nsR443ZJyX9TZm48+xe835jKv6eEmAb0sUwIIYQQQgghhBBisshm2axFMkwhhBBCCCGEEEIIIcroE+h0MjISjrTao+V87Uny7BfsV70qhH/wgxBm6SYQH5ddsSKE6Vxvgzl23kr3WJIy4Rg7H9E9yvICc2TbO4qd8vbpfbG3v/P5ZPa2w0e7U8eE632E2JPJHDwYX3Pd8RH3lOscDvPRaXuMndvT804G+H0t1S4FPXy6sp1q6tvUaQMnQWmXbJeJ5KhB/pBSJTEpz5Ze0TleaXggvskv23PUzwT3h1TdFfV2VCs8P3H4iSfieDz3pDzOUjlKVAaWZ7bbsnluMyfIzh0PZ1zfQNz3ub63bg1h28gcj8dSSoLjzLlJmWSi7ljG08zSClsPs8FD1fLlIcwSMytf20YuyrhdbbuwxzMvDETjqsRzqdNvAUSSNe4mKesJPK11dIR2tU25ZMnK8fBCyo6VcB3rOt9/WRk7hZQQ5Mgsb7fTfrQMOapCIM77wR0hzN0xVScpJ2tc5Y8/Xvn5lGr5/IKe54rCiu3jx3l9iWVu3Ve3hQses1YaxZ4gvQUmNSd94xvjwfeZ/cb7WDp53XUhvG5dCCc8AnJFjnQsi6Lxq+bTvZSnRhfODzBxDNeSXkIyHN1LebZ09i9DjbGHV26m/TRd2SXzmZdXTG4CPOVx2ikZ5n33hTArfG3xWlpITtwZ5hoefx3rVvIjUdVF3thTexlPLl/tHpzHi7dnstc85qh/DwzGZ0k85Xs9nExXcxiJ5+PICWvHSjdeYU/Az3tesRd78nudrhKzDJ0sE0IIIYQQQgghhBCizFn/+XfO82/B+nODwd6vvH8j+vYP4GffuwnnLW/GiSdP4rqrOvGB37hwwrN9+wdw3bvvxNZPPzf6/Z2fuBdf+/4BlOY2YFV3Mz79+xvQ1jJ3yssihBBCCCGEEEKI04Rsls1azvpWnV+ag82fek70W9/+AVyzvh23/OkVOPHkSVz6ptvwiqu78Oz17U4qMS98xlL86ZvWonFOA37//96HP/3HnfjzX79gKrIvhBBCCCGEEEIIIerIWf+x7FTMnzcHG1Yvwt5DCffshp++fOl4+MoL2/DF7+6rHLGhIdh9YDfcKVjXn/qCXQ/Xyx4po05MSsPOhkMiwX2b/wxfs7tnC5d98eLK77T2gRw7NHWBbWyk2szzLW2fYYMgXHePPRbC1pACl5ftjlh7IF4dcdi0/0hTsM3RwPFS7VcjQ02t0TVnaXiw8u+jWQi2ODwTMPYZz+ScxRuaUVM2xXZMGjy7ETYTni2V6XLRzeOUKyhlAybVp90Kq8IOhm0wrwFtHbNxpEGnE1l7OVwPPIezbS0bj8cfl9XYiRwaDlYSUqYA2YRIV1f4B53mnkRbzFTYvgxXip3PrYGtMSYa5wnhaBJJjL8iYQPfst3Re8wbOkBsbyiyD2RobUnYDvJ+p7rj+bylJZ5z2RxoUbOVbMKQ68E+49VX0bpjUjbL6s3evSHM9p1s+zXROtDOc4pdtz3bkGyvz3Do9tvHwx+n39+3dGkc8corQ5jnpM7OEDZzEl/zGrx/TxyNhx/Xd2sVdT/QGPe75g4nYlFSdj29tWxiA1aOR+H+o/EjRU3zFsWzoZWC7foVNWHJ7ZfabkTLc2pwc8Y9w1vV7ms8u6N20POYo3cdPuqvufvoz7jjx0M4ZVrZ60IpM8QrjdlCD54OUvNgVdWaWtdStuC838l+pxAzkbP+Y9mJoZPY8MbbAADnLp+PL/9JbF3zyBND2LHnOJ5zSbFTZZa//fpuvOZ53aeOKIQQQgghhBBCCCGmnbP+Y1klGSYA3L7lMC7+1e9i++7jeNdrV6GrffL/0vE/P7sDjXMy/LcXnFOPrAohhBBCCCGEEOJMQjbLZiVqVYcxm2X37+7H1W/7Pl5xTReeHBrBr9+4BQDwx284HxevanWf/7tv7MYtPziAb3/wKmRZVjnSnDn+kXCWEnoah9TZW0533rz4Hp+/ZjljSivCpN5bVOrBeOeTU0ffOWzT5iPXnrzSHMseIYkJF725sQpX54ahlsqnEkspF+gpLQvDmWV5Jp+3B+J64KPq1jW8lzbXnekbDU67jBhnu55MMSUj8rDVw5IgxkoNuNm5689N+N/wPMjb7ukdv4/KV1QvYRdcb56YSk1RCn5vqlK8PlR0DuHnU3oVlgbYtD2X9LYtPG1MSg/H44rroafHj0f3IqklvdJmL1VdXDyuho4OI1+yeZqJeHKOlAwzJafyxo+dULw+5MmjDZ5qudKrKmXNZjMqRkpn48lpUht6p77qoeL1miI1jbE62haP69WbNuwzKQsO9SQ11UcyxZ6wPyjZMerNeazB+sEPolssvXwL33jzm+M0eCzxXoT3BGaPcgxhTjlKWdhnLI2w3Jbb77xeTBreroxmKeSh1TNjkILLl5Lsc2c1HXRgOJhzgGMCwjYdTyFF5/YURa2SMDwWij7j9eNU/y61FNyfF5W9FoWf4797UhMH5Wew4J9Xia5RWHrJVFNc75lUWikFckQ1pnZmg5kHIRz0sewUnL+iBe9+3Wr8+U27cNP/uCw6hda3f6DiM9/44aP483/ahe9++Co0N52mnZkQQgghhBBCCCGEqBl9LCvAm1/2NHzg5l14cN8Azl0eG+jevrsfPa/+1vj1h37rQrz7k9vw5FMjeOE7/gvAqJH/T7z94tOaZyGEEEIIIYQQQggxec76j2X9X3/JhN+u3dCBazcE2cz8eXOw9wsvnBCvt6sZT33rpRN+f/W1BQ36N2ThzGzqfCyf8y0qz1u7NoRTLqRYHuTpzew9Pudr43lHcYu6cyuSls3PRJeHIcz5o7CVCLKCkaV7zQmlZFGOHKmcdkeH7zSi1EtlKCrd43ax3lBZtpFyXeZof4Yaw0fiYePR8YmDqIiVQHon7ot6/2FS3tNSvxeRP6QcOqbwyjdvXuhrc+fGdZd6L9PUVlnybfPWXI0spQoGEMrRzFKdlBfBlAyzgNdLlizaaA0pnZun/03JQ1jPmPJyyXiSTHM9MBiXY4xUtosq6JLMBlsa3txutYyeV+WUHIexEvkiWuyEljAVzev6nIXSsDnFvpO0abx+btxo4u0M4aJjkdOjPt1sPCM2L65c3qGOUnTtVT/3d1snnjM9O+97decpvWy8esPvXbAghNl7KRBPFaWjj4YLXqeBuP22bRsPPnLTTePhvzZ5eB/LDFesqPxSoCq5eyt72G0La0Bqi1Krw2ab7damIbqqojFTcn5vn2oK2FzA/EFTT7xm8z6Q++ATT5wyqYpwvRTdInpLlC0O3/MsmTQcon4LxIXqOxrCtr55bT3obB4tGzYUi7d1awizfjc1wVC+u0mafGwwnsf4Ed7bFnX67sntU8+k8KbzVFtGbWYHFtPXF8J2TPCc5K2fZ6s3zCybHfssMYHKu3YhhBBCCCGEEEIIIc5C9LFMCCGEEEIIIYQQQogy+lgmhBBCCCGEEEIIIUQZiWunk5E8COGtLpwF8tW4V07Z8PEMo1B6Q02xvQXP7fXRbVE0NDaWKMzZaTfxQri1xzEwkjJM5YULxhtGbI+AbRDU2wMyp+01q31vS0uo/1LKyA0nwvaUrL91dqPNNk0SjFAe9lNyqa6aMoXD1GrHJFV3qXiezbKiNj8WLQrhJ5+M73G9cPli+2V+2mzXxpo94PemaK6xXosStXkbjaXGeFw1kA01ttU1PBzHO0F2W44fB8Wr/E5LS0uwn9NkbOq1JWwDMpFNJs/Gn7Xz4TV6wlhec1vlRhpsiuvEs1lm8cxpNQ8fiyOyrZgCNnfOSNiWCtvCsXZxvLZgQ1KAb7jHzpGU3khb5f5k+yfbD0zZ3eIs8PxQ6j8cLmz5eH7nsLVZdvfdIcwTlreGALEdoaVLQ/icc+J4ixeHMNVPKWF/tZvq9Vh/mA9S83RqS8B2gNhMZ2p9qff6znC1ctXZKmntfyRccBvddVcc8ctfHg8+snnzeJjtlP2azcRVV4Uw9w0e/wBwxx0hzPvAHjIiauc7sj3USvGaelfaXIwT29ub/ALVPvhI/MPORH8vAtu1sgstGxDj8WIXbl6snQ5V4noE0El1uXh1mEOsmbqicJ9KmWFjPNtWtpm7u8j26R5n88e2qwBgzpwQfuyxELb9LtUnPV772mLxvvCFEKbxgjVr4nhc6TyJUFu2rlsXPdLU1FApWrLuC5hiLaft3/PwTLGWGkf8iBxO2SzjtrV/S3C9evsIW6DrrvPfNZuQzbJZi06WCSGEEEIIIYQQQghRRh/LhBBCCCGEEEIIIYQoo/OC0wkf2Uz5H/Y0XdXKMPk5ijdE0kR2cw3EJ9JTUkLv2LGNxye2m0h+VGqhh1J6iaK6OS9DJmnOD4frAVd3XG7/megodUr36PUHllXYF7NexR6xpv7QQOGOjmUVX5nKTqqJaj2pXPR5W8fecydOhPDcucXSS8Xz5JapZ1KwlPdMgJULXvuPUlm6YIe2J4NOPcOk+hora5Jt2xbkmw0sL+C5tKif+IQM09NttLQti649ebPtW1ym1kaSPO0x+h5+b0Ep9hlHNXojbj+rh2MpSioepedlgccEEEuiWZE1QZLHbRbJnPoq/w7E83ZKx8WaZialD2KJWWqRKqppdwZxK42xtWu7o0dYCcr1xWPZwtlOSdSmUoZJKsWozRv2GynhNrJfwbImlkYCuJ/ufY5+Z+ll95veFKfN8jGWLVu+850QvvTSEE7NVbyPoIqMBeSI+xT3Xa6gotg9SrW6xTFY+mdl2bzR5bInpMXu83bsUL2WukLdreyyaRfb3PAUXnRa5OrnqW+CZL+P6sjW/xipvyu4n9j5xfvbhJ8vur+3sDR8xYrx4MiWLVG06JQIr/UJeyznrV07Hl6wIOwVrJqRs85rQmrvUY1VBG7/9jb6e4FlxkDcOXgCTe0BeH6y442veZLjQtRqZ2WmIhnmrEUny4QQQgghhBBCCCGEKKOPZUIIIYQQQgghhBBClNF5wekkz8NRX6sN8OR1KRc2xEBbkDXYU6EssXyMnJ6knIt5ToKKyjBtVvken+RljzNdXbHXMa6Ghn46Nl5QFzhS8NswqxTrQdETydwFjhwJeV26NPZMOtgYrpvZg2lLqK/SoDlW70nJrEzDkS89QX0mpYLg7pk6pV9vIoVtQmbDihBWCjz+eOW0Uu+xY8STcnI9WIkvx0up/TwVyHSddmd1FysXbPn4XsojIF9zvXKdWkUZt3NKpsjKDO6ftp/wc8uXB0lk19pYHsmUjj4aLrjRrJcvLiDfY2nO2rjR2YNw7Ck3TrrhKHlN3JrwYsWJVONF7kyAvXSlvHnxPe6U1isae2ccDGKyPX1xNF7/2NFbSs3YeW3lrLW2GG9l2+hlPFns2BHCdlFK2UJgikjW7EDgAei5WrWkdEScxpIlIUxlajDyvE7aFLDnQFtUnh86l1b24Nfdm9h81HkLvLKR5Jbfo75q11mWXn7veyHanXdG0Vh6+ToKd2/YEC5IHgbAl1fZyuPJmSWZbMLBtjnLs3jjtmpVHI8XNu5P73hH5byluOWW+JrTq8bLHtX3hLriDnXgQAjbevA2GSlvg55XZRuvYJmat/0ohCOzG10TI5dZ2UTr1TbHoy4Qr1GeDNNugLxNmF3sGW/uSj2TwmmXBqOBfJRkmctYiuuszfa6k8bc/J747xSulqLFqGYfF0kveZ7fvTuOyAtW0RdxeimPpZ5LzqnUugsxDehjmRBCCCGEEEIIIcRkkc2yWYtkmEIIIYQQQgghhBBClNEn0OmkIfOPxXoaIzqyPTAc+yBqRjiWmzo56x0T5t/tCWSWXjJFJWsplWlRb4qcRqvnIdReU7iB6qdkHlm8uIHuGZlMjbCnoeYmLmBcKSXKa+Ni8sw3OBDFa2wM97hvcFu2tMTSzVKH41YwJWGlTtTJMoRz6P2IFRcph0Z8r9ZT2lYVUfQEOD/H6iyW+Nkh6XlktMqjIoqCVFfl9Gw8b5qYLhlmNdLilGSNJZBF0/Y8hFqvU0X7Gs9xnmrS5q3d0x2npG2sg+eXmk7d3OFkfP9Rc+1IMFhGBPguWmcS3rqY8nLJYZaOATjcH9ZQbmerMOL+4K1XqbWwYc/DlRMDJnovG4PlM9a7MUuH7D2Gy1u0/XlgpVzdsmSNZaK2fNxm3Cf5d04LiBqjRO1nvS62crvfQXKxBx8M4aVL44d4zF55JeoKe7Nk6WVChrmHpJefMcm9nsK9L3lJuOB82zJ4MkoryWUpNnd+loJamSKnkZrv6inJSsnJqyElW+Z+7Jk/AXw3hyn3zd4Gu6grSwtL0rn9UvMBty3PL7ZvcP7ijWUIs6QaiOuO5xq7UBfZzFRbJ899bgizV1iuKwDLeJyyJDq1EXQ2Ba1GQt4arTeOqQDbN6I5s63yM5ZNm0KY3Qffc4+ftln/XDh/tj9xeXkd4nlWp6vELEMny4QQQgghhBBCCCGEKKPPv0IIIYQQQgghhBDVoFN1sxKdLBNCCCGEEEIIIYQQoow+gU4ncxpdd+wjjcE6B8v395DnbmuX7KeuDeEf/MB/7eOPh7BnOsFK6lNmrrx4KZMPDEv8OW0rlY/vlej32JJJW1uwqdXIJiSOVs4bENdDe5uf16pwKmzE2BVjm2qHyIRER0dsI4zNS7S0hHts2sPWdw+5ty5h6JR5mwBV0MmTvs0ybv+UzTI2UdOa6BsebDIE8IuRKt7ChSHMZjXskPTMd9g8sA00NkWVMpGSqi/GK4fN68qCJilqxTNdw3UAxCZAGGuShOuS56eUCRi+5ufZdArg28qzppW8udCzKwcAPT1hLCxYEMKdCbMx0UDlF9lK8QwA2ol/y5YQ3rvXT++iixKZmiFwh2d7StYWWVP3eJj7xoHYdE1kSirVFDxf8dhm0zw8n0yAX2Ts50R2rhhuc2MXx9s3TMB28jG8hTr1vLUrxjaPeJBY+0f8Lu67TzwRwitWxM/w4s9taydJvrdtW+Ww3Uhw3dXbZtkXvxjCbDeN8wNgJ3Wwz9LvbzTJ9Vx+ebh49rNDeMOGEDZ9Y6ht2Xi4xGXtMPaTXvCCEOb+yQOG2xgAbr89hLnf2DrmTYFdFCaL3cwW7fse3pgA/I2qXezZ9p7X9+172K4Ubzhs/dxwg58/5itfCWGuE25Xy+c/H8I8ydkxy23LZWe7VLbNHdvKE+YXzivbPeMJ1OanKGvWVH6Phccjle8BWkvP4/ayz6xdG8KXXBLH43Vp+fIQ5r6VsmdXdE5iW2tcX/w7EM+5RdNObUZ5zvXaXIhZhk6WCSGEEEIIIYQQQghRRifLhBBCCCGEEEIIISZLlslm2Sxl1rfqhb9463RnwWXe/EW+G+xG6yR9lKKyLZaKpLwU8wnrlEduT4ZpT1hzPJao2PmDr730bNp8Wj2lHPHS498bBgeiZ5pZr9lHx5at6/Rq4OPbVEEN9tgyZbCtY+V4OJJNln8Zg9sypZjhemhrC88326P0Bdybd60Nkk4AaOg/VvGZ1jYjaaA0mqMj8onGdOhcGLdfLCuihjaDpLWD8sT56Wir+DsANNPx+aamWILKcP8q6vnck/jZsVhUhnm64K7LZbXjktU4Kbi8rFBJzXfu1NlYLJ7Fk9sWnXci+eeho/FNT5JlJZUMSyu4ECzjBICtWyvfY5kbkNbCzxS4YRK2ASLpJSmm7Ljk5PienT+99ZRfm+xnKf0v3+M24sFtZKauFMbCciFOjzt76nnug7Y/cYcvapvBC9vB7em87Xjhax4Hd98dwikZZr35znfGg0NUhm0m2pco/IsU7rnmmjjixo0hfNVVIUzteqxpGZhDNAW0tYW1ur3XtPO6dSHM7WfnF2Jk9+7x8CPULm0s4wTvUIBSUp9cAJN21KdrxfbbBQtCmBc5/h2I7Qt4cnk7IfDC5u2zJoMn50/hyW3t8zy/8JzEY8mOK97ws6x6ou2Cymmk7B0UheXJXCaWjwLxHEz1uPLrXx8PDxgpaDNfp2zW8D3uJ9yHeEGxzxSVSvJ85/0hAMR1/LSnFUub5wbb9y+4IIS5zewaJcQsYtZ/LLv3uTdNdxZcrr/vL6Y7C0IIIYQQQgghhBCCkM0yIYQQQgghhBBCCCHKzPqTZWcyJ/MGHBselXVZ2cdxOvHLp3/ZkVbq5DWf0LanvPmULp+i5XhFZdfWkY8nRbHl857x8mPflZKZ8ul5Vlxw2uwxEwCa6NR3Q7XH4j04Q1z5VoZJ7+UsNJsT6UVULbZOXHVAqqEdjVLD0cN+4p6+1l6npD8FGDFyyEhWmyqTJ+nh360nJpIENNNR846O2JspF4n7alF5M2Odb6UceDGnyxsmzz0pJSHnm+vHlqeIN9OU5Luot17PI6tNg7tDajrwFDgX9hqJCheYPVbG+uj4GZa1cOZsxrkxPBkfUFyCcSbz9KeHMMmxDiOWhm93lKm2LdnhGXthtRRZo5JTGsufWD4DAPfdF8IsbWT5zKJF8TOeC2kLTyTeYLKSp6KyMqaozJTrgSR9kUQNiCdQ7sc8dgBg1aoQJi9wj1CUNiurL6oNr4JHae14mH6/xcR7JYVXc/lYRmavub+Tt9f9RjXpeXUd7IrXzG6WWnEf8OYTAA0kK+vYsWM8bJcnvu6y8t3JYucx6zl1srCM05rZ4DHHY5HnYsD3Zum5VLb3qJ8MmvopvDNiL8gF+/QIeTPlkxJ2ZDdymbi+Pck44K9ltv1oDzXSFfpxtOetdn/InmFTfyDxWkhl4pl0BDF9FO6mui+lNmv8hwrXw4Q/+By34SnYnANXns0Pt1k19kFs3/K8XhZdk2Yzslk2a9HJMiGEEEIIIYQQQgghyuhjmRBCCCGEEEIIIYQQZfSxTAghhBBCCCGEEEKIMhLXTiMsb2bzCEAsdWf5PptOSMn62eRAytYPy6v591TafM/mm0ndY9j0QVHv0XzP2qHx6ovz09xkLBJwIim7YtXAdgI4bWvLgW0n8C2jga/GtpJnO6o1VT7vRVaT78VLZSI2IOc/49DQfyz+wXuvtZ/j2eOpws6AfaSBrFzMnx/+HSI1lrwxZ9PmvpsyG3K64Pey+Q1r3oLLYc2+ePFSppEYz5zSdJmMSL6XM2htioxRdOxY41re4LZju+iEfCbj2ObxqnQyFO03numv5POeIU0AWL48hHlgkW2fCbaV+Do1f557buU8cF+zk0jKcCjjGVJM2SzjMjHWrpW1Yeblx4tHDJnrEeos9Z4+2Zon2ym7zsRbG10kbGjRNdt3OtoXotiq85pswu891B94j8J2u6yNoyVLxoNNZLPMWPmse71G1GjvNNocW6O7RTaPNp5nq8vm03mmsVqbbpxegXEAmNMRlNdG+/zSpSHM80ZqHitqs4yu2WYkZ6G5yzxTkAMHQwkXLgx2LJvtuFqzpvKL168fD5ZM319GNhZLvA7V2h+rTcMzyGwXIp7fudwp2PabXR/4Hs3tx0A2fM0ernWCBbhZimyWzVp0skwIIYQQQgghhBBCiDL6WCaEEEIIIYQQQgghRBmdF5xGTo6EI/TWczCfAD50KIRZgZNSSPDJ4pSsyZM9LlgQx+NTx6kT1qzA4FPs9pR3EamV9a7MRC7RE/XA5eM8NDXF34lL3kP1wJP+WahSopPP5pmmpuAC3pPxpV5jlQcu3Jjk6nzCkXFPBmYpqq+rBk+HZyuCr/ftq5zWY4/F19zJ6T0l2/kp7VaSsjT1huPptgo8JahVMvEccKad8k4pQLi8PB/Yk/3cJz3pZmoO4fkgpRJetMiPx9J3TxZqVYB8j8MjNEYBoMGbNDnBlKa26NjhNGz/rIekfLohGd9AU5DZPGZ0YN76advc67t2/eO+4ZkNSKrJScKDvr74HmewiGTRvjg153KmuP3pPQPD0eoXyfo6U3IchieylKTSy6udc0mfxQKeR81j7Vu2jIf3OPHikRjLMjdWzk3V/BOFf4HC7SZeiaWOLJW1cjGq/z1UQO5Cdmrw1LF23V+wILR71M681tsBwwOLwt3btkXRIpnaqlWVM1QUKx3jvNaa3ooV8T0ec57U0sL3UvZBuGHoXtUyTGKExkvqBATNNOjwpLdAPG/wPa4f2w5cD9yPzbrz8P7Q77hPM4ODcSnO6y0m4+NxsXAhZ2dZFC+SZXr1YLT9nIPDdK918+YoXiPPZdzmnLYdpNVs6kgGHclmbVsyRe0VJPYRAzyjUrb39IWwnZMuXlfstUKcqZxhf3YJIYQQQgghhBBCzABks2zWIhmmEEIIIYQQQgghhBBlsjzPpzsPhciyLJ9sXrMsQ/66r01Rjmrn+m0fxNfu/PZ0Z0MIIYQQQgghhKg7G6+4Aps2bcqmOx9Txcb29nzTC14w3dmomewLX7grz/N6WymY0ehkmRBCCCGEEEIIIYQQZSSuFUIIIYQQQgghhJgsslk2a9HJMiGEEEIIIYQQQgghyuhjmRBCCCGEEEIIIYQQZfSxTAghhBBCCCGEEEKIMhLXCiGEEEIIIYQQQlSDbJbNSnSyTAghhBBCCCGEEEKIMvpYJoQQQgghhBBCCCFEGX0sE0IIIYQQQgghhBCijMS1QgghhBBCCCGEEJMly2SzbJaik2VCCCGEEEIIIYQQQpTRxzIhhBBCCCGEEEIIIcroY5kQQgghhBBCCCGEEGUkrhVCCCGEEEIIIYSYLLJZNms561p1/4kjuOGuT+LOwzswr2Euehcsw4ef8SZc8vW3YW1rDwZPDmFh43z81vkvxa+c93wAwGce+Bbeefencc78JRgcGcKvr34xfmftyyekfeuBLfjAfV/CLdf+YfT7x7ffgg9v/yp29e/DwVd+Fh1Ni05HUYUQQgghhBBCCCHEJDmrPpbleY5X3PY/8SvnPR//dPXvAQA2H3kABwaPYlVLF+5+yUcAAA/078crb/tfGMlzvGHVCwAAr1l5DT5++Zvx2JPH8PRb3oxXrXg2VixYWui9z156Aa4753Jc++33TE3BhBBCCCGEEEIIIURdOKtsln3nwE8wt6ERb17zkvHfNiw+DyuaO6J457V04cbLfhUfvf9rE9JYMq8Vq1u6se/EkcLvvbR9FXpbOqvPuBBCCCGEEEIIIYQ4LZxVJ8u2Pv4QntG+qlDcy9pXYduxPRN+f/j4oxg8OYSLF/fWOXdCCCGEEEIIIYSYMchm2axFreqQm+vPP3w7vvPoT7D92F588oq3omlOaVryJYQQQgghhBBCCCGmjrPqY9lFi56GLz78/UJx7z68Cxe09oxfj9ks+8HBbXjpd/8IL+l+Bn5waBv+aMtNAIBPPfOtk87P0FPAw3tGlbBHj8b3Dh0KYb7X1xfCTz0VP/P77xwZD//x+4PCdng4jjc4GMJtbagYr6UlfqapqfIzHAaAJ54I4blzK7+zUp4qxeN32mc6SDl74kQcb/HiEO7qqpxeR6y8jcpbGjxW+Ua1cGP294dwT08cjxr6WNOy8XBry0gUbazP2OS4n9j65nrgcHvTgJuHKLyHTlnafHMmuEPYSuYG5Hj1+JcYzgNjBxZXDA8mZv/++Jr7QG9vCNvOz2lTJY+0tY+HU2OR+/Hx43G8gwcrZ3Xhwvj6wrUjlSPWmXu3hT5oq4vh8nE12npYsCCET54MYTsHMDz/Pf64/4zTLBO6zO7dld/z2GMhvGRJfI/nGi7f2rVxvGic3XFHCHOj28ZkeA6x/Xbr1hD2BjoAXHllCG/c6L/rTIbG88P9YVzZKuFrnrps3+A+wH2S+6OFm4mnrkXGb89rXk1j8cMfDuFbb40j8gDiOXPduhC2HYrv8Xxs2zw1b5c51h9b4+Apk5MrHXrET5srcufOOB4PQO77HG/btuiRYdpI8FL2QJwyeIXh4UwrOB41z/yQwu/jyaYObJozZzzMLdbCmyEAeMYzQviaa0L45S+P49E4/cm28A+03L/t8sl7MC6e7RrcHbjbtR+6P1zsMeqK730vhDdvDuG7747jcXl5zfzGNzBp3vjG+JrnMXuvCJs2hTDnDcBIR9h3NfRTL7KVzH2X7/E8vWVL/Mw994Qw19euXXG81ILK0P7jKDV6W6JPP0D9k2eDkqkHXH55CPPcw51mw4b4GZ5cV68eDw41NkfRuO96WzA7VRXd19z2vTCXeds2AGjff2+44PXzi18MYW5LAPjBD0KY5jSbs4YVKyq/mMN2A8SZ/cQnUAieK1J/3DA8dn7xF/14vEaZfe7QusvGwzy181Rh//64bMPp2ZcKMVWcVTbLfqrzYjw58hQ+ufOb47/d+dj9eOh4vJ3q6z+Ad9z9t3jr+ddPSOOqpWvxS73Pw0e2fxWvWHEVNv/MR7H5Zz6KjUvWTHn+hRBCCCGEEEIIIcTUcladLMuyDF++5j244UefxJ/d+0U0zZmL3gWd+PBlb8Ku/v249Ou/jcGTQ1jYOB9vPf/6cU+Ylt+/8Odw2TduwHsuejUWzo3/1eTbB36Cni+/fvz6C1e/C3cevh//+94vYf/gEVz89bfhZ7qfgU89821TWVQhhBBCCCGEEEJMJbJZNms561q1u3kJbr76XRN+P/Gaf3afef15L8Drzwsfzrqbl2D/K/9hQrxrO9dXTOeqpWvxtqe/bMLvJ08GyYM98csnsTmckmEyfCTWnvjla3tc1nuGxz+H6VQ3gFgOxfGs5MlKJ8dg+ZmdczhPnnzGpsHwSWX7TKwebB0PlyYcsp480dF+ysTh/tjuXTsdnz4aSYfiA6DcZp6c1cJ1GUmRUjJFr3OktHFUBpYfAkAD1SVLf6zMtAhWOtTSEtqM66TUZh70dL78kO3UHraDOoMkVaXcj/neEeNs98CBylmwff3CtZXj1Ruer3h+sv3RU+haPLVzURW0p8IF/PFi28KbN+wQYVjxwm02QQnREf5Rhcd5lHFbWO5Pnp4ViPuxF6703EyEOtG+HeHnffviaLz+sbzWKl1ZssZ4Ux/gy4STe2ReuI3kEDuoIJygNzlYPN0kEMvFuPNTZlttZ20LfTUySWDlYVymlAyT80dSpmF63grPhijMkkqTcrSB5XiUM5jaxhWYOnhF56lwwGzWmj1zB3YiozZrbKxsJ9fOuU8+GcLcbWzS7rrEHTm1eWSs9I8nU2+QVUutf4zyGDNzItdRa2rDyNcc9toViMcPSS/7jY2ForP0YapXHj9tiWd4/HCJuo0eMpINe/Vt5xquS5pTSi1x3TU1tVI4/M59sNomnjeP3xPC7W1mj7mVNjC8WHA9mH47SBnk7NmZuYULwmmkClh0I+89w33LrhXcv4ruAXgONzYJSqSRLVEld3WFdk3tx4SYiZxVMkwhhBBCCCGEEEIIIVKcdSfLhBBCCCGEEEIIIeqCZJizEp0sE0IIIYQQQgghhBCijD6BTiNsC9B+jPZMz1Tz0bqoPJ7NaqQk9HzPmqqoRnrvkSpr0XtFwpNJuxrYVldsg8REZJsI5G671BjbW7A2zMZgO3AFzWkVN2SSMpTmGIJqsPbeoucq21+pB1H5itoa4TAbfQEAtt9RhZE4fsTaGazneJkteM2SmsdSc1c1dezZZbRmwLy5OWkujMcch1ODlgtobZKwbZyUzbLZYEiEyjB/frCRYm2RcdHnzw9hW8U8tLmKU32taL+LSBgu5Mcai9i7AYrbM+NFwbOZY55vIZtlOJQwuMiF995jrynM5bZWKzkF7sXdJh6vIkcpzHbKrBnHZZg6BgqEAaDZM0pr7Fexcci2tpXjYZ5PUvZlU9MB25CM7EluOxrC1u4WG6vksI3HfcMzBlkUm3bKiGQRvPkXQBP3/dR7ihjCtPsIvkf1U61VXO77rW6sGI4XbZNsxCL7QDvOeaFMrGvz5oVccD/maNWa11y82EmjaD/msWhslrFNRM82IWBsljGpebqaTQob6uQ/xOx7uBxFxw7PQ3bTymlQJbd0FO2FQsw8dLJMCCGEEEIIIYQQQogyOlkmhBBCCCGEEEIIMVlYLiZmFWrVaSTPw+lbewqXT77y8Xk+Lp8ak+TdN0l0/J6w3uQ5D+wx2j7vnfJNqf08z9sWfoaPWKdONzMpORWnN0E+WCuO//bWLnPWfH84Dt7NDdC3P4q2srd3PDwwGA6HLloU4jz+eJw0t1NpkA6U2wrnhuJj3o89FsIpnRvlbUI8qvRW28Em7noODQABAABJREFUiT2m3zBIQhceGLbj8TF7dhPO8diVOBBXLGPrzmtnKmur7XjUB0aaggTEqnEYPnFfrVyhVrg/cdXZJne8yU+Yu7zuwM/z+LVwf0+pD3nusl2Dn+N3eWUAfLkmu7CfgKc3SWn/WNJjJzwvPZvZ6eosdWSkJUg9WPln4aKmqsRTv6SmJ2/NTFYvzzW7d0e3otWGdaGsKbIv9TYFlhUrQpjmZp5r7HS3b0cIL10aRIvnXWkqhQcTS5msJtaRHDbRRNZiJjzu4SxhtM3VR+E7KHwlhdvMM1MpFmKJp5WMRlx6aQivJaHouefG8Wgjd5S0pSn1NneNlPLaU/Kev3p1uLB9izem3OHtpMsDa8MGPxNFeP7z4+urrqotPcrP4cHm6Nb+nSHc0uILdlfasTCeAPV1W3dOfbXefbf7nhQtNLabzZziwX2SS9DMYxkArqQRtHFjCHNf5d+BqLwHngj1etz0wZ1UxzxtMHaJ6+6qHM/C0yzP4V0b2qN4DbxP5YfOOSeE98f77hLt93hOOmzyUCLZY+s2GrQpObIdP0XYu7fy70uWxNcpiaYHr0NLl8b3qJ2H2sIY4Wo8ciR+5JmXF3utEGcqkmEKIYQQQgghhBBCCFFGH8uEEEIIIYQQQgghhCgjGeY0kpJherC8h718WfgEeMpbEh9VZhkRK0AAX8piFWqe18WCijU3jiXl2dK7xyeLTyvVuORMuQGkimlqimUEY1hHTIXyNppgCHOFcedIddbp0uvXw01sEVJeCT1PUSmdItFA+Zk/P/YWymM91TVOF57HtZRCNzV3eXJLVnSlxjl3VRuP35uSsXvzED9jpXbcHTgP1kswp93OE2hqLHm6cyvvYQkN6+87O+N4KbneDIHVejzHFZ2SrNrFm45tVaXueWm7N00CJW5nbksO24V2wYIQTuk/WTJDHpaPUD3atZklzdyPFyyI/221k/taSvrOA5rlTyxXSujOWSVqh+gPKXw1hektGDLPTKUYObJ+sX59CFsN+bp1IczSNmM/48DBUOfs1I4lyFb16q0JdowYZ3/jHOsKQtXWXlNb3FlSA5CvuXzVcMEF8TX3oSpg6aWVAfK1Vz8A0NhY+ZxBR0cQOpZWJzzY8ouKSuMsVA9FTz20UbiZO06qjlmWS/1zpCsWGnPxDhwIYSuXZ4ked6fUFFIUfo6nXDvHtXtrJteD+SOojRJppnDKaMswe7jnG3axqMYsCUtGeaK2klpvH5GC82PzRmuKJ+Wu1QHujEU2y2YtOlkmhBBCCCGEEEIIIUQZfSwTQgghhBBCCCGEEKKMzgtOI3kejq7aY8csheAT2+z0JiUrZI8zLBWyz3nHoFOOfDivVh1ivTCOYb2jeM7dPO84Np7njc/e87xmpk/Khm/IrS21e8YcGA6SumY60swSCwDopHvHhoNUoLUjzizfO+HIkuyx86i8bQkpKB8PZ6mPJxUCYslF5ILIxKN3HeuvrY5t+VpaShXjleyx85Smbgyrv2DNIEsX7PF07oj8Hq4Hc/w+kkbRGGHno8BEj3VOcriwRsVLUXicstMoqyjhrsHVamWYXHWeHDwlw+T82Gb1VC52rvLqmH/nIQH4c7DNK+epvegxfc/bXMrzHE/2Vos9C+QBrDbhOcCuG9xmqf7pkfJ66pkusHK4CHrxiJm8yDcxmsilWBPPIbbNueNxPOt5kNIrURqdC0Pfmju3spQfiMvaOf9YfHMrbTLYc/L27XE8boA7gs/KkS1bxsMPm/eyt7kHKLzZxLuCwrwCPErhR8wz51M46bGyCtgzXhd7wrPtx14vuZJN35jfu7Lie3ho2zmI51Jvfwf4jnijrNqBxS7veJBxWYHqpYWVuO+++JrrqwppeWrvyJL91NrT3UV7Fp5/ua9v3Ro/tHlzCNM4wJ13prLrMnL77eNh7u8px5H3UribFuSV3/lOHNGz9UAdqsEstK1Usb29wUuirWOW6HlK3modN3PfTcnvsYf6NUvAPQ/pmDhvj7/H5oHveftpO2ir8Ybp6Uzt2OM/Gu2e3IPHve38dI/lrP20py9qVkjMXLIsawDw2wB+HaOWDw4CuBnAH+R5nhTiZlm2GMAvA3gpgAsw6pz3YQDfBfAneZ7vNvGvBWAmqXH+Jc/z66otR1Fm/u5ZCCGEEEIIIYQQ4nRzdtks+xCAtwH4MoAPYvSj19sAXJpl2QvyPE+dgnhm+ZlvA/g4gEMA1mH0w9vPZ1n2rDzP763w3F8DuN385vwzd305a1pVCCGEEEIIIYQQQkyOLMsuAvBWAF/K8/zn6PcHAXwUwC8A+FwiiW0Anp7n+S6T7r8A+HcAfwzgVRWe+0Ge55+tMftVIZtlQgghhBBCCCGEEMLjtQAyAB82v38So1YUfjH1cJ7nffZDWfn3b2HUmsG6iU+NkmXZgizLqtAt14ZOlk0jeR603SlbP9Xov/kkaMosFdtoYDtC1mYAX3PY2h7yXAbbeNacTiVS3si5vmw8dlXNYY5X1DV1ax38zLP8v60tWFaxNpMWLw62Y4aj/hAX0LPLkLJhF9ngOXS0cuZsgtxI3kvtPeocbKsNAAapzrn+q6lj237WLt8YnUvb4h+4E3j2TqzxIS4fGylK1YNng8I8w9nx7HcA9TUBUw84P14YiMvBVWL7KsfjKmZSNsuKVD0Qz0N2DvLspLCpETuPMTzX2P4Ztee6LudGglQlsx2S5csr/w5U557+DIPr1ZvbLdyfUn2D10LbF5wpLm0XhyGbMkPmFrcmF6Np795wwe1qM2EN6TGecUGa+9p7eqJH2PZMVCbbqbkf8mDihrHPkZ0kLred3tgG02YKbzDxOOes+eBsW4ts52HqWMYXq1b5EXksJjoO3+JlKWXOjtdCb+kCfLUQN+sEm5+cb+43q1fH8bjfdXZWflFRenvj66J2lxzYRJXt0p4tXVtXA4M8RsI+p4EjFt1EV2F3DQAaaBFt8jZA9hknnNw8eiQ26Kl5ka+56DxtVGPCCwCWLAlhtjnXPGzsLXLDFzSc1rB06Xi4RJ2jxdi4LfFA5b7KGbIFrKYPcHqp/QEbwN29G4Vge4S2b7FdN6KrK1iAPHuUiGctl2N0yf0h/5jn+WCWZZvL9ydNlmWLACwEsNWJ8hEAny7H3QHgLwF8NM/zvJr3TQZ1aSGEEEIIIYQQQojJMntslnVkWbaJrv86z/O/putuAIfyPK907GUvgGdlWVbK89z+2+CpeC+AuQD+zvz+FICvAvhXjPrs6Qbwqxg92bYBwBsm+Z5JMytaVQghhBBCCCGEEEJUxaE8zzcm7jcD8PRhgxSn8MeyLMteBeB3AXwT5dNjY+R5/p8AftbE/yRGP569Psuyv8nz/HtF31UN+lg2jfBHaE96ZDl5slg8PtJspUN8SpdPGvPJ5NTHcfZSbE9iO96VJxx35+ui8kq+V/SYtldf9qRyUalONfC7uNw2D1689q44Q7XKct0XAb7cksP2yLhz74mDcTQ+7V5UButR9HmWSwBAM+edw1yGVJ14Whggrle6N9LW7ibN48ULV3puuikqw0xJWRiuYk9yaucxTs8oISJ4vPC8WDSvPIekxl5qbo6UDJx4alLzJD0pXQs/k9Kxz9B//fSkvKnipBRGXpWk1h4ei0XXbe4Atgvx0ObZqo30Yo379sUPFZVxsZyGdaaJgdnTE+Q0DYMD4cZO43SK02aJ50MPxfH4Hkl4jnJS8RP4PoWfQ+FlJl43hdmgANdxq3lmKo2dRKsNTwh2guIJnuvRmEUo9R8eDy9ZEtYRb58F+OpYO396y19rE/19s4faDojbkjNhJ1MeJCwDqwb7PNdRFdJyVq9ZKT6P+5RSNpL17aeycv3YMcv3uAxV1s9IQeklw/2TRjaOmbRaWa7H/ZMrYo8ZtdTmzRSvecL8EkYkz59swqVapS2r1aNpcb/px97c5UjVAcSLOEnfW2zfZ/k1STejDmUlutWsx9wWPNcYWziDNPc0pSYOxtaXd4/yXaJwV5edqcUsYwATl+MxmihOIbIs+xkA/wjgLgA/X0RWmef5SJZlfwrgRQB+BsCUfiyTgX8hhBBCCCGEEEII4fEIRqWa8yrcOwejJ9MKnSrLsuzFAL4E4B4AP53n+bFTPML0lf8/5QZ5Z+Y/LwshhBBCCCGEEEJMNzP01P4kuRPATwO4AsDtYz+WvVRuAHBbkUSyLHsRgC8D2AbgBXmeH5lkPtaU/39gks9NmrOiVc9U2BumPQ7OJ3tT8iwPPtmd8iLnyYqs7ItPDaeUQ9a5YqVnAL8c3vM2jZQcylPUpZ7heHyi+fzVE+NOFj61zEoYe/qe88310NISe5XkumNHaHz6OinVTE3mntyLf7eer4iH94TDqvaUPsNteeFaP56H7SeedM/WA3uu6mYvW0X1gnyU3nrpojSGmoLUYD/Vg+33RWWYXJcsXbCOO08XXP8cTjnM43t23uDy8r1Fi0K4qAyTZTYWb4wB8TjlPHC81Fx6hJb5lMriGHkbbGXvsUYyfJTe2839znZ2losk5JojjeS1LfIdOHPwJPup9SUlYWZlDcs17TOeCp2rOOnhmTplSgb4CL+Twivvucd/KDXZb94cwjxIuBBGctPA8xp3/vvui9PetatyvC1b4njk1fNh+pndXUUutQA8i8KsyLJ1ZyWWY3jSVgBonMpJk2VXPFFbjTZ32JR0j8b90nVBhsl7h5Sn5KLS98ihKrelXcQ5rymbEuxystY/HlMSurWT3zyUBsPBhbY2rwfFUsCGfnPYYdu2EPYktTt3xs/wWKTwISOBLHpEgt46QdrtwfEedn4HgF6SSzfzxMhltRp0nlM4nmn/lRuDKaSODtonUTOf11vd+rSyiw6zcP+0Hhz5mtuM5acpj5U8zu18smJF5We4Q/HGBqjOGyl7o+WymvESta2RaLp4kmEg9m7L76Vwg5VHr1tX7L1ipvB5AO8BcAPoYxmAN2HUVtk/jv2QZdlyAIsAPJzn+QD9/tMAvgLgfgDPz/P8MByyLFuS5/lj5rd5AN5Xvvxa9UUphj6WCSGEEEIIIYQQQoiK5Hm+JcuyvwTwlizLvoRRQ/sXAHgbgO8C+BxF/1MAvwLgeQBuBYAsyzYC+H8AMowa839JlmX2HZ+ly29kWfYIRm2ajXnD/EWMniz7WJ7n9t/b6o4+lgkhhBBCCCGEEEKIFDdg1GbYrwF4KUZ97HwMwB/keX6qo6HrEA6Kf8iJwx/Lvgjg5QDeCqANwHEAdwP4wzzPb5p0zqtAH8uEEEIIIYQQQgghJkuWnS02y5Dn+UkAHyz/l4r3egCvN799BsBnJvGuPwfw55PMYl2Z9a164S1vmu4suDQsWDBuYsZ6KWYzJI4svLCtCiu9Zzzv0zZtzyxKyvZQ6nk2n2JtEY1h5xzPhJaN55nw4TJVYyKgHrDpElsnng2elB0oLnvK7FZkoyg1mXvGeSh8uD+2ocakbAUVsZVXFPt80X7M1x2rgw0YUD8p2frhl1E9HDgS18PcueH6qOOZ3NaJN7ZtvFrrayrh6ipqH9G2C5f3xInKz6Tmg5RdKoZNhdi5ykujqH1EnlPsvMjXUTmiimh23zvSFO41WINodvGomDbQMEz2XGboho5NobAJGItnV8wWu2ib87VnMzJZpWTnsdHYpWon+0ecHfa7PmwmuEa2PZMy9OkZ4nv88RBOGUxl21Pbt8fx2O4PV4qxDzRE99iKE+smrohTBlu4aaOw3co0XHnleLidbKg1U74nNEsVdq4KY+1YjpGabLiOyb4bgGhzxHaAenq6x8O2+T3bkHbaYJNHpWHqbZuoldg2FxC3bWqTwv0zZby0CNbeFA+6F7xg8umRLbFW016tPW0V400on2ezzLOFBQAPPjgeHKTxXMhlXAV4LBSdzbspzFbYBkw8Nh7UtGPHeLiB7ZTZdYeveaNrbZtRp2ymTnheL3VIa+8tYSc3gp/j/pmyWUZz5BA9U0rZBvXGORDPL84eOvkHX1F4AHMf5D+uAES71NQfg0zKIOgBsqXu/UFj5zvZLBMznJm5Y54E9/6/jaeONE08/917Tx1JCCGEEEIIIYQQQpw2rKMgIYQQQgghhBBCCCHOWmb9ybIzGZY3p+RLDJ90TZ3cTcXz7nHYKjM8OZU91XvkiJ8nxlOBeBICS0qeVaTuUhLWoieVi+JJU618gvPN6hnrZZoVDnyam+vOnvIeGg7fxUusx7AunlnbRIkMNAYX39s2x4/wKXt2aW/LN28e6kZR2V1KYeT16a6uZdEzLW2V32tP9rMMj9/D3sit525Or6hMkfNtFQ6nCy+vqXyn8uqNR64vO665P3E72/mOn2Mv77Z/8tzF+fHGLxCPs5QE2UuvqSvIK4/GHt+j/HFZO63+kK8TmsMhEmSUcCr7qzMbb21M9c9UPO67fK+weoZlKOal7TRpNpAkLynP4gwZ2U0ESb/cyc8uFrwmcCe0Ex5PbJT2UTNgWMh3G4WfQ2ErsmK5WCR54gEMAOvXV7zXtGVL+N0u6EUlXdXAaac2GVzHXF92kmNNOvWb1q4R+jn+N2/PBIedf6NX9TudOmU3gBNPbZpS/bMIdgLmTUat6dm0PekeS2UBYOvWEOYxwtJL+wzL/ehn36hFmki070nxDbzb4/faaXC/E6+D5KcNLMGzeeANrO3TvFjz2E5IuQuPWZbH8qKZamfKd4nLYOXavG/me3ZgefMVj/l6yDAvuiiEuY6N3rrE46VoPXJeeQ0B4v7ubXrsfPDylxd770znLLJZdrahk2VCCCGEEEIIIYQQQpTRxzIhhBBCCCGEEEIIIcrovOA00jAHrjdMxpN9pKRonjLHpscnRvnEv4UlZtV4NbTeJ4t4trTem5glS0LYKjNS98awJ6dTXiprhdPzvDYCvpzNSvdS6o4xktLUlIss6ojHEKSX+x3vjjY5Vlyk8llPSSbgt5n9naV2nO+UlJCriNNjp0CAPy64/eyY5TGX6oOeus7zJDvVcB5SHgGLSKJtvKJScy+9omlbvDmOy2eVJ9w3eGynPHcWkcEDcT9k2br9N65Oln0kEuTL0gxd+bkerYKcYaUIt4VVhBVpF4snc0uOxQ0bKj9kEmy7887wu51oGV7YUjrh1L0xbKV4mmGbH7rmKfNek/y/UfjFFL6MwqWlS+OHyMtl5PXNrleXXBLCLDFKbYCm0jMb55s7oe2sKXfeDEuoHGlbV+950SNF9gcA0HCUfB56LpvtgsV1yZvWlJvZVD8ugk27aAE9uE+nbGGwjNIu9l4a/LtdLGjMtvLv1dr9uPzyEE5NhkQzPdNMMuph00ZHKdzvhFtZhg3E7ZKyucB59f7oqNaD6n33hbAnCwVcGSYuvTSEec628XgOse3nzT30/EhL1ANib/VF4bzyemDnSB6LKRfSTOoPUk9i6/1hKcQsQD1aCCGEEEIIIYQQYrLIZtmsRTJMIYQQQgghhBBCCCHK6BPoNJIhfIROeSry5CEp2SSfvLXSPyvrG6Po6XbOW+r0PWNPKhf1AphKw8NKPiu9J3Wv3jJMrv+UJI/hk872RLRXd6n0Yodbwb9RqzmWzV4v9/SF3z2HT4AvZbLqnsWL/fxNlpSH19TvLGfjfpLyZMiqAU4vpS7xPJumvCR6z9v3evV9OuH3strEloeveRxYL6Ve2qm5hufMVB48CattP+4DrGTwxpuF49m5uYgUNCXDTCocOhw98SnSn4kUlfVy/fM4j+Ws8bxWjZdLb26YAEtlbRvxhMqdkDNuF3Get1OLJqdHkr4BSs9WaYne20/xjpp4xyjMOfg3E++nKcz+5SLPc+ecEz/E5eN7Vuu6fHkI8yTAdWo3DvV2d83wpJSavLx7qYnf6fxF18IJeJMS9ycrUywiwQLqK8O0eah1Itu3L4RT9b19ewjbTQ97wyTPjSMk3WwwG9ERxwaHjVcVRU+z8MJG0r1G42G0RHnlExUsse4ybV4iWSZLNG3OmngTzF4luR6sN8yisFyW54qE9N31TGulrTxf8T0re+R79N4B8l/6hHGUyrXcubSYJHOkK/gMbkjZEeHxxzZqUvB6Zfs+l5eluLzhLyL/F2IGoZNlQgghhBBCCCGEEEKU0ckyIYQQQgghhBBCiMkim2WzFp0sE0IIIYQQQgghhBCijD6BTiP8EdqaLfDc0xd1VT9vnh/PerQeo6hNr6LPFMUz2ZGy48b1lTJJUvQj/1TaLGP7TGxOwNo18syGWPm/l0bK5g6by+Bw68LY3oLnEZ3NfFgTIgsWoCLWNl6qv04Wx/zHKeOxKRXuG1zuou1/5Ih/j8vK77TmJDzbSmc63jit9h/Vah1/qee9e9XMd0Wxc6w3ntkMirVn5/VVO290dQU7g80dNJ5NZ+un97YaMyszhaL27DxzNbaOPfNVKTNgVfWNnh4/Ae4Q/GLPcB4Q2/RK2PcZofTYchSnZv/FtJkmTY532MTj9DZT+GUm3oUUbuIOv359CLONHABYty6Eue54YwMAq1eHMNcX28+xC499Vz1ZsyaEySbUBLtG3kRp43kLE/1e6hkySZRQiQl92psMUxsobr+U/aPURmeyWNtR9Ty5kTJ26NQ3AHdCZ2tTDcbYbAMvlLzYG7uxheG+XzQNHlecPzMRRjbHqHxsp5DDlpT5494tW8bDDd58Z+1kFWXbtsrp2Xbme1x33LdWrYqfYaO73rwDYGAwzKie+T87nfNrO5eiEDztn5ea08iO3gQDyB5cJ3b8ceb37g1h6ieDZuM9hVYihTgt6GSZEEIIIYQQQgghhBBldLJMCCGEEEIIIYQQohpks2xWoladRhrmhBO89vQ9n2LlE9JWhVANnlyPT9da+Zon3bR4EhVbPn6XvefhSVOtDNBLL1V3KUlPrRRNj+ucVSQcBmJ5I5eVZYH25DQ/w220cGFzFI+PinOYPYsfNG6vPQVH1S7ta4Tr2/Zj7vued3vbfzzpl/G2HsFpcD1aKYxXd7av1lPCWm9YUWL7Ol+nvJt7qp2UNJXTTskruV65Xayyhq95TuG5z+abxxm/10rIPSk95yfl3b4wnpYbQFNTM2Y6peGB8XBLSyhPqu5S9ejNB6lxynNK0fc8sj8c4u9mWSEQTz4c9iRKAPC0p4VwQrLUQFLAEi0kLNyzkqmjFH7U+R0A7qfwBgpbyU10zQ3FkiC7YLEMiMO2ofkeNxKnbSeRohuOavB0vRZvwrKSRe6UibHN2LnHzZonM+QFy/Ytb+NmOz+nx326GhIy46rYtSuEra0ILt/mzSF8331RtCHK06OoTIfZKDVxP+QFJiVnLUrRfsfjgtso8Twvp9zrrAyTrXO0Ujg1H3Tt2DEebigoLU/CZSr6RwZvtrgeWEZt0hhpCSW0+2Fvr52SYTIXr/PvMfzeBQvC+tJpJbkrVoSwnWc9vPkX8DdKtDAOmc2VZJhipiMZphBCCCGEEEIIIYQQZfSxTAghhBBCCCGEEEKIMpJhniHYU+yet0c+GWxPkDMcz56w5pP+RT1jeqf+U14JWQ5g8+DJTBkrPfOcNNl41ciXUkqIWvHkZ+wlE4jzze2SksAW9RBaVLLmKT1YCmrz7fUN+zu3eb29DXpUm1fG8yybeqaoKqIoUykTrpVU3op6zfT6caqs3j37O7dFKg+ep+FUXy3aLpwGjyWWY1hphpVfj2H7Hcs7OjqCJ7xm4/lqsEY11BkBVXLKczKrblLS22oUeVz/nrzWEiueYm+F7SzLZMkadwCr+eZBUnAy9TzZHbIRCe4yj5h751OYhTqtJl4kA2JJD3tws57n+B7Xj2mwA0dCXXbyM1yPKelmvfG80tmOxpsMDqf09t4zZuJYuLB9PMxjZIL0q99ZwDx7F/Y6JY/13ABWg22v1MJbhJS3T29CN1JeHsFccj590GTlv+ecE8K8QWcPqpOB+1pRD6/sxZFJbPhb6Q+N9sSGn6Xd/c7vQDzfcO0vY+lltdJd8uKJtWuLPcNtkfJSShJGVifb7s1VxPtPTyEK+NLpFAcOhDBPG9a0SjNLL4t6w0yNEc48FWqAwlaaPGFNmK1k2Zm3QRd1QSfLhBBCCCGEEEIIIYQoo49lQgghhBBCCCGEEEKU0ccyIYQQQgghhBBCCCHKSFw7jTQ0BFMW1mSAZ2uiqN0n9kadMoNRjQ2n1HutmYYxUvZcPA/k1ssxx0vJ8Pke55Xr0ZaPbWCl6qsaPPm/NWPCearGhkFR21Ep+2ycB64vtr1g647TSJk6SNlUmyy2fjw7VynzAV5Zbfk4r9xPbDyuV34mZSOOSZhIidJjb93V2FyqB5wHphobYylS9cX3iqadsnXn2TNL9Wmee/h563Xes4eW6qtFzVJx302ZJKm3Hb1pgQrb0RFsM9n6YRNfXCfWVgyP4aI255hU32DYxo21Rbd+/crxcPNayiC/1HYoXuDtQunEa6YXp7oC25thO2XdJl4bhdud3wHE9pTYDtDTnx7CF1wQP7Nu3Xjw8GCwwTNo2o/NHB0/Hv7t9zy2zWQ6/lBTsKBTwojNbW1w+SYYCSPYgFHKQCLH406dsAnW3NtSMV5bm7Ec1EfPcRr8TrvIeZ3cTi486Oo98aTqtQhcPlsevnfwYOXfAXCtsE2uKDW7SeExzGOWbfJNBraBVtRmGdvx4vyl+h2Fm8km2GGTNKfAFseaTTyuI36midK2f34sQzGGyNZZiSfdlIFS3kRxvzXz6kBTmOX2bAu/W5tlXJX899rjj4dw0WGVgt+bsp15PvWNkabQGg2puS/1B5Yznjm1Gq0Kzlxks2zWopNlQgghhBBCCCGEEEKU0ccyIYQQQgghhBBCCCHK6LzgdJKHI7sJj8zRqU4+sZ+SYPGJb3tqlo8JezKUlFylqKyMsSd5OX1PhpnyWl5UauflNeEpuyoJZApO28oePbidbX64LjnM9WDr25NnLV4cX6eOc3u/e3KxVB0X7TceKTkdj6WUVLKa09Kp+uH3ctrz5hVLm9vZpn0mn+xO5c2TNlqpM7enl15Kqp6SN3sqC5sex2OZKfdvOy8Wldt6kt+UO3m+TtUxpxH3m/jfwji99jY/vTMaKmDKVICnsrF9w5PR2vr21kxvLrZwenbuivqKt8jZwrIkz+qAnHjH6OcBCls5FYmXwAIxK4Xia67WFqsh96RNS5dW/h2xXKjfUQgCcZ9m1Vxv77KKcQDgKGnEVlapgPM4cKQ0Hu5keV1qM2MLxXDn4His5bXt70xyDTYP3gDi51lWCsQDiKV/VgrM70r1zyKwpBZID7QisHzRpsVjbsWKEDZ11USTRQdJ/6JpY82aOG0uB9dXUQmlhZ8rKuX0ZMLHj8fxHClue0Iq6Z28OGau+Tl6C3iYViuO5vSW7dsXLmzf9+orsVgcdeahlCq46N8f1eyHq9lPN/RTa6T+gPQ2KQBAfWCY7vEoZyn/WYVkmLMWnSwTQgghhBBCCCGEEKKMPpYJIYQQQgghhBBCCFFG5wWnkZMj4bQre0oB4lOwfIrdc1pk4VP6KUlQ0aO8njQxJVfxvMLYe0XzUNRzmQfXV6pO6n2K1vMqmZKV8T2ravHkZyz3S3nD5NPXpeGBKF5LS5C/sEKBn7GywqKyOa/fVUPKm5BXjxavTlKOvVKSLn4X30uV1ZOTFvWWVKtjsGph1Qbn1Xr68zxAWTlyERmBbRdvTkopnop6L+Qxl/JAzGVKSTO88qU8NRaRqltSdTxdfaWeDJBvNV4LbdlYksfYeNxfU3OzR9G1ghVT1pNs6zAJIe+7L4R37qwctuzY4d7qpwKy3JKlln3mmV4Kt6MYvIoMmcW+xI3BA5C91ZlB20AytZU9QTrW0uL/+y6PpYajobStEyZ065+vfkROSwedTU6KlM0Fb5GyUkJHXjWEUnRd8jTpPChS8kovb5ZaXTan8lANLK+0eWP7ACkX2bRAlIrIWQF/sqh2M+R4rExCklGwTNFOmFx2Wkh49NlRxNLJ4US8NgpzS3Zzu1ZZJ5G/V5Z5pyZqb2E0v7e0hNnQM38C+GsH75ut6rWavzk4D0nnyOwymDNHHocnwHMz9xkgkvazJ1heA2q0siLEGYc+lgkhhBBCCCGEEEJMFtksm7VIhimEEEIIIYQQQgghRBl9LBNCCCGEEEIIIYQQoozOC04jeR7s4ViJvmd7JmUHjGFbSEXtNhX5HZhoQ4vxbH8VtbtV1L0yh61tHs/cQTXumU8nXA9svsGa1fBsbXl1CgClxmBRopHtvuw/GsVbtKiyzTIOL14cp815raavVUPRtGw8r14539amEJc91S6MZ7PM5sfrqzPpJDfXnWeDzZKaQzgNNuGTmkMY2y6ezTIbj+cRzyxOyhZgtX2ySDy2d2LrIWVvb7bh2bq0awD3oaI2MYu2pWf3LlX3XcHsFpobh+KbW/tCeO/eEGZbMdZuDBeEbMhY2I7MMQpvo/Ba80wPhdnekJ2quLievSIAKLE9JTbqxWWyhjC5wqis7cYgz1OdIYdsogg7yaCdaZjWnh5MFVHbss0jaxfJM+BpFx+vU6Y6q9N57VpT8jov9y3bqYsaKK3nZsv2jVpJ2Vrj8i1aFMLcH4G4fNy/eVOemhD4+WqNSbLhKzbgmILHHM8bKaPJzialZK65JrmXHDbxuCajNNbSTFTUBpuhiRfH1MbUs9HntSuA1p5Qwq6ukPOUfVKvO7BpPKC6/R53yeXLQ7i9KbZDHNkf4wylbJZ5hrKBqF7MSjbO1FmFFGJ6mEF/kk0Nc55/C9afG8xCfuX9G9G3fwA/+95NOG95M048eRLXXdWJD/zGhROe7ds/gOvefSe2fvq50e9fuPURvO8z9+O+h/vxw7+6Ghuf3jbVxRBCCCGEEEIIIcTpRDbLZi1nfavOL83B5k89J/qtb/8Arlnfjlv+9AqcePIkLn3TbXjF1V149vpivqHWnbsQX/rjjfj1G38yFVkWQgghhBBCCCGEEFPEWf+x7FTMnzcHG1Yvwt5DxV0ZX/C0haeOBCAfCe7qU1LCalzas3ypqDTHk0NOBk/ykspDURmfJ8GxaXvStpQ36pRUrlY8Ga0tK7cZqwOsUoCvWZXC6bEraQDRUeoGLqCR9yzd0D0e5pP5Rb2UpxQFqbJPFtuWRaW8rOjwJKy2vrmOua+ljt97fdo+4+U75Y68qBR7KvHyU1SNU1A5lJS6enOKdZ3O8ViBY/HUUDz/pmS9jC23p8jisZSS4qfmT7t2jFFU8juT4Ppi9YyV/3r9ztYjqwKLrlc85liSnnqmeZDESHYC3bcvhPv6QpjlM/y7SeMoVUSbee8DFP4+hZ9F4VbEtDv3jLgnusdynOaUxtqbDG2dHDwYwp6OGsDixUHw0zBIOaznYjMZPGljauIouuHwNil2YKcWEg8vP1Z+yPH4np2ojxwJYW+CKsqaNfF1rRPZ6tUhbAct90muR9uneZHxFnEr9y1qD6AonAZvHlN44yLVP0nf3LhixXi4jccoEE3CwzRJWkkezy8s3walXbU9AZ6cuZ/wYgHEdc5zj6ffN9dNTUGGWXSd5S5Uj78xeC8TDdM9RrLP6whLKl/yEj/xnTsrhwEMULuzQPMRCts1RYiZzln/sezE0ElseONtAIBzl8/Hl//k8uj+kSeGsGPPcTznkmKnyoQQQgghhBBCCCHEzOWs/1hWSYYJALdvOYyLf/W72L77ON712lXoap/llpOFEEIIIYQQQggxOWSzbFaiVnUYs1l2/+5+XP227+MV13ThyaER/PqNWwAAf/yG83HxqtoOm+YIJ6GLykjqoSjwxjKffE7Ju9iTi81PUVmZd+q/Gu9yNg9FJJX1UEUUxXq+GcO2OUt6uExWVsYnyD1Z2UKrBGYZMVcQS4AANPQGuVBPTzhNmVJVcDn4lHeqHmut46JeCW3f4HrhevWkVUDsFIuP0qckp0XGGBCrA1juZynqZfZ0Uavnx6IyTJZD2rJ6So2UbJnHS0oGzf2E35uS9RZVXXnqGVseT6ljx3zkBdDJW6X0ZzpFPa9W4wEz9YzXlkmnfSxlsZLD7dsrx9uxI4S3sf9KoJ8mrM30+7Xmtd+g8IspfB6FrUyqhTs/6/kTXjdHeCKzkjBPt8+VZ7VLnAeeGE1apd7Byvd27w7hlOu5envGZLMGnB+zzhZeSDy4s9XbRW9Rb5ieXQwg9tRYK7YMKS19EVLeMLm83H52QvDucVvatD0PqEU9WVr4uaJ/GHgy74THwyivXHfW1gfVXSP17w4ei0Akq23gfG/Y4OenKJyGJ7UE4jKxvRHut1w/QFTH3ey50zBEPj49p5t2eFSzH+7tDeHSIRJBGtlkdF20XumZAdN+x2zcMuwCr63YW4SYMehj2Sk4f0UL3v261fjzm3bhpv9xWXQKrW+/teIhhBBCCCGEEEIIIWYy+lhWgDe/7Gn4wM278OC+AZy7PP532O27+9Hz6m+NX3/oty5E45wMb/3oPTj4+BBe+u4fYsOqRfjmXzzzdGdbCCGEEEIIIYQQQkySLM/z6c5DIbIsyyeb1yzLkH/nuinKUe1c/yd78LV/v2u6syGEEEIIIYQQQtSdjVdcgU2bNmXTnY+pYuOaNfmmj3xkurNRM9lLX3pXnucbpzsfZxIN050BIYQQQgghhBBCCCHOFPSxTAghhBBCCCGEEEKIMvpYJoQQQgghhBBCCCFEGRn4n0YGBzPcu230e6X1Uux5lk55GX/bW0bGwx/9ePgOmvK0XdRlMXuDZ0/s1mM15y/lzfrgwcrpeV7mbXoLFoQwe5kHYo/R7GGdPd/bcnN9s/fwX3vjCGrlxg+HtuD3cJ0CwPLlIcz5Xr8+jsft2d0xVPmltqNs21b53tatcbyrrw5h8k19IF82Hmbv44Dvbdt6qeaycxtxvy3K334m/s5fjevtnp7Kz3d0xPG88bN/f3z91FMhfPJkCHN122bh/p4aO3yP88p9FQDefkPt/bUIf/2pUP+cNzt+vTmA2x+Iy8Fhrns7Xnje4Dqx7cXv4ns2rydOhPDixSF85EgIs5d5C4+LRYviezz3dHUVyw/3L+8ZIHYh740xIB6Pl204Pf2k3oytl0BcP3b8c1vY8cxwfaXmEO8e91Ub5zlXUx1/9rMh/MQTccQf/ziE77gjhKkQ+80zOyn8LQq/jyceALfSoNlAv7fxorlkSZyfNWtCmCvPTuhcYLuBYbiSvYXbNtK6dSHc2RnC3NmBeNH0JiI7SXLaPLDqAdcRl3vnzjge193mzSFs88qdnO9xvteujZ/h8tEzA4Pxmtncd2/ltHnSTrU5t4XNN+83uB54f1GUVB5Sm1sHrgfOGhDPmaWjj4YLu9jzgzt2hDBvhmyd8BjmcWoXyRtumJjpSnzqUyHM4+q1r/Wf+cAHQpjLZPOQ2oiPYSc8bgu+ZzeMvPHi9zzjGSF84ED8zPved+r8AMCLX1w5D9/7XhxvI5lj4vxwB7j22vgZ7u8ctnXn9UnqD8f6G7xbKDUWXJv5vZs2hfDdd8fxvvnNEOa+es89ftpUhm1m7TlM4fMpzK7vmpcujdOz42e2kmXV/TEiznh0skwIIYQQQgghhBBCiDL6WCaEEEIIIYQQQgghRBmdF5xGRkbCaW57HJwlQXyPT94WlY3YeJ50pOgzfFKZpWdALFPivNqTyl7eudxFsWkXkdakymdPz9dK0bRZicInufmUOAC0ttAx7T3O8eZUpbAG1spnnKP5netCxueuaY0e4ZP0Kektq2RqrWP7vJXojcFSPSDuu1yvLJvrXGqOwTsdqqmp5OaPHykqw/QkmSmm68Q3178nYQb8+coqFfia0+AxYctqZYZe2ixpZnkl/w7EyhhOm99r+5PXp+fOjeOlpLPe7558NCUT5j5k62s2qAO8cZXqdylpqreu2bri+YXbNrVmRrDc3UqcWIa3Zct4kKcAI+KLpJcvSLyWfb+3rFgRLliqZxcYvscSzb1743i8+D/0UAhbyQ1fs6SHJWtWmsqVyfXFz6TupRqdB8xUyjC5E9oJ3ZsEWE4HxPnjZ7jNzIQ30hQEUVwNtoqbuV54UklN6ExqwPB1jXU81LYsuubstWLycnJWBdp9d6x0De9tWRvnIZLKpaTK3ou5P6SeScGZtwXx8Oxk2Hb2FuvU2OFr7hspGSbXA8uJU7LuFM99bgjzHyP79sXxuBycB67HVB5SY9vr71SnrXaTcpTSs/OxB68pHLbySlpThqktUsvVgJ0siPMo3MFyVC6TtR0jxAxnFmyfhRBCCCGEEEIIIU4zslk2a5EMUwghhBBCCCGEEEKIMqflE2iWZUsAvA7AWgAnANwG4Gt5nuen4/1nKjmCksHK1zyFQsqjI+MpH4BYRlJEkmnjefInwJfk2fLxCXCWuHD5LHxCmk/8GgdgEZ6TpxT1/ocBr15TJ+c9eR4AnDgRvnF30pHtEfr23TBsvGR6ejibuHfknipy0KgGitZrynPcZLGyS08alVKRcLxUH/IeshJkpqgM07uXile0fFNJ0fIVlY0zXplSHmz5PVbKzdJJbmerfvFkfZ6DO/teHkpW4sl55/mTw7buvPnOKjjaW8JYZ2mwra+i0t4zGS4T1z17LAVipXlRuWZqfuL29NZPm/aF7KQwNefSYn2Mf6Ywyy6BWHq5Gj4tnFnPW52FOx4vyFZeyRXL99jjmrk37HjZa7S6Ze89thPzJMyyq5Q3TIa94tUD64luDCtFYy+enFcr4fJsM7D8yTzDTZHysNy5mp7j/pCSCHJeUxMjy8K4/lenemtlStt+El9znbRMXuLJVWe7I+8reF6dEJHL/uCDIczjxdYJe0Tl520dv+MdKAR7QCy6uLLkmyfJ1Pjj+vbkukBcRxzP1p1nW6Gwpj0Be2Fkb7tWFujZkeDBU8QjqH3e4i38tnxFN9GMJx+1adGmp9F6qXRgb5Zd3E9gPCmfe24IexsbIWYBNf3JmmXZMgAfL1/+c57nn68Q59kAvgqgjX7+HQDfz7LsujzPH7fPCCGEEEIIIYQQQggxHdR6huanAbwKo4ek/tjezLKsBcAXACy29wA8C8A/AriuxjwIIYQQQgghhBBCnF5ks2zWUqvNsheW//9gnudbK9z/NQBdGP2Y9gCAd5X/ewRABuAlWZZdW2MehBBCCCGEEEIIIYSoC7V+Ar0Qox/C/su5/7ry/58AcFWe5wcBIMuyWwD8BKMfzF4L4NYa8zHjsfaPWHbOdnaKSttZwm4/dHN6ng2YlG0XZio/ott3ch3xvZT7b89mUsrTeb3l9osWhTCbhrD5traIxmATDxOgRBqKGgXjSmHjeEBsP8PpEF297DzaNymTsu+UsvdVBLZDZbIXYdsydg3vPG9dhnPGKcHFi2N38h6pMct1xHm1z3Bzsl2V6fpHrGre65XB3itqxsSbu1LmV4rWnXcv9Qz3Ids/mcjkDrV5yrQSPzPBs/zOvvFgM0c0naijo1h/PZPxprjUfMI27FKmYlL29XjN5P6VsssZwfaK2G4QgKO7d4db9PutFH4dYrop3MI2ZCwXXRTCa9aEMHciayeL7UpxoazxU2deTA3Aw0642TRgN9VR49694cY558QJevaG2IidrZ+pNPR4zz2Vf7c2y9i+GufbbgKWLAlhbjOKN9TYHD3ircfJOdszvmhtxO3bF8K8V7DxuL/XuqGi8TEB23cL0Nw0Mh4ebIrPC7jzSGri8Pq7rROuL66fVPlSbNsWwnZB9bjzzvHgEO8dTbRGzxijY8c2Gc8a8OR+zH2Df6/GhhcQz13cj+3447bge1u2hLBtc88Om93o8jzJGwEuqx3nnMbatSgE55VtBN5xRxTtMPWvEv2eGpWDZKes2d7k/LEBQG6/CZsUIWY2tZ4sG7MCuMveyLKsHcClGP2Y9k9jH8oAIM/zewF8B6Mfy55ZYx6EEEIIIYQQQgghhKgLtZ5LGPtY9kSFe1dh9GNYDuBfK9z/MYDnA1hZYx6EEEIIIYQQQgghTj+yWTYrqbVVs/L/K4lOrir/Pwdwe4X7Y+dgz1ofsyMngwrOquG8o/QcTqkJUjJMT6bonbwG4pPUKemQJ0uxJ5VTno49PDmqfZ7ryFMApOqk3jJMVoFw2imP2kxz41D8Q+TmvXIljzTFh6cbvM5idQdceaxf4rRM5bVSobq62t2kuY9Xe8p+jJS8kkmpWpr7Hw0Xe46GsD2yz1AjlWwh6LqT4i1cGNrCtjnn23qQZ6yio9Lzp5OiMkVvfrHKKJYqs3KBx0RK9cHziSdntu998sn4XmrO9H4vKk9npQ73XatQ8WC1UcOhR+ObVjY8hq2wWbDSchullDCscisq0U3NSaxy8qSgybFIssJjO3ZEt35E4dsofC2FrdgsakqWwlhYeskSJX7GShsvuCCEU4OCBxMX3k5WtBCUqNG4yezUx03RSpKgFgoDQBN3ApZr8uIzYRxM4UBgORRPRCy1BPyJLSWJJWnTgafCOvukSZoVqDwObPMd7g+iLG7mbs6DfYgjcjsn1sLkhFyExcY/WBXSS+bAwSCoeeyx+B4r6J58MtRPS0t7FK99tSM5TG2OuQ/wHsNu/ovCY8FOgA6HKB4/0WbiRdJurm+eN1atih9avrxyPJs3kvENDIa24OrpXXth9EgDRlCIDRtCmDdUdnPFa6a3kLDk2F7zM2ZOit7F/SElw+T56rqCPu9+/OMQJnltJM9FLHdPWXRhmrj9bV55Tlq3LoQlwxSzmFplmGNLzaoK955f/v99eZ4fqXB/7E+ioQr3hBBCCCGEEEIIIYQ47dT6sWzMSP+Lsywb/2eULMtWA7gCo6fKbnOeHZNfHqgxD0IIIYQQQgghhBBC1IVaZZhfBfASjJ7u/HyWZe/D6ImxjyLYK/uS8+zG8v2dzv1ZT0NDOKmdOqnueYRLyT5YWZHyHMgng1lqYmVSHK+oNIpPFtuT5p7nP08iCvgSVCv34/J6nihtfS9YEMIp52LVwCfS+b1WrcKnmyP6jMyqgI7WSiUL6+hZh8C6V6tZY6hQ3WtDHpqainnpqgarxPDGgpW2tjYOhIttVK+edySbuOeStdJ1mWaqn+aOOKMtLSz1QMVwiukyj+BJhlMeULnvp+SxPH45Xko67XkVtbAntI4O/9+KWB6Z8pLovdfWD6fBCgWWlwwNx/nhZ0pHSXpp+ydLShILRPsGHjQz064G9weu41S/4ynNtotXXbYPcTxeK3hNSY5FajMrmuV/TXwOhTdQuHXFivghngBZemS58soQfvrTQ9iTTAE41hgkZ1ymZlspnAfXtTCiRmsj3dtKki+xVAhAJLriWdWKzZpIuzVEczOPpEbbOVJ691pheRZXnjVpUNRNpdMpj++vEPcUFJbspyY8JrWgF9YnV0GNi15Kis1wt7FdqLEr7G1aeoLZ5Qn7LobleimPo0VZujSErRTQgb0h8u6s2S7ILK9j74ccXr8+foYm16GObnjsJJWgp+q1nNfr32MOI8xd7b00X1mpOr/Y659Wo8vw3tja1mDZsLfht4UtKKONYI+qtL4cM38Q0Y43av8kPJ9b75wbN4Ywrz2eZ8yziSyTzbJZSq0ny/4OwEPl8HUANmHUPtmYF8wf5Xn+bftQlmW9AMZ8mv+wxjwIIYQQQgghhBBCCFEXavpYluf5IEY/ku3F6Eky/m8vgNc5j/4Shf+jljwIIYQQQgghhBBCCFEvaj4vmOf5PVmWXQDg5zF6omwOgB8D+Fye597B2gsBfBejxv09m2ZnFSmJkXeqMyXd5BOx9ti5J/dKycBYesKnvxsGB6J4A12x9G4Me1LZO5HM77Unlb1j2qkTzCzp4jq1dVeNBK4onnTInv5uOEpiFC6UlY14x8ZT7kw9V29Wc8qdJeVujnG8QbUbrWRLV+t4uFYZpm0/r0pam4z/EJa0snzN81QFxJ2f69Fqiz2JZsJDVisVpLUrdI62Nv/AvJUdTweew7QJchW6540Dmx5XUWmY5hfbhyMXmImJgxMkr6fNpi1W9lCm6F1z54a2sP2Mh0hq+HnDh6WXdp4vNZIYbT+VKTUWU5PcLJAHFPUK68l3U/LtlLMyrx8XVaw9TIP2ZnPv5ynM4pVW9mRppZaciUsu8V/McirPs+KReK7ZRTIpNs2wZs3KKF77RkeGaSuPJTlUYe133z0ebjUe3LiHc7VOmBWpAUs8Lli2ajtHjd4Uk3ieA+2Ex+3CHY9/ByIJ1LH+MFfwvGP3K0WlwTyWeIvR1EueH60XyI30Mm/9BIDOzhC2cr3JwrIvAI8cCr2gu6iXRIKd0aa80LMnUYvn8LCD5IfdV5p+xhFT3gaLwhJrW/8Ord44ZQ+4QDzfPOMZIUxz0lDv+dEjXCe7w9Ce8PcHZ5WHbGpfU1SGyVu3p84J/aTT2jjxbDik1lbOOGfWPuMtUpEXexOnGvfw5J1ziCaEVrOnX0t2CEpF5z4ec1aG6Uh0R7pC37cOulf2TH6cCnEmUZfdc57nxwF8uvxfkfivrcd7hRBCCCGEEEIIIaYF2SybtdRqs0wIIYQQQgghhBBCiFmDPpYJIYQQQgghhBBCCFGmrucFsyxbCeClADYCWApgAYBP5Hn+BRNvzBDCk2UJ51lJlgXpvLU74dlgYtMXS5b4abO5E5tWETtlkb0cINbY95FxAqO1n+CCeuz3jvj3ka5gT6CozTK208GvtSYD+J5nu8bWSb29mxdhgm20Q46dMmvwzSN1/JcridOzaXOm2KAHV+SJE/4zXPkJOwy1nlRmWzrJtFMv8hJJPcNlShle4/rmZ1Idjd7bamzcdHSEf9coWMVTimfXz45Fz4SWNeHT2ki2yY46Bg1TA53bzFaKZ1TNtjO/i20rcWb7zXxHduZaWkIb2SHCcBbInEhkXxEAmppCeiWuvJRdFbYPZRqJ7aNNmN9nCN5QYrOCQNzXuLqs6Rp3/YOxdeiN++TCERL8W/r1v5tYK9moD9u5YrtBNuOcH2t3kuGKoPDAcFh/rd0mb+qyZpEGya5iN+c7ZYCVE6cKb1y+PHqk5ciRcMH1kzJWyWlzfmwb8b1689znhjDbTbN2R736MmN2hP49O7aN5T7imsi0zcLxeBvgTIOjaXQEG2ataykBawuJEhxZHWxbNVRhY+yBPbGluoMHQ7i7CvNzbIvMls/bV6bMZXJ98bw/OBifRTjPs1OX2sinuPrqEOZKSXH99ZXzYMcE26liu1Q9wW7hnr74Ec7CY4+FcMp8bsrOZzVwGtF6av/K9AxUWvtcjGN7MRrngD+/eHZsgfSa7kF/5JVOngy/G+NvJa6U1FrBFLV96jTadO1LhZgq6vKxLMuyVgAfxaj3y7G/QDMAOYB/qfDIvwPYAOB+ABdUuC+EEEIIIYQQQghx5iKbZbOWmmWYWZZ1AbgLwC9h9ONbVv4vxYfKcc7PsmzjKeIKIYQQQgghhBBCCHFayPI8ry2BLPs+gDEfxj8E8BEAPwawFaMny96Z5/mN5pkWAAcx6gn8fXme/0mB9+STzWuWZci/c92knjmdXP8ne/C1f79rurMhhBBCCCGEEELUnY1XXIFNmzad6jDNjGXjRRflm266abqzUTPZJZfclee5DjIRNZ0XzLLs5zD6oSwHcBOAX87zfKR8z30uz/P+LMt+COBqAFfVkgchhBBCCCGEEEIIIepFreLa15T/fwjAm8Y+lBXkJwCuAZCwqCiEEEIIIYQQQghxBiKbZbOWWlv1CoyeKvtqnucJ/18VGfOdsrTGPMxYnhrOcOBgZbNxS6lWGvY8HC62bQvhHTvih37jN0L4ve8NYeuJafPmECYXV4d37x4PHzP5eYDCy5wwEBvB62BPKdbLDBeQ73V2hjC79ARiF1DsHcx4ZBnpCLnynN/Z+Yy9t3B1dXfV7jWO23jx4vB76eijcUR2SXXnnSHM3sAAYOvWEJ43L4TvuSeEN5oTtOyJiSuFf7d54IrgOuY+CMTef9hj0BR6ITvWH48bzzGidTrUsPP+ygnascSwByGuny1b4njsfondYu3aFcK2TrhPc99faqZF9jbGaXB923hTSVFvrexCj10/9vXF8Q4cCOGdOys/b+cx6odHyQOUdcTEfg272XOV8Ro1SO9qWr8+3OA2sn34yitD+JxzQvjyy6NoAy1hTuKi79kTwosWxUlzt0t5teP0uClsPO4qF6+bmd4w/+vOMO65KTrnmxWL1zjuN7bf8Vy6aVMIm/ngEZozuRcepfB/mLy+jz2Ukcu8Y2iN4nntl3LcysOci/ecq+N2/fwXQn09+WTF7CQdsXkeqO1znndcIB4+PC3yWpiaFj2Hl0BcD5xXnkJs3bHn1Ne8ur7j4O8/G+o7VXfeXsROL1z2iy4KYZ4bmvvNPoI7FDeMqYhjXcFLJdcXL+/WAyr3taLOt3na/6u/nHx9v/0d8VrPRfrj900+vb/+VEjPLpdc3zw32/bjeuCypsYSp8HjwDoo/N9/VqxM/+vPKntKfdtb/Of/zyfCM55HT5tXz0Noag+d8nLJdc7jnMN2S/Gy64rVyX/cGspnnTgy3K85Hg8du7XisnNe7Xt4fon2+8MDKERBt6DsKTflIZ37Mc8vKY/YD+8JafPzQOxEnrdt3B94zAP1n2eFON3U+rFs7C+AB5KxKjP2N0wpGatMQ0NDUtpZiaamJlz4y9+ebL5OG41NbdOdBSGEEEIIIYQQQghB1Pqx7CkA86pMZ+xD29EikUdGRlCNgf97//7MNfD/4j/cO91ZEEIIIYQQQgghRLVIhjkrqawBLM7YIcw1yViVeVb5/7uTsYQQQgghhBBCCCGEOE3U+gn0+wBWA3hxlmWlPM+HTvUAAGRZdimCvbPbaszDrMCapWoYpqpkgwIHD4YwC8YtLDS3hifIKMUgicsfoSi2IdkiDH9htRpa7lDNJPJvtrZiihg8scYA+Is9P29E+g1sUIByW/SDv9X8Txn2RdzOjz3mP8d1yYVi+ztRHSA2wMDvscYq2BgH9zVuC/7dvitltKOO2Kpj81PJdvaMOxw/7ifAg5ONMTz+eByPbRRxPaQMSXkG1uyEwIYwmNPWWRPvTYzFqL64jm3/5jmKwzyPmX43QI1+mH63PZDnrtbd/r/NsGmO1WSPrpH7vi2fZ6PPjKsmsqPoVZ2dBovG43tsC4dN6M1GovJZIzc8j3EfYuNM5nqE2txYgYrsTHA/YeuNP+VnNcJ2Ia+di9oHSk0BbKfMm5JS+fFsqNnrVB68ZZuxdpvYFCdjbeHw0OQhd+RICNupdCqnTK6vlF04nirYBlCqLbgckVmj/WYN9xrXdKKmXlSEH7HbA3s9hjH/6NrHqwZrqrLW9vPmy1Q8236cp6JLoReP62oyeHko+kzKZhlTzZzE2xW7DvH6xeGi80mKotvPIjbZUvNdKq/cnnyvxBU2Tfu2on8DFc1qke20ELOBWk+Wfan8/yUA/rDIA1mWtQH4e/rpn2rMgxBCCCGEEEIIIYQQdaGmk2V5nn81y7IfAbgMwLuyLJsL4I/yPK/4XTnLsusB3AhgFUZPlf17nuc/rCUPQgghhBBCCCGEEKedLJPNsllKPVr1FwD8AKOny34XwG9mWXYH3f+5LMueA+AqAKwNOwDgDXV4/6xgwvjyzkjzEXsrr2Q8WROAIdIysESJpUz25C1f8zNWhsnqAC5Su5HJtPA5XdZgcEVYGSaf5+Y6sa6W6TxwY2PIYSRtNfAR6Xnzaj1wGcPZLrHA1UqHvLa1ncO7x/JMq13wpJcpnQXnh8+WW/nv0qUhzOfqbbt4Z/09GW4CmzRXA9+b0Oa2XsbgOmVdDBD3T64T61ObX8xn0ln6ZTPu6QasroWf47awY8T6O58qPE2Xhe+x9NLOXdx377tvPDhM8XjeAeL5imVzdpSzw/ZDzu8AwDlqo3ArlWGCnJz7E/djUyfcD3lOSsFNzv07peRNMdv2cFF57Dji+uewHf8ky+X+ZFdWT3q5lsJtlbM5IX+NTa3RLR7qnqylqKTLwlMuSxhT8krGk20BsYQtJdXhfuzJuKxUkhXtnDb/noKnSPuMnYLrSVFJnlcPqXZ2SenFUhNHgeTsku1ZFEiVL7U8FMHmodZ5jNOzyyfD48VKJT2lazUyzGoVeVyOonXiSQltHXt55Tqx8kqeD/gZO968LSL/Xq10NyWjZDivnhTUwnXCW8TUehzdSxWKEy84QTUMhh1MiZ5pbPT/fmnASKG0GVsnXCavSLVKr4U406j5q0Ce5zsBPB/ADgAZgGYAz8PoyTEAuBLA9Rj9UJaV/9sJ4KfyPN9X6/uFEEIIIYQQQgghhKgXdTlCk+f5TwBcCuD3AfQhfBSz/+0H8F4Al+V5vq1iYkIIIYQQQgghhBBCTBN1E2bkeT4A4C8A/EWWZecCuASj0sxGAI8B2Jbn+dZEEmcdjY1BwcZHagEAfST8YOnPQw+FsJWBMez1zUieWG7S74SNL8VIXsnhLj8HYLHJhI7G55g9fYiVzLCLLPbAaI8t03WJz9mnXPnQM/PnxzKZWolUhv2Js+/eOXab1yLSvdS5+oSHLNf9Ftd9or6Tso86egCqOmkvr0uWhLDVBHl9rcv0fs9rYkqHws+kjt97uobT5H10Ap6+y2qeuOwczzaYI79upPTaTVlbKD0WNlqhAcs3l1H4sInHsyRLOXkkNVtPsDy3JmSYPJe1tXVTOERJSYtTcFWyNMaml5IczRSWLw/h5kFqQSuPZekzr5M7dsTx6DlebR6IY7nSSxY92zUzgvrGUbOssUUCbyhZZbhVaReBpzVPtm5J3fOWkZT8jPOdkurxUEpNpdynPU+UFluX9YTfm5LRcr3y0motEixaFMLtbTSzeTJjwNfOmgmlNBhmxo6OVgpXTgqY6I20CLXWd0rGVw3cZ2xa/C62vmC3BEWke/b3ohLrohSVHDKeh9bU855c2q5P3tpjHXnztdcW1daJ52nTwnn11tmUtJjnbNs3PE+3S5e2j4cnyCGrKPBIU3PFvFn43tBwOB9TaiwmyUz8qeR6LZ5KqfsZjWyWzVqmpFXzPH8QwINTkbYQQgghhBBCCCGEEFNFfS2ZCyGEEEIIIYQQQggxg9F5wWkkGxkJ8kvrHY6vWWLCkpKUDJM8z42YY/qe9JIlSlZSwl9VmylsBYt8mJg7lz3wO0Jngxs4f3x+N3WWl89v83l5wD/PXVCG2drj+fSsjoZD5KuPz8HbNvekFbYeWMvCZ8C5HuwZdC5vUR0Dv4fdQRV1fWXr2PNEWYU+jCUkAFDydBH2fLrnRZU1T/ZcPZOqR06P6y6l2Sgq12Q4batxOF14Xi5t+dhzakpifeRI5TRYx2D6SYnuLaO0JzgWpnDzmjXheSPJYyF85GiRwkOmfCUuB7f/PuO7hvpA18Ygw+Qqsd3JU/XaYVXEuxgwUTU8E2GJGHbS+pdaPzm8d28U7SgnR+GfmPdeTOHzKMxV2pVar6jRUjJF63XPe8bzFlkPijpQrEZt4nmzrNZzoFf2lCx0KmFZUuq9HI8lYXbMRlsbb12zL/LclNoGo8mnra2VwsXyk/KKVw+ZoZeHWmWYKaleav704lVDNTJqSzXjz/O8W/Q9Kfm2ZynCbqf4mpd3z0LGZPDyl5JBe+VLyQ+L5q+o997kOHWIpZzFzr3wa0qJ19Rz/AoxG9DHMiGEEEIIIYQQQojJIptls5aaWjXLMmsHtxryPM9X1SGdSTPn+bdg/bnhX9S+8v6N6Ns/gJ997yact7wZJ548ieuu6sQHfuPCCc/27R/Ade++E1s//dzx3973me1omd+Id7wmFOcDn9+Fd37iPhz8yk+jY1FpQjpCCCGEEEIIIYQQ4syh1k+gvQDyScTPKJyXryfzfF2ZX5qDzZ96TvRb3/4BXLO+Hbf86RU48eRJXPqm2/CKq7vw7PXtTio+ux89gX/fdAgrO+efOrIQQgghhBBCCCGEmHbqcV4wO3WUiLGPY5N97rQzf94cbFi9CHsPFfTLbPidv7wH//vXL8DPvvfOyhGGnwr2VNguGQDcd18Ib9tW+Xdjc4cZPHhwPHzU3GPrLispzKr3NvMMd5QmFu/39kbxSmyEh40TWHtMbKzAs3mVsh3lGeqxeLY97DNsqIMNcFRhT2sCnr9u64e9qE0Sz7YVG6SwcTiNlOEKzwd1UVtdjPUZX4VdBpdqjNcAvsESNuhkn+npCWEua2dnHG/58sr5YUNE1riLVw+2Ttn4BafnGTmaarwxa/s02/RKGcJgwz0rVoQw91Vrm5Bo4rnQ1F0L52/16vFgozEc00VzMNsvY8uQ9mxwlzcHG9tYnPeG/mBvb8mScLI55YLedhsPtoVkh2nD0cPhoh7z2jTQ3E/2H3eSlTFeIwHg7rtDmNr1sJkX76XwJgpvNO9dTWE2mxb9ExrZw7MMUc+xUzO3LYdT9nNqtTfkmfUEitvdYriv2iXEsx/mLTVAXEe8jDz+eByPbdjxVMMmEC212ptKcfx4sXg83fFQjGzywdgZ9OzwWXt9bCcyteaSzdtW6hA9PaFX0zYSQGwOLWU3L2XbarLYeczW0WTh521a3pxrq47bzNu22aWQSd0rSmr8eNjxM0aq/by2tOZSvfkl1X5Ll4ZwPZYkr22tjTiuf153U9tSrm9vSw+kbaWFOLGNsZaWYAm6NMHCc2WGhkMaKXPMngnDFKnxy+2Z2JIJMauo6S/WPM8LWRXMsmw+Rr/LvBjA2wH0APiTPM//sJb318qJoZPY8MbbAADnLp+PL//J5dH9I08MYcee43jOJZVPle165Pj48wCw//CTeMdrRs3/fvU/9+OcjiZcstqawBdCCCGEEEIIIcSMRzbLZi2npVXzPD8BYDuA7VmWfRrAvwB4b5ZlzXmev/N05KESlWSYAHD7lsO4+Fe/i+27j+Ndr12FrvbK/zS2qntB9Pz7PrMdADAweBL/87M78W9/8cypybgQQgghhBBCCCGEmBJO+yfQPM+PZVn28wB2AHh7lmVfzfP89tOdjxRjNsvu392Pq9/2fbzimi48OTSCX79xCwDgj99wPi5e5Z8Y2/XIcTy4fwCXlE+d7Tk4iMt+7Tb88K+ujj+8DZ8MegM6Eg8AeOihEGa5CUlK+s35Xz7tnDqh3e2EG/k8spFXRmeuWSZlz7F7siv+HQB276bMUm4feyyErabB801tz3mzjoQ1HJyePUPunYuvx9lwblt+j5XeMnzOOyV7XLw4hFkGSHIzAL52IZV2UWkjx/MkokCsPeE0bF6LYKUn3E4puV9KW+H97vU11hDYPDAs47S6Fk+iac/2e9Jg7uunEy4Hj207zrmdPL0KELcT13FKo+TJaG2f5rrjvmbSa6V2bqV8D1KftvPqCMVr4PnTzufcp2hu7Uz1/UPhve0J7VFbW4nCqBgGAGzrC+ENG/z3nsnwWpiSYdL1MeprfSa5b1H4BRReZ+K18QWvjbwWJtrSk1oC/rBIyTA5jWqkNbwsWrU8S2tSUjsmJbUr8g/tViaVkhUxXp54KNq0p/If/rkebL0yPJx5urLDvLVpKFzw2lpUl516hudmlmGuDkoKO517qv9U+xftnx68fAJGmlpjenaO5OU01Qc9SR5L3mydcJ9MbVGKUs9+XHTLw/F46wnE5eB6TVk84W14PbbanvzTbjc8+WBKfsjXRbbJ9l6t4yCFneMYHrM8HbS2TIg6TsoKTBFrKvNlplvMMqblvGCe5/uyLLsFwM8DeDOAM+pj2Rjnr2jBu1+3Gn9+0y7c9D8ui06R9e0fcJ9bf14rHv3yT49f9/7Ct7Hp/14jb5hCCCGEEEIIIYQQZzjTKa69p/z/Z01jHk7Jm1/2NHzg5l14cN8Azl3efOoHhBBCCCGEEEIIcXYgm2WzkjOhVWs8VF09/V9/yYTfrt3QgWs3hLPw8+fNwd4vvHBCvN6uZmz99HOj3973+qdXfE/fPz2/cgaGnwL27StH6jMP0TV5XBuhc7SpU70sErWf+Noo3MiSEj4Hfe658UOsD+Bz8CkZJp/ltbI5PiPNz7BMMSXD5GesvIDPSPN54NQ5aI5XVOJQFM4rn9O3rol4kvUkp0B8/p3bLKXn8M7S27Q9l0acn5TsNeWdkcte6zntar1hemfpi+oGOD2rB/H0IZw3K//l+rKaFw/OX8pj7OmiqNYgJZ3mevVcWi1ZEj/DWoqU/pC1B+ecE8JWJ+WMufbNm8fD1k8Vz2rdLC1PSay9e7ZOUnMA0dYWZFPcBRsOPRpH5PfOVBkmyy2pXbB1axTtUao7bqOvmuReRuFeCrdZiTX3G/Z6yf2zoAwzpUBmUjLMot4GbZeq9ExRh8H2Pd4yacu3aFHleylvr0X/3vAkQSlvn16d1IPUMsJ4UsD2JqNY6CM599heEYjnNLtP4srkfZddX3g+oMprpgytWsX+0uMpkyW6qem8Vuywsk6oJwtveSd4DB4Oste5c4MSJLVN4qZgOZzd3vHS73mInQzVeAX1xn1KcuhZuLDv92SY1lIEtx9bDuH0UhLmFLz+lQaD1+mSKWBPT2hbHi6ePNrG87bqQFwPnjWV1HxeqmJ+4rGYoqgHVc6P3bIWkctW46lViDOZQt4sp4gry/8v6GxbCCGEEEIIIYQQQoipZVo+lmVZ9rMAXgIgB/CT6ciDEEIIIYQQQgghhBCWmg5LZ1m28tSxRqNi1Fnj+QBeCeAX6N5na8mDEEIIIYQQQgghxGkny2SzbJZSa6v2YfR02GTJyv//DwCfrjEPM5enngL27h0Nsy0Wcz1EdieOUZSUb80G0uiXrF0jFqF79lfYsEPqnhWws10NtsfEhksA334R29FgYxCVriulBcRGAzzDIdbXMsc7cqTyM9VS1AYatwvXsbWF5Rl+4Tay7eLds2l7Rhb4d2v7hNPbQzZWivrUroaiNsts+3u294iRltbomovU1hbutW6IjUsMNYV7vF42cP1Y233cp9m4h7VD4/X96TIOwWOb+4bNp2frzvZPvmaDPhy2RlK8ek0ZG+E0PP/xJu1WLpOp77bHHgsX3Ndsu3i2g9g4CxtwAXxbcGYzxkk0HD1c+T1APDfPVHbuDOG77x4PDpFdTwB4gMLfoPArTXK9FG7l/mRtuvFcwUaUvH5r4Gxbk3W83HB3YhN91sQjd+miNsu8PXxqivSWAyAe6p6dHps+ly/1DMNLtbXNw2lzejz82FQmUMzmTrUU2XrYPEQ2uHixASJ7tThwIIS58m3DcuE5nl177LvGoIbuNGvc3DXBPmJq6eE2q9U8qbVZlhhmhWjtfyRcHDX7BipUOw2EltXtUTQeC944sEuhrf4xrG2zoqTsZnl4W8eU3ULPFKv3O5C23cdb2/Y2sgJK61XnQmu4KzGYiOZh+guJK9wMep7rh4fDX1KpOuVrb4gBcXl5bU6Z/eXri9ehEDx8uai2vnnZ5/55vm9iMzkfe/bshJjN1EOGmVXx30kA/xfAz+Z5Xs3HNiGEEEIIIYQQQggh6k6tJ8tuQ7GTZTmAfgAHAPwIwP/L8/yR9CNCCCGEEEIIIYQQQpxeavpYluf5tXXKx9nJ8Mlwhtee0SathnNYHq3O7xOw56VZ7sf3WH9hJU+sFeCzt/Y8MUubWDNhpaCexOjgwfHgoDnfzMcgGyleQ+ossOf32p4zZlmZJ3mrFpbYch62bo3jcZ3zGWt7rtqTs3FbpmSY/HxKK8LnxlnSRXUPIK4v1hhZqSv3jdR7i2C1TFxePktv9QXc7lw+itdg+n5Hx7LxcJTt/XEfKkX+4OkGv8f2O65XltlY7ZB3zr6oxLfe8Nl+zpttlyeeCGFu/5SWhus/Jdfl+uY+becuT6psdRYsg+S569xzQ9hIl0ao7Ieovy/bvDlOmzV1XHZuPyu95fwlZJid60i3sZX0fnZN2bULMx6eS6k8fSYaSy9fTGGrHGrlvsH6INs/eW7lezzv2H5HeFYHgLhpPUmWnQ5SKjwvHsPPsFTIkpq6vO5pp31vOvaGL1Bc3uNJwbxpHqhdxpciZaGC4e2U3RpFLF4cwjwnpfS13t7Kwml4eyPT6G09sRzRe01iupo0to1bW0YqRyxKas106s6WoUiZUtJGbtZk+yfgJYW3ryl4iuL82b7KFiGibU3BruVJFgE7J4VdfTtlYmA4NjLTjGJtPtAY/ipqpn5jTWt481VRiSHHs9YOvL7B6aWsUBSF57FUW7AMuqhcl7dtdk3i/pqSyDPn9RZ774xHNstmLdPiDVMIIYQQQgghhBBCiDMRfSwTQgghhBBCCCGEEKKMzgtOJ3xk0+oQ6Oz5SjoT28hnYK3HSuaFL6yYFoD4zC+7GuJ49hlHrjnS1BxFazj0aLhIeWLi8+As6aLfm6yHUO/ML8tKgfiMO+ebzypXq/uohqJn1/lsN7dLShLE+eb+kNIA0DMj5nt5gyfR9Nwope6ljiPXKsOs9qizlz8ut+kbfCSdi9rW1R3F89QdLT0rx8MNttzcfqx9sLoKHve2v08H3Nd4LNpx5LmHO+ecON7SpSHs9X0zJ7H30RKGwu/GT3CpMUg4hoZDfy+ltBAPPhjCXAYjw2wgLcyye+4J7zFS5RJr3XguTOnhuF7ZZaLV7bD0lcNWLm0lsjMRapf7aT34nIn2Ogr3UrjE3p8BgCWsa9dWDgNx3+O+X1C3w01ro3lTknUgzfASl5pKrSfBSvmx3gq9Ylhnqtw9PUkmEJfJU6qmPMqlJH2erIzh+RuY6HS2nnB9s0zODtn2YdonDVIB7Rj1XCgy/CLA13vZCmL9mKfrNZ2rgRc5apiVZo/StiHINWtVJbUPGvPG246GsB2nReA6TnlSp07dYPRr3VSvHR2VDaKk5Ide1U+G9etD2PZxD57uUuOSq8XbQheVKVo4vYbBgXBx6Oh4sNkm0JR4GdE8WNkbdEOLMZlBBemkws9dF/6esVngdkpJ1xlP4mnTrmaM8L6mpSXsa2zeWPKdkkoyPEfyWgP461LRtIWYiehjmRBCCCGEEEIIIcRkkc2yWUuhVs2y7G+nMA95nue/OoXpCyGEEEIIIYQQQghRiKKfQF8PIJ/CfOhjmRBCCCGEEEIIIcQZSJZlDQB+G8CvY9TaxUEANwP4gzzPjyce5TR+BsB7AVwC4EkA3wbwe3meP1gh7iIA7wfwSgBLAOwC8HEAn8jzfCq/TwGYnAwzKxAnLxDPxpnSQl74i7dOZfI1MW94ThDCW8MFZPCgke35sOCfDRBY+J41SMAi9nPPrZy2sQ90bDho+Q+RGQ1rl6Gra9l4uG11CDdYAwee32rPEAoQG4ViGz6WhOtzF89mRz3wbBTZ8nE9cJtZ23Sef3o2mGIMx7AdpyPGlBHD9htG2oLdkciyWcr2Cdt0snXPhjVqtVlmjXRwedn2lzXI4xmOoP5+uD+2efXYY5WzYIvnueXm6urpWRbdK3EeUv3Wsz1z4kTll55OUnbqPFtwK1bE8RybUCO9542HrQmux6irNTWFNpto/6iyH5u2ttjWTNfaC8fDE+arMaz9QCdeae/e6Hpg9+7xcPN994UbnFlr7InrleuO+7eF7Txae0d33+0/N0M4tHnzeJjtlL3OxDufjUStWhXCl14aR9ywIYR5/rTGvqjdB5rCvMhNZodiZ0uwKXM8sXX0piSeumzX4Lmm6HLFtmwWLqz8TiDu0qmhzXlyTFlVDb+X7f6k7Kt5075tl6m0WcZLc2Q/ybJzZwhzxaYMWHlzEu8PgdhAWtE1hecKayuW4fxxw5h8t3JFcGf1jOilsPMWD6ZqbJbt2BHCPBCAeJBwmeziTnuekmOIr2QGTGtH23i4oyPsp6u1WcZVXNRmGS9fnD1rorhWm2UNCHPfBLu4/ccqP+RtoKolYXvPa9u2ttAukT01AE1dsX3mMR5/PL7mOuIhUtR0cWGiREpuNKZoFafyx+Z0ec71tuBi1vIhAG8D8GUAHwRwQfn60izLXpDn+Ujq4SzLXgngiwB+DOCdABYBuAHAf2ZZtjHP80cobgnAvwO4FMDHANwH4CUA/g+ATgDvq2fBKlH0q8DzTnH/OgBvx+hHsF0AvoTRCjhU/m0JRr8cvgLAagAjGK3oWyaf5clx73NvmupXVM31t75jurMghBBCCCGEEEKIajhLbJZlWXYRgLcC+FKe5z9Hvz8I4KMAfgET/S7x83Mx+tFrN4Br8jzvL//+dQB3YfTj16/RI28EcDmAt+V5/rHyb5/MsuyfAbwny7JP53n+UJ2KV5HK/+RuyPP8u95/ANZh9EPZIIA35Xm+Js/z38/z/HN5nv9bnuffLId/P8/z8zEquXyy/MxF5TSEEEIIIYQQQgghxJnHazF6EOrD5vdPAhgA8IuneP65ALoBfGrsQxkA5Hm+GcCtAF5T/qA2xuvK6X7SpPNhAHMBvGYyma+Gmj6BZlm2HsCN5cufz/P8X071TJ7nn86y7FEAXwPwoSzL/jPP8x/Xko8Zy9y54Vy0lVTac9Fj8Dnq1BH0Zz87hO0xfU6b0jt8NHw7PbQHEay0S0ku+Dg4uxzu6IjlZ+0bSFbEEgCWG9lz3py4p42zmeL6Sp1B5ncVPdNeFE/LYuWVnvTSSr/4HtXXI/tD+7EszcLHqLm6bf64GkueJAyI69XTxVgWLPDvFcHKJxir1WE479wWFLb/MMTXnvTI4h1jt8o4djvfzO2cSpwzVO++WhSWb3Nb2DHracysHIfmpKGO7vHwnr4QxcpVeE7iKrFV52XBVh2n39UV8tB+OSVuNVycIDe68bfezInv2hXCPI/ZuuP5gAtlK+LAgRDeujWEjZxqc1/feHgDZiYfp/BbKNzBckog7p+8Ttp+59wbaInXK+5r+3agEJ207HJTppTK3LTctezSxV0tpWi3S8cYnqobAJpB8qP+8OLuDjPvUyaGSKKUkmt6SzDXr02Dn7FLD6vmeJsTSb3sQ9H4aaucoSpp7rs3XLBJAtZjAcD27SHsdQDAN1fBYbtXdGSBE+ph374Q5vmF5omU/DC6Z2TnUTzWwVYjwyTpNYDYVEc1PEQHEOwA8WSYFm/BSemj6bqZ2q95gp7RGbSGC3vDOB1pqiwRtFx5ZQjzvNE87Egjgbgt+aG+Ypq+BjtBFZm8ippPsXD983tsW3Ifp3HR4G32YMpB8c43f4cNDdPfUVR13LXM9gAlDNFVwT/LaTPZ7WllASxcH/oGT0kpeFikJJmeFZFarayIM57LMaoQ/CH/mOf5YJZlm8v3T/U8APygwr07APwUgPMB3FO2jXYZgB/leW4nnR+W83Gq99VMoZNlCX4To1/1bivyoWyMctxbMTor/EaNeRBCCCGEEEIIIYQQU0M3gEN5nj9Z4d5eAB1lO2Op58fiVnoeAM4p/38xgPmV4pbf/xjFnTJqFdf+FEYN9N9exbPfA3BtOQ0hhBBCCCGEEEKIGYV1aDFD6ciybBNd/3We539N180YNadViUGKM+TEGTvuWCmNQRMnFXcsfrGjtTWQ1eJxM8uyfox+8fvDPM/fP8ln3wvgjwEM5HluxWCV4k/aO2iWZchf97VJPXM6uX7bB/G1O7893dkQQgghhBBCCCHqzsYrrsCmTZuy6c7HVLFx48b8hz/cdOqIZzhz5mR35Xm+0bufZdkWAMvyPO+scO9mAK8GMC/P84ofy7Is+xhGLWlcmOf5febebwL4SwAvyvP837IsW4JRZ5E353k+wTZZ2azXzjzPn1W8hJOn1k+gY1/6Lqni2YtNGkIIIYQQQgghhBDizOIRjJ4+q2SY+hyMSjS9U2Vjz4/FrfQ8EGSXRwCcqBS3/P4lqCznrCu1fizbjlGPCNdlWXZ+0YfKca/HqITz/hrzIIQQQgghhBBCCCGmhjsx+v3oCv4xy7ImjPqPOtXxujvL/7+qwr0rARxD+dtQnucjAH4E4NIKH+euKOdjyo/z1fqx7Avl/5cAfD3LsgtP9UCWZWsB/AuAsULfXGMehBBCCCGEEEIIIU4reT7qPXSm/1eAz2P0sNMN5vc3YdR+2D+O/ZBl2fIsy9ZmWcZ2xb4LYB+AN2ZZ1kJxL8GoLfsv5HnOLqRvKqf7a+Z9NwAYxmn4jlSrgf//g1FvlqsAnAvg7izLPgfgKwA2Y9RLATB6TO4SAK8A8FqMetAEgJ0Y1aYKIYQQQgghhBBCiDOMPM+3ZFn2lwDekmXZlwD8K4ALALwNox/CPkfR/xTArwB4HoBby88/lWXZb2P0o9vtWZZ9EkArgN8BcBDAH5pXfhLAGwDcmGVZL4D7APwMRr8pvT/P8wenoJgRNX0sy/P8ySzLXgrgOxh1BToXwC+X//MYM+63D8B1p9C1CiGEEEIIIYQQQojp5QYAfRg97fVSjBrh/xiAPyhLJ5Pkef6FLMtOAHgvgA9g1H79twH8fp7ne03coSzLXgDg/Rg9cLUEwC4Ab8VpOnBV68ky5Hm+I8uyZ2A0w69E+BiW4ssAfivP8/21vl8IIYQQQgghhBBCTB15np8E8MHyf6l4rwfweufeLQBuKfi+oxj1oPmWSWSzbtT8sQwA8jw/AOBVWZZdAOAXATwbwPkAFpejHMGosbbvA/gH6ypUCCGEEEIIIYQQYiYxZrNMzD7q8rFsjPJHsP+vnmkKIYQQQgghhBBCCHG6qNUbphBCCCGEEEIIIYQQs4a6niwTQgghhBBCCCGEOBuQDHP2opNlQgghhBBCCCGEEEKUKXSyLMuy5/B1nue3Vfq9WsbSE0IIIYQQQgghhBBiOikqw7wVQF4O5/Qc/14tnJ4QQgghhBBCCCGEENPGZD5SZZP8XQghhBBCCCGEEGJWIptls5eiH8v+bpK/CyGEEEIIIYQQQggx4yj0sSzP8zdM5nchhBBCCCGEEEIIIWYi8oYphBBCCCGEEEIIIUQZGdYXQgghhBBCCCGEqALZLJud6GSZEEIIIYQQQgghhBBlTsvJsizLLgDwRgBrAZwA8F0Af5Pn+cDpeL8QQgghhBBCCCGEEEWo6WNZlmUrAXyxfPmJPM//tkKclwP4JwBz6edXAHhLlmXPz/N8Ty15EEIIIYQQQgghhBCiXtR6suynAWwEkAP4D3szy7IOAH8HoFTh2TUAvgDgqhrzIIQQQgghhBBCCHFayXPZLJut1Gqz7IXl/9+X53lfhfu/BWAhRj+m/ReAXyj/t7V8/4osy66vMQ9CCCGEEEIIIYQQQtSFWk+Wrcboh7BNzv3XlP9/EMDzx2yUZVn2nwAeKL//1QC+VmM+hBBCCCGEEEIIIYSomVpPli0r/7/P3siybDlGDfrnAD7HxvzzPN8L4BsAMgDPqDEPQgghhBBCCCGEEELUhVpPlnWU/3+8wr0rKfyNCve3AbgeQE+NeRBCCCGEEEIIIYQ4rchm2eyl1pNlJ8v/X1Dh3rMozvcr3D9c/n9zjXkQQgghhBBCCCGEEKIu1Pqx7NHy/9dWuDdm/P8neZ73V7i/sPz/gQr3hBBCCCGEEEIIIYQ47dT6sexujNode3GWZW1jP2ZZdhmAizFqr+y7zrPnlv9/oMY8CCGEEEIIIYQQQghRF2q1WfYlAK/A6Cmxb2ZZ9mcA5gN4P8W52Xn2Cox+TNteYx6EEEIIIYQQQgghTiuyWTZ7qfVj2U0A3gHgEgAbAXyR7uUAvpXn+X/Zh7IsuxDAqnKcO2rMgxBCCCGEEEIIIYQQdaEmGWae5yMAXgrgLozKMfm/zQB+yXn0DRT+di15EEIIIYQQQgghhBCiXtR6sgx5nj+SZdkVAK4FcCmAOQB+DODf8zzPE+/9OwBDeZ6ftpNl+08cwQ13fRJ3Ht6BeQ1z0btgGT78jDfhkq+/DWtbezB4cggLG+fjt85/KX7lvOcDAD7zwLfwzrs/jXPmL8HgyBB+ffWL8TtrXz4h7VsPbMEH7vsSbrn2D8d/e/0PPoTrzrkCr1r5bPzqHR/FpsM7kAM4f2E3PnPlDaen0EIIIYQQQgghhBCiMDV/LAOA8kex75T/KxL/d+rx3smQ5zlecdv/xK+c93z809W/BwDYfOQBHBg8ilUtXbj7JR8BADzQvx+vvO1/YSTP8YZVLwAAvGblNfj45W/GY08ew9NveTNeteLZWLFg6aTe/6FnvBGtc5sBAG+/61P4+P23jH5WFEIIIYQQQgghxIxDNstmL7V6w5wxfOfATzC3oRFvXvOS8d82LD4PK5o7onjntXThxst+FR+9/2sT0lgyrxWrW7qx78SRSb9/7ENZnuc4cXIIWZZNOg0hhBBCCCGEEEIIMbXU5WTZTGDr4w/hGe2rCsW9rH0Vth3bM+H3h48/isGTQ7h4cW/F524/eC82/OvbQvyBg7junCvGr99wx4fxr4/chQtbV+CDl/13fG/nX06uEEIIIYQQQgghhBBiSqnrx7Isy54N4GUY9Yy5FMACAP8rz/O/MfEuxagTgCN5nj9YzzzUA2to7fMP347vPPoTbD+2F5+84q1omlOq+Nw1Sy+cYLOM+fSVN+DkyEm89a7/i88/9L16Z1sIIYQQQgghhBBC1EhdPpZlWbYSwD8AuJp/xuh3p0UVHvkggOcC2APgafXIw6m4aNHT8MWHv18o7t2Hd+GC1p7x6zGbZT84uA0v/e4f4SXdz8APDm3DH225CQDwqWe+tXA+5jTMwWtWXoO/uO9LyLpaJlcIIYQQQgghhBBCnDHIZtnspGabZVmWPR3AXRj9UJbRfyk+Wo7Tk2XZc2vNQxF+qvNiPDnyFD6585vjv9352P146PijUby+/gN4x91/i7eef/2ENK5auha/1Ps8fGT7V/GKFVdh8898FJt/5qPYuGRN8t15nmPnE4+Mh7+294dYSx/jhBBCCCGEEEIIIcSZQU0ny7IsmwPgKwCWlH/6EkZPjf0YQH/i0a+X7y8A8CIA360lH0XIsgxfvuY9uOFHn8Sf3ftFNM2Zi94FnfjwZW/Crv79uPTrv43Bk0NY2Dgfbz3/+nFPmJbfv/DncNk3bsB7Lno1FpaN9p+KHDl+5QcfxrGnBpAjxyVt5+KvrvhN/Lddf1XPIgohhBBCCCGEEEKIGsny3FromsTDWfYGAH+DUbnlB/M8/z26N1L+/Z15nt9Y4dl/B/B8AP+R53nlL1Nx/Hyyec2yDPnrJnq1PFO4ftsH8bU7vz3d2RBCCCGEEEIIIerOxiuuwKZNm06lPJuxrFu3Mb/55k3TnY2aueii7K48zzdOdz7OJGq1WfaK8v93A3j3JJ/ditGPZefXmAchhBBCCCGEEEKI00qey2bZbKVWm2WXYfT02L/keX5yks8+Vv5/e415EEIIIYQQQgghhBCiLtT6sayj/P+Hq3h2pPz/unjkFEIIIYQQQgghhBCiVmr9WDZQ/n9TFc8uL///cI15EEIIIYQQQgghhBCiLtR6qmsfgEUALqzi2edgVML5YI15mLkcexy45ZbR8JYt8b3jx0N4cDCEe3oqhwHgVa8K4TvuCOGOjjheW1vFe4ePhm+n/caXKV9zdiyc9IIFIbx4cRyv1E/fSA8dCuG+vsphy8GDlV8KACdJEdzSUvk9thBz5oQw1/373+/noSi/8AshnKrI1atDeO3aEO7tjePxPWq/gZZl42Grm/d09LbqGvoeCBeNND1wWzSZb+PcFvfcE8JPPRXHe/zxEOa++5a3VM5cis9+Nr7m9ps/P4RtwblM3De6uir/bu4NNQYPuI2J2ZOblrPQ2jISR/T6voXrmMt34kQc7yUv8dOoJzy/cJ/evz+Ox+3C49L2ae6IdG+gsXU8fPRo/Ii9HuOJJ+LruXNDmLuu7cbcntwdSoceCRe2jXbuDOFvfCOEN8VGXvt37BgPU4ujlzNxzTVx2jxvc4a4zwBxQb7ylfHgfu4zAD5B4fednKzVhDODzdSfNnAfuvTSOCLfW7UqhJcv9+NReKQttg7B3Zr7Xco+ycXrwlgfGg5ra6nRzAGUyOH+UsW0bJN788tlG+K0790W3svP2L7P8PTHYbtccRp8z06fPK44XMLQeHikMS53w3C4Fz1kK4ILzw3Dc5LNEN/bWGcbxmP7OSDOq52nH3oohJ/2ND+9pUtDmPsqzw12f8d1smdPCNu5y1t7tm0LYd5rAP6ewOaBn5s3L4Rf+1pMmg98IL7mjlfN3oHTs+sQp81rl503GC57an/nDUC7kVi3zn8Xw23L6dm2YOzGfgy7mHoDn9fpxAaIx7N9JT/GSbe3mXmxCgYGw3zXPH6WAxMnal63vTnE22AA8d52zZr4nrev9N5jr4vOSTzX2L8FGbrHfyM0NyXqm/I6MBzPzV61pKrrwrW1t+1MQDbLZi+1niy7DUAG4MVZli0s+lCWZc8HsL58+d0a8yCEEEIIIYQQQgghRF2o9WPZ58v/bwHwkSIPZFnWC+DT5cscwD/UmAchhBBCCCGEEEIIIepCTTLMPM9vzbLsWwBeAOBXsixrAfCuPM8fsHGzLFsE4JcB/AGAJRj9UPb5PM/vqyUPM5q5c8Mx3ZRujs8t87FxPuJrufLK8eCx/vibKJ++73fkJfYEOR+l5hPIrAizaXtyDgBoI5lLW1cIt3KZ7NFirhPWxdjEPZ0oH0+3Wi0mdZ64GlhemdKrdHaG8AUXhLA9Vk/p8RFpVkXYE/KpU/8RfJMf4uP3VrvJz7CE1cL1muq7RbDPc6dcSIdcbV/gOvckmckKCqTkBdy9uEpOnIjH4uLF4Vh8aXXivdwHuF08WcVUw/MQj0vbVz29lx3bVP+P7A91xF3GDllPqZ46Bp9SkXAa/N6Oju7xcPeVpt95khcj72kh2WrTd75D7wwvbbIZ4symJBw08B8g6eXfmyy9uXJOZxQb1q8PF1dfHcIXXRRHXLEihHn+Ne3FshRWNfX3xcmlFPxj2Oa7mNRUpcFj4cJKlak923leo7HT0rsMDOcn1d+XLAnhJ58MYVbGWXhNnyAbZ7gftjVV/t1mkOcrKkSDnSe4krlibd1xQQ4cqJj2hPWK0663DPN73wvhlKRr9+4Q5jrhvgrEZXfMZ7BUffSZEGzudTSwQCwz5DxwPLu+cP3ffXcIW5kiP8dtW40Mc/Pm+DolOStCSirJeeUFxtYDL0acBscrajfAmqsoKsNkqT+32XXX+c/cemsIe6ZHAH9d4z6Y0Fs30L1WG4/qeJjk6SN0diOSYZu0C+PpPQG/nViCnLJFw9i64zncWyxS/akoPId486W517yO51nTLgzNn81m/hxsqmyKJJUFIWY69ejS/w3ADwE8DcDPAfi5LMvYDtkbsyz7ZYzaNZuDUdkmAOzA7Ni/CyGEEEIIIYQQ4ixDNstmL7XKMJHn+UEAzwbwPYx+CMsAnIvRk2MA8HSM2idrRPhQ9n0Az8nzvIrP6UIIIYQQQgghhBBCTA01fywDgDzPHwHwXACvAXArgKcQPpyN/XcSwH8B+EUA1+R5/mg93i2EEEIIIYQQQgghRL2om7I4z/McwBcAfCHLsiYAazFqm6wRwGMAduR5/rh9LsuylXmeP1yvfMwosoag3y/qbz3lMpxgO2XW27pnmyxl/ojNKsydWzlrFjaJkCI6ttpCmnprx4Qj8r1U3XEBOcwGXIDYtTvbPqkHbOeDK9m6Lec8pc7yUvkGE+Y3GM8Enn2mmes1ZSeJ4Q5GNpNw8qQfr1b4PUBcdylbI9Z+zRip+qZ7JbJHUWpqdOM1Lg52HXi82K5aAtnmSNWxNziny2aZZ6CiYD2mbDQ2NZUo7D/CTZ6ah7wspcxE8nQQmWZqi/99qZkb1LEpBMC13cbDr4ltAAH+eNmyJbp8lNqC7ZT9snmsa+nSyunNJNauDWG2DWPLxvcoPEK2MgHgKE3NR46EsF0euLtz32Cs/c6IlC0jb42ivmX7qveIxZsKudumzDbxv6faMdbs2XksOhg9W2b2muPt2xfH48k1MjqXWBhTFVYrXh5snbBdTZ432G4pENvnovCx4bC+HE0sqx0dwZ5Zs7XzyfXKHZ7tpqXswXK+7aCopxbJzp02T5MlZX+V522vrIBvSy61ueJ7XF92silKNWu/Z1TY5tXbaxfdd1OdsF1dAHiCtm6P01+EsY3j+Jmk7USCt9oLFoQ0Fi6M5/0JY2GMlD1Yrjt+ke3r3tzF2DWgmrZ86KEQ5nnQ2+MCxY2JURpDjc3RLa4Gz5yk/dtvZY1mBoWYbqbEDF+e54MANqfiZFnWDeC9AP47AMcKtBBCCCGEEEIIIcSZh2yWzV5Ou8+KLMs6AbwbwK8BSPhkEkIIIYQQQgghhBDi9FL1x7Isy+YAWAWgHcBxANvzPB9KxF8C4F0AfgPAfARj/7n3zKynVApSPHt0lo8D01nXoZZwnNie3G1vC0eV+ahsSvXB8JFae/K96ElsJnXPc10/hHB0uuQdlbaJW8kTF5ALzxlPHYPmI831YNWqEN61K4QXLSr2fEKD00RunLkLpRQA/NrmJnO8fb8jF+Iz1tbN9WOPVQ7bDsCN7sjSCsMyFkvqqDmXiaUQHLbyUU/Sk3DRXaI+2c710J84sp+S7VQzAKcSfm+qLVOyBobqrq0tzAGe2sVep5QP3LSLF/tZYBmeJ6mb8K+GnAmWVduIGzeOBxvpXhvHs/MYF4rkZw+bwf23FP5NCi9bvz5O78orMePhMqxbF8I9RudBbXHgiTBHntwfR+PpgId9avhx1/fUShPYuTOE+/r8eM4/Szf3xuOcx0hKvc148tGCw3LCVNPRQVIpynazrQhPM5qSpnq2IvabBvR0QFyPp1OG6UmnbeVxfz3nnBBesSKOR5LIw4OhH6dUYAzf6+oyUrReqjtPUpvaCKbMNPC8mNrHFYGl18BE8xWTJTVv8BzM5bOLT6zNr/x70X1ItTJM7sdsJyUFy5hZum7z2uj0DSrrSFd39AhXFw+DlMKaq2HBghC227sLTRfw4HHBzWK3dM3czt4EaucJlljfd18Ip+w5eIPTVkrRSZzhNYWxfdqbI1PjKJr4YxmmN7VOl0UQIU4Hkzbwn2VZd5Zlf4NRO2T3AfhPjEouj2RZ9jdZli018RuzLPs9ADsBvB1AM8KHsjsA/Ez12RdCCCGEEEIIIYQQon5M6mRZlmUXAvgWgE6ED15jzAfwegDPzLLseXmeH8yyrBfAzQCeMZZE+f/fB/BHeZ7/e5X5FkIIIYQQQgghhJhWZLNsdlL4Y1lZdvk5AF3wpZMZgAsAfCTLsncA+C6AHoSPZN/D6Eeyb1ed49lEPhLOsaaO4XryLnt0ui0cvz2v49h4eKinNYrmqRBYpmGViJ43zJTjlYbBAf8mn9PmU+h7joawPdfreRpKnf/lemX5S0r2Ue/zxNu3h/Add4SwlZTw0XBujDVr4nhUD810lLqrK7SzLR5P4EmVqeehjBPk4+hA3JZ8NNz2T8/7VjVYKRNLQ1lDZ2UxnoyS5aMp6UkkqTT9xJMb8XvsM5xvruNUI/Ggs/IL9mQ2lXD9c/lSHk+5fFZySGk0UPlauaymXdo7QluM9ASpgK1iHkrcNWwzc5Y81WtD3wPxQ1ymrVtDePfuON62bSHMdUfyzAkZ37RpPHiIvL/+bRwL/53CyzizVmYxlfKz6cB6xGWoLjt5TJhh1b069KFjg7EHNie5iMIb44TnajhtNtKxbDxsp1zudjzkzuuN43FX4+ri6SXVLTxHf4BvRWDp0ni/sWBBuO7cSPXgeYm291IyTL5XZABXelc92bCh8u+2sngiYrm0kSyy99annO5edLlqbjRWUgYdDXHKq6/n+dhqfHnuWb7cZnlyWBmmlZlNFq5ju4F15Kh2bmjqCOtNJN8nyVrrWpM212VKglwUXjuKzu1XXRXCqcHN7Ud1cuBgECM9Rksa4KtyU442rUWPMardHnrbDztPt60O44r30EndeZRAWwhbmbHXv1J/sxT1UlkkD3Z8eB6kEww0hfrZ0xff47XIk94KMduYzAi9DsDFGP1QdhLARwB8GcCjGD1p9ioAb8GotPNVAJYCGDPAsAXA7+Z5/q36ZFsIIYQQQgghhBBCiPozmY9lr6TwL+d5/k90vRPAf2ZZ9iMAfwdgDoCfwuiHtY9j9EOZDicKIYQQQgghhBBiVpDnkmHOViZj4P/S8v9/bD6UjZPn+T8A+AmC7PJf8zz/bX0oE0IIIYQQQgghhBAzgcmcLDsHoyfFbj1FvP/AqFwTAG6sIk9nDydHgnbdCr7ZhgTr2z2Xzha2c2biDTeGb6T8Fdy6V2bYhgDHs9J7znbJs29R6bpSgmwMwr6YjR2kPuWz8QS2G2TtRHD9W7sotXL77ePBY2REppV9ZQOxrQG2aWLtarD77hayU5YwAeN7s46/l7d7Ng24vqyhiWHH9ok1tPPgg14mJg/bhwLi/KXsivE9z7aErW+2NeLZxbHv4vfYeAzXJQ+y48f9tNn2hWf0Y6rhtp03L4T37o3jcdk5r7ZOHFsxUdg8M9JU2U5ZylU9V7GdPjmeNQU3RrPNd2qOY/jenDkhTPU4QvMEAHAP/xKF32KS7mA7SWyMytosq8YuypkGl4Eb0zaYN+El6iDVfJ5JIP49NcyjuSbR94fagp2y/TTE7PaAp7uUySO+59kBsuUu2qW99FJrD683S7u6w6/Wvqm3/7F159kB4jnJ2n+cSptlbB+v6F6N1xSz9nhzV11OL3Bdeh3Z5puvOztD2G4e2U5Zyl5fEex6nBxoBSg6D1K8lPlVLjr/PkL2y4DYFmeyjovCc0pRm2WOLTJbwKGmsK8cpD7I25Kir0z1VR6a9V6ePPO7QDyf9vSEObehlwqVyjhn1u6ZuZ2XLAnhopuPorAtMp537LpP1weeCH2ys2nETZr/BLJrT832O4WYgUzmZNnY7HmqLwkHKLzVjSWEEEIIIYQQQgghxBnGZL7lz8HoybJTfT8ev5/necJdlRBCCCGEEEIIIcTMRDbLZi+zQJcxgxkaCr7d77svvsfnk/ncKx99t8fT+SiulcARzSzjawousVODnI9fe4oiID6dXOLvqvbMticr43xbOSRrSuJz1HE8luRwxjdt8tM+GL7rDtG92GF4dWwm6SWnd+E998QR16wJYS6rpwlD3BaDiRPkfC91fL69x3Eh70k2bP64XVl2CWCQ6qEppfktwh13xNecJz76znJWiyfxS8kwU+7WGU6Pw/YZT9Ns5ZUsb0ydkT9dsAyWJ4Ht2+N4ngTHSqMSUqRxTN1xk584EcIpGWZRqR2ruCLVT0rPwXOXnX/vvjuEqS2HSBpuj2F/lcLsXadj6dI4IkueOD+2sLPBt/vOnSGcklt749TKXyheS0eQBabmSE/hmXpmqKV9PFwy/XtgMBzw76PicXOlpDApBQ8/5yntbDfhKuJ7PMYsvsz//2fv3+P0rMp7f/xzT4Ynk8lkMplMmCEnQhIgYKBBDkKLSqt212O11c2uG1u7q63dtdZDz98eaGsPdlurtL/dvdUqe9dDt7W2KhWtWs9KG6xUEAIECIRAQiAkIRmGYTLP74/MzPqsa57ryppnnmTyTD7v14sX637uda97ndeaO+tzXb6iklVJnZ25ZG0lr+mR1tXbRwTy7eM6Dnge44qwJhe48IGssFCR7j6TdfdSva5n0sASreHRmjdTos1MM3hmTSxU9k6SJUYEWzW/TpqVlXp9LYLG1Wiwu/WWEW+4WaL5wKvyUvl3ROnc7Km3e7lO7TzB8zbHszJMHuu8VkcV1swY4fxwHkx+9o2kuZW3kYNmG8HwFtP+qcTVwtkuHVZCtCMzkWEKIYQQQgghhBBCCDGvaeb774aqqp4T3Z8MVFX1bCTPmC71ev2rTeRDCCGEEEIIIYQQQoiW0szHsjdM/BdRn/j/lwvSqzeZj/anQjqvamVJ3tHsJUtS2MpxGD4mbI7SD4+l49fs6SZS8LAqjE/fR07tli5Nx3+XLMllFt3rqMm948n2LC8nztIvK9vis/Asw2MvMfYZOrpsZTKzZT2Fe7n9Lr88j8gy2nPPTWHbztS2pXKckqPv034oPOaddQLuHKbfdXE5uKzNcMkl+TX3Ie77toAs72FJ85o1jZ8HsvKO9yU5VYeN53jDHB1LB3in9S2uo1JZGffpuZLWWY9Lk1hpDktieY6z7e/0L5avWee4Bw6ksCersPdYIRE56OVuw9nuj9o88k7G0neSIz9CUVh2CQAvo/BmvmHnDR5/LPe0eZ0PxjQ8DYi1B1AqeaJ2ieZSVqZ5y5XNApMpBHvyA/2lThOZUmd6PExLPXd6U1Ik1+S0bX48KWG4zJb2VU9PGunAThSR7Io7FOucTKV0s0fGgTQXRlYRco/k5PHO1sMhZ/MXeQP3nrHrLE/WnEH24FeKXeNYD8yegEshkxvhIkBlrQ348VYO0TzLZX00sAcQUToJeLLaaHBzmbwBDGBoqLHslLtnJMtmlbHNJncV/rsi+nOmFM/Zp21m3gZ2d46mi93BH0HeRB3t6QpNSjTlDTP4G4/xLIJEcLbtuuY5UZUMUzbL5jPNdOljnhRD+lhWElcIIYQQQgghhBBCiJOCmXwsewDpI5gQQgghhBBCCCGEEPOO4o9l9Xp93XHMhxBCCCGEEEIIIYQQc84pqiw+SThyJAn6I7febIOLRedN2tbyXEFHbqHZbATbKmDzSYBvx4RtGAC5TYTMgXWpT3TG+uvOfdKnMGv87XsK9f/N0MuGFNhmWSTsZ0NJNp7znGdzKYoX3RzvTC3T4RmyAfKOwzaqohex0Yhm2LAhv+Y2t7aavPdyvMCe3XBn6qv7M3Muue2hBQtSvCPOuBoYyG339XN+IsNbXJdc/wsXYk5g+1w8/tgICZDXJfdp20Z0PdyVbPPsfjBFsVOkZ2PRZoHheIcP+/Fc20p2YHGbeXaIAOCee6aCt9HPn6Dw60weTqdwx7OfnS7s+KN37adw1403ZtG6Sg2WnMx8/espvJksudl2Ydt5bKgumBi5G9vhx9fNmAriNdPGY7tSCxc2dlBu12Pux9F7ly5N4RJTOlG8yGaZY65xGlz9HSPD6cIW4hAbeSvcpnrzp81QNEHMFp6Uoj3dgw82/t3Oi5RGjew89lPDDHdlO6i8uiJbZJy/O+5IYZqrptkn5Xol24tho7PRo6uu8uN53HJLfs2d8oUvnHl63/teCq9ald/j/Rlj68GzkVpqPNMz5Af49kAt3J48fqL9j7fJN321g+uY4vXS772LgnG5LOVnYKDmRuOhuGxZCjdr84qbk5vSzl3d+x9KF1wPPC6trbwSw5VA2d9okT202WLy1j2Q1pfOzsbri4W38XZq5m0c3+PqmQ9bjWaQzbL5S9nIEUIIIYQQQgghhBDiFEAfy4QQQgghhBBCCCGEmEAyzJMFe6w3Os7tceWVKbx9u/t8Lx3T7h3qmwr39aXj0tYttHfS3B63ZdkHH6uuYTSPyEf4+fwu/3733fkzLK2JJA4MnxnmY9WRzK0ZN84RlNdxKl9H5KKdsTJTqnSW8T29imSAR7In3FPj09QTVEcdXCfcn2x+du1K4W9/O4VtGz38cONMNMOBA/m1d/bZ/s55YmkF/25kDN0ki+j2BoK97qOKHaBp1h7t30F9IKrjPXtS2NM/nUj27k1hlsByPoG8XrlT2vLRWOD6Xk/9e3gol7B6Mkzb7fhVLBuPpGjczN0j+9LFbdvyiNxmLBe67bYs2l2kN2Hp5Y9ReKXJQwfPXVzfdt6g+ooE5Duof67zo53ccOPyfGIb05Mt24mRGKR6XLGpN7vHVc5ZKJW+R+r7cfo3Sx5KnokEIJ9qIkXQY481jsfp2SmSq5LLavcEXKZs6uvL43mKs76+NJ7HTPl6uc1KK5nvRWYDogqbLSz55YmHx7LNA1eYldU3oWdiWW+4j+QG9bRVtjG5fNw5bDzWcVlbHTOlVCpZCufV5pvT5nqwMkzuk3yvdNC2QnbH7y1Nj8vL5bP9zNFfHxypNfoZQN7dn9qfwrYaOKtcJTw1s3IXAAZXoAie7yJ6Pdkw/243Ejw2uVB2L+ONOf7d7gObkYZz/vg9QV8o7SbcFpFJAs88QStVpUKcDKhLCyGEEEIIIYQQQjSBbJbNTyTDFEIIIYQQQgghhBBignl/suz8G14/11lwWVirkr6D5TxAfkyXPbSwPsgeDb/mmhT+whdS2B5jX0FnmimNTJ5pjqcPrkv3Rsl/pT1u27GfJEsP7k9he+yYJZZ8dnobyZxsnfAne5YQsN4T8D0DscTTSjG4IK3+pwF6FwkksJulVQBWGunWFLaSWTJBaQ+StywrPdm3P30Xt6fGvby62jZ7LtuTiNk2j9zNzRT7fKlcxTsWH0lzvDPlkRTY609WQsdjO+qfHM+TKJ1IOK8sveTfAb8ebPt58lYKd5v5bu3qxl6/uK8Dfn8fXDGe/+B5xeI56dZb82fYcxx5n7zd9I2PUfjVFD6HZT/Wwyuncd55KWz746ZNdMvRuAAY+NKXMJ8YJtlrtx1XvH5xW9o1kz3P0fzZYeKtJDnwyo2p37HH4GgK4exF6m0ePtxvredWHkrRFOC9t9Thc6Ti8ySedir2uiQ3kU17+fI0hk87LdVxX9/aLB6n0bN6PRph0+7fONwwXku44ooUjnRJO3em8FlnNX4GyCvT8V7YbSt8B6273KHsfoollV7D2PHC74q8G0eeamcKz32tgPNqJaKcVy6rHTB07+BYkhN39qRw18Dp8OA+aeXNgzDrksMDIyl9br5z+vzn/317kpfz/LJsWX8W79COFO7pSeOvmW2bfcbzsMvSy0At3xQsbweA0WWpHjp7Ujib922f9mSUvO8Gsr4xzmlH3n9LzcowztplpcW3b0tzKWd7/Tq48PRkpa2eKt5TdQsxH5j3H8tu/+Qlc50Fl5e++T/mOgtCCCGEEEIIIYQQgpj3H8uEEEIIIYQQQgghWk29Lptl8xV9LJtLFnSmo74k8wCQjziWkfBZVytzY/iePfLLZ5L5LDZ7ZLEehyi9WqTh4OPEXhjIPSjyPdaNGJlilieWXtrj0nzNXpk8SYO912pXLi94QUqayrTyppvyeJwn9vRmJUZc/57Mzcgn+q2cwmO74zGU28K2JWuEOD+2T3O+7b2ZQtIzAH77WY0D553P/XNZ7bjyJIK2XTy9EadtPYJyfiJ9rOfdzXpPO1GwlJvnEzsWPd1GpOfgeuU2smPWcenXbz2cVRTmfrLDtDO3O+eBZZgsuwSyufkhasuP5bHwnyl8zgUXpItL6OSzHaOcnzPPhAvLlLjsph/38DrSrpDH526SrY+ybgRAzfOcHGklef603sm4r1Edd1C4e5pUK40FVrxFry1dhljmEk0bXnpR2pwfri47lTKRo1tWunlp2z8wOL3IMxuXL/PGR1PStCYfSFK5/q4yyVsp4+uSFDSTXVm4r0Rueb01xatIIB/3kfkE7pSel0SWegF+vs28z/XAWa0VSgwz7Fo/W7hMdm/sSC/H+4xM0dkuNDOubPOVen5sxrm458k38p7ubWVKHdPa8pU4t232gwOnx/NOqSxweCRJFrujcRlJdCkTed9vHGdaeqV4f4eZCu/qSvOd3Z558J9Xtm+UmgAQYj4hA/9CCCGEEEIIIYQQQkygj2VCCCGEEEIIIYQQQkwgGaYQQgghhBBCCCHEDJHNsvmLPpbNJR1VsjlkNew84th+DttSieyvfPnLKWztTvC72E4Oa/StXj/z0e7YzALK7WWQvZksHtkHGjV2Y2pss8yWieH8seDeMw4D5OVgO2etwDMUsMIYpyD7TIduuWUqPM0yAfcHrm+2A7ZhQ/6MN4PbemC7Rpz2/fc3jmPT4D5p+0apwYQSbL7Z/gq3uTVWwfbV+B73QWucx7PnwrasAN+WGPvetnbOuI537EhhW3ecv8BWzAmDy8H5tn2DyxfZROT247S5T1ubXjxOI7tpDNcd59u+l8vBtgVNm2+nMn2Ifv9Z89qV/N7Nm1OY7fHYOZf72hlnpLDtG+w2nu/ZemD7aO0Kl/Xxx6eCNWNH8RGysXg6t5+1RbZmTQrzmmJtKvI11yv3SbtuvPCFU0G2n8PTAZAPEc+snF3quatE2wDu0l48uzRw2jwVHjjgPxfZL1q6NIV5+uX3WDtn3CxsttBO55wHTmPPnhS20zmn/f2XN8xy0/D00NmZbAXZOl69Otn04vwNRqZFuaNwgnZvxZ0osn3q2XalChrffGH2CJsuXUZloKEIALjz6ynM/e6Hn48Zc+/Iyuyal4rB42gD7eBYar/d2/N73BRes1i4HqzZV+aZW4qyh29/O4V5/D3rUv8Z2lZm48WOK77Hcxd3tcjMVjQf8FTqba1sl15baOKWn3NMmk67x3nlIbJxY2/2DKfRP5QyOzyWWSMDHJteNa6TVthF9oxQmoYptTPHcF+1Jnw5DV5OeQumD0ZiviEZphBCCCGEEEIIIYQQE+hjmRBCCCGEEEIIIYQQE0iGOZd0npbkNSwvAfJzrN6Zbz4Tb+Gz6lZ6wloIT0Jnz9HyPU7byqm8s882PX4vh0k+WON8ArnkhSUzVm7E57wHBxs/b88js2zOyiNny1VXpTCfv7f5pjrq+drX0u+2Hu6+u/F7uO5ZuwLkvqC5La30i2UbnFeuL+uymuuVw/acvnf+vhlYytboXZNY7RH3XdYecN1xX4jStnXMz7F2gePZtLgPeMfqgbwcrGtqdV8thaUsXD4rlfR0YNE5fa++7TM8LiIZrSfRtLKk7aS1YSnTrbdOBbeZ/vS3FL6Gwitf8II8be77PB/wvG/L7c0Vth44DY5ntSzzAZaSBpqSAZZeUps9ZOIN7dw5Fe6wWkCG293T+gR6yN6eJBfr68v/jZIfs8NnEtvkHC9q5lWrUpiHQTQUuRtyFbO63T4XyXt46eEp1y4jJXmweeUm8ywu2Hwfz2HB27OoTlwJ25C5UaIrswXieSMyAcBrKK9X1LnsFpPlrSzLtTJMrodIJlyCVcvz1mGwieVv30iSV0bWOPZTGWwV87Vdbibh8Qbk9TDbOgHKxx/jxYue53vRVobL5I1fe4+3Y/x7szI+z0JF9OcME801uQQ1SS+L27KHCmgnv2YKzGkE88HAQJKTlm67ebsSrQ+lyvBTBdksm7/oZJkQQgghhBBCCCGEEBPoY5kQQgghhBBCCCGEEBNIhjmXdHams8LWuyOf7bXH5yeJXOrwPXtOmNPz0rDndfn8NUsvbTxP32HPqntlitLmc9WRpM/zoMdltRI6liG02sMg54fPMFvNDeePtSNGR7KfpEN9LLOIXKRxvbIsl12DAcCuXSnMbcT5tm3Hx8E5HEkOIw1OCZHnwEifYDU5k7D81LqGsteT3HmnnycuH+tI7Hjzzmzb+uFycH5Yx3AiiaTYTKl0iHU8fLaf29W2OdcJP2Prjt/F86zV95DccpT6+DcpypfzJ/BfKLyR68F6U2TvtCybZCmU7QtemczYZq9tnX0p3D1kPMVZt1btCNdX4F6ug+dFmu+6zdz1AIW76F6/iVfjfsjSZ+5P1pTC616XwlT3fX2nZ9E466VSJO4OkeSFlcocj99p35NJ0SiefU+k5vfwnCWXysisUpanQpa9Rdsfu/S3Eh5ipapeLnsfjV8A6KHrmtdokUaQO5Td1/D+g/ruvs7UP793S/4Iq9PZ6oC1FMHDZ7aSLPbgCOR9rdRzJMMeS6NllstqZaa8TSq1PMLXvAXzthfHguu4dDvlqcajvDJRvj0PmnYb6NWR55wcAM4vc2CayYajrRFLiL251M4bfI+fKZZbR5NSM4PEMw1g6OlLMszusYN8x38m6E/e1MO/R3+aCtGO6GOZEEIIIYQQQgghxAyRzbL5i2SYQgghhBBCCCGEEEJMoI9lQgghhBBCCCGEEEJMIBnmXNJRJVF7qX0uFoNHonw2AMD2WwBQCugjwwdjZHSgM/KHzEJ89k0f5cHiGTlhP/OltsiswJ7rzrOTZQ0N8D1rS2y2bCKDC5FRE24ntqdk2qKXbJYNk5GGUQr3WcMsbFuHDQ2sCHyve3Vnzxlz2suXp7C1ZcX1UGqkxsPa+POM/TRjG8LaNeN64OejMev5WI/sbnHY9mk2EMNpWJtzJwruN2ywJjJexPVj7d5ZwyaTRPMQtwWNiWntx+/iMD8D4BGaW8lcTWan7CqThU2cb+7fm4yRFefevrFeePRt7J8KczXYqnpwGxrS15f/W9hKO2baEV4D2M6gtRHH1/fdNxWM/nXwXgqPmntd1AA91G+62YhPNKfRPdulPdlGZNOLp4elS/3X8nDkNPidkR2wyK4RExXdsxEWpcfv5eetbSzeDnGYbRd5ZiqPB7y8l8pxeJm0fSNbBjwbfTwOgNzYVrSm8ERC93hajcyheTbw7DUPkWawac9268D5jkzXcvvZPhTZo2v0PJA3H/djb+k7FtHS6OFtf6K0vPoutdVly+d0u+z3Zk2x8ljisM0r1z/3gcAMpmvy06bN11yOFSvSet4xZlaYZjoB/53Cz5vGzPth2aRU60z2Tu0+gl/l2SwTYr6hj2VCCCGEEEIIIYQQM0Q2y+YvkmEKIYQQQgghhBBCCDGBTpbNIfUFp2F0wo18zcqX+HyyJ8GyrsCZLVtS2Jwn7mNf3HSmtpMlSvacOaUxTj932PPbnD8+g2yPGbOMy5NAWjkkS2vI1fm0tFlu5MkH7ed/SmMYyV17d1baJuFy8Blteyae9S9cBnP+u4PqrpvaZQe1WZ+R3rrny207c116/p/tuXM+x85n322f5utmtQcTjHZ2Z9djVLzOztpUuGZfw3n3dBG2Trj+o3P63Ke8erT9jvsn108k8TyekuFSvPdG5eP+Hmk4uL4iTRDPVyRbHjPtx0/13nrrVHifeS1LLz9F4ZdReLPN6w/+YArznBTIMIe7khzjwe0pilVJlUh9gLzKn3yy8e8AMLBp5VS41op5bQ7Y13n6VLj/oov8iNy/qF16t27NovVSv+ly1jgA4FWO79XomU5PpwNkc0j/uryhnx5M85UnlZzWlgP+PYanIe5P0fTL8TjtaNrn9Gw8XhJY5sZlsPnhe9GSydMQbzcieVCzEq8SeAxH0jaW9XH+oiVlrWd6wr6I90nRmkt7jIOdNCfRRGi7tCeptHU8W6kkY9t8tmnzshFsA91lH8i3C944LR2Xdt4vJdoueHDXiPodw2WPLKvwvDGS7cf89LhtuW8dOOC/J4LT4DDPOzYP3p8pdrh49R21H9/rePSRdBFpdEsbk58J9PL962gy3U6dOnoPNUxXV24qwpPVMzpdJeYbOlkmhBBCCCGEEEIIIcQEOlkmhBBCCCGEEEII0QQ6VTc/0ceyOWTsCPD440fDp51Wy+7185F7PiPN8rroGG2ki2DIbdRDdI66Zs5lH6Qw+3HpZ7dTAHroOhPKWdkWyzBZcsh5jWR8hRqO4ZF0eLKLj0Qboc04HbLcT8f0u1ugcjt4KKXdG52d9zwt2vbj+qLj12tJYjZNBub1Ffs7e7P04kVyo1I3SLOUYUYe5TjpWukMF7l986SArFcB/PP420lrZ9vS68fR2X5OY5b12DSleWAJeaQR5PpnL5X33JPCdk6i+Yp75LDJAsstWbj+gIl3E4VZesl+FmuRNNzz1mvu8fCJvOd5fdpKYbhaWb5iPQey/GitcR7ZLnAZ+khW2nHW/jzinj0pzLoRqzeifseSduOrFWakT7GSwut4/gWQjYrAteVTTzXMTrEj2Mk9RCNYisT9gX/n9wN5v+N41iMg58/KnLx4LNWKHBNH8k8PT9p4IuH3RuXz2tkux1z/qy9NEuQOXh9sn+Y1nBO0jURz1O4d6Weefs32Ltt+epJhIC9Ts5K6SUocWM8Eri5engC//az81JP5RmPWk2iWyNpmkl4pvG5E+ymvTiJ5ZeSB1ttOeV4WZwL3Ne6rdovibWG5b9hnuHyeF097nf2d0epJqfBvPP4bqLtQ8zvek6SX+73FD76FkVaPWSHmGskwhRBCCCGEEEIIIYSYQB/LhBBCCCGEEEIIIYSYQDLMOWR8fLpUZpLOgSRi7GXZXenZ683kty1yJ0Rni1eypzBzLruTrlmiYk/bsvQy85oZSSpZvjQ4mMJWyuR5yjRHi/fsbfwNOJc15XG4Spo9Fl9EpC/ha3bRY+Nx2Sm9HvLslkk1Ad+9mNV0sesy74y17Xes4/FcItnnvDPthdij755kDYdMHngscPkij5WsV2B9gR1XnkaBdVK2vj1vrZGX0la6GmsWzkPUfsuWpTDXnX2Gy+d4HD1o6oR8S2UycTsn8UgnQSz+3cS7nMJrKTzAc9UFF+QPsQdMHpfWU3GBXNY2q6fKtVXHVcxD0aY3H2xpsByKJZkreQ0Bchl65DWaKrmXJZk8lyJf17iv8Vu7Is+0PDcYDdDAwOloROTRkdeoSALJ93j4eb9Hz1u8/mn7nWcBgJvFxuGq9KYGG6/UE+XxVK5zN7QSPyaqc4bHcy4RI4/dtn+vWZPC3roPYHgsmf6IpLyM56TdwuWb7XJl57tmvUdOEuXHmyPtss19qFQy7N0rdX5o4b62dOnMn+H5hbd9gO+xMoLnJK6v0vqOtj+llEpiGW8rE7ULzzvd1vADZ2K3P+9ncGbt3t2DJ4RA5t/NBWliEzAf9xHHi3pd9TNf0ckyIYQQQgghhBBCCCEm0McyIYQQQgghhBBCCCEm0McyIYQQQgghhBBCCCEmOAmM35y61MeTVD3S13cO9U+Fu1nPHj3EtnSs0QHPIIHnZx5A7623ToXZZos1H9HD+vgVK1L4vPPyiCz657xy+fh388zBzlQnY6Z47DKaicwssb0Fdj89uAKzJjMtQLbouq2NGxa7s90R6xqen+P247q3hllKDYdwRbAhC07P2kjha25zY/RhvI/ajIpay6zblRHZWOHu3d9nGtozRMG/23HFdccZt2l5diMi+2zcltz32XafvcdtYW01nSDGyc5SR6kf9VLbGdynqe56jR2pMWf+s7+yjcXvUviZJh7bKevnGzwWrT0Rr/3MGGE7ip55PDaNB/hDtnQo2youteFyMuPZcBoY6M3i1XhccB/kNQ7IjSuRTZlOY6So/+67p8Juz7WGjZjAmE73QJr/BgZSP2GbUNbGlWenzhKYrJrCTkmcvciWJ+eJh7Z9j5eH5ctT2NpMYhtMbDfNjhHP5GNkb+h4mnxkU6PRFOeNxabyFhk79AzLBXlgbLt4tqiasQNWim3LyFZaCVwldshyOSIzoWxTq9T+nGfTq1mbZZHNPw/eVkTLtmM2NJyTvHnDthfnNcpDM3jpRXOcZ6csyk/WH0ZMB/c6vLePnJZgIVF6jLOfiugYSXbYli7tzu7xejNLc2jzDtksm7/oZJkQQgghhBBCCCGEEBPoY5kQQgghhBBCCCGEEBNIhnmSwidsu7tIpradREU7d/oJ3HFHCrOuEABuuimF9+6dCh7atm0qbA/rPkjhfRTuN/FG6cx2H4W7rC9oljYxfIbVnp2mSundlM6gj47l33w9t978u5WUeFloBZ577FAnxWff7dFpdkHNabDEyD7D16UF9OJFsl63sK0lkj5Eaig3T1wG21d5MPI9K4/1jtI/SKMn8nvP2iObFuuuIv/mUfotpGNsNF1Ex/y5jrjfcp3Y6/vuS+Fdu1JSJu1HKMxO2R8web2LwhdS2M5dnAZLzftY/mml05s2UcS+FJ4md0gyQZaSsZzYNrknebJSNE7DdknmBHWN44qnIql1Gik39zUOU38CAGzfnsLf+c5U8NDu3Vm0eynMPZf70FqzHq/kC0+ODODgobR+cVbtNMvw+sVtvtaosjk9byhGS0XUnzheJPf0plxernh6s89w1UUqIja/wEM2UileuNlPrxn27Elhb5m215Gc0Vt6MolYtI+IKqwvSelZWsXbRTMMsj4Z5ZuzxPXQDHapmK1cj7a8YX03swWzW4cSbN8vhfu4tYxR8gxbWuE6AfL9Fbd5ZP6C+xBLL1lGHcF1H819EZ5k1A4Rbj9+r+3vjDePDQ3lJgA62KxIZoOlcMCU4g0Ek/ZoV8pfraesYse7kvTysR35Pc6qZ1JitmO+XZEMc/6ik2VCCCGEEEIIIYQQQkygj2VCCCGEEEIIIYQQQkwgGeYcwkc27fFtPso5Tt80O0q9prCGx+pv+Jq0EDWKMowcEl1lMkx7yJ+/vvJp1NXR+WbPc2ekDwkocUZjj4bzvci7WDOwh6ysKR4M5IxRWT03TZ6bIZsJV88B/8x8JD/kaz6nbxqi41ASt9WyI+kz11VY9aEn25mWV9YbsA4hOjfO8aKz5l7HY+0Dt4OFC2XbgV3H8XusXuFEae34vZ42B8jr3wsDeV1SfR2i+cnOIKzO4XvbTbxzKMwiSttaLKnLapGll7Z+C12z8XTsyYTtUORXcdh2Db6OHGQ1IxE62fCmSCvFr3GFccRItkz3usx6xUKbbud3Xj+nEXjDRFcu42n0iG07XqMiyZK3nHoOsY91z8uf5wnvWPc8PK+EFu77nie8SIbZappxahct+9zuvAyxTK472t8F7ga9KTzKD0vAradMj9nKklo9j/HYieSxpfXAbRGVtdVeWEu9kTKhiQrCq4dob1xq6YP7MY9f3ho167mZ+zF3fWu2g+NxW0bv5TrmtNlzJAB/f1Y6mZbiTaxRZyjsKJx05ECa7/Hv88HzthCMPpYJIYQQQgghhBBCzBDZLJu/SIYphBBCCCGEEEIIIcQE+lgmhBBCCCGEEEIIIcQEkmHOIVVHMiNh7WiwK+iORx9JF2xLhf2UWziePRfKdqXI3zor7626fswJ7zfx2G4L2znrMSL2XrJL1ME2nTivkT9sulczdmgGBhrbgOFoHWOj+U3KX19f4+ebZcUKei+3pbV5xdds0ymyc8XGE/hF1o4JG4dg4wI2Hhsh8Ay5WdsLnFfqT5lxCiDvk9zhV6/GTOnuNO3X5fgdt7axOH/cJz0X30BeR9w/rR91x2jDGNlJ67Q+2tmICHdQmwe2jcXx7MTB9rWOJ9yWto6ZBx9sHOYxDwDbk6WxUUqbRss0m2UPUfheCm808dZS+HQKHzTx2BZVJ7fLggUpbPu+Z/fO1En/xjRf7e9L/0bFdn/sUFy6NIU920xAubmSUhtDJzOOiTHUYOYDbotoPnCMNVklBf+rIq9xPPrCzZRn8AbAIcoSZy8yo8j9IRp+nplATptt9gD5NMbVE9l3ivqgZz8s6qvc9xlrC8ezrcTLWKmdplbA+YnM1Hn26ErLl9Fn1gCvkgv1QdE7PbtEdhkqNb9awvG0f2SrxKsuG4+3Q56trlI7Ys3a0OPxXJqGNx8cOJDH87ZG0VzD8wjPT7bu+B7nm+fzyLxXRIkdPnuPl3DPlhmQzyNZmbpMQ3vjLBp/zXRyz1CvWV94mzq4rK8oaV4fbN/g1/I9/j3qJ0IAQFVVPwngLQA24eh2/NMAfqNer+8NHzz6bBeA1wB4CYDvAzAI4GEA/wrg9+v1+h0m/joA9znJfa9er28+1jv1sUwIIYQQQgghhBCiCWSz7NhUVfUWAO8C8BUAvwRgNYC3AriiqqrL6vX64eh5AOsAvBfA1wH8NY7+2/l6AD8P4MeqqvqRer3+pQbP/QOAT5jf9pfkWR/LhBBCCCGEEEIIIUTLqapqAMDbAWwF8Lx6vX5k4vetAD6Fox/P/ugYyewFcFG9Xr/FpP1hAN8B8D8AXNLgue/W6/UPNZNvfSybS8hzhv0azceBe3ucI7ZWj8PwmWaWEQHAmjWNH9m5cypsP46zRLOfwg+YeJ5c0xrHG+d7nmzA5puvAz3H0+b4dENshdMx6B5HxtksmeQz0id4/yRhdSTc7ixVZQmeleN5Ej+rFeAz8l7eojPtkf/wSNMzU+w5fS4H58HGY32OJ6GLNCX8Hiszdfxoc22xhAsAavxM5GacdR+lvuqPJ55GxfYn1hhFuhZHAsd1t89kgaWX6ylshags5u6HTyb6Xrcuhc8+O4XtnMvjiqWygQbHG36227Fsku9ZV/U9Pd0N483Hf+H0pqFRM7IyaT63mZ0XWS9C7dxldCRDdM2CT06tO9L7ccbN2O7qatx+pW3Z6nYuHdpMtGzzPR4i3CxWIszX3JS2rHyPp5plyxq/H4itGswWT0pm81CquvK2C1wP410sIAc6eE9gTFRkaZMqvjQ/3LZeX7U0KzP0ni+VN86W0nHlSTdtPr18R9v4iNI/BRivO0Ttz2M2mpNK5c4lUuVm5zR+jmWUNm9eebl/262wJxnFbqOX9/SI0f6XJ69SPK2q6QyzlaEHWzW3Lefj3kO0jJfjqNWTv5j8UAYA9Xr901VV3QvgGhzjY1m9Xn8MwGMNfr+9qqrbALiyygkJZ0e9Xh/24jRCBv6FEEIIIYQQQgghxPHg0on/f6vBvZsAbKqqqql/QqiqqgPAGQA8g+5vw9GzP4erqtpZVdXvV1W10ImboZNlQgghhBBCCCGEEDOkXp83p+oGqqq6ma7fW6/X39uitFdO/H9Xg3u7AFQTce5qIu2fx9GPZX9gfh8H8C8A/hHA/QBWAPjPAH4bR+2k/QifcmuEPpbNIR0d6cSsPaKdqUW2kx849kJnPesxLCuzZ7R5NLOki84WdxsZiueX0p6wZzEMe5uLnNv0cjm4Iqy3Tz5PfMYZKWzOVK9Ytx6NyDxRBlLCTBYayBiK4bbwwoDvdijSIXgSI5tv75x+lDafSffkdEC5V8lI6jhTrLsdT4Zp47F00tO4lOo+bB9y0uOzvsZnH/rZOyePA9tenmu8ZjUcs8Xz/Gj7Bo/h3c48Zq553thB4e+aLFxIYZZXWhkmX/dR23ZaD708v/BYirQnngTZthe108DA6RROUawHwG7uOYd8GTTLMHnYW29erZjK5hqur+XLU7g2YnybeuOFZc+AL2UxusAarZP9lEY3V6pj3gBAqLcdcbpQpNrhJGw7Z2kXyPiOmC1iqTO3UtmNdy+SXZXKe7y0I6ne8fSO6TVz5HWxVMLqYdO2Un8voudAj8OlW48on7Nd6heaf/f3LEWUUlo+vmeXes5TqVdY7z0nklKrCN780MyHgBP58SCa10qeYSIZbUdmSKYwwagiSjPrpRd0PF5fxvvS7BCVIfIkWuLpdp58MDqVebRerzey+TVFVVV9AN48gzSvq9fr+5Aczz/VIM5kj+pucC+kqqrvB/BnOPqnQibjrNfrDwB4nnnkr6uqei+A1wP4LwA+HKWvj2VCCCGEEEIIIYQQIqIPwO/OIP6HcNT08OS/Ai8EYP+pb/KfKGZkT6yqqosB/BOOesV8Ub1eL7TCiT/E0Y9lL4Y+lgkhhBBCCCGEEEKIZqnX6ztwVDI5Ux6a+P8qANvNvVUA6hTnmFRV9UwAnwdwAMAP1uv1RvJOj50AjsAXz02hj2VCCCGEEEIIIYQQM2Qe2Sw7nmwF8LMArsD0j2XPAnBnvV6PLDdNUVXVRTj6oewJHP1Qdv8M87IewAL4DgGm0MeyOaRjQbKfYG0ndOzfly4eJB/fbOvH2vRiOJ41VuMJ0smYhzUzwW5T2SZGZDGJ79kzlZxeL+eVDYpwuYFci//wwylsZqcOzzgP27GJbA+xUYtWGPphm06RzTLvnu0cnmEbptkZm9NmOwpPkbzcvpOvrY0wJrLDNlNsHrhv8L3IRlGpYRzPwEgT7r6NpS50Uhq9u+gfRIzNpGk2viaZK0NUXp+2deLZKTPlGSZ7bdvo93+j8GUmC+sozL3pdBOvh+ty1aqpYO899+QRvbqMjEd5trGsPUnq790b0/zS15dMMyxbZtJ4dH/jtE0eOvtSOLIjNB9slnEZVqygG9vN+OD+xRXxmPE2zu3Hc4Xtx9R+vRyPMzEQ/OMkz3emYbg5PTtepTaFLN4UFZmgbMaeUjM2y/h3a3eNr6OlosS20om0D2Vtjnl58OyZRfa4vC5U6zS2hzybnaYhenp6KYxjhm3SbLfL2oHjV3l1Uoqtk9luHfh5aw+NyxG9x4vH9XMi+13pdq8Z+2Pcflym0ucj21/e783WnWf/z/ZP713F9gyjCcZLvJnKK81DE4/UCuu4dJsbrSlCEJ8EcB2AN1ZV9ZFJw/pVVb0UwAYcNbo/RVVVAzh68uvher1+gH6/CMAXABzG0Q9l93kvrKpqeb1ef8z81gHg7ROXnz5WpvWxTAghhBBCCCGEEEK0nHq9vreqqt8G8E4AX6iq6qM4Kr98G47+W/m7zSNvxFHbaD8N4HoAqKrqTBw9UbYMRz+8ff+EgX/mH+r1+qRHt/dVVdUL4Js4Kr0cAPDjAC7G0Y93Hz9WvvWxTAghhBBCCCGEEEIcF+r1+p9VVfUYgLfg6MeugwA+BuDXCyWYZwGY9Id+bRBn8mPZPwF4DY7KP/tx1BPn9wD8AoD/Va/XA/e2R9HHsjmkc0Ed/X0TbWRlVixBvOOOFL7zzhTexoIlw913p7B1ae/JTRYvngp2mLO3XXR+u4vOmnebeKP8DIVtT2SBZR+VvevwYbiwHIrPvg8N5fH4DDDHs7JOxsr1Jlm92n+mlPvodChLZ3fsyOOxZCKS0Xr+27kerCSI0/B8xttrDnP9WH0C1zfLmqxfac6T1T/MlJ0782vWarCGx8pCPSkoh219e/Kqdevya0fCevqtt06F7YR7kMJdJN2rRRoQT3p7IvGk4TZv3Md5TjISyO9S+MsUvorCm0wWeinM9Vqz8wG301lnpbCtY29O8fq3veb232VsjLL+hd4ztPqclO9D+5DB9erptgD0rF7b8JYdft1j3NsiAf3JC0/HHTvuTRd2bud+x3Vn24/ng0iDRdedrO/hDNl+x9BcOtqZe0X3FM2Bgs593sLLKQ/NSLrJ8FJj+1Op7MY+NwkvKVbJdOAAili6NIW5fByOJJCthq0VRHjqrChvxTI1bxIwDdFD3ZWXPA7b7QG/11oKYLj+i6VtDjYPs20/Lt806XvwXi8PPA7490h+yuPPGx/HosQah4XnCg7bPHjWOKJxXto/S/p+s3XCcL+LpIQlMnh7Pd6ZjNF0RIPEMw/SCp2is38d7/LXF2ZlsFzxM9GfZFyvpWvKfEY2y8qp1+vXY+Kk2DHiXQvzQaxer38ZM3AuUK/X/xrAX88ge9PoOHYUIYQQQgghhBBCCCFODfSxTAghhBBCCCGEEEKICSTDnEuOHEnnXa0Mk2UkLL3cTp5WWdZk4fSi8/J8Jp3PLWeuxuCefe8y8sUu8jbWG53zpvO7XHL2NNZ/yy35M5wGH322Z9A9eR3XqT0j78lxWgG/l2WY3JZAXg5uPyvv4TbjY94sF4zkldF5ee8MMetLIk+iXhjwpaDNYD3Bev3BnkHneuX6iurEq28rb/YkLxTuN2OW38S9Yb2RmWbjLNIvnShY9sb929Y3lXeU4t1ikvsshX+EwhdSuNvOSTwuuD9t3JjH43Zm2Vzk6s2T7lk9B99jD712zDry327uW1YiyPXq9UEAHYeSvLK/h+XEpm/cRult3ox2pPboQ+mC508raed7UR17ej3bfqzX4vmPJb6FMky7FLJqnMORJChQ1xXBy1/kDbMZWWDkHM7zXmnLwPF46bFpe9KfaFqcrXfGCLYuwN0u2qJwflhWauPxdJWVIdKLBVq92ljyUT40lKRb/LidzjmJyPlrK7HDarZbB07PWlzg6d3bHth4zTg59CyFzATPS2UzRGPW205HW8coP156XngmePmL5g3Pg2ZkpaFjbBRFeBXZClMahZ0tMs1Q8oxkhULoY5kQQgghhBBCCCHEjJHNsvmLZJhCCCGEEEIIIYQQQkygk2VzyejTSc7EHi+BXFbCXi/5d+txjWEXJlY6xJ4DS88+ezI+e67Xc+dl4vWTh0C+8whHMvnu53qIjjTzp30+Z+95SLP5a7UMkyWDXD9WEsR1zPm2ege+9qSX9hnPy6WVovFzLPfjOrUyt1JvmNwfZqsbYMkbkNdXJBnlduey8u/WAypLrTjftv34XdwnOW/Ll4PppT65liSiB5EzTnXXHfXjE4UnwySPngAwRvfY4+VnTHIvovBlPP42kQ9Mq8fha24X66WU6z/ybhu50Jsk0jF4rgctXEcsC448bXoecAG/39kyRG4T2wWuLw6bfjetLieJNIfe/Av4mizug2ZsMwfHkszNWlwgywVZmKffyNNY1CW9f+WOljjeHkSSxVLZFcdjmWnkHM5bRux7PPV9NPwiL4ezxfMcGHU7bguue3vPlcBFRxkiDRZVUv9AF0VL/4ZutxHcH3iI2KSj6Wqm2KE42/QiaxVMJP/1qrx0nLbC2yO/q1TVx3NKqXNGT0lo5waWINt+zCxenMLeVjTyXhnh/Tlj69uToXObR9Lw4bEa3all8Tp70lxf6xxvnFHbYM3IMnlg0Dpkl0Jeb7iO16/zk44s6HhzfSRhFaLd0ckyIYQQQgghhBBCCCEm0MkyIYQQQgghhBBCiCaQzbL5iU6WCSGEEEIIIYQQQggxgU6WzSVjTydB+Z135vfYDhDZ92KjJiNG2J/JxFk0bg2UsNbds9NiRefs03zJkhS2gna2ZcSGR4wmv4uE9F1kSGGY0svslwEYpvKu3ro13WBDDIBvs4ztwnEZgNDF+qy57bYUZmMAXFdAbmspsj/G154fdPPMaFfvVDgzY7I/i4Z+fo7rhI05WNtRXF9sIMHaSLr77hSerV24e+7JrzlPkZEbz9AO2xsqtVkW2YDiPBQaSemhsT1uxjb1IGyk92Z2/E4k27enMI3F/Sba7RT+Zwq/xMS7kC82bEjhzZtTuNRmmbWp540L2zc8I1GeTTB7j5+3hqk4HvcBHge2P3Hbcn9YsSKPx89FNst4TbnySrQl3O84bG2U8dzK9RDZMOT+ZNe/wcEU5rWDn2FjPIbIVCU3n2crJvrX6mi58p7jKonsgEW2Z3iIRLbNPBs3hea0MtguEpDbQCv9F/3ZmsuM4HrgLZPF2uGaJDJH6LaZLZDX3wvtJA0NnT4VtlOSty2xSXF7ztbGmF2OW5me7d+enbmoz0TTC9PqLSb3tdI+7dlUi0z4enNANDfwPVsnPH16NsYim2cRrl0/g7f9bGZusH9+cN5H6DxKrzfom4UGwjDZGTxwII/2+OMpXNrvOB7PsYBfd9y3juccK8RcoJNlQgghhBBCCCGEEEJMoO+/QgghhBBCCCGEEDOkXpfNsvmKPpbNJU+PJbkOS2SATEYyTpIeVisUN150TN+TYVq9A0t/Ip/hDJ+Jtuf5WdpG97pJqjdqknuIwnwkcshI0Tr4PDDldYzkYp1nn50n7vlEbwXemXb7Hpb08IxrZZgsGfR8b5sz8p7kZVrz9VEanrTR6iK8BCOf07NdUaLnueyBNCorB9cd900bj7HxOE98dj3SKzgN02vmg/U0Robp914zrk7YhL5z51SQ5dI7TDSWXv4whbeYeJ1clzw2ue6tDJOlcawNsOOFx1kgVc7mAJYd81xoxyzrFVhfEukQ+D0srzTS2wxO2+aB+240H0dauXbB0zLZcrM2huPZsejpdmwde32I5xcr7Sc8qeWx7nnMVnIYdU8ukqdGttel+fHSs83H9cDxbPORcj1LI6rHVi/vzOHDKcx1HA1LxraLJ1OrdY6ni0MmcW8Nto3kZKqD5pOurm43P6XMdtqxW9Fm8uA93901nt0bp50lx7PST646Xup52bB4Y6TZrRCPJSuV8/CmzFKZaVQnDMezy5pnBYbDzdaJN16i8efNQ1ayyP04sDDj98+B2lSw1+49mtEWUxqPktUHll0C/pwUwfVgpbssM/W29JJhivmGZJhCCCGEEEIIIYQQQkygj2VCCCGEEEIIIYQQQkygw5JzyZGxpBew3tPobC9/0cwOxVuvaMyqVSlsZWR8BJglfXw+2kpKON6yZSlsz0vzWWXWc1jXUI72pI/kXZ3m7DS/ie9YuWbX3r3pguQ4LBdbaWWvnO/Zemq08JntyNWY56mP6x7I252f4bBJ2ztebptvnGQXHX10g/sG9y0gb0vOg9W7eF77msG6lON3RXIq7oeetMrK/by07bjyPI9Frp08LZPpgwOOx8kHTHLr/Te1lIM0X3EePmPivYjC51C400pYWXrJ9848M4XtfOfJYyP3aZGEnONx+0V9lV1PRV5Pub+yVofHBGvK7DORjsQb3FYL4blCayc8iZktK69fXvvb53hes33N8zrs6YgMkRrOkzlFUqTImyXjSYL4GSuTC9SkGd7UFTkc9SSV0TNRWb17pRKxVsNbHp7Cbfk4fyxTs5JDD5YLdkTaTb4XJe5o0RYv7naj8VJqs8BDZLYWF3i7CczeG2YmvTTzKtdlT0+SzdkysOyRk4iW+hKvsDOB66FU9uY9U+rZkruQLWvpPOZtgb3wTODnIm+hXn15zwP5eC6tb98yR35OpdZMgSkTpTLvZuT7th68OVcyTNksm8/oZJkQQgghhBBCCCGEEBPoY5kQQgghhBBCCCGEEBPoY5kQQgghhBBCCCGEEBOcosrik4TOzmSPytrwYVs2ZHcrszvDBjIsZ5yRwtZNsWebjMNWQ19qx4vjcdgaOPDsQK1ZMxXsMXbcTqd64NzVrI0pSoPLMcTpPeMZ+TNcrxs3oqVwep5dJGC6bbJJrBEZzyZJQKmNGxd+p21LtsHE7Rq5x+b+3Qy2ze27GuUHyI07sAGOZoxQWOMEzRgr4DxERjvIhtIY2eRzSn3cYTtlN1D4JSbeWgr38Q1rE8qzAxUZCvGMZETtUmrcwzPAEhl0Yltpkd00nusHB/202VgI29OK5vMIO2baES4D16NtV55f+Blr8IjbOVr/rOGWRs8HREO7GVs9kelLLx4TrQf8DA8dmxbfY7tb1jQeV52X78hmWVQ/XjnmymZOqVlA7q78TPS8axMoslnmNaa95xh8O2JMg3ISvOzb4ddKuz02rdIp3GN0LJ0RiGxFcZ+2lNivisz5tqJ/NmPmynum1GZZZOes1GaZFy+yk1UKp9HM1qH0vZENSi8/EZkNQowHMRs/EzFLc2jTtiUlNgNls0zMN3SyTAghhBBCCCGEEEKICfSxTAghhBBCCCGEEEKICU7Rw5InCZ2dSY5kpX8s0fP0BdH52i1bUthKPFm2w1JOPm8baTP4vdGZ+Cge+1Fm7QGfYTVSvd4dOxqnbcvnSPI6SL6WSTUBYOfOhs+0hFJNCbcLSx0j2RXfozZiqQEAPElK3uiYMDdTd2m/YymhJyu0ic/2rLKVsHrjpRnNRqT7iLQ+Xpm4HqxkjiXW3JZWpkpSshr14x3mVRc2zkHL+TiFX0nhtSZeL0vgeMzZ+Y5li/wM14mtO0/KbePRuBjvrE2FO6yeINKOTGKl74cPpzDPY1by6I2RSN7O6bHmKeqffM+OvxL9xMkO9weWplpYT8MmCbjuLSwNjuZmby0MtCdR1XtdLVJ8ly7BnG1Xxmfwumopkexq2bKyPHAzR0smx4sko94zrcZTOkdWKErXY14q+PeurjSnAUB3aeV58u2gYTiJyIoB5y+SM5YQyf1mi5WylW5LSiSHkTrW9odmsEr/EjzlupUf8tLD97zfLbys2fb3LCa0Wr4W9Tuv/Xh+4rB9hoeY3RJw23pzUg2j+UMjwbrt0DGW0li6NM0Bth5LrTQwkXq7FXJZIdqNU/pj2YLn3YALzuqduv7Ht1+CHbuH8aO/dTPWn9GNJ586gpdcMYh3/vz5057dsXsYL/mNrbjtg8+d+u3a6+9Ez6JO/PLVG/DbH7gTn/zGbnRUFU5fVsP1v7YFKweaEI8LIYQQQgghhBDipEM2y+Yvp/THskW1Bbjl/c/JftuxexjPvqAfN/zxZXjyqSO46PVfxSuuHMIPXNA/o7R/5er1+IP/di4A4Lq/vw+//3/vwv9664k69yGEEEIIIYQQQgghmuGU/lh2LBYtXIAtG5di16Mzl3L1Lk7nkA+PHEFVVdMjLVkCPP/5R8OT/28Vb397a9MTzfP+95/wV9Y6c486gyuciCE0PUSe/uaCv/3buc7BdPnvCaKXwnP1+f3aUrdvJxmZp6lSPdbJ0N9Lico0H7xhXn554/BJzjkbyzyctZr/9tq5ee+pyvp1M6/vtS2fXhzpZRP605VDzfWflS2capqp0wi7N8rvpXC2Z2pq/3R8edGPzLxefuzl83s+eM6VJ758vU1ZNzB/ejejLaZnBleMUziPdv6mmSf9spfM734ixEw5pT+WPTl6BFte91UAwFlnLMI//MGl2f3HnxjF3Q8exnO+r/GpsnseOjz1PADs3vcUfvnq9VPX/9/7t+H//vODWLr4NHzpz9tnYy+EEEIIIYQQQghxqnJKfyxrJMMEgK/dug8X/sxXcOfOw/j1n9iAof7GtsY2rFycPX/t9Xdm9//wdZvwh6/bhD/+8Hb85T/swO/99LmtLYAQQgghhBBCCCHmDNksm590HDvKqcezL+jHd//6ubj1r5+Dv/rU/bhl+wH86+2PY8vrvootr/sqPvWN3TNK79XPW4m//+rMnhFCCCGEEEIIIYQQJ55T+mTZsThnTQ9+49Ub8Y6P3oOP/vYzs1NkO3YPh8/e/eAhnL36qJj9U9/cg01rF4fxhRBCCCGEEEIIIcTco49lx+ANLzsT7/zYPbjv4WGcdUZ38XO//t5tuHPnYXR0AGcOLsL/essFxzGXQgghhBBCCCGEOJHU65JhzldO6Y9lh2584bTfrtoygKu2JK9BixYuwK6/e8G0eOuGunHbB5+b/Xbta5NNsr///UtamFMhhBBCCCGEEEIIcSKQzTIhhBBCCCGEEEIIISbQxzIhhBBCCCGEEEIIISZoWxnmv/7rv+KLX/wiHnnkEYyPj2f3rrvuujnKlRBCCCGEEEIIIU4FZLNs/tKWH8ve+c534ld/9VexceNGrFy5ElVVTd3jsBBCCCGEEEIIIYQQM6EtP5a95z3vwXXXXYc3vvGNc50VIYQQQgghhBBCCDGPaEubZQcPHsSLXvSiuc6GEEIIIYQQQgghhJhntOXJsp/4iZ/AZz/7Wfz3//7f5zorQgghhBBCCCGEOAWRzbL5S1t+LFuzZg1+93d/F9/4xjdw4YUX4rTTTsvuv/Wtb52jnAkhhBBCCCGEEEKIdqYtP5a9//3vR09PD775zW/im9/8Znavqip9LBNCCCGEEEIIIYQQTdGWH8vuu+++uc6CEEIIIYQQQgghhJiHtOXHMiGEEEIIIYQQQoi5RDbL5i9t9bHs8OHDWLx4Md70pjeF8a677roTlCMhhBBCCCGEEEIIMZ9oq49lTz/9NADg1ltvdeNUVXWisiOEEEIIIYQQQggh5hlt9bGsr68PAPClL31pbjMihBBCCCGEEEIIIeYlbfWxTAghhBBCCCGEEOJkQDbL5i9t+7Hsrrvuwsc//nE88MADGB0dze594AMfmKNcCSGEEEIIIYQQQoh2pi0/lv3TP/0TfvzHfxwXXXQRvv3tb+PSSy/FPffcg6eeegrPfvaz5zp7QgghhBBCCCGEEKJN6ZjrDDTD7/zO7+B3f/d38a1vfQsLFy7E3/zN32DHjh14/vOfj6uuumqusyeEEEIIIYQQQggh2pS2PFl255134uqrrwYAnHbaaRgeHkZXVxd+53d+By9+8Yvx1re+dY5zKIQQQgghhBBCiPmObJbNT9ryY9mSJUswMjICADjjjDOwfft2bN68GWNjY3j88cfnOHcz4OBB4MYbj4b/9V/ze4cOpfC2bY2f7+nJr//2b1P4jW9M4XXr8ngDAym8cGEKT3gbBQCcdpr/rq6uFJ5ohykefTSF9+9P4SeeyOPdc0/jNG67rfHzALBzZ+M8nH12Hm9oCA358pf9ODt2pDDX1y23NE5rJjz/+SnM+eYwAGzenMLcLlu25PFWrEhhziu13yhq2SPcLNFkztVSGzmYLh58MIW3b88f4nbivsptCQC7d6fw3r0pzH2hlMsvz683bmwcz/Z9ZtOmFOb+bZ/hSuE24z4D5BXLfZr7/p49+TNcl1x3po5Hbr11Kvzv9Ps/56nh2iNHcCL47oIFU+F19PujJt5aCnfy/MJ1DwBnnZXCXP/crvw8kLdLJy1lq1fn8bhtOcx92sLtx/2W5yAAOHw4hbm/Dw7m8bjduXwcb9eu/BnuDxdf3Ph5IJ//eN2w68Pdd6fwC1+ItmRyvQSmjz/m/vtTmPuDnXOffjqFzzgjhXn+BfI5l9PgPtlptlPUP+/ang7x2y0Kdw3uatwF7ZzNr+J7b33zeBbvXe9O7+Wi2uWdsd1mEu5aM4Hz+uSTKbxkif+MN+Xa5uN4XA+P2onIeeb8TeN+xCa4d0djsYatO+42nFfemgF5H+B2oel3Wj12Yzhd8Nps91Pe/Ekvemh3Xh4uB+fVbgN5muQl6fsvn3l92zrlrK5dPfP0RsdSenbIen3Ith+P4QMHGj8fpW23w8zVryor0yf+sXE5XvYS//mP/G16hssU5ZXvcTvbsch48xOQ931Og7ujre/nXFlWJ5/5bCofj5do7vL+nLFbytK8cjwue28PlcE+xC+2k4AHjed96J8K8xoC5FtJzs+Pvdyv0//3d6keH3ssv2f7Sgk/+7rWzrNCnGja8mPZs571LHz961/H+eefjxe/+MV429vehv/4j//AP/zDP+CKK66Y6+wJIYQQQgghhBBCiDalLT+Wvetd78KhiS/z1157LZ544gn8/d//Pc455xy8613vmuPcCSGEEEIIIYQQQoh2pS0/lq1fv34q3N3djb/6q7+aw9wIIYQQQgghhBDiVKNel82y+Upbfixj9u/fj/HxXA/d39/vxD7J6FiQDE5Yezye/SPWukeGOdieizUu4Nm1sTYtGM+eWanNMhuP7fFwWdmuDtsDAjBGhh46PXsbQF4mvsfPWJtlbNAlsnPVDGyDwGtXwK9/azSAjYBwWSm9mulPPT29DbPAxQaAGkYb54fb1RpF8OKxXTIgN7QSGc0pwY4XrgcuoF25vLxyW1h7RTx+uD9Zm1f8LjbOw++0dql4nN5xRwobO263U5jtlP0w5oZ1FKYeAzvzck/ppnrot3YYIwNNk1hbHjyPcd+y44r7Coej9uPwww+nsG0/HkDcn2z/dGwCZbawnnoqf4bLy4aJInuS/B477y9ahLaH64HLw+MNyPtGtK5xX+H6t3MAr0Vcx9xGgUGtyM6LtyRwkawpwshsKMPVENlTYuyaMIlZjov/KPDyymXi4Qv4dtMsnJ63TbJE9qJmi1ffUX64e9pyezbLmGltuZ9e5lWQhRppeCTZK7JbTK8cNmneskSvLcFuN7g/rTXmKUtge2PRlMhltXYG2U4Z3+MpxLaL1z+bsQEF5G0T2Q9jPDPCdknhvPLYjKZIhtOz8wmXl+/xktmsfUTPplrUBzk/XCfRM3wvKl/WttHef7aDJKB03md4brZZa7a/CtHOtGW3v//++/GGN7wBX/rSl/A0zVT1eh1VVeHICTJyLYQQQgghhBBCCCHmF235seynf/qnsX//fnzgAx/AypUrUVXVXGdJCCGEEEIIIYQQQswD2vJj2b/927/hpptuwubNm+c6K7Ojo0pnhe2ZZu8sL5+JjfQEfDY8kqF4mrxIJhfJMEtkbtE9OnPP8i7AdFbP/zSQ6xU4vJrO7NtnWN5Teqa9FK5jrh8rHfJktZHc1juvbjQbnaVF8rQC3NesvJL1OZxXK1krPRdfgtUAeTI+Wz+eTJjbwkroOA0ugx1/rFHg9FiTYjUl992XwiRNvDePhU9R+GUUPh9zQ+8FF6QLLpPpG9xK5MEcm82c1M1yVB6LpXosnj8jCSS3X+S+nfHmtCieTZuvvXAkJYw0N4cc2ZXFpt+OeFJZqxH05Gd23vDGtq0rXvM4XqRFIrgLlirQ+YB8JHmM7nlFL5XSRMqhUhkmvytSyDcDp22lnHPNSSFXKq3w7F7tuGXnZMerLitW4Xu87EfV3eq+30x6XjwrJfTilb4nmrt4Hmn13MDlmG0d2/EbWThg3HvROtTMfpjWrq6BZADDvr/V81BpHzoVkc2y+UvHsaOcfJx11ll4ytp3EUIIIYQQQgghhBBilrTlx7L3vOc9+I3f+A1s37792JGFEEIIIYQQQgghhCjkZDgoXkxvb/LoNzIygnPPPRcLFy5EpzlnevDgwROdteY4rZakgfbsJkubHJniNG9uzLJlKRxJmbzjv/Z3PtsbydxKvZDxPU6bwtajY+Y5bsuWFLbeK/naO4Nsf+d3sVyzFXB+uP1s/Xj1auNx3j2Po6bNu7l8kR5nO+WPJYIskzOeGrM8cJ+0+eY2m63U1UqwPVdKtn9y/jwPmlbSxWmw7Orb387jecfsuc137syfoXq9jX7+eB4LP0nh9azj2rQJc8LGjSnMdW/G4gB5t61Rf7Di4Q6618V9jbH9iT0RcltGXiVZnm7fw/XK48LT2dj3el437fXgYArzXGPHYuQmj+E8efkB8vmzXfHmZts3WBPC5S41SVDqjo3HvK1vYu3qcYpW9m+UkTPpUnWyp3yPFEGe9DKS2bBXwUi+5A0RWx6eRjieTZu7Q6nK+HgOA55quP2sWteTnEVWLbwl03p0rHFEzlCw59m3P/VJfqe1GsB5jWSvzQwlj2jINsOePSls+523bNsylCjzS+VvzcrkPGsjETxeovmFiTwjMqUyb16CvS1rs23OW7fIIyfDw4UtQEQO12uH9qXwNGm/o8OLOhRXBO+tImgv202FWL369Cwa12VpX+Npw2aVi8uWSErNBgjRjrTVx7K/+Iu/mOssCCGEEEIIIYQQQshm2TymrT6W/dRP/dRcZ0EIIYQQQgghhBBCzGPa0mbZ3/3d3+GTn/zktN8/+clP4uMftwImIYQQQgghhBBCCCHKaKuTZZNce+21eNe73jXt98WLF+PNb34zXvnKV85BrpqgszOJwyNjAKV2WkrxjGRw2ArVWezO8WweojQY1u8vXpzCbEDAGhdhQyZe2F57vqkjAyettlm2fHkKc53YNud7bAgjMhzCabPxEjY6YN/F74nsJLFxj127Utg61uBnIiMrkU2nmWLbiN/l9VUgN17h2Y+z56g5bc63tXnltS29Z5xseAG5nbJPUNjOYOv5YsOGFC61b9FqPJtlQX33fu97U+EOY0TkXk6a7LrVOL1Vq/K0ub49+3NAPtb5HvdvIO83nF5kA8+z5WgN+rABFQ5HhmfYgArnzRpgOZXO/Xv1Zedzngt5fYnsREbrGsPxSg3j0Hzea+a+gYHaVNhbMu3vzdj38exk2WzzdakdGq4GC3ddHi6ReT1vqbC2v3q7Rim9VI8HDvj54e7QarhMkV04j8h+XFPDnCvfrPXj9G/l3jbQTuecB+4bpfbLmiHaGjdDtC31bK1Fpnm9drZ91RsjzZpv5fRLbZZxvGi64jJ5Jjttu0bpMV55o61xKaU2Fhlv2bd1ml1vp/15qSE33tNHHaoUTo8yVzMVPDCQbH2X2izjstr28oob2V4Uot1py49l9957L84999xpv2/cuBH33ntvgyeEEEIIIYQQQgghWodsls1f2lKGuWzZMtxtTmgAwF133YUl/K/xQgghhBBCCCGEEELMgLY8WfajP/qjeMtb3oJPfOITOOeccwAAd955J9761rfi5S9/+dxmbgaM1ysMjx2VDnRHsjL2tezJfiycnpXkeefLPRmgfRfnx2pA+Gw++xW2kkq+x7JJLp+VmHGZ+GThGWfk8fg579x4JNsZHERLOfvsFOaz+FZ74kkB7Tlovsdn5NlvdnTMm8PRGWvvXLxtc9ZgRLLATZtSuFQ34GEleZ60zepDuK9w2fnju60T7+z6jTfm19z3SQPwCEW5yyTxBQr/GIU3277BdXfWWSlsJcgnijPPTOGlS1OY+yPgarB6jIR1NUlVub569+5NYdvvWILM/0hi4/E167PI9brNH4aGUjjSLnA7cVusWePH43mMx4vtdzz+Ip0Tp035HkUti1abq77SQob7Vk6FuyPNDPdDXv9s//TmODt/lkg0I2k5r6dm3e6jMnFW+ZW2C5bKMFmq5UljeNqy2SuV0/B7bF6563qSp0iGyXUybShS4Tsowc7ObvcZXupbjVd3dqvmdTU7BXDbcp2wxGzaNrDL0b0aOG22SMBd1U6RHtHU1ay1kEmsFYrZQip/LFuW3ytVzXGZ+F60bfMsRbTiJEoz8jrug7x1tHjbZjtvlM4V3viLZK+lePJRK4m1y0AJHRhPF55e18LxuNPYyuK/h0rxJhGTn56eJMMslfxyP7F15/XXVvdpIU4m2vJk2Z/+6Z9i6dKlOP/887FmzRqsWbMGz3jGM9Db24v/8T/+x1xnTwghhBBCCCGEEEK0KW15smzJkiX4xje+gc9//vO45ZZbUK/X8cxnPhPPe97zUFXVXGdPCCGEEEIIIYQQpwA6VTc/acuPZZO84AUvwAte8IK5zkbTHDmSTuaOdOWSmX6WAbHsiomO/7J2wUpUSlxu2bPzfEz4scemguMkkwLyo4qjFK5ZV0Asm/I0F5GXS64Trisglzl5M5etAz4bbtObLZ78KZL7lXpjm62MyOaB25nD/Iw9Ms4SW88TKZBL92ZrW9DK3PhdkbdPbluv7kyf9qTP+wPdwTCF2Xfov5h4z6fwZr5h+8x556Uwl2GuvGFy/UdtGXhjY3pJa8MjllVAQ8a9VQ89U2OtTqkbLKsx4nnIk/jZMnDf4LmLJaJALv+l9tt3KM37/Xbe8fQ9gWtEll6yWh4ABlcYOX4bwtKooaEkL6lZUwNcl5GmhK8jd2xc/9zXSs0iBPN5L+W9ry+1XzSdRxJGhoem59Wu1LlqJPXi5dMuKXzPG1aRDLO7k3YSNnPOXmbx4iTDtFuPZr0PluBJ7WzdcTEi+VLpVObBHi87TCZGCqxx2GHgOeWN+sZsyxA5tG4GHgfRMOd6sFY7PIlt6R/KLE1utj/y2C718Oo5ro7Kx23LY8nKMGdLqz8yePm2ePU/rU97bmKjv8O8fbftxM3oQgtlmP1DJB/NOrzf8bifRNs7b4yUyoKFaBfaUoYphBBCCCGEEEIIIcTxQB/LhBBCCCGEEEIIIYSYQIclhRBCCCGEEEIIIWZIvS6bZfMVfSybQ9hmmWVkJB36W8k2uJjI3/OqVSlsDYKwuJw17GwQZnqGGobtvMAdKju2aPPARhu4fKU2yzhs7NXs2ZvevGhRsgHT69mrAnKRvbV/M1s4Pc8YBJDXCefP1p3nnzzy3T3bGZzfY40YcL1y2BqDYLtN1o7eTInaiOvV1gk/x/EiwwyOvbb90yImdlD4yxT+IRPvHAp3nH12urA22bi/sz2swcEgF8eRyCZiCXb8kR3E/rvvngpzr7U9mG0i8lzTaedFz55HZKyJ+wb3YzsWuS3YiAv3dSCf4yiNR3ekn3vWJTtLgLHDFY1tyisXz1bDwUWplnp7xtGO8FDk5lq37vQsXgfXF7cf2xsD8kpiuzF27vIMOXEmojby7N2Ya7ZZFpnC8Wx/WbgYHK8ZO0uRHRrvPfaabStFNsuyNPYX2gSiDC7qa/hzw+tWMtu0bVvwlMLTFXfVaTa8+lJj5NWTzy/etBhNkQznge3SWSJ7USXYPMzWVlZkq4vTbmbLFNmp42uuL2tGsZRoS+bhjUU713DanD/+3baL1/ejMVFo0rSY0jyU2NubbrPMmTSjQXI8v5zw3wvRO721JzCW57W5Td5LohkTbEKczLSlDPPlL385brjhBoyPt+eGXwghhBBCCCGEEEKcnLTlx7LFixfj6quvxurVq/Gbv/mbuJtOIgghhBBCCCGEEEII0SxtKcP88Ic/jIMHD+LDH/4wPvjBD+JP/uRPcOWVV+J1r3sdXvWqV2FRdCb8JCU6OTs60DsVrrGcJ9JpsKTLStb4zPaKFY3jPfhg/gxLNOlebe9eN+0OPp7M+QHyM86epJKlpEAu8SPdxvBYLYvmqVN7VxRKFk8U9vw991vWpViNCsP1xWeibZvz+fuo7JwH7iecB5s2v5fb1Tsm3gqi4+2lGiOuB+6r9mw5S7eoT+bCL4BHzJcpfBWFN5pnsjQ8OSuQy/1K/XofT7iOguP8xZJvngMovdOjfwjx+qetO0/mbfPtScC57u3kwnJLLqvVovG4oD7Z05PmrlqnOSntySdsn6Z1oIfWilKZTLvC1WCXwl5qy/GuJD/rsNJ+rhTuQ3ZuZl0Jx+O+xbqmmWSWtKXdAyk/S5emfNu2i2SPjKdW91TGNnuR5MarOpsfzgOHo+muY/++dMHaW7t2Ofe4/aeNl/10Ha2tTVAbOTgVHhpKY9HK/UqlX94Wj4tkJU/DZMKDqyeapvm93H7LluXxOA1uM9vmraxWq2if7daN82r/VOB69WTLQC4t9fITyZGj5aoUfo6XqNJnuM2tVNbb0nF9WRMy3hIVzV08zXp9cCZ425Jo7uJ3cbza2HD+EBc4snfA8CLcajMpPPAjmb83oQd4f4pYuO7m2/6iGWSzbP7SlifLAKC3txc///M/j3/7t3/Drbfeiosvvhg/93M/h6GhIfzcz/0c7rjjjrnOohBCCCGEEEIIIYRoM9r2Y9kkDz30ED75yU/ihhtuQGdnJ175yldi586duPDCC+c6a0IIIYQQQgghhBCizWjLg5NPP/00PvnJT+IDH/gAPv/5z+Oiiy7Cr/7qr+InfuIn0DNxLvRjH/sYrr766jnOacz4eDoxG0lm+FRtzTszbInieeeTIxdbnheVKG2W4UXnoL082DPyznufMEpQPnXMrxmnb8PhV+JWSzQ5PT7Kbc+xP/xwCrP0L3JVxGekPckbEMuAvDzs2JHC27en8He+kz/jecC057dZT9Fqt2GeVzpbVpYX33bbVHA/ldW6DWH/eSt37pwK32LifZnCr6Ywi4Rzf2TI9Q+e9gHIxwKHozngeOK9N8p3pB0rnTeY0nhMMxJddpFm+xOPOZZFRGOW3rtgAfWIQJ6X3bPzBqVdozG3ZEm3F61taWba4Gau+dFiXRL3AW/tisw/8LxjJZ5OoZYNrXWT4+xFaveSadF2J3L4m3XpaMhG3tNKHMuyfBFAXl+lMsxSbSpXSotlmLxu925MeejpyXcc3J24vq2nR88DZqTKLp3ivL4RKce8JcpWt5WdtpLZypy4THbseFO43Z+z8s7LT6nstdl5OZLLevA46+tLMuFo6WG4Xe0zkRKQ8YYpz2mRg8kIzlOpDJPV85lVC2sqguck3g9bD8vcqbhD2XhMtCf34Dx4DRYR6H8jeaU3b3h/5pxKSIY5f2nLj2VnnHEG6vU6Xv3qV+NP/uRPGp4ie8ELXjAHORNCCCGEEEIIIYQQ7Uxbfiz78z//c7zqVa9CV/BPMstK/6lFCCGEEEIIIYQQQogJ2vJj2b59+/DEE0+EH8vagaryZSWuooCP60ZnnSMPKOzBkjUAkdzBc29TKsO0BS3R0xTqC047LRfXeElncpxm3Ys1g5d21H6RzoLT4zaLpJal/Yb1BZw29ZlRc8a6tmZN47xZiUsk850p9nnv7LPNAx89pzrp27ZtKrzbaAA4hbso/GXzqqsoTD7y8EjjnB2Fx0gknfbcRs2VCyJHVlg8zqPx54Ujl13RXFOqS+IxwmGWY1h9AV+zhip6D+X7CA/TUpdyhdqosZPA4e/xJJyyd++fCtZ6qC2sFIbbltfF0vmTfy/1/mv78SzHs03Oo3QocnpWFtgMPBR4as2m2Z5CUxE2s6XmIbwMtRp67+hYkl5GWxnncQC5stdbMu0znhfHSEZbOp17U6mVXbL6bLbVXVp3rcAbis3IAu0zXn01a/XDk8DVoq0VNfRIsCUsXTJLsNOiV8et2MpwGpE0fMaJ2URKTdF4ZjYszcgwGcfb9jHvOXSMjdLj+d9X3nR8MmxLhThetKWB/z/7sz/DqlWr8MIXvhAf+chHMDw8fOyHhBBCCCGEEEIIIVrEpM2ydv9PTKctP5bdf//9+NznPofVq1fjjW98IwYHB/Ga17wGn/vc5zA+bs1zCyGEEEIIIYQQQghRRlt+LKuqCj/4gz+I973vfdi9ezf+z//5P3jyySfxile8AqtXrz52AkIIIYQQQgghhBBCNKDtlcW1Wg1XXHEF7rvvPnzve9/DnXfeOddZKobdzEYe0dljcU9Pcvfcv2mTn/iWLSlsBeRst4lf5NiomnZvz54Utlp7z7CG/YjJeeJ7AwON82muH9qdvvNGZoQ8+xsDA6keAaA21AJf3h5cJm7oyG4X2zqIbBQNDqYwG5ixaXsGBSL7BmwzieyS1WyFc1/jPsl5A4B16xqn3Qxcp0BeDs8Ai80D37v44qlg7003ZY/cTOF/ofCLTJbOoXD35ZenV3J9nXFG/hD3cXoGy5fn8S64IIW5fLYeThSc78hYBfdDbnPb/lwOtiPF4eh8eOTrfOnSFI7GlZc/DttnuD8xwdyVQdPnuPm3qw7P+FChgZmurpobrdb2K3++9NgpqW9oZcN4vRs3moh9KczrkLVtxpXH93icLlniZzayJ8lrLfVdtqs5uMKf70aG8nZmuHt6JiNLzbNFNq94+EZmIjnc30XmM3bQJgfI65jtqlojanyPM8vPn0gDOtQRa1QRtoXs/mMSO8VxW3B9Rza0PFtWEZ4dIvse9pvFbWnbvJVSHrt1fPzx2aXHfbXUJpvt+1wP3h6Tlx0AWLEihbm+Vq0Ks+vCY7s2cpDuBPtK+mOinyqia2PeHz3zqZxv60ON+5q1Ycd4ZrxmuyUE8i0n17fdJnE7cbyOQ1SPdlHxJkY7yHjQsPE+jhfZQyvF28fbyuc9VClU9tWrTy96rTdXCTEfaNst88GDB/H3f//3+PCHP4yvfOUr2LBhA1796lfjmmuumeusCSGEEEIIIYQQ4hRANr/mJ235seyVr3wlPvOZz2DJkiW4+uqr8Ud/9Ee47LLL5jpbQgghhBBCCCGEEKLNacuPZbVaDR//+Mfxn/7Tf8KCUnftJzn2azSf2PWOuvavDo5b05nmceP6NxP7NOMrm48nWw0H+2v23hO9N5B0WZnSJJEqiZPgrlLrNI4gHt2fwq0+G87HoFlTazPO0hErA2I4TyxL4QJGmhmulKjyuG25DDt2+GlH+p5Fixq/10qjSrBHy71823rcvj2Fb7klZYekl3eZV7H08ocobK0jPkThvl270oUnWbTwuLLt5x3hb9bv/GzxBln0z2qRP/pm/jnOy4OtY+53jF07PO0J/x7VdyTNcLThfX1JLtixf1/+DPddT5oKuPqHmif9BIDO9tRJeF3NLldc/Vz1vX1mXHny7dJ2Zg1PpD2xZg0YLhRrlHiejyT700R+Ca4Xr3vaadqqjyaxw8WbyqKlPisGr7m2T3Pfj/Ybkd7LyxDDJgRaAa+NwXu7SUPX09M9FbbF89TXBw6ksJXDMTa9krS97gj4W6PIKoLXn0qxw8rmqZV4S1S0XHnLUFR3PA6i9ouojZGMmcdPNFfw/pMy3r0ur+TFi9Oc4m3pbZ3wUDx8OIXtMPCUiUyzymkeF7zsL16cx2PFfMfYaLrgerR7R667bdv8eN4idd99jTMHxAPVg/ey0R7T071GcMN0+bc86W0zxRHiZKYtP5Z95CMfmessCCGEEEIIIYQQQoh5SFt+LAOAffv24bOf/SweeOABjI6OZvd+53d+Z45yJYQQQgghhBBCiFMBdton5hdt+bHspptuwote9CJ0dXVh7969WLVqFR5++GEsXLgQ69ata5uPZR0d6VRs5ESOvQFl8awcjt3j0JHhDnssm48aexKHyMVkdI6az1/zrGGPHXvyCc6DOcvbQemtzCRGuTyTi8dSgcEVJL2Mjli3WobJ7XT33Sls65g9ufIz9ug0dwi+x2fNIy+lQR1n9cLHvL/1rangXabNh0jOmPlUOuusPG3W8ZB3TVx5JWaMbT9PV2THyG23pTDl+7sU5TPmVS+nMHu8PGjiZaI37jfssY3DgK+3tuOK24/bOfKueTzhQRZpJriduC14vAF5X/M0PNF7uM3tfMdzDUsSeB6z7+JnPC97QK5z8zwLA67X0u7NlFebNtcXp2fjcZtHXkG5Xj0vnic5XFQuTuZZEcj6Q+bN67YdeTzPdXLkQYzHMNd3ZLqA+1pkc4Hh9gvkM1yElWb4syyJi8Sq0Mce89Nj7FLIRYqGprf09EcPlWh9gLyADL/I6sisR81WEklGGbrXRTLMZlT1kWM97mrRVsaz0hDB1Wq751xZB5gtPIQjB7aew8OoTrwlyk4HTXkqbuYv9MB0AW/jORwtcXxttzkML8GemZRm4TrmqcIu9dmfI56m1hbQ28vYtcIz58AVaddwNttRyh13pHDkupUHfhP6Vjvlen8mRlsUIdqdxkagTnJ+5Vd+Bddccw127dqFrq4u/Mu//AseeOABXHLJJfi1X/u1uc6eEEIIIYQQQgghhGhT2vJj2Xe/+1288Y1vRFVVWLBgAZ566ikMDg7iHe94B6699tq5zp4QQgghhBBCCCGEaFPaUoZZqyVPLYODg7j//vtx3nnnoaenBw899FDwpBBCCCGEEEIIIcTskc2y+Utbfix75jOfia1bt+Kcc87BVVddhd/6rd/Cnj178KEPfQgXXnjhXGevmI6OJC+3ZjVYU1/b/0i64JFoheFsh4bvWXs5ns0qDrO+HvDtlFnjFJ4NGKuV53exEQM2dhAZvmD7ZWzDC0BXVzowmdnpiOwM8D22CbV5s5+HUtg+0/33p3BkL4zLbu1Qefar2B+2NZjh2WGz7cLv4no9++yp4Om33po9so/CvZGxAsduU1Ps3Jlfsx0a7kOBbbodFI/tlL3IvGoThbsuv3wq3P3tb2fx9rMhE86D178BfyzZduF2XrEiha0xji1bcEKwNscmsTsFHmdsr88aSuJ28my3lRrnsXiu0+38wunzM2xMxdql4vrnuc/aaMxcsVMe+Bk7J3nzgc23Z+zF1sk88Ofe20N2J7O10NQdlbUjanNvjYnqmOcazoNdxBmzRmXwuk3h8dVrp8J2GuPsRObVHn88hb3l3RbVG0rRcsxp22HK+eOm6NmYbMnV1pmXevbjbB/mNY9xDb3i+P41s3x5CvM6a9djurefihe1hWcSLypOYJYq60NR1/XexVOfbZbILOpMaXVzRXXC0zaPERvPawtvagDyto2m/bXBVMEcHEu27npLbZXyuKDwnr25yIhtGnpm+KK+GpkF5KW11Xi25Gwf5PYcRqrHbq5HO+my8S6uR2sjzDMAGBnB8+axCLYJ7LQrgHx9CWxfZnDfuC2/5fUH3trqg5GYb7SlDPMP//APsXLlSgDA29/+dqxYsQK/+Iu/iMcffxzvfe975zh3QgghhBBCCCGEEKJdacuTZZdccslUeMWKFbjxxhvnMDdCCCGEEEIIIYQQYr7Qlh/LJrn55ptxzz334CUveQkWL16Mw4cPY+HChehswj3uXNDZmZRp3V3j+c1MhuCcY4/KmekdzDFhfs7zYW0lc54swrpX5rT52LI9ZsxpRD7NGT7z62k7APRzeo9S/vhYtT37zufOWy1XYsmgJzcDfOklH6MGgDPPTGGSR2b1aI5ij/f1T4Wz46S2rJ5WgNq1z5y/7+Py8TP2vD1L90qPg3vs2ZNfey6/WV4L4F6SAv5f+v21FF5n+ypLGznMckgAffwujufJ7gD/aL4d256mYLb12Cyeb3grC+W8sjbDzknc3/ke10OptNjOJ57817aFFy+aZ7mPczjyt8755j5jpcU8Xjz39oDvs93mm+O1Ql4+F3h1UqoljNbCaM3ke9yWkdSOWbUqha1GifsdpRcpb6PuwHgK5EiJ7y3HtnhcRRy2z3uqpOLESzU9ntmHEynDZLifBGO2ry/JUe20unRpCrNE0E6zjCcRtHB6vJRxU9glnNt27Wras5p9RM9Q71R4ttW9cWN+baftmWK3UwyPM+6CdptUsmzb5YTbctmyFC7d/lqyKWp/E5VMhViypJbd4vxxX+O+ZYcs113U9bmOWApstlNNwVs3bxth3+tiC8iDIZr3vTWFf7ed2K43JXgmU6wk11lfIg4eSn8l2Pbjay4e130kw53PyGbZ/KU9vioZ9uzZg5e97GXYunUrqqrC3XffjfXr1+Otb30rurq68J73vGeusyiEEEIIIYQQQggh2pC2tFn2lre8BUNDQ3jsscfQ3Z2MM77qVa/CP//zP89hzoQQQgghhBBCCCFEO9OWJ8u++MUv4otf/CKW8VlhABs2bMADDzwwR7maOR1VHd2do0cvHjSeV/gs5/btjRNg6SAAkC23TN4TnQv1vM1Frq/47K09guy5xLH6As/Dlec1DsiPELPXKZtXjsdpb9uWwvYYNNdxq6Vt3/teCt9GrmXYwyGQ6yI8qSyQn3f25GemDFxF3Xws25aV64ulQ/y71TFwOXbtmgpuN7KyjVzn7KatGbgtgbw/PfzwVPCBm27KorH08icpvI7lrNabEEvWWBNiz/ZzO3neqexYZNmc54IKyOuf26+VHkZnwj33NP7djvMDB1KYJXS27rx5KJI7cL/je3ZcRXoMxhv3pW6+uM2sForrgfPD7WelxdzHI52b9bw5yTz0hum64ook7ZEM2tNdRZ5SS3638PxiYc9jT6R//NsVLFeM55gWyKcXHpqec2tL6ZYgkoXyUOA0OF4fmQkAgJWbqS248LYivIqJvGHOVscXwR7qeJwGsl72hmnxpptSj45MDaMmD0l6x1Mmq80iBevoWPq39popXyutWrRa1hQp3rz+Hk0vHtEUEnnNPH8TiuBx39OTxk8/xhvEPsrw0PqpcORklucNHi68jNnyWcsDHiyB9GTizbY51zHPO5E3TC5rX1+SD/dHHoyjzuHpTHk+iPZ3pfBe1AsDwKbUoYZH0pjtDvoJ9y27vsgbpjgVacuPZU8++SRqtdq03/fu3YuuubLhI4QQQgghhBBCiFMG2Sybv7SlDPM5z3kOrr/++qnrqqpw5MgRvOMd78Dznve8ucuYEEIIIYQQQgghhGhr2vJk2Z/+6Z/iuc99LrZu3YqnnnoKb3vb2/C9730PBw4cwDe+8Y0s7vnXfHluMlnAwoW96UxrJA3wvKtEp+gi7yjeeedSGYrnCsg+F8lkzjijcdrWS6UHn2O3efXOCfM5cXtm3PH82BK4TJxXK2fkNuN7z3hGHo+lHhRvtDNJeKzKkWU3nZ3pG3lXV28Wr5+PcJd6G+Rz7CQd2/jlL2fRhumcdvfhw5gVVoZJXi53U34+YB77bxRe+6pXpQuubztevHu2/bgPedI/O85ZqkoS1vBofzOek44n3E/sWGQXYIyVj3L5BgdTmPua9VLqyZxs//Q8QNm5y5tPPameTYP7tJVh8j1OL9I7eHOhJ/EF/D4IzI9/8vTqpNRVY2Q2gPukrStnzI13Tj/hPkkHy1x4XjVpHxxJaTz2WPp9tjIwwJ+GvOXc3oukUQsXNn6nlQGWbFlseYbHUp1kZgPs2uwlGLngPFHqg8ikBM0bLKGzdVzimTRSW2evnaapTEH2RNgxMpweWdcNhtOr7X/EzcQgzVFLlszu3+TXr8vlYiz/bAb24jluzgtwk/HSZbcrXFzea3myQnvNTeGNo2MRTWsensPYyOIJS3QjJ7WeFNuObX4XL5PcB5tdqniqiPLq1Ve2bNs5nyuF1+BSb5g8MCNzAKWce24KB2ZE9uxNfZzXl0juW6pUL7VwIUS705bd+/zzz8ett96Kv/qrv8LChQsxMjKCV73qVfiFX/gFnMEfYQDc/tyPzlEuj81Lv/eOuc6CEEIIIYQQQgghhCDa8mMZAAwNDeH3fu/35jobQgghhBBCCCGEOEWZDwf4xXTa6mNZqafLtWvXHuecCCGEEEIIIYQQQoj5SFt9LFu3bh2qqnLv1+v1KWP/bcGR8aRjt7ZYPDtHbOCADSRYIl/ujGdQpBnbIECuy48Mo3iukvkZ9kUM+P622T0zkBtN4fewTSj7/vvua/yeVuDZLrF1xwYX2D7CsmV5PLo33kV2yshdO9sos1mIbAuM96X0Ojg/3AetAQ9OkOvV2PSq3XprSo7CfX52XEa+9rXsejuFP07hN5jnhi6/PF2wHaFVq1LYSLkzGxCR/RzPiEhkHIT7Mfc7azSC7cJxYzZj66IVcH64TDbfnnEdW3eeTTw2ZBLZIqP3jBo7fIdMltLjeTxvjNS4yaL2i+bPEoMedo5ku4rct6y9N64HLz+leWgnuH6iskWTn2fIy8QbRWPbZCPOMgYAvdRkBw8luzFjY3laPGQ8c5t2mFuTmx5ekSIbR7yc8lIa2TaLhjbD8Xh5j0ykLlyY6m7Zsv4sXq3AlpzNd63Pz9+ssWNzksB+4FgwhXt1GU013H5RW/C9jrHRhnkLp7EgcWsLrJXMehqjztZhEuvqatxv7JaQ71kbfSktPwutOH3izQ/dhSYtvS04MN3k5iRR3Zcu9V48to3W7BbcGxdRfXtbqPEV+f6gY8AxxBbZkPVsltnO0cw+jvepNO8MI7czyHbKSm2RcXbsWtPMnCSEpaqqnwTwFgCbABwE8GkAv1Gv1/eGD6bnrwfwU87tV9Xrdf5TEFVVLQTw/wF4DYCVAB4E8EEA76jX686Ml2irLr1169apcL1ex3Of+1x85CMfwWpj0FAIIYQQQgghhBBCzD1VVb0FwLsAfAXALwFYDeCtAK6oquqyer0+Ew9wr2nw2781+O3/AfhRHPX79i0AVwD4AwAbAbz2WC9pq49lF198cXbd0dGBCy64AOvXr5+jHAkhhBBCCCGEEOJUpF6XzbJjUVXVAIC3A9gK4Hn1ev3IxO9bAXwKRz+e/VFpevV6/UMF73wRjn4oe1e9Xn/bxM/vr6pqP4C3VlX13nq9/s0ojbb6WDbvqI+n8672rCtLLHn0sQyz9Ix9M9ITK0Nx3HXXIllSJAX1zqizhsDKTFlbyPVlz2zzcWfWevDv9gw6Swv3Fp0CLYfT86SkQHFb8HUkFfCImoWva55uh8/L23uBzJRf1VeUU5+7zPUnKPxKCg8NGU0CH11n+dqSJSlsj9XzNYejo/OlegBOz5PT2TROhjPu3o6gVPLN8xiQ1wPrWjxpq72meFYax83E04ttPk8tXesqrPso8UjzMomV4rN+gp+3awVf8xxpZeyl2r2TGa6HEi3UsSiccz25JVdpqVWEZmj2+WaGKXdjjudJs04aMu1XktOd0OnS058FC23pNq6ZPpClPW1NqTW+x3kzU24HxtNFsP5l8WYryTT5ttLJdmG2bRmlZy2RzAWlc01J2Vv9waG0y2TS5KwPY/aZKv2bbLZpnwTog5EIeDmAbgB/MfmhDADq9fqnq6q6F8A1mMHHsuqoba4lAA7V6/VxJ9qrJ/7/bvP7u3H0RNs1AMKPZcfPsIAQQgghhBBCCCGEOJW5dOL/32pw7yYAm6qqCgwBTuPAxH9PVlX1+aqqnuW8c1e9Xt/JP05cP0R5cjm5Pkc3QWTwXwghhBBCCCGEEELMGSsn/r+rwb1dAKqJOFZAZNkN4M8BfBvAYQDfB+DNAL5WVdWL6vX6F8w7b3fS2YWjNtNC2upj2cte9rLsemRkBK9//evR3Z17//jUpz51IrPVPEeOJPcke/bk91imxHIcliVZKRPD0r/ILU+hvIvllpmno5HgjHXktY8lQqwfjFy38HUkgWM9DMt2tpPPxMcfzx4ZI++M5BfK+JVpEpZ4eq6A7HV0jtm558lnoseLZZgtOObNKdxG4c1NpPUJc/1jFN7IN84+O4/oebPkyou8CM72KL2tcNY2cZ+2ff/BBxu/p9S9UavZsSOFeU5iL5mAX99WyssyOr5X2lkzWVNjz4WWUnV6OI/xNY/zKJ43h0cyU08y3Oh6EqsLbBcv0aVE3jC5b/AYiRo9cOfVRR5WOWmu4mj48zC3zeB1Lw5bCWSk5me84RNJwrxyNNt9SqbFUufbVs3c10djncZ9pHrujbzXzRbPO2dXvpPoGBmeCj9JW6FIyuvVo/3d7ZNmTuoItoUebI5jmgkOYngkxcs8NTbxTltA3n9Ok8qdIEq2apGH11LvsRGe43msmBa14TPRFtp6U5+kdIt6slE6R3KdWNMzNc8kRODp1vWUGf1NVopj8iQyQ1HqdLPUE+xJpv48KfCVgG3FQFVVN9P1e+v1+ns5QlVVfTj6caqU6+r1+j6kP6sbzTKTPfSYf3rX6/VfNz/9Y1VVHwFwC4C/AsB//HU775t85zHf11Zdffny5dn1NddcM0c5EUIIIYQQQgghhJgXPFqv1y85Rpw+AL87gzQ/BGAfgMl/KVoIwBrSnfzqO4wmqNfrd1dV9TEAr62q6px6vT55Om144n2N6Cp5X1t9LPvgBz8411kQQgghhBBCCCGEOKWo1+s7cFQyOVMemvj/KgDbzb1VAOoUpxl2TPx/AEnK+dBE2o1YhcaS0Iy2+lg2W3Y/+Tje/O33Yeu+u7Gw4zSsW3w63n3x6/F9N74Jm3pXY+TIKJZ0LsIvnPNi/NT65wEArr/3C/iV73wQqxYtx8j4KH5u44/gLZtePi3tL++5Fe+84xO44ar0ofW13/pzvGTVZXjl2h/Af/3GO3Hzvu04rWMBLlt+Dv73Zb9wooothBBCCCGEEEIIMRdsBfCzAK7A9I9lzwJwZ71eL3Af7zIpv2TbVlsB/Neqqtawkf+qqtbgqD2zY9ruqur1+izydOKoqqo+07xWVYX6qz8NAKjX6/j+f/4V/NT65+ENZ78QAHDL4/fiiaefxM9v/Z+47cX/PwDAvYd248e++kf4pXNfhp/e8Hxcf+8XcPNj2/GXl74Bjz11EOfe8AZ850fegzWLc8MAx/pY9pldN+OFKy8GALz6m+/Ec05/Bj5z5A58eusXm64TIYQQQgghhBDiZOWSyy7DzTffPG+98lXVxfWjDh3bndq3C2SYTVFV1QoA9wO4FcD31+v1IxO/vxRHP1r9dr1efzvFH8DRU2IP1+v1AxO/LQZwpF6vj5i0L8LRBrinXq+fT7+/GMANAN5Vr9ffRr//GYC3Anh2vV7/epTvjujmfOJLe76L0zo6pz6UAcCWZeuxpnsgi7e+ZwjveubP4Lq7Pj0tjeULe7GxZyUefvLxafeOxYtWXYKqqlBVFS5bfjYeHH505oUQQgghhBBCCCGEaBPq9fpeAL8N4DIAX6iq6merqvo9AB8FsA3Au80jbwRwB4BX0G9nA7ivqqq/qqrqrVVV/VxVVf8TwLcAHMHRk2v8zn/C0Y9lb62q6v1VVf1MVVXvx9EPZR861ocy4BSSYd524H5c3L+hKO4z+zdg28EHp/3+wOFHMHJkFBcuW9fwua/tvR1bPvOmFH94L16y6rIsztPjY/ib+76E91z8s/juvs+WF0AIIYQQQgghhBCizajX639WVdVjAN4C4DoABwF8DMCvF0owdwP4AoAfBPBfASwC8DCA/wfgj+v1+rYGz7wKwG8BuAbAa3DUTtnvAPiTkjyfMh/LZoIVe/6/B76GLz3yXdx5cBfed9kvomtBreFzz15x/jQZpuW/b/0rPOf0zXj26c/An+pjmRBCCCGEEEIIIeY59Xr9egDXF8S7FsC15rfdOPrBaybvG8HRj2W/NZPnJjllPpY9Y+mZ+PgD3yyK+5199+C83tVT11evfTb+8tI34Ft7t+HFX/k9vHDlxfjWo9vwe7d+FADw/mf9YlG6v3frR7H3qQMy7i+EEEIIIYQQQswLjsx1BsRx4JSxWfZDgxfiqfGn8b7tn5v6betjd+H+w49k8XYc2oNf/s4H8IvnvHRaGles2ITXrPtBvOfOT+EVa67ALS+6Dre86DpcsvzsaXEt79/+OXzu4X/HR7//V9BRnTLVLoQQQgghhBBCCNFWnDIny6qqwj88+zfx5n9/H/7k9o+ja8FpWLd4EO9+5utxz6HduOjGX8LIkVEs6VyEXzznpfjpDc9vmM6vnf/jeOZn34zffMarsOS07uL3v2Hr/8SZi0/HFf/8KwCAH1tzBXBaS4omhBBCCCGEEEIIIVpEVa9bC10nJ1VV1Wea16qqUH/1dK+WJwsv3fZn+PTWL851NoQQQgghhBBCiJZzyWWX4eabb67mOh/Hi6q6uA58Y66z0QIWfbter18y17k4mThlTpYJIYQQQgghhBBCtI46ZLNsfiLjWUIIIYQQQgghhBBCTKCPZUIIIYQQQgghhBBCTCAZphBCCCGEEEIIIURTjM91BsRxQCfLhBBCCCGEEEIIIYSYQCfL5pLhw8BNNx0N33abH+/BB1N44cIUXrQoj/fmN6fw9den8Lp1ebyenhTu6mr8u8W7d+hQfr1/f+Pw2Fge7+67U/gIGUTcsaPx8wAwMtI4D7Z8XCbO32RdN0j70K23ToV7Tjvt2O+cCcuXTwVH6b21TZvyeBddlMJcpi1b8ngbNzYMj3b1ToWjZmG4qgBg5cBouti9O4W3bWsctvFuvjmFP//5LBr38I9T+NojMzeIeduCBdn1Zgrvp3DfBRfkDy5enMKXXprCg4MpvGZN/gy3xdBQCvO4BPJKtxU7CdcVkPf37dv9eFznnPbTT+fx7rmn8XtbzUteksKdtIzYfPO8wXMA92EAGBhI4TPPTGFui74+/xl+D/8OYLSzG42ojRzMf+B65XH/6KMpzO0F5AOL+76F24/zunq1n/bXv57Cl5Bjos2b83hcl5xv7qs2/Te+0c/rycxHP5rChw+nsB1vXA88fjvNloevbX0x3Kf4mWjNJA4eSv8uaZdCHjI8pTz+eAo/9VT+DKfB086b3pj/q/Z1f9n4vbYaGK5KjmeXQi8N2xS8ZWGWLfPT4qbgKrZTQG9P43/F5/q29HbRGhdVRDN4C63NOFXmnifS/GS3dDz1MNyWtr65q3Z3Uf3YxLy5mfI23HN69ghXV23/I41vABju6p8KP/FE+n1wxcxPXYybf9PnrNY6mzjFwR3Z5Hu8szYV5qa0+ylveWBsu/CrorF44eayMt2+LdULp3HORv/5796WnrFlYrx7/LvdejC8pbPzBm/BmDPO8J/54eeX1ckn/jGVj7u3TY+HI4e5zewWpWP/vnTBa6kd29y4nAnvbyMgr9jnPx9F8P6A/pawY5a3lfza51zp1+lnPpvq0fZv70+iYFjhv79Bp61Ee6OTZUIIIYQQQgghhBBCTKCTZUIIIYQQQgghhBAzpg5g5koZcfKjj2VzSVWl86r2zLZ3Tpslgs3SjPTAake83/maw/bMdon0LpLMMLbu+No7Em3y08PPtKKOiUN09plFauuNnLFjyZLGCaxalV+zzoLOPnf29KIErkajZsyPg/P5a08rBORH0qlMt5ukWXr5yoJ8RhgBK/hkOAujhkleCwDdXMesA4rktp5s2Z5P57qzR/MnYU2KfYbPyNv88HtJ1ls0jo4HRuo4hdVvcGd78skUtvMGl5c1Z/y7rRPv3L9Ju9NRxIZ54LCneQPyNuP+YPN6330p7El0WS8BYGTnzvQID1Q7D7LOzer1GDtu25HHHkthHkve3Ankc71dh1j3VqpTbAKvyYF8evGWelacAnn3KpVTFQ6XLK+R4pvzV1pd3FX5GVs/XCccnia7dDRwvTz/2sw9uj+FvXmsWTg/USXT9ZK+xjLxRo9NEkmevGeK92q8p+jLH8lkj0HH616XHhwbm52ApWNsNLvuJKlkU7gVBMBJO1p6orZwXxP0/VKaScNT3lq4aZ2u0Ux3Ct/LU3iz1k+8LmnnLm/O5XrsOGTMNHh74GjPwwXx9gqN0iiB80PzWLfZe3Z1pT7dTP+0beFlNeobQrQ7kmEKIYQQQgghhBBCCDGBPpYJIYQQQgghhBBCCDHBvJdhnn/D6+c6Cy4Ll3Sl47PWExefdX344RTm88Se5yX7jPXYxc95Z5AjzQXfs/oQT1ZmMZKjKaw3PYbzx/IJK3njaz4PHB2DZjlboYezUnqobYeofMM2HksG+UxzJBWh9usY2j8V7mcvewA6B5LUg6txmjep2+h4+R130O/ky5K9igKZDPMBko59zGT1P1P4fMyOTvZkCTORsYzEeBjcTtKtjVwmHi9R32Ap4Z135vG4f7F3TX7eSuF4HHB+IvdNTOTB73jC+eG82nxynbCEzspHuVN649SOA34Xj1lTJx2eJ0M713jeMDk/1hMsx+O2tboYnj/Z7Zf15MvZ2bs3XZx1VgpbLQVLCVnLYtti6VL3XW0DS5AZq/vgccprVCR34Wds/+Q+xO/i322bU9vWDpEnNdN+PSSfZ09xnFXb5JGnN48SL2b2XaVyTY5nvd2x2p2JpDos18yqNZJOM5Qh602xo9UeMJ33hm48qRw8vUROXT2pXSRhDfVwntaVErRTZGdnqsuVwdqzZ2+Kx9P++dZ+QgF7Hs+lkaw0X7saM2a40zdX8QRNuZzvyCOg5w3TbiNLx0spzSj3PMsoVr3vybe5rDxdAvmUGXU7XoZ4WWRVfWRNIILz7Xnhtflzp4NoguJ71rQG41Uer+3A9L+jSuA0OG0z1yxdunIqXDr1eZZHgLxI3AckwwRks2z+Mu8/lt3+yUvmOgsuL/3te+c6C0IIIYQQQgghhBCCkAxTCCGEEEIIIYQQQogJ9LFMCCGEEEIIIYQQQogJ5r0M86SmoyOJw609HhaXr1jR+Hm2VWPhZyK/0gsWNP7d2mxh2KBAqcEUK5b3/NNHeHbKjH2uLJ4nsGebUvaZZn15e1xxxVSw5zvfSb8bgyD7Ka99nj0CIM9rocGM3iEqk2eQwuZpz54UZntMxm7TCOX1A/T7fzNZWrtmTbrY1ITxEubKK/17XCZjE2oj21vjOrY2+hi2zcL1ag26eLa7PJ/qFu531pYV93Fu/8ie3fHk3HNTmOcDa6eQ+6dntAXI68Ubf5Gveq57a0PEM8Jk43EaXnrWUIzXtjav3tzF85CtE35XZKSK43k2vYDcQEy7wmse14ltFy5rqaGWyFCOZ5CldP3jucLkp391ul6zJtmW5CI0uyRxFZVOQ4w3dGye2D4Qm80DchtFfI+nVWvSa3AF2dLkOcW2M88vjiGiDlt5gX2fWRPZaXXo6UltXrpN4qLaLVwHxhtHtBQZbsrJ3hV0qEWLGttIPRmIhqxndytaehiun6gt+Z4dL6Vw1y3txjzmOA/RsubZ1Gtx18po1qwg54+XCtsHeU7icGZfcYfZW/O8wWGbWZ4MeU3h/aadJw4cwIzh/Xnw997glrT3GF2W2//z4H4STWleOzVjgm3+IJtl8xGdLBNCCCGEEEIIIYQQYgJ9LBNCCCGEEEIIIYQQYgLJMOeQ+oLTMNp3OgCgZv1Me37j+Xzzww/7ifO57ChtT0JlJSksYeQztvaMrne22+bBO6fN53/t2Wm+x7K0Uhkm58HKF/kYc7O+vD0uvrgoD3133JEu2G/5fffl6Xnu6bktbH3zMywJsufvWWJ5yy0p/PWvTwW3G7fXH6Lwr1O4i2WXAHD55Sm8cSNmRSTj9NocAHbuTGEq6w6qk34jr8wczXN9cf0AuZTTk/RZ6SY/E0mLubwcj8fEiYRlojxXWH/ynrzZzhtcL57syrYlp8f3rCaFr/kZOwd4vuZZm2PHC7+X28y2C88pPNds3uznhzU9rMmzdcdtwe+1Et1Wz2tzwZYtKcxtYccV1xG3i+2f3Hcjebp3L+qfPGZvuy2FA7ntSmrLno39btKRPJLhLsBLLmc7kpjx9BRZfeChY/PDMjNWCXOz9PeM5g9t35HCpTJMJpJ82zRaCfcNb98GZA0ayf28bWCp+ne8K8khO2wnonnxod3p383HxpFB8PUAAJNoSURBVJJUa8eO/BFO4rR1vQ1/B4BD1Cw8NNevO1aOp2PzwNvPtWaZLOHuu1PYKtO5Xrlr2SnXmwK4jSJVN9dXKySHpTLMXhxM7x1K7WeHkTdEvDkE8Lc8URpcBlYilsrELd577Z8S3O4svayNDaeLyKQEmyWxL+XG5TWcZZNR2qVs3974d2tShDpY9ndmsAfnLUU0XTZjkUCIdkQfy4QQQgghhBBCCCFmTB2yWTY/kQxTCCGEEEIIIYQQQogJdLJsDjkyno64dtFxeQDo5mPtfIaYz8RGLkeis7Mso/MkVDZtTs8LA770wJ4T9/LHx4Tt2WlPdmU0AON9Sb7SMUbyjqhO+Lh0s+6JPM4+O4Wjs/kkoRoj7UEne3AE8iPcXN+exz0bj3UN9uw0yzDpvdtIvvi3+RO4hsJdLDGzHh09uVgzrFrl3+O+a8/zc/4oXh9pM4ygC71cJ1Rfo8YraI3r/IwzUpiP2FsPjNzXIvdWLKFrxg1Wq2HtAvchK2Xktoi8F5Z4G4y0aN7cAPiSdCt98OYuDlu5H/djzquVPHJ/YA+YLIWw+eb0WFphdTusbYtcDDarbTmZ8Nx0WVkL1xffYykM4OsRo3WN24Xb0vNaDeRrrtUzOjLDntW+DJO7e6Su9Zxde06iAd/ZtV26POmlLR6nETnZzvDGX6RZ8+aDZnVuzeDJwc3YG+9JErgRmlK89gJ8z5jTtivUnzJPoIFOypMVRvK8aMrlLm2nzJmya5efh2bgKcBuMT2LCfad3hY48hbpbYc99f+x8PLQ2zM97hSUwZFgG8/X3JaRNNVTqtvhZ/tKo2eaXaq852wdc55qneQ9diTQFUay6hJKtamleIPMrvu8LvEzgQyzY/++qXBPT392z5MQz7Z6hDiZ0ckyIYQQQgghhBBCCCEm0MkyIYQQQgghhBBCiKYYP3YU0XboZJkQQgghhBBCCCGEEBPoZNnJSqktKg92W28NM3B6TOQHmK9Z927dFLPBEs9HtE3PM35hDQ2w3Z+gTnITJ8kNeodXbpsHm9fZwu9lu12BLZVOquNDxjZWD5fXs9MSGcLgCrKGJ8gl9kNkx4vtlP0Xk9zGNWvSxZVXpvBq49d98+YUnq3NsrPOyq+9vmsN+nB5KX99VHdsvwwAcMUVKUxtWYtsQ3BZ+Z12XHEa3H7WJhv3GzZSE/Xp4wm3bTRvsG0zzqs1hsP9gfsuG0qyfZr9v/M4iOIxkV0/Oy4axbFpRLbkeF7j/EQGeDgNrldrT5KvvXzbNNoVz8aYnbN5LHK/s+OlZC0E/D7JNssiW5fcRpGtUaKD8rDSzqXUluvW9cKDpw1emrlrRbaHGDusuLhsNo+XaSAf2lyM7v0PpYsdxrAVrUNZv7V9mG1AskE0b1208D6pFXj2QE2+eS+ykivI5nVVsmXL9R2acSu110YN3dfXS2H/cZ7G1q6mExSm06xdnSL29Mzu3+R5KQWAxx+fVXLZmLDD3NuW2ndyV/OeiaYaDje7FTpnHdnj5fW0J0jwttumgv2Uif6N+TPLl6d9M+cvWsI9G2qRHT6ekzjt6JkInl84bOs4W563b09hLhT/Dvg2wuyY9dZ6z9hXozRK4E7Jz/McZN8bGbhkKI31W/qyW52djcczV12r/4QSYq7RyTIhhBBCCCGEEEIIISbQyTIhhBBCCCGEEEKIGVMHUOryWbQT+lg2h4wfSceVrfShry8dg+7lM8SRJIHx/DMD/hn+yHczyy2t9JLxfAnb/HhyS5Zt2Wec8+AHD+UHJPfTcWBOesmS5AK5e51J2ztL3wpYR8Dnv+05fcfVfM8RM/myL3VPmxG4hc6Ol5uj5js+/emp8PX0+89SeOXZZ+fpXX55Cm/ZksIsUQKA885L4dnKB1lLAeRl93y0A/lReu5f/IzNG9clP2P7J7+L+2p09J3bj9OzdceyU45XKstuNVy+yE8413ckE/bkQpGew46LSVgmZ6/5PU8+6afH+fbmSCBvW5b+2fHHmhCqh/HVa6fCHWOjyOA65vxEEk9+JpKMtimjfadPhbl4047Ie7J6O7dz/7L9geE+zusft4sn97Xx7HzAeXj44cbP235H6Q1mfS2fuy64IIV5aWUVkZVheqpxO915kjM7fXKX7B472PhFkRyZG5r1njYT3C6cCdvmx1MjxOsSV5gtH+ch2NMNDjSWhq9encZBxyGqU/uuqKwUr4tkmNG2kocB77s6O3Mp8JgjyWsGK4G00/tMifLjLWV2aPNS0YwFD2+7AgC1wr/KxtnESOmLvXgmE0uWpLRZNR4tIZ7y2b7S+7MgUimWwsOPw/3Yl0d8lDoBm93w9hRAPqewfNv+PcQ6dO/vIdvo0d9rHryf5k7Nk3uzad9yi3trLVXswnPT31Q8z9ssCNHuSIYphBBCCCGEEEIIIcQE+lgmhBBCCCGEEEIIIcQEkmHOIR0L0gnZyOsQDjlnw6Ozynz2OTry652dtmnz2XyWG4UZL8yr93wgnxgHSwDyaKzw4uPzXA2jdIT9aNq1hvG6O8cxazzJYVQn7OUrkOBknm8iaRyfpb/55hTt7/4ui3Y9hV9L4ZUvfWm6sJ7Z+Eg6h60LIn6umaPhxDC6s+tOp+tOkyd4/Zj1BfYMuSdts3XM8io+ih/Ju1iGyXm1egfHY9oo8n5cQwv6awHDY+m9XV01N15HH11EHuq4HjheJCni+uc6tjodr/5tHfOYY7jPRG61eJzb/u3IMTLpZSSbjGQ2ntTDzhuRXLZNqI2Q5Czywsr3uA9F61WpB0VPRxRJy6O+wTKeEilwdM/koXskyY82bkySmaVLU5wDB/Kkuboi6wSlDruLpJeRdzjPW7bNoKcZjfSjrcbTqdmx52ldbTzHK2jH0H4U4bkoNOl1r07v7ab66d8U9OlC0xWDg7P7N3l2tt0KNmxIYau68+SRtuq8qTTaQvOYYy+Q3V3NrdkdvNbPVoZpCtjdlzK/ejWv9e4jmVzWk6kC/vTJ8Zr1hskWT2qPkrdd69mS13reQ0dSeh7b1gwIw5OhJyG3HS/yYu3Be212Rbltm592qSaa6yuYcwcpD4Mb+6bCS5eequdwZLNsvnKq9mghhBBCCCGEEEIIIaahj2VCCCGEEEIIIYQQQkwgGeYcwt4wrYokdxyXPA3xKeH+TX1+4uwhK5LxMRwvkmFG0ihP1mLTcySI431JKhJle4ROHdsj8SVqo+jUOj9/TuBUspR7d6Rv0osXJy9WKzafnsXr8LQsVofAFcFHrrlQVnrGz9x661Tw7Savv0Xhzte/Pl1ccknjvAG5vJL7nZEE7dmb6uEItd/KoZnLEKxS0utqXV25XLPf81bGdWeldqVumiK5kIcntTN1vG9/qrunSe5gFYdrjUL2eMGn/hk79rj+OTxN3vOoM6Aj2YAnXwrkRiEsk+D650nXThzc9x1vvQCw71BjqeqhwGvUGEld2Tty/0a/bw2PpH7SFSioOk6QXLfV7BtLayGrF1eQxBAw5YtcOnrrWjTOua9Fcj8mSpslQZ53Tesl8557Upj7IM/TAPCtb00FO0gaPkh9dXB1X/bIaGcapyytYukYkBejG8Ppwo4/nqz5njeJWKJ9hKd7i9zxHU+vsKVenrkPRa7jPBll1Ne8PmnLze911sJx8+/p+VSa+skTe/OkWVU/W++VdrvarKfESazsuCTtyJpDqTdMHs7Ze+yiWVrAyKVmyTOR/Jeua9Q3hobS/GuHuedcPBpuvT1pnua+Ns0zdOGfqrUH700XLGGmPS+AvDEeeyyFeQ23GffklbbuvAJHnaMZsyQsw2TZpG0YHkBf/3pZ2l/6UgrbeZr3+LxAkLvlQWuqBSdoYyrEcUIfy4QQQgghhBBCCCGaQjbL5iOSYQohhBBCCCGEEEIIMYE+lgkhhBBCCCGEEEIIMYFkmHNIVSXpe2TSi22FsMZ/mq0L1tuzO2SrYfdshUSu6ktctNvryI+2YweKv95227TJbk/kadkzcxSZdYjMN8wWzxScNaXU7dWXrQe2T8B94MYbU/jss7NHHiWbDX9Jv1/Ldg8A4IILUtizPxa1JZVhdCz/Fs+2S2Zbx7buIrM2GUOUV68f28x590oLEdnM8jqHSbuzs7HNq9nag2kFpWbcMpMddpB6tnkiu0YcjycEtgEFAIcPp3CUWX4Xh9kGyZln5s9ENoEItq/F2YmmXL975eOK02Z7PHba4Prv7/PSPrnhJl+4MIWn2WDjiuUw27Gx99guGNu0sS/25mZrr4rtI27enMLN2MyynYPTWLHCf47XAcof2wadNhT3p3DUP5mlS5P9qkWLcjuRvWxb1bMRFxkeDWw5eoNktKvXjcJZ6O9qre2+PU+ksh8hNU5P39osXmbvje372I0N1xHv6bivsv06IO+Tnj1RIK9LCrN9zENm+vWazJpI5T0rF6kZm5qRfdJmbMqW2uGLlnpvHuJpg+flRu+ahO1RAsDa1WV98qFH03NdXWTTMrBHOb7xnKkwz5ls6xLw2/ZwYCu4dN+d7wm88xo1c1U4TrlPc4Z4LgYAst+YdVCew6f9/dGHhkQGpz0bccdKowQez5zXwcE8Hm8SbT14vOIVKbxqVX6PDRKedVbjPJTabhSiTTilP5YteN4NuOCstKn6x7dfgh27h/Gjv3Uz1p/RjSefOoKXXDGId/78+dOe3bF7GC/5ja247YPPnfrt2uvvRM+iTvzy1RvwK//rdnz6m3tQO60DG1Z244O/tgV9PadNS0cIIYQQQgghhBDtSB2yWTY/OaU/li2qLcAt739O9tuO3cN49gX9uOGPL8OTTx3BRa//Kl5x5RB+4IJ+J5XGvODiFfjj129C54IO/Nr/vgN//OHteMfPndfK7AshhBBCCCGEEEKIFnNKfyw7FosWLsCWjUux69GZH5H94UuTNOLy8/vw8a88PC1Ox4J0ctV6FeYTrTWQG+X9dLS49FivjcdHgz392oIF+TOeRJDPoEfxIp2plzeT7+4eeqbPN7fHWSiVV3rPtJpQxecdY7Z15WkhWDrGkg3k0ss38o3Xvz5Pm2Ubixen8Jo1cGH5L5VhxBzLb6W8NZIERXXMcoOugdOnwllvskfIPe1sJNfkZzwJF5B3PO/5Bo8d6/fjDQ97lpdEkossr7YveNKFUpfq/Iydu1gb472n0XWjZ1iCYO8FWFXfJKXt56nX7L1mVMLtBHeHrGtE8jW+F1UKN1Kh2QDX7ICFJTNWzuNpv6KFyJMpWpz+zhIsK4UqWZobXXu/j5OEfIzkYjWqu/HAfK63xAF+0feT2jbKd6vlyHv2NP49Ump1DlCdRFps1sPx+m6lxbx+8fO8TttM0Hjp6UlqCysl9LYeR8xhCivLnA3RUGwGnsJt//GWB9uHSsw+lO5R7NRVKlX1JNJRn+au0tmZxlxUPo9o2uHn7XSX/W0zNpwuorm5tNG5UjxdKJBnnseFs5cFgIMjjU1hdPb5r+F6qHUGUtJmFmuWVDqSagD55GP/XvPwJJ7A9Emh0XuiCU+INuSU/lj25OgRbHndVwEAZ52xCP/wB5dm9x9/YhR3P3gYz/m+xqfK7nno8NTzALB731P45avXT4v3gRt34uofXNnCnAshhBBCCCGEEEKI48Ep/bGskQwTAL526z5c+DNfwZ07D+PXf2IDhvobfxXfsHJx9vy11985Lc4ffuhudC6o8F+fv2raPSGEEEIIIYQQQrQzrXUaI04OTumPZR6TNsvu2nkIV77pm3jFs4fw1Og4fu5dRz0K/v5Pn4MLN/QeIxXg/3x2J2741h588c+uQFVV0+5XSMd07SnV7HgyuwPywkB+LPc730lhe857164UZqld5ErNO2K7fHkeLzrjzvB7GfbsZY8T03V3IFPs6kttUyrDbKVswMLF4Crp7RzOI+4mjcm2bSls2+/mmxvG2/61r02FP2TycC3LKDlD9lg2H133ZEDWBaOjV+g17TfWl3tJmw2lp7pt8bpBdb6fysdjyZabx4LntdHG4wxGHh09XZkZf92ODKxr4Njz0PFg2bIUzuYqu6J4/cnWCV973jCtNoTHBbdf5Gkz0luztInHH89xV1yRP8OeN3n+NXntJ3nzCEmBS5UikezHU+5FDhTnA5l5ArsWst6I7xl5eta/2MuwrSxuKE8ubz2NPf/5KRx5dKR7LFnMPHxGOqmgYYcHkhdG7qqPUfeOZIqRgtVzJmz7nacK9D3hBfLK/fk1F33Emc6jdf/8Tf69ZrDdcBJbHl6XON+rV+cqhkyWyYVn3aNdjzkT/Lydc7m/UgPupqHzsLEe8thjKRx5w2TY++9zrvTjedghy33tmVtmnp7n6BjI24LHi63iyBv7JFGdcHp2j3LhZhTB0xX3r8hDqK3LSSLv4qXrC9/zrEsA+XywfDl70W38TiD28JnBfZozYU1rsLkRetlB0H7K1Ikney1Vwdeiv7Y90zileKYBgLzspTZmuH6sfJvzSvF47bLjo7j9hDhJ0ceygHPW9OA3Xr0R7/joPfjobz8zO0W2Y/dw8CTw2X97BO/423vwlXdfge6uBWFcIYQQQgghhBBCCHFy4P/TngAAvOFlZ+Kr330M9z0cfxyzvPE9t+GJ4TG84Jf/FVte91W84V3fPU45FEIIIYQQQgghhBCt4pQ+WXboxhdO++2qLQO4aks6trpo4QLs+rsXTIu3bqgbt33wudlv17723Knw9g//UAtzKoQQQgghhBBCiJOLOoAjx4wl2o9T+mPZXDNe9yXk/T2O0QC2nWINSjBsl8wKyNkeD4vq2c6L1b0//ngKsxEKq2dnfXxkuMCz78TGHCJ9PRubMBp/z7xaqZ0Ba59itrjmanYYAydsUILtkllDE5///FRwG9kn+VuKco3NBNty2Lo1he+5J4/n2YhiGwa2Xbh/sctp0zf6Np4zFW7GUzZj7XywCZcFpHpm21oAgB3UxznfPCbYWAmQNxq/yBqoYTt8bLvPM2Rj0+axY21s8DWNndqQ7cgnZkrP3KAfCsapZ4uM5xp7zc9EdefZb9y7N4/H7cztYubFQ9TuD9DvKym9viNmI8SDm++x7UUga+cFC5JdlMhUCScdmbzy5rvIzFW7kk09fc4aCeRty2E29APk/Y7tfJ52Wh6P5wS+x/Pq5sDYkO3vDDVoh7Musj0YAOiIbNQQPJS8YWWnO17/IptlTz+dwtzdS+1JelsFICySmwaXg7crJ7LfRyYRGZ4qYjOYaa6ocaXwemz3d2wsiysoMKI1THYUuZ/s2ZPH87YHUVkjk50l2KFT2jc8eNsc2eriZcTuCUvKxOMDyKcNvjdtj1IIN2czfdyzRWbT9uYDC/fdaA/GXZK3iJ79QQDo3+K/l3ngwdSP166mxE2DjXYmW2m1sYMN07L9jOuL89oxYlRH3sDYQXmIDEBG6wjDaxk/bxuJK7x0MHoG6ICsfHseT+sS9xP7p+mzLi17rRAnK5JhCiGEEEIIIYQQQggxgT6WCSGEEEIIIYQQQggxwTwQZrQvCzrSUd8aRvObrJN40JGOsRzSwue87RltT/rF547tGWRP32M1Qfzcgia8gPL5b3ucmI8Dc/2YY8LddPq6u4/yE5w7r1EaXUO55GW29PdQ2+6mY9BWXsntzGETb7sjvfwvFN74AmNn75JLUjhyJX3TTSnMEiPPlziQt1NwzLuD+kotkugWEEkXOKvTjsh78izW8NhxxdI97tN2XLHvcy5TpC/gNLjv23hWnzNJdOT+eML5ibRafC/SG/FzXHes07D9ZMiRWdi0OQ+chqm7Hhpz55Msd5jnUlvfnnTdaoeonQdJqnzaul54cHJZnz6Uy0aGhlIa3NWseqL70CN08wT1kxazso/G83Z/jnTXTG8cAXl/sjJaxuufGzb4z0SaJ0/yQr93lGobAzwzBHbIslwsksvzPVag8zQI+NM7/25l9V5xrbTNi8frQzTlthqefrl+bD695a+/y6xXLHH39mDLl+fPeJrIxx7Lr2kf0U0Tx7p1/Y2fhz8nlXbpZuBtiM1DM6xZk8KBwiwL22kj2g55eM/YLXQp3MdL65jrLvoTIZofPLy6s+3FaXvbqWb7TDaPcMZNIWojtIbS3qF3iDLxaN7o/dxQ++merSCv8oL8hOuSB+95OD1rhoLzYydQj2i9ogbltYJlmNaKwamFbJbNR3SyTAghhBBCCCGEEEKICfSxTAghhBBCCCGEEEKICSTDnEOqqp68yu03x3D5WC4ft+UjtpGnuAMH/Hue55RDwdFiTwIQya4Ye87bc1PJ+Y6koIw9x+65pOLyBdqMmiezaRb2tMhtdttteTyWDn3rW1PBB/h5AB+iMHu93Mh53bQpT5uvub6tbI/f5XmItG3seWu18hBPe7BlC2ZK7dGH8h88jUPkCZbLdOedKWyPxHuaEiv98uTNkUSQ0+My2H7HaXPYpneiZJie90o7rni+YhmQlet6c1mkZfL6ncXThERtQXXcRWXYbyQOfXff3fidth2ccvSz91g7l+42dTSVif3ZZTel0d0X6Ge4zk9UP2k1nvzXjnNPomLjsdtEJnJl561/zbpRdvoneyh8wihrBskb4kO7U7yVQ+NZPG+YRlNSVF0enIZdtj15VST1YuU7P28lniyz72ZTCl3+vwO3QNHqwmX3tjiWvO66s3tjXem6e8hZh0oLZM0LOGY3RoK+wWXyJJmWyFNmCa1QrDGcH2spxFPc23d60wtj68SrIytBLmW2UlfPIyuQb414WouWeq+dbd48KyD8HpvW+WY768HO3Y+sS+ZUBgZWZvE4/V7KzziNt46o80cdwJvYeI8TeZQvhSd3fqfVQPJAjcwLMLT/HF+9NrvFWeXtj9dPAOCZW8pe2/7UIRnm/EQny4QQQgghhBBCCCGEmEAfy4QQQgghhBBCCCGEmEAyzLlkfDydf7bnVvmaz73yWdfo7DsfvY1c/rCki8+gW70DU+oeJzp/z+UrldBxmazHF8aTtkXn6rns7Gao1TJMPjptZZjbt08F76Vn/q9J7r9ReO2zn50u2G0Ue78EchlmJEVz3OkdIi+Z05xR8TPcfpHUi4+DNyHDnOZtkOE8WJkVSye57HxE3vY7TwJZqkMo1ahEuh1vzDXjcbYVlHgVBXzppZ3vOA2vviO5NY/fyBUTP2PHNueBxlIH5bWPxiiAXMuyc2cK23jc1zivnrwdyOc4LlMkg476GufJyrTbBS4DzwFWxsv17cmjgbwPRC7cvPWU0ytdK6J5I+sDSUZkFZ4HD6V/5+TusNJkwXNAG1lS4O4Zybt46omcG/M99poZOd/u7iQP0lQ/Ndu/HTnUWhq/o2P5vwlPmb44DqwdIG+WhS4FR6mda2O5N8xOkoW5FRbtx7hvHTHyIEfGvnKojx7P685b3q1qma1pNOvtcZJzz53d8xbrXZPxqtKOA+773pY88oDK8ZYu9fMTweUo9RDKU5QnqQXKrLNE01jpchwtf83gbacib6b84o79+9LvkZkb3kfaPZjnqr10n1QK7zd4kLGGHWjO9SrFs9sN78/RUqfTQrQj+lgmhBBCCCGEEEIIMWNks2y+IhmmEEIIIYQQQgghhBAT6GOZEEIIIYQQQgghhBATSIY5l4wdSUJva4PJs23FYnBr94dhO1nWTkuJnSTrZtyzhWMNDXiGAmw81vxz2pGdM64TNtiwenUej9/Lfrl37WocBwCefDKFWdd/+eV+fkohe1+ZzZ1bbsmi3Us2CNhO2U+a5NayvaGNG1OY68HaJvDsitl2ufjiFCYjGz1kl2GM+xaAzu99L11wu1o31dxfuf1e+UrMGFN3xXbv+DnPrXdkqCeyQ8N9yrPpZe1gePHsmPXsLg0O5vFe+EKcELgPPPxwCrOxGsC3K2XHH5edDat4RlYA3/5GZNuM71m7IWy4hes4MsBBxlkOUd+aZkLmjDNSmPsNG3Sxhn/uvDOFOd88V9l7jJ2zeWy2K9yfuDzWRhxf8xxp5wPP2JbtayX2p2z7MdyPzdgeH1o5FeZse2ZLgbzJ2XTN+cYUnZced2lbVO423NWsySs21cNmcuz0yXnnezxV2GfWrUt2vHp6UtjuQnq5IijjD+1O/w5sm6uvL93r7Wmt/bJxsjGWb39qWTwubz7td2fxHiezhYMrUv9kO2y1aL2KjEw5e7px+jd0O/VxcpHZtMg85Uyx9vpaSWTikfu7rTreHnP7cXo2bW8KsTbLnnWpnyeGpz9ui/Xryp7hfNvyefanHBOBDdPw4OnP6092iSuFzXx6YwzI22bduv6G7x0cMgXkzHo2l+111MFmC9uV5v2FtZ25eXMKFxqGO9iT1qRtxrSyt5317GMKMR/QxzIhhBBCCCGEEEKIpjh+DmTE3CEZphBCCCGEEEIIIYQQE+hk2VwyPp7Oq0bn3fkoL59hjtwAP+MZKcxHdC189pnPLVt3yHzkl7Hnpfl8OpfJxrMys0n4XG+p7CrKE4cjGRhfN+PGOYIlaySpvYv1MwA+QmGWXq5/9rPz9C65JIW3bElhlmGy9AjwZUDR+XvW1lAf7LTtQPW6n87590WSp9liZcueDNNqQDhPnktte4ydJaN8L5Jd8ZjjPmh9tHP+uEylvuCPp0YlwtNJ2GP+niTBSqe5Xj2JdSRN9eZIIO93HLZ58OS7PG9w3oBs3ujhscSSb6C5OYU1dFxWO2a9uZkl6EA+D7UrrCOK9F3ctmeemcK2byxenMIsG7dz1fLlKcz1ze0SjVl+bwvmQe6e0RTAw4K7gzdd2nsRvEVgNXFkAYCLHlWJ90xtbDiP+Oj+hnlbGSXO/abH2Yc0SceOe6fCvVyR0/KQxnA391UztpcsSbJMll7ydqWnpzd7psbpRVo7zh/F66Dwpk3r3Uc6Hnyg8Q0AQ5ckGddsZZjWEkahksxl/erRdGHyzXXsKbSB3PoBT+2cnH3GGy/NTgdsjaM0Dc9SRySj5W4TPcPxIksfXC/eEGlWvcj1ytitmpeHZcso0oOBqQiuIF5DAF9bylhN+2zhyd2+kyr24CGSoAcnoKJpw7Pc47xSiHmBTpYJIYQQQgghhBBCCDGBTpYJIYQQQgghhBBCzJg6gBafGhQnBfpYNpc8PZqkV7femt9jV1Esx4mO9jN8NpzldIAvX/LOJkfPRDI+JvIYw2nw8+zaBsjdfrEUxnoYZAkGv4e9ij7+eP4My0dbfIZ47MYbp8L30u8fMfFeTeH1a9akCyup5LP0HGaJmJEbHRwhj2JdyftPV1+edIeVmU3itSuQnV3vo7Y4ZPpG99at6T3WE+FMibxhRv2T5YNnnZXC3L9Xrcqf8WSYFn4Xy7ZYJ2WP33uSUSsT5v7quZc7kbCnRk9KCvhj2/YzT17Ov1sJnSe1svG8ec3OSZ58gjUcVmPG5eO2NXPXQxRe6bkNs3qVL385hSNZPffpyMWg9RjZjrCUlCWZ0TiIxizDchq7ZrJEk/uGty4aRgeSLM0O7UepWbh4nnNdSzSVelNKJHNiRQ/Lmmy+WVbGQ6TUE5pnacLe46ZdujT3FjnI6x89xOvd2P487f5Scw7N4PVD+ztVEnuf7DBzQKeTXLFMjecaK5333NdRHmp2LnWkm1b6VbpNLcFKb2tZ4Zv4EybwfM2eRQcGkrw1kip7Muio3JEFh1J4S8DjdO3q6XEnYcfV1uE904w3Q8/bZ+RY2OsnpZ41IyIpqLct4TltMJonon2J9zcVF9D+zdLMIOG5j/eyxrzEvTvS/MLbksjrKi+tNqvOVNG0B1Mh2gHJMIUQQgghhBBCCCGEmEAfy4QQQgghhBBCCCGEmEAyTCGEEEIIIYQQQoimkM2y+Yg+lp0sWJ/HS5emsOfv2bosZjZvTmFrH4h19J79FYt3zxo34HictjVC4BkUYL2/tQXAaXA4shnA8diAixXik5h/hJ5phUWomyn8WQq/2sQ7h+2UbdmSwtyW9pr8h48PJbs41sYNX3P1sH0aABhk+z6ePa3Idzs/z4YPkNtrW0vGeWpoAjbuY4mMX3gGM6Jx4PmQt/2OxwLbPOJwqfEMO644XquNe8yWyNYh1xHHs3b4OB7PVzz3FdosGx84PYvm2WrqXh3YUfTs8dh5mucRHiPGZtnpN92U8kf3OtjGmxkvt5Nhm9Vko6/XGpvhMceFNbZL5oU/dy4D9xM7Zrkteb5kozT2Obb7YuvK6WujwexVw3jD3415p2wIc3Y8u132GWsGkeHiRub6PLwpslGevN95m8KmRrlKbbN400Zv12gecXfjdak3mpMepGc8G53NwuOZG9D2TxqnHTx+TV55OLOdq8jE6sBAsklas3Mc460jPPdF+zae78yGo4PqP7cRN0sbY0C8BpfAZQoGQjReOAtsM5CXh2gbwdVo92Cl8HbRjp+SZ7w9IVC23bM2qngeiuyFMd6WPnomojQ9O5dNkpmqfNTswbgfeuMc8BvasxFoM1sKpxE8X2zfkCi198ZE65AQ7Y5kmEIIIYQQQgghhBBCTKCPZUIIIYQQQgghhBBCTDDvZZjnX/Pluc6Cy8JqYToLzeeeLd6ZWCsJYqKzt56sLJAujHYml+18DLdnIHfl3uHJ3OyxY++oP+fBagk9qUBUd/wMHaMe27kzj0ZhPvRvxGJNwdLLH6HwehuR5UIsU7NyKpZtkAwhUk94R6enHXdf58gaAjfxmY6A2rnHvHSI6r8WSX5LsAVirQ+nHcmpzj03hVmfYOubpTqOHGtanko1SgzrbB57zE/bkxmfSDwJgB3nXF5uFyufGRxsHPYk6CaN8c4khzMKyEyyxFXX15fPXaCx0Mv540ESScMDSVAn1wOHScNzkPU8AFhw1st98PLL88Q3bEjhe+5p/B7A1560EyXy/UbXk7AOEMh1N966CGC8p3cqzF3cSpGYwRUpHC1Rnvqap4NIlhRNKba4x/odyIteqmiPZGXeNiWS+nA9ZM08kMteu71xyrJs82/CHcdzzuQ5ytvX2HuMqYiSZSSU4JXq2Tz9WiTDZKL9ZjROSyjVgZUSyTDpuoPCdq3gJJYta5ycbTuvnZqVrzUjVSyVOnJeOewtY1He7HzgzT1seabZOvG2fras3E58j+un245Znms4Iu/HbeLefGD7XTN9mvdGFB7t6s2i8fpy4EBZ0qXrjTecmxnm84M6ZLNsfjLvu/Ttz/3oXGfB5aU3/fZcZ0EIIYQQQgghhBBCEJJhCiGEEEIIIYQQQggxQVWv1+c6D0VUVVWfaV6rqkL91Z8+TjmaPS/d9mf49NYvznU2hBBCCCGEEEKIlnPJZZfh5ptvruY6H8eLqjq3Dvzvuc5GC/jBb9fr9UvmOhcnE/NehimEEEIIIYQQQghxfJDNsvmIZJhCCCGEEEIIIYQQQkygj2VCCCGEEEIIIYQQQkygj2VCCCGEEEIIIYQQQkwgm2VCCCGEEEIIIYQQM6YOYHyuMyGOAzpZJoQQQgghhBBCCCHEBPpYJoQQQgghhBBCCCHEBPpYJoQQQgghhBBCCCHEBLJZJoQQQgghhBBCCNEUR+Y6A+I4oJNlQgghhBBCCCGEEEJMoI9lQgghhBBCCCGEEEJMoI9lQgghhBBCCCGEEEJMcErZLNv95ON487ffh6377sbCjtOwbvHpePfFr8f33fgmbOpdjZEjo1jSuQi/cM6L8VPrnwcAuP7eL+BXvvNBrFq0HCPjo/i5jT+Ct2x6+bS0v7znVrzzjk/ghqt+d+q3137rz/GSVZfhlWt/AH955w14952fwj2HHsbeH/sQBrqWnqhiCyGEEEIIIYQQouXUIZtl85NT5mNZvV7HK776h/ip9c/D3175qwCAWx6/F3tG9mNDzxC+88L3AADuPbQbP/bVP8J4vY6f3vB8AMDVa5+Nv7z0DXjsqYM494Y34JVrfgBrFq+Y0ft/YMV5eMmqS3HVF3+ztQUTQgghhBBCCCGEEC3jlJFhfmnPd3FaRyfecPYLp37bsmw91nQPZPHW9wzhXc/8GVx316enpbF8YS829qzEw08+PuP3X9S/Aet6BmeecSGEEEIIIYQQQghxwjhlTpbdduB+XNy/oSjuM/s3YNvBB6f9/sDhRzByZBQXLlvX8Lmv7b0dWz7zphR/eC9esuqypvIrhBBCCCGEEEIIIU48p8zHsplQN9f/74Gv4UuPfBd3HtyF9132i+haUGv43LNXnD/NZlnIgf3AP/7j0fDNN+f3urpSeP/+FF6+PIVXGCno616XwjfckMKrV+fxBug0Hb+Hfh83hw4PHUrhJ59M4SVL8qS7O0cb55sTAIAH6WPkE0+k8D33NI5jr3fvTuF16+AyMpLCX/964+cB3P7001Phj9Hv1x6Zvf58+4IFU2Fuia5LL80jXnllCm+gD7sXXZTHo/KODqycCnORxsbyR7ga+B43P5B3lawtt29P4UcfzR/auTOF/+M/Utj2ab7mDHG4kGGqUwDoHhpKF2vWpPCmTfmD3Pc3b07hQTr1yc8DeaX09aUw928g7+O2YiexdXfffSm8a1cK276/bVsKc33t2JHHu+WWxu9tNa98ZePfuZ8A+djkuuO6t/G4vjnc05M9Mt7XPxXmqo+apZNWvKXGbCQPdc5qN4bThS0fD7qtW1P4scfyeNz3uW9wme64I3tklNq89oIXpBuXX56nzXXE/WbQnGTm/vX2t6Mt+eM/TmGvwSw8ly5blt/j+g/62sGRtObz+vfUUyncaXZTK4fGp8IP7fYP8XN/5e7E/dYunzyH83Tws68bz+J94Pr03mjeZxYuTOFFi1KYy23vcdq2Hviaw6aKM7wtim3m3p68vJPw/sWuhbWRg2WZaAYef/xi+x5u0GD/cvBQKkdpv8vmLl7DzZ4nq1ivs9m9I5eJ07OZ4Of4PTZeCVG+o3HvwW1k88PtRGFuByCvBl7SOTk7xnjLEm0red6I8OaU6Pl7d6RnvHURyLfkp52WwvyMHVcedu7y5h4e87QdBwA869KyOvnnL6TycVPaLSa/i+Nx3lYO0NgB8obmPsmJAf4kx5mwmxS+Z/dGHrzXo33uwbHuLBpvEbkIP3SVX6dcj48bIZU393ARbH/6yWvK2q/9kc2y+cop87HsGUvPxMcf+GZR3O/suwfn9abFftJm2bf2bsOLv/J7eOHKi/GtR7fh9279KADg/c/6xeOSZyGEEEIIIYQQQghxYjllbJb90OCFeGr8abxv++emftv62F24//AjWbwdh/bgl7/zAfziOS+dlsYVKzbhNet+EO+581N4xZorcMuLrsMtL7oOlyw/+7jnXwghhBBCCCGEEEIcf06Zk2VVVeEfnv2bePO/vw9/cvvH0bXgNKxbPIh3P/P1uOfQblx04y9h5MgolnQuwi+e89IpT5iWXzv/x/HMz74Zv/mMV2HJad0N4zTiujs/hT+9/RPYPfI4LrzxTXjRyouB8Xo6W2/PKvOZVk+bcfiw/0Irz2I4DT4mTL93mLPSvRSvdxnds+ebd9M530iGyXIm1hfw7/b4Pcv9OG17rpvPANN7x+h5a5GOpZf/Ga2FBILo6grqzjumbc9B07HvGh0V7+trLBWyRMels2tPKsln9IG8H3I82+Z0tv4QhZsRwkwTQrMkmfUOkR6VK8krg70uPUpvyz6J7dN79qQwy0OsDJPHM9c/S+tOJCwfZU3J3Xfn8VhPwW1kZUkcz2owJjGSmw5q214aV50DvVk8lpUxVsWepT1C0ktuMyuj3bs3hVl6afsdDywuB0s4TJ+pcf9imbGtO0+/YiVKtr+2I6z757aw9c1l5XpgDQngdw5Tx71Ux70r0r3RsbJ/b/Rkk0A+nL0lM1Kql97zpPgWvsdD276Hq7JUhunlzcJTOMs9p9O4/r3pFwAGaH6oocXyICvJmmC8K98r8v5q3/7G0jHAX8e5To1Fgnw7dCgwd+DJIzkTkcwxaPThzlTHI9QW/X1N1Hckc2uGSBZK1zy2bTtw3/f6WiR1jsbfyiH/HuOpYKPnebniLY+tBm9sRnMIpxHNd94zvHTZaboUfq8XBvw247wODOS7zBqPBY5ox0iJ3r10kozgtCn85N48Wuk6wnC86M/M0voWot05ZT6WAcDK7uX42JW/Pu33J6/+e/eZ165/Pl67Pn04W9m9HLt/7G+mxbtq8AJcNXhB9tv1V7xlKvymc1+GN537suz+S7/1W8V5F0IIIYQQQgghxMnGqWKf7dTilJFhCiGEEEIIIYQQQghxLE6pk2UnHUeOJN2FlV3xEVs+b13qvYn1HFY6xJS6M/GesceMnaPB087/svyFz7hH57e5HjhsXXI6dbeDonwofwKvpfA6dv/TArIaYu3X4sV5RG5b1p7Y/Dh11NXV2EsrkB9rj+QBGZ7XPutRjrU6fM5/48Y8HulFeqKz3QV0Wo+A552XwpxX6xGQ65W9XrLMzXoAo3sszahZeYh39jw6n859P9LOevqsFvfVYrjuWB5t3XzxtTc3ALmUgcez451s2jXNSWOB1ICzM81LXif9i6AnqY30ONHc5UmWPHkmkM8V3NdsPG/esLTAs++c461rtr45Hq81VnvLczD3u0iXxJLfTn/OZSIpTKQA97LDRPO5pziLnnGG1TS5X2n+PC+APCSs8prrpJluG8nFuOz9fTNPO2K0M8kteT6x7dpNFdZFdZfNQQCWLTv2v2fbuu84RN4+eYxE+0Cv41m9mqe1CzrUbFWT0xqw1K2rR7TPpbRrfeneokX+OOfxEsmRvSw0S4nlAos310TV6C1Xpc/YsnrzC28rm60fXhr5PXbZ9qb6aAnv7Elju4NeNNqVm31wrMCgpyf1oWmjupkCUx6GR1KKVsLajCSS29b+mcLw9pOLEK0VQrQjOlkmhBBCCCGEEEIIIcQEOlkmhBBCCCGEEEIIMWPqAObBCX4xDZ0sE0IIIYQQQgghhBBiAp0sm0ueegq4556j4e98J7/Honr2LW/tc3mwfQpr64dtuHh2qQKhO9ttsjZb3K+vNj0W1nOYbc2wXTIA4zt2TIX30e99W7dm8UacMNspu8ZkL7NSxfarWkCnZxvL2v7y7DPZ9nNsPzXjFjq6N0Zt223tc3mw0Qj7DLftbG1tldadte/ENp04fxw27b9nb+rVbD9nYMC3VdEBx/6VbUvOD4fteOE0PNt9J5K7754Kjm/bNhW2uTmd4nUuX55u2E7oGSYKjKSMd3WjEdbMjmeHxDZFZ09q5w7PkInNp2ePLrLlWNpXuR/yPRuPr3mMRXmYD0QTmbf+RfNOZOiqwPDLdBt4KeyZHLTXHC9Ku9QOVIm9GpuWZ+csMqlYahfHs90WNSU3mR2znt2zyDYhl6nVNsvybpfmE9vmXUNp7hrZn37vNkPUXVOyQpkG5JdFxvK8Big1RuXNaQCeeLzx472FJnfddwLNGWFq5nmKZ+3BltomY7zqbtY+14EDM3+GTcp65kQtpWaSPdtmtn74z49obDcDp8FlsnOXt2znNsbyZziNZcv6p8J2C+bZa+O0p+0de9J1R6k3RdqzPkp5sGtIZNrTg/NqbaBx+zHeuiHEfEBdWgghhBBCCCGEEKIpJMOcj0iGKYQQQgghhBBCCCHEBDpZNpc8NQJMSJj2k8QQAPrOPjtdeH58rRwnS4Du2XOzLPfyzi3bM8h0fWi//9p+lrNFZ3FZWsr5W02CSHNcvoPqqIvOk1vp14MU/iyF30jhAa5f+94WyzBx+eWN07Zn3zdsSOFIduX43o5UYN6x+EhtxMfOu1akY+cdQd/Izm9zPwPycszWd/oll+TXg4MpzFJl25ach3XrpoLjA6dPhe2xej7W7h3ftyxcmP4dYtGiJLnp5X5mibQLDKfh6baON1dcMRXsWLFiKrySZJcAAJYgn3deClPdT7t2xuJ4X+qDQC4pYTmHlTwxXv8G8irv9uRGdizyPMZ9zfpO5/6+cWPjtK1sma83b05h24f4vZGUsFRKfTLj6YXsePHGj/2d19NA8svXo0iSrLFgGqs586yd+lg+WCpl4mvb1RjuGl7xbFGd5SWUQEbdrgT7jKfKtnXHY917b6RobzWcNrdLtM5mbWsy1+EtOJEO0NN+2QmvRAsYTaaFWiu7DZgxtvI4T81Iy0sXcaLWl1/39aU13dtP8biO4jXLbNPj/hntF5cubfy8bVdvfrFdi5dQzgNb1mhWksnbQM5fVD5viERjlqWJLHO07/LUzZE0fGXhnx/7DqV1iLeB0b4mWisY789Ce4//dCuV9QrRjuhkmRBCCCGEEEIIIYQ4blRV9ZNVVX2nqqonq6raU1XV+6uqWnHsJ4GqqtZVVVU/xn//tTD+bSXv1MkyIYQQQgghhBBCiBlTh2yWHZuqqt4C4F0AvgLgl3DUx95bAVxRVdVl9Xr98DGS2AvgNc69vwSwCMDnGtz7BwCfML/tL8mzPpbNIfWDBzF+440AcukgAHSSnIl9vnWw3sjTKgDA9u0pXOp5LsuA6Rp09razM+Vo2vFvT5th88Dnhh97LIUfpJowkq5R0l0dpN9vN1n4JoV/hMLZyWArz4vOHc8WT/MSnZ3nc96RjoTOkHd19VLYz0KkrGDpgJeFaR5QvfIFfWjW7nLsOX2WXkaeRB3vg9wd7bF6vhdJo7iOPBlBb0+gp4rkISV6o7midJx74WOlMUtK5SrdXeSF6lGqb9bl2s6xZ0/jeHYA8nNnntk4c1Yu70nuI2+Y0UCPBn67wOsDr3F2wHE87mu2b7FmJdKRUDvV6F21rvT7eHBQn5vfdiHOEmc1mi4jGSXTjNe+2SrbIpmpJ2m304Hncc1Kv1hZXCrDZC7c7N9rBp4COG+RFC3Ln9X1evN+5L2SOxhnyFayp12PPPQ6C9u42RMcdv7UacobpmW2618z86CpY/aWbPdDk1gZpud1sVlLCpGHXY9du1KY5wPr8bBkO8xbLptepGj35rUaRtPvPY3r9FhwniJvmB7cb+1c46XBWwD7Xs80ih1WzcgwvT2rHR7RPY9IVu/tbUvXJHFqU1XVAIC3A9gK4Hn1ev3IxO9bAXwKRz+e/VGUxsTHtA81SPsKAEsBfLxerz867UHgu/V6fdpzJUiGKYQQQgghhBBCCCGOBy/H0TNAfzH5oQwA6vX6pwHcC+CaWaT9uon/v9+LUFVVV1VV3d59D30sE0IIIYQQQgghhBDHg0sn/v+tBvduArCpqqoZn0GeeOY/A3gAwOedaG8DMAzgcFVVO6uq+v2qqpxz7DnzXoZ5/g2vn+ssuCxcVKHj+18AAFj3+bxthymcHcyns90Dt9ziJ37HHSkcyfi8s+GBhKfXc7EFANsd+Yt1MXjnnSnM54S/852p4PiEp9BJHqLwDgp/EznfT2H2G5edDLa6iBMlbeP3WD0Oy1EZe+7Zkax18/Ft03ws0fScVwL5MXY+hl4box756P78IU6Ey3Q8pXZW48DweflCWSB7cR0Zyf8NwTtKb5W8nCWux+7OJC/ADiO4Zi+4XhjwZdVzJcnkdt65cyo4Ytq8Rtcd7Iopcu/H5aPfO4w3x0FuAKqHnnW98OCu2t8zmt/ktuHycVvYMcvzGseznie9/s56M5ZFNbr2KJV5l7rCOpnhfsID7vHH83jUJ93ngbxdrBaJ4Y7jSOCmeQmmPhBJIHm68lR3pVJLiych524XeSuMpJKcb5YvRVO73QZ4aXuOviO5WKl3TlY3txpPUlcqw+wfMg3t7c+8ODae17kA3w1rIMMcpX0EP8Keie01v3awyHxzzjDyQwDdA7P8s8XVwAbxTD0cPJT2CJ7MLdp6PPxwCh844GchgsdS6XbKLl+TRF3I22pFHh09L4kWHotdK5L00nbVUvkuO6dm7LzhtVPkaLXUs2UJpc6bZ5KGh7OdCon6ccn289SWYc4Lm2UDVVXdTNfvrdfr721R2isn/r+rwb1dAKqJOHfNMN2rAfQAeGe9Xh8398YB/AuAfwRwP4AVOPph7bdx1E7aj/Apt0bM+49lt3/ykrnOgstLf+orc50FIYQQQgghhBBCnNo8Wq/Xw48nVVX1AXjzDNK8rl6v70Myw97oXycnP8XOWCaJoxLMcQAftDfq9foDAJ5nfv7rqqreC+D1AP4LgA9Hic/7j2VCCCGEEEIIIYQQYlb0AfjdGcT/EIB9SMK5hQCs24zJM4nDmAFVVZ0P4HIAn5v4MFbKH+Lox7IXQx/LhBBCCCGEEEIIIUSz1Ov1HTgqmZwpkxaVVgHYbu6tAlBHbnWphJ+Z+L9r2N9hJ47qZgeOFVEfy+aSroXApk0AgJ7Pe/boALZyxNZ4RowxgUwmHvmV9myTRcasvGesCN7zZ2yNWnjuzcm3tTWvwAJmtlN2lYl3DoW5vihnGLj11vyhdetSeLb2tCwPUgtGPsOtEaxJli/302bjAJFxAmek22icXAdI9v2g015AXqbI7haXd7a2tnY1krtPwEZ4rMEMttvk1N3K1WzpDvD8oEyzeeXZ3WIbb7bu2HhJVHf33ZfCzfqabyWUv1Eqk13heE5ayTYIrd95nns4zH0/6qzUn2qrfQMnnZ3UlnaO82zqRWOW5zEe5xa2qeXZJrSwT/pVq1LY1gPXF+cvMpoz32CjWQDG2VbeCjKUZOvEs0Vmjd+wzSJvng3WDc+sHOCbpovsxpSan/PMXHEeTNW5ebD2jrz8ReYkS+3n8D0O27rzbAdFy0tko222lJoPZLJ7hXNciFex0fPeumjs8HH7WRN9DC+7T9qzAzPE9v2uvmTbKtujlFJap1TAYWPH1DF9mvV9ayeLxyLfa3Yr1EpzpdGWl+eH6J08j0VV7G1Z+flmbZax/Tfug948COT9s9ROpLccRM8FpgAzG2+leCb1bFmbsYfG/dimx1OFt3Y18875QR1oZk46tdgK4GcBXIHpH8ueBeDOer0ejNicqqpOA/AaAHsBfHKGeVkPYAGAPceKKG+YQgghhBBCCCGEEOJ48EkclV++saqqqU+vVVW9FMAGGDlkVVUDVVVtqqpqqZPej+Kowf6/qdfrDf+prqqqaSdOqqrqAPD2ictPHyvTp+z3XyGEEEIIIYQQQghx/KjX63urqvptAO8E8IWqqj6Ko/LLtwHYBuDd5pE34qhttJ8GcH2DJEskmO+rqqoXR0VpO3FUdvnjAC7G0Y93Hz9WvvWxbC45rQZMSr62bMlu9ZBkqZPO+T5CcYwIDOsoPEIyqWmnglkSxGdsWSJGbu8BAIODKXzGGTbFBMvHWLdhNRxbtzZ87yMkf7nFJM3Sy++n8DoTj3NeIwlON0tBreSRzzF7cshm4bT5jLbVJ3hn+21+PN0Mnwc357y7N9J1XzpQapVZHYcONk6P289KBDmeJ8MFWns22551Z20Nv8dqALz8BfqgoaGVU+FM9rHNnCD2JFk8rmzdbac0WKZo4o3TPT7k3WnP858oqHysQrAH0B907q2+5RY3PVcaZ8cBSxNZc2H7HfWVXp7Xtpv243bifsLxrNTSGxe2Xbh/8r01a1LY9lUuE8tWbd/35i6rD2E5YrvCstxly1LYlJVrshbJT705wGpPvHnD08IAaW1HPPV502ckd4mmOMYOhUbP27x58kqbFt+LJJCcPqcRKVg96aWN58mh+D02P5F8cLbwFoO7kF3qWXbFkryhoVoWr6eHJIdeJdtK4WtrhoDhOYkrmeaQfSO5UzKeIvkRa2XDLnOTPOtSPzseNi1u8/XrZp5etrcN9IcHx1LZbd/neuB73M626nls8/PNWv3gNEolmdYKxCRWBsjzDdc3v8f+icDwGIvmA07bsyYAAGutZQwH/tOGsap6TwbrTe02Hs/NzaijbX03Iw0v3U5z/4qkpQzXTytknUIw9Xr9z6qqegzAWwBcB+AggI8B+PUZSjBXA/hhAN+s1+t3BFH/CUelmj8LoB9HPXF+D8AvAPhf9Xr9mNpZdXshhBBCCCGEEEKIGVPHUXvx4ljU6/Xr0fikmI13LYBrnXsP4qjNsWOl8dcA/nom+bPIZpkQQgghhBBCCCGEEBPoZNlcUjstSYkuuii/R2e4e8lzI5/4tSeq11GYzzF2Rd7X+Lx1pKXga+vmh+Ez85Ek7557poKjdEb6dorCsksgl15uobA9Dd7Bktazz06/c96spIvPJ0/zhjhL+Lx6dGbbO6dvpV+erDM6z09nqbv5mb5c9pF5buT8eF4bLZ6sCSivhxLsGXk+wx+5Y/OkroFUq8PTPNl24Xisx2DPnbbuOA2+Z3QtmayMJXks4zuRkPfYXuqrHUbvwAsMz0n7TBv1swTV88Zm+wynEcmNPNdctv08GSbHs89QPJ7Halb3wRJI1nBEmjDWP5TqPiJ93XyA+z7XndEpZmfquZ9EksxmNCpsniBoF56ubBY8R7CMbcpmvKd5y7tN21NBWzmO5+XQDsWSMkVeLjkcOYv00p7JveOFrRO+jrZdXP+ZILJU11vqItRpDNvmPK1FW8JWOhS342W27Tc8lvY83T1+YodoOSh1Du9VPZDXXRSvlGaeK5Vv85TpKX4jD5NeWkBeD54Uu1kPqtE2oITS5TNyuO7Nd7wGWGfg3V0z96DIz/T1+ede+L2l6wbHs/VQ6ABaiHmFTpYJIYQQQgghhBBCCDHBPPynZyGEEEIIIYQQQogTgWyWzUd0skwIIYQQQgghhBBCiAl0smwu6TwNOOOMo+ENG/J7JAY/fefOqXA3GXDInXrnDPOFtZ/j+aTneNbGGAvxPV/SgG/3x+ThIF3fRb9/mcJX5SnjfAqfzqL/Sbtvk5x3Xgqz/THPZ7W912qbZZweG3pgO0ZAuc0cTsMzImLTcoxkdPX1+/H4PWyUxBoRKc13ZJ9pptj2W7w4hT2DMIBfPjaSYcvj2c2KbLdx2hzP2rziaxrn1hhEZlmOy2rr4UTB7yX7fz3GQMkYlYPnJDO7ZIZNMvtljPV7z3YHPf/vQN5+Gzem8N135/H27GmcHvd3a6SD2iKzJXfWWX5eyY5ilh+bNudh2bIUNuNotDOtBDWea2x6ZGeubdm0KYW5XcyY7eKxxPOsXQvZnifbCbSGdrguuX8V2j2M7JIdTzNzzZivYngas8Xz7NVEafMzpXbFonieyc7Ils7xtLPDyySHrX0nnsq8rgXkZV+/rq9xgrZApTYf2YYozU8HO9OewC5xbLqU7TZF5ZuteVKbB37XhZtnnh4vuUuX+ucFeAo5cMBPw1sebLNEY6kZeCrjtojw7I9FbcTbqVK7YtYmF8NLGbN0aQpHZpYjuF75z5zDh/14PFyiYeXVkd0uerYYecs0zUYZv7h0n8z7+K60Qyy1tVZKtIVuZg0Qoh3RyTIhhBBCCCGEEEIIISbQyTIhhBBCCCGEEEKIGVOHbJbNT/SxbC5ZWEvSGHtulc8x072eW2+dCnd7ciUAA3xh5X58dtY7Q27PLbP06/HH3fd6Mswxc+78Fgr/C4VfQuELTdI1ljJdcUUK8+9ALtVZvrxxvMiHcqvlSp50yLY5n5+2kjOG0/DOrtvyWX3HBNOOlvJxcG5nz1c6EMtbmVbWq02L3xudE7cyyEm4v1uNBNcdt1nURp62xrYDx+Mz+2vW+GlzP2YZ34lkM+lfuP1Nu/SRhqaPdC37Tbvsp3A36UsyOZ2Vxnm6MqtD4Hrle7t25fG4b3A8HgdWxsftxOOcw0DeZlxHHI70YSyZMuXLhyPLMTLxLnrngwyT+zsXnDU3QD7OuL6spsuTUdq28NbMQr0JN7+dPj3pj+3uzKT1Bpsdi6fCiyRYzcg1eYjZZzxVIE/Zdshyd49U/p5iibcrllKrAbMlqkev/m3f4LyOjqXVulZaCE8HZq+pwndvTz/b5Yq3GFz3Nt+lktgSWiFZZEoloiy9tFtebzvUzLhqVnrNFlRKuwM3Ocsoj5i/75uR0XnWL2z5uI64D7FsudUyvlLJt7dVKH3GXnP5MullNGBKZZj0TE9PWutt3fHaw/NqBP/JaP8ULOlrx1PqLsRcIBmmEEIIIYQQQgghhBAT6GOZEEIIIYQQQgghhBATSIY5lyxYkM5F2/OxfHaWw3QuviM4n94dndEmKdEYhdk/iz0FzR2Fv7COmnjs8Y5P4j5g4rH08ocofA6Fa9aljlcntu5Yesnnzvmct5Up8r3IlU8zeGe7bbt45/Sj8/xM6dnn0jPuXCeRyy6mVFNgZVMzpfT5SP/C44cleJH+idPbvt2/x++5444UttI/lvVxv7N90NMsnShNkYXrP/K4xvmm+u4KvH3eRuHVpJnpNrJX9gbMc1KHlRt6ktbbbsuvuT9YabeHJ/+1kidnThrt6p0K56JJFLctd1cespbeUg3GyYy3Bti1kO/xeLHyF/aASe03bvpattay3ojHr02baMYbZul0Hnml8yRi/HtkDcBzvAzkfS1SDnll4nzb6a50iuP3nmzSH8/ZMuArfqOllaeQRYvSbNFr5xqvs9n+SfPBQ7vTDMpLobVawPnzHFADxU5ii7B5CIZZEezRM8Jz7A7keeJxEUkJPblts0u4Z8GhFG4zW6feFjGa7jxn7HZL6G0R+Zlm+4w3fuzc4MWL5kWG8xrJMLOhyS+NZP6l6zTLMAfSPiIaH6Xb80gaHjkeb5C1UxDZLJuP6GSZEEIIIYQQQgghhBAT6GOZEEIIIYQQQgghhBATSIY5l7AMc/VqPx6fgy3VJzzjGX489lJJ52VZQlkqw7Tx9lGYhSz/YuL9MIUv4/ewhOq88/KHuI64fNbbJ3tM47Kz1sOeR+azxVFbNAPnJ3IBxmfc+XyzPZbtnQ/nfmJd2Hjny5txd2Y1N45XrWlpb9iQwiwTbgYrrfP0OPY8/6pVKcz9get70aL8mWbksRxmvYMdiywX43q0MkCuVw6feSbmhLPPTmGuL6s3csrUZbwSrmTPvqQrZAUAy8QtfK8v8lLKdccSPCDvK6wx4jaz7cLzFY9n66WU5xR6hrM6QFIKAOjmZ4K5/jClEUkwhob6p8K1sDZPXvaNJPFtP9exHYs8nlmnavUhXGHUB615AX6O39TDDRi0UcdYSpE9lx29TuFSL5A8rKIp3FMJM1Z1zlNzlDbHi2SYfI+tHyxb5j/vec2004snh7JTONOs98ESmpE5MbaNOD3P22CYCS8MYLwrjSUeBjwN2vrm/HFyrfZeyESWFJqBt0aRY+/Is2UJUV+IZHylRNLukmciSrY8peWLZJhB92wKLz1bxyXxovxwPViLIPxcR+k620zhnWdsWb25NCJ6phlTAUK0O/pYJoQQQgghhBBCCDFj6oj/WVe0K5JhCiGEEEIIIYQQQggxgT6WCSGEEEIIIYQQQggxgWSYc8iR8Qr///buPL6K6u4f+OckIYSQhBBAEvZVBFFBkUVBQXEpguJWUFH0UazWfanV1ipt/Vmt66M+1Vqt1uLuoz6FKlVUFBVZVBRcAQEhLLIFCCEJSc7vjzvJfOfknpPJzU1uls/79cor596ZO/fMmTNLJvP9nt2FkfuVGR0PCExLkkHxnTv7ZZlQwjXOuMzjZQaxizHIU0WeLJm+QXwLgGAOF1nebcwnX38myscZ8/UQ5RQZFC/zSJm5uuTrvLxw84VNCCGD78MmdgjLNny7WbewCSHC5CxzfSZs3i25PFcesLBJEWSSm7omqAibhML8Hpn4xZYjzmwTmbhFjg2/Zk1wPtlGMsfRypVVZfMB7VSZMMjVdrYkJ3J/aUi2HHYyKREA7Nrll119X7xOEm0iU2L8YFRBZviSWznXSKTRUeRHSxN9sEJsF8D4z5HMTebKdSjXXU4zt6U4JpXCz1kldyWz6dIzLQlUHAl0ZFctN0Yw37nTL3c20jw2FXI3ze7nnzOTcguCM8rtJ9tL9sdqC8z2lyePDQie82ReziSxAdNl3j2TmC87O3iut6XHc+WDiSU3luXw5Pwe2T/N3GbyUOiqj/m5aJ9x5dmRZXM+W042V+6hWHNEhWHmL7KxnVLMU7jcfnJbyHXI6eZI+CbLxnFDLk+m3pO7xPbtwUXLz7guV+S2cF2WhGFebtj6UyzLM/uC3H7yeGmmgJXLsF0mudLiynI8+mPY40HY44vtuCHX1ezrtpx6rlOm7TIi1j4jt4trX7Tlo3PlppPrIesqcy8CQGqKuMqz/b3mSsQn86C6iEZKEg2ZJnIRRl77ZfMaw8bVdrLqZk7DKFUjahZ4s4yIiIiIiIiIKCblNc9CTQ7DMImIiIiIiIiIiDx8siyBKir8x1jNp3JzZHyBDKncssUvu8K2HI/fV4vP8RSIshngKaeVOubbIMqHi3KuMV/gyXO5HrYyEAyvlGXXfGHHN5ePQYcdXzksuTxbmKPJFXsiyW3piq2xPVcfdkx0V2hj2DBMOa2uYZiu8axd29wWYhvLGOYyrBQIbgtRlv+RqLZkGeLnakdbf493Xw3LFv9kxsjI+BU5nxlCLpaXLkLg5NaSYZdA8Jgk2zXVmC8Qorl1a1W5yJhPbqd0WW9bCKz52rX9xGsZ3iObwVx0ZqYfTiHXISUtuIbyMGJGGUqBUKImGoYp205GuOQ42jsQbu0K3xZ91zwqyvQCsufK+bLM8F+EY4tOdx2G4jmfK1xMslw2JJStrq7TWl3D+FxkSKUt1NIUNiQ2bLiYlbGhw4TlGtHIgWlhw9xsoVphmW1S10sHW9ikuWy5zVxRc2EzXEiyD8a0LWvxXbVdVthp5vFAzifXL5btVdf1iXX5YdvUdQmdkuJfSVifRjEbJZZGCvkZOZt5yWrjmi/M19Z1HyVqbPhkGRERERERERERkYf3f4mIiIiIiIiIak2DOcuaJ94sS6DysuqjDVXJ9UNwcuToKPIZctdomN26+WXzOWEx9FGSeJ44wxGiVCDK8ls3GPOJbw2ETeUY8wXGa5Ejl8myOSqMfC3LRmjdjuLgaDCVsnO7VJWTykqDE0U7FJX5YU7pKeb4hbVXkeG3RJIr3FPGK7hCL22hnLI/mPET8rVr+C352lxGtO83X7uGOItnGKYZTmmLN3LFWdhiT8zht2yxMa4YFTkapvx6YxFJMpbFFtIH2MMwzZFgG0rY8E9b7JZ57JIj9K5fH/Ujxh4bOPakO+aTe3Cq2LYFxnyyxdNlHxB1c/ZpR3hsRbZ/BNy1yn9f7m7mrii7V5s2op6OwXpdYSRmt26K5PlSRjBnH2SMJi3PI7LBzBOuZb9KkcMDGuTRQDax80whR800NmB2tt97baPpmduyXTu/7Irml93VNgKfK2JfcoXduUaftA0m6zqM2Q53ZkifbAdZb/kZs971OYCw3LRynzXJw2LYga+t+7YrpMtxsCgu8Mu245Ar1E5Oc0U3hw39snGFQMbCFfZquzxwXfLYhA2PjnU0zFiyMcj9Su4X5vrIPhBm9MNoy7CxhaDWZ+il2Qdt7W8bSBYItpccwTg9xbjiKLQMHxp2tPqwLMOUpncMdqjsbD+ALCc73N8zrnaQbMc4c/RYoqaOYZhEREREREREREQe3iwjIiIiIiIiIiLyMAyTiIiIiIiIiKjWmLOsueLNskRS9rwGgTwGBZYcVa7kDXI+M1mNyAlUJvKU7ZBfaSzOlqesmzGfTD0ic5aZq5kKi7C5rBzJDlIseVpkOdX8HtHge3b6b6fHmE9CkpsiSyYAMJNVyAQArnaQC5TzyTw7Zm4eW56ysAlrZNIHM4mBTJghp7VuHZxPTqtjzrKKtGBeusC2zXDkLJN1ldNkMg9zu8j1kO3Yvn1wPlkJsexUuS3C5rwy21h+zlZuSK4kRbb5XPUWiYTSRF/LEglOzLyHPURZHrvMfItymlyGmdtMztdRHBeTZF3N5CcysZgjuYelawRywJhdVeb9kPmBXPll5DJkbpjmwpZrJqnY2Oq285+ZK0++Xru2qrjb+F6ZwUwuodRSBoBAFjVRcfPYZcuh5EpjI7th2NxIYdnSP5ps6Qhd9batq9n3bac4M+3Prl1+WW5mWTbXwVbveJDfG/ZSTQqbfixwqDGv72zJCY2Fp6XliLL/vis3ne16ytwurm1bW/WZy8rV3q6cgWG4PiOPzbGewmWbh13GTnFtK88vZi6yuuYScx2f5GWuvLQKe9xxke3gupy2Ld92njanyeNOZmbwr5m0DP91IHTLtSPEspNY/paoMALGYtl+YbdFqL9fiZoBhmESERERERERERF5eLOMiIiIiIiIiIjI06LDMJOPn4NDevvBgq/fMQxrNxfhtFuXok9eOvaVlGPiqM649/JB1T67dnMRJt6yBCueOrbqvZlPf4eMNim4cUpfvDx/I2Y+/T2++bEQix8djWEDsqt/f7I/9Lk5BG96mQgE2SACH0UIZeB9k5wmQooAoEyE68nQI1uoJQD8IMp9RNkY8T1APpxsDlgceC0fQXaFzMhntnNz/bIR/pTVT8YriOeBXUM3C23aWINEYxJ4JFk+Eh32+eiwsQJyPGvXWO62sbKBYBvJsEBXGKb8XrmN6jpmvENStR5lue/vCLcNrIfsT2b4qGwH2T/lZ8zvku0o9z9zu8hQTldoo4zbkOW6xrjEyjJsebXYP9leMmTR1fdFO6SL5bmONbJHukK+Zdi4GWonj4XW8Am5DkAwlsUxTHyqCNJLS/NrJI/7YcOfzCa2hV6au19zCI2Qu6yMnK52rti0yS9v2eKXZag6EDifFouGNEN55V4mwy0LRNk8IgWIyhqn40DV5TQZ8W0eDmT3MkOoJNe0Sq5+FzYULZbQy7DR27ZDDRDsD3LTyrL5PR1dB5I6ChuGGTbMSZ6KrFHs5sJdDSZk9BNl0Y7ymOS6jAi7zeMdRlnHDA7ObAC2yyTXMmx92lxv234Q62WSK9TYRmaEkKcyGVYI2MMwZQizedyw9WnXJZjsa7IPxnpZE0uGCrl+sk3MXUceS10ZReTlcPv2/t+XqR1jPIDaiOvSUnGVU1gQnE32k92F/pVNVob9jOXaf219Tb7vOqc0f8xZ1hy16JtlbVKTseyJYwLvrd1chDGH5GDOn4ZjX0k5hs74AKePzsXRh5gZc9wG987Eq38Yhl/c/2U8q0xERERERERERPWoRd8sq0mb1skY0q8d8rfV/t8cA3tm1jwTERERERERERE1Ki36Ztm+0nIMueQDAEDvvDZ47Y9HBqbv3FOKlRv24pjDoj9Vtnrj3qrPA8DmHSW4cUqfqPNGk5LsR2GllhmBHxtEHIEMqZQhJWboiSTjOYyREYstZRmW9L2xuANFWYYyZRvzySeXZfiT+ZCxfJ1qC2Uy18828qMZFmgbNso2xJbxOiM3C/EU2La2IbuA4HPeIcPUAmVbSB8QfC7a9ax6mOGEzPaW87mGGrM9Wx9LXIyxrFRbXISrHW3rJJ+jB4JhmK73be3aqVO4OriGYpL7iBQytDjubKMNmvWWxyEZ6+EaPk30VXkMMfdKuQfL8QXNMSllSGXSIYdUlbNXrgzMVybrYNvmZv+2tYO5b4tjWbt2XarKsutnGv9fkVVwhVfKLiSXYR7iHIN1NhmyvbJSxHHVDK+0nSfNc4rYr+SRwgxQkU0prwayLe9XIxp/r1EF2YVk6KUrZFFOi2V0R1fYluxfrlAm2Sdd4WdyvrCjKdoOa675wh726zNyPewItLZ2dQ2CLEMyA/MVOuL9HGwhzbYBms1Fy0sKsw/K+cysBrXlyvoQC9eg07ZLAjOsLMyxNNaw5ViE7dNyPnmsCXuZJNvBTB0jlxH2EjPeg3zbLnPN9QuzfPMzthGpXZdgso1SZacxFx5Dh6hI8a+Oih0h37bsEFmOPuwaVTtMCHk9ZmBp5DQYhtk8teibZdHCMAFgwfIdOPTi9/Hd+r24+Zy+yM2JfmTt26Vt4PMzn/6u3upKRERERERERET1r0XfLLOpzFn2/fpCjL76Y5w+JhclpRX4xf3LAQB/uOhAHNo3vk8fERERERERERFR4vFmmcOB3TNwy7n9cPfzq/H87w4PPEW2drM5XhYRERERERERETV1vFlWg8tO7Yl7X1qNNZuK0DsvveYPeF5bsAlXPfQVtu4qxSm3LMaQvu3wn3tGBOZRusLPZ2XmUpE5WGTOMlnetMleAfH5CiOfyw5RXiXKS0V5mLE4+RydzDBl5mmRLZQtyknGfIGOJwPk5djNrpxlcpprPHmZjMOVBEYkMUiqlrGmjmz5CMImRZC5zAD70PC2smvZrtwJtnHUzaQhtvHtE8U1/rstn53sJ2ZCEjlNJmMwc63JZCiy/c18SmHqY9bblgwnbJKceLPlV5P7L2BPwmSS6yvaMUm0d7qxrukiL5gtfxkAlMoXsu8abVwq6ydzWYnvTTG3izwOyX5ntoOoa5tufs4yuThXHqlYUgG6un5TFdjl5H5l7mPyPCmnrVkTnG/t2qpigXjbzAYqX8tmdOXUk0rL/DOgeWiWXUVOs+UAMqe5yMOV7EOuvDPytSsPWCx5aeTyXCk6Zco/V36gnTv9stwV5fuuHH/xJlNLxpI609zO8pQiU5KmFosMs2Z+RPnasbJJhf4ysrOzRNmfxzzV207vseTNC8tcBTO3Y225TrPytet4KeeznYJjySNWG7GkK7WlFzXrYDs+uPIZ2o5XZs462yWPLMfaJnIfkcszt5Gsk1w/2Y/Nz8g6mbucZF6uV31PrjxbpAampYm6hv37w3a577qkj0euPNfxKp7f03TF+e9HahRa9M2ywjd/Vu29sUM6YuwQ/4q8Tetk5L98QrX5euWmY8VTxwbem3nhgKry6WPycPqYvDjWloiIiIiIiIiI6pv5wA8REREREREREVGL1aKfLEu48nL/eV5XGKatvH27fdniOeHdxqQfRPkDUZbjgvYzPiOftpWhlymdOgXmq9i6NWp1So3Xgbu0lvAnZximbAfzeXnb8/PyWWXXGO3ye81Qu1jIZ7ZlHcxnuW3PS5txJLLuMmaiWze/3K6d/TOS+Ry1bex0yRwzXL6Wz66bsRmxxA3YmG1nG5bbfJ7fFmZqiwcAgm0sP9+5c3A+GR8il9Grl192tYGr3pLsD654gPokY8dkHczwQ1u4tLl+st/IPinb1OyrYpz47Px8//0OHQKzpcrvGjo0+rIBdFmwwH8hjmsprjBaW2yGuV1EO2T184+GHTv64RiubufqNrbd1Hw/J7vphwcE1uFbRxim7HeybGwXGWIrW8e8MDpQlLMs5bTu3atX2BM2Qt6WKcAVWuNiC5mxHS7N+cJ+jyuESp4e5Ok9LFe4pi38zxUiWp9hmLZTitkmMrxRto/c583XqfIqyhXjKY+lrvOI2Bc65vo9WV7yGJd3gah6yXV8qmtmBvMSzDi812l55rJsWRbMdZDrK6fJ981wvHj3u7Ah/DaucDrbtDCXh+a0sJkw4hGGaTvGmf1Tnvpt6xo2fNsVwmrLUGFeQsv50kPuL7Y/F1znirDtKg8hrnYwQ2yJmiveLCMiIiIiIiIiqjUNoB4TOFLCMAyTiIiIiIiIiIjIwyfLEkmGYYpRuaq9/vZbv/zNN1XFCuMz8s7nT+J5243G184X5bGi3EeUzVEu5ZPBKbm5/gsj9CRJPscswqTSzJBRW6iADOM0h6ORr11hc7bnpeVz8ebzyDLeIdZnwG1sQxCZz4bbhv0yQ7psQ9/YwlnN+VzP7Nue53Y9e20bTqg+h+UJu2zHqKe2ERhDh2GaMTMyZsXWp10xKa5+Z+s3triY+ib7V8jww9DxALJdbaGtgL0fyyGxAHv4tbkt5HeJ+hWI4072+vX2usow6C1bgvNZQmezsw+oKpurk1RWKqb54ZquXcc5mlu8w8sTQY5yKUe2XLUqON/y5X5ZhGgWG+GaGy3lXATJpswW5VTZZ3LNT/lcYZi2aa4wqboeSl2jYdoOkeJ0HvVzNra6ykOXebqyrbvZdnL3cx2GpPocsNl2WHONJOraZwNhgrbQYjNdhbzWMsPiJbEvpIovzs31r/7MRdva1XU4r2v4oeswHQvb6cX8rlhC311kf4/HINZhR1uVwmZtsO0jrmOS7fLcFYZpu+yKtX1syzP7YJh2MOtgOzab4ba2bSE/Y162yUvqsGGYrj8lbPPF408bW6hqfYa3EyUanywjIiIiIiIiIiLy8F4wEREREREREVFMmLOsOeLNskQqK/Ofc9+0KThNhovIaeJ988lbOTLXT6L8ujHfZFHuZfl8kjmyl4wH6N3bL5uhJzJMRjJHyZSj19lC1mxDXQHBUCvXyJYydkQ+++wKX5OxBzK0KlZmLEMl14iOthBBs05yPrktunYNfkYuw7Vs23Ps8tlyc4gs27BD5vPo8Ry50bWssCGntnYw2qQi2w9LCTyKa+4jMrTNNgySGZ5nGyHSbDvbc/a2vlXfbDFPZn1sYZhmjIN8nl+2v+zTZuigHFLONZ9su8GD/XLI2LbsTz6J/p3ma1sYNRA8rsmRMXs54nkK/GWki3UqLQs+EG7rxtUiLTcXOCY2EfK8KPcl83gg4/pE2XyUPl2U5QjQBxjzJcmGlfu97Hdy1FuDKwzTFiYjt6u5u4QNp3GFW9red4UvSeaIbpXMcM0wo/a5wsjkuprtYPuca0TP+gzDtK2rud6yO8lDiHk6DkSUb7CcH8yFmxugknnNIxtWHJM6ijBM16HUtc3qmmVBMi/BHNHOobhGw5R92jYyLRAMvZPb3Lb/mmIZodAUy2iYsRwDbCGnrlOI7MfmsuXn5LLlAO6x9h/bJbS5PLnPyd1C1tU1CqTcxcw/U2zbNp6Dwbu+x+TK6GITNmS4riOyEjUVDMMkIiIiIiIiIiLy8GYZERERERERERGRhw9OEhERERERERHVmgZzljVPvFmWSBXlfj4jM5fR2rV++dtvq4rbRHC6mAMAMEyUXxHls4z5ZD6WbFvCGzOZg8xT5UpIIF/b8jEBgdwzRSIoXmY8SjeGPc8QrwPpIMxEH7bxrWXAvisZhzRkSPT3a0PmcZOJBuQ2BoJtLnM9uZJDyDGnbWNym9Nkm5iJNWTbxZJ8Qbaxmacunkkb1q8Pvrbl+zL7p9wWcpojQUkgX5ErUYRcd1uiCFdOL1u+PwDYudMvy0Q28RgLPBaW41O13IsyN6Fk1tuWf8zVV20JM8z5ZIIRVzIWW845WR9X8qjt2/2ymb9KzifzbtkSwgDWfHSpxvplZ/vZJuUqZGVU2JfXrx+aJEvut0CbAtWPDx7zgifNUk4y8zLKY7PsD65ceYIr75bMf2TLCeVK/+jK72OcQqvIPDtmiiu5K8m6mbusnCaZqbFk7h/bYdZcB7lsmUfKlUfIxnWJEm+2vEau06yLbJdU27HQXLhsMFduVksHs6V8NV/bcnWZ0+qav8x12K/r8sy8e2Fy/MWqPvtdLG3sukxypRet5Lr0kPuvuc/acjTKrhrrZY08fsrtbF56yu9yHWclW78xP2PrQ65dVl7Gh2X7jOsSJewluJxPpv8Eguce23Z25TkjaooYhklEREREREREROThzTIiIiIiIiIiIiKP0lonug6hKKV0beuqlIJ+b2I91ajuJv1xA2a//Wmiq0FEREREREQUd8OGD8fSpUtVoutRX5TK08D0RFcjDu7+VGs9rOb5Wg4+WUZEREREREREROThzTIiIiIiIiIiIiIPR8NMpB07gVmzIuV584LTliypKv4kRpv7Wswy31jcTDHE1VIxbNGBxnxy/LWk/v39F3LEr7y84IfkSF/duvllc1gXOaKfaxTAzz+vKlaIkczkeIAbg59ArqWcZg63I0ewPOig6PWRo5gBwfWTI9ldcgnq7N57/bIcJuarr4LzyTqtWuWX5ToAweF35GfkiILm9pNtIreZ2Q5yZEP5PXL7ybqZ3ytHdTW3uW20uGuvjf6+y/PPB1/L9ZX1NvunHCVP9n1bmwLB/iCHCZJtZX6XHIJIjhxpjngpX8t2NYctWrPGL8uR+sxRF194AQ3issv8sjhWmaNflorRC+XYjNX22a5d/bLcLrLvd+4c/IxsB9le5nxS9+5+2ezHcnvKY8WCBX7ZHBpK7s9yRMYTTgjOJ/v+ySf7Zbn9zL4qR36UbWLMtyOjR1U5J6PUn2Dufx9+6JfPMsdIbiKeeMIvz5/vl5cuDcy2beXKqnKqeN8YHzRwAZQh21W2NxA858myPFaY/e7yy6uKi5b4/5f87rvgbPIQILuQbbBX82ulq68MruHd99T8/1BzV5SD/8rdyuxOtpHVzFEy5chxcv1sgxEDwUsRs36SHNRV1kd+jzkym9zlfv0rs0fUzUOP+O3tGi1S1lvON3JkcL50FPkv5HlErqy5IeRxTTaEuQFHj/bL8vgkrhV+LMwJfERWQW4/czBac6DvStdfW/v2/tecYB+Wu9mII2u/vKJif3npacbnxXXAlp3+kUMOdAwE91k5ULUcZdHcLLL55aDR5oClf38i3Dpdeln0ffvxx+yf//lU/zPykscclFn2Sdtg4K5B2uVnzGOX3P/kMuQlwK5dwc8c2C9cm3y/yl8/uWx5Ojdfy31zxQq/LA/zQHBkYTkgubmdbaNeyvqY7S0voTt3CreuOwr8dZX7m3m8k39myDqcOtH+PW/M9ZftuowPO2rpGZPje5wlami8WUZEREREREREVGsaQHmNc1HTwzBMIiIiIiIiIiIiD2+WEREREREREREReRiGmUglxX5+CZn3B0CRyJ+zTLz/sSiPdSy6lyhnmblwZMITmTxDvm8G7MtEETLvjxl8b0sUYOZqEsHuSSLBQY5Y7yIEiaUF8tCkGkH6HZct81+I3G3V8g3ZyAQC8SCD/l2JWuQ02Y5mgprWrf2yzNskE0WY20VOE2WZ9wAAcmzJcMw+ZCPb2ExeIxNemIkVastM9GF+VyWzHWR7yTYW61eR2yXwEdl1MzKyqso5Zi45+V0ykYV83+xbcporCYyZOCLa9zQk2XflNpd5tgCILY50mXzIzLUmj0OyPHiwXzb7pnwt28Gcz5aPzuzTsv1le8uymfzENk0mODHrIPPmSXIfNZch189IAhPo4q4cReYxuCmSeeVkghkjSdJuUc4S5WAGpuC5J9AnBw4MzijPhz17+mX5eXlsMcicR2YXkruSLJu5fiTZnVzzyXxhcj5bGQgeFuXhypxPdk95OHbtVrY8bOapsDxkJIs87IdtE1cOtLqS69euXfT3geBhSNY1PaU0OONmsQ/bOopJLlA2iiwDwWOKPB+LPt1jiF+O8K8X5NfIyyxzcXVtb3k6AOz5+sJKL97hvygw2lG0UWfxRW3apAZmk+suj79ys7hyWUmxnsLloSds7ijbfm9elmRm+mXZ3nK7mmlxbXUzyeXJ+WQesFjJfc62XczvlcdjV55I2Y/lruTafrbtYu6K8nVn+2kkwJa20LWbh2Uuw8a8vCZqrnizjIiIiIiIiIio1pizrLliGCYREREREREREZGHT5YlUlm5HyqzenVg0g+iLEMvjxLlQY5Fd5TPGZvhYvL5aTnNFYYpX8uy+ayyfC5XhmSZz2VbxqDOEGFEOUa8ym5L2RzBukI8K55kGyPafDZZvjbHCa8rWQdbiIT5WrajK6RSxsyE3C67C/175NWiIduEiNUx6xM2BkDOF/Y5bxtz+9nCGWOIT3BtFvm12d2yAvPJaWlp/rRUc1+ycdVV7pt1bbt4kHUwY3CEQORJhw5+2RWGOWBA9PfNdpRtItquouMBgdmS4A9bXlTs9/30fsY+IvvNpk1+2RVOLskQSDPkW77esiX6583tLzuUDPEztn+qPB7IcMTmGIYp10G0d5kjrFvupUlmDFf//n5Z9jXznCn7qyy7jtOC7FquECXbKcDcxWS4kCtC3vZdMpJfhmoCwVOKrI8ZTmcLA3NlF7CFR7pOcbZlAfbIV7kOZn3MQ088yWXHVAdzn3XFV1UyG8/WJ834X1uIpjz2dQxeXfWQx2DxmYyMYJii7CuukNgwzDDM1DKZoCNkegjJTHFgI7ZFVrUUANHDUWUzukL/ZNjjrl3hqmOSfSjsZY78jOuYJI8p8rQtmWGTtrBOM6Radkl5HEpN8c/TmZmxPcdhCzs3j5G2Y6bs3kbXD4R8u/q3rT/INjF32bBZTiTbbm6eCs31CEPWx3V4sa1rXfd5osaGT5YRERERERERERF5eP+XiIiIiIiIiCgmzFnWHPFmWSIVF1eN7rXCeHb2FVE+S5T7iHK6GSoijRvnl81n/uUj5XKafN8x8lxRih/YYj7+nTPY8ti/+ei7fJZXThPP7x4gRzsDcMDKlVXlQvHF5qiZ8nWGfAbcNsSP+doVJxMLuTzbcD1AMPRHPsdsbj/5XLVchiNUr1SMH+qK7KjolBV1viz5fLrZdrYFms9/y/5Q11BCMzZAtrF8htzclrK9xDrtLvbbZ5sRrSa7p1y0uQpyXwiGSflt2sXcZ23DQZkhh7YvDht/EW8yNkbWR+5jAJIs7R0ItQSC4XCyv4vvqcgOjmUot4scpXTb2uCiU1L8B6iD3TO4vKyDLP1GDvXnCgWV/d2MQ5B9X7aJjOdwxWLIz5jz2cKpzA4aS6xHYybWJ0X2HwB9ZOeQ/ckVXilHuTRHw7SlKJCj6KYEQ9Fk+K/kylxgO7Sbn5EhPWYYpWQbddEVxmkL2zFPV/KSRUYZu8LYbYexsGFJrnaQXCMFxvv0Lsm2s4WzOuuw1j46Y0wb0HV+kJWQ53B5vDPDQi3xVVlGp+na1d8XXP0zjNTCHcE35LE0lphaW1oMF2O+LNFh07qlV5XDhmHK8MN4hGGagy/b2DJ1mPu8LQxTnq7MPiyXJ9fPDMO0XarJPphe7QAQbjvJ40hScZF4Pz3K3BHyOGY7/ppc3cYWmih3q3hctslluAaXr2uIp/l52/azHeeJmgOGYRIREREREREREXl4s4yIiIiIiIiIiMjDMMwEKiksxKr33gMQDLsEgqGXg+Wzz337+uUjj7QvfPBgv9y5c3CaHA3TNnyT8Vz27jL/MebNIkytWjRdrj9ftignuZ5bls/1yufJzWd5xZBgGcuWWRe3VpS7idDNbNfwQQ0V2ia3pQzJBMKFVzrm21GYKt4OhgTJKAvXoJRyvkC0Qke5vOCy0+Xj6nJbuhZe1zBM+Uw7EHwOPewz8qIsRzoyB9q0dQ1zcDFZBdtn0tKC/5/ICRsyI/dhue5mJRqK7J9ym5uxGbaQb9domDLkO80PlSwwIrllhJDcZjt3BuczR/GzKcv2j1c5Ml5FLtwVr+Ia6VaO4miLUTC3v+xQcpprNFrXkFS2mLWmRLa/7ENmv7OFjbvCMOVnHKkL5LmwTHQNMxSmsxip0TWYsK07yM1l9mHXSG+SbURNGRpnfl6GUMnvdYVXyvnMdjDDsKJ93uyqtjAus662UFXXrhjL6HBh2Q6F8vwCBEPEnMOF2ja0K4ZVMr9YCjvkqGQ71hgbpn17/7gtRzmMiXlCbqjUAyGvCVOz/fZKTfPL5rne1idjDVOV4ZFhw95sYdlmV5D7n23EWfN0YssoYDadnGYLVY8Lxwjnsg62eodtU3P3k8dZ2ca29+PBdY3jSh1i4xjg3Hq4CjPqcfOnwZxlzROfLCMiIiIiIiIiIvLwZhkREREREREREZGHN8uIiIiIiIiIiIg8LTayuDHYAWCWV55mTOs3bpz/QuZZkQk3ZJ4f04gRfjkzMzhNLsOSZKM0JTjU8r6QQ1PLfCUy1YQ5tLg1YYJ838wbI9thzJiqYsa33wZmG/T221XlpJ/9LPrnZe43sw51HevcNGxY9O8xyZw5tpxQxrTSsuj3u83cBGFSn0R7XcmVJiRFDMudKtfBrLcrn1ltmbmHbONZmwklxHxFxX7byTRgZr4FW0qYsKnRJLMdi9L8/G/psu3MhBlygXIhYceMj7chQ/xy165+WeZKBILbRSZMMfPwWfpNcYH/tqtPS+buGzZ/hjx2lYq8fKmyro59MZBExsypJ49l5rrbli1XWH7elfRKLtvsbM0hkYjsd7bzGBBsOzlN9lUgmL/T1lcBVKT5x7h9W8NUNMh2eHLN50oxZ8uzY7LlKLLlJQPC5QEzudJR2tJr2TaR+V2u3Ga2lIGunGWuU3BdyW0m6xD6ksK1MW0rZX7GtoLt2wdfy41h2+iu85CjcwReujZgGK6NHgvburq+N2weNzGfmafXzCNbKdbVkbnEzEt8G3n4k/u965QSS9eQucjM3G1JZaU1VzTsyd4QWLZYRlpasO1t9ZNphMPmOnUdT2yXua7UhGHJvGKutIXyHGDmk7SRhwrX7mfru3XdRZu2eszDRwnDJ8uIiIiIiIiIiIg8vFlGRERERERERETkUVrrRNchlNatW+vS0hCP7wrts9vh6MP71FON6m7Dxs3o1sUSkkMx2bBqN7p16p7oalht2L0K3bpbxuJuxhrDdmmpbU+NR2PYD5qjxrZv89xeOy11v2hs/TZWzWH7NZdtQfHRVPt0Y+7Hc979/FOt9bCa52yalDpAA2cluhpx8Giz3k6xaDJJTA455BAsXbo00dWIq0nHH47Zv+ta84wU2qDTNmH26BsSXQ2rQe+fg9m/G5LoajS4xrBdWmrbU+PRGPaD5qix7duDLvgWs393RKKr0WS01P2isfXbWDWH7ddctgXFR1Pt0425H6t3P090FeqZBlCe6EpQPWAYJhERERERERERkYc3y4iIiIiIiIiIiDy8WUZERERERERERORpMjnLiIiIiIiIiIgaF+Ysa474ZBkREREREREREZGHT5a1QGs3F2HojAU4rG8mAOCUkZ1x21PfYcTAbJSWaRw9uD3uuWxQtc/1O+9drHr2uKrXY6/9GLN+OxTdOrXBSb9ahM9W7sI1Z/bGref3b7B1qcmXO9fg18uexr7yUpRWlOGs7kfj4e9no1fbziitKEOrpGTcOPB0TOw6HADQ5sUzMaLDgSitKMPRnQbinqH/VW2Z/f51KVad+njV67HzbsGso25At/SOOOnd2/DZztW4ZsCpuHXwlHpdt3hvx60Fpbjyv1cgOVkhJVnhiRsPRZ8ubeNW34bcFluLd+HKpX9FskpCSlIynhhxVdzWo7mId//JSk/Byb9ejNQUhaKScvzpkoE4/oiODbY+FNSQ+1tWq3Sc/N7tSE1KQVFZCf40ZDqOzz2swdbVpj7OdQDw/fpCHHzR+3jvgVEYfUhOw6xMFPFaPwD43d+/wzNvbUD/rm0x776RDVL/eGmIvg4Av/tiFp5Z8y76Z3bBvOPvaJB1M8Vrm+8rKcepv12CfSXlKCvXuH36gfjZiAPqrd4NsY32lZXg1A/uwL7yEpRVVOD2Q6biZ12G1ds6NQXxPEacf+fnWP/TPhTuK8d547viurP7NMg6NEYNdcw5/+P7sL5oGwrLinFer2Nx3UGT61z3ePYJANhfVoFBF87H9JO6N6q//4jihTfLWqgjDmwXuCD+6+x1mP/gUQCA465fiG/W7cHAnpmhl/fkTYdi3qfbsGFrcdzrGqvd+4swbeH9eG3Mb9A3Mw9aa7y16XMkq2S8N/5OAMDGou2YMP/36J/ZBQOyuqFrmw6YP/5PAIDj3vktvtm1HgPbdQ/9nU+OvBrzNi/DhqLt9bJOpnhux7wOrTH3zyOQmZ6CNz7Zgtuf/h7//M3QuNSzXFc06LbIa5ODueNmIrNVOt7IX4rbv3w2LuvR3MSz/2S0ScEH/z0KKclJ+GHjXkz5w2dYcsSYeqk3uTX0sS8jJQ0fjL8LKUnJ+KFwM6Z8eDeWnPxAva1fbcT7XAcAf/znShx7WIe41jNW8Vq/X57WExed3A2X3re83upaHxqyr//ywAm4qO94XLrokXpdp5rEY5unJCv87cZD0Ss3Hdt2leLoqz6qt5tlDbWNUpKS8bfhV6JXRmdsK96Fo9/+dYu/WQbE7xjx5K8OQ2qrJJSVV2Dg9Pm45JQeyExveX9GNuQx58kRVyM1uRXKKsoxcM7luKTvichslV7ndYjnefGvs9fhoB4Zda5T06fBMMzmiWGYFLC/rAKF+8qgde0+V/kf98ZkTv5iTOp6JPpm5gEAlFI4qcvhgXm6pHfAFQeegld+/Cjw/v6KMhTu3weN2jVEt/TG8SRNLNsxNyet6sIntVUSUpJV3OpTWFbSoNsit037qguK1OQUpCQl13ENWpZY+k9SkkJKcuSUsruoDIf2yaqn2lFNGvrYl+Q9wQlE/pA4NLt3Hdeg/sV6rlv8zU7k5rRGt05p9VOxOKnt+uV1SENSUvyO+Q2lIft6XpscJKHxtlFttnmrlCT0yo2cI9NSk5Ck6m+9GmobtUpKQa+MzgCAtOTUel2n5qC2x4jUVpHze3FpBXoc0AbprVvmdVVDHnNSk1sBAIrLS9GjbSekJ7eOwxrY1bZPFO4rw5uLtuKMMXn1Wi+iRGp5/xIgAMCn3+/C2Gs/BgD8/sIByN9WjLHXfowvVu/BBSd2xaBe1f+jUF6hqz4DAMtW7W6w+sZifdE2dE/vVON83dM74vOdqwEA+fu2Y+y8W/DFzjW4oPdxGNSuR7X5y3U5xs67per1sp1r4lfpWqqP7bh3Xxl++8R3eOrX8Quj2l9RnpBtsbesGL/94p94auQ1OGvZojquRfMT7/6Tv3UfpvzhM3y/YS/+flPiw/BaqkQc+/KLtmPKR3fj+90b8feRV8dhLeIj3n38jlmr8NRNh+GGR7+u/8qHEMv6NSf11dcbs3hv82se/go3Te1bH1UFkJhtdM2nf8NNA8+Mqb7NTTz7y9kzP8X7X2zH5af2RHIc/6HalDR0fz57wV14/6cVuLz/z5Acp3/8xqtP3PPCalx7Vm/kb2s8UUVE8cabZS2U+Qhu145pmP/gUVi3uQjn3vE5SvdX4PE56/DK+5vQr2tbPPGrw5CcpKoe0wUQ+GOiMeqe3hErCn6scb71RdvQtU0kpKbyUel1e3/CuR/di9Ly/Xh81X/wyvqP0C8zD0+MuBrJKrnqcWoAgT8eG1q8t+P+sgpM+cNnuOW8fnH9I6tVUjJ+3Lu1xvniuS32V5Rhyod345ZBZzW5P4YaSrz7T9dObfDhw0dj7eYijL12ISaO6tyg60MRiTj2dU3vgA9P+DPWFm7B2Hd+U5WrJdHi2cf/vXALhh3YDh3apTb4etjEsn7NSX319cYsntv8j898j/aZrXDRz8Knm6itht5Gf1z+AtqntsVFfcfHbR2asnj2l5dnHoGi4nIcc83HmDKuS7O/GR9NQ/fnl8fcjKKyYhwz7xZM6TkmLtez8egTP+0sweerduP3Fw3A03PX17lORI0Vb5ZRQM/cdJx0ZCc88e8fceXpvXHl6Y0/nMZmYtfhuOvr/8XFfU+oelz67U2fB+bZvG8n/rLyDTx/1I2B93u2PQAn5Q3FE6vfwpUDJuLKARMbrN7xEMt2rKjQmPb/Psfk0bmYPDo3rvXJSGmNORuXNNi2qNAVmPbxfZjcbSQmdx8VvxVpIWLpPyWl5WidGvmvZ1Z6SovMZdJYNPSxr6R8P1p74SJZrdKRmdL4wvJNsfTxZat3Y/4X2/HxTYuwfM1ufPtjIV687XD0zK17Dpl4a07ncpeWfJ431XabP/LaGqzcsBf/uGVIvdarIbfRI9/Nwco9G/GPUdfFdyWaodr0F6019pdppLZKQlpqEtq0TkabFhqG2VD9WWuN/RVlSE1uhbTkVLTxfupTbfrElz/sxtaCEpx80yLkbytGyf4KHNY3C5OOaqn/JGXOsuaKf81QNZef1hPHXrsQl07qUZWDqCYz7v0CH6/YiZL9FVj6XQFev+PIeq5lzbJapeOfo67HFUsfQ7EYsaYylKhyxJqZh5yDg6Ik2ry8/wQcO+8WXNrv5NA5r2Ysehgfb/sGJeVlWLpjJV4/5tZ4r1Zotd2Ory7YhH9/8hO27CzBrLc34JA+WXj46sFxqUuySmrQbfHq+oX498al2FJcgFlr5+OQ7F5xWY+WpLb9Z8WaPbjuL18jOUlhf1kFHrzi4AaoJUXT0Me+FbvW4bpPn0CySsJ+XYYHj5hRH6sVd7Xt47+d1h+/nRYZ7evCu5bhklN6NMobZZVs61ehgfE3fFL1+olfHYo5C7fghXc34psfCzH+hk/w1+sPQd+u8RsNub7UV1+v0BUY/45//n5ixFWYk78EL/z4Ab7ZtQHj37kVfx1+RdUfy41F2G1+5yUDcM0jX2HUoPYYd91CAMA7942ql9C6htpGdx52Aa757G8Y1XEAxr3zm8g6HXdH3ELXmqOw/eXR6wZjxr1fAgBK9ldgyrgu6J3XeI999amh+vOjR/4SMxY/DCDyD6kpPcegd0Z8/5EdTW3OGwv/ZzQA4Om567Fha3ELvlFGzZnStc1umyDDhg3TS5cuTXQ14mrS8Ydj9u+6Jroazcqg05bi64l/S3Q1rAa9fw6+njU20dVocI1hu7TUtqfGozHsB81RY9u3B13wDr5+5vhEV6PJaKn7RWPrt7FqDtuvuWwLio+m2qcbcz9W4+Z8qrVutsPTKtVBA6ckuhpx8M9mvZ1iwdEwiYiIiIiIiIiIPAzDJCIiIiIiIiKKCXOWNUd8soyIiIiIiIiIiMjDm2VEREREREREREQe3iwjIiIiIiIiIiLycDTMBMppn42dBbsSXQ0iIiKKk7S0NBQXFye6GkRERI1Fsx5lUakcDZyU6GrEwQvNejvFggn+E2hnwS40lZuVREREVDOlFM/tREREHqVUoqtAFBOGYRIRNVJPP/00Ro8eHdNnFyxYgAEDBsS5RkRERPFTm3PV/Pnz0a1bt3qpx8yZMzFt2rSYPvvss8/ixBNPjHONiIgo0XizjIiarV69emHevHmB9+pyA6opGTNmDL777rtEV4OIiCjq+RiI77nqwgsvxK233hqXZdXGeeedh7feeqvBv5eIiOoXwzCJiIiIiIiIiGJSnugKUD3gk2VE1KJt3LgRZ555Jjp16oTevXvjoYceqpq2ePFijBo1CtnZ2cjLy8OVV16J0tJSAMBll12GG2+8MbCs0047Dffffz/uuecenHnmmYFpV111Fa699tqodVi/fj3OOOMMdOrUCR06dMCVV14ZmH7jjTeiffv26N27N958882q95966ikMHDgQmZmZ6NOnD/76179WTTPDVXr16oV7770Xhx56KNq1a4cpU6YwCTkRESWUea767LPPMHToUGRmZuLss8/GlClTqj0tdt999+GAAw5AXl4ennrqKQDA448/jmeffRZ//vOfkZGRgUmTJkX9vq+++gonnHACcnJy0LlzZ9x5551V00pLS3HBBRcgMzMTBx98MOTAYnfddRf69u2LzMxMDBo0CK+99lrVNPOJdaUUHnvsMfTv3x/t27fHFVdcwTyGRERNEG+WEVGLVVFRgUmTJuGwww5Dfn4+3nnnHTz44IP4z3/+AwBITk7GAw88gG3btmHhwoV455138Je//AUAcO655+LFF1+sugDeuXMn3nrrLUydOhXTpk3D3LlzUVBQAAAoKyvDiy++iPPPP79aHcrLyzFx4kT07NkTa9euRX5+PqZOnVo1fdGiRRgwYAC2bduGm266CRdffHHVdx5wwAGYM2cOdu/ejaeeegrXXXcdPvvsM+v6vvTSS5g7dy7WrFmDL7/8Ek8//XQ8mpGIiKjOSktLcfrpp+PCCy/Ejh07cM455wRuSgHA5s2bsWvXLuTn5+PJJ5/EFVdcgZ07d+LSSy/Feeedh5tuugmFhYWYPXt2teXv2bMH48ePx8knn4yNGzdi1apVOP7446um/+tf/8LUqVNRUFCAU089NfCPq759+2LBggXYtWsXbr/9dkybNg2bNm2yrsucOXOwZMkSfPHFF3jppZeqriuIiKjp4M0yImrWJk+ejOzs7KqfX/7yl1XTlixZgq1bt+K2225Damoq+vTpgxkzZuCFF14AABxxxBEYOXIkUlJS0KtXL/ziF7/A+++/DyCSZ0UphQULFgAAXnnlFYwaNQpdunRBXl4ejjnmGLz88ssAgLlz56Jjx4444ogjqtVv8eLF2LhxI+655x60bdsWaWlpgf9Q9+zZEzNmzEBycjKmT5+OTZs2YcuWLQCAU045BX379oVSCsceeyxOPPHEqvpEc/XVV6NLly7IycnBpEmTsGzZsro1LhERUZx88sknKCsrw9VXX41WrVrhjDPOwPDhwwPztGrVCrfddhtatWqFCRMmICMjI3TOszlz5iA3Nxc33HAD0tLSkJmZiREjRlRNHz16NCZMmIDk5GScf/75+OKLL6qmnX322ejSpQuSkpIwZcoU9O/fH4sXL7Z+180334zs7Gz06NED48aN4/mWiKgJ4s0yImrWXn/9dRQUFFT9VD4ZBgDr1q3Dxo0bAzfT7rzzzqqbUd9//z0mTpyI3NxcZGVl4Te/+Q22bdsGIBJmMXXqVDz//PMAgOeeew7nnXde1bKnT5+OWbNmAQBmzZoV9akyIBKC2bNnT6SkRE8hmZubW1VOT08HABQWFgIA3nzzTYwcORI5OTnIzs7GG2+8UVW/MMuqXA4REVGibdy4EV27doVSquq97t27B+bp0KFD4HxZm3PZ+vXr0bdvX+t08xxZXFyMsrIyAMAzzzyDIUOGVF0rrFixgudbIvJoRHKWNfUfMvFmGRG1WN27d0fv3r0DN9P27NmDN954AwBw+eWX46CDDsLKlSuxe/du3HnnnYG8I+eccw5eeeUVrFu3DosWLQrkKZs8eTK+/PJLrFixAnPmzAncSDPr8OOPP1ZdkIdVUlKCM888EzfeeCO2bNmCgoICTJgwgXlRiIioScrLy0N+fn7gPLZ+/frQn5c32aLp3r07Vq9eXet6rVu3DjNmzMAjjzyC7du3o6CgAIMHD+b5loiomePNMiJqsYYPH46srCzcfffd2LdvH8rLy7FixQosWbIEQCS/SVZWFjIyMvDtt9/i0UcfDXx+6NCh6NSpEy655BKcdNJJyM7OrpqWlpaGs846C+eeey6GDx+OHj16WOuQl5eHm2++GXv37kVxcTE++uijGuteWlqKkpISdOrUCSkpKXjzzTc5dD0RETVa+/fvR3FxcdWP+U+iUaNGITk5GY888gjKysrwf//3f85QR1Pnzp3xww8/WKdPnDgRmzdvxoMPPoiSkhLs2bMHixYtqnG5e/fuhVIKnTp1AhAZXGfFihWh60VERE0Tb5YRUYuVnJyM2bNnY9myZejduzc6duyISy65BLt27QIA3HvvvXjuueeQmZmJGTNmYMqUKdWWcc4552DevHk499xzq02bPn06li9fbg3BlHVYtWoVevTogW7duuHFF1+sse6ZmZl46KGH8POf/xzt27fHc889h1NPPbUWa09ERNRwJkyYgDZt2lT9zJw5MzA9NTUVr776Kp588klkZ2dj1qxZmDhxIlq3bh1q+RdffDG+/vprZGdnY/LkydWmZ2Zm4u2338bs2bORm5uL/v3747333qtxuYMGDcINN9yAUaNGoXPnzli+fDmOPvroUHUiIqKmSzWVR4iHDRum5RDOzYFSio9wEzVjP/74Iw466CBs3rwZWVlZia4OETUAntuJ4mfEiBG47LLLcNFFFyW6KkQUI6XUp1rrYYmuR31RKlsDYxNdjTj4v2a9nWLRZG6WKaW2AliX6HoQEdVCdwDJANYmuB5ERERNQQaAYgBlADoA6AlgOYD9iawUEdVJT611p0RXor7wZlnzFX34tUaoOe9gRNS8KKXaAtiCyA3+k7XW4TMUExERtVBKqUsB/BGRm2arAUzSWv87sbUiIqKWiDnLiIjiTGu9V2udobU+mDfKiIiIwtFaP6617qy1bqu1PpQ3yoiImgel1C+UUs8qpb5VSpUrpWIKcVRKjVBKzVNK7VFK7VZKzVVKDbHM21op9Qel1BqlVIlSarVS6lalVKsw39VkniwjIiIiIiIiImpcKhJdgabgFkTC6z8H0BZAt9ouQCk1EsB8APkAbvPevhLAAqXUUVrr5cZHXgRwGoC/A1gIYBQiTy/3A3BhTd/HJ8uIiIgorpRSTyultPczNg7LGyuW93SdK0hEREREDWksgHZa62MAfBHjMh4CUArgGK31A1rrBwAcA0ADuE/OqJSagMiNsvu11hdrrZ/QWl8M4H4A05VSR9X0ZbxZRkRE1MCUUmvFzR/zp0wptUMptVwp9YxSarJSik+CExEREVGTpLVeq7WO+RE8pVQ/AEcCeFlrnS+Wmw/gZQDjlVK54iPner8fNBZV+XpaTd/Jm2VERESNSzKA9gAGAzgfwGsAPlVKHZzQWhERERERJcaR3u+FUaZ9AkABOMKYP9/MH+293iiWZ8X/VBMRESXWY4iM+lYpBUAuIo+rH+a9dyiAd5RSw7TWGxq2ekREREQU3a7/ALM7JroWcZCmlFoqXj+utX48YbWprov3Oz/KtMr3uhrzf21ZVj5C5EzjzTIiIqLEelFrPT/aBKXUuQD+gcj5ujMiSUkvariqxUZrfSFCJE4lIiIiasq01icnug4NRSmVDeDaWnzkIa31jjh9fbr3uyTKtGJjnspytHkr50+3TKvCm2VERESNlNb6OaXU4QBu8N46Uyl1qdZ6fyLrRUREREQtTjaA22sx/ywA8bpZVuT9bh1lWpoxT2U52ryV8xdZplVhzjIiIqLG7TVRzgTQ1zWzUmqcUuoxpdTXSqmdSqkSpVS+Umq2Uuq/wgwWoJRKVkqdp5R6VSm1Rim1VylVrJTaoJT6TCn1klJqhlKqp+XzoUfDVEqlKaWuU0ot9AY22KuU+t5bh0NrqqtYznzxnb1CzF8579oQ8yql1GlKqX8opVYqpXYrpfYppdYppV5WSp2llFIhltNGKfULpdQbXlvuU0oVectZ6g3ocL5SqnO4tSYiIiJqGF6SflWLn1Vx/PqN3u+uUaZVvidDNDda5q2cP1o4ZwCfLCMiImrcfjJe50SbSSl1ACL/wTshyuQu3s9EADcppSZrrb+1LKcrgDkAhkSZ3NX7GQrgbACfAhhW8ypEp5TqD+DfAPobk/p7P/+llLoewIpYv6OuvNGXXkAwaWylHt7PWQA+UUqdobXeZFnOwYi0ay/Hco5AZFCH//WWSURERETAEu/3KABPGNNGAtCIXJfK+c9TSnWXSf6VUt0RuSb+V01fyJtlREREjZv5lNFecwbvBteH8G/EFAKYi0hi02JEbsScAqA7gAEAPlJKHaG1XmssJwnA6/BvlO3xlvOt971tve8YBmBgHdYJ3vDe78H/r18pIjeTvgCQCmAMgGMAPAzgvrp8Vx3qeCiAdwF08N7ajkh7rARQBqAPgFMBdETkQu1Dr10LjOVkAHgTkfYHgG3eclYD2Af/icERAHrX3xoRERERNW5KqY6IXFtt0lrvAgCt9SpvAIKzlVK/01pv9Obtgsg/cN/VWm8Wi3kewHmI5Fi7Qbx/rff72ZrqwZtlREREjduZolwM4Ds50bvB9Tz8G2XPALi68uJCzNcKwJ8QuWDIAfBPRG5ISWPhPym2FMDJWuvt0SqllOoD4LjarUrAI/BvlK0FMEFr/Y3xHZMAvATg+jp8T0yUUm0BvAz/RtndAGZqrYujzPc3AOcgcvPsIQAXGIv7OfwbZf8G8HOtddRcGd4NuoPjsQ5EREREjYF3TVc5yns/771bvdcFWutHxOxXIpIb7SIAT4v3r0HkH60LlFIPe+9dhUh6MXlDDFrrfyul5gC4XinVDsBCRJ5KuxjALK31hzXVmTfLiIiIGiml1PmIXARUetG8WYPIzbTKm16vaq2nR1uWNyjAjUqp3gDOADBaKTVGa71AzDZUlO+y3SjzlvcDgB9CrkqAUmoQ/JuAZQBONW+Ued8xWyl1FSI3oxraLwEc6JXv11rfHG0mrfVebzv1BTAcwLlKqduMp/Zku95uu1HmLe9LAF/WqeZEREREjcuZAMxr1D96v9ch8k9UJ631x14u3Du8Hw3gYwBna62/iPKRswHcCmAaImku8gHcBuCuMBXmzTIiIqLEmqKUknm/UhAJvTwOgExw/y2AX0f5/C9FOeoNHcN9iNwsAyIhhPJmWbIotwmxrFhNE+XntdbLHfM+ich6OQc2qAeV7boPwO9dM2qty5VS/43II/3JiIS8/o+YpaHalYiIiKjR0VpfCODCkPPOBDDTMm0hgONDLqcYkZtlt9Y0bzS8WUZERJRYl9UwvRyRhO9Xa623yAlKqTYAjvJertFarwzxfctE2UzOL/8rd4dS6hut9aeIv6NF+TXrXAC01lop9SqAX9VDPaLyQkx7eS8/0VrvDvGxZaLsateHlFJTQm4rIiIiIkqApERXgIiIiJzeB3CDeaPMcxAiyfABoLdSStf0g+AAAZ2M5b0N4HOv3BPAUqXUF0qpe5VSZ3hJVOPhQFFeFmL+aI/W16fDRHlcyHb9SnzGbNfnAGzwykMBfKeU+kQp9f+UUhOVUh1ARERERI0Gb5YREREl1jittdJaK0TOy7kAxgN4w5t+HICPvaedTHW9ydJWvtBaVwCYAGCeePtQRJKm/i+AfKXUN0qpmUop84ZQbbQXZWteNGFbHb4rFvFu1z2IbNPPvLcUIiNf/gbAbABblVKfKqVuUEpl1vG7iYiIiKiOGIZJRETUSGitNYAt3s87SqmHEEnw3x3AS0qpo7TWpeIj8jz+HYAnavmVu8w3vGG3T1BKjUJkFMdjEblhVpl36yBERii6Xik1XWvtDKOME9UA3yHJdv0EkRuFtbHefENr/Z2Xm248IjnjjgEwEJF1UwAO935uVEqdHWaUJiIiIiKqH7xZRkRE1HjdAGAsgEMAHAHgegRH8JFPZZVqre+N1xd7CVQXAoBSKguR3GgnAzgXkTDDTAAvKqWGaq2/si4oup2IPEEHRJ7iqiknWJgnvbQoO2+uKaXSa1iWbNet8WpX72bo294PvPDLMYg8zTcVkTbNBTBbKXWg1nprPL6XiIiIiGqHYZhERESNlNZ6PyI3zCrdYoQ/rkRkAAAAGKSUkuGN8azHbq31XK31tQD6AFjkTWoF4JIYFvm9KB9mnat28xSKckYN8/aoYfq3ojxKKVUv10ta6+1a69e11pcC6A/gB29SNiI3JYmIiIgoAXizjIiIqBHTWr8NoDIkLwvAzWJaAYCl3stkABc0QH0KATwg3joohsV8LMqnu2ZUSqma5vHIARAOtM4VcVIN01cA2OyVOwKYFOL768QbwOFx8VYs7UpEREREccCbZURERI3f70X5cqVUnnj9sCjfZhkIICrvRlRd7YvhM/8U5XOUUoMc814IoF+IZX4mymfYZlJKtUPwab1qvHDJR8Rb9yulckLUofI7EtWuRERERBQHvFlGRETUyGmt58F/GqsNgFvE5OfFtBwA7yulxtuWpZRKU0pNVkq9h0hCeTntQaXUvUqpgx2f7wrgVvHWB+HXJEJr/TWAyoEBWiGSo2tAlO86BcD/IJiPzOb/4IekTlVKTY6yvDwAcxAZMKEmDwFY5ZX7APhAKXW4bWalVKZSappS6jMYOdaUUi8opW5TSvV2fH4QgKvFW7VuVyIiIiKKDxX55ykRERE1FKXUWgA9vZfjtNbzQ3zmRAD/8V6WAOintd7gTesMYAEiea8qLUfkhssmRP451gHAYAAj4Of0OlJrXRnGCaXU0wCmey9XA1gMYA2APYjciDsIkST/rcQ8Q7zQTFiWE3X9vBtXnwKofEquBMBsAF8CSAUwGpHBDQDgfkQGNwCAf2itLzSX5y3zMQC/EG+9icholgBwMICJANIB3AH/ht86rXUvy/IGAngPQGfx9mJEbk7+5NWzEyKjhQ4H0Nqbp5PWeptYznxERhUFgK8QCZ39EZGnxzoikpNtHPx/Yi4EMEZrXXnzj4iIiIgaEEfDJCIiagK01m8ppT4BMBKRmzK/BXC5N22LUupIAI8BmILIaJCHeD82+YiMSimVinJf78dmCYCzzBtlYWmtNymlxiHypFc/RNbpLO+nUhkiN8mWw79Z5nIDIjcMj/Ne/8z7kR4AcBuCT8fZ6viNUuoIAE8BOMF7e7j3Y7MSkRt/kmzXg70fm7kAzuWNMiIiIqLE4ZNlREREDSyWJ8u8z52MyNNSALAfwIFa67XGPAcDOB+RJ5l6I/JEWBmAHYiMQrkYkSfU3tdaVxifTULkZtzx3u8BiDxVlQ6gCMAGRJ4GexnAv7TlIiLMk2Vi3jQAVwD4OSKJ+VsD2IjIE11/0Vp/rpQa670GHE+WectLBnARgGmIPPHVFpFk/QsBPKq1ft+br7Lu1ifLjOWOBDAVwDGIhHFmI3ITbCsio2cuBPCm1npxlM+28j53HCI32voh0q6piIzi+SMiI4w+r7V+t6a6EBEREVH94s0yIiIiIiIiIiIiDxP8ExEREREREREReXizjIiIiIiIiIiIyMObZURERERERERERB7eLCMiIiIiIiIiIvLwZhkREREREREREZGHN8uIiIiIiIiIiIg8vFlGRERERERERETk4c0yIiIiIiIiIiIiD2+WEREREREREREReXizjIiIiIiIiIiIyMObZURERERERERERB7eLCMiIiIiIiIiIvLwZhkREREREREREZHn/wMuPuO+iaRJKwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -119,6 +122,19 @@ "name": "stdout", "output_type": "stream", "text": [ + "\u001b[31mPlease check your arguments if you have upgraded adabelief-pytorch from version 0.0.5.\n", + "\u001b[31mModifications to default arguments:\n", + "\u001b[31m eps weight_decouple rectify\n", + "----------------------- ----- ----------------- ---------\n", + "adabelief-pytorch=0.0.5 1e-08 False False\n", + ">=0.1.0 (Current 0.2.0) 1e-16 True True\n", + "\u001b[34mSGD better than Adam (e.g. CNN for Image Classification) Adam better than SGD (e.g. Transformer, GAN)\n", + "---------------------------------------------------------- ----------------------------------------------\n", + "Recommended eps = 1e-8 Recommended eps = 1e-16\n", + "\u001b[34mFor a complete table of recommended hyperparameters, see\n", + "\u001b[34mhttps://github.com/juntang-zhuang/Adabelief-Optimizer\n", + "\u001b[32mYou can disable the log message by setting \"print_change_log = False\", though it is recommended to keep as a reminder.\n", + "\u001b[0m\n", "Weight decoupling enabled in AdaBelief\n", "Rectification enabled in AdaBelief\n" ] @@ -127,11 +143,10 @@ "data": { "text/plain": [ "ANTIPASTI(\n", - " (conv1): Conv2d(1, 2, kernel_size=(4, 4), stride=(1, 1))\n", + " (conv1): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1))\n", " (pool): MaxPool2d(kernel_size=1, stride=1, padding=0, dilation=1, ceil_mode=False)\n", - " (dropit): Dropout(p=0.05, inplace=False)\n", " (relu): ReLU()\n", - " (fc1): Linear(in_features=154568, out_features=1, bias=False)\n", + " (fc1): Linear(in_features=334084, out_features=1, bias=False)\n", ")" ] }, @@ -141,7 +156,7 @@ } ], "source": [ - "path = '../checkpoints/model_' + regions + '_epochs_' + str(n_max_epochs) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt'\n", + "path = '../checkpoints/full_ags_all_modes/model_epochs_' + str(n_max_epochs) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt'\n", "model,optimiser,_,train_losses, test_losses = load_checkpoint(path, input_shape)\n", "model.eval()" ] @@ -164,8 +179,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "The output value is -6.599965\n", - "So the binding affinity is 2.512088321279533e-07\n" + "The output value is -7.671306\n", + "So the predicted binding affinity is 2.131541864067237e-08\n" ] } ], @@ -174,7 +189,7 @@ "test_sample = torch.from_numpy(preprocessed_data.test_x.reshape(1, 1, input_shape, input_shape).astype(np.float32))\n", "\n", "print('The output value is ' + str(model(test_sample)[0].detach().numpy()[0,0]))\n", - "print('So the binding affinity is ' + str(10**model(test_sample)[0].detach().numpy()[0,0]))" + "print('So the predicted binding affinity is ' + str(10**model(test_sample)[0].detach().numpy()[0,0]))" ] } ], diff --git a/notebooks/[Tutorial] Training ANTIPASTI.ipynb b/notebooks/[Tutorial] Training ANTIPASTI.ipynb index a0289fbc..1da25f6e 100644 --- a/notebooks/[Tutorial] Training ANTIPASTI.ipynb +++ b/notebooks/[Tutorial] Training ANTIPASTI.ipynb @@ -22,12 +22,14 @@ "import itertools\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", + "import math\n", + "import optuna\n", "\n", "from matplotlib.colors import CenteredNorm\n", + "from sklearn.model_selection import KFold\n", "\n", "# PyTorch-related libraries\n", "from adabelief_pytorch import AdaBelief\n", - "from torch.optim import LBFGS\n", "from torch.nn import MSELoss\n", "from torchmetrics import PearsonCorrCoef\n", "\n", @@ -50,17 +52,79 @@ "cell_type": "code", "execution_count": 2, "id": "b6566fbf", - "metadata": {}, - "outputs": [], + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Map 1 out of 634 processed.\n", + "Map 26 out of 634 processed.\n", + "Map 51 out of 634 processed.\n", + "Map 76 out of 634 processed.\n", + "Map 101 out of 634 processed.\n", + "Map 126 out of 634 processed.\n", + "Map 151 out of 634 processed.\n", + "Map 176 out of 634 processed.\n", + "Map 201 out of 634 processed.\n", + "Map 226 out of 634 processed.\n", + "Map 251 out of 634 processed.\n", + "Map 276 out of 634 processed.\n", + "Map 301 out of 634 processed.\n", + "Map 326 out of 634 processed.\n", + "Map 351 out of 634 processed.\n", + "Map 376 out of 634 processed.\n", + "Map 401 out of 634 processed.\n", + "Map 426 out of 634 processed.\n", + "Map 451 out of 634 processed.\n", + "Map 476 out of 634 processed.\n", + "Map 501 out of 634 processed.\n", + "Map 526 out of 634 processed.\n", + "Map 551 out of 634 processed.\n", + "Map 576 out of 634 processed.\n", + "Map 601 out of 634 processed.\n", + "Map 626 out of 634 processed.\n" + ] + } + ], "source": [ - "modes = 30 # Number of normal modes to consider. Relevant if renew_maps is True\n", - "renew_maps = False # True to compute again all the normal mode correlation maps\n", - "renew_residues = False # True to retrieve again all the chain lengths \n", + "modes = 'all' # Number of normal modes to consider. Relevant if renew_maps is True\n", + "renew_maps = True # True to compute again all the normal mode correlation maps\n", + "renew_residues = True # True to retrieve again all the chain lengths \n", "mode = 'fully-extended' # Choose between 'fully-extended' and 'fully-cropped'\n", - "regions = 'paired_hl' # 'paired_hl' or 'heavy'\n", - "#pathological = ['3etb', '3gkz', '3lrh', '3t0w', '3t0x', '3uze', '3uzq', '4f9l', '4gqp', '4k3h', '6d6t']\n", - "pathological = ['5omm', '1mj7', '1qfw', '1qyg', '4ffz', '3ifl', '3lrh', '3pp4', '3ru8', '3t0w', '3t0x', '4fqr', '4gxu', '4jfx', '4k3h', '4jfz', '4jg0', '4jg1', '4jn2', '4o4y', '4qxt', '4r3s', '4w6y', '4w6y', '5ies', '5ivn', '5j57', '5kvd', '5kzp', '5mes', '5nmv', '5sy8', '5t29', '5t5b', '5vag', '3etb', '3gkz', '3uze', '3uzq', '4f9l', '4gqp', '4r2g', '5c6t']\n", - "preprocessed_data = Preprocessing(modes=modes, regions=regions, pathological=pathological, renew_maps=renew_maps, renew_residues=renew_residues, mode=mode)" + "dccm_map_path = 'dccm_maps_full_ags_all/' # NM correlation maps or contact maps are saved here\n", + "ag_agnostic = False # If True, only the antibody is considered\n", + "contact_maps = False # True to compute contact maps and False to compute NM correlation maps\n", + "cmaps_thr = 8.0 # If contact_maps is True, then this is the thresholding parameter, otherwise irrelevant\n", + "\n", + "pathological = ['5omm', '5i5k', '1uwx', '1mj7', '1qfw', '1qyg', '4ffz', '3ifl', '3lrh', '3pp4', '3ru8', '3t0w', '3t0x', '4fqr', '4gxu', '4jfx', '4k3h', '4jfz', '4jg0', '4jg1', '4jn2', '4o4y', '4qxt', '4r3s', '4w6y', '4w6y', '5ies', '5ivn', '5j57', '5kvd', '5kzp', '5mes', '5nmv', '5sy8', '5t29', '5t5b', '5vag', '3etb', '3gkz', '3uze', '3uzq', '4f9l', '4gqp', '4r2g', '5c6t', '3fku', '1oau', '1oay']\n", + "scfv = ['4gqp', '3etb', '3gkz', '3uze', '3uzq', '3gm0', '4f9l', '6ejg', '6ejm', '1h8s', '5dfw', '6cbp', '4f9p', '5kov', '1dzb', '5j74', '5aaw', '3uzv', '5aam', '3ux9', '5a2j', '5a2k', '5a2i', '3fku', '5yy4', '3uyp', '5jyl', '1y0l', '1p4b', '3kdm', '4lar', '4ffy', '2ybr', '1mfa', '5xj3', '5xj4', '4kv5', '5vyf'] \n", + "pathological += scfv\n", + "\n", + "preprocessed_data = Preprocessing(dccm_map_path=dccm_map_path, modes=modes, pathological=pathological, renew_maps=renew_maps, renew_residues=renew_residues, mode=mode, ag_agnostic=ag_agnostic, cmaps=contact_maps, cmaps_thr=cmaps_thr)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "9b859548", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(634, 288, 288)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preprocessed_data.train_x.shape" ] }, { @@ -73,13 +137,13 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "c1e0686b", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAFlCAYAAABWawldAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABBrElEQVR4nO3dfbwcZX3//9dbgnivIAFjAEM13oBWsBGptyhSUKxBW22stmBR/LZY0dqvBf21YPtNv2it2n4tWlRKWhGkagsVBTGCSKtgQFAgIrFEiUQSb0GtKPD5/TFzZNnsudnNOWf3nPN6Ph772J1rrpn5zHX2zOx+9pprUlVIkiRJkiRJg7jXsAOQJEmSJEnS3GVySZIkSZIkSQMzuSRJkiRJkqSBmVySJEmSJEnSwEwuSZIkSZIkaWAmlyRJkiRJkjQwk0uSJM2AJMuSVJLTZ3g7leTiGVz/Ue02jpqpbcyW2fqb9GO89k2yMcnG4UQFSS5OUl1lB7WxnjSksMbiGGrbSJKkbZlckiRpipI8Nsn/S3JNkh8l+XmSm5Ocl+ToJPcZdowL3Uwn2+aKudwOvRJbkiRptC0adgCSJM0FSf4COJHmh5kvAmuAHwO7AwcBHwD+EFgxy6E9DvjpLG9TM+/gIW//94H7DTmG8Qy7bSRJUheTS5IkTSLJm4G3AjcBL6mqy3rUeQHwxtmOraq+Ntvb1Myrqm8MefvfGub2JzLstpEkSdvysjhJkiaQZBlwEvAL4Pm9EksAVfUJ4LDx1pHkrCTfTfKzJOvaZFR3vQcn+d9JPptkU3vZ3dYk5yY5cJx1b3P5U5KT2vKDkvx2ksuT/DTJ99s4lvbVCONIskeS9yT57yS3J/leG+uTe9QdKKYkT07y6SS3Jbk1yWeS/Hrn+tp6R3VcSvWsdt7Y46Qe653q3+TeSV6X5MokP2hj3pjknCTP7aOtHpXkX9t1/CTJfyU5fIL624wrNJVYptIO6Rh7Ksmjk3wkyZYkd3W054SXprV/g8+0l4feluSCJNv02mu3Ue3/Ufe8g3rFBTyrne6M/eKJ2qYt3ynJ8Um+0rbNrUk+n+SlPep2tsGsvhckSZqP7LkkSdLEXgnsCJxVVddMVLGqbu9R/AjgcuC/gX8BdgF+BzgnyXOr6qKOuo8DVgOXAOcBPwD2Al4IPC/Jb1bV+X3E/kftsucCnwOe0m77iUn2GyfeKUnyJODT7f5cAHwc2BU4Arg0yYuq6pPbE1OSZ7Tb2BH4GPAN4AnARcBnu9Z7FU3vshOBbwKnd8y7uKtuP3+T04GXAdcA/wz8D/Bw4Ok0ycTP9GqfTkmWA18AHgp8qo31UcC/t9NTNZVYrmLq7fBI4DLg68AZwH2BW6cQx1OAE9rt/UO7Ly8GnpnkN6rq833sU6cftrEfRfM3emvHvI0TLZjk3jTvw2cBX2vjuh/w28BH2vfWm3ssOqvvBUmS5q2q8uHDhw8fPnyM8wDWAgW8qs/llrXLFXBi17xD2/JPdpU/GNi1x7r2AG4G1veYV8DFXWUnteW3Ak/omvfhdt5Lp7gfR7X1j+ooWwRsAH4GPKur/sOBbwObgZ0GjYmmd/UNbfnzuur/r462PWiy9hj0b9L+Pe4C1gE79FjfQ6fYhp9u131cV/nKjniO6pq3Edg4aCx9tMNfj1Pn4uZj4j3KDupY7rXj7MsNwL06yk9vy5f12MbY+k6abNsTtU1bdsLY3w9Y1FG+W1u/gKcO+73gw4cPHz58zNeHl8VJkjSxJe3zpgGX/ybwfzoLquoC4FvAAV3lP6qq73avoKo2AR8FHptkrz62/fdV9dWusve3zwd0V+7D4TS9Xv5fVX2uc0ZV3Qy8HXgYvQdenmpMT6XpEXNRVXX37jmVprfNoKb6NykgwO00iQW6lvneZBtKsgdwCHAj8J6u5c+h6b01FdsdSw+3cM/eQVO1ATila/tj+/Io4BkDrHN7/QFNG/1JVd3REdcW4K/ayVf1WG7W3guSJM1nXhYnSdLE0j4Pemv0q6rqzh7lNwG/vs3GkqcBx7XzdgPu3VVlKc0X36lYN852AXae4jp6GYv7Eb3GMwKWt8+Po+lJMkhM+7fPl3ZXrqq7kvwX8OgpRbutKf1NqurWJP8B/CZwVZKPAZ8HLquqqd6h75f7Mc42L6YdY2gi0xRLt6trsEsjP19V2yRYuHtf9mfqSbPtluSBNEmtb1fvAe7HLqHcv8e82XwvSJI0b5lckiRpYjcDj6W5NG0QPxyn/A66bqyR5EU0PZR+BlxIM8bQT2h6ShxE88V9p+3c9livjh36WE+3h7bPL5mk3gN6lP2wR1mvmB7cPt8yzrrHK5+KXjGMxdHdq/t3gD8Dfpe7e/n8LMlHgT+tqsnimGw/vjPJ8tMZy/Zsu9Nk+/LgcebPlLHtbR5n/lj5Q3rM++E4y8zEe0GSpHnLy+IkSZrYWM+ZXpd4Tbe/An4OrKiqI6rqjVX1F1V1EnD9LGx/qn7UPq+sqkzwGOSSqzFjA0vvPs788cqnVVX9T1WdVFWPphlc/RU074lX0CQCJzPWVuPF+7BZjGWbVQ6wDEy+Lz/qKBvr4dTrB82HDLj9bmPbG68tl3TVG8gMtL8kSfOGySVJkib2T8AvgN9Kss9EFZP006uol0cB11XV+q713ovmjlSj4ovt80yOrfPl9nmb/W7b46njLHcX29cra1xVdVNVnUEz4PMNwNOTPHSSxX65H0l6xXXQDMUyY+3QbqvXZ8iD2ucvd5T9oH3es0f9FeOs/06AcdprG1V1G00vv6Xtnfm6Pbt9vnIq65viNgd5L0iSNG+ZXJIkaQJVtZHmTmf3Bs5L0vMLcZLD6O+28r1sBJYneXjHekNzW/kJE1uz7ByaL/PHJnl+rwpJfj3J/bZjG//ZbuPZSZ7XNe8Yxh9v6Xv0TmT0LcniJE/pMev+wANpLp36+UTraAdjvxDYG3ht1/pXMoXxlgaMZdraoYflwB91xTe2LxtoxiIac3n7/Oqu+k+gGVusl7HBsfsZvP40mvHR/qYzKZVkV+DPO+oMZDreC5IkzWeOuSRJ0iSq6q+TLKJJ8nypHUx6HfBjmkuEnknzhbvXYNX9eBfwPuDL7YDBvwCeRpNYGhtMeOiq6hdJXgxcQJNw+y/gKuCnNAmNJwO/QnM50kCDHbeDdr8KOB84t22PbwC/SnP3tU8Bz2PbO3etBVa1gy9fQfOl/5KqumSAMJYCX0yynqbXy03Ag4AX0FyC9fdtr5nJHAt8AXh3kt8ArqbppfYipv537TeW6WyHbucDf9sm/cb25cU0Y4Ud3TXY9zk0PXte1t457zKapNHKdt5Le6x/Lc14Xh9P8kngf4BvVtW/TBDTO2jeDyuBq9vl7teuZzfg7VW1zeDwfZiu94IkSfOSySVJkqagqv4yyb/S9Nh4NvBK4D40vSyuAt4GfGg7t/GPSW4HXg8cSfOl+vPttn6LEUkuAVTVV5I8EfgTmi/Yr6RJ9GymuSzqROC727mNi5M8i+ZW8Ye3xZfRtP/L2+lbuxY7jmYsoYOB59P00n4rMEhSZSPNfhzUbnNX4Ps0418dD5w1xf24IcmBwMnAc9v1fQU4AljM1P6u/cYyne3Q7TLgL2nGCHstTY+hzwJvqaovdVasqp8lOZgm+XMITeLxGppBsb9P7+TSB4BHAKuAN9F8Xv0cMG5yqap+nuQQmvfj7wJ/TJNQuxp4fVWdOejOtjYyDe8FSZLmq1QNOpajJEnScCT5T+ApwIOr6ifDjkeSJGkhc8wlSZI0kpLcL8lDepQfRTOg96dNLEmSJA2fPZckSdJISvJYmkvsLqQZKHoRsD/NHeR+CDy1+856kiRJmn0mlyRJ0khKsjPwNzR3IXsYsBPwHeAzwOqq+sYQw5MkSVLL5JIkSZIkSZIG5phLkiRJkiRJGpjJJUmSJEmSJA3M5JIkSZIkSZIGZnJJkiRJkiRJAzO5JEmSJEmSpIGZXJIkSZIkSdLATC5JkiRJkiRpYCaXJEmSJEmSNDCTS5IkSZIkSRqYySVJkiRJkiQNzOSSJEmSJEmSBmZySZIkSZIkSQMzuSRJkiRJkqSBmVySJEmSJEnSwEwuSZIkSZIkaWAmlyRJkiRJkjSwRcMOYDrtuuuutWzZsmGHIUkj6YorrvhuVS0edhzD5HlCknrzHNHwPCFJvU12nphXyaVly5axbt26YYchSSMpyTeHHcOweZ6QpN48RzQ8T0hSb5OdJ7wsTpIkSZIkSQMzuSRJkiRJkqSBmVySJEmSJEnSwEwuSZIkSZIkaWAmlyRJkiRJkjQwk0uSJEmSJEkamMklSZIkSZIkDczkkiRJkiRJkgZmckmSJEmSJEkDM7kkSZIkSZKkgZlckiRJkiRJ0sAWzdaGktwHuATYqd3uR6vqxCS7AB8BlgEbgZdW1Q/aZU4AjgbuBF5XVRfMVrzS9lp2/HnDDqGnjScfPuwQJEmas6b7/O55WZLml4V6npjNnku3A8+pqicC+wGHJTkQOB5YW1XLgbXtNEn2AVYB+wKHAack2WEW45UkSZIkSdIkZi25VI0ft5M7to8CVgJr2vI1wBHt65XAWVV1e1XdCGwADpiteCVJkiRJkjS5WR1zKckOSa4CtgAXVtVlwO5VtRmgfd6trb4UuKlj8U1tWfc6j0myLsm6rVu3zmj8kiRJkiRJuqdZTS5V1Z1VtR+wB3BAksdPUD29VtFjnadW1YqqWrF48eJpilSSJEmSJElTMZS7xVXVD4GLacZSuiXJEoD2eUtbbROwZ8diewA3z16UkiRJkiRJmsysJZeSLE7ykPb1fYHnAl8DzgWObKsdCZzTvj4XWJVkpyR7A8uBy2crXkmSJEmSJE1u0Sxuawmwpr3j272As6vqE0m+AJyd5GjgW8BLAKrq2iRnA9cBdwDHVtWdsxivJEmSJEmSJjFryaWq+gqwf4/y7wEHj7PMamD1DIcmSZIkSZKkAQ1lzCVJkiRJkiTNDyaXJEmSJEmSNDCTS5IkSZIkSRqYySVJkiRJkiQNzOSSJEmSJEmSBmZySZIkSZIkSQMzuSRJkiRpTkiyQ5IvJ/lEO71LkguT3NA+79xR94QkG5Jcn+TQ4UUtSfOfySVJkiRJc8VxwPqO6eOBtVW1HFjbTpNkH2AVsC9wGHBKkh1mOVZJWjBMLkmSRkKS+yS5PMnVSa5N8ta23F+lJUkk2QM4HPhAR/FKYE37eg1wREf5WVV1e1XdCGwADpilUCVpwTG5JEkaFbcDz6mqJwL7AYclORB/lZYkNd4NvAm4q6Ns96raDNA+79aWLwVu6qi3qS2TJM0Ak0uSpJFQjR+3kzu2j8JfpSVpwUvyAmBLVV0x1UV6lNU46z4mybok67Zu3TpwjJK0kJlckiSNjHag1quALcCFVXUZ/iotSYKnAS9MshE4C3hOkg8BtyRZAtA+b2nrbwL27Fh+D+DmXiuuqlOrakVVrVi8ePFMxS9J85rJJUnSyKiqO6tqP5ovAQckefwE1af0q7S/SEvS3FdVJ1TVHlW1jOaS6M9W1SuAc4Ej22pHAue0r88FViXZKcnewHLg8lkOW5IWDJNLkqSRU1U/BC6mGUtpu36V9hdpSZrXTgYOSXIDcEg7TVVdC5wNXAecDxxbVXcOLUpJmudMLkmSRkKSxUke0r6+L/Bc4Gv4q7QkqUNVXVxVL2hff6+qDq6q5e3z9zvqra6qR1bVY6rqU8OLWJLmv0XDDkCSpNYSYE17x7d7AWdX1SeSfAE4O8nRwLeAl0Dzq3SSsV+l78BfpSVJkqShMLkkSRoJVfUVYP8e5d8DDh5nmdXA6hkOTZIkSdIEvCxOkiRJkiRJAzO5JEmSJEmSpIGZXJIkSZIkSdLATC5JkiRJkiRpYCaXJEmSJEmSNDCTS5IkSZIkSRrYomEHIEmSJC1Uy44/b1rXt/Hkw6d1fZIkTYU9lyRJkiRJkjQwk0uSJEmSJEkamMklSZIkSZIkDczkkiRJkiRJkgZmckmSJEmSJEkD825x0gIz3XelmQ7e2UaSJEmS5i57LkmSJEmSJGlgJpckSZIkSZI0MJNLkiRJkiRJGtisJZeS7JnkoiTrk1yb5Li2/KQk305yVft4fscyJyTZkOT6JIfOVqySJEmSJEmamtkc0PsO4I1VdWWSBwJXJLmwnfeuqnpHZ+Uk+wCrgH2BhwOfSfLoqrpzFmOWJEmSJEnSBGat51JVba6qK9vXtwHrgaUTLLISOKuqbq+qG4ENwAEzH6kkSZIkSZKmaihjLiVZBuwPXNYWvTbJV5KclmTntmwpcFPHYpuYOBklSZIkSZKkWTbryaUkDwA+Bry+qm4F3gs8EtgP2Az87VjVHotXj/Udk2RdknVbt26dmaAlSZIkSZLU06wml5LsSJNYOqOqPg5QVbdU1Z1VdRfwfu6+9G0TsGfH4nsAN3evs6pOraoVVbVi8eLFM7sDkiRJkiRJuofZvFtcgA8C66vqnR3lSzqqvQi4pn19LrAqyU5J9gaWA5fPVrySJEmSJEma3GzeLe5pwO8BX01yVVv2ZuBlSfajueRtI/AagKq6NsnZwHU0d5o71jvFSZIkSZIkjZZZSy5V1aX0HkfpkxMssxpYPWNBSZIkSZIkabsM5W5xkiRJkiRJmh9MLkmSJEmSJGlgJpckSZIkSZI0MJNLkiRJkiRJGpjJJUmSJEmSJA3M5JIkaSQk2TPJRUnWJ7k2yXFt+UlJvp3kqvbx/I5lTkiyIcn1SQ4dXvSSJEnSwrVo2AFIktS6A3hjVV2Z5IHAFUkubOe9q6re0Vk5yT7AKmBf4OHAZ5I8uqrunNWoJUmSpAXOnkuSpJFQVZur6sr29W3AemDpBIusBM6qqtur6kZgA3DAzEcqSZIkqZPJJUnSyEmyDNgfuKwtem2SryQ5LcnObdlS4KaOxTYxcTJKkiRJ0gwwuSRJGilJHgB8DHh9Vd0KvBd4JLAfsBn427GqPRavHus7Jsm6JOu2bt06M0FLkiRJC5jJJUnSyEiyI01i6Yyq+jhAVd1SVXdW1V3A+7n70rdNwJ4di+8B3Ny9zqo6tapWVNWKxYsXz+wOSJIkSQuQySVJ0khIEuCDwPqqemdH+ZKOai8CrmlfnwusSrJTkr2B5cDlsxWvJEmSpIZ3i5MkjYqnAb8HfDXJVW3Zm4GXJdmP5pK3jcBrAKrq2iRnA9fR3GnuWO8UJ0mSJM0+k0uSpJFQVZfSexylT06wzGpg9YwFJUmSJGlSXhYnSZIkSZKkgZlckiRJkiRJ0sBMLkmSJEmSJGlgJpckSZIkSZI0MJNLkiRJkiRJGpjJJUmSJEmSJA3M5JIkSZIkSZIGZnJJkiRJkiRJAzO5JEmSJEmSpIGZXJIkSZIkSdLATC5JkiRJGnlJ7pPk8iRXJ7k2yVvb8l2SXJjkhvZ5545lTkiyIcn1SQ4dXvSSNL+ZXJIkSZI0F9wOPKeqngjsBxyW5EDgeGBtVS0H1rbTJNkHWAXsCxwGnJJkh2EELknzncklSZIkSSOvGj9uJ3dsHwWsBNa05WuAI9rXK4Gzqur2qroR2AAcMHsRS9LCYXJJkiRJ0pyQZIckVwFbgAur6jJg96raDNA+79ZWXwrc1LH4prZMkjTNTC5JkiRJmhOq6s6q2g/YAzggyeMnqJ5eq9imUnJMknVJ1m3dunWaIpWkhcXkkiRJkqQ5pap+CFxMM5bSLUmWALTPW9pqm4A9OxbbA7i5x7pOraoVVbVi8eLFMxm2JM1bJpckSZIkjbwki5M8pH19X+C5wNeAc4Ej22pHAue0r88FViXZKcnewHLg8lkNWpIWiEXDDkCSJEmSpmAJsKa949u9gLOr6hNJvgCcneRo4FvASwCq6tokZwPXAXcAx1bVnUOKXZLmNZNLkiRJkkZeVX0F2L9H+feAg8dZZjWweoZDk6QFz8viJEmSJEmSNLBZSy4l2TPJRUnWJ7k2yXFt+S5JLkxyQ/u8c8cyJyTZkOT6JIfOVqySJEmSJEmamtnsuXQH8MaqehxwIHBskn2A44G1VbUcWNtO085bBexLcxeIU9rrqyVJkiRJkjQiZi25VFWbq+rK9vVtwHpgKbASWNNWWwMc0b5eCZxVVbdX1Y3ABuCA2YpXkiRJkiRJkxvKmEtJltEMxncZsHtVbYYmAQXs1lZbCtzUsdimtqx7XcckWZdk3datW2c0bkmSJEmSJN3TrCeXkjwA+Bjw+qq6daKqPcpqm4KqU6tqRVWtWLx48XSFKUmSJEmSpCnoK7mU5Kokr+0cdLvP5XekSSydUVUfb4tvSbKknb8E2NKWbwL27Fh8D+DmQbYrSZIkSZKkmdFvz6XzgDcBNyc5M8nBU10wSYAPAuur6p0ds84FjmxfHwmc01G+KslOSfYGlgOX9xmvJEmSJEmSZlBfyaWqegvwCODFwA7AeUk2JvmLJHtNsvjTgN8DntP2gLoqyfOBk4FDktwAHNJOU1XXAmcD1wHnA8dW1Z39xCtJkiRJkqSZtajfBaqqgE8Bn0qyC/Aa4ETgL5KsBd5VVef3WO5Seo+jBNCzB1RVrQZW9xujJEmSJEmSZsfAA3onOZCml9HxNGMhvRX4BvDRJO+elugkSZIkSZI00vrquZRkN+D3gVcCj6QZF+m3q+rCjjofbctfP31hSpIkSZIkaRT123NpE/AHwGnAHlX10s7EUmsd8KXpCE6StHAk2TPJRUnWJ7k2yXFt+S5JLkxyQ/u8c8cyJyTZkOT6JIcOL3pJkiRp4eo3uXRwVe1TVX9bVd/tVaGqbq2qZ09DbJKkheUO4I1V9TjgQODYJPvQXH69tqqWA2vbadp5q4B9gcOAU5LsMJTIJUmSpAWs3+TS95P8andhkl9tP+RLkjSQqtpcVVe2r28D1gNLgZXAmrbaGuCI9vVK4Kyqur2qbgQ2AAfMatCSJEmS+k4unQo8vkf5Pu08SZK2W5JlwP7AZcDuVbUZmgQUsFtbbSlwU8dim9oySZIkSbOo3+TSrwKX9yj/EvCE7Q9HkrTQJXkA8DHg9VV160RVe5RVj/Udk2RdknVbt26drjAlSZIktfpNLt0JPLhH+c70/pAvSdKUJdmRJrF0RlV9vC2+JcmSdv4SYEtbvgnYs2PxPYCbu9dZVadW1YqqWrF48eKZC16SJElaoPpNLn0OeEvngKlJFgFvAS6ZzsAkSQtLkgAfBNZX1Ts7Zp0LHNm+PhI4p6N8VZKdkuwNLKd371pJkiRJM2hRn/XfBFwKbEhyaVv2dOABwDOnMzBJ0oLzNOD3gK8muaotezNwMnB2kqOBbwEvAaiqa5OcDVxHc6e5Y6vqzlmPWpIkSVrg+kouVdX17d3iXgvsR3Mp3BnAKVW1zaUIkiRNVVVdyviXWB88zjKrgdUzFpQkSZKkSfXbc2nsTj1vmYFYJEmSJEmSNMf0nVxKcj+aXku70TVmU8fgq5IkSZIkSVoA+kouJXkucCbw0B6zC9ihR7kkSZIkSZLmqX7vFvd3wHnAHlV1r66HiSVJkiRJkqQFpt/L4pYBL3TwbkmSJEmSJEH/PZf+E3jMTAQiSZIkSZKkuaffnkvvA96R5OHAV4FfdM6sqiunKzBJkiRJkiSNvn6TSx9tn0/tMc8BvSVJkiRJkhaYfpNLe89IFJIkSZIkSZqT+kouVdU3ZyoQSZIkSZIkzT39DuhNkucl+USS65Ls2Za9KsnB0x+eJEmSJEmSRllfyaUkLwfOBm6guURux3bWDsCbpjc0SZIkSZIkjbp+ey69CXh1Vb0BuKOj/IvAftMVlCRJkiRJkuaGfpNLy4Ev9Cj/MfCg7Q9HkiRJkiRJc0m/yaWbgUf3KH8m8I3tD0eSJEmSJElzSb/JpVOBv0/ytHZ6zyRHAm8H3jutkUmSJEmSJGnkLeqnclW9PcmDgQuB+wAXAbcD76iqf5iB+CRJkiRJkjTC+kouAVTVW5KsBvah6fl0XVX9eNojkyRJkiRJ0sjrO7kEUFU/BdZNcyySJEmSJEmaY/pKLiU5d6L5VfXC7QtHkiRJkiRJc0m/PZe+1zW9I/BEYE/g49MSkSRJkiRJkuaMfgf0fmWv8iR/C9w2LRFJkiRJkiRpzrjXNK3nH4E/mqhCktOSbElyTUfZSUm+neSq9vH8jnknJNmQ5Pokh05TnJIkSZIkSZpG05VceswU6pwOHNaj/F1VtV/7+CRAkn2AVcC+7TKnJNlhmmKVJEmSJEnSNOl3QO+/7y4ClgDPA06baNmquiTJsiluaiVwVlXdDtyYZANwAPCFfuKVJEmSJEnSzOp3QO8ndE3fBWwF3sAkyaUJvDbJ7wPrgDdW1Q+ApcAXO+psasskSZIkSZI0Qvod0PvZ07z99wJ/BVT7/LfAH9D0iNpm871WkOQY4BiAvfbaa5rDkyRJkiRJ0kSma8ylgVTVLVV1Z1XdBbyf5tI3aHoq7dlRdQ/g5nHWcWpVraiqFYsXL57ZgCVJkiRJknQP/Y65dBHj9CDqVlXPmcL6llTV5nbyRcDYneTOBT6c5J3Aw4HlwOX9xCpJkiRJkqSZ1++YS+uBlwPfAS5ryw4AHgZ8GLhzvAWTnAkcBOyaZBNwInBQkv1oElYbgdcAVNW1Sc4GrgPuAI6tqnHXLUmSJEmSpOHoN7l0O7AGOK6qftmDKcm7gVTVceMtWFUv61H8wQnqrwZW9xmfJEmSpHkoyZ7AP9P8sH0XcGpV/V2SXYCPAMtofrB+aXuTIJKcABxN8yP466rqgiGELknzXr9jLv0+8J7OxFLrFOD3pickSdJClOS0JFuSXNNRdlKSbye5qn08v2PeCUk2JLk+yaHDiVqSNIvuoLm79OOAA4Fjk+wDHA+srarlwNp2mnbeKmBf4DDglCQ7DCVySZrn+k0uBXhCj/JeZZIk9eN0mg//3d5VVfu1j0+CXxgkaSGqqs1VdWX7+jaaITuWAitprq6gfT6ifb0SOKuqbq+qG4EN3H0DIUnSNOr3srjTgA8kWQ58sS07EHgT8E/TGZgkaWGpqkuSLJti9V9+YQBuTDL2heELMxWfJGl0tOeL/WnGgd197CZBVbU5yW5ttaXc/Z0FmjtSL53NOCVpoeg3ufQmYAtwHPDXbdlm4GTgb6cxLkmSxrw2ye8D62guh/gBfmGQpAUryQOAjwGvr6pbk4xbtUfZNne+TnIMcAzAXnvtNV1hStKC0tdlcVV1V1W9vaqWAg8BHlJVS9sy7+YmSZpu7wUeCexH82PG2A8ZU/rCAM2XhiTrkqzbunXrjAQpSZodSXakSSydUVUfb4tvSbKknb+E5sdwaH542LNj8T2Am7vXWVWnVtWKqlqxePHimQtekuaxfsdcAiDJCuB5NHddIMn9k/TbC0qSpAlV1S1VdWdV3QW8n7vHypjSF4Z2HX5pkKR5IE0XpQ8C66vqnR2zzgWObF8fCZzTUb4qyU5J9gaWA5fPVryStJD0lVxKsnuSy2gOyh8Gdm9nvRMvi5MkTbOxX6JbLwLG7iTnFwZJWnieRnOH6ud03UX0ZOCQJDcAh7TTVNW1wNnAdcD5wLFebSFJM6Pf3kbvAr4DPBT4Vkf5vwL/b7qCkiQtPEnOBA4Cdk2yCTgROCjJfjSXvG0EXgPNF4YkY18Y7sAvDJI071XVpfS+LBrg4HGWWQ2snrGgJElA/8mlg4GDq+oHXQPnfQNw9DtJ0sCq6mU9ij84QX2/MEiSJEkjoN8xl+4L/LxH+WLgZ9sfjiRJkiRJkuaSfpNLlwBHdUxXkh2APwPWTldQkiRJkiRJmhv6vSzuTcDnkjwZ2IlmEO99gQfTDLAnSZIkSZKkBaSvnktVdR3wBOC/gE8D96EZzHv/qvrG9IcnSZIkSZKkUTblnktJdgQuBX6/qk6cuZAkSZIkSZI0V0y551JV/QLYm+Z20JIkSZIkSVLfA3qvAV49E4FIkiRJkiRp7ul3QO/7Ay9PcghwBfCTzplV9brpCkySJEmSJEmjb0rJpSS/ClwLPA64si3+la5qXi4nSZIkSZK0wEy159KXgSVV9WyAJOcBr6qqzTMWmSRJkiRJkkbeVMdcStf0M4D7TnMskiRJkiRJmmP6HdB7THeySZIkSZIkSQvQVJNLxbZjKjnGkiRJkiRJ0gI31TGXAnwoye3t9H2A9yf5aWelqnrhdAYnSZIkSZKk0TbV5NKarukPTXcgkiRJkiRJmnumlFyqqlfOdCCSJEmSJEmaewYd0FuSJEmSJEkyuSRJkiRJkqTBmVySJEmSJEnSwEwuSZIkSZIkaWAmlyRJkiRJkjQwk0uSJEmSJEkamMklSZIkSZIkDczkkiRJkiRJkgZmckmSJEmSJEkDm7XkUpLTkmxJck1H2S5JLkxyQ/u8c8e8E5JsSHJ9kkNnK05JkiRJkiRN3Wz2XDodOKyr7HhgbVUtB9a20yTZB1gF7Nsuc0qSHWYvVEmSJEmSJE3FrCWXquoS4PtdxSuBNe3rNcARHeVnVdXtVXUjsAE4YDbilCRJkiRJ0tQNe8yl3atqM0D7vFtbvhS4qaPeprZMkiRJkiRJI2TYyaXxpEdZ9ayYHJNkXZJ1W7duneGwJEmSJEmS1GnYyaVbkiwBaJ+3tOWbgD076u0B3NxrBVV1alWtqKoVixcvntFgJUmSJEmSdE/DTi6dCxzZvj4SOKejfFWSnZLsDSwHLh9CfJKkWeJdRSVJkqS5adaSS0nOBL4APCbJpiRHAycDhyS5ATiknaaqrgXOBq4DzgeOrao7ZytWSdJQnI53FZUkSZLmnEWztaGqetk4sw4ep/5qYPXMRSRJGiVVdUmSZV3FK4GD2tdrgIuBP6PjrqLAjUnG7ir6hVkJVpIkSdIvDfuyOEmSJrLddxX1xg+SJEnSzDK5JEmai6Z8V1Fv/CBJkiTNLJNLkqRRtt13FZUkSZI0s0wuSZJGmXcVlSRJkkbcrA3oLUnSRNq7ih4E7JpkE3AizV1Ez27vMPot4CXQ3FU0ydhdRe/Au4pKkiRJQ2NySZI0EryrqCRJkjQ3eVmcJEmSJEmSBmZySZIkSZIkSQMzuSRJkiRJkqSBmVySJEmSJEnSwEwuSZIkSZIkaWAmlyRJkiRJkjQwk0uSJEmSJEka2KJhByBJ0lyw7PjzpnV9G08+fFrXJ0mSJA2LPZckSZIkSZI0MJNLkiRJkiRJGpiXxUmSJEkaeUlOA14AbKmqx7dluwAfAZYBG4GXVtUP2nknAEcDdwKvq6oLhhC2JG2X6RyaYSaHZbDnkiRJkqS54HTgsK6y44G1VbUcWNtOk2QfYBWwb7vMKUl2mL1QJWlhMbkkSZIkaeRV1SXA97uKVwJr2tdrgCM6ys+qqtur6kZgA3DAbMQpSQuRySVJkiRJc9XuVbUZoH3erS1fCtzUUW9TWyZJmgEmlyRJkiTNN+lRVj0rJsckWZdk3datW2c4LEman0wuSZIkSZqrbkmyBKB93tKWbwL27Ki3B3BzrxVU1alVtaKqVixevHhGg5Wk+crkkiRJkqS56lzgyPb1kcA5HeWrkuyUZG9gOXD5EOKTpAVh0bADkCRJkqTJJDkTOAjYNckm4ETgZODsJEcD3wJeAlBV1yY5G7gOuAM4tqruHErgkrQAmFzSvLDs+POGHYIkSZJmUFW9bJxZB49TfzWweuYikiSN8bI4SZIkSZIkDczkkiRJkiRJkgZmckmSJEmSJEkDM7kkSZIkSZKkgZlckiRJkiRJ0sC8W5ykoRvFu/1tPPnwYYcgSZIkSXOCPZckSZIkSZI0MJNLkiRJkiRJGthIXBaXZCNwG3AncEdVrUiyC/ARYBmwEXhpVf1gWDFKkiRJkiRpW6PUc+nZVbVfVa1op48H1lbVcmBtOy1JkiRJkqQRMhI9l8axEjiofb0GuBj4s2EFI0mSJEmS5pdRvLnQXDQqPZcK+HSSK5Ic05btXlWbAdrn3YYWnSRpqJJsTPLVJFclWdeW7ZLkwiQ3tM87DztOSZIkaSEaleTS06rqScDzgGOTPHOqCyY5Jsm6JOu2bt06cxFKkobNy6clSZKkETQSyaWqurl93gL8G3AAcEuSJQDt85Zxlj21qlZU1YrFixfPVsiSpOFbSXPZNO3zEcMLRZIkSVq4hp5cSnL/JA8cew38BnANcC5wZFvtSOCc4UQoSRoBXj4tSZIkjahRGNB7d+DfkkATz4er6vwkXwLOTnI08C3gJUOMUZI0XE+rqpuT7AZcmORrU12wTUYdA7DXXnvNVHySJEnSgjX05FJV/TfwxB7l3wMOnv2IJEmjpvPy6ST3uHy6qjZPdvk0cCrAihUrarZiliRJkhaKoV8WJ0nSRLx8WpIkSRptQ++5JEnSJLx8WpIkSRphJpckSSPNy6clSZKk0eZlcZIkSZIkSRqYySVJkiRJkiQNzOSSJEmSJEmSBmZySZIkSZIkSQMzuSRJkiRJkqSBebc4SZIkSZrnlh1/3rSub+PJh0/r+iTNbfZckiRJkiRJ0sBMLkmSJEmSJGlgJpckSZIkSZI0MJNLkiRJkiRJGpjJJUmSJEmSJA3M5JIkSZIkSZIGZnJJkiRJkiRJAzO5JEmSJEmSpIGZXJIkSZIkSdLATC5JkiRJkiRpYCaXJEmSJEmSNDCTS5IkSZIkSRqYySVJkiRJkiQNzOSSJEmSJEmSBrZo2AFIkiRJkuaWZcefN63r23jy4dO6Pkmzy55LkiRJkiRJGpjJJUmSJEmSJA3M5JIkSZIkSZIGZnJJkiRJkiRJAzO5JEmSJEmSpIGZXJIkSZIkSdLAFg07AEkaRdN9e93p4m16JUmSJI0aey5JkiRJkiRpYCaXJEmSJEmSNDCTS5IkSZIkSRrYyCeXkhyW5PokG5IcP+x4JEmjw3OEJGkinickaXaM9IDeSXYA/gE4BNgEfCnJuVV13XAjkyQNm+cISVMxqjdo0Myb6+cJ37uS5pKRTi4BBwAbquq/AZKcBawE5sQJYb7yRCdpRHiOkCRNxPPEHDKd3zG8u640+0Y9ubQUuKljehPwlJnYkAkTSZpzZu0cIUmak2b1POH3CWl2+L82mkY9uZQeZXWPCskxwDHt5I+TXD/B+nYFvjtNsc0ntsu2bJNt2Sa9zWq75G3btfgjpimMUTHpOQL6Pk9MZFr/1tv5t5wu8/H/2n0affNtf2CE9mk7ji3z7RwBs3+emC4j836awEjH2P4fjHSMLWOcHsY4RZOcIyaLccLzxKgnlzYBe3ZM7wHc3Fmhqk4FTp3KypKsq6oV0xfe/GC7bMs22ZZt0pvtMlSTniOgv/PERObj39p9mhvm2z7Nt/2B+blP88Ssniemy1x4Pxnj9DDG6WGM02N7Yxz1u8V9CVieZO8k9wZWAecOOSZJ0mjwHCFJmojnCUmaJSPdc6mq7kjyWuACYAfgtKq6dshhSZJGgOcISdJEPE9I0uwZ6eQSQFV9EvjkNK1uZLq7jhjbZVu2ybZsk95slyGa5nPEZObj39p9mhvm2z7Nt/2B+blP88Isnyemy1x4Pxnj9DDG6WGM02O7YkzVNmPaSZIkSZIkSVMy6mMuSZIkSZIkaYTN6+RSkuOSXJPk2iSvb8t2SXJhkhva552HHOaMSnJaki1JrukoG7cNkpyQZEOS65McOpyoZ9447fKS9r1yV5IVXfXnfbuM0yZ/k+RrSb6S5N+SPKRj3kJtk79q2+OqJJ9O8vCOefO+TRaqJIe1f9cNSY4fdjz9SrJnkouSrG+Pc8e15XP+nJhkhyRfTvKJdnpO71OShyT5aHvsXZ/k1+fBPr2hfd9dk+TMJPeZa/vk5ylNp7nwfpoLnwt7xdgx70+TVJJdRzHGJH/cxnFtkrcPK8Zx/s77Jfli+1l3XZIDhhVfu82+P8MMoR3Hi3Fk/mfGi7Fj/vb/z1TVvHwAjweuAe5HM7bUZ4DlwNuB49s6xwNvG3asM9wOzwSeBFzTUdazDYB9gKuBnYC9gW8AOwx7H2axXR4HPAa4GFjRUb4g2mWcNvkNYFH7+m0L7b0yTps8qOP164D3LaQ2WYgPmkFgvwH8CnDv9u+8z7Dj6nMflgBPal8/EPh6+56d8+dE4E+ADwOfaKfn9D4Ba4BXta/vDTxkLu8TsBS4EbhvO302cNRc2yc/T/mYzsdceD/Nhc+FvWJsy/ekGcT9m8CuoxYj8Gya76Y7tdO7DSvGceL7NPC89vXzgYuH3IZ9fYYZUjuOF+PI/M+MF2M7PS3/M/O559LjgC9W1U+r6g7gc8CLgJU0H9xon48YTnizo6ouAb7fVTxeG6wEzqqq26vqRmADcADzUK92qar1VXV9j+oLol3GaZNPt/8/AF8E9mhfL+Q2ubVj8v7A2MB1C6JNFqgDgA1V9d9V9XPgLJq/95xRVZur6sr29W3Aepov/XP6nJhkD+Bw4AMdxXN2n5I8iOaD/gcBqurnVfVD5vA+tRYB902yiOZHv5uZY/vk5ylNp7nwfpoLnwvHaUeAdwFv4u7PaKMW4x8CJ1fV7W2dLcOKcZz4CnhQ+/rBNMfsocTXxtjvZ5hhtGPPGEfpf2aCdoRp+p+Zz8mla4BnJnlokvvRZF33BHavqs3QNDCw2xBjHJbx2mApcFNHvU3c/YZbyGyXxh8An2pfL+g2SbI6yU3Ay4G/aIsXdJvMc/Pqb5tkGbA/cBlz/5z4bpoPQ3d1lM3lffoVYCvwT2ku9ftAkvszh/epqr4NvAP4FrAZ+FFVfZo5vE8d/Dyl6TTX3k8j+bkwyQuBb1fV1V2zRiZG4NHAM5JcluRzSZ7clo9KjK8H/qb9rPsO4IS2fOjxTfEzzFDj7Iqx08j8z3TGOJ3/M/M2uVRV62m6nl0InE/TpeuOCRdSepR5O0HbhSRvofn/OWOsqEe1BdMmVfWWqtqTpj1e2xYv6DaZ5+bN3zbJA4CPAa/v6oU35yR5AbClqq4YdizTaBHN5Qnvrar9gZ/QdPWfs9oxMFbSdKl/OHD/JK8YblQzbt4cMzQSRu79NKqfC9sOBW/h7h/+7jG7R9mw2nERsDNwIPC/gbOThNGJ8Q+BN7Sfdd9A25uWIcfXx2eYocU5Xoyj9D/TGWMb07T9z8zb5BJAVX2wqp5UVc+k6e53A3BLkiUA7fOWidYxT43XBptoeneN2YO7u0EuZAu6XZIcCbwAeHm1F+CywNukw4eB32pf2ybz17z42ybZkebDxBlV9fG2eC6fE58GvDDJRppLFZ+T5EPM7X3aBGyqqrFfOz9Kk2yay/v0XODGqtpaVb8APg48lbm9T2P8PKXpNCfeTyP+ufCRNInsq9tzwx7AlUkexujESBvLx6txOU3v210ZnRiPpDlWA/wrd18KNbT4+vwMM5Q4x4lxpP5nesQ4rf8z8zq5lGS39nkv4MXAmcC5NP8wtM/nDCe6oRqvDc4FViXZKcneNAOgXz6E+EbNgm2XJIcBfwa8sKp+2jFrIbfJ8o7JFwJfa18v2DZZAL4ELE+yd5J7A6to/t5zRvuL6AeB9VX1zo5Zc/acWFUnVNUeVbWM5m/y2ap6BXN7n74D3JTkMW3RwcB1zOF9orkc7sAk92vfhwfTjPMwl/dpjJ+nNJ1G/v006p8Lq+qrVbVbVS1rzw2baAYw/s6oxNj6d+A5AEkeTXPzhu+OUIw3A89qXz+HpoMGw4pvgM8wsx7neDGO0v9Mrxin/X+mZnh092E+gM/TfCi7Gji4LXsosJbmn2QtsMuw45zhNjiTZoyDX7RvlqMnagOabnHfAK6nvUvAfHyM0y4val/fDtwCXLCQ2mWcNtlAc63tVe3jfbYJH6MZ0+0rwH/QDNa3YNpkoT5oxu37evv3fcuw4xkg/qfTdGX+Ssf/8/PnyzkROIi77xY3p/cJ2A9Y1/6t/p3m0om5vk9vpUnEXwP8C82dZ+bUPvl5ysd0PubC+2kufC7sFWPX/I20d74apRhpkkkfao+JVwLPGVaM48T3dOAKmu/QlwG/NuQ27PszzBDacbwYR+Z/ZrwYu+ps1/9M2oUkSZIkSZKkvs3ry+IkSZIkSZI0s0wuSZIkSZIkaWAmlyRJkiRJkjQwk0uSJEmSJEkamMklSZIkSZIkDczkkjSJJEcl+fE0rOfiJO8ZhVimS5LTk3xi2HFIml+SbEzyp33UX5akkqyYybjabU3Lca+N97dHIZbp0u/fTZIWgsm+AyQ5qD0n7DqbcY0nyUlJrhl2HJp7TC5pu4334TbJivZAuWwIYY2iFwMnDDuIQczmFzdJ898UkiJPBk6Z5m2O1Id3YAnwH8MOYhCj9kOHJE1Few6Y6HH6FJbfrh8FRs183CcNz6JhByAtFFX1/WHHIElzQVVtHXYMM62qvjPsGCRpgVnS8foFwPu7yv5ndsOR5hd7LmlWJdknyXlJbkuyJcmZSR7WMf/JST6d5LtJbk1yaZJf75h/ZpKPda3zXkluSvKGJL+f5HtJduqqc0aScyeI60FJ3ptkc5KfJVmf5He66hyc5JokP0lyUZK9O+Y9Msk5Sb7Tzr8yyQu6lr9Hl9j28oH/L8k/tvu6Kcn/7qc92/X8ZpIr2rhvTLI6yb372U6SRyf5XLuO65M8P8mPkxzVVrmxff5S+wvHxV3LH5fk20l+kOSfktyvY94zk3yxXd+PklyW5PH97qekhaP78qopHKPGPCLJhUl+muS6JIe0yy8DLmrrbJ3sF+okj01ybnvM+nGSLyR5QlediY57hyX5fDvv+0kuSPK4ruV/+Wtx7u4d+lu94u+j3ZLkTUm+keR/knw1ySs65k9pO0kOb9v5Z0kuSbKqXW5ZkoOAfwLun7t/7T+pY/H7THK+eU2Sr7fr3tq2jT92SppxVfWdsQfwwx5lq5JsSPLz9vnVY8sm2di+/Nf2uLexLZ/0O8Agkjy1Pe/9tD3XvDfJgzrmX5zklCR/neZ705Yk70hyr446u7fnsv9J8s0kr0zzXeakifapY/lV7fnktiT/no6ev0mekGRte6y/LcnVSZ69vfutuc3kkmZNkiXAJcA1wAHAc4EHAOd2HAgfCPwL8Iy2zlXAJzsOZh8CDk/ykI5VP4vmV4czgX+leV+v7Njug4EXAR8cJ64An2rX80pgH+BPgJ93VNuJ5pK2PwB+HXgI8L6O+Q9o13EI8ETgY8DHkzx2kmZ5A/BV4EnA24C3pyOZNpkkhwJnAO8B9m3j+23gr6e6nbbt/w24AzgQOAo4sd3nMQe0z4fRtPWLO+Y9A3g8zd/zd2ja+rh23YuAc4BLadrlKcDfAXdOdR8lLWxTPEaNWQ38Pc3x5kvAWUkeANwE/FZbZ1+a49hx42zv4TTHrKI5pj8J+Adgh45q4x73WvcH3k1z7DwI+BHwH+lI/I9jvPin6v8ARwPH0pzL/i/wj0kOn+p2kuwFfBw4r53/98DbO5b9L+D1wE9p2nEJ8I6O+ROdb1bQtOVbgcfQtN/5feyfJM2IJC+i+Tz9bprj+98BpyT5zbbKk9vnV9Mc98amB/0OMFEsTwA+DZzbrvPFwH7AaV1VX05zbnwq8FqaY3Pnj+NrgEcAz6H5bvSKdnrMePsEsIy7z2+/AexPc+4Y82FgM815bn/gJOBn/eyn5qGq8uFjux7A6TQHth93PX5K8+F8WVvvL4G1Xcvu3NY5YJx1h+bA9Yp2ehGwBTi6o84HgAs6pt8DnN8x/YfAd4BF42zjEOAu4HHjzD+qjfExHWUvp0k+3WuCdvki8P91TF8MvKdjeiNwZtcyN3QuM04sP+6YvgT48646R7Ttn6lsBzi0/fst7Zj/1Hafj2qnl7XTK3r87W/qbFuaLsafaV/v0i73rGG/T3348DE6j/bY8YkJ5m8E/rR93c8x6jUddZa2ZU9vpw9qp3edJLbVwDeBe08Q+7jHvXGWuT9NUv3pHWUF/PZU45+sHdtt/A/wjK467wY+2Uc7/V9g/dg5pC17M/c8nx9Fx7mo6+820fnmxTSJtgcO+z3ow4ePhf2g+TG2Oqb/Ezitq87pwKUd0788bk+y7gm/A/Sof4/zE/DPwAe76uzX1tmtY51f6KpzIfCB9vVj2voHdszfsz0XnTTRPnF3oujBHWVvATZ0TN8KHDnsv6OP0XrYc0nT5RKag17n43e76vwa8Mw0lxj8OM1goDe18x4JkGS3tjv915P8CLgN2A3YC6Cq7gA+QpPcIc3lb79F06NpzPuBQ5Ls0U7/AbCmXbaX/YHNVbV+gv27vaqu75i+GdiRpgcTSe6f5O3t5QU/aPdtxVjcE/hK1/TNNPs7Vb8GvKWrTT9M8yXjYR31JtrOY4Gbq+rbHfO/RJNwm4rrutr2l+uuZpyp04EL0lwO+SdJ9pzieiUJ+jtGdR7rbm6f+zmmQnNOuLSqfj5BnXGPe/DLyyQ+3F5OcCtwC02v2n7OCf3Gvw9wH+D8rnPCH9KeY6e4nccCX6qq6qhz2RRj6F732PrH1n0hTeLuxjSXqx+Z5IF9rFuSZsrjaBJMnS6lObaOazu+A0zk14BXdB3Lx2LrPJ5P9vn+LmDd2Myquom7j/mT+WZV/WicdQO8E/hAks8mecv29NTS/OE17pouP62qDZ0FXZeuQfPB+jyg122Kb2mf1wC703Sr3wjcDqwFOi8l+BDwX0mW0lxmdW+aSyYAqKqrk1wJHJXk32kO8K9gfJlg3pjuxNTYh+6xBO07aC4Z+1OaX2l/SvOrw2SXQPyix3r7Sfrei+bygn/tMa9zQNyJthPu3p9BTLgPVfXKJO+maZ8XAquTHFFVF2zHNiUtHP0co355PKqqaq567vuHtKmcEyY7dv8H8G3gNe3zHcB19HFOGCD+sXq/CXxrkngn2s6MnROq6rYkTwKeSdNr+ATgr5M8uaqm+oVHkmZKr2PfZMfDQb8DTOReNFdmvKvHvM4fWib7fL89Jvt8f1KSM4Dn0fQwPjHJ/6qq7kv3tICYXNJsuhJ4KU0mvPuANebpwOuq6jxoBqLjnndxoKouS/IN4GU04x/9e1V13xL5/cCbgF2B/+zqddQrriVJHjdJ76WJPB3456r6WBv3fWh+Wfj6gOubqiuBx3Yn9vq0Hlia5OEdH+5XcM8vNGO/4O/AAKrqauBq4G1JPgUcCZhckjQVUzlGTcVUj2NX0vxifO9Jei/1lOShNL+AH1tVF7VlT2LmP3NdR/ODzCOq6rPbsZ71dIxb2Dqga/rnDH4+uAP4LPDZJCfSXOr+AuDUQdYnSdNkPc3n+c7kyNNpjq1jfsG2x76Z+A5wJbDvNHy+vxdNL6jL2tj2AB7eVa/XPk1JVd1Ak1D7+yTvBV7FtuNCaQHxsjjNpn8AHgx8JMlTkvxKkucmObWjW/zXaT7U75PkycBZ3HNg7TFn0BzADueel8SNOZPmsrA/ZJyBvDuspTnofizJoUn2TnJIkiP62LevAy9K8qR2EL4P0VyeMNP+EvjdJH+Z5PFp7nD020nePumSd7sQuB5Yk+SJSQ6k6ep6B3f/WrOFZiyPQ9PceeLBU1lx25Ynp7njxSPau0j8Kvc8UUtamB6UZL+ux7Ie9aZyjJqKb7b1D0+yeIKBsk+hGaD17DR3MH1Ukpcl2W+K2/kB8F3g1e2yz6K5AcR4l2ZPi6q6jeYX9Hck+YN22/sl+V9JjuljVe8DHpnmrkOPSfJimh5YcHd7b6S5K9whSXZNx53yJpLkBWnusrd/kkfQXD7/QJovQZI0TH8D/F6SY5MsT/LHNMNwdH6m3ggcnORhSXZuy2biO8DbgAOSvK89Xj6qPX7+41RX0P6wfgHwviQHtuewf+LuMXEn2qcJJblvkn9IclCau4g+hW0TcVqATC5p1rS/OD+N5vrf84FraRJOt7cPaMZHegBwBU1i6TSag163D9EMVPcjmi8e3du6DTibJjF19iRx3UXTpfM/2/Wup7lDRD/dWf+EJgHzeZo7RnyxfT2j2kvLDgeeDVzePo5n20siJlrHXTR3gtipXX4NzYC2RXvXh/aX5tfRJPRuprkD3FT8FHg0zWV7X2/XfQbNSVPSwvYM4Mtdj3d0V5rKMWoq2jGbTmyXvYXm5g/j1XsmzTngojauP2aKyaE23t+hSaRfQ3Oe+3PuPs/NpD+nGYj1T2nOsRfSjEt441RXUFXfbJd5IU2P0zfQXH4Nd58T/osmCXUmzSXYb5ri6n9Ic9OJzwBfa+N8VVXN+PlSkiZSVf9Oc6x/A02S5Djgj6rqPzqqvZHmM/dNNOcGmIHvAFX1FZrz0DLgczTH4v/L3cOITNVRwCaawb/PpfkMvoV7njt77dNk7qS5KdMamh9//g34Ak1baAEbu5uUNO+0l19tqqpXDzuWuSbJE4GraO4Od8WQw5Gke/AYNbuSHEfTU3bnNnkmSZpjkuxK8yPxy8Yu45Omk2Muad5JsgvwXOA3gCcOOZw5IcmLgJ/QXDe9jOaSk6tprvmWpKHyGDW7khxLc0e+rcCBND2iTjexJElzR5Ln0Fx6/FWaO72tprls+/xhxqX5y+SS5qMrgV2AN1fVNcMOZo54IM2lanvSjBdyMfCGsmujpNHgMWp2PQp4M/BQmksq3kfTc0mSNHfsCPwf4Fdohqq4DHhmVf1kqFFp3vKyOEmSJEmSJA3MAb0lSZIkSZI0MJNLkiRJkiRJGpjJJUmSJEmSJA3M5JIkSZIkSZIGZnJJkiRJkiRJAzO5JEmSJEmSpIH9//pSUsfg1oU/AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJYAAAFlCAYAAAC5qWJjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAA9nUlEQVR4nO3de5wkZX3v8c8XVvCuIAsiF5coXtBEMCsSrygiCEbwlmBiDigJOQYjGnNyQE+OqFkPGmM8JlGDl8CJCmK8QMSoiOIlKggEkIvIKqusIIt38IICv/NH1bi9vT0zPbUz0z09n/frVa/ufur2q2d6qrp+9dRTqSokSZIkSZKkudpq1AFIkiRJkiRpaTKxJEmSJEmSpE5MLEmSJEmSJKkTE0uSJEmSJEnqxMSSJEmSJEmSOjGxJEmSJEmSpE5MLEmStACSrEpSSU5Z4PVUkvMWcPlHtes4aqHWsVgW628yF9PVb5J1SdaNJipIcl6S6ivbv431xBGFNRXHSOtGkiRtysSSJElDSvKQJP+Q5PIkP07yyyTXJzk7ydFJ7jzqGJe7hU60LRVLuR4GJbUkSdL4WjHqACRJWgqS/G/gVTQXZb4MnArcAuwE7A+8E3gRsHqRQ3so8LNFXqcW3gEjXv9/A+464himM+q6kSRJPUwsSZI0iySvAF4NXAc8t6rOHzDN04GXL3ZsVfW1xV6nFl5VfWPE6//2KNc/k1HXjSRJ2pS3wkmSNIMkq4ATgV8BhwxKKgFU1UeBg6dbRpLTk3wvyS+SXNgmovqnu1eS/5Hk00nWt7fa3ZTkrCT7TbPszW55SnJiW75/kuckuSDJz5L8oI1jlzlVwjSS7JrkH5N8M8mtSb7fxvqoAdN2iinJo5J8MsnNSX6S5FNJfqd3ee10R/XcPvXEdtzUcOKA5Q77N9kmyUuSXJzkh23M65KcmeQpc6irByb5QLuMnyb5YpJDZ5h+s36EhollmHpIT19TSR6U5P1JNiS5o6c+Z7wdrf0bfKq9JfTmJJ9IsllrvXYd1f4f9Y/bf1BcwBPbz72xnzdT3bTl2yY5Psllbd38JMnnk/zegGl762BRvwuSJE0aWyxJkjSzFwB3Ak6vqstnmrCqbh1QfH/gAuCbwL8C2wO/D5yZ5ClV9ZmeaR8KrAE+B5wN/BDYHXgG8LQkv1tVH59D7H/WznsW8Fng0e26H5Fk72niHUqSRwKfbLfnE8CHgB2Aw4EvJHlmVX1sS2JK8vh2HXcCPgh8A/hN4DPAp/uWewlNq7JXAd8CTukZd17ftHP5m5wCPA+4HPh/wM+B+wGPo0kkfmpQ/fRKsifwJeA+wH+0sT4Q+Ej7eVjDxHIJw9fDA4Dzga8D7wXuAvxkiDgeDZzQru+f2m15FvCEJE+tqs/PYZt6/aiN/Siav9Gre8atm2nGJNvQfA+fCHytjeuuwHOA97ffrVcMmHVRvwuSJE2kqnJwcHBwcHCYZgDOBQr44znOt6qdr4BX9Y07qC3/WF/5vYAdBixrV+B64KoB4wo4r6/sxLb8J8Bv9o17Xzvu94bcjqPa6Y/qKVsBrAV+ATyxb/r7Ad8BbgC27RoTTavqa9ryp/VN/9976nb/2eqj69+k/XvcAVwIbD1gefcZsg4/2S77uL7yw3riOapv3DpgXddY5lAPr5tmmvOan4mblO3fM9+Lp9mWa4CtespPactXDVjH1PJOnG3dM9VNW3bC1N8PWNFTvmM7fQGPGfV3wcHBwcHBYRIHb4WTJGlmO7ev6zvO/y3gb3oLquoTwLeBffvKf1xV3+tfQFWtB/4NeEiS3eew7rdU1Vf7yt7Rvu7bP/EcHErT2uUfquqzvSOq6nrgDcB9GdzJ8rAxPYamJcxnqqq/Vc/JNK1suhr2b1JAgFtpkgr0zfP92VaUZFfgQOBa4B/75j+TptXWMLY4lgFuZNNWQcNaC7y1b/1T2/JA4PEdlrmlXkhTR39RVbf1xLUBeG378Y8HzLdo3wVJkiaVt8JJkjSztK9dH39+SVXdPqD8OuB3NltZ8ljguHbcjsA2fZPsQnPSO4wLp1kvwHZDLmOQqbjvP6j/ImDP9vWhNC1IusS0T/v6hf6Jq+qOJF8EHjRUtJsb6m9SVT9J8u/A7wKXJPkg8Hng/Koa9kl8v96OadZ5Hm2fQjOZp1j6XVrdbof8fFVtllxh47bsw/AJsy2W5B40Ca3v1ODO7Kdum9xnwLjF/C5IkjSRTCxJkjSz64GH0NyO1sWPpim/jb6HaCR5Jk3LpF8A59D0KfRTmhYS+9OctG+7heueas2x9RyW0+8+7etzZ5nu7gPKfjSgbFBM92pfb5xm2dOVD2NQDFNx9Lfm/n3gfwJ/wMbWPb9I8m/AX1bVbHHMth3fnWX++YxlS9bda7Ztudc04xfK1PpumGb8VPm9B4z70TTzLMR3QZKkieStcJIkzWyqxcyg27rm22uBXwKrq+rwqnp5Vf3vqjoRuHoR1j+sH7evh1VVZhi63GY1ZaoT6Z2mGT9d+byqqp9X1YlV9SCajtSfT/OdeD5NEnA2U3U1Xbz3XcRYNltkh3lg9m35cU/ZVMumQRcz791x/f2m1jddXe7cN10nC1D/kiRNBBNLkiTN7F+AXwHPTrLXTBMmmUtrokEeCFxZVVf1LXcrmidPjYsvt68L2ZfOf7Wvm213Wx+PmWa+O9iy1ljTqqrrquq9NJ07XwM8Lsl9Zpnt19uRZFBc+y9QLAtWD+26Bv2G3L99/a+esh+2r7sNmH71NMu/HWCa+tpMVd1M07pvl/YJfP2e1L5ePMzyhlxnl++CJEkTycSSJEkzqKp1NE802wY4O8nAk+EkBzO3R8cPsg7YM8n9epYbmkfHz5jUWmRn0pzIH5vkkEETJPmdJHfdgnX8Z7uOJyV5Wt+4Y5i+f6XvMziJMWdJViZ59IBRdwPuQXO71C9nWkbb8fo5wB7Ai/uWfxhD9K/UMZZ5q4cB9gT+rC++qW1ZS9P30JQL2tc/6Zv+N2n6EhtkqiPsuXRU/26a/tD+tjchlWQH4K97pulkPr4LkiRNKvtYkiRpFlX1uiQraBI8X2k7jr4QuIXmtqAn0JxsD+qYei7+Hng78F9t58C/Ah5Lk1Sa6jh45KrqV0meBXyCJtn2ReAS4Gc0yYxHAb9BcwtSp46N2w66/xj4OHBWWx/fAH6L5ilr/wE8jc2f0HUucETb0fJFNCf8n6uqz3UIYxfgy0muomntch1wT+DpNLddvaVtLTObY4EvAW9O8lTgUprWac9k+L/rXGOZz3ro93Hg79qE39S2PIumb7Cj+zr2PpOmRc/z2ifknU+TMDqsHfd7A5Z/Lk3/XR9K8jHg58C3qupfZ4jpjTTfh8OAS9v57touZ0fgDVW1WUfwczBf3wVJkiaOiSVJkoZQVa9J8gGalhpPAl4A3JmmdcUlwOuB92zhOv45ya3AS4EjaU6oP9+u69mMSWIJoKouS/II4C9oTq5fQJPkuYHmVqhXAd/bwnWcl+SJNI+DP7QtPp+m/v+w/fyTvtmOo+k76ADgEJrW2a8GuiRU1tFsx/7tOncAfkDT39XxwOlDbsc1SfYDTgKe0i7vMuBwYCXD/V3nGst81kO/84HX0PQJ9mKalkKfBl5ZVV/pnbCqfpHkAJrEz4E0ScfLaTrA/gGDE0vvBO4PHAH8Fc3v1c8C0yaWquqXSQ6k+T7+AfDnNMm0S4GXVtVpXTe2tY55+C5IkjSJUtW130ZJkqTRSPKfwKOBe1XVT0cdjyRJ0nJlH0uSJGksJblrknsPKD+KpvPuT5pUkiRJGi1bLEmSpLGU5CE0t9WdQ9Mp9ApgH5onxf0IeEz/E/QkSZK0uEwsSZKksZRkO+BvaZ42dl9gW+C7wKeANVX1jRGGJ0mSJEwsSZIkSZIkqSP7WJIkSZIkSVInJpYkSZIkSZLUiYklSZIkSZIkdWJiSZIkSZIkSZ2YWJIkSZIkSVInJpYkSZIkSZLUiYklSZIkSZIkdWJiSZIkSZIkSZ2YWJIkSZIkSVInJpYkSZIkSZLUiYklSZIkSZIkdWJiSZIkSZIkSZ2YWJIkSZIkSVIni5ZYSnLnJBckuTTJFUle3ZafmOQ7SS5ph0N65jkhydokVyc5aLFilSRJkiRJ0uxSVYuzoiTA3arqliR3Ar4AHAccDNxSVW/sm34v4DRgX+B+wKeAB1XV7YsSsCRJkiRJkma0aC2WqnFL+/FO7TBTVusw4PSqurWqrgXW0iSZJEmSJEmSNAZWLObKkmwNXAQ8EPinqjo/ydOAFyf5b8CFwMur6ofALsCXe2Zf35ZNa4cddqhVq1YtSOyStNRddNFF36uqlaOOY5Q8TkjSYB4jGh4nJGmwmY4Ti5pYam9j2zvJvYEPJ3k48DbgtTStl14L/B3wQiCDFtFfkOQY4BiA3XffnQsvvHBhgpekJS7Jt0Ydw6itWrXK44QkDeAxouFxQpIGm+k4MZKnwlXVj4DzgIOr6saqur2q7gDewcbb3dYDu/XMtitw/YBlnVxVq6tq9cqVy/4iiyRJkiRJ0qJZzKfCrWxbKpHkLsBTgK8l2blnsmcCl7fvzwKOSLJtkj2APYELFiteSZIkSZIkzWwxb4XbGTi17WdpK+CMqvpokn9NsjfNbW7rgD8FqKorkpwBXAncBhzrE+EkSZIkSZLGx6IllqrqMmCfAeV/NMM8a4A1CxmXJEmSJEmSuhlJH0uSJEmSJEla+kwsSZIkSZIkqRMTS5IkSZIkSerExJIkSZIkSZI6MbEkSZIkSZKkTkwsSZIkSZIkqRMTS5IkSZIkSepkxagDkCbVquPPHnUIA6076dBRhyBJ0pI138d3j8uSNFmW43HCFkuSJEmSJEnqxMSSJEmSJEmSOjGxJEmSJEmSpE5MLEmSJEmSJKkTE0uSJEmSJEnqxMSSJEmSJEmSOjGxJEmSJEmSpE5MLEmSJEmSJKkTE0uSJEmSJEnqxMSSJEmSJEmSOjGxJEmSJEmSpE5MLEmSJEmSJKkTE0uSJEmSJEnqxMSSJEmSJEmSOjGxJEmSJGlJSLJ1kv9K8tH28/ZJzklyTfu6Xc+0JyRZm+TqJAeNLmpJmmwmliRJkiQtFccBV/V8Ph44t6r2BM5tP5NkL+AI4GHAwcBbk2y9yLFK0rJgYkmSJEnS2EuyK3Ao8M6e4sOAU9v3pwKH95SfXlW3VtW1wFpg30UKVZKWFRNLkiRJkpaCNwN/BdzRU7ZTVd0A0L7u2JbvAlzXM936tkySNM9MLEmSJEkaa0meDmyoqouGnWVAWU2z7GOSXJjkwptuuqlzjJK0XJlYkiSNhSR3TnJBkkuTXJHk1W25HbNKkh4LPCPJOuB04MlJ3gPcmGRngPZ1Qzv9emC3nvl3Ba4ftOCqOrmqVlfV6pUrVy5U/JI0sUwsSZLGxa3Ak6vqEcDewMFJ9sOOWSVp2auqE6pq16paRbPv/3RVPR84CziynexI4Mz2/VnAEUm2TbIHsCdwwSKHLUnLwqIllrwSLUmaSTVuaT/eqR0KO2aVJE3vJODAJNcAB7afqaorgDOAK4GPA8dW1e0ji1KSJthitljySrQkaUZJtk5yCc2tDOdU1fnYMaskqUdVnVdVT2/ff7+qDqiqPdvXH/RMt6aqHlBVD66q/xhdxJI02RYtseSVaEnSbKrq9qram6YvjH2TPHyGyYfqmNVOWSVJkqSFs6h9LHklWpI0jKr6EXAeTYvVLeqY1U5ZJUmSpIWzqIklr0RLkqaTZGWSe7fv7wI8BfgadswqSZIkja0Vo1hpVf0oyXn0XImuqhu6XokGTgZYvXr1ZoknSdKSsTNwatuf3lbAGVX10SRfAs5IcjTwbeC50HTMmmSqY9bbsGNWSZIkadEtWmIpyUrgV21SaepK9OvZeCX6JDa/Ev2+JG8C7odXoiVpolXVZcA+A8q/DxwwzTxrgDULHJokSZKkaSxmiyWvREuSJEmSJE2QRUsseSVakiRJkiRpsixq592SJEmSJEmaHCaWJEmSJEmS1ImJJUmSJEmSJHViYkmSJEmSJEmdmFiSJEmSJElSJyaWJEmSJEmS1ImJJUmSJEmSJHViYkmSJEmSJEmdmFiSJEmSJElSJytGHYAkSZK0XK06/ux5Xd66kw6d1+VJkjQbWyxJkiRJkiSpExNLkiRJkiRJ6sTEkiRJkiRJkjoxsSRJkiRJkqROTCxJkiRJkiSpExNLkiRJkiRJ6sTEkiRJkiRJkjoxsSRJkiRJkqROTCxJkiRJkiSpExNLkiRJkiRJ6sTEkiRJkiRJkjoxsSRJkiRJkqROTCxJkiRJkiSpExNLkiRJkiRJ6sTEkiRJkiRJkjoxsSRJkiRJkqROTCxJkiRJkiSpExNLkiRJkiRJ6sTEkiRpLCTZLclnklyV5Iokx7XlJyb5TpJL2uGQnnlOSLI2ydVJDhpd9JIkSdLytGLUAUiS1LoNeHlVXZzkHsBFSc5px/19Vb2xd+IkewFHAA8D7gd8KsmDqur2RY1akiRJWsYWrcWSV6IlSTOpqhuq6uL2/c3AVcAuM8xyGHB6Vd1aVdcCa4F9Fz5SSZIkSVMW81a4qSvRDwX2A45trzZDcyV673b4GGx2Jfpg4K1Jtl7EeCVJI5JkFbAPcH5b9OIklyV5d5Lt2rJdgOt6ZlvPzIkoSZIkSfNs0RJLXomWJA0jyd2BDwIvraqfAG8DHgDsDdwA/N3UpANmrwHLOybJhUkuvOmmmxYmaEmSJGmZGknn3V6JliQNkuRONEml91bVhwCq6saqur2q7gDewcaLDOuB3Xpm3xW4vn+ZVXVyVa2uqtUrV65c2A2QJEmSlplFTyx5JVqSNEiSAO8CrqqqN/WU79wz2TOBy9v3ZwFHJNk2yR7AnsAFixWvJEmSpEV+Ktx0V6J7xr8D+Gj7cegr0cDJAKtXr94s8SRJWjIeC/wR8NUkl7RlrwCel2RvmosL64A/BaiqK5KcAVxJ04/fsT4RTpIkSVpci5ZYmulKdFXd0H7svxL9viRvonmMtFeiJWmCVdUXGNxa9WMzzLMGWLNgQUmSJEma0WK2WPJKtCRJkiRJ0gRZtMSSV6IlSZIkSZImy0ieCidJkiRJkqSlz8SSJEmSJEmSOjGxJEmSJEmSpE5MLEmSJEmSJKkTE0uSJEmSJEnqxMSSJEmSpLGX5M5JLkhyaZIrkry6Ld8+yTlJrmlft+uZ54Qka5NcneSg0UUvSZPLxJIkSZKkpeBW4MlV9Qhgb+DgJPsBxwPnVtWewLntZ5LsBRwBPAw4GHhrkq1HEbgkTTITS5IkSZLGXjVuaT/eqR0KOAw4tS0/FTi8fX8YcHpV3VpV1wJrgX0XL2JJWh5MLEmSJElaEpJsneQSYANwTlWdD+xUVTcAtK87tpPvAlzXM/v6tkySNI9MLEmSJElaEqrq9qraG9gV2DfJw2eYPIMWsdlEyTFJLkxy4U033TRPkUrS8rFi1AFIWlyrjj971CFsZt1Jh446BEmStIRU1Y+SnEfTd9KNSXauqhuS7EzTmgmaFkq79cy2K3D9gGWdDJwMsHr16s0ST5KkmdliSZIkSdLYS7Iyyb3b93cBngJ8DTgLOLKd7EjgzPb9WcARSbZNsgewJ3DBogYtScuALZYkSZIkLQU7A6e2T3bbCjijqj6a5EvAGUmOBr4NPBegqq5IcgZwJXAbcGxV3T6i2CVpYplYkiRJkjT2quoyYJ8B5d8HDphmnjXAmgUOTZKWNW+FkyRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkiRJkiRJnZhYkiRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkiRJkiRJnZhYkiRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkiRJkiRJnZhYkiRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkjQWkuyW5DNJrkpyRZLj2vLtk5yT5Jr2dbueeU5IsjbJ1UkOGl30kiRJ0vK0aIklTxgkSbO4DXh5VT0U2A84NslewPHAuVW1J3Bu+5l23BHAw4CDgbcm2XokkUuSJEnLVOfEUpK7JHlKkvsPOYsnDJKkaVXVDVV1cfv+ZuAqYBfgMODUdrJTgcPb94cBp1fVrVV1LbAW2HdRg5YkSZKWuaETS0lOSfJn7fttgAuATwJXJ3nabPN7wiBJGlaSVcA+wPnATlV1AzTHEmDHdrJdgOt6ZlvflvUv65gkFya58KabblrQuCVJkqTlZi4tlg4Cvty+fwZwD+C+wIntMLT5PGGQJE2WJHcHPgi8tKp+MtOkA8pqs4Kqk6tqdVWtXrly5XyFKUmSJIm5JZa2Aza07w8GPlhVG4DTgb2GXch8nzB4JVqSJkeSO9EcI95bVR9qi29MsnM7fmc2HovWA7v1zL4rcP1ixSpJkiRpboml7wIPb/s5Ogj4VFt+d+BXwyxgIU4YvBItSZMhSYB3AVdV1Zt6Rp0FHNm+PxI4s6f8iCTbJtkD2JPmNm1JkiRJi2QuiaV3A+8HLgdup+loG+DRwNdmm9kTBknSLB4L/BHw5CSXtMMhwEnAgUmuAQ5sP1NVVwBnAFcCHweOrarbRxO6JEmStDytGHbCqnpNkiuA3YEPVNUv21G3Aa8fYhFTJwxfTXJJW/YKmhOEM5IcDXwbeG67viuSTJ0w3IYnDJI00arqCwy+DRrggGnmWQOsWbCgJEmSJM1o6MRSkicAZ1bVbX2j3gs8Zrb5PWGQJEmSJEmaLHO5Fe4zwPYDyu/VjpMkSZIkSdIyMpfEUhjwVDbgPsBP5yccSZIkSZIkLRWz3gqX5Kz2bQHvSXJrz+itgYcDX1yA2CRJkiRJkjTGhulj6fvta4AfAj/vGfdL4AvAO+Y5LkmSJEmSJI25WRNLVfUCgCTrgDdWlbe9SZIkSZIkafinwlXVqxcyEEmSJEmSJC0tQyeWkmwPrAEOAHakr+Pvqrrn/IYmSZIkSZKkcTZ0Ygl4F7APcDJwPYOfECdJkiRJkqRlYi6JpQOAA6vq/IUKRpIkSZIkSUvHVrNP8msbgFsWKhBJkiRJkiQtLXNJLL0SeE2Suy9UMJIkSZIkSVo65nIr3P8CVgEbknwL+FXvyKr6rXmMS5IkSZIkSWNuLomlf1uwKCRJkiRJkrTkDJ1YqqpXL2QgkiRJkiRJWlrm0seSJEmSJEmS9GtDt1hKcjNQ042vqnvOS0SSJEmSJElaEubSx9KL+z7fCdgHeDawZt4ikiRJkiRJ0pIwlz6WTh1UnuRi4ADgH+YrKEmSJEmSJI2/+ehj6TPA787DciRJkiRJkrSEzEdi6Qjge/OwHEmSJEmSJC0hc+m8+6ts2nl3gJ2A7YEXzXNckiRJkiRJGnNz6bz73/o+3wHcBJxXVV+bv5AkSZIkSZK0FMyl8+5XL2QgkiRJkiRJWlrm0mIJgCRPBvaiuS3uiqo6b76DkiRJkiRJ0vibSx9LuwAfBn4buL4tvl+SC4FnVtX1084sSZIkSZKkiTOXp8K9BbgdeGBV7VZVuwF7tmVvWYjgJEmSJEmSNL7mklg6EDi2qq6dKqiqbwIvacdJkiRJ0oJIsluSzyS5KskVSY5ry7dPck6Sa9rX7XrmOSHJ2iRXJzlodNFL0uSaS2JpOnfMwzIkSZIkaSa3AS+vqocC+wHHJtkLOB44t6r2BM5tP9OOOwJ4GHAw8NYkW48kckmaYHNJLJ0LvCXJblMFSXYH/m87TpIkSZIWRFXdUFUXt+9vBq4CdgEOA05tJzsVOLx9fxhwelXd2t51sRbYd1GDlqRlYC6JpZcAdwW+meRbSdYB32jLXrIAsUmSlpEk706yIcnlPWUnJvlOkkva4ZCecd7eIEnLVJJVwD7A+cBOVXUDNMknYMd2sl2A63pmW9+WSZLm0dCJpaq6rqoeCRwCvBF4E/C0qvrtqlo/2/yeMEiSZnEKza0K/f6+qvZuh4+BtzdI0nKW5O7AB4GXVtVPZpp0QFkNWN4xSS5McuFNN900X2FK0rIxa2IpydOSrEtyL4CqOqeq/qGq3gJ8pR331CHWdQqeMEiSplFVnwN+MOTk3t4gSctQkjvRJJXeW1UfaotvTLJzO35nYENbvh7YrWf2XYHr+5dZVSdX1eqqWr1y5cqFC16SJtQwLZZeDPxtVf24f0Rb9nrguNkW4gmDJKmjFye5rG35OvWkn6Fvb/BKtCRNhiQB3gVcVVVv6hl1FnBk+/5I4Mye8iOSbJtkD2BP4ILFileSlothEku/BXxqhvGfBh6xBTFs0QmDJGmivQ14ALA3cAPwd235ULc3gFeiJWmCPBb4I+DJfV1pnAQcmOQa4MD2M1V1BXAGcCXwceDYqrp9NKFL0uRaMcQ0K4E7ZhhfwH06rv9twGvbZbyW5oThhczhhCHJMcAxALvvvnvHMCRJ46iqbpx6n+QdwEfbj0Pd3iBJmhxV9QUGnycAHDDNPGuANQsWlCRpqBZL62laLU3nt4DvdFl5Vd1YVbdX1R3AO9h4u9vQJwxeiZakyTXVZ0brmcDUAyC8vUGSJEkaA8Mkls4GXpvkLv0jktwVeE07zZx5wiBJmpLkNOBLwIOTrE9yNPCGJF9NchnwJOBl4O0NkiRJ0rgY5la4NcBzgGuS/APwtbb8oTQdewd43WwLaU8Y9gd2SLIeeBWwf5K9aW5zWwf8KTQnDEmmThhuwxMGSZp4VfW8AcXvmmF6b2+QJEmSRmzWxFJVbUjyGJr+kF7HxvuaC/gE8Ge9fWDMsBxPGCRJkiRJkibIMC2WqKpvAYe0T217IE1y6Zqq+uFCBidJkiRJkqTxNVRiaUqbSPrKAsUiSZIkSZKkJWSYzrslSZIkSZKkzZhYkiRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkiRJkiRJnZhYkiRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkiRJkiRJnZhYkiRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkiRJkiRJnZhYkiRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkiRJkiRJnZhYkiRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkiRJkiRJnZhYkiRJkiRJUicmliRJkiRJktSJiSVJkiRJkiR1YmJJkiRJkiRJnZhYkiRJkiRJUicmliRJkiRJktTJoiWWkrw7yYYkl/eUbZ/knCTXtK/b9Yw7IcnaJFcnOWix4pQkjYbHCUmSJGnpWcwWS6cAB/eVHQ+cW1V7Aue2n0myF3AE8LB2nrcm2XrxQpUkjcApeJyQJEmSlpRFSyxV1eeAH/QVHwac2r4/FTi8p/z0qrq1qq4F1gL7LkackqTR8DghSZIkLT2j7mNpp6q6AaB93bEt3wW4rme69W2ZJGl58TghSZIkjbFRJ5amkwFlNXDC5JgkFya58KabblrgsCRJY8LjhCRJkjQGRp1YujHJzgDt64a2fD2wW890uwLXD1pAVZ1cVauravXKlSsXNFhJ0qLzOCFJkiSNsVEnls4CjmzfHwmc2VN+RJJtk+wB7AlcMIL4JEmj5XFCkiRJGmMrFmtFSU4D9gd2SLIeeBVwEnBGkqOBbwPPBaiqK5KcAVwJ3AYcW1W3L1askqTF53FCkiRJWnoWLbFUVc+bZtQB00y/BlizcBFJksaJxwlJkiRp6Rn1rXCSJEmSJElaokwsSZIkSZIkqRMTS5IkSZIkSerExJIkSZIkSZI6MbEkSZIkSZKkTkwsSZIkSZIkqRMTS5IkSZIkSepkxagDkCRpKVh1/Nnzurx1Jx06r8uTJEmSRsEWS5IkSZIkSerEFkuSJEmSxl6SdwNPBzZU1cPbsu2B9wOrgHXA71XVD9txJwBHA7cDL6mqT4wgbEnaIvPZan6hWszbYkmSJEnSUnAKcHBf2fHAuVW1J3Bu+5kkewFHAA9r53lrkq0XL1RJWj5MLEmSJEkae1X1OeAHfcWHAae2708FDu8pP72qbq2qa4G1wL6LEackLTcmliRJkiQtVTtV1Q0A7euObfkuwHU9061vyyRJ88w+liSN3Hw/bWs++MQuSZKWtAwoq4ETJscAxwDsvvvuCxmTJE0kWyxJkiRJWqpuTLIzQPu6oS1fD+zWM92uwPWDFlBVJ1fV6qpavXLlygUNVpImkYklSZIkSUvVWcCR7fsjgTN7yo9Ism2SPYA9gQtGEJ8kTTxvhZMkSZI09pKcBuwP7JBkPfAq4CTgjCRHA98GngtQVVckOQO4ErgNOLaqbh9J4JI04UwsSZIkSRp7VfW8aUYdMM30a4A1CxeRJAm8FU6SJEmSJEkdmViSJEmSJElSJyaWJEmSJEmS1ImJJUmSJEmSJHViYkmSJEmSJEmdmFiSJEmSJElSJyaWJEmSJEmS1ImJJUmSJEmSJHViYkmSJEmSJEmdmFiSJEmSJElSJytGHYAkSZIkSdIorDr+7FGHsOTZYkmSJEmSJEmdjEWLpSTrgJuB24Hbqmp1ku2B9wOrgHXA71XVD0cVoyRpdDxOSJIkSeNpnFosPamq9q6q1e3n44Fzq2pP4Nz2syRp+fI4IUmSJI2ZcUos9TsMOLV9fypw+OhCkSSNIY8TkiRJ0oiNS2KpgE8muSjJMW3ZTlV1A0D7uuPIopMkjZrHCUmSJGkMjUUfS8Bjq+r6JDsC5yT52rAzticYxwDsvvvuCxWfJGm0PE5IkiRJY2gsWixV1fXt6wbgw8C+wI1JdgZoXzdMM+/JVbW6qlavXLlysUKWJC0ijxOSJEnSeBp5i6UkdwO2qqqb2/dPBV4DnAUcCZzUvp45uig17lYdf/aoQ5C0QDxOSJIkSeNr5IklYCfgw0mgied9VfXxJF8BzkhyNPBt4LkjjFGSNDoeJyRJkqQxNfLEUlV9E3jEgPLvAwcsfkSSpHHicUKSJEkaX2PRx5IkSZIkSZKWHhNLkiRJkiRJ6sTEkiRJkiRJkjoxsSRJkiRJkqROTCxJkiRJkiSpExNLkiRJkiRJ6sTEkiRJkiRJkjpZMeoAJEmSJEkLa9XxZ8/r8taddOi8Lk/S0mWLJUmSJEmSJHViYkmSJEmSJEmdmFiSJEmSJElSJyaWJEmSJEmS1ImJJUmSJEmSJHViYkmSJEmSJEmdmFiSJEmSJElSJytGHYAkSZIkaWlZdfzZ87q8dScdOq/Lk7R4bLEkSZIkSZKkTkwsSZIkSZIkqRMTS5IkSZIkSerExJIkSZIkSZI6MbEkSZIkSZKkTkwsSZIkSZIkqRMTS5IkSZIkSerExJIkSZIkSZI6MbEkSZIkSZKkTkwsSZIkSZIkqRMTS5IkSZIkSerExJIkSZIkSZI6WTHqACRpHK06/uxRhzDQupMOHXUIkiRJkvRrJpYkSZI0scb1QoEkSZNi7G+FS3JwkquTrE1y/KjjkSSND48RkqSZeJyQpIU31i2WkmwN/BNwILAe+EqSs6rqytFGJkkaNY8RkqSZeJyQJpMtUcfPWCeWgH2BtVX1TYAkpwOHAR4MRsh/ZEljwmOEJGkmS/o4sdx+c8/n9tonpbS4xj2xtAtwXc/n9cCjF2JFy23HLUkTYNGOEZKkJWlRjxOeT0harsY9sZQBZbXJBMkxwDHtx1uSXD3D8nYAvjdPsU0C62NT1semrI9NjUV95PVbNPv95ymMcTHrMQLmfJyYybx+B7bwbzkfxuI7Pc8mbZsmbXtg8rZp7LZnC/Ytk3aMgMU/TsyXsfte9Rn3+Mjrxz5G49ty4x7jWMbXc4zoEt+0x4lxTyytB3br+bwrcH3vBFV1MnDyMAtLcmFVrZ6/8JY262NT1semrI9NWR9jadZjBMztODGTSfsOTNr2wORt06RtD0zeNk3a9kygRT1OzJdx/16Ne3ww/jEa35Yb9xiXW3zj/lS4rwB7JtkjyTbAEcBZI45JkjQePEZIkmbicUKSFsFYt1iqqtuSvBj4BLA18O6qumLEYUmSxoDHCEnSTDxOSNLiGOvEEkBVfQz42DwtbmyauI4J62NT1semrI9NWR9jaJ6PEbOZtO/ApG0PTN42Tdr2wORt06Rtz8RZ5OPEfBn379W4xwfjH6Pxbblxj3FZxZeqzfqvkyRJkiRJkmY17n0sSZIkSZIkaUxNdGIpyXFJLk9yRZKXtmXbJzknyTXt63YjDnPBJHl3kg1JLu8pm3b7k5yQZG2Sq5McNJqoF8409fHc9vtxR5LVfdNPbH1MUxd/m+RrSS5L8uEk9+4ZN7F1AdPWx2vburgkySeT3K9n3ETXhzaX5OD27702yfGjjmeukuyW5DNJrmr3ece15Uv6mJhk6yT/leSj7eelvj33TvJv7b74qiS/s5S3KcnL2u/b5UlOS3LnpbQ9/o7SQhn379a4/04cFF/PuL9MUkl2GFV8M8WY5M/bOK5I8oZRxTjN33jvJF9uf/temGTfEcY3598tixnjDPGN0//JwBh7xs/v/0pVTeQAPBy4HLgrTV9SnwL2BN4AHN9Oczzw+lHHuoB18ATgkcDlPWUDtx/YC7gU2BbYA/gGsPWot2ER6uOhwIOB84DVPeUTXR/T1MVTgRXt+9f73eCePe9fArx9udSHw2bfj63bv/NvANu0f/+9Rh3XHLdhZ+CR7ft7AF9vv8tL+pgI/AXwPuCj7eelvj2nAn/cvt8GuPdS3SZgF+Ba4C7t5zOAo5bS9vg7ymGhhnH/bo3778RB8bXlu9F01P4tYIdRxTdDHT6J5px02/bzjuNUh8Angae17w8BzhthfHP63bLYMc4Q3zj9nwyMsf087/8rk9xi6aHAl6vqZ1V1G/BZ4JnAYTQ/3GhfDx9NeAuvqj4H/KCveLrtPww4vapuraprgbXAvkyQQfVRVVdV1dUDJp/o+pimLj7Z/q8AfBnYtX0/0XUB09bHT3o+3g2Y6pBu4utDm9kXWFtV36yqXwKn03wPloyquqGqLm7f3wxcRXPiv2SPiUl2BQ4F3tlTvJS35540P/TfBVBVv6yqH7GEt4nmwt5dkqygudB3PUtoe/wdpYUy7t+tcf+dOE39Afw98Fds/M02kvhmiPFFwElVdWs7zYZRxThNfAXcs31/L5p99qjim+vvlkWNcbr4xuz/ZLo6hAX4X5nkxNLlwBOS3CfJXWmyrrsBO1XVDdBUNrDjCGMchem2fxfgup7p1rPxi7ccLff6eCHwH+37ZVsXSdYkuQ74Q+B/t8XLtj6WsYn6mydZBewDnM/SPia+meZH0R09ZUt5e34DuAn4lzS3970zyd1YottUVd8B3gh8G7gB+HFVfZIluj09/B2lhbKUvltj9zsxyTOA71TVpX2jxiK+1oOAxyc5P8lnkzyqLR+XGF8K/G372/eNwAlt+UjjG/J3y8hi7Iuv19j8n/TGuFD/KxObWKqqq2ian50DfJymWddtM860vGVA2XJ+ZOCyrY8kr6T5X3nvVNGAyZZFXVTVK6tqN5q6eHFbvGzrYxmbmL95krsDHwRe2tcqb0lJ8nRgQ1VdNOpY5tEKmtsS3lZV+wA/pWnmvyS1/V4cRtOc/n7A3ZI8f7RRLaiJ2U9o7IzVd2scfye2jQheycaLgJuMHlA2qvpbAWwH7Af8D+CMJGF8YnwR8LL2t+/LaFvQMsL45vC7ZSQxThffOP2f9MbYxrQg/ysTm1gCqKp3VdUjq+oJNE39rgFuTLIzQPu6YaZlTKDptn89TYuuKbuysfnjcrQs6yPJkcDTgT+s9mZblmld9Hkf8Oz2vfWx/EzE3zzJnWh+WLy3qj7UFi/VY+JjgWckWUdza+KTk7yHpbs90HzP1lfV1BXPf6NJNC3VbXoKcG1V3VRVvwI+BDyGpbs9U/wdpYUy9t+tMf6d+ACaJPal7XFhV+DiJPcdk/imrAc+VI0LaFrc7sD4xHgkzb4a4ANsvA1qJPHN8XfLosc4TXxj9X8yIMYF+1+Z6MRSkh3b192BZwGnAWfR/NPQvp45muhGZrrtPws4Ism2Sfag6ej8ghHENy6WXX0kORj4n8AzqupnPaOWXV0AJNmz5+MzgK+175dlfSxzXwH2TLJHkm2AI2i+B0tGe0X0XcBVVfWmnlFL8phYVSdU1a5VtYrm7/Hpqno+S3R7AKrqu8B1SR7cFh0AXMnS3aZvA/sluWv7/TuApn+Hpbo9U/wdpYUy1t+tcf6dWFVfraodq2pVe1xYT9Np8XfHIb4eHwGeDJDkQTQPafjeGMV4PfDE9v2TaRplMIr4OvxuWdQYp4tvnP5PBsW4oP8rtYA9kY96AD5P86PsUuCAtuw+wLk0/yjnAtuPOs4F3P7TaPo1+FX7pTl6pu2naRb3DeBq2icCTNIwTX08s31/K3Aj8InlUB/T1MVamvtqL2mHty+HupihPj5I01fbZcC/03TItyzqw2Hgd+QQmqdpfAN45ajj6RD/42iaM1/W8z9+yCQcE4H92fhUuCW9PcDewIXt3+kjNLdMLNltAl5Nk5S/HPhXmifNLJnt8XeUw0IN4/7dGvffiYPi6xu/jvZJV6OIb4Y63AZ4T7tPvBh48jjVIc1vhYtozp3PB357hPHN+XfLYsY4Q3zj9H8yMMa+aebtfyXtAiRJkiRJkqQ5mehb4SRJkiRJkrRwTCxJkiRJkiSpExNLkiRJkiRJ6sTEkiRJkiRJkjoxsSRJkiRJkqROTCxJs0hyVJJb5mE55yX5x3GIZb4kOSXJR0cdh6TJkmRdkr+cw/SrklSS1QsZV7uuednvtfE+ZxximS9z/btJ0nIw2zlAkv3bY8IOixnXdJKcmOTyUcehpcXEkrbYdD9sk6xud5KrRhDWOHoWcMKog+hiMU/aJE2+IRIijwLeOs/rHKsf7sDOwL+POoguxu0ihyQNoz0GzDScMsT8W3RBYNxM4jZpNFaMOgBpuaiqH4w6BklaCqrqplHHsNCq6rujjkGSlpmde94/HXhHX9nPFzccaXLYYkmLKsleSc5OcnOSDUlOS3LfnvGPSvLJJN9L8pMkX0jyOz3jT0vywb5lbpXkuiQvS/Lfknw/ybZ907w3yVkzxHXPJG9LckOSXyS5Ksnv901zQJLLk/w0yWeS7NEz7gFJzkzy3Xb8xUme3jf/Js1g21sG/leSf263dX2S/zGX+myX87tJLmrjvjbJmiTbzGU9SR6U5LPtMq5OckiSW5Ic1U5ybfv6lfbKxnl98x+X5DtJfpjkX5LctWfcE5J8uV3ej5Ocn+Thc91OSctH/y1VQ+yjptw/yTlJfpbkyiQHtvOvAj7TTnPTbFemkzwkyVntPuuWJF9K8pt908y03zs4yefbcT9I8okkD+2b/9dXibOxVeizB8U/h3pLkr9K8o0kP0/y1STP7xk/1HqSHNrW8y+SfC7JEe18q5LsD/wLcLdsvMp/Ys/sd57lePOnSb7eLvumtm680ClpwVXVd6cG4EcDyo5IsjbJL9vXP5maN8m69u0H2v3eurZ81nOALpI8pj3u/aw91rwtyT17xp+X5K1JXpfmvGlDkjcm2apnmp3aY9nPk3wryQvSnMucONM29cx/RHs8uTnJR9LT4jfJbyY5t93X35zk0iRP2tLt1tJlYkmLJsnOwOeAy4F9gacAdwfO6tkJ3gP4V+Dx7TSXAB/r2ZG9Bzg0yb17Fv1EmqsNpwEfoPleH9az3nsBzwTeNU1cAf6jXc4LgL2AvwB+2TPZtjS3sb0Q+B3g3sDbe8bfvV3GgcAjgA8CH0rykFmq5WXAV4FHAq8H3pCeRNpskhwEvBf4R+BhbXzPAV437Hrauv8wcBuwH3AU8Kp2m6fs274eTFPXz+oZ93jg4TR/z9+nqevj2mWvAM4EvkBTL48G/i9w+7DbKGl5G3IfNWUN8Baa/c1XgNOT3B24Dnh2O83DaPZjx02zvvvR7LOKZp/+SOCfgK17Jpt2v9e6G/Bmmn3n/sCPgX9PT9J/GtPFP6y/AY4GjqU5lv0f4J+THDrsepLsDnwIOLsd/xbgDT3zfhF4KfAzmnrcGXhjz/iZjjeraery1cCDaerv43PYPklaEEmeSfN7+s00+/f/C7w1ye+2kzyqff0Tmv3e1Oeu5wAzxfKbwCeBs9plPgvYG3h336R/SHNsfAzwYpp9c++F8VOB+wNPpjk3en77ecp02wSwio3Ht6cC+9AcO6a8D7iB5ji3D3Ai8Iu5bKcmTFU5OGzRAJxCs1O7pW/4Gc0P81XtdK8Bzu2bd7t2mn2nWXZodlrPbz+vADYAR/dM807gEz2f/xH4eM/nFwHfBVZMs44DgTuAh04z/qg2xgf3lP0hTeJpqxnq5cvA/+r5fB7wjz2f1wGn9c1zTe8808RyS8/nzwF/3TfN4W39Z5j1AAe1f79desY/pt3mo9rPq9rPqwf87a/rrVuaZsWfat9v3873xFF/Tx0cHMZnaPcdH51h/DrgL9v3c9lH/WnPNLu0ZY9rP+/fft5hltjWAN8Ctpkh9mn3e9PMczeahPrjesoKeM6w8c9Wj+06fg48vm+aNwMfm0M9/R/gqqljSFv2CjY9nh9Fz7Go7+820/HmWTRJtnuM+jvo4OCwvAeaC7HV8/k/gXf3TXMK8IWez7/eb8+y7BnPAQZMv8nxCfh/wLv6ptm7nWbHnmV+qW+ac4B3tu8f3E6/X8/43dpj0YkzbRMbk0T36il7JbC25/NPgCNH/Xd0GJ/BFkuaL5+j2eH1Dn/QN81vA09Ic1vBLWk6/ryuHfcAgCQ7tk3ov57kx8DNwI7A7gBVdRvwfprEDmlueXs2TUumKe8ADkyya/v5hcCp7byD7APcUFVXzbB9t1bV1T2frwfuRNNyiSR3S/KG9paCH7bbtnoq7hlc1vf5eprtHdZvA6/sq9P30Zxg3LdnupnW8xDg+qr6Ts/4r9Ak24ZxZV/d/nrZ1fQrdQrwiTS3QP5Fkt2GXK4kwdz2Ub37uuvb17nsU6E5Jnyhqn45wzTT7vfg17dGvK+9heAnwI00rWnnckyYa/x7AXcGPt53THgR7TF2yPU8BPhKVVXPNOcPGUP/sqeWP7Xsc2iSdtemuUX9yCT3mMOyJWmhPJQmudTrCzT71mltwTnATH4beH7fvnwqtt79+Wy/7+8ALpwaWVXXsXGfP5tvVdWPp1k2wJuAdyb5dJJXbkkLLU0G72nXfPlZVa3tLei7XQ2aH9VnA4MeRXxj+3oqsBNNU/p1wK3AuUDv7QPvAb6YZBeaW6u2oblNAoCqujTJxcBRST5Cs3N/PtPLDOOm9Celpn5wTyVn30hzm9hf0lyd/RnN1YbZbnv41YDlziXhuxXNLQUfGDCut/PbmdYTNm5PFzNuQ1W9IMmbaernGcCaJIdX1Se2YJ2Slo+57KN+vT+qqmrudJ7zRbRhjgmz7bv/HfgO8Kft623AlczhmNAh/qnpfhf49izxzrSeBTsmVNXNSR4JPIGmtfAJwOuSPKqqhj3ZkaSFMmjfN9v+sOs5wEy2orkj4+8HjOu9yDLb7/stMdvv+xOTvBd4Gk3L4lcl+e9V1X+7npYJE0taTBcDv0eTAe/fWU15HPCSqjobmk7n2PRpDVTV+Um+ATyPpr+jj1RV/2OP3wH8FbAD8J99rY0GxbVzkofO0mppJo8D/l9VfbCN+840VxS+3nF5w7oYeEh/Um+OrgJ2SXK/nh/2q9n0ZGbqyv3WdFBVlwKXAq9P8h/AkYCJJUnDGGYfNYxh92MX01wp3maWVksDJbkPzZXvY6vqM23ZI1n431xX0lyMuX9VfXoLlnMVPf0Utvbt+/xLuh8PbgM+DXw6yatobm9/OnByl+VJ0jy5iub3fG9i5HE0+9Ypv2Lzfd9CnANcDDxsHn7fb0XT+un8NrZdgfv1TTdom4ZSVdfQJNPekuRtwB+zeT9QWia8FU6L6Z+AewHvT/LoJL+R5ClJTu5pCv91mh/0eyV5FHA6m3aiPeW9NDuvQ9n0Nrgpp9HcCvYipum0u8e5NDvcDyY5KMkeSQ5Mcvgctu3rwDOTPLLtcO89NLckLLTXAH+Q5DVJHp7mSUbPSfKGWefc6BzgauDUJI9Ish9N89bb2HiVZgNN3x0HpXnCxL2GWXBblyelebLF/dunRfwWmx6kJS1P90yyd9+wasB0w+yjhvGtdvpDk6ycoVPst9J0xnpGmieVPjDJ85LsPeR6fgh8D/iTdt4n0jzsYbrbsedFVd1Mc+X8jUle2K577yT/Pckxc1jU24EHpHm60IOTPIum5RVsrO91NE9/OzDJDul5It5Mkjw9zdP09klyf5pb5u9BcwIkSaP0t8AfJTk2yZ5J/pym643e39TrgAOS3DfJdm3ZQpwDvB7YN8nb2/3lA9v95z8Pu4D2ovongLcn2a89hv0LG/vAnWmbZpTkLkn+Kcn+aZ4W+mg2T8JpmTGxpEXTXml+LM39vh8HrqBJNt3aDtD0h3R34CKapNK7aXZ4/d5D0yndj2lOOvrXdTNwBk1S6oxZ4rqDphnnf7bLvYrmSRBzacL6FzTJl8/TPBniy+37BdXeTnYo8CTggnY4ns1vg5hpGXfQPPFh23b+U2k6ry3apzu0V5hfQpPMu57mSW/D+BnwIJpb9b7eLvu9NAdMScvb44H/6hve2D/RMPuoYbR9NL2qnfdGmgc9TDfdE2iOAZ9p4/pzhkwMtfH+Pk0S/XKa49xfs/E4t5D+mqbT1b+kOcaeQ9MP4bXDLqCqvtXO8wyalqYvo7nlGjYeE75Ik4A6jea2678acvE/onnAxKeAr7Vx/nFVLfjxUpJmUlUfodnXv4wmQXIc8GdV9e89k72c5jf3dTTHBliAc4CquozmOLQK+CzNvvj/sLHrkGEdBayn6ej7LJrf4BvY9Ng5aJtmczvNA5hOpbnw82HgSzR1oWVq6qlR0sRpb7laX1V/MupYlpokjwAuoXkK3EUjDkeSNuE+anElOY6mhex2beJMkrTEJNmB5gLx86Zu3ZPmi30saeIk2R54CvBU4BEjDmdJSPJM4Kc090mvornN5FKae7wlaaTcRy2uJMfSPHnvJmA/mpZQp5hUkqSlI8mTaW43/irNE93W0Nyq/fFRxqXJZGJJk+hiYHvgFVV1+aiDWSLuQXN72m40/YOcB7ysbNIoaTy4j1pcDwReAdyH5jaKt9O0WJIkLR13Av4G+A2a7inOB55QVT8daVSaSN4KJ0mSJEmSpE7svFuSJEmSJEmdmFiSJEmSJElSJyaWJEmSJEmS1ImJJUmSJEmSJHViYkmSJEmSJEmdmFiSJEmSJElSJ/8fruZiEGb485AAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -101,7 +165,7 @@ "ax3.hist([sum(x) for x in zip(preprocessed_data.heavy, preprocessed_data.light)], 15)\n", "\n", "# Changing plotting settings\n", - "ax1.set_ylabel('Frequency', size=font_size)\n", + "ax1.set_ylabel('Counts', size=font_size)\n", "ax1.set_xlabel('Heavy chain lengths', size=font_size)\n", "ax2.set_xlabel('Light chain lengths', size=font_size)\n", "ax3.set_xlabel('Total lengths', size=font_size)\n", @@ -111,13 +175,13 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "b4bcc90a", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGSCAYAAAAYZUOKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl9ElEQVR4nO3de7hcdX3v8fdHUFCsCBIgKhiqiFJULhFtvSLiDSv0gtXaGq1KTxWLtj00SHvUttporbejtVK1pEdbRRShxhsiam0tmnARERHFiJhAAuIFUSrwPX+stWGczM7eszOZ2Wvv9+t59jN71m2+M9mZz/wua02qCkmS1E13mnQBkiRp7gxySZI6zCCXJKnDDHJJkjrMIJckqcMMckmSOswglySpwwxySZI6zCDXvJXkT5JUkt+ddC1zleRfkmxKssuYH/ew9rV7wYiPuz7J+p77y9rHOW2UjzNEPQMff9J1zZcatDgY5JrPDm1vL5hoFXOUZDnwe8CqqvrJgPXntG/0RwxYt1eSz7TrP55k92Eeu6rWAR8B/ibJ3ef4FLa7Loddl2vXwrLjpAuQtuJQ4EbgG5MuZI5eC/wIeMc06w8FCljXuzDJY4APAHsBrwb+qqpum8Pj/y1wPvDHbS3bw/eABwM/3E7Hn++PvzXzuTYtILbINS+1XdEHABfNMcQmKskDgScCp1fVTwesvz+wO3BFVf2oZ/mfAp8B7gI8rapeNdfnX1VfAr4O/GGSHeZyjFk8xs+r6utVtXF7HH++P/7WzOfatLAY5JqvDqb5++xvrSbJ85J8Lsn1SX6a5MIkKwYdJMnOSVYm+VqSnyX5TpJXJNkhyY+TfGU71f8HQGha1oMsb2+/3NZ5jyQfBt5AM5RwaFV9cgR1vB/Yl+ZDxay0r/EJSS5tX7PvJXlbkl0HbDtt93KSZyQ5N8nGJDcn2dD+u724Xf8q4Nvt5iva40z9PK//+EkemOQD7ZyD25I8fjbd20kelOQjSb6f5CdJvpDkSQO2e3x7rFdNc5zb5wcMW/s0x3tmks8n+WH7d3xJkpOT7DTda9z+/v4k17X/NmuTPH26567Fwa51zVeHtbe3j48nuSvNuO+TgK8Aq4Gdgd8ATktyn6p6bc/2uwCfBh5J84HgLTTd1f+Hpsvz7sCF26n+JwK3Av89zfqpIF+b5KHAGcD+wD8CJ1bV/4yojv9sb48CZvvB4M003fEbgVOBnwPHAI+g6SmYsbYkxwPvBK4B/h24DtgTeCjwfOAfgM8C9wROBC6m+bedclHfIe9PM0zwDeB9wF1phi1msh/wReCrbT1Lgd8BPp7kd6tqug9aMxmm9i0keS1wMs3r8q80Q0hPpRkCeXKSo6rq53273Q/4EnAl8P9oenR+BzgryROr6rw5Phd1XVX548+8+wFOoxk/Pqhn2Zntslf0bbsEuB74GbBbz/L3ttv/JZCe5Ue2y4smNEdd+y7ALcAlW9nmvPbxTwVuAn4C/N52qGXX9nG+NMvtf63d/pvA7j3Ld6YJxALW9yxf1i47re8464CbgT0HPMYeM+0/YH0Br93K+v7H793v7/rWLaf5cHIDcI+e5Y9vt3/VNLWsn81zn0Vtv9ouvwrYu2f5jjQfen7hb7zvubyy71hPbpd/bNR/O/5058eudc1XhwI/BS4DaLsPjwU+WD2tboCq2gx8FNip3Y8kjwSeA5xVVX9d1bzrtdufS/MmCttnRvx9gB1oWrRbSBLgkPbui4DbgEdU1XtHXUhV/ZDmA86+s9zl+e3ta6rq+z3H+RlNC3IYt9AEZn9N1w15HIBraSb+DeuHwF/1Pf5amlb9PWl6c8btD9rbv6mqa3rqugX4U5q/hxcO2O87wN/0Lqhm+OUq4PDtU6q6wCDXvJNkZ5qu74ur6tZ28fHt7eum2e369nZqUtdL2tvXbGX7oqcbNMljk5zdjgnfPtY5oL4XJ/l2O0a5rp1l3ute7e0N0zz2A2layt+g+SCxC82HlK3KHaejVZJbklyb5KNJZhr//j6wx0zHb02d8ve5Aev+gyacZ+N9wN2AS5O8KcmxSZbMct9BLq6qm+ew3wVV9eMByz/b3h4yYN32NvUaf6Z/RVV9A7ga2C/JPftWX9Tz/6HXd4HdRlqhOsUg13z0MJpuxt6Jbo8DflTN+dGDLG1vp1raT6IJ67Vb2f6Kvjf5u9OMpZ5I0xuwhSS/QzPW/lqaEPgvmvHW3hbv1L47T/PYU+PjXwSeTvPG/ddJnjPN9lMOAV7Z1v4A4DiakD4nW79ozl2nez4DTE1ou7Z/RRsi1/cvH6Sq3gisoPn3+GOaYZFrk5yX5vz6YV0z8yYDbfE8+o63xQS+MZh6zOlms2/s227KD6bZ/hZ8L1/U/MfXfPQLE92S/BJwD5oxyi2kObXqccAm4PK2Rb8n8N3eLvWe7R8E7E1ft3pVfayqXlFVZ9B0bw7yJzRjnv9UVZdV1Utp3nj/qGebTe3tvbbYu3H7RLdqTk16Os1kp/ckeew0z/H+NF3Bn6+qa6pqfVV9vqqeC5xNc874oP3u1O63adD6AabOed5rwLF2YPrntIWq+peqemS7z9HAu4HHAp9MsudsjzN1uCG3n7LF82jt3d72nuM99W8+3STgUYX+1GPuPc36pX3bSVtlkGs+6r+i2800b7LTdR8+j+bN75/b4L6l/Zlu+5P6jj8rSe5C8yHjU32rPkUzSWzKRmAzzXnwg9we5ABVdTHN7OMdgI+0HzT6HUYTZoNm2X8C2DeDr/52AM1pcBdNU0u/qdfkcQPWPYY5nOlSVT9oPyS9iGYS4+7tsaCZ2Q93DImM2qHtB8F+j29ve1/PqaGQffo3TvIAmg9EveZa+9RjPr5/Rfs49wW+XVU/GPK4WqQMcs1Hh9KE96UA1ZyK9WVgn/7x4CRH0nR1r6dtlbaThr4B3K9d37v9S7hjQtewE932oHnT7u+uvZae1lX7YeLzwB7tG3Pv49+J5hz5W2hOW5ra52PAy2g+fHxsQIv1MOCb7eS1flOng20xsYzm1DtoZsnPxmnt7Sm9HwzaXo6Brf5BkjwlyaDQn3peN7W3N9B8QJntZLxh7UpzumFvbctpJkL+kKbLf8rXaU5pO6b39W9Pe3zrgGPPtfb3tLd/0TtvoO3xeAPN+/K7hzymFjHPI9e80rZ6D6KZ3NQbTKfQnAf90SSnAxtoxtKfTDOb96i+kPtbmnNt1yT5AM2Y6KNpztX+Ok1Lda4z1vu7eTNg2YeA32rr+2bP8qnz179SfVd8q6q3JdmfZkz57CRH9Gxz2FbqPQDYMM2krifRtBzP2vpTur2G/0zyf4GXAl9NcgZ3nEd+A9OP6/Z7P/CzJF+g+ZAVmlb4w2nmPny6fbwbk5wPPCbJ+2g+gN0KnF1Vo7hYz+eBFyZ5BM059VPnkd8J+MPquapeVf08yVtoTle8MMmZNO+RR9H8vW3oPfBca6+q/0ryepqeoanX+Cc055EfBHwB+LsRPHctFpM+/80ff3p/uKML+Z0D1j2OZqbvje3PJTSnJP3SNMd6KfAtmhbrVcDbaS6qcT3NbOat1XEj8Ly+ZXehaUkf17f87cDnBmx7DXB+3/Lnts/v3dM87p1oxryL5sPAndrl1wP/e8D2d6a5wthbB6zblWaS20eG/DcIcALNqX830wTY29vjrWd255H/L5rW7pU0re/v03Qpn9T/70Uzce/f2+d4W3u8523t+LN4/NuX03x4Oovmg8hNNIH+5K0895V9fzevp5mB/wvPfQS1P4smtH9Mc4rgpTQfWHeezXPsWf9Z2o4gfxbnT6rmOodE6p4kvw/8C00ovmEr290InFBVp/UtP5+mt+D4nmXfAD5UVSf3bXsyzez2Q6tq0Nj2bGvejyYQj6yqz/QsD/A24NnAQ6rqe337vZSmS/ixVfUfc318SfObY+RacNJcR32LWdHt+Po7aM67/ccB6++e5OAkB9P839i3vd87BvpG4HlJXpjkwW1X7L0HHQ94E02L7q8GrBvG1Cz+DUn2TrJ/kuNoWmK/Axw7IMTvSnMBlw8Z4tLC5hi5FqIDgS8n+SRNF+mdaSaYPZrm2tbHVNWNA/Zbzi9OCnt1+7OaZmY8VfWBJPcC/oJmvPWrNN9S9p3+g1XVz9oegCOS7FIDvpN8lqaC/DKaMdgf0ozHfgp4ZlUNOld6Gc3lX0+b42NK6gi71rXgJDmAZrLbI2jOYb6NZhz5o8Abpwk+Seokg1ySpA5zjFySpA7r5Bj5HnvsUcuWLZt0GZIkjcW6deuuq6qBXzzUySBftmwZa9dO910YkiQtLEm2mFA7xa51SZI6zCCXJKnDDHJJkjrMIJckqcMMckmSOswglySpwwxySZI6zCCXJKnDDHJJkjrMIJckqcPGFuRJDkhyUc/Pj5K8LMnuSc5JckV7u9u4apIkqevGFuRVdXlVHVxVBwOHATcBZwIrgXOran/g3Pa+JEmahUl1rR8JfKuqvgMcA6xul68Gjp1QTZIkdc6kvv3sWcC/tb/vVVUbAapqY5I9B+2Q5HjgeIB99913LEVKGs6ylWu2af/1q44eUSXS4jH2FnmSuwDPAD44zH5VdWpVLa+q5UuWDPxKVkmSFp1JdK0/Fbigqq5t71+bZClAe7tpAjVJktRJkwjyZ3NHtzrA2cCK9vcVwFljr0iSpI4aa5AnuRtwFPDhnsWrgKOSXNGuWzXOmiRJ6rKxTnarqpuAe/Utu55mFrskSRqSV3aTJKnDDHJJkjrMIJckqcMMckmSOswglySpwwxySZI6zCCXJKnDDHJJkjrMIJckqcMMckmSOswglySpwwxySZI6zCCXJKnDDHJJkjrMIJckqcMMckmSOmzHSRcgaXSWrVyzTfuvX3X0iCqRNC62yCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeqwHSddgKT5Y9nKNZMuQdKQxtoiT3LPJGck+XqSy5L8apLdk5yT5Ir2drdx1iRJUpeNu2v9LcAnqupBwMOAy4CVwLlVtT9wbntfkiTNwtiCPMk9gMcC7waoqv+pqh8AxwCr281WA8eOqyZJkrpunC3yXwY2A/+c5MIk70qyC7BXVW0EaG/3HGNNkiR12jiDfEfgUOAdVXUI8BOG6EZPcnyStUnWbt68eXvVKElSp4wzyK8Grq6q89v7Z9AE+7VJlgK0t5sG7VxVp1bV8qpavmTJkrEULEnSfDe2IK+qa4DvJjmgXXQk8DXgbGBFu2wFcNa4apIkqevGfR75S4H3JbkLcCXwfJoPE6cneQFwFXDcmGuSJKmzxhrkVXURsHzAqiPHWYe0PYziYirrVx09gkokLSZeolWSpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqsB0nXYCkOyxbuWbSJUjqmLEGeZL1wI+BW4Fbqmp5kt2BDwDLgPXAM6vqhnHWJUlSV02ia/2Iqjq4qpa391cC51bV/sC57X1JkjQL82GM/Bhgdfv7auDYyZUiSVK3jDvIC/hUknVJjm+X7VVVGwHa2z3HXJMkSZ017sluj6qqDUn2BM5J8vXZ7tgG//EA++677/aqT5KkThlri7yqNrS3m4AzgcOBa5MsBWhvN02z76lVtbyqli9ZsmRcJUuSNK+NLciT7JLkl6Z+B54EfBU4G1jRbrYCOGtcNUmS1HXj7FrfCzgzydTj/mtVfSLJl4HTk7wAuAo4bow1SZLUaWML8qq6EnjYgOXXA0eOqw5JkhaS+XD6mSRJmiODXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeqwHSddgCRNWbZyzTYfY/2qo0dQidQdtsglSeowg1ySpA4zyCVJ6rChgjzJRUlOSLLb9ipIkiTN3rAt8jXAScCGJP+W5MjtUJMkSZqloYK8qk4B7gf8JrADsCbJ+iT/J8m+26NASZI0vaHHyKvx8ap6JnBv4J3AK4Ark3wyyVNGXaQkSRpszpPdkjwSWAWsBDYArwa+BZyR5M0jqU6SJG3VUBeESbIn8Fzg+cD9gbOB366qc3q2OaNd/rLRlSlJkgYZ9spuVwPfBN4NrK6q6wZssxb48rYWJkmSZjZskB9ZVf+xtQ2q6kfAEXMvSZIkzdawY+TfT/LQ/oVJHprkwBHVJEmSZmnYFvmpwNuBr/QtPxA4AXj0KIqSpEnZ1i9u8UtbNG7DtsgfCnxpwPIvAw/Z9nIkSdIwhg3yW4FdByzfDci2lyNJkoYxbJB/DjglyQ5TC5LsCJwCfH6UhUmSpJkNO0Z+EvAF4JtJvtAuezRwd+CxoyxMkiTNbKggr6rL21nrJwAH03Snvw/4h6raMPryJGk42zpZTeqaYVvkVNVGmq70OWm75dcC36uqpyfZHfgAsAxYDzyzqm6Y6/ElSVpMhg7yJHejaY3vSd8Ye1V9eBaHOBG4DLhHe38lcG5VrUqysr3/58PWJUnSYjTstdafCPwbcK8Bq4vmq023tv99gaOB1wB/0i4+Bnh8+/tq4LMY5JIkzcqws9bfAqwB7ltVd+r72WqIt95MM2Hutp5le7Xd9VPd9nsO2jHJ8UnWJlm7efPmIcuWJGlhGjbIlwF/PZeJbUmeDmyqqnXD7gtQVadW1fKqWr5kyZK5HEKSpAVn2DHy/wQOoPne8WE9CnhGkqcBOwP3SPJe4NokS6tqY5KlwKY5HFuSpEVp2Bb5PwJvSPLCJI9Icmjvz9Z2rKqTq+q+VbUMeBbwmar6PZrvLl/RbrYCOGvImiRJWrSGbZGf0d6eOmDdjJPdprEKOD3JC4CrgOPmcAxJkhalYYN8v1E8aFV9lmZ2OlV1PXDkKI4rSdJiM+yV3b6zvQqRJEnDG3aMnCRPTfLRJF9Lsk+77IVJbFVLkjRmQwV5kucApwNX0HSz37ldtQPN+eGSJGmMhm2RnwS8qKpeDtzSs/y/aS7bKkmSxmjYIN8f+OKA5Tdyx7XTJUnSmAwb5BuABw5Y/ljmdpEYSZK0DYYN8lOBtyZ5VHt/nyQrgNcD7xhpZZIkaUbDnn72+iS7AufQXGb1POBm4A1V9fbtUJ8kSdqKob+PvKpOSfIa4ECaFv3XqurGkVcmSZJmNHSQA1TVTcDaEdciSZKGNFSQJzl7a+ur6hnbVo4kSRrGsC3y6/vu3xl4GLAP8OGRVCRJkmZt2Mluzx+0PMnfAz8eSUWSJGnWhr7W+jTeCbx4RMeSJEmzNKogP2BEx5EkSUMYdrLbW/sXAUuBpwLvGVVRkiRpdoad7PaQvvu3AZuBl2OQS5I0dsNOdjtiexUiSZKGN6oxckmSNAHDjpGfB9Rstq2qJ8ypIkmSNGvDjpFfBjwHuAY4v112OLA38K/AraMrTZIkzWTYIL8ZWA2cWFW3t8yTvBlIVZ04wtokSdIMhh0jfy7wtt4Qb/0D8PujKUmSJM3WsEEetjwFjWmWSZKk7WzYrvX3AO9Ksj/w3+2yRwInAf88ysIkSdLMhg3yk4BNwInAa9tlG4FVwN+PsC5JkjQLw14Q5jbg9cDrk9yjXfaj7VGYJEma2ZwuCJNkOc311W9t7++SZNjWvSRJ2kbDXhBmL+Bs4OE0F4bZH7gSeCPwM5oud0mSNCbDtsjfRHMxmHsBN/Us/yDwpFEVJUmSZmfY7vAjgSOr6oYkvcu/Bew7sqokSdKsDNsivyvwPwOWL6HpWpckSWM0bJB/Hnhez/1KsgPw58C5oypKkiTNzlzOI/9ckocDO9GcO/4rwK7Ao0ZcmyRJmsGw55F/LclDgD+i+QKVnWkmur29qjZuh/qkWVu2cs027b9+1dEjqkSSxmfWQZ7kzsAXgOdW1SuHfaAkO9N0ze/UPu4ZVfXKJLsDHwCWAeuBZ1bVDcMeX5KkxWjWY+RV9XNgP5rzx+fiZuAJVfUw4GDgKUkeCawEzq2q/WnG2VfO8fiSJC06w052Ww28aC4PVI0b27t3bn8KOKY97tTxj53L8SVJWoyGney2C/CcJEcB64Cf9K6sqj/e2s7tDPd1wANoxtXPT7LX1Ph6VW1MsueQNUmStGjNKsiTPBS4FHgwcEG7+Jf7Npuxy72qbgUOTnJP4MwkB8220CTHA8cD7Luv156RJAlm3yK/EFhaVUcAJFkDvHCuM9Wr6gdJPgs8Bbg2ydK2Nb6U5mtSB+1zKnAqwPLly+c6Ti9J0oIy2zHy9N1/DM1V3mYtyZK2JU6SuwJPBL5O8yUsK9rNVgBnDXNcSZIWs7l+9Wh/sM/GUmB1O05+J+D0qvpoki8Cpyd5AXAVcNwca5IkadGZbZAXW46BD9W9XVVfAQ4ZsPx6mi9jkSZqWy8oI0mTMNsgD/DeJDe393cG/ilJ71eZUlXPGGVxkiRp62Yb5Kv77r931IVIkqThzSrIq+r527sQSZI0vGGv7CZJkuYRg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQO23HSBUjSQrJs5Zpt2n/9qqNHVIkWC1vkkiR1mEEuSVKHGeSSJHWYQS5JUoc52U3zxrZOEpKkxcgWuSRJHWaQS5LUYQa5JEkd5hi5AC9iIc0Xo5gr4v/HxcUWuSRJHWaQS5LUYQa5JEkdZpBLktRhBrkkSR02tiBPsk+S85JcluTSJCe2y3dPck6SK9rb3cZVkyRJXTfOFvktwJ9W1YOBRwIvSXIgsBI4t6r2B85t70uSpFkYW5BX1caquqD9/cfAZcB9gGOA1e1mq4Fjx1WTJEldN5Ex8iTLgEOA84G9qmojNGEP7DnNPscnWZtk7ebNm8dWqyRJ89nYgzzJ3YEPAS+rqh/Ndr+qOrWqllfV8iVLlmy/AiVJ6pCxBnmSO9OE+Puq6sPt4muTLG3XLwU2jbMmSZK6bJyz1gO8G7isqt7Ys+psYEX7+wrgrHHVJElS143zS1MeBfw+cEmSi9plrwBWAacneQFwFXDcGGuSJKnTxhbkVfUFINOsPnJcdUiStJB4ZTdJkjrMIJckqcMMckmSOswglySpwwxySZI6zCCXJKnDDHJJkjrMIJckqcMMckmSOswglySpwwxySZI6zCCXJKnDxvntZ1rAlq1cM+kSJGlRskUuSVKHGeSSJHWYQS5JUoc5Ri5J+gXbOudl/aqjR1SJZsMWuSRJHWaQS5LUYQa5JEkdZpBLktRhTnaTpAXGCzQtLrbIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqsLEFeZL3JNmU5Ks9y3ZPck6SK9rb3cZVjyRJC8E4W+SnAU/pW7YSOLeq9gfObe9LkqRZGluQV9Xnge/3LT4GWN3+vho4dlz1SJK0EEx6jHyvqtoI0N7uOd2GSY5PsjbJ2s2bN4+tQEmS5rNJB/msVdWpVbW8qpYvWbJk0uVIkjQvTDrIr02yFKC93TTheiRJ6pRJB/nZwIr29xXAWROsRZKkzhnn6Wf/BnwROCDJ1UleAKwCjkpyBXBUe1+SJM3SjuN6oKp69jSrjhxXDQvZspVrJl2CJGkCJt21LkmStoFBLklShxnkkiR1mEEuSVKHGeSSJHWYQS5JUocZ5JIkdZhBLklSh43tgjCSpMVhWy9QtX7V0SOqZO669BxskUuS1GEGuSRJHWaQS5LUYY6RzxN+6YkkNUbxfjgfxtnHxRa5JEkdZpBLktRhBrkkSR1mkEuS1GEGuSRJHWaQS5LUYQa5JEkdZpBLktRhBrkkSR1mkEuS1GEGuSRJHWaQS5LUYQa5JEkdZpBLktRhBrkkSR1mkEuS1GEGuSRJHbbjpAtYCJatXDPpEiRJi5QtckmSOswglySpwwxySZI6zDFyHOOWpIVmMb2vz4sWeZKnJLk8yTeTrJx0PZIkdcXEgzzJDsDbgacCBwLPTnLgZKuSJKkbJh7kwOHAN6vqyqr6H+D9wDETrkmSpE6YD0F+H+C7PfevbpdJkqQZzIfJbhmwrLbYKDkeOL69e2OSy7drVXO3B3DdpItYZHzNx8/XfDJ83cdvTq95XjfyOu433Yr5EORXA/v03L8vsKF/o6o6FTh1XEXNVZK1VbV80nUsJr7m4+drPhm+7uPXhdd8PnStfxnYP8l+Se4CPAs4e8I1SZLUCRNvkVfVLUlOAD4J7AC8p6ounXBZkiR1wsSDHKCqPgZ8bNJ1jMi87/5fgHzNx8/XfDJ83cdv3r/mqdpiXpkkSeqI+TBGLkmS5sggH4EkxyW5NMltSZb3LD8qybokl7S3T5hknQvNdK97u+7k9pK/lyd58qRqXMiSHJzkv5NclGRtksMnXdNikOSl7d/1pUleP+l6FpMkf5akkuwx6Vp6zYsx8gXgq8BvAu/sW34d8OtVtSHJQTQT+rzYzegMfN3bS/w+C/gV4N7Ap5M8sKpuHX+JC9rrgVdX1ceTPK29//jJlrSwJTmC5sqXD62qm5PsOemaFosk+wBHAVdNupZ+tshHoKouq6otLlBTVRdW1dQ58ZcCOyfZabzVLVzTve40b3Tvr6qbq+rbwDdpLgWs0SrgHu3vuzLg+g8auT8CVlXVzQBVtWnC9SwmbwJOYsAFyybNIB+f3wIunPoPqO3Ky/6Ox8uAv0vyXeANwMmTLWdReCDwmCTnJ/lckodPuqDFIMkzgO9V1cWTrmUQu9ZnKcmngb0HrDqlqs6aYd9fAV4HPGl71LaQzfF1n9VlfzWzrb3+wJHAy6vqQ0meCbwbeOI461uIZnjNdwR2Ax4JPBw4Pckvl6cfbbMZXvdXMI/fvw3yWaqqOb1BJbkvcCbw3Kr61mirWvjm+LrP6rK/mtnWXv8k/wKc2N79IPCusRS1wM3wmv8R8OE2uL+U5Daaa4FvHld9C9V0r3uShwD7ARcngeb95IIkh1fVNWMscVp2rW9HSe4JrAFOrqr/nHA5i8nZwLOS7JRkP2B/4EsTrmkh2gA8rv39CcAVE6xlsfgIzWtNkgcCd8EvUdmuquqSqtqzqpZV1TKahsKh8yXEwSAfiSS/keRq4FeBNUk+2a46AXgA8JftKToXOct0dKZ73dtL/J4OfA34BPASZ6xvFy8C/j7JxcBruePbCbX9vAf45SRfBd4PrLBbXV7ZTZKkDrNFLklShxnkkiR1mEEuSVKHGeSSJHWYQS5JUocZ5JIkdZhBLklShxnkUocleV2Sc+ZBHbsluTbJ/Ud4zDOS/MmojictVAa51G0HAxdNuAZovlTiY73fJ5DkM0ne17tRkhcluSnJKWkvXL0Vrwb+Ismu26FeacEwyKVuexhw4SQLSHI34IU0337W6xBgXbvNTkneBawCfqOqXjPTpUWr6hLgSuD3Rl+1tHAY5FJHJdkb2Iu2RZ7kwUnOTvLDJJuSvC3JXfv2eVCS85L8NMklSX4tyc+TPG7AQ8zW04DbgNu/GKjtYr8nsC7JPsB/AIcBy6vqk4MOMo2zgWdvQ23SgmeQS911CPBT4PIkDwW+CHyd5nuqfxN4OvBXUxsneRDNt8B9GTgUOBn4AM3XGX9lG+p4DLCur4V9GM13wO8OXNDW9WtV9e0hj/0l4PD+DySS7mCQS911MHBJ+81u/wR8qKpOqqpvVNUXgH8AntGz/VuBc9ptLquqjwLnAd+pqhsA2hb9DUnO6H2gJE9LcnmSK5K8uK+O+wEb+5YdRtNK/yDwuqp6blX9tO+YJyb5XvutgBcn+ecke/QdZwNwZ+DeQ70y0iJikEvddTBwUZIDgMOBN/etvxnYCaDt3j6KnhZ6zzYX99x/E/Dc3g2S7Ai8BXgizZj8CUmW9mxyV+Bnfcc9jOZDwneBw6aZ2HYQ8GdVdXD7XL5D84Gk11T42yKXpmGQS911MM34+EHArcBlfesPBC5pfz8UuIUtu9AfTM+s96o6D/hx3zaHA1+rqu9W1U3AmTTd9lOuA3br2+cQ4FPArwNHA68aUP9DgEvbxy3gb4EnJ+l9X9q9vd08YH9JGORSJ7UzxR9AM2P9xzT/l+/Ss34v4DnA1OlftwI7AHfr2eYw4FH8Yot8kHvTtKynXA3cp+f+hTQfGqaOux9NAK+rqq8CvwuckuQ5PdsEeCBwec9xfk4zXt/b+j4I2FBV185Qo7RoGeRSNz2svf0KcD5wPbAqyf2TPBb4OPBpmslsAGtputH/rt3mKcB723UXzfBYg7rFeye2fRJ4cJJ7tfcPa28vAGjH4lcC707y6HbdMuDaqrq55zj7ANdV1U96lj0G+MQM9UmLmkEuddPDgCuq6qaq+iFwDPCrNF3pq4GzgGdOzSSvqmuAFTSnin0FOAE4DdhcVVfO8FjfownZKfelmYRGe+xLaGaXP6tddBhwZVX9oGebNwD/CpzZnpp2EG23eo8XALdPskuyM/AbbDluLqlHZrgmg6QFqO3a/gTwrap6cd+6xwMnVNVvt/d3pDl97Aia8fB1wBOrakPPPk+hmRB3YDuLfqbHfwWwU1W9sq3lN2nGyB9dVZvabV4CHFNVT9rGpystaDtOugBJ21/bpb03TXf3vYCX00yWe37fdp+mae3vkuRq4Liq+mKSlwPn0vTivaU3xAGq6hNJ3k7TWv/OLEo6CHhMkqfTdN1fADxhKsRbPwdeOuxzlRYbW+TSIpDkt4HX0UxS2wx8Fji5qq6eZF2Stp1BLklShznZTZKkDjPIJUnqMINckqQOM8glSeowg1ySpA4zyCVJ6jCDXJKkDjPIJUnqsP8PaDE3wVE6LQ4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGSCAYAAAAYZUOKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjxUlEQVR4nO3deZhkdX3v8fdHUMENQYZFBccoLoTINsElUVHEDSOYBGOicTQm5EZRsl2fQXNv1ESD0RvjloVEA7maqwSDEDEqIsSYGBQURARFcVBkmQERxQUFvvePcxrLmurp6p7uqv51v1/P08/pOuu3zvTUp37n/M45qSokSVKb7jTtAiRJ0sIZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINcy1aS309SSX5t2rUsVJJ/TLIpyd0nvN2D+333okVe78YkGwder+23c9Jibmce9Yzc/rTrWi41aHUwyLWcHdQPPzPVKhYoyTrgecAJVfXdEdPP6j/onzBi2u5JPtZP/7cku8xn21V1AfB+4E+T3GOBb2HJtRx2LdeulWX7aRcgbcVBwM3Al6ZdyAK9Dvg28NezTD8IKOCCwZFJHgu8F9gdeDXwmqq6fQHb/zPgPOBlfS1L4RvAw4Gblmj9y337W7Oca9MKYotcy1J/KPqhwIULDLGpSvIQ4EnAKVX1/RHTHwTsAlxeVd8eGP8HwMeAuwBPr6pXLfT9V9WngMuA306y3ULWMcY2flRVl1XVNUux/uW+/a1ZzrVpZTHItVwdQPf3OdxaTZIXJPn3JDck+X6SzyZZP2olSXZIsiHJF5L8IMmVSV6RZLsk30nyuSWq/zeA0LWsR1nXDz/d13mvJP8CvJHuVMJBVfXhRajjPcDedF8qxtLv42OTXNLvs28keVuSnUbMO+vh5STPTHJ2kmuS3JLk6v7f7cX99FcBX+1nX9+vZ+bnBcPrT/KQJO/t+xzcnuTQcQ5vJ3lYkvcn+WaS7yb5RJInj5jv0H5dr5plPXf0D5hv7bOs79lJPp7kpv7v+OIkxye562z7uP/9PUmu7/9tzk/yjNneu1YHD61ruTq4H95xfjzJjnTnfZ8MfA44GdgBeBZwUpL7VdXrBua/O/BR4FF0XwjeTHe4+n/THfK8B/DZJar/ScBtwH/PMn0myM9P8gjgVGAf4G+A46rqh4tUx3/2w8OBcb8Y/CXd4fhrgBOBHwFHAo+kO1IwZ21JjgH+FrgW+FfgemA34BHAC4G/As4F7g0cB1xE928748KhVT6I7jTBl4B3AzvSnbaYywOBTwKf7+vZE/gV4N+S/FpVzfZFay7zqX0LSV4HHE+3X/6J7hTS0+hOgTwlyeFV9aOhxR4AfAq4Avi/dEd0fgU4PcmTquqcBb4Xta6q/PFn2f0AJ9GdP95vYNxp/bhXDM27BrgB+AGw88D4d/Xz/y8gA+MP68cXXWgudu13B24FLt7KPOf02z8R+B7wXeB5S1DLTv12PjXm/I/p5/8ysMvA+B3oArGAjQPj1/bjThpazwXALcBuI7ax61zLj5hewOu2Mn14+4PLvWFo2jq6Lyc3AvcaGH9oP/+rZqll4zjvfYzaHt2P/xqwx8D47em+9PzE3/jQe/njoXU9pR//wcX+2/GnnR8PrWu5Ogj4PnApQH/48Cjgn2ug1Q1QVZuBDwB37ZcjyaOA5wKnV9WfVHWfev38Z9N9iMLS9Ii/H7AdXYt2C0kCHNi//C3gduCRVfWuxS6kqm6i+4Kz95iLvLAfvraqvjmwnh/QtSDn41a6wByu6fp5rgfgOrqOf/N1E/Caoe2fT9eqvzfd0ZxJ+41++KdVde1AXbcCf0D39/CbI5a7EvjTwRHVnX75GnDI0pSqFhjkWnaS7EB36PuiqrqtH31MP3z9LIvd0A9nOnW9pB++divzFwOHQZM8LskZ/TnhO851jqjvxUm+2p+jvKDvZT7oPv3wxlm2/RC6lvKX6L5I3J3uS8pW5ceXo1WSW5Ncl+QDSeY6//1NYNe51t+bueTv30dM+w+6cB7Hu4G7AZckeVOSo5KsGXPZUS6qqlsWsNxnquo7I8af2w8PHDFtqc3s448NT6iqLwFXAQ9Mcu+hyRcO/H8Y9HVg50WtUE0xyLUc7U93mHGwo9vjgW9Xd330KHv2w5mW9pPpwvr8rcx/+dCH/D3ozqUeR3c0YAtJfoXuXPvr6ELgv+jOtw62eGeW3WGWbc+cH/8k8Ay6D+4/SfLcWeafcSDwx33tDwaOpgvps7L1m+bsONv7GWGmQ9t1wxP6ELlhePwoVfUXwHq6f4+X0Z0WuS7JOemur5+va+eeZaQt3sfQ+rbowDcBM9ucrTf7NUPzzfjWLPPfip/lq5r/+FqOfqKjW5J7AveiO0e5hXSXVj0e2AR8sW/R7wZ8ffCQ+sD8DwP2YOiwelV9sKpeUVWn0h3eHOX36c55/l1VXVpVL6X74P2dgXk29cP7bLF0546ObtVdmvQMus5O70zyuFne44PoDgV/vKquraqNVfXxqno+cAbdNeOjlrtTv9ymUdNHmLnmefcR69qO2d/TFqrqH6vqUf0yRwDvAB4HfDjJbuOuZ2Z185x/xhbvo7dHPxy8xnvm33y2TsCLFfoz29xjlul7Ds0nbZVBruVo+I5ut9B9yM52+PAFdB9+/9AH9639z2zzv3xo/WNJche6LxkfGZr0EbpOYjOuATbTXQc/yh1BDlBVF9H1Pt4OeH//RWPYwXRhNqqX/YeAvTP67m8PpbsM7sJZahk2s08eP2LaY1nAlS5V9a3+S9Jv0XVi3KVfF3Q9++HHp0QW20H9F8Fhh/bDwf05cypkr+GZkzyY7gvRoIXWPrPNQ4cn9Nu5P/DVqvrWPNerVcog13J0EF14XwJQ3aVYnwb2Gj4fnOQwukPdG+lbpX2noS8BD+inD87/En7coWu+Hd12pfvQHj5cex0Drav+y8THgV37D+bB7d+J7hr5W+kuW5pZ5oPA79J9+fjgiBbrwcCX+85rw2YuB9uiYxndpXfQ9ZIfx0n98JWDXwz6oxwjW/2jJHlqklGhP/O+vtcPb6T7gjJuZ7z52onucsPB2tbRdYS8ie6Q/4zL6C5pO3Jw//eXPb5lxLoXWvs7++EfDfYb6I94vJHuc/kd81ynVjGvI9ey0rd696Pr3DQYTK+kuw76A0lOAa6mO5f+FLrevIcPhdyf0V1re2aS99KdE/15umu1L6NrqS60x/rwYd6MGPc+4Jf6+r48MH7m+vXP1dAd36rqbUn2oTunfEaSJwzMc/BW6n0ocPUsnbqeTNdyPH3rb+mOGv4zyVuBlwKfT3IqP76O/EZmP6877D3AD5J8gu5LVuha4T9L1/fho/32bk5yHvDYJO+m+wJ2G3BGVS3GzXo+DvxmkkfSXVM/cx35nYDfroG76lXVj5K8me5yxc8mOY3uM/Jwur+3qwdXvNDaq+q/kvw53ZGhmX38XbrryPcDPgG8YRHeu1aLaV//5o8/gz/8+BDy346Y9ni6nr439z8X012SdM9Z1vVS4Ct0LdavAW+nu6nGDXS9mbdWx83AC4bG3YWuJX300Pi3A/8+Yt5rgfOGxj+/f3/vmGW7d6I75110Xwbu1I+/AfifI+a/M90dxt4yYtpOdJ3c3j/Pf4MAx9Jd+ncLXYC9vV/fRsa7jvx/0LV2r6BrfX+T7pDyy4f/veg67v1r/x5v79f3gq2tf4zt3zGe7svT6XRfRL5HF+hP2cp73zD0d/PndD3wf+K9L0Ltz6EL7e/QXSJ4Cd0X1h3GeY8D08+lPxDkz+r8SdVC+5BI7Uny68A/0oXiG7cy383AsVV10tD48+iOFhwzMO5LwPuq6viheY+n691+UFWNOrc9bs0PpAvEw6rqYwPjA7wN+FXgZ6rqG0PLvZTukPDjquo/Frp9Scub58i14qS7j/oWvaL78+t/TXfd7d+MmH6PJAckOYDu/8be/evBc6B/AbwgyW8meXh/KPa+o9YHvImuRfeaEdPmY6YX/9VJ9kiyT5Kj6VpivwIcNSLEd6S7gcv7DHFpZfMcuVaifYFPJ/kw3SHSO9N1MPt5untbH1lVN49Ybh0/2Sns1f3PyXQ946mq9ya5D/BHdOdbP0/3lLIrh1dWVT/ojwA8Icnda8Qzycc0E+SX0p2DvYnufOxHgGdX1ahrpdfS3f71pAVuU1IjPLSuFSfJQ+k6uz2S7hrm2+nOI38A+ItZgk+SmmSQS5LUMM+RS5LUsCbPke+66661du3aaZchSdJEXHDBBddX1cgHDzUZ5GvXruX882d7FoYkSStLki061M7w0LokSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUsCaffiZpeVq74cxtWn7jCUcsUiXS6mGLXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIZ5ZzdpBfHOatLqY4tckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1bKJBnuTeSU5NclmSS5M8OskuSc5Kcnk/3HmSNUmS1LJJt8jfDHyoqh4G7A9cCmwAzq6qfYCz+9eSJGkMEwvyJPcCHge8A6CqflhV3wKOBE7uZzsZOGpSNUmS1LpJPv3sp4DNwD8k2R+4ADgO2L2qrgGoqmuS7DZq4STHAMcA7L333pOpWFpltvXpaZImb5KH1rcHDgL+uqoOBL7LPA6jV9WJVbWuqtatWbNmqWqUJKkpkwzyq4Crquq8/vWpdMF+XZI9AfrhpgnWJElS0yYW5FV1LfD1JA/tRx0GfAE4A1jfj1sPnD6pmiRJat0kz5EDvBR4d5K7AFcAL6T7MnFKkhcBXwOOnnBNkiQ1a6JBXlUXAutGTDpsknVIkrRSeGc3SZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJatj20y5AWinWbjhzm9ex8YQjFqESSauJLXJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNm+hjTJNsBL4D3AbcWlXrkuwCvBdYC2wEnl1VN06yLkmSWjWNFvkTquqAqlrXv94AnF1V+wBn968lSdIYlsOh9SOBk/vfTwaOml4pkiS1ZdJBXsBHklyQ5Jh+3O5VdQ1AP9xtwjVJktSsiZ4jB36uqq5OshtwVpLLxl2wD/5jAPbee++lqk+SpKZMtEVeVVf3w03AacAhwHVJ9gToh5tmWfbEqlpXVevWrFkzqZIlSVrWJhbkSe6e5J4zvwNPBj4PnAGs72dbD5w+qZokSWrdJA+t7w6clmRmu/9UVR9K8mnglCQvAr4GHD3BmiRJatrEgryqrgD2HzH+BuCwSdUhSdJKshwuP5MkSQtkkEuS1DCDXJKkhhnkkiQ1bNI3hJG0FWs3nDntEiQ1xha5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhvkYU0nLxmI8xnXjCUcsQiVSO2yRS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ3z6WeSNGBbn8Dm09c0abbIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhk08yJNsl+SzST7Qv94lyVlJLu+HO0+6JkmSWjWNFvlxwKUDrzcAZ1fVPsDZ/WtJkjSGiQZ5kvsDRwB/PzD6SODk/veTgaMmWZMkSS2bdIv8L4GXA7cPjNu9qq4B6Ie7TbgmSZKaNbE7uyV5BrCpqi5IcugClj8GOAZg7733XtziJK0Y23pnNqk1k2yR/xzwzCQbgfcAT0zyLuC6JHsC9MNNoxauqhOral1VrVuzZs2kapYkaVmbWJBX1fFVdf+qWgs8B/hYVT0POANY38+2Hjh9UjVJktS65XAd+QnA4UkuBw7vX0uSpDFM5elnVXUucG7/+w3AYdOoQ5Kk1i2HFrkkSVqgBQd5kh2TPCnJAxazIEmSNL6xgzzJSUle3P9+F+BTwEeALyZ52hLVJ0mStmI+LfKnAP/d//5M4J7AHsCr+h9JkjRh8wnynfnxNd5PBd5XVZvorgnfd7ELkyRJc5tPkF8L7JdkO7rW+Uf78fcAfrTYhUmSpLnN5/KzdwLvBa4GbqN7UhnAI4HLFrkuSZI0hrGDvKpek+QSYG/gn6vqh/2kW4HXL0VxkiRp68YO8iSPA06vqluHJr0beMyiViVJksYyn3Pk5wC7jBi/Uz9NkiRN2HyCPECNGH8f4LuLU44kSZqPOQ+tJzmj/7WAdyW5ZWDydsB+wH8tQW2SJGkO45wjv6EfBrgR+P7AtB8CnwD+bpHrkiRJY5gzyKvqhQBJNgJvrCoPo0uStEzM5/KzVy9lIZIkaf7mc/nZLsBr6Z4dvhtDHeWq6l6LW5okSZrLfO7s9g7gQOBEuru7jerBLkmSJmg+QX4YcHhVnbdUxUiSpPmZz3Xkm4Cbl6oQSZI0f/MJ8lcCr0lyj6UqRpIkzc98Dq3/EbAW2JTkSoYeXVpVj1jEuiRJ0hjmE+SnLlkVkiRpQbyOXJKkhs3nHLkkSVpm5nNDmO+wlWvHvSGMJEmTN59z5McOvb4z3Q1ifonujm+SJGnC5nOO/ORR45N8hu5mMW9drKIkSdJ4FuMc+TnALyzCeiRJ0jwtRpA/B7h+EdYjSZLmaT6d3S7mJzu7Bdgd2AX4nUWuS5IkjWFbbghzO7AZOLeqLlu8kiRJ0ri8IYwkSQ2bT4scgCRPBPalO8x+SVWdu9hFSZKk8cznHPn9gNOAg4Gr+9H3TXI+8KyqunrWhSVJ0pKYT6/1twC3AQ+uqr2qai9gn37cW5aiOEmStHXzObR+OHBoVX11ZkRVXZHkZcDZi16ZJEma02JcR377IqxDkiQtwHyC/GzgLUn2mhmRZG/gzdgilyRpKuYT5C8D7gZckeTKJBuBr/TjXrYEtUmSpDnM5zryrwMHJTkceBjdnd2+UFUfHWf5JDsAHwfu2m/31Kr64yS7AO8F1gIbgWdX1Y3zeROSJK1Wc7bIkzwtycYkOwFU1VlV9daqegvw6X7ak8fY1i3AE6tqf+AA4KlJHgVsAM6uqn3oDtFvWOibkSRptRnn0PqxwBuq6qbhCf241wPHzbWS6tzcv7xz/1PAkcDMI1JPBo4aoyZJksR4Qf4IYGuHzz8G7D/OxpJsl+RCYBNwVlWdB+xeVdcA9MPdZln2mCTnJzl/8+bN42xOkqQVb5wgX8PWLzEr4D7jbKyqbquqA4D7A4ck2W+c5fplT6yqdVW1bs2aNeMuJknSijZOkF9F1yqfzSOAb8xno1X1LeBc4KnAdUn2BOiHm+azLkmSVrNxgvxM4E+S7Dg8IcndgNf082xVkjVJ7t3/viPwJOAy4AxgfT/beuD0sSqXJEljXX72WuCXgcuTvJUufAEeTtcRLsDrxljPnsDJSbaj+wJxSlV9IMkngVOSvAj4GnD0PN+DJEmr1pxBXlWbkjwG+Gu6wM7MJODDwIur6rox1vM54MAR428ADptP0ZIkqTPWDWGq6krg6Ul2Bh5MF+aXe+MWSZKmaz5PP6MP7k8vUS2SJGmeFuPpZ5IkaUoMckmSGjavQ+vScrZ2w5xXQW7VxhOOWKRKJGlybJFLktQwg1ySpIYZ5JIkNcwglySpYXZ2k3rb2llOkqbBFrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlq2PbTLkCasXbDmdMuQZKaY4tckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DBvCCNg22/GsvGEIxapEqlt/l/SpNkilySpYRML8iR7JTknyaVJLklyXD9+lyRnJbm8H+48qZokSWrdJFvktwJ/UFUPBx4FvCTJvsAG4Oyq2gc4u38tSZLGMLEgr6prquoz/e/fAS4F7gccCZzcz3YycNSkapIkqXVTOUeeZC1wIHAesHtVXQNd2AO7zbLMMUnOT3L+5s2bJ1arJEnL2cSDPMk9gPcBv1tV3x53uao6sarWVdW6NWvWLF2BkiQ1ZKJBnuTOdCH+7qr6l370dUn27KfvCWyaZE2SJLVskr3WA7wDuLSq/mJg0hnA+v739cDpk6pJkqTWTfKGMD8H/DpwcZIL+3GvAE4ATknyIuBrwNETrEmSpKZNLMir6hNAZpl82KTqkKTlbFvvDAfeHW618c5ukiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWHbT7sArQxrN5w57RIkaVWyRS5JUsMMckmSGmaQS5LUMINckqSG2dlNklaYbe18uvGEIxapEk2CLXJJkhpmkEuS1DCDXJKkhhnkkiQ1zM5ukqSfYGe5ttgilySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDZtYkCd5Z5JNST4/MG6XJGclubwf7jypeiRJWgkm2SI/CXjq0LgNwNlVtQ9wdv9akiSNaWJBXlUfB745NPpI4OT+95OBoyZVjyRJK8G0z5HvXlXXAPTD3WabMckxSc5Pcv7mzZsnVqAkScvZtIN8bFV1YlWtq6p1a9asmXY5kiQtC9MO8uuS7AnQDzdNuR5Jkpoy7SA/A1jf/74eOH2KtUiS1JxJXn72/4BPAg9NclWSFwEnAIcnuRw4vH8tSZLGtP2kNlRVvzrLpMMmVcNKtnbDmdMuQZI0BdM+tC5JkraBQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDZvYDWEkSWrFtt5ka+MJRyxSJXOzRS5JUsMMckmSGmaQS5LUMINckqSG2dltmfDpZZKkhbBFLklSwwxySZIaZpBLktQwg1ySpIbZ2U2StKiWQ+fdSd5ZbdpskUuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkN8+lni2A5POlHkrQ62SKXJKlhBrkkSQ0zyCVJaphBLklSw+zshp3VJGmlWU2f68uiRZ7kqUm+mOTLSTZMux5Jklox9SBPsh3wduBpwL7ArybZd7pVSZLUhqkHOXAI8OWquqKqfgi8BzhyyjVJktSE5RDk9wO+PvD6qn6cJEmaw3Lo7JYR42qLmZJjgGP6lzcn+eKSVrVwuwLXT7uIVcZ9Pnnu8+lwv0/egvZ5Xr/odTxgtgnLIcivAvYaeH1/4OrhmarqRODESRW1UEnOr6p1065jNXGfT577fDrc75PXwj5fDofWPw3sk+SBSe4CPAc4Y8o1SZLUhKm3yKvq1iTHAh8GtgPeWVWXTLksSZKaMPUgB6iqDwIfnHYdi2TZH/5fgdznk+c+nw73++Qt+32eqi36lUmSpEYsh3PkkiRpgQzyRZDk6CSXJLk9ybqB8YcnuSDJxf3widOsc6WZbb/3047vb/n7xSRPmVaNK1mSA5L8d5ILk5yf5JBp17QaJHlp/3d9SZI/n3Y9q0mSP0xSSXaddi2DlsU58hXg88AvAn87NP564Beq6uok+9F16PNmN4tn5H7vb/H7HOCngfsCH03ykKq6bfIlrmh/Dry6qv4tydP714dOt6SVLckT6O58+YiquiXJbtOuabVIshdwOPC1adcyzBb5IqiqS6tqixvUVNVnq2rmmvhLgB2S3HWy1a1cs+13ug+691TVLVX1VeDLdLcC1uIq4F797zsx4v4PWnS/A5xQVbcAVNWmKdezmrwJeDkjblg2bQb55PwS8NmZ/4BaUt72dzJ+F3hDkq8DbwSOn245q8JDgMcmOS/Jvyf52WkXtBokeSbwjaq6aNq1jOKh9TEl+Siwx4hJr6yq0+dY9qeB1wNPXoraVrIF7vexbvuruW1t/wOHAb9XVe9L8mzgHcCTJlnfSjTHPt8e2Bl4FPCzwClJfqq8/GibzbHfX8Ey/vw2yMdUVQv6gEpyf+A04PlV9ZXFrWrlW+B+H+u2v5rb1vZ/kn8Ejutf/jPw9xMpaoWbY5//DvAvfXB/KsntdPcC3zyp+laq2fZ7kp8BHghclAS6z5PPJDmkqq6dYImz8tD6Ekpyb+BM4Piq+s8pl7OanAE8J8ldkzwQ2Af41JRrWomuBh7f//5E4PIp1rJavJ9uX5PkIcBd8CEqS6qqLq6q3apqbVWtpWsoHLRcQhwM8kWR5FlJrgIeDZyZ5MP9pGOBBwP/q79E50J7mS6e2fZ7f4vfU4AvAB8CXmKP9SXxW8D/SXIR8Dp+/HRCLZ13Aj+V5PPAe4D1HlaXd3aTJKlhtsglSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGudSwJK9PctYyqGPnJNcledAirvPUJL+/WOuTViqDXGrbAcCFU64BuodKfHDweQJJPpbk3YMzJfmtJN9L8sr0N67eilcDf5RkpyWoV1oxDHKpbfsDn51mAUnuBvwm3dPPBh0IXNDPc9ckfw+cADyrql47161Fq+pi4ArgeYtftbRyGORSo5LsAexO3yJP8vAkZyS5KcmmJG9LsuPQMg9Lck6S7ye5OMljkvwoyeNHbGJcTwduB+54MFB/iP3ewAVJ9gL+AzgYWFdVHx61klmcAfzqNtQmrXgGudSuA4HvA19M8gjgk8BldM+p/kXgGcBrZmZO8jC6p8B9GjgIOB54L93jjD+3DXU8FrhgqIV9MN0z4HcBPtPX9Ziq+uo81/0p4JDhLySSfswgl9p1AHBx/2S3vwPeV1Uvr6ovVdUngL8Cnjkw/1uAs/p5Lq2qDwDnAFdW1Y0AfYv+xiSnDm4oydOTfDHJ5UlePFTHA4BrhsYdTNdK/2fg9VX1/Kr6/tA6j0vyjf6pgBcl+Yckuw6t52rgzsB957VnpFXEIJfadQBwYZKHAocAfzk0/RbgrgD94e3DGWihD8xz0cDrNwHPH5whyfbAm4En0Z2TPzbJngOz7Aj8YGi9B9N9Sfg6cPAsHdv2A/6wqg7o38uVdF9IBs2Evy1yaRYGudSuA+jOj+8H3AZcOjR9X+Di/veDgFvZ8hD6wxno9V5V5wDfGZrnEOALVfX1qvoecBrdYfsZ1wM7Dy1zIPAR4BeAI4BXjaj/Z4BL+u0W8GfAU5IMfi7t0g83j1heEga51KS+p/iD6Xqsf4fu//JdBqbvDjwXmLn86zZgO+BuA/McDPwcP9kiH+W+dC3rGVcB9xt4/Vm6Lw0z630gXQBfUFWfB34NeGWS5w7ME+AhwBcH1vMjuvP1g63v/YCrq+q6OWqUVi2DXGrT/v3wc8B5wA3ACUkelORxwL8BH6XrzAZwPt1h9Df08zwVeFc/7cI5tjXqsPhgx7YPAw9Pcp/+9cH98DMA/bn4DcA7kvx8P20tcF1V3TKwnr2A66vquwPjHgt8aI76pFXNIJfatD9weVV9r6puAo4EHk13KP1k4HTg2TM9yavqWmA93aVinwOOBU4CNlfVFXNs6xt0ITvj/nSd0OjXfTFd7/Ln9KMOBq6oqm8NzPNG4J+A0/pL0/ajP6w+4EXAHZ3skuwAPIstz5tLGpA57skgaQXqD21/CPhKVb14aNqhwLFV9cv96+3pLh97At358AuAJ1XV1QPLPJWuQ9y+fS/6ubb/CuCuVfXHfS2/SHeO/OeralM/z0uAI6vqydv4dqUVbftpFyBp6fWHtPegO9x9H+D36DrLvXBovo/StfbvnuQq4Oiq+mSS3wPOpjuK9+bBEAeoqg8leTtda/3KMUraD3hskmfQHbr/DPDEmRDv/Qh46Xzfq7Ta2CKXVoEkvwy8nq6T2mbgXOD4qrpqmnVJ2nYGuSRJDbOzmyRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlh/x/u3Jdid+8/egAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -133,64 +197,69 @@ "plt.title('$log_{10}(K_D)$ distribution', size=title_size)\n", "plt.hist(preprocessed_data.train_y, 25)\n", "plt.xlabel('$log_{10}(K_D)$', size=font_size)\n", - "plt.ylabel('Frequency', size=font_size)\n", + "plt.ylabel('Counts', size=font_size)\n", "plt.show()" ] }, { - "cell_type": "code", - "execution_count": 5, - "id": "f8bc81b7", + "cell_type": "markdown", + "id": "0deb6ac3", "metadata": {}, - "outputs": [], "source": [ - "test_pdbs = ['2nz9', '5vpg', '6a0z', '3g5y', '5dd0', '3u0t', '1zv5', '4w6w', '3l95', '1oay', '1m7d', '2hkf', '6eyo', '2p44', '5i8c', '4odx']\n", - "ix = []\n", - "for l in test_pdbs:\n", - " ix.append(preprocessed_data.labels.index(l))" + "A sample normal mode correlation map before and after adding the blank pixels." ] }, { "cell_type": "code", "execution_count": 6, - "id": "0597f882", - "metadata": {}, + "id": "70351b0a", + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAygAAAFRCAYAAACfRonRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACkfklEQVR4nOzdfXhU5Zn48e/NiZIKapSoqUShgsoKFVZSpMIqVazopoKVCthYaEUFNyoWVGyjnmpasUZJ2/x8RYs1K6hYUbOCioouumjBBQtuLNhGDTZqsFHBBs3w/P54ziSTySSZMy+Zmcz9ua65JvPMeXlmksw993nexBiDUkoppZRSSqWDPqmugFJKKaWUUkoFaYKilFJKKaWUShuaoCillFJKKaXShiYoSimllFJKqbShCYpSSimllFIqbWiCopRSSimllEobmqAopZRSKiOISIGIPCAi9SISEBEjInmprleyiMhg7zUu9bHPLG+fWWHldSJSl+AqKpUUmqBkCe/DKvS2R0Q+FpE3RGSJiJwpIk43x+gnIvNE5AUR+UhEvhSRJhF5XUR+KSJHJWI/EVkaUs9fdFGfmSHbrY3pjVFKpT39/FIhlgIXAC8B5cAvgGYRWSsiurCbUr1ETqoroHpcMGA6QB4wHPthfyGwQUR+aIz5S/hOIjIWWAEMBOqBp4EPgH7AvwLXAFeJyFhjzBvx7udpAX4iIjcaYwIRXstF3jb6d6xUdtDPrywmIvsCpwNrjDE/DHsuNZXKLKelugJKRUs/GLOMMcYNLxORw4DfAT8A1ohIkTHmo5DnhwHPAP2BhcBtxpiWsGN8A7gFOCDe/ULUAFOAScB/he33L8A44HHgnO5fuVIq0+nnV9YrwPb8+CDVFclExph3Ul0HpaJmjNFbFtwAY3/dnT7fB3jR264y7LnnvPJfRXGevgnYb6m331TgC2BlhO1v97Y5y7tf6/O9WAscBtwPfAjsBl4F/s3bph9wK/AusAfYCvwgwrEOBK4CXsBeYf0S+Bh4EhjbzfkPBx4EPgL+CWwEzk/134re9JZuN/386vBe9IrPL+A7wD3AW8Bn3nG2ADcAuWHb1gX/DsJuSzsp7/C+AoVAFfBX733Z6b3Wb0Wom+sdYwJwPvAasAuoi+J1jQZ+A2wGPgGagW3AbcBBneyzv/d3Ue9tXwv8FDgq+Doj7DMUeBT4R8jfwL8Ds7x9ZkV4D+vCylq39X4fa4HPvd/HfwH/0kl9jwEei/bc3bxfXwd+H/K3tAmY6b33BnDjeX/DXuO/e3Xd7dV9BXB0hH0OAyqAt71tm7yflwJH+fk711tsN21BUQAYY/aKSDn2A2GGiFxpjDHeFcKJ2A+AX0dxnD3QemXR935hmrAfvueLyNeNMX/3jt0X+BG2D3KH7hxRygNewX4QLwMOBqYDz4jIt4G7vbIaYB9gBvCwiLxvjFkfcpx/AX4JvIz9MP8HcCRwNnCmiHzPGLM6wvkPwn5INmE/mPOA84D/FJGBxphbY3xdSmUd/fzK2M+va4Bh3rH+C8jFtiy5wAQRmWjausdVAoOBK7BfTFd65ZuwX7xnAYNo6waIVw6AiJwAPIt9X54B/gjkY1u51onIOcaYpyPUcT62W9lT2CT4wChe10XYlrGXgDXYLoknYBOOM0XkRGPM5yF16ws8D3zLe23/iX1PrwNOiXQCETka+B9gALDKex+GYt+XVVHUMVwxMNnb9y7gOGwC/S0ROc4Y0xhy7mHYv7+Dsb+3N7GJ1OPYbpBRE5FDsb//wdi/w1exLWV3YH9fkfh6f0N8HzjTq+daYBRwLvAdETnJGPO2V6f9vNc3BHuh4ilAsH9fk7FJzV/9vE4Vg1RnSHrrmRvdXIH0tukLfOVt+w2v7ALv8Tqf54tpP2/fpd6+E4Hx3s/Xhjw/3Sv7IfYDOZYrkAb7IdwnQp0/wX4g5YY892/ec4+HHetAID/COQqx3RD+r4vzPxJ2/m945/4SvUKjN7213vTzq+N70Rs+v7BfaiVC+U3eOaaFlQ+m89aEtZ39jWC7s2/HJpynhD13OLAD+DvtW8Jc71y7gX/1+TcwCHAilF/oHfOasPKfeeWPdfKednjN2C/vBrgirHxyyO9oVthzdXTegtICnBb23M3ec1eHlT/vlc8NKz+zs3N38V7d521/S1j5SGwrV6QWFL/v76yQehWHPXeFV/58SNn3vLLFEc6xL7C/n78HvcV201m8VCtjrwLu9B4e4t1/3buv93m4WPcLr9M64P+A2dI2CvIi7JW+x+I49BfAVcaYvSFlD2E/pA/Cfug3h9Tjv7Ef7qPC6vepCbmyFFJej73KMkxEjoxw/gD2Q3RvyD5/A36LveJ5QWwvS6nspJ9fmff5ZYz5q/G+9YWp9O7PiOY4Ufh37NXw3xljXgqrwwfYVrICIg8iv8cY879+TmaMeddEnhjhfmzXqfDX9WNgLzYRiPSetiMihdhWnb9hu6yFnvsJbMuCX8uNMc+Hld3j3Y8JOfcRwKnYhO/usHOvwrZoRMWb9GAG8Cl2RrbQY20G/hBpvxje36AXjDE1YWVVwDvAqSIyKOy5f0Y495cmcuuMSjBNUFS4YBA1nTyO9TjxWIK90naqiAzF9pN9MDQAx+Av4R8y3gfeh0CTMSZS8+0O7JXFdkRknIg8IiLve9OfGm+6y8u8TQZGONZ7XvAJt9a7/9doX4hSqpV+fmXQ55c3hfPPRORPIvKpiOz1zh1MmiKdOxbf9u4HiYgbfqPtC/i/RNj3db8nE5F9RKRURNaJyCfirdeCTUIOIOR1icj+2Ja0HSbyIPa1EcqC7++6Tr6oR9qnOxsilL3v3R8UUjbKu/+fsAQ5aJ2Pcx4LfA14s5Mv/RGP5ef9DdMhcfPev+B5/jVkux3AQhFZLSKXi8ho6WYqc5VYOgZFtRKRXGyfUrADJaFttpQOga0bse4XyR+AXwGzsYM+Bbg3zmN+2kl5SzfPtfufEZFzsFcam7F9Vd/BdgnYi+0Pfwq260m4Dzs5R4N3f2AnzyulItDPLyCDPr9EZB/s4Pwx2IHxD2N/b195m9zQybljMcC7/0E32/WPUNYQoaw7D2PHSPwVeMI7RnCc0jzav67ge9Xdexoqln260xReYIxp8Rr+Qr+Yd3fuzsojifVYft7faI7X7u/WGPOZN8X4L7DjsYItMo0icgdQboz5quNhVCJpgqJCjcf+TXxojKnzyoJXFopE5EBjTGfBL1ys+3VgjGkUkcexH0ifYa/cbIn1eAl2E7bPdZEx5v9CnxCRu+lkgCN2hpBICrz7mN8vpbKUfn75l8rPr8nY5OQBY8yssHN/HZugJEqwPpONMU/63NdXK5qIFGF/12uAs0K/yIpIH+DqTurW3Xsa7z6J8lk35+6sPCHHiuH9jaZuHf5uvW6OF3pdM4/Ddmv7D+B6bO+j67o4j0oA7eKlgNZ/7J97Dx8KlnvN+Guws6tcFcVx+sazXxfuxV4VOYT4rz4m0lDgrQjBvQ/2C1NnjhSRwRHKJ3j3vvo8K5XN9PMrZqn8/Brq3Ucai9NZYtSVAEAn3XCCM5f9WwzH9Sv4up6McJV9DLZLUyuva9N2YKCIDIlwvAkRyoLv7/hOXm+kfRIleO5ve38n4br6uwlXix3ncbzX1S2aY/l6f8N0+Lvy3r/geTr83RprqzHmd9hxP2BnflNJpgmKCk7ztxz7ofYetjtCqMuwVzquFZH5ItKh5U1EjhSR5bT19Y1nv0hexF5xO8era7qoA44WkcODBd4VlxuwV1064wC3hH7Ae1ObXo7tilGdlNoq1cvo51dc6kjd51eddz8htFBEjsIufulXcIKESIP6n8B2X/sPETkr0s4i8m1vetl41Xn3E8KOfyjw/zrZ5/fY72OdvafteFf3n8PO8lUadp7JxJbgRcUY8z52jMtQ4JKwc0/Czl4X7bG+xHbXOhAoCzvWSOx03OHqvPsJYdt39f4GnSoixWFlpdgJFF40xrzrHWtEJwl4sAXmi27OoxJAu3hlGW9AINgPwzxgOPbqwb7YwYA/DJ/VxRhTKyJnYK90VQBXiMjz2H7a/bDTAY7Dmyow3v0i8WZ68ds03xMWY6f7/F8ReQzbf3ocNrg/hZ2uMJI3gROBjSLyLPYDehr2d3J1J4Mllcpq+vmVcKn8/HoK23LwUxH5Jvbq9ZHY9Tj+i8iJRleex44x+aOIPI29Mv+uMeZBY8xXIvJ97Pon/yUir2LXDfkCOAK7/shR2Nnb4v3y+SfsGhrf986zDvvF9kzsQn8fRNjnNuxV+XOBN0TkGdre05ex4yDC/Qd2HZRKEfkudv2UodgkuKvfXSL8B/Y13uElfMF1UM7FJoOTseOYorEQ233qahE5EbsOytex6+o8jX1fQo8Vy/sb9BTwuNflcjv2f/gs7FTOl4ZsNxG43Tt+LXYBycKQ16XrlPWEWOYm1lvm3ei4wu4e7EwpG7FdDiYRMv96J8foD1yJvRr4ETaYfeod42a8tQfi3Y+QdQSieF2xriMQcXsizBMf8txaIsyzj51jfRN2cGkjdhGobxKyEnGk82Pn36/23pNm4A10JXm96a3DTT+/OrwXEbfPtM8vbHLwn9gZk/6JXfH+auzF0w6vk67XQXGwrWd/pW09nPD9DwUWYQflf4FdGX4bdqKAEiAnZNuIrz/K13UwdqHBOu+9ecer236d/Y6ws0/d7r0XwZXk59P9SvIrsAPcd2MTlphXkvfz94ZdYPOPEc69wNtnio/3ayDwAHaShNCV5Kd6x5oXz/tL+5Xki726BleHfww4Jmz7f/F+Fxu8Ou3xjrsCOMnv34PeYruJ98tQSvUQbzrEl4wxE1JdF5WexK5zcA1QhL3K9zXsF+G6KPbNxQ5+LsFe0d6EXbPi5bDt+njnuAQ7SPRt4EZjTDzrc6heTj+/VFdE5D+B84FhxluZPY5j/RK7iOUkY8wzcRxnFrYb3Y+NMUvjqVM66q3xQsegKKVU+hmK7eLwD+C/fe57H3YxwOuxVwv/DjwjIqPCtrsJe5W4Cts9Yj3waGd99JVSCuyXVRHpMFOYiJyG7Zb2lp/kJHQMVEjZN7Hjbz4htoUns0mvjBfagqJUD9MrkKo7ItLHeIugichsbDembq+IeQNLNwE/Mcb83ivLwXadedsYc7ZXdih2EbZFxpgbQvZ/HjjEGHN8wl+U6hX080t5V90/x3Z7rMVOjDAcO8vVl9gWj7U+jvcBdkzIFmzXq6Ox3cX6AD8yxvxnnPWdRe9uQemV8UJbUJRSKs2YyCs0R+NsbP/7h0OO1YKdOeqMkOlwz8AOLA+fbaka+KY3e5BSSkXyFXZyhYHYsSKXAccDjwLf9pOceO4G9gdmYMd7jcdOaHBavMlJNuit8UJn8VKqhxljJNV1UL3WcOBvxpjwmYi2YgPMUO/n4diBn9sjbAd2Fqe/JbGeKkPp55cyxgSwSUmijvcL7KrtSeG1mixN1vEzWFrHi7RIUPLz883gwYNTXQ2lVA/6fONG9j/0UDjiiOSeqKWFDzZv7lD8d2g0xhwS62GHinT4VI/G3+2HenNI0T3GmHtirUeYg7H9kMN9EvJ88L7JdOzjG75d2tF4oZTqSXV1dTQ2NsaVmGu88C8tEpTBgwez4fXXU10NpVQPWus4TPjhD6GiInknaWjAHTgw4lO/gHfjOfQXhK1SFiUXmo0xRfGcuwuCnU4zUnks26UdjRcqZRobcQ87rPXhAcBPA4HU1aeXecRxeAtwn3iC6smTKXn+eZgwAYAljsPs116DomR9dLbnOk7rzzWjR8d9PI0X/qVFgqKUyj4Tkh3Y6+txBw1K2uGFtBzE9wmRF7g7KOT54P1BIiJhV8XCt1NK7dqFe+CBrQ/7Aws0MUm480Le05II76974om4GzfCqFFJrUdocpIoGi/8S8P3SymVDV52HFiwAIC/OA43Og4k4EoVANu3c2MSk5OgPjHckmwr8A0R2S+s/Djs7DrbQ7brCwyJsB3AW0mroVKZpqUl1TXIOtWOA2vXdih3R4+2CcSWLUk5bzKSkyCNF/5ogqKUSrpqx4FVq1ofv+A4vBDy/DF79nD97t3w2mvxn2zTJsqPPZZYpzWJVvCKWJoFnCeBfYAftNbTThs5DXjWGLPHK16NDUA/DNu/BNhijNEB8koBNDXhDhgA2GXK3UBAW096QEkg0Nq9q6dESk7cBP2uNV74p128lFJJV7JzJ+TltT4+9dNPObWlBfr3twU5OfYWr/XrWTRuHN1d73R37uQX3peOeCQzgIjIVO/HYLPSmSLyMfCxMeYlERkEvINdzfdGAGPMJhF5GKgUkX2wM6vMBb5BSHAxxnwkIouBa0Xkc+ANbFA6FZicxJelVPprbsbt1y+2fbds4a6RI5mjSUxCzfbez7schwbAHTkSd+tWGDYsruPe6Dhcv2dPxPiTqOQkSOOFP5qgKKWSLyQ5AdoSk0Ras4Zfn3FGu+lOInF37OhYnxgl+QrXo2GP7/DuXwImYC/KORGq8WPgl0A5kAdsxi6c9kbYdj8HdgFXAAXA28B5xpinElN91UFZGa/efDMn6ZfXjLAv8LNPP2XRgQeyMNrf2YgRmpwkUeiHnTt8OO7bb8PQoTEdq9xx2rW094HWx4lOToLHT6JeFy/SYiX5oqIio7OyKNU7LXccPgB+WlMDZ56ZnJPU1FAxeTK7utikD3D9u+9CYSEA4jgb45kd5QgRMy+G/RZAXOfNdhovlFI9qWjMGDZs2BDXjFUaL/zTMShKqYRb6jhQVwfAZ96NZF1VXLaMym6Skxzg+q1bW5OTREnDPsUqnbW06IDrdBf8HenvqXeL9HtO8u9d44U/2sVLKZVwszZvBm8xvYs3b7Yf+iNGJP5ES5ZQdcklNHWxyb7AzzZujLuvcrg0nTZSpSvX5cabbmIvMAkYq92A0k/IdMI5QFm8v6OWlsSMrVMd3OE4XLp5s/1c9/set7RwY9++bd25vDEobt++tqU9Cf+bGi/80/dLKZV4ocnIiBF23vpEBuqbb+Z+x+GOSy6hsYvN9gN+9sorSZs3X6+Iqai5Ltdfey3g9XPXq/TppaWlNTnpQwKu3m7axJK+feM9iuqCO3Ikbt++UFsb/U4tLZSHJCehckhOchKk8cKfbH/9qgsrHQfq61NdDZVhVjiOnVbY+9t51nFgw4bEnuTTT3kP+KiLTfoDVz/zDIwdm9hzKxWrnBz6AM8Cbt++vKFfYNNHs51eI3gFPepB8Z0ZNap15imVeDm0JZHu8OEdk5TmyNOllPft226Wx9BENO4WM5VQmqCoTm0HvcKnfJv62GN8AK1/O9+tqUlO964u5AELnngCJk5M6nkkhpvKYq7L9VddldjAqy0x8WtpofzAA8nBdglV6e/iQICyQICDvcfu8OGwfbtNTJqb+XW/ftDYVfu6142vkymGk0HjhT/Z2zmyrIzGm28mXzPmTi144IGEDypWWWDKFK4O/dtJ1sxdncgHSqurobg4qecJztmolC+LFnF9SwvlixcnJlHJz4fPP0/eJBTZICdHr55nqNCWlPJjj+12+9AEtKeTE40X/mRvglJfTzVwjOMwCjg8QR9OzzoO3929G3JzE3K8VHp55kxOnjgRCgpSXRWVaUpKknfsm29m+a23RnzqUODSu++GGTOSd/4Q2gStYlJRQVlFRWKO1dSUmOMolYEu9fnd7eoUJqIaL/zJ3gSlrIx5wcV9vNmGEmE98N2EHS21Tr7lloQtaKd6t7WOw4RkXY0qKYE1a6ChAVyXR266ic6GROYCzJ6d+DpEoLOyKKWUiobGC/+yN0EZOhTKymDpUppmziQvziu+rzq28S58ZohNjsMXIY9Peu01KMqQNXcWLEh1DVQae9VxWlfEfhmYkKwpNefMgTVreNVxaADeCnlqGDD9yivbCno4odaAo5RSKhoaL/zJ3gQlaOxY8m65Je7DnHTRRfYe2nXvGnXZZdz+u9/ZheqAkz7+OO5zKZVqGxyHZ/H+3pOppIQNy5bxHvBm2FPHAeeVl4M3dWsqaMBRSikVDY0X/miCMmxYYhZwu+uuyOWVlez7u98B4H7zm/Cv/xr/uZRKsaIf/IDQdsDrf/CD5Iy7WrWKmgjFxwPfv+66lCYn2mSv4tLSYmcc6t8/9mM0N8OuXfbn/v17xdhHpeLS1NQ2q11+fsfngzN7RXouiTRe+KcJSg9xjz7a9qPv4X8KpZJi+fKuHyfCrFk82ckA4EMBXDfx5/RJA46K2cKFvLV4McfFM2h3yBDKGxoAKNt/fx0wr7JbYyMVhx2Gl7Ljfvhhh+9c5Ycdxr7A1T04g1eQxgt/9P3qAaWnnw7r12tyonqFeseh3knihIlTp1LvODz54IO8EeHp44HxBQUpn10uljnts31eexWioiK+5ARgxw7KDjmEstxcTU7i5SV6PaKb9TmUTw0N0NDA7SHJSVeu3r27x5MTjRf+aYLSE1av1tmwVO/Q0sISYEkST9H0+OMsgYjJCcCRAI89lvRFGJXKCA0NsHt3qmuR2VpaqBw4sGfOtWoV1YcdFl2S0tKiyUwUKgcOxB04sHWsL0B/6PEkRCWWJihKqejl5ODm5eEmK+GeNYt1nTx1AuDm5VE0YwaMHQvV1cmpgw9ODDelVAT19e3ve1JODvN6cH2M7cDyww7rfsNbb+XZww6z74kmKpFFaPk6AFjw4YedXxhOxd8YGi/80gRFKeXL3qYm2LkzsQedPp29XreuDRGePgE4+4IL7HnTIDGBtkGPfm9KqY6WDhoE9fXcP2hQz3a3Cqqra3+fJl4F3EGDeDmahCbb1NdTOXAgTWHFP92xo8su9e6xx0JtZ6tpJYfGC/+y/fUrpfzIy+PGRB+zpIQ/PvooN9J5t64TAJYuTfSZ46YBR6nEmBUIQGEhPwkEUjK+rGrIEGhp4cYhQ5J7oq99jYOxV/m7tf/+BOd4a4HUJG7pqq6O3w4a1C45yQMOhqi6drnDh/d4kqLxwp9sf/1KqWi1tND0+efMS+QxZ81ixbJlHdY4CSoC5gGF55yTyLMmjAYcpXqH0vAuXtu3x3fAlpbIrTETJnB5IMBZ0XQpKy1lwS9+AdjFcNcOHJiy7klppa6OqiFD+CSk6GBg3o4dXB4IdNl6ku9tC16SEpySGOL/nXdD44U/2f76lVLRyskhLxAgL1F9tWfP5pEHH2RLJ0+fABRfcIE934oV8Z2rpQVGj47vGGG0yV6p3udQgOZm7jr22PgOVFvLikS0xvTvTz62xWUt8PKgQfbKf7YmKtu3c8eQIYSOyDkYuPzdd6NqeZsTCHB5IND2WRzSipLMrl8aL/zr9vWLyBEi8qKI/J+IbBWRK7xyV0R2iMgm73ZWyD7Xish2EXlbRM5I5gtQSvWweGfPmjMHJk5k+e9/z1tdbFYMievW1dLCjZs2JeZYITTgKNWL5OQwJxCA3Fx7H48RI5iaiIs58+ZRGgjwU29R2hewV/7fGDQo/mNnmu3buePYY/kopCgfLzkpLPR1qEO92x0jR7Yrd4cPhy1b7C3BNF74E80cbC3AfGPMGyKyP7BRRJ7znltsjKkI3VhEjgOmA8OBw4E1InKMMabnpshQSiVWSwtMnw4tLbgvvogbx6GevPfeTseaBB0P9PnBD+I4S5icHKYn7miArgyslOpB/fpRADQDTd49dXUweHDq6tSTamu5a/jwdsnJocCl77zjOzkBukxAXS9pcRM4s5vGC/+6fb+MMX83xrzh/fw58H9AVxOGTwaWG2P2GGP+hp1Rb0wiKquUSpGWFjY9/jibnnqKKXEeagJtfYAjGQF8f8aMxK5On5PDMUmYRlQX3lJK9Yhrr2VOIMC8yy4D4Fng1SFD0m7WsYTYsgU2bWo3PmTJ8OGEThFwKHDp228nNEE7HGjXSWxDpDklY6fxwh9fCZ2IDAb+FXjNKyoVkTdF5H4ROcgrGwi8H7JbPRESGhG5WEQ2iMiGjz/+2H/NlVI9JzeXUYFA6y0eB9x2m+3nHcFxwNQLLkjsVMItLbBggb1B+5+VUiqT5OVxOPYiz8tAfbJnHetJW7bAhg38YeRI3NGjYV3kVbEK8JKToUMTevqLA4F2LSvuiScmPElR0Ys6QRGR/sBjwDxjzGfAncAQYBTwd+C24KYRdjcdCoy5xxhTZIwpOuSQQ/zWWynVU1paoLw8/uNUVYHrUj1/PpGGIQ4DzvvxjxM/nfCuXbiLF/Py4sUArF28mLXez/FK1sJb3ti/FSLyqYh8JiJ/FJEjo9jPFRHTya05bNu6TrabEu3rV0r1MNfl4kCAy6+6ivOBwh5cYDLZXh45kiUnnsiXQCG0my74cK+sEJizdWvCk5NQhSG3JSeemLDjarzwJ5oxKIjIPtjk5D+NMX8EMMZ8GPL8vUCN97AeOCJk90Lgg4TUVinVs7zk5Fc33cTPysr873/nnbBnDwD3z5/Pe2FPDwMasH2qp3/nO7BkSXz1jSQnh/HAyV4gnxAM6E586/Qmq0+xiOyHHQu7B5iJvcBTDrwoIscbY3Z3sfsSYHVYWT+v7MkI2z8DHYYUvR1DtZVSPWnRIo5ctCjVtUiokwMBTu7kuaimZU6Q2WHnumtM/KMUNF74122CIiIC3Af8nzHm9pDyrxtj/u49PAdaZwt9EnhIRG7HJr1HA68ntNZKqcRqamqbyrdfP5gxwyYnt96Ke9NN7BvjYatKS9tNBxlqKDD9ttv4bP581kLyroj178/EJAW3JA16vAg4CjjWGLMdQETeBLYBlwC3d7ajMaYee5GolYhcgP2sfyDCLo3GmPUJqrdSSqlOaLzwJ5oWlHHABcCfRWSTV/YzYIaIjMJma3XYNwJjzFYReQR4CzsD2H/oDF5KpblVq3AvuYQc4GTg5BkzoKGBFWVljIDYEpSVK2np4umS666DefM4YN48zo7l+CmWxFlZzgbWB4MNgDHmbyLyCnYSkk4DTidmAh9ir34llYgcAfwB2018L3CPMeY3IuJiA2lwwOHPjDFPe/tcC1wIBIDLjTFJr6dSKs2sXw+7drUvGz8ecnPtz+vWQXMzTJgQ1UrxcVuzxk6pv2ZNQg6n8cK/bn/Lxph1RB5X8nQX+/wS+GUc9VJK9aS8PIZi+2MGu0JRWBj7PP5r1nD7uefyWSdPF0KXq/3GpaUFnnsO9tmnbc2WVavgzDMTfqokBZzhwBMRyrcCvuZeFpFC4DtApTEmUr74PRH5Atvd+X+BRcaYlf6q245OS6+U8u31ceNYA3wZUuY+/7xNSIAlp5xCPeBu3AijRiW9PtVnnEFJIED1GWckbJFfjRf+6LTMSik480xKAoG28Rl+hM60sm4drF3Lr884o9PkBGD2LbdAaan/c3WmublttpUtW3CLi7n9DG+N2F27qC4uTty5QsS48FZ+cAZD73Zx2GEPBv4R4XSfAAdFKO/KBd5pIzXXPwVcBpwB/BC7tMLjIlLi8xytdFp6lTVaWuyFD5UQY156ie5GdR8FbS0qSVbixcKSJyJ994+Nxgt/eqCdTCmVEVpaoLYWRozwtduSU05h9p49kJPDr045pd0VsB7z4os8W1zMdwMByMnhcOCA4HP9+7cGm0SKo8m+0RhT1M02HWY+JLZp8X8E/K8x5s0OJzDmsnYHF3kcWA/cDMQ9z3PYtPTjsNPS/wjYgG1l+Qc2eQnt0xxxWnql0k5jIxXFxSyoqUlK62xWWbuW6tNOY3s3m/3otddg2LAeqVKQO3lyQlpQNF74py0oSilr7Vqe9FbQ9WO2lxREIw/IBzsQP5HOPNMmJwAjRnBxIMD0Hpj1JUkLb/2DyGtZHkTkK2WR6yYyBjtRWqSrYR143aoeBQpF5OvRnqeTcyd0WnpdN0ullRUrYMUKdgEVxcWtj6mp6XZXFWLNGlixgofCkpOhdBz3eAz0WOtJqOMSeCyNF/5oC4rqXF1dQldpVWlu4kTOTuKX+gOAeY89BlOmJPbALS1QX2+TpMJCW9YDf7tC9PPU+7QV26843HHYyUeiNRM7JuQhH/sEY2KkK3LRHSAJ09IbY+4B7gEoKiqKuW5Kxa2piRXTprHXe7gLcKdNA+zFl9JetC5JRBs22PGDCfh8ffKMM3gjrOwY4PyXXuL1U06B/v1by09O0ft6XiDArxM0zbDGC3+0BUV1qmLIEDuzhlLRaGjo9Kn9gJ/W1CQ+OQF49FF+PWQI1YMG2cdbtnB/Zq+u/CQwVkSOChZ43aXGEXlu+g5EZF/s4POnjTFRNTmISA52UOV7xpjOf5ldH6PTaelDNgufln66iPQVkW+g09KrdJeXx9RAgPM+/BB/nWF7h/dOPNF2s6qutheCYrVqFV+EFR0DnP/88zB+PGMCASjqrmeTIoPjRXc0QVGd2g9wx42z4xJU+tu1y7Ym9KSmptZb+cCBnY4/ufr555PXT3vGDK5+7DFaG/9HjOAnPXS1LcZBj925Fzt1+xMiMllEzsbO0vI+cHdwIxEZJCItInJ9hGMUY5v9IzbXi8gMEVkuIj8Ske+IyHTgRWA0cE101YwoOC39qSKyybudBfxaRP7szc//HeBKsNPSA8Fp6Vej09KrTJGfz9QdOxgFrYlKC8CyZSmrUk9xv/oKd+ZMmDcvtgPU1PBIcTHh3yzOf/jh1lm7eiONF/5oFy/VqUsDASrjXG1b9ZDmZv5y4IEc881v2pm0cnN7ZK54d8CAiOUd1k1Jdl2mTIl9SuQ4JOMKjzFmt4icCiwGHsQ2oz+PHc8RulBAsNdApGrMxM7i0lmn+L8BhwK3YgPTF8CfgEnxrEOi09KrrFJQwJRAALZvZ8uxx9IEVJaUMC8QgJKkTW6UPp57zn932poaVkye3K7v0TDsBVHy8hJYufSj8cIfTVBUl/QPJDO81a8ffwT485/hwAMpO+SQLrtcJURzc8TiHOBnO3ZAQUFyz5uT0zMLdnUiiQtvYYx5Dzi3m23q6GQcpTFmcjf7rgdOjbV+SqkQubkUYVtQNgG/nTmTy1taYNasxJ2jvh42bYIkTZkerSP32Yf8r76iEXCbm3GHD4etW6NLUlauZMW557b27wQ7UOK8LJgJTeOFf9rFS3WpNBDo8Wn9lH/HBQKUhdwSnpyEdh1raYGWFtxOZuIq27mzfXKSyG5n06dzY79+3NivH2v79k3ccWOUpCZ7pVQmKSykOBBgytatgL0UXXXhhbBkSeLO8dRTfDK5y++RPaO5mdJ99mEs9lK629wMw4fD9m4mCV6xgj+GJScjgPOeeKLXJydBGi/8yfbXr5TqTlMTi4LJQEsLbt++uD6SgyV9+7ZfzDEey5dzfSDA9bEuKplAwStiGnCUUgD0789YoAhoBKouuQQqK+NLVOrr7RTGc+dycDyfeZs2wdq1se8fqrmZSYEA3/Ueus3N4Lptz69caV93fb19vGIFK6dNI3RxjRHA1CeeSHmLUE/ReOGf9uBRqhepdxyCodAFSMSX+Lw8FgaPk5ODGwjg+hibNLsXT7uZ7QFEKRWisJBJgQBs2sSG0aNtN6j58zkS+Mns2bEdc80aPrnwwviSE4CKCjtFcAInvRkGjIcOg91fP/dcngbchgZYtIi106axKeT544HvP/ZY1iQnQRov/NEEpQfd7zj8JAv6WqrUKQwEKHUc8vPyYOfOxJ/Aa0GJxN29O/kLaU2fjvvoo0wExqdB4hPLUr1KqV6uf39OBr7ELrXdDFBe3vb8gAEwd250x5o1i4MTMZalOgmLfQcCTAQKfFywGgVMScZ6WBlA44U/mqD0oJ6a+lRlt/xk/Z01N3c67sTdsyc5A9YHDMBtamI2NvkCOx9iURr8LyVx4S2lVCYbOpRTAwGorSV3uF1Db+0NN7Q+fSRwVLQJSgYYAXYciud47DRPDB0K2KQkaMLDD2dtcqLxwh9NUJRSXWtq6nQ6Yb/dvSLZ5DisBNzvfAfWrKHJcagErgf6hE87uXw5RcuXx3W+RNIme6VUp4YNS/lYuR4R9hpzAwEmhDzOC3ucrTRe+KMJilIqJu6ePW33cbaeuN/7nh1YGXycmwu7d9ufW1pSOp2wUkrFrakJFi1qe5yfDwsWpKw6CVVdDaNGwQhvycqlS+1Yl9mzbSvKnXfCu+/a50pLobAwVTVVGUSjvlKqcw0NlA8c2KHY3b27LWlIRPIQcow8L/GJ9Fw6Sea89kqpXqa+nvW33soXwAbgfKCwNyQo1dWsmTmTiTNmtI5zef3CC+0gebCD5EtLWett7hYUxL4CfQbTeOFfekZ+pVTq1dXxqyFDiLiKSchg+EWOw8IoW1GedJzWefB/9otfQFkZo0KTHUjbhCQSDThKqaiMGMFYb4avYaNHc3hv6fp1xRUcALYFxTMm+IO3htpYvJXiwd+q872Mxgt/MuebgFIquVatYlHYtI9fhvycg7cIY5iFO3dGnVR86d3c666DhQttYbJn/koiDThKKV9Gjeo9yQnAzp1tCUlQINCuLDfscbbSeOGPJihKqVbNnZTvC/xsxw4IH7QOkcu64JaXw1VXZVRLSSTaZK+UUioaGi/8y+xvCEqppMsFFr7zDhQUxH2sqe++a4+T4clJkAYcpVRGWLMGGhqgpCRxx7zzTnjlFfvzvHlQVGR/rqiwK9cvXGgHzt98M2zd2rZfeXlWdvXSeOFP7/iWoJRKrkQFk142e4suvKWUygilpby+bZvtapWIJKWqimevuIJXvYcutA2Sv+YaPgMmTppkE5SyMrYAa4FGwH38cZuwZFmSovHCH03olFJQU8MdYeNPkuFlx4Fly5J+np4QXHjL700ppXrEmjW2lcPzNPDZzJntt1mxwt78qKpiTUhyEm5MXh4TH3igLREKBBgRCDDMe95tbrYLO9bV+TtvBtN44Z8mKEop+PxzPkrCYZ90HNhi5+1a6zi8DK3rm/QGfWK4KaVUjygr44PSUvtzcTEnRNpm2jTenDYtugtHVVVQXMyaK65gXUjxeIBx49oKdu6M2EozcZ99OB84GC9JGTYMiouzJlHReOGPdvFSSrVzKHDpE0+0FcSxUvzZzzxjF+oCPoDIUxZnKB30qJTKGBUVnA2wfXv78h//mO2//z3H//jHMGNG5H2rqmDlSl548UV7kSnEeGBiVRXMndt9HZqbOQbY7ji8DrhffQWrVuGuW9fru3tpvPBPExSVHmpqWDF5cuvDfGBCb5qK0aenHYcvgKnvvMPaIUNoBKa+9BKMH5+4k9x5Jyu8q2uFgOv1H2b//e1VrUSYOLH1x/NrauxqymeemZhjK6WU6lxxMYf379/2uKKi4zZLlvD9lpauJy6pqeGhF1/kL2HFJwOn/uY30SUnIc7aZx+2f/UVnwQLZs+2sa2XJynKH01QVGotXcqTF17IF0At9ovy7Lvvhn79Ulyx1DrrvvugpQUKCphQXc1dJSU8csopnPf88zBhQvwnqKykev582l1L6+zqWaL0wsREr4gppdJWWZm9dae7mDJpEgXPPdchQTn1e9+DYBcyP5qbuTw3l/e++gqA9776iiMbG3t9gqLxwh9NUFRq1dfzRsjDXLBXU7LdrFmtP24oKeEToAFYedpp7Ad89+GHYerU2I5dXs7yG25ge/dbqi5ok71SqldYt84umBsSd1pVVLD2mms6dO2aAO1ayH1rbubI2PfOOBov/NMERaXOkiWsvOEGAI4CfnTddZCfn9o6paGiW27h9Wuu4SNgk1f23YaG2A7muqy46SZqQ4qGAlOrquKqY7bSgKOUSksrV9oJSqJpQRk9GvbZp31ZRQVUV7P2z39mbUjxBOx4wgmnnx5b60kW03jhjyYoqmeVlfHqzTcD8AltX7gPAHDdrvdtbub1fv0Yk21jUxYs4NLmZmhq4v7Fi3kPWH3FFUwaMMBft6yFC/njrbeyJaRoGDD9ttt89yFWekVMKZXG6upg/fqoNt1bWkqfffZp13vhs2uu4faw7SYAE267DVavTtw4xSyh8cI/TVD8aG7mzX79OD7bviAn0oYNPAsUAcXAF8B5F1wQXd/T3FzG/PjHSa1e2vKugvVfvBiA9UBOSQkT9+yJ3CwfbsECnly8mDdDikYAU3/xC7sCsIqJBhylVFoqLGxb2T0BJuAlJ/PmacyIkcYLfzRBidauXWw58ED+COzrOAzTJMWfBQt4a/Fi6oAxwFnl5fC973He8uVQXh79cZYsSVIFM8N5l10G9fVUP/44pwKMGtX9TvPm8eTvftdurM/xwPevuy665n/VKQ04Sqm0s2IFtdOmUQdMWrrUXsTqrIdCVRXrgZO6OeSEUaM0MYmTxgt/9P2KVk4OI771LQAeSXFVMs68eTy9eDGPAK+DHRh37bUwYoS/5CREXRxrc2S0ykpYsYKDse9l3ejRsHRp59uXlvJ0WHJyAvD9q67qvkud6lKwyT4ZC2+JyBEiskJEPhWRz0TkjyIS1ZhSETGd3EaFbddHRK4VkToRaRaRzSJybpRVVEqlq48/5nBs0vHZ++93XPskVH09I6BD8nHARRfxU2i9ccEFyalrltB44Z+2oEQrN9f2uxwwgL1Ag/cFuUBbUrr34IO8jreg0ze/CZMmxX3Iwd/8ZtzHyHSrvftJF17I2JaWjrOfzZnD0/fey+shRScAZ195JSxa1EO17N2ScYVHRPYDXgD2ADMBA5QDL4rI8caY3VEcZilwd1hZ+CyhNwELgJ8DG4HpwKMiUmyMeTr2V6CUSqm5czkg2nGFixZxQKR4cNddHHDXXYmtV5bTeOGPJih+9O+PW1CA29BA8N/WTWV9MsGCBaxpagLsgGw2bUrMcRN1nAx11jnncNaGDTz0/vusBvpccgljvvqqbbB7hOSkCCi+7LLIi3WpdHIRdmK7Y40x2wFE5E1gG3AJdBi7GskOY0ynI2RF5FBssFlkjAn+QbwoIkOBRYAmKEoplf56bbzQLl5+5OTAu+/i5ubGd5zBg7PnC/aAAUzcf3/c/fen8LLLUl2b3mPFCqirY7D38GlgQ2kpzY5Ds+OwOiw5GQMUX3SR7SKmEiKJTfZnA+uDwQbAGPM34BVgcoKqfwawL1AdVl4NfFNEvpGg8yilVNbTeOGfJih+5eTA7t3EPLR42DCq3n+fhtGjYcOGRNYsPV17LTQ12Zt+OU64k04/neuB67Hdt57FXs4IvRQyBjjroosgGc312ToWyJOkgDMc2s0GHbQVOC7Kqs0VkT0i8oWIvCAi/xbhHHugw3qdW737aM+jlEpHS5farum5uW3jS6qqYOHC9tvdfLPdxpv+v9XChW375+baCWpKS+1xZ8+2ZStW9MAL6T00XvijCUqMcgIBro5lx6Ym9gLNAC0tCa2TykKrV9MnELC3uXM79NlManIyYED7Lo4FBVn3Ny0ivm9AvohsCLldHHbYg4F/RDjdJ8BBUVSrGrgUmAhcDAwAXhCRCWHnaDLGmAjnCD6vlMpgG776Cverr6j53e/Y6zi8esUVfHbrre03KivD/eor+MUv2hV/duutvPrVV+z1bkDb53tLC3/86ivenDYNli3rgVfSO2i88EfHoMRhv1gGyDc0cHm/fvDSSwmdozxt3Xkn7N4NCxb0zPmGD4fNm21LV7aYMwfWrqVm2zbC2+ROheQkJ0CjN7YoqPzjjylrbob+/ZNyvrQjEtvf2VdfNRpjuvvnDw8EYHsJdMsYEzrdzn+LyBPYK2zl2LkqgseK+RxKqTQ3axZFQNGcOa1FJ0HHqYLLy3F/8Qu44YZ2xQdcdRUnFRa2Xy0+OBHLrFl8PycHqqs7rkCvItN44VsWfYtLI7ujmVShl9i8GXbt6rHTldfWUjZyJOy/P6xda5uhe7kN995LTVjZGCDZbRn5gQCzw7t4jR9vuy5mS4IYW8Dpbot/EPmK1EFEvlLWJWPM5yLyX8CFIcWfAAeJiIRdFTso5HmlVCabNav7hXyvvdbewnU30+OSJVm/LplvGi980S5eqmtTp9oEo6QEGhv973/XXfYqSw9ya2tx//QnGDfOTmkcdqW/V1m4kPqwoiLgrLlzKcbrmHrnnUk7fWFYK+Jf/vxnaG5O2vnSSvCKmN9b97Zi+/yGOw54K9ba0v4K2FagLzAkwjmI4zxKKaXCabzwTRMU1aW6xx+HpiY+WLYstgRl5UrbR3XVqh6/2uJu2oT73HNQH/4VvpdwXf54661sCisuPvpoOxgSqAFeLy3tkff++8Axu3dnXxevxAecJ4GxInJU26lkMDDOe85nNeUA4N+B10KKVwNfAj8M27wE2OLNAqOUUioRNF74pgmK6tLgQAAKCzk8EIBhw/wfYOlSuO8+uPJK6i+5JOH1C1cccmv9116woPe1otx8M4/cdBNvhhSNwr5uJkxot+nTwPpLLul6xfkEOC4QyIouda2SF3DuBeqAJ0RksoicDTwBvE/IYloiMkhEWkTk+pCyBSJyr4icLyITRGQmdrrJAmibfNAY8xGwGLhWRH7qbXsndtjSz+J+b5RSqVdZyWeO0+5GyJgUABYssOXhs3t1p7i47Zg93EsiI2m88K3bBEVEjhCRF0Xk/0Rkq4hc4ZUfLCLPicg27/6gkH2uFZHtIvK2iJyRrMqrDLByJaxZ0/Z406bEfJh18mE6KhCgyLvt55W5zz1nu6j1liSlspLlZWXt2lSPB6ZcdRVFgUDroPg+3/kOE4FjsJc//nrhhbBliwaTRElSwPFW/j0Vu5Lvg8B/An8DTjXGhA7oEsCh/ef429hm998Cz2EX6fobMN4Y899hp/o5diDkFcAz2Ctu5xljnvL9XiilEm/NGj5xnNYbo0b523/5cm6HdrfP7r23/TaLF9tYUljo79jDhrHWO+b6mTOjiytDhtixodlI44Vv0aRnLcB8Y8wbIrI/sFFEngNmAc8bYxaJyEJgIXCNiBwHTMf2iTscWCMixxhjYpjySvUaRUUUNjVBdTV7Fy+mT0lJXId74dZbObWbQXwnAV8ArwLuqlW4s2bZmdPmzIH8/LjOnzJLllA9f367yciPA75/3XXguu23XbPGTsExeDDu++/zETB45EheACY6DsyY0UOVVn4ZY94Dzu1mmzrCZlHxgkVUAcP7TC73bkql3BeOwxdA/qefZk9X0a786U/81vvxGOD8JM38ORbaz9YVjYoKzgbOrqmxjwsKut/n29+GvDx/51Hd6q3xotsWFGPM340xb3g/fw78HzAQu0LlA95mDwBTvJ8nA8uNMXu8fmnbsZMKqWxWXQ0NDVBRQZ9YpmcOc2oUxxgbCHBqINA6vYX71FO4N9wAq1fHff6UqK5m6SWXtEtOhgHnlZd3TE5CFRUxBjvNxkPAOmB1SYkdp6ILbcUnOU32SmWle4Aq6NGZHzPFLoB166LbuKqKjxyHtX/6U1Sb10DH6YdLSrqOKwAVFVBba28TJ3Z/oupq/61AvYnGC198jUHxBt78K3bwzGHGmL+DTWKAQ73NBmL7vgXVe2Xhx7o4uPDMxx9/HEPVlYrOCOz4jH2DBStXZl53rxUrWDJzJnUhRUOB6bfdFnmKyLB9zwoEOCsQoOSccwC70rx7xRWsnjYtSRXOAsnrU6xUVpr3b/+GO2qUXmUPOvNM3FGjmAd8ACzZti26saArV3IHsDbK02yADutlfbZsWefjFidO5APH4QPHSeoskb2Kxgvfok5QRKQ/8BgwzxjzWVebRijrsMCLMeYeY0yRMabokEMOibYaSvl2ciDAlECAYA9b9/HH7YJTmZCk1NTAihXcNW1au+mEBwMld9/d8apXdwoLOQ440nv4BWRvn+B4acBRKrHWroWNG7Nrso2ujBoFGzeSd911gL3a222SUlnJCy++2K5oAuB+61u43/oWB/zmN+23v+8+O7lKBKvffx/KyqC4GMpDevZMmMDh3/oWh3/rW3D00T5fVJbSeOFbVK9eRPbBJif/aYz5o1f8oYh83RjzdxH5OvCRV14PHBGyeyE2+VcqpY7EZuTvAUsef5zZkya1rYybbtasga++onLyZJrCnioEZj3wgG2C96uykvMqK2HBAtzFi3kTaDntNM576SW7yKKKXqwrAyulOtXojUM5Ms5xKO95i8gemYAuxemkHnh927bI/eYrK3lh/nxeDis+DmD9+sgH9Facj2Qw2CQpPx+GDm17oqzM3lT0NF741u27JSIC3Af8nzHm9pCnngRmAou8+ydCyh8Skduxg+SPBl5PZKWVisUEL1C96jicFOsX/J6wfj2/PuMM27oRpgCY/fDDdgHNeOTlcSjQhB2bsuKUU5jaywJ50mnA6UBEjgD+gP1T3QvcY4z5jYgcDDyM/c5Th5395R/ePtdiVy0OAJcbY55JQdVVmsg/80y72Guc/1v3e/c/chyOyvTPtilTcNetY9eLL1IBvAmMGTIE3nmnbZuqKtbMn0/oKJWTgVO/8x2YMqXr40dYbf6AqioOOOSQ+GONsjRe+BbNuzUOuAD4s4hs8sp+hk1MHhGRC7EXpX8AYIzZKiKPYFeWbAH+Q2fwUunkpDQPVkvHjYuYnADMSURyAlBWxqW5uWy45hqKqqtZm67JWrrTgBNOZ31U8QnOChUn9/TT7f1zz+Em5IgpNGoUrFlD/4UL4dZbbVevujpmDx4MdXU2Obniio7JyW9+4392rqC5c+OttQqn8cKXbt8tY8w6Io8rATitk31+CfwyjnqpbNbSYld/Hzw41TVJiVlvv82vjz22Q5KSB4ntm71gAUULFkBLCxO+/e3EHTdb6BWxDrwJU4KTp3wuIqGzPk7wNnsAO373GkJmfQT+JiLBWR//p2drrpKt0XHIf/vt9l2Fkik4W6PjUOt19wIYluYXqLo0fTpubS27nnqKCuCN99/nhDvv5NkrruDVkM3iTk5U4mm88E1XklfpZ/167hgyxCYp2aa+nkURkhOAeTU1drBioi1dyoohQxJ/3N5OBz12SWd9VKHyL7ooJetPueecw7BzzmE5MMybxTBjjRoFK1fS32vd2AA8W1raLjkZjyYnaUnjhW/Z/epVemlpgcZGaGzkI+C3gwZx+Y4d9rmcnMxdXDEaDQ0AlA8aREtI8X7Ymbb2A9hnn+ScOyfHHl/5o1fEOhU+66Mdyhh50whlEWd9xC6TQVFRUYfnVQYIm8a2x3hrPbnTp8Py5ampQ5J8QPsZiMYDEzU5SU8aL3zTd0ulj5oaFp17Lnu9h58A7kB7MTUXWJgJTfO7dsU080zwdYbKBa7eupWlw4cz65VXYOzYBFQwglmzOCvCIEmlYqGzPqq01MuSk3AnAROrqnr12JF6x6HwnXeytvt3ttEuXip9TJnCwkCAn73ySmZmzjU1LD3wQDsDTXNz9PtF2DYHWPjuuzBsGLMCgeQlJyp22mTfQRSzPkLHWR+ni0hfEfkGOuujUl1bupTVERZHrAPeKC3ttV/e33McqoFXhwyxEwNkGo0XvmmCotLP2LGUbdxIH8L+QFtaOtkhfdQBbr9+3NGvX3Q7tLTgRti2bMcOKCyMsINKKxpwwgVnfTxVRDZ5t7Owsz6eLiLbgNO9xxhjtgLBWR9Xo7M+KtW5pUt5+sILibSiyQfYbP+e99/vlUnKkVddxX7As8C6IUPY4DiZN05V44Uv2f3qVfoaNYrrAwGor8cdNIhmoLxvX8oyoZuXD27fvqmugoqV9inuQGd9VCpJqqupufBCNoQUjQUmXXZZ6+Ndv/sdFdgk5XjHYezRR0NtbU/XNDkWLSL31lsBWOMVFe3albr6+KXxwjd9t1TGaAFudBybuKS5j4DfOg6Xd1FXN2Tqy9ay3bsTO5WwSh4NOEqpnlBdTc3MmR2Tk/vua7fIYv/t22HVqtbB81u2bWP2sGG9Jkm5+LrroKmJyt/9jibg5eHDOXnHDigoSHXVuqfxwjft4qXSW2EhbiCAu3MnYJemjvTFvit3OA6sj9QonmDFxbjPtC2C/Qlweyd1jZic7NmjyUkm0T7FSqlkW7aMJ8OSkzF0TE4AKC/HveoqFngP64El27bBsGEwe7adpjgNNDpObAtyui5UVhKMki8AawcObJ0FM61pvPAtu1+9yliu4+BG2ZJyaU+2uEycaOu1ZQvuyJF8Bvzacbg6WIeWlojduqJ9LSqN6BUxpRLqDcdhF3Dyhx/27mnlo7VsGU+WlPBGSFERcNYDD0BJScftR42CUaPov2EDvPgiYJOUe7Zto/+2bZyFt+BviuVXVUFRUcz7zykvh927uf3mm1kL7B04kBzS/O9G44Vv+m6pzJCXZ7/ENze3DioPtkJ09uX+dsfhp4lYuXjgQD5qaODQGJOIL+i61UeTkwylAUephDqhvBz27IG8vFRXJXk2bGDtiSdyJHBUd5/9dXUdkpPizpKTUBUVuCtXAvDZTTcRnE7vrNhqnDCNjkP+ww/HPxXytdcCsO/NNwPwsld8sp/ZM3uaxgvf9N1SmcXHP/hPE/XFf8eO1mWvozZihE08vEH+ndHkJMNpwFEqcbwvnr3axx+zFhgGHOVjtxOA4upqmDGj+429lhSAA556CjZt8lnJ5Mh/4AEYPz5hxyu97Tb45z+pKCtjF7B60CAmpXMrisYLX/TdUpklJ8eO1aBtBqwbw1onrv/005gWS+xpwdehlFIqS3z727jl5XDIId1ve8EFuMGfBw+OLjkJd999uKtWtZ47pbpr+fFr3jwAFnzta/DPf9qy3tz6lmU0QVGZx7sK4e7e3VoUupZI+YEHUpbOV1GC9GpKZtMme6WUX3l50bcUFRbG36oU0prSa3mJSlrTeOGbvlsqc4XMeOV++im0tFA+YABl776bHsnJ9u386thjU10LlSwacJRSSkVD44Vv+m6p3sHr0pWUlpMhQ2iqqyPPz3iRLVv49ciRfNnFJu1m91KZRwOOUkqpaGi88E3XQVG9SzJaTpqbqQI+inb9lQ0bqBg5ki9CivYF3Hffbb2Bnd2rs3VSVAZI4rz2InKEiKwQkU9F5DMR+aOIHBnFfkUico+I1IrIFyLynoj8p4h8I8K2dSJiItym+H8zlFJKdUrjhW+azikVQYvjkFNQADt22MfAEmCW43B4V60e69ZRecop7Aop2g+4+u23bX/iMJ/R/YrzKo0l4YqYiOyHXYNsDzATMEA58KKIHG+M2d3F7tOB4cBvga3AQOA6YIOIjDLGvB+2/TPQNg7X83bcL0IppVR7Gi980QRFqQi+AA5oarIPNm/GPfZY3KYm/gBMdxwGhycUK1Zwx7Rp7AWaQor7Aws2b+6wFou7ebO9HzmST/BWuwcu3b1bV5PPFMlrsr8IOwPpscaY7fZU8iawDbgEWpc1iOQWY8zH7asprwB/8457fdj2jcaY9YmquFJKqQg0XvimCYpS3cnPh61bcevqYNYsNm3b1vbcnXeypLSUL4GPwnbLA+a99hqMGNHxmGFl4fuqDJC8gHM2sD4YbACMMX/zAsdkugg44cHGK3tXRD7GXh1TSinV0zRe+KZjUJSK4IC334atW9sKCgpg7FhYu5ZRXusHABdcwOwLLuiQYOQD8156CYqKujyP+8wz7R4v7dcPdu3qZGuVVpLXp3g4sCVC+VbgOP/VlH8BDgX+L8LT3/P6Hu8RkfU6/kQppZJA44Vv2oKiVCRhXbJauS6N995LfrCL1/Ll3P/ggx026wPRrZg7cSLuE0+0L8uARSYV8VwRyxeRDSGP7zHG3BPy+GDgHxH2+wQ4yM+JRCQHuAv4GLgv7OmngD9hm/MPA0qBx0XkAmNMtZ/zKKWisH49y8eNA2yfnDHdjT1csoTll1zCGOCoDBunWO84FN5yCyxYkPRzPe04fOb9PD1d10DTeOGbJihK+bFwIfnB1XCrqvjDFVfwXtgmhwKXPvxw9McsLk5U7VRmaDTGdN20Zgc6hpMYzlUFnAT8uzGmXRAzxlzW7uAijwPrgZsBTVCUSoRNm1g7ejQTXnuNpePGURfy1Jju9v34Y2qBAmxCkyk+cBweAq5ubARgu+MwtKoK5s5Nyvn+QtvYz+rDDqMkXZOU2GRtvNAERalwBQW2a1ZNTcfnKiup+d3vADsD119DnjoS+MkFF7DkwQdh6tSeqKlKteT0Kf4H9qpYuIOIfKUsIhG5GbgYmGmMeba77Y0xARF5FLhFRL5ujPl7tOdSSnWiuZl1wF9PPLHDxaxuzZ2LO2oUHHJI4uuVRIdv3EjR6NGtj+uBoTt3Ju18855/Hv75z7aCdE1ONF74ogmKUuGqqyEvL/Jz27ezIULxUcCP7r4bpk9n9oknJrFyKm0kb9DjVmy/4nDHAW9FcwAR+TmwELjcGNOxD2IXu3r3ka7IKdVrLXUccoCSJHSlaoF2yclgYPorr3S/Y14enHlmwuuTdKNGsV9Pnm/ChJ48W2w0XvimCYpS4UpLYdQoWL48qs2PAc7/zW9g9mxbkKRmbJVmkhdwngQqROQoY8xf7alkMDAOG0S6qZZcjp0H/+fGmN9Fe1Kv//EPgPeMMQ2xVFypjNTS0tr16n4vUflRIhKVLVtY4o05CToSmPXaa91OoJLpxm7eHHHtr6yl8cI3ncVLqVBDhnD/tm0sf/RRXnccmDSp7bmFC1m5alWHXQ4Am9So7JK8WVnuBeqAJ0RksoicDTwBvA/c3XZ6GSQiLSJyfUjZdKASWA28ICJjQ27HhWw3Q0SWi8iPROQ73n4vAqOBa+J+b5TKUO+B/65YkWzZwj0jR1IfVvwBsDYbWtlHjGjXE+GOG27gfseBJUtSV6dU0njhm7agKBXq2ms57pJLWA3UAqOee459ARYs4MnFi9nU2X7r1vHJKadw8ObNvDlyJHnAkRk264ryKUlXxIwxu0XkVGAx8CC2Gf15YJ4xJnQOagEc2l9omuSVT/JuoV4CJng//w07n8Ot2P7LX2BnaJlkjHkGpbJJTg7uK69ASwvuKafQgu3yNSvWz/DaWu4aOZLQy8qFwOxgt64sXIy3dSr+bJ1GX+OFb5qgKBVq9mzGfvUVfUpLeRpYCYxyHP4CvBGy2ShgSrBv8NChUFjIwRddBPn5HH/00Szato0fOQ6Ha5LSuyWnyR5jzHvAud1sU0fYTC3GmFnArCiOvx44NeYKKtXbjB0LLS2tD+uIMUnZvp27hg9vl5wcDszevDnyor1ZYMLWrTQPH856oGr+fErz8mDWrLiPu8JxmPrOOzB4cEz7L3EcZu/Zk7TP8Q40XviiXbyUCjd3LsO8H98CHoJ2A+NPAKZcdZWd5aumBior7QfkXXfZGcCWLqUZWAp85Dg9WXPVk5LXZK+USoVgS4qnDjsmJWrbt3PHscd2SE4u3ro1a5MTAIYNsz0RgEbgtxdeaCejidPUzZtjTk4AZm/c2HOfyRovfNMERfVKnzkOH4XcqKtLyHGLgLMvuwwWLep8o6FDcfffny+BJV5dwmni0gtowFGq9xk7Fve111ofRj36t66OqmOPbevKhF2/5OKtW2HYsM72yhqnvvMO7ubNFGFXEPztzJnxJynxJn2jRnUouiNZsVnjhW/Z/epVVPY6DruAA+JoSu1pd2E7SQJcDwnr83sM2BaTruTnw/btuCNH2scRzn1oQUFC6qNSKHmzsiilUqmoCHfzZvtzNP/jdXVUDRlCY0jRocCct9+2XYBV63eH4Lv5CVA5cybzHAdmzEhVrTq4NPh7TzSNF75pC4rq1h3A7ZCwVoie9hm061vcpVmz+NJxWNfJ05uAL8Nn94okPx927LC3d97p+PyOHdHVRymlVM8bMcLewls/GhtZGnqVvb6e30ZITi7V5CSiSe++i7t1K6Owq79XlpRQ5ThUOU7kxZF7WjZ3xUszms6pbpXuvz9ffv55xrSeAFwNfIlNrCqBBYMG0T+KFqD3HnyQ+7t4/i3vdtZzzzEm0gZ1dTDcWzMpL08Tkd5Mr4gplX3y85kVvOjU0EDloEE0hT4NXJpBvQ16nLc2SvCTsyn0uebmHq5MD9J44Zu+W6p7TU2tA9wyRiDAvsB+jkMzUAEsHDKE3K4CR2kpW8KKxgDjQx7XAk8DfwXGTJ8OCxaA67Zd+Wlp4TPvQ3a/hgb9B+vNNOAolX0aG6kcMqT1YVPIUwcDpe++qwsURqF4xw6Km5tZMWRIh7jbK2m88E27eKnoTJxoWwaCt9raVNfIt0UAWzr5KFywgJo77+T1sOKJwAGBQOttTFUVk/DGt/zpT9DUBP/zP207DB3aum2OTjHc++mgR6WyS34+8157jSbaJyd5wOWanESvoAAGD253Ea9i2rT06OaVLBovfMnuV6+i9tmLL9IErMCO6bh++HD6ZMC87iXALmA5XlIxbRps3dq+FWXhQp5cvLjdOidjgBHAvhdc0P6Ac+cydp99GHvzzW1jS3buTFr9VRrTK2JKZZ/GRm4PWwk+D5i3Y4f90q18mbJjB18OHMhb2FhdMXkyC2pqILjOWIrd7jgwenT8B9J44Zu2oKioHBAIcGQgwGzgfOC3AKtXp7ZSUTjYq/fB3mO3udlOLbh9uy0oK2Plrbe2S06KgLPmzrUrwS9d2vGgs2dHHviusotOG6lUdmlqouKww+zEKyH6gCYnsSoo4LwPP2QY4P7mNyzYsQNOPz3VtWoV/ruOmcYL3zRByXY+V3M9IBDgmECAowDKy+3+s2bBpk0Jr1oiTQKmAP0B9/PP4bnnoLycFTffzKaQ7U4Aii+7DKqqUlBLlVE04CiVPZqa+PWAAewKKToA2tZM2b7d36KOqk1+fluSV1CQFp+TFY5DRSJ/nxovfMvuV694/cEHGROplaAb44HXP/+c9Q8+yFFA8ahRERc9SheFgQCFwFuOw18AbrmFR95/n7dCthkFnH3VVV0vwqhUkDbZK5Uddu3i1wMGtK6tBfZi108//BDy87ncu//Jhx+mqoYZ77ydO+3Ml2liV/eb+KPxwjd9t7LcmBgHch8cCDAGGOY4HFBVBXPnJrZiSea+/367xyOAKddea1uFlIqWBhyleq9du/j1gQeyFwidALc/sCD0C3V+fvt75V+aJCe/Dms1cT/8kJqzzkrMwTVe+KLvlorLAb1gpqrjgKnXXWenC05nS5bA1Klp80Ge9fSKmFK9V3Mziw48kPCVOfYjLDlRvcoX4QWJSjo1XvimY1BU9li2rEOwATjviCPgsMPaBs6no+pqllxyiR2g39SU6toopVTv1dzMr/r16xAvcoGrP/1Uk5NealFI64m7cyfup5+msDaq2wRFRO4XkY9EZEtImSsiO0Rkk3c7K+S5a0Vku4i8LSJnJKviSvmyciX3lJTwXoSn3Pffxy0thaIiuxJ8Gnp15kw+AtzHH7dJSnU1NDamulrZTQc9KtVrfRmhrA9A//5d71hby68ch6U6YD7jLPQSEjeYhHb3u/ZD44Vv0bSgLMVOghRusTFmlHd7GkBEjgOmA8O9fe4QEf0vVam1ahV3nXsuH4QUHQkcE3Jrnd1r+HC7UFSaJSonBQIc6f3sPv447syZcNddKa1T1tOAo1Tv09JCeb9+HYpzgat3745q/y+BOtAkJcP86sAD7Q+JTEyCNF741m2CYox5GfgkyuNNBpYbY/YYY/4GbMeueadUaqxbR1VxMQ0hRYcDP6mu5vxAoPX2Xe85t7kZd/JkmocMSbskpRA4Ctg3WLBhg3b3SiUNOEr1Li0tlPftS0tY8b7Awt27ITfX1+Hq0CQlme5ynLi6Zi9yHModB1rsbzxSq1nCaLzwLZ4xKKUi8qbXBewgr2wgEDo9Ur1X1oGIXCwiG0Rkw8cffxxHNZTqxIYNVJ5yCqEdoQ4FLn7sMZgxo92m+dgEYD/v8SLgiyFDoL4eGhqSl6ysXx/1phMCAX4UCHCc99h96ikoKdEkJZU04CjVO0RITvYF3N27+Zmf5GTECNxXXml9WAeUOw7Vmqgk3Jzdu2Ho0Jj3/xLa/b7d3btxo2kli5XGC19iTVDuBIZgl474O3CbVy4RtjWRDmCMuccYU2SMKTrkkENirIbqEbW1sGVL61WGjLBlCxUnnkhTSFE+cGlNDUyZ0mHzwwMBZgcCTA8p+zXQNGgQewcO5KMhQ5JSzTvGjfO9z8HYRCsHcFetgunT7e9HE5WepVfEOtAxiyojtbRwY1hykgP8bM8em5j4bDlh7Nh2SUoLdGiVUfG7q18/bnQcbnQcXxcRF3n77A1/IpbfdbQ0XvgW06s3xrSuRiQi9wI13sN64IiQTQuhXdd/lYEeGj6cRuDyV16BsWNTXZ2uec29vx45st10gXlA6UsvwfjxXe7eH5sAgJ1usNL7+dJE1hFsPYcO5dIYpmk+ORDgZOAFx+FlwH3uORg5Evf002H16kTXVHVGp42MZClQBfwhrHyxMaYitCBszOLhwBoROcYYk/lzl6uME/plNQco27Mnvv/vsWNx9+yB9etxTzmFOqDacSjpBVPzp4s5e/a0PfDxu2qh7fft7t7dM5/jGi98i+ndEpGvG2P+7j08BwheLXsSeEhEbscGnKOB1+OupUqp8zPoA7X82GM7XKnqD8x77TU7S1c3Dg4EuNz7+UvH4VeJrqDn9mOP5adxvq/7AQdgE6kWgI8/hubm5F0BUu1pwOnAGPOyiAyOcvPWMYvA30QkOGbxf5JVP6W604cEJCdBYVfBO1yxV/Hx3tvfOg6Xv/MODB7M7Y7DT3fsgIKCLnd1P/3Uxsqe+gzXeOFbt++WiCwDJgD5IlIP3ABMEJFR2O5bdcAlAMaYrSLyCPAW9jvTf+jVMNVjIky7ux+wYPNmGDHC9+H2pW1Myr5dbRitxsbWRZ/iTU4AxgYCjAU2OA41gLtpE+6ECb7Gtag4aMDxo1REfgRsAOYbY/6BHZ8Y+sfa6ZhF37wuO0H7Agsz6EJLJlrpOLwJXP/ww3ZB2QxwozcupA/Y1o6gRP5fB1tSEn1c1erykP/tn0aRXCYsAfVD44Vv3b5bxpgZEYrv62L7XwK/jKdSSkWtqcnOV75rFzcedliHK1RXv/127IPoAgGujrN6rerrKR80iLJPP03OFIZBn39uxwrpB6FKH3cCN2EvaN2EHbP4E3yMWRSRi4GLAY488shIm3Swt5OfVeI96Ths8n52p01rLXefeQYmTkxJnbrjhg9aT+Znpn4e95xo3mv9fWQEXUleZTR3wABobsY98MAOfYjT5iOosZHyQYNoAW4MzrOeQDkht/LaWhg5MuHnUJ1I0qBHETlCRFaIyKci8pmI/FFEovpmLiK5InKriPxdRP4pIv8jIidH2K6PN0i9TkSaRWSziJzr8x3oljHmQ2NMwBizF7iXtqnnox6zGPWkKi0tuI6D67We5ABuIMDPtPUkqc4OBHC9GQbdhx9mmFfunnEGrF2bwppF1iE5UaonaLzwJW2+w6leLMlX9N2wRbX6AGUfftjanSrl8vMp27nTJlNJMCoQYFRSjqy6lKQmexHZD3gB2APMxLYqlAMvisjxxpju5sG8D/h34Crgr8B/AM+IyLeNMZtCtrsJWAD8HNiIHbD+qIgUBxffTdDr0TGLWeK8CImge9pp9j6KSUp6QqTk5HpNYFWyabzwTRMUlVyOgwuUAvk9FASuT3Y3qlhok3Lvk7w+xRdh1+Q81hiz3Z5K3gS2Ycf73d55lWQkcD7wE2PM772yl4CtwI3A2V7Zodhgsyhkdq0XRWQodhmgmAJOSscstrS0tpz0Qb90ptL0QICHHIe/pLoiYSIlJ67+naieoPHCN+3ipXpEFTY4bE9g03rEYLN7d/olJwD9+yd3ASjV85I3r/3ZwPpgsAEwxvwNeAU781V3+34FPByybwuwHDhDRIIjx8/Ajh2vDtu/GvimiHwjmoqGM8bMMMZ83RizjzGm0BhznzHmAmPMN40xxxtjzg5pTcEY80tjzBBjzLHGmFWxnDP4OeCGDIqPSkMDFdrVJ2nO97p9DfYeu6ecktIJPDQ5USml8cI3TVBURuqsD7Hbr19aL1i4F1t37QPdCyQv4AynrRtUqK3AcVHs+zdjzBdh5VuxAWZoyHZ7gO0RtiOK86Qd1/tC7AYC0bWeFBSwQL+g9ih33DjYsKHnz5sNycmUKfxF40r60njhm/Y7UckVCOACDBuGu20b1cBUx2FErMEhpBtHqF4XbFRG2BvbNZ58EQn9lnaPMeaekMcHA/+IsN8nwEHdHLurfYPPB++bjDHhs2aFb5e2NMnPDLO8z+b7HYefvPJKVOtRJVJWJCfTp+M+9RTnp7oeqksaL/zRFhTV41YAb8Ty5aK5ObOTk9zcdnPtx/sF6wXHgQULott41Cj+ql/oEsoYO/+D3xvQGJyRyrvdE+nwEcoiTcsbaZto9o12u7SU0OSkvp5K/d/oEe64cfZ3t2lTz5wvG5ITgOXLcb/3vVTXQnVB44V/mqConlFbiztqVOvDJ4FX/XwpaGrqMFsXZH6wieeL1qmBAFRUdL8hwKZNHJXh71W6iSPgdOcfRL4idRCRr3aF+qSLfYPPB+8PEpHwABO+XVoLdumKS2Eh8/R/o0e5o0d3maRUOA40NMR3jmxJTkI8hH3dejEq/Wi88E8TFNVzNm7E/bd/a30Y9eJpDQ3cGGGK3nYr/2aKnBzcPXvaDZi/saeDyezZvK4BLG5JDDhbsX1+wx2HnfGqu32/4U09Gb7vl7T1Id4K9AWGRNiOKM6TMh9s3JjqKqgY/MRLJg/3HrujR9skora2R87f25MTVq60Cfvpp/MH4D39jE8rGi/80wRF9aw1a3B378bdvZvx0cxqVV9P+cCBHZIZd/fuzJ26NycHcnNbH+4Fyh0n6k+juC1ZwhidUSydPQmMFZGjggUiMhgY5z3X3b77AD8I2TcHmAY8a4wJZvWrsQHoh2H7lwBbvFlg0tLho0cnpuVEpZ1KbwKRXQk+rv6tqF6s18aLDP2GpzJWVzNTrFzJinPPZWowmGzfzqJjjyX0a3sf4PqdO9t9wc9U7s6d9n7AAFqARSHjaxYme6HJXvD+pVrwilgS3ItdOugJESnD9v29CXgfuDu4kYgMAt4BbjTG3GjrZDaJyMNApYjsA/wNmAt8g5DgYoz5SEQWA9eKyOfAG9igdCrdT02pVMwu7iJZSGRXu6xNSlavthPTqLSi8cI/TVBU+iguZuqHH9qft2zh1yNH0hzydA5QtmMH5OWloHJJEPY6Ql9rj7WmqLgk49dkjNktIqcCi4EHsQMRnwfmGWNCLy4L4NCxJfzHwC+xqwnnAZuBScaYN8K2+zmwC7gCKADeBs4zxjyV0BeklFJK44VPmqCo9LF6NbdPbkvGQyfmzgUWvvsuFBT0eLWSzX33XQBuHDQo+nE5KuWSeEUMY8x7wLndbFNHhFlUjDH/BH7q3braP4ANSuUxV1QppVS3NF74p2NQVPqYNImf/uY3fAZ8FlK8H7Bw61YoLExRxZKssLDDa/vtwIFQX5+iCqloJHHQo1JKqV5E44V/mqCo9PHcc1RdcUW7ogOAqzdvhmHDUlOnHnT9xo2tTZqfAHcMGgTbt3e1S2IsW8ZanfHFNw04SimloqHxwj/t4qXSw4oV3DVtGo2RnhsxoqdrkxqjRlH2yissGjeOhY89ZgfJDx6c/PPu3h35fVddSmaTvVJKqd5D44V/2oKiUq+6miXTphG6LFc+4FZV2QeNjTySLVf4x45tux8/PrlTKVdVUe04LLnkkuSdo5fTK2JKKaWiofHCH21BUam1ZAlLL7mE0NEWBcCcmho4/XR+esQRkJfHeY89lqoa9rjW1pNka2xsXYUpL/ln63X0iphSSqloaLzwTxMUlRrl5ay84QZ2AXUhxYXA7IcfhjPPtAXFxfZ+ypQerV5KJfu1ui4rb7qpdTG0YcDULEoAE0UDjlJKqWhovPBPExTV88rKeOjmm/lLWPFgYNYDD8DUqSmoVBapq2NTyMP9ILsSQKWUUkqlNU1QVM9asIDlixd3SE6GAiV33w0lJamoVfYoK+ORBx8EYBQw5Re/6L3TNyeZXhFTSikVDY0X/mmConrWli3URijuDzB7dtf7Njfzar9+AJwUCCS6Ztlh6lSm3nwzTwPFVVUwd26qa5SxNOAopZSKhsYL/zRBUT1nwQJWPvdch+Jj8K7kR+FZ7z7XcThBkxT/Vq3iaeBg0OQkATTgKKWUiobGC390mmHVM+bN48nFi9uNfQA7QPv8a6+FsjJfh3sS2JItUw93Yq/jQHV1dBsvXMgWx+HpsjI2JLdaWUMX3lJKKRUNjRf+aQuKSr7SUmruvJM3QopGAVNOP90uwlheHt1xcnJw/+3fcP/7vwFYgW1JARiaha0pfa68MvpFLFevZgUwBnBPPx2KipJZtaygTfZKKaWiofHCP01QVHLNmcPT997b7qr9CcDZV14JFRX+jpWTA2vX4o4ejbtpEwDB9gM3/ppmnupq6hcvBqDw7rsjj+GZN4/63/2uddzPYIDVq3uogr2bBhzVTksLNDX1zBpGmayxsf0/TkFB288NDZHLY5HIY2Wa5mb7Hvfvn+qaKI/GC/80QVHJde+9vB7ysAgovuwy/8lJqI0bcYcNA8Ddtg2ARschP9taUSZOpHCDl/oNHBh5m6VLWeL9OAY47sore6JmWUEDjmpn5UqenTaN72bb55BPDx12GB9A6zpM7tatMGwYNDRw+8CBfBYs37EjrsTCHTiQ4NfzBZn+O/Gb/BYX896LL3JkIGCTlaYmm6z05oSloSGtE1GNF/7pGBTVY8YAxXPnQmVl/AerrbU3TxVk339/dbV9DwoLbQACO01zWPI3HnDz8jhr7tz4EkPVgfYpVq2mTtXkJArnBwIsCARo/SpZXw/19VSGJCeJssA7V8YrL+flww6LfvvcXLu+FcC4cbgDB9J44IHJqFnauH/gQPu3lMY0XviTOS0oBQXs/fjj1od9Nm+Ovv99tmpsZO9hh9EnNxd27+65886Zw95772196AZ/uOgiqKpK6Knc0Ac5mfPnnFD9+8PXvtb2szcVMwBlZUxsaNDERCmVltwzzuhQdgDE/XmeF9feaaZv39bWoKjU1NDa1rL//uRBW8LSS/3k3Xd1Ta9eJmO+0d3x8cd8FPLY3bRJE5SuNDTQMnAg5cC+zc38LC/PljsO7NyZvPOWlvJ0SLeu6wGSeQWrN1wdi9fKlW0/33VX++cWLOjRqmQTbbJXKnZ5QEMn5fN27Ih7LM+83hQbrr2WE669NrZ9165lXkIrk56WDhrErDi7BSaTxgv/0j9BGT4cdu/mC+/hLLwrI94YBNWJlhZ2AXOAJUDj559The3Td/2QIfDOO4k/57x51Nx5p05jq7KCBhxFS4vtVjJ4cKprknGmv/MOVUOG0BhWPu/dd9P2S6ZKX7PSPCHVeOFf2o9Bub22Fvf991sH1A1+5hnyAgGdJrU7hYXkBQIUfPghpUC+12qyF3Dr6mDUKHtLlAULePJ3v2uXnIwB+lx0UeLOoVQa0XntFTU1PDRkCNTVpbommWX7du6IkJwAHcYXxixRx1EqATRe+JfeLSjFxXzp/XgekAvax9Cv/Hyb0O3aRQkh0/L++c/2PhHnWLiQJxcvbrfOSRFw1kUXdexypFQvoVfEFMBfgOVDhjB982bIzYWhQ1NdpfS2fTt3HHtsuy7b+dCarATHpMQ9i9fw4fY+za+sq+yg8cK/9GxBmToVpk7lV6tW0ewVHbd5M0cFAl137aqogHXreqSKGad/f4bu3s152GSv1dSp8R3Xdfnjrbe2S05OwJtKWJMT1YvpFTEVVAu4I0ey8thjU12V9FZby11hycmhQOk773AMUODdEspbM0upVNJ44V9aJijljz/Ohscf5yxgineLav7um2+GtWuTWLMMl5vLcYEAx+3Z01rkPv44zJoV2/HKy1lx0028GVLUughjIqYS7imVlRBcT0QpHzTgpFA6fPHs25cCaJ0x6Uuw9dKuRR1t2cJdw4e3Gxh/KHDp22/D4MGcHwgwx7slcrUOd/To9PhbUVlP44U/6ZWgLFgACxawFyjauZNRgUDrLapBiDt3QllZsmuZ+XJy+C7wXe/hqw8+6P8YlZUsv+EGtoQUHQ+cfdVVmTWl7Z13UjN/fmYlVCot6BWx1HJHj7Y/JOLiQqzHOPNM5gQClFbbzrNvefWq8boXKc+mTdwzcmS75KQALzmJ0CXucIh7muHC4HFI8N+KUjHQeOFf+iQorou7eDHu4sXsjfdYNTX6QdSNkwIBTvL65p503XXgutHvfOedVM+fT+g1whHA96+7DhYtSmQ1k+6z0lL+mupKqIyUbgFHRPqIyLUiUicizSKyWUTOjWK/A0TkehF5VUR2ikiT9/OUCNu6ImIi3FYm4zV1JTga0T3xxPgO1NDAI/Ee42tfoxDbIgBeS8r69bBlS+f7ZItNm1gyejQfhBQdDszZurXT8TrnBwJxTzM8OxDg4tDxJ+vX27+V9evjOm7aamqC7dtTXQvVCY0X/uNF2gySd2+6CYCxwYJ4rp5MmwbnnGNX2lbdCr73bv/+Xa+bsXQpNDXxh/nz232pHwZM/cUvMrL16oBAgLGOY5PaykqYNEmnsFZRScNBjzcBC4CfAxuB6cCjIlJsjHm6i/2OBC4Ffu8dYy8wA3hcREqNMf8vwj7jgdDRx58koP6+zPa+fB4Z74EKCjgv3oHUU6bY+ixdinvhhbwJvDluHGOBSdk8SHvDBpaceCKh63sfDly8dWuPfc4G/z7uHzcOAHfcONyXXrKF48f3SB16xMKFfHLvvRyczX9vaUzjhf94kR4JSsgK8ZP27Il/RfCeXDU9w53g3b8BuNdcg5uba2eimT27w7ZLL7yQurCyocD0226DefOSWs9kGgo8+fnn/HX+fC6fP58+PRg8lUoEETkUG2wWGWOCfSxfFJGhwCKgq4DzN+AoY8wXIWXPiMgRwDVApIDzmjEmLcLtT9LpC1n//gwGmrGLEH4JdlxkXl5ip3XPBBs2cH9YclIIzN68uUc/X0P/PlzHsfennGLv0+lvJ1533cXBOjGNikKmxIu06OL1j/feYwS2m5DqWWcHApwd+gF+xRW4l1xim4uDVq6EZctap3wOOgooqarK6OQE4GDvPTgLuBHg3G5bOZVKtyb7M4B9aZtJPKga+KaIfKPz12F2hwWboA20deNX0Zg6lVmBAHOqqgDvws9pp/FCcAxENli/HtasYemJJ/JeSPGRwOyNG2FE6iL9Ud6t1Zo1KaqJyjYaL/xLixaUg0aPZurrr6e2Ert22Zk+elOTb4JUnXtuxAW1fnTLLTB3bo/XJ1kKgANSXQmVUdKoyX44sAcI74S+1bs/Dnvly4+Tgc6mo3rfuwpXDywHXGPMP30ev/fKy2MotiWlkbbxMr3aunXw+edUFxd3+CMcDMx67bWUtyL9yLsY19qScsYZuDU1cOaZqayWyhIaL/zFi7RIUNLCypWsnzmTsb2pydeHwd59XfgT69d3mLTgcGzqTV5eMquUGOvXQ1FRVN0GDwgEmOoFLsCuDl1XZ2eQi2YWuVSqrbWDSuMcWKqiF0ef4nwRCZ3F4x5jzD1xVudgoMkYY8LKPwl5PmoicjF2SGBJ2FPbgYXA/wIGOxngldjeoqf7rHPvNWMGJTNmwNKl1F54Icf09riybh0PnXIKf4nw1GC85KSoqIcr1bljoLWubnFx7+rqpdKSxgv/8aLbb20icj9QDHxkjBnhlR0MPIz97KkDzjPG/MN77lrgQuyAmMuNMc90++rSQUkJY0vC39vsMcv7gC53HFrAzoKWl8ft48bxWdi2F1dXw4wZPV3FmPx23Dgu37w56m4FeQCHHALAl0OG8Cvgp9jkJZ19MHw4h8+YoRND9KA4Ak6jMabLb2siMhF4LopjvWSMmQAINgB0OJTfyonIBOC3wIPGmP8Mfc4YE/4H9pyI1AOVIjLRGKN9ZkLNmsWwWNeZyiArO0lOAGY9/3xaJSdgZwlb7l2M0hVrVE/QeAH4jBfRtKAsBaqAP4SULQSeN8YsEpGF3uNrROQ47EwAw7EX2teIyDHGmPT+dqc6cM84o0PZwXiDlr72tZ6uTszywdekC6GJyL7770/+558ndNGwZDn83XdT36IVujhdFkwykORZWV4F/iWK7YJ9gT8BDhIRCbsqdlDI890SkW8BTwIvYC80RWMZUAl8C0jPBGXlSpgyJdW1yDpDwU66koamBwKwYgXutGmwYgVMnZrqKqleTONFq6jjRbff3IwxL4vI4LDiycAE7+cHgLXY0fuTgeXGmD3A30RkOzAG+J8oK65SLA8ijjc5ALj8lVdg7NgIz6av8+Np+WhqojRxVUmqukGDGHzOOTbQpkjV8OG0AE1gp/FM9niu5mY7mUN+PtTX20S0sOd6+ycz4HiDEP1c3N0K9AWG0L5f8XHe/VvdHUBEvgk8A2wCzjXGfOXj/BD5ilzq7drFr849l589/LB+CU2GVato7uSpkpqatI4ZK6ZNA+DGadO4Ps1byVVm03jRQbfxItZZvA4zxvwdwLsPrk81EHg/ZLt6r6wDEblYRDaIyIaPQ6YZ7lEtLe1nq1KU7thhx5eE+elrr6V1oMl2g72rgalUGggwLxDgUKDilFPs+J1kqqpi7cCB8OijVAwZwh8HDUru+SJIo1lZVmNntf1hWHkJsMUY0+WARxE5GttF4K9Asc8B78FzviYi94vIRyLSukKhiBwsIs+JyDbv/qCQ564Vke0i8raIdGy2jVd1NTz4IF8Cv5o2zT5etizhp8lKq1ZBdTXLi4sjfjMaBnDQQRGeSR9TvaTk+BTXQ2UHjRcQcs7Xutsw0YPkI/Vfi5gleYN87gEoKipKzZW3efNYe+edTPj0U+ifCR15kqypifKBA4n4P9HU1D6ZS3V3IpW2Lu2pK5ELFjDBW1h0QQrGRKXTwlvGmI9EZDFwrYh8jp3hdhpwKrZlu5WIPA8MMsYM9R4fig02+wI3AMeJtPso/1+vVRwR+V9sd9+3sZ/tpwOXAauNMS+KSIB06RLc0sLKmTNbJ/n4EnBnzmQ/4OoMGUMXlw0bbFxLUnfLp4uLCZ97cxgQ7NA15aWXMuKi1gnQbqp9pZJB40XHeNFdPWNNUD4Uka8bY/4uIl8HPvLK64EjQrYrBD6I8Rw9Yi3QfOCBTPr0U9tFJE37yybdrl3cOGBAuxm79oXWtU/Cx6S4d98dcTFHpbJFOgUcz8+BXcAV2Fmz38ZOYPJU2HYO7T/7jwOCzU81EY77Ddom+HsbKAW+7h3nHezyQb+GNOsSnJPDlEAAmpvp068fm7zivQBLl0JvHry+YQPbTzyRfCDPxyQhUaupIXwhhGHA9GeegYkTE3uuJNPkRPUEjRcd40V3Yk1QngRmYlecnAk8EVL+kIjcjr0idjR0uMiSdtYD6w88kOOB72fjh1VzM+6BB7YrygF+tmMHVQMH0uSVtfvf+spvd0OlVDJ5LQ/l3q2r7SaEPV5LlLO3GGOmx1C1dl2CvStwYLv/rg/ZrssuwcDFAEceeaS/s+fmMmX3bnL69WMv9lLhogsvZOE//wn77NM7L7TMnMka7Gr280aOTGySsnIlK849ly1hxdMfeCDjkhOlslUax4tW3Y5BEZFl2Ctax4pIvYhciE1MTheRbdgmm0VeZbYCj2AH2KwG/sNXc31Pp5c5OR3fgCR3/Es7LS24/fq1K+oDlO3cCQUFlAYClHm3wSHbuKWlcPPNPVlTpdJKmq0MnIl8dQk2xhQZY4oO8aYB9yU3l+JAgLN37gTsAopuaSkVl1zi/1iZYOtW5hx9NAXY6XI+GzkStoSnFDFYsYI/hiUnI7ALIDBgQPzHV6qX0njhX7cJijFmhjHm68aYfYwxhcaY+4wxO40xpxljjvbuPwnZ/pfGmCHGmGONMav8VMbt27dnfyOVlVwfCODecgsAb3p1+EPfvj1XhxRzI7zW6z/9NKoxJm5ZGbhu4iulVAbQgBO1D72uwKS8S3BODmOx/cjA6+5VVZXUU6ZMbS3nez/eTgKSlBUrWDltGm+GFI0Apj7xBJMCAV2NXakuaLzwL9ZZvJKq3HHiml3rPceB4cMTV6Feyg1dNT1Ytnt3pxMGzAoEcL3bCSHlrzpO7+7PrVQnNOBEJdglGDp2CZ4uIn1F5Bv0RJfg/v2ZFAhw1ocfAnZRgF9fcQVUVib1tKlywNFHMx7bwfx2YFesScqyZaycNq11HA/Yma+mPvYYFBcnoqpK9XoaL/xJqwTFDQR8LarXmSMDAdi6NfodFiywX7wfeACw86a5jsMdEb7A9wotLZGTkz17fE8S4N50E88C7oMPZuwaA687DpSUpLoaKsPoFbGOerRLcDxycjgZOAmbpFTMnw/l5VBREdvxGhthyZLE1G3LFruwZCLU1jIxECD4yVyBl6Rs2hT9MZYt48mSknbJySjg+489potfKhUljRf+JXqa4YQoy8aB6j2lubnDmBPwkkMfzg4EONv7+VXHsUnK44+D4+B+85v+AmCKjdG/NxWDNJyVJeWMMZ3N33taJ9v/Evhl8mrUibw8Tg0EoKGBVwcOZBfg3nADBwOXe1NX+7JlC/WXXEJhIgbcL19uu50lcI2u/KOPZsK2bfwFm6QsGD2a/hs3wqhRne9UXQ3bt/PkTTfxRkjxCcDZDz+syYlSPmi88C+tWlBSrqTEtqQ88wxgO0q7jsPtvaUlZdeuhCQnSim9ItYr5OYyETjZe/gl2JaUoF27opsMZMIEChP1OVpenvgFhGtrmRAIEOyMVQHQTSL2+syZuJGSk+rqjG0tVypVNF74pwlKNmho4EbH4cawqYTB69YVp5MCAdw9ezgveMw//xmGDIn7uEqlMw04vUBeHuMDAU595x1ysLNRbbnhhrbnGxqoLStLVe0S7vDBgzk8xn2L8JKTbFjkUqkE03jhX1p28Uq5iRPtYPEtW/jtiSdy+e7dqa5RbGprKfcmC9gb4Wl39+6EjPkBOhznxro6rh8wALxpPZXqbbTJvhfp358pwIjwVpChQxnWm1qY33mHsxyHWEbLFF93nSYnSsVI44V/mqB0JjcXioq4/NNPM3N1+Q0b+NWJJxLp/6EP3lTCCX5dx+3eTUm/flTjJUS9KbArpXqv/PyOyUkvVXj00Zy1bRuMHdvldmPCC449Nml1UkqpcJqgdKeTKXczwZddPZmM15Wby9BPP8VtaaFRF+1SWUCviKmMU1vbMfmIJBCIbjulVFQ0XviTkWNQnnQcWLYs1dXISDnA9Tt2JO8E/fvTNGAAdwG/+vxziDAoX6neQPsUK6WUiobGC/8yMkHZBdxeUgJLl6a6Kulp/XpuP/HEzp8vKEjq6fM+/JDZ2Bacvc3NST2XUqmiAUcppVQ0NF74l1EJykrHocpx2A58BlReeCFVjhPdNJDZYOVKqhyH344bx2cRnt4XKPOzgGWs8vPJBX4G9PFWbFaqt9GAo5RSKhoaL/zLqDEoUzZuhJYW/nDiifwVaAo+kamzbIX5wHE4fMYMu0BWLP75TxrDig4Afvraa20Fw4bFWj1f8t59187slZ/fI+dTqqfprCxKKaWiofHCv4xKUIKr3v7otddYfuKJ1HrFd9x8M5fm5IDrpqpmcXvPcVgO7LdsGaW7dsHKlf4OsGwZ95SUtCs6GLj8lVegqChR1YxeYWHPn1OpHqYBRymlVDQ0XviTUV28WhUVMf2ll3CfeIITsCu+33PTTTzkODBnTqprF5MjX3uNk4FG4I6nnoJJk6LfeelS7i8p4YOw4j7Q7VSSSqnYaJO9UkqpaGi88C+zWlBCjR8PQHAlj9Yv5/X1qahN/IqKGPvKK+SMG0cNcNdzzzFn3Dh45ZWu97vzTv5QWsp7IUWHAxdXV8PXvpbECiuV3bTJPgs0NcHUqbar6vLlPXPONWvgT3+Ca69tK6upgbo6KC2N79iVlfZYAAsXwsSJnW9bVgbr17c9rqho7cWglPJH44V/mZugeL77xBN8t6GBZy+5hFeBpatWMWv2bFgSy1q5KTZ2LHnejw3APevXc/HYse2DRKjKSqrnz+evIUVHAj+prtYVf5VKMg04WWDXLt578UUOBvr3VIJSWcn2VasYGpqgbNpk40A8CUplJS/Mn8/L3kMXukxQXr/5Zp4Oebxg9Gj6b9yoSYpSMdB44V9mdvEKVVwMs2e3frGvA/7w+99D2HiMTDG0pgb3lluYim0VWvKnP0UOCOXlLJ8/n+0hRUcBP7nvPk1OlFIqEQoLOTIQoH+qV5kvK7MtHytW2FYQvyoqWBuSnERjzNFHMxvbIg9QAewaPRq2bPF/fqWU8inzExTPmOpq3Ouu41Tgr0D1smWsdZzoxnIsW0aD4ySsLuscB3btim3nM8+EBQsIrlRSD9z/5z/D8OFt27guK264oXWSAIChwI+qqmDWrNjOq5TyRfsUq4Ras8Z2u/r3f2fov/1b5G3KymiaP9/fcSsqWHvNNawNKZoA9uJeV2prKQwEuHjwYOZgE5UK4LORIzVJUconjRf+ZXwXr1Zeq0HBTTcBsN27Tfjv/+5+329/m4LbbktYVcZfeSXk5na/YRfyH3sMd906/rJ4MQ8B99fWMsxLohqA0PAwDJh+220wd25c51RK+ZPtAUQlwNq18B//wXu1tXwBDAsEOv8sLykhr7bWLlLc1ATz5nV97E6Skwm33db9vkHvvEMBcIzj8AFwO/DTkSM5YPNmGDEiumMopTRe+NRrWlCCjrn7btwLLiDYbrK8ubn9laKyMhg8uP1OgwdH/2EdjYoKuwZIPKZMgYoKhnoP3wOe9W5vhmw2Apj+i18ktv5KqW7pFTGVEH//O421tewHDOus5SSorMyuk7V9e+etGJWVdr2rYcPiT05C9z36aEqBAmySoi0pSkVP44V/vS5BYfZsWLqUo4ASYPo558APf9j2/MSJGfVlvk91NdM7ee54YOp119mgpZTqUekWcESkj4hcKyJ1ItIsIptF5Nwo910qIibCrTLCtuNF5FUR+aeINIjI7SKiUwbGYs0aeOkl8gMB8gMB25oSjfLyyBPBVFaybv583G3bcLdtS1hyAkBtLfmBQOtFM01SlIqexgv/8aL3dPEKc+htt3FoYaGdIjLUhAn2lilmzGDY3Lnw+ecdniqAjF6cUqlMloazstwELAB+DmwEpgOPikixMebpLve0PgbODiv7e+gDETkeeA54BigGvgHcCgwEpsVV+2zU1AS1td1uFq2W+fNZE6H8VODkW25JyMW5icOGMaa2loewScq8kSPJ0+5eSnVJ44X/eNFrE5ROP4grKmi45hoKRo2CjRuTcupGx6EFKPj0U+jfP76DzZnD0xGSE6VUaqVTwBGRQ7HBZpExpsIrflFEhgKLgGgCzpfGmE7mNG/1C+zcHT8wxnzlnftL4AERucUY80ZsryBLTZ3a8SJaEpx89NGwYEFiDrZ1KwcAc4YP567aWj4B8pqbE3NspXopjRf+40Xv6+LVncGDKTjiCPjWt5J2iruAgkMOiX8cypw5PH3vvbzeydO10H52L6VUj0qjJvszgH2B6rDyauCbIvKNeE8gIvsAk4BHgsHG8wjwJTA53nMonyorIS+v9fZqT55761bmDBvGUa+9BkVFPXlmpTKSxgvAR7zIvgRl6lS7Iu9ddyX3PLW1diav3FxobPS//5w5rA5LTsYA7v77t45JeQ87u5cunKVUz0uzPsXDgT3QbmkkgK3e/XFRHONQEWkUkRYR+YuIXCMiofOvDwFyaT+JIMaYZuCdKM+hQq1aBf36xb5ul+vifv556+2FCJtMBJgzJ45KdmHrVk1OlIqCxgvLT7zIvgQlmbyphctCfr79q6/8Jyhey0lo29kY4KyLLoKmJoZVV3M9cD42SVny5z/D2LFxV18p5Y8xe33fgHwR2RByuzgBVTkYaDLGmLDyT0Ke78omYD5wHrZf8UvAzcDdYecA+EeE/T+J4hwq3GOP8VBzc+zrZl1zjV3TJMyp2DhUBoyPZ2C8UiphNF60O0+38aL3jkHpSQMGAOB+9RVuSwuErDo8DyA/33bFev55KCiIeIhWpaUdunW1JifBVp8ZM+gzYwbHLFgAixdTD9zzpz9x8bhx8MoriXtdSqlkaDTGdHnZWUQmYgcXduclY8wEQIDwYINX3i1jTGVY0dMisguY5/UV3hZyrJjPo8JMmcL5jY2wcmXMh4h0lfHk/fe3A/CVylb9+sHOnXGvSZcGsjZeaIKSAI1eICiN8FwfL1n5sraWfTsbSDh7NqxbB0DNtm1sCHmqQ3ISavx4ShcvpgFYAdy1fj1zJk2C1atjfCVKqegZINDtVjF6FfiXKLb7wrv/BDhIRCTsqthBIc/7tQx7jaUI2EbXV9cOoq17gIpGTQ0tk2037JwpU/wnKRUVvFxWFrFbl1JZLTeX8q++omzXrg4Jyl7Hoc+ePfGPEfZN40XYebqNF5qgxGvsWDt/fTf27WybOXN45Pe/560IT3WZnABMmWLnz6+sZMX8+TQAdzz3HJfGEuyUUjFITsAxxnyBNw9GlLYCfbH9fkP7FQf7+Ub6iOlO+BWwd7D9ltvNzCEiucBRwKMxnCN7OQ512FGpxzz1FOf7+dyuqODla65pl5ycCuyFdmufKJWV8vLg448jPtVn//17ti7taLzwEy90DEqctv/pT3Ht/8K990b8SygCzpo7N7rB/MceSwl2kumPgKqnnop90KVSKkrBK2J+b0mxGjszyg/DykuALcaYv8VwzPOxL/JPAMaYL73znCcioRe3pmKD3ZMxnCN7nXkmQ2tqKAH+Aix/6imYMqX7/SoqWBshOTn5lluYUF6Ou//+uj6Wym4NDZQVFERe5qGpKQWtJ6DxolXU8UJbUOI0NIrWk1gUH300VFVFt/GZZ9p6rF9Py7hxvAx8sGwZh1eHzyCnlEqsvamuAADGmI9EZDFwrYh8DryBXQjrVMKmcxSR54FBxpih3uNBwIPAcuzVtL7AOcAs4G5jzDshu7vA/wCPiMj/AwZjF95aYYxJzsJSvdmZZzL0xz+G3/+eWmySMr2rlhQvOVkbUtS6CGNwnZNrr+243+zZdiFFHSyvssWOHamuQQQaL/ARLzRB6WllZe1m9YphAuLOjR3L2Nde4/ATT+TwJCVOSqmgpPYpjsXPgV3AFUAB8DZwnjHmqbDtHNp/9n+O7S98DXAY9oX9H3A5cEfojsaYTSJyBnAL8F/Ap8AfgJ8l+sVkjenTcVet4q8NDfwBL0kpLoaamvbbRZOcdKaw0E7WopRKEY0X+IwX0nGWsZ5XVFRkNrze2XKEaW7hQnu/aFFUm1c7ToeJp8MNA6b/+MewZElcVVNKdU4cZ2N3s6N0ub+MMvB8DHvmx3XebJfR8aIr06fjPmq7ZZcQ1jofT3IScvxPHn2Ug3XaYaV8KRozhg0bNsQ1U6HGC/90DEqc3Ftv5YVbb416+yJgvwjlxwEne7fpF12kyYlSGSFt+hSrTDdzJj/q7Llly+JLTgBGjODgo4+2rSlKqRTQeOGHJihxGgOc6qM71bAHHuDQCOXnXXQRpwYC9ljJXuVe9X7r18OGDd1vp+KQVoMeVbLU1/Ol43S/XbzOPJOjvve9bjebQAzJCdjuxbW1MHUqFBdHP8ZRKZUAGi/80jEo8Vi6lLPuuw+WLoVZs7rffsUKlsycSX2y66Wy24YN1I0bRy5QsHEjjBqV6hr1Yukx6FElUW4u+555Zs+cq7QU9/33ITxRue463Jtusj9fcEH8XbTGjoXBg+M7hlLKJ40XfmiCEoflF17YOvG027+/vTLVmVWruGvaNBpCigZjpwX+IvIeSsXmlFN4Ets8WjplCtTVpbY+SmWy/PyOA9aTZeJE2BhhcpspU6KbgjhaZWWJO5ZSSiWBdvGKw/RAgKHez+60aZ0HsbVrqSoubpecFAKzHniAs8EeQ2dYUYmyezeXH3IIpUcfndzkZNWq5B27Mw0N9rxp0X1Nm+yVUkpFQ+OFX5qgxKkkZPyJO3kyrF3bfoP16/ntaae1m064AJj98MNQUsKwQMAeo7y8/X51dfbLmFKxaGiw/c2T6P7i4qQev4PGRpg0Cbe4mHUnntiz545IA45SSqloaLzwSxOUBCjwbgDuaafBunX2wZYt3D5uHJ+EbJsPzKmp6bo7GPDlkCFw2mlJqK1SifGTnlxrp6kJxo/H/fOfe+6cUdGA06vV1bHdcfiks0Hymzax3XHY7jjxD6Svqmo9VodxY67b+tx2x4m9u9eECW3HuPlmf/v269f5ApJKqShovPBDx6AkwBzvi5rrBSj3lFNwX3mFX48b1258SR5Q+vzzMGFCt8fcNxCwV4y3b4e8PO0CprLb9On8dts2Dga+THVdWqXdwlsq0fLyGDpsGEtqa5kd6fm6Oqq9H48Hvh/ree68k2evuIJXvYclf/5za/dhAJ56qvU8AMM6W8yxO9OmMTQvz/787W/72/fKK2Ho0O63U0pFoPHCL21BSaC8kJ/dsOTkAGDeK69ElZwE7T3sMG4/9lg47LDEVFCpTLV6NZcHAlweCLDgssvon+r6tNobw01ljLw8eOUVZl90UeTnx47FLbDt53XAF7G0otx5J8+WlrYmJxHdcgvuOecwy3tYCzy0alX0LSkTJvCW48C779pWkJUrfcUiwHZDHjHC3z5KqRAaL/yIK0ERkToR+bOIbBKRDV7ZwSLynIhs8+4PSkxVE6i52XYZSbB5gUDEN3Q/4KebN9upHX3oEwjw00AAAgFb5127ElJPpTJaZSWjerJ7Wae0T3FWyMvrfG2qggL4zW8A+Ay4B59JSoTkZDww1Dtmq4kTYcUKBtfU4P7gB5QAfwGWP/VUVElK43//t03qJ06Mvm5KqQTSeOFXIlpQvmOMGWWMKfIeLwSeN8YcDTzvPU4fLS0waRKbBgywPzc12Vsivvx3kvRc/corsV95CiZTgwfTcOCB7Z9radGkRamU0oCT9caPx50xA/eII2jCR5KyZAmrw5KTk4CJVVVQWhp5nzPPhOXLGeq12tQCDz31VNuYxilToKQk4q5HDhumCYpSKaXxwo9kdPGaDDzg/fwAMCUJ54jdxInc+N//bX+eNw93wADcAQOoCf/y71dzM+6AAREb5Nxx49oGzvvVrx/lAwZQ/vHHHQcMLVzIunjrrVQmam5uu6WMXhHzI2Nb3LtTUADV1a0zMTZhk5RdXSUpS5ey+pJLWB9SdBLw3aoqmDu3+3M+8ADuj3/c2pKy9/HHYcoUm6w8/njbdhMmwJw55FdXw//7fz5fmFIqcTRe+BVvgmKAZ0Vko4hc7JUdZoz5O4B3f2ikHUXkYhHZICIbPv744zir4cPatVz/ve/ZL/s5Oe3fgJaW2I7Z0oLbr1+7oj60f3PdU07pOAVxN8ekpQUCAcq8W354t5aKCsanRVcXpXrQnDm4/fpxY79+PBv2f6fSXma1uMeoCXi5syeXLuXpCy9sl5yMBb57993RJSdgW0KWLGFoTQ2t7SWzZ3P+RRfBihVt25WWwvTpMGOG/zEnSmWwLY4TsYfJJsdhg3eL+Tuf6hHxzuI1zhjzgYgcCjwnIlEvvGCMuQd7oYmioiITZz38WbmSYIer6/v3x735ZjYAX/bty/dj+MLv9u3boez6nTshL49Kx6EpuN1pp+E+8QREsX5EY9++VAHuPvuk+CqxUulnIqRBcq6zsiTAZGCC9/MDwFrgmlRVJi4TJ+Jedhk89RRuXR21wHjH4YDQv9PqamouvJDQZUbHApPuvhtmR5wnrGtnnsnQZ56Br76y3b/CY0s309kr1VuNuPJKyM3tUF4DBNOSog7PJpPGC7/iakExxnzg3X8EPA6MAT4Uka8DePcfxVvJnvIm8JDPWVjcCNu7u3fbgZXYgfNuINC2Tsrkye2vcHV17Lw8TU6USms6K4sPmdfi7kdBAVRWwrXXAnbQ/P3AZ8EYUV1NzcyZHZOT++6LLTkJmjjRJidKqTYVFZDT8Rp82ZVXtn7xfbVvX9bHu36RLxov/Ig5QRGRfiKyf/Bn4LvAFuBJYKa32UzgiXgrmVTl5biBAG5VFWD78/4hyj/YiMnJnj0Rs/Z220ybBkuXAvCC48CCBb6qrFRWu+uuNGg9Ae1T7Ns4Y8wJwJnAf4jIydHuaIy5xxhTZIwpOuSQQ5JXw0QoLsa96irco4+mCXgdYNkyngxLTsbgJSezZqWgkkplqYoKrr/qKvoAzwKrobWr16tJTVY0XvgVTxevw4DHRSR4nIeMMatF5E/AIyJyIfAe8IP4q9mz/goscRxmd/YlqKUlYrcut4svTcHFHKsdh+1e2dOOw+vAqSHbbXcchn7rWx3Hmyil0pD+n0YrtMVdRNq1uBtj/p5pLe6dKiiARYugsBCuuII3gS9KSngjZJMi4KwHHuh0xi2lVBItWsT1ubnQ0sKNN9/cWnyS1/qZPBov/Ig5QTHG/BUYGaF8J3BaPJVKa83NHQbEQ9fJSaiSQIDlXpZ+ViDAWWHPD9XERCXAF47Dr0MezwEK9G8rwbRPcbS8VvY+xpjPQ1rcb6StxX0RmdDiHoPPoENyUqzJiVKp5boANlEJdgXzZuJLDo0XfulK8kFz59quXo89BkA9cFd4c9+uXXElJ0HTAwFt1ldJtV8gQFmqK5EVtMk+SocB60RkM7bX038ZY1ZjE5PTRWQbcLr3uNc6ASiurs6a5KTWcVjjOLBpU6qrolRkZT0ZKTVe+KEJSriQQVUNQFUwSWls5MYIa464e/b0UMWU8icnEMDdf38A7gJudBxqe3RAYG9n0EGP0THG/NUYM9K7DTfG/NIr32mMOc0Yc7R3/0mq65oQK1fyxyuu6FC8HVhTUtI2cL4Xq3UcVgLroNNFjJXKHhov/NIEJVxxMe7u3bjPPw94fx719ZQfdliHPxV39+6Is0QolTYaG3G9Vaf3AsuBN7Pgy1HP0StiKkxNDSvOPZc3Izz1GfYLe7vZvXqpYffdx8Hez0+edhqrHQe2bElpnZRKLY0Xfui360hyc1tn4voE+NWgQYQu59MHuP7TT7udrUuplMvJgXffxd21CyZNYsuf/sSI3btTXateQvsUqzA1NayYPJnQr+HHA9//zW/aCqqqcLdt437gGMfhZKB/bxwfNmsW+114IdA2BmdShIXzlMoOGi/80gQlCl+G/JwDlH34IfTvn6rqKOVPTo5dl2ftWka0tGhirVQyrFrFI5Mn81ZI0Qjg+489BlOmtBXW18Ott7ZOQfwX4GLHYb9emKSUVFdDUxP3lJbyAfDHcePYFyh++20YOjTV1VNKpTHt4uXDvkDZu+9Cfn6qqxK75mZudxxu7+XdC1QEubmaWCdUes1rLyJ9RORaEakTkWYR2Swi50ax32ARMV3cpods63ayzcqkvbBMsGoVy4uLOyQnU594on1yAjBvHu7dd+MOHgxAE3APdua9XmfGDJg7l329h2+CXQtGW1JU1tF44TdeaAtKJOvWUXnKKR2KvwR+O2gQfYDSTLzatWsXvz3wQD5LdT2U6jXSahDjTcAC4OfARmA68KiIFBtjnu5iv78D345QXg6Mx65nFm487aNn7xjcHos1a1heXExtSNFxeMlJcXHH7QsK7MrxmzbBnXcCbUnKHMchNxNjSzdmPfww7NrFHRdeyEfAitGjyQGmdNKS8qzj8N2dO23Lr1K9hsYLT1TxQhOUcKtWUVVcTFMnTwff1bscp3XxxYzRvz+Xv/Ya7oknAnCHd8Xu0kx7HUqlhfTpUywih2KDzSJjTIVX/KKIDMVO3dtpwDHG7AHWhx1vP+xCik91MrPWa8aYlgjl2WXtWh464wz+ElI0DDivpgbOPLPrfcvKcMeObfv5/fe5AxjsOBQD+6bZ5/J7jsORd99tkyu/pk4FYF9vTEpwjM6U5uaIm3/34Ye1tVf1Mhov/NZTE5RQK1dy17nn0hhSlAfMe+WVtoLmZtzTTqMBu9o80PmK8+loxIjWHzN/yWalUi1t/vfPwPZCrQ4rrwbuF5FvGGP+5uN43wf2Bx5IUP0y15YtPDJyJIcD48M/65uaOiQn0595BiZO7P64BQVt66GsXg3LlvEZthvU8UC6jdA48vnn28WPWMx+4globqZq2jQageUjRzL9nXfA6+7WyktolOpdNF74oWNQgpYt455zz6UhpCgfmPfSSzB2bPubp967/SGT+g7n5uI+8wzuM8+0Fv3BcexraNELokpFL636FA8H9mCX2gi11bs/zufxZmKvYazu5Pn3RSQgIu+KyC0i8jWfx09/tbUsdxyqR47kLWiXiERyDDD9+eejS07CVVTgPvZY65TgaWnChPjHXxYXw9SprVdGa4GHhgyxEwco1atpvPAbL7QFBWDJEu6/5BI+CCk6FLi0pgbGj2+/bW4u7hNPQEsL7rl2PNFfgYcch/MzpSUlLID+NUXVUCrzxfQ/ny8iG0Ie32OMuSfOihwMNBljTFj5JyHPR0VEBgKnAr+J0Cy/HVgI/C824n4XuBK7SPrpMdQ7fQ0dyvTHHmt7HKnL0cSJuMFt8vLsl/hYFBTYwfRjx+KuX9+xRaGXmVNTA6GLHKdzYqZUwmi8wEe80ASlqoo/XHEF74UUHQ5c/NhjnfchjjDw8S/AHx2H7+/ZkzGLN7oP2NY4d+ZMAP7Yty8A39+9O+JUtOsdh7EvvdQxaVMqKwVXBvat0RhT1NUGIjIReC6KY71kjJkAiFehDofyXz0uwLaud2iuN8aEdwl4TkTqgUoRmWiMWRPD+dJTTk7HGbjC9e/f/TZ+BBOV3q678TlK9ToaL/AZLzLjm3SyVFTw0DXXtGtBOBL4SXV1VEHCrapq+7m0lDeBfb0v+cWffpr8QX6VlTTMn09BrC03wf7PXoISXPn4+5109Rr7wANx90FWqvdI6qDHV4F/iWK7L7z7T4CDRETCroodFPJ8tH4EbDLGbI5y+2VAJfAtoPckKEoplTAaLzxRx4vsTFAWLuRZb6Gs0H7FRwE/uvtuO3d7NObObfu5tBTw5ngHintiPMeUKRQc9v/bu//oKMpzgePfh0XILSgpSSFKkChUuMKpqeVij5daTk+rYNNKK4LaH1ihSr3xRy0UsBEXmgLBXETLVVGq+ONWEahc5Rha8dT2cFqpYNHGlmiwSQVMaLTBBhsgy3v/mNmwu9lNMpvdzI88n3P2bHZ2Zud9mWWefead932H9/hjwhUV1vPChQBsHzKEqckSrGhCo5SbKitpXriQ3Mce49Ds2Zzl6q2V2dm3MeYjiBu5titvAgOB0cTfVxy9l/jPHbZIQkT+AyvQfd/BvqOSXZFTSikFaLyI02W86FsJyty5/PbRR2mg47/+ecC1996b3hCKQHjxYgCWrVjReyNdFxVl5l7l+fMB6LdwISexxo/LGTKEKY2N/p6UUgVTSQm5+flQV8derFsyFduxpmr6BrA0Zvk3gWoHI7LMBtqAnzvY9zfs510OtlFKKeUOX8SLvpOgXHcdzzzxRNK08HxgZkVFeytIWsrLAVjS0mKNhuXDMdyX3Hxz/EheOkmW8qJx46xHeTlvAZNCIfJdaUXxzrj2xpjDInIPsFhE/gm8BszC6rx4Rey6IvISMMoYMyZh+WlYk3VVGWOSjkIuIn8EHgdqsP4BvgTcDGw3xvw6s7VyUW0tj4wdG7foLGBq4vdsxw4euewyxgEX+2WQFKWUCzRe4DBe9J0EZdYsLk6RoORCeytCT1X/9KdWC8oDD/CpTM6EW1oKv/897NmTmc9LZs2a7H22Upk2Ywa37dvn8ohH3gg4th8BLcCtQAFWUJhpjHk+Yb0Qyc/9JUAenY9lXwOUAmfan7MfWAas6lHJvaaoiOvXrSN8442dr9fSwt+AMzK137lzWf/oo3wdGBqb8JSUcLyqKmOTN7aEQgy+6ip4+umMfJ5Sqjs0XuAgXgQ7QSkp4a2qKs676irIz2dvklXOBy5dsCBju5zwla+w7PnnWfK5zyUdCStt27bR8O67FICVSKxZA3V1mft8pfxm3Dh4MnGQkN6U9qgsWWGMiQDl9qOz9aakWP4sXYziYoy5Ot3yeV5dHQ+NHs1QYEZNDQ92lZzYzgNmvN7d/qFdqKxk7s6d1L79dvw4nxs2MCDFrOvp+AAY3NTU5XoA+0IhxlVUZOwinlJ9k8YLp4KdoEydSnNVFb/YtIkcTnVgj1UAsHJl5va5dStLpkyBHTsyO9xwZSUF0YSkuFg7rCvlCZ66IqZ6oqiIGzZuZNmsWdw/dixJ71lIoj9kbnTD3Fx45RXGtLTEL89wX8Cz6+u7fRvyuJoanadEqYzQeOGEJxKUtmzdtrR7Nw2cGj43aiJQjDUu2yXf+U7m9/vyy5n/zBkzTv09ZUr6E4IppTLEO/cU9yV/z1a8qKtj7axZnIS45KQAmPezn/HInDkdtykpYWZNTWbLkZub/f5/hYXdX3fMmK7XUUp1QeOFU55IUA4DH4ZCnJHhToYfPvEEryUsmwRc/r3vwZe/zMyNG2H9+ozuUynVV2jAccMJ4P5QiJsy3Sm9rY3Em56GAfNqaqw+KckmqO3fX3/AK6W6QeOFU/3cLkDUauB4KJS5D5w3j51JFrcCNDVZM9lu2JC5/fWmp55KOpu9Uqq3RdJ4qJ46DKzNZLw4cID7EkbtAmgCNo8d26cTkepQCFascLsYSgWAxgsnPJOgACwHq2N5Tyc5LC3lhYcf5g8Jiy8ECoG3Nm3q2ee7bcsWnq6qgkGDYOpUt0ujVB8VvSKmAccNTcB9mUhSGhpYM2pUh6mThwFLNm50NKVyEDUDlWVl1r91ZaXbxVHKpzReOOWJW7xi50IPnzhBePhwaGxMr5N5aSkvPPBAXHIyCZgMnHHNNfDZz8L27T0rsJs2b6b22WfZB4RbW5ny4otMcbtMSinVS86aMAGqqwFrNKr7QiFuSfd2r4YG1owYQXPMoqHALfv3W/GnsJAb6ut7WGL/qg6FeBlrJjYAMjiSmFJKdcYTLSihz3yGm2Jeh5ubYexY5yfD+fPZliQ5ufy737X6tzz5pDWfyLZtPS+0WxoaOAOItpscgJ6P6DV+fHrbXXcd7E42NppSfcXJNB6qRwYOJLx/f/vLaAvHGqetKQ0NrE5ITnKBW+rrrbl1oh3JnXQoD5gJjY2U1ddzif161V139Wi+rGdCIdi7NxNFc2R1Jm8HVCptGi+c8ESCAjAsEuF64Hr7dbiuDhKHWuzMokU8d889cUMJt3eIf/DBjJXTdaWlDItE+Oy3vgVALfD4U0/B3Llpf+Tf9u1Lb8OtW6GhIe39KuVv2mTvmqIiwvX1hGNaNz50sn1TE6tHjIjbJhe47eDBPp2QdJCfD4WF7bdafASs+sEPYO3atD5u5sGD1jD5vez2PtwKprxC44VTnklQAM6ORDg7EnF+31lZGVvvvjtuxK6J2MlJmidSz5s8mWuBLwDvABsefdTqOD9vnuOPOjvd2yOam0911i8vh53JhiVQKsg04LimsDC9ZKK5mcrhw+OSkzOwkxOd7yOpSxobCR88yMXYScqtt1IZCjkfaMatf9+Y70mltqYo12i8cMJTCUrUdPvRrZnYy8vZvGJF3CzxFwIlN98c3OQEYO5czotEuOTOOwGoA8JVVTz58MPulOeee+CVV9zZt1Ku0CtiXhA+eBCAJfZzp5qbWZWXR2zb/BnA7Y2Nmpx0Jj8fCgriWlJaAP71L/fKlKb53fmeKJVxGi+c8mSCMiESoTgSOTXT7aJF1u1eZWXWVfuoykqeuesuqmO2LQa+umBBj+6T9ZWxY7kcuNh++RFAONz75Xj/fZg/v/f3q5Sr9J5i10UTi+hzW5vV56C1Nb5fSksLq/LyrHOkbTB2cpLhmdqD6gvvv0+4sZFJ9uuVpaX+G65fE1HlGo0XTngyQUm09+67oamJ9StWnOqUvXYtP1+4kD/HrDcBmL54Maxc6UYx3XHNNUyKRLh03ToADgH3//jHVjKnY9crlUV6RcyT+ve3kg441VLS0sLKIUM6JCfz339fkxMncnMhP7/9h0MrsHLOHFaFQtb8XEqpFDReOOWJYYa7UhzbR2L9eti7l8cXLuSdmHXOB2bceac7rQdeUFDAxVgB4zUgvGIF+UDp4sXulkupwNKZgT0rPx9aW2kDVtqtKLFjQn4MOznJzXWhcP439cgRpra18Vxe3qm+n+n2ZVSqT9B44ZQvWlCiioHlmzYRTkhOzgNmVlT03eQEoKSESyMRvhozhHIb+K/5XSlf0StinpWTQ/jgQVqJT05ygB8eOaLJSU8MHgy5uXE/IJbPng2bN7tWJKW8T+OFE75KUCZu2UJiY/y5wLX33qv9H6JOP51x9p/NwOo5c9xpet+925p3prq663WV8iVtsve01laWjxgRtygHWHTkyKn+japHSo4epdj++zhQPmuWNfy8jywPhdpb2ZTKHo0XTvknQamq4sErr+RQwuJvV1RYky8qy+TJXL1rF+diHdwC4LmeTuSYhuaLLiI8ezYnL7ig1/etlOrj2tooHzSI48ne0+Qkc3JymH70KJ8CwuvWUXb0KEyf7napHDluP5RS3uKPBGXnTtaWlBA7JeBZwACwrtTv2BE/uldfN3Ei3961i6HAtZEIX+3Ne4P37YMdO+JmZ1YquHRUFs9pa6N84EDrFlfbAGi/3as8FHI+67xKLSfH+iGRk9O9qQE8ojwUoly/B6pXabxwwvud5HfvZs3nPx/3g3cYcMOWLfzhyitZv2kTbNrE3MWLrckClaV/f85yYbfvjB/P4y7sV6nep50ePSdFcnLH0aNWn5SjR90qWaBNP3YM+nv/50Sstq5XUSqDNF445e0zSnU1lRddFDepVj5w07ZtMG0akyIRazz2ujodKjJRcTFf782Wk7o6aGlp74w6GGuknH6f+ETvlUGpXqcBxzPa2lg2cGDcNcf+wB2xP55zcqCpidXDh3O7jjqVOT5KTpYltJqEjx1zqSSq79FzjhPePavU1rLqggvixq3PBUp/8xuYPDlu1b2jR1O8YEHfmv/EY/aOHs3WmNfzR460khalAkuviHlJsuSkLNmV/fx8btcfpX1Wh5tmfJRcKT/TeOGUN/9nHjjA8rFj4zquDQZu27ULJk7ssHqxXgnzjBzsvkGDBrlcEqWyTQOOFywLhVgSicT98OxHiuQkSn+U9nnacqJ6l8YLp7x3lm5qonzUqLj7Qz8GzH/9dZgwofNtW1qg1b7JaPBgX3XYC4IBwKJp0yBmLhalgk0DjpuWhUIdroj3A5Z0p09EQwPL7GGIc4Fb9EJXnxH2YZ8ZFQR6jnHCW/9DW1pYNnx4XMAZAPywpgbGjOly8zeGDOEX9t/hkSOhtlZPQl2Jjn6WzqRlLS3QZqWSbcAdX/uaTtSl+hBDXx9lxW1LYpKKsNMEo6AgbnvVNzj+niiVERovnPLOMMOtrYSHDOnYwbG+vlvJSXT9aDoSfvddGD68/Qe0Sq48L4/yvLy0tv3VkCGE8/JYlpfH9gyXSyl/8M7EWyJyu4g8LyLviYgRkbDD7aeLyB9FpFVE6kWkTEQ6jMMqIpNF5Hci8i8RaRCR1SLybxmrSDeFQyHCoVB7p+fYv7uloaH9M8KhEPfpkLNZ9Yj978zu3b2+79jjHNbjrFyj8cJJvMhagiIiU0WkRkRqRWRRpysbQzihz0I/oKyxEQoLu73P8yMRyiIRrrdfh5ubdVKuLpRFIta92k4SubY2aGtrTyaXfP/7lEUi2nqi+hjPzQz8XaxR2Lc63VBELgO2AK8C04B7gTJgecJ6nwJeBA4DJfY63wE2pFtoR7HCFvsjM3oe6gfOWkQKCghHIoTr6wH4ADRJyaLrIxGr9SJJP9LeEo6WQalep/ECh/EiK/c/2VnU/wBfAg4Ar4rIc8aYPydb/9Brr3VYtuTIkYwkF+ETJ7gjFGKAnpRSCg8caD13877czQMHUp3tQimlnBpvjDkpIv2BeQ63XQnsNMbcYL/+tYgMBspE5B5jTHSe3KVY5/SrjDEnAETkOPCYiFQYYzqezDvhNFYAHNqzJ+nyTNyu9QGwNhSiVONFVqwPhTgAhPfsgeLirO9PW0uUSsnz8SJbLSiTgFpjzDvGmOPA08AV3d04fPRoj5KTsyMRbop5vRz4UE9UKbVfVUqjv074zjuhsjILpVLK67x1RcwYk9YNziIyEigGnkx46wngNKwrZIjIacBU4JlosLE9AxzHwTk+Ro9iBWSgT0FhIeH9+9tfNgH3a7zIirnRWNMLyUkibTlR7tJ4Yet2vMhWgjICeDfm9QF7WTsRuUFEdovI7ti5TsLHjmVk9K1hkQi3x7xeDRzWoJMx4XXrrBN+OOx2UZRy0ck0Hp4z3n6Oaxg1xvwV+Ag43140Gmsk8cT1WoH9Mes50WWsgE7iRaZ+dBYVEa6paX95GHhQ40Ug6G1dyjs0XjiJF9ka4kqSLDNxL4x5CHgIQET+vhSOAk1L7duNsmEpQO8EnXysC3FBkLwuN95oPfwl+MfFn9yqy6iebX7kl/B8fhob5ohIbE/hh+zzoVuG2s//SPLeP2Le72y9D2Led6LLWAEd4sU/l0INwNIsn8+/l93PD8r/YU/Xo5vfEU/XwYEg1MOLdehhrACNF3G6FS+ylaAcAEbGvC4EDqVa2RjzCRHZbYxxr/dcBmldvEnr4k1+rYsxZmq2PltEvojVubArvzHGTOnp7uznDokB8QlEd9dzwlGssNX48fuSyK/f+0RBqEcQ6gDBqEcQ6pCMxouU66WUrQTlVeCTInIOcBC4Grg2S/tSSqmg+R3w791Y76OuV+nSB/ZzsitauTHvd7bex4E309i3xgqllOqZQMaLrCQoxpg2ESkFfgmEgEeMMekEL6WU6nOMMR8B+3ppd9Fz83jg99GFIlIEfAyIjqi1HzjGqXuQo+vlAOcCm5zuWGOFUkr1TFDjRdbmQTHGvGCMOc8YM9oY85NubOLmPXWZpnXxJq2LNwWpLr5jjPkb8DrwjYS3vgmcAKrs9Y4D24GZ9tCUUTOAgcBzae6/r8YKrYd3BKEOEIx6BKEOgdWb8UKMSXZ7mFJKKT8RkYlAEdaFp41YV6iesd9+wb7Khoi8BIwyxoyJ2fZyYBvwMPAU8GlgBfBTY8yCmPWKsa6aVWHNX1IE3A28ZIy5Knu1U0oplSl+iBeaoCilVACIyAZgdoq3zzHG1NnrvQwUGWOKErb/OnAXMA5oBNYDPzHGRBLWuwSowApKR7AC1B3RgKaUUsrb/BAvNEFRSimllFJKeUbW+qB0l4hMFZEaEakVkUVul8cpEakTkT+JyN7oWNUiMlREXhSRt+3nj7tdzmRE5BEROSwi1THLUpZdRBbbx6lGRC5zp9TJpahLWEQO2sdmr90sGX3Py3UZKSK/FpG/iMibInKrvdx3x6aTuvjy2Ch3+TVe+DVOBCVGBCE+BCEuaDxQjhhjXHtgjdqyH6tH/wCsjjfnu1mmNOpQB+QnLFsFLLL/XgRUuF3OFGW/BLgQqO6q7Fizfr6O1bnpHPu4hdyuQxd1CQPzk6zr9bqcCVxo/3068JZdZt8dm07q4stjow/3Hn6OF36NE0GJEUGID0GICxoP9OHk4XYLyiSg1hjzjrF6/D8NXOFymTLhCuAx++/HgOnuFSU1Y8xvOTVWdVSqsl8BPG2MOWaM+StQi3X8PCFFXVLxel3eM8a8Zv/9T+AvwAh8eGw6qUsqnq2Lcl3Q4oXn40RQYkQQ4kMQ4oLGA+WE2wnKCODdmNcH6PzL6kUG+JWI7BGRG+xlw40x74H1HxIY5lrpnEtVdr8eq1IRecNu4o82ffumLmKNLf5pYBc+PzYJdQGfHxvV6/z83QhSnPD1eSiBL89BQYgLGg9UV9xOUJJNd++3Xvv/aYy5EJgG/JdYIxYEkR+P1QPAaKAYeA/4b3u5L+oiIoOBLcBtxpgPO1s1yTJP1SdJXXx9bJQr/Pzd6Atxwm/Hx5fnoCDEBY0HqjvcTlAOACNjXhcCh1wqS1qMMYfs58PAs1jNj40iciaA/XzYvRI6lqrsvjtWxphGY0zEGHMSa7zuaNOw5+siIqdhncD/1xjzC3uxL49Nsrr4+dgo1/j2uxGwOOHL81AiP56DghAXNB6o7nI7QXkV+KSInCMiA4CrSXM2YjeIyCAROT36N3ApUI1Vh+j40rOB/3OnhGlJVfbngKtFZKCInAN8EviDC+XrtuhJ2/Y1rGMDHq+LiAjwM+AvxpjVMW/57tikqotfj41ylS/jRQDjhO/OQ8n47RwUhLig8UA54nYvfeByrJEc9gM/crs8Dst+LtYIE68Db0bLD+QBLwFv289D3S5rivI/hdWcegLrSsWczsoO/Mg+TjXANLfL3426PAH8CXgD60R3pk/qMhmrGfsNYK/9uNyPx6aTuvjy2OjD3Ycf44Wf40RQYkQQ4kMQ4oLGA304eehEjUoppZRSSinPcPsWL6WUUkoppZRqpwmKUkoppZRSyjM0QVFKKaWUUkp5hiYoSimllFJKKc/QBEUppZRSSinlGZqgKKWUUkoppTxDExSllFJKKaWUZ/w/m2TGtzqhdbEAAAAASUVORK5CYII=", "text/plain": [ - "[44, 62, 91, 116, 141, 146, 216, 250, 284, 388, 409, 470, 501, 573, 603, 648]" + "
" ] }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ - "ix.sort()\n", - "ix" - ] - }, - { - "cell_type": "markdown", - "id": "0deb6ac3", - "metadata": {}, - "source": [ - "A sample normal mode correlation map before and after adding the blank pixels." + "input_shape = preprocessed_data.train_x.shape[-1]\n", + "\n", + "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(13, 5.25))\n", + "im1 = ax1.imshow(preprocessed_data.raw_imgs[304], origin='lower', cmap='seismic', norm=CenteredNorm())\n", + "im2 = ax2.imshow(preprocessed_data.train_x[304].reshape(input_shape, input_shape), origin='lower', cmap='seismic', norm=CenteredNorm())\n", + "\n", + "ax1.set_title('DCCM map', size=title_size)\n", + "ax2.set_title('DCCM map after adding gaps', size=title_size)\n", + "\n", + "cb1 = plt.colorbar(im1, ax=ax1, fraction=0.045)\n", + "cb2 = plt.colorbar(im2, ax=ax2, fraction=0.045)\n", + "\n", + "ax1.tick_params(axis='both', which='major', labelsize=10)\n", + "ax2.tick_params(axis='both', which='major', labelsize=10)\n", + "cb1.ax.tick_params(labelsize=16) \n", + "cb2.ax.tick_params(labelsize=16) \n", + "\n", + "plt.show()" ] }, { "cell_type": "code", "execution_count": 7, - "id": "70351b0a", - "metadata": { - "scrolled": true - }, + "id": "4521a5c1", + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAFRCAYAAADpfDtaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9f3xb93nf+z7gIXQEHUIQBYkQBTEIDTGwQiu0Q8e0w6RyKmdy4zRO52xJm2zulm7t6rXZXdZ2W+9durV37W3XdLfZmja5i7eks1u7tRurtVsrtRqrNVMxMRMxNmPRNmLSMiRSEkRC1BEJAfeP5zzn+wVE6rdjpcLzeuEFEsA553u+5/t9fn6e53Hq9TotalGLWtSiFrWoRS1qUYtadDkUe6MH0KIWtahFLWpRi1rUoha16PufWoZFi1rUoha1qEUtalGLWtSiy6aWYdGiFrWoRS1qUYta1KIWteiyqWVYtKhFLWpRi1rUoha1qEUtumxqGRYtalGLWtSiFrWoRS1qUYsum1qGRYta1KIWtahFLWpRi1rUosumlmHRoha1qEUtalGLvi/IcZyM4zj/03GcacdxzjiOU3ccJ/VGj+v1IsdxcuE93n8Rx9wbHnNv0+dFx3GKV3iILWpRA7UMi2uEQiZjv047jjPjOM43HMf5vOM4dzqO03aec6xxHOcTjuP8peM4RxzHWXQcp+w4zt86jvMrjuP0XonjHMe53xrnL51jPP/Y+t3eS5qYFrWoRVc9tfhXiyy6H/gY8FfALwO/BASO4+x1HKfVmKtFLXqDyX2jB9Ci7zmpoGsDUsBbESb9T4FRx3F+rF6vv9B8kOM4Q8DDwGZgGvgz4BCwBrgR+Hng3ziOM1Sv179xuceFVAX+ieM4/7Fer59Z5l5+IvxNax23qEXXBrX41zVMjuPEgTuAPfV6/ceavntjBvX9RT/4Rg+gRX/3qcXQrjGq1+ufav7McZwu4LeBDwF7HMcZrNfrR6zvC8CfAz7wC8B/qdfr1aZzvBn4NSB5ucdZtBu4G9gF/GnTcdcD7wQeAT54/jtvUYta9P1OLf51zVMGQVoceqMH8v1I9Xr9xTd6DC26Bqher7de18ALqMvjXvH7GPBU+LvfavruyfDz//sCrrPqChx3f3jcPcAC8Ogyv//N8Dc/FL7vvci52At0Af8DOAycBP4GeFf4mzXArwPfBU4D3wY+tMy51gL/BvhLxKO5CMwAXwaGznP9buCLwBHgFPB14Eff6LXSerVeV9urxb/Omou/E/wLuB34PeA5YC48zzjwHwCv6bdFXQdNr/tX+PyseQWywGeAl8J5ORre683LjO1T4Tl2AD8KfA2oAMULuK+3A/8V+CZwDAiAg8B/AdatcExHuC6mw99PAP8H0Kv3ucwxeeAh4Li1Bt4H3Bsec+8yc1hs+iz6bfg89gLz4fP4U+D6FcbbB/zRhV77PPO1CfiCtZbGgH8czn0d+NTlzG/TPb4vHOvJcOwPA1uXOaYL+A3gO+Fvy+Hf9wO9F7POr7VXK2LRIgDq9XrNcZxfRjbyRxzH+Vf1er0eeuR2Ihv3/7mA85yGyJN30cc1URlhmj/qOM6mer3+WnjuVcA/QjC2Z8EeLpBSwF8jDPQBoBP4MPDnjuPcCvxu+NluoB34CPAHjuNM1ev1Ees81wO/AnwVYcLHgR7gh4E7Hcd5f71ef2KZ669DmFsZYagp4B8Av+84zuZ6vf7rl3hfLWrRNUct/vV9y79+HiiE5/pTwEMiOZ8CdjiOs7NuYGS/BeSAn0UUykfDz8cQhfle4E0YuBzh5wA4jnMT8BfIvPw58MdAGokq7XMc54P1ev3Plhnjv0bgV48hxuvaC7ivn0AiUX8F7EGgezchhsKdjuPcUq/X562xrQK+Atwc3tvvI3P6fwI/sNwFHMfZCjwDrAceD+chj8zL4xcwxma6C/hAeOxngW2I4Xuz4zjb6vX6rHXtArL+OpHn9i3EAHoEgQteMDmOsxF5/jlkHf4NEpn678jzWo4uan4t+hHgznCce4EB4O8DtzuOc1u9Xv9OOKZEeH/XIQ6GxwAHWV8fQIyRly7mPq8peqMtm9bre/PiPB6/8DergKXwt28OP/tY+P++i7zeJR0XHnt/eOxOYDj8+99a3384/OzHEEZ6KR6/OsI8Y8uM+RjCSDzru3eF3z3SdK61QHqZa2SRcP3z57j+HzZd/83htRdpeURar9YrerX419lz8XeBfyHKqLPM5/8pvMY/bPo8x8re+70rrREE9j2JGIo/0PRdN/Aq8BqNkadPhdc6Cdx4kWvgTUDbMp//0/CcP9/0+b8LP/+jFeb0rHtGlO468LNNn3/Aekb3Nn1XZOWIRRX4wabv/nP43c81ff6V8POfavr8zpWufY65+v/C3/9a0+dvQ6JKy0UsLnZ+77XGdVfTdz8bfv4V67P3h599eplrxIGOi1kP19qrVRWqRRHVxet2NPx3Q/i+KXyfvsjTXepxzWPaBzwPfNwx2Xk/gXjW/ugyTr0A/Jt6vV6zPvvfCHNdhzDrwBrH0whTHmga34m65cmxPp9GvBoFx3F6lrn+GYT51axjXgb+X8TD+LFLu60WtejapBb/+v7jX/V6/aV6qK010W+F73/vQs5zAfQ+xPv82/V6/a+axnAIiUplWD65+ffq9fqzF3Oxer3+3fryCfv/A4EYNd/XjwM1RIFfbk4byHGcLBJFeRmBdtnX/hPEk3+x9GC9Xv9K02e/F76/w7r2FuA9iKH2u03XfhyJIFwQhcn4HwFOIBW+7HN9E/hfyx13CfOr9Jf1en1302efAV4E3uM4zpuavju1zLUX68tHQ1oUUsuwaFEzqfCrr/D/pZ7ncujziGfrPY7j5BEc6BdtwXkJ9EIzcwgZ1WGgXK/Xlwtzvop48hrIcZx3Oo7zh47jTIVlMOth2cN/Gf5k8zLneiUUGs20N3y/8UJvpEUtalFELf71fcS/wlK+/85xnP2O45xwHKcWXluNneWufSl0a/j+JsdxPtX8wijO1y9z7N9e7MUcx2l3HOc+x3H2OY5zzAn7bSDGQxLrvhzH6UAiV6/Wl0+u3rvMZzq/+1ZQsJc75nw0usxnU+H7OuuzgfD9mSbDVmnfRVzzLcBq4FsrKOvLnuti5reJzjK4wvnT69xo/e5V4Bccx3nCcZyfcRzn7c55Slq3SKiVY9GiiBzH8RDMJEgCH5jqG2cJpPPQpR63HP0v4P8GPo4kIzrA5y7znCdW+Lx6nu8a9ozjOB9EPHsBgsV8EQmd1xC89w8gEI1mOrzCNUrh+9oVvm9Ri1q0DLX4F/B9xL8cx2lHksbfgSRs/wHy3JbCn/yHFa59KbQ+fP/QeX7nL/NZaZnPzkd/gOQAvAT8SXgOzcP5BI33pXN1vjm16VKOOR+Vmz+o1+vVMNBmK9Tnu/ZKny9Hl3qui5nfCzlfw7qt1+tzYanpX0LyjTQCMus4zn8Hfrlery+dfZoWQcuwaFEjDSNr4nC9Xi+Gn6klP+g4ztp6vb6S0GqmSz3uLKrX67OO4zyCMJI5xFMyfqnnu8L0nxBM8WC9Xn/e/sJxnN9lhcQ7pOLEcpQJ3y95vlrUomuUWvzr4umN5F8fQIyK/1mv1+9tuvYmxLC4UqTj+UC9Xv/yRR57UVErx3EGkWe9B/ghWwF1HCcG/NwKYzvfnF7uMVeK5s5z7ZU+vyLnuoT5vZCxnbVuQzjgPw0hjNsQ+NdPA/8Xgvb5P89xnWuaWlCoFgHRhvz34b//Wz8Pw917kGod/+YCzrPqco47B30O8UJs4PK9fVeS8sBzywjlGKLorEQ9juPklvl8R/h+UZjeFrXoWqYW/7pkeiP5Vz58Xy7XZCWD5lx0BmAFuIpWwnrXJZz3Yknv68vLeLXfgUB/IgohQJPAZsdxrlvmfDuW+Uznd3iF+13umCtFeu1bw3XSTOdaN800geQxbA8hYRdyroua3yY6a12F86fXOWvd1oW+Xa/XfxvJawGpJNaiFahlWLRIy709iDCjV5CwvU3/EvEs/FvHcf614zhnRbocx+lxHOdBDJb1co5bjp5CPFwfDMd6tVAR2Oo4Trd+EHo4/gPi5ViJ2oBfsxlzWOLyZxDIwpdel9G2qEV/x6jFvy6Lirxx/KsYvu+wP3QcpxdpOnixpIn7yyWb/wkC8/ppx3F+aLmDHce5NSwzerlUDN93NJ1/I/DfVjjmC4g+ttKcNlDoTX8SqRp1X9N1PsClGWYXRPV6fQrJ4cgD/7zp2ruQamgXeq5FBNa0FvjFpnO9DSnL3EzF8H1H0+/PNb9K73Ec566mz+5DEvufqtfr3w3P1b+C4awRj4XzXOeaphYU6hqjMFENhImlgLci1nocSVL7seYqIfV6fcJxnL+HeJZ+A/hZx3G+guCQ1yBl4d5JWDLuco9bjsLKIRcbwv5e0KeRso/POo7zRwg++J2IUH4MKVu3HH0LuAX4uuM4f4Ew1n+IPJOfWyGJr0Utuqapxb+uOL2R/OsxxFP/fziOcwPiLe5B+in8KcsbCOeiryA5FH/sOM6fIZ7w79br9S/W6/Ulx3F+BOlf8aeO4/wN0vdhAdiC9I/oRaqBXa7SuB/pgfAj4XX2IQrpnUiDteW6hv8XxAv+94FvOI7z55g5/SqC82+mn0b6WPyW4zjvRfpf5BHj9VzP7krQTyP3+N9DQ037WPx9xIj7AJKncyH0CwjM6Occx7kF6WOxCemL8mfIvNjnupT5VXoMeCSEJk4ie/iHkJK+/8L63U7gN8PzTyCN+7LWfbX6TJ2LLqVGbev1/ffi7I6kp5HKG19HQvO7sOpnr3AOH/hXiPftCCKEToTn+M+EteMv9zisOvAXcF+XWgd+2d+zTJ1v67u9LFMnHamRPYYkPc4izXduwOrcutz1kfrpXwrnJAC+QavzduvVep31avGvs+Zi2d9/v/EvRKn/faQCzymkQ/jPIU7Ps+6Tc/exaEOiVS9h+pk0H78R+FUkWXwB6aR9EElg/yjgWr9d9v4v8L46kQZvxXBuXgzHlljpGSHVjH4znAvtvP2vOX/n7YeRxOuTiKFxyZ23L2a9IY0N/3iZa38yPObui5ivzcD/RJL37c7b94Tn+sTlzC+NnbfvCseq3bT/COhr+v314bMYDcd0Ojzvw8BtF7serrWXE05ii1rUou8RhWXx/qper+94o8fSoha1qEUXQy3+1aJzkeM4vw/8KFCoh52sL+Ncv4I0D9xVr9f//DLOcy8CN/vxer1+/+WMqUXnp1aORYta1KIWtahFLWpRiy6IHMeJOY5zVuUpx3F+EIFvPXcxRoWd42N9dgOSX3KMS2v416I3iFqGRYta1KIWXWXkOM7/cBzniOM4y5YldYT+X8dxJh3H+ZbjODdZ3+1yHOc74Xe/8L0bdYta1KJrhOLAlOM4fxHyod8M80KeRJL3f/oizzfqOM5XHcf5747j/LrjOI8i0LoE8DP1y2sm+XearkZZ0TIsWtSiFrXo6qP7kbyBlehOYGv4+mfA70BUOvG/hd9vAz7iOM65qvu0qEUtatHF0hKS9L8ZyYX4l8B24CHg1nq9vvciz/e7QAfwESSfaRhJtP/Ber3++1dozH9X6X6uMlnRqgrVohZ9j6lerztv9BhadHVTvV7/6grlDpU+APyvuiTJjTiOk3KkqVgOmKzX6y8BhKVQPwA89zoPuUXXCLX4V4vq9foZxJi4Uuf7JaTL9etCYV7F/a/X+d9IuhplxVVhWPh+ur5uXY4zZ2BpCWo1eS0uQrUqf69eDbEYtLVBe7t5xePyWa0m79WqnLOtDU6dkt9ofnpbm7yUHAdcF9o4A2fOyMFBIBdqb5cfhRev4rK4KF+fOiVjWwpbs7S3y3k6OuQd5Dd6fdeVa/k+eG7V3NjJk/LuOHJNkJPW6+alg3RdOdmaNfJZPC7vZ85ApWIG0tYmxy0syHutJr/R8+iN6+Tp/7GYXNt15e9YDGo1zjhuNGdnzsg9gQy7WpWf662cPi1/Ly2Z+25vB88z/7e1yan19oJAjtNr6C23tcltBYF5pnIrddranGiYiYT8Vq+1tGSut2oVtJ+uwNGwvPnJk1RPnWIRKSNhly1wkE5YbUgYr10HmUrJa/Vq5quro0ema0rvCWSsTihyYzH5LpEwj0FfJ0/Ku86V68r6TiRkjaxaqsgXZ85EC2vxTBv1usx/EEBnpywjXUr6bHT/6DU9zzxeXR6JhHnMtZrMk+4P53QA7e2cWmxjYUGupWtd95/eny6tel2W5erV4R4IwjmPxeDECaqnT3M6nOclhOm0h/N8Guka1h6LyWA3baKWTHHihDx/vTddP7GYLNtEQu6rWoX5eflb147nyTy6tUU5yYkTVI8dYwFpMXwmfL0Gs/V6fQOXSHnHqV9KXcrXpPKNHdr/vXq9/nsXeZrNwJT1/3T42XKf33IJw7xqKZ1O13O53Bs9jBa1qEXXCBWLRWZnZy/LoH4D5cX3XFZcFYZFJpPjV35llBMnYHoaZmZEL5mehlIJZmehUBDFwvchk4F0WvS9bFbel5Zg3To4flyUkFRKjs9mRdHwPDkmnTaKKkDSW5Qfzs7Khb/zHTk4nRYt6vRpGBxkId3D5CQ8/zx885tQLMohID/NZmHHDli/Xj579VUYGTF6qefBW98Kt9ywIAeXSrBvn7yr4eC6clJ7gDrwzZshl4MbbwTPY8HrpFqVr+Pj35BjMxm5WKUCY2NQLstrdlYmKJUSLU0mXV56Xc+T48LPF13pEzQxIXMOcqrxEMU3Oyv/p9Py98gITE3J6WdnZT42b4YtW6C/X4aeTsu5fF8uVanIVExNwaZNouDq8Hwf9uyR6+u1ymU4fjzgzJl2Eok2fF/WRSoFg4My/+UyDAzIbcQmX4AvfQnuvx/m55k9dYoXkEywEmJIJJFakj4SC/TVKhkehmefhTvvhB/8QQBeuPnHmJyU8ajB4/vGuJqYkGkMAvPYBgbku0pFxlapyGlPn5bfHT8OW7fK+IeGoC91BD73OVlArgv5PNx9N4dX9dDeLvM1PQ0/PHyMBa+TyUmzT/bvh8OHZXw6v/qIdd9ks3IdfQZBIM9GjeD+fhnT178Ok5PmekFgzqP3ptcAOa5QkPvtrr4Cjz4qFxwZgT17KB84QAzpXpZCaj6CNB7oBFK1GsmFBfzbboOPf5xj/e/mySfl+q++Ks9YjZdsVqbFdc2aXLvW7PuBAeic/FvZX3v3UnvsMb6KFC0vI8aFB/xr+O5ZzOgiaIGm7lAXSJ+CoF6vD17OtRFbuJnq5/j87wwlEjl+9EdHmZiQ9felL8E998g60P3v+7Kus1lZhv39ssbXrZO9kkrJ2vI8Oafvy2fqe1m7FrrWLcqPddPrIrepUpGNX63C4CAvFOOMjsLoqNmXOo5du+T8o6MiR66/Xq67Ywf0Bs/JNfbulfdUCj71qcZr/fIvy0mVobiubMRcTvhVKiV/B4HsO93critjVFkA5maHhs6+J5v0/tNpmSzXlWurYKtWWXCTJNxF5oI44+OGF6pseOQR4UvT0zKcXE6eUTYrv8lkjBNh92757JOfhLhbo0aM2ArtEFb6rvnzv9gTY2RE5MvRozI1xaJMz/y8/GbLFsNXlE9WKjI1hQL0Pv+n8Cd/AuUyxx56iJeQWrB6lTgwGL73dHTIyT/7WRgc5M+mt7N3r/wuCIz+Mj4uU1qtQleXiHYQ/nvypKxp34cYNf7jL8eYmDBr9i1vEdH0w8PHhM+F63Oh/x2USnLuU6fghhuIjiuV5O9SScYBsib/n18183x4Jsa//Jey1P+vXzRzuFiN8elPy1pdvdqce34euk68AJkMfzmaZO9es1127zbP8OMfl/v8zGcg6df4uV+IUSzK8TfcAG9/O/zDO+fgt35LBvj447xQLHIMqX+8EaltfAyR2bkNG+DDH4ZPfpIvj/Xw+ONw4oSMVXWNfF6eXbUK2wqNa2muEuMznzEqXn8/7NwJyeK34LOf5cjv/A4jSH3ZY8Dut799xS1yofQGyovvuay4KgwLx5HFevKkYexK6tXVjQDCH/V3qtjp9ydOGF1ZmZWS6s+2tz26iP0j/V+jFq5LtSqbSb3y1Wpj9EPPvXq14feqhIGM7+RJWHQTxFX5t39g37j+7bqGgW/YIK90GoD5kPl4HnSn09FvF6pxEhbT59Qpcz6NyuiA7PtW8jxqXoLjM8ZIUKXTlkuzs8IAVbkrl83c6zNTI8Gm5ufb1iZebjU4dG5Vhmk0wjymRbn/eVhaaovG09ZmBFW3PwfjReGiExMEU1MsIMXWZ5EN7iJZYSlCxRbwN2wQrrS0JCd7/nmZp6NHoVwm9yG5Vipl5mX1avlM5byOv3l69fNqVdaQrpcNG8QA6++Hvtwi7B0Ty1W1n9ACaPeNJ76rC5iYIJHLUSh0R3M1Pd0YeNP1qfuhrU2OX7tWxl0uyz2ogWHvIx2fLlF72di2qL5v3mzmn6JlWWWzkMuRmpiAtjY2BgEJIO55BEFADSkkX0VaHBf27oW3vIXOTIYbb+yjvV3uSa8F8nh0TYZLlk2bjPHUWXlFtIe9e2HvXopIx6RyuHri4fO+XHJ4Q5PUppEeAEpZ5DbjK3z+d4ZWrRKFYWlJjE4wbHR+3jgiVP+2FalUSr5TZdZ2OKkRXq2KQkRxWjaVOp6y2bMHEwRygbY2KJfxPDGZ9Tz2+6pVsmZzOTmlfjczA71bUsZKDwIZZDPpRtUb9n2zx7JZ8H2OVeIsLcXpUo0qmzUXmpqSjaMeDr3WuUjvT29CJzqTYa6aiJxDqVSc2VnxZ4Eol5mMHPqdsDaQ8hAdtirw+kzKZeOQ0r2+klFxLmo+JpsVQ0Z5pK6HUkmuubQUUCx6kb7g+2JvAWwvLMpN/cEfUPviF5lDnCFzCN/KAmlEhuQLBTnxu94FTz4pD/zppyncub3BZ6g6i/oUKxXhxyr/mu+lRixy6qihvGMH3HUXcP+jRFbLqlUkBgZIp+Pk8/L7Hu8ImR0bGR83hrfe+9KS/G8r3CrzZ2fPNtBOn5b1Oz1tlufhwzA83Ed5Vp65yj2bX8eo4bqxKDIOcg+6PzMZMfgX3CSJt79dLrJ5M32/+7vUpqY4ghgTifZ2gqUljgG1mRl6f/u3wff54V/4BSDJ88/LGFVsqkO0WefQz1Re+T68e2hRnGGPPkrlgQf4G8SoKIfP9krQGygvvuey4qowLJrJ1n/1f1vhCQJ5qcdUvcSuayIWritCRj9XJUvPq8oRgcUwV6824Q1bo/J9KhXjZbbtjmYFSw9r9oCprDh+HLpSKflADQyl5h3puqIFqosjk2EuiOO6RFAR14XuvBgWC9V4eM8xOjU0s7QkFkil0mgJ2X/rPUN0rydOyBBnZoxMUa+7/n3ypJFROtd6Gptspbr5pVApFTbK3PX5qKFmrQbUuJA10BZBn3qyIb5odFy43MQEHDxIGRECx8L3GhKhSCOekEz4P4WCzDWYUJdy4clJ4tMv0ZfNkE4nKBYbZbNtxM7Py3jstaa/U6VfGZ/rGg8eI6MixMbGZOK3bIk0IJ2PyBbdOwnVKvEgoC+XxXXjkfy3x2Mv53Xr5HSbNpk51nHahrYaemvXGsUHzDn1tzr+VEqiLv39ECsdMhEyz5MvMxnRFjyPzokJ3PChV4OAGGLoaYh449QUnX/917BpE313p6kWOiMhpvd2+rQxqqtV46jNZCA+e0iMipERePppSvPzHAqffYBEKlKI9+tK0BtoWHwZuC/Exd4CnKjX6685jjMDbHUc581Io60PIzXl/85QvS57TNkaGPmgyNC2NsNebWdSMw+zebf+D+C6MWLKxFMp+XA55qaRYtellt7I7Jicf35errdqlTn/unVmP2rk9/hxUc5qN3fLWlKNazltyNaW9Leh4b6YlhU9W5S56CpkIAhYqMapBpBU5louN3p8lrvOcveoG16vn0pRnjYGQVub4Tsgn+mc6nwrjLNSkfteu9aczpYf6qw5H12o0aFz3uz0CQJYWjoDnGJpCY4f9yKDtFCAOIuGl4yNcQRRNMuIIySNyI4sovjy5jfLwem0nPzFF2Fykt6PfITMcCdjY0Zmq9ysVuVv3ze6iq5rlR8xalQqsYjX5fNi+MT2fVXC+s88Y0K1lQqu1ylGRUYcVZ35PIODvQ3zbBtR9jy2tRmjz/5cg+eFgrB3zzMOH90iik7UNWHTcnayHdUfGoLE9AviKUinZRGsX08sCEjNzBAHgqUlFsL5r4TPoO/hh+Gtb2XnB38M1xWxr3t7ZsbIp+XWiyIeslnEEHziCXjkEV5AEA1lRFbkll1Vl0ZvkLz4nsuKq8KwSCYlDFUqifdjYsIsEHW2tLXJhtNNUSrJsTa8yRYk6n0C+XzzZuhaPQfj1omV1HVRLos5vmrVWa6FdC4ZebqUAdpOHEUWZTKQ8GpQKjEw0B0xMQ25nj4NtQ0JYrqrbFyNXtP3jSs/l5MbKBSY8zZSLBpvx8yMGmGJaF5UwA4M9NAzmJX76eiQiQXjylOroFoVjMmGDQKxcpNMThgIzPPPm9wRRVipwNBI++ysOPWrVREWGp3XV3+/MKV0WsKgIKHI2Vn5TJXrePmIkQKuSxDEIu9esSivZ59dRxAsoWj5l1/2qFQEFsXu3TIxIyOygA4eZKFUYhphFGpYZBHFMgekMxm4/XbhMLt2yYDUdaacHgRntGcPuC6dXV103nAD5FPgeRyrxKPp1eWka1MFZxDI3CiDVrRdJiNrP/bwH6IYikpoDHWXy8QyGZieJjkwAOUy3VShUpZ7zeejSe7t76cy0N0AvVPDUEl1AxWq+rK9eIrCUO+T78vzX7dOnvnSkiyVwUGz9lMp2N5fkxP5vnyZy/Gt2W7Su26j++675SZdF3dkJBqPPzpK/qmnKFrPxwMKjz9OanoaJifZtmsXuQ+/O9qis7Nmi9hGfHLyG/D08/Dtb8Pu3ZQPHGAScb9opCqNeJ+6Edjb5dLr6YFyHOcBYAeQdhxnGvgPSGoK9Xr9s8CfAT+EILwWgB8Pv6s6jnMfUlGlDfgf9Xr926/TMN8QSiYFBrJpk/GQZ7NGcVVZMTlp9qJGCBQCmMnI3+vXy9+FQgidtPd8uSwnUBftchELddmvWUMse4R0emPEOjo65CcKy1L4bqx8jOlB8YMeP24MnqQKkpkZERQhRZ5jWz7oSTMZGBhgctLcp0Ah47S1xSMHUT7fzbah8KYnJ43Gv1zU2iYdnM5HKORemY4xOgoHDxqoYrls5IPCMTV69Ja3mHkeGBD4S6EgtxCjxlwlxvS0/OZKp8/0pufoTQOex0vTcXxfDDsJaLdx8GASCAiCgIMHPd75Tojv/mN5rvv2wego5akpXkKgnMeAnvC13fPggx8UnPPHPibrJZuVm16/Hr7wBdi9mwRw2/BwBCl7bjLO0pI8Zr1vVYDVIanLsEYsilRks/DOd0LX6J/Cn/4pPP44R8plOgH31ltheppEFnrcAB7dJ9GMQoHEwADvHh4GYnR0yDPSx98cmVjJ1lTjR+VHsSjzWKkYaJfKnxBYEZHen557cNDIxBtugMTsK/Lg776bV4KNuEPQPTQE09N4IebRm56m/4EH+AYmmuAePEjvL/8yiaNH+aG77+bQQA9TU+IYXbtW5NbatWffi+dJxCc+8lV4dBS++EWOjY3xrfDcJcRozABD51lfF0qvl7y4GmXFVWFYOGeqJIJj9OZSeJ5MvecJ5OPoUbNIdSPYsAxoDDlDI0xKnU7r1gHTs8Z9Yoca7ANTKTEsbG9VOs3srBgHCnOy9F/AbKZEdQ6myzA6yvDdPxIpQ8WiCBGTl9FNor8/CqFHGCvbLa3uCd/n8KkkxefFu6WMWz1jihO0oyli+MTI5XpkMatrRAWF4knAeLBSKebnjQJXKsn8K3TH9kg1h/l1urZubQx129BcdfhpaNdGesWDORMbDrXFXG4jnif8ee1awyBKpXYqlfboXlMpMV747MOwfz/BxESDITGLMCEQ5bIH6AfcO+8UY2LnThZy29i3D46/LIpzdRbee8894g362teYKxZJfvrTMglbtkgsOgRPdw4MsLR5Y8N6DAJjny4tybt6eFRAFArQl5mDh5+Az38eJiaohbAtgJi6gdRyVmWgWBSJrpsgfJ7bb/XIZjsjBWbNGoEh2DkfKrx0HVcqgpA4fFiWQ7Uqc+l5culCwTxDzXdKp8XD1OkvmsX9+XG5UOh+eqXaze7disboZHj4H+C60Ds8bOLxb3sbmVOnSI6M4CEcbxqJLHQfOEDuwAHixSKJD5fpHRhgodAT5bHY9xCffE7C2KOjsG8fL8zPcwQRELPhebNAAWNQxj7yEXjgAS6XXi/Dol6vf+Q839dZoVZ8vV7/M0SY/J2k2JklksER+vs3Rp8NDhpIRbXamKpWqcja7uho1KM1irB+PcRmj5iDlAfZ2B09oJl0Y4XMrjIhH6sitWaN/L9pU7hfpsXxsfOef8DMjNjBMzOiXK5f30nXwIAwdC04geVpzeflu9Wr5Zphgtlzk/FoX8zOmpwoaPRZuW6MPoVIaa7GhUQs1FrT8HEqxeykXOvVV8317JwrMNOXyZh8EuV9KuJi1UVqbrzBQZeozhHGkK8MqdPQ98nleiMUssoe32+jVFoTRXivvx7Jy9u7l0Pz87yCyI9jCARqI5AHClu2SDLIPffwSrWbRx+FbLYHtwQ/fO+98MQTHCsW6fzFX5Tr33uvWFhbt5Ibfm8YMTHOUC0Gs7REA2woRo1MJkYqJWIntvvLkr/x1FPMBQFVwFVZoR6l6Wki/JOlNL17cJB0OhHJgSBo9OS3t1te/Cbq6pKxrl8vt6P5fa4rbD+VgrvvFjbcvFU0F1KX29AQxCvHxLr7wrNywg99iEN+H48+KucdGrqNXB4G7gkj4cUisUyGwc98hurSEkVgHJibmGDgk5+EYpHue+4hPXhbg2NaDXybYtVF4qOjkqD12GN8q1TiCJI3M4vIiO1AH+D/1E/B3/7t2Se5BHo95MXVKCuuCsPClgTp9MbIaaxQGIURNXta7QpF9kJWZqpedv0/bl9Pf6har8as7RNa1oMGEM6ckQ2iSCYN8ba3h4ngpbJoYGNjxHI5OjMZOvMZXDcWLXbV8ROaaKdRi6UluWEFCaZSzHkbqVaFgR89apQ/TTw7cUK+swVI89/ZbA/JPAY8qdzf9+WaHR0RVre430QINNHL82R6Tp9uDGnaXhUdsu2Z6+oSgapRpXh1AcoVYq5LwvNIpxMk3EUiXNHzz5v7T6XI9W9k7dqoKBOrVxsjR6M1ypSzWeDpp6kUixyhEfrSicCfXMQDUQDcD35QuODOnbxQ6WZijwQ67NSXwftuojOMW/u6XnSyMxljgXkeXYM+7YVEBLs7ccKcR8Pb+rfqBD3+MdizV0KwIyNU5uepYOBaDZAFfaBqWExMmLWjD2XdOjqzWQYGeiI94PBhs5zVO6uktqt6dU+fNgalGka6z3TsKpAjo6JUEotZT5jN8kJRFJ3x0NZ47TUTzfLetZF0bqMYktUq3HgjiW9/m8T8vIS7EW/RYvja9sADxFwXpqZI3HwzNw0MAFBz48QqYQRyzx546CEWJiaYxiRpH0HC5QmMMpDp6BDp/L73XdWGRYvOQYuy9jpzPpmMFJlIp816VUigsjqVHbYfqVyG664zydVdmVCA2BEL9Xw0YBCXSRq2GKHyQJVHKss8DxOS37uXWCpFVzbL6sFtjI0ZHjGX7iF5A8YDZZNGr0OG+tJ0HCqi4C0tmVxEG2aj/ohiUdlVnP7+m0hms/Jhs2u5mXxfDBqdvHyel2aTjI2JAjk+bqKcaq+sX29sEMWya0ENTapNpaA7U4PJIjHPI+G6ZLPdxPf9pTCcO++8oKXQTMsmdIeQWDZtIhYEbO8vkE7HIpkFBjp95oyMd/GxxziEKJkBJpeihCibfTfcAPfdx+K9/4wnnhDRtXevgbsVfuHd9N3j0/n5z8OaNVSmpvDHx2UNfPe7JLJZburPS/5ce2ekalQqBiFg23wDA9CbWYAvPQyPPkr18cc5hDhNqkh0O7JMdBOMjlJ7+mliCj8IQ3rbCgVSO3qYnZVx26ToAVtOKOVyskY7Okz+DMipdex6qWbDxIYkQWhU6AYN80cP+X3s2SNBIg0SXned/OQtb+mmq9+Hl1+GQgHvwAFA5PwCsLi0RP+nP01icpL4PfewbWjITOD4rHgebKpU4Fd/lfJjj/ECYlDMYSLbOeAmjUb95E9e1YbF1UhXnWERd13S6c7IILAZFhhnJ4gipGU21Sq1vej2xnTd8DpqjYBJkrBJLX47NFKtRslVNpxEYTyqV0WeES2/oNlSlQrZXF+0EVXhP1YOcyHASAIVHL7PAgmKk/K1nZCoOSenT8u1VflTPdROxtXrbe/PNgpM2xoL3UXHyjGOHjX2h4bVNelQk71APrPnXL1RuZzAztatMwaF7yMGRGm2AdicyGbFg3fwoAy+WJSThtZTvHyErg6fjo5EJNfVsNJbUKbWk60xVyxSQhiEev2T4QvEyOgBvKEhiVTs2MFLQTejo3LpyUkRLppqMzICO3ZsJ3FziVihAJ5HrVgkViqJm18fypo1kj8QYiCuv763odiX3rKun2wWetILkgsyNgbPP091fp4AUaYjsdjW1hgWgyjbuhoEuEePmiSVbDZaiAnPI5czSaS6rPWndp6EvU90G9oezw0bxKDt6DDDSacx8EH9YSYDnsditpfx3aYSiXoyOzpE4diyRfdOkoRiIzZvxp+YiHyUC5hIUxHoffJJs/DDm4r5vgx2fBz27OFYaFSUEPhTBWNYppFIRSaVksTKHTvk/TLpDU7evnbp9OmoylFfoQCkGB6WJ7Fli2ypEEkXRdls2KUGGK6/XhzI+TwwNilKy+nTwty0gt78fGPFDpqw2mqlhFigVKqTVCqEfIae407Fz04WZVM884wwyaUlkpkMrtsZnX52FpIpPzIsVFGuERMDO5QPh2bjEfxJ4bHKa9Sw0HxDhTSqaKlUIKny8EKhUMr402nWrEmyZo0pCa7X072uDkE9dTYr83zjjWG1rdVzIZ63bLCNnkc8Uzu74so5qBbuPvt5rJh3cfq0wVBXq3SnUnQPZ8jl4pFsUT9JPi+F/I/RWOzBC199HR3ilNq1K0LdvvqqKN3Kop54AjL33kQyLFe2ODEh5QDPnJHFpxggYOCuH6ZaNbA4hbLaUKhMBrOYXRc3lyNbLLJAKC8GBoxXz3XlGvm8yK0tWwwGTa3eUBU6erTRGLN1rWbSqLYWclHWr4G+mRl51rOzjYZJjRhr15pKfoDwbcWHh3DevXtka6gRXCrJ0pDiALA6lyR5440wPEw+rDJYhqgOaxlIjI01RvYAKhVqg+9oXB9BAE8/zUuIzJhF9IY04njcDvCRj8CuXczlti8/IRdJ15K8uDoMi8Ww5Ovx41Cp0J3Pkx7sjHITFL9XKon303XNYlYFWm0EDW+uX98AQZekTq1dqVxYNT0tj6NZ45rUoViWIMBLG4s76UnysIaTuzThrhhq4lNTcOCADCDU4OLpNFpfwHY+d2b8xjJXoRtlgUQE73VdY8Erw1EmfvJkVLQoysdWWJRd3nWxGiOuE6blrdRSCC04P98dMVntCaLRIXvMzcooiG6thsXAgEnbiFVCITJbbuRGehNqIYEp86NCoFgE3yfhefSmUmR3SFKatvPQnJtUCpic5CVMpAJMGdkksqETQHcqBXfcAUNDHF7Vw0S4rkolkxCqw9GQ7nuGhuSY8XFq4fkT3/62KeGrDyKfl/Ux5OHnuyNhYSe1R9EVNUoqFVi3DnfLFtJTUwSIB6oGJiadTlPzk8RSgUxqJoO7ZYvxYKrk3rrVXOSUiUCoPa0BDnVsgYGJ6PNVI1lhDbo9slnTpyKbRRQ7+0RhEql6MbXkoA4nlIdMTZl1msl0E+/vhxtvpPvFF6ksLUUGBQhzCoDFUom4lry0gcgajz9wIPIuHsMk96WQSEUPEq3gzjslBj80xDG/hytB14qguKpIM7MhYkC+L7kL113XGfEoNZ6Vf9k52LonTp4UhahLlX9d9CobwDA8y+UaKWNhTtFiulvKhJbDn6mmrQJK92kQ7mFl3LOzpNOdDYHrINdJrtCJh6kKFKNGbeg2secnTVRZjQn73nR/qSNBUa+aQuj70PbWjXT1NzktmqhGTOCYKsdCx8F3RkTJPHnS9OFRueF5Js9OFWQtGKGQSnClOmLGa4QWqOzcsHxrmeZoxPmSt6PfK5+yhWfIkLLZbnI5o8SGQRm+ivCRGMaoSBOiHu66C+66i+cqPezdK/zOfh6ao3bqFCRdFw4epATUymWqQGp+Hu/rX48qpMQyGeKZDKtTPZw40bi89R4SpaK48q3otjpOfJDEcZ03G5emIazpacHFHj0Kvk93oUD39VlOn042rDHPM+Wam6mrS9QnNVLb2kQOq16yaZOIrCAQ3439nG69NSYReq3HNzpqhFNocfj+Rk6fNpXdDh406wvks7e+dRtdO3fi79tH+sCBBohaAMSmpsg89VTjvqtWz14rQUCpXI6cUXMYJ+RGoHNgAP7+34c77mDP7nMus4uia0VeXB2Ghe4k1b6qVeJujXg1INEBXJeIFq96z1U4NK2fs5RrRav0ZDM0SBxoLGkABlurmmAqxWJqo3hlQit+zRpIYmnaepy67JVxbdrUOABLgNgVTSqVBOl0H6msXHJ6GipFc5h65FUnt+G+tuyzPRxqH5XLYoiBRrR7pDqIDYeqVqP4/fiYiVJoIzj73CoDbONNYWF6+4otjqBpnscicREiOje2a02txQ0bzHe2YLcy0uOeRzabiCrC6hymUsDBgxEECkQAeMgCT4bhlmR7O7z//bBzJ4e7pLb4N79pPJvqqdd1ViyGuRs6sZOTHEEYWHJ+niqQLJVIPPus0Z7DscYKBeKpFO1ed3RL6u1PTL8gyeBf+5oIioMHmUNrXQlzi4MIizASEAsWjMCYmWk0CkEqkOiDT6fpCjMgd+zYHj1qzxNHqcK3FX6h0bhKRfaWnRva3y+XGBoyjQ87g0Myfl0kKo3DaKP92GzDVLef6lTT03Dbjh2RFZJ98kleCud3AWMk1ID8/v14duZgLhdlix4rlaIk7TJiVKhRmUIEReqGG8TLGBoVWqHxcuha8kBdVdTebpR0jSJUpedEVwby+c6IT9reaF3jCts4fdpAPbmum66hjNlTIf8/Vo5FRnHah2SooKiiUvOTzJxK8uq4ESed7pwoTq+9JprYW98qXmPFvo+NCXMJm9z03ZvnhclYVBxjclLO89GP0nCtJ54wRTtOnDCeYc2LsmFeygpUnKkNrilRxSJks0n6+0NI0jIUo8aCm2TWl1IHQQDju0WRfu01kxqo5atVTmj+mKaG9ffDu/uPGc0biGuGtq01lsvwV38Fb3vbsvkfF1t6Nvr90aPGclDBFD6LeDbLe3YMsGZNjMOHZYiJ4BhpDO/IAImf+AnI50lOTsLHP85z/jvYs0eel4pTHW6lInP0R38E/+InfxK6utj2a78mPGtiorGHlK4HzyM5PEwyk6aWTxIrHwM3ZW5mdBQefJDqk08yi5EVcSCmUGbbitaXet9s2HcQyJq89Vbe8tb3NMyV50kwvzloFKNG1+lpTqfFIZNOi4rT3i6XAOOH1TVmt0cJAiBlPc98XpxhADfcwEK6h/EnTMl0z5P3kydNJatyWbZTVz4Pg4N0HzjQUKnrFR3r2BgbSyVj0aqMtKlSYQx4CTEqujHJ2tszGfjYx1i8432MjJgKbpdL15K8uDoMCw3d2aQh2CCgK50mm01ECh8Y/qB5yB0dBsain1uOCSBGtrBNquzY4dYwQlBz45GRr0p+pQLTk2aIa9dC14aahM3VCwCm5JFydW0qVKkIlw3Dr7m7BQ6l3iNtsqdYT983CBPVuzWEr0JCBYmSjaXVObG9U5WKeJc0Crx+fYING3pIZ819lcswtV+aoqng0rnQObf7c6xfHznOWb9ehIsKk9uGaqYClUZrMhlxw+sFwdzk5KRo94WCKY+hGoBqqBAZZz25HNWBjQ3l+XwfOHmSFMbD5CMepvS73gWDgyIQMhm46y7mBt7N1/ZK4qQ+A72MbXcqz9+8OcEtd98Nrkv3ww/rRFItlXA7OkRpUCy24qgBVq2i81aPzqzPInGqVUiwAI/sFwE6MkLQZFREG1IXhW1B2w/+zBkDT9DwlHr9UikBp27axFveuT1i1EtL0OUcoT2zMVLy1Ui0047AdKm3l3Q0154n92y7RgcGIJ9nYrc4HZsjWxoos42NchkOlWJ053KQz5OYmCA5NYWPLJcAiULEw+fac+AAvpax1c29bx8vIEnf5fC4NKYCVI4QunDXXTA8zOG2br49ZnLfL5euFUFxVVGtZvgHNOY7AX6qM/JL2FHXJuRnQ3GPjg4aHUWeR41YVHghCEKnkt84FEXoaSQy6S3CRFE0b3XpK+lF16+XgxQyOz1NPt9DtdrYc6OZ7Fu29y6ICNIcgXRa9qDtGNJLW767s1jKcmQ771TGaOnqkyeNo0/FtcpN+9yeh+FNNoPVh6QKr96cRq7PQw0wMc7RTM8uk2t79bT6Yi5HR0dn1GANZF9rBTnvXe8SbTufFyTCwADFPcYnp8/Cdqaokfit4W1sf39VhE21Kg8GDK755ZdFXlSrUXPDWDodGUI1VzJDY5rhj3E8uSDHbN1qElfAzKndwEPrulYqcp7VqyGT4cQJ2LChEVKmlQSbPyeVIig1Ohn10ak9PjJiyucWCgauVqlwtmc0LHX1XKmTA8+Ynr723sxmRdfQeQ4CIJ+Re7njDvqefBKXxqqPh4BaCENwx8aiqE7D+giCyKhIYsoG94I4HwcHI/3JTqS/XLpW5MXVYVjYpBxKGU34t+8nIibX0WGa6dnR6uaUCVWmbOGS0IVtMbdF4hwPvUAKXVFPvO6FtWvDSKN62G1tqxkUqZl0ukNDV3W8coxUSqIWJ040Op1933QGVd4XBEYuqVLX1WU8BHqcfc86D2psKINXh0212liACmSKT5wwngGbVHDY51+9WoSsliLVIiURDlTxW3qAciBbitnYKsXjKGns3uZYViQpk98YHRJFR5aWiGOFMgF/yxYpc/r2t5vMwYEBnn9ehmnnoqi30S6UpWisb34Tbvn4DsOUw/an7smTjeEZVXY1mcZ1Jerg+8R9n7hi+F59NWo5rgaFhzAdF4irsZJOm7IyttKjCe66wPVh6BjKZVlIGzbQ3m6iENUqUK5C077RImi2AlGtyppQWG+pJJdxXcCt2iVVwPOYy/RRHDd4YxtRorkZzUmJutWjzvKFAumpKY6Fc6HJdBq98EBKDwJu6L56ZWmJaQwe2sN4GtOIsGB4GN76VhbT3bw6bjytLfo+Jl2oqoxaWdqZgnjYNYHUVohVUTh9uhHuMT8PQXsc3+80aJlpEzUGOUdXE0pHWVi1GhoV2j+nWGxMhgNTLu/mm40WNT4Oo6PEymUK/duj1DybHSppjQtlpamUbJuODtiWW+BYkIimZXbWNAvTc+lxttMpm4We7MrTrJEONRiUXavYW7fO7HE73Ut9bSA+Dr5TNA4XLYWknnsN5U5PN5YOaqJzdeEGAxvTvyNSzVBzINWTpMVLNmwgP/AOI6IqFXoQ/kFY5GPxrh+hWIS+DxX4xng8qp1hB9dVRKnMnZ2VQEP27u107tplkn3UQ9jkNItCStms6A75vOTVgPDz0ChJeJ4YE2EeBbmcRCDUQ2Rbg1riT6F4Wg0sjBClC2fnqHRtkHLwK821bReCec62kaXf6TkymZhp+qqTlcmw4HVGCHUV82pU2HOr83rqFBzKbaR7507wJOm///HHSSAyI0BkgRYCqSBGQ98yN3EsfMa9wABWDt6997I4eBtju+URLdfot0XnpqvDsKjXzW60MfgWF/NSpsOwzXeq1UankK0wqeKrhoHncbbn3HWpWsq0ygJ7GJlMmIxn12DVCy+nQGvZBLUM9LhSiWTWxc0mI2XfRmfZt69Mbt06sxc1+dVOAjcRGTMMe3PamFv7GrYHT49TSAyYHEbbWFOGYieK2/qu60KE9dJsbyW9CR2g4rv04PZ2U+pXH4QyXMXgAJTLJLwaWpbYfpQghkUn4Gcygt95+9slazA8fy3bw+ExY1jpHPl+Y2d1XY4zM6In/M1IjNsGB4X5qxYeKrmRi0ofiCYX6P868WpYlMty4pMnI8hWXKWy55ncCs2Cb15jq1ZFZYgjt5lWbtGBh/BCXV/aCT3h+wQVs86qVfOM1QCw0GeRfa86wIYN4f0qfDGToZbeyNg+UwVXFS1b4Kps031oRzJIp0VQnjhBYmqKnokJEkhOjCaz28bFAuAXi8xBhJENaDQqNiLexkShIBVBrr8+MiabyzleDjlX5jQtuhhas0YUJts7YpWysctzQiNq1SbdTs0yBRocqhGkYzl91/Oi1CoiSGAu13hB+yLqRbY3WLhRYtTYtSvGzp3L3/Z9952NEIr+9jxSIT8fGopQViuSHmfLgOVIuxPbpOdtlr1g2LR9Xs8D1oWDsgdgT7xiaXfsWP6BcDYUSv8/b97F7bc3Fmtofjaeh+taS8jLkn7xxQYBod/X3HjUl6n5VHD2fGjPCO65R36s+DabAaqwt0tU2RAEgE98Au691yhszYtXGa0OSuWfvWBsRSP8fersaQaWz7GQcr3mX90Xd93VqAfY70qZDJAumC/Cqk0e8siHh+HHfuzsS6psanYYk85HfS8IAnrDV8OPmqAcDWtjcJBf/Ou/blSYrNCe60qQCuQUf/zHy8/TxdK1Ii+uDsMCztauVVmzvFD2vlHlRGHt6o1qazNKr91c+vRp0eXa2+N4Xme0UO1IhXpobbhRpRIaFdPT5qWeFzVnVZnT3ZjJGK9UEMiFx8elKkS5TCKbJZfriepA2+kO6pFSWrtWohSaNNvtHsHLbYw8A2qg6OWb8yH03jW4MjMjBoQ6bOzpVoVQ+WnYMy/yRoFxum3eLPBFtRfy+bDT576iuB9sDnvypIkYqKc9lTIKuK3dK8RHQzZ6c6odh/Obz/dRqRh9mtl2epCQZ/z224VxvfOdLNz+PiYmoDAszQonRkzzNz1tc1ClWjVGBpjiQ7lcN93a5EgNCLU8ta6klkrRhxlGNyI3jmaKl0osLi3hgtQg37rVlG1R79P11xvsrH3Okycb+1usWWNyDvS3If4tm5WPYtRYCGJQbdwXYIYHsgd0f6VSJkqhzz2bBcZKUZiqlt7IzIwE8V57rdE5u2ZNo2CwAzs2rCM73EPnsBtld3Y+9hidExMcCwIWCcsJIlAnP/xfsbWzmBKBGcSYKIBU4rnhBolY3XUXc9ltjO01AbAr4YVykK5CLfoek+OcpW3UiBEL4UsxamEiaqP3+nwe7+Uo7sprJYpRa/x+BaU4Gqcbl4ToFcjzmhK2rTFrc9GG81nf63vchfhyiuElUIwaifMYH83jsccS3YcbJ+a7Z/224XmoYnel6QLOqeOI7nWZLn1xV37jujEpFtC0lpZbX9FnujZ9f/moSjM1ryHflwIeF7J+z7MGzzVepZU+19PGqOG6sbOec/P5G863jEVsr69mmOE5qVmonIeWLRE9NHTOYxLeOeB1l0DXkry4OgwLW0sOIRaL6W7i2WykAat3X5vUaUVA9TxqboXtddbPzrXPFCbiuqadAxhdt6sL09BBNSGFgajXVjH2tuWrCqhdHufwYXml0yRyOX54xwDZrBRDXVoyze80r0sdXInqnFGyv7SHztCrk0ynyeyQSM7+/TJ+HYZWQATjgbY9T1oxyjZkFFljlyi0DRUbM9vRIXNv54PNBXGSWqnIjl2qdhnOz6KXxM0lialmbyvJdjgkCAyeYdWqKJl5MdtLadro2oK7zNNZKIhBd8stEqUIO9KqUQUNSywaon1/tmGhUNxqVQzP8XHwBt8h17GTX1SLPn3adIBSqzeXM1q5GiThGopr6F8tNa3pumWLgQc0P4RMRgyPQqERr6o9UTRS5vswPMzEhOLIhcknUj7tVTFYde1rVF7TM7QCmcKhjh+X6dfqUTeFmaIvTceZ3icGxYsvmsu+9a2m3LBtuGUysp80X6dcNik1eKnGsP30NJ3FIsO7dzO3tMQcBvf8HIKjLSGh7l4E8pQHetrbZe8NDorVOTjIYn4blVkz1boOrgRdK5jZq51s5do2Lpb7zcXQpSoWKx13vnM1GwkX+vsLvf7F0rnyF5b7zP5/OaNnpd9eqXFezu9XOseF3udyBuFy0ZSV5uh8172S87Xc+ZqvZ/9/rvux/z5fvstKhufrRSvxgvPRhe6/i6VrRV5cHYaF4zS6i1MpKhXoTHlRyFj1Dc9rhOxoYRr1viuUQxVC1ceUNPdTFc2lJVM2TY/V42xPfeS2tYGEakioBqUDdV1RklQpVK+7ZnhBpBF7XjI6vb7svImEuwiVoDGEqecNoS52FRA7PK3n0zyTZoeBGhL25835FM05FnqL69ebZkD6W+BsUKSN7QoHFI3Fvlm7n4dq+1r71HaZhw9eDUpTwhBRyHM5ec9mmasmInyx2jf2WlKjRJeeItfsfiDHj4u9oMcKdMdrXFT2grNxRJWKWMJ2qM2OFes9aYtrnQstZGBj/2wAqmaz2YZFOt0YCgivY6/z9nYkamGRrnGN9tlLVI30DRvM1ObzRDk02WxvFFjUoWgES4033UeaFqJrxg6dBwHgJXDTCWL6ZVdX1OI1uW8f1aUlqhBFMGbDv31MLkVPe7vE1fv7ifAK+XxD0OtKOkWvpSofVzMtpwBd6nngbOPEVpb0+/Ndf7nxXIzieqmK77kUqeXGv9w9X+i4L+T7c51nOSX0Qn5zrvu/kHteaQ4ulJY7V/N1LmY9Xuo9LjdX57r2xayplcZgn3+58zQb+Mv9/mLW9UrHrHT9ZrrQeb2QNXS5dC3Ji6vDsKjXG4Gb1aoIf4VCgTQfS7ksBDHm5w3MXaH8WhWqOTJhe6qbFekYNc6ciUXwKRtbb9s5ndlsozZiNfWJXraiqW5gvbC6x3M5080vm2XB30hx1JxakTUKPzpzBlw3ju8L9CmhtfvzeWrEmJkxpQPtdAXNIbYNK41MNMNgdIhgFEpozMOw8yz0djV3xZ7byFiwDQZbOQ4PcF2pOd/QIla/aFamNVNdB1CpEPd91q1LNFybyYq5ZltbZMAo2TkhTUutAYFnH9Ps1Y6qqthJ3KpZ68HPP2+S1zUEoNav/m5yUl4aFti8uTExRiMh9uJV0jlSiyqcgMVqTErUVqsG75PJsH59L9DYsAqMoXTmjEHzKfpML716tUl9GRiAbYWaRO9GRmDVKuI3VNhWKOC68agVjD1kOzH+1CmzZ+3v7fQUmeOkVBGbn48WWXVpqaEE7RHEqEhAVBYyCTKPCrcLwxM1P0ll2lwvXBpXjK4VQXE104UqY+eDoJzPG3uu6zcbIssdtxJU5FyK6UrXOdd5m899MffR/Pe5jllJ4brQaE2zEtpsEJ0v4tF8npXmphae2f7dSvd4rnOc63cXa8yuFAFYSdFd6bOVxnMh6+R811juWhejZF/MGmimizGyzmdwX4whdCFjvhy6VuTF1WFYaAkeVb5cl4QXKm8zMwZ377okUikSmQxzq+PMzBjlxe6bpbAOG4qhiosqybGqqQR99Khx9tqQ+Go1TKsoJMlkkpHed1a3bGhMcgCjoWlln/Z2ajveE0UYpqfhmYekCt2aNSbvQSFLqghpv4j2dkinEwwNvYfiHoGynDwp4x0fNwqcVpSyU0F0iGooKOyrra2xzHWx2Jg7vVLCo01nlxUMFVurmVkt1Rn9PkaNeLBA1O5aIWY/8AMGI6OKc3OBcOui8fABpdM9Yq+Mlo3CH+Yb+PnuqHmu6uDHjxuoj11S136ctg2g60ubeXamarBvHPbsgccfjyBqtXKZRaRTdHJkhBgC08mXShKNULhXpQJf/CJzxSIBohTHSyV5wAojUyPDfnD2OtM8Cl20rit14aenpYmSGi0zM3R95CPRJlhwExIB8+IR3EvnQKs/vfaageSpjVMowLbUIXh4nzy3kRE55+AgDA3Rt3Mnk6mkVs6MjFy7eMDq1RKEyOVMdSgNSNm9T+LVBRnMiy/KdfbuZSycywpiVLyCdEbdiBgXhN9Vi0XJV1FoWKUS7vN4tDQ0Amcb0ZdD14qguKpIC2Iog/R95ioxku4CMc/jUCkWretyOdZQWA4gCOR7RSlms43BP62BoBFMhdauWSPlxm0FZLEq50qlEKN7dlYgniEWNaZZ4Or0qFajZhUxLZB/yy3EzpyR3/X381JlYwSJtZWar+2PsXo1ZLNSBrdr3aLxIO3ZAwMDcr1cjmIpwdgY+H4sYiWrVhlRq3ORz5s+FssZI8fKsQhKahfgUtKKURCLeOeaNbBuXSyCW2YyMbrdI2c7YcLJXwyj9vHpoqkcVCicpWjbY1spSrOsQl06ZFAD1Soxvb5WSspkeGU6FukNw8MxYvf9C/GmDAzA4CDj41CpxKLKxjLMWIN40tPq41c4cj4fY2gI4sGcPPtqVUrKagGQfF6YU6FAzPchl5PGsuGirBEjNv4tYtp8R5UCC/scsyPY1SoxHYC9qDUPMHR4VdK9lEox8vmzn7nrNub06PxLOdhYJI6sujSUy7FIJGWzkqeu5/3a/hg339z4/FReaP8ohdKuXasyItYAVFBZnMlAnGpUsiw2MSHzODpqTtbWxmyxyEtINDvblFQXm3yBibe8hSzghzmZsUIB8nkWBm5jft7IwSsFm4VrR15cHYZFW5sBeutT1N07NSXcUDEb4epKplJs2iRqxcmTjQEFWw+1KtaSTosytWkT+H48Ypbau+HwYWGUCoefn5dmlZrQncmIU/SWm/1GzbPZDQ6NMKCwtJMaAZOTolPv3Su3KYxY7kGjForxB9mka9caQajOf9vrq/+fPCnjHRtrbCauG9PzjPEwP28w9CdPih5nQ4tsmNCqVabChRpe6bSBCqVSVhRCS+qF2mm5LAJamijFpOzqzExjV7qTJ82DtKFlqgGrtm9r/tUqyVQKShVjPajU9Lwo4HXihPHYh81uG2BOywmG+XnTZFF1g6jOuf5Iu2sFARUkmVib9C0Slro7cADvwAFcnY+TJ/lWWCK1iiQbb3/ySfHSa/1H5aZ2boVyVZV++sBVsSiXpTjAQw/B17/OwtISiclJ89DWrCFx441SPKBQ4Fg5FkVxZmflfisVmR+NLqTTBlXE6ERUGpOxMdPaPrSSPW9btFY0EKP1zO0glG4HfVRnzjSWX4/2/fQ0vPwyx+bnOYTprlpGOmlvC+cujhhzamA0aJDhXrTrQCjZf18qXUuh7auKarVGaChhl+N2YYapVGdDZFZZtUaBdQspH7Nz9eylY9efsJWLZsVVoaZx28Oiip4auvZ32az8r/Vj1XEWRrlnZkwTZVtRPnrUyLEgADa4jRsrNLIOz4tRMTFhakYEgcmr0pK72mdwpfvSe9P+UMoftVDf6dNyC+oYg0ZIr0ZDoy+We69WTdTZxiE3jelcnu7zRg5s76ItR5SHVqv4flyHQ2z2SEOz07lKLHLCqENqft44H20WrXMGxu+j541rfytbME9MGI8myANRhEPIOGPUTM8T15XGclrP1y51H+FKQ9IFHioMNS8hRlV4/36uV5ysy6zn5Ugr6ulv2ttlreq9q66l6pxN118PsbFvRJ0cYxPPUShsY35ebk17sHgekTNQmy7aj01FoOfFcVMbieeqIsjDvRQcPEgZqRL4DWAS2EFYdtymIOAIEvH2df5CpInaoLolr1SE+1qSF1ePYWEnFuiOtRXJN785Ck3U0hsj/fXECfMzXaCqXINZjDZvt5mgnv70aVPvW38PJi9XZcSGDZiSoarU2bW3VdPXrGHVqLu6yN6xLUpCV8GmTFnzGfS6Wn1Ux7BhgxhEumHTaTNtvt9YUlYFgF06VT3Edpdl1zWMUoscqRFhJ3DbgRgdj203RX9rvUN9dvr7dOiRcmvmu9OnzYXtwur67JdzFegg1PIDFtwkiYwvn2u4aXoa0mk6B9OsX5+MAijK/PS5q5JhCwZlnHavD1Wy167FRFjSaXko4XuyVMKfmqKKKLtVwrKoN9wgJ9QSSVNT+KEQCTAdQ/NPPNEQbWHzZlnz9trSudOwgF3KK50WxX9sjHKYj5CYmWkMH+hxuRyQaJbh0SW0T8natSYCmMxmRaDZIcL+fglDVKuRh3V21gib5jnVdWTnq2heR3cmFJ5PPQVf+QqMjhIcOMALiFGhxloKiVS44fxVkJKzqfD/jRMT+BqWDO+90P8OJiaMJ1ob9V0JulYExVVFit1TL0w2S9fqORifgGqVRCZDwvPoymc5PBOL+KHqa2qzWylbQHM0O95QmE4r0DX3sahUxPlUqUB//3bSeakm01ATXBmMKn9qeGj51Z07wXU5fCrJ10Yk6JjNSnlZW+kbGTFObikBHSOVEpjszg//E2F/iOgZHTURwfl5Y5SAnEMrDZ4vcnfmjKn0poqjslnl+9pqB4yOayuEvg8EVRNh0skPD0hQE2fF+Lg4Em+91arhewXITgRTiKpaCqHc6cxk6Mz4YmCUZs36qlQiZVfvt1wWJ+Tp0xLhVX1CWbH9O60KngiOwZNPwp/+qXz58ssQBBwrlej0POaCgOQdd8ia0FLK99xjFujDD8PnPicPbccOE/a1Icc64So3mzxmsRTy8J5+Gs6cIVatkh28rWGqYtToWldlLoif9blUbYpFDkwtPmi3rgqDTbx3aA7JgBNKPvGHElX7jd+QMd9/P7H+fm65+25OnkxSLDb2i1FZoZUINdivW0ijGvEgkMU9OUl1/35eQGSqOqP6kCapZ5HrRo1Yo75kISmy4bXXzlJlLpuuFXlxdRgWtdrZnn9dQatWmQ3UlLCsyrAqLzaayo64WrD7aA/aPRr0Mmoh2wmetiLUQPZY9Yf6uTIlqW+77GF6qF0wSRv/NSt8tkfAzgvWza2f6bnse9dzeZ4xKjRR3UbcRDkSGGGier8aG2qsBIHx8OkmFOU9QVxPbHmmIiiazXXtCI+ewKqYdJbmZ7vC1MpDnfcxOs+cEYm7tCTcPIxybB18b9QZ3PZaz8+f3XKi+dnoUBQOdOONwO4REYDT08JR1aJra0Mb3HnhexIELqTjD92gbrGIi/RnKCNRjvTMDKlnnjHRiCBoDBHZ1s/srMnv0BsIJf5CELCgg9dui+3tpo12yCWbDUN9rjZMoqPDRNyZDX+si0Yn8fBhOHOGwvB2qlUjHJpTZ3R92p5kva7nYRpEff3r8NRTVIpFXkEERBkigy2JiKtEOMeLEDVFCsJX74EDeBr+a2sjkcmQSvVEU3jypJm2yyGHa6cu+VVFsZgpV62LTL3BurDDPdOVTnMiLVC4NWuMoqtixQ76gTqB5fd2FDuCO1lUQ6Aw4+Mm102aw8XYlk+bcDgYRmwnFYUe50NBJ2Nj0tT5K18R3XrLFjEsbBofN0FSrSytla6Vh69fL/dz/Lhxis/OSuqXlpJ2XfEtrF0bRiNZOVHWhsgePWqmee1a+V69zGDYlbJn5bXSA6rSkJs4V5UYo1cNHU6adzY5KaW3V6ALxdc3ULksE2LD0XRw+l04gZ3ZrGEO4W/059oVWuE/6g+zobS2nFYjtlLBaOHPPw/t7SwWi5SBl4BE6D0ffvJJvLExeahLS2JAKK+9/36+Cvjz82x77DE8fejQ6HhS2WqHEOxI0N698KUvRZHhuOc19hcJAhgZITk4SI1k49xOT0OqJ4rQqU+wWJQp3LRJRK9EuEdhxw7zfPbsgSeegF/9VTnX6KiMZ3ycVOq2yN4rlxvREbb/TG9VnV4Jr2Zk4bPPUkQiFLNIdDuLNL7buHXr2evElR4agIHJhTpDtSp75fBhkRVXIroN15a8uDoMCw0F2y5lZcI2VsV1qbnxSEHUza37S/dPc182jQhqWEubfUKjQXLmTGM3Z92L+psItphNNW7i5pKgqvCdOSPa1OrVsG5d1LR7ZsZ0uVY92Y4M6Od6T3Z/ieYuqJqGovaLOmpVadRhqeWv11FYle3IWb/ePA69DbvZ2enTJqcWGiMiCo3tVomikxhCklw3rAdva+5r15rn3Gxw2JaVaqSWt6/mSxRkNtQlOoOAI0tLLAC53bujFtCd2SwDA9tIMsdiJhnJ+aNHjW3QbFRomFeNimxWSl7H9/4FPPpo1DV3bmaG5MyM/PDMGRaQKEUcUXwT7e3CtD1PTnr0KFQquCMjUaftufD3h4DFICB94IDgb8FoDfbaOnXKtMOtVk13d5DeGBCxz8X5eeLaHdwmz2vIH9F1rbad5UwUHHe5LEbbq6+axWVH69JpOvN5Bga2MTlp4Bb23lRyXWMA63x7HuIlnJyEZ56hXCxSxDS/m0MMihRh80PCqEV7O27Ycb0Szv1CeP99+/cTn5qSC23ZQmZnD2DWtK6DFn0fUlsbtVSn7BNdrAoLCQLD4DMZ5iom3wLkua9aJUtZoaZ6uB2VVdGjyk6zwwFUATcKuX4fGcq60PTkyt80mg2weTOpgvx5+rSp8LecMmNDQvR+7Cpsnmc6Ya9ebRCkp06JomSnrOlw9DwrKedBYLzy6pmenDR5f1pV0Z4b+/9qNVT+bWXX8/BS8n2csOqherFeflkUxeXCqcuM84ISa6emJGdL62urgmDL53ACF92EQHWnpmQMr71GonIE39/I/LyILJUZyuOaI942hDaKioVRdG2eG19aIh02+VQYp6cJaNqF3KLa0lIEB3WB7Q88YJLirr9ePF92R0jl2TpIZfZPPsncwYMAJNVBZhsW1aoYP+k0MbU6lSYncYd6IpVM104QmCmM2n+E+zLKe3nTmyIYFCDjDTvsaZ7T+LhZ44p+h0afojpgu9YtwuiYGCuPPMLsxASTmBLkKQQq64UDPGudBAElxDEVK5XY+MwzEQ4r/+G+qBCQLssWXRxdHYaFZCbL39Uqi16SIIDkQCrauYeqGwnKUC4ayJMySjD5fDb/Uuu2o8OUmfV9U73Ghnuqgr9hg6mtbycM6bERr2t2b9sRCxszqRw//HPTJoM91QqjaqGvX98I2QkC4wlYtcqMrdl5v2WLGcLSkilKZW9GDSeqN0nvxZ6Hjg65pm1YKB5Xb/PkSQOTUu+23vLsLGQySWJaRcuTakWnQqd5wm7zmcnIw3n1VeNp1CpKenEb4KgDT6U45m5kelw+PnhQxt23eTNxhPEG8/N4+/fLIhkcJDkgbrd4JsPw8G2RTFflWg1LNcZ0zjIZQf8MD0P39N8KFiE0KsjnSba1SRO2fB7Wryfx3e9S2Lu3Ef86NNS4NgoFuqem8EdGeAkxKOaQPIEjCEPsfeopks8/b7ByN9xgJjrE+dUef5wq4qGPAf7EBItBEHWgTgLxDRsMTkG1pNdeg0qFVCoZwfCKRSMctfqtlpeNEowGBmTBaljCxhqG0YZkEDA4eFMkz/RrO2qmmHaVgbkcdJZfEgHxxBMcGhlhHBEQZSQSsRHT/K4P6FQ4QKVCct8+EmGfi3L4WgznxCuVyH3xi8SqVRKpFMPD72Z8XATWlfJCXSsNj64qOnNGklvVK2IXOrA8NcfKscihWSrJxwpBVe+zbjHlifquMFPNd1X50Uw2GgWMMt/wYzvqWKmI0louy+ZbvZr5eaP7qaFtQ7SUFJZoRxp1+01Pm2nQQgz6u6NHRY7o/3q/XV3LX8cmzxP5Yzu6fL8xqt3ebqLnvm/w8VquulSyHE7hXER2g+1Q8n0z+CtJKpzscCzIQ1amlE6z6CaYnoZe12VhbIz42Biu68Lhw7z7E5/ghckYuZx4snWeJybkVHaSv87bwIDIjptSL8Gv3g/T09QOHJDEaiQKW0P4dQ/AnXc2QoEtwyqGOKDKiMMlGQT0PPYYMYUurFolBobe3/HjRB141TL2PHjxRSrh+ZJTU2cjAxSW0GxFA1QqUS6eTqtOrYqZXC6MJIwWo3BYjJqWuGx8JmNjUCrR99EcDHUzOtrY9gtk7epa0a3uusgP9+2Dhx+mdOAAzyEytAJRCfJU+GreuBK9ENmp8rc2NkYmhFTF83m25G7ja19rVOWuBF0r8uLqMCyaOqnOlkJek0rgpxMSUZ42nhplmrYnP4LbhKSOcLv3hTJszWmAxp4Ydi6FjSHV80b4yuNxuuwStOm0lPusLjRiqRRHks1CLhcZPoor1yJAGqlYu1aMh0rFMGXbg7xqVSNvtPmx3jMYw0LPq/9rlEL/h8aKSdmsybnQ89seZju4oHO/apWBb2kp31Sqk2rl7OBEw8NR7TKfN149jXTYZVd1LkPGPzsLkxOiH4Ns+nXrgIENeAizPha+JyYmSH/2s8LhSyXI5YhXKuzY8d5oHWnUqzli7PsytDvugPcOHoNPfhaeeYa5iQlR5LWYgD25HR2R8cDmzXIvg4MsVmPReeO+D7ffTvLkSXoPHGARk+gdhONOIl4Uv1g0UCr7oZfLlMOprBIq0UEg9xy+3C1bTMEDzzPun/Z2qFYb4H5gEvM8D667TtAIvdlF2D0qE6FGn7qX1EhRw3B6GrJZtv9kmh07eiI70ZZpSirLNXLG5KS4q558kklEcCq0qRMRur3hyxsaktyToaEog3LbI48Qx3irKtYaWAD6HniAeC5H3ycK0L+RpSUZ9uXStZSMd9WRzUPAhBZdl1quV5CBk4173EbAaKUjy+8TQWL1f5sN6f/QCL+x9NKGLRophrZ3B2Sjffe78ne4N9U7qx5uOwXBplzORKt93ySXNheQs6MSSh0dhhWsXx8VQ7ogw8JuKqn7VqP4Kj90XCqTVDlUKFX3YMqUf/N9gnLID/XEa9bAm95kTeD56UJ6EADGAlImvGGDCH51/uRyvDKbiFIuevNpFhAlvvvJJyUq3N9PX38/jBYZGLgtUoDtCIVtGGoK2rsLR+DB3fDYY7Bli1TtymSgUCB+8CC5kRHiGm3YscOsZ7tUGcDQEL0jI0wiPK0YvueeeorEa6/J/NlJmKdPi9XzzDNm0W/YwGIY4fb14bIMnMyCzDZ8Fp5nOaekphsmKkfk7M0La2Cg0QJXJ1WpBKOj9A0Oks93a2G16PLq3IVGvYn798GDD/LKgQOMI3mKGtnOIc1Sc4B7883RWJpLzHoIbOpYOMTa1BSpqSkS+Tzdn8iSz/dw4ABXjK4leXF1GBYh1TDlyuwUBYX8NCu1igJpzi1o3uBgGK3mF0SJxF6cNWvM9+vWmeoZqljbDBNEkZ5bHZOKRNUqi1UZd9z2wGh8UEMSngeBsezV0NECSDpW+x5OnWqM8NveMXs8VpW5BueYHaHQqlYawbErWhAOWyuEqPGjf2vkWPmN64pAUUGjSqTybNsbrIZNezuNloZK9K6uxnKMIBe0cNKkUhyrxKNQfLFoBFepFEIa7s7hpVKkymViGOx95G5QELTn0Z3NMjy8DZBHUywaqIAyMa1EuHkzBgPQ3o5HKAy3bpUxFwrGm6+GkUYsPC+qKKJOoFy+j9g73yne9iCg5+BBFhEGp4rwEcSTlT9wQAwLbbZo4WcVQgVEOR2u55mytRp2HhgwVrdVbUTXkw3PtVGHlQosVOMkQiFIELDoJUWpySFwgVJJHrh9oiCIlDFde21t8jMdVi4n87phA/S6rwjud8+eKIJTDufCQzxOWcS48AoFeNe75MFcd53M99GjdHoeqTC3pIppolcJ/44Dfbt3Qz5P3/Aw6Tv6APjt3+ay6VoRFFcVua5UuEmnOXw8zoYNsj17BgZYrMaYnBD+pMg9e1/b0UnFc9vBDjslzpYfYP62lTDXFRamhT/a2+XvBRKyd8BAs5QxKvh+zRrIZKhWI4RMhGixE6KVCgWD2VfHiA1bVLmwtNTI39WYsOGduZyMO5U6d56C6sEqA9SYKZeFX2jispI6vjQXpFIRv0EmEyed7hFeWDa2RFKP37RJGIIWrLgAupAeFw03YodMATIZaqlOikXRwbVKIjtzUfR7NgiIj4yQvP9+eQClEj0f99ix46YIkaq6iRZ7UqPinnuAz3wG9u6VJG2FHBQKkrDf30980yZxkqhhod7AZsPizjspfPvbLM7P8woiLxT2mZuYwP/mN4U3Ki+uVODll5krlSLnkz81xSJhnprOg+s2Gme2B7GZgkCDbLiugbytWSMir1BAohD5/NkwNl28+vl11xmn1J49UCyya9fPRDVcJiflZzZaZNMmWbfxyedgzx6O7d/POJKnshDeVx9SijytSZH5fHQvDevE88iF83cIkbke4tR6x2c+A7kcOz7+M1SrVzZica3Ii/MaFo7jbAH+F4JGqAG/V6/X/6vjOJ3AHyCGYRH4B/V6/Xh4zL8F/ilwBviZer3+5+cfiRsxTNXjwBgQJ0405iXB2Z4Z9aCoEmfDWpWiaEWo5LpePGKOmsDt+7IIF6uxyJNkGxd6XVJxPC8eMZXk6mojRMrGOfk+lMVwUTyiQoRtWNPSkokAqMK+Zk0jblNPrx42Gz1kf6cOIjUs1Nuk92kbFqdPG4FRqZh5siMWYEoraqWQ5gpRKui0d4GdftLwINQduGmTSDg1vmzYkO9Tc+NRI8BXXz27IaA+lwV/I4kbbmDj009HjLQG8uXBg1TKZbyZGdy2Nshm2Xa3j7ezh7VrBX6rQkI9JW1twpM2bQKmy5HlFS+XRUoPDZnKLoODHAo68bI9dIZu+LmK1AI/NW+w06p89N56azTRmXKZyswMASGMC2Nk5CcmzM3qQw73irL9aAPbfTCuv95AsAYHGx+QgoItanasao7E7Cz05HJ8ayIOiGF3/LjI/8HB7STzeVMecWYmskxWrTJVtNQrrF27BweNtzQ+ewh2PwGPP86RqSleQhh8gDEqMgiD8XM5qRYzOGis5FJJcAmFAumxsUjQho+wwbDYeOAAqYcfhtdeo/Nd7+L97383V4KuFUFxVVG9LvzZTXD4sKxH8SDHogiFHdnW6khqTKicAJOjoHzU9wX37/qmKo6dp9dMnidr2+5DZCLNSRJZl0U3QTWAhM2kLUxgtWzObUctmqm/v7EwSalk+hnZDicds8oCdZzZOWOavpVKnVsxV8OiWm2EwBaLZg7tfAo1LDRP2xgWJjdh1SojBxsEh+8bJ8qVJBvSoB63VIpXpmNMT5jy78omXyrG6O3oIJifj5w9yaeeMln6rstN9/ksva+PIDAVY6enDZz0bW+DbbkFgc+Gzq7IWBgcFMNCq//dfDN4HgthHseJacjmtuG51rPZuROmp9n2uc9RQxTgBSRKWwO2j4zAXXeZUsbhAikjMiIBuO3t+KExy623ym/DPIfoOuqMag6ZhfPWnPpy6pSR80tLiMzO9RJrqjf7itdHqr8PX+/p5psNPCNUdEJgBwcONAIa3vY2sRFyOejLLsCnH6H20ENRpKKCRGC0DHl6YAA++EE5YP16wVM1k+fRi8nL0wjVMSC+tMTA7/wOifXr+eH3vx9Isn//eVfZBdG1Ii/Oa1ggOs6/rtfr33AcpwP4uuM4TwL3Al+p1+u/6jjOLwC/APy84zjbgA8Db0Vg0Xscx+mr1+tnVjg/S3WXl4qxyLs0MWGEgyrX0OhZUsaruqjmFmiOgHqidI8pjtXzdDPEcd14BNlR8v2w3KAr1YzWrTs758BOB7AhWBsGksT8itHktdZcJsOh2XhU11+FgOZNKMUqczLdWT/avYdnpCmS4hntja3XtRvqqTNMBYJu0PXrG40FdWooqTKoaQ1qDCij1HvVMLwaF+ohU9iLjku91eqYO3UK/A0JYir9wgTsWDYr3n/XFQawebMA/NNpXinFI0VBDQoNQds5/tWqMKNb/t7fI5ZKES+VSE9MUJ2fh7Y2quVyBJFJjY3hPfwwVKv07txJ5v3bI8EwPt44xzt2QE9qDsZCDWVoyEjmnTsjzvdSKREZJQMDvUzvM7qDbfSa+emk713vihZW9otfjLz0c4hhoRWjUqrN5/ONuAtoVAfUTblliwjngQFIpVjwOkn4iwYPEoJGOy0Mxdq18cjADQLhx1GHet9nekz2T7Eoj0j3WSaTIJfbRmcqJZs2zJXZssXUuK9WxW684QaZtu35sAHeaEkm/MEHmR0b4wVESBxD4E8bEeaRB1JDQyII3/52AS2nUpJkqYu1XKYzCPAmJqKKIIs0GmoTQN/jj9M5Pg7f+Q6JK4DjvpZC21cVtbdzeCbG0aOSZ9rfL47SpSWxM+0IIcj72rUmWqHOJ1tJ199Xq+B6xqhYtcrwsuUU8LhbY8OGGO3tphrTyZNRKhPr1yciJ0yPh/EghbjUBa8z4tlqgNsRAptCHTCCLR4+bNISlMpl8WOpXFF+DcYeV7mg0N9zkbKc+XkDCwt7T0ayViEqbW2GL9uyVpGuYOYyinSop0y9bG95SyNW+TIo8sI3hVCP0cn0uKydF18UtqXQ2vZ2YUu9u3axcWRElHP19pVKzALpBx8Ez+OWj36Ujnu3MzYmzz7sfYfrSvAgSgYdGCC1tAR33y03PzDAc+VuqtVutn8oz3OTcVIuVGcNOigI5HnHw2moDd1G7Phx3HKZvoceIkCMCi3D3atlzLVYSOghUidNDOSBqyd/1y6J2BS2nVUtyWRgN5Hr0pmqsRDE8DxZZx0dJkpz+jSQyzIyAtVqguFhs2d275bp//CH5Z5ecvtID/WRzGSisI8a6Vu3ynk1CjI4CNsKYeWwLzwJv/u7jCEVoOYQB1QP0A9kbrhBjIpdu4wi1BRyqBETSNqdd9Ib5irOhd8FiBxKTkzQ+0u/BN/+Nj/8kz/Jf7yIdbcSXUvy4ry7t16vvwa8Fv497zjO88Bm4ANI7xGA/wnsBX4+/PzBer1+GnjZcZxJ4B3AM+e7lnqXNOHOrv6kzY1A/tYyzlrPWL0nWlLPhgeBwZcqf4kRQqHc8EduKFXGilFoIOa6xF2X7nweLxQ2alzo2OwEwGiDep7sitBrvBDEmJ0UYbB2rRgrccKuqSNFw0Q1S3DduuizrmwWylWS2Sy+H2vw1KsBoAnfNgRJjQTl14lquHUqQXR/yXSapE/EKNatM0l+6nlSRVvnt7k8q+/LnGsda5UTmUxjF++I9MAwgS+u+Cu1FjZsiCwvTUrUV7EowkCVB32m6kG7ZetW+bBYhFQKN8TKuWNjBIhXYg7oGxmJrKHEUJGbCgXwoVDoiwyEMD9brJF8Xhj2zp3ypca6PY+al4geuY5XsbfqJdTvPU+Y7+QkeP099NxzD/T342UyDD74IHNTUxwCnkOMiklg4JFHcJXbWiW6koQh7fZ2CSvfcAN84ANiWAwM8Nx0ktI0TOwRGMLmzT3kcj10hW7Zmp9kZkYMbDCYaX3mk5PSFT6TSbJvn1lzCqHSqmbime0mP9hNsr+fY+5Gpg4a5SWblanbnjkixsdnRkyC5tgYhw4cYAwJec4iAsLOqeCOO0Qa5fOQzzPnd1MNnZypVJJYPi8WYBCQ2LKFnokJFqammIaoivpiOKcBkJmaIvvFL+Jr1uVl0rUiKK4mWloSnlMsimIIjV5j29mjidj6WbUqOqLrmkRrG6FpkzqBYsECTM8arTikGjFiwQKxcplO38fNJKlWZWxHjwqfUoio70NPzpM/3vSmSAGcnpa9pFGPpLdo1TBt9PrGJ5+DIBBDHugqZKFaZc2aRCT3NK9QnU0qozQ1SqMVnhfel4Aoz7r3CI9eXSThgrvONJDTHAo7Qm4HmvW6qZTMtZanPXPGpKOpkYfvRYNeqMaliWczvv8SKZLHduWwdJqJEaJmteoP0UCu74cwnNCBQbFI6sABUdLn56U4xMwM3Y8+CtUq2z76UQofvokgkDQK7X0yNASUPJFnO3fKTYdQp1qmm9l92ichzsGDwrbVeWfDvdWwGB+H7XfcAWfOkAC2P/QQCYzHfhoojIzIhTX/c/16ElNTIis6OiRKMDwMb387tTvfx/Q0vLYfbrnZeu5unJk1vVJ1qZnCJq5VkpHst/OUikV4JdfD2Jjcw/CwOXRy0jgk466JEhUK2+nO5WB8nHJZyzWb6bppoCZRn/sn5GE9+igTU1OMI7I8jTif+oHOm28WWTE8DIODLASCGog3GamRsXn33SSqVQaefJJDiPzxED1hHKgePEjff/7PV2w9yrWvDboot4DjODngRuBrQFdodFCv119zHGdj+LPNwIh12HT4WfO5/hnwzwAymR5Z5K+ZCh7q+VFlJpVq7PmgBoV64lWpVoysHUrWCp1aGcTzYNWqGB0dwixdN47rhZEKOxQCEaf0vHhkQARBYw6CCqUaMWK6e3I5FkhAYJSxdeuEz8Qqc0Yrs7Ox1TOiN2InN1SrdKbTpHLJKHqskZpczsBtdL4yGZM7nnDDkn7KCUItdyGIReFrNVQ0QqNMtlxuDM2fOWMMmVOnTITDVjplThvbJ2iDIc9LCEzJSxBUAC/0PIMZeHjB0j6jqNseMjsvUg2n06eBoQHhSq+9JlJdGcLICLmnnqIalmPluutMK1l195VKdO+AzHBftBZj1UUW3CTktpG45x7mht4beetVgYGzcdv2+rDnQ//WimarViXoGhiImjQl9+0jduAA0+G6DQirIilgWfEN110XlVsllxNccj4vEKhMhmPVZFSxxO4wfPIk4FkDCdeQVipTR6Eah8ePm2iRTZ5nKqNo/8eDB+H66zdGz+n6602vpx43hDxp5+5SSTyB8/NRsvYCIiT6wtfGLVsiHHIUKUqnqZTMGKrVMBm+UJAbXbsW8nkSk5P07d2Lv7QUlaHVW9BIxpUwLK4lD9SF0jmgs58CfgLQ+sj/rl6v/1l4zEVBZ1WxVVkBJiCnPF7Xpe34UYPCzkODRmeROkN0v8aoNdScrKU6GzHpqkVXKiTzPqmUibzbCai+j2Gq11/PXKpH1vBsWD5zQ3idydCLolFvm5qbiIZCryufp6Mj2QD7tf01quRHEMRgTrRRtQiWiQ6clczrxiP5m05HfTEjRVjhUjZq0/cN/FOj23qM8o6aGyeGOLqqFWS/N5VavWxSb2Imw+GZGFNTJk/P7oWlzshyGbh7WOSEFtAIArx9+8js3y8yZGlJGOzoKLHZWRKVCh/60I9ElYRj5WMc87rpvOce+OhHoVTicFs3AGdKMgdaMUuNEX0Uy8HgZmfhhWKcvrvuAs8j4ftsf+ABqkEQ5Vywb58o1gpP3bqVjWNjxFMpMSp27Yp46t69oty7bqNhEQTwzW9CoRCnJ9sUoQuLI5yaN4iI116L6oFEqN3R0bPH31x63O6Bkckk6e+/jeK4MSyyWdjuPge/8xT89V/LYCcmeGl+nrHwftOIQTEAxD70Ibm34WHI5zk8I5y5owO5f5pyiVxXfhtCnLtHR0keOEANkbvTSETIBXoffBB6elZYXBdO15K8uGDDwnEcH/gj4BP1en3OcVZs9bHcF/WzPqjXfw/4PYDrrhusT04KTPvVV2noqG0rrMqX7fwE5Rl2bzXll+qF0A7L6tHSMpsnTzYKGc+LS8OY5sSNkOkp/EeTvJRJqr4uTDUpYTbfj3pOgByzYUNovKgks7m+chqNcyv+SqVhqLnG0mkSnkcmk4wS/Lraj8Fql3Q6GRlYmUzokbKzwW0t1/MIrK9UECgkRoWCtkGwQ+aaZF6pyHXa2horAJXLjU34tAa6huVTqQTzM6Ze+6pVSTbkk8TSaRb9TpmCU6ZfkhpMtrDWc6tnPAhgLiNJucn+RfPjyDUG7vPP44bRjCjMoRw9dHnGBgboKRTouTkLE5MkCgUOz8RIDAxEDFOVbm3io8aZFhPQU9qpDXa3Z43wyBBi3LJzZ1Tf0gdyBw5EydkeGJyEuh49T6pdaJKfRlQGBjg8E+PFCeMR0iWsL7Lp6Dl2dEjkLJuNR1A4fc6quGliogoFjRDp9KrioNUzFc6RLL3Ajh19JCa/JcnZu3fDyAjH5udZgKjreBGihMIsUCDEyN55p7is8nmOpXplLovGA6tbBi9BxUvQOTRkqlcVi5BO0/3ss/DqqyzMz0fN8/S6MQ3BXSZdKw2PLoKqLA+dBfh0vV7/DfvHlwKdXVgQ5eX5580at3MrlF9lMqIAa9Kn8kZ1CqhPR/P69Dx6/Jo10N4ek7yp8MOzEoYtg1+rv6mDQQ0MDXIs5BN42R5i2Sxj+0whvEwGc4A2JloOCmQ7o+bnTSg/CEhksyR8Hy/fSVdXKBOqVXI5MfY7U7Xw/GXjqVsBbtSsgNXcOMdnTO6fIrnWrTO9SDdtkp8rwnJqSj4Lnf4RGmHtWlFGV62S14kToliWp0MYUDUp+QUsDz27GIruI59nLhAo8vgYfO1rxmGleR8KGc7lZFoOb74JNkPXnTWT9Ll+PX46LYtPKwbs3StrYHyc2PQ0fcPD9PXnYGKCSvY2Onft4su7Y7hud+hMknlT55Q+SrtAy3IRtJkZVcRj9Pe/l+5PiANu4Nd/XRqxgngSMxlTW/6uu4irkA4j7ofXb+M7+2D/ftG1mhucq9Eu0QOzDmrEINNNjBrrXIhXF+jLuXhePHI0Tk+b1hnN7FVln96XGnea2xn6Yul1X6F3OCVz/NnPwmOPUQoCyohDSOGy3YhBUdiyBf75P4cPfpDF/DaB307K9detC53Rfpy4VQ0KwsjM+m10fTgtcmZyEn/PHgb27YOJCUatEubFmZkrYljAtSMvLsiwcBynHTEqfr9er/9x+PFhx3E2hdGKTUjeJYixt8U6PIsk3q9ImgClFSy1YbBGLNRQsCscKRRfKx0dPSqbUhUhzzPN5FTxA8MY9Xy2MuX70KmWgJUsO1cRL5QN01LDRz04ipOV68SpVDoZHTX6YBCEZVF1ELaQ0IQLywsVAYU1+VsNBADXJZF1SWwITzw6Lp9lMiRUio1PNyZeNGfoYoov2bAB+12NMztiofOmeOJ164wH2zbeNPiiHnw7ySuTMQ2h9Ri5RmdDEEfrWuutVypGode1oM6ZalV+PzMDW7bESaW6Wb8eujJzooFodSRtInLwoHA3z4MzZyhPTZGanBTv1MCAiXwEARsGbgLSkTCyPW/289VOnXaYWKPwajOCEWptbfL54cMJhoffR+eWLbB2LfkwoaEGxMKqUwtuEi8tVZncdA+Ju+4SQbJlS4Q3+uq+GNPThmkfPmw6jquC80opTiol3XAT1QoEVWLlMl2+T1eKyFs6ONgLmCRMuwljEMj/6mmrVk2l3XweuoOX4MEHSfT3i+B94glKBw9GvToCiBr5vYJAn3JISDt9++3iddu1i5eqPVFujW4RhVPYAnh8HHK5Hjy/Bz8D3TtFmVCsQ+LZZ8mFpRr12rPLs6IWXSadAzq7El00dPbUKZNHa+d1gYH8aOJnLmde6nwK+4NFio0GLtUo0cqdykqXuhJ0rYA7XyRONdVNwqsxHY5nZkZYhxYcyWZl7WqJ29deizExYSBB6TSNziwt29dMylTUw3XmjGHGYaZ0IuuS6HBhbAKCgHg2K4bR+KyRB+o5sivxWdTc2TosvhYpiwqb1TY5Z85Ad0aiOAqzmpyU79Jp85xOnjQQNu2DoZB+tXW0XsXOnSs8/IsgvY8XinGefVauqZWtZ2cNFE7liOYyp9PiJJdITIx0upvCQDfxalUWhuLMJidFtpTLzBaLpGdm5LNsFoKAnvsKLHgbG4rRqExQ6KzKhHLZ9P+wZbLS0aNGlk5Owo4d29l2773EKhXyTz0lP7j9djGiSHKqnqRLJzG8sUN0M/o143TS5XO++VMSH2iMePlItGl6fB9GJ0ik0+za9e5ojM1BJ9WRlHT52o7C7alXpIoWwNNPcyTk2ccQBb+C8O5u4Cagd+tW+NmfhR//cb46mqA4SpTHahcd8H3oyTaOJwhENG3ZshHP28jmd26nq1CAd74Tvv51bvr0pxlHkt7naNHF0nkNC0dCE/8f8Hy9Xv9N66svA/8Y+NXw/U+sz/+34zi/iayBrcDfnusaS0vGelcH/YYNRhHXQgV2VQu7ZGWsusixSjzKYVDlThe5KqZ2qFxfdoIfQKHQLYbIpFx3/fokxefNJggC074AjMNKowd6HjvfwaZF4sTVmlHNSDmNRi/AuJi1vJJdYF1vTuPQtntAd69q57rLQu65iHQur5QahZ+eVgM2agBksyF0K7yh4eEeYtXFyAOkXifPE++gGni2Q0znQmWnerq3bDGGiDKYUknWQ0dHYw8E25BQh4xW31ClViFMdiRq8+YkN37ox4hXjkXhVILAuONLJZiaYgHg4EFJltZMvDDcEkuneYWehjWl99aMJLC/U7J/q//bns3JSbm3oaHtxNVCmZwkdvy4TFJXV+SpV0O79+1vj5LcyWQ4VIpFa11hTV1dIijXrzflXiMj0cZraDmTU6fgO98Rb//wMDt33gTIOrAFo65xuwmWlubtLj8H998PDz4ImzdTHRnhFUxoOY6BeJWRPIpthEnaN9wgRsVdd/FS0M3YmDHC9Hl6noGZ6XzaQsx1oZiKMTj8HqkPXyrB88+TWb0a/6mncJFw9DGuDF0rDY8uhZqgs+8E7nMc5x8Bo0hU4ziXAJ31/Z4GhxMYA9/zzJrfutUYFZ3eAqlUIoLgqJJ7/HgjlFEdRFo1T7fF6dMxcTylGpUtNUo0/03lg/aN0PNpTiDIfrED4w0wKdWGml3JIDeim08xW6tXN7a61puxhZ7enMqBUOuaC+Jh+eyVIwPq/1KomeeZ3DbfD+UvNZieJgb05UWpdt0Eniff24q1LReU5+tQVfnUKl5Xio4fF5ZqX1OnQsek60SnfXrarA3tMTcwcBvJgQHjrRkdFSvl5EkWgMVikbjy0jAqXix1NuS66PVgZRmizlCblO/ZMqNw1zYpXa4Dvu468P3I7iSbEWhZNstiaiOzEybCrNH2ZrSdDS9upgiipWEejZiNj0M2S2ehQDa78ewDEdmguh2Yogi2Ey6y+oIARkY4gjiitGJTBZOo3dvRIcnwd9zBC9MJikWR/Qrjth1Py+VPgYxHe4uVy7B6cBvJbBbe/GZipRJ9DzyA197O9HKVFC6RrhV5cV7DAhEIHwMOOI4zFn727xCD4g8dx/mniOPxQwD1ev3bjuP8IZIvWQV++lxhbWjsj6ebSr2TYIwArWKhG3H1apOE7bqSL7F6tSmF6rpGCbFJk/masYzNeHiF8di1upVH20p4KmU2qs0UlPkqLj+dlhDiWS4JO5pg7zzlAvZv9aKqwVYq5oZ1F9k3oOfz/ciosEvG2htPE45tJhej1mB5KJTL9+NnCXatRDI/bwSp6zZWH7EdZcpYbEgCmFyaCJuMkaPapF1fGjFRoa6dwe3bF/hbJ13a20E1cIvbVwn7Qtjdo0K3Zy3bw2v7ja2n0RedM/t524aZjdfWgJSuF1vWa1Wt6Wno1WpiYHASHR0N5SSDALnxcBIWAqPU6DhUgPu+wZrbSyQORgmxLWzflznw/WWXqUZnmpn1qVNhVb/rs1GiNZkM7osvkpiZwcXAkCqIsEghSn4KSHV0REkZi+luZp4168FWwNRbqp5RGxut96YOhHS6m4RO3OAg/rPPQhCwGEjPi8ulawkze7G0DHT2d4D/hMBi/xPwX4B/wiVAZzdsGKw3KwzK521+v7TUWF1J+ZruXVWSbXZp72H9bN26lZFDNjzXdqDob23lxtb97SByKkUjjlTfm93JEZ4x/L2WZFIhpZtE+dupU42OKls2hDy8mZp7WugcrFnTCP3VS0kCOGd56FTGNos1+znY/9uKoIqzK0UaObcdOs38yx6TwoFmZ2UsimyoVMBNJUh4nmm7feAAQbHIEQTOGZ+dNczJ9wlmjXGmbFbXl86nkl3kZLk5Uhi2BksmJ6Hv+uuNQ3LLllABkbEeKsXozuVY8DqZLsqQjx41S2ElhVvnqJn0MgllvCq8LOasa7sZCqWRQfuZqAjWdwoZM9Ht7VSXlqK+TkE4v374TqEgr3ye4p5G56Sta+i+XalXiz2GVEockV25nJSWBxaWlqKcx8ula0lenNewqNfr+1gZGvaDKxzzK8CvXOggNJ3AxqFD48K3ceu2Jymp3h6LZ65a1Wik2O9qLKgHwGZ6nmeinGqUKBO1+aZuPNv7YZfaU7mgOQUNTER3nnIvW6FTL7LesAoZm7vr4JcbiB3VmJk5y30e9306Ux41YhEMSZVVMEq69rmIVeYaubGS60aeP0UXqcKrnkAwni19bs1eBN3UyvQjBhPS8ePm/yYbSSP/DQEabapoRzn02KhBn2rwIyNR3H1ufp5DCDSnu1gkPj5uHvb8PLFggfb2RHQdteX00ah8txVhhTmpYqNrXO9b39X5owZT73DWlPtT/FIqFa13FXh9hRy1THfU40W9inaiu+6nZsPN9xF4hK2E6P3qgF03+mp+vnGtGC9u43MPAsyGsdawNqvT9xoSYu7EyiPRpP1MhlJJ8L8Ka2xO/LP1IzvyYxv869fLbzOZpORNAZw8SWVpiTJcMWHxegkKx3F2Af8VcXJ9vl6v/2rT9/8G+LHwXxe4HthQr9ePOY5TBOaRZOhqvV4ffJ2GuSwtB52t1+uHre8/B+wO/53mIqGzdnlrfbQaUdY9duaM7CnlQVQqJNLCN1OpOL5vChDYLBnMe7MMgEYFpdb09G12fPy42Zd2UrDrmqTzBq+wMjLbsNAMbCVbPhw9aoSiCi49j50EpdHuo0cNEw03c6zBXSzUrHyp4WM7fTTgHq8umIQVu8AE0N6eaHCoKERMz6lzpYfq3xMT5vu4yxUhtQHUAaU5Hxq8sfkamPQ7bUCoOgEIL0zMz4tnfd8+jszMcAip4LcI9D/9NMmpKSmoMTxMKvceXNdUWzx1yohpjfivXi3XsmuYNCv95bIpbqNjzGQg/+Gb5Dlq62vfZ3bSNJgrFDobKo1rkL5aXb4Jo339ZmW8XJb9kFC5oSfVKMPAAL6fjGRi8znVKNJzlcsyH5FxPT0tdeNLJYpLS1E+RQBRX6Nk+K61aJ+biPHss2YItmqkeTOue/a6rlZNoH5mRhyhOq8bhruJ+X5U6GN2+Wm6JLpW5MUV2rqXR7WagUGpAtNsRDS/lpYsZTEI8Lz4WVEI9a7Y3iGb7ApSemzCE6yoljONVbXFllGoVLlUHq+eaeXpGiVUTG0D2S4T23DQ/1WTVi1bd8uqVaZXgZ5HL2pr33pThw83tlLWyXBdYp5HKpVsOExhZBppiLMoJRbtcIBtGTTdV7NQ1fPa9oh6E3X+FGdqJ1PqmIJAZKEmVfq+HK/dY0+dMkxEr6v90pqxo9Ga0DmemID9+wmKRY4hHpFXEMFQBXL79+MuLQmeNuyz4ft90biOHzcwINu7aXss9T4VSxpFGqz7V0avy0Hyh2L05XJGowmlkK4rLb07ONjN9IQxYHU9qpDWc9qBLb1914VFPy7VMhRsrG69o0ejnB4vZebQjobY6zwIjC2iClwkBWdnOba0xCwiIDRp28N4nmKIkWEX2Z8eMz1LQE6n19B1quM5dcqsNy2ooDa4hsW7wz2jHrAyV0ZYvF4eKMdx2oD/BtyBKN77Hcf5cr1ef05/U6/Xfx349fD37wf+Vb1etxFet9fr9SspEy+IVoLOaj5e+O8HkYqOcAnQWfUPKGsE42hQ3VZz8TKZsNS2ujSrVXryeWrEIieE8hjbMTA/b86tCtXq1ZKbpBSjRhDEIv+QjqlSMTArO41Oz28rrZ4XKqu2F0SbMjXTckJsuVCNDkKZguvKftQGErY3qYmW8+zaxpr6teLVBVMyTs+vwsPzSOU7iVUXcdfFI5FlOyJ0Xq0ACmvWSMqC3f38SpBtWASBKJJaXVCdgrpm1q9v1JnVuLTFcdemTVEoPpiZiXokTSJiMV0skikWSQwMkP3V95DNmsiYpvgpf1ZPuR3FUp5qGxeViilhrJ+Pj4t/bGDgHdLlPQhYCGIcP276PakBbjtidD1qVc3m564RmobqZ8gx7e3AaUuOlkrw5JPydybDwK6+aC/aZDts9VxaJKFQCMvz3vcgpbExykjfoSKmo3YnxhmV6eiQXIihIUa/JFWsJibOjgbZkfu+vBlLjVgkSxXqphG5116TMd1UKOBt2MDGmRnSl770GuhakhdXhWGxGJbuPnXKKIXaLVQXiBbG6eoSvJ7iZimKZhYPayzncr3RotaqG9CobKli2mzheh6sXRuLOqe6Lix1xSN8qCqKttJml53V/8+cMZhUdQjpvTRgUhQTY2eQq0a0tGQsllWrGrmtbZzYbn0FYeoOUbeEHmvFse0QpO15d91QaKhrR7X/prhtPJOha0MagoBkxiObjTXYRTrntqcHRDBpgyr1VqmXSscEplOr4utd11SsSqdNcuXmzXJ7em019uzwZleX6M25XCe9AwMiWbZuxSuViAVBVGLuEGJcAGwcGyP54otRNqg/1BddX8mOQujn6kVVAWGvMfvR6dyrMgIm4TH3we2yntW1ZkUPSiX5nVZt1WP1+rbg1kRWjd50dYnC09Ymjb2iSXvxRWPhPfOMhNSrVTrv8hgYkPvWe9V7tANt1aoIh4EBYM8eePhhDoXlXCcQTjeLeH+SiIDwwrnuATo7OiRpfmiIb00mIuiyVoTVdaSNmEAcdLpmXn3VKAOaAFmtyvRNTcHNN2+kd2gIt1BgY7GIFwRRd+7LpdfJA/UOYLJer78E4DjOg0iS83Mr/P4jwAOvz1AumlaCzn7EcZwBBOZUBP45XBp0VsmOSiqCwjYs9EXZYnRhGDlWrbJpUw9nzhiesZxjSj9bSdldWjIOBvXKNkcsVJbYzoHjx00FpZMngYzfqEmuoPhHXjVlPGoo2NhT+xx6Hg0jK9BdB6UyIaRmoyJGjVQqFim9qRQkWDDMeXpajj961JT5S6XkPCGSQIeiEXyVi8o31QbSaHezt/5ySfmmcUSdCcckwtuOrDcDApSUpy8tAU41EvBlTBR2FngBkSNl4KZHHiF+333kcr0N/kAbbKCv5jyf5jmwjR2Ff05OimExOwv9/T1kczBbMlUHx8dNdELRvXoN3Tvqqbefu0KImj/XeaBcNVXJikUqpRJ+qQT9/fR89KNA4qwS5c11AixVhEIBEsXnYM8eikgu3jRiVCQwvY1cpHEqu3bB7bfzjbFY1IdEdTQtNAIGntgcbYxRY2kpFu1NTRVRFMfWrXBTmDQY8zw6p6a4UnStyIurwrBQsiMIq1c3Wvb2ooyYvL1Dw10XS6VIhlwrlUo0RD6Uien5bcGhHql164zS18yj9fOpKWGCdi+DdevE+lfZpd08tYfGmjWyiDvzqUawvjJj+wJnzjTWtFVslw5QJ0kFi87F6dPGlX7ihNkp0ChEfF+aLGUT0WlcNyxRWz7WqPWuWSNjURePWmCeFzagkX4U+vPpaVH0mnGyOk9qOOoj040NjfOu3vWlpSDESnsNkQH1utgRAVsYqIKhSXknToQIo90TUvJjZITpIGhQemvhexkJt6bn59n20EPSJHFwkOuu64lCrs0CQteI7UW1Q+y28FDI1uHDRuDZUC8pPLKRwuBGgaP5PpUxU5FsdNQEksDkfNrKNRjl2943KpSi7qM6oDDDsjYxQezo0ahzfG5HX2T72tAzMPauep26OQR79rDw9NO8gOgUWmM9QIyKbsTr5Iff50DcVf39UCgwPWqqlmioWq+pTfw0fK1ljO1Qv86/2uzr1oVrQk905sxlFrFspEsUFGnHcUat/38vzCFQ2gzY0mwauGW5EzmOkwB2AfdZH9eBv3Acpw78btO5X1c6B3T2z85xzEVBZ8HwbYWPXHed8PB162QppdNht17trKlWu/YJAnqGM0CcqamzFTqFVim/UdRQMtTBVUk5c8bo1LbDROWXemU1v1pfzX4ibbQZs70nzaRdT5UfB4FxBdvFQGzGZP9WE67a2s5mOhdAkbKrzFmzstX5pIxn/frIVRz3PPL5Tg4eNNW6dD/bfNGGsV2hStAN47YjAp7XRnu7adbX3y9OEa0K1TyNYPxsk5Nw48ffQfztknSXfeghYggfeCm8XhnpsRAUi3ilEvn+3ijfW5XeZp1GaaXHoetdg9gatT140MCbBgeNzJmdNRUV02nTG8J1RT3o6JD73lY423AYGIDY+Legv78hYpHPh/DoUkm6p05OSpNTxADI7t4Nd99Nz8AAAwON5Vn1/pV0X3R1wU2FBfjCU8xOTVFCDLMKIi96kLKyPdrXa2gIfvIn+VZ1W9SLw3ZmQiNCQKFWsDwcyl576mRIpWDoE7fR/bGPwalT9H3+88s/lEuga0VeXFWGhW6etWtlwakC6vvCANQD2xCt0HiWaqXKMIFsto9y2VR3sMOL9rulczTg/nVMtuNHhQYYR48mbuv5tIyrHSjQ9xoxYnqjeiI7M1BLHIFxE6tboSH0gdkZegOa7K14LTvT3Z7kJs+W2gpRMyhb41cXk2VQqPshkQGq0tkym00wM2NC/HaCsj1kFSTNXW9tAWPPGbThOO10dJjAjuYG67oAGpQDnQbLqcKrr8o6uGVwEC03lH76aeYQpTeFwHUWEU9JFVNqLh1quOvWnZ1zY5P9nJs/t6dcQ8rNn2tYVlM8ymXI5ZJ4VaNUK8pofNzoE7qc7MCXKl1al93zoNOdI0gnSaWsSl9TU2aSDh7kGODPzOCFiYnJoSHy+Y3L5m9oTo4acEwUYWIiMtTK4auKRCjSSBWodDi3C0Bm61a46y7YtYtvlTZy4ABRhQ9V7GyqVo09bq8h1aFUb1Qben4+DIXfvVO6eJdKpIpF+g4cOPsBXiRdRmh79jw41gtKaA7p/cBfN4W131mv1w+FTUufdBxnol6vf/XShnr1kp37sG6dOA/U2xolRNvWsNZ8tuCmvt8Z7UWbbKWyOSoIRklRHbtaNSXI7f4ItodZZYMaILqfFDLredCt+Kjlys0q4F/D5NoEAIzmpp40Kwk2sv71ZUc3zmFYrJTw2nDMcoywGWOM2a/q3FO4jB181z3brCheLtn8tTkiZcOgPU8gwNoMVysQ9veL0q62Xry6ILI7n6ezowN/fp40okxVEcV4DjE0tj34IMkPw86dtzE2ZoL/NhRK4XA2FKqZdJp1bQ8MNDq07Jwj/a1tfL/lLYIe0uiu54Xwo7ExagM3mf4s1UUSxUnxXvX3N8KhFG80OysC6MABgpmZKF+tMjND4UtfgmKRm+69F3EfCeXzjc7adFpkxvAw8KUvwWc+w7cQjViNim6kWWpPJgO33ionGByEwUGm9xln6HXXyd5TB6XKAtXpVgr+6fpTw7+jwzzzahWjdL76KvztOdGZF0TXkry4Kg2LdevEa6syQT2yipvt9KxQrBbU19CA9n0A0gN9UdRXy6DatJzHWZVbVXCPH290+uimbVYMl4PI2NdR5Vo2dUK8xWpQ6Lv+be+EIDBCRiVp807Rk2uYQDOL9TvXPbulrDXg6N9mDd+uxaaGhY01shIM1q5NsGGDGIXqjbDx97ag1sRfe47s6L4q0a4LjtMeyUPtJK5lcNXQbLa9oNFus6Ftizd2Ew9dU97Bg6RDbqTicxHZ/JoPMAekQ7dQbkg8TxoV0CnV+1uJmr1ftoGhj9Qu3qK2sj7WbNag4xS/rQgEFYga5tau9dqUWwtMJbwajE3SrRJJredXX41K7taKRWbDe8/u308sbKyUvOEG8nnpFKw1AVR3USdqZ+UVicuPjlJChMMxjFGRQrJy80BnezusWUO1XJaw9o4dvFKV8rKHD5ugnW1Hq0fJFhY2ZEE/1//tbrrT03Ao6KR7aChyPXaGvUIul16nhkfTXHhC84dpCmvX6/VD4fsRx3EeQULlf+cMi2blXxWzSIHMphqxJmB4LNJFu1w8G3qy3F5eqeKkrSRqLwy7vKo2NvP9xnPYOXqTk3L8mjXQfWMGXJfFaiwsjWwp9soI7QGGbugFf6NU61Hmks2a8nUqWNevN10sLyBasZyHNwhg0U1IyXRlTnouFdTha5E4QWCiikePGgVQ97XtdNJHo/NypUhvX6uEaWKxskBNLBc+Go9EbiYDb32r+CM6S8/BdIXuHQMwOiaeD8+DXI44kCkWWZyfj+RHBYH0bPvsZ8F1ec+n+nHdZNT/CRqdkc08zTaA9LfKazMZYZvKxtVQUxmiv+3vN5GKG2+ErtOv0NWfYXZWDKfu6itiIAzcZC5UrTZ2V8VaB+po1Ko3EDYylKi0CxQee0wGlMuJwyikfL6xLHg2KzZCYuQv4cEHOTQxwSFMTkUWgT11gsEMqt5TLlMoJKPesIWCDHdszBiltg9hpWWu86z6xKpVYr/s3And7hGijobNNXkvg64VeXFVGBZablYVrLVrZWOsWiULRDe5vjM9a7Q7u1u1Jp+GONKktwhhBRAb8gNnO/+VVAapUuy6pi+GrY9pSFHb2UOj8aHyTMufqk5uQpoxknabax1QVNfONe4LzbBSrdoGDtolktQVbmemKV5FBYzefLWKJrzrR2dhd+zJsKWA/QrHYXv99F0Zpu1l1nlqtntUkdTv9XYUBab2oo2d1nKHccRYc13Ts0E9D2HV04bqLKxaBW96E2zdysajR/GXlkghTHIOMS5UOZ4FUqUSnXv3Evd9BgeFCReLYXnVcM0o1EGVG3sqodFw0s90va9fL+O0BUWpZO5Reaqd/Dg/b4RJJiPMVY1olfP9/SF2VZ/b2JgJJSmUYXxc4ukvvsix8L7d8N77HnsMN5uFw4fpu/tu1q7t5MUXZU0vLUl+y9atYW7F7zwGDz3ES/PzvERjTkUn4n0qAJ033CA363m4L78MO3awkN/O+F4DLdTGWjaMUefZVuRsQ9SeU/tvnYvZWeguFORgrbbz27/N5ZDD61aXfD+w1XGcNwOvIsLgR8+6vuOsBX4A+Kj12RogFjanWwO8F/iPr88w3xhavdooTSrzd+wwHsuhoTCHqFg0bkl7Q4Y8LVY6RG82TbkQj7YDNOrJuoaak2mV9HSnTpm+QGrDeJ7wItXj1dGxaVOjTFCDxPOgo0MKhajTxKZjlTid2l0+ZDLH3I0sLcF3RiGflx7MqVSCxIDbyJDLZeNyV9mxHM44pMhLHQTEKhW6M2na2mJGjCjvX7PGRNmVYaVS1Nw4lbLJQ9f+UxpM97zGCIKKKnXcXEnS/ke231G93Rr9vv56GWPSr5HJxBgcFG/6tuwcPPyw8EnlndWqPMT+fnNz8/P0/Pmfw8GDeKGS/ALwjaUl8p/+NMlymXd/8pO4d22LGvRt3mzWV3Okobm8sTrPdbx97kuQy/GNsVh0PgtMEKkRmmOYzQJPHYADB3jvnXfKovvMZ6FUIvbRj5oLBYE4iJZ7CKdOmQ339rfLRcbG2Pbkk0wi0emRIKD38cfZODsr1k94E7HdX+Y9u3ZRC9sC7NwJ8Yd+H37t13juwAGeQ2RGd/jaDqS3bJEffvjDcgOlEuTzfKvcQ7ks09/fL0OenoYnnjBJ65YNcpaRZq8LhX7198t87dgB3ZUXZMJ37GAh20fiXe+CL3/5QpbaOelakhdXhWGh+FS7HJnmOqg1ns8bZ34u1yMef1WkUynhGOWyqeXsurxSikfYSA1N2813NAxmGx3Nyout7KkFPDkpv33tNeMAgkaPg4YnwSjJ6plShTCZ8hvjsToIfSnHUcyJMjEblgTCOdTlpdKrrc3U04ZGLdXzqLlx5o+bijuVCrS1xaSGs7rYZmbkuKNHzcBzuYaSKzVXPDwHD8j9vfiimR9VgtWbbs+7fYtr1xrbUKdBx1SvLxEEMU6daos6d9uNjbq6BJusxp42og4h+yIYpqfpuztUKkfHZEFoF73160mcOUNsZibKA6hC1HdhDqka1fmlL4Hvs+3eHNWBTsDkAOga1ueuDh27QIB+r8JC152GhHftMl5PtRPVO6X/q4DU0Lw+joEB6EsfgyDgbW/rZu1aud5b3gL81bhZlBMTxsOoA69UoFikurQUJbGXEeMqCWSfeUZ+l8/TNTjIiXQiqqCRy8kcx8a+AV/5CpWwGd6x8NUZvpJYjEYdACDRkvFxEv39DA/3kc/L/WuXZI24Q6OxqntR95jCnyy9Jsr7UPx0j3sInn7WJJqsFB+/Cqher1cdx7kP+HNEFv2PMMn5J8PvPxv+9IPAX9Tr9ZPW4V3AI1KcCRf43/V6/Ynv3ehff/J9UfoKBcMLtvfXyOclyTg+GzrrlGepV8oWKPpdtUo6HY+anNq5D7Zit9Jy0X1++LDpjgxyrnXr5Hu7oWdbm6xHrQanToRKxZRmTaUE3rFctdnAS+CneqJg/Xe+0xgt0VtLpzdSGH6PVPcLmeoicTG4miM4y1BDtCL8fUdHkmpVrrsu2wsgleXUQgoZ2oKbpFxqrKauOH+dH7tBm0I4N20SPXK5gliXQ/39wl/VcWG1mWDzZtNM2/NgsRojlYJ774X4E1+G+/fBQw8JQ9Xw78AA5PMcy7+D1OA7op6rN/3UT8HEBNn77yf7xS9SLpV4AVGYt33hC2QrFW775Cfp//A7GBuT52uji2zfokJYlXbskLXT9eo3YO8o7NsHAwPcdNdd5O7qi7rJq/gfGpKX5hjG9vwF/MmfyIW+8x2ZjN/5nQZvfI0YsSCAp56CTZsaoXDVqgj3LVvkmK1b5ZXJsNH3cR95hBcQ+FcF2LZ/P932Q3j4YTFS774bXJf47j+GX/s1xg4c4BuIjM0DtxE6gO67D26/nYXcNrFzJiCV2kYwLnM9OAidE38Do6MkZmfpS6fpu+ceXqh0MzJiZLMWV2ym1atlTjdvhve/HxIT35AHsnevONo+9jEWsn3s2wezs8lLWnffK7oa5cVVYVisWiVrVKO1mzbJ3tUqmJ4nBvLq1UgUYrpktH0ty6FQKMt13tPfTzYrFnKzg9/+344K2055W3mxIVKqIKqiayGComupc0OvMz/fWJ62owNSQ50snYL2qirZSYHpKPRIL5TLgeexSJzJCcjnu6NzxzzPcGt1g+mxyvRVKqowqVaJAV3rUrS3xyPl1/eBUtncuIYYFNPbHO5x3cgAUwMrlWqs+20bC0r23zqP0NjjyXU1+bg9ek79/SKww744+L7p/JrJxCJF9y1vgVturomH/uExo+HbSTG64EJMlTc7S+8zz0iVC4hqWFcQz5N/8CDZX/91mJ1l+113kb/nNsAoCPbp1eZTHdZujLtmjTG0bMNCUTogxq+dOqS/tz1aZ+UfhBUDrh/sjoR213e+KlWa7KxJe3GCbKwwerDx298mOz+PG97/K0BtbIwejTHv3Enfjh14t/YSBNDnvQIP7oFHH6X02GORYJnDhLF7gQxhXsW73gX33GPGMjkJH/0oL9FLcVTmJp83kUr1aNowEkX72VBFXR9q72qDYu2h1JNZlBHceKPRIAYH4XOf43Lp9apLXq/X/4ymhGdLQOj/9wP3N332EvC212lYVwUlk4Ky6HaPhJsmD7t3k6hWpezm9LQpIacMyWZKGrErFqFcpifEU/ZuTUfejrlA5IbyLtWbm0n5l53vo/4fO11CWTEYW8eOjM/Oyvvq1eIn0twxm4IgVOrXRS14mJyU444eFT6zYYOMQYM16bTehzQ0zWRiJD23MZt5uXwOpdDxAMjc+j7JkCEtVOPE02kWSJDQKEUFSiFPVMiTjTjQSKzaNqrXqlxWBftKUrUqzitV2gcGjNxWSG2sMhc9oPhsCR57DP7oj2B8nGMzM/hIJUQgCoePjcm/ExMi36enY/T3b6P3nnugWqX7059mESmBFgC1hx6ip1gkuXMn7x4agqcP0HvHHZDJ8Ao9kSzRiK09D90cki4DWg4wTJxYyPYxPmqq/WYyJup78qRJbr5p505ZKBq1Hh0lCAI8xRATGpOeJ3igoaHGSXRduPdeXilLn4q2t/XQ3o5E0AYG6Eyl2P6FL1BGjIQKcLflSSt/8Yuk9u4VyzGVgn//7/nGxASjiOGVAbYB3bffLhGKj36Ub0wkmHjUGF/qYAMZZs9wv8EdhqUS+wYHYag7cgLb8CulGjFcV2RDLgeJ2VdkXpU/pFIspHsYGTGVta4UXSvy4qoxLDTUpx4MhYaoYta1odao7dsMUSsGaPRCyXWJUcP3YxFjV8+vCgzb8d9cuUOZvpYO1KRVG72kQmTtWqPcKNrChlup3aMKoTJSbZDj+8IMNmSkOQsQRRY00jE/L05eO6ixalWSLuWUtktcJ1K1UFux1EEF0v9DlbZKBakWpYM7flyk2PHjBl6l57U6PjeHcJtrVttVczs6TGBFL6Wkc6kJj3YystpXqpg3M950Gt72NvFCdDlH4OG9wiy0aomWAVFJr2VAjh8XSzYIJLvtu9/FLxYZfOghphGhMIsozLVSiZ7Pfx5KJRIfDdix4z0R41EleDkj1U7i37BBDKS2NhNN76wegd17SWQydO8c5qViLCqZ6nnyW21mpE6zQsHsk225BXjkafj610kC27JZqASSFPfkk5FnKQq3qVWmbkLdN6tX0/fUU1QhKqM4iRgZ+d27Iy2/Z2cKUi48+AQ8+iiVxx9nHDFEAsSo6EUqevRqKdlCQYSKuiTDZJJDXi/Tk3LqrVsFy9y9wYtuPpvtiR6j1hSwoxft7cYY2brVYG5nZ+Wy8emXYGRaJjqXYzHdLUpiobFqyaXStdJJ9Wqi9tppwYfvG5F1lM8b+MbmzcKrbFd4yEdj6gXR8KYNwlZNN1zjyTAaC418ezmqVkU+qHGhkcR0Whxl2inejkSmUsYpoTkIWnwgk5Ft2azbTU6aKnJjY9Lz4dVXzfeKmNWWNJWKiXqob0nw5HH6ctlz40SUbCEWek/mKjEgHhpbiTDAHY/kpt1lGgwCK50WJXHzZhM0zuXMI1Ro0Lnm+lIoHfoUdO5vG1w0QmZy1ggrFeCTk/D5zxOMjVFDlKT4li0RH1vsv4nJSdi/X557sShiRKP1d931DvruS9P/+ON0TkxEkeAJYHH/fnr27ye+YQNzMzMk/+RPIJej5+MfJ7PjvQLZ9MO+K+m8mYgHH5QF9ld/JWPM52HduihpW32AdiTchvfNVWIk3/xmGWSxCOPjLADecl3y1q+PEreVasQI3GQk7/X9bW/rhbf20nVfikS5TN8jjzCKQGptGgM6p6bYHi7EyYkJxpHIdhq4Cdh2ww3wqU+xMPhuHntM+lOUSsZo0v3j+/L5oUqS7nw+KsbC3r0wMUHf8LBcdLCfr61JRpWWlWLU8LwYO3ZAIjgGz4Rwi82bI1jAgQPCUrRk+ZWia0VeXBWGheeZsLYy3XzeKPinTmHcH8oh1ZWpnCgIzOoLSUJ7C6xZk4hkjJ0LrQq1esyVdC8vLQnjOHnS6Nb6vV1kQ6sgaTg9zOmK+LENo7KHr7dgQ4WkHKuEnMvT4qF68UVjZClKyZYHR9MJCv3bw2Z+RPO06EreQdRB285kCoWsl5EwnzILP/zfTXVKR0/NprNc7DU/GQku9bLbBlc2a6rxaLUF1V0VIqDzpt4VCd+bnPxy2TjalQoFg/Cy64K7boxMJjQqvvNV6d75la/As8/KfSo8Tl0UmQyLuT7ISdO7yUmoupD/8duE0UxOEstm6dm9m9rBg1SQTKgAWJiZoe8LXyAG9NyXIrPzJiYmZLyZjIG7acVfO5qlYXj1knWnFiSioAXJczkIAnqHhqA/GTVyUlyzrlPFBq9fD12r5wTe9c1vSnhcL3LqlCj9MzP4J08KtqK9XSY3jIDhugaAGxqLcc+j5/HHiSHC4Ug49/H5eXr27DEW8MmT8OijLDz+OGOIAXIM8TzlEUHhDw3Bhz4UxeQP0c3YPrVvk6xfv41XJ4zR2Fk9IvdgZbZuv+cecvfcxNiYUayCwOTeaC8TjXJu76/B+Dh9haxABrQXSC5HLdvDxLjIoCtR0vL1anjUovPQqVOiTKgrE4wWFYVeiRTFY5V4WGGtW3ikKsmarKSM1fZ4VKuRg6cznaZSiTUUa1BataoxOhEuNbLZ0FG0oTEKayNclcfZzi7dlstdy46ma86aJiO3tcmW1EifKvd2ALshOKFzcD7Dohl7WK2SHMiwWI1Ftpga+/aj0B4C6qxTn5QdpThxwvQrsiO8y9375ZLKm82bIWLYOlh1NqkAq1QIxsY4hrTGTYEcGGZCa9nv06dNxFR5s8I3/aFeun/qp+h+4AF6R0aiHhdziLPKn5nhGNC3fz/p/ftJ+T7xSkWKazz1jAhNGw8VNqAjnRYDZ+dOjmW3M7avMb9Cb0VvbWbGOPW7urZxy30F2TtBQOeaNfDjP944UakU/NRP8a3pTrY3Je/v3WuGY5faF1jsTWz7xV+kF6g98gjfaJr/MiJD1bD4FuKI6gH6gYEbboCf/3mO9b+b0X0CLVT/seZW6h7Sdl0TE+APbic5XDJWhzZ6Chtc3PzRfxT1Q7IpRo1EUDaWl95M6BE4MWqMmI4OUyb4cuhakhdXhWGRTAoGMp2GJGEZzH2TxENumEynZSfbGrW6xpUbK85IGeb8PDH/BSiV6Mpk6MqmYXaW3h35aMUuVONRQy1b3wbDSzW9wEYFqSBRPqQ5bMoctVfD+vWmrrkNadcNY8N/7ZC7jb3VKJ+d72F7+qtVgyf0/Xh0njVrEpw+Lb/r9D1zQjBGRhAQK5Wk66vrklT3ke9TIwapFIt+J3GVTiEcS0PddrhbhaUacDMzIjjSafNbe9yah1CtNibH25GgwcFGnHE+b8LZcRbFCxkyv2R5muTYmHh2nn8eQsHgAkk1PiGyAicnTe6/wgampyGb7SRXeAfJXTI/mYMHeQWpVqEwnzLQ94Uv0FkqEX/nO9mumX8jRfp27IBUijmSPP+86Utlz1FvZkE+KE6b9tJaRL1Q4KXZJJOTRmht2WI8gPooNG/oaCZJfujdxHXiCgU5aHKS2syM9Iy/7jq4/XaZwLvu4pi7MYoEtt/ah+eFnptiEfr76fQ8Uo88QhwxpkpI9GJuaoq+3/5t4iMjMDNDsVhkAjEqZhGjogcpEeh/8IPwgz8I738/x/weikXh9crkVYfT6lanTkEut5FkPi/PTzGI09MkPY/+/m2RAaL7QLd8LieGRS6H6R6oCwoizMPYmMBnX331yiWIXiuC4qol1ULtcKEy5fBdy3+LJzxuulwrM1X4rBa6sDGtrstcJXZOL7q9t8EUjlD+rjxLZYB+Znv4VenWUtnNXlYdrurBWlXPrlgeldmlcX2rbdDWZpT4tWsTbMhK1G7ZkrJKGn7RC6fTHJ6JNfTtsPNP9BGsWdOYC+e6EC8fIZvdGI1HFUaN8Hf6iwRhVaYrSTovq1aFyIdvzzZ6xKARqhA+qCTgp1LwrndFDTzJ5RpESRDIM9Bgl4rW8XHo/vjH4brr6P/FXyQYG6OK8NNY+B5gKuel9u0zesy+fTIhw8NmUYWwvWgx5XKUZ42xqMGWqKgJNdavj0V9fKpV0WUOlWJ0KwbsjjvCeq+GasSYWeqkVILt/Y0lhxVFYKMR7LLK3tBN9H7iE+Rffhl3bKxhw2QQQ0LJQ6BP24F8oQC//Mss7vphRvY0VkW0jSVdU6tWGTTv7Cyit6gHtlQSJ13odIhNPEehsC26t4acEW1KdeaM3FhY037R74x0GZBxvPQSV4SuFXnh1Osrlbv93tHgwEB99C//UhbFyy+LpnnwoMnKTKeFAWzYYKpQqCKmbiJd4aq5qxuoVDLa7uysHKOafTrNopuINooq6bOzEv4qFqUPjCrJusDVW6yed63so9UmVElVr/Xx47Kp7aY16qHPZCKURjRc9WY1NwrTfbpjR2PYu1IxTaF0OlSIqXDr6gohQmCy/WwrxXU5luqNEFAnT5pghe+bjuLQWA5QbRWFfimD1e6yWl6wUjFzFAQyh/39cmy5bKCf+hxKJTE2e7OL5uZVCbfBzMph9u0T6M9jj1FDDIEaoVHx/vcLTurWW2F4mEOzcZ54wlQqNnhkg9F/3/ug6+hz8Fu/RfVzn2MS0xrYw/RkyHR0mBj+xATceadMxlveAnfcwSG/Lzp3px+2mH/gAdPdbe9eE6675Ra44w6+Mb0xcrS3tRnF2V6n2hRdIyDx0itw//1ywOHD0gBw/346gcTNN0dlXRke5pVSPFqD+q7QDdeF+N6/gPvvp/rAA3wDCeEHmOpO3eH8TiJeqCPhdwPhy3//++FTn6I2cBN79si0KNyjueBBuSxr8/rrRcbdlDkkz1IBroODMsDhYePBy2Z5oZSMjMMdO8Jcm4nn5JixMYG1Ka1bx7f829i3zzSTeu01eOIJ5+vnqQ9+Tnqr49T/9yUcNwCXdd1rnQYHB+ujV6Cu/PeCVuwF0fR9LVQ5zqnkX6V0off4/UYrjftC7sd+rt+P936h9P12f8s9lwu5h8F3vIPR0dHLqhZ7LcmLFXww32PSuJbGGNW8bq5codil0Bu16CaolMF1EyRtzIxqYBrqrlbFzNVmFur6DQLimQxx14WgStyVfgxBYBouKQRR86LXrzd42bVrTXULfddLq/dCm2GvXy9DUdiPbShoI1QdujpbtTSf5nroOLTUqCqGWiEEzmouCxinzFkJJFajKDwPP9tL3K3R3h6Lzq3NBXX6FU2j49WeCf8/e38fHdd53oeiv9nYGG4ON4abwwExBIfICBrSIxpiIBmyYIdyKYd2qFjOkVullXvl1jlNc+N7tbrc1dOT9CyvVa82vSvr1ue0vfW98UrS2q1zr5zardRIJ2IqpmIjpoJD2oJNSIJESBoLIDkUhsQIGAKbwObM/ePZv/d99gDgh0i3dOF3LSwAM/vj/Xw+f8/zaG8DoV2+bwuFU8+j80B74FdWko4oQgYGSy1gcsruAbpHNO6Xkz47C4yNgVVfHIgCYHLPxqk/Ljal0m6zabHIekqaTZttZdvoPqQPHYI7M4O9zz2HOsRyH0KsLxGAiwsLyExOwoVYn/Y+9RS8IADuuw/YvBn9B12gXJK+T1alc6+/boVkRqVXKsDwMM63dxhFh/Cn7m7ZvroUiYbWiX44IEGD1EjDEP0nTsB54AHgF34B+MQnsDz8YSOMM0uVVhI5F/ceOgQ0m3BdFyPf/KYZ7zJEiViEeG1q8Wc7IBW07wWQeegh4JFHsFi5F5PjVn/lHuI50mPhHq3XgYulfuSGhpKBNsynSKUpCLD34YcRRYLz7u0FnPq71nRKrZrZ1AoFNKaSUESd/edm2kaxQN1Wrd1OWJYNUdFNBzp1uhp4X2fruI7CvqbXabe16hptyOl8peva56z3+ihy1HAccx8tz2wS27D2MzrJIvur4Sqdw+TvG1EKOsdyrc87n6/nVI/F82AEPvb9VgmsnX0zkOHOjujJCkO5SzFz9k2v09Xm1XUdW3SWDJUXkOHwYo2VWyuoXgeXxe6x5Xjf6PfreWN/dUu7raQ313VN1XcZlb1Xf7bWs6CuMM8mE6Ubio2wC3rUWSdDYcJbcYKBznnVshI/7zzeBuKoH6AFsTXGxGvWmi/9qFvZNgq/uD0UC5qomWMSsFgk/u37Ig1RMvG8ROxdthjYazWwVFfNoi+ZigYPrxZSkdyPfB3jKbZtWx0rwJRmmqhTUNZojDNnRFCk+1h3UQdQkwZdumRhRDwn3d3WDR5FVvl47z2YgF8myyLE69KlWNkIvNV5E1lEKT5FLTgGOhCG8lx9qCnUcoz0YnDe6ETQGX0oJHem5d2yRcbCOeb9JkyGZm6+jBoNH6wpzqVLWJydRROiUPgAPM8Tb0KxKGbxfN7MFWmroq9mOi5dEov25CSwf3QUmJ2F47oYeOYZ1CHCdR1iref7AIFJOQCyjQaKzz8vBeZc1yarn5qSfkxOJkGxpRIwNITF/ADOTFp9b9MmO1xCHsh32P/ZWeshCw7sQ644L19OT8O5+24Jln7wQbRGPoyTY0mlkEcCsFlgowhYWXFwf5yD3AlDlL/9bSzCZsmahyhRYTzPrFFBpQKHDpkK2oT2aZuAHg//7u62CWhylZIMaHZW5qjRsKW4mU++XEa5sl8EktpZm7qNaciARHqecMJuF8Za3Yr2Yyp49NN2tdZsCtzthReEgHz5y8AXv2jhsoTJFotytoippDBDFzAPETEtOkVRsWgU4qkp+RkaAj46muzK1BTwta+Jk4y0i2mOmR6a25Cea8LlaScZH5fh6IrdBw+KA1K33/gN4SFBYO1wYSgGrt27k/n4T52SzyoVmzVKhxN88IM2i1AuuMZ8k1AEASKkMTlpg4O1MQ2wsRXFok07vtevmWj1ZkE8uOPjMtYtW8RWcPAgsL/YwOxKDj/4gZCtW9WYDtbzxFOePnbMutp1/CCDPKtV4Otfl5seeEA8yffdh5q/F9PTwPe+Z73w5IUcexCYMD4Zw9QU8KUvAWNjGJ+eRhPi3Q0BTEA83y0ABwAEd98tC/jUU8Ddd0uKVgrnxaJ1X//KrwBPPIGT4xmMjdm4FbvvRKGpVsUhDhg0KD423JTnfutbslB/82/C+cIXkms9OYmqv18Me6qdPCldYMFZPpfT98nRJvC1r6H5G7+BMQCHmNITwO9+4AM4C+DLr7wCVCr4d3feiQgSX7F/927gK1+B88gjOH48bdg+l2ZhwRpueT54zMtlYTnZiZPi5T52zMKcDh8Gfv3XTWXxhKIaj9MkdIkiTNVzJosWYbvbt6821N5M2yj84vZQLK5csSlBKYWS6FNS5g5W5UspALsujPae0WBXUj7+73k2dapusSbR8jK4MCMbmUq3FjwpCxI9RISVxtDqzCCa6Gplg42CHOFPPDhaFiUB033g32w6Fa7+33Wtt0I8CTl4gdLW2an4h0ZhFnnS49fQKhY90v3R8W9O7Szy+X5zP4mQjhPI58XSzCXmvXpOUa+LQMmMVLOzIoES/AjYBzQaaEKItAcgEwRCnIeH5ScOfGtM2tgF17WxHlwjBj+ePx8HnI8MYOAznwF27sTAqVPIVaum0ijf58S/L8Z/+xDGsffIESPk40c/MtJJdOIE3JUV4fzML1gsol6zjMr3k+mMs75133qeA8+zR4HKULUK5IY8q4HGqQBRqZjsFp0VrfX6Mp5IlI2MKBcLC+g/dgwXZ2fxDsRLcTEeewAbrF0qlST5++HDeKOWxQ9+YAUpYrE551SYABk613tlRfb7fDkjKS2J/9KRgidOAHfcAfzszyLt+xgsFoHjk8kKjCxIEAuYF5vWEkYF9lYoFj/Ggkc/bVdrTCO4Z48lenSTcp/oQBziCpl78tw5+c1UmyTqNAR4HuabjlEstBGos+nPWURPJ7XQ9JEGJRqfdS4NwBpf1uIV7C51JspDhFkSjksM+p49MkW7dtl7GUy9ebOF7V5Xi+dkGWnTN9KlXNAB92k0kCsFQKOBQiEn76g1TVEeJubozLS1tCTrcGlmtfPpZpvmQQCwj9BTYk0bDbs4LMH9mc9Y6HQcgR+Glp6x6ayFhEez2rVz8i8E0h2nFeqH8Ie856EZhogg3t5lxErFo4/aSn6GCcZt1y5rgYsH5HkSI6ORBRShAAezsxZJwDS7GBsTPnTqFMJaDV6hAGjFotkEnnkGg7+Sh1B324aGrDLLcCQeu2IRwFe/AXz965jA6qxQHD/HNADLSxrT0wjirIMHH/4lo8jrWAt6uWlf5KN41rJMkchgomIROHQI8+V78doJ4P77kn1puWnU8vtRm7F7+eWXrdGR51cX7r3ZtpH4xe2hWHR3ixABWGkbSGJ9eGJIlRYW0Hc30FeON3+1KkHGzOFH6UFTQZosKFXk81gOdmBuTugKsf58FQOntRC9lguaj242bfXtajWZ7YmWUgo23Ly0IPMA6QJpusAQBXcyFZ2v+vJlmxmHPFJXn+RYbIpWB+XyIBztsXFdTL8sz9Afd7atW0WI1cG3ALCv0ooHI513Y9lf64b67ygS9yWrf5NBJ7zG2rS+smIXSVMbPtTzsOO++4Qx3HefLWhx1124WLpX4oCPW4JFpYeEw/dtOlxaHo0AWi4IVX3gAfg9PaicOoUIVrgGxIofQhhHE3EV0dlZ+AwQm5oSJhNFqAEojo/bQJbLl9Fy00aPouFVB352Nk6DDpYslSBmlpdftjEKx48DUYTB0VGEd/ev8qh3upYpONx1V/ysN99EGHuCGrBKhQ+xvAUAMoCNf4oieJ7NG09eqJVeetKiSAg5l1Ur2AcO7JfkDdy43BQXLohCpt12vm+qeXPR3on6JV5qPBmvpNEGt6JtFNf2bdXSaTkcjz5qP/ut37r2fczVfB0t67eQjYXG/UPrX7ev0sL/659fHx4/FwADRWB4uAOSsc71ne3/+dv/7bHspi++jzRaSLvA3qtNY+yWbgU5BPH9rfJeeY7vY9CX5907vNbNLgZLLQyWblXvEb+rc96Kq6sPxm2tmBf+PQjp2y8eXv9difUrjqA18mE4n/0sAFEi2HwAH17vIZ///OrP3nxz1Uf3FlvrzKO0++9bQ6A+9Eng0Cfh/NZvGU97os9BAPyDf7DqWQ7kPPj+VeIRnngCeOIJjAIY7fjq1zS0AcBox//6PXvL19hja7aySU6i1zCLlpkDPU7WvioU7B4v/vL6Z/jD6y7WjbWNwi9uD8UinbaYc5qMdfokSiEUKCmxbNtmJQRaNet1MX/oYnGUHMVsn8DmzM1aLVVr/LoLgH0tNWZai1dWpBvEbzOsg54HPQwNv9HGNTZaz9ltnQucwq6GZTGVX6Egshat/RwehTmtV2mdLU1sY7zdNZafUK/OfqbDeSxvyxo8ZRBkxAlEhZDzOmcD12ml0nrC0hLEAhbPB9P5cp4bDWD/oaLVkFxXLuB7OIm0Pm7fLv70OLORyVUbW5oYhzI3Z29fWbEOLD2vTJlbKAB7y3GhvWrVZOZwYIXqPGDqPixCmEcr/twvleIcuH128L4vBL2nx+bNazTgNOfheVmjmEaRjb0JQ5j0jq7rYGHBTgP7nc8Dufobogy8/jowMYH506eR/da3TKDDvkcfxfnt2QTEjntbe9gKBSA7/mfAkSPAd76DH0IyYr0LC3/KwSpRZwH0nziB9J/8CXDpEgZGRhDeM2iSIHje6pqPWifU3rEgsOvUx4Uol62FMYpMhpb5wl5MTQJDwx8WBbdp9/nEWNIeQcjYegaCn7aftptp6wlba31+tdiBn6RAWLZrjfEnaUxa8Oz87Ebufz/3/rdoN7ofb+ba/15trTV8P/9f6/OftvXb7aFY0ESufZaUmLSJsVM6177URkMk4rUUkk7MTtwWQydh+KQgp12xfASw9msBq8MAybAOrZyw24RK6a5opeHKFevO1lZVFYOErq44VWj83q1b5Z6tW8UarIVlPp8xDeybCbSKIvFcAPA8B6oQJ9LRogS2a39/s2mC3dkXEwjruliGVGN9b8pCYWhd51IwWxYh8Ywn4TJSsVhERqq9ciLog+ZvvQhxgTdjxlfg1/5PlNGMc9kT299s2rqKdIgQGkVvQbkMAZYePy4C+9gYlldWsAjJb54FJGnAlSvwFxawDKAIUSyC7m7B5x44YHFfseaXP35cPCpMwdVoANUqiqX9xltBb4qGghPWxj1LWFE+Lxll8V/GbVqzOE86pqeRPXHCVNPrGx3Fxe50QkcHRPehIpmpvSX1NZ59FvXTp1GFKBXLEKViB0SpakKUqbOQHO1DTz9tNv3exwomEQJRBvpo6jOh9yjhBNu2ATgTd7JYtJgOzzPB7q+dsF6Iet0qw1S4GUbleRZer71iN9s2Ul7yjdSuNxBZX6v30/uBTqzlCV/vXVe75/20GxWcrjfj0VpW/x9nv67Vj1vx3OsdRyKt6fW06108Zem70TldFWPQ8W6znvE71lrfq85lJ15Q4/l0sOla13L81zG2TmPn9ezBzuuud+5upQFqI/GL20axWPZzSBdgAajnzlnJg24CLQlZMKGVThmnsbIiPzoRcbyh55sOfF9SzC7MrQ6i1vqIbhQ+dcA4kIglT9zHrusALy0sAlZvYtAXn7F1q8Xk8lnEGLquDXalYMmAcibB8f2kskOhjQ6eKIL6ww7Q89ISDMsDOFO3pmU9KHWqN2/Oxt8B8DyD79RKBWNWdLwJvRhAMj6Er2k2xdA+qPFkneBbFg0BrETKStsLC9a1VK2iWNxrZHjGUHBraPw/cczFYixgHz8ulvtTp3B2ZQUObBxFtlCQkq6uC69WQ+XECTijo9KnUkmi90ZHLX571y552aFDdm9OTpoI0WyxiEIhZ6BsnfuIy8AlYDKBQgHo676YxPGFoYFnZSYn4e7cadwwuXIZgGOeEUVA3zZJhZt2XRnz88+jceoU3gAwA1EgfIgnpgRRqt6BQKMuQjwa2elpDHznO9KHchl9Q0N4r5gzCrneRhqXzsaU+YWCeMZMFGipZFNL79wJVCp4ddLBm2+KR4T6ZKFgizECyUxtVN71WbwVbaMwituqMUX6sWNyUB59VAK4iSvVVUQLBYFE9vTYgF3yit5e+Z8wurhwJOkT90qtJopppbI6eHtyEviX/1KchKRvzITOuIfduy20dG4O+O53beVtOl1/8IOkPezgQeC3fisp2P3Tfyo0dft2mL0fJ0nDpk1ix9DB2pWKRfyQb5E/lEryuesCGQ/rN2J2o8hgaWdngb546gxf1sQpRgU03B1wXSDbrKHh9cN1BZ3J+azX5ZHNpsnOjWpVUJy//uvXvx2u1Y4fT9TJxKFDjmSRY7aIc+dgrE6bNlnr08mTYq147z3ZI4cPYwYDOH5cLj91SmgN55WFEQ8dAvrDqgRtHz+OmelpwzcKnidpz+fmsDg+jkylIvziV38VePhhmbuTJ6Vvhw7ZII4nnpA14EY8eBDRw38Z3/mODZJn8DZpOmsHMb5isDEOPP00MDWF6Mkn8QaAfd3daIXLdp/VasDjjwOf/zycxx8HoBSOmqwjz0UUAXuDeP2PHQP+3t/DD6tVHIPwhC+r4O0/2LIFBQCHfvQjoFhEddMm/AVsUdUPA+i/7z6Zs4MHMT6VNQH+1aottMs09jt3ylhHRoCPjYS2dlGzKQtRrwMjIzg6lkWtBvyNx5PZrsLQ1mJl3VwWAPQ8YflxcsVbxiuAjcMvbgvFYmFBFrVYzGHfgQOW4jYaNihTEy7+MPURsDoSjhkUYjjFYtAPADg5ZlPI0kquH6mTUxFKQYZB+klCogO1WWiPQgtlWiK7+L1OLct+UNimtbynJ1n4iDySAVOlkliYec3Sksi3aSwbRWy5mDZViteCnXiFDDLFIs7W03H8cNrK7RwkKZbOT7q0ZAMxPA/Zimc1Bd/HSlcW770njE1nd+DyMHiQjJtLR0Ga8Q/NpsjhzbsyRnEboABw+bL0iZoeAAwP4y1/PwYfy8s1U1PCMGINq9GwWbbo4SER0dk8GMOSq78hgcJjY+KpWFiQYnsAvN5eodRUHGKTuXP8uFA6RlSOjuJstANdS0Af+16tAh/6kC3owX0dR+sHQc5kVtHOOc6JtrgTAlUqAXjuJaGUcTGUVhgihHgaXACDL7xgK6lHEXLFIpCPhbAoBJ4/ZUu8P/UUzo6N4Q3YooBZSPBdCVLUyOvtRW52FlOQSrJNSF2L5YUFlJ98Ut4zMoK9hw6hcGDAVM2mN42eMQbosRmPmR5cEGDR3yHy4sheTEwIw6xWBeLEGA3C14JAdKx8XoQwnkueNwY03oq2URjF7dQWmin8p6MODh36OJyZuOzW0BBMqXrWu+nE33XyCHoRKxUsImOyBwHJc8dEGkwapVsYinDPPUxnqQ4Wphdt82bpHmPnGHS7eXMyVgpY31IaBNJtFj/t6ZE93t0tXksiiqNIBKYMFgEALS9j2CqfT95wNcWi5aYRBRIdQJtNGALoCeEwSxuAhLQZB4flhixvWOnrN/N4+rTMWb1u05UzkyBjrcSrvn6/bqQ1m0IvCMsVfXMHCoUdyHI/sCBUowEMDeHs0CelCnYYSsxaHHx3TsLkzDpQMWLW8EIB6G+8Knzjueew3GjAhXh5nQceEOXh0CGg0UDm6FHhF/U6cPgwzm8aQDcg6bbpimUbGRHeS83w3DmkmxeRz+cwPZ30CnNtdT29weIy8PQx4REQ73MDwMzKCooaOtRsInzhBXi+LwoGP48i4OhR5A4fRq4QWAvdt56Vl33nO/hhtYrvQ5SFXMcalCEZoCj8lIaHEY2P4/sQo9UkAPfECez42teAahX3Pvoo8of6TYwrjatAEvHhurK3HRJ/z8PZmgPkBQ778svJzJVUoKLIwdiYHUa1KroJi1tyjWmjuHgRt6RtFH5xWygWly7JOczngVrNQak0gMGDfjLogeV5SQDYdDYYwLoBfF9SYwQBzkY7MDkmm+Xll4XQk/jSoqmFNy3v6ZgFvk5nPWUNh04PxtatSYM608FSGdBFwqg40MKqK5Zy6HwfkAgfACC/0/WzCXdjOgiwaZPkp+ZYeYgsDCZtaiaQIfb1Ab29GTheaBkFs2bwRBN2Bti1iOf8vZoNkGYxMjJRHepCod7z5J0U9FlgtNmU4oTvvafw/8M5FCs5ExtiNEHXBcplHPkG8MgjUkk6V1ISeKOBoDxgnAQMeGewtrY49fXF1vunx6UD4+NoxDAnH4C3e7eYEx99FK2Hf0msHg3AD4CRL/+SqcdIOWZqSoxdy0gjHQSyge6+2/bd84TrnTwJzM5i8KEQwSP3GqLH/aBhZIDoNeUy0B8sAsfGgD/8Qyy++CIyvb1GenchRLse/51/8UX4lI4Yt8A+VKtgrr1obAzvQDwSZyEZPCqQitr5PXuE4dx5J/r/439E4dvfhgfJ8BGXX0QawMBLL8k/fX3I3uehXN5hIEv6mLKSdhDImH7xwLys21hV+hZ7exYsYgwTE3Y/bdsm66gyyxovIC22dHhyyrnfb7ZtJNf27dSaTTFEiWNsABUAzqFDVpravt0m+bh82Xqw2Ug8y2WgVMIPpzImUQewtmO808HLxsfqFMaaR/AZDAskJJW1ey5ckD3KPczjudb+pEc6n7f1ilR900SRS88DMo2zZrM7vg/fzyX4XLNpC62u16hYUfiiMFcoZJDxoqQlTStwTBMdE/0LFyxfePNNyxMAm6SCIVW6fMOtaBRML1yQ7dDVJUpBoQAMDw+gfzi2MnDPFIt49lng0KFBFMtA+u23TXxfb2/O8I4okv7OzgofqVSA/kIL+IOTwMmTaDQaCCGwUWd0FPiN38D8A5/Cc8/J4w78+sfRaAClQ7Hy84qkAUahIDxBt0pFJu/MGVmI8XHgyhV88vHHkc/nDISW+4aAjUoF2FtaFk/FN7+J5fFxpJWGHHZOVhjiHQDlZ55ZTdueftq681npdGoKqNexeOIEqhAjUwlS00grRqOViqTJpUXnX/wLlP/5P4fz1FN4A8I/MgB2vPCCXHPnnRh4MACQMXuVt9IR+fDDwADeAcZmzAWLyBg+MTVloeVrNfIJnSRleFjOEZXwqSl53xtvrP2MG2kbiV/cForF4iLw0kty2Gs1WdjoQA6el8OmrUBfuWWJF83bzaZV09l0FGoMPl/0cpg6aXNZv/JKMqUpGYKGR+g4CG3Z1gxHC8s6pSu/0/Uf+B1jeEl/t26VIWghmxZXHbtAJkWPSbks/XaiZctMT52Si2n+8jz0VSpY3pZJeCq0YhFF4k5nlie+z4mWbcQrTWzkAl1dQrV6eux3nBjXxdychfmTTgM2LIJWskbDWqvOnLGx99UqjKdlaUn+p0cBkPvuHSpZhSd+/yIyGB+38zgyMoi9D5eAZhMtP4vxMSvU0itBQZTe+2z9LeDNmnTs6FHpyMICMgACpq89cAA4eBCLBz6JI0+LkEvrBoVX7i9tORIPQw65++6zmy62jhl3/F13AeUyajM2GQCnm2tHTxoJIgKYYiYZQDhJPg8nDFF57jlEEIXIgXgefJaUZ3v6aVnn8XFcjOFTVYinIoQoFQMA9iFOifjww5I4vFIBenrgeB5GvvlNvAFbNHAGgDM+jsL4ONyZGWB8HNm778b+SgXFh/eaPUAmWK3KEGo14GwziyjKIj/cj4y7jLdm0qgel/EvLMi5YjV4Mvfz5+0cMzsx62zOzopARqWZZ+hWCS8bhVHcTq3RkFT/U1OyDb/8ZeDPJnKxcN2P/vtcm9JvdtYGdJHQKpjU+ZUcxsasIKI9mIAle52QcDYajhgKphNuUIjXiRa4X3VXNGSJFvC14BcUvElfNm2SoTFT32CpZa3uUzUrnMYX5+6+G8jncX4hg/fes/L/1drCgjUQkRaXSkDGa8k7Tp8WJqbrDTUaltnFE0ojC70WnFvyNhqi6I28le3cOZHD6YAnPKhclq6OjuYwWC7DWNnyeRw9Kv/m88Dhw58y1uvjx2W+Y1KNkRF5R7r2DnDkqNz/9NPA3Bx8AMF994lX+/Ofx/dxL458VcZYKJgstCiVbKa8M2eA8+cdlEY+Dt+zFvbzd34UuBPoe/RRW2RhZARv1HOYnLQeW6b2Zj2GSgUoFNLIAkBPD9LDw8AnPoFMo4GP/t7vxf4s1TwPWYjXIa8/jyLg7bdtIpN/+A/RaDSMUvAuhO7fi9irTawd2xe+INmuYqL/VvFjGPySj0EAhaeewg/jd/5ZGGLHt7+NyrFjwMMPY2B0FAMHD5oDdtHdgSNHpAvHjwPF4gA2bRpAdx6YPGp5POUObYDtHA7347lzMmfnzske5L4YGpJry2Xgj/949TPeT9so/OK2UCzCUDaKDvRlOlOh/w72VyoWV8P0SbSIkKBRU4g5w7Kfw0zVJvShxTKKbNVsChpULuiF4KO2bEla2jWDWVpKYvT1NWQMVC48TxQnVqKmhqyZiC6opMevFYtmE8hiHmhEVtqkJYNBF8SKBgHS+TzSngc3rmqphdRmU+acY9+6VS1KFMnAdPlvDkQHitAcFwRoeRlcumT1EH2bvkUHbGs8M1OK0/i1tCT9ozXa82iJSWOAExVTEgrcExOWkDSbDvL5LKK6tVSTKRO6nwkvAoErVOall+yEjI8LlQ5DpHt6BGt24ABw+DBaox/F8aNyCRUi8nPA5pWnRSR+jHxf3IGZKcB1M/D9HPKjg8iU3pL3F4tYdLMJ+B3jaRg+RKgAK7gn2p49wuliop6JIpSefx5pCEFrAAllDFGE1jPP4CzEq3Ex/l2HQJvyEC/FAGIGefiw5AYv7cdrLwP3HzoERBGcKMLeJ5/EcvyMeUgw9zyAyjPPwKnVBIQ+PIwcccNN0XZHRu4FYC1E09N2zX1finGRAQN2zzBWnzAozj2zizFtMyDXeJ5g3Rmgvk62yRtuG6Xg0e3UrlyxheZIX47Hyqdg3PeieGAv0qWSVdrPn7cEOvbWne/qxw9+IJfQGMLipzrWjnaqtZRRZjqm4EnPr4akhKF18LI1GpYWsZYf4zPIpzpbpRLDm7yWsWL0FYI4eCBvc38zQI34W1rKYn65LZ8xlntt/FqvaVrOn4sNBznigRizAti007t3m8Cm5eIgauMyz+Q/VIxII0lDyQduZaPBjOupC3cafn5gAIMHikChgIuuQL9IJqtVG5OydauQ2aEhwAkXgefjIo0TE2KM8jz5e2UFbk+PXPgLv4CzhXsxfsQaPJaWxMgJyF4uFKz3lv0aGrJwsO9+l7VsHVQq+7B3NJBEIJHsCW0sYawolcCsu2iD0A4ckJik2KWbOXkSgIqj8H0U7r4b0alTq4O3mZUxDDHTaOBViPHpHQjPKAI4BCAzOgr8/b+f2FytJ/4Ojh4VZ3/abWFsDAiH78W+L30JmSDA3q9/HZMQD3kEwJ+dRfHrX7dBOZUK0GwiVy7j8OGPYWLCym6UH2hH4JYnVM3z1k/jTHHGdeV6io/lskxVtQoM5udvfNOt0zYKv7gmWUmlUv8awMMA3m2320PxZ38I4APxJQGARrvdHk6lUiUArwF4Pf5urN1u//q13tFq2Xz2nYHN4nYVa2+hlEOmOE/MlA26unLFShE06QSBUSjOnbOEhIeWliYd88D4NO1SJEablijSZ8AKyxoKpdvSklVeuGGpINA7oS1atKJkvJalsvUQ/czjHwHZQgBU6/ZUUaKlGVhrPwp/tGVLzsSUaPiX7j8tX8vb0gI3IsUnFwLkM12pSblaWCyZioEOgyE2Vxdn6vQUkQHwVe+9Z6FQZEZhKPdHlSzy+SyyFblZWyrohdeQNe32LJViS9DkpFhhLl8GXntNSqpqbkKcw/btQtjuvx8YHcWJEzAxA5x2wh8AmXZaPX1f9one2+PjyXiTkZFB9Fdcs+m4D7hWFFr0Htu5M2Yk9NyJm0asY0NDJj5hhzabnj5tsXvxZ2chsRGLEGWiBlEOdgAYBDACwB0dFYvTgQO4GAxi7DgFnwzuf+QRwPfhhCGKTz2FFmCqk6chVqwdJ07AoyvKdS3+4sIF9D8cYGRk0HiO2D16uHiGuYYsFM//2Xheea41fJCK5PCwfW7f5ptnFhup4NHt1MgT6HEEbFJBJr5wXdgDp6GyStqn4KHzQ5CskbQRNkcIU2fzPAvf4Xnn8aLtS5NJQlSoTFCAJO0tFJIF2NhacJDPAxl3GWg0rTSl8a2k953uYg4u1lbSQYAgyBjadbXGeqRkKTR+5fxlYLJmlYorV2z67A4Gky4solDIGOGcdJ7d18a9alVoPsdMYXC9TFRr1Z3obNZjbKdDpxSnIYid4FrRaX/qlEzppk0C42Jh10wYWlM3CRVpGysU/uqvojX6URz7ljWeMM8IG2kVZQ8tE7iujI9QNArQw8P9ZmyNhuxN8hPKKFROFxYyuP/RR6U/5TJebQ4gagL7H3tsdZGkOLbCHRtLzqTrSgB5XCUvC5h6TXWIEWoHgMxnPyuE9uDBxBoxdpL/c623f+he9D3+OHKNBspPPYVlSFZF8iN/etq6EmPticbWOIu6qTBA+WbzZplfxkt0KvUcDodujH6wAdvDw/J/EGBtLf99tI3EL67DXoFvAPgqgH/LD9rt9l/j36lU6n8H8J66/s12uz18Q51wkzhLc9BhBSvDLMLIEsrO1mGS39onBLu3V4gVBVnCjbZske+0cEsBh+/L561ioWV5Zgol4dVwJioJ/E3irTM28F0LC4kzI4yjGa5mGvomMhCq6/W6PEhH5tEVEP+/rWjDqXSIConZli0irBYKQLp50TInPouMozMHKhWZZhP5fAZMPgTYmgTd3XYYWvfhgWYAL4fZ3W3jTVgnhEUBuXZk4uwD9wnXsVq1bvx83tImxsxk3ZiTXboknfjRj0TJIC4MEELc2ytS/mOPAQcO4M+OO5ictMqTThXMRgsnmQXXl0ui0+/SOjk0JFVU+dx63e5djdUmwxgfZ2HYHdj38MMmYGRx5GOYmgKW3gbue/iX4NBE1mgge+yYWKsqFaM8ZSFWp4sQjwYD7/IQl7b7uc/Jxj14EIv5AdSq9gycOQN8v9vB0MFPIt1oIBeG8J97Dm9ArE4RLINIz87CIQxrYcFuikYDKNh9EEU2gF/Dt7lPGazKysO+bx2ZGj9OnZBwi6EheR6VElRvDbPYKK7t26mR5nYqFsx21F9oWfwO6aPC+/NgUihjcg3uHcY06SBsKhCdTXvBV1aSmG0KibyP55gJzrZvF3KTz1svLmnhzIwVbgARmOt1B5s2pbF5cw7ZkmeJHY0hOuiOxFBrReWyWOTDjJke15XCfes1CoD1uvTJxv/FXmO6GDtjH8kI42CSoaF9CU8svTukoV1d8uyf/VmrAKxVS2K92gNXSzlaKtmq0YAV7glnGhoCcrgITM0A09PIFIsolXJmOJcuiQ2K3g4qHHv25HDv4cMWI0ZtpdEQ767n4WL5w6hNynOYGpxGRqaH5z4mTWNzXTuuOIcFokhQZnv2yNS+957df5RTAFv9m+PDsZPikT93DvsefFBe9NLLJrDIzF+zKSmRXntt9ZwePSqdOnkSMxB+cRaS1KMQ/xiGp2Q0By24rmMMQZ3/o1QCDhzAjmYTO55/HiEgCVLofR8etunG77jDJMahsZAKFeUKHaO6aZPw0M6xuK48ljbZ06etN5wsk+f3/vv3rr2x3kfbKPzimopFu93+s9gTsaqlUqkUgL8K4OM31Qk3CR3hGeVPX5/s14TAy9+XLtlKZ4yOjgnr5ctJhUILc9pr0Sm7U/ulx4SKBIvHbd1qhV0qRUAyDqNUsinSKFgSatTZF11hOwjS8LzYY8Ab2QlepGIaEtGAOvctXSIxJdPTRn5Ej7m2XM3MAKVSDul8KBN/4YI1r1++rIpWrF7ETNFFuZwzXaXHgEPgY0j8qDASbsA5pPWAdQ5pJYtjLXHnnUDOWwRqDcNUC0My3Lk526XLl5P44K4uq38VChlUhu5Fmt4vzis1PAHfGkmhdeBjhqnoPash21Qo6NDRaYQp9AIyFgq+zEx755020wshdnopAdk/hEzExifxbExMiinN85ApFLC/UkLLTcOpvmWlgnpdTG/lsnUJvfIK6hDI0kWIEpCHWJ7ykExQepH0ttM/UQSky2VgeBjpMMTQyZPILyzAiZ/jlErCCQsFm4eT7odiEaE6C1pRYxa0RiOJleX3W7bI73JZ5ubKleSe5rEhE6IQKhlcbp5ZbKRgvNupUQgFrHWfaYcBwPcdFIsDkjqZVpNGw2Id4pzGMxMWInnlij3L3FdA8oxv2bIaUkEolDYkddq9KExrWue6Nvsfx0IIrlaMdQsC4TtpxF4LEtpO3sBJ6nSVxz8rC6v7CFy7PoXr2jj4ZhNoFXNwdu+2PJeMkkyR57xYRL22Ks+H+aGiRZsZ4w6v1tbyZnT+rectziSMhQVr2SatCALAr+SQK8tCL/s5Q7PZuGYU2E06dy4sX6IFmEIB9bolwRyX3gtUKrZuTSpYneujY/Z6eoBcIHGnfb0eikXHJG4ErOLU0wPsKy0C45NiiTpzRqyHgKT3v+cei+PWi5zPr+bzlLinpoCpKcxAIFADEMiKB4HN4pFHgFIJbzR2oBzTWwctQ5O5RoBluyMjg5IJq1YDTp2SArJ3321zjweBdWU3mxgoLyO8J23OLmkAbZ5q+o2Mtta+0R6slRVLA5pNG8dKyPytaBuJX1xTsbhGewDA+Xa7fVp9dkcqlXoZIq98qd1uv7jWjalU6tcA/BoAZDIDZpG5CSgY0EgehkCa5mZKFfrkd0J08nk0ppLWKB5WylX8rTee61qiQSE4imzMAwmD7q8Wivks0lfSdMY7dxIMPq+zH4lGDwF/Oju8ebNQS3JASrcx5W55mTWhT4Qq8TOmxp2bA/rIxXhaOTGM8u401avBs3vsjh6nnhMycArdJLa8n4xIM3ogJqBa6nZdk2WFc0yBl9PHYPgrV2R83Eo5WvY0yJWBEZQY8nnUamKl0o4h3QUt9JIY6YwtumnGQeZCzxmtJHRp62eTaJLBlcuwykO1KmOIgeIOJ5lKEr0z1arFYExNmdiKCJKVIwBMZe2c50mC+ThB+9ycPXLUC+hBGaSm02gAS0vIj43BZQ7M3buTTKIDrL5li8wBFUm9zfU5oku7pyfpCeTjtIJKpx6bVnB1luKftp+81m5bLD7XmPUdAEvn0qRJdIHSHV4o4J0ZxxwbQjgJV/R9e/4o/NAY3Qm7IexE033AKsY6NoPd0R4MbdSi92RpSUKS7rvPjrkFx1hSXTeNYnGHGEU6AyD4YEpDPCz5PBZ9ie/ieC9cSCJh1lIm6D2p1Wy62cuXrS4xyDTahGBt2mQlXFoKoijhzdeeCtq/aAMbKCyjVEqbMV9PNWStDK0Fk6Ln5+RJ68Qif1/Fc6MIabcF33eMLY1B8qRJMzMWgrSwkMbOnYMY+EQRuOMOWexqFctDEjvWrNlpIExXG9c4dn7e02OzVupWLtvP0lOvAr9/3PCqTKGATJzrdjlyzF7NzLwB/P4RSbn51FO4GIbIDQ9LvaJDh+ya6RaGwJEjOLuwgP6OefnhiRPInDiBKQBjAD4KiasoQoS9IAhk8/o+3GZynbSiLJ85Zj7Ndz/zM8BDD1l84Ac/aBlp3Adq7qVS2qRW5rbnmmg5gkal5LuT55B/04DFM6+VoZ+2G2s3q1h8FsCT6v9zAAba7faFVCr1IQBPp1KpD7bb7VWA5na7/bsAfhcA8vmRNhdfu6AZc9bTE+//fFqKkgGrKTkljZhCzYfpVRkHeRstQ7RwuW6ySq+2FnNPr3XYtVKg/+9UNrQnQ/M63hOG1kptnknIV+ePluy0RkIpXgv88Q95jo4x4Vzr34QCSJxFRhiXdjOQQnLeNUYtCNDys2jWbFd11zjHmzfbFKAUpgGreOmDrJ/DfWFjJxwEQQ5OvB+uXElWK9fWdNdNFg/UfA8F346FYGvmflRuh+aM9fhrl37nD+E6XAJOH5UjKge0kJBWOvV3kY4iEeYDD/l8xlguKWxzPwZBnEJwckosSKdOwUSzzc3ZKHUqS7ELKFpZgTs1ZTWb8XG8ixjLClEmshDrUx4QX3FsOXqnlk5AuKIIJlAfAAqFHDLFovEkuuPj8m56Kig5MDKWi9Rsore0IxHGo+GCXHvtsdAYeCqknFPOOWMxaI0izECf+1vRNooF6nZqnifORMDSZxVWhEIhhpTqQ8OLY/q1aZPQIZYGoGy+dauKX0ISGsvPtPDqeYLSYNwYPYpMNw7Y/UwaoQUa0iTSt062BmgB2zH0bW4O2LbNEeWJB1IzHY5V/a1p/+bNVqDtbJ0eGRriNezMKPYcgNb0Oy0ijQb6iz6iyIm9xTbLNYVtnuWMvzYUar3YirX63PmZgxaCwEGpZL2+W7YIT8jnZf1y/jJQb8iNYYhyOZOYVqKCOTxtXIwiYD5MI1sqSU2FKErwIQ03puxBDw1tLb4PZL1l0/f5Zto8vxUL4TQE9mm6Tr7l+0bh9TwJkDaEs1wGPvIR5F57TZKQ3Hmn7VStlvRUxe7wfmaZVM2HJOUYAzAK4JOf+IQpHJgdG5N+xIfHVXy8Bcfot2y6VsSVK7AZEEol+YCTw0PDA+p5WHYzpv5LpwGRc66zXF7NY6HlMm3wJFDD837KL95Pe9+KRSqVcgH8ZQAf4mftdvsygMvx399LpVJvQjxkJ6/2rHY7Gf/FfcRNo3/WlM4Be1LzeVxspk1sN9PY6UqqejORaNCoqy3m/F4TZH7OoG9tlafgTP2G1wJJCJbGgi8tScISHXwkByODbdsyQiC0RUorF3wBzR30q8eEftHLoT5j8eucAzLKRsOmm+2ccwA2BR8gz240khYpbVqOIjhowfMsdpJzpK1TmqCStu0tt/BO0UGxKMYVFqOmVblTOWMzzCSKzPAJ3adArwMpiYfWCkqx6CCf78fAgYKldp4nEzY0hGWkzVppSJfeB1qR1IxCL8taHhs+xzn+Z+KqplITBEjv3o1cpQL05uM94Zi9kcEi8O2nTJ0NvPQSqo0GSkwFODpqE3LXasDEBFovvIBJANH0NDLT02hCAqu/DwnQ3gFRLHZArE/9gI1S9Dy4HcRbN85thpGpH/ygVUKHhoRz795tB889HGtJTrSMQiGNIBDmuhilzbOjyGbe0nsTsMYCbWug5ZcCC/8HbNFKZg252baRXNu3U9PoH01fKex5Hqz5n781gWs00NOTM3Sb55vxblEk+4NxuaTLa8VYRJENNqbxQhuvXFeEPJ5fILlPtaJO+jQ7K8hGNtK5yUlbDI/98/00PC+HjOdZTC07oSZl2c2YgFdCOqPIZjtar7FPc3NW2EoY2LQ0R0KgAxFpkAoCBEHWXMZzGEWqdlAYAicnkCuVECP2V81Bp2fiWjAoAECthsFSAc2mrMGVK6IIslDqtm1IprH3fbhuBgsLdsx6OKy7S88yZYcgkGKuQXEA2WgZr06JcqALeFO4rlSSyUU8L6515Er/RclwzdizPmKGGNlcsoC1wvo+HM8T+B9go5vrdQNfimo1uC+8YOEJxSIwOQnn4YcTC948dQoNAP16PqMI3wfwKkSpKAMSA0Gvvg6YLBbh+zvMmgDWg8emt2cUwU4wLy6VTIbElRWgp2jPehot9PXEspDn42LDMYZLgjW4LUnnPW+1Ryselllfxkj5vtjDPE/O3K3gFcDG4hfvW7GAZBabbLfbM/wglUr1ArjYbrevpFKpQQB7ICnxr9o8TxRpLjJjGHQsQyJzA2+ikEKBJd6YPKg7d1rcupbNafHUQVS0RGshUT9WK88kMLQmk8ho4ZFCD3UfHccAJBUYbUXVOoM8W1ml9GnU0q22TimvBbHr/NFwEq2DUIDnOLV1OHHYtYmGn2mJr9FAsZhLMErydloFNfPndemYKNCypOX7ziHS+J0LWgkzUk+P0DgKBXreO70gtGhooWS+6SCrXxxFRqmgN0nvGUIxtAABJK1TmzcnrVAtN52ARbPl6IdlUDM3vOclCDP3ChqhXcBKBYgiDDz/vAjxTIrPtDPxhDm7d6M4PY2LkIC7d2Dzjj/MSuJxYvbsyZNJ828QAPXkFljrLGDPHlFG6KkAkvAnHb9CbdN1sRilDU4267uIQvsOei21MUDXeOH503Ok55/7nkycz7pVVqiNwihupxZFksStp8fS2dlZ61FwXViBi7gVRnHGzKFaFaHhe98Thx9roRSLphQM5uZEwOfeKRaBjx9MCrCNhgiOQSBCP/VpHkHPk744CiSfjf/2/bRJg86gbWbXnJgAfvM3k+9iNflYN8KZM6Kzy5HLwCGRBSzBjf+emZHxvvaazbw0NydH9d7h9ee6VpNihIwV6OoSG0GjEddwGE6jn0oNi8gQ8E+NPx535GYTS0K+CcAKwsxJ2lHmfC2oE7AaBrWmcsE0vOhPKHIsg5XYL3EaL97C1N6vvCL36JTsly9bJYO2k2ZTut5opOG68veWLbJXX3/dyt8kf5VKnPK8EWE5rnBuBPRKBS1XjCzOsf8sC8G06LWa0NhKRej2wYOWGNMaMz4u8/ncc5iE1Cdyq1X0V6vY++STcGNG3/pf/lczl6jXcRSSmekv63mMIrwKqWe0F+LlxtGj0p8okr+7uuSdjYakFVfKYT7vJJIr8UyVy0Ammpeq4HfeaSLQW34WM1N2+7DQnbAQBw7nqFZDLookU5UWFBgMA4GGde6JtNvC3kLTzPemXQM4f17WqloVesAMXGtllXq/baPwi1S73b76BanUkwAOQtAR5wH8w3a7/a9SqdQ3IOlkv6au/SsA/hGACMCV+NpnrtWJnTtH2p/73Enz//btQizpcqV8lMFiMrUewa1awokhObWanL3JSZuWjEIm5TZmZdCZQZi5Vj8y9g4aOZpCCxBbkL0WliOV5QDWIkTISxjaZEMkaHNzNqsDGRItGlq5YgC4Ey3bzuqmPQfx4Wr52UShumrVGpQobNEaReK+ZYsgXyi89xdaSTfHeh4TTkw8gIthxswBl6mry3pGKK+m3ZY1LxeLQK2Gi/6AqblEZ0lHPBwKBcBpzlsrEwAMD+M/HXUM4dbrwGmhR4m0l+sLJJFdQLzXPA8XG45hBBMT8t3KilVYqXxS2aBioaFQnS58LpWDln3w1JQ147EzxCC4rsV1N+dtWqiJCVBCWj5xAulKRRawUhFFYWQE+Na3gGefRfTii0aZqAIIIa7tCoB7P/1p61m46y6bj50R88PDuBhlE+uplVGOv7/xahLwqjTVlp+FAzknaSzbBwSBGRvHdzHKmq3F9dTICuqxFCppMabiEIZylglP4RGhrEWlcHQ09b12uz2C99nuTaXa/+V93JcFbuq9G7196EMj7ZdesvxC21vYnA6hKGlmt5bUThgFn6dv1Z/Toqz37Hr3rtmXNfqgm+4P9zsF5k5vYee7rpYZqXO8+hmd93WmcDVogY77jMd1rfdeZc7XatoyvuYkdrSrxV+sl4JWj+dac7cc3ZgIeB1dXnefXM3jkvjsapt1rQ7o6/UidrqdYgOWeQ8ZqKLNVDoS9+q/9bPV78614LM6/+9clKvtFXPPWmNdZ89dy6u13vv42I9+dAQnT568qTIUG4lfXPM4tNvtz67z+efX+OzfA/j3N9oJ1l0BLHxGW6MMbIRpWCnd0MKrrffxTqCAQbl1dtZmxNN7j+5uWnCoWFDwpqdBV9fWlk/XlZe5tCyY4CCraOgC4ZTNl5bE4kRDDRULXsfsGLSsiIsvjQwvWssFrZQsytz0hupCboCt0Mmqk4C8f+dOa5lejhzrWu3EculoLL4fEHzlGoxeX+r7QDpalMwm1H4AsT6MFtHT4xi0lfYCcYkdtJKLG09sGGYS0Bcg6W7WeGLtVaElSnuV8vkM0ExCxzRUbC08NENRqKBQkHZdR5TCKILTbCLNjvHhJ0/ajvJm7TryPMG+cnDES9DseuoU3gWQnZxElhGpfP7x42i9+CKqEE9FFTal7ABEuVjFIAiA5h7L5wWWpYQbri/H7Hmw+SsZYR5bBhaRQaMGdHU5ceaNNHw/Z/Zj1lu2C1GvI1eKF6HZRMZ1kSupg+F5WAylH/RaMCMU146WMe0h5BBZ73EtSNf7aRvFAnU7tVTKCvhs6TVojWlrECLSad631v0tOKve03n/1e69mqDf+YzOZ3U+00Hr6mO8Rusc7/Vcq++54TF2CJb6eVdt1yOhX+NZ10pNm3avvT7rrfvNtGvN/dXiRABY78V1zlHLTcv9a1zfKXAn3q2SayQE8s6aF7qt06drrcV691/XXrmB91/ruet9fjNnbu33bIx2i6ft/TVWygVEGGAlRC3buC6S2BqC5fWFsUDTaNiaNZOTVs6am7MBp6qOnil2RvmWnhJaYrVBnq+iZZoKj+PHUxkLQJn4wkzgwnWdRApWekdef90K/UtLItRT8N+61RrkKWMCQKbXSwqBnBz193LkGCwtPTf0WNL6zuJ81WoyxTuQrLc3EKhxzc3ZatwMiNEtVjAiN5vwLDORV0LZ4OCmpqQTvi91JCoVuG4uodR1OklW4axirY/VlnXVZUINzFrBDofrvGmTuLEJd+O7aaChsstnsOucTzpcPE8cBploHqiLohd5OWFS7O/MTHJj1mq2bPCuXTbYeWgoAe8zHWNgzCuvAGNjWDx9GjMQvGEEIBuG2HHiBIonTsB/6inUazVMQaBP70KKGQ1CalT0Q+IpcPKkPJeBcydPWsDp7t3m/blSCSsraTNuQj4GCssWE8LqfgpX2KglUw9T7+BcZguw0j7jRDixKysmRSJfmCmXAU+YrCkmCRh6sLJ9x6q4Gu5DTTZuRdsojOInoV2PMH8j7VrPulpA8a3sx+3UbnSMV0tf+37fe7XPrrddz323ej/d7Puudz++X6X2v3f7cc/3rd5D76dtFH5xWygWYShyFg21hJJs2SI/QQA4M+9YQWx21oLgAGvpjSW8XLGIu+8eMJVM6RG4dMmmzKNgsbJi4aFMKUd51fctXIoGWApHzDojSRmyCE1XBAZUmwGCIJ0wMm/ZYhULHUBMQZ5ZkbSllfNDz4XxInTCkuiSaDSQLkYoFvsT8C86Orq6ktZajWEHZDx9fbHAmF+UGgm60FQnDAqw6Y3izxp1q9DUajbPNGvPNZtSObQ/D4NzWxz+KDJDQ/ivE1mTFpDQIioABnZLbYxCeuw9mZyU61jISYeEEP4L2M8p4BJ9RGUxiiTr0nI5nYDthJWcEVCpeLA4ET0VCwtAZpvVomQ9HSEoWiHi+kVRsqo588jGAdiLyFg90ssgMxRPRrxZMl1dKExOmoJFHqQexbsAmrUaJiGeinfj7/MQpaII8VosAoimp+HWasDLUjBpPg7ecwFkx8bgUzIfGUHf8DAu5LM4d05VCD9+XNbh2WcthIsB8MPD6C+X4XlZXbvSNNEh0vD9fmzZAvRVGjKZnFzA4gPjQ7gYpZUH0IHnZeMEKRLs98q47IVCQbbGhQt2neiV7Mh4+77aRgrGux3b1TIDXa8QcTVoRCd8Qlt5O7/vfP/Nth+HwHOjY7qZ919NAbkRAZjX38hnVxvX9Vy3VoD41cZxPX1/P/O7Ci50jabn+3qfvyYsqeN7/fm19tC12tXWYq3nrrVGV3vXtfp0o8rFrTyHG4lf3BaKxaZNFk7OMuxMalMqAc7kq2LNPnNGlIr33rOmdwq3lNZjGEcmn0exmDGY/M4K1xQqu7uTwaAUWCjMUSifnbWQGcIwiNtPuy3AS8JE9HP4c/myldEbDQmku3AhmUqaQ/J9+Y4Ca1+fNdwOFALbuU7XTnyzVlo0Jp7xHrx082bpV6cys6p1ekn0ZGlpsdEQRSu0ngoip/g+4x2p1o3pX4Ick8HRTAXIWJPdu4FceNZa+8+dEwUzfq/nZUzApIHnwGbcWitEhOur516GK8Lr9u1p9PUGQL1uYn10sD4dZfm87Nm+S28BP5gyD84dOCBpDKllnT4N/Pmfi6dmehqtWg3zEEiSC9i0I6US5qMMYwmthZ3KSKEgwW71OrLVKnaEIc5CPBAhxDORhoU+LQMIIFmf+iEwKHf3bmSnp+E8+KBd49FRZON+NuLnZF58UdzvMzPA1BT2HT4M775+OZsn/0KCChn0QOWIUbCVCt6qOiYYMk5gYuawWk0GvPftDKwraHpaNuf0tNy8eTMwO4vMAz4iN2uC9DNeCwtdTuLM6vPOwFPAOkZuVR2LjcIobqd2+jTw4VEnLq/i4CtfAf7gD+TYjIwAmcZZOJOTlj7ELlmHDCYuxfzDyTSOHweOH3eMzapQsIluGg3HJOBxXQef/zzwd55IClr/dczBb/82DRMOKpVk8Db/1qSaHtWlJVPX0mRqYl2NahU4ciQp1Pzar0tii02bbEpcGlwKBQYBNyyNJjSxWESrOIDxcWBy0o6pVnPw+OPALx5erQDw7++ecPCNb8g00rFcLDo4fFjmel/hotCymZkErtaJ32syOzzwAN6qZ433vNl04nPoYHhYaGd/+BZQrWJx9OMW8oq1hVotPHYGb69SOKNls9b0QkvspuyhfaVFYGICTrwJnIMH8Y+e3o9Nm2yAfLUKXL7sGB5C73Wl4hhbCpOHDBaXJcNT8yIcAG/Uc6jXHRw7JnDQM2fEbpTPOxgZAXKuZONvIivZnxoNYGoKztCQZUhHj0rKxGpVYutmZ4GPfEQWYXgYGB1NGKHSbksm+tgx4MgRLD/1FMYhfKAAMTBFEEOUT4sbAIyN4d/93M/BBfCX9eeNBv7D9u34MMQodRZA/+7dwMoKnI98BNFTTxmIrfPpTwOPPgo8/ri9v1bDW2G/yUL2n446KBSA/e6rMp5vfcsEvzo8yEP7cbHhqMLyjkKVOOIpZ9aDWO5z4oVxSiXMI4sojn3N+qv3ErNybtsGjI05phQUa7bwCOXzt47KbxR+cVsoFjzoTERDmaQ/vwxUZ0SpYKg+zfCUDDToneD6c+cA30ehsNeke6ZHYG5OgsMpyFDYpaBDoZMCKAnJ+fOrK3Xz9cvbnMR9tIzS+q2LINHh8t57VqnQQqoWeKJIBCTNKzZtAvL5ONYi1lhaflayJFAydt1V8V1UgmggpyeGEBUK18xg4XlIxnKsFTBGjUxnIEFSB+Eccn66uqzCk6WGBzLbbCL0gKkAdXYwTNSTVddVKknGCmumTm/MuXN27TRyjPEuek35ue8Dfb0t4ynLBjJZuaESosgx25DySr8/D0zNWGxbb+/qZAMXLtiKU7UampAMHC4g18cB0/N+vymIxaDzKAJcPy31RVjJ5/JlyRP/4ouYgj3QTQgToVKRhigVAxAolPPAA0CpBKdWE9gV90+8Jq34GfMQBlR64QW4586ZAnyDBw8CY5PACy8AR47Iwr75pmwewqpiWF6H3mn2w9KS9UxRocQ9Bcv96QnjYjEACsn0zEHgmOKO3GeXLtk50wH93NK3Cgr142qpVOowgH8BoAvA77fb7d/u+P4ggP8I4O34o//Qbrf/0fXc+5Pe6D2m4QmQLTw0BKQnvm8rBGt3MNPf0TuYz6Ovb8Dwgs74K9IEeps7k0KwNZui6DCZm+uKEYjGAM9LGp5I44PA1qdpNMRWUq+LjDU9LWSis/G7bdtkiD09wsv27JGxl8s5ODwA2lri+5idFbIzPZ2UxehNXq9duSK8isUwyWIScUo8zKTHbNu3y0Wzs8CePSiWsubrzjC9IAAwJuuWOXhwldIAXB8+fs1rogielzYGLfKIQiGuBzR2UlKDnTkjg7zzTgD7sXmzTb7CJCukMZxe8ika75aWgDAUo9TQUA7pxrvmXTRuXLggczgyAuRmfijwT99H9uBBYKYpe/e110RToWJx5Ajw1FNoVauYhygE3l13Gc31YpgxfQGANOLFiXlFursbrZUVvAMxFrkQut4P4MN6rsIQbyCuor1qnsU4hbvvRj/TmtfrwOgo3KkpRKdOYQrAwDPPwGs2gcces3EeX/86Bj/9aQBDAICf/Vmgr/si8DtPyYScOydCX5zCdrG0D+NjlnUSZULFQiDMafQB9uCQsG/aJAa3Awdwfi69eiCwKXyXlhwT60dlgkhlQtevFlpyu7TbjV/cFuyVigXrvhSLQH+wKErFzIxI9VQqNIxEY5rIDbixajVki0WUy5mELtJoiOWbHgudtZaPYZ+0oE8oBWCtrvyf2Z4YdnD5shAi5lOm14B4bxIo8j32o1Pg1UmvAEuId+4ECoUM0oGH5cjB3CzQx1zSAOB5holxOijDb94s7y6V7N8U7JpNkW2NtV+b9jdtkoHqEuKi5Vgwe1xYjsIcK57zHRzf5s1CRwbuKZhOVqvWmsf5Yio/kxUrXExKpVpCbDZRKpnsq8azEATS7U2bZAtRKNE4e3pxtFWR+wLVqhB+Up04R969o6NYdjNGFq9UAJyMOT9xV7qMtN6AcQnvZYh3IQ3YCrmxVj01kYyFZn0Omf4MFpaAvuFhs0lzp04haDTgxM9chCgVi5CK2jkIEykjtigdOGDNM+R6ajMuQxQLFtCLAPRPTiJLfKHrmnSGiydOwIUoMP7p09ALweFroUr/zThxKvaLUdrEJxnpgxg6uiDiQ6LRZDw3DCbvDPjX2dn0Ob+Z9uNybadSqS4A/28An4Ak8jqRSqX+qN1uv9px6Yvtdvvh93nvT2wrFoFvfCNJ/oeGYgGeKZc7F5oXKhdyrwt8+tPAJz6RVDhpL9FFLHnOO9uBA8Cf/Il9NPukf/RrAaNzG+ESgKkOrW05QFKw/s535DPqRvSy63lIpGml1uW66AVw6JD0l3zkeiCBIyPAP/tndh74HsMj3EAuGhlJHkQ96JhXi4V/de0MzgVGR82EXE8cx3VDVDwPpRLw2GPJbpl/aPVn/30fT3wkyY+5F4DkPHAtdLE2nb0O+Tzif/HII/L78GGV5c6vJDcEMbkjI0lt9zd/E/jiF+FEEQJ2SqUfZCikba4Vpg4cAL70JYw2GhjVUArdWbbRUXzpT/909edBgEe++12bQ5n30gL3+OMoNJsoEMtNzwHX6AtfSIyntxcAAvkcsBjweDN7rj0Tuunj7HkAtsVaG/cfv+QZ75WP1oM08fuDB2X7cVr0GenqAj71qdV9udG2kfjFbaFYZLNC9PJ54Qu+D2BiKhlTAVgpi3/T1bppkwgfu3YJtY1NyK043oHWLTZdcZQEYtOm1YgindFWbzYKrDQc9/TI57x382aLBqG2zZzIVCyYArbdXoHndZt360J+1KGoeJVKMkwahV3XMc+5884stm2TAkS1qWQMLOmlpgc2PsQK2RrW3mwCYbkfpZH+OINTw/5oAY9WFRKiKEIGiwiCjIFuaRpGBefuuyETElfD++jjjwNhiEIhAyY2GhmJLUrs4FTVanicdCYWn5nBXz9cAo4fx96DB8zE+f4ONJsy3p4em36Ylg8KETrGgtCEQgE4cGAQA8Mw7mmT6nV8HGkAHztwAKg3gT+oilWJ5kbPsxYYZhJ4/XXgxRfx1uSk8QbUIUJ/eWEB/SdPmhiLcnm/mbctW2y/MlgEajXxWBGCEK+JC4mjaECUiouwhe8KkNSy+UJB3NTMFT8zYwvphSFapUE4pRJ2eB785583li16PzA9jezTT5uiS61Tp3ARorSke3tFSnv8cZz/wMfw+uvAxDF7jHkOmEJ5YUGUPUJPKhUgM/OGuPyPHRNvyKVLWJ6dRZrm2d5eYGEBfQ89hL5yURbx2Wcx6PvmsPaVyyh9fr9RJl97zW41ppTWOdVvpv2YXNsfBjDVbrffAoBUKvUtAP8TpD7Vj/Pen4jW3R2nwo6bzt7UctMCw4np0dUw0g5ayHhARslQ18JUd2LMPQ8YKF4fbr4zKxEQJx+A9OFa93PMa+HH17w3Zm78jmO9Edy468Ze26s1JYReLaAdEOUv7WPtdpXndLarYe3Xuvd638uW895/PMVa/eL8Ax1rYHDBcVNaTyLWIJ+/6pjX7Buf5XmrzO7rxpZ4nvCGtcY8MrJ+jILvr/os0a9YblsVvxLk1h1PZvWyrD/Gddp68Ryd33fSgbXGcivaRuEXt4ViASQhC0tLQB+l8oUFGMmQkpY2FxDT1NMD3HGHkcLPr+Tw3pRNOkRBgu5IGtopUJ8/b7GtFLipQNCTQhcqa9Lk87BCt1Z6APilNJyZd5DzPOTKeXixK1wZkTA1BQBXEIZXMDOT9DJoz4UuzFYqiXxFOkEDhE5pS2WD2bCoXNBTAlh3vOBd5TPGf5dKnXUKMsjk3aQLh14DakF0ycSErFTZZwwX1AF0vEjmZFxtmhiA7duBS5fQPzyM/Mhe47JOpPHhBuFEMQ8vTUmeB5RKeKeZM0ohawrR3dloCExtLYu1ds+7rszf9DRw992DOPDoILLuonW55vPS97j+hiHgFy7YTbawIFLt+fPSiYkJYHISF2E9ASHkEC4C8rKpKeDUKWR9H5XKIJrNuBgg09Sy0lUUyfPGx4FTp7AYx2owSHsRolDk4+cvx581azX4Y2O2iFC9Lguez6PlpnHiBHD/6ChQrSLjuhh+7jkAEIbjeSLYDw2JeedDH4IzOori+LiY4TZtAj79abzl78fYn9pzRydNb69Mk64l0tdn49ULBSSxUleuYHl2Fu8CcBYWkF5YQKZalaxQvb0Wo3LsmDyIJthy2RQ1IkJDw/06Das301Kp95HavN3Op1Kpk+qT322327+r/t8FYFr9PwPg/jWe9JFUKvUDCOT5f2m326/cwL3/Q7a1BLqbuf9q31/tXVcLLF/vPdfb1+u592oQohuZk+tVsta7/noCia/2nPUCnm+JJ+MafbjeZ3bGeFxrTq6mfK0VR7LePrrRwOL1YlTWes96wvS1+tR57bX6eb0B5reiXU3JuJZCfKvaRuEXt4Vi0SmXui5wuZjDwPCwCApvvy1mqtnZpD+SkiolhlgbuNhM4803LXZVW6jn5qw3j9j1lZWkp4KPZV+IUNGF2gx2thmuqQ04YSNR2ct1s8ZiXyjYDFhh6JkMU/m8dblqd7xAn6yHZPNm+Z5peem04bQkUrPCels0Bl3rA/pvBn1zHjhvbj6NNCem04XKgVEBCIKE8Mb+bdsmY8i581bqrFZlfcfHBT/meUgHAfr6dsj9Ot+vLi5CXJnrivSortPjZx+CQOaMsKxO+H4npIZzwjwBzSYAP2Oqc7eKA3CiCItBPzJUKKkEB4FMeG+vLJ6GRC0soDA+jmWIJ6AFUQRqALwwRDEW5HHpEtIHDkhV7ibswjFF79QUMDaGKK5hwZ9G/FzCnwKI8rIcf7cMoHLypGyoKLIeC9+HEwTYvDltF93z4BQKgh3U6bk+8IHY5QQZn+taJcXzEtnHmAlKbxXlKUdXl0Wv5Nx54PePmxLB0fS0pMONmwsgQ48k3W86gIkg42oVfaUSEIbouXuHqZNDvZR/33RLpd5fsMbKSv0aBY/W4j6dlUy/D+Bn2u12M5VK/SKApwHsuc57/4dr6wkGV8v6BFzd4r1W1hy2tT5/v0LSjWRHuhX3X21cbNdSCNa7d615v553rTWWzr/Xeoe+f701v5FMQTeaiWmtZ9zoNdcSbm9EyF/vvfo96313rTV7P8L3taz915r76x3jtfrXOQd87rWUwluqYGwgfnHbKBa1mggZWvANSxmUyvuQpjCbzydxQiwwQMHT9zEfpg3ciNAeWk0J16a8z6aLsVHoofKgFQ0dsBWGcepXjTOkcrGGdE/dY8sWq9jEso9xAtCLwmvZR9axoGzn+0l8LeFYRCjpMRCxRJlf72t+x7IU7Kf+YSiDafolGlRMYS8OlqnXkkpLAnrGDznYS5eSJcjjVqsBKGTh+VnpgwtkK7CTxtQqly9LIbbQiQsIJmFXjN8JgtU4e+2hoKAL2PljUgHW/eCXMzPAQKWCyXHx6BSH7hXF6/JlG5FPrwADPeJ9XJycRBSGcCDwolr82wPgNRrIHz9uowy1FM6N12gAJ05g+dQpzEAUCj4jjJ8TxD8eRJkglKkJoHLqlGy+KBIh/gMfMFpfubwXeHbCuruuXLGpcpiyLc72ZCwBjIyP02kUR/ZiYUGWNAxtAUZ9nvTPnXfG2b5iZQnT08Cbb0oqXEjGrDTi2jDDw9a9wTkhfeDcqMqQmWKISmXAeO6oi+pMbDfV3h+juNYVMwB2q/+LECuTae12e179/cepVOr/k0ql8tdz7096e/dd4P/x25JRh9vRCRdFST59GjhzRpJZNJsSzEwrEiDK/pYtcHbvBioVnG/vwHe/a73VpBue52BhAThzxjHw1EceAf7nzyeFjBMngH/yT7gNHZOh6c47gZ07HZPYwS65gzffTNYRiiLg5EnH7M9GQ+jQ//l/JoXBX/916ZeOiyAiuFSSjFSES4UhkAkbhg5djLKxkY2ZdSQrzs/9HHD/fesLTm9VHVNmh1mhPE8clpUKkGvOyOTNzQGNBpw4Hsq5ckXOqeuaTEvzyGJqysHkZLK+LSHQ95bn4TQa+H59AMPD63uHruWJ6fxc0KuSDUtC5ByT4CMXvSsZxOJUWU6zCYyO4o/CT6JYlHpQpZLdH9WqDHXbNpmTvj47hlJJAoGHhhzJQnTsmNBGumgPfRIXGw5OnpRsUgPRWybTHvJ5OAcO2NRgU1NwHn1UDD5oAb/1W0Ib335baHKxCPyVvwLnM5/BO1E/ZmbiZCN9dty0wTgTPxSY7le/ilqcYa8B4QdFAAMx83fQAsbHMfahD2EfgKzOChWGcO68E/i7fxdOpSJrms+LQbBcBo4cweKTT2IGYtQqAsDly7aY3yOPAL/wC3B+5VdkESYngePH4Xz968L/FxYkocihQ7IZhofx6qRjyLnrOmYtyfo/+EHgvvvirKETE1Yt8TygWEQ0dC9mZgQpsre8WmHgs7dudfD66zKUfF6SjYyPyzvFTngLAUwbhF/cFopFGBIWZANsm005wPU6cOed/diWhwjxOn2PFuJNNHU6YXVmViXtsaAMzKYFTP0dvQEUNimg62JfW7ZksG1bxsRSZDw3qWh4Hpa9rHn/tm02kRJlO35XLNpA8M2brcxOKBSFXFWQGYD1fnDMsWHcxFZTqAKsEkGlQzcK4kEgOPhCwXoZ0uG87agOAOPv2MWz7OcwNZlMdctbqINVKv1CnDZtshpPpWJwWPPeDlRfs6kX9Vksl3cgnwcyhWV5ILWXYhFTU8D+oSLCCTtP5bJVDGlJpz6qgzOpgNBTNDRkcf/7KsIkMuWyiSqXBEnCJKhPlct7sfeRRxIVBi/6A8hR2ujtNUpR6dgxBLOzOAsr+C9CQaIoYdA7xMVWg+H1jNWYB5CFeCp2xH9H8c9i/A4fwHwYInvqlM2mEUOhEATIVGrA009LsbvTpyX4m5p4nAf6Yn4vqhNAqZRGjtra5KRJO5sFcH+lgt7efhP3zjMDWEWNw+rrbQHjNRn39LSxArjxWNIsGlgqAfffL3EcxaI8rFYTZUMTEW6YuTkAQK7io1TKGcRiV9f7o++r2vu1QF27nQCwJ5VK3QHgDIDHAPz15KtTBQDn2+12O5VKfRgC370AkRmueu9PekunbQ0VAx1nGk7GHOkUTjwzV65Y2GxsobnSsDYObScBYDKN6YQSQBL6cvmyTVWrlQg6BHUwN99DWsMim9WqlIJhCvLYTpJ4FyDD0wmumG65XNaxxyIYzcwAxWJO0ubGx3xiwsbwkR6uFSDL5qCFKHKMp3tuLlkHJoqA4eEBZOnaZpopZgWh8h8bjLJ53wiINDgQ4bxrF0yijMqjf+P9bo01G+0iVGTK5TguptmUBDGkOVzgWg0PPw441bewWBlExl3GwoLNLlStSn3S2Vnhj1xTxmBLfJ6Dj5dKQpPiSrjO7Cxymzfjk4cOCb1krFq1KoymWLSFRo8fFyHb92UPfPWrqMb8wgVQOn0aO3xfsm0d6jeJ9ChbZLyWPGumKe+amEBzehqvwnrI5wF8DEBRe3rCEDVIkg822YOwG2ZoiBtMePg994gR58knQXvNPIB96hnhM8/Aq9WAz31OPvjWt4Dnn8fFsTFkAHjkLwcP4qw7gLGnZb9ShuM8M1ZvaEic5c7Jv5D6Sc8/b/nu7t3A0BDSjz+O0uhH0WyuAU2MlpGbPCn865Ua+kZGsGlTFps3y3sJpuCeSa+dXOrG2gbiF7eFYsH5JrqFwnY+bzMHijCyA0GwA0ERyJUXk5bvfB7vzDhGGJ2eluxxFy4k07lu22YtpRTQSSRpWKB1WysZpJFaZwCSGYU8D0nLqbqQxKdSkft0vMXMjNxC+Y5KCuFYnbAsjRXv7pZ+p92k63LbNvnd25usZaEVCwbSciz0pvD5tKCJ4pJFugD5kgJvzIkXkUHkSV2BSzPJKur0wlCQzOcBp3FRBkyMl07eXq0iWyqhVNqBN9+0ugyVutlZygVpFAqDKA4BaSxjPkwnFC2l1xmZFJD3M5B7YcGmLKW8wcYllIKKDgbLZVESikWcn3Vw/nwiXh0LC0KQCocG4RVjmFwUIawDi14aXqFf8uiTgObzCE6eRHDqFBbDEHWI8F+FEOXSM8/Ap3lwZISJ9aVD4+OYmZzEFEShoNejCFsAby+ATGwWvdhomCJ5y/HzvclJuJOTeAdAaXxcKLXr2vyTcf7OjO8Df+2vAR/5CM6v5PDmm8D0y7bY5NDQPgx+/vNWSvrZnzUB/VEzGTtIb5tWkPsLLavI0GMRYwDTAFxyES7iPfcAxSKW3UycxtMz8CfjyapWRXt4/XX5bm4O+++5B/6BfhOvPjMDfPvbuLn2Y2IU7XY7SqVSTwD4E0gKwH/dbrdfSaVSvx5//zUAjwL4QiqVigAsAXis3W63Aax57y3v5H/HRoOPRp8aIsm/tbawfbsIG1FkEn60KvtMTQWmX52bS8bSEh5KYZzGJy2gaIQmtyhrGpTL8f42MXjy4HLZQbp+FtlCACCDpSU5Dwwba7dDzM52A+hKvIv94LjD0N5HUsHvdNKRel0UlslJO1ZO0c/9nDx7PRjR3Jzct7LCWg4ddjxIWtVcyU+6AjVvJmNvNlEsDmJpyd5PmHHfj/4CcVERZGIBU7frgWWtB2NxJl/FXs+D/8AgwjAu/Do1YyeHLlXlsnYaFwFQHknjz/9cnGGA0L7ZWflN2LL26i8txfVLDw7iFz//eZl0cVPIhtPpIcfH5cG1migSjYZ8duJEwvI3PzuLSdgiqFkAOyYngfFxOIUChob2IwyBrLcsnZmakedeuCDzOjaGeSSVChqh2By0ANeFCxEMOwOtlxsNpAmdjSIs5/uR/oiHH87ksP+RR4DJSdz7e7+HFuJMh6p5FKrY8nnggQeQu3RJlJV8HnjiCfzZVD8mJuy55BGmAtrVJUooHegYr5m4w2ajgSaATLWKbFwh1XFdZPN5wC8l91EYikKSz8uCFQrYvduqQiQnRIbckraB+MVtoVhs3Sqxn/W6ELIzZyxd4c27TAABAABJREFUouBO4ZsMpVDIgFWuowioT9lgWwZiE8qjkyLoWIXt260yMTdns1ru2WMLs2mkD5/HTZ7xWoaieJ6q0kzhJpak0vk8SqUdiSxP7Def32xaiJROBS7PtoSLdJqCNo0srusYhkIUy8qKtbrRudPdbbMgASLb69gLMi9mRqIQJvOWjcsz5OB5QFcb6EbCQI8tW2zgO2NYsn7Lpqiq1q22WC4LEX32WeDkSVsBenISfcPDeOSRX8LCginVYGKitQIq+ltacpIXF4HJKvaWyzEH9uC6GSPLc94JeeBYCfcidIcZvGhZr9WA4mMDqE2JW7SnR1zO3B9srqsIeyQd9bycWes0pRZKAbF7xIlhUfRARBBzwr6XXrKwI8+zDOrZZzEBmIJ4ESTr0wBihgMgUyoBDz4IBAFyJ08id+IE5sMQ7wIoep7ESAQBSidOAH/pL8n/TBPLoHgA2LwZrYMfN1ZZoqPoWWs0gOWhAaAwgPTDTWBkBN+fzAB14WdEt2kIFJMgZLyWybCF8XHg7bcl81QswbUgcSf+23Hqbd83pqR0qQQ04nN26pQoEadPyyGm9ZSpvQCguxuDB/OIorQ5OzfdfnwWKLTb7T8G8Mcdn31N/f1VAF+93nv/R2qUBycn5f9Dh4C3wn6prTIxIWvC9NBkGrRwlMtoBTmcOGFzKkxOWkOCjlvTqV9Jy9gooJC26CQfLF4XBEjm844tUGlFwLZsGTA1eoKAfM5bc3/SLrGyYvvS1ye8ateuZDiaNn7RO0ADGG0H5K/A+jAiFnUNQ+HLnBPSUGMAK6WlLpGec21VUBobMxKSFvT788CxCXnoCy8IDTpwIHG2rhYIfE0M/MQEsLKC/s8UcDHMoOVlBMaj6fHcnC0ewuImUYRmzfJaokKZ2Z3ebs6lhv1evix76+xwGl4wiNxQiMXSPmR8H2ejHegfGbH52HXQpe/L+JWL10EL2SCA32hIAg4A7wAITp9G4etfB+p1pB95BOlKJc4NHi/Qn/4p8NJLiMbGUAXwFoRnNCF8ooC4oJ2evyhCBDFYBR2fTwHYd/SoHIY33xQajHiZGg0gCESBuOsua4nlmv3KrxiDUwsOnEOHLGNgsbFCAeGEzQvDr7nHuF9GRoCPHWgBzz0nEK+XXkKz0UjE45mgSh5sdMR7EH9PIeCuu9B/QBZ2eHggUR6g0QBatyLMYgPxi9tCsdi0yULRae0+c0blykYyMRChSVpAn521Xop63XpkiX+kYsAMtVu32hzGFLKpZOTzNl417bbs5nRdZLtdIIyScRRBIPh6HVg8O5uIXM2WfPiFTEKxoFLQGS7S+bN1q7WMZP0WlmP3tA42ZqjBesGpej+T3mvvi7aEaYsYK5PzXWR4jOkgJIzj6umJlQlvOe5MaIv+EFirquHCddFaWQGmp9EAkJ+YMO6UTKUigdF5H4VCxigSjJehQrSyEiuOjfqqCfD9DFZW4v6EIQqFLLZuFT7CgoFsVNQ0bIzj0rW2aEHRsewJGKSCiLlQ73DTEi+Uz9vUqdu3I7OwgAwUFAqxxahalQJ23H/T08DEBGoLCyamIoJYsFinIgNRLHD33WIJ4oYPAmRPn4Y7OSnfVSqW4d99NzA0hFZpEJOTwL4DBxIpEMfHrdJP415Xly2aRaV/3/AwXq1mMD4u10xM2GWmYs+zl3GXgVrdYoxjSADH73AOOjex3pz8YWGuRkP+JhFhx8iVZmZQKg1qXnNz7cfIKH7a1m9LS2KB5946dEgcXc2hHCqjH5NMfUwmwYVWVhy9TVirUtfa0bF0KytWKdZGBC2M6dgh0kN6e/P5LLJFH8txBWCHxCDekxdq1qMbReKco0DT2Qi1IXSzq0tIiM6vQH5RLAqJ6e623nAKaszefumS5aXreQR45FZWbJITpmbXY/Z9CJ0no9CKRRybdbaRQW3GGv3Ia/rznmhITL14leIaNxJIm7g2CDAfZXD6NKFcuXgesxgYLSaDMfN5nK2nUSjsAGpWYaSyyK3EcQBJeYKk9cABoL/5BuAXgDDE1BQQBIM4fkzg3Xd/5v+CTG+vXZCDB21dIWa8ZPv0p7H/m99EFeLVbkI8D8HkJLydO8VTzMJPXLhmE3jlFZyN76nCeioKkBg8Nr3+i/GzB/WeiCKcRWzs8jzg5ZcNFGrfAw8A3/iWVPiu1ZC+6y4R6PQ6qEIRDlo4G+wTb97x4xKH8r3vAR/4AD75iU8gnxf0AREE1E1pCP7AByDM5Xvfk37EhyWPOOX5nXcCDz8skFlufHQEpEswjDUCk1acPo19D+ZRH8pgYUHeXasBZ29FlNoG4he3xSgZgNaJb6UxQVtetCBIq83SkhgbLlywVgNaRYCklUEqNsqm3bJFiIz2CDDOz/OY9alpuQSbNlPogAwd9Xz5svWVAhKE5XnIKOk9n88ZYZnvJmPTFt6+XuWirteRzufhuo4h+iT89KgAQpdMteaO+aNLUdMgMgp2n4HulNsaDVsuJAisi1DDEVw3FhgRSc0JanhXrohQTPcTOWlcwMfRxHVhQa4FxAIdV+xLBwF27eo349DZhjj+hCsn7lQQxM7eWEDPlTxs25Y2RQzppfA8EZwpqxIu0N1tYWRageIcaw/TlSvAsorx8fy0cABoHTQHpxiJJHD+vBS3q1ZNQboGbHG7eQABYWf1uhDA115DTV2XgTCKPAQKlQHgUqmQcrzS4TjgJnPliq1SxY1WLqNVGjTW22B0BxpVuxdJdzmtPCPMtkTdZ/v2rHmG59mQByrrtDz19kKUinrdlgKuVtFcWcEyRKlIQ4iTB8gNOiuVhr1wA2i/tZbsqHXGkkDa81Au998axeKnbVVLpVK7AfxbiOzSgqRG/BepVCoH4A8hSL0qgL/abrfn4nv+AYC/BeAKgL/Tbrf/5GrvaLWEDjHwGbDK78wMsH17BqXSPvRWAKd21h7QIMA8sjh92ioUOrsxG7cThRsGwa5VgTc+PoZ+bt9uvyMdAZzY04uk4O1LMdEtW2yIme/Lln399XisSrj70IfES9psxjEJkGdqrwmPAeVzvoohSVu3Cp8kDJTC23oCOxUVwoh1PBqdmiS7aTItNd8tP4uolMXcnEUrkgdt2RIf4yiSjpTLQhdvoq2pIMXMzPMsKyJp6O4GZmYcFAr9KA71I928CPg+whnLF+iNYhwF5QOiguOhmvmmHYNjW/aySBcKmBm3hqtqVXjPJw8dMszl/FwavcUBgcwq2aIFB84v/AKyMzPY/8ILACTitgE5SKUXXoBXqQjUoly2PPDUKbyzsIC34uvnYaGyQxC+4ZdKyTnzPAxCaHDnPEYAomoV7nPP4WKthtzJk7IRd+40CI308LAI9R1QtvnRT2J8XHSLtNvC+Dgwvd3B/YcOSUD6j34kF9Zq2LVrwCjaPBMMU8zngb4LrwJHj4pSMjkpawvA3b1b3BlDQ8ADD4ixzMvAaVpfhhkThU5qh/W6yBvj40BPj9SngqATqtVbpFhsoHZbKBap+feQG//PyBUK2DtSwltFgThROOZhpKGSnmUgGdJAy5PFftrALSrQH/iAtf6z0ByTC/HzPXuAHC4CU3V5+PS0BeNrq6mWyHUqVB1gTkqq8VjxvUEhl1B2mF5We2KiSLJPyS2ShWq+KZk9ZmdFNgWscbbZtEl6NFSHSgqHQIvX5ctJfYh1LRoNW/9By3NhaL1LJLgc4q5dwGAhssBkFosjJdW4Z7pK4w42EeP/wxCZ8XG4r7wiB79QEG5dKqHvwQDv+eL1OX/e0gMGmvfVa/JODsbzMDgSz/nRcTNB5fK9RiGIIhsc1mzaZaYCwZ+tW2FrSoQh+voy6O21smyzmYRKsGmlld1Kk1L29QH1OnLx+D1YgXoRQAgkMw+89x5a1apRLIL4pwAJtgsImbrvPhMjcb69A30H44W6+275/oMftEUllpaActk4DehAOHfOevuIddWEvqfHzhG3/YUL1rPj+/IMxslyrxSLsbDH9CpxEFS0soL5eA+YuYvnInHOtMeC54zubO0tbDQQzc7CpdkJkHe6LjIVD6WSRhffRNsgFqgbaBGAv9dut7+fSqV6AHwvlUo9D+DzAP603W7/diqV+k0AvwngN1Kp1D5IwOAHIU63o6lUam+73b6yzvPR02ONu7T3ML8ALYxx5moUCv1m29RrFoUZ1+XE3Jz1POo9unWrPIOxAOQjna1YFDlKW/DJnzzPFsDzPEcyVxFnGRPTYnEAzaaMScdJkK5o4e6uu+z4eHxJf0nbeRxIG8PQZvbW9I20ivddzWPBeD0NBeazL1ywiJJicQfCEOjry0n/I6BRlfu2brUKDnlKpnFWbn7qNdGkPvABmxXui19cb/mvGm+x5uff/S4wOYl0s4mPHj6Ms6V+E5RP1GSjwfi9HAoFYLCwCNTr2FsuAs0mPC9rUEqua42YnGvCtefmrNOhXgfKT+zD1CSwr+CZPUZbj1GqYiaxOaalnp+FQ/cUx3THHXLj22/Dr1aRhvCAEEIz9z/7rEjtDNIcG8PFsTGMQ+BPixClYiD+6d+zR64fGlrl2Rnt7sZyZyYi10UJsfBeLiPXaNisASMjgmXnZnrkEbw1k0ZJrcfYWDITXxQJD5+/ax+ylQrQ3Y350U9iZgY49ZJsB6LEqNCVSkC6flaUiiNHgLExNIjrAxDMzlphJLbYOgHkxcr704IjnkMmfBgftws4OWkOx+joxwCsRn/cVNsg/OL2GOXFi8DXvmaE78FiEYMMZFpYAIZ3Y/HR/ajHRk4eZspc3DdcM8rwcVIFjIwA6Zm3bKVhQkCaISJ/BxoNS8gvXBAinyv7VnJ6883V1eYYFFEsygFj7kO+fHjYmmgWFmw0OgVq38fCgrVcUC7ScRiUPxPu5jAEvKxhPrS0s1saNwskn+mrIdHKxUND2cvzrCLnukmGzf6Uy8bZYKxkGcTF4377WZuChKbsILAV0nbtEs2NcxVz9eXZWTiQAOMQEEzs7/yOsV5nPA/4xCew98AB7B0ZAUYrWM73G+WnXAYwESSwqq0gZxSlew8fBgC8U0vj6BEkAjdpmeLyUrFimAwA/PmfS1fPzzro7c2g1wOc+rvIuW4ycHGmibRyq6U9T2IrzIIgmZqlXIb7y7+MwUYDg8xnGARozs7Cf/BBIdiFgsShjI1hElIScxSiUBQAFHp6RLoZHjZYV7rCewo7ALhWYlpYEKsgzT+eh+9PpE0sjS6YyEsYW8e4Gbr8tbWXigkzN5JxvPeezczG68rlfhSL/XALQOHBTyFz+DDcEyfQ/+ab6NfcutNcSHgLpTfiIkslUZYuX7Yuu95eidfxfRM78o6/D+fOAeePC5TmptsGcm1fb2u32+cAnIv/XkilUq9BijD9TwAOxpf9GwDHAPxG/Pm32u32ZQBvp1KpKUg12JfWe8fmzSITTU1ZeYHKAWBpF2C3C+GyunAooZuEuBOdSJqrDQXrIXQobKZB6GcTOdcFGspak88LBJKH5dw5g7PMVXzkCr5UDI+W0WymzfvWehf5wpYt0r9CQR6V85fRctMJuYoGN8IYASXQQsbOv9cT1LXnBpAjpp3z2pHP4dFLomGy5bIoKOn6WZutiDFRlOyDQCxrLAC6ztm6nsJriVarAS++aDZL/8GDQD5AoSD8gcmsAOmO7wO5Ri2xkYJA6lCla++gVBrA9u0w/JsxelRUqlUbNsCMeCh5hpxpZAEQV4v3fbiRFS2ylFE4TtLvO+5AUK0igE0Z2wIwOD0Nn/MYx6q8AfFoLEIMUCUAgxDtHYcOiXbObDJsvg88/jjSnS5d10UFEHwX030fPIjW8L1SVPWxxzAfZZD1lvFnY2lTd1UvgUabULYQr7aD4UOfxHPfFp5B0UEbNItFIN14V/ZGHNw+v7CAeSjPNh+sDVA6gLSz8XDMzlrBh0VvXRfpYhFDQ4O3LjX5BuIXt8coe3pko/PkUUXlpsjnTZwTkEQf8RbK+fxex8g2m0CuUJBMMuQiMYV1Ya8jhGr7dvVwQKy/TAVH1wbzkG3ZIq5AZSVPBAtqMKnGdrkuenpExmNObEKQdCFpMkzDEFzXKhmw1nTCnlZWkm5vwMbi0iMCyDtpRQKSKXVp9NiyxTISE6TnWoWCLYqAlp8R4seihlw/PpCMY+tWma++Piu1/s2/idwPfmDdLSRqd9+dFDBjKzwJW7Nh+xCGQIYpUuIoRg315YFmPM/WrdZ6RMWCy8uAd2I6mcVIe5JcV21EvcadLgrt4eKCUdjlPNF9fe6ccUH5DEI9eRKo1zH1j/8x3o3HehhABRCr1l13yZxQsWXkfazELiwA7rZ437uuCdomTIFnikojpw+Q39w3hD/19FjG7nmO8bBxnrVVt0N3NBBqKimcNuNNoRnWZiSQB1CK0qBuzqnn2WwE5oHxgGZnLSYyCODCpnu+JW0DMYr301KpVAnAPQC+C6AvVjrQbrfPpVKpHfFluwCMqdtm4s86n/VrAH4NAAb6+7EvOIvCgX5D80slISmEb9JgQM/byooYjSjo0Rq6fbscH2Lkt2yxqS03bbLLy3jezuZEyyKEaQm+uzvp4uM+ppWH+/vyZYObcWLXX6EwaPrW2ZgwwfftmTT0LQwBP22UCRretCdfKyYssKrjRnQjFp1eEXp2GbCs68LQ/qcNDaSZZAFmnqamLAKAWEkSnd27gd5eLE9Pr8oqtFa77niLKEIYhvAYHxC717N33YVduwbNON57DwaaNpCqJwKxypV+8T49dwqZu4FSaQBAsvYJ91WjIUPRUF2EIYIgY8gUFYuWm47XJi2+PsQJZ7Zl4MZjdNCSybzzTmBmBrnjx3ExzppHCO08AJ97MM4cSE9FBqJMDAIY6OkRI8zoKDA6KoVe9Tz6vhipOqVp1wUeeshmKIxzsU9MSOrdnp4MqlWgXE4bw5JuZEv6cV1ddq9WqzBFjZk4i0pFoQBkwos2k0ythuU4WDuE8mxTdtRYNGrYcTPKKD+nJXZ2FlhYQGt6WuqauC5QqSA37KNS2YFb0jYQv7g9Rrl1q2zmmOq1vAxmZoBNm7LoDoCwKftcF3IjgdSKRaFgcZNcv5WVOEPS1kwctJUFk/u7bgaILK71yhW7mROC4tBQEi8EJEHnsXU4gZ/RJjR2WJuLII/uL7SwGDoJHqQVqCiy7nR+qHUePo74VxItppQFEt7WxD26dRqIdNpZzRuBJMSdykwUAUFxQNgRpXW+kNY6/SDOUaUiC/fAA5Y7XbokD73rrqSgGHuI5qMMGjPJmIeFBdgK2EaYV0GX8XO2bUsbg0upJK/i2Pk8ZtPSUFcyV4aJeB5scUS9xlrZ0JOtBWEuLqUiHRsSw3gQBOI/PnUKmJnBH0GYxMcBCZYbHZVzUyoJF6O2p1xSi8gYJcnzhHFlmG7TTZv9Qhq8ZUtSyaalUg8xiqzQofUnrexSCaPBT+vaQWBT+xoIR+jZmzrGsGrD6v3DedQBQvqajv2QD+zjrxIfev1tAzGKG22pVMoH8O8BfLHdbs+nUmsVeJVL1/hsVeXXdrv9uwB+FwBGdu5s46tfRa5cxkfLZQAH8Ku/6iDTOItWoR8nToiQyMRQlOVpnOrqkvP8oQ/J0fn5n5f9KPFh0pZj0ba7W+5fVxnVsLyXXzZxU+ZwFQqWfzBt086dls5NTFhBLYqAwDrsOhtjI3imOw0epF8Ubukw13VHeVZ5tNarvUVh03UdYw9j3QwGuQNWaTl/3io7gGV/hp8+/bR4KL73PebwFgWjt1f4BWGcQYDwOhWLG2l1AK1aDfknn0Tm6FHRFO+7D32HDqHv4EGcrQwY5G5vb3wDBx6jC8LQQW7nTrSKAzhzUsbMdPZhaB3RBCgAKg7I80RAjuaRLfrwfZlXp3ERWQCoheKVd11ke1wgjJKaLDdh7CkonzqFoFYzUKj+IBA0QKMBTEzgnTDEPCTteD/EEBWMjooBx/eNptxoALlATZTryn6Nm03lCzH+Dg8b1MWr1YzxVAOWbZk1V+1DH7J2I0BizZmEiwn86Elk2IPv2+yM/kgO/cOB0bjTvo8i0+mycMwdd9hkJeSnHQcpEWNBOItCkTh33GHjNA4exDu1NE6dusbmut62gfjF7TFKRhLHB4tEUEN6XNda5ckcOmMS2LiXtIbc+Szd+D8VEqPR8gstoQNJKk0FQ8dVdEri7EyHyh5FQNpNykhr9a8Fx7w6vYaJiUHE7BKNY52frWdA1/oS3f/anc13kLkqp0vix8xbp0uFB53/s4NaO+T1Gm5GC7yWTmGtiVpO1/O+HDmIFJPt6gIWo3RCaeN+YtMeH8addMqqWreMIiDtKe2q80f3SV+jsQpcdP5Q4iU2j9xpYcFYnnYA4sIeGUlScb1Y8bO1J8HsKS2Ud3zkunaNmdKSU+951mlgLVzWqskfWlX10nLvsC/d3XYqwjCGufFLrc1xwa41v51KiOdJ0J7+LKYrXONbQt83EKO4kZZKpbohSsX/t91u/4f44/OpVGpn7K3YCRgH3AxutPJrOi1ClKIrGSwKptqT+BnGWABW6GP2JMDaNPJ5EXgkt72l+dzLWhBfc6k1fSuVbOAeNzfpGqWuILDpRLXxKr5O68OdTQdk03to+hVa516hYAOjqduQtPCV9FAzfmK9RqMKaSGTNmgPZBjK+xhILlXHFUyWChsFYxpVtIWH+XIffxzZsbFbcq6Mdfrnfx7Ft98WIZQmcI1LajTQP1REV5djYsLgFeUhQYBlN4PLNeELuXIZs7NWcapU7Jxu324T1On05p4HLELSnqMh78tpOKemadrT1ekio5f7Ax8ALl1Cninc6Z57803gK1/BeLWKEGKEGvA8UQYefFCMUXqvBgFWZjsmzXVt+jF0COIHD5oaTIuhg4VTdn+QdHd1mUsS7a674rTzcevrbWHzZscoYpcu2Xwi2kBFz52IBA42bepHH+HB+pzxDG3aZIuVKd6wCjbnugLr6pRFGCBTLOKdWnrd2Mn31TYQv7gtRtlOOVj2ssbSslYSJgqEtLBQCdBWflrqeU7pftOyCr/TwpSWU0x6WW2OVdb2lptG5GbgBjkJxiMoX5cWBiwlV9RlGXGti/iZadcFmqHF4TdlkBklIOpr9KakgKQbFXRalgDLt5jBQ3tz6I7V8hvnkGuhn+G6ybSMDIC373Swa9eg6Q8FUZNdiy+h4sCF0fNNadTzDHVejhzMzYkVcm7aEm/OA6err9dNuPBJWzwPku0jnnO/uMPsD76aXi/+cPnowSD90bqk7ztw3TRcNw244gjLBjY935pmx84J56SSSBLnefQo6t/8JsYAvAHgS6OjMqEHDoh3r1az93IOafWMiezcrK3NYpSLuF+O68J1HWR9qa6rYagaFsbl0sKV5zlmCJwf7SEjs9GyVC6Ia5mEkaQgbjSQZephpvQpFMR8vG2bVZY4X3oTakWC86j3kOvCoTTJz+p1ZGnN6vQm3kzbIIzieltKXBP/CsBr7Xb7/1Bf/RGAvwngt+Pf/1F9/v9LpVL/B8S4ugfAX1z1Jdu2Ab/8yyL0IQ0XQLWWQVDYZ46QNiAQ8tkJt6anWpITOPB9gZ+4LhCFSYGCQvyqxv0YF/zqDB5N5BQnQ9L7T+/p+N+BYgtB4Kx6FQ3JlKOiSLzZLTimc4yFCAIR9Hk0GHTNLrOtlelKNwZcs3FoXV0CPdMwXc6PDvaOIiBy08jSCswPSVy1wc3zgMceE8v4LThXRpB86CEb9BAEyUkqFNDK7zCQLtL3XD6w/D5UkDPPwzbPFsqOa8XB85L8hPGM9HRz32U0ZJOTpoUSTlzn+ElUi8UETTNBHceOAePj+GG1ij8G8IsABv7237YwbipxFHh8H4vh6j3WgoMwkjOVdjugZuUy4Psmmcy2bTbtOh/LqV1r+bRwr73emzfLz8hIUtzyPDm727bZfSrP9UwK44T21mlwUjLTKtic69p0btp6wAyCnoe8Z52Mt6xtEH5xW4wyiixWk1kamHGUQm7nntGwa9e1zESjk7QMwf2yhpHICOmSVjDOGKAtzEpiojAFAEGQkawDa4FvGawdd7jlxhjKTiGIQbxaUuPzeMJ0mhEAju8DcMzcBIGtL8AYAY6LbdMm+ZyZrwALA+K8dXVZ166GAnOu+L1+LnG0jYZ8T2WHWU7kxxHXtjb7a42QD9BA4CjCfJhOCPvMO08sKx9p+HSzCSeK5F3xBWnfB2bqNvF9dzec4WGkXRe5YhEXkTZTTjpN6ADDRACxuLAKud4znHOmXt2+3YnnOI2enrRh/Jq5LC0Avb1pSYMXhrYS4enTkg7j+efRqNUwBjHd7uWEMvp0bEyyYuhUNpWKWKbizX2x4ZiaLoRM5PNAmgPyPMAVwMHKipWBuJ9mZqyCynFzyXQcNYUWQKzBfIbv2zg4z4v3+cyMrWBJ//epU5ifnEQIqcXhsqgd04Bs2SIubhJ+bYnieaFizyqXxH/QkgfYiEqawXRk4fttG8gCdQPt5wB8DsCpVCo1Hn/2v0EUin+XSqX+FqS+1y8DQFwh9t9BchJEAP7vV8sIBcAI8ouhE2cjsuQDSAp4wNqCgTY86QBvLqf28rluBxwVHVht3S8jgcL+rTOWsemAQCUUsSqw72dW9Tkd50xz/TQctOC6TtzptHlnFFkar41m5JV6PrQysF7ThnNNw4C1UQCavWlyn6VAzHPLeeHNfPBavPRmWxAIDSGvVd7R+TCNhuIpZg8UvQRSwIwxipB2JSZCH30qroSq+b41yHD5V1YAd1sarpe2gq5WRLWQ3Nm09sZOkQivrAAvv4yZuGLkwwD2l0qioFH46XRduy7C5g3OoxqwJsX8igHwJMm6US4LAjk32pbWKZORf7DrGU8ZJhtNmIh75qDV+N215my9sXQedm2RrteRKQLwfbiFWwTM20D84rYYpeMk17bZtAKstiyzUbHQViRt8OVG5cYErMVen1/uQ25uejvS/HIdqzMFSjG4ZGxwFU+PPjXxieGjEhmCtMul83N92jow5yyQpy1zFL6JJd682QbnaTlMv0p7Kfgc4kSp5NG4REWO+EfdXcZcb95sM40Qb+u6ymOh55QMpNm0+RApBccuTX9ovxFaKfzWavIunf2Xxi/Tec3d8nn5fHxcNhWjlGOLofU+2ExR586Jd0QHOGa9ZbhuOpF5hlA8Yp7JSDjP0sQyQ4bDpXWiZavJvPCCYI9PnsT89DSmIDiRJsSEOwrYqOhaDXj2WdSefx4eJBe5UyoBH/mI1QrKZfjlfYltFAQxXGRqyozfiTvb3b3DMIO5OeuxoCGHGXQAW8xUe7f4Ob9jMiam9HRdoDCalfeximNsPWhNTuIdSIYTD8Dep54SzHGlYquBX75sNSPNzXjWZmZEcTxzxmpIb78tHYgXsDU7C4fP44LfbNtAjOJ6W7vdPo614yYA4OfXueefAPgn1/uOKJLsbGfOyDYqFiXHAb+jEEcaRIgQdU4GIdPwQXmT20tvscRLgbUtoCSe8cuWY2OF6+WQKbpWgyGz6sg0shw5Uo1bMSQnwGoBM2aETixQOrHU6sRESaB/jvEosGs0GnUYcc01V2uua9OS81krKzaTIWkD+UOjYa30hAZJFtA0gHRsFE7Dc4G0F1mFi4SK51e7SW62UYCILdKLXk7426Q1VGnvfLkM7CuFJiNhOoqQ8b1Euffc0BDge/BipEU+bzM8am83DVZaKRPYrRPvu4zhsdxTy1HsdYf9bNHNIpP3LKMhsxobA55/HierVUwAOASg+OCDYmSanRW+p41PsaVnPkybTE19vcnpomMn7XZk3oqJuetSMZIxLC0J32cWQII3dCKP8XGZC6ljIXOljQHbt1uyzKUqFIB09Q0btD09LXCvF14QXn7ggDyQRihqI9RQtFd7rRZFSeg1DXfd3Ygj0YG+PmT27LnWDru+toH4xW0xyi6nbeisTjtPqzAtAYAVZIJAiJZWLBYWrEJCAU8rslrLJp3vhHCHYSz8UyrrIO58FpUQ2bMO4OWQYUcoXfGEBQEiD3GGnrRNPUgq7/vxAZZOtvyssYYtI4103kXLyxghjTHOOj2qxipKPm574LUMpRULjlmPhTRLW+7zeXFJ9vTYgEitD83NCVHxfXGPd3fL9eZdneYJPoCuqhMnRCicmbG1K3wfzn33obdXMjJonY2lMTTzjCLYqleua+MTSiWZkNdfl5tYKTEmrjMztmsTE9Z5QBytgQLUasjnB5DzpDZ06AlmlvuT/JCYYw6RjUKNkS/qdRGGX38d+Df/Bo3Tp/EWJD3gO5AsHx+GKBXB5z4n+NZ8Hjh+HM0XXsB/hsRc5ADkq1UMVKvwmcFgZARpz0OpNIgokinINs9abwcD5mOu54/uMIrne+9ZHLqGEeqlo7JFBYrz1Ntri6rXasKDNeptH9eCE7ZtGxxI8CEVqbPxmAqTkyhMTsLnhJbLAt7WrkfCnV57TfIBT0wI84kzhtTiuc/ExKM4PW0H9FPF4ie2pVLWQ0h6xEw0nVZQ7bWmVZqkgcqERqJQkNZGA98HMj7WhqgASYtzFCFC2nj7vCArHmaarqkIx1HXhJWkeQC1W/16mrp2OXIMX6CApoVmrTgBclsnftwG61pPK6GnS0vJrFvkEfrZupYU+VG1ag1OtOmk3ZYlDpTEXVeIxsxMIoD4ptvkpM0d7rqIijkzN9WqfE0FySAZZmaSTIeaw9GjVogoFND0skZvnJhI0rx6XdIAz7hpFItWZl1asgK4NpwS/sa+5PMihAPyzIwfykOOHxfo07PPYnJlBe9A0s4OASiStk9MAF//Os42GqYQHh56CPi5nwPuuAPu8EdXOdG49p4XG6HgJRXo8XGgXIYTG1G7uvpNttbdu2XKCgVb/0q3U6cE0jQyImOijAHIedu+3TqYJydt6OAgLVuTkzKmsTFMzc6iBiD/3HMoPvcc/N27RcH42Z8VheqOO5IokGYTLT8LAElP0WuvSUqrqSl5x9tvG0UsajTgDg+LcYsQkJttG4hfXHOUqVTqX0O8a++22+2h+LMvA/jbABj687+12+0/jr+7oSqqALC8kjIH8tw5+dHYbde1KQA1HIOWKFZHbjSEgFEJcV1r6XZdC/3R8cIkADxgs7PAzp0ZbNqUweaYAC8tAVgBLtWtgUV7ANgGioGlFDoAwvPMOyT1qwMgg8t1wPezqohQRmL/akBXl4PNm9PGqrEwa9PGdrqgOR/0FJDX6ELEnQkSWEVbMwwzVlihksyAigUJnta7NCSNFa35t8i6WeRKpSR0hR1jkTQyVEYFbt+OeW8H6lVZEyoTWpjVsMitWwFchjx706akdMGE7zSDxFiezrAPjpsxCb4vzy6VAMzMoDA6AFRrgOehqytjmK5OtagVNxroOVTt4sV4VYjayZNonD6NKYhCMQOx3geQQO2gUBCXdqlkNrM/MQF3dhZNSA7zKP499MwzQuGbTWDLFmTvbuLeoYotLsGCQDw8YQhMTyM9soh8PmNiKghf4nQRpqiVWCq5vm9jCgfz88BQ1ghV1F0AOWPL5R1I796d3MClErLVqngpIAzSAa11ksklOzFhJ/SOO+yG58RSwqxWsRwffqKHTR0UwBYp2LVr7XyeP20/Ec1xrAWeTRuGSMs1fSa9puANCK3j5zRi0dACWPooz0nD99NYE6utlNXlyMHCnJx766F04Lo5ZL3IdiA+QE2PcmsGmbyHxdBBpuBJFebepGekFeTgRMtYjNLw8lIoNFPwcLEpsJylJavUk7fpeMWVFeGj9OYAQuuyHTo23+mgZSzr5BGkAfQcs0Ar+YGeX8+zNZZoCNq6VQmzesH4w0pqN6JcXaudPi20tlwGikV4Zfv6hQXrqdVZqzEzYyvNXrggRg2mLCLtCALMTNnxkcw2Gir+uVpFsbgXztQb8Py9Rr8kTS0WLWKAPKjRWG338DzYWIpvfAO1U6fwQwBTECPUvQBGSiXgiSdkIM8+i7caDZwE4AMoVqvY+zu/A29yEhgZQcb3MTy83yjmgE2+kqtXZZy6enYUybtd1wyg50C/kasoL5RKMt2dsviFC8nPeK6oQOzZIzY2zg1D7gqHBpAp1Wy2xO3bgdlZ1CFGqLcgBqPB6Wn4p05JZ+jhZr9jeSNxdqNI9sTRo8DYGFoLC2hCeHCu0YALYIfWyH/abqhdz8n9BoCvAvi3HZ//s3a7/RX9wfupogpIko++PmtNuXIlGXxMoqadB9rqAiRdj4D1fHS6w2mR6rTa6x+JtbDxHWxaqfB96/4lUzIdolRPCtFsYtOmXML1R6M6CQ1g605omE8YyufaU8PxkRhpbw7d02FolS4qUTqAm/OkrVCa55HY6rSgpPXapb5pkxVA+ZvKGw07vg8JTNcPJ1V5/XXBMQSBWAzyeZNaKBtdRLboI59PGwLoecm87JyT3bsBvDBtzR3kbrxQ5d5ujXzYFNyktYrP5RpRXjAe1Zk6nIkfiumlpwd9Bw4AzRBuod8II74PDPgXMVAMjAv5bM0x+9Xz4srTEz8Ud+6f/inwwgt4FULQ3oUwiRwkNU4ZAD7xCfEwMLABABoNZkzGIrdd/IzM9DTyzz0nH77+ulhw6Eom1aZypwIrPC9jskBxqjLRPDA1hYMH7zUCCgWEnTtlTLt2AX2pd2OhYBKDhw5hasox1/LV5NP33LMfex8est6lvj6U//APUTh1CjMAfhiPiR6MeQD7X3gBji4q2GzKRLK6+yuvAJOTmI+zZ7kQZupBlIo8AIfFBoeHgeFhvNW8BbnJN5AF6nZqV64kobJAEuLDjGaANY5orwVg4aJdXfYouK713gKr4zZ27VoNG1mOHMwtSDzElWbSbuJ5Fi7Y1QVke3xrQInpEq8XZ4UTs4y0qa6tmxSOT2u2giBIJwRRrWCxkY9cumR5GueqU2bqVJyorOgwOP7Q6Me5JXnSOSRYRoZ2jEuX6FFxpAicrnbrumubu2+2Mc1f3EltYGP/gCSNNq7xri7p4513Wvd1uQyUy7jo7jApUjVfAmSslQqk7kQ+D0xOIn94bxwQ7RgeSX5JJDUbZRW2nDsvfPLoUVw8dQqTEO92EwKHHQCEV9x9t7y8WEQawiMasAaW0gsvwDt3Dsjn4dRqGBgagpRZhe34sWPSGa1YALI2jLCu1ZDxWigUHFMMz/eBvfmLqN+TW1UGo9OOQ4Mgi69mZt7A0NBeUxdkYcGmmh0d/bDUeYkXanByEvMQxaIJ4RVO/HlmbEwmTwd3x4chAeuKIjlQp09jfmEBDqxByweQDQKBFx88KJCrW9E2EL+45ijb7fafxYWOrqfdcBVVQAgUhVvAbjoW5wLkO40J3bw5mf2Igj2hOZ2xBKw8ClirlA661dZr7ZnVRJgEScP3dGvBkQNAyVtxPr5PM0Sm8+a4+U6tfFCWAmyKVQZiaybSab3TVmUNCWAjQ6G8RvSWhrxSAelMpBMEdm3omaDyQhc8YB03QqxzYkXWi0LBdmHBaia+L1IrzeZRBNdNm694mUYNmFgaci1idQF5NvPxxoyBFaZpxNc6CNeYBfSKxZhBHJmSZ73yiv0CUpTP99N2TmMB3uwD7EgETTpTbwiD+O53gZdeQhUC2XkXAgnKQpSKEoDs7t2SWpBcu7dXNPBSCf2nTyMEQPlhEcJoMgDCRgPFp54SbYtu3tnYucg5375d/o/B037eMrdM813rfn7tNQx+xgNKBcyXc8ZdbZSP+jtS1fbyZbne8zA09DGzTyiQcF6l0K6DYnEAxeEByXb23nvwAfSfOmUqxS5DmKILSSm/4/RpeeHMjJ0PHuRYk47UPV48Fx4AZ/duYYgHDgAjI3ijmsbYGG5N2yCM4nZqPM7MPAZYwQawIQ0UbnWcUVdXEo1J/sGYIe3xoHGFnlffX61YhKGgOMmfqJiQRyQMT5o3xMS5q0vICr28FKyaTUF36DYxYWk7Pc5BIM/eudN6s3nm2OgU5usZn+i6QsYGivbazrScly8nIWSdEFyOlcPassUa8jj3pNvkU0tL8pPtUbxAAjHEcHPHHTe+Ka7WdBBhFCGDRRSLmUT/uWdcN/ZQPx8bqYJAGOPQkNU6RkZwFv148XmRwekR4jzRyFksAhibkocfO4Z0XAi1UNlvULnpqVcxWCgAYYSlrh3o7pbP+7ovQvzWcRsbA559FuFzz+FVWE9FAOEVle5u2TDMZBAE8CBC8jKET9Ti34XJSRR+//eFsf3CLwBf+IJd92ZTao7EzD6RpIAV0ZVBauvWjGT9c+eR8xrAHzyNTz7+OJb9XGIJDh5Myim0leUm/ytwag54/XXc+8UvotEQQ9yZM7JnCVcbGbkX5c/eC+eee+D4Pu79l/8SbhjiLYjitAxRDCovvCDQw5075UVBADQaSc8f4gQ9sQDQgIUVZwBkPQ/47GeBxx5D68DH8Oyz17nPrqdtEH5xM6N8IpVK/Q0AJwH8vXa7PYfrrKIKJCup7to1gEYjWdyOsgMJdKeATwJFSz5lDB0jx0aaQpgQr9exdJ3KBYVyGlI6f/g8/T+AJPOgbz2KgFgAp1VjacliLmlho6VH49kXFmxhGd+33hQ9F52xgTz72jKjmYnus4a4MBOXHhs9M50eCM04ACu3UzjVCkq9LkyvtzdWLqhVkVtduiQ39/RYibVYlFoE4aJ5F/cEx8bK4EFg08kmzD6EQfX22gsrFVRPiruWRnMNhSO+mtZ714WkFeZzqX2dOycbrlBAIfZapBvvCmMMAvMAf3gHfD8O1m42hTgfOwYcO4aZMEQVolToOhUDkCqpGBkRHzEngASzVMLA6dPGor8IgUK9C7FKhQDCMETm9Gn012rAwoII3FpLpysrljjoyTPfMyD6u9+V+cvnkS2Xsa9UkhigaFmumZiQa1zXTGgwYo8Az5eGK1M4ESj1fuT+0l8Cmk1kGw3kp6fRgFiiluOx1QGkwxDBxIQtgETurXBoZB1pANi9G8H0NNyeHuFiIyNojX4U4+PSZQb73lTbQBao26lFkS2qzj1GA6UWEsknaOCgV5F0kN9TCFeypzFQMWaIkNC95WRfmk3ZT0zcwH3PpGOJkAlt5VFGp0uXhCwsLYmTkQrCr/5q8l0TE0kSR+GUc6ALkLE/npc0npHvEc7aGcrQ6bHQBicdV0FaoUk2IbMsI0Ceze9oS7p0SQRH7MqgjyZ7WntqNbG638pGKGypZKzYabeFfN4x60pDFQDsLbeApy9Zqx4nLJ8HurrQGv0oTj4r+TYmJ2Uv6iQWfX3W4GUYa7UqHvnLl5EuFDA0tANO9S2Jl4gXo/fhXxK66obAiy9J+mJqy0eOYPmppzAOST/egCgVZUjxOzz8sEkHS+0oXyhgX62GRnz9IgRq+i6AxunTyJ0+jR1hCHzhC4kA7fC55+DFGzixH06flt9kwp6Hblq2mk0hqkeOAF1dSO/cCTzyiLn13vw78Thlkgfz8zInzz5rPCCoVuF5g0Z0qtdtscFajY6ifdj3+ONAvY7y179u+AO93BkApeeftxucxXo7W/xOikgeJAlKf7UqNT8+9SmcLX8MY08Dzz9/tc11A20D8Yv3O8rfAfCPIRVS/zGA/x3A/4zrrKIKJCup3nPPSFtbOSho9/XFxYvCRSy7GUm357omawIFQhIwbXUgodBCulYIeF0nlDOGpxtrK2OBaaFnhqStW+Pc/DGVz/geTDpZQC6i37nZRFCQj3W8wMSEPEdXLNVxzsy+wcA4ZlejUE0mwT5qpYiZjci/+vqsVYtWNMB+32wKE9XMUcML9GeU68jEgUTMtaETVDDYjHDdaNi0EAysI4czipgr6VjrdTieh/4gQD4ve2BZpYg1kKjxqlAh+pXzeRn0I4/gjSkHpeEPY24O+N4xkevprdBVadlcN5mCNYoy+ORjjwlhpev+wgW5OQjgzMxIGtfxcSGUapKyuro2s1N985uYgA3UfhfijN4R/y4DCPbskXKl2p1LwSQIMABhEmlYxSKEENl5CCPJQgKXxfkOBNyTLE4Va2oX3R2oT0n3JiaAUmkA/eWY2TMik+lhg0Cy0NBkynUcHpa+HjyIo0eFX546JQIEBRrOM+eXt/7SoQeN1Df0T/8pZiDWNY5lKh7PjtlZDHzzm0jXatYKceYMcPo0lldW0IrnIwsAQ0Nwd+2SPMGHD6P16F81xX/PnDHJXW6ubSBGcTs11xWBlt5LQLZfv3cxBq4HCbfzxWbaKAe0UGtvb6eHgc/UengnvIiNRhyBKdkEPDSypMN5m2o7hFUsVlaAMDQ1H3gWXnrJxhN2NmZq1lDVWOdHPm95ZleXPIu1wqgckNZR6DfZ9OK2qoiYGiMRAYTakgRoWKzryvu2brXFxam8ZD3h3WdrjuFvJtQqimzAhi5gdauadqlQuwlD9Ofz6C+49hoy1IkJO1lxNqXF0Y+jWgUKH9mP578tKNapKWvE1+3KFUtm/2+PPSYV2T1PMhrFZaqdpSVJOPHcc0Y7M0H+tZowqfvus4rFH/wBxgBMIqaFED4xBCAYHhaXgMYbbdkC3H03yo0GLoahMdZUYQ1Z/QB2VKurpisE4HXi8ADxgJdKJrvUq5MOFhaEpRWL/dhLN8SZM6IhK8UCv//7MpYnnpAxfuc7sg5TU7JBDhzAG9EgjhyR5zHDFtkn9+zMDBA8sh/9jz2GTLOJ/d/+Nt6AWLCpYMyHIfZ+/evw6nXxyLC4RtyMB+b0aSxDeIbf0wPcdx/ce+4B/tbfwvmRT+E7fyjde/311VPxvtoG4hfva5Ttdvs8/06lUr8H4Nn43xncaBVVAF2plkG+pJsXMVgKrA/sz2eApSXRgOODn46l2v5SCRcbToJI0gLFYGMSMcBeQ+VANwrXtZqtBdFs2mwGZBS+LwS8uxtJrUYLfkyRo8xGdG+fP28F2rExW0F1+3YZMg3hZB4LC1fQ29uF7dttGn7AvpJMjdVWAQu50mMHbLxEp7u+023dqUDQwgesdntTmcvngay7CDRCpJtNFIsDxkpWrwuR6O5OI8eFnpgQRYDRv0NDcjEHmc/LJNFKsm2bMOhmE+kgEAhNGEp+9FrTZlh6+215VhwVNt90THhBvS7rOTlpPRWEyFGI4F7g+tOyjkNlm2uXrg4+jJrU2BjejfGaHgDf8yTwmpre668Dx47hv8IqFA0Ik9gL8VKUACn+RegOi/hQU96+HahU4H72s9hRq2EHK8qurCATe0DmIUpHBLH6exCXOO67TxYvLlY1H6bhlwYxcTyp7508CRw6NIhMqSrrQy2MeTrpPuImbDZFslO442rV1kTRCi/xyPrWvr4M7n/4YQmsrNVQPnIE/uws0hBm8S5sPEkDwP7nn0eaxaLqdUSNBlqwMRXYs0eYn+9Lvw4dwrFjouwQFXZL5JcNxChup5ZCW2AUuIhcyQfgoh814NiYbOK+PivZ+T5y5TIQZGxgrmosvKljyOgxYMY3yphEE+oWhjYnAj3OOrU+as0k8SSGKy4Ok3YlQJpnb3LyClKprjXjRV95xTp65+aAMLyC8+e7TO03OUtyLZV5FjDVyFN6nzuVpbWUijC0CT303FFpIanWXmXyA/LabHRR5iEMUSjvRVeXzQwdBBlkmFq22RThVecpvRWtUJDFJJaXqQCZbxVIBuxVq5axFQpAuYypKWExtZqsw/R0MpYGsIor43aqVeCdqB8De2K+NjMjUjMxb889h5l4AbIAsj//88J4JiZE4XjiCcPw35mdNUpFAPFSDAPwHnpIeMyBA0nhoLfXpGLNTU0h9/bb8k6IoSaE0FSNLyeUm4aZRCPfKJdxfimLbeV9mDlm7WWTk8Dehys2nTf5Ivf+M8/Ixb/6qzJhR4/K542GyWRIh1WjkTT+AjbWJwxlevoPHQLCEBkAQ9/+NhzApC1nQpN7jx2T/pTLayrNURiaGDyMjspPPo/WQ5/Cnz9tPZFrGRTeV9tA/OJ9jTKVSu1st9txygR8BsBE/PeNV1EFAMcxhzStcUykao2GNbPz+9j0kosLJWU8qVaqXcG+n8xoR6WDwjEJAQkurTpRJK9rNsUoy1iDToEb9WYyIEI/mC6P+CVOuAjfz5hLAKDdXokFfZFqu7utl8G6vFuIoi4DzyEcKJ+XqVlYsIoSrV/vvZeERbGLOlZDBzPqoDzSAjIfnRFq+3Z5BxlHxl1Gd7dYA3PuPDBTM513fB9BkDNrQavXcuTIGjcawI9+ZF1EjCzvxGoBVtMCLBaXmhr3Qne3jUc4fBgolbAY9OPYUWEITJYUy+BmbAxw7zzvnD96lv74iIPR0Y8jFwQ29QeDiLl5VlawDBHm5wE0wxCFsTH5Lq6rUGs0UIcIzCGESQxAFIui50nA2MgI8MEPWpOslgBolty0yWq6sS++/8QJzEOIqgMhmAFiYZvuLmVi1J48QqE8T/ZVvQ4MUOHjfLPIBy15unJprBhMnLQxK9zrDIcoFq1Fl0o+44XOzzroq1RM1d3C8ePIxCl4m/GcXoQoFwMAdki5ZKDZFKWiuxveli2y0AcPyk8QAENDeKOWTdRf4Tk5dQo31zYQo7itWiolx8F3k3gnYuy0+zYm3MxKl89nE6QDSBYKJaRWGxd41NfKOkmBnZ5TbcFnsTvTR35BqTuW7l03bcgf0EK7vYJGw1v1Lg1norVf02qGYV2+LLR682b5TSeuLvOjSefVWhTZ+A8dg7Ztm5zjOOTL8CSSmEzzXZRKUh8HU1XzMqdYRE9Pxjy70QDcfFZoVKMhEfK6ojLW96Rcd6PATTc7Gb9Y7mxOYSofYSipSzdvBh5+GK9WMzh+zCaEooJJ8ux5Vj7X0OxqVcIVDhzYi3s//3lrio/f0QpDhBBeMQ9g33e/C0xPozk+jiqAIRUoU4fQwQCiVNwLIP2ZzwjdHRmRRfC8ZPGpoSHhiT/zM8Jrq1WUnn/eQGj7ATHCxM1BS5ACrAvR2cplwHVBG5w2RjabMQ1n/QyNXQfkkGmsdRTJ8z74QeDhh3G+qx9Tx23XtRF4+/bVMURvTDnYe/gw0NUFNwiw/1vfQnphAW9BeEUTsGevq8ukT9b7yGXWl2JRKr4fOAAUCjh2zNoQaT97443V03HDbQPxi2uOMpVKPQngIIB8KpWaAfAPARxMpVLDEJhTFcD/FXifVVTjZjI1aWA+JX6tWGh/dsxEMr4PNJoIgpxRAKiDEI/reTaDkRakOmVYusgZ76Xxuho+FIZARmsnZBSAZR68OTbjdD5DxL8VRFG3Eby1VUggI1ZZ0v10XVuQjrhhZpVi4LFmGhw/YN39Go8MWObU12e9NLS+UXEhdDHjLgONBvwgzq6jU6h0cCuO+733aEjMitdJS5mlkolZQD4v0DcOmJPDKH+mWbl0yUqmpELd3UCxiMWg31hALlyQjwnJ51jJlHWSAJ0lmAIGPbbbtwP331W2G0MHDczOIgxDLCImahDLCWo14LXX0Bofx1mI+44W+AxE+C8BKPb0iDB8//1C4GLPTcuNK3Rz0YNAqOyePSarEl0DQbWKwuwsWrBQqDRdTrTwxwvPnOW0sOl9ZfS4QmCtq5QszpyRSdyyJYn5KJVwtp42eocWeDivOo8+zxTx32fOAJfzGQwcPCgd8n1kPQ+Dp05hHsrCBvFMGEkmCMR7USiIVFUqyRzG6UbeqWdM5i/2y/OscnFTbQMxituqtVqC+qjFGmyplMxx2olv5TltNpENADRCDA0J3WJsBiDbmvRUw/ZooForQzHjeSm8b99uHYzzzTjzER8WM5+WHxeLjD2qgGxdQc52Iwy7jedBt5GRZErSMOzC1q0iG2lor+/LZxTKuNeLRRkjU0HrWJD1Wj4v5Mh1rWJSq9lgeSoTZHNZn1j9yMyd+SNmNlFMIHXGqb0PPig0bWZGjAuq3ZRSAYiAHUVY9HJw3ZgmdrquAJkYmsrVRvC8jNkjnFvyULJ9zaoA+3lfX6zXRK7VSOK96nR3I7+yAgcC7TCemvFxSY+t9nAesRAGYKC3F3j8cTGgjY7iYpRF2AQCFyIL0YrDoCMGKbz9NrKFAj76zDOYbzSQ7e2VTaWb5wGf+YzJHGCEcdcV/uT7cJtJoVsnTkCxaA2qupF/c4JoBIiVPo3QpV5JGY5yCcWslRV67tIYeuhTcLZtA4pFVJ57DpWxMYH+dneLd+SRR8zBTSgXQQD83b8rBySeh8XCoPGYuG4S2v1TxeLG2jVH2W63P7vGx//qKtf/E9xAFVUAQKuFnp5YWKXGzUqL588nBVVGYC8tJSO7Gw1kiy5QayLnefDKuVUBxYQvbt9u4T1zc8lYUEI1eAY0oaA8SVkyUwjslx1WqeXIQbooVL7lZXQiBXNpd3cXoqjLaOjbtlmLB9+1tNS1yrvCvrBt2mTvB0TO3rVLukJvge/LoeW7SyV7cBjcSCMC+8PkR9rNnfOXY9dPEwhDpN0WfN8B6uEq5Up7Xthn5jXfNzxsXSYrK2KpjxlQK8hhpgoMEnfWOSmU/lnFmbEs6jpNmBi3w7XUHijOjVYwNf6a0AhAFZNqNi08iErwm28ajGcDcrCyfFithrOQoDsGz+2If/IQnCweeUQI98gIFsuSNSSqybv7tiltOAhMukM0mzaiMsYZlZ55BukwxFnE8CcK3EyTGB8Iva/psdF53KMIdvIWFkzFu/rCgmQWGR+XYPBKRaxiUYRmM21SUOoYHT6PMAk918R/Ly3FkJPyAPY+9JCxLma3bEF5bMxkfGoCyJZKwvjIiCn1BYFs/Pvuw2J+gKUtDPKBNIDY8FvSNgijuK2a44gxREvFhDJcrdFl6/tGWM0F8rNW6wzUXvuaFv7Rl692hdKu40bBpgUHvg98/GALBw/awnRsVP7Z/vXvX7+Afe9w8v9PHlrzsmu2gWIrkTXqao39bcGBUygYQa4TVpP1Wxge7vRCVOL0ez+GFs9/hu+7wfcMBi0MluRvCqbX60Wx15WAL3xBflQLkMj9JN2Nf3QbuHJFUsqu0XKJfnTeCQs3Hh2VbEeAqRu0quXzwFe+YvqdGOPBg2jBMcrj/nhZP6qPXW98Dj//+eRz33wz+f+RI4l/+9HCX39svU5do/Hsf+lLANBxapLNrJ3vm+vZPACDJbvWuv3RH73PvnW2DcIvbotRXmk7cUBYWjDzlL5XVmxgAFMAaamFligtJcXN82QTdXVZi78WLincMJc5lZBdu5IWfcAGo9HoS49qwv2g/3ZdhKFYRlpu2nSLxdYIJaJljO/q60umkY0ia0WjO/DOO6WP9O7S20DLFI1DhP1TqKcG3mE8M9NJxYNubf6w0I/nQYLnaRmkplCvi2dBYwviteF91s1vp8iYgOg7j80Uy5GDZkOuaeV3iFtWp0FhY1lcerIobAN4J9yBmZMW9qYy14LeT42L7YTG8UcPCWB13yzKo58U4ZZaWByIUZycRLFel6J3CwuYj/v8Tq2GtyDeiimIIjEQ/xR27xbLyvCw1Ngo70V9xipFmzfbPWU67XlYdjNw8xmb37vZFNOi76P/5ZfRPzkpDPTBB63pktAltf+peFNxpCPA5HLv6hKl7667gEoF+fFxG1Nx//2SGrJQwFs1KRhYKMgtVGI1JI8WLh5f7k2DR4conm+5OZQe+hScPXuA4WH0f+c7YmSo1cS18bnPiVWTmQwQ76fYfPpOPYP6pFXCNe5bI+1+7/fw0/YT2m7aiv3fqF1NAOXn611zO49R97lTCL3eft80xOm/QdOVyNf6vd51Pwlju1rrVJ46ldyf5Lae8n4jCuNP29XbbaFYdHVZzD5qdQtcZSJjwEoebGu5MpXUIgK7g82bV1ukCfPhY3p6LJpGB/GydaaVTSidncqF66IVF8ChgqHd6lqw0uMnBEUPq3OIxP2yIiyhxGEon+mMJpwyrUhpAY5CJJ0/gAh1OmCKz+Zz0hz3elq3BipDDqrrOomvOQZUAnut52ExSiNSXhjXVVmkKOFT2ieObS2XkusmPA8rK9broMM4OueJcCCuBZUxXeBKd8W4cnVJ2jjDVXVhAXWIhX35+efxDiSwrA7J5JGD4FsLQSBeitFR8VR4OdSqydSV680t++H7OaR1JCZv7OkR4X9oyLrkqCXGFlvfd1ahRgB75FDcgdxHPiIdeu016yE5fdq6vWLFojaeTF3MeV7rN4fT2TqVuWJpr2Tb4hh00Ulqw9SYY4/FIjIG9qS3h86idsuMRhvItX27teXIiYuNxY37f63WSbwVneatnRBU/Ug6SHt6gIyXFDqWIwdzc5ZG6KBT11UZaNSDtdUbIOlyjK2ElxYKSSHo/KyTKFrPs9vVlUyPze/0WLStDrB8zvNWj6lzfJzWzjlyXce8M1HvQF1k4kzU/LfgqKWSZ6TdVtLqdQubXufEmiRxycnBxX2whqYkH+u83DZHXePE3zvWMKcnU2e1CEMbCEMiGkOPAEh8Bt3rtATFkFa91mspPInxavhAImBUtZgBOWodzDp6XmI+9by6bpyanR9qTx2DV2lQVEyu5aYTBr21mt7Xer7Ne7WswIdwntaj0WFo6k1JplEnsdZr8cabahuIX9xeo+w0oWuwK/Es3d3JktLaexFv5GWkTebRpaWEzG9eo5uOv9AQDiApw/A3r10lvcTNQQue55hns2nIFS2p+nz7fjIITKNfenqSKf7W2p9rHUwtRHceSP5mLY3OzEiaV7suAK/jYZ0Mu1NyjCQwsbvbopW4DvNhGlkKxLEi2LkmiedyYDogYssWm9aXmpLrIqzZW5nBizSOhRV104pj5xxqyDa/bzYh2Gm6t5aWbODcli3oHxtDCOAt2KxGyxDYUxGiXPQDFkYUu6/CZlLxNPssWj0Pib66abheGk6xKDheKl8f+IB1kWkGEq+TEy0jitLGY6fHy3H6hVhxCUMR8Kl10ENUKuFimNFxcub8UNBiX/k5FTkquzoFchhaIUmUWVe8LTMzJkWnYb5cVDKTKILrrd7zXD9C2fR2uqm2gRjF7dSuXBE5ZSBQAtnEhC30QO82iTZjuaIomboJso1mZqx9YMsWQQ5GkcDopqZs0fpDh4BfejjZl6kp4BvfkP7QI12pyE8+D2TChtWWY0Gn2QSyXoQwEm/2xIRkLIvRhoY3PP108l1f/rL1aDNerKdHZLU4KRvo8GfxVRYRnJwUpx+Tg2zfLvP48z8P3H/f+nM9MwOcOCHnWBfJvvNOm+qWHuEMQutVrtdtUIpOmTU0hDBK49QpC0Do6gLu39OQCQ9Dwf3f4nMVRRbmnIvqyVRf7DMLnfi+TKjvY6qaMQnxmD2s0bCV24HVdaUI+SXtY5HVfd6MpJENAjHUfO97wLlzaI6NoQagvGcPXj192qQi/1+ffRZ46CEAwFsf+hAWAQx5HvC3/7akUf3IRzC7ksOlS9Yjm242bEc8D5GXRToKbZbNF18E/st/kcwV990nEFwNW2o2gSeflO864y+mpoBKBc0wDd9HItsiEbrZk2MWc67TzX7xi/L+I0fk4q98xcBZa8E+0z1Ctzmf5A2dtjNtIC2XgUx1SjJNHTki/ezqAv7+35c4FN+XuCatdIUh8MILJnh7ppEztkIWxdQs5pa0DcQvbr9RcuIpDNFkTKmE+VkplSiwPDXfMJSN0RknAaztkSDkhI/TMdjUV/jDjZ52W1eVTlwXQBTBcd2EkkFlQieg0N4ETaB0cBjhVz09q6FFuunxkmh39utq+oB+BueSlnvPc2zWLi1tU5LrdLfEioX+mpc0GkA279mBNpPKzZpGK2pBWgpmPsV4gWhNieN/zfsozDKmZC0rJX808aLA3FkF3qRg4UXd3QZqlL5wAdnTp9GArSmRhy18V6SF/Y47BN/meWi5adMP7jOT5peKBS+IolWWySiSKuDYuVMkJMAG0tC6FRNX7e7V88Pf3J9kGl1dafQxRoMZP37mZ4ynoD5ln8M50sraWooFzxyXjvuD+z0RB8G4qkuXEIUhXAZO8OG08Lku0r4P30+b99G4QG+ednDddNtAjOJ2avRwo96wigWlAmA18egkdr6PxdAxH5G2kgdovSQILKTuakt9Tbq6BsGJwiT51Ar3eu/q5GWdBg8dC6gNQ9qbEkU2tb+JG1uneV6y8B7poQ51NHPjdUyAbsoI58a0jh8DsBhM15U02P6tg4Jpo4frQuIDdXotupt0UxOtaSRlA82rO5N/RFHSgGXqOUVNq50BQsMmJ/EWJPaufvo0zkKUihKQqL+wg3889JB4Mh54AGebWbPl19xrrou5OWDz5gz84oDUH3JdGylNbVQ31xXY61opf2O4ctZbxnKUTryT6ZKHDn4cTu3sahwxc/frsS8sAMUipl+TUFpOjd7/OmNj5xkjsGVmBlJDY2YmWXhXGalX7SXXlY1dKKAV5DB7OokYoezQWZbgptoG4he3xyijCBksSvpWnhS6tS5dWm1eJxWmlTqWhlR2VwDWeso0ZRRgtJODgo3eUNqVHYargz2jyOZ8Nps3Ydq/euMw9P/6sHAMCvmSEPYJe9LTxEbseicf41yQwTCFLIVtCnSkr9oqRiFNHAOSKjCTlxe1fAkDc/QkqqwQeno4jxTU9cBcN52Y9yiCxdas5YunB0ubMmZm4AAoFAbgusn0ip1QJ67tGroQAAsZ0F4WZsUqFgGMT4kZkIOLYyswMYHF6WnUIV6KGqToXQFxXMUnPmFNXIyeh2I+HW0VQTTzlRSSwxAIvTRyFLJWVkTJYGCB78feZ8IXHDiwejunUNPk996Tv8tlWMHt/HmxCHmeWHvyefj+IICkAKatSrqfXLartYTy3pGpIATgT04KA2E5eXIY1wWakh2OsJJmc/VZ079vqm0gRnG7tShCEtvJADidQIK8gXwi/mw5ctCo2+do+klZkzRDG5rWsl5SMQHEC7B9u83KZ6AvHUTG89JAFMH3RcCm8xNIpq7tbL29VtbUXu84kV4C8qvpKM8b7XKdAtr1Nn12KEDzjMlcpS0f0Guj0yaFIdKBh82bLQwMAN6ZcTAQ3xOtQQdvppGuG5uU1go0pJKYsiBAq9BveAf3AOePyWC04Y1DpY1JZ5snT8ZIWbwAvm8zRI2MYP+TT+I/xGnI3wWwD3E1bbUJ/E9/WlxOQ0PGWORFyUy6abe1SlChnBCGgOdnxas9NGTT0XamBXNdGzvY2dRn5OH8iPMxOwt0e/3IjXQo948+as8jIPGAH/kIzjazxg6mHeqUz8hH9HnQRj/XjYV/LX8xC9bkpIyFVdd1iyJTANbxPGzbJnIMbdnd3defkvm62wbiF7fHKNtte0p1vQIWIlOua2PmZ2UeN87AFD+KNKPZtLUoSITpDuVhJLKCxdJqNYEyUl5ZWJBkBvm8hHvQmx4bmSUlnDbtq+a6AJqy8x3Pw3Lk0EBhFOuxMekf+R7drPQQML86h0qXN+OdASkrMDlpA7O7uqSv4+PJCt6bN9t85GQMrOHHOXr5ZRvYrIV8ulr5fBmfg7TrGoKSA+wc0J+JpCWNbdMmoG/zPDAxaQacHRmBSf3jeQjDNNKsD0HOdfmygRsZczdNQ5cvG4qQOeDC9/tNwcELF6z+QSs8x6PDEjqXk491XRu039cHpGfeksVjle24KnVjdhY1iPVpJv4pQepIOBBYVPr557Ecz4MPoOB5wOc+h+zjjyMb4yfO1hxDbAFH9hmpaLyR6dmQVLQRkPcFcvD009K306fFnX3okLEG5kZGgDAywlUYpg2sRFt/eLzopOh33wWOHhNX84svolmtwmcK2ihC/4EI01v3msKPTPTVGfOjoMEmSzCQrKBMr1ym/g7w4ingT/4E+NrXcHFlBTUIvKxy6hTKR45YX/XYmDCOUgm4807k7rkHy/l+kw1qetpuHa1U3pK2QRjFbdWiSIpxztTkfyrThLRolzMVizjtKz0VwGrYnnaMd3VZzzdj0dZaar5CG4uM5ZMWfC0FuS5M3mQ7nMTf6znCaeih0KONAUtL1sjErIU6XuzSpaQRAUgq/+u1ri6LPGajss4zpI3/QZCB6wHpAEmjEy+MaYbrpk3CP2NoigfkeZmrd+oGm6bvTrhooZTAapd0zCic6lvI+j6KxR2IIsvS1kILaPavDYKNhlX4ikUIfWaBvHpd8G8TE6g1GliEzRbYD2Dfnj1WUAGsB2HTJiAM0XLTVzfQ0ACljDuzs0AfO6SEjkTgecxY5pvOKuWW+yYNWyuVfIM8tdGQ0hS4UEsqJ/9/9v4/Os77vu9EXxg+HD4cDobD0RAYgkNkBA/pEQ3SEA1ZsEs7VEI7cpdOlVa5x811e52s05uc9fbH3va02f48u97T7Nnc6/Q2u5tNfGt1o12r1+q1T6xUcshWTETXcMlYiAlLsAjJUwGihsKQHBJDcAgMgfvH53k/3+8zBCnqhxu69PccHADz4/nxfb7fz8/35/2Zn7f710GmpqBYpHhkhDB0esd3KrzbAHzbw70u0EK86COcWmdhgfDUqRjSBusU1HsXXirluHrV2V4695vtj7c87hJ9cWfc5cqK2+yCOKhbnd9tywdm+x5qlygSZIIjHQQUi2kyoRWo+tEdRZgk669dS3rFYZhMv0lIqEm0r7/K5ZxtSV9SR45OpwO5IGA1zMTn1zr2A/FizfUNWtnQRjfr9NGmTXHD1njPqpBbUS4fvqPp0WZVn4uNG12DI38jb9uWxIv6m0rX50e309mQduT3FbKeN+JdTKftolsJoex7Pf5J4t9p52jK+lfeXRfmf/f1160lKsCWLRQeCGgXB2LYrhRs1HIi9kdkTPQO3xnVHFYqMHj9rOFkn3ySpeeeI8QoZpuY0dvA4E8prOldDYNBXSaiSgW+izkVKaDd6ZCV1up2WSUVp4Q1HZlt3jaNpKqWf0YPTzfYbtsNvvaaSdzRUZsnL0Wn4sn1jBHhS/29wrFJw64++ST1lRXOAsWFBaq/93ukIq7Y+/7KnpjaVcfrNVwkqOUX+jX5SjkL3x4/rFaLpYjrPRPNWxact+2HExVCbbUISkOxI3npkqs796Nd73j8ECNQfX19DwP/DNgAfHFtbe3Xe97/vwJ/N/q3Dfzq2tran0bv1YFF4DrQXVtbG/+hXOSf1ViNjAOfJa7REG1bMvISDSv2Nl2RCZZZ3JCOa8u0ViW2slnniFo3bNe7oXd0OjFnA6WSW9NWd5Ai7aeaow0dBECrTSpy8Ofn4U//1C7/xAnbg7t23XiuyckoIrzR9WUZHLTPdruun0CzaceSYXjpktl0jYZzTPTZSuXWtLrXrpkoyWZdV+R63fUa0NaTeJHxN9jvBZ38gFM0ARJVkq2DfW/YRbbbZA4ehDB/84t6iyPdXbIgn5Smooi6pm43qfja7bgupHD4MPNBJjZFRAKoIIXWjm8v+HC0atWQSyPlZXjyODz5pE3a88/TaLVoYDrjVSwIlcGysrNnzlBtNuNi5+UvfIFZoPz1r5N76CFS7TaDExNczg7ENkVYSpHyvU1sGlPdZei0yfV14atH4V/+S1u0hw7Bo4+SOnLETVanA8ePkzt8GHqoa9OtJsv5AS530ly7Zir30iVba52O3WutBoPXXrWgm0/r++STtE6fJi+lduyYZa+yWcq1jzMz4/rObtjgMnPaj/Kx9Kj8ZGSm+arppy99idbkJK9iTtoHjx4lJ6rj0dGkU9Fu2zVWqzA6Su5QQFga5vx5CyYr4KwMxrsy7iJ9cWc4FuqSpR0SeeXxjx6GcplbtsRe9+V2KjZsOx1Ih94tdTpmkIQhmRBotSgWC5Gg6ZIJQ7LZdCxv1MTLDzL1Qjp8B6DTiQw7vRk4RqggIBG1V3ZE35ePpFvSBpKwVfG2hmymxUX3o0ZmCtxKkPvECBLc2ayjow0CczLuucc+Iz9t69bkvfYKf92XK4hPxXK5XC6YUJP1GIhpgbh42y/kjS/QpzmJnpldeMZNsgxjcA9ENE+SMFNTppUFwN68meGJCV7faSxBUoDttjulIi7+HPuX4fuLKhLj+LRp+Oee41UsetPBshQSaF0sg1PGCrUzu3dTjPCz+f5+uurSF303Kw+y242En2OluH6d28LvxB3N/QUrL9XnT+50Ev6anIDFRVtHly45mz5eR80m/OAHtFZWEl3DQ2D45Emo1chxmc2bc/FpBaFL+Io4Y8dvpu7vsyCImmw1m2bRNJtcxgRVEM33qn9ALdSYyspGKp+nVBqKmc58J70HXfX2xw9JUfT19W0A/mfgY1ji62RfX9/vr62tveB97AfAT66trV3s6+v7BPA7wIPe+w+tra0lJ+U/l7G87CqrN2ywIlCly8BtdgmqwHrqpLsdwmwaWm22by+YwdXtsn17hlR3mWXSce1cEKTjRId63N3sUfuwWu0hLcfhUtEJ5ai2o9OBQhhyoWVMUDJaFxftPDcLdkgvKFtw9aqda/Nmc5olDhW4khHmx+D6++3YavvyZhHZTZucEyKn5epVV4vt6ws/y759e4bWfORYyGjvdFjN5hJ7LzbcvODKD8X4kryQcFP1dW9IXNmEr33NbnLDBmof+y/i5aWvy+gUuZE//KBUPm9Bc556Cn7rt3h1bo4Qk6HfxSjILwMTwBjGFPjdVouSJica8xB36c55xQjNpguUhSEUfJxbGEbLLoKoaXF1OpbGVefQ3nnqrY/QiBAK0hta54Ic79wZXfITz8AXv2gF29GzfOn0aV4CjrTbUCwyc+YMpTNnyLfbDP9GjWJxOBbjQkmAU1u+rti61QJQW7bY/A4FnXjRr2KBPIBcf78tXjFR9dxLbOxFXkRQHvbjWczOJin63/G4i/TFneNY+KF8P/eslSWskApUy2XOLWY4dy4y3HemuXQJKFlR0eIiZLaHSQqyZtMiSFqlYUi+NJSAw5w/7/blhg0mQCSA/chEPCJnQvUWuuw0y9DukApDw9QSn5IwdIWCEvKCiSQy5p5hC865uHLFsXvE0YrQTZdfluCjAbZudQJo+3ZzNKSk2m3734cI+YV5+hF8/8oVF71RNqhcHrBUsy7Ie4Tg9H1iowqD0BtpKeKcCnkCYgSTtgcTHFHqqX36dOxIauyb+CmuXTMFKWHlw800r73CQ/9r+d1zD6Qbr5oDc/JkDHUKMIHfhrhDdIhlJgpAZtcuOHiQ9D33UPne92B8nMKzz5LBM5J9aZbNks8Xbkj/JpyLIEiuw8D1TYn3R6ViF12pxMwX5y6m6e9PJ+BvPkXs4qJFS69ccUZEs4mxd2Hujn7i+221CCPMURDk4rlUg/ReZ803wmSY+Fu8XMYZjVEYq4VF8rrRz2VgaG7OPpfNGuxLBYnFor0O5MbGuO++kdhJf9ehUD+8CNQHgdm1tbVX7DR9TwB/AYgVxdra2r/3Pj9J1Lz3rhjdLokQsoYWU9SRnd27oVzmbHeAudOwa1eOThNKpQKLC7BtW5p0txPDY9IexiJXKlEuZ2I5rMP2jmzWDCof9nKDnogW/WpErVrILkOzRb6U8WijXQ2XmKF7hzp8K0CigBG4PSdDc37e6S3BP/Vd32FaD0rvj/5+uz81og7DZBmkSJUk5197zV1PzDB6eCTSh+2EWheBSTx8Z/DdHNL5Um5+CFrV+rt2OczS/DxLTz8dQ53TGzdy8ODH46SG5If0oWSenzgGO93OnVBovgTHjtGYm2MW0xktLAh1GdMVJaC0fTs8+ij7H3/c8ESeHiuAi7cvLsZZl3K1kAj6JZR1dHup7rK7V9Ui7d5tiyyCWMUwoTCEsTEudHOJxnurpOiEBVoN92ylH15/3dZevW4/+/P5G4rhBQfWULAoH3lsQeCMel2q5tBnLQRbi+I/2Vtdhq+chMlJlmdmaEbnWQIuLC5SmJ42PdjbSbzTMbozMBKV6WlSjQYHDh5kZaXA979PHJB815bjXaQv7gzHQhEoQTgUCpDVKgmo3gXR6DVcZKCkustk+rswO++iWN2u7YAdO1x1Tj5PKggYKuZZLqbZujWZVeh2kzVo4NaF3hesJBO90e0q3Zwmmx9IFBAL3eV3AQ4C2+ei7NPx5RwoI+ELM8lCJXpkJPbOhT6raPt99zndO1xehXqdgj5YCrn4/lycZpeBud6m8v2A3og0EFus6TAkHYaEYSoxr80mrB4ccYImm+UCBcI8ZDoXooghzurVCfXceiFRkdXYwIRKZXKS1ObNsGkTmXyesbED8fy32y4KoYyAf+0+bEwUv6WSlStw7BgcO0Z7aoqXsAxFCivSVsftAp6iAIMiqaj0yhXDlWJRlVC4uyNH4GMf40IwwPy8q41Wynfz5hQ5H9MWBMzMqPTE1UmMjo6w58gR86IUobr3Xhgd5Ww7x6lvu3vT2hG2VU6rP+T0cuoUq5OTzGPK8I3oflejn/1PPQWPPEJ14q/Gx9Nc+vtF61pD+l51jDF14aERCmNu4Q+fOUMmOldAxJASNeyjWExGqn2Abhiuu357bYu3Pd6+oij29fWd8v7/nbW1td/x/t8JzHn/z5OMLvWO/xJ42vt/DfjDvr6+NeB/6zn2j/5YXrZN4uN9fDyScKvKVnTcPtcWsp5JDdsASjXIGIoi2YVymWw1E8vR9RyLIHDR094Mc7dL3CA1E71mNKRpssUhZmfsO6+/7qK+Cr6s1xxar8mxkG7odOzWFcG9dMmmYL3glChxR0dvz7HIhKtkum1oNMlkswyNFSHSeXNzSR3hJwV8mvduN+qB1OkYWgAIQ0dR3WrB6sE9pg9qNS5QIM+7xwq1HOZI69nJevUL7/S6l1mZx4BAQ88+C9UqhVKJsbH9sYySDum1DbJZk6+CGj/wAPD0UXj6aWYwxieIDF9MXwzg6YqdO+1B79iRWFD5jRvJraxYb4lPfhIOH+ZsOMLMCVsHCr7nymHsCS9nCzx/EiAd9+k6ePDjZBYWnHCPovlxI7wgTau8n1OnbuzWfuKEa7VRr9t5e+s88nlgaoqlmRn8Spk3sCyN5ns++n/g5ElyR49S+8sf5D3vSYJU5NDr2vWaTENb42n2338/vPYa6ddfpzI5SUAU2CuVbC53746vI15TYRg9HFz6DSCbZePGJNHMHZCx+JHTF3eGY5FKOUtK9E2i1uh2bQNUq4kq5qUgx9xpF7n3vfZ8Pk0Ypm0T+qxBMkoV9lfIJAhIhyHbt2fijsESGn6UVcqlt5iv2yX+JwhML+VCixJs2OBo2ZR9060qwvWe95gckROwsuLkns6lTeZTI/qvbdnivHs/0aNr9rMiYUjSG4kmb/t2F3H28e+9xlm363w8QbIkq4rFjPU98HZlGGYSDlp8PJ9uRU5KNOndbhSB37HDPuNTe6nLchiaQ5K1LEUb4pqH7MWLNon1unVzDwKy1UL8HJR2VXMrOX/rZVhiWzV6ICEu+tLBovfLQJ6o8R0WDshv324sINLi0eIp9/c7IniAsTGW8wM0687hlFPhoL9eJCoM6c4nGbxWVszOqj68h1S7HbMlLY9/OCYMUDJQPAh+Gl/PZNs2+91um/I4dQo+OjFB6oEHGDl5kjRmJM3jsjK8731QqcRQAa1zv3EXuHOJHEFDsIwETEkXurhIJmo9n7p+nfzcnBE1aC6E/1AxuQyH2VkolymM5qlUMjfUevgOzp/BaL4JjrVvndfW1v1gX99DmKI46L3859bW1s729fUNAEf7+vpm1tbW/vjtX+4dNlIpW0QKpYMZEEp5SaDWalzoWB+C1193X5eOyEhAynJQkwixVWSzpLNdKpVcnO3tHdls0uAHR/QQBK5XDGHodEOwBARxJnvzZvcdiYkPfODGc42PO1iWlr3kdbHoMs7KSG/Z4lDFkmX33GPn8vXBLYe8f09AFosF2m2XkfADTJrKc+fcV+bnoVxOk/EohLZsycRQoRh5I+X2bhly3i2kJcTD0LITwoQFQcK+OLeQYrBYpI3J+NVGw+rIZmbI5fPkwpCxsYEYnuOTgmieffRpt4uda/t2UlEmVTV5RYwpsErULPXgQcNNif7WfziHD5vOCUN48EFWKyM0p920yZYAEjAofw4uXjTG1wcfeigO+78ajDDsddfudKyEsNO5sdi53ba1rkg+2OekM86dM+fjFw4fJvO0b7ca01Wg68f0Rgjktm+HffuYn3ftqPQxL46WgO1pj8Q2mHTF7t2kX3sNNmywTIh3kHU7aqtwKAjs99atUK1Sq+1FMT+99e//PX+W40dOX9wZjoXCp4uLSYvWD30qClssshzmmK9bcsOrB4t/S2DlfFyPQqO+BQmJA6TCkFJU9CmMuAykK1fcJfgyKsbEe45FGBJHW/v7CzdEy3xD3UN2xZEoQSGVqdB0KGgvOe9j4X14la4dkjCoYtGjQPQL46NQS7EyFE+Hiho9gqf4niVIhd/VfEtWF/xQWbcbR6fkG0BUn+LlO1cWo3mLbvQGqkbfc5S3lM3SmLHvjXS7vIEJq1WgMjXlIiYR40e6XKZa3Rvfvj+3Wmr+6cBlj/dUV+GxKZia4g0s2rSE6cBViA3uLCY0i2ChQXmiKrLJ510HLQGis9kErEHFa1JSiQuKLjKbTcdbRX7ytWvmDIzI0mm1mJlxhZutlmO41XRqO2gOIlRZIhumvHPY309+cTFWumDQJHlp+Woyw7deH5kgcGtAvoH3OAEYCi/AqRm7mfPnbRLyedi4kZw8WJ1E+A8pEoVSOx2zrDodhmo1wspAnAC9GYT4bY0fTmp7HvDLd8sYHDsx+vr69gNfBD6xtrZ2Xq+vra2djX6/0dfX91UsVf6fj2OxvAzf/35MFwk4qj0xVOTzXO6aUzE9bUtEkMhu1+TtSCkktpDrdZcRVZQmkjfpUonBuCA8+bwV+FXSTMsuZlLqdoG06Zeo2z2z8xHkcShRu+GrufWgUKUScc2QTzeuki1/KpTMEYNUp2Pf7+93WYtU4yyQTWD5bxitlk2glFG5TGnsg3HEutFwTpvsYckOiWshFmMWxU6HzXnHuCdHv5DPG9vR4rpX8raH6eO203tKXfvNgvJ5zjZSzM7C4KZNvITJ9LPAgd/9XbL1ukEut29n+JFH6JQHmJlxSXXpTR3ynnvMEdzTfQG++EXOnjzJS7j6tCI2H/nob+6/3x5M1FvhBq9PgdVWCzZvJtV8g1ptIF53irCbAQ202xTyeXbsSMV1P+fP27PZtWuIoYkJCENmJqFcNqM7xSqdTorJSZuqX/iU63nU7doy0Fqdm3PyXXDsIIj0VT7vvI1oZMOQ0Fvsq0QBuYUF0pOTjP29n42bOPZ2GBBDm1//qhZNqdmX4MlnLAI2M2Nf2r2b9MaNtsk3bIBmc33a9unp+DuduTnC6Wm4dInM4cPsPXSIRiOdaI/zroy7RF/cWY6FX3UmaeMbqZ4nfvGiY7kAxyojJ3XTJsht9KwnpT+1WfVBv2IoDElnsxbd6E/HNs16TfX84WcsIOKTjgzGMO+i+/5PL7e4bCVtnPX6SWj4KXDhHHVL3a4Jkfi6onP090fsGL1f9LwFnV9Bu1YrGenzFYdfoAbJ8pjYYuxJdcig1D1l8vYslrspV8OtA/sOoYY/aWHIUscYlDZtMseiicP/y7nIikIwCjGli0XyeWdk6j79CLayPXLKqlVMcJ04weUzZ+Ii7YjoNXYo0phjE0avxTyqsgT8+hBZ0pHWTzXOMlQsspS3DJfWsxpREQYJD6BYLMTTpTnVllkqZchE3Mi6N5/JRIWHfsbJz1T5NUfZrLeQNmyIBcYqpiCXwCyHF1+kdiTJEN2bRvaXhd+wS+epVCI6yBOnrEBeeC8feOs1/AOShmG0EJcWF8kofHjlCnQ6FA4dIptNJ+AX73j88DCzJ4HdfX199wKvAZ8CfiF56r5h4P8H/JW1tbWXvNe3AKm1tbXF6O+PA//dD+Mi/8xGKuUKvPyUW7drizmi1MtW3PryYXkxO53v2crbBufVe0JgiUxEHpA0UDodW/Nin9P6isVOJcPVRchmvYhpJL8khoXIUv2amJiE1NBQG5lu174jI0x7zBeZqsHwi219FdtuR7VTb7Z+pZD0UyzSaJj+9YNgvf3l/EciFUwxz1KQIyznqEe+Srns7hssUHftWurGg73Toees9P7KimvkFM1B/Oe1a3Rw9XJNIHv6tCmCaG0FwUA8p5J54OByahfBk5OsPvccdZI1eAp6daPXEswrvXYPOIdIwhVIV6sMj47GhADWxBarFYqOmc/n/EQ3lQoMdV6xWkFg/NBfTBjdYWhJk7kIWOO/pwwZJLP8CixWKlGj8N8+Bt/6VmL6m50OFyA+gIJyrwLVY8fIPfIIo6PmsF66ZDFgvzO74FCqd9ywIXKMRdpy8iQ0Gqx2OtYIUD2u/JR575ACvHKFFlCSHjlzBiYm6HbTsXp5V8ZdpC/uDMcilUpClnoi3nEYNZKcYTaXWC8bNxJTB+q169eBzd6OkqJQ2Ny3Hj3rZjWbi/e2iGlWVmyxZ7Mu6uWKr1Prpg0BCKyYW+3hxSah5Aw4T1ypU9n658+7QjwpjyBwxda+AlFKVp+RcgvDpEJZDTOksp63Ia8muhlFHqQwpDRuNXodJoOx2DzqtflZl+GQURdjM7vGwBInkdZ7XuCekedxqav3xo02kV0MkhRgQvwCkD1zxnFZR3n3MByInTU9EwkPpV03bHAEU8OlZTg2DZOTnMUUzVJ0LjkTKsTWNXTAjFv9iDJFmkjz/4MfWPYi0rKZUolicSh+jvE89aSu8kUnOxWoLxbhwNhqovB54nMfjHXq7KxLNcu5lZPoQxpkv4+OWnae35iEkye53LImTq3o/tWbo9HpUPrmN0l/4juMjh5IYHAXF13thh990vr0kSipzpJd5NSU/UxPw8qKFTi+9pq7WOXFe1NOnQ7dxUUuAxnNs9fDoNtNxxm/dyUK9UNSFGtra92+vr7PAd/A6AP/xdra2vf6+vp+JXr/t4F/BNwD/C99fX1ATBM4CHw1ei0A/s+1tbVn3vWL/LMcmnffW9DGveceBxfsJjO3Ein9/RG0vNVy1ccLC0kIiijEouKHTIxvChOX4sMW1ZReS0/yVwGMfN4M5kKlwrkFi44rwKFj7dxpBtrY2I237UOutIfm5x2cUxlt7WEftlsqGTXtvn0Gs8o1X7FNWq2uz5qj0Wo5B3/TJlhZYfgjRbLZHOfOJaff1xm+c6PscLFYoDnv9Jz0Vrutou90zDR0q0t6q8Moes3AzpVDqzvrKXJc6logURnaAUx/tDAa8aDRoPz00zaBs7OMHK4wM5OKm+VJ92qODx6E3BO/A//0n3IiOoYKtXMY/GkVoyMv7dplDeQOHnSw2d7izp/8SctmnDplkxOlKJYjZkY/gNPfnybMF8xxbdxYr1msjpCptuH0afJ5Z7us4hy669dvtGkEnd261clvZdjUYyv33B/AU0+ZTvCewSokyGtDLKT+CpA+eZLh3/gNPvxP/gndh/dy6pQtTV23DzCRPQW4GxL0d/t2UsUiPPywLaLBQZvTCPub6NcRhlbbWCzCzAzB6dNxdkOV29lsziFQ3o1xF+mLO8Ox6FUUvosdhglloQcjhSEHQ8EXebSD21eh0XZVPn5zNaUg/DBvtHpT3S65YhHyOd8WTdBwSqAqcy6BKsURBClylQoX2mnmZ5wQ9VFYKgwul01hVCpJIe1DdZS59SNifrZAtpMKjsEplnIZ3vteE3ap6e+6C5GHA7F2HKpWKRZz8dT41+OfU/adrglcNLzbhfxYgVbdPd7ejECnY4rk+vUUkI4NvU7HaGuDAC4uYPADVdmqw3IEy1kiQ6vpUaKWyxRxECXRvtJqMfzMMw5bUK0ydLBMsZhm2zbntOk+VN5z330mKD9aewN+63H43d/l1MoKr2K8421MQWSw4juxduwholv4yEdMcE1MmPKWp5rPR8UQVbvwEyfsnuQwhWHcX8NHAlrH7DRBNg3ZHAsLtg7B1bKvrFgH23I1KoScnSXdXSIMMzckAX04lO/LaS1VqyaTU0/9Phw7RqvRiCFQWUwxtDHlEADpp5+mUCox/OlP8+ijPwUQY9s1x70wM62zGLrnY/tUGXjvveSuXzdlUa26hXbwoMMPquvl/DzBmTMEjYarp1IUqtUi6wUk3hX5/kPkJV9bW/s3wL/pee23vb8/C3x2ne+9Arz/h3JRd8rYtMnqKMLQpfZqNVs/998fh08ld324ETjZlS8OkNqxw5SI6ivMAnbc3H7EpCcDqyE1pT2rJapYmTJ06t9Cp8O1axaz9hmVwGCxUUP7G4YgTEFg+8pnhlIBrwJUciSU2BPxUbkc6cbXWp7wvMVQBEIRnEh36iX96DHocJJHotPVPOl+FUDTfSp2mM2+y9ATXD1iqwVXN6UZrNWc9xUEnLuY5rUZL/s/WqGMBYhaRI4FENTrlF57zdZaEFAu/1QsXpTlFcPp/vIF+MIXOFWv810sAFPB9EMFGHrgAfN4PvEJa2J65AivzKeZPwXZ7H7CjjkfcYbsE5+wa56aMufi+HGoVEgfOsRQrcZqdU9cpyC9kWGJkXwHSqFTco0G1ENzFr/5TVLbt9v5MYM7DFMcOWIxHd+pCAKDdi0u2tYol92aA2uJMdT4Dnz+86xOTt5Qdj+wa5eRbkQL8mA0p28AU0DqK1+hnM3y0d/8TbrdXBzk1DqSHxglzayf1OOPw1e+QmtmhlWiYu2xMbvQKBCwFJhzkI6gXokbEraqXje0Q6tF+tlnyZ46BePjjD068u7CZu8ifXFnOBYbNzrwt5SFiqs3b7adun17HIIR5dnNDJVr1yJef4WolEtTGhRMAghLq4N5kc8wn4sXsq+cZAT7iCoJLR/6TbfLykr6BoPO/xEiRvUPOr7up9WyaJT+9iPKfp2HImaqcfCZeUslm7oMS8QYMinRdbwH/18fmqUhoeX35QAXPNiwwUWrNeQ0aH6kqzSnOqfeExQrDlv52rNc5nI3E0diLl6MlHW5zAAOnnMZUwwhkJ+bIyftFgmcYvFAHG1qNJLsFv39ppRHRzFGjyee4NWZGWZxDksRK7zTb507OzZmGIaJCTh0iOXySBS9LJCtjQCQO3TI7keMNOpIGrFYDI6PQz7PhY6jo9Rc6ZkM9i+xeXMmnrNKJepm3u3CfNt1yZqc5MChQwRBKlHfo0SVIpp+AuD977dbSB37Q2voNDXFMuZQZLAC9QBzsDqY0nwJ+OCXvhTT/Y6NfTheF0ppK0vnB4SDwCkqJqeMeevpp2FqijaQVUWfPHB5RKOjLt3hczWfP28Zi8VFMpOTrr/Bgw9S+ZCjNLzTHYsfj1uMbNYWqDrDgW2AMLQ10m6zGqRjGVituqiqkl2Z1lloegJXqbxNmxzvq6cP4pRrz5C8kozsdFzmQktj61Zbc4L+tVoZZmftkEpeimVobMxuJdd5A7JJ7yLdPMtI0eTgpkND7Nrl6qciroI4grxlix1HUHc5GoMbL8CpWYN7tFrrF3P03qAfFWq1oF5nsFjkAx8Y4to1lwkVrOv1113jWc2JSB/9uis/SCY2OTXZHB+PmKTehTE15XonGuSykCAAk38lHbVcHGJ/rUZpZoY6FjwR8x9gNzo1xf7PjlOt5qjVDDq0Y4cF8QbPfRc+/xjfmZmJ6yqKwAjWryL1kY/AZz9rAvFjH+NCcQ9TJxwSSjUp5TKkI8fw1WCEZgsOfOYz9uzqdVv/Bw9ygQLz08l1aPZCJg4qFYtGTJPOZo1KNgzjhoQaiujLNunNWESoIXbscPXSlYptudTTfwDf+AadyUlacINjwc6ddr3RpgjHxihOTXEZ0yMvALkvfYlcPs9PPfoo43/vw8zOuvXg66huF1dw/8AD5COGTx59FI4c4TutEdp1ZzIEAXx4Ink5q2GG1pG/SmFsDN73Pmq/9VvGHiWICMZQWa0a9fu/+3e3s9LeZNxF+uLOuMt02rnAspr9aPquXQ7r2rHF75MmqF+eDNdNm6I6B63EzZtdUZ6Uw+bNzhKXgb1OZKrXqFYN+ObNNxrGfvFt0J/h/Hln/Pq3I3y5DH9t1BSrDA6m4qiqdNrmzUlsrM+QoEv3mUggQaBlRluj6ThkBc3pzTG226TCkHw+Ex9LDpOcHl/HxJscF3nW1Po1+BLcYsvwGzuB/S9nTZ+1eo0chVqNVVKGCS6tcm4hFXdS9ploqVSoYArgAs6xECQqtbJCVmDmF1+k/HMHEka7ntv27SYs778fCo0X4Bvf4PLJk3FX7Q5mXJewiNIQkNu9G8bGrIP24cNmHYyOcm7DEOdmbqiR50DEqU0YJqPuYei6ZOHmD5yAVAJncHtIt+UEbiZchem681C1gGZnoVKhXB6JneJ22xk5cizE1JTNwoMPrFqNw/HjcPw4nYUFVqP7Tu/aBfk81dOnWcXVmsxjhYi1p56CUon9f7tGEFgdiLpx+86wIqsJ51UYkvPnWSZSTvl8PJ+Mj8dp7QutFJ0mhGGagqhKIi8xjJijVoGU6qrOnaMQLlEsZmi1XHPIdzzuEkVxJ41ON+Cl1gBbBwe4ft32Yufgx42B9jjUagWaJ5zMWlx0Yj+WWdksS0GOzGjgBJ2fvhNex6uD8vWCjC75JKWSM6ybTeveC87pv3LFtvqWLWYsTU3ZXj53zl4XBGp8HIaKyzBVvzFtIet7cZHBe1sMjlcpFtPMztplVypOhZXLLrsh/ZBuXzB5MD/v2B6ie1oXyqsJ82tOdE1BQH/W3vJ9rosX7TUV4Ha7dkqpHum/Xbvst+SaHH4h03rHetfnQ3hu9Ruc7ux2XeDLR137cvD4cfj4P/tnDDz+OANPPMF3IzhmAwhWVih86UtkwxBmZ8lUKnz4yBGYqNkBjh+HY8dofuELvIIFXPZEP+OVCvzDfwgTE7wU7CUIrDRAJDSCuila3+06Y/9b37K1UnxkD8P3Zw2u02jA1BSFcplCzRAS/lLVcwf7nZp5AYKATjbnDIOrV5MQISDTbrKnGLBqnH/xUM2PzDQth9Tkv4d//a9hepoWlr1P97aO/9zn7AAykj7/eUY//3kKk5N8B9PRs8CB//V/hW6X3KfgQKnE6JGRuP5INSKZ9hvw+DMW9FpYsM03MQGf+hR/PDPAiRMOHKBr/PBEcg11OtYDcXx8P/t/LnDFS08+yYWFBQr/+B/DsWOMPPggIx/5CP/oxiX59sZdoi/ujLv0Ik2xVFE+WdWzWlkdl3IUUcfWrc44D4KIo7w+n+SF9UP74MK1fr5aVrBn2PkG/MqKCUg/GuUH03WKKLvGyy87VId/OzKuqlXXGDLVOAvdLoMR9ipXKaKu4GKfaDZNJwwO2rkFXdEU6VolULZuhcFty87tP3eOBM5G+WylD6LUwlClgqgQ/TT3pUtOcfZiH/X+pUs3MklBElff7VoNiZSgahyES/YDhVu3puLLLZVSiTR5u+0VDdZqFD/yEcLnnmMeUwIqrl6Kfsf3+P3vk5l/iQO1MrVahkrFEcwIbpCb/Q48+SSrv/d7fBcznNtY1H4Ay1LUNm40wPJDD5nx227D4cMsl4bjHm8ybvxsUxDkuHoVdu8+QOHhlj2T738/BuiuVkbiefajUOAUZLGYireEGTYpCvk8S3ljNcuN5l0YtNOJ155X+5coM7rnHnOqRiqrljH4kz+BEydYmpuLi+HTGzfa5FQqZBcXKdbrLOGgZ68CmYUFhr/0JSgW2XvoENVPHaBet33z8stJmINfOxoXk0bFHel8nvTKikWhJiZYPvRxnn8eLk27PhxyDEdHP8jQp8oxXnzoySftOlVEo0XVaFCpjCT29Tsad1EE6k4a7bZDEHqsxLHqUOBFtMoQGSPNJpxqxNnCzOio7Y+IcWc5yMSyZ+UqbK/kSDXfcE6/x57kGyjap7481H73DRwZzcePm0iWLti504Kl2SwMZS9Do5UEzWso4tJsxk1l94yNUakYfLVUcjXJe2urEeNNAO0OPDUb74H1jn3LnhE+TlLHmJsjs20bNBrsrVZhpslQuczYz++JZZ+chjA0R+r8eff8FGBSzaLKHr/xDct4/Pqv33h9vc6F/u6tD+h9/1vfgn/1r+w1ZXMEYPADcIrzAHw3/3H2/8YYHDrE/sceo/vcc9Yc9KGH7ANy0L76VeuqXS7D88/TjrIUrwLTwCiWqThQq8Hf+ltcfvSXmJ62ZEGnQ8zAJIiP6o577+H7308xPW2nrFSGOPLofxPHYeaP22d1D+22rbHpaZfMHR+Hw4f30u3CsSehWk3z5w8fhno9MaerpOjmB0i3L9ywJtQsWMnBdPOsMZz95m/CM8/QXVy0ekNR5/qycfduVqt73D099BC8/DJDrRYXZmY4i2UtWp0OpX/+zxn55/+csFIh/XM/x8iRI06/drK82hkge+SvUjh8OIZHv1DP8ORvOwa4bte2tdCz/lyCyYunnrL5Hxvby1/6+/9vo4L+7GcpPPmkbcrz5+2GT526YW29rXEX6Ys74i473YCXmgXCsMCmwWFrV1BxrESvPQO1WoZW3QlvRaLUPRpc9GE1TJPK57lAwaKZCotKwuvDcirkFUBsBerjYq2QodduJ6NRmzaZU9NqJYI5zM2ZMFWWo912LHL6GR+HoZI1qot3g8K72SxDpRJDExWKxVRseCsypVp2sM0TsyFG5x8pR3St9YarhJJT4WOopDRUJK1UZeiUs6ZMmQj5JH7Exy9K99kchHLbsCE59YpQ+bD6KBgX35sch0uXzDDdscPWg98hXIbxC7Vh9n7+82SffJLaM89QPHMmdgaaWG1AZ26O7O/9njFF1etWLL1zJwceeogDD1ftwhoNeO55+KM/Yvl/+p/4LtbUaBbLUJQxRTFcq8Hf+TtxJP2lWeuqe/JbxJkqCTdF5gTbmp+3eTh/Hv78w4dMSf3Jn9iL/f2k2m2GymWGaiUud5JRKC3X978/GTVKN16F2VnC8rBhmrMZctVq7Kznim+wtxQQhoV47Wr+9FMqYRbbH/yBGSWnT9PGMhHpUskaMz38sN3z9DTDjz1G+etf5yXM8bgQzVWq0aD8278N7Tbpdps95TLsCNi1azhRPrFjR9Sosdk0GFQEu4oXXrkMDz/M2fIHmXzKLkk2nvbayoo9ytHRIYscak8DHD3Kar1u9TD/9J/CsWOkR0fZ8573sGffvpuJo9sfd5GiuJOG+qmK3WxiAr75TTMSlPDbsMHqpOJYkhSHH2SKrK5zixmR/cR7TEXeGUWN9EbPkDE6OJgMpkik6yefd8li9ZVRlrm/36uhPnXKWdy9o9k0xXL+vIuEdDqkSyUmJvbH7NX5PLaP9JmrV5ONAME+JDrCWw1VlG/b5vaW33pbjk60sVOdJfL5TKw/JMcVFNO+9eWOIKm6lPX6hdwqYwGs63D4Q/WQQhwoe6L10e1acEXX/K1vwantA4yP/xL7H36Y4Etfgj/9U3tQjz9OY26O5bk55oFCo0EWV48hOTiG1RIU/9bfgn/wD/jufIHjj9m1bN7sfDyZIjJP5HT5w5/DqakEkWVCXPoxUj2mDRscXK3dtu83GhCGI/zUoUriPELmjo4WCHrmstu1TteXOxZ0jG+gXjfGwLEx8h/6kBk2hw4lntGrpQ8yc8xeTgfwhycyjD761xk6coTR3/otRr/8Zf5Do8FZDBVwAcjU6+z9whcIp6bsi5EHNnz4MNRqrJaGLLH+BAlnTbXvsU67yRqSYyauk2oVHn74AHsebsNjj5nTGIa23/bvv2FNveVxF+mLO+Iur16F559PJhF27rRNEMHd4uim7GAx2hSLkO5cjvi2Gw533WxSmJhwFn8U2lrNJw0rAsiVgySNRbF4A/OtDGV916+biJo8J1jivv1t229+BEuRkS1bLDo8VFyGZiupuBR6k7XdarFndJRSKR1vEjkWEkijo+Ikx3ldR180SSqvSBch5SosmZwKfTbShJkwhLk59u7bF4eGh0tFKpWBOMPgM5rMzVlKN4K5J/SVAsYqztMcBYFt7NOnXXDA191+Yd/Kil2ijiEItJBErRa8Wvkow3+zDKOjFI8fp/jss7QaDSvsUmgzDF3uWVV33/ymTarAylNTzC8u8gpOUVSxorv9QO6BB+BTn4JPf5pXG2lmjzsZOzXlHqcEvu5fPt2ZM67nRKORolzew8f/9t9mNcwwMxPJ6lNu3W/dGrMcxrV7k5MuhV+pwMGDw4wcKnPsmF1LsQh//tAh+4I82lYrUQs0OOg17Gq14MQsPPGEZSzOn2d5cZE0kO7vt+p/sQwItP7666S6XapPP80bOCeuBbTPnGHgH/9jK6jbvdsyCY8+aou1VjaGsvlXWWWYhbUB+g9+3Jh3ZmcT+/UPTxU48ZStE9kvPsV7swnf+x5Rv44U73//T/Hgr0/Y5Bw5QurkSXLf/77DiShjefo073jcRYriThpiJxesBpwsFDY9m7VlmmHJNsSLL7ovlkpO3odhgrVPIlK/i8UMuYi6eTWbu8Fo9Wt2FIzaudOpHTkQ/poVhr1adUi/SgVy2VUnAL3sSDzC0GEYVdEaFXQUymVodilksxZMUkRdxxEbiASTLNnoonyjKwElCkNX35jNJqNAV65YpEfKMJrAQrnM2NhwIssvmKycCGUN/HET3w24dUalF8rTew9gj179Vf1nIINcZEy1msnlyUkLIDYaMFsb4pFf+/ukGmdZLg6Rft/7KP2zf8bqyZPMYzUYaYj/vozpimGg+Hf+Dnz60/ybyYJYueM+F6qf9CGhevT+//pMENh3ms1k2SjYWtL6U+2Of65t25JrXHT9l9spW3fePIZh1O+qxzzM560zd671qp1getomq163dbltm3n54+OcDUcoec/Ep+TV/+02jI6OsOdTnwJg6AtfiGG1b2ABrTwwIuZEiIs6/ni6wPS06UI5Wn4dp358rp7eoe2gIMDMjB3rkUc+ys9+vuoKh772tfUP8FbHXaQv7oi7XF42W0+wVqUDz51zjEg7dzrBIAdj8+aoN0Nv5ytJNIgF6IVWimy2QLORjCyFIeSK4Y25bNziVF8auJHzHxzGVK/5RWi+3S6DWAItBnv68Kvz550UVkQoDMnl82SrQ1y8aPhUKb58HlL1V1w6Q7nQet2lGPxWmXIqREvlV4Jr3nRN586ZUvHmNVfL0y26fgC6bEVHlHXQHPs1KGCH90/X7bpInpI2+p6Op3MokiM6WHXGVIlCowHNyogVuNVq8L73kf/GN8zr2bfPPviDH9BdWCA4fpzO4iJLQO7kSYLt2+kuLHABg1GdxRXtFTBawANA6q/8FfiZn4GPfYw/nkwnKHo11VpGfpDUd0z9GhEZIEEEwxAcTERH2axzqDRHatngY4MN9ZSKU8Fbt5rQHh4DInrLwW3ZREQnrm1oNJ0DOjsbV+GnSyVzKsbGTGFEnWFfmk0RhkMMf/KTsH07QbnMB3/3d2lgEIALmHK4DBQbDXKNBjkg3e3aMd7zHlL9/TA7S2psjMGxMaudinC/r7ZylqmcgaNHDSXm71llCrVOFhbsRxG9116zGqGJgx+3fh75vK3lmRnXSO9dpfv48fhPPWT8yzj1+/n4DmiplDESD7/Vu6z8YpHVqHln7171jRNaFilIRdadb8hKPyjSrfUpxja/Rk2OkMqgikUz+kolyHEZ5lsOq+g5FrHRr4Xu06zJepL8ByeMfEGkHwlTRWui4Rvh62UBEqPbdU0f1J9Hgj26Wd9B8OmmNRfbtrnbFHzYd85uuPd1xq2u078f6V6dW9mAbtc1nG21XHBQ/y8suM+NjsKecp5uF9Lnz0O9zjxOzgW42r4cpjP2ABw+zLnB/Rx/3PSi1kU+7+Bf/o+gx5qzXoiX2ClVryhZLh9RjfKyWZdk2rjRHAnRG8uoP3XK7PSJCXeOTsdiLkGQtqaw3mg0oixbeZhUEJg8lSe9fbuxIH7607wwk+LUMfj0p93zE8lAt2sZi3rdGfWPPPJBRj6bpfz003Qihic/UFWs18kJ1xXhzEulQlyQL92vOfQbGctGWG+d6PPyi4Uc7nZxjtOZM7zqNxH78bitcUc4FgokgdP5KyvmbCiDu3OnK3iWgA5DnOXphzsk8CLr6XInHSubXio7eeEpCfLoA5LXmzeb8Pf7TkhW+3/7clvn0T359W+Dg67TNsfnHTxJQxkLcaqr6HzbNlKdDrt3j1DIr7LUMehNunPZudzaKe22SxsIs6SWoPqMoAB+CkGTIwfj6lUnaSX1Wy3yRWsOpIY80l8rK85R8I1+fUaXoKn2sxra/H4PPAl46UKhErZvTwoFcGnNM2eg0UhTq32Ukf96zCb71CkL6TQa8IMfWMfPxUWamCLIAtmFBS5j0XZ11r6A1VOMYJmK1K/9Gnz601wo7WV62tLlUg66Bj8ptGmTi5ioCL93ncj59Ht8VCr2nugiZbRIKfrZNOlzKQsVugmHfuTICK3ovW3b0rEzksuuGnMay26x+tpUmYbRUXjf++BDH2KpNMLstFMKreowtUeGSY+OEgYBlWPHSJ05ExfNL2HKIcQKv8eeeUZhqpg/XIsoU62yGuaYnXUYdGG1he2V8gxD1zBXNajttqsBMhyyzdnExH4KH+oazOrFF528EOD7nYy7KAJ1J43lZVsXEbwaSIpAfw8GAQ43q4Zo0aZaIkOj7nxpwXE2bTIZIxlULg+QCbVfkrSVcvYVKYakcSwI7NatTu4JciOft1gkqQBXVhKF2/H5+vsdTkg6T0EpWVZgFySeZz9Co0yFUud+u3tu4kgYjRKrkczPVaPrkrxQgYQ2YZS+KdSK8WSUSim2b0/69NLxela9RBq3vKaesV7Gwv+/00kl/CzV92WzzoBXoFLqsNVyTkC7bRmM9miGZhM+fugQnDjB0Fe+ErMB+k7FEKYzsrUaHDrE9ydN1CkAprWia9L5fV3pmwRGEpDye/nFeidiX4+Tyd2uycEtW1yiutt16zl6JIDTRb4TJtNpPYScwCCpzpJ7/hHZhhT72YaDbfvPwCewAacrm02z30eO1Kxj9swMAaY3xMLVBfY+95yRh0QZ8+rnDvD888mgnf72G69qbnuHPqP3pJMvXoyufbwUP5DlG7/+9sZdpC/uiLv0CzEVDAFn/waB2YcS+JUKpNqXLdIqTA7Yb1mmXhGCFo0WsoaescnkNNlsgXSpw2pxgOZ8Mi3rU3PK8NOi1Ab2caW6dl9+12qOozzVWUpKFY2NG5MgS+XaIwaPQrEIjXaE/e04S6rRcJ6QaJb80I/fgTpyVGJrTeE/Sbvr1114RZRUEB8vVWoxXC6Tz2fWTV37iBNwUZTbGcoI+a1GFIFRtkdF70EQUcLi0qHNpglWaxWR4/Cnf4n04cOsloetEPP97yf/W78F3/seS4uLXMAxG8mhaEX/D+GURPrv/B149FFeCvby/FGbGiWFpIzkfPoZNQ1fgPkQDrVZEbTa73iuRyEjudUyGa6SGUVLfcpEn+1EdS9aj2mWKRYjfGynQ1qYtpkZO+HLL5s3v3GjY0cYG4OxMS7kR5ifTdYarazY8d/73r0MPvIIhCHlL3yBBpbpmccETAajW7y8uEju9dddQVCnYxu7VuPbJ1O8/LI9t299y6HVdE9apoKFa863bLHX5MyrI3G9brd16hRMTBzg43+z7Dyw+Xnzuvwqybcz7iJFcScN9VP1s8Z+k0sFUsPQ1lC1OkIaXGQi2lBqLqcI8NatzuAQgWA2C5muZRPSxSKrQSZRSByGEeMSy7TyyUyun8n0YVCbN5uMAi8epg2slsPrDQk4RSAkHJXilwLyMzRyUHyrTqF6j4FuPShU/Nl2m1Q2SzabSUK1tIelR8Qiks3yaiPNpk12K6opOXfuxoCT5LoOp0CKxnoMTzesh57i7d4ov38OZYUVoPFJNQRN8mv1t21zzUIPVC/DWBb+yZPwzDO8AHHD1Ms46E45+s3990MQ8PrrTgZr+OvhVqP33nqhwqOjEbq0ZteruqPt213tpWwexY18gES9DgcPujnudk0GZ7MwXE6uhbk57Ymofm901KJf2lOHD8fUvsqqa/h1h6ukYlvs6lWL95TLKQ78zM8wfPQo6Y41u61D3J07jQX5MvU6xccfJ1Uu88lP/kXOnXOBAQUFfKSfTxDSO7Te9LmxMQtgP/II8NhjLD39NPPAd279iG5/3EX64k3vsq+v718AR4A31tbWRqPX/ifgk5j98DLwi2tra62+vr4K8CLw/ejrk2tra7/yVi5IG1AdOFWkpM2+caNtju3bc6T8KIyi7tu3xwdaDa0JUad1I8SmF8+YzUa4wlaLVDZLPm9MG7nsKteupRLf8alYZSj66XMtVn1WvSpKpahYW96+coPCSslS663WlabrdpMtoqVZ1+Pn601763gqTvEllJ9y8Qm+heNSVEu7NtIM3c6Nh9Cl+YJTaW9tZD0u/1nIUNCp/AighnwtDyEW37oUuaZHGZVyGfZX8hZtA5Nwr73GhcXFGO7UxgTX5ejvDi6dPQSU+/vhJ3+Sy9UDnHjSFKX8LjmUQbB+alvOheZDRr/+1rqenXXHkQO9dWsyM6NHEUc5cfcqJsq5Oce0IidY5+920zHUKihlyMg7+8EPHDROhZoTE/Dn/hx87GO8Mp9m6ngSJqByHGUVHn304+TyeVLz8+z9yleYxSJNov1tYY5bZmqKQF6jem3Mz7Njx3AcSVQGU0pS9n9vxkvLVBE2dfXW0LIPAhKpbV5+mbPvVnr7LlEUd9LYvNnIC/zOz6WSq3Pyo4/aPyMeu8UqKVLdbiyLZINLhYCr1Ug1zjrIaq1GqlxOGFtpluO0ermyJ04O+1nJVivJKQDufQWiAJdJkzdCj5H/+uvOGo4xG7jeG75gUFpEikhOlTax6KOirnk3M85TrZZZfq2WwV+U2dbECtsVPYTV0lAcyNa9qT5K6keGvgIj+bxL3OuZ3HDv3Oj8wI3MUKmejJLdeirODvmIAl8OS59IJVcqrk7nPe+BA6Wz8LVj9uLXvsZLi4u8hAVPlnD6Yjn6aYPd+MwMu3btTchhGbL+mvAz2cr8+6M3iyE17es96cxe5/biRecwi7VREX4/0JpilatXUzFjmT+/3a4Fe3bvjhLcQZphMQ60WrBjB8ulYRa/lXRc/Ov3z5PNpmKHW0AK+vth924Kp08zhOvWncWgyOHu3TY5UQ8jf/3IpvChT5D8u3fNSK+q/FLlg8PBWZiZianq37WMRe8F/Wc8bucuHwN+C/jfvdeOAr8WtRL/H4FfA/5u9N7La2trY2/lImQva/HJgJQM3LQpyYya+KJ+/DBI9LvVcp0/ZXD6mFelYGWjZ7Np67qdzdKOPh+GqUSKW0YwuAyGj2+UAel/ZutWk/tbt5Lc+b4Rv2mTq1SXZuqVNiqw1pCU9KmYBMjX0JwoouRnKyJpu0rKMig+tkvfBTfpfsvtdpt83vFcq5eIICr+/unFMMsA1Gn80+rZZ7N2W/7c+4LVf9xaCr7DIcFmtcA5Gg2oVgfI1WpQq5Gbm4s7Z6uhXhszhkMs4jSAceQzNgb33x/Dc5TmlcHg+2/+8FOxior2zo2uXQFHRZv6+y2YL1YuPX45F8KD6jv+Y/Ln3Y+U+fOV+ICqV8WWIEm/bRvnLqbj/bO46LKLIhkTBKleh/1RKimLCZY0rrFUh4gxCiifPEl6YcGMqGIRxsYoHx5OkB1oXiCpLPz58+dzvfWm61tYAMqe5llZoedRvb1xF0Wg7qSRTps9LIghmPzxYy0KpIOthS1bMmzcaCQOrRYUQntuCixJJ3Q6tm76+7EMpzLCwl1FRng8vDR4mmW63XScdWw2zahbWHBxIf0sLjqdNzcHQ/cWb4Q30QPvuXIlqT98gRFVrC8FOTLl0CZIwHEpKVmsmjQdLxrrsS7R6ZgHJ/0CdvHbt7uQvryEUinOpirq3W47OKNK/TZvdlBmn6hRhqbozd+M6SlxnbcYW7a4jMXVq64GXc9CAQzpoa1bzcj0Erbw+JNWxBuGnD19mhksKLWE62s0hAVPQswg5cwZeOopxj63l4kJNwcKTEJSxet/iWPJvxSrtNuphB7dvt0hJfxSSUjqxi1bkrpW59DvlZUb51aBo94hW0lo2eH7y3YQwUmw6zp3LolY0PBFZRg6uyhSyfBMtI/6+yktLrKK6eEQCNWJb27ObqheJzX1HcbGDsRoBWWcNJ9XryYDeesNOSdqkzQxAfz2k/DVrzKPZaPetXEX6Ys3vcu1tbU/jjIR/mt/6P07CTz6Ti5iddUthOvXnf73DcVLl1xEQ7ZPpjenKgEaWal+1lgbRRlndR6GpMDvHeutg95oey+2T6lVyX41vNu4kWS0qTdzAC6j4F+Ydoe0pqxwSYabpc57rTD/YiJtutxNRdeZseJESVjdxObNrpGSjhEdU0JuPaHlj973/XR472WCe19+jL6nW/d7yPnv+z6YpstP1MTzS7IzaBfX6yLAIiQFTKgVIM4pN2dMqCoCtF7S52bT3/u7l6lC617wOXDKTbhkPT6fu19rTsfQ0pED4ON49bfmJZP1Fq+eq7RwVFV67lwSgSGjSPMq2sb5eahWC2R+4iegUiFTr5PDBHMb4g7dacy5GKjXWQbyp07B2BipSoVqdQ9TU8lCS3/e/HXT+7/2s+wfv+Hftm04PHC9TrvTMcX/TsddpCjupLF5sxl7KkbVa+Cyd+DUgSLVZvumWVyESiUTQ+xyWZdFToeh9VPpdB0XpWjctDH9IaKMIIBSiXx+mC1bTFSqwFbXpzVdqbighOBCCYG1nlUHSewOuH3rWZfNedi0Kc2g8LrlstMbKysOCuB7YLcaPmYFXGZ9x47YWj/bKZAtDjBfdxTrMzMmQgRL9eVQPu++rqTpxYvxFK47zb2j1+m4FVRqxw5bL3J0JCMl1+T8SMbVavCxj9n17K8uWYHF44/TOnkSMGhMHcvCKqu9B9iLORtlLJPBAw9AvU6me5nx8Vxc/+Y7UvrxHYP1eCXkhCmTMj5uLZQ+9jEodN+wA+dLdCKkRdSahcFBW56CIokcTBk91ZFoXL/usue9c6rEnSC2/f1pOp00Bw4dgjDk1CmXnVoPZerDktRzQyQcrRYUDh6M12Rxdpbi0aOOp/n+++3BNBqWeW61YGaGvZ8J+Et/aT9h6Gr/xAqn3mYa/r0Egev9FQTW13Zv9lV47Bn4jd/gu50OdUxnZW+8lbc37iJ98W7c5S8B/8r7/96+vr7nsSDwP1hbW3tuvS/19fX9NeCvAWzZMhxvKnmZcgZE5Tc/77xvsN+VygCZShBtqryt6FLJirE7S1yMGCVlE2/c6H778KWtWyPazewqzJimKpUGAEi1LsSReSUUfONqZcX+7k2/9RrcEG22691kpuHKFeeBdDruf31GFrWfN/WNQWU7IEmx4bM9gbPS/QKWTod0NiAdRe8SeKUgcPRVOn5/fywRlkJj2JJiVKG9hHXvPOuw67GAKGKoy5KufP11N3d+4b2Ehd8kUYa3UquK6r/nPTCcvcDwA3kTSH/0RzA5SR3iiEQL4uZ3GSytPRD9DhQa6nZpt9OJrIk/bpZ+1bT2przXG7pm0VBWKi697SeeVGfi97paXHRKUo9RRpaPFmy3bR/Zc0mTU3dAn9D9J34CPvQhLhdHmJ2yt/UslBDTEtW5BInaf//98KEPMVSvE0KcGWhh2YsGzrkIAM6cIX/8OOTzDB2C0dE9cclQbzGuDzX04XRB4Aw3Re9273bY6IMHgd94hu5zz8WMXy+t/wje2riLFMWdNNJpV6gquTE4aKJJEBe//kLi0zfotm+372fCVZfSVkhdAqbZtEiCqHh6mwuAi1pEm6rdTMZ5FJvxRXKt5pyfS5fs78tjBduLoiC8GbwV3MHKZRNwo6O80sxB0x1389gw2XIUmMvmDPbYbifpqm52T9FIseqwTD7jhjZfPs9SkKM+42BEMj7rdafeVFfuBwF82a9gk2JZ0g+3chYgmam4lXMhuSpDtlxOBlnkX8nwrtWieor5efjtZ+CZZ5g/eZKZ6Hh1TJ7lMVrZGrCnvx8efpjh48ehUiF98qR5WUePQrXK/rEx9j98iFfqFsiTXFai2De6/cy9hmyNe+6xZNTBg+ZcFDpnTfAC5POEYS6+32zWkK1gOlH6odNxSadEBtsb3e6NmQwhMuRczMzYNdVqhXhZvPe9zkHsfQb+iPqsUqnA3uIbMD1j97Fhgym3nTvdg+t2Y/hTrGhefDHuQPvgZz/Lxkf2cPy4W/96nnNzdu/rFfhrL1YqsLf9H+CJp+BrX2Nmbo5XMd1VwGos35VxF+mLd3SXfX19fx8L9P4f0UuvA8Nra2vn+/r6PgB8ra+v731ra2uXe7+7trb2O8DvAJTL42vvf79LAfbCG2TA+I3TJATK5QJpL4+9GqRt8XS7MfxIGV8fNqNRKkEhjFgO5lu2W0olUtJKrRZDo1nAIl0bNiSvRVHbzZuTZRE6j2R3ECgyhXMWfDytbtaPSvnRJCkT4a5E99DturqSXh7RXgdFYTtfonkZCObmkqE1hdD1fj7PamnIBMu8M/xWVpzxKYjMtWuuTEOZciGxxFComgQpfT+VWyy6YmifuUPTdeWKfd8nQxGOVYZ5tQoP7r5gKexi0Xj0vv51ZiN87FksZd3BnIp89HiWo9faYNS0kTArlx1WVtfj17/3CunetaAElWwR/fa/6ys6GdVSNH62QSwbUkBB4PC0PqFYo5GMnF696gq+bbmlDCsr+hqto2o1dlxEUqZ70L332jlBQLw2w+3byS8sRFzmNrdD0d8jYJA0sAdZq8Xn1nyKRceXBes5771JS20NZXtqNcjUX4CZGdo4J/LNuWZuY9xFiuJOGhu618g0XqFaHUnIch/O5LPydbsOgqJyAMGdyuUUOX1AtEWSsY0GccpOQZ/eobqIqBN2Pj8QR+TlgPsMPTL2lOTw93dOqTZ/c/lDnpQf2t+1y/bqpO1z3XcQ2P8ihhob22PHlyC5mfNys+HDr6KoxyvNXMz9r8Lh5593cnnnTpcgUZCkWIzLOiiXrZHrapCO1d74uJPjb+ZU3IwFqnfIeAwCuy45epp/ReB1mxMTwDPPmC3w1FN0T56kgQVFhLsvYE7FAWBo3z6r+H30UbP477mH0q/9GlSrtOfmyHpcqyPVKuSzhOFAnDFTTYPvu/nsyOBk2vbtRtJ35AikJv+9sVOIraDbpXDwINlsOq7TS82/yr59w7EtLv3RbNpSE3xIQ6bJelkTSMY6hRLcvt1Of+aMrXtlCv2hDLKenVohFYvA9LxYFuxhjY2xHGRIP/Af7CG9/rp9WRGmep0LCwt0gKHHHoNOhwOf+QzFRw0WJRiZDxPrJSYIQ+u5d2B02Rbwb/4mPPUULy0uMo1B2gpYcPHHjsVbH2/7Lvv6+v5vWFH3T6+tra0BrK2tXQOuRX//SV9f38tYlvDUrY61caMtSN++hqRj4UdifQPOjNAM3Q7k8vlo7aWIuG/YvNlFzrXY5f1DtJmbrWSbVN9iiXbZhg2FG1j1tID95IBvTMooE6zn9ddheF8+CWfSTvfP5x/ID1ULAxMEcaO/FDiv3q8kXg/832uhSfsIlyML0j+G39kpn4/7iszPWzBP+936B9j0yZHTIYSFV4LFT/nqdV+fqo5A7Iq9vUP8rqM+f7XsYtmp73sfcOwYPPWUzd30NBdmZqjjmKCWMQxnMfoBg0WlMQP0MlCYnYVnn6X2i3tj20MQvXw+2VOht3ZEQ9SKEtrXrrk1KGNYPz6hgF8v4kft+/tNaWuJ+PtlPYiWoFH+56VMh8dKzsnUDXW7iQyA8MkaYpn0U/TVKnA0orPasIHMxo0Uo5sMIS7Iy0VFenQ6po2k3YHa4T2cOeMaDPvz6cPd1isH0nwJjlurwUh4Fp48Bs8+SwMzCm6iM9/euEsUxR01lpbg1Cky1RYHxsYAuP/+VILOGZyDrgCI/le9cSyLFGoXBmRw0DZYL5HGrYYXoFEyQXIBzMiWoZNqnOUDHxji0iUz7K5csbW+rTpA+r77EoyGiaGNuGWLLfJ9+6Ba5TtTKWZm7BJ8eI+/NLtdmJgYIXNfy06o5qC3M3worgRCsUh90mI1/rnFBnTlioMeKUtQLru9KZpUGg1S+Tz5fC5WcX7w5mZjXQarm4xM9zKZdgu6XXKlIsWiO5eCQqLrBnv8PP44PPccr7ZazOP681zG9MQeYBzIf+IT8NnPwiOP8IfHUhz87H6CANLf+x5MTnIByD7+uB14ZsYwWeUyw488QjA+EMN3wtCBCeRg+M9P8J7RUTtE6uk/sM6gSu96wj8dwODmDkzNwuuvk9kHtdow4KCiCwsRRLRnSMfcTKz57VKEFMxmLXF26ZKhvzZtMnvOH/v2WbYlCOzZ7clGe+7EvM0LGB5pfJw/PJ5mdhY+8IEPshHYOR5B31mKYRHpp5/mAtBcWKD42GPQ7TL86U9TevjDPP+8XYv0QT7v1onWShBETsVXvgJ/9Edc/vKXeRVi+FMB65xeAvI///PwyivrT8hbHXeJvnhbd9nX1/cwVqz9k2tra0ve69uBC2tra9f7+vpGgN1Y8+Jbjo0bXXpSCuDqVdtovQaZbyv73jNAuZyJlUiplEukyrPZqJlep0Mmm2U1ME7/uMGeuL/99pCy6lotNhcLiQ3n6xm/94If6O/doNeu4V70rSTfgej1TmRJbtqUoD/QvRdkjYJ7X9Cw3gnzLVRZxuCcC6VevBD0anGAVOSRXe6kEzhLn5NbMCjRNwp+FgSOcEhGs8/HvWmTRaeVdNEtZ7MuKh8ErnB4cTEJm1KWXmnVfD6W3eSarxg+9tlnob+fztwcr2CRpxaWahP0qYRhY8FRzaowjzCE114jwxKVijGNKeKjOmdFaXSdfjlKr6GvNdLf75raVip2zQraZLOQC42P4gLpOMOgGgwfmywWKD1GRUohiW3uzYpoeZRKKUuhl3Kkq00Hdasn61kEr9bz0f4S5Stg2kpGT6fDwJkz5BoNmkApDOkYhtFt+NOnXV69XidTqfDAA/u5dMnuQxSyMsq8NgQJn1vznM2aQ/mBD8DgtVfh2HF45hmajQZvYEojFljvdNxFEag7aviZ1Ci1p+Uk7LZEtwIRMmTVY+sDH7Clmm6edVli4XR8mjE/JbYebkReRLR565MkoHwamzc77Pm24hDnTrkCb3AorGEfC9Q7tOg9rNVqmIl7mvoBBj8DHIZ2eRmWTMepm6QCSbcaUrDaYGJDmJ+nErFgSf5IJvjOHLjgk56FYEAXL8Lu3cO0W9Ced+81GhZNvp1xO30uzl3NcY0cm7bAtZabd8m1rVvtt+yP2CjudOImbSrUzkU/8fBSzMVixua42YLZWVaffZZ5oLuyYgXep087j7PTIZt3U6qEmFRzr88nnTs4aL8Lu3Y5LvJ2O24bvoQFWVutNNnKAQpjq7w0m6J5yj1yZbGlQ3qHv3b8ocauvr6rVMyp2LfPPjPCK4zszkdGWTn+bq3WYw+pvfnsrGVdPG9qdPSDgGOTFEtgN5uxTPef+3Nkm03KJ08SgktPVyoxwYq6kksOjFSS66TbhXo9zZ59++C112IboIPp/2Esy56D9SvR3864i/TFm95lX1/fl4FDQLGvr28e+McYC9Qm4GhfXx84WtmPAv9dX19fF7gO/Mra2tqb1kmm087OCAIXkd640WEv/VSlBKnPc+/LPT+DEASQ6i47aRd9IJXNklaGQE7F+fNO0kvJRKHesOwC/L6ukdGmYj0J9VLJGb3SUZ0O1mRJB/AdCw3fqdBJ5FTk86xmTay15gWlSTGoQgPtJIXAwU2OX8kMLuyuSdqwwXajNG+k4CxCb/kfsYP66WMZqFKk/q34rTN8x0LvdbsmPC5dSiZbdAuCPGlaVNwvYzkMXRq5UrFoTqcDe8tR08BTp+DYMc62WgStFm/gIhJyGvK4JngVLAN0GSj09/PG4iKhvKKo/0Gttods1vmiPuLMx3driv2Mg4YP3RGi4b3vtSB+tQpDwRvQaNkXs1my5ZF4bgYH7TOCnKoPVqeTLGbWc+hVUkpktdum2EXMpPf2RxqgPmP34zspem7+8tJSiVP3kYKj0zGPo1YjnJmhPDUFExOEZ87Y+9Wq0+6qaoxwWiOP5jl40CJsCiLfc49jHOs1muR0CCHy4IMweO67prieeYbu00/HWao25lBm+fH4kR0SAnNz9v/oKJnGKxwYLdPppGMHUwakj91XQk4OPbONZFZChrYUUG/arncEQezpn1tIxXrKz5D7AS6AdLBKsZiK9ZXqo4IAhkdr9qFIDyUi8j/xE3bQ69fhvvtgdDRuJq9Gstrboh+VfLp4EZbKGTI7dlhqWenO9SzI3uErU0VEPANJU6W35fxLzpXLjs5TzwCS2X9lqgU1fjvjZtkLnyPFEA5JVJdgXNIrlnk9Sr3T4VUsENXGZMYAUCWKZD/wgEGgDh/mOzMZpqchm81QrWZIvf/9rH7lK6xikdU00K3XKX/1q2aF795NrtZidHR/rEfBzYOf7QJX0H7ffVFGZ7LpZOyWLXGDrE7bfWdlBZY6jk1K91su2+/3v9/1U9HYsMGVVfbOp8wlPVstCfm5+Txwatr+aTQskxM9l5HgVWh3otnDkARPPw2vvcby3BzpXbviCnu/O3ikAmO5PzHxYbOfzp8nlBGysGCBqelp9hwu0WikYpiZDwP2RxBE8/jULMzO0sScihDLVuwF8vv22TX9hb8A33nXulncFeNNHYu1tbW/vM7L/5+bfPZfA//6rV6EHAsVQSsSu3OngxP5ePNr1+z9CHGRgJ5KOMjwibtE+nQGvqLQCfTjF0p7fRuURfENLV2rHKD+ftdpuVp1aeFu1xXpzc/DSKVs5y0W3fl7HQrtpHLZWZy1WiS8XOFuGMK2cUMBttuwchH6+wfISBL5DlWv5d+LsdGIJNBqmGF+xgm58+cd86KmUk3d/PT7m/340BadThl+H/8q5FcvKkzflVIC+/5I8bK98MQzVqg9OcnZ06f5LrbQW1jkqYU5FEVMQVSAan9/BK6FwswM7NxJenKS7uIiweSkHbdSIfPe97LnvvvYMz7K2WY6UfQnX03r0p9eTbcU/8qKi/JVq/ChD7lAPqfqbtGHYeK+t2+3tSSyl02bXG2pn124etWcNi1lf641v6LFrNftei3ZkCGLg5Zt3erOcfGi/Q4C1+5i61bTaUOtF6yTvBaG4BpqM18uW1+M//gfHU5petrW9oYNrkFfZKHsPXyY/JG9HD9OYmj+lJLXHiiXzem67z7ITf2xKa6jR+lMTsbUkIK9ZfFjae9g3EURqDtqrK7aAlehBMQCqFbbnyhSBSevpEOEaweMXtzba4DjJPUtT98i9ke0UZayA5ybdTrML5oV62upFGUhj5/gw4cO8dJsijC0pJ2uOZ/PURv/YFzjlzCU77svtjCXyns4dcI1ghQaptt1QR61twC7hitXrFlkJghsf/oNC2425LlLAEdRjaXSCNPHbAsLCuVnAnx1IrIJRa3L5aSK82GNKqqPH/XNGvetM2723lBpNb5+UasXi5m494muZWHB5ug974GpTodXMIKPNqYnSpjOGAOCj30M/t7f48LYT3H0KHz72w5RNzoKf/EXf5HgG98g99xzNLFgVhfoNhoUGw2ylQpMT1M42ODhhz/OzIwLoPo6UPc8OmpzuLfzHXjSdBudjuvAGxV5KgiYzUbZuJkG+0slqBgVsXRVNgt7Ksu8MJtOzO3GjXb9gmX5433vc2aTaleDwER3vW7ifmjDBsc37I+ZGZtgpUlOnaI7ORmzMRY2bIDRUS6U9nLqaxARcAGO0VgBpP1KS66s0Fpc5PLiIvkvf5ncD34A09N89NOfZik7EOuHXPbGdZHqLJF+8kn44hdZeu45voPZCKoHzO/aBZ/+NBw6xCvFD2Lx9Hc47iJ9cUfcZWrFivEy+TybK4UEvEkL3I9s+Abq/HyCRjtO0en7tVqGdNB2BrYYcPwIlLIVfv5aSiWSmPmag/Soh4BfbKUGPGJaqFSSMFZdd7cbbWIJdy00WX+y/KTMFO4pl7nQycTGvM8AFO2x2OkJQ5iY+KBBmNQTQ+fwJxGcVPdD6NUqr8xbM7VvfcuVYDSbVpwHSWNWzB+Li2ZHbtliEebBQWcs6zYyobF3+JE9QXvuucdFvhRl1DTImVK3XL/uIi4DOXbMnuU3vgGnT9Op1xOsT22ibAQGdapgmYpCrQaf/CT85E/aBURciXkv1N9eWCArHNi5c1bUH3H/LZcHEulh8dOrWF2EXJpi3+i45x4LYH10fMnOOzVPzNtXLsPoaIRBHoiTV9UqDDe/w8ihUS600/G8KKMjJZ/PJ2s0ZSOoVkL7TGtJGTf/HrJZh5fWdGzbZjaOnkshuwz1lnBVUcgPlsc/DEQK7tQpsyymppKZtU4H5uZYirDMw889R7i4CPPzDB0+zKOPfpxSKZkdu+ce22c+9GNiwgoVOT4FTz4JX/86Z1stXsXw0U1MYWSi5z/MuzDuIkVxu+MmDVX/CfDLQMSAz3+7trb2b6L3fg34L7EM919fW1v7xpue5No1E64qejt4MBa2hWKRoDTExYtOlGvdXryYzOTZ313Xhdov+urvd3Jy0yZXBLbeCMOYaEKEFbLXxW63bZtobdtxMUKlMhJBMuyzYlMKQxhZj3M1EpSrQZrTJ82o195XBlI07drPiiYLwlIsRv1mWi17c517ShjwYWhWpM+gUSwmutwLWqNAhT4m3S2RMD5u/6uoG1xmSb0rVCejcbu9LG45vMK8VLdrGP0gYKhUYmisxMpKKl4j16/DYP8S38BltnOYvBjGghLBAw/Aww/DxARTkxYPaTRs/hXw+G51iP2f+Qz7JyfprKzQwjIfnegYB3/3d0mVSjA7S3plhf0PPcSFTob5eVcrGATunkfyF2xSn5p1wh1MyXoQadlGqc5SsgI7m2V+Nqnul7oGbd5bS87t3Jyto975Fs2/grsK9Mohm5mB6uf+C9KzLyRab6dYtYmZmjI9m83Cc8/RIoIib98Of/kvw6OPcvRpW9d+80uf5KXZBEZLtoj27SN//jydlRVrYjc1ZYphcNAyc0BaRpoWn0anA1/7Gp2IKbAVPeciZhvETS3Gxpg5dou19VbGXaQv7oy7vHbNPNx8nly5TLU6BLhsgDxjSBIc9eybGyAgMVRVoRTVUChsdfWqSTK/8RDcGOKNhux9JRr8IW9aNlOmc4FqtRAf1q8HabWi2gg1MdIbMrYEXN+xI6a0uBwOcOZFB68SXrK3iFXXWSzCHnEySuL7RSx+jYdc++gGlrrpOPpSrzth32o5tkK/U6qeQ3+/a4Gwa5f9SO7l8xHGt9UhFYZks5lEkVrMztXpQMe8o1otlyDCkhJSUNx/XKUS8NRxmJlh9ejRGE8/jzkTl4kKhzHBUcOSsuEDD1iq85Of5HJlPwC5qCCUP/3TmNquDWSPH3de5Py8PZtikXStRrW6N16HWqf6W/UWUp47drhnVKlYSprJSZtsaWwVsET0UWFoDbgGt0cPe3IWslkKpRJhxeBxzaar71Cya3bWPWYNKXXtKW0PNeNVM1WfRWfLFldDsn077K8tR456035PT9sHVexSLnPihM3D4OAQDxz5Wep1GDlcTEYGxsZgwwbSU1N0MQFfnJoiiLyxdDbLwYMfjptstVouuyUntFyG1Kn/EGepeOIJ5ldWmCcJYxjGnIoBoDA2ZoronYy7SFG8hfEYNzZUBfjC2trab/gv9PX17QU+BbwP25bH+vr69qytrd0a+N/XZ0LJeQcuLTE7S248z44dGc6dc3K53U72nonhJ9Wibcjz552g6w08Sej77e6JDPBslsvkeHnaHVP7ZtMmM1I3bcpY5kAW/8ICvPgi6TCkUhmKAwHah80mhIf3RIxqzri7UNzDmedNXU5N2Y9sZtmZUleqTVN9g1/v0e1mODAxse49QU9hdD5vkQ81zanVOLdpmNmobvjcuSTuXnEx0buCy1bUak5++IZpt+scslTzjXWv6R0NTZIuSFGTSBnv27c37scTBEC9TgPLcGaw7GYNqEg3HzkCDz/Md2czTE2ZjPWLv8HiKPuPHIFPfYrK7/0eZzE59AbmXLwCZBoNhr78ZTvp9esUJiYIKgPkgqgKLPCcvuPH7aEeP56MUvleSPQr1V12i8nDWJXLRuufar4RITigVEpyHgWBBY3WYyGuVFwsdNMmd2j1GFOgdyQMb2RQm5mB556LN2C71WKZCJI6OgoTE7wwn7uhHt0PMm7aFBG1LaSsT0tUW5GamzMilk6Hga9/nUB4Nm3EMLzRsWi34atfjYvyVzG4WhEY6u+3YMXEBN+dSce15e943EX64s64y9XVRKgjl8+zc6cVyfr1FdHbMaRENjEkoTaCmGSzkGpfdta8b1zry6pI7YUh+QfJZhMw3F7kUC8mNAiw4qxs0keRg9FqQbacI10smpT1e1nIQ9KmiH6a864ExC/48uFA/uW327BM2qh4JTH9i5G16TsWPTcjyLHVctwa+6rzhqGD4IShy3asrAB5m7TVMJPAgur4ZJPLUUkjTcXKisvKK0LW7bqebtTrcPp0TA3YxBmWy5jgyOLqKsJdu0yo7dsHo6O8eFIwtgFbO6VSjDNoAeHcnDXQ86IxIgxPl0qUSoW4uNxPCvV2DN+0ydWfFIteAzdJ6nzensc998ReVbcLaX96PCe020m+1N9v5xS8UEpCsEFtAQ3VLfkNCXVtarSkMpNmU9j0WfjBDxwdpzB6SkGFYQLjvm1blCwcK0AXVq7CoIpFul2CRoNMRJzQAbLybBsN0p3LZLO5BIzLh8KHIU6RNhpcXlmJu31ryRYwKEMB677MAw+8c8dCF/DjEY/1GqreYvwF4ImITfAHfX19s8AHgW/d9gn9Tlxi+iCpD3xxDz2OthbVhg3JBgv+j/RAGN4UjrNhgwuACPYUBMB8k22lYdIWU3UXEeFHM2FI0SMG0V7V9fnnU6G0r4eUSRwcdHI3n08m3nXPUgGdjkWrM5HR1dsPIjGU5tCBstk4M65b0bXrI1Jf8svUDinTvUxmu0XFisWBWFbGUfbusrv5N8ukeP/fDjNUfOPdrglF0SMFAZlgmS1b0s6XbLVivH2RqP4uDK0bHZiHVC7TnXXTI32sNbCwAN9tDLD/059m4ORJRmZmmMcci2VcoGsJyHhUXtnigNXX9RoZwmLrhKWSq63wnGBR7SceRKRABQccKuYNFpYvMP8UjI25+eu1t3qHCqrVqFX7SubVsWNw5MgIQ5EhH/eP8NcQZngWgHBsDP7SX2L54Z/lxGOOO0elnr4ptG2bd4gdO0x3tFoMtFqEi4ssR3MbvP56cnFGjmpinXS7cfPWALMJhGTg0CGoVFjGwcretXGX6Is74y4VvvUM4G3bXHGX3vKD7YuLCea7GKIEjr/eBPt8MrIl48c34n1Qo6zZKKXG9u1QqcT1EX4vJR1Suk1RIoPnDNGYcvai+KL9iOugwti+dJX0l/TudmMGKzDZouiUItMqUgJXb7hzJ6Q7l10E3Hesep0LXXRURZipXKZctij4woIL5Ak/q7oKX/77jCDqour/tFpw6VKKbDYTC2HZgq2Wze3gYJpt20zJdtf5jLpTb93q1gJ4SizyZNSHQpzjbSxTkY1+utEPi4uJE+zYUSAIIMdl62kyOwunT3MhKvxexSJYqysr5Op1W2QqmOh2CUK3ZjXNCtyoEF2vyZgvlcx+3iO2EGEZrl6NCd+XswUWL0JnYzp6jGkOHD7MK40MC8+74ymbI6NCGZFr1yxZt3mzU4B+piubdRA+2fpg301Nf5dMPg/zHfZUKmSzaXvmUw34/vdd4dDJk3YQ3VgYMjq6l0bDMX9pD+j8y+UC6Z07Y2Fb+fKXrfu5qvGjis/L5OIC1XbbjuXzvHe7cGB01M7baJCLggUyNVKYU5GNnt8NJPFvd9xFEah3YXyur6/vr2LU4/+PtbW1i8BOYNL7zHz02g3Db6g6NDTMH4//N65DPZB6+GGjjvziF+Fv/A2yMzNMAPuBXwDyDz0EFA3uuHs3HD7MS7Mpfv+ZNI3GfsJwP9kdJjd37TJ5qrq4hRftPPv2wd5aEppztpHi+HGDj1y54mCEYQjD4RsGu4nwupdLe2iTY8Oj/xWD/Ut8dzbD1TOuzkmBIrHB/oN/kDT0jx1z8lXZYiVYBgddU8iJCZPbO3YQ1xHMzMSN56nX7VjZ7IBx+Y+tb5SnWOXVdoFvzX04ZuZpnHA6rFSCv/k3Lbibmn/Vej88+aR1tz96huzYGOzaxfIXvk76l3/ZUrM/93OcZYhnnjDVJ2eoXCaOWrwynzbZ8yZ9KvT/m9VgrJaGaGeH4kRF+ZMfNhnfaFgDu7/5N9l38iT3YFnsNvCPvv3tmBXkbDPNH88SZ02bkxBO2bG3bk1S6Op5yOz4Qz7OwT95kf3tN9gfBUpi5SVqQS2cZpOUTxV28KBTsPJYjhyBapXV2l5mdU11COYdEYihATK0ikO2DgLIdmCktGRfeH4Ozp0jFQT8bKkEHI7nqhAu8Y/GjkG5zCoH4vlMB6v80kHPk3o4NCKa9gWWQoOv5zpvRHjpH9z4zEol+MVfjO8n/Nf/2nnGtRrdrt3a+LgLBPiJJZlq8/Pwv/1v0O0eYMuWA9z36b9O7fOwp7rqDDQFUCMHbDVfSFDNAlCpUHztNYqR7SUd89UXjdvgzFHYeNxN/bsy7iJ9cWfcpe8mR3yl6TBkOJ+nfHAoLh5+7TVnGwsiqiCTz77kQ5KYb7kv+RZdL0esHA1JzFIplsxLQS42quVB+0M4f0FeBFspldKJKJls+yCw0w/uq7msiQSO4C+RQ7Nc2cPMtFMIr71mH5cS6nQc84Hvn5w7B/3VnBVxLyw4K7w3fOeHmzyOXO3N69cd7MmPUvVGqBRhkDHrZxr8qJmMShm0PuLMZxYBewQK2is6EoaO1lYINhWi8fWvczYquhMUqo3LUpSwtHaRqKnR4cOmhQ8f5ttnCrz8sozrHLVajvT4OExPk6rXSWFY/YCInnZujuGvfMW0ebsN166Rq1QYHz/Apk32nNT8TvMm+I4eQalkgjSXXYWvzbtiVN9jLhbpdGz+9Yz9CIrmTJFSXwhPTLgaCT/b5M+/D6Pzncc42ycsVVR4N3TvvTE+lZMn7UYXFrjc6ZDrdMwz2bwZymXmTxHztJ87Z38LSgd2yAc/+cm4gyovvmjNCK9fdxjdqSlykZOyaZNl7XxHevPmqKTj2efhT/4EpqZorKzEmYoM5ljsBTJjY/a8ajV79r/7u7yjcRcpinc4/lfgvwfWot//T+CXgL51Pru23gH8hqr33ju+duxYskN9vNCPH2d+YYHvYoEFRSQ/+Oyz5IDy0aPmIbRa7Hn0USYnU5w65USi2NnyeVufL7/s+oZu3254dH+0285oj/gd4oxljGuan4dqlatb98QvbR7PxHvD59eQjlhY4IYhSIYYn65edZnP/n5nWAoaWqtZz4w9B0sEQSq+VgXFgsA+c6vRbMI3v+muUWpKxcQfLb8Cn3/c9vATT/CdqJ7gLLB3aopwaooXgEcfe8wayD3wAO38UNz/QEGwWg0K3S5LXavtu51eFr3jZlmLhQUTU6pD63RgdDRHujsP3/sejZMn+feYfL8M/EXgD098MCaJ8AkjJJaqVTfHKi5Wn1E/Y/T889LTAxSLA2SLNvfvfT8Mbrxg/0xPr4PRIym0Zdzcey/UajEUTmsvmzVUqdae6nUU/yqXoVCMHuL58xZpUq3SYedY0G6bg1irkRIkWGN62hWYgrEzvfgimV277MSTk87QGRxMfreX3/bwYQetyOcJsCL7bDZFLlxmmXScwfNFbLNJDD8D1z+pVktRqQxTrQ5TLlsbAdWstKbh4MGk07nUSXF8aig+zokTLiPf6diakRx4sz1y2+Mu0hd3xl2K5QPcrogs2xRQqVgzoStXXLbbhwMpki27TMZbqYRFW/UFWbjXrycramVUK2KsSuxikdXSEM15d64gSCBU4mh8sWh+SLEY1RJMnuLAxARnm664Vqw9KvN4aVuG6uh+SxbKW1EYrljkcjjA1KR9d24urhmOEzBi6ektz9A0tlrw3vcOMfhAYJpx0yZHD+LjsxSFuO8+qNV4tZlhZoY4IqK9IGItP9OqoSnURvdhTL7vFivdaMTRKuy7ggwsddNkQnVQTydgZZp3dTsPQ2B6mplOhzqurqKLY35SbUWVqK7iV34FDh3i3JYRvn3CMLFSmmfO2Jz/+UcfhddfJ3/mDNlGwxry4Lp102pROHmSrJzUF18k02rx4MQEr+7IxMpFNaFKjEm+VquQefYP7Jl885su3BXBqzSJYdH1ZNG65sQpRioVqNjnlsjQ6dix5aOPZN+gXRlIZNI8dB9h6Ooy9UwiinqKRRguZ93GOncu2Ugx0mydToflaK5jGNTYGC/M5+I1pH2ptavzd7twrpJj0POUuq0WF4DlxUXChQWKi4vw0EMUHnmEBycmuNDNxXU9QYDhkZ99Fv7lv4TJSZpzc7yAE2wpokxFqQSf+IRp37Exzmb38I7HXaQo3slYW1uL3cm+vr7fBZ6K/p0HdnkfLWM26S1HOm0MNVF/OBvPPANf/jKvLCzExZjqUZPDHEv6+w0CJ0E8M0O1ujfRrVpdhMPQOfLat5CE34ALNMmgrNXMoR8Jogi+CB+6XbZNfDTu2ZSrf5cHH9zPlSu2R/zSqptBTpUtlt0p2ecnun1HpV6HcnmIZsNl2v3g1ptBPPx79ONu4NUjFIuOmaPTYeQrX6GFZXcLmFxYAl5dWaH85S+TKpXY8yt5Dh7cE8f4NOc02mSKxtjkz/XNrutmMKheiJRgO7qPPaXLcPQ5+KM/gi9+kRewRdeJ1koG1x5CMRU/ICYnQzJIuhicrFPfT9WHapruuScqEN++ah2nu10z8oXtFJd+72i17L24uDATP2v/OnSPW7faMpdjdPEiLFcKpJVO0fl6F4EWdAT/SMyvX3ske6XddgpfCzgKtCW+f+VKEhPs05jl85F9laJeh2LR2Banp10mXvtP9MoqmVFfpa1bHUlMuvWG6eZKhXY+nRDRWjth6FAtnY4LgKkPV6fT4cyZkG3b3kURfxfpizvjLmUFq/JUQHSAdpvB8SKQjilm9RUfK6tND0nIVOJB6ku9oXNJZlWQeVa6X1shYSpfRTVmWtj5vLEe0WzHdB1DlQqQYmXFLV5w8J9sFoZ8BpAInLsU5KjP2ndef905FX7Rug+78RMOPvNDNgv9tQEzrGTpKuXhT5gKFfJ5mvWkovMdC53bzyyAkzVighJkScWDvmPhQ6jU1G1lJYJuRScw+E0zLuAdLhVZDdKJuvMg8Gry6vW4+d0FTKGFOJYH/R1WKqb5x8e5XBzhe6dc8Z0vwDZvhldqOUY+8hH40z+lHCnMNqaALmCb5zJQnZqyRj2qSgSGx8bIZgsxUsqfq6isgEzrrIVE/doXTW7PCAJLR9teabv1G41ukImFbJxR63bjZ6Z106tHlInylZQMnWw2xZ7RURf66nRsIc7Pw+nTLEVORYBlhLj/fkvBjI0x8zWXmZaC9ROTEujnz8NgPhvjsYL+flKLi7FBwsyMLaIIMlWoVqHRtjqJbtdO8s1vwnPP0Y4a8bWi552NfhfAZSpqNVare5g9ccMUv/VxFymKdzL6+vp2rK2tvR79+3PAdPT37wP/Z19f3/8L26a7gf/wZsfbtMnomYfDN+DoSXMYv/Y1WlNTvIQ9/y5mIA5h9VR85CMOBH/mjFkti4t8+JerhGE6Xt7K4vlDmQF/izpj1gwVyb/3vx/2ly/A089ZGPT112OvOh2sEoYpMsEy1OtWY7Q9pNtNxefXvhCE0jfsJP972REla8GJBdWI+xlJ3ZufRV9v+IY7niGmrPSmTa4VTawgikV4//vJP/cc+StXSC0uUsbkZC76vQxUH38c7rmHh3/t78cZABEXpgHabUqlTM8c3+zaSDh5vjPhz5uCMWEYFS4/cxyeegqeeYYXVlao4zLbQ1ggaudOB3AAE+uyqXuhvNJp27a5Opjz5x1znezxSgV79mBN9BTJEuOWCt3W43oFF9gJgsRz9usfpfMHt69y/XqK732PmLFsfh5GSiVbk7IFImURz1cQ2M1HKaPEXEYsiOTzXGhb/UFBbJUNLNCltHdv9bdnSK0GaVJaN9GC73TSNJsWQNW9aU+0Wi4gKT3dC7ro77dLUxNkTU42W1h3bYCjbF9cdHUy/f0iN7lOp9Oh2QyZn4dcjnc+7iJ9cWfc5fXrthN9SSeL9MoVKJXYVh6JsxZxtASXwfCNV9+Lj4cMaUkK4ZF0TnW483FUYcjVq0khLoRKt+uyfb7wSJwnaqdaLA4kEiYy5BYWosTIaIF00a5LeMXGvGt85NV2AUlFp3v3ax06HZMdCk5ks7DHdyx8sD24brP5PJfbqdgYlSMn5eT7In4WYmXFBTl27XJRRAliKUKfBUrX65XVmMHsV44pxBbhn1LZLNXqSJzODgK7T4O8zTOPGRUdzKDMYUbFEKa0BiAu1FbdjN/oT/OqWoWZGRg5PAEzMxSnpiidOUM7OocyIi1M9Q5PTRnsRlL86lUK999PWBxKCP1uF9L1l6yoXg/Xp1/K5y2s5Tu50XdvCFF53mOjnoxghqF9Sc6hD3HSc9Dy13NVnxZ9DqD48AiFapAMH01PczkqcAyI4EZjY/DTPw2HDvHtkymmpx01sD98BhkdjmrRdf5rtcidPMlqNL8dIJyZcRAr3YhCf3NzMDlJO8ootXH9KkQtWwL7frUKlQqNhq2bH493f9ykoeqhvr6+MQzmVAf+7wBra2vf6+vr+/8CL2CP+796U0YoIL3aYbjxH8xwP3HCHIuvf52XMAjkAObo1oD87t3m7D76qPOsJTz+5E9g1y4O1GqMHtmT6Mbs17T50MHesWWLLatu14ztvfmz8NgTcPw4q1//utV3bd8eFztkwjBu3KmD7hkbozMxwOxskh4aksa1nA5dn5wZsfDJHl1ZsW0iKnBl1f0shR/ogaTB7p8zDG1r9ve7fZvNmggdqaxCK2//jI5aNhDg0iWGn3kGymWK3/oWQ1EW8hVgeWGBvf/j/0iqv5/h8XGGD06w1ElZUCmyJgulDuS9YJs3bpWd8N/3P5fuXCYtMoipKXjqKdrPPcdLwCwmwwewWp29QGZiggfvX2apm45LIJVYAGfYStT7ZItg8yPYmpbazp1RIMmvAajXbQHJyJbnt55zIT75SCmHYSGRONDfqutmepqhfJ5KZTjOsjQaMDJRMg9ICI1du+L5imnw77/fFdp57xHRI1+8aPEwgHK5wPR0ZFocHGZkLFpg0WTFz2HTpthbTrHqPLK8Nf2dnbI5e/55V6o3M+N8La1bZYoUQNuxw9W4DOcvw0y0iSIMVaESUsgnSRdU4J6emmJvpQK1IleupGKUlz3rELjMygrMzYW87329K/HH41bjznAs+vpcGqDTSVrNkUBIF4sUi7nYrlLq2bevfKx4DFX06dj8KK+cCDEv+UD1aNWeu5jme99zPoL65QnjPbhtGbpdNm826tRUZ8kZfspFA+kKlErWh0CKQx65MhHl8hBBALMn7Poj5sS4cY5fqCyol5SCbG/JIkVSVHDXakF3vMDeiQlXCa3f0hSlEmeDYerTdl7Vc/iRAXCG69atruBXmN5q1ZoLVavue1JqMlyVLCkWo+xONBlpAVNlNEtSiyR9cRE2byYTBFQq1oXg0iUHraFejyFKGVymogYM7dplEmrfPviZn4GHH+aF+RynTrnUqqIjckzBGleVSlYozfQ05TNn4sjbEi4y2sScizRQmpwkowVz5QqZiQkqlWHXqDEM4Imv2Qnm542C7957nWLpdm1yFJ2Klm6KVeh0ndcj5ovIq90jIKgkb6sLU3VGR3+WILDn02w6DLieqewsDd/vjreLtOhrr9lBTp7kAg5mlAKD0e3bx7m1gbime2HBxQv8cyopubJievXyaJqcNMT8PAEGpbgczXOwuEjly1+2ham0u6Jj9TrLzz6boBWGpGMZCp8yPs5L9TSzs1Z3/q6MuyQCdbvjrTRUjT7/PwD/w1s6ycWL8PnPw3PPMd9qUe52mWm1aGCO5ChQzufhV381rgj9w+NpsiVb7/s/G9jGf+qpOPiTnphgSJyo5TKX26l4SyrYkM3eaNj295sNVixGjRkfewqeeILO3FzMAJQDhydvtcwZOn7cyd5Wi/2HD1OtFlhZge99b/3bVrRcRpZ6BG3danL3/Hlnl/oY+x07nOOjyKzkdtxI9ib1Cdms6/YsVZnuXLYDn+qwOv5B5osFnvoiBMEwR37x71tDuoMH7QTj43zw13+dF1ZWOAu8BFxeXOSDf+NvkPq5n4NHHiGjC8tmrW5reho+85nbWgrrORI3jHrd5ntyEp5+mldaLWaxmoolDH83CuwNQyswft/74NQpMvk8Dz5QY+PGVEIHJ+wLkllYxeikdxVwHNy2bI1Pf/ADZyn7X/Q9vSBwQlJDhBORXvBr6gS/EolNqvmGOa9BwPt+5q/y2mtOlb46n2K4XHasOB5aIsWqHXh8nBdm0wmiAkg2QlTpnVCxQjaFhwoMxfhEb+TzLjMDzisLrPnw66/bMV9+2dax7CMNrVMfLay6liheBNN1h/3Sg1H/EtmBGp2OrbWI5eDgwQMx/A2g3d7AmTM5Nm68Sfbo7Y67RF/cOXfZ7boQai92BCAMWbmYRI34qWD/ML3IkviNm513vYfd7bJ5czrm79eeV0TAIuwt6HbJljJGldd7YUqnRA15SiUXZeilp/Mj+N2uGVxbt7rsiN5X+Yf+l6IIApcO1JBQE6osMWHKmXopS13Hli0uWO4fz789dRlXw5ytWx3LR6p92SJzkftfLBZio/2G6favSW/43qOEhNqbdzpszrui5Vj+tttxpDqP66g9FIZmVKoAYccOq1vwBJSGnCE9I9UQF8dHGH70UbJTU+x57jnSuOLwVcyZ6UBsECfwsngUgD4IdsMGCwXu22cVowoJikJQDzAIbqQQDEP7jJzgYpGXZq3JU7U6TKa8ajdTLnPqGQfzlkOnZ6vLUZ1FENhvn0Cs04GHH97DyEMPmWaJPLFMvW61C9u32/x+6lOce+9HOX7cPqK08ubNbm0psyelEIbmnAIOK7CyQqrVonT6NPkoK7Ks5+877brAubkYnpbGjDjhu0tgHW4feCCGGCowsF7/sbc87qLU9h01Llyg/fWv8waGjS/jeg4MAeVaDX7+5+FXfoXvNoeYesLsyphC+W//LJkNG1z3aaUt5ZS32+TKZYJSLo5gykjsHZlgmZF82yKljz8OR4/S8NZkAElBIwtP0WoVcuTzZPJ5Hnjggze0ANDwdQTEpGkUi9YvI+I8i+WYRKhkZTbrMOmbNrk9v95QhFd7tlyO+gxNzzgBUSxSr5u9Pjnpzletpnj44Z81rHuxCPU6pd/7PTI45z8F7PnqV8k3m+aEjI+b5/Mnf2IC5NOffvf21unT8KUvsRRB5QSZvYwFoPYAe7dvN2fmM5+x8yqi12hQKg3Fcy3Dul5POheKJUnOyaaNVazk//Xr3MCz6xeA+FBs//4VzYzS+3om+ojQaLlwGeoNs/ZbLQYPHmRzdSQ23lstGK7k44KEC90cBQ8mtNxNUa+no6LvZP2KgquXLrmyEEFn1Rgwn4fswWFylR57a9cuVwwLjq+2WGR+3mJWqukUylVIMa13sPPv2OGK59/znqiPUeuC3dziosv4qBhGkTU8yFe3C//xP9rmuH6ddKnESLnI6GjaI1HYkAg0vuNxF+mLO+MuSyUufOa/IQiMIWeVFKn6K7Y5XnzRKOx++7cZPHOGwU6HAzIyRKujaO3ERCwFX6mbofXHUzk6nRxBsIf8+E8l6GmV4pMQuHgRrsy6bsm+rvFhUGEIw8WlWJKmJFGqVZY6KbrFArlf+RVoNlkuDlkgPjq+GgopGiw4yMxM0uHodFzHSXCRENUwyKDXtctYCwKX7RDcsdWyjXvqVIpNmwbYvHnAWKy2wPUwstWmof6Uy3pksxbsGxtzejFdf8k0tOhSXmtauK5csgjJn3bh3ITl5j/0ISiXOdtMc+qEExCqjy+XcRGbfJ6zzbRFDDHGhmYT8of2G4WdCivm5+Gxx8jNznKgXoczZ/gpCepajX/0y7/sDFS18x4d5aV6OrZHGw3oPJGsjxMJmI9BVsIkCKI1UPwoex9/nOLMDEVh1ObnkwpClvumTTZpCl3JIFZqST8R85dCgsvZQowzvXQJgjqEDcEd0kCa/nyGsDRkzcG3RkZD164/x2Woz7uHDvxCrQzj2WTBHUAYstRJ8YEPODkscjLdRkxEMDtri3fTJviJn4AjRxg4fNiOt2WL3cfYGJs3WxZ91y7HXKNkx6VLLhvkw7FU4B2Ge9i0aQ+Vw7Dvb/19Mu03COt1QlG6+Ck5nzkLKMzOUlAB/caNdk27d0O1yqvzKebnLQja/k2XWn9Xxg9RUfT19T0M/DNgA/DFtbW1X+95vy96/89jgdfPrK2tfed2vvujPpY7HV7AYG8ye7KYMquCQaMOHeLchqEYTiojsN02EfbnP/Yx+Pa34cQJVk+fJnXqlFlLssD27SNTqZAJAsLakOvf0jskvOfm7Pf58wRYgEM/cXGzZIX2ojLzXj3hlp+4MaCjoWCADyNsty0wsBpmuNaMDxPLO2XZlZ2QkaRMzM2WrwzKDRui5qVBBDMRm0exCKOjnDwat/oB3L43ZqcBUpUOjI9T+MpXKHc6MQX4ZSxjkH7uOTK6CPUNevbZmwf83s74/ve5HDkVdYwxQJmkYaI18/DD8JM/yXJ1r2VkTpyIM0rF0aEYJlMsJmtc5HiKeFEiVro5Noql2NVDQzpBz14ZCb9woHdcu2bCq9lkqFakWEwl1kkY4py+SD/y4ovkPpSnVCq4ekldfDZLcxYK+WTGR2QzGoKZCU63uGhZBSUdxDQWhmYONBqQy/cs4PXuJ3q903T+ttDBFpO9zsaNGxIkMJs3O+ZJqc7h8irMNBJ6Lx7rFRb67+m5RBC1Wm04nkL5JFrb73jcRfrijnAsLl405kcjZLLNcvjwCJl83XB5x47RPHOGl3CMPC0gfeYMteeeo4JFK/Mf+Yi5sh/4ACM///O81B2Iqcl8jGm1arK+WLR099ycQ3m024aHlO8iY9Tv4Fouw3DoSe/XX4ddu1it7onXdqORZnx8iDPPmzPR7Zpx1Wi4gqtLl5K9ekSxp72hvegHM7ZtM8NNToRStLWaKww720yzYYPZ/n4NgR/xUiZE7wlfXC67TqlHjkDhW38Ak6+Z9Hj6aV6ZmaGFReyXgL1f/zp5ok6iwNiJE/bFXbugUrGM+SmXZRGbb7cL6SiNsdRNMzcH3a5z8tQ/Y3R0gFJpwAzceh2eeor506eZic7ZxOBI/2hmhv/lv34x9j86s85BazQcz7zmWREfORXKCsv4zeftlhV9mpyEmcowMExQgnzNRQAFoc6033DYWb9pgxaWtLomQjzb1T1MT7vIj35EHym/WWsI4Otft0C8skR7KsswOeXW4/nzZhU89ZQ7p7zSKGuTyWYtxhkE8QIoFIuQDWBqxmnQKDoZwwd3705yG0ZOfhbjE99Tjbqj9i+xHGRihaGyEvlVfrRLdSBqX1EqDVAuD9h6PGSnL+RXodFgtTQUs9w0GhAWD8TECO02cX2HfDoZYV7t4R2dsejr69sA/M/AxzA76GRfX9/vr62tveB97BNYsfNu4EGM0vXB2/zuj/S4ht3YKhFpABEFNJD+xCfMSDx4kD89bltxbs7B2Dsdi1dVq2n2vPe9cOoUbSC1sEC4sEAgY19QxG6XTLnNcLEYFfzkE9dCq2UCLgrdL0X9U0JMHmZkbfkYREVqJGwUxWq3GRy/TK2WWzc7IsY3fU1yq7/fFVr7iVFw5Id+olQBKnhzZqjNmyObd2bWNtbMTKwMV/OFmEZaOks1ffW6bnWY3MGD8LGPsefrX2ce0xtqEJcCRr/1LafQXn+dZqfDej7crcYtm+U1Gsxj2a03cIXaJSxbkX3oIdNZH/kI09NGN54Tj323S7q7RKmUIQhMbvTWDPoEL/ITNm1yPXavXyfpUKpvheglveh97P31sgj4Cj+Su+luN76uGLLc6trnOx3TARFHfzZbiEmlVmsFUmEYB132VN1ppD+bzWTB83Kkm32IrIrbfUd2YcFkcrU6kHwOwm1pyFvI52nPJOs3/Z6XPoW/1Ga5bJmKqM2TW3x+8MznrvfmMXFNPj1ipOeGRstUq6kYSqjzLi3dsOTe+riL9MUd4ViI/VUjDCMjWXjyM2doQdxNNzLPYuaYFpFjIbBftwu7d1M9/PEEV78WrjaCBIP6Icj+03dkkMgb1+txZEDW0Pnz0N+fYNEA+6wHlbdr7rrNeDGCdi0uuroJ2XiSQ35Bbi8UU+eAaL6iex+qVNi+PcVrr9l7Op9f9L1pk1M6i4tJtic1/Sm0XjFKvugZdGdmYodCz0I4+Cam3Ltzc9aLINLmYTgQG3wSHop6ZKIbabXMYO7vd5/TegjDqBZjvmkSL7oGOZjqqE1/f5wFVdGiD2MQLS842eOX9ayHlPNrdjqdJGmHnolfQJ/xH5AwQHpN0Xb9rVBiNuulXt2yunjR1fP4BZu6JtWXyAZaJk06m41rURLFf/rSxo3uuvxF6h/ct0rWxRRyo8COfttXUzd8VO/5xeLg+hPqnhuN5B4THFBOcRimyETz5T83rW8gMZdyljsduHjxOtnshvjc6xlub3n88CJQHwRm19bWXrHT9D2Bdan2hf1fAP73tbW1NWCyr68v39fXtwNDAL7Zd3+kRwpzKORMABQnJsxhPnIEDh3iuzPpuKGZGMm0lOt1KxLd85GPwGuvkXv+eXdwv+WvNrgWVG/WD+z148fhzBnmV1bo4BppZsFZP4rkaGzYYFaYMh5SQOUyByYmIgGfXFuqp5URGTEnW7+Z6Trl0f037APfqZDO8AMUO3bceq6V9R6RRd3p2MaMSBD8sjidV4xU+bx9ZX9Uu5KfmuLC3BxpTGecxXR4ptNh5ORJO8DMDK8AxZtBl28ybllrcfp0nKnoYDDJAaKO2vm8OaKHDvFSI8eZMzZPe++9NzY8V0ODmOXzlrmp1XJcvepiLZcuuZIJ1cGA00H1OrznPQUGx8fNwG617PfoaNJqBpaDTCzX8t79xJkU/wHPz5vOabWsRlHG++IiNBosLSyQOX4cgoChh0N27RpiwwYt5wxTU/b8fupQ8nn7lPI6v+yRbNZ0U7Ho5LnWV7NptWuyKw4fdk7eC+1hqgeHCYLomIcOcW4hxcunXI3G4qLLnFtCf0MiO6FrGB+HD3wgouz1sxRyEvRBGR49MjouUi8WbS2DUyIzM4yO7o2fo1BU/+7fvfkafNNxF+mLO8Kx2LzZoZgqFShwAR57Ep58kuWjR+NmR83o80Uc40sNCMRN/pGP2C6OdkBq6jvUagfiqLOcBjXUzueTrFJKaQqHruBAPu+KhEZHYaj9EjzxhAvVdDpxcWi5PBTLjNTxf2eMI6NDdDqG6oJkFkHpPekxsVD5KW8ZWdozfvah01G9UppicRgCaEzZZhV8WAbW1q032r2SaWr4rOO223AhP0LhJ38yfjOYmmLi13+dpagQr4Xhm1exSNBljGVj4OmnKUQu/4FPfhIe3Z8I2G/dGhWz1c2DGioW6dZysd6WUCuXIXXij+Grp62i8emnmVxZSWBkC0Rwgw0beOABV9zl16hDUvH50AjByPJ5h+lUzcj3v+9kVbvtiJr8OoFuVxTDTUcFMjdnJ9i40dJfvrejxXjlSlzMlh0fihs96pnCjWUZkoVKdugzuqcRaXJw3SOVQ46MgRjzJShRPm+CNvJgVktDtNuQUw64lwOw23XUbB52bLU4EK8zZeKr1UycUta21Bxns3bo6elkPYcigcI033dftJfal42icX6eXLlMWB5O4L/LZdduQ8fQ+rf57PCDH4SE4YZ1M+Zvd6ySevMP3TiKfX19p7z/fydqAKexE5jz/p/Hoky8yWd23uZ3f6RHgEFYhoiaHgaBFWqHIYyN8WojHT/frVuTsFNlML/5Tdi1a5gPf/az6wsDP5qpvbCesdtqGeQkwksE0U8GCPv7XXpUggXs7x07YoIHIAnLiBrq9Q4FeRsNVweXal92OkjzE7gtfvWqM3CV4QOXuSiVYLh887mW3xOODTA0MWHXlc3yQqPA1KTrU6PpymYtEO+zSMWh/vFxSnNztDDn8CwmwxtArl6n2GjQ7HSYxyyld21873tx87scprOGsGyFetusFgfoNFzJix80SbFKt5uybESzSamUo7/fROzmzQ5xIHktPSr93m7bZy530uSEpfYVXRThXCVFu7U+XLPbhbQfNfGrm1st1xlRArjVogkMP/tsvDbGP/1LdDrW+6cTZmLbp3d4ZISJ4S9J+TByUH30xNzcjbBBQauUfT+3YIFPv3eLarvlDEvvKZkjvTc6CoPXz8JUj2frF0kmosDJkXA+r1xxGySau1QYMlIuU6kYpW4vs+E7GXeLvrgjHIt02jFWpBuvmlV84gRMTsYpzDbE3OQhFnEoAoFwQWosU6+bERelnic+dyA2NLW4ZVSLwU2UgtoovUaHDMlqFYbCC3BqxmE4rl51ndo8xZNiNe5mlM4vkc6GbNuWSig6CR3tC6W4Wy0n+H1HQJtMmxjcaX0nxKeeU0ZCw4/c+YE5ydH3vMfqicfGoNA5a5aahGBk8WVWVig3GjHrTgsT2G0sIvQGkH/uOVLRBR/41VHONlKxkRdH2D1l21uzlmYZpqYNgzQ1BadO0azXaWAOZgcXsVSfAjmKutxu1ym9LVvcvGve/B/1zNIc6Vkona2519zm88aZnQ4CaHecUSBBpkUWFYfF2H+wg3oV8u12Mq3sZ2w0tmyxtSo4UBAMxQ3ktZZGxsvJeg49VKXaZYF7eeULLRN0hcixkN7KafEoQqbwVG+KIFo8qa7ljvzTa23r/27XhLS2iwx8rWGf/fmmAUtvsQp24CtCOeFbtrjkkAsSrUTXtyGRlX+7Y23tFtd569FcW1sbv8X7t9OR+mafue1u1j+qIw1Uw9DquI4csRePHLGFVirRqTvntFRyQSThuOWIW6PgAh/9zGccXlL71mcY8EP9vUPe7caNlFqtuH8O+bwJUik2yTrfyRf0RdROYRg7ImebaUqlpBGkPSUGnosXYbWas+hrp5MISOlUylDLOPJJc7JZxxALyZ4Z+rvdNvG7uAi7d2cIgmHa8w791WzaHvOhpErSxNF7ORZjY2Smp6meOUMeC0iJYa8OFCcnmcWy0W93Y/lD97C0uEgHywAMYyHaMpFTOjEBlUqMPlJyiUY3oVy73XT8vH0R6Mu6GI6E45+RfatApRXghE6JKxoTBJC3nguxc+ONTOeCLdjXXzd4k1ILvRF6Kah77iE1N0en0SB8+mnoWD+o9JYtBvn50Ie4//6RBPMS0aUdOnSjw5Filf3FhkFes6mYNEawYTkSyiys55j4x/RpzbdssXn3a0x9JIBvWgmNy2wjycevL8j7WFkxjHA88esMeduR3ABsoUe0lkFg+swns3on427SF3eEY7Gxr8sQZ2Fq3sIjp07ByZM0FxfjyHQWYsafIUxAsG+fMUpUq7ZAIq7w2HudmSE1/V32Viqs1qwTsBa37JONG10tqISFmKC0QVQjPhycheOTdn2Tk6aIwIHhWy1SxaJBc2brFmUXzU4Ysmd0lHY7FTsMfm8KDS08GZa6Bt+g7R1SNtpXvmLJZl03ct+J14YWVEu4xvvuc4wLNANL7+zaZV8ql2O2jHBmhrBeh0qF/OnTFDodVjHnooktrJGjR80/r1QYuu8+SmMjLCzYedIsO4nRaFAoYZ6jpHWjYXN87BhMTvLG4iJ1zGlZjdZDESu8G4jOUa06kitfdm/aZDJGiQPNjxxIHy+rGjpF2mXk+8q4WIRM97IL/ylUo8IQeQkbNiSlqV+Nr4N2OvG16rnof2Wp9Aw3b8YuanaWcnkodn50vUvdNBmfzktGj4pqZMwEQUxaIGe700mxYUOGl1+OfJLRHMPVatL79Rep/o/Ot0w6Ufeg5I3QjGL7EFOKMhbyf5S58zNCO3ZEWavG2aQWz2ZJ5/Ns2xY10pp9iT0RcYKMmY0bHQTm2jVYWEgDtjgWFyEI3jmN4DtQFG825nnzjtQ3+0z6Nr77Iz36du2Cf/JPHIE9cIEC+bIZZlu32o8PaVUtm1/uJGPocmkPYWUP6bGIrDgSnqvZXGzYFGq1G4U1mLD81V+FxUWCc+cI/OhOsWjyc/duJ7jD0PSWCuqEt9dmjgJinfkbTyW/Qzpp+/Yokh1FPXxDFpIkJILbqimYYLG+PvGdGP0tB00ZbQ0Z4GJ/9gtsxZwYBB4j4ehonA3Kzc+TazYZ8XvjbNgAlQoT/f2MiTXpHQ7dQ+bnf56/9pWvkOnvdy3bSyVj44v+9pEx2Szu+UQTqvoUNucJAydK77nHQamVqfBrBMYjc1BohNW8dVrrdCAI06SL9EBJk4G+eOgCZbSoan/zZptkXZDk/2c/S/nf/lv33VLJLuzKlbiAtFpzek9OWDpYZU+5E+mIdDK6HymLkUopUdAtgpeVFZPZ69VLy7f2h/TAAw8431MBKN9+kXklPZ4Ll51Og2T2R1n6XbsSmcIbam+CwPBU6jJ8zz3OGIo2hWjzwxB+//d5x+Nu0hd3hGNBu21FpvW6WSQnTrC0sMBZXHFuGYtMDwHhxAQ89JAJiQ99yDaVj2MRWHt62voEnD5NKp9n7wMPQDabwDEqWyBDu9t1TVdEyTc+Dpn6C8ZW8c1vwvPP04rqPgJgqF4nJSocFUaIq7xeNzhM1H31wMGDFIupmF2i0TD5IOy+H/T2U9r6KZUs+uSnXv3aELEuKZKk72/YYJcgA1ZCUa/pp1KJWBZaLZbzA6QfeICz3QG7teIe9nwutAtXIV90gvLRo3SxFflq9MyWgMrRo+SyWTh4kNToKIOCBjQ6TqlEmFDC0Ixzcc898wyXT59mPjpmM/opYs5ECYwhLGoDm2u8RC4M6d83HDtvnY4zyn0bWcpVzqQQSn6BY71udsGOHU5Bbt1qqWRm6+ZYygPsdu26t2xxjoVv+fvheIVAomKNNMvk8+n4+fo1PVJ2GZZssc3MwNQUo4/8VCJatrho3xv2Mbs9OeQL4ZB5fiQhS1pD4BheFhehdV+aWm2PFdnLiZZ3pkKgyAtqNg0RIu78730vWeswP++cdx/SsbjoAkuiVxamtlqFQvcN15zPf1hhaDUl7bY5oI0GmXyekVKJYHwg1qPaJ6+/vpFOp43FSK9z8WL69mTTLcYPUVGcBHb39fXdC7wGfAr4hZ7P/D7wuQgT+yBwaW1t7fW+vr6F2/juj/YYGLihz0Eh74yGwe3J37c9eqyhFKtkQsiEAMH6UZ1y2ahRe8Z6RcRxE7deTv11vjNSubFWoLevQGIUi5FhCOks5LIwUrn5x293jFRWGfnM+u/d7B79hnW5bPR+hCVenfjwrXtOfPazvHOXomc88QSZJ5645UfSrMbzBiR5yMF6cwCQJcMqB8Zufqx1C8jxjo3WFIk1p2tYd0Q69LZGPm/O7q/+6i0/lmKVoZL7Ox6RAeK/tkqKlLyk6L1bzUHvODCWnI/h8uoNELyP3ubtQeAwVbc5bngeYWgwuFuMkWjt7q3Bf/vfvqXTrTvuJn1xZzgWFy/CF77AalSY+wqm/ttYdLqKNbAJH3gADh+GI0dYGvswU1Mw9YwZLcWi1Tb8wmc+A0ePwre/zerJk6R8iqUjR6BSIT02RjoKuQSBGRg+YYMMOhnema/+H8avfewYndOnaWNZFFHWpdRu2scyiZRZ/8tiDQKGSyWGR4ts2JDj2992MJDz510AS0VMtZq7DuHO5c3L1lpZcZHnbNZlHN73PtecWM64H3mPGzuFy8RtqCfn49RH+sgRvtsY4NgxMxqvXYPDhw9QKsHYp3/KjL4IY5ytVhl9+mkK9TotzAG4jDkata9+lcq3vgUf+5iFN977XhfFUyPBVstCcDMzZkhOTjK9uMgbGAa3ER2vimFjR4BipQL/8B86Qu+IiiTT7TI6OpKIWG7Y4FBdMmj9AnEfUuZT7iqKLtTC4PZVmI3m6tw5B4ULAnsQgjyJo74XX61QlAdHWrYcVxzxk/GthMO2bTgPYnoaTpxgz+c+x7lFi9i327Z2ZmchPz5AruYdv1plNTRmppmpJLJDGQs/e6NloLqbbDYq3PQzL1qwXo6627X5FGRVTo+IATS3iubp97ZtLtimiKxKQYpFoN5K5sI1f7po1YBoAjsdhkezlEqZuC5GTuHMzLZ478C7i519N8fa2lq3r6/vc8A3MArAfxF1qf6V6P3fBv4NRh04i/nwv3ir7/4Z3MZ/9uNmBiSsY5TdRiO3Wxrcf4ajt6u1Xnuze1kPT/5WjvHDGrc673r3+laPeaff45t9fr3vrtfd/E4Yf1bzeyeNO1Ff3BmORatF68IFLuNqKYoY3GWVKEvxsY+ZU3HwIEtjH+bECbNBX3zRjCpBMEZHB9j/iU8YS9PRo2aRz81ZJFzYFqUmmk1y1SphyRlojYbZqXsrS/b5cx34xjfg5EmWI8dHcU+xf8SpAb/6VukIgcn1mf5+s2i2b2fXrg9Sr7ts3KVLyRoIsEMKI7xzJ6Rbb1AqDQB2uJUVZ9f6EJ+rV21ewH73smP5NQ0JChG9WCrxwmyaF190XbhXVojhZGFoc50rRxmaWg1mZkjX64Q4x7CDQdhWGw0qv/d7pE6fttzn+99vaeh63bJA09NmSZ46FUPgZrD6DTFP5aJ1UQGKu3fbejh82L43P29g4C1boN0m1V0mCNIJGJkyyDJ0r151c6/XfHyobPmrV+3ebW2kLAMjvJLfqU/gWB1AAH8/ty3mJo2u0RkWi5k42QUuc71xo0XyudR21c5Hj8KzzzJ4//1sGx2Ksy2JRROlP15tWnbu4kWHFoxOm3js+q2MhV9sH4wXGK7V3PqV1ysQe6XC7AnnE87OmiPqz68gaL0+lp/qFsZ55077ne4uOe/k+nX3RR/DpgyXPOcwhEaDdD5PtVqIM1OXLjkorrboOx0/xAgUa2tr/wZTBv5rv+39vQb8V7f73R+Pd3/crkFzW92h7+Cx3nXfjkN1K0P1Vsf4YY8fhnN3JzgT/nir51/vub3TY/6nGO/GNf2nel53k764IxyL5dVV6iQN9gBzLNKYY8HYWNy7XYaP2BZU+9RqmaORzxcYHh01A7ZehytX6CwuEp486TrLnTsXh0nTUTqykM1SKuXM+FLoVtCq69djto8A15gpD4bnGxxMWusCmqo9dRC4z0QFgrLPZBP5hr8W4MWLDod+6RIMVou06vaeX2weN78haSxu2JAkn9DfxWKU3tV9qopLOJVqldkTrkDPZ7lLwN3LGVKq3KvVKJ44wdDKSqKYu4s5B28Ape99zzwlYV4UNp+ZsUaJi4ucxQr4mrisVQaDPpWBgf5+w6e9731QLrPUScW0e6ys2Hw3m5QihqNWy/Uh6YU+yV5V9keOiD82brTIevxeI7KUBdzWw9OBfc48vQfJAhqF+CNy8VLJwfMWF824FuPGtm2YgxvdzFKnQ6Zeh3vvJZ3Pk89n4lMEAdBxi0hGvQxrOS9yQGW3g2UaxNIRhm4dJYxwFS2oRiRerOn4bXNKrnPu3Ib4/7W1Dq1WmCDbkaPhZ4SUsShkl6ERLbwrV5LAZR+AfO1aMoOihQ+USoXYMbx0ycG+fOjXOx0/LEXx4/Hj8Z/DeLPswJ1orGq83eu7HSP9P4dxpz+/2x23coDf7Xu8W/TFneFYYJAZORVyKEIiqNHYmOF2ajWWi0PMTyaZGHw2n3rd7NbhQxVzRObnWV1cpA2EMzMO39HpuFCpin+CgEr1gGHoxVUJMX3oanRdQfSTAjLiyN21K1kdLcC8HwL3Uwvtdlw0rsitDD/1mPCHDKLlbiq+34h0KjaW5dMo+q6hALYPEc7nca0uf/ADu9/+/rh6bTVfiNE+Fy8mi4RbLXtN15svDZGK5pqxMYZOnozrTwQZa2POQnplhUJU9M3163YTCwtcXlkhOzcX11G0op+utw5KREX7ExPmaO7bx9mGzceIvAEZvO026eIy99yT9mvr4x/f1lfBd+/wyxW2bjV/IcXqzdlhNmxIOhV+IbVOJsvaP2mnQ6qzZNmvMGD79jTbt7vbSQfeOTsdloHM+fOxh7dpUyY+fKcT9QeJzqN9IgdV9+47Uypy1ufWYztJTIawRQlvpnescvXqBq5dg7W1FV36DU6bz2CmhoXbt2PUsr5H4zeEWS+t5zty0c1lWGJw0Chvz5+3Y1+96vw6Iaje7vhhRqB+PH70x+0aJXeKgfZWruN2P/uj6lTA23cK7kTIEPxwDOcfhef4ZkP38GYZtnc67iZ9cUc4FqsY1EWGe4hlAgobN1pU+pOfhEOHuJAdZnrSEC/ixldPCNlSr71mxbYXWimj0MQVEi8BrKyQaTadlS0agigknxOs5uRJO1i7TWtmhmVc9D2Iri8DcYfpGOffO3zrv15PGJSZfJ6DBw8AScYN/zBq2irHINU4S6lkVKNhaEZSpZLEi3tIGMLQ/AVRAWph5/O4VMe5c3avmsRt2+JjiWpd16eOqioShwjKX9tvPNszMwxNTbG8skIrmrM2xDC3Zaxjelatj69fh0aDN6LPNnE9MQSjykbzPQDk9u2LIVCrYwc49ZQdpnhogJx6NHhQJTGfqIZZRnM+79i/FLFXAb2SWr5PeP26Rb0vtFIUdO2bNyc9Oj2k3gJqz6NbDdKkdCFe+mg1zJDqLEG7TbFYINV8g+3bB2ze5ZBEXsEq2MKPulD1lw0aJ7gTpRxBPkej7qBrQuRpTfhDjoagV2BzIvTgiy9CNpumVBoho+IH0eqUSrxSTyV6g3S70Ne3kc2bbYq63Y3AxnhN3nOPLTE9hygRGddVpLrLztvubSzmbw7tJX1RfMBelf62bRlKJbf95JPk83D6NO9o3E2K4sfjrY/eTtB3GiSod7yV67gZ9OfN7vd25uNHbdzq/uHOfr7vVi3Jj+q4nVqhd2vcTfrijnAs0lijOzkUxTCEX/5lBycaG+PcpmHqZ4zGWfaEop0aQi1NTdn/f/Uzn4HRUdKjowxPTpoF84MfwP33O+o2gbt9WMfsrNHazM7C4iItIqckGrLLUv39SYo3P3Uiy1/QDHUaErwqomBKR1Rw+eJATAXYbpuBu22blS4MBW9YBLfehmaTwuESy91UDOmX4ahoLCRPLQfMp7PLZmF8fC/DR2pmPar+ZHycy+R48aSrPfeZ3XSrfgBZ50/Lgh8bI3fyZEwTvIplK1ZxELKxEyeMTWV+ngutFi9hi1FMYEsYBK6IsYEVgdH+fuuSOjEBo6PMz7u5arUgV6kkmk4sdVKx3Z/pXiYTQK2Wi52LbNbVE0ToqXiOBJURnD/ymSLW3Rxb7tnLoCgoI7pVPxMQr5UwmVmz4w9QLg9YDUGEy0kpezQ/T+6ee+D73yf13veSUyasXrfChdOnOQsUvvhF+3ytRubgQX76p3+Wet2MdhXzT0/bXpCvo8J+OZi6Lr+Joj537Zr5m9PTzonfsQPy+QyVyh6buzo0TzkkmyjF221zPP0EjdpoiFhAsLxKJeqiujmi7213YbLpvDp5H8JNlUoOx9VuOwrfIEhyCUcpl3SxyJ5ymT2Hi4RhKn4O9Tp85Su8o3E3KYofj7c33gwW02vY3InG9lsxvt7sHt+OUXonzgncPNJ9p14vvPO5/FFwCm92bes5gOs9rx/Wfd1N+uJNHYu+vr5/ARwB3lhbWxuNXisA/wqro60D/5e1tbWL0Xu/BvyXwHXgr6+trX3jTc+BGaBZzIDkQx+CBx80gyIKt6tB6ebNZnAL+aAGZrI1FhcdQ9J735vjwYMHzRsBF/3M5z2Cbc2ENxWi04ysStVVpHBQqFx/v3WTE6G3jBsdSzROfgTdd2JUlR193merEVR/40a7hKFqPkHtudRxBpJw8L5ToSSMnIt63dljmza5Xg2WuEm5SD/wwnwupgydnU22K9BtCA8vnyo2pMPQ6khGRymcOcNqq0UKc8Q6mFOhDMarKysMR8xZTSxDsYrBn5ajOc8RZa4wGBTq/FoqJZiUYsdHDELRvWRKIUEQMZNEFxmEufhfQX9Uf9BsumJ4Gcd+VsZPQGSzJKzxdORVpLtd45WPntVqxDrm13Tn89Z7IfZkVCDTbLq1qgIieSpaENHorqwQCMuTzTJ48CCb7yuQ67wBwLaaZTvqdXe9foNWNQTshSaJQUvXrOe+bVvy3n3q8G7X0cnKabl+3ZWQOIfKfQbcexs3eg+k3XYYJVXb+4XvPh+zLmBlJVko4lfnezjAbjfZwO+djrtJUfx4vPWxnqH5nzJC+m6Nd1rQfCtK2ncCp3o3x1vJNPQ6FL3jTncu3o3xo3hvb4VY4M3eezvjbtIXt5OxeAz4LeB/9177e8C/XVtb+/W+vr6/F/3/d/v6+vZiPLjvwwLOx/r6+vasra31VAwkRxrDzqe2bzfsz0//tBVey1gvFunMuvIIvwFSGJrR4ycLlLn4/vdh48Y0Bx56yKxpWUmDg2Y9Xr2ahE/AjY0jMMO2E01WGkht3Gih1nvvdc5DLwxK7Uh1TsE6fMcigm+s5gs05h0D0cWLznHqdDz4DNyUzsYgJ86Iu3rVRY8V2e90bN40FTpcPp8mCKy51NSUY9jqdSqU5PGRJz68KnaWymXYvZviyZPx813CHIZU9PsNYDiiEWrgCr1VqJ2P1kQx+in099va2LkTstnYSdLjy4SrDtOj0e3S6aTtpWwQrw85ZZ1O0na/WX0w2Ll8gqduF3MmPCcitlq9g3TDdOKYYQip1gXXNVSFQXIsVKzcaiW5hT3sVhjNZ25mJobrUatZxqZeN0enVqNS2ZOAGLXbsKd4AfJ5LrRScdsVXbJ8bt27ElB+PYrmymfS8vkK/O3U8yhuGNrP2SwwG3l2Ynnyi3p0QJ+DV4tvwwbXBUyF9Pqc+Gajhx0E6Rvq6N/puFsUxY/HWx/rGdbr0XjebeNOhNK8lYj1W2HEutPGnXpd7+Z4u5C+d3Kc2x13i754U8dibW3tj/v6+io9L/8F4FD0978EjgN/N3r9ibW1tWvAD/r6+maBDwLfutU5+rJZUh/5iOukevAgF4p7YsgOJGuiZWupx4AftVdvMkXqOx0IDw6x98gRYw+Kun8CZniUy6yGGdd/qwnD997rjLpul2DXLrILC65HgQq2fQtblpQsT4H7hQeRxSVvCOLXGg0LVF+65PoA+Dj42Ij1H1wQ91eLI8u+z3H9ut2eIvEqp/A7pM7P23n9xnkzM0mj0XcqBgft2Fu33uiPAe4BlctxtXSxXidcWYkdB9WqtACef57mwgKv4uowCjjoUzX6HfcJqdXMcYkWhaY4jrprvqMXl0nHRFFULK21smjrRBvcbysRkXUl1p3+j5qVJrJElUohEbUPwgyZsJN4eL21C+lg1fEa1+v296lT9qbSCH4Go9126aF8HnbsIDs1ZfUq0QXln32WQE1O5udRUcHQkTK1WoZqFXJEXYW//jTcey+FcplCrYw6cPu+UbHoyLXKZZeY0X3LmVBmTHMk9tlm01HNakv4kCjfYSkWId2+4LxZ4fZ86iq/bat/AXIewNGj6WLC0G5CD7vTIRt1Uta+eafjbopA/Xi8s+FHwW+VwfhRiXTfDtzkZq/9KECG4O0/izvtvt5OrcftfOdOvM+3cr23s/fezXu8m/TF7WQs1huDa2trrwNE3fsGotd3ApPe5+aj1249rl1LAvrLZQqjo/Ze214TjEEGMji7S0aw6DllV4i+slYDpqfNqZiZcZXMUeYgBWS6XTIY5SzPP2+h+9OnodWiGTHxhJ0O2cVF0rIydTINHwola9/vUS+jSJZ+1JF7aHSUoQcqXG6nqNddb7Vy2a4/3YmMwshK8w8pWIdqKDRHMub86PPsrDPqrl41w7FSMVtdPkGn48otdKl+DQeY06L+BILBBwHW00L4llYLFhZor6xwFmtw5zsWeYDz52njGKDyGGwqBTFFbQjkGg27uIWFeN4VNZ+fN0cnCFIMVavQ7bJExihWG+76z11Ms3FjOm5CqMcnI9MnboJkFF+MuNmsmxtwtq2IoLrdiJHJWxPdbpJOOH5wGzY4OJ6cBqWVqlVn4fseTpRqSmNZoCyW4Unt2mWLXDinrVttEYVhPE/ZkhnVGWXZSiXOLaS4ds35Mxq92T9/CCblL2l/zWkvbtxo60Rwsl7fWo5wpwOr+QIp7cls1gpFtMDEfes/pF7PUNmLrVvdxpGDH22i5TBHc8ohzN6NcTcpih+P2xvrOQ29jeJ+FCLbtzt6nYSbFQjfaUbo7Yxeo7P3td7X18Pt3wn3/U6hbDdzhP+s76t3vF3o2pvVyqzX6PHtjLtJX7xdx+Jmo2+d19bW/WBf318D/hrA8JYt1hVbUddazVkpkRW9t1YB4HI7FRvRss9lBPqJCNlo8/MwOQnvec9+LrVgz+HDzkDxYBbL3VR8upGHHjKrqFaDbpdive7wSYrIyxhUbwrf0JGVLjiULE9Z9brohx+GIOCl2RTzxx2Ea2bGDqN63mIxF/Vfy1EuD9CoJ4uzNR86vV/bKtssmzXo+rZtNwZ25VCEodUHX7rknAXdpjqRqy+apkDHKZWi+ZQVOToK+TzZ+Xn21OsUFhboYM5CA4PyNBcXmY9eK+LgT6Xo/4JohASvEoVTo0GhBIU8BKM58nnIBMvxWgmKmdiY1zN97TWXpZFzoPoKv7BawXDfnt+yJfm4t2+3z8mOTwerztOZnHTPOwjITUxAGKUCWm3HOPZv/60RCXQ68PLLtu7V8wTM6VR2zccavf/9FKam3ENcWHCMBZOTVm29ZQv86Z/C+fN8+NAhmK3DZJNMsWifGRsDYLBie2p+VyoBvZONXyzaZahjeW8PCmWDNNdbtjifSr0jeuFQvkOiIMHCAgyqc5/opc6ds79nZx0RwrZtjpNWF9xsujSbUmybNlmledSUcinIMV938L7FxXenxuLH48ejd6znNLxb0Iw7abzVYux3Oi8/7PF2a19u5iTeiff4Vsab3deP0nizZ3czeOKP+jP8sxxv17E419fXtyPKVuzAIPNgGYpd3ufKGNHPDWNtbe13gN8BGH/Pe9Z4+OEkfQwkrZAoTZELQ8KKFeDec48zDCEJrW61knhxdaFeCnJ0I0ckzFpdQbfjmohdvAiVB/aS6nbNOPYhKTIYt2y5saoXkvyklYqrpfAqf5ezhdgQfWHW8Pd+AzqwaVBkWK/3wvl7DhvbnysrZhAqqyMkzf+fvf8PjuM8z0TRB43GoDloDJvDAdAcDpExNKRGNEiDEmRDMuSlvHRWTiRHyZE3zo28J7nr3eutTZ3k1M09x3vjujlVJ1txncpd71ZSZd/Ye+299h5rV95jZcU9clZMyKyYNRxSFmxBEiRA8lgYkUNhCIyAIdjENID7x9tPf28PAUkU6Qhe6qtCAZgf/ePr73t/Pu/zuq6xzfW8kH6Udtm+fWKT0SDk+/ocnidzT1rW3bshvT+YwuCJ6N3NzyP34ovy99wcDk5M4CUAk5CI+0eiheICyLHOplSS47CjNeFn9JyiG8z7djKFEIYx/IhrgkMTCwES4NY1FltFE+g4eZ5pReI4Qoua0rUVXCO6CQnXgPZeaBTv2iUPZs8ecWLpvdx6q7yn63cYmb/rLlNdHgSwWKcxMpKk/uJD1x5nxETG86yGVvxRTh//10X6hBzS71HJvsQ64eE513pOedx2ZljPk2ewuiuDVCFalLmcYPQIN9T3Ra9Pe8Wlkplv/s+F6/to1JM+h+clGJXf8biZIlDvja3HdohKvzeub9wMz++9dfrujptJX7xTx+I/AvjvAXwh+v1n6vX/vaOj419Airf3A/ibtzxaKiVGRGQ0rDoZBE0g024YRZZKCqsAgF27UjFxDGA+StteR51pl2jIh7ZVyGQDQPoJtIPHGdKngaYPoCFQ/M00gK74jS5sHRYsx4kPx8N0diaRVe0lGSwg1r4MYAxlvkYaWsCwdbLpHh2Ezk4x6Phd2sPtRcu05WnDaShLypY0oeNAIGu8CFqldAwXF8UiZYbo4kXYMzN4HdKbogwg19srHsqRI2Jkl0rG4mVzCXbq5nzqKmyVZgga5lnSidJrgUgZ3zdrR2cstMHc7hvqx37VZAEm46DnAkiuAXaDc13g537OZMdocTNl0F5p7DgyB5oemc0ZSiUxxrlnfN/Ao2zb1Cq4buwlNdVUEhLG+bJtg2rjiJIwsMJVOE4qppTl7WmfRl+29os0nwGnI96XThp26QAszkGtJimiSsXgHNX1xz96I9NzjLzglcCKHUpdiL4FB8I1jZtJUbw3th7vGWvvjZ+F8d46fXfHzaQv3tKx6Ojo+BakUDvX0dFRBfD7EIfi33d0dPxDAK8C+CQAbGxsPNfR0fHvATwPgcn/07dihAIg6YJTpwR3cegQmshichLI5VIYGOhHX7E/xri3WsDFWTEQFheTePnZWfnN3g2MvL7//cBtt8nnss4K1h3pVGwFK9IfolZDJgyRoXX0L78OfPvbWJmfBwCkaSwSqsXiB1arMrKsPRxezPKyWPBRQW4KiIH/QxEV7uChQ3GDgaXb5N67u+UUA7tWTfohGgtOXh6ebexIlqgQ/sU+DawT9jxBjJTLclw2Fjx6VD534YL8npoy2QspUE4WcHd3S7RXotlWXOdRKmWR9kKDwXrhBcEfRby1C2fO4BwkfVWNFs0/iBbJBIBweRnu8jK8SgX9AAa7uoDxceNgaGhQRDebwiouLKbQ60WG7RbGIhFVzMxwEA7DHoaappfv6XoD+jQ7d4qR3dlJCFEaTi4N5PoFjcmDeB4uLKdx5Yr0f8j4yktkbxNmdujdssKer/F4fJgvvAA8/bSRUHy4pZKwlF25EqcOVooH8ewzwJ49g/CKg2g2gXwO4ryHhrJ4dlbWDKFC3AaaVpbZCyljSMWJPB7jhRfEPyJZgHY0SHHMtep5hhq6WIwRS7Ifg1C1+4Z8sa9Pfniwvj6gWMS6JxlHi44TnS1mjxwH6VwOuVw68fz0c73ecbMoivfGm4/NMPhbFYPqsV1w+Nc6rvWat6o9+Vm577dzrT9r99heQ/B26Xb1d7fzuFZiBL03f1r3drPoi7d0LDY2Nn5ti7f+7haf/+cA/vk1XcXSEvDII2JlvPwysmNjeP/7Pxhz4RNqzeA3YU3Ly0nHggYNYGAZpZI0arYmfyAWzTdPwGIra4aop6eTRQnHj6M6Px/XAtjLy7AB5JaX0T8zA3ffPmB0VCA7jJC2Zy1o4MzNGbw4YF67eFFuan5evJ5yGfB9ZEolfGR0RL5frQI/rMpngBiGlf24H8NYeMhWy9hjvHdmI9hx2fNMEJuOyNGjBjrl+8B3v2uIeaanDRMqEwKtlth17KDMRESzCQwP9yPj1uV6f/hDwf1PTqLSauF5CF6uAampGAQwtH8/MDMTOxoOTMfthVYLpZMn4VarcjP1uvy+805cWEzhtdeAViuFl19OkibRpm8veaHh6nnpOHvRapnP0ehlH4v22gAayouLZo7b4XaSFBgS6tpFAOcN1EquJVepMW8AAQAASURBVAXP64ft9KP08O1SlE/6MjoT9Op4cIb06e2wax2j+ix4GRmRIujIE7xwOYOnT8lz5vyEIeCM5YHAOFK6eR9HEMje0s5WoyHLllAwJuS4zJlQUI3lYzZYZtDYc0Zn6np75Uecirb0kO66rR9kGGLVTiOMPp5qh33xYUTeseOlYWEdrmv2jL7OdzpupgjUe2Pz8VZFy+/0te0+rvWaf9brD97Otf6s3eNb1Ri8ne9u53Gt9/XTvqebSV+8pWPxtzKWlxGePAnb8+LizYHf8IFcDqt2Oo6usxC5Vou/FjsWNH66u8WQIdpkdBSwTv0lcPq0WEMTE5LC2LPHWEik/WFmYHk5ZjACpGt0GsLE4wBw5uZg795tQvnMWGhKTF4oq4XPn5dQv+bE1XgbQlW0g8Ljx5ypAK5cwTqsBGMPDTs6GHxdw1oIadIsuY4D5INXgLM15F0XqDQxMnJ3fAk6e8F5BUyJgOMkkT+2DVMpHbVjfr3VQhXiVCxEc5qB1FRgfBzYvRv+xARej+a2CeN8AMDgzAyylYo8s3IZ2L8f2NkflzWwx9zOncYOpdGq7VQarpYjTfMIfSPbFQuJbdtQ9XKNkfGJlLQaXqVhPxpW12oZaJkmEKNBW69LUX6KsKb2XioMr+s1FQSyjmZmBDLmOFL4UCxiAVnUpoFCIY8wFP+Dhf3saXL5crLHBOePn2MGkP1UuI/IQUAHQRf862VMp5/ZHn6WmSLXNZkL1kIxK+L4aYkXtU+YXlyOdDhPOTZSwYpk/5jhiPFpMDcX/U2FoetC2HDzesbNpCjeG5uPnwUD673x3nhvvPvjZtIX28KxWENkvDcacCcn5cXhYaBYRMr3kcvlE8bi8rLpiUXnQuPjWag8Ogpk6y+JUzExYTBAhYKxcLSVxLFvH7xGI6ZGfR0C2bGin3UAheeeMxFUwnQ4aNiwhTVxJnv3xsXMYRDAbjZNAa+mHtIgf20kRTyZxLjz7faha+AdR2zROGId2amsMcBsUyzCyKHLF4twRmW+n33WMHteupTsP6ZrEjo7VW+AWk3C5M88E7M+1WCcihSE/SkPyPNoNpGZmIgpVNchWaIAptP5aquF/slJWIcOAcPD6Dt2IO4LR+gOEUBstqzLL8IQgC83vhJYsR2q2cM0+iYMTSPnK1cM8ykgx9f1w4Dcu35c+plwXvgaaz8MF4CFrO9LE0QeQNfycC3w5403xHE7dMh4drlc7Mfq7AnRQXSWeJ8aYUXHSjtanB9eJ5MB7TUTQDK7cemS+bt9cJ1wXvmM9DNwCFHUBev8cvSloAnYrgVLX2h7/ZPObijYl4ZCvdd5+73xbo23gkhtR2flWqAv76Rvws/aeLudun8WIUNv53M/C/elx7WsyZ8WjO1m0hfbwrEATHYgNT+PFCkx63Vg716kjwADA/mEfa2hHHxdk8SMjwP56t+IQ0EaTjoSulsXWXLOn5dwa2QJ5oIA6ZkZ1AG8BGPsLkGi6narBf/ppyWMG9HSxoNW6+ysOBZzc1gCkKlUgLU1rLRaCABkGw3TTI64LRqZNJjqdbk2slC1WkCjASuyDlMAXDcTG39MwhSLwIGCFKF7XiZG0nDeGg2J8qd932QZpqcFarV/Pz56dBSzs9Ln4Pz5ZGSahiD/7+qSaYg7Sp89i3qthlcgEKdqNGcupPldPyLHIoL6OED8k4I4FM3otxutjRUAQ08+CYyMwCqV4PtDCbuSP2wyqFFFALBzp4WurnSCnpdZCj4u7RzQyOZ96kaCfI9rjt/ha/yObcu8sO0JjXPawfxMqyVOYl9fVsRfO/0XrXBe9Py8qbiOCpgD5SBpWBzvqbPT0MH29JilymvUzoOGRunXtM2u1xGzFLr5Nc/ZXt++tpbMKun6FjKh7dghMCdS2TpO1DE7NFmXhAAIQwNH1Hy4uRxWwhTqNVO+8p5j8d/AWF9PernY3NDTY6vnZNs3wADerGCnPdumhoX1qy7I2uKzemx2X5v1WuB4O2vzre6f2XH5rDn+Wx3btjdxlrSA3ewgughO0/ld76BAa4crq+DFVr1G3qyHwWrY/t5Wn7W2fKxbPb8tn8mbLeT2z+nPtr9v25vWVmxWc9F+TXxfr42tLmezeWzvDfF21+lm17LlATbbc+1ji/nR1/dm93it42bSF9vCsWAWoAkxIsPlZRS/8hWJyg4PA1euYN/Yr+DCBWNbVasmW0FZRMj56Cjw0ZEF4PNfB86eRXjmDJoAPBYF0CDT4HxtYe3YATQaSDsO8s8+CxcG+x9AJq0BwGm14M3OGutUh6ZZQT4/jxCS8bhKAbVaplghKlxYdzMC26Fl2Fa4HYe8FVxEG4PascDUFNBoIBNlUw6Wy1gJU3Gn5YHeFWC2JuD5s2elJqJSEQenWsXRo7+CWs0U6TLarQ1u2r+eB4Op+d73UIUUarOuwoPAn/zod3ZkBLjlFmB5Gbm+PpTm55GHOBLp6Hsrat4bAKxaDcVTp4Bbb0X+40XUalZ8HTTWtaGv5+XCBfNYtDNx+bIxdqPpjG12HTRfW0uWO2i6VD4OjeIxRrG5NqLZOHh92mH2/SyaTSAbsUathpbQE3OyPS8uXgY7kheLqJ0wveTa0XSOI9dClifWmOigvyYC4PqgD+554oT29ia7ZvMeeA59j6yf0J9jlhEwiEDAsOdy3vX3pPmh2Vr0rxOT13bBq6GFlOdhoZlKrF/WCwGbZ1XeybhZFMW2GlNTwAc+ANx7rxTQPfigvB4JqNlKKk4YM1PFYIJu6j4yIj+/MNYwGWa9yXV6d3ZW/h8bS17LiRPAZz4DzM2hDtFjWQD2/v2iu0ZGJMpFdrYwlEAXFyZp+xxHZPDDD4vn/7GPXWUcUe+dPSuxrFtuAQZ2RAu5Xsd8z1AcdKtUJOPMwNDamqgaomovXpR9+xu/AXxkfOupPnMG+Lf/VpLtd95ppuSpp6T9zvS0/J/LCYFbV5eIJpYfBoFMWeapJ4AXXwS+8Q0Ek5OoApiG6PsliH54cGwMfzoxgXMA/peLF2+YcxH09OCbkOdSADAEIOc4sn4eegg4dgwNdzB+JIUCMOSL0Ka+oOwYG5OlcPaszOXMjMgxfk4Tf1y+DHz843Ibx47Ja4WCaRoKAFk04nURONlYj2ScMPn8q1UpgCQiADBrx3VlnY2Oyv/1OvAHf4Cl73wnDtahXAZ+8zfle40GcOwYgrGPYnoauH1EXtY1FyuBhbTTlpk4fRooldBwJMh76pRc1tSUyGmSGzYastY++1lz+Y89Jpd59CiQsmULzM2Z3sjcFpTV1AMkNxweNsQx4+NAujJtYObcR9QD7IxMPHwYRl2S1Wg2ga9+1eCW9++X+e7uBu65B4GdwYkT8gxffvna1tubjZtFX2wLx6Jjxw7kL18Gze4FAOuNBqwzZ2Tn1mrI53L4xH1jKBZTcfHx4qIYjLS9cznZX8PDiNmI4Hmwi0V4ly4B99wjG+/OO2XheR5WnKwYR8P9sMJVLAUpZKIOzvB92MPDuP1b38I5AHUY/H8l+rs4Nwf/ySdFqgKyOKPNH8zNAYi6IwPxTkl3dgrT1Kc+JTutWMSKk8X0NKOqafT0pNHX14+h+3Oyc1st2YUsAleWsO51QVk0Nwfkj4wAAF6tSUT8/DOm74cYkmn45cNS/Op5hvo00h4sH/F9OT3hVVRqt90m/2e9dXFKjh8HvvIVTAYBpqL5WoFkKPohAr0AoL+rS768a1dsJOfn5+F2dSHbasUQNMY0GjAZI+/xx+FFVuLt99wDPHQ4Zq9KBwsoFLJxtoLCno5EqyXrhQyt2qimYcuh6zeoIFlKQ3nl+3JOAIDnJOhNgWSRsv6ho6HPQ4UfO2xF6bcihruFlL4hFnZHdEpLTR1VNAm55WVz/bwH7QzxGetgXqslwlR3C8/lxIdh/xJ2amfjRUD+Xl4Wg4VQRRZva8eNgwqYuoAOHmCIBlxXlkgqXAHqTaTCEFnXBRqhOWCrJRkcpmHCEKlImXBuKxXTR4/jRrFCvTfehbFrlxjgt90WCftoNJtAtYoDUTMV308TeRoHpdj2hXV6lQrwAz8Lx8miODooZACRI79up2JWvcLYoNnrehQKYp0HAXKk42Nkh144vWIKhN275e9SyVhLxSJwxx1YufcXEYbA6RPSP1VHWicm5PqfeUYzH2Zg20CplEH9NbOvqlUDDwWMHKRMW1xMNkvdaly6JOehjiHsmK9p9mxCbwsFuTXK2AyWRKDkcsBdd8HZtw+lmRn409MIIIiABoClqNYu//ZWwdseTm8vhpeXUULkUJTLpndQd7c0XC06yBZdrBTTUbNVUSK20w/blvlaWzPoZt6/brDKQSSnbqgaoX4xWIggNsGKTP7JkzEjRnp8HGk+wKmKGDNUFCdOAF/7miAL5uaMYj50yDwACk0AGBtDZnbWZLhfe02OMTcXM7Okq1XcfvQo1jEIIFprzSbwyCNIl0rA0aNm/YWheBK2jexoDlkXKBaFcrzZNOyRo6Oy9tp9wpGRZANVdhfQsOJo+8aJaB2Uol4kmc+BQkE+ePmy8W5+/GP5gu8LQ+L73y8232bpojA0pD2AXPC+fcCOHVixMzGCfbPY7nvjrce2cCzQ0wN7eBju/Dxw6RLC+XnJYgQBUKvBOntWpCqAw6OjsO10XHNNBqMI+YByWTYvZhvyYqlkNtuHPiQLaHhYKEtDC/WaNqwkwnnLLVkMUGF5HvJPPAErWoAhTCR9HRJh96enxa09dCixuWlLsTYDrZbsLnaSjkJmr1YtnJ+Rvc9F7LoixAvjeaT8yCNfXExibgAgDOMaXsAE265cARaaKQSB7B9CQWhM67rwgYE8Bu6JrDiGDFwXrmsImWggsnfd8DAw6K/K7pusAN/7HnD8OF5tNPAqxKlYhWQf8tHPIKJ+FeS85cUWCnBnZoC+PuRmZgCYDNZ69LMU/bwKIPPkkzKfjQZu/ycFQwcV2LEyY3flet0YE0FgSLroaKytmUg9lwltVj3NrVbSceNc6+eAIIBtp41xEgRAKBGjlG0Djh2nVtudGMBA/HRdA8+Z0p6D4xhKLseJ60p0awd9XGYAaPNoQrSeHqO76GS88UYyW6HbRuzaZY7Pz+zcaZwAnVCjwmBiQddJ6ToYLjkycunSp5S9Lj1SdIpBR5XJKMBnEBmEcFOoz0q0liVOlYp8rL2H4TsdN1Nqe1uNvj7gH/0jwHGw7kqz1ATUJlpQ+VwOcIChgoulIBVn4wBDtAckjW+JJluwbQnG0MipVIBiMYt0O6SiVAI+97nkguZC10VggNkQd96Z8PIXGpawRh/JY/asfHQrdNXOnaa8ChCV0NVloJqUYaWSiFmSzc3NJbP7DEBov2yzUS5LQobbjXVbw8OG8W1gwJBaUP1ZzSVzkZWacbLGx+W1MIRbrcK9fBm5//SfsPKlL+GPAPwOgMzYWLLx0PWOP/ojjFUqkm5gLWQYJjvqRl5Xms8ol8O6ncLleflosWhgnrmcGNC2bdaTRh5RbjMYRXm7c6e8aQFmbbAbrRaOdEL1KBTEkb7rLpmbUsk0kWXGixfheeLsPvigUXqNhiwQwrNLJbE/PC8JExIv1XQ61a/ffz9QKmGhmYLjGGeCgSYG3fi3HkOF1WjxeQCAfE7qRFst43R9+MOGRZFT0tNj6O05RbYNLCEDe+RupOnJzM5KEPonP5GD6WjYZmvJccRz5/tRhmM1tFCrykfKZROQ+y//ZavF9fbHzaQvtodjkU7Lpq/VgFoN3vw84HlYbzQQAEjNzSE1NRWvrINjY3CcdGwoVSpilOzaFWW8GNXnBvy5nxPpe+SIQCVyeSzOG/YfMlMykuU4wEC5aLyVj38c/hNPYL3RwDoko7IAcTAaAJqNBtypKck+aP5RyATbkPoBeJ4IEtZTjIzglYpFxBTeeCPZMbuzU25lqFAwoabubjNvkbS3bQO7YbEwvX8NCdAFyixCpnx7I5fBAfUMOOhYUM6NjsocZ4NzwOlp0Wgvvgg8+SSaZ85gFlKszULtHIAiJFOR8315BoWC5Nap3QoFeT3STLmZGViNBpaiOQ6jeV6FwKvSkHoLi6mKffvikBn1OdPTGgZBBXvxYhL61D6tHNoB2MwQtW11AAAIAqS8SBKRrUhLQ9uWgnT1Hc/LxpE/XmOjYcpqHEeuLcMTMo20b18M47tSM44F0X08hSYrI/GYJppi93R+XvfRo6IgWm/XLuNEUPfRodi5U360gm131HhONtYLQ5Ns4HV4nmHOsm1sUoVv1n1CAasUCwvK63VxIulURAnEuNHf9Y6bSVFsq9FoSHZ0fByNXAaeB/znExbK5UH4JXneuYJRA4szIluZsQgC6btCljNSbpdKquYgEhyZZhODtg2cPgtM5wzsiuOxx7Dyq7+KFCCsho4jsqxYTP64rhHuTJ1FkY8sBKaD2Vnkjx2Ti3zwQUTcefH4+dEFLNlZnD4dBXYK6wlZveRKrJ+Ov+5Pw/qi+XnTb6ZYFNvyzUatJoFqzzPR6DCUADH3cLEoe3/PHiMzisVMLM8Ol4sxLBenTsnfU1OonzmDlyAZiwqA/wnAKQCrExN4UGM2r3f84R/ibKWCIoBcRFmOUkluaGQEKJWw6mRiRyGuN4t0JfUrY2IMaJKBkax7tZoJ1gHym8apQdZJU18v12/6HgHS82ijH1eawGDBSwpuQPTbHXfI34yGLS4m5aBWWM88Y/odMcN97Bhw663y98gILgwcxoUKcHhY1Xk4aQRjH0WjAeTbneioGVRQl0NOTwvc7uJFc3oijwYGgE9+0nz1+8+ksGNHFsOe7K+XKql4L87OJu0Uzrkug+Va4/rKuFHgrt4wetbzjHCPbL/14cMyLWirJXEcU8fLOWo0kHJd+L4wKy4vyzO/URmLm0lfbA/HortbJCUtmkj6WREz0xKA/PS0iSxcvoyh224DPBuFo4OYnjYLMosF+Rz5/d//frPYoig5Hy5x9GT10TbMQpBGdnjYrOhyGfnTp5F/6inUggA/gDgXNYhgPPjkk3COHTNhnSgk5hB0SrDg2FgcTvr+TDaGcjGSpGsZGFFvDmfheVkUxg8IY05BFM5qaMUbknuLncinp03DMypYRr9ZTsJ7NlS+Fnw/j8JwHimsojprMq6dnWJA3l1eEMUwOWmUxeQkFmZm8BIEN8t0tg/JUow4jkRaRkfl3vfuNRdAfGjUIBDVKjA8jOzUFLKTkzjXamEFYlgHkEJwG+Js9D/1lEBjikUJdzzwABw3Fc8j721+3qT/2cRZw5V6euRy6DzwkTcaJn3LH133bzUWTAqIWpTeGi+AWl6fUFV+W7kmfH8wRjhFSbp4anbuFKM+Vh6FgkkbeR6WglS8dnI5IO+vx90Ph4pFrPjp2Gmg4mvzdeK1wcH7ZIadPQqz3nqELRIBXCjk4+NVq6Jg3njj6uAbM0ftzlujIYZ/V1eygTafQ+xYcIPwgRK6R23NApJojoNAHMvFRXPuSkUygnofXO+4mRTFthpvvAF8/evA+fPI3nMPMD6OctkiqiXO0BLyqGv8yQxGg/jQIeDnh8/JG49NmRBpGIonSoExOSnR9nbHolrFFKJ+R40GXABDTzyBTLFooLdAcqNRyE9NJS9yYkL+P39ebuQP/iB5ruPHkSkW8Qv3jYs19sSMIRzZsQOZ++7Dqp1Gyl7H7t0WqDJZysfIsOMwA2MQvFsNJviLReCjR9ex1LR4KZidlVuYnZXbYkZw3z7EDW0F6pjCAcrF06eBEyfwyvIyJoEYYlwEkP4n/wTel76El95yAVzjWFtDA6KnlyoVDNVqoo9sGygUsOIP4dlnRGbMz8v1+34y4EKZaDWX4HmZ2OdhnZjmhKFMWF4236dxShufToznHRAYaN3IzNlZCz09WRw5EmVsAbxkH0TxHx2U3kfVqjkAfzPFS/1CMhZyy99yi0mzBAFeqWcw8RdyzsPDZqqCQHw/AMjfZ15fh4X5zjywmBTHmlKdAVr+rcf3vy+/SyUg7RjTQUOOtU7ifGqnjCrQ85Bk7GE0rVxOfhkmgbhZj5HY3tSZTseB48hnenutqwhDr2fcTPpiezgWPT0isBlejtKl1tQUslNT4hYPDxuB/OKLsnHm55EdGcHdR45g3c/LYo7c5guXMxj4zGdwzr89XlzVyWSDLi7W9swFIMJ4JbAQBClkx8aMR+z78L/7XWQjuJYFiaSvA2YH5HLA/v1wp6cNloRZiogBasnpx2uvmVsi/EWnmymY6TQ0m0DGdRN9LIiu0lFmKhPWNekEjsY0Up/RJg4CU/fk+wKjOlhcwdiY0ICmG+eAr35TFOAzz2C9UsEKRDFUgBgC1Q+gFP0Mep7AFjgHzA1rwVAomGpnAlMjvuD82bPIT06iHtVeTEGyPwHEgck88QTsffuAchkv1TJYXBRUGiFPlYroXrYOIe6YmQCmWXVRsqZE5WfJtFStmr4XxaJgs51o3lPhinyRD01Xu3NQQ6mQP1/SWXDdjyT+HsM3SjvZMJDtQgEmPBk91LQtCywFYCjnRZLWARwbXjEdKwUqSrIn9/UZG2vnTnmPRdFwXSyFadQrxmDj+QlRbDRElwFil5Hlmeu8PUvR7uBQOfnlbLKzNpCkZCYNHEG7vo/pCTkfoYXcD1z33AMaDvNOxs2kKLbTWGs2UX/qKeQqFdns4+MYDF4CPB/n1jJxP5XpaXnuNBgJNYyWCYpFQUPgD79meu8ww8CuoS+/bPTSZhZGGCIE4kw2EBF7VCqyV3I52VAUvizaqFTEupqZEUt2edkwH2wVJmW0AZDjMjXL92wSeVi4eDFZU0HRSuQHVVHWe3NGrEJB6pszzXPAYxPIRDCh0dG7EQSmiDmG+sD0v9F6BvW6eCAvvIDa8jJmYZyKHIADAPCLv4gDX/oSam96Re9geB5WouL6BoCVIMDQyZNIhyFQKiE9OoorV6y4FIElL7QbtH4mI6NtpxLcERS7XDaAgfVoiBCXBF+nvGuv8WNdWip6jc6J52WQJhGAFpa6oI9MFbOzphjw0CE8X0lHIIxUbBu0y68wFB8aAH7hvuR73/9+cgnzkXJ+CCDo6bk62eR5om95yVHyIz4O7RRT/5l01HQpRC4HuKUMrHDVfEFndxwnJj1JBwvmgO2DaTwNXXQcWOEq1u1UfM7aDVqQN5O+2BaOxZWwE8/X++G6/fDHDiAVsRLFKxgw0R1AVlerhfVKBdbYGHDvvbBKJWRLJfm876Nv/CNAVxFTZ5MsQNzkFLBMY9bronwuXUo6sbLhMxge/ijyTJ0WChj7oz/CUmTsWgDShw6JJRVlE/D3/p4sWGqwXA4YHsZq8YDs+dNyS4ARzLmcCXR3dprNGtWgY3kZOHLkQNxxmIPdi7lZGaGtVo2BSqNV27S07Rk1CAJTgMdCeJw4gXRnp0zM1BTwL/8lzi0vowYR0oAY+eei30WIkhgG4N55p+AyH35YoG1eNr6OTPC6kRZMAfCGddijXAZGR5GbngZ+/GMsVCpoQJyKAJIx8ubmMDIxgWcG/gdcuiTzxaaKWrkSIrNrl9wjnYq9eyWNz0enhTwRNropI2AiNbT3xX+M+jDYzc0ltsYJKe+W808hq2uG2KBvYKQYMXQAKBTw/WfT6OszUZ6eHiDVXDA3TIufFhVgtH1kWVuui8GCJ8dtLgFhCG80GzOjWMGK2Tg7XKARGAPGTse3ASSxxFQELOCcnzdBJcLq+D3tM2ioHvejzEMGOT8jjlsQJNYRnH5kCgW8WkshDIDahETciOjTP9Q/JIW73nEzKYrtNpoAMnNzSB0/Li8cPy4kEOPj2LevH5cuiex74w3TuJH2V6Eg8Kdf/fgS8M3HgD/7MxPtpeVCaqNSyViOilkmZssplXAYElipQbLrDYjBXJqcRKarS763b58RKvW61KQ99xyWlpeRqdWAtTXUAPjVqmIgaRujo0CxKEZTEIiAn5kxfNa1GtLRJvT9bKxPiIf/yPh63NOFvk1rr4WBvq05+5nlPXIkL6QIZ84Azz6LA/eEKP3GRzA/L4ibWs1kK3UMgOVgODEJfPe7qExPYwrAKxBHLAfJbh8AgB07DItR29iq94fuN7DVbzgOUtH5AojRsw5g8Kmn4EWR7mLxg7EOXFw00GQ+rjAUw/jQoUHUqobJiMYwgxc0sin3urtNjRt9QZ20IicLYPg46JDwHgFDxCExpQw6O4EBplVoIDOIxQfMyEkUeVyeM8dmhry7++oeD6ydaZ9z2k78LlG5bL5KJ4xzpgc/r/8nqZMmduKa0QhjLWOJPJifB7q6UrDtFOBk4oauGuabsgOjuMvl5P0wha+ZQiJ77VzENjk3Z2yjGzFuJn2xLRyL1VWJLtEo9v088sNesrqTAFGC5+fnUQXgT0yIkL3zzkSVrlUqYd3PY3HRQILCMAltAeTwly8b+AQFAyn6KCSDQJg3yuMfEWz/7CwyMzNGYw0Pi3XKVsxHjsgBi8U4lLvk5qFZ0ihkNCMOjS4Nv6GxduWKiYrw+nfsMGxFqcbrQK2JQd/HrbemY2OakToej5EDCv92CDsdi2z1R8IkwWfwzDN4aXkZryKqLQFiKt0AUsg+CFES7tiYOBUf/zhetYfQqAKXZ8x9joz0Ix0Jw6UwjVo1Msx14KEE6UxNKqrpaRS/9CVUETGHQRR5CgBsO0YtaGYJGt6816ifXFw7QDYTln0A8tg4v2Fo1odtm0aBnC86Frt3m88UCv0SZedJda0FkKhOXgjSsVDVCKogkLW6tqazZ4BXGISVy+G17xqnh88LQWjC8TyXrtjk0NItCBIZgbQfYjDnSsGlxgLoRel5qE0njQcNKQNkzvbvN8ZdX5/ME7P4tOEIBWSWQ8MGGGkVmQB4XhqOk0ajYtatXFoqVvSMop0/b26dl896dyZ+Tp7EdY+bRVFsp2HBZCzD+XkUwxD44z8WHRCGuOXv/P1YFlQqxrEIQ5MM/aVfAvDlLwPf+Q6aZ87A9TwDpdi92xgcgKHDo2xHEk7hjozAn5zELEQeLUDqwBYAZJ591njIuthpehpYXr6ahrzVknPt3n31jRcKWHczSJGOnBtFC6voWCzxunzZ+EmYnEQqCJByXWQKBSz52firW/VN2LFDfKJU/Zxs3u9/Xyb15Zdh1ev42Md+Jc4M03ikTqVc6O2FKOGnnsKrkCDUAqSu5AAks527804h8SiXUZ6evgqruNn1aXrUN/uN4WEcOHMGVnTeJkxgavQ734F19CgKv/VBTE3JnF25Ites5Tzls65ZCUPDgEdZRf0ahgZeS9HJ+BnryKgiNAOf5qLQ99DVZVAKcQR9bxo7dgCZoljsEqW3TQSVdOT792PFy+PCWSOveD2E/ejB+2h/vdkUGU+nCDDPm/2aeH9qqwAwwVwOBkoXFw3KgsfS5SWce1230t1tkAcagdLVZVRWPJRhc1XvC2KDo6LtlOfh1aoVQ8spQ24kK9TNoi+2hWOhne4YE1tIozj2EYmS0OJ7+WWzq2dmYE9OYglA7rnnxKjn6owsmIaTjw0zym4KARqB7SgVLmjNTsCAFe2qA8PDhjOaHgLpBemW0xiOHBwmX7SxywgFFxsRHu0YQ9+XNDMj7algCbBtpGwbKQfRLqgb6e77+ND4OHbssOJNzmiM3ozt9iZg/KByGcAfPg48+SRQqyFsNFAH4v4UIcSwb0AEtQ+JPBUBZPfvFx72u+4CRkYwe8rQqdKxcF2gXM7G0CUNQ+O8Ow5QHj4Mizdwyy1wZ2dRfuopNIIAK5AoYR4ARkdxoWJqKhgF4vxpQUhElnYo9uwxPdY0PpRCjXUZPA6zITSQWS/A9zwva2oxgpXEQlt1pWC7UTcIC22k+74onj175PssR2FEjMxTeq3YNoyHQWAoJTW9Y4030mksXrROaxEzEi2WJTsbX8PFaQMz6eoywR6emus43Xwd6AAGCi58P42Muw7fl+hYZ6ehaiRsjTUlVBCMajH4xvXPKCzXCrN6vI1mM6nQmUkhQRwdi6985er1fy3jZopAbafR0dODYgQBep0v1mpYf/RRWHNzGHAc/F8eug+el8Kzz8ramp01JU9jY8BAx+uyiHftgrtvn7z4gQ9IXUS5jPVcv0DXy/2xvE7bq1dfTKEAfPrTyO3Zg7EnnsArEBn5OgQi2wwCDH/723Lie+6RxTw1hUajAQeKhrxcht/ZKbDR++7DkpuHi6Qx9F+ns5ibA7q60vD9A7j74aLAUsNQqtGp0Gw7lic7dsheq9WA4tjtcUKzMSW/h4eBA6Wt57rRiPZWOY88WXRYuQ2zlyoV8YXYviNiUZcs6iOPAX/4h/ivAH4EyeaQKfAwAL+3V75k28D+/ShoXuhovFnG4i1HLoccRFetQ3TXAkSPrQMY+/3fh7W8jF/4tV9DqTQE1xXZVSj0Y37eRNQpIqenTQ8Gljdo8arthcuXjU9K+JlVfRUZxwF8F6u2BADTznpsGKyGVsIPBQyxACm9azXDopfLWbGsSyE0yonRKdeN9SvlIWlit5iuTeeX3DNdXUZv2bbJNvAaBgYMqRSPUS4b/QqIfUFTiRTl2j6i6tIlSgzy6ayO5xn9HdcABgFSGoIcnfSqjMX58/FFpKL0Ogvzq1WBhFEV3ohxM+mLbeFYdHQkoUfcALYNFItDMdVrwtpfW0MIiQxh714RTD/3c4Y0enQUlUkTgdDBVyAJY+Emdl3ZcDo4yywH6zEWFwEUPDkHOUjrdfmQ9liAGCTIyNHiYtKAbCOQijd8kkVCfrPbc6uFxFNbt1NS0E3sTJTrX2paMbsOo8ltQaDEfLDrsa4lGBwZiZ05e3YW2ZkZRLIg7ivRhGQqbEiyIQdIKv/WW4FiEQsNK/E89dQwQsNnwN8aFtNoAJ6fh0WowsgI0GjAO3MGARAzRvm1Wnz8rq4ki5O+754egwGlg9XVlcR/bvY9PVft79t2sqFe+72253RT9jpcVwzsGLsbDR3p4zW2w7K4Xrl+HAdIY8V4RFqgckJbLfnhg9aWub5R7XDozYKkYwgk/27fV46DKKUlx3EcuS7XTSfmjnANOvw6Y9fdbeZG13rovdx+mXr/6EAu97r+ud5xMymKbTWyWTg///NAvY78U0/FC24lCOBMTMA+fhwIAvzCgw+iUEihXhcEz6VLhhwHs1U51siIWDnj4+JQlA8KDGbW9C6g8fj+96cw0NdmyJJCtbsb/o9/jPXp6ZgtsI4omzo5CTz3nDRkY3o5GinANAkqlYDxcbwa5jF1Oqr/UGN62qBbBM+eQp5YFFq50bE1O9yuXfIdsnIyoxvFoHCgtLWRTiIQ+Wwat7z/o0LFHlH4kHqVxtfoqPhnAxefB578sdRDfv3r+BtI8XQdoiPKkOy2Xy4n+5EUCnBGRq4yBt+qO3gC+tT+XqGAzP79KM/MwAPigNS56Pd0o4Hyv/pXwMWLOPCpTwFuAcj5cc0F542QSvab4t5nMETHcwD5TcgsxWoQQOBqSuY6DA4CQBgi5TiSeVCKnixITl86XpNXrsiaJgzIdYFMQUVTCoWYcpX6lS8DJmClB1Vss3l1xoIOUhia4nbaRWTlZMCOrL48RjvrK/UEv0PV9cYb8n2SqPH4/GEWkrA7osy7u5FM+evo7FZCWtEDriCN5cuGkKBSMSiaGzVuJn2xLRwLFhrbtoFTxGm6+usSjWGDl+lphHNzeBXCQNQPoFipIPfooyK4b7klDse3WlLId/68oUTTUCDARO7p5OuUJiPUhFWwDGDfvjTypSjM09sr0iaCQS2FaTQbQBimMFgq4VwzE3v3Gv5++bLpF0CZQowgkTPcE4zQ8v/ecia54Jn+VF5Zs4lEAR9xkICJMtOA5w9vp69P5mOQIeIo59tAVPwW/axCnAoPZiGlARPaKBRQjaLb2timk2NhHbYtBjblgX4WHBIJTyPDB1Cp4HVIZHAW4tCUp6awvNccow3tkyjn6O01a6ynRy5XO5+cUlL3agdPZ1P064TYMOOQ9SI6vGaYfDbRBaUcB1nPQ2sgFaP7wjBJk8uPM7qk74nF0KwZAIJkMdHly3JRL7wgB2MIv93jaq9QBJJ4pMiqyhSLyOyQDeS66fhU1GF87J6nom+qWCUMgZTj4PK8WYNXriCGKs7NyRankqDDSUVNJ1TfAvHQtKkAOeX8vKx9PRgFu3zZ/H2942ZSFNtqOI4Y87OzsGlp+z7CRgM1AIXJyXgtHx4ZAcoucrl8vKQzzXOyANjls7tbfvt+IvCzY0cykccsaGK4blz7AM9D/s//HPlHHsFsq4UfQYzXHwE4/LWviacQpQ8sAA7r7w4dkvdGRvCDxhAqU4ZwQw/WajMjd+oUMDx8AAO3HMCApIAB28ZKYGFq0uyJMBQZrGvPKIsZZ9jKcKc8bLXke889B7zm9aNY6kfWXUWtYurdfR/46PDrkkX57ndBj+6VSgU/gBjxRQj86W7HkQzOffeZVGKjYVgT8dYZiS2hT+2fGR0FHn4Y6clJDJ09i8bcXNyLqgmxI+z5eZS++EWZoA9/GPj0p9HbKz1SqD8YUZ+dRUL+0YFjvQTFJ/UDa7pyuaihqsL1pBzHpFk1g6DjmCwOAOK0rFwO+VIJjaj3Sa1mGBsLBZiLKhYl4FouY9XrR2Na6abwdaDZRHa4GLN86eddLm++/jRzH+0jHfQi5I7ZCT2GcktysdGzzQSvo1Tqjx0IAlGYvdBIJc0mWK2KzH/jDVPzEUPI9ENi9l4ZSpuupUihB4GBPdF5nJmJexdicPDqr17ruJn0xbZwLLgR6VUzGrtzJ5A70o/Uvn2GCaezEyHEqCUjUQqAW6nA+d73DOCvWERX1+E4eq0x8RTO7XAKXTfM1zXEhYHf2VkgP1o2F8oV7rpo1o1hbJcyCf581jpcvpxUUnqxtUe8deTacUySBICwInDyXnhBLjSynPLjOdQLaW3LJoQBjWQ96MzEmNxvPCNFhtPTqAcBXoWk+JuQFHIKiNP5dDAsFj2Wy3i1lsILL8h86SyM5xE3b8X9BjQHOB0hBtnrdUKn+pGNmutl5ufhRedPA0AuFwsl2se8T2N8m/NT0Pf1meheqim8LtnIg9uzJx0rYdY7MB2rI+U6I0QlZNsWHCeNlLNuPEN+IXqgK2Eq0bmVhfY6Gg8k4Xtck+0FkugIkzfNv69cSR5ADw2WpXLj94hN5MRxRM6BRk3xGlw3govU6kYzRJOS9gHUA+za1Z9Y57t2yfcowAGzN/iZIDDKhXoYSHb6rlZNivziRfkMixA5JdyqNypj8W6Njo6OLIB/B7HTKgD+/sbGxmLbZ/YB+P9BUIrrAP50Y2PjX0Xv/S8A/hEA8mL9Pzc2Nv7Pv41rvyGjp0cagM3OiiEKAJ//PLz/9J/gsclDEIhlELXdPvzgg8D4MJaCFNAIsZA7gOxv/iYudOZjZ741b5rMsU6A22IzR5RFr0EAwO1H+t574/dK3/gGzkFk5Spgeg84DlAqITM9LdHk226LMTLrxSFUHksGQngeCcLI11myoSEoA5H3zeJs2lU7d5puxYy8a5Rju7OkjXmyDy4vG9HB6xLW6xQ6O4EDhRXcf38amforwJ98HXjySYQTE3FmYCr67QM4COCDAPA//o9ifY6MmLQlQ+G7dwO2nTAE2wuM2691q3sAEBOnMCvkTU/jg08+iVIQoBZdWxPCajj47W8Drovn7/2nsYHJnnLsccV4CeeYjK6FQpJpLpeTNURCEckyZeG6WQnAFCJoHa3qTeA78f1o1pUwhOOkYt2mEa3xhRGL5HkxPGlgABjoXRHYdLSAMo6DdWSMcxauIlWpYMj3AZhFb2Ed2bAO2A4yBRe2LeuMtrsmfGQ/o8RgrWQ0lpx+VGeNamSrF2Y7OjtN4Cy6jUTiX+t0lhtlCr5REDRmFNQgsS4cxzTqdV1MTRmWZxbVUxa8pyuuXVdsO8dCRwE8Tzb0gWLRVPD39cGqVGDBwGAAMS5z09PwaEHncvDGD8N1ZQGSyU87EbSjuDEZ0ed18DOMdJGydHoaKBTSKJYPCkQnWsArYSr+POnJ2fyOzc4iFFe8OfQccGiHgr+ZPQ2CiNuaF0gQ7Isvmg4zFy8Crovy6N3x8doj+Sww01F4sjyUShAl8ed/jubkJGpAnCFg0ZsDETvp6Jo9yKrEkSPAyAgWnDymJgRJVakkHSRmb5hVodLr7jbUpISIXrliDMIgAD4aOS3O3BzytRpejc6NW25B469MNpRGaXd3Ek+6c6fpzaHTtulgIdlAIgxRKB2In8GuXeYYa2vGWQXMva2tyVqjkyGMIJbp5sqJ9jwsNa1Eloz32o5Cal+PrDugcxF3zvaUJ7qFggIgF0hMlV782lNhBqOz01j90euroRX3iNCN5mi4o1Y380jHggsvSvPLggyRcRzkcqlEAZ7+OOeY++TKlSTmldktZjx27DDGIFEhzHLQCKDj3B5ReyfjXYxAfQ7AX2xsbHyho6Pjc9H//3PbZ0IA//eNjY0fdHR09AJ4uqOj48mNjY3no/e/uLGx8Ud/i9d8w8aloBP/50QW5fIHUfjUB6X51ZEjwA9/KIL+xAk05+bgQIz6OoDBxx8H7rkHmeFhoNFA9lOfAnwfT59A3O+hu1vsjD17jG9Ng9J1JQBcKBgD18I6Lsxb+Ou/ZmIvj9E7fx0HPvYxYHgYH/nqV00ntYceMt3SPvvZGPZE+r0fTFqYfkToW207GTGmMcTMNx0hGrieB9hjQ8g1k4aY70uHY62XdEJT13ZtBTkKgmTt2Pnz5vVyOepr9NVvSgPPEydQe/xxzEIsGAtipbwCqaUYATB06BDwu7+LlYf+QRwYsG3gwPCqzFW5jCVkrqov4Txo45D/t8/TVc4Gu1RTkE5PA8eOIXv2LLKPPIJmq4UKJLOUbrXwia98BadG/jQmgqA+qlbFybpyJUn+wdqJclk+SyYo1zW9EFlwrRMKhUIKtg2k2oV9G/rAwnqiSHApSMVOD8sqWQztOCnkckPIPFjAUpDC2dNGfxaLACpVc0MRy6Z1//3JB/7kk/Lhj388OY+kz/c85D1PdE6lgrtHitI/pfqKfO5CMyrUUEJ2djY2MOiwUm8CRh43m+ZvXTdH9RmV18YZaZ1lqJVSKBT6USj1w4L0XOG0+W3rYt1OYf7Wj+Dll+WWH3ssyVJVqxmHYmDg+qnJgXdNX7wrumJbOBbEDALG0eTPzp0AflITnOrsLDA9HbNKrEIiDQ1I9sIFUKpUUKxUYDWbGHrwQRSLkjWgcKThSSw7YAQs05j8jDZcwlCuhUbrzp2yAH0/jwNjPtBoxKnJSkUC/cUi4l4VZA5izwxtMFGGaCo64Gruff1ebAxWq4YTfXbWhG89D6lCAYXCYByhouPESC6ZFXRENy7c/uZprD/+OJ6HRHTqMIwaGQgErR9i1DchPWLzvb0SQRwejiM9FH6KCAmtlhim7YZhZ2cSvsV5oWB0HABlTy64qwvpri6kWy1xLPr6rjLIbdv0StCjvYbBdQHUgqtomSzPQ9bzYNupODKj0UJ0VhN1BUhG3xNDhVzCMBXb9NQj2tFob2pIg5r05JWK6RsBAENFLxn14mQwr8yhLW0uBt4MF1dnpwn5d3XJwolAtSk3RE9PBrt2GaOGGR+ruWQeHmCyHkDS24t+1u1U4r75NVLs0plkTQz3gHa06KTSQOG22Iqj/UaPd8mx+CUAR6O//w2kYXFCWWxsbJwHcD76e7mjo+MFAHsBPI+f8dFqmcBNtSr2+avuQQz+7u/GlLDu1BRQrcKemYE1OYmVyUmkCVv1PNEn99+fkPeAyWarQOebQoYIw2NHa8cBnNF+DN53nyxCUg29//1ALic1cWy8Oj4uRuKsuYZcTs5FWmttSLOolpAWxzG4954eIGOvACGQ9Rxk7ciT+O4U0o6Dnx8bQy6Xge8nGQlZt7QVjMhxLAwMyH1SZLiuJADGxwF87gvAo48Cr72Gc60WpiABKAuiM1YADEHox4eKRck03X8/zp41wSPZyykcLhfxgympiTl2bPNnvxU06s0yGRfmrYgVLAUghWLpdmTIp14s4oN//MeoNxpoQGyK1AMPxHAn6n4iKZi90s4E/x4siKMJSCBKoyDm5owt7zhmGQr0aAheMSL6aC4lIlZx/cjw4auCSlwTPT2See/rM+t2JUzFBrkO2sRpBZ4j8njijJBty4F08IlDy3J6Sj/+sUB7yWASHX/JziacwyX/gCChotcmJqyY+p16hH1zMxDq83I5C8DAXZnQKhbFubh0Se6depEwNWnzYZwX7hc9gsAQnHEaGIyiH0qE3vAw8Kd/uumyu+bxLuiLd0VXbAvHAjDGAo1JCr/5eeBjH/sgsseacdqq+OijSMGkL1cgLlcz+r0OwIqsFDon3Fw0rjl0sacuuuIe0oYt2WpqNcGavviibOxazUKplE0YiK+9llRSrms2ET/Xnt6j88HILKMizCRY4SrOOSkj7RhGoaU5N2fSKrOzwOwssqMeisUMGg2ZB6a+dZE6sxbctFb1VWBuDgvR3DZg2J9ciBMxBCm+8yAOh18sAp/+NPDww/jPZ7Nx7yfyfGsoAfH1VKY00DkPOlNEB6y7W441Ono7DnzmMyLRm02M/q//K+xyWWhIHkk6pkxPa+FaKMStSFAsAplwAZitG++GaQdFLp7xfZRK/bHwUb4HgGT2C0jib9fWADuXRspz4oe90BTlSecKUBF/GOVA1kk9d9wjhF/FCQVNe0UrnIuMTbT44DVIlg+Ci5UPQ3u+dEZcF6tOBm/UjILlx1NYNZqYtM8snGr3pKOHYdk2hocHE/7Mrl1GZ7VfIuFQ7cK5vf6EqIGBAdOfxPMEas3sH0ukrmdcRwQq19HRcVb9/6cbGxvXoroGImWAjY2N8x0dHf1v9uGOjo4igCMAvq9e/q2Ojo5/AOAsJFq1uNl3t+vQugKICF729yM7MiIvsEhpZgYhJMOKUkmshKj55isVK1HLxKFlIutyenuNrdVuuLLGiv55vQ4M+jk5Hz3fHTskWOHasSW1EqYSpB6UAUQwtg9N7qGdjHZShXVYsKjQotT/uptBq5XUc+3j7bAsUXxwew9+4AOiezwP3uQk0jAwZeoLC1Hs+s47gVtvxaqbjeMMWufy92YsPFs5Du1Zi/Z7WIcV19NpQhC3MChzVK8Dd92F7BNPoAmpu8DcnFjASCJBKb527hTZu3OnEbXd3QDCEF1dqfiz7Q6q/t0Oed40ENV23zo4p9Ed1AWaoEWjECjzrOaS2Rf8cnRR8TxyEW/2EDRUlguWRhEnNzqu3lO6oa8eRG7wkER1oBlGzoogM3p7U3Gh+e7dsqQbDaOWuI74HDQSBJDb2QxWp8/NfaHh4rpx7o0Y75K+eFd0xbZxLHp65DcbvRWL8nBjXme6naUSUC4jX6kgiCySBYgAa0Q/rwPIT0wATz2F0Y/9Yly7yj1FJwFILm4OHQ3lqbk5u7uvpqyt101ht3aQtB2l2RgkZWlqCrQwAAwbDvWC40RF7EEAvzAITDdMtoIpgRdewGqthhUA9vw8XKZJwhD5kRE0iv1X9Xbg4KYsl4GD/gLw2Ang+HHMQrIVzA5lII5EAQLYy/k+0NuL3MyMQKCGh7HiSe8QwLAtUWmEoShpOg2MvFy8KD87diQb5ejBYzWbMEUgtg17bAy46y6sFg8khLQWqI5joDu5nBFOGWcVqEYXsbyMuKtWV5fxEKPJ8rx+XL6sMhwwaKH250dHgwJLMkQWbFtS342G4dbXcp4OJyOW7G+iEwqaSfDCBZN1Wi1nkPKBVUcKDlOsiiNfLSVmX18y9K9p0WihaG36JlqPyqCzE0lvS6fgmEHRRT788iaDc9GuhJeXzVc017s+jD40r42KRq8Hz4tYVq5zXIeiqG9sbIy+2Qc6OjpOIIEliMfvXcuJOjo6XAD/AcDvbGxsLEUvfwnA/wpgI/r9/wbwf72W476bY3U1WSsAyD7IuqtSa/bii8Ajj2B1ZgYVSNgtAFD+1rcE3nHHHcDwMEI7H9NLar+XHeeDIC7RSLSD0UYKo9G6vuvKFaBYzCPL4ttqFSgUsOpkUKsCYZjBULmMZ581sCYG0nhPzFhq+A91BbMZ1EGOE2VLyul4O8f9DKLgAhGyzKqz/4KOOWzmVPB7y8um2SA7a9frwCAFbBAkyD2WIPoiCwn0pQHR3+97HyoV4JlnEvEK2cdBAHa0BjZ3Et6KIWoz+FQYWvEcLy8bmVso9Ms8VasxEUgNQHlyEs07DeyMg3qr2TRNaffsMWgHDsokXX/Wnih2XdFDO3aoZqTNEAklHXmZ67Bg1c4hZdsoFPrja6A+YLCL18Tzsl6AgRY0G+ZFKpdGA+tjd5t5DcM4YrplQzkt07kog0A2QrQgs6USIo5IAEAWC3BL2fj/3buTDjKNeCtcTRgA63YKQdOopkuXJIjADAXluY6BcT1p4oWr14gVoyWYQWrvV8GM+TZwLN5UX2xHXbFtHIveXrPQombLsVGRdaPW7aRXiCjUChMTWIVEo2xIhCSAGMKpVgu5P/9zpPbswR133I4gMIIlkRpUg3YPoVI8v+dJ9LOvT5QOMwrkkdbH0bAiQp90URIXPI3cMDTHpCPlOFHheg7I2kuShokAthZXuwbc12pYr9ViqFIIIF+pIHP2bLzLimMfjSPu3Le9veb64k7bT30POHECqxMTOAfDx+5AlIQHgUDlHEfYTGxbmFmYk4XME/HxQSD32molm8tpwUgng1Ee2qCeZ5Q8fQnfB1BX4a79+4Fy2TQNQvJ50PBnPUDimW8WqmxPn7SNt7CLE4bxVYrfMTL40iWj5Ji10aQCb7xh/qdRzOPxGeqOp7WadKiu1zh3KaE1pLbhaJeSXOw8gU61uK5Y5ppLd5M5XluDeb+z0zgm2tPjMahdo8nQa4F15o2G8e/4m7qMQbLNHhkdMN6CZmnhj3681zt+mpjZjY2NY1u919HRcaGjo2NPFIHaA9XOoe1zXRBF8W83Njb+D3XsC+ozXwFw/EZdd0dHx/8XwP0AXt/Y2BiOXtuygLCjo+OfAfiHANYA/A8bGxt//lbnaLUkG0rnHRDEkW2ncPe998p6r1aRqtWQWl5GgIg9Lggw+J3vwGo2gb4++J86GGcmtE/MjstXrly9ftox/UFgcN5kfW02ZZsdO3Y3Ur4vzs6uXVhcNEnmRiONp5+W42i9Qxmhh47Kc5vu3GmY0+hMuG5UfNtsyknOnpXAUy6H9HgDY2N3w3FM3QB1z5sNneFg47jdu0VH315aAr7wb7D66KOoQNiVKjBw2TTEqSgCEgA6dgwXdh/EqT+TchjqSWaWC+MZTJ+WSz56VGoJNZXstQ5+J2odEjuAriuGaS4HfOL++4HTpzFYqWB9eRkWgPT+/bHhSnlMQ5ioUEJlhodFL2XtJWC6gmyk1IeHB+PyRzqcul6TgUiKwp0709i1C0h5MOkyPXwfS00L1Yo5HvUkkExCB4HpmA6YIv7EA+UF0UsFHbdohGHSSdMynFk4Ohu0zS5cMG3Go0UTOyeeh2rF1JRfuGDiWbFTUX3VYKMjGjLLcWROe8VzCEtp1Gryfd4zHcVGQ54T6Xfpn2lWKY4gMOhx15W18cYbMk+MvbHXRoSuvO7x09IX21FXbBvHgtC/YlGEyhBeMa7o1LS4qbQwIrqAVBBgaHIy0VshhCnozn3jG0Auh4GHHHz4wwfx9NMGR6fTZe3Goo5A0KgjpR7TcNpmImUpN4rnGcIBKov3v980uWk0DMxJ4+y1oN29GxjYtQpMTBpJSANQS/uooo4UsI3oxwKQOX061lTpUgmFwmB8zRoS5jgRLKj2EvBXfwUcP46XIA5aA8aZ8CHKwgcMuDQITBRjbQ1prGBkJB13CBeomFw+u5lrGIM2lHX9MB99Lmca7tx2G5C3Xxcp0GiIxPB9YO/eBLWi/llbM4WKnZ2GkSsIgHUnbRw1Ym4ohXTaw3VjtJDGzXJom7s94k7DX2evtAFDp0pnLJhs4Pzp6L2eM0Zb1tZkS1ChxLXWuTRSdCR4gTzgZnlpneJmBSKlbLSO9Nd01nyV5+INcW3qNMGuXYkQ0zos1KeSNRbMAOpMPSNQnEfeCstDdFaHzxZIOrHd3TI3dN7baRbfyXgXi7f/I4D/HsAXot9/1v6Bjo6ODgD/GsALGxsb/6LtvT1MjwP4ZQhxz40aXwfwJxCWEY7PYZMCwo6OjoMAPgXg/ZB+aSc6OjoObGxsrOFNRhjK3qFhDSiZXq/H9XivLy9jARJsqkMCJK8AOPjkk/AbDWRGR1Eu345nnjH+NRmQdFCWgZi4vi0ahHjU6yLbWE+nHYRicQgH7vWBMMSFijhE3/++yLOpKbPHeR7KifasrYV1XL5sxXuivQFkXM4UhIYv8+xZSQ309gKtFrJRzd38fLKupN1Z0sa8bcveoRHrOBKlL5chAahHH8VZSF1FFeJUZCHOhAfRSSVAGqaOjeGHk3Lf09PyzHp6ZC4YhWfJoL4e/ZvXu1nfiq2gXPV6stCZdrXvA+dqFvIRtslbXpZ6vVIJoZLxzDjwf3JaUF8LaUUzwcSRHcnBK6ZjKCsNaR3Y4LPWuiPVHqVUg7KfmaP5edFJOjPBNVGpyDZQohsDBdc8SGYtdErmrQajv3QygsA4JoSVsX6jVgOKRfM8Gg14nslY0HyhHZQOl0zajlFCcrhzLlQgimpGO1PUExcvmsvQe7bdSWWRNgN5fHzt3c+3CiJe63iX9MW7oiu2hWPR3S3OxN69ImQGnvtLqX4mFR+lWakkq4pdrstlpE6fFt7yRgNL8/NxxmIKQKrRQOn3fx/W2bMYuP9+/MJDD8F1s4miMSBpQ1K4caHu3SuXQUchFa7glVo6Lu6igB4YMDhbOvQUHJ5nAsBWYwFpB8jnQmC2guHhD2LnTtOFuFAAhvwVuYgXa8BTT0lUXldicXNzVzYacF97DfbychwlOgcAy8vo/853hIKxUkHqQx/C4KFDGCyVsIJ0rDzTwYL0CPnyl1E/eRKzQNxBtgBRFHmIgsgCsB54APh7f0/gT4uLwgf/wANYKBzG5ESSbWl4WObo1CnRcSyir1QM4wpvTdejFIsGB88I0cHSKlbRj9SddwJhiAUnj+xtt2HBG8LkceOM7N1rGu+w1xIL24pFKTq06q8DU7Vklbj+m4J3xw5gfh7ljw/GTYEYpAGMcuGzvnw5uS4KBdOvhI+PzXeoEHTXeeKg2yOXPF93t5yP18CyCCpNEjFxzg4Ui4kc/Kv1NHw/YhYDko4Go04MizLzwEUdhrBtwRAr+DZcN6Lq1Rivzs4k7o7FINFxKNyZlaKC5r7U8DDeJ3+Y+dPRZjoVvCU6IpwH35d9HFMLNzYN3FzzeJcciy8A+PcdHR3/EFJm9kkA6OjoyAP46sbGxi8A+DCATwN4tqOjYzL6HqkC/7eOjo4RSHq7AuD/dqMubGNj479EOF09tiog/CUAj2xsbFwB8OOOjo5ZCBvp9978HMngBGBskr3/3WEMjIvw7Z+cxPryMl6HNGcLIIGSAIg3kOuK3KZ9Rcg4YNaYLlu62nC14hoL1zX2Fo3jqSlgbCyNYtEEE2ZnjTPNoA7tJ+6BzeCgtLPC0ET5PQ/Ieyvo7k7HcFlUq+LBzM6Kt0MY8ewsSkcH46g5MxBvVhDtOFbcbZmDTEg4Pos6BPZUg6mpGARwO8SxaADwH3gA+I3fwF9O9ePsWZNt0sE9HVh6q6ziVv0rNmONAoAwouClrCXshc/1H3/60zL3Tz+N248fBx58MK7XI7sWI+22LbZAVPctunq2aqJnDFQ5DizXxf79B+JzaUNXo4jo6K2tAY6flgJqJVjIcERdSeN31y5jBFN+6uAo0dCx+Gfkk1Z9EAA9PVdnJpipbh9s7MQgHHF/gPHIKe/bCx08D42KWefa+XZdCAUuK9M1BRMXfPTFUmkohvORkv7SJaM/dRJmcwiU/G61rARCl9PCgnw2fnQc07vxRox3QV+8K7piWzgWmQzwK/dHwNm/nga++U1ZZELlIE92eBjnwn6ELuAdPSjQj4c/guxDD8WtMA9++cvAM8+g1mhgCpL+bgLIP/44/DNngEYDH/nsZ+OmdRTs2ujThk0uJ71yPtT3iqSzT70GNJsYGh3F0LFxLDRkszOdpqPSf/fviiFj21H24cqrwKlZg8e6dAmoVJD/LRf5/T7WvSwqlaiRzMmnRCHUamLw/+QncmBKj7Exk9oYGJDdVC7DCQL4c3OoNxoIIKvgdQCF+XkUH3lEzn3hAtBoIF0oAJUK0rkc8OyzwL/+13j15MmY1aMJaWR0OPqdGhsD7r9fYGjj41jKDUnNXgEofPwX5RFMyb0fLK2KRq3XkYk05IHPPIi/PGXFBrWOSrE4nXNeLAoM+s475X2rsSCTfLyK1NGjWM9JIfXkBOC6Q6iclmdJJ4ac2Lp4m8P3IzyrTi8x1OF5JqVx+bKpT8jlYoXA43KNOI4YxoTt6OimTgxQgOkMDX/ahazO1vCR87V9+2TpEMZAeNn58/LDjqRxUfhwHkHdKDTjNBsO/kLxAFKFgrF2GELlBUVZqZXAwvKiuW99n14xC3hZUYpsrMhsByct+lkKUmjWzPcZedYZPEKANWyRe5WH0rUuNEz4jNh3hOuJtUpx+chWFazXMN6tjMXGxsZFAH93k9fPAfiF6O/TADq2+P6nf6oXePXYqoBwL4AJ9blq9NpVo6Oj4x8D+McA0NMzGIs/Gnzc+11dMPiF0VH4P/4xRiqVCFUtQac6gPTcHPofewy3/24J1fH+GCqj5Xj7/g2Cq6PidGwRnXbPHmML0Zgl4117dlo7vjwWM7ybRUnp6xMqyw7FmK5goFgU46xWkwZ109PAmTOoNxpYB5CbmYHlurAAjI5/NM6KbrYN9P0xKcxaOerE1Hf/I/DVr+JHEGtlCRJ06of0qshH1Lrp554Djh3DUm4ItehJc7/btsirN94Q2UVkL4NP72Rs5iTpGhY94toD3xdYb1+fvHjffbC/bRK3lE1sEqipyhNWbqNhsgCRXvHLBwAYyJkuX+P6ogxnImDHjhRsOxX1iFqP74FOEdeRpg8mCoHHnJ+Xe2ZTd3Fg+2PdkClEN6+gUBbW5UCkZ2of+/YZx4JKkPpBw2XfZoifH7XC1WT0iFjE3l6zcaIvsD6Cp9C075xTrmnFkr7p0DwlOhtOHbxzp1xCxll9W/fzVuPd0Bfvlq7YFo5FT3coRMIzM2JEnzwpb5RK8vRzOSw5/Zg+azYRhWKxmEdxJC91GI0GUCrBf/RRVBuNuPdCE0BQq6H4ta8JB/PoKPLlMhaCNFotERLE1lE2XLkirx85AuCbp5IQj2gls6B2M7gLoYbE92PNNjlrWtbT0zHQz/I8DA0PC+zr6aeNBGFYg9ItSgWsw4JVigSDNo5rNRz41rfiQrQVSPYiNT+P/He+YzZvoSDn9jzg7FksnDyJ5yFKIoBEnoYADPf2ikNx7Bhw7BjWC4NCJXvKZD6np43B6vvAKlJIAYgrI+t1oFDAyMgHExFGwGzkKPESR4duuw2wJv6rAaMyvO95JLzCs8/KMYiNvPVWEdKkicvlgMGcOBG5nBQ1p+1VYLZyteXP8JUGrTJMFwRI26tIu0CxmLqKGplfIVwKSAT54yAOX2dgn9EnymUdHaVw0+ltpuDpaKjLwxtvGOOaDozOwlF/XLhg/Ck+IgDo6Umj10sj7ThYdbPC8gQpnrOCFehB437nTuNQWVjHamhJ0TgvXKegooteRSou4OfQzhodrfY0NmAUQXtHdM4Rg2x79hjfSEd2ybBmBStXH/wdjJupk+pPaWymzDY2+2DEgvKnAJDLjW4Ui5IoPXpU3v/E2OtYcvoFzsmoRSQr/bU1DM/NYRXGCK4B6P/ylwHfxyd+53fgOFaiNIijHea4meEahhI88n3xZwqFJH5+925Td7Z7t0RC6cePj4vc0ijfs2eTdLMAswcmE1sqAenZH8nFPfNM8oKjBgxBoxE7UgsAysePA56HVC6HcvkwKhXZM28GLQKMPtuxQxy4gQs/Ar75TbwyM4Nz0fH7IZmKTPQbd95p9BeECvfo0XQc1K9UDBSF0LbLl+W19iLatzs2u4/1qEh3cVHkBmUAO0SPj0P0IAVnqYT1wmAslylLKct1TVizCWQovADDvEGu7FwuLq5mMIjcGJtBZynHY9pix9wTp5KQUaIiAHm9UDBwWMCQAoShKbFjcEUy6SmpXYgOknj2dCDahz6BxiAtL8viYFW/8s41zI6yUrMyNZtCjZtmtEhna9h5kJ6c4+BczYob2ZGEgME0wGTA252JzWByZFKjPqJuZsD54kX5zEqYunou3sG4mfTFO3YsOjo6boUU5HEMAfh/QTKg19apr9EQx+LHPwYuXkSz0TA9H3t7seL2Y3YaMfyIX4nsaFQqgO+ncPf994u33WjAf/RRhJCsRYCIn3p6GvmvfU2k18iIMBfkchjIOXKQ71eRdV187GMfjesgUlM/kAgQNUxkJF2Yt3DhguHQJ9RJK6JGw0QosiXfePfMaf74xwKEpATjzUxMJHPFDM2VSsDICM7V2PUyj8xdDvC+9xlh0GggFYYYfPRRrEAUykI0lSsAik8+KcXWt90mGgzAyswMJiHwpwYk8lRAhI397GeBv/N3gLvuwvO1LCrfNQqh2RRF2dVldDkz8UMkTA8CeXAzM8gWChgeziMMTeMg2zbRtzA0jkUGS/KhgQFjQTsOXq1K1oPkLxT4d9whiLEgEOWXcddljienxTGg0CJeiCPOxeLqojm2/g7DmEI1XyjA901Hcx2dJMxUK6F2KkgqiChxlJCjdCxYmEn53E7SFON6kYTeadwpGTMAg8XlmiTcAjDRUTohhUIWtSrQ02OEaV9fGnrYtuFOp0Mh6zVzlSMRa0jXxaqdjrPoOiHCOWQfEyocDY1gEe1mzka7U09eea7PYlGUazpcEiw0T/7e+NsaWxUQVgHsU58rIEJxvtno7gbuu0+e8+HwBwBGgG9+E5n77pMPsMiN7XPLZQx+85tArYZweRlLEFlnLS9j+Pd+D6jX8fOf+QxyuSHMzCQZfijTSZTQPujs7t+fLOadmjIxFSFWkLV55YphfAMMTNNqLODuUReYnUWzfDBez9oYoho44C9Jo7NTp2Shc9NoPFUuB8dx0B8EMTy4MjeH4he/CNRqSN13Hw6MjQF9hfj4mzEq7dplgQy+jgOkjv8fwJ/8CaonT2IS8iB9CFT2MIQHKPXJTwK/+quygYtF4OGH8f1npTh5eNgEkZ58Evjrv5Zjs9fUO3Uq9PXr+xCj3Iqzl5HKx8CA+D6FAgC3aBAA9TpOnzZTOTAgqpVz0N0tyY2RkQhCPD0rXsvamumex0hjo4HifYdjR0rLeQaLWNBPnUEUEuU/Iau1mui8115LNlVtrxXV56BTRHWnm9A1GsDISBaZiKoy0ZF6E+zPOizUgizyudWkt8U0iesmm4NFF6KfhW0bJ9l1rVhFpLFiHBR6bFqJRcdahxX34OL96YwFaympcxVh2aaDMOIrV0yQjHAoaYYpSyIdLm1+gPfGluMda9eNjY0XIc000dHR0QngNQDfAfCbuNZOfQsLwLe/jdVISq8DxsIslWiXxoKaxhmxrLmcLATPy6P88TysK1dQmJ5G5tlnsQRT0FwBYE1MwCd+aWREvnjpkhj4Qi2C7H/3ArJMX5w9Kw2AymWRMFHNByPEGmuvo9eAMZbi12i41uvACy8gqFTgfO1rpo3kyIhsLlrdfX0mYt/dDeRyWAlTmJuTzTA/D+zalYXjZpE7dhBAtAmCAO7kJLyZmQT9Hwu8/clJ9E9PYyFSOudgYFP9kMK7gwBy994LfOYzWPIPYHJSpkI36AlDmb61taSBWqsBQ2O+6fZUrUoW5tIl5IeH4d93d1w0RVjN+Lj8Hh0FDuQWgLOTprkUIxe5HJl1447elEHEvAYBkGm8ClQa8Tyj0TBhG1qttKR7epKMRbT0KTw5GNqv12G5LlK2Dc/LxJFx4j2bTVEWLLDL5Ux0nnhQZlx4GXSumAno6zOBH7JiAclkCtc+L3duTuaEl6nJBHTzOQ5mu9lyghH/Ws1019VRVI0RbrVkK4i8l+6mWc9FrQq4bgaun8HiIjDARmC2UCbWayazffmyHJ/KjlHEiBI/VoYU/rpcQxt+ZPvyPFNvXi4baEzWW4/wFQ1zQO7F6xw3UwTqOsdWBYT/EcD/3tHR8S8gtul+AH/zVgfLZIBfGTsn8uFP/kSCUo88IotobAwYGcHz9X4UHvh1yaqOfwLZBx8EKhWUv/514MQJ/M3yMqoAVoIAB/7wD+FVq7j9d38Xe48ejrvx6u1fqcjaai8A7e2Vtfbgg8BQ4wfA6SngeAOHx8dRvu92VKtymdzLti11zOWy/H3AeRU4MZ3o8HXwc5/DwaM5QLpvxOccGYmgso8/Llb48eOmo/Tu3cBdd5kUXb0OjIzAu3QJK88+iyakzmQhCDD8ta8hVamIAnngAaBQ2LIQOhUsyWdZoPB7v4fnp6cxCcn6HEDUUXv/fuAzn5HrOXYMP5jNIHcIKPzar+P06ehei6vAxAQykTAa+X/8Cvr6TCsm2qWEt202tsqubPVZQGTD8LDolqNHIzhsYyGC64rSeaWRxewEEIaZ2DQIQ1MrSGYgXl86XDLBPxbwOY4RVMzawsDJaPhT9VCu6SwIIL+Z4UjZch/1unG8SOdOSBkzMYTOdnaajAwDTY0GYqdZr+3h4UF4MA7AamhhupqFbQMHPZP1AcREwkgqusY0isOHYRUK7BRsIAfNJtZzpl2ChXUsNKzEfmI/lCAAVpCG7Q8ideiQgT0AiYzFUphGs2acKc4nM/ls4Og4hgKdX9frieumqwv4wAdMZoeZjrU1WSu6fvBGBaFuJn1xo8J2fxfAyxsbGz+RAvNrGxvLy3gVQBhdkAMgQxc+GjQm2uESZHqxbRP8v318HHjwQWRaLWSmp+NmPVMQB6NYqaBQqSDzve+JMK5WgYkJLLRayACwyXnreSIo77lHipWLReB978NS4SAqEwpf7l1N1sQoFx2AMLRQraZQKn0Eg78zDHzoQ3D+4i/kAN/9rgHiHjlimnl86EOSWTh2DOeaGczNARdOmOM3GhLBaLXE+JTobwblh/8BrM5OlP7Df0Dp+HG80mqhCnEcGL16JQhQg2RyGtF7gxCn4jAip+Kzn8Ur9gHMTphC6/bCdw6NgW82gZdmLRwYGZEH9JOfmPl03bhYjYqW2NVEZIGhhuVlQxnmeQgr5iNE21DYZ6s/kjcmJ030iFkTXhwNSoJniZEplUToBCvGwaAHRc+B3lBkzedLJWC2iZTnIZPLYeg2F7t2ZWJDvlaT5UP6VEAcDt43s2KELfE2efuAIWvS0SjOt34OzEhQaTE6x9SujvYTsrW2ZiCFOupPuBQpjwcGIoayyEGwwtWo+r4ujnguBzQALzcU78/XXgPW1iyEYSq+9lpNpp3CXGf36JTSwWImgygDIgNJCMAEVBCY4uwwlO/fPrIOTE8j63lAJUhyPHLcAHLym0lRvN3R0dHxLUihdq6jo6MK4PexRQHhxsbGcx0dHf8e0moiBPBP34oRCgB6NprAH/wBUK1i/fHHxex59tm4wOrVRgYTE/JZrrORkcMojhzG4Od84I47MPT5z8d1aAsAbv/GN9Bfr2PgU5/CQGR9roQpiaY2GrhwRx6XLl0dDd+92xIWw/AlMfRVAQXhjtx/WgTFSbNCzpCSTE1J9ObUKfnS7/xOfB4AGGr+CJicBf7sz0y4m5bTnXdixR9CEADZY8eMZdnZifyf/RnSTz6J5yGwpR8BKJw8Cb9alc8VCptmKwDIPv/qV2O2jbPT0/hRdJwCpNK+8MlPAg8/jNX7PoHZWWD6hMTGSLIwNcX2UylkHUeONTUFK5fD+PhHcPasvMSs/y23bP3s27MSmzkY7QXcjmOhWBRnIR+8ApyqGAVdKuFHU1bMzEtZfPRojIySqHXtFSAMMTQWOW2TlWShHS1RplBbLWBxEenm60ivhbjjjjy6usS437XLwG60XQOI2iK8lK9ZWEczKt5mF2rWvND2YCCK2W3qE8Cgn5ntoO1E+Ts2ZuYuCIDTp+X7B8vm/KuhzBFFKI/julkMll0sNFPIlnJYCSykPfuqZ8LgD8e+fUb3pe1VrCJlbkjjmnwfq3YajboJIu7cKYExbXM0GqY3C3Wthse2rxtmCnftEn18222i5y5dknWSy0kndSmI1IbJOx83k764UY7FpwB8S/3/lp36dDHeIATTz0Y66d5eyVNGuzqsync0bAKQTaQZ0Gj/LRT7kb3vPqC7G7d//vOoQgThKxBDehViYGcuXpTU85kzeBWiYLIAyo8+Cou5bf7ceSdQLmMJmTi4BJgNs3OnSb1xwzKqf+WKQTmFIRAUszjw8Y/LAf7qr4AgwGoQIPXaawJrYojkzjuB8XG8VE3H2Zpm09hEly+Locpz6Kjy7Q88APL3Dn3727Dn5uLMRQPy4OlwrUMyFYchmYr0Aw9IKvvYMVQmjRDRQX3ufd0igQYhkzI7d6YxcOSITMS+fTEB966y6DPHEUFARzE2npmPLJUM12xUkR3OJiCsMdohl4MJczOlo1NbWqvzxG30I/KxtHRk1YVozJcyVcvBKmxVbOG6mfglnfIGjLJgJoCGs55bFoNTSTDty88w9auReXo/tON3dZG4rvXgaC9QZe8MnbS5dAlAn538ktZO0QFs2xRd6ywDj6UL6/Sa4b1riJbuDK8xyD09VycbqNeB6HelIiFQFm4Qk8gbas9GXce4WRTF2x0bGxu/tsVbVxUQRp//5wD++TWdZH5ejF0g7pmAvj6gUMCrjUxMZ0r8NZGMxSJw330fxNA/KiL3F3+B4ZMnY6aolwDgiSfQX6/L+imXkXYcCVJUKpJ9u/9+sCUzDZSBHUsYqE8AXz8uDH7ve594vq6LixeT1MncqwyIeB5M+NW2gelprJ85A+tLX5IbiByLeHzhC3LAp54yTZWAOLNfie55z54h5MaHkB4biy0ob34e2clJLMDUmQQzMyhOTkrTwK1GpQJ84xtYaTRQgwTnmNkeAVC4917g85/HhYHD+E/flHk+f16CE8Wi3O/MjNxmpQJki0WB+s7OAk89hQP32vDvvzsW3cWixPHebpB4s6xFuxFJmP5BfwF44nvm4iL9OHUcOHNGMr5hKI+vXBYZNHDlVWC6Lt7R8rLMO7FEDE4xY0F0gZYv0Y0NFEXw7dmTge8ni7DZhJHrg3JbyxaWZHLQj1HJ/LjYOAxN4kqL6ulpoxoJZW40gLvHzBw2m5IAzOWAf/CwOV8YIoaIua48Z2adG6UUqlXAcaSoulBIJ6CynAadjOjsFJhXAEuc8HmgryiBqRTltm1jBWkETWMjcLp37DCZfTJMBoHcW6NhGlxqNrP2wUfmOOJMsEZzKBd1KJ8NDD/xDRo3i764bseio6MjBeATAP5Z9NLb6tSni/FGu7o2PGLyPC9uehbhmxDMGlgRDRAKav7PqCvtiGypJE2SymXkp6djRhALkfMCxHlDOhoBJGwWAEhTMLAz3vAwXq2ncf68Mb6YztPpNxpDmqGBm1tj6sPQwsEjR0Sa9fSYEifeSBRFP9dIJ0gnqKS2ErwUSgthBtlDhwRmNT2NzNwcEN0b+33E9wopjMlDmgNhdBQ4dAgrTvYqqBeFIc+v9xyvS9cR7CrnJcVJaeq6sYNEg5kMc2wYtxSkBPvJcJHvY9XNJiL0fP4kIHJdAIst09VKV9xt9UMLOPrftlNGUekHp6n1dMEEQZ3qmKqkAEGQZOjTjhmNaP7m/fT0JDGkrLFof958j4ZKT8/Vc9NeCE72XN2NuqfH2Cd0eLgE6eA4DgxmlguYeCZ2IoIx+CnQdTZCrw/tcPF/1wXSjmBv9eD00jni89btRvTxPA/AbNN0wmy1TBhQV4zfAAl/M0WgttVYXERlYwMpAImyyp6eGLETBKZjtCZUOHMGCI/048CnPoXs4iJyk5NYgmQulgAcPHMGxZkZ4N57ZUGdOoVwfh72nXcmObA52CTBcURvHTsGDA9jKTeE6oSJaWhuCAadmk3g1aqFej2N2++/H1hehhWl4lYnJpL3Bog1Ryv5Yx8TC/j++3GhZwgvnjZ7hchaz8vAdYHhh/4+rFYL5X/1r5A5cwYVSKDtJQDFl19+87l+9lmcbTRQhzhgdUhNxTCAg+Uy8Fu/hVfcw5j8a/EVmCC+fNmQoHA0GsCFvf3ipDH8HWUTtWx8p+PN4FGuC5OqpSL1PKw6mQRrKmXyYPgK0GgaGMRsZISwMxsPyqhWsZi8eC5Enb5utTB4223AZB2DpRIGCx4AC9WqiNEIRRTPhx7kbdGnZpaCMlrLXBJ9UFxfvmwyJFqvbBZfoRPQPp9zc6ZeqFoVGUzDncl8BgwH+pLPoZ2dcWDtHDBZQ8b3gSaww83HHC2ua2r66JjrejsGkzXtuCaAYWkP2QA38wts27wfBJK1SVVfkRf4rJliuUGOxc2kL67bsQDwcQA/YIe+d9Spb8cOWATr9/QYd7y3F6tIJQxKXaTJtKWGIcXCiatxbQ02xHh2YQqT08WiwI5KJWRfew2Ym4MXvZ++5x4xru+4Q6BSzSZeqaXjXgGAEeK0MxlNpo1J25bXTeYBbWSVy3lYo6PAkSOw19ZEaf3cz0nOMsp1NupXQ4+0AGZRKzcQN7vrQgpVoyzBOkQxhBDnqglxKrxoXlIgohdx/t4ZNntKtzSgXakj0RwaqsZ6i8FSCReW0+gtCU3sdx8T5MJdd5muqHQw9uxhBNrCYKkUh2XqNYOMYqJBG9CdnbKO4nw6h5Y8euL4mymAZhMpx5G0Jx9yOycsQzS0DohT4o0HAdycwJ35Erub68vRhrLOWHieGM46WaIPz+dAw1rD7mzbpNgZwadfxudAJbJnj+lpuG+f/M9p0qQetGHyuVWTDeLGo8OlcvlW7RzSrou066C1N4Xe3qTi4prg/XR3G6perTC5xthfgM4T0+A9PSZT1tWVPEcYIhmKap/4xAevb9xMimJbjY0NpCGZCqevT14bHwf27YufB4PHgJGHti0ZjGoVOPDgg4Dj4Pbf/m14jQZeggRc6gD6Gw2kn3kGYaWCH0HkZPHMGeRPnZJiCj0qFeDb35aQ5/g48NBDuNDK4uUp06xSITkTKMswNPVWjYaF0Qd+HZk9e4Djx7ECXO1YzMyIhXboEPBLvwR87GP40XQKL5wRZ4KGFh0r7uFmExj55V9H+n3vQ/5P/gTZb30rbmqX4P3ebPzkJ3geRl8UIPCnoUOHgD/4A6ze9wlMfdegDXXAgLVhfB5BIHG0gbExQ2VUrSLjrqNUsuJs7VbJxLeqq3iz98IQRig6DrFZcQ8hIiFY0hc3G5mdlQsifZX2EpUiWrdTwhKlGzUAxqkgHpYBjuiEvt8f6z5NyNEePNSOhEYKMWikg0AUza2W6AsWg9u2sQ8YmGmn4OUc2PbV80n7hrd35Yrx0xqNpGpoT4/bNiKmQdvMCyffcWB7yY7i/A6JtmhzACaYTNSZDjCTm4XsX28WhI0SVnJtlZfEEGHNiI6S3iAhfzPpixvhWPwaFAzqHXXq27lT0rG0HPr6Yh5y7m8djdURYKb/dNQyCID1UmS033cf7FIJ/S+8IE3iEEXlx8Yk9xXlBRuQjEYIwDtzxhwwyqBwwXIvkGENMAY9v6JhJGFoinbbhxWsyGKemsLqzAxSumLVcYDZWRSG++MNR4NLR2y7u825tQABIC+qFyyIcqCScIDY6fIBwb+OjsbUJkGQjAwDxr7m/dF2a8/M0JFqNoFmUbIuTM06jigdHjsMZT6JQuCc2mMHRWhVjOK6eNEYm4CJ5q+twUgSSjgODdnhby0FabkyzaBbQGvwZleXSSkwq0SvLpJk1YpkX1i83dOTfHa6ZIOGdrvgI9xHP1OuHxpGjDjp72unjsKekUMuB64ZXcfADGAc8Yf5PwwVHaDjYDWUdLelFYfjmJuM5rSvrx9WuIq0Z5ubL6Rj4c/rHti1ap5RPYCb60844Lwnzlu7s6bvOQGRunLFKHHyPermGDcACnUzKYptNXbsQP/GhugJVmZGhTbN2aRzzS3dxoJpglfFIvojiNAqoqxt1NfAXltDdm4OAYTtSBc5xzSwnieA/PFxwPfxfC0bR+1Zx8TEWVsMAoAJbHOv/fz4GFCvw2vH+wEmDFurAe97H16tpVCvG7gXjSxmxmlsAiLC0lHY2+nqQthqSaPAN1nA67BgNYS2PYQ4ch5EVzDcS9HKeiwekglDwMgUIknPNdLIj41hNZdHqlDAX54S/P7oqDD9ATKdtp10JHRdBf9/sxoL/mZndN9PIz88HNdOLgTpBMyXjl9cC0DHod340AI7km1WsCKR9nrTPFimpXTHNgqxKJjl+f2x8/dmgXFCm3R2mUu4PcvNS92xQ2Ql5SWfU1eXgEH277/6nLYtZhFtGz2/xaIEzXgtusaaay8q2ZFFTVr8iAQg3ohAfP8M4qV9H+k+F2tryYy1VjO2Lfei1zVg9hc/A8h1kl3Rca4mXQDaYo2NwJxQZ+L1Zr3OcTPpi+tyLDo6OtIAPoZkN75r79RnWUksQ2RVrdrpBHczDQgNjW/f43wtboLGBRwEsBAxTtEa3bEDeOMNrEZClgZ3LgiQZZOERgMYG8PIwwfiCACNWxo3VGLsawEYA1x7+dx4rKvDI98GvvY1LDz7LGoA0svL8J94Qo4ZgQYzDwX40NGjeL7XijMmerPpJjCEsuzcGXngZ84Ap05h/eRJvALDCrUKA39ah4FEvR4E4oCVy0C1irTvY8eOdJwVIZMekUE6Aj0/L68z8hOGcm3MKGqZwqJiPTf8LJ0RTr2mUXUcEwDSUNYrVyLHo+wZJ0E7De2CQYc1+R7/pvXf2Zl0KmitsMUu60CiG1uxM6hXJcBFB7TZNLatPjQdKDpfPBxPsZlNwee9uGgQEZcumdsMAsPYpQNrQSApbHb/Bgz9qm7a1T60MyTPMI1m3UzXgVIx6aTpblthaJoeqYNkfXFAPC8TB+8S+MAgSKTtazVDbTw3J/dLxTowYNZMtZpUEhl6+jorpVOIXDjXOW4mRbGtRiYD3H23AZgDwOgoVtz+BAmEhhOS7pVO9EpgiaF95AjcS5dQnJlBACDveQKDKhaBuTlYEYR0HQBaraspTRkGjoR75bRJ7jEKrfWSDtAAyX3WbCIO065H+ioxLl40jR7qdbh+MrOpM/fMGNDo3LEDgApuUebrfdBupFtYB4IgDkK5EAcrzVBvtN95PkbJmcTUzZtbLQPRmp4GUM5j7hngttvyCb2mxcibdQTf7O/213RzuVpNZF5Q7odf7o/lCkU8xQIDNrHw7O42noeWZxpWdf484HmwXNdEwFi5z/nVOG7l6TJo2GyK3uZaae8+ztMCJq7FZ01q2u5uY5PQ7OG6sG1j9oShsRXadU1np6ybnTuTc2nbcsm7diVrO4CkYxEb/HEwM3o+Ca8eJr3AC4rmyvcNmxSQzPBx2jwvsu9sG729qTjmx3mijcJ1qLMvZr1YSVi3zlBo464t83I942bSF9c1YxsbGysAdre9du2d+jSInDj2RiNKnaUSxpO2B5giA8zzZz0VZmclG/Dss8DLL2N9fj4uDo/DtFFoQtdhrANCNXvXXcZFDwJYwQr6+tJxp1Daq52dxnDUeFL+r9OaFAQDA0Cq9mpMQ8GusDZMYbk9NwebDRtKJfj+YEIAAskACv2xnTsjfONfTwlJ+KlTqECoAcnG7ETzYEc/KYhTVQOQnZyEzQ6kngfPO5ywzfV+Y3kC9yLlrYboUJbSOaABXKnIezS0KWeWl5PRLg6tkLXQ5HxcvgyjxV1XXmi1ktZFe2pTp1kY1r982WDyg8A4FZTMGofEG3UcBM2kL8O50eweHFr4MdXL+9VBMp1g0YpF/68zN7rfBQdhwGzMpKF70aUnsn2cOg2p0/AGjnVYUm/Bg+kLoiKmh6hfDwJYrouuLiuC6wWJTBMdWCpcBv1Y1xQ/azXooNEOGDqUM8UYXA+b5fyvc9xMimJbjVwO+NznksbK+DgASbaSgVU/Gy0GYnVTLkuB9MMPI6c7fBYK8sEPfxiDL74oC6yvL6bPSRjghYJQtkYZy5GR5LLX+4uXmsuZvghhKH/HmUfbBsbHYf2bf3P1fX/hCwY7WSrFNKpRK4IYVsiiaS32HAdyjQ8/DIyO4tjZszhWq8n/0dg08v+7v4vPcwLJklguxxEyx5EIN6Lp1LY3tx+ziRQTFJ3E4x89KtkKGo06JrDVeDt0s/zc0aMGfcQAzs6d5u9SKWlX5HIA3HI8z4lMg74wnSGnx8oMmu9LSgAwkwEYHRV9vteW7EEul3QMiNjiGBkx8FUtuzVKYbP5bdcV2s8h7FbP1a5dwG/9ltElnGfbltd5DeVyQv1h717jrNg2khRQ0XFgC7jPwrrpWqovGlevQc8zTRo5jXGHcJipdxy5Nurgdr3WPhynbd95BfMPC0J04OwGjJtJX9wYV+x6BzEdzaaxuKKwdGdnNv6YNtIYode/aURlnRVxKCYmgKefxkqrBTZlT/f2CrC8UIh4NAeABx6A5zhwJyflcw8+GKe2Y3xlo4FcLh3DWDhoHGpsoHLA42ul8Z/LRfCPU9Pi/MAY+nT2VyCORu6FF4Af/hDYvx/ZMQ979mTi4isel/UFjMi5LsRqn5wETp7E63NzcY+Kleg8mej3OiRrAYhj8Xr0eunUqdgD8j9pHAva1jw3hw7itAu3nTujbtdIxZGj6WlDR0jHIpeTv994I+mQ6fmjcKHBrqM6V67AsAAxRwtImCwIjBDTUCdevI5S8G9+lg+REpyNJVwX624Glm0n6oBYtM9Db2bIt88d71cPrQz0uqfwbn8GjEpqW5p2F6FrvCW+zkiXShLGGQFtmHDqNAQuCCCsOVojcxG0h2M5VGrZddMSOOD70YXrYKAucaFo4L3ruhUygfAel8K0FP9zgrgwCUnYzAN7b/zsDEI29fA8pLGOwcI1HMd1N20GFo9yeVPGpATVqQpQAUDe35r6lCPt4M2vk0yE7aOtvsPCOrIekPWu/uimw3bkfoeHgYceesuPW1gXPRg5bZuNFNbR15fsdL1VF+/2echECm+oaF7L+3hb4+04FfycPn77ubca6xC7w/Lf5gXxe076Le9bj7SzjvTbsFvz/vrbmptUJPLe6v704DVaWEfKBu4eM+/pSD9fb+9svun9tVnzV31mq9R82+D3Ura5N318CzJ/b2cO24/r+/ra3QS+6u06ru+Nzcf2cCx27DDhDtuOU4vwvLgRXRiaqLhO/3J9srjJ9yGG9YsvxkwMZILyGHUaHxfFVCwaTA4Au7cX9uSkAeQ2GsKxFlW+ZsplHBwZQaPYn+ik2Q7FU+ireH/x2g4XFoBvPgZ885t4/eRJrEIyCasw9K8LkAeTrdVQ+spX4EZctYNHjwLFAzh/3mB3GeXJ2CsmZ3j2LPDYY3hlehrTkO7jCxBa334IRnYomnorOn8FUsyXBpButZA/fRooFJC65x74/mBsm/O+aEh3dyejIZwLPo89ewBMT6NcPhzb86OjBm3EyAqp3LXRrGsFOBjJJrJFl0U8P20BSOEgGx3UaiaNpDFajKYztMGoBEP6xF0Rr+M4htsuqoheQRqTEwIRIq0lC9EZZQ8Ccax0UX8QiD/JJlyNhvi23d0mqtYekeJ82LahceW655qjTKQB3mwayBSnQDtmXLukKqTDw4JL7jXeC2EKxCTX69Klu6cHwAYwUFSeH1MNLPJoJ2tvSu+P+CIZwXOcBAyKNIK6MSbvu6vLPFIegvcvvS4GpWutvgk6jlsVPb2DcbNEoN4bV4+3Y0Bu9pquEfhvYbwVNOnNXt+u41qut71vxs/SeFtOQtvQjuN2vt+320Tx7e7bGzFuFn2xLRyLYD0l+VBdQOC6WA2t+EG4romm9vYazN/evYbS+2BxRSwQNhqqVuOme3ZfH3DffdLo7q67sFoYEm7zch4WCx+Gh8Xq+43fMEVy7OZGYLzjwC/0x9AdDc3RCRdmNUiDVi4Dg/Y54LHvSkO8730PC5BiQQ8CR0p5Hl5vNJCCwKFWIZzjB0+dknmZn8fgL/8y3P0H46y9NfsSMFkTEHpXl1zvf/gPeOXZZzEVfb8BYbsqqh/r3ntjD8CbmkI4N4caxAEBgNX5eRQfeQQoFpEeGcHB4WF4nrlvwup37TKRbx28bg9GEOt/4YLBtrJojXYobUDibKtVYzQS5qaLIQETbW80JEl15Qpgj2VRKGal4PjyZfMQiMPiBWlvkMBonbvnjTBs7/tY9QdRrco0T04m2UR0A0FdY8OhMzu6lgQw9Oj80eteZwmYIWsv1GPglOl9OiIDA8nsO6n4dCaayA8rWAGqNQx4HlBwsRKmEthnXgNfC0OD4R4ou+ZNwkp0xTUngM4HYG40mt+VMIWLF2Ue+cM1oB1WzktPj8n2sMaHUDxx0iwUi4PIlKJJIo0gn/91jpsptf3eePNxLQbMdjbG3mrcbJHc/5bvd9Oami3e207jWhyga3n/p33PN5O+2BaOxZUrUd+FgmvC05cvI2ULrz2NKx1l5e99+8Rm7OmB4S2tVEDrzwbEgrrlFulkfe+9uNCZR+UZU0wWhmnkCoelec/sLC70DOFSBRgq+qb5DStjgwBDpRLuuCOP114zPRh0oRpgoCikuM7jnECzTp8Gnn0WQRAgBSDT22ssvUIB/U8+iUylgiWYYuvm8jLcs2flwHv2IPupIlbdNKzaOblnhnUdB6jVEJw8iSqAcxAHJQvJUAwD6N+3T5y4o0fF8u3tBSYnMfSlL+GVqN6jCcleePPz8E6fjq3I/NgYnHImESHms6jXDS6/UIiJpYSqdLqGTLEYQ7mIViIMJ840wfzN/kWkbu3tNUVjNBwbDfO9MBSWXkb9m01g795+adDHbEMQJNtea6NXp27pTHR3my7okfNJrnYavZp+uP2Q7G2iD8tTaVaLdlQWnQ86CfwMnSuNbeXfnEeN8mIGgsegE8YsFx2LtLOe9I6jk9lOKpGJ4g/rYPQ6LxRS8LyUFDAylaJ6hMTpFu1xqpTjSpiK63CYYNBF77xfna3s7TUwSGaFmk1JeHIt2TZQLg9KjHh5WSaQHsh1jptJUdwM46dpWLzdeoCftjF3vefYLvfx0xrtUK6t7uPNHMWflft/p9S9b+f9n+Z4J+d+qw7t7/S41zJuJn2xLRyL1VWh6N6zx0IulxW2jjDEamgKd8iYwCIdwDRlHti1KobC1JRYErWaKcAtFuULR44Ad92Fc8hj9kXEje5ohEoBcQaF0u14cRLReS3kSyUx2ms14900Gujry8esPGRm0nAXjXOXYvIo4xFZoo7joD8IBJpFKzzChTtTU3AqlTiLYAHivfz4x7FVm7JtCZmfOCHHfeEFuYjXXsPzEMcghNRt5AGUAfSXy8J48uEPS3E6sUS7dwOVCorf+Q4aQOzUvA7AO3EiUS2dLZXglgcByHTs3i33zyxGO74fQGzBaiORn9Gf1ZSQtE11xL+z01Cx0kguFk0knZkQPtNmE+gdzSPtulh1MoLpt20xLB0nmR5oL+wGTPVy5NFcWEzFhedkp9J0rzrTQOOXhq9+vQ2WnXAsyCzWal3dikEPXTbCeSEVoK4TpHENGHQYGT3iZ8R0BDdCdDEp30Z3d/qqc7NbOlmZeO+uC6S4AVirwsyA48j//BJ/Iu+IdMN0LLSTpjMw7f1U9N90RC5cSPoOjgMMFQtygvZGedcxbiZFcTOMrehLr2dsdbzNXv/bMNau9Rxb1Uxs9pl3eo4bOW6U43Q9hvV2mYu3GteyNq/l+9thvJ01+bd9jzeTvtg2jsUPfygG265dwPj4B5HGSmyHO45g9XfsEGOJdZmDhXWpAj77Y7EkTp82YVvHEVaGqIM1RkawVLodZ08lC6v5N20qIp5iRMzo7ch+pigvRtbTaukgqhMmYt1smoA4IExzvBeiag74vkRL6egAcKtVKcgbHk5ae+UyUKnArlRQOH1a3tNMRczIHD+O1UcfRQCpkWhEP+cgTkEJ0tCogKih0YMPChXC8DBWC1Jl0WwC2Xs8oNFAaWoKzZkZvAppFHUOACIK3MwLL8jNlkpIjY7i8MgIcrk0XBfIuOu4fNmKy2OIhmk0gO7uFPbt+yAqkwm/KmHbaYQSu2/TNuWjZHuTtTVjLLuu3M78vJTU8PidnbJeaHwPDGTw2izguimUSgdg6aKNdmySdjJYsRxF2i/Vk/2ONO5fOw86sq4dD46IaCx2nnbuNJ8hgyEd1s5O45w0m1LLUa/L66QE7OoytRHaoCa6T5MHMOvjeRBKWNY5MAVEPFdPD9BoYKBcxuqudAIKxY8SZQbI0k6FK2aC5ufFwuc8uq4h82cjjcgLXXfSuFgxTJqarlfPqZ5nnZnRGQ796Ng3Re7fwiDTa5zM6xw3k6K4GcZPy1B6O4XMP83zX+85NPf/T+P4N3Lc6HO/nUj32/3edhvX60hv5/u7UU7DjbzHm0lfbAvHYn3d2DZra1Fn1JKTMIZIkpHLRa3XQwAnZg0UCJC/Saq8b59YVqOjwMgI1ocPY/K0wKw1nEIbS2FoeiQAJhLqeVmUy1lkPSkGpcHKgmOB3ch3GJTds8e0jPd9ANW6wQkRH7W8DHzsY3Gjo9Z54Laxn0dmbEwuZGbGcMZF1LQIQ0OJ2mwigGQXliDOBH98SJbiIADn3nuBz35WrPBSCRfmLVycNfftuhmM/Nqvw1pbg3v8OEqPPor16LivQtijrEoF7pNPmo6kzSby5TJQD4HJKj40Ooo9e9La/4rhQRcuGENcc2uz7IGQH92cTSVJYgYjgbUYCvVmE7h9ZB3nahbW1uTxA2J8a5ZYRupZFzIy8kHpvE4LVofJAYNr27Mn7gb0SjUVZyq0EcuP9/YmIUfMBhQKVzsXdMDYRI81KlyTYSiPV9c9kwZWD2bK6Cz4PuJu18zqHCitJ/BVpVJeipoZ3qcXw+5VvFBWxzcaSOVseF4qQYXbbBrucNuOaqH7HIP/0/gkckDv2GGKO+iR+H5cT0HnRSUyEpA5zil9cNJr8nSsvdHHoDMSBIA7PohsoWAKfG7AuFkUxc0wfhqG0mYOxbtZ4Hyt57hWLPu1FgJv1/Fmz+qdFnZvx3E997fd7619vJPM2o2+x5tFX2wLx0IhjOImdLWaFUdFiRMXqMWKCVEyck+rkRRDAwNiYUVdpC9czuDlCTHmWi1Dg6q7VOuaXV1fqiPTnmfBcVKxPaYD3NrIApIFyQBwkF3holDqak4MvFcqFkmnYNtyrss9GewqZpDyfbn5xUW5pzfeAD7wATlZ1JinCTH8GxCHoglhfsoDuB0APv1pqS05ehTruf64K7SG3dBvOfjgg4DjIGXbGH7iCdQaDVQhiyQEpCjFcWTOZ2aMJRxZhjl/KM76LC+b6DnnoNUyrK20Py9fNr6TzvpwDvlsuD5uvdU4JqTWzRcK8P1UovaAcCANTePfy8tAepeXpLdi+L3VSrZUj6zZsC16TieIf/f0GNgWE0+dncYg1s5ssynz8MYbpnO8djxoKPf2JnnKd+yQz9N3ZpM4ZvG4/nSSoL3qOsXN1l5JrhvIBYHpnhf92HYKO3bIPWqKWkLTbBtX16vQ0icXrr5Jbhxc/cwI8WKmio0XeZ6eHvk6W96wOJ37loXz7T2ZWi1gNbSQan/jHY6bKQK1rUYQSHaaiyKSrQvIJgr99bOhE6o5763GgkQj5uakQCsIDEWdbRsSEOIrH3wQOHYseS3VqtTORcGipdxQomcP1dLOncwqWjHRAwdln+8D1uQP5JwTE8BXv5o81+/8jnGISRtbLOLCYipugKm3t+byT4dLoi/PnhUI7fS03Pc/+2eJXhZXjSeeAD7/eUPFViyKEB4ZAQ4dAgoFXJi3YlnPfqJSziaZjosXk8EVdm5eXpaeSxfmLVy4IKeYnpapHh+/cY7Wj6as+BFStmgmR41gAOQ53F5aMvjaZlN0MJsBAUYQ8gFrFhHbhhXJTQtIpq4jSvRVJ5MgzyPqgc+u1ZLpTTsyB98/Y+G115KH4v1oHQGYTP/iovzPukbqvitX5DtshHfnnWauVwILjz0m5/jE/cZJBIDHHpMA6q5dppYRsGLoMWDqLLnueNyFhoVWS1AHcaakuaSiPm5SJ+hFDGDdlnq/BEW5LVTv7fNIchNNwZ/3k07iamhhasro2ry3YuDuynCzNGPIdY6bSV9sC8diPQqgkkqzqytplBIBdNXzpaWm+Wa526KC3VUngwsVWTMXL4oxpyPEgDGwNaxF20Y6kLvZoCDQzoUuoAVkY1g8QRjGVJg9PanEOTQuP76oCxcQV4r7vnCVRnUfKxAmp9chDoYLcSw8wMCu+voAz4v7RHCu23HoK8WMdFX1fWDfPniNRtz7Ig2Idu7tTaYQVDiZWQYK6XYoPedHG5G8Vz5GwNi1ZAXVNqBm/nEcM8G0kVlUrEsmNut/krjYZtM0TtCD89/2rCmgtWOpDXr+5nOlwavvUQ/9ukYNeZ5Mt15TumcLeQW45LVxzWtN3AclMK0P7SHrueAJmSJxnNhYb2e0osMTn0tb9u01K4RAtVrGm3IceH424QS0rwdS3/LwbDmiUWtbkTzpY/X2RoqpncP4HY6bSVFsq7GyIlYOMbG/9VvA1BTq/kdidvD5eePoExrJhtEDA0DeWRDn5MtfBs6exdL8PAAgMzIiPR56e4Hjx1F/8knUIIGabC53tWNRrwOnTonFdfkyLo8OYXZWDORazUA4SyXxA1otEednzyaDUHfcAeTdJbmvRx7Bj2ZmcLjNsaj+8R8jA8kk+yMjwG/+JvDQQ7jYyGN21shEbjuqQ9+HOEnf/jbCL34RfwPgeYje+J/+6I/e3LH4t/8WX56chAPAAZB96ikcAFDcvx/47d8GHngAbwSDMXsbCeFqNXk8QSBzoQk62OzttdeAri4Lf/3X8ihGRuRxlMtSepjoW3Ad48QJuYbhYTn2zp2G6KPRkKmhTQmIU3N7IbLOz56ViOTLLxsHkwKHXN2+L+Qwvb1Jdkb2Q+ruFgQFdWWziQCZmMCSRCDDw4kYEPbvN/0Z/vqvgePHTd0cEROFgoG2MrhFhsSXX5bvsvHspUsG0c3misUi8KE7jcHdaIg/6/vAJ+6X1yysYzW08JWvAB/7mCHMJIqkWDR+l3be9KjXZU329akXNb0ko4qaE51zDABeFkEApBAkFOzicgqvvSZxzpdfNsyTAwPimDG7rXuArEO6bp86ZRoR5sdCswimppJRzbZmf+903Ez6Yls4FoxG02jgwuRrrisLV6LDaVh0M7mpaTkwfEyjpdmMg9HcrIuLyQJhwARrL1+WrzMoQSYiwMBvWPNLnL0O+HZ1mb4OlDlxJKr+uixYScfEO21geBhrvhTI2rZ8NoVVoFozEaazZ4GnnkLMxTk7C3R2YrVWQxPASxDHoh/GqchwclkJHIYIglQC9qXtyNimVjgSp7cX/cvLcADYvg+8730xOxIGBgzOx3Wx6vWjNpukBW1nROI5du40ziINQj7CMJTvMWmgHS46D5RHtg3ky37MKMTMDw0KXcPAEbMq1RomHVWvG75SwHiwyjDWdjgjkqz/4NqhE8T73yww3tNjvk9hr+FL7O2hj8Ghsx7MFvB1icZY8bUwKgXfuToKpG9It61utUwXPF6442AVScam8+dN4TrnttmMnGfbNh6hXmjs7EjtE18gkM7l4HmZBJWxSpbEPkCrZZ4t92VnZ9KZ5a0xuKjjDml71TxvHTJ+h+NmUhTbaqRSUqhEJQEA9Trsglni3Mp0xtnN2fOi3jpnz4rFefo0mlE0ItPbKyQft90mgruzE7kwRO70aeD977+6KR8gMvAXf1Es1QsXMNDxOoaH++MlxuaNuoRLZzNoiB06BOD4d4HHHwfm55Ha5LYdiFNRA+BOTsL99rcBz8PBhx5CEKTjPaCzMo4DpGuvyL1+9av4AURfNCFsgXGqc6tRKKAEMRRSkNq7VwA4MzPw/92/AzwPxU/+OoJARKiW4YBJBvPeqRMz4QJcNxs7I5WKMVBvELdCPBiwbIeSck1oPUTZs+L2S5CNdIdvvGFsDgpCfpmFgVeumKy+1iU9PTEEdCHMwPMzqFeMKGpfH3r+OHRsiIElLXso89rlEY9DfdrTkwx8tdvMnZ0GVts+2Knbtg1RCG0WHUTbLHhGeG8YisM4Pw8M8ADaCKEw1zADx4Fl28g4juhtAPA8rDtpXIpMKdLYE3btOHI+skrqQV3JkkLbBi5czmCAnpLOXPDib8C4mfTFtnAsuDiVDZzorwXIQrlwQYyaffsG4ZUGhT2KAHrPkzf37DEWXbGISkVkAtdpb6/ZbERpMJ0ISGABkEMMDAADO5YMVihyBrKeJ9S0Iz4WAqkr0N3pd+0SPTSwI0o/n6rI97/4RTn4/v0SnvE8YH4e+SNHkBvOo9kEUvVzcuM//jHw3HPAd76DYGICsxChnjl5EnWIUgggBdazkELtA5DImo0ow3DbbSKt9+3DUphOOEM0hClQFxfl9gZLJXH7o7CGOzcnc0rK1VLJ/FbVsZQNu3fHUw/AZBe0/GDvQRIQ0fliMIjP23EMi67nGQeR6B4RjqnY0aMNq390LwkNWbsKtsPBqDpDQ4UC1v08atOIqWZZmN5oJH0Q/i+wOcUIpkYQyPQy80IhyDniOtSMWaxtIPzp8mVZt3RIwhBYaloJp8cUcGfQV8wI7IOWFSeK6Qa+dvmyKVqIQmILTh4zz4hPvLhoGgFWq0lKZTp6B1l4xAvWaZ3NRqQ8OO0628fB+ycbFY0mUhJT5+tAF5NqjmMeaSKFdrNI+P8Wh+sKfsN1Ra5Gr+l1r6FATGAzYzFYWAcemRThEgjtd6pYBO65B7j/fglZ04gEDNaQQq39Wnp7RThEVl9+fByFwhAPn0gGUn5xS7DHUfr0fwa++EVUJyeRwuaK2YJAXhcgGYfCU08hH6Xbb3/4YbxUTcdoroy9YhgxTp0CvvY1/GB5GT+C6BEfoi827fCtxwc+gGOR0AxaLfwA4thUIdmLVKmE1KFDKJcPx3PPrDhlI6FRDP56HoBqFX4xi9lZU3YIiO7czBi8nkGjmvKDslpntQHzTBoNQYs5Tgq3j47KBV+6JNZwX1+8bhJfZiqZ0SZGhoj7GhnBhXkLT0/I4ep1eTzT00aX0M7moSn3ACNztSE/MGAy8u2Dcx7DVGGy38zqM3Crmb+AzfUWIEEkrZf27pXbztgrcPw0FhcN+UizmWxqPzsr93zkiPz/3HPAGwUJqB4oRnaEJhEhpm552aTEOb/RBfI5spnqzIz8pl3j+4bEpX2EoQlEArJn1sr9QkZDu4YG6Hu64prHtnAsUilDG9pqmZoKGuu7d8trlOGAfDbN9JkGsbM41HGwFKbjTdTTIx8jttB1DRawPdqZGNzppIui5TYyAhQKyJZKQHEoNmy4yQe6FoDHnzCwpWeeweu1Gvq7ukxEbGREsgC+j3pkGHuFvGRkeIFBAKerCweeegppiFJxYLppL0EKtA9AYFDsMu4AJrvg+1f1WOCtUegwgxBbbLSSqQkKBdGAUb8N5HIiiGzpXWAH8px275ZjZe0Io+rZ8clW/Uys8PnIOP+85faoG1/fuRMJHDGQjI6wHp7OCiAy6sIFo1AoSIMAuOWWIQyMFZM0RDSsKTmLRSwhg8qUqVnn9euGdLTD6VDwmnt6jJ/LoaM5y8sS4OJ3GdDXmbr27+zYYdjG2iNW3d3GQeN97toFwbJqfBofPm+kvSCFN+B5CJqmtsNxDC6XDpBujlivAxd2pzEwPCzH1UwIrD7ftcs8uGjyLiyn41YsdAbpAzHCyeQYHQsW8XPuFKdAbLhdvix/M9Nh22nkcoPIDQ8i9VaR2rcxbqYI1HYazSbE+OeiA2KhwKVFzHp3t9iC73+/LL1B+5w0FGWdQauFVG+vOBW/+qvAxz+OH01ZUt+zO4uB3yxKOiGXw3r5IIAk9n8FaaTHxgR78sMfigfuOBi5byhmOWPtIPHtrZZZ02NjgHX6vwDf/jbw9NNYAVDo6kL/JtZ19uMfR/aJJ+LMxQKA/okJ2FFw4MCDD2IpSCEz+wPZEDMzskG/8Q3MVip4HuKY5CA643Zg8yyMHocOSW0HAKdaRfFb38JCdO4pALd/61uA7yN1rI6xox9FLmfsQwYLaTBTjeRyACrN+DkR+srHGAd/btBoj6IzWMnsNeWsRr1MTlI/plEqHUY6DE3gkr2QdPpf/+aNOI7ccKmEH01ZqFZNU1XKfsoqEuYxy7pZcEWjDILAJIUJM9bBFR1goZ/T0yN7gXqUuks7FV1dgupigFUPZU5IkKtvPRa+qVwOA56Hc2vpBBJCzzn1Wso2sl6CRClkXGVnaUpAPhQ+qEgBrzoZ1KrG4arXDdSdz5L36LqbF2Hr7OH0tJEZd48OGyhwZ2fETHL942bSF9vCsejqMkKIi01HcpmC0+nVVksKjdI6XBq58ytIxxuXhcoMzDKNyKQGhQvtLs2KubYGI5FoSXJ3qIohr2iuK144tYZcAMMRa2sy2bt3m+hXRBvFfh0ADcwUUtqYr1aRmpuDV6mgBsP8tAqBPOUhiiLFHCat2fvuA0ZHse7nUZ+U43OqeM+6JmFxEVjys8gcOSIeHDc5779UMlZ0JPmscDVxXB4LdRWpjn4o+PgZHe2nIc7pJiMQYVG5nKo9gToPkkqL98Xov4YX8RoplBe6LHi5flNgxy9Gxvaqk0FD2ca0w3kfvAcuDToW2unQdjuPQcHM/oTauW1DIcXXT2VLp4E1GLwOrTw5r40G4lqe+IPtnqXWPMDVOK7o3nfsSEJKWPdg20bPAmI4rfdlxDnmw9Xzqz1K/iwbf077OBoeVyjIeZiduOUWYKBXiBzK5XwczKI/zIgpGbs6O5MZrdQNws3eLIpiO43Ll4GXqmns3JnGAB3EaOEQa95qSWKYWb4774wc7MdPyiKtVuVDxaJ88P77sfqxX8TE6WQ27mUnjULxI7KMZyOWNTWWl4H6lRQGb7tNFl8EV800z6FczmNmRj7X1WWiyF1dYuAVi4A1/bzAsqangZ4eFBoNyZqMjV1945/9LFAqoTgxAUxOotZqIQRgs9i7XEbGdaVOY3JSnJ21NbwyN4cfQZwKH5FT0dsLfOYzEtzaZMSGWKkk5wWAWg352VksnTmDBUjmoxIEKH7zm0CjAQvAgVIJuZFBBIEJMjGbTOb3XA5AzRHZBCuuF9NBmhs56MQx0g+YIAnr0anSfV8e4+ys2dv1OjA2djvS5RVxJMlwR251wp5ozVKHRDd8oZWNOQJmZ8390ZSwbSOjtJzVDhb7tNKRoCgPAgMTb9fB/Js2Ti5n0BsM2hHyRKPbcSzcdtvVCDnbRvx63CuJIX/CSsMQjjsYX5ceXPsc8/NGX9ZqgFO0BP6nC/k6Ow0Lh4JFwfNih0ITO2qIF++dZEBbDZ6KGRW5vxQODA+bov0LF7Y+wDWOm0VfbAvHgvuQBlz7QuDm4+LkpurqAhwvDcu2Bd8NiSAxckkGTY52ZhBtU/Gc2jCNr4MX0NmZtOCiNLQVSuM1KTaTfg6JE0ebIQWY+g+GJkIp5HYcK25MbGETY3BtDeyK/ToEBuVAIFEOolT+vfeKxcU6k5ERrObyqNeS9l3i3tTtXbkSZRqLecHKa6oFSqIo/LRup8yXAdiOQQXHxuwWQztgWhDoImDWEOioi5Yvm60PCmwtYFx3U5KnZFSI//CN6IQ6+qMdFJ5DryH9SLcSZO02PaE62jCnIQwY54Sfbz8WHQu+zz0BGLztamghxUXe7lxs5qUpDMm6nYozCHRmdNH0VtcVBEBae47t5+AHow/39qYTNZH6EtuhZayd6OuDUDg3GsgV8zG0QTtX+vnQcInn+gZI+JspArWdxuqqoHtyOeDo0dvhAbBGRlA/Lc+3WBSj8QMfkD2WCReAx06JHDtxwgiKQ4fE0h0bAx56CKdOiLGifexWyyQzN0NCXbokNnz3hz+KgbExCcXaNhacPOp1E+zkmm42jU/T0wMM7vPkzZER4NgxpGs1KR7fJJOwet8nJNM2OgpMTcF/8kkRFmy8RHarf/kvsbS8jAoEKvsqxKkoATgMoFQsSuH3sWOb3xSMoblqpxHkhiQIMjKE9G//Nsp/9EdoTE7i+ej4wdwcDnzpS7CaTeDWW5G9914cPXq36LLmEuqjmfgSCSX1/dtROWF62jKiDtyQ8qfEaLXEkOWxaWfQ0WCWl69NTQHf/a5ZB0Eg17ZrVxrVKjA6OoTMcBSAYfMkphEoayOdsupmcWHaFBUTxqtb6vDvvj4zB5JhNffAGCORVtSFPC2dkR07THaAMUFCmLQP3t0tjoKGK/G9D32orcg6GsPDcoxUuGJYORcXDbFMTw+yd7nwCtkEcgBQEDiY+9NqKIVVk3ZgxoLCnJhflWWvThvHghlB6lJm1cNQHKkrVzanQWZsOAikvzAb/YpetXCQhbV0HK9z3Ez6Yls4FnrC9Wbmb8I8CF3SBdaAYCGXF4GBPg9h07xOg5JjbU2O0Q4hAZJsO4DJlMR53WpVFj2jrjqMrIw2204Zx2D3buPdNJsSGWdBBgtYSyUgDJH1fawiJUXexHPMzABPPw0cP47a/DxehTgVdUg6m8XaC7y5YlFCcyweCUOkwhU4ThqdnWYza/tSG+qM8MfXT+nVbnSrW06ryaRNmhiUjkEAy3HgOKlEobHG3mpjNWWvo6sr2ZgpDA30kv/zGJxmwum0r0CB5nkSvezrEwFpBSuSWWHIQ9+A6yLtu3AcC93dBvrDNC+L6JhtYJT80iWRtSz8p8Ik5V9Pj8hhnoZEX4Ah3eL63rVL5kE3qNIOUcYVtg69V3QNDWFWuVwaaULS9EZr9/D0a7YdC94LF2T5s15F02XSEdL1HrFjraECQHLSFGYl7fvw/Uz8EaivM12t4VbxGos+0C6sdVaSDobvyzNP26tmf13nuJkUxXYaGxvGAZiZEZG3FApee88e08Jo4NIrwIUoHHnqlKwXVgmzTuyOO4B778X3z1ix8csgAjkILl5UGexNRr0OfP/7ss9uueUgenuBZt0Yc0EgcgcwAZA9eyL9Qj3hujG8a6l4GC+8kKQBBSSxccsttwvUkMUJy8vAX/2VHDTanOHyMlYgzsS56LcHYATA0MgI8E/+CXDsGFZ8aZKafhNaV6o+7suxX/t1WF1d8L76VRSffBJ1IM5e9E9MiGDo6pKoPgBUqxgf//m4ro4Rdh6z2RQZksvJc+M83cjR22saiFKm0P53HFkKhYL8nffXEYYWTpwwhnutJg1YXdfU9Y6OHpB7dN0kmwcNiL17gX37YuOXGV7KIw3BooNTKBhiEyCpS8tl+c3zc43qZDPXJwNWPE9EkBmjxPX5MliCgKhlWFjHQFcDqDZjT4TG+FAhNDKdD5Oes6KZtBwHrptOPAOaQtRdOnEdhjAbgxEmKm7XNfsjggAsNKxEPRXhjgzI7d4tc8B6T+2g6f1EtCFtBq5H1rIUjuaRIbzgBoybSV9sC8eC3jl/uOho49AOoF2i4THMPjQawN69VoINhBuIG7RaNfhbDWPhYPTAdSPqv4lJYWN67jng5EnRMIBYgOWypNDp8kcXY9m2nIDp6aeeQjg9jTqAswDWWy30nzmDoTNn0L9vn3Cjj48DIyOSdSBgcGYG+P73sf6Nb2ASUixXi36GIA6FC2HqcAFRkq4roZkf/tDs2kIB2bEx7NlzMBFc0Uw6NLwOHYoMr7OTch1MkxeLWPey0q5iUl4ive7evRmpz6hFeM3Zl+Tg3/ueYQJqNGLORyuqlM8eOYKGnY8TIdnGK0BVeZW1GrLDw3DZ0K1eh1vqv6p4mmtkcVH+Z72idiroZ7VnxnTU/KoaBNfFQsPC3JyUyUxPxwy/8bkpuNkTpdEQJUVjm83d6PiQCOnll5PpcD4DnRKPqVGbASyVJkkFAVLUiPUAqVwOQcSNrzHdjYZc7/KyXNOePSn4fr/MZbt3pKNBAFAo4FzNwvS0RGPZLiZMPp54OI5sB66tMAQOlv1kDw2Gf3UlOuc7CODkMvG/Os3Py+MIwwhCcuovJbQYhsg+XEDg98fKQT9a4qljH0o7Pdc5biZFsZ2GZRm7JgzFAD9xQtZosShroFCAOBX1uoGsUMCTeGJkBOsjt2NiwgRf6di3wxO1IagH39OsPtzzGp6hP8/3bBsojg4i9b73Aa6LJf8AHAeoVQxWvH1cugScW0shHwWkUKkAP/mJ3E+9DszOYgniTNRgairyAIb27ZO+RkePYsUfijlPSGmqh47skjSj2ZQtd/j++4V0pFZD+tln8Tqkti8WdKxMjiYiba+iszOlCbxiAgrbNjWPrivOxY3eU6zVarVkXqmOaFCStVggWjX4fv6qABnlkf473W61AkZ4RdZ9e5Za6wyqRw0D5py0n3/nTnG6dMAMMGuSNrhGbjOYQhgY94b+TKLKnjdHJRc5FrExTuXKCA8XOJ2KdrxT29DQrqsCkO2BLo17J21nNIluzqDSWUfITA1gaNgZBNuKZUw7YFQJ2uGJM9s3aEHeTPpiWzgWjEpS4OrXdC0UCQI8TxZpewOyPXuMYUKnQUdzeVwdhFdZyxiHaNsAZmuSv3zxReCFF7Beq2EdgO04YoGPjBhi7OHhZLjdtuX1KAVg9/XBP3MG2SBADRLhsQGszs2h8OSTSdDk2bOygaemgJMnMQWhB6xD4E8+pFB7CIYl5FVAiMApSSYmTH7wfe8Dzp/H4CdtoHgA588nbUlA7ntgAEhXnheBMTlprPfubmD/fli+j7zvg5S1QWDw7o4jsmhuDrjttgNwXUhanNZ0u2UY7S5SfQcBkPVdc0GRhl7385idBmzbws6d/XhtSvwtlq7ozDPZIZjK5PNnYBKQCMX+/UDWWQHOThkLnAtNeyO+j2yhgDvvHIqjXXRyuSZZGAzIfRBLbNsybezbSF+TxgQLA2n4EtvJTEsM31K7k5CmdScdC6eU6+LCvBUbIZWKwYpS7jO1Toe7u9tCb2+UwdDCnAsiUjSum00g/khhyzmgY0X4F4NNe/dG8z07awCwtLgo+XVkKlobluPA8zIJ1pbz52VeZ2cR8/SfPy+HO/DQWJzm+lGtHy+8IJmV9nqY3l557sUikGm8apoc3ADc7LulKDo6OrIA/h2AIoAKgL+/sbGxuMnnKgCWAawBCDc2Nkav5fvbdXC/6wQjMdcMVLguhDXQcUz6rrNThBYjoNHDo5104YKscQ131MGszQYNUuLOi0UT6NL477U1Y1TSyCsUIhbAkyeBHTuQGZPFe2BkBEGQvupczICkwhUJ/pw+DZw6heCJJ+A89VQscBYA/AiiFwYhOsMDDGYdZo9dZeBFg8Yk5TwZf3K56AGsrQE9PfAcB04QwPE80Xmlkvkd3ey5eiqWUczi6mA/dS6fKbPDN2owsm/bRoaFociGK1dEHLDpZrGYR+20QZeRqIK6BpDPeh6A6WrcHDZWZlQAkcwLIXNHkcOMK50cDfUEzLVxnbCXx8WL5vuE+3A9cQ3qY2hVRjSAbct5dW1HNrfJAtBYVD10ZIkUu9yMgEyo62IFAhnThGOvvSbBufvuM8XbPJTsh9TVNRbkb2cKvrcXaDaR8jzkcv0Jxz0MkyyX3G/A1o6FVvsa6eA48tzT4RJQq5uLvc7xbuiLd0tXbAvHYmMjyXrA35rJh14lFwyFhDYu+cMNZwUrcN10vHB0JoQLiIYXDZBU7VV5oVpF3HmlUsEKZLJsao9bb42pV1fsTAzfAWC0m+MYiy4IkD9zBksQB6EOIATgTU/D1eHrU6dEUE1N4fVGA+dgCrUdiJIYBJDbtw/o7IQbXRt27xYJQvqe5WXZEMyy9PVh8FM+XDcTw1a4qZiGxsln5HppoVMDKMy9tkO5/2kcM+LuusAgU4iLbWtQcePp/iEJ4Gg0X1TOlNO1moFzalkDJDnK6VQMDCQb6eZyQCZ4XRTCzIwpvNOStrs7gaWyHAe+n0ehYFiNqZC1E6wNbsCsT84LGfQAo7Q4Hbt2GWQcoHptNJrKekrF5zIFfFYCq0qCK6bfGbnVhd/03Zy+FKx2z1pF3/RzvnLF0ONqdFMYGoOLkR+TaWmaLoI6tcRUF3GK5H13HGSLLpoRbS7Xx/y8yZY4jvy/f3/ExhOtsepZ42xyyWpGqb17o+dOr2t+3uyL6xzvUgTqcwD+YmNj4wsdHR2fi/7/n7f47L0bGxv16/j+thu2LeuaRauAgULW64YtOyz3w/P7kSHzg+PIBwiqLxRillgaczp4S8QrsxibZSxcV+JKeXdJFuCJSaDREErychkYL+H5aSvWPc2mlEikqy8Bp6YkkPTFL8oJPvnJmMK7PPaRq841MACkGq/LeaangdOnsf7EE5gEYE9PYwmiI85BMtyDkJoKDxH9+KFDsnkKBdQqMhVvVSgdhsnYQKMBrNgZpMtl4Q7dtQtOvS5C9v3vl+OTsi3atEHdOHvDw8a4ZkBq927ToomxsRuEPgEgEexy2cw/nRuqG7afoD5iYJ7+E1UExSUj4RkqGl3MyRuNiiIq3xV5zz4LTBAQMsvrYIQ9ASdVg8ynOovLtU9bhg6ZbRsqWk02Qm4BnV0rFLJJKByhHpsNXYBKxUuDLArGLTh5VKZleR49ar5aqci+pLxk3Tfnw3WBw8PDJttDxcnz6vRC9Hp7LJfzwOwFfd3N+AlsW5bo+fPmeepjxsQ9m6WPrmO8C/riXdEV28ax4NAORnvzXo2PBJI2y+KiKc6ON2UYxhuLUQGd4mYdBTfgwK5V4LuTRuJVKsD0NIJGAwEi4dzbK0Jj//6Ye215MUphuoKFt3TKhBZws4nCmTMxq9MShDLQBXBgYgIphmZPnMDq8jJeh0Sc6tHn0pCUdgGA39cnhXe2jdT0NEpPPSV0iaOjIlEiKbYCYH1+Hu7p0/FOypbLyJYLWF62Yto5348U49NPIwbDAibkHzlPjZqhx6ORqQ1qHXUaLOSM5NBE211dif8pqAGJytsRfS3CME4m8HMMkjBSwaI12zasQiyMGxgwWOtSKWKviqAC8bOlJtELwrZF6l++LIvK85DJ5eD7qQTjEwU7WZ20Ia6zY7x+7XQws9EW3AJgDBkrWDFvOA5s1zgWdJItrKOz04rXN89B54JZbUDO09dn/LcgANL8QwvsyNsMmuZe9I+G0HHetVC3bWwONaLnxznnDRObHB3E8wZj5il+nFBIXl7cST06KRsv8ZrIEEYjJWsvAZPTyWq/rcJY1zDexdT2LwE4Gv39bwCcwrU5Btf7/Xd1dHfLnmZ2EhA5vmuXgb+yIDYMgXUvC4vhU9eNeYoXGhYWF82a0ZCnrWBPWw5uQsoYBRcpDn8wvhbHAdL1V6U6eHISOHsWtSCAD4jQGh0FisXY/9Hj0iVgtdAPO9cPK1KQVhji4BNPYDb6zPMQ/XIAUlORhTAH2hGZB0olLIXp2D58KwNeZ/Z1AGOwVJLjsWFcLieYtGjjGVluwwuN7k3XX0XG4Ylt2IUsMu46duwQ3Ukb9UYOXSitDXlC2FguSTFItFw7eoJzMD0tv2+9dRADY76BoTWbsWOxXhzCdCRy2ICbLEyua9B4O3earvDMOnCd6GdDpvfz5+V/6kytg/kd7Qy3x4zYV5K6J+1sUl/TJhtjWFx7KkRjqqL75rpqZ0veuzd5T5rRns7rSqkf6eFhs6biKJhjNmVET07YbxCIPND9esmelcsJgcNA7wrE5TbDccTxYXuyuTlTg0qkgeumMDAwiIEx701W19sf75K+eFd0xbZwLBg1UBnWmMGAvP7aO9ffo13EhmG7d0cLaWoaaDQkWmXbSOdyyOX60dlp2s9rh9j3Id85e9acPAwRNhoIIYZ9urdXdvjYGDA+jgvLaVyY1jRl8rUgsNDZmcelJjA0nosxGfYLL2BoYgI2JKJUAeIOq/6zz8J79llMATFPeA3iWJRgcLLDAPDww1KXISEHOK1WrJDi3VurxX0usLyMwccfh+v7stNuuw23jX4U1apcWt5bAU6cAo4fTwqLn/u5WLvpDIWGBFGe0pBlRMh1syiUs0jlcmLEK0Yp7vpgysiwhVD6RQCA46Tgef1x0xvAOICM+mhnU68NCvA9ewyThjX9vLxBpc9CDW0A0+PkQXjgKL96YGQE9boVR44AEzHVa1JnJqiQ2jMWi4tAEKwBURF7vd6J+XlDB9hoAHYuLZSo0XXIZVqJLrW2nSxiY8bi/HlTR0gEknbSojIX2LtSSLl2UoNGBlGukIkVoS7H4GBgizK/VBJCslIJwFQlWQjDA9CRYeaC5P4qa8LGjfQ32OVbF3Uz6pbJeVgJU3ETzMVF099POxqxxzU3Zyb4BjgWALCxsXXh65uMXEdHx1n1/59ubGz86TV8f2BjY+O8nH/jfEdHR/9WlwfgP3d0dGwA+P+oc7zd72/L0d0t679WS0KxNeMbkPRtswyDNxpYcbKoVw0Jjc5yka6WCTW2ttkMTg+o12hsDQwYLGIkANK2sAauw5J1WW2Ydd/TIzVyDFRFTDTO1aeKs+thGNElR9/JOA6CIMArEKeiH6IrSr4P/PIvG1jSsWNYyg0legi8lWPBwBPlPyB70t0/hOyDDybvlVyytlCLW8EKAMSFvAm2wGi/2zZiunVNnHIjBx9Nu/wiWQkvifNBeabhtjpjRcfnyhVgJUwJ5T0vPDKwKe+JiigUTF0JnRcGO5VdHl9P+7NhnJJZCdZn8HOadUnb4/zhMcLQ9Kx6UyNXnTyusdDPTh+Ym8/zEDbMOfRgvyMeltfKIBJ1ZFz0r+Hhbf/39iZ7V1Jt85J8X3RBXx8w0PE6UKmb6nd1eyMjxizgcfgMCDjp6sINzVi8C/riXdEV28KxsCxZYIwIkHFMF4NysxHTrdc0DTZGgoGoSReZXyINQ1YEpsqYfEhjRSKap04B3/iGpHgjzbUKcSospn4//GHg/vvx/TNW3COjXRB0dsrGl8CVhULxsLALhCH6d+xA5uRJWBCnoQ6BRNUgTsYsBCq1Ev3OQeopSgD6PQ944AFhMiG+h5GDsTHZPI4ju6pSgf+d7yCEKJtZACOPPy4XVS4j4zimS/LpWeE8bzTixn9gJ9qxMbxaS8UOBI03na6lkKIhvbwscyAGcB5DY2NJQdRs4sJiKrY3m804OQTAGKvT01LoHAQmG8XIEWCEAKegs1MEAmnxSiUgVXlJDkQJoiuw25TcVQ+R1cDR94rFodjJZd0FBRxtV108rA+rUUc7dgBra50Iw864kI8QMt57CquJibUjel9CwnSXVt4GfzOLwHPqLt+Aif5Llieio9VeduzIJAJF8dDRNxphhYIIcitcTSoD7bDpXD1gcAbNZswHOTDq40LOwu7dcg5NtMLBwvQwTMUYcMDMIR1K3wfSzQgCRVigTrW9e6NODOtWo6Oj4wQE+dg+fu8azvPhjY2Nc5EyeLKjo2N6Y2Pjv1zLhW7HwciffoSMEUS2etwkmUaCbaeieEYWy4tXByQYLNDQWp0J1eJLD9sWJqE4PP3cc0bv0HmO1r/lOIKZ1+nzHTsQAlh/6ilYhYJkm0dGkB0dhWbrASKWuPo5WcOTk6KvvvpVTLVaqCBiZoLoi4A3MzoqE9DZCTSbyBRW4Tipt70NePkqeRpnaVFrJjenY2rAmg0g65g5zbjrychTJPjTBZnsAOn4mrZC4rzTQWeBYodyEDD2gyZ9YSCDdoXWM7Yt0fe+vqiDuy6mUcPLpWM5rLOuPB5gjN/5eQmEMZvBGEwuZwrrCZ9llN91RZzSEW5nEEw8J5hnzYCNqU+wZP1GYx0W4OdhNRaunkgdGNK6Uynk8y/Itb78cvKrL7xgnPiUbRqa0lmOnzmDW1xwOvAXoSnSvo9CIRs7I1TlOgDWaBCt1bw6e65OpRsSal1MEygVLAGV2qbf/1scb6ovtqOu2BaOhePIQ2TKUGfZ2tcxsxo6vdcu8MXwSwl7jqKTGiyGQKWOw8PDWGpKd9VU/ZzshIkJ4MQJNCoVeFzEEGPf6usT0ueREeDIEbw0a8VIGsAUd3EQs0dBIomFfmTHx4FqFc7iIgr/f/b+Pzqu8zwPRR9sbAw3BxuDzeEAGIJDrDE1pEc0JEMyZEM24kMlVCKncqL02FnyjdM6rZs66/h0tfe2pznn+txk9fSPnNPc4/TW6zaN3ZWk0T3SqXKvlEittCqmYksmhkPIgk1IGouQPCZG5JAYgkPOENgENgf3j3c/3/fuAUj9IG0xob+1ZgEYzOwf3/6+9+fzPu/cHE5BHAg6ES6Advx3B5K8G4ZgZYeHhiRL8bGPGZys2Q1xo6dOblg2bhzJcvfsQXpxEUBMCVivI6jX4S4syCTdcYetqahUbNcauv35PM5eSOHMGTHe2m0LidewNF1rwa+z43V/P7D3A/mkAgoCVF+zjsrly3K6atUKcI2e4pxyPYShLchjCpiFw5cvm9IXMSrZ0nnbtmQEvTv6ovEP/N/VqzbcX69jdLKAdillzhdFkiFjVo1GP2UtI2LayAeSpSS+v5m1eHUV0omUC9x1E1ArXUCuoUmcG84dlSkLNcnlbjIWrnx2ZEBp3Tg0t7oq/9NOBe+Hyp+pZ2Yv+vuRDB9ppUOmhStXbFU1J4kWXDyYgeT5ONdUBHQiOWeUBYw80+lJYyWJndOC5KZEoTYgtW43f2xsbBy61v96enrO9vT07IojSLsgsYOtjnE6/nmup6fnKQAfBfBfAbyj79+qQwc1tFhhYerSki2MVaIM7bYkFHQvFBporZZ85/Jl+Z3FsYDFr28V3U9FK8DMrDSlm50VFkFAcJjj4xLwIdaFC3l+Xpj7nngC51ot/CWkhu7exx9H8dlnJSPNYFH3uUjR9vzzWPv938csJGhUg1RXFiF6owPITUeRXBdTp1NT2P/ww2i30wZKcr1x+bKF/riu3NKBckcsw+PHpW7DdYFiEWdbabw1J98LQ6BYTJvGxZlGVR7A4cMymaxxiosfMlNTaLVGsWtXzBDIrrM3YTiNc0hRDngexsbHBd4TCsiYRBEMFLZayb5ouibb9xXtMAUxo2kq4kZ/g4QaLO8ijTjtA4IMyBhIBB3nmoPoOvplZIgCRFZKICqydXNhKNDtNuJAUcogC9juhEb4qDJJo0iuubv2ogMHyA3HFO0Nqwgo5wsFvFl18K1v2abvv/7r9rgvvZSM5c3Py5z39clSuHo11jVTGaT80MpscpwDicCkl8ua+6dToetPZP0BeOKITU/oNYEOsp70UDp7dnOQwgwdkbvh8cPRF7eirrglHIu+PpG9enFsFUTWQxthHIwGX7gQ07Ox0pYWGaPVnicQqTasUT0/D7z8MuqQgmrs2mUPTu20e7fgX6tWCGkHh9egjR4ada4LZEtFEaR33onc3BwysNmJCMLyFMa/u7B1FcOASJnxcXEqYjDmWuQglY+t63zeEEGNkHakWERmcREehD2qDVE4mcVFeLOzm4H5gMWF7d4NFAo4X7UwE03wpA1d2mzEKPKwRBLB99Hx0jaa7brGKeN36JSwQzJliZ5LPXQvC142uawLhZjRgYW6fAA6EsKH1Z1WYLpJ89epzEU+P2q+ns/blDbtZh5e0ylyTXSnqHnd3Wv86tUY13oNnALnXs8/YBvZacdb29KM7DPqRbhHZyjJNAXfx+WGnWPXtc0KmYInsk3jlU3fGL7RHVYeGLC4Ev5/+3abHVLZGToXGh6gDUrdkwWA6TVCyEAaK1bxb1Xz8XYYkHc8fjiOxduMPwXwtwH8VvzzT7o/0NPT0w/A2djYaMW//zSAf/ZOv38rDxoSOki8vi7inU7DlSsWqtfbK7+3WjFJBeI14kr0PorE0OKxNSECxWHWW4nXTNe6abdheJkrFamHCwIJAn3iE8D996MzcS8AmEaqmJoygaHhw4dROHkSFQBvAmi3Whh/6imRv93dt+fmpDZjYQH44z/GLIB5iKZnofa45+FSGOJVAGGlInKe6eBmU47RbOLez38enpfG4ODbzzf33+CgcJbg8GEbjDt/3gDqR4pFXMmljTph7UKlAkSTezE4AoxMxftxbs5Ocixn33pL9MXYZO7tL+rdDI0zCgK8WnFiPyBNbhYTTWfGgIY36Vo//GFRqX19wL0TsWN1eN7qGArGnTuBPXuQLRZx6NDdAOS49broUM0ZofuDxH0V4XkWefEzPwNkYsc5Xl5ot+U66HRoCBQQOwBuCpGXMrZU64JlzGND9rfeMv5gYtDvdV1gb9f/qlUgn0/b2jzq1Tit3N8vgU2yzzI7AVgkKh85mdL6+mTK8nlZW6nq69Z51lEzFk5evQrkckgHAQYHMwaJR4QzaysY9PzZhx/e0nteCR0cOZI2NRaMK27fLoHJA6W1JNf6TRs/cn3xvuiKG9KuW1FUvVd6KnrqhL5zIzJaQFtEp620UUY7YXVVNtHly8D5fEZgSKUVq4V4Ag3aZn6wXkczvujiiy8CEIhSgTs0tnR4PYBtzsLulnrw+ogA6bgp6eOQy8EJAvjNJt6ERKsiWCcjDYk6eZDiuxSbIrCQw/cNXtf15JhrSBmj9tL2DDIxDa63uIh8tYq1+FiJi9u9WzjQCSpttaSiaXoaGB/Hm/VkVIsRZA1DI/UejVzKHI4ogjgV7UsJCNLExMcTMPc775RnpvHN9bp1ZrodTde1/SOY4dJ+AsJYgjEfzQu8llNB67+vz+If2JCCANs4kq+NXH69O+vQ3YyQYysnlNfv+3Y+nfalBMWU56cSEfv+fkvIoe1mHrPbqeVS7w7Ud09LyvOwEjrG39RJHp125vc4B3Qk/XxG1rhOZdPzuhZn55UrttFSu43+/qyZD42m4nkJheJ7GlnS3x/vw+6L38qhvOHxw8tYvM34LQD/vqen5+9COB4+CwA9PT2jAL6xsbHxswBGADzV09MDiJz/PzY2Np6/3vf/qgySfeh1z2wD13i7beWu71ujg3vG84C00iF0QijbibEOgjiCvrCQ5K7maLfFEvvmN9EOQ4HOshYv7uy9tCRiJO1JnYVDazDOEJdPnjT1dJcApOp17P/DPwT+x/8xea6vfQ147jmsNZt4FTANU4chUNnxvj7gV34FmWoVH33uOTif+hTw8MNiSYYhwqNH4b74ItzVVcDzcODQIWBHDtczA4LA9HAV2+7ymwLBAkykGuUyOuUDCdIIBiFY0kQ9MpLLiWDXEcE4gmFIGW7yWIscuF4aThCg41tj1Pfl+jSjHM+v6YNLJXmU5XJcN3JsFqbBkbYlgsCmvOp1pIpFlEoZ1GpyvHZb/k2Iks4+r67aomHOoW7IuLhoM0fUsX198fr010yq3Mm5cYbbMZ/lmmYNHqFKnreZSTUMJduQz1vHgvCqpaXYIdfRJEbWPA8X6xbV0B3kbzQ292ahOtAELJsgVuvrFjlAeq64eGWkXMblfBoxKMMgBqiLjB1yDVlPqBsz7oRP7y2sSZaP8Mab0ExVxvuiL94XXXEztGs3RdWv413SU/V7V7HfP43S9CiCINldknaBjvhSAJAhhkYdU+HaCSkUIG/WaoZ1KXa9rQY6cgR45hm8DokaaSjSCg9MLeP7JjpK+5PGsBOtAQA8T/DwVFoslqrVgLFy2VxL8bnn8CZsjwo6FVkIReAw4mLtQ4fkNTUFlEpYQwoXliwUy/dHUatY22lpCfjY9LR5Y/jJJ7EcF6EzO1I8dky+PD8vP4tFkXjFIlAu481GBvPzViHQQGa0m0NDfDSiiMo5l4PgNet1mw92XWTKZezcmTVCj8WYDC5p500L/VbL2qBxc3Ez12Q4TDdPWymqoU+6cEBnKRiWZOhnfV28RVop6kJGCj62b3fMHFBhxPBPc91MM/NzUldh60Dow+ioP++l1QLSA+4mLyCK7Jrr60uSWjUa1gnXNRZ8dvp6tsqScH6DQBpZEQNLn4DPhB3cY0K0hDEWhrL2duRGJfMRhpbhQ08S8Ur0ElzXbijXRR/svtq5U/YwMc9Xrthz8t6Ypejvt0X7mK3Z1BEXL5UgF+tNGe+pGO+GxsbGxnkAP7XF+6cB/Gz8+5sAPvxuvv9XZeiMHfcXm3/ROOM+AOwe4Z7YvTt2Fip1oQx1XRSLBxIQkcFBWS6juTXg6VmxthiA6R5hiLUwhIM4eDMxARw6hLXJj5uIaLEI5HJOrMtGcfEisP+BBwAA3sICykePogKggjiodPIkxrrv+/HHMQfRF1VY9qcxAJMA8MUvSsPVkycl2zk9LSeOO2U24+9mZ2YwyoK1hx7a+p7iEQQSHW+3gbH8GvC7zwJPPUW8MdiwQNeYMaBB/c36gFwOyB3cj9GpoggYtoM+cwbI53H1atxPZDWDIT/ZJflGRq0Wy6UdGZNgYsEu21DoMjBmmqkWisU4gj1fkQPS4OSNUQBSnoWhRDc9D/unptAYT5mPEsrEQTtZzxntGj0uXgSWlsQoXVrqTTRCzeVSpui546YMOIPMYhoKq/tpkJK2e7DGlWxQDqR24623RL76fkz6oSNWzSYGBzMoFOw9af1CncNBFdDbK8vvgx8EstG5ZCMmTTlL50KziLgu2m2ZGwaluf8JVkkweagRReJccQ7J12MeiuZtv2lQKOBHrS/eL11xMxyL7vHu6anCEHj5ZThDNdw9MYFCQQxzGlua0UYrFCoK7fnSiaZBkmmesnnEWk2iN1zh/f2yy+LO2DTwaYCvQSJIjWYTuZkZk5YoFj+aaMbC4izfTyWEoXbqfR/IBh3guRPiDc/Omv4UYfyTmYpOfA1rEAhTbmFBrj+uHksVi+jrS5mIBo0+bTebnVarYa3ZRIhk/cZaq4XUwgKixUV0AKSWlmTzzs4C+TyK0580HO8aos5ID4O+7D1Foch7HhwUBV4uQyI8S0si7S5fNhQMGmqT8TsYHHQMPp5RBCBZTKch8/rFz26SIRqrpS0M/ZAAG+4GrOeiPxO/mCnqhoFpxI0uItP/p39DWeW6okA0qcjFi/IaGkpLnChWWtq58zyLziI2nERXuvu2hkPxNgcHk0xPq6ty20xdA8nu3d3YVdWWxSg/PQ9AjPnV3pIOAwJJvDm98vjGOn4G7RqMwuDa0sWmLNDO5eT6eW+610aab2o+XB2ZuCnjfctY3NaDWTvA6gXNx6D1Ax85g1MMPg6U94oxFi9eUn0ynlAoABl3BTg2AzzxhFSfDg1thifF6fUOYgjUAw8Ajz6Ks3d8HN85YqOnGhJ58aLYT255FHs/+1mgrw/F9XVEMzOoQ/pQRMAmx+IIpFlqCNFLeQBlABN9fVKXcfCgZS3Yvl1+ZwOHWg35V17B8vo6agAyR4/Cb7VsmPYaw6mfRnZhAdlcDnjh+xKIunxZiEwmJ4FDh7BSPIDXTlgDTwcBuWe5h48ckWZoH5+eTrBVnKo5xgB+4w2Z6ps1iHbu77c1I/W6jfxTVhIKQ3/HdYUn5a67IPf92mtyQEKqmanQhXSAKZRnhOaOOw7gwx9O1qOxdI+EWvoQOpbFIQHKXlOjwUCKMdgbovwd34frOqYBOkswKfJ0uYKBrqpBor5mM+nY8RmeOSPO144djsh4lVq+EtqMOyGHHNxqHMWideKKxfh5M3KloRFaP/NCVHf3kZG9BpJsnAlYPftm1UF/fwojQ5sNeu7NXM7Cy0Zza8BMJfmMf6wv3vW4UcdiK4qqd0RP1dPT86sAfhUAxkZHDeRkJUqZol5trNG4YXasG2ICJO0H08+CC7S/X1ZPrWZpVD1PdlqhgOzJk8hBIk7c0yHEsD8HiGMRG0QjpRIuFrLm+ojy0BuRXjMLB53GOWC2CvyX/wK8+CLOLS2hjpgOFhb65EAeSgdxCQiAzIkTSGmuQc9DtlCQGgu3A9TryOdH5ZrD2H5jzrNWwxqkCD2LmOEKQOquu4DxcbisrmNeNJYgTnMZg4NZ+L4N+uo57h5UJoyIDw1JdCMdLtt22cQjeB6wsAA/kHqFfB5AtYo9e0RIOM1lIIrgB8NGbvHedM2FXgssTAtDoDg9KkxHQNIT0UJChz117h5IhotUGqaTH0WtZgv9qlWboT1zxhr1zPIQIsTra7VsoXc3RKm7VsjwhscvskLxctg1Fkh2GQXkWBsbIZaWPAwMJCFb3X2Gtm+32RQevysQZe5Bs15RKTODoeFoQXCN+dUeF73hK1e6ms8knTYqOV27wrky6XP1Hdbop7W3rStv9fXc8Lh9FMWtNHxf7HudERwfh4nU6kestztga+PyeSDtRiZCmnrtNaSuXsXechko5GUTz88DTz+NtaeeQgggwzo0PeIDe54n9W/T08D0NF55xbLc6UQZYGWVOOspHHj4YaBWQ+mVV1BttbAMcS66xzlYpyIDwRofAIBHH5XMw8QE1vJjcAtjUsRbKOB0I4XRUkkmaGICftxLaQFAfm4O+fl5yXJca8zPA7/zOzJhjYYE5paW5L7j5gELCzbTwyAz9ygJk1hzZpzCiQLW3LToryDA/PMWhhMEm/23GxkMPjP41G24axgpILc1Pi6fue8+wFl4XeZhYUFkiXYqKFhzOYnaXL4sQonpl95ejAQB7r9fCtP50WZTRB8zC0AS+tk9iMbV+jARSInf7MAxqozPQ9eYN5s2GNMN3ea4eNH2y9CjWrWsmpcvA3sLAS6FKWG8DAK0K7bGsbt7eqmUpPwdH7d/l8uxzdKMbOM9QBYLYQm011jLEh9Il+wRPcDAgkaMbDU0TL1QiJ0KKnCN077WRL3rcfvoixt1LDZRVL3TL8ZOyO8BwD33TG5gYgIrbgZzc/JM2a2SUahuSLyGwHMj8n1uwjAEVnLD0iWUeU3ykTJFFu9qJ5/H/sOH0VlaMsb9JYhx3wRQW19H4cgROc6dd2L/9DSW25a2T+8HBx2g3cbu3RlpurdQFYn50kvA00+jcfIkXocweVBJZCDGfxti/Hfi81bjYxZnZuDTQI5D+inXlev//vcx+kCA3t60FL/l16SwbH4eqFalYBuAPzEhBIaeB/zKr8g8zM5ai/zJJy2mpV7Hnj1ZXLyYNJD5dQ7Srmr5SljSWKEDzFUlBMWQIjtxnziB4NOfhOsC+0sd4Nl5jE4HQK1tww7BsDmnJg/iPqchu22bXB/hO+LQZZEfz0rUf31dJOHSUjIN1m1B6xD/+rrFAMXrhrqFypKway4j1kc2GvL17dut0gpDmwhpNsXwX1/vRavVZ+B8ev0aTSD4JKQCoar0fcdkHYgsog1NhcXzhuE6tm/vM0KXy5/OLgs3iSeOInmPCDAdpWJvCY0qY2YJsIK9vz/2y+hIcEI0RkJHgNQ98mDaD9GN0fkYdbaQg0bk5ctyutFSwSoHEsrzSzfNsQBuF0Vxqw1dZzM1ZcUYo7+MDqvyKLNWWy0RjY38MArjw8hi2RZha0yPqrs7B2CcsFE9FheBZ57BMoDs+rplEIBlX9u1i9Sh0reGe4/71gjOfB6ZVguvY2vABANRGUgQKoe4n0WxaCnaIMdMBQHWXGmEd/ZCSujXp6Ywdvw4ViBQ2/Q7mWhCCImpuecemZtHHwUOHcLr9QzqddmbWje7rpUlrIHilltfl7q7VPsSmBafnv4kWi2bCLmZg5dOeUnZomWX1l1kBNu2zcKbTUSLeFPOTXeUBrC0hrmc4cCOGtaO0f0zKIrIX0HdulXwTs8vXyQhQKMJAHByLjwvZc4zOGi/w2AXyau2Ijy6etUStXQPymD+voaUMBju8LESOsYm3wo9xCw4hw4WX7gg15fRjfGuXk0iB7TOoB5pNuEXkvNBKBmh5/PzMflCsPleuC6NzuWFE3KlJ/6mjdtDX9zQjF2Douq9URm220j7QLmcMRuB9POa7lQv7CBIBjuZISiVgLvLcQHOyQsSTllflx4Qk5NYKx2QYMI2YbJAoWAiOuWnnpJwe7MJzMygs75uMK0rrRaKjz+OVOw9Z8tluEHW9AJD4JjbSbuupN8qC8DLL4tT8dxzqMZOxUI8MUXE3bQhNRVViHPBztwLEEhUG0ChUkHh8uWkY1Styn0ODWFkYgKdoRTw3AvA00+j/cILBm6VBYAPfMCmxz/zGSmqLhbl+v7szxDW6/Aef1zYPspljH7hC/AmP4r5edvvjEPbaJpFxfMk4rM3WAaOzAkM7bnnbKXZjh3ywHbtsrKC6U2GVGKmjVQUYWrqXhPpX1zcDDmiQqODWa+LD0fbYD8rD1mIsLhoMzTaW+3vt1gFwC6sWOqcrtvmdBSgS0tWEdDg1sF4HX3SvwsEqg9AxxQ4ki+e95Ut+An8rnSylSlk1E87LTwuz9PT45k9QWggy0gYXCPjq1ZyAwOWqlNHnbQu5f0yOsm0MwNKpghPw6A0YbhOe9EjiV9LS3Z+tSPD++rrAz70IUF9pNvnAM9DbTxjHCAanL6fRhCkkS3nbGaS2ACtNG5o3D4RqFtp9HtXsdc9hYMHxwxhCzHS7LPTbbjpwSJaQGQVLjfFAjlyRDZKsSjrZWYGiOvglgGMs1unHs0mziF2BCjjfF8jRCxcJQyR9jxEvmPkVRQBp2oOxiYngelplGL9sEUXAaxBnIp8/JoARKcxW+GmDeFJf/8wzlbsUt8xeS9Sh2rAwgKGn3sOHcROytvhxxsNmYedO2Vjkeq8VNpUh+e6tu8fYI1TZu8ZSd6zJ85K12qiH1wXmfFx7NiRNWV+N3MEgag8DZVRKLiE7AZsKY3nwbICafwtBTF/srgrl5MJIJ5ONYQtFDJG/rN+nZkKylCuCfZs0lwXtG1INUv1FUUxKUxXmsPzbLCTe+DChaTjrXWIHoTWdg82lNTXLZmXVIJ4p7d3c+dtQ0cej2LRromBAfnecphGtly2ykU3a6IHwCinUqg6cKZjhNxfGg3AQT1NCFU+D2CmZg0aThJrA7/97c0Hedfj9tEXPRuk2Hi3X9xMUfUChKLqpwCcV8Xb2Y2Njf/heseavPfejdnHHpOHWSgAUYTvLqQT0JJq1RoaTKtycxCOwY1XLEr93F7vtHzp+98XKffII0AY4lQjnSjy9ryYTnBhQYRoGIqx/vzzeHVpCRWIke9DOpp+FAA++1lJe09MyIthdIYC5ufFiH3pJeCb30RnZgZVCD1gDZKNCCAUgfsR96mYnJTPNptoxJ87BatQcoh7WvyjfyTgz6tXraX7hS+IcokcpGb+q+CCf//3EYahpOnvv1+IpctlrOXHDLFHoRDzkj/3HPCVrwg9EyfxC1/Aq41hU+ym2TQYEdmzx0aLCwWZkkx4DnjsMZmD+XksHz8OxPfgUnp+/vPAb/+2fPnwYbneiQkrVBoN4fi7/347t+Uy/mJeslqaPWxwUGR5Pi/vFwpWmcUMwdJAKLxkQa3k9KN01mHNGAjb8dKmDYauPaeOabUsBSFhGISOER40NSVOAx3jMJRp0YpsfFxaiuzbJwptZCTuHq8xvBRy3ATxDa75WXNtx47ZiBH3TqFgMxSlkrWbGJWjg850ue8nudf57LsDOBpZFIYW2l0qyYvp7YzfSRbp8Nq58Wq1RKqGzRhZL9JsyjYipKvdBj7zGeCThTcNR+PK5CcTDIVUFNQ9QRAX9NO5jC2Jnp/5mZferlHd9UZPz4c3gP/4Hr5ZuKHz3u5jcnJyY/Yv//L9voz3NFgQ++Nxe4y/Ls+7+z7+utyXHte7p8mPfhSzs7M9N3L820lf3EjGYkuKqp6enuN4l/RU0nxFIosrUQqelzJeJjPLNBK6sf6E4ekizjCUaPLe+/LWwghDnKo52LbNUqjqbqsIYm8ZsJHzO+7A6NKSqXVgn4nTAEZpmdNCZCds4mJOnJAurC++iLBSQRW2kdEaxKkoQYrvcuWyFP1NTgKlEpxGA8OvvYbM3Bw68flCSIYjAjB87JjFhzD/X60CuZzAo8ghVyxKvchdd0lU6+BBnL2QwtmKbVshl+9g//33S/SLgOA4gs8It+7ASmeOzh3t8VIpLpanZVqrAa2WqVlxaeX19wOeJxs5gf/B5kg3jdHVVSCXQ6GQMb4BbWwNI9I1XnQe+/pYM55BUMyI8OgOaXZVzq25adRrMk+MouuCZWZJWHcM2JpkHdRiYonX2A0homHP45gsjg4n6X9wPhIfthEYDTugvzQ4aAM+vGadHve8ZFkJv6ujPd1QRJ5a1z5xfTD5JFOpOnvzuvWBGPnzPKwhlcj67NxpMzRDQ/I+nSXjeQBIF4soFsdMWp1DJ6oKhVGBNXiedXR+PH48fsTjr5sx9uNx/fHX5Xl338dfl/vS46/jPb1f4z07FteiqHov9FRXrwIIAnTcFFpL1uiiPdLXl6QS5v9ZY0HDhjh8Yq0vtYXeL1/cCydaw5mX5Vhb0YKKEZJCfvxuKbReXATuugvBW29hbHHR9JkAxMBPLy0hOH7cgjN1YUejIXUF3/wm2pUKTkEciioE0pSBwJ/2A8jt2ycG/X/z34gDQL62chnejh0Ye/FFRJAMx0p8bjY5QqtlGxSxepjWl+fZ7MP0NPDII/huJWUCtjoDLnZdFmOHDskfTAfAGsuED9B4p/Gn0/3FIoAjFUvFFzNNpQGZeIbOBwaAXC42Th3BCTPtqTGrQDLSXa9jbKqIRsNBTMW+iUaVdioNXzohvGdxghwUCmNSOMjcqZ0IwPfRqMuUksaV6VUNs+B5aSczUk5jmwgfrmWuOxrztLV37kxiwK9cEe71FDFVGuNJiz8+qfbByADC2wDkeoaGLH5YZ5t0rQqPoWFtGjasnUnt89Ch1w6dLiqMIgiHPIvR1TyvIYVUPEEdVyiUuS+ZNmfwYNcuO8dBAOC1VsK5TgcB8vlMYp61LwYA27alhAqXC/qGx+2T2v7x+PH48fjx+PG4kXH76IsbyVjctOE4AKIIDoAdO1JItZdRLGY3dVdmIoEBx26oNo0+YsM9T+M/UwZa310HpG21eh3YvXsYI3fdZapE8888g5VmE8sQx+A0BFNbrFaR7euzXXQ0fVG1ivbcHF6PP38OQmebg8CZDgAolsvA5z4n2YTJSZyqOSgcGpPIarUKFAoYXl1FdmYGtfg4ywBW1tfROXnSNNYbBsQipMXq+4KtKRTk2qam8N1aFvPzyeI1zi3vfWx6yh6j2UQnyCJS9lcUWXw/jfj+foHV5PNx18y5OclWvPyynIyUDPwi0xwAUtGKdcRo/WsKi7NnbTrq7FkD4L13ehq+7ySi0yyG1NF61macOWPxq3Q6BC4lGaxdu9LSRsEF1leBi3VLUcjLIe85jXNmA7QjQ5wn114QWOy3xvIWCvZ7hB8B1jEmHnZgIAWyQaWwlnCwkM8DUWT8MOKC+Zw0NIt+r9AEJv0UXruuneDeGhy0eGdd58DrZgbnypUkErAbOyw/HeRyWbj8XMjPpczniI8n7ScdIvbMAMRnDQLYdUSoYxAgk8/Dy2fNkuL9XLhgk3iyZtPYseMdla6+zbh9FMWtOghfYBOvdzt+WFHKra7nWtd5M6/hWvPwo7zPdzK2uh4e62Zfa/dx380136xrudF5ervvv5d76/5u9/ev9f7NOO71jvdu5vydXlf3MX/Y+3Drcfvoi1vCsehdDwUgDun8i1YLI/fck6h8reXTxgBhsB5INgmjIUe6tRTWUCikkGqeA5pNTE3tB2AbbWlUiR7bt8OGZHM54OpVuBDWJgfiILgQZo70yZPw5uakgR0trkoFOHwYfwnJVDQgDskYJFMxBinaxqc+JbUSxSKWm47CsqeQz+9H9uEAcF24d96J4vw8iidOoB6GSH/609bD6u0V5+TRR9HJDYtTwgxA3HHuVDRqoE/MMNApYOfqfB42BB/TB83MyOFfecXi3Rm137nTGn3btwOZ9mlTU4FqFZ16HW0AnTBEB4Abhsi89Vayko9ejuZfrVZhOlXV6/aBkn84Ll7YPz6OS21p2gNIncL+3LKpOThzRnyRGI1lDN9m08Kb6LiSKhWwBi6/y2VA4511PCxDIYJL15msrlr2Kp140eibbCDZko6XTiRNentlbWqaWCdaS2ZuVPMgJ1yB76cT0Ctt0GvyK3Z91dkJGuDsR1KvyyPUGQfWsPD4fHyNhswVC/rIhgXYXouEMgFSj6MzXrzn3bstRMs0JTMFKVVkAOCEeJF7P/AB4HDNOrD0GF56CcjnkSoWsX9iAvvLOaz5WdMX80LM4aCL6G/OuD0UxS01Ll0CvvENCcgUxtCBgyNHZEmwmBiQJUSufO5/ZhLLZUnk7o8qwPPPi8yem5NF++EPyyZ85hmcmpvDtyHw1V8sl0UY6vGv/zXmv/xlhBBoa/DZzwJf/CKakz+NuTnLRlQqAaN5e12zs/JePg+k2k3gD/4A+K3fwuzSEr4NCSL95tXk2vp/9fYKVTik1u9uAGP79gF/+28LlHZ8HM0oY+qG2a9hcBD42J1t4Hd/F/jqV7FQr5s+SXf/vb8n719r/MEfoPN3/y4cz0MzDJFGzET1P//PwJe+hOePpHHihMhLygTONXvfXbxoi6dLpbgO75nHRXDMz8vFfulLeHp2DJ4H/OyhaLNSvoFRrcqeH82J4KvWUmadVKt2zTBLev/9UgLoecBoe0EUweys5TIma4VOS99xh6RVGYFqtxPtu9veMBoNWWK7d8uhXnpJnhHZzQ4elPMzzva7v2vXzN/4G8Cf/ZktRC+XBTnN+ryRHXGE0EsbVk02GmYTwPl5exut1lUMDfViagr406etg16ryXEnJoDnn7c1B2EoTdwPHZJzt9vS1O7sWXnODMTpoO8//+f2+1/6krz/ta8BGV+27+CgbLNSyWal83kghciSuBCWQKVL6kffBwoFLPWO4pVXgOPHge99T+6NH3/4YXl5np1HjnYb+Nf/Ws4JSN1eujInf5D+kegPKvmbMm4PfXFLOBYAkpKf4VGFiWK0l7aVdgy4mLVCCQIYOthCYRhODBshvKOvL9k4hiOBcaen8qEPYXRmBh5EqJNpqQmpvSgeP24XYsxxVmu1cBriVKxBCr+HIY5FEYAzNSVOxb596OSG0a7JabXT4xaHkZmYsJax5yF39KilFqSVVy7jkjeMWgUAUigUDohNXhpGs2kVDAehMDReATG83qw6ceR9FOvrIoQ8zxbw0nkj40MiAVFrWkkdN4zi4krx93zetkamdcqwN5+3xl1pa58ZGbYpDUN4XjqRsUK9jlQuQj4/bBwgOo48HTM1mrK0t9c+99VVW2hNvy1mDEQuJ4XVjPozC3D1ahK+xzlOuZsjM8awjantHNdFOgyFh9x1JQXl+0Az3BoSFkUyX/R62m1kcjmUy9IuJhVeMhMShs6mbuaa0U/XLTHbx2vs1uvUo11oJmzfbteDzmTw0eoajO7v8nw7dlgdnG6cAmaqdiPUarYifvt2+bBeL/QE5+ct1Uqs8FP5PPaWSogix4gUTuXNGbdPBOpWGlf7M8BnPoP/Op9Fc06MhyNHksEPhWpMQAD5Xn9/HEAoHsDIw644KZWK5WQWxYGxp5+G/9xzOAVYK6RrhJAAUgqA/+STcIMA2XweU1N3G7mZy0Gy8q6LjBuiXE5jFKeBmQUhDPnqV/HtmCjkNMRx6B5ZCJNTANFBrwIIT57E/q99Tbzmz3wG2YkJIGoDM1XcPTkJz0tL0Gh2Vs5z/jwyiMlC3knDiKkpOP/23wK+j2BmRvbXyZNyQ40GisUxhKFl9tEZ3Xxe5OP585ZlaXw8DkIxWhV3BUc+j9zEP8DEBIAXXpCg200aewtxf4KFJlAooNlMbdmmQIuUOM6J6en9KB7cD8f3YVL+9AR0k6KzZ+ULV67I4tq2zaRav1tJGS6X733Pdok/csT2se3ttWu3G8oJyOHX10M0Gp5BDjDQNbJjzXgRTgBkfA9BzFDJLDopgUnq0Wqto9HoNbJQR+tJ8NHd7JdOzO7d8t6ePaI3+DedmcVF2y8mFeuRmZkk07guUf3IR+RYAwNxZp7Rv8VFO6d0LBgpjNPZfYE8CtKMc7+1WjaAeK1mi6Qy57Uf4IPZuVPOzaj12zGnveNx++iLW8exAJLWXRe3aS43bLDd3XW+3V/X9aF8P/U2ERBdM7y6CmRMGB/Avn1w63Xk4p4Q7DPRhjgXnXodzpkztj6iVsO5+H8RROHkIMpiDIBXLkvnnXvuAYpFYw9pKlUaZAfGx21zAgDu0pItSAdM6JzH4Bxo2cd+PlrhEqGkcf1LS8n5YGCAcCBAvsvmd/k8kMEloN62xbRxtiGK58gFpGh7aEjmp1AQ67y/31qfV69a6U58Ubst0pNSgsKGwiUIkPJ9FAqjtnv1gkxiquRiNB8AcBLNh7RByXviM9dGp4bcseCZCpP62HVtETYv8epVEYyunzIHIw2g5zlm/pxwxZ6gu+iCWSM+224rv9tjikeKHgJvOAiQyw0bZU/HKuN3EEXOpmJt7QyoEg7jeGgCBa2AeU90hvVxms1kUTivgetLPw/Pi3n+qVBYqMFnri92+3aZfEa1yP1Lp5P/iy98cHA04Z8RvnVzxo8L/t6X0WhgfDxr9u2hQzG7+EkxagiT1GsUMIFOHDwIZOuvArPfF2tvagoYH0entB9LS8COIpAqFoFiEdliEdmFBendoEYHDpw778Sk56EThoZc4+6vfx1uoYD0Z1zkSwcMm1wul0IUChX5aG4NODIv2ZJnn8V363XMQpyKEoTUo3v8LIQAhFTkFYhTs1avY/yxxySUXCxaCnLXRXHy40hVvgv88R9j5amnUEPcv2L3bqntm5i4/jyXy+IVMCrxjW+gMzMDJ6bjPfDlL8OfPIDZ2SQhCOUAa7biwD3GwtfFan/qKZFjDJLFmFHXheECfjfMQ9dlLWLUMaaOu3dqCrt3Z3D5skS6SQJCkUrq6itXLJfJARK7MA1GS5bCcNs22xiPVOVBgNONlOEyOXPGdq42wUM3WafIQ3WbK7J+e7GxcRUXLvQam7fdBlailHR9jye6A8cEkzh08MjzhI5827bNwXjXFSOfEF49WK/HrDd1ImHG3efjc+Bx9T1duGBjhWfPJvuAmcVDI4WROx2Rim2J+kKSqVHX4U1NAR/7ALsd5Dbd5/i4ZVGUrFYWuVwWmbviczLlc1PH7aEvbj3HIgwlxMG0IwD4PoplMZK2bYP5yaGDB6wP9jwg464g8uPuntjsbHRlms3pL18GkAvsgcbHgXYbjuchW6kggAj2ECLkmwCyb7wh1nZsYJ+LP+NBIk2jkGJtf2JCcq0f+xhQLuPskmP6sugyAxsBd6QbLBsLhKGEDc6flw/E4YXGvPXFGAWh0atrk1kMq50vGolsatldEMzPe56lby2VgFHfNjjSfN9tbU0CIo1iJY1CwYYneKLeXutMMFOkQ9+sniY1KTugbt+O0qR07041TotBSmGUy2G0UEA9J0xD+vBAMtOlna5uxwKw9j0jRDt3ymlSzXNAFCHteUjv8LGGlGQhtOUdT6Tjukh7sA+525pnlzy9SCkp9dDWPj0apov5nfinn08eznUR12WI40OmLzqkrRajWUk65/X15Bzo2pIYuYgLF+wta3IAzjcbBnKfakfPOBh8GJcvWyYw0kv19tr50WxSLCah8xmGss6YuQgCDE2Mminj/iKU8sbG7ROBuhmjp6enCqAFmbRoY2NjsqenJwvg/4QkcqsAfnFjY+PCtY4BAL09HaDRQDamJgd8+L6D3bstmtJ1baBE11txS1YqwMcnS9Yrjg0VZj0kYZrF6KFDstYqFTGy1TDsckEAt15HA5LBDgFM/cZvwKlUkHrkERw4eNDQw6XCthj98/PAs89i5cUX8SZg4E+jkPq7e7cIs2Z/5Vfw0WPHgHodC62WcTLOAai2WijqfhNxBD0M46BDPo90EGD/5csSIv5H/wh46CF0/Mx1jfdTNQezsyn4fgpTUz+JzJkzcBoN68SUSqjNbjbuKCPoUDzyCOBU3wR++3eAl19GPW5Lnj9xQvZ1sYjSV/4m0i/+B6Eqf+QRIK4vu96gA3FdKtSZGXHgmP2s1aR/VRAg/+l70ddn+VBY88bu0mRzbzYzKBQ+KlCd8XFZRMRY0XOilV4oYLnpYHZGTknEQBjKrRIxQZ9K6unEzABsnaC2caQTuOi2YlFgSISapr0O0AiNAHaiCOl6HelmEwgCZEsF+H7KiNd83tYPMnbKQXOnu5cIDXE2ZuU+CsMkvXm9nuwhyOfg+47RBR042L5dPnvhAvDaa5YEpNVKYc+eMeQnxuC0LyUVNLG4cQrwUijrQ/c8Zoxu2zYxsdgnpXPwJxNrIu118MgjDioVMScYtG40gNX+MYxMxwqKyIA//dO3XYtvP24ffXFrOBaOYw0F101Wa7ouOl4as4ftIiaWjxA4RU1vNrDrAm/WpV9FO+cgn88AkRQMpwCkfRcIXNN4DFCpv2YTqNastb97t7i/pRJS99yDjz/7LFZaLdQgxdTzAIZ///cR/f7vG+amWQBTEPjTMIDCwICE1YpFcQziBhAj2yMMTWSMcUWiJ8D6EsYS+8AHRAnedVfCwDq7mklkLJpN2bDE2xMGqoU95SGhPNqYZg0L9xQ7oLPHARl6omIGY6wYZtvlKIJ/8mQy/1gqJSufde7Z80SqMmuxc6f8fscd1klgZFqDdMtldOBg5rB85KcP5mTidAYgjk6tjafE8fA8jI9nDTy/u0Oohkrx8lhHwnRtsQiksRJbME2zRoG4sV0QYCVKmUdmIvShJRHwgmHbNb3ZFAuI2CztZKjGcQmoWLEoAhOwn9UFEJ6HTm4YtarNHLNvRabgAnGkTPt/dLQJFeR77MFBm14zqvHWt2+Xx719u1U4OrjE33XXb+rgIAAO5JeB2XlLU8xIkcZmdc+F9hAbDRt6PH9e5ubMGdknCwtwqlV8cmoKxeKoMRQ0NPDGxu2hKG7ieGBjY6Oh/v51AH+m+h79OoB/er0DrF91gPFxnG6mRZzAJnUpZppNGwWliGG2m1vvdCOF3v69GDmUw6lmBs15u75XVxn7cFCY/CicQmHr6GUQAA88gLsffxweBBIVQXjWi089ZTeAWIZy4sOHgaNHcW5mBq9DIE2nIZ7VvQDuzueBf/JPNp/rH/9jSbU0Gig9+STcmRlUAJMdH3v8cTi1mqRtAKBYRMb3xZFpNGQ/xM1RV6Z/GidOiEzrxp/rQWOr2ZTD/OTnPmeDQrHiLZeziRgIb5lb1fcBZ/Yv7f6+ehV5wHa7HBgASiU0m8Dou2y9vZVTtOk9zxO90o3VajSQDpdRKmVN8oGNPkkTztgF2x4JUmYY230gU/aSWWIACAJcajumpw6bqGpRpsEG1Mu5nIUUcd6p/gCRmay/Iz05Vd1K6AiUthvXHcvQjptKNAHk/VGddI/ubAcHA035vIWb64bFwGZWQjUt5pIcdOD7jnkMfX0WdaQhypsy9V3pndWl5D0MDtr+UQAwsv2SGItBsHlNRBGcSgXl8bvNM+Z9nD8PbC9k4eelpvbmQaGA20Vf3DqOhabTAbDmKtaWSOxJYlUJgQWS7DSAbVim+w1QIJjFriLJKc8Dwq4NCVgjjQdlqPPCBWBqCulaDfvn54HnnsNfQBJcpyAK4hKASQAPkT6Wnb3L5YSFtYI00n5H37YZV6/axn9kAEI+b47XgWMC1hcvWoeBG1z3/2BqkNhi3TOBnrrOUlAATU3ZrKNOMxaLVjAZLcKudCxg4zXrsMi18DUMX291EYA1uHkzxSLWIkmx8tCXwhQyDz9sjxsLoeV2Kl43ktkIm9Y/4SXqrI2OavNQRMUFQUxMtT0NREAmdqrWIseswTWkzPN00DEY05Qr2Scj4Kh5qV30utTOEReGjoq5rijfbuA4Ba/rwonWkMulErLYdWUu03G6nExqFPBhaPpTJh4XLwWwNSfaOSVKApB57WZtY7KBCUBej3nE5CpmZaIuAqE1yBNyIXOS+XCmp+Xh8ESLi2I10ZPJ5+HW5Tq3bbPXe2Pj9olA/RDHzwM4GP/+hwCO4G0ci54eAFEk0droEgAfpZJj9jAzizrIpB1cLh8aap2hDNq15Lq9ckVejMbm86PI54F0t4ESBMDBg3CbTZSeew5rkGDTAoAwDFF+9lmbqaUgrVSwPDOD7wKG7W8UojPG9+0DvvhFaXgaD0bgT/kHMPb5stmoxa99DfmjR1GJj3MJgHv0KNoA8p4n3hGhO6WSXMfkJJbHP4ljh+W+tm8Xx0JH+TXTFo1qzm0QOLj30CHTMbQTZLGuMkOc31xODL0dO4D9pQ7w20fEqTh6NMkUODBg9Gw+D6BSNVYer2Grn3psde2JEYaiJBk1GxyU92OQ/d0HD8I7OGyaofIemDlgRrZaTcY/C4Vs3CR22KwvBi3m5uR7b71lRTznh3pncNCW7VC1E4rEzxJKxMJurRaJJhaYXRquB0uhzmhrEMCJ1uD7KezebeGoJCgpFpOsWZ4nen8rh4PXp7PgbAVAn+3OO+V93VcMsL4i32OskcuT6F5mG+U+0+jvT2MgL/WDzCi5LhDWZX4HBpJzxyXVbIILNtnCnCOKJOgUBNhfKuD1BccEZs+cEX/EdYGRkVEMDW1V8fRexu2jL24dxyLemZ04/RmF9t9aMXBQAWhECWANhu4CTXrS8L2kAXetofEjGn4RBFYYRhEwPw9vcRGnYZvfZRBTwD7yiC1U1nS0NI7i0xtBqGAq2r7uwIGjtGIHTuLSXdf0szPfoR2mqXe7AwDXmgYaozrLofGgTIf6PpKSjl/mPPFeKVW7h7Zguz0rHRan1csbgT2ljoSYP+KbXwkd43jyUNoJ1cat9mF4PF36wHnSfR40flTPL52KxEMEbBm3Xls6rK8fSDcfMH/XIadua0mHXuJBvO5WwVZ9OJ5CQ5ToEOhL5OcJj9OnY011d4SOt9oNwTPz6KbgUGPzoWrHQs8Xh8ZccI/xYuiIKAqvldBJyImt5uPH44c+NgD8p56eng0A/2ZjY+P3AIxsbGycAYCNjY0zPT09w293EHd9FTh2THDlzSbw8MMY85djr8JDLZ8BkGxqefGiNX4YpJqeFsPXqb6JA8U81kppE1TQawWwa/aalKhBYBibHAgkKgUgt7SE3Py8FIe7rlgszz+Pv4DgvhqQTEUJwF5AKtGnprDmZ+HG5+G5JHPgwHXTOPDII8D6OrxSCRPHjmH05EkEDz4ItFrwL1+W4/zKr2AtN4oUra5mE53yAVRmkvGX7qHvjT4/9UAuB7u3XBcz8bFmZsSg1sEsMgZibk7u+7XXsBKGWAsVU+DiolHa2aAjFq+KEL9djQWfx1aQKDOaTXFq5udtBTMfahy42H/oEFxX9MXu3cDH9i1jxcsaZ4M1i/39YpDrUjAG2VxXMhRnz8rpeAquOZoBhOwwVri6mqQBp+Nh9AiAyUkHGW8NcAVlwRqiq1etbDZOBfUlA3ztNnw/i+3bxXTZuVMyA/PzNoOgxxZqxAyWvTFJw9KVuTkbkNu5czPPAeNG3EOTkxY93WiIA1apWHHOgKFGW/C2KNZ37JDPpsPlGCodRxJWV5HetUsewuysrI/P/VLyPtttoaaamQHKZeyfnsb+cg6X3CyiSJ7jyZM/pDKL22DcGlPW05MwLB104LoSgSLVpu9nNkWXaXeQQAawRjD/z8jzlSvchA5cNyWGerdVCdj3tMGsrVIacQwVNJsmW3EJ4lSMIi6QY6SK1nh3KFgpLhGM9hK2HPGNOdFaXIzuGIhKX58NBFGRAraOpFtQcJMyK6ILmbUdp+01OhP5PJB2Y0rQesMoLZw5I40Bw9DyC2qjWZ9c3c+WWQr9WZ1CiDGXNETHCnkbpYpkXjsx5R4vSTsDGurF97Vfw8JeOqzdjqs2mLWgSrmWASORdege2oHg33G6GlDHdN3kQ9GOVXcawpOO9YikMFTPte4FE0VAyveMMo4iUWrdiRLtXAE2w6VPzWNr5571Kbxsz0vCrVzXzrl2YMRoycCJnWanfSnp6en50hEFDv1QuGiptYMAl8IUGnUbwe42Gt/7uH0iUDdpfGJjY+N07Dy80NPTU3mnX+zp6flVAL8KAGOjo8nMFWAXlO8b0gAtNjTskdHij3yEEXXJgOrgCXBt4yphoLiurLMPfQjuffdh7/Hj8CDQpDYk2JQ7ckQaoLbbwMwM5tfXcQq2r1EBUn+XfuABcUBKJcO03R2B5z15Xgp7H3hA3vQ8DNfrom+4PyYnseyNojIL5HJjuHAB2LVrFNVjtnxxq4CDPh/1sBbjUoPiAEjD88Zw+LB8b27ObrlCQQzwgYFYTzQaIC2SA8CLXxgYAPbtsynwZjPZFGeLOb8e9Omaxd79/RaHyZq02ADVniRZBgcGIE03cyFKpVEjbtptWS/UrWQP1Prj/HmrY1iPVyjYHkOMB1EG0ZToZhDsjrNl/A5QWRBykjDEiA4quS4Q+kk7JYpgKCGbTWQLBWTLeXu/hTyAVGKNdyB1EOPjSbnNUSxa55FylAFNXXenY0EcWoRzXdE/ZSCKgQDONZBMTnPN0kFLNc8BM/Oi5FkYxYshnpfsM90jimDwakyT7NyJzAc+gA996AC+850ksvrmjNtHX9wajsXGhtkMTryqUjSs4iKKDHNpQYCVQJyMjLeGS2HKeNC0+7k4fd/WHXSjS1zXQcp1sRI65v8CV08hGyijhoOrvdEQT/ixxxC++CJeh6S9T0EYn8YgjoUDCPsF+a31rogFQLMJIHCMkev7KUN3CiQDtp7nCMiGxQ6um3CydEoRkMtkBpCyWtujhAH4vnVEGKnjJbZaImSokHM5YNRbBuYXbNjizBlb5TY/j5UTJ0R5PPig5acDkqFqXvRW7dR1xCUMLdPU2bNygQsL1mHzPGBiQpyMfB4oFtFxU6jV5LLIAcDADeeF1Hs0ujXjEU/Ny3NdS82r4XgSCKdDE21+cb3odICeB50OcV3FoOTEUbCsOKc8jg4Huq44brFiWUPK1DinvcgIUtcfNmtgK9+ODreu+2YGnV22Kdi1j62Ra3TsFxdlGSwtWapBzd5GmJXrilE3MCDfI7mKcMg7MX1hxnT4TqFrPXRnL+jN6GhDrK3Ormfx1ryFs9Rq7yxZ+e7G7cHycTPGxsbG6fjnuZ6enqcAfBTA2Z6enl1xtmIXpGRgq+/+HoDfA4DJ8fENs0HrdUk9HDtmKImnp38S7bYldqGRRDYexjzuvDNeRu02Ur6PKIZXkoZcJw+57rNB1/P2fQtxPX8eXhgid+IEMgBCxMXcS0vwWDjXaKAOcSqGYesqslNTkmU4eBCnGyksLCSZeToQkg9CX6MIiEqj2P/AA1LgFEWCN1laMpXAjAZHkRXTdLC6M5XXM9z1oL1Kg5h9QqjaxscFSnNvecU2xDl2DKhUcKnVMkf3CHscH5cXcTFR9I5xit1U3te9dqbg19ctw6A2Rl0Xo8UiDh68Gxl3BXi2AvT3I3VniP2lIhoNgcoMDiYTAktLNqrtuvawrNlgXLFYlLka6VsGwhDZQg5rSMGpn0Y2CIBmKJS2ADI+hbVr7tNpLltWDLJuUKFfq77CdWVPXLhgFRyP4brI5UbRaCSzPXQuuh0DBx2kEMH3U2ZPsO6E6ywIxJHiVOvnxMwDR7Fo45E6dsj5474lsprqnmqzUABS1I305tpt2ynXdW0mO+51tKXjySYfpZIoob4+DJUPAEgGIW/euD30xa3hWHQ6SYoeUkzqsLOiNor8jInaxFDPhGMBWMdCR6S7HVdi47ttWdd1pCkXv8yCuDfeMM3vXj950sCfqhB6wBLEoWhCkhHDv//7CAA4+bzQy05MyAKOSb2bzYwp27hyxbLY1etJw25wME51UpkSCO+mjKDv7nbMrstsfKbrpnX9NO9bsyCxr8PZs7bRHM8zOh1Yq3thwRbbVipYXlrC6xAIwP4XXoB//Lgoj7NnRars3Gn5WoGkJc+HQwFBC5d56MVF4OpVdBYX4SwuSiE7c+47dwJBYIrUmk1RvrQ7NDsM5QiNDdY9M8LG+9TYYt+3RXM6mimyWjJg7CDt+XGWjfejo+vaKNaZizA0EDhAUaFqeBDpStj9T9EzpXwfvp+Std9sbwoZeV6cJvccw26Wcl35u2toQ0q/t1UWR9ecnz9vocya9pi32WpZaDOQJAwgsovGiXEq3I5dlJrvWG9ywhz4XhBYD2Y9aUfohoc3Z9w+EagbHT09Pf0AnI2NjVb8+08D+GcA/hTA3wbwW/HPP3nbgzmOxUfQ+p6cNN7s7BFZLmx81tsra5URSKqT+XkeIgM/iqPriJDZ4aIzlEokUJ1oLV7UXvJaaGGurxsHI1Ms4iefeUbYmiCMT/nf+A1EkHqKvwTwcQB5AON9fZKloJENYDRYgT8pNYba4J+edhIxhsFByPIrFAxdLmXiSm4M1cPWUGs2Rdb19srHGRzRrEBbGV65nGWkdV1byM3sX7UqcpP6t1ol7CWNvQzTuy6wsIDMwoKt/KUzoSuFPU8EMXm8324ZvAMjrQMHzsCABLjyeSsAqGdYn3XwIJbbKczNAhMTaWSXlqyAq1bx8YMHsRY5SDVOo1gcTTS346WurtpkqeeZkhah2c2tyJvVplmn7TCFbC6H5XYKQZC2Sdk2AKSk6J0Gf5AVAgHPs/zxbSXrcznrxVCgMvAH2O6jceBlLTeK2oJMw96inUc6Cr4vjewSIw5maoCBzjprVIB+fA46qNeT8G2NANCEChqmTAeFWTCS2Xzsvo40wnjtNeAHP0imjbioua7i+dmyoH9iQkg/zp8XyNTSEvDWW3CaTfz0oUMoFLKmB+vx42+z0N7RuH30xa3hWESR5T9rtcSAJwaHm+f++83CqdesgKtUxOZnQIj4u1wOcOa/i/Hxu6XpShhi2csk0niANSIJC7l8Wb6fCWDPPzcnWLyXXwZeegmV9XXMQ6JOESTqdADA3ay9WFzEDIQtKgMgqNeRf+YZeJWKKIDY8ipMfBLNpuVzDkPbYNrzRGDncqoBTrUq1xEPx/Mk2lHcm2DGos1JLGdMC4522wY7tBMG2CiAhu+TOk53s8znHezXxewU0J6HDgQORp71oNlEbmYG+bfeEmeKFIV8SIWCfJcZCR2FZBhkcRHtZhPLkMXaAVCo1+0xKEQAOPXTyAQBRkbSiQwV4WLah9FrgNmebseClL1BIK03dLE3ZVjas2l4oAvKxJcuNKDE1SHR+L0tYQk6zUSr6HvfEwgBHTTfN+ysIwO+OScZ0y5fBvr7nZhVU7J9ZKnS64aGAe9bO6FcS6xViiK7bmloMInFY+ooE+eaDCCExzebVgfo6UpFK+Ik0bvTzhkVSbw+DDgXsJoIwI5ixvSt4nWuriahcTc+bg9FcRPGCICnenp6ANnK/8fGxsbzPT09xwH8+56enr8LSfx+9m2P5Dh2ccWbZsXNAC7gRjaz6Hm2nwVrLAARQZSTGrqR8l2bOXcjyRBznWgvQw8KzmJRWJdo+T/8MIYXFjD8zDP4i0oFlyDsT6cgTsXBX/gFWatTUzbjUSxKTwLPRbdNBwgcxnUdk4W8ehXo5EclcJXLoZMbNoGBRs0abFon0GBjMEWjjrYy1JkA1MYkpyIMgZ/4CXFWGIEeHLR+PYJAZNj4OPDlL8vD2LNH5kd7NLRKPU/m8CZ6/w46trBhq5RtjO1diSx1aRgC+IVfSEzc2SWR70P5UVytWwgPG/9xni9csMGWfF7qNQYGgEtRGlETCIp7AVhdvBKlDKw25cp1pfzN68xBJ+k0dGfHu3FtzAjxAnUdXhQh5XZQKDimuSmH69pnuWm02/D9jPkcnajduzdDXLvrpScnE9s1gQ7P52UuSiWbHVCtQExAj9/twIFD9hWNu+WBqZypM7fKgPm+ECQ8/LB9WIQTFovoBFn4beuE/7t/t8V8vKdxe+iLW8exoDXSbtviqi0A7ho/T8OIhA+9vTZq4PuQTsw0XsMQXkE2BY0LfQqNrY8iWAuz0RBv9sUXsVap4BSA1yGRpxDiOBQgGFk88oiswkoF2eeew+vxZ1biV/7kSWRVGjMzPo7IlyZPvB82zgFkI42MwHYoZQFasZigGc1O5+H76S7Muu0Txv3Fl+7fodsD0MAbGUmyBbGdACP+pelRODpPGBu8qcVFdGAhAJcgOGNvcRFBvZ7EtLJCKwyT1W71OvD97wNvvIFOq4UQkgFqQOpWjC9Ebkld3dUlXK9nPOqPum6yYaC2/akw+Fwox/kY2fiO68Z1pYTT81M2Ua+9EZ6E78eCMGwmqfusY5SGE8BK7MuXbehdGdv8dW1HGqnAw1rkJLJQPJ5m++A96LVBbDqzVnzPdZNZHsDGAfhI9Wt1VREmwK47fpfXo8+t7zvlqYejH5TBFIdJx5YLWT3grY6tn/+Nj9snAnWjY2Nj400AH97i/fMAfupdHSzue0NmuNge2+TL5/Ni6Pb1JbcLk+E6YSrEAoq2UzsSWwgSE93XJ+223F0XmJ1FulLBPMSp2Iu4q/aXvywHYk+EWBa48fmcrRZoKIxupIGIIkUSEUdlWZtIR4LkHexR1NtrtxC3iw6KdMOLeJ4t4iCmdMH3JRHNWx8ZkVoEZkfN5LMoi0xtWgDoeX6Hm/O6TfH0fWm5wZdeEGGIdCBzNzJCeH7scfk+LrUdA08me5E2S/TyINkFIPLv8mV5b3VVfnb3dXDd+D0GS/QcxAfqwJGMGWCdBK3UdaSs2whQ3+l4cRYsXElcd/e88bBpo2xhj4PkOogi2xdQOw3dNSJk4+PQMFkGV3k93e2cuv3BMATSTLnpgFO392uV8ub7pAel+mKYNFM+b+wxwiJvzrh99MWt4VhsbFhrROfIPM+C4WMjknaE3kdRZKFDXOC+D+DMug1VhiHcoj2lXoMabw/E65AQrLfeAo4fR7tSQQ0wryaAALajtvfAA8IJF++IwnPP4RTEyF6GGNghAKdaRcAUwuQkspOTaMQwFnrrriubcHAQGBlYAb6zIGmZ731Pfi4t2QuOI2RBsDchU1iGQAwoNwpgFannicKhMCRF4MiQbL5czjGCg/v2zBnxcfayUBCQDzSbyLzyCoL1dXTi+enAMqSE6+vIv/SSNQi15NBwlhj6dCmeDKo5Mq4EgG0NypuMPck1N21o9PT9aj3FYAafPaMiOmPBaDoDQTrSQlsWsA3fOKda6cp8Zkw0irA7HiMIrEO53rJ1NQzIsw5GnIG01JEwzEWsUXxxZL9i4MbzHON067Q0nQZtWHAdcOzYkYxiMvK7Vf3bhQu2y7Hetowy7dljt/DlyxbhwGCSfj7cg8YZClLIUOi7rr0RRp/4gNj/ZNcueYi7dhlrp1Hf/By1fXFzxu2hKG6psbEhUVfK9kIBmXbdZLBG77kH8FzkStJUNRt0cKrmmG7K3N9c11Fk9x/gCCzRTSk7TWApbLS6aegFRQzl8ePAH/4haseP43XYGrwDiJXusWMWkA4YR6RRlw7djbrsF23wrSCNsGmhUAxkeF5KAj2eB8fz4LpOwmECbGCI8Sg6AR/8oG051J117UCCE2yLEYt5M2e068pl0Qt79sRNU+fnbVFTuy0ZxT/+Y7mYX/5lcaamp5OGPqNWnE/Ya7oW5Kn7/ev2tNAGA6mMmGaNIuCDH0RqaAgj5bKp11tDCtUFuY2FBfnqyIiYBPwa+53QiWP9S6NhbXvGAQUFHNczRGuyfnlt3fghOmCE8XDiY4/xUtvB6qpAcLdvTyPjLtvUMWBPHmf2VqIUWksi31OxsnLdzJZF2jpBnHgG8fXRl6FOYO2PhhXrWyG1udYrfOSMIzebNl5G3afhx4TKtloyj7mcOElBkEEuxyaBjeRz7iIBSKwPnhywWccgwOkwi4UZG8vVDuTNGbeHvrg1HIu1NRE+tACYKmVlWNyl7FTNMUF7Yjx1x0/uo1wubpJ67KzAl956CwhDpGKvdCAYNTAOQASD1gu5HIDZGvDKK8D8PJpxI6LTkMj5OcRN7yCZiv379klaLe7QjWYT6YEBpFstrEGyFcuQrLoDYHhpCaNPPml4zfdPTGBwUKjtGFnK5WL+72cPC/yJK71SsYXMnK9iEfkJ61gUizGcZOFV7N0TYGho1CCpqBSAZBuFYhHIVL8LNEPgO03A81AqfdLU3+mE0sWLQLmcRql0L0bZdyCuH5n6xjdQX1rCHGxX8jchDkG0vo783Bzc8+etdU9DuVIRifTGG2iurxvoUwbWqcgACMplSVPHEIJXo/0IaxZiSseS0TmeRlP46dQ1kEx2aIdT0+zyvdXVJHSOdi4dAg7t5Lmug9VVm/XQfNz0p6XTrzUYdCo5ioAUb4RaTEXxeUzuAxpMbIpOfeS6djtRcOtMDGF43RE57i1+jpFONsg+f94i2LqjWdrm0sE2Gvq9vbaYm9+lEbS66mBE90DhhGoYnqq9Mh5N/Fmeg2n3rRADNzY2cLsU491So9NJgv0LBYvDq1bFwgXgloelt0zkJAwFLqFt2+w+1IPrkGyDtFNyOcc4F5oi3LwaDeDECeBb3wKefBKv1ut4HSL/ShBd0Y5fo7/xG/CGhiQYpQqYm81hg6bq7opMtHCtZp3z/v44MEBMYRQBSBmZzRHXr5rtorPaDCR1DwcdhKGD8+ftHOneIK5rYfzVqsje0QlXBEmlIq9aDTh6FLMAUuvruPvrXxddQQtx927r2fi+FWJxfcY7qaO41kg0vK1U7Jqp1azzwwnhOopvbK24HxcuyK0QmUtZzcbmq6vyVZYNsgSOMFr22yJF7dWr7CMlGs11U2IQ05LXP7caSjkxMGTkNL08vug0xXIxncshihyBhRuFkMyicM5SLhL1d+b/7TYc34+z8la+h6HYBFqv6kCtgw4aDccgjgCrL7hOCQ5pNu3apj7VOrjRsDWIuj7DBCx1al57LzpVz4MuLNg0SqlkMv9nztjyUX3uGx+3j764NRyLKEq6q0tLVlBu2wbk8zi7JE4FW7BzA2tDWRsRWSyLBDhzRgp8wtAUt6Uncwi7+kXQuHFdSJfmEycEAvX885iHKIdlSNZhFJLSLgIo9fVJR20SVXueFIo9/DAmH38cyxDj+hyQqEGoAZj46leRqteBT3wCI/fdh5H7Jq3RVK0CL7wM/MmfyE23WpvTyZQqzWYi/Zjx1kRwHjkCuC72Tkxgb7mMIBhGrWab4wAi6IpFIFN7FXjiCftMcjnsnZxErZbGtm02ek5mnQsX5Pc77khjx440SodGJe1dqyH/5JPIhiEiiBI9B3GqfIiTkFlchM8DxdCetcVFpPJ5dNbXEcXz7ME6FX78AjuzTk/jdJjFkaflMEygsD6A6VXOC3UGC8HYcTyK7O96OUrTIesEADCMXaTnJTsiYAWkNqyDwHZT1exLLKwHktF03VSaTCtA/JMPl80glNVOhBkZsACrS+NHada3Nuqpg3RKmwYHgz9cdozA8TrpFHEtsSESMz908rV8Z2ZI09fyeCQuYPCO+v5skIq/K+0Nlr4P7NuXQZZaO4rkoRJzG8uK7bDzTaXP83U/7xsbt0cE6pYaa2sSbGEF9sGD0s2a0Y/77gOCwATNt22zsZnVVduHZ+TqaYwUA6DZRCc/asQpHQo62LTDxJDZIoJOT+DIEeC559CemcEcpKaiCSH2mARQePBBYHERf1mp4AiA/NISCk8+idwLLxhMf+mRXzQGV/dgZFgzDo1svwTMLQDPPiv8uX19SAcBDkxOGiYjRouFec3KNGYwrzd4axrhxT0bBJJ4OX8eeOklid/lcmnsv/NOEQq0FPv6cC4OFjUADM/NYbxSkXqK6WlL01Uuw1TLMqPxNuN6GQ0zTp6UZ8Nq68VFnAtDE7waBpBptSwZgOchVT+FkVwOV3alE44VYJns6GhcvGjnWHOOMNjFTK3nxRmDaAVw455dW2H4uiGzwKZomA6euW48D7yIMEwWRkYRkMvFTnRK+r/4PuoLiDN6yfmkbbW3mHw/8jKmNu/MGZvl47RyfZCnZWrKfl87uYC1/9l4kK+lJXHU+vtlnol0pv4mUyP1yrZt8XzWajaypecuVl6dwtjmjMXsrGGCYno9yAlcvt2Wa9HQ9Jszbg99cWs4Fp1OMsS7Z484AcRilsv43pzIHNb0UvhriCYd9WoVKJWySLMNMP+pIp1+MJyIaKbCS9JgpdmUA/z5nwNHjuBUq2U4xyOIsZuDZCvGABHm5XKyYVncuSVVLmO4UoEDaZy3BlvYvAyJ4u9/9tkkVpwVpm+9ZYrGV1otOJCH5TLfuHOnxY7EnrZJX9Lqo4SIrcjC1E8bv43osl27gAwuSV0DWTtiAbXmpk3xL+d6ddXKPhqiZFs5MDEhRn+9jsILL8CJ562u7pk1GD7J1GPanjaA7OXLWIvnGfH9piEORQZA6q67gE98ApiawpvNrFkPhL6R/o/Rby4n4q0JS221xLjVcIHLl7eG+ur5ApJBEUY9AZkfXRqk0Tv8Hg0XdndltEdT8XFuM36XEOQFsbZEXazupM4lzrpmXXagI1x63/AUbHCnszfMajC6S4eEP+kE8D7JZKaL7nRdnSa6cl3bndd1VcdUNV+cZwacmk1Zs1leOK2cQgGd3LAhciGzVBAkG/zSsbk5yuL2wczeUoMZC20Z6+LUGDvRrm3OwPX1yc/+ftjF1mjACQK4bnpTloIv7vNN3Z8ZzZifB559FsvHj+NViFPRgBit+wEU7rsPePRRoFJBsVJBA5IBvwRguNlE+fHHJas+Po5c8cAmjDpPxUCG78dZ+Zk5CYLNzIhOUFWvudx+4xQxk8+gSDeBBbC1kc4MIvcRm5Lt3Cm/M1BOWVatAsWDe5Eq122KeGEB/smTCON7XgPghyGyx48jw4z1+LjojkZD9N5Wj32L6+t+Hlt26D57Vo45N4cwprylnqF+wa5dFlobF8IvLVlbQw/XlfXT3y/zyToTvqjKGYCJlxhclw5H2ugRN+5flM+PSjYsirAGCaZ4sNmCS8ggU5Q+P2EINOrJNSFTnUGaqXnq/9hxWQkdkwzK5zNo1q3u3Op5byUfu7N7XKN0Nnk93FZ60BQpFqXfE9kaySbIpTI0ZHlZOIcaRsXzcNufPw8MDKTlvnkDMqEJGPyWzidPSCYy30ejZslu+vpsEOzNNzd//d2P20df3BqOBTcCrapCQQRNsYhOftRkKgiLZDS120BiJpyC9N7xcaEko0XZaIhlXCwi5bpIeZ7MQLVmXWaGuQ4fRn1pCW/CGsZpiEEzCnEsUuWyRNDvuMNaUMy153LAnXfCCUME1SpCiCBbg02HnwOQbrVQeP55y5FKSV+rSafSVgsrECGTAmz+mpSzcWaHyiKKgOWmgywxNcydhyEy4+PI5AMUCmmDhxzLrQDzNpJjQlG7dyeiCBRK7bZsNvYZ0kJo584MRuLGF6PHjwvuF+JQrMHWXUQA9lLSXL0KrK8jBIA4W0GZ5gFw4zxzqrdXIpMPPIBT0ajJZBNvTEV55YrNPGl8JunqALlmBnYooFiHrpekLjbjVNLg5t8UQlqg8jhk9dIGP5Nzum6D3Oh0ZPr7kQwl6ogWQ0LqwnhNXDpEiDDSpiNbjLLxnvjsCMfi6fg/vc9oPESRhWxpOCvrNTQDTfeLl87z7tplnQ0NOeZ5GPTkdBhsrwdrRMbGAHto6IDBtm12yjS7iDaofjz+io31dVEInmdDofR2Y3z8qUYac3M2EU5YIOEqxSIsxiXGSKWKRQwMDBvjXcsQbdxs6uD72mvA4cNoHD9ustsNSACqDOBAPg988YsCAYoiDEOWLzPXaxDce/Hxx+GUy0g/8ggmJu42p6CRTFupUAA+9CEgNfsXNhL/8suGrpbRivz0fpagwPeBbHgapdKomRfKwa1qK/i3Fjm5nJwi03gTONsG3opQLN6L+XkLGaKsmJr6OLLFokn9fvKf/lMsAJiD6IEFiC4dn5tDihdCq3x+PnHf3b93z8smR6LrXpwYorasdCnin8MAnE9/Gvhv/1vgJ34Cb0ZjcEMgHynab1i5MTRkAy0M1FB+aWdQOxWU/9Q3lPcMyFAWBoFQl1On5vNihDOL0PSchC7R2WdDlKHTSkpvMNPFJcv4aX9/0hnTga/udcEsPolutH7QTmo3CRNrdfSg7qQ9d+GC/T7Fem+v/GRriiiS37Uc533lchmkC25SIYVhIiq4aQ319soE7NqVyBRRjLRacbNE3CzH4vYZt4Zjsboq6UqGOWOXVTsVhD/pPgS6qzB/0pCoVoF7pwsi9ImrZD78yhWBTnB1zs5KROPECaBSwVoYmiJt3VE7D8lSlAH4U1OScp+cTFJ/AnLc3bslFxgESL32GsZeeQXo7UW62RQWE4izcgrApfV1DB89ityJE7ayLgzRWVpCBxJR8VgFduedIt2ZG4yt3WrFwpQ8D/h4uWjp2Go1q4gBpDwP905NAe0QeGzGTjDT07FTVJmXeXzrLetYdNeYMWXJ9396alIu4lOfQv7wYXSWllCHOFK8ZyN/af3t2CFO09AQvMVFpCBOXAqQ0NiePXIvH/sYVooHMPu86B4+VtaIMHpGujwasunokk0NA0LRG0VI+T4yhkLM9pHQNV+MdDMN271sgyDJHBGGFtJz8aJcvoZVMEDH2/e8a6Rbu9/QjkWxaKMsQWAcibjVh5kXQrOYwdAshVyuhDno2sDuKG93JodrjJe1vm6zDqSw5Nais9Gd3Y8iWwOT8SVjmfZdhEHKnJvzSTgWi8DrdeDAZM5+qFAwzC1x1h+pxmlkPQ/YHmvuagOjip4w3VXY997G7ROBuqUGa/JyOcvTz7D67t1YDtOYn7cweu3U0+EtlQDMVuX7r7wix4gipCd8bNuWNqcihDCNFSCMNhWEotkE/vzPET7zDL4NcSouQXTFfgATAPDZz4pTkcvJiT/9aUw+8wwaEPnfgeiaOoCP/sZvwK3VkP3MZwRiC2vYfXyqY2/mvxwDHntM9FarZaMaxG82mwnYUrr2OvD888jk8/jk5CROl/aaPh7vpAiaCN/M/F8Azz9vzjX+5XtRrUqw6exZWyopSYhR5HKjGPtCHpifR+mJJ1CNIVFkVcwBCKpVZNgQolpFdPIk3CjJjHXdwmz1+5b3ElvSZGdMIY5LAPD27JGA1ac+he/Wsjh2TJZRnHg39QI0lpn5YcM7ofK2tZFRJEuKcFJAHg+P1WxaOaYz3IODouZ6ey3EKJcTx8JBB/PzTsJ4V/XGBn5qpovKT0Fmr1yx8CXPs3Uxe/Yk5y6KHJw4IbZ291wyINYNoaUaJzS2u77HQQeVihRwP/SQ3BPRBlTLRFAQQsvEi3bqo8i2wmINBunwz5wBtm9Pg93TwwXgQDkviikMNzsVrit2W0yBvxxl4LatT0KWXurJ//yfNy2/9zBuH31xazgWg4PA5z4nxvj99wPlMv7zTBpLJ2TD0oOngXc9m8D3xeCbnQXW14dx3/2/hL333y9vuK6wUwAWw7GwIILyxAksh6FpeteARFaakHqKMf4cGBBa2enpZE+G7gjzrl2ycItFcQTuvx9oNJA/cgTe4iJ8iGCtwmYwlptNpCFKCZBIlgfAJf503z6h8eimWIgtPg1PWUYW2UOH5PxLS8Iolc+L8/TWW7JD77xT/heukwicAACEZklEQVRFcj/5PPClL2Ft/F68/LL4ZICN9gLJ9GQQyL7VUJzlKIMs2bEmJzE6O4vhxx83he/GwWi1pLN0LKVzngdMTMDN5zHcbIqEve8+Ua6xNF8p3Y3ZWSukGaymb0Aoz86dFpLj1E8nGUoYYuLP+MujxSLy5SyiSNhftm1zsH17kllJs7zS6KaDy3mnUGUAVdcNcInoxnv9/Zszb9u3Q5w+Sm9GX1zX9gIhPsjzzPcIc2BhnI4S0ejX166zC/xMEMj+IUEbHRMOHeln8TVgccSENhF6xr/ZHG9kx5ppZLi6CmSap4Ba2yjAXOmAqefhmqLDwIhfpSL9OHL5A1hfB96YsYqH94RqPYmzZXqLWJfuYr73PG6PYrxbanDDBYEEQgAjJ9aK+3EsDjxUqzYgwrXMuuITJ4CPTUzIGnnlFRuAKRQwVBgzcgDVKvBKlfhakZN6LC4ievxxfBtCQ34JEonfC2GA8qemgI99zG6IOOyfqVaROnECIUTOn4tfHoC7v/51uM2mcSyMUfT447aw69gx4JlnsAxFw53LSSrj7FkgCMx+abWANEPRsRAbfchH74eHTUT2WoPR20Ih7hpNjy2uKeQhieBlJJ3ZwmoVCMeHsf9nfgYAcOCP/ghVSMaiCXGslgFMvPyysbyXIZkEPd5RLcW1RhgaxIADCRJ6AwOiKD77WeDRR/Gtk1l85zswHc91NpwBEMZ0AJvtoW7gOgMsrJPFvwqRYyBRUWQZ1rtriwktnpy0lK/s1cXACeVtHJeTOgNYRyKhFKMIfmDPxd621WqSclgcC1k+W60LOucamauft+uKvmOgUS5Fjku/kd/V4BDGzFgfS3tD1+tpCC6zQUQZsOaFDFdCFwwUi46se3eLBnmuK3ZZqYTTjZSBJAeBjTnTiby52e3bQ1/cGo4FrReGdl3X4GGvXlXGAqwj3tu7uQCTBhAXNyF0e6cLspNOnpRaAte19ATVKjrHj6MOEXCXAPN7BKmDKEKiT3nN4rF7t7WwuZl5L4Dd3DyPuoHgxAkEb7wBNJtw4t3gQTITo4BkOoaG5OFQghSLcs49e7CWH8OFOMPX2yvRNQou2lCzs8D4+L0YnZgQCXnsmEzI+fMyF3/+5ybaBsC0Cb1UuhczR0R3vPGGvR1GnbeCB2joiefF986wTrMJ9667kDtxwlDumtyAlsQafA9Y9iP+3/PQaomw0dle2heFgvhJq6txQWMYCsMVCy+0Zb++nsTtBAE6QVYx9TkGFsR77748Km1mAVhQqYuZAcsM0u0Qc8547Ro6lDixhkHxPa4z3090j9fXSodLp9vZ70XXSrDJvS5UO3/ewqKoUHV6W0d0aKxt32652hmZ27ZNfte1UH19KROxC0NgpBDIQWOtxRIlFtZzTqigWy3VWHvdFujz+nwfSDXPMYSVxG+5rtWkf4UzFj09PVkA/ydENFUB/OLGxsaFrs98MP4Mx14A/4+NjY3f6enp+U0Afw/AUvy//2ljY+M//pAv++aN1VWR4+ShB6S5XH4vZmckiK9s6EQAgAbdK68AH/v8uA2Zzs8b2iVnfFxgsmxIOjsruuNXfmWzY/HWWwb+xMz2XgDjALL33Qd86lPi/NBypHV66BA8z8P+48fRgcjE5fj1KoCxJ59E8MQTSYP6X/5Lyxd78qSNvg8NScBhYkJezSbgeYlmlyMTRTGkf/ADuacowsjIiAhNWstbjLH8GsaCUObisSOiR77/fTnP+LiZNp0ZIkGChqjuf+ABABCIbKWCc7B1dwCs1ej7hmJcjxthh4LnSX1i/PL6+uT6y2Xg4YfxanMUf/7nds3YQn3b2H1kJGbPir2F0djiHCvnsYZUAlqmzQud6abNwmg71ybhQPQD6EBoKtizZ5O1eWT287zYAW6HVk8wutZqGf7wdluOy+dEBAi3D+c3DGUrdCfMo8iiygHrdC0uiqqmPqSc5+d4XNLRdj2WmCXLBqVoU9Cp0E4LYE2qlNuB7wtELEZTJ5DknPexbsXN4bpAqYRLoUDPdu4EMtEyMtRHjQYKE8NwGueAfHCdxfVuxo9eX7xfuuLWcCw6XdhJN5X4W9tWeo1oG15vhO7Cu46bkrTq+fMSrQds6KBeN2wVdCyaiHGvEMeigNipOHRIiofvuitJeaNP3L0DKKEoOPv75btxyCBz9ChWAMOEBCDZ/I1dWQsFkyPU3ZJ537o+gME3MR4d7C3mzb2iWpVwHa93fl4+ODkJFAom2s1zUEmwGBZI2rucf0auBbbiIBvTt1FypsMQwydPmjR0mhx98QbHXXcZyjfDCLZ7ty3gLxRwvrq5gSANzyAAMu4KMjtcoFK1D584IVrOOk1Myb7FYNSJwrDbuOahczm5Zx7OdW3mgAJWPyfARsGYVdGfCUP5X4Zv6vWl09ueh+WmOBUXLiT9Jp6Lip3HBZKOBRMhLHXpvk6N4aV/y+MWi/b7g4Mw2R3OnbbheU3dGZ4owqYNTbpDz3PMs+V59LMBNkPITACi3rSRXT6YrapVb8p4X1Lbvw7gzzY2Nn6rp6fn1+O//6n+wMbGxvcQI3F6enp6AbwF4Cn1ka9ubGz89o/mcm/y2L5dWj4//LCpK/h2cy/qFRs9Zx+gwUEGYOzXPU/E758+n8LBQ38TGXrCc3OyiE+elL+/9S3ghRewXK/jNIDxZ58FvvKVpLG/sIBvQ3QGs9r3AvA+/WnRF4RAcQO4rsi1YhHYuRNuTDCy/7nnTFT9TYj+mUSyOPn08ePwAGQ9D2EYwoXAWjE+LudhiDUOdoXxfmw0gLOtNEbuv18E2Q9+INcyNydzWSxuXfQM2Kw+rVFm6R99FG+6+7FwRPY0g02k4CY0h9nHlWAU6QcfBJpN5P/Df8D0c8+hDssYGDWbcGM9p8SsGdfKWLyjTMbICNy77kJhcVGu/cEHJYt05524VLoXlcM2ABMEoqKZpRgZiaFw7XMCnSNnMTGuhQJSQYC9xSKWg5SR59u2WTnIckJdhxdFNtrODDahq/ypA6fUy4zqU2b39iLp0VFJ33mnoCbiwFlYtefXGe1mMzmHdHRyuc1ze/686BpmMyjjdaCPTpMW6x04hgRED2ZbqD9GRmzNHWt6dF1eswmM5ju2ZjSfR5TLGJHObAx1QqUC5A/eba5F38ta5KBSSRn1sGMHgErNHuD734eza5cEqHbsuP76elfjR64v3hddcWs4FjrXGGPGtWNg02r2K92GLX/SmKMdHwSQrpXxjuksLsJpteQfccefJsSpqMM6FxmIU5GDOBZ4+GEBCE5PYyUYlfXXtMLIsPjwQgsFvNnIoL8/g+3FMQBxND2fF2BjHE6OYGlsXUiqtvjii+JQ3Hmn/IzpNDuFMUNFGIYwvRG650X/7O+HCMPZWdk0x45heWkJ2XiSVxYXhX2iUgFGRkwKkhF2XXirIJvmVmm0UtDZwHoau3cfwMihvJmk3PPPI8cQx8MPA+UyOl5anL7eXimE//735YEPDIijMTGB5TCNetXyuJP5h9fABEQCa8RFxKIcvYi4OFTRgOP7GM3HEqzdhl/IwGmcg0FbVxqixOOJSHkeEGSQdteAgRQuX7bzQztW115o457Pz3XlGdJx06l1DKjri637DpyYSSOFfD6Lkyfl+WsecJ5bMw1yWnw/yRWu1wxhTfSBWdNAh9JQ5MfH2bnTsm9142B1EIDvEy04NNTlFHdv9ihCx02ZruAsNNSQFmZiuM8ZI+DjSbPQhd4SW8dr7++mjPcNM/vzAA7Gv/8hgCPoUhZd46cAvLGxsfGDH+5l/YjGxoZdWHFImVSyXHN6fWsDjXuQfR1cF/jZqSng6NHkRmo0gBdeQK1exzkIPHacARk9Gg1TqD0ev9zPfU4CUHfeaUPXGu+4Y4fFWMQ9HNwgwL0vvgg0m5gNQ1uHBmsQuYjZ0B58UP7P1N34uOiJchmn6w4QSy06+vW6JKYnJ38SY9PTkrFotawjha3ZlQDAqdWAF18UQTM3B3zmM0C5jG+39+PIEVNnncggk96a75lnkcsJvPXKFeTOnIE3N4dL8X2tAXCpvOM+JHq80yZ53aMDB87AgK1JIzx5zx6gWEzQl9I52rNHHh0AZMJzQCO0hf5Ma/f22siJ62INqUR2mGuQ8BqKHhbT8zBLS1bmdsNu6Ax34Ji6QSa8NBPTpogrkKgoX4Nu9midE+2H6Gd/LRpi8ssASSdIQ8E4jyMj9pIcdDA+7iQuM+YxMN9fXbVsfXRMGHzjd9ptYCV0kOYkt9sI8tLkj98nQgCwCIK+PmmS2T04n729cYuBatUqTdJEaqPmhsf7oi/eF13xnmesp6dnD4B/BykJ6AD4vY2NjX/5nlIna2vyUGOrIZvPo1weNhi8MJQNSBYGOufaiNFpRhpCk5PAx8cvAc8fMRzjpwFk41oG5PPA+jouQSIndUjkic3vcohpTpkxKBaxlhvFQsUWXvFchYKDrK+MQc9DvZLcvGEIDE0Mwwnq8mZcnM0UuAdRCSGAfKWCIAwt7S6Shh3/ZhSgm8GiWJTNm1n4NvD008DXvoaVVgvV+FzDYYjho0dxCrII9j/5JNxGA9k778SDD/4ktm8XPaLtPkD+JvWz5yVTkIyQ08gLQ2D7eBaZQgH48IetFRhHvF6vSafsoaED2PsLAU5FoxgjdAsAXBeXorSR50w+EL0wOCjnzuViR0NfJF90LLqzE901KtoSieknzXUwoqnxXp4Hv5gB2iFcL2XWYbezpYPldIJoLPM7Z88mIWUSAUwbZ85BB5fajsG/1mpiF7zxht0bOgLF8/KWdCaCGYvuPaSzE93QQ0KNeF+eJ07Fzp3JPcChHXxdx7G+TqYZx3zO/BJvEtZfELbVTUsIJPpYAUhioT0PSOubCUPLmasLTDTl1w2N96Qocj09PbPq79/b2Nj4vXfx/ZGNjY0zALCxsXGmp6enG5LePR4F8HjXe1/u6en5WwBmAfzfutPjt/TIZoVlidYRRNYDScNkq+QU9wHlVS4HIJeXDMgHPiD/5MZ4+GEUzpxB4fJl3NtsmpMkjNkvfQn/A2ALs2O4qrFSKfx1NEZjbXhB09PAl78MhCEmWdzWNYYfe0y+s2dPYs9wg61FTuKQ4+PJvb9tG7ASpZCenJRJYpf6eHQXQ3fgiCL59KflIAcPGvjZ7lWJs33iEwn72vzkFuR5jRFMavbJSfiNBj6+sGACcXBdoeSdnk5gQt9JVuJan3HQkesmi6IKYML3kfdEn5FQi4/H0n17VpAVCkmrVUffkIywe55tVKuBDbpOoFhMBn66s9s6UP75z9vvbjq1ex0B7LpwXTnXI4/YPdEtBvm8czlB3LGonw6m6wJf+lLSSXJd2RIUs+229bfU4wMg39VL9qd+Sn7SbtEJPW3T6WMZSBSzcq7UTuzYIfWQ+/Yl1Xx3KSpHB46ZE6NH2r7cjH5QNKS6b+aGxo9cX7wvuuJGXLEoPsm3e3p6BgC81NPT80L8v3eXOrl8WQz/fN60Y9w/PY3Swb2oViUqQseBi9fcgFqATMvRIy8UIF+emwNmZ3GpWkU9vvBcswk/DHEuDHEKMJjPABIVysSvUUCEYQx94n7lgqXQXF+H3dDx0JAhCpB6HdKtGgCaTZTfeAPO0pKJeu0H5OLvuUdS6YcOAeUyzl5I4WzFMveQHnQpdt8IKadwIjPQgVLJRP69o0fhxPfPSBELBi8ByDIKECTTuUAyeM6fTIXyPskIpNlIMt6apX3giIUC5zAIADTa8HOwVncUAbUaMqUm7i4WUShkkM/bgnJiUomx7+9HMgx05YoFqWoFT1xPEIhlvGuX6ZWy3BSBkykFWENKHErtFehctutKpqXZRCqXQ6EwatbCzp1iCLdaMvU05il8BwZsNJG2kV4nFy/amg1Za07CqGcLEx6T9Qqum8wsaMGpI1C9vfLSESNthOnic+6lYtHuQd+XLeG0LwGui4EBy6LDLBodF045szEXLzrmEQOAPzEKPwfTEZbrmeuJSpo1HDFywyi4KLIFf3zUaISbrRuG+lj8smsXbny8506qjY2NjcnrfaCnp+cwLI+DHv/3d3Oinp6eFICfA/A/qrf/NYD/BXID/wuA/yeAv/Nujvu+ju3bJWqixmj+RooiXQs11WPSPqJrUp9OTgLf+Ebia9eEFQGA66LjxfvFS9v/5/P28wcPbn2Zn/vcde8iFcMIeZzMFkZVfOLN0YBrDRrhSN73iN/ByNDmj3dTlHa/bxT0teo64syLHu8EAnUtx6MDB85WzzYeabcjBdJDm49rms7xuq9z/hQ6cH15z/XlXjO+rAF2aweAlG9/Xvv52HPw3vaXrv/ZTVF1FXnhWjhQ3uJ7XSPtdfDTh5LvcS3fO7E13e87GQfKyc+x2/s7gbht/ox4VXw/5XbMvL6TwWOxMB6AHM/PbLlub6i+JzF+OPriVtQV79mxiL0gekKtnp6e1wDsfk8H6+lJ5iJjz8GJ1hAEKYyMJA0znQHozgISVgLEBhYpFAoF4yx4EMhRJ3Yq6pBUbAaSrRiGOBdZCJ4Vd91lsKWsZdCpOs/bXJjUgbPJ0aVzseylpAZhchI4dAilxx9HFuJY4NOftoThBw+iM363iUZ311Xowetg9IDOxXI+g+zEBDA1BafVQn5uDp14DoL4Hj0A2b4+Q2O7tCTHoKOmB2102m06Jcu/dc11x03ByeUs+JYHiSLzqMUYjI/TRvKBxg/dz2Xg+2IPsjBfR2527ABQV9ax61p8kcZwEccTBDZiFwS41HZUtkWi5ll9I7qAgS+F23fCFezYkTaGPfuEMGuwbZsY3DrpASSjWdoO5ql0AR97UXCt8Rj9/fL74GAyerhzZ7Koe31dbnfHDlsYRwiUPi/3lIbBaefH9wEnXDHeh+vZNakpoHV0mFhrnTQAbHTZ9eM6qPXNj4/XSP54zhkzFMTSc2khiqz3pKMQGmvwToyqtx0/vNT2xsbGoWv9r6en52xPT8+uOAK1CxIfuNb4FIBvb2xsnFXHNr/39PR8HcCzN+Oab8XxTg2Dt/vcOzFi9f/fS03AzTJgrnf+9zqu10fivXz3Rsc7vZZ3e83v5jlf67s38zluNa53Dzec3UHSobnW/PEzN/ps36vTaBzVdznetpniD3X8cPTFragrbiRjYUZPT08RwD0AvgXgE3gHqZOenp5fBfCrADC2bZslLy4UEl2zPM/SV9Io0VAgcyOujbLqv1HKS9h4aQmYmMBw3NWTUfs3YZvf5SEFeKyvyALiVExMCAzKy+Bi3dotbHK6FcSR19D9twl6B2lky2Ux+Ot15Go1idQcPCj3HkduyOLQaiWzBq4rRhydKNZG8JoAW8yUVTSJQRgiXakg1dcnkxr3jcDUlLnPi41EJjWRpdgqHcsgMGvOGdmm7Z0hKbUuZo8zFq4bs1rEzxrNKGnBqkkkJjKft2wSnmcj26hF9kK4QOhUkLKIDXF0hVgQYLVlHVX6C50gJRErHf2mVdz9CkOkfBe+nzLOBOFI/FoYyjNi1F8jsDRCQq+p68EM9PSQgk9n8HI5W4Ozumr52Mm+QSN9YMDiWzV0TzsX+pq2bVNz67qbnN2t6qEIVe3OfPHzUQSkXDexfvU+174hHQ0ARj6wWNSJ1uwa4DrgQfUE3zS62felxuJPAfxtAL8V//yT63z2c+hKbVPRxH/+AoD5H8ZF3grjnRoMN2pYvNMIujbKfpjGzM049tvdz9sZpzfb0L7e+FE9562O86MzTDef+938b6vPbGVoX++53ojj9U7Hu72Ha41rdWq/1mfe6Rq/sfEj1xfvi664Yceip6fHB/D/BfAPNzY2LvX09Lyj1EmMEfs9AJj0/Q0A1hIluBpAOggwOOgk0Cg6Y8GIbl+f/E4Dw3Xj7Ce7bceYnRRskfYyhNrvAGyvimEWdReL8iqXDWOSDlqzqEgbXjKjrvmMHto4MoW8+bwY9Iivk+eL4TorSCdqTbXBpiO2dLZ0hoSRcdeFFEiXSvKFfB4pdkULQ2SPHhWrr1AwjQ4GB7fmb9YMrTqSzfKD/n47/9oxMUZdsWit7Xze3k88WU64YgsAgARPaypYQRCkzTzQMOb1BIGaIN64njj9P0KhcjmsuWlDxcf71ckIz0vB91PiHOnOcTr0rqg+8vlh4ztpJ4xDF93rNdH9zHSyRL94bH0pulibGTt9DH5ufV1qRXW3a90htvs5d9ddEB63YweEyje+Z9cTx5c89jqzqB0CjSfm0DU5KddN2P/bt8cQNyQLwwmB43X29koKPwGwZ+pMT56itroUJpnn/oqN3wLw73t6ev4upBXAZwGgp6dnFMA3NjY2fjb+Ow3gQQB/v+v7/1tPT88EREZXt/j/bTluxOB/N9+5NsTjh2+kvtvjv9NrfDvH6u26aP9VHu/XvbzdPHb//1qG9rtZh9frdv7DGu91n7xdVuf9yrb9iMf7oituyLHo6enpgzgV/5+NjY3/H/DeUifR5ctoP/cc/L4+ae8JJIzBvr7MJuNHG39AAkFlDBXfB/DN14Q28Ngx1Gdm8DpgCphDAB8H8FFIlsIh/v7qVQssL5WM5ddts+rzpNyO8hgQR6+dxDURzkRn6OySgxFCtYgJipsarPlZVBekUJlF0XQyaGQRy05qc86LZgOhzbtX86gDYgXOz9u22nFGB40G+gqjicA8j7vV0IZnd8Yil4t7ClQqyU5zcZbAOBaaJ+74cbnpq1elSCRmxMLEBDLlMiI/teU9O+jYgpNm0xZ/0Kpvty25evzQ1lwpHie/d/f8crp8Xz1A3ZWH6Q16VUNDcKII2VwOnpdCqyVzoo1pzteFC9Y55D3QUAasw6i/B8SNkMI23GDYfHd11RrzHMxAhKG9XEK06NxcvWprVfh3b6/MB5AsfqPzlvY68iXS6gQBUgVbZ8GMHI+rnWEmrTTlLOdD36cTriDluoCXMv/jdft+XLfjuujAseuSdTmaRqorDdTx0mZOuruov7fx/rBCbWxsnIewd3S/fxrAz6q/VwDs3OJzv/xDvcAf9rh0CTh8GCiXsZIbg+dJGd36uq3RNxnreHTHGFZXLfHc/sIKMDsL5+hRi7e7elXoVeOmGGutFlJ/7+8Bv/u7yWt5+mngl35JMtsPPWQoZte8TIKNLeV2Ehe0HKbjvSVrON0+B1SrcObnpaN2rSZyU4+JCbngGLKK8XFTBXwpTJk9zNPo+ExvrwQESiXIPbHZ0fS0acS31XDmvws884z8cfYscPAgnPFxvOnuR6UCI+NkHzsmmEI5Sl0nJU0Otm2TJpmoVGR+Z2bkC+PjWHn4F5EOl0UvdfcLeQ/DGIXNpqWJjYNaK17WqCQGZhj8KBSAA8UY6kniD36QDRmYMiftUxykSkEagLL+zDFYT3nxM5fClKF1p+pjYp+Q50OHYnkL4D8+76DRsIEdmiqDgw6GhuKgXHyODhxzDMS/U2Q3Go6R/4Tr/p0v2Ij9ctPB7/yO3NY/+LKdy7XIwR/8AfsiOobE5eJFB4ODtt6TayEIJGZKo/y/HpP6xclJ2Qun646Bt1KNAnaf6jpWqRuV684Gon8cKoMgwEroJJ6lrjckwQhrOvT9VKuW6jbTPm2bvij2E0ezoNzw+NHri/dLV7xnx6Knp6cHwL8F8NrGxsb/rt5/16mTq5A+Eivr6wgqFaRmZ+UfcXjWDTLmWXfTauooM2sdGNXNupeAl14S4XXsGKqw2YoQcW0BpN4ihNRc+OwYpi3p+ESen76mob0WOWIMqbSE59moqFZ0/N0YrKzAVe0uaRBqe4lCWzM7aIOSzhWNuf5+2ViFAoSD+3vfs0TvUQS8/DLai4tYAeC1WsjMzQGlErKlEnK5tJlnzWgEyEbshqRpJgbygKfcjn1g3PWxZ9bx0gibMRSKhRq+n4Qx0fpjiL7RgOuPIoos3SwZgTpw4NCLOn8+WUBAq5Sppji83w3HYXGwfr7G8G207b3QeNXpIsDij8IQnp9KZJv0eaLIQsX4vPSz5d+6PoLfTcXV+a2WLRA/f95eFod2ui5ftpcMJI1qPmN9v2x8rovyc7nYqdFNB3kCz0M6n0dfX8rcL+9dH3d1NZlt5Lqmvk4PuYhCAB73kV3LpO7l8a6LseWmYIe+eHLfiaP87sf7AoW6vcfFi8CzEq9KHyoAAJpNaZa1uCj7wXUt1SRpkylquS5LpbhOeG4OeOwxdL7+dQCAE9Odnl5cxLchYb4VAP/g619HqtuxmJ3Fn4Yh9h4/jvGlJdNotFazTIZCLuAgpVKT1aot84kiYK8XibH9xBOYe/FFvA7gF7tu+9kTJ1A8cQJjTz2FTLksVEH33QcUClhdTZlAE/f54qIleRgcFIPUqbwK/MEfAEePYnluDtn//r+/rmOBmRmEX/kKHIiOHp2ZAR59FP2/9H9FtWq7R8e3pUU88nnZ11evyjzT2RiYSiHN9s/PP28g0NUqUCxmpVvyexxbQlt4QarBgu4+XatZsowokhYXB4KmfP7ll0WAVquGWEYHx1AqGfKPVKEA1BsCn9XNKVSaPwrSSCHC6mrK+I4LC/LMxsdt0IPXwQLjI0dkmQoDpUVLF4uxYexZRcNjNJuy9skkODMj57pwQQz6IJBj/Z0v2PlrNoHf+R25Le1YRJEsm0OH5H/yrEyzepw5IzFKxnEKBQvGAMRXdF3xjVNusnO578v1MlDG2k7WBVIvtttANkBikXeCrGm1UqvJdVy8KN+ZmFDABUU04KCDKHJQqdh+TJmwKRNMNshmU/7ZaFyz8P+9jdtDX7xnxwJSS/HLAE709PTMxe/9TwA+925TJxHE4E9Banf3fvOb1u3N5eDlxwxNZ6Mhi4dt4xm5DkMxgPSeR7Uqi+XoUZxaX8dpiHCMYJ2KLKRO/xLEuXBIRXvhgiywfN4srlQhQjYIsBJHo4Fu48mRAlTlWPB/pHXTcJZcDsB8QzTAD2La4JgvNFP0sX17KhHR5ouyjUbZhQs2UkXhyELnYhFI1d6U6NTsrO0TcfUqVqpVnAZMB9cD3/ymSI1iEfn8vQlZqh0Y2uz9/UnDMYqSzZEMN+xrryU13FYblVY06a4oLWjAx8TY3sSomYPVVdsptdkEsqwcZriGVcNcILzweOKcIEBfX8qcntR33QXrBq5FvE+rlfTuaIHT83LdxHxp5/fCBfuY+Zy4jpnB4LPsPoVeCFevymVoWlY+J8Kw6CSQrpXnJLU+YJshMYtAaJvr2qyHnQPYN+gZJVJbKfPWVjzoYWgdNx1dJTSsAwerq4Dv2+PQ2dNdVYMglXASgLibezf8bYufer/e+HjPLB8/HjcyVlbESqLBePAgDh4UI42ONJ13LlPdJI/ipFwG9rqnJPvx/PM4BdEL+XodnfV11CF6qQ3AhwRANhV8BgEKiNkD4x4JK0gbymSKG88DsrHx13FtXwEiKQuTo0iVy0CphLEXXsCpLW47ByEW8QDJkMR9jpbDtHGmTA0frIPFeIrnAag2RGi+8opQr79d6m5pCdX412UAw8ePwx0fx8jV0ygWR02sRQcJADmvzpTS4TBBDHoeZC2cnDQJgr2l0rtYDMmxFWxluR2TpQDG6s4VJGNBO5Lyl/WCiQASIzOMcmhcqMLimh4LfOnIX6y007GA3VHYa9hrKd9zOfvsuuWnZi/WsFKTGc7F2d3IqieetruVExk0NdEKB29vKxmp9VE3KpgJfM0iqAdZWymeCwVhzfJ9x9gyvCeqcU4hTYcLF4Bt2xzpBRan00mvzqHL6RK9PrA1rMnoA/1sE3SVuElEH8DtpC/es2OxsbFxDEDPFv9623bf3WMNUkSdQgxJajZRPHLE7LbUxAT6+tKJlB6jtFwP9ORp1I7m1oAXTwCHD+PNMMSbkCZHTYiAzkGKtfMQh+ISLAVrqtmEyw7dlPyuazi808Ui3NyouX4tTFPKuNHR6oEBKxh27wZGBlaAhaq48i+9JAZ/GFqO0DBEsXg3VldFQWl7Sae4CeVptWwXSwqNYhEYuXoa+OY3RXkeOYKVVkscKACn4zmhY5GtVpF/4QWgUMDooyUEgaTzGQWgA0O56vs2lcnIe6EAaRpXr0uH7299S8It1Cr5vECG2tKG0ECh6CGcPSsOxeIiVk6cQLqvz3pSly8jNT4OwK6FhQUb8chysrtTQzqURss5zoJ4Xtb4BFtlGLr/NmN93RYAuG6iy92am0azkWweZOBvZ+U9Qq+0MuGhaDR319eYe2s00DuYNRFK7gnpCSKXRQ70atVGcZmdIHOV68pj0kY636MSuHDB6tWM79mF14079DyDQOK61NetUWM8BH+SLpe/k1qW5/U8i0gQxyNZWwUAaa0hu70HdYPa97g54/aIQN1Sg141o0wAnPpplEqjaLWSGWG9j7gsWAtmjI6YPcyFqP212KlYQEzDjZjLsVjcHA3v7xcWwXxecB7ForkGXYsGILEu9XKlQT02OQk0m8hWq5h47rlNtz0FAJ/6lMjQz38emJ7G6UYK9aoVb8zsra7aLD4N5lotPsdP/ZR0wH7xxYTRtCWefPt2pON58QC4Q0OW7xk2SEZ5wnvetk1kkSYXYV2X68JafkEgSiuKkMuTevymef7mGrtTpGnfR7E4amS/zqTu2gXbEIisE7RSGQ0aGZEbjDMWy1EGjTpQLA4jDGFr8jS0IoqMhZ/K5VAsZsy8scSS8pNoXo5i0T5jrh0GK3kKLdf4LLRt4nmCYKDxrVkL9fdYgtg9cjnLQMjz8qdGLJBgRQ9mWXiNGXcFaLQR5IY3OSy8DjotzHq126I/+/rSyOakYex6y94LID8bDcvLotsVaeIE15Vr4nygGlmodBRZA4qZi5s2bg99cVNV7HsdvYDpvrkMEeidVgt7jx+X/GCjAd8fA2ANCpVVNsKNtc8fn+oAf/AY8K/+FWbjpnCN+NhUEqMAigDSU1NIhyGycRfQTLFohTf7HDz/vN3NKpTcjdcWZebAdWOe8i6DjQH0K1cADMWW+fS0TbdNTkr+sFYDcjkmFhJBYR2IZ/RBy2hesmmO981vinE/M4NzcZqFvSyWIQojhHCQBQA6MzMYjS3En/ziFxGGWZNm1JEFfS28PxOxogDXNQkMY5TLwKFD+PZCxggo181g//Q0VvxhpCfqVkrOzMgDpxFRrQLNJryYB15D4dptWInXXbzd3y8vUsx2N6/C5nlUCTM4zeXk/Vy+bC1gWrvMshQKSLku8vms0UHdQrqvT26Ja5dzya6mjP7oZIiZq1wGqYKL783aRrBcfzt2WNKrQsHSwQeBfJZZpm72KV0ozqljA6fxcVmS6drrdu03m5L3Znokft7F4n7jcLbblslNZyf02gGSDbF1BExvNe0naKKn9XUrDxgF9oIsHIKV6aQDQC5n5klnjm5svG+dt2/v0dsr2YE4SAEA8Dyk3A527XLMWuvvT9YccB1ZuQNZ6HfeCdx3H/LVKpYhuqICkY8FACXEjsU992y+ll27UMjngQcflG5xxSIuLtjz6MA2B41JDsrO03UHo5OTwCOPYOzMmc3n+rVfEx2RywFTUzhVT23KEmhZwT5ixNOHIXC2lcbIAw/I/4lNiceWRaof/KA0LT1/HoXFRWEtnJjAStzdWxu6en4pY7h/R0ZswCAMgTSz1uPj8k/ftxH0xubLuJHheRAIpw7HR5G5zj17kpnUfB6WYZACMQisIKPlHEczO7lhtGvWFghDwM2n4eXSUmPBwJZOU7XbsZ5IGz1BQ5jdo/WaYX8/Mj+ur4u85/yz51T3uqKjCSSzI5T/3X1Ce3tFb2yVybjjDqs+mTSgztDkiTozwaHXCYBE4Ie/agdFv8+sI4+5vm6hsJr8j3qHJCYaoczBNe660gxwaEite0YbyGjCm+z2kt7zuH30xS3hWLiQVHMbFhblARiuVuHPzgIf+QiKD46hVpNnPzAgniuFFunqc7nYmDp2DHjiCdTm5rAQHy+EKIe9AMoAxvr6xKh/6CFZqXfeiUytJoL7oYeslGw2BU7F8LPnAZOTSE1NIRUESOfzCP2M2RQU4r4PpMJLcoNRBNQbmJ7eL43AFhaApysSbbvnHtkFhUJcWQfZHdUqxkouxkrAcnk4EQ1mhJusObqvA4mmnMP/SQoLX34ZeOMNrC0t2YwQaV+rVaxAnIrXAQOLWqtUUPzqV4EgwEd+/leNn8Bu4zTmeM/aQC0UIA7B7KypbWkuLSE4f952EW82zfS6btyDoF5HejxnQ/ALC2hAaID9SgVevS4a4BOfQPlTo6bojdPbbELmT0s3zqVWDqo9KjMLYZjsF8FhcZ2BTT1Qk6ush/FGiAULAvNRGs2A/E54xpUrNjXN+9DzyhIG/s1ykVS0EjOm7U0IcM5ndz8VOjZMj9O50AWWVFbaidmkILSWo7Cl9RaHh6hceT189fVZmFkCOYUkXIzPQZFsGUNkackGD7ci/Vpaspm9veUyEARYy42aNXbhgmRuOD904m5s3D6K4pYaq6uCe2LYERCZWi7D9zPGqNVBGGZWt22z9kM+DwuyP3nSBLVOQzIV1BUFxHUXJBbRo1CQQNRHPgLs2YO1KNm/yPNUdiSURc89pmUDAw1ruSxSk5PSz6h7kBLc93EpSuPMGVnPuvBY7wm9fynLLl6EQEnuuks2FFtOdw2TvdizR+5vfh6uKghLu2vwFLkCB+dYBy983xYcMwiIhaZcUC4n54iNNydaS2JbbsJw2pfsc7ZVzUgHAXK5TMKYDcNYH1XaSXgMb4RZ95gef8XLolGz8GyNDh0chJCzMC1MzvhYvyOXQ7ZQgFtMo9m0DijXhTbOadvqjDaTKP39SbnvumIwM2t95YpsGaqorphaYvT1SXCSxroeO3YkId16zvQcajQRRy6nu5nDKD0nCEAIrbZtXBcGbs7SU50V27EjGRTjYIxPXwOvtTsjl8upfkxRZLPw8QR1csNwcjmcXXpvPTM2j9tHX9wSjoUHoXptQpyLZYiBuwLAX1oCzp5FqnkO+fywMcZoJNFwKhZF7o62Xweefx7hCy+YTMVafI4cYlpZzwN+4ifkCx/6kOyioSERABMT0pjOTYmQY38JAteBpOXleWjGBreOrLbbwFjBx1okGEInimRjeClhn6I1p4GW3S2FWTReHE6UB3C4rmwwQqC2b5fgjzP/XXGGXn4ZqFQQNZvoQOBOztCQRPt8H9lqFRlI1uI0bMboFACvXkf+2WcxMj2Nj33sgHHgNCSKRFa6f4bBK9JK7u+XZ8jQ9/Q0OhP34rUnRZ8AIkyGpu5GpQIcmJw0EiV//DhcAA41cxwtd9qXkMtlTOTEGKrF2MjQUk7nfLlYVNiSa4iCisekgM94a0CjmdTc27ZZ7anz/0ob8Hmx+RxfPL2OYmo9qiP7rmuL7Cgc+/rS8At7sXAkWROvlTaJxngffA0MyLGHhpLw0V27kgbX4KCtzymVgHTzdBIzpedX4bFGRrImasTlTFhUN5xP152wXoZrW382DGVtsVifn9eZQL3nZJ4d5HKjqC7APAsmmq6lUN/7uD0Uxa001q5eRf3kSQyfPCmFsl/8oim8dPMZADA1eUywESqqDf1cDsDTs8Dhwzg3N4fvQhyLJiRLMQ7RGQ6ttm6vHbDpvVg/dEeBGUk2nw1DONEa+vtTCYKFKBL5feECMEKh2j16e40sq9VssSzJFkjeobMYgDV4gXjfMZpBZbrFMAZYFIkRfPw4Vup1pJtN0ZH1OjxvzBxTQ864x3bssPdGlbdtG+A0zgEnT1p8plANIWraObqpgxCkSsXKsbhbaKZcRsN1zHUSJWBw1qQ/0ikNCk/XRatlITqrq0nVncvBpjGYWvY8G+WJJyxTKCDyUybwRP9ND+oj/k//X9ck8OVEa0gBiKKUcSj149ayWI/1dfks5a0ejYa8f+WK3A7ZoFwXxsmlzukuS8h4a0CtbgMBtZpRcpl8HnQuGL/VQ2fwtYPEzzmROLl6PoJAINkd177fnZHzPAgpi/Zq+Jw9L348zk0KQpmru5kHu2XHLeFYOJkMxldX0VhfN1nQDsTQxfnzItjm53Hg4EF4nmNSvAwaE2WzN3odePJJ4LHHUIFl80hDFEQRQGlgwFAC4iMfkTQ4CzQaDWB8HH8xm4prhlMoFvdi78/8jFwUixl27zaR7zVY9p/uNJ7vO0bA5/PDqNdkMY+ynwOAldwY0hNilF7yR4EIyBAEH3sSWpBomcto/8CARX2kwkuiZBcWEnyzHiA7/447TK8Md98+uL29KFQqOAeJ0p2DKNbTAIafeQbO5CRGHn4Yhw7dawL01ar81OlY0hl6HmxFfS4H7NsnuNyHHgIeegjLuf2YPQy88op8nnKXxw0nR3HvZz8L7NqF1Py8nUxaCDF1YHn87gRjludhc8qScxjTX3R8iU6lohUROLFw6u+387hzJyx9HwDUGzYrQWm2fbvtcqcxRRxhCM9Lw/NsJoAlGGSyHBpKKgQN62LUnhEX1q9rY2l+3pJUra9bGNzAQJIpGbB+FYv4iKGNIln2xL/6vszDxYvy/UIhpsGcr1itxHulYuztNUp4pFAAhjyTpiZEldkl+l7ttp2HrRwFnTXhvekIHg2nbqVIJkjaA2TE1VhjfQs3Pm6fCNStNFiTtwzgwJNPCl3N4cNiKJZKiCIHZ88a5KTJdmmYY7EIZJpSuL32zDN4FbZZagCByrqQwJSzvo7hxUWBtXSPMDTQVVy5Aiefx0guh5WBtKFipfxOk7knirB9uxg8hHRTTA0NAXijAXznO5vPVa2KvgpDeF7GnJ4ONeWEzm7TwPM82c93j3eAp48Jq9bLL9uI3BajAwdOrQY89xxON5s4DSDXbKL47LNAsYg7fuZvYXHR1uBRJ7CekDakSmqKnD5WkbpCbtQPflDw8usxu+I1nJ33PLjZKRRove7aFQvZMSOnSOw1SkFLbBNgU18DA8b42O7Lc4gi25tIJzrQCMVb5ELU0R16Iq5rEut8lktLIqdTSubxspnJ1ckUOiW8VX6PHDS1mmXw0uYFb40y++pVKzf1iCLxywoFkd1kNeN1nz1r17JhhNRDF1Dov43iS236CNWMtn24zpnNkM9ZCnoiAQDAzaWEZRCWXUvfaxQhyeSpH2B80pujJzhuH31xSzgW2LMH+NVfRW52Frnjx+FWKgb/H508CffrX5ddsbCAvcUi9hYKGB8/YBgR8vk4Sv8Hj2HtX/wLvAqB9rwOYD8kG1IEUJiYAP7xP5Y0cLGI5UiKk2vzgOdl4Pr7UTsmKB5mRJaWgL0PPig7c35edvfZsyKU+/qQyucxMXF3co/EI+utwHUFQ5nCGgqFlP1/EAA7dsTY92FEEVCbk816gBYZADQayBQvIZNz0SmkTdaCPOyFApDBJaCyYL2t2VmRJnE/DlNwR5zU+LjsmPFx6UNw8iSmHnsMlyoVvApR2HVI9G7/V78KNBpI/cwZfPwnfgIA8GYpk2DkYqLFaS6LxPkP/8GmnV3X1I6c9vdj9pgtXAasbqEMn58H1tdT+FiMNTbsUMePo3PyJJw//EPgpZfgTEzg49PTmPrCvVhYkOO8Xhch7/u2KC4oxuUZc1ZoFQqCD+42MDcJEWr7IMBylEF2wrPpcEpUCiEpsDH/dyCMF1QAcV03Mn7H8IzTofA8WyStU+mEeHKuCKNqt5MF1q5rnQkq9FJJfjqhNBYsFGxNBhk6aOATN0tsKh2LVHtZ5p83wUkyeIbkPHW8tDQeitYQBCmJUgU2zc3COs0OQ6eDykLzoDPVr3HBhLhoXDmhz9oW8DyYdUGFTeeRiaYfj7+aI4I4ARkACEMciCIJKJVKwPQ0XFcy21zvca9VUzcEAAfKHeAbz6PzR3+EWYiuWIYKQMW/n47P5wBbZxEAWWS03OJIV7pUgrtj2CBgZDhCMhBFRvHqTONYoSPH0H1i9GCEv1ZD/tB+7N5te87wPBRNdCzY98DQfz73nEBkn34al1otZBYXt7wlAxup11FrNnEKohPOAUgfP47hJ57AyMQE9u272xBHMGpP8hCObdtk3tNYASpV4OhRuQ7Wx1y+nLDrUjc7YwHIhdXrwMsvI6rX4a6vG3ntjY8ZqG+1Kgn9e5lq1vKdf6uCMC8nb5P8g/LJ6BZ9Y4wkkYIKAFwXa5HVB7z17oxBq2Vlvq5D277dEh/qOBejZuwvUatZKDONf2aUABvNjyLH7BcgCR8ineuOHZZNl3KctXJAnNjjZHBslRohzjWKNtXO8vfuYm46zefPW3gtnQ0+KkKLGZjqhnWxiLvdBrIadaALM0zG4ppJvR+P64xbQr2udDzgS18Sl/jECZT+7b9F58UXBddaKsnDZipzYQFot5H90IeQ7euTv+fngZdfxpv1Ok5BMhU1SEft/RCcrPfgg8CjjwKf/SxON1Jo1qxBy6wcYDcgoz8CxRhGsTiM8mfuRTpcxjKyJsrebgKNp5NGz4ULEpApldImo1osplQEx8HQ0Cj2TuZQPYKEtx1FwM6dGezIZ6QeIwiwFken2k1LD0rISsaN2aWq1WTKd3HRps4LBcnQfPCD4lSVSmIEshNxoQBcuYLM00+jcOIEXEjW4tsA1ppNDP+rf4Xh3/1d0Uy5HPY+8kjcrKkoz2Z2VjIC+VEs7c5i5Mtftto8xqn957ksjn0jKdyoABlZbLfl0ufmgO9NZPDw5/+BNMSJM1bO4cMWXxNLV+fwf8L+iQm82R7GsWPWKKWNz2fC4+syiyCI8bcAUHBjp7EJfK8Jw0UYa8pszNjC55HyfdPkZ/t2wM+JEX92yZFmcWGS7clGmByjGLqLlbl2gCRVJaNpYSjTyiVfKlkHc/duazQx8+DUTwMLC8jk88gUCigU0jhxQhwJCmom64SlQ+5/xPeBIwuika5cEW0SBNY7otWvsSZLSxLRjTfGWLEIzFaRyeWQyeexd7KAS1Ha7C0qJO69ZtMqCrJEdddjaDwt6XW55PU8UkcwisZElq7bv2kMgrcJfeCtNNz41YYEPw7EP0txM7tcYdgYdhqKQ6d7YgLA448Dv/3bmAHwKiz7Uyk+3vDEBLBvHwrHj4tB+NBDAp9FV4fuQgH4+Z+XRTszk4iIp8Z9uF7aoG8AMdxYm8DsaS4XN8tjQ4W4IeimMT0t2eYTJ+C6Eo8jdFLXiDHewSzBHXcAH7uvA/zxH0um4uhRXKK3swWYPoFF9zx4EBhtGpLBeR0AnnsOw7kc7v3N30Tjnr24ejUJV9T7EYiNTeqm73xHfrJD4fg45uetvDtwU1l4IPJ6zx6z6UMA/ltviRAtFJA7+NPmeRhjNghkcilgdXQjZodEECQi6t11JaloJRmQYXMgeh5xyjaFNfh+ysBmPU/R3saD8D3KbQakGIwiIs9AePMeVkLHUI3TcaHeU9ORGK4rj4QGvYYPBYG9DkJ5ybAG2IBWuQzZB2QPAayHzzrIK1cs4UmjgaGhLC5fTmZltiKKYVCN803oIXUHkMz8A9d2DNbXgZUohdYFYITRtlIJCEN0csOoV2ys9uaN20Nf3BKOxeoq8J+OpFAo3I3y5+6GMzAAh5X5gBiuJ09KPwRAFuTEhCyEkycRVas4BYliVSGp8gLEqZjYs0ccioceAg4exF/MOAljRQsTvig/ADH0jh2z/XEKMf815QNgI8s8DuEYtLloOHEDuK7gY9vtVIJfmoK1WhXDcnAwhZFy2TD6aCXpuvGG1lZqqyUv35fGSQTb794tReLFIi5FaTTqPM4oohAIysPC8z0xgcJjj6Hw4os43WziVYiDAQDR+jqGjx6FAwiumQown5cJyuXglEoYYTFg/L9T9RTmZ+QRxj6hiRxSsPFwFJp0PiQS76BU2oux6UDu7TvfEc8jDC0mq1rF3i9+EU8/7SQgAYTQMOmh66wZNc/lMjZtq3E4lJzxqxNk4fg+zi45cXNexwgcCri062JgIKbbBZDPpxICPYU1oNlG2nVRKGTMtVKmARZHqo1qjYel7c7L3bFDHgF9cNcVSNTI9ktApSYOZgwETudy2LdvzEQTKbgz3ppAvuh9ccHSwmekLYoszQgvWFtvenS/57oS+oWtO+H96iWsccI8haZQ1t1peQ88HYeur+f8MQOk99CNj9sntX0rjW0QIg5ShAMSTS/NzgLz8xgtlZDPZ8kTYZKJdCoOBKeBf/Nv8PrJk6hAjOUcxKGYBJD69KcFLlsoAB/+sKx/wmfRhdXO58XhmJmRjcnmrgDgeRK8wTAA2U6E/2XdS0j5PlCro1zeKwGOw7Mi/B56KGmUccSF27hyBanamxgNQ+QmD6BeF9///Hm7zgkX9jzgY3etAH/8LPCNbwAzM1hrteAA8IeGtuwplLi/QgG5ffuQPnkS5wDMQrI4bQBTf/RHCAoF/PQ//+cIQ8dkHVkjxZdhxnvtNdEVMzNoN5vwm03RTUGAxrxc9+oqgLy/6ZpuZIQhkFIcqh0AnaUlOLOzkrF/+GEUi3tRrSp40NRdjPKJ80VsKr21OIIVNeUcfX1JSnmT3GIki+ngoaEkZV4uZxjttA/CzK0e2qbQkCHaLDqo1oFjngV1Ca+NzIDaxOKg39SN+nNdqd9kFnloyNZTUP8xS57GyuY6me5qdI0BdF1z7ZrJjDK6O2HEIFs3Cpm+2+XLybpE348b63XN5fnztr8T7hjF0MQoFhaAwcEMzlfE3mP87OaM20df3BKOxdqaIIuqVXkdPPRzQmbXaokFvrAgNkm9bnpO5GIjdxmSnq1BlAtrKsYgigJ//+9LlsLfj8oRCZToaDYHi0d1AVoY2qab3MxE+OTzMNFqRgq6MfKaClRjzLURxGg0I0yrqxJppU0HpI1M40bhpkljxV4Y8SS0pvJ5gToViwL78sdQr8qU0rvXGzaXG8bEI38TTsx3N/rkk6g3m2jCFtO3IQtm79GjFugZhjKplDLk9UYWlVmbgaADReIFbdyr7KPxjxjJ3r1bAufNO7O4+8EHZT0wTO158nBcF3joITSbY2aOtm2zkbzLl21Um88CsLLNdR0p1N/KGI4vTIzeFM6ft3OmIyquC3j5GNPpyuS6cWTSdWOnQoXxgnzGXA8xr2FoHU82t9Ivptt5fq7jkRER6Az0Zbw1oFpP5oyvXAHCENnxAGjKBWe4ATQeiViGbu3FYhF22qLXpl8cOmTZahnp7AdZs+dIPWlT93bfkVeen2WaX3Ooc82sr9s1xVNrels+J35W+0Y3Z9weiuJWGn3ZLA4uL6MGoYUF4no8Mvjlcph+6OdMTOXiRdMcGfvxOvDPfwenjh7FdyG6ZBiS1Z4C4PzyL4sTEfekwOQkAODNaAxRDdhfSkYcTzdSmJsfw/RDY8hwsS0u2siJ7yOM5Y2GOXqlDGoLQLG4F/UasG1bBiMTE8C2bTg7uB8jDz206b7P9u9FH4AsFU6zada4hoXs3CkBB9Nn7rkXxfE5eRJotZDq60PK8+Te3o5KM5cDpqeR7u9HsVrFcrOJBiTg9DqAj371q0Auh5/7/OdRKAybrHMYJmta+vshF+l5wPg4/N27gV/7NXQ+/7fw/PPib/z8z0um//z5LB566Br0t+9hzM0BwH588h/+Q8D3kTlyJFncNz+Pex8qIAxTtrluuWxvwnXls/k81nKjCEOBtK6EjjGId+8WY7tYVPV5CwvWcWP2W1Odx8rDCVcwOJhOUJ53wzVJRHXhgrUX2NiP9UPUCWRnr1TErjp/Xk7NWjo62KVSUnYCclk/9VPyHd0MEhCwA4nRwtCiqwlx/fCHgZG+ZWBmTt7QWTdGCznIFR7fzNhkHmN5F0GQMsY8oYw0a4jq6A6uMUPNhDpgHZBmU5bwmPKfO5DgMmtOaPf19wPf+57c04ULNkB8c8ftoS9uCcciioA33pBFzszAQw/9nFT2R5ekTuBrXxO4RbVqBFsHMN1R+V4Rkq0YA5D6J/8E+Oxn8aa7HzNHLHSVvW3Y34wGHRcYI7pUBG+9Zf+/sCDvFQo2S8rmoZQ/1aoErnK5pKMeBEnIE+EcNFDJsnD5sk2F0qCkcbltW0zbRo+E4SpiuCgsdYVWLod61f6LhjCjxNyEngccuOce48x5L74IxPMbQQrAfUgjvUCDgxlqzuex7A6b2nH90gZhN46So7/fBsjplNXrsjZeegmYmBjG/+VLX5Jzzc7KwWZmTIfudnvMHIvn01hfHUFjxCaNFaDeTHqNjNiT6gpJeC0zFaSE1dmFMASQT8HzUgjb6loiKA/ESzgl2k5nZIn2OAvjgSQpDa9/507JVhSLMZxJezzsAaLTcwxT0YqnlOaE8xrpiXEi2QckLuxZ8YeRzql1qMHdS0tybmZLYqfGyeVQLO5NXN7Fi1Z5xEQtthgfdp3ykjn3RBWwjl47DyzgU34hXDfZPPDmUJPfPhGoW2rs2QP8s3+Gwp//OdKPPw64rvSZWF+XnkO1GlKNBg6MjODAg/dLtrF+WmTFY4+h9tRTmIUEowoA7gawf98+qb976CFcCsZkS8wBUTRmYielErC/lLyURkOM4igCfu7hhwVewz0UL9adO9PcAgmZe+GC7V1w9SpEqYShZKx3HEAJSeP6O9+RdZstl83GyHhryHhAGNpu3sWiZEQwW5HPvfSStaL27ROjuVgUB+oadLNmFIsCU4436b1f/SqW5+YwDwk4zYchxn/zN4F6Hfc+8gjge5h49F6Dwd9b7FgF89prlj3i4EHgkUfw5JMxaUccl6BveOiQLUC+0UGd7LpZfPzRR8UL+N73gBdekH88/TSwuIiPP/AAPv75Ml5fcPDt+RSAFHw/AxdArjQmSK5Zua9i0TG6BLAyxQlXbCGZ52HFyyJdLgt1aeGcZc2IF8KaJ5Bn9qbQOkoPZmsB65NQ7LIZog6MXrxoG6Py+ugIsOH5aMDMQmDO43nyaM6etWvPQQeu65jyzHZb5C4JPoJARP7I1dPAW3Vr9XcPHcndtct2M6ZR0GyiWByF01xGNu8DSCVYFcPQOla1mtw3nQk6hFRrWld3Z6cddMBaEtpfi4tyrNdek0ujjUcdfHPG7aMvbgnHArA2zcWLtnNiuQzsz8OE/1cWF00NRQhxLC7B0tQGsL0q9sbdSV+N9uPIYWkCffWqzWgSK6gjo4A1WLiYNERDZzN27rQIEV1fwaFTdLRTadgzykD9QyeChqNmvGGhNinXGg3gbNHB0FBW4gi0TmmZ0ko9eBA4eBBn17OonhA5qp2KOOCVcGwWF4HmT4zi41/4AhAEODA/j8zSEtIQJdKOXw0AXqUCjyB9VkouLCCY/iQAKwAoBAoFG43J5USw0cZlRCKft5BfbnoW3tIRMyDL114TJdxqITh6FMHMDFz3bvPMoggGs0nbmVNFzLPrSiF3JqeMbB0+Zw2K7yeaIPLZUBnw46RTzHiSnUjxWI32psp+qXsIkMsJ7329bh2IZjO5PjknjI7p/m90LMYKHWBehWDoLLDVNxd+NxaMWJFWy0pqva54s2y+ETcFTKTQNW6pv99SOXW/fN8cTu8NPUjPSWXR25t0COis85IA6yjyeN0NlfjMNN3i4CBu0rg9MLO30ri04uLSL/93yDz4oHS8BnAgnxf4ZxiKbPB9QxXu+D5w9CiimRlD7HEKEoSaBDD2Ez8hme3PfQ6vVhw0a7aeifCet96SgFT3IHQVABqNFD70oXtx16NCKLHaAi4rOUb5feyYxEVee02iwAxq53IplMsHUD0hrHkm4xAPBn1zuWEEPpDO57Hclqzo0pLdH9mgIzBIQkXjwAv27LHh6okJYHJSnK7rrOE1L4No/KNIT3aMJZt94gkcePFFvAnbzDb/L/4Fhp94AsjnkfniF5GZngb8AHh2FpiYwLI/huxnPyvXUyjg7MYw/uQJIfPS7Lqaze1mDc55tQosfmIM99z3S9j/2TXgYx+TiW42gR/8QB7K/Dz2f+Yz+H//rmNUKYNTFy7IM9i500KKRgZWYv3r2voa1uc1m0jHwrrZBPxgOH6GKeTzaaR9HxcuAENDKWMTcFzvmdC2YHaWpQqaQKZaFX+SNZlxqSMKBbnufB6iL5pNqd3heaM1jFypY6ScR7d5WC7L91stZgHi+seFBkY8z0KU63WZJD0I0eagg9V10Q7tiSDAWKmEwn1jqFZlfbMQ/eJF+SoT8bSfaCcEgdzjlSvJ+lk9okjiDDw192e9bu0wqsst0II3MG4PfXFLOBadjjX86JUy8ON5GYxNTQGHDiH9zW9itFJBEwJ/akAcixASSc9BIlAFALjnHnTG70b1eQuxYjMherHE5HHh6c3djT3Uw/Ossz04aGGXFy7Ie0xpamNHF3UxyrDV6N4ExNHTG48iOXcCukPjUBuvMcPB5ZpsSP5LF/npIDONr3odWG6nJN0ehyIiiENxDrJgFiDQqNFqFbknnxSt+6EPSZ1F/TQ8b1QH+xP3cq15pW2qoTEaYcMIjQm57NoFNBpYQwyDgHUY6F9p0iZGurvhaK4L+wEd8tEXFQRoLNggPAWbhlppG7yvLwXfFzrJlNtJhtwBszhWYlwyjWCijbrtce38cl2RXnZoKK5VoQfFD/b22pQcBTjvUz8EFmjTu+MG4MRz0fJksYYSPLKDIMgik/es50ypTKlPrRcv/JTnCQwjigDPxc6dAj/g5ff1WceA08ZnxzVFZ1v/ZOqaMMRm00KnOL98nH19WzeAevfj9olA3Urj8mUpFyiX9+Oh3/7fAQDOV74i//w3/wZhpQInZhbMvfgi3L4+1NfXsQDJUtQgTsVHARR+7deAr3wFrzZHMfeEHEJnOVstC0vcas1QXpEUamFBgjhhaOMSjHxyXa6uyk8G0RjTIEP42bObkSOAXedzcyyd24u3qvL71auW9cyciJW7gHUm4tepmoMzJ8XXGM1vPc8dOLhwQe4nihwAwygc/FXsf+QR5L7+deT+1/8Vf9lqmV5RK4uL8BYXkWcIe98+8RwqFWQffRTwfVzK78fhw2LUEepSLguLLnH7W937jQyKRGZG3ngDmJhI4eADfwPpq1dlMZ04IWxVMU16o/GTxtDk7Zw/D0N+wZ5RffvSQgKCTlLBxzC4S8jADTKoVuQ6mMD1PIHODgwIm+LIDh8rkfSykCaozUQRhNM4h3J52NgUtAUAWzSva9cIKfY8uc59+4S7Zd++mLSk8qpMiOZtBeSgs7PihXR1ZT9QFIWcHgrkTfLYUuHqJhRbbRatdzT+WUdsuz7PbAkPt7SUhBSyeJy6Mp+3wTaq82vV0xEuzf3HOBuLw2mT/jhj8e7HLeFY9PTYjcKoLRv+BAGASlOe/PnzWIE4Em1IpiKC1FRkINmKYQCpYhEYHzdEBKxDpZGxVZdlHencCmqvX/RiY5SRqWFmxoXvszWGXtwaA047ULPQ8f+A/R+VF/dgGAJekJJIHHcToU9RJCf+wAdw9oIUhy8tJZ0HLXyog4iYqddF3mTLZWBiAsMnTybmPIQt6F4D4FariABk5ubEYPzEJ1C+f9TMO7PCGiPPl66x4K00m6IgCW0hnJjNySVCsgDMzyNaXMTp+HqGKxVz+0wNcx3pLteAzIeGROXzaaR4cj3Zcd3Imps2GQtb+7L1OuIaSbkxBCCMNtchxNZxOggQes4mwaePy3ui0mAkv9m0BX7GOeIDZnFQN7E6kMRtdY++PrsBuzdkV3OwxD7x1QP1fctDzIJFvs95jS+6A8c4vaurFv4Vhtbh1w4B11AYJlBqxlnQWRDuZ52E0pSEN4fp4/ZRFLfSiCIxrkkP+qUvAWc/898JcUIQwPuX/xKoVtFYWkIdQGd9HW/CdtQuQYg9Cr/wC8A//If4rwuj5niU7TQ6Ll+2/VGuF2yK+7ii1bIR91xOtsJ994mOiCL537e+ZWWdtkX5t8aQ68HodHcDScDSh6bayxZP/IMfWPraYlFuKp/HqZpj6gbJ+LrVcNDB1auO0RFhGMvO+4aFgv2ll5B56im0YbNAAYDhF14Q3cSi5yDApWAMs7Py3GZmxEDXHZU19PHmECvYQfFDRj3+nJsDHn7453D3FyLgiSfkWo8fBxYW0Gz+pLkeHoMyhX8PDABZP26g2m5LDQthEQrCsBV8luJVMs9Z8xxTbgdodwWiAMDzzGeomlot+xGiVPVgORx7Gt15Z0xN34ys59HNaxtFAq0GNjOT6ep2LlJyetMLoxXebY3v2iUbK77gFX8Y6SCwEFxdJ0qjAQAZBoOYtryvT/aZRurqqdKwdjoF11pP/Fx8GvPYeEwWkt8c2CxwO+mLW8KxcBybDmUH5F27JJKRabwpm/34cZxbWsIpSOT8HGyhdgDJWOQhlIH4wAeAUskslu4iW0aGaZAAWzsUemjsI50G2vTFohTnkkaQn9m9W75LRqgoshELnosFuYC839cnP3ValMqGWFwbfU8jTQ+H6VdiZMplVI9bHUPvW1Ow0UunfLl61SrrYnEU2elppE6exN65ObNQTsc/25Ck3jBkEdUBFGZm4MzNIXvXXSiVxkzQjCwUAwPyO1+0QTU9LKEujOqwN4Pvx3Lum98Ejh1DY3ERdQgTmAvgo7Oz8MvJZ8h0qWYIAiTBwmZCFPD5fBbpglok7TZWvKzMU1MihRTc2thl6nXnTlvQn3HjiBOHzoYA9vcoQjaXQxgKbS0dS023Sj+AkXzO0Sa4QHdunF3BuPg1Xk8zO3ED8OYYriXFDJBsix1/b+fOMZOZMxEnEwmAfbgDA3bDuC6W2ynDLU5q+UZDTnfxoux/fUsaPscXILfIhoF0tNTlJaaD79dqFlp384yX20NR3GqDgVI+9299S2qR03HV/krsVFyCBEDqEJmVgWS0DwDA5z+P1yERdJZXseZaB5KAZCZVD20I04klK00uZ407yn9+h9Af2lM6Waqj0XpoqOyFC1Y29PaKsdVoAKP5wJ58cND+Pj0NfPrTeL2ewfy8ze6+HbNrGFr6dcrQ8+eBhx/+KMa+8AWUDx+G22phDQKXbUIyQmPPPSfnrteB+XmBhyJljnP2rO2hSmeOP3UfhZsxSI5ImxWAgZ+227D4q0oFtVYLhcOHgcKvGvlBCBu/z+8CwvyXpczTln0caeT5KD4ZvOTwPKE8T5vCCaWsNLVRs4lMAHgxmyBtAh2g1JntIJBMBZvnFotAJjxnsUG1GgwTiR5RJA7p1atJ2mHANoIkjSNhTLqo4R0K1igCOl4Kjt5ADD5FkQ1IxTd7vb1HnajjrKxXZVxs073A6gLOJW0HraajyFLA35xxe+iLW8KxYJO19XWJoJCwYix6U3i3/+RP8Ga1aqJOddgOqcMQp2IN0sSoAxjj6f/f3rkHSXXdd/5zey5N01yGS9PDNKNm3EINHuNBNVZG8shGCk6wgx1iy4mckne1FWfzKKfWW8mmXBVvuWpL/2zZ3rz/SDmb9SbesrNS1k7s2EqQIrlELCXgQOSRQFbbjOSOGKDRDNBimuEytObuH7/7u+d0M4N4zAvmfquaGe5097nn3HN+74cSLTsuWz0OugltIdHuf6RhUmCsxXYFUjCMTRTsdEuIjc1EbEuqCo36d7XQ6nlSIVj/r/etmrfrGquHWG9TZLwNZLVLHUCxyGujqZjZKA1Q2PWy1cWvnhG9h/FxyA0MwL334mYybB4eJhMEkrwdrXMa6N2+Xb5weFgeYlcXNJvx+q5b1+qqXLNGXuvWiTK2bl06Fhg9TwiCCtTqDdLnNTAAPP4SHD7MOMRNFKcAajX6H5T52TnIrisGGJXtXdcIpDajkaTHDfGzTWUysaVSrYHFosmt0bW7cMH8Ldt4XT58pGoIrlIvfbmuaHJadrDRIF/czPi48R7r/DXtwVYINVQK5G9q7aQQEWG1JmnxcltaUQ1NH0h7cpC62sDU4bOrFuj7z56leztwEeksa3M23azqwoso/akJaUqoIYm6v48dk2dg55h7nixPsSj7Qd33vi9NJ30/GzN4PUP6WfuctzmIWpTLuRFelo8FainhzTfNuVXF4uWXZR/0DA7Czp1kJybYUK0yiVEqPKSjdhlwh4ZgaIjKIWPU1+169qw5FrYn+61gJ5rqEVDjyMaNIpe5rokqjENi2vT9K0H/3m45P38+UvLtg6A3Hp37aa8zbgKtBq7ZQnLt8WwDtZKwahXpVVMokJ6YYBoJTU4BLwKTQcDWv/gLAiA7MQFHjpDP3xV7rW2e2x4RcCXP0PVAZVQ7asCeV0wLJyakfHG9zqj1Pi3ZqjRESXocWqxMc2JCHoaGW7gutRHjqbKdyiprdHSAv10SxNMZ1zDq9kWIJqDCru3BVv5or63vm9y0OFzWZoI6+EyIJnpZnsfYmNmsSrTVoKkLq+WZ2s38dtlCiEvol0o9pNQwah86XdNIq8t6HriQz2fjHApVHGy7l2stYaNhIlVmylmxvRQqC+TzrY1aYa7CZmE58YsloVi4riHCal3Yln8dviZdQusHD1JBGEQdCcfJIkxiA5BBiFoz+tkzPAz9/eRqP6Bc3hbLPRpOaB/AdthCvxJv9XBocpxdJ9yO8rA1aD3YWgbQ9gzallSVMzX/wz4Y7R4UPbfKL9SzEQQSAmC/uf1z7WH+NgO0BTpVxAoFJAQtCGKzR0+lwlS07tNEm2doSE7l8eNmEi+/zOb3FQj6pFSulvhtLwtqP3/7WiZjyodrbexCAbLD/wzPPBN3gQ2iZ5+JPqSeVju3QumTnVtx8aIIDzazUWOLpiV0dXXyRs28RwUFpaH6U0O50sE5ExysmWa26VylBtUu1ZQZPWzdE3Z4WiZjLPO2cKN75I03zBoWClnJi4FW873Nfbq7zSTsJCBdGFU4VBvTmCHbNJzJGE+Efla1QDX1ep5UQYmunwmyHD8uHzt+3Oy9IJD/j4/LXLRzsB01pQ6P2BlSq9OZd7mwOo3nme6xOgX9jiAwwqf+faZwwAQ3H7Tvp12Hv1SC+3dMwx89AU88wWvVKlUkPEc7aueQwh6FFSvgvvuYLvTEVmuljx0dsufUw6AvO7xyJrz5plGYPc/0uFu/XloIpd1pxsdTcRKtylga2qd78+JFI7i2QxVlNTypLHb2rKmk18yn8UubSWkJwvXrRavZuZODByVXWcOgND/sSrCT2NVqD2JH6n/4TnIPP0zvl75E+tgxUhglroLQZRcYHx6m95vf5M5PFhi/u4dTpyRqSBUsNSh1Zqbo7k7HuSlzhaiQXUxTV682eewf2DkFDz/G688+y4+Q/MHiU0/h/5p5LipHa40SJXfKV86XshSLm0lD/PDOeT24rhhOlFQqyW02WyODso3XzeayXUNW6JCW2coVi+Bn47fYBhM710LJ8WW0TjUku/GJDf3Sma5rqAXIxO2D2NFhrDVKiG1oefgoE3r9ejkvqeaU0YSsYilkMnFz5EnXlGbXfFnlJ82m7B01uGkEiTpVZvP+qcypfF+rmDUa4k1rNombNs51aN5ywJJgrytXShkz3XelEvCNp+DJJ5l+5hlGEIJ1BlEePIRRlJCyslnEk9FL5LHQOJvRUYrlbfEGUwFeD50tHCpz0XAThYTJGOG2WJQQrf7+KAkqmIzNGJ7XGW/ivj7JZ1692iT/2V5DaK0GZQvX9t/tMoV2fL39PRMTULi7VyoqAFNultEDJsxErcE6ho5nx7W2e1bqdehU7tjXJxdGRig98YT8X0NtbC6gLuXI/L5taIhm1G3ZDilYvz4qGtFokHZdCoXOWN5VD8ratUJ8h4YgPX4Chqvw+OMEBw5wAqNIxorFpUuUSoYuady+VtNSGd9+1hpaYHtwV6+W69r7Qi3ldjRRNjMdU/NsJgP1wK5paAJAlUAqB2+XDKJFSbuSoGbvufa9oIqRncoARuGo1yHnea1KhX4wk5EF1eRrWyO2N5JyTJVa9Ms1UciW4H2/tSyWJsNE3yvhdL1xntPRo/I2LVKlOpUKLbaBVZmEKrjFYsSAxuuxK39Nvpfz503CqjIQ5WfKdOyQMruXzNxheVT5WEpYuVJIUKFgDAH33Yd0037sMUaOHuUIpshEDgl/aiIW9ealS7iNBqn6GdauzcVGLdc1R8T24rrulXMsOjpavcC2wUKNGCtWpOKeK7YSorXybW8azOxJ0KPXfsTVnmB78Vw3R+eWLXGjpXNujlOnWvPtrhY6LxXK9azV65FXe8cOCvv3c2e1yoZovaeAUhSjPzk8LEaNRoN8Xn5dt05eWsV63Tqg0aCrK9eSPD8XUHrS3W3yE2LlLkr8eB0Jm2siitHAgCF9Co0Esuev+XpBAH19m2k2Ie151MflvVrmVcmuvrdUglwzUiiOVAzjsi0iNtRoFQTk+voY99KXRTUonbP34diYcZbbeQucPt26YWZaMBvtoR7KN86fNxuwWpUNrwLPBz9oPl+pxL1AcF0pTXs+gGq9VZmw+Mik3xMnU2vaXrUqOpEaYV3XRAyo7FgoiJK6dm069ka0w3VNiwB9JsqTlI1qqsfchuYtD36xJBSLFStMyEuPPym+6X/8R3j2WV6DOEFXojQlBKoHUSw2dHXB+vW4lQrZUommBp9H/sfNu6YJglScLAetcpUKMvp/21NoW6qVGGnPipx7DqqWwNVskvE647Or3ZA1b0JlNT2vtibdLtQr7GRyO6FVCYhasrWkq+dJuIltAVNoKJd6X5QZtruJ1TrsurT688G05CyXjUSo0rz6JvVmIgp859AQ1YF0i1Vw3bpIqI8udOY9fN+U91NhYcsWSI/8QIjSyAg8/XTstZq09kI2eli33Wbmd/as3I5docvOW2639miYm85de/fYSkk2E1V4qtVbs/L1y06eNAmLKtmq2ciOc2iXepvNaDZmD9jeHd0/6mG3wydsFz1FS1nQDWW7z2xvRSbDdCYb6ThpOgsFaDSY8iSvJKsarGYIti+eaggdHXKDltZzLkjHBiotHHLqlNyOrunKla1lEts9WLbnL1U/Yzh5pFVni0UymRRr1hivu95Ce0Eq/W57nCR5++aF60qjrlJJaCxAT+15+Ou/5vWDBzmCxPnbzVJLmKp240ChUoH9+9m+/Wc5ftzkHNgRghpfD1cXpqT0S4UcLbGtXrVVq1q93prr2m5ocl3j6bahXgw7VFb1eqVvNs3v1Dhbz4s9LmqouhavnX0eoTV1I6YPt99Oz+nTuBMTbFizhqmJCdH2ajXSw8Ny08PD3PlAidHRNC+8IN/TrrDNh4VY11fDcMvlqJnbmyfgscc5c/QoJxD5wkP2TKlk9oOuq23Q02ehRbeCwBig8nmhq3byrxoF1cDY6U7C8IjxDttlvvUh2hvOju9pNmk20/E9WUX3LvuYsmTPg/KOHlKaMGMbnmyoAjFTbeVisVVAUOajxsWREdFk1Jpkw+4RpbF0qvHYRimVN3yfaoUZFYtTp8yz0CnYeXid3jTUxukq9LR49Weajq6X3preth36ZxuabwzLh18sCcVi5UrY1jctT/VARfys+/Zxol7nVYQhNJBD72N6VWwolaTkhueRPX9ehCfNVtZ2z+Uy2/r7KZc3xHtZN6mtQKiwrcnUdsiQ7al4+9uhu2talAqVTqI32+FQ+tIDrwzE9pLYBmDXNR4KmzDYh2fNGpMTaxMRlWnXrWuNsezuNvfUrjCplddWalauFGG+XI4SvSojl2dXa8lCDfeJusXyjncYC4iW3IgmMjh4P8eOGRej3k/Oy8TvseNuVbnINV6La4szPExw8CDjSAiUi4TB9UZ7gi1b6F4n/SO8Uidr10p4zerVRgew19S28iiTbjSMnHzxounqHBtwNG5CqZ1qJGAsNcqJbKhp8s03W6suRa8ppOKFhrXN5rpVT44+O1svyWRgqn8DabV42RJLd7dUEiiVmC72GmW1blUIzKfJeLl4rTa3ZzvaUoua8uyNozkVrhuX09SX8g/VDWyPhS3s21bfFsuvHRtohZRlMunYo2Rb62xBQNdu9WoT2mjz7hvH8mAUSwnZrMisAwOQHX8NKMKXv0zwjW/wIhL+VMd4KgaQfIDJapVsVxdTY2NC0E+dou+DRg5S+tzdbfiDVi2D2Y27GzfK7xcvmhCo/n7o9c5ELZAD0oUCvi85XENDkkOotEaV70zG5M/NJMzo3gZzdjR8qliUz/q+EYrc/g345Q1MTEhzvaNHDS1Um8BbKRft/MwW6EZHYdt99xlrTqXChscfh3KZ9HPPxUanAPBeeknisIAPPfAA9XprQ79iERgdp6eYoVTKXvmmrhFr15qkfN+HO/umpLHFvn3wxS/yIyQiwkV4iYvxWGjEkLI2DbHR0CjXNWui61ooyForCfa8qLdRVO+2U03ilYoRsu0HPlMcnCoD0YCum22RUZQ0qvFf5Q4VlIMgamKn4yjRnWmj5fNmU7dfj6w9k800rgfpZjPmKelyWW7i1KnLCWx7oqd2GgYjXxQK/KCSwvNy1EeF7SsPUbapVb0uXDAygxbKieWWkTrUaqSAtWt7Lp8H8tn+fhPSZq+jLrWGsV2tAn51WB78YkkoFjQakqQdlRFl/37Gjx6lAvGhLyKCpCbf+XffDR/5iCgWvi+UwPelQ7eq8M88I7utWiXd3c3W7duhmGfKzcYC2aVLxsXrecb9rdYHJXzSrO+c1MrTmqxKbd72Nti4kc5dPpl8JyCfSR34Z3KlEgwUIAh4bVwIpt0ozw6xsctjqvBnb2p9r1qdXFcs85WKsZioMKY1u/U79G9gPI62dU7HKZejmE91W/o+9PdzpiEW9ZxaFapVOXn2zR07BseOcaJWI3/wIOlNm+DAAXoeHqdnaIjJ7T2xnFooAKP12OqxrVxk2k1HIS/j8G+jsie+/W2mh4c5AVSR8AYXqe7SGe0FtmyRCT33HCDlhruLRSAdV0/RW7SFXZtpasjb2rVx9AC1msRyajz0tt2+3NvYmGlraudRjIyYWDVddI3vUuuO55nkiAsX4MIF0s1JMplsvA/BNMizlS2A7lXnYKRKuXxnS6jU+LjshW57w6xcKQyiuxtuv53JfC91i9E0GiZ6y/eFeB8/Hq3PYI47h4aMBmB3dbeVF8+L27Ce6uihelDqxB84YBxbelxUodSPjY+3xrGqwLJ2rXFr55qvw6Fhc9O1mhwU35fmaBlg3wF6dK8WfLq7s7GApQqj9gxQYW5urKLLxwK1lJDJwHsGp8To8Nxz0jH7a19rUSp8hGf0A71btsDu3WT37RNP3diYVBpsNEjl8/zUjh2cCHItRR90HDuEciaFX8/gqlVy1Pr7RXHIZSahWmuJf7Ut/5p0bdXbiPfrbEqvJlzruGo4XrnS0A0Vis6elTNnF8UolWTvKw3Wz14JShtsHpHPR4pT5nUYrshFNcsHgfyxWJQmrcPDeJs2yRccOSJ9LTIZfvqnP8wrrwgZVW9+b3Qo585CbKAeg97ClHTc/s53YO9eRut16kSFSKKXt307nj8JgO9nY8+Skj4wPEPpi9JTJZcqR+TzkBp9zRTAsI1RJ0/KJrAJuS76TInVav3MZAgiBdH2ctnVLteuNU1AdV+vXQvd20smWUQfbvsY5bIIPBamSdEsSqhX0DApE5tLxTjyd3OxaErVtitHukA6TzXSWfcw1UzFiq+d06PsFEwkhir+GnGhRlfGGy3xr2sKrRU2tTpUimkKhVR8q3prai87edJEjMyk510flg+/WBqKxblz8NWvQqVC8/BhRhEGUUXiHgtE3bSRg5963/vggQdgzx7O5TdTr0PvJ6KDYHkrmrUa7mOPmSyxwUEolUiXy6S1vp3vsWZNinxe3qKE2fYU9PVFXVAPVcQUcfFiq3l148bYnaeMKRVMtlKcZhPXzcYeByVAFy8aT6C+XS2wKoTZ3oZ2N7bGeQJx/OrGjUamBfP5tWvNIfN9mVOaqVbL9NMjJhmlrw/6+nixkqZaFSK2c+c9vPEGlIZ6Sfe9Lkm6vi8SadTpLFOrSY+LY8dIXbokTGflSrLvgkKhxwjBykGUc3tpUxu7UoFvf5tGFP86Hr1ySH5NgagR4i//sgm2PnJEvi/qOt1dKtF1dw8XL5owNLVc2+5VXUcNpdG4Z7X+xOFZel9ak1cpnnJ4u7KFeiRsRqIbSjWFKJh7OpONGdaqVSbRXRmFHXHE+DgcO4bv39mSeNrRIQL9usEe0sW68ShFwcTTpc0cPmhyTnQvKX/RShga4VarQXd3Sp5RR0drKJQeEjuecHycVSXjdVHHjm1Z1cdsh/3Za6zM304FYbxp1lAXQpmu3pOaaKP7687n4Y5sSyib7WDRn3purh/Lh1EsKUxMSN+BffvEePTpT3OiVotDoIoInxgA8nffDQ89BHv2xG6CzBe+IDRDBd3xcXr6++mJzNrnGqkWD6ZarmdSRj3PhM309UU5YU/9ndBDpRHvfCds2UJhVw/NZtSxeN8+PrR7JzQavFbsjM/LhQsm1Wkm2AU+bAVI88LWrZPPv/KKKNOqb588aZJ79diqF/RKyGQuzxHwPOj1z4niFFkAzuS3cukScvby+dYkkUuX4OmnGT12jMLBg7iHD9P9XwK6d+7kRGlDbNRhRIjF1nKZuRRNuroQb3a1Cl99Dr7+dab27mUEKVd+BjFaFoBioSCK0XPPQSZDZ7lMM9/T4umxaZtN8rWcdT7ful+27fTkj2qM0goBP/whcYy2bemz+zgolIhG9NfzcnheqzJhh492rzhD1905XnrJkO3TpyX/Mq3Cve/Dbbe1lmJ1XSiVmPR7yLblA9hhQiMj+nuKl1+WvbZnz1Z63hUNNFP7dDv+VOn1+vVQLHIm08OhffGyxw4dnbbKLiMjrcYpLUBVLkPqyItGedOQWd8nW/CBtpKzQUDqQGSQKhRYuzYXV0fWalKqPI2OQm/vVW21t8Dy4RdLQ7FoNOCpp6jX67Fl+nUk5jGPxMduBYq+Lz7wXbtgzx5eczdTORBtvv5OKfl5223CMEZGOAG4R4/iHj0qsZOHD8O99wqDKZdjH2zW98m6TXw/HUdSKVG4dCnatLUT8gclDHqi9STn80y7aVDDwywBua5rYj1B9r8ae9TFp1ElKgyPjRmBU7/ajg6xG6WtWmUSzUslSQyeaqak8U7kyZkiLd09Dw2LhH/8uBxIdctCS9vYZjMb6x4vvSRjnz0LmzZtIKgiFTHUul2t4j/1lCFJ9bo8j4EB2LhRGtGR5dQp6O7zW+LHGg3obDZFcKjV4KWX4jr0IJu1GL3ymYzshT17DHHWBLd6PXZBpZCSdnbuhFqT2qst6aPUeE07v8bzkEQzNRO1B7TargXVTO3yYVoFav16md+mTTEj0QQ79WDp9rINV7HVJYpju3CylcG5rvEMbC2VjLIYBXtrNY3z502CuuaRqMxuh2JpiAWZjLl35aBxEo4FyyKr3j+7PLPqH+0fs/OdbMuolgTOaakPW2HT+olqIbVD9aKDqxYs3289U9bt8uMfMwdYHoxiSeHMGfi93+PM4cNUgbuaTZ7HKBX9wJ1A5qMfhV/4Bfj4x/nucynKu7bi+5Ct1+HJJ8VIVK3KJhkcFBo1OEhnfz8UCuSKHoVCKqavs4UnafffwUFIV38Uh/zEG3/LFigUYpKRbtRNCbggwHU78X1TieriRZFt27FunZzfYtE089MwEe04r8q7XRShr08+u2WL+S6TD3Dlpc7nxfGQbbwuX/rjY3ITKkXv2MG5wlaeeFzGGxq6k6AK7/nYxzjTSEsVo8gY4z36qFR0PHCA1Ne/Dq5Lz65dnLrQSa0GvXbs/ly7LdTg+PjjTO7dSxXJ3ZwG+hD5wr/7bnjwQXmgBw/GQf25gQHeM9hHJpOODTFqlIFWr4Xetlaz833iUF401yQS3lsEDVtLtH8qbCLp+zSise2czZavqNVIBQGrV/fEXuggkL1zZ3+/Eey3bGktxeq6TPXfxaEDcP+OVmH80CFDx19+2Sil+v3VKvSUfGOIstFu+tfyWtFmzQzIZfUc2NX9bGOULoXKON3dss5xQ1o7Ht22oGUyl5ecVc0Q6C7Aqv4cx47JR7Xk9NxjefCLJaNYnAhDTkDsrTiHMInNSDOj/JYtQuF+8ifh/e/nB+MbOHTIuKyU8GfXrIEgYDpqoHYGqQSSBXqqVTbbcfL2jq3XSSFCsro0IfI+VH5gzLgq7dumgujQX6ZL2KbZIKCjwzSHW7XKWJJuu621bGaxaIQgTUy13fK259SOuFG6s7kUJRlHikN61Soz50JBhPsgEGudmgYOHpQBtBTSli0iBA8M4Lq52AigFoN63XQZbzZh6+BgvBapLVtIRRbz6SAgdfiwCRPK5+lY2cv4OJwL0pJgGK1Rs0mLH/TMpUsoecoiOTZbgWxfn4TA7dgBe/Yw2UyTrb16Wc6Lfleh3BM7DTT8zfeFeNk95HQdNSQKhHBp6dt40TUjXDeJSgWalamE7bbbTD1FNePr3tFEOOBUJARomMNMoTrxM/flIb852qpYgOH1mUyW3r4+uVAscmI8HZfos3Pl9Jmq3qPTazYt3Skfbaq1a80hs9fZ8+JSMTptVYLXrJE5qaKhCaR2fLf+TX8qY9Zu6W4+S6fWD1SlxvelBGEdPC9LWhUPyxTrNs0l7YlhKzbNpmz5G0PIcqnysaRQr3NifJwKEhp5F/ADYBDxUvQUCvCxj8EnPsGJwl08+zXjPHj3u6NiD1EJ8xOXLpEeG6Owdy/lp58WT/iuXaJklMukg4D+/p4Wj1c71Gqarb1quskpMdF4mHze7D+1AEWHsBkYYWnjRvl4e9NjMMmmSmoLBRlODQVgjAy33UZc2GBoSJOFh43loBoRgnw/UZbajMgGZ8SMfOiQ0PD9+02X1r4+aDTofDiP50kO45EjSk/TUSTmBno/8Qn4/vfxv/99UzHv4EG5sVqNi5lOKhXo3VVkGlMdb6beA9eDuGJeEMDJk0wiEZRaqn5rVxfs3i3PfvdumcATT8iHNXlidJS+vs0xHQNJJdDKg7WaMeZpvY63vz0yID4XtHqpwbxZQ460nJFatXTvKPr6YmPKiSB3WS60TdfqdciVSkxGBjx9bxDI8/G8HJu1THy0qXTdm015T7UqioX+rdkUPbyrS8Y6fVr4ospKyk/IZKzGGRbs0rn6f+WHrks2I6FJpZIJ5dLCNOo5BJMAr0u5YoVM47XRFL0DA2acKJT71IVOVrnQae2laVLSO6O/P+Yn024aGqY0sRZU03m9+upVbbW3wPLhF04Yhot9D7zTccLfx4S71JGQlzKiVJT6+uDXfg127WKyfGdM5yoVE86waZPQqYceguzT34I/+iNGolK12kitEH1nyfeN5yLKzYg1lN27OeNukGo0zSnZVY88Ynydx46ZCjsgu3BoKPaATJOSMKjRUQk0V6n0wgW4916mvFwcKjVJlueeE5rheWZOfX3GIrJ+vQlfUTlOD5oKxWpFUQv74GDUsO3Ivxj/pWZPK9EKAvjmN6PkwgqvT0yQQZQwz/fhfe+DT32KV0s/xb59wpPUuKcJaprU7vtyzz2cEIL8u78LlQp1REGcBkpr1sg67dgha1y+B8+z+j9UKkJc9+6V+Nf9+/luEBBE95RGtOD3dHXJQ961C3bs4B8O5QgCcVykvvgnxhSv4WmeF9eVO9fMxs2w1KKnwrn2f9Myt9rnxy5h1zP+osktOX7cSPuq1dVqshArVxqurtqeao2avKElY5pNvvf9dJzYHgTy9Rs3GgtYf79MIZOB1HPfhUOHePWB3+bAAXMrtZrhU+WyMLWuLvPclOnrs9OY7BdeaBXo1dFRLsu4O3fCZvc1+SKl8nZFLC2DMzTE8+O9cQGvQ4dEuHnjDbH+aJMp25ikMo7qWOrg0aQ6faVrrxmGrCF7ymHUVKb3YoXXadx8tMUZHjYM6o034NFHnX8Nw3Dw6qjU5XCcXAi7ruOTX7uhcZc7Bn/iJ8JD+/ebC2pt0d8j2EJqO2Khtd0adIVMzZm6914LrvR5/duVBOsrzedqMFeCejuu5r5axr7Cs5qve7xsbBvRfVytUnOtz2Gu53Qt632tz2a2NbiWOV/PfG90b1/vuFd7H/fcM8ihQ4ecG/nu5cQv5s1j4TjObuCPgQ7gS2EYfn62905iao4HiP1EE6mKIEpAZEHSUCU7mU4F7JERCbvdtfvDpCcmKJ88SbNSAUS5GEeE3Ol6neLevaQ1FsLzjFrveeTKZThSN3+zGxqoZKaa8fr1sQDZsin1feredV2mvBxnz4rMmXVdgoaJycy6UxQK6bhDp5281J5wqvMOAhHaNJw+nzflB6tV2LHjHrLlMyYmXn9OTMjvJ09CtcrkxES87mn1DO3ezal3/hT7/k4EUl1zjW+0I4IaDfl7vr9HKkPcey90deFXKrhjY1IqeGJCyg6CSbwlWtsjR0QJGx0VpeKZZ1o6a/uYBlfs2BErhGfIxXJmimlTAtU2vWs3xGaTznyecrmnxeujVh+NTNDQMk2mV+UjzqULAlMqRjUBZZCqpUS5Ey17AS53O0V+3q6uXGxxBBmrVBLhV60zcanbKORrc2GS0aKpnqKebYU2zB4dbX1pkrad/G+vg90Ey/NkH23eWTStY6G1XKG6HXyfeqS0nTzZ2hk5CIx3yE6r0byfYjEuWsW6daIcxXO28ydUkbATjXQD2uVyot97ymXyfWaP2A3z3pwTj/TyiZmdT1wLrwC48Pzz/M3KlYwiNOKRixf5s5UrGQTuKpXgN34DHnqIA6O9PPusKM8aFTg4CJ/8JPDpT3PmD/+Q55HiIFoIYlsmI96OHTtkQ46NxQ3mggCymRluSK1AX/qS7M/Dh1sNG3v2QLlMs9BLmqbRvDVkcedOGnTSSYPA7eTpp+Uj7YrIvn1CKgcHRUnWAgWqUyudUgu62jHe/W6xwOaqw6YIgxKD3bujBMJZMDIi+Y/79kGlwvjYGGnEe5z6uZ+DRx7h4KW7+Nu/lXtTfb+vz1jvh4Yg/dhX4XOfo1mpxCFIpa4umegnPkG9/36xHWgBlwceuNIWuDbUapKT85WvMDo8TCW6nEHCrIsf/Sj8yq/QfP/P8sQTYtjYvPeLJh5Va+FH1h21sYyOGgPVyIixYalRKkrppKc2LLFDmvAQBPLG0VFjiLr9duOtUB5iW/2r1dgbPlJNx0WVtLEbyP6OovhIP7cPXJcD7v2xs0mdTIOD8nLdqLJXnxmm0ZDHPTICf/B75nqzCb/5m2LAzWRk+2qFQjXeDAyIzW+bNyr8/MEHzRd8+csyh898Rr7gc58TJlUqwY4dHAm2cuCAOMfscL72imxBICJXFF3IHXdIQcrubuhe1zQlutTFqO6j9tC6ZtPEdummdV1GxnNx1NzwsCkyMjdYPvxiXhQLx3E6gD8B3o9ENx10HOdbYRj+YKb3v4mUk51GDnseE0vvbt8up6WvjxP1bEwXx8aMJRRMXNzoqByKbdu3w913k69UGMc0vzmHeEQ8YMMrr5hyNerC1jKbKl2tXCmMYtOmVn+jUg8N5tYYPiUcKvhYWkCaKbq60qQa56A2Ti6fZ2Cgk+zoj6Bep3/wnpb61+2GHRUybQFyxQqTbGy7ZTs6okobRd9IjSopR/fD+fNM1+tMYlJDWL9eqlz19cWWbm2yp19jJ93aiblSdaNg+l0cOwZjY0xFa54dG8M7eFAo4B13wPbtxuKsbvojR2KvlfYtUUa2AeKE8qlCL9UjMsSKFXCukaJTG3VoWY5Ll0xMTXSjneUM3d25eB76qNSppLCTjeMwJTsBw04c1sLuHR3GhaPmdg2FiPbNuSBNZ6nEZFNKzGa8LEHNNLPWWgCbNpmCIb6PGUs1zmqVQmFbfFll7rEx477VQixamUlDeu2yq5pjorGsOoSm21QqUCik2Nbfb0IBV640FbEKBbj9ds7RGY9x+rScRdsroYqThj2p8qalArUngYYvxVEAdna3FbbYEqtoayv68CYmwPNI55v0FPIEQSpOH5ol/emmgeM4HwMeAd4B3BOG4aFZ3jejwO44Tg74K0SuqgK/GIbh2Xm/8Znv8Zp4BcB5JOm2QWRsQEJmSyCe1h07mMz3cmy/0EPbiDAyIk7VD33yk+RqNfoefZTJ6LtGAIKAvq98hVSjIXynVouFk6xKbTbUMKIKsOZUqLascVJWyGd8bqJ9O+l20qhDp+/GKUOp0ddM7FOEQsFU6VRhTj2ANup1oYu2l/D4cXjve++iu1QyWbF68K8EtTZUqwQRLc+vWCEKyac+xYvuXex7ylQhVJlY6Ymmvm3u64P3vQ+3q4sNzz7LODA1Nkb66afhjjvE0OQWTEL9nj1X9B5dEyoVya0YHo77IOWQCpNF3xdD2t13x8I3YBrvuK7QO+282WzS13dX/BzUxqJFKjSCyc5/wXUvN0YpQ1WGr9AHOlOAf/TZfD4XP1cli8on8vmoIEvkXe574P7Y0WwXZdLf2xWLZlOe5ejo5V6006eFjvu+MUhpKV670nzfnl5S+ZHWe9ekO4Udv+771Cum7LLrthb9sO1xvm8889rksFxGckZr4ya217YiReO0KOp2YowuCLB1YIB83lTvXL36rY/IUsZi8Yp5USyAe4CRMAxfjW7uMeAjSCjsZZhGBFsXiX/NI4fe1xibchkKBeoVQ7BUoLZzOt980ygX23aKap5/7DH8S5c4hzCPqeg1CTQuXcLTDaimB93Zttm2Xjex8rrLNZBcr9lKh/6cIVA+BS1SXNaLxp6YIFU7QaHQE4d1rl4tAq2ex/b56hA6vN3F1fPEcux5KUmA1Tfa2kFkhk9Fa59esUIsJ1Ezi+OPGwMxtCo47bkeKpSS94UDjo9DVxeZahUXk4CdqddxNeB/yxbj7ogKuU+PjdGAlhAoD7EoppSaFIuxZd0WkuMsSy2TpFAOAFCvs6aQa0kanpi4PIfO/mhLvoGdRKcPQrPxlepquFlE9ScD9WSlo7yBdGzBV+iz1U60li4i92ZnVUfmnPzAtnhqui80AVuVA9UF7Oeo0FwHa3u28L2xMWOZK5dzpAtYwbSYuryFQjyGTattr6LuGbu6TLNpqkBt3Ghktk5vulX61w2uWoeasexEPfv96lXSRXBdCoVcvKbqnbpxLJoF6gjw88D/nO0NbyGwfwb4ThiGn3cc5zPR/39n/m97RlwTrwDi7sgekUcbCZnNbd8uQuLgIMOHTEsjJe0gW6VSgR07ttL53vdSfPRRfoTwAzU6jQMbjhwhDixfs8ZsGEuxmCZFqlaTkNJGA559VuinasxKDyL6m3anoRG0lnaq18kGZ8h6LgwfIZfPc39/Hr7+BPzqr7bMe5v3GpldvS2Cu9IruzhCEJhEb9uq/cYb0F2MeMDEhEiFdqWemaD0eWyspZCGmsdHDkgFKvv8X7hgyKQewc1DZVN/OlrvE4B37Bj5J58UArBnj1j2n3nmyvd0rahWYf9+TiDPOIVlqLrvPhga4rVgA8PDIhiXSrBZFUG1Nl28GG+krO9TLm+OH+GlS63VUy0SLWteKIiSqQSxXpdBurpi2UZrmp9rZnHz4mUtZKKkZGCysDk2DGn1MI3IXr/etEjKZqZhvC7E+/hxcsEJyuWeOBz05EnTBFt14Q/sMksVBCbHXIVw+ZliYsLoumqQUjuXVlk8cEDu8QO7drY+gx07WvMsNIloYIATzQ1ab+ey7WilKMV6yDveIR/P58Wml3anmXazpCK+O+11SqVKZYzRmLaSlLK9GerhiIycYvDdEFcDXrECnn/+qnbaW2BR+MWi8Ir5UixuA6wmB4wC77bf4DjOrwO/DrAWo1R0IsyiZ8UKeNe74riIaUxn5mLRyMntIRZaSvT5I2nu2rULdu2itHcvTaTS1Llo/CYRkTx71oStREmogBFY8nkRgPv7W2ti6k3YllRbuGmvnOP7nGtmuTABa9ZsIOt5nGuKZtxpJZ+ejVZNqxVqiJNtmdIh229VdRw7LOb0aSiXO9k6MCCUp1431pNNm0jV6+RqNTyQwx+t2fe+n44NW3YMvo6vsnOhYJKhMxnkH238EAS4QUDh8GECiMhTBPUK6SvSTKai96WjvZBBQqH8NWskYVvXKlK8NF8g50+3ajoqtetCzWD9sh+XvZZvCatJW8tLtau20KeML885xTS+nyLLJJmu6FowSbGYbVnnixfF6uR5aeNFadfqLlyIt6IavZpNk6ege8T3ze3q9rUrJWtTRVsZ0GTuNWtMxSjXpdXFY2tFTVMRSum4nfhmw653cOmS8WDYtfhbQq3UYqoMQE1ZtnZrazD6fNqekb0F2rv93hgWPhkvDMOXARzniiG/VxLYPwLsjN73f4B9LJ5i8Za8Ai7nF1mELmyN/t7T1SUxN0Xph+P74gFT+48aW1TwO3AAPvDxj8M//RPbHn0UFwmrAjFqMDYmh8mu+dyGFNPmkGmnLeUTWrbG1qIVdvkz3+cMOYIG9AwMGJ6gNNSG7zP2stxapWLOveaGaWKtvtRIEQTCS/btg1pflvt37ZIPHTv21mWhNL6nr48Nw8OyHg8+CA8/zPeO9aD6l3YaV3lNo4VBBF9cV9bGdcmcPEnpwAEm7XFUsDt92riZ5uqQNho0gyBWKECUCk/jgiIlQivHlUrAgTbC1cZDbFbT/ufLblutnvaHtBmVal4R8ff8bMwn7O/JMkmplCXVnML3xTC1bl1raHILrbWy+aOKrnFan+a02cYmteZ3dMg6dHRcHorX1SU/VSyyw5N8v7X30mXPr907ZllHO1a22mzboXY8rdKrfGzt2qhZca0mikLEN2KlQm/M+tKWPAw76iDqKaVuJzXUzvg8bwgLyy8Wi1fMS/J25H75mTAMfzX6/39A3DD/eZb3jyEe7vE5v5mrRz4Zf1HHXwr3kIy/vMZ/WxiGXdf7YcdxnkDu+VqRASwuy5+FYfhn1zH+PuDTM7m3Hcd5ENjdRoPfHYbhpxzHqYdh6FvvPRuG4bprHX8ucK28InrPUuAXc4XFPnNziWQuSxO3ylwWcx43xCtgcfnFQvOK+fJYjAKbrP8XEc/njAjDsMtxnEOLmfmejL+44y+Fe0jGX97jXyvCMNw9X9/tOM7TSCG7dnw2DMO/vZqvmOHa4pcAvBzXxCtgafCLucKtMg9I5rJUcavM5Wafx3zxi6XIK+ZLsTgIbHEc53bgOPAQ8O/maawECRIkuKUQhuGuG/yKKwnspxzH2RiG4UnHcTYiUaKLhYRXJEiQIMF1YinyihsvHjwDwjBsAp8CngReBv5fGIYvzcdYCRIkSJDgMsQCu+M4aURg/1b0t28BvxT9/kvA1Vi15gUJr0iQIEGCRcWc84p5USwAwjD8+zAMt4ZheEcYhv/9Kj5yzTHGc4xk/MXHYt9DMv7yHv+mgOM4H3UcZxS4F/g7x3GejK73OI7z9/CWAvvngfc7jnMUqQTy+YWeg43r4BVw6+yVW2UekMxlqeJWmcutMo8Fw2LxiiXReTtBggQJEiRIkCBBggQ3N+bNY5EgQYIECRIkSJAgQYLlg0SxSJAgQYIECRIkSJAgwQ1j0RULx3F2O47zQ8dxRqLOfvM93ibHcZ5xHOdlx3FechznN6PrjziOc9xxnOHo9aF5vo+q4ziHo7EORddyjuM85TjO0ejnvNSWdxzn7dY8hx3HOec4zm/N5xo4jvPnjuO87jjOEevarPN1HOe/Rnvih47j/Mw8jf+7juNUHMd50XGcbziO40fXS47jXLDW4U/nafxZ13uB5v9X1thVx3GGo+vzMf/Zzt2C7YEENz8Wml/MNRaT7t8oFpuGzxUWmxbPJW4lunqFudyUz2ZZIwzDRXsBHcArwGak2fILwLZ5HnMjcFf0+xrgR8A24BGkgchCzb0K5Nuu/Q/gM9HvnwG+sEDPoAa8bT7XALgfuAs48lbzjZ7HC8BK4PZoj3TMw/gfANzo9y9Y45fs983j/Gdc74Waf9vffx/4b/M4/9nO3YLtgeR1c78Wg1/MwxyWBN2/zntfVBo+z/NYMFo8x3O5ZejqFeZyUz6b5fxabI9F3Eo8DMMpQFuJzxvCMDwZhuHz0e8TSBb8bfM55jXgI0jbdKKfDyzAmD8NvBKG4b/N5yBhGH4XONN2ebb5fgR4LAzDi2EY/hgYQfbKnI4fhuE/hFIRAeAAUr95XjDL/GfDgsxf4TiOA/wi8OiNjPEW48927hZsDyS46bHg/GKBsBh0/5qx2DR8rrDYtHgucSvR1euQzZbsXJY7FluxuA04Zv1/lAUU8h3HKQHvAr4XXfpUFBbz5wvgjg6Bf3Ac518dx/n16Fp3GIYnQQ4ZsGGe7wGkZrEtUC7kGsw238XYF/8R2Gv9/3bHcb7vOM4/Oo5z3zyOO9N6L/T87wNOhWF41Lo2b/NvO3dLaQ8kWNq4FfbEUqH7c4Vb6fwuBVp83biV6OpVymY3xVyWIxZbsZjzVuJXPbDjeMBfA78VhuE54IvAHcAAcBIJDZlPvDcMw7uADwL/yXGc++d5vMvgSDOUDwNfiy4t9BrMhgXdF47jfBZoAn8ZXToJ9IZh+C7gt4H/6zhO5zwMPdt6L/S5+DityuW8zX+GczfrW2e4ltTGXt64FfbEotP9BcLN9qyWCi2+LtxKdPUaZLMlP5flisVWLK7USnze4DjOCmTj/mUYhn8DEIbhqTAM3wzDcBr4X8yzSy0MwxPRz9eBb0TjnXKkbTrONbRPvwF8EHg+DMNT0b0s6Bow+3wXbF84jvNLwB7g34ehBG5GrtXT0e//isRubp3rsa+w3gs5fxf4eeCvrPual/nPdO5YAnsgwU2Dm35PLBG6P5e4Jc7vUqDF14tbia5eo2y2pOeynLHYisWVWonPC6J48v8NvByG4R9Y1zdab/socKT9s3N4D6sdx1mjvyNJxEe4zvbpN4AWS/VCrkGE2eb7LeAhx3FWOo5zO7AF+Je5HtxxnN3A7wAfDsNw0rre5ThOR/T75mj8V+dh/NnWe0HmH2EXUAnDcNS6rzmf/2znjkXeAwluKiw4v5hLLCG6P5e4Jc7vEqHF14xbia5eh2y2ZOey7LFYWeP6Aj6EZP+/Anx2AcbbgbjLXgSGo9eHgK8Ah6Pr3wI2zuM9bEaqGbwAvKTzBtYD3wGORj9z83gPWeA0sNa6Nm9rgCgwJ4FLiKXhV640X+Cz0Z74IfDBeRp/BInR1H3wp9F7fyF6Li8AzwM/N0/jz7reCzH/6PqXgU+2vXc+5j/buVuwPZC8bv7XQvOLOb73Raf7N3j/i0rD53keC0aL53gutwxdvcJcbspns5xfTvRwEiRIkCBBggQJEiRIkOC6sdihUAkSJEiQIEGCBAkSJLgFkCgWCRIkSJAgQYIECRIkuGEkikWCBAkSJEiQIEGCBAluGIlikSBBggQJEiRIkCBBghtGolgkSJAgQYIECRIkSJDghpEoFgkSJEiQIEGCBAkSJLhhJIpFggQJEiRIkCBBggQJbhj/H3odu+JobT7zAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyIAAAFRCAYAAACIZBkYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACpSUlEQVR4nOzdf3xUxbn48c/DiZAqSqpRokRIBTQVbkklAhWqqFDBm1ZUqtCLQgV/o6BSxV5qj0orVqrY5gpV9IuWKlpU1FT8ERUpWqTBGy3YKGCDBg0avEHBBsgy3z/mbNhsdpPd7G52s/u8X6/z2uycX7MnyZmdMzPPiDEGpZRSSimllOpIXZKdAaWUUkoppVTm0YqIUkoppZRSqsNpRUQppZRSSinV4bQiopRSSimllOpwWhFRSimllFJKdTitiCillFJKKaU6nFZElFJKKdUpiEieiDwsIjUi4hMRIyI5yc5XoohIgfcZl0SxzxRvnylB6dUiUh3nLCoVE62IZAjvphS47BGRz0XkbRFZLCJjRcRp4xiHiMhMEXlVRD4Tkb0iUi8i60TkVyJyXDz2E5ElAfm8tZX8TA7YblW7LoxSKuXp/UsFWAJcBLwOzAVuBRpEZJWI6MRoSnUyWcnOgOpw/oLRAXKAAdib+lSgQkT+yxjzQfBOIjIMWA70AmqA54FPgEOA7wI3AT8TkWHGmLdj3c/TCFwiIrcZY3whPsul3jb6d6xUZtD7VwYTka7AaKDcGPNfQeuSk6nO5cxkZ0CpYHoDzDDGGDc4TUR6Ar8HfgyUi0ixMeazgPWFwItAd2A28FtjTGPQMb4F3AkcFut+AcqAccAY4C9B+30bGA48DZzb9idXSnV2ev/KeHnYnhyfJDsjnZExZkuy86BUC8YYXTJgAYz9dYdd3wV4zdtuQdC6l730X0dwnm5x2G+Jt9944GtgRYjt7/a2Odt7XRXltVgF9AQeArYDu4E3ge972xwC3AVsBfYAG4EfhzhWD+BnwKvYJ6Z7gc+BZ4FhbZz/GOCPwGfAv4H1wE+S/beiiy6ptuj9q8W1SIv7F3A6cD/wHvCld5wNwC+B7KBtq/1/B0HLkjDpLa4rkA+UAh9612WH91lPDpE31zvGSOAnwFvALqA6gs81GLgXeAf4AmgANgG/Bb4ZZp9Dvb+LGm/7KuB64Dj/5wyxTz/gz8D/BfwN/CcwxdtnSohrWB2U1rSt9/tYBXzl/T7+Anw7TH6PB56M9NxtXK+jgf8X8LdUCUz2rr0B3Fiub9Bn/E8vr7u9vC8H+ofYpycwH3jf27be+3kJcFw0f+e6tL5oi4gCwBizX0TmYv/xJ4rIdcYY4z3xG4X9R/9NBMfZA01PCqPeL0g99ib7ExE52hjzqXfsbsDF2D7CLbphRCgHeAN7w30MOByYALwoIt8D/uCllQEHAROBx0XkY2PM2oDjfBv4FbAae9P+P6A38CNgrIj80BjzQojzfxN7M6zH3oBzgAuAP4lIL2PMXe38XEplHL1/ddr7101AoXesvwDZ2JYiFxgpIqPMgW5tC4ACYAb2C+gKL70S+wV7CtCHA9338NIBEJGTgJew1+VF4CkgF9tqtUZEzjXGPB8ijzdgu4M9h63s9ojgc12Kbel6HSjHdiU8CVuxGCsiQ40xXwXkrRvwCnCy99n+hL2mvwBOC3UCEekP/A04AljpXYd+2OuyMoI8BisBzvH2XQSciK0onywiJxpj6gLOXYj9+zsc+3t7F1thehrbfTFiInIU9vdfgP07fBPb8nUf9vcVSlTXN8B5wFgvn6uAIuB84HQROcUY876Xp4O9z9cX+0DiOUCwf1/nYCsvH0bzOVUrkl0T0qVjFtp4ouht0w3Y5237LS/tIu/9mijP1679vH2XePuOAkZ4P98csH6Cl/Zf2Btve54oGuzNtkuIPH+BvfFkB6z7vrfu6aBj9QByQ5wjH9t94J+tnP+JoPN/yzv3XvSJiy66NC16/2p5LdLh/oX98ioh0m/3znFhUHoB4VsHVoX7G8F2Q9+MrVieFrTuGGAb8CnNW7Zc71y7ge9G+TfQB3BCpE/1jnlTUPrPvfQnw1zTFp8Z+yXdADOC0s8J+B1NCVpXTfgWkUbgzKB1d3jrbgxKf8VLvzIofWy4c7dyrR70tr8zKH0QttUqVItItNd3SkC+SoLWzfDSXwlI+6GXdk+Ic3QFDo3m70GX1heNmqWaGPtUb4f39kjv9WjvtSbKw7V3v+A8rQH+CUyTA6MRL8U+uXsyhkN/DfzMGLM/IO1R7M34m9ibe0NAPv6KvYkXBeVvpwl4UhSQXoN9alIoIr1DnN+HvVnuD9jnX8DvsE8wL2rfx1IqM+n9q/Pdv4wxHxrv212QBd7rWZEcJwL/iX26/XtjzOtBefgE2+qVR+jB3PcbY/43mpMZY7aa0AEKHsJ2eQr+XD8F9mO/8Ie6ps2ISD62leZf2K5mged+BttSEK1lxphXgtLu916HBJz7WOAMbMXuD0HnXoltoYiIF3xgIrATGwEt8FjvAI+E2q8d19fvVWNMWVBaKbAFOENE+gSt+3eIc+81oVtbVDtpRUQF8xeWJsz79h4nFouxT87OEJF+2H6sfwwsaNvhg+CbiXdj2w7UG2NCNbtuwz4pbEZEhovIEyLysRdW1HhhJK/xNukV4lgfeYVMsFXe63cj/SBKqSZ6/+pE9y8vNPLPReTvIrJTRPZ75/ZXjkKduz2+5732ERE3eOHAF+1vh9h3XbQnE5GDRGS6iKwRkS/Em+8EW9k4jIDPJSKHYlvGtpnQg8lXhUjzX981Yb6Qh9qnLRUh0j72Xr8ZkFbkvf4tqCLstyaKc54AfAN4N8yX+5DHiub6BmlRQfOun/883w3YbhswW0ReEJFrRWSwtBEiXLWPjhFRTUQkG9vnE+yARTgQnaRFAdaG9u4XyiPAr4Fp2MGXAjwQ4zF3hklvbGNds/8ZETkX++SwAduXdAu2KX8/tr/6adguI8G2hzlHrffaI8x6pVQIev8COtH9S0QOwg6SH4IdoP449ve2z9vkl2HO3R5HeK8/bmO77iHSakOkteVx7BiGD4FnvGP4xxHNpPnn8l+rtq5poPbs05b64ARjTKPXkBf4Bbytc4dLD6W9x4rm+kZyvGZ/t8aYL73Q3bdix0v5W1jqROQ+YK4xZl/Lw6j20IqICjQC+zex3RhT7aX5nxQUi0gPY0y4Qi5Ye/drwRhTJyJPY288X2KfxGxo7/Hi7HZsn+hiY8w/A1eIyB8IM9AQG5EjlDzvtd3XS6kMpfev6CXz/nUOthLysDFmStC5j8ZWROLFn59zjDHPRrlvVK1iIlKM/V2XA2cHfmEVkS7AjWHy1tY1jXWfePmyjXOHS4/LsdpxfSPJW4u/W6974lSvS+WJ2O5oVwO3YHsT/aKV86goaNcsBTT9A/+39/ZRf7rX/F6OjWbyswiO0y2W/VrxAPYpx5HE/jQxnvoB74UoxLtgvxiF01tECkKkj/Reo+qTrFQm0/tXuyXz/tXPew01ViZcBag1PoAw3Wf8kcK+347jRsv/uZ4N8dR8CLYrUhOvS9JmoJeI9A1xvJEh0vzXd0SYzxtqn3jxn/t73t9JsNb+boJVYcdhfMfrohbJsaK6vkFa/F15189/nhZ/t8baaIz5PXZcDthIaypOtCKi/OHzlmFvXh9huxEEugb75OJmEblBRFq0pIlIbxFZxoG+uLHsF8pr2Cdo53p5TRXVQH8ROcaf4D1B+SX2KUo4DnBn4I3cCxl6LbYLxdKE5FapNKP3r5hUk7z7V7X3OjIwUUSOw04SGS1/oIJQg+ufwXY7u1pEzg61s4h8zwvbGqtq73Vk0PGPAv4nzD7/D/t9LNw1bcZ7Wv8yNqrW9KDznEP7KnIRMcZ8jB2D0g+4POjcY7DR4iI91l5sN6sewJygYw3ChrkOVu29jgzavrXr63eGiJQEpU3HBjJ4zRiz1TvWwDAVbX+LytdtnEdFQbtmZRhvYB7Ym14OMAD7NKArdlDefwVHUTHGVInIWdgnV/OBGSLyCrYf9SHYMHvD8ULwxbpfKF5klWib1DvCPdgwmv8rIk9i+zcPxxbiz2HDAIbyLjAUWC8iL2FvxBdifyc3hhm0qFRG0/tX3CXz/vUctiXgehH5D+zT6N7Y+Sz+QugKRWtewY4BeUpEnsc+ad9qjPmjMWafiJyHnT/kLyLyJnbeja+BY7HzdxyHjZYW65fMv2PnoDjPO88a7BfYsdgJ8ULNCv9b7FP284G3ReRFDlzT1dhxCsGuxs4jskBEfoCdf6QftrLb2u8uHq7Gfsb7vIqdfx6R87GVvnOw44wiMRvb7elGERmKnUfkaOy8NM9jr0vgsdpzff2eA572ukpuxv4Pn40NkXxVwHajgLu941dhJ1rMD/hcOs9XPLUn5q8unW+h5Yyze7CRSdZjuwqMISB+eZhjdAeuwz7d+wxbaO30jnEHXuz+WPcjIA5/BJ+rvXH4Q25PiDjrAetWESJOPTZGeSV2kGcddrKk/yBgZt5Q58fGr1/qXZMG4G10ZnVddGmx6P2rxbUIuX1nu39hKwF/wkYo+jd2BvgbsQ9JW3xOWp9HxMG2hn3Igflkgvc/CpiHHRz/NXam9E3YAfuTgKyAbUN+/gg/1+HYCfmqvWuzxcvbweF+R9hoT3d718I/s/oNtD2z+nLsQPPd2IpJu2dWj+bvDTsR5VMhzj3L22dcFNerF/AwNlhB4Mzq471jzYzl+tJ8ZvUSL6/+2dKfBI4P2v7b3u+iwsvTHu+4y4FTov170KX1RbyLrpTqIF6YwdeNMSOTnRellIqG3r9Ua0TkT8BPgELjzVQew7F+hZ3scYwx5sUYjjMF2/3tp8aYJbHkScWfjhFRSimllFIREZEuItIiMpeInIntTvZeNJWQwDFKAWn/gR0f8wXtm6BRdRJaEVFKqRQjIqeKyLMisk3sBHNTItjnP0TkdRH5t7ffLd7A48BtThOR9SLSICIfisgVCfsQSql01RX4WEReEpHficjd3riWl7HBCq6O8ngVIrJaRO4TkbtEZAW2q9/BwLUmtsk/015nLy+0IqKUUqmnO7Yf+wxsn+lWichh2C8B27EDb6/Fhp29PmCbb2EHf76JnUH4DuD3InJ+vDOvlEpr+7BBDnphx3JcA3wH+DPwPWPMqiiP9wfgUGAidjzWCGxggTONMX+KU57TWacuL3SMiFJKpTAR2QVMb61vs4hciY3c1NMY828vbQ5wJZBvjDEicidwnjGmf8B+i4EBxpi2ws8qpZRKcZ2xvEiJ8L25ubmmoKAg2dlQGWbX+vVN07r6HfONb8CJrYXPV53VjvXr2RPw/lOoM8Yc2d7j9RMx7Ynz+amNDBTY1eB+Y8z97c2H53vAX/2FiudF7MzZBcC/vG1eCtrvRWCyiBxkWk4OlpK0vFBKdaTq6mrq6uqk7S3D0/IivJSoiBQUFFCxbl2ys6EyQVkZr55zDmADn9cDucD0W2+160tKoKgoOXnLQI2Ow2ps3Mpiny8xJ6mu5tW+fVlH87v5rbA1lsN+TdBsXhFyocEYUxzLuUPIA2qC0rYHrPuX91oeYpss7L/Bp3HOU0JoeaGSpq4Ot2fPpreHAdcn6r6lksp1DkxYXzZ4cMzH0/IivJSoiCjVYWprWR2U1BVgzpwQG6uEGjaMZ7EVwoOB4sJCmz57NkyZEp9zlJXBhRe2+J3Hg5Byg+yC+9lKiPRItlFKBdq1C7dHj6a33YFZWgHpUIsdhxrAXb8+4Q8LAysh8aLlRXgpdl2USqDqaqioaHqbh50pKtrpe1V8rPj739ns/fw14G7ahLtpE/z3f8fnBBs2wOWX4zY0D7iSjf29x0OXdiwJUov9kw50lPe6vY1tGoEdicuaUp1cY2Oyc5BxljoOrFrVIt0dPNhWFDZsSMh5E1EJ8dPyIjRtEVEZY2/fvvw64P0V110H8+cnLT+ZbpzPx7uOw1MJOn7FoEGUhUgfApzh8zE5xgInxZ5w/Q24U0SyA0JdjgY+wc4I7N9mXNB+o4GKzjI+RKkOV1+Pe8QRgG25vVFbQjrEpCRc51CVENfno2zIkJiPreVFeCl0XZSKs5kzuc9xmpYFsRxr5UoWOY5tVVFx852tW3HfeQf3ySeb0ubX1rIulkpCYyNLHafFKDsA96CDOGPLlvYfO0iinnCJSHcRKRKRIm+33t773t76O0TklYBdHsU2LC0RkYEich4wG7jbHAiNuAjIF5EFIvJtEZkGTAG0Nq5UoIYGXMexi1cJidiGDbasUHE1zefD9fmaHtG7gwZBVVXMx73NccK2eLlxrgxpeRGaVkQSoW9fHfCcCurr2QVcdfrpXDV6NKOw3bDc0aNxR4+GCRMiP9Z//AdXjB4NubkJymyGys+HgQPt4tkFrAOqHQeCulW1ae1aNnfrRjWwN2iVm5cHy5ZBHCMuJbCpvRj4X2/5BnCr9/Nt3vqjgb7+jY0xO7FPq44BKoD/AX4L3B2wzb+As4FTgUrgv7GThR2oBarEcV1W6xfUTqMr9ouou3Mn2d7PEbWGDBzIFdpqkjCB91B3wADYvDnstm2Z6zjsD3fsBPwOtbwILSXmESkuLjbpFAWl0nH4Ajjj0kttwty5+gW2I82aBbt2sfeBByjlQFSTvY7DC8CPtJBIPbW1vN2rF/uB94AvgJFA0c6d0L17ZMcoK4NZs+w4kwBdgR8Axe+806zCI46zPpZoJMeKmJnt2G8WxHTeTJdu5YVSKrUVDxlCRUVFTOF7tbwIT8eIJMDBwKtA5QMPAHD9+PEwalRS85QRGhuhtpbSe+6hzks6LGB114MOovu+OHRtrK+3rzk5sR9LWXl5nORVEI/3QvoWbd1qr3V2NmS1cauqq2PvOec0GwME9gbXm8SFBtYmZRUVfxeQtv6eVfIEdtPx/54aG/V3lm7C/Z4D38eZlheh6X9WAhzv83F9qD9ylVgvv8xtJSXNmlqbaWjgjDic5j2vz/CJ2rKSMBXA2336AHDLL34Brtvq9s/27MnbIdIvAI7fsyfEmtil2OBDlepcl9tuvx2AMcAQvX+knoAwvVnAHJ8Pdu3iNz16tG+QulZgEuY+x+Gqd96BwsLor3FjI7d169b0XcHdsweysnC7daMLcEsC/je1vAhPr0uiZGVBTQ1PdevGU45jJ8pTCdd0Yzn0UNyHH+b6xx+P+zlOfP11Tnz99bgfVzW331seuf12OOSQ0BvV1bHCcXgvxCq3oIDj33gjoV8EUigco0p1rsstPh+3+HwM2bNHQ8KmmsbGpkpIFwKe0nbv3r5KSGUli7t1i1fuVAjuoEG43bpFN2i9sZG5AZWQQFkkphLip+VFaJnyOZOje3fOw05f+ebKlTB8eLJzlL4WLKAusLI3YgRMmgTjx8f/XCNG2EUlxGE/+xkucAu2YPgQKGtoaD7IfMoU9jsODT17UknzGdPBhv/g3nth2LAOyLFSUZg9m9u6dWNdt25aGUklXmAM/xPx2bF+IS0qYpq2eiVMFgcqi+6AAc0rIw0NYQOdzO3WjcD/usDHVHP095UUWhFJpNxc8Pk4BXgbeGnt2mTnKH2Vl7MGKPIW+vVLZm5ULObNA5+PLrt3NxUSFcD9H38MS5bAkiW8/cc/chswL2jXbOAkIHvbtg5phZR2LCrDzZvHLdddxwvA2/rEPDU0NjK3Rw+ysMEtVOq7zOdjjs/H4d77pghaDQ3MP+QQ3EMOgbq6Vo+RBczxumV1BC0vQtPOix2g2Oejn+MQ1zgvOuixubKyFjPvqM4vC/u0ZD92pqXbpk4NPwYIKKTjoqIJoMFYVbvMn88tjY1U/v73yc6JAsjK0qfhnVRgy8jcE05olh5KYEWzoyshWl6Ept9iO6OSEuavXAnArNdf125CKj1lZzNr2zb78+DBPFRbyyXbtnFfr158FmLzG4GDt2/vyBxqk7JqvwULKFqwINm5UKpTuyrKCmS7xvvEiZYXoWlFpIPkPPkkP4jXrNyuyyx/f/mAeRGUSjt53jy6OTl8VlvLul69qA+zaTZ06Hw9GgVFKaVUJLS8CE8rIh1l3Lj4Hau42C7qgBUr7LJkSZIzgh2bMHcuFBUlOyfpYdYsPqyqogF4PswmJUCXiy7qwExZWrAopZSKhJYXoWlFRKWHefN44e9/Z0yyKyINDcxbuZLZ2dkwZ47tfxqq1aqy8sDP2dk2FroKadU997AqRHpXIAf4DCh+8EGYMqUDc2VpwaKUUioSWl6EphURlR7WrmVMsvMQwH36aXj6aXoDlwT3Sa2t5bbBg5sGXQ8ExutAyaiNAoZs28ZtvXol5fza1K5i0thoQ4x2797+YzQ0wK5d9hjZ2fHLm1KdTX095OTYV38wn1Bddf2RtDqwGy9oedEavS4quVyXJxwnfeLpZ2cz+/XXcV95BfeVV7jkjTdabpOXxy2vv46O7mlDQwPLHIdwQa9fBR7q1Yv9wKKpU5vPM9JBdIIq1W6zZ/OeN4Feu/Xty2969oQjjohPnpTqpBYccQRUVjL/iCNwe/bE7dkzZPjeuf51SfjOoeVFaJnyOVWqGjWKC4qK4hpCr8FxYOHCuB0vrLo66hwHNmw4kNbYSP1pp9mnlCNHhp9Qb8SIpjCCn4A9Tn19YvPbmaxaRe0hh/ABLScrBJgEzC4s5BJvMHstUPbxx/aJWAdpT0z4TIkLryIwfz4nxtoSum2bjQK0e3d88pTJams77lxtzG+holRby37AHTyYXRFsHkMbZLtpeRGeVkRUco0YAevXx/WQiwH+8pe4HjOkhgY2gK10BKiCiAq1YqAA+AIoBZg9u/nssJmqvByuvppF0GzOkGxgpLf0u+Ya2LgR1q9vuolVAI989RW4bvq0sCmlEq+xkQUd1cVz5UqW9uxpy4jWKiSNjXabtrZTLOjViy+D0rpD2Aecs3bv1jnYUoj+JlT6amy0lYR4PyVv8J7R5+czMviJZlYWwyJ8ynmMz8eUQw7B9Y7nPvAAbl0dLF2auf29d+3ii7PO4ndByV2A3tDyemMrKPuBRuBD4Lbbb+eWadMO9AFO4LXUCaqUioPa2gOhupMhK4uZHTVO7xvf4DPg7l69KATODnfeRYv4zYwZfI33AEbHEYYW5qHfrPXrw5f9NTXQr1/i8hSGlhehaYuISl9XXEFpAvpOVx1yCFWHHBL34wLMffppPkzQsTuDJ3r0sK1DQaYBPwnV/SQvjxt372b27t38PGhV5SGHUJ3Aa+kffKh9fpWKzSO9ekG85tmKVSLyUVNz4OcRI7h+61au9/nCV0IApk/nxrlzAfuQpUO7jnUWNTUsCDG31GHAgsGDw3Z3dk84ocN7H2h5EV6mfE6VQaaXlsL8+dDYyN4EHL/wmWcofOaZ+BzslVdw77wT98476Y4tcJ4H1jkZ9uykpoaXHIcPad4dC8Dt359jXnwxfMtGdjZkZzfdzPYDz/fpwyqgDKhI4LXUgkWp2F3s8yUl2EQLjY3c1rdvfI9ZUcFTffoceL9mDWWB71tz6KF0B9YAr/bqpZWRQNXV/K5Pn2aVkBzgcOD67dttC1crvSHcAQM6vDKi5UVomfI5VSa58ko7L8dZZ3FtIo5fUmKXeBg2DGbNglmzmv4Z68DOm5FKTwkTqawM+vThTZoPTO8C9vdXWgqjRrV9nJ/9jOuB64ER2AKp2bXs1SvuE15qwaJUmtq8Obb9Gxvt/bu4mPMCWz5GjqQk0m5W06cz69ZbAVgNrOrVq3nrSqaqrqa0b1++CEg6HJi5bRvX+nythubN9bYFrzISOJ4w1t95G7S8CC1TPqfKRBMnktWJ+tX285Y84GvAra2FRYvSuzJSWQnTp+MGJWcDhcDhO3dGVgkBmDePw3y+puVEL3kX9lq6tbVw++1xyrg2tSuVjo4CaGhg7gknxHagqiqWx6N1pXt3crHdjVYBq/v0yezKyObN3Ne3L4HD9w8Hrt26NaJxRlf4fFzr8x24Fwe0iiSyy5aWF+G1+TlF5FgReU1E/ikiG0Vkhpd+uIi8LCKbvNdvBuxzs4hsFpH3ReSsRH4ApdLFj3w+Jvl8XDF2bFOae9ddNgxwmnp38GDcjz9ukV4EXODzxTTZW0fcxLVgUSqNZGVxhffw6qhYjzVwYHwmqp05k+k+H9fffDNg509ak6mVkc2bue+EE/gsICkXrxKSnx/VoY7ylvsGDWqW7g4YYEPyB4bljxMtL0KLJGpWI3CDMeZtETkUWC8iLwNTgFeMMfNEZDYwG7hJRE4EJgADgGOAchE53hjTeR5NK5VCfvPxx4x0HIZ0otadSCx1HD4Kke4CbNkS8/FP2rqVk3btgg0bcC+8EIDfVFdzhuNQHIdrqTPlKpWmsrO5LNXut4ccQh62+2o50KVPH07ZsiU1xtZ0hKoqFg0Y0KwSchRw1ZYtUVdCgKYKZyiuVzlx4/g3oOVFeG1eF2PMp8aYt72fvwL+CfQCzgEe9jZ7GBjn/XwOsMwYs8cY8y9gMzAkzvlWKn3Nno177rm4557LUcB4YIj3NKwz2+s4vBewVEOLYALuscfCM8/Ep3DNz7djhQoLm5K+hhbx5mOhE1QppTrEzTdzhc/HzGuuAeAl4M2+fdO36+6GDc3GbyweMIDAofpHAVe9/35cK2LHYLtGN6moiNuxQcuLcKKaR0RECoDvAm8BPY0xn4KtrIiIvyWzF7A2YLcaLy34WJcBlwH07t076owrlbZGjLALMN5xOOrSS8EL49gpNTbCtGk8gX0qEUpX4GyA5cuhuDi+58/J4TzgBewYnFPje3SllOo4OTkcg20ZWQ307tuX/FRrvWmvDRua5ulaMnQoU155JWTX5Dzgivffj/tcIP5WMNeLtOgOHRrXVhEVWsQVERHpDjwJzDTGfCkStq4WaoVpkWDM/cD9AMXFxS3WK6XgqHS4CdbXU/rHPzaLcBIoC8gHihL1WfPz+Y7Px4eOw7iiIli/Pm6HzrAgy0qpZHNdLnNdmD2bj+66K30qIcDqQYP4IDAhYPbzYwKSp23cmNAJCaPv6BUZLS9Ci6jLmogchK2E/MkY85SXvF1EjvbWHw1NXfdqgGMDds8HPolPdpVSnU5uLtN9Pk4Ks/o8vHkEEmyczxfXSkiio6CIyFUi8i8RaRCR9SLy/Va2dUXEhFmO8rYZGWZ9YbjjKqVS1Lx59E6jSgjAqT4f0wIWf88AsDPQN6UXJvaW1SwPcaLlRXiRRM0S4EHgn8aYuwNWPQtM9n6eDDwTkD5BRLqJyLeA/sC6+GVZqcRY7Tgwfnyys5F+6utZ7jjEPwZJ8iWqYBGRC4F7gV9ju8O+CawUkXD9WOcDRwctrwOrjDGfBW07IGi7TRFmSymlVDtpeRFaJJ9zOHARcIaIVHrL2cA8YLSIbAJGe+8xxmwEngDew3bLvlojZqnOYDPw5tNPw/Dhyc5K+li5kl1HHMF7NJ+sMB0k+AnX9cASY8wDxph/GmOuAT4Frgy1sTFmlzGm1r8ABwHfBx4IsflngdvG8/7cSrh3V0S2BZUh/n003LtSmW7tWigvb740BJQaa9bYtMAJCBOpvDyuh9PyIrw2x4gYY9YQfvD+mWH2+RXwqxjypVTHqKqC114D7Bfll4Av1q6lZOHCA9t897t2BnQVuaVL4auvoLSU+UGrsoGBwNtAAXYAeWeViHCMItIVGAwtLt1LwCkRHmYqUI/tUhusQkS6YR8WzTXGvNbOrIYSLtw7wD3GmGafScO9K6UA1g0fTjnNIym6AYPVF592GlnAlI0bE941C2DpWWcxKc5d37S8CC2qqFlKpZ0rrmDuX/8K2G9QABVAxfTpTZvcCBycZn1xw/I/bcqK7dawePJkwk231Q8o8fmodhwunjjRVlo6qXYWLLkiEhgX8n4veEfTeuy4xu1B+20H2pxmXkS6AJcAjxhj9gSs8j8h+zs2UNlFwCsiMtIYszr6j9GSF0nRH03xKxHxh3sPpyncO/AvEfGHe/9bPPKjVMI0NsLLL0PABLSq/Ya8/jofnHZa2MiKAFPeeqtDKiFA3CshoOVFOFoRUZnthReYs2sXAIt79gz75TlTrO7WjSFAdoIqXtcDh+3YAcD07dshJych5+kIMUxQVWeMiSRGcXA0QQmRFspYbMCQxc0OZsz7wPsBSX/zQrLPwkYCjaugcO/DgekicjG2rn+DMeb/iDDcu1Ipp66O+SUlzCor08pIrFatYumZZ7ZaCenstLwITyd6VJktOxtycyE3l2m33srZbe+R1hqAR4Fqp52BBquqeNNxCB7tBuD2789hZWUHKh+5uTG3vCRbgiaoqgN8BM2thZ3DK/ipVyiXAW964/Xa8hY2oEhcBYd7BxYCfYEi7JO23/o3DbF7i8JTRC4TkQoRqfj888/jnV2lorN8OSxfzi5gfklJ03vKypKds86lvByWL+fRoEpIP+wj+EDHgy2vOzEtL0Lr3N8ClIqnOXMYsnYtx6xcSSOwxEuuBE6ZMAGWLUta1jrSR8DzwFXDhsELL0TearFiBUydykvh1s+YkVZPDoXExIU3xuwVkfXYICB/Dlg1mtB9eA/kSeQY4D+BaRGergivK1W8hAr3bozZHrD+AcD/jS2icO8675RKGfX1LL/wQvZ7b3cB7oUXAraPzPR078ZbUWEfIsVhRvNnzzqLt4PSjgd+8vrrrDvtNOjevSn91E5+XbW8CE9bRJQKVFZGvs9HwY4dTbX0l4BH/vxnewPuqIgdSfYZ4P797/YJX3192ztUVcHUqbhB23bFfrPMBzj00HhnM53dDUwRkWki8m0RuRc7mHsRgIjcISKvhNjvEmA3NnJhMyIyU0TGiUh/ERkgIncA44DSeGU6XLh3/5xTnnOhKZqzhntXnUtODuN9Pi7Yvp2Byc5LEnw0dKgdp1FdHduBVq7k66Ck44GfvPIKjBjBEJ8PiiPpkaTopOWFn7aIKBWBDwF36FDc999P6IyuqcadPBn33HNtt4NWvDlgQMiWkFOBEZ38SVZrEvUkxxjzuIgcAczBxm7fAJxtjNnqbXI0tqtTE68SMBXbEhFcxoOtF87HjsH4N7AR+E9jzPNxzLo/3Ps/RKTSS/s5MFFEirDdrqqBy8GGexcRf7j3RjTcu+oscnMZv20bWb160Yj9B20EeOwxmDgxuXlLMHffPtwBA2Djxva1jJSV8cQ551AVlPyTxx9vipKVjrS8CE2MSX4rd3FxsalYpw/BVIpZa8fQNgwfbifJwT5iuOzKK6E07g8FeMJxuOC662B+cBS+DrRhA42DBjE3IOlw7Ozn+aEqFI2NPNqtG9U0D7sI4ObkwBtvdFiUk2iJ46yPcBBgSN8WMY+0Y78hENN5M52WFyrlbN6Me8IJAOQAMx9+GCZNSmqWEuUjx+Eh72c3Ozv6ykhZGcvPOafZBLeFwMHAj158EUa1GeipwxUPGUJFRUWEQzZC0/IiPO2apVQ4w4bBsGFkB4yR+ARYvXAhDB4c99NdcPrpMG5c3I8blYEDyVq6FPfkk3FPPpnuwBdAOfBF8AD2Vav4qFs3PiRMJeTBB1O2EhIPCZ6gSinVWWRnU4ztQF8P/G7yZFiyJL7nqKlJicHwvQ86iFzvZ7ehAQYMiLyb1ooVLSohJwITysr4kc+XkpWQeNHyIrxM+ZxKtd/ppzMKG5A7C3gVKK+shLlzW90tauXlMGJEfI+3YEH0+02caFuD1q7FH6OkGuxTsFmzYPZsu1x9NQ9xYP4VsG25o8C2hCS7UtUBtGBRSpGfT4nPx7iNNvDQF0Dp1KmweHHr+0Xjuef44pxz4ne89mpoYPpBBzEM21reVBnZ3Ebw3eXLeer885tVQgYCFzzzTFoFMWmNlhehadcspaLwO8fhC+/nw4Frt22DvOCoeSkiO5sX9u1jTAxjNB5yHOqwlY3gVo9gWdiZ0hMxEVQixNo1a4CIebQd+xVlQFN7Iml5oVJWTQ0v9OlDI3aynFxg+h/+ANMiDUqUQJWVNvBIHMdgVDkO/liSbuDktCtW2FaS8eMhPx+WL2fFhRdSGbDvQGD8M89ASUnc8pMo8eiapeVFeJlS4VIq7r4A5vbqlRLN5SHt2sWYPXva3q4Vl+zezY27d/PzH/+4zW0vBibt3h3T+TobfcKllGqSn88Yn4+S9esBO8HDfZdfDgsXJjdfYMceXnFFXA9ZCIyApq5afuvOPx/3hhuaxlKuCqqEfAcY/+STnaISEk9aXoSmUbOUisK1Dz7I6qlTedV73wgsP+ccgqdZKikthSuv7ODcBYnHZIH+CaTamEjK7d8fFi3q9BNORSumR2RKqfTUvTvDgLXYUOj3TZ/OVTt2HFh/xBEdXz74WyviyedjFJAXxQS4RcC4J5/MiK67wbS8CE0rIkpFY8oUTl2+nCErV7ZY9Qngj4rxnenT6b1lS+gIWA0N0KsXvP46DEyTSPQlJWkddjGURE1QpZTq5Pr1Y8z775PtRdICWPXLXzb93Bs4LtkPquJoINhxIp7vgJ0jxAt1XxSw7cjHH8/YSoiWF6FpRUSpaJWVtWgBAThu6VJOnDwZsE/Cet9zT+iKSH09t9XXc8vatYmtiFRV2UgrsUYiqaiAv/41PnlKM5nSdK6UilK/fozsJOPlYhb0ObN9PkYGvM8Jep+ptLwITSsiSsXLpElcEGHs+I64Ie0fMIBngXExFobvDR3actpVpZRS0amvh3nerFS5uTYKYTg1NfDcc8nv4huJpUuhqOjAg7UlS+yDsGnTbKvIwoWw1Ztbb/p0O4BdKY9WRJTqaHl5zNmypVPcjJc6DtURbDf/nnu45J57ODxTngByIC68UkpFpLqatXfdBUA+kN9aRWT5cspvuIFR8aqIrFkDdXXx7xa1dCnlkyczKiBq1rqpU3kecAHmzWPV9Oms8jZ38/Jg5sz45qET0PIiPK2IKJUM0cxEG4MPgQ2Ow8AdOyBgYsY2VVby7uDBfETzeUIA3IIC+N737JuGBn799NPsAp4FfuA4HJNBlREtWJRSESsqYlik98eCAobF89xLl9oQvvGuiMyYwWFgW0Q8Q/w/eBPaDsPOnA50WNmXirS8CE0rIkqli4oKO4FhQHSUL4GngIHjxtmuACNH2qbx1pSVwfTpPBWUnAWcB/D441DshTVvaCDrkEPYi530cDlw7fjxdiKvaCo+nZQWLEqphBg3ju7xfKizaFH8jhVox44DFQ8/n69ZWnbQ+0yl5UVoel2USheLF3P3Y49Bo23D6JKTQw6wH/jdX//K3Kef5sMZM8Lvv3mzXc45B/fjj5ut6oqN9HKiz3egEgKQlcXh2MkdD8bOreI+/bStzOzaFccPl3r8Te0aF14ppVRrtLwIL1M+p1KZZ8cOZj74IF2Aa7du5QetbVtfz69POAH3hBNsv94gZwMXh3o6l5XFNJ+Pa30+bjz55KZkd/Lk2KN1dQJasCilOoXy8vjPJbJwIUyaZJeKigPp8+fbtA0b7Ps77jiw3aRJdtb1DKTlRWjaNUupNPC14/AJcH1ZWfOJDMeP55bcXMjLC71jdjaP7tvHfmBvmGO7xx4Ly5dHnaf7/v53znYcCtJ4zIhOUKWU6hSmT2fdpk22i1SE0R1bVVrKSzNm8Kb31oUDg9VvuokvgVFjxthIWnPmsAFYhZ1t3n36adi4MePGi2h5EVqmVLiUSmsHX3MN/S66CMaObb6ie3c72WBWFkMuuojjrrmm+fpZszgD2BzmuC5AaWnz7ljhzJjBnIC3nwGvAg2O09RdLJ34J6iKdlFKqQ5RXm5bLTzPA196c101Wb7cDmCP5mFTaSnlAZWQYENychj18MMHKjw+HwN9Pgq99W5Dg50AMYNaRrS8CE8rIkqlgwULbOz21owbZyslgUaNIq+wMOTmgH1qFbxPOBMnkrVxI8OgaTkGO7ljutKmdqVUypozh0/8wUlKSjgp1DZlZSx/7rnIWklKS6GkhPIZM1gTkDwCYPjwAwk7doQ83qiDDuIn2DGFbkODjaqVQZURLS9Ca7Nrlog8BJQAnxljBnppjwMneJvkAPXGmCIRKQD+CbzvrVtrjLki3plWSkXv7fPPJxfo7e8q1dBA7ZlnEi6WStf2nKSwkDFp3BUrkMaFV0qlrJUroaqKY77/fft+/nx+BDYgSaAlSzjvj39s/VilpbBiBa++9hqrg1aNAEaVlkY28WJDA8cDmx2HdYC7bx9uYaGd/DDNu2lpeRFeJGNElgClwCP+BGPMhf6fReS3wM6A7bcYY4rilD+lVJyctHNns/Ejyw45hA/CbNsPmBTt3CNKKaVSQ2Wlndtj1aoDafPnh9y0y0UXNR9bGKysjEdfe61FeXEqcMa990Y9+/vZBx3E5n37bJTFDKqMqNDarIgYY1Z7LR0tiIgAFwBnxDlfSqlo5OSw96uv6NpKa0RDjx7NuklVY0P7BnL796d20ybKvWOq1ukTLqVUSrr5ZrtEYuTI1tePGUPeyy+3qIic8cMftj0vVSgNDVybnc1H+/YB8NG+ffSuq0v7ioiWF6HFel2+D2w3xmwKSPuWiPyviLwuIt8Pt6OIXCYiFSJS8fnnn8eYDaUyXHExXf/jP1rdJLuwkC7YyCWrgIaAdV2AywBKS8m7+WbiEFMl7WlceKVUWlizpnn43UDz57PqhhtadMkaCbGFaG9ooLfP17REFBClE9PyIrxYP+dE4LGA958CvY0x3wWuBx4VkcNC7WiMud8YU2yMKT7yyCNjzIZSGa683DbFt+bxxzk1RBjfbGxXrGN277YFy9y5kCHjPGKlBYtSKiWtWGHv5ZEYPNh24wo0fz4UFbHqpptYFZA8EjgeGDl6dPtaQzKYlhehtXseERHJAs4DBvvTjDF7gD3ez+tFZAv2bzZMVVsp1VHWDRrE8yHShwEjteIRNR18qJRKWdXVsDbCmIUbN7YYI/LlTTdxd9BmI4GRv/0tvPBC5NEUFaDlRWtimdBwFFBljKnxJ4jIkcAXxhifiBwH9Ac+jDGPSqlWPOU4fBaUdsXjj8P48fZNYyNLu3Xjow7PWfrTgkUplZJmzrRLJAoLwWl91oqReJWQaI6rmtHyIrQ2r4uIPAb8DThBRGpEZKq3agLNu2WBDaLwroi8AywHrjDGfBHPDCulmjvvhz/kOKA2YKHBGwGydi0fdutGNS1nTnePPPJAlImGBmocx4Z8nDWLasdpWigt7YiP0SlpU7tSKuUsX24HfvsX1w2/bWkpb86YAddd1+ohRxYVaQUkRlpehBZJ1KyJYdKnhEh7Engy9mwppSK2YgU/6NWLvbW1B/pA3nGHbZYvLz8Qd9vTFducSXk5p06aRMM//gGNjXwG5O/ZA3V1TS0s5cDPV63SvsAhaFO7Uiolff45X378cdPbw4LnDglUU8NAaFHJOOzSS7n+gQcOJFx0UVyzmGm0vAhPr4tS6WDbNkouvbTprVtVhbtwIe6mTc02ywJ6A0N8Phg4ECoryfb5oHt3TvL57OzrS5YwxOdjyLZtdAeoq4P6+o77LJ1IIp9wichVIvIvEWkQkfVtRCEsEBETYhkTtN1p3rEaRORDEdEJZ5VKN1deyWE+X9PC0qXht503z24zb17z9EWLmh9DW0NipuVFaFoRUSqD/ASYtGdP2xuuXMltvXrxBXDbX//KhiOOSHTWVAARuRC4F/g18F3gTWCliPRuY9cxwNEBy6sBx/wW8Lx3rO8CdwC/F5Hz4/4BlFJKdYjOXl5oRUSpjlZfT5njsCJgedZxoLY2oad1+/fnuNdfb30GXb/vf59bHnyQHOykhy9BU16bzdTb2MhLjgMLFiQiyyktwXHhrweWGGMeMMb80xhzDTY8eltTGO8wxtQGLIFDg64APjHGXOMd8wHgYWBW5NlSSikVLS0vwtOKiEqulStttA7HaXsejHRQXs7eI46gAqgMWN4GaGxM7LlHjYIRIyLbtnt3mDKFmTk53ALMBH7kLQTNRfKDgw6y3bwyUCIKFhHpig2L/lLQqpeAU9rY/SkR+UxE3hCR8UHrvhfimC8CxSJyUARZU0p1FkuWQHa2XfzdqkpLYfbs5tvdcYfd5o47mqfPnm3TFy60+y9ebMcKLlkC06YdOPby5Yn/LGlCy4vQtCKikusvf8EFXMiMikhlJWXAd7ATCTazbBnU1LTcpy3Ll9s+wC+/3Pp2r71mt4um4Nixgy4+X7OFwsID67OybISuWGbY7cREJOoFyBWRioDlsqDD5gIOsD0ofTvQckZKaxf2SdUFwNnAK8DjIjIpYJu8MMfM8s6plEojFfv24e7bR9nvf89+x+HNGTP48q67mm80Zw7uvn1w663Nkr+86y7e3LfPTm7rf0gW8Lp/3z6W79vX+vgT1YyWF6HFMo+IUrHLysqs2vCsWZw3y7ZsljmObQnBdn9yb7oJt7Iy6hv7fRde2GIekVDcqiqYPJk84IpIJjD0FzqRdOXKRCLtuzb79tUZY4oj2NIEnzFEmt3QmDrgtwFJFSKSC9wIBP5BhTpmqHSlVGc2ZQrFQPEVB8YXnwItB53PnYt7663wy182Sz7sZz/jlPz85hETp01rOnaXJUsYP2WKTmwYKS0vwtJvGCq55s3jFu+LeXCXn3RXsn07JQ0NsHw57g03ADDvsceY9Nhj5Cd7pvPycu4+6ywArp84UZ96hdO+gqWtLeoAHy2fZh1FyydUrXkL+GnA+9owx2wEdkRxXKVUZzBlil1ac/PNdgkWHEUrlCVL2pGpDKblRUhaEVHJlZ0N+fnJzkVy5Hqtmz17NiU1YMNUnOE49GurMrJhAxWDBlEfYpVbUACjRzdLK3vggQPzjPgNHszeykq6Bp5ryhQ2//GPXO8PB+x/Cqaaa+8TrjYYY/aKyHpgNPDngFWjiW6epiLsgEW/vwHjgrYZDVQYY9os7ZRSSrWTlhdhaUVEJV9Dg52/wq+gABYtSlZuku4T4AWg1SkEV6yAq6+mLNz6W2+FSZOaJZU89xxda2v5MDDxyCPpeuihzffNybGPQTL4dxCRBBUsnruBP4rIOuANbASTY4BF9tRyBzDEGHOm934ysA/4X2xPvx8CVwM3BRxzETBdRBYAfwCGA1OAkJPWKqWUihMtL8LKqO75KkXt2sX9L7/MfS+/zG9efpllDzwAGzYkO1cd5xvf4Chsm2dXL2k/2GsQKpJWdTX813/hBoX77eod4yiwLU3Btm3jB+eea9f7vfBCy8kKFyyge7K7hnUG/oIl2iUCxpjHscHK5mADq40AzjbGbPU2ORroG7TbHKAC+DswAbjEGHNPwDH/hR2YeKp3zP8GrjXGRPPUTCnVWSxYwJeO02whYMwIALNm2fTgaFptKSk5cEztuts2LS/CEmOSP0axuLjYVKxbl+xsqFTgOLjYGvItW7dmXLetSsdhRcB7t6wMxo5tts2rjsPqEPuWAMVagYiYOM76CAcBhlTctaup8Hevi+a8n34a03kznZYXKiOsWsUXZ57Z9PbwwkLYuDG6Ywwbhvv3vzdLuh7sTOl+jsNaYNi99zYfmN6WWbN49p57eBs7K96whx8+0Ao/eDD84hfNezoA9O0LDz4II0dG9zmSrHjIECoqKqTtLVs5hpYXYWmLiEotW7bgXnNNsnORMhaXlBy4ae/axTLHIdRXMDcvj+J33unIrCmlVFw0OA51jtOydTaTVFQ0D9hSWcnvoGlZXVWVsFMPg+gqIQDz5/Oj667D7d+fYf37N8/7yScfGAMZ6Hvfg5ycGHKq0pFWRFRqKSiAoUPZD3zSpw91XgG113GSnbMOUXTllbj9++N64zZqwHbFKi/nsx49+AA7oD2Qm50N//M/GTupYFIlqKldqUxyP1AKmV0R6d69eUvBqFFcH7C6CprP4dSa0lI+cxxWBbWGhFMGLcP6TpoErtv6jvPnQ1WVXQLnklq0KPTkuUuXQlFRRHlKS1pehKQVEZV6jjySU7E33keBJ4CMGTFSWmpv6mvXNiXVffwxzJjBfXhjRzzZ2M6bbNzYsglcJV4C+/wqlUmuPf103KKi0E/RM0VhoZ3U1m/gQA5bvx63qIiZ2CAmizdtiqwysmIF9wGrIjx1BbQITvLlY4+1Hp535Eg+cRw787pqm5YXYWXGp1Sdy6hRnOH1Yc11HA4DCjJw7EM2tvWjFGzlJEAXoACarpNKgsRGQVEqc5SXJzsHqamoCNavJ8d14fbbqcFWRqYVFrYoE5osWMCrr73WLGkkMPLkk+2boGiKPPggJVOntp6PkhIYNgzmzPEOOBIqKznm5JOhf/+oPlLG0vIiLL0qKqV9Z/fuZGchOQoLmb1zJ4/06NE83K7nCuConTs7OlcqkBYsSsVNneOQu3173FpFPvK68/ZOs4c1NcC6TZsYEmrlggW8esMNLYKZnAjNWtmb8WZgb9WoUdCv34H3Z51lKyWB3bFU67S8CEu7ZqnUlp0dOhRtuquu5qUePfgkxCq3sJCjXnzR9ilOB3PmsK4zjgHSpvYWRORYEXlNRP4pIhtFZIaXfriIvCwim7zXbwbsc7OIbBaR90XkrOTlXiVT7g9/GNd7fe/TT+ch4MPOeG8JNm4c7umnM8t7+y7YCFSBSkspD6qEnAq4p5/OUffe2/rxQ8zAflhpqR0DAnb8SEnJgZU336yVkGhpeRGWVkSUSjVlZVBYyJu0HJgOUFdVZWc772QhEEOaPp0P77jD9mUuKLAD8zsTLViCNQI3GGO+jQ3Gc7WInAjMBl4xxvQHXvHe462bAAzARgG9T0TS4JujitqKFfF9uFJejjt6NI/E74jJU1QE5eV0/9nPANsqsri62t4zwVZCZsxgTcAupwJn3Huv7fYWbUQsgCuvhPHjY8q2CqLlRUhaEVEqlVRWwuWX4+7b1yw5GzjO+7kUcD/+mMV//SusXBl60sNO4rOFC3kB+Br7mVi0qPNURvQJVwvGmE+NMW97P38F/BPoBZwDPOxt9jAwzvv5HGCZMWaPN4HWZgjd60SpqL3wAgBVjtO0dGoTJuD+8IfMwlZG3v74Y1i4kJfCVULaUwFRiaHlRVhaEVEqhVQOHtxixnSAk4CLd+4ksONCDeCWlIQftNgJHOXzcdW55za9d++6C4YPT2KOoqAFS6tEpAD4LvAW0NMY8ynYygpwlLdZL+DjgN1qvLTgY10mIhUiUvH5558nNN8qvbjnnkvhueeyDCgMuNd0SkVFsGIF3a+8ErDRrl6aPp03AzYZgVZCUpKWF2FlxqdUqhNY6jh8FCLdPeggW9no3p3Z/pl1hw3D/eorAH43aBBdsP1a+qXBwMzf1NZyquMwLNU/iw4+DEtEugNPAjONMV+KhJ2UONQK0yLBmPux001QXFzcYr1SYS1fDoA7YULz8Lid2bRp3LhwIb+BZuMIRwCjtBKSmrS8CEtbRJRKtrVr+cBxqAb2Bq1y8/JsQervC1xYaJeAWWy/AOqAV4Gaztj1YOZM3LFjcceOJQ/bTasCb5BpQ6hRMiqVichB2ErIn4wxT3nJ20XkaG/90cBnXnoNcGzA7vkQMkaDUrFJl0oIQEVFi8hYpwCjSkvTuhJS4zidp+uuiphWRJRKprIy+K//4lHsKF+/rnid6P/yl+bRSvxGjWKct01XL+kTYCnYOPE1NYnKcXhr1sCsWW1vF2zECHsdyso4zEuqw05myaRJqdv1TJvaWxDb9PEg8E9jzN0Bq54FJns/TwaeCUifICLdRORbQH9gXUflV6lOZ8kSXrj8coKD8VYDb0+ffuChVZr5yHFYCrzZt2/nrIxoeRFWmxUREXlIRD4TkQ0Baa6IbBORSm85O2CdhmJU0aup6dSDrtultpbGc87BDbqpZgG9gSKfz/YJDqW0lCKfjyKfj5yA5AbAfewx+/SvpgZCjDdJGNfliXvuiekQh3lLd2zFzH36aViwAOrrY85eQmjBEmw4cBFwRlD5MA8YLSKbgNHee4wxG4EngPeAF4CrjTEp3idPqSRZsoTnp05tVgkZBtyIfRD1LHD/xx+nZWWk989+xsHAS8Cavn2T87AtVlpehBRJi8gSbPfzYPcYY4q85XnQUIyqnWprmdunDyxdmuycdKiyXr2YGyL9AmBSjOMj3Jtuwu3ThxW9Woz7TZzyci6IMd8lPh/X+3zMuvPOpjT3gQf47IgjYs1d/OkTrhaMMWuMMWKM+U5g+WCM2WGMOdMY0997/SJgn18ZY/oaY04wxqxMZv6VSllLl1I2dWqz5sJhwJg//IGD16/HveYaZmErJPd//DFrHcd2400X8+Y1BWspB1b36dO5KiNaXoTV5qc0xqz2op9EoikUI/AvEfGHYvxb+7Oo0l5uLnMefzw9JkhqaKDskEMoaW3AYF0dT/XsyQchVrkFBfCnP0V1yquefBL+/W/7Zvt2brvhBvZHdYQUFHQDXgYc441/Gb9xY2oUsDr4UCnVEZYupWzyZCoCkoYBYx588MBEhAsW0H3zZli5kk+wFZINmzYxrbAwdbu3RumyX/wC6utZ8Pvf8ypAnz6cum1bszGTKUvLi7BiGSMyXUTe9bpu+WfJjSgUI2g4RuUpK4Nu3ezESTk5yc5NXGwAPpgxg72O0/IGuXIlu3r25F1aTlY4B+Dee2HYsOhOOG4cTJxol3SZgGrECNzsbNzsbAqwA/I3eEvKDGDXJ1xKqUR77DGeDaqEDCGoEuI3dy7uz37WNAN7DbB406bUeHAToM5xbNkfLdeFBQuaWkZeBVb16tWxXZDbS8uLsNpbEVkI9AWKgE+B33rpEYViBBuO0RhTbIwpPvLII9uZDdXpVVVRDmk3PuRR4NfAQ4GV7DVr4LrrmB+0bTZQDGRt2xZ6YHo0srM5yTtm3DU2wuLFdqmsTMQZDiguht27YfdufoCdR2VgYs8YPS1YlIqbtx2nc3yh7EiPPcazkybxdkBSMXD2ww+3rISAHVM4bx7dTz+9KakGuH/TJlY7Tvgxhx0st7TU3uPb6Yq5c3FvvpnDgFXAq52hMqLlRVjt+pTGmO3+n0XkAcBfta1BQzGqaMyaxaj2RFpKYYH/VPuhqZJVfdppLAmx/fHYsRFxkZtLic/HXsfhXeIcFq+mhrmXX85+4JacHNixI55HD+sYn48fAaxZw3unndYh54yINrUrFTcn3Xln2rSKt6qigs1Dh7Y959Py5ayYNInKgKRioOThh200wdbMn4+7YgUAX95+O3djv4h95x//aBbcJGm8CRnb7eabAeh6xx0ArAb29+pFFjBy+3bIzY3t+Img5UVY7boqInK0f5Zc4Fy8HhPYoA2PisjdwDFoKEaVabKzmbV9O6t69mQVtmY+v1s3oGVXLIBZQPft20Osid3Pga7xrCwUFDBn2zb7czK+MIwYwS2p1h9YCxalYrbOcRiybRtkJ6QtN7V8/jnLgWLH4TjgOH+FZOVKakpKyPe/r6lpVgk5CShZutR2wW1LUVFT68dhzz2X+BbsJJn+29/Cv//N/DlzWOOljUzl3hVaXoTU5lURkceAkUCuiNQAvwRGikgRtttVNXA52FCMIuIPxdiIhmJUmSg3t1lLxK4wm7n9+8M99yTk6c15d95pC6J4VxiSXQlI9vmVUnE35N57M6M1xNMArMGOfTsOoLycFSUldMF2Iwl2EvCjSCshwR58kOsHD+butreMm12Ow1q8CRZjbf1ozcyZAMz6xjfg3//mN3PmJO5cKmEiiZoV6i//wVa2/xXwq1gypVRnd2peHg21tbwZYl0WMAnsWIsRIxKTgTTr7paStKldqfhI49nAW/je93B/6w2r9T+EKipi3G9/2/yh1IQJuP6f8/PbH4ikqIjD3nkHt7y8w8aIdH/ySUZVV8MPf9gh5/NXSG489NDU7JYFWl60Qq+KUonw+uv8oLiYN7/6qsWqbKBgzx69KXV2WrAopaKVk9P0xblJbm7LtLy8lmntNXCgXTrKuHEdd65AqVyh1fIiLL0qSiXA6hNOsHHOVfrSgkUppVQktLwIK65BdZTKeA0NPOo4TQPnQtkFLO7WjYdCzTOiwlu71l6zDRva3rYjaDhGpVR7rFnDs47TYtnsTdoKwNKlPOs41ASmtdeECVrWJJuWF2FlxqdUqiOsWsUnZ57JZmgxs7l76KG89NVXTWNGarzXvZ9/TteOy2F8OA5ccw0sWNCx521o4CNIrTlnMqSgUErFUX19s7lBAvXz/1BXx34gvz0T/wVzXdgVLmyK6jBaXoSkLSJKtVdDA8yZA3V1sHIlXHEF99O8EtIVOAOgooIf5OVxBjYEnV81QGlpB2U4Pp4APvr972Hhwo454eLFzWfhnTs3NcJRJvgJl4hcJSL/EpEGEVkvIt9vZduRIvKMiHwqIl+LyLsickmIbUyIJbWmXVYq3Y0cifvTn7a+zaRJjHvxRRg7NvbzFRbGNIGgigMtL8LSiohS7VVTg3vHHfDCC3xZUoK7aVOz1V2AAuBUnw/69YNt2zjV52Pk9u10xw5afwoomzGjw7Meq4eAsg4aGLj28sv54pxzICuLbGDe00/D7Nkdcu5WJbBgEZELgXuBXwPfBd4EVopI7zC7nAL8AxiPnYR+IXC/iPwkxLYDgKMDlk0htlFKJUplJUv/3/9rfZvcXBg1qmPyoxJPy4uwtJ1IqRjNnTy5RVcsgGnAMbt3t1yRm8usUOkqpGF79tgfsrKY7b9uqTDxWWIHH14PLDHGPOC9v0ZExgBXAjcHb2yM+XVQ0kIROR04H3g0aN1nxpi6eGdYKRWBNWt45LTT+LCt7ZYsYdnUqQwhYNJD1arnHYezM3Nm9U5dXmiLiEoP48fzvOPwvONAdXWHnrqREGNC+vfnmFdeCf+FOTu7+dKJXPDww1zckScMfDKUSter/U+4ckWkImC5rPlhpSswGHgp6IwvYZ9kReow4P9CpFd4TfKveIWPUqojrF3bohJyPITuplVfTxVe991OqMZxYP78Dj1nFaTWGMJAWl6EpRURlR4qKlgHrAMa+/aF5csTe76yMvafcEKL5C7YRxPccw+MHJnYPCTLpEkck+w8dG51xpjigOX+oPW5gANsD0rfDkQU+kZESoAzgcBjf4p9QnY+cB7wPvCKiJzajs+glIpEZSWrHAcqKlgyfHizSkg/4Cevvw4LFuA+8ww/ev31FruvAz6MR+SsDlYDdvwk2GhgCRxTWOY4UGNDwCzt1avpvGki7csL7Zql0s5cwJ0+HQoKEjNAr6ICZszgthCrugCHPfwwnHxy/M+bYhrADiIvKUnsidauhe7dO3ZCrkglNgqKCXovIdJaEJHh2Ob1a40x65oOZsz72MLE728iUgDMAlbHnFulVEsNDawBPhw61Eb98xwHTHr9dRgxwiYE30enTMH1P+w68sgOyGji1AD9duxI2PFLXnkF8vK4/pVX4N//Ts2uWaDlRRhaEVHpIeiJkfv554wbOpSiBPSt3TB0KOHaWxoBd/Jk3JtvttGd0tgGoOqcc5izbVtCY9SvGj6cE4GjUq2fdOL6/NYBPlo+zTqKlk+9grIkI4DngVuMMZE8gnwLmNCeTCqVTpY4DlnApATcZxqhWSWkALj4jTdg2LDwO+XkxCdiVpIMW7/ePgzsCP7eB6ncC0HLi7C0IqLSw/r1uI89ZltCPGVApeMwJY4Fy1LHaVag+N0CdHk/4OFBfn7czpnKGoHf9erFtb/4hY1VnwAjt25NnXEhgRJUsBhj9orIemA08OeAVaOBJ8NnR04F/gK4xpgFEZ6uCNsEr1TmamxsGovxiONwcbzKjA0bWDx8eLOk3sCUt95K/3C6RUXJzkFq0fIiLB0jotJDTg6cey7uj3/MYV5SI7ZJeIPj2O49saioYINXCdkbtMotKKDLM8/YEL3+JRW/OCfIF0D57bfD4MHxO2hZGVWOYyfhys+PvKl9zRrec5yO6SOc2LjwdwNTRGSaiHxbRO4FjgEW2VPLHSLyyoGsyEhgpbf+TyKS5y1HBmwzU0TGiUh/ERkgIncA44DSOFwNpdLCh9jKSMw2bOD+QYOaJq/1+wRYNXRo7MfvZO775S8TNk7kqYAxIilLy4uwtCKi0kdeHixbxnhscOxTsJWR5QDnnw8rVrTvuGVlcOGFLKd5JaSrdx4efzzx4yRSTPYPf2gnavSsAVZXVkIHzS2SEhJYsBhjHgdmAnOASmAEcLYxZqu3ydFA34BdpgAHY/vvfhqw/D1gm67AfOBd4K/eMf/TGPNUez6+UmkjKws3YKD4h9iuWu1WVcWiQYP4JCApH3DfeIM5b7zByPXr23/sTuoz4L7p0+0EtXF23ltvpX4vBC0vwhJj2hzLknDFxcWmYt26tjdUKhpTpuD+8Y9Nb93sbIh2/o6aGvb36dNiYHpXbBN7IvoTdxpLlvC7qVMB+BJb6csDrnj/fds3OLED8yKza5dtHQnRV1kcZ70xpt39I4r79DEV//3fUe8nl18e03kznZYXKmHWrsUN6EpVANF37d28mUUnnEBtQNIxwGXvvJOaATc6wCrHYZX3cy4w/cEHYcqUmI+73HEYv2VLu8eiLHYcpu3Z02ZZVTxkCBUVFdKuk/iPoeVFWNoiolQrXghRCQH4ERleCQGYMoVrfT6u9fmaWkdqwUZ6qahIZs4OmDCBRX37tr1deyS2qV0p1dGGDcNdvx73jTcAO4fHQ9G0jGzezH2hKiEbN2ZsJQRg5Pvv4x+WXwf2AdbSpTEfd/w778Q0IH7a+vUdd0/W8iKszPiUKjPNm4c7fvyB94WFke9bX8/yI45gc4hVbkGB7Y6lwnpk+HAu/vGPYdmy5GZk0SKu+Mc/EnPsxM6Uq5RKhqIiaGhoelsbfsvmqqspPeEEAken5eFVQqIpe9JRv36M2bKFMbt2UTZoEBXA7yZP5lqASZPaf9xYK3chBtTf5zhclYiHjFpehKVXRaWvvLy2x24sXAizZjXvsrVyJV+WlPAeLWdMvwXg3nvTP+JJlE758Y855eWX2Vtfz6+xfazf/POfKfrzgSAeB7cVrjIR8vMT13dYCxal0lN2Nu4779ifI/kfr66mtG/fZpWQo/C6qfbrl4gcdj5ey4X/an4BLJg8mZmOAxMnJitXLVzl/73Hm5YXYWnXLJXZ3nmHioCnX6xaBdddx900r4RkA8OALlu3ZtzA9IgsWwY7dtDV69IA8BLwm4CF//3f5ORNKaWiNXCgXYJbM+rqmg9kr6nhdyEqIVdpJSSkMVu34m7cSBFQDyyYNIlSx6HUcWxgmGTL4C50yaLVM5XZFi2ieMGCpqb4T848k/uDNukC9APGZPqYkEhkZTXdVBqTmpEOoE+4lMo8ublM2bLF/lxby4I+fagPXA1cFcMA6rTntVD775z1gesCHwqmGy0vwtKrojLbqFHMe+21prfBc4SAjYl32I4dHZWjzq24mDnetao+4giWJDc3iaUFi1KZp66OBQEBMOoDVh0OTN+6NfVDyaaAkm3bKGloYHnfvmxIdmY6gpYXYWnXLJXZ5s1j9rnn0gA00HJMiNu/P4eVldkJE1VkcnIgJ6fFU46y6dMhaJbhTk+joCiVWXJzmfnWW9TTvBKSA1yrlZDI5eVBQUGzcmL+hRemRvesRNHyIiStiKjMVlMD5eUtkrsAlwEsWgRjx3Z0rtJC/tixBI6mqQDeXLsWAiOZJUNlZchoKVHTcIxKZZ66Ou4Omhk9B5i5bZtWQtph3LZtnOj9vAuYf845sHJlMrPUzN2xTGwZSMuLsNqsiIjIQyLymYhsCEi7S0SqRORdEXlaRHK89AIR+beIVHrLogTmXanYVFXBFVfgfvVVi1VdgWN274aRIzs8W2mjrIziuXPxF81HAVXA6qefTmKmgLIy3HiE9NWCRanMUl/P/J49+TIouQvYJ/wqenl5XLB9O4WAe++9zNq2DUaPTnaumgT/rttNy4uwImkRWQKMCUp7GRhojPkO8AFwc8C6LcaYIm+5Ij7ZVCr+3hwwAPfzz5OdjfR2881M276dLOCq0lIu8fk4NV0G/WvBolTmqK/nN0ccwa6ApMMA96237JvNm6Ob/FAdkJt7oDKXl5cS98n5jsP8eP4+tbwIq81PaYxZLSIFQWkvBbxdCyS5r4VSUWhs5NFu3agOsco99FA7gN17al/hOBRnZzefZ0R1Si84Dh8ROiBBu+jgQ6Uyw65d/OaII/g6IKk7cP327ZCby7Xe6yXbtycrh53eBTt2pNRYzF1tbxIdLS/CisdVuQQInGb6WyLyv9gWrTnGmL+G2klELsPrht+7d+84ZEOpCKxZQ/Vpp/EhLcPLukceaceE5Oczu74esrMpvvRSGDQoCRlNI927M+f734fTT09qNj4DPon3QbVgUSp97drFb3r0YD82mIlfd2BW4Bfn3Nzmryp6KVIJ+U1QK4i7fTtlZ58dn4NreRFSTFdFRP4b+33uT17Sp0BvY8wOERkMrBCRAcaYFt3sjDH3g52yobi42MSSD6XaNH8+1NZCWVmLkLJdgZFgJzP0T17lH8C+SIc5xSw7217bZKishKVLAZqeZuYAQ4BbYz22PuFSKu19HfT+YIIqISqtBP++41a51PIirHZfFRGZDJQAZxpjDIAxZg+wx/t5vYhsAY7HBsxRKmmW33RTyFjlWUABcEq6jFtQzc2ejfvyy82SvoP3+9b+3EqpUBoa+PUhh7RIzgZu3LkTunfv+DyphPiN43Djnj2QlcW8gDLB3bFDKw4dpF1XWUTGADcBpxljvg5IPxL4whjjE5HjgP7Ah3HJqVIJMAko2LMn2dlQnZE+4VIqbYUaS9YF2q6EVFXx6wEDOAaYog+4Ut6NO3c23cdn79yJ26MHbiIqm1pehNXmVRGRx7A9V3JFpAb4JTZKVjfgZREBWOtFyDoVuE1EGgEfcIUx5osE5V2p1rkuz95+OwCbQ63u3x8WL9abQxp61XHYBQTefNxLL4Xi4viF2dSCRan009jI3KDWkK7AzyMNWNLYyF6gGljiOFoZSXWBFQ7/z4lo8dLyIqxIomZNDJH8YJhtnwSejDVTSsVFdTVvt7a+pARGjIjsWJs3Hxi0/qc/wbhxMWZOJdIZBx3E3n372IAdpD4TYPZsKCiI30m0YFEqvTQ2MrdbtxaBTAA71i1K1WhlJFHudxw+A+a8/z7069euY8xzHBqBOV7XrF8nsruulhdh6VVR6WntWvhry4Bt2UDTLSuaJ+NVVbgNNm6Ke/XVdt9hw2LOpkqQhga6AieNGcPal1+ma6K+CGjBolR6CFEJiaolxG/gQNzdu6GiAve006gGHnEcLtbKSFxd5v+9tKOC6LcX2B/wPurfdbS0vAhJr4pKSx8MH86jIdJPBH4UY4Hg1tYyfvhwBmrBktn0CVcLIvIQNojJZ8aYgV6aC1wK+GcP/bkx5nlv3c3AVGxX3muNMS92eKaVamzktm7dmn0pzQJ+7j0pj1p2drPuPR8CSx2HSVpmxE92Nou8VhGAW7ZsibjFe57jtKiE+I+ZMFpehKVXRaWdpY4TcrLCeFqBnexQm9zjr9Fx+B32aeT0aMNkLl/O3RdeeOBY2Jj/CaEFSyhLgFLgkaD0e4wx8wMTROREYAIwADgGKBeR440x+k+lOlxwJWROeyshfkVFuG+8gTt8OGDHKWplJL6uCAw0E8XvqpEDv2939+6OuY9reRGWXhWVPiorqRw8mI8IMVlhQQF8//vtHyNQXIx70UUAvPTHP/ImUANUOg5Fb71lB0GruMhaupTrX3zR3rSjHTS4bx/+SYt+DnS96KLExfvXgqUFY8xqESmIcPNzgGVe2Pd/ichm7BQvf0tU/pRqSxfiUAnxGzYM9/XXcU87DQjxBF7FJsTv6G7H4fpt29rseu3u3GlbQDrqHq7lRVh6VVR6KCuDyy9nRVByFnAB2AHmsYzpyMuDJUsAOOaPfwRsZWcFUFRSAqWlMH58+4+vDpg4Eb77XZg160BQgP/8T7jyyvD7zJxpAwqsWdOU1PXSSxM7IaUWLNGYLiIXY+eUusEY839AL2BtwDY1XlrsvK42fl2B2fokOuGWOw7jH3+809wLb/MGJ3cB3HY+XW/TiBEHjq33i4S7PoJKZNwqmtHQ8iIsvSoqPUyfjltb2yypK9AbOD7OX0AO8xb/k3f388+Zc+GFZEXRR1W14bXXKF25suntJStXcnArFZEVv/89lQHvc0EnHUsdC4HbAeO9/ha4BJAQ25pQBxCRy4DLAHr37h3RSfeH+VnF37OO0xShcDywzHGoAtwXX4RRo5KYs/Dc4AhJifySqF9AO04k11p/HymlS7IzoFSinA0J6Y/b2+fj+h//uFnaXOD5vn3jfq6MdeWVTPf5mpaDo/g9dgGmb90K8+e3uW3MsrKiXzKMMWa7McZnjNkPPIDtfgW2BeTYgE3zgU/CHON+Y0yxMab4yCOPDH+yxkZcx8H1WkOyANfn4+faGpJQP/L5cH0+TvTeT/D5OB5wzzoLVq1KYs5Ca1EJUaojaHkRklZEVFpy8/IoWr8+cSdYsAC3tDRxx1dhveA4MGlSi/TpgFtWxi1lZfGbtLA1/qb2BBUsInKViPxLRBpEZL2IfL+N7f9DRF4XkX+LyDYRuUW8GWcDtjnNO1aDiHwoIle089NHTESODnh7LrDB+/lZYIKIdBORbwH9gXWJzo9KnAt8Phg/nmWOwwdemnvmmfaLf0C3yWQKVQm5RSuqKtG0vAir81W3pk+nfuHCZkk5P/whrFiRnPxkqg0bqB80iJxooxrFS3k59Wed1fT2MMA9NuDhamkpFBUl7vx5eTBxIu78+eAvxHTAeocYc/LJLSaUHDd2rO0CMnZsx2UkgX1+ReRC4F7gKmCN97pSRE40xnwUYvvDgJeB1cDJwAnYCFa7sV2h8L7sPw88BEwCRgD3icjn3mS08cj3Y8BIIFdEaoBfAiNFpAjb7aoauBzAGLNRRJ4A3sMOubo6XhGzuqBfLpNpgs/HowGVkVQRqhLi6t+J6ghaXoTPvzEhu+R2qOLiYlOxLrIHYXsdh18HpV2C7S6jOsDSpVBbC6tW4a5cibtlC1RW2oHC2dkwfXri87BqFVx9NW5VVVPSTCBH/wZUFMRx1htj2l17LB482FT8LfoAT9KtW5vnFZG3gHeNMZcGpG0Clhtjbg6x/ZXAnUBPY8y/vbQ5wJVAvjHGiMidwHnGmP4B+y0GBhhjvhf1B0mS4PLCdRxcn6/pS6ZWQlLLkoBw6u4bbyRtIlithKj2Kh4yhIqKilBj2iI/hpYXYXWeFpFduwBazHoKnelDdH4vTZ5MBc0Hf1adfz7Lsa0S106ZkthBwrt28dmZZ3Jf4s6gVGQS9IRLRLoCg4HgQS4vAaeE2e17wF/9hYrnRezg8ALgX942LwXt9yIwWUQOMsbsizHrHS7wy6VWQFKfO3w4bhLCnWdEJWTcOD547rm4B2dRcaLlRVidY4xITQ3zevRgXo8eTVe6C/Dz99/n5zt2cMzu3cnMXUb5wc6d/HzHDuY8+GBTWuHu3cwZPZovgF/36AEB0Y7ibVmPHiQwIKtSUdlPl6gXbLelioDlsqDD5gIOsD0ofTsQbvBLXpjt/eta2ybLO2enEvzlUishqWmKN5A9slhn8ZcRlZAJE3Cfey7ZuVBt0PIitE7TmNAQKrF79+SMT8hk/taOkhLcuXMhL4/GQw5hubd6L1BWUsLBwIlAXrxu+NXVvNq3L9W0DMXpFhbCvffG5zxKRcgYaAyeOTMydRF2CQvuNysh0traPjg9km1SnkY96rzcoUNx169P7Bg+/7kyoRICsGwZbkMDH2hlJGVpeRFe52gRCTAMGx1nOug8AcmUmws33wzZ2WQNG9bsaVcFdgRUZbzOVVYGAwawmuYV0i7YEVnce2/KxqpX6ctfsES7RKAO8NHyadZRtHxC5VcbZnsC9gm3TSOwI6KcpQj/l0nXe9quOhd38GA7tjCR58iUSkiAR7Gf+0OtqKccLS/CS92KyJo1UF5uFy8OeT4wprCQXJ+Pw30+rYikijfe4JRLL+U44DgONLM1QOwx5DdsgMsvx21o3iaWDRwPHLVzp1ZCVFIkqmAxxuwF1gOjg1aNBt4Ms9vfgO+LSHbQ9p9A01jhvwHB/yyjgYrOND7kk/XrtUWkE7rEqzQe4713Bw+293fPAseB6uqEnT/dKyGsWGEr5qNH8wjwkf6PpBQtL8JL2YpI6Wmn4Z51ll0mTwZg2tKlsHFjknOmQlq0iIt9Pi72+TjOS6oE5p55JtTXt/uwFYMGtZgxHeyMaBO0MqrS193AFBGZJiLfFpF7gWPADpESkTtE5JWA7R8FvgaWiMhAETkPmA3cbQ6ERlwE5IvIAu+Y04AptBzkmNKOGTxYW0LShDtoEFRV8TvHoT6R58mkv5UXXsA9/fRk50J1rE5dXqTeGJFVq7jvzDOp896OAYa98459069fsnKl2qkRuO+II7jqzjth1qwodmxkabdutAiADbgHHQQBoXszzduOw0CgayYVrikohj6/ERzbPC4iRwBzgKOxkwCebYzZ6m1yNNA3YPudIjIa+B9s78j/w8aDvztgm3+JyNnAPdgwjZ8A18Y7JrxSrbksxH3r2gTcyzKq8hGsvDxpwQFUaFpehJdaFZFZs6i85x4+895eAeT94hcwcGAyc6Wi9JOf/hRqatj/8svcBvb36YVfjsjatWwePpxqmodrBjtjOv/zP1BQEKfcdiINDXx0yCGsBXrTCcMcpaFEFSwAxpj7IHSkamPMlBBp/wBObeOYrwMnxSN/SimlIqflRWipUxGZP5+ae+5hRUBS3tix4LpJypBqt8WLAeiyYAHccINNu+suOOEEmDix9X3LymDWLJYGJXcFfgDw4osZXTGtp2XlTCVHIp9wKaWUSh9aXoSXMhWRN2+6idXYQStNvf61/3/acBsamDZpEvmnnw55YUJb19Wx95xz+HVQcha2BaA4k5vaAbKz+Y7PR53jsBegpsam5+cnM1cZSwsWpZRSkdDyIryUqYic4vNxSkEBSz/+mEl79tjEBMxCqZJnMXBcr15cHKZC8WzPnrwdIv0C4Hj/34QC4H6gS58+ANzyzjsZ3UqULFqwKKWUioSWF+GlxDf9+vXrecpxqAMOBq2ApItJk3Bz7UiGssmTqQA+Ap5yHM7buBEKC+12dXWs6NmTUMPP3YIC+NOf9G8iwBkvvsgZtbWwdi3uwoU8MWgQF1x6KSzSOec7khYsSimlIqHlRXgp8e0uBzjP/6Z//+RlRMVXbi5MmgRAdy8EcyPwLnDGgAHkPPgg9OxJQ0lJyMkPZ4OdrHDYsI7Jb2fhnzdlxAjchQv5DSQ0/r4KTwsWpZRSkdDyIrQ2KyIi8hBQAnxmjBnopR0OPA4UYCc/ucAY83/eupuBqdiZHq81xrzYZi4GD4Z169r3CVSn0A870LoBqAIWAO7UqdC/P/OCts0GTgSyt20LP54kndTX20H6EyZE1/JTUAA+H90DJ65qbIRly+xrcbF22UogfcKllFIqElpehBfJhIZLsNN5BJoNvGKM6Q+84r1HRE4EJgADvH3uExGd3lOR7/MxzudjwisH5tRxAXfTphbbFgI/8vnSvxLivyuVlzN38mQIMXFjJJpVXWpruW3yZFvJGzQo5iymlBS7iydqplyllFLpRcuL8NqsiBhjVgNfBCWfAzzs/fwwMC4gfZkxZo8x5l/AZuwk2EpF5EZg3Pbtyc5Ghyjv1g2ys2HcOOZs29bu6FeXbdsGK1bEN3OpZtgwlnfrluxcKKWUUiqO2jtGpKcx5lMAY8ynInKUl94LWBuwXY2X1oKIXAZcBtC7t84BqsDt3x/uuceOLckAo+680w7Yz8qKrfUncN/cXG655hr7KOU//zP2TKaK+fMZX16e7Fw0o03tSimlIqHlRXjxHqwuIdJMqA2NMfdjo5BSXFwccpukKimBhgb7c26u7XevYlNWBpdfHn79pk2QIa0hAMyaFf9jZmfDggXxP26yjRhhlxSiBYtSSqlIaHkRXnsrIttF5GivNeRo4DMvvQY4NmC7fOCTWDKYFA0NLFm5kk+AvcAxwGWzZ9t1BQWQk5O0rHVamzfbcL5ffRV2ExeYOXUqOcOGHQjtq1QK04JFKaVUJLS8CC2SweqhPAtM9n6eDDwTkD5BRLqJyLeA/kDnC4eVnc0Unw//89dPAHfwYNzBg9Oru0sHWnXCCa1WQvwWAMsHDEh4fpSKlQ4+VEopFQktL8KLJHzvY8BIIFdEaoBfAvOAJ0RkKnaOuh8DGGM2isgTwHvYKSOuNsaEnkY7lOHDeXXtWs4IM/N2vKxwHMZdeSWUlib0PApoaGDZIYdQHWKVe+SRzbq8PXHmmbyHDe/7iONwcaaE71Wdkja1K6WUioSWF+G1WRExxkwMs+rMMNv/CvhVu3KzbVuH9OMaN2wYjBvX5nan/vSnnPq3v8GWLbj79gGweu1aCh2HbOCwPXt0xu/WrFpF7Zln8gGwP2iVm51tZwIfObIprav32gh8CNT06kX+0qUwMdyfoFLJowWLUkqpSGh5EV7KfYv+GsB17Zvx4+M3IduaNVBZCdOnwxtvRLbP4sUH9j3tNABe9ZbuQAKGGqeP8nKYMYNFQcnZwDCAd96Bfv2arSsGcoBdQAWwGHCnTYP334fu3RMzuFupdtKCRSmlVCS0vAgvtSoi2dl8Acy7/XYaALeiwkZaiocLL+Sp2lrOmz49+n2zssj2ftyLfbq/H6CuTrsOhbJrF1+cdRa/C0ruAvQGRobpepfv85EP8NhjVEyaBIDb0AC3385RwFXTpmmgAJVStGBRSikVCS0vQmvvYPXE2LCB2bt3M3vnTuI+k8TWrZy3e3f79h02zOZr924u9pK+Bub26gVLlsQpg+njiR49CDX6Zhrwk3b+Dj4D5h5xBKxaFUPOlFJKpYSaGqiubr7EUyKOmSwNDVBbG/n2u3bZB6X+n6urob4+ETlTKmap1SKSldU05mJ6aSmcfnpCjt0u2bZNJLDm1gg8NXUq5/3+97B+fUzZSws1NbzUpw8fEmJMSP/+NjhAdnaoPZsbPRr3zjub3u6/6SZuw17vZ888k2ygCDgqwUENlGqNNrUr1X6L+vQh+Ku1u2WLDZEfB27fvhwOXNuZy4mGBluB+H//j8o5cyiK9LNMmkTdc8+R6/PBaafhVlYyHez7dFVdHbe/nUTQ8iK81GoRCXTllSk5l0Tvc8/lesDfwetdYHVlJYwalbxMpYKyMujThzeBhoDkLsC1YCshkV6j3Fw7HsRbuowe3bTqbeBNYEO88q1UO2k4RqVSVy6dvBICsHgxFb16wc03R14JAVix4kCl45vf5HDsuNZ09kjfvtG1GnUwLS/CS92KSKpavpzDfD5yt21runivAktfew1Wrsycv5xAXhAANyg5GygEDt+5M7aKWn4+/YB+HGjC+xrs9VYqSbRgySCNjXZS1lDpVVXp0wWoo2ze3KLVPN6mb9yY4DN0gOnTKY61MlVezrU+H9mdvVLWhot9vpQes6vlRXhaEYlB4MXbDNxWUpLSNfJEeXfwYNyPP26RXgRc4PPZiFexWLyYST4fk3w+entJFcCvS0ps/1elkkALlgxSWcmzJ5zQMr2sDHfAAJb17QsbNoSurKjmNm/mvhNO4LMEn8YdMMD+TpRKAVpehJdaY0Q6k7w85nhPXBoGDGAFMGHjRsjPT2q2OkTfvpQGPAH8MsQmLsCWLQnNxl6gtEcPpt97rw3LrFQH0j6/SVZZCUVF8T3mhg2hQ8YXF/OjVp4oVwHuoEEUAePS/MlzTKqqWDRgQLNKyFEEPNSL87xc7qBBuOvXx//vRKkoaXkRnraIxKKwEAoLyc7OtjW6FBzTEm97HYenqqupg6Zlb9A27rHHwjPPJGTg2MWXXsoYbJcvd/Ro6sEO6FMqCfQJV/K4gwfH94DV1TwxaFB0+3TrRh40RXncC7aCVFUV16ylhQ0bWDRgQLMB6kcBV73/Plf4fFzh8yXkQZ47eLD9nSiVZFpehKYVkXg491wyZaj6Xmz0qlC6AuMAli+HkpLEZGDRIoYNG8Z4gBUrOA9aTIyoVEfQpvYUUFFhl3gcp6DAdiWNxtixXOHzMX3pUgDew37xLRswIPY8pZPKSu4fNKhZJSQPWwlJ1P07HzjG+9kdPDh+fytKtYOWF+F1/opIbe2BeNnJsnQpORnSHN992zZbCQi1Dmxkj+LixGbijTfI2r0bams5ccsW2+yuMdJVB9OCJbnygcVDh+IOHRrbgWpreSLWY3zjG+Rjn/CD1zKi4xOsykoWDx7MJwFJxwBXbNyY0IdI03w+Lgsol13/38ratQk7p1LhaHkRXqeviKzt1YuPevZMdjYyxvO9enFbsjMBcM89uH37Ni31RxyR7BypDJMqBYuIdBOR34tInYjsFpFnRaTVPi4icqmI/FVEvhCRehF5TURGBG3jiogJWlImGsc0n49pAQEs2i0vL/qWkGDjxjHN5+OqBx8EbFj3FYMGaWWkooLFgwdTE5B0DHDZxo0d1pW5d8AC4A4fDmvW2EWpDqLlRXidviKyH3gKWOU4yc5KequvZ7nj8G6y8+F36aW4Dz5IFuCOHUvOO+8kO0dKJcsC4HxgIvB94DCgTERauymOBB4HzgSGAu8DL4pI/6Dt3geODlj+I54Zj4dLUqk1unt3CrDdjiqBZwcNytzxCRUVPDR0aLNKSD5w2TvvdOh4ykt8vqbFzz3tNNzTTuuwPCiVQhaQYuVF56yIVFTQ4Dg0OA6bgXpsOFd/WoPjwPDhyc1jupgyhQbHYdcRR/AezScrBJgDnAh8B7j22GM7Ll+5uTB+vP0DHjkydKQbpRIoFZ5wiUgPYCrwM2PMy8aYt4GLsP+SYYeuGWP+yxhTaoz5X2PM+8CVwFfAmKBNG40xtQHL5/H9BGlm/Him+HxcUVoK2AlYy/zjEzLJ2rUsGTqUjwKSegPT1q9P6r36OG9pUl6epJyoTKPlRXidM3xvTQ3+24d/dMguYJ73c2+gZO3apv66GWnDBvjHP2DixJgOU/PHP7I4RHo29i83a9s2Snr1sn9IHT2pV1YWxZDSkxip9JYCfXgHAwcBL/kTjDEfi8g/gVOAFyM8Tlfsv/X/BaUfJyLbsMMe3gJ+boz5MOZcp7ucHPphH9xsAI4fOpTjU6nlJhHWrIGvvgLgkZISqgNWFQBT3nor6WF0L/Z+B67Xg8I96yzcsjIYOzaZ2VIZQsuL0DpnRWTcOEq8G8o6x+EFaDZL6yWFhZDpXXXOOoultbVMOvdcyM5u3zEaG8POftsPONv7HRycrAI2O5sfpHvhrlJWDHHhc0Uk8BH5/caY+9uZjTzAx4FnMn7bvXWRmot9nvNsQNpbwBTsNBlHYRtA3xSRAcaYHe3Mb2aYOJFJEyfCggWU33BDRlRCHj3tND4IsaoArxKS6CAmUTge+MB7dUtKcNP996OSTsuL8DpnRSTAkJ07GTJiBO4//tGU9uuqKkZ168aQDL+5bAZ+c8gh3NjOEImPdutGqKrs9cBhO/R7iMpsMRQsdcaYVr+Vichc4L/bOM7prR0CMJFkRkRmAJcDo4wxTfOTGmNWBm23FvgQmAzcHcmxM15OTuyD6TuBytNOa9YC4ncccPEbb6RUJQTgJz4fyxyHCd6rUomm5UV4nXOMSKDu3WHxYtzrrsO97jpysW1Ca4E3HYc3HQdWrEhuHpPoa2DVCSfA3LmR71RVxZuOQzWh5wzpCpCTE4fcKdV5JbjP7wLg220s64BawOHAnHp+R2GfcrXKK1TmAmcbY9a1/nnNLmAjEDxAMfUlqwyYMiX9W0OAohdfpCBE+sVlZTBsWEdnJyITfD5YvpwJjz9u575SKoG0vAiv07eIAPZpi/fE5eB77gHgCw50gjulpib0fhliFdDvl78kf9cumDev9Y1XrICpUw90IPRkARdja67ZF12UgFwq1bnE8IQrgmObOlo2n7cgIuuBfcBo4FEvLR9b8LzZxr7XA7dhC5U2Y5mKSDZQCLzW1rYpZdcufn3++fz88cdhfLhZkFS7rVzJspKSkN2yUt3yCy9kA3a843kZUGFUyaPlRXjpUREJkIcdL9JAwG9lwwaoqYH8VkMlR6a6GhoaOjT8YLvk5XFUbS2feW8XA2Puuoth48eHbyavqoKpU3GDJgfsiheHfffu9o83USoNJXvwoTFmp4g8CNwlIp8BO7DN4O9CU0wPROQVYJ0x5mbv/c+AXwGTgA9ExN8/+N/GmJ3eNvOB54CPsE/MfgEcAjwcLj8i8hBQAnxmjBnopR2ODf1YAFQDFxhj/s9bdzM2iosPuNYYE+lgycgsXQpffcVe4NcXXsjPH/ay7jgxB/LIeCtXwo4dLJs8maqA5OOxv+TjAL75zWTkLGLjfT42OI5WQlSH0PIitLSriPgHUDNnDu4ddwDgPvAANz7wQFwGVX/Uty81wCmpfuNav56rVq7ELSlpSnoBWDt0KDPD5P3NAQNatIQAnAqMSPXPq1QHS+QTrihdh+1F+TjwDeAV4GJjTOA/bV/g44D3V2OjpzwedKyHsQMOwU778Bi2Gf9zbI/XYcaYra3kZQlQCjwSkDYbeMUYM09EZnvvbxKRE4EJwADsPHflInJ8UL7br7GRFZMnNwXc2Au4kycDNjzMD9K9IlJRYbsuJ+ih2fMlJQT3zSgEJrz4IpVnnUXR66+nbLesQCclOwMqI2h5EV7aVUTCuQ8odhxGxviFuveWLfRuCJ5NI0WdfjruG2/wu+HD+cJLqgcWOw7TAkMWNjbyaLduIQcbujk58MYbHZFbpTqVVClYjDENwDXeEm6bgtbeh9lnQjvyslpEgo99DnZCLLAF1yrgJi99mTFmD/AvEdkMDAH+Fu15Q8rKYpzPBw0NdDnkECq95GzgB94M6Ols19ChNIKd7DXec3eUlfF1UJK/EsKoURR1ogdXP+pEeVWdl5YX4bV7sLqInCAilQHLlyIy05vmfVtA+tntPUdMxo3DPflk3JNPpgAbZ+xtoMZxqHEcWBxqdowwNm+2+1RXQ0FB6nfL8svOhmHDuHb0aAI7Y9UAG0pKYOZMWLWKj7zoWHuDdndzcuDBBzvP51VKpaKexphPAbxX/xRPvWj+1K3GS2tBRC4TkQoRqfj88yjnVMzOZtzu3RRjn343APOmToWFC6MrBzqhBUD9oEG2e3K8rFjB8nPOIfiIEx5+GEaFnRNNKaVCandFxBjzvjGmyBhThJ0k5WvgaW/1Pf51xpjn45DP6BUXw9q1EDCx4ZfYsRKLIfSMqitXgjcjbjONjba1IBWqs+3xwguUZGczigOPJZcDH/3+93D11TxE8+hYXfGm2HzjDRg3riNzqlSnkQoz5XZyEiItZAhJY8z9xphiY0zxkUceGf2ZsrMp8fn4kRd2vAFwp09n/uWXR3+sTmYB8GW8KiPLl/PU+ec3q4QMBIYBHHFE7MdXKk1peRFevML3nglsiaQvWDIc7C3NhlnX18OuXc22+7qkhOdnzGh5gMJCO0aiHXNxpIzduxnh8zFyy5ampIcAt6qq2WZZ2IHpI3w+bQlRqhVasERsu4gcDeC9+mNo1ADHBmyXD3yS0JxkZTEM2/8LvIlwQz18aq+6OjtAPgV0LyxsmqHsbuJQGVm+nBUXXsi7AUkDgfHPPMMYn09nJ1eqFVpehBevisgE7CAVv+ki8q6IPCQiSQ+bMXLPHm7cvZvZjx8YZ3Pbyy/zXo8eScxVaroYmLR7d7KzoVSnoAVLRJ7FTmqF9/pMQPoEEekmIt/CxptvNTZ9zLp3Z4zPx9nbbcj8r4HfzJgBCxbE5/h//zsfTZ7c9nYdYeNGrujfn2O8t3cDu9pbGXnsMVZceGHTOBuwIW/HP/kkBAREUUqFp+VFaDEPVheRrsCPgJu9pIXA7dgm9tuB3wKXhNjvMuAygN69Ezz3bFaWXUaNwg18+tW/5TwrG4AujsOYnTttxJEM4vbvD4sWaYhepSKQKoMPU4mIPIbtAZorIjXAL4F5wBMiMhUb2vHHAMaYjSLyBPAetnfo1XGLmNWWrCxO9U76JjD/hhuYtWuXvffNmhX98erq7BxM06bRO5UGP1dVcVlhIfdv2sQnwHxg1qBBdF+/HoqKIjvGY4/x7KRJzSohRcC4J5/UrrtKRUjLi/Di0SIyFnjbGLMdwBiz3RjjM8bsBx7gQCt4MzH3+W2PnBy48soDS9DAuoOvuYZrgTPAVlzSTVkZ+/v2Dbv6o02bMnoWeqWioU3tLRljJhpjjjbGHGSMyTfGPGiM2WGMOdMY0997/SJg+18ZY/oaY04wxqzssIzm5HCGz8cPtm0DbDAT95e/5Hc33dR8u127YP78to+3YQM1qTrepKqKy/r3ZyQ2RvJ8YNfgwVBZGdHuayZN4u2A9ycB4x5/XCshSkVBy4vw4lERmUhAtyx/X2DPudAiuEbqWrCAbJ+Prj5fx7QKVFfbAfIdoaICZszgtlY2eQjY8Pvfd1yelOrEtGBJA14Qj1O9t3sB5s49sH7zZu4PrpyEMnIk+anUEhKsqoqRPh/+TlTzoV0tPycBP1q6VGeoVypKWl6EF9NjfxE5GDtVfOCjoN+ISBG2a1Z10DoVaMwYHtm0iYs7oAB7b+hQnohgu+XAmyUlXJbKhapSKUCb2tNATo4NzFFbS9deNnLwhl/+koFz5tj13bs3VVLSwTEFBYyqrrZviotb3dYvcKsRS5fqjPRKtYOWF+HFVBExxnwNHBGUdlFMOVJxt9RxQk5WOAfICoiitapvX1Zhw9YscBxmvvVWxIWVUplGC5Y0kpdnKyTB+vWjMJ0eymzZwogod8n2+aLeRynVnJYX4cUrapaKVEMDVY7Du47DU5s2Rb5fYyObo52IsbKSdx2Hj4Dgv3+3oICsZ56xEzR6S9eA9fXA2qFDYfbsyM+nlFJKKaVUhNJwRHbqy8LGry+Epjjvke4X0SD6OXOgqgoqKngqxDHOA3j88RatHacceihffPUVFd77F4D8u+4iPzsbXDeKnCqVGfQJl1JKqUhoeRGaVkQ6WnY2/drT1J+VRUFr+zU0QE0NAGV33NFUmQjUFTtj2InhjlNfT8mYMWx++WXqvaTFwKm3384ZkyZ17gkdlYozbWpXSikVCS0vwtOKSLqYNw/39ttb3eRsoKitStALLzBz7Vrc4cObklYDFSecwI27d+scI0p5tGBRSikVCS0vwtMxIhnCPfZYit56K7KNi4pwn3mmWbexr4GlhxwCjz0Wbi+lMoqGY1RKKRUJLS/C0xaRTFFcHHkErOxsKCnhiqIiqK1tvu4//iPuWVOqM9InXEoppSKh5UV4WhHpjKqq4IUXmqf9+c9hNy+G9o3vWL8++n2UyiBasCillIqElhehaUWkozU0xD7OYvp03Ndei3jzko0bobAwtnMqpZrRJ1xKKaUioeVFeDpGpCMtWMDdhxwCu3YlOydKqRhpn98MUF8Po0bBhAnJzkl8LFhgP8+oUVBeHtk+s2fb7SsrE5kzpdKalhfhaYtIRxo/nut37Yq9RWT+fNz583HDDBx3+/dvXnAWFMR2PqVUC/qEKwPs2sVHr73G4UD3ZcuSnZvYLFjAqzfcwGrvrQu2gtGGNXfdRTkwa/Bguq9fD0VFCcuiUulKy4vwtCLSkfLz7WSDsaqpgbKy8OunTYNZs2I/j1JKZbL8fHq3Z96n9li1yrZSzJ0b/2PPn8+qm25qqoS06xB4lZF33oGBA+OVM6VUhtOuWR1l82Zb0PiX9nbP2rABLr8c96uv4pg5pTqh+npYsyZpp9emdhVXixZRdccd8T+uVwlZFZA0EqCkJKLdRxQUcAVwDLYy8uWgQbYcUkpFTMuL8LRFpIPUn3ACCwLeu7fe2q7WkXWDBvF83HKlVCc2Zw7zFy5k1p49kJWcW1mmFBQqgVatgquv5qOqqsj3WbLEVsRnzmx9uzCVkJG//W3b+/pt2UIecLzj8AlwN3D9oEEcpi0jSkVFy4vQtEWkg+Rs3Yr70582vf/dL3/JXseJ/ACNjSx1HEINL3Szs3EnTow9k0qpiOkTLhUXn35KXVUVBwOF3/9+ZPts3tx6q8T8+VBYGHslJHDf/v05xvv5brRlRKloaHkRnraIdJT8fJg5E3fDBub+/e98ATwF/MhxOLitPshr1/Lh8OFUA8F/l+6RR8KiRVBQgFtTYxPHjIl79pVKOZMmMWvz5qS1hujgQxUXEyeSG+2DpHDjSBYsgAULWP3xx7watGok7a+EAFBVxWWFhdy/aZO2jCgVJS0vwtMWkY40cCCUlzfV/qqARwCmTw8/ZmTlSpgyhUdoXgnpCpwNdnDjuHE2kol//EmoQmHJEli8OB6fQqnUMGxYy4k9O5A+4VKppvGGG3BDVELOAEbeeWf7KyF+XmUksGWkXltGlGqTlhfhaUUkCbp7S1egFnAXLoS1a+1kh361tVBbS0NJCe6mTc32zwJ6A0N8voifRFVPncoHl18enw+glEqZgkVEuonI70WkTkR2i8izIpLfxj5TRMSEWLKDtrtKRP4lIg0isl5EIuw7pFLJqf37xy+S4saNXFZYyI3AjdhyrFnZpZRqQcuL8LRrVkfr3p3pe/bYn084Abe6GoDbzjqLW0aPtk94a2qY26cP+4H9IQ7xE+A4/zEiVBDl9kqptqXIE6sFwDnARGAH9kF1mYgMNsa01u/za6BvYIIxpukbpYhcCNwLXAWs8V5XisiJxpiP4voJVPssWACu2/T2zRCbnAE2pHs8bdzIwfE9olJpT8uL0LQikgz+Pu0HHdSUtB946OWXOdxx2E/LsSB+bv/+totVtP3ik9SPXql0lQp9fkWkBzAV+Kkx5mUv7SJgKzAKeLGV3Y0xpraV9dcDS4wxD3jvrxGRMcCVwM0xZ17ZrrcPPwztnSzRddsM5X7qscfqvFJKJZmWF+Fp16xkmj6d6QFvPwIqgXfDbH4jwD33wIgRCc6YUioSxuyPegFyRaQiYLkshiwMBg4CXjqQJ/Mx8E/glDb2/YaIbBWRGhEpE5Hv+leISFfv2C8F7fNSBMdVkdqzp/1zSgHcdJOdEyTIGcAcb4l5XIhSKi60vAhNH5Mn0/Tp5BYWwllntblpF+DgbdsgLy/x+VJKJVKdMaY4TsfKA3xAXVD6dm9dOO8DlwDvAIcCM4A3RGSQMWYTkAs43nGCjzsqDvlWYAONjBsX0yFCPU089dBD7TwjSqnOLu3LC20RSbasrIh+CfqLUirVGOw9PdqlbSIyN8zgwMBlZGuH8DIYOufG/M0Y87AxptIY81fgQmALcE2IDxnxcVUUyspodBwaHad9lZH581k9Z06LCFlKKSA7O8WCKGh5EY5+v022kSO5ZetWjmplk4HAnK1btTVEqZSTmIIFO6Dw220s67CB9xzsE6lAR9Hy6VRY3iDFCqC/l1TnZTb4phPVcVUrHIdqYC7w6HPPRVcZmT+f1Tfd1KwScgaE7KalVCb6zb59sXV7TAgtL0KJqSIiItUi8g8RqRSRCi/tcBF5WUQ2ea/fjOUcHa6sjErH6bg/4A0bqOjTh/pWNskCOyGiUiqFJO4JlzGmzhhT1cbyNbAe2AeM9u/rhWL8NqGDKIUkIgJ8B/jUO/9e79ijgzYdHc1xVSvGjqVfWRmTgA+AZZFWRubPZ1WISsipd97JyLlzcQ89tFkkLaUy0Y15edC9e7KzEUDLi3Di0SJyujGmKKAP22zgFWNMf+AV733nUV3NswCjRtkZyseMgUmTEnOuFSvgrLMoA/a2stkXYPORUs2MSimagmxHs8SPMWYn8CBwl4iM8gYQ/hEb86Lcv52IvCIidwS8/6WInCUix4lIkXeM7wCLAg5/NzBFRKaJyLdF5F7gmKBtVCzGjqXfT38K2Alu26yMeJWQVQFJ/koIs2bBzTfbsSHBA9SnTbOhfpXKFNu22e5ZKUXLi1ASMVj9HA60ED8MrAJuSsB5EiM7m1zgvr//nXpsBeEY4LLZs6GwMH5hcKur4b/+CzeoctEVyAE+C0j7CLjt5Ze5Zc0aO5t0StXylcpU/idcSXcdNuL348A3sA+ALg6KCd8X+DjgfQ5wP7YpfSfwv8Cpxph1/g2MMY+LyBHY4EtHAxuAs40xWxP3UTLQhAm4K1fyYW0tj2ArIxNKSqCs7MA2Cxbw5Q038DaEr4S0Jj8fcoN7YyilOo6WF+GIMe0fdygi/wL+D3uF/2CMuV9E6o0xOQHb/J8xpkX3LC8E2WUAvXv3Hrz1X/9qdz4SZbXjNGv+dt96C4rjE7zgVcdhdYj0EqB461Zu8yY0DOZeeSWUlsYlD0plMnGc9bFEIxEpMvYeHq3cmM6b6YqLi03FunVtb9jZTJiA++c/A1AI/AA4/Ic/tC3ngwfjVlY22zziSohSKibFQ4ZQUVEhsRxDy4vwYu2aNdwYcxIwFrhaRE6NdEdjzP3GmGJjTPGRRx4ZYzYS49T163EDJh18aOhQmDAhtoPu2sUyxyFUMerm5VH8zjuQn88tr7yC++KLzeYZAVi0cCG7HCfq037hODwSsLByZbuyr5QKlLDBhyrTTJ7Mxd6PVcDvgI+eey7kploJUaoz0vIilJgqIsaYT7zXz4CngSHAdhE5GsB7/Sz8EVJcUZHtjuX5CFj95z/b9PYoL+ezHj34AAge7eFmZ8P//A8MHGgTRo6EUaPIvfde3P79cQsK6IoNeVAG7I2yMlILdAcu7t+fi/v3h29/u32fQSnlSdzgQ5WBxo7luB/+MKJNi0ArIUp1KlpehNPuAQ8icgjQxRjzlffzD4DbgGeBycA87/WZeGQ0aYqLOfUf/wBgLfAqsOsf/+Ds+fOjKwjKy2HGDO4LSs7G1t7YuBEKClruN326XRob6dqtG3uxT8sWAdfOnWsHJUY4ZuQ4gKqqyPOslGpDfAcTqgw3fTruxwFds889177+4he4t99+IP2iizo2X0qpONDyIpR2jxERkeOwrSBgKzSPGmN+5Q1WeQLojW1E+LEx5ovWjtVZ+vze7zh84v18MHDj9u2RDQDctYu6Hj0IHtnRBTgemOCLoNbb2Ehpt27swo4yavSS3Vdesa0njY02qlaYSslmx2EvcGIk51IqA8Q+RmSQgefbsWd+2vf5TaTOUl4opdJDfMaIaHkRTru7ZhljPjTGDPKWAcaYX3npO4wxZxpj+nuvrVZCOquvgV/37AlLlrS57RM9erRoCQG4Apiwc2dkJ8zKYvrOnczeuZM5w4a1XD9vHnf36BE2xG+/3bs5cffuyM6llIqANrWrBFiwgI8ch48cxz5kApg790Bae2ZhV0olmZYX4ejM6jHYC7YlIpzqal5yHD6kZYOcW1jIUS++GF0o3u7d7fKHP+B6seebTJnC9b/9bfi42dnZKRhTW6kYLFjAS47TtDB8eAdnQAuWjFBdTX07AoS0S2kp5TfcwEPAQ8BHf/2rTX/66aa0+jAD2JVSqUzLi3C0IhKFacBMYFxA2peXXw7z57fcuKwMCgt5k+YD07uAjYR177120sT2GDgQXJeZcGDG9fz8lpNYKZXOCgoYgh1j9QHw5tq1duLPDqUFS9qrq+N+CF0Zqaxks+PQEI+KSmkp5TNmsKaNzV4AbRVRqlPS8iIUrYhEoYvPR47PR9F11zWl3Q3U3nQTrAkoPior4fLLcffta7Z/NjY+fO7One2vhPjl55Pj80G/frEdR6nOatw4crz/yVOACmD5yy/bdeXlUFeX4AzoE66M0K8fN/7wh+QEt0IDVFezFLgP+DqWysjChbwUVAk5Feh9770tNm2agb2kpP3nU0p1MC0vwtGKSBwsApafdlrT+8rBg3Fra1tsdxJwgc+nM6MrFWcn+Xxc63/T2MjdZ50Fc+Z0wJn3t2NRnUpOjp1UcPHiluuGDcPNy+NLbDnQrsrIwoW8NH06bwYkjQDOuPdeGzER4M47cc89lyne+irg0ZUrI28ZGTmS9xyH9xyng/4vlFItaXkRilZE2sN1cTduxN24ke94Se8BpY5DqeOEjIvgHnQQP9iypQMzqVSG2b6d8R36P6ZPuDJeXp7tZgt8CdxPlJWRMJWQUYGVELAt6MuXU1BWhvvjHzMJ2x1x2XPPRVQZqfvrX+kOnPjjH8feGq+UagctL8LRikh7dO9uJzosLGyaiGU/UOcte4M2d/PyYPny0POEKKXiIze32f/Yqw880P7JRyOmBUvGGzECd+JE3GOPpZ4oKiOLF/NCUCXkFGBUaWnzSkigsWNh2TL65eUBXsvIc8/B+PFtnq53YSEsW3YgEpdSqoNpeRGKVkQSqCvewPa//EX78yrVUbKyKAEOB6ivT+CJ9AlXNESkWkT+ISKVIlLhpR0uIi+LyCbv9ZvJzmfU8vJg6VKYOxegqTKyq7XKyJIlvHD55awNSDoF+EFpKVx5ZdvnfPhh3J/+tKllZP/T3pReJSUwYUKLzXOXLoX/+Z+IPo5SKhG0vAin3TOrq7YdBhRl2gSCNTW2YM7SPy2VPMdn2v9d53G6MSYwisBs4BVjzDwRme29vyk5WYufemA1cHaolUuW8PzUqQROyTgM+MEf/gDTpkV2glGjYNQo+p1/PpMCH3JdcQWEqgBNnBhhzpVKDxsch4E7d7YYk1vpODQCxXv26PeUFKEtIip+Nm/mtj594IUXkp0TpTqAPuGKg3OAh72fH6Z5dPTOZdQo3GuuwfW6B1YBXwZXCpYupSxEJWRMNJWQQGPH0u/FF+lSVmbfl5TY7ltKZbiB110Xcu60omuu4Xlgbbdurc8DF3daXoSjFZH2qqvjKcfhvVY2+QJY7jjNQ/umoXrHYbnjsOyEE9gPLD3nHB0QqTKERkGJggFeEpH1InKZl9bTGPMpgPd6VKgdReQyEakQkYrPP/+8g7Ibpbw8WLAAbr4ZsIPXHyKgMrJ0KWWTJ1MRsMswYMyDD7avEuI3apRWPpQKNn9+6BaPBQu45brreMl7u66jJisFtLwITSsi7bFyJbt69uRdmk9WGGw/sAGoPe200JMepomciRMZn53Ned77zcDq116DwYOTmS2lEkyfcEVpuDHmJGAscLWInBrpjsaY+40xxcaY4iOPPDJxOYyHkhLcn/0Mt39/6rGVkTWOw7NBlZAheJWQKVOSkUulMtf8+dzys59BVpadILRDWka0vAhHKyLRWrMGrruO4GpFNnaekMDFH9p3EfDlTTfZOPRLlnRYVjvM0qWwezdd33+/KelVYHllZXp+XqWaaMESKWPMJ97rZ8DT2O/i20XkaADv9bPk5TBO8vJg3rymyFf1QDnwdsAmxcDZDz+slRClkmXevBZJqxPeOqLlRSg6UicajY1Un3YaS0KsOh74UfAA2aoq3h0wALAzsHP55XQFfl5SYkONpqEsDjQobgCqpk5lzpgxBz6vDg5TacP/hEu1RUQOAboYY77yfv4BcBvwLDAZmOe9PpO8XHaMYqDk4Ydh0qRkZ0WpjHfLrbc2fS859dZbE3gmLS/C0RaRKDzarRtLQ6TPAs7bvj2iY+wFftOzZ3p21erXjznbtnHLtm34o+A3Ar/p1Yv53bpR361bMnOnVALoE64I9QTWiMg7wDrgL8aYF7AVkNEisgkY7b1PazmQMZWQKseByspkZ0Op8ObMCf1zQmh5EYpWRCJRVcWbjkM19ot1ILd/f7qXlYVu4cjPx73uOtzrrmsWCuZr4PmbbuqAydbayfu8VFVFv29eHuTl0TUg6WtgFy0nelSqczPo4MPIGGM+NMYM8pYBxphfeek7jDFnGmP6e69fJDuvcbFiBU/NmBFyVQUhommlmQ8ch3LHYQVQNniwVkaU0vIiLK2ItGXFChg5kpdo/kU6C5gCdtxHuIgl3bvblo/58ykIWrUOWP2Pf4ScfCrpsrPJ917b67Bzz+US7DXy/5G9BzB8uF0SOtGc+v/t3X14VNW96PHvjx1DHkDJFSrRAMYXhKv0gpKjFClaS1v0pAaVo3hOvFKlnGKpoNhWlEd3PXn64gtFy1Wg6tFbtSKgYnMaX0DRRzmg4AELFSR6AAETGrgRAw2aYd0/1h4ymczkdfbsPZPf53n2k5k9e/ZaazKz1/7ttfZaKl30CpeKU1HBsquu4oMkL9cRN5pWFjrrsccY/8ADnIgNvF4aNQo2bw46W0oFTOuLRLTDfmuqqmDKFNwvvmi2OhcoAoo6MCHOCcApMc9rsTd0Vy1dyg233WZbR4K+f6KqyuahqIjBXZ0QbtkyBgM0NJDbuzcNwGpg9Vo7l7C7Y0d4W4SUahft86viVFSwrLSU2FPu/wVc+eCDTSsWLMDdvp3HgbMch3FAn2ybgNO7Cb/X7NmAvVH/6IgRTNy0CYYPDy5fSgVG64tkNBBpxVtDh/J6gvUXA2M6WHH0iESYFvP8dcfhLWAX4F5wAW4IDtBrhg5lMDAw2ypFpZTyW2Ulz5WWNptbajhw5fLlMHFi08rdu+G++6jDtox/BExzHHpl4XG37KmnoK6OxTNmsBEbjOQCJdu2wZlnBpw7pVQYaNesRBoaeMZxSDQNofu1rzFmy5aUJ7l4xIjAb2Acs2ULA2OG4E2JvDxuf+cd3DffxI3p6rV41KhwdktTqt10XHjlqazk2ZKSFkHIpBUrmgchALNm4S5adGwG9jpgMXA4Q7pq7XIcO2R7e1x7LUyffuyewQ+wXbWor/cnc0qFltYXyWggEuU4VHvL3t69qaLlzdXu8cfDwoUwbFiXk7vkBz/A/frXcY87DoC9ALW1Xd5vlwwb5s9VqtGjYexY8Cpe8MpbXZ36tJRKq+BvPhSRniLyOxGpFZFDIvKSiAxs4z2rRcQkWLbEbOMmeF1/tPFWruTZkhJih/Y4Gy8IKSlpuX1BgZ1JPebewjpsMNKQAcHI4IoKmDChQ++ZsmQJ7mOPcZL3fNmoUbzoOLY7sFLdhtYXiWjXLM8z2CbyRHKBsQDr16fuRP3RR+3fjRu5ZNSohK0vWecb3+ASbySublFeleVC0+d3PlAKXAvsx05bVCEio4wxyTJ4JTQb3K4n8BfgubjttmF7o0aFosChsXo1z3zve83qjmHA1RUVyQcxiZo7F3f06KbHn37Kw8BNjkNeCLtp7XIcBi9aZIOojpo0CYDcG28EOHYPzcSGhhTlTqmw0/oiGW0RaUMP7I3p4yIRf1oLRo5kXCRix5avq0tvk3VDQ3rTe/RRxkUijItE7I37XRiVS6lwCLapXUT6AjcCPzXGvGaMeR+4DnuP9Phk7zPGHDDGVEcX7LWW3tgBnWI1xm5njPlbSguQKTZv5u1ErRV1dS2CkMmvvNJ2EAK2ZaSszC5jxwJwEHiYcLaMDF61qmU3sw6aumIF7pIlRAe7f3bECNixo6tZUypDaH2RiLaItGEqcMqhQ2lJ65733uPyvn0ZmaarYY29e7MSmBDA1bcphw5pIKIyXCiucI0CjgNeja4wxnwqIh8CY4BX2rmfHwKVxphP49afLiJ7sD1V1wF3GGM+6Xq2M8DWrTx7zjmAnT/qS7yW8STOAiavWgUXX9zxtO6/H3fSJPjxj3Grq9kNhO5W7s6UK57XVS164rEV7AUxpbKe1hfJdDoQEZFBwP8FCrAd2RYbYx4UEdfLZDQSusMY8+fOpuOHNY7DmDlzoLwcdu/m5VNPZVeSbXtAWk6Yb1q0yB6QY+6j8Fsj9ubBo97Vt8sefBBmzGj1PSmjQYjKCp2qWPqLyPqY54uNMYs7mYECLxPxN5jVeK+1SUTOAi6CZvOugq1IpmDPF08C5gJrROQcY8z+TuY3c5x5JpOXL2963qdPy23Gj8eNbpOf3/mT9YIC29owejTu2rVprQeC8KOKCjhyxD7R0bNUt6H1RSJdaRFpBGYbY94XkeOBDSLymvfab40x93dh374aA3DOOVBRwdHSUtYGnSHoXL/bLsr7yU+Y8bvfNa0444y050GpzBWdKbfDao0xxa1tICLlwJ1t7Odbre0Cm8H2+CHwGfAfsSuNMZVxeVoLfAJcj+1XnN1yctruitSnT5e7KzUTDUiyXXu6rimVVbS+SKbTgYgx5jMvMxhjvvCadgo7tbO6Orvk53c2Ox1TUQGRCMycyT1xL+WBnYjP064QMVPNn0+v+fODzoVSGcrXpvb5QFtjpO4CRgMO0J+mVmiwV6TeaisREcnFVhS/N8Y0tratMabeGyVlSFv7VUopFUvri2RSco+IiBQB52KbZi4EZojI/8YOGT7bGPP/ErxnGtg5/voCPPIIzJmTiuy06aGSEg4keW0kwdwzoZTKRP4cK4wxtbRsPm9BRDYAXwHfwQ7+hzcU4/8E1rQjqYnYSumxdqSVh70f+4127FcppVQzWl8k0uVRs0SkD7AcmGWMOQg8ApyBPaf/DHgg0fuMMYuNMcXGmOJewLy5c/ky4JFC7gIm7NwZaB6UUqq9jDGfYyuF+0RkvIicC/wBe/vXyuh2IrJKRH6VYBfTgFWJbigUkftF5CIROU1ELgCWYUdKedKPsiillPJPWOuLLgUiInIcNgh52hjzPIAxpsYYEzHGHAV+D5zfnn0dxA5IXOtnMLJ+PZsdh0QD1rpFRfRYsQIGtjqvS/ZZuZK/Oo7OdKtUh4VmptxbgOeBJcA7QD3w/bgx4c8ATo59k4icDlyCPU4nMhD4I3Zs+OeBI8BoY0z3uFqzdSuPO86x5eVEddPKlTzuOKxJZb01ZQp1IRy+1w8v6aSGqtvQ+iKZTgciIiLYyOpDY8y8mPWxmb+CprmL2lSFDaGYPDn1J8YVFXDNNSyj5YzpADz4IHzxBcydm9p0w277dvuZT5pkP/foRIt+WLkyfaNyKZUWwVcsxpgGY8xPjDH9jDG9jDHfjx9W0RhTZIyZErfuE2NMD2NM/KRU0dcnG2NOMcbkGmMKjTFXGWP+mvIChFVDA7vg2LI30Tb19eQCYzZtSl26tbUsBl+DkXrHscf7gF2+bl3WjxCmVBOtLxLpSovIhdiJUC4RkY3echlwr4j8RUQ+wN6lf0tbO8oBTgR6AdWAu3QprF6dumBk926Olpbixk2clOuleyKA40BZGWt+lag1KrsdBdzXXsNdupTd//qv/iV09928+Mgj/u1fqbSKjoLS0UWF0o4dPBc9+a+qYuGoUe16Wy7A8OGpy8dTT/GzdevI//jj1O0zzgGA2ja7lAOw1XFY7Djgx8AmxcV2dDKlsp7WF8l0ZdSst7FDfsXr8JwhJ40axc3vvgtFRbif2sDMLS3FvfRS25LRRS+femrCIXovB4bH3pgeidihfZU/3nmnxcDTSmU2HdgiaxQVcfWmTVBVxcNDh7IvqHzk59sTdB8N3rkz8bwoCQzbto1h9fU634dSXab1RSJdvlndTwsrK9nXlebpujqWOQ4bE7zkFhUxfN26zu87W1x7Le6SJUSnF3wOeD2VXQIaGnjecWDBgtTtU6lQCE2f327lbxs2+LPjHTt4eMQIFsQFIQWAu2kTN2zZ0vI9JSVcvW2bP/nx08CB7R8u/8wzYeTIdgcuSqlEtL5IJlyByM9/jpufj5uff6yb1qs0zfzdIZWVHOzXj78CDXEv3QX2nhCfrzplhPx8KCk59kU4CLwPHHYc2L276/vPyeHKggJbkSmVVbRiCcJXwMN+3D/R2Mg+mo+BeRLwo23bbNerYcNavicnR1sKlFLtoPVFMuEKRKZPh/37Yf9+enmrqvCmZJw/30562B6rV8MttzCP5j3s8rCzufTYuRNKSlKU6SyQk8P52OHNirBDKNwL4Lq2JePFF7u0b/bsgbFju5xNpcJHK5Yg7AMWpDIY2b2bh4YObbbqJOCmbdu6faCx2XGgG947qVTqaX2RSLgCkRi52BtYemBPjMtnz7ajLrWloYG93/427vbtzVb3AM7Em6ywuw3R25acHC6ORLgsEmHKP/zDsdXuv/877syZvH3VVQFmTqmw0itcQaoFHkpFMFJdzfxTT20xyW0PgPr6phvYu6k64P65c+1nff/9Kdnnc44Dm9s9oKZSWUDri2RCO1zFtP377YOpU5n3wgvcWlMD/fu3+b5nevcm0ajks4ATovtUSimVkU4ZPhx3xQrcM87gADYYuTnSyQq7upr5hYXUxaw6Ebj5449ta+7AgVytk9w2zb3VEN/RuXOu3rlTLwgqpYAQt4iQn2+XPn04DLw1YIDtcgVQWWknkIrtqlVVxVuOww5aDnjmDhnCCRUV7b85rztbsAB3zhzcOXOIhn3vA+86ju1D7Thw4YVB5lCpENHhGNOuZ89mc09EWzLmd7TlorqaeXFBSD5w886ddv/RE+VufsI8tqaGcd7je+++u0vD+D7nOLBxY7f/TFV3pfVFIuENRKLGj2cqcBY0jdqxZ4+di76hwU6QN3IkFBfzOs0nK+yBnY+ehQvh0kvTmOkMVlwM5eVQXn5sJK0DYD/vESOoABrWJhoMWanuRpvag+Tu3Ikb01pRRweCkdpa5hUWcjBmVT4wa88ePUmO17//sa4Th4F7Z8/u9CiIV+/ZowOXqG5K64tkQts165iyMgrKyhK/tnYtrz/yCG8leCkXe+P1KYcOQV5egi1UW07BBnOHsf2x3a1bg82QUqHTPSqKUEoQMNRhg5FZrXXVqqvj/gEDmrobASfgBSEFBSnOZHYYV1PDuMZGXi0sZA1w78yZ9Jg5k9seewymTGn/jvTzVd2a1heJhL9FJImjgHvVVQmDEICxwD9HIhqEdMFlkQg3RCLM+OlPg86KUiGkV7jCwN2zx/7duZMeeAFFMnV13NuvX4sg5NaaGj1Jbk3//lBQ0KxlpB7g738PLk9KZRStL5LJzECkrAz3zTePDfEbzz3+eMZl4iRTGWIBsLqbjySjlKV9fgMXDSAKCjgKzCsstM8bGpp31aqv595+/Tgc89Y+0O6BUBRcsn8/bk0N53vPfz1jBjzxBC87Dvzxj4HmTanw0/oikcwMRNavZ8dFFzW7H6SZoqJuP/Z7Sk2ahPv1rx/7stQDG4FdjgO1tcnf57eGBvY6js3HxInB5UN1U3qFK1RycnBramxg4akHG4A4Dr/u27dFEHLb/v0ahHREfj7073+sLmgAfn3jjawF6OzIZUp1C1pfJJN5gUhlJUydyhNAY4KXx4FOnpdqxcXw9ttMwHZjKMJOfrgXoDHRfyFNGht5AngcqPvTn4LLh+qmtGIJnf79mwUWjXAsAIkdeLYXXhCiIyl2yoTPP8fdv5/zaP65KqWS0foimfDfrB6rtpb6khLip1TKwd6cfhi4ZPlyGD3aDu2rlUzq9OnD+ZEI+xyH8UBekFe/6uubFqUC1T0qioyUl4e7Zw9utKtWdDXws88/bxqFUXWc99nFXsn85fXXc0deHkyaFEyelAo9rS8SyahA5PkBA/ggwfoyoOjNN3Evuoh7vFnAxwNjtKk4K9X17ctD3uPu0YNShVP0CpcKpYYGfhkXhIB38qxBSEqUHDpEY+/ebMQOnV9+zTXMXb48o7rK/tJx6AHcrucLyldaXySTGYFIdTUVhYV8lOAld8gQePRRKC7GXbSo6YUEFZDqupLlywMfZ7/73MKllOqUxkbKe/du0X03D/jZoUNB5Cg75eUx8dAhjvbuzZWLFkFZWcaNVPklmdhHXansEf5ApKKCxtJS1id46TaA3/626Z6QqVPTmLFuKugrXeecw7vewx7Y70AOkDt9enB5Ut2YhsSh09hIec+ezYKQXOAOr5tWee/e9IHW5xpR7ZeXZ0/k8/IyKggp15EfVdppfZFIuAORtWth5kzK41bnYWda75Ns2MX16+39AxdfDMuWwfjxer9IpmtogBde4NGtW9ntrcoBemlfbxUYbWoPnWRBiDexrautIb6YeOQI5IT7dCJegMOsqG5J64tkQn3k+OjCC3kmwfrhQEkrV7OqL7iAj7CzwZZfcw1zH3gAZs3yKZcqLaqqcMvKmq3S5nQVPK1YQqOxkXt69mx2zTEHuCP2JDmDrthnlAwLQu6JaQ1xjxwJMCeqe9H6IpHQHj2echx2JFg/F8hpbeZcz1vA+gEDaATunz2bW2fPpoc2xWc898knbUtXlLaGqMDoFa4wSRSEzE10pb62lnkDBnDrnj3MLyzULlrdzD2O07yDTIYFUSpTaX2RTPguKm/cyEbHYRctm07doiJyVqxomkk3iYInn2Tudddx6xVX0AM7qdUzwD7tE5qZystZO2KEfVxQYG+Wjy5KBUbHhQ+D6NXt2JPLHiQJQjwHgXsKC6mD5rOvq6x3FNsKEl2USg+tL5IJVyBSUQH/+I+8CM1mTc8B/hng6aehpKTt/ZSVwRNPwKOPHitgFfA82Pfr/BPpsXWr/bxLSmDz5o6/f/JkKCmh+u67eTn1uVMqBbRiCVKLq9vYSu2u1u5Z6N8f98gR7tq5E4A64CENRrqFY12ycnKaFqXSRuuLRMLzK9yxAyZNwv3qq2arc4HBwFmdbD4/CRvUHAaqAbeyEnf1atu9R7v1+OuNN1hQWUkt4BYXw/Dh7X9vYyPzli7lYMyq/qB9vFWIGHQUlGDdFVMvuB2pI3JyYODAjr1HZby79P+tAqP1RTKhCURePeMM1iRYfxkwsrMHj/x8pkXf268fbl0dAG5pKe4//RM8+2zn9qvaZ/p0Zlx3Hb/u27fLuzoJuEkrERU6+p0Miutd3e6BPcF0vYnp2n2yWV3dbNb1E4Gb9Rjjm8e9LtfuunVQXJzWtN24Fi8NQFUw9HuXiG9ds0RkgohsE5EqEbm9tW0PbNjA+wnWuwUFjNywwZf8LVy6lFptjvef1/S9+N/+jacch9fb+syHDeMpx+Gpnj2JdqC7HLhp1Spfs6lUx4Wjz6+ITBORN0SkTkSMiBS1831XichfReSI9/eKBNvcJCL/LSINIrJBRL7pQ/7bXVdExZ5YRq8xdigIASgowI1EcL0uWgfQLlp+uiESIQx39WkQooKh9UUyvgQiIuIA/we4FDgbuFZEzk62fYO3xHKPOw4WLYKRI1OTqfJy3EGDcAcNohe2m9bLwJda8fgrJ4fbhwxh2qBBlA0axCWjR7e+/fbt1ANlgwaRC0wFzrvlluYjZSmlYvUCXgXc9r5BRL4BLAGeBkZ6f5eKyAUx21wDPAj8EjgXWANUisjgVGW8o3UFwN4kF6dS0e3mALBA6wRfuRdcYAPJjRv9T8txmgWtGoQoFb76Qowx7c9+xzLtGmO+5z2fA2CM+VWi7U8RMdO8x3nAecB3P/4YiopSnjewV70OeI9PAG4tL4fp03XSwzBwHJYBkyIR1jgOY37zG7jttqBzpbKQOM4GY0yn+4iI5Bu4uBPvXNGldJPnR4qB94DTjDE72th2CXCiMeY7MetWAn8zxlzrPV8HfGCM+WHMNtuBZcaYOSnKc4fqCmheX0AKTy6rqnCHDgW0K2i2cB3Htnp5f5XqjOLzz2f9+vXSlX1ofZGcX12zCoFPY57v9tYd4zUPrReR9Ydj1g8EvhuJ+BaExDsIuHPnwttvpyU91X5jIhENQlTIHe3EEgrfwF4Vi/UKMAZARHKBUQm2eTW6TYq0WVd4+UlYX/h1crkPWKgtI1lDgxAVDlpfJOLXzeqJIsdmTS/GmMXAYgAR+dsv4BBQC3BdABXAL0pL+0fTD0h3Tr9l2un9DnTnz747p39q197++Svwp/6deGOeiKyPeb7YOx6mUwFQE7euxlsP9n/iJNlmfArz0WZdAS3qiy9+AdsAfuHzcWK6v/sP+neXKqEuRzu/I6EuQwdkQznCWIYu1hWg9UVyfgUiu4FBMc8HAnuTbWyM+ZqIrPej+am9NP3g0u/OZdf0g0+/s4wxE/zat4iUA3e2sdm3jDGru5BM/Am/JFjXnm26okN1hWdbJn5f4mXq9z5eNpQjG8oA2VGObChDIlpfJOdXIPIeMERETgP2AJPx5iRUSinVpvnAU21ss6sL+6+m6WpW1Ek0XdGqxQ7Z0to2qaB1hVJKdc18Mri+8CUQMcY0isgMbB8yB3jcGLPFj7SUUirbGGNq8bd7wn8C3wHui1n3HexIJxhjvhSRDd66pXHbLE9VJrSuUEqprsn0+sK3CQ2NMX8G/tyBt6S7z5umH570u3PZNf3g089oIlKAvRJ1lrfqbBHJB3YZYw5426wC3o0ZveRB4C1vlKoXgCuAbwFjY3Y9D/iDiLwLvAP8CDgFWJjK/GdgXZEqWo7wyIYyQHaUIxvKEFphrC98Gb5XKaVUeoiIC9yd4KUfGGOe8LbZAaw2xkyJed8koBw4HfgYuNMY83zcvm8CfgacDGwGbjHGvJXyQiillPJdGOsLDUSUUkoppZRSaefXPCJKKaWUUkoplVTggYiITBCRbSJSJSK3pyG9QSLyhoh8KCJbRGSmt94VkT0istFbLvMxDztE5C9eOuu9dSeKyGsist37+z98SntoTBk3ishBEZnlZ/lF5HER2Scim2PWJS2viMzxvg/bROR7PqV/n4hsFZEPROQFr48kIlIkIn+P+Ry63B8+SfpJP+9Ulj9J2kti0t0hIhu99X6UPdnvLW3/f5U90l1fpEqQx/yuCPrYnSpBHoNTJRuOpa2UIaP+FyrFjDGBLdhRUj7G9jnLBTYBZ/uc5snAed7j44GPgLMBF7gtTeXeAfSPW3cvcLv3+HbgN2n6/Kuxk/X4Vn5gHHAesLmt8nr/i01AT+A07/vh+JD+d4Ec7/FvYtIvit3Ox/In/LxTXf5Eace9/gBwl49lT/Z7S9v/X5fsWIKoL1KY91Ac8zuR70CP3T6XIy3H4BSWIeOPpa2UIaP+F7qkdgm6ReR8oMoY84kx5kvgWaDUzwSNMZ8ZY973Hn8BfAgU+plmO5UCT3qPnwQmpiHNbwMfG2N2+pmIsTcrHYhbnay8pcCzxpgjxpj/Bqqw35OUpm+MedUY0+g9XYudSM0XScqfTErL31raIiLA1cAfO7v/dqSf7PeWtv+/yhppry98FsQxv0OCPnanSpDH4FTJhmNpJ86/QlcGlXpBByKFwKcxz3eTxqBARIqAc4F13qoZXledx31uJjfAqyKyQUSmeesGGGM+A/tjxU4E47fJND8JTVf5IXl5g/hO3ABUxjw/TUT+S0TeFJFv+phuos87neX/JlBjjNkes863ssf93sL0/1eZIZO/G2E55qdCNv12gz4Gd0o2HEvbef4V6jKo1Ag6EJEE69IyjJeI9MFOtDLLGHMQeAQ4AxgJfIbtsuKXC40x5wGXAj8WkXE+ppWQiOQCl9M0+Uw6y9+atH4nROROoBF42lv1GTDYGHMucCvwjIic4EPSyT7vdJb/WpoHor6VPcHvLemmCdbp0H4KMvu7EfgxPw0y7f8ThmNwh2XDsbQD51+hLYNKnaADkd3AoJjnA4G9ficqIsdhfwRPG28cZGNMjTEmYow5CvweH5v/jDF7vb/7sJPDnA/UiMjJXv5OBvb5lb7nUuB9Y0yNl5e0ld+TrLxp+06IyPVACfAvxtgOqV4T8H7v8QZsn9Szku+lc1r5vNNSfhHJAa4ElsTkyZeyJ/q9EYL/v8o4GfvdCMkxP1Wy4rcb9DG4M7LhWNrB869QlkGlVtCByHvAEBE5zbtCPxl4yc8EvX7xjwEfGmPmxaw/OWazK7CTsfiRfm8ROT76GHvT9GZsua/3NrseWOFH+jGaXQ1PV/ljJCvvS8BkEekpIqcBQ4B3U524iEwAfg5cbow5HLP+ayLieI9P99L/xIf0k33eaSk/MB7YaozZHZOnlJc92e+NgP//KiOlvb5IhRAd81MlK367ITgGd0g2HEs7cf4VujIoHwR1l3x0AS7DjpwQnanR7/TGYpv2PgA2estlwB+Av3jrXwJO9in907GjQGwCtkTLDPQDVgHbvb8n+vgZ9AL2A31j1vlWfmzA8xnwFfYKx42tlRe40/s+bAMu9Sn9Kmzf0+h3YKG37VXe/2UT8D7wfZ/ST/p5p7L8idL21j8B/ChuWz/Knuz3lrb/vy7Zs6S7vkhRngM/5nch74Eeu30uR1qOwSksQ8YfS1spQ0b9L3RJ7aIzqyullFJKKaXSLuiuWUoppZRSSqluSAMRpZRSSimlVNppIKKUUkoppZRKOw1ElFJKKaWUUmmngYhSSimllFIq7TQQUUoppZRSSqWdBiJKKaWUUkqptPv/h5WHxaK/8OkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -202,20 +271,23 @@ } ], "source": [ + "\n", "input_shape = preprocessed_data.train_x.shape[-1]\n", "\n", "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(13, 5.25))\n", - "im1 = ax1.imshow(preprocessed_data.raw_imgs[74], origin='lower', cmap='seismic', norm=CenteredNorm())\n", - "im2 = ax2.imshow(preprocessed_data.train_x[74].reshape(input_shape, input_shape), origin='lower', cmap='seismic', norm=CenteredNorm())\n", + "im1 = ax1.imshow(preprocessed_data.raw_imgs[22], origin='lower', cmap='seismic', norm=CenteredNorm())\n", + "im2 = ax2.imshow(preprocessed_data.train_x[22].reshape(input_shape, input_shape), origin='lower', cmap='seismic', norm=CenteredNorm())\n", "\n", "ax1.set_title('DCCM map', size=title_size)\n", "ax2.set_title('DCCM map after adding gaps', size=title_size)\n", "\n", - "plt.colorbar(im1, ax=ax1, fraction=0.045)\n", - "plt.colorbar(im2, ax=ax2, fraction=0.045)\n", + "cb1 = plt.colorbar(im1, ax=ax1, fraction=0.045)\n", + "cb2 = plt.colorbar(im2, ax=ax2, fraction=0.045)\n", "\n", "ax1.tick_params(axis='both', which='major', labelsize=10)\n", "ax2.tick_params(axis='both', which='major', labelsize=10)\n", + "cb1.ax.tick_params(labelsize=14) \n", + "cb2.ax.tick_params(labelsize=14) \n", "\n", "plt.show()" ] @@ -228,15 +300,56 @@ "outputs": [], "source": [ "# The test set is generated\n", - "train_x, test_x, train_y, test_y, idx_tr, idx_te = create_test_set(preprocessed_data.train_x, preprocessed_data.train_y)" + "train_x, test_x, train_y, test_y, idx_tr, idx_te = create_test_set(preprocessed_data.train_x, preprocessed_data.train_y, test_size=0.032, random_state=398)" ] }, { "cell_type": "code", "execution_count": 9, + "id": "89e9f5e6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['1flr',\n", + " '4ps4',\n", + " '3ubx',\n", + " '2r1y',\n", + " '5o2u',\n", + " '6msy',\n", + " '5myx',\n", + " '6bkc',\n", + " '2jix',\n", + " '5kn5',\n", + " '4x7d',\n", + " '2yk1',\n", + " '5hvf',\n", + " '3fn0',\n", + " '3ma9',\n", + " '1ct8',\n", + " '5cjq',\n", + " '5otj',\n", + " '2h9g',\n", + " '3ghe',\n", + " '1yei']" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[preprocessed_data.labels[i] for i in idx_te]" + ] + }, + { + "cell_type": "code", + "execution_count": 37, "id": "836251dd", "metadata": { - "scrolled": false + "scrolled": true }, "outputs": [ { @@ -246,34 +359,29 @@ "Weight decoupling enabled in AdaBelief\n", "Rectification enabled in AdaBelief\n", "ANTIPASTI(\n", - " (conv1): Conv2d(1, 2, kernel_size=(4, 4), stride=(1, 1))\n", - " (pool): MaxPool2d(kernel_size=1, stride=1, padding=0, dilation=1, ceil_mode=False)\n", - " (dropit): Dropout(p=0.05, inplace=False)\n", - " (relu): ReLU()\n", - " (fc1): Linear(in_features=154568, out_features=1, bias=False)\n", + " (fc1): Linear(in_features=82944, out_features=1, bias=False)\n", ")\n" ] } ], "source": [ "# Hyperparameters\n", - "n_filters = 2\n", + "n_filters = 4\n", "filter_size = 4\n", - "pooling_size = 1\n", - "learning_rate = 0.00027253018778843 * 0.2\n", + "pooling_size = 2\n", + "learning_rate = 0.00027253018778843 * 0.4 * 2\n", "\n", - "# Defining the model, optimiser and loss function\n", - "model = ANTIPASTI(n_filters=n_filters, filter_size=filter_size, pooling_size=pooling_size, input_shape=input_shape)\n", - "criterion = MSELoss() #-PearsonCorrCoef()\n", - "#optimiser = LBFGS(model.parameters(), lr=1e-3, history_size=10)\n", - "optimiser = AdaBelief(model.parameters(), lr=learning_rate, eps=1e-8, print_change_log=False) \n", "\n", + "# Defining the model, optimiser and loss function\n", + "model = ANTIPASTI(n_filters=n_filters, filter_size=filter_size, pooling_size=pooling_size, input_shape=input_shape, l1_lambda=0.002, mode='linear')\n", + "criterion = MSELoss() \n", + "optimiser = AdaBelief(model.parameters(), lr=learning_rate, weight_decay=False, eps=1e-8, print_change_log=False) \n", "print(model)" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 38, "id": "02b73b3c", "metadata": {}, "outputs": [], @@ -284,26 +392,28 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "4dbe4930", - "metadata": {}, - "outputs": [], - "source": [ - "#{'learning_rate': 0.00027253018778843, 'n_max_epochs': 65, 'pooling_size': 1, 'filter_size': 4, 'n_filters': 4}\n", - "#{'learning_rate': 0.0008657756272162166, 'n_max_epochs': 82, 'pooling_size': 1, 'filter_size': 5, 'n_filters': 1}. Best is trial 30 with value: 1.0617385705312092." - ] - }, - { - "cell_type": "markdown", - "id": "7fa7fb7c", + "execution_count": 39, + "id": "db9b3a6b", "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "82944" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Training" + "count_parameters(model.fc1)" ] }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 40, "id": "48c7f224", "metadata": {}, "outputs": [], @@ -314,7 +424,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 41, "id": "60177db4", "metadata": { "scrolled": false @@ -324,10021 +434,5980 @@ "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.5858]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor(0.2883, grad_fn=)\n", + "tensor(0.2964, grad_fn=)\n", + "tensor(0.3045, grad_fn=)\n", + "tensor(0.3069, grad_fn=)\n", + "tensor(0.3061, grad_fn=)\n", + "tensor(0.3036, grad_fn=)\n", + "tensor(0.3030, grad_fn=)\n", + "tensor(0.3024, grad_fn=)\n", + "tensor(0.3016, grad_fn=)\n", + "tensor(0.3007, grad_fn=)\n", + "tensor(0.2997, grad_fn=)\n", + "tensor(0.2986, grad_fn=)\n", + "tensor(0.2974, grad_fn=)\n", + "tensor(0.2962, grad_fn=)\n", + "tensor(0.2948, grad_fn=)\n", + "tensor(0.2934, grad_fn=)\n", + "tensor(0.2919, grad_fn=)\n", + "tensor(0.2904, grad_fn=)\n", + "tensor(0.2887, grad_fn=)\n", + "tensor(0.2870, grad_fn=)\n", + "tensor([[-10.9909]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-11.0472]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-11.1560]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-11.2896]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-6.1290]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-11.1980]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-11.1436]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-10.9180]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-11.0275]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-8.4392]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3644]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.5012]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2825]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0406]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1435]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5395]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2608]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0381]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1597]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-5.9714]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4172]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2144]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9471]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0395]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 1 \t train loss: 1.1422454401690962 train MSE: tensor(0.6401, grad_fn=) test MSE: 0.7697205052245408\n", - "Corr: 0.806874851689087\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.5156]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-11.1823]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.8539]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.7878]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.6734]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0054]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7246]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.7899]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3588]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2381]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0798]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1293]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-5.8110]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3011]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.1769]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6404]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8823]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 2 \t train loss: 1.1041610244587408 train MSE: tensor(0.6016, grad_fn=) test MSE: 0.9792239781236276\n", - "Corr: 0.7898172685268458\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.4813]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-5.1315]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-10.6940]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.3988]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3525]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.7660]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0052]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7283]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.7223]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3395]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3126]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0457]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1871]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1035]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4186]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4295]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6656]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5092]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 3 \t train loss: 1.1586199463965516 train MSE: tensor(0.6564, grad_fn=) test MSE: 0.8275897433049977\n", - "Corr: 0.8160244528121869\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor([[-7.7606]], grad_fn=)\n", + "tensor([[-6.2449]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-10.9900]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-11.0496]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.6707]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-11.2112]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.5169]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-11.1968]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.1968]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-11.1813]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.4615]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-11.3065]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.0949]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-11.0748]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-11.1899]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 1 \t train loss: 17.44642158744774 train MSE: tensor(17.1357, grad_fn=) test MSE: 13.35170718725948\n", + "Corr: -0.2884379147743122\n", + "tensor(0.2853, grad_fn=)\n", + "tensor(0.2835, grad_fn=)\n", + "tensor(0.2816, grad_fn=)\n", + "tensor(0.2797, grad_fn=)\n", + "tensor(0.2777, grad_fn=)\n", + "tensor(0.2757, grad_fn=)\n", + "tensor(0.2737, grad_fn=)\n", + "tensor(0.2716, grad_fn=)\n", + "tensor(0.2694, grad_fn=)\n", + "tensor(0.2672, grad_fn=)\n", + "tensor(0.2650, grad_fn=)\n", + "tensor(0.2628, grad_fn=)\n", + "tensor(0.2605, grad_fn=)\n", + "tensor(0.2582, grad_fn=)\n", + "tensor(0.2558, grad_fn=)\n", + "tensor(0.2534, grad_fn=)\n", + "tensor(0.2510, grad_fn=)\n", + "tensor(0.2486, grad_fn=)\n", + "tensor(0.2461, grad_fn=)\n", + "tensor(0.2437, grad_fn=)\n", + "tensor([[-9.6328]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-9.5453]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-9.6852]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-9.8371]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-9.7780]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-7.4126]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-9.8731]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-6.7088]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-5.5339]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-8.3414]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-9.8156]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-6.2002]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-9.7637]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-7.4284]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-9.5300]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.6924]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-9.6644]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-8.1518]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-9.7904]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.8285]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-4.6259]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "Epoch : 4 \t train loss: 1.1702871337236342 train MSE: tensor(0.6682, grad_fn=) test MSE: 0.6616886968840845\n", - "Corr: 0.8284784058920335\n", - "tensor(0.4875, grad_fn=)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor([[-7.4195]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-9.3616]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.5992]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3113]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1874]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.4510]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2172]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.5346]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5628]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7837]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.4782]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2274]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2252]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3849]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7483]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9360]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7828]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 5 \t train loss: 1.130216125324711 train MSE: tensor(0.6282, grad_fn=) test MSE: 0.8248984165875299\n", - "Corr: 0.7805055094317945\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.3208]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-5.6350]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-8.7970]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.9367]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3837]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.4696]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.4485]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1568]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-10.1251]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7245]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.5552]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.6022]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2525]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-8.0221]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5595]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.3854]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9969]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 6 \t train loss: 1.1322798882290197 train MSE: tensor(0.6305, grad_fn=) test MSE: 0.8276641343254596\n", - "Corr: 0.7812573649532097\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.5463]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-9.5974]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-8.2936]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.0907]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9977]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0685]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7354]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2781]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5520]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-6.9361]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0248]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1268]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2211]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1081]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4479]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6854]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6608]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 7 \t train loss: 1.107774205813912 train MSE: tensor(0.6061, grad_fn=) test MSE: 0.6818018579215277\n", - "Corr: 0.851353706937893\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.8322]], grad_fn=)\n", + "tensor([[-9.6821]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.5248]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-9.8341]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.2010]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-9.7883]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.4113]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-9.7929]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.1691]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-9.9101]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.2701]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-9.6830]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-9.2922]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-9.7833]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.4505]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "Epoch : 2 \t train loss: 8.802019427301056 train MSE: tensor(8.5248, grad_fn=) test MSE: 8.00419305339511\n", + "Corr: -0.28503702594340785\n", + "tensor(0.2412, grad_fn=)\n", + "tensor(0.2386, grad_fn=)\n", + "tensor(0.2361, grad_fn=)\n", + "tensor(0.2335, grad_fn=)\n", + "tensor(0.2310, grad_fn=)\n", + "tensor(0.2284, grad_fn=)\n", + "tensor(0.2258, grad_fn=)\n", + "tensor(0.2232, grad_fn=)\n", + "tensor(0.2206, grad_fn=)\n", + "tensor(0.2180, grad_fn=)\n", + "tensor(0.2153, grad_fn=)\n", + "tensor(0.2127, grad_fn=)\n", + "tensor(0.2100, grad_fn=)\n", + "tensor(0.2074, grad_fn=)\n", + "tensor(0.2047, grad_fn=)\n", + "tensor(0.2021, grad_fn=)\n", + "tensor(0.1994, grad_fn=)\n", + "tensor(0.1967, grad_fn=)\n", + "tensor(0.1941, grad_fn=)\n", + "tensor(0.1914, grad_fn=)\n", + "tensor([[-8.4220]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.5694]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.4793]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-7.0810]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.5552]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.3999]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.6061]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-6.2272]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-5.0505]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-7.3631]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.5860]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.6742]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.5355]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.0425]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.3120]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.9136]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.4558]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "Epoch : 8 \t train loss: 1.1290413329283642 train MSE: tensor(0.6272, grad_fn=) test MSE: 0.7225386692152824\n", - "Corr: 0.8119842945820696\n", - "tensor(0.4873, grad_fn=)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor([[-7.3717]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.5531]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.4250]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5020]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.5359]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2499]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9990]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4097]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7673]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4227]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2286]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0662]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2833]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.6227]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7688]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.2209]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0586]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 9 \t train loss: 1.1423726132963918 train MSE: tensor(0.6406, grad_fn=) test MSE: 0.5967661461327225\n", - "Corr: 0.8466313937607506\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.2447]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-4.2228]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-8.4306]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.2136]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2047]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.9719]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8927]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0927]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3430]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2670]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0664]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4767]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2149]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.5626]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5413]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0127]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7508]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 10 \t train loss: 1.1274979490598531 train MSE: tensor(0.6257, grad_fn=) test MSE: 0.7128448204712186\n", - "Corr: 0.8275336220562554\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.6003]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.1837]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.1621]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3501]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1303]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2222]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0243]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3377]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5548]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.1586]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0425]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3688]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1445]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3849]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5030]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8236]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6488]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 11 \t train loss: 1.1646514442759306 train MSE: tensor(0.6630, grad_fn=) test MSE: 0.6739131784124766\n", - "Corr: 0.8375237736305421\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.6571]], grad_fn=)\n", + "tensor([[-5.1482]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-8.3752]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4742]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.5080]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.6111]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.5466]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5643]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.6712]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.4657]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-8.5313]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 3 \t train loss: 4.6634391299274185 train MSE: tensor(4.4374, grad_fn=) test MSE: 6.019533056776881\n", + "Corr: -0.2805877847685438\n", + "tensor(0.1888, grad_fn=)\n", + "tensor(0.1861, grad_fn=)\n", + "tensor(0.1834, grad_fn=)\n", + "tensor(0.1808, grad_fn=)\n", + "tensor(0.1781, grad_fn=)\n", + "tensor(0.1755, grad_fn=)\n", + "tensor(0.1729, grad_fn=)\n", + "tensor(0.1702, grad_fn=)\n", + "tensor(0.1676, grad_fn=)\n", + "tensor(0.1650, grad_fn=)\n", + "tensor(0.1624, grad_fn=)\n", + "tensor(0.1598, grad_fn=)\n", + "tensor(0.1573, grad_fn=)\n", + "tensor(0.1547, grad_fn=)\n", + "tensor(0.1522, grad_fn=)\n", + "tensor(0.1496, grad_fn=)\n", + "tensor(0.1471, grad_fn=)\n", + "tensor(0.1445, grad_fn=)\n", + "tensor(0.1420, grad_fn=)\n", + "tensor(0.1395, grad_fn=)\n", + "tensor([[-8.0321]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-5.4442]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.1097]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-10.1858]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.1802]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.2692]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.1900]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-7.1559]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-4.9914]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-9.3320]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.2111]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-9.6188]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.1442]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-7.2134]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-7.9484]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.2500]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.0828]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-8.3526]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.1615]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-6.1235]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-4.1888]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.7576]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.8255]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.9248]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-5.1056]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.9251]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.0064]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-8.0499]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.1101]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.2358]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.1804]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.1921]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "Epoch : 12 \t train loss: 1.156820364421944 train MSE: tensor(0.6553, grad_fn=) test MSE: 0.6888594506308436\n", - "Corr: 0.820743154473854\n", - "tensor(0.4872, grad_fn=)\n" + "tensor([[-8.2931]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.1178]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-8.1334]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 4 \t train loss: 3.8272774651233368 train MSE: tensor(3.6562, grad_fn=) test MSE: 5.807627022980126\n", + "Corr: -0.27736647097150124\n", + "tensor(0.1371, grad_fn=)\n", + "tensor(0.1346, grad_fn=)\n", + "tensor(0.1321, grad_fn=)\n", + "tensor(0.1297, grad_fn=)\n", + "tensor(0.1273, grad_fn=)\n", + "tensor(0.1249, grad_fn=)\n", + "tensor(0.1225, grad_fn=)\n", + "tensor(0.1202, grad_fn=)\n", + "tensor(0.1178, grad_fn=)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.3303]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor(0.1155, grad_fn=)\n", + "tensor(0.1133, grad_fn=)\n", + "tensor(0.1110, grad_fn=)\n", + "tensor(0.1088, grad_fn=)\n", + "tensor(0.1065, grad_fn=)\n", + "tensor(0.1043, grad_fn=)\n", + "tensor(0.1022, grad_fn=)\n", + "tensor(0.1000, grad_fn=)\n", + "tensor(0.0979, grad_fn=)\n", + "tensor(0.0958, grad_fn=)\n", + "tensor(0.0937, grad_fn=)\n", + "tensor([[-8.0988]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.0254]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.2046]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9823]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1010]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0866]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0162]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3582]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5712]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8713]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2120]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2869]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2283]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3625]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9359]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7695]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 13 \t train loss: 1.1552886086620198 train MSE: tensor(0.6533, grad_fn=) test MSE: 0.7861852998903487\n", - "Corr: 0.8160237008896201\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor([[-7.7088]], grad_fn=)\n", - "tensor([[-8.]])\n", - "------------------------\n", - "tensor([[-8.7217]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4656]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2638]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1233]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2799]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2831]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5669]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5169]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1802]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1512]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2105]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.7474]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5738]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0900]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0756]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 14 \t train loss: 1.173057299113018 train MSE: tensor(0.6708, grad_fn=) test MSE: 0.7607339294627309\n", - "Corr: 0.798892923926748\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor([[-7.1835]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2007]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.2765]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.0779]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1986]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0211]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2288]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9859]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3677]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3022]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.9018]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0778]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1537]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3250]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.1498]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8030]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.2055]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 15 \t train loss: 1.142250691949865 train MSE: tensor(0.6401, grad_fn=) test MSE: 0.8875505322939716\n", - "Corr: 0.7981503250840647\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.4617]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2676]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.2490]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.2392]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-5.7216]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-5.1921]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-10.2179]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.3059]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-8.2413]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.2151]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-6.8080]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.0584]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-9.1573]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.1728]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-9.6333]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.2415]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.1646]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-4.3760]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.0881]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-7.9164]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.3958]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-5.3326]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-6.4630]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.1128]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-7.6131]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.2065]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-7.2361]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.3255]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-7.8132]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.2912]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.5125]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.2879]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "Epoch : 16 \t train loss: 1.139647543704163 train MSE: tensor(0.6371, grad_fn=) test MSE: 0.6217770728108007\n", - "Corr: 0.8526996609399673\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4896, grad_fn=)\n", - "tensor([[-7.9371]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3852]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-8.6288]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4277]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1290]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2228]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.3936]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4134]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7282]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.6348]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1125]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4870]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3766]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.5592]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.9288]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.2059]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.1736]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 17 \t train loss: 1.1661724014632733 train MSE: tensor(0.6631, grad_fn=) test MSE: 0.6922137737710727\n", - "Corr: 0.8185489821502621\n", - "tensor(0.4901, grad_fn=)\n", - "tensor(0.4905, grad_fn=)\n", - "tensor(0.4904, grad_fn=)\n", - "tensor(0.4901, grad_fn=)\n", - "tensor(0.4896, grad_fn=)\n", - "tensor(0.4894, grad_fn=)\n", - "tensor(0.4894, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4896, grad_fn=)\n", - "tensor(0.4897, grad_fn=)\n", - "tensor(0.4894, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor([[-7.1687]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2513]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-8.1053]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.8897]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.7913]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8917]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8079]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9384]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.2624]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2887]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.9249]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1740]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1887]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.0325]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2887]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.2860]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.3218]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 18 \t train loss: 1.1694337602413813 train MSE: tensor(0.6659, grad_fn=) test MSE: 0.9391797114512883\n", - "Corr: 0.8120292337991302\n", - "tensor(0.4895, grad_fn=)\n", - "tensor(0.4894, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.3550]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2082]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-8.3729]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4442]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1839]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1959]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8638]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2823]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4576]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4737]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2607]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4329]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1717]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2855]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4419]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7417]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7657]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 19 \t train loss: 1.1483252614417083 train MSE: tensor(0.6456, grad_fn=) test MSE: 0.7329687664996527\n", - "Corr: 0.81818283545824\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.3644]], grad_fn=)\n", - "tensor([[-8.]])\n", + "Epoch : 5 \t train loss: 3.755276715774909 train MSE: tensor(3.6355, grad_fn=) test MSE: 5.581089227881638\n", + "Corr: -0.2752061206562508\n", + "tensor(0.0916, grad_fn=)\n", + "tensor(0.0896, grad_fn=)\n", + "tensor(0.0876, grad_fn=)\n", + "tensor(0.0856, grad_fn=)\n", + "tensor(0.0836, grad_fn=)\n", + "tensor(0.0817, grad_fn=)\n", + "tensor(0.0798, grad_fn=)\n", + "tensor(0.0780, grad_fn=)\n", + "tensor(0.0762, grad_fn=)\n", + "tensor(0.0744, grad_fn=)\n", + "tensor(0.0726, grad_fn=)\n", + "tensor(0.0709, grad_fn=)\n", + "tensor(0.0692, grad_fn=)\n", + "tensor(0.0676, grad_fn=)\n", + "tensor(0.0660, grad_fn=)\n", + "tensor(0.0644, grad_fn=)\n", + "tensor(0.0629, grad_fn=)\n", + "tensor(0.0614, grad_fn=)\n", + "tensor(0.0600, grad_fn=)\n", + "tensor(0.0586, grad_fn=)\n", + "tensor([[-8.1029]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.4269]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.2502]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-5.4442]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.3122]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-9.8413]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.2293]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.1150]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-5.4067]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-7.0796]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.3589]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-8.8872]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.2301]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-9.1666]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.1175]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.2608]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.2081]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-6.8487]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.2632]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.1320]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-4.5821]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-6.2212]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.9613]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.4929]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-5.5796]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.3899]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.1685]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-7.7786]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.2638]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-7.5936]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.3673]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "Epoch : 20 \t train loss: 1.1559103984745136 train MSE: tensor(0.6541, grad_fn=) test MSE: 0.8535191217597458\n", - "Corr: 0.8014164863172071\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor([[-7.8684]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3621]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.9971]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6198]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.6472]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.4019]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.8347]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.7451]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.9610]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7937]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.4332]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.5369]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2352]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.8479]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.8447]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0730]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8789]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 21 \t train loss: 1.1724122910550687 train MSE: tensor(0.6699, grad_fn=) test MSE: 0.8702937783673406\n", - "Corr: 0.7767063258544824\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.5332]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3414]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.2739]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3367]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2436]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.9373]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1374]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3186]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4254]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2969]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1274]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.5835]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2662]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.5040]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6137]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9054]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7087]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 22 \t train loss: 1.1383427770360508 train MSE: tensor(0.6359, grad_fn=) test MSE: 0.6569079616529052\n", - "Corr: 0.8374869236363284\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.6711]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.4365]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-8.6546]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6172]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3302]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2683]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.5230]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.6318]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7089]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.8942]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2774]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2501]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.4590]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4388]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.8844]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0066]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0308]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 23 \t train loss: 1.1169259654069932 train MSE: tensor(0.6146, grad_fn=) test MSE: 0.7357615433284082\n", - "Corr: 0.8058472577984966\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor([[-7.6340]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3422]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-8.2693]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.2303]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-5.2395]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "Epoch : 6 \t train loss: 3.4899348808151665 train MSE: tensor(3.4126, grad_fn=) test MSE: 5.3259367716188235\n", + "Corr: -0.27117635033887316\n", + "tensor(0.0572, grad_fn=)\n", + "tensor(0.0559, grad_fn=)\n", + "tensor(0.0546, grad_fn=)\n", + "tensor(0.0533, grad_fn=)\n", + "tensor(0.0521, grad_fn=)\n", + "tensor(0.0509, grad_fn=)\n", + "tensor(0.0497, grad_fn=)\n", + "tensor(0.0486, grad_fn=)\n", + "tensor(0.0476, grad_fn=)\n", + "tensor(0.0466, grad_fn=)\n", + "tensor(0.0457, grad_fn=)\n", + "tensor(0.0449, grad_fn=)\n", + "tensor(0.0440, grad_fn=)\n", + "tensor(0.0432, grad_fn=)\n", + "tensor(0.0425, grad_fn=)\n", + "tensor(0.0418, grad_fn=)\n", + "tensor(0.0411, grad_fn=)\n", + "tensor(0.0405, grad_fn=)\n", + "tensor(0.0400, grad_fn=)\n", + "tensor(0.0395, grad_fn=)\n", + "tensor([[-8.1033]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.2667]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.2834]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.2545]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.3469]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-6.8403]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.2055]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-9.1054]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-5.6117]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-9.7462]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.3784]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.4157]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.2446]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-6.9669]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.1643]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.3166]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.2381]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-6.4494]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.2822]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.2507]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-4.7727]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.3082]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-7.9897]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.8183]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-5.8052]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.5747]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.2088]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "Epoch : 24 \t train loss: 1.166190236487396 train MSE: tensor(0.6639, grad_fn=) test MSE: 0.6403271753806621\n", - "Corr: 0.8468960388089097\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4894, grad_fn=)\n", - "tensor(0.4898, grad_fn=)\n", - "tensor(0.4898, grad_fn=)\n", - "tensor(0.4896, grad_fn=)\n", - "tensor(0.4894, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor([[-7.1605]], grad_fn=)\n", + "tensor([[-8.3097]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.2465]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3668]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9377]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.9368]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8006]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.7562]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4228]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4683]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.6486]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1216]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3072]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.0768]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3251]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8116]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.4916]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 25 \t train loss: 1.1230787858481064 train MSE: tensor(0.6202, grad_fn=) test MSE: 0.7702713539993056\n", - "Corr: 0.8404116051958004\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor([[-7.4478]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.4022]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-8.5130]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.7746]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.4717]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.4600]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1041]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.6500]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-10.0423]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7814]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2690]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.6074]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.5313]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.6399]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5201]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.2354]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9351]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 26 \t train loss: 1.134941810853266 train MSE: tensor(0.6331, grad_fn=) test MSE: 0.634326106752269\n", - "Corr: 0.8358751865299171\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.4384]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.4221]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.4828]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3025]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1918]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3018]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0521]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4160]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5218]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4417]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0576]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.5563]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2817]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4342]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4012]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8616]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5095]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 27 \t train loss: 1.1234987472136937 train MSE: tensor(0.6215, grad_fn=) test MSE: 0.7471505734138191\n", - "Corr: 0.8104730279832029\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.5527]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3842]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.8909]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.4704]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-5.3921]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.4124]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-10.4835]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.2376]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-8.4048]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "Epoch : 7 \t train loss: 3.1936464978664585 train MSE: tensor(3.1446, grad_fn=) test MSE: 5.0924787855086215\n", + "Corr: -0.2650622509105653\n", + "tensor(0.0390, grad_fn=)\n", + "tensor(0.0385, grad_fn=)\n", + "tensor(0.0381, grad_fn=)\n", + "tensor(0.0378, grad_fn=)\n", + "tensor(0.0376, grad_fn=)\n", + "tensor(0.0374, grad_fn=)\n", + "tensor(0.0372, grad_fn=)\n", + "tensor(0.0372, grad_fn=)\n", + "tensor(0.0372, grad_fn=)\n", + "tensor(0.0372, grad_fn=)\n", + "tensor(0.0372, grad_fn=)\n", + "tensor(0.0372, grad_fn=)\n", + "tensor(0.0372, grad_fn=)\n", + "tensor(0.0371, grad_fn=)\n", + "tensor(0.0370, grad_fn=)\n", + "tensor(0.0369, grad_fn=)\n", + "tensor(0.0368, grad_fn=)\n", + "tensor(0.0367, grad_fn=)\n", + "tensor(0.0366, grad_fn=)\n", + "tensor(0.0365, grad_fn=)\n", + "tensor([[-8.0049]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.3380]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.2151]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-9.3628]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[-9.5494]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5348]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.3647]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3047]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2495]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.0858]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7788]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8869]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7217]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 28 \t train loss: 1.1203130485452881 train MSE: tensor(0.6188, grad_fn=) test MSE: 0.7796086686214636\n", - "Corr: 0.7945396929428638\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor([[-7.4116]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2759]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-7.9769]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.1200]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9974]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8074]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0725]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9605]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6327]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3802]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.7111]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3030]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2844]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3001]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2956]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8201]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.4086]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 29 \t train loss: 1.126416713136261 train MSE: tensor(0.6247, grad_fn=) test MSE: 0.7270221901708283\n", - "Corr: 0.8426964845598937\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor([[-7.3730]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.0787]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.4272]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6238]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0266]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2180]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1736]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3118]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4363]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5087]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.9922]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1492]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.0429]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.8022]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3512]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6797]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7711]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 30 \t train loss: 1.142129118190608 train MSE: tensor(0.6402, grad_fn=) test MSE: 0.866452225483954\n", - "Corr: 0.7768720883210538\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor([[-7.7809]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-5.7718]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-8.3399]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.3049]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-5.3778]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.1522]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-10.1355]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.1023]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.1728]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.1685]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-7.2702]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.1965]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-9.2205]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-4.9218]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-9.8733]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-7.9109]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.3479]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-5.9838]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-6.8426]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.1386]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-8.4623]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.2410]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-6.1655]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.3342]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-7.3743]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.3597]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.5670]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.3094]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.0918]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.4002]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.7723]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.3789]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "Epoch : 31 \t train loss: 1.143211992739901 train MSE: tensor(0.6408, grad_fn=) test MSE: 0.6525991313801569\n", - "Corr: 0.8348158702186266\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n" + "tensor([[-8.1386]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 8 \t train loss: 2.988298518817149 train MSE: tensor(2.9493, grad_fn=) test MSE: 4.859950399649929\n", + "Corr: -0.2582560999784615\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0363, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor([[-6.9073]], grad_fn=)\n", - "tensor([[-8.]])\n", - "------------------------\n", - "tensor([[-8.4507]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.1724]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1201]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1419]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8541]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0069]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.2653]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4521]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0737]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2464]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-5.7130]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3680]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4613]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7523]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8403]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 32 \t train loss: 1.1623704714577927 train MSE: tensor(0.6599, grad_fn=) test MSE: 0.9584092276054434\n", - "Corr: 0.7716000896066106\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.7516]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0364, grad_fn=)\n", + "tensor(0.0365, grad_fn=)\n", + "tensor(0.0365, grad_fn=)\n", + "tensor(0.0366, grad_fn=)\n", + "tensor(0.0366, grad_fn=)\n", + "tensor(0.0366, grad_fn=)\n", + "tensor([[-7.9635]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.4554]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4889]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0275]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3976]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1557]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1563]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7340]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.1711]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8229]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.5814]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-5.9072]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4195]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5766]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7294]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6660]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 33 \t train loss: 1.1457897934030061 train MSE: tensor(0.6438, grad_fn=) test MSE: 0.7666442731947427\n", - "Corr: 0.8061655147779011\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor([[-7.0644]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2145]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.5579]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4113]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3134]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1983]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2169]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.6714]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6403]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4633]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.5387]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2299]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2751]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4338]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7726]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7640]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9962]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 34 \t train loss: 1.1134690435155428 train MSE: tensor(0.6118, grad_fn=) test MSE: 0.7571472706040367\n", - "Corr: 0.8017171118714169\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.3290]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2710]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.3250]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.0088]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-5.0670]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-5.9807]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-9.7797]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.2909]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.6811]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.1200]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-6.9158]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.1047]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-9.0527]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.1612]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-9.3684]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.1741]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.1309]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-5.1148]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-6.8764]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-7.9136]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.2116]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-6.2135]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-6.1014]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.1388]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-7.2620]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.2538]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-7.3560]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.3317]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-7.6457]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.3891]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.4391]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.3214]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "Epoch : 35 \t train loss: 1.118208600404982 train MSE: tensor(0.6162, grad_fn=) test MSE: 0.8244880218117032\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Corr: 0.8271531047678159\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor([[-7.0064]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3972]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-8.3611]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3032]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2798]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1371]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0220]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2942]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5770]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4282]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.9302]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0449]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1398]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4046]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4355]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9664]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5745]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 36 \t train loss: 1.1352811524185251 train MSE: tensor(0.6335, grad_fn=) test MSE: 0.7514788474072702\n", - "Corr: 0.8197000367048406\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.6819]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.4226]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-8.6326]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6493]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.5431]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3379]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.5076]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1945]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4510]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.6449]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1450]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1716]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2369]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2663]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7036]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0154]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9027]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 37 \t train loss: 1.1477653071124556 train MSE: tensor(0.6458, grad_fn=) test MSE: 0.762153247371316\n", - "Corr: 0.7982039259520014\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor([[-7.3560]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.0973]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-8.3866]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9917]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.8270]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1201]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9075]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3146]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6863]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2284]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8987]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1402]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2209]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1193]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3432]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6213]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7202]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 38 \t train loss: 1.1231783593778042 train MSE: tensor(0.6212, grad_fn=) test MSE: 0.7928551485999975\n", - "Corr: 0.8183539285285231\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor([[-7.3862]], grad_fn=)\n", - "tensor([[-8.]])\n", + "Epoch : 9 \t train loss: 2.8448090296585056 train MSE: tensor(2.8068, grad_fn=) test MSE: 4.621123068400526\n", + "Corr: -0.24776318790251012\n", + "tensor(0.0367, grad_fn=)\n", + "tensor(0.0367, grad_fn=)\n", + "tensor(0.0368, grad_fn=)\n", + "tensor(0.0368, grad_fn=)\n", + "tensor(0.0369, grad_fn=)\n", + "tensor(0.0370, grad_fn=)\n", + "tensor(0.0370, grad_fn=)\n", + "tensor(0.0370, grad_fn=)\n", + "tensor(0.0371, grad_fn=)\n", + "tensor(0.0371, grad_fn=)\n", + "tensor(0.0372, grad_fn=)\n", + "tensor(0.0372, grad_fn=)\n", + "tensor(0.0373, grad_fn=)\n", + "tensor(0.0373, grad_fn=)\n", + "tensor(0.0374, grad_fn=)\n", + "tensor(0.0374, grad_fn=)\n", + "tensor(0.0375, grad_fn=)\n", + "tensor(0.0375, grad_fn=)\n", + "tensor(0.0376, grad_fn=)\n", + "tensor(0.0376, grad_fn=)\n", + "tensor([[-7.9188]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.5861]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.2105]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-5.3446]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.2662]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-10.3772]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-7.9230]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.4068]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-6.1827]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-7.4313]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.2799]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-9.4321]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.0908]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-9.7501]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.1021]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.4872]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.1584]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-7.2869]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.1564]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.0186]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-5.3024]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-6.4714]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.8926]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.6736]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-6.4356]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.6944]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.1378]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-8.0847]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.2504]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-7.7842]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.3316]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "Epoch : 39 \t train loss: 1.1044124644164106 train MSE: tensor(0.6027, grad_fn=) test MSE: 0.731602847808972\n", - "Corr: 0.8070875178862251\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor([[-7.5285]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3979]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.5030]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5121]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.4240]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.5677]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2200]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.6125]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.9292]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7628]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2283]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2633]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.4198]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4406]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7581]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.1266]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9391]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 40 \t train loss: 1.1019817691119487 train MSE: tensor(0.6005, grad_fn=) test MSE: 0.6713293491047807\n", - "Corr: 0.8242038722029454\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor([[-7.7055]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3166]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.3199]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4461]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3502]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.4873]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.3262]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3659]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.9057]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3672]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1019]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3849]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2687]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3165]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.8635]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9761]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8523]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 41 \t train loss: 1.1323556943837938 train MSE: tensor(0.6312, grad_fn=) test MSE: 0.6245929846772924\n", - "Corr: 0.8384739440616801\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor([[-7.2137]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3910]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-8.0938]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3067]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9850]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.9655]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9526]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1236]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.2664]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2733]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0595]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2017]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2862]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4872]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2478]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0473]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5090]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 42 \t train loss: 1.1352860624538264 train MSE: tensor(0.6338, grad_fn=) test MSE: 0.7595497749280185\n", - "Corr: 0.8284996256354926\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor([[-7.3005]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.4442]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-8.4577]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.0615]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-5.5573]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "Epoch : 10 \t train loss: 2.7651161019603734 train MSE: tensor(2.7263, grad_fn=) test MSE: 4.398369469569021\n", + "Corr: -0.23467239052280744\n", + "tensor(0.0376, grad_fn=)\n", + "tensor(0.0377, grad_fn=)\n", + "tensor(0.0377, grad_fn=)\n", + "tensor(0.0378, grad_fn=)\n", + "tensor(0.0378, grad_fn=)\n", + "tensor(0.0379, grad_fn=)\n", + "tensor(0.0380, grad_fn=)\n", + "tensor(0.0380, grad_fn=)\n", + "tensor(0.0381, grad_fn=)\n", + "tensor(0.0382, grad_fn=)\n", + "tensor(0.0382, grad_fn=)\n", + "tensor(0.0383, grad_fn=)\n", + "tensor(0.0384, grad_fn=)\n", + "tensor(0.0385, grad_fn=)\n", + "tensor(0.0385, grad_fn=)\n", + "tensor(0.0386, grad_fn=)\n", + "tensor(0.0387, grad_fn=)\n", + "tensor(0.0387, grad_fn=)\n", + "tensor(0.0388, grad_fn=)\n", + "tensor(0.0388, grad_fn=)\n", + "tensor([[-7.9129]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.3572]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.2459]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.0261]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.3001]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-7.2960]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-7.8995]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-9.2164]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-6.3780]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-9.4373]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.2684]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.3511]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.1056]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-6.9056]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.1214]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.3238]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.1845]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-6.3815]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.1783]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.5023]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-5.4787]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.6389]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-7.8958]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.8438]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-6.6427]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.8021]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.1557]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "Epoch : 43 \t train loss: 1.1327888903537533 train MSE: tensor(0.6306, grad_fn=) test MSE: 0.6748223661270458\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Corr: 0.8318205338919863\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.2677]], grad_fn=)\n", + "tensor([[-8.2823]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.4408]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3461]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.4572]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.5969]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0267]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.5920]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-10.0108]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4806]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0003]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3925]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.0480]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.6865]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7009]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9805]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7915]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 44 \t train loss: 1.1448099594934062 train MSE: tensor(0.6426, grad_fn=) test MSE: 0.7132911858643638\n", - "Corr: 0.8174205587353046\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor([[-7.7215]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3660]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-8.7177]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.8321]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2569]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.6410]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.3137]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.5733]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-10.1794]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4465]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.5233]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4100]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3296]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.7598]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-8.0036]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.1778]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0987]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 45 \t train loss: 1.1131539600366473 train MSE: tensor(0.6111, grad_fn=) test MSE: 0.6813169259912684\n", - "Corr: 0.8259318788769278\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.1291]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.4401]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.1994]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9292]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0500]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1126]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7287]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.7243]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3886]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.0825]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8059]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3329]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.0868]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-6.8582]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.0067]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.5319]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.4327]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 46 \t train loss: 1.150414658176954 train MSE: tensor(0.6485, grad_fn=) test MSE: 0.9250379511672691\n", - "Corr: 0.8158066837748095\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor([[-7.3687]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3453]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4221]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.4850]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-8.0577]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 11 \t train loss: 2.665899422973832 train MSE: tensor(2.6260, grad_fn=) test MSE: 4.210219995273898\n", + "Corr: -0.2193568501973509\n", + "tensor(0.0388, grad_fn=)\n", + "tensor(0.0388, grad_fn=)\n", + "tensor(0.0388, grad_fn=)\n", + "tensor(0.0388, grad_fn=)\n", + "tensor(0.0388, grad_fn=)\n", + "tensor(0.0388, grad_fn=)\n", + "tensor(0.0388, grad_fn=)\n", + "tensor(0.0389, grad_fn=)\n", + "tensor(0.0389, grad_fn=)\n", + "tensor(0.0390, grad_fn=)\n", + "tensor(0.0390, grad_fn=)\n", + "tensor(0.0391, grad_fn=)\n", + "tensor(0.0391, grad_fn=)\n", + "tensor(0.0392, grad_fn=)\n", + "tensor(0.0393, grad_fn=)\n", + "tensor(0.0394, grad_fn=)\n", + "tensor(0.0394, grad_fn=)\n", + "tensor(0.0396, grad_fn=)\n", + "tensor(0.0397, grad_fn=)\n", + "tensor(0.0398, grad_fn=)\n", + "tensor([[-7.7716]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.1526]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.2018]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-7.7219]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.4023]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-6.5198]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-5.6220]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.1496]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-10.4846]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-7.9808]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.3599]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.0112]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.0767]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.0843]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-9.7460]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.0559]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-9.8599]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-5.6107]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.7174]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-7.7937]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.0830]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-6.7981]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-8.4658]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.0355]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-5.9809]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.1981]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.2678]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-7.4344]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.3605]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.6546]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.2555]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.2300]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.3219]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-8.0478]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.4070]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "Epoch : 47 \t train loss: 1.1950253432596623 train MSE: tensor(0.6925, grad_fn=) test MSE: 0.6913929544589337\n", - "Corr: 0.820192665963033\n", - "tensor(0.4883, grad_fn=)\n" + "tensor([[-7.9204]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 12 \t train loss: 2.559155468839611 train MSE: tensor(2.5183, grad_fn=) test MSE: 4.014542788906033\n", + "Corr: -0.1937131368706203\n", + "tensor(0.0400, grad_fn=)\n", + "tensor(0.0401, grad_fn=)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor([[-7.6881]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor(0.0402, grad_fn=)\n", + "tensor(0.0403, grad_fn=)\n", + "tensor(0.0404, grad_fn=)\n", + "tensor(0.0405, grad_fn=)\n", + "tensor(0.0406, grad_fn=)\n", + "tensor(0.0407, grad_fn=)\n", + "tensor(0.0407, grad_fn=)\n", + "tensor(0.0408, grad_fn=)\n", + "tensor(0.0409, grad_fn=)\n", + "tensor(0.0410, grad_fn=)\n", + "tensor(0.0410, grad_fn=)\n", + "tensor(0.0411, grad_fn=)\n", + "tensor(0.0412, grad_fn=)\n", + "tensor(0.0412, grad_fn=)\n", + "tensor(0.0413, grad_fn=)\n", + "tensor(0.0413, grad_fn=)\n", + "tensor(0.0414, grad_fn=)\n", + "tensor(0.0415, grad_fn=)\n", + "tensor([[-7.9104]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3280]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.3790]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-7.8196]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-6.7607]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-8.2995]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.1416]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.6474]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5212]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1125]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0571]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9107]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3723]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5161]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.0367]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8332]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1268]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2719]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.8659]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3777]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7366]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6666]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 48 \t train loss: 1.1701543057311732 train MSE: tensor(0.6677, grad_fn=) test MSE: 0.7075875788559642\n", - "Corr: 0.8255929396494206\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.2374]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.1789]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.5757]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.2855]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0786]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0514]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2878]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4111]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5704]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2697]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2078]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3861]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1913]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2135]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3131]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0506]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8474]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 49 \t train loss: 1.1249543258643626 train MSE: tensor(0.6230, grad_fn=) test MSE: 0.7873745524266269\n", - "Corr: 0.8005157006947025\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.4913]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2680]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-8.2730]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4566]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1297]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2117]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2631]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4235]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6723]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5490]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8644]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3740]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1871]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3836]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6374]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7369]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0805]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 50 \t train loss: 1.133036717156356 train MSE: tensor(0.6312, grad_fn=) test MSE: 0.723241833751672\n", - "Corr: 0.8146107349255375\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor([[-7.4313]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2291]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.9600]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-5.8229]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-5.5893]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-7.9372]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-10.1948]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-7.0480]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-8.4157]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.1971]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-7.2689]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.3652]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-9.4510]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.4518]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-10.1089]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.5405]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.7189]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.4227]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.4052]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.4938]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-8.5524]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.6012]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-6.4622]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.0668]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 13 \t train loss: 2.5416091931391307 train MSE: tensor(2.4990, grad_fn=) test MSE: 3.879628496427488\n", + "Corr: -0.17717836881225027\n", + "tensor(0.0415, grad_fn=)\n", + "tensor(0.0416, grad_fn=)\n", + "tensor(0.0417, grad_fn=)\n", + "tensor(0.0418, grad_fn=)\n", + "tensor(0.0419, grad_fn=)\n", + "tensor(0.0419, grad_fn=)\n", + "tensor(0.0420, grad_fn=)\n", + "tensor(0.0420, grad_fn=)\n", + "tensor(0.0420, grad_fn=)\n", + "tensor(0.0421, grad_fn=)\n", + "tensor(0.0421, grad_fn=)\n", + "tensor(0.0422, grad_fn=)\n", + "tensor(0.0422, grad_fn=)\n", + "tensor(0.0423, grad_fn=)\n", + "tensor(0.0424, grad_fn=)\n", + "tensor(0.0425, grad_fn=)\n", + "tensor(0.0426, grad_fn=)\n", + "tensor(0.0427, grad_fn=)\n", + "tensor(0.0427, grad_fn=)\n", + "tensor(0.0428, grad_fn=)\n", + "tensor([[-7.7606]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.7033]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.2033]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-7.8170]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.2627]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.1512]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.6348]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.0480]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-6.8778]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "Epoch : 51 \t train loss: 1.1291660846283753 train MSE: tensor(0.6264, grad_fn=) test MSE: 0.7379555632069241\n", - "Corr: 0.806512593028424\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.3590]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.1586]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-8.4161]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6877]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9549]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0605]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2374]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2967]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5477]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2987]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0427]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2654]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3301]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.6507]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4948]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0585]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6827]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 52 \t train loss: 1.137345181124864 train MSE: tensor(0.6350, grad_fn=) test MSE: 0.6994785760616651\n", - "Corr: 0.8272432291431132\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor([[-7.2956]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.0100]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.2970]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.1382]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9244]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2391]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7214]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1843]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3781]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2954]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.9626]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1812]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3474]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.0535]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3902]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6533]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.2893]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 53 \t train loss: 1.1328722149088042 train MSE: tensor(0.6308, grad_fn=) test MSE: 0.7780522773318808\n", - "Corr: 0.8291996133787137\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor([[-7.5194]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.0221]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.5606]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6131]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.6819]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3439]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1296]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.6088]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.9340]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7672]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.4410]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3762]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.0677]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.8316]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7589]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0291]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.2881]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 54 \t train loss: 1.1100371070149115 train MSE: tensor(0.6076, grad_fn=) test MSE: 0.7302171335031744\n", - "Corr: 0.8097217440615327\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.9327]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.1555]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-8.5658]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.1025]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-5.7743]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-5.9249]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-10.3891]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-7.7810]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.3576]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-7.1673]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.2993]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.0478]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-9.3665]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.2341]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-9.8732]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.3420]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-7.6020]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.4148]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.1598]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.2925]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.9963]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.3747]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-6.3935]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.4726]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-7.5814]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.9093]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-7.3671]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "Epoch : 14 \t train loss: 2.367646256239924 train MSE: tensor(2.3236, grad_fn=) test MSE: 3.708499605989172\n", + "Corr: -0.14459236477065635\n", + "tensor(0.0428, grad_fn=)\n", + "tensor(0.0429, grad_fn=)\n", + "tensor(0.0430, grad_fn=)\n", + "tensor(0.0430, grad_fn=)\n", + "tensor(0.0431, grad_fn=)\n", + "tensor(0.0432, grad_fn=)\n", + "tensor(0.0433, grad_fn=)\n", + "tensor(0.0433, grad_fn=)\n", + "tensor(0.0434, grad_fn=)\n", + "tensor(0.0435, grad_fn=)\n", + "tensor(0.0436, grad_fn=)\n", + "tensor(0.0436, grad_fn=)\n", + "tensor(0.0437, grad_fn=)\n", + "tensor(0.0438, grad_fn=)\n", + "tensor(0.0438, grad_fn=)\n", + "tensor(0.0439, grad_fn=)\n", + "tensor(0.0439, grad_fn=)\n", + "tensor(0.0440, grad_fn=)\n", + "tensor(0.0441, grad_fn=)\n", + "tensor(0.0441, grad_fn=)\n", + "tensor([[-7.7198]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.1934]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.2085]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-7.6612]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.2643]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "Epoch : 55 \t train loss: 1.1369727545091237 train MSE: tensor(0.6347, grad_fn=) test MSE: 0.6819563054741593\n", - "Corr: 0.8216263098872177\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.3999]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.5457]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.5759]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4522]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1448]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3640]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2995]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1492]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6639]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.6309]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.5020]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1521]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2988]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3317]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2926]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9651]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7655]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 56 \t train loss: 1.1826403852991452 train MSE: tensor(0.6809, grad_fn=) test MSE: 0.8406772703165188\n", - "Corr: 0.7781054304199535\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.0845]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.0197]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-8.1315]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.0752]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2097]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1847]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1053]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4307]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5901]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2921]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.7155]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2053]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-5.9082]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1927]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3043]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8014]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7687]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 57 \t train loss: 1.138949769561908 train MSE: tensor(0.6366, grad_fn=) test MSE: 0.8305921482824488\n", - "Corr: 0.8088069246223916\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.2550]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.1242]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-8.2578]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4223]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9839]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2456]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7327]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0404]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3820]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.1908]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0682]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2820]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.4296]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2288]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3122]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8529]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5783]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 58 \t train loss: 1.125952219707495 train MSE: tensor(0.6241, grad_fn=) test MSE: 0.704108405043371\n", - "Corr: 0.8427343056086306\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.6191]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.0014]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.5491]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.0074]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-5.5643]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.1609]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-10.1838]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.1033]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.1555]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-6.0434]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.1492]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-7.7643]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-9.2077]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.3041]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-9.3247]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.0290]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-7.2132]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.2284]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-7.0898]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.3544]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-8.4294]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.4177]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-5.9070]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.2877]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.7783]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.3637]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.6443]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.4773]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-7.6815]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.8777]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-7.8549]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "Epoch : 15 \t train loss: 2.453727871519901 train MSE: tensor(2.4083, grad_fn=) test MSE: 3.5807694463458444\n", + "Corr: -0.11023881596296022\n", + "tensor(0.0442, grad_fn=)\n", + "tensor(0.0443, grad_fn=)\n", + "tensor(0.0444, grad_fn=)\n", + "tensor(0.0445, grad_fn=)\n", + "tensor(0.0445, grad_fn=)\n", + "tensor(0.0446, grad_fn=)\n", + "tensor(0.0447, grad_fn=)\n", + "tensor(0.0448, grad_fn=)\n", + "tensor(0.0449, grad_fn=)\n", + "tensor(0.0450, grad_fn=)\n", + "tensor(0.0451, grad_fn=)\n", + "tensor(0.0452, grad_fn=)\n", + "tensor(0.0453, grad_fn=)\n", + "tensor(0.0453, grad_fn=)\n", + "tensor(0.0454, grad_fn=)\n", + "tensor(0.0455, grad_fn=)\n", + "tensor(0.0455, grad_fn=)\n", + "tensor(0.0456, grad_fn=)\n", + "tensor(0.0456, grad_fn=)\n", + "tensor(0.0457, grad_fn=)\n", + "tensor([[-7.7560]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "Epoch : 59 \t train loss: 1.1287403311152555 train MSE: tensor(0.6270, grad_fn=) test MSE: 0.8093416483770852\n", - "Corr: 0.7911192864808994\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.3540]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2791]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.4850]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3744]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2174]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1251]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8675]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2425]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6081]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3557]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.7123]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0661]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1246]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1602]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3159]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8190]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8486]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 60 \t train loss: 1.1220307459692493 train MSE: tensor(0.6206, grad_fn=) test MSE: 0.723842980194604\n", - "Corr: 0.8297360450230168\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.5252]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3415]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.3264]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.1892]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.8763]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0702]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8181]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1911]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5146]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-6.9232]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.6546]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3367]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3415]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2670]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3950]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6029]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6205]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 61 \t train loss: 1.1013418112925693 train MSE: tensor(0.6000, grad_fn=) test MSE: 0.7007031734683551\n", - "Corr: 0.8479683477599758\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.3679]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.5513]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.5871]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3592]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3488]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2441]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.3137]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4780]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.9008]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2020]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.3541]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4843]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.4965]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3467]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.8715]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.1350]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.1389]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 62 \t train loss: 1.110828528177866 train MSE: tensor(0.6091, grad_fn=) test MSE: 0.6039853887850768\n", - "Corr: 0.8434870040074086\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor([[-7.4949]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.1642]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-8.4320]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.1607]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-5.3791]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.0722]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-10.1379]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.0637]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.4394]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.2248]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-6.9436]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.1776]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-9.3605]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-6.1688]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-9.5751]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-7.8253]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.6595]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-7.4452]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.0716]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.0697]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-8.4102]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.3160]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.4384]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-6.2305]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.5179]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.3668]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.3807]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.5913]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.4295]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-8.0219]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.5656]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-7.7205]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-7.9225]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "Epoch : 63 \t train loss: 1.1585988282792237 train MSE: tensor(0.6573, grad_fn=) test MSE: 0.7240347566808083\n" + "Epoch : 16 \t train loss: 2.339683545160838 train MSE: tensor(2.2927, grad_fn=) test MSE: 3.4850145356197437\n", + "Corr: -0.08094043123066498\n", + "tensor(0.0458, grad_fn=)\n", + "tensor(0.0458, grad_fn=)\n", + "tensor(0.0459, grad_fn=)\n", + "tensor(0.0459, grad_fn=)\n", + "tensor(0.0460, grad_fn=)\n", + "tensor(0.0460, grad_fn=)\n", + "tensor(0.0461, grad_fn=)\n", + "tensor(0.0462, grad_fn=)\n", + "tensor(0.0463, grad_fn=)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Corr: 0.8138582379989326\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.4472]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor(0.0464, grad_fn=)\n", + "tensor(0.0464, grad_fn=)\n", + "tensor(0.0465, grad_fn=)\n", + "tensor(0.0465, grad_fn=)\n", + "tensor(0.0466, grad_fn=)\n", + "tensor(0.0467, grad_fn=)\n", + "tensor(0.0467, grad_fn=)\n", + "tensor(0.0468, grad_fn=)\n", + "tensor(0.0468, grad_fn=)\n", + "tensor(0.0469, grad_fn=)\n", + "tensor(0.0469, grad_fn=)\n", + "tensor([[-7.6937]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.9330]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.2449]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.4462]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.4410]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1975]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.6125]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.9807]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.6827]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2974]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2962]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3430]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.5771]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7673]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0737]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0094]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 64 \t train loss: 1.0997455445036957 train MSE: tensor(0.5983, grad_fn=) test MSE: 0.7505645658820868\n", - "Corr: 0.8042363052548701\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor([[-7.0563]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2560]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.3490]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9560]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1571]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8616]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7200]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0392]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3541]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-6.9822]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.5769]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0238]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1386]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-6.9751]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2463]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7190]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.4905]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 65 \t train loss: 1.16026392611026 train MSE: tensor(0.6577, grad_fn=) test MSE: 0.8078300895867869\n", - "Corr: 0.8450731988137774\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.6612]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3205]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.7117]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3378]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2875]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0336]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1073]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3087]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4435]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.6717]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0824]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.7207]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3672]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3362]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3993]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8322]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5819]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 66 \t train loss: 1.1145805078480182 train MSE: tensor(0.6129, grad_fn=) test MSE: 0.7579945606412366\n", - "Corr: 0.8037117175939781\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor([[-7.4000]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.4531]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.3442]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-7.2364]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-5.5219]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.0970]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-10.3449]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[-8.2804]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0013]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1842]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4934]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3877]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.3864]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4372]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1388]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4469]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6185]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9355]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8102]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 67 \t train loss: 1.1202034592445922 train MSE: tensor(0.6186, grad_fn=) test MSE: 0.6935970361091677\n", - "Corr: 0.8236087056040546\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.1996]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.0452]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.7152]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5285]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9546]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2708]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2010]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0977]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3413]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.0276]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.9756]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2628]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.0044]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4518]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3838]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9507]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7663]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 68 \t train loss: 1.0945462932265368 train MSE: tensor(0.5929, grad_fn=) test MSE: 0.8724497933581006\n", - "Corr: 0.7813017048836693\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.5772]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.0256]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.1972]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.1534]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.5868]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4569]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1277]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3850]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2270]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2853]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.9669]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5599]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1759]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3037]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2285]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1365]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5657]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0678]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8442]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 69 \t train loss: 1.1366013385252782 train MSE: tensor(0.6344, grad_fn=) test MSE: 0.7083936211565742\n", - "Corr: 0.8157517933919911\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.3558]], grad_fn=)\n", + "tensor([[-6.2328]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.7790]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.5072]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-8.0165]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.2922]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.4134]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.4258]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-4.9857]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.4941]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.2295]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.3557]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.8219]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.3952]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.1100]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.5333]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-8.7982]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.8726]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.2778]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "Epoch : 17 \t train loss: 2.30278063053797 train MSE: tensor(2.2544, grad_fn=) test MSE: 3.400405673310161\n", + "Corr: -0.04667805604240054\n", + "tensor(0.0470, grad_fn=)\n", + "tensor(0.0471, grad_fn=)\n", + "tensor(0.0471, grad_fn=)\n", + "tensor(0.0472, grad_fn=)\n", + "tensor(0.0473, grad_fn=)\n", + "tensor(0.0473, grad_fn=)\n", + "tensor(0.0474, grad_fn=)\n", + "tensor(0.0474, grad_fn=)\n", + "tensor(0.0475, grad_fn=)\n", + "tensor(0.0476, grad_fn=)\n", + "tensor(0.0477, grad_fn=)\n", + "tensor(0.0478, grad_fn=)\n", + "tensor(0.0479, grad_fn=)\n", + "tensor(0.0480, grad_fn=)\n", + "tensor(0.0480, grad_fn=)\n", + "tensor(0.0481, grad_fn=)\n", + "tensor(0.0481, grad_fn=)\n", + "tensor(0.0482, grad_fn=)\n", + "tensor(0.0482, grad_fn=)\n", + "tensor(0.0483, grad_fn=)\n", + "tensor([[-7.6427]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.3502]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.2300]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-6.8326]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.3097]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.0695]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-7.3452]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-6.1904]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.2936]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-7.5470]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.0477]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.6466]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.0225]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-7.9025]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.9868]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.6554]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.1931]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "Epoch : 70 \t train loss: 1.1113558180664436 train MSE: tensor(0.6093, grad_fn=) test MSE: 0.7924066295563534\n", - "Corr: 0.8148402957472344\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.3326]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.1479]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.6826]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3190]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0227]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8963]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1378]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3746]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5391]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3715]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2260]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1332]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.0113]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2611]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6709]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8183]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9811]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 71 \t train loss: 1.124373896016096 train MSE: tensor(0.6226, grad_fn=) test MSE: 0.7871281730476767\n", - "Corr: 0.8017981318209647\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor([[-7.7241]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.2775]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-8.9281]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5963]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.5083]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.6157]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2278]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.6358]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-10.0113]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.6870]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.4394]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4984]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3832]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.7537]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7715]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.1723]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0776]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 72 \t train loss: 1.196304905469348 train MSE: tensor(0.6940, grad_fn=) test MSE: 0.736270185385365\n", - "Corr: 0.810592330156629\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.4326]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.7397]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.5384]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3176]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3000]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1172]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8941]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2103]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5771]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4708]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0462]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.6131]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.4701]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3632]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7127]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0161]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8917]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 73 \t train loss: 1.1247335582925935 train MSE: tensor(0.6223, grad_fn=) test MSE: 0.6070694566005841\n", - "Corr: 0.8473780435576598\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.3411]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.5543]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-8.4334]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-7.9710]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-5.4314]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.2629]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-10.3308]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.4342]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-8.3589]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.4765]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.3054]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.3402]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-9.5338]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.3661]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-9.8937]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.5132]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-7.2989]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-7.8197]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-7.2996]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "Epoch : 18 \t train loss: 2.2566493098148515 train MSE: tensor(2.2069, grad_fn=) test MSE: 3.3349221855002855\n", + "Corr: -0.013640141307520129\n", + "tensor(0.0484, grad_fn=)\n", + "tensor(0.0484, grad_fn=)\n", + "tensor(0.0485, grad_fn=)\n", + "tensor(0.0485, grad_fn=)\n", + "tensor(0.0486, grad_fn=)\n", + "tensor(0.0487, grad_fn=)\n", + "tensor(0.0487, grad_fn=)\n", + "tensor(0.0488, grad_fn=)\n", + "tensor(0.0489, grad_fn=)\n", + "tensor(0.0490, grad_fn=)\n", + "tensor(0.0490, grad_fn=)\n", + "tensor(0.0491, grad_fn=)\n", + "tensor(0.0491, grad_fn=)\n", + "tensor(0.0492, grad_fn=)\n", + "tensor(0.0493, grad_fn=)\n", + "tensor(0.0493, grad_fn=)\n", + "tensor(0.0494, grad_fn=)\n", + "tensor(0.0495, grad_fn=)\n", + "tensor(0.0496, grad_fn=)\n", + "tensor(0.0497, grad_fn=)\n", + "tensor([[-7.5737]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.4029]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.2183]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-6.3359]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.2901]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-7.5688]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.2418]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-7.1626]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[-7.8834]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7500]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 74 \t train loss: 1.1200128529009736 train MSE: tensor(0.6183, grad_fn=) test MSE: 0.7501381859547109\n", - "Corr: 0.8049854551516142\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor([[-7.7097]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.3772]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-8.2842]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4421]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1644]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3451]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1434]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3165]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6129]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2983]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0859]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1375]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.4969]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3902]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4642]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8264]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5785]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 75 \t train loss: 1.1137779259207057 train MSE: tensor(0.6121, grad_fn=) test MSE: 0.6555046994471923\n", - "Corr: 0.8383733857455113\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.3743]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.9828]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-8.7773]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5378]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1189]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1559]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0474]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3527]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7159]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5419]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.3920]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.5365]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3342]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3073]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.8590]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9383]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9394]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 76 \t train loss: 1.1185777351648118 train MSE: tensor(0.6171, grad_fn=) test MSE: 0.6805197984795086\n", - "Corr: 0.8229694265119923\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor([[-7.4503]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.9841]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.2911]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-7.9280]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-5.5044]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.1739]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-9.9566]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.1166]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.0250]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-6.3514]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.0074]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-7.6798]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-9.3649]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.6350]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-9.6956]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-7.9168]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-7.2725]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.2300]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-6.8417]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.4178]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-8.2517]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.4497]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-6.2579]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.3086]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.2986]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.3362]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.4549]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.4532]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-7.9310]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.7581]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-7.7810]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "Epoch : 19 \t train loss: 2.1527417137805633 train MSE: tensor(2.1016, grad_fn=) test MSE: 3.2434937590455992\n", + "Corr: 0.03318177088004287\n", + "tensor(0.0498, grad_fn=)\n", + "tensor(0.0499, grad_fn=)\n", + "tensor(0.0500, grad_fn=)\n", + "tensor(0.0501, grad_fn=)\n", + "tensor(0.0503, grad_fn=)\n", + "tensor(0.0504, grad_fn=)\n", + "tensor(0.0505, grad_fn=)\n", + "tensor(0.0507, grad_fn=)\n", + "tensor(0.0508, grad_fn=)\n", + "tensor(0.0509, grad_fn=)\n", + "tensor(0.0509, grad_fn=)\n", + "tensor(0.0510, grad_fn=)\n", + "tensor(0.0510, grad_fn=)\n", + "tensor(0.0511, grad_fn=)\n", + "tensor(0.0511, grad_fn=)\n", + "tensor(0.0511, grad_fn=)\n", + "tensor(0.0511, grad_fn=)\n", + "tensor(0.0511, grad_fn=)\n", + "tensor(0.0512, grad_fn=)\n", + "tensor(0.0512, grad_fn=)\n", + "tensor([[-7.4294]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "Epoch : 77 \t train loss: 1.119147728632274 train MSE: tensor(0.6179, grad_fn=) test MSE: 0.6412729028597823\n", - "Corr: 0.8487019471786491\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4894, grad_fn=)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor([[-7.5485]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.1064]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.8880]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.7414]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.5002]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3706]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2749]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3075]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7956]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7828]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2733]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4022]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1889]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.8861]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.8700]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.1928]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0346]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 78 \t train loss: 1.1451136426940265 train MSE: tensor(0.6432, grad_fn=) test MSE: 0.7587349481909769\n", - "Corr: 0.7997240439746336\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.4987]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.1878]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.0310]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.7945]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9170]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.7555]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7361]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1675]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.2261]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2313]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8766]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2081]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3682]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2571]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5872]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7400]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5841]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 79 \t train loss: 1.1371267619578431 train MSE: tensor(0.6349, grad_fn=) test MSE: 0.725273695163196\n", - "Corr: 0.8496110879418497\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor([[-7.4511]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.0550]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.6554]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5743]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.4473]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.4716]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1784]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.5420]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7736]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5843]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1882]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1096]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3300]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.5981]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6155]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0567]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5016]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 80 \t train loss: 1.122402229133828 train MSE: tensor(0.6202, grad_fn=) test MSE: 0.7047616955314879\n", - "Corr: 0.8153657848440276\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor([[-7.5294]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.3711]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-8.7145]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-7.8278]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-5.2431]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-7.8704]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-10.5527]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-7.7881]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.3793]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.0745]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-7.1945]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.0067]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-9.4547]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-6.3394]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-9.5285]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-7.5223]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.3881]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-7.6137]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.0205]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-7.7722]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-8.1324]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.1019]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-6.3165]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.3211]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-7.5249]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.3099]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.7411]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.1720]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.1884]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.2153]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.6432]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.3191]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "Epoch : 81 \t train loss: 1.1060044783728047 train MSE: tensor(0.6044, grad_fn=) test MSE: 0.69511803885689\n", - "Corr: 0.8202501523453821\n" + "tensor([[-7.6083]])\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor([[-7.3704]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 20 \t train loss: 2.278400489595547 train MSE: tensor(2.2255, grad_fn=) test MSE: 3.2161544208592248\n", + "Corr: 0.07495513133904257\n", + "tensor(0.0512, grad_fn=)\n", + "tensor(0.0513, grad_fn=)\n", + "tensor(0.0514, grad_fn=)\n", + "tensor(0.0514, grad_fn=)\n", + "tensor(0.0515, grad_fn=)\n", + "tensor(0.0516, grad_fn=)\n", + "tensor(0.0517, grad_fn=)\n", + "tensor(0.0518, grad_fn=)\n", + "tensor(0.0520, grad_fn=)\n", + "tensor(0.0521, grad_fn=)\n", + "tensor(0.0522, grad_fn=)\n", + "tensor(0.0523, grad_fn=)\n", + "tensor(0.0523, grad_fn=)\n", + "tensor(0.0524, grad_fn=)\n", + "tensor(0.0525, grad_fn=)\n", + "tensor(0.0526, grad_fn=)\n", + "tensor(0.0527, grad_fn=)\n", + "tensor(0.0528, grad_fn=)\n", + "tensor(0.0529, grad_fn=)\n", + "tensor(0.0530, grad_fn=)\n", + "tensor([[-7.6134]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3344]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.4264]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-7.1868]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.5315]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-8.0185]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.0954]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.9988]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.3181]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-8.4668]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3384]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0501]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3112]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9810]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2982]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7489]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.1004]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1491]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2327]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2787]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4755]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5495]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9038]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8524]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 82 \t train loss: 1.1000439408727296 train MSE: tensor(0.5985, grad_fn=) test MSE: 0.6760870001744479\n", - "Corr: 0.8320590337665058\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.4639]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2484]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.2670]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5714]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2880]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3773]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1411]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1202]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6938]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.8975]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8736]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4115]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.0281]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.5571]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2479]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.1910]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7441]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 83 \t train loss: 1.1272612216826787 train MSE: tensor(0.6256, grad_fn=) test MSE: 0.8127980179197039\n", - "Corr: 0.7877554386081265\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor([[-7.3459]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.4718]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.7128]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.4223]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.2878]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2194]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0875]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8717]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.8347]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3399]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3066]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0382]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3037]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3744]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.5558]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2191]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7001]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.2880]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 84 \t train loss: 1.1165003374926346 train MSE: tensor(0.6152, grad_fn=) test MSE: 0.7884000956546515\n", - "Corr: 0.816390010713861\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.5962]], grad_fn=)\n", + "tensor([[-7.7635]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.9776]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3180]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.6635]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.5750]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.4440]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.5275]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.7189]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.3918]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.2149]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.4333]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.4016]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.5383]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.8061]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 21 \t train loss: 2.1575419906690887 train MSE: tensor(2.1032, grad_fn=) test MSE: 3.155672526585736\n", + "Corr: 0.07549308274963411\n", + "tensor(0.0530, grad_fn=)\n", + "tensor(0.0530, grad_fn=)\n", + "tensor(0.0531, grad_fn=)\n", + "tensor(0.0532, grad_fn=)\n", + "tensor(0.0532, grad_fn=)\n", + "tensor(0.0533, grad_fn=)\n", + "tensor(0.0533, grad_fn=)\n", + "tensor(0.0534, grad_fn=)\n", + "tensor(0.0534, grad_fn=)\n", + "tensor(0.0535, grad_fn=)\n", + "tensor(0.0535, grad_fn=)\n", + "tensor(0.0536, grad_fn=)\n", + "tensor(0.0537, grad_fn=)\n", + "tensor(0.0537, grad_fn=)\n", + "tensor(0.0538, grad_fn=)\n", + "tensor(0.0539, grad_fn=)\n", + "tensor(0.0539, grad_fn=)\n", + "tensor(0.0540, grad_fn=)\n", + "tensor(0.0540, grad_fn=)\n", + "tensor(0.0541, grad_fn=)\n", + "tensor([[-7.5152]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-9.4846]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.2629]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-9.7331]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.3526]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-7.5469]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-7.0505]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-7.1772]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-7.5643]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-8.4090]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-7.9166]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-6.1608]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[-7.5901]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.9747]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0488]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7660]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 85 \t train loss: 1.116657969780027 train MSE: tensor(0.6153, grad_fn=) test MSE: 0.6732494974057772\n", - "Corr: 0.8242922602844946\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.0000]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.0227]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.2347]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.2289]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9679]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.9568]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9523]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0822]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3968]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3225]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2029]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4624]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2435]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4781]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3748]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8546]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5346]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 86 \t train loss: 1.159172399850936 train MSE: tensor(0.6572, grad_fn=) test MSE: 0.7915386628737906\n", - "Corr: 0.814357693058075\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.4158]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.9222]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.2549]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9839]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.8428]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0010]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.6703]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9055]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.2131]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-6.9412]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.3298]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1466]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1542]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-6.8556]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2939]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8183]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5232]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 87 \t train loss: 1.1580942104275336 train MSE: tensor(0.6562, grad_fn=) test MSE: 0.830485928338021\n", - "Corr: 0.8436921195746734\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor([[-7.4780]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2566]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-8.5532]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.1828]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-5.6968]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-6.5015]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-10.3329]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-7.6392]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.2911]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-7.7908]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-6.9453]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-7.8860]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-9.5680]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.2506]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-9.4371]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.5159]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-7.4484]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.4602]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.0738]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.3319]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.4794]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.3443]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-6.1382]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.4747]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-7.1261]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.7142]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-7.5411]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "Epoch : 22 \t train loss: 2.1341663565954607 train MSE: tensor(2.0783, grad_fn=) test MSE: 3.094154747097664\n", + "Corr: 0.11575124841384607\n", + "tensor(0.0542, grad_fn=)\n", + "tensor(0.0543, grad_fn=)\n", + "tensor(0.0544, grad_fn=)\n", + "tensor(0.0545, grad_fn=)\n", + "tensor(0.0546, grad_fn=)\n", + "tensor(0.0547, grad_fn=)\n", + "tensor(0.0548, grad_fn=)\n", + "tensor(0.0548, grad_fn=)\n", + "tensor(0.0549, grad_fn=)\n", + "tensor(0.0550, grad_fn=)\n", + "tensor(0.0551, grad_fn=)\n", + "tensor(0.0551, grad_fn=)\n", + "tensor(0.0552, grad_fn=)\n", + "tensor(0.0552, grad_fn=)\n", + "tensor(0.0553, grad_fn=)\n", + "tensor(0.0553, grad_fn=)\n", + "tensor(0.0554, grad_fn=)\n", + "tensor(0.0554, grad_fn=)\n", + "tensor(0.0555, grad_fn=)\n", + "tensor(0.0555, grad_fn=)\n", + "tensor([[-7.4760]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.1806]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.2766]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-7.9217]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.3643]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "Epoch : 88 \t train loss: 1.1315895974362242 train MSE: tensor(0.6295, grad_fn=) test MSE: 0.671990513073979\n", - "Corr: 0.8273542307679547\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.4140]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.9658]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.3484]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6713]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1522]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3782]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9500]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1328]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6594]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5435]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8558]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4087]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3017]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2275]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2808]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7692]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7947]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 89 \t train loss: 1.0996989035496851 train MSE: tensor(0.5980, grad_fn=) test MSE: 0.7170863239007303\n", - "Corr: 0.8220950349972609\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.7175]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.5909]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-8.7208]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3486]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3060]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2990]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.3002]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.6598]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.9268]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7414]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0220]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.6270]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3009]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4295]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7743]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.2348]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8529]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 90 \t train loss: 1.0961452355611196 train MSE: tensor(0.5948, grad_fn=) test MSE: 0.6919866180978715\n", - "Corr: 0.8191345037375533\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor([[-7.3914]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.8774]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-8.5921]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4798]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0797]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0800]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8305]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2352]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7282]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4419]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2077]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2729]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2822]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3555]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4911]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8044]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7138]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 91 \t train loss: 1.105147065283876 train MSE: tensor(0.6039, grad_fn=) test MSE: 0.6751017164124278\n", - "Corr: 0.8336262447810403\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor([[-7.2256]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.0213]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.7957]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-7.9014]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-5.4048]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.2811]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-10.1520]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.1909]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.2496]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-6.5253]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.1340]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-7.6349]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-9.1953]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.8068]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-9.4904]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-7.8541]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-7.2875]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.2569]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-7.2312]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.5337]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-8.0770]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.4986]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-6.2981]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.3508]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.1183]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.3425]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.5536]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.4676]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-8.3743]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.6804]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-7.7817]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "Epoch : 23 \t train loss: 2.1289222244337376 train MSE: tensor(2.0715, grad_fn=) test MSE: 3.0495575808398865\n", + "Corr: 0.14561442205953318\n", + "tensor(0.0556, grad_fn=)\n", + "tensor(0.0557, grad_fn=)\n", + "tensor(0.0558, grad_fn=)\n", + "tensor(0.0559, grad_fn=)\n", + "tensor(0.0559, grad_fn=)\n", + "tensor(0.0560, grad_fn=)\n", + "tensor(0.0561, grad_fn=)\n", + "tensor(0.0562, grad_fn=)\n", + "tensor(0.0562, grad_fn=)\n", + "tensor(0.0563, grad_fn=)\n", + "tensor(0.0564, grad_fn=)\n", + "tensor(0.0565, grad_fn=)\n", + "tensor(0.0566, grad_fn=)\n", + "tensor(0.0567, grad_fn=)\n", + "tensor(0.0568, grad_fn=)\n", + "tensor(0.0569, grad_fn=)\n", + "tensor(0.0570, grad_fn=)\n", + "tensor(0.0571, grad_fn=)\n", + "tensor(0.0571, grad_fn=)\n", + "tensor(0.0572, grad_fn=)\n", + "tensor([[-7.5684]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "Epoch : 92 \t train loss: 1.1116755516204133 train MSE: tensor(0.6106, grad_fn=) test MSE: 0.746548175739008\n", - "Corr: 0.8097716273311744\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor([[-7.3734]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.4113]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.2517]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3730]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1363]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1131]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2406]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0152]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7058]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3934]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1314]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2232]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1269]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-6.9502]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4244]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9248]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6759]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 93 \t train loss: 1.1202427716569183 train MSE: tensor(0.6190, grad_fn=) test MSE: 0.7358341328363167\n", - "Corr: 0.8228517242988779\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.5453]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.5000]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.8023]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6840]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.5071]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.7984]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.5272]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3638]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.8547]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.8104]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1475]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2832]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3012]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4528]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7942]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.1193]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8256]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 94 \t train loss: 1.1473927957905743 train MSE: tensor(0.6455, grad_fn=) test MSE: 0.8116024442133494\n", - "Corr: 0.7841645987989585\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.5537]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.0253]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-8.3505]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.1700]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1054]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0256]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.3478]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9407]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.2991]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4775]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8659]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4586]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1987]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.8065]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2071]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7697]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9988]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 95 \t train loss: 1.1143330899716153 train MSE: tensor(0.6120, grad_fn=) test MSE: 0.9117357892864675\n", - "Corr: 0.7655859013202296\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor([[-7.5234]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.6849]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.9678]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-8.4927]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.1439]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-5.2526]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.0045]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-10.2631]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.4166]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-8.1775]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.3285]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.1440]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-6.6029]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-9.6188]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.7418]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-9.7265]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-7.8928]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.8195]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-7.9570]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-7.1997]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.3744]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.1281]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.6813]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-6.2106]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.6293]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.6696]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.4767]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.6247]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.4667]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-8.0127]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.6056]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-7.8861]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-7.7772]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "Epoch : 96 \t train loss: 1.1269762410139053 train MSE: tensor(0.6254, grad_fn=) test MSE: 0.7558605055091903\n", - "Corr: 0.8017512448543672\n" + "Epoch : 24 \t train loss: 2.19265831703074 train MSE: tensor(2.1338, grad_fn=) test MSE: 3.031657790776253\n", + "Corr: 0.1481021435536777\n", + "tensor(0.0572, grad_fn=)\n", + "tensor(0.0573, grad_fn=)\n", + "tensor(0.0573, grad_fn=)\n", + "tensor(0.0574, grad_fn=)\n", + "tensor(0.0575, grad_fn=)\n", + "tensor(0.0576, grad_fn=)\n", + "tensor(0.0576, grad_fn=)\n", + "tensor(0.0577, grad_fn=)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor([[-7.2652]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor(0.0577, grad_fn=)\n", + "tensor(0.0578, grad_fn=)\n", + "tensor(0.0578, grad_fn=)\n", + "tensor(0.0579, grad_fn=)\n", + "tensor(0.0579, grad_fn=)\n", + "tensor(0.0580, grad_fn=)\n", + "tensor(0.0581, grad_fn=)\n", + "tensor(0.0581, grad_fn=)\n", + "tensor(0.0582, grad_fn=)\n", + "tensor(0.0583, grad_fn=)\n", + "tensor(0.0584, grad_fn=)\n", + "tensor(0.0584, grad_fn=)\n", + "tensor([[-7.4434]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.3689]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.1194]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.8967]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8834]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8999]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2765]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5682]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.1031]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.7277]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2288]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1481]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2087]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2056]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8208]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6270]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 97 \t train loss: 1.1693180954657139 train MSE: tensor(0.6667, grad_fn=) test MSE: 0.7677201450860593\n", - "Corr: 0.8318695265306641\n", - "tensor(0.4894, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor([[-7.4713]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2993]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.1968]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9248]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.6696]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.7697]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.6576]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1669]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-8.9574]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.1401]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8251]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2012]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-5.8707]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.0850]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.0849]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7901]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.0944]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 98 \t train loss: 1.1356529539613591 train MSE: tensor(0.6331, grad_fn=) test MSE: 0.996466448573301\n", - "Corr: 0.8031818449410951\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor([[-7.6097]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3995]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.4751]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.0461]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1303]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.9509]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0522]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1306]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6437]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5228]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.6850]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0659]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.0774]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.0687]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6041]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9367]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6370]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 99 \t train loss: 1.1138407603522356 train MSE: tensor(0.6123, grad_fn=) test MSE: 0.7396024716013017\n", - "Corr: 0.8258636824770357\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.3014]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.8568]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.6775]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-8.6784]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-7.8053]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-5.2780]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.0383]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-10.0881]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-7.8638]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.1279]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.3257]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-7.3298]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.2356]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-9.4126]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-6.5856]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-9.4961]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-7.6010]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-7.6459]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-7.8596]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-7.1969]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-7.8184]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-8.1682]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.2396]])\n", + "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-6.1673]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-8.5918]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-7.5241]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.4973]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.4951]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.3448]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.7508]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.3410]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-8.0954]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.4845]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "Epoch : 100 \t train loss: 1.1230700611155393 train MSE: tensor(0.6218, grad_fn=) test MSE: 0.8896838836953975\n", - "Corr: 0.7652314694975353\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4898, grad_fn=)\n", - "tensor(0.4900, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor([[-7.4166]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.6351]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-8.5204]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6182]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0403]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0322]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.3565]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2389]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6080]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5058]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1478]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.5217]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1346]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3935]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5224]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8605]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.4541]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 101 \t train loss: 1.1445668032121876 train MSE: tensor(0.6423, grad_fn=) test MSE: 0.7729326073313132\n", - "Corr: 0.8023362200653967\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.4546]], grad_fn=)\n", - "tensor([[-8.]])\n", + "Epoch : 25 \t train loss: 1.9808680315002145 train MSE: tensor(1.9205, grad_fn=) test MSE: 2.9886893145130244\n", + "Corr: 0.18276699971402458\n", + "tensor(0.0585, grad_fn=)\n", + "tensor(0.0585, grad_fn=)\n", + "tensor(0.0586, grad_fn=)\n", + "tensor(0.0586, grad_fn=)\n", + "tensor(0.0587, grad_fn=)\n", + "tensor(0.0587, grad_fn=)\n", + "tensor(0.0588, grad_fn=)\n", + "tensor(0.0589, grad_fn=)\n", + "tensor(0.0590, grad_fn=)\n", + "tensor(0.0590, grad_fn=)\n", + "tensor(0.0591, grad_fn=)\n", + "tensor(0.0592, grad_fn=)\n", + "tensor(0.0593, grad_fn=)\n", + "tensor(0.0593, grad_fn=)\n", + "tensor(0.0593, grad_fn=)\n", + "tensor(0.0594, grad_fn=)\n", + "tensor(0.0594, grad_fn=)\n", + "tensor(0.0595, grad_fn=)\n", + "tensor(0.0596, grad_fn=)\n", + "tensor(0.0596, grad_fn=)\n", + "tensor([[-7.3982]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.7810]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3683]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2208]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0468]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2748]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3054]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5464]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3610]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1053]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3598]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-5.9771]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.7879]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.8859]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6885]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6475]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 102 \t train loss: 1.0945380942562275 train MSE: tensor(0.5927, grad_fn=) test MSE: 0.80614612106001\n", - "Corr: 0.7902715025960547\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.3807]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2882]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.6921]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9447]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1985]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0463]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0745]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2905]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6071]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3268]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.3090]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0041]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-5.8957]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.5006]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6167]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7749]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7870]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 103 \t train loss: 1.1321010618808625 train MSE: tensor(0.6301, grad_fn=) test MSE: 0.8566938209405635\n", - "Corr: 0.7874248691976203\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.6874]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3967]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.3370]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-6.7706]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-5.5174]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-7.6764]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-10.0630]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-7.7596]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-8.3790]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.0323]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-7.1497]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-7.8398]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-9.3688]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.3241]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-9.5683]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-8.2275]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.4008]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-6.5840]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.0013]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-7.5594]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.3311]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[-6.2901]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3697]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5017]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6640]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7789]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 104 \t train loss: 1.1226756430329445 train MSE: tensor(0.6210, grad_fn=) test MSE: 0.7247259730356745\n", - "Corr: 0.816574102357142\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.0736]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.8489]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-8.1762]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.2079]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9277]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8795]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7202]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9429]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-8.9857]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2154]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8727]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-7.8874]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2668]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1324]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4125]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7491]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5068]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 105 \t train loss: 1.1317722618488588 train MSE: tensor(0.6301, grad_fn=) test MSE: 0.8318465564661892\n", - "Corr: 0.8371266216171177\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor([[-7.5082]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.7920]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-8.1774]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.1082]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1909]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2544]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7566]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1532]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.2032]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3214]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.9737]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0591]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2716]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3631]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4856]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7521]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5856]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 106 \t train loss: 1.1443069598211082 train MSE: tensor(0.6424, grad_fn=) test MSE: 0.747021407703869\n", - "Corr: 0.8285465120971092\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4899, grad_fn=)\n", - "tensor(0.4902, grad_fn=)\n", - "tensor(0.4901, grad_fn=)\n", - "tensor(0.4896, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor([[-7.3791]], grad_fn=)\n", + "tensor([[-8.2116]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.5137]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.5968]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.6030]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.4631]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.5363]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.3161]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.2447]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.3148]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-6.9881]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.4550]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-9.4269]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.5984]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.7521]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "Epoch : 26 \t train loss: 2.0071298309873793 train MSE: tensor(1.9455, grad_fn=) test MSE: 2.9773742128496195\n", + "Corr: 0.1952925041638278\n", + "tensor(0.0597, grad_fn=)\n", + "tensor(0.0598, grad_fn=)\n", + "tensor(0.0598, grad_fn=)\n", + "tensor(0.0599, grad_fn=)\n", + "tensor(0.0600, grad_fn=)\n", + "tensor(0.0600, grad_fn=)\n", + "tensor(0.0601, grad_fn=)\n", + "tensor(0.0602, grad_fn=)\n", + "tensor(0.0602, grad_fn=)\n", + "tensor(0.0603, grad_fn=)\n", + "tensor(0.0604, grad_fn=)\n", + "tensor(0.0605, grad_fn=)\n", + "tensor(0.0606, grad_fn=)\n", + "tensor(0.0607, grad_fn=)\n", + "tensor(0.0608, grad_fn=)\n", + "tensor(0.0609, grad_fn=)\n", + "tensor(0.0611, grad_fn=)\n", + "tensor(0.0612, grad_fn=)\n", + "tensor(0.0613, grad_fn=)\n", + "tensor(0.0614, grad_fn=)\n", + "tensor([[-7.5922]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.1129]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.5515]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-7.4225]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.6535]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.2140]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-6.9356]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-5.9752]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.8120]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-7.7005]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.9763]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.5906]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.2736]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.0628]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.0628]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.1575]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.5754]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "Epoch : 107 \t train loss: 1.1060467292119682 train MSE: tensor(0.6032, grad_fn=) test MSE: 0.6764831589534879\n", - "Corr: 0.8249763052103075\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4894, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.3859]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.4748]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.9493]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.1604]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.6476]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8908]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7441]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9696]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4716]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.1112]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8567]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-7.9625]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2557]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1451]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.1147]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6061]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.3607]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 108 \t train loss: 1.0834095795705894 train MSE: tensor(0.5810, grad_fn=) test MSE: 0.8186276683263713\n", - "Corr: 0.845844553708187\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor([[-7.8015]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.7109]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-8.5472]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.6333]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3917]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.4480]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.4237]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3524]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6473]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7200]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1503]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2240]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3083]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.6312]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7092]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.2185]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0733]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 109 \t train loss: 1.1179749166070958 train MSE: tensor(0.6158, grad_fn=) test MSE: 0.7347221428062767\n", - "Corr: 0.805771554980412\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.2818]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.7648]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.3973]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.0621]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.8850]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.4858]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7395]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.8101]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6482]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.0807]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.6587]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0411]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1371]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1859]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-6.9816]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7592]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.2829]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 110 \t train loss: 1.09557516615022 train MSE: tensor(0.5938, grad_fn=) test MSE: 0.8285407538642175\n", - "Corr: 0.8426926527101389\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor([[-7.4111]], grad_fn=)\n", + "tensor([[-7.9904]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-8.0271]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4427]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.6639]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.8550]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7031]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5535]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-4.9429]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.5616]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-10.0323]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.6674]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-8.0615]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-7.8265]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-6.9340]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "Epoch : 27 \t train loss: 1.9461875591931488 train MSE: tensor(1.8831, grad_fn=) test MSE: 2.9814621152444962\n", + "Corr: 0.18261231698578848\n", + "tensor(0.0615, grad_fn=)\n", + "tensor(0.0615, grad_fn=)\n", + "tensor(0.0616, grad_fn=)\n", + "tensor(0.0617, grad_fn=)\n", + "tensor(0.0618, grad_fn=)\n", + "tensor(0.0618, grad_fn=)\n", + "tensor(0.0618, grad_fn=)\n", + "tensor(0.0618, grad_fn=)\n", + "tensor(0.0619, grad_fn=)\n", + "tensor(0.0619, grad_fn=)\n", + "tensor(0.0619, grad_fn=)\n", + "tensor(0.0620, grad_fn=)\n", + "tensor(0.0620, grad_fn=)\n", + "tensor(0.0621, grad_fn=)\n", + "tensor(0.0621, grad_fn=)\n", + "tensor(0.0622, grad_fn=)\n", + "tensor(0.0623, grad_fn=)\n", + "tensor(0.0624, grad_fn=)\n", + "tensor(0.0626, grad_fn=)\n", + "tensor(0.0627, grad_fn=)\n", + "tensor([[-7.4941]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4805]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-9.0704]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-8.6013]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-9.6044]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "tensor([[-6.7796]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-7.4121]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-7.8012]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-6.9212]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-7.8699]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-8.2800]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-8.2122]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-6.4040]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.9966]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.2249]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-8.5333]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "tensor([[-7.5210]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.4191]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-7.8192]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-6.6998]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.5252]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-7.6772]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "Epoch : 111 \t train loss: 1.1510048379941884 train MSE: tensor(0.6488, grad_fn=) test MSE: 0.7517586038447917\n", - "Corr: 0.8202576984039622\n" + "tensor([[-7.9637]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.9527]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3544]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.8094]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.6138]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4698]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4812]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.5774]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.7369]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 28 \t train loss: 1.9571806703850652 train MSE: tensor(1.8925, grad_fn=) test MSE: 2.939212246919938\n", + "Corr: 0.20548675930473037\n", + "tensor(0.0627, grad_fn=)\n", + "tensor(0.0628, grad_fn=)\n", + "tensor(0.0630, grad_fn=)\n", + "tensor(0.0630, grad_fn=)\n", + "tensor(0.0631, grad_fn=)\n", + "tensor(0.0632, grad_fn=)\n", + "tensor(0.0632, grad_fn=)\n", + "tensor(0.0632, grad_fn=)\n", + "tensor(0.0633, grad_fn=)\n", + "tensor(0.0633, grad_fn=)\n", + "tensor(0.0633, grad_fn=)\n", + "tensor(0.0633, grad_fn=)\n", + "tensor(0.0634, grad_fn=)\n", + "tensor(0.0635, grad_fn=)\n", + "tensor(0.0636, grad_fn=)\n", + "tensor(0.0637, grad_fn=)\n", + "tensor(0.0638, grad_fn=)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.6297]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor(0.0639, grad_fn=)\n", + "tensor(0.0640, grad_fn=)\n", + "tensor(0.0641, grad_fn=)\n", + "tensor([[-7.4750]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-8.4947]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.0775]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3991]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8541]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.6810]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3185]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.2877]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2491]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8943]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1538]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3794]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.0493]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4410]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8498]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8069]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 112 \t train loss: 1.1411227975468543 train MSE: tensor(0.6388, grad_fn=) test MSE: 0.6439600018384226\n", - "Corr: 0.8534462349733055\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor([[-7.1277]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.5055]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.4322]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9806]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1703]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2212]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9914]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1946]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.0848]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2797]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.7618]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3226]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2795]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3253]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4548]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8961]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.3842]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 113 \t train loss: 1.0989958279713374 train MSE: tensor(0.5977, grad_fn=) test MSE: 0.8483700130746001\n", - "Corr: 0.8019400926914422\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor([[-7.3292]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.6279]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.7537]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.8199]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.8606]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.2292]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.9964]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.2580]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3804]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3045]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0799]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9927]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1475]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4067]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2838]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0729]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3996]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2640]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4092]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3188]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7466]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7173]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 114 \t train loss: 1.1150561123858185 train MSE: tensor(0.6139, grad_fn=) test MSE: 0.7120794577098195\n", - "Corr: 0.8295198380542473\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor([[-7.4282]], grad_fn=)\n", + "tensor([[-8.5443]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.4383]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.7196]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.6758]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.9784]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.9407]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3708]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.3015]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.8352]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.0363]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.6364]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.4226]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.4938]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.0764]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.4858]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.1327]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.5860]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-9.3888]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.7398]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.7667]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "Epoch : 29 \t train loss: 1.9490793206368924 train MSE: tensor(1.8829, grad_fn=) test MSE: 2.9213861844812827\n", + "Corr: 0.21604763992330092\n", + "tensor(0.0641, grad_fn=)\n", + "tensor(0.0642, grad_fn=)\n", + "tensor(0.0642, grad_fn=)\n", + "tensor(0.0642, grad_fn=)\n", + "tensor(0.0642, grad_fn=)\n", + "tensor(0.0643, grad_fn=)\n", + "tensor(0.0643, grad_fn=)\n", + "tensor(0.0643, grad_fn=)\n", + "tensor(0.0643, grad_fn=)\n", + "tensor(0.0644, grad_fn=)\n", + "tensor(0.0645, grad_fn=)\n", + "tensor(0.0646, grad_fn=)\n", + "tensor(0.0647, grad_fn=)\n", + "tensor(0.0648, grad_fn=)\n", + "tensor(0.0649, grad_fn=)\n", + "tensor(0.0650, grad_fn=)\n", + "tensor(0.0651, grad_fn=)\n", + "tensor(0.0653, grad_fn=)\n", + "tensor(0.0654, grad_fn=)\n", + "tensor(0.0655, grad_fn=)\n", + "tensor([[-7.5784]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.5025]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.6621]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-7.0575]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.7840]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.3682]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-6.8354]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-6.4374]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.8919]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-7.4442]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.9594]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.4173]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.3754]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-7.8567]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-8.1369]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.9060]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.6998]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "Epoch : 115 \t train loss: 1.127747528403313 train MSE: tensor(0.6260, grad_fn=) test MSE: 0.6731439513678197\n", - "Corr: 0.8307732046212774\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.5136]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.5876]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.2720]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.0483]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0733]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.5745]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7472]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0747]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.3673]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.1748]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0286]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.1025]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3123]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-6.9548]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2181]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.5436]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.3002]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 116 \t train loss: 1.102085157338912 train MSE: tensor(0.6008, grad_fn=) test MSE: 0.7514476089854725\n", - "Corr: 0.8515284986619902\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor([[-7.2908]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.7810]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-7.9967]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9284]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9414]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8604]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8569]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9318]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.2734]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-6.8937]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8169]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.0708]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-5.7014]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.0842]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.1377]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.6289]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.2291]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 117 \t train loss: 1.1038819060391345 train MSE: tensor(0.6020, grad_fn=) test MSE: 0.9575522368701286\n", - "Corr: 0.8197550570107336\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor([[-7.6166]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.8161]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0393]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-8.5862]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.0603]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3437]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2063]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0217]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2451]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.8498]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5499]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.9404]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.6183]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.4002]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2480]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6774]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8267]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9705]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 118 \t train loss: 1.139709423000926 train MSE: tensor(0.6373, grad_fn=) test MSE: 0.6602010453352705\n", - "Corr: 0.8318430864578505\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4888, grad_fn=)\n", - "tensor(0.4892, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.2405]], grad_fn=)\n", + "tensor([[-8.0762]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.5172]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.1612]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.9947]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.2833]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.7983]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.0520]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.6528]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.3152]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.6212]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-6.9205]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.7368]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-9.2288]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.8622]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.6599]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "Epoch : 30 \t train loss: 1.961636193230335 train MSE: tensor(1.8942, grad_fn=) test MSE: 2.960971608757973\n", + "Corr: 0.20658304059133886\n", + "tensor(0.0656, grad_fn=)\n", + "tensor(0.0657, grad_fn=)\n", + "tensor(0.0657, grad_fn=)\n", + "tensor(0.0657, grad_fn=)\n", + "tensor(0.0658, grad_fn=)\n", + "tensor(0.0658, grad_fn=)\n", + "tensor(0.0659, grad_fn=)\n", + "tensor(0.0660, grad_fn=)\n", + "tensor(0.0660, grad_fn=)\n", + "tensor(0.0661, grad_fn=)\n", + "tensor(0.0662, grad_fn=)\n", + "tensor(0.0663, grad_fn=)\n", + "tensor(0.0664, grad_fn=)\n", + "tensor(0.0665, grad_fn=)\n", + "tensor(0.0666, grad_fn=)\n", + "tensor(0.0666, grad_fn=)\n", + "tensor(0.0667, grad_fn=)\n", + "tensor(0.0668, grad_fn=)\n", + "tensor(0.0668, grad_fn=)\n", + "tensor(0.0669, grad_fn=)\n", + "tensor([[-7.2225]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-6.9571]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.3309]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-6.7990]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.4475]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-7.8886]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-6.4444]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-6.2668]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.7616]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-7.5949]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.5872]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.5371]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.0361]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-7.9066]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.7468]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.7185]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.3674]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "Epoch : 119 \t train loss: 1.1319089016176838 train MSE: tensor(0.6296, grad_fn=) test MSE: 0.6819443719367655\n", - "Corr: 0.8434236643246468\n", - "tensor(0.4873, grad_fn=)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.2854]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.2496]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.1061]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9905]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0704]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0916]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.7215]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9174]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6172]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.0026]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.7027]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3513]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.0772]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.0978]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.2799]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.5159]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5072]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 120 \t train loss: 1.112445708620968 train MSE: tensor(0.6106, grad_fn=) test MSE: 0.7778217300547112\n", - "Corr: 0.8429357078534745\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.2297]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.6635]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-8.5783]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.7654]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2376]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1800]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0324]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2170]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4590]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5091]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.3071]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3726]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3905]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.6969]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3777]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8091]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.6800]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 121 \t train loss: 1.130040874159902 train MSE: tensor(0.6285, grad_fn=) test MSE: 0.7500212281520362\n", - "Corr: 0.8076090493814193\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4886, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor([[-7.5355]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.5048]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.8862]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.6924]])\n", + "tensor([[-4.3979]])\n", "------------------------\n", - "tensor([[-8.3028]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-4.9890]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.5775]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.0598]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.6119]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9096]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.1335]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-6.8533]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.5793]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.4871]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2906]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1505]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3873]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.4657]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5341]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 122 \t train loss: 1.1163600378343193 train MSE: tensor(0.6142, grad_fn=) test MSE: 0.8668063850564067\n", - "Corr: 0.8253274278860403\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor([[-7.6598]], grad_fn=)\n", + "tensor([[-8.1954]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.9271]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.6641]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.7031]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.4796]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.2903]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.3378]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.1186]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.2663]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.4741]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.3937]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-9.6087]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.4962]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.8683]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "Epoch : 31 \t train loss: 1.901170142517588 train MSE: tensor(1.8320, grad_fn=) test MSE: 2.8673116592191423\n", + "Corr: 0.26769995758806164\n", + "tensor(0.0669, grad_fn=)\n", + "tensor(0.0669, grad_fn=)\n", + "tensor(0.0670, grad_fn=)\n", + "tensor(0.0670, grad_fn=)\n", + "tensor(0.0671, grad_fn=)\n", + "tensor(0.0671, grad_fn=)\n", + "tensor(0.0672, grad_fn=)\n", + "tensor(0.0673, grad_fn=)\n", + "tensor(0.0674, grad_fn=)\n", + "tensor(0.0675, grad_fn=)\n", + "tensor(0.0676, grad_fn=)\n", + "tensor(0.0676, grad_fn=)\n", + "tensor(0.0677, grad_fn=)\n", + "tensor(0.0679, grad_fn=)\n", + "tensor(0.0680, grad_fn=)\n", + "tensor(0.0681, grad_fn=)\n", + "tensor(0.0682, grad_fn=)\n", + "tensor(0.0683, grad_fn=)\n", + "tensor(0.0683, grad_fn=)\n", + "tensor(0.0684, grad_fn=)\n", + "tensor([[-7.4281]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.8692]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.5756]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-7.5002]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.7013]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.4539]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-6.6260]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-6.5120]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.8612]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-7.6560]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.7914]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.9217]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.2861]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-8.2272]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.9868]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-8.0907]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.6161]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "Epoch : 123 \t train loss: 1.1285117121604462 train MSE: tensor(0.6264, grad_fn=) test MSE: 0.7292194635747364\n", - "Corr: 0.8117896453828907\n", - "tensor(0.4883, grad_fn=)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4890, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4893, grad_fn=)\n", - "tensor(0.4891, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.5370]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.4983]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.9324]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3259]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2287]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1116]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.3361]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.1055]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.7979]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4677]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1537]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.5490]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1209]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2649]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3751]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0560]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9645]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 124 \t train loss: 1.1587758845611151 train MSE: tensor(0.6561, grad_fn=) test MSE: 0.8135914248414338\n", - "Corr: 0.7868108285311795\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor([[-7.4255]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.7523]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-8.2238]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3090]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-9.9520]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.8611]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.8610]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.9988]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4181]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2923]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0424]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3730]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3135]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2232]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.4450]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.7346]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7276]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 125 \t train loss: 1.1024357385328678 train MSE: tensor(0.6005, grad_fn=) test MSE: 0.6930380203684763\n", - "Corr: 0.8469200805569196\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.4528]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.7103]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.9835]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-8.3932]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5486]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3417]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2500]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.0438]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.2444]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4915]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3140]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8893]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3797]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2304]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.6541]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3112]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8648]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8201]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 126 \t train loss: 1.12067092030921 train MSE: tensor(0.6192, grad_fn=) test MSE: 0.7130341385491192\n", - "Corr: 0.8205460212326328\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor([[-7.6221]], grad_fn=)\n", + "tensor([[-7.9215]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4166]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.4819]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.9206]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.1615]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.6900]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.0836]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.5603]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.8178]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.5036]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.0702]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.6112]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-9.1957]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.7290]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.4431]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n" + "Epoch : 32 \t train loss: 1.8837127281052057 train MSE: tensor(1.8132, grad_fn=) test MSE: 2.8837598742739785\n", + "Corr: 0.24109026616452528\n", + "tensor(0.0684, grad_fn=)\n", + "tensor(0.0684, grad_fn=)\n", + "tensor(0.0684, grad_fn=)\n", + "tensor(0.0684, grad_fn=)\n", + "tensor(0.0685, grad_fn=)\n", + "tensor(0.0685, grad_fn=)\n", + "tensor(0.0686, grad_fn=)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "tensor([[-7.4893]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.0035]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-7.9781]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2391]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3613]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3960]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9306]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.5040]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 127 \t train loss: 1.1023039065677942 train MSE: tensor(0.6009, grad_fn=) test MSE: 0.757705255644396\n", - "Corr: 0.8190993290954136\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor([[-7.4646]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor(0.0687, grad_fn=)\n", + "tensor(0.0688, grad_fn=)\n", + "tensor(0.0689, grad_fn=)\n", + "tensor(0.0689, grad_fn=)\n", + "tensor(0.0690, grad_fn=)\n", + "tensor(0.0690, grad_fn=)\n", + "tensor(0.0691, grad_fn=)\n", + "tensor(0.0692, grad_fn=)\n", + "tensor(0.0692, grad_fn=)\n", + "tensor(0.0693, grad_fn=)\n", + "tensor(0.0694, grad_fn=)\n", + "tensor(0.0694, grad_fn=)\n", + "tensor(0.0695, grad_fn=)\n", + "tensor([[-7.2895]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4654]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-8.4574]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4083]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.3437]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1810]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1120]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.5160]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5980]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4320]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.4258]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3924]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2114]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4316]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6085]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.0995]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.8661]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 128 \t train loss: 1.097091350584629 train MSE: tensor(0.5958, grad_fn=) test MSE: 0.6766508172086105\n", - "Corr: 0.8247876062074785\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor([[-7.5284]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.5976]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.4684]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.8441]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.6442]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.1782]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.8712]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.5143]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.3943]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.4692]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5841]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2197]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1485]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1336]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4572]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4802]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.2117]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2403]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2111]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3521]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.5098]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5282]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9029]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9391]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 129 \t train loss: 1.1347186160124096 train MSE: tensor(0.6332, grad_fn=) test MSE: 0.6638901123369578\n", - "Corr: 0.8324954059298276\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4880, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor([[-7.5789]], grad_fn=)\n", + "tensor([[-6.7388]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5695]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.9571]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7869]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.2852]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.7302]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.8244]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.1005]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.5525]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-9.9685]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.4240]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.8971]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.3820]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-6.8074]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.4818]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-9.3028]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.6000]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.4323]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "Epoch : 33 \t train loss: 1.9293939674464566 train MSE: tensor(1.8575, grad_fn=) test MSE: 2.839934925445483\n", + "Corr: 0.26783314128837893\n", + "tensor(0.0696, grad_fn=)\n", + "tensor(0.0697, grad_fn=)\n", + "tensor(0.0698, grad_fn=)\n", + "tensor(0.0699, grad_fn=)\n", + "tensor(0.0700, grad_fn=)\n", + "tensor(0.0701, grad_fn=)\n", + "tensor(0.0702, grad_fn=)\n", + "tensor(0.0702, grad_fn=)\n", + "tensor(0.0703, grad_fn=)\n", + "tensor(0.0704, grad_fn=)\n", + "tensor(0.0705, grad_fn=)\n", + "tensor(0.0705, grad_fn=)\n", + "tensor(0.0706, grad_fn=)\n", + "tensor(0.0707, grad_fn=)\n", + "tensor(0.0707, grad_fn=)\n", + "tensor(0.0708, grad_fn=)\n", + "tensor(0.0709, grad_fn=)\n", + "tensor(0.0710, grad_fn=)\n", + "tensor(0.0710, grad_fn=)\n", + "tensor(0.0711, grad_fn=)\n", + "tensor([[-7.2238]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.2934]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.4595]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-6.5373]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.5819]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.4504]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-6.3845]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-6.1662]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.8559]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-6.8716]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.5798]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.2919]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.1601]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-7.7279]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.8645]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.6689]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.4882]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "Epoch : 130 \t train loss: 1.1373815434267471 train MSE: tensor(0.6356, grad_fn=) test MSE: 0.7987805417017171\n", - "Corr: 0.8180418753271498\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor([[-7.3148]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.3722]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.4272]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.0242]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.0835]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-7.7486]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2437]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4384]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6590]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.3500]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.3142]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3187]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.4415]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2739]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.0291]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8581]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-8.0137]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 131 \t train loss: 1.0998243153734193 train MSE: tensor(0.5985, grad_fn=) test MSE: 0.8012734417570755\n", - "Corr: 0.8001924056450158\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4866, grad_fn=)\n", - "tensor([[-7.3973]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.7630]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-8.5454]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.1729]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1551]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.4763]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9649]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0994]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.6029]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5067]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.2600]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.2009]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1796]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.3089]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.7178]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9464]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.9112]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 132 \t train loss: 1.0843797628218694 train MSE: tensor(0.5833, grad_fn=) test MSE: 0.7705618746113032\n", - "Corr: 0.802456292264916\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor([[-7.4898]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.5789]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.9715]])\n", + "tensor([[-10.5229]])\n", "------------------------\n", - "tensor([[-8.4660]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.3939]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.2664]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3068]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.3634]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.0857]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4127]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.5663]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.7693]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3594]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.1261]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4999]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5262]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8463]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7087]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 133 \t train loss: 1.0902278485378483 train MSE: tensor(0.5889, grad_fn=) test MSE: 0.8252046543893812\n", - "Corr: 0.7874959220218892\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4866, grad_fn=)\n", - "tensor(0.4866, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4866, grad_fn=)\n", - "tensor(0.4865, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor([[-7.3381]], grad_fn=)\n", + "tensor([[-7.7699]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3041]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.5588]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.8097]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.4319]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.5693]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.0044]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.4497]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-8.1677]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.3400]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-7.0321]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.4867]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-9.4311]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.5679]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.5718]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "Epoch : 34 \t train loss: 1.8311194377855613 train MSE: tensor(1.7576, grad_fn=) test MSE: 2.8140002848678183\n", + "Corr: 0.28310159938223595\n", + "tensor(0.0711, grad_fn=)\n", + "tensor(0.0712, grad_fn=)\n", + "tensor(0.0713, grad_fn=)\n", + "tensor(0.0714, grad_fn=)\n", + "tensor(0.0715, grad_fn=)\n", + "tensor(0.0715, grad_fn=)\n", + "tensor(0.0716, grad_fn=)\n", + "tensor(0.0716, grad_fn=)\n", + "tensor(0.0717, grad_fn=)\n", + "tensor(0.0717, grad_fn=)\n", + "tensor(0.0718, grad_fn=)\n", + "tensor(0.0720, grad_fn=)\n", + "tensor(0.0721, grad_fn=)\n", + "tensor(0.0722, grad_fn=)\n", + "tensor(0.0723, grad_fn=)\n", + "tensor(0.0724, grad_fn=)\n", + "tensor(0.0725, grad_fn=)\n", + "tensor(0.0726, grad_fn=)\n", + "tensor(0.0726, grad_fn=)\n", + "tensor(0.0726, grad_fn=)\n", + "tensor([[-7.3216]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.4806]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.5778]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-7.0705]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.7058]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.1649]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-6.4648]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-6.2817]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.9044]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-7.5529]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.6645]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.5756]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.2974]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-7.9808]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.9847]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.9388]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.6049]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "Epoch : 134 \t train loss: 1.1214127708540211 train MSE: tensor(0.6203, grad_fn=) test MSE: 0.7277539736242034\n", - "Corr: 0.8143943797616322\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor([[-7.5046]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-8.5140]])\n", + "tensor([[-9.9914]])\n", "------------------------\n", - "tensor([[-8.5755]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.5360]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.5130]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.2827]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-6.9663]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-8.8687]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.4311]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.4170]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-6.8129]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.6675]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.2872]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.1107]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.6039]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.8114]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.4771]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 135 \t train loss: 1.1273437605152452 train MSE: tensor(0.6258, grad_fn=) test MSE: 0.6854975024054966\n", - "Corr: 0.8308638596684541\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4889, grad_fn=)\n", - "tensor(0.4887, grad_fn=)\n", - "tensor(0.4885, grad_fn=)\n", - "tensor(0.4884, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4875, grad_fn=)\n", - "tensor(0.4876, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4878, grad_fn=)\n", - "tensor([[-7.2245]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-6.8027]])\n", + "tensor([[-8.4559]])\n", "------------------------\n", - "tensor([[-8.5956]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.2426]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.1704]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.1179]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.2951]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.3791]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5632]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.6636]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.1840]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.3496]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.4036]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.4211]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.3734]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-8.1236]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7325]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 136 \t train loss: 1.096395501316415 train MSE: tensor(0.5942, grad_fn=) test MSE: 0.7934024259266153\n", - "Corr: 0.7934271785793098\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4883, grad_fn=)\n", - "tensor(0.4882, grad_fn=)\n", - "tensor(0.4881, grad_fn=)\n", - "tensor(0.4879, grad_fn=)\n", - "tensor(0.4877, grad_fn=)\n", - "tensor(0.4874, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4873, grad_fn=)\n", - "tensor(0.4872, grad_fn=)\n", - "tensor([[-7.3458]], grad_fn=)\n", - "tensor([[-8.]])\n", + "tensor([[-7.6678]])\n", + "tensor([[-8.1308]])\n", "------------------------\n", - "tensor([[-8.4426]], grad_fn=)\n", - "tensor([[-7.6021]])\n", - "------------------------\n", - "tensor([[-5.4205]], grad_fn=)\n", - "tensor([[-6.2291]])\n", - "------------------------\n", - "tensor([[-10.4365]], grad_fn=)\n", - "tensor([[-11.1675]])\n", - "------------------------\n", - "tensor([[-8.3675]], grad_fn=)\n", - "tensor([[-7.2757]])\n", - "------------------------\n", - "tensor([[-7.1250]], grad_fn=)\n", - "tensor([[-5.9208]])\n", - "------------------------\n", - "tensor([[-9.4166]], grad_fn=)\n", - "tensor([[-9.5229]])\n", - "------------------------\n", - "tensor([[-9.5418]], grad_fn=)\n", - "tensor([[-10.6990]])\n", - "------------------------\n", - "tensor([[-7.7850]], grad_fn=)\n", - "tensor([[-6.5086]])\n", - "------------------------\n", - "tensor([[-7.3539]], grad_fn=)\n", - "tensor([[-6.8125]])\n", - "------------------------\n", - "tensor([[-8.6933]], grad_fn=)\n", - "tensor([[-8.4473]])\n", - "------------------------\n", - "tensor([[-6.3699]], grad_fn=)\n", - "tensor([[-7.6990]])\n", - "------------------------\n", - "tensor([[-7.2172]], grad_fn=)\n", - "tensor([[-7.0773]])\n", - "------------------------\n", - "tensor([[-7.5881]], grad_fn=)\n", - "tensor([[-8.6861]])\n", - "------------------------\n", - "tensor([[-7.9014]], grad_fn=)\n", - "tensor([[-8.6021]])\n", - "------------------------\n", - "tensor([[-7.7896]], grad_fn=)\n", - "tensor([[-7.7212]])\n", - "------------------------\n", - "Epoch : 137 \t train loss: 1.1010339570447096 train MSE: tensor(0.5994, grad_fn=) test MSE: 0.7365730393212289\n", - "Corr: 0.8067283229335293\n", - "tensor(0.4871, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4866, grad_fn=)\n", - "tensor(0.4866, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4870, grad_fn=)\n", - "tensor(0.4869, grad_fn=)\n", - "tensor(0.4868, grad_fn=)\n", - "tensor(0.4867, grad_fn=)\n", - "tensor(0.4866, grad_fn=)\n", - "tensor(0.4866, grad_fn=)\n", - "tensor([[-7.6746]], grad_fn=)\n", + "tensor([[-8.0122]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.8714]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3997]])\n", "tensor([[-8.]])\n", "------------------------\n", - "tensor([[-8.4212]], grad_fn=)\n", - "tensor([[-7.6021]])\n", + "tensor([[-8.9412]])\n", + "tensor([[-6.5229]])\n", "------------------------\n", - "tensor([[-5.2959]], grad_fn=)\n", - "tensor([[-6.2291]])\n", + "tensor([[-8.6725]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-10.1249]], grad_fn=)\n", - "tensor([[-11.1675]])\n", + "tensor([[-8.5593]])\n", + "tensor([[-9.7696]])\n", "------------------------\n", - "tensor([[-7.9551]], grad_fn=)\n", - "tensor([[-7.2757]])\n", + "tensor([[-8.4421]])\n", + "tensor([[-8.3010]])\n", "------------------------\n", - "tensor([[-6.7733]], grad_fn=)\n", - "tensor([[-5.9208]])\n", + "tensor([[-8.6038]])\n", + "tensor([[-5.8861]])\n", "------------------------\n", - "tensor([[-8.9879]], grad_fn=)\n", - "tensor([[-9.5229]])\n", + "tensor([[-7.6866]])\n", + "tensor([[-7.4559]])\n", "------------------------\n", - "tensor([[-9.3480]], grad_fn=)\n", - "tensor([[-10.6990]])\n", + "Epoch : 35 \t train loss: 1.823707723695341 train MSE: tensor(1.7486, grad_fn=) test MSE: 2.8263039902030003\n", + "Corr: 0.2720839706606775\n", + "tensor(0.0727, grad_fn=)\n", + "tensor(0.0727, grad_fn=)\n", + "tensor(0.0727, grad_fn=)\n", + "tensor(0.0728, grad_fn=)\n", + "tensor(0.0728, grad_fn=)\n", + "tensor(0.0729, grad_fn=)\n", + "tensor(0.0730, grad_fn=)\n", + "tensor(0.0730, grad_fn=)\n", + "tensor(0.0731, grad_fn=)\n", + "tensor(0.0732, grad_fn=)\n", + "tensor(0.0732, grad_fn=)\n", + "tensor(0.0733, grad_fn=)\n", + "tensor(0.0734, grad_fn=)\n", + "tensor(0.0734, grad_fn=)\n", + "tensor(0.0735, grad_fn=)\n", + "tensor(0.0736, grad_fn=)\n", + "tensor(0.0737, grad_fn=)\n", + "tensor(0.0737, grad_fn=)\n", + "tensor(0.0738, grad_fn=)\n", + "tensor(0.0739, grad_fn=)\n", + "tensor([[-7.2308]])\n", + "tensor([[-9.3010]])\n", "------------------------\n", - "tensor([[-7.2756]], grad_fn=)\n", - "tensor([[-6.5086]])\n", + "tensor([[-8.5117]])\n", + "tensor([[-11.2441]])\n", "------------------------\n", - "tensor([[-6.9686]], grad_fn=)\n", - "tensor([[-6.8125]])\n", + "tensor([[-8.6506]])\n", + "tensor([[-7.5986]])\n", "------------------------\n", - "tensor([[-8.4662]], grad_fn=)\n", - "tensor([[-8.4473]])\n", + "tensor([[-6.3599]])\n", + "tensor([[-4.5086]])\n", "------------------------\n", - "tensor([[-6.1636]], grad_fn=)\n", - "tensor([[-7.6990]])\n", + "tensor([[-7.9145]])\n", + "tensor([[-9.1612]])\n", "------------------------\n", - "tensor([[-6.9258]], grad_fn=)\n", - "tensor([[-7.0773]])\n", + "tensor([[-7.5670]])\n", + "tensor([[-7.]])\n", "------------------------\n", - "tensor([[-7.4774]], grad_fn=)\n", - "tensor([[-8.6861]])\n", + "tensor([[-8.2334]])\n", + "tensor([[-8.1643]])\n", "------------------------\n", - "tensor([[-7.5962]], grad_fn=)\n", - "tensor([[-8.6021]])\n", + "tensor([[-7.9081]])\n", + "tensor([[-9.0969]])\n", "------------------------\n", - "tensor([[-7.3147]], grad_fn=)\n", - "tensor([[-7.7212]])\n", + "tensor([[-8.5386]])\n", + "tensor([[-7.5229]])\n", "------------------------\n", - "Epoch : 138 \t train loss: 1.0926781314072893 train MSE: tensor(0.5917, grad_fn=) test MSE: 0.729121044247222\n", - "Corr: 0.8383173536825251\n" - ] - } - ], - "source": [ - "model.train()\n", - "n_max_epochs = 23 * 6\n", - "max_corr = 0.87\n", + "tensor([[-8.4472]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.8329]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5860]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0308]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7763]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3262]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.8811]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.6006]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4861]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.3692]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.5276]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6068]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 36 \t train loss: 1.7861102121300254 train MSE: tensor(1.7097, grad_fn=) test MSE: 2.779066004879063\n", + "Corr: 0.2969233743031664\n", + "tensor(0.0740, grad_fn=)\n", + "tensor(0.0740, grad_fn=)\n", + "tensor(0.0741, grad_fn=)\n", + "tensor(0.0742, grad_fn=)\n", + "tensor(0.0743, grad_fn=)\n", + "tensor(0.0743, grad_fn=)\n", + "tensor(0.0744, grad_fn=)\n", + "tensor(0.0745, grad_fn=)\n", + "tensor(0.0745, grad_fn=)\n", + "tensor(0.0745, grad_fn=)\n", + "tensor(0.0745, grad_fn=)\n", + "tensor(0.0746, grad_fn=)\n", + "tensor(0.0746, grad_fn=)\n", + "tensor(0.0747, grad_fn=)\n", + "tensor(0.0747, grad_fn=)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.0747, grad_fn=)\n", + "tensor(0.0748, grad_fn=)\n", + "tensor(0.0748, grad_fn=)\n", + "tensor(0.0749, grad_fn=)\n", + "tensor(0.0750, grad_fn=)\n", + "tensor([[-7.0186]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3355]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.4818]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.1339]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.8013]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.3434]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.0531]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.7254]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.3588]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.2711]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.7294]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.3637]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.9004]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.5773]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.1186]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.7053]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.3750]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.2676]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.1750]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.3115]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.3989]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 37 \t train loss: 1.808695828934089 train MSE: tensor(1.7309, grad_fn=) test MSE: 2.8074760242986185\n", + "Corr: 0.31595141736533766\n", + "tensor(0.0750, grad_fn=)\n", + "tensor(0.0751, grad_fn=)\n", + "tensor(0.0752, grad_fn=)\n", + "tensor(0.0753, grad_fn=)\n", + "tensor(0.0754, grad_fn=)\n", + "tensor(0.0755, grad_fn=)\n", + "tensor(0.0756, grad_fn=)\n", + "tensor(0.0758, grad_fn=)\n", + "tensor(0.0759, grad_fn=)\n", + "tensor(0.0760, grad_fn=)\n", + "tensor(0.0761, grad_fn=)\n", + "tensor(0.0762, grad_fn=)\n", + "tensor(0.0763, grad_fn=)\n", + "tensor(0.0764, grad_fn=)\n", + "tensor(0.0765, grad_fn=)\n", + "tensor(0.0765, grad_fn=)\n", + "tensor(0.0766, grad_fn=)\n", + "tensor(0.0766, grad_fn=)\n", + "tensor(0.0766, grad_fn=)\n", + "tensor(0.0766, grad_fn=)\n", + "tensor([[-7.0898]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4364]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.5776]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.1780]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.8579]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.4027]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.1536]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.8006]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.4569]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.3759]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.7877]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.4850]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.9556]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.6647]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.2373]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.8064]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.5302]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3991]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.2604]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.4237]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.4904]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 38 \t train loss: 2.0121441603095844 train MSE: tensor(1.9328, grad_fn=) test MSE: 2.770948552158924\n", + "Corr: 0.31451907539195384\n", + "tensor(0.0766, grad_fn=)\n", + "tensor(0.0767, grad_fn=)\n", + "tensor(0.0767, grad_fn=)\n", + "tensor(0.0768, grad_fn=)\n", + "tensor(0.0769, grad_fn=)\n", + "tensor(0.0770, grad_fn=)\n", + "tensor(0.0771, grad_fn=)\n", + "tensor(0.0773, grad_fn=)\n", + "tensor(0.0774, grad_fn=)\n", + "tensor(0.0775, grad_fn=)\n", + "tensor(0.0776, grad_fn=)\n", + "tensor(0.0778, grad_fn=)\n", + "tensor(0.0779, grad_fn=)\n", + "tensor(0.0780, grad_fn=)\n", + "tensor(0.0781, grad_fn=)\n", + "tensor(0.0782, grad_fn=)\n", + "tensor(0.0783, grad_fn=)\n", + "tensor(0.0784, grad_fn=)\n", + "tensor(0.0785, grad_fn=)\n", + "tensor(0.0786, grad_fn=)\n", + "tensor([[-7.3387]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6951]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.8693]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.4470]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0170]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.6431]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.4445]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.0852]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.7207]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6710]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9372]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.6889]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1255]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.9119]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4925]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.0988]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.8029]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6663]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.5391]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.7072]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.7653]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 39 \t train loss: 1.8016220173672401 train MSE: tensor(1.7206, grad_fn=) test MSE: 2.7987747187060976\n", + "Corr: 0.2908567882774882\n", + "tensor(0.0787, grad_fn=)\n", + "tensor(0.0788, grad_fn=)\n", + "tensor(0.0789, grad_fn=)\n", + "tensor(0.0790, grad_fn=)\n", + "tensor(0.0791, grad_fn=)\n", + "tensor(0.0792, grad_fn=)\n", + "tensor(0.0793, grad_fn=)\n", + "tensor(0.0793, grad_fn=)\n", + "tensor(0.0794, grad_fn=)\n", + "tensor(0.0794, grad_fn=)\n", + "tensor(0.0795, grad_fn=)\n", + "tensor(0.0796, grad_fn=)\n", + "tensor(0.0797, grad_fn=)\n", + "tensor(0.0798, grad_fn=)\n", + "tensor(0.0798, grad_fn=)\n", + "tensor(0.0799, grad_fn=)\n", + "tensor(0.0800, grad_fn=)\n", + "tensor(0.0800, grad_fn=)\n", + "tensor(0.0800, grad_fn=)\n", + "tensor(0.0801, grad_fn=)\n", + "tensor([[-6.9891]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3871]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.5691]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.0691]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.9272]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.2914]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.1208]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.7528]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.4075]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.3523]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.8762]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.3835]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0364]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.5634]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.1897]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.7944]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.4998]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3490]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.2125]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.3721]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.4231]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 40 \t train loss: 1.8109015547237428 train MSE: tensor(1.7279, grad_fn=) test MSE: 2.717672065998029\n", + "Corr: 0.345814624137993\n", + "tensor(0.0800, grad_fn=)\n", + "tensor(0.0800, grad_fn=)\n", + "tensor(0.0800, grad_fn=)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.0800, grad_fn=)\n", + "tensor(0.0800, grad_fn=)\n", + "tensor(0.0801, grad_fn=)\n", + "tensor(0.0801, grad_fn=)\n", + "tensor(0.0802, grad_fn=)\n", + "tensor(0.0803, grad_fn=)\n", + "tensor(0.0804, grad_fn=)\n", + "tensor(0.0805, grad_fn=)\n", + "tensor(0.0807, grad_fn=)\n", + "tensor(0.0808, grad_fn=)\n", + "tensor(0.0809, grad_fn=)\n", + "tensor(0.0811, grad_fn=)\n", + "tensor(0.0812, grad_fn=)\n", + "tensor(0.0813, grad_fn=)\n", + "tensor(0.0814, grad_fn=)\n", + "tensor(0.0814, grad_fn=)\n", + "tensor(0.0815, grad_fn=)\n", + "tensor([[-7.4309]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.8447]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.0356]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.5227]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.1122]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.7517]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.5811]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.2140]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.8571]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.8203]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0431]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.8266]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.2304]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-8.0103]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.6423]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.2585]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.9622]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.8160]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.6775]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.8468]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.8928]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 41 \t train loss: 1.8620615612235387 train MSE: tensor(1.7779, grad_fn=) test MSE: 2.8361028979221974\n", + "Corr: 0.29217123655049576\n", + "tensor(0.0815, grad_fn=)\n", + "tensor(0.0816, grad_fn=)\n", + "tensor(0.0817, grad_fn=)\n", + "tensor(0.0817, grad_fn=)\n", + "tensor(0.0817, grad_fn=)\n", + "tensor(0.0818, grad_fn=)\n", + "tensor(0.0818, grad_fn=)\n", + "tensor(0.0818, grad_fn=)\n", + "tensor(0.0818, grad_fn=)\n", + "tensor(0.0818, grad_fn=)\n", + "tensor(0.0818, grad_fn=)\n", + "tensor(0.0819, grad_fn=)\n", + "tensor(0.0820, grad_fn=)\n", + "tensor(0.0821, grad_fn=)\n", + "tensor(0.0822, grad_fn=)\n", + "tensor(0.0823, grad_fn=)\n", + "tensor(0.0824, grad_fn=)\n", + "tensor(0.0825, grad_fn=)\n", + "tensor(0.0826, grad_fn=)\n", + "tensor(0.0826, grad_fn=)\n", + "tensor([[-7.2095]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6321]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.8223]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.2497]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0268]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.4804]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.3820]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.0146]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.6579]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6307]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9583]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.6097]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1228]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7926]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3991]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.0695]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7187]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5731]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4436]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6579]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6621]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 42 \t train loss: 1.8667565823379193 train MSE: tensor(1.7812, grad_fn=) test MSE: 2.741002650133201\n", + "Corr: 0.316359838620394\n", + "tensor(0.0828, grad_fn=)\n", + "tensor(0.0829, grad_fn=)\n", + "tensor(0.0830, grad_fn=)\n", + "tensor(0.0831, grad_fn=)\n", + "tensor(0.0832, grad_fn=)\n", + "tensor(0.0833, grad_fn=)\n", + "tensor(0.0834, grad_fn=)\n", + "tensor(0.0834, grad_fn=)\n", + "tensor(0.0835, grad_fn=)\n", + "tensor(0.0835, grad_fn=)\n", + "tensor(0.0836, grad_fn=)\n", + "tensor(0.0836, grad_fn=)\n", + "tensor(0.0837, grad_fn=)\n", + "tensor(0.0837, grad_fn=)\n", + "tensor(0.0838, grad_fn=)\n", + "tensor(0.0838, grad_fn=)\n", + "tensor(0.0839, grad_fn=)\n", + "tensor(0.0840, grad_fn=)\n", + "tensor(0.0841, grad_fn=)\n", + "tensor(0.0842, grad_fn=)\n", + "tensor([[-7.1315]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5754]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.7845]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.1590]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.9929]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.4052]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.3369]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.9958]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.6192]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.5981]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9342]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5382]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0785]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7599]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3333]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.0477]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.6407]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5034]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.3819]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6087]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6064]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 43 \t train loss: 1.7702214892886783 train MSE: tensor(1.6830, grad_fn=) test MSE: 2.7516446890575543\n", + "Corr: 0.31439769780568133\n", + "tensor(0.0843, grad_fn=)\n", + "tensor(0.0844, grad_fn=)\n", + "tensor(0.0845, grad_fn=)\n", + "tensor(0.0847, grad_fn=)\n", + "tensor(0.0847, grad_fn=)\n", + "tensor(0.0848, grad_fn=)\n", + "tensor(0.0848, grad_fn=)\n", + "tensor(0.0849, grad_fn=)\n", + "tensor(0.0849, grad_fn=)\n", + "tensor(0.0850, grad_fn=)\n", + "tensor(0.0850, grad_fn=)\n", + "tensor(0.0851, grad_fn=)\n", + "tensor(0.0851, grad_fn=)\n", + "tensor(0.0852, grad_fn=)\n", + "tensor(0.0852, grad_fn=)\n", + "tensor(0.0853, grad_fn=)\n", + "tensor(0.0854, grad_fn=)\n", + "tensor(0.0855, grad_fn=)\n", + "tensor(0.0856, grad_fn=)\n", + "tensor(0.0857, grad_fn=)\n", + "tensor([[-7.1153]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6122]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.8254]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.1458]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.9927]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.4286]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.3555]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.0088]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.6469]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6174]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9327]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5669]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0733]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7866]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3584]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.0873]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.6619]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5203]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4099]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6429]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6162]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 44 \t train loss: 1.6809687077707411 train MSE: tensor(1.5922, grad_fn=) test MSE: 2.7735719155254106\n", + "Corr: 0.30627065861679903\n", + "tensor(0.0858, grad_fn=)\n", + "tensor(0.0858, grad_fn=)\n", + "tensor(0.0859, grad_fn=)\n", + "tensor(0.0860, grad_fn=)\n", + "tensor(0.0860, grad_fn=)\n", + "tensor(0.0861, grad_fn=)\n", + "tensor(0.0861, grad_fn=)\n", + "tensor(0.0861, grad_fn=)\n", + "tensor(0.0862, grad_fn=)\n", + "tensor(0.0862, grad_fn=)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.0863, grad_fn=)\n", + "tensor(0.0863, grad_fn=)\n", + "tensor(0.0864, grad_fn=)\n", + "tensor(0.0865, grad_fn=)\n", + "tensor(0.0866, grad_fn=)\n", + "tensor(0.0867, grad_fn=)\n", + "tensor(0.0868, grad_fn=)\n", + "tensor(0.0870, grad_fn=)\n", + "tensor(0.0871, grad_fn=)\n", + "tensor(0.0872, grad_fn=)\n", + "tensor([[-7.2141]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.7207]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.9546]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.2353]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0424]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.4990]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.4871]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.1171]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.7544]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.7516]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9908]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.6454]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1299]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.8664]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4549]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.2075]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7629]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6179]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.5170]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.7289]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.7359]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 45 \t train loss: 1.700740238581746 train MSE: tensor(1.6106, grad_fn=) test MSE: 2.787480822631291\n", + "Corr: 0.302754853992019\n", + "tensor(0.0872, grad_fn=)\n", + "tensor(0.0873, grad_fn=)\n", + "tensor(0.0873, grad_fn=)\n", + "tensor(0.0874, grad_fn=)\n", + "tensor(0.0874, grad_fn=)\n", + "tensor(0.0874, grad_fn=)\n", + "tensor(0.0874, grad_fn=)\n", + "tensor(0.0874, grad_fn=)\n", + "tensor(0.0875, grad_fn=)\n", + "tensor(0.0876, grad_fn=)\n", + "tensor(0.0877, grad_fn=)\n", + "tensor(0.0878, grad_fn=)\n", + "tensor(0.0879, grad_fn=)\n", + "tensor(0.0880, grad_fn=)\n", + "tensor(0.0881, grad_fn=)\n", + "tensor(0.0882, grad_fn=)\n", + "tensor(0.0883, grad_fn=)\n", + "tensor(0.0884, grad_fn=)\n", + "tensor(0.0885, grad_fn=)\n", + "tensor(0.0885, grad_fn=)\n", + "tensor([[-7.1329]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.7005]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.9290]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.1510]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0398]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.4224]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.4425]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.0673]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.7139]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6991]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9916]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5929]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1187]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.8203]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4172]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.1689]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7254]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5731]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4722]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6670]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6759]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 46 \t train loss: 1.815729069670884 train MSE: tensor(1.7241, grad_fn=) test MSE: 2.7607571122546988\n", + "Corr: 0.3134676222512477\n", + "tensor(0.0886, grad_fn=)\n", + "tensor(0.0887, grad_fn=)\n", + "tensor(0.0889, grad_fn=)\n", + "tensor(0.0890, grad_fn=)\n", + "tensor(0.0891, grad_fn=)\n", + "tensor(0.0892, grad_fn=)\n", + "tensor(0.0893, grad_fn=)\n", + "tensor(0.0894, grad_fn=)\n", + "tensor(0.0895, grad_fn=)\n", + "tensor(0.0896, grad_fn=)\n", + "tensor(0.0897, grad_fn=)\n", + "tensor(0.0898, grad_fn=)\n", + "tensor(0.0899, grad_fn=)\n", + "tensor(0.0900, grad_fn=)\n", + "tensor(0.0900, grad_fn=)\n", + "tensor(0.0901, grad_fn=)\n", + "tensor(0.0901, grad_fn=)\n", + "tensor(0.0901, grad_fn=)\n", + "tensor(0.0901, grad_fn=)\n", + "tensor(0.0902, grad_fn=)\n", + "tensor([[-6.8620]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4294]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.6603]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.8490]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.9888]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.1379]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.1699]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.7193]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.4547]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.4412]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9470]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.2892]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0636]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.4904]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.1030]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.9094]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.4113]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.2751]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.1867]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.3447]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.3937]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 47 \t train loss: 1.6800588417986675 train MSE: tensor(1.5866, grad_fn=) test MSE: 2.702260692329132\n", + "Corr: 0.36007971857669163\n", + "tensor(0.0903, grad_fn=)\n", + "tensor(0.0904, grad_fn=)\n", + "tensor(0.0905, grad_fn=)\n", + "tensor(0.0906, grad_fn=)\n", + "tensor(0.0908, grad_fn=)\n", + "tensor(0.0909, grad_fn=)\n", + "tensor(0.0910, grad_fn=)\n", + "tensor(0.0911, grad_fn=)\n", + "tensor(0.0912, grad_fn=)\n", + "tensor(0.0913, grad_fn=)\n", + "tensor(0.0913, grad_fn=)\n", + "tensor(0.0913, grad_fn=)\n", + "tensor(0.0914, grad_fn=)\n", + "tensor(0.0914, grad_fn=)\n", + "tensor(0.0914, grad_fn=)\n", + "tensor(0.0914, grad_fn=)\n", + "tensor(0.0915, grad_fn=)\n", + "tensor(0.0916, grad_fn=)\n", + "tensor(0.0917, grad_fn=)\n", + "tensor(0.0918, grad_fn=)\n", + "tensor([[-7.0030]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6120]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.8462]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.0082]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0453]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.2758]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.3350]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.8916]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.6122]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6142]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9950]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5123]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1144]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.6533]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3197]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.0840]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.6591]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5071]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.3591]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.5885]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.5580]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 48 \t train loss: 1.7316220456196474 train MSE: tensor(1.6365, grad_fn=) test MSE: 2.7047435267872753\n", + "Corr: 0.33936409809583207\n", + "tensor(0.0919, grad_fn=)\n", + "tensor(0.0921, grad_fn=)\n", + "tensor(0.0922, grad_fn=)\n", + "tensor(0.0923, grad_fn=)\n", + "tensor(0.0924, grad_fn=)\n", + "tensor(0.0926, grad_fn=)\n", + "tensor(0.0927, grad_fn=)\n", + "tensor(0.0928, grad_fn=)\n", + "tensor(0.0928, grad_fn=)\n", + "tensor(0.0929, grad_fn=)\n", + "tensor(0.0929, grad_fn=)\n", + "tensor(0.0929, grad_fn=)\n", + "tensor(0.0929, grad_fn=)\n", + "tensor(0.0929, grad_fn=)\n", + "tensor(0.0928, grad_fn=)\n", + "tensor(0.0928, grad_fn=)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.0928, grad_fn=)\n", + "tensor(0.0928, grad_fn=)\n", + "tensor(0.0929, grad_fn=)\n", + "tensor(0.0929, grad_fn=)\n", + "tensor([[-6.6363]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3427]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.5228]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.6529]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.8649]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-6.9078]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-7.9897]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.5344]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.2726]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.2684]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.8470]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.1483]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.9275]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.2867]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-7.9625]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.7513]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.2885]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.1259]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.0134]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.2114]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.1929]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 49 \t train loss: 1.68701748124538 train MSE: tensor(1.5903, grad_fn=) test MSE: 2.774386301736481\n", + "Corr: 0.374518718549834\n", + "tensor(0.0931, grad_fn=)\n", + "tensor(0.0932, grad_fn=)\n", + "tensor(0.0934, grad_fn=)\n", + "tensor(0.0936, grad_fn=)\n", + "tensor(0.0938, grad_fn=)\n", + "tensor(0.0940, grad_fn=)\n", + "tensor(0.0942, grad_fn=)\n", + "tensor(0.0943, grad_fn=)\n", + "tensor(0.0944, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0945, grad_fn=)\n", + "tensor(0.0946, grad_fn=)\n", + "tensor([[-6.7315]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5206]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.6896]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.7711]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.9100]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.0262]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.1107]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.6907]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.4032]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.3911]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.8951]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.2836]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-7.9732]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.4181]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.1231]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.8889]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.4523]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.2713]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.1655]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.3624]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.3138]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 50 \t train loss: 1.7193435059091589 train MSE: tensor(1.6210, grad_fn=) test MSE: 2.724383768154352\n", + "Corr: 0.36139768568721364\n", + "tensor(0.0947, grad_fn=)\n", + "tensor(0.0948, grad_fn=)\n", + "tensor(0.0950, grad_fn=)\n", + "tensor(0.0951, grad_fn=)\n", + "tensor(0.0953, grad_fn=)\n", + "tensor(0.0954, grad_fn=)\n", + "tensor(0.0956, grad_fn=)\n", + "tensor(0.0956, grad_fn=)\n", + "tensor(0.0957, grad_fn=)\n", + "tensor(0.0957, grad_fn=)\n", + "tensor(0.0957, grad_fn=)\n", + "tensor(0.0957, grad_fn=)\n", + "tensor(0.0957, grad_fn=)\n", + "tensor(0.0957, grad_fn=)\n", + "tensor(0.0957, grad_fn=)\n", + "tensor(0.0957, grad_fn=)\n", + "tensor(0.0957, grad_fn=)\n", + "tensor(0.0958, grad_fn=)\n", + "tensor(0.0958, grad_fn=)\n", + "tensor(0.0959, grad_fn=)\n", + "tensor([[-6.7862]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5993]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.7796]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.8198]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-7.9598]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.0770]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.1962]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.7584]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.4876]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.4726]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9451]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.3337]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0222]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.4900]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.1867]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-8.9790]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.5118]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3319]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.2412]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.4163]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.3947]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 51 \t train loss: 1.6955552155586482 train MSE: tensor(1.5958, grad_fn=) test MSE: 2.705319132655859\n", + "Corr: 0.35690961288422707\n", + "tensor(0.0960, grad_fn=)\n", + "tensor(0.0961, grad_fn=)\n", + "tensor(0.0961, grad_fn=)\n", + "tensor(0.0962, grad_fn=)\n", + "tensor(0.0963, grad_fn=)\n", + "tensor(0.0963, grad_fn=)\n", + "tensor(0.0964, grad_fn=)\n", + "tensor(0.0965, grad_fn=)\n", + "tensor(0.0967, grad_fn=)\n", + "tensor(0.0968, grad_fn=)\n", + "tensor(0.0969, grad_fn=)\n", + "tensor(0.0971, grad_fn=)\n", + "tensor(0.0972, grad_fn=)\n", + "tensor(0.0973, grad_fn=)\n", + "tensor(0.0974, grad_fn=)\n", + "tensor(0.0975, grad_fn=)\n", + "tensor(0.0975, grad_fn=)\n", + "tensor(0.0976, grad_fn=)\n", + "tensor(0.0976, grad_fn=)\n", + "tensor(0.0976, grad_fn=)\n", + "tensor([[-6.9684]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.8272]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.9996]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.9998]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0031]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.2544]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.4085]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.9992]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.6939]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6830]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-6.9880]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5443]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0640]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7123]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3976]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.1890]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7178]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5401]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4460]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6960]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6072]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 52 \t train loss: 1.6054600969224342 train MSE: tensor(1.5043, grad_fn=) test MSE: 2.752841176110365\n", + "Corr: 0.32472064299025505\n", + "tensor(0.0976, grad_fn=)\n", + "tensor(0.0976, grad_fn=)\n", + "tensor(0.0976, grad_fn=)\n", + "tensor(0.0976, grad_fn=)\n", + "tensor(0.0977, grad_fn=)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.0978, grad_fn=)\n", + "tensor(0.0978, grad_fn=)\n", + "tensor(0.0979, grad_fn=)\n", + "tensor(0.0980, grad_fn=)\n", + "tensor(0.0981, grad_fn=)\n", + "tensor(0.0982, grad_fn=)\n", + "tensor(0.0982, grad_fn=)\n", + "tensor(0.0983, grad_fn=)\n", + "tensor(0.0983, grad_fn=)\n", + "tensor(0.0984, grad_fn=)\n", + "tensor(0.0984, grad_fn=)\n", + "tensor(0.0985, grad_fn=)\n", + "tensor(0.0986, grad_fn=)\n", + "tensor(0.0987, grad_fn=)\n", + "tensor(0.0987, grad_fn=)\n", + "tensor([[-7.0827]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.9685]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.1373]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.1182]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0288]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.3636]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.5476]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.1290]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.8247]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.8171]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0147]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.6364]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0916]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.8193]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4997]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.3295]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.8188]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6396]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.5739]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.8059]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.7303]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 53 \t train loss: 1.6298820719633365 train MSE: tensor(1.5275, grad_fn=) test MSE: 2.80377872323706\n", + "Corr: 0.3102098531339265\n", + "tensor(0.0989, grad_fn=)\n", + "tensor(0.0991, grad_fn=)\n", + "tensor(0.0992, grad_fn=)\n", + "tensor(0.0993, grad_fn=)\n", + "tensor(0.0994, grad_fn=)\n", + "tensor(0.0995, grad_fn=)\n", + "tensor(0.0995, grad_fn=)\n", + "tensor(0.0996, grad_fn=)\n", + "tensor(0.0996, grad_fn=)\n", + "tensor(0.0996, grad_fn=)\n", + "tensor(0.0996, grad_fn=)\n", + "tensor(0.0996, grad_fn=)\n", + "tensor(0.0996, grad_fn=)\n", + "tensor(0.0996, grad_fn=)\n", + "tensor(0.0997, grad_fn=)\n", + "tensor(0.0997, grad_fn=)\n", + "tensor(0.0998, grad_fn=)\n", + "tensor(0.0999, grad_fn=)\n", + "tensor(0.1000, grad_fn=)\n", + "tensor(0.1001, grad_fn=)\n", + "tensor([[-6.8643]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.7922]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.9542]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.8753]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0020]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.1347]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.3533]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.9362]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.6324]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6236]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0024]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.4579]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0683]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.6219]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3104]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.1388]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.6402]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4586]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.3684]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6157]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.5255]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 54 \t train loss: 1.613544177853458 train MSE: tensor(1.5096, grad_fn=) test MSE: 2.7162542909915954\n", + "Corr: 0.3427154866038581\n", + "tensor(0.1002, grad_fn=)\n", + "tensor(0.1003, grad_fn=)\n", + "tensor(0.1004, grad_fn=)\n", + "tensor(0.1005, grad_fn=)\n", + "tensor(0.1006, grad_fn=)\n", + "tensor(0.1007, grad_fn=)\n", + "tensor(0.1008, grad_fn=)\n", + "tensor(0.1009, grad_fn=)\n", + "tensor(0.1010, grad_fn=)\n", + "tensor(0.1010, grad_fn=)\n", + "tensor(0.1011, grad_fn=)\n", + "tensor(0.1011, grad_fn=)\n", + "tensor(0.1011, grad_fn=)\n", + "tensor(0.1012, grad_fn=)\n", + "tensor(0.1012, grad_fn=)\n", + "tensor(0.1013, grad_fn=)\n", + "tensor(0.1013, grad_fn=)\n", + "tensor(0.1013, grad_fn=)\n", + "tensor(0.1014, grad_fn=)\n", + "tensor(0.1016, grad_fn=)\n", + "tensor([[-6.9276]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.8781]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.0463]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.9380]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0537]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.1879]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.4477]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.0254]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.7104]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.7073]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0598]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5307]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1286]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7060]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3937]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.2162]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7262]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5312]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4456]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6996]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6155]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 55 \t train loss: 1.569295917405195 train MSE: tensor(1.4639, grad_fn=) test MSE: 2.720939888042353\n", + "Corr: 0.3390693722354583\n", + "tensor(0.1017, grad_fn=)\n", + "tensor(0.1017, grad_fn=)\n", + "tensor(0.1018, grad_fn=)\n", + "tensor(0.1019, grad_fn=)\n", + "tensor(0.1020, grad_fn=)\n", + "tensor(0.1021, grad_fn=)\n", + "tensor(0.1021, grad_fn=)\n", + "tensor(0.1022, grad_fn=)\n", + "tensor(0.1023, grad_fn=)\n", + "tensor(0.1024, grad_fn=)\n", + "tensor(0.1025, grad_fn=)\n", + "tensor(0.1026, grad_fn=)\n", + "tensor(0.1027, grad_fn=)\n", + "tensor(0.1029, grad_fn=)\n", + "tensor(0.1030, grad_fn=)\n", + "tensor(0.1030, grad_fn=)\n", + "tensor(0.1031, grad_fn=)\n", + "tensor(0.1031, grad_fn=)\n", + "tensor(0.1032, grad_fn=)\n", + "tensor(0.1033, grad_fn=)\n", + "tensor([[-6.9959]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.9543]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.1444]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.0039]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.1451]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.2684]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.5203]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.1171]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.7968]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.7871]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.1486]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5938]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.2345]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7857]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4841]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.3098]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.8080]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6099]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.5318]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.8043]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6856]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 56 \t train loss: 1.5710191462207188 train MSE: tensor(1.4640, grad_fn=) test MSE: 2.731824910534279\n", + "Corr: 0.33757433454730346\n", + "tensor(0.1033, grad_fn=)\n", + "tensor(0.1033, grad_fn=)\n", + "tensor(0.1033, grad_fn=)\n", + "tensor(0.1033, grad_fn=)\n", + "tensor(0.1034, grad_fn=)\n", + "tensor(0.1034, grad_fn=)\n", + "tensor(0.1034, grad_fn=)\n", + "tensor(0.1034, grad_fn=)\n", + "tensor(0.1034, grad_fn=)\n", + "tensor(0.1035, grad_fn=)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.1035, grad_fn=)\n", + "tensor(0.1035, grad_fn=)\n", + "tensor(0.1036, grad_fn=)\n", + "tensor(0.1038, grad_fn=)\n", + "tensor(0.1039, grad_fn=)\n", + "tensor(0.1040, grad_fn=)\n", + "tensor(0.1041, grad_fn=)\n", + "tensor(0.1042, grad_fn=)\n", + "tensor(0.1043, grad_fn=)\n", + "tensor(0.1043, grad_fn=)\n", + "tensor([[-7.0338]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-9.0020]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.2079]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-6.0404]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0642]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.2128]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.5869]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.1576]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.8454]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.8596]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0831]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.6323]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1437]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.8017]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.5245]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.3751]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.8673]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6638]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.5671]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.8388]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.7243]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 57 \t train loss: 1.5885559660769988 train MSE: tensor(1.4803, grad_fn=) test MSE: 2.785957961564972\n", + "Corr: 0.32322883400825464\n", + "tensor(0.1044, grad_fn=)\n", + "tensor(0.1045, grad_fn=)\n", + "tensor(0.1045, grad_fn=)\n", + "tensor(0.1045, grad_fn=)\n", + "tensor(0.1046, grad_fn=)\n", + "tensor(0.1047, grad_fn=)\n", + "tensor(0.1047, grad_fn=)\n", + "tensor(0.1048, grad_fn=)\n", + "tensor(0.1049, grad_fn=)\n", + "tensor(0.1051, grad_fn=)\n", + "tensor(0.1052, grad_fn=)\n", + "tensor(0.1052, grad_fn=)\n", + "tensor(0.1053, grad_fn=)\n", + "tensor(0.1054, grad_fn=)\n", + "tensor(0.1054, grad_fn=)\n", + "tensor(0.1054, grad_fn=)\n", + "tensor(0.1055, grad_fn=)\n", + "tensor(0.1056, grad_fn=)\n", + "tensor(0.1056, grad_fn=)\n", + "tensor(0.1058, grad_fn=)\n", + "tensor([[-6.9470]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.9059]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.1315]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.9312]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0524]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.1397]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.5110]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.1127]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.7639]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.7867]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0868]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5259]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1473]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7261]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4323]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.2981]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7493]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5581]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4800]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.7752]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6517]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 58 \t train loss: 1.6223459726056693 train MSE: tensor(1.5127, grad_fn=) test MSE: 2.750013292811456\n", + "Corr: 0.3324407597748777\n", + "tensor(0.1060, grad_fn=)\n", + "tensor(0.1061, grad_fn=)\n", + "tensor(0.1063, grad_fn=)\n", + "tensor(0.1064, grad_fn=)\n", + "tensor(0.1066, grad_fn=)\n", + "tensor(0.1066, grad_fn=)\n", + "tensor(0.1067, grad_fn=)\n", + "tensor(0.1067, grad_fn=)\n", + "tensor(0.1067, grad_fn=)\n", + "tensor(0.1067, grad_fn=)\n", + "tensor(0.1067, grad_fn=)\n", + "tensor(0.1067, grad_fn=)\n", + "tensor(0.1068, grad_fn=)\n", + "tensor(0.1069, grad_fn=)\n", + "tensor(0.1069, grad_fn=)\n", + "tensor(0.1070, grad_fn=)\n", + "tensor(0.1071, grad_fn=)\n", + "tensor(0.1073, grad_fn=)\n", + "tensor(0.1074, grad_fn=)\n", + "tensor(0.1075, grad_fn=)\n", + "tensor([[-6.9572]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.9133]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.1479]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.8930]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0510]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.1693]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.5371]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.1317]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.8036]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.8335]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0768]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5550]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1303]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.7529]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4351]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.3486]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7613]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5655]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4761]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.8041]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6663]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 59 \t train loss: 1.5747786890624205 train MSE: tensor(1.4633, grad_fn=) test MSE: 2.7749592050732597\n", + "Corr: 0.32604543569154093\n", + "tensor(0.1076, grad_fn=)\n", + "tensor(0.1076, grad_fn=)\n", + "tensor(0.1077, grad_fn=)\n", + "tensor(0.1078, grad_fn=)\n", + "tensor(0.1078, grad_fn=)\n", + "tensor(0.1079, grad_fn=)\n", + "tensor(0.1080, grad_fn=)\n", + "tensor(0.1081, grad_fn=)\n", + "tensor(0.1081, grad_fn=)\n", + "tensor(0.1081, grad_fn=)\n", + "tensor(0.1082, grad_fn=)\n", + "tensor(0.1082, grad_fn=)\n", + "tensor(0.1082, grad_fn=)\n", + "tensor(0.1083, grad_fn=)\n", + "tensor(0.1083, grad_fn=)\n", + "tensor(0.1084, grad_fn=)\n", + "tensor(0.1085, grad_fn=)\n", + "tensor(0.1086, grad_fn=)\n", + "tensor(0.1086, grad_fn=)\n", + "tensor(0.1087, grad_fn=)\n", + "tensor([[-6.7951]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.8073]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.0425]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.7577]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0299]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.0319]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.4067]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.0242]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.6727]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.7027]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0736]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.4625]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1183]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.6162]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3372]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.2216]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.6584]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4522]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.3589]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.7053]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.5385]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 60 \t train loss: 1.4963308275232112 train MSE: tensor(1.3834, grad_fn=) test MSE: 2.7302753968119977\n", + "Corr: 0.3430034422629716\n", + "tensor(0.1089, grad_fn=)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.1090, grad_fn=)\n", + "tensor(0.1091, grad_fn=)\n", + "tensor(0.1092, grad_fn=)\n", + "tensor(0.1093, grad_fn=)\n", + "tensor(0.1094, grad_fn=)\n", + "tensor(0.1094, grad_fn=)\n", + "tensor(0.1095, grad_fn=)\n", + "tensor(0.1095, grad_fn=)\n", + "tensor(0.1096, grad_fn=)\n", + "tensor(0.1096, grad_fn=)\n", + "tensor(0.1096, grad_fn=)\n", + "tensor(0.1096, grad_fn=)\n", + "tensor(0.1097, grad_fn=)\n", + "tensor(0.1097, grad_fn=)\n", + "tensor(0.1097, grad_fn=)\n", + "tensor(0.1098, grad_fn=)\n", + "tensor(0.1098, grad_fn=)\n", + "tensor(0.1099, grad_fn=)\n", + "tensor(0.1100, grad_fn=)\n", + "tensor([[-6.6826]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6890]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.9264]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.6360]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0125]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-6.8703]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.2929]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.8870]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.5552]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.5913]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0449]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.3004]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0840]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.4772]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.1708]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.1026]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.4901]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.2830]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.2274]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.5682]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.4033]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 61 \t train loss: 1.496375007691625 train MSE: tensor(1.3820, grad_fn=) test MSE: 2.7202616344494297\n", + "Corr: 0.3569691397809295\n", + "tensor(0.1101, grad_fn=)\n", + "tensor(0.1102, grad_fn=)\n", + "tensor(0.1103, grad_fn=)\n", + "tensor(0.1104, grad_fn=)\n", + "tensor(0.1106, grad_fn=)\n", + "tensor(0.1107, grad_fn=)\n", + "tensor(0.1108, grad_fn=)\n", + "tensor(0.1108, grad_fn=)\n", + "tensor(0.1109, grad_fn=)\n", + "tensor(0.1109, grad_fn=)\n", + "tensor(0.1109, grad_fn=)\n", + "tensor(0.1110, grad_fn=)\n", + "tensor(0.1110, grad_fn=)\n", + "tensor(0.1110, grad_fn=)\n", + "tensor(0.1110, grad_fn=)\n", + "tensor(0.1111, grad_fn=)\n", + "tensor(0.1112, grad_fn=)\n", + "tensor(0.1112, grad_fn=)\n", + "tensor(0.1113, grad_fn=)\n", + "tensor(0.1114, grad_fn=)\n", + "tensor([[-6.8594]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.9090]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.1563]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.8314]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0828]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-7.0450]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.5141]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.1029]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.7563]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.8086]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.1139]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5112]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1561]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.6780]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4069]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.3250]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7282]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5194]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4399]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.7950]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6127]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 62 \t train loss: 1.5082784749166418 train MSE: tensor(1.3926, grad_fn=) test MSE: 2.749821045646621\n", + "Corr: 0.3371767240681808\n", + "tensor(0.1116, grad_fn=)\n", + "tensor(0.1116, grad_fn=)\n", + "tensor(0.1117, grad_fn=)\n", + "tensor(0.1118, grad_fn=)\n", + "tensor(0.1118, grad_fn=)\n", + "tensor(0.1119, grad_fn=)\n", + "tensor(0.1120, grad_fn=)\n", + "tensor(0.1121, grad_fn=)\n", + "tensor(0.1122, grad_fn=)\n", + "tensor(0.1122, grad_fn=)\n", + "tensor(0.1123, grad_fn=)\n", + "tensor(0.1123, grad_fn=)\n", + "tensor(0.1124, grad_fn=)\n", + "tensor(0.1124, grad_fn=)\n", + "tensor(0.1124, grad_fn=)\n", + "tensor(0.1125, grad_fn=)\n", + "tensor(0.1125, grad_fn=)\n", + "tensor(0.1126, grad_fn=)\n", + "tensor(0.1127, grad_fn=)\n", + "tensor(0.1128, grad_fn=)\n", + "tensor([[-6.7504]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.7673]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.0216]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.6835]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0563]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-6.8894]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.3953]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.9565]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.6481]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6908]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.1008]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.3401]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1316]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.4999]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.2381]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.1953]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.5434]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3386]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.2910]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6345]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.4768]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 63 \t train loss: 1.57910637909981 train MSE: tensor(1.4620, grad_fn=) test MSE: 2.703171952781434\n", + "Corr: 0.3577999489009626\n", + "tensor(0.1128, grad_fn=)\n", + "tensor(0.1129, grad_fn=)\n", + "tensor(0.1129, grad_fn=)\n", + "tensor(0.1130, grad_fn=)\n", + "tensor(0.1131, grad_fn=)\n", + "tensor(0.1132, grad_fn=)\n", + "tensor(0.1133, grad_fn=)\n", + "tensor(0.1134, grad_fn=)\n", + "tensor(0.1135, grad_fn=)\n", + "tensor(0.1136, grad_fn=)\n", + "tensor(0.1137, grad_fn=)\n", + "tensor(0.1137, grad_fn=)\n", + "tensor(0.1138, grad_fn=)\n", + "tensor(0.1139, grad_fn=)\n", + "tensor(0.1140, grad_fn=)\n", + "tensor(0.1141, grad_fn=)\n", + "tensor(0.1142, grad_fn=)\n", + "tensor(0.1142, grad_fn=)\n", + "tensor(0.1143, grad_fn=)\n", + "tensor(0.1143, grad_fn=)\n", + "tensor([[-6.8775]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.8970]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.1793]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.8074]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.1218]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-6.9106]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.5639]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.1091]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.7766]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.8674]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.1645]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.5218]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1916]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.6162]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.4161]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.3580]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.7351]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.5297]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.4149]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.8305]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.6205]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 64 \t train loss: 1.4959377114574437 train MSE: tensor(1.3773, grad_fn=) test MSE: 2.725498201902069\n", + "Corr: 0.3484267777216248\n", + "tensor(0.1144, grad_fn=)\n", + "tensor(0.1145, grad_fn=)\n", + "tensor(0.1146, grad_fn=)\n", + "tensor(0.1146, grad_fn=)\n", + "tensor(0.1147, grad_fn=)\n", + "tensor(0.1148, grad_fn=)\n", + "tensor(0.1148, grad_fn=)\n", + "tensor(0.1149, grad_fn=)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.1150, grad_fn=)\n", + "tensor(0.1150, grad_fn=)\n", + "tensor(0.1151, grad_fn=)\n", + "tensor(0.1152, grad_fn=)\n", + "tensor(0.1153, grad_fn=)\n", + "tensor(0.1153, grad_fn=)\n", + "tensor(0.1154, grad_fn=)\n", + "tensor(0.1154, grad_fn=)\n", + "tensor(0.1155, grad_fn=)\n", + "tensor(0.1155, grad_fn=)\n", + "tensor(0.1155, grad_fn=)\n", + "tensor(0.1156, grad_fn=)\n", + "tensor([[-6.6884]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.7200]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.9996]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.6142]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0159]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-6.6922]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.3869]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.9219]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.5954]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.7064]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0785]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.3121]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0788]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.4275]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.2088]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.1906]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.5122]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.3133]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.2242]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6256]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.4302]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 65 \t train loss: 1.4996381700525083 train MSE: tensor(1.3795, grad_fn=) test MSE: 2.7216092717135316\n", + "Corr: 0.35944233249325097\n", + "tensor(0.1156, grad_fn=)\n", + "tensor(0.1156, grad_fn=)\n", + "tensor(0.1156, grad_fn=)\n", + "tensor(0.1157, grad_fn=)\n", + "tensor(0.1157, grad_fn=)\n", + "tensor(0.1158, grad_fn=)\n", + "tensor(0.1159, grad_fn=)\n", + "tensor(0.1161, grad_fn=)\n", + "tensor(0.1163, grad_fn=)\n", + "tensor(0.1163, grad_fn=)\n", + "tensor(0.1164, grad_fn=)\n", + "tensor(0.1164, grad_fn=)\n", + "tensor(0.1165, grad_fn=)\n", + "tensor(0.1165, grad_fn=)\n", + "tensor(0.1166, grad_fn=)\n", + "tensor(0.1166, grad_fn=)\n", + "tensor(0.1167, grad_fn=)\n", + "tensor(0.1167, grad_fn=)\n", + "tensor(0.1167, grad_fn=)\n", + "tensor(0.1168, grad_fn=)\n", + "tensor([[-6.7518]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.8128]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.0845]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.6683]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0574]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-6.7871]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.4508]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.9803]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.6796]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.7668]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.1146]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.4166]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.1272]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.5160]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.2965]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.2588]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.6053]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4006]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.3098]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.7247]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.5075]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 66 \t train loss: 1.4990289790789806 train MSE: tensor(1.3777, grad_fn=) test MSE: 2.721690301339896\n", + "Corr: 0.3535868036045738\n", + "tensor(0.1168, grad_fn=)\n", + "tensor(0.1168, grad_fn=)\n", + "tensor(0.1169, grad_fn=)\n", + "tensor(0.1169, grad_fn=)\n", + "tensor(0.1171, grad_fn=)\n", + "tensor(0.1171, grad_fn=)\n", + "tensor(0.1172, grad_fn=)\n", + "tensor(0.1173, grad_fn=)\n", + "tensor(0.1175, grad_fn=)\n", + "tensor(0.1176, grad_fn=)\n", + "tensor(0.1177, grad_fn=)\n", + "tensor(0.1179, grad_fn=)\n", + "tensor(0.1180, grad_fn=)\n", + "tensor(0.1181, grad_fn=)\n", + "tensor(0.1181, grad_fn=)\n", + "tensor(0.1181, grad_fn=)\n", + "tensor(0.1182, grad_fn=)\n", + "tensor(0.1182, grad_fn=)\n", + "tensor(0.1182, grad_fn=)\n", + "tensor(0.1182, grad_fn=)\n", + "tensor([[-6.8192]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.8962]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-9.1669]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.7303]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.1631]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-6.8662]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.5167]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-8.0570]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.7651]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.8398]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.2046]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.4984]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.2355]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.5821]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.3763]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.3362]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.6967]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.4697]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.3895]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.8342]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.5659]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 67 \t train loss: 1.4710588346297746 train MSE: tensor(1.3483, grad_fn=) test MSE: 2.708227756344492\n", + "Corr: 0.3559022209555045\n", + "tensor(0.1183, grad_fn=)\n", + "tensor(0.1184, grad_fn=)\n", + "tensor(0.1185, grad_fn=)\n", + "tensor(0.1186, grad_fn=)\n", + "tensor(0.1187, grad_fn=)\n", + "tensor(0.1188, grad_fn=)\n", + "tensor(0.1189, grad_fn=)\n", + "tensor(0.1190, grad_fn=)\n", + "tensor(0.1191, grad_fn=)\n", + "tensor(0.1191, grad_fn=)\n", + "tensor(0.1192, grad_fn=)\n", + "tensor(0.1192, grad_fn=)\n", + "tensor(0.1193, grad_fn=)\n", + "tensor(0.1193, grad_fn=)\n", + "tensor(0.1193, grad_fn=)\n", + "tensor(0.1193, grad_fn=)\n", + "tensor(0.1194, grad_fn=)\n", + "tensor(0.1194, grad_fn=)\n", + "tensor(0.1195, grad_fn=)\n", + "tensor(0.1196, grad_fn=)\n", + "tensor([[-6.5801]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.6531]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.9271]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.4599]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0054]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-6.6049]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.2817]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.8383]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.5123]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6094]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0694]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.2667]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0643]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.3336]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.1410]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.1010]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.4512]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.2168]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.1320]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6838]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.3165]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 68 \t train loss: 1.4870356237713316 train MSE: tensor(1.3628, grad_fn=) test MSE: 2.751059710314231\n", + "Corr: 0.36185214692012013\n", + "tensor(0.1196, grad_fn=)\n", + "tensor(0.1195, grad_fn=)\n", + "tensor(0.1195, grad_fn=)\n", + "tensor(0.1196, grad_fn=)\n", + "tensor(0.1197, grad_fn=)\n", + "tensor(0.1198, grad_fn=)\n", + "tensor(0.1199, grad_fn=)\n", + "tensor(0.1201, grad_fn=)\n", + "tensor(0.1202, grad_fn=)\n", + "tensor(0.1204, grad_fn=)\n", + "tensor(0.1205, grad_fn=)\n", + "tensor(0.1206, grad_fn=)\n", + "tensor(0.1206, grad_fn=)\n", + "tensor(0.1206, grad_fn=)\n", + "tensor(0.1206, grad_fn=)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.1206, grad_fn=)\n", + "tensor(0.1205, grad_fn=)\n", + "tensor(0.1205, grad_fn=)\n", + "tensor(0.1206, grad_fn=)\n", + "tensor(0.1206, grad_fn=)\n", + "tensor([[-6.6149]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.7055]])\n", + "tensor([[-11.2441]])\n", + "------------------------\n", + "tensor([[-8.9682]])\n", + "tensor([[-7.5986]])\n", + "------------------------\n", + "tensor([[-5.4799]])\n", + "tensor([[-4.5086]])\n", + "------------------------\n", + "tensor([[-8.0399]])\n", + "tensor([[-9.1612]])\n", + "------------------------\n", + "tensor([[-6.6459]])\n", + "tensor([[-7.]])\n", + "------------------------\n", + "tensor([[-8.3442]])\n", + "tensor([[-8.1643]])\n", + "------------------------\n", + "tensor([[-7.9014]])\n", + "tensor([[-9.0969]])\n", + "------------------------\n", + "tensor([[-8.5762]])\n", + "tensor([[-7.5229]])\n", + "------------------------\n", + "tensor([[-8.6494]])\n", + "tensor([[-9.9914]])\n", + "------------------------\n", + "tensor([[-7.0862]])\n", + "tensor([[-8.4559]])\n", + "------------------------\n", + "tensor([[-7.2882]])\n", + "tensor([[-8.1308]])\n", + "------------------------\n", + "tensor([[-8.0788]])\n", + "tensor([[-10.5229]])\n", + "------------------------\n", + "tensor([[-7.3732]])\n", + "tensor([[-4.3979]])\n", + "------------------------\n", + "tensor([[-8.1725]])\n", + "tensor([[-8.]])\n", + "------------------------\n", + "tensor([[-9.1418]])\n", + "tensor([[-6.5229]])\n", + "------------------------\n", + "tensor([[-8.4768]])\n", + "tensor([[-9.3010]])\n", + "------------------------\n", + "tensor([[-8.2277]])\n", + "tensor([[-9.7696]])\n", + "------------------------\n", + "tensor([[-8.1659]])\n", + "tensor([[-8.3010]])\n", + "------------------------\n", + "tensor([[-8.6975]])\n", + "tensor([[-5.8861]])\n", + "------------------------\n", + "tensor([[-7.3598]])\n", + "tensor([[-7.4559]])\n", + "------------------------\n", + "Epoch : 69 \t train loss: 1.4831422055914976 train MSE: tensor(1.3576, grad_fn=) test MSE: 2.739154483058623\n", + "Corr: 0.36117474288444007\n" + ] + } + ], + "source": [ + "model.train()\n", + "n_max_epochs = 23 * 3\n", + "max_corr = 0.4\n", "batch_size = 32\n", "\n", "train_loss, test_loss, inter_filter, y_test, output_test = training_routine(model, criterion, optimiser, train_x, test_x, train_y, test_y, n_max_epochs=n_max_epochs, max_corr=max_corr, batch_size=batch_size)\n", @@ -10350,30 +6419,31 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 16, "id": "e935aa30", "metadata": {}, "outputs": [], "source": [ - "#optimiser.param_groups[0]['lr'] = 3e-5" + "#optimiser.param_groups[0]['lr'] = 0.00027253018778843 * 0.15" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 24, "id": "1c5a2419", "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'plt' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m fig \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39mfigure(figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m10\u001b[39m, \u001b[38;5;241m8\u001b[39m))\n\u001b[1;32m 2\u001b[0m plt\u001b[38;5;241m.\u001b[39mscatter(np\u001b[38;5;241m.\u001b[39marray(output_test), y_test[:,\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mdetach()\u001b[38;5;241m.\u001b[39mnumpy())\n\u001b[1;32m 3\u001b[0m corr \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mcorrcoef(np\u001b[38;5;241m.\u001b[39marray(output_test)\u001b[38;5;241m.\u001b[39mT, y_test[:,\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mdetach()\u001b[38;5;241m.\u001b[39mnumpy()\u001b[38;5;241m.\u001b[39mT)[\u001b[38;5;241m1\u001b[39m,\u001b[38;5;241m0\u001b[39m]\n", - "\u001b[0;31mNameError\u001b[0m: name 'plt' is not defined" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAH9CAYAAACjsvBjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABRhElEQVR4nO3deZyVZfn48c8lok4u4UIZpGKm9DM1UdxyX1HLRAqXcM09M7PEJM20MkzUNMsMl/RbWe5kmpL7lgsoJG64pw4uuCCiIyLcvz/uMzqMs53ZnnNmPu/X67zmnGc5zzXPGZhrrnuLlBKSJEmqfIsUHYAkSZLaxsRNkiSpSpi4SZIkVQkTN0mSpCph4iZJklQlTNwkSZKqhImbJElSlTBxk5oREanRY35EvBkRt0fE/hERRcfYUET0iYgfRMTDEVFXivVfEfHVDr7vChHxSuke3N3MMaNL13o+IuZExOyImBYRZ0bE51uId1RE3FV6//ci4smI+FNEfLmJ429v4jNp/LiwifNWjYjzIuKJ0jVejYh7I+KQiFisieO3j4gzIuKW0j1s9vtudN6aEXF5RLwWEe9HxPSIODkiapo4tl/pnv01Ih6LiA9L19muhfc/qZXvfcdmzlsuIs4qfTZzI2JGRFzUWZ9L6ZzPRMTZEfFM6RqvR8Q/I2LjFr6fr0TEZaVrfBARL0bE+RExsIVzdouIWyNiVukePx4RJ0bEEi2cU87nslUr9/jUJs5p7WcyRcQ+zcUnlSucgFdqWkTU/+M4ufS1L/BFYLfS89+nlL5XRGyNRUQAlwPfAqYD/wSWA/YAlgC+mVL6Rzvf+ypgB2Ap4J6U0mZNHPM0MAf4L/Aq+f4MAbYEZgNbpZSmNDrnMmB34KVSvO8AawM7AvOAnVJKtzY4fn9gUDNhHln6fkemlK5scM4GwG1ADXAj8AiwDLALMBD4N7BjavAfYURMAHYF3geeBtZq7vtucM5GwK2l7/tK4EVgG2AocA+wbUppboPj1wXq78dLpfM+C2yfUrq5mWucBPwMuAR4volD/pJSerrROcsD/wHWKMU3CfhS6ft7DdgkpfRso3PK/VxWKX2PA4EHgLuBFYAR5Ps+MqV0TaNr7AxcU/q+/wk8CQwGvg7MBDZt4nv5BXAC+efsKuANYDNgw9L1t08p1TU6p9zPZSvyz8sdwO180t2NP5/S59KUpYAfAR8CK6WUXmnmOKk8KSUfPnw08QBS/ifyie2bAvOBBcCqRcdZimmvUrz3AEs02L4BMJf8S3rpdrzvvqX3Pbz09e5mjluime0Hl877V6PtG5S2PwJ8qtG+A0r7bm1jjINLx78C9G207/rSvv0abV8SeLS0b4tG+zYBvgz0ISeKzX7fpeP7AI+VjvtGg+2LkJOFBBzX6JxlgW2B5UqvLy4dt10L1zmpdMxWZXx+fyydc2aj7d8vbb+xo58LMKG0/WxKxYDS9i8Cb5MTrOUa/qwAL5fOGdHovUaWtt/eaPuQ0r+3t4AvNNgewDmlc07qhM9lq6beq53/Jg8tvdfVHX0vHz4aPmwqlcqUUroHeIL8S2P9gsOpd3jp6wkppffrN6aUJgGXAf3J1bg2i4iVgd8CFwI3tHRsw2s2cnnp6+qNtn+h9PWWlNJ7jfbVVwb7tzHUQ0pf/5RSmtfMda5tuDGl9C5wS1PXSSndm1J6NKU0v43X3xL4f8CdKaWPrpNSWgAcW3p5WKkqWr/vrZTSLSmlN9t4jbJFxJLAPsC75EpdQ78jV+2GRcQXGmwv63MpNVHuTE6qTkgpfVS5TLlidj65Ejqqwft8FVgRmJxSurrhBVJKVwAPAltGxNoNdu1G/vd2QWpQISxd7yeU/riIiD4Nzin7c+lk9T+Xf+yi91cvZeImtU/9f/aNE4VuFxGLk38Zvgfc1cQh9UnXNmW8Z5CrQG8DP+xAeLuUvj7caPuj9TE10dfo66WvTTYZNhS5j1p9VfD8Jg6pv87XGp33KfL9eBe4t7XrtKL+vt7YeEcpyXgSWIWPk6KO2iwifhQRP46IPSJihWaO24TcVHlPSumdRnEtIDcTA2zdYFe5n8ty5GbI1xtfo6Q+ydq2wbYVG+3r0Dml674OfIbcpFuvI5/LFyPiexHxk4j4TkQ0/sOjRRGxHrAeOTm+qZxzpdYsWnQAUrWJiC3IzXMfkPv0tPW84cC6ZVxqVkrprDYc90Vys9CzKaUPm9j/VOnrGmVc+wfkZqMdUkqzI2K5tpwUEQcBnyf371kb2A74H3Bcw+NSSo9ExG+Ao4EnIuI6cl+qL5P7Uv2d3J+pNd8k96e6KTXqq1VyAjmpvTgidic3nS1DTkIWJfe/mtGW760Fg0tfn2xm/1Pke78G8EwHrwXwi0av50bEOODEhhWvNsYFDX4u2vG5vEXuNrBCRCyVUprT6Br1SdGXGmx7vfR11WbiKuuciFia/DNQf87U0vOOfC6jWLhKWN/X8+CU0lvNvF9Dh5a+nl9KkqVOY+ImtaJB5+OGgxMCOCal9HIZbzUc2K+M4/8HnNWG4z5d+vp2M/vrt/dry0UjYk3gV8B5qZmO8i04CNiowetJwLdTo47mACmlH0bEdOA3wHcb7HoQuKTUnNma+uao8U3tTCk9URqg8Ddy9a++AjiPfG/va8M1WtOp978F/wW+Q+40/zK5wrQD8EtyMtWH3GzYobjK+VxSSnURcSuwPfBzGlRnS02wB5VeLtvgfe4hJ3wbRMSuqcGgmYgYwcfdDxqecx0wBjgoIs5NKT3fYN8v+bgC3vCc9nz/M8l/ZFxPrpYtQR7I8CvyHwkrRsQWLSVjEbEUuc/ph8BFzR0ntZdNpVLrflZ6/IQ82m5R4MCU0jnlvElKaf+UUpTxGNRJ8df/Umt1CHlE9AX+TE4Mjm3l8E9IKW2cUgpyBWSH0uYHo9FUFZH9Fvg9+Rf+SsDSwOalOG+IiCNaiXV1cj+mV/m4/1XjY4aQR1XWlN576dK1TiQnGfdHxKebOrcTtfn+tySldE1K6U8ppedSSu+nlF5IKV1A7mM2DzimhWbTNsXVzs/lB+RE7OjI06ycEREXkytf/ysd81F/wVLidyS5X9zVETEhIk4rjea9ko+b1Rue8x9yX7FlgYcjT01yRkTcB3yPj5t429ovscnvv9S38dcppUdSSnNSSq+nlG4kV5+fIw9M2uWTb7WQvcj37NrkSFJ1ARM3qRX1iRS5+W978pQC50VEm/uMdbH6ykFzCcgyjY5ryRjyCL4Dmmj2arOU0hsppZvIyVsd8H+N+kztR/7l/duU0qkppZdKvyjvJv9irANOLVUvmnMI+ZdvU4MSiIhFyYMj+gO7pJTuLl3jpZTSqeTRiKuTmwU7ojPvf9lSSg+Rm+z7kvu1dSSusj+XlNJj5CrZn8iJ3pHkJvIL+Lji9lqjmP9K7lt3I7AFcBT5szgSOK+Zcw4DDiQ3d+8OHEburjAMmNbEOZ32uaSUZgOXll5u0crhLVaBpY6yqVRqo1Kl4OaI2AV4CLgkIgY3MfquSV3Yx+1pcqXhCxGxaBP93Oo7VjfX16eh9cjJ0O3NDLbbtDS/3dsppX6tvVlKaVZE3EtuJv4yMLm0q76j+21NnPNKRDxBTiAHk5voFlIalLAfzQ9KgNzf6YvAQ81UPm4jV4s6OjJ4eulrc30Iy7n/7TWz9HXJBtvaE1e7PpeU0nPkZtyFRMQBpaeTmni/O4E7mzjnkhbOuYgmmh8j4oImzunsz6Wpe9w4jnXJTavP8fHgD6lTmbhJZUopPRwR55P/4j8aOKWNpw6nC/q4pZTmRsR/yM1Zm/PJX7o7lb7eSutu4uOO4A0tRZ7M91Vyf6M2Jasl9TPhN0woFy99bW7Kj/rtHzSzf7fSMc0NSmh4jeaaD1u7RlvdChxP7rw/tuGOUj+vNcifZXNxdkipeXu90suG17iPXCHbNCKWbjjqMyIW4eOm7IY/Lx39XBqrr7j9tS0HlyYM3o08IOKfbTxnB/Lo0DtSSrUNdnX251K/CkRLx9cPSrig0UARqfOkCphMzoePSnzQzAS8pX0Dyb8U3wKWrYBY2zIB7zKNzlmZXJX6VBvefxDNTERLaUqFZs6rn4T0BaBPg+3H8vFEr59udM5hpX0vNzyn0TG3lI75ZgsxL176fBJwUKN9/YDHS/u+257vu8ExLU30egVNTPTaxHtcTAsT8JL7TK3bxPbFyP3RUun7WaTR/voJeM9otL25CXjL/lxK93nxRscGuY9cAq5r6vtpYttS5KlrEnngT+P9yzSxbTXyIIIPgY07+rmQ+7At0sR19ib3yZsLDGrmM1qS3Ow6D1ixtX9TPny09+GSV1Iz6pe8Srl/W1P7zyL3zTk1pTSmG0NrKpaGS149Qa5WLE8LS15FxO3kzv1bp5Rub+X9B5Gbfz6x9FOpCfhq8iCAJ8lVueXJFYq1yUsUfT2ldEeDc5YiJ5nrkJPKa4FZ5MrRNuSm391TowlaS+d+sXSd18hLCTU7l15E7EfuexXkZG8KuYP7N8jVo/vIKxE0XPZoMz6uFC1FHk34Gg0mIU4p7d/oOo2XVnqBPA9Zk0srlc45nY+rgZuRk5B/kxMjgAkppQmlYweR7/9Ucuf9l0vxb02eIuN18pJPUxtdo/GSVw+QJ6XdtfQ9fTWl9EyD48v+XCJiLfL8gTeRk6jFyH1B1yQ3Xe6YGk00HBHfIy8HdXuD72UX8rJf5wOHpUYjNyPiCvIfCQ+SE/Ivls7pS07ML6aRcj+XiHienNj9h7zk1xLkP342JCeHBzd1ndK5B5L79V2dUvpmU8dInaLozNGHj0p90ELFrbT/s+QJXN8FPlsB8S5KbrqdxsfVwH+Rfzk3dfzttHEJJVquuK0MnEFOCl4lVxzeIU9fcTo5uWrqPZcij+6cWrqH84AZ5AR0wxZi+XUplrFtvC9bkBPLl0vXmEP+5X8cTSzVBexf/9k392jmOmuSKzmvkyszT5LXua1p5vjnW7nOSQ2OXYa8isV95KW9PuDjtWFPBT7Twve/HHk5qv+VznuZ3E/s853xuZCTrr+SE8s68tq0D5D7Dy7WzDU2Lv1svlyK6Q3yQIVdW/g+9iMnW2+UznkJ+AuwTiuff5s/F+DH5AT0xdL38j55jrc/AV9p5Tr3lz63Yd39b99H73pYcZMkSaoSTgciSZJUJUzcJEmSqoSJmyRJUpUwcZMkSaoSJm6SJElVolesnLDCCiukQYMGFR2GJElSqx588MHXU0pNrmDSKxK3QYMGMXny5NYPlCRJKlhE/K+5fTaVSpIkVQkTN0mSpCph4iZJklQlTNwkSZKqhImbJElSlTBxkyRJqhImbpIkSVXCxE2SJKlKmLhJkiRVCRM3SZKkKmHiJkmSVCVM3CRJkqqEiZskSVKVMHGTJEmqElWbuEXEMRGRImKFomORJEnqDlWZuEXESsD2wAtFxyJJktRdqjJxA34DHAukogORJEnqLlWXuEXEN4DalNJ/i45FkiT1EqkyakWLFh1AUyLiZmDFJnYdD/wE2KEN73EIcAjAyiuv3KnxSZKkXiIlGD8errgCbrgB+vYtNJyKrLillLZLKa3V+AE8C6wK/Dcingc+DzwUEZ9I8lJK41NKQ1NKQ/v379+934AkSap+77wDo0bBYYfBoovCe+8VHVFlVtyak1KaBnym/nUpeRuaUnq9sKAkSVLP8/DDMHIkPP00/PKXMGYMLFJ8vauqEjdJkqQut2AB7L13rrjdeitsuWXREX2kqhO3lNKgomOQJEk9xJw5uUl0iSXg73+H5ZeHz3626KgWUnzNT5IkqWiPPAIbbABHH51fr7lmxSVtYOImSZJ6u4svhg03hLfeyv3aKpiJmyRJ6p3efRf23x8OOAA23himToVttik6qhaZuEmSpN5pxgy45ho48US46SZYsakpZCtLVQ9OkCRJKtsdd8AWW8Dqq8Mzz8AKKxQdUZtZcZMkSb3De+/BgQfCVlvlShtUVdIGVtwkSVJv8MQTeeDBo4/C8cfDN75RdETtYuImSZJ6tiuvzIMQamryeqPDhhUdUbuZuEmSpJ6tpgbWXx8uvRQGDiw6mg6xj5skSep5nnwSLrkkP//a1+D226s+aQMTN0mS1NNcdlmusP34x3m9UYCIYmPqJCZukiSpZ3j/fTj8cNhzT1hnHZg0CZZeuuioOpV93CRJUvX78MM8N9ukSTB6NJxyCvTtW3RUnc7ETZI6YMKUWsZNnM6MWXUM6FfD6GGDGT6k+vvRSFVn0UVh773hpz+FXXYpOpouY+ImSe00YUotY66eRt28+QDUzqpjzNXTAEzepO4wd26uru24I+y8M3z/+0VH1OXs4yZJ7TRu4vSPkrZ6dfPmM27i9IIiknqRZ5+FzTaDc87JzaO9hBU3SWqnGbPqytouqZNccw0ccEAeKTphAuy6a9ERdRsrbpLUTgP61ZS1XVInuOceGDEC1lgDHnqoVyVtYOImSe02ethgavr2WWhbTd8+jB42uKCIpB5s3rz89atfhYsvhrvvhlVXLTSkIpi4SVI7DR8ykLEj1mZgvxoCGNivhrEj1nZgQoWZMKWWTU+9lVWPu55NT72VCVNqiw5J5frHP+CLX4SnnsrNo/vtB4stVnRUhbCPmyR1wPAhA03UKpgjf6vcvHlw3HFw5pmw3nrQp0/r5/RwVtwkST2WI3+r2Asv5Al1zzwTvvc9+M9/4AtfKDqqwllxkyT1WI78rWJnnQWPPgqXXw4jRxYdTcWw4iZJ6rEc+Vtl5s3LlTbIS1ZNmWLS1oiJmySpx3LkbxV58UXYaivYbru8WHxNDay2WtFRVRybSiVJPVb9AATXk61wN9wA++yTl7A6/3xYYomiI6pYJm6SpB7Nkb8V7MMP86Lwp54K66yT+7MNthraEptKJUlSMVKCO++Egw+G++4zaWsDK26SJKl73XwzrLsurLBCfl7jYJG2suImSZK6x4cfwgknwA47wMkn520mbWWx4iZJkrreyy/DXnvBHXfAgQfCr39ddERVycRNkiR1rUmT4Otfhzlz4JJLYN99i46oatlUKkmSutagQblP26RJJm0dZOImSZI636uvwjHH5NUQ+veHiRNhzTWLjqrqmbhJkqTOddttucL2+9/nZavUaUzcJElS51iwAH75y7xs1ac/DQ88ABtuWHRUPYqDEyRJUuc4/HAYPx5GjYLzzoOllio6oh7HxE2SJHVMShABhx0GG2yQp/uIKDqqHsnETZIktc+CBXmd0Rkz4He/gyFD8kNdxj5ukiSpfDNnws47w/HHwxtv5FUR1OVM3CRJUnnuvjtX1m6/Hf7wB7j0UljURrzu4F2WJEltN3s27LILLL883HuvTaPdzMRNkiS1bvZsWHppWGYZuPZaWGedPOWHupVNpZIkqWX33gtrrQV//GN+vfnmJm0FMXGTJElNSwnOOAO22AL69s1TfahQNpVKkqRPevNN2H9/+Oc/YcQIuOgiq2wVoOoqbhFxUkTURsTU0mPnomOSJKnHmTQpLwx/9tlw5ZUmbRWiWituv0kpnV50EJIk9SgpwYMPwtChMGwYPPssDBxYdFRqoOoqbpIkqQu89VZuEt14Y5g2LW8zaas41Zq4fS8iHo6IiyJi2aYOiIhDImJyREyeOXNmd8cnSVL1mDQJ1lsPrrsOxo3LI0hVkSoycYuImyPikSYeuwJ/AFYD1gVeBs5o6j1SSuNTSkNTSkP79+/ffcFLklRNzj0XNt00rzt6111w9NEuEF/BKrKPW0ppu7YcFxHnA9d1cTiSJPVcs2bBjjvCxRfDcssVHY1aUZGJW0si4nMppZdLL3cDHikyHkmSqs5DD+U+bdtuC8cdlytsVtmqQtUlbsBpEbEukIDngUMLjUaSpGqRUl4U/uijYc018wjSRSqy15SaUXWJW0ppn6JjkCSp6syeDQcfDJdfDjvtBP/3fyZtVajqEjdJklSm11+HTTaB556DsWPh2GNN2qqUiZskST3d8svDzjvDt76VF4hX1TLdliSpJ3rnHTjoIHjyyTzw4OyzTdp6ABM3SZJ6mocfzstW/elPcPfdRUejTmTiJklST5ESXHABbLRRrrjdeit85ztFR6VOZOImSVJPcfHFeeToZpvBlCmw5ZZFR6RO5uAESZKq3fz50KcP7Lkn1NXBoYfm1+pxrLhJklTNLr4Y1l8/z9NWUwPf/a5JWw9m4iZJUjV6913Yf3844IC8xujcuUVHpG5g4iZJUrV57DHYcMO8+sGJJ8JNN0H//kVHpW5gHzdJkqrND36QV0P4979hu+2KjkbdyMRNkqRq8N57uTl02WXz/GwRMGBA0VGpm9lUKklSpXviiTw3295757naBg40aeulTNwkSapkf/1rXgXhlVfg+9/PlTb1WiZukiRVoro6OOSQXGVbbz2YOhWGDSs6KhXMxE2SpEo0Zw7ccAMcd1xeumrgwKIjUgVwcIIkSZVk4kTYZps8vcejj8IyyxQdkSqIFTdJkirB++/nVQ923BHGj8/bTNrUiBU3SZKK9swzMHJkXhh+9Ojct01qgombJElF+te/YK+98vqi114Lu+xSdESqYDaVSpJUpM99DoYMydU2kza1wsRNkqTu9uyzcPrp+fmQIXDbbbDKKsXGpKpg4iZJUne65po8L9spp8CMGXmbk+qqjUzcJEnqDh98kBeHHzEC1lgDHnrIZatUNgcnSJLU1VKCnXeGW26Bo46C006DxRYrOipVIRM3SZK6WgQcemiep23EiKKjURUzcZMkqSvMm5eXq1pjjZy0jRxZdETqAezjJklSZ3vhBdhiCzjzTHjqqaKjUQ9ixU2SpM503XWw777w4Ydw+eVW2tSprLhJktRZpk+Hb3wjz8n20EMmbep0VtwkSeqoujqoqYHBg+Gqq2CnnWCJJYqOSj2QFTdJkjrihhtg1VXh7rvz6912M2lTlzFxkySpPT78EMaMyfOzffaz8JnPFB2RegGbSiVJKldtLey1F9x1FxxyCJx1Vm4qlbqYiZskSeX6+9/z4IO//AVGjSo6GvUiNpVKktQW8+fDE0/k50cfDY88YtKmbmfiJklSa15+GbbbDjbbDN58ExZZBAYNKjoq9UI2lUqS1JJbboFvfxvmzIFzz4Xllis6IvViVtwkSWrKggVw0kmw/fawwgowaRLst1/RUamXM3GTJKkpEblP2z77wAMPwJprFh2RZFOppMo3YUot4yZOZ8asOgb0q2H0sMEMHzKw6LDUU912GwwcCGusAX/+M/TtW3RE0kesuEmqaBOm1DLm6mnUzqojAbWz6hhz9TQmTKktOjT1NPPnwy9+kQchnHBC3mbSpgpj4iapoo2bOJ26efMX2lY3bz7jJk4vKCL1SK+9ltcXPfHEPLHuRRcVHZHUJJtKJVW0GbPqytoule2xx3KV7c03Yfx4OOig3L9NqkBW3CRVtAH9ml5GqLntUtlWXRW++lW4/344+GCTNlW0qkzcIuLIiJgeEY9GxGlFxyOp64weNpiavn0W2lbTtw+jhw0uKCL1CDNnwmGHwezZeY3RK6+Er3yl6KikVlVdU2lEbA3sCqyTUpobEZ8pOiZJXad+9KijStVp7r4b9twTXn8dvvnNPE+bVCWqLnEDDgdOTSnNBUgpvVZwPJK62PAhA03U1HELFsC4cXD88bl59N57YciQoqOSylKNTaVrAJtHxP0RcUdEbFB0QJKkKnDCCXDccTBiBDz4oEmbqlJFVtwi4mZgxSZ2HU+OeVlgY2AD4PKI+EJKKTV6j0OAQwBWXnnlrg1YklS5UsoDDg4/HFZZBQ45xAEIqlrRKN+peBFxI7mp9PbS62eAjVNKM5s7Z+jQoWny5MndFKEkqSKkBGecAXfdBddcA4tUYyOTeqOIeDClNLSpfdX4UzwB2AYgItYAFgNeLzIgSVKFefNN2HVXGD0aFl0U3n+/6IikTlGRTaWtuAi4KCIeAT4A9mvcTCpJ6sXuvx/22ANmzICzz4Yjj7RpVD1G1SVuKaUPgL2LjkOSVIHmzctLVkXkaT823LDoiKROVXWJmyRJnzBrFiy5ZF4UfsIEWGklWHbZoqOSOl019nGTJOljkyblqT1OPDG/Xmcdkzb1WCZukqTqlBKccw5summeXHfXXYuOSOpyJm6SpOrz9tswciR8//swbBhMmQIbb1x0VFKXM3GTJFWf55+HG2+E006Df/wDlluu6IikbuHgBElSdUgJ7rwTttwSvvKVnLytsELRUUndyoqbJKnyzZ4Ne+4JW20Ft9ySt5m0qRey4iZJqmxTp+b+bM89B6eeCltvXXREUmFM3CRJletPf8qLwy+/PNx+O2y2WdERSYWyqVSSVLmWWCI3j06datImYeImSao0Dz8Ml12Wn++1F9xwA/TvX2xMUoUwcZMkVYaU4IILYKONYMwYmDs3b3eBeOkjJm6SpOLNmQP77gsHH5ybRO+9FxZfvOiopIrj4ARJUrHq6nKV7fHH4eST4fjjoU+foqOSKpKJmySpWDU1sM8+sOGGsM02RUcjVTSbSiVJ3e/dd+E734G7786vjzvOpE1qAxM3SVL3euyxXF27+GKYPLnoaKSqYlOpJKn7/PnPcNhhsOSSMHEibL990RFJVcWKmySpe1x/fR45OnRonlDXpE0qm4mbJKlrzZuXv+60E1x0UV4kfsCAYmOSqpSJm1TlJkypZdNTb2XV465n01NvZcKU2qJDkj526aWwxhrw4ouwyCJwwAGwqL10pPYycZOq2IQptYy5ehq1s+pIQO2sOsZcPc3kTcWrq4NDD4VRo+Dzn89Jm6QO81+SVMXGTZxO3bz5C22rmzefcROnFxSRBDz5JGyyCYwfn6f5uO02GDiw6KikHsF6tVTFZsyqK2u71C1OPTU3jV5/Pey8c9HRSD2KFTepig3oV1PWdqnLvP8+1Jaa6M86K48aNWmTOp2Jm1TFRg8bTE3fhdd0rOnbh9HDBhcUkXqlZ56Br34Vvv51mD8fllkGVlqp6KikHsmmUqmKDR+S+w2NmzidGbPqGNCvhtHDBn+0XepyV14JBx6YF4W/5BIXh5e6mImbVOWGDxlooqbuN3cuHHMM/O53sNFGcNllsMoqRUcl9Xg2lUqSyrdgAdx1F/zwh3DnnSZtUjex4iZJarvrr4fNN8/92O69F2ocCCN1JytukqTWffAB/OAHeQDCuHF5m0mb1O2suEmSWvb887DHHvDAA3DUUfDTnxYdkdRrmbhJkpp3++2w226QElx1FYwYUXREUq9mU6kkqXmrrQYbbggPPWTSJlUAEzdJ0sJeeCGvMbpgQZ5Id+JE+MIXio5KEiZukqSGrrsO1l0Xzj0Xnnii6GgkNWLiJkmCefPg2GNhl13ynGwPPghrrll0VJIaKXtwQkQsDgwAaoCZKaWZnR6VJKl77b03XH45HHYY/OY3sMQSRUckqQltStwiYmlgb2AvYEOgLxBAiogZwI3A+JTSpK4KVJLUBVKCCDjySBg+HPbaq+iIJLWg1cQtIo4GTgCeBa4FTgFmAHXAcsBawObATRFxH3BkSumpLotYktRxH34IJ56Yn//qV7DZZsXGI6lN2lJx+yqwZUrpkWb2PwBcFBGHA98BtgRM3CSpUtXW5sraXXfBIYd8XHWTVPFaTdxSSiMbb4uINYEnUkoLGhz3PnBu54YnSepU//537s/23nvwl7/AqFFFRySpDO1dOeFMYHBEvAn8F3i4/mtK6Y3OCk6S1Ileey33Y1ttNbjiCvjSl4qOSFKZ2jUdSEppx5TSqsCfgSXJfd2OAV6LiOc6MT5JUkfNnp2/fuYzcP31cP/9Jm1SleroPG77pZT2SCmdmFL6GrADcGcnxCVJ6gy33AKrrw5//3t+vfXW8KlPFRuTpHbraOI2JyL+X/2LlNIt5FGmkqQizZ8PJ50E228PK6wA66xTdESSOkF7+7jVO4Q8onQSuY/b2sD8DkfVgoi4DBhcetkPmJVSWrcrrylJLZkwpZZxE6czY1YdA/rVMHrYYIYPGVhcQK+8kgcd3Hor7LtvXr5qySWLi0dSp+lQ4pZSejwiNgNGAOsAzwO/6IS4WrrmHvXPI+IM4O2uvJ4ktWTClFrGXD2Nunn5b9baWXWMuXoaQHHJ2513wr33woUXwgEHONWH1IO0qak0IsY0ty+lND+ldEVK6acppbO6a1RpRASwO/C37rieJDVl3MTpHyVt9ermzWfcxOndG8j8+Xl9UYDdd4ennoLvfMekTeph2trH7YSI2K6lAyJi1U6IpxybA682t0pDRBwSEZMjYvLMmS6nKqlrzJhVV9b2LvHaa7DTTrDppvBcaWD/wAKbaiV1mbYmbj8A/hYRKze1MyI2Be7rrKAi4uaIeKSJx64NDtuLFqptKaXxKaWhKaWh/fv376zQJGkhA/rVlLW9091xB6y7bl4F4Xe/g0GDuue6kgrRpsQtpXQ+8A/gmohYvOG+iNgLuBm4rrOCSiltl1Jaq4nHP0rXXJTcr+6yzrqmJLXH6GGDqenbZ6FtNX37MHrY4GbO6ERjx8I228DSS+e52Q46yKZRqYcrZzqQ75JHjJ5XvyEiTgL+DzghpXRg54bWou3IS2691I3XlKRPGD5kIGNHrM3AfjUEMLBfDWNHrN09AxNmzcr92SZPdroPqZeIlFLbD45YCXgQOBVYH/g68O2U0vVdE16zcVwM3JdSOq+1YwGGDh2aJk+e3LVBSVJ3uOeeXFX76lfzgIRFFrHKJvUwEfFgSmloU/vaNB1IRPwZmAw8RJ677QrgBWCTlNJjnRVoW6WU9u/ua0pSoRYsgNNPh5/8BDbbDG6/Hfr0afU0ST1LW+dxGwh8jTzh7QIgAU8DO0XEZ4CHUkqzuyRCSert3ngD9tsvrzM6ciScf37REUkqSJsSt5TSNgAR8QVyE2n9Ywx5gfkUEc+klNboqkAlqVd68cU8zcerr+ZRo9/9rk2jUi9W1soJKaVngWfJTaUARMQgYCiwXqdGJknK87HtvDMcfDCsv37R0UgqWKujSlubWDel9HxK6cqU0k8iW6nzwpOkXujNN3PT6Isv5sEH551n0iYJaNt0IPdGxIURsUlzB0TEshFxOPAYsGtzx0mSWnH//bDeevC3v+XnktRAW5pKvwQcD1wfEfPJ04G8DLwPLAusCfw/4AHgBymliV0UqyT1XCnB2WfDscfCgAFw992w4YZFRyWpwrRacUspzUopjSaPLD0ceII8unRV4EPgEmBISmlTkzZJaqezzoKjj8792aZMMWmT1KQ2D05IKdUBV5YekqTOMH9+no/twANhySXzIARHjUpqRjlLXkmSOktKcM45eQWEujpYZhk45BCTNkktKms6kIYi4rPkJa8GkifknQFcn1J6pZNik6Se6e23c4Xtqqvg61+HuXOhpqboqCRVgXZV3EojSG8FBgGvATPJfd5uiYjvdlp0ktTTPPRQHjU6YQKMGwfXXgv9+hUdlaQq0d6K2w+AdUv93j4SEacA/wXO7WBcktTzpASHHw4ffAB33pmbSSWpDO1N3BJ5KpC6RtuXK+2TJNWbPTv3XVt6afj73/PXFVYoOipJVai9idsPgdsj4lHgxdK2lclzuh3dGYFJUo8wdWpeGH6jjeAvf4FVW1yMRpJa1K7ELaX0r4iYCGwIDAACqAUeSCnN78T4JKk6pQTjx8NRR8Hyy8OhhxYdkaQeoN2jSksJ2r2Nt0fERikl12mR1Hu9805O1P72Nxg2DP78Z+jfv+ioJPUA7U7cWnAFudlUkqrehCm1jJs4nRmz6hjQr4bRwwYzfMjAlk+aNQtuuQVOOQWOOy4vFC9JnaBdiVtEXN7cLvIABUmqehOm1DLm6mnUzcs9QGpn1THm6mkAn0zeUoIbboAdd4SVVoKnnsqT6kpSJ2pvxW07YB9gTqPtAWzRoYgkqUKMmzj9o6StXt28+YybOH3hxG3OnDzNx1/+kptF997bpE1Sl2hv4nYXMCeldEfjHRHxcMdCkqTKMGNW4xmPmtj+yCN51Oj06XDyybDXXt0UnaTeqL2jSndtYd/27Q9HUmdpV98sLWRAvxpqm0jeBvQrLU91+eWw//65unbzzbDNNt0boKRep6wesxGxeUR8uquCkdQ56vtm1c6qI/Fx36wJU2qLDq2qjB42mJq+fRbaVtO3D6OHDc4vPvc52GyzPFebSZukblDuUKdbgDcj4tmIuCYifhYRwyNiUBfEJqmdWuqbpbYbPmQgY0eszcB+NQQwsF8N56y7BMPvvjofsPnmMHEirLhioXFK6j3KbSrdEriM3MdtLnmQws+AFBEzyVOBnJJSeqVTo5RUljb1zVKbDB8y8OMm5j//GfY9LC9ZtffesOyyeSkrSeom5VbczgMOSyntl1I6JKW0ObABMB04E1gdmBIRAzo5TkltNGFKLYs0k0x81DdL5XnvPTjwQNh3X9hgA3jooZy0SVI3KzdxWx14puGGlNKD5LVLN0sp7QjcBoztnPAklaO+b9v8lD6xb6G+WWq7+fNhq63goovg+OPzIIQB/m0qqRjlNpXeB+wPjGm0/Ulg69Lz3wBXdiwsSe3RVN82gD4RjB2xtqNK26NPHzjiiNyPbdiwoqOR1MuVW3H7LvDdiLg8ItYCiIga4EfAzNIxrwMuyicVoLk+bAtSMmkrR11dXmv073/Pr/fbz6RNUkUoq+KWUnoiIjYCfgs8HBHzgD7AB8C+pcPWA2Z0apSS2qTVecfUuqeeyhPq/ve/8PnPFx2NJC2k7JWPU0pPpJR2IC8kPxLYFVg1pVTfPPoK8OPOC1FSW7U675hadtllsN568OKLcP318NOfFh2RJC2krIpbRCwO/Bz4BrA4MA34S0rp1fpjUkr3dGqEktqsvjnUFRPaYdIk2HNP2GSTnMCttFLREUnSJ0RqYvRZswdHnAN8HTiXPI/bmsAo4N/AHimlD7siyI4aOnRomjx5ctFhSKpEdXVQU2pKvuoq+MY3oG/fYmOS1KtFxIMppaFN7Su3qXQkMCqlNC6l9NuU0mHAF4FBwHEdC1OSutkVV8CgQXnJKoBvftOkTVJFKzdxWwJ4reGGUjPp0cABnRWUJHWpuXPhe9+D3XeHVVd1Ml1JVaPcxO0O4MAmtr8EfLbj4UhSF3v2Wdh0U/j97+GHP4Q774RVVik6Kklqk3In4D0O+E9ELA+cBTwBLAYcBTzauaFJUhf405/gmWdgwgTYddeio5GkspRVcUspPU5eaH4d4BHgfWAOsCc5eZOkyvPBB/Dkk/n5iSfmOdpM2iRVoXIrbqSUHgY2jojBwJeBd4D7U0qzOzs4Seqw55+HPfaA2lqYPh2WXBJWXrnoqCSpXVpN3CJiIjAVmFL6Oj1l04HpXRqdJHXEtdfm5aoWLMiLxC+5ZNERSVKHtKXiNgVYl7yk1WeB9yJiGjmJm1ra/3BK6f2uCVGSyvThh/DjH8OZZ+aVEC6/HFZbreioJKnDWk3cUkofzc8WEZ8FhpATuXXJ04B8EUgR8VRKac2uCVOSyrDIIvDYY3DEEXDGGbD44kVHJEmdotxF5l8Fbiw9AIiIGnISt06nRiZJ5frXv2CddfLi8Nde62S6knqcsheZbyylVJdSujel9MfOCEiSyjZvXm4a/drX4Oc/z9tM2iT1QGWPKpWkivLSS3lx+HvugcMOg9/8puiIJKnLmLhJql6TJ8OOO+YlrC69FPbaq+iIJKlLdbiptLtFxLoRcV9ETI2IyRGxYdExSSrIGmvAllvmBM6kTVIvUHWJG3AacHJKaV3gxNJrSZ1swpRaNj31VlY97no2PfVWJkypLTqkrLYWDj0U6upgmWXgqqtg8OCio5KkblF24hYRO0XEdRHxWESsVNp2UERs2/nhNSkBy5SefxqY0U3XlXqNCVNqGXP1NGpn1ZGA2ll1jLl6WvHJ27//DeuuC3/9K0ydWmwsklSAshK3iBgFXA48BawK1A/b6gMc27mhNesHwLiIeBE4HRjTTdeVeo1xE6dTN2/+Qtvq5s1n3MSCFkuZPx9++tPcn23FFXPT6CabFBOLJBWo3IrbscDBKaWjgQ8bbL+PPJdbp4iImyPikSYeuwKHA0enlFYiTwB8YTPvcUipD9zkmTNndlZoUq8wY1ZdWdu73JFHwi9/CQccAPffD1/6UjFxSFLByh1VujpwbxPb5/Bx82WHpZS2a25fRPwfcFTp5RXABc28x3hgPMDQoUNTZ8Um9QYD+tVQ20SSNqBfTfcGkhJEwA9+ABtvDPvu273Xl6QKU27FbQawRhPbtwCe6Xg4bY5hy9LzbcjNtpI60ehhg6np22ehbTV9+zB6WDcNApg/H046CfbeOydva6xh0iZJlF9xGw/8NiIOKr1eKSI2J4/sPKkzA2vBwcDZEbEo8D5wSDddV+o1hg8ZCOS+bjNm1TGgXw2jhw3+aHuXeuUVGDUKbr01J2vz5sFii3X9dSWpCpS7VulpEfFp4CZgCeA2YC5wekrp910QX1Mx3A2s3x3Xknqz4UMGdk+i1tBtt8G3vw1vvw0XXZT7tFWxCVNqi0l+JfVYZa+ckFI6PiJOAdYkN7U+llKa0+mRSepd3n03L1213HJw002w1lpFR9Qh9VOq1I/OrZ9SBTB5k9Ru7VryKqX0HjC5k2ORVMXaXV16803o1w+WXBL+9a88me5SS3V5vF2tpSlVTNwktVdZiVtEXNvS/pTSNzoWjqRq1O7q0p135qWqvv99+PGPYf2e0wui4qZUkdQjlDuq9I1Gj9nkiXi3AF7v3NAkVYuyJ+xdsADGjoWtt86Vth137IYou1dzU6d0+5QqknqUcgcnNNlTOCLOAN7plIgkVZ2yqkuvvw777AM33pj7tI0fD0sv3cURdr/RwwYvVIWEbp5SRVKP1FmLzP8R+G4nvZekKlNWdWn6dLjrLvjDH+DSS3tk0ga5iXjsiLUZ2K+GAAb2q2HsiLXt3yapQ9o1OKEJ/gkp9WKtVpcWLMjJ2pZbwqabwv/+B8svX1C03aeQKVUk9WjlDk74beNNwOeAnYCLOisoSdWlxQl733gD9tsPrr8eJk2CoUN7RdImSV2h3IrbOkDDdT8XADPJi72buEm9WOPq0oQptRxy+Dn87K+/oP97s3j8x7/kKz1o1KgkFaHcwQlbdVEcknqQCVNqefS4X/L7m8/n5aVXYMTe43im72DGTp1h06EkdUCbBydERN+IuD8i7M8mqUXjJk6njkW45Ysb8vX9z+aRFb/Y8vQgkqQ2aXPFLaU0LyJWZeGmUkn62AMPwCuvMGNWH/6y7k78Zd2dIOKj3U4+K0kdU+50IJcAB3dFIJKqWEpw1lmw2WZwwgl8fpnFcsLWIGkDJ5+VpI4qd3DCksCoiNgeeBB4t+HOlNL3OyswSVXirbfgO9+BCRNg113hT3/iR8+/5+SzktQFyk3c/h/wUOn5FxrtswlV6m3eegvWWw9eegnOPBN+8AOIYPiyywLNTA8iSWq3NiVuEXERcFRKaesujkdSNVl2Wdh3X9hpJ9h444V2OfmsJHW+tvZx2w+wc4okePttGDUKpk7Nr08++RNJmySpa7S1qTRaP0RSj/fQQzByZF6yatttYd11i46oV5kwpdbmZ6mXK2dUqX3YpN4qJTj3XNhkE/jgA7jzzjwgQd1mwpRaxlw9jdpZdSSgdlYdY66exoQptUWHJqkblZO4vRIR81t6dFmUkop16aVwxBGw3Xa5ifSrXy06ol5n3MTpC43SBZzUWOqFyhlVeggwq4vikFSJPvgAFlsMdt8dPvwQ9tkHFil3+kd1huYmL3ZSY6l3KSdx+2dK6bUui0RS5UgJxo+HcePg3nuhf3/Yb7+io+rVBvSrobaJJM1JjaXepa1/Otu/Teot3nknjxo97DBYbbWio1HJ6GGDqenbZ6FtTmos9T6OKpX0sYcfzqNGn34afvlLGDPGptEKUT961FGlUu/WpsQtpeT/3FJvcNJJMHs23HILbLVV0dGoESc1llTukleSepp334U5c+Czn8392ubPz88lSRXHSprUmz3yCGywQR41mhKssIJJmyRVMBM3qbe6+GLYcEN480342c8g7MoqSZXOxE3qbd59F/bfHw44IK8xOnUqbLNN0VFJktrAxE3qbebPz3OznXgi3HQTrLhi0RFJktrIwQlSb3HNNbDTTrDMMrnKVuPErZJUbay4ST1dXR0cdBCMGAG//33eZtImSVXJipvUk02fnifUnTYNjj8ejjqq6IgkSR1g4ib1VNdfD3vskatrN94Iw4YVHZEkqYNsKpV6qtVXhy23zP3ZTNokqUcwcZN6kiefhJ/+NE+mu8Yaueo20CWSJKmnMHGTeorLLoP114dzz4UXXyw6GklSFzBxk6rd++/D4YfDnnvC2mvnptGVVy46KklSFzBxk6rdN74B550Ho0fDHXfASisVHZEkqYs4qlSqVinl9UV/+EM48kjYZZeiI5IkdTETN6nazJ2bq2sDB8KPfww77lh0RJKkbmJTqVRNnn0WNtsMzjkH3nij6GgkSd3MiptULa65Bg444OPnw4cXGo4kqftZcZOqwXPP5aWrVl8dpkwxaZOkXsqKm1TJZs+GZZaBVVfNy1ZtvjksvnjRUUmSCmLFTapU116bE7Z//Su/3m47kzZJ6uWqLnGLiK9ExL0RMS0i/hkRyxQdk9Sp5s2DY46BXXeFQYNg8OCiI5IkVYiqS9yAC4DjUkprA9cAowuOR+o8L7wAW2wBZ5wBRxwB//kPrLZa0VFJkipENSZug4E7S89vAr5ZYCxS57rxRnj0Ubj8cvjd72walSQtpBoTt0eAb5SejwRc30fVbd68PFIU4OCD4Ykn8ghSSZIaqcjELSJujohHmnjsCnwHOCIiHgSWBj5o5j0OiYjJETF55syZ3Rm+1HYvvghbbZWbR197LS9hNWBA0VFJkipURU4HklLarpVDdgCIiDWArzXzHuOB8QBDhw5NnRqg1BluuAH22ScvYTV+PHzmM0VHJEmqcBWZuLUkIj6TUnotIhYBTgDOKzomqSwpwfHHw9ixsM46uT9bLxk5OmFKLeMmTmfGrDoG9Kth9LDBDB8ysOiwJKlqVGRTaSv2iogngSeAGcCfCo5HKk9EXmf04IPhvvt6VdI25upp1M6qIwG1s+oYc/U0JkypLTo0SaoakVLPb0UcOnRomjx5ctFhqLf7979zc+i668L8+dCnT9ERdatNT72V2ll1n9g+sF8N9xy3TQERSVJliogHU0pDm9pXdU2lUtWZPx9OOglOOSVPqnvNNT0+aWuqSXRGE0kb0Ox2SdInmbhJXenll+Hb34bbb4fvfAfOOafoiLpcfZNo3bz5wMdNov0+1Ze33pv3ieMH9Kvp7hAlqWqZuEld5YknYMstYc4cuOQS2HffoiPqFuMmTv8oaatXN28+iy+6CDV9+yy0r6ZvH0YP6x19/CSpM1Tj4ASpOqy2GnztazBpUq9J2qD5ps+36+YxdsTaDOxXQ5D7to0dsbajSiWpDFbcpM706qvwox/Bb34D/fvDRRcVHVG3G9CvpslBCAP61TB8yEATNUnqACtuUme5/fY8YvSqq+Chh4qOpjCjhw2mpu/Cgy9sEpWkzmHiJnXUggXwy1/CttvCpz8NDzwAw4YVHVVhhg8ZaJOoJHURm0qljjr5ZPj5z2HUKDjvPFhqqaIjKpxNopLUNUzcpPaqn0T3yCPhC1/IAxAiio6qy7hcVfXws5J6LptKpXItWAC/+lVuGp03D1ZYAfbbr8cnbS5XVR38rKSezcRNKsfrr+cpPo4/HlZcET74oOiIukVzc7ONmzi9oIjUHD8rqWezqVRqq3vugT32yMnbH/4Ahx7ao6tsDblcVfXws5J6NhM3qS3mz4eDDoIlloB774UhQ4qOqFu1NDebKoufldSz2VQqteSNN+D99/MghH/8Ax58sNclbeDcbNXEz0rq2UzcpObUV9Z+9KP8eo018jxtvZBzs1UPPyupZ4uUUtExdLmhQ4emyZMnFx2GqkVKcOaZcNxxsNJKcMUVsP76RUclSeolIuLBlNLQpvbZx01q6M03Yf/94Z//hBEj4MILoV+/oqOSJAmwqVRa2Ouv59GjZ58NV15p0iZJqihW3KSU4F//gp13zv3YnnsOllmm6KgkSfoEK27q3d56KzeJfv3rOXkDkzZJUsWy4qbea9Ik2H13eOmlPBhh552LjkiSpBZZcVPvdOGFsOmmed3Ru+6Co4/uNasgSJKql4mbeqcVV4SddoIpU2DjjYuORpKkNjFxU+/x0ENw/vn5+de+BhMmwHLLFRqSJEnlMHFTz5cSnHsubLIJ/OpXUFdax9GmUUlSlTFxU882ezbstRcccQRsu20ekFDjYtuSpOrkqFL1XHPn5v5rTz4JY8fCscfCIv6tIkmqXiZu6rkWXxyOPBLWWgs237zoaCRJ6jDLD+pZ3nkH9t7748l0Dz/cpE2S1GNYcVPP8fDDMHIkPP00bLBB0dFIktTprLip+qUEF1wAG22UK2633gpHHVV0VJIkdToTN1W/W26Bgw+GzTbLE+puuWXREUmS1CVsKlX1qqvLU3tsuy1ccQXsthv06VN0VJIkdRkrbqpOF18Mq64KTz2VJ9L91rdM2iRJPZ4VN1WXd9/Nk+lecglsvTUsvXTREakJE6bUMm7idGbMqmNAvxpGDxvM8CEDiw5LkqqeiZuqx+OP58ra44/DiSfmh1W2ijNhSi1jrp5G3bz5ANTOqmPM1dMATN4kqYNsKlX1OPdceP11+Pe/4eSTTdoq1LiJ0z9K2urVzZvPuInTC4pIknoOEzdVtvfeg2efzc9POw2mToXttis0JLVsxqy6srZLktrOxE2V64kn8txsO+0E8+blEaSf+1zRUakVA/rVlLVdktR2Jm6qTJdeCkOHwiuvwG9/C337Fh2R2mj0sMHU9F24Gbumbx9GDxtcUESS1HOYuKmyvP8+HHoojBoFQ4bkCXWHDSs6KpVh+JCBjB2xNgP71RDAwH41jB2xtgMTJKkTOKpUlaVPH3jsMTjuOPjFL2BRf0Sr0fAhA03UJKkL+FtRleHqq2HzzaF//7zWqE2jkiR9gk2lKtb77+cJdb/5TRg3Lm8zaZMkqUlW3FScZ56BkSNzP7bRo+GUU4qOSJKkilaRFbeIGBkRj0bEgogY2mjfmIh4OiKmR4S91qvVHXfAeuvB88/DtdfmOdqstEmS1KJKrbg9AowA/thwY0SsCewJfBkYANwcEWuklOZ/8i1U0b785TyR7plnwiqrFB1Nr+R6opJUfSqy4pZSejyl1NT6OLsCf08pzU0pPQc8DWzYvdGp3Z59Fr773TyZ7gorwFVXmbQVpH490dpZdSQ+Xk90wpTaokOTJLWgIhO3FgwEXmzw+qXSNlW6a67JTaOXXppXRFChXE9UkqpTYYlbRNwcEY808di1pdOa2Jaaef9DImJyREyeOXNm5wSt8n3wARx9NIwYAauvngcirL120VH1eq4nKknVqbA+biml9qwU/hKwUoPXnwdmNPP+44HxAEOHDm0yuVM32H9/+Nvf4Kij4Ne/hsUXLzoikdcNrW0iSXM9UUmqbNXWVHotsGdELB4RqwKrAw8UHJOakkq58ujRcOWVcNZZJm0VxPVEJak6VeSo0ojYDTgH6A9cHxFTU0rDUkqPRsTlwGPAh8ARjiitMPPm5eWq3nsP/vCHvN7okCFFR6VG6kePOqpUkqpLpNTzWxGHDh2aJk+eXHQYPd8LL8Aee8B99+XVEH77W1ik2oq6kiQVKyIeTCkNbWpfRVbcVIWuuw723Rc+/BAuuwx2373oiCRJ6nFM3NRxb74J3/42rLYaXH55Hj0qSZI6nYmb2u/112H55WG55eCmm+ArX4Ellig6KkmSeiw7IKl9brgBvvQlGD8+v95oI5M2SZK6mImbyvPhh/CTn8DOO8PAgbD11kVHJElSr2FTqdquthb22gvuugsOPhjOPhtqnLBVkqTuYuKmtvvvf/OSVX/5C4waVXQ0kiT1OiZuatn8+fCf/8Dmm+fm0eefzwMSJElSt7OPm5r38suw3Xa5H9v06XmbSZskSYUxcVPTbrklL1V1//1w4YUw2DUsJUkqmombPumUU2D77fP8bJMmwX77FR2RJEnCxE1NWWQR2GefnLR9+ctFRyNJkkocnKDstttg3jzYYQc47jiIKDoiSZLUiBW33m7+fPjFL/IghJ//HFIyaZMkqUJZcevNXnsN9t47rzM6ahScd55JmyRJFczErbeaMQM22ADeeCOvN3rQQSZtkiRVOBO33upzn8vVtm9/G77ylaKjkSRJbWAft97k9ddh5Eh48slcXfv1r03aJEmqIiZuvcU998C668I//wkPP1x0NJIkqR1M3Hq6BQvgtNNgyy1hiSXg3nvhW98qOipJktQOJm493bnnwo9/DCNGwEMP5WWsJElSVXJwQk/1wQew2GJw4IHQr1+e7sNRo6piE6bUMm7idGbMqmNAvxpGDxvM8CEDiw5LkrqVFbeeJiU444xcWZs9G2pq8uhRkzZVsQlTahlz9TRqZ9WRgNpZdYy5ehoTptQWHZokdSsTt57krbdg+HA45hj40pdyEif1AOMmTqdu3vyFttXNm8+4idMLikiSimHi1lM88ECust1wA5x9Nlx5JXz600VHJXWKGbPqytouST2Vfdx6gpTywvAAd98NG25YbDxSJxvQr4baJpK0Af1qCohGkopjxa2azZqVl6yKgL/+FaZMMWlTjzR62GBq+vZZaFtN3z6MHja4oIgkqRgmbtVq8uTcNHrAAfn15z4Hyy5bbExSFxk+ZCBjR6zNwH41BDCwXw1jR6ztqFJJvY5NpdUmJfjd7+BHP8rJ2k9+UnREUrcYPmSgiZqkXs+KWzV5+23YfXf4/vdh2LDcNLrxxkVHJUmSuomJWzX54AOYNCkvYfWPf8ByyxUdkSRJ6kY2lVa6lPLUHsOHQ//+8PjjeVJdSZLU61hxq2SzZ8Nee+Xm0T//OW8zaZMkqdey4lappk7NCduzz8LYsbD//kVHJEmSCmbiVon+/vecqC2/PNx2G2y+edERSZKkCmBTaSUaPDiPGp061aRNkiR9xMStUjz8MJxySn4+ZEgeNdq/f7ExSZKkimLiVrSU4IILYKON4Pe/h9dfLzoiSZJUoUzcijRnDuy7Lxx8MGy2WZ5Qd4UVio5KkiRVKAcnFGXBAth22zyh7sknw/HHQ58+rZ8nSZJ6LRO3IqQEiywCP/4x9OsH22xTdESSJKkK2FTand59N0/zMX58fj1ihEmbJElqMytu3eWxx2DkyLxk1eqrFx2NJEmqQiZu3eHPf4bDDoMll4SJE2H77YuOSJIkVSGbSrvaww/nkaNDh+YJdU3aJElSO1lx6yqzZ8Myy8A668CNN+YRpIt6uyVJUvtVZMUtIkZGxKMRsSAihjbYvnxE3BYRcyLid0XG2KJLL4VVVoG77sqvhw0zaZMkSR1WkYkb8AgwAriz0fb3gZ8Cx3R7RG1RVweHHgqjRsFaa8GqqxYdkSRJ6kEqMnFLKT2eUprexPZ3U0p3kxO4yvLUU7DJJnmqj+OOg9tug89/vuioJElSD2L7XWeZMAFefBGuvx523rnoaCRJUg9UWOIWETcDKzax6/iU0j864f0PAQ4BWHnllTv6dq370Y9gn31gxaa+JUmSpI4rLHFLKW3Xxe8/HhgPMHTo0NSV1wLyElYmbZIkqQtVZB83SZIkfVJFJm4RsVtEvARsAlwfERMb7HseOBPYPyJeiog1CwpTkiSpW1Xk4ISU0jXANc3sG9S90UiSJFWGiqy4SZIk6ZNM3CRJkqqEiZskSVKVMHGTJEmqEiZukiRJVaIiR5VKar8JU2oZN3E6M2bVMaBfDaOHDWb4kIFFhyVJ6gQmblIPMmFKLWOunkbdvPkA1M6qY8zV0wBM3iSpB7CpVOpBxk2c/lHSVq9u3nzGTZxeUESSpM5k4ib1IDNm1ZW1XZJUXUzcpB5kQL+asrZLkqqLiZvUg4weNpiavn0W2lbTtw+jhw0uKCJJUmdycILUg9QPQHBUqST1TCZuUg8zfMhAEzVJ6qFsKpUkSaoSJm6SJElVwsRNkiSpSpi4SZIkVQkTN0mSpCph4iZJklQlTNwkSZKqhImbJElSlTBxkyRJqhImbpIkSVXCxE2SJKlKmLhJkiRVCRM3SZKkKmHiJkmSVCVM3CRJkqpEpJSKjqHLRcRM4H/dcKkVgNe74TrVyvvTOu9Ry7w/rfMetcz70zLvT+u64x6tklLq39SOXpG4dZeImJxSGlp0HJXK+9M671HLvD+t8x61zPvTMu9P64q+RzaVSpIkVQkTN0mSpCph4ta5xhcdQIXz/rTOe9Qy70/rvEct8/60zPvTukLvkX3cJEmSqoQVN0mSpCph4tZBETEyIh6NiAURMbTB9uUj4raImBMRvysyxqI1d49K+8ZExNMRMT0ihhUVY6WIiK9ExL0RMS0i/hkRyxQdU6WJiHUj4r6ImBoRkyNiw6JjqiQRcVnp3kyNiOcjYmrRMVWiiDiy9P/OoxFxWtHxVJKIOCkiahv8HO1cdEyVKiKOiYgUESt01zUX7a4L9WCPACOAPzba/j7wU2Ct0qM3a/IeRcSawJ7Al4EBwM0RsUZKaX73h1gxLgCOSSndERHfAUaTf470sdOAk1NKN5R+oZwGbFVsSJUjpbRH/fOIOAN4u8BwKlJEbA3sCqyTUpobEZ8pOqYK9JuU0ulFB1HJImIlYHvghe68rhW3DkopPZ5Smt7E9ndTSneTE7herbl7RP6P8+8ppbkppeeAp4HeXj0ZDNxZen4T8M0CY6lUCaivRH4amFFgLBUrIgLYHfhb0bFUoMOBU1NKcwFSSq8VHI+q02+AY8n/J3UbEzcVaSDwYoPXL5W29WaPAN8oPR8JrFRgLJXqB8C4iHgROB0YU2w4FWtz4NWU0lNFB1KB1gA2j4j7I+KOiNig6IAq0Pci4uGIuCgili06mEoTEd8AalNK/+3ua9tU2gYRcTOwYhO7jk8p/aO746lE7bxH0cS2Hj/MuaV7BXwH+G1EnAhcC3zQnbFVilbu0bbA0SmlqyJid+BCYLvujK9obfz3the9uNrWys/QosCywMbABsDlEfGF1IumWWjl/vwB+AX5/+NfAGeQ/2/qVVq5Rz8BdujeiDITtzZIKfWqXwrt0c579BILV5Q+Ty9o9mrDvdoBICLWAL7W9RFVnpbuUUT8H3BU6eUV5H6BvUprP0MRsSi5X+n63RNR5WnlZ+hw4OpSovZARCwgrz85s7viK1pb/8+OiPOB67o4nIrU3D2KiLWBVYH/5h4JfB54KCI2TCm90tVx2VSqIl0L7BkRi0fEqsDqwAMFx1So+k7SEbEIcAJwXrERVaQZwJal59sANgV+0nbAEymll4oOpEJNIP/s1P+BtBgurP6RiPhcg5e7kbtwqCSlNC2l9JmU0qCU0iByEWK97kjawIpbh0XEbsA5QH/g+oiYmlIaVtr3PLkT9WIRMRzYIaX0WFGxFqW5e5RSejQiLgceAz4EjujlI0oB9oqII0rPrwb+VGQwFepg4OxSVel94JCC46lEe9KLm0nb4CLgooh4hNwdYb/e1EzaBqdFxLrkptLngUMLjUYLceUESZKkKmFTqSRJUpUwcZMkSaoSJm6SJElVwsRNkiSpSpi4SZIkVQkTN0mSpCph4iZJklQlTNwkVYWIuC4iLm7w+uKIKGQpnsaxNHPMryPipm4KqaU4lo2IVyNitU58zysj4oed9X6S2s7ETVK7lZKnVHrMi4hnI+L0iFiyGy5/FLB3Ww+OiNsj4nddGE9j6wJTu/F6zfkJ8K+U0jMNN0bErRHx10bbDo6I9yLi+CgtwtiMk4ETIuLTXRCvpBaYuEnqqJuBzwFfIK+v+l3g9KYOjIjFOuuiKaW3U0qzOuv9usBXgClFBhARnwIOAi5sYvcQ4MHScYtHxAXAqcBuKaVTWloCKqU0DXiWMhJnSZ3DxE1SR81NKb2SUnoxpXQp8FdgOHxU5fpDqQo3E7intD0i4tiIeCYi6iJiWkR8lARExKdK1bw5pWa+nzS+aOOm0tJ7/iginoqIuRHxUkSMrT+WvDD9EQ0qhINai6OtsTQR24rAZ2lQcYuI/xcR10bE2xHxWkT8LiJqGp33pYi4rUEsXy1VMrds7ZrN2BlYQOm+N7jOakA/4MGIWAm4C1gfGJpSmtjG974W2KudcUlqJxM3SZ2tDujb4PXeQACbA/uWtv0SOBA4AlgTGAv8MSK+Vtp/OrA98E1gW3J1aItWrvsr4Kel9/oyMBJ4sbTvKOBe4E/k6uDnSvtai6O9sQwp3YfpABGxTun6TwAbACOArwM/rz8hIr4EPABMAtYDxgCXAYsCD7dyveZsDjzYRPVsffIC4ssBD5Xi+mpK6bky3vsBYMPGyaekLpZS8uHDh492PYCLgesavN4QeB24rPT6duDhRucsSU5qNm+0/SzgX8BSwFxgVIN9SwGzgIubunZp//vAYS3Eejvwu7bG0eB9W42liWuNAe5v8Pp+4MJGxxwLTG/w+t/AVY2O+T/g+QavrwXeAq5sdNzO5CTxKeC7DbZPAC5pIr5fAx+WHse08bOeCKzV4PU65ORvtaJ/Dn346E2PRVvN7CSpZTtGxBxyZagv8A/gyAb7H2x0/JrAEsCNEdGwEtQXeB5YDViMXKECIKU0JyKmtRDDmsDiwC1lxN1aHLQzFmgwMCEiBpMT2oMaHTO3FDOl5srtS+c1Pua/DV7/Bjgf2K9+Q0QsCpwNbAO8AUyOiGtSSi8DNcCrTcS3PnAb8EVg/YiIlFKzfdpKvkSuzNWrK3214iZ1IxM3SR11J3AIMA+YkVKa12j/u41e13fR2AV4odG+ecCy7YihpRGQzWktjva+L+QE7KzS87WA+cDjjY5ZE6hPANcjV78aN4n+Pxokoyml2yJiq0bHbAg8llJ6ESAiriE3w55Prn42dT+HkAciHA38BzgJ+FnDAyJiTWA8sDS5uvlmSunDBocsV/o6s4n3l9RF7OMmqaPeSyk9nVL6XxNJW1MeI1eSVimd1/DxP+BpcuK0cf0JpelF1mrDe27bwjEfAH3KiIP2xFIayflFPh5R+g75/9rFGhzzWWAUeSAH5MSuD/CpBsesD2zKwhW3pgzg4758AC8BA0vPp5ATxIbxrUpOuh5MKT0CfBs4PiJGNThmUeAictPzV4BNmohjLXKi3lRFT1IXseImqVullN6JiNOB00tzhd1J7je2MbAgpTQ+Ii4Efl0aiToDOJGFk66m3vNsYGxEzC295/LA+imlP5QOe57cmX4QMAd4kzzwoNk4Ss2iZcVCngYEPq6e3U9uwjy1FONAcjXuZvLgA4DJ5CRyXEScAaxObhaF1ueCa6oqWN/sObEU+/IppTdK29YvfX0IIKV0XUQcB1wYEf9LKd1NHjwxuZTYQe4/91aja2wO3NhKbJI6mRU3SUX4Kbl57hjgUeAm8qjN+lGNx5D7YF1T+voIObFqyRhyp/ufkpslrwI+32D/6eSq22Pk5r2V2xBHe2L5CvBUSuk9yPPNAbuSq1bTgEvI/QB3r+9XllJ6hdxvbWdywvc9cvPkzJTSs61837XASg1ef56cYJLyfGsPAHs22L8+8GxqMAdeSul04FLgmtJUIeuwcIVt/YavI2IJYDdyc6ykbhSt90eVJHWnUgXwRuCZlNJ3G+3bCvheSulbpdeLkgcNbE3u0/YgsF1KaUZp/47kwQtrppTmt/H6RwODUkpHRcS25IT2symlmaX9RwC7ppR26Oj3Kqk8NpVKUsEiYjNgRXLz5fLkQQPrAgc0Ou5mckVvyYh4CRiZUrq3lGjdQm5FObs+aQNIKd0YEb8nV+L+R9v8GbghIqaQK4wv1SdtJfNYeOSwpG5ixU2SChYR3yI38w4kN+PeDoxJKb1UZFySKo+JmyRJUpVwcIIkSVKVMHGTJEmqEiZukiRJVcLETZIkqUqYuEmSJFUJEzdJkqQqYeImSZJUJUzcJEmSqsT/B97t4c+90SxZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ @@ -10389,20 +6459,31 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 25, "id": "033248ae", "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'plt' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m fig, axs \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39msubplots((n_filters\u001b[38;5;241m+\u001b[39m\u001b[38;5;241m1\u001b[39m)\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m2\u001b[39m, figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m18\u001b[39m, \u001b[38;5;241m20\u001b[39m))\n\u001b[1;32m 2\u001b[0m size_le \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mint\u001b[39m(np\u001b[38;5;241m.\u001b[39msqrt(model\u001b[38;5;241m.\u001b[39mfc1\u001b[38;5;241m.\u001b[39mweight\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mnumpy()\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m/\u001b[39m n_filters))\n\u001b[1;32m 3\u001b[0m learnt_filter \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mzeros((size_le, size_le))\n", - "\u001b[0;31mNameError\u001b[0m: name 'plt' is not defined" + "name": "stdout", + "output_type": "stream", + "text": [ + "Total image is product of this image\n", + "Total image is product of this image\n", + "Total image is product of this image\n", + "Total image is product of this image\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBkAAARNCAYAAAAXYJgTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACcR0lEQVR4nOzdf7xcd10n/tcnDSGEENOa0rSEGkqptVSsNUKFFistWKBCZYtWFi0IslUqoPLVIl1FF7WrLIssSu0iWxAEsULBrrBAoSJoKQEqllIgllBCm/4AQgk1hDSf7x8zmXNmOnNzc++5uTe5z+fjcR/3PefXfM6ZM3c+9z2fH6XWGgAAAIDZWjLfBQAAAAAODpIMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBDiCllPWllFpKubyDY20upWyefakAgMVEfQSYiiQD7INSyo/0P1SvnbD+Wf31tZTysDHrH1BK2VFKuaeUcv+5L3F3uqxQjDn2ulLKG0spt5ZSvtOvcLymlHLofB4LABYi9RH1EVjIls53AeAA8+kk30iyoZSyqtZ698j6JySpSUo//suR9Y9Lcv8kH6i1fmcGz//VJD+Q5Jsz2HdBKqU8PMk/J3lwkncnuSnJo5O8OMlZpZTH1Vq/tr+PBQALmPpIx9RHoDtaMsA+qLXuTnJNkkOS/PiYTZ7QX/+1fjxufZJcPcPn/26t9aZa620z2X+B+vP0PoRfVGs9p9Z6Ua31CUn+Z5LvT/IH83QsAFiQ1EfmhPoIdESSAfbdng/koQ/tUsr6JA/rr//HJD8xZt/7fKiXUpaWUn6llHJtKeXuftPFT5dSLiylDL1Hp2oiWEo5rpTyd6WUb5RSvl1K+edSylNLKc/p7/OccSdTSllRSvmTUsot/eZ8m0opv1VKKa1tXpHkS/2H57eaYE487nSUUo5J8qQkm5P82cjq303y7SQ/X0p54P48FgAcANRH1EdgQdJdAvbdh/q/zxhZfkZr/TeTPKOUckKt9cYkKaWsSrIhybYkn+ovu1+Sv0/yk0k+n+Svk+xIr0Lwv5I8JsnP761ApZTjk3wsyWFJ/m+SzyQ5Jsm7kvzDFLveL8n7kxyV5L1JdiU5J8klSZYn+b3+dtckWZ1eM79/TXJl6xjXt8pxTXrfqPxErfWavZU7TSXn/f1vZQZqrd8qpXwsvQ/qU7L3b1u6PBYALHTqI+ojsCBJMsA+qrV+rpRya5ITSymH11rv7K96QpLtST6R5O7Wshv78Y+n16zxw60PnZen94H+uiQvqbXemySllEOSXJbkF0spV9Ra372XYv1Zeh/ov1Jrff2ehaWUJ2fqD/Wj0vuQfmKt9T/6+/xeki8k+bVSyh/2m0ReU3ojP784yfW11lfspTzT9f3931+YsP6L6X0QH5e9fxB3eSwAWNDUR9RHYKHSXQJm5sPpDabUboL4E0n+qda6q9b62SR3ZLgJ41DTxH7TwwuTbE3ya3s+0JOkH/9GeoM2/eepClJKeWj/2JuS/EV7Xa31vUk+uJdzedGeD/T+PnekN0jR96T5oJyuX0hvIKjrprn99/R/Txo4as/y1fv5WABwIFAfGU99BOaRlgwwM1en92H7hCTvKKX8QJIj0xvQZ49rkjyxlLKk/03Bng/1PR+yxyX53vQy2he3uhy2/Ud6H5JTOan/+19Gm+X1fTTJmRP2/WatddOY5V/p/96naZZqrbfsy/bTsOei1AV2LABYCNRHxlAfgfklyQAzs6d52xkjvz/U2uaaJD+T5IdLKV9O8oNJvlpr/Xx//ff2fz8ivYGAJlm5l7LsyZjfPmH9pOVJrz/mOLv6vw/Zy3PP1p5s/vdMWL9qZLv9dSwAOBCoj3RDfQQ6JMkAM1BrvaWU8u9Jjm01D9yW3rzVe3y4//sJSb6cXua63fduz4fLu2qtz5hFcfb0tzxiwvpJyxeCPRWc4yasf0T/96R+jXN1LABY8NRHOqM+Ah0yJgPM3J4P6DPTG0TpH9vNA2utNyW5Lb0P9XHzUd+UXkXglP6ozjO1pyLxY6NTTPWdOotjt+3po9nltwl7Kj5PGjM91oOSPC69JprX7udjAcCBQn1k9tRHoEOSDDBze5oi/lp6Iyl/eMw21yQ5Lb1RhJPWh3qtdVd600IdmeS1pZQHjO5cSjmylHLCVIWotX6l/zzHJvkvI/uflcn9H/fVN9LrP3j0pA1KKUeXUo4vpayYzgFrrf+e3pRV65O8cGT17yV5YJI311q/3XqO+/Wf4+GzPRYAHATUR0aoj8D80l0CZu5D6X3I/WDr8agPJ/m5JA9L8vla61dH1v+3JD+U5IIkP1VK+VCSryZ5cHrN6R6X3rRSN2ZqL0xvXuo/L6U8Jc281P8pvZGZn55k3CBM01Zr3V5K+XiS00opb02vmd+9Sd5Ta/1Mf7M3pz8vdXoVjen4lST/nF7F5owkn0tvPu6f6D/Hy0e2f0h/my+n9wE+m2MBwIFOfUR9BBYULRlghvrzUf9b/+FdSW4Ys1n724T7zIVca/1uknPSm2rp80nOTm+qqLPSe3/+1yRvnUZZbkzyY0neld43FS9J7wPvp9MbzTlp+krOxs8n+b/98v1uepWSk2dzwH7Gf0OSy9P7AP6NJA9P8tokP1Zr/dp8HAsADgTqI+ojsNCUWs2eAgezfpb/WUmOb40kDQCw36iPwOKhJQMcBEopS0opa8csPyPJzya50Qc6ADCX1EeAxJgMcLBYluQrpZQPpzdK9K4kj0zyxCQ7c9+BhwAAuqY+AuguAQeDUsohSV6T3tRU65KsSK9f5keSXFJr/fTkvQEAZk99BEgkGQAAAICOLIjuEqUsq71EJwAw7Jt31VoPn+9SLAbqIwAwyfTrIwsiydD7QD9tvgsBAAvQVV+e7xIsHuojADDe9Osje51dopTyxlLKHaWU+8y5W0p5aSmlllLWtJa9rJSyqZTy+VLKT06/0AAA46mPAMCBYTpTWF6e5KzRhaWUh6Y3UuwtrWUnJDkvvVFkz0ry5/0BYAAAZuPyqI8AwIK31yRDrfUjSb4+ZtX/TPKbSdojRz49ydtrrd+ptX4pyaYkj+6ioADA4qU+AgAHhum0ZLiPUsrTkny11vqvI6sekuQrrcdb+svGHeMFpZSNpZSNvWlzAQCmT30EABaefR74sZSyIsnLkzxp3Ooxy8bOkVlrvSzJZb1jrjaPJgAwbeojALAwzWR2iYcneViSfy2lJMm6JJ8qpTw6vW8KHtradl2SW2dbSACAEeojALAA7XN3iVrrv9VaH1xrXV9rXZ/eB/nJtdatSd6T5LxSyv1LKQ9L8ogk13VaYgBg0VMfAYCFaTpTWL4tyb8k+f5SypZSyvMmbVtr/WySdyS5Mcn7kryw1npvV4UFABYn9REAODCUWue/+2GvD+Rp810MAFiArvpkrXXDfJdiMVAfAYBJpl8fmdHsEgAAAACjJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQib0mGUopbyyl3FFKuaG17E9KKTeVUj5TSnlXKWV1a93LSimbSimfL6X85ByVGwBYRNRHAODAMJ2WDJcnOWtk2QeSnFhrfVSSLyR5WZKUUk5Icl6SR/b3+fNSyiGdlRYAWKwuj/oIACx4e00y1Fo/kuTrI8veX2vd1X94bZJ1/fjpSd5ea/1OrfVLSTYleXSH5QUAFiH1EQA4MHQxJsMvJnlvP35Ikq+01m3pL7uPUsoLSikbSykbk50dFAMAWMTURwBgAZhVkqGU8vIku5K8dc+iMZvVcfvWWi+rtW6otW5Ils2mGADAIqY+AgALx9KZ7lhKOT/J2UnOqLXu+eDekuShrc3WJbl15sUDAJhMfQQAFpYZtWQopZyV5LeSPK3Wek9r1XuSnFdKuX8p5WFJHpHkutkXEwBgmPoIACw8e23JUEp5W5LTk6wppWxJ8rvpjd58/yQfKKUkybW11gtqrZ8tpbwjyY3pNVt8Ya313rkqPACwOKiPAMCBoTQtC+exEGV1TU6b72IAwAJ01Sd74wUw19RHAGCS6ddHuphdAgAAAECSAQAAAOiGJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6sdckQynljaWUO0opN7SWHVZK+UAp5Yv934e21r2slLKplPL5UspPzlXBAYDFQ30EAA4M02nJcHmSs0aWXZTk6lrrI5Jc3X+cUsoJSc5L8sj+Pn9eSjmks9ICAIvV5VEfAYAFb69JhlrrR5J8fWTx05O8qR+/Kck5reVvr7V+p9b6pSSbkjy6m6ICAIuV+ggAHBhmOibDEbXW25Kk//vB/eUPSfKV1nZb+svuo5TyglLKxlLKxmTnDIsBACxi6iMAsMB0PfBjGbOsjtuw1npZrXVDrXVDsqzjYgAAi5j6CADMk5kmGW4vpRyZJP3fd/SXb0ny0NZ265LcOvPiAQBMpD4CAAvMTJMM70lyfj8+P8m7W8vPK6Xcv5TysCSPSHLd7IoIADCW+ggALDBL97ZBKeVtSU5PsqaUsiXJ7ya5JMk7SinPS3JLkmcmSa31s6WUdyS5McmuJC+std47R2UHABYJ9REAODCUWsd2Udy/hSira3LafBcDABagqz7ZGy+AuaY+AgCTTL8+0vXAjwAAAMAiJckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATswqyVBK+bVSymdLKTeUUt5WSlleSjmslPKBUsoX+78P7aqwAACj1EcAYOGYcZKhlPKQJC9KsqHWemKSQ5Kcl+SiJFfXWh+R5Or+YwCAzqmPAMDCMtvuEkuTPKCUsjTJiiS3Jnl6kjf1178pyTmzfA4AgKmojwDAAjHjJEOt9atJXpXkliS3JflmrfX9SY6otd7W3+a2JA8et38p5QWllI2llI3JzpkWAwBYxNRHAGBhmU13iUPT+5bgYUmOSvLAUsqzp7t/rfWyWuuGWuuGZNlMiwEALGLqIwCwsMymu8SZSb5Ua72z1vrdJO9M8tgkt5dSjkyS/u87Zl9MAICx1EcAYAGZTZLhliSnlFJWlFJKkjOSfC7Je5Kc39/m/CTvnl0RAQAmUh8BgAVk6Ux3rLV+vJRyRZJPJdmV5NNJLkuyMsk7SinPS++D/5ldFBQAYJT6CAAsLKXWOt9lSCmra3LafBcDABagqz7ZGy+AuaY+AgCTTL8+MtspLAEAAACSSDIAAAAAHZFkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE7NKMpRSVpdSriil3FRK+Vwp5cdKKYeVUj5QSvli//ehXRUWAGCU+ggALByzbcnwp0neV2s9PskPJflckouSXF1rfUSSq/uPAQDmivoIACwQM04ylFJWJXl8kr9MklrrzlrrtiRPT/Km/mZvSnLO7IoIADCe+ggALCyzaclwTJI7k/yfUsqnSylvKKU8MMkRtdbbkqT/+8Hjdi6lvKCUsrGUsjHZOYtiAACLmPoIACwgs0kyLE1ycpLX11p/OMm3sw9NEWutl9VaN9RaNyTLZlEMAGARUx8BgAVkNkmGLUm21Fo/3n98RXof8reXUo5Mkv7vO2ZXRACAidRHAGABmXGSoda6NclXSinf3190RpIbk7wnyfn9ZecnefesSggAMIH6CAAsLEtnuf+vJnlrKWVZkpuTPDe9xMU7SinPS3JLkmfO8jkAAKaiPgIAC8Sskgy11uuTbBiz6ozZHBcAYLrURwBg4ZjNmAwAAAAAA5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANCJWScZSimHlFI+XUq5qv/4sFLKB0opX+z/PnT2xQQAmEx9BAAWhi5aMrw4yedajy9KcnWt9RFJru4/BgCYS+ojALAAzCrJUEpZl+SpSd7QWvz0JG/qx29Kcs5sngMAYCrqIwCwcMy2JcNrkvxmkt2tZUfUWm9Lkv7vB4/bsZTyglLKxlLKxmTnLIsBACxir4n6CAAsCDNOMpRSzk5yR631kzPZv9Z6Wa11Q611Q7JspsUAABYx9REAWFiWzmLfxyV5WinlKUmWJ1lVSnlLkttLKUfWWm8rpRyZ5I4uCgoAMIb6CAAsIDNuyVBrfVmtdV2tdX2S85J8qNb67CTvSXJ+f7Pzk7x71qUEABhDfQQAFpYuZpcYdUmSJ5ZSvpjkif3HAAD7k/oIAMyD2XSXGKi1XpPkmn78tSRndHFcAIDpUh8BgPk3Fy0ZAAAAgEVIkgEAAADohCQDAAAA0AlJBgAAAKATkgwAAABAJyQZAAAAgE5IMgAAAACdkGQAAAAAOiHJAAAAAHRCkgEAAADohCQDAAAA0AlJBgAAAKATkgwAAABAJyQZAAAAgE5IMgAAAACdkGQAAAAAOiHJAAAAAHRCkgEAAADohCQDAAAA0AlJBgAAAKATkgwAAABAJyQZAAAAgE5IMgAAAACdkGQAAAAAOiHJAAAAAHRCkgEAAADohCQDAAAA0AlJBgAAAKATkgwAAABAJyQZAAAAgE5IMgAAAACdkGQAAAAAOiHJAAAAAHRCkgEAAADohCQDAAAA0AlJBgAAAKATkgwAAABAJyQZAAAAgE5IMgAAAACdkGQAAAAAOiHJAAAAAHRCkgEAAADohCQDAAAA0AlJBgAAAKATkgwAAABAJyQZAAAAgE5IMgAAAACdkGQAAAAAOiHJAAAAAHRCkgEAAADohCQDAAAA0AlJBgAAAKATkgwAAABAJyQZAAAAgE5IMgAAAACdmHGSoZTy0FLKh0spnyulfLaU8uL+8sNKKR8opXyx//vQ7ooLANBQHwGAhWU2LRl2JfmNWusPJDklyQtLKSckuSjJ1bXWRyS5uv8YAGAuqI8AwAIy4yRDrfW2Wuun+vG3knwuyUOSPD3Jm/qbvSnJObMsIwDAWOojALCwLO3iIKWU9Ul+OMnHkxxRa70t6X3wl1IePGGfFyR5Qe/RA7ooBgCwiKmPAMD8m/XAj6WUlUn+LslLaq13T3e/WutltdYNtdYNybLZFgMAWMTURwBgYZhVkqGUcr/0PtDfWmt9Z3/x7aWUI/vrj0xyx+yKCAAwmfoIACwcs5ldoiT5yySfq7W+urXqPUnO78fnJ3n3zIsHADCZ+ggALCyzGZPhcUl+Psm/lVKu7y/77SSXJHlHKeV5SW5J8sxZlRAAYDL1EQBYQGacZKi1fjRJmbD6jJkeFwBgutRHAGBhmfXAjwAAAACJJAMAAADQEUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6IckAAAAAdEKSAQAAAOiEJAMAAADQCUkGAAAAoBOSDAAAAEAnJBkAAACATkgyAAAAAJ2QZAAAAAA6MWdJhlLKWaWUz5dSNpVSLpqr5wEAGEddBAD2vzlJMpRSDknyZ0menOSEJD9XSjlhLp4LAGCUuggAzI+5asnw6CSbaq0311p3Jnl7kqfP0XMBAIxSFwGAeTBXSYaHJPlK6/GW/rKBUsoLSikbSykbk51zVAwAYJHaa10kUR8BgK7NVZKhjFlWhx7UelmtdUOtdUOybI6KAQAsUnutiyTqIwDQtaVzdNwtSR7aerwuya2TN//mXclVX06yJsldc1SmA8FiP//ENXD+zn8xn3/iGow7/++bj4IcBPaxLpKojww4/8V9/olr4PwX9/knrsGs6iOl1vsk9WetlLI0yReSnJHkq0k+keRZtdbP7mW/jb1vEhanxX7+iWvg/J3/Yj7/xDVY7OffpZnWRfr7LurXwfkv7vNPXAPnv7jPP3ENZnv+c9KSoda6q5RyYZL/l+SQJG+czoc6AEAX1EUAYH7MVXeJ1Fr/Ick/zNXxAQCmoi4CAPvfXA38OFOXzXcB5tliP//ENXD+i9tiP//ENVjs579QLPbXwfmz2K+B82exX4NZnf+cjMkAAAAALD4LrSUDAAAAcICSZAAAAAA6sSCSDKWUs0opny+lbCqlXDTf5dkfSikPLaV8uJTyuVLKZ0spL+4vP6yU8oFSyhf7vw+d77LOpVLKIaWUT5dSruo/XjTnX0pZXUq5opRyU/8++LFFdv6/1r/3byilvK2UsvxgP/9SyhtLKXeUUm5oLZt4zqWUl/X/Ln6+lPKT81Pq7kw4/z/pvwc+U0p5VylldWvdQXX+yfhr0Fr30lJKLaWsaS076K7BQrbY6iPqIj2LuS6SqI+ojwyWqY8skvrI/qiLzHuSoZRySJI/S/LkJCck+blSygnzW6r9YleS36i1/kCSU5K8sH/eFyW5utb6iCRX9x8fzF6c5HOtx4vp/P80yftqrccn+aH0rsOiOP9SykOSvCjJhlrrielNL3deDv7zvzzJWSPLxp5z/+/BeUke2d/nz/t/Lw9kl+e+5/+BJCfWWh+V5AtJXpYctOefjL8GKaU8NMkTk9zSWnawXoMFaZHWR9RFehZzXSRRH1Ef6VEfWTz1kcszx3WReU8yJHl0kk211ptrrTuTvD3J0+e5THOu1npbrfVT/fhb6f1Bf0h65/6m/mZvSnLOvBRwPyilrEvy1CRvaC1eFOdfSlmV5PFJ/jJJaq07a63bskjOv29pkgeUUpYmWZHk1hzk519r/UiSr48snnTOT0/y9lrrd2qtX0qyKb2/lwescedfa31/rXVX/+G1Sdb144Pu/JOJ90CS/M8kv5mkPRrzQXkNFrBFVx9RF1ncdZFEfaRPfaRHfWSR1Ef2R11kISQZHpLkK63HW/rLFo1SyvokP5zk40mOqLXelvQ+/JM8eB6LNtdek96NvLu1bLGc/zFJ7kzyf/pNNN9QSnlgFsn511q/muRV6WVKb0vyzVrr+7NIzn/EpHNejH8bfzHJe/vxojn/UsrTkny11vqvI6sWzTVYIBb19VYXWZR1kUR9RH2koT7SWHT1ka7rIgshyVDGLFs082qWUlYm+bskL6m13j3f5dlfSilnJ7mj1vrJ+S7LPFma5OQkr6+1/nCSb+fga4o3Ub+f39OTPCzJUUkeWEp59vyWasFZVH8bSykvT6/p9lv3LBqz2UF3/qWUFUlenuR3xq0es+yguwYLyKK93uoii7YukqiPqI/s3aL627gY6yNzURdZCEmGLUke2nq8Lr1mSge9Usr90vtQf2ut9Z39xbeXUo7srz8yyR3zVb459rgkTyulbE6vSeoTSilvyeI5/y1JttRaP95/fEV6H/KL5fzPTPKlWuudtdbvJnlnksdm8Zx/26RzXjR/G0sp5yc5O8l/rrXu+eBaLOf/8PQqt//a/3u4LsmnSilrs3iuwUKxKK+3usiirosk6iPqIw31kcVbH+m8LrIQkgyfSPKIUsrDSinL0htY4j3zXKY5V0op6fV/+1yt9dWtVe9Jcn4/Pj/Ju/d32faHWuvLaq3raq3r03vNP1RrfXYWz/lvTfKVUsr39xedkeTGLJLzT69Z4imllBX998IZ6fUFXizn3zbpnN+T5LxSyv1LKQ9L8ogk181D+eZUKeWsJL+V5Gm11ntaqxbF+dda/63W+uBa6/r+38MtSU7u/41YFNdgAVl09RF1kcVdF0nUR6I+0qY+skjrI3NSF6m1zvtPkqekN4rnvyd5+XyXZz+d86npNTX5TJLr+z9PSfK96Y3o+sX+78Pmu6z74VqcnuSqfrxozj/JSUk29u+BK5McusjO//eS3JTkhiR/leT+B/v5J3lben0+v9v/A/68qc45vaZr/57k80mePN/ln6Pz35ReX789fwcvPVjPf9I1GFm/Ocmag/kaLOSfxVYfURcZuhaLsi7SP1/1EfUR9ZFFVB/ZH3WR0t8RAAAAYFYWQncJAAAA4CAgyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAwAAANAJSQYAAACgE5IMAAAAQCckGQAAAIBOSDIAAAAAnZBkAAAAADohyQAAAAB0QpIBAAAA6IQkAxxASinrSym1lHJ5B8faXErZPPtSAcD88dkIsLBIMsA+KKX8SL8ic+2E9c/qr6+llIeNWf+AUsqOUso9pZT7z32Ju9NlJW7MsdeVUt5YSrm1lPKdfiXvNaWUQ+fzWADsnc/Gufls3Mvz/mAp5a2llE2llP8opXy1lPLhUsrPllL2qX7fv/6/V0r5fP91uKOU8o5Syg9Mc/+fb72+zx+zfn1r/bift0/jOe5fSrmhv/2WCdtcvpfnOX7CfvtcbyilPLaU8g+llK/379vPlFJeUko5ZMy2jyul/HEp5ROllDv7z/GlUsobSinHTjj+o0spf1RKeW8pZetU593aZ/MU5751qn1bx/jL1j73KVsp5fGllL/qvxZf698vXyqlvKeUcsaEY/5iKeXK/r16dynl26WUz5VS/ncp5fsn7FP6+11bSvlW/xp/upTyognXeG+vfS2lXD2da0A3ls53AeAA8+kk30iyoZSyqtZ698j6JySpSUo//suR9Y9Lcv8kH6i1fmcGz//VJD+Q5Jsz2HdBKqU8PMk/J3lwkncnuSnJo5O8OMlZpZTH1Vq/tr+PBcC0+Wzcj0opP5XknUl2J3lPkiuSrEny00nenuTMJL80zWPdP8kH0nsNNib50yQPTfLMJE8tpTyh1vrxKfZ/aJL/lWR7kpV7ebp/TXLlmOU3TKOof5jk+6axXdI7h21jlt81umAm9YZSytOT/F2SHUn+JsnXk/xUkv+Z3nV85sjT/F2Sw/vP89Yku5L8WJLnJTmvlPLEWuu/jOzzrH4Zvpvkc0mOmMZ5J733wGvGLN++tx3799UvZurX8gn9n48n+VCSbyc5OsnTkvxUKeWVtdb/OrLPs5Mc2d9na3r37SOTPDfJL5RSzqm1vndknzcl+fkkd6R3jb+d3n39p0keX0p5Zq21tra/MsnmCWX++STHJBl9DuZSrdWPHz/78JPeB3tN8lNj1t2c3h/du5K8dcz6P+zv+1sL4Dw2J9m8D9uv75f98o7L8f/6x/3VkeWv7i+/dD6O5cePHz9+pv/js7Hbz8a9POdn+8/54yPL1ya5vb/u6Gke62X97f82yZLW8qf3l3+2vXxk35Lkg0n+Pcmf9Ld/ftfXKMnp6f1jekH/OFsmbHd5f/36fTj2PtUbkqxK7x/f7yTZ0Fq+PL0kQk1y3sg+v5XkqDHP/dv97f9tzLqTkvxwkmX9xxPPe6b37si+h6eXAHh7kmv6z3fsmO2WT9j/If17794kR05znyf2n+fGkeXn9JffnGRNa/n9kryrv+450zyv1Unu6b9ea6azj59ufnSXgH23p7nVE9oLSynrkzysv/4fk/zEmH337DNoslVKWVpK+ZV+k7C7W03CLiwjTR7LFM0ySynHlVL+rpTyjX5TtH8upTy1lPKc/j7PGXcypZQVpZQ/KaXc0m/Ct6mU8lullNLa5hVJvtR/eP5I87Oxx52OUsoxSZ6U3gfjn42s/t30Mtc/X0p54P48FgD7zGdjR5+N03BMkrtrrf/YXlhr3Zret8VJ75/GKfXP5YL+w9+ste5uHevdSf4pyQlJfnzCIV6U3mv33PQ+YztXSlmVXvLg6lrrpR0feyb1hnPTu7Zvr7Vu3LOw1rojycX9h7/cPlCt9b/XWm8dU4T/nuQ/kpxYSvnekX2ur7V+uta6c59PbGYu6/9+4VQb9c9z3PKvppdkWZLe/TmdfT6QXouT0W4Zz+j//h+11rta2383yZ5WEr86VTlbfj7JA5K8s30s5p7uErDvPtT/Pdr37IzW+m8meUYp5YRa643J4INyQ3p/UD/VX3a/JH+f5CeTfD7JX6fX/O4n0mt++Jj0/kBOqfT6GX4syWFJ/m+Sz6T3R/5dSf5hil3vl+T9SY5KrxnZrvQyyJekl5X/vf5216SXDX5x7tvc8fpWOa5JrzLyE7XWa/ZW7jQVy/e3KzdJUmv9VinlY+lVAE5Jq/K5H44FwL7x2djdZ+PefDbJj5RSTq21frT1PA9Or6n/rUlunMZxHp5eU/cv1Fq/NGb9e5Oclt7n64fbK0pvvIZLkvxprfUjpZQnjNl/1FGllP+S5HuTfC3Jv9RaP7OXfV6b5ND0uhZM15P799W9STYl+VC9bxeeZGb1hj37vG/M8T6S3rfmjy2l3L/uvetPTe/eSr+sXbh/KeXZ6b2u307vnv9IrXXi8fsJsXOS/HSt9WutPNq09e+9x6TXYuDz09zn1PTeP58aWbW2//vmMbvtWXZyKWV1rXXbXp5mT7ehy6bcis5JMsA+qrV+rpRya3qZ58NrrXf2Vz0hvX5sn0hyd2vZng/6H09ySJIPtz7MXp5eJep1SV6y50Og9Aa1uSzJL5ZSruh/ozCVP0uvEvUrtdbX71lYSnlypq5IHZVexeiJtdb/6O/ze0m+kOTXSil/WGv9bq31mtIbbfvFSa6vtb5iL+WZrj0D/nxhwvovpvcBf1z2nhjo8lgA7AOfjZ1+Nu7NryW5KskHSynvTr9ZeXr/KG5L8qw95d6L6XxuJr3PzYFSytIkf5XklvSa/E/XE/s/7WNdk+T8WustoxuXUn46yfnpdcG4z/op/PnI42+VUl5Wax1trTCTesPEfWqtu0opX0pvvIFj0htLYSrPTPKgJNdO45/l6Vqb3mvT9qVSynNHW74kSSnl+9Ib5+AttdYrp/skpZQNSc5O73/JdemNybAqvW4nY1sMlFLOTXJiei0LjkvylPTGs7hwZNM9+99nkNgMt5I4PsnYwWb7z/djSX4wvSTahydtx9zQXQJm5sPp9UVsN/v8iST/VGvdVWv9bHp99tqZ/aHmoP3mnhem1wfu19pZ5n78G+lluf/zVAUpvUGXnpBetv4v2utqbyCdD+7lXF7UrozUWu9Ib/Cj70nzYTpdv5De4FvXTXP77+n/njRY157lq/fzsQDYdz4bx9vXz8Yp1Vr/Kb2BAzcl+ZkkFyV5fnqDZ/6fJP82zUPN9HPzd9IbL+A500xm3JPkvyX5kfRaJRyaXnLpw+mNt3D1aFfGUsoR6b1u7621jg4UOslHkvxsegNEPiC9lhov7a97XSnlBSPbz+T8O6lrlN4sK/8rvZYMvzHVtvvg/6TXcmhtkgem9w/2X6Q3JsZ7Syk/NFKGJekNsLg9va4v+2JDel1KXp5eImhpkue2k3ljnNvf5zfTS4h9OclP1vsOenlV//evl1IOa5V3aZpWREnvPprKntf7f+9lO+aAlgwwM1enV8F5QpI90zwdmd7Iwntck+SJpZQl/W9n9lSk9lRsjkuvyeAXk1w8oXnaf6RXMZnKSf3f/zLa3K/vo+mNyDvON2utm8Ys/0r/9z5N+7iP3zRMx56LUqfcav8fC4D78tk4xr5+NvbHehh1ea11c3/9E9MboG9jegmMm9L7x/LCJH+Q3qwQP15r3TXmOPtUlP7vwedmKeXR6bVe+B9j/jkcq5+g+Z2RxR8ppTwpvdfhMeklSf60tf5/p9dtZVqzZPSf540ji25O8j9KKZ9Pr/vNH5RS/nKqrgMjZlJv2Os+/a4F701vbIcX1lr/eR+OP1Gt9fdGFt2Q5IJSyvb0EhmvSG8Gkj1+Lb1kz1Nrrd/Yx+e6NMmlpZTl6bU4uCDJm0tvNo4LJuxzXnqzaaxKr0XD7yb5WCnlv9RaL29t+vb0ZqR4cpIbSynvSS9RdWZ6iaMvJnlEpuhiUkr5nvQScDvTG9OD/UySAWZmT7O5M0Z+f6i1zTXp/YH74VLKl9PLKH+11rqnr9qeQX4ekd4f2kn2NiXUnqz67RPWT1qejJ/iKWn6CN5nLuKO7cn4f8+E9atGtttfxwJg3/ls7Ma4874myeb+N7t/k94/XT9da72nv/7m9L75fVh63xI/O3v/52qfPjdb3SS+kGYAvhnrdy94Q3pJhsenn2QopfxCelNCnt8fUHC2z3NVKeWr6c2AcEKalh4zqTfMqq7RTzB8KL3WMC+utY527ZgLl6aXZHh8qxyPSC8h9X9qrVN1HZpSf1DHzyV5celNh/pfSikfrLVeMcU+dyf559KbMnNjktf399nSX7+7lPK09Loh/Xz/57vpDSx5fnrdqB6RXquoSZ6dZEV6A3Qa8HEe6C4BM9D/VuLfkxzbapK5Lb25wvfY0/9rz5zCJcNjAez5AHpXrbVM8TOuT1rbnj6uk+ZQnu7cyvNhT6XyuAnrH9H/Pam/5FwdC4B95LOxGxPO95r+6sem15Li460EQ9ue6/sj03iqff3cXNnf9geS7GjPppEmMfK/+8teM43nT5I9Y3e0u0uc3P/9ppEZO/a0DnhIa9nqWTzPTOoNE/fpJ2Eell4y6j6DFpZSjkwvWXRCei0YXjudgndgzz/j7XN/ZHrda5475hrvmU3ki/1l50zzed7b/336dDauvZkzrk5vMNVTRtbtqrX+j1rrSbXWB9RaV9Vaz0pvLJeT0mvN9NkpDr+nBcxfTLENc0hLBpi5q9NrtnVmen+Q/7EOT/90UynltvQqUV9u7bPHTelVvk4ppdyv9qbmmYk9lbcfazU/bTt1hscdtadZWpff4OypDD1ptOyllAcleVx6HyQTB/aZo2MBMDM+G+fW/fu/J01RuWf5dKY+/Pf0Bm88rpTysHrfGSae3P+9pyXKd5JMGh/h5PTGafhoev+IT6srRZp/Ltv/lP9LJrdUeV56rTje1irTlPpN549PrwvD5taqmdQbPpRel6CzWmXY4/HpfXv+kToys0QpZV1/32OTXFBr3Z+zHfxY/3f7Gm/O5Nfyqel1v/nb9JJ1m6f5PA/p/96Xbjr7us/Pp5eUeNOkvw2llMck+aH0Bny8Zh/KQpdqrX78+JnBT3qDC9X0pgeq6TV7G93mr9MbUOfm/jYPGVn/+/3lr0/ygDH7H5nkhNbj9f3tLx/Z7sP95b88svys/vKa3gBN7XWbk2yecG6v6O9zemvZyiS706swTromR6f3Qb5iH67j/+s/16+OLH91f/mlI8vv13+Oh8/2WH78+PHjp9sfn41j99vnz8YpjnVUek3H703ypJF1D03vW+ua5Ckj6x7eL8P9Rpa/rL/93yZZ0lr+9P7yz7aXT1GuPdfm+WPWPSbJsjHLn5De1KQ1yWOnef41yZYxy9cmOXbM8pXpTVla05uqcnT9vtZBVqXXKuI7STa0li9Przl/TXLemNf/3/uv2XNn+LqPPe/W+kcmOWzM8u9LbwyDmuS3p/lc1/S3H3c9f3zc/dC/v77a3++JreXfm+QHJzzP2f17+VtJDh29zmO2/9H0ZqP4VpJjpij/X/bL8RszudZ+uvnRkgFm7kPp/RH7wdbjUR9O8nPpNZ/7fL1v38L/ll629YIkP1VK+VB6f6QfnF4zvcelN3Lv3ua7fmF6c4H/eSnlKWnmAv9P6Y2G/fT0KkEzVmvdXkr5eJLTSilvTa/54L1J3lObea7fnP5c4Ol9SE3Hr6T3wfzaUsoZ6fXte0z/GF9I7/zbHtLf5svpVSxncywAuuWzsZvPxknPd2sp5b+lN8r+e0spV6UZ+PEZ6f9TXe/bz/7q9P7hfFiGv5l+dXr/7J2b5OOllKvT+6f4mem1GPjFOn7gzH3x35M8sj9d5Zb+skelGfTzv9bZD354fJIPl1L+Jb3P/jvSqy88Mb1rc3N6g0uO2qd6Q6317lLKLyW5Isk1pZS3p/eP79PSG2fhivTGzGj7x/TqK59M8n17G9gzSUopx6c3a0jboaWUy1uPX1qb8QaemeSiUsqHk3wpvX/EH55eq4Tl6U3Z+qoxz7uv3p1kW/+e/0p6reIfnl7ibmmS/1Vr/UBr+4cm+XQp5VPpJay+mt7MGyel14rlu+klpr4x8jwfKKX8R3qDV34rvSTKU9JL7jyj1nqf7ihJ0h9U8mfTa8nzptmeLLMw31kOP34O5J/05tGu6WW1y5j1x6b5tuTPJhyjpNf86+r0Pqh2pvdH+KPpjeD80Na26zPm25r+uuOTvDO9ZqbfTq+54VPTm76pJjlnZPvN2Ydva1rn8/dJvpZexWzoW6A02e/Txx13iuv40PSmXrqtf/5fTm8AqHFZ+T3XYFLZp30sP378+PHT/Y/Pxm4+G/dyjZ+eXh/4O9Nran53ev8s/3KSQ8Zsv7lfhvVj1j0gvaTFF9P7J+7O9Fo2nLAP5dlzbca1ZHheetMSbk6vBct30uum8TdJTtvH857UkuGh6fW//1S//N9Nb3yP69JLFDxoimPuc70hvUTXPyT5RnpdKv4tvdkaxl37Oo2f0Xvq9Gnss761/Y+n131jT3ej7/avwwfSm4HkPu/DKc5tz/06riXDi5P83/41uqf1Wv5tetNRjm5/aHoDTP5T6/p+O71kzqVJfmBCGf6/9JIy2/rP8aX+9ve5f0f2++V+2d/W1XvNz8x+Sv8FAQ5S/W9WnpXk+NqM3g0Ai5bPRoC5Y3YJOAiUUpaUUtaOWX5Ges3GblSJAmAx8dkIMD+MyQAHh2VJvtLvi3dTek0nH5leX8Sd6fVLBYDFxGcjwDzQXQIOAqWUQ5K8Jr1BlNalN4XSXUk+kuSSWuun5690ALD/+WwEmB+SDAAAAEAnFkR3iVKW1V5yGQAY9s27aq2Hz3cpFoM1a9bU9evXz3cxgK5897tNfL/7DcLt25vFK7/xldaDlcP7H3roHBWMg8nddzfxAx/YxIcsGf4y/0ubyyB+2Lrx9+a8aL9PkuHy3HHHIPzkV74y7frIgkgy9BIMp813IQBgAbrqy/NdgsVi/fr12XjddfNdjAVvd2vc8CXZPY8lgb3YunUQ7l571CC+9tpmk8de8evNg1NOGd7/3HOb/SeMl+89wPs/2Nwb7Vto1fKdQ9v9wvOXDeI3X3Jrs2LtfcannRMT/3a33if3Kc/rXz8Iy4UXTrs+stfZJUopbyyl3FFKuWHMupeWUmopZU1r2ctKKZtKKZ8vpfzkdAsCADCJ+ggAHBim05Lh8iSvS/Lm9sJSykPTG533ltayE5Kcl97IvUcl+WAp5bha671dFRgAWJQuj/rIfjXpm9tt25p49WqtGlg4Ru/ZLbua1gu3faJZ/tilTYulu1/x6kF8113DxzumdU+37+9J742pyuP9cfB60pnNa3vz5ta9sWbZ0HbLlzfxzjXNvbls9apBfM/Wu9u7ZMXy2d03O3c15Vm2dPw9vKtVliRZ9srfbx5cdFETX3jhtJ93r++QWutHknx9zKr/meQ3k7Q7mzw9ydtrrd+ptX4pyaYkj552aQAAxlAfAYADw/TScCNKKU9L8tVa67+OrHpIktboKdnSXzbuGC8opWwspWzsTVUMADB9XddH7rzzzjkqKQAsHvs88GMpZUWSlyd50rjVY5aNnSOz1npZkst6x1xtHk0AYNrmoj6yYcMG9ZFpeNWrmviVr5y/csDeHL3tM4N41+GPalZs2TEIN29uFj/qxOk1TZ9u1wddJBafY9ZPfs1f97rm+/13vatZ/vmXNl0kfmfp6Jfvs5unYUdzq+ejG8cPULlly/A+ay78nUF82AwbA8yk1A9P8rAk/1pKSZJ1ST5VSnl0et8UPLS17bokt97nCAAAs6M+AgAL0D53l6i1/lut9cG11vW11vXpfZCfXGvdmuQ9Sc4rpdy/lPKwJI9IYi4oAKBT6iMAsDBNZwrLtyX5lyTfX0rZUkp53qRta62fTfKOJDcmeV+SFxrJGQCYLfURADgwlFrnv/thb0yG0+a7GACwAF31yVrrhvkuxWKwYcOGuvE6DR72aE9x1u6ze9ttTfyYH508rZ/+6OwXmzY18erVQ6t2r3nwIB66H7duHb9Pe47Bmdq1q4mXzq4/PQeX9t/I9jjDhx/exEt2DY+BsHtpMw3mpGlUp/xb255z+Prrm/j008cea1T72OWQQ6ZdH5nR7BIAAAAAoyQZAAAAgE5owwMAwH20m8kefeXrBvH3vfj4Qfx7v9fMINqeEi1Jzjxz/HdZs+1Gcc+O5rijrdt10dh3UzWVbluw1/baa5v4vPOGVrV7RRy1ujWX38qVTTzLLhI7d41ev6Z5+7Id9wzi3ctXjN1/wV5XOtd+rY94UHM/PvqU5t645pplQ/tcv7GJH3vVxYN48/P/cBAfs77Z5j7d1u66q3nQ7lrU6gN3/Ym/MLTPySfN/p7UkgEAAADohCQDAAAA0AndJQAAmNqFFw7CuvwNg/gZ72s2Offc/VOUdovfY48dXrd8+TRHXGegPfh8e6KFmVy/6Y5S36Wvn9009V6+a3jdUWvbz9nBzBFjLFs6xXktbZ5z0swAZmVZnNrdZ84+u1ne7uKTJFdc0cQ7zm66SFzU6hl05ZXNPXTUyruH9v9CjhvEx520rVnRerOvXzP8nO0uQFPe31PQkgEAAADohCQDAAAA0AndJQAAmL7nP38QvqHVReKw1cPNaifNAtFuHj6TpuHtiQG+9a3hdSuWa2q+r9rXc1eru8HSpVN0fdi1s71hs3xCl4C51O7uMWr9+oXZfWYhlYX50b4Hfufi1ort24e2e/WFrdkhWjNF/Kf/9OhBPNwtqPWGTnLc+vZ7dcMgbL8/D5uD+1FLBgAAAKATkgwAAABAJyQZAAAAgE4YkwEA4CA323EQJjls1x2D+O7tDx5at2rl+P75M3r+Vsf7Y1Y3i3euPGzfj8WQpTP4b2D30mV73WZ/jTvwwAc28eGHz08ZpmPSGBVdTBW6kM6Tfdd+PXctXzW0btna1hu09Wb9rR/7SLN824lN3J6HNsndO5r3avtv8lzfM1oyAAAAAJ2QZAAAAAA6obsEAMBBrsumsUNNe1c3XSRWLd09cbvpHGtUu8y3bG+6RZxzTrPNp97wqaF9dp548iBetnRxNyGf7hSSw9NWjl8+qr3dfDfV/+Qnm/hHfmR43eGHz+8Ull12U5rq9Zyr7lDsf5s2DT/++79fMYivvvro1pomfv9L3z+I//unnzS0/2c/28QXX9zcJ8ce2yyfi3tGSwYAAACgE5IMAAAAQCd0lwAAWKTmsjn3km1fbx6sXNnEM5jO4OjNzUjqr3nN4wfxn1978tB2v3KSpuLjjHZ9uOuuJj5q7fhrtnXr8Ou5bl3XpepG+9bavHl43RGHz+/9sGNHE2/e3FzPtWsn79OesWX3mqY70pKbbhzENy8/YWifY9bc3TxoX5AOTbdrE7NzwrE7hx6v/aVmdojfetg7BvFxF/9Ms9FJJzXbrP3M0P4fP/1RzT6X/3az4pWvnGVJp6YlAwAAANAJSQYAAACgE7pLAAAc5KY708C+mqrnw+7Vh01euY92n9p0kTi1tfzxp2qmPR1btgw//uAHm/j448ePOH/06lYT/CS3bl01iI9a3uoKs317E0/Rp2KuZkC4//2b+Ed/dP8855Ra12NXmmt25ZXNJhs3NvHb3z6y/9I144/b6gaxdmSTv/n75nl++qeb5bOdYWVoJpkJs5Awe0vuarrIjE4vcVi7b9PZZw/CC7e2Nlq9uomXLx/a//NXNvG9Z//hID6l/fxmlwAAAAAWKkkGAAAAoBMauwAAHOTmY/T39nPOttm60ev3XfuaHbN+eN2ppzavx+SZJoZnKTgq7RkMVjdxu6n2PDj88CYe7RZy9Lru7sFpa3WXWLVr2yB+6UuPHsQvfnGz+X26NAz1S2hmFrh79dGtbYZ3+c53Wse79LXNg3PPbeKpprSYYPg6je86kSTL/Ee570anQtnjox8dfrxhw9jNWhNKZHfrPlmya/vQdu0uUCeemNZ2rVksRvq/7NzVvNYz7XKjJQMAAADQCUkGAAAAoBOSDAAAAEAn9KABAGBqO3YMwm07Vgzi9mxpK5ZP7rtrTIX9b6ppS48/vonb/eun7Iu9cniMhr095+hrPlf3wDHrW8cdHSzgo9c2q05ppkHtcgyB0eu8ZMLYB+2n/LM/m2L/Vv/49jVb1b7827YN7XP99c10see+8kWDeMU5T2o2esUrmviU9gSG0zPb6TDJ8OvWvk9e8pImvuSSibvvXt787W1P3zt0D42MkdKervaCC5p448ZmHIdrWtskyZPObaZEHb3XpktLBgAAAKATkgwAAABAJ0qtdb7LkFJW1+S0+S4GACxAV32y1jp+Dis6tWHDhrrxuuvmuxgLxqSm73dvb5a3W9K2pwuEBaHdVrzdt+fUU2d33NFuGW1L56E3euuN+JuXNF0nLryw2eTo1/z6IN79qlcP7a470wxs3ToIb81Rg7jdC+LOO4d3OeL2zzQPNm5s4vPOm/w87ft2jty6dbjdQfspWz3l8pCHlGnXR7RkAAAAADohyQAAAAB0wuwSAADcx6Qm1KtWThjxHhaaM8+cm+POR5eIqbRmFPjjV9wziP/hmmY2gqNf9apBrHvEDLW6pXxhe9NFot175sorm/hXLhi+zjd+7VGD+ITTW3882/fTfrq32t3hRidEufjiJm53l9gXWjIAAAAAnZBkAAAAADphdgkAWNDMLrG/mF0COJgMzRBz1x3NipUj/Zz2wwwGB532zCWt2Uru3tV0UWl3LUsy1N3i7qWHTd5unrVnEFqVuwdx+Z7vMbsEAAAAsH9JMgAAAACdWGBDowIAAMy/oe4GB8iMDENl3nzz+I1GZzDQXWJ6WlMtPO11TxrEb/7JMohX33vvIL79zuHv86+5puki8cxnzkUBu7F5cxOvW7dqRsfQkgEAAADohCQDAAAA0AlJBgAAAKATxmQAAAAWvVu2DH//evS6ZhyGA2V8hnbZdq8/plneGp9h9+rDJu6zUN26dfi1OWrtPJR5165B+J6zL2uW/+xbBuG2Qw4ZxIffW4d2X7++iTdtauLjju2shJ141InNtX3nlTNrk6AlAwAAANAJSQYAAACgE7pLAAAAi94NNww/PvqmDw7iJXfe2az40R9t4mMXWFv3lqFuEK22+gdC94gk+e2Lm+/Dn//84XVPOqtZ9/73zc35/MP7hr+Pf8JTv2cQL/+932tWnHfeIPzNX2q6SFz23v87tP+9hz51EB+38tbWmrWzLOncecY5M7u2WjIAAAAAnZBkAAAAADpRaq1732quC1FW1+S0+S4GACxAV32y1rphvkuxGGzYsKFuvO66+S4GME++vm34+9f3va+Jzz67iVf9U6sZ/JOfPMelWlwmzeLxh5cMvza/fcHXB/E/XNvMlvGUs2bZdWLr1iZ+zWuG1y1tRhq454/+aBCv+OY3m22WLx+7fZJk27YmXr16xkWcL+WQQ6ZdH9GSAQAAAOiEJAMAAADQCbNLAAAAi95hq4eb2j/rlM2D+NdfccwgfvW5hzYbnXvu8EGuuGIuirZotLtIvPPK5vvwdesm7/OU0+9pHuxq/Xs72l1hkptuauL2bCEnnji8XWv6kZs+2Qw5cPLKaXbROAC7SMyUlgwAAABAJ/aaZCilvLGUckcp5YbWsj8ppdxUSvlMKeVdpZTVrXUvK6VsKqV8vpTyk3NUbgBgEVEfAYADw3RaMlye5KyRZR9IcmKt9VFJvpDkZUlSSjkhyXlJHtnf589LKYd0VloAYLG6POojALDg7bWjSq31I6WU9SPL3t96eG2SPZ2Rnp7k7bXW7yT5UillU5JHJ/mXbooLACxG6iPAfrd+/djFj7/osYP4mmveObRuyeteO4h3X/iisfsvueuO5sFoP/0J4wgMTe24a+e09unUli2T1001YMIsPOOcZqyDZz17+Lvx7dubaSt/ZellzYrnP7+JN28ePmC7nHfdNX75xRc38SWXDO/fGrvh5ONnOVXmQa6LMRl+Mcl7+/FDknyltW5Lf9l9lFJeUErZWErZmOwctwkAwHTNuj5y5513znERAeDgN6skQynl5Ul2JXnrnkVjNqtjlqXWelmtdUOtdUOybDbFAAAWsa7qI4cffvhcFREAFo0Zt60ppZyf5OwkZ9Ra93xwb0ny0NZm65LcOvPiAQBMpj4C7A+vflWrefyuXYPw9185/GXpscc2XSROas2M2O4VcVSa/YemT0yGpk0c6iLRmtpx58gXtO1/6NrbdWr58ibesWN4Xavrwe41Dx5blt0j323vazn/+i3D27/nquZ4v37NCwbxq7d9vdnn2mOG9nnWmU03ld1rj2rK8pY3NxtdcMHkQhx//LTLu9jNqCVDKeWsJL+V5Gm11tbEpHlPkvNKKfcvpTwsySOSXDf7YgIADFMfAYCFZ68tGUopb0tyepI1pZQtSX43vdGb75/kA6WUJLm21npBrfWzpZR3JLkxvWaLL6y13jtXhQcAFgf1EQA4MJSmZeE8FqKsrslp810MAFiArvpkb/wi5tqGDRvqxus0eAD2wUjXgTdfsWIQv+Y1zfLXv76JH1Naf2fWrh0+Xuvx7qVNt4g56wYxA6NdH9rmo5z/fG1Tnsee0jz/Z24YLufb397EZ5/dxO2uLCesac38sWZNV0U8KJRDDpl2faSL2SUAAAAAJBkAAACAbsx4dgkAAIBFrT3rQpJfeHbTXP/MM5vvc5/97GabD13VzCDRnqkiSb6+veki0W7GP9QlYMPO4TJs397E7Z061O4iMVLkLFs6fhaJLmeXmKo8jz2pNe7vrubf240bh2fheOUrm/gVr2ji37+gNfnQmpHuK8yIlgwAAABAJyQZAAAAgE7oLgEAANCxo9Y2XQI2bWq+2/3l32hmoLh3ZHLdSy8df6xTTmniz9ww3A3gUSeuHsSTuit06RvfGH586KHNcy5t/Xc51SwUs9XuIfLRjzbX8ymn3j2ITzpp+Dq94Q1NfOqpTfzqtx81iH/99E81K046adblXKy0ZAAAAAA6IckAAAAAdEKSAQAAAOiEMRkAAADm0C2bJ0zzuGtkOsrWv2eTxjR41ImTx1qYq3EYltx1xyA+4mt3Da3bffgJey1L1+MzrFrZHPspZ7bm1Fy6chCevO6O9i45+fhmXXsezidtaO2/+qSx2/SO7V/n6dKSAQAAAOiEJAMAAADQCW0+AAAA5tDOXc13u8uWtro0tOdiTJLVqwfhpO4GH//E8PfEP/ADTdzuRjBrO3Y08TXXNPGJJw5tduedTXzE125sHqxZMwiXrGx1VUiye/mKjDOxu8fWrZPL2Z6b8qUvHYTv/OiDhzZ7xjnNsd95ZXMN26f5rF1vbh6ce+7Q/v/wwWZKzKecNTfdUg4WWjIAAAAAnZBkAAAAADqhuwQAAMAcGuoi0dbqHjGVdjeCH/3R4e+J2z0uJs3iMJNZJ/7m75suDT/7gOWD+JaVw7NJHH14c+z3fLxZt+l9zTa/ft6twwdfO767RPtkdq9cNYh3POQhQ5utePe7mwfPf/7Y/R/3uAnPkeGuE699XXPNnnDlLwziD53yhaF9nnJK0/3jSWcdNojf/z5dJ0ZpyQAAAAB0QpIBAAAA6ITuEgAAAAeI0a4Pq1ZO2HAG2t0tHvCAZvnOs542iI/e/vXhne7aNQjPPruZ0eF1r2tts3x5puMPX9d0kfjtHb8ziFc897nD5Xz60wfxkq9+tVnRmtHiiGl2EXnRhc1211/fnP9r33fc0HbtbintCS1u3drsc9RaXScSLRkAAACAjkgyAAAAAJ2QZAAAAAA6YUwGAAAAsmTHPYP4aafuaFYsXT0Id68+LG2Tpsd80QU7x+6fJEu23z2Iv7C1NQ7D8+9oNvrbI5r4rruG9//mN5sHK7sblOKNb2jO5W/+dvj7+PbYDb//ymbd71xsHIZRWjIAAAAAnZBkAAAAADqhuwQAABzEdk/xveKkpu4z2WfadrSa4U9zakP2k6Wtfw9vuqmJN2xobbNsaJeJ98oNNzTx+vVDq+5e2nS5GOrt8L73NfFP/MQgfPODXji0/y8svSdz7WefOXyft89TF4mpackAAAAAdEKSAQAAAOiE7hIAAHCQaTftnqp7w85dzXZLp/mfwaTm8dPuRrFtWxOvXt3Euk7Mu5u3NF0hjmmvaHedOPFRE/cfugfWrWviLVuGtlt14upBfO21zf101JlnDuIbtx01iJ/97OHn2Z0V459zDu2v5zkYaMkAAAAAdEKSAQAAAOiE7hIAAHCQaTftHu3esGTXzkG8bEIfialml5i19nOaaWJBOSY3Nw/a3R2m2V2i7VNbHjyIT14/+d/OJ51y9yDevbLpInHC8q83y3PY0D66LixsWjIAAAAAnZBkAAAAADqhuwQAACwmre4K052Fom3WTdXXrJnd/sydtWubeOvWJt6wYRAu+eD7h/dpzQiR7dsH4cmr72qWr14/vE97hpHWPkt27Wrts7pZvq3pOnGf/dtlnqLLzXTu9Zm8H7gvLRkAAACATkgyAAAAAJ2QZAAAAAA6YUwGAABYpCb1Ox9dPqdTWrJg7Fy6YhBfetUxg/hFF7buh+OPH95py5ZBeOP2owfx2rWrBvFhW28d2uXmHc1UlcdkW7Ni06axz/PLLx+ewnL9+ubxbz3z5vaKMP/8tQAAAAA6IckAAAAAdEJ3CQAAOIhNNRWfKftoW7a0uQdedEFrOsktreksR6cgbU2Jenzrv8uPfrSJH3/SyqFdjlnbvtfWD6Ld64/JOH/2Z8OPr7++9aA1neVU3XpMW7n/aMkAAAAAdEKSAQAAAOiE7hIAALCIzGSmCM3I58boazGt6/xHfzT8+Jd+qTnemgeP3WVGr1+rT8I/3PXoQbx69fBmp5zSep4d9wzix6+/q1mxct3QPpPuwYnlbHWJSJKTT2oKcfudJw/iw1vb7Gr19kiSZa3/fIe6SNx1R7Oi1RVkRq8NSbRkAAAAADoiyQAAAAB0QncJAAA4yAw1B281YU+SbTtWDOLDVu4cf4CRtua7l68Yu1m7Cfm0R+lvH3vp4vh3pH1tNm9ulh+z8o7h7VrdHYZet+XLm/iZzxza53VHHDGIL7zqquZYT37qvhe09drs3tB0kTj2kDKIj/vlXx7a5eOH/PkgfswPt17Pla0ZJa68cvh5znnG2Kef3I1i2GduaJY8attHmhXfXDsIt685bmiflSubfYZuu/aDLVua51w33MVjf9i5a/hMJ709FnrXDS0ZAAAAgE5IMgAAAACdkGQAAAAAOrE4OkEBAMAiMtRne9OmoXUf3fyoQXzsscsG8QkfvazZ6LzzhvZpD6PwjW808aGHNt9ZLls6zX7id7WmNly7dvJ2B5H263HM+taKXasn79S+6Dt2DMKvj4w1cOE//uMgvvnHf7x5nnvv3ddiDk0VueTYYwfxcS972SDePDKF5jfPacZkaO9/e23Glzji9NOH9lly1XuaB63nyfr1Tdwah2L36sOG9n/UR1v7t65N+1ijU20OPX/7/dG+zu2xLxaAA3X4Ei0ZAAAAgE5IMgAAAACdOIAaXQAAANMxNJ1kuwl6kqetv3sQf2HrqmbFmjXN/itXtXfJ9m1N/KAHNXG7CXd7+r0pu0684Q1NfOqpTTzSpP5gNTRN49JlQ+uGmvG3p4BsOeymTw09/sLaxw/i4/7iL5oVr3tdE1944eQCtbsbXHppE7/lLU2Zn/70Qbzqa3Vo9ydtbpVn9YmD8O9aL/OvnL19+DlPbLbLDTc0cfuGat2Pf/uB4e4Sj3jE0wbxycePn+pz2tM8tp5nvo2+b6Y9LewCoyUDAAAA0Im9JhlKKW8spdxRSrmhteywUsoHSilf7P8+tLXuZaWUTaWUz5dSfnKuCg4ALB7qIwBwYJhOd4nLk7wuyZtbyy5KcnWt9ZJSykX9x79VSjkhyXlJHpnkqCQfLKUcV2udwdCmAAADl0d9BO7jnh3Nd4btgfHbo9IvGxkx/+4dTRP9oVWtJux33jn8PN/+dhOvWzf+eaY7+v0b1/3OIH7O6c3yJa/8/UF86/N/J21HrT1wmorvzaybvZ900tDDXTc18YtueMEgfu3Z7x/E7Wb3rQkgkiSHrWy9cO2VrVlAlnzzm832y3dOWZ49fuWC1nnuGOmS0Hqem09suj4cs+bujPPTPz38eLhbwcKaEaJLB1IXiba9tmSotX4kyddHFj89yZv68ZuSnNNa/vZa63dqrV9KsinJo7spKgCwWKmPAMCBYaZjMhxRa70tSfq/90yC+pAkX2ltt6W/7D5KKS8opWwspWxMdo7bBABgKp3WR+4c/eoWANhnXc8uUcYsq2OWpdZ6WZLLkqSU1WO3AQCYgRnVRzZs2KA+Mg0H6mjnB6ubWk3ljz++iVcsb782w1X+Va3m7qvWNet257hBfMToa3t4WtuN/55yuvfDU5/axM95ThOfc07TReL4bcP7HLV2WodelE44vrnur3xl89q86OInDeLf+cnmz+Kaj31s+ADve18Tv+pVTdzuOjFhpotpG+myk7XNC3rM0H0z/nmW+VtzQJlpS4bbSylHJkn/9x395VuSPLS13bokt868eAAAE6mPAMACM9Mkw3uSnN+Pz0/y7tby80op9y+lPCzJI5JcN7siAgCMpT4CAAvMXrtLlFLeluT0JGtKKVuS/G6SS5K8o5TyvCS3JHlmktRaP1tKeUeSG5PsSvJCIzkDALOlPrJw6CKxcLUmA8jR6yZvN2kaiOm+trO9B444vNn/0kub7zxXbPxIs9H2keb1W1sntFbfiUlWrWyu7eMe11zbJ1zT9Ab7zPb3D+2Txzxm/MFWr+6yaAetoS5k21rjE490Edm9fMXY/Q/Gv6l7TTLUWn9uwqozJmz/B0n+YDaFAgBoUx8BgAPDTLtLAAAAAAyRZAAAAAA60fUUlgAAwH5y8kkHdn/u9lSbu099/CA+GPup7xetOU1/9qHbmvjcDw7iky/6nfYeed+nW9Nb3tuM3eA1mJ4lm28ev2JkTIslu3Y1Dy68sIkvuKCJTzmlu4LNIy0ZAAAAgE5IMgAAAACd0F0CAAAOMrun+C5xJs3gh6bpm2Uz+knHWizN87t+bbJjRxO3m+hv2tTEz3/+ILz4xOHdz3td00XiQ5e/sVmxfXsTt5r3j5Z/Pl63Lu/H2dq9/phB3O46sXv1YUPbXXllEx/70jcP4kdd/uvNitHpWdev76KI+52WDAAAAEAnJBkAAACATuguAQAAB7Elu3YOL1ja+hdg69axy3evefDwMSY0SZ/U9H+qJuztdQup2ftcmnSeo9dvWtfjhhuGHx97bBO/4hVNfPHFTdzq+vCMc4aPe9JJzXP+8p/84iB+/ZG/P4hvPuSQQXzMVVcNl/nJT917mefBTLp1DF3/qd43E4471HVi5PmecXYzu8RrL102iNe/4tWDeNUrf3Non52v/ONBvGzpwrm2e6MlAwAAANAJSQYAAACgE7pLAADAwWzLlqGHX9jVNOk+bltrXbvZ/Yjb72y+mzzi8H2fEWIxzijRPudrrmmWP2Hz5YN4x3lN94Qk2batiY9qTTTw9W3NsQ5buXL4iV75yia+9NJ9Lucx65vX4P/7/1rfQa99abPNuecO4r9+5COH9n/W7bc3D9as2efnn4n2dVq6tCnzqpVT3FutLiO7V64ae9yhfSZ0j5jKlPdz63gvOvfWQfyLLzlqEF988R8P7bJ1YxM/9sTWbB+j98ACoyUDAAAA0AlJBgAAAKATpdY632VIKatrctp8FwMAFqCrPllr3TDfpVgMNmzYUDded918FwO6125bniTLlzfxjh1jl9/+rRVDuzzoQU3cbkV+II14vz+0u0i0L217Eo/2BBBvvuCfhw9w0klN3Gre335t7lk63NR/xfY7xhdmtl0Xrr9+/LFGut/kwx9u4pe9bHbPOU3t63zttc3yx57S3I/v/+Dw9+lPOvWe5kHreu7c1Wy3LK0ZJWbQXWJGWq/zrduHX9uj1jbnc/Pmppzr1zfb7K8uR+WQQ6ZdH9GSAQAAAOiEJAMAAADQCUkGAAAAoBPGZACABc2YDPuLMRlYLCZNJ9nW7qeeTO6efjBPQTlb7evcHhZj9eom3rx5eJ+hvva7mvEBdi9d1izf0RpbIMmt25rxM9a2pr3s9LXZtauJ77preF37SefBpPt598j36Z/4RBM/5kcX5n3bnqo0SQ7b1Rpvo3UT7T72uEFsTAYAAADgoCXJAAAAAHRiP83LAQAALASTmle3m5ePdo/QLWLfta/Z6tWtJv3bvj6Ij7n+muGdbmhd+OOPb/ZZt65Z3u66kOFpDudM+znb/T0WgOnem+0uEqNdKWZz3C6NXtrdeXDzYE0TL/T3o5YMAAAAQCckGQAAAIBO6C4BAAAHsdGm4ZNG4J9qZP7pbLfQm3DvD5Oa4W/f3sSr2m3iW10ikiSbNjXxF7/YHLc9m8Do7BJbm+ecq9kldi9fMXHdgfK6t2duOGxlM3PHxKlT5sGU17I9q8eaNXNfmFnQkgEAAADohCQDAAAA0ImF0zYEAADo3GgT7Ol2kdhXC63rxHyXZ+vWJh7qLrG29eCCC4Z3estbmvif/mkQbtnSLD56V+vASVauOWbs88/2/If239XqXrBt2/B28z3rQbs8K1cOwhe+eNnQZq//H61uJne19mm/UCee2MT7qRvFlK9Ta1aPu5c313nVNK/zpPf0XL9OWjIAAAAAnZBkAAAAADohyQAAAAB0wpgMAACwiMy2P/Z89fPeq49+dOjhklNP3e9FWPK61w7io57//EH8mbtaU0Bu2NDEGzcO7b9z+apBvOynfmoQr2n91/bo04fHYLjuonc2D845Zx9LPE2t8Qlu3v7goVXHrJnn1701JWj73vzmN4c3uyfNa7Bi2+ax+w+N7zAP00S+6CXD762NG5txJd71rmb5qpVZ0LRkAAAAADohyQAAAAB0QncJAABgyuksJ62b9y4Sz3lOE5999vC61vR/czUd4X2u02gZ+h71hhcN4s9c8YWmWFuGt1u3romXrmy6TuzY1ixvz3KZJO/f/IxBfGa7LLN8bSbtv379rA7buZ27mtdg2dKmzJs2Db827Zfm4otPGMTt81nf6iGxv+7t9vNccslwmS++uIn//d+b+IjDm3iq9+Ok9+1cv4e1ZAAAAAA6IckAAAAAdEJ3CQAAYMhUTajnvYtEy1+f9eZB/KyTvjC07sb7338Qn/DudzcrJnRpmIn7XIvly5v4oovGxo9afc8gvnlra9aJJCtbswa0j716dfPdcPspkuTYY6cozxxYSK9/MtwTpt0N4Lprh8t5+53Numc+s1n+9rePP+5UXYY61erWs2LrcP+ZV7yimUlk0nlO13TL30VXCi0ZAAAAgE5IMgAAAACd0F0CAAA4IK1pzQbwMxcfN7TuHV/9avPgwgub+Kyzmngms05s29bEO3YMr/voR5v4pS8dX9BW+/z1z/6FaT1lu9n68uX7qRn/AWK653/E4c12z39+cw2vuKLZ5kV5bfOgfc/MoZ1ZNoiXjfSFWZW7mwfLV2Y27tnRnPOK5XPbHUpLBgAAAKATkgwAAABAJ3SXAAAADkhPOrNp2n3iicPfn5589lGD+BWveOcgbnWWyDfubOLDDx8+9lCz8a1bm7g9BcSrXjW80yWXNHGrK8XupU2T+CXPfvb455imxd49ogu/cG4zw8cfvqaZ4eP2571oEB9x3s8M7zRpGoqZaM0okVZ3iaxd291zjJjUM2jnruH3zbKluksAAAAAC4QkAwAAANAJSQYAAACgE8ZkAAAADnhHrR3uS/6pjU18403Nd6s33TR+/yMO3Tm8oD0Ow/btTXzppU08Os3hli1NvH79IDSOwgLTmiryty9spok8+sRVg/iW158/vE/7xmkPcHDssbMqShdjIMzmeUaXt8domMkMr4mWDAAAAEBHJBkAAACATuguAQAAHNROOH58U/H3f7D5zvUNb1g2tO617zuzeXDRRU3cmoIyq1cPH3D0MQtfa0rSc89tFr/23586tNmLTmu6VeSv/moQ7j72uEE87W4xM+2HsB+0u0/snmGbBC0ZAAAAgE5IMgAAAACdWLjtNAAAAObQk9bdOIjPfM0JwysvbHWXuOSSJn7f+5pY94iDyqtf1erusHnz0Lo/fN0xg/i3jz9yELcnHlm5svkO/2CYUWTTppntpyUDAAAA0IlZJRlKKb9WSvlsKeWGUsrbSinLSymHlVI+UEr5Yv/3oV0VFgBglPoIACwcM+4uUUp5SJIXJTmh1vofpZR3JDkvyQlJrq61XlJKuSjJRUl+q5PSAgC0qI8A09EeJX/JDZ8Zu82SV/zO8ILWLBKP3vjng/i69ZNH3z8YmsjTt3790MPffsk9g/hTNz1jEK8d6i4x14Wae/fsaO7p4z7x1hkdY7bdJZYmeUApZWmSFUluTfL0JG/qr39TknNm+RwAAFNRHwGABWLGSYZa61eTvCrJLUluS/LNWuv7kxxRa72tv81tSR48bv9SygtKKRtLKRuTnTMtBgCwiHVZH7nzzjv3V7EB4KA14yRDv2/j05M8LMlRSR5YSnn21Hs1aq2X1Vo31Fo3JMtmWgwAYBHrsj5y+OGHz1UxAWDRmM0Ulmcm+VKt9c4kKaW8M8ljk9xeSjmy1npbKeXIJHd0UE4AgHHUR4DxbrqpCdNMT3nCv/1bs81ppzXxS186vP/S5l+liy5qFv/ztc33tMcfP7zLYatnVFIOBMuXD8KTT2y1xF86m3+p58mOHYPw4/+2YmhVO99+zFe/OqPDz2ZMhluSnFJKWVFKKUnOSPK5JO9Jcn5/m/OTvHsWzwEAMBX1EQBYQGacdqm1fryUckWSTyXZleTTSS5LsjLJO0opz0vvg/+ZXRQUAGCU+ggALCyl1jrfZUgpq2ty2t43BIBF56pP9sYvYq5t2LChbrzuuvkuxoIxOjXfHqbo40Dx8U809/BjTinNip/6qSZuTVOZY48dPsBJJ4097o03NccdmeUwK5Ye4M3oOXht29bEre4Sueuu4e3WrRuE/3DtYYP4qU8t066PzHYKSwAAAIAkkgwAAABAR7ThAQDgPnSL4IDTbg6e5DH/ekXz4L/+1yb+q78ahLec8jODuNVKPMnk90D7aUZbmh/90lb3i3ZXjLPPHnssFqmPfnQQ7jzl8YN4tIdNp3+HW7NjtJ/oxm1HDW121w1NfNZZM3sqLRkAAACATkgyAAAAAJ3QXQIAgPvMJrGvzXRnuz/MyFR9F7ZubeLHPGYQfvypv98s3vGF1g4js0tM8NhTmnv75A3D9/2nLr94EG/8oR8axBu+851mo1ZTde8blt3wqebByAwnu1euGsTte6N930xaniRLdjWznXzqphWDuD1xygl3fWRonxvXNN03lmy9dS+lH09LBgAAAKATkgwAAABAJ3SXAADgPs20JzXHZQ7t2DF+eXtUeIbddFMTX3758LqXvKSJW1NHPGZl+36eXheJSd773uHHT/r5Rw3i9/+//9es+Nu/beKHPnQQLjn11Fk9Pweo9uu+a9cgvHnLsqHN1rXe+hs3Nn+TH/7wZvnhhzfLN28efaLmeMcf3ywd6mJx6uPbO+T4oUdrRw84LVoyAAAAAJ2QZAAAAAA6IckAAAAAdMKYDAAA++Bp5zTf0Tz/+c3yD36wiV/7mgN/DAPjMOwfX9/W3E/LlzdTzLX7Vp+wozXFXTI8/9wi8YVNzXVqzQCZY844o3nwpjcN77R6dROvXDkn5Tri8OH3yUte0pTz/XnSIH7SW5/SbHTllYPQFJYM3dAj2kOOtIZuyMc+1sSPe9z4bZJk/fomXnbVO5sHrakyl5x44jQLOn1aMgAAAACdkGQAAAAAOqG7BADAFN555fB3Mlu3NvEVVzTx2tZMX/fsmPw9Tns2woOpafTBdC7705YtTXzuuU3cvs++9a0fGtrnl36pub8uvbRZfjC9BjfeNPweuv76Jv6rv2ri//vt/xjEC+H8n3LWhDKcedXYxQuhzCwcx6yf3f1wxOFTrDznnFkde19oyQAAAAB0QpIBAAAA6ITuEgAASW9Y7rvu6sVr1gwWX3PN8GbPfnYTX3ttE19wQROvWD7c5HXnruZ7nY9+tFl+6qnNcs2mF6dHndi87l9ojST/xsube+N5z3vX0D5/9VdNv4qzzmqWP+Oczos3VntGhNnet+2uRe0uEYccMrzdVa3eBr/2a028bVsTH7Z6VkVZPPb8nduj9fcOuqAlAwAAANAJSQYAAACgE7pLAAAkuf1rS/Pqtzw4SbJjR7N8dEDuM8742CD+7GcfN4inGhV82dJm3dKlzXc8u3a1t1oydnsWp198TnMPPPCB5w6tO++85h686KLmHrz22uYe+uOL7252WLlyaP8uuzvM5FjtfV75ymb5pz/dxN/5zvA+r3rV+GMdttp7ZZ+NdJf4zNYHD+J2z4mj1rq2zIyWDAAAAEAnJBkAAACATkgyAAAAAJ0wJgMAQJJ77kk2buzFF1/cLF++fHi7e+9t+sDPpD/7Y09p7dMalOHuHcsG8dKVk78HMtXl4vOzzxx+zX/6p5t78P73bwYQ+eNnf2EQ7175qEE8es+0p31sjxGyatfXm/1XHzaxPNO5B3ePfJfZ3uc1r2mWb93axD/4g018U2s6zyTZvr2JH3+q98C+Gho740tfGlr3ln88YRD/8crfb1a0/xDCPtCSAQAAAOiEJAMAAADQCd0lAADS67nwjW/04ssvb5b/8SVz2DS7NZXcqtbccbuzbGgzXSRoa09x+nM/1/TnKT90+CCu376n2WHLlqH9r7jmuEHcnrLwGWc2/xqM3nM7dzXfTba7WCzZ0TzP7uUrJpa53Vx/T7ekZLg7UntmxRNPHN5/w4aJh6Zl0pSi7fien3jq0D7b3t16cOFzmviaa5r49NO7KeDgSbc1cfsmGO2fxgFJSwYAAACgE5IMAAAAQCd0lwAASHL44ckv/3IvPvvs/fSka9eOXTyX3SMmNafmwPSWtzTxscceOYiXrGyW7x6ZqeH445t49eomvmfpqkF813APi6HW7Y86sXXftJq3T/d+2rGjuQf3dFFKkic/uYkvvHB4H/fq9LSv06T3+orlw9fyv/23Zrv3/+vRg/hJ17+92ah907T72CTJ0hn8S9maWWfo5mrfkLpOHLC0ZAAAAAA6IckAAAAAdKLUWue7DClldU1Om+9iAMACdNUna63GVd8PNmzYUDded918F2PO7Z7wHZPm6Ae++Xhtdb/Z/0Zf5/193ef7+Q9mC/nalkMOmXZ9REsGAAAAoBOSDAAAAEAnzC4BAMCMaCq/sEyaWWC6TbCn+3pO6pYx2/3dQ9PjOi0ek95TC/29piUDAAAA0AlJBgAAAKATkgwAAABAJ4zJAACwSE3q4zu6bjqm2n+2Yzfow7/vtm9v4lUrp3edprof9nW7qe6H6T7PwWq613a2x57te23Xrmb5sqXjXz9mr8vXbHT/+XqtFt+7GgAAAJgTkgwAAABAJ3SXAACg82a1M2kGv6/7zLaLx4FqYveR7XcP4v/4j1XtNUPbLV/exO1m8FNZsuOe5kGrHf2SzZubcp34qIn7T2rSPXTcVsEO5td2ulMOzrbL0UymOWx3kVja+k9x565mm+neM0zPlK/nli1NvG7d2H0WYpejhVciAAAA4IAkyQAAAAB0QncJAIC+Pc1O57tp9kyav86k+exUzamn09R6ya6dzYOlw9XKLpvwdjlTxcFg4nm3uhscvnLy9jdvbq7h+vXjX6d2K+0kWbNmxSBeselTzYr165vnad0Pu5cu2+cyT+VAf92n+36Yzrm1uy4kczfzw44dTfytbzXx4YfPXVeWA/117tzK5o08rXuo3d8luc/f5f1FSwYAAACgE5IMAAAAQCd0lwAAOMi1mx1/fVvzHdPq1c020x3Nf2i7VpP4mYx4PxOaUE9uUn73jub1WLW0NWvDpZcO7X/MOec0D7atHoQ3bztsELd6QfSeZ/PNg/ie408exCt2NTNa7J7m/fCFTU35jz12/DYH2+vc5WwAoy3it29vjnfY6n3vWtRet3Vrs0+rpX4OPXRyeSbOdjKDcz7YXvd9tm3b0MPbv9u8Jw9vLZ80C8i0uynNMS0ZAAAAgE5IMgAAAACd0F0CAKBvoTTVnUnXg6maI9+zo1m3fXuzvD2w/zQH+Z84o8SMultM9TwL5LVYiCZdm1Vpui7cvHXVID7m7LOHN7z44ia+6qpmuyuvbJavPWVol93rjxnE37qzWb788FXZV+3m3V12I1jIZjLjS1u7eXx71odk6m5P++r+92/iw1a23uvtZvztfhTJ9P94TMOin12i/WImOWJH0+3pli3NDC9r1jTbTHcCif15bQ/edzIAAACwX80qyVBKWV1KuaKUclMp5XOllB8rpRxWSvlAKeWL/d9TDBMCADA76iMAsHDMtiXDnyZ5X631+CQ/lORzSS5KcnWt9RFJru4/BgCYK+ojALBAlFrrzHYsZVWSf01yTG0dpJTy+SSn11pvK6UcmeSaWuv3T32s1TU5bUblAICD21WfrLVumO9SLFRd1kc2bNhQN1533dwWuGutjtpD0we2+vEmye3favrytqeiW7Z03/vlDvXrbY/PMGq6HYUnHbvVZ7g9pkS7+/ei7LM9ldG5Dfv++/8cntauPT3lz3711c2Dv/qrJv6Lvxja55a1jx7E69Y1y2fyGgy9zu17tT3YwEjf9IPJVOMmTBqjYug6jw7K0B5opa3dcX+a5Vlyw2eaFZs3N/FddzXxc54zreNO12Ifh2Hnrub8R/8m335ns+6IQ5u/t6NTVe4x+idg0p/hmVzncsgh066PzKYlwzFJ7kzyf0opny6lvKGU8sAkR9Rab0uS/u8Hjy1kKS8opWwspWxMpviAAgCYrLP6yJ133jluEwBgH8wmybA0yclJXl9r/eEk384+NEWstV5Wa93Qy4aMz8QAAOxFZ/WRww8/fK7KCACLxmymsNySZEut9eP9x1ek96F+eynlyFbzxDtmW0gAgAkWX31k69YmbrWNXdJuwz4ypdzhrYdDzWnbza5nMg3dFFNYbtnSxO3Z7048sYlHu1ssmXC8dpnb8TKTsQ9dp+tvaL64a7eg/61LHza0z7N+7EuD+GfbjZ9f+tImPv/8oX2O/tjHWs952AxL27NpUxN/+tNNV54nP7mJVx3Ezeanaqo+ra4Do90j2m+2aXaRmFSeW9c8ahBvW9rES49vtj9upFyTun9MNT1pe533dOPjn5jcBuCIw5uL075mU/VMa98qozOPzqUZt2SotW5N8pVSyp7+jWckuTHJe5Ls+at0fpJ3z6qEAAATqI8AwMIy21zRryZ5ayllWZKbkzw3vcTFO0opz0tyS5JnzvI5AACmoj4CAAvErJIMtdbrk4wbYfKM2RwXAGC6Dsb6yGjT4navhhXTaf96xRVDD5e0mlB/45FPGMSHH74ik+zr6ONLtt899HjNmlWDeO3a8fuMjpA+qQlw+zSn2wR7MTrppCY+5JC/GcTvfveXhrY7t3Wdf+Dlvz6If/VXm+W/cto/Dh+8dd9t3tZ0l1i3bvLI+JO0e/x885tN3H79F+trO+k8h7pRjLzvb1598iA+Zt0MrlPrwq9c2bwnj1rZvKffc037/Tz82kx6f7bdZ3nrOZdN6Ca1WF7z9t+6Bz1oeN011zTxkUc212bSDC+j3U2W7ccuEm2zGfgRAAAAYECSAQAAAOjEIh+/EwCgsaep7nw3073v8zffC30hxw3iXduaLbZtbuKbtv/M0N7bWoPP//rxtw7i3TlqFqUcadK+ctXQuvZcFe3ZJQ7L15v9Vw/PUjCpu8S0m2AvQu1r8Knrm9fjggt+dhCPThzyjW808eeObLrPvHbXh5oVF43MBPv3fz8Ij3nucwfx3TuaLjftptlTdXd4/NovtOLWRquPzWI3qbvA0L3e7j+V5Ji0Z5xp2tG3uyNN+V5pvdlWLW/N+NJ6mqet/0xr+9HXafzMNJNmnegdY5plW2ROOH74Wixf3lzDSd3OFiItGQAAAIBOSDIAAAAAnZBkAAAAADphTAYAgCS7dzddnVds/Giz4tRT5+45pzld24rlzbr29HGr0po2cn1Trdu2bXhqyhe+sImvvLIZh+F97xv/HFOZNIXkaPnb6w5bfk+zfPlhE/dZMb5r9wFj0vWYy2n53vyW8dPabd7cxJdfPrzP2972vwbxkf/YjMPwolOa/vi33nXM0D5H/fIvj33+9rggX9/WlGX16uHt2tdg/ZnNuCK3bLxj7DajU6JOnK71IDOt+2Pk4o6ObTIbO9OMlbC0NZ3lkhNPbJ5vmtOLTvdeX4zTVk7X+vXzXYKZ0ZIBAAAA6IQkAwAAANAJ3SUAAJLcfXfywQ/24nXrHj9YftLIdrNtzttuGtzurnD66c3y0SkH24ZbjY9vQv6Us4bLuGPHxwbxJz5x2iBut7q+4orh756edvbez3OqazG0rnVCi6Y5dGuawSXt+TiXzr763Z6qsj3t51ve0sR/8AdNvH378P5vecuvDuIbbmitaB3sqJXD0yR+fVszRelhq5vXsN0VZqobt33fn3des7wc0XSLqJ/fNoh/8w1Nl4ok+eNLFsl9MwP7+p66devwe739d6D9Eu6vqWMXzd+ECab9d/QAoiUDAAAA0AlJBgAAAKATuksAACRZXb+Rp+14R+/B8mYk9dw0suHxx3f2nN/7vU3cbvY+arZNZuu9jxvE5ZAvDeIjj3zYIH7FK4b3eclLmu+iNm2am3IdbIaux6QXdAbdJd555fD3gmvXNnG7i8RzntPE7W4Qv/DsyTN/tCYNSDK5u8Nhk17rqfr2tLSvzSWXNM+/efOxg7h8/7WD+JnPHN7/D1v7XHTR+OMyPVu3Dj++664mPrZ5OQ742V6YP1oyAAAAAJ2QZAAAAAA6UWqt812GlLK6JqftfUMAWHSu+mStdcN8l2Ix2LBhQ9143XW9B+32w2vWdPo8uyd8xzMfzb7LIbe2Ht02snbZIPrsZ39oELd7i2iqvu9GX//2Nbx5c7PumPXN8jdePrzPa17TxO1uLu1ZJEa7SMxWu9xz9brfs6N5jgc+8D0ja88YRM997gMH8Rvf4B6E/aEccsi06yNaMgAAAACdkGQAAAAAOmF2CQCAUbPsIjFVk/iF1MWg3nvUID56/bqhdV/5yncHcXt2iROOXzjlPxDd5/W/qZm+5OGPXDWI/+APmtfjqquGd3nlK8cfu+suEm37475dsbx5jre//WlD68477/ODePPm729WXH99E5900hyVDNgXWjIAAAAAnZBkAAAAADohyQAAAAB0wpgMAAAzdfHFg/Cy9X84iJ/znOHNli6d++n/ZuuWzcPl+of33W8QP+WshVnmUftjmsXZGh2v44ZdJwzij32sWf64x20ZxBdcMDxextPOXpjn1qWffebwOd5+ezMOwyWXNMtvXn3yID5mxz3DB1m+fE7KBkxNSwYAAACgE5IMAAAAQCdKrXW+y5BSVtfktPkuBgAsQFd9sta6Yb5LsRhs2LChbrzuun3a5w8vab6vac+kt3r18HaXvaZpxn33rhWDeNXKg7/Z+3wZ7ZYwyf7uVrFq9XC5vvWtLw/i//pfv28Qt++h3/iN24b2+epXjxzER61dfPfQ0euba/jBDzbLj1unuwTMlXLIIdOuj2jJAAAAAHRCkgEAAADohO4SALCg6S6xv8yku0RbOeSTrUc7R9YeOojqN1szBaxcOePnY4zt2wdh+Z5vD+I3vanpXrBjx/AuL3j+3Hc3+Ou3j+9WkyTbtjXx//7f1w7if//3UwbxMds/M7zTiSd2WLoDz82bm+u5Zk2zXPcjmDu6SwAAAAD7nSQDAAAA0Iml810AAICDQb33RwbxcNeJJGnadC9ZvWoQb9nSbLG/Zgm4e3vzHdNUvTX2ddaFnbuGv7tatnQemq4PndC9g+j8869tLb96aJdPf/rlg/j1f9ZdmT91fXM92l0i2rMhJMmGVuPjBz2o6SKxfn17q8XdPWLUMet1i4CFTEsGAAAAoBOSDAAAAEAnJBkAAACAThiTAQCgY+3xGZKkHPIvzbq6fBA/5CHvGcT33vvsQXyf8RB27Rr/REubqtzu1ndHU42ncNdd4+PhMQD23WgRd+xoyjMfUwvW2787iMsRmwbxaae9fGi7Sy/92CB+xCMeN4h//SXTK/NnbmjO81Erbx7E27cfM4ivuKLZ/pJLJh/rsktncJ3ac3K274elywbxvo6vATAbWjIAAAAAnZBkAAAAADqhuwQAwByr9/7YIC6HfLG15oxBtLzpRZHt20emg7z++uZBq0l8TmymNlwyoetEktx0UxO3Z3k8el13zehXLJ98rPa0mfut68SaZtrQL3+56Yryfd/3/pENTxhEZ5/dLB29hnuMdj04/fQmPuKIpovEz/1cs/yP/qiJ73e/4eOdfNIsr8eErjRDpV+qyg/sP1oyAAAAAJ2QZAAAAAA6oe0UAMB+VO99xCA+bE3zfc+ZZzbbvO51w/tceOGjB3F7MoFV27/ePFi9ehCONuk/4fgmntQNYC7Nx+wSbe1uIfXeM4fWlUPuHcTHrb27WXFX60K3ul78/+3dfZBdVbnn8d+TbpI2NKENHQjQYkDAiCGG2GiuxJiRiAEyIZeCMipKCilk7lAalNIglOXM1TvMmGLAQc1FZEBBci+IGFIaIUgK0RuwE5FECJDLjSFAQxLMYBOb0Ok1f/RhP2uf9Gm6++zz0r2/nyoqz347e619Xnqx9nr2KnbEER7/8Y8eT42u+dev2OsLcV5MFqL8l8GmeABAJTGSAQAAAAAAZIJOBgAAAAAAkAnSJQAAAGpk1y6P4xkgTjp+X2q/fRqbxOnUg5Yhn5Oh82mXXurTPZy7xOO7b+ga1PFLlng8e7bHO3Z4/PjW8Uk8fVrlrj/vLYB6wEgGAAAAAACQCToZAAAAAABAJiyEUOsyyKwlSB+udTEAAKhDqzeEENprXYo8aG9vDx2PPlrrYgAAUHesoWHQ7RFGMgAAAAAAgEzQyQAAAAAAADJBJwMAAAAAAMgEU1gCAAAAGeuN7uUxtSSAPGEkAwAAAAAAyASdDAAAAAAAIBOkSwAAANSZ3qL7QGO69/pCd7fv1zLR9xkhQ/IHSiN4ZY9vm9hSmfoccG179vlCT4/HTU2De8HOTo8bo6Z16+HDKB0AjHyMZAAAAAAAAJkou5PBzBrM7A9mtrqwPNHM7jezZwr/vr38YgIAAJRGewQAgPqQRbrEFyU9KWlCYXmZpAdCCNeY2bLC8lczOA8AAEApI7I9Ujx0v6SOjiR8evKcJD6xydMoepvGJ3FxGkKp81Q0xSJKPXhh19gkPqrV0xMeWj82dci4cR7v3+9lnjXL15db5q1b08tTpngZxj7m11kzZng8QOrEBxYdlcSPPux127zZ91m71uvypaUjI60FAIarrJEMZtYm6WxJN0Wrz5F0ayG+VdKics4BAAAwENojAADUj3LTJa6T9BUp1aV8RAjhRUkq/NvvU2/M7BIz6zCzDmlff7sAAAAMxnXKoD2yc+fOihcUAIDRbtjpEma2QNLLIYQNZjZ3qMeHEG6UdGPfa7WE4ZYDAADkV5btkfb29qq3R0oN/T8gvaG9PQmb90Tr49kQBjq+xDkHmulhqIrPuWatpyEcdpivb2319XPa98aH6FMXe8rHT254JYn39fgsGo2NQy/zfVG6wuTJ6W3f+IbHy5Z9KIknNA7uJlj8ejbuqSSeNOnkJN65c30SP/NMlPsh6fvfJX0CwOhSzjMZTpO00MzOktQkaYKZ3SbpJTM7MoTwopkdKenlLAoKAADQD9ojAADUkWGnS4QQrgwhtIUQpkhaLOnXIYQLJK2SdGFhtwsl/bzsUgIAAPSD9ggAAPUli9klil0j6V/N7HOStks6vwLnAAAAGMiIbo8ckAYQzW5w1OR4W/Ogjh/M7BLF+ww1feLss9PLH/uYx0uWeNzZ6fExbelZG66+2uMvfMNTJObO9fXnLipdrn+6xuvQ0uLr29o8Xr48fcyiRR5v2+bx9GmDayavuicuz3uTyBrui9Z7isSKFTenjj/llIuS+JKLSZ0AMPJl0skQQlgnaV0h3i3p9CxeFwAAYLBojwAAUHvlzi4BAAAAAAAgiU4GAAAAAACQkUo8kwEAAABVNtAzFAbzfIXhTGEZP8fhW99Kb1u3zuPGqMV5TFvp85w01bd95zpf/y93+nme3ebx2rWly7ZihcfTpnkcP/dBkjZt8nj6tOyeifDnP5+RxO9858+iLW9P7bdrl8dZTikKALXCSAYAAAAAAJAJOhkAAAAAAEAmSJcAAADAsMRD+lta0veuLrvM47GN5Q39j6ew3LDB4/nz0/vFU2Vu2rQjiXft8jksi4/57AWVSUuI00LC7o8ksR02LrXfVVf9JYkvvdRTKSa2VKRYAFBxjGQAAAAAAACZoJMBAAAAAABkgnQJAAAADMv2HX6/6rjuJ9IbG6dmdp5bbvF42bKNSXz++TNT+zU3e/yZz3iKxJQpvn7PnsyKNXgtLUkY9hdt6/IVvVH5qzXTBDNaACPPvh7/3pabjlYJjGQAAAAAAACZoJMBAAAAAABkgnQJAAAADEtra7TQ1Jre2Nnp8eTJZZ3nyCM9fuABT5H49rfT++3e7fFVV3n8/PMen7uozoYWRzke1UpX6M3wPmOp1yL1AsjW91b4d+0fZnna2L5p/pv4l7+kDtEhh3g8vql630lGMgAAAAAAgEzQyQAAAAAAADJBJwMAAAAAAMgEz2QAAAAY5So1TeHBB/8yWkpPYXnyyV9O4sce8/UDnT8u55Ytvn7aNI+XLPF42bL08Z/+9B1JvHv3J/s9/tWu9D22eNrLvDxHIK5nPBVeY+PgPidZPtMBQGnxdy2eivfExf4chqc7Xk3i11+fkDo+fh7N1Kn+WpV+PgO/EAAAAAAAIBN0MgAAAAAAgEyQLgEAADDKFA9nH9Ozzxcas2v+hf0fT2JrOCG1bdOmH/j5bwpJvPeCS5J4fOezqWMWLT0uiY8+2te//rrHK1Z4/Nxz6fJceaWnSLz//b5+3TqPJ01KH9Pe7vGEZuVCnCLR3e3r449GU1PRZyhKn4hjUieA6jir8b4knrb2DN/Q05OEx7Sl0yCOaat4sfrFrwIAAAAAAMgEnQwAAAAAACATpEsAAADUuVKzQ5Qaqn7AzADxVA1Tp3qcZerES+mnmtsRnq8wc4U/CX3j6oVJfPOiValjbrvN4098wuP3vMfjzs5on/PT9Tz//P6vR7zfRRen9/nojFeS+JHfT0ziD546emaaGCilodTsGsXHDCYtIi+zcwDVkvpOzZuXhMekvmstVSvPYDGSAQAAAAAAZIJOBgAAAAAAkAnSJQAAAOpcPGT2n67xe0Tz5/s+xx/v8Y4d6ftITc3Tk/i4Lk8P6G3x9ICyh7q3tqYW588/PInXrNntG+Z5ukacuSFJhx7q+4XXD0niOfPGJvHy5aWLMJg6fPOb6eWFS/waXHGFr39pp1/DIyaN7DSAeAYJKZ0lM9iZIkrtR4oEUDmDTomrM4xkAAAAAAAAmaCTAQAAAAAAZIJ0CQAAgBHkawseT+LvrPM0iDhd4qSp6aG0v1sf31fy9IDjWio35PaXP9+XxGcsOMw3LF6chLNmpI/57W99v7tX+/qHbtse7dVWVrmOmpyu86qVnkvwUMf4JB7pKRKxpqYBNvb0JOGYKI9ioNkl6n2oNjBalEpTqvfvIyMZAAAAAABAJuhkAAAAAAAAmaCTAQAAAAAAZIJnMgAAANS5vd1+X2h8lEN/2WUlDnj44dTih6Jj1BVPNTktg9KV0NWVhPfNvsHXb/Nzxs8AkKQPPXivL2zYkIR759+dxOPLzD9+ZU/6HltLiz+HYc4sf45Er3zazHrMeR6KMXteSS3HU5f2No6eegIj3WCnkS11TL18hxnJAAAAAAAAMkEnAwAAAAAAyATpEgAAAHVu1y6P13TMTOJDn/H1p57q8dLlc1LH33vv95L48sv/IYmvXV7e0Np4mO6WLeltmzb5kPxH9nzdz7n5vyfx9G+cW3TMe5J46tSDkvjJlTf7OZdclMSDHRr8apeX84030tu2bfO4pcVTByaWOb1nfM4JzTUYwtztU3O+2jgxtak5ijdv9nh6lD1TfG1LTZ8Xq5eh2sBINdD3Lp5uNk5zKrn/W7x2JTGSAQAAAAAAZIJOBgAAAAAAkAkLIdS6DDJrCdKHa10MAADq0OoNIYT2WpciD9rb20PHo4/Wuhhv6YVOv0fU0ODrDznE4/FN6WGx1nB3tPRyEp1yiqdObOwY+lDaSy71srQXfUrXr/f4vPM8PmvuXl8oml1i4mQfAvyXv/ws2uKzPpx88ieS+PE1L6RPOnmyH9HjZbvpJt8lyiIoPkSfOs/PU1y2ctQidSIeNh1PLlK83Nnp8XFTSpdtoGHYbyJdAshWauaIXf7b3dt6uK+PvnfxTESS1NTU/+sO57tqDQ2Dbo8wkgEAAAAAAGSCTgYAAAAAAJAJZpcAAAAYQY6aPPRhrq+95vkKBx+8O4mnRbMJ3Lc2fe/pjKnbfSHKKfjRSk9pmD/fd+noSJ9z8WKPp06NNpQavyvplV1R3fZ8JAntsPuTeNMmnylDzRekX2Dr1iTsbDqx3/Pfdlv6kKVL46XKNI3jzIs4jUOSxjZWJsUgHg7d2Fh0zu5Xk7itbYJviHJJepvGl3y9WKlZJ0idAIZuoLSkUikSA6VjPb7Zt8WpUWfMK6eUb42RDAAAAAAAIBN0MgAAAAAAgEzQyQAAAAAAADLBMxkAAABGuXhKy1NPPSyJf/zjbyVxd/dVqWPOWNmWxC/t9PtS86Jc3nhqyosvTp/zrrs8XrFiqCWW1NKShGH/+UlsDQ8m8QtdE+Ij1NPky8e0eZ0nT/byf3Ru9Z8VUDylaDUMOOVkc3MSjk09O8H/16D4mQqp5y30xFN9jlV/is9fi2c0lLoGPC8CtbZ9h382W1t9/QCPrClpQrdPbbmv6fDUthtu8DierveMWV1J3Nuc/h2NDfe7wkgGAAAAAACQCToZAAAAAABAJkiXAAAAyJFH1/vw18Mne4rEnXf+Jr3jc19Jwtdu/7ckPvts3+X22z3esiV9+I0rKjMkPez/T9HS4M5RqWkia2UwaQBxXLx/yVSKKPUhlRJRtC2ek7OeUw/quWz1hKlHqy/KBlNPz9CPT71nUb7F2KL378aP3JHEdsH0JD7vvJOT+J570q/9+c97PGnS8MYkMJIBAAAAAABkgk4GAAAAAACQCdIlAAAAcurlTh9aaw3HpLbZ+h/7wrv86eW7d/vTy994w3eZOa1oeD3NzMysWp2+LzhtmsdTprz18cMaAt+Yfv9G0zB60gPSuAbVN6E5uubd3dGWYUwvMZBPfjIJw26famJ7i6dLXHFF6cOZXQIAAAAAANQUnQwAAAAAACATjGMDAADIqYce9vtN//zP70xtW7vW4zvv9HSJiUsW+ob4seTbdqRffDDj+FHSv9zp781nPpPe9sYbm5L42GN92POzWytXnsHMaFFvSqVF1HOZq6Hk7CLi2lRL6rPZlHGKRCmXXZaEbRU+FSMZAAAAAABAJobdyWBm7zCzB83sSTP7k5l9sbB+opndb2bPFP59e3bFBQAAcLRHAACoL+WkS/RI+nIIYaOZHSJpg5ndL2mJpAdCCNeY2TJJyyR9tfyiAgAAHID2yBDdfY/fY4ofar58eXq/pUs9vvPOg5PY7vXL+Pfn+WtdeulxqePPmFKfw66Lh4pXY3j4cIanf+J8X//d76aP/81vGpI4nmkifm/PXeTHD+f81ToG1cd7UXu1fg8qff5hj2QIIbwYQthYiP8q6UlJR0s6R9Kthd1ulbSozDICAAD0i/YIAAD1JZNnMpjZFEmnSHpE0hEhhBelvj/8kg4vccwlZtZhZh1S8bzKAAAAQ1Nue2Tnzp1VKysAAKNV2Z0MZtYs6aeSloYQXh3scSGEG0MI7SGEdmlsucUAAAA5lkV7ZNKkSZUrIAAAOVHWFJZmdpD6/qDfHkK4u7D6JTM7MoTwopkdKenl0q8AAABQnpHcHhnstICp6c52RVVpbR3UeX69zo+PZ0v7wQ88XrYsfUy8X9j/tiQ+ceppSfyzn/2XJO7p+X7q+GXL/JwbOwaX/1tqysEsDXhtszxnT08SbtvhN9SGM7PnQ+vS5bIG70e7996nkri7+91JvGhR6XuJUdE0tid6MEf0psf7SFJj9H8Ng5kasvizXYspMGud9w6Uqxq/iZVQzuwSJumHkp4MIVwbbVol6cJCfKGknw+/eAAAAKXRHgEAoL6UM5LhNEmfkbTJzB4rrPuapGsk/auZfU7Sdknnl1VCAACA0miPAABQR4bdyRBCeFiSldh8+nBfFwAAYLBGentksMNfx6z/nS88+KDHZ56ZhL0zZibxbbelj9+1y+MtWzy+/HKPG4tahR+d23/Znt7i688821Mk7r13U9GeG5PoS1dcmMTXLnk8iZ9tnp464riWV3yhubl04TJUaoj/cIYmx8fv6PQUia4u9RtL0oRmDVnY/4EktoYXkvj++3cn8ZIlhyXxj5ans4U6u/05qJMnj0/iOHNiz570OeP0mZYWjweathJAPvGrAAAAAAAAMkEnAwAAAAAAyISFEGpdBpm1BOnDtS4GAAB1aPWGvumeUWnt7e2h49FHa12Mfq1a7feFFizw9du2edzZ6XFz0RD8+Jh4Fok4C+GSi8t7cvmrXel7V4ceuj5a+mMShQdOSOJHDv5o6phDDvH4pB5Pq9DUqUnY2+hpCOWmNAyk3Ce5b3zMzzNzRnWeCm8NP4yW5iTR9de/O7XfF2Y85AuzZyfhSzu9zPF7IUnjm0bOk+2B0WIwKVzVmoHCGhoG3R5hJAMAAAAAAMgEnQwAAAAAACATlXtULwAAADKxcIEPgX2hM5rBYIfvM2WKx21t6ePvucfjxx7z+KIl2Q2tndCcfq14BoQzz57lGxp9qP4HT00f8/jm6P7XtGn9nqfc4cCVHE4cmzGjKqdJCfs/l8Rxis3f/la0Y5xbEznikL1J3Ns0PrWtVJpJta4nkEeD+X7V43eQkQwAAAAAACATdDIAAAAAAIBM0MkAAAAAAAAywTMZAAAA6sBAUyuO6fZc+dWrPVe+p8f3mRU99iB+VoMkdXV5vGRJ/+fMOq83ntLy+uujcx7vUyvG5ZLSz5KoVNmKr3P82lmes9Z50gvn70vih9aPTW+cfV6/x8TPYSguf7WmyQMw8jGSAQAAAAAAZIJOBgAAAAAAkAnSJQAAAOrAmB4f3q5du1LbfrftqCTessXXt7Z6fNNNHh9/fPq129uj82x+3BdKTBOZhbgK69d7HJctLrOULufs2ZUp1wFD/aOcjTGN3jQeKHWgpO5uj6PXSsXVEpVl8uSidInifJqCMZMnJ3Fv49h+95FInQAwMEYyAAAAAACATNDJAAAAAAAAMkG6BAAAQMGbw8BrMQT85tt8ePqMGUeltq1e7fEHP+jxT3/q8bx5HsdpB5I0cdfTvrB2rcfR8PhU7kUG4gyBlhaPx2x5Iom/ND99zI86TkriSqVLFNu4dUISNzf7+hNbX/GFuAID2L7LUyyO6fJ6pnJEKpg6EacxdMnrFc9C0rcxmtYjrltUNmaXADBcjGQAAAAAAACZoJMBAAAAAABkgnQJAAAA9Y0gf3MWhA/Nqv75r7nG46fvejy1bV3r9CTets3XL1vm8cype32hqSl1/E/WnJjEn5oxwzdknCIRO6bNh9T39Ph9rX1tnhJRnDnw2al+TG+V7oWlrtuaNR7Pn3/gzv3YF9UtTrdQZ9eBO1fRhGa/lm1t6Wu5t9Hfg/FNQ099qFTqBCkZwOjASAYAAAAAAJAJOhkAAAAAAEAmSJcAAACQ9Le/SZs398VxukTxsP0sh3H/Yo2/9tKlvv6Jxump/b7U/lASr9ozJ4lntr2cxL1Nh5cs46cWx8tzh1fYMhw3ZejXrFrD5XubfEYILTp3yGUZq31JfN11PkPI1Vd/wPdprFxdBpNWEqdO1JtqpcUAqB6+1QAAAAAAIBN0MgAAAAAAgEzQyQAAAAAAADLBMxkAAAAkbd8e9PnPd0uS3vc+nwJyw4b0fpdeWt40e/et9ePjKRxXrPC4uzt9zMV3+XMY4pkVF85vKassTBmYNpxr8MRWfw7Dm1OgStK4cW8k8f79B5V1joF0RTNlxp+n8U0H7luOSn0+xvT4My1e7fZr2dSUvhdayedaAMgWIxkAAAAAAEAm6GQAAAAAAACZIF0CAABAkvQ3SU9Ikh54YGaytr09vdeePR5PbBncK/96nd/X6enx9evWeXzNNR4Xp0v87uFSQ8VpypUrTgMYTvrI1Kke33//i9EWfxMbGp5I4uefPzt1/FGTy0tz6ejw9fFna968EZIKE32hJrS2JvG+nvS9UFJ7gJGDkQwAAAAAACATdDIAAAAAAIBMMMYOAABA0vtnvk0d/zZNkvTZi339ddel93t58ReSeNW87yTxwgU+hPsnK9P3cd71Lo8fftjjBQs8bm72eOaM6gwHZ9h52nCuR3xM2H9EElvDn6K9Tk+ixYvTxz+02qeH2Ns4IYnHNw2uLHPnvnW56lqUIhH7wx/Sy6+95vHcuaROAPWMkQwAAAAAACATdDIAAAAAAIBMkC4BAAAgSWZSY1/T6JZbSu/27DZPkVh5ta+fNs3v3bS1pY/51a88Pv74/l+3WikSqI6w/71JbA2rk/g3vzk2tZ8d6ukC4TVvmvdqfBIXpwTkIUXgg6em6xjPNhHPvjK+qVolAjBYjGQAAAAAAACZoJMBAAAAAABkgnQJAACAIgMNR58yxe/R3HHHf4623Bvtkz5m1iyPm6Lh3XNmj/5h75DCfp9GxBoeK9r6yyT6n//noiS+/HLfo7ExfV8wD+kSxcY2ep27uvx6kC4B1B9GMgAAAAAAgEzQyQAAAAAAADJBJwMAAAAAAMgEz2QAAAAYSFdXavGGWyYk8a23+nMY7rnH91m9WimLF3s8fVr+8unhwv4ZqWVrODiJ46lOTzjB43MX7Eu/SGP+mvAvdPq90SVLfH08dey1y/luAfWAkQwAAAAAACATdDIAAAAAAIBM5G+sFQAAwFvoje7D3LN2QmrbpZd6PHeux8uXe3zaaVekjvnmN33jkiX+2mfNZ3h33oX9nhdx7XW+/tyOr/nCom9Wr0B14okt6Xuhy5Z5HE8DWzxdLIDaYyQDAAAAAADIBJ0MAAAAAAAgE6RLAAAASOru9iHaxx/v61euTO+3fr3HDz/s8Q03eLx/f5Q7IWnnTo+PuN6Hwb8y65+SuKXF9xkj0ijy6EtL4/c9fykScZrSe9+7MbVt5cqZSfzb3/r6jo6KFwvAEDGSAQAAAAAAZIJOBgAAAAAAkAnSJQAAANSXLrFlS18cP7F+27b0fu9/v8e33OLxFy7eG+0VPf5e0tve5vd15jzsKRIXT02fP1l/cfo+EOkTKOnND62kfceflMRjG0feZ2bHDo9vvXVmatuGDR7Pm+fxwgUjr57AaMdIBgAAAAAAkAk6GQAAAAAAQCboZAAAAAAAAJngmQwAAACSxo3zqSv/+ldfH09ZKaWfj9Cbul+Tfg5DbEJznDfux4wb52vf/e7+zwEcYNcuj5v8cxd/Vucoml919uwqFGrw4u9N/FyTCy7weOvW9DH/6xq+E8BIUbGRDGY238yeMrOtZrasUucBAADoD20RAACqryKdDGbWIOm7ks6UdJKkT5rZSQMfBQAAkA3aIgAA1Eal0iU+IGlrCOFZSTKzlZLOkfREhc4HAAAQG3JbpLtbevLJvriz09e/mULxpj17/B7NzBlDH8L90Do/xhp+nsQHHfT3SfyP/5i+D/ThD3s8a5bHpFXkVGurx7//fRI2H3lcEvfOmDPklx3o89Rb4t7kcD6Da9Z4fPXVHscpEsXfO+3Z43FLy5DPCaB6KpUucbSk56LlHYV1CTO7xMw6zKxD2lehYgAAgJx6y7aIlG6PvPrqzqoVDgCA0apSnQzWz7qQWgjhxhBCewihXRpboWIAAICcesu2iJRuj0yYMKkKxQIAYHSzEA74e1v+i5r9naRvhBA+Xli+UpJCCP+jxP47Jf1ZUqukXf3tkxN5r7/ENaD+1D/P9Ze4Bv3V/50hBP7vd4iG2hYp7EN7pA/1z3f9Ja4B9c93/SWuQVntkUp1MjRKelrS6ZKel/R7SZ8KIfzpLY7r6BvZkE95r7/ENaD+1D/P9Ze4Bnmvf5aG2xYpHJvr94H657v+EteA+ue7/hLXoNz6V+TBjyGEHjO7TNKvJDVIunkwf9QBAACyQFsEAIDaqNTsEgoh/ELSLyr1+gAAAAOhLQIAQPVV6sGPw3VjrQtQY3mvv8Q1oP75lvf6S1yDvNe/XuT9faD+yPs1oP7I+zUoq/4VeSYDAAAAAADIn3obyQAAAAAAAEYoOhkAAAAAAEAm6qKTwczmm9lTZrbVzJbVujzVYGbvMLMHzexJM/uTmX2xsH6imd1vZs8U/n17rctaSWbWYGZ/MLPVheXc1N/MWszsLjPbUvgc/F3O6n954bO/2czuMLOm0V5/M7vZzF42s83RupJ1NrMrC7+LT5nZx2tT6uyUqP+3C9+Bx83sZ2bWEm0bVfWX+r8G0bYrzCyYWWu0btRdg3qWt/YIbZE+eW6LSLRHaI8k62iP5KQ9Uo22SM07GcysQdJ3JZ0p6SRJnzSzk2pbqqrokfTlEMJ7JM2S9F8L9V4m6YEQwgmSHigsj2ZflPRktJyn+l8vaU0IYaqk96nvOuSi/mZ2tKQvSGoPIUxT3/RyizX663+LpPlF6/qtc+H3YLGk9xaO+V7h93Iku0UH1v9+SdNCCNMlPS3pSmnU1l/q/xrIzN4h6WOStkfrRus1qEs5bY/QFumT57aIRHuE9kgf2iP5aY/cogq3RWreySDpA5K2hhCeDSHsk7RS0jk1LlPFhRBeDCFsLMR/Vd8P+tHqq/uthd1ulbSoJgWsAjNrk3S2pJui1bmov5lNkDRH0g8lKYSwL4SwRzmpf0GjpLeZWaOk8ZJe0CivfwjhIUmvFK0uVedzJK0MIbweQvgPSVvV93s5YvVX/xDCfSGEnsLieklthXjU1V8q+RmQpP8t6SuS4qcxj8prUMdy1x6hLZLvtohEe6SA9kgf2iM5aY9Uoy1SD50MR0t6LlreUViXG2Y2RdIpkh6RdEQI4UWp74+/pMNrWLRKu059H+TeaF1e6n+cpJ2S/m9hiOZNZnawclL/EMLzkparr6f0RUn/L4Rwn3JS/yKl6pzH38aLJP2yEOem/ma2UNLzIYQ/Fm3KzTWoE7m+3rRFctkWkWiP0B5xtEdc7tojWbdF6qGTwfpZl5t5Nc2sWdJPJS0NIbxa6/JUi5ktkPRyCGFDrctSI42SZkr6fgjhFEmvafQNxSupkOd3jqRjJR0l6WAzu6C2pao7ufptNLOr1Dd0+/Y3V/Wz26irv5mNl3SVpK/3t7mfdaPuGtSR3F5v2iK5bYtItEdoj7y1XP025rE9Uom2SD10MuyQ9I5ouU19w5RGPTM7SH1/1G8PIdxdWP2SmR1Z2H6kpJdrVb4KO03SQjPbpr4hqR81s9uUn/rvkLQjhPBIYfku9f2Rz0v950n6jxDCzhDCG5LulvQh5af+sVJ1zs1vo5ldKGmBpE+HEN78w5WX+r9LfY3bPxZ+D9skbTSzycrPNagXubzetEVy3RaRaI/QHnG0R/LbHsm8LVIPnQy/l3SCmR1rZmPV92CJVTUuU8WZmakv/+3JEMK10aZVki4sxBdK+nm1y1YNIYQrQwhtIYQp6nvPfx1CuED5qX+npOfM7N2FVadLekI5qb/6hiXOMrPxhe/C6erLBc5L/WOl6rxK0mIzG2dmx0o6QdKjNShfRZnZfElflbQwhLA32pSL+ocQNoUQDg8hTCn8Hu6QNLPwG5GLa1BHctceoS2S77aIRHtEtEditEdy2h6pSFskhFDz/ySdpb6neP67pKtqXZ4q1Xm2+oaaPC7pscJ/Z0k6TH1PdH2m8O/EWpe1CtdirqTVhTg39Zc0Q1JH4TNwj6S356z+/03SFkmbJf1Y0rjRXn9Jd6gv5/ONwg/45waqs/qGrv27pKcknVnr8leo/lvVl+v35u/gitFa/1LXoGj7Nkmto/ka1PN/eWuP0BZJXYtctkUK9aU9QnuE9kiO2iPVaItY4UAAAAAAAICy1EO6BAAAAAAAGAXoZAAAAAAAAJmgkwEAAAAAAGSCTgYAAAAAAJAJOhkAAAAAAEAm6GQAAAAAAACZoJMBAAAAAABk4v8Dknm7Jm9GAcEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ @@ -10417,21 +6498,23 @@ " print('Total image is product of this image')\n", " im_ = np.multiply(np.mean(inter_filter, axis=0)[2*i+j], model.fc1.weight.data.numpy().reshape(n_filters,size_le**2)[2*i+j].reshape(size_le, size_le))\n", " learnt_filter += im_\n", - " im = axs[j].imshow(im_, origin='lower', cmap='seismic', norm=CenteredNorm())\n", - " axs[j].set_title('Weight: '+str(im_.sum()), size=title_size)" + " im = axs[i,j].imshow(im_, origin='lower', cmap='seismic', norm=CenteredNorm())\n", + " axs[i,j].set_title('Weight: '+str(im_.sum()), size=title_size)" ] }, { "cell_type": "code", - "execution_count": 80, - "id": "c3619fb3", - "metadata": {}, + "execution_count": 26, + "id": "ea015d2c", + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAQ9CAYAAABHpsqmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e5xXVb3//1rDMAzDMAw3QUQdkBAVDRURixTNykw7Wnq00qQytbvV6d4p63Q71elysl/2zUo7VpZWdo7ZRUtKSk1MUkg0VERUFASEAQYYZv3+2B9mv9f789lr1t6z9+cyvJ6Pxzxm7c/ae6211/2zPuv9WsZaC0IIIYQQQgghhBBCCNBU6wQQQgghhBBCCCGEEFIvcLGMEEIIIYQQQgghhJASXCwjhBBCCCGEEEIIIaQEF8sIIYQQQgghhBBCCCnBxTJCCCGEEEIIIYQQQkpwsYwQQgghhBBCCCGEkBJcLCOEEOLFGNNkjDnbGPM9Y8wKY8wGY0yvMcaKv5tyjO8KFfbqvMImhBBCqoExZpEay2yt00QIISSc5longBBCSP1ijDkCwA0ADqt1WgghhBBCCCGkGnBnGak6xpgP6F/aSn9n1DpthJAYY8wMAH8BF8oIIYQQQggh+xBcLCO14E0pPyeE1IarAXSoz7YBWALgFwB+Jv7+Ut2kkUbHGLNY/WByTa3TRAgZHI1uRm+MWVjhx9yuWqeLEEJI9aEZJqkqxpgTkLxL5UxjzERr7fpqpokQUo4x5igAJ6mPrwPwdmvt1hokiRBCCCGEEEKqAneWkWrj2z02HMAbqpUQQoiXM9X1cwDeyoUyQgghZGCstddYa438q3WaCCGEhMPFMlI1jDFtAM5TH/ep6zdXKTmEED/Hqus/WGt7apISQgghhBBCCKkiXCwj1eQclOsffV5dH2mM0V/SCSHVZ6q6Xl2LRBBCCCGEEEJIteFiGakmetfYvQA+C0CbdXF3GSG1Ry9sb69JKgghhBBCCCGkynCxjFQFY8x0ACeqj39grd0B4Ab1+euMMSOqkzJCSAKttU4AIYQQQgghhNQCnoZJqsWbAEhh090Aflxy/wDubrKxAM4GcH11kpY/xpjxAI4DMAnARETvvh7AUwD+Yq3tLjj+WQCOQmRK14ZoV9D91trbAp4dg+jE0pmIyqIdwDYAmwCsBfDXIkTejTEtABYAOAjAZAB7ADwNYJm1dnne8VWIvxlRmR2EqMw6AGxEVG5/s9Y+VnQa0iDS24UovaMAbADwLKL0PlG71NUfxpgDAByNKK8mAuhFVLZPALjTWrszx7hq0oYqpGMsgOMBHAJgDCKNyGcBXG+tTbVTsBTWiwDMQPQ+zwN4BlF/9mSe6a5HjDEGUZ86G8D+iBaTtwK4y1p7d2AYrYjKYwqA/RD1zXvb7F+ttU8XkHQZ/wxEWoRTAbQgKr81AJYUqUdY6quOAXA4ovduAbAZwO3W2hWBYYxGlHeTEbXfFkTtdx2iMtiYU1qHAXgBgCNLae1ANH5vK6V5NYBVedZ5Y8wRiPqK/QCMR1Sv1gN4CNH4Z/OKq0LcLQDmIyqbcQB2lOKuyribhXrpX2tBqQ+ZD+AAxG1pPaK2/NeiT5MvtY+5iNrHRERz+fUAViCad2gd4ixxGADTEPW3+yNqg82I5rHPA3gcwCPW2tWDjYsQQgbEWss//hX6h2gH4xoAVvz9r/A3AB5V/r8NCHehesYC+JdBpvUnKrynAQwLfHYkgPcD+CuihR6dtr1/uwD8AcCrMqTvGhXWYuHXCuADFfKy7F4V5jAALwfwDQDLEX2hTkq7RbTIcDeACwE051A/DgDwXURfRJLifATAu2R8iL60yHuuyBj/SwH8AtEkzPfe/wTw7wDaa9yejgXw0wHyywJ4AMBHAbQFhusLa6C/a3J+xytU+KszhtMJ4FOlvPClfzuA/wPw4ozxVLUNoXLf1yX8TwVwK5L7oa4UYb0QwM8RfSlKep97ALwyMO2rB1nXMrXzAdK0OKk+l+rQZxAtyqSu+4jGt3MA/AbRQoTv3e5H1M+1pEz/Ih2W8r+gFHZSvFsQjS0HZsg7XZ5XCL8piNrEpixliegL8sUA/oho3ExK/x4Ad5XesyljHZgJ4JuIvviH1MMnEc0XzgcwKkN8LwDw/xAt7vjiebZ038EZ4tBhLRJ++wH4Ovzj3hMA3glgeEBc1wTmW9LfYk/YhfevqNCG0v5laZspyvKlAH6FaKxKSkMfovnnO0LKLGVbbgfw6VJ9TIp/PYBPIHDOUSH+/QF8sVTvQvJ8PYD/BfAWAGOzxMk//vGPfwP91TwB/Bv6f6VJjh7kzlH3fFr578EAE3dEX0IeUc/dNIh0dqL8y8wXA5+9ANHkOe0E648ApqRI4zXq+cWlz48A8PAAcS2uEN5xA0x+BvpbCeDwQeT5mxB9UQuN7x4A+5eeXa38rkgZ90xECwpp3/lZAGfXoB11APghBv6ioP+eAvDagPCz1gGLOlwsA/A+JH9J9/39DEBHiniq3oaQsMAFYASA7wXE2TVQWCW/j8C/SKb//j8MsFiBBlosQyQdkLRINmDdBzAPUZ+V9h1XI8XCLRK+kCPqM25JEe9WAG9JmXe6PK8ofX4OBv4BIrEsAZyGaGdV2ry7H8BhKd/h4wB2DqJOXpAirtEAvo107cqW0vcpACZFXDqMRSJvn0sR950YYDECBS2WoUr9K+p0sQzRAtJvMqTnYQAn5dSW5yLazRUa90MADkoZ91uQbi6o/z6eJj7+8Y9//Av9o2YZqQZasH8Tol0ckh+o6yYAF/kCtdZaANeqj083xkxMncKI16Fcp+ka3wMm4ksA/gfRr+hpORHA3caYIzM8uzcNhwO4A9Ev1WnZayaalUMRpX9B2geNMe9E9MV+dIrH5gL4U8nMNTPGmJMQ7UQ4NcPjEwHcaIx532DSkAZjzP4A/gTg9XDNmUPYH8ANxpj3556wOsQYM8IY8yMA/4VoATwtrwHwZ2OMPg00iZq1IUUzoh1gbxpkOAAAY8xXAXwO6eQa3oYo3xseY8xCAL9DVL5Znv9XRD+GzM3w+MEAfm+MOT9L3KX4WxF9yX5lisfaAVxtjHl31nhLcb8B0e5XfUhI6PPvQbSLZmaGx48E8BdjzMmBcX0JwH8gMmcrlFKfsgTAJUgvg9KCaNfO9SXTyaxpeC2AmxGZXIYyH8BvS+a01aZe+teqU5LTuBPAKzI8/gIAvzPGnDfINLwIUT92UIrHZiKap40JjOOdAK5GurkgIYRUBWqWkUIp6dycpT7+qVX6QNbaVcaYvyDSxNnLImPMZ0uLYklci2gXyt4FhOEA3gDgaxmSu0hd322t/ccAz3wLwKUVPl8M4LcAliHSvepDpLXyIkS70A4U904F8H/GmGNset2VkYhMCMeWrnsA3FiKew2iLftTEJnudQ0Q1i4AfwawFJH+xJOIfunbjWgSMwPRpPm1cCfa7QB+YoyZYwP1Mowxr0JkUqF5GpGW3eKSuw2RdsWrAfwLInOMGQC+HxJPQtwnIvoSrL9wrEX0Be9uRLuxtiFabDmyFPcp4t4mAP9ljHncWvuzrGkJTG9rKb2zK3jfiqi8H0a0K2R/ACchWlSTi7cGwJeNMc9ba69OiEq/xysR5f9eHgSQ1B7u8b1DtShpnfwC5QsEexAtHPwekRnPRkR9xRQAL0FkriMXYGcDuMkY82LdVw1A1dpQBT4J4HRxfSeixbP7EelijUWkXXY+ov7Ix9sAXC6u/wjgJkR59xwi/bO5iBbmDlfPvscY8zNr7ZKEsG9BZAIGRHV1gvB7HFHe+RioT86DSYgOntl70MzziPqG2xCV6S5E/fYCRHXLwRjzOkS7QPXC9kOI2tlSRBpDOxDVu2MQ7cQ6Ttw7AsAPjDGrrbV3ZXiHLwE4QVz/CZEO6EpEdXJvX3EBorFJ8nVjzBPW2l9kiPdwAB9G/O7rEOXdYsS79KYCeBmifHUwxnwYwOcrhHsvoh/Z7kVUn3cjWkSZh+iHrlni3k4AvyiNqY8mJbT0o0mlHxEWI6qn/0Bk6rUTURvtLMVzVCn9+yeFXSGuiQD+AnfsB4BuRH34EkQ75Z9HpD85HdGu/H9F1Fft5V8R7bR6V2jcgjkALkM0jgLRuPFTRH3Fs4jq3ExEfcTL1bPHAfgQohPMK3EPojwCojpwmPDbDuDXA6QtRLuuyP51NeIxcCLKD6T6Nap4InSpvtyO8ra5B5Hp4U0AHkNUNw9AVB/PRzwXBKI5zo+NMRuttbdmSMbUUlx75wFrEZke34FoftaEqJ6ehaj/kv3dwQC+DOCtvgiMMTNL92mWAvglojHnaURz2zZEY89eTcFTEc0PCSGkOGq9tY1/Q/sPkd6F3i79ooR7L6lw70kBcdymnlmWIZ2HVYj70gGeuaDCM0sBvHCA51oQLfBpPaGfB6Tzmgpx7v27HcK8KvC9T0e0gHAuAnVXEE1YPo9yc8CrAp8fg8o6Ld8DMNrz3DFwTU11/l0REPd+iBbC5HNbSnXPq02H6IulNrV9Hhl0flKW0Tcq5NXTAF7meaYdkc6Nfq4bwMzAeFenzd8c3/kKFffqwOf+vcI7/w7AtAGeawdwVYVnv1KnbWihpx/YhBTajQlh7U3XMwBO9TzbjEjnST//q8C4F6vnrqlWHRsgHfLvpwAmpghrFqKFaxnGOoSZQr8W5VqEazCATiIqm5DtLcPnAbzG82wHgOsqPP80AnSAKvQT8u8bA6VdhXUSIr0pGcY/ASwc4LkmRAu8PerZpfCYBSNaWJf3b0Cg6RqihYF5iH648ZZtKX2/q1A+X4NnzCs9ezCiBSKdt68OSGNSndgN4N3wjHkA3lihLJ4DMCIg3ivUc6sH0TbrpX/typj+srYZ+NwvK6ThIQDHep7ZL+G5pwBMCIhTt2WZf58D0Op59mWIfmCUz+9GSTbD89xX1TM9UDItAzx/OCLtvXdlrWP84x//+Of7q3kC+De0/xD9CuxMfD33dqJcM+zagDjeUGFycHTKdH5RPb8DwBjP/RNQ/oXo1yETSRHGOyqk+5gBnrmmwjMW0UJZ4kTGE16w/kmFZy9XadgOYFzAc1qfzgL4bmCcU1F+WMTevysCnr9ePfMcgDkp3rkL5fop/51Xe6kQ3yyUT/g3Ajgi8PkrK+TTTYHPrk6bvzm+9xUq7tUBzxyB8i93V6ep44h24+iJ+0CT/Vq0oYUJbWAb0vd9SWFtAHBIwPMG0a4Y+WzvQPlWenaxeu6aatWxAdKx9++HSCkYj8i8W4bxGFLo9yDawaNFvN83wDOLEtK/E2E/OBkAP6rw/JcDntX9xN6/z6fMtxaU9+33AuhMEcaZKP8RxbdQqL/cv6Gg+nWZiqcPQmw/4PkRFdrY3wOeq1QufQjU3ES0QKKf/9eA565Qz6weRN7VS//alTENZW0z4JlXVIj/MQTo2yL6AeOmCs9/LeDZpLb8nsB3rfSD9wcHeOYf6v6PZS1v/vGPf/wr4o+aZaQwjDFHIdoNJPmfpPuttZsRbfmWnFM6Mt7Hz1FuzrEoIIkA+o/CvkCHaa0tMxERvAuxyQEQ7Tg6z6Yw2bLWfhORGZ3k30KfF3QDuMha25P2QWutzRDfXr6OyMRrLyMRmSsmUtI8uVh9/ASiX7kHxFq7FtFuxdQYY2Yg+nVacom1dlloGDY6qvxy9fFbjDGdWdIUwLtRbsr1fmttiMkKALwXkfmk5ExjzPRBp6z++CBi8yIgMoG+LGUd/zAiM7W9jMAA5k7VbkMD8HFr7X2DeF5ymbX2kYFuKr3/p9XHwwC8OKd01Iq1AN5mrR3IZLWfkk7W8eKjPkSLC2tCw7DW3oPo9E3J+4wxWeZrX7bW/jEgTotoQWed8npTyQw8LX9DtMszDW+Aa6K4DdFC1+bQAKy1/4foZGVJxTG1pHvZpj7WWqqDpjS/+ID6+JvW2mtCwyjNKy5AZIa4l6OMMdpUMoT/z4ab1/4noh8MJNo8sVDqrH+tFu+p8NlbrLVPDfSgtbYXkXm8Njd9szEmi4bgr6y1Xw+892pEc2HJQPVFmyXn3gYJIWQwcLGMFMlb1LWFZ7GshBb6bwPgFSi11u5ApKMgeb0xZnil+yvwCpRrj3w/6eaSuK5esPmstXZLYHySr6jr00q6S2n4nzRfxvKiNIn9pfr4hEr3Ck5FeV5/0Vq7LUW8/4voy1ha3gO3z/urzaY3dj0iE6W9tCH6JTpXSvX3QvXxCgxw6ITEWrsb0YmGkiaUH7rR0BhjJiPSLZJ8tPTFIRhr7R5EX7Akp1e6Nw8ytqEkNiHSUMyDf6Bcw87H7xHttJXoH0oajW9k6NP1oR83lha/0nIlIhOmvRyASCcrDd2IdgYFUXpXrRU2DuWaoyH8Z9q2h/K8+6a19vEMcesxdX5JO1UzrMJnacfeEM5CpOu0l52IhPpTUfqhRi9ype2bdqOyHlxSnM8D+IP6uGHadc79a1UwxhyA6LRSyS3WWl0OiVhrN6FcW240Ir27tOgfQnzx9qE8vweqL7odFtEGCSEkM1wsI4VQWlB6g/r4DmvtYwM8+ltEOjmSkNPd9OLWBABnBDwHlO9CW4PyCaLkOLjisX2IFlCy8Ee4YttjEQmXpuG6jHHnwRPq+tgB7te7TfYgW95leWc9Af1RhjD2TggXq4+L+LX9GLi7F4HITC3tL+2/QvmOkZdkTlV98lK4ItjPIdIIyoJu+0cmfNnOi7RtKIkbs+wuTeCGNPWstMi4XH2sdww0Gj9Mc3NpcfsU9XHWPmYLyg86SNvH/DzNjxAlfgR3kS5LvNsQmYEFU1og0AeYZM27lXB/zDCo3N89h/JdUxdliXMA9Ljz69JiRhZ035S2bP5irdU7fwbi7+q60dp1Xv1rtViA8gWjxB9vPVwHdycikH7cf9xa+9eUz+j6sv8Ap6jq+lhEGySEkMxwsYwUxavhni4HlO8aK6P0a7SeJL/IGHPoAM/dBdd8CggwxSx9CX61+vjaAUxvTlLXj2ad/JZ2xT2nPj6s0r0J9CLbLquKGGMONMa8yxjzfWPMUmPME8aY540xe4wxVv8hEpGXDHTE+/HqeqW1dkOGpCadtFcRY8wURCdlSQY6dc/HWnWdpsxCqfQLeOoTrUptSn/JmjvABLbR0G3yvtICThZ02TYhOiEuiCq0oSTuzvhcJbKcvqh/5BiTR0JqxNoMiwrHodysr5Z9zO/TRljqi+9XH+s+eyDus9bqL+kDodtvD8oXX9MwYN6V+gdtovpfxphP5mxWr9+tlnWi4dt1DfvXalFp3L8tbSDW2udQXtfS7qrLo74A0SEiSeh+6r3GmG8YY4JPmiWEkCIZSl+WSH2hzbx2ALgh8NlrEWktSd6ESE/Ix/cRaWzs5XRjzH7W2mc9z7wekS7RXmwpfh96W/mM0qQsL/Qio4/VeewmMcYcg+iQg1MwuG3wA+3A0cd86y9moTyAqKxC01rJFGBJeovXRNKUWSgvUNc7EZlhZuFviOr6XtoQHZawOmN49YYu31Or3Sar2IaS0D8WDIanB76lDG2GqXdFNhJZ8rJSH7O2hn3MsozxLIO7+2ZWyufzyLtWAL1VyLsvIpJh2EszInH6Dxtjfodop/ufAPwjjXbdXowx7Sjvxz9jjNGadFlpNca0WWu3B97fsO26DvrXaqHry6NpdPsUfwPwInE9wxjTlKIu51FfgKjObEy4/6uIvi/IneHvBHCZMWYxooOz/oTolPu0pt2EEDJouLOM5E5pF48Wnv1lqP6LtfbvKF9EeWNJKNfH/yAy69tLM8qF+zWL1PWfAkStJwzgP1jSTOY2DzYyY8zHAdyDyJRtsN9OBppId6prLUIbRGmBMI2JUT2VWdYwnxnEZFHvSKgUfiNT0/KtchtKYvMg45Vk0V/UX8AaeX6xOcMz9dbHZPmiCwBaRLytJKsQyuYMcdYk70o6UFdU8GpFtOP8m4h+mNlkjPmNMeYjxph5KeIt+r2AdPUij3ZddU2pOulfq4Uuz0pjdyj6WYN0OwPzqC+AZyyw1j4E4NIKzzUj0rj9L0Rl/7wxZrEx5lPGmJMyHnhCCCGp4c4yUgQXoVy0c0ATzAr3f1lc749I++NXSQ9Ya582xvwWrujtIpQL/gIAjDGHA5irPg7RhihiF5Ek9GACIN2CURnGmI8C+I8EbwvgWUSaH5sRmcbo0z4PRnke+uhU15V+hQxlC8InvvVUZqHoSXOWieteKp3sOq7CZ41Kzcq3Bm0oiUH1BYo8d+U1Ilnyst76mKz9RaW+Yiwqm1dVoqHyzlr7KWPMSkTzjakJt3Ug2oH2CgAwxjyG6OS/Kwf4EbDo9wLS1YuGa9d11L9Wi2qM+6GyIVWpL9ba7xtj1iA62CRpJ2sbIpPmkxAdkLHOGPMDAP81gPUIIYQMCi6WkSJYVOGzS4wx+nRMH5V+LX0zPItlJb4Pd7HsSGPMMdbaSrpe+uCAbgA3BqRN/8r+BIC0Iqg+/pFjWIkYYw5D5V/VbwbwXUQHMmg9NR3GmwB8L0W0O+H2O2l2LGjSPFvp3p8jv8lgEZM1/Qt63hPXhvvi5EGX70pkN1mtxOpKH9aoDZH6RNfBHgw8XqUhz/rsoxan0em8ew7lh6gMBu+JpNbanxhjbgJwLiJz9ZNQrj8nmYbotMH3GmPebK39v4T7Ko07dyDf8SLPRfK6Yh/tX/fJcd9a+3tjzGwAZyKyCDkV/l1wkwF8EMA7jDGXW2uvrkIyCSH7IFwsI7lijHkJKothn5VD8GcaYyYMIAj/v4gm2vIX3UVQIvglk05tonlD4OlhWnvhIWvtOQHP1RsfRPmv0m+21qY5eSmt2O9mAKPEtU/4dSDSPFtJL+PdGUS8q4lO82CElSs9m/VEtnpkI6LJ816WWGvfWoV4a9GGSH2i22sTgH/NonWVEx3IZuZeqV8tuq/Qebep2mOqtXYnohMEryudbDoX0emBL0EkjF5pl9gEADcZY86z1lb6oa3SuPNta22qk1b3YfbF/nWfHfdLh27chKhNNQGYg6j9LUB0knol0f9RAL5jjOmw1la0IiGEkMFAm2+SN3q3Vp4MxwAaZKVTuPRpmq+voLnySrhfroHw47n1Yt30wOfqhtJE5FXq4x+nnIQC6TVZcsk7Y8xUpNtZVmmBtd7LTU9qJw3iBMsDAsJvZKreJmvYhkh9outgCyq3u2qR9TS5Kep6e4bTLdOi8+7gAI3SwrDW7rbW3mmt/aK19kxEJyjORbSbTGvBNQH4tjGm0sJEI447dcE+3L/qcXkwfYh+1qKyaWbdYa3ts9b+zVr7dWvtudbaKQCOAPARAJV0hb9gjDmkuqkkhOwLcLGM5Ebp5KdzC44mZDFOT6bGI9raLVmkrldZa+8ITMND6nq6MebAwGfrhakoP0I9y6/dxw58i8MydX10hjizPKfLDIhMbeqZf6rrEQAOzxiWLqftGJxwcL2hy/d4Y8yIinfmR63aEKlP6q2PmZPTc3mespqEzrvhiHZz1QU24l5r7ccBzEC0A00yDsB5FR7diPIFs3ofd+qFfbV/1eP+9ISF2BD0u6+q4U7XQWOt/Ye19guIdM2+qLyHA0gj9UIIIUFwsYzkyb+iXHD9LdZak/UP5XoVRxljvJMfa+19AP6uPl6012GMGYfyxbNrAt8RAG6r8NmrUzxfD+xX4bNH0wRgjBkJ91jyEO5S1xOMMS9OGQaQ0qzXWrscwDr18b9kiLea/KXCZ6emDaS0Q+Nk9fE9Q+wYdt0mRyFDXqWkVm1oKFHzk/Zy5I8AdJuqZR9zStoHjDHjARylPr47n+R4qTSm1mX/bK3dDuBilO8wW1DhXgvg9+rjE40xQ+kk4krk0a5r2b9WWlCqVt+kx32D6BTQVJTqmJ4rV5pTNBzW2l5r7Yeg5FVQoQ0SQshg4WIZyZM3q+udAH42yDAr/ZKYZXfZacaYSSX36+Ga8PUh3WmdfwKwQ332/pLOSaNQycQlrYnfBUivOfZblAvMXpomgNJiZxY9m9+p67nGmKIXVAbDfYgOnZAsyhDO6Sg3yfpTlgTVMbpsgchco0hq1YaGEtvV9ciapCIHrLVbUf5l9GxjzKG1SA+A1xhjRg18m8PrUK4RVXhfYa1dCeBx9fElpb6+7ijpm/1ZfVxpcQeIxjzJcADvzz1R9UUe7bqW/atOP1C9vmkJyudIWeRNLkC0G10y1Mb9P6jrpDZICCGZ4WIZyQVjzAsQCXBKbrbWDkofwVq7CuUnWb0+wMTqhwCkzkozYr2zRere26y1T6RI03YA31YfTwPw76Fh1AGVhJ+PCX249CXmirSRWmsfQ/mXhwtS7i77ArJNgL+K8kno140xozOEVTjW2t0ArlUfH2mMeWNoGCWNs8+pj/sQrs/XEFhrH0UkDCx5sTFGL+DnSU3a0BBDjw9aL6vR0ALTwwB8axBag4NhNIAPhd5cklHQC8wbUd6uiuKr6roDwNeqFHcW9BxE/7Cxlx+jfBfa5caYI/NPUt2g2/X4DGbxtexfK81bq9I3WWufAnCL+vgMY8yJoWGUzDY/pj7eAuCGQSav3ghtg4QQkhkulpG8qPSlVAvtZ0XvLhuLAczwSidm3qw+XlQ6mlpvTc+ycPAFlP/6+HFjTGbNBGPMbGNMtfRMVqP81KX3hHypM8a0IiqTrJPHL+sgAfzcGDMrIO73A8h0yqG1dhmAX6iPDwfwkww7MPamp8MYc2GWZwP5BsoX+L5ijDks8PkvA5itPvtladFyqHEFyvPqW8aYV2YN0BjzImNMkj7eatSuDQ0VHlbXRxtj2mqSkhyw1v4SwL3q45MRCcBnWjAzxuxnjMmqBfpBY8yApknGGAPgWyivj9+31vZkjDst3wbwlPrsQmPMp7IGaIzpMsZokfi9frOMMcdnDHciyk3btdYUAKCUf59XH48C8L9ZBcmNMcOMMecZYzqzPF8FdLtuQnoNutWoXf+6Gu6PrUB1Tfy+XuGz7xtj9KFUZZRkF74HYJLy+m5p92vdYIzZ3xjzsozPjkS5/EnFNkgIIYOBi2Vk0JQGZ73b5XkAv8opiusB7FGfhewY0YtgswH8t/psMzL8cm6tfQbAu9THBsDVxpirjTFBkzRjTJsx5hxjzM0A7kd0THbhlERedfkcDeAHpUlIRYwxMxCZvJ1W+ii17pW19vco3zG1H4B7jDHvq/QFwBhzhDHmRsQLbZuQ7TTHd6P8V/5XAvirMUZ/+UnEGDPXGPNlAGsAfDJDOoKw1j6E8jo7HsBtxphETSJjzChjzLcAvEd5dQP4YL6prA+stX8H8Bn1cQuAm40xnw/VCTLGdBpj3miMuQORqdURCfHVrA0NIbQeVhuAK0u7nBqVN6N8h8ObASw2xgTtjDHGNBljTjTGfBuReWIqU/USFtHOi5uNMWd54hqNSLNTnzS9DtHpj1WhtKi0COVj/SeMMb8s7V4fEGPMcGPMK40xP0L05fnshFtnAbjLGPMXY8ybS3ptIeEfhOiHOF1Hfbt2voVyk7EuAEtLcQdJOJQW/z6AaDHq+gppqBf+BmC3+uxLpbwLosZzlN2IZBAk786or5oaa+2tKJ+XTgfwB2PMnKTnjDETENXD1yivp1DFtpyCSQB+Z4x5wBjzLmNM0MmfpbZ6A4CDlddQ2zlHCKkDamEaQIYer0D5L3g3lnQ9Bo219hljzB8AyF+gTjXGHDiA+eRvEE345a9xekHkx1l/ObfWfs8YcwSA9ymvtyD6RfwWAIsRnSa2EZH5Wyeio8yPQmRScCKiL4i14PMA3gB30fx1ABYYY74L4E5EphDtiMxMT0f0xWOv3tsORAs5waY+gssBHAf3dMd2AP+F6Ajw+xEtao1ENEmcpp5/G4D/RLTLcC96V1EZ1tonS18c/wigVXgdjmgieh+ienMPonfvRmTO1AngBYjKbAHcSZo+7SxvPoSo3krh7SkAfm+M+S0iXcCHS2mdjKhOXYDKv6q/u2TaPFT5JKKyfK34rAnAhwG80xjzf4jK/lFEbbIJUdlOAvBCRLtOXwxX09BHLdvQUOA2RO1cauq9CcD5pT7gWZTv8PiptfanVUpfaqy19xtjLgDwc7j14sUA7jXGLAFwK6Iv4xsQ1YExiPqywxAtCJyI8p0hafkWgLeXwv6FMWYxgJ8AeBBRXzEJ0cmMF6Jc0xAA3m6tzfKDRGastbcaY96L8h8IXo3IFO1WRItODyBqv7sQtd9xiH4MOxrRO3WmiPaE0t//M8b8BcBSRKc2P43oB5leRHk4E9GhCWej3PzrBmutFhuX79Vb2h14N6LTNPfSCeC7AD5V6pv+DOBJRD/ijSz5H1h6r+OR/fToqmKt3WqM+V+4/fBcAI8ZY1YAeALluq8rrLX6h6da9q/XIcrzvYwFsMQYsxrxeOvMOay1WbRUk7gYwDy44/hhiH5U/CWAXwJ4DJE28BRE8+PXIWoLkj4Ab7TWPpdj2vJm7w/ZXzfG3IuondyH6MTuTYjesQPRXPBEAOcimpdJ7kKUJ4QQki/WWv7xb1B/AG5ENGmQf6fkHMdFFeL4eMBzX6zwnPw7bpDpMoh0XvYMEE/on/edEO0AkPcvHmT6P5Qxnb2IJqWLtF+KuPcDsDxD3B8sPb9Gff6BFHEfV+H5rH+rqtDGJiOaPGZNYx+Ay1PGuVqFcUXR7ynivkLFvTrFs8MRTbzzKFsL4IJ6a0MAFlYIrytjXucSFjL2TYh2JafJt9zrIaIfNWQc1+QQ5isRLejkUQdvGyCusjqEaLHlrozxvSfFe67Ou3xK77Mjp7y7OiGOs3IKfymAcYHvNalCXRvM39QB4tP3L8pYFk44gc8dhnhBKeSvYn+BGs1REP2ImWp+kmf+lZ49FNGCWNb60QPg3Gq2ZaQYTwDMyakdPJoUB//4xz/+DfaPZphkUJS2fZ+pPn4K0YQwT36O8l8iF5W0Vnx83+O3wlqrDw9IhY34PKJf9R4YTFgA/oFys6RCsdb+J6LdOJWOSk9iI4AzrbW/GGTczwKYj0jYWZveVOJpAGdba79Yuh6j/IMPkyiV+zGIdE1C4k7ieUR1s1CstesQ/aL6Q0STwzQ8BeAca+3X8k5XPWKt3W2tfTeA8xB90RgM9wBYMUB8NWtDQwFr7Q8AvBPl/XtDY639NaKdilqsOy3PIIOkgbV2B6Jd37eleKwbwFuttZU0k6qGtfYaAC9C+YmTaVmNcvPHvWxHujarsYjkBBZaa7W2VuUHIvmGUwF8CpHgelZ6AfwfUox51cZa+yCAVyHaRTaYcGrSv9roIKfTEZ1OWRNsJMPwIkS73dPyTwAvt9bWs2niTpSb66blZgAnWGtXDz45hBBSDhfLyGB5A8pNlq63kd5EbthImPT/1MeHIFpA8D33IJIXoK4ZfMr64/kDIjOuf0E0eIdMYvcg+uX/PwDMtdYeYSOtiqpirf00onz8HfwLMRsQmUnOKn0RzCPubmvt+xCZOH4EwB2IdnztQvTl+VFEZoaLAEyz1t4EAMaYFpRvw9+cMu4N1toLEP16+00AjwQ++jgi05lzAUy21lZFA8xau7WU3uMQaXMMVMdWAPgogBdYawtf0Ks3bGSqNxPRrtTbUH4gRyV2Argd0Ulih1lr51lr7wuIq2ZtaChgrf0mgIMQ6UDegMhUcK+ZXcNirX3MWvsqROZz1yAyKwrhIQBXIvqyPtVa+9WM8T8P4OWINNMe9Ny6FcAPABxurb06S1x5Y629z1q7ANFOlZ+i8umIZY8hMqH8cum56dbaigcNWWt/h2jH7iJEP0KsDkzaJgBXI9qVvsham+oEPmttr7X2CkSm/B9DdCBEyA82mxD9MHMZgCnW2lfbOhNs11hr/4hobP9XRD9c3ovItDrVwnit+ldr7ZpSvCci2q38J0Q/PpWZYBaFtfZpa+0rES2y3gJ/3llEOx3fgagt/6kKScxMaX4+AVH9+B6ifi8kX7chOmX2pdbaM0uL0IQQUgjG2qr094TsU5QOPTgakY7GeEQ6Er2IvpSsRzQpeNjmpOuWF6WdggsATEWkl7ITke7bCgDL8l4EzUrpFLO71MfHWo9uTGC4UxGV2wRE5TYCUZk9j2jh7kEbnbRac0qngh2P6EvXRERmI88h+jLyt9JEn5QoLbDORaQBNB6RBs0uROW7DpG24Cpr7aAE9xulDZHaUBKqPwJRHRwPYBiiOrgZwCpEfUyqHUPGmEVQu6ittWW7ro0xMxHtdpuKyFz5GUQ/Ttxhq3fqZSZKu8iPQLQAvjfvgCjvnkOkI/WQtXbbIOKYWAp/ein8UYgWsrYg6lcfAPDPvNuwMWYMIn2qSaV4RyNaENiKaGfWgwCesJyw7/P9a+mkzxMQvf9ERD9Wr0fUlv9a2rHfsJQOeDoUURuciEiPziJqCxsQmcauHOw4TQghoXCxjBDScBhjPgr3dKedAEbb6BQrQgjZZwhdLCOEEEIIIeHwNExCSENR2lF1qfr4Xi6UEUIIIYQQQqrJDGNsiNZHvfM08Ftr7Wm1Tkc9wcUyQkij8WlE+kaSa2uREEIIIYQQQsi+y3aU/4rfiFwRydAQAQX+CSE1wRhzUUkjJs0z/wbgw+rjLQAqijgTQgghhBBCCCFp4WIZIaRWvAvA48aY/zHGnGmM0adbAogEbY0xrzLG/BHAlwBoLZ4Ppj2RjBBCCCGEEEIISYJmmISQWjISwAWlP2uMWQXgSUSnT7Yh2g58BKITnyrxc2vtt6uRUEIIIYQQQgiRGHAH0lCFi2WEkHrBAHhB6S+EqwG8vbjkEEIIIYQQQgjZF+EiKCGkVixBpImZlvsBnGutfStPwCSEEEIIIYQQkjfGWlvrNARhjLHHHnts6ufuvfdeZHmumjz++OM4+OCDBxfIs8+618OHx+4xY2J3U/L66LZt7vXIkUGPkSrT1+de79mT7DdsWOxu9u0jlYWv+4T29lTpS0NfXx+2bt2K7u5u7NixAzt37sTu3bvR19cHay2GDRuG5uZmtLS0oL29HaNHj0Z7ezuM0bJl1UNnz+7dyX4jRhSfnn2N3l73WtZrnf++arJmTezeLpZst21zA5F1bbRS1Rs/PnZ3dFROU8MgOxLd4Ys8SJPHQxWZVRqdP/JaDssA0NNTOcxRo9KlZ8OGDXj88cedz+p93lMUOv9lfyHzX5eh7MdbW1WgMpCCG/c//uFeH3ZY7G6Etubrn1evjt26nGR5TFTH/sjp7ZQprl9SW9Hz2RYh5KDbYU2RGRFYwLvVT4S+PqaadUamS7cvmS45LyX7DqtXr8aGDRsaoBfLxgHG2MtqnYgc+ARwr7V2bq3TUU801JR+6dKlqZ8xxmR6rppceskl+PZVVw0ukG99y72Ws40zzojdahbYJzYX3nOPG8SRRyY+VjhN6Bv4JkWf2iiZJYwikOnSadJpliSlf3uP+8zmzbFbfvkCgM7O2D2uMznupqV/jT30bHf+/MT05p3HWfKjGmHKMHT2rFuHRL/pXfVfB2uVDo2vbUi/jZvdMGQd931R0+G/7R1xOH//e/z5nXe630RGjIhn+S96kRv+hRfG7tNOq5ymIiikDLvFGRm6wxcZuau3KcmrjHrsg/Og23OciK6Dsk+ePNn1W7Uqdm/aFLuPO869r+h+tl7KyUdoGer837Ahdsv812W4dm3sPnyWyg85yHoad9axXjJXfUW5887Y3dKc/xiYhK9O+OqPr3+++OLYrecqsjwuU984v/GN2H3FFa6fbit70fPZrq7YrRfjJFVvC4ELsTLP5ZxDB6H7mKx1JiQdmvXrY/fzz7t+Ml3699dG6H98hLYv+Z712gdnnSuG9H3z5g399RfuKxmasFwJIYQQQgghhBBCCCnRUDvL9kW8q/zy56SXvMT1kz/biV+r9K4kuelO/soNuNuoZ81y/eSvhU29uyrGBWT7xSUrRfwyk8euJN99WdKsN33oXxJDceKeMCF265/mxXVTChOUpLzLKz9Cw8+7XugdCXLTgS4buQtHZ13Sr4xF1OM8ftHM45fQNM8k3ZvVCuorX3PTv2JF7HZ3Obj3yZ0L++/vhpnQzXrJuuMkj3qxZm3yro8Oj7m1TGMj7CTT5JGup9bFeaD7ANkHr1zp+j3xROzWw7TsdmfMiN1F52PoLs56IjRdLap+Tp5cuX3p6q7nOA56TEwgNI3XX+9en39+7L7rLtcvb6vPNDvGkrj5Zve6tTV+TppaAsA558RunwHFiBHP9bvXrh3v+Mn8mjkjrO4ed1z+u9QLIUMBazNGOe/IWl9C+wCf38SJTcKdHFdd5X8GfHOhao7nPrLO17Kmq2nDs8l+cqAjpAHhzjJCCCGEEEIIIYQQQkpwZxkhhBBCCCGEEEJISgy4A2mownIlhBBCCCGEEEIIIaQEd5bVOV77cSlOMHu26yc0Nvqa4zOzb7rRvc13yJPUM9NaTDK6lowiCXnY7IfqLBStt1RNzZem7i3uBzL/sx5bKo+KKoCidbiykqXcdDuR2je+pqB1jtrba/NbRWZNijrR2PBIa2H5cvdaSmXI0yoBt6nIfnDSJFcQ5uijY7fuZmWYvnTlrVuYBpmv8mRAABgxInZ3ZEx/3idN1iuy3euylu1eapQBwM6dsVvXT6nvdMnFtdPxCa6D+mTxK6+M3R//eOyWAmw5kVU/1PGTDUDrkPnEP0VHEqpX5EuTPvFS4tO2zEqoZmVoXPKAdY0+5VL2s77wf/jDWKds6lTXT18nkXU+KMmjr/Pmo84gWeDC7YvLpwemyUOLLI/wk57RSO1kferniQvq4yTvrPmYR72rW703OdnSEw1CGpx9Y5ZLCCGEEEIIIYQQQkgA+/xi2bBhwzBnzpz+v9X6KB8AixYtwrRp0/rvedGLXgQAuOaaa9DU1IT777+//97Zs2f3h9HV1YUjjzwSRx55JA4//HB8/OMfx075MzMhhBBCCCGEEEIalqYh8EfK2efNMEeOHIlly5YNeN+XvvQlnCPPwC4xdepUfPazn8VPfvKTis/dfvvtmDBhArq7u3HJJZfgkksuwbXXXjvYZA9Mgj3Ybbe514ceGrvXrnX9pJWCNiFLIus249BwdBjV3JIc+m55mHx68dl7FYB8H2muBrj1Qp8O3dZaf9vFfWWY1cSiRTQ1XxihxZZXGwoNv4gws4Qfep/+PcNnPSXRdXfBgtgtrcve+173Pml6qU1wQ02M8jAPkqQpM3lvZ6cb/siRwcEMOi0NYUriIdTC/cgj3eutW2P3c8/ll56aMGeOe33VVf3Ovta2freeS0irnGPmDN4MPE0/7tQ1j818aNvT73aQMBEMrdfaSjXv9qDfRfaZeSgu+NK7bp0btzShlGPlT25w77v55tgtLXoBf9srOu+SzFRzG0e1OfDe8FLIm/j6VulXRB+cRziyfsrvKLLvBIDNm+P06zZ0+KyC5U8yvOeuXreOyH5wmKv2gIkTs32/SLqvpmOs/jJASIPDRcRBcsYZZ2DFihV46KGHvPe1t7fjqquuwk033YSNGzdWKXWEEEIIIYQQQgghJA37/GLZjh07+s0rzz777MT7PvCBD/Tf94Y3vKH/86amJnzwgx/E5z73uQHj6ujowLRp0/DPf/4zl7QTQgghhBBCCCGkdtTahJJmmMVAM8xBmmECwOtf/3p89rOfxWOPPTZgONbatEkkhBBCCCGEEEIIIVVin18sq8Sb3vQm3HfffZgyZQpuueWWAe9vbm7G+9//fvznf/6n976tW7di9erVmDlzZl5JDULaro8Y4a4bS30Vqc0DuPb1s2a5finkFIIoXOfLE19WTaUkLYg84vLxj5XJeiS6nKZ3Df4ob4kudykBU4RGWR5aWJl1oKQ4zTXXxO6VK937rrwyDsMnTKYzT2iV9DW3hKdrkOShHegLJ48j6DU9PbHbp7mj+7BNm5L9ZFHpdiPx9XVJWiI6D9ati93Ll7vvOXdu7NaaaElxpWF7TxyflhIJ1eHKow9rRJ0ySajWnK5LPu3P3bvD4i5Cyy4Lup/qRXzdvTn+XNdjeV1tzUSn7noqfKgukNTgykoRfaQPWe+0RFZLznO5UE20ww5zrx95JHYXIcua9zwsVRi+TkDWycCJdWbNvkCK1k3VYUyeHMcnZRHluAkAxx8fu8eOdf2c8u3Z7nr6xHULRBenT1/V1//IazkXWrXKDeMoMcfJWg/kfOG661y/G2+M3b/7TWOP54SkgYtlFfj+97+f+plFixbhi1/8IrZqRcoS3d3dePvb346zzjoLY3UvTwghhBBCCCGEEELqApqnBiI1y+bMmYNdu3Y5/i0tLXj3u9+NZ5991vn85JNPxuzZszFv3jwcdNBB+Pa3v13NZBNCCCGEEEIIIaQADGqvN0bNsmIwjaKhZYyxWdJqjKl7nbBLL7kE3xZHsEvy3jquj+s+8MDYLc2BAHfnuN5OnLRbPNRUZSDy3jqeR/h5xF2EyYmvnPKITx5/LbeAA64FQUuv2vqedGNGspqgZMXJu82bY/edd7o3/vnPsVufZ37qqbFb2yYl2Jpkfc9amrllNduQz2nzoDz6GGmmoK0vZPihZj95mE+Fvmdeca9ZG8c9YoTrN3GiCH+zOKVZtde+1rZMcUsa3QwzK3mMDfVihrlxs5uOpUtjtxwb9FxCmh+VmwEWa4YpCTW1TPNcFjmAVOUkzf599uKBcWuqOReScUlzL8CV/dB9dd4SD0WbApeFJ80ApbwD4L5sDiaC1exvBgonS5jr18fuJ590/eQ4rc2hnTqiOxl5ncNcNJS8+pikOb5+TdkH6zlNlnLSFsM33RS733hB+jYzd948LF261KR+sEE40Bh7ea0TkQP/BtxrrZ078J37DlxEJIQQQgghhBBCCCGkBBfLCCGEEEIIIYQQQggpQYF/QgghhBBCCCGEkAxwB9LQhItldUCfNf26UHlpTiXZyp95pnst4/PpkpWlwyeUFZCOvMgj/Lx14aqNU076yGxJRq2GYG2nZhW+FCGRZ4BrXY6cz4nXumpSbmzYMNdv0kRR3lpLRIpiSL2xl73MvU8KP11/vet32mmxW7cTmVBRNroOhtbxInRYQuPz6W1IzSytgSEleEL7vjTvqSXkspBHPsowWjyjrn43mV8dy++KL1Qb2j51Zr9bV0HZ7LWWlDyYuWXZsvhCZ9zUg5KSHKx9k7Wfzbt/zkO/Ka+2Fvpc0bpSTb3iwCKPMGV7e4vjNX9+5fB9ejm++p+VLPmTpp/d0h37dbSH1ffcyiyjTpkkDw3YvOu4no5oDaok8mi/RYyN3jBlg8g4KNWLlmnRfd3EiU3CnX86fN9dfO03S9tOlUaRrnUb3H5WdsnT7/xhfHHuG5z75DR75ozBl1N7u1vnzj8/U5CENDxcBCWEEEIIIYQQQgghpAQXywghhBBCCCGEEEIIKUEzzDrAmHg3cNGmU3rre+b4PKaXTvjSvCPwGU0Rx57LMF1ruGymB9U03/Saj1TxWOxKaXEIPBI9tHxD81iX4eTJlcMD4Ba+zw5E2nKuXu36SbOKhQtdvxtvjN2HHOL6SRuDOXNit2on3vcW6e9rbXO89pp26yCrbWosLVhlWWi8ZSNeoMnTj6QxF0+qd7U0EdQ45mzahlLQKl7NZyrhM7XHggXJNwrSvGfeJqz1Ql5pCjWtKtyUKlCPoUU919we2IY8/WffnGP63bK5AkBLc43GVWWK2t4e961ZzRNDzZWzhpEHv7stTofsDgCgLXBqkTU/sval9dg/eOtIxnmwT+ogNC11M5/Vegyi4TfJCUNWvANdMr73LjxPRBp98yRMPrvSIwDykZ2Q6HcuwoR+KGHAHUhDFZYrIYQQQgghhBBCCCEluFhGCCGEEEIIIYQQQkgJbqqsAwxs3ZxYE8ySJbFb7gXWZoC+4+4CKfoENGlxoS3sJk+OnxvXmS0dz6yPwxg50vXzHQRZtHlH0Vvys5iWZD7dVG7jV17be+OThcpMSUR91XFLk6AWaRowe3Zi3I45JeCazt13n+snK5uvnaxaFbv1SXUyjHP+1fHK0tx85iNZzY9kHfeZ3pSFL023ZCC60ci+SJtweMxsm2RfFWj6UfTpvt78aW7Rt1cks6l9xv45C9U+ubVWcdUivkGToh447yb7QXkSMuD2UytXun7CDLPoKhg8HqpGVPRYmcsYmAPS9LLKig7BeXfTTe71/Plxfk2ZXB9trWhTft84IYdNTWdnWFxp5o2ZTIj1RFuexCznTBlPgs067y1aViEUb9zVbpiEkH1jsWzBCcfWOgleRoxg50cIIYQQQgghhDQaNNcbmuwTi2VLvp4sjFwPXPr11bVOAiGEEEIIIYQQQggBF0EJIYQQQgghhBBCCOlnn9hZRgpgbsJuvYxHNhetYePTWZByRVoOKQ8NlYkTBx9GVqqpu5CH1krm9HoKqlV4pUljc8JzTb46rnSxHE4+OdnPp0Ph0+0Q+mm+Op6H5k4RWh9erR7v+ekC2Rf5GmwOjbnh9KeQvw5LmjYUGl8eacxDn7GW1E36VTsJLhv5nG67EybEbqX5mPe7ZZ1L+N4zS9nUUpcvK22t9Z9GLQsaKDfpUK9lE9rWfPXRlx95aOr5/ILHBj2n6eqK3Z65UGg7LOI9Q8mjH8+jfhbdD6apn/XSvgjJChfLCCGEEEIIIYQQQjJgap0AUgg0wySEEEIIIYQQQgghpAR3lg1RCj8COefji6ttepPk11JAiwjdpr6vbFXO6z1D63jWre/BYfT0xO6VK12/p5+O3doeN8mUWSPMm8rS2NySmMZq1qc84socRp0cpV6EiUKS36Or3TCk1VsRplQyHf9Y6ca9bl3s1tY1U0S6qtn3pQkvbxPQapsAFZ2vuZSNNNHUWgeC0LaRpg3VqmzyikumP7SsfflTRB5XE2mxl5WsJo5F5EE161ZW8p5rlUkiePqEpPDzkP3ISmjcXjPG7i3uzatWxX7K1jgp/5t6trth3HVX7F6+3A3jne8OS1eGvoKQoQ53lhFCCCGEEEIIIYQQUoI7ywghhBBCCCGEEEJSYgAMq3UiSCFwZxkhhBBCCCGEEEIIISW4s2yIkmR3nvUo4DzIQ0dDU00b+jzs9xvB5j+NFoTvuO6iNSXyOAo7F6Rmlu9I9O5u109eZ9DsGIik/E/TB1Szf6glWfXGQu/LO++mTnWvtQRMKLf8Jk6nrMb33OPet//+sVtrBs2YEbsnTEiOy8mD3l7XM+sLJIXvoYh+KauWTt6aYrXU8clKaP+TNYws9/me27zZ9RvXme849Mx6952HD4/dnZ2xu2j9tVrOB30Una6hPM5J0miz1Uu/kkc68tCkK6LtbZlxTL/7a59x/YScGe65J07/g3ercVQO4vPnJ8al80AOx6tWxX56ntERNk3dZ9oQ2Xeojx6QEEIIIYQQQgghhJA6gDvLCCGEEEIIIYQQQjLAHUhDEy6W7QPkctRzAeRt4pXLkd89Pe612Nacx9b0rO+Zx7uFpldnwQMPxO7nn3f9ZsyobMYFAMOE0uXEiUFReyliC77PjHRXb3zv2rWxW26JB4BTT43dm3vaHL8lS+T1OMfv1WeEmUp7kYWlCyCQarY9r+nNhg3ug2vXxm51lHoWsppQ5oEvzOBj6Ddv7He3KLPdjZtb+t3XX++GJ83Gzj/fDVNaDa9cGbufe86974QTYvfcua5f2/K/iqvJrqe249hLDmaXmuB8rPJYk8XMMA9T4DT3VtPkTsfV1LsrvlDmuU2iT8vaLrM8p5+RXdHXvube+5Uvh4UZ2g+OHes+d845sfuqq2L35Mn5mHpv6Y7D8akBhIb/pyVuumTX7Qs/a/lmee9c5ooFk9VMtYi5Yi3lTpLSoe8LfS6PMDRJz+m59Lp1sXt6l9sYWkXXd8EF7nNybP7Sl4SHblCzZ4sAw+eDcjiWMgs6/X9YHL/nKQvro50QUg24CEoIIYQQQgghhBBCSAkulhFCCCGEEEIIIYQQUoJmmIQQQgghhBBCCCEpMeAOpKEKF8vqAAvTb/Nebb2EvHXDfBR9HHUu6ffY+dfy+GypV1Sm9+MRAtnek5zmpFfVnx95ZOxessT1u+ee2H322a5fy3Xfiy8WL47dixa5aZx/Sr9bSdagoz0uU6m9BLg6MhMmxO7JSjbJWy+kTpZ6uRYR6OS5J/a7u7vdIG64ITn4v/89dt92m+u3cGFlrZhUeiGe+ppHe8hylLpPB8QbXmene33llbFbls1llzm3be+N9bp8Mh1F67XI55Yvd/1mzIjdba3J4en2Kqvn1Kmx5l3T4j84941buLDfvW6dG4bwwvSlP3UjvOaa2E8ImJ3+8Y+76WqN4y7LY6GT0tfqavYtWxa7//nP2C37FMDNH9291YuGkCSvsaxW75ZGfydYczBjfE6BF6Bll0cey2Sp7scdtDzpD9UtbGl20/u1r8V+cpzzkead5Xjm0xQLRWsayv4iDy2+ao5rWcmqaehjjdBN1fMkWe30MCrnUL501JKnxJj1xBPx51I/CwAmCe3bIuqB1KnVel0dnjlaEnqsTJLwBIBNm2K37kZOn/NUv/tHkw/od5+1zTr3zZ7T0e9+dFUKrWrxsm3XXdfvbr34Euc23bYJ2VfgIighhBBCCCGEEEIIISW4WEYIIYQQQgghhBBCSAmaYZZY99x2XP6Vv+CeB9djxPBh6Np/NL72vhPwwgt+hlkHd6Jn1x6MbhuOd5xzBC561UwAwDU3P4QPfONuHDBxFHp29eLSsw/De193FADgqp//A9+8cQWGNTWhfWQz/t9HTsTh08dWjNvA5r4l+m/LKpt4SXMXoLZbsXOP27M3Petx1ElHTg8UZijBJmqyEPUebWmfqPzWrou3ZUuzRcCtC77t4W0r/9bvfrkyA9m+4Jh+tzYfwRlnxG5pC6Yi6xXb3X1mdNq8QN7rs97xlr0MVKZRBSqr1o4d7m3SVODAA12//feP3brt3Xxz7Jbvcuqp7n1y+39ZHZd2etpGpwCTpiwEmzE2tzjXTWX2TiXUe7UGvmaoCZmvnfveRfrNmOHG5dRrbccrPFtb3TzQJsX9KHuIu++J47vpJvfW+fPFhTqT/v7du/vdM3796353m6ycANouvji+OOssNwLRALTpiqyeEm3uJU1QRo50/ToCTcN8/biDNAkH3DalG18O5DLOrVoVh6c7ctFv5TEmhdZxTfBYpuv/6tWxW1cMbYcVQFk7lxIG0rz4gAOc+/CRjySGKbvWKZPVu922OHYXUH+mf+3d8YUcU1VcWSU1Qk07Q/GZmedBVlNgyTPr3TBGj47dWdOft6SJDmPy5LC2XTYPS8A7L+rdlfygGn+d9171cOwhNToAYNq02K3GrwkT4nFPTsnymsIkvavOYxmf7oryKN8W+T5Llzp+w44/vt+9Rj130Le/3e9+/YoV/e6f/J97nxzr07QTKZ+w9rTY9FJ/LcjDTHuowx1IQ5P6+DZVY6y1OPuDv8NFr5qJ6z8bTUCWPbwBzzy3A4cc0IH7/ue1AIBHn9yC13zoVvT1WbzpzEMBAOedOh1XfmABnnu+B4ee+xOcc8p0HDipHa9/+Qxc9prDAQD/+6fVeN/X78Rvvn56bV6QEEIIIYQQQgghhATBRVAAt9/7FIY3N/UvbgHAnJkTcOAkdxl9+gEd+Mrl8/HfP12ug8D4Ma2YMXUMnt6wHQDQ0R7/UrJtRy+MMQWlnhBCCCGEEEIIIYTkBXeWAVj+yCYcOytsL/oxh07Aysc3l32+Zl03enbtwVEz4lPDvnnDCnzlx/dj1+4+/OGbZ5Q9UyTiYDM/0gRFH3UozT3uusv1u/PO2P3cc7Fbm7Kdd17sPvlk189nc5cFz55tn2lV1u3V1TRh1SZqTjq0faJAWrFok66k7C97L1mZlBmgNFnYuNlde+/u2a/fPWFy7NZmc6Fbu3W62mT6pf1Xt7IF85iwOvnaOc7xk/HJJOqT/HymAjK7TpzxlOO3sXVKnGRhmaRPzbzrrjhfjz3WrQfnnS36rRqaXQabf6n6I/NfW5ddfXWcPx/+cPx5m6oHWU+5dMy/ZONQDSNLO/ea8ngqvI6rRdoo3yXMNpR5WldXbG6tTSHXrRMX8nhKAEfJTJf9iDgRCwBwxBGxW3ck8iQt1afMn1+530o6oQ2owqnDnv4ylDxMwVIhTdcTbXPDpQKKSH9wGLr++45CzRKXtv2V5f1v/xYUV1k77N7c7+7T44Swfcpisq2REhoAcMzll8cXnrqb3TSs8nO6jvxpSXztOxVPzytC0yW7Il3FfaaFSXnu60fGKkWULENnqjbkOTF1/frYPXx47F682A1fqm3o/JFTtOldyckIRZ4wrWnzmXnKfkrXVXG9C274csyS1olquHJMUXUd1DIXklxO7c0Bedpm7+x5jt8EcXT6AqWlsOTSS/vdL1gXn4B59NFu+PL09azvEtoWqj4GElJDuFiWEuue1Iuf3PYobr/3aTy0ZjO+85ET0ToiztJ3nHsE3nHuEfjRb1fhM9//G679pFosIoQQQgghhBBCSMNCc72hCcsVwBHTx+LelQlKxIr7Ht6Aw7o6+6/PO3U6Vlx/Lu749qvx/v++C+ue2172zPkvOwQ3/XF1TqklhBBCCCGEEEIIIUXBxTIAp8ydgp279+A7Nz3Y/9k9/3gWj6/b6ty3+qmt+Lf/vgvvOnd2WRgnHDkJF572Anz9+kjP7J9rnu/3+9Wf1+AFB44pKPWEEEIIIYQQQgghJC9ohgnAGINf/OfLcflX78QXfrAMrS3N6Nq/HV9774vwyJNbcPSFP0PPrj0Y3TYc7zp3dv9JmJoPvfGFOOaNP8dHF83BlTeswG33PInhzU0YO7oF135yYaa0eY939tiIBx9/LQ3U58xx/WaLRUF5JjHgapNJwSUtJCA1DJRekY9Q7Y9c9MZk+pXghtRUCtWDKUuHFJtQggBNBZ/FLLU+WjxHYUv+cpf7+eLF8bHShxzi3vuSl8RufQS91JuQEkgvfal73/HHhemMeJHlpkVTZL2TZQ2gSd4bqGHT1qzqsSxfVccnT54i/Dodv+YEucDrr3eDP+202H3ggSphMs1aq0cXSD3gyeOnn3avpQ6LfCxrn1iGR6esSNLUcad+yv5ZpXeiyJ/LLnPDkJplx1xwuOO3eXN8ffXV8eenfEaJXvraiUePx9Emk8I0a1VdFf2gT4MxK069CBb0dJHlpoeyFs9MKpf6mrF+hmo4+ZA6O/fd5/r99rexW04XXnNWuCZdU+C7BeeVrj+yTgqtP50O2U6mTFZxecbpvvZYLzAP3Z6y6tnaNegws6DfZc6cOL98Q6zWnpQ6Uz7tMdkdl923cmXslnNKuHOo0DruS4ePzPOTQCEoOT1ZvNj1k/mq+/jpU3eJQDyarYHoMpTle7iqn04f0xrPFTf3tDn37d4Uu7VmnKxPsvnqbJP584tfuH579sTuc85x/WbMCJyrF4x8n02bXL/frDqq3/2a890GNuOTn+x3S107JV3qSDJiuTqIbnb5Jo+9yHyY0inrT3LfXLi2KCF1BBfLSkyZOAo//dypZZ/v+NNbEp9ZdMahWHRGvHA2ZeIorPv1hQCAr7//RfknkhBCCCGEEEIIIXWBAc31hiosV0IIIYQQQgghhBBCSnBnWZ2Rl4lRluO0oY5Ed+LWJl1qK3x/+K3u1mu5fTvN1vdGOIY4KV/LzEw8ZkpZ4trSrY8Uj6+1BYpjBhWINrGQu/hXr3b9Jk5MDucLX4jdMl3SrBDIbkqbFEYZ0pS2PTn/g9ueLkOP2Zi8dRfctrFBmP3I5nT++W4YMr/KLCqkCahGmr0VYGaYqY9RyOeOPNJ97gUviN2+ZiNfs7nZDcNnHtTVFZeHr1VmqZNZTRSUlTB6hQlcuzD30vnRtOxv/e7LLz/G8ZPm0NINuKZPjkmHrlfiRmmWF6UlzFTdeUq3mZzrp7fMcojLVx/ryTwlyXQ0zTAk29fOna7foUKRQpoPlo2BgVIKuv4Hj1+yvmrzowULgoKQbQFLl7qewoRp/aYWx8s3BmahrHredFPsPuusfCMDgscJWRa6fGV9khaTgGteL/t4LRXinR/edlvs1uUpyqbJU7G9c7TAPt43zmWdx0iTRNlGdVFMmpTst7E7rpPjOrPNcSQJ0/tU6LmKlJpYv971O/ro2C3NT/UwdMQRyeHL/kenP3iuXvD3jqae+AC4SdvWOX4vfvH0fvf20TMdv8l//nO/u69ThKfSO65VtGVtoxmKpw/w9dXt7fUz7hGSN6zdhBBCCCGEEEIIIYSU4M4yQgghhBBCCCGEkAxwB9LQhOVKCCGEEEIIIYQQQkgJ7iyrM/KymZe2/p2dg18TzXrcu5SQKFofIKtWjPMuSvMiVGvFizbul2Q41ltnvZSTS6NF47ybSOMxs90IDjgg1sPQmmVaw0YipUWkhoTUlkhDaH6vc6UgHA2VUaPcMB56KHZLvRAAWLgwdk/vQuKNfc2uhk0SGza411I/SqZZl6+UlBnXqeqjvFnXswJ0ypLIQ3dOJ1dq2kidPl3HdZ1MCjO0bdRSL9FXZDL9ZWkUnUDT5o2O15w5sRal1BHU8TmylL9Z5t4oGm3zDFdPReJto1Wsjz6yauplpV70NzPKZTrP6T5M6gvJsWDVKvc+OQfxSYj5hsPtPXEYOvyjZokHhYZVGaLvbtIDhW+QEnV3bMGz5rL6kpBhaeqxOx9U8emBLwCfNmG5llHlMDZudtO/e3fsljpeANAiK57uRwIrdt56Y7488M11feUmX0W/1pFHxu45c1w/mSV5aCZm7arle2r9UJlmLQl41VWx+667YrejIwi37sr6ArjzJF3nZs6onMa89CWTwpFpAoCtW2Od1Enq5SaJ+Y7WBcX8+f1OV4fVvW96V75jrH4vX1eRy3clQuoU1mBCCCGEEEIIIYQQQkpwZxkhhBBCCCGEEEJISkzpjww9uFg2RNHbf/fi2zruQx/hnGTa6bMES2MGkpQunf5ctv56jk4PNbHzIu3EdCaIvel97R2OV9K76SCymtc4yP3VqhAnTezsd48e7eZpUj0DXKsWmUbfFv88THV1+KNGxe4VK1y/m2+O3fJodgA4//yECDJmuDZ/mTs3dsss18E75nG+tOgIBHmYSWryMGfwPSf9ZJmuXeveJ81ZDznE9ZPmWjp79PHySWnKkl9Z+9mW5oxlo+1VEtLS1RVYTsLsA4Bj16LfzWciK01piyB0nJBktYqvF3PKNISmWeaj7tNlG9KWi9L0Upq76zy+7LL0adLIPqCrS3l6+kGn75P3qY7VuU9VBOmXy3ibBpHOrP2sN805m0frflb2yTIqbdLlM0F0As0hvVlNKIPD1I3IebmWRC/JxRe713Ieo/upLG3KV5eK6OtkEerhRU6R5ZxM1xF5n54XyfCTxvaiSJoLeS2Gm5PrsW8eIMPwDPuFIOPOoCBDSMNCM0xCCCGEEEIIIYQQQkpwZxkhhBBCCCGEEEJIBobVOgGkELizjBBCCCGEEEIIIYSQEtxZNkTxaUlJfLpDUp9EHxkv7dV9elTSr9pHC/uOOXa0AwKF1bLovwDwCyiI+LLqROSiL+HJLJ8Gg08+JElCK009yKNe7NmTnKZZs2K31sCQ2lgzZuR/HLvUm5DVzqflUkaggE7RekuhZerTHPSVtU+nY+HC2K21FZ95JnaPGJEYfGKa8iLvMHVerd8U6+CMHeve2yLiDu7DJuyX6KfDyKpLmQdZ8lXXEZnmjvbBl1NNtc105yEnAh6RGTfNbt2S+TNjBhL9pLaZ1hQr0xgThOopSr/29hzmC6pDDo07dEzKQ/vQlw5ffOVt1JPmnBut1OIE3GqXuQylgKhPa67gPA7GMzEKDX/6urvcD8TAt2vsdMerJUMRFtFPhZZFh+qK5s6NnzvrrOTw5VTa148XrZXpw9dX5D0+Fq3/m/U7WxF9HyG1hDvLCCGEEEIIIYQQQggpwZ1lhBBCCCGEEEIIISkx4A6koQoXy4YK6kz36c723LDzheWxzACwfHns1maY0qxCmq7o7eBFmFeG4jNtk/Spo7wHS9mWY2k35jtS3Hvc+ODNNcuQdUbGneLc7SzbtIuoEzId2uREWm3oLF6wIHZLk0z9XB7ovGpurpwP1TZlqyVZTGh0+crmpc1st26N3dIcF3D7tCeeiN1HHumGL00dqm26sqU79pPmTL7+LA90OmQadfv1HXNfj+h2PaTam34Zn51OAvoROdbroWH27NgtzaK0xafsd3X7zSxvEEjebTY0vDRjY97mg3mYf6VJo8+8Mum5VO+sbe+zhpNjGNt7kvM4VZ8oG4cMRNsui4ZZdJ+VtX5mLQs59zrjjNgtTbsB1wxcj4FOv649xXVfa1u/u+jxvJb4xvAi2ky9vDchRcDaTQghhBBCCCGEEEJICS6WEUIIIYQQQgghhBBSYigZIDQsFqZ/C6t3e6w8nk9fP/aY6zd8eOyW+5qVjYXcOrt4sRvEypWxW5tV7NgRu/XJNklU24xCPpdk8jaY8IORmec7LrTa9kAyXUnHmw6EtL1RW9+bxL543xbwrNvDk0zDfGZEPtNK30mfoaeh+czjuruTzTZkXNpUNPSEvno9gchrvrPh2fgi8JQzX/3RpuRPPhm7DzjA9ZP92z33xO6dO937pGnnrFkeE8Tu7tjtOXnQhy7DJCs6Xc+2bYvdo0e7fllOSktD3uYdRaNPSgsdl7Z0J9/na6MyfF//UIg5a2Bf7ssDmV+++jlsWOx+/nk3jKSTkdOkQ9II9SwN1TSR0n5r1sZ+N94Yf37xxW6YofO8WpZN0X2Rb56RGTmHkoEWbHrqo9plmPTaei7k83OsVnW/Fyhjknf/M9T6KR9ZTgweiuy7bz602ScWy459889qnQQvraP3q3USCCGEEEIIIYQQQgj2kcWyuZ9/ba2T4GX1dY/XOgmEEEIIIYQQQgghBNwxSAghhBBCCCGEEEJIP/vEzrIsLL95OVbcvAJNw5pw8LyDMe+ieXh0yaO498f3YtPaTTj7y2dj4gsmAgCeffhZ3PHNOwAA1loc+7pjMe2Eabmkw9Fg0Oco33ln7P7tb12/hQtj94IFsdujg6D1VOStWgJASqL5yGrHXk1bf1+6ck9HCj2wpHTllqZA0Q1vfFKbySfII0ijreXTIAnNB6nZNK4zOXzPaePoEcfEL1/u3id1srQ2j9TRGD/e9UuqCrpYGk0TKpV2mqg/of3D9p5k3SSdp3Pnxm5dNjffHLtHjozdS5a498kylEfXA0oPzNOeQvsYfV9odyH1W3Q9zqIf4mtrvvCK0M3Lu/6nSaPUKZM6nWPHhscXqp1ZTdKMeb78l/V/7Nj4PtmeAL+EXxF6lrUi61zC176K0DCT+HQ8s1BL7cyhpuWVhB4DJXoYyjvNRZev7CumTk320+Nc1j5G0tS9Jb5Ytsz1lNpyUgdah1GwVl7WuIZSO6xn6mOEJ3nDxbIK7Nm9B/f++F6cd9V5aGlrwY/e8iO88LUvxNiDx+JlH3kZ7vj/7nDuH3fwOJz9lbPRNKwJ2zdux43vuREHzzsYTcPYbAghhBBCCCGEEEIaCS6WVWDH5h1o62xD6+hWbFyzEQDQ0taCEe0jKt7fPCLOxt5dvTAwVUknIYQQQgghhBBCCMkXLpZVwPZZwAD33XAflv5wKWa9fBZMk38B7NmHnsUf//uP2Lp+K05+78mZd5V5TWacs5EBPPhg7J41y/UbIRb2Ak2d9DZmaXKkzYGSLI7SmPysXRu7tXWoNFcp2gyhXo451lvrZZ63NBewrTmFSWhQGBnDqxdTm+5u93rdutgt24Juhj5zZdmmdPvKI/slRW//zxq+NwzRkYS2UWkNAbj5r802fJbG0qpdmjHKfgnQ5rg6fNFmm1v6nb530dYdM2bEYXS0h+WBfi/53r531qYrWepgtfvSUBPQrOny+cm89Jn7Bpv5ZDQ5rxd8ebVpU+x+8knXT/aZ2hzaF35SPuj7ZLtsaw3Lu6rKLyB7+RZdL2R+vfjFyX1M0ezqjeO+6irX76yzYrfu4+u1rQSTYAf78Cq3fsr5iS4b2ab0XDrv+pM1DDm/9ZlQyuzQfYXsd7Wfb5xIktQoG29lBD67zhoi60F7e3J/We3+jZChTH2sEtQpR597NC78nwvR/Ww3Hvztg9579zt0P5z7zXNx9n+djWU3LkPvrjD9JkIIIYQQQgghhDQeBtGiSqP/kXKYLwPQOroVh5x4CDY8siHo/rEHjkVzazM2Pb5p4JsJIYQQQgghhBBCSF3BxbIEujd0Y/OTmwFEp112HtCZeO+WdVvQtyfa1rr12a14/snnMXrS6CqkkhBCCCGEEEIIIYTkCTXLEmga1oTfffZ3MMMMxuw/BsdfdDweu/Mx/OX//QU7nt+B33z6Nxg/fTxO/9TpWPfgOvz9P/6OpuYmwAALLluA1o5wwQcDG6bNocUazjwzdm/b5votWBC7A3WBFi501059Gi1Z9Cy03o/UEchDSycP8tDjSaMH8OjqZI0QrT3RyPi0FELzq2gNBi1RkaRFpsulmhpOeeRdHtpjacLJWx9j2LBkvzT90vz5sXvlytg9Zox738iRsVv3Ya5+SOze0p1c7rr+SA22bvWc1GWR76bzVGuXJFF0v5pX3UoKM2v4Wduo1Ir03eeOX8nak1n1zHxkadtFa9Zo/UdZd4sY62s1X/DRiLpARx4Zu7Pmadb3lvFpGS9dZyRZ6n896Tn1Ca1LyerV7rVsQ1o31TfuZXmfrGO9j1B5W6l9+Pzzrp9PR1mi0ys1kGVelb2n9NQ60L5KWEVC5zg6D+S71lP9J6QRqMMpRn3QNrYN5155rvPZtBOmYdoJ08runXnyTMw8eWa1kkYIIYQQQgghhJA6gOZ6QxOWKyGEEEIIIYQQQgghJfaJnWW3fOSW1M+MGj0q03NZmNAxIXFbrGO+prZrN0mzzHPOUYGKfeyB++mzmv35tvRKs6XFi5P9Xvxi1y90q3Ee24nzuC+ruZ00V8m8y9vzYNIWf6B2263TxFt0GmX4LaqZjOuM3VnNGEPNT/M218xKEeYXeTN2bLKfz/RA+82fH/tJiwtt/uJrl7L97tgRu595xr1vgzgfRlt3SDPMSZNcv1BTqHospzTUS/q1ma38PdFnShjad0tzoDTUMn9C4x47Nn632bNdv6ymQ6H3Zc3XIsmrL23q2R5fZNG/SEFba/71TOaDbCe6b5P5c9ppyeW5fr17LccDPYaHknf7SjMvdcpX8MIXtjnXw4fHbmmeD7j9lu6LQvOkaMmIUHP0556Ln1u3zvWTZphp8M3zEsnY1rLmY6iJfmhf1whzOUIahX1iseyJ5U/UOgleLrnk0longRBCCCGEEEIIIYRgH1ksI4QQQgghhBBCCMkTA2pbDVVYroQQQgghhBBCCCGElODOsjrDp7mjcfy6pgeHGRq+j6QwfToFWsdE6v2MHp0cVxHHHIdoxKUhVJtKI/Ul5JHZgJs/He2eyH1CICQX8tB7CNWkKEK/LG/9vqLD8IWZVZdG09HeJ9zx552dbv5L3RStByOb27ZtlZ8BXM0yKTWp/bQWjaPzsnZNfCE1KQG3s9CBrFoVu7Uwpb63zslDh0WHsXJl7Jb6cQDQ1RW7hw0LC19r6mXpkvV77eqN06x11dp9Y0Pe6AYgMqxFaPyM66xmorKRZq4VOsb6+vFQ3csyP9m2JTnpl2XV4wwJDwCaVv6j3y3riK/vGacqtdRe1fVfFkfoXLGaWqjAAHUroT5Nmhgehgwi6xQwtO4WjRwfx493/Yout6z9bJa6lVv/kDf8PkFIGdxZRgghhBBCCCGEEEJICS4bE0IIIYQQQgghhGTA1DoBpBC4WFYHGNigrbW+rd1NvbvcmzNsny3CBEsec6zNj0KPEQ+lmlvFs8at75OWCDoP8rCyyMMshFSXNGbToWVYy7Iu3Mwn5/eR5pkAsGNMHN/Ike69so3K/ky3Xek3YoTrJ80AtemHfK7F11ncc0/sPvpo1++xx2K3tiWR154xowhT+CwUMUa1t8fv5uuDQ02d8hjLNLIerF3r+sk6M2dOsW2j7OUC648kzTidd/p9fZE3rgymSZnTrm2BG8wUquy9Zf+zYkXsPvVU9z5pjz53rhum6PvaPPOiWs4BfXjrQg71qSXQFFVSS7kHn55BkjxCEfhkY3zz77L3lJ1wTubRg8X7fTG0r/OY3ZdJOhAyhKnPkYUQQgghhBBCCCGEkBrAxTJCCCGEEEIIIYQQQko01v7uocpTTwHXXRe5TzvN8WqSZg5qe2+jm861NNeH+Y48AUeajQ70XOh9vu3uciez3o0fbH2Rx1FIpIx6MVPNai5RL+nPSh4mpnm89/DhsVtbMcrwZd+hD6uUzVJbNkyaFLu9Zpi+47iWLYvd06a5fhMnxm6ffahge2+Lc93oXYyvjkjr1h073OdkdoVa15TVuYQ8BuBkpi+NSeagALB8eezevdv1O/44b1IHTw4mR7rOS3wmdxInvzymQ026YSYlRL9XNc2sdPhJ8elTMjMei5rUR27vcccdmQzviZ36KOD994/d8qhYrcshy0afhlkvJwVWkaym71nnrFnjyzQ/aYBBJJU5fUI/rpuCbCa6+kvz+hkzwr6HpJGkCG4bvrIR7bJoOYxGJfDQbNJgcGcZIYQQQgghhBBCCCEluFhGCCGEEEIIIYQQQkgJLpYRQgghhBBCCCGEEFKi/g3H9wV6eoAnnojcq1e7flJQZcaM5DBWrXKvu7pit0djo27szH3CJYEaIXXzLgqZLm3nHyp/4tXsCNTEqdf8kdRSB6Ehj50PpJr6ZXnlY1I602it+O4LzYdQKaAk/TKN1mo87LD43gcfdO9Natpl7/Kyl8UX+kh3GYh+mQQxsiWL3dukvoocWgCgtbWxtPGkRqVm9Gj32tFp6t0VX3h0sbxaUnI8B4L7Z+nX3u6mXw6d997rPle4ZlkO5C5f5CsbWRZaUEgmRAsKVZG+1jbnWpa9rLstnslD1r7ult/Ez911l+u3aFHs7upS4cu803Vc9kc+8T3ipei+1TdPzWNMz3sOklVjLfQ+Xx7oLn7z5hbhjj+/7Tb3vlmzYveGDa6flB2dOSN5jlNE3jll39xS8XMATv/ZCGN9tTHgDqShCsuVEEIIIYQQQgghhJASXCwjhBBCCCGEEEIIIaQE90HXAzt3Ak8+Gbnl+cGAuxf+ggtcP7ndXe/p1bYyAeSxrTkV0n5E7/mX2/XnzKn8ucJreqD3TYtwmsW2Yx+hW9F9ebV+vXs9cmTs1hZSieFoMxOfGWYeeMwl8qgzQ9n8kRRP1mPtQ00btNlkFnzhd7THfsOHJ6f3HytjP20l1jF3bnyxcqXrKfsHbaIpxpCn1sXhL1/u3ib7pkawnkrTp8h3KysnOUbJsVln0JIlyX7/8i+x+21vS06ILCdPJushcMyY2P38865fNc2vQ9HpaMmhPjnvqfNOzpPkPECWGQDMnh27dQMLtMXOI79Dzcz7AuctALC9Jw7DN124/PLYre971atit+5GWoXpaJOew4q56JaeOM3B850B/LKQpn+ol3bjY0t3/D66+jum5A3wLvWCVobRX7EkcsiVz/nC0Fbg0u/hVW791GaZgyW0Hsh+A3DT+PTT7r3HH8e6RYYuDTDtJYQQQgghhBBCCKk/6vOnfzJYWK6EEEIIIYQQQgghhJTgYhkhhBBCCCGEEEIIISVohlkPDB8OTJgQuaVuBpB87LZGnkms7w3UQtFk0TdIpT8l06IFLKSxv0dkIzg+rVkm4pYaJ0Xrtu3c6V4PHx67tb5Bc7M4Jl7qJvlEKTQy73Q+Jj2nwg/VYclLo6VW1Es68qLo90mqF0MtH7PoEKXJA6kLouV+Djggdi9dGrt1d9neLtLo60t1PyjuHTYs1hPSfdGwYbHbN4R4dSPrBJ9mU5l+lnxZqX2lNUFXrUqO4OijwxLmyVhZR7R2ztixld37LD7NMlmxx49379M6Zb4wa0TWZEh5Nt0FrF4duzdvjt3r17uiRHffvX9i+LKKt6j+R2qrybh37HDDmDhx8JqwQ4k07+mbAkqy6sPmked5l1vR9UC3tREjYreex8v8l3VcDwXLliXHJ7upxYtdv5kzkp/LG5mvW7e69UXOT/S71aM+JiF5UR8zAEIIIYQQQgghhJAGwoDmekMVlishhBBCCCGEEEIIISW4s6weaG6OzWFmqP22+lrgbKmesF/ifWVHqSfdV+Wts3J7fpM2P5XmEqF7zHX4cluw3OMM1I1Zxe7dsduXpLVr43fR2TFlcuC76AgSIlyzNnnr9SGHuH4TJ8buRjDBaoQ0NgpDKe/yMCEINXHR4UsLPn2c/LZtsVuaUknrfH3dstekfy/S9kO3eXGvNOGbO9e9bX9hgaXTL00EdfBlZo01wqdEIK/L+gfpKfNV26lKP22iOX9+eEITkPVCms0BrgKDtsBtNELbkM5+aT44RbWNRLmHE05wbtvVPq7f3aL7gMD5SB59oi8P5HvKuQPgjsUa2T9oE69//jN2uxarrtmltFLds8cNQ7Yv3f/IPOnsrA9TSx1+VvNEya7e5H6wmiaDoXF5JUe6tyQ/WHQnk0U6JAXPrI/f+6GHXD/ZTrRV9nPPxW5tCi9NL+U4fddd7n0y6/RXHjnm6udkWck+QH+tCUbna8J3ATn/ANz3vvFG10+m5Sj1boQ0OtxZRgghhBBCCCGEEEJIiTr53ZcQQgghhBBCCCGkseAOpKEJy5UQQgghhBBCCCGEkBLcWVYPDBsGjBpV0cunpVOPmkFptCDkvX2tba6nuM7lPXPQOsgDn3Sa1CIAXH0AqRumJXHKNFqSIgjEJxMxcqTrV491MLTODfSco8PSXH/vCdTPcd31kg4faco+6Tmf5p1PF8uHbOdabky2PdnuV65075O6VQdN9fR1WuxJCKa1CH3M+fM7EtPhC1LfVy+aZb7yCK6vsoOWIjWAK0CjCzEQXx2U44YsawA4aPKu5HQhfjBrv1hNQtuoLk9HRknngfCUYfQKjbIByVtD1fOeTcvvdz8Qdau1NTkPfEj9peOPTwzeGd/1PED2P1q2ykmLJ2Ftrcl9qaSsn93wbHyh8z+hfKtdp+tEBjcYb/7owpfXDS6MKOu41v4cMyZ26/KUfbCugnruvpdNm9xrmXW6H9fXEtn9SM3KY+ak+L7VK8YJLXwpxn4Zhv6+IvsAPcxl1k8jpAFosO6dEEIIIYQQQgghpD6gud7QhOVKCCGEEEIIIYQQQkgJ7iyrB0aNAg47rKJXLsdAN4CJRSh5HPHto+i86mhP3jatd77Lrd1y17TeBV902cv4dNzyuPQW7HI95QtkNE3Kgs8UeHuPm1fSLEQ/19xc/78l1EvbrldC8yfU/EuaQwNAe3vsJ00zfCY5ur3K53QzSTpqPsnsAwDWrHXDP0jaR/hsvUUH1KFtQprjhMg2D7gmIvq9k/qmouutrw/QfvJ9dB/c1qz6tL1o+x1pCtbc4k1LFmQRjutU4fWIRCv7oKfWxe8mrRO1KX+9mMtqksZHXc+ccbUn7GV8bbR8nChWxsGpn4Fmbr7bdJ2T5ptHHuneK9vvXXfFbl1HZB3U/VThJoiy45U2pYCTEfUyHlY7HT6pgKT7vBRQoKFz9yYZdwHpkH1FxwzXz5dG3eVLZBtatCh2z5nj3ifn8QsXJofva1++dHjLN6mhqwibREPv7Eyeq7zznW4QslkW/T2NkGrDGk0IIYQQQgghhBBCSIk6/T2REEIIIYQQQgghpH4x4A6koQoXy+qBjo7y/bo5UksTzTzMoLLcB7jv7TvFLjSMzOmSpk/anEOc+qlPk5HX0gRFmwrljU7H7t0ZA8rZdCVrGfry7tHVcZiLF7t+RxwRu48/LiwdWdPY6GRtT6Hmj9XMR1+b11YheViMHHJIsp9sQnKIOKh9o3ujMEX6xyrXDNAxv/Adt/ngg0H3NSszQ1/7ynpCaN40LflTfLF0qePXIkxRW/Sp1GeeGbulHawi9GQ/7ymIgaZUZYiy0eaDcuiRZaEPjJTmNo3eZ+1qdk/WXiVOjj18VrYTceVp3evWuX5TJg8+v5w8V/aPMl1ZD+UMPYVywYLYra0d5XUebTlVPXv66djts0MLRTWAplAbeg/10m7q5fR4Xc9k3dXjROEHbCYMRL4T0PXB0VpCRdImsusoMUzMmOGG/8ADsVscRF26NzF4p0wnT864HJM0mdB+gUFoM21ChjL7xGLZsccfW+skeBk5vGXgmwghhBBCCCGEEEJI4ewTi2VzPz631knw8vj3Vw18EyGEEEIIIYQQQggpnH1isYwQQgghhBBCCCEkb0ytE0AKgYtlCSy/eTlW3LwCTcOacPC8gzHvonm46/t34fG/Po5hzcPQsX8HTnr3SRjRPgJr71uLv/7gr9jTuwfDmofh+EXH44AXHhAclx0+HH2d4wa8L40WQaj+SS31zHxk0StKo/OSh45McP5I4RglziC1Mtrb3fClbJDUB9CyOj4Ns+bm5Pfc1Vs5v8pk1TxyBq68h+pOchaiCM5vJTbRIhK5crVr8nzTTbFba0gkaTL48nHTJvfeiROr177qtS378LXDpLaX17tkOd5cV+kkva40sjcTJyb7Na1+tN99kIzgy1e6N55/fr+zs+tFrp/UWNKNWXYy8lx7Dzr/R4yI8zFnmcJi+M1vkv0uuMC9FgWepb5UBVEvtJ6c1J+UdTer5lQuGp4ZCU2zkKADAHzmM7H7R9fFbt+7SI0vAK7O3dR5ic8V0U/JcPQcIRTfu8o2KzXLQtNUFbZtC7pNvqfW5ZPv2eITnyTliD6mT/Uxod81Gi2L8+gj9Xh42GGxe/ly12/9+tg9aewu11Pc3JRV31q+kEd/00fo9yHtt7ct7tmTKVpCak6DdV/VYc/uPbj3x/fivKvOQ0tbC370lh/hha99IabOmYp5b5yHpmFNuPuau7HsxmU4ftHxaO1oxSs+/gqMGj8KGx/fiFs+eQsuuOaCgSMihBBCCCGEEEIIIXVFnf5UWlt2bN6Bts42tI5uxeYnNwMAWtpaMPXoqWgaFmXZfofuh23PRb92TThkAkaNj7b7jD1oLPbs3oM9u7mETgghhBBCCCGEENJocGdZBWyfBQxw3w33YekPl2LWy2fBNLmWyA/d9hAOWXBI2bOP/eUxTJg+AcOGDwuOz8AOelt76PONYI7l8ws1mRwo/Cz5kMnsEnDt+7RtnzSDUsgt3LNmVf4c8Jt/NXVvqXwjgG5UNv31he8z+dRr7zIthdc7aXuzdq3rJzKvs9M1IZDFIU2WAHW6tjTtVJksTZ+GD3fDkKYg2sqtV5hv+spXUq/tNxSd/rxN23xHwedhBqLLxlMt8kFGeNttsfuOO9z7Fi7sdy5VZmidncf0u2dMdv0mCNO8Flnhdb8kXk7n8dixFW9LRRHmaw7y3d75TtdPNPy+BScGBVd0O8wavs5/WYy+spFD1j//6Zbv/vtXDg9wq6dsa5s2uWFMmpjtfbLkgzaVPvVUcSEabJPPFE/b8Al7/QlXJJthFlIvRMaWmQ8mkMZEKpSajj2y/eqBWiDTKCUoyvAMsqF5V7QcQE3z2z/RS8SXZlkeoeNEHvN2HaGv/rc09wl3tqh8aZRm1HPVuXNOl6P7H/kdIqsZZgayft/SrCtJQezePdgU1TcGQPg3f9JIcGeZh6PPPRoX/s+F6H62Gw/+9sH+z//207+haVgTZiyc4dy/cc1G3H3t3XjJ219S7aQSQgghhBBCCCGEkBzgYtkAtI5uxSEnHoINj0Q/1z/8+4ex5p41OOX9p8CYeLdZ94Zu3Pq5W3Hy5SejY/+OWiWXEEIIIYQQQgghhAwCLpYl0L2hu1+v7NmHn0XnAZ144t4nsOzny/CKj78CzSPiPbo7u3fiN5/+DY5743GYfPjkhBAJIYQQQgghhBBCSL1DzbIEmoY14Xef/R3MMIMx+4/B8Rcdj5+952fY07sHt3ziFgCRyP9L3v4SrPjVCmx5egvu+8l9uO8n9wEATv/U6RjZObJm6S9aA6ZwjZmcaYQ0aqT2ik/HSvp531MJRbQmtH4tV5FRvqK6SPEo6QacDJo61fU666zYvUFpPY3rFHnZKzJL5aPM887OykdmA+X5KMvXp+HRCHqEjdYfpMGngyPLMPS902gG9U2eEocvxZeGKWUMcRT8pE2u17ZtsdvblmXj8FRI/Z6h2i7yvfPWqhsQUVB9Z7za8ZLv05B1V5SVTr9XtykQ2Yd5JDaDyU2HKIGOdje8Ny8SF3Jo8HW6esAVmoBZdflCdcPK8iNnMUSfbqQvjanSnEDmMGbMSPZLoK01f33MIvr4ahKc/54JZ9b2mkc7D51nhOZ/tft731zCkeLrUflfRZ2yIhgzJvqvpy1Dkfps+WSwcLEsgbaxbTj3ynOdz87/f+dXvPeY847BMecdU9GPEEIIIYQQQgghhDQOXAQlhBBCCCGEEEIIIaSEsdbWOg1BGGNslrQaYzD1iKkD31hDJnRMwH1L7q11MkheaFunzZtjt97ers+5z0Do1nrvfZs3xhcqjdvRluQVTOiW+axb65t6tscX+thtYTtUtAmQL406WUlF7zOTGejealKvpg6SXOpWYBvKA1/Zy25E1x1pqVX2nrI/8ph0FV3PhrKpbqPhK2ttxS6rT9bhqh7Lu9pjga8fyWN8LJqs/UPSc0W/S5r05pHH1R4bslCvc4kksuZp1vKtZv7k9W6NwN53nTdvLpYuXWoGuL1hOcwYe02tE5ED84F7rbVza52OemKfMMN8YvkTtU6Cl0svuaTWSSCEEEIIIYQQQkhKaK43NGG5EkIIIYQQQgghhBBSYp/YWdZIFG0aMNSopYlCYtza1CmPI8QS4h0QYfunn9rV2tHvbpH2NcoOp6198GZoWcsp0+lNWW1Fc8D3bh2Dt7gto15MdEJNFRvB/MgXV9GmMD6/cT1PxRdLlrqe8+f3O3++ZD/H6667Wvrdixa5jx0+i+NLLamXOr6rN06H79TerOHnTR7zpLzGodAw8zAFq5f+3ke9nASZJn+y5GWa96ymKX8e4deLuWaadpLHuF1NU+yi4/YRmi5+HyUkoj5GNUIIIYQQQgghhBBC6gDuLCOEEEIIIYQQQghJiQF3IA1VWK6EEEIIIYQQQgghJBFjTJMx5r3GmJXGmB5jzBPGmP8yxoxKEcbpxpi/GGO2GWM2GmNuMMZMq3DfScaYbxpjHjDGbDXGrDfG/NkY8zpjTFVOV+XOsjqjXm3C89DsKJpq29eH6lBk1avIRWdh8+bYrbTUuns7xFWsazSuM1u3EKovUXQ56fClBo/W42ltLVabIw/9kKz5GhqGjywaOfWiyzFQfHno/1RVQ0i2X48u38qV7vXVV8fu2bNdvxkz4vS3NNdff9koZK0HSXmi+ylJC3a5H8g+Xj3YN3nKgPECjrQl1q517501K3ZrOc6qIhLWdMcdrt+998bul77U9XvlK2O3fzCI3TJDADT927/FF1dd5T63fHnsFg2sqWe7c1tfaxsGy+rVsburq3Z6QvXUx4eSd1+dNYxqzksBJHcmnsaswwiev4W2L+0nr6Vmrk6jR0Cx6LlWHuHJNCppYKxbF/tN7yp2PlKEhlsj6CmSXPkqgHcD+AWA/wJwWOn6aGPMqdZabyUwxrwGwI0A/g7gAwDGALgcwJ+NMXOttUKkF/8JYGoprgcAjAJwHoAfATgFwFvze63KcLGMEEIIIYQQQgghhFTEGHMEgHcB+Lm19rXi88cA/DeA8xEtZCU9PxzANwA8AeAl1tru0ue/BnAvgCsAXCIe+RCAJdbaPSKMrwO4HcDFxpivW2vFr1b5QzNMQgghhBBCCCGEkAw0DYG/AF6HSKLta+rz7wDYDuCCAZ4/CcAUAFfvXSgDAGvtMgCLAZxXWlDb+/kf5UJZ6bM+RDvTAEDZTOQPd5aRfnzbq33biWu55baaR3LnQR75mCqMzs7EcFpzbv1p6k8jk5cZaVLdzcOMazDpyjuMPN6tluHnTdY+oG/CfvHFqS9PDPOss9znJkyI3doMMw/yNtWtJ/I2aymcjHaS8jHPkOGlqmbII0e6ftI8a/hwJCLD8Nm6ajzmX4l5rj7Po6+uqRlsIEWMQ/Uy38yDejFBDzanBNAkKl7wPDtrZa3TSt5odbCe2mEj5BdJxXEA+gD8VX5ore0xxiwr+Q/0PADcWcHvLkSmlTMBrBggnKml/88McN+gqf/VBUIIIYQQQgghhBBSFBOMMUvF3yXKfwqADdbanRWefbL0fEsFP/n83nsrPQ8AB/gSaIyZAuBSAI8CWOK7Nw/qcwmfEEIIIYQQQgghhFSDDdbauR7/NgCVFsoAoEfcsyvhnr2n3VQKo0fdU4Yxpg2R2P8oAGdaa3d70poLXCwjhBBCCCGEEEIISYnBPmOutx3Afgl+reIe3/MAMCLt88aYVgA3AZgL4CJr7R2V7ssbLpaRfhrBBr1e9B6KiDurxoD3Po/WSpt8Tp5Jr+nqCkqHJqmsvLpMBegsSAkMLYeRRfMujeZUlvTXso6nyf+i9any1gipF003X/lm1V2Uzx2+8ueO3+GbV8UXnee4zzVP73dv6Y7DaG11bkNLcwPodeVAtXUvk+Lz5XfZtE2K0imSykbHK4cJnzxXEQT3u5MnxxdamE9fh6AruURnwpe/nHhr36zD+91OfmfUXvK1p4Omxu5q19U043aSXxYdyjTP+ahlP1V0WXnzOKEeevPDU3ezPue9L0NbKaI88557+cLT3Y+cZmdNR2gbzUNnNw2NoCdNUvEUgMONMSMqmGIegGhnWtKusr3P7733wQrPAxVMNMVC2akALrbWXpc24VlhDSaEEEIIIYQQQgghSdyDaP1onvywtJg1B8DSgOcB4IQKfvMBbAHwsAp7BCLTy5cDuMRa+73UqR4EXCwjhBBCCCGEEEIIIUn8BIAFcLn6/K2ItMZ+uPcDY8z+xphZJZ2xvfwRwNMALjbGtIt7XwhgIYAbpA5ZaaHsJgCvAHCZtfbqPF8mBJphkoamltv68zAvqBu6uxO9QreEF/FuWfLYZyZZT+SRrnp9t1CqaRpQTTOcmpZLb697vUqYYW7eXNWk5G1KWzRFm7H44pPhFzFe+cLLWl+LLtN6abO+cS7U1FXel9WksRHaUCOSR9uuZV9XhExB3uFnoeh+cF+CeVcdGntGHoa19gFjzDcBvNMY83MAtwA4DMC7ES2E/Ujc/nkAFwE4GcDi0vO7jTHvQbTodocx5jsAOgC8F8B6AJ9UUf4QwGkAbgOw3RhzgfK/31p7f35vWA4XywghhBBCCCGEEEKIj8sBrAZwCYBXAdgA4BsAPmGtHXBl1lp7gzFmB4CPA/gyopMxfw/gQ9ZarVe292TOU0t/mk8B4GIZIYQQQgghhBBCCKkN1to9AP6r9Oe7bxGARQl+NwO4OSCurtQJzJl9YccgIYQQQgghhBBCCCFBcGcZaSiyan347q3mMcp5aMWk0nHQ+kWCXWiJL2Yd1e9Mc4p3NXU6aqnjU0u9h2pqclVb+yTrMeh5kJTOovWE9H3be+Iw9XHymeI66yz3es6c2D15shtOz/Z+d0dr3PD7mluc+0L7qTTl22jUzbtofckNG2L3hAmO1xZ0VHxMVYNg7cki+shcdC+FFl9f57gkL4zDxviiszMxHWWsXRvfN3VqUJLS9CM+PTOfll3SfWnKIkuepwk/j3lS0Qwl7T1NHrqvch6px4Yi361Wc4DBPBfalot4N1/4WfzS5E/djI81xtQ6AaQQuLOMEEIIIYQQQgghhJASXCwjhBBCCCGEEEIIIaQEzTDrnDzMfoo4EjqLCVOa8PJ4t3okj/SmymOPGWZ3T7ydvqcn/lxZpwSbhhVhouYLP8uWdp0dLZ4esGjzx1zMjwT1ePR7NSj6vUPLpoi+KDH9uiJL22lpdwYAwmysr7XNDb97S8Uw8jJ3J+GE5nmTNLsEgKVLY/esWY7X5s7YvH716vhzbYaZlaLbV+I8o3eX+4EYwJw6DaC5uUPclzweOuj2tW5d7NZmmNK+tb09KHhfvm3c7L6zHI/Xr4/dEycGRZU5LWnmZIWPLzKP9YRE9FvBY4EsT8Att8Ay9IZfQ3QeyKxrbo792lqzmczXy3tmJbSOFDGvyDvvsvSdALCr1/VLI71CyL4ImwghhBBCCCGEEEJISgyAYbVOBCkE/kRMCCGEEEIIIYQQQkgJ7iwjmcjbhEyT++ks0lQFALq6Yrc6QaxeyMVkU5osiBO9AMA5M0zaeigLlD5xolqquMVJe45ZSxFmDjJ8dVpck3i37m43T1tbk08irEdzA59pTBEnpaVJS97h1wt5myTqZ6TVpG4a7e2i3GR7Um3ZsatbudL1E/1b04wZblra47btLTfRpppUIhvOLFObqQr0SYqSuqnXupJIs0BP3ypNbfKWXxhMmJnSoU/kk2O4Kt+OTtGxtweO9douSc4XMlLL05Vl3D4Lbt9Jfnnw6Oo4HdoUWI6/Tl8HuDbEvvqv6kUiMjzALd+M8xMfeZd91j7Xo8rhD1/kaxHpD53HyPTrd9FmpVnCkPNBTeHt12POLeOW3ZuWTCn6JO/BPkNIo9Jgs1xCCCGEEEIIIYQQQoqDO8sIIYQQQgghhBBCMsAdSEMTlishhBBCCCGEEEIIISW4s6we6OmJNWjUseR52IXnoU8SGkaa48ZDdRecdOgj46V2jxbBkH433uj6zZ4du087LXZn1C8LzSt9YvkwcXTKzp2un9RTkHoeWqdAa205LFkSu6+/3vWbMyd2n3NOv3N7q6vbs1mkeZg66mXPnuR0tfnEIfJmw4bYrTWJnAxqc7y2bk24LSNp6n/e1KuGRKgGiZYJKvoo+zx0F2UY8jj2NEexy2YpuyUAWLAgdjs195573BtPPjl2a80dXzsM1fiRHZfqZ3tbY92z5uba1X8vsn+46SbXr6en39l01lmOV9/Ug2J3FTWnvP2IHqM8Y9ZBG56N3Z0iDzDLG1+RFBKXbHBFaJD6wgzUuAqtM+M6k++bOLHYcpJ9WFZNKB+rVsXuVPMYXx6LhDaFdrx6rpiDTtnfliXrn0pJtLbQeYZnzqTf0zf2dLTXvx5Vlj5BZ0+W/lmHIYaCsmmkrK/BZaiQ5aSkdTGuNS44qe0HuF8L5XO+vkIj80SP01kIndcBcbuX+UtII8HFMkIIIYQQQgghhJCUGNBcb6jCciWEEEIIIYQQQgghpAR3ltUDGzcCixdHbmEOB8C7N71os5AsZlC+rblptlo7cUsTGr13WZoZLlzo+unjwSUyzJz3BvveUydfbplfv971k2aZ8j5lqVt27SDNT3/9a9dP5FdfZ2x6uVmZinpOtPZbV8q6G2qSmcZ+LcmGTydS7Kcf1+wWQN/E/frdZcfV52GX6aGapk9ZycMUWzZDXVdlM9SWMXkTaiJbbVNaaRWozbRnCWu5qVNjQ8ym/fd3b9Q2TRJZj1Vfl2i2pD+Xz+lOTJhh+qimGWMZPnvfpPsQXkdCnklDmjC8aZHjoxwLrrsuS7LKkNnV0xOnI4vpVyWy5GXRZZM1HUXXCxmfL+5Nm5LzZ/To2C0lCgCgtXXw7Vf297t3e2702DGGjpu+NK5pnu5ct4t63JkiHInsFr3vlhVpF6jyp7k9rA8OpegxMOtcoqU5fq7FYznrS7/s/nU127Qpduux2DfEyvhknyjTC7jD6PLlbhi9vW3C7frJeZNv+hw6xlZ7/N373n11ospASFrq/9saIYQQQgghhBBCCCFVgjvLCCGEEEIIIYQQQjLAHUhDE5YrIYQQQgghhBBCCCEl9omdZccef2ytk+BlZG+v3yB+L+os4ybxTLV1dpJIE2+o1pnXSF+eya21qmbPTvaT+Z3xqPlQ7QypU6Dl0eSrPfRQsp9Moi+5Zfk/Y0bsvvBC12/BgorPbd7svtfKlbHbdyR6mXZaT4JOWV5aYFJ8QmaKri+y3Si9pSaPgEWo/kMe2mNFh1+EXlRo+5XaH7qOaPmrvPG9d1Kas+pFyWontXkAYNiw2P38866fzJ/bbnP9pAyjrOJtWp9RojW5ZP1XY0hiP6j7S1/4HrLU3Tw0p3QYvROmxBcXvNnx07oyoWmpKnLgUPnv9GG64q1aFbtlWet+UD4nO/UBqVz/s+Jro3n0W7t64/B85Z6GPNKYR50PHUOkFqpm7NjYPXJkULSpkFVw+HDXL4/3DEXPw0aMGHSQOHHB4NPl1CWfbqTWVvT11yQRXQ8eeST53rZWjwbY5o397hbRlz4zZqZz3y9/Gbu1ZpmcB5x2WnI6fMNvHm0jqyagfE73rXPmRH5tbSCkIWnYxbItW7bglltuwZo1a9CjejxjDP793/+9/3rux+dWO3mpePyr99Q6CYQQQgghhBBCCCEEDbpY9uc//xlnnnkmNutfyUvoxbIsLL95OVbcvAJNw5pw8LyDMe+iebjr+3fh8b8+jmHNw9CxfwdOevdJGNE+Aj1benDrf96K9f9cj5mnzMSCyxYMHAEhhBBCCCGEEEIamjrZi05ypiEXyy6//HJ0dXXhO9/5Do488ki0tLTkGv6e3Xtw74/vxXlXnYeWthb86C0/wgtf+0JMnTMV8944D03DmnD3NXdj2Y3LcPyi4zGsZRiOe8Nx2Pj4Rmx8fOPAESjsxP3Qd8arB7yvSe8Zln41MrtMQ+Y0Tp6c7CdNRrQdiNzz7wujiuit19I8S/vJ4p4zJzlMb76eemqyX0KerF3rXi9bFru1GZ0MoiwdeZlbDhaPDWvolvOspja+5/LeMl9EH5DFNEbn6axZsVubEGS0gM6dvE17pPUb4Jr5PPec6yebyY4dyWEGozNVJsZnBy6eKzfrTyaFVWYmih7bspha+kxQcpFE0GNZb4JJO+BWIF2+soM+4ojYre2fE354HAhZ9nK4leaO+j4fRZi0J5lK61otTYfSlGGSX9Z6W4QpqnzuIC2XkBBXEZZ9PvOyajJzRv3Ml7d0x3l+113x51OnunXw8MmiQHz9Qw4dclZZiGr21VnaZLlf8rukqv+y3xVmmDtbXTPM1atjty4m+VVm1CjXT/ZNvvabGaf+xN+ns8rqpPEjpBFoyMWyBx98ED/96U9x7LHFaJHt2LwDbZ1taB3dio1rosWvlrYWTD067qX2O3Q/PPaXxwAAw1uHY/Lhk/H8089XDI8QQgghhBBCCCGENAYNuVh20EEHYadPpXSQ2D4LGOC+G+7D0h8uxayXz4JpMs49D932EA5ZcEhhaSCEEEIIIYQQQggh1achzWs/+clP4gtf+AK2bNlSaDxHn3s0LvyfC9H9bDce/O2D/Z//7ad/Q9OwJsxYOMPzNCGEEEIIIYQQQoYqBtGiSqP/kXIacmfZzTffjGeeeQbTpk3DCSecgHHjxjn+xhhce+21ucTVOroVh5x4CJ5Z+QwA4OHfP4w196zBGZ85A8aYAZ7Ol77JU5xrxw5caxgE6hYUrXmUlSSdEf1a3jyQFCCs49NpSorap0GkJb7Gj4/dUs8glZaCFhkLQMYFuLI3Un8KKD8iOonC65mv7DOSlM40ujpFt6l6arN70Wnq7EzOL6lzVI20hPplYffu2O2Tjpo40fU755zYrdv2XHGQs5BCwYQJbp62YXt8odvC7bfHbi1+OEP84OPTGJR+nr40jzwtIozm5rA2q6W8JLJs8tDWyozOf1neur+XlUu+nG54GcUDQ8fAWvZTMu7W1iT9Mn/6i343Xz6GjkNFp0OycbPrJ6uTV3Otd1fsUbTYoQ/dQcvOVbWNvvaOfncR9VjqVErdWl0/Z82Kv+fU47gP5N9Oip4rdsCtB/Pni7KWdRUANnsGB1ln5s/vd+rZ9xVXVExGFPzm2K3nAaHjTeb8Krot7n1Za4uNh5CCaMjFsiVLlsAYg46ODqxYsaLMP49FrO4N3dj85GZ0HtCJZx9+Fp0HdOKJe5/Asp8vw5mfOxPNIxoy6wghhBBCCCGEEEKIh4Zc8XnssccKj6NpWBN+99nfwQwzGLP/GBx/0fH42Xt+hj29e3DLJ24BEIn8v+TtLwEA/OjiH2H39t3Y07sHj9/9OE7/1OkYe9DYwtNJCCGEEEIIIYQQQvKjIRfL0nLLR25JdX/vrl7s2bUH7WOivbC9W3tx66dvRcf4Due+rU9s7Q+7c2Kn43fnt+4Mjm9CRzYTiLyPiy6aIswGnPBb2woNvyy+wK3Rspj0kdB79sTuI45w/Q48MHZL88c0W7SbMpz/ro9VDzWhLNpURYcv87UlY/0PNTtJeqYaZI2vpqZigqZ1T8UX2vzLY/pXrybikqRj6KXZJeBax+lXPuus2K2rsbSOW7w4duvwj5kjApX2HJr9909OmECbI3bI+1Qi3WGo2D6+CGT6pUmUJrQrLeSdZZ7rSuLr+0Rl0+NjElnTL59rqafpiCjgJpFXOo2+/ia0L82jz8qjvy+63WkrRncsdv0S06L7KdHA+ppbwsLIiraBW7cudusOut2d92fBVzaTJsbX558f36eTkft8ueD5+JDDp6ESOP/03TZsWOzW41CGaXxmHPNT2S4Ad/6mX8Yn47APUR+zbpI39TSlGZDdu3dj+PDhWLNmzYD3HnTQQf3uJ5Y/kSqe1atX44wzzsByKSBQIJdccmlV4iGEEEIIIYQQQgghfhpqsey+++7DvHnz0NXVNaAu2R65ZSclXV1dVVsoI4QQQgghhBBCCCH1Q0Mtlh1yyCEAgO9973tVP4myHpFb1X2HYVbzRDhNsGlbz3b3A7Gl12fSkfUEq8R0pMiPUBM+uTv5uONcP2mWKbfjp6Foc7vQk7qymq6EonfBy+txndnCrEdTv6zmEXVjVqE7o5tvjt3aflCcHBV6Il+13zPUvFiecpmmLc+YEWZ6M3lyfJ82k9zSHft1aFPXd70rdmvTCWkKJcptc89+zm297bEJXzVNQjShZbGrN+x0Ys1YJTOat7pBZlP1Kp/0XC8E98+yQSxd6voJm6a+V74qMbzQeVK9mLfrPsBpl2vXJt+sOxnZJws/X35MmZzoBaxenZww2cfr+8TJvE3tBddp3YlJnQuVP1nGlz8tcevIiBGx+8gj1UnGrXH4UyZXb8yutplwveCY+LZ7zH11v6rnLgH45sT6JPlJ6pTsIvHOoeRYo80wZbvRY5LPDHNvXvJ7O2lQGmqWNX78eADAokWLapsQQgghhBBCCCGE7PNwOXBoUh8/kRFCCCGEEEIIIYQQUgc01M4yybPPPosf//jHeOihh9Cj7LOMMfjud79bo5QRQgghhBBCCCGEkEalIRfLHnroIcyfPx979uzBtm3bMGHCBGzcuBF79uzB2LFjMWbMmFonMTdCtTJ8mmX1ostUFrdMtNbYSNK5yKjP4nvvPDRIQnW9pndlCz9U66aa+mVp4gvWrktRP4ewVE8w9dK2HbS43E03Jd8rdUCUZllSva6rPiwUkSe7mtscLyndI2R7ALh6jcfMiePe3uO2J0cuRGrEAcDUqZXdgNvvCvdBZ5zh3CY10bTWShbdyKL1cnwSXy09W9xrqcuitIz6Jk8JTluu6M5NFnCajk9kRJN4TpeLzK8eVbc62vNtbzru9etj97Zt7r1dXZWfK6sHsh7r+i/z4JWvTJPUinH7qKZ+opBiA6Cqru6DpY6b7mQCtSKDkTqIGqmnqHXDqjmg6/zJOcxrrknu4z/zGfexF81HanT/L7NO98+khqiBqCmHOp5V9zL4u4Eca6SWn/YjZB+iIc0wP/CBD2DevHl45plnYK3Fr3/9a+zYsQNXX3012tra8Itf/KLWSSSEEEIIIYQQQsgQxgAYNgT+SDkNuTfjnnvuwVVXXYURpSNm+vr60NzcjDe/+c3YsGEDLr/8ctx+++01TiUhhBBCCCGEEEIIaTQacrGsu7sb48aNQ1NTE8aMGYMNGzb0+82dOxef/vSna5i69Jg9vWjqLpmGeMwvfFtsW1uTTf/k9lvvkcEFEHzcuz4HXV7Lrfsqf2ppkpWHCWI1zTaqnVd5xCfTr3eAh5qf1o15YgEkHvkN94j0quaBNnER/XOZGaBs2x4awfTSa4otykZbCMrskWZnANAi7n5qQ1ye0qoKAI4/PnZPuvFG13PBgtgtzV4Bt1FJtzoyvkM/J5DVrl5Mo9taPaaiPSqR0mxM1d0m8d5F9zHe8EMzVrc9ee1pa/I2VfTA5DhdeZhk6iRKEzXpBlwLQW215yA9TzvN9Su4UoaOsXmPxWPHejy1qaXMdG1alXf+zJkTdp9OYzXxtZNAU7PyuXTMK17h3vvLX8ZuPdXNwgMPuNejR8fuw1XxSnx1MGv9zLteF23yXNW5hE8fR1HNuXpw+N5Ol5B9h4Y0w+zq6sK60ozu0EMPxQ033NDvd/PNN6Mz8AsYIYQQQgghhBBCCCGSOvkdOB0ve9nLcOutt+Lcc8/F+973Ppx//vlYsmQJmpubsXLlSnzsYx+rdRIJIYQQQgghhBAyxGnIHUhkQBpysezzn/88du7cCQD413/9V4wcORI/+clPsH37drznPe/BW9/61hqnkBBCCCGEEEIIIYQ0Ig25WDZixIh+cX8AOPPMM3HmmWfWMEWDZM+eWDPBd2S8B58NejV1NFIh31VrGSXdl4JQfYZGoF51t0J1w+qFamv2VZUyfYyWyvdVm4suit0veYnj1TdjZr+7EcsiWK+ovaPfrXv0uXNjd1l3L4pUapstWeLeJuV/Jl12mesp9cakCJTy65t1OJLwvZuudpJ60TCT6V+zoc3x626f1+/W0mzt4t1ampP7uqLH0eDwdWFIPTapf6oqWnNzsjak1FjqyEHCRteJiRNj98iRrt+OHTJuT/uaelC/u8k3l8iIV48wwU+XU9Z6kTSuatktr7zQ7NmJ4YWmX7Kr1w1DVrvAKWtt+/sUUi2h85pdzXG/ct4rtzh+550pKn1oBnko7RXoZ/jw9GHU03ytntISgk5vb9I40eqONXnU+Wq2mzTz5aH0fYsQDWswIYQQQgghhBBCCCEl6uR33/Rce+21+PGPf4w1a9agR/3EZozBI488UqOUEUIIIYQQQgghZKhjwB1IQ5WGXCz7j//4D3zyk5/E7NmzMWfOHMcksyFpaSk3j9kXkNvRCziiONR0Iu+4fBRtvlNL04Zg86AUtlmNaJqXN74t7E4dL2DLfyZ0XyY1JAuwy6ulKXlSfGnS0eaxyukTprTCkgof/rB7n+w+H137IsdPFke7J/uz5l1ba2O1UW2lt3597JZWi4A7RLWIvMuaV3mb4pWh25e8lj8qKlMwWYYHqfzJ24RGmikBwPSuwYeZRQ6g2mWYBzLurCaxeaRfW/tu3Rq7fV181u4/dAzMSh5jiPNuBcxnJScuqJ+62+jz1jxwp7dh/U+9SoIUMZ+ql3cjJCsNuVj23e9+F+95z3vw1a9+tdZJIYQQQgghhBBCCCFDiIbcMfjcc881tqA/IYQQQgghhBBCCKlLGnKx7KSTTsLf//73WieDEEIIIYQQQggh+zBNQ+CPlNNQZph9fZHd89e+9jW85jWvwfjx43H66adj3LhxZfc2NcVFvuCEY6uWxiyMGNEaG70XoOnjo6a25FV+18GSVbsl9Ll61TAIxfueQnup0d6r1vj0eGqp1xVMg7XzeiKp7H1Z2tWVHAYpz49JE8XFRNQFvr7Uq9+ktMjKBNoGGXe9UK9jZb1qQuWN1in06S7mQdF54As/ya8R2kleFK0DWI/4+hj9nlnqf73oq2a9L6/nCGkEGupbzPDhw/vd1lq86U1vqnifMQa9QnFxydfnFp62wXDp1x6rdRIIIYQQQgghhBBCCBpssewTn/hErZNACCGEEEIIIYQQQoYwDbVY9slPfrLWSSgEa5rQVzJTy+to+aG0JTaPY8PzyNehlKdFkPcR7mnCLLoeVJMsJiFFkUfb84XnCyO07dVjmRbRH8swOtr98YWmKyn8asN+Npw0+ZNU3vVS1kC2tFS7P6hm/axlG82jPyZDj32xvPfFdy6KfcVk2YCaX0OVhizX3bt3Y9u2bRX9tm3bht27d1c5RYQQQgghhBBCCCFkKNBQO8v28pa3vAW9vb340Y9+VOZ36aWXoqWlBd/73vdqkDJCCCGEEEIIIYQQ0sg05GLZ4sWL8aUvfami36tf/Wp84AMfqHKKBoeBHfSW31qaZ4XGnXUrbi23Q+fxbo2wnbte0q/jKjpdjWBakjWNebfRUBMdH2nSnyXNjdAP5sH9y938lidgdvQ8697c2Rm7xam0mqz9c3d37NaHMbY0Dx3zaElWU8LQ9lVLOYZamvqFUrTsRJrTSPOOu4i+upbm9JKNm+PnZLc0YBjiwC6nwwGAdmGTXsDJy5lMmXt63GtfujZvjt3yXVRnui+eSFk01ZxfDibMPOZyQ9l8nJCiacjFsmeffRb77bdfRb+JEyfimWeeqXKKCCGEEEIIIYQQsq/RkNpWZEAaslz3228/PPDAAxX9HnjgAYwfP77KKSKEEEIIIYQQQgghQ4GGXCw744wz8B//8R+4//77nc8feOABfPazn8WZZ55Zo5QRQgghhBBCCCGEkEamIc0wP/3pT+PWW2/Fsccei+OOOw5Tp07Fk08+ib/+9a+YNm0aPvOZz9Q6iZmptp25j3rRcwq1hS/ieOIidAvyjquaWgGp6qfUGRHuvta28DAC0+KrB074Mk0AmgrQOKkX6lGvqAjdwn1RD+PKK93ryy6L3cdsWOZ6zp4duydPGXTcWo7nwQdj94EHun5TJg86urqknupcGn2tJGS3qMtXyijV03vnTeh8J2sflof2ZC3Jo+zXro3dWt+wtdWTP6tXx+5ly1y/hQtj94QJiXE7+b/uKddTNgAVRpNIaHBZbNjgXvt01eS7TRYd5tSpzm1S2kwH0dG6K77Qmm4yo3Wm1wo1DytCay6JWranrH2M7JPbcijCetIzI6QRaMgaPGHCBNxzzz34yEc+Amstli1bBmstPvaxj+Gee+7BBM+ASQghhBBCCCGEEDJYDKJFlUb/I+U07LaKzs5OfPrTn8anP/3pWieFEEIIIYQQQgghhAwRGnaxbKjiO/K7Xk0gQtOY5jjzLHH7CN31ndX8Ig9z0Kxbo/OIuwizE2fvuCwAZYbpI/TdvGmU6dA2Rvr8+jqkXtt9HsjiqBcLkTQklU1eJtVJ4RxyiHstrXzQ2+l6iozN2g/KdOkwQmmEsaxofPnqy5+izVik5ZY0lQOAWbNid0sBM8Y8ZASySB3kZoqUoROrpnRCVoow1ZKWhaks76RZ4/r1rp/I/+A+Rpo+ajxzguA80C8nr53OGq6ZvCdTZBboatbR7mnA0tJmcg3t4hNkOQBU1QzTR95tL2s/rrNn69bYLc0wfW20aOmKNP0DzTBJo1MfPRQhhBBCCCGEEEJIg8FlwaEJy5UQQgghhBBCCCGEkBJcLCOEEEIIIYQQQgghpATNMOsNeT40gKY61VTKYvOexm49VKuqqWd7fKGEHORzWhLBeU6ixQJkmM0tienwpVEG6ZNmyENHoAi9k8z6S+0duYaXORynDAff5VX72O3MccuKt25d7FZH0ucRd2h71c1LJksfYqylXULSUUuyahpmSf+HPuB7Zm6iT0vGvJJp7FDlcvxxmYIslEapI9VMl2x7UqMMcGWOZJsE3HbY1ZV/+htB68arJyc0OPPQD9XU67wgC+M6M6Zj/vzK7hQ4ZTP/RUH3ZSaNNligzt3MGb50dQpnZ9JNweShqberV4cRz59bWmv31bNe2oJvLGhpdtM4aWLlMNK8S96aoWn67b0yg7t3DzpaQmpCfcxEUnLKKadg5cqVFf0efvhhnHLKKVVOESGEEEIIIYQQQvY1mobAHymnIfNl8eLF2LJlS0W/rVu34o9//GOVU0QIIYQQQgghhBBChgINa4ZpjKn4+SOPPIL2JPsdD+ue247Lv/IX3PPgeowYPgxd+4/G1953Al54wc8w6+BO9Ozag9Ftw/GOc47ARa+aCQC45uaH8IFv3I0DJo5Cz65eXHr2YXjv644CAHzlR/fj6l+uRHNzEyZ2tuJ7Hz8JB+8/euCE6COt58xJ/S5DgeAtw/I8bW3HJcwjytB2KHtRZrDOdvr2ZDNMn/mFPFleWwG2tdbHlvAiSDopvK25t/zmvXjMJH3HcAebI9bpkeU+MpvzyHddtix2ZzTDzGPrvs5+2QxHjXL9MnTjmclqopBUNnmEUZau3l2xh6fe1qsJYjXTUS/vrMmaLt/4EmrmL8chPc345z9j986drl9XV3KYoe0mDxMgmX7fuJmH+WNWyYg87svDBC4reZtqVZu8y2IokKVMixjr5XVLAWN7Netu1jG2XutdHvMYH488Ev3XYwshjUL9f1MUnHjiiQCihbJLLrkEo0e7i087duzA8uXL8dKXvjRVuNZanP3B3+GiV83E9Z89FQCw7OENeOa5HTjkgA7c9z+vBQA8+uQWvOZDt6Kvz+JNZx4KADjv1Om48gML8NzzPTj03J/gnFOm48BJ7Th65gQsvfY1aGttxrd+9g988Mq78ZNS2IQQQgghhBBCCCGkPmkoM8xhw4Zh2LBhsNaiqamp/3rv3/jx4/G2t70N3/3ud1OFe/u9T2F4cxMue83h/Z/NmTkBB05yf/6YfkAHvnL5fPz3T5eXhTF+TCtmTB2DpzdEwvEnz52CtpKI5fzZ+2Hts9vSvi4hhBBCCCGEEELqFIPa641Rs6wYGmpn2e233w4AOPnkk/Gtb30Ls2bNyiXc5Y9swrGzJgx8I4BjDp2AlY9vLvt8zbpu9Ozag6NmjCvz++7/rsQrTzhwsMkkhBBCCCGEEEIIIQXTUItle9m7aFYLrHWvf3Lbo7j93qfx0JrN+M5HTkTrCDdLr/v1P7H0wQ3441VnhkVQRxpledvXF3JEvNBf8ukIaL++CftVTpfWPUsIz4e+r709TJMoa3z1itTPcbV08ul2gvNHRN7XHKY7ByRrYFS7XDJr3QjNvqYzzsgzSV586W1tddN41OzkNirJQ4fIRx5aUj5y0VESdbdR+oZG10CqF3z1R/atvjyW45CeZhwzJ6wdVhv5Pm2t6Z/J4z5NvWoC5kHRunP7CrWsI6Htt+g0tga217zwzfeHan1N855Z/NKE76t38+dH/6upQ0tInjTkYhkAbNmyBbfccgvWrFmDHqn8ikjT7N///d+Dwzpi+ljc+IdHg+697+ENOKyrs/96r2bZnQ88g1e97zd45YsOxOTx0ZfU2/66Fp+95j788VtnYkTLsOD0EEIIIYQQQgghhJDa0JCLZX/+859x5plnYrM+ubBE2sWyU+ZOwUe/9Vd856YH8dazDgMA3POPZ7G9xz3OZfVTW/Fv/30X3nXu7LIwTjhyEi487QX4+vXL8fl3zMN9D23ApV+4A7/52unYb9zI8JcjhBBCCCGEEEJIQ1A/+7JJnjTkYtnll1+Orq4ufOc738GRRx6JlpZk06oQjDH4xX++HJd/9U584QfL0NrSjK792/G1974Ijzy5BUdf+DP07NqD0W3D8a5zZ/efhKn50BtfiGPe+HN8dNEcfOAbd6N7ey/O/ehtAICDJo/C/375tEGlc6iRtwliLbda52G6Uu30h6Y5q6mZ85w8N7w5vNvJo45kDaNeTCdCzQtqWX+KMH0KNQ3w+dWL+YUvHdt74jRr05Wk53b1uu8ZaopX7fZUL/lfr4S2oWpKIvjM0YuIzxdXlvfOI4w8JCNCzfqzxl12n7KwcMhgE1d0X+oNf+1a92Zpv9XZOfjI161zr2X+BIZfT2OxLPuy2inerZqmtEWEn3cb6nX3QwSPo7m8my/yHND1U3YPep/JlMnp+2ffWF9PpvyE5EFDLpY9+OCD+OlPf4pjjz02tzCnTByFn37u1LLPd/zpLYnPLDrjUCw6I144mzJxFNb9+kIAwG1Xviq3tBFCCCGEEEIIIYSQ6tCQy78HHXQQdu7cWetkEEIIIYQQQgghhJAhRkPuLPvkJz+JL3zhC3jpS1+Kjo6OWidnnyCr+U7WbbvV3MZbza3pevuz3P2vTwpMIq80yl3gcou2tthoydpLyEBlZAUfieOrO+U736ub54OlXtKh8bWhrH5JFJ0HRZuCaT9pETR5shtO0gmA2opIPtfSq8yxRIPOw/JDh+GGV59msLVElrfu/1evjt2dnfF9XV3J4ZXlqSwQVTi7mtsqevnGmqx1JOs4mmWs95rAdW9xb5bjjU8OoLu78jMKnT8tmzfEF/I0bW0WKU4nzkpT7674QncCsjLp9M+aJdLhdip5nPqcyxxKNo5rrnH95PGte4/W24vnBPNEbr7ZvZYNbsEC1y/BhLXq+eNDlr1Or3i3POIOHh91/Zfl6zMLlu2ygLmibL+yyevoMo9lMgJtTiwj1Pkj26h67zy+D8nuYtky1+81Z6UPL8086Z57ov/btqWPp5EwaNAdSGRAGmqx7I1vfGO/+5lnnsG0adNwwgknYNy4cc59xhhce+211U4eIYQQQgghhBBCCGlwGmqx7I477uh3G2PQ0dGBFStWlN1njKlmsgghhBBCCCGEEELIEKGhFssee+yxWieBEEIIIYQQQgghhAxhGmqxbKhiYfrtv+tV4yWP4+Sz2t039WyPL7RgiLT710d+J4lyAY4mQF9zS2Ia8y4PLTMipQmmTnX9krSBMmuIlYUTv1uv0GfIquul6UvQaCnTlJER5nAsvK/MfHlXhE5eHkedB1OmkePRBSkQXz5m9fNpfmXNu6T4itCi8R1X79OnSgpfS7m0dG+ML1Q92NI+pd/94IPJcU8a69FzknE1u++5vSe53PLqq0II1tXU7UTiaTN56A4tX+5eX3117J47N3a/853ufd74pBaQercNzQf1u+XYIyWg9GNbt7p+EycmR50UhtZEK7zv8+kESS0gn26SfE4+A7fsdfVpWbkyvpB6V3qw75qOTMh32yD00YSlBQBg5MjYrXW85HNqopFH/oeG4R1jZRoPOcT1GzYsdutGJCtz6PxBi0POmBG7cxg3s84lsownANDke29ZYWW/nkWwMg26/sty0wNYkk6Z7qgEWXWUfa/tk347SM3PE5H1+Ne/dv2eey52jx/v+sk2G6jVlkYDtqsr9pvelU1nOuk+wJ0HyHwEgA98IPqvu+ahCDXLhiYNuVi2Zs2aRL+mpiaMGTMGo0ePrmKKCCGEEEIIIYQQQshQoCEXy7q6ugbUJZs+fTo++MEPVilFhBBCCCGEEEIIIWQo0JCLZVdddRU+97nPobOzE6997WsxadIkrFu3Dj/72c/w/PPP4+1vfzv+9Kc/4bLLLqt1UlOTZmtx1u2yvjBDww/ddu8znwp9DrffHrt37nRvvOuu2H3SSa7fM8/E7t/8xvW7/PI4LnEUeR6meEnmk4B/d7V+Tm5ZllvCpygLgjxoa81Wf3wk1pGlS91raRv2ute5fp3uSbdJ6XLi8hWAZw9+HqbGVUceRb5qlevnMWHIg6xtWyKtonyWJKHhpzEpKtLkXYctTRS0mdukicnp2NUrzTdj97h1/3BvlPVAmZDddlvslhZjAHDaaSIdY4VHuS12Yhpl31SvMgJOX1GAmVVoW5BWegBw4oLBm69tbt4vdmuVAlEtpFWULidpNpnVOsuXrXmYsHqRiVb130EOwNqe0vdcQlQAygt1Lz776jSICPsmxybVi/d/Q2J0Oup6aZe+dPxo6cx+9+wjZzp+R234Q3yhzTClCWWoGaa0eU7zXCBZ8zvLvBqAP/2iYRbeDiW6EubQHoLT7DG1d/t/t1+9777YLb8+AMC7lWl8ErKN4m3vcPzksKrlDHxSDaF9ct7m7nL+AbhjiJxyAO685m1vc/3OOy/6/+ijqZNASF3QkItlDz/8MObOnYsbb7zR+fwTn/gEXvva12LdunW4+eabceGFF+K6666rUSoJIYQQQgghhBAylBnI6q0hsLbWKag7GmDrRDnXXXcdLr744op+F198MX74wx8CAM4999xqJosQQgghhBBCCCGENDgNuVi2detWrF+/vqLf+vXr0V3aH9rR0VHNZBFCCCGEEEIIIYSQBqchzTBPOukkfPSjH8Xhhx+OY489tv/zpUuX4mMf+xhOPvlkAMA///nPWiUxFaZ3N5o2b4wuUmgnVFU3LAdS2eFLg/hf/Sp2q+Ood/3iF/3ulhtucMMQxzT3KaGgpn/5l/hC6Fc0pRBsScpLLZewY0fs1nb+srizasXkrimWAlmmOv2J+hj6/Oi//z12l9pu/3Oh7UEmRGeyTJgS1ulrbqmcxgrXIfi0jAa6NwlvOmqoWZZEGsm4UM2yeiW0jsjT5Mve0+O5bl1LxduOaVcZKfVglDCiPJF+4UIk+jl1SReUR2wxSx2vtoZSHvFl1hMS6PzIkj+6fUkJSDEcAgBOOCF2y7bm63vSjENJbV2H4byPHiADNeRy0VuScfniLUtjW9BjRSPf+1WvcsvwrW+N3V/4gvuc1KTzhVk0UrtR152XvjR2//73rt9Rs0VHdf75rqfTiYXh6EoNQFL+pBnry+YkElmhAhtfWfsV9TNv3aoiwgglld6yrFBysATc/J86td85rtMd1849N7l+ZkF3I/JryMSJ7rvJ+NTXHBw0dfB5nqX/1NkoVY20dOA558Tu++7b5vh1do4CAGzZEhQtIXVHQy6WffOb38Spp56KefPm4aCDDsJ+++2HZ599FmvWrMG0adPwjW98AwD6d5gRQgghhBBCCCGE5Iox2Xc91BO7d9c6BXVHQ5phTps2DStXrsS3vvUtnHLKKRg/fjxOOeUUXHXVVXjwwQcxbdo0AMB73/veGqeUEEIIIYQQQgghhDQSDbsEOnz4cFxyySW45JJLap2UwfPMM8BNN0VuuZcV8Jq/ZKHqR4iLvcUtasXda4Ym3/vUU2P3zTc7t7UMHx5fvPKVbhjCDK1p8mTXb/78fuf23tjUSTcIfbxzCHpDo9yKrX908Jl0SMuqorfWhx61Lc0oAHfruK+qOlvAtXng+PGxW2yR1895EeaU6BzneGXOn6Q88RRaHmaXqZBme7Nm5R++h1AzZB9SelKbJ8oft0aPjt21NIPy4StfaQKn+4cZM/brd7f0bnf8mkW9ltZGfVNnOvf56p2wMi/rf1qwK77oDTNRq6XZd2j4PnPHqo+BAh13lrzUZThmTOweO9b1W7my8n26DvralIzPZ1Y0cmTsLhsL5IPKxqiva3py5HVCPdatHdvcuH53W5wO3+aGWtZ/qRSgTbxkP/X683UaZ+eaDm1iJ691W0gq31T5KG3WdOSzxbuJQVDXMzmG+CyZtcltW2vtynuw6PeU152dqu+UkhqBprm+/jfL3D8Nuv60iDZ70FQMmjzmm7ofv+CC2L1kiet31lmxe9u2UY7f5ZdH/x94YNBJIqQmNOTOMkIIIYQQQgghhBBCiqChdpb9/e9/xwtf+EJMmzYNxpjE+4wxeOSRR6qYMkIIIYQQQgghhOxzULNsSNJQpdrR0QEgOg3Tt1hGCCGEEEIIIYQQQkgWGmqxbK9w/zXXXJPquQWX3lJAavJjxLa+WFxEn8crtLXKkNoHWgehVsI+HjGFVMdAS6Th/CGHuH6XXRa7pbYZ4Go4SQEwAH1C32DlsvjzAw5wg5g0UTwTaLWss15qTUh5LqBcp6lmSHEbXZeEmIivWunHkg6jHad0yRwxppw1+oAU2g267sqC05p3BaLzsbk5+ThzRwewbiqTy44dsXvPHtfvmWdit9QlA4Bly2L3aafF7ry6tjy0hkLrlqzWuvq3dG+ML9TLyfL2ybBILUGdP17Nms2ikQb21bpdyypYL3pyRegy1VL3TMandSNlm9Ldp5xOyHLS0wwpm+TrgnVd0vpIici6lVGjrKp57tkdkFV3ruj0v/zU2mlThc7tZD2TUw7AvyEj77an+zB5rfvZpP4z1XzWN4+Xkcs5SGubc5vUiFq71g1CjilaunTmjMrRZp2PV7O+6zoRrMW3erXredddsXvhwn5nb2uHc1seOmUyHb7+UffjeWvLZc1/+VyHGgvk9evPTw5DzlmBeCqt53+ENAoNtVgWwm233Yb3ve99uP/++/s/W3LfEzVM0cBcKjpvQgghhBBCCCGEEFI7htxi2fPPP48VK1bUOhmEEEIIIYQQQggZyhgzNDTLSBks1XpDNzS5LVv7ya3Gel+53Iudg22M3nrtbPH1nLstn9MmZJs2xe6xY93w5as2zZmTnDAZn7qvrz3eYr1+vfvYzp2xW5oG+LZhh5pfaGs4n3VcHtvdc0GaHOqCCkRbMUozOsnCheMSw9D5kXf+eMNTZg9Nkyu3G19byFpmMu/KzTBj99atrt/EieK4dG3fVyN0dyO7Jv1u0pxEW05IU7FzzondeZkz5RFOaBjTuzyesoNQ/bgse9lEtamQzDtdDTpaRabrMUQWlvDz1cE0Q5S8rqUZo2RLd3Ib7WgP6+O942EKkp7zha/zWA572tpr3brYLeuIsKwPTtNgyCzBUEWcNAqZBsCfxnpMv6/9avJOf2heHT4r8bZUYWZhXGefuk4fRpo8dhqiniN3xvMh+Z76nV99RuoklpG1Dw59Lu85q56Pt0izQN88VU9C5KAonsvD7FIj80AWO+CaHuvvBbNnx8/pupQ0x9Rz7rxNOTWhfYz+OrpXOWnBgmLSRUjRVPHbOCGEEEIIIYQQQggh9Q0XywghhBBCCCGEEEIIKdFQZpiPPvrogPes0/teG4GpU4GLL47dErmd2HfcoDrt0dn/K0/yK+K4skAbbX360W23xe4z1BZz+Tot8ngubZK5YUNQOuSpe/oxGXxnZ7i5SKgJTcgzRRGclhxOe9SnqM0QpzD5rDyzmvhnyf+yyMV1U8FH+fnKvk1ErdMvkzx2rCfMvDI2kCTTAB2tNDfQSZSHVOVymKfnNN6iycXM8I47nMspJ5zQ7/7JrbG5zkte4j6mT0Bz09WS7ClMj3s91poyW/UQK7O4gMNsc2fp0mS/hQvr8/dDWbfk2AW45SElBTRyuqBP0xs1KnZPnBgouQCUmSsWSR6mYKHtMo9xOi9T3VBk+GvXunHr6aEkb/Poar93rfBZAbbooVc2UmVD31TFU6zzMBfPw9QyuI7oTJadn/aTA5GaB/Sd+vKKwedVN+X7yH521Sr3PikH45OlmTgxOS75ajr8ozz9fyih5es7kfW661y/U0+N/u/aNYiENQLULBuyNFSpvuAFLxjwHmstjDHOZ8cef2xRScqFkU3Dap0EQgghhBBCCCGEEIIGWyz73ve+l+m5uR/3qNnWAY//v3/UOgmEEEIIIYQQQgghBA22WHbRRRfVOgmEEEIIIYQQQgghZAjTUItl1WT5zcux4uYVaBrWhIPnHYx5F83Do0sexb0/vheb1m7C2V8+GxNfEBmWr71vLf76g79iT+8eDGsehuMXHY8DXnhAcFwrVo/C2746EwDw1re6fsd0bYwv9Hm8EiUWs7011rdp27Am9tCaaAJtqy5t47UZdnNzZbt2n2zSgw+6fjLJ2v5d+k2YEOvqtMCTBypyqUfQ1eWmV2r8yDRmPU47Kd7QZ9KGExpmaFqafKJHnvB8cct8lbIcvmOx0xCal97wAzWtfHEFl6nW05L6G6Jd6vTKtlb2LjJMLWYkwsxbl0aTVY/tM5+J3VLXDvB0dz6xGC2MKEWcqqjh5sOr1zJtmuO3pTnuxxcujD/3atd54vMNIR5ZHadstMTOuM709amWuo4yH7PGl4duT174qvWUyX3CHX/u00Usyw9ZaVQf0yT7GKFflkY+MbRv8ukmSb8idLeS4vKRZh6Qd52f3pV/3Lt6k3UpfRQ99tSKrVvd65EjY3eL1m7UWruCpHxtxLzKOvdN8uvpdTURe9un9Lu1PmZTrxDEKlg809eGOkTUCxaEjxOyz9RTRTmHamuN48pDo0wTWu+md7nXMk+0RuLerxdVlJCtDdQsG7LUz4yvjtizew/u/fG9+Jcv/Qte+9+vxcO3P4yd3Tsx9uCxeNlHXob9j9jfub+1oxWv+PgrcO43zsXCyxfi9q/eXqOUE0IIIYQQQgghhJDBwCXQCuzYvANtnW1oHd2KjWuinV0tbS0Y0T6i4v0TDol/hh970Fjs2b0He3bvwbDhFO4nhBBCCCGEEEIIaSS4WFYB22cBA9x3w31Y+sOlmPXyWTBNZuAHATz2l8cwYfqEVAtlRxxu8a1vJmx97RH7VvWZ93KrsTpD+IKPH97v/vl18WKebyu0NtGR0WnrzSRrTm0JNlmYfgwf7vpJUx+9S12+mrOrVdsAyX29eo+v2Nfc0e5W9TxMA7I8V7SJSBryNj/SZnTLl8duWZ4eS+BU8SWhTYDKjnEvMG6Nk8d6b33SUeeqHnvDkI1W2tEBXtPOIkljInXQ1MpuzTPr4zAnPb7M9ZSmlnr/fxW3xGetL85zsw53/D70jtj9trfF7kkTs5lZdXisUzpmJIchq2SoSZ2mXsyKik5H0Xkgx9RK1yHosV6O29q8Rnbefe0diWHKrslnolYu6SDdYSaCPjmAPMbzIsxsQ83Qiq6fWU3l5BRTj+FyfK8XM9ii0abwWZFtT/az4zrzCT+ULObQacLwtS/Zd8h5pJxDAm5enXaa69feHptstrTWh+RCmrYm+0Gf0gQhpPpwsczD0ecejcNOOwy3/9ftePC3D+KwVxzmvX/jmo24+9q78apPvapKKSSEEEIIIYQQQkhNoGbZkIWaZQPQOroVh5x4CDY8ssF7X/eGbtz6uVtx8uUno2P/5F9fCSGEEEIIIYQQQkj9wsWyBLo3dGPzk5sBAM8+/Cw6D+hMvHdn90785tO/wXFvPA6TD89gE0EIIYQQQgghhBBC6gJjra11GoIwxtgsaTXG4JL/vSTVM1uf2Yqfv+/nGDlmJMwwgzH7j8HJ7z0Za5etxV/+31+w4/kdGDFqBMZPH4/TP3U6/vaTv2HZjcswZsqY/jBO/9TpGNk50hNLzOPXrcZvfvxrACm1GqRx/5Iljtczx7+63z1xYvy570h3LYck79VyYFmOuPa9m4579erYLfUxyo6Lzlm/ougj3Ysg65HujfBukkYsG0ccSGsOSj+pxTdjBhJR2oROH6Ce6xP6Vw2RV7oTkNdSvERrs0nBQ90ApKBTAeeWh2obyaLO41T7rJpNoeNLQ7a1HPC9d1Zdqbz1qHQa5Tjd0hxWL3xh6CaUt7ZlGoqMu9plmDVd1dQz29Idx9XRvN3x2462fvfate5zUipS10HiJ3dt1MDws44TeaRDD/VSi0y6dT2T0x+t1XjIIbH7uOPC01UvyLanp4qnLMx33Kh2fuyNe968uVi6dGmYAHgDMrelxS7NIiJaZ5gnnrjXWju31umoJ2hcm0Db2Dace+W5zmfTTpiGaSdMK7v3mPOOwTHnHVOtpBFCCCGEEEIIIYSQgqAZJiGEEEIIIYQQQgghJfaJnWW3fOSW1M+MGj0q03NZmNAxIei+MhMRYbrVd8arHb9JCdtse3rcMKRlkj7u/e9/j92zZrl++ujwEHzmBW2trt/hKr5Kz+jrPMwjahlGVqTZg2/7vLTYi4jvlVaA5XcN3qwr9BlfGEXka+HlJm2aJqh2Lm1XfGeFS5vkDeqgEfmcDr9gspj+eU2MtJmkNL2U76k7I7ntXdt3eEwv8yh7n2mbpKO92D7Bl36fmXbSc9U2Batl/ynxxZ21jifdN9C9Seh+XF53dYX1rToMae4kuyUAaG9P/24+uYdqE2oCnbcps4+6MgsThXXllS397o/OdaU92ubP73fPnJGDLTlJhWyzu3e7fqNHJ8+lq1nXQud22rxSmh3ecUfs/u533ft2736u333ggeMdvwsuiN1HHuk+1xaowOAzFfVN0WS/kjW/ZRgLFyanS5ImLt9cRb6rnDLlVXfqqr8jJAP7xGLZE8ufqHUSvFx6STpNNUIIIYQQQgghhNQYY2r7yxApDJphEkIIIYQQQgghhBBSgotlhBBCCCGEEEIIIYSU4H7BOsDC9NuQZ9bO6d3lfhC4FVTetmdPsp+WSpIyQS3ivjSaLIXbsUtDfJ0f4jqPdBStcZI1HfI46iuuSH5O+vn0ywaKLwtaG0KSRWvCp7ek8ek4hGquefNACkDMnp18nw/Z2FKIAdVKq0THG9wH6Hebm+Hkao8oUR56UT6qmd/be5LrtJZpW7cuduu2HapHVUvdm0bQO6lmGsd19qnrsOdkvpbXg9it+2N57euPZR60eKYfvvJNo2cZkg4A6AiU16rX+l90+E1CE/O222b2u9vbX+7ctyiWLIPO0nppo42orZgUjpy7aUaPdq/ztvzK49189ViOSQCwalXsHj48dsupDwCsXRvrlOl+Sup8ad22UKS+4bJlrt+dd1ZOIwC87/LafIdI05dKP513S4Q84ctPrY+2TEg9wcUyQgghhBBCCCGEkLRQs2zIQjNMQgghhBBCCCGEEEJKcAm0DjCw2bY9S7MlsZUeADBjRsVHfEena9OMOXNitzbtSVo8L3o7fhoTu7JEB1CEyWQtTRQ62uO4P/OZ5HfrWPuP+GKtaw7XN/uoxOdC382XrxmKyZuOrGYsoe9Sy/Lsa25xrmuZluA8l/2U71c3n613Dvj6jnoxI/Ih0yvNJgA36176UtfvoKnZTMSz3KfJo01lKaeiTTmLNpVLE7dsXi1QcgzS3qa9IzFM2SzlmJEmLVmlCCSN0A41oXlQ0/FF2Jc1qUngM2Ni08s/XP9s7DFhQv7pyAFf286ad3mXYRmBkiASPVdfu7ZycIA7VDaCGbtWWDj00Ni9YkXs3r3bva+rK3a/7W2un+y3svY3Ms8XLEhOo/66lYiWlpB2nnri65kIy2DkWK+baHNz8nvLPNFmqi8/NfGxYBptPkVIGrizjBBCCCGEEEIIIYSQEtxZRgghhBBCCCGEEJIWapYNWViqjYzciy33Jwc+AgCbN8fupUtdP3ktT5oB3C3Kvq2/Wc3j8jZZCN2anmb7cNL71OsWZK95zXXXxW61dbz3M19MfEyWfb2cJlav+a/Jsm29Xk0JvSZYynQ08Tlldpm36ZYvPG8+alMKSd4TI2mmATimGd09cT7q/rilWaRZhyEvU5wWGkq1Te8H+4x3LMhY1vIxHYS0rskjr/RJcvL6mFkqcjHgS/O7rKZaVT+pscC6lVdcdTne6D7gM5+J3Zdf7nhNEv1uH/brdxf9XlnzP48xMHQsSBOmg+4EVq6M3dp2burUikGUxxuna9iw5OhCh6SskiN5nGZbflpl/NyoUfGnhx3m3hVqGVxEW540MXZPnOi+Z+J767lP57iguDRyfJ88Od/T3X1k/c7WCKbAhKSBZpiEEEIIIYQQQgghhJTgYhkhhBBCCCGEEEIIISVohkkIIYQQQgghhBCSFmqWDVlYqo2MPEv6scdcv6OPjt1Ck0KfTixlgvRxzlJKQUui5aGLIJOvtQhaW4vVYspD6ynJRj+rFkRNkYWvCkMek61kpXwSSLnQkHkZSFL60+g91EsehLYn2eYBYOrUfHXJ0oSRVLfK8n/VqvhCugFXPCywMXg1X9o7Ev28moMS3cmLzroIXbK8teWqjVN3PQOb7z2lpoxPwzMPLRddzWSf3Nfa5oav68Ig4q2ElMZqb0/uA7Jql+atyVi05lpo3EW3hY29bj8y7gtfiC/e+U73ZuHXlMOAnocWVtl9UvNLTUKaOjtTpW+gdOTCsmXu9ZIlsVsLTiZolmnkbVnTX8R8KrReh86RX/CC2D1ypOsn5w95rEmk6Y99aZaacbJP3L07OW6pgTYQ1ew7fO8ppz86/6d3xe7QuRYhjQJrMCGEEEIIIYQQQgghJbhYRgghhBBCCCGEEEJICZph1gEWJnGbqrOdVR8HLs+M/9WvXL/hw2O3NKvTRxkLtImdvk5MlyDNdlsZvj5pOynMPMyBBgpnX6TvrNck+s2sYV7lXU5FH6edJryket0odTOL+V2o2aUvLm/+6I7EY6sRnM+zZsVubfKTYObmI1X5Ll8eu4UtvM9cU7/zrt4473p63OBl8n1mLb78b5T6upes6ZXDr65m4zqzhZ/FvEab43Z4LOeC5hUDISpN04YNbtxiEO9Di3Dnb+6bB5nD37y539nXOS6fMAeJbyy77jr33gsuiO8dd+WVhaZLyjYArvlgi6ePkX2TlOEAgCZpfyfKAgAwZ458MCSJxaM1TeRkN6Opq8+UObQO+sII7YvykC3RtLVWdnd2ummcPXvw6QhNU5p7Zb3WaU4iaxlWs5x0GmfMCEtXXmlpSKhZNiThzjJCCCGEEEIIIYQQQkpwsYwQQgghhBBCCCGEkBJcLCOEEEIIIYQQQgghpMQ+YVx77PHH1joJXka2tgZpgJUd6y21GvTx0wnHUac50ldKoknZM8C10c+qKSbleK6/3r33sstit5Dq8ZLm3fLQcsmi2VQmduMKdbh+VbR9lyed6+Oujz8udud11HZoGMHIfFTafn0T9kt8LIvOQl76Cz5tiEzxpdDrkmQ9ljwp/Vm1A7PmgZP+otuMT8ixAPpmH9Xv9urayTqv+pFNm2Itqb//3X1MapDIfnaf0hjxIOuWHH7rKX9C9eR8bTR4jNJzkAztLY+8y0N70hdmWXgZdaYkedcZX3jvfmexunk+pnclz8Ok+6673Oeuvjp2f/jDrt9M2b/puW2GOliEvpJ33Jt6UFAYWbTHdNxZw0gKL81zodSrpmE1KUL7rWiGUv4XgjHULBui/P/svX94XkWd9/8+aZqmIQ1paWgopYZSSikFUihQ2IoVQbtYXfn1iC5odRVxRRfX3/uwLruPurr+Vva53NXviqsiCgrPWoVdcanQxSJFqhYpUCBAgUJLCW1oQ5rmfP9Ics9nPvd9JnPPPee+76Tv13X16pzMnDlz5szMmZzM+z0HxFNdetXSsRPVkMe/11PrIhBCCCGEEEIIIYQQUIZJCCGEEEIIIYQQQkiBA2JlWQib1mzC/WvuR8OkBrzi1Ffg1LefikfXPYp7f3AvXtj6As77wnnoOLoDANC/qx+/+NwvsP3h7Vhw1gIsv3x5dQoppQFr1thxUkpx4YWlz4F7We1sT8WRc2muKIeWSJ3UbcL79tnfbaXs0zd/vfxVnjcwaOcvk+axxXImeoluBHlHDKSiN9Z21PLRyHAuu7uLTIeaWzLLIRVFALB3rwm//LIdN2dO5VJdX4LaEuBs/yHXLgffcvb2mnB7e3Ye41GWIAmVlkiC7+Xmm014uf3++eX6eYXwli3ZWcgxt22w146UnTaXDlw7okuOduywj+Wgk2GPMBYxyhgs5xadVpcjZIwPlVD69i9nXQ0OmIMyxsuhRiNl3rrVjpsrHqlrPIsx1sUYYzR5j59Z+Z+xzD6+8EJzb6tX23ELnnnGHMjJCuxnk4cE0TfP7dtNeNo0O06+AydNsuM6OryydxI8f8hAOVlYfbu9Pd/+K68t52cA0NHh6EOuiV4V59mxn4XOUxJqixL9nRGYPyHjBX4sK8H+fftx7w/uxZu/8WY0tTThur+4DidecCKmv2I6zvnEObjz/95ppZ/UNAmn/Pkp2Pn4Tux8fGeNSk0IIYQQQgghhJCqQc+yCQufagn29u5FS3sLmqc1Y+cTwx+/mlqaMKV1Ssn0k5sno3NRJ1585sVqFpMQQgghhBBCCCGERIYfy0qQDqVAAtx3w33Y8P0NWPjahUgakloXixBCCCGEEEIIIYTkDD+WOVhy0RIcu/JY3P7F2/HAfz6AY193bNXL4NR+y+Wel1ySmSyG30nwVu2ijK48TjnFLzsn2mtFXFuvjJVJm6DOy8jDhbM+5B7p0hgIsD1s1LVCvDhC8fVZcPmwbNtmp5X+SNKravHioCJ6+z9ouwpZLukrAgAvisWg+tFImwtZ/lgeR1n5FDdjhxdEDZd8Z7UZXcdTp5qwfjbS2yjv7epdjAu/DdkwtC/Whg0mvNTe/bmnx4S1dUumlYvuzJ3CwLIMz7KsZ5pHHYe2n9g+L3ogCfHaijGOlJtPAfV8pd+n9uuSx9JrSFuzhY75vrjqQI5Hs6aZPiTfr2Mh723tWjvubWLqZdV30WBne2nmSd2OYQ6e3uqYgyy8yIS18WUAecyJXd5jszur9zz00C2RQ1NTY/ZcTnqsAfarZ0Z75feiu4acxrimNPK85mb1+4Q8Ub+j7BM9Sxkf73dNr7LzEYPO0JvOL4SL51PZ75AYY4LrHTUexxxCfOHHsjFontaMo848Cs9ufrbWRSGEEEIIIYQQQki9QM+yCUv8rXUmCH07+tD7VC8A4LmHnkP74e01LQ8hhBBCCCGEEEIIyR9+As2gYVID/uvT/4VkUoKDDzsYp739NDz268dw17/ehb0v7sWt/3ArDpl3CM79+3MBANe96zrs27MP+wf34/G7H8e5f38ups+dXuO7GCaGzCR3uWYocn34TTfZcUcfbcqh1qYPnv3GQrixWcgd5dby8K8f57J+qeHYvNmOlOvi1ZbomDM3M888KeeZybSzO+24zs4MCZaqY4sIf5XRq+ylJKiz0502i2ouMXdVgZREAUATRF1u2mQnFu2pmjLDp56yj+fPN2Fd35Ycun+XHSk0gq7yx5DUuGTIvnGun0eRyknNhRxTAODjHy8EP/DZ2VbUvn0mvGKFfZpUNFntrqvLThjYL+tFmhGj/Yfm4Uq7p9/kKR9ve3vY3zF9250rncPNoEiqLpHlX7gw+3quvuDqX6FzkMmTMwqpZJFW/mq+0DzT9CmnpFT2S6WRanC8bGKPYS7KGd8qvVYoRflnDlT5lz/2HDlv9BwnC1ddzZ0TWD9ybqcGEtn+WxzzriZLTek/DtrlUIOY1iuOkrP1SVEe0j5B2rMAaFi50hxoLa2wWejpNjLMK6+0k33zmyY8S8mCvfuGfIbSSwVAgx7YM9DXGn0caep1OiF1Bz+WZdAyvQUXXXOR9bMjTz8SR55+ZMn0b/3WW6tRLEIIIYQQQgghhBCSI/xYRgghhBBCCCGEEFIu9CybsCTpOFkXmSRJGlLWJEkwZ+EhOZQoHjPbDsW9v/4jgAqkflVeAu67pNeFLLOWl8nxRq6o1uOQ875vucWEp02zogaWnVkIyxXaevW23C1O7x4kcdVH1gpwIGxjnlou99f3KVUnctc9wH5WUtXVsuMJO6Fccq6XeWdI8VzoZyjRzyJzN0BFw1ZR5p/+1I48/ngTXr7cL0OFvDfXjpFFz97VOTLy18SQpUnuucc+PlZsIqyL6NoFy1deI5XNLvlX3lSzjl3oncx8xzBf8thJLiQPV56uMSBGHcQiq8yhZdT1um6dCd92mwn/w9X+MkxXWaSMVNLSbJ/z9LbsXZNPeuD7phxv+XMrLnr/9Rwv9X199rMmrJRJuO57ooyOHWuHOm15dBbXXmsfr15twtXcRdYl1a0XyaFmPJTRl9AxUs+lJbIvx5jDa4LrXE4exQRoaOEi/2vJvufSkjvw3SE39s6SgHuz66zdVPWzludpOW7ojvch6HKNKkw3bFiKXbs2JBVfoE5Z2taWblC7kY9HkttvvzdN0/F/IxE5ID6BPvmdC2pdBCeXffXxWheBEEIIIYQQQgghhIC7YRJCCCGEEEIIIYQQUuCAWFlGCCGEEEIIIYQQEh16lk1IDgjPsvTuy3IoUTze89Ue/Mt3bxk7ISnC6VEhzVH0AObYirzScsSimh4DvmgvApc3kKzWpt7nzIE2VZLmCr4mYojvT6LrOCtP33TlnOfyDJL1GMPPqRxfxNhtK1bdhVDNNhKah+99bt9uH999twlrywzpd+K9ffw4aSOh7To29eqPJMdr6YXY1hqnvNX0iKrqeB/oeVTO9bKuXct3fb3MM/Ig7/YjGY91FVo/vp53eVy70vzzeNeMR0LuLeSdeuqpS7FhwwT3LFu2rNbFqJjkF7+gZ5mCMkxCCCGEEEIIIYQQQkbgxzJCCCGEEEIIIYQQQkaguLbOqdelv/VSLue1pbyvr6/ia7mWbIdIqcq5Xi3lFxKtRvFWp0jZqwyXk4mSxjTI4+Zmz4LYhNRx6LPQ52Vdu7Ex+1mESuDyvjdfYtWdL7K+fOWPrmtVe6zbssWE58wx4ZdfttN1dZmwVjLXy1jtSzllDLkfX+l4jGvVGnk/sl3EkpCFSHbqpR6d5XA0hFA5ZegcoVb1VU8yuhjEltjlLRfM43p55B+jXL6WF6HXjTFO1VIqHSJ1LaeMMcrc02PC69fbcRdfXHH244MkoWfZBIUrywghhBBCCCGEEEJIJkmSNCRJ8sEkSTYnSdKfJMmTSZJ8MUmSg8rI49wkSe5KkuSlJEl2JklyQ5IkR5ZId1iSJJ9OkuTWJEm2J0mSJklybdQbGgN+LCOEEEIIIYQQQgghLr4M4EsA/gjg/QBuAPABAD9NkmTMb0tJkpwPYA2AqQA+AuDzAM4E8D9JksxWyY8B8DcAFgG4J9YNlAPXCxJCCCGEEEIIIYSQkiRJchyGP5D9JE3TC8TPHwPwNQAXA7jOcf5kAF8H8CSAV6Zp2jfy81sA3AvgagCXiVPuBXBomqbbkySZCUDtB58//FhW59TLVuGudPXireW8tjbyiVyWLP8y1zkal6eVr8dJOdeuqrdIDB2/wzAttA3GroNy6jgrrpxnOB68YkKJsd17NbeC9+3b5ZR3/vzSeUr/slLHrjyziFH+esXXEzDvdhBKDL+rWo4VMTwHY6STuN63rrS+Y0pvrx03oz27LHneJxDmwxU6zobO0VztcyK/5yS19CWLMccMyc+Vf716qPrmU23PNd88Qn8XcN2P9E2V4XLyH/ccOJ5lbwGQAPiK+vk3AXwWwCVwfCwD8CoAswF8cvRDGQCkaboxSZK1AN6cJMn70jTdN/Lz3QB2Ryt9AJRhEkIIIYQQQgghhJAsTgEwBOA38odpmvYD2DgSP9b5APDrEnHrAbQBWFBZEePCj2WEEEIIIYQQQgghBy4zkyTZIP5dpuJnA9iRpunLJc59auT8Jkf+s0XaUucDwOHlFTlfDoj1ghOVGMvWq7ksOwbjcbvuPPMrJ8+8ZRShxJBY+C4xL2f5eb1sJ+9LjOcWq+6qie84qKlV3y6njr3z7+83YSUD2NVv5izNzfZpTY3lS15iyAxj1X1WWWR1aHQdhFwr9J0agxhjZCh5jAEx5hkh85iy7qWvz4S1pYPQWzZs2lQIz5g500q2E4tMXLtjvta3K7MYDbLx5iz3KefZxn6HF8X1PGoOOjvtyNAO7XntWs2DQ/taFNl9/57sEz3ru17mB+UQ+m4LsWSpJXn8vkgwkWSYO9I0XeqIbwFQ6kMZAPSLNAOO85GRR79KUxdwZRkhhBBCCCGEEEIIyWIPgCkZcc0ijet8ZOThc37V4ccyQgghhBBCCCGEEJLF0xiWWpb62HU4hlemZa0qGz1/NG2p84HSEs2awY9lhBBCCCGEEEIIISSLezD8/ehU+cMkSZoBdAPY4HE+AJxeIm4ZgF0AHqqsiHGZEOLaA5W8teX14sEQmr8vLs+gGF4csT0vqu2JI8vvupfBQftY2rxIGb+2fInhF+LClUc1Pa1itM8Y6crBt+58fbfKIbYXXzUpp13FGGNkBxuA7asq+5vuoyFjUz35lmS1O5etTi09v6pNPfnLjef8h1rbCuHNm+24RQvbzYHsYPfdZ6Vrf8siZGGVUXveOPwI64Xc+0ZXV775O6jVPLim/SKCD1ze5DG21dK7V1Lta8f2nizHO3ZCMXE8y8bihwD+BsCVAO4UP383hr3Gvj/6gyRJDgNwMIAn0jQdlVb+CsAzAN6VJMmX0zTtG0l7IoAVAL6dpum+nO+hLA6Ip0oIIYQQQgghhBBCyidN0z8kSfLPAK5IkuQnAH4O4FgAH8Dwh7DrRPJ/BPB2AK8GsHbk/H1JkvwVhj+63ZkkyTcBtAH4IIDtAP5OXzNJkqtGgqPG/yeIn92Rpukd8e6wGH4sI4QQQgghhBBCCCEurgTQA+AyAK8HsAPA1wF8Mk3TMZcqpml6Q5IkewFcBeALGN4Z85cAPpamaSm/sv+jjpeM/AOAvwfAj2UkHrGkkFGkQ5HJQyZZzaXwoc+mms9C5z8wmF137e0Zecht4AFgxw4TXmrvVhxlG/TAPPLeMj7rvNBy5C1z9pXn1otceaz88+xf5ZQxxhggl/67XupNg2qDoUYjt/G9z1qOly7q5T2kiSFPqRfpaB7tIkSiU5aUWUojt2wx4Zkz7XT6OIOFC+3jnb3m2jNWrDARvb1WOt86aNASuAxJXLVtLWrav9auNeHFi+04z+dmofXoVZRO5T6nkbJdwL5X7YGRhewnKo+hhbacuFbtol7l21HkoX277B9sEBZQy5ebazXalgu1tEuoRzsMkh9pmu4H8MWRf650qwGszohbA2CN5/WS8koYF34sI4QQQgghhBBCCCmXA8ez7IDjAHHdI4QQQgghhBBCCCFkbPgJtM6JLXnJY2mxbxmrLUGR+euV6fLjf+gfAmT+elV/1rVcedSL1MaFfmZBdadPckgDpMxT7q6ps5FKlaZGVR/y4TsyadDlyPkvRLHlR8XKknzlg1mE7gQZK8+QdLFlpOXkEbLjqAuXVLqxucWKk21Ghpubs8u0bZt9LLtNm6fKJw986+qhLdn3tmB+dXcay4q7Y51dxltvNcd/9md22iVLTLho7BN4tyU9kHjuxlgkH/QkpL+FSgR/P2gkZBtvteNWrTJhpaB0bsYo7Qb+uNmUy9olE+76l8f/62L73j70IRP+3e9M+OyzdRnj7rZcyx3/9HwNy84qBHUTlIfeEkclX3NRTSuISs8B4NzJ0ruM8+d7n5eFtuh44QUTnjzZTjujvf53rQ7B9S6W9QEAszpEWj0XFfJuOcZ861t2squuMnHaBiXGOCvZutU+njsngp0EIXUKV5YRQgghhBBCCCGEEDICV5YRQgghhBBCCCGEhEDPsgkJV5YRQgghhBBCCCGEEDICP4GOsO35PbjyS3fhnge2Y8rkSeg6bBq+8ten48RLfoyFr2hH/8B+TGuZjPddeBze/voFAIBr1zyIj3z9bhzecRD6BwbxnvOOxQffcgIA4I77nsGVX74Lv9+yE9f/n9fgwtfMq7iMMbZfL8czyNdvLIbXVgxPNJ1O+l709NjnzZljwr67abuQf0xw+Zdpauk3Ju27ZPlbmrP9VFzPQtuBSU8Dmf8CKEMSaYIkHwyAxta2QjiGB0OxGYoD6f0R6McjyftZ6z9oVXNrdVe7kP2hKfCNU8tt4mP7vYVuLe87Du7p9/cVzPJubOjdaScU7X/mTNv3rB7/kOryTFF2PHXJ4sX2sRwW1RBp+5Tpl484bgg16vR9ocl0jvxj+NmUdY4oi6zXhQvtZE2DewrhGetutOKeaHxbIazrX5Zl4UJxb+qFWOSJmcHJJ9vH0pPu+ONNWL+SGgYHMq9d9PKskDw8JGWeoa9b17w0xpzVhet9GMOf1IV1b3277MgdO0ycbIMzZ2Zn+OEP22UR7WnoG/+afd66dYVg0223WVGzTjvNHJxzjn1evxg75BxNNwR5rOdyWRNafZ70qc3h5eVqB00wfXTWVD0XFc9G3duQ8BqVXVk9JiuunPYv42Q1trVmp9PjoKRh29P2D0brv5xfjgipI+pwmlt90jTFeR/9L7z99Qtw/aeHXVM3PrQDzz6/F0cd3ob7vnsBAODRp3bh/I/9AkNDKd7xhmMAAG8+ex6u+chyPP9iP4656Ie48Kx5OGJWK+bOasW1f7sCX/j+72t2X4QQQgghhBBCCCGkPPixDMDt9z6NyY0NuPx8s1NS94KZ6Hl6t5Vu3uFt+NKVy/Chr64vfCwb5ZCDmzF/zsF4ZsceHDGrFV2zpwEAGhqS/G+AEEIIIYQQQggh1SVJ6nOpPakYPlUAmx55AScvdCxJFpx0zExsfry36OdPbOtD/8B+nDB/RtnXT5F4LdMuZ+l7VlqXBMK1dNy11XkooXIkX1xL+WOvBh7MWEWuKR5Hs6UHeUvPQuSnDpVPUX6ZK+YHVQVJjWxXlx0nZJi6XhsbS7cfna611Sxhb3CtHR8H6D7jandtEeTFvrjGkXqdO8SW5fjKHPRzco1TmeXavNk+/sIXCsEWrS9btcqEdf8SF9/VZ8rY2m6/x2Q56vRxetOw47nsSJc0qYpo1ZxLRTcwKPtbkxXX1Fz6abnGkSbdQIWMq6j99PaasDxPd3qX9Enq9Ts77bgYHgkZvPCCfTx1qnlPtMk+A2DuLd8vhB89/c+tuHldJmz1V1V253gjHsD736+e4bYnTNj1/pL1Gll2GQ3HxMtqkTnL4/Im9FqyjZQjV3a1u6w+5Mz/6qvdBc1i2TIT7u6248S7ZkCNU2g0x03tnhpcl0QzZ3yfTdHPpcZRv8NF3UnZJWB3Gz1E+pRjzLh+I0GX82UXzjaeVch6nQwSMgZsuWWSpvbxD297FLff+wwefKIX3/zEmWiewiolhBBCCCGEEEIIGa9wN0wAx82bjns37xg7IYD7HtqBY7vaC8dvPnse7r/+Itz5L2/Eh762Htue35N9MiGEEEIIIYQQQgipa/ixDMBZS2fj5X378c2bHyj87J4/PofHt9meZT1P78aHv7Ye779osc4Cpx8/C5euPBpfvX5T7uUlhBBCCCGEEEJIjRn1LBvv/0gRrBUASZLgps+9Fld++df47L9vRHNTI7oOa8VXPngGHnlqF5Zc+mP0D+zHtJbJeP9Fi4vM/Uf52NtOxElv+wn+ZnU3Nj/ei/M++gu8sPtl/PTOx/F337wX919/UenrI62an0Kopj0PXD5Hscui+7+0V7G22nZtOa2wfHwas73HXOWoJq469fXKULuBZ1rWAMBnP2vCq1eb8KKVyrfEs1J0MunjIOvcVf+h7SyPbedjbCcv2522JsmjzD75l3OtKOWSjbBevXoE5VirZLWRhh1qJfTKlSYsfWMA2z/E0dd87aGKntkm8Qci7fnlMlipIlZbHYeTQVc/yfJuBOz7dvl0Wp5lDr8xbNlix8l2uFv8cbGjw07nGqClj0+OHmUaXUTJnn7bs6/lvPMK4Xb1nosyzoo6bmlUeQifMl9fxHLifPHNw+mtG9r35BhT5GtaRXPOnMn72XhfK7BOh4T3WENr9rN2tQLbg9GmqVf4TUqvW8B+13h605YzBwuZ4xTNN8X8ZGjZGVbctm0mPLvTzr9JVFgu87qMSYmrfsrxvx61Z3P5ORNSz4y/WWNOzO44CD/6zNlFP997x19knrN61TFYvcp8OJvdcRC23XIpAOCURYdi65o/zzqVEEIIIYQQQgghhNQhlGESQgghhBBCCCGEEDICV5ZNEEIkXfVEjOXErjzmz3fUz0YhLdHLtx2aqazl0C5ZjC7jzt5s+WZL9XbCdtbdE1tNGa+91o6TZf7KV+w4Ke2xll8vXGgnlNI5VQmuepWKDt/6j0EsyXBsaaSWWTVpOU9kqi3bzkS2n/Xr7bilS01YSYCyyl+OvCBEmuGSSEkpBmCr3KT6qK27204oHv6jvbaEbLDHhPXw1tIsyj84YCI2bLATyotraaXsz6qOpaQmq7/GwvWcLHKQ6jqlZwH3alkDALbkSElwG+RDnT8/s1wuBVyjJfNpsfOXz14PMrIu160rXV4A2L/fhJcvz84jBlrrI8rVsH27+fkrX2klG5oztxDWtznQbOpkzRo77m2rdpoDx73EkNi5iG2xESrBioKU1gP2wDWBZJcapwQx5/e5r7zPO053IjHIuN6B1ntiy0N2HnKMmTLFjtMWAB64yhGDhn614Zscu8V4A6jXqp4IXH+9yfPKK72uHfudNOZ5oswNao4wZ85wWSZPDrrs+GHUs4xMOMb3FxZCCCGEEEIIIYQQQiLCj2WEEEIIIYQQQgghhIzAj2WEEEIIIYQQQgghhIxAce0EIY+twmtJDJ8O73QOzx3fPGV5y/GOctm1VPMZuupb2kSMbgE9yoUXmrC+F2kX1dcnIrQ5m94KPoOiOpCZSp+amYdayeTz0M/C19chj/qX15bF37LFTnfC4mwvJnmew14vmLzbYAyPEKtcstEBtveH9roJ8EqKUQeue9ZF3LjRhGfNMuG2jmzfnq727Gs3bPq9/QPpLTVpkglPn26nc3k3NjZlxlXTviNv386q+oLqinP5NMm0yq+rwXNQ8PanUs/a8qY5W+wmrnzVrL6m+12ERrKn35Rx/Xrbc+2sZcvMwaZNJqwNOK/6ZCHoqm49xFhjjGNM8R5L1QSiQfp3yeepn20VO1tsf7Qi9AOQdaDqR44/vv6S9YqjK0OubdDzGOe9ybqTF1B1HKV+5LNxeJa5sMqh/THlGKPbf0Dfy72N6DKK+7E8QgG7fqwJM4o9RKtEUX1kGhHD+XxHm5qcYkxI6Fk2YeHKMkIIIYQQQgghhBBCRuDHMkIIIYQQQgghhBBCRuB6wTonVAYVY6twK4/iNeGGPPRf45gmqOXV//h5E37qKSuq4V3vMgfd3VZcVWU/At12Vq0y5Vixwk4rd+vW22QvXmzLYSpGbye/Zo0JC+1iwyWXWMmaZPvU0gPXkmkpr5HptE5Synh1X5Blnj/fvrao534hI9IKJhfycnnITOpFuuIqhzVG6ucpZRw6bu1aExYSjobFi+10VVxWr9VHJ59swloZmYW35BwoapMF9D076qAe20geY6dvG4zBULM9dvZ3ziuE9aOw3jcqMqtc+l68+5dOJ+cFsvHqhizKlbf06aCD7ONHd7QVwvNk31YDrW85Fs1X8jKU7kPBbUI9w2dTYSuw1wS1Ejt2PeopX97TPOc4LicaCt/7Dp1L+/YhC/luAYCbbzbhVavsODGpkvfd3OwpjdZlUfLHXY0zSkbNyGPcFuX/12ttyfZtt5nwVVfZp+lXbgHHOFI0UXJYLjTIY5FHte1NnPNNibYm+cpXMvO08ndYh4SMR0XnSMlza7ZVgD5v9NHs21d2EQipC/ixjBBCCCGEEEIIISQEepZNSCjDJIQQQgghhBBCCCFkBH4CrXNC5REhS86L0km5mdw1DbDlZStXmrBjG6ly5Bd5L623cG0pGLKDjz7nkUdMWEsJffPMgaxl2frnba2mHK2trmeYXVf2jpT+ZbTQux3JrXWk7OGYY+x055xjwvr5up79nDmly+HahUlrV0Scaxm8bDK6+Ty0xZynVXP1IoFzkfeOms48Xf1XVqZ8hp5StjGvnZGunHGwo6Pyv2fJnQIb1W6GTc2l66ccycZ4aIN5lzHkfVXOeW4JXA0lshkFK6f9BI0PSmrWAnN87LG2hFVOY+7aZiSZZ8id9cqhyisHOjqqerkC5cguY4zxzvPkLqZaoubaujQDVz+MMd4X7QQpy+g5xwyWfW/dah22iesNdc7OPk8it0AH7PvRXhwZXHyxfSzVp1pVa1l4yGvpupLHeqfMOqToGcr5v2zTACB37VW/JwypHd6jlMUjXSx7gdHnzUVXZLzClWWEEEIIIYQQQgghhIzA77yEEEIIIYQQQggh5ZIkXD43QeHKMkIIIYQQQgghhBBCRuAn0HFMDM8vJ9J/Sfs3Se+AEF+vSETJU3thVUiRH8anPmUOtKeVY0v0vL2eJMG+dhLVDgb7SycL9e0p4vjjTfh1rzNh/TwdflTOtiu9M3x9NHR++nkLtm834QcfNOFf/9pOJy3X1qyx496odqGvd8rxionhW+j0n8nypNPpIve9cvIL9cKS7N5twtOm2XGNjeX/vYweZeGEjrNWG+/bZSeW/jZq7BtoNh5dcghraQ7zQ/L1sNGWTS+8YMLagyvoWekLbNxYCLZ1d1tRixcbDzN52lCz7W0Wo6/JPGK1wax88vaFK2csdaWLUg8LF5pwzvPN0POsOpblBWyfNU+vrWDvNP1eE37DDVufyE4nue02+1jOYzw9y6TX7fCxI3GjmUPt6jP33bvNTiaL3BC4gsfVFwYGTZweYlxjpjfSu27xYjtO3o/j9wIXsX9nCB0D9Hmj84wkqbhIhNQEriwjhBBCCCGEEEIIIWQEriwjhBBCCCGEEEIIKRd6lk1Y+FTHEbksb5f09dnHcrm43p5bLisvZ49xT7KWE0fZ1jsS3kueZb3qepQDq1r3LZeZ5yHJjFGvrvN83xnBz1RKHWTdCdnBmAWRcbr9yy3YZf463dKl2fk7kJK4Y47JTieVVfPnB12qbvFt1650eWx1nsXOXjt/+WxiyLi0alc2z9A5mJa9SWKUuZrEeAdKqY2mqXEcyDf1O8QhA+8XQ5VUa85VCizX85VDn26DslyyXvUQvG6dCb9ztf/7RF5782YT3rHDllCetazbHKj5SJMoY5Mof6w27SuTzHt+krdtg6/th77vKOXyHPxCZWK+cxDvNqMljq5OFAHZ9xobm6y4BjlX90VJmbF3byGYR7uWecrqCXVICe3bMd63EikpBYCeHvNsTljcXvkFqkzo7wKEjHfYugkhhBBCCCGEEEIIGYEfywghhBBCCCGEEEIIGYEyTEIIIYQQQgghhJByoWfZhIVPtc5w+QGUoxcP8tHQXijSZ0H7ku3YkR0XgRAfBNe9+erppa8LYFeJ9rPJKmPRz6VhyzPP2HHSUGjZMjtOby09QrW9UKx2oH3VHM9+dLvo3JAvJVlXDmMvZ93pe8naWt1lLKWv19pWCG/fbse99JIJu3zJ5C7ioe/hevL6yyJ0DJPIrgbY/Vdbt7S3l++ls2mTfSyfVWdnmDfPtm3ZcbJJuvxbZNuaPt2Ok+OW7zhYjv9I3l5Jkhgea2oIs2gajzMix6AgrIacnmWud6VrzJFpZb3KMQsA3vSm7DyyyjF8bZO/0yY1YA5S7baa9xjs6ylWL+Q9j9H93NWOfa/tO6csurcIv0CH9tGgSYPDhzX0OWWNFfo4h18nvIndBvWvVKGes9X0ZfWlnHLU4/hDSDnUR68jhBBCCCGEEEIIIaQO4McyQgghhBBCCCGEEEJGGI+ig7JZ/p6f17oITqYcZDQLoctVQ5aRj4leQywJ3dM5R8qRIWRJh5qbc/h+LOV8CxfacXJdtqpvue10X5/5uV7CLuVkrkdWjizEInA/7RiSKW/piiyXoxK0FPKpp0z+J3Wre8vKR/18T7/JY/16O+maNSYsnyEAXHGFCUuJkX6+Wv4bQi2XwfvKx0PLKOVlN95ox8l61RKI004z4bVrTTmmTbPT/eEPJnz88XZclkJZS5Bd9yYla00YsCOl7lPejNaDHnNmIahVwk2iuTrrWJxYJBsSxwOD9r3J6+n7zho6aimBy1vmU0/yFCnJle06VBLoOk/Wq67jGO8Cl6S6muQ9R6tVfrEIbT+xr523DYS+z2e3Z79DXPPKvCW4QWgLCpd2PQDH6yWX+ojR7kLGTP3zlgjvnjz6V8g8rJxy1It0NHfoWTZhOSCe6rr7nqx1EZy857LLal0EQgghhBBCCCGEEALKMAkhhBBCCCGEEEIIKXBArCwjgbiWk9bJUtMYS7arKdEpkvbpbcMEzWLl+5YtJqyrXmbh2gHKuYy8b1d2JlWU3FZTlgQAU6ea8ENb7PqRSje5m5uWcv7sZya8caMd19lpwm9+sx0nZYHyvl078o2HXS2rjWyeetc92f6POcaOk8/+7rtNWCulH3zQhE8/3Y7L2qnUKQmXfQ1AkxwTerbaiWXHl41JDQKzJu8shIdaZ9h5iP481NiUXS7PwU+PP3JjZB0nb02Gy5GpxmjzVrqbb7YjZR2rBjQ0f0HJ/PQQ+cIL2deWGx5Xu49KCXeT57vAhe9zKq4fE/fyy3ZcVhsBsiXoue+0rDXzDml/7N1g8x7jQ3eh9G0zMXZLjLHzeznliPEMn33WhNeuteNOOcWE53XFHwNCyl9WO4u8m6cvseR7vjtru3adjNH3pIWBtktoaxX56wFUek3ISYcapxpcPiwCfW/ycjF2hM5DBjtuqJPfjUlcDqAWTAghhBBCCCGEEEKIG34sI4QQQgghhBBCCCFkBH4sI4QQQgghhBBCCCFkBIprxzExfBZcefjGuajX7dKr6h2zbJkJl6Fnl0mzvJEAf581fc/SP8HyTYq8TfhYhHpshDxD7YHT2GrylJZQQPaj0r5nZ59twscdZ8d1dWWfl+XHU46/g8tjIytdLcnDB0TmsWxZdh1s22Yfy+ch/eN085e2IPJ5Ajl4HOpGuHy5CctBQHuTCAOUhsEBO040ZN9xvJw2KPuJLlaW3WE5zz2G101D/57sQi1dasLKQ7Kh51FzIBpCk3pO06cfGlQuiWx3rtdE7D5TCVn3o/vQSy+ZsL63rcKmT/enBfNRkijl36r8AeUAob1EHV5Ascfghh983/7BW97idZ4LV7my5nmuc7TfUoxxsF7eUaHIJqLfEzFsX+vF96lWc/88qHYZXe9KC93BpK+mHJsCO56+7ywPyFjztfHQFqKQJPQsm6DUx+hLCCGEEEIIIYQQQkgdwI9lhBBCCCGEEEIIIYSMwPWCdcDe/gRPbB3+bjlnjh2X9/LVGMtqY2/5PV7wlsGK9dbl1IGMmzkzUN4hl3PL7acB9LfOLoQHxTLsln57O+ooGoII5N1etHRIVp28tt5ae86cbClnltTSRaxtt+ulf8WQi/vKg1qas+vOJbO94ILsay9ebMJanZVVRicu6YSO04UeRWs4PLeMx+bN1mGDyH+ofUYhvH27fdq0aSas67i93dSxLn6t2mDRdWXBpOxSo+uxp8eEN240YdUQmuSLW73Eh2YaiaarPrKkMPq8UJl2HmSVS7cDWSV6nPWVn7rwloZJibJ6H1oXz+p3Y+XveE6+thbrj/xzK06YOAS3A1929po8Xa9913PyfhZbn7B/IOvccYF6ea9pZBvXzSdvmWo1JZrVrP+87zk0jxhSVN/fGQDYkxBJOQOmnNDedJNdliVLzMHChZlZxJjLETIe4ccyQgghhBBCCCGEkHKhZ9mEhTJMQgghhBBCCCGEEEJG4McyQgghhBBCCCGEEEJG4HrBOmDKlGyLjFCNeGyfoGqmqwZZngPllDHG/QwMmnL0Kasw6XMhw0XX1dtMS3bsMGHl0dLmMmASuPwZQuogdn6VIK/X2mqXS2//7kMeK7Bj1Ektx5GQa2lijGEtyjdGXq+jIzuP6dNNWD/fzHJpYyZ5Yh6NRPbtrVvtODl4OLzO5DBy9912MmmZMq8rM4u6GuMz8fV3A+xnJZ+pHnPlOKtokOOsbhcynbjWQ1vsvrBtmzlevjwzi5rWf0PfLnMgvd4ANMn7XnySFZf1ntNIP62bb7bj5s83YVf9WM9twwY7TnrZOZ6TL2X5t/bvKYTnzGnJzEee5xpiysH1DsxK199vpwsaA/T8Q9xAtf1tQ7yx9DnSn1T7msYuUyVpK6VevIfzuK4cHnbvtuNmiTmC7nty+Lfj7LrassWEV6woY76T4XtcVh3IAeLII+04T19iWT9b1DvqhMXj4N1PSCD8WEYIIYQQQgghhBBSLvQsm7BQhkkIIYQQQgghhBBCyAj8BFoHNDy9FU3f+7fhg2XL7EjHNr4Sl4Spltv9xr52qFTLd6vnai8xl3+E0BKUrD9QFJfRgVwT7vqLh4h7un+GFbXpNhOW26MDwCJH88x69qEyQE3sZyNlFMPH5edRbamib736liuP9l9Nmbar/L5xuhyNjbWTorrKb6Vz9e1Nm0xYSs0Aq99vFsk2brSTzZplwl1djhEnljasRhTVv9Riu6R5Uofm0hJqMqRn2pZBKmvXrLHjVqyQxaihxF3et5b1CJ2SbhIuNwBZJ/I8ec8AcNBB2XlY9y3lys88YyfUPgiR8Z0L6XesZNs2E9b15jv/caWTdayro000ceXoUJayuVCm5paxE42mDZhHxpo7VHPOvKe/dHsvdSwJKaM+R9aX73xZp92+3fx8/3473ezO+pPp6TYuZZKa6dPNfcp+CGS7IKxda6eTrxM9hlX1dzP9ghGDiXye2tFhyhQTHmevdkIqgivLCCGEEEIIIYQQQggZgd+GCSGEEEIIIYQQQsqFnmUTFq4sI4QQQgghhBBCCCFkBH4CrQdefBFYv344rA0rhGdZOT4CWdTLts+hhJY3hp9HDFz579hhPxvpD/DiiyasLXHmznF45GhvAknGX0DkNtiAbdVzyCF2nKvuYtdlLf2iXIy3PuQi9F5c7SB2/yrHm813zIzu6ZbDXxed/mWbN5uwNjOS/lFq8JD57NuXfW3pPyO3jy+RZV0S+u4cam0rhBukf6iuBImuEDmAOjzd5PPV3mPy0tpnx1X/VR2bZJvX7x2HqZVvV5FZuDyyiu5Z1rk88bDDsjNxNfLAvu18Fo48BwZNW/jud83PP/hBO13oOCvPk7et25VMp+vf21tRpCvH3tC2XvUbg8fje9nVl6Uvlq4rOV7k8Y71HT+nTzdh/Xxr6Z1sFUY08ubmNiuZ9BTTyDrXr1hpf/i975W+LGC/iqWVKAD09Jj6eeOqyv1ni3CMz0ONTYWwHAN+/Ws7i3POyczCNnybPz+sjITUKVxZRgghhBBCCCGEEELICFxZRgghhBBCCCGEEBICPcsmJHyq9cDevUBPz3DYtQ44B/JeGj0elsLXsoxZEgjAvY27NwEaKT3Wy+XWHR2B5QikmtJLttV8pKi1lED7yoMke/rtdLILFavvGkqmk5IZwJYtNTVmS1z0lvQzZ5o4eZ6WdzS59FOLF5uw1IEopk7NTibHH31vUpLShPGHLfGy46w2Keu1ytpTWcdaAqTbU12gK1I0qBhS7+CyyI64fLmdTnY+rTOU/Uvfm2gLweOZyHP7djtKSqAnTzbhojFAtgM1kGyfNLsQ7ujIrkffZl0kgxUDRIOKzHpu2u7BoRav6e+f9WLToaXZWcSwWgnta/I51dU3gwwZZpNqq7KOdf9qGBwohBsb7Ted7JeuecCkSSas3/UbNpjwqlU52+U4Orp8blqpLk9raRywI6+42oSlFpWQCQBlmIQQQgghhBBCCCGEjMCPZYQQQgghhBBCCCGEjFBPC2UPXCZNMuva9W6YZNzjuzvUwQfb6aQsSkoh81YAuZTA1ZYB5n3t8SC9dBF7t8dq10c1JZq+ebj6l+8OblqmJNO5npmv/KhIgiW1eToTWRiHNkZuYKXlIxMZl1zItw16t1VPbZLOQ+4AON7HrBiUs5NiZkL9onPJbF27n0ZGvvcB+17f9CYTLhqnpFZaVdB0Jd3NwreNF0l/XVs1NreUzMM1RgY/X0Gsnd/rpb/JOg+WJEfAtVNmOZsEVxXP3WzdMtLGEqFh5FByySUmfM89djppY6J/1Tv7bBOu5TysSdxcd3e2JUVRLVx5ZfRyjTuSpM70xyQWXFlGCCGEEEIIIYQQQsgI/FhGCCGEEEIIIYQQQsgI/FhGCCGEEEIIIYQQQsgIFNfWAzNnAitXDofLEPZLnbnLn8HyU7nlZ3Ymr361CatrV3PLbBchvjGaGH4zofn71p30M9Dk4feQdT+19JZw+WGQYmL3y1g+LzHyz4qLVUbftrV1qwnPVN4/se0pdH7r1pnw4sWmvDN6fmsnlJ5B0uAQsL2MioyCmgrBlmZTj52ddt3s2GHCkyY5yqy8hizzoTr18ojhs9MwOGAOXPcZaMbk3cblswbsduHyQ5XnacO6OvRRzaUpyTrYvNmOc3kCZhA6TukuKptMe7sjP9lJ1Rjg8ruS+ezpN3H6Np3zTUf9ZJ2n7zM2W7bYx83N5tp6iJTtKfR98vS27HuTx/XigaaR5RoYzH43Sv9EwG6fu3eb8OTJ9nk19SyTOAaP0Gcjn6/0/tQsXGjCei4hfc/ynof5otuxawzA0lNLpjugoGfZhIW/iRJCCCGEEEIIIYQQMsIB9bFs0qRJ6O7uLvzr6ekpSrN+/Xqcdtpp6O7uxrHHHourr74a3/72twvnNDU14fjjj0d3dzc+/vGPAwC+/OUvo7m5GS+++GIhn7Vr1+Lggw/GkiVLsHDhQnz4wx/GH/7wh0I+M2bMwJFHHonu7m787De/qVYVEEIIIYQQQgghhBAHB9R6walTp2Ljxo3ONG9/+9vxox/9CCeeeCL279+PBx98EIsWLcI73vEOAEBXVxduv/12zBRraH/wgx/glFNOwU033YTVq1cXfv7KV74Sa9aswd69e7FkyRKcd955heuvXr0aq1atwoUXXoj3rF5t7wnuia+MyFoSe/zxdqTnktFQCWIMfOWm9Yosc4wt0V35V3t79JBrlyOtrMfnO17aYMizqfa9+I4rMdq461pSaqkVWJs2mfDixXaclE5IyYKWWPiipSpr15a+1ow1a+yEQp81sPwsK0pKsIoGIImQ382fP8OKOvhgE542zT7Neh55DHDjAd/7jFAfzvFHNyDREF3voSYpvVy/3o5ctsyEqyzJjCHDz8qjQT8L170FaMhijaWZEkH9ED2loq5ySUmyVuNqabaFuF7QvBS29E8/GpcUvkXcqrz2bbfZ6aT0Ukvl5NjapqRnvu8eWXdaDS2bVkudyBFdz2nbNvtY3o/uJvJZPfts6Z8DtoR4vKPbQZO4V9lP9D275LhS3pr7fFyPHRnzgobAcYSQicYBMpP157nnnsNhhx0GYHgl2qJFi5zpH3nkEfT19eHzn/88PvOZz1gfy0aZOnUquru78dRTT+VRZEIIIYQQQgghhFQbepZNWA4oGebevXsLMsjzzjuvZJoPfvCDOOaYY3DeeefhX/7lX9Dvcv/F8Kqyt7zlLXjlK1+JBx98EM8991xRmhdeeAEPP/wwzjzzzCj3QQghhBBCCCGEEELy4YD6WDYqw9y4cSNuuummkmk++clPYsOGDXjta1+L6667DitHd6nM4Prrr8fFF1+MhoYGnH/++bjhhhsKcXfeeSdOOOEEdHZ2YtWqVejUW/AQQgghhBBCCCGEkLrigF8v+I53vAP33XcfZs+ejZ///OcAgKOOOgrvfe978e53vxsdHR14/vnnccghhxSd+/vf/x4PP/wwzjnnHADAwMAA5s2bh/e9730AjGfZQw89hOXLl+O8885Dd3d3cSGamsJNbkbw1o9rwwGHh03DBrHxgC6fFN9LYb5aghrDa0gaJjTolX7i2tqDJNQ7Q/LQFpOHroIZ7eXfT+gKXekhofOY3ZldDm/PF5eXX6k2O8KB6FsQyzMrdt2F5h+lj3qi84/RR135NWx9woT1HytER2pvN+dpPxvpl6MtPLK8vMrp5/LemtR5F15oymX5qi37pJXutSsGMvOXdbJ5S5MVJ18HbeIC+ql0dMxAFlb70TdeJ5IEl++ly44qSn9w+cRl1I+rLzv7UKP9fIuexwgvvGAf72+cWwjPXqYSV9FsKIZHWei1+tBWCOs2Yfn+1Qv62ba2lk43BrIeZBYPP2ynk/MfvTdWV5fJQ/t1yTxlkct51rIJ+trH6WYrfcn0NDhkDNDll68Xl3Wj93taz8nkDXXNK31OCULe767pvq4reW+yjjWua1dzDuJLqLeuHCuawrpkMN51V6fvaULqlQO+h3z729+2jn/2s5/h3HPPRZIkePjhhzFp0iS0Z0wWf/CDH+Dqq6/GJz7xicLPjjzySDz++ONWugULFuATn/gEPve5z+EHP/hB9HsghBBCCCGEEEJIlaFn2YTlgJJh+vDd734XxxxzDLq7u3HppZfi+9//PiZNmlQy7fXXX1/kfXbeeefh+uuvL0p7+eWX44477sBjjz2WS7kJIYQQQgghhBBCSOUcUJ9A+/T68BKU+tAl6RHrz0t9+PrSl75UCK9YsaIQnjp1qrUb5rXXXlsyf6f8on+PndixXXfDoJDliC/dRelcX8HlmmrX2uurrzZhtRtog9A0BcvQXGvkHfcWgs4j7z8SyDrY0599bRl+8kk7j97e0jIKwF6571RpPPOMCe/fb8c5ZJixibEEP3T5fDWul3VeLGlnCLWUPbjkcd4IaXbRVucOibiUWG/ZgpJhALjlFhN+wxvsuClTTPj4430KW159L1xowtu3m7DeWHnPoJHfaQmQrBLtJmBVl9QRqXr0ldCMh7+qhkqBg5F14pJkCkL7ZNF54nryLqdNs+Wa0t1goHWuFVdNCWItpVpZ71tXOXRZ8ih/3nJ9ibzvo4/OjtMyPRnX22vHyXmHHFulhB0Apk/PLJa3wlTW1VFH2fd5+OEmHKosdj3DFsc0VZ5XPASYOKuvlaMV9cS3DTY3h0nVW1uz29auPj+pbluVpYsxqKaM1NV/68Xag5CJBleWEUIIIYQQQgghhBAyQv3/GZgQQgghhBBCCCGk3qBn2YSFK8sIIYQQQgghhBBCCBmBn0DHE+V8sZbGCKFfuoUxRZF2fdvT5uAf/zE7jw9/2JwTahQhyx+4PbovWpPf2WnuO+8/GLh2c96xw4RfeslON3myCQfbWixZYsLqOe0Unmj6EYZ4GOTtGVRLzwiN7IbSFwiwm3K9+NnkTQwPjKI8XN6NjvFC+u5s3Vr65wBwxBHZZZk2zYRDxwdfD5KODpNOjwG+dHQ4IvWNezLe2mBdIQaIoUbjIxatTjP80loaB6xkze22h1m9IH08//AH8/MjjsjuM9J6rxxkVbm839BYeV25/Ek/+1k77VVX5euHlJVne3v2WO2K27LFjpNjq7TqXbbMvp58P2q7LmmfK30cgWyvsGOPtY8jWH7ZdaXN2eQFHBdzvie2bTPhTZvsuDVrTDlkOsDyDb5jx6LM6x11lAnPcrwLQudoLg/SvXtNWPuCynnlCYuzr1vNd03efrbau04+p9x9ND3hu52QYeqjRxJCCCGEEEIIIYQQUgdwZRkhhBBCCCGEEEJICPQsm5DwqdYZzmWvuhPKbeF13MaNJnzffSbdpZfa6eRycZ2H2N+5aAni+vWmGLKImzfb6eRS9VAZpoO8t1Fuaa7eMmRr23DFnDnmPmfNsuOkFGz3bjtObtEtl8ED9lbtTUK7MjCYvW14Ocvzfes/7+2uQ68VYym87FJVf4fGkGJHJvRZu55FqIR1RquRoi1daqRVWh7R3W3CWtUpJV+hVeySrmShh1J5bZfcKIYEuppb11eDkPqHlkFJDZnUjOk4Ld0SDaqhNawByfI/2mOXv6fHhM9aUVqSqfOwXhqAXWaljwvte77Idi3l0Lof+vY917Ou5hDpslxYsSL7vBj1bVloAHZlyvYYmL+WSUpk09JdSKrAdRcKGWfbWrPLH0XmpvuJ7OeqgTY45tlWWeR5uoJkpehGIiqvy+FUIueKeaNtJ1580YRdEkQXIXLQqiNuvEG9jGX58xhvJtq7mZB6gTJMQgghhBBCCCGEEEJG4McyQgghhBBCCCGEEEJGqA9tDsnEuezetY5X6nTkToeu9f+uZeUOiWajXHd/8snZZcqB8bC0OEYZZ7T75dHYaH//1svd7bSlE+q9vhqbs3f/ahgUu6qpiw01t5h0dfKcXMvUtWxAHocqiGUeckdToHjHr1Gi7QAVsM5/vO8+5UQ/YFE/lmRHteMZ88WBHiMb20teylc2qnHVgYybUfqyAIpl1LF32cp7N9ta4t0GtQ7QpX117eacsZNraF/w3tDUNTboe3EMfr4S1tD7kdYEs127XIp+OYS27Gt7SqT0bpUtzaa+YoxTuvplnsuX5zwGl9N2M9BlkvWldyOV9yqVhHo4ljskrlxpx80efMIcDNqNfKix9Dwj93FJdzaX7YHnu3io1bTdBi21lGPFzEOtKHnfc3setc+T76z2LhHh0GsqCWiDvLesiQvcMkPZLnQbaWsW88g+0zB6B+2+LN1l9I6asj0tXWo/e7nzau7zDMezzsOGIiv/ifReHjckSd1YnpC4sDcRQgghhBBCCCGEEDICP5YRQgghhBBCCCGEEDIC1wsSQgghhBBCCCGElAtlmBMWPtU6J1hfn2UO4fDtKYrbvNmEtW+JjHvqKRN++WU7XYAfBhB/S/q8vZjqZctm6fEyfOx5YgyfhSq/JLLaSDmeSi5PMWlJ4vJmc7Xx5mZz7VDfs9h94YCltzc7Tj5sPQ7K5x04nuX+3ETjHWy1/Ww2bTJh+VoAwtukpB7bZB7jsdUPte+T67xG4fnYavs/xq47y3sPQJt/MQ16HPe8V9lNdBeS5YjyLtZjsOjbRc9GppVeTPo+58zNjJJl1pfW71wforTBMvLY1WfO27LF9oFavNiEm0SeT2y1n5P0mdL3rP2jJNLSVnqRHXSQne6ll0y4yHtvUDxTxzzD9ZxiTE+stis8WYEynofqHA1ZBVPGXtY44kJPZLZuNWE54JcxhvlWnqyDpkH7PpuaHXlkvGP7bOs0qxja96ynx4Q3bLDjJk0y4VNOyXk+lcM8WM4/vdtBDnAuSg5UKMMkhBBCCCGEEEIIIWQEfiwjhBBCCCGEEEIIIWQEyjAnKEPNcjttT/SybLkWXsd1d5vwlVeasN7uOlDn47vE17Us2CXFibGcOPrWzC6JrEsum5UuFlrPkHXtKpP13PRzcRV/924T1k21pVnk3y8y0XI+qQdQF5MlaWvNrispk5HbowPA8uWZpwXhkkG5+lAecugQXGV0yu9cEkr53FxtOkCOkgtSWgNY8rKW7nYrqrPTyDYCVaTjnhjPIzQPeV69yPVjMTAo5X3m53/4g53uoosiv4t1PxSDt67j/kHT/i3hnNRtAU4Zphwe1q+3484U43OM8TKPdiDvR0scs4Y0PeWT6XQdz5rld+1ly0xYj0XuIbg9M/+s+mpsrNO1AL5zJi3XFPWlpXhWu9Nae/nAfefjRTrYAPR9er5XpfxXy3vlrclfQQCgr8+E9RRNXlqmC5KpVwN9A1JXevZrC0HXWFEv87WY+dQ99CybsBwgLZgQQgghhBBCCCGEkLHhxzJCCCGEEEIIIYQQQkaoynrBJEkOAfBWAAsB7AVwB4CfpmmaVuP6hBBCCCGEEEIIIYT4UNHHsiRJDgVwzcjhj9M0/WGJNH8C4D9gmw58EMBdSZKsStP0xUrKMNEI3VZdnyd1+a2t0r/M4UmktdZ6b2bJ0qUmLI0E5D7hQFVNcmLo4muqrff1eCjHC8KB771mbm2ukL5bALB3rwl3dOS75bRry/jNm0143To7TvpeHHWUHWf5WchMtWecjNMXl8eOrdplMr3zu/QwO6k7M4txiastRPf/cfm1+Pry1YsfhfY0cXjMuIbxiUS9+qLUa7liILuD7F4dHXY6Oe6euTwHbzbPsdWaj6jxwOUtJywBcfPNdv7Ll8d9vqFzQBfSf3POHL/8Z7T7jc1A8fPOyr/FMR2spcdY3v5ODYMD5kC/a2Qncr2HZH4u386Zh9qJ9XFGHpI9g7YnmixWW2uYr6DvODhlignrd5c81r9ayCFgdmd2/XhWcW3RNyd+xxqP3pYHDPQsm7BU+nZ6LYALAVwA4H4dmSRJK4AbAEwHkKh/ZwD4foXXJ4QQQgghhBBCCCEkGpV+LDtn5P/H0jTdVCL+MgCdAFIAjwL4+Mi/pzH8wexPkyRZUWEZCCGEEEIIIYQQQgiJQqXrBRdh+EPY3Rnxbx35fzeA09M03Q4ASZKsAfB7DH8wewuAtRWWY1yTIiksE461xDZrJWhZkhC5rlmvXZbroWU6rSGTWx7Pn2/HzZnjVS7fOnEtTdfKOVk/TSKcyxJnKZlSy6uHmsVm9mo78Kyy6G3Dfc4ZC185nEbKfXt67Di57bdsLkuX2vk1Nea7rFw2T9eu6lOnOjJxyHece957LsmWZZQKZ8Cu4z39dt1JeY0vTim2igtpTy4ZUTn5hfb7LHb22uWa0SqkMXKAUJKuh7aY87TaUTaFhh3PmQM9XsoTy1imn/lsxNgJwCqzHh+scum2Nu2pfAABAABJREFUm7NkIGsM1pfNewyIIekNuZbGehaA/b4Ug+RQ+wz7vMDxOXd5mch/tjUlyJYx6vxcw2eM8luv3MZ2E3ZINzUy6apVdpxLvlmPhFp75N1vxkMbD60773HWJfl35BG7DUZy+ghi+vTSYV2O0PbietdU8z3hRP+eMH9BIVzNclHyScgwlQ6Bo04Fj+iIJElmAFiC4Y9p149+KAOANE3/mCTJ7QBeA+C0CstACCGEEEIIIYQQUn3oWTYhqfRPEKMfy3aXiDsdwyvHAODnJeJ/N/L/3ArLQAghhBBCCCGEEEJIFCr9WDb6MayUgOn0kf9TAHeWiB/VH/ivhSeEEEIIIYQQQgghJEcqXS/4PIDZAI4qEfeakf8fSNP0hRLxox/YBkrEHbCE+kTodM3NQnsvfVK06Y7LMMTO0C9O55HlbTYGmX5dgd93XR4MMXwKnJ4XjvqJ4QlQS18B6aclfWkA28NMhnUTnD8/X58IWeULF9pxQVZSrq3fA5dgy9O0HZXL6ylG2827/ezqM2XUQ0BsTzRXWuejcUTKMu/b58hD9nNXG4mBy79m0+/tH8hOqjuA8DDLwxdIntfY6PksAonh25OHT5O0rETjoVbcjPnthfCeQeM111Jl70lXHiH1qvu5tiuVxG4LuvzSkxSNjnmMI48Z7SZ81gr/82IgvRa15WCtyMMnzJXnNdeYsPaMm9eVnacvMe5nYLDyd00MXJ6kvvj6epW6nm+5svL09SULpW58ycrAdwyu5v242oGO27hx+P89e/IuFSH5UOmo/XsAhwNYmSRJc5qm/QCQJMl8AKdieFXZHRnnjsovn62wDIQQQgghhBBCCCHVJUnoWTZBqVSG+R8j/88E8MMkSZYkSXIGgOthJJo/yTh3KYY/pm3JiCeEEEIIIYQQQgghpKpU+gn0OwA+juFVYqtG/o2SAvhtmqa/1CclSdIF4LiRNL/xuVBDQwOSJBk7oaK5uRmLFi0q+7xq0tLSUgi7llAHSyyEPOiOdXa6TZuM9OMPf7BP+9u/NXGzOz2X92qdgKfMx0UeW2FXk6HmlrETIY4EtJw8Qq63fbt9LCVGWj74ghBfv/SSCZehxvUmS+4F2E1Sq+NcyjmrXqUWcutWO6FsXKr9S2mGPk0eL1+OTFqaxXPShdws/tawfr0dt3p1dqZVxCmr2LHDhKVWF7Ab19lnZ+YfKg0bghnfGhwDhBz7/rg5+1odHW0mvxzk3FZ7dOnKtR5aSuFdcnrPcoW+o1zSntjkIUkOfQ9973sm/Fd/tVbFHlMIpS8eZH68Uf0Nsbvb72J6fBDjVoNr4HXZMYg4Vz+RNAwqdw3HeTHe77HJQ44bmn9W1ZUjxwqRblVbouYaR+SrzfWuDJVij0dp3kQihoS+muXQw2yt3m2x6so3Hzn//3//z46bOdPk8Sd/YseNTosnTQooHCF1QEWfENI07U+SZBWAWwCoX5WxFcBbM069VIT/2+daQ0NDSNO07DImSYI//vGPZZ9XTS677D21LgIhhBBCCCGEEEIIQeUry5Cm6f1JkhwL4H8BWAJgEoDfAbguTdO+jNMWAfgVhs39szzNCCGEEEIIIYQQQuoTepZNWKI81TRNXwLw7ZF/PunfEuO6ExK1vtdX9uBEyC90dhs2mPDixXacVOzEkCXIHY0AW1kl1VjDZTHXk6oiqSgCbNVbObuzZBHjPqViTxOogvJfbq0rUrSnoc7ZWVHOZeQynZRTAnZ76urKLtbu3Sasn2He+Mo+i+pA3rh8qPoGAh+qLJdUHM5o3GUnlBoULbGTxzouZ7KkK7rPtMjq2aLkZXI7UmvbwPpB3qdWmU+dipLIHewAexfN6dPttEFDvKvN6YFcFtpxXqgEsR5lS9UuryvPhQtlWdTDF5atA82vLISbVEPzlonpl4/cCdV3INQaI0+JpvfO2g7qpS2FSo1D83fFtWU8trzlaqHzqTwk0JdfbsKueUZoOeT9hM4B6+V35BjPppbjvXf+jnHKZVPgeta+xHjWoXWct2TY1c/lfOfgg7Pz2L/fPh7ts1OmVFg4QmpE/ZlFEEIIIYQQQgghhBBSI/ixjBBCCCGEEEIIIYSQEaIuHE6SZC6A1wNYCqADwEEAvpGm6Q0q3YyR4MsjEk5CCCGEEEIIIYSQ8QM9yyYsUZ5qkiRtAL6G4d0vRzeHTQCkAH5W4pRfAOgG8BCAY2OUYTyTII2uPZf5/fAGs4DwnHPsdKtXm/CyZXac7POhXgfyvHXr7LTd3Sbc02PHzZ9vwtJqJe9xKMZz0NZLcrtkXf7oW05rz5qtWwtBvYy0UXmYZSHLLC2mXOkAf4ucvD0wXN5sTs+KLD8eh+mazk+e1qe2O5EWY7K9O9EJZSfSF6gi3v4bulFkGbcBtqmhA2mD5qrHGH4tszv98ti40c5D9hvtWRadMkwBQzxb9vTb58h+H308qyNCfWRee7Y5/s//PNGK27zZhGX3be+a531tK0570vm+MENfrFnnOfJztbnx5o0H+HsIxSi/da2tT9iRc/SG9KWvres4ZAzI27dNl+nM5ZHrTl075H7qta1W25MxxEMruO6kf+umTXacnC+ovpB1PZc9o55KSxvJvJ+v6/eoaj9ficuj+KmnTFh6YQPAqlVh5SKkXqhYhpkkSSeAewFciuGPb8nIPxdfHkmzIEmSpZWWgRBCCCGEEEIIIYSQGMTwLPsJgKMw/PHrNwD+HMBi5xnAzQBeHgn/aYQyEEIIIYQQQgghhBBSMRWJ2pIkuQDAMgzLLX8A4G1pmg6NxGWel6ZpX5IkvwGwHMDplZRhwqHkC6FL/H+/yZy3dq35+Z+qT5PLl2cXJWS5r+/234AtmdJbCkt1VlurXzke2mJ/++3sNMda4SWXVPvKBX1xKWFiyEi1ZFXKdxYunGvFNWUVBP7PV6bT29g/sdXU8QMP2HGTJ5uwS76Z91bYrjq3rqfX5MsTRSOJtd24bINtzQPmYNMWO+HGjSa8cKEdJ7XTuvyehNZ/VlqXzKdBN4QdO0xYayhlBTnQ/S0Ll7Qh9Jlm5a8VUVKCrseipWJttb4XmVaOU02ucUTrRxwDkBw7ZPPRY6JrDKtH6WWscSSGxEiep5XFUqIZow0WSbFlA9K6GV/kA3eNkTKsG7k4blCNfGCmsQOQwwFQlqI4Kq5nWDf4DnwK1yOMPSbWE3laneRBrDaY9RxjSYZ95wHeCOsQ/OEPdtzdd5uwnBcB9i8zjrmuq1zyNN298n7edTnGKGT9dHTYcVKGOWuWHTce7i0K9CybsFT6NnzzyP87ALx79EOZJ7/H8Gq0hWMlJIQQQgghhBBCCCGkGlT6sexUDK8q+480TfeWee72kf87nKkIIYQQQgghhBBCCKkSlX4sO3Tk/0cDzh3VHTU5UxFCCCGEEEIIIYQQUiUqFdfuAzAlMJ/RD229FZahIiZNmoTjjz++cHzzzTejS3l7rF69Gr/61a9w8MEHAwBaWlpw11134dprr8U73/lObNy4ESeccAIAYPHixVizZg26urrQ1dWFadOmAQD279+P888/H3/7t3+LKdqgS6D19NKfqqvLf7tlKZs+7zwTLsfmIvaW4metyI5rbbWvZZVTmmwoPfie/oaSyQDbvkX7fEl7pFDPsqz6cVktlaPdz7q3LcrSSloUaa+AWY7t5GN4hUlrmt/9zo6Tz7C724R1kaJ7iQwO2D+QbUb7OclGoh7cnkHzHX/rNhPWPjptjXsK4aHmlsxLa8sgq41vE2Y9t9xiJ/zVr0xYewGtWGHCgQ3Z5ecRYyt4J1mNpIw8584J89kJ8XJxIc+bP9/Oe9s2E3YM/0XcfLMJH3ecCS9ZYufv9A0TjXBg0D5vr1gPvn+/Cev3hMy/sVHVm2N8zhxjXMZJdYr0Z9ywwY6TY4K0EQTcbTKrfoL7k/Yskw0v1LPMFzm26nLIF7Aep4Rn2aRJdtR48Lrx9WyKcS9WHi4j0Crjaq+xvW9d166X9pKH31toHceuk1zadb+ZQ1ljhTTCAuw52mK1j5zoD6FllK+hevLi9H1PxHgWrnYm60T/PirnDJ52sxOTcTCXIeVT6VN9FkArgKMDzj1j5P8nKyxDRUydOhUbtVFkCT7/+c/jwgsvLPr5nDlz8OlPfxo//OEPS553++23Y+bMmejr68Nll12Gyy67DN/5zncqLTYhhBBCCCGEEEIIyYFK//xxF4ZN+lcmSeItp0ySZAmM39kdFZahpqxatQr3338/HnzwQWe61tZWfOMb38DNN9+MnTt3Vql0hBBCCCGEEEIIIaQcKl1Z9hMAbwNwCIC/A/C/xzohSZJ2AP8ufnR9hWWoiL1796J7RP5z5JFH4qabbiqZ7iMf+Qg+9alPAQCOO+44fP/73wcANDQ04KMf/Sg+85nPjLlirK2tDUceeSQefvhhnHbaaSXTaLmga0Wna8mtlBkuFPuN6nN8l4vnIceSeba12vlLyUtPj/kOq5UkUomg46TSR6tCZFx0eUQZ7Ooz96kVdhIp3dL3KdvI9OnZeYRKA1wyBymp1PJEqSaUCh29ej702t7Ih79jhx0n146rB9DfeGghLLMoUjtuE+d1ZsswXcVqk+XSH95l5UlZVcnCVIZrfIgi59AVItbru9qnrIIiKfm11xaCDZdcYkUNNVZuiRkif9E/P1Psaq+lkPLetDpx3ToTltIG4RwAAGiS1erQ2uvql+OFvLbOwjl2iEy9xxhHx8hDWuLK33Wt7dtN+LbbTHj9evu8lSuz8/Ctkyh9TetfYktCdH6y8coxTKeTet+tW62oJvHi6Jgzt9ISOqmmZM+Vf95tfGevnb9sFnmrhOpFCknyIZf5shxH5Jxm6VI7nRxjypgLSUsTOc3Tc1YX8r2t3Tz07y8hyDK2NNv5+c4zaokcY/TvMs2d8WXJhFSTil6baZr+R5IkvwVwEoCPJ0kyGcDfp2n6Uqn0SZK8AcCXAByF4VVlv0jT9DeVlKFSKpVhAsBb3/pWfPrTn8Zjjz02Zj5pmpZbREIIIYQQQgghhNQbSULPsglKjM+9FwN4HsNyzA8BeDZJEvE3WFyQJMnNSZI8C+BmAPNGfv4sgHdEuH503vGOd6C7uxvnnnuuV/rGxkZ86EMfwuc+9zlnut27d6OnpwcLFiyIUUxCCCGEEEIIIYQQEpmKP4GmabolSZLXALgBw0b/LQBejeGVYwAg94ZKRv7fAuCNaZo+U+n18+Db3/522eesXr0a//RP/4Tdu3eXjO/r68Nf/uVf4k1vehOmu7RyhBBCCCGEEEIIIaRmRFkvmKbp70dM+98H4L0AujKSbgNwDYCvpWnal5GmLpGeZQDwm9/Y6tGmpiZ84AMfwF/91V9ZP3/1q1+NNE0xNDSE8847D3/7t3/rvI72iilHU2+Vx3Pb42DN+6ZNJnzrrSa/1avtdI7tnF3IlaxZYQBowZ7MyKFm41ek7Qykpn7mzGyvABcx/AJc9zZpkglPm2bCHR1h1wr10nExo93kuXSpnZ/0QArd5d67jqWJhDaUcHg4WWmV349sM9InrmFwwM5DPDhXeRsbs7fattC+Q/LijoY81D7DiqqmF1+op6Hsh/q27TwdbVUaSGmpfGvlnmUuQjyQ9Ng82Jh9b/J25KPX3mahyLJI37MYY0M5uK6Xt8+UzFOX4yVhKCHH5xUr7Dy0tU5W/r6EeloNtbbZ5wV4Ggb7ableZhJtaCO9h3LwLKt2W87C1Y5jt/FQr9uQdDptiMdjJeTtaRiSfzlzLTmWy+dWjuddSPvJ+zmVNd+UkyFpuKwbsvQs02ObYx62e7f0QDY/l3NsAJjVYc7T3qIvvGDCU6diwhLj2bum3ISMR6KJa9M03QPg8wA+nyTJkQBOxLDxfyOGZZqb0zTd5MiiJvRp5/cSXCsMpCWrV6/GavFx6AMf+AA+8IEPFI57tFs/IYQQQgghhBBCJgb0LJuw5PJU0zR9DMDYbveEEEIIIYQQQgghhNQR/ARaD+zfD4yscJvdaS8trqU8xUJL2+SKPLmbqErnKz3QSPnp7E7HvcnLqS/6sog332yfJmWBl1xiwnPnZF8qFNd9StlnS6Dk1vdamijSCaEhmN3Ya0Wdv8I8DykRzKWtSi2DXi0q9X1a6yclQCquSZRzhhWlhk2dZwb6vpsgyiwb/OteZ58oNbh6fbvjr1jymcrq8ZVoV4Nf/MKEL7rIjpPll7fdcMvP7ISvepUJK4mXlKH5ymuqLduy7m3jb624c5cbScrTfUZiV47MQW5Jr5tL06AYQEWmLiVzw47nsiOVDDCEPMYH32eqry0l+lJ6qbt8W6vfWDrW9cb6eWh+leB8N8hnL8cwPQYfcUT2BXLW7Pi+53yJMY6UExfyTGV7LEJruMfBSoiqznU9keMq4K9C1sixVp7XEtgtQttP7nLWnkfNgRofhhafUAi7LAaa5BijB2FReVpCKeX0Wnrpy+TJJuzsX4GMN+mibi/NzaXna4RMBOrDzIEQQgghhBBCCCGEkDqg/v+kRAghhBBCCCGEEFJv0LNswlLRU02S5NGxU41JmqbpURHymZD47ojjWnrtvYTdtf5Z72All1HL5dBbt9rlkMum1SDikkd4LwkX631d0ga5oSBgyzCnTBERWj4i8h+AvbOe75hYTdlADPlOsFSlhi8JuQvcYLMtBZOlavCUTDqvpdtq6H3L82S5Tj/dvp6nhDWP3U7z5rDDAk761a/s4zlCOy0l4YC9Q5beklWOd6Kfl7NTXdYYHPwsdFsSZfTd2FDLgxwbvgK9YrwT1969O3sX0Rb9LhC7l+nhM2AzxiiU1fbl/Sj9aZtoM21z/Pp5tWVisXfC08gqKZ4imHwsKarelXPhQnPg2Bq5YesT9g/mxPVFqJUkrRzqZTdD1/Xy3s2zlu8u3/Krqa7VrGds/b0dKebBQzMPtaKypt3O57vlIfsHch7s2FG2pnOCDRtMWFVeX5eRYTolfPL92JptWaNtBORpcidL6XCh89CvYrnzeyjB/SRry9Q6IrbcnZB6otJe1wUgLSN9IsLpyHE55xNCCCGEEEIIIYQQkhsxPlEnYyexGP04Vu55hBBCCCGEEEIIIYTkSkUfy9I09VprmSTJVABzAawE8NcA5gD4P2ma/l0l1yeEEEIIIYQQQgipCfQsm7BU5ammaboXwIMAHkyS5NsAfgbgqiRJWtI0/Ug1ylDXTJqUae4Sqv2W50m5+wsv2PnN6gjU4W/fbsIOz5dQsu67HJ1/W9/ThfAHVit/A+lxJT0jBrO7hMPOzO2zIC9QRia12i69rGu59ksX9y3z3NlrP9tt20xYWtwByidCm3uIttbf2FbqxwBsnya9pXiTiKy2B4xkqNF4RGlftYbeneZAVhYA3HqrCasxpOFd7yqEm/Ie6eUY4PCF0/V45nIT9vYtXLrUPpb+J7t323Gu8SjCpCbLpyPYg3Hx4syoW24w4TcnP7IjxdixbfEbrSg5VJ92/B77POnxtmxZITh5ssOfUXXS328y96pfY1meZdX2NLHqX/ch2Xb1ADQOJr4hY1Msf0M5JLvysMY37Vm2ebMJ33mnfd5731fyWpqmxgjjs2MeM9Q5uxCWxQWARQtRNvpeYjcz5/NstPt2bB+3u++xr3388SYspzjl+G9az8M52aoeuhjyNTRDv3d27DBh5VnmeztWncj3vk53ySX2DyL4tIbQsO4O+wff+pYJq3d41jRS9xM5f3NMN4viZBW4pqwuXH1KXls+al31Lc2OPiTbzJYtdpx8Z519dnYegcT4fct1Hj3MyHin6i04TdNdAP4XgL0A/jpJkldWuwyEEEIIIYQQQgghhJSiJn82TdP0mSRJ1mD4o9nlAO4c4xRCCCGEEEIIIYSQ+mIcrEYn5VPLp3r/yP9n5H2h5aefnPclKmLKlKmFZap6+Wrodrx2Pg55hJT6uTq5lk6ccooJy7XG3d12Os+BI5ft0h3rrbPqZ6i5JTOdvhV5nMe2yVl51nJb+1Bk+ffts+Nc8hr7vrORy9ubm7NTxpDrxKr/oHai5R1yuf7CbD1Q3bYfKdV1jBVW+VessCOltFk3JimrC5zExJAp+T5rl3zB2ub+BdWJhJZHy3r27xcHnvqUVpWH1W+UtlJe76CD7POq2daCx10pxW6fkZmsrvpNFXHJxFxjtzeyTR52WIQM6xNXXbnmD1ntLsZ4Q4YJsWCYM8eR4Uwlp3c8/CBVaRknxX73e9eVlDUD9txF6RN9b8cltfSVV2ZZA9Q1GTdUS+sQQg4k6uETaOfYSSpj3VeXjp2ohlz21cdrXQRCCCGEEEIIIYQQghp4lglG3YRfqmEZCCGEEEIIIYQQQggpUJOVZUmS/BmAPwWQAvh9LcpACCGEEEIIIYQQEkyS0LNsgpKkaRp+cpLM9U0KoBXAAgDnA7gYwCQMfyx7d5qm/+ZxrTSkrEmSIL37srLPqyaXffVxfOO7pbeC9taday+jOtleOwouowIHrm2mJePCV8fBePMm0HUgH2+wp5jcr1t7ZcyfH5ZnzoS0hYb+PfYPNm0yYZdfoBwf6mls2LzZhLWZiDCFydubI29PN1f+Qe2gjDLu6jP560cfMq+r1/EmjzYSo13EGPPzrvNqelwV3Yvj/R5S/y7Pr9D7DLm2tqnyfbft6bfLKPtstcem8XytWqLbmbTV1GOu7+vYqq+tWzMzGZp5aPn5lYGvp5510wCwcaMJq5seWnpqUFl88R0D6rVNZpXZNZco516qNf859dSl2LBhQxL9AnXC0iVL0g2/+lWti1ExycEH35umaX37V1WZSj+B9mD4g1e5jHaW/wbw7QrLQAghhBBCCCGEEEJIFGL8OTEJ+LcfwL8A+LOg5WKEEEIIIYQQQgghhORApSvL7oDfyrIUQB+AZwH8FsD/S9P06QqvPSGp12XAvngv0a4CwZK+HClHguW7dDxvqVDsZ6jza4oh8ZeaFy1JdlBLWUjW9ZxSIa3ZkBJTl6ZOSiLqSYYpy6x1S4Jqyo/KkXH5lsuVzhWX1RbK6a9a3SrJahb1OHaORS1lknnmV06eoXUQu+7Kec8NNTZlnhcqvYxN7PdE6Dgy3mWM1ZTE1iv6Ne07D7CevbAoyIPQZ2Od19pmxTUsX555nm8d5D0XrRd86z9W/WT1y1j1U6/1HB16lk1YKnqqaZquiFQOQgghhBBCCCGEEEJqTvVcXQkhhBBCCCGEEEIIqXP4sYwQQgghhBBCCCGEkBEorq0DEqSVa7r1Vszj3NvCYgJrwGN4Hh0oOP0ZOjtNeObMKpUoH8ra8rt9ht95LuOqWiI916pMSJ+KtVV76PUqzUP3IYdN3Pggy5+wDF++vH1wQtpIOZ5BtXw3VPP95apHXy+sEH/AUEJ9/6ptKVmr9lPWe26c/V2/2Dey/DEgj/oJvXbenom+xHjfjoe5tO87JI9+MR7qp26hZ9mEZXy9gQghhBBCCCGEEEIIyRGvT6BJkvxbjmVI0zT9ixzzJ4QQQgghhBBCCCHEC9/1gqsBpDmWgx/LIpP3VsA+1yXjh/Hw3LzL6FgGPd7kHGPhXSfV1vYcIIyHfiPR5W1vr/zdUFPJv9SRevb7apcxhty3mjjl7jnkEVuWNh7kWTHq40BivNfJeJ93jwep7kQmqx7GS/1MtHk3AZIkaQDwVwDeA6ALwHYAPwLwyTRNX/LM41wAVwE4EcDLAH4J4KNpmj5WIu3BAD4F4HwAhwB4BMA1AL6Rpmme36cAlOdZlnikST3S6TS53yQhhBBCCCGEEEJIVA4sz7IvA/gAgJsAfBHAsSPHS5IkOTtNU+eX3CRJzgdwI4DfAfgIgIMBXAngf5IkWZqm6dMibROAXwBYAuDrAB4A8KcA/i+AWQCujnljpfB9qq8eI34VgL/G8EewRwD8BMMVsGPkZ4dg+MvheQDmAxjCcEWvKb/IhBBCCCGEEEIIIaQaJElyHID3A/hJmqYXiJ8/BuBrAC4GcJ3j/MkY/uj1JIBXpmnaN/LzWwDci+GPX5eJU94F4BQAH0jT9OsjP/tmkiQ/BvA3SZJ8O03TxyPdXkm8PpalafqrrLgkSd6H4Q9l/Ri+kf8vI+l1AD6WJMk7MLx07q8BPJam6f8tr8ikXMbLUl1Cqg37Rv6Mt515x0MZ64ma1pfnLq98pv7E3oH1QGI83rfvTnvj8d5qBeuOEDKBeQuGF0J9Rf38mwA+C+ASOD6WAXgVgNkYlmz2jf4wTdONSZKsBfDmJEnel6bpvpGotwLYM5K/5CsYlmW+GcA/hdyILxUJiZMkOR7Al0YO/5fjQ1mBNE2/DeB/Ybiiv5wkyYmVlIEQQgghhBBCCCGE5MYpGFYI/kb+ME3TfgAbR+LHOh8Afl0ibj2ANgALgII32kkA7hvJX/KbkXKMdb2KqdR17y8BTAZwR5qmP/M9aSTtWgyvbHtvhWUghBBCCCGEEEIIqTpDaBj3/wDMTJJkg/h3mbrN2QB2pGn6cokqeGrk/CZHNc0WaUudDwCHj/w/HcDUUmlHrv+8SJsblTrRnYVhg/47A85dB2DFSB6EEEIIIYQQQgghpPrsSNN0qSO+BcO7V5aiX6QZcJyPjDz6VRpX2tH0LRlx0aj0Y9no17ysCnExes5sZyoyrijHq2G8eRlNZA6UZzGR761eYZ3XL9V8Ns4xZnCwdBiwd5c6cHaaCuJA8Uoaj/dZr+/YrLLon9dr+esR1k/+xBgDXHmMxzFGUk/lH291R8ZkD4BDM+KaRRrX+QAwxeN8V9rR9K5rRaFSGebol74Q37ETVB6EEEIIIYQQQgghpL54GsNSy1IfsA7H8Mo01yKqp0XaUucDRnb5AoC9pdKOXP8QlJZzRqXSP9M+CGAZgFVJkixI0/Qhn5OSJFkA4A0YlnB6nUMIIYQQQgghhBBSL6Rp8cL4Cco9AF4L4FQIG64kSZoBdAO4w+N8ADgdwG0qbhmAXRj5NpSm6VCSJL8FsCRJkinKJ+1UDC/62hB2G/5UurLshpH/mwDckiTJorFOSJJkIYCfwSyp+1GFZSB1hLYK9KWEweC4ogzjxLpBlivkmZEDm3pp1wdKOep1XAkpx66+BuvfAJoK/zA4mP2vTon9LOrp+VYT3zYeOs8ghJBR9DhSL2OuHvvku9K3jBwjSY78EMOLna5UP383hv3Dvj/6gyRJDkuSZGGSJNJX7FcAngHwriRJWkXaEzHsZX9Dmqb7RPofjOSrNxq4EsAgqvAdqdKVZf8Xw7tZHgXgSAD3JUlyHYCbMbx96PMj6Q7BsFTzPABvwfAOmgCwBcA/V1gGQgghhBBCCCGEEJIDaZr+IUmSfwZwRZIkPwHwcwDHAvgAhj+EXSeS/yOAtwN4NYC1I+fvS5LkrzD80e3OJEm+CaANwAcBbAfwd+qS3wTwDgBfSpKkC8ADAM7F8DelT6Vp+lgOt2lR0ceyNE1fTpLk9QBux7BR/2QAbxv5l0Uy8v8zAFaNoWslhBBCCCGEEEIIIbXlSgA9GF7t9XoAOwB8HcAn0zQdcyljmqY3JEmyF8BVAL6AYf/6XwL4WJqmT6m0A0mSnA3gUxhecHUIgEcAvB9VWnBV8dZSaZo+nCTJyRgu8PkwH8Nc3ATgfWmabqv0+oQQQgghhBBCCCHV5gDyLEOapvsBfHHknyvdagCrM+LWAFjjeb1eAFeM/Ks6UfZhT9P0WQAXJklyLIBLAPwJgAUApo8keQHDZm13AfhumqYPxLjuRCSP7X7rdcvveipLpcR+TtW4dvT6128JedzYWDpMJgT1OsbELperj7ry9y2Ha/yX3alpUO2U3dwMH/b02/nv3m3C06aZcEuzf12F1OvevfZxb68Jd3a2WXFNiLv4vJxx1vfe6uU9XU99L4QYfaheGY9llsjyh46DhMQi73YW+p72Rs+X+/pMuH2GFSXfl/JV36Sn0llz7jIY7+MsIXkQ9bfWkY9g/ztmnoQQQgghhBBCCCGEVIsDZ5slQgghhBBCCCGEEELGgHqoOiBFkutWxdVcSpuHjHQiE7LkuZbbWjvlF3pZ+Y4dpRN2dtrH9SrLlPcjw56StwMJl0SnlnKJcT/+CGlGk+wnum/NnGnCqn0ODJrnoU+Tyo+pU0041jOU+cguNH26ne6FF0y4v9+Oa2qt3vgQ3F4iyF/s4cau/3JksWR8wzlU/UKJmv/8czzWTzVl90UyTPHi0/m//LKp854e8/MF8ysvhmY8Prd64UDyLDvQ4MoyQgghhBBCCCGEEEJG8PoTaJIkZ8rjNE3vKPXzUEbzI4QQQgghhBBCCCGklvjqBdYCSEfCqThP/jwUmR8hhBBCCCGEEEIIITWjnI9USZk/JxEYbx4J9VTG8VB3znJl+ODU670UeXm1tpqwNCLSov569SyT0IjAicvHRHpmNTVWue1G8JKShPa9YC8U2W9k+XVf87y3KVPsY9lFXVZ8oT41W7easCyitFgDgI4Or+yjkMv4GaFtZVkkTnSyfO2A+K8Gp+dmnbxXXeXwndOE+pqGjlPyeuOhjkPJo86z8h/v9Zh3GxyXuAb29vZCcFefXXcbNpQ+pcizbDzMpScw9CybuPj2rO+U+XNCCCGEEEIIIYQQQsYdXh/L0jR9Rzk/J4QQQgghhBBCCCFkPMI1m3VAgrSw9DjGUu6a0tubHSc1P0BVlwzv6bfrVUqOQpd9x5B5uiQoQJMJOiQ6shp1lcZe0r59u30st7GeNs2u4zlzZhTCrZ2iTP177Ey2bcu83lDnbK9ySbWaDANu9ZolC3RVrGi7ucsjxqNMNW9817brhy+PhcwBQK71KqWn+lJlSXlmHlryPGf+gwNWXJOInKXkjnpc9MHVvxob7fzk60BWv0uOq+sgbzl97HduaBljvJOC8e1fOY9Fum3JKUPsOtG33DTOhlndbqvZZqo9Tx0PlhoHCi4JrgvXEFOPU5zQeZ6zrbom65I++1C+O7WFgU85SpaFEOJNHQ5RhBBCCCGEEEIIIfUPPcsmJuN8GRMhhBBCCCGEEEIIIfGoysqyJEmOBfAuAAsB7AXwKwD/X5qme5wnVpFtz+/BlV+6C/c8sB1TJk9C12HT8JW/Ph0nXvJjLHxFO/oH9mNay2S878Lj8PbXLwAAXLvmQXzk63fj8I6D0D8wiPecdyw++JYTAADf+Mkf8c833o9JDQ1ondqIf/3EmVg0b/qY5Yi2VFbq4+S6XS2FjIFrG68arq+Wddnfny1bkvKLcpYu572sWUtSfMi7ul980T5+5BET1svD5dJxWa4W3UbklnlaJ+mQYcpsdu824WeftdPJax9yiB03a3qdtF3Xro2Rd3SsNsFFDpFe9vVlx7nGPs9C+o4PLjmZC1cTlJJJnU52myZ9L7IwSibfYnVSx3aYgj/8wa6DadNMuKvLTrt4sVeWVeXZ7Xb5X3rJhPUY5vvcrHZQxjhSl7YLoX8al/fpqAMtIZZdVndfW0IfV4pXJAWWdgCdncgiVN7kkmeFxmURKpWLgVtuV/lunjHkZU9vs/OQZdZjQEuzX/4xXtO+z6medsrMup4uo6wfXym/rseq76ZdIaH2L22tdtyyZSYfa4os584ABjrnFsI7dth5zs4e0gghY1DRb15JkswFcOPI4TfSNP23EmneBOB6AJPFj88DcEWSJK9J03SrPqfapGmK8z76X3j76xfg+k+fDQDY+NAOPPv8Xhx1eBvu++4FAIBHn9qF8z/2CwwNpXjHG44BALz57Hm45iPL8fyL/Tjmoh/iwrPm4YhZrXjra+fj8vMXAQD+444e/PVXf41bv3pubW6QEEIIIYQQQgghhHhR6TKF1wJYCiAF8N86MkmSmQC+A8upvMDRAG4AcHqFZaiY2+99GpMbGwoftwCge8FM9Dy920o37/A2fOnKZfjQV9cXPpaNcsjBzZg/52A8s2MPjpjVirZWc8sv7R1EkiT53gQhhBBCCCGEEEKqRprSs2yiUunHsnNG/n8gTdOeEvHvAzANwx/TfgPgyyM/vwrAYgCnJknyhjRNf1phOSpi0yMv4OSFfluMnHTMTGx+vLfo509s60P/wH6cMN/sAPjPN9yPL/3g9xjYN4T//udVsYpLCCGEEEIIIYQQQnKi0o9l8zH8IWxDRvybR/7fDuA1ox5lSZL8D4BHR65/EYCafiwrhzS1j39426O4/d5n8OATvfjmJ85E8xRTpe+76Di876LjcN1/bsGnvv1bfOfvXl060717jceYNn0JJcsHymHCEuwFIYwFhmYempms2l4K8n5mtIddW/qraP+EEK8SjcxDb13f2Fq97dJ9fVHmz88+1n9Rkf4zMm6otc1K1yCNjVQly7LoepT5P/hgZhaYM8eEJ0+241xbecvrSY8NfZ/aXyITh1HHUGNTZrKW5vr0KfP1Kgkmy/gl9E932g8vR7zbBOz60p5Ncrh2Fb9h29PmQPqQAXaDkr5MOlPXBazzbB/BdeuyT5Pjg8vHJ9SDJ8TP6fnn7WNZPfPmDNiRfZ6ed442GVLGquM5DmosnyYrv1JigmH0+OYaW7OqNcoYozMXJj9DDq9M3UfbAmxgy/HkCslTtzPXezQEVzvepvzApkwxYelvKD3oxsozhg+a5Mkn7eP9+01YD58huGwLY1ij+tYHEP897VvHuowua1FZB25r0XzLHHqOrEuXhXPWOUXXUxXUIt/N/SJTZUy2DcazbMsW+3ouz7KQd1Q5vy/WpTcnIWVQaQse/TLSoyOSJDkMw4b+KYDrpJl/mqZPAbgVQALg5ArLUDHHzZuOezfvGDshgPse2oFju9oLx28+ex7uv/4i3Pkvb8SHvrYe254v3rPg4nOOws2/6olUWkIIIYQQQgghhBCSF5V+LBvVLr5UIm6ZCN9aIn7zyP9zSsRVlbOWzsbL+/bjmzc/UPjZPX98Do9vsz3Lep7ejQ9/bT3ef1HxFl+nHz8Ll648Gl+9fhMA4OEnzLaBP/ufJ3D0EQfnVHpCCCGEEEIIIYRUm1HPsvH+jxRTqb5ndPHyQSXizhBp7ioRv3Pk/5YKy1AxSZLgps+9Fld++df47L9vRHNTI7oOa8VXPngGHnlqF5Zc+mP0D+zHtJbJeP9Fi4vM/Uf52NtOxElv+wn+ZnU3rrnhftx2z1OY3NiA6dOa8J2/W5FdgP5+I5uMJcNcvrzkj4Ollr299rHWUozmp/fdFgyofR58l583DAppjOOkPOQFL7xg8pQSAgBoESujfa9dPBBlS7DspemVb7keKgGSUlRXGfWjkSvEZZxWezV5yuN0+Xt7Tbk2bzY/111o7hy/+352u113Tz1lwlIaoO/TKcORD9xReQ1C+9FSPbVgLujnJNtklPapxyKpN9BtqTPufumhfShLpgHY/cRXnlJUjttvN+Gjj7bjpMy5uzu7kHJM37gxs5CnKZ3S/sVnFsK77b8v2TI9x3gfKhMLeR4LF6o8+naZgy1qc25Z6S4LAyE7LBrjxbGW2lvlqKJE01XH+tUun6mUq2lks3AN6VqiLMdPXa7YE3erjrXcdPEJmee5hnFfGWbebTy0/YScJ+cEgF0nuv3IduH7PHWZZL/R1w7h2GPtY9f8xJemRt96VHNwOb/N8q5Qx0UiZ8c4VU0JnLyWHu+lFUp7e+Wye5dkWz/D2FJ4V53K+9Zjnav8rndDwaYHsLwN9iw8yUq2WVgi6KmPbzuIUVeUXZKJRqUfy54D8AoMyy01o+b/v0/TtK9E/Oinh2LdYg2Y3XEQfvSZs4t+vveOv8g8Z/WqY7B6lflwNrvjIGy75VIAwFc/dEbWaYQQQgghhBBCCCGkTqn0Y9l9ALoArEySpD1N014ASJLkJAAnYNiv7FcZ5x458v+zFZaBEEIIIYQQQgghpKqMyjDJxKPStZI/Gfl/GoD/TJLkvCRJ3grgRpHmRxnnnorhj2kPZsQTQgghhBBCCCGEEFJVKl1Z9gMAHwZwIoClsD+SpQBuS9P0bn1SkiSLABw1kmZ9hWUY/0yfnukxForUjEsbBG274q1P1z5B+ngUve+2+Mw+2JjtWeb0ORLnab8Qeazt0lweElmael2OqVNLl1fnEcNnQVdplo+G9jYI8SLQ+HoTuMqovcEOPthc7+WXS59TCfO6zPUuu0QYpehCbhKmUHPUfiKiYl980bZPlD5oy8R2JeVsLS/bLmYeasU19BsFunw22vPFtRW57M++7b2a3khj0W89tmwfHOm/0eaqIP1wHB6KUcj6M6Kjkeviy+aqm6eMk95mXV3K9+aII0qfpC+ozFxku+jtN+1/xtVX23lIo68LL7Sizli40xyo+g/xLimnfcZo1wPNbYXwYNciK87yZHTkIa/t8p6ptpeL73tOptO+c488YsK6ucs+esghJizfm4A9Ts2c2ZAZp8vV2Fh++Z1pZd/Qk4k5czPzbxo0fWh2Z7aplW97LKf8mYZp2pgp0Gwrq8wuf1uX76LjFZuZXznooTWrzK78tZeUJI8+uqsvew44o1n8QFak6z2nkeOurqBmM67n/e739teTPm2AVWbpSbdtm51s1NoZKK4O+aoXtl46+yjvDG/fYPUMG8QNNOmOIt8wd95pR91/fyG454qPFsLr1W/Psn5ee3YZY0wGwR7XinqacxISQkVvhTRNhwC8HsC9ABL1byOASzNOfYcI/7KSMhBCCCGEEEIIIYQQEouK13ikafp0kiSnAlgBYAmASQB+B+AXaZqmjut+B8BAmqZcWUYIIYQQQgghhJBxBT3LJi5RBFEjH8VuH/nnk/6DMa57wCGXaANOidH27Sb81FMmvHixnS5rebKmt32eddwvltbrLYolcvlty9Yn7Ei5RLmry44aNPI1uYxfLjMGbMmIVmA1bd5kDpT+tEEsgf7vdeZaekvrk2aKMms9QUb9663NZR23NGcvjdbZu2SqEt8lzt5SD0WjkBJK6eNYdHSYsFSPaJVYc3P2duPO7dhlpj/9qQn/v/9np5MS55Ur7TjRaBbMtx/Agq4M+UsZOkzZxHX3nTPHln2WOkdfukhhIeW5O5RmQXTMel0GL+9V7o4O2BIMeZ+tQi4F2H1Zt/EtW0xYj1Mu+Zc38oHIm1EPyiWFX7QwW/q0TmwFL8/TCo6ezjMz4+SYo8cmWa6vfMWE/+Htb7cz+c53TFg3Qkd/cMm6YhDy3FxSwn377Lhp00xY3naxnN5vDHPaDQTKg4Kkf1oeJI47OmZYcS++aMJ6DJPvY9nXdP1IWdTSpXac7g9WuYRca0jZOGSeo+tAFmbTJmQixpUi+ZGon6Fme9wOef/qc5z9JOslovudQ4YZYsHgui89j+nszJ7HyOq3+obLk0J3InGcx7sshjTPymPb01Zcm3j5PLFVzw9Ne2qdvyAzf2/pn+d5+l0gCbEwKbqWljnrwUMi5tKDjUYWL8cUAFi71oR1O5NWGerXCfc8MjKucdby9nD9PvGf/2nH3XprIdhy+eWF8M03t1nJfH8XcyInXvp3HM9+mDkGZ66fIaS+qa6BBiGEEEIIIYQQQgghdQw/lhFCCCGEEEIIIYQQMkKkfemGSZLkTwC8EcM7Y3YAOAjAZ9I0/f9UuiUY3gTghTRNH4tZBkIIIYQQQgghhJBqQM+yiUmUj2VJkswF8F0Ay+WPAaQADi5xyhcBvArAVgCviFGGiYrlgyD17gDQ3W3CyuPh/vuND8LGjebnCxfaWWhriCz0paUUX1pntPQ9ZyeU+ndpOKBP1Nr4Zts3ZRRd3mOPFdce3GVHSsMDnb8Q93/rW8YLRfv9nNR5oznQhm9nn12yjHqwbOoX5VIV2SAMW5q00UJjaQ8SlydaOVg+KZ5+MNqvwmUzIr3JtB+V5PDDTXjyZDtuRrtXsYAjjzRh/VwOOsiEVR0/vcPc96Dyw2tvN3F9/aI9Kmuw2Z3ZfjOyTubOyfYrks9iRqvdgGZITx9t+DYo2oiuZJeBRY7oOrjnHhM+5RQ77Yx2c99nLEPF6L4nPb9WrLDj2hr3mAPhHxK8XbrDM0g+Np2syeFNuHy5KUsbxDiyxW6sC+TAVTRumAtoz0fZRORw/A+P/LmV7orrzfGM5j3wZSDDy2tPf3Y/CfWXcXnwWPkP2uWf0SgaTavDOFLQr8ovn2+Rd6bDkysGQX6WDj8hXYsL5rcXwnPm2LG+9o1Z7WxMRIducLzonH1UDgrS5PRP/9TrFABobDfjv7Yhasnu9lHYIzycMMeEdRlDm1kMvy45zSvyi4LxnYMss8s8UBvZeU5yYvi3Bo//Eu2Nt2FDITh3mXrRtYq5qawT3dAk6iUi+0bRvWX89t7fnz3na2wNrAN5LT1XeeCB7Dgxf2sR8+zly21PLvn7i74tPb+qJll9aKjd/j1mcOUbC2H9Lt5qmgjOvOQSK27P179eCLd86lOF8KpV/2SlC/1dwKpM+XuT7ocug0kXo215qD69cwkZi4plmEmSHAPgXgx/KEvEPxdfG0kzJ0mSV1VaBkIIIYQQQgghhBBCYlDRx7IkSSYBuBnAIRj++PUTAH+Csf/IdQuA0T8jva6SMhBCCCGEEEIIIYQQEotKZZhvA3AMhuWWX0zT9KOjEUmSvbgsTdOXkyS5G8BrAJxaYRnGPSkS57LwAnL/dcCpgZPKM7lEPlRPraVDUvVjxW1Wa4ulDmrSJDtOLkdXy3tbMqQ4XV3Z8p0h2Eu28abzTbGUjHRQrDSWqr0i5dr6XhPet69kmTR6W3Vs6jFhsQU0ALsii6SopfUdrh3X9Sm+y+dlHlqhI297/347Tj7SadPsOKkikHkcdpidTkovdfllv9D3vXWHeN6dZxSC86AQNzQAW3og24VeFr90aek4vRJ9tmgzrmfTNKhkFc1GKm31f4cktkG1EXle78IzrLgZgZIaX7LGrBtusI+/+EUTvvFGO27mTJOHfvYuia9EtnH9DI87zoSL+rZLOxQZb4mIakB795q28ECPae+nTVcV4pIwCVlF1/wFVlTDxt8WwldccVLJ7AAtnVMPyqExHYRp43I8EKq/ovy9pdcKWWbdXqwqkb4EAPDCCyasdcKyYCJT3VZd6hTXuz1rfPaaD4yRhyvPwfZDrbj+ZnPsuhd939rWIbNM8uHssMfBoZnm2kUSuIx3YLBUTr/AMvJoUu1HXs9X6hRFzgdbXS9VpC++aKeTz0KPdcHyLIFLrimvV3St/gxpoWpoOxtNO9i6xYqypkYud4HQOo6Rh3We9vOQ9+16GPKdJMOAuxJceWZM+ltbs+cZxaeYZ++SyVvzq865VlyTHEu1ZcSTT5qweF81qd95ZssmUzQ2eNaBS7LqiW4jvm1Gvve+8Q077qc/NeEHvtprxcnucIJ4fy2+0s5DqH3LQtqw9C89sxAualYOlfDevSasfxdoGe3r+nfACUaa0rNsolKpDPO8kf+fBPCJMs8dFfUvcKYihBBCCCGEEEIIIaRKVPqx7CQMryr7WZqm2X+yK83zI/+XdnInhBBCCCGEEEIIIaTKVLo4e3Rd8BMB546uW42yI+d4Zv9+o1JwbjbiWn+u1n4ecYQJf+hDJlzOZiYyS7ljIQB0dJiwtQRZ7tAJuHe8lIVxrV0VMp+iheNynbC6Obk7mlbeZEl29I55aBQbvCrNie8S7gZx3sDHP5mZTi9vz8q/SOYpb6ZfdSfHDn0SWf1aIiVVSnp5tWtns9m9fzThxJTxCaW8lhtHaTWclK9t22bXh9xcVT7fHTtsOaJcyX+h6kJSpqebpyyLvM/ZMwfshH1mPXqTqu+mfvls1Lr1TiNRczV/azcxlYeUKe3YYfcOKWeLseOZRuYjdzf86lftdFJxsUXJayRzO+167esz9+NqZ7/fZK6tN9ydNcuEddtq0VKZDLz7uazXou30sqUfrl1ppdRKKsgGuuwF2XKHx4e22PmvX2/Svm3rf1txA8vPKoSlhFVXjbPNyBNVJ2rpNO1zZ68pl7QJAMI32ZK42oglh9bvKBE50Kyk/IImUQcumWdZu3nK/izCDapCLJmMGkbkzpy6DrKemxzTAeDZZ034hMXqHJceWhZGvod0+5eSMn0DM21JaAhy/CmyIpBlFi8DvXuq9dx0GYVkvlhmaNIONrYgCy3tlLjG540bTZxrV2mJbgeyObn68q4+c60YfRKA/UAcuw4//LAJ//KXdhbLxTRM35vM3vc95xiew5GZ6kLKC+gGKicvzzxjwlOnZuev8xDX07vGDom229BndlRu2PR7Ow/xwDf32WYWsojd3fZzk+OF7OZTptjZz3pJTCx1+adPN2F5n64G7/p9oniQLJmuQT0nl+2HHB9CJdZyiNRzIWsnePW73gky8oorCkF9m29cFTa3y6ryQw7JLqPr9wT5+ycAtNRmY3ZColHpK2IPgINRZGLixahz0c4Ky0AIIYQQQgghhBBSVehZNnGpVIY5+meQRQHnnolhCedjFZaBEEIIIYQQQgghhJAoVPqx7A4ACYCVSZJMGyvxKEmSvAbA8SOHv6qwDIQQQgghhBBCCCGERKFSGeYPAbwHQCuArwJ451gnJEnSBeDbI4cpgO9WWIZxT5L4eSY4t6BXGczurNyXqLHRXE96lGmkz4WwFwMAzOky3gcNvUpxK0XvDu+ABinu1yJ96VOgtplev9H4z+hduKVtzVmLnzMHV3/BTnjxxYXgnpn2VthSe2z5DunnJIwKGtvt/SwsrwNlAtAgPBmkJ0vLYJ+VzjI/0F4Q0qhJx4nrtYjwgiLzrvZCUHsqWeUdVF5e8llt314ITnmFnUzadBTZ8ok8enuz/WCkp97NN9txslko2zk09ZpnP6tV1esO06daZP/auNVOJxuX9kOSJhXq5qTVk8vuZAZEHn2qjIIFXary5HJwx3OLQUufqce1a20PomuuMeGz5tv2lrvaTZ/64xa7jFl2e3qM+cpXTHjVKjtOPjbp/wUA06eb68WwrLHGLNc45ThPs2CO8SKbP9+0f23lctVVJk77Ud166xvMwXd+asW9reehQnieGj8tZKWXM8YIXB5IMTyDXGOwfBybtviNI4Dt0Sg9p7RHjeVH5TJE0u1Cjt2yjhcvttOJ94b2ipHHevjJ8uDR73NpGVTkxyPHHP0QZZk3bzZhXQdyUFu61M7f0+tPopPJYujxs6XZ5DEw34ggdB9a0JXtlTQoztPXbhaeUHLM1UO19JDUyDrQXmrSh1F6CerueuKJskzZ+RcVTDxT2ZZ0Hi4vPqe/WYbnne4KEv2elu26pVHNMzJGb5evVFOfmos6XsByziPzkPNeAGjbIV7ot9xi53/KKSasb27NGhOeNMmEX/1qO52cP+h+IccRFdcgx2c5V/nGN+w8RINa3/rXVtSHP2zC73qXfdqXPmvqrqdHvFNVEWc19yIT2YDkiToTeaw7sOwccnIFZBtqOYwuy/KezEC/J7q6TJv52MfstNKn7983nmDFda7RbX6YDdfbx3/z8eyyuPz8ZPPfsMGEtYezfE/MaM/2WI7li0tIvVDRFDVN07VJktwG4GwAb0+SpBXAx9M0fVSnTZLkYABvA/BJAIdg+EPZD9M0faCSMhBCCCGEEEIIIYRUG3qWTVwqlWECwJ8DeBzDcswLADycJInc5+NdSZJsBLAdwFcw/KEMAB4GcHmE6xNCCCGEEEIIIYQQEoWKxQ9pmm5PkuRPAFwPYHSD5yMxvHIMAI4Z+T8Rp90F4Pw0TXdXev2JwKSGFC3NI8tWi7YsN2vhd/ba3zYdK4izt3F3nhSGXLp/7bV23MqVJtzdbUsQWzb/1hyoNf/9Yul7i1x+rpdXy/tRecjV7XrF+dVXm/BZe+8phHd+/vNWuhlC27D78JOsOHu1uOO7s1gu3vCAWp5/2GEmrJeci2XlLXIpfW+RDsSEdfuR+hStcZSymT/8wYSPP95OJyVBWkYqpZf62chjUY5ZL9kLT48+2kh15Up6AJa8YPFie2m6rC6XElVWSRPUcnaXvEyeKOULsq4AYP9+E9baGFGwnZ32Pii//jVKIpsEAJy5vN0cOPrv09vsNiil2Lksi5fjithbvmnZMitZZ2cbsvjUp0xYN12ZjWy61yvpgSyGVq9JScGmTXacbGsxZIAWSpckJQr6Pl2qE9k+GzatK4Q39b/WSvaDH1wmji604s45x0gvlQLObq+iIvcM2pLYFlmRug2KStcybUv6FEHW4otu762tpv611PKll0x46lQ7rvBeBjLlZADcmjKZVmuI5bgiG7mqYznOzlXD+MyZps5df9V2qSklOo8m+QMt4ZP3Jt9RWisqx1ZddyJ/3X7k5VxZFMn3M3D2Nfksbr3VLuLlZuy22gSy+/aM1gGVztybrsa9e0148mQ7Tj6rT174R3Og31fTHQOao2E8u92UXz5C3YecNiAOCfSufnPf8l50PZ4mlIo4VlWQVWGq8WY0Zuc7T0v4ZP7qJdIg+qK8N93E22T7+Z//sSOl9E9rpa+4woTlc9P3pS8okc9XjzHSVkM+YK2xE9depqYx//t/m/Cxx6pri/Nk8Z980k726Clm/qyL2CqasnwlFT1DWQfaLkTWl647ed8Zz1Oj5dCybxerQ0vno+ebTaKdnXZKuxV3990mjy8oNxh5vTe9yYSnTCl52ZL4zgHlfc6d4//OpvSSTGRirCxDmqZPA3gVgDcDWAtgH4Y/jsl/+wHcDeASAK9M0/S5kpkRQgghhBBCCCGEEFIjov09PU3TFMANAG5IkqQZwEIMSy4bATwP4OE0TV/U5yVJMjdN0yf0zwkhhBBCCCGEEELqFXqWTVxii08AAGma9gPY6EqTJMlsAFdheAfN7C20CCGEEEIIIYQQQgipErl8LHORJMksAJ8AcBmAMhTXE5jBQSPi114Kwt9A6/ylrcmefltR2yL9E6QIXXvpNPr5nbg8faQdgE63fn3pdADQIj0HlOdLy0xTzqE5cwvhhiJTK4P2dDv5ZBO+0LbxsbyMftL1+kL4/HPOsRM+/3whOGu68rsSN+vyJNoM49XQvMT2PZNeK9pmoWlwD0ox0Gr7hjUunFEy3ZgsP7N0uAysbdV1A5V73gsfkH9bO89K9r3vmbC07wCA8zuNx0PDujusuIWizPLSyjLL8qZ69gXbE+f5wQWFsHY+aRQ/6Fxu0jUsX45MtK+I6If6+b7hDSas7Wcy0Z1UtMEi6xaXx1IMZJ7S50V64QF46zLRzxvtG/38582W7unvlMmJyPO/15r+ddttdjJpvaLrQPd7SR5VMor2QpGPwuVZVvQM5Q9ER9n7etuz7Lzz/rUQvummD1pxM2eatIu61JiyrbfktbbtsPuJ1WMfftjOQw7szS1WlLWd/KAaPyWRH4auf+mnMutXN2afGNpgfDuwNteSx7KR6H4u3+dqjGmRA5zy8ZG+O7KIOnvLP+qaa+xImb/2ZMyaNOh0su70OeJ+GpRX2969LSJsft7RUfqygNs7R8bNa++1I28TkxVlcOh6vDLPtmZHR281fUpP86S9p/R5BYAvfVw4lnxKmK9q7yvZdvVA4hhkfim8XaUfUovnPY+FvDdrqGhWfXSHuE9dQeLEgWbbA1P2St9yPdRqz8OkI9p81c3bMvLUU9E/9p9RCB/y5TOsONletV9dm3werkm4Y77snEhmGRSqsU6Omcr6Eyd0imdTVEZz7TNmPmR+vE2ZhG4TZVTmmQ/1mL4h/Wc7O+020ibrQHuWCd9Uy7AYsPuKuHZDp93IXfN42Y71q+Dgg01Yeg7O0FUvH75q41dcYdqkfg1J/7fTTjHtUfoNAu7yu8YwGXfJJdnpCDlQCZ6hJkkyCcBRAGYAeAnAg2maZs6GkyQ5BMDHAbwXwFQYw/806xxCCCGEEEIIIYQQQqpJ2R/LRuST/wfABQCmiaj+JEmuB/DxNE23i/SNAP4aw6vJ2mDvirkewN8HlJsQQgghhBBCCCGkptCzbGJS1seyJEkWAbgNwCzYH72A4dViqwGcliTJq9M03Z4kSReAHwEYFcSNnnMXgL9P0/QXgeWeWOzda5bk6jXagnld2Vt5K+UT2tuNbKxTKiJUR95tVFB46ik7zrVLs1RLyCXJ73mPnU4uSS5SsWzsMWG9ZlhK3ZS0RyJlJlJaCQCPPGLCxxxjx917rwnffLMJn6+2jLekhI4tueXyfy1f+MUvTBmPP96Ok2oVqbQBgP7+FhE2P9er6uWz0EutZZ3nKTsDUKyz/dSnCsFHt5l72fgVO9ntt5tG2Ng43YpbteYMEZd96YULTfiqq7KLpdQ11hbduglKpcCHP2zCTa561B1FaAQHVf5S+iT7crFMw4QHYMvjXthuwrM69PggJLJ5b+vtkojIgeQb37Cinnrq38zBF/6PFffsx75UCF9/vfn5615nZ//yyyasVFx4QYxv+/fbca5+k4WuR9fW8xLZdvW15HGx+shIjoa++91CuGP1v1vppGxj9eovW3FSITvQaI+lTf1i0BENb06XLXVC19kmrGaDUoqt2668tyY5fuoZpWg/Mj8grO06z9GFnGLcIOT7BMhWRuqxSB43NZZRXtlXZFhfQJZZjzH6OOM0Wf36VbZjh7nv1+oXkZAw7eo6wYqSz1cW2Vn/Dim5HqBnyToRcwKXzNYb3RFlPcoBf4z8LamxtGZobSuVHEDxO1xaRhQhH6Isl8OSwlU/uo07mk9mHq7rSbkaYM9x5KPWr4kWxyTn2fTQQvgllb9UILqko5KbbrKP5VxRW0EsXlxa2rZ7t53uW98y4bPPtuOkVYCeg7QKee7ChSaspxlW/a9bZ0duFxOB00/XF0DFSImjenADK99YCDfJdHJyBdgTKiXTXr/ePF85Nmk1t3wW+l3fJqWWWqLsGlsFso5bW+1+oqe3kux5trqW6LPSXgawbQpmw5bazz5WPMN1GwvBWcpzZGDQtB89jLvKb/3+sq3H7yRCDiD8ZvooyC6vgxSol0gG4FgAXx1ZgfYrDH8oS0b+rQNwTpqmy/mhjBBCCCGEEEIIIYTUG+WsNVkF4AQMe4ztB/BVADcBeA7DK80uBHAFhj/AXQigA8ARI+f+AcCH0jRV1syEEEIIIYQQQgghhNQP5XwsO1+E35amqRDGYAuA/0mS5LcAvgNgEoCzMPxh7RoMfyijkpcQQgghhBBCCCETgjSlZ9lEpZyPZUtG/v+d+lBWIE3T7yZJ8iGYFWg/T9P0ryos48Rn2rSCxl5vBSx3SHdtBax9IqQP1+WXm7Dcllmfp70U5LH2B5BSeWmJoG00DjrIhKV/GQCcJH3JVMGGhE+Z1PJrzyapy9eDlCyX9pD4yEdMWFqC/PAGu/6PPvqsQnhxu51Hk6dPysc+KDaJVX4Jd6wz17vmGvs8afW0apUJSw8ijbYYkJ4PMXyr9vTb9dOy4wlzsMP2Wbh7n9kK+8c/zs7z3e82PmXaP0W2+bbW7PJLfwltSSE9hE7qtuM+/GFz3je/acdJ2wtvvzfdCEWdtOhMms3NyvvUXhPNXaaM69fbcdKrcPVq+9mEeNSV4wUk0w6KftnXPs9Kt2adOX7bx9utOOnR1fmFL1lxPxb2Zt/85mOF8EUXHWmlW73ahLUNkawv7dOkx4RRyuknIX1K++rIevzsZ+04OY4/97nPFcLLXmNbhrZceqk5UHu/D3W9thDW7Qcwz+aM7j2Z6ebMMWXs6rLHYImr71moF4oc12NYK7q85G6b807rWPa9FeodK98N8hWlbc+kb1J3d3YfKupfssG6jPOkKWMZyGqWYWlxBNj38+i7PpOdh7I/ct1bJrqRyAvoF5j0AHPk74qTQ7L0MJw61fbva5PGUmXknzUGuPwNO5WZiXz0RfnJxI42Ynmn9e2yI8VkSM8j5TjoO97ruaJ8bNpOS07z5PtdTRfwzDPGw2nJEjtulhxHOuCHwxvvYx/xH7flfUufUT2Ov+td2X5a8rz2drstyXpw+QQPCq+55rNfa8U19Jux2/Xit9qIetbOd5mcDKl6lX1qluxDuqGJPJ4ePNSKkvcqfyeR7z/AfodrW7JFvkOkyGRo5qHZ6RShvqYSa86kmmeTrC9lQj20wvweguVnmmv17rTzEA2vq8v/PWQVRk+UZDk8x0HvdwEh44RyWvThGP4AtnaMdP8twl/KTEUIIYQQQgghhBBCSJ1Rzsey0a19tjlTAc+K8KbMVIQQQgghhBBCCCGE1BnlKB4mYXhl2ViK3EJ8mqbbXQnJMCmSwrLVe++141auNGG9bF1KHvXKayl/lEvC1epea/Wt3NkZsKWWegtneZwptVEULc2VWh+lLZTlahI3vgOzrXTyvvUy6Te/Obsslryv2cgkjz3WlhjJOpfLzQFglq8cQBRyV59dB2vXmvBPf2qf1iHyl8vU9U7gcrduvbRbthHfbdVdFC1Fl2vmVQXtN+pKq4w6D7nD+IL5jrbkMANoEnXc5NgpXbdB2Y4/+EFkxkkGBu08rPavpQdSu6U7sOjczUJ2rKXMso1raYbsNsXts3yJYKhUV96alpFakiN1c2c0Gxnvnn57K3Up7fnqV430UqkMrfHNkqMAOGtFhEbvia/0QJdRSvH6lcx5+/b/KIQXfOujhfBD+z9sZyp1dEojKK83c6YtPTv4YBPeNWjidDPOuhRg92f9HrJkPw55UIhkOBQtv7XavJKgtLWagm3qbyuEb7zRzsP1rpQScY13mwnsl1nndXTY133+eRP+3vfstFJZJe8TABobS8uKmlztQJdJDh7F+t9CsG/hqYWwfoe42o9sr3J+paWQWj7rS9YzdD0zPUZq9amFr/5Lon05hIxXzneGKb/zacsI+Q5/69nPWXFP9Bupm7xvfVuHHZZ9PWf7ySLSoOJ7vUXzs+02JFpRLcda2RW0nFX2Lz1HmDPHjN2tql6zyl+OtNglV5TT4CGYdA3ylxfAulE9j5FSXVk/WhEo3/U6D20RImlsFO+9dhFWU0pZx1I6C7jrSz5D1zxb5q/fozOkxl0NtPI82YfmzmnPvlgZDDWa33t6u4x9Sjm5U3pJz7KJDFs3IYQQQgghhBBCCCEj8GMZIYQQQgghhBBCCCEjJGma+iVMkiEMyzC/AeCHjqQXA7h8JO0KAIkjLQAgTdM7PK6f+pZVnYeTjjuk7POqSfO0Q3Hn//yxZFyo/EIuiZXLffUuRlJ66ZRTeq4tlct5x6Lhe/9uDrQ2Rq6x9tzdR+MqsszS2lFGaRzl/cTYTVKXVy7f1rdpldFzpxlnGX0rxHWeY4cp/ezlEnqZfVu/LdOw1tZHkE64dnQsihM7rep18UPtM0pGaTXlvK6h7Ei9nZNE6AkHhExA7hAJ2NJULTWQKk+9S2rWfcdoxxrvNql2vf3k9xYUwu97n32elCFfe60Jy90vx8rf0je52pZsrFofFCKDcqHLKDQ1chdgwL5XKa2Xu/kCY8i4HFjt37HzoKv9y6G6HHlcZplyaJ/eSL04YI13O+efiiz07ne++Eqk8q4T1y5t8h21d68dp3e4HmVGexnllRfQ8kGhaX16m99ug66xyKFWLpJlxiZ0tzjfZ+89Busb174OIflvFvNX7fUhdbwuzbZseGogkdd27QpvlamKfUajyyhvVd+2fB1Ieff119vp5DirN26V02e9S2SM11dIG3TtBqvllbLbZ4UBu4mcfLIdJ+cLvvUv36kA8PLLJjx3jr8MU+K7G6arG7rqTp6nu26M3xdd+N5bFqeeuhQbNmwY85vAeGXBgqXpNddsqHUxKuZ1r0vuTdN06dgpDxxCfjO9fOSfi9GvWms98ksDy+HN0n+8IM/sK6bne4/XugiEEEIIIYQQQggpA3qWTVxCPlL5fBUe/Vg2Yb8gE0IIIYQQQgghhJCJRzkfy56A+QhGCCGEEEIIIYQQQsiEw/tjWZqmXTmW44AmQRqkNff1IZIad731u3WeFvpL9F7n0nRAmCk0KOOPARgfq7L8a2RZhDC/HK+PLM+vIhyGM7F9L3R+rm2ms9B+D/v2mXBHh8PrJtQPzGVYJOqut9HeXtzyKdvyW3OgPZuk4Uao+Y/A9cyK4mQ7K9qnvLRnmfaasND7ma9aZcK6DwmkX+CC+ZnJirYzP0H6lKn13+X4B8bE5bfRMN++uauv9svz4ouz87fu2zWGaeR5WQZ7gOUp5sI1Nsnsd2CBFSdzb+nfY8X9+7VmgPDNX/uYOMfBjDFBp9uyxVxbN3FPy6Mofip5+EZaXlLdJ2We1yyalpZahNpB+uJbB6FeZzJdk/bObDV5xvLIsS8gLqjGh4HB0m1ej4O+8wJZft92OxaxPcV0Ot9n79suGgJvXLbxoja9cGHpsEa8PKVPJwA09Yq5hcNATvtYyaShzzS0f0lk/WxQtkVyzFRN3KpLOf3R8wz5atO2cLIOjjoqO3/Xz73bT2B7931NS+9V7cMq0Z5i0s9Vt5EXXjBh6Uum24s83tVnl7+t1c9zMGQsGgvpLdrWmu0t6ipHyNih85B1IutD51HO72mEjAdy9QojhBBCCCGEEEIImYjQs2ziws+/hBBCCCGEEEIIIYSMwJVlGWxaswn3r7kfDZMa8IpTX4FT334qHl33KO79wb14YesLOO8L56Hj6A7rnL7tffjR+36Ek99yMk4878ToZQrdbry93XFeT0/pMGB/Il+zxo67+WYTfs97TPj977eSNbYaKViRPOuSt2WXK4NyZB8xlgL7boWdxzblWeXXj+KZZ0z4ve+149oGe82BQ+LovBd5nspjZ685b9Mm+zS5zPykri5zoGVtgdLLkO2ui85pbTPp1Lp4eV5npzmvrOLKPB16LN97ccm/Wvpt3UaDKGi9LIsvRxog00oFa1eXykM2PC2l9f0znxz7lFY9pJ1JSQgA3HijCd90k33eV79qwgsalVRX6muajWxJy1ikFFvfsq8MUEre9Dmy+zY7pON5jIO1RN6PlMxreaBsPlo+JVVpul6l5DHv94mL0PEhq8xOyaGQFAGw+6xqXI1ifJZdwVfSOFbaLHT/0rLPLEKfoW8ZQ8aiemJPo3meW5SUsKtrdiG8d7sdN326CWsZY6UWJuXEua41KMaE7m47TjZr19i6YoUJ62mSPNZKV9eYHEIMmaFG3reW8uvjUaQ9xVjIPqrnCBI5lzj8cDtu/34T1vPZZcsql6IGk2FL4yLGGKDnEuvWmfDKlfUxpySkGrC1l2D/vv249wf34s8+/2e44GsX4KHbH8LLfS9j+ium45xPnIPDjjus5Hl3fesuHHHSEVUuLSGEEEIIIYQQQgiJBVeWlWBv7160tLegeVozdj6xEwDQ1NKEKa1TMs/pWd+Dts42NE5hlRJCCCGEEEIIIQcC9CybmHBlWQnSoRRIgPtuuA8//sCP8YpTX4GkIclMv69/Hzb+eCNOvvjkKpaSEEIIIYQQQgghhMSGy6AcLLloCY5deSxu/+LteOA/H8Cxrzu2ZLp7r7sXx//Z8Zg8dXLQdVIkBW17Odv7+urhpUZf+yA0feMb5uDaa+1IabygdfIrV5rwsaJelCGD636kDD+GD06sbZR908X2ytD5ZeXf22vn8bvfmfCOHXbatkHxA/0MxbMK9TeQ/l1nLnf5T83IvFaoR0hImcvZFl6mleHm5jL8PKQnmtoHXfoe9fWan89oz64fuQU6ADz4oAkvXz7Dissqfyi+zyn0ebqQvi5Fedx2mwkvXWrHSQMpPcjIOGkW48C3/Fu22MebhT/POefYcQcfLA46uqy4rLrUtyKHXe2J41tm+Z7Qvny6TUpkGfN49nmPsyG+MtpLZ9s2k8fGjXZa2cy039Js4cNVTd9LjfxruPbrclnkxHiPZhoWlZF/yLVddRPbA2osXONnjPlPjPzl3EI/sibP3yTkGKPHKdlP9Pjj67vowtd/VuNbP7LNNPTvUbGNGWHb9/WQQ8zPdb+Tx3m3zxhjpIsYz1Mjy6jHsKzVPk89ZR/LKZr0SKw1Q2IeKe/N10sxFP2c5PurnLk0IeMdfiwbg+ZpzTjqzKPw7OZnM9M899BzePSuR3H3tXdj4KUBJEmCSZMnYfGqxZnnEEIIIYQQQgghZPySppRhTlT4sSyDvh196H2qF+2Ht+O5h55D++HtmWnf+Nk3FsIbrtuAyVMn80MZIYQQQgghhBBCyDiEH8syaJjUgP/69H8hmZTg4MMOxmlvPw2P/fox3PWvd2Hvi3tx6z/cikPmHYJz//7ciq+VIPVa6h1jO2e9PLnxs/9UCDdcfrkdKTWbeh9luXf1jTeasFxLD7j1QQ5iSOxi1Fc1t2D3lUdccYV9fOGFJjxpkkrcoXQ/IehGI2iQegDHn1QaIqy7d9aPbHe6DUr9gkNTFEVS5ECXX1brww+b8GnH2uWXdTyrw67Hjo7ytzMPJTR/2SwaG/0lQFnSoaK+++GPBpVRShtiy31PWGyfs3q1KbOW4sWQUsjuVVReT7373DmVyyR39dnPRparJYJ0yDUGVFPOrVm+3IS1fKenx4Sdf3WWkTqh47mFvPtd5ejttY9dMswsGgYH7B/Yg0DmeTHkcL7vUdd8IQ/JcOj7xbdcsd9fuh5nd2b3Nd8ySjl9OcSWYuchF7fyb27JzFNfW8pb5Vihu4mccoeSxxzBdwx24Tk8eKOHSzn2bd1qwsuWZeeRpwQcKE8OLcsv28jChWGS6lAWzA/Lf7T8Q9X7dYqQqPBjWQYt01tw0TUXWT878vQjceTpRzrPW/rWpc54QgghhBBCCCGEEFK/8GMZIYQQQgghhBBCSJnQs2ziwi0rSjBt1rSiVWWEEEIIIYQQQgghZOLDlWV1TgxvhXldnhdzGUp0d9vH0tjkkktMWBoCKPS9xN7+Oo/timP4mMT2x9DndHZm57+nPztOeiU579P3QQWaTQT7DklvsltvNeF16+x00lBIm1RIX75AXGXW/j8SWV1LloiIQVWPsk+pPhriP5OHr4WrDqQnS4zt2GP1wxj1MDBo8nT5hmkPs6xy6fNCnm/RsxD+Od73rH3/5Bjg6Och/lblUO22G+IDNX++nZ/0eXF6PUljGu0T6RiDXeOn/Cu3HEb045XDir60K//M9q/biDgO9eppbo7r3RWKr29eLE+0EE+oWvpXuuqnnPN843zLVU3/WY2r/PKdKMdP7T87fboJu1avNDVmt7u85wEyTzk2AO4yy7i21jBPPYnL76293YQPOsh9noUspB4kc37xybn6ogjedb6U5QErnse2bXbcaPWkaYxSEVJ9uLKMEEIIIYQQQgghhJARuLKMEEIIIYQQQgghpEzoWTZxOSA+lv38Ez+vdRGczGybmbmkOMa2zJJoUsX2GSV/XCS/EMuVGwaV9kMuXVbnhSy7L2eJf+ytqmNIqUJxtZENG0xY3+cZGdtm+8pMXOUAYC9VlxXuWLIeXFdynb3W+slyrF9vx114oVf2vs93V192/WuFspQ+zZxpwosXq23nhW6gHAlTbFlyaH7ycTilSYMD9okBHTO25HkspMRUPsMmR9FD5aB5SMIz89F91HMG6Hq+45EY7yGZh1bvyGptbm4rhJsCZT362o2NpcuvZZhSLq4lNF1d2XUg85HypnKeu5Rr6frp6TFh2b+09UCMvl1NmV7oGOB6FzvzsPWsZV+rHHzfSXnkXy+UU8bW1gYRrvzaMd6BMd5R7rEuO863jZRTx4MZY0w5U4yhxiZz7dbKf2mI0Y5jzQdDyqLzk++QG2+00466nezeXfZlCKkLDoiPZU9uerLWRXBy2WXvqXURCCGEEEIIIYQQQgjoWUYIIYQQQgghhBBCSIEDYmVZvZMgLSyDjSVbyVrKXM4OTTJu0yY7//nzTdjayUZqJQBg40YTljsWAsC73mWu1TnbivKVSYYuLfZdfh1lyb9LwhS4S5gvciNITd47I0Xf7lQjNQuyQer1/1IfFIhv/WgZxdlnZ6eVzWLLFhPevNlOt2hmmAlC7GX+MSR2rnMG0GQd9wuJl6zXcq6bt2RndmdtJEHljHtR3imB49R4kExJfOsudDfD3bvt/J591oTlMDVzpp1O7oZWhBxI1Ltm+24j6b7vvtLX1eh3o5RCymEWCBtaXVJLLQGVtyMln/rV0t6er8TIdw7lInZfcOYn9eEAcM89JnzOOVaUJS+rYX+NbSlQ7XuJISsNHaur2rY80X1U9nvdPGVc6HTNd3dMV/5SSqgl7PaG0PHn6jEIndP7nueq47VrTVj/vjg6rr/0kneRxiX0LJu4cGUZIYQQQgghhBBCCCEj8GMZIYQQQgghhBBCCCEj8GMZIYQQQgghhBBCCCEjHBCeZctPPrnWRXAypXlqQQsey/8lhk+H5Hvfs48vuMCEOzpMuHmO7TvUJD3MJk2yM3GIu194wYSnTzfhcrZ6lsT2wygnf2zYYMLK021o/oLM00J8BPLwK/LNY2DQTiefVfCW974IQ4mh5pbMZPpaAxlbigNAW2v55SrHE7BJ1E9np0knmwsALFpo2ky9+rCE+q5IHyLpFwIA3/qWCV91lQm7xoBQn44Y5N7GPa9dDiEeJ3lseR8jf9/zYj/3cpjVYZexo8OUZft283Pt3TWvSxzogUqgx74Xt5rwI4+YsPYTkq/iNWvsuA99KPNy3sj8//AHO+6f/9mEdd9etsyEhcVp3XgEAdllqfYYYKG9Y48+2oRVJVezXHn37VBCxqPQ55tHu8jbN8/3PSHjtK+X9B3V3q5ZefiWCcj2NwSAfftKx2nvNOkXq/OQ/rNdXXZcS872vL4e1C5i/06o31HSe1LX6ze/+ceRUPa7ayJAz7KJywHxsWzd0qW1LoKTy3oer3URCCGEEEIIIYQQQggowySEEEIIIYQQQgghpMABsbIsJp/67W/xw0ceQWNDA77+J3+Cz23ciJ+uXFlRnglSryWyzqXigwP2DwL0ii4J2SWX2GnXrTNhqXKdM0dlKtYrD33if3uXZdo0E86S8+kyakKWjodiXUs/C6kpDdwXO3RLaIlrebBcMu/KX+exVch8tDpILlVvbq6P7/K6vWzZYsJa/vg21eYL6EoQDTRUYiFlCfPnZ6cryl+2Nb32vbPT69qhZN1bOVJU2S702CGl31KG6SIPeV9IHs7xpn+P/QP53LR8SujlXDLPUGlhreRssa6bdd+1tDMoB5n/LGFngOlqjHFJOxzvejkGv+Y1JnzvvXa6444zYf2KkjYLGjkUNjVm15WUnB9xhP3M5HinhywpCgh+FqKQQ43GJiKGJM2VT7X7lnOO4Hqp1CHjQcaeh6S0mpLMPPLIWw7qykOOMTPas8+bOtWUUUsJ5XxWhgF7jqYtI5YtK98yRZN3u/BFllFPdaU09StfsePk74S//vXElluSAw9+LCuD9c8+ix8/9hjuu+AC3Pjoo7jwF7/A39e5HxohhBBCCCGEEELygZ5lE5P6WO4xTvj1s8/i9XPnorGhASuPOALP7d2LVa94Ra2LRQghhBBCCCGEEEIiwY9lZTJlZEfHKZMm4fCDDsLhBx1U4xIRQgghhBBCCCGEkFhQhlkGSzs68On77gMA/Mfjj+PpPXuwfe9edEydWlG+KZKCTtylTdeeUNb27wEeZWMhy9LVZX9XvfFGE37pJRMutnMK8zCQWzFLDX3enkSaEK8w6YsCAA1/+qcl84tRJl0uV/66ichnJcP6mcl2p329Nm40YW2LIv1nmnPeWltSjq+dLGOMTXPLaoOi0htFm9G+PQODpvwuX6DxsP67nPYvfcp8h7dQv5DQPIOQ5h6A3XEcNxpj7KiVR1le1Op+gt9Duo/KwVUawuh2oL3sMvJoaLXP6+srXc6zz7aPp083Ydd0xuUT5ELWl34XSK/CtWvtOOkT1N3t+S7WRkTCE7Bh8eKxiloyf995gCtdqO9oiPdqOWNFPY4J9VimesI1B6ymN2epsoQQNM8ObONtrSY8f76dh5zPagtYOTxv3mzHdXebcNbvLhr9KrDGUucve9n5x+43+jUkiyHHZgC4+GIT/vWvJ1lxl166CADws59V8RcBQiLCj2Vl8MrDDsNxPT0495Zb8NLgIP59xQqc/4tf4D/PPRctOXysIoQQQgghhBBCSH2SpuPib9YkAH7hKZMvnn66dfznRx9do5IQQgghhBBCCCGEkNgcEB/Llv/857UugpMpM2d6LZ/VK3Mlzc1+shDXsmDXkl65dBkA/uFqE5YyMb3dspRYaHWElJu55Jqh8oIYuK4dY7l4Ne/N3X6y0916a+mwTqv/orJ8eelrhS4Vz6N+9u0zYX3fmdKAWKtIRT7bt5sf//jHdrKFC014xQrVBmWl6/3MZeerIa427qrK178+rxINI+u8o6Py/Jz9vHenOVixwo70bE8ulZ6r/8q0TVCdVA7YYkAeam6xkk1oWZTrT8GxV4zr/KSWRYSd75oy/nQ9o92ct2SJybPYLsGE9bs+9rjb3m4fS/mOlodqqU9WmRoGB8yBvrkIf+r3bf8x5guh13ad4zvvm9D9fJxTztxdkvczzco/bylwjPvSY5GUU+rfV6QSXs7JAHuIkb8PuSiSYQ6KF7f+RUp7nGTg3Zf1XFFXxAiuoVQ7A/z0pyb8/vdPLpkfBVhkvHJANN11Tz5Z6yI4ec9ll9W6CIQQQgghhBBCCCEEB8jHMkIIIYQQQgghhJCY0LNs4lJdTRshhBBCCCGEEEIIIXUMV5bVA/JztEPU/eEP28fveY8JL1lixzU1Vs974rbbTNglrdcWSr5bsLvOkenK8nmRxj7C8GeosSkzj9Bt22Wc9jOQXm3aI0H6EEnvGReuMrY4dm3e02/KsW5ddrqrr7aP5fba0lOpnHLFINQrZto0k1Z66I11XhblXFum3b/f/FzbSWj7CgvZSBYv9ihh/oR6HOm66ugofwwopyxZPmUh41I5eYSyZo0Ja9sz6R+ifQVlszj4YHt8m9Y5rxCW44/2I2nL8I4qwmWY5mlYEsPrKZZfVAiua7vidvVle4rNaBcHzWogd/wpW17P8q5zzA/yrjvdRGS7O+ggO27tWhP+kz8xYd135Xu7QU805MAuB9cMn55SuLyAsuJq6f9VbW9Xkj++/rb12u5836vVLH9Ls32t5ctNOZYts9PKceuBB+y4jRtNWA4remiWHow6buFC4RM6f4EVl/Xsy6oreUE5cQcyx0L9ypZZ6FO++EUT1r/LjPoX/8//jFlKQuoSvlEJIYQQQgghhBBCCBmBK8sIIYQQQgghhBBCyoSeZRMXfiyrB5KksN7VtYxZyzDl9sU9PXbcvM7SMsNyJEwu5HnnrsxeCixlh8UyPROnt4hv6N9jDhz6oAZxYtG9yKXGegST64sd9eMiZDm0S4mkZYAWsg50JlozJZEa2X377LhzzhFZGhmLlni5yjxpkgnPmmXHyWeat2xAtjP9qFsg+oLSADW3zyiEnfXvia9ERx93dpp0f/EXdp6PPGLCup93dZXfBmPJrELGjrwlFuVI4HzT+UqrnPUh5V+6Q0lZnW68Ik4mk/1Oo2VuW7aY8O7ddtzRR5vwhg0mPCqbGGXRfIeEQ19QIgcBqdtwDCrlvKOynoeznWmd8+bNJqy1JfIlG4ivTLit1VFm2S503ZVRlwX0M5PHYkwcC993oIzTdgBy7Fu/3o7btMmEDz/chLMk1GMiJyF60hFSj2PE+RIi83SRyzjraoOuuAjUSqZXr8SYp+YxJ3N9KGhyNIuQuUtoHYRcF7Bfew8+aMfJoUTaZmjFfHe3CXd1hZclCPlwtLeHyz9HIO9HzxFk9vp3iFGSxOsyhNQdlGESQgghhBBCCCGEEDICP5YRQgghhBBCCCGEEDLCASHDPPm0k2tdBCfNzVMLy4RdS3EXORQh87qKci2E5E6Hrt1ZXITKNeXOip/9rB0nFS86bt4t3zYHzz9vwnrt79KlhWB/Y5sV1eLa7SqCVCBEAhQs45IaQb2EWq4P15JMqdvTa8JFHTQNDphyqB1BXUvrp00rmV0u6B125G3LOL2b5z982LGFjwP5PGQd6J3kYsgZZLpZSmI0ebLJ/+ab7TipEjtD7d5UaZk0oWOAvfGsvwQ0K06XQzZxvRGe3G3WN38XwbvMSTm07qNSj6G1wGKAPvtse3yTyL4ghkQAwH33mbAcSgHg9NNN+JJLTFgPFdjSY8JaTy/L7JCRhg4Q0eUpeiCRx1qeKF+Q4rk1qHvRY2YITolR7MFVP+BAK4LYz8al7pPSS5ergjNT2Val7hgo3v6uioTu5hyCd/66kuWWf1pDJgdhvStz0WAyNuXscExZpk0td2x29cMYUtq8z5PDv55myzjdxOWwIl8n2rFAvvrzni872bvXPhbv9MFmM8/Qr8pnnjHh6dPtOD33KpW93PV9IkLPsonLAfGxbOlVS8dOVEN6vvd4rYtACCGEEEIIIYQQQkAZJiGEEEIIIYQQQgghBfixjBBCCCGEEEIIIYSQEQ4IGWa9kyA1mnrp/QBY3hBObyThOQXAEsRfcIH58Usv2cmkB5K2c/L1PnB5EZy1whz39Nj59faacJF+/w1vMGFZJ9pTRgjEW1q1L0G+zdvbg0GWWd9oyHb12gjBNoWy4+SW0Ppa0ntImBM0KCO7FybNLoS154C2WIqNrGP96GX7ee3SnSY8v9dKN9Q6rxAux/NCelZIu5ZVq/x9sIJ8OtSNbtvWUgi/73120iOOMOGHNvtlH+r54rq3UEL83rSXyKZNJrx9ux13yinZ+YWMb64yynRFdewyPJFmHw5/n3W3mvA3vmHHybHbZRH0F3+RfWlnO5DmJfoCLuPLmhqzZKDNVbZsMWHduGT5r7/ehJXv3OAl7yyE9StcIodjFzH6lsaaI7i85XJG31tLs2l3y5bZcbKruOwmvcdW+Ty7u+04l/engxheTBLZHAFggWeb8SX0PWTVne7z2iixQsqpx9j1P9490fJ4T8coRz2i60YOg9qWT+IaPidNMmHdhVx5SH9V1zOUebaUM2zL/isnjoDVn/vFrwXanlTOp/SrUtaBLn9r63D5Zd1MVOhZNjHhyjJCCCGEEEIIIYQQQkbgxzJCCCGEEEIIIYQQQkaoQ43EAY5j7a9zWbND7vLud5vwypV2XGz1hWsJ+ztX+y8Pf7RnbiE8s9uE9RLXGe0iT5dswFE/IVIwZ5zeb1midItOCYGUhYjy71l4Umb2UtICwC2PkFIKoQ96drtdH1J66ZJdum5bSmh277bjOjr8vtlr9ZRVlmZxAaXXyZLKafSScym9XL/ehLUCRUqNo0geVKeUt/P+99tJpaxLX1v2Fdn8Y8kjfPNpbq5cJiPvTbcDKcfVCsdq4mpnQ1d8wOs8zaNCun711ebnJ59sp/vlL014xQo77uMfN2H9esm6dtE47tIPyvZarC3JPi+DcsbjrLRlvStl+aWmF7A639CHP5qdpQj7Si0B/7Ep65xyzhtqbDIHMjxGOVx16Vv/rjLKOP1osqSXUeTuevITOBnyvZ5vu14w37P8ZfS1oDmOfqHL+Yi2gpAvY1WOGO9E33lYDElmSHuv5Hp5E1KuGFYNedRVaFvKup7uQrJZy3kFYM/75s7JHn86OszPp07NLpPurr5tvKVRFrqM96u8oGOiJIfBRQuz71PPw7LSAcYeY9++sYtJSD3Cj2WEEEIIIYQQQgghZZKm9CybqFCGSQghhBBCCCGEEELICPxYRgghhBBCCCGEEELICJRh1gEpEi8tfjk+IDKt9LDRthzSi0kvH5U7q2ufJle5fHGd19Vl7u2znzU/1zYaV15p0s2b6TAg0AYB4obueaCtENY7Knd2BnhgKGOvp7eZPG77np1UWgd0d6vnOfPQktd2OasUeU24HlzGedJzYSxkuWRdAUBD/x5zIBpXc0eblU56he3da+c/q8Pk36Qeodxq29UXsry7NLqqzj7bhGUfyqMvSPS9zO40ef7TZ+20e/pN2htusOO+/30T/vM/N+E3X1RxEZ2E+p24zpN2hHoMO2Gxn8eMr9+Jaxm9bj8hnk2uLeO/8hU7Tnp83HPPg4VwZ+cxVrovfMGEZ82y85g504R9t6vv6dF5zC6E21rz9eYppw/5eq5Z5+gGJDr60NmvzTxPjlO6HqW3Vt5eSbF9e/LKMySdJtTHLSuPWvpK+fo5ucZBK075zkVHT7aESdGjg3PtKHmg+oYcu102sgH2hkXk/XzzeL/Xo9dZPZYJiF8u3ebku1L78/peW74byrFBHBjMniO09D5tDq6/3oSvvNL/AhJt0CsmtbJOonjwwvxOMXlylOwIqTr8WJbBpjWbcP+a+9EwqQGvOPUVOPXtp2L9t9fj8d88jkmNk9B2WBte9YFXYUrrFGy9byt+8++/wf7B/ZjUOAmnrT4Nh594eK1vgRBCCCGEEEIIITlBz7KJCz+WlWD/vv249wf34s3feDOaWppw3V9chxMvOBFzuufg1LedioZJDbj72rux8caNOG31aWhua8brrnodDjrkIOx8fCd+/nc/xyXXXlLr2yCEEEIIIYQQQgghZcKPZSXY27sXLe0taJ7WjJ1P7AQANLU0Yc4Ss9j80GMOxWN3PQYAmHmUWbs7fe507N+3H/v37cekyZPKvnYe21ZLiYhefbtwYXZZfL+Q5yFzkPlcfLHJf+tWO521tbzWx23enJEQ1nrrl14qfQpgL6OeobLwZZJoBqFSg3rahtu7HKLy5LV0G9yyxYT11tKzhCTUJV+QcsR16+w8NmwwYSmnBIBly0rnBwAtZSyhz8LVN7LiypFbS4mLls7Jtnv00R6FrYCQ+ywnz5bm+LIQqTK6+WYT/tCH7HQf/KAJf/zjdpyUJPr2J9cYoFUVt91mwt//vpFerlxpp5vRbspx3fV2OaSsWstC5LAo2/vGjXY6+Z5Y5HhnFBFBWxUy9uUhIwp51gBsOwA9OAmG3nR+SLGCZc6+1FLGmCVBLEfK5ivVzfvefMdI13mS0HHWux3owaKrqxCcp8bjJ7aaPKUkHLClba97XcnsANjjVB5yR19ivb9888+b2OXPYy6aN7514HpdufKQx9ouJItdfXY9yne9fv/+w+XiQE6gVcKh7pMyy2gRuPzJJSX3jSNkPMKPZSVIh1IgAe674T5s+P4GLHztQiQNiZXmwdsexFHLjyo697G7HsPMeTODPpQRQgghhBBCCCFkfEAZ5sSFu2E6WHLRElz63UvR91wfHvjPBwo//+2PfouGSQ2Yv2K+lX7nEztx93fuxiv/8pXVLiohhBBCCCGEEEIIiQBXlo1B87RmHHXmUXh287MAgId++RCeuOcJrPrUKiSJWW3Wt6MPv/jML/DqK1+NtsPasrIrSYLUa5lqOUv3JffcY8JLlthxTYNix0LH9kQxJByaEKnA0qX2sSXP0vo+uZ2n1OIpGhsXOOKyy+S7tFjKC7T0wHOzSu8dHX13hdTIPEOlcr7n6XuWj6kc5LWlYkTXj5QnlrM7Uda1QiUuvu2nnOXt8l5fftnO54Ybni+Ef3T99MxyxcB3pzffPHQ+MXbF03Fy99a/vNzEvetd9rWc7Ud0qgbHeOnbZnp77TgpG7b66NWftBNefHEheOedi6woOWbOnjlgXztjRz0pnQL8x6koW9opgiQcUtsN2OXSg7An3mPdpk3uskhExeYtYxnvO/nFLn8elhehxM6zrOck9eiy4+vJlp5fCXSTl8j3u7QD0GOpPcepvJ1t324fT5uWfW1JbHuKscjbDiOk7mK0/9DfV/KgmnJ9X/Sr8nCxJ1zRnFhuzSm9INSEwft+tC1NRh76mYVKyQkZ77B1Z9C3ow+9T/UCAJ576Dm0H96OJ+99Eht/shGvu+p1aJxiRrqX+17Grf9wK0552ynoXNSZkSMhhBBCCCGEEEIIqXe4siyDhkkN+K9P/xeSSQkOPuxgnPb20/Djv/ox9g/ux88/+XMAwyb/r/zLV+L+n92PXc/swn0/vA/3/fA+AMC5f38uprZPreUtEEIIIYQQQgghJCfoWTZx4ceyDFqmt+Ciay6yfnbxv15cMu1Jbz4JJ735pJJxhBBCCCGEEEIIIWT8wI9ldUCKpKD3LkdD75v2lFMc5zRmmzeE+FHloVv3tphxGetIXw7A8uaQ+Wsp//r1Jjzf3s8BXV2l68dVB8uWZRfR5QHgawWkt5yWXiLHHGPHHX+8Cbu82Xxx+aTk7Q0h71vXgbR4mNcV5lPjS7V9HGSTv+QSO+7GGw+xSlIrpGfiaQ9+z44UXlsx/K7K8YzLitPF0P3epnSZQ9v7NdfYx59c/UQhfNfWuYVw1+X/YKWTY9hVV9l5SLuT326yPcqkT8os4a2oPVNieDf6Epq/9b7SD1H+ube/344TBkbr1tlRzzxjwtI/rqNDlbF3pznQhm8LF5qw9n0S5fL1g8nDe0xSzhhWy3LFyDNGfqEeTll56pUJMWwAnc+p09M6xDG/kk1cT7WkP5h8N+tuMmuWCU9XFpvSw8y3vp9/3j5+6aXsa8tbi9HOGnoetSO3bjVh/ULpnF0yP+1fKY+155q8H+33JvGdp44HX76qI98b+uH49iGB7tfHHmvCTo9QeaJuyA5C/MZi/T5KPzMy3mELLsG0WdOKVpURQgghhBBCCCGEkIkPV5YRQgghhBBCCCGEBEDPsokJP5bVAQnSwhLWWBKXzCW3rrXdau1vg1ji67tkO5aEI2u5ePB271pfI5Yyzz17jvm5Wt/e02Py1CueZVkGBv0kkzGWorvy0NeWu79LqQRgryqXYde26uWUP8bSbt/zNm8217r+ejtOyqc0vsvD7RX49jlyBb5vOy7n2r7tv73dzu9d7/LKPgquezntFFHm91+TmU7rSH3HgNAl/nnLxrKu5RrjP3nxFvvEmWZsOqPxafPzT33KSjbQI7SXWmY42F4I9vbOsKKy1CMuGUjoGBBDruZ9nrd232b58oBrAXaFaS1/T48Jaxnm4sXZeWYQQz6Vh91DDELrIG95Wd7PRsYNDtp5ZM0nypFrSmlkZ2d8GbXsbqtX23Hbt5vw5MkmrLuCjHPh++y12jGGnNVFw+Y/moMvfMGOlA/rTW+yzxMTlKF2Mz7rYUQeu5593uNs3sSWdodeu4jmlkKwodPPvkYj76ep0b63xta480HXtXUZZXvavNmET1iMKNRrWyPEF8owCSGEEEIIIYQQQggZgR/LCCGEEEIIIYQQQggZgTJMQgghhBBCCCGEkDJJU3qWTVT4sawOSJEUNOSxtt+VHdbadttlhODA5RMU4j1WdbSHhOAnN5tyLVYafV/fpzz8MLLawqM9dj1K7w9t1ePaEr25ufLnUS9bQkubpg0b7Libbzbhk7qz89ii7KJuusmEZb1OnWqnW7nShF3btmsrKZc3nMR3TNBd+YorSqeL4TunsfLUs4WPf9yElXfg7zc3FcKh9hiy/cfw2irHd0ge7+zNfhbe3o3KaOe/15q4nh7jmfJO5XsjK+GH9y2wop591oS/9S37NNkGv/51c61TTsksbhGue5NtXvYN7dcSSjV9EZ3XbTTtuCgPh3/ann6Tj+w2ba3Z7ayW+HqqluO9GtvXLo+6cnmS5u19KNuF9B6TVngAsGyZCesyar/VkDL51vnAoN87Q78Pp0zxL5skq/243sWaoPapb+Cxx0z4gQfsuOnTTVibtel8RtD2wtJLSntNBlo0VpVQ3+OQ/PMeL4PmRWUQw7txrLQS2QRdcyhCDlTq4zddQgghhBBCCCGEEELqAH4sI4QQQgghhBBCCCFkhCRN01qXwYskSdKQsiZJgjnHzcmhRPGY2TYT9627t2Rc6FbktZLH1XKr5xjLt8vBV4ISkkcleYbk73ut0DZXzWXxWtUgJSku+ZdrO+3ct53PYdl9NXH2Q1GRQ0KuNhZZEm6XJNw3j3Ly972Wi1A5+saNJiylNjN6H7UTbt1qwt3dVtRQa1shvGKFfdr73mfCF12UXY7YdZK7FDhn8n4v10u/jkU1JVJ5EGN88D1Pyu0A+312+OEm3NGRmV3wGBmKzN/Xs0enk+9Y1/s27zlT6PWsMVjfgNS7a51bxs3mMY+sV2LL6WOQt5Q8j7lELd/TPiw99VRs2LAhiZppHdHRsTQ977wNYyesc775zeTeNE2X1roc9cQB4Vn25KYna10EJ++57LJaF4EQQgghhBBCCCGEgDJMQgghhBBCCCGEEEIK8GMZIYQQQgghhBBCCCEjHBAyzPFMDJ18LX2xYnuVuMoY6ucUu1zl+Abcsc4c6+3dFy0svZ12tb3BYvsg5NHOZFxLc2YyZxvR+TdljI6+3lel8oxNLX3isq5VVAfCkyXUqyp0fAv1OquUGOUFgM5OE7asbhrVYCF9b+68077ekiWF8K23zrbipJVOLT2/Yry/vOnry47TfkIZ1Kt3Y70Sw0+0lnXnO8bH8J5cuDBff9K852G+/p6hPqC+Y0c1x3sAwJzKvZFD55HjfcyJXcYY87C8x6w88nfF5T2PHw/tLG/S1N+zkYwvuLKMEEIIIYQQQgghhJARxvXKsm3btuGJJ55Av97+DsCZZ55ZgxIRQgghhBBCCCGEkPHMuPxY9tRTT+GSSy7BHXfcURSXpimSJMH+/ftrULL6IYZsrx6XRruoF5lGOSxfnh2Xu2wgg3LuxbedxbpepeRxrVDpRIhkx7XsXi//bmysDwmT7/iTx/jgO77VS9vV+XV2ZpRLywXlsdRuApbeqSVnmXY5EmVJVeV2nlJLTQypUx5tvF6kinmQ9xwk5Fp5WGOEvENC39MxCC1/KDHmQtW0RAidB8Rug+WUayJRbdl3vcxhq/keOlDaEiHAOP1Y9t73vhebNm3CP/3TP+H444/HlClTal0kQgghhBBCCCGEHEDQs2ziMi4/lt1555342te+hksvvbTWRSGEEEIIIYQQQgghE4hx+bFs6tSpOPTQQ2tdjHFJVXcdGyPPkCXPobvpVZJPTOpVohCDau7GVUuqXX7f6+ndxcZbG69XGXUMGUuoREfife3QbeZyJvZuXK7zqv0ui33tmu4WmgO1lIJVs//mMfaNBxld3uWq1/uWVFPGG6McpJhQGWNIHjEIlVOyjRBSHvXxW3aZvPvd78Z3v/vdWheDEEIIIYQQQgghhEww6vNP0GNw+OGH47vf/S7OOussnHvuuZgxY0ZRmne+8501KBkhhBBCCCGEEEIOFOhZNjEZlx/LLr/8cgBAT08P1q5dWxSfJAk/lhFCCCGEEEIIIYSQshmXH8see+yxWhehLpC68xjbUZdDPXorxNgOeTwS2yNnotVbvdxbLX2U8mY8eHjU0t+jlmN1NanluyCG30xonrGp13d2KPU47ubtCxdrPjLex4QDhXqcE9cT9TJHkOQxJ4jtkejKZyK3F0LqiXH5sewVr3hFrYtACCGEEEIIIYQQQiYg4/JjGSGEEEIIIYQQQkgtSVN6lk1UxtXHst/97nc48cQTceSRRyJJksx0SZLgkUceqWLJao9ejpu35KJelv/mfZ95Lx2vl6Xp9fI882C831u9yEhduGSGtSpHOXHVJIY0o5YyvdAxK4+xLuS8emkH9cR4GGNiE2vOlHVeOX3hQKnziQxtRdzUY/lj9PNK8swzD0JIPMbVx7K2tjYAwKte9SrnxzJCCCGEEEIIIYQQQkIYVx/LjjzySADAtddeW9uCEEIIIYQQQsj/z965x1dR3O//2ZMQQgghYMLNgBECIo0YFQQVbLRYEdGCyk/bimJrq7a2aqut9msrtrbVVlttrdV+/VqsqGi9YIsWL62oVFBAUVFRUSOCotwiRAiQ5Pz+IJz9zOdkJ3s2u+cSnvfr5cvZM7Ozs7Nz2SzzPEMIIaRTkjm9DCGEEEIIIYQQQkiOssezLNf/SweO45zlOM7LjuNsdxznE8dxbnccpzzFPMY4jvOU4zhbHcfZ4jjOfMdxatpIV+w4zlWO4/zDcZw1juPEHcdZkMq1cmplmeaVV17BW2+9hcbGxqS4s846KwMlyh7C2C49COn2Wci1/LPVhyKoX1HU5c+kp5vXtdP9zML2xgur/EG8ekhwsmWsS6e/mCZbPB5znSjG8Vz3PUtnHaTbtzDsZ5Ot7zGdiXS/3/AZ2snG+uE4TnIRx3EuAfA7AM8AuAhABYAfADjCcZzD4/H45z7yGAtgAYC1AH7W+vOFAJ5zHOfIeDz+mkheBmAmgE8ALAPQN9Uy5+THsvr6epx44olYvHgxACAejwOA4WO2t38sI4QQQgghhBBCCMkkjuOUAbgGwBIAX4rH482tvy8B8A/s/nj2Kx9Z/QHATgBHx+Pxta153A/gTQA3APiySPsxgIHxeHxNa7qGVMudkzLMn/zkJ9i4cSOeffZZxONxPPzww/jPf/6Dr3/96xg8eDBefPHFTBeREEIIIYQQQgghZG9nCoAiAH/c86EMAOLx+D8BvAfgzPYycBynCsBoAH/f86GsNY+1AP4OYILjOP3E7zv2fCgLSk6uLHv88cdx1VVXYezYsQCAiooKHHbYYaitrcUFF1yAm266CX/7298yXMrsJAqJXbZIA2z5a4JcL4wlz9m6tD5qCVbQZ53JZeBRt/+wsT37KMol86Q8jqSDIH1Sn7e3ttUw6i6M/KMm3dKkdN53GBLoMNp/up91tsyxnQnWY2bJ1r8n2C6Cs8ezjFgZ3fr/RW3ELQbwVcdxiuPxuG31V3t5fAPAYQAeDVxKRU6uLPv4448xePBg5OXlobCwEFu3bk3EnXLKKXj00dDqhxBCCCGEEEIIIaQzU+Y4zlLx37dDzHtA6//XthG3FoAj0gTNAwD2Tb1o3uTkyrJ+/fqhvr4eALDffvth0aJFqK2tBQCsWrUqcwUjhBBCCCGEEEIIyS02xOPxUbYEjuOUArg4hTz/EI/HN2G3BBMAdrSRZs9ujUVtxEnCyCMlcvJj2bhx47Bo0SJMnjwZ06dPx9VXX426ujrk5+fjzjvvxMknn5zpIhJCCCGEEEIIIYR0FkoBXJVC+tkANgHY1nrcFcB2laaw9f/bYEfmofGbR0rk5Meyq666Ch999BEA4LLLLsPGjRtx3333Ydu2bTj55JPxxz/+McMlDI90+quk4mcWNVsa3OsVFrq/56sWu0ZY9pWVmXFFheJ+zlSega1+dwCAM85IBFvK+niWyW/9NDaacbLMBfnRerOF8Qx1HkHP8xsXBpvq3TIuXGjGtS5CBQCcdab3vdnuO4p786rXwL40TTvN/PMLQs0/KH7rcVujWR8rV7ph+QxbFxH7yjNswugLUY/pqYzVYXg3hp1/YIRZSMwyCMfkhKLY2eR9b3rukUTti5VOgo6D6SQVf8YwxtlsGWPCKEfY81VH8gyjHJ7XXrDAPB4+3A3364dASEMiNSBkSz+J2rNPky1jQtT4rYN0toNUnnWQd90o2lJnZm/yLIvH43XYLZlMlY9a/78vAC0F3BdAXKTxk4dmz29tSTQDk5OeZUOGDMH48eMBAF26dMENN9yANWvWYNOmTbjnnnuwzz77ZLiEhBBCCCGEEEIIIXs9S1r/f0QbcWMAvNWOuX97eYzF7g9uy4IVr21y8mMZIYQQQgghhBBCCMl6HsFu+eWFjuPk7fnRcZyTAAwBcLdM7DhOmeM4wx3H6bnnt3g8vgrAUgDTHMcZINIOADANwH/i8fi6MAudkzJMAHjvvfdw//33Y/Xq1WhUkgvHcfB///d/GSpZx/hkvfn9srw8fdcOQ9oQ1nLt4mI3PGuWG9YSu+OPd8OHHGLGVVS4ZSl6+mkzUmi5nl3pSi/ldQFz5X6RUu943atF5YM3VprnlJa64QH9Or4tfCrpon6GYWNrn/K5/etf5nm33vqSODrUiJPq3FxYcq6lirI/1NWZsku518m110ZZKv/L/39ypVn+2bPd8IcfvmTETZzoPqsuXdzfpYIaSO6XURKGRC2VduVbQiYliFov2CD+kU4PTjZtoQfZ2C8AmPeiB/IAWWiy9r5tWGRjfsnJ+/YgCklaOu0w0kkq7wFRS88C5aknCtuLmV8sfShbnpsmyLMJ+g6YznfHbLIbCEKsUVkqhdE+fRKGnQQhQYjH4+sdx/kpgOsBPOU4zr3YLZ38IYCVAG5Up1yI3d5o5wCYJX6/CMDTAJ5zHGeP99b3sHsR2A/1dR3HuRC7fdYAoAuA/RzHubL1+JV4PP5PW7lz8mPZI488gmnTpqGlpQV9+vRB166mx5vjBJHREkIIIYQQQgghhPhjb/Is6wjxePwGx3E2ArgEwB8AbAFwP4DLfUgw9+TxvOM4tQCuaf0vDuB5ANPi8fgrbZxyKYD9xHElgF+0hu8E0Pk+ll155ZWora3F3XffjfJ0Lr0ihBBCCCGEEEIIISkRj8dnwVwp5pVuJoCZHnGLAHzJ5/Uq/ZatLXLyY9l7772HG264oVN+KEvllgItpV2nZLy33uqm0ztGVlS4YbVE2LZjSthIqeLHH5txM2e64dtuM+OqqsTBf/9rRoqtM0dZeoFtZXSQJe2nnmrGnXCCG77+en/yjqA74IRB0KXvtvNsSiGbFFhSAHcnyF/+0pQjHnigK+cLQ2aVSZmq7r4zZrjhjz9+w4j7739HJMJR7IDm9dxs17roIvNYlv/WW02J7IYNbnjcuLavq8uY0n3K7TalbE9L+OQApAgyDsbqN5k/yOupBrp+vRvu1csNFzSa//i2qakkEW5Q/y43qJ87iL23xuwbcgfhkpUvugdy7AeC7x4XMUFkqvjf/zXjhMY3du65vq5lbWe6ga5Y4YbnzTPjRD3HZGcIC48BL2opoS3/MMbPoDtZ+u2jcvddwK7qzc/v+G6b1rYl2091tRu2LWEIKLmVxDZ8av4gB2S5DTmAmBwvjBcvhazYJUvMuLVi8zI54Os8fd5bS2GRWcaod6yV9aNfHAPIwsN6zwhy32HsiB65jDFiKXAou8LrXZllG9FtQk7clneOKOT08t6yZVdXQrKJnPxYNnz4cGzcuDHTxSCEEEIIIYQQQsheDGWYnZOc3A3zN7/5DX71q1/hvffey3RRCCGEEEIIIYQQQkgnIqdWlh199NGJ8MaNG3HggQdi6NCh6N27t5HOcRw888wz6S4eIYQQQgghhBBCCMlxcupjWV5eXiJ8wAEH+D7vsDGHRVGc0Ojmc8tgvbxTSteVhQTkBqE7dsTE7wOMdH0vvNA90Dp5n9r4oD4FtvNk3MSJbpzeDVxaAmhbHUNvX1npWQ5b7QfxA9PnyONHHjHPkbYF+vmuXOmmlY9mUEUwv4otDd7PxmapIX2TmpvNuAH93PxfXaHvzT0eDHcVaEvlYCOdbGa6Dgr8jlAik96lZv2ceaZbDm0hYTwrbVQjDMJaho9AlPj1hhhctsU4njfP9aqaPNkso77XjpZLt3e/1hkyj/JyMw/p0Sj9BwFg+3Y33K2bG54710x3881ueNYsM//hw9suBwBvbx11Y2F4eCxe7IZrasx/3CnKd/N8Y6VZftkfHn3UDZ92WomRTrb50lLVz+tdL5TBlaVGlPFMhR/SlibT7ydftKWiwmh9TFLx0/Jsn9IbBgBWrXLDb71lxsm5QQ9AwkfGKJXNb0bP53LwHjLEjDvooEQwnV6IUXvRpOL3E8j3L6AfmHxMtjnPZhkU5LqA/3achBinjLFID8Bh63+0p5ic/KV3GmC+fNkmBmmSeMQRZpw05NSeiSF4sAXtX77Hf3lvKZTDK8/QPO9CIAzfs6gJcr3Q+qgXut3aBhbbHwNyPpM+l007zXS2fiJfCB9+2IiKnXRSItxS7L5bRO1tSUiukFMfy55++ulA5426clTIJQmXD2bXZboIhBBCCCGEEEIISYF4nJ5lnZWc9CwjhBBCCCGEEEIIISQKcmpl2R6uu+46rFmzBn/84x+T4r7//e9j4MCBuOyyyzJQso5jW+bqtUU5kCxB9JK2FaxbbSaUS8cDLnUPY4to231L2U+Rus+wrx2GjNS2dNm2q7rG6xkm5a+XYgs2NRQkwitXmnHy0Q+rcsu4qd7MX6ovbEoDLWsx/oWlUiwdt0h0QlBbJNWPb0mNuoFP9nFljfcJqZ9WWZ17bgqFE8h62NnklllK9gDg9tvd8JVXmvK7Q6tcWebChWacHhPCJgz5lDxPt5+SYpFWNKZVqwqMdMuXtx0GTIVdYaHqN6Kx+ZWxBJUlSDmobj8yTz0+1NW54S98wTsPa5mkhEN1sJisdKFRa1AyTHm9In+uAYEJKvUwztOdvqbGDevKk8d6AJLyzTlz3LDWOMvOpqWWBx7ohrt0MeNEOeV4qbMvEY8pF6QxqcyjQSSa2lJgwQI3PHmy97Vs0ku/9RiGVNT2DHVcU77bF63TYxiTp2x4uq1KzbyeXEQf0uWXY5hUVxboPhqC9jUKGW8uSKCzcQzIJGFIboOeZ6TTfVIMQPKdDzD7yYYN5jvOkaM8XuYsfT5pjJFp5ZwEeL5Q6Hko6rmfkGwlJ1eW/fWvf8XIkSPbjKupqcFf//rXNJeIEEIIIYQQQgghhHQGcnJl2erVqzF06NA24wYPHowPPvigw9dYMW8FXp/3OmJ5Mex3+H44/OzDsfivi/HBix8gLz8PJf1L8MXvfxFdi7uicUsjnrzuSax/Zz2GHTsM484f1+HrE0IIIYQQQgghJHuhZ1nnJSc/lhUVFWHt2rVtxq1ZswZd5VaQAWje1Yxl9y7D6beejoKiAtzzzXtw8KkHo6KmAoefdThieTG8MOsFLH9gOcbMGIO8gjyM/vpobPpgEzZ9sKlD1yaEEEIIIYQQQgghmSMnP5aNHz8ev/3tb3HaaacZH8Z27NiBG264AePHj+9Q/tvrt6OotAiFPQqxafXuj18FRQWoOMQ1XOhzQB+8//z7AIAuhV3Qb0Q/fPbxZ4GuF4eT0JensnWxzevJTCvUtlqb7tPnIqg3WLq3qPdEf+73uO90b9dtO6+qqu06t15L3Ze0AZG2PTqpzTtKHtuai97tXdKS73ow6PLb/FqCekgEYSdMn4i773bDl17qhj/+ONTLAjDr9YADzLjaWjc8c6YZd89s9+EMLk5vX4u6/Rv5iwr67nfNdGec4Ya1lY7s9tJyCgAqK938R4kNkwssbTy2Rnk+inLF5MVUQUpLzbZl5CnqQF9bjgEy+5TsiWTHVOO/UcdisGioM7OweaQZ+BxnbYTiyaWua4w/qZj5yfuR3m/vvGOmk8aOY8eacT16uGFdkR5lWbPGPG5sdOtEj+OdiaDjSN++bjjZZyeYJ2k6keXy24Ui8a6T7VMaPtrSAdjW6P0u2r1721kE9YcNiu09I4z8w5gP00k6362yiTDGAFseMk6PRRId99RTblh7rx45NvV5NJW/E7ywzft7a/sheyc5+bFs5syZOPLIIzFs2DCceeaZ2HfffbF27VrMnj0bGzduxKxZszqUf7wlDjjAy39/GUvvXorhXx4OJ+YYad566i0MGTfEIwdCCCGEEEIIIYQQkovk5Meygw8+GE8//TQuvfRSXHfddWhpaUEsFsO4cePw4IMP4uCDDw7lOodMOwQHTjwQT9/wNN58/E0cePzuHUReuv8lxPJiqKpNYWtDQgghhBBCCCGEdBroWdZ5ycmPZQBw+OGH49lnn8X27duxefNm9OrVC926dQv9OoU9CjHk6CH4ZOUnAIC3//02Vi9ZjcnXTIbjOO2c7Q8H8cSy1SiWhxsrbsvKjLhslSWEgZeMKyyCPJtUpGwF+e7xe3VuusJC85kN6Ofe20frzLi8PDfct9yf5M1WVbZ7luXVefrFVj8NDWbahgY3bkA/97xUtga33feUKW5YKlLKy1WZm3a6B+vWmZH19W64utqzXBKd/4kntl2OTGOTtUSZv27HfbuJhqE0xLI/SBUdYEod5KOpU31Ibuk+fPggI26QaHc2naRfqbG8FmCq9GT51TBubOn+/GIz/yFDihLhXpa+XSDKrNWBNjnGzib3ekli0wDa0aBznu82qCtPogcZqZWR5+k34qOOcsMnnOD7elIeCpGlru+VKz2zQE1N9slhoniGcmhdscKMk7LVzz834yoq2h4DtFo2avy2Ty3PkkOanE6kxUIk6P5q6b+28UG+lgd9t/BLGO0uDEuBdEtMw3jXCoNskeb5tncI+K5ok0rLOD2fL1jQ9jk6Tr57AsAW8a6rbVIkvqWXVd4LPYLaohDSmcnZj2V76NatWyQfyRo2NKB+bT1K9y3Fp29/itJ9S/Hhsg+x/KHlOOlXJyG/a85XHSGEEEIIIYQQQghR8IuPB7G8GJ745RNw8hz07N8TY84egwcvehDNTc147GePAdht8j/+O7s3E7jn3Huwa9suNDc144MXPsCkqyeh16BembwFQgghhBBCCCGEEJIi/FjmQVGvIky7eZrx2xl/OcMjNfC1278WdZEIIYQQQgghhBCSJdCzrPPCj2VZQBxOQgueioY+CGFpzn37Myxe7IafftqMO+ccN6xMcsL2kPBLJNuxW/C7nbn0BJE+ZB3hjZXu9aTny/DhZrpBFemrfxvaq8Hmk+JFKp5xlZVuXEWFdx6GF4Q2e7L5I3mUS7cD6WE2bpyv7JLySWc7jqIc1n5iMfGQ1X/66Wbcjh1uWGYhn7XOQ/ueyT5UUeH6T61aZaaTXnPaa0jem/RXAsymJcuh276sE22bp+/HK3+JzRfFmod+UYzAK9ILv3OS4ROmzku6cWlmJytdvxHLQVP1eek3o08rFWFZVfqZyTaTSpV61UOmvMw6gqx+bf8oH5uev+R5engOg7C9G23zmq1fhj7e+/XvAxCzFLq4OH3vrX7vu7P5dUXh0eX3WlH6WEXxPh60v9o+gsg88/O9fXCl5+CXvuSdv37P+9e/3PA0cw2Hge8xQN+MPBaDTFjek7k43xAioVtfG/To2yNpVRkhhBBCCCGEEEII6fzk5Meyt99+O9NFIIQQQgghhBBCCCGdkJyUYQ4fPhzHHHMMzj//fEydOhX57egSHrvisTSVLBhlJWXuMlW99N2yJFbKO0oaPjLPE3oDv1K/lJbOimW7MVv9S72E1pbIZf1qWXBMxtl0CX41KbY11JY8QpE26L3gPa4ds+xHXVZW0NbPSaQiTZSSMinDlJKxsAgqUZBx2xrNPGR1FfiUjaXSxmVcgd+RUj0cLfnye22f2efEVt6Bxxgf+bVHQb6btrzccm3RR4tUJyos9N62XarM5fCmd2aXWcaadpqRoiEX6DFAnFhU6N0IZd/YtcszmXXssPbRxm3ugZqjDBlsEG10BKQiFbKO8fLeRo1KBLc1mf1a3rZsE4A5zuopUFbl0WPddlGgHlTv0rbL22aZBV73na0yGT1VrlzphqUUtXt3M52s196l6ZOJRYHuo14Sr8ifmS6IfEnQDdlLL24hFUuEsKWuexNedWerY43fOpf2A3oqG6Hk0X7IlnEJMO/HNs3JdHo8k2OYfs+Wx126mHHSMkJKOfVYZ0wo+mVFFmb+fDNO6tPHjoUnabRVyFXoWdY5ycmWf8cdd+Avf/kLTj/9dPTp0wff+MY38K1vfQv7779/m+k/XPFhmkuYGud9+9uZLgIhhBBCCCGEEEIIQY7KMGfMmIHnn38ey5cvx6mnnopbbrkFQ4cOxcSJE/HII4+gpSV7/jWCEEIIIYQQQgghhOQOObmybA8jR47En/70J/z2t7/Fvffei5tvvhmnnHIK+vfvj3PPPRcXXHBBpovoj5YWd4msXt8r13QuXWpElQhZCJR608jep5QwpSXPfpfjyqXAelmwXNav1yvLtcbyPH1d2/ZQUv+i6zWdcqG6OjesZba2bfJEnRQ01ru/W7aF1FlI3qszv43LYklVhW33PL0cXy67f+ABM6281TPOcMMjq4N9zNa7/MnjsWODyTzD2GUrqFTX67xskh7Y8Cq/rlObojqIpCYV+Y5vfI4HeviRMjGpOLfteIlVdWakHOuWLDHj+vd3w7W1nheQxT/uODOL3tjkHqyz6EJEJqvXmM+loqIoEY7pMSzHSKmNiDqR7UzPfrKN62cvh2sdZxzb5lSL7cGm+rZ3NQbMdtGzpxuWO+xmmp1NbvllfwKAWbPc8IUXuuFevbzz82s1EcUu20HjInlH88g/cJ629zDbi4dPMrmTZRhka7kkYZRRtyU5HciwtgOQVgFFhdlRV7b6kOMSYHWNMXZ8lV1D2zFIhbIewwog7BnUHNvU1DsRnjDB/f3KK80ynlIj/ubRg6l8QdH9V96QDKcgu5TtQv85V5Qd7gyEBCanP5btoa6uDq+++irq6upQUFCA6upq/O53v8MNN9yQ6aIRQgghhBBCCCGkExKP07Oss5KTMkwA2LlzJ+6++24cffTROOigg/DPf/4Tl19+OT788EPMnz8fH3zwASZOnJjpYhJCCCGEEEIIIYSQHCInP5b98Ic/xIABA3D22WejR48e+Mc//oF3330XP/7xj1HWus61V69euOiiizJcUkIIIYQQQgghhBCSS+SkDPOuu+7CN7/5TVxwwQWo1PvvCoYPD7BXcSaQnmXa+0Fq1/X9LF/uhqUe3XapELadD0rStaSAX3sGSR8fWQepeGNIvb0W0XvkGVPlsNWBV1zSfco2qtfoyuvZ/Nhs6SzXlmWUu0MDwPHHu+Fu3dyw9pOQXhO6+NLfTPqS6bTGtbXnkUxoeb66/D53qLf6wQRp4/oc6f02f74Z953zfW55L9unzBBI7vdZgl//E9l0o6h/m19a1F5wsv37tvfQpoCyn69YYcbJ/mDZFj725JOJcO/mZu/rqWtvaXK9yApFN7T2Ld1H95Lt5GX7yc8325nNpyaQBYyer2Qm6tnLx2HLP4rHFIYH2ObNbnjhQjPuqKPcsGy6BfnqWrJ+1nibW8aEz2sq70JRE/W1/eZvPE/9bi0fgH5fE40rjPfGUDzWLHnmgr9YWO/qXuelco7t2tKvS76q2F51002QZ69fU6UfpH4l83oH0fes32ElO5sKEuG6Db2NOHm9KVPccNLrsvxBv0tIj+uaGjPu5pvdsCy0fhGwjAGyDgoLzbYV9t+ShKSbnHzLXbNmDQoKCtpNV+b3r2lCCCGEEEIIIYSQFKBnWeclJz/3nnHGGZg7dy526e1WCCGEEEIIIYQQQgjpADm5smzlypU45ZRT0Lt3b5x++umYPn06xo4dm+liBScvL0lakcAmvxNrc3fmFxlRjR6KnVSWnwdZup8StnXZcr2yTcdikSZ51qkmBVmj3ziDgOvPjaXjIWhodDH8FkteWhejYOnzifDgDRvMSLnHtXEx9VzE87VJD/xuN56KdNYm4fMi1rDFOB7cUJcIn3HGSCPudze6ef7gYkv5ZcX6bbftELXsxHd9hdGHAlw3HYwb54Z9j7O648kV0JMne6e1dcRDDnHDUsKuC6baVqFHljp7434CbifvmV8aCHw9j38m1uOxvE9dPYGG7hROsk2PXtmEVf9B3hF0lUrVuZQ6AUBtrRs2xn+tkbK0cav2yaOMqdSP3/OikBaGjVEOywtCKvfiVT/plsz7vXYYBM0/6NwWpPxhtXHzHc39fUuDeS9yWupd6vvSoRCkfvQQI8cpn643VmJNO43jAlFBlZV9jDg5pEl1tFRWAgDyxQOwjXt6jDzsMDc8Z44bHjPGTGexPZJtZJ1Swu8Z83eat0xIzpA9f3WkwBtvvIElS5bgzDPPxEMPPYSjjjoKQ4cOxS9+8Qu89957mS4eIYQQQgghhBBCCMlRcvJjGQAcdthhuPHGG7FmzRr885//xOjRo3Hddddh6NChGD9+fKaLRwghhBBCCCGEkE7MHs+yXP+PJJOzH8v2kJeXh0mTJuGee+7BQw89hAEDBuD5559v/0RCCCGEEEIIIYQQQhQ56VkmeffddzF79mzcfffdePfdd9G/f3/88Ic/zHSxUiLuxNCSv3t3zyRtvW1L7uISN5kl/+XL3XB1tZlH0hbsgrA9j1LxY4jZDHQkNn+nEHy+soV0+jTpa1mrUe5prTxOXnjN9dHr0sX9Xe9a7dePTXtgbN/uhvuWe/udhOGtZWApb+81rxrHkye7HmZWHxOZp/KaSKePSRRsqnfL37vUv6ePV/lTeb5hjGG280oC2MsllTff3dk5FnQHZ9lmHnjAjBsyxA2rVdcFPn0AgxLEEzBrkaY76p9fY6WliXBLoekfarSfxkYzT5mPbS6z+EfZhk8Z5/dfjFPxW/LrR+VVJgAYONANS+scAKiqEgfyBmw349OMM2t98+bONY+nTAm7KKETxJcyrPoP4osY9bMPY67J1vHSr1+dHs5ybcWKLq/2MJMEGQdtA7eOknbAXbu64ZJi3c7E2GczVhPzFQDghBPc8NChblj6lwHA1KmehZT1pW1T9yRtyY5XUkJSJie/JmzevBn33Xcf7rrrLixevBhFRUWYOnUq/vSnP2HChAlwHCfTRSSEEEIIIYQQQgghOUhOfizr168fmpubceyxx2LWrFk49dRTUVRU1P6JhBBCCCGEEEIIISGwx7OMdD5y8mPZNddcgzPPPBP9+/fPdFFCJxUJhG25b0nTpkT40OFiaW6+P4lCe+XyKoftvPXrzbjPP3fDelVwaWnb19MqFqm4WLXKO07voixXEGeLXM3GmjVuWN9nRYUbNmQrIWFrZy2lvRPhefPM82680Q0ff7wbPrTGvzxCXk+ra/yqbP0ui9dxS5a44T/9yQ1/97vmh/kxB4lKVzNllZAi+O0nUpYHmP3mkUfM884911/+UWOr48WL3XBVlRnnt73KPOfPN+MmTmy7HClhe8MJQc4ty6/HMNmf8/PN+pE7tRcV+mvHsbw88wc5T2qp9BI3HymHG9DPrMdP1rvp5LgNAFI5alMS5sI4m4R89mKS2tJo9tHtW91wuRqnDImO1qesW+eGZWfQbU6ms0hA88V4rLE146By5TCk0nJulmogACjCNvdgpegouhPJRqj1UkGlzR6k8o7mNw8jv48/9nVetoz3mcZr7gn6zppJwni+Qdtn2HYP+veCHPhr0/a+Kd0M/JJUN3Ls1gOyGMf18CYtRw480A0/u9B8ZkePE9fzKUcHANTVuWHpk6LH0ksvdcM332xEWZxEEkUpMKdNQnKGHBi+krnssssyXQRCCCGEEEIIIYQQ0gnJyY9le3jllVfw1ltvoVF/hgdw1llnZaBEhBBCCCGEEEIIISSXycmPZfX19TjxxBOxuFXfE4/HAcAw9pcfyw4bo7ZYyjIKC7tlugiEEEIIIYQQQghJEXqWdU5y8mPZT37yE2zcuBHPPvssxo8fj4cffhg9e/bEHXfcgUWLFmGO2u521JWjMlRSf9TN/iARlt5UAFBR4c/DIPbrX5o/jB7thqV2fexY74JYTE2CbB8PmNr7Ll28L22T10s5vc2ORNedvB3tpaM90jqKX7+HVHwoZN3JsLZg6dnTd5aBy+Inj+Jisw6kl1qvXh3PX/s5yecb1G/DaLvLXzLixixdlAi/MOq7ibD0LwOAMbO8G6/fOpYTrPbkOu00N3z55cHyj4Ig19ZeFn7zk/1+4UIzTtbdxIlmOyjI91nGEHzJbNjasezPNl8+3238kEPMY1HpH20wTUM++8wNS88yPdB+/nlJIqxfBm1VZzzTNlaAJ0jFXyVDyLqTcxJgPsO+3baYkdKnTN+n9CmTcbpS5QSmH4DNKE6QLT5NNj+zkmLt8SPqQU4oug5k3enJPeS/XsLwkrLmcdJJKeeXSrnC8FwLBYsBbdAy+vUnzVbCfidL97WDkikvPlsb0e/Zfv9msN6LbbIUcYUqmfQpk1ls2OCvHJqYLoc0R5Vxo9TfzvrlywOvuorlXpckBABycDYB8Pjjj+MnP/kJxrZ++KmoqEBtbS3+9re/YcKECbjpppsyXEJCCCGEEEIIIYQQkovk5Meyjz/+GIMHD0ZeXh4KCwuxdau7FdUpp5yCRx99NIOlI4QQQgghhBBCCCG5Sk7KMPv164f6VmnDfvvth0WLFqG2thYAsGrVKu8TU2DFvBV4fd7riOXFsN/h++Hwsw/Hewvfw7J7l2Hzms2Yev1UlA8tBwB8+vaneO5PzwHY7Z922FcPw/5H7B/ouoPKtqlffMpTjjvOPJaSBUkKciO/0kvb73KZsF7WLCVZWp0irz1/vpunXt4rVaXH1prlfXWFv63Ds2U7dk2+hwJFI+vOJnHReN130C3X9YptWWZDKqpkMTtR4BUVSJ2VSruNLX7ejTvqKCNOijK/L3bJfuG73zXShbFFvXzW1dVm3PXXu2EpyQQArFjhlqN6pOe1M9nGV650wxMn+j9PllmqAidPNtPJdpaKmjKIdDrsZw3YpakSKc9dvtyMmzHDDQ+wyNBK/Y7BquO12oMCAIYPN/OwjT8GPh9O1DKxoM9QVqutDpCvBi058ek6EMfWcgX0DQgiX4sCqbhbs8a8Tzk3vPCCGXfyZFFfspK1/sgmRRUy2JayPolwSvcsJyZLOw5lnFWTvcxT1qOeG/1eO+pnbe2/0itDvxCmkKdX/lHMc9n6figJY14Km22NZpmkgk+/58n3gp1N7nm+bRQCoutmS4N7bT3EyLlSnyfvdd06eY5ZBzJucKX/PloC8QK0dHkiWDHuaN95yDYi6xgACrzmFz2uyhcNy/WyRuqdZuJxepZ1VnLyY9m4ceOwaNEiTJ48GdOnT8fVV1+Nuro65Ofn484778TJJ5/cofybdzVj2b3LcPqtp6OgqAD3fPMeHHzqwei1Xy8cd8VxeO6W54z0vffrjam/m4pYXgzbNm3DAxc9gP0O3w+xvJxcuEcIIYQQQgghhBCy15KTH8uuuuoqfPTRRwCAyy67DBs3bsR9992Hbdu24eSTT8Yf//jHDuW/vX47ikqLUNijEJtWbwIAFBQVoGtx1zbT53d1q7FpZxMcOG2mI4QQQgghhBBCCCHZTU5+LBsyZAiGDBkCAOjSpQtuuOEG3HDDDaHlH2+JAw7w8t9fxtK7l2L4l4fDidk/gH361qd45g/PYOv6rTjmkmOCryqTO2cB/jU6NTXmsU/Jy3t1bjn1sn7bsmO/0iTbTm9e+Wn++U83fMQRZpyxuada/1pV5cr7dHV4lXlTvfm7LHNRob9l07YlyH+53YyTm6FpGalcgl6Qxp4aVMqpdzIrqWo73QtLzB355M5yWk0s69xWrzJOp/PaVRQAeosGGjvmGCOu5umn3QPR8EbXmHnYnn0QaUxlpZnH+ee74QLsNE/M9zk+WAgqM/ErY9SySb/IspSVxUTYTCf7ti6/lBvoZy8UrIbETkoOAeC009w8tCrBq75SksXIDqBu7tU6dxdKOQ5+8omZxZlnigNdSDEuSkksYMo5ZR30LjUHHCmx1vVv3I/erti2w6MH2SrZKGrc5IaTtgQt9T7RMvH57UNSHqRfEWRRbNKeTCIfvW4/snq0BN0Ym2Qmqex4GcZOtxb9Y0t+AfwQRruW0jDd1bQ02C9plRn6fCFM5R0kajI1HiW97zS4u+y2FJcYcbJ52t5Tg17bKIfl2chu+NRT5nmzZrnhVtecNvPUu0WnE9kkbe8ZWsYox+QFC9ywfpeQffQHF6dQMFmx4mJB26Z1SBRa0ZZ+A4yomJCI761SS7J3kpMfyyQNDQ3YuHEjBgwYgC5duoSa9yHTDsGBEw/E0zc8jTcffxMHHn+gZ9o+B/TBtD9Nw+YPN2PBjQsw8LCByE/nFw5CCCGEEEIIIYSkDXqWdV5y1lRr3rx5OPTQQ9GzZ08MHjwYr732GgDg3HPPxT333BPadQp7FGLI0UOw4d0N7ScG0GtgL+QX5mPzB5tDKwMhhBBCCCGEEEIISQ85+bFs7ty5+MpXvoKysjJcd911iMfjibj9998fd955Z4ev0bChAfVr6wHs3u2ydN9Sz7Rb1m1BS/PuJahbP92Kz9Z+hh59e3S4DIQQQgghhBBCCCEkveSkTvDqq6/GOeecg9tvvx1NTU340Y9+lIirrq7GLbfc0uFrxPJieOKXT8DJc9Czf0+MOXsM3l/0Pp7/y/PY/tl2zP/5fOwzeB9MunoS1r25Dq/84hXE8mOAA4w7fxwKSywGXTZs22kn+aTktx1WvLrC/SZaWWnGSesPm6eY1qdLPwKZp87f6p9g20ZcFEbuVjx0qJnM9OAxvUPkDuy6erx8prTdjzxP+saoIlq3uJb527aj9ktY24QH8RhIxafAr89It25uWNe/32tJ5PbcAPDNb7rh+fMfNuIOOWRqIvzSnFuNuHzxsFpqDvVVDpufh9/60HmYam7VkEW/0cNDgcXLy3a9sBlW5c/f0BZn8yWzIc/T45scq2Sc4YOo4vxeO6U6tfj4yDHsW99yw9dfb2Zh+BflK3M2Mcjv292Mkl4rXbt6RAAYVuGWq6WwCJ7oSg7DLypkrM9GG4LJwcTmvyYHdsugrtu47LPSd0j7Ucli6Oy1fVcQovatkvNj71LvdNKbEDA9f44ca+nMEv0MBYHvTT5fVeExcRyGt5atjfhsZqFdW+J77GvcZv4gn5UIJ71LNAk/TtW//HrkdmrfJNEQtP+m2S7M+vF6N43CB06OW/p9ZMIENzxxoncefv1/o0A2O9u7qB5ipP+pHKs//NBMZ/UVFBWmfRBjsjD6BcUn1rqTDcoyofh9f+vU/dACZZidl+x7k/XBm2++id/85jcAAMcxjfd79eqFjRs3dvgaRb2KMO3macZv+x+xP/Y/Yv+ktMOOGYZhxwzr8DUJIYQQQgghhBBCSGbJSRlmSUkJNuglOq3U1dWhvLw8zSUihBBCCCGEEEIIIZ2BnFxZdtxxx+HXv/41TjjhBPTosdsbzHEc7NixAzfffDNOOOEEI/1jP3ow5Wt0L4oFOi8IZSXl7rJVm2xFxfldRi1XwWt5h1zKb1s6u3qNea35892wlDOdeaZ5nk1y4VcDetJJ3snmzHHDemm0lDAl3duqVW6ckEHpTeBXN/ROhKVqFDCXVMv7tEnxzjjDzGNw/UvuwXJ18Zoa+CFsiV3U27QfqDaVldJaW/O3LcmX0o8BZWYm3/qW+1Tnz6814l5++V+J8JZ+5rhRXNX2atEo6sev9EDHySX/c+eaeW7d6qb98WWZWxZvW54v4+SW64C5nF1KOFIhVr8pES5Q8oIBYuyT5dAqBGsfeuABNyzlEXLwQTvSISGx0Ol6l7rXLq1x4y691Mxjn33EQa9KI26nGNXWrjCiMG6cGy6AkEHVqX+MEmNkTA3Cm+rdcu3aZY6gvXqJ/C1S9XRik7npNmKgJ09JQCneZrEPUHOzGzbtBczjc88144IoXVORQ6dTFmWTSlux6a196mKsMiKZR8Q6Gy2x87o1W1NNRaoY6Bna6sBngwyr7Xg+N1tF6r4sZW6W8kchNfPKMyl/8YJbVGpGFRe776n6tlHo5u93DNaPVx4XFnq3Ldk+jzrKjJPjm5Y47mxy8wxquRAGfq+Xn+9tySL/LhgyxDyvf39LpuLBxdQQJmWZ8u+V0MZjcQPybz31GkPIXktOfiz75S9/icMPPxwHHHAAJk2aBMdxcO211+LVV1/FZ599hrnqr8YP7zw1MwX1yXk31WW6CIQQQgghhBBCCEkBepZ1XnJShllZWYmXXnoJkydPxpNPPom8vDw8++yzGDt2LF544QUMGDAg00UkhBBCCCGEEEIIITlITq4sA4CKigr83//9X6aLQQghhBBCCCGEEEI6ETn7sWxvJKhXUhi6c+2PIf27+vYNlmdLcUkibNPaSz8AnW7UKLdObFs9JyF0/8aJwssMANbUe3tBBPGKSfJgmVvnhn3uBW9ssa5I2nI6Ys+HINu4FxcHa8e2e/lka1Ei/MgjZpz0BXrkkV5G3KxZrk+Ztrrxu119ULzuJ5VnJpuuLv93v7skEa6sHJ0Inz4tnDbhVU7pPwIA11/vhidONOPkuHLrrWY+1dVuuLbWDRfY+p32orF4IQYhySNE5r94sRueONFMZxmc/PrgyLjqarMct9/uhtesMccA27h46IYn3IP1692wNoA85hg3rCYDWeW6+rt1c8MFlnJkctt5OY4nPV+fvppB21mr5SoAU75RVWWmk9NVGNi8A8P2wEwF7ak0wN+UaE7OWgcj4rY0+Htf0GNYgc+52S9J7UzM6flqDpftU3oTBnn/aK8svp9vChf3nb98bgH9eQ10GW2+diLO6o0aQfv3naelwfYudD1b9b3J+/Fbj7aq08jyF+W7z7DIqTcTFrqZ7CzsbUSF1ZajRNadzVtRThl1dWa6jz9uOz9AvUv49M1LBXleKnZ+XtjmEEI6GzkwRLn8/Oc/95XOcRz89Kc/jbg0hBBCCCGEEEII2ZuhZ1nnJKc+ls2cOdM4dhwH8Xg8KR0/lhFCCCGEEEIIIYSQIOTUx7Jdu3Ylwk1NTejWrRteeOEFHHrooRksVcdp3OHgo3W7l7Dq1f5+l2jbvmbbFCJ+89++3Tz++9/fEOFrE+Ff/vJvRroHHnCX5o4b510u69L3dR+5EUoCVFlZBC+sS7u99l1XD2CDUGVqOatcFW9bgizlZXJbaQA4duxY98D2oKTudelSM05qdqpHeucRAX6lijJu3TozTi5V13U8yKeE+Lbb3PBVV32g4vZLhE+eaEpYR41yJS9aAuRXPhLGsvig8o6SYve8M84wy7F4sSu97GWqTyNFj0XXusMDHnjAjLv0Ujd87rneeVr7smhAF/x2sBF13XVuuCSg9EwSa9hi/iDHkdmz3fCoUWY6MVjYxjpbnJSQ6T4kh4RFi8y4HTvcsBxuAAC1YhCTHfG//zXTTZ2aCD7xlFlGOQ5qpVBa/5VVXmzlSjNOFqzSbCNSfar7SUH9hrbzSEF2aXu+Xtno3+W0pPtCGNKwsOVltnYc+DypD1qwwDxR6oq0xkhopAor3Gev26bsU/r1oCAlj4f2SaoPIXsuUJpbWSeyfSa1gw2fugdh63YVWqbqV0YXhdzaq3/FbFK2Qu/3xqDl8vseYM1ftl1dftko9QQgj9U7bMzjXTfoe0tS+TeIMVKOu3oQEy+/+l0rjHKFja0c+tHIKpfVrateD02emSobBPkMw3huUi4LmPYtQW170m2fQEg6yamPZXl5eW3+1tbvhBBCCCGEEEIIIYSkSk59LCOEEEIIIYQQQgjJBuJxepZ1VrJjvSshhBBCCCGEEEIIIVkAV5ZlAfn59m3M92DThOfnh+CXoJDa+G7dzLjCwhGJcGPjLxLhCy800/XsGUJZZOUoswCb94Hkk/Vm/fTo4YaLCkUeymSgpsYzynf5DzvMvXZ5uRnX0m+AZ36G/4a8eHW1mYmIy6R/jd+tpHVblx4Juo6lN4r2e5B+XRMmyJj9jHRf+Yo4UP/s06+f69UQ1GfHr29bGNjKVIRtxvGNN7q+LH7/tSuVOvDyn9FWJTff7H09ae0lrfcA/1uYy0Zz3HFmVArWUv7QGcoG+8Uvtv17BJfWlkTS723KFDNuxQo3LO1lAGB1xZGJ8CAZ0b27mVDcj7RPBEwfxr59zTi/9R+K34mcG7T5p4jT1+rRI9ZWst1Y5h4vwhg/bfO5dZ7IEt+YsOYQA9mYtLHOvHlthwGgtjYRLBCDjJx7AbPL2tqt9uvy+w5ixacnmvVaAX3Vgjwrvx5lYWUadruOop+EPobZKlk3UJk2BH89v+9ySdcT/oBJZfRZrmwZw1LBq/ptj8n3WAdzzNm82f29b7l/7zfb9WRccbG/d9ig78uE5CI59bHsvffeS4Sbm5sBAGvXrkVpG3+YDB48OOk3QgghhBBCCCGEEEJs5NTHsqFDhyb9NkX/M3orez6mEUIIIYQQQgghhERBPM4Vdp2RnPpYdscdd0SW97qN23Dx757HkjfXo2uXPFT274Ebf3AEDj7zQQzfrxSNO5vRo6gLvnvaF3D2icMAALPmvYXL/vgC9i3vjsadTThv6oG45KsjAQC/u+dV3P7ISuTnx1BeWog7rvwi9uvfo81r5+fFDUmZxK/EIupl5Xpp7uOPu+F+/VzZm1ZHzJnjhvX3y1Wr3DyPP96MM5YXh7CsXMtI/coIBlV0vF7HjPaW6fmW8Mk60Ho1C+mU6NjKL69doh6nPpbI5ec2acyRY1tE2Dsd4F+X53U/Wg4qd/ke0M+s4031bh5yV3XAVNMWFrrptFRO5+mJqqCiAM87DImXTnfWmW3n1x5yTJTnaRnU0pW9E2GpAtGEIpHVA4e8oAxbxqyUxnGhny0Q1y4tNe9lrGjzUnYJmO1Jj8+GPFc2SC31Fm1LqNpay+KG9W3L6kqrXFDrVCWqAxcZR2p8EPftd3wLA1s/3GvlL7Ix6fYp44YMMePki4elX8ostGxdymKlDAoA+iprBV/oScRnO7P2IUsemZQxet1PUhlD0HZmsi/Ynpu0FNi+3Yzr1csNF/itA5vMPwK5uNWOoVCMoBWumD/Xx6Uw2rjtUVjnE/Uu1ySGi08+ccPl5d793Fp+n5LnwH+vENLJyKmPZWeffXYk+cbjcUz90RM4+8RhmPPL3eZHy9/egE82bseQfUvw8l2nAgDeW7sFp/z4SbS0xHHOSQcAAE6fMBg3XzYOGz9rxAHT7sNpxw7GwL7FOGRYGZbeeQqKCvPx5wffwI9ufgH3/XKCZxkIIYQQQgghhBBCSObhp2EATy/7CF3yYzj/FNe0vmZYGQb2Nf8VcvC+JfjdxWPxh/tX6CywT89CVFX0xMcbdptsHzNqAIoKd3+LHFvdB2s+/TzCOyCEEEIIIYQQQgghYZBTK8uiYsW7m3HYcItsQ3DoAWVY+UF90u+r1zWgcWczRlb1Tor7v3+sxAlHDPSVv98l+EA4y5z9Skv0tY4e5y8P226SUh7UpUvHy2hDqy+iXCIetLwp7UDkk0wuhfe6dirt2Lb7l5TjSdmMsbtpCtf2W996BbtNJSxX0+sN+mRc0M2sbLIcr/sJ2ibCGH+iaOOyXqPYpc0qfQpBIu51LcC/NCm28NlEuHrc0Z7ptDrROM73dy+DK72foW3X1WyRSIUh9wpKKvLKvYVA86V+hjYJsdTJB5RhSmzvKr5R5fdbB7koxw1DuhW2hFtL+eXz1k0ryG6nuoxSxqstQSS++0IGx7C9haDvin7bZyp9wbYRcKbI1vEms8QB0C+9M8IRN0XicfP4vqfew9PLPsZbq+vxv1ccjcKuZpXO/tc7WPrmBjxz60lpLCUhhBBCCCGEEEIICcLe+U+Zii8M7oVlKze0nxDAy29vwIGVpYnj0ycMxutzpuG5207GD/+wGOs2bkvEPfXiGvxy1sv4x/XHo2tBXtjFJoQQQgghhBBCCCEhw49lAI4dNQA7djXjf+e+mfhtyRuf4oN1W410dR9txaV/WIzvTavWWeCIg/pi+sShuGnObj+zl9/agPOufQ7/+O3x6NPbsu6aEEIIIYQQQgghhGQNlGECcBwHD1/3ZVz8+0W49m/LUViQj8r+xbjxkiPx7totOGT6g2jc2YweRV3wvWnViZ0wNT8+62AcetZD+MmMGlz2xxfQsK0J037yFABgUL/u+Mf1E1Mum00nH4Zu3q8O36bft12rpsbba6KszI1TOyWHjrU+bIYVGSTXPAGCtLmOEORRBfWMk3EF2tPEYvUk/dMGV5pxXv0tFRusMPq53zqJwlPJuiW9z/qvrAzXzyZq38ig4/aWBu/xskB0htiKV424kVVV7kEEA60ss/TmCYuw/YqCjvHZMh5nSznCInLvVW2W6nFd2XZtTcQ2Pvsez9QFoh5ns4Uo/JyCYHu+QV8Bbfdm81H1IlfaQWcbj4IQdR3I/HuXRnopz+sSv9CzrDOSPV8GMsyA8u64/1cTkn7f/uw3Pc+ZMfkAzJjsfjgbUN4d6/41HQDw1M0nhl9IQgghhBBCCCGEEBIpufFPF4QQQgghhBBCCCGEpAGuLMsC4nASS65TkYkFIaic0q+8IBVKitMr25PYJBGe6UKQGb6wxKyrzz93wzU1ZtrepRHLU9K4xFqWo67OjFuxwg1XVppxI6v9tckmsRX85s3mPfct95a4SAXu5s1m/nKL9+LikKVgAfOxlV83Y6/8g5Y/6HlBZXRLlrhhKbUsLw+nXH4J4zn5HWdt3HijG1640IybMePIRHjyZDNu3Ro3rFWYZWVuuLHRDWupWUG+Pxl7bOVKM65fv7YvFjG2cW9TvXdcGGNuGKRb/uJ3Du9U5Vq3zsxDdgCNaLv5xSW+sg9sa1G/yUwsZKRRWB0EeX+zWRb4Pq+hwYwULwaxigozzkNKq/E71+g4Le3vaP5hQAmcnajfbf3ackSRv+3eZLfx+zeUJgw7CUL2JvixjBBCCCGEEEIIISRl4qBnWeeEMkxCCCGEEEIIIYQQQlrhxzJCCCGEEEIIIYQQQlqhDDMLcBCPVDOeineGJAp/jLAJWv7YU0+4B8OHJ4LvNQ0y0kmbHelblcq13l7lnjd2rLcvyiOPmIZCkyenzx8jCj5a55Z//nz396ee8j7njDPM45HV/q61YYMb/vhjM66v8LiqrzfjFixww8rCBjNmuGHf9S9NxADTYEIbQQXdo95nFtsa3fovyt8Z6nVTIWjb7dXLDUv/uE6HbJSqjby3piARlm38ySe3GOkaG10fJTGcAQDeeccN9+9vxsnL7drlhnUztnr6yMTa90lnFIAwxj5ZjDVrzDjZHXqXdvhSgT08s5UovFKjxLcfj26r2ghQIsw0Y9o/S+YzalT7BWyrTHKe0L5/0sxUmw76xK/fkrwVfSm/HmDWZy0HscWLzbi5c93w2LFm3GmnuWGLf5nVE03eUMA5MFveddPtH5pr+B0Dgo5Lfv/uSOXvE9t5sikHfX3z+3dgZ24XhASFH8sIIYQQQgghhBBCAsGPjZ2RzvVPoIQQQgghhBBCCCGEdACuLMsypHQKCLzq3je+l88rpMROLt3XEhepIAi6zfEn691rffKJGSfUEUkqNyv9+rV5YvddZjK55Nnvdun6d1muiRPNB9qjhxuuqjLzWb/eDXfr5uaZSj2mU0KjryWrWKpTtNpFLjHXEjJbOeT1pDLDtkxd96d993XDUnILAEWFqS/dj+mLW6Qffpe+B5UKRK229CpXWMv4dX/Yg+wXAFBe7l2PQerYbz+35WmtA633lR1iwgQj6vLLeyfCcqy75JISI50cZw8tfc+I27d2cCK8Y4d5adn3pBq0SxczXWFh2+P97riiRDimO7BshPJE3ThDbqy6/vPz3fLrfp6Xl3r+ep6WMk89D8k4rUqVqjRZ/8OHm/kX5Ef7r9VRS2/85h+FLMqzb+uGUC00/7o9yoeq48RD9S1n0hJBKb2UE6e6nt9xyibxsuG3G9rqW7dxI085H8oBDQDGjfOOE+f5Ho8tY0wY9iOpEIbMzTjPWsl7B2E8p6BzfVBrG/nYVq0y023d6oZHjzbPK8nf5h5Y3hf8lkNj1IOciCySZ0L2JriyjBBCCCGEEEIIIYSQVva+f44ghBBCCCGEEEII6TBxAM2ZLgSJgL3iY9m48x7LdBGsdO1e1n4iQgghhBBCCCGEEBI5e8XHsoUvf5jpIlj51rfOw86m3YpYvZt2ba0bllJywJSTax+Zp55yw9ImQlsd2JS4jcKXZeJEM07mIz2Ezj3XTPfAA254ZDUCIf1zUvIls1HddmHK1XEYvggD+rl5zJpl1ne5uGCsaacRt6WxoM38tF+OtKvQ3jZBvDJS8TqQ7U57MEjPqZENzyfCl156pJFu6dK2z9HYyi993EosbUR7lmlvCIn0ynvwQfd3bTk1ZYobPrTGjNsG189pXZ0Zp21ZvLB6lUjTI+V1U2CM7tEO9UHblt/zZN/o0cPsF2G365TKKL2HxOBk9T7RjVA0+p3FvY0o2bflaeefb2YxYN5f3IMF5rPu2/dN96DcHOFeyj/cs5ySujo3rJugbHb5+aaXmjE2rVvtL5MIjDrlM+zXz//zlc9xyRL397feMtONHeuGdfFlF9Xzl7SqWr7cDWsrmiNF/kH7UCbxOw/5fRa6+Wze7IZ79fIux9Klbh4rVphtta7u0ET4zDPN84pFOx5U4T3HyuHANg8leUwJ/7RNpYONqF3i3j7/XJ7i7Y0aFL/WV7KtAua7qH5PlXVSU+PWeYl+B5N+h5aCxBq3mT94+JkljbMyj/pN5g82TzovUvANs/ldecUl9YXkl3cXWenaG7XYbOdBCOpbm2sE9XD2QvurPv64G5Z/owHAF77ghg85xIwrkC+ds2e7YTVRBC6zbFvyWvQsIwQAPcsIIYQQQgghhBBCCEmwV6wsI4QQQgghhBBCCAkXepZ1VvaKj2WHjTks00WwUljYLbFyWu8aLrGtDtfSMLl6tmtX7/OaRb/Oy/OO09eW5ZT521aKa7Y0uAsbdf5yBb1cxq/rx6bY2SNtbSt/r+XiqSwj95uHXBrdt1ydI3WMqpBSGSCfr37Wsk5sEqOgy/+NOCUVLSp0y9zQYOYvl5nX1rrSy+FKLrLPPm2XKRVC35odwMaNbp4LFri/r1ljnmdIlJUGZV29K6ubM8c87/LL/ZVLtuM1a0wJYlPTgER4WMRSSE3YkgW/6DHG77PXUvVVq9ywlMTq/EtLLfl7DMq6n8h0b6wzpZYVVeJYlVG2ke3b3fCA4i1mQqnn+9KXzLj+/d2wGjD7lbphOd7ocVXWnRyPAbO+dJzMs0Bmqh9GKhNHB4lt+NT8QT5D9Txlq/7sM1fOtGKFd/41NeaxnIt1c5HHch6V0k0A2FTvlqR3aW5LnYJi9j1zvJFWDRpZx7I96iYnx2dtJ6HbtRe2ZmyMkYVFZmSlK73csAqe2N6FghJk/NfdV9axVm551V3SPCQyscrY/RSwvTz8Si1tpJBH5DJGyxgWJP+g87nv9zDdKGSDEpLkTJKKXNxvfX38sRvW7/EzZnjHDZID15gxieAW9c4t7Uj8vu8DMNuMrH/d0SOwSCAkF9grPpaNunJUpotgpW72B5kuAiGEEEIIIYQQQggBPcsIIYQQQgghhBBCCEmwV6wsy3YcxBNLZEcM906nd1eSS2lXqaX7FRVuWK6w1Tvw+V1JbluS3FdssDZlivn91baZyptik7ahQ804udpXylNsckq9tFguZdYru4s8VhOnfacxj52cLMmwa5cZZ5WIiGXUSdIDcRx0hzKpOxk+3JQISmWYbJ9appQkTRUEkQPYJRz+n6eUucgl8lpqc2SN2J3rgXlGXH7tWYmw3q0sSNvSj1A++1zcJc+GUX5x47r+zWOzDuQueZ99Zp4npbVyYzYtbzKkhHq8DCBL2LrVPJbl1+PlyHVPuAdyUEeFmVA2UJ2JOE/vpFvmod7RbWeAqBPbbrx6lzxZ5JJKUa4UdpILHdszszSugw92ZZhanaJlkxI55+rzZJxsZ7oNyupJ6uda8ivYCXdM1jsl5zL6XqxSaVHp1dWu/LFvXzOZrP8K1b3kc9P1L5tM0B0pbXnI5irfY4oKo32etvlkuHpPlUOOrn+5a6dtZ/b8fJ+7FSsJq7yeX2sAvUNkGHNl1NJFr93RAaCw0I3zO5QGLa9fCWJKO0J7jMlZ9U4jBwFltxETHbMl330W3bqZWYwf74b1jpfjxrlh/U7fUtonEW761nfddGrekX8jBn6nt8gw5fPQu97urfYAydCzrDPClWWEEEIIIYQQQgghhLTCj2WEEEIIIYQQQgghhLTCj2WEEEIIIYQQQgghhLRCzzIPVsxbgdfnvY5YXgz7Hb4fDj/7cLy38D0su3cZNq/ZjKnXT0X50N1mXWteXoMX//YimpuakZefhzEzxmDfg/cNpRx+/ZcqKsx00henvByeSF+vwFuRC/OJCRNMXwXpv6HvRZbLZiNj87SSaB2+Xw8MWx5+Cer/4BfpBzB0qLdnUCieDtowQTzfltLeRpS8Xu9i0zvnyLFuwbTPkV+i3urcloes80kTLSduEPWlzG6k/cOUKcHKJf15BikvHX3sB5vnSCpxtjyD5OHXn0RbcknvG+2D06WLG9ZeQNJzY8UKN1xVZaaz+UVJvDzWNNqfsXfTp+5BoyqkLLS4ce250zR8ZCJcALMfyjJrvzSv+tHebKvXuHno+pdjt97y3kib72GQlm5sxlK6AQn6in5YW2u2A+lZ1r27d5ba58XLT1R7bAawxkvK3y+p+AR59Qd9Tia9hrbB9bi6/hr3d+mpCQBf+Yob1s3ArxdZ0GYtr6effSa7ihd6DLA935Litn3EbGNF0PZuK5PfeSgMwsj/jZXeY4xuj/LdPfB7fAjY5mL5TKWXoqbAw4Mu48iO6LOB6jrQnpUS6a+q/+bZ0uC2hXnCFld6rQKmt2hQvzd5XiNMf8DGejec7Fnmfe29hzjoWdY52VtbtJXmXc1Ydu8yfOW3X8GpfzgVbz/9NnY07ECv/XrhuCuOQ/8v9DfSF5YU4vgrj8e0P05D7cW1ePr3T2eo5IQQQgghhBBCCCGkI2Thv1llnu3121FUWoTCHoXYtHoTAKCgqABdi7u2mb5siPtPgb0G9ULzrmY072pGXpe8tJSXEEIIIYQQQgghhIQDP5a1QbwlDjjAy39/GUvvXorhXx4OJ+b4Ovf9599H2eCy0D6UxRq3uQd63atYbz1iuLnEdlO9t2xGkmcppu8l0GJt8aQJKk4sXdZLc6XsxPe1Uli773c5ehhbaNu2LPcb53dL7pS2aPa5XNyQKCxfbkbKteS1x/q/tjhPbm2ebvxuJ2/Del6Z2NZ7nKofUXWDKjouKdjZ5C3NGNDPX/tJRdqQThmE3/avkaphLU+Rw4MeOuRwKrdtT0XG4lk/WsosCpbUf1eJguj+OnZsIiilzPlK3mFKRb372saN5rGsH9s8YZPXyDqorjafmZaUZT0+NW+6nclj3SZsEnRZPzIPXQwjT/0AfJbZr9w6lfMk69e74c8+M/OT6vSiwoBjirzvFLSJsp8/8IAb1nLrHj2CFUvK5IPiV6Ec9D1Dyr90/l42DkFl937R755+H2nQa+eC9FI+t4ULzTg5PohpAYD9Pd4r/6DzbRgSO9uzln+7aNmifsdJK/JvGWVH4oWezuXx4sVmnJRhnn6C+f5QsmpVIlxWdmgivGaNmcdIJcvsKDbZqO19Ye8mi6TDJDQow7RwyLRDMP2u6Wj4tAFvPv5mu+k3rd6EF+58AeO/Mz4NpSOEEEIIIYQQQgghYcOPZe1Q2KMQQ44egg3vbrCma9jQgCd/9SSOufgYlPQvsaYlhBBCCCGEEEIIIdkJP5Z50LChAfVr6wEAn779KUr3LfVMu6NhB+b/fD5GnzUa/UZkcCsaQgghhBBCCCGEENIh6FnmQSwvhid++QScPAc9+/fEmLPH4P1F7+P5vzyP7Z9tx/yfz8c+g/fBpKsn4fVHX8eWj7fg5ftexsv3vQwAmHT1JHQr7RZuoQLuIS7tc6RnB2D6eUyZYsaVlrrfUrVHi+lzIairMxNKY7J8by8d6zbH8gYsXkA2bH4S0stI6/CDbGEelteH37Tax0pi81ORdS6rtUSbuTz1lFumBf8x42pq3HAGTQxsfi02jw2/dRyG75kNv3lKXwvA9CoJep9he7n49T/S1/ZbB9IbCQC6dHHD2s5JHi9dasZJnzLpAROGB1FKY7U0rrIMONLryfqs6zeZP4gxsr7eHINll7W1A+njZrs1vZV9ZyWVPiMfqfZwk23NrzeYDd0uZPuXY7yc2zU2LyPtvyane+0JKJGvAVGj60C+Ilx6qRuurTXPC8NTMih+52m/Y6R+hmvWuOdJ/zgg8GtlIGS5yssz92/1YbwThIUsi60/ybG1e3czrluAPzWs79ztpJVIXyubN54cf/Q8LeM+/tgN79hhppPjlp4q0/3c/KDLOHy4G1650owz/nSydEr53qLzCPvd1Oa5Zn2nbNppHLdY/vbrXMQBNGe6ECQC+LHMg6JeRZh28zTjt/2P2B/7H7F/UtpDTz8Uh55+aNLvhBBCCCGEEEIIISS3oAyTEEIIIYQQQgghhJBWuLKsDXr07ZG0qixjyHWvQTSBCpuEybaluMZYZrtBbH6gZZhC5xlTGp2WwiLvC3jRT3nCWWSYfpdl26o17O3AU8Hr2kHzs0l0ZPgjDDDSDZgwwT0QW1gD8K3hyMYl8u0RRBal5TQFonq0XFZu+y2rUctkJLK/AkDv0mjloRK/0pVU5BxBypxUB2tedfOrHmnEadW2ZOJENxx0aPVsI6lk6FO+7LuutDZDyKrLyvoYUZ7FVDqZokK3gWaThEkStFxBpW1+kecV2OZUv/lbxlwtfwFc+Uvvwm3uz/OeMpOJQaelxv8qedl+5NSsp+WCJnFtJcEyUO2upVhsliSkPLqubHVXXOw+3zPP9HdOUMKQ0mr8vge8sMQ9Hj3aTDts3bPuwc3Ki+P8892w0ImlItMzWLHCPP7wQzfcq5ebn7RwAKxjppT/5ueb5TItQTreR/0SuH4s15b3pmXC8r1Az4FGHTRuM+K2wX3PNmR0y18yMxGdtqVqmHd5lcy/SFy8Kd/tr3qYkl3b9reGaCL2v0EinmtSmk/kzcm/hxS9hQ5/1ChTmijfVfTfRrKvyF4iZZ1tlquDBJa6Ks+L2J4H+fnnIZSKkPTDj2WEEEIIIYQQQgghKUPPss4KZZiEEEIIIYQQQgghhLSyV6wse+yKxzJdBCtlJWXtJyKEEEIIIYQQQgghkbNXfCz7cMWH7SfKIOd9+9uecX49MLS+Xm7hLL1Epk83z8vLc8Pl5fZySnY2uXp7Q3kfcB9y670J35KwNPmyvqRlUBQ+CDLPVDyavJ69LqP28DAQ3gGxxYuNqIKxYxPhwurDPbPYku96mBWPM/3Mwq6vsHxAvEglvzB8TKQPhap+Y2t42Ue1Z5ksR+/SlIuUVK6ovXRs15bjEuDfL1Dm0btY+TKJitS+iNKvaNQo72ubfirebdBv/02ln/utR9/lePll81j4pFRUmJ5lQYbrXPQftBGGn1nUBO2/hodivRiM5MSfArq/Dq7056fVInyThI0pADX/NmzxvLat/UfdR+W4VVToXf+Z7Bvax8pATjYaMQh8tM6tE20P6xs9qFgLljrK1i5jY5jOIwwvx0EVLSJsSagnUtmplAemV1SRxThMZy+Pe+tBQLzk5It3dZ2H9DHUly4pzr45xfrM9M1JnzJ5c/pGxXnV1aZnmQ2vthWCjXUSoYxhumC60xKSY+wVH8sIIYQQQgghhBBCwoeeZZ2R7PhnU0IIIYQQQgghhBBCsgCuLOsk6KWzTU1tfwfVS+ulTCwVjNXFMtMy5b8ml+OqJcmZ3K47U/lHsXTfKkG59VY37q9/Nc/76lcT4aJLL02E86sPNdL53Zo96L2ELXVKpY6jzn/7djeslTCVlW5YdxvJTtGX6+rMOCnZ9CtpDEoQ2WV72FbnSzmkcW0tbVDSS4k8r18/s1xe106WiqbergPXdxgao4MOMo+F9sYmITOeW763RCRbZZjZWq4wxnjf+avnZsiLy4QE94QTfZfJVn5Pq4CmnW0lBwAUF5tllP2tUMi4oiCKMSzsawfN79AaS+LTTms7DGBLg3uvv/ix+/svf2lmYbMAMNrB8OFmpD4OgBy3skUanXbkC8TTT5txGze64SlTjKjC4kGJsJxOWqpHel+r0TtqZ36RcVxQJl48LOf5xq9kzzI3Rj3mJiFfvmwvcz7RVSAfvbbpyBaMMaCmpu247t3TWCJCwmMvnXUIIYQQQgghhBBCCEmGK8sIIYQQQgghhBBCUiYOepZ1TvixrJMyqGybe7BBaC3VEuGSQrHet8Gyhvqf/zSPP/nEDVdVueHaWjOdWCodVOIY9Q6VmcTvLl5+l5Vfe60ZN/niOxLhkYsWmXnee6+bx1FHJcL5NaYM01YOKbdJKqHHMvl0L5H3u4uaxq/cw5ZHjx5uHuPGmXFShmnLT0qq5aZLgH3Hsky1cdt1taRxyRI3fMghPi+gdZJr1rjhhQvNOFFBMfUAZL167YzZHs8vdvOQygOb3DFqWsYdbRxHLVWP8lqZxut+rOOI6qQx2V6VhkbmI9udsYulpRw6blujWa6tW91wKrtd+722gfR0kH0SMPpsgRq05HEYY24UbTCKXee8SHf/ku2uR49geQSdYzt6raBk0m7D9y6L2nNh9mw3LN7dAAAnnOCZZdLu0Qm8//wrajL9WYoaxXF+sZlYbHNZ1OTuZlsEbSlQ6nk9A9kg7T4N5rHPThrKzuD6WgEGCNu1G9U4vnKlG5Z/wqXynhH1uJLuMZmQdEIZJiGEEEIIIYQQQgghrfBjGSGEEEIIIYQQQgghrVCGSQghhBBCCCGEEBIISk47I/xYluUE1npLrb/2+PFzDmB6AuzY4R2XpeSat04YHm7PPWce/8//uKZQr7zyphE38sZvuAejR6dcjiRs7Udg8/MIil8filSu7devyJaHtLLQHmX19W2fs2uXmZ/0Gho+3ExbUpwd7dhW/zJOem8AwFtvuWHRBNvMJ4FuZ7axzuJ5Ip+NvFaRxX5EP2vf/mbSw0n7m0gTEtVntjS41ytWVjFexNZ9ZP5QWup9bXleCP59UXsBZQvW+2ow/X6wbp0bTnr2fcIrFJLbY7PwGtbFkoQ+juixXzZe2R7h7dvWVjbpIpPt1u8cFdb7Te9SN+2VV6Y+3rSH19wQdKzI1jHG73tH4PLLfqM9ys44ww0rX8SUTDi98OsjJlGd17dXmDzPNgBYypEtbSIo+rb1I40U+Q4V0KxRt/E977phNEVCMgFlmIQQQgghhBBCCCGEtMKPZYQQQgghhBBCCCGEtJL9WjqSIKXl23INvW0prVzvq+QRxnJcrf+S51VVtX1d2KUCMk6rp7wkUmERyvbRESPLKHcR/+1vzTqV8rWf/lTn4kbOm2fGVN9+R5vXtal2dVOKiXbQkl/geV7U20pHnUcYUiHbEvRdu/yVq3exziQ7hnCbzETKTXUdVFf7y9/Is7jEvHZNjXswdqy/DG35p8DR49puMx+tM/Nbt2FQIqzvucBSdwsXumE5zGpJr9EGpewPMB+AOrGlsAhtkUp/sj37TI2zUUi1bGPAhg1uuLTfYCOuSA6aarCQ5SoIoSvr8VmWU8ow8/LMdCWFImFQ7aOc+7VuSE4qOWDhkApRt/F09hspx9V9aGeTe2x7hOl+nwpS/1krsxXjcUy/c+tjrzz09eQ7mt+60hpciybXyFOkk+0FAGAMMZbxOaD0MhSNX8Rjk6wTLYuXcuiiQvPZjKgQiQvdOk5lngvS5nX+q1a5Yfk+0l7+e+61JTv/1AqROIDmdlOR3IMrywghhBBCCCGEEEIIaYUfywghhBBCCCGEEEIIaYUfywghhBBCCCGEEEIIaaVzmUeQBIa/ClwvKf3ArTr2xYvd8KJFZlx5uRvu188NK98zvzr5+nrzu21ZmRsOw8tFkynPiqDeSCtXuuFbb/2XEXfrrW74zjvNLcX/9Wiw7dj9skk8N+mrBmhbOzed9mMIBWkapD2bpNdHCp4Usk7Wr3d/37jRTDdiuL/70T4d0qPCN7r8TSF4DUWMtMwaWd3xZ6899YqkkYYciwBzIFF4jQFW/xefvna6jJdf7oZra8248893z9O2kbIpS9sYfZuGpYw2rpKFUb4uXlZSuq1KbHWg71vmGcU4Lgk6hgVBDjcAsHy5G95nHzNu9OgBvvL0PSdZTBML8s08CgvdOpH9MIle/i4dNdrHR1Jamv0+oxKbn1AYnnpR10Fy/h337bTnH+15URPUu86rXUThuygJmr9fH+KOlMWzTEE9y7zekyJ+Z9L35eUhCbQzvgXwYwvcfsT7g77sihVueFiVyk9O/soLdc9rWJa+ooYMPcs6I1xZRgghhBBCCCGEEEJIK/xYRgghhBBCCCGEEEJIK3vFosjDxhyW6SJY6SaWvdqWzka+/HzNGu+40aPNY4v0MghaOeSXlpClAVEQdHm+PM/cpnmCSvl0IiTlQABw1pn+riXLJaU77bFrlxvWzceUYbrhVJaH+647qTHSelAhw0xFQiBXla9d2/aldmfvr4yxxm3m9cRSdZmnrFPAVDzra/cuzZJGbsE2PASVPBrIhmbTcVkkmYGuazmvstK8r8mT3XAq49LYsW5461Y3rG9Tjp8FWqMpI5Mkmm1fN2gdaBmmUS7LfQcdIyU2mVso7cyCbOO9opA0yskthYlOPg85Pnftaqbr18+1aihU2XnlAZjPt6JCRpgynKZ891hLRWX+77xj5t+jhxsO4TUjlHYWxrVzEfncopYIBiWTzzeojFG2fzm/a6m3lMYbsnuYfUPHeRH0XdR23s4mN50uv7w3OZcBQLNQrsl7kdJEACgudseRkuIUnm/EdhV+60de2vY6ktS/5EOVFVna228RA6Gryvw7RCHqWNdBUes8EcvtIZDsxWT/X1ohMOrKUZkugpUPZtdlugiEEEIIIYQQQghJiTjoWdY54XdeQgghhBBCCCGEEEJa4ccyQgghhBBCCCGEEEJa2StkmNlOHE5Co/7UU2ZcRYX7PVNYLwHw7zkgdefWc7QRzrhxbWdiQ/tFSWG+xUzB5keyqd6tA+3ZJLPXRfR93wHxvd21zzxs50mvgNdf72LErVr15US4utpfGTVWry1LXHm5m/+YMWbcjh1u2GYrVVzccU+3mPRp0r5M4uJ+/dEAb5uLL3zBdxGte4VLHx/pUybrrZ0s0NDglnlQRXZ48Og61r4jQZB1UNS4yYyUA6M2zdIDhiCMvuH3nO9f6J3WVo5Vq9yw9IvSvlgD+onrqcF0W6Obf76yu5Jdxa8XjR5n5Xm2MTidpNLP/SLboJ7KamrccFFhBP1QVmQKlSqTyiFSl99miSa71ObNZpxffzZzLPX2bOrWzfu8zkQq7TNb/MAkUbzjfLTOu1/K9zzteedVrmytR12OrVvdckrPWe0P2LOnG9b9Tk6BNs+yMPwgNV6+wfpdRd6Pvjc5BtjuJeh40JJf0H4ihO+XqfMrMIbxgO9ForKCvrf7RecxstojIWA8rFz3ZyREw49lhBBCCCGEEEIIISlDz7LOCj//EkIIIYQQQgghhBDSCleWebBi3gq8Pu91xPJi2O/w/XD42YfjvYXvYdm9y7B5zWZMvX4qyoeWAwAatzTiyeuexPp31mPYscMw7vxx7eRusmMHsG7d7vD115txp53mhrUM04bvJbh7Lgwkr3mWEia9/tlL/6hlT1L7YSG24lXzh8rKRHDXrpJEeMECM9mECW7Y2LpesaXB/C4s5UdBt0T3W8e+n4WSkMVEvcpl5LodjBgervQgqERESjJ1nJSCbd9u5imbT2FhsPK3FLttJGbRIdjKr68lyyLblk0ynIR5c0ZUAXYmwn3LvYdiWWatwJLbs0vJNpA9shNJKsvzZVpDeqOllhJVxy39BnieptW6e4i63lKpg5kz3bAccuW4B8Acn5XGpUiMpX6vrdPJdqa7l5RRZys2aYytTmRaKSvSbUk+m0iw6Y8sssySYrf8xVXBnpN83kOHmnFSPr5+vRvuW+49lmpkP9Rzm5Z9BiFqSZBfCZaMS2WeDsPuIVuw1Y9tWPfKo6182vs923j3XTcsbVj0e9KBB7rhVOTKfmWwYaPnV9m39Z8F8s8G+a4V1rgq60e2s2THjrYlpYBd/isTx3zK5FN6Fl56+hTIVDvIxPUICZvsf8vNAM27mrHs3mX4ym+/glP/cCrefvpt7GjYgV779cJxVxyH/l/ob6TPK8jD6K+PxthzxmaoxIQQQgghhBBCCCEkDLiyrA22129HUWkRCnsUYtPq3WbSBUUF6Frctc30XQq7oN+Ifvjs48/SWUxCCCGEEEIIIYRkFK6i64zwY1kbxFvigAO8/PeXsfTupRj+5eFwYk5k12tudiUe45SC0ya9lMtq9c4zUl0pd1JMWg4r1yQnb1PohqUOB/DWountGP3u3KXlm2JZs5R0lJWZiyE//hgizsxCLrHWt2buzujmqZdlS/mIX6lE4J3YLGvp/S7tToUguwGmImGS91Mkiv9anbkzkZQhTJxoZtG71N+1jHLptrRypZtOy/RqDm07D5jL7v2WwyoR0Y1L1I+U2epyyON+/cz8I5d/+URUMUaksGuv72cqUTIEv+3YJlWx7aLmq0yKVOS+XruJAeZumHIu0E1pW5Pbfork4A8Y43hMNxiZVozpcqfWtsolkfej5XaZ2g0zFemd32cqp8qUJDoBSG4/An3xNFaylF0Cu99d9uC3jWiKRFvW9923xzb3YIVHZwCsdeDVt6U1AGD2KdvzTaVv+ylHW8fGeRs+dQ9E/00qR5Mr689Yx2sDr/vW5Rdq8cCEIblNt2RMbiAv212z8gmXj1RbjnTvHm6Zgs6BNrWgrfzylc02zvrFZiPw4YduuLzcPE+OAfpPnAJbl/LaOn0vJaW/EwjJAdiCLRwy7RBMv2s6Gj5twJuPv5np4hBCCCGEEEIIIYSQiOHHsnYo7FGIIUcPwYZ3N7SfmBBCCCGEEEIIIYTkNFwv6kHDhgbUr61H6b6l+PTtT1G6b2mmi0QIIYQQQgghhJCsIQ6gud1UJPfgxzIPYnkxPPHLJ+DkOejZvyfGnD0G7y96H8//5Xls/2w75v98PvYZvA8mXT0JAHDPufdg17ZdaG5qxgcvfIBJV09Cr0G9fF2rqMj1FfvZlcH8ErZvNxcJyi3XTTm98rmQRhHaIMCvYYBI99460+tGehPYfF1axh3tGSf177W1ZpyX34NG2q8BpjeB9DPQ6aSXQn29t1+UPs8Lw1cEMPwNWopL/OURkh+A3y3vUymLgfTkKnTbxU03mcnuvffzRPjRR03zjUnCw8y/Z5xizRo3LA38AMyd64a1H97R4/xtSW+tO9kotZeaMMXw65mlkW33+uvNuCuvdPPpXdpxvz2/5QiK7MuA6SW4fbv7++jRwfL320c1gT0IA6DHsAsvdMMTJrhh7QcjfV7MAxgD1c4ms7wF8+a5B2PFbs7DRxrppH+L9kuTaLsWr7rLqIeJrh+J5eZkHaTipePX/8daJ7JiA3riBPXlk149fZXHT9gktRc5Zj73nBvWpkeyTqSBombU4YmgbgY2j1PpWanxqsvQvK+WLHHDJ5zgnU7eUAqDXRjjv19kv9H1L8f4HTu880j2pk3fWBKGn+Un6808ZD1Iy1/dzeWr+r77mnHdurnhKCwNbWOHjLP6elmQ/UvOUbqNyHtLxXNQ0qWLG9b5y7oqKgzYFwLOL2ET2FuXEJIEP5Z5UNSrCNNunmb8tv8R+2P/I/ZvM/3Xbv9aOopFCCGEEEIIIYQQQiKEnmWEEEIIIYQQQgghhLTClWVt0KNvj6RVZVHiIN7hZbB9y83zy8tT/w7akl9g/iCOY7Z9vYVmQSvNtFrCuJ5c/t+4zYzUOohWSpS8YGS1u6zZtrS4xKJKkPK7ggVPGHErCr/shleY502e7IZlsXQ5Fi92wxUVZh0P6ie3ezfj/LaJoBK+IKS0fFssOZftQi+RdxxXepmKZECWZdUq9/eVK3sb6Saf9v/aTLc7rRvW0rZx4/zJa6x1IJfkSzkoYDYaceOpyP5kN5GKOgC4+GI3bJMRBR175HledaWxtc/1683jtWvdsGw/Y0YHK6+WIHq1tdjyl8wf5HPS46AeMz2wSZ3kcZFSaVx+uXteSbGb7rH55r3IYo1Qmlh57aR7XrfODYu2qiXzTfn+JR1+yKjsI6BMxq8sx1YfyRIp0S6kRF8nzBL5jt/nltI8IZ+HllDKtmx6InjnN3OmeSzl7rffngj3LjXrVJZ51y7v7P0SdC7Wj75A6tNF/cSGDzcTprGNpIKsB2kP8sknZjp53/pWZJzNUkNik9gFfc8Imk62/88/N+O8pKlS9q3RMlUpLQxDhmnrr0lx8iXEYz4BYL5gaS2tB/pe/A7dev4a0K/tsMZ3n9UFk3UgxybtTyH7rO3BBPWM8In+86q4OFop9t4l86RnWWeEK8sIIYQQQgghhBBCCGmFH8sIIYQQQgghhBBCCGllr5BhPvajBzNdBCtlJRFvMUUIIYQQQgghhJCQiYMyzM7JXvGx7MM7T810Eaycd1NdpPnbt7l3FxfqdKZPhPIgkf4qQnt/aI2pTZceAFY/AG1G4OFZZvPlCKqLN7xolK9UcY0b1p5W0lbAdu26Ou/7HlQRzKtKIs8Lw38qFa8Vv2l7l7r5//GP5jnXXuuGtSWU3/vevNlNJy1eNFVV5vHll7edX3vX9o30pdA+FAHMRHQZh4n7eVvZ/cjyS78u7ecRFC8frqD1Nnq0eSzbQrN8/5C+KEByx/TAd3VrYztpvGjzbowA6VMmB+TXXjO90owqUF5GsfpN7oFug1OmuGFxb/oZ+rVDyhZvEms5UvCDsXnNeaXTU9nWrW64WzdLUeSEa5+0O4xtrIva8ygJecGPPzbjpDlT//7eecgGqv2QPPyRdBu3VXnYvny2/JLqe+hQN6w9kGSe0mM2YD/029795qGRfl3bt5tx5eLfjPWQHsRvLGg7jtr3VU8hZ5zhhmUZw7Kgi3xM9vIc1AOhHOxUn/Ty1bT5tgV9X/PrH2pFNyavxmXzNtMP2NJA/d6b7W8BmYfue16ey7Y8UmlXUfcpQqKGLZgQQgghhBBCCCGEkFb4sYwQQgghhBBCCCGEkFaceDye6TL4wnGceJCyOo6D+AvfjqBE4XHeTXW47a5/dSwTLVsUy393Fvdu6+ekY5sMIZXl0F5YJXWN28wfPNagp7QlfRaSynLkTN1bWEum/UrzwpCf2gi6rNzr2rnS5mT55fBgSPtCyj8MfNdrQBmmDaMd+ByL0o2trW5rdOOCFleqZrQiJCzpbjYS9hhTX2/G7drlhq0yTMt1wyhjOkllng5ybymdIwa/nYUlibBu4/L9R79Oyeekz/Oa5yKR9fskm9qEvG85dOv3TVnHITgWhEYY77eZJEhbCPyeredmiWWeDuNdK8h7XhTjaibbQRj9Pojk0y+jDj8cS5cudVI+MUdwnAPiwC2ZLkYITFgWj8dHZboU2UR2ju6EEEIIIYQQQgghpFPgOM5ZjuO87DjOdsdxPnEc53bHcVLa7dBxnDGO4zzlOM5Wx3G2OI4z33GcmjbSHeo4zvWO47zkOM7m1v+WOI7zHcdxuvi5Fj+WEUIIIYQQQgghhJBIcBznEgB3AvgMwEUAbgNwBoAFjuN095nHWADPANgfwM8AXAVgKIDnHMc5SCX/EYAZAF4C8BMAPwWwEcCfAMxzHKfd1Y57xW6YhBBCCCGEEEIIISS9OI5TBuAaAEsAfCkejze3/r4EwD+w++PZr3xk9QcAOwEcHY/H17bmcT+ANwHcAODLIu0fAcyIx+Nyi96bHceZDeDrAE4EMM92MX4syzICewXobZrFcYEwHMvP994uPYwt423lt96LT6OdqL04ct0TLQyi8BALWo+h+OFFUC6/RLENdxC8vJE6QpBnE8YYk4r3id8yGj4mhUWB8ogaWzmC+pTJPItCsGbrzOOn3zGmd6n/84Jcy5Y2W+o7lXL49RCy5W89Twx+BZZyyXcjm2eWHsMKvMawpMGuIBFMZY6N2mMpncihO5S5oBPg1/MuF2jpN8AzLup2nC31FWQ8i4Kox4pU8s9WP7/wiQNZ0g6zmCkAigD8cc+HMgCIx+P/dBznPQBnop2PZY7jVAEYDeCOPR/KWvNY6zjO3wGc4zhOv3g8vq719/96ZHUfdn8sq0Y7H8v2lhZMCCGEEEIIIYQQQtLL6Nb/L2ojbjGA4Y7jtPfP++3l4QA4zEdZKlr//0l7CfmxjBBCCCGEEEIIIWTvpcxxnKXiv2+HmPee5adr24hbi90furyXqPrLAwD2tWXQ+kHuMuz2TXuknetRhpnt+F6WXVYWKP+C/BYRDnbtbFliG4YESJ+zqd7Ns77eTCur3CZzk+fpLellHkWF2b98N93Lt4Pko+UdjY3eMkD53GRfSLUs7ZWpI4SRZyYlCvLaWgYu8dt/A0u9fZItco5UkGXe2WTWj03eFLbsJxfqTtePJAopWBhS8jDy93utbBkrojjP1t7lsae0sp04I8+AjcmvbYB+htki4fPbjvV869eywEa2SlaD2AGkQq6N4+mW6XndT7rv0y9B5ehhXNtvHtnydx+JhA3xeHyULYHjOKUALk4hzz/E4/FN2C3BBIAdbaTZ4x9V1EacpEN5OI6TB2A2dm8O8LXWclnhxzJCCCGEEEIIIYSQQDS3n6RzUIrdO1D6ZTaATQC2tR53BbBdpdnjnLsNdmQeGmsejuPEANwB4CsA/icej9/bzrUA8GMZIYQQQgghhBBCCLEQj8frsFsymSoftf5/XwCrVNy+2L1LwkewI/PQ7PktSaLpOI4D4HYAZwG4Oh6P+9l1EwA/lmU9YS8TDrpLVVh5ppMgS9PfqzOXFs+d6512yhQ3XFLsnf/ChW6e69aZcRMmuOHBle2XLxNELWeQ0kibxMV27S0NbhlXqeFXymD1roHV1eLaIewYGXSXs6B55gLyvpcvN+PERr2orPSXXyZ3FU03n6x3761XL/f3gvpPzYSiIjdsKPCKQtGG1eZ5r73mhrt0ccM1NUaybcV9EmGblDlb69+2I6s8tsnps1Wy4xdZB9pSQKJ388w1opZpBy1H2GST1DKMOs7krtU2vJ6jTcabbrJ13JVkkyw2U/h9V4l6F3gbQd9L+XyJT5YA+DaAI5D8sWwMgLfi8XhD0lnJeaA1j9tV3Fjs/uC2TP4oPpSdA+CaeDw+M5VCU3RMCCGEEEIIIYQQQqLgEeyWX17Y6h0GAHAc5yQAQwDcLRM7jlPmOM5wx3F67vktHo+vArAUwDTHcQaItAMATAPwn3g8vk787gD4XwDfAPCreDz+01QLzZVlhBBCCCGEEEIIISkTx17kWRaIeDy+3nGcnwK4HsBTjuPci93SyR8CWAngRnXKhdjtjXYOgFni94sAPA3gOcdx/tj62/ewexHYD1UevwXwTQCvAHjTcZwzVfy78Xh8ka3c/FhGCCGEEEIIIYQQQiIhHo/f4DjORgCXAPgDgC0A7gdwuQ8J5p48nnccpxbANa3/xQE8D2BaPB5/RSXfs7PnwQDuaiO7OwHwY5kf1m3chot/9zyWvLkeXbvkobJ/D9z4gyNw8JkPYvh+pWjc2YweRV3w3dO+gLNPHAYAmDXvLVz2xxewb3l3NO5swnlTD8QlXx0JAHj25Y9x8e+fx6urNmHOL76E0740ONLyb6o3FbXSp4Z6cf9ov6t589zw8cebcd27u2GbF0FVlRuWz8WWhyZbvVaClNnmGZSfH8zXq0EMr9oXTtZ5v35mnPQw29ZoXruoMDvqPKh/xfr1bri8PPX8omDpUvNYPg/9bLZude9Hll+TLX42YZRDP8NXxJRfVuaGD61fYZ64wj0eoAcZ6T+mO8cLL7R9geHDjWSN4k2hsdGIMvpQKp6DmSKpX8sbalI3kJ99NxR0rJDjrPYsk3GZ9Cyz3Zvpbenf7ydTnoZB/St3Nplxsglm67uc3zqO4ll45Rlr2GImlANVCv1a5imvlS3va9mEV111doL42qXSfjzbeApjjKRBfY4Iw3d0b23zJBjxeHwWzJViXulmApjpEbcIwJd85FGbStnaIvveBDNAPB7H1B89gbNPHIY5v9ztuL787Q34ZON2DNm3BC/fdSoA4L21W3DKj59ES0sc55x0AADg9AmDcfNl47Dxs0YcMO0+nHbsYAzsW4xBfYsx66e1uP7uVzN2X4QQQgghhBBCCCEkNfaeT/8Wnl72Ebrkx3D+KSMSv9UMK8PAvubWWIP3LcHvLh6LP9y/QmeBfXoWoqqiJz7esA0AUDmgB0YO3QexWJCdVQkhhBBCCCGEEJLd7PEsy/X/iIYrywCseHczDhte1n5CAIceUIaVH9Qn/b56XQMadzZjZFXvlK8fhxNsybLQJdTXFxhRWomTa/hd1mzDmnbDBjcs1iB/eUKhSuiWQ8opAaBvub8l1SOe+oN7oORN23p8ORHW8sR0KoBk+bXMSlKoqifIsnu9BFxeb0A/9cxMjaYRJa8nJXyTxin5xZo1brjU1Ppta3L7q5YmFSlZYNgEkaTY5Du6XhcscMPTpqVcvMDoMq5c6YbPPddMK2XPdXVmnDzvqKPcsE2SmQph1H9H89PEGrcZx2VlRYnwO++4v9dMO9Y87/rrE+EN//qXmccVVyTC2678lRG3oMkdf556yv399I/Nco0ZHe1W9umUNCX1ITnG6MEvSybSMOpHShcHV/rPPwhh5ScfjSnDtJyknmHMayLVA7581pbJ1++92Z5LrGmn+YO4nh7HexduazNdFC8IftuZTSZmm6OkNUCvXt5yU9u1bfkbyHc8wJSZF5v/EB42vsvYznlB8oiCIHNb0PJGId8MUv+hzFeWl/qkMUDmn1/gGWdg8UTQ5Zfybu3GoP+2IYSY8GNZisTj5vF9T72Hp5d9jLdW1+N/rzgahV1ZpYQQQgghhBBCCCG5CmWYAL4wuBeWrdzQfkIAL7+9AQdWliaOT58wGK/PmYbnbjsZP/zDYqzbuM37ZEIIIYQQQgghhBCS1fBjGYBjRw3Ajl3N+N+5byZ+W/LGp/hg3VYjXd1HW3HpHxbje9Oqk/I44qC+mD5xKG6ak+xnRgghhBBCCCGEkM5ISyf4j2ioGQTgOA4evu7LuPj3i3Dt35ajsCAflf2LceMlR+LdtVtwyPQH0bizGT2KuuB706oTO2FqfnzWwTj0rIfwkxk1WPlBPab+6Els3roD/3zuA1z1v8vw+pz2jYNS0vkLvXplpbfGPWt8EFIw5Yp8C2op2pdGXBUVRrJkD7O2sdbjhRcmgvpetgoPj27dzNMittXwRNsg7NrlhrVnmcRvW+rd9Km6oDBpaTLr3+ZZ5tVGdhaWGOkKKivFtcybk/fTLwqPMnG9mK3yfJJKf+3SRZy3ZrV7oNp41Cxd6oZHVJorbwsLXU8um5fdxo1uOCXPMpmJbj8RmgLaPGusfjaqfR5a7ZZRjvFnnGFe74xzH0uET7n4CTOypiYRfOABM0p2L2nt9/nnCIWo/W2ClEN6twAAxHixebMZtUPUibQ8Kir09myyXTuMuTiT3kU2wpin9b3l57t5Ss81KxYfHwNt3CPStRSXIAi+n00qBqU+x6mgnol+n5stf3n8yXozvy5d3GPpS6nfd0oKhYdTGGOzziOEPKPw4bJ5wRnICVL77ck2LgeqEMrUbrlCIIhHsT5HdymJl8ehXw/SlLB5YMrnZDEHjhV7+/N65tcOsvnrJuLbD5KQvRR2i1YGlHfH/b+akPT79me/6XnOjMkHYMZk98PZgPLuWPev6QCA0SP6YM28r4dfUEIIIYQQQgghhBASGZRhEkIIIYQQQgghhBDSCleWZQFOSzNija3ypFSkWiHIukJHLw+Xa3+1zkpu1W65l8CSTLnmX687lpo7qT/SZQy5jvWycrl9ul5Gns6l0bJcvUujvZZR3/pYSiYBq3RCyqlkXWmJFOrFM9XSm9LeloK6+JYs6KX1sj/Y5BEhSERKsMU4PmXDHPfg5lVu+NprO3wtG7qNn3WmOJj3lBE3SD5v1QFGnFbtEZdCn9wgNm7R9R9A3qSRj9vvUGGVlqj2KPOXw6VuZnPEo64b+2Ujrkbcpj5v7Fg3/I0zhEQ2qW781VWyuiyYNCxKtJxPPt/HHzfTyilkyhQ3XFpqtgkpmdfyeVkHNmQ5UlHphUEYz8av1NgqQw4D2VEstFSPNI4NZwZL/et+HujZ6JNExywtLTKitjW68mt5WiqX9Suh9JuHTQL31lvmeV27uuGDDnLDRfk7zYRyENOeCLW1bjjftBzxlPBZXqiisCbx+24auL2vXOmGn3zSjBs40A1PnGjGebx3ZMt4rDHKZXmG2kahIEBHjOJZt8j2Wextj6PjgvTDoOW3DZG2/MO4ducmDqA504UgEcCVZYQQQgghhBBCCCGEtMKPZYQQQgghhBBCCCGEtEIZZjYQjyeWF6ckUUjjsmPfaJmbXAIeUEvid1nwihXmeSPLhF5C6mkAU+4ndosLKhEJujxZyqJsKlWbDDPq3U79ytD0inkpRzLKIeq7zWOfyGtLteMgvdmjbIMWKaQuf0ND2/etZThF8ti2A5ffXdpsBbP1ISk5BIBrrnHDUm8XkFDkUwsXmsfy3rQ2QMpzZWNKRRrtU+otSUXqLSW/YewGqJvI1q1uWA5h+nFKhc7MmWacPNbqJqM5LV/unVDLoz3Q5Zf5F6Xw2MLGGJ8bzR1ZpVyrocHcBdFrAzo9ncgNZquqzDi/uxrLrmCTYUYuY4yYVMob5N6C9kPbXCyfh95MWD7fwHJ9uWvy/PlGlCHKFFpgvaur39cra/vxOdfo5yLnSj10yGNDeikHLQA7zz47ES7QA9yDD4oMB3iWy0A/KHE/6e5fofRRWegPPjDjPvnEDVdXm3HinSeKHVO98gllt039oOQgrAdWy0AbtXzQ7yuaJJWdPv2ms+UZ5HqpjKVR/x1CSCbhxzJCCCGEEEIIIYSQQNCzrDNCGSYhhBBCCCGEEEIIIa3wYxkhhBBCCCGEEEIIIa1QhpkN7Nzp+g0Vm54pfnXgfrf4TWVLd690AJK9BPagDFs+2exuj9yrl5m0ID91Df22RvP3ooZPxaX7GHEX/ND1tvjzT1VG0t9JeB3Y6tFGUE2+tFnQlgt+n00mkZ5KO3aYcdIiyua5FpSS4hYRdn+3bWtvQ6eTllnSKkN7EhVJjxZtWCEfqs0oRZDUR0U6a/+tHGzENa5c7ZaxMHOeEUaZr/2NEWfdJn7pUjcsK93i/ZZUP34No7zKFBJ++6/N72TBAu+4E090w9qWb9QoN6ytgIzrzWt7TNTY2qDsk22lzRSyaRVY/KJmzDDnX3merBI5Hqgskp6hX68YOR/q8TKMevQ7v4fhPZNNHjV+y1JZ6c+b0zaW+vVXTRqX5GSp47SXYysBLWDt9SFvVJXDNlb3Ls0XYcvF14kxRg1oBbIOvvpV8zzLeOTpmZVf0ObvgL3ugvjUduQ833lIL7JzzzXjpC+Zeg+w/Z3gF9v4EOk7svYZ1YZ4Pgl7PNL55eeHOz4H9TOL2pstqCcaIbkOP5YRQgghhBBCCCGEpEwc9CzrnGTHP/sSQgghhBBCCCGEEJIFcGVZNrBsWUJHE/v3v804sew46PJnG4G3KJbL8KWkUS3P7yu37w6oG5DLe7duVTJMxw03dneMuD81xxPhN1aa240PH952/lHIhmx5yi3qdfUUFrrnaeWQmc4Np3vpdd9yN5zJ5eESreaTzXPdOjNOqjuGVe404kZWuw/kPwvc8stn1i5aRuCDVOpHypKXLzfjpGKhXz83nV8ZkS5L5MvsdSOXmkFZ6VoDJ25UP5viYn+yKEkqUuww6kfmr8eA1193w1r+K5FSy9Onmu3YrFfdHsUFa2sTwZ2FphwRUsZokc9rskWaYZRZydpk/eva8Sq/lt3IJqnHn4qKjssaoyZb5LJ+bSJSqTe/59neAyKXscuOP2GCGffAA25YdPSg45SVALJ1APZJUY4/K1a44VWrjGQtIl1MS08DvDvGmtQ4aLEzsBHkHTmonYdvzwj5Xg14SnWjIIwxK93jTdTjbBj5+5VHx2y2ExHLTYOSLfMLIUFhCyaEEEIIIYQQQgghpBWuLCOEEEIIIYQQQggJBD3LOiN7xceycec9lukiWOm6Ky/TRSCEEEIIIYQQQggh2Es+li18+cNMF8HKeUOHAhs37j5YudKMFH48Nh8EbffjZZWkLRECb6EtM6qrc8PKhwJTprhhi1eMLXvpD9O3xzYj3R9u75MIf/+TT8xMNnyaCA4f3gdehOL1YcGWR12de239bMRu4EbVaVuR0P0YdEFk40o2VvMsx84mr/Zp1re8nyi8JaSdiu5esl4LC82t5mU1SI876+7luiPK+gro2SfR9bNunVuX559vpr3++rYvPUjZndjyt+HX88s3qmHL9rNmg+uhVVlp+mnF6jclwiVJA1/q/h5R+2ukMt5UVbXtZybHBkB5ctWtMSOloZYyPmspduuyMd8Nv/aymUVlpRuWPoWdAd/znKX/yjEhFfugsH1Hbe8IRpwe48VxS2FRh8ukCcNvzPZ7Or16gl7bb55J6U47rcP52wg0jut5bs2attMB5qS7YIEb/vvfjWTS9axk4UIzD+nj1s9sn551J81KATXZm3n49bILit9n35LvvoMknSPrUb5zA6aXnRyss5Sg/qF7LR5/0OVK/eRKOQnxgp5lhBBCCCGEEEIIIYS0slesLCOEEEIIIYQQQggJlzjAVXSdEn4sywaOOQa49VYAwLZGtWW57+Xh/hYJ6h2+bZIRq1xo+XL3QC6tnzjRTCikVanIj1audNO++ab7++knmPKR75/ryjI/qjellvLebPUYObLSlZSnqsqVA2jlgdxlfexYNzysKvx7MaQMNomFbjBCf6TbrkQqInQbrK72Vy6N19LuAphbxldVudIGrVCQdXz77WacVKzV1LjhZAmcONBSLXmzWj8bgixTrs5XCjs88IAbbh1eIiMMCZBuF+vWueGbb3bDF15ophtWt9Q90HIFKU9RcUGlYR3NI+i1ZNczZJcaWXGAKZlS8jt5KE/r1cvMols3f2XsdIg++sl691k3Kw/fAf28n4ccF/XQ6jX/RiJbkQ9bS9REwbSMy5CJZYmUOd2yHr/9PLDU0iNd0PxTOc9vXRrl13OZ1CFriW+F0P3LyV41/hL5TjlunJmHvp7As/xWvwSTMOaCyJH1JeY1AGYdB8Rvnw3SXtrLQx5HPXZ0ZvzWedQydkI6GxyVCCGEEEIIIYQQQghphR/LCCGEEEIIIYQQQghphTJMQgghhBBCCCGEkJSJA2huNxXJPfixLAuIw0loyFetMuOqqtzFf9qOR+rMiwr9ac619YPv7cHr6824p55yw3PmuOEzzjDTCc+XpGvJ/NXNSZ+yM87YIq5VYqSbNs0Na9+YIF4rNoJ6ghj+MOoBFJW59/3lCUaU4ZHTpYu/MqaCb28I6f1hMbnTTUQ+Xnla9+5mulD8EuTFtPlVWZ82kwHmbuzaM056k8nHZvWLspVLe5TJY4+twdtD1uuMGWactiUKm7B9LqQ1nkbep/adwzpRd0uXmnEysfJ18Vt+acETgs1cSgzK/8g9KHT7oXUs0v410oxM+QnJtlxZ6XM80J5E6a4UP+gyClryCzzjNLKNvPuu+7seRwaUeTcSOS7aPEMj942R5dLjuKivMObKoPcSRh1kq/+OX9+wnU1m/WdL9zLtN1UbsZnfyolo+HDvdLJTWTzKghKGF5y1bckxRw8Qlrnea35J6oeyTmzvEgEJ6kXm5YWVSj/0fZ4cTPUYr81kfVxLE4Z3qY1Q2pnP66biUxi1Zx996EiuwxZMCCGEEEIIIYQQQkgr/FhGCCGEEEIIIYQQQkgrWbLAm+xBS4zkCnatrrEtnfVa9iplZwAwssoiE6urc8Na3iSlPTU1blgtMbcu75W6K3Vz06YVJcI9erjSS70buKnkDF9qKfPwW8dJ2CRBsn7qNxlxfXu4ddlSWNTmOTp7/QgDbRmfggRClsW2U3vk0hjZ7lQblNcuUbf2tTPaDmtskl7zWgr5cLQGS9Rz0GXw8lZPnuzdPmU/KbIoPqPYUtyv9EArdOR5l19u6Wty/NE69gDSDN1dTfmRGedX/WJtM43b3AM9fvYb0Ga5bFLgbWWDjOPCCvfY9iy0ckgi7zNfyRizUvZmeTCpSFBknJybdRuR0k7dzfPy3LDP5hgans/GIvsO43lGMY4EJYgEKJPltY0p8l607YF8JdNjaRgSL2mNccv4cvwAAEonSURBVNBBOrXFLsRLejlunHksX07Vi7B8/wlDomZLq/P33RbkA9GeAvKhqnvLLzatRTyxvWBlCWGPHbGGLWbkihVuWE9YtbVuOKAsNVvkgn7Hz7DGqbDHu2ypx8xAz7LOyN7cogkhhBBCCCGEEEIIMeDHMkIIIYQQQgghhBBCWqEMM8soKTaXw+pdhyRWiZ2Q9myDu4T9mmvMdPffLDQjWlsil5WPGmXGTZzohi3aEpmFlkkWVg1zy6uXvovl15MmessCw9jFJfSdYGy79FgkgkkaWbHDlJQybGkw63H7djfco4eZhU1y50UqO+zIlfD6tsPe0ErLTnbtcsvZt7ztHZk0qezI6iXN0/dpnKaX/0t5sWWHrChkP+ZuuamfE5RUJFh+r2fb7fdvc10Zy9hx3zDiqiz37SWxzs83y2/b6E1ia3fWHTWlZEd1GrkDWoHU5EuJPABUVyeCRUkdT1SCRRJe1CjmAq2lyheScHWfYUi8Mil789rNTaN3W5Zsa3TP049Gytf69zfjpBLNbz1mU91J/EpvotiNzkbYO1+HsfNdUGT31c4Y8+a54WuvNeNMGXWw9iOll3oqe+cdN6zbeL9+7vWkfDypHoeP8FWOKAj0rGy7Atu2vQ2483XUOxb6JZWxKUgevklBaullSaHbse3RBHlsqdxn2LYxtrRBLWWyZa7JXuKgDLNzwpVlhBBCCCGEEEIIIYS0wo9lhBBCCCGEEEIIIYS0wo9lhBBCCCGEEEIIIYS0Qs+yLMBBPKEFD+xHosX3q1YlgkXC72rGjAIj2dv1fRLhYU1vmHnMnu2Gzz/fiNpS6J5ns6ZavtwNS/smwNwJW3uzxUT5UVWVCLb43WZbo+tHXiugh4Tns9FeCsKvwvp8x471dV1tSRSGN1hQvxlptyQtlQBz+/repf7ytHmiLV5snievd9aZ3vkbeWovEWGE1lIxyIiSliTr1rX9O5C0E7yJvAFdQRLZZixbxNvaT1AvoLC9UGx+GFF4Xsyd64albw8AzJrlhnU39ypXUhltD188q5Z8d2zVw408TvJAW7LEDTcrvwvRiVpGHe6WURtj2dqZbE/64nKclR1MjUUtwl9SE+SZpnJOOj2ugnquybbVt6+ZVj4Om/+d32tH0YfC6KNBvYzS6YMT1LcnDJ8mv9e2XUv6jU2YYMZJW1k91sl5Wr+HeaHLIT1n58+HinPDb71lxk2e7IZLS7Pj3+cj92ySLz+A+ZKm3g87kw9U6GOHfrmV85LFM872POV0vmKFGVdT45299T0vZIL+HWgbRzpTO8tu6FnWGcmOmYsQQgghhBBCCCGEkCyAH8sIIYQQQgghhBBCCGmFMswsIA7H9zJwT/S6+7IyNyyWJ0tZEmCqd0aNMrfuvvCaWxLh3oXbjLgSiOMNStomOLbWLYe+R6kA0tKAIrke2oJtafHOJrFluV9dVEBJpo10ytyCXjvWuM0zrqWwyDNOKGQxrCp8+U5RoRs3fLi3BHRbo3cdFMlHmoKGVS7Dl8l27fI8JRnZnnQjl1K62293wzNn+s4+17cDD0OeJeVI//ynGaelFF5xUt6UVA4pR9cSx0svddOJMbdIDSP6WNLy1a97RwqkWnNozbFGnGyTPcqMKBQ1fOoeCNkxAFNPJStEjYNyuNQq8wJ5bKtwfaJPwpCg+D0vjDK9/rqZn+za48aZaUdWi3zks9HzlUWaHYTAdg85jnUODCjB7Wg6fW3bs7GVsaHBPU/Lff1KL23Ia+/aZZZRSkD1EOP3lcocj1MsXCsdfo9OIf+YxW4jaoK2Lb95Zu14IOs8YCOR7bFMzZVh95OUxlnRcZKsYXx2ojBksGH8PUFIZ4MfywghhBBCCCGEEEJSJg7wI2KnhDJMQgghhBBCCCGEEEJa4ccyQgghhBBCCCGEEEJaoQwzC2hpcS1KtDTdph+3ejz0G9DmOffP8V4i+sZK81qGndPKVWZiefHly91w165mumOOSQRjyndlwwb3etqSxUsbH2vaaSZsEH5pyn9qw4aCRHhAmcWrKqhBhk9k+bW3lrx0Qb56NtK3xstAC/79BqwsXeoZFRNGOzp/6U8iPVN0nLxPvQW3bPN2TxbzWFp+2dJNmuiZpYG2CZL2VNLbwmZNkpKXiMxozBjf54Vx7XQStH369cc4/3w3PHy4GWez+pD9zVqu005zw9qzTDZs2Ue1d5coSFC/mS5dvM+TXpTjx5txY8f2cfNb9bb3xaT5mzJvKWrY4h7k60oVdaA7n8Snp09QH7vAfi16TpFlyS9o+3eLF82xtWY5jq31WZB169oOA+YEaRuodLuT7VPUf0zNIWF40YThGZcLPji2MkZ+L5aXvjD8lvwydap5LMfSQX7LodpqQQjvYWF4NmUrUc/vuVAHkqDzRFmZe15Qi2K/dZWKj6wRI71EAWDKlA6VIwk9h3hURFAfXEI6G/xYRgghhBBCCCGEEBKI5kwXgEQAPxMTQgghhBBCCCGEENIKV5ZlAXmxOIoK219Oq5fAShlaVZWZ1kv6ZFtGO2K4pQzV1cbhpno3n+LqQxPhAihJy4IFblhJP44c6x4nyVrWfeQeSD2f3pd85Uo3XFtrRA2QugQta5GSIFWuKHntNfO4vNwND65QEhp5b7byCjlD0nbmNlmUTCuXZe/aZaYTMp+m0j5GlHy8MgwAc+e6YbnK+/bbzXRHj/O3lFw1QaPNX3ONG/797810a9d6t3lZlXolumw+fqU3NpLykM/0hBNSzi9bCVr+oPImUwLnnf/qNWa5+vVzj7V6TVJYOdi9ltYQy/FIjjG6H4qGFtMX8ykJl8OB3vK+Wfxj5lNPmXGyHQ/SE8VEoVEWmSaNx5ZyGc/GJgP0OEcTuRxIS1BWrHDDqvyGdYB4Ti1l5jgYeAzwktfrByzLrCXzUrKjBzF5b3IAPeMMs1y6XYRMrkm8ghLGffrOQ7XjmEVTFkQeapMaJ6uE3bRJdhISWeagGri9lKjtDLzOsZUjk6TyTibTyvbZu9R+XpD8/eaXdI78g27OHDPOQ4aZEnKukS8TAFBT410uQkiO/1VGCCGEEEIIIYQQQkiIcGUZIYQQQgghhBBCSMrEQc+yzglXlhFCCCGEEEIIIYQQ0gpXlmUD8birJ09h++wwbEaCehjMmuWGpVVYdXWBka5AauOV6VRLcYl3OS6/3A0/+aQbnjbNTHfaaW7YVndqX3UvL4Ggen2rL4TwNRozUPnlSJ+aJlV+WV/y3oSHWNKx9NgBko3EJPLByfMsXiIF61Ybx6dMds87ZYpZ/ksvdetk1Sr396Bb3Ot6XSM8qH796w9EzEwj3axZf02EdROZMMENa88+L6+/XPF0CLucNp8OW/34jQvDq81WRmkJAphdT3YT3YWkTZncdh4ACry8BOUAqdGGPzNmuGHLOGWzNpPDpexrgGmNp2mpGpYISzuhfGU9ZozjqoIMXy99MY8xOYo+5LuPas+vefPcsPZ4XLPGDYvxMnbxxcGurZH1I5+99qWUjXfxYjPuz392w9IEE8DOd95xy/X3v7uX1fcpTR9TeAeRZHRclI3X5gkYkDDGf7952H2OBAGfk19sZdRjpLUo8nmE4FMWhp9WKnNNNs73YXiohnVeGIT9Pp7JduA7Tz0Gy3npued8lioCZH+1dOydTepdyOZVSEiOw5VlhBBCCCGEEEIIIYS0wpVlhBBCCCGEEEIIISlDz7LOCj+WZQM+ZZhaXSDRK3pLS1PfAjmVJc9eO9lraWiBlPopiY4scwnUDcjl+hdc4IYnTzbTDR/edqHaIZStnn3GGTIQLUOQZdbyLFFfLWV93GvpdHLJ9iGHmHFSRmSTQMhnY5NSqTxa8l3Zra4DmY1UGKWixLA9D1kNXbrslwjv2nWxkc7WPmX1jBiOQATd0t1rubtNqphJopA2BCGV/GXao8d5l3/hQjfdcNUObCqufv3E+Cnk1oY8HADOOMM7E1ucQCrxlKLdwCbP13Un279FMY8BtslHErE0LBT0ALSfO3bgwAPNOJv2NUp0o5MD6LhxZtyll7rhoUONqAKpl5Pn6RcGm5Q/Yny/g8j+pZ/h8uVuWOuQZV8MQQYYNdY6sLRBWz3K7tuk5FOySuTrSGhVFXK/CToPyfOyUVqZafy+x9jqNYxrpxPbu5b+c6Kx0Y3btcuM69LFDct+U1SYQl/u3t0NKzm9VxlTsbwwBgE5lqo4+U6vp31Z5M2bzbhu3dxre40d8XjbvxOS7WTHX2GEEEIIIYQQQgghhGQB/FhGCCGEEEIIIYQQQkgrOaCZCI+8vDwcdNBBieO5c+eiUm51BmDx4sW46KKLsGPHDuzYsQOnn3469ttvP9x0000AgDfeeAMHHHAA8vLyMHHiRFx77bX4/e9/jyuuuAKffPIJevbsCQBYsGABvvKVr2Dw4MHYvn07Jk+ejLPPPhvTp08HAKxevRo9e/ZEz549sWH9el9L1bW6QC4TlhtGAsD3vueGw1hOr5cky93Xgi6hLlnzhnugZSdSwydlFFojJWgpLDKOg5QrjJ2ukvMU6Ocs73PFCjNOVHqsrMz9XS+h3rHDO38LLaW9RTncsF56bWxmZZGk2epAFr93qf86tj2PcePc60lJ5oYNBxvpZBfX7bik2J+01q/0LyUJpXhWQeW/fssV9W6eQaWoYdxbUPmIRG4GqHfNlBtbTplixsl2XSAP9GDtteshYA7QqvOt2+BKImS5tIrOL+vXm8dSfWdTixs3mgNSNis1NeaxvDc9+HntdmrB766xNpJSyXJpmeQxx3jHiTKbY4B3/lHIrEJBPgv9nGSf0vqgEAhSB9lUj3J+XLTIjDvpJDf82mtuuH9/M51sWnqMlHNsQZb8VRF8x9FodzuNmqjn986EbgdyXtWbJi9c6Ib1K3jfvm5Y9iebtUfS3ytHHOEeSPsahW0+sT4nOW+PHWvG+fy7QVo1SAsHwBwTdPZ7hm4tX+2c0LOsM5Il01p66NatG5ZLb4s2OPvss3H//ffj4IMPRnNzM9566y2MGDEC55xzDgCgsrISTz/9NMrEC/a9996L0aNH4+GHH8aMGTMSv48fPx7z5s3D9u3bccghh2Dq1KmJ68+YMQOTJ0/GaaedhvO+9a2wb5UQQgghhBBCCCGEBIAyTMWnn36K/q3/pJaXl4cRI0ZY07/77rtoaGjANddcg3vvvbfNNN26dUNNTQ3Wrl0benkJIYQQQgghhBBCSHjsVR/Ltm/fjpqaGtTU1GDq1KltprnkkktwwAEHYOrUqbjtttvQ2M4Oi/feey+++tWvYvz48Xjrrbfw6aefJqXZvHkz3nnnHRx99NGh3AchhBBCCCGEEEIIiQbKMBU/+9nP8PWvfx1PPPEE7rnnHtx7771YsGCBZ/o5c+bg4YcfRiwWwymnnIK///3v+O53vwsAeO655zBy5Ei89dZbuPzyy9HPa0v2nTtd8xjLtu3aBkfq5OXWxTZsnko2HwfrFsgWdg4fmQhrK5G+t9/uHpx5phk5YYIbDriVfTo9JOQ3VW2nUlzs+g5Zt3O2+M0Y6fQHXOnBoz3d5LHyJfCqk7o6sx3IS+vsbfVaX+/mI70gSkvD8QuRaWWe0tpGpytQtkN+vUv8+g6F0c50+7F5wPi9Xi56jkhfENl0tXWU3+dh8/coLHTjdBu/9tr2y6rzjykvTOMGJk4046Rnluqj0mvIKwxYu7lBr17msWWHepPSSp8JM4fvNq4rSHvI2dJ2sBza60YO5QP6+Sy/HiCkF43F+9NaPzrPbEGWS04iurzSQGf//c24DHnspXvMlVWSn2+OdfLd8d13vc9rFnY72pdMdgU9/sgulC2eZekmF+dYv2SLH1sY5bC9L2zf7oZ1Gze8e9WQMnSoG5av8Sm9K8qxW/tq+s3DLz7HROlpCgC33uqGq6q8z1u82Dze8+ddgOk0x4iDnmWdk71qZVlbnHPOOaipqcGkSZMSvw0ZMgQXXHAB/v3vf+OVV17Bxo0b2zz31VdfxTvvvIPjjjsOlZWVmDNnjiHFHD9+PF599VW89tpr+POf/9zuhzpCCCGEEEIIIYQQkln2+o9lf/3rX7F8+XI89thjAIBHH30U8XgcAPDOO+8gLy8PpXqpSiv33nsvZs6cibq6OtTV1eGjjz7C2rVr8cEHHxjphg0bhiuuuALXXXddpPdCCCGEEEIIIYQQQjpGp18UmSp33XUXLrnkEhQVFSE/Px9333038vLy2kw7Z84c/Otf/zJ+mzp1KubMmYMxY8YYv59//vm4/vrr8f7772N/LRPYudNd86ukeHIZr1QhAEB1tRu++GLve5JLdbc1mt9HpSwkoNrRyssvu+HbbjPj7ph5sXug1+fKNb5iyXBYEjivfMJYYq6fk7y1Ir362ba2Wx5LTYTWidlkRBbpiqwDL7ULYJeYarmHRCpj5JL2VKScNsJYki/vR99b0rPyuFbQNul1XioyTOPh6DXztnbhkyASR+uzUBJivX26RLZD2Zb0tuQ2bOWX+H1OOt3OJjfOGMK0hmPJEjd84YVmnEWbILOR471Ubmps7dMmg/Dbh6KWIacdWSla4u4xPtskvTpOZiFlLIApj7tDuBIkPSgp0bE9RC3DFBjlKi4x4mLivKifod8+CcC8V/mPlnqSSmVQyBBRS9lszUK+TtneT7R6XCLHHN3Mwla62vpXWHl2VsKY81JJ67ddhzFvhFEOv+g/++TrlO4no0a5YS/3FMDsa0ltXEaG8O4WBnqdiLxPLZR68003rC3B98gyP/88rJIRkl72qo9lDfotoQ3mzJljja8THy3ef//9pPjf/e53iXBtbW0i3K1bN2M3zFmzZrVbFkIIIYQQQgghhGQzOfgPhqRd9o5/aiGEEEIIIYQQQgghxAf8WEYIIYQQQgghhBBCSCt7lQwza+nRw9dWwdrryeYvIZG+OnpL32uvdcNaGWrbAtnm0SIZM9pNd911Zro3GgYlwiOGB/M6CErYniHSs0P7efjeLlkbf8gThelISn4eFg8bqUqWdlfz5pnppI3PkCFmXHm5dznq691yajutKEmlvcgqTve21l59SPtcGGhPJWnmNX++Gae9sQIQpJ9Y2+eKFWacNMFQdO3q5uNhGwnA9F302IulQ9jGOtlmjPvUniPf+pYb1nuui0y0p6R8vLLv7buvZxZJhP4Mcxyrd47FfMl2ni1OzrnSowwAhFODaVCnDUTlA9ZllGOCHh/EcSxo55ADUgiDZChtyTKvdTaC+KvquIoKb99CeSybnW5KMl3U1Z8L4022ejeGce2w/My80um6C8NvzO/fJDbk++y0af6upa8X2PtTjs/GxBCMVOZwr/dPaZUMmD5l+tVNeqpOmGDGDarYfe0ePTyLQEhWw49lhBBCCCGEEEIIISkTB9Cc6UKQCKAMkxBCCCGEEEIIIYSQVriyLAtobnES8hutsJBLZw+tMeNsS38/WufGSeXTuHFmHpdf7oa1SsPvsuagy6alPOXyy838r7nGDUv5qZYGyPrKz8+OZfEpKVXkDQTcf926BNwioSkplmndPA44wMyiSxc33LfczF9KfJuazPqXkg5bndjKb4vz2z5lm5GSPQAoK/NXRls9yqiCFJ69V5nN5wKz0KoDbCoblgj3PqPU/8VDIJDUQa3dt8lPZbs75BB4pjvtNDc8d64Zl1SXHvgd32zt0/r7zJ/7ymPpUvO0zZvdsFRvajlDrGmne2BpyLpcUoptkyTLsTXoWBqG1CYM1q/3jutbbh77LbMcB/UcJeUp555rxhlptfTSC90BfMokfde/lIMCpnZUvUAEkQhmkky2wajlZX7T6fc82WS8xgPAbg9QkB9uXUYtA0+3VJGY+J1Hw8o/yLWikKL6pSW/oMPXClomaZny2mtmnJwK9HggpZf6PXuQcqUgJNfgyjJCCCGEEEIIIYQQQlrhyjJCCCGEEEIIIYSQQNCzrDPClWWEEEIIIYQQQgghhLTClWVZQF4sjqLCDmrepdkEgMmTSxJhqR+/+WbzNKkzT8V3IojHwEMPeOc/ZYqZn9yaXJYrvzjY992ot/mWeRQp6zF57VTqzcuDRHviSIqgItesccNqv/eWfgPajJo61cxCehPo8kt/A+1hIC3YwthqPgxfC+2lILvNsCrVDuTNyT20pQkRgJWrikRUx5+vvs+m4t5uWLWtNcJDond1GfwQlh+MX48cvz5B2q9r7Fg3LL0yZJMG/Hvj2QijDiR6y3XZF8rKzLqSvmQ1NeZ58lgN8SbSmLKy0owTJkW67m68se3TtLel9EsrVmNwbM1qGWnEtZS6bTdbPH569fKO89s3dLqFC93w/Plm2tpaNzxpospPPtQN7tjdUtbHs4wxm5mULAhgtIvYxRd75mn0UeWdJucJv0TtORUGQecTv/cS1juH5/gp5yfA6Ocxy2RcWOj9bEos87RRjvpNZqScWLX3XkAv1rBJZxuM+n2zs+G7Tnz6M2p8eyvKl2vdh+RYrY3/RBsPwxNNv+PLebuqKtq2Jbvv6dPM/E6fFjDTPXUZjwfMgJDMwpVlhBBCCCGEEEIIIYS0wpVlhBBCCCGEEEIIISkTBz3LOif8WJbDGEtuL7/ciFu69JZEWEotDzvMzEOuZNbLh21yv0Ar67VsQBz3VtKhlnxX2ibLpWV0XnJNfZ5fAi+fl7orrTm0SGqWL3fDemX34Mq2z7HVfQuKjONYhdizWS1b15KsPdgkk1u3msdSHqfP87tK3lavYUheZH0NH27JXy+795Jhqkxk09Xts3dp6tt863uR7boAZhkrKry3GPdzrVSwSats5ZfjiJYASY4c610uKT3Qctljaz1PMx+I7mABsNWBjNNKSBt9y73v+ydXtl1f555rHg+Wnc/S8XTUaae5Yfmc9t3XTCezT2o/chCQ4w2AWIA6j1rCZxuXgl5L3vaMGWacHnMMZMWKsJ575dBUUqxuQOahJXDyZuV4pieR4hJ44Vduna0EKbOeCmxtxq/MPOhc5nnek0+ax8cc44a1Flh09FhAT4R169zwzJm9jbi/3Czy1Bp02TmyRJKZSaIe3zIpAQ16ba8+lFRXsiNqXwLZaf3OO7JRA8BTT3nHyRfm44834w48MBGsw+BEuHt3M1mXLm64t88iAqZVQ9TP0FS6ptBWZX09/bQZt+c9bP36jhWOkAyRe28+hBBCCCGEEEIIIYREBD+WEUIIIYQQQgghhBDSCmWYWUbQ3RL1NpexmT9LhP8zz5VothSaMj0bt9/uhrdvN+O+9S03LKVm1vKXqd36pBxALc/3WoqtV/HbZKRBlitLRRFgFtm6bFou+/Z5L4C5y5yWeviVd1ixyB4GVbRdrlSu9dln7nl61bq8N7WBpG9CqQO/2HY/EuEWJVmSohadhaGn0jJk+cC1fEpgtJl8U3YZRvsPW0akkU1Q52HbBTSM5/32BlcuVGmRCVvluCKh3/oJ617kjqCyHrXcd0vVsES4pNj7WgPKdprHpbrBtnExRdK9ye0eQyCUfm7xEIilIAXzu4vasKo2kyXl4VemlNLu2PJ+fA60fnev1eXKRYKUPxX5kVecbayzpfVd3h49zGM5v6xcacZJWebEiWacHEyUjFoy4OVHE+G/nN/fjGwSWuMq1RlkWaQ+3dIPM9nmwphHNXI40u95BfLYsttj6O0nAoJKtn2XWbZVLfeV7+BKhulZLtvfJLNnm3FSUzlqlGcRB1d2vP71+D96dNtzSFjPWuZTEPSrgKzL/mp8OOig3f+/5RZ0fnJ7viRtw5VlhBBCCCGEEEIIIYS0wo9lhBBCCCGEEEIIIYS0QhkmIYQQQgghhBBCSMrEATRnuhAkApx4PJ7pMvjCcZx4kLI6joNsv8fzvv1t3HbrrQCi8QuxadxlnLYAkB5U2l5CWqMU5Lt5vldnll9aYMh0QQmtfqQ3hDSUsJmipRm/22lLssnrI1tI69bsDVvMH6QJnvIT2tbk+o9Jj4qg9ejXIyebPIj8+m8E9emQ5y1fbsYNFzY7NhurIPWVyjiVzn6TVA7pyycpLm779zZIq69glpI1daD99uSxT6+2oF5Dfs9LpS9kqi5t5Yj6Hc2GcS3tyyffVZYuNeOkn5DNp8n2viP9orQnmvSI0uWS+UvPsgy+W6Ub6ztDk/CR9Fkn2dJPoibqeTTWuM38YcUKN7xwoRknPQG179+4cSlfO5OE0X6seegxoHXuGXX44Vi6dKmT8sVyBMfpFwemZ7oYIXD9sng87m3MtxeSnX/dEkIIIYQQQgghhBCSAfixjBBCCCGEEEIIIYSQVvaeddCdkDCkH3LVsZZhyhXhcvW8rRy2bZOzSqYnb07IBKKWOKYi77CdFyT/wKxZ44bV8uqWqmGe19pU75ZFntavn5l9GFuz+z0vaH34zkPL12THUdKYwrFHppy/rgNzp/ns6F+p9KEgsopU2rhUC82ZY8ZdeaUbNuvRM7t2y+KnTKmkXb3GzV+qp/TW8jKdboJSIZVUd1KGKSeAqiozEy3dknnkuAQo7HkpoxIp3XgDSN3CKG/QPHK9LUlSaQeB5GU2Wa1+YdOTbgBaSnsnwjEpSQPM8UHZDRikUXqZyjwU5B0hrH7ekl/Q5u+xDZ+aP4i6i8lBPUsJ4106KZ2UAqs2GNNzlo+ytBQWmXmMEsoznZ98D7bMh7lA5GO8Gpuy6m+/SKFnWWdlb2nBhBBCCCGEEEIIIYS0Cz+WEUIIIYQQQgghhBDSCj+WEUIIIYQQQgghhBDSCj3LcogodN8jq1tE2Pt6YXg9aWx+XdKawLqzucVsKKgPlFcZo0Bee948M05aJEyY4IaHVYVTpkA+XMoQyfYMw7bVSLeXSCBke9SMMndiDlKu5HPce12/3ozpW54Z/5+w6juMfEYMd/O49tpg7cLWT/x6Dnrl1x4VFf7SDaoINr619BvgHoiwzdPHht/z0u1NFfbcKcdmwOz2fv09bYQ13wZpn1H4jYXxLuGVX9BrB83DL1GPg9b3ljA8ymz1M3GimVh6H+qXNGlY6tOzLBK/q5DSduSclAjoi5XJ91m/BH5HkwPva6+ZcbJtqfYfs/n7eZVLePQB4fvEBZ2ToniGYc/Te49HWVvQs6wzsje3aEIIIYQQQgghhBBCDPixjBBCCCGEEEIIIYSQVijDzHKikPb4xViCK5fZA0lyvCDYyiyzr6tzw1qWVLRqpWdkNm6vbVvWvHSpWR9Llrjh4cPd8DDvHbJDK4tBwHpcscINy9Xz48aZ6Uo63pSCt3+pn1JbkUsZRN0ad3v3ykqLhEDLTGx1J64tt49PZem7vFx5uRkXtvQpDILKxKzll43LolsMQyIYhcTFVgezZ7vh2lo3PKhuoZmJlJnIwQIAiktSLlNY9xlEBphu/D7vdevc37XaWkovbflF3Q8jv7aU1AHm5Cy9E3Q/rBiUCIYhk4+6DdrGinTKTVPJP+r+ZVxbzXOvrnElayMLt5knyhcB+R6pbAmCvlN61om8LmC2yRTeaXy3mUZx36p+ZH0FfaePNe30Tizyt7WLdL4TBG6fso3o8UYixxvAfA/Qz1fMj0GtYSTpHsOiJux5OpvujZAw4McyQgghhBBCCCGEkJSJg55lnZPs/KdeQgghhBBCCCGEEEIyAD+WEUIIIYQQQgghhBDSCmWYWUAcTqT+OTLdlgbzHGkTEVv1tpmJ9AvQHiTSq0Ru06y2aJZZ2HZv1veZn++Ws6rKOx0mT/a+wPz5bliayiik/4zPnc1Twq9PxIwZ5vH557vhEHaCjxx9b9XV7n1LGyVdx2H4aEj7Cm09ZvN4k15h6DfAM52l+djLL/039I2L9ppOn6ww/DbCIogHT9Lvwg8pqJeRn+u2dU7UPkFnnulx7XVqrBODZIvyKJNjsPbaKikO8OwXLDCPRedoqRxsRMkyh+JP55PA+SuPHOk1NKCft+9Qrnm0WMuvvYDmznXD8+aZcbK+5MD7la+YyS75nzaTAcAgb5vBSAljrOhInkGw9aGwr51Kfn/+swhfssaMfOABNywHoFWrzHSnneaGS3vDL57lrK42DoO+ZxhpbS+L8ljFBXlXTyqjHHfXrzfjxo93w9q7NwvHplj9JvMH6S/34YduWI9F//63G37/fTPu0kvdsPYsk3/oyHc+hd82ko112hHkfcsmXsAvBIQA4McyQgghhBBCCCGEkIB0rg+pZDeUYRJCCCGEEEIIIYQQ0ooTj8czXQZfdO3aNb5zp2XrZA/22WcfnHrqqRGUKDxWrVqFqiqLVoz4YtUbL6Jqv76ZLoaVF1etRt/9BrWfMAUaPmnAFw74Qmj5vbjiRfStCLceZRmz6TkFeR5h1zcQTp1HUa4wiKI9+SGV+lj14ouo6tt+GVc1NKDqC23nGfZ9NqxejS8MCXesICar1jSgKkv6zLJly3DYYYdluhhZSTbNGekk6PtCtrwT2MqR68807LEjlTrOxrk+ijaSTgKXP8fn6XTOgX/5y1+WxePxUWm5WAZwnD5x4LT2E2Y9f+7UzykIOfOxbNSoUfGlS5dmuhiRcN555+G2227LdDFynnGHDMTC2yZluhhWBp79ICb9JtyPt0uvWYplLywLLb+B1QMx6dfh1qMsYzY9pyDPI+z6BsKp8yjKFQZRtCc/pFIf4wYOxMJJ7Zdx3NKlWLis7TzDvs+lVzyIZXdk9z/05DrjLlqKhYuyo8+MGDECb7zxRqaLkZVk05yRToK+L2TLO4GtHLn+TMMeO1Kp42yc66NoI+kkcPlzfJ5O5xzoOE6n/gjDj2WdF3qWEUIIIYQQQgghhKRMHEBzpgtBIoCeZYQQQgghhBBCCCGEtMKPZYQQQgghhBBCCCGEtMKPZYQQQgghhBBCCCGEtELPsr2IBQsW4Oyzz8b+++8PAHjkkUfQs2dPAMD111+PBx98EHl5eZgwYQJ69eqFhx9+GHV1dejZsyd69eqFq6++GrFYDCeddBI+/fRTFBQUoK6uDmPGjMGIESPQ3NyMP/7xj7jooosAAC+//DIOOeQQ7L///vjrX/+asftui38vWYuf/99LiMfj2KdnIZqaW7B+cyOKi7qgpHsX/ObCMaga2BMz/3cpHl5Qh9IeXTF0YAlu/58vAgC+cunjeOblj/HArydgwuEVgcsRj8fx5LVPYtvGbei5b0988XtfxD+u+Ac2fbAJp954KnoO2P18Hr/mcXz8+seY8OMJqKgJfr2oyrhz20488asn0NLUgoKiAhx76bEoKCoIdL2OPJutn+/ElB89gV1NLSjpXoB7f3EsenRvuxzxeBwb12zF3EvnWuv+H5f/A47jwMlz8KVLvxS4HttD1/NhXz0MC25cAADoXtYdx1xyDGJ5sYy2hSjwc99NO5pCa1/pwG+/BoAN727AQ5c8hHMfPhexvOz896uOjpdHn7e7D+XnObj3F19Cn97dMnxHdmxz5QEHHID+/fsD2G3Kf8stt6CyshI//elP8c1vfhMLFizAU089hWuuuQY9e/bEYYcdhng8jqOOOgpXXXUVunTpkvF72Nvmey+y5T3Ai3g8jid+/UTG3w/8lKOtd4AoSNf7QTqJx+PYuHpj4l2kvbl/UEX27b6o24jfeTxb8NvXwnofzNY5Ncq5b++AnmWdkex8MyeRMX36dCxYsAALFixIDIBbtmzBvHnzsGjRIixcuBAXXXQRLrroIixYsAAzZszADTfcgAULFuCLX/wiHnroIZx22mn497//ncjzuOOOw9NPP41f/epXuOuuuxL5H3TQQViwYEHWvThvqG/Ez//vJcy74Xg8e9vJuO7Cw7FzVwtmX30Mnrr5RPzivFH4xjXPYM9OsTdcNBbP3HoSAGDFu5sAALdePh4Xn1Hd4bJsqtuEgqICTLl+Chq3NqJxSyO+/JMvY/CRg410478zHtUndfx6UZUxlh/DsT84FidfezL2G7Mf3v7P24Gu1dFn0yU/htlXH4tnbzsZXzl6P8x61Lscr63aBCfPabfuJ18zGSf9+iQMO2ZY4Pvyg67n/IJ8HH/l8Tj52pPRo28PfLjsQwCZbQtR4Oe+w2pf6cJvvwaA1x99HWVDyjJQSn+EMV7++0+T8cytJ+GsScNwp6VPZhNtzZUAUF5envj9lltuSfw2e/bspDwOOugg/Oc//8HTTz+NLl264E9/+lPayg9wvreRTe8BXuza0ZwV7we7duxK2zuAjXS+H6ST1157zXgXycW5X7eRXJvH/bRxIJz3wWyfUzvD3EdImPBjGUFeXh7WrVuHV155BQDQq1cvz7Rvv/02rrrqKsydOzcprr6+PqIShsuj/12N6ScMTfyL4rBBpehfVpSI/8Lg3th/QA+sXtdgnPdZw85EWKbvCDs+34Hu+3RH084mNNY3omuPrijqlZx3Ue9wrhcEP2XML8hPlDGWF4MTcwJdq6PPprBrfiJ9fl4MeZZybN66A3n5sXbrPpa/e5hs2tmEXoO8+0ZHaaueuxZ33V0GUaeZbAtR4Oe+w2pfvsrT3IxTn3gChz/8MG55/XV885lnUs/DZ7/etHoTupd1R5du6VltFIQwxssurX1o+44mfGFwdH0oU3Tt2hVHHXUUnnzySc80V1xxBR577LE0lqpt9rb53otseg/wIt4Sz4r3g3hz++VIxxidzveDdLJ582bk5efl9NzfVhvJ5DyeKn7aOBDO+2BnmlNzae4jJCj8WLaXcdddd6G2thbnnHNO4rfu3bvjpptuwmWXXYZhw4a1+WIMAC+99BJGjRqFgQMH4pNPPkFLSwsA4Mknn8To0aPxne98B9///vfTcRsd4uMN29B/H/tLx4Cy7li3cTsA4Ic3LUbllHvQtSAP1UN6h1uY3f9whPu/cz8KigvgONnz8pAghTLu2r4Lbz7+JqqOrgp0qbCeTcO2XfjL3DfxteO9yxH3eV8N6xsw97K5eP3R19F7v5Cfv1Ggtsvz+cbPsXb5WlQckvuSyzZJ4b472r788OD77+Ow8nIs+spXcP2rr+KLrbKDlPDZtl575DVUT87OlQJ7CKNPrl7XgCO+ORc3//11HFQVYR8KkbbmSgBYv349amtrUVtbi5///OeJ37/73e8m/rW9LQoKCrBr167IytsWnO+9yar3AA/8zlGRl6N1QEvHO4CNdL4fpJM9K4hyee73aiOZmsdTxW8bD+N9MNvn1M4w9xESJvxYtpexZ3ntb37zm8SgBwDHH388nnjiCSxatAi/+MUv2jz3oYcewr///W9MnDgRb731Fp5//nkAu2UZS5YswfTp07FixYp03Upg+pcV4aMNn1vTrF3/eeJfem64aCxeu/s0fLppOxp3NEVSpq/d/jXsO3JfvPnEm5HkHwbtlTEej+OZPzyD0WeOTvyLYqqE8Wzi8Ti+cc0z+OUFo1Hao/1ytHdfxeXFmPLbKTjsa4fh1bmvpnhHqSPL07yrGQtuXICjLzw6a/2swqK9+w6jffnhg61bUbPPPsiLxfCFXr1wfEXwP1Rsbeuzjz5DQVEBCksKO1LcyAmjTw7qV4xF/zcFV3/rMFw/O/o+FAZec6WUovzsZz9LpO/fvz969OiBlStXtpnfzp070+ZXtgfO995k43uAF9nyfpCOdwAbmXg/SCedYe7Plnk8KOl4H8z2ObUzzH2ZIY7dnmW5/h/R5M4ITEJFDnrbt2/H2rVrAQAlJSWeg9qSJUuwcOFCzJ8/Hw8//DAefvhhI/6yyy7Db3/728jL3lEmHTkQs+evwtbPdy9pXvXhZ/h4w7ZE/Jvvb8YH6xowsG/3xG89uhfg1GP2j8TjYtvm3dfuXtYdzbuyc6DyU8aldy9F3wP7Yt+D9w18nTCezc9uW4qjRvbFsaPaL0dzU4v1vlqaWhL/6lvQrQB5BXmB780Pup6fvflZjJg0IlL5Zzbg577DaF9+qOjeHR9t24aWeBwrNm/GrtYVNanSXp/ZVLcJ699Zj8euegyb6jbhuVue61C5o6KjfXKX6EMl3QvQrTDaPhQ2cq5sj+9///v4wx/+0Gbcb37zG0yePDnk0vljb57vvci29wAvsuX9IF3vADbS/X6QTpqbdtdpLs/92TSPB6G9Nh7W+2CuzKmdYe4jJAy4GybBjh07cNZZZ2HHjh1oaWnBxRdfnJTmrbfeQp8+fRLHw4cPx6JFi/C9730v8VtpaSkGDhyIl156CYceemg6ih6I8l7d8NNvHILJP3wc8XgcvUu6oqBLDF+/6j/oUVSAHkVd8H//c3TSMuyvHV+F4y/6F84/ZQS+f8N/MW/havzjuQ9w/tSt+PbUAwOX56NXPsIjP3oEsfwYvnTZl/DUdU9h3Zvr8NlHn+HgUw5G5dhK/Pcv/8XqJavxwYsfYOvErThwYvDrRVHG8qHleOWhV9B3eF/ULa7DkHFDMGLSiJSv09Fnc/L4/XDdXa/gyJF98fAzdTh9whBccKp3OXZs22W9r7IhZXj6d08DMSAvPw+1F9fijT+9kfJ9+UXW8+FnHY5l9yxDw/oGrPjnClSfVI39j9g/420hCtq77z7D+oTSvvxwyv7749xnn8WTa9ZgxrBh+NELL+CeL6W+61V7fWb/I/fH/kfu3nHqnz/5J8Z/Z3zYtxIKHe2Tk44chOkzn0bMAboW5GHWz2ozcyMhsUeKAgD77rsv7r777kTcqFGj0Lu3K4l57bXXcOyxxyZ2BPvxj3+c7uImsbfN915k23uAF0HeD6IgyDtA2KT7/SCd7Ph8h++5v2lrE/7yl7/g29/+dqaLbRBkHs8m2mvjbb4PrlyT8nVydU7t6Ny3Z+dkQnINZ8/X6Wxn1KhR8aVLl2a6GJFw3nnn4bbbbst0MXKecYcMxMLbJmW6GFYGnv0gJv3m1MTxR699hLWvrMXoM0cHznPpNUux7IVlYRQPADCweiAm/dqtx7DLmC3PacGyj3DyT/+Nr/51ekrnhV3fwO46r/laTYfqOYpyhYFuT5ow2ldbpFIf4wYOxMJJ7bfJcUuXYuGytvOU9xlKn7niQSy749T2E5LAjLtoKRYuyo4+M2LECLzxRnQf4nOZbJkz0k35aXMw8IghKY8jYc8F5fuXY+DhA0MtR64/0zDHjgULFuDkaSfjq3d81Vf6bJzro2gj6SRw+XN8nk7nHOg4zrJ4PD4qLRfLAI5TFgdOynQxQmBWp35OQeDKMkIIIYQQQgghhJCU2eNZRjob/FhGSAYZcNAADDhoQKaLYSUXyhiE2sMGoGd59mzF3lnruT064313xnsihKSXwu5dQl9xG6wchVlRjs5KbW0tevbtmelidIhcbyO5Xn5CSHTQ4J8QQgghhBBCCCGEkFb4sYwQQgghhBBCCCGEkFYowySEEEIIIYQQQggJBD3LOiNcWUYIIYQQQgghhBBCSCtOPB7PdBl8MWrUqPjSpUszXYxIKCsrw8aNGzNdDEIIIYRkgMLCQjQ2Nma6GIQQQkgULIvH46MyXYiocJx94sDETBcjBO7p1M8pCJRhZgEbN25Erny0JCRbmTVrFs455xy88847qKqqMuKamprQpUsXXHXVVZg5c2ZmCpgGamtr0dTUhIULF4aS34wZM7BgwQLU1dWFkh8hpG0cx+F7AOk02ObjPXRkfqmsrMS4ceMwe/bsdsvR0tKCb3zjGylfoy1mzpyJq6++Grt27UJ+fsf/hNpTT++//z4qKys7XkBCshTHcTJdBEICQRkmIYSQNvnpT3+Khx9+ONPFIIQQ0slIx/wya9Ys3HHHHZFeoyOceOKJWLRoEfr375/pohBCOkQcQEsn+I9ouLKMEEJImwwZMiTTRSCEENIJ4fwClJeXo7y8PNPFIIQQ4gFXlhFC9lref/99fP3rX0d5eTm6du2KmpqapH/pXrVqFaZPn479998f3bp1w+DBg3HBBRdg8+bNiTS/+c1vUFBQ0Kb34IgRIzBlyhTs2LED5eXluOSSS5LSzJo1C47jYOXKldbyvvLKK5g6dSr22WcfdOvWDQcccAB+/etfJ6V76qmncOihh6KoqAjV1dWYO3duyvcE7JbJSGlIXV0dHMfBbbfdhp/97Gfo378/SktLcdJJJ2HNmjXWshNCCCF70PMLALz33nuYNGkSioqK0KdPH/zwhz/EX/7yFziO06Zcc86cOTjwwAPRvXt3jBo1yrAgqK2txTPPPIP//ve/cBwHjuOgtrbWWqb169fjO9/5DgYOHIiuXbti4MCBmD59Onbs2GGke//993HiiSeiuLgY++23H37+85+jpcVdldHY2IhLLrkE1dXVKC4uRr9+/XDSSSclzfF75n55b5WVlTjzzDOt90YIISQ98GMZIaRT0dzcjKamJuO/5ubk7Zw//PBDjBkzBq+88gp+//vf4x//+AcOPfRQnHrqqfjHP/6RSPfRRx+hoqICN954Ix5//HH87Gc/w7///W9MmjQpkebMM89Ec3Mz7rvvPuMay5Ytw5tvvonp06eja9euOOecc3DnnXcmGXnfdttt+OIXv4jhw4d73teLL76II444Au+++y5+//vf49FHH8UPfvCDpI9U7777Li666CL84Ac/wEMPPYT+/fvjtNNOw6pVq1K6Jxu//vWvsWrVKtxxxx246aabsGjRInz961/3dS4hhBCi2blzJ4477ji88soruOWWWzBr1iy8//77+OUvf9lm+ueeew433HADfvGLX+C+++5Dc3MzJk+ejPr6egDALbfcgkMOOQQjR47EokWLsGjRItxyyy2e19+8eTOOPPJI3HffffjBD36Axx57DL/5zW+wa9cu7Ny500g7depUHHvssZg7dy6mTJmCq666CnfeeWcifseOHdi6dSuuvPJKPProo/jzn/+MxsZGjB07FuvWrWu3Ltq7N0IIIemBMkxCSKfC9sFJMnPmTMTjcTzzzDPYZ599AADHH388PvzwQ/zsZz/DySefDAA4+uijcfTRRyfOO/LII1FVVYXx48fj5ZdfxiGHHIIBAwbg2GOPxV133YXvfOc7ibR33XUXevXqhcmTJwMALrjgAtxwww34+9//junTpwMAXn31VSxevBj33nuvtbyXXnop9tlnHyxevBhFRUUAgGOPPTYp3YYNG/Dss89i6NChAIBDDz0U/fv3x/3334+f/OQnvu/Jxn777Yd77rkncbx+/Xpcdtll+OijjzBgwADruYQQQohm1qxZeO+99/DCCy/g8MMPBwCccMIJqKmpwerVq5PSb9myBcuXL0evXr0AAP369cPo0aPx2GOP4Wtf+xpGjBiBkpISNDU1YezYse1e//e//z3ee+89LF261JgDv/rVryal/eEPf4hzzjkHADBhwgT85z//wb333pv4rWfPnrj99tsT6Zubm3H88cejb9++uPfee9tcYZ7KvRFCspHkf5gnuQ9XlhFCOhUPP/wwlixZYvy3ePHipHTz58/HpEmT0LNnT2MV2vHHH49XXnkFW7ZsAbD7X7t/9atfYfjw4ejWrRu6dOmC8ePHAwDeeuutRH7Tp0/H4sWL8c477wDYvQPnnDlz8P/+3/9D165dAQD7778/jj/+eNx2222J82677TaUl5fjlFNO8bynbdu24b///S++/vWvJz6UeTF06NDEhzIA6NOnD/r06WP8seH3nrw48cQTjeODDjoIANr8g4YQQghpj8WLF2PQoEGJD2XA7h30Tj311DbTH3HEEYmPSUDH56EnnngCo0ePbvcfi4DkObC6ujrpuvfffz/GjBmD0tJS5Ofno3v37mhoaPA1x4Z9b4QQQoLBj2WEkE5FdXU1Ro0aZfx32GGHJaX79NNP8be//Q1dunQx/rvssssAIOE/dsUVV2DmzJk488wz8eijj+LFF1/EQw89BACGnPLUU09F9+7dE1vZP/HEE/jkk08SK8j28J3vfAf//e9/sWLFCnz++eeYPXs2zjnnHBQUFHje0+bNm9HS0oKKiop27793795Jv3Xt2tUoq9978nuNPR8D/ZxLCCGEaD7++GP06dMn6fe+ffu2mT7seWjjxo2+5liva8vr/vOf/8Tpp5+OAw88EPfccw9eeOEFLFmyBOXl5ZxjCSEkh6AMkxCyV7LPPvtg/Pjx+PGPf9xm/B454Zw5c3DWWWfhyiuvTMQ1NDQkpe/evTumTp2Ku+++G1dffTVmz56NwYMH46ijjjLSTZo0CZWVlbjttttw8MEHY+vWrfj2t79tLWuvXr0Qi8Wwdu3aVG+zTfzeEyGEEJIO+vfvjzfeeCPp908++SQt1y8rKwt1jq2qqsKsWbMSv+3atQubNm0KJX9CCCHpgSvLCCF7JRMnTsSrr76KL3zhC0kr0UaNGpX4l9xt27ahS5cuxrl//etf28xz+vTpePfdd/H444/jkUceSVpVBgCxWAznnXce7rrrLtx8882YMGEChgwZYi1rUVERxo0bh9mzZ2P79u0B79gllXsihBBCombs2LFYvXo1XnzxxcRv8XgcDz74YOA8u3bt6nvO/PKXv4wXX3wRr7zySuDr7WHbtm3IzzfXI9x1111tbjZECOkMxLHbsyzX/yMariz7/+3dfbRWVZ3A8e9P0zQlSCVIC1DxDUQzQaVJUQZnmCRHydQYTUotK3GJNGnKMtJco2uRTVAOzphpzUjqRDr0QvaGFeo4YCIokiO+jxkala+o9Zs/zrnew+Pz3PvcF3iu+v2sdVb7nL3P3vvsu1zcfne/SHpDuuCCCzjggAM45JBDOP300xk2bBjr1q1j5cqVrFmzhiuvvBIogmpXX301o0aNYvjw4SxYsIBbbrmlbp0TJkxgxx135OSTT+a5557jhBNOqFvu5JNPZtasWSxfvrzp/yMwe/Zsxo0bx9ixY5kxYwbvfOc7WbNmDXfeeSdz587t0rd35ZskSeqORYsWMXjw4A2e9e/fn8MPP/xVZadOncoll1zC5MmTueiiixg4cCBXXHEF69atA4o/NHXViBEjuOyyy7j22mvZdddd6devH3vssUfdstOnT+eaa65hwoQJzJw5k1GjRvHkk09y4403Mm/ePPr169d0uxMnTuSGG25g+vTpTJo0iWXLljFnzhwGDBjQ5W+QJLWOwTJJb0hDhgxh6dKlzJo1i3PPPZe1a9ey/fbbs/fee3PSSSe9Um7u3LlkJueddx5QLKOcP3/+BpsQt9lss82YMmUKs2fPZuzYsQwfPrxu2wMHDmTcuHGsWLHilVM3OzNmzBiWLFnC+eefz7Rp01i/fj1Dhw595fStrujKN0mS1B3Tpk171bORI0eycuXKVz3fcsstuemmm5g2bRqnnXYa2267LVOmTOHAAw/knHPOoX///l1u/+yzz2b16tWccsopPPPMM4wbN47FixfXLTtgwACWLFnCzJkzufjii3nqqacYNGgQ48eP73BP0XpOPfVUHnnkEa688kouv/xyxowZw8KFCzn66KO7/A2SpNaJzGx1H5oyevToXLp0aau7sVFEBK+Vn4Oknlu3bh1DhgzhzDPP5MILL2x1dyS1mL8HSPVNmjSJVatWcf/997e6K5K6KSKWZeboVvdjY4kYkHBoq7vRC258Xf+cuuM1EyyLiLXAQ63uhyT1wJuArYC3A/2BlcBLLe2RJEl9wyCKjXPWU+yrvF15PQysbWG/JPXM0Mwc2OpObCwGy16/XjPLMF/P/4FJemOIiKnANyh+8f94Zv5na3skSVLfEBGfBk4HhgCbA6uBz2bm11vaMUnSG9JrZmaZJEmSJElSX+HMstev18zMMkmSJEmSpL7lL63ugDaCrp/DLEmSJEmSJL1OGSyTJEm9KiKuiogsr0N7ob5DK/Vd1eMOSpIkSR0wWCZJ0iYWEQ9Wgj+118sR8fuIWBER34yIoyLCbRMkSZKkTcRfviVJ6ls2B95WXnsDJwJ3RcSUzLy7pT2TJElSxR9/BAt3aHUvesGTre5AX2OwTJKk1poH3F+5fxMwmOJopX3LZ/sAP42I0Zn56KbtniRJkurJzImt7oM2DoNlkiS11rWZubheRkRMAa6m+Pd6EHAh8NFN17XuycypwNQWd0OSJEnqFvcskySpj8rMa4CvVB59MCK2aFV/JEmSpDcCg2WSJPVt362k+wG7dlQ4Ig6LiHkRcU9ErIuI9RHxWEQsjIiPNXNYQERsHhH/EBELIuKBiHg2Il6IiEcj4o6IuC4iTo2IoQ3eb/o0zIjYKiKmR8St5cEGz0bEb8pv2KezvlbqWVxpc1gT5dvKPthE2YiIv4+IqyPivoj4U0Q8HxEPRcT1EXFMREQT9WwdEZ+IiB+UY/l8RDxX1rO0PNDhxIgY1NxXS5IkaWNwGaYkSX3b72rut6tXKCLeDvw7cHid7B3LaxLw2Yg4KjPvbVDPTsD3gHfXyd6pvPYDPgQsA0Z3/gn1RcRuwPeB3Wqydiuvj0XEWcDK7rbRUxExHPg2sH+d7CHldQxwW0RMzszHG9QzkmJch3VQz/4UBzp8p6xTkiRJLWCwTJKkvq12ltGztQXKANevaA/EPAMsAu4BXqAIxBwBvAvYA1gSEftn5oM19WwG3EB7oOzpsp57y3a3KdsYDezVg28iIgYDP6cIvgG8SBFMWg5sCRwMHALMBb7Uk7Z60Md9gJ8B25ePnqIYj/uAl4FdgCOBHYCDgF+V4/qHmnq2BX5IMf5QnDi1iOJgh+dpnzF4ILDzxvsiSZIkNcNgmSRJfdsHK+kXgNXVzDLANZ/2QNk3gTMy84815bYA/gmYQTE77VsUAamqQ2mfKbYUmJiZT9XrVETsAozv2qds4Ku0B8oeBN6fmatq2vgAcB1wVg/a6ZaI2Aa4nvZA2SXArMx8oU65fwM+TBE8mwN8pKa6Y2kPlH0fODYzn2vQ7j7AyN74BkmSJHWPe5ZJktRHRcSJwLTKo2trgzUUwbS2oNeCzDypNlAGkJkvZeZngAXlo/dFRG2wbL9K+uJGgbKyvjWZeUVTH1IjIkbQHgR8GTiyNlBWtrGQ4vs73Q9sI/gUsHuZvjQzz6kz9mTmsxRLJ28vH02ps2dadVw/3yhQVtZ3V2bO7363JUmS1FPOLJMkqbWOi4jqvl9volh6OR6obnB/L3B2nfc/VUmf00R7XwIml+kjgV9W8javpLduoq7uOqGSnp+ZKzoo+3WK7+rwYIONoG1cnwe+0FHBzPxzRHwF+A+KMTwC+FqlyKYaV0mSJPUCg2WSJLXWaZ3k/5liw/czMvOJakZEbA28t7x9IDPva6K9Oyvp2s35l1fSX4yIVZm5rIk6u+qvKunvNiwFZGZGxALgHzdCP+oql5gOK29vy8w/NfHanZV0R+M6JyKOa/JnJUmSpBZwGaYkSX3bzcCM2kBZaU+KzfABdo6I7OxiwwMCBtbU92Pg12V6KLA0IpZHxOyImBwRO/bSN+1eSd/ZRPnlnRfpVftW0oc1Oa53V96pHddrgEfL9H7A6oi4LSIuiohJEbE9kiRJ6jMMlkmS1FqHZWZkZlD8uzwYmAD8oMwfD9xSznaq1dMgyzbVm8z8C/B+4CeVx/tQHArwHeCxiFgVEbMiojYg1BVvq6Qb7otW8WQP2uqO3h7Xpyl+pneUj4Li5MtzgYXA2ohYFhEzIqJfD9uWJElSD7kMU5KkPiIzE3iivH4aEXMoNrh/F3BdRLw3M1+svFL9d3w10NUN9+sdBPBb4PCIGEtxiuM4ioBZ275bewKfB86KiJMys8NllL1kU2/wXx3X2ygChV3xSO2DzFxd7k03gWLPuEOAvSi+LYD3lNdnIuJDmfmr7nRckiRJPWewTJKkvmsGcCgwCtgfOAu4uJJfnZX1YmbO7q2GM/NW4FaAiHgrxd5oE4EpFMsM+wHXRsR+mXl3w4rqW0cxgw6KWVyd7QnWzEyvrKQ7DK5FxFs6qas6rmt7a1zLYOiPy4ty+eXBFLP5jqcY08HAwojYPTPX9ka7kiRJ6hqXYUqS1Edl5ksUAbM2n6tZ/ngfxQEAACMiorq8sTf78afMXJSZZwK7AP9dZm0BnNKNKn9TSe/bsFTXyjxTSW/bSdkhneTfW0mPjYiN8vtSZj6VmTdk5seB3YA1ZdYAiqCkJEmSWsBgmSRJfVhm/hhoW5L3VuCcSt4fgKXl7ebARzZBf54Bvlx5tGc3qrmlkj66o4IREZ2VKVUPQNi9YanC33aSvxL4bZneAfhAE+33SHmAw79WHnVnXCVJktQLDJZJktT3faGS/mREvKNyP7eSPr/BQQB1lYGonnq+G+98q5L+cESM6KDsVGB4E3XeUUlPblQoIvqz4Wy9VymXS3618ujSiNiuiT60tdGqcZUkSVIvMFgmSVIfl5k/oX021tbA5yrZ8yt52wE3R8SERnVFxFYRcVRE/JxiQ/lq3j9HxOyIGNnB+zsBMyuPftH8lxQy8x6g7WCALSj26NqjTltHAF9jw/3IGrmR9iWpx0fEUXXqewfwPYoDEzozB/jfMr0L8IuIeE+jwhHRLyJOiIg7qNljLSK+HRHnR8TOHbw/Ajij8qjL4ypJkqTeEcUfTyVJ0qYSEQ8CQ8vbwzJzcRPv/A3wo/J2PTA8Mx8t8wYBv6TY96rNCoqAy+MUfxzbHtgbOJD2Pb3GZGbbMk4i4irgpPL2fuB24AHgaYpA3J4Um/xvUSnz7nJpJg3qqft9ZeBqGdA2S249sBC4C9gSeB/F4QYAl1IcbgBwdWZOra2vrHMe8InKox9SnGYJMBKYBLwF+CLtAb+HMnNYg/r2An4ODKo8vp0iOPm7sp8DKU4LPQB4c1lmYGY+WalnMcWpogB3UyydfZhi9tgOFHuyHUb7HzFvBQ7OzLbgnyRJkjYhT8OUJOk1IDNviojbgIMogjLnAZ8s856IiDHAPOA4itMgR5VXI49RnEpZ9WIlvWt5NfI/wDG1gbJmZebjEXEYxUyv4RTfdEx5tXmZIki2gvZgWUdmUAQMx5f3f1deVV8GzmfD2XGN+rgqIvYHvgEcXj4+oLwauY8i8FdVHdeR5dXIImCKgTJJkqTWcWaZJEmbWHdmlpXvTaSYLQXwErB7Zj5YU2YkcCLFTKadKWaEvQz8nuIUytspZqjdnJl/qXl3M4pg3F+X/7sHxayqtwDPAY9SzAa7HvivbPBLRDMzyypltwI+DRxLsTH/m4H/o5jRdVlm/joiDi3voYOZZWV9mwMfBU6gmPG1DcVm/bcC/5KZN5fl2vrecGZZTb0HAccDh1As4xxAEQRbS3F65q3ADzPz9jrvblG+N54i0DacYly3pDjF82GKE0bnZ+bPOuuLJEmSNi6DZZIkSZIkSVLJDf4lSZIkSZKkksEySZIkSZIkqWSwTJIkSZIkSSoZLJMkSZIkSZJKBsskSZIkSZKkksEySZIkSZIkqWSwTJIkSZIkSSoZLJMkSZIkSZJKBsskSZIkSZKkksEySZIkSZIkqWSwTJIkSZIkSSoZLJMkSZIkSZJK/w+hL0mgl1OlvgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAH5CAYAAAA1PcIyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6Q0lEQVR4nO3deZzkd13n8den7upjZnpmeobJJGQCCUcCkoQRWUA2CkoUJLiKhl00HizuLiqw7mJ0EXAVYV100VXUiEBckUO5IrgghktBwSGJkBCyiQlJJsfMJJmz7+767h+/X3d6erpn+qjqX3X36/l49KO6fvWrqk/95uh3f89IKSFJkqTuUSq6AEmSJJ3MgCZJktRlDGiSJEldxoAmSZLUZQxokiRJXcaAJkmS1GUMaJLWjIhIEfG5NrzO5yKiq9YYioifyD/fTxRdi6TiGdAkLVoeIJby9RNF1yxJa1Gl6AIkrSm/Os+x1wCbgd8Bjsx57KY2v/+TgeE2vM6PAz1teB1J6ggDmqRFSym9ae6xvJVsM/D2lNK3Ovz+32zT69zTjteRpE6xi1NSR0yP84qIWkS8ISJui4ixiHhP/vjmiPivEfGZiNgfEeMRcSgirouIZy7wmqeMQYuIN+XHL4uIH46Ir0TEcEQ8EhHvj4jdC9U259hl+eu8KSIujohPRMSR/LU+HxHPWqCmXRHx7og4GBEjEXFTRFw1+/WWeQlnv8fTI+JD+XuMRcTdEfGOiNg1z7k7I+Jt+fUeyj/DbRHxnoh43KzzIq/zS/l1H42IeyPiUxHxoyutWdLK2IImqdM+BHw78H+BjwIH8+NPBt4MfAH4BHAYeCzwYuD7IuIHUkqfXML7/Kf8udcBnwe+A/hR4GkRcXFKaWyRr7MXeB3wD8A785p+CLg+f53bpk+MiB3Al4A9+ef4EvAY4B3A3yyh9gVFxIvIrmEAfwncDTwd+I/AFRHx7OmWy4joAb4IPB74NPBX+fPOBa7In39n/tJvBn4JuAv4IHAU2EX2Z/VS4APtqF/S8hjQJHXaucBTUkoPzTl+K3DW3OMRcTbwFeB/AUsJaJcD355S+vqs1/pz4GVk4eSDi3ydFwI/mVJ6z6zX+RngD4FXkwXBaW8hC2e/mVL6xVnnvz3/DCsSEX3Ae8j+r74spfR3sx77ReCtwDXA9+aHn0cWzt6eUnrtnNeqAfVZh34GuI/sz2Z4zrnbV1q7pJWxi1NSp/3KPOGMlNLRBY7vJ2vpeVJEPHYJ7/O7s8NZ7o/z22cs4XW+ODuc5d4FTM5+nTzwvIys5enXZ5+cUvpn4E+X8J4LuQLYBnxgdjjL/RbwLeB75rlOI3NfKKU0nlI6PufwBDA1z7mn/LlIWl0GNEmdtmBLUkQ8OyI+mI99GptengP4ufyUU8aPnca+eY7dm98OrOR1UkoTwIE5r/NEoAl8bZ7gA/D3S3jPhVya335mnpomybpVAS7Jbz9P1ip2dUR8MiJ+Ph+/Vp7ntd9L1vp3S0S8JSIuj4jNbahZUhvYxSmp0x6c72BE/CBZS9ko2XipfwGGgBZwGfCvOblL7kyOzHNsMr+dL6As5XWmX2v260yHmQMLnL/Q8aWYfo8HFnh8+vgWgJTSsXyCxa+Sjcd7Qf74QxHxDuDX87AJ8Fqya/5TwNX512RE/DXwCymlO9pQv6RlMqBJ6qiU0kIr9v8aMA7sTSndOvuBiPgjsoDWzY7ltzsXeHyh40txNL99zAKP75pz3nQX8U9HRAAXAt8NvAp4A1mvya/k502RrV33O/lkh+cAV5JNELgoIi5awsQKSW1mF6ekopwPfGOecFYiCwvd7ptkY72+LSL653m8HZ/hxvz2srkPRERl1nvcMPfxlLklpfS/ge/JD79kvjdJKR1MKX04pfQjZN2pjweesrLSJa2EAU1SUb4FXBARZ00fyFt93kjW8tPVUkrjZEtRbAZeP/uxiHga2W4FK/VR4BHgZfOsDfca4HHA304vvBsRT4mIPfO8znRr3nB+Xj0inpdf79l1V4Gts8+VVAy7OCUV5X+RLV1xY0R8iGxG4bPJwtlfAT9QYG2LdTVZF+LrIuI7yNZB2wX8CPDXZC1WreW+eErpRET8FPAXwOcj4i+Ae8jWQftesvF9PzPrKc8HfjsivkTWwncQOJtsNmgL+J/5eU3gb4FvRcSXydZWa5C1tD0ZuG5uy6ak1WVAk1SIlNIfRcQYWUvQVWTdhX8H/CTZwrBdH9BSSgfyHQZ+A/h+ssVxbyNbK22ILKAdW/AFFvceH4uIZwO/TDbofzNZMPtD4NdSSvfPOv1TwNuB55KFsk1kEwk+Dfx2SulL+XlDwC8C3wU8K6/zONmkgf9ItqyIpALFwuN3JUnLFRFvJgtVl6eUPlV0PZLWFgOaJK1ARJw1pxWLiHgqWXfnOLA7pTRaSHGS1iy7OCVpZfZFxB3AzWRdhxeQbRdVAv6D4UzSctiCJkkrEBFvJBvDtQfoJ1vo9h+Bt6WUPldUXZLWNgOaJElSl3EdNEmSpC6zrsagbd++Pe3Zs6foMiRJks7oq1/96kMppcH5HltXAW3Pnj3s27ev6DIkSZLOKCLuXugxuzglSZK6jAFNkiSpyxjQJEmSuowBTZIkqcsY0CRJkrqMAU2SJKnLGNAkSZK6jAFNkiSpyxjQJEmSuowBTZIkqcsY0CRJkrqMAU2SJKnLGNAkSZK6jAFNkiSpyxjQJEmSuowBTZIkqcsY0JYgpcSx0QlGJ6aKLkWSJK1jBrQlODoywbe96W9431fuKboUSZK0jhnQlqBRLQMwYguaJEnqIAPaEtQr2eUaHTegSZKkzjGgLUFE0KyWbUGTJEkdZUBbombNgCZJkjrLgLZEzWqZ0YlW0WVIkqR1zIC2RI1qyRY0SZLUUasW0CLiXRFxMCJunnVsa0R8OiJuz28HZj32SxFxR0TcFhEvWK06z6RRLTtJQJIkddRqtqC9B7h8zrGrgetTShcA1+f3iYgLgSuBi/LnvCMiyqtX6sKcJCBJkjpt1QJaSukLwCNzDl8BXJt/fy3wklnH359SGksp3QXcATxjNeo8EycJSJKkTit6DNrOlNIDAPntjvz4buDeWeftz48VrlEtM2IXpyRJ6qCiA9pCYp5jad4TI14ZEfsiYt+hQ4c6XFbWxTk26SxOSZLUOUUHtAMRsQsgvz2YH98PnDPrvLOB++d7gZTSNSmlvSmlvYODgx0tFvJZnLagSZKkDio6oF0HXJV/fxXwsVnHr4yIekScB1wAfKWA+k7hJAFJktRpldV6o4h4H3AZsD0i9gNvBN4KfDAifhq4B3gpQErploj4IPANYBJ4VUqpK1JRw0kCkiSpw1YtoKWUXrbAQ89b4Pw3A2/uXEXL06yWGZ9sMdVKlEvzDZWTJElamaK7ONecZjVbjm1s0lY0SZLUGQa0JWrWsoDmRAFJktQpBrQlalTygOY4NEmS1CEGtCVq5C1oowY0SZLUIQa0JZoegzYy7mK1kiSpMwxoSzQd0EadJCBJkjrEgLZEzVp2yZwkIEmSOsWAtkR1JwlIkqQOM6AtUdNJApIkqcMMaEv06CQBA5okSeoMA9oSzQQ0W9AkSVKHGNCW6NEuTpfZkCRJnWFAW6J6JZ/FaQuaJEnqEAPaEkUEjWrJSQKSJKljDGjL0KyWnSQgSZI6xoC2DM1q2S5OSZLUMQa0ZWjUynZxSpKkjjGgLUOzakCTJEmdY0BbhoZdnJIkqYMMaMvgJAFJktRJBrRlyFrQXKhWkiR1hgFtGZpOEpAkSR1kQFuGpgvVSpKkDjKgLYProEmSpE4yoC1Dw0kCkiSpgwxoy9ColhmbbNFqpaJLkSRJ65ABbRmatTIAo5O2okmSpPYzoC1Ds5oHNJfakCRJHWBAW4bpgOZEAUmS1AkGtGWoV7PL5kQBSZLUCQa0ZXi0i9OAJkmS2s+AtgzTkwTs4pQkSZ1gQFsGW9AkSVInGdCWoTE9ScAxaJIkqQMMaMtgF6ckSeokA9oyNOzilCRJHWRAW4amXZySJKmDDGjL8OhCte4kIEmS2s+Atgz1SnbZ7OKUJEmdYEBbhlIpaFRLBjRJktQRBrRlalTLzuKUJEkdYUBbpma17CQBSZLUEQa0ZWragiZJkjrEgLZMjWqZUWdxSpKkDjCgLVOzVnaSgCRJ6ggD2jLZxSlJkjrFgLZMjWrJSQKSJKkjDGjLlI1BM6BJkqT2M6AtU9OAJkmSOsSAtkzNmmPQJElSZxjQlslJApIkqVMMaMtUz9dBa7VS0aVIkqR1xoC2TM1qGYCxSRerlSRJ7WVAW6ZmNbt0dnNKkqR2M6AtU7OWtaA5k1OSJLWbAW2ZGnkXpy1okiSp3QxoyzQT0NxNQJIktZkBbZmmJwnYxSlJktrNgLZM02PQ7OKUJEntZkBbpkdb0FxmQ5IktZcBbZmcJCBJkjrFgLZMM8tsOElAkiS1mQFtmRoVF6qVJEmdYUBbJicJSJKkTjGgLVOj4jpokiSpMwxoy1QqBfVKidFJA5okSWovA9oKNGtlJwlIkqS2M6CtQKNSdgyaJElqOwPaCjRrZUZcqFaSJLWZAW0FGtWykwQkSVLbdUVAi4jXRsQtEXFzRLwvIhoRsTUiPh0Rt+e3A0XXOVezWmLMSQKSJKnNCg9oEbEb+Hlgb0rpKUAZuBK4Grg+pXQBcH1+v6s0a7agSZKk9is8oOUqQDMiKkAPcD9wBXBt/vi1wEuKKW1hzaqTBCRJUvsVHtBSSvcBbwPuAR4AjqaU/gbYmVJ6ID/nAWDHfM+PiFdGxL6I2Hfo0KHVKhuAugFNkiR1QOEBLR9bdgVwHnAW0BsRL1/s81NK16SU9qaU9g4ODnaqzHk1q66DJkmS2q/wgAY8H7grpXQopTQBfBh4FnAgInYB5LcHC6xxXs1qmdFJl9mQJEnt1Q0B7R7gmRHRExEBPA+4FbgOuCo/5yrgYwXVtyAnCUiSpE6oFF1ASunLEfGXwA3AJHAjcA3QB3wwIn6aLMS9tLgq59fIx6CllMiypSRJ0soVHtAAUkpvBN445/AYWWta12pUswbIsckWjWq54GokSdJ60Q1dnGtWMw9ldnNKkqR2MqCtwExAc6kNSZLURga0FWjWsoA2akCTJEltZEBbgYYtaJIkqQMMaCsw3cVpC5okSWonA9oKzLSgjbtYrSRJah8D2go4SUCSJHWCAW0FmrXs8tnFKUmS2smAtgJOEpAkSZ1gQFsBJwlIkqROMKCtQMOdBCRJUgcY0FbALk5JktQJBrQVKJeCWqVkQJMkSW1lQFuhZrXM2ITroEmSpPYxoK1Qs1p2DJokSWorA9oKNWtluzglSVJbGdBWqO4YNEmS1GYGtBVq1squgyZJktrKgLZCzaoBTZIktZcBbYWaVcegSZKk9qoUXcBa16iVOTYyyd/dfoiv7T/K1/Yf4d5HRvhP3/V4XvRtZxVdniRJWoMMaCvUWytzzyPD/NiffAWA87b3Ui4FP/vnN/Lg0VF++jnnEREFVylJktYSA9oK/fvvfBxP2NnPhbs2cdHuzWxuVhmdmOK1H7iJX//Erdx3ZITXv/BCyiVDmiRJWhwD2gpdsLOfC3b2n3SsUS3z+//2Un79E7fyri/exYNHR/lfP3rxzN6dkiRJp+MkgQ4plYI3/MCFvP6FT+aTtzzIK67dx1QrFV2WJElaAwxoHfaK73wcb/nBp/L3dzzE7/zt/yu6HEmStAYY0FbBlc94LD/89LP535+9gy/8v0NFlyNJkrqcAW2V/NoVT+GCHX289gM3ceDYaNHlSJKkLmZAWyXNWpl3/LtLGZmY4uf+/EYmp1pFlyRJkrqUszhX0fk7+vmNH3wqr/nATfzmp27jpU8/mwePjXLg2BgHjo0SAdv76mzvq7G9r87ZAz1s7a0VXbYkSVplBrRV9pJLdvPlux7mmi/cyTVfuPO051ZKwe++7BK+/6m7Vqk6SZLUDQxoBXjTiy/i2/dspVIusbO/zs5NDXZuapBIPHxinIdOjPHwiXH+8PP/ws+/70YqpeB7L3pM0WVLkqRVEimtn7W59u7dm/bt21d0GW1zfHSCH/uTr3DL/Uf5ox97Ot/9pJ1FlyRJktokIr6aUto732NOEuhi/Y0q1/7UM3jyrk38h/9zA593iQ5JkjYEA1qX29ys8qc/9QzO39HHK/90H/9458NFlyRJkjrMgLYGbOmp8Wev+A7OHmjy8++7kSPD40WXJEmSOsiAtkZs7a3xO1dewiND47zpuluKLkeSJHWQAW0Necruzfzsd5/PR2+6n0/e/EDR5UiSpA4xoK0xr/qu83nK7k38t4/czEMnxoouR5IkdYABbY2plkv89o9czPHRSV7/kZtZT8ukSJKkjAFtDXrCzn7+8/c+gU/e8iAfu+n+osuRJEltZkBbo/79dz6OSx+7hTd87GYetqtTkqR1xYC2RpVLwW/+8LcxPD7F//zUbUWXI0mS2siAtoadv6Ofn3jWHj6w716+tv9I0eVIkqQ2MaCtca9+/gVs663zputuodVywoAkSeuBAW2N629U+cXLn8gN9xzhIzfeV3Q5kiSpDQxo68APXXo2F5+zhbd+8pscH50ouhxJkrRCBrR1oFQKfvXFF3Ho+Bi/95k7ii5HkiStkAFtnXjaOVv4kb1n864v3sW/HDpRdDmSJGkFDGjryH99wZOolku88+/uLLoUSZK0Aga0dWSwv87lFz2Gj3/tAUYnpoouR5IkLZMBbZ35wUt3c3x0ks9882DRpUiSpGUyoK0zz3r8dnZuqvPhG1xyQ5KktcqAts6US8EVF+/mc7cd5JGh8aLLkSRJy2BAW4d+8JLdTLYSH//a/UWXIkmSlsGAtg49edcmnvSYfrs5JUlaowxo69S/uXQ3N917xDXRJElagwxo69QVF++mFPBR9+eUJGnNMaCtUzs3NXj2+dv5yI330WqlosuRJElLYEBbx37wkt3sPzzCvrsPF12KJElaAgPaOvaCix5Ds1rmIzfuL7oUSZK0BAa0day3XuF7L9rJJ29+kJTs5pQkaa0woK1zT929mcPDExwenii6FEmStEgGtHVuz7ZeAL718FDBlUiSpMUyoK1ze7ZnAe1uA5okSWuGAW2dO2drkwi466HhokuRJEmLZEBb5+qVMmdtbtqCJknSGmJA2wD2bO/hWw/bgiZJ0lphQNsA9mzrtQVNkqQ1pCsCWkRsiYi/jIhvRsStEfGvImJrRHw6Im7PbweKrnOt2rOtlyPDExwZHi+6FEmStAhdEdCA3wE+mVJ6EvA04FbgauD6lNIFwPX5fS3Dudt6AOzmlCRpjSg8oEXEJuC5wJ8ApJTGU0pHgCuAa/PTrgVeUkR964FLbUiStLYUHtCAxwGHgHdHxI0R8c6I6AV2ppQeAMhvdxRZ5Fr22K09RMC3XGpDkqQ1oRsCWgW4FPiDlNIlwBBL6M6MiFdGxL6I2Hfo0KFO1bimNapldm1quJuAJElrRDcEtP3A/pTSl/P7f0kW2A5ExC6A/PbgfE9OKV2TUtqbUto7ODi4KgWvRedu6zWgSZK0RhQe0FJKDwL3RsQT80PPA74BXAdclR+7CvhYAeWtG3u293K3kwQkSVoTKkUXkPs54L0RUQPuBH6SLDx+MCJ+GrgHeGmB9a15e7b18MjQOEdHJtjcrBZdjiRJOo2uCGgppZuAvfM89LxVLmXdOnfbozM5v+3sLcUWI0mSTqvwLk6tjj3bXQtNkqS1woC2QZy7NW9Be8iJApIkdTsD2gbRrJV5zKYGdzmTU5KkrmdA20DO3dbjTE5JktYAA9oGsmdbr9s9SZK0BhjQNpA923t56MQ4x0cnii5FkiSdhgFtA9mzLZvJaTenJEndzYC2gUyvheaWT5IkdTcD2gZyri1okiStCQa0DaS3XmFHf51vuRaaJEldzYC2wezZ1msXpyRJXc6AtsGcu63H7Z4kSepyBrQNZs/2Xg4dH2NobLLoUiRJ0gIMaBvMnnwmpxMFJEnqXga0DWZ6Jqfj0CRJ6l6LCmgR8aWI2DLr/lsiYuus+9sj4p4O1Kc2O3ugCcD9R0YKrkSSJC1ksS1ozwRqs+6/Ctgy634Z2N2mmtRBm5tVauUSh06MFV2KJElawHK7OKOtVWjVRASD/XUOHTegSZLUrRyDtgFtN6BJktTVFhvQUv4195jWoME+A5okSd2sssjzAviziJj+qd4A/jgiptdqqLe9MnXMYH+dG+85XHQZkiRpAYsNaNfOuf9n85zzpyusRatkR3+dR4bHmZhqUS3byy1JUrdZVEBLKf1kpwvR6hnsr5MSPDI0zs5NjaLLkSRJc6yo+SQiHhsRF0aEszrXkMH+rEf64DHHoUmS1I0Wu1Dtj0bEf5xz7A+Au4CvAzdHhOugrRHTAe3QidGCK5EkSfNZbAvazwGt6TsR8XzgZ4A3AC/NX+dX2l6dOmLHdEBzJqckSV1psZMEngh8edb9K4C/SSm9GSAiRoHfa3Nt6pDtfQY0SZK62WJb0PqAR2bdfxbwmVn3bwEe066i1FmNaplNjYoBTZKkLrXYgLYfuAggIjYBTwW+OOvxbcCJ9pamThrsr3PQgCZJUldabBfnXwC/GxFvAS4HHgD+cdbje4Fvtrk2ddCO/oYtaJIkdanFtqD9GvAPwG+RtZ69PKU0NevxlwGfaHNt6qDB/jqHThjQJEnqRotdqHYE+PHTPP5dbatIq2LQDdMlSepaiwpoEXHdIk5LKaUrVliPVslgf53h8SlOjE3SV19sT7ckSVoNi/3J/CLgbuBznStFq2n2WmgGNEmSustifzK/DXg58Fzg3cB7Ukr7O1aVOm5wVkA7b3tvwdVIkqTZFjVJIKX0OuAc4LVkMzZvj4j/GxE/HBHVThaozhh0NwFJkrrWojdLTylNpZSuSym9BDgP+Czw68B9EdHXofrUIYP5bgIHj7sfpyRJ3WbRAW2OXmAL2Q4DJ4DUroK0OgZ6alRKYQuaJEldaNEBLSKaEXFVRHwB+DpwLnBVSulxKaWhjlWojiiVgu19LrUhSVI3WuwyG9cAPwrcDvwJ8OKU0pEO1qVV4GK1kiR1p8XO4nwFcA/ZFk/fB3xfRJxyUkrpxe0rTZ022F/nwaOOQZMkqdssNqD9KY4zW3d29Nf5+n1Hiy5DkiTNsditnn6iw3WoAIP9dR4+McZUK1EundoiKkmSirHcWZxaBwb767QSPDI0XnQpkiRpFgPaBuZaaJIkdScD2ga2Y5O7CUiS1I0MaBvYYF8DMKBJktRtDGgb2Pb+GoBroUmS1GUMaBtYT61CX73CwWMGNEmSuokBbYPb4W4CkiR1HQPaBre93/04JUnqNga0DW6wv85DBjRJkrqKAW2D29Ff56ABTZKkrmJA2+AG++ucGJtkeHyy6FIkSVLOgLbBTe8m8NBxt3uSJKlbGNA2uMH+fDeBE273JElStzCgbXA7+rPdBFwLTZKk7mFA2+AebUEzoEmS1C0MaBvc1t4apXA/TkmSuokBbYMrl4JtfS5WK0lSNzGgKdvuyYAmSVLXMKCJQRerlSSpqxjQxEBPjaMjE0WXIUmScgY00Vsvc2LMnQQkSeoWBjTRV69yYtSAJklStzCgif5GhfGpFmOTU0WXIkmSMKAJ6KtXAGxFkySpSxjQNBPQhsZsQZMkqRsY0ERvHtCOjzmTU5KkbmBAE/0NuzglSeomXRPQIqIcETdGxMfz+1sj4tMRcXt+O1B0jevVzBg0l9qQJKkrdE1AA14N3Drr/tXA9SmlC4Dr8/vqgL6GAU2SpG7SFQEtIs4GXgi8c9bhK4Br8++vBV6yymVtGP22oEmS1FW6IqABbwdeB7RmHduZUnoAIL/dUUBdG0Kvy2xIktRVCg9oEfEi4GBK6avLfP4rI2JfROw7dOhQm6vbGHpqZSJsQZMkqVsUHtCAZwMvjohvAe8Hvjsi/gw4EBG7APLbg/M9OaV0TUppb0pp7+Dg4GrVvK5EBH31CsdtQZMkqSsUHtBSSr+UUjo7pbQHuBL4TErp5cB1wFX5aVcBHyuoxA2hv16xBU2SpC5ReEA7jbcC3xMRtwPfk99Xh/TWKwwZ0CRJ6gqVoguYLaX0OeBz+fcPA88rsp6NpK9hC5okSd2im1vQtIocgyZJUvcwoAnItnuyBU2SpO5gQBOQtaC5DpokSd3BgCbASQKSJHUTA5qAfJmN8UlarVR0KZIkbXgGNAHZLM6UYHhiquhSJEna8AxoAqCvXgXcj1OSpG5gQBOQtaABnBibKLgSSZJkQBMAffUyACfG7OKUJKloBjQBdnFKktRNDGgCsnXQwC5OSZK6gQFNQLaTAOB2T5IkdQEDmoDZLWgGNEmSimZAE5DtJAC4m4AkSV3AgCYAapUStUqJ4wY0SZIKZ0DTjH43TJckqSsY0DSjr1FxDJokSV3AgKYZfbagSZLUFQxomtFbtwVNkqRuYEDTjH4DmiRJXcGAphmOQZMkqTsY0DTDMWiSJHUHA5pm9NUrroMmSVIXMKBpRl+9wvhki/HJVtGlSJK0oRnQNKOv4XZPkiR1AwOaZrhhuiRJ3cGAphn9eQvacScKSJJUKAOaZvTagiZJUlcwoGnGdBenY9AkSSqWAU0zZro4DWiSJBXKgKYZffUqgIvVSpJUMAOaZkwvs3FibKLgSiRJ2tgMaJrRUy0DtqBJklQ0A5pmlEqR7cc5NlV0KZIkbWgGNJ0kC2h2cUqSVCQDmk7S16i4DpokSQUzoOkkffWKOwlIklQwA5pOknVxGtAkSSqSAU0n6atX3ElAkqSCGdB0kr5GxWU2JEkqmAFNJ+mrV9zqSZKkghnQdJLpMWgppaJLkSRpwzKg6SR9jQopwfC4i9VKklQUA5pO0lfP9uN0ooAkScUxoOkk/fmG6Y5DkySpOAY0nWS6Bc2ZnJIkFceAppP0Tgc0W9AkSSqMAU0nmW5Bc7snSZKKY0DTSabHoDlJQJKk4hjQdJI+uzglSSqcAU0n6WsY0CRJKpoBTSepV8pUy+EYNEmSCmRA0ymy7Z4mii5DkqQNy4CmU/Q1KgyNudWTJElFMaDpFH31ql2ckiQVyICmU/TbxSlJUqEMaDpFb73sLE5JkgpkQNMp+hpV9+KUJKlABjSdIpvF6SQBSZKKYkDTKfobjkGTJKlIBjSdoq9eYXSixcRUq+hSJEnakAxoOkVv3Q3TJUkqkgFNp+jPA5proUmSVAwDmk4xvWH60LgBTZKkIhjQdIq+vAXNpTYkSSqGAU2nmG5BOzbqTE5JkopgQNMptjSrABwZNqBJklQEA5pOMdBTA+CwAU2SpEIY0HSKTc0qpYAjw+NFlyJJ0oZkQNMpyqVgc7PKI0MGNEmSilB4QIuIcyLisxFxa0TcEhGvzo9vjYhPR8Tt+e1A0bVuJAM9NcegSZJUkMIDGjAJ/EJK6cnAM4FXRcSFwNXA9SmlC4Dr8/taJQO9NQ7bxSlJUiEKD2gppQdSSjfk3x8HbgV2A1cA1+anXQu8pJACN6iBnqqTBCRJKkjhAW22iNgDXAJ8GdiZUnoAshAH7FjgOa+MiH0Rse/QoUOrVut6t6WnxmHHoEmSVIiuCWgR0Qd8CHhNSunYYp+XUrompbQ3pbR3cHCwcwVuMFkLmgFNkqQidEVAi4gqWTh7b0rpw/nhAxGxK398F3CwqPo2ooHeGmOTLUbGp4ouRZKkDafwgBYRAfwJcGtK6bdnPXQdcFX+/VXAx1a7to3s0cVqbUWTJGm1FR7QgGcDPwZ8d0TclH99P/BW4Hsi4nbge/L7WiUDPdl2T66FJknS6qsUXUBK6e+BWODh561mLXrUdAuaa6FJkrT6uqEFTV1ooNcuTkmSimJA07y25F2c7scpSdLqM6BpXluaWQvaI0N2cUqStNoMaJpXrVKiv16xi1OSpAIY0LSgLb1VuzglSSqAAU0LGuipuR+nJEkFMKBpQVlAswVNkqTVZkDTgtyPU5KkYhjQtKAtPTWOOItTkqRVZ0DTggZ6ahwfm2RiqlV0KZIkbSgGNC1oa2+2WK3dnJIkrS4Dmha0xf04JUkqhAFNC5reMP3wkC1okiStJgOaFjQw08VpC5okSavJgKYFzbSgOQZNkqRVZUDTggxokiQVw4CmBTVrZeqVkpMEJElaZQY0ndbW3hqPOElAkqRVZUDTaW3pqXHELk5JklaVAU2nle3HaRenJEmryYCm0xrorTlJQJKkVWZA02kN9FRdqFaSpFVmQNNpDfTUODoyQauVii5FkqQNw4Cm09rSU6OV4Nio49AkSVotBjSd1la3e5IkadUZ0HRaW/LdBFwLTZKk1WNA02lNb/fkWmiSJK0eA5pOa+vMfpx2cUqStFoMaDqtLfkYNFvQJElaPQY0nVZ/vUKlFI5BkyRpFRnQdFoRwRa3e5IkaVUZ0HRGA26YLknSqjKg6YwGetyPU5Kk1WRA0xlt6alyeMguTkmSVosBTWe0tdcWNEmSVpMBTWe0pafGkeEJUnLDdEmSVoMBTWc00FNlfKrF8PhU0aVIkrQhGNB0RgPuxylJ0qoyoOmMBnqn9+N0ooAkSavBgKYzGujJtntyooAkSavDgKYz2jKzYboBTZKk1WBA0xltzbs4DzsGTZKkVWFA0xltblaJwP04JUlaJQY0nVG5FGxqVN2PU5KkVWJA06IM9FR5xBY0SZJWhQFNizLYX+eW+48yOuFitZIkdZoBTYvyM899PHceGuI3/vrWokuRJGndM6BpUZ5/4U7+/Xeex5/+w918/Gv3F12OJEnrmgFNi/a6y5/EJY/dwtUf+jrfemio6HIkSVq3DGhatGq5xO/920spl4L/9N4bHI8mSVKHGNC0JLu3NPmtlz6NbzxwjF/7+DdIKRVdkiRJ644BTUv2/At38srnPo73fvkeXvL7X+QTX3uAqZZBTZKkdqkUXYDWpl+8/Emcu62HP/7Cnbzqz2/g3G09vOI553HZE3fQ36jQW69QLZv/JUlajlhPXVR79+5N+/btK7qMDWWqlfj0Nx7kDz5/J/9875GTHmtUSwz01Dhvey+PH+zj8YO9PH5HH0/dvXlmA3ZJkjaqiPhqSmnvfI/ZgqYVKZeCy5+yixdc9BhuuOcI/3LoBCdGJzkxln09dGKMOw8N8dGb7uP46CQAEfCkx2ziO87byjMft5ULd22mlRKTrRYTU4lWSpy/o496pVzwp5MkqRi2oGlVpJQ4dGKMOw6cYN/dh/nyXQ/z1bsPMzrRmvf8TY0KL/y2XVxx8W6esWcrpVKscsWSJHWWLWgqXESwo7/Bjv4Gzzp/O3AB45Mtvrb/CHceGqJcCqqVEtVSMNFKfPabB/nYTffzvq/cy67NDb7jvK1MJZiYbDHZapESPPv87Vxx8Vls66sX/fEkSWorW9DUtYbHJ/n0Nw7wsZvu57YHj1OrlKiWg2q5xMjEFHceGqJSCi574g5+6NLdPPcJg/TUykTY2iZJ6n62oGlN6qlVuOLi3Vxx8e55H7/tweN8+Ib9fOTG+/jbWw8AUK9kExMGemts7a1y1uYmZw/0sHugydkDTc7a3GTHpjqNquPbJEndyxY0rXlTrcQX73iIW+4/xpHhcR4ZGufw8AQPD41x/5ERDhwbO+U5m5tVdm6qs72vTk+tQqNaolkt06yVaVTLNCol6tXs+y3NKk87ZzOP297nWDhJUtvYgqZ1rVwKnvuEQZ77hMF5Hx+dmOKBo6PsPzzMA0dHOXhslAPHxjhwbJSHToxxeHiC0YkpRiemGMlv55u8sKlR4eLHDnDJOVt4zOYGPbUyvbUKPfUyffUK/Y0qmxrZba2SrQHXaiXGp1qMTbQ4NjrBgVnvfWR4nN0DTc7f0cf5g/1s7ql29DpJktYOA5rWvUa1zHnbezlve++in5NSYmwyC1YHj49y471HuPGew9x4zxF+9zO3c6aG51qlREqJianFt1AP9tc5a3OD3nq20G9fvUKzVqZaCsqlEuUSlEvZOLxauUStkn1VSsHEVGJiqsX4ZIuJqRalUmSP5+cFMDw+lX9NMjw+RaNapr9RYVOjOrO4cCmCSiko51/VcolaJaiVy1QrQTmCbIhfdptSFoCHx6cYGp9kZHyKZrXMWVua7NrSYFNj/tA51Uo8PDTGwWNjHDw+ytDYFNv76uzcVGfHpgZ99VP/a5qcanFkZIIjw1kL6bGRCbb11Xns1h4GeqqnjD0cGZ/iyMg49UqZ3np5Ucu2PDI0zu0HjjPVSmzuqbKlp8aWZtWxjZJWnQFNmkdEZF2d1TKbe6pcsLOfH9l7DpBNXjg6MsHQWBZ2hsamODE2yfHRCY6PTnJsZIITY5OUSkG9UqJeKVOrlOivV9i5ucHOTXV29jfY1Kxy3+ERbj94nDsOnuD2gyc4dHyMobFJHhkaZmh8kuGxKSZbiVYrMdlKTLUSE/ks1uXqybtxxyamGBrv7Ib3ffUKg/31bJ27qaw1cXKqxdGRCU63O1hPrUylFEy1ElMp/9ynCbu9tTLnbO2hWSvz8IlxHjoxxvCcz1YtB731CpubVQZ6amztrTHQU6NRLXHnoSFuP3ich06Mz/v61XKwqVFlU/PRVtJNzUfD7aZGlWatPPNnNDmV1V3Jg3I9D9MTky0OHh+b+ToyPM623hrnbO3hnIEezh5oZi2pCRJZAE4kyqWgUipRKWcBujQrLE4H5ZE8KI+MTzIyMZWH9cTkVGumrlIEpVJQiqzleXOzyo7+BoP9dQb769QrJR46Mcah42M8dGKcw0Pj9NTLbO2tzXxtalSpV0qnBNaUsj/fkfEpWim7ZrVKiWqptOShAa1WYmRiinqlRMUdSbRBOQZNWmOmW+bG8xazyVaLWrlEdeYraCWyFrX8nFZK9NYqNKvlk35YTk61ODE2ybGRSYYnJplqJVotmGy1mMq7ZyemEhN5y9xkK+XB4dH/N5rVMr15a19PrczQ2BT3HxnhgaMj3H8k60aeDhjVclApB1uaNXZuqjPY32DHpjq9tQoPncha0w4cywLCVCud1JpXr5QZ6M1atQZ6qvQ3qhw6Psa9jwxz7+Fh7n1kmNGJFtv7amzrq7Otr8aWZo2xySmGxiY5MTbFibEJjo1Mcjgfq3hkeILh8UnO3dbLE3b28YSd/Vyws596pcSR4QmOjmTnHB6e4PjoBMdGsyB+dCQL48dHs9cbmVh80K2UgsH+Ojv662zpqWWf4fDwzELOa0W9UqJRzX75mG5FXWhP3mr50V94mtUyjWqJUuQBPA/hk1NppnV3bPLRIQa9tXIejKs0amVa+XNaeXCf/qVlaioxkb9/Lf93kM38LuUtwY+2KJfzkFqKPOzm3wdZ4C3FdAty1opcyVuwxyZbM0MgxianZsaoTv+d7KlXaLWyOqbyfy/AzN/hiCCl9Ghr9tgkwxNTjMxq2c4+/1QW8vPPB7B7oMl523vZs62X8wZ76a9XGJp+jfya9dazVvH+RpW+k7bby15jqsXMUI6RiSnG8s8yPpl9nrHJ7Je/6V8+NjWzX0AmW4nR8UefN9XKfmko59epUg4alXI+bjf7e1HPr3el/Ojs++nnTP8fND7ZysYN5/8eRyem2LmpwdlbetjUrJz0S0CrlTgykrWcT/+/NjaZ/cK3tbfGWVua9M7T8t7tHIMmrSMRkXU7VkqwwBJw5YByqXzG2aqVcinrxmvz1ltPP3dgyc95Iv1trWE1TUxlP7izH+R5K1cpmJwVkscmW1RKwUBPbd4WpaPDE9x7eJhjoxMzwWH659N0q9xkq8VkvtsGTP/YhYCZgNysZmG5lq8rWClnLW/lCFop0UrMtMgeHRnn4LExDuWtZmOTWcDd3pe1qA301Bgen8on3ozz8NA4x0cnsoCS/7Aen2zRqGbv3VvPfgkol4LxyUc/+/hU69FxnvkP+pSgUo6ZMFQplejJP0Mjn7AzPtni2MgEx/IgPDwxlf/djplrVJn1w79ajvzPI81090+//8RUK2/9zoYDAI9ej6ypklbKfgFppewXlekW34k8LNWrJRqVLITUKiXGJlscHhrn2DLDdTO/bj31Mj3VR3/J2dSozASbcqlEKyX2PzLMR268b80F+flEMDM0YyF99QpnbWnQSuS/TI2fttUdYEtPld1bmmztrWX/Zlonh9zZJlstRieyFt+xySnGJlozQX06wD/n/O28/cpLVvpxl82AJkkrNN1KM1clb0FYTP7d3FNlc8/mDlS3sMH+OufvWLvBuFtMtVI+7GEyC8OlOKlrtzXd4peybuaeWplGpbzkrt+UEo8MjXPnQ0OMTkzRU6vMTFaqVuKU4RaTs4JJkIWPZi0PmXkNjWo2Y72ed8UD2VCN0QmODmevUy5HNss9D87lUpw87GKqdVLr4uh0F3urlS8unrXGT02dPGShp1bOlkTqqTHQW6VRLXPg6Cj3HRlh/+ER7j8yQqWc/VKzrTdbPmlTo0q9+mhraLWcdcvfd2SE+/LnHBmZmGl9r+attXO75Cul7DPV8xn8syd2tRJMpcQTdvSt4G/FyhnQJElagXIpZsbodVJE5N33nd09pb9R5SyaHX0PnZmjLyVJkrqMAU2SJKnLdH1Ai4jLI+K2iLgjIq4uuh5JkqRO6+qAFhFl4PeB7wMuBF4WERcWW5UkSVJndXVAA54B3JFSujOlNA68H7ii4JokSZI6qtsD2m7g3ln39+fHJEmS1q1uD2jzLRJz0opzEfHKiNgXEfsOHTq0SmVJkiR1TrcHtP3AObPunw3cP/uElNI1KaW9KaW9g4ODq1qcJElSJ3R7QPsn4IKIOC8iasCVwHUF1yRJktRRXb2TQEppMiJ+FvgUUAbelVK6peCyJEmSOqqrAxpASumvgb8uug5JkqTV0u1dnJIkSRuOAU2SJKnLGNAkSZK6jAFNkiSpyxjQJEmSuowBTZIkqcsY0CRJkrpMpJTOfNYaERGHgLtX4a22Aw+twvtsZF7jzvMad57XuPO8xp3nNe6cc1NK8+5Tua4C2mqJiH0ppb1F17GeeY07z2vceV7jzvMad57XuBh2cUqSJHUZA5okSVKXMaAtzzVFF7ABeI07z2vceV7jzvMad57XuACOQZMkSeoytqBJkiR1GQPaEkTE5RFxW0TcERFXF13PehAR50TEZyPi1oi4JSJenR/fGhGfjojb89uBomtd6yKiHBE3RsTH8/te4zaKiC0R8ZcR8c387/O/8hq3V0S8Nv9/4uaIeF9ENLzGKxMR74qIgxFx86xjC17TiPil/GfgbRHxgmKq3hgMaIsUEWXg94HvAy4EXhYRFxZb1bowCfxCSunJwDOBV+XX9Wrg+pTSBcD1+X2tzKuBW2fd9xq31+8An0wpPQl4Gtm19hq3SUTsBn4e2JtSegpQBq7Ea7xS7wEun3Ns3mua/998JXBR/px35D8b1QEGtMV7BnBHSunOlNI48H7gioJrWvNSSg+klG7Ivz9O9kNtN9m1vTY/7VrgJYUUuE5ExNnAC4F3zjrsNW6TiNgEPBf4E4CU0nhK6Qhe43arAM2IqAA9wP14jVckpfQF4JE5hxe6plcA708pjaWU7gLuIPvZqA4woC3ebuDeWff358fUJhGxB7gE+DKwM6X0AGQhDthRYGnrwduB1wGtWce8xu3zOOAQ8O68G/mdEdGL17htUkr3AW8D7gEeAI6mlP4Gr3EnLHRN/Tm4igxoixfzHHMKbJtERB/wIeA1KaVjRdeznkTEi4CDKaWvFl3LOlYBLgX+IKV0CTCEXW1tlY+DugI4DzgL6I2Ilxdb1Ybjz8FVZEBbvP3AObPun03WvK4ViogqWTh7b0rpw/nhAxGxK398F3CwqPrWgWcDL46Ib5F1zX93RPwZXuN22g/sTyl9Ob//l2SBzWvcPs8H7kopHUopTQAfBp6F17gTFrqm/hxcRQa0xfsn4IKIOC8iamQDJa8ruKY1LyKCbNzOrSml35710HXAVfn3VwEfW+3a1ouU0i+llM5OKe0h+3v7mZTSy/Eat01K6UHg3oh4Yn7oecA38Bq30z3AMyOiJ/9/43lkY1a9xu230DW9DrgyIuoRcR5wAfCVAurbEFyodgki4vvJxvKUgXellN5cbEVrX0Q8B/g74Os8Oj7ql8nGoX0QeCzZf8wvTSnNHciqJYqIy4D/klJ6UURsw2vcNhFxMdkkjBpwJ/CTZL8Ee43bJCJ+FfhRstnfNwKvAPrwGi9bRLwPuAzYDhwA3gh8lAWuaUT8N+CnyP4MXpNS+r+rX/XGYECTJEnqMnZxSpIkdRkDmiRJUpcxoEmSJHUZA5okSVKXMaBJkiR1GQOapDUrIt4TER8vuo7ZIuKKiLg9IiYj4j1F17OQiLgsIlJEbC+6FkmnMqBJWpY8HKWIeP2c4xv9B/87yXbGOBd4dcG1SFqjDGiSVmIUeF1EDBZdSDvl248t53lbyBb8/FRK6b6U0tG2FiZpwzCgSVqJzwLfAn5loRPma1GLiD35sb1zzvm+iPhqRIxExN9FxNkR8a8j4p8j4kREfDzfAWHue7w+Ig7k57w7IpqzHouIeF1E/Ev+ul+fvcn2rFpeFhGfiYgR4GcW+CwDEXFtRBzOX+tvI+Ki6c8AHM5P/Uz+mpct8Dq1iPgfEbE/IoYi4p8i4gXzXLMXRcRNETGaX5enz3mdf5N/nrGIuDci/lu+DdLs9/mNiLg7P+fOiPj5OeU8LSK+HBHDEbEvIi6dr2ZJq8uAJmklWsDVwH+IiMe34fV+FXgN8B3AAPAB4A3AK8m2o7kIeNOc5/xr4GlkezP+EPC9wP+Y9fivAz8NvAq4EHgL8EcR8cI5r/MW4B35OR9doL735LVdATwDGAY+mQfCL+X1kdexKz82n3fndf9b4KnAtcBfRcTT5pz3NuAXgb1k20d9IiJ6APKw9hdkm4Y/lezP4ZeAn531/GuBHwf+M/Dk/DocmedzX022ufvDwHtnhzxJBUkp+eWXX34t+YssrHw8//6zwPvz7y8DErB9vvv5sT35sb1zznnBrHN+Nj926axjbwJunlPDEaBv1rGXA2NAb/41AnznnNrfDvz1nFp+4Qyf94L8vOfOOrYZOAq8Ir+/PT/nstO8zuPJgu1j5xz/KPCOOdfj3816vC//rNPv9V6yje9nv8abgP1z6r18gTrmu+bPzo+dXfTfL7/82uhflQVymyQtxeuAf4yIt63wdb426/sD+e3X5xzbMfc5KaUTs+7/A9mG5Y8H6kCDrJVr9sbDVbKu2dn2naG2J5MFq3+YPpBSOhoRXydrdVusS4EAvjGnoaoOfGbOubPf68Sc93oy8Ik55/898MaI2ARcktf72TPUM/ua35/f7gD2n+F5kjrIgCZpxVJK/xQRHyLrWvy1OQ+38tvZaWShQfgTs182f+25x5YyNGP63B8A7jnNewEMneG1Ttftl07z2Hw1JeDb56lhZAmvE6d538Tp653tlGuOw1+kwvmPUFK7/DLwncDlc44fym93zTp2cRvf96kR0Tvr/jOBceBfgG+QdXeem1K6Y87X3Ut8n2+Q/Z/5r6YP5C1VT80fW6wbycLTY+ap6b455z5z1nv1Ak8Bbp1Vz3PmnP8csi7O48ANeb3ftYTaJHUJW9AktUVK6Y6IuIZT1/66A7gXeFNEXE025uv1tE8FeFdE/HfgLOCtwB+nlIYA8m7Xt+UD379ANpbrmUArpXTNYt8kpXR7RHyMbILBK8nGg70ZOAb8+RJe5/9FxHuB90TEL5AFqa1kY8LuTCl9eNbpr4+IQ2Rdj28gC57T7/VbwD9FxJvyY98O/AJZUJ6u94PAOyPi1fn7nA3sSSn9n8XWK6kYtqBJaqf/DkzOPpB3UV4JPA74Z7KZmr/cxvf8PHAL2Virj5CN43rdrMd/hWzw/H/Jz/s02SzLu5bxXj8JfAW4Lr/tIRuEv5SuyenXeTfwm8A3gY8DzwXmtupdTRbEbiAb9P+i6eCZUroBeGn+WW4mC6ZvBX5v1vN/nCy8/W7+Pu8hm9ggqctFSksZOiFJ6rR8/bTPAoMppYeKrUZSEWxBkyRJ6jIGNEmSpC5jF6ckSVKXsQVNkiSpyxjQJEmSuowBTZIkqcsY0CRJkrqMAU2SJKnLGNAkSZK6zP8HMWTv0BD1l1cAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -10441,18 +6524,25 @@ } ], "source": [ - "plot_map_with_regions(preprocessed_data, cv2.resize(learnt_filter, dsize=(train_x.shape[2], train_x.shape[2])), 'Average of learnt representations')" + "fig = plt.figure(figsize=(10, 8))\n", + "plt.plot([train_losses[i] for i in range(len(train_losses))])\n", + "plt.title('Training loss', size=title_size)\n", + "plt.xlabel('Number of epoch', size=font_size)\n", + "plt.ylabel('MSE', size=font_size)\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 81, - "id": "ea015d2c", - "metadata": {}, + "execution_count": 98, + "id": "64fa6b14", + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAH5CAYAAAAiH1L7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAA1AUlEQVR4nO3deZhcd33n+/e39721tTbLtmwjr4CNEcTBiTG7SQAzSUjgTiZOQq6TXDIhGe6Aww2BhDAwMyQhmQxJnITYTMgAGQg4QABjA2YxxvK+I9nWZslSa2m11N3qrX73jzotl1tVpZbdp05Lfr+ep5/qOnXqnG/XUUsf/b7n/E6klJAkSVLjNRVdgCRJ0nOVQUySJKkgBjFJkqSCGMQkSZIKYhCTJEkqiEFMkiSpIAYxSQtORKSI+NY8bOdbEbGg5uiJiF/Ofr5fLroWScUziEk6ShYUjufrl4uuWZJORC1FFyBpQfrDKst+B+gH/hwYmvXa3fO8//OA0XnYzi8BXfOwHUnKhUFM0lFSSh+YvSwb9eoHPpZS2pzz/h+ep+1snY/tSFJebE1KelZmzsOKiLaI+IOIeCQixiPiuuz1/oj4zxFxc0Rsj4iJiBiMiBsi4pIa2zzqHLGI+EC2/PKI+LmI+GFEjEbEvoj4dEScUqu2Wcsuz7bzgYi4KCK+HBFD2ba+HREvq1HTqoj4h4jYHRFjEXF3RFxVub1n+BFW7uPFEfG5bB/jEbElIj4eEauqrLsiIj6afd4j2c/wSERcFxFnVqwXWZ3fzz73wxGxLSK+FhG/8GxrlvTsOCImab58DngJ8G/AF4Dd2fLzgA8BtwBfBvYDpwFvAl4fEW9MKX31OPbz/2TvvQH4NvBjwC8AF0bERSml8TluZz3wbuBW4O+ymn4WuCnbziMzK0bEcuD7wNrs5/g+sBL4OPD146i9poh4A+XPMID/A2wBXgz8JnBlRFw6MxIZEV3A94CzgBuBf83edzpwZfb+x7JNfwj4PeBx4LPAAWAV5WP1FuAz81G/pGfGICZpvpwOPD+ltGfW8oeA1bOXR8Qa4IfAnwHHE8SuAF6SUrqvYlv/BLyNcgj57By389PAr6SUrqvYzq8Dfw28k3Lgm/FhyiHsv6WU3lOx/seyn+FZiYge4DrKfydfnlL6TsVr7wE+AlwLvDZb/CrKIexjKaXfnbWtNqC9YtGvA09QPjajs9Zd9mxrl/Ts2JqUNF/eVyWEkVI6UGP5dsojN+dGxGnHsZ+/qAxhmb/NHl96HNv5XmUIy3wCmKrcThZs3kZ5JOmPK1dOKd0DfPI49lnLlcBS4DOVISzzJ8Bm4DVVPqex2RtKKU2klA7OWjwJTFdZ96jjIqmxDGKS5kvNkaGIuDQiPpudmzQ+M+0F8B+zVY46v6uODVWWbcseFz+b7aSUJoFds7ZzDtAJ3Fsl4AB89zj2WcvF2ePNVWqaotwOBXhR9vhtyqNc10TEVyPit7Pzy5qrbPtTlEfzHoiID0fEFRHRPw81S5oHtiYlzZcnqy2MiH9HeeTrMOXzmR4FRoAScDnwcp7eSjuWoSrLprLHakHkeLYzs63K7cyEll011q+1/HjM7GNnjddnli8CSCkNZxc6/CHl8+Vel72+JyI+DvxxFioBfpfyZ/6rwDXZ11REfAV4V0pp0zzUL+kZMohJmhcppVoz2H8QmADWp5QeqnwhIv6GchBbyIazxxU1Xq+1/HgcyB5X1nh91az1Zlq7b4+IAM4HXgm8A/gDyt2O92XrTVOe++3Ps4sOfgJ4K+UT9S+IiAuO4wIHSfPM1qSkvD0PeLBKCGuiHAoWuocpn4v1wojorfL6fPwMd2WPl89+ISJaKvZx5+zXU9kDKaX/AbwmW/zmajtJKe1OKX0+pfTzlNugZwHPf3alS3o2DGKS8rYZWBcRq2cWZKM476c8krOgpZQmKE/x0A/8fuVrEXEh5dn7n60vAPuAt1WZW+13gDOBb8xMUBsRz4+ItVW2MzM6N5qt1x4Rr8o+78q6W4ElletKKoatSUl5+zPKU0LcFRGfo3wF36WUQ9i/Am8ssLa5uoZy6+/dEfFjlOcRWwX8PPAVyiNQpWe68ZTSoYj4VeCfgW9HxD8DWynPI/Zayuff/XrFW14N/GlEfJ/yiN1uYA3lqy9LwH/P1usEvgFsjojbKM9N1kF55Ow84IbZI5WSGssgJilXKaW/iYhxyiM7V1Fu830H+BXKE6gu+CCWUtqVzbj/X4CfojyJ7COU5xoboRzEhmtuYG77+GJEXAq8l/LJ9/2UA9hfAx9MKe2oWP1rwMeAyyiHrz7KJ/TfCPxpSun72XojwHuAVwAvy+o8SPnk/d+kPF2HpAJF7fNrJUnHEhEfohyerkgpfa3oeiSdWAxikjQHEbF61qgUEfECym3KCeCUlNLhQoqTdMKyNSlJc7MhIjYB91Nu+a2jfJukJuA3DGGSnglHxCRpDiLi/ZTPsVoL9FKeEPYHwEdTSt8qqi5JJzaDmCRJUkGcR0ySJKkgJ+Q5YsuWLUtr164tugxJkqRjuuOOO/aklAaqvXZCBrG1a9eyYcOGosuQJEk6pojYUus1W5OSJEkFMYhJkiQVxCAmSZJUEIOYJElSQQxikiRJBTGISZIkFcQgJkmSVBCDmCRJUkEMYpIkSQUxiEmSJBXEICZJklQQg5gkSVJBDGKSJEkFMYhJkiQVxCAmSZJUEIOYJElSQQxiVRyenObA6CSlUiq6FEmSdBIziFXxqdu2cuEffZ2D41NFlyJJkk5iBrF6HBCTJEk5MohVEdljMolJkqQcGcSqiDj2OpIkSc+WQayO5ICYJEnKkUGsiqdak5IkSfkxiFUR9iYlSVIDGMTqSPYmJUlSjgxiVcwMiBnDJElSngxiVdiYlCRJjWAQq8POpCRJypNBrJqsN+mErpIkKU8GsSpsTUqSpEYwiNXjgJgkScqRQawKr5qUJEmNYBCrImxOSpKkBjCI1eFVk5IkKU8GsSqeak2axCRJUn4MYlXYmJQkSY1gEKvD1qQkScqTQawKr5qUJEmNYBCrwqsmJUlSIxjE6kj2JiVJUo4MYtXMtCbNYZIkKUcGsSpsTEqSpEYwiEmSJBXEIFZFZJdN2pqUJEl5MohVMdOadGZ9SZKUJ4NYFeFJYpIkqQEMYnXYmpQkSXkyiFXhzPqSJKkRDGJVOLO+JElqBINYHc6sL0mS8tTSyJ1FxGbgIDANTKWU1kfEEuAzwFpgM/DzKaX9jaxrNluTkiSpEYoYEXtFSumilNL67Pk1wE0ppXXATdlzSZKkk95CaE1eCVyffX898ObiSnk6O5OSJClPjQ5iCfh6RNwREVdny1aklHYCZI/Lq70xIq6OiA0RsWFwcDDXIiOemtJVkiQpLw09Rwy4NKW0IyKWAzdGxMNzfWNK6VrgWoD169fnmpC8ZlKSJDVCQ0fEUko7ssfdwL8ALwV2RcQqgOxxdyNrqsfWpCRJylPDglhEdEdE78z3wGuB+4EbgKuy1a4CvtiommrxqklJktQIjWxNrgD+JTv/qgX4p5TSVyPiduCzEfF2YCvwlgbWVJUTukqSpEZoWBBLKT0GXFhl+V7gVY2q43jYmpQkSXlaCNNXLDhPtSZNYpIkKT8GsSpsTEqSpEYwiNVha1KSJOXJIFbFkdakQUySJOXIIFaVzUlJkpQ/g1gdnqwvSZLyZBCrwtakJElqBINYFTYmJUlSIxjEJEmSCmIQqyK7DZOtSUmSlCuDWBW2JiVJUiMYxOrwqklJkpQng1gVXjUpSZIawSBWxVM3/ZYkScqPQayK8CwxSZLUAAaxOpK9SUmSlCODWDW2JiVJUgMYxKqwMSlJkhrBIFaHnUlJkpQng1gVMzPr25yUJEl5MohVYWtSkiQ1gkGsDluTkiQpTwaxKpzQVZIkNYJBrAondJUkSY1gEKvD1qQkScqTQayKp276bRKTJEn5MYhVYWNSkiQ1gkGsDsfDJElSngxi1RxpTRZbhiRJOrkZxKrwqklJktQIBrE6ks1JSZKUI4NYFd5qUpIkNYJBrAobk5IkqREMYnU4ICZJkvJkEKsist6kV01KkqQ8GcSqCHuTkiSpAQxidXjVpCRJypNBrIojF02awyRJUo4MYlXYmpQkSY1gEKvDATFJkpQng1hVM1dNGsUkSVJ+DGJVzLQmjWGSJClPBrEqPEVMkiQ1gkGsHofEJElSjgxiVRyZWd8kJkmScmQQq8LWpCRJagSDWB1eNClJkvJkEKviyFWTBjFJkpQjg1gVYXNSkiQ1gEGsDgfEJElSngxiVTzVmjSKSZKk/BjEJEmSCmIQq8PxMEmSlCeDWBVeNSlJkhrBIFaFV01KkqRGMIjV5ZCYJEnKj0GsCluTkiSpEQxiVYSdSUmS1AAGsTocEJMkSXkyiFUxc7K+rUlJkpQng1gVtiYlSVIjGMTqSDYnJUlSjgxiVcwMiNmalCRJeTKIVWFrUpIkNULDg1hENEfEXRHxpez5koi4MSI2Zo+LG11TLQ6ISZKkPBUxIvZO4KGK59cAN6WU1gE3Zc8LNnPVpFFMkiTlp6FBLCLWAD8N/F3F4iuB67Pvrwfe3MiaqrE1KUmSGqHRI2IfA94NlCqWrUgp7QTIHpc3uCZJkqRCNCyIRcQbgN0ppTue4fuvjogNEbFhcHBwnqubta/s0c6kJEnKUyNHxC4F3hQRm4FPA6+MiH8EdkXEKoDscXe1N6eUrk0prU8prR8YGMi10Mh6k84jJkmS8tSwIJZS+r2U0pqU0lrgrcDNKaVfBG4ArspWuwr4YqNqqsVTxCRJUiMshHnEPgK8JiI2Aq/Jni8ItiYlSVKeWorYaUrpW8C3su/3Aq8qoo5aZq6aNIhJkqQ8LYQRsQUnbE5KkqQGMIjV4YCYJEnKk0Gsiqdak0YxSZKUH4OYJElSQQxidTgeJkmS8mQQq+LIvSZNYpIkKUcGsSrCu35LkqQGMIjV4S2OJElSngxiVXjTb0mS1AgGsSrsTEqSpEYwiNXhgJgkScqTQayKmVsc2ZqUJEl5MohVYWtSkiQ1gkGsDq+alCRJeTKIVeFVk5IkqREMYtXYmpQkSQ1gEKvDATFJkpQng1gVM1dN2puUJEl5MohV4VWTkiSpEQxidTgeJkmS8mQQq8KrJiVJUiMYxKoIe5OSJKkBDGJ1JIfEJElSjgxiVRxpTRZahSRJOtkZxKoIZ6+QJEkNYBCTJEkqiEGsipkJXR0QkyRJeTKIVXOkNWkUkyRJ+TGIVeHsFZIkqREMYpIkSQUxiFXhzPqSJKkRDGJVOLO+JElqBINYHcnrJiVJUo4MYlXYmpQkSY1gEKvCzqQkSWoEg1gdDohJkqQ8GcSqODKzvklMkiTlyCBWha1JSZLUCAaxOrxqUpIk5ckgVoetSUmSlCeDWBW2JiVJUiMYxCRJkgpiEKviqasm7U1KkqT8GMSqsDUpSZIawSBWhwNikiQpTwaxKo7ca7LQKiRJ0snOIFZF2JuUJEkNYBCrw9akJEnKk0GsiqdakyYxSZKUH4NYFXYmJUlSIxjE6rA1KUmS8mQQq2LmZH1zmCRJypNBTJIkqSAGsXrsTUqSpBwZxGqIsDUpSZLyZRCrIXBATJIk5csgVoOz60uSpLwZxOpwQldJkpQng1gNtiYlSVLeDGI12JmUJEl5M4jV4YCYJEnKk0GshiBsTUqSpFwZxGqxNSlJknJmEKvDqyYlSVKeDGI1BHiSmCRJylXDglhEdETEDyPinoh4ICL+MFu+JCJujIiN2ePiRtVUj1dNSpKkvDVyRGwceGVK6ULgIuCKiLgEuAa4KaW0Drgpe74gOCAmSZLy1LAglsoOZU9bs68EXAlcny2/Hnhzo2qqp3zVpFFMkiTlp6HniEVEc0TcDewGbkwp3QasSCntBMgel9d479URsSEiNgwODjag1tx3IUmSnuMaGsRSStMppYuANcBLI+L5x/Hea1NK61NK6wcGBnKr8en7bMhuJEnSc1QhV02mlIaAbwFXALsiYhVA9ri7iJpmCzxHTJIk5auRV00ORMSi7PtO4NXAw8ANwFXZalcBX2xUTfWEvUlJkpSzlgbuaxVwfUQ0Uw6An00pfSkibgU+GxFvB7YCb2lgTXXZmpQkSXmaUxCLiO8DP5W1FImIDwP/PaW0L3u+DLgzpXRarW2klO4FXlRl+V7gVcdfer7KrUmTmCRJys9cW5OXAG0Vz98BLKp43gycMk81LQx2JiVJUs6e6Tliz4mYYmtSkiTlyXtN1vCcSJqSJKlQcw1iiaNnczipx4u8alKSJOVtrldNBvCPETGePe8A/jYiRrPn7fNe2QLgLY4kSVKe5hrErp/1/B+rrPPJZ1nLghJxkg/5SZKkws0piKWUfiXvQhYaG5OSJClvz+pk/Yg4LSLOj5P0hCo7k5IkKU9zCmIR8QsR8Zuzlv0V8DhwH3B/RJxU84hFhBO6SpKkXM11ROw/AqWZJxHxauDXgT+gfEuiJuB9815dgQJHxCRJUr7merL+OcBtFc+vBL6eUvoQQEQcBv5ynmsr1MnZbJUkSQvJXEfEeoB9Fc9fBtxc8fwBYOV8FbVQOCAmSZLyNNcgth24ACAi+oAXAN+reH0pcGh+Syta2JqUJEm5mmtr8p+Bv4iIDwNXADuBH1S8vh54eJ5rK5StSUmSlLe5BrEPAmuAPwGeBH4xpTRd8frbgC/Pc20LgENikiQpP3Od0HUM+KU6r79i3ipaILxqUpIk5W1OQSwibpjDaimldOWzrGfBsDUpSZLyNtfW5BuALcC38itl4XFETJIk5WmuQeyjwC8ClwH/AFyXUtqeW1ULQODM+pIkKV9zmr4ipfRu4FTgdylfIbkxIv4tIn4uIlrzLLAotiYlSVLe5nzT75TSdErphpTSm4EzgG8Cfww8ERE9OdVXKFuTkiQpT3MOYrN0A4soz7h/iJNwnofgJPyhJEnSgjLnIBYRnRFxVUTcAtwHnA5clVI6M6U0kluFBQl7k5IkKWdznb7iWuAXgI3A3wNvSikN5VjXgmBrUpIk5WmuV03+GrCV8q2NXg+8vtqIUUrpTfNXWvG8alKSJOVprkHskzzHTpmyMylJkvI211sc/XLOdSxMz6noKUmSGu2ZXjV50oswh0mSpHwZxGoI7E1KkqR8GcTqSF42KUmScmQQq8HWpCRJyptBrAYbk5IkKW8GsTrsTEqSpDwZxGqICFuTkiQpVwaxGmxNSpKkvBnE6vCqSUmSlCeDWC1eNSlJknJmEKshwCQmSZJyZRCTJEkqiEGshvJVkw6JSZKk/BjEagicR0ySJOXLIFZDOH+FJEnKmUGsDkfEJElSngxiNQSeIyZJkvJlEKvB1qQkScqbQawOW5OSJClPBrE6zGGSJClPBrEawt6kJEnKmUGsDluTkiQpTwaxGsrjYSYxSZKUH4NYDXYmJUlS3gxiddialCRJeTKI1RBhY1KSJOXLIFZDYG9SkiTlyyBWR7I3KUmScmQQq8HWpCRJyptBrAYbk5IkKW8GsTrsTEqSpDwZxGqJsDUpSZJyZRCrwdakJEnKm0GsDq+alCRJeTKI1eAtjiRJUt4MYjWYwyRJUt4MYnXYmZQkSXlqWBCLiFMj4psR8VBEPBAR78yWL4mIGyNiY/a4uFE11RMRJK+blCRJOWrkiNgU8K6U0nnAJcA7IuJ84BrgppTSOuCm7HnhAkfEJElSvhoWxFJKO1NKd2bfHwQeAk4BrgSuz1a7Hnhzo2qSJEkqUiHniEXEWuBFwG3AipTSTiiHNWB5ETXNFuGImCRJylfDg1hE9ACfA34npTR8HO+7OiI2RMSGwcHB/Aqc2R+eIyZJkvLV0CAWEa2UQ9inUkqfzxbviohV2eurgN3V3ptSujaltD6ltH5gYKABxea/C0mS9NzWyKsmA/h74KGU0p9WvHQDcFX2/VXAFxtV07HYmpQkSXlqaeC+LgX+A3BfRNydLXsv8BHgsxHxdmAr8JYG1lRTgI1JSZKUq4YFsZTSd6nd8HtVo+qYK0/WlyRJeXNm/XoMYpIkKUcGsRq8alKSJOXNIFZDeNWkJEnKmUGsDs8RkyRJeTKI1RDhKWKSJClfBrEawhldJUlSzgxidSR7k5IkKUcGsRpsTUqSpLwZxCRJkgpiEKvDzqQkScqTQayGiLA1KUmScmUQq8FrJiVJUt4MYvXYm5QkSTkyiNXgVZOSJClvBrEabE1KkqS8GcTqsDMpSZLyZBCroXzVpElMkiTlxyBWg61JSZKUN4NYHbYmJUlSngxiNUQYxCRJUr4MYjXZnJQkSfkyiNXhgJgkScqTQayGcmvSKCZJkvJjEKvBxqQkScqbQayGMIlJkqScGcTqsDMpSZLyZBCrIXBmfUmSlC+DWA22JiVJUt4MYnXYmpQkSXkyiNUQ4TxikiQpXwaxGsIJLCRJUs4MYnU4oaskScqTQawWW5OSJClnBrEabExKkqS8GcTqcUhMkiTlyCBWQ0SYwyRJUq4MYjXYmpQkSXkziNXhVZOSJClPBrEanNBVkiTlzSBWg61JSZKUN4NYHXYmJUlSngxiNZSvmjSJSZKk/BjEarA1KUmS8mYQq8PWpCRJypNBrJYwiEmSpHwZxGoIm5OSJClnBjFJkqSCGMRqiHBmfUmSlC+DWA02JiVJUt4MYnU4HiZJkvJkEKshvGpSkiTlzCBWQ+DM+pIkKV8GMUmSpIIYxGqwNSlJkvJmEKshwpP1JUlSvgxiNTmBhSRJypdBrA5bk5IkKU8GsRoiwOakJEnKk0GsBhuTkiQpbwaxOmxNSpKkPBnEavCqSUmSlDeDWA1hc1KSJOXMIFZHsjcpSZJyZBCrwdakJEnKm0GsBhuTkiQpbw0LYhHxiYjYHRH3VyxbEhE3RsTG7HFxo+qZCzuTkiQpT40cEbsOuGLWsmuAm1JK64CbsucLQkR4jpgkScpVw4JYSukWYN+sxVcC12ffXw+8uVH1SJIkFa3oc8RWpJR2AmSPywuu52kcD5MkSXkqOojNWURcHREbImLD4OBgA/aHSUySJOWq6CC2KyJWAWSPu2utmFK6NqW0PqW0fmBgIPfCnNBVkiTlreggdgNwVfb9VcAXC6zlKA6ISZKkPDVy+or/DdwKnBMR2yPi7cBHgNdExEbgNdnzBSHCmfUlSVK+Whq1o5TS22q89KpG1XA8bExKkqS8Fd2aXNAcD5MkSXkyiNVQbk0WXYUkSTqZGcRqiLA5KUmS8mUQqyPZnJQkSTkyiNUQ2JqUJEn5MojVEp6sL0mS8mUQkyRJKohBrIZwSEySJOXMIFZDhCfrS5KkfBnEanDyCkmSlDeDWB1eNSlJkvJkEKshPEVMkiTlzCBWQ9iclCRJOTOI1ZHsTUqSpBwZxGqwNSlJkvJmEKvBxqQkScqbQawOO5OSJClPBrFawjExSZKUL4NYDcYwSZKUN4PYMXjlpCRJyotBrIaZzqQ5TJIk5cUgVoMTukqSpLwZxI7BATFJkpQXg1gNT7UmjWKSJCkfBrEabExKkqS8GcRqaGkufzQT06WCK5EkSScrg1gNPR0tABwanyq4EkmSdLIyiNXQlwWxg4cNYpIkKR8GsRp62rMRMYOYJEnKiUGsht6OVsARMUmSlB+DWA1HRsTGJwuuRJIknawMYjX0ZueIDTsiJkmScmIQq2EmiHmOmCRJyotBrIaZ1uTwYVuTkiQpHwaxGlqam1jc1cqeQ+NFlyJJkk5SBrE6VvR1sGvYICZJkvJhEKtjeV8Hu4cPF12GJEk6SRnE6ljZ1+6ImCRJyo1BrI4VfR0MHhpnupSKLkWSJJ2EDGJ1LO/rYLqU2DviqJgkSZp/BrE6VvS2A/DkAc8TkyRJ888gVscZy7oBeGxwpOBKJEnSycggVsfpS7tpaQo27j5YdCmSJOkkZBCro62liTOWdfPAjuGiS5EkSSchg9gxvOyspfzgsb0cnpwuuhRJknSSMYgdwyvPW8HhyRLf3bin6FIkSdJJxiB2DJecuYQVfe382ic38Bv/6w5GxqeKLkmSJJ0kDGLH0N7SzEd+9oUAfPWBJ7ng/V/jvPd9lR/t8gR+SZL07BjE5uAV5yznO+9+Bb0dLQCMTU7z2j+7hTf+j+/ylzdv5MDYJPdtP1BwlZIk6UQTKZ14t+9Zv3592rBhQyH7fmJojLu3DvHxb2066mrKc1f2cuGaRfyn155Nf2crHa3NhdQoSZIWjoi4I6W0vuprBrFnbu+hcT769UeYmEp87s7tddf94zc/n/NW9dHcFFy4pp/hsSl6O1poaooGVStJkopgEGuAqekSTRH80w+38t2Ne3h08BAbdx+qum5rczA5/dTnftGpi9i8d4Sfu3gNF522iNbmJl593gq27x/l8GSJc1b2MjVdoqXZTrIkSScag1hBJqdLbNk7yp1b9/OJ7z7OuSt72Tc6yUM7hxk8OD83Ej93ZS8Dve28dO0SFnW1sqKvg1X9nazs7+CBHQfYPTzOPduH2HngMJefM8Av/fha7t0+xOlLuunvaj1qe2MT0wwfnmRFX8e81DefnhgaY2VfB82OIkqSTiAGsQVoupQYmZhi59Bhdg0fZnyqxPb9o9y5dYh9I+OsWdTFE0NjfHdTfvOX9ba3sLyvnXNX9tHf1cr+kQn+7f4nAbjs7AEuXNPPLRv30NfRwpa9ozz/lD5+4SWn8fjgIbbuG+Pclb0s7Wnje5v2ct6qXs5Z2Ut3ewv9na30d7Zy22P7+MZDu3jfG85ncrrE8OFJlveWA973N+3haw88yQfedAERxw5W+0cmeNEHb+RXLl3L+994QW6fSTVDoxM8uGOYlz1vWUP3K0k6ORjEThKlUuLg4SnaW5vYsneUQ+NT7DwwxpKuNrbuG+WrDzzJzqHDPLLrIG958RouPn0xn759G/dsGyq69KdZt7ynatt2WU8brzx3OT+5boDP3L6NJ4bGeHzP0Tdcf/V5K/jtVz2Pbz8yyJ/c+COW97bzhheuZvWiDl53wUru2jbEqYs7ec/n7uUdr3geb3zhah4dPMTzlvcQERwYm+TOLfvZtn+UB3cM8/43XkBn29MvrPj+pj288NRF9LS38H9/cgM3PriL//y6c5guJc5d2QvA/tEJLljdz/OW9/BnN/6If/9jp9PW0kRfZwsdLc3cuXU/F5+2uOZ5gKMTU6QE3e0t8/CpSpIWKoPYc1xK6WmjTiklSgmam4JSKVFKibHJae7dfoBzVvbS2txEU8D3Nu3lnu1DDI9NMjldYs3iLnYeOMytj+5h+PBUOWQEJMrB5dQlXVx29gDXfW8zE9OlmvUs7mpl/+hkA37yo71wTT/3zppqZM3iTi48dRGb94zwwI5h+jtbOTBWru8Fp/Rz3xPHPzVJV1szoxPTRMDMr9jy3nZ2Hxyns7WZsSq3zDpzWTevOX8F2/ePMTIxxYGxSV593gpGxqfYNTzOmy5aTWdrM6WUuO57m7lgdR+Hp6Z544WrmZgqHWmFf+uRQVYv6uS1F6zg4Z0H2T86waXPW0Zrc7BvZIJFnW00NwXnr+572v6/cNcTnLa0i/NW9tHZ1szhyWnGJqb52gNP8rzlPbz49MVMl1Iu5yrO/Dms3PaDO4ZZs6ST3vaWOY2aStJCZRDTgpJSYnI60RTlOdmmphPb9o/yo12HOHtFDzuGxuhub2F0YpqUYEl3Gw/sOMBAbzv9na1s2Lyf1ubglMWdfOjLD3HKok5ee8FK7tq6n862FianSkeC4OR0iXu2DbGspx2i3I7dc2iCfSMTLOlu44mhMc5b1cfoxBSHDk+xd2Sias1rl3bxtpeexqdv30ZHazMDve18d+MgpRq/Pheduoi7F9hIZDXNTXEkmM8Y6G3njKXd/HDzvprvu+zsAe7csp9D2Z0m3nThalqyoDcxVeLHzljKP9+xjfaWJvo7W9m6b5S25iYuPHUR/3b/k5yyqJP1axczNjHNQ08Os6ynnbu2DvHBKy+gpbmJj39rE9v2jQHwq5eewVvWr+GBHcNMTJW46aFd/MS6Zdxwzw4uP3s5V160mp6OFoZGJxmbmGZiepo1i7tY2t3Go4MjTJcSuw8eZt2KXqany4FvqlTi4OEpvnr/k7z1pacxPDbJzgOH6Wlv4WVnLT0yijnz9+O2fWN88tbN/Par19Hb3kIpQSklRsenGZ+eZmh0krNXlEdKp0uJxwYPsS57PqNUSqTsM5f03GIQk+ZoaHSCRV1tR55PTJVobY5nPCJT+fu1ff8Yy3raGTw4zuLuVqamE01NQUtTsOfQOBs27+e8VX08smuYztZmzl9VHo0bm5xmYqrElr0jrF3WzdjENIu6Wrl3+wFedtZSPn/nE9y/4wCXnT3Aj548yItOW8SWvaN8/cFdvOeKczkwNsl3Ng7y+J4RRieeGonrbW/h4PgUZw108+jg01vAK/raWdXfeSRMvui0Rdy1degZfQYnosVdrfR2lAPkXJ050M3Q6CT7KsL8Bav7WNbTzulLu/jkrVsAeN0FK9g/OskPH9/HmsWdHBibpL2liV9+2Voe2nmQfSMT3PrYXgAWdbUylI0e/9pPnMFtj+/jgtV9vOnC1Szva2e6BNv3j7J6USfb9o0yOZ04fWkXe0cm6OtoOTKC+eCOYc4c6ObCNYvYOzLO1Z+8gwd3DnP+qj56O1p4dHCEHz9rKQCnLOrkoZ3DvOGFq2huCm750SBfuHsHa5d28ZrzV7B3ZILzV/Vxwz07eMMLV7Goq42XrF3C4MFxpqZLTJUSgwfHufDUftqam/nrWx5lcVcrna3N/PhZSzl7RS/f27SH81f1c2h8iraWYMveUVb1d1JKiUcHD3FofIq1S7t52VlLGZmYZvdwOSSPTkyzdlk3UP5P1ujENCPjU6xe1MnQ6AS9Ha1H/nNxcHyKlqbyqQjDY1OcvrSLCGhrbiIimJwu0VpndHe6lOqG5mf6d8OB0Un2joxz5kDPnNafLiUCnOroBGcQk1TX7PZ1LTP/+EyXyqOaiUR7SzN7Do3T29HCtn1jLO5qPfKPxtR0orOtma62ZrbsHaG9pZmh0UmW9LTx5Xt3MHhwnFecu5y25ibue+IAq/o7GJ8qMTRaboff9vg+fnLdMjbvGWWqVOLsFb289IwlbNi8n6aATbsPMTQ2ydjkNFv2jjAxVaKUYO3SbhZ1tXLb43sZGpnk8NQ056/up6052D86ydLuNm57vPqI35kD3axd2s3ND++e189Y+YiAnrbyfyoAlvW0s+dQ7avSI2BRZ/n0iDOWdbNl7wilBG0tTfS0txwJ0i1NwVQp0dPewprFnTz85EGam8p/9mcs62ljoLeDXcOHWdXfwUBvOwE8uHOYlf2dDI9Nsrirla62Fr67aQ8/fubSIyH7zIFuJqdL7DowzvK+dk5Z1Mn2/WNMlUpctm6A72zcw0vOWMK/3rMDgJefPcC3fzRIV1szl5y5lCXdbfyfO7bzk+uWceqSLm5/fF822ptY2dfB+rWL+cFj+5gqJe7ZNkRbcxPPP6WPc1f1MTlVDsxTpcRpSzpZ1tPO+FSJnvYWtuwd4QVrFpFS4oa7d9DR2szPvXgNh8anGJuY5paNgzwxNEZ7SxMvP3s5PR0t3LttiPGpEi9c08/YxDRd7S0cGJ1g54HD/OyL11AqJZb2tLNhyz7amptoaQ6WdLdzx5b9nL6ki8Xd5QnQh8cmOWughx88tpfxqRIDve08tPMgl61bxsR0id6OVpZ2tzE2OX1k9H33wcP0drSyrKedMwe66Wht5jO3b6O3o4VXnrucJw8c5oxl3Vx/62ZesnYJf/6NjVzz+nM5d2Uvew6Vt3Ha0q6c/nRW/rkziEnSM1YZVMcmpulobToquJZKifGp0pFRl8lSeW5BgF3D5aujV/R1cMqiTkoJ9o6M86MnD9HaHOwdmWDd8h5am5s4NF6e7PmJoTFOXdzF2GS5Rb/30DhPDh/m4ScPMjI+xUBvOwA7hsZYvaiT7rYWRiamGJucpqu1hcXdrdy9dYhl2Xpdbc3sPTRBc1Nw1vIe3vTC1UyVSuwfnWRkfIpV/R3csnEPl61bxvce3UNK0NPewg8f38fK/g5W9ndw44O7WNzVRn9nK93tzUxOJ7buHeUFa/p5dPAQYxPTLOlu4+aHd7Oyv4NXnLOc9pYmhsYm2T1cDuv7RiaYKpXo62jlji372bBlPy89YwkXruln8OA4y3raGZ2cZsfQGF1tzXzjwd2cs7KXw5PTrOjrYPv+Udat6GVVfweLu9oYnZhi897RI5/D/pEJdh08TFdrC2OT00dGNRd3tRIR9Ha0sKynHALOXtHD2OQ0QyOTjExM0d3WwuGpaSanE0u629g3MsEpizrpbGtmU415IWe84JR+dh88TFAehZuYLj0ttGnh+tOfv5CfuXhNrvswiEmS9CzMhPG5jh5XKpUSuw+Os7SnjZTKo3JQHnUbnypxYGyS7vYWOlqaaIpyMG9pCvo7W9l9cJymJujrKM/72BTBruHDLO1p44n9Y6zs76CnvYXt+8e4a9sQ65b3sKKvg4mpEkNjE+w5OMHpS7s4eHiKFX3tPLhzmOam4MxlPWzdN5qdp1uiraUpO6f2AKcv7WJlXwdjk9PsH52kuQn2HppgVX8n3e3N9HW2sm3fKE0RlFLi3u0HOG9VH1PT5fNz941MsLy3g+Ym2LjrEOev7qOUyqd+7B2ZYNeBw5yzspfJ6RJb943S3NTE+OQ0Y5PTnDnQzeKuNu7aOsRtj+9j3fIeTlncyYM7hjllcSf7sv+0bN9fvqr+4tMXs39kgkcHD/Hyswfo72olJdi2b/RI2//Q+BRrFnex59A4r3/+Km56aBc3Pbyb1ubgZ160hvf+9Hn0dx49r+Z8MohJkiQVpF4Q8545kiRJBTGISZIkFWRBBLGIuCIiHomITRFxTdH1SJIkNULhQSwimoH/CbweOB94W0ScX2xVkiRJ+Ss8iAEvBTallB5LKU0AnwauLLgmSZKk3C2EIHYKsK3i+fZsmSRJ0kltIQSxahOyHDWnRkRcHREbImLD4OBgA8qSJEnK10IIYtuBUyuerwF2zF4ppXRtSml9Smn9wMBAw4qTJEnKy0IIYrcD6yLijIhoA94K3FBwTZIkSblrKbqAlNJURPwW8DWgGfhESumBgsuSJEnKXeFBDCCl9BXgK0XXIUmS1EgLoTUpSZL0nGQQkyRJKohBTJIkqSAGMUmSpIIYxCRJkgpiEJMkSSqIQUySJKkgkdJRt3Vc8CJiENiS826WAXty3oeK4/E9eXlsT24e35PXyXxsT08pVb0/4wkZxBohIjaklNYXXYfy4fE9eXlsT24e35PXc/XY2pqUJEkqiEFMkiSpIAax2q4tugDlyuN78vLYntw8viev5+Sx9RwxSZKkgjgiJkmSVBCDWBURcUVEPBIRmyLimqLr0fGLiM0RcV9E3B0RG7JlSyLixojYmD0urlj/97Lj/UhEvK64ylVNRHwiInZHxP0Vy477eEbEi7M/F5si4i8iIhr9s+jpahzbD0TEE9nv790R8VMVr3lsTxARcWpEfDMiHoqIByLindlyf3crGMRmiYhm4H8CrwfOB94WEecXW5WeoVeklC6quBz6GuCmlNI64KbsOdnxfStwAXAF8PHsz4EWjusoH5tKz+R4/hVwNbAu+5q9TTXedVQ/Dn+W/f5elFL6CnhsT0BTwLtSSucBlwDvyI6hv7sVDGJHeymwKaX0WEppAvg0cGXBNWl+XAlcn31/PfDmiuWfTimNp5QeBzZR/nOgBSKldAuwb9bi4zqeEbEK6Esp3ZrKJ8d+suI9KkiNY1uLx/YEklLamVK6M/v+IPAQcAr+7j6NQexopwDbKp5vz5bpxJKAr0fEHRFxdbZsRUppJ5T/ggCWZ8s95iem4z2ep2Tfz16uhem3IuLerHU507ry2J6gImIt8CLgNvzdfRqD2NGq9Z29tPTEc2lK6WLKLeZ3RMRlddb1mJ9cah1Pj/OJ46+As4CLgJ3An2TLPbYnoIjoAT4H/E5KabjeqlWWnfTH1yB2tO3AqRXP1wA7CqpFz1BKaUf2uBv4F8qtxl3ZEDfZ4+5sdY/5iel4j+f27PvZy7XApJR2pZSmU0ol4G956lQBj+0JJiJaKYewT6WUPp8t9ne3gkHsaLcD6yLijIhoo3zi4A0F16TjEBHdEdE78z3wWuB+ysfxqmy1q4AvZt/fALw1Itoj4gzKJ4L+sLFV6xk4ruOZtUAORsQl2RVXv1TxHi0gM/9IZ/4d5d9f8NieULJj8ffAQymlP614yd/dCi1FF7DQpJSmIuK3gK8BzcAnUkoPFFyWjs8K4F+yq5tbgH9KKX01Im4HPhsRbwe2Am8BSCk9EBGfBR6kfJXPO1JK08WUrmoi4n8DlwPLImI78H7gIxz/8fxNylfpdQL/ln2pQDWO7eURcRHl9tNm4NfBY3sCuhT4D8B9EXF3tuy9+Lv7NM6sL0mSVBBbk5IkSQUxiEmSJBXEICZJklQQg5gkSVJBDGKSJEkFMYhJWtAi4rqI+FLRdVSKiCsjYmNETEXEdUXXU0tEXB4RKSKWFV2LpOoMYpJqykJQiojfn7X8uf4P/N9Rni38dOCdBdci6QRmEJN0LIeBd0fEQNGFzKfs1ivP5H2LgGXA11JKT6SUDsxrYZKeUwxiko7lm5RnN39frRWqjZBFxNps2fpZ67w+Iu6IiLGI+E5ErImIl0fEPRFxKCK+FBFLq+zj9yNiV7bOP0REZ8VrERHvjohHs+3eFxG/WKWWt0XEzRExRjZbe5X9LI6I6yNif7atb0TEBTM/A7A/W/XmbJuX19hOW0T814jYHhEjEXF7RLyuymf2hoi4OyIOZ5/Li2dt52eyn2c8IrZFxP+X3ealcj//JSK2ZOs8FhG/PaucCyPitogYjYgNEXFxtZolNZ5BTNKxlIBrgN+IiLPmYXt/CPwO8GPAYuAzwB8AV1O+1c0FwAdmveflwIXAq4CfpXz/0P9a8fofA28H3gGcD3wY+JuI+OlZ2/kw8PFsnS/UqO+6rLYrKd9sehT4ahb8vp/VR1bHqmxZNf+Q1f1/AS8Argf+NSIunLXeR4H3AOuBx4AvR0QXQBbK/hn4fLaNa4DfA36r4v3XU7733n8Czss+h6EqP/c1wMXAXuBTlWFOUoFSSn755ZdfVb8oh5IvZd9/E/h09v3llO8DuKza82zZ2mzZ+lnrvK5ind/Kll1csewDwP2zahgCeiqW/SIwDnRnX2PAT86q/WPAV2bV8q5j/LzrsvUuq1jWDxwAfi17vixb5/I62zmLcoA9bdbyLwAfn/V5/PuK13uyn3VmX58Cbp61jQ8A22fVe0WNOqp95pdmy9YU/efLL7/8St70W9KcvRv4QUR89Flu596K73dlj/fNWrZ89ntSSocqnt8KtFEOPO1AB+VRq8qb57ZSbqlW2nCM2s6jHKBunVmQUjoQEfdRHkWbq4uBAB6cNfDUDtw8a93KfR2ata/zgC/PWv+7wPsjog94UVbvN49RT+VnviN7XA5sP8b7JOXMICZpTlJKt0fE5yi3BD846+VS9liZOmqdDD9Zudls27OXHc9pEzPrvhHYWmdfACPH2Fa9dl2q81q1mhLwkio1jB3HdqLOfhP166101GeOp6ZIC4K/iJKOx3uBnwSumLV8MHtcVbHsonnc7wsiorvi+SXABPAo8CDlNuXpKaVNs762HOd+HqT89+KPzyzIRp5ekL02V3dRDkkrq9T0xKx1L6nYVzfwfOChinp+Ytb6P0G5NXkQuDOr9xXHUZukBcQRMUlzllLaFBHXcvTcWZuAbcAHIuIayudk/T7zpwX4RET8EbAa+AjwtymlEYCsXfrR7AT0Wyifa3UJUEopXTvXnaSUNkbEFymf6H815fO1PgQMA/90HNv5UUR8CrguIt5FOTAtoXzO1mMppc9XrP77ETFIuWX4B5QD5sy+/gS4PSI+kC17CfAuyoF4pt7PAn8XEe/M9rMGWJtS+l9zrVdScRwRk3S8/giYqlyQtRbfCpwJ3EP5ysj3zuM+vw08QPlcqH+hfJ7Vuytefx/lk9j/32y9Gylf1fj4M9jXrwA/BG7IHrsonwx/PC3Fme38A/DfgIeBLwGXAbNH6a6hHLjupHzy/RtmAmZK6U7gLdnPcj/lAPoR4C8r3v9LlEPaX2T7uY7yBQaSTgCR0vGc9iBJmg/Z/GPfBAZSSnuKrUZSURwRkyRJKohBTJIkqSC2JiVJkgriiJgkSVJBDGKSJEkFMYhJkiQVxCAmSZJUEIOYJElSQQxikiRJBfn/AWzyiR8ZOC+WAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAH5CAYAAAAiH1L7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAA86ElEQVR4nO3deXxcV3338c9PoxlpRpL3NV7i7DshibNBSNgKAVKgLZSlYYcUCi080FLoQwulTyntAxRaKDQsSXgIa9hSypYSQsKWxM5CFic4TuzYjhd5tyTL2s7zx4wcRUi2lhldyf68X695zcy9d+78RpckX84595xIKSFJkqSJV5d1AZIkSUcqg5gkSVJGDGKSJEkZMYhJkiRlxCAmSZKUEYOYJElSRgxiknQQEbEsIlJEXJ11LZIOPwYxSTVXCTKjeby2BjW8tlbnlqSxqs+6AElHhL8fYts7gOnAJ4Bdg/bdVdtyJGlyMIhJqrmU0gcGb6u0TE0HPp5SWjvBJUnSpGDXpKRJJyLOj4jrImJzRHRFxPqI+M+IOGqIY4+NiCsj4qGI2BcROyLinoj4TETMrhxzE3BV5SNXDeoGXTaOOhdGxKciYm2lztaI+FZEnDPEsYWI+IuIuCMidkZER+Vz342IZw869mkR8V8RsSEi9lf+Dr+OiPePtVZJk5MtYpImlYh4HfBZYD9wPbAeOAF4I/D7EXFBSunRyrELgduBacD3gW8CjcAxwKuATwLbgaspd3++CPguT+z63DXGOo8Bfg4cBdwIfAVYArwUeEFE/FFK6XsDPnI18ArgXuCLwL7KZy8CLgX+p3LeS4H/BvZUfv9GYBZwCvBnDN3NK2mKMohJmjQi4kTgP4G1wCUppY0D9j0TuIHymLI/qGx+CeWQ8o6U0icGnasJ6ANIKV0dEVAOYt9JKV1dhXI/QzlIvS+l9I8Dvvc/gJuBayLi6JRSW0RMB14OrATOTyn1Dqp19oC3b6LcW/H0lNLdg46bU4W6JU0idk1KmkzeAuSBtw8MYQAppRsptxD9fkS0DPrcvsEnSim1p5R+Z3s1RMRi4DnAo8C/DPreX1JuHZsF/GH/ZiAot/L1DVHr9iG+ZqjftG1chUuadGwRkzSZXFh5viQizh1i/zwgB5xIuXXpeuBDwKci4rnAj4BfAPenlFIN6zyr8nxLSql7iP03ApdXjvtiSmlPRPwX8PvAXRHxTeAW4NaUUsegz15LOcDdGhFfA34K/CKltKEWP0RStgxikiaT/i66vzrEcc0AKaV1EXEe8AHK46z6W6DWR8RHUkr/VpMqy3d7AmwaZn//9hkDtr0M+GvglTw+zqszIq4D/jKltAUgpfStiLgMeBfweuBPASJiJfDelNIN1foRkrJn16SkyWR35Xl6SikO8vhZ/wdSSqtSSi+jHOKWA++h/O+2T0TEG2pc54Jh9i8cdBwppX0ppQ+klE4EllJuMft55fm6gR9OKf13SumZwEzgWcC/AqcB34uIU6v2KyRlziAmaTL5deX5aaP9YEqpJ6W0MqX0z5TvTgR48YBD+gfI58Ze3gF3Vp4vioihehaeUXm+Y6gPp5TWp5SuBZ4LrK6cZ/YQx7WnlG5MKb2TchdsAXjeuKuXNGkYxCRNJp8EuoF/rdxB+QSVubieNuD9eRExf4jz9G8bOP6qf0D80vEWWRmvdQOwjPIKAQNrPJ9y9+NO4NuVbXMr2wdrAlqAHqCrcuyzIqI4xLFD/SZJU5xjxCRNGimlByLi9cAXgPsi4ofAbynfSbmUcktZK3By5SOvBN4aET8DHqIcfo6jPCh+P/DxAaf/FeUQ846ImAVsqWz/95TSbkbvzZRvDPi/EfEcYAWPzyPWB7wupbS3cuwi4NcRsYpyK9l6ynOfXUa5e/PfBhz7UWBZZRLatZQD2jnAM4F1wFfHUKukSSpqe2ORJA0tItYCRwPHDF7iKCLOoDxY/RmUg0o78Bjl4PO1ylQW/a1PrwWeQjkEFSlPgHoL8NGU0r2Dznsp8H7gDMqtUQz1/YM+swx4BLgmpfTaQfsWAe8Dnk95XNgeyuO+/jGldPuA42YAfwE8HTgJmAPsAB6kPG/aV/vv8oyIP6Y8T9ryyjn7KE+T8V3Ky0G1DlerpKnHICZJkpQRx4hJkiRlxCAmSZKUEYOYJElSRgxikiRJGZmwIBYRX4iIrRFx74BtsyLihohYXXmeOVH1SJIkZW3C7pqMiIuBNsoL4J5e2fYvwI6U0ocj4j3AzJTSXx/qXHPmzEnLli2rab2SJEnVsHLlym0ppblD7ZuwCV1TSjdX5uMZ6EWU59UBuAa4ifKiuAe1bNkyVqxYUc3yJEmSaiIi1g23L+sxYvNTSpsAKs/zMq5HkiRpwmQdxEYsIq6IiBURsaK11YmlJUnS1Jd1ENsSEQsBKs9bhzswpXRlSml5Smn53LlDdrNKkiRNKVkHseuB11Rev4byWmqSJElHhImcvuIrwK+AkyJiQ0S8Afgw8HsRsRr4vcp7SZKkI8JE3jX5imF2PWuiapAkSZpMsu6alCRJOmIZxCRJkjJiEJMkScqIQUySJCkjBjFJkqSMGMQkSZIyYhCTJEnKiEFMkiQpIwYxSZKkjBjEJEmSMmIQG0J3bx8727tIKWVdiiRJOowZxIZwzS/XctY/3EDb/p6sS5EkSYcxg9gQGvM5APZ19WZciSRJOpwZxIZQKlSCWLdBTJIk1Y5BbAjFSotYhy1ikiSphgxiQyjaIiZJkiaAQWwIpUI94BgxSZJUWwaxIRQdrC9JkiaAQWwI/V2THXZNSpKkGjKIDaE/iHXaIiZJkmrIIDaE0oG7Jp3QVZIk1Y5BbAh2TUqSpIlgEBtCQ30dEXZNSpKk2jKIDSEiKOZzTugqSZJqyiA2jFIh54SukiSppgxiwygWcs4jJkmSasogNoxi3hYxSZJUWwaxYRQL9Y4RkyRJNWUQG0YxX2eLmCRJqimD2DBKhXrHiEmSpJoyiA2jPH2FM+tLkqTaMYgNo1jI0dndl3UZkiTpMGYQG4YtYpIkqdYMYsNwQldJklRrBrFh9HdN9vWlrEuRJEmHKYPYMIr5HACdPbaKSZKk2jCIDaNUKAcxJ3WVJEm1YhAbRmOlRcy5xCRJUq0YxIZRKtQDOGBfkiTVjEFsGMVC+U9j16QkSaoVg9gwivlKi5hBTJIk1YhBbBjFymD9fd1O6ipJkmrDIDaM/rsm93W5zJEkSaqNSRHEIuLtEXFvRNwXEe/Iuh54fB4xlzmSJEm1knkQi4jTgTcB5wFnApdFxAnZVvV412Snd01KkqQayTyIAacAv04pdaSUeoCfAX+QcU1O6CpJkmpuMgSxe4GLI2J2RJSA5wNLMq6Jxvr+wfoGMUmSVBv1WReQUloVEf8M3AC0AXcDvzMwKyKuAK4AWLp0ac3rqqsLGvN1Tl8hSZJqZjK0iJFS+nxK6eyU0sXADmD1EMdcmVJanlJaPnfu3Ampq5jP2TUpSZJqJvMWMYCImJdS2hoRS4E/BC7MuiYoL3Nk16QkSaqVSRHEgG9GxGygG3hrSmln1gUBdk1KkqSamhRBLKX0tKxrGIotYpIkqZYmxRixyao8RswJXSVJUm0YxA6iWMixr9sljiRJUm0YxA6iVMixzxYxSZJUIwaxgyjmc44RkyRJNWMQO4hiIeddk5IkqWYMYgfhhK6SJKmWDGIHUSqUuyZTSlmXIkmSDkMGsYNoLORICfb3eOekJEmqPoPYQZTyOQDHiUmSpJowiB1EsVAOYh3eOSlJkmrAIHYQxUJ5BShbxCRJUi0YxA7CrklJklRLBrGD6O+adFJXSZJUCwaxgzgwRsxljiRJUg0YxA6iaNekJEmqIYPYQZTsmpQkSTVkEDuI/hYxlzmSJEm1YBA7iP4xYp22iEmSpBowiB2ELWKSJKmWDGIHUZ+ro5Crc4yYJEmqCYPYITTm67xrUpIk1YRB7BBKhXqDmCRJqgmD2CGUCjkX/ZYkSTVhEDuExnyOfc6sL0mSasAgdgilQs7B+pIkqSYMYodQLOScvkKSJNWEQewQivmcg/UlSVJNGMQOoWjXpCRJqhGD2CGUCraISZKk2jCIHUKjXZOSJKlGDGKH4F2TkiSpVgxih1Aq1NPTl+jq6cu6FEmSdJgxiB1CYz4HYPekJEmqOoPYIZQKlSBm96QkSaoyg9ghFCstYh0ucyRJkqrMIHYIRVvEJElSjRjEDqHoGDFJklQjBrFDcIyYJEmqFYPYITQeGCNmEJMkSdVlEDuE/haxTlvEJElSlRnEDqFUqAdsEZMkSdVnEDuEol2TkiSpRgxih1C0a1KSJNXIpAhiEfG/IuK+iLg3Ir4SEY1Z19QvnwtydeGErpIkqeoyD2IRsQj4C2B5Sul0IAe8PNuqHhcRlPI59nW56LckSaquzINYRT1QjIh6oAQ8lnE9T9BYyLGv2xYxSZJUXZkHsZTSRuAjwKPAJmB3SunH2Vb1RKVCzpn1JUlS1WUexCJiJvAi4BjgKKApIi4f4rgrImJFRKxobW2d0BqL+Zx3TUqSpKrLPIgBzwYeSSm1ppS6gW8BTxl8UErpypTS8pTS8rlz505ogcVCziWOJElS1U2GIPYocEFElCIigGcBqzKu6QmKebsmJUlS9WUexFJKtwLXAXcA91Cu6cpMixqkVLBrUpIkVV991gUApJTeD7w/6zqGUyzUO6GrJEmqusxbxKaCYr7OFjFJklR1BrERKBXqHawvSZKqziA2Ao0O1pckSTVgEBuBUiFHV28fPb0ucyRJkqrHIDYCxXwOwO5JSZJUVQaxESgWDGKSJKn6DGIjcKBFzHFikiSpigxiI1CyRUySJNWAQWwE+rsmnUtMkiRVk0FsBOyalCRJtWAQG4FSobwSlEFMkiRVk0FsBIqF8p+pwzFikiSpigxiI1CstIh12iImSZKqyCA2Av1jxDq6ejKuRJIkHU4MYiPw+PQVLnEkSZKqxyA2Ag31dUTAPlvEJElSFRnERiAiKOZzTugqSZKqyiA2QqVCzgldJUlSVRnERqgxn3MeMUmSVFUGsREqFeyalCRJ1WUQG6Fi3q5JSZJUXQaxESraIiZJkqrMIDZCRceISZKkKjOIjVCpUG+LmCRJqiqD2Ah516QkSao2g9gIedekJEmqNoPYCBULORf9liRJVWUQG6FiPkdndx99fSnrUiRJ0mHCIDZCpUIOgM4euyclSVJ1GMRGqFgJYk7qKkmSqsUgNkLFfDmIeeekJEmqFoPYCPW3iHnnpCRJqhaD2Aj1jxGzRUySJFWLQWyEGvOOEZMkSdVlEBuhUqEegE67JiVJUpUYxEaoaIuYJEmqMoPYCJUOTF/h7PqSJKk6DGIj1H/XpF2TkiSpWgxiI2TXpCRJqjaD2AgdmNDVFjFJklQlBrERqqsLGurrnEdMkiRVjUFsFEqFnC1ikiSpagxio1DM5xwjJkmSqsYgNgpFW8QkSVIVZR7EIuKkiLhrwGNPRLwj67qGUizkHCMmSZKqpj7rAlJKDwJPBoiIHLAR+HaWNQ2nlK93QldJklQ1mbeIDfIsYE1KaV3WhQyl3DXZl3UZkiTpMDHZgtjLga8MtSMiroiIFRGxorW1dYLLKivmc+yzRUySJFXJpAliEVEAXgh8Y6j9KaUrU0rLU0rL586dO7HFVTh9hSRJqqZJE8SA5wF3pJS2ZF3IcBodrC9JkqpoMgWxVzBMt+RkUcobxCRJUvVMiiAWESXg94BvZV3LwRQLOTq6e0kpZV2KJEk6DGQ+fQVASqkDmJ11HYdSLORICfb39NFYWQRckiRprCZFi9hUUayEL7snJUlSNRjERqFUKAexDu+clCRJVWAQG4VGW8QkSVIVGcRGoVQoD6kziEmSpGowiI1Cf9ekk7pKkqRqMIiNQn/XpAt/S5KkajCIjUJ/i1inLWKSJKkKDGKjUDzQImYQkyRJ42cQGwXHiEmSpGoyiI1CY8HpKyRJUvUYxEbBrklJklRNBrFRyOfqyOfCrklJklQVBrFRKuZzdk1KkqSqMIiNUqlQbxCTJElVYRAbpWIh56LfkiSpKgxio2TXpCRJqhaD2CgVCzn2dbvEkSRJGj+D2CiVCraISZKk6jCIjVJjPuc8YpIkqSoMYqNUKuScR0ySJFWFQWyUHKwvSZKqxSA2SkXHiEmSpCoxiI2SXZOSJKlaDGKjVMzn6OlLdPX0ZV2KJEma4gxio1Qs1APYKiZJksbNIDZKxXwOwHFikiRp3Axio1QqVIKYLWKSJGmcDGKj1FhpEevocpkjSZI0PgaxUTrQImbXpCRJGieD2CgV7ZqUJElVYhAbpeKBrkmDmCRJGh+D2Cj1t4h12iImSZLGySA2Sv1jxGwRkyRJ42UQG6VSvjKhq0FMkiSNk0FslBoL5T+Zg/UlSdJ4GcRGqZCrI1cXtohJkqRxM4iNUkRQzOccIyZJksbNIDYGxUKOfd3OrC9JksbHIDYGxXzOrklJkjRuBrExKBXsmpQkSeNnEBuDxnzOuyYlSdK4GcTGoFSwa1KSJI3fiIJYRPwyImYMeP9PETFrwPs5EfFoDeqblEoFW8QkSdL4jbRF7AKgMOD9W4EZA97ngEVjLSIiZkTEdRHxQESsiogLx3quidDoYH1JklQF9WP8XFS1CvgE8MOU0ksiogCUqnz+qrJFTJIkVcNYg1jVRMQ04GLgtQAppS6gK8uaDsUJXSVJUjWMtGsyVR6Dt1XDsUArcFVE3BkRn4uIpsEHRcQVEbEiIla0trZW6avHpliot2tSkiSN20hbxAL4UkTsr7xvBD4bER2V9w3jrOFs4M9TSrdGxCeA9wB/O/CglNKVwJUAy5cvr1YIHJNiPkdXbx89vX3U57zxVJIkjc1Ig9g1g95/aYhjvjjGGjYAG1JKt1beX0c5iE1apUIOgH3dvbQYxCRJ0hiNKIillF5XqwJSSpsjYn1EnJRSehB4FnB/rb6vGhoHBrHGfMbVSJKkqWpcg/UjYinQDKxKKY2nu/DPgWsrd0w+DNQs+FVDKV8JYo4TkyRJ4zCiIBYRLwNmpZQ+PWDbp4ErKm8fiIjnpJQ2jqWIlNJdwPKxfDYLA7smJUmSxmqkA5z+HOjrfxMRzwb+FPg74KWV8/zt0B89/PR3TTqFhSRJGo+Rdk2eBNw64P2LgB+nlP4RICI6gU9WubZJq79rstMgJkmSxmGkLWLNwI4B758C3Djg/X3AgmoVNdkVbRGTJElVMNIgtgE4DQ7MhH8G8IsB+2cDbdUtbfLqHyPW4RgxSZI0DiPtmvwG8G8R8U/ApcAm4NcD9i8HHqhybZNWo12TkiSpCkYaxP4BWAx8FNgMXJ5SGphCXgH8d5Vrm7RKhfKfraOrJ+NKJEnSVDbSCV33Aa8+yP5nVK2iKaDYP49Yd98hjpQkSRreSOcRu34Eh6WU0ovGWc+U0JgvD63bZ4uYJEkah5F2TV4GrANuql0pU0dEUMznnNBVkiSNy0iD2EeAy4GLgauAq1NKG2pW1RRQKuScvkKSJI3LiKavSCm9G1gC/C/Kd0iujogfRMRLIuKIXPW6WLBFTJIkjc9I5xEjpdSbUro+pfRi4Bjgp8D/ATZGRHON6pu0ivmci35LkqRxGXEQG6QJmEF5xv02IFWroKnCrklJkjReIw5iEVGMiNdExM3APcDRwGtSSsemlNprVuEk1ehgfUmSNE4jnb7iSuBlwGrg88ALU0q7aljXpFcq5NjW1pV1GZIkaQob6V2TbwQepby00fOA50XE7xyUUnph9Uqb3BysL0mSxmukQeyLHIHjwA6mmK93sL4kSRqXkS5x9Noa1zHlFAt1tohJkqRxGetdk0e8UqHeRb8lSdK4GMTGqJjP0dndR1+fPbaSJGlsDGJjVCzkAOjssXtSkiSNjUFsjEqVIOaAfUmSNFYGsTFqzJeDmLPrS5KksTKIjdGBFjHvnJQkSWNkEBujYt6uSUmSND4GsTHqH6xv16QkSRorg9gY9beIddo1KUmSxsggNkalQnlRAlvEJEnSWBnExsjB+pIkabwMYmPUeGCwvsscSZKksTGIjZEtYpIkabwMYmPkhK6SJGm8DGJjlKsLGurrnEdMkiSNmUFsHIqFnF2TkiRpzAxi41DK5+yalCRJY2YQG4dGW8QkSdI4GMTGoVTIOUZMkiSNmUFsHIp5g5gkSRo7g9g4FAv1dNg1KUmSxsggNg6lfI5OW8QkSdIYGcTGoVjI0dHtEkeSJGlsDGLjUHSwviRJGgeD2Dg4WF+SJI1HfdYFAETEWmAv0Av0pJSWZ1vRyJQKOTq6e0kpERFZlyNJkqaYSRHEKp6RUtqWdRGj0ZjPkRLs7+k7sAi4JEnSSNk1OQ6lQjl82T0pSZLGYrIEsQT8OCJWRsQVQx0QEVdExIqIWNHa2jrB5Q2tWGkFc5kjSZI0FpMliD01pXQ28DzgrRFx8eADUkpXppSWp5SWz507d+IrHEKx0iLmwt+SJGksJkUQSyk9VnneCnwbOC/bikamVCgPseu0RUySJI1B5kEsIpoioqX/NfAc4N5sqxqZ/q5JW8QkSdJYTIa7JucD365M/1APfDml9MNsSxqZx7smnV1fkiSNXuZBLKX0MHBm1nWMRX+LmF2TkiRpLDLvmpzKSg7WlyRJ42AQG4f+rkmnr5AkSWNhEBuHohO6SpKkcTCIjcOBCV0NYpIkaQwMYuOQz9WRzwUddk1KkqQxMIiNUzGfs0VMkiSNiUFsnIoFg5gkSRobg9g4lQr1dk1KkqQxMYiNU6Ndk5IkaYwMYuNUKuTY1+0SR5IkafQMYuPkYH1JkjRWBrFxKhZyLnEkSZLGxCA2TsV8zkW/JUnSmBjExqlki5gkSRojg9g4NeZzLvotSZLGxCA2TiUndJUkSWNkEBunUiFHT1+iq6cv61IkSdIUYxAbp8Z8DsDuSUmSNGoGsXEqFeoB7J6UJEmjZhAbp2Kh/Ce0RUySJI2WQWycivlyi1hHl8scSZKk0TGIjVOxUB4j5qSukiRptAxi41SqBDEndZUkSaNlEBunYuWuybZOuyYlSdLoGMTGaensEjNKef7vjx5kV0dX1uVIkqQpxCA2TtMa83z21cvZsHMfV3xxJft77KKUJEkjYxCrgnOXzeIjf3wmt63dwV994zf09aWsS5IkSVNAfdYFHC5eeOZRbNjZwb/88EGWzCryV889OeuSJEnSJGcQq6K3XHIc63d08KmfrmHJzBIvP29p1iVJkqRJzCBWRRHBB190Oht3dfK/v3MvR80ocvGJc7MuS5IkTVKOEauyfK6OT73yLE6Y18yfXXsHqzbtybokSZI0SRnEaqClMc9VrzuXpoYcr7/6djbv7sy6JEmSNAkZxGpk4fQiX3jtuezZ183rr76dtv1O+CpJkp7IIFZDpx01nU/+ydk8uGUvb/vyHfT09mVdkiRJmkQMYjX2jJPm8Q8vOp2bHmzl/dffR0rOMSZJksq8a3ICvPL8pazf2cGnb1rD0lkl/vSS47IuSZIkTQIGsQnyV885ifU7OvinHzzAoplFLnvSUVmXJEmSMmYQmyB1dcFHXnomm3d38s6v381RM4qcvXRm1mVJkqQMOUZsAjXmc/znq85hwbRG3nTNCtbv6Mi6JEmSlCGD2ASb3dzAF157Lt29fbz+6tvZva8765IkSVJGDGIZOH5eM5+5/Bwe2dbO2758B91OayFJ0hHJIJaRpxw/hw/94Rncsnobf/ddp7WQJOlI5GD9DP3x8iU8sq2dT9+0hmPnNPGmi4/NuiRJkjSBJk2LWETkIuLOiPhe1rVMpL96zkk8/4wFfOgHq/jRfZuzLkeSJE2gSRPEgLcDq7IuYqLV1QUf++Mn86TFM3j7V+/kng27sy5JkiRNkEkRxCJiMfAC4HNZ15KFxnyOz716ObObGnjDNbfz2K59WZckSZImwKQIYsDHgXcDw94+GBFXRMSKiFjR2to6YYVNlLkt5Wkt9nX18vqrb6dtf0/WJUmSpBrLPIhFxGXA1pTSyoMdl1K6MqW0PKW0fO7cuRNU3cQ6aUELn/yTs1m9tY23ffkOepzWQpKkw1rmQQx4KvDCiFgLfBV4ZkR8KduSsnPJiXP5+xeexk0PtvIP37s/63IkSVINZR7EUkrvTSktTiktA14O3JhSujzjsjJ1+QVH88aLjuGaX63jql88knU5kiSpRpxHbJJ67/NPYd2ODj74vftpbqjnpcuXZF2SJEmqssxbxAZKKd2UUros6zomg1xd8O+vOIuLjp/Du7/5G75954asS5IkSVU2qYKYnqgxn+PKVy3n/GNm8a6v381/3f1Y1iVJkqQqMohNcsVCjs+/5lzOOXom7/jaXfzw3k1ZlyRJkqrEIDYFNDXUc9XrzuPMxdN525fv5Ib7t2RdkiRJqgKD2BTR3FDP1a8/j9OOmsafXbuSnz6wNeuSJEnSOBnEppBpjXm++PrzOXF+C3/6pZXcsvrwW2FAkqQjiUFsipleyvOlN5zPsXOaeOM1K/jlmm1ZlyRJksbIIDYFzWwqcO0bz2fprBJvuHoFtz2yI+uSJEnSGBjEpqjZzQ1c+6bzWTijkddddRsr1xnGJEmaagxiU9i8lka+8qYLmNvSwGu/cDt3rd+VdUmSJGkUDGJT3PxpjXz5TRcwoynPqz5/K79+eHvWJUmSpBEyiB0GjppR5CtvuoB5LQ286vO38s2VLockSdJUYBA7TCyeWeJbb3kq5y6bxbu+cTcf/fGD9PWlrMuSJEkHYRA7jEwv5bnm9efxsuVL+PcbH+Ivvnonnd29WZclSZKGUZ91AaqufK6OD//RGRwzt4kP/+ABNu7ax2dfvZw5zQ1ZlyZJkgaxRewwFBG8+ZLj+MzlZ7Nq0x5e/KlfsHrL3qzLkiRJgxjEDmOXnr6Qr11xIft7+vjD//ilSyJJkjTJGMQOc2cumcF33vpUFs0s8tqrbucrtz2adUmSJKnCIHYEWDSjyDfefCEXHT+H937rHj70/VXeUSlJ0iRgEDtCtDTm+fxrlvPqC4/mypsf5s1fWklHV0/WZUmSdEQziB1B6nN1fPBFp/P+3z+V/1m1hVd+9lZ2tHdlXZYkSUcsg9gR6HVPPYZPX34Oqzbt4SWf+SXrd3RkXZIkSUckg9gR6rmnLeBLbzyfbXv380ef/iX3P7Yn65IkSTriGMSOYOcum8V1b3kKubrgZf/5K361xgXDJUmaSAaxI9yJ81v45luewvzpjbzmC7fx/Xs2ZV2SJElHDIOYOGpGkevefCFPWjydt375Dr74q7VZlyRJ0hHBICYAZpQKfOmN5/Osk+fzd9+9j//7owdIybnGJEmqJYOYDmjM5/jM5WfzivOW8KmfruHd1/2Gnt6+rMuSJOmwVZ91AZpc6nN1fOgPzmBuSyP/9pPVbG/v4lOvPJtiIZd1aZIkHXZsEdPviAje+Xsn8n9efDo3PbiVV37u1078KklSDRjENKzLLzia//iTc7jvsT087xM384N7NjluTJKkKjKI6aAuPX0B1735QmY3NfCWa+/gDdescCZ+SZKqxCCmQ3rS4hlc/7an8r4XnMKvH97Oc/71Zj7zszV0O5BfkqRxMYhpROpzdbzxacdywzsv4aIT5vDhHzzA7//7z1m5bmfWpUmSNGUZxDQqi2YU+eyrl3Plq85hz75u/ujTv+S937qH3R3dWZcmSdKUYxDTmDzntAXc8M5LeONFx/D1Fet51sdu4jt3bnQwvyRJo2AQ05g1NdTzvstO5fq3PZVFM0u842t38arP38Yj29qzLk2SpCnBIKZxO+2o6XzrLU/hH150Gnev38Vz//VmPvrjB9nX1Zt1aZIkTWoGMVVFri541YXL+Mm7LuH5Zyzg3298iGd/7Gf88N7NdldKkjQMg5iqat60Rj7+8rP42hUX0NJYz5u/tJLXXHU7D7e2ZV2aJEmTjkFMNXH+sbP53p9fxN9ddip3rtvJpR+/hX/54QN0dPVkXZokSZOGQUw1U5+r4/UXHcNP/vISLjtzIf9x0xqe/dGf8X2XSpIkCTCIaQLMa2nkY3/8ZK5784VMLxX4s2vv4FWfv42HttpdKUk6shnENGGWL5vFf73tqfz9C0/j7g27eN4nbuaffrCKXR1dWZcmSVImIusuoohoBG4GGoB64LqU0vsP9pnly5enFStWTER5qpFtbfv55x88wDdWbqBUyPGyc5fwxqcdy6IZxaxLkySpqiJiZUpp+ZD7JkEQC6AppdQWEXng58DbU0q/Hu4zBrHDx4Ob9/KfN6/h+rseIwEvPPMorrj4WE5ZOC3r0iRJqoqDBbHMuyZTWf9goXzl4UjuI8RJC1r42B8/mZ+9+xm89inL+NF9m3neJ27htVfdxq/WbHdQvyTpsJZ5ixhAROSAlcDxwKdSSn89xDFXAFcALF269Jx169ZNbJGaELs7uvl/v17LVb9Yy/b2Ls5cMoM3X3wszzltAbm6yLo8SZJGbVJ3TQ4UETOAbwN/nlK6d7jj7Jo8/HV293Ldyg189paHWbe9g2PmNPGmpx3Li886ilKhPuvyJEkasSkTxAAi4v1Ae0rpI8MdYxA7cvT2JX5472Y+87M13LNxN4X6Oi44djbPOnkezzx5HktmlbIuUZKkg5rUQSwi5gLdKaVdEVEEfgz8c0rpe8N9xiB25Ekpcfvanfz4vs3c+MBWHt7WDsCJ85t55snzeebJ8zh76Qzqc5kPe5Qk6QkmexB7EnANkKN888DXU0ofPNhnDGJ6uLWNGx/Yyk8f3MqtD++gpy8xvZjn6SfN5Zknz+OSE+cyo1TIukxJkiZ3EBsLg5gG2tPZzc9Xb+Mnq7Zy04Nb2d7eRV3AhcfN5iXnLObS0xZSLOSyLlOSdIQyiOmI0deXuHvDLn6yaivX3/0Yj+7ooKWhnsvOPIqXLl/MWUtmUJ66TpKkiWEQ0xGpry9x29odfH3Fen5wz2b2dfdy/LxmXnrOYv7g7EXMa2nMukRJ0hHAIKYj3t7Obr5/zya+vmIDK9ftJFcXPP3Eubx0+RKeefI8CvUO8pck1YZBTBpgTWsb31ixgW/dsYGte/czq6nAZU9ayDlHz+T0RdM5ZnYTdU4eK0mqEoOYNISe3j5uWb2Nr69Yz40PbGV/Tx8AzQ31nHbUNJ60eDqnL5rOkxbP4OhZJcOZJGlMDhbEnKJcR6z6XB3POHkezzh5Hj29faze2sY9G3dzz4bd3LNxN9f8ah1dlXDW0lDP6Yumc8bi6Zx21DQWTGtkVlOBmU0FZhTzzl8mSRoTW8SkYXT39rF6Sxv3bNx1IKCt2rSXrt6+3zl2ejHPzFKemU0FZpXKAa3//dGzmjhpQQvHzGlyvUxJOgLZIiaNQT5Xx6lHTePUo6bxsnPL27p6+nh4Wxvb9naxo6OLXR1d7GjvYmd7Fzs6utnV0cXmPZ2s2rSHHR1ddHY/Htoa6us4cX4LJy9o4aQFLZyycBonL2hhdnNDRr9QkpQ1g5g0CoX6Ok5eMA0WjOz4jq4eHtnWzgOb9vLA5j08sHkvN/22lW+s3HDgmDnNDZyysBzQjppRBCAl6G+r7m+1Lm97/HWxkOOZJ89j8UzX25SkqcquSSkD29r28+DmvazatIcHN+/lgc17+e2WvQduGBiN85bN4sVnLeIFZyxkeilfg2olSePhXZPSFNDT28eezh4CiIAgoDKkLCovI6J/E9va9vNfdz/Gt+/cyJrWdgq5Op5+0lz+4KxFPOPkeTTma7us0+593fz0ga3s3tfNS85ZTFODDeySNBSDmHQYSylx32N7+PadG7n+7sdo3buflsZ6nn/6Ql581iLOP2ZW1abe2Lq3kxvu38KP7tvCr9Zso7u3/O+PeS0NvOs5J/KSc5Z4Q4IkDWIQk44QvX2JX67ZxnfufIwf3ruJ9q5eFk5v5IVnHsWZS2awdFaJJTNLo+rCfHR7Bz+6bzM/um8zKx/dSUpw9OwSl562gOectoCUEh/6/irueHQXJ81v4W9ecAqXnDi3hr9SkqYWg5h0BNrX1cv/rNrCd+7cyM9+20pP3+P/rLc01rNkZokls4rlcFYJaEtmFVk8s8Ta7e388N7N/Oi+LazatAeAUxZO49LTFvDc0+dz0vyWJyyenlLiB/du5sM/eIBHd3TwtBPm8DfPP4VTFk6b8N8tSZONQUw6wrXt72Hd9nbW7+hg/Y59rN/ZUX69cx/rd3QMeZNABCw/eibPPW0Bzzl1AUtnH/ruzP09vXzp14/ybz9ZzZ7Obl56zmLe+XsnsWC6C6xLOnIZxCQNK6VE6979lXBWDmazmxt49qnzmNcytgC1u6ObT/50Ndf8ch25uuBNFx/Ln158rAP6JR2RDGKSMvHo9g7+5UcP8L3fbGJOcwNvf9bxnH30TBZOLzKzlH9C96YkHa4MYpIydcejO/nQf69ixbqdB7YV6utYOL2RBdMay8/TiyyY1sCC6UUWTi9vm9lUIO86npKmOJc4kpSps5fO5BtvvpB7N+5hw84ONu3uZPOeTjbt7mTL7k5WPrqTzbs3HZgOY6BSIcf0Yp7pxTzTKs/Ti3mmNfa/rmd6Kc+SmSXOWDydhvrazp8mSdVkEJM0ISKCMxZP54zF04fc39eX2NHRxebd5YC2efc+dnZ0s3vfEx/rd3RwX+V1e1fvE87RUF/Hk5fM4LxjZnHeMbM4e+lMx6VJmtTsmpQ0ZXX39rGnEspWb23j9kd2cNvaHdy7cTd9CXJ1welHTeO8Y2Zx7rLyY2ZTIeuyJR1hHCMm6YjStr+HO9bt5LZHdnDbIzu4a8MuuipTdJw4v5nly2bx5CUzOHPxDI6f1+xqAJJqyiAm6YjW2d3Lbzbs5va1O7j1kR3cuW4ne/f3AOUxaKcvms6Tl8zgSYunc+biGSyeWfSOTklVYxCTpAH6+hIPb2vnNxt2cff6Xdy9YTf3P7aHrt5yq9mspgJnLp7OkxbP4Mwl0zlxfgtHTS9Wbc1OSUcW75qUpAHq6oLj5zVz/Lxm/vDsxQB09fTx4Oa93F0JZ7/ZsJuf/XY1/StDFfM5jpvXxPFzmw989vh5zRw9u8kpNiSNmS1ikjSM9v093L9pD6u3tPHQ1jYeam1jzdY2Nu7ad+CY+rpg6ezSgYB2wvxmTpjXwnFzmykWnEpDki1ikjQmTQ31B+62HKh9fw8Pt7bzUOveckCrPG58YOuBxdUjYMnMEifMa+b4Sjg7odKKdqgpNfr6Em1dPezZ182efT3s6eyms7uXWU0F5rU0Mqe5QL2tcNJhwSAmSaPU1FA/5JxoXT19rNvezuqtbaze0sbqreWgdsvqbQfGnwEsmlHk+HnNzG4usLezErg6e9jb2c2efd3s3d/DwTorImB2U4G5LY3MbWlg3oDH3JZG5k9r4Jg5TcxubqjVn0BSlRjEJKlKCvV1nDC/hRPmt8AZj2/v6e1j3Y6OShfn3seD2pa9TKusGLBoRiPTGlvK7xvrK895phXrmdaYpyFfx/a2Lrbu3c/Wvftp3dtJa+X1bzfvZVvb/gOtcf3mNBc4cX7LgcdJC5o5YX4L0xrzE/yXkTQcg5gk1Vh9ro7j5jZz3NxmYEFNvqOvL7GzoxzUNu/pZM3WNn67ZS8Pbmnj6yvW0zFgFYKF0xsrwawc0OY0F4gI6gKC8jMDXh/YF5ASdPX20d2b6O7po7u3j67ePrp6Ktt6y9v29/TR15eYUcozu7mBWU0FZjcVmN3cwIxi3jtQpQqDmCQdBurqgtnNDcxubuCUhdN4xknzDuzr60ts3LWvEsz2snpLGw9u3suvHt5+YKLbCa01YGapwOzmQiWgNTC7ucCSmaXKnaktLJpZdKJdHREMYpJ0mKurC5bMKrFkVolnnTL/wPb+LtNdHd1AIiXoS5BSKj9XtqXK674EAeRzdRTq6yjk6sjXR/l9ZVs+V0c+V95WF8GufV3saO9iR1sX29q72NG2nx3t/a/L+1Zt3sP2ti527+s+UFuhvo5j5zRVWhKbOG5euUXx2LlNlAr+p0uHD//XLElHqP4u01qa19LIvJbGER27s72Lh7e1sWZrO2ta21jT2sb9m/bwg3s3MXD426IZRZbNKbF4RonFM4ssmVV+XjyzxLyWBrs9NaUYxCRJk8LMpgLnNM3inKOfOF3I/p5e1m3vYM3Wcjh7aGsb63Z0cOODW2ndu/8JxxZydSyaWawEs3I4m91UoLO7l/auXjq6emjf30v7/h46unpp7+qhY38vbft76OjqYX9PHwunN3J8pQXuuLnNHDevmSUziyOeMqSvL7F5TyePbGs/8Fi7rZ0EPPX4OVx8whyOn9fsMloCnNBVkjSFdXb3smHnPjbs7Kg872N95fXGnR1sa+t6wvG5uqCpkKOpoZ7SgOfmhnpKhXryuTo27OxgTWs729oeD3mFXB3L5pQOhLPj55W7STu7+1i7rZ2HK2HrkW3trN3ezv4BY+8a83Usm91EV08fD29rB8o3TDzthDk87YS5XHT8HGY2FWr6d9rX1cutj2znFw9tIyJYfvRMli+bxawaf6/KXGtSknRE6ujqYUd7F6VCPU0NOQq5uhG3RO3u6C6vptD/2NrOw63l1rjeQVOF5HPlcXjHzmli2ewmjpnbxDFzyo/5LY0Huks37OzgltXbuGV1Kz9fvY09nT1EwJMWTedpJ8zl4hPnctbSGeNeNquvL3H/pj0HvmvF2p109fZRqK+Dyp2vAMfNbWL50bNYvmwm5y6bxdGzS7bU1YBBTJKkKumfuHdNazsN+fJNBYtmjLzrsl9Pbx+/2bibW367jZtXt3LX+l309iWaG+pZvmwmi2cWmVeZoHde/+S90xqY3dQw5B2lm3d3csvqVm5ZvY1fPLSN7e3l1sCTF7Rw8Ynllrfzjil3+96zcTcr1u5kxdodrFi388CNEnOaGyqtZeVgdupR01xLtQoMYpIkTXK793XzqzXbuHn1Nlau3cmWvZ2VO1qfKFcXzGkuVG6EaGB6Kc+9G3fz2y1tQDlMlbs953DR8XOYN+3gN0v09SUeam3j9rU7WLl2J7ev28H6HeX1VPO5YPHMEktnlTh6dvm5/LqJpbNKB11PtbO7l4279vHojg7W7+jg0e0dPLqj/Ni4cx/5+jpmN5WnMJlTmWuu/LrArKaGAa8LzCwVpvRNGAYxSZKmoM7u3gMrKLTu7WTr3v1s2dPJ1j37D6yysL1tPyctaDkw5uzkBS3j7l7cvLuTFet2cN9je3h0ewfrdrSzbnsHezt7nnDcvJYGjp5dnhplwbRGtuzZz/odHazf2cHmPZ1PWKqrob7uQJBbPLNIT19ie2UKk+3t+9ne3jVk8ARoaajn9EXTOXPJDM5cXH5eOL1xynSjGsQkSdK4pJTY1dHNozs6WLejg0e3l8PZukpr19a9ncxraWRpZc66pbNKLJ1dLL+fWWJuS8Mhg1N3bx87OyrhrK2L7e1dbG/bz8Ot7dy9YRerNu2hu7ecW+Y0N/DkJdN50uIZBwLajNLkvPngYEHM6SskSdIhRQQzmwrMbCpw5pIZv7M/pTTuFqp8ru6gc8/t7+ll1aa93L1+F3dv2MXd63fxP6u2Hth/9OwSpy6cxryWBmZVVmzo7+qc3VxeZmt6MT+pWtIMYpIkadwmItw01Od48pIZPHlAENzT2c29G3Zz14Zd/Gb9bh7cvJdfPFS+I3Uo9XUxYDxaA299xvFceNzsmtc+HIOYJEmasqY15nnK8XN4yvFznrC9q6fczbmtsqzW9rYnvt5eGZuW9RCtzINYRCwBvggsAPqAK1NKn8i2KkmSNJUV6uuYP62R+Ye4azRrmQcxoAd4V0rpjohoAVZGxA0ppfuzLkySJKmWMp+lLaW0KaV0R+X1XmAVsCjbqiRJkmov8yA2UEQsA84Cbh1i3xURsSIiVrS2tk54bZIkSdU2aYJYRDQD3wTekVLaM3h/SunKlNLylNLyuXPnTnyBkiRJVTYpglhE5CmHsGtTSt/Kuh5JkqSJkHkQi/LEI58HVqWUPpZ1PZIkSRMl8yAGPBV4FfDMiLir8nh+1kVJkiTVWubTV6SUfg5MnrUGJEmSJshkaBGTJEk6IhnEJEmSMmIQkyRJyohBTJIkKSMGMUmSpIwYxCRJkjJiEJMkScqIQUySJCkjBjFJkqSMGMQkSZIyEimlrGsYtYhoBdbV+GvmANtq/B2qLa/h1Oc1nNq8flOf17A6jk4pzR1qx5QMYhMhIlaklJZnXYfGzms49XkNpzav39TnNaw9uyYlSZIyYhCTJEnKiEFseFdmXYDGzWs49XkNpzav39TnNawxx4hJkiRlxBYxSZKkjBjEhhARl0bEgxHxUES8J+t6dGgR8YWI2BoR9w7YNisiboiI1ZXnmVnWqOFFxJKI+GlErIqI+yLi7ZXtXsMpIiIaI+K2iLi7cg3/vrLdaziFREQuIu6MiO9V3nv9aswgNkhE5IBPAc8DTgVeERGnZluVRuBq4NJB294D/CSldALwk8p7TU49wLtSSqcAFwBvrfxz5zWcOvYDz0wpnQk8Gbg0Ii7AazjVvB1YNeC916/GDGK/6zzgoZTSwymlLuCrwIsyrkmHkFK6GdgxaPOLgGsqr68BXjyRNWnkUkqbUkp3VF7vpfwfgkV4DaeMVNZWeZuvPBJewykjIhYDLwA+N2Cz16/GDGK/axGwfsD7DZVtmnrmp5Q2Qfk/9MC8jOvRCETEMuAs4Fa8hlNKpVvrLmArcENKyWs4tXwceDfQN2Cb16/GDGK/K4bY5q2l0gSIiGbgm8A7Ukp7sq5Ho5NS6k0pPRlYDJwXEadnXJJGKCIuA7amlFZmXcuRxiD2uzYASwa8Xww8llEtGp8tEbEQoPK8NeN6dBARkaccwq5NKX2rstlrOAWllHYBN1Eet+k1nBqeCrwwItZSHpLzzIj4El6/mjOI/a7bgRMi4piIKAAvB67PuCaNzfXAayqvXwN8N8NadBAREcDngVUppY8N2OU1nCIiYm5EzKi8LgLPBh7AazglpJTem1JanFJaRvm/ezemlC7H61dzTug6hIh4PuW+8hzwhZTSP2ZbkQ4lIr4CPB2YA2wB3g98B/g6sBR4FHhpSmnwgH5NAhFxEXALcA+Pj0/5G8rjxLyGU0BEPInyYO4c5f+T//WU0gcjYjZewyklIp4O/GVK6TKvX+0ZxCRJkjJi16QkSVJGDGKSJEkZMYhJkiRlxCAmSZKUEYOYJElSRgxikia1iLg6Ir6XdR0DRcSLImJ1RPRExNVZ1zOciHh6RKSImJN1LZKGZhCTNKxKCEoR8b5B24/0/8B/jvIqAEcDb8+4FklTmEFM0qF0Au+OiLlZF1JNlSWVxvK5GZQnDv5RSmljSml3VQuTdEQxiEk6lJ8Ca4G/He6AoVrIImJZZdvyQcc8LyJWRsS+iLglIhZHxCURcXdEtEXE9yqzeQ/+jvdFxJbKMVdVltHp3xcR8e6IWFM57z0RcfkQtbwiIm6MiH3Anw7zW2ZGxDURsbNyrv+JiNP6fwOws3LojZVzPn2Y8xQi4p8jYkNEtEfE7RHx3CH+ZpdFxF0R0Vn5u5wz6Dx/WPk9+yNifUT878qSUAO/50MRsa5yzMMR8ReDyjkzIm6NiI6IWBERZw9Vs6SJZxCTdCh9wHuAN0fEcVU4398D7wDOB2YCXwP+DriC8jJVpwEfGPSZS4AzgWcBfwQ8B/jnAfv/D/AG4K3AqcA/Af8ZES8YdJ5/Av6jcsx3hqnv6kptLwLOAzqAH1aC3y8r9VGpY2Fl21CuqtT9SuAMysv//FdEnDnouI8Afw0sBx4G/jsiSgCVUPYN4FuVc7wHeC/wtgGfvwZ4NfBO4JTK32HXEL/7PcDZwHbg2oFhTlKGUko+fPjwMeSDcij5XuX1T4GvVl4/HUjAnKHeV7Ytq2xbPuiY5w445m2VbWcP2PYB4N5BNewCmgdsuxzYDzRVHvuApw2q/ePA9wfV8q5D/N4TKsddPGDbdGA38MbK+zmVY55+kPMcRznALh20/TvAfwz6e/zJgP3Nld/a/13XUl58eeA5PgBsGFTvpcPUMdTf/KmVbYuz/t+XDx8+EvXD5DNJGuzdwK8j4iPjPM9vBrzeUnm+Z9C2eYM/k1JqG/D+V0CBcuBpABopt1oNXDw3T7lLdaAVh6jtFMoB6lf9G1JKuyPiHsqtaCN1NhDA/YManhqAGwcdO/C72gZ91ynAfw86/ufA+yNiGnBWpd6fHqKegX/zxyrP84ANh/icpBoziEkakZTS7RHxTcpdgv8waHdf5Xlg6hhuMHz3wNNWzj1422iGTfQf+/vAowf5LoD2Q5zrYN116SD7hqopAecOUcO+UZwnDvK9iYPXO9Dv/M1xaIo0KfgPoqTR+BvgacClg7a3Vp4XDtj25Cp+7xkR0TTg/QVAF7AGuJ9yN+XRKaWHBj3WjfJ77qf878UL+zdUWp7OqOwbqTsph6QFQ9S0cdCxFwz4ribgdGDVgHouGnT8RZS7JvcCd1TqfcYoapM0idgiJmnEUkoPRcSV/O7cWQ8B64EPRMR7KI/Jeh/VUw98ISI+CBwFfBj4bEqpHaDSXfqRygD0mymPtboA6EspXTnSL0kprY6I71Ie6H8F5fFa/wjsAb48ivP8NiKuBa6OiHdRDkyzKI/Zejil9K0Bh78vIlopdxn+HeWA2f9dHwVuj4gPVLadC7yLciDur/frwOci4u2V71kMLEsp/b+R1ispO7aISRqtDwI9AzdUuhZfDhwL3E35zsi/qeJ3/gy4j/JYqG9THmf17gH7/5byIPa/rBx3A+W7Gh8Zw3e9DrgNuL7yXKI8GH40XYr957kK+BfgAeB7wMXA4Fa691AOXHdQHnx/WX/ATCndAby08lvupRxAPwx8csDnX005pP1b5XuupnyDgaQpIFIazbAHSVI1VOYf+ykwN6W0LdtqJGXFFjFJkqSMGMQkSZIyYtekJElSRmwRkyRJyohBTJIkKSMGMUmSpIwYxCRJkjJiEJMkScqIQUySJCkj/x+QGJrfMaiKAwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -10465,8 +6555,8 @@ ], "source": [ "fig = plt.figure(figsize=(10, 8))\n", - "plt.plot([train_losses[i] for i in range(len(train_losses))])\n", - "plt.title('Training loss', size=title_size)\n", + "plt.plot([test_losses[i] for i in range(len(test_losses))])\n", + "plt.title('Test loss', size=title_size)\n", "plt.xlabel('Number of epoch', size=font_size)\n", "plt.ylabel('MSE', size=font_size)\n", "plt.show()" @@ -10474,13 +6564,15 @@ }, { "cell_type": "code", - "execution_count": 82, - "id": "64fa6b14", - "metadata": {}, + "execution_count": 99, + "id": "71d94a68", + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAH5CAYAAAAiH1L7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3h0lEQVR4nO3dd5ydZZ3//9dnavqkV0IaoSMtNOlNgg1W1xVdXFB3YVf9Kasui34t6Fp3betiw0ZU7KIgIEV6kZLQQyAJEJJAKunJZDLl+v1xzgwnk3NOJpD7nEl4PR+PeZw597nPfa6ZeyZ5z+f6nOuOlBKSJEmqvJpqD0CSJOm1yiAmSZJUJQYxSZKkKjGISZIkVYlBTJIkqUoMYpIkSVViEJOkMiJiYkSkiLii2mORtPsxiEnKXD7I7MjH+RmM4fysji1Jr1RdtQcg6TXhc0W2XQQ0Af8LrOn22CPZDkeSegeDmKTMpZQu7b4tX5lqAr6VUlpQ4SFJUq/g1KSkXicijoqI30fE0ojYEhGLIuIHETG2yL6TI+LyiJgfEc0RsSoiHo+I70fEsPw+twM/zT/lp92mQSe+inGOiYjvRMSC/DhXRMRVEXF4kX0bIuLDEfFQRKyOiE35510dEad12/f4iPhzRCyOiJb89+G+iPjsKx2rpN7JipikXiUi3gv8EGgBrgEWAVOBfwbeEhFHp5QW5vcdAzwIDAKuB/4A9AEmAe8BLgNeAq4gN/15FnA1W099rnmF45wE3A2MBW4FfgWMB94BvCki3p5SurbgKVcA7wKeAH4GNOefexwwHfhr/rjTgeuAdfmv/wVgKLAf8AGKT/NK2kUZxCT1GhGxN/ADYAFwYkrphYLHTgFuJtdT9nf5zX9PLqRclFL6327H6g90AKSUrogIyAWxP6WUrtgJw/0+uSD1qZTSFwte97vAncCMiJiQUtoQEU3AOcAs4KiUUnu3sQ4ruPsv5GYrTkopPdptv+E7YdySehGnJiX1Jv8G1AMfKQxhACmlW8lViN4SEQO7Pa+5+4FSShtTStts3xkiYg/gDcBC4L+7ve695KpjQ4G3dW4GglyVr6PIWF8q8jLFvqaVr2rgknodK2KSepNj8rcnRsQRRR4fCdQCe5OrLl0DfAn4TkScAdwI3AM8mVJKGY7z0PztXSml1iKP3wqcm9/vZymldRHxZ+AtwCMR8QfgLuD+lNKmbs+9klyAuz8ifgPcBtyTUlqcxRciqboMYpJ6k84puv/Yzn4DAFJKz0fEkcCl5PqsOitQiyLiaymlb2cyyty7PQGWlHi8c/vggm3vBP4TeDcv93ltjojfAx9PKS0DSCldFRFvBj4GvA+4ECAiZgGfSCndvLO+CEnV59SkpN5kbf62KaUUZT7u6HxCSmlOSumd5ELcNOAScv+2/W9EvD/jcY4u8fiYbvuRUmpOKV2aUtob2JNcxezu/O3vC5+cUroupXQKMAQ4FfgmcABwbUTsv9O+CklVZxCT1Jvcl789fkefmFJqSynNSil9ldy7EwHOLtils0G+9pUPr8vD+dvjIqLYzMLJ+duHij05pbQopXQlcAYwL3+cYUX225hSujWl9FFyU7ANwJmvevSSeg2DmKTe5DKgFfhm/h2UW8mvxXV8wf0jI2JUkeN0bivsv+psiN/z1Q4y3691MzCR3BUCCsd4FLnpx9XAH/PbRuS3d9cfGAi0AVvy+54aEX2L7Fvsa5K0i7NHTFKvkVJ6KiLeB/wEmB0RNwBzyb2Tck9ylbIVwL75p7wb+GBE3AHMJxd+ppBrim8BvlVw+L+RCzEXRcRQYFl++/+llNay4/6V3BsD/ici3gDM5OV1xDqA96aU1uf3HQfcFxFzyFXJFpFb++zN5KY3v12w79eBiflFaBeQC2iHA6cAzwO/fgVjldRLRbZvLJKk4iJiATABmNT9EkcRcRC5ZvWTyQWVjcCL5ILPb/JLWXRWn84HXk8uBPUltwDqXcDXU0pPdDvudOCzwEHkqlEUe/1uz5kIPAfMSCmd3+2xccCngDeS6wtbR67v64sppQcL9hsMfBg4CdgHGA6sAp4mt27arzvf5RkR/0BunbRp+WN2kFsm42pyl4NaUWqsknY9BjFJkqQqsUdMkiSpSgxikiRJVWIQkyRJqhKDmCRJUpUYxCRJkqpkl1xHbPjw4WnixInVHoYkSdJ2zZo1a2VKaUSxx3bJIDZx4kRmzpxZ7WFIkiRtV0Q8X+oxpyYlSZKqxCAmSZJUJQYxSZKkKjGISZIkVYlBTJIkqUoMYpIkSVViEJMkSaoSg5gkSVKVGMQkSZKqxCAmSZJUJQYxSZKkKjGISZIkVYlBTJIkqUoMYpIkSVViEJMkSaoSg5gkSVKVGMSKaGlrZ21zKymlag9FkiTtxgxiRfzivoUc/LmbWLe5rdpDkSRJuzGDWDkWxCRJUoYMYkVEtQcgSZJeEwxiZSRLYpIkKUMGsSLCkpgkSaoAg1gZvmlSkiRlySBWhAUxSZJUCQaxMiyISZKkLBnEigibxCRJUgUYxMpwZX1JkpQlg1gRnQUxY5gkScqSQawIJyYlSVIlGMTKcGZSkiRlySBWjM36kiSpAgxiZXiJI0mSlCWDWBHWwyRJUiUYxMqxICZJkjJkECvCFjFJklQJBrEyLIhJkqQsGcSKCLvEJElSBRjEynAdMUmSlCWDWBEvX+LIJCZJkrJjECvCiUlJklQJBrEynJqUJElZMogV4fIVkiSpEgxiZVgQkyRJWTKIFeHyFZIkqRIMYmUkm8QkSVKGDGLFWBCTJEkVYBArw4KYJEnKkkGsCAtikiSpEgxikiRJVWIQKyJcSEySJFWAQawMe8QkSVKWDGJFdNbDvOi3JEnKkkGsCGcmJUlSJRjEynBqUpIkZckgVoQVMUmSVAkGsTIsiEmSpCwZxIrwot+SJKkSDGJleNFvSZKUJYNYEfaISZKkSjCIlWE9TJIkZckgJkmSVCUGsTJsEZMkSVkyiBXx8kW/TWKSJCk7BrEi7NWXJEmVYBArw6lJSZKUJYNYES5fIUmSKsEgVoYFMUmSlCWDWBFe4kiSJFWCQawMe8QkSVKWDGJF2CMmSZIqoeJBLCJqI+LhiLg2f39oRNwcEfPyt0MqPaZSkl1ikiQpQ9WoiH0EmFNw/xLglpTSVOCW/P2qsiAmSZIqoaJBLCL2AN4E/Khg81nAjPznM4CzKzmmcuwRkyRJWap0RexbwMVAR8G2USmlJQD525EVHtM2OnvEDGKSJClLFQtiEfFmYHlKadYrfP4FETEzImauWLFiJ49um1fL+PiSJEmVrYgdC7w1IhYAvwZOiYhfAMsiYgxA/nZ5sSenlC5PKU1LKU0bMWJERQZss74kScpSxYJYSukTKaU9UkoTgXOAW1NK5wLXAOfldzsPuLpSYyrF5SskSVIl9IZ1xL4CnB4R84DT8/d7BXvEJElSluqq8aIppduB2/OfvwScWo1xlGJBTJIkVUJvqIhJkiS9JhnEigibxCRJUgUYxMqwR0ySJGXJIFaE9TBJklQJBrEyXEdMkiRlySBWhJc4kiRJlWAQK8JefUmSVAkGsTIsiEmSpCwZxIoI2/UlSVIFGMTKSDaJSZKkDBnEirEgJkmSKsAgVob1MEmSlCWDWBEWxCRJUiUYxMqwRUySJGXJIFaEF/2WJEmVYBAry5KYJEnKjkGsiM56mFOTkiQpSwaxIpyZlCRJlWAQK8OCmCRJypJBrAgvcSRJkirBIFaGPWKSJClLBrEi7BGTJEmVYBArw4t+S5KkLBnEirAgJkmSKsEgVob1MEmSlCWDWDGWxCRJUgUYxMqwRUySJGXJIFZE5zpiyclJSZKUIYNYES5fIUmSKsEgVo4FMUmSlCGDWBEWxCRJUiUYxMqwICZJkrJkECsibBKTJEkVYBArw+UrJElSlgxiRVgQkyRJlWAQK8N1xCRJUpYMYkVYEJMkSZVgECvDHjFJkpQlg1gR9ohJkqRKMIiVYUFMkiRlySBWVP6i385NSpKkDBnEinBqUpIkVYJBrAzrYZIkKUsGsSIsiEmSpEowiJVjSUySJGXIIFaEF/2WJEmVYBArw0scSZKkLBnEirAeJkmSKsEgVobLiEmSpCwZxIqwRUySJFWCQawMK2KSJClLBrEiovMSR1UehyRJ2r0ZxIpwalKSJFWCQawML/otSZKyZBCTJEmqEoNYGdbDJElSlgxiRdgjJkmSKsEgVoYtYpIkKUsGsSLCixxJkqQKMIiVZUlMkiRlxyBWhD1ikiSpEgxiZdgjJkmSsmQQK6KzImYOkyRJWTKIFWGzviRJqgSDWBlOTUqSpCwZxIqwWV+SJFWCQayMZJeYJEnKkEGsCAtikiSpEgxiZdgjJkmSsmQQK8IeMUmSVAkGsTIsiEmSpCwZxIqyJCZJkrJnECsj2SQmSZIyZBArwh4xSZJUCQaxIsxhkiSpEgxiZTgzKUmSsmQQKyKcm5QkSRVQsSAWEX0i4oGIeDQiZkfE5/Lbh0bEzRExL387pFJj2h4vcSRJkrJUyYpYC3BKSulg4BBgekQcDVwC3JJSmgrckr9fVdbDJElSJVQsiKWcDfm79fmPBJwFzMhvnwGcXakxbY89YpIkKUsV7RGLiNqIeARYDtycUrofGJVSWgKQvx1ZyTEVY4uYJEmqhIoGsZRSe0rpEGAP4MiIOLCnz42ICyJiZkTMXLFiRWZjLGRFTJIkZakq75pMKa0BbgemA8siYgxA/nZ5iedcnlKallKaNmLEiEzHF3aJSZKkCqjkuyZHRMTg/Od9gdOAp4BrgPPyu50HXF2pMW2PBTFJkpSlugq+1hhgRkTUkguAv00pXRsRfwN+GxHvBxYC76jgmIrq7BHzWpOSJClLFQtiKaXHgEOLbH8JOLVS45AkSeotXFm/DOthkiQpSwaxIly+QpIkVYJBrBxLYpIkKUMGsSK86LckSaoEg1gZXvRbkiRlySBWhPUwSZJUCQaxMlxGTJIkZckgVoQtYpIkqRIMYmVYEJMkSVkyiBXRedFvpyYlSVKWDGJFODUpSZIqwSBWhstXSJKkLBnEirAgJkmSKsEgVoY9YpIkKUsGsWIsiUmSpAowiJVhQUySJGXJIFZEWBKTJEkVYBArxyYxSZKUIYNYEa4jJkmSKsEgVob1MEmSlCWDWBEWxCRJUiUYxMqwRUySJGXJIFZEROdFv01ikiQpOwaxIpyalCRJlWAQK8N6mCRJypJBrAiXr5AkSZVgECvDFjFJkpQlg1gRXuJIkiRVgkGsDAtikiQpSwaxYiyISZKkCjCIleE6YpIkKUsGsSJ816QkSaoEg5gkSVKVGMSK6CyIOTMpSZKyZBArIpyblCRJFWAQKyO5gIUkScqQQawI62GSJKkSDGJl2CMmSZKyZBArwhYxSZJUCQaxMiyISZKkLPUoiEXEvRExuOD+lyNiaMH94RGxMIPxVYUX/ZYkSZXQ04rY0UBDwf0PAoML7tcC43bSmHoNe8QkSVKWXunU5G5dMrJHTJIkVYI9YmW4jpgkScpST4NYYtve9d0+pTg1KUmSslTXw/0C+EVEtOTv9wF+GBGb8vcbd/rIqsipSUmSVAk9DWIzut3/RZF9fvYqxyJJkvSa0qMgllJ6b9YD6U1cvkKSJFXCq2rWj4g9I2L/iN1zMi/ZJCZJkjLU0wVd3xkR/9Zt2/eA54DHgSciYrdZR2z3jJWSJKm36WlF7P8DOjrvRMRpwIXAZ4B35I/z6Z0+uiqzICZJkrLU02b9fYD7C+6fBdyUUvoiQERsBi7byWOrGgtikiSpEnpaERsArCq4/3rg1oL7s4HRO2tQvYUFMUmSlKWeBrHFwAEAETEIOAi4p+DxYcCGnTu06tlN33sgSZJ6mZ5OTf4O+HZEfBmYDiwB7it4fBrw1E4eW9XZIyZJkrLU0yD2X8AewNeBpcC5KaX2gsffBVy3k8dWNZ31MK81KUmSstTTBV2bgX8q8/jJO21EvYAzk5IkqRJ6FMQi4poe7JZSSme9yvH0Kk5NSpKkLPV0avLNwPPA7dkNpfewWV+SJFVCT4PY14BzgROAnwJXpJQWZzaqXsKCmCRJylKPlq9IKV0MjAf+ndw7JOdFxF8i4u8joj7LAUqSJO2uenzR75RSe0rpmpTS2cAk4DbgC8ALETEgo/FVl01ikiQpQz0OYt30BwaTW3F/A7vhLJ5tYpIkKWs9DmIR0TcizouIO4HHgQnAeSmlySmljZmNsIp2u3QpSZJ6lZ4uX3E58E5gHvBj4K0ppTUZjqvqLIhJkqSs9fRdk/8MLCR3aaMzgTOLLfGQUnrrzhta9dkiJkmSstTTIPYzXmMzdRHhJY4kSVKmenqJo/MzHkev49SkJEnK2it91+RrglOTkiQpSwaxEly+QpIkZc0gVoYFMUmSlCWDWAlhl5gkScqYQawMe8QkSVKWDGKlWBCTJEkZM4iV4TpikiQpSwaxEiyISZKkrBnEyrEgJkmSMlSxIBYR4yPitoiYExGzI+Ij+e1DI+LmiJiXvx1SqTGVE2EOkyRJ2apkRawN+FhKaT/gaOCDEbE/cAlwS0ppKnBL/n7VuXyFJEnKWsWCWEppSUrpofzn64E5wDjgLGBGfrcZwNmVGtP2JNevkCRJGapKj1hETAQOBe4HRqWUlkAurAEjqzGm7rzEkSRJylrFg1hEDAD+AFyUUlq3A8+7ICJmRsTMFStWZDfAAhbEJElSlioaxCKinlwIuzKldFV+87KIGJN/fAywvNhzU0qXp5SmpZSmjRgxIvuxZv4KkiTpta6S75oM4MfAnJTSNwoeugY4L//5ecDVlRrT9lgQkyRJWaqr4GsdC7wHeDwiHslv+yTwFeC3EfF+YCHwjgqOqaSwSUySJGWsYkEspXQ3pWf8Tq3UOHaEPWKSJClLrqxfgvUwSZKUNYNYGV70W5IkZckgVoolMUmSlDGDWBn2iEmSpCwZxEqwICZJkrJmECvB5SskSVLWDGJleNFvSZKUJYNYCRbEJElS1gxiZVgPkyRJWTKIlWBBTJIkZc0gVoYtYpIkKUsGsRJ816QkScqaQawML3EkSZKyZBArwXqYJEnKmkGsDHvEJElSlgxiJUS4fIUkScqWQawkJyclSVK2DGJlODUpSZKyZBArwdUrJElS1gxiZVkSkyRJ2TGIlWBBTJIkZc0gVoY9YpIkKUsGsRLsEZMkSVkziJVhRUySJGXJIFZC2CUmSZIyZhArw4t+S5KkLBnESohwalKSJGXLIFaCE5OSJClrBrEyLIhJkqQsGcRKCNevkCRJGTOIlWGPmCRJypJBTJIkqUoMYmW4fIUkScqSQawEW8QkSVLWDGLlWBCTJEkZMoiVYEVMkiRlzSBWhgUxSZKUJYNYCUGQXL9CkiRlyCBWglOTkiQpawaxMqyHSZKkLBnESrAgJkmSsmYQK8MWMUmSlCWDWAle9FuSJGXNIFaGBTFJkpQlg1gJ1sMkSVLWDGJluI6YJEnKkkGsFEtikiQpYwaxMqyHSZKkLBnESggwiUmSpEwZxEpw+QpJkpQ1g1gZyZKYJEnKkEGsBOthkiQpawaxMly9QpIkZckgVoItYpIkKWsGsTKsiEmSpCwZxEoIu8QkSVLGDGJl+K5JSZKUJYNYCfaISZKkrBnEyrBHTJIkZckgVoY5TJIkZckgVoKXOJIkSVkziJXh1KQkScqSQawE62GSJClrBrGyLIlJkqTsGMRKsEVMkiRlzSBWhj1ikiQpSwaxEqyISZKkrBnEyrAgJkmSsmQQK8GLfkuSpKwZxMpINolJkqQMGcRKsEdMkiRlzSBWhvUwSZKUJYNYCYHLV0iSpGwZxEpxblKSJGXMIFaGBTFJkpQlg1gJ1sMkSVLWDGJluHyFJEnKUsWCWET8JCKWR8QTBduGRsTNETEvfzukUuPZHlvEJElS1ipZEbsCmN5t2yXALSmlqcAt+fuSJEmvCRULYimlO4FV3TafBczIfz4DOLtS49keC2KSJClr1e4RG5VSWgKQvx1Z5fFsxRYxSZKUpWoHsR6LiAsiYmZEzFyxYkUlXi/z15AkSa9t1Q5iyyJiDED+dnmpHVNKl6eUpqWUpo0YMaIig0uuJCZJkjJU7SB2DXBe/vPzgKurOJateIkjSZKUtUouX/Er4G/APhGxOCLeD3wFOD0i5gGn5+/3Cs5MSpKkrNVV6oVSSu8q8dCplRrDjrIiJkmSslTtqcleK1zAQpIkZcwgVobN+pIkKUsGsVIsiEmSpIwZxMqwR0ySJGXJIFaCBTFJkpQ1g1gZFsQkSVKWDGIluI6YJEnKmkGsHEtikiQpQwaxEoJw+QpJkpQpg1gJTk1KkqSsGcTKcPkKSZKUJYNYCVbEJElS1gxiZVgQkyRJWTKIleBFvyVJUtYMYmUkm8QkSVKGDGIl2CMmSZKyZhArw3qYJEnKkkFMkiSpSgxiJUQEHZbEJElShgxiJdTVBB0mMUmSlCGDWAk1EbQZxCRJUoYMYiXU1mBFTJIkZcogVkJtTdDuOmKSJClDBrESamtqaLciJkmSMmQQK6E2MIhJkqRMGcRKqKkJg5gkScqUQayE2gg67BGTJEkZMoiVUFfr8hWSJClbBrESasIFXSVJUrYMYiW4fIUkScqaQayEmrBZX5IkZcsgVkKd75qUJEkZM4iVUGsQkyRJGTOIlVBT4/IVkiQpWwaxEmrtEZMkSRkziJVQWxN0JEhWxSRJUkYMYiXU1gTg9SYlSVJ2DGIl9K2vBaC5tb3KI5EkSbsrg1gJA/rUAbChpa3KI5EkSbsrg1gJAzuD2GaDmCRJyoZBrIQBjbkgtt6KmCRJyohBrAQrYpIkKWsGsRIGNNYDsN4gJkmSMmIQK+HlZv3WKo9EkiTtrgxiJXT1iFkRkyRJGTGIldAZxFy+QpIkZcUgVkJtTdCvodZmfUmSlBmDWBkD+9RZEZMkSZkxiJUxoLHOdcQkSVJmDGJlDOhTb7O+JEnKjEGsjEF96ljX7PIVkiQpGwaxMgb3a2CtQUySJGXEIFbG4L71BjFJkpQZg1gZTX3rWbNpCx0dqdpDkSRJuyGDWBmD+9XTkWDDFhv2JUnSzmcQK6Opb+7C32s3OT0pSZJ2PoNYGYP7NQCwxiAmSZIyYBArY8TARgCWr99c5ZFIkqTdkUGsjNGD+gCwdJ1BTJIk7XwGsTJGDGyktiZYutYgJkmSdj6DWBm1NcGIAY0sMYhJkqQMGMS2Y8+h/XhmxYZqD0OSJO2GDGLbceieg5n9wjpa2tqrPRRJkrSbMYhtx1GTh7KlvYObn1xW7aFIkqTdjEFsO07ceyRTRw7gQ798mLd/716eWrqu2kOSJEm7CYPYdtTWBD85/wj2GzOIWc+vZvq37uJ1l97Ifc++VO2hSZKkXVyktOtd0HratGlp5syZFX/dB55bxQ1PLOUn9zwHwOv2aOLvDh3HgeOamDZhCBFR8TFJkqTeLSJmpZSmFXusrtKD2ZUdOWkoR04aypkHjeaueSu57anlfO7PT3Y9Pm5wXz56+t786oGFfPYtB3DQHk0AtLZ3UF9bvvh42a3zaG1P/Pvpe2f6NUiSpN7DitirdP3jS/jAlQ8Vfex7/3gYC17axFdveIo/f+i4rmAG8LuZizhxnxGMHJhbvX/iJdcBsOArb9rhMcx6fjUbWto4ce8Rr+ArkCRJWSpXETOI7SQvbWjhjw+/wE1PLuOB51YV3efvD9+Ddx4xntUbt3DBz2cBdAW0ziD2+KVv4MbZy3j7YePKTnW2dyQeWbSawycMfVUhbnfxl8eXMHnEAPYZPbDaQ9mtpJRY19zGMys3MOPeBXzzHw6hpsYpeEnaEQaxCmtr7+CueSu5ec4yfnn/wu3uf/zU4dw1byUA/Rtq2bilnbMOGcugPvXsNXIAP7/veS5796HsO3oQ1z72InfNXcmLa5u5a95Kvn/uYfzrL3IVuaa+9Vxy5r6cfcg4Nre285uZizhi4lAOnzCk67U2t7bzzb/O5QMn7QUJPva7R1i8upmrPvB6+jXU8dHfPsKmlnYue/ehXPXwC7z5dWPo17BjM9jtHYmOlLY7Hdva3sGmLe20tXdw/eNLeMe08Sxf18Kew/pts+/m1nbO/dH9/McZ+3DU5GHbPF6JMPrEC2t54oW1nHPknpm9xs7wp4df4JDxg5k4vP+rPtYV9zzHpQXT7zM/dRrDBzS+6uNWw/L1m7l73kredtgeZffb0tZBQ53vY5K08xjEeoG/PrmMW59ezvJ1Lfx1TrZrkh05aehWVbnDJwxhjyF9edNBY7oqcecevSebWzv4/azFAIwa1MiM9x3J9G/dtc3x7vyPkxk7uA+1NcFvHlzEkrWbu3rZnlq6jqeXrufMA8fQUFdDW3sHF/58FrfPXcF9nziVgX3q6FNfC+SqKxHBlrYO5i5bzzdunsutTy3nhL1HcOfcFUwZ0Z9nVmxk7hfOZNOWNpr61hMRPLpoDWd95x4AJg7rx+3/cTIpJb57+zOcvv8opo4cwKRPXA/Az953JPuNGcSAxjqaW9sZ2r9hh753W9o6WNO8pWvKGHLBem1zK4d/4a8APPzp0+nbUNv1dRW64p7nOGLSUA4Y27TNYz31xAtrAThwXPFjdHQkFq3exIRh2wat9o7ElE9eT1Pfeh797Bte8Rg6dQbcTvdecgpjB/d91cctZkNLG3U1QZ/6WuYv38CoQY0M7FMPwNrmVn5wxzO8fspwjps6vOxxXlzTzKC+9QxorCOlxE/uWcAh45v4/LVzeHTRGmZ96jQG9Kmjse7l87dyQwuXXjObj5w6ldO/eSdffftBvPOIlwP3rU8t431XzOT6Dx/P0P4NjG7qwz/PeJB9Rw/i42fs0+Ov8c+Pvsja5lbOPXpC0a8/gP6NL//hs2lLGyltvW1Xs3z9Zma/uI6T9xkJ5P4dAHb5Nzc9smgN44f0Zdgr+MNk9cYt3PrUct5+ePk/CnpiQ0sbfetrqa1QpXrJ2mbGNGXzb0AWWtraue2p5ZxxwOiq/swZxHqhlBIdCdZvbmXRqmb++PALTBjWjwcXrKKhtoaNW9q4cfYyxjT1ob62hvaOxAtrmqs97C6ThvcngGdXbtzuvh8+ZS++fev8HX6NC0+czPmvn8iMe5/n+3c807X9LQeP5e2HjeP8nz4IwDf+4WA++ttHux4/fMIQZj2/GoB7LjmFcd2Cw9NL1zN15ADe85P7Wb2xlZ+//0ga62u5+cmlzFywmivvX8hX3nYQ5xy5Jyklzv3x/dwzf+vlSsY09eHeS04hItjY0sb1jy/hmCnDOO6rt1ET8KPzpjGoTz1jB/fljw+/wAUnTKa+toYvXz+H8UP7Ff2PGHIh7M3/dzeQu6rDf07fl/3GDOKGJ5YwddRAvnf7M12LC9918cmMH9qPxxavoU99LSMGNPLCmuau5z/1X9N5708f5ONn7MPhE4bwPzc+xXdue4Znv/RGamqCDS1tpJSorQlue2oFE4f3Y0BjHRta2hg5sA+X/nk21z22ZKvxffKN+/L+4yYX/Ud/bXMrjXU1zH5xHfuOHsiji9bw/Tuf5ZNv3JclazazubWd0/YftU2ldMnaZj545UM8tHANB4wdxG8uPIYDP3sjAOccMZ5zj57AD+96lqsfeRHIVT07OhKfueYJfnHfQr7+joPp31jHkrXNvPOI8ez/mRs5aFwTv73wGOYuW89Z37mHkQMbaWnLBerPvHl/Pn/tkwwf0MC3zzmUH939HP0aarn2sSVMP2A0N8xeCsBfP3oCewzpR5/6Wt562d08tnht15jfsP8obsqfh/s+cSpf/sscUoLD9hzMgD71fPx3j3LI+MH86l+Opm/Dy4GvM9jecNHxjBjQyOLVzRwwdhB1tTUc8JkbSMANHzmhqyp89JduYeWGFuZ/6Y3Men4V+4zO/ZFRqKMjsaa5lTvnrqC9I/G2fFvD3GXrueLeBazd1MpHTptKU996BvWp32o82/P00vXsPWpAj/8D6/xjq9Bp37iD+cs3MO+LZ1JfW8MP73yWL14/h9mfO6MrYK7ZtKXrD6+OjsTXbnqaf5g2fquqbkqJxaubGdPUhxUbWhjav4GG2hrWbGrlvmdf4sR9RtCvoY6NLW08smgNdTXB4ROGUJf/eXv79+5lWP8GLv+nov8XAtC8pb3r+3P/sy8xpH8De4/aut3hjrkruP6xJfxm5iImD+/PrR8/CchV+Oct28D+Ywd17Tt32XqWrdvM8VNf7t9dv7mVD1z5EHfNW8kxk4dxwQmTOXnfkbz1srtZvWkLd118StGxbW5tZ99P38AJe4/gZ+87EsiFwbO/cw97jxrAjRedsNX3/t5nVtJYV8MBY5uoiaCto4O+9bVc8+iLDO7X0NVTvHrjFgAG9Knb7izGjbOXcuHPZzFtwhBGDmrkrQePpbU98ZaDx5JSoq0j8bUbn+Yfj5rAkrXN1NQEE4b1Y+TAPjz/0kb+MGsxF544peu8N29pp62jg4F96lm0ahM3P7mM814/kdqaYNGqTYwY2Eif+loWvrSJJ5es5aR9RlJfW7Pd0LlkbTM3P7mM9xw9gc9f+yQ/vWcBF502lQ+ctBdPvLiWQ8cPJiVo78HMzc5iENtNbGnrYM2mLWxoaaOlrYMBjXX8duYimvrWM2XEADa0tHHTk8tYtGoTKSUeXbyW4QMaWLlhS7WH3mt0Tv32xIHjBvHEC+UX8D1135Hc8tTy7R7r4D2aeMvBY/nCdXMAGD6ggfceO4n3HTuJH9z5DN/667wejWlHfPT0vfnGzXOBbcPwBSdM5vI7n33Fxx41qJF3HzmBZ1duYI8hffnObc9s/0l5HzhpCgAThvVj/vIN/PCu57Z6fGj/BlZtLP0z+6bXjdkmIPZmR00ayv3PreKsQ8Z2hcntGdhYx/qWtq77n3zjvnzp+qe22udfjp/EzU8uY8FLm7bafuTEoXz6zfvzlsvuLnrsaROGMPP51Vz9wWOZMKwfTy1dz7xl6/n01bP560dP5J75Kzlh7xH8x+8eZWb+D5of/dM0DtlzMJtb2/n9rMUcPmEI7/nxAwBc8d4jWLVxS9cfQ5976wH8363z+JfjJ/PggtVdMwDTDxjNgeMG8bWbcj+TX37bQazauIUf3PEM6zbnvtbHLn0Dl149m6sefgHIvRP9nCPG868nTeGPD7/Axb9/bKuv5dA9B/PwwjVlv5f//fbX8ZUbnur6mbr8PYdz85PL+N2sxUwa3p+jJw9lwcpN/C2/NuRPzz+CE/ceweRP5qrs/++N+3Hj7KVcdNrenPvj+7c5/kHjmnj8hZdD+ufPOoBDxw/hjrnLu75WyIXvBxes5tN/emKbY7z/uEn8+O6Xfw++/LaDOHW/kYwY0Mgdc1dw8e8fY/n6lq7Hz8+HlcLnANzysROpieDppeu6WlYK7TGkL4tX5/6gH9injvWb27Z6vPtsylGThjJhWD9GD+rDgwtWd32PSilss+nuzANH85cncn/knHfMBO57dhVPL1sPwLuO3JNfPVC8jef0/UdtdWWbhtoazj92Iv8wbQ9GN/Vl5oJVPLtiI798YCHrmlv5+Bv24eI/5H5OBverZ82m1rJjBnj0M2+gqV/9dvd7NQxiAnIl2rqaGjpSIoAEBFBXW8PydZtp6lfPxpZ2Nre201iX+6vjqaXreWjh6tx02Kpmjp4ylJXrt/C7WYuYu2wD0w8Yzd6jBzJzwSrufSb3S/p3h47jkUVreK6gWvb6KcNo70jcX+KNDD2xz6iBXb+4kiTtDN965yGcfei4TF/DIKZep6Mj0Z4Sjyxawz6jB7KppZ3+jbX0b6jb6l15G1rauHveCo6cNIyh/Rt4buVGnl66ntFNfagJOHBsEzc9uYzhAxoY0KeOxaua6dtQy7SJQ6irqeGB51YxeUR/mre08+CCVRwxcSiLVzfz3EsbOWrSUC6/81lqAmoi+PgZ+7Bs3WYuu3U+f3liKQePH8zgvvWMHNjIhSdOYcqI/qzZ1Mqcpet4ZvkG+jXUsWlLG08vW8/K9Vto6+jgznkr2dLW0TX+wqmuQgMb6zhy0tCy1bSDxjWxcNUm1ja//BfdlBH9ufCEKTT1q+eqhxYzf/kGNrS0sWzdy38t//tpezNqUCMPLFjF3fNWbvWX9MHjB/PoojWMGtS41XOmjhzAus2tLF/fQuc/CROG9eP5fLVl5MDGrY7TqbGuhpb811sTuTGfceBovnnzXMY09eXoyUP508Mv8q4jxzPjb88DL1caT9pnBAtXbWLUwD5df2kP7lfPxpY2Rjf1YdGql6fiJw/vT2tHR9e2fUYN5B+P3pP62hrWNrfy3dvms25zG/uPGcSX33YQDy5Y1VV97HT2IWO56LS9+fWDi7aa6t539EBe2riFY6cMY8FLmzhmyjC+d3vu8bMOGcvGljYmDe/PY4vXMqhvPcdMHsbXb3q6q7J66r4j+dY5h3DkF2+hubWdD528F/920hQeXLCKL143h3nLN2w1jjmfn85lt83bqop4/usnMm/5ej5y6t4cPL6JG55YykW/eaTrXHQuHv25Pz/JvqMH8tTS3B8kQ/rVs2lLO6fsO5Jb5iznS287iO/ePp9nV2y/ZSBL3X++Xq3amqC9Y+v/qz586lS+fcs8+jXUsmk7Ve66mqCt2/O7j7Hw572njpg4hDMOGM0XrpvDmKY+LFm7eYeeX3guu5s6csA2PzvH7jVsmzaJrL1ujyaeXbGRDS1tRR9/40Gjuf7xbf+N666xroZf/PNR/M+NT5dcWWBnOv/1E7lj7gpqIvfv3rxlG/jQKXvx6T89wfL1LUwc1o/PvvUAxg/py14js3+3vUFM6gU6OlLRpR+K9dV019LWvlVzeXerNm6hsa5mh5u6uy82vLm1veibEDrH+bdnX+KYycO2Gm9LWzs1ETu11yLlQ/rr9hi81TtwF76U6xvZkT6nYu6Yu4KmvvUcMn5w0cc7q8flelE2trQxZ8k6pk0cWva1lq7dzLABDbR3JFrbO7regAC5RvZ1zW3sNXJA0ecuWdvMkH4N25yT9o5ESqmr/6mnWtraqa+pYc7SdQxsrKepb65nrLW9gw0tbSxctYnammBAYx2PLV7LHXNX8K13HkJbRwcPPb+G5es3M2JgI/uPGcSgPvUsW7+5q1H8+3c8w1sOHsve+f/UFq7axMTh/Ukp8btZizl60jDaU2LS8P50dCS+/Jc5DO7XwLrmVj72hn2orQmWrG3O9wc109reweimPkwZkfveXPvYiwzqU89xew3f5vdo1cYtrN/cyp5Dc711nT+ftz+9nGOmDOv63bnusSUcNXkowwc00tbewfrNbQwp8oae1vaOrtmCQiklnlmxgYnD+rNiQ8s2TesbWtq63mAxrH8DdbU1rN/cyj3zVzJt4lB+eNezHDp+CNMPHF30/LR3pK6fuZQSV9y7gOP2Gs5eIwfQkeh6bNXGLfRrqKWxrqZre2t7B1c9tJjpB46htia4a+4Kjpqc+wO2rb2DmgjmLl/PkjWb2bSlnSMnDaWxvoZBfeqLLjq+dlMrv3pwIe87dhI1ASs2tDCkXwO/fmAhTf3q2X9ME0P61zNyYB+eW7mR+tpgbFNfmlvbaU+Jvzy+hLMOGUdbR2JjS1vJ/sTCfxebt7Tz0MLVHDVpKB0JHl28hpoIxg/tS3tH4qUNWxjd1Idh/RvoSLnewscWr+W4qcOpieCm2Us5burwrX7HeoteH8QiYjrwv0At8KOU0lfK7W8QkyRJu4pyQazqi+VERC3wHeBMYH/gXRGxf3VHJUmSlL2qBzHgSGB+SunZlNIW4NfAWVUekyRJUuZ6QxAbBywquL84v02SJGm31huCWLFu2G0a1yLigoiYGREzV6xYUYFhSZIkZas3BLHFwPiC+3sA26x6mFK6PKU0LaU0bcSIEd0fliRJ2uX0hiD2IDA1IiZFRANwDnBNlcckSZKUuapfSTal1BYRHwJuJLd8xU9SSrOrPCxJkqTMVT2IAaSUrgeur/Y4JEmSKqk3TE1KkiS9JhnEJEmSqsQgJkmSVCUGMUmSpCoxiEmSJFWJQUySJKlKDGKSJElVYhCTJEmqEoOYJElSlRjEJEmSqiRSStUeww6LiBXA8xm/zHBgZcavoerx/O6+PLe7N8/v7mt3PrcTUkojij2wSwaxSoiImSmladUeh7Lh+d19eW53b57f3ddr9dw6NSlJklQlBjFJkqQqMYiVdnm1B6BMeX53X57b3Zvnd/f1mjy39ohJkiRViRUxSZKkKjGIFRER0yPi6YiYHxGXVHs82nERsSAiHo+IRyJiZn7b0Ii4OSLm5W+HFOz/ifz5fjoizqjeyFVMRPwkIpZHxBMF23b4fEbE4fmfi/kR8e2IiEp/LdpaiXN7aUS8kP/9fSQi3ljwmOd2FxER4yPitoiYExGzI+Ij+e3+7hYwiHUTEbXAd4Azgf2Bd0XE/tUdlV6hk1NKhxS8HfoS4JaU0lTglvx98uf3HOAAYDrw3fzPgXqPK8idm0Kv5Hx+D7gAmJr/6H5MVd4VFD8P38z//h6SUroePLe7oDbgYyml/YCjgQ/mz6G/uwUMYts6EpifUno2pbQF+DVwVpXHpJ3jLGBG/vMZwNkF23+dUmpJKT0HzCf3c6BeIqV0J7Cq2+YdOp8RMQYYlFL6W8o1x/6s4DmqkhLnthTP7S4kpbQkpfRQ/vP1wBxgHP7ubsUgtq1xwKKC+4vz27RrScBNETErIi7IbxuVUloCuX8ggJH57Z7zXdOOns9x+c+7b1fv9KGIeCw/ddk5deW53UVFxETgUOB+/N3dikFsW8XmnX1r6a7n2JTSYeSmmD8YESeU2ddzvnspdT49z7uO7wFTgEOAJcDX89s9t7ugiBgA/AG4KKW0rtyuRbbt9ufXILatxcD4gvt7AC9WaSx6hVJKL+ZvlwN/JDfVuCxf4iZ/uzy/u+d817Sj53Nx/vPu29XLpJSWpZTaU0odwA95uVXAc7uLiYh6ciHsypTSVfnN/u4WMIht60FgakRMiogGco2D11R5TNoBEdE/IgZ2fg68AXiC3Hk8L7/becDV+c+vAc6JiMaImESuEfSByo5ar8AOnc/8FMj6iDg6/46rfyp4jnqRzv+k8/6O3O8veG53Kflz8WNgTkrpGwUP+btboK7aA+htUkptEfEh4EagFvhJSml2lYelHTMK+GP+3c11wC9TSjdExIPAbyPi/cBC4B0AKaXZEfFb4Ely7/L5YEqpvTpDVzER8SvgJGB4RCwGPgt8hR0/n/9G7l16fYG/5D9URSXO7UkRcQi56acFwIXgud0FHQu8B3g8Ih7Jb/sk/u5uxZX1JUmSqsSpSUmSpCoxiEmSJFWJQUySJKlKDGKSJElVYhCTJEmqEoOYpF4tIq6IiGurPY5CEXFWRMyLiLaIuKLa4yklIk6KiBQRw6s9FknFGcQklZQPQSkiPtVt+2v9P/gfkVstfALwkSqPRdIuzCAmaXs2AxdHxIhqD2Rnyl965ZU8bzAwHLgxpfRCSmntTh2YpNcUg5ik7bmN3Ormny61Q7EKWURMzG+b1m2fMyNiVkQ0R8RdEbFHRJwYEY9GxIaIuDYihhV5jU9FxLL8Pj+NiL4Fj0VEXBwRz+SP+3hEnFtkLO+KiFsjopn8au1FXmdIRMyIiNX5Y/01Ig7o/BqA1fldb80f86QSx2mIiK9GxOKI2BgRD0bEGUW+Z2+OiEciYnP++3J4t+O8Lf/1tETEooj4f/nLvBS+zpci4vn8Ps9GxIe7DefgiLg/IjZFxMyIOKzYmCVVnkFM0vZ0AJcA/xoRU3bC8T4HXAQcBQwBfgN8BriA3KVuDgAu7facE4GDgVOBt5O7fuhXCx7/AvB+4IPA/sCXgR9ExJu6HefLwHfz+/ypxPiuyI/tLHIXm94E3JAPfvfmx0d+HGPy24r5aX7c7wYOAmYAf46Ig7vt9zXgP4FpwLPAdRHRDyAfyn4HXJU/xiXAJ4APFTx/Brlr730U2C//fVhT5Ou+BDgMeAm4sjDMSaqilJIffvjhR9EPcqHk2vzntwG/zn9+ErnrAA4vdj+/bWJ+27Ru+5xRsM+H8tsOK9h2KfBEtzGsAQYUbDsXaAH65z+ageO7jf1bwPXdxvKx7Xy9U/P7nVCwrQlYC/xz/v7w/D4nlTnOFHIBds9u2/8EfLfb9+MfCx4fkP9aO1/rSuDWbse4FFjcbbzTS4yj2Pf82Py2Par98+WHH34kL/otqccuBu6LiK+9yuM8VvD5svzt4922jez+nJTShoL7fwMayAWeRqAPuapV4cVz68lNqRaauZ2x7UcuQP2tc0NKaW1EPE6uitZThwEBPNmt8NQI3Npt38LX2tDttfYDruu2/93AZyNiEHBofry3bWc8hd/zF/O3I4HF23mepIwZxCT1SErpwYj4A7kpwf/q9nBH/rYwdZRqhm8tPGz+2N237UjbROe+bwEWlnktgI3bOVa56bpU5rFiY0rAEUXG0LwDx4kyr5soP95C23zPsTVF6hX8RZS0Iz4JHA9M77Z9Rf52TMG2Q3bi6x4UEf0L7h8NbAGeAZ4kN005IaU0v9vH8zv4Ok+S+3fxmM4N+crTQfnHeuphciFpdJExvdBt36MLXqs/cCAwp2A8x3Xb/zhyU5PrgYfy4z15B8YmqRexIiapx1JK8yPicrZdO2s+sAi4NCIuIdeT9Sl2njrgJxHxeWAs8BXghymljQD56dKv5RvQ7yTXa3U00JFSurynL5JSmhcRV5Nr9L+AXL/WF4F1wC934DhzI+JK4IqI+Bi5wDSUXM/Wsymlqwp2/1RErCA3ZfgZcgGz87W+DjwYEZfmtx0BfIxcIO4c72+BH0XER/KvswcwMaX0856OV1L1WBGTtKM+D7QVbshPLZ4DTAYeJffOyE/uxNe8A5hNrhfqj+T6rC4uePzT5JrYP57f72Zy72p87hW81nuBB4Br8rf9yDXD78iUYudxfgr8N/AUcC1wAtC9SncJucD1ELnm+zd3BsyU0kPAO/JfyxPkAuhXgMsKnv9P5ELat/OvcwW5NxhI2gVESjvS9iBJ2hny64/dBoxIKa2s7mgkVYsVMUmSpCoxiEmSJFWJU5OSJElVYkVMkiSpSgxikiRJVWIQkyRJqhKDmCRJUpUYxCRJkqrEICZJklQl/z85Z/+UtyxqSAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAH5CAYAAAAiH1L7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABNTklEQVR4nO3dd5xkVZ3//9fpUNVd3T3TPTnAMIQhwxAGFAMgIKCC6A8MKIoR/RrWnPOurrtmXV1XFEVXl3VXcVVMIKCAgjggSBrSAJPz9HTO5/fHre7p6elQ1V3V1T3zej4e9bhVt27de6pL4O3nnHtOiDEiSZKkyVdW6gZIkiTtrwxikiRJJWIQkyRJKhGDmCRJUokYxCRJkkrEICZJklQiBjFJkqQSMYhJmrZCCDGE4GSIkqYtg5gkSVKJGMQkSZJKxCAmab8QQkiHED4YQvh7CKEthNAUQrg1hPDSEY5/YQjhxhDCxhBCZwhhQwjhjyGEtww57pAQwpUhhMdCCO0hhB0hhPtCCP8RQpg9Od9O0nQVXGtS0nTVPz4sxhjGOC4FXA+cAawCrgMywCXAPOCzMcYPDzr+CuBbwCbgl8C27HHHk/x785TscQuB+4EZwK+z564CDgbOBp4WY7y/QF9X0j7IICZp2sojiH0I+GfgN8ALY4w92f3zgDuBg4Bnxhj/nN1/F3AscGCMccuQc82JMW7LPn878DXgnTHGrw45rgboizG2T/iLStpn2TUpaX/wOiAC7+4PYQDZkPVP2ZdvGPKZHqB76In6Q9gQe4WtGGOrIUzSWAxikvZpIYQ64DBgQ4xx1TCH3JTdnjho349Iui4fCCF8OYTwohDC3GE++wugBfhGCOGnIYQrQgjHhBBGrdBJUj+DmKR93czsduMI7/fvr+/fEWP8EnA5sAb4B+BnwOYQws0hhBWDjnsKOBW4FjiHZFzZ/cBTIYR/KOB3kLSPcoyYpGkrlzFi2YpYE7AuxnjgMO8fDKwG7o0xnjDM+/XAM4AXk3RxNgJHDTN2rAJYThLI3g4sBt4QY7xqHF9N0n7CipikfVqMsRl4HFgcQlg2zCHPyW7vHuHzjTHGX8cY3whcDcwCnj3McT0xxrtijP8KXJrd/aIJNl/SPs4gJml/8F0gAJ8PIZT37wwhzAE+NuiY/v3nZytcQ83Lbtuyx50aQpg/zHHzBx8nSSOxa1LStDVoncnvj3LYW0jugLwReBbwAMmcXxngJSTh6nMxxg8MOm8j0AHcBjxJEuKeDZwC3AWcFmPsDiF8BXgr8EfgMWAncChwYfYzz4kx3j7xbyppX2UQkzRt5bjgd0OMsTGEUAW8G3gFSVjqAe4FvhFjvGbIed8MnEcy5msBSSh7CrgG+Ga2u5MQwtOA15CMITsQqAbWA7cCX3QyV0ljMYhJkiSViGPEJEmSSsQgJkmSVCIGMUmSpBIxiEmSJJWIQUySJKlEhpuwcMqbM2dOXLp0aambIUmSNKa77rprW4xx7nDvTcsgtnTpUlauXFnqZkiSJI0phPDUSO/ZNSlJklQiBjFJkqQSMYhJkiSViEFMkiSpRAxikiRJJTIt75qUJGl/0tTUxJYtW+ju7i51UzREZWUl8+bNY8aMGeP6vEFMkqQprKmpic2bN7N48WKqq6sJIZS6ScqKMdLe3s769esBxhXG7JqUJGkK27JlC4sXLyaTyRjCppgQAplMhsWLF7Nly5ZxncMgJknSFNbd3U11dXWpm6FRVFdXj7vb2CAmSdIUZyVsapvI72MQkyRJKhGDmCRJUokYxCRJUkGFEEZ9vOY1rxn3uT/5yU9y7LHHFq6xJeb0FZIkqaA2btw48Py6667jjW984x77vPlgNytikiSpoBYsWDDwqK+v32vfLbfcwsknn0xVVRUHH3wwH/nIR+jq6hr4/LXXXsvxxx9PdXU1s2bN4owzzmDz5s1cffXVfOpTn+KBBx4YqK5dffXVpfmSBWJFTJIkTZrf/e53vPKVr+SrX/0qp59+OmvWrOHNb34znZ2dfOELX2DTpk28/OUv57Of/SwXX3wxLS0t3HHHHQC87GUv4/777+e6667jD3/4AwAzZ84s4beZOIPYcHq7oaMJMrPAW4YlSVPMp375AA9uaJrUax69aAafuPCYCZ/nM5/5DO973/t47WtfC8Chhx7Kv/7rv3LZZZfx+c9/ng0bNtDd3c0ll1zCQQcdBLDHmLDa2loqKipYsGDBhNsyFdg1OZy//Ad8/hDobC51SyRJ2qfcddddfOYzn6G2tnbg8YpXvILW1lY2bdrE8uXLOeecczj22GO5+OKL+eY3v8nWrVtL3eyisSI2nFRtsu1qgarxLeIpSVKxFKIyVSp9fX184hOf4CUvecle782dO5fy8nKuv/567rjjDq6//nquuuoqPvShD/HHP/6R5cuXl6DFxWUQG066Ltl2tpS2HZIk7WNOOukkVq1axWGHHTbiMSEETjvtNE477TQ+/vGPc8wxx/DjH/+Y5cuXk0ql6O3tncQWF5dBbDj9QazLrklJkgrp4x//OBdccAEHHXQQL33pS6moqOD+++/nzjvv5HOf+xx33HEHv//97znvvPOYP38+f/vb31i7di1HH300AEuXLuWpp57i7rvvZsmSJdTV1ZFOp0v8rcbPMWLD6e+adIyYJEkFdd555/GrX/2Km2++mVNPPZVTTz2Vf/mXf2HJkiVAchfkn/70Jy644AKWLVvGe97zHj72sY9x2WWXAXDxxRfz/Oc/n7PPPpu5c+dyzTXXlPLrTJgVseGk+4OYXZOSJE3EJZdcQoxxj33nnnsu55577rDHH3XUUfzmN78Z8XzpdJqf/OQnBW1jKVkRG87gwfqSJElFYhAbzsBgfbsmJUlS8RjEhmNFTJIkTQKD2HAqqyGUO0ZMkiQVlUFsOCEkA/btmpQkSUVkEBtJqs6uSUmSVFQGsZFYEZMkSUVmEBtJqtaKmCRJKiqD2EjStQ7WlyRJRWUQG0naMWKSJE0lr3nNa7jgggvy+syZZ57J2972tiK1aOJc4mgkqTrHiEmSNA4hhFHfv/zyy7n66qvzPu9Xv/rVvZZLGsu1115LZWVl3teaLAaxkThYX5Kkcdm4cePA8+uuu443vvGNe+yrrq7e4/ju7u6cwtLMmTPzbsusWbPy/sxksmtyJP2D9fNM3pIk7e8WLFgw8Kivr99jX0dHB/X19VxzzTWcddZZVFdX861vfYvt27dz6aWXcsABB1BdXc0xxxzD9773vT3OO7Rr8swzz+Qtb3kLH/7wh5kzZw7z5s3jve99L319fXscM7hrcunSpXz605/mTW96EzNmzOCAAw7g85///B7XeeSRRzjjjDOoqqriiCOO4Ne//jW1tbXjquKNxSA2knQt9PVAT2epWyJJ0j7nQx/6EG95y1t48MEHedGLXkRHRwcnnXQS1113HQ888ADveMc7eNOb3sSNN9446nl+9KMfUVFRwZ///Ge+/vWv85WvfIUf//jHo37my1/+Mscddxx33303H/jAB3j/+9/P7bffDkBfXx8vfvGLqaio4I477uDqq6/mU5/6FJ2dxckDdk2OJJVd+LurBSqrStsWSZIG+80HYdN9k3vNBcfB8/6lYKd7+9vfziWXXLLHvve9730Dz6+44gpuuukmrrnmGs4+++wRz3P00Ufzj//4jwAcfvjhfPvb3+bGG2/k0ksvHfEz55577kCV7O1vfztf+9rXuPHGGznttNO44YYbePjhh7n++utZvHgxkAS3Zz7zmeP+rqOxIjaSdDaIdTaVth2SJO2DVqxYscfr3t5ePvOZz3D88ccze/Zsamtrufbaa1mzZs2o5zn++OP3eL1o0SK2bNky7s+sWrWKRYsWDYQwgFNOOYWysuJEJitiI0nXJlvnEpMkTTUFrEyVSk1NzR6vv/CFL/DFL36Rr371qxx33HHU1tby4Q9/eMxQNXSQfwhhjzFi+X4mxjjmXZ+FZBAbSSobxJxLTJKkorvtttu48MILedWrXgUkgeiRRx4ZGOw/WY466ijWr1/Phg0bWLRoEQArV64cM9yNl12TIxnomjSISZJUbIcffjg33ngjt912G6tWreJtb3sbTzzxxKS347nPfS5HHHEEl19+Offeey933HEH7373u6moqChKpcwgNpKBiphziUmSVGwf/ehHOfXUU3ne857H6aefTk1NDa985SsnvR1lZWX87Gc/o7Ozk1NPPZXLL7+cj3zkI4QQqKoq/M17Id8ZaqeCFStWxJUrVxb3IrvWwZePgQu/BidfXtxrSZI0goceeoijjjqq1M3Yr917772ccMIJrFy5kpNPPnnYY0b7nUIId8UYVwz3nmPERjLQNWlFTJKk/cnPfvYzampqWLZsGU8++STvfve7Wb58OSeddFLBr2UQG4mD9SVJ2i81NzfzgQ98gLVr19LQ0MCZZ57Jl7/85aKMETOIjaSsHCozVsQkSdrPvPrVr+bVr371pFzLwfqj6V9vUpIkqQgmLYiFEL4bQtgSQrh/mPfeG0KIIYQ5k9WenKRrnb5CklRy0/HGuv3JRH6fyayIXQ2cP3RnCOFA4LnA6GsYlEK6zoqYJKmkKisraW9vL3UzNIr29va9ZuvP1aQFsRjjLcCOYd76MvB+YOrF/VSdY8QkSSU1b9481q9fT1tbm5WxKSbGSFtbG+vXr2fevHnjOkdJB+uHEF4IrI8x3juZ6zrlLF0LTRtK3QpJ0n5sxowZAGzYsIHu7u4St0ZDVVZWMn/+/IHfKV8lC2IhhAzwEeDcHI+/ArgCYMmSJUVs2SAO1pckTQEzZswY93/oNbWV8q7JQ4GDgXtDCE8CBwB3hxAWDHdwjPHKGOOKGOOKuXPnTk4LHawvSZKKqGQVsRjjfcBAh2o2jK2IMW4rVZv2YkVMkiQV0WROX3ENcDtwRAhhXQjh9ZN17XFLz4DuNujrLXVLJEnSPmjSKmIxxkvHeH/pJDUld+nsMkedzVBdX9KmSJKkfY8z64/G9SYlSVIRGcRGM1ARM4hJkqTCM4iNJlWXbK2ISZKkIjCIjWbwGDFJkqQCM4iNJp2tiBnEJElSERjERuNgfUmSVEQGsdEMVMQMYpIkqfAMYqMZqIjZNSlJkgrPIDaaijSUVVgRkyRJRWEQG00IrjcpSZKKxiA2lvQM75qUJElFYRAbS7rWICZJkorCIDYWuyYlSVKRGMTGkq51sL4kSSoKg9hYrIhJkqQiMYiNJV1nRUySJBWFQWws6ToH60uSpKIwiI0lVZvMrB9jqVsiSZL2MQaxsaRrIfZBd3upWyJJkvYxBrGxDKw36TgxSZJUWAaxsaTrkq3jxCRJUoEZxMZiEJMkSUViEBuLXZOSJKlIDGJjSWeDmHOJSZKkAjOIjSWV7Zq0IiZJkgrMIDaWgYqYY8QkSVJhGcTG4hgxSZJUJAaxsaSsiEmSpOIwiI2lrCwJYw7WlyRJBWYQy0X/epOSJEkFZBDLRdqKmCRJKjyDWC5StQ7WlyRJBWcQy0W6zoqYJEkqOINYLtJ13jUpSZIKziCWCwfrS5KkIjCI5cLB+pIkqQgMYrlwsL4kSSoCg1gu0nXQ0wG9PaVuiSRJ2ocYxHIxsN6k48QkSVLhGMRyka5Ltt45KUmSCsgglot0/8LfjhOTJEmFYxDLRSpbEXPAviRJKiCDWC4GKmJ2TUqSpMIxiOViYLC+FTFJklQ4BrFcOFhfkiQVgUEsFwNBzIqYJEkqHINYLpxHTJIkFYFBLBcVKShPWRGTJEkFZRDLletNSpKkAjOI5Spda0VMkiQVlEEsV+kZ3jUpSZIKatKCWAjhuyGELSGE+wft+3wIYVUI4e8hhJ+FEOonqz15S9U6WF+SJBXUZFbErgbOH7LvBuDYGOPxwCPAhyaxPfmxa1KSJBXYpAWxGOMtwI4h+66PMfZkX94BHDBZ7cmbg/UlSVKBTaUxYq8DfjPSmyGEK0IIK0MIK7du3TqJzcqyIiZJkgpsSgSxEMJHgB7gRyMdE2O8Msa4Isa4Yu7cuZPXuH6pOitikiSpoCpK3YAQwuXABcDZMcZY6vaMKF2X3DUZI4RQ6tZIkqR9QEkrYiGE84EPAC+MMbaVsi1jStcCEbpaS90SSZK0j5jM6SuuAW4HjgghrAshvB74OlAH3BBCuCeE8B+T1Z68Daw3afekJEkqjEnrmowxXjrM7qsm6/oTlq5Ltp0tSXSUJEmaoCkxWH9aGKiIOamrJEkqDINYrtLZIOYyR5IkqUAMYrka3DUpSZJUAAaxXKWyQczB+pIkqUAMYrmya1KSJBWYQSxXTl8hSZIKzCCWq1QNEBwjJkmSCsYglqsQkqqYXZOSJKlADGL5SNc5j5gkSSoYg1g+0rV2TUqSpIIxiOUjVetgfUmSVDAGsXxYEZMkSQVkEMtHqs6KmCRJKhiDWD7SddDZVOpWSJKkfYRBLB92TUqSpAIyiOXDwfqSJKmADGL5SNdCbxf0dJW6JZIkaR9gEMtHqi7ZWhWTJEkFYBDLRzq78LfLHEmSpAIwiOUjna2IGcQkSVIBGMTykcpWxOyalCRJBWAQy8dARcwgJkmSJs4glo+Biphdk5IkaeIMYvkYGKxvRUySJE2cQSwfKe+alCRJhWMQy0faecQkSVLhGMTyUV4JFVVWxCRJUkEYxPLlepOSJKlADGL5Stc6WF+SJBWEQSxfqTorYpIkqSAMYvlK1zpGTJIkFYRBLF/pOoOYJEkqCINYvhysL0mSCsQgli8H60uSpAIxiOXLwfqSJKlADGL5Sme7Jvv6St0SSZI0zRnE8tW/3qRVMUmSNEEGsXy53qQkSSoQg1i++oOYA/YlSdIEGcTyNdA16VxikiRpYgxi+Upng5gVMUmSNEEGsXz1V8ScXV+SJE2QQSxfDtaXJEkFYhDL18BgfStikiRpYgxi+XIeMUmSVCAGsXxVVkMoc7C+JEmaMINYvkJwvUlJklQQBrHxSNc6RkySJE2YQWw80nUGMUmSNGEGsfFI1do1KUmSJmzSglgI4bshhC0hhPsH7ZsVQrghhPBodtswWe2ZkHStg/UlSdKETWZF7Grg/CH7PgjcGGNcBtyYfT31WRGTJEkFMGlBLMZ4C7BjyO6LgO9nn38feNFktWdC0nVWxCRJ0oSVeozY/BjjRoDsdt5IB4YQrgghrAwhrNy6deukNXBYqVrobCptGyRJ0rRX6iCWsxjjlTHGFTHGFXPnzi1tY9LZecRiLG07JEnStFbqILY5hLAQILvdUuL25CZdC3090NNZ6pZIkqRprNRB7BfA5dnnlwM/L2FbcpfKLvztgH1JkjQBkzl9xTXA7cARIYR1IYTXA/8CPDeE8Cjw3OzrqS+dXfjbSV0lSdIEVEzWhWKMl47w1tmT1YaCSWWDmBUxSZI0AaXumpyerIhJkqQCMIiNR3pGsnUuMUmSNAEGsfEY6Jq0IiZJksbPIDaMn/1tHc/90h/p6O4d/oCBrkkrYpIkafwMYsNo7+rj0S0tNLZ1D3+Ag/UlSVIBGMSGUZ+pBGBnW9fwB6QcrC9JkibOIDaM/iA2YkWsvAIqMwYxSZI0IQaxYdRXpwBoHKkiBklVzK5JSZI0AQaxYTTU9HdNjlARg2TAvoP1JUnSBBjEhjFQEWu3IiZJkorHIDaM6lQ56YqykceIAaTrrIhJkqQJMYiNoCGTGnuMWGfT5DVIkiTtcwxiI6jPVI4xRqzOrklJkjQhBrER1Gcq2eVgfUmSVEQGsRHUV6dGntAVHKwvSZImzCA2goaaHLomu9ugb4T1KCVJksZgEBtBfSbFrvYuYozDH+B6k5IkaYIMYiOor66kuzfS2jVCxSvtepOSJGliDGIjaMiMscxRui7ZOmBfkiSNk0FsBDPHWvg7lQ1idk1KkqRxMoiNYHdFbIQgZtekJEmaIIPYCOoz/Qt/j9A16WB9SZI0QQaxEdQPdE2ONEbMipgkSZoYg9gI6qvH6JpMOVhfkiRNjEFsBKmKMmpS5SNP6tp/12SXFTFJkjQ+BrFR1GdSNLaP0DVZkYayCitikiRp3Axio6jPVI7cNRmC601KkqQJMYiNoiEzxsLf6TorYpIkadwMYqOoz1Sya7SFv1O10Nk0eQ2SJEn7lJyCWAjhzyGE+kGvPxtCmDXo9ZwQwpoitK+k6jOVY1TE7JqUJEnjl2tF7OlAatDrtwL1g16XA4sL1KYpoyGTYld7N319cfgD7JqUJEkTMN6uyVDQVkxRM6sr6YvQ3NEz/AEO1pckSRPgGLFRDKw3OdIUFlbEJEnSBOQaxGL2MXTfPm33epMjza5f64SukiRp3CpyPC4APwwhdGZfVwHfDiG0ZV+nC96yKaA+WxEbccB+ujZZazLGZF4xSZKkPOQaxL4/5PUPhznmBxNsy5TTkK2IjTiFRboOYh90t0MqM4ktkyRJ+4KcgliM8bXFbshUNGZFLFWbbLtaDGKSJClvExqsH0JYEkI4OoR9s19uZnVSERtxmaP+hb87HScmSZLyl+uEri8LIfy/Ifu+CTwB3AfcH0LY5+YRKy8LzKiqoDGXipgkSVKecq2IvR3o638RQjgHeBPwceAl2fN8rOCtmwIaalIj3zWZzgYxp7CQJEnjkOtg/SOAvwx6fRFwfYzxMwAhhA7g6wVu25RQX11JY/tI01fYNSlJksYv14pYLbBj0OtnADcNev0AsKBQjZpK6jOpkbsm+8eI2TUpSZLGIdcgtg44BiCEMAM4DvjToPdnA/tkGmnIVI4yWL+/a9KKmCRJyl+uXZP/C3wthPBZ4HxgI3DHoPdXAKsK3LYpoT6Tym36CkmSpDzlGsT+CTgA+CKwCbgsxtg76P1LgV8VuG1TQn2mkuaOHnp6+6goH1JATDlYX5IkjV+uE7q2A68e5f3nFKxFU0x9di6xXe3dzK4dspJTWRlU1tg1KUmSxiWnIBZC+EUOh8UY40UTbM+U01DTP7v+MEEMknFiLvwtSZLGIdeuyQuAp4A/FK8pU1P/Mke72ke5c9KuSUmSNA65BrEvAJcBpwPfA66OMa4rWqumkP6uyZ2tI80lVutgfUmSNC45TV8RY3w/cCDwLpI7JB8NIfwmhHBJCKGymA0stYZsRWzESV2tiEmSpHHKedHvGGNvjPEXMcYXAQcDNwOfBtaHEGon0ogQwrtCCA+EEO4PIVwTQqiayPkKaWamf+HvUaawcIyYJEkah5yD2BA1QD3JjPstQBxvA7KLhf8DsCLGeCxQDrx8vOcrtBlVFZSXhdEndfWuSUmSNA45B7EQQnUI4fIQwi3AfcBBwOUxxkNijK0TbEcFUB1CqAAywIYJnq9gQgjMrK4cfVJXuyYlSdI45Dp9xZXAy4BHgauAF8YYGwvRgBjj+hDCF4A1QDvJYuLXF+LchVI/6jJHdQ7WlyRJ45LrXZNvIAlKG4HnAc8LIex1UIzxhfk2IITQAFxEMu6sEfjfEMJlMcYfDjnuCuAKgCVLluR7mQlpyKRoHG36ip4O6O2B8lz/nJIkSbkHsR8wgXFgYzgHeCLGuBUghHAt8AxgjyAWY7wSuBJgxYoVxWrLsOqrK9m4q2P4NwfWm2yG6obJa5QkSZr2cl3i6DVFbMMa4OkhhAxJ1+TZwMoiXi9v9ZkUqzaNMCA/PWi9SYOYJEnKw3jvmiyYGONfgJ8Ad5PcBFBGtvI1VdRnxhisD945KUmS8jYlBjXFGD8BfKLU7RhJQ6aStq5eOnt6SVeU7/lmui7ZOmBfkiTlqeQVselgYL3J4e6c7A9iVsQkSVKeDGI5qM/Orr9z1CDWNIktkiRJ+wKDWA4G1pscbpzYzAOS7c4nJ69BkiRpn2AQy8HM6lEqYlUzoWYebH9sklslSZKmO4NYDhpqsmPERprUdc4y2GYQkyRJ+TGI5aB+tIoYwOzDYPujk9giSZK0LzCI5SCTKidVXjbyXGJzlkHbdmjbMbkNkyRJ05pBLAchBOozlcNPXwEwe1mydZyYJEnKg0EsR6POrj8nG8S22T0pSZJyZxDLUX0mReNIFbH6JVBW4TgxSZKUF4NYjuqrK0cOYuWV0HCwXZOSJCkvBrEcNWRSNI40fQU4hYUkScqbQSxH9TWV7GzrJsY4/AGzD4Mdq6Gvd3IbJkmSpi2DWI7qq1N09fTR3j1C0JqzDHo7oXHN5DZMkiRNWwaxHDVkF/4ecZyYU1hIkqQ8GcRyVJ/pn13fKSwkSVJhGMRyVJ/Jrjc5UkUsMztZANwpLCRJUo4MYjnaXREbIYiFkHRP2jUpSZJyZBDLUUO2IjZi1yQ4hYUkScqLQSxHM6uTitiu9hEqYpBMYdG8ATpbJqlVkiRpOjOI5aiqspzqynJ2to5REQO7JyVJUk4MYnloyFTSOGpFzCAmSZJyZxDLw8xMisbRxojNOgQITmEhSZJyYhDLQ0NmlIW/ASqroP5Ap7CQJEk5MYjloT5TOfpdk+AUFpIkKWcGsTzUZ1KjV8QgGbC//XEYaXFwSZKkLINYHvoH68fRQtbsw6CrBZo3Tl7DJEnStGQQy0N9dYrevkhzZ8/IB7nmpCRJypFBLA/9yxyNuN4kDJrCwiAmSZJGZxDLQ30uyxzVLYTKjEsdSZKkMRnE8tAw1sLfAGVlMPtQK2KSJGlMBrE89FfERp3UFZzCQpIk5cQglof+MWI5TWHRuAZ6OiehVZIkaboyiOWhvjrHIDZ7GcQ+2LF6ElolSZKmK4NYHirKy6hLV4w9u/6cw5KtU1hIkqRRGMTyVF9Tya72sSpi2SDmgH1JkjQKg1ie6qtTY1fE0nVQu8ApLCRJ0qgMYnlKFv4eoyIG2TUnrYhJkqSRGcTy1JBJsWusihgk3ZNOYSFJkkZhEMtTXhWx9p3Qur34jZIkSdOSQSxP9ZkUTR3d9PbF0Q90zUlJkjQGg1ie6qsriRGaxrpz0iksJEnSGAxieWqoyU7qOlYQqz8IyiqtiEmSpBEZxPLUv97kmFNYlJXDrEOcwkKSJI3IIJan3csc5XDnpFNYSJKkURjE8tSQrYiNud4kJFNY7HgCenuK3CpJkjQdGcTyVJ9JKmI5T2HR1w2NTxW5VZIkaToyiOVpRlUlIZDjpK79U1g4TkySJO3NIJansrLAzOo8JnUFp7CQJEnDMoiNQ0Mmh4W/ATKzoHqWA/YlSdKwpkQQCyHUhxB+EkJYFUJ4KIRwWqnbNJr6TCW7xppHrN/sw5zCQpIkDWtKBDHgq8BvY4xHAsuBh0rcnlHVV1fmVhEDp7CQJEkjKnkQCyHMAE4HrgKIMXbFGBtL2qgxNGRSuU1fAUlFrGUzdDQVt1GSJGnaKXkQAw4BtgLfCyH8LYTwnRBCTakbNZqZmcrcg9gc75yUJEnDmwpBrAI4CfhmjPFEoBX44NCDQghXhBBWhhBWbt26dbLbuIeGTIqWzh66e/vGPtgpLCRJ0gimQhBbB6yLMf4l+/onJMFsDzHGK2OMK2KMK+bOnTupDRyqf1LXnKpisw6GUOYUFpIkaS8lD2Ixxk3A2hDCEdldZwMPlrBJY6ofWOYohwH7FWmoP8gB+5IkaS8VpW5A1tuBH4UQUsBq4LUlbs+oGvorYk5hIUmSJmBKBLEY4z3AilK3I1f11UlFbGdrHlNYPHkb9PVBWcmLkJIkaYowFYxD/XgqYj3t0LyhiK2SJEnTjUFsHHYP1s+jIgYO2JckSXswiI1DbbqCirKQx6SuTmEhSZL2ZhAbhxAC9ZkUO3MNYnULIFVrRUySJO3BIDZO9ZnK3LsmQ4DZhzqFhSRJ2oNBbJwa8lnmCJLuSaewkCRJgxjExmlmdYqduVbEIBmwv2stdLcXr1GSJGlaMYiNU0Omkl25Tl8ByRQWRNixumhtkiRJ04tBbJzqM5X5V8TAAfuSJGmAQWyc6jMpOrr76Ojuze0Dsw9Ltg7YlyRJWQaxcWoYWPg7x+7JVA3MWOyAfUmSNMAgNk79s+vn1T3pFBaSJGkQg9g47V7maBxTWMRYpFZJkqTpxCA2TvXV/V2TeQ7Y79wFrVuL1CpJkjSdGMTGqaEmWxHLawoL15yUJEm7GcTGqX+wfn5TWGTvnHQKC0mShEFs3Koqy0lXlOU3RmzmgVCehvUri9cwSZI0bRjEJqAhk8pvjFhZORz3Erj7B3DL54vXMEmSNC1UlLoB01kyu34eFTGAC78Kfd1w06ehqw3O/jiEUJwGSpKkKc0gNgH1mUp25RvEyivgRf8BlRm47UvQ3QbnfRbKLE5KkrS/MYhNQH11ise3tuT/wbIyuODLSRi74xvQ1ZpUysrKC99ISZI0ZRnEJqChppKdT+VZEesXApz3mWTpo1s+B93t8OL/gPLKwjZSkiRNWQaxCajPpNjV3kWMkTCecV4hwFkfgVQGfv9J6OmAS74LFemCt1WSJE09DkyagPrqSrp7I61dvRM70bPeBc/7PKy6Dq65NBnEL0mS9nkGsQnon9Q1ryksRvK0K+Cib8Dqm+FHl0Bn88TPKUmSpjSD2ATMHM/C36M58TK4+Duw9i/wg4ugfWdhzitJkqYkg9gE7K6IFSiIARx7Mbz0P2HTfXD1hdDiAuGSJO2rDGITUJ+tiOW13mQujnw+vOLHyeLgP7gouaNSkiTtcwxiE1A/0DVZ4CAGcOhZ8LIfwpYH4IaPF/78kiSp5AxiE1BfXYSuycGWnQNPfyvceSU8cn1xriFJkkrGIDYBqYoyalLl+a83mY9zPgHzj4WfvwVathTvOpIkadIZxCaoPpOisb0IXZP9KtLJnZSdzfB/b4EYi3ctSZI0qQxiE1SfqSxe12S/eUfBuZ+Gx26AO79d3GtJkqRJYxCboIZMqjiD9Yc65Q2w7Fy4/qOw5aHiX0+SJBWdQWyCJqUiBsm6lBd9A6pmwE/fAN0dxb+mJEkqKoPYBNVnKgs/j9hIaufBRf8Om++HGz81OdeUJElFYxCboIZMil3t3fT1TdIg+sPPhVPfBHf8Ozz2+8m5piRJKgqD2ATNrK6kL0JzR8/kXfS5n4K5RyV3UbZum7zrSpKkgjKITdDAepPFnMJiqMrqZEqL9p3wi7c7pYUkSdOUQWyCdq83OQkD9gdbcCyc8yl4+Ndw1/cm99qSJKkgDGITVJ+tiG1t7pz8iz/tzcmalL/9MGx9ePKvL0mSJsQgNkEHz6mhNl3Bu//nHn781zXEyewmLCuDF30TUhn46euhpwRhUJIkjZtBbIJm1aS47u3P4uiFM/jAT+/jVVfdydodbZPXgLoF8MKvw6b74KZPT951JUnShBnECmDpnBqueePT+acXHcvf1uzkvK/cwvf//OTkTWlx5PNhxevgz19LZt63MiZJ0rRgECuQsrLAq55+EL971+msWDqLT/ziAV525e2s3toyOQ0477PJMkh//jf4ztmwZdXkXFeSJI2bQazADmjI8P3XnsLnLzmehzc187yv3sq3/vg4Pb19xb1wZRW84Itw6Y+haSNceUayQLhTW0iSNGUZxIoghMBLVhzI7999BqcfPpfP/mYVF3/zzzy8qbn4Fz/ifHjL7XDw6fDr98J/vRRathT/upIkKW8GsSKaN6OKK191Mv926Yms3dnOBf92K1/9/aN09RS5OlY7D17xP/D8L8ATt8C/nwYP/7a415QkSXkziBVZCIELly/ihnedzvnHLuTLv3+Ei77xJx7YsKvYF4ZT3whX/BHqFsI1L4Pr3g1dk3hHpyRJGpVBbJLMrk3zb5eeyJWvOpltLZ1c9PU/8aUbHil+dWzekfDGG+EZb4eVVyVjxzbcU9xrSpKknEyZIBZCKA8h/C2EcF2p21JM5x6zgBvedToXLl/E1258lBd+/TbuX1/k6lhFGs79NLz659DZAt85B277CvQVOQRKkqRRTZkgBrwDeKjUjZgM9ZkUX37ZCXz71SvY3trFi77xJ750/cPFr44dcib8vz8l8479/hPw6/d4V6UkSSU0JYJYCOEA4AXAd0rdlsn03KPnc8O7TueFyxfxtZsem5zqWGYWvOT78Mx3wMrvwh3fLO71JEnSiKZEEAO+Arwf2O/6yuozKb70shP4TrY6dtFkVMdCgLM/CUddCL/7sHdUSpJUIiUPYiGEC4AtMca7xjjuihDCyhDCyq1bt05S6ybPOdnq2EUnTFJ1rKwMXnwlLFwOP3ldslalJEmaVCGWeIxQCOGzwKuAHqAKmAFcG2O8bKTPrFixIq5cuXKSWjj5bnxoMx+69j62t3bxptMP4W1nHUYmVVGcizVtTJZEAnjjTcki4pIkqWBCCHfFGFcM917JK2Ixxg/FGA+IMS4FXg7cNFoI2x+cfdR8bnjXGbzohMX8+x8e56wv/JGf37OeooTmGQvh0v+G9ka45uXOMyZJ0iQqeRDT8GZmKvniS5fzkzefxpy6FO/473t4yX/czn3ritBdufB4uOSqZH6xn73JaS0kSZokUyqIxRj/EGO8oNTtmEpWLJ3Fz9/6LP714uN4YlsrL/zGbXzgJ39nW0tnYS90xPOSucYe+gXc9E+FPbckSRrWlApiGl55WeBlpyzh5vedyeufeTA/vXsdz/n8H/jOrasLe3flaW+Fk18Dt30J/vajwp1XkiQNyyA2jcyoquSjFxzN7951OicvbeDTv3qI8796Czc/vKUwFwghWSj8kDPhl++AJ28rzHklSdKwDGLT0KFza7n6tafy3desIEZ47ff+yuuu/iurt7ZM/OTllcmEr7MOhh9fBtsfn/g5JUnSsAxi09hZR87nd+88nQ8//0jufGIH5375Ft7/k3t5YlvrxE5cXQ+v+DEQ4L9eCm07CtFcSZI0RMnnERuPfX0esfHY0tzBN256jP/+61q6e/u4cPki3vqcwzh8ft34T/rU7fCDF8KBT4PLroWKVOEaLEnSfmK0ecQMYvuYLc0dXHXrE/znHU/R1tXL+ccs4G1nHcaxi2eO74T3/hh+dgUc9lx4/udg1iGFbbAkSfs4g9h+aGdrF9/70xN8789P0tzRw3OOmMvbzlrGyQc15H+yv1wJv/8E9HbD094Ep78v6b6UJEljMojtx5o6uvnP25/iO7euZmdbN884dDZvO+swTjtkNiGEPE60EW7+dDKtRXUDnPkhWPHaZHC/JEkakUFMtHb2cM2da/jWLavZ2tzJyQc18I6zl/HsZXPyC2Qb/w7XfwSeuAVmL0smgT38vGTqC0mStBeDmAZ0dPfyvyvX8s0/PM6GXR2csrSBdz/3CE47dHbuJ4kRHvktXP9R2P4YHHwGnPcZWHBc8RouSdI0ZRDTXjp7evnxX9fy9ZseY0tzJ884dDbvOfdwTj5oVu4n6e2Gld+FP3w2WTT8xMvgrI9C3YKitVuSpOnGIKYRdXT38qO/rOGbf3iMbS1dnHH4XN793MNZfmB97idp3wm3fAH+8i0oT8Hp74FnvhPKyovVbEmSpg2DmMbU1tXDD25/im/98XF2tnVzzlHzeddzl3HMojymvdixGq7/GKy6Dg4+HS7+LtTOLV6jJUmaBgxiyllzRzdX/+lJvn3rapo6enj+cQt45zmH5zcx7N3/Cb9+b3J35UuuhiVPL1p7JUma6gxiytuu9m6uunU13/3Tk7R29XD2kfN58YmLOfuoeVRV5tDluOk++J9Xw86n4Ln/CKe91TsrJUn7JYOYxm1naxffvnU1P7lrHVuaO6lNV3DuMfN50QmLecahs6koH2W50o5d8H9vSboqj7oQLvoGVI1zhn9JkqYpg5gmrLcvcsfq7fz8nvX85v5NNHf0MKc2zQXHL+SiExZxwoH1w89HFiPc/nW44RPQcBC89D9hwbGT/wUkSSoRg5gKqqO7lz88vIWf37OBG1dtoaunj4NmZ7ho+SJeeMJiDptXu/eHnrod/vc10NEIL/gSnPjKyW62JEklYRBT0TR1dPPb+zfxi3s28OfHt9EX4ZhFM7jg+EVccPxCDpyV2X1wyxb46euTWflPejU873NQWV26xkuSNAkMYpoUW5o6+OXfN/KLezdw79pGAJYfWM+Fxy/k+cctZFF9NfT1ws3/DLd+ARYcDy/9Psw6pLQNlySpiAximnRrd7Txq/s2ct3fN3D/+iYATj6ogQuOX8gLjlvIvE1/hGuvgNgHK14HJ78GZh1c2kZLklQEBjGV1BPbWvnV3zdw3d83smpTMyHAqUtn8bJlkRds/DfSj/02GdR/2NlJKFt2HpRXlLrZkiQVhEFMU8ZjW5r55b1Jpezxra2UBThjQTevz9zKKTt+Sbp9M8xYDCddDie9CmYsyv3kLVth7R2w9i+w9k6oPwhe8EWomlG8LyRJ0hgMYppyYow8vLmZ396/iT89to2/rWkk9vVwXuU9vDnzB47vvIsYyomHP4+yU14HhzwHygbNWdbXB9seTkLXmr8kAWzH6uS98hQsOA423guzl8Gl19jtKUkqGYOYprzWzh7ufHIHf3p0G396fDutmx7lFeU38dKKPzCLZpqqD6Tr+Fcyu6aS0F/x6mhMPpyZDQc+HZY8DQ58Giw8ASqrYPUfk9n9y8rhZT+Eg55Ryq8oSdpPGcQ07Wxv6eTPj2/nL49uIPXIdZzX8RueVrYKgLXlB7KhbjntC0+h+pDTOPCw41hYXz38hLLbH4f/ehnsfBIu+HLS3SlJ0iQyiGnaW7ujjXvv+zsPbO/j3u1lPLK5hW0tnQPv16UrOGx+LYfPq2PZ/FoOn1/HUQtnMLcuDe2NyWSyq2+G096WrH1ZlsN6mZIkFYBBTPukna1dPLK5mUe2tPDo5mYe2dzMo5tb2N7aNXDM4vpqTlxSz4mLa7lw078x76EfwLJz4eKrHMQvSZoUBjHtV7a3dPLI5hYe2LCLv61p5J61jaxvbAfg1ZW/5xPlV7Ot6iDuedY3OfzI41k6OzN8t6YkSQVgENN+b0tTB39bm4Sy7kdv5u3b/okeynhz17t4tPo4jls8k8X11SycWc3C+qrs8yoW1VdTVWk3piRp/Axi0hC9Wx+j54cvoaJpDdcuei//2flsNjR27DHurF9DppKFM6tZVF/NovoqFsysoq6qkkxlOZlUOZl0BZlUOdXZ1zXpCqpT5WQqy6koLxvm6pKk/YlBTBpO+87sIP4/wImXwYLldFdU09idYltXBVs6K9jUXsb6tjLWtZTxZDM8sSuysyP3f2ZSFWXMyqSYPyPNvBlVzJ+RZn5dFfNnVDFvRpr5M5LnDZlKu0claR9lEJNG0tsDv/sw3HklkNs/C7Gimr6aeXTXLKQzs4D2qvm0Vs2nKTWPXRVz2V4xl53MpK070trVw46WLjY3d7KlqYPNTR3sbOve65yp8jLm1qWZWV2ZXINk0ts9rpt9GbPtTFWUceSCGRx/wEyOWzyToxbOsBtVkqYgg5g0lu4O6GqFrpbsthW6W3c/H9jfBp1N0LwJmjZA0/pk2zckXJVVQN2iZImmQ86AU94AtfMA6OjuZWtzJ1uaO9jc1MnmpmS7pamDpo5uINBfHOuvke1+HQZet3b18uCGXWxrSe4SrSgLHD6/LglmB8zk+MX1HLGgjlRFYbtHt7d0smpTMw9tbGLVpmbauno484h5nHPUfGbVpAp6LUnaFxjEpGLq64O27dC0LhvOBgW0nU8mqwCUp+D4l8Jpb4V5RxXs0jFGNu7q4O/rdnHf+sbsdheN2apbqryMIxfWcezimSyaWcXMTIqGTCUNmRT12W1DJkV1au9KWldPH49vbWHVpiZWbWzmwWzw2tq8exzd3Lo05SGwqamDsgCnHjyLc49ewLnHzOeAhkzBvqckTWcGMamUtj0Gd3wD7rkGetrhsHOSQHbIc3aXugooxsi6ne38fd0u/r6+kfvW7eL+9bto6ugZ8TPpirKBcFafqaSxrZvHtrTQ05ftBi0vY9n8Wo5cMIOjFiaT5R6xoI45tWlijNy/vonrH9zE7x7YxCObWwA4dvEMzjt6Aeces4DD59c6Bk7SfssgJk0Frdth5XeT8WitW2DeMUkgO+4SqEgX/fId3b3sau9mZ1sXO1u7aWzrojH7urGtm52tXexsS/bXVlVw1MIZHLmgjqMXzmDpnBoqh94B2tkCN30a1v01+Q7LL4Xqep7Y1sr1DySh7O41jQAsnZ3hvGMWcNaR81hUX82MqkpqqyooLzOcSdr3GcSkqaSnE+77X7j9G7DlQaidD6e+EVa8HjKzSt263Dx+E/ziHbBrLcw9AraugspMEshOeQMsXA4k87dd/+Bmrn9wM7c/vo3u3j3/fVOXrmBGdSV1VRXMqKpkRnX/NtmXSVVQXVlGVWU51aly0hXJtqqijOrslCFV2cfM6sqCj4eTpEIwiElTUYxJoLn968m2ohqWPTcJZplZUD1r0LZh9+v0jKJ0aeakvRGu/wj87Ycwexlc9HVY8nTYcA+svAr+/r9J9+sBpySB7OgXQWUVALvau/nrEzvY2dZFU0cPTe3dNHV009TeQ1NHN82Dnje1d9Pc2UM+/3oqC7BwZjVLZmU4aHaGJbMzHDSrZuD5jKrKYvxFJGlMBjFpqtv8YDKO7Kk/Q9sO6Ggc+diyiiSU1c6HRcvhgFPhwFNhzhFQVsSK0KpfwXXvhtat8Mx/gDM+OBCyBrQ3wr3XwF+vgu2PJu088TJY8TqYdXBel+vri3T29NHe3UtHd+/ANnn00d7VS0dPb7Lt7mVbSxdrdrTx1PZW1uxoG7ibtF9DppIlszIsmV3DklnVLK7PsLihmsX1yQoKmVTFBP9AkjQ8g5g03fT1JqGmfUdyR2bbjuzzQdum9bD+rmRiWoD0TDjg5GwwOwUWr4Dq+om3pXUb/Ob9cP9PYf6xSRVs0YmjfyZGeOIW+Ot3kgAX+5KbFE55fbItL351qqWzhzXb21izo5Wntrfx1I421mxv46kdrWxo7KC3b89/9zVkKllUX83i+mQVhQMa+ldTqGZeXZrZtSnSFc7TJil/BjFpXxUjbH8sGTC/9s5ku+XBJPhAUiU78JQknM0/FuYsg6oZuZ/7/p8mIayjCc54PzzznVCR51xhTRvgru/D3d+H5o1QVQ9HvgCOvggOOXNSblQYqqe3j83NnWxobGdDYzvrdibb9dnX63e209rVu9fnZlRVMKcuzdza9O5tbYq5dWnm1CaP/ueOV5PUzyAm7U86m5NK2dq/JsFs3Z27q2aQTDQ79/AkpM1Zlgy2n3NEMuFs/9izpg1JN+Qjv4HFJ8NF35j4/Ge93fDY7+HBn8OqX0PnrmS82+HnJ6HssLOhsnpi1yiQGCNN7T0DwWxrSyfbmjuTbUsn25q7BvY1dw4/LUh9ppK52WA2NxvaBp5nHzWpioGu1o6ebBdsVy8dPX10dPfS2f9edy/dfZGaVDm1VRXUpisG7jytTSePuqoKatIVe9/dKqnkDGLS/ixG2LE6ubNx68Ow7ZHd266W3cdVzUwC2axD4OHfQG8nnPUxePr/g7ICd8n1dMETf4QH/y/pumzfCZU1cPh5SShb9lxI1RT2mkXSv1LCtpbO7LZr4PnWbHjrX0mho7uv6O2pqiyjNl05UKmbV5esazov+zzZl2bejLTj4qRJYhCTtLcYk8rXtodh6yPJdtujSUCbdzS84Isw+9Dit6O3G568LamUPfRLaNuWvYP0nCQUllVAKE+2Zf3bikGvy3cvKbXkaZCuK36bxyHGSGtX70BlbWtzJ62dPQPTb1T1T9ORfZ6u2HN/RVmgrauXls4emjt6aOnsoaWjh5bObpo6+p/3ZN/vZmtzF1ubO9iSDYQ9fXv/u742XcHC2nIy6Ur6QjkhZJfVCmGP5bUCELL7ItDbF/d8xGTb09dHXx/09PXR25d856rKcmrTFWTS5dSkKsikyqlJD9mmkmpeQ6aSOXVpZtekmFOXpi5d4UTA2icYxCRND329yZ2jD/4cHv51cqNCX0/yyEUoh0UnwNJnwUHPSqbWyHVM3HDaG5ObImYdMmW6Tcejry/SuKuRXesepHPDQ8StD5NufJS65tXM6lxHH2VsrlzMxsoD2VCxhA2VS9hQeSAbyxfTWVZNjLsXmwcoLyujPGS3ZVBRVkZ5Wdj9CIHy8iS4tXf30tbZS2tXD21dvbR27t62dvWMWiVMVZQNjMPrH4M3O/t8dm2K+kyK+urK7IoQKerSFZQ5SbCmIIOYpOktxuQGhP5Q1teThLa+3uzz7qT79cnbkse6lcm+UAYLT0iC2dJnDx/MOluSz+54PLnxYfvqZLvj8SQIApSnkylCDj4jWcR90YmTcufnuHR3wKb7kps2BrqhH4bGNbuPCeVJuJx7BMw5HGJvtir6COx8YvfNHgAzD0zGEvaPKVxwXEG/f29fpK2rh9bOXna0Jt2621uTcXjbWvrH5XWxrTnZv72la9jqHiRzyc2sTkJZfaYyG9JS1KTL6e6JdPX20dXTR2dPX/Z5L10Dz5NHT19kZnXlQPCbU5fKhsHdIXBObZpZNamBlSG6e/vY2drF9tYutrd0sb21kx0Dz7vYkW13WQgcMreGQ+fWcui8ZHtAQ2bSVpiIMbK5qZMQYG5t2tA6iQxikvYvXW3JjQr9wWz9Sujtygaz5TD3SGhcm4St5o17frZuUdIlO/tQmHUo1C2Ejfck03Fsug+IkKqFg56RBLODT0/uSC3mHG6j2bVu9x2za++EjfcmIRSgoiqZeHfu4cl3nnN4Er5mHTry3a89ndkxhf1d1dnxhNsehe625JhUHRz87GS91EOfA7MPm7RJhvv6Irvau9nR1pUs09XWnSzR1dbFrvbhn7d19VJZHkhVlJEqLyNVUU6qoox0eVmyb2B/Utnb1d6dvSkjCYFdvXtX7coCzKpJ0d2btGc4/cf0P/r6YPW2lj3muEuVl7F0TiYJZ4MC2kGza5hRNb6u2Y7uXp7c3srjW1p5fGsLq7e28PjWVlZvbRm4GzhdUcaBszLJ3HqzMkOeO69eoRnEJO3futsHBbM/JQGs/qBs2DokCRL9z0e7SaBtBzx5axLKVv8xmbQWkolrD352EspqFyQ3OvR0QU9HEgB7OrP7so/+fWXl2RUTZmcfs/bcVmb2DDjdHbDp79ngdWdyZ2zzhuS9iqqkUnXAKcljwbHJdyzUjRZ9fUk37Ya74fGbYfXNsPPJ5L0ZByRTkRz6nGRbM6cw15wCYow0dfTsEcySil0nW1u6qCwPzK5JM6s2xeya7KM2xayaNPXVlcNWnRrbunh8axKSHt/awuNbkpD01I62Pea3KwtQ03+HbLqC2qrk7tj+u2TrsvszqXI2NHaweltyvnU72/dYlWJxfTWHzqvl0Lk1HDK3FoC12Xn11uxIHi1D7v6dU5tmyaxkHr3ZNSkasmGyPpNiViZFQ00ls2pSNGRSVFXu/b+xju7egSDcv47tzmx43tHaTWN7FxVlgUyqgpp0Ml5w6BjC5Lsl7zfUpKb16hgGMUkqhqYN8MStyR2gq/8ITevG+EBI5k0rTyfbvp7s1CIj/Hu4omp3MAvlSXdjb7aaUr9k96oKB6yA+cflP8fbRO14Iglkj9+c/A06diX7FxyXVMsOOTPpGq6ZPbntmqa6evpYs6OVx7a0smZHK80du2/MaO7oHrhBo7mjh+bs8/bupMJVXVm+u9tzbu3A84Pn1FCdGj2MxxhpbOseCGVrBoW0jbva2dnWPWLVr//as2pS1FVV0NzRw47WroF2DacmVU59JkVfjLRkxwwOnWB5OHXpimTS5YZqFtVXsbg+k90m++bVVU1aN2++pnQQCyEcCPwAWAD0AVfGGL862mcMYpKmnBiTClFnczZspfYMXRXp7B2gQ/5D0debBJi27YMeO/Z+3tMOC47PBq9ToW5+Sb7miPp6kzVHV98Ej/8B1v5ldxdp7XyYf0xyN27/du6Rey+Rpbz19PbR2tVb9BsVenr7aGzvHqhu7WjtYmdbFztad1e5mjq6qauqyFbMknF6DZmkatZQkzyvz1TutUJFjMlyZoNv4mjt7M2OHeyhpbOXHa2dbGjsYH12wuUNu9ppbNszHFaUBRbMrGL+jCpq09lKW/aO3P5KW02qnEx/9S2dVN0Om1tLQ01x/0/MVA9iC4GFMca7Qwh1wF3Ai2KMD470GYOYJE1xnS1J9+nmB3Y/tj6cdNFCUuGbfeie4az+QKiZC5k5k1/d2x/09Sbd9OWpfeLv29LZw8bGdtZlJ17uXxVjc1NnEuL6g11n8nykqtvXX3EiFxy/qKhtHS2IlXw0XoxxI7Ax+7w5hPAQsBgYMYhJkqa4dC0celby6Nfbk9wIsPn+pJt184PJjRAP/t/en6+amYSymrnJmLOB59nXdQuhYWlSbdsf5hrr64OOxmTt19atgx7bkrn3OluguzUJWl1twz/v6dh9vrH+vv3PZyxOfsspqDZdwbL5dSybP/bcgTEmd822du6eQiXpFu3hiAWlnXuw5BWxwUIIS4FbgGNjjE0jHWdFTJL2IZ3NSbWseePucDE4aPQ/b9vBXuPpKqqSmxIalkJD/3Zpdt9BkzPBb19vMjFxX3eyHXjelYTP/uc9XUkXc/egx9DX/fs6W5KA1bo9+923jTCfXoDq+uR7VtZAKpPc5FGZSea+S9UMeV6dtGNomGvdmp2uZcjftzwNx7wYTnl9chPI/hB6i2BKV8T6hRBqgZ8C7xwuhIUQrgCuAFiyZMkkt06SVDTpuuSGg7H0Zm9uaN2S3Cix88ndj8anYM3t0DnkPx+Z2cmUJAMBIu6x2etFjMm8aoPnqtvjdc+gOe16k5AVC7R0VVlFEpoqqpJAVTM36a5dfOLIFavqWVBeoP+U9/UmYbd1a/I3bt2W/E3v/TH8/b+TG0JOeR0c95Ipu4LFdDQlKmIhhErgOuB3McYvjXW8FTFJ0l5iTILa4HC280lo3rzncQOhLAyzj2S+uaHLaA1dZiuUJc/LU1BWmYShssrk9R7PK5Pjy1PJo7J6z0fFoOdTdZLgzma47yew8qpkLr1UHRz/0qRKNv+Y4l9/a3ai4T0MqcwN/v1StUmwn0J/z6k+WD8A3wd2xBjfmctnDGKSJE2yGJNVK1ZeBfdfm9x4ceDTYMXr4eiLCncXbIyw/m5Y9Ut46Lrd8/XlIz0zWa/2iOfDYWdDdUNh2jZOUz2IPQu4FbiPZPoKgA/HGH890mcMYpIklVDbDrjnv2Dld5MJkqtnwfJL4cBTkhUcZh2aXzDr7YGn/gSrrkvCV/OGpJK49Flw5AWw6KTdRbC9YsuQHc0b4ZHfwiO/S7pZQ3myEsYRz4cjzk8mbp5kUzqIjYdBTJKkKaCvL5nMd+V3YdWvkvF0AITkZok5h2cfy3Y/z8xOuhK725PJgB/6JTzym6RbuaI6qWAddSEcft7EKll9fbD+Lnj41/Dwb2DrQ8n+uUclgeyI58Pikwu3+sQoDGKSJKm4utqS6lj/2qTbHknGd21/dM+pM6oboOHg5E7Z7tZkKo3DnwdHXQCHnp3cqFAMO1bDw79NgtlTf05CY81cuPBrcOTzi3PNrGlx16QkSZrGUplkeasFx+25v68Pdq1NAll/QNv+OCx/eRK+lj57cgbWzzoETntL8mjfCY/dmISyhoOKf+1RWBGTJEkqotEqYmWT3RhJkiQlDGKSJEklYhCTJEkqEYOYJElSiRjEJEmSSsQgJkmSVCIGMUmSpBIxiEmSJJWIQUySJKlEDGKSJEklYhCTJEkqEYOYJElSiRjEJEmSSsQgJkmSVCIGMUmSpBIxiEmSJJWIQUySJKlEDGKSJEklEmKMpW5D3kIIW4GninyZOcC2Il9DxeVvOP35G05v/n7Tn79hYRwUY5w73BvTMohNhhDCyhjjilK3Q+Pnbzj9+RtOb/5+05+/YfHZNSlJklQiBjFJkqQSMYiN7MpSN0AT5m84/fkbTm/+ftOfv2GROUZMkiSpRKyISZIklYhBbBghhPNDCA+HEB4LIXyw1O3R2EII3w0hbAkh3D9o36wQwg0hhEez24ZStlEjCyEcGEK4OYTwUAjhgRDCO7L7/Q2niRBCVQjhzhDCvdnf8FPZ/f6G00gIoTyE8LcQwnXZ1/5+RWYQGyKEUA58A3gecDRwaQjh6NK2Sjm4Gjh/yL4PAjfGGJcBN2Zfa2rqAd4TYzwKeDrw1uw/d/6G00cncFaMcTlwAnB+COHp+BtON+8AHhr02t+vyAxiezsVeCzGuDrG2AX8N3BRidukMcQYbwF2DNl9EfD97PPvAy+azDYpdzHGjTHGu7PPm0n+Q7AYf8NpIyZasi8rs4+Iv+G0EUI4AHgB8J1Bu/39iswgtrfFwNpBr9dl92n6mR9j3AjJf+iBeSVuj3IQQlgKnAj8BX/DaSXbrXUPsAW4Icbobzi9fAV4P9A3aJ+/X5EZxPYWhtnnraXSJAgh1AI/Bd4ZY2wqdXuUnxhjb4zxBOAA4NQQwrElbpJyFEK4ANgSY7yr1G3Z3xjE9rYOOHDQ6wOADSVqiyZmcwhhIUB2u6XE7dEoQgiVJCHsRzHGa7O7/Q2noRhjI/AHknGb/obTwzOBF4YQniQZknNWCOGH+PsVnUFsb38FloUQDg4hpICXA78ocZs0Pr8ALs8+vxz4eQnbolGEEAJwFfBQjPFLg97yN5wmQghzQwj12efVwDnAKvwNp4UY44dijAfEGJeS/HfvphjjZfj7FZ0Tug4jhPB8kr7ycuC7McbPlLZFGksI4RrgTGAOsBn4BPB/wP8AS4A1wEtijEMH9GsKCCE8C7gVuI/d41M+TDJOzN9wGgghHE8ymLuc5P/k/0+M8R9DCLPxN5xWQghnAu+NMV7g71d8BjFJkqQSsWtSkiSpRAxikiRJJWIQkyRJKhGDmCRJUokYxCRJkkrEICZpSgshXB1CuK7U7RgshHBRCOHREEJPCOHqUrdnJCGEM0MIMYQwp9RtkTQ8g5ikEWVDUAwhfHTI/v39P/DfIVkF4CDgHSVui6RpzCAmaSwdwPtDCHNL3ZBCyi6pNJ7P1ZNMHPy7GOP6GOOugjZM0n7FICZpLDcDTwIfG+mA4SpkIYSl2X0rhhzzvBDCXSGE9hDCrSGEA0IIZ4QQ7g0htIQQrsvO5j30Gh8NIWzOHvO97DI6/e+FEML7QwiPZ897XwjhsmHacmkI4aYQQjvwphG+S0MI4fshhJ3Zc/0+hHBM/3cAdmYPvSl7zjNHOE8qhPCvIYR1IYTWEMJfQwjnDfM3uyCEcE8IoSP7dzl5yHn+v+z36QwhrA0hfCS7JNTg6/xzCOGp7DGrQwj/MKQ5y0MIfwkhtIUQVoYQThquzZImn0FM0lj6gA8Cbw4hHFqA830KeCfwNKAB+DHwceAKkmWqjgE+OeQzZwDLgbOBi4FzgX8d9P6ngdcDbwWOBj4LfCuE8IIh5/ks8O/ZY/5vhPZdnW3bRcCpQBvw22zw+3O2fWTbsTC7bzjfy7b7FcBxJMv//DKEsHzIcV8APgCsAFYDvwohZACyoex/gWuz5/gg8CHgbYM+/33g1cC7gaOyf4fGYb73B4GTgO3AjwaHOUklFGP04cOHj2EfJKHkuuzzm4H/zj4/E4jAnOFeZ/ctze5bMeSY8wYd87bsvpMG7fskcP+QNjQCtYP2XQZ0AjXZRzvw7CFt/wrw6yFtec8Y33dZ9rjTB+2bCewC3pB9PSd7zJmjnOdQkgC7ZMj+/wP+fcjf45WD3q/Nftf+a/2IZPHlwef4JLBuSHvPH6Edw/3Nn5ndd0Cp//flw4ePSMUI+UyShno/cEcI4QsTPM/fBz3fnN3eN2TfvKGfiTG2DHp9O5AiCTxpoIqkajV48dxKki7VwVaO0bajSALU7f07Yoy7Qgj3kVTRcnUSEIAHhxSe0sBNQ44dfK2WIdc6CvjVkONvAz4RQpgBnJht781jtGfw33xDdjsPWDfG5yQVmUFMUk5ijH8NIfyUpEvwn4a83ZfdDk4dIw2G7x582uy5h+7LZ9hE/7EXAmtGuRZA6xjnGq27Lo7y3nBtisApw7ShPY/zhFGuGxm9vYPt9TfHoSnSlOA/iJLy8WHg2cD5Q/ZvzW4XDtp3QgGve1wIoWbQ66cDXcDjwIMk3ZQHxRgfG/J4Ks/rPEjy78XT+ndkK0/HZd/L1d9IQtKCYdq0fsixTx90rRrgWOChQe151pDjn0XSNdkM3J1t73PyaJukKcSKmKScxRgfCyFcyd5zZz0GrAU+GUL4IMmYrI9SOBXAd0MI/wgsAv4F+HaMsRUg2136hewA9FtIxlo9HeiLMV6Z60VijI+GEH5OMtD/CpLxWp8BmoD/yuM8j4QQfgRcHUJ4D0lgmkUyZmt1jPHaQYd/NISwlaTL8OMkAbP/Wl8E/hpC+GR23ynAe0gCcX97/wf4TgjhHdnrHAAsjTH+Z67tlVQ6VsQk5esfgZ7BO7Jdiy8HDgHuJbkz8sMFvOYfgQdIxkL9jGSc1fsHvf8xkkHs780edwPJXY1PjONarwXuBH6R3WZIBsPn06XYf57vAZ8DVgHXAacDQ6t0HyQJXHeTDL6/oD9gxhjvBl6S/S73kwTQfwG+PujzryYJaV/LXudqkhsMJE0DIcZ8hj1IkgohO//YzcDcGOO20rZGUqlYEZMkSSoRg5gkSVKJ2DUpSZJUIlbEJEmSSsQgJkmSVCIGMUmSpBIxiEmSJJWIQUySJKlEDGKSJEkl8v8Dd/i3nXlzI5cAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -10493,24 +6585,28 @@ ], "source": [ "fig = plt.figure(figsize=(10, 8))\n", - "plt.plot([test_losses[i] for i in range(len(test_losses))])\n", - "plt.title('Test loss', size=title_size)\n", + "plt.plot([test_losses[:][i] for i in range(len(test_losses[:]))])\n", + "plt.plot([train_losses[:][i] for i in range(len(train_losses[:]))])\n", + "plt.title('Loss', size=title_size)\n", "plt.xlabel('Number of epoch', size=font_size)\n", "plt.ylabel('MSE', size=font_size)\n", + "plt.legend(['Test', 'Training'], prop={'size': font_size})\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": 83, - "id": "71d94a68", - "metadata": {}, + "execution_count": 100, + "id": "518b7ecd", + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAH5CAYAAAAiH1L7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABJqElEQVR4nO3dd5xcVf3/8fdne9+0Te+VNBJCCISOdA2CNKVIxAL+KOIXLICKiCIoIsLX8hVFg34RK3xFaiDUAAESICQhlfS2u6nb65zfH2e25s5kU+7MZnk9H4/N7Ny5c++ZubvZ93zOueeac04AAABIvJRkNwAAAODjiiAGAACQJAQxAACAJCGIAQAAJAlBDAAAIEkIYgAAAElCEAMAAEgSghiAQ5aZOTNjMkQAhyyCGAAAQJIQxAAAAJKEIAbgY8HMMs3sZjP7wMyqzKzMzF4zs4tjrP9pM5tjZlvMrNbMNpvZK2Z2Tbv1hpvZg2a2ysyqzWyHmS0ys/8xs56JeXUADlXGtSYBHKqaxoc552wv62VImi3pJEnLJD0pKUfShZJ6S7rLOXdrq/WvkvRbSVsl/UfStuh6h8v/v3lUdL1+khZLKpD0dHTbWZKGSTpV0tHOucUH6eUC6IIIYgAOWfsQxG6R9GNJz0j6tHOuIbq8t6S3JQ2RdJxz7o3o8gWSJkga5JwrabetXs65bdHvr5f0gKSvO+fub7derqSIc676gF8ogC6LrkkAHwdflOQk3dgUwiQpGrJ+GL375XbPaZBU335DTSGsnT3ClnOukhAGYG8IYgC6NDPLlzRS0mbn3LKAVV6M3h7Ratkj8l2XS8zsPjM7z8yKAp77hKQKSb8ys3+Z2VVmNt7M4lboAKAJQQxAV1cYvd0S4/Gm5d2aFjjnfi5ppqT1kr4m6XFJxWb2kplNbbXeOknTJD0m6TT5cWWLJa0zs68dxNcAoItijBiAQ1ZHxohFK2JlkjY65wYFPD5M0mpJC51zkwMe7ybpWEmfke/i3CVpbMDYsTRJk+QD2fWSBkj6snPuof14aQA+JqiIAejSnHPlkj6SNMDMRgWsckr09t0Yz9/lnHvaOfcVSbMk9ZB0QsB6Dc65Bc65n0i6JLr4vANsPoAujiAG4OPgD5JM0j1mltq00Mx6Sfpeq3Walp8VrXC11zt6WxVdb5qZ9QlYr0/r9QAgFromARyyWl1n8uE4q10jfwbkHEnHS1oiP+dXjqSL5MPVT51z32613V2SaiTNlbRWPsSdIOkoSQskTXfO1ZvZLyRdK+kVSask7ZQ0QtI50eec4px788BfKYCuiiAG4JDVwQt+d3fO7TKzLEk3SrpUPiw1SFoo6VfOuUfbbferks6UH/PVVz6UrZP0qKTfRLs7ZWZHS/qC/BiyQZKyJW2S9Jqke5nMFcDeEMQAAACShDFiAAAASUIQAwAASBKCGAAAQJIQxAAAAJKEIAYAAJAkQRMWdnq9evVyQ4cOTXYzAAAA9mrBggXbnHNFQY8dkkFs6NChmj9/frKbAQAAsFdmti7WY3RNAgAAJAlBDAAAIEkIYgAAAElCEAMAAEgSghgAAECSHJJnTQIA8HFSVlamkpIS1dfXJ7spaCc9PV29e/dWQUHBfj2fIAYAQCdWVlam4uJiDRgwQNnZ2TKzZDcJUc45VVdXa9OmTZK0X2GMrkkAADqxkpISDRgwQDk5OYSwTsbMlJOTowEDBqikpGS/tkEQAwCgE6uvr1d2dnaym4E4srOz97vbmCAGAEAnRyWsczuQ40MQAwAASBKCGAAAQJIQxAAAwEFlZnG/vvCFL+z3tm+//XZNmDDh4DU2yZi+AgAAHFRbtmxp/v7JJ5/UV77ylTbLOPmgBRUxAABwUPXt27f5q1u3bnsse/XVV3XkkUcqKytLw4YN03e+8x3V1dU1P/+xxx7T4YcfruzsbPXo0UMnnXSSiouLNWvWLP3gBz/QkiVLmqtrs2bNSs6LPEioiAEAgIR57rnndNlll+n+++/XiSeeqPXr1+urX/2qamtr9bOf/Uxbt27V5z73Od1111264IILVFFRoXnz5kmSPvvZz2rx4sV68skn9fLLL0uSCgsLk/hqDhxBLEhDrVRfLWUVSpwyDADoZH7wnyX6cHNZQvc5rn+Bvn/O+APezp133qlvfvObuvLKKyVJI0aM0E9+8hNdfvnluueee7R582bV19frwgsv1JAhQySpzZiwvLw8paWlqW/fvgfcls6Arskg7zwk/WSIVLM72S0BAKBLWbBgge68807l5eU1f1166aWqrKzU1q1bNWnSJJ122mmaMGGCLrjgAv3mN79RaWlpspsdGipiAAAcYg5GZSpZIpGIvv/97+uiiy7a47GioiKlpqZq9uzZmjdvnmbPnq2HHnpIt9xyi1555RVNmjQpCS0OF0EsLpfsBgAA0KVMmTJFy5Yt08iRI2OuY2aaPn26pk+frttuu03jx4/X3/72N02aNEkZGRlqbGxMYIvDRRALwrgwAABCcdttt2nGjBkaMmSILr74YqWlpWnx4sV6++239dOf/lTz5s3TCy+8oDPPPFN9+vTRe++9pw0bNmjcuHGSpKFDh2rdunV69913NXjwYOXn5yszMzPJr2r/MUYsHkdFDACAg+nMM8/UU089pZdeeknTpk3TtGnTdPfdd2vw4MGS/FmQr7/+umbMmKFRo0bppptu0ve+9z1dfvnlkqQLLrhAn/zkJ3XqqaeqqKhIjz76aDJfzgGjIhaIihgAAAfDhRdeKNeusHHGGWfojDPOCFx/7NixeuaZZ2JuLzMzU//85z8PahuTiYoYAABAkhDEAAAAkoQgFoTB+gAAIAEIYvEwWB8AAISIIBaIihgAAAgfQSwuKmIAACA8BLEgjBEDAAAJQBADAABIEoJYPAzWBwAAISKIAQCAQ8IXvvAFzZgxY5+ec/LJJ+u6664LqUUHjkscxUVFDACAfWV7GWs9c+ZMzZo1a5+3e//99+9xuaS9eeyxx5Senr7P+0qUhAcxM0uVNF/SJufcDDPrIelvkoZKWivpYufczkS3qw0G6wMAsN+2bNnS/P2TTz6pr3zlK22WZWdnt1m/vr6+Q2GpsLBwn9vSo0ePfX5OIiWja/IGSUtb3b9Z0hzn3ChJc6L3OwfGiAEAsM/69u3b/NWtW7c2y2pqatStWzc9+uij+sQnPqHs7Gz99re/1fbt23XJJZdo4MCBys7O1vjx4/XHP/6xzXbbd02efPLJuuaaa3TrrbeqV69e6t27t77xjW8oEom0Wad11+TQoUP1ox/9SFdffbUKCgo0cOBA3XPPPW32s2LFCp100knKysrSmDFj9PTTTysvL2+/qnh7k9AgZmYDJX1K0u9bLT5X0sPR7x+WdF4i2xSMihgAAGG65ZZbdM011+jDDz/Ueeedp5qaGk2ZMkVPPvmklixZohtuuEFXX3215syZE3c7jzzyiNLS0vTGG2/ol7/8pX7xi1/ob3/7W9zn3HfffZo4caLeffddffvb39a3vvUtvfnmm5KkSCSiz3zmM0pLS9O8efM0a9Ys/eAHP1Btbe1Be+2tJbpr8heSviUpv9WyPs65LZLknNtiZr0T3CYAAA4tz9wsbV2U2H32nSidffdB29z111+vCy+8sM2yb37zm83fX3XVVXrxxRf16KOP6tRTT425nXHjxumOO+6QJI0ePVq/+93vNGfOHF1yySUxn3PGGWc0V8muv/56PfDAA5ozZ46mT5+u559/XsuXL9fs2bM1YMAAST64HXfccfv9WuNJWEXMzGZIKnHOLdjP519lZvPNbH5paelBbl0sdE0CABCGqVOntrnf2NioO++8U4cffrh69uypvLw8PfbYY1q/fn3c7Rx++OFt7vfv318lJSX7/Zxly5apf//+zSFMko466iilpIQTmRJZETtO0qfN7JOSsiQVmNn/Sio2s37Ralg/SYHvnnPuQUkPStLUqVPDTUgM1gcAdGYHsTKVLLm5uW3u/+xnP9O9996r+++/XxMnTlReXp5uvfXWvYaq9oP8zazNGLF9fY5zbq9nfR5MCauIOeducc4NdM4NlfQ5SS865y6X9ISkmdHVZkr6d6LatFcM1gcAICHmzp2rc845R5///Oc1efJkjRgxQitWrEh4O8aOHatNmzZp8+bNzcvmz5+/13C3vzrDhK53SzrdzFZKOj16P8moiAEAkEijR4/WnDlzNHfuXC1btkzXXXed1qxZk/B2nH766RozZoxmzpyphQsXat68ebrxxhuVlpYWSqUsKUHMOfeyc25G9PvtzrlTnXOjorc7ktGmYFTEAABIhO9+97uaNm2azj77bJ144onKzc3VZZddlvB2pKSk6PHHH1dtba2mTZummTNn6jvf+Y7MTFlZWQd9f7avM9R2BlOnTnXz588PbwcLZkn/uUG6calU0D+8/QAAsBdLly7V2LFjk92Mj7WFCxdq8uTJmj9/vo488sjAdeIdJzNb4JybGvQYlzgCAABo5fHHH1dubq5GjRqltWvX6sYbb9SkSZM0ZcqUg74vglg8h2C1EAAAHJjy8nJ9+9vf1oYNG9S9e3edfPLJuu+++0IZI0YQC8RgfQAAPq6uuOIKXXHFFQnZV2c4a7IToyIGAADCQxALwoSuAIBO5FA8se7j5ECOD0EMAIBOLD09XdXV1cluBuKorq7eY7b+jiKIxcMnEABAkvXu3VubNm1SVVUVlbFOxjmnqqoqbdq0Sb17996vbTBYPxBdkwCAzqGgoECStHnzZtXX1ye5NWgvPT1dffr0aT5O+4ogFhefPAAAyVdQULDff+jRudE1GYTB+gAAIAEIYvHQFw8AAEJEEAtERQwAAISPIAYAAJAkBLG46JoEAADhIYgFYbA+AABIAIJYPAzWBwAAISKIBaIiBgAAwkcQi4uKGAAACA9BLAhjxAAAQAIQxAAAAJKEIBYPg/UBAECICGKB6JoEAADhI4gBAAAkCUEsCIP1AQBAAhDE4mGMGAAACBFBLBAVMQAAED6CGAAAQJIQxOKiaxIAAISHIBaEwfoAACABCGLxMFgfAACEiCAGAACQJAQxAACAJCGIxUXXJAAACA9BLAiD9QEAQAIQxOJhsD4AAAgRQSwQFTEAABA+glhcVMQAAEB4CGJBGCMGAAASgCAGAACQJASxeBisDwAAQkQQC0TXJAAACB9BLC4qYgAAIDwEsSAM1gcAAAlAEIuHMWIAACBEBLFAVMQAAED4CGIAAABJQhCLi65JAAAQHoJYEAbrAwCABCCIxcNgfQAAECKCWCAqYgAAIHwEsbioiAEAgPAQxIIwRgwAACQAQQwAACBJCGLxMFgfAACEiCAWiK5JAAAQPoJYXFTEAABAeAhiQRisDwAAEoAgBgAAkCQEsXgYrA8AAEJEEAtQ2+ADWIQcBgAAQkQQC/DKilJJUlVdfZJbAgAAujKCWJCmsfpUxAAAQIgIYgAAAElCEAvkS2KOkhgAAAgRQSwAs4gBAIBEIIjF4ThtEgAAhIggFoSZ9QEAQAIQxOJgjBgAAAgTQSyI8bYAAIDwkTjicZFktwAAAHRhBLEADBEDAACJQBCLgxFiAAAgTASxeBxRDAAAhIcgFig6sz45DAAAhIggFsS46jcAAAgfQSwQo/UBAED4CGLx0DcJAABCRBALREUMAACEjyAWgHnEAABAIhDE4nB0TQIAgBARxAJREgMAAOEjiMVBRQwAAISJIBbAGCQGAAASgCAWFxUxAAAQHoJYXAQxAAAQnoQFMTPLMrO3zWyhmS0xsx9El/cws+fNbGX0tnui2hSTca1JAAAQvkRWxGolfcI5N0nSZElnmdkxkm6WNMc5N0rSnOj9pGoeIUYSAwAAIUpYEHNeRfRuevTLSTpX0sPR5Q9LOi9RbYrFNVXEktwOAADQtSV0jJiZpZrZ+5JKJD3vnHtLUh/n3BZJit72TmSbgrScM0kUAwAA4UloEHPONTrnJksaKGmamU3o6HPN7Cozm29m80tLS0NrY3Rv/oYcBgAAQpSUsyadc7skvSzpLEnFZtZPkqK3JTGe86BzbqpzbmpRUVG4DWQaMQAAkACJPGuyyMy6Rb/PlnSapGWSnpA0M7raTEn/TlSb9oaZ9QEAQJjSErivfpIeNrNU+QD4d+fck2b2pqS/m9mXJK2XdFEC2xQDJTEAABC+hAUx59wHko4IWL5d0qmJase+oSIGAADCw8z6Acx4WwAAQPhIHHG4CBUxAAAQHoIYAABAkhDE4qIiBgAAwkMQC2AtF5tMZjMAAEAXRxAL4KLTVzCNGAAACBNBLAAVMQAAkAgEsSDGhK4AACB8BLEAxkW/AQBAAhDEAjSPESOJAQCAEBHEAtAzCQAAEoEgFofjtEkAABAiglggSmIAACB8BLF4qIgBAIAQEcSCMEgMAAAkAEEsLipiAAAgPASxAC31MIIYAAAID0EsENeaBAAA4SOIBWCIGAAASASCWADH9BUAACABCGIBWq41Sd8kAAAID0EsCNf8BgAACUAQC8AYMQAAkAgEsXhcJNktAAAAXRhBLBAlMQAAED6CWByOwfoAACBEBLEAxiAxAACQAASxOKiIAQCAMBHEAjjeFgAAkAAkDgAAgCQhiAVoGSJG1yQAAAgPQSxINIkxRAwAAISJIBagpSBGEgMAAOEhiAVwTOgKAAASgCAWoGmMmDFGDAAAhIggFogxYgAAIHwEsQB0TAIAgEQgiMXhFEl2EwAAQBdGEAvCtSYBAEACEMTiYZAYAAAIEUEsgFERAwAACUAQi4N6GAAACBNBLIBx3iQAAEgAglgA19Q1yRgxAAAQIoJYkKaCGEEMAACEiCAWBzEMAACEiSAWwJpviWIAACA8BLFAXGsSAACEjyAWgHnEAABAIhDE4qIkBgAAwkMQC0RFDAAAhI8gFg+DxAAAQIgIYgEshYoYAAAIH0EsDscYMQAAECKCWCDeFgAAED4SRzwUxAAAQIgIYgFaphEjiQEAgPAQxOJwnDUJAABCRBALwDmTAAAgEQhiQbjEEQAASACCWDx0TQIAgBARxAK4aEWMGAYAAMJEEAtgjBIDAAAJQBCLx0WS3QIAANCFEcQCGIP1AQBAAhDE4mGwPgAACBFBLABjxAAAQCJ0KIiZ2Rtm1q3V/bvMrEer+73MbH0I7Usq6mEAACBMHa2IHSMpo9X9ayV1a3U/VdKAg9Sm5IuOETOiGAAACNH+dk127b67pnnEyGEAACBEjBEL0LVTJgAA6Cw6GsSc9hwy1XXrRc1JrOu+RAAAkHxpHVzPJP2vmdVG72dJ+p2ZVUXvZx70liVRS0WMIAYAAMLT0SD2cLv7/xuwzp8OsC2dCGPEAABA+DoUxJxzV4bdkE6FQWIAACABDmiwvpkNNrNx1mWvCURJDAAAhKejE7p+1sz+X7tlv5G0RtIiSYvNrOvMI8bJpAAAIAE6mjiulxRpumNmp0m6WtJtki6Kbud7B711ycYgMQAAEKKODtYfI+mtVvfPlTTbOXenJJlZjaRfHuS2JY2ldNGeVgAA0Kl0tCKWJ2lHq/vHSnqx1f0lkvoerEZ1Fo6KGAAACFFHg9hGSeMlycwKJE2U9Hqrx3tKqji4TUse47RJAACQAB3tmvyHpAfM7C5JZ0naImleq8enSlp2kNsGAADQpXU0iP1Q0kBJ90raKuly51xjq8cvkfTUQW5b0jTPxkHXJAAACFFHJ3StlnRFnMdPOWgt6gRcc9ckQQwAAISnQ0HMzJ7owGrOOXfuAbanU2CEGAAASISOdk3OkLRO0svhNaUToSAGAAASoKNB7GeSLpd0oqQ/SprlnNu4Lzsys0HyFwbvKz857IPOufvNrIekv0kaKmmtpIudczv3ZdsHW8sFm0hiAAAgPB2avsI59y1JgyT9l/wZkivN7Bkzu9DM0ju4rwZJNznnxko6RtK1ZjZO0s2S5jjnRkmaE72fZD6JMVYfAACEqcMXVXTONTrnnnDOnSdpmKSXJP1I0iYzy+vA87c4596Nfl8uaamkAfKz9D8cXe1hSeftywsIA/OIAQCARNjfq1vnSuomP+N+hfaxD8/Mhko6Qv6ySX2cc1skH9Yk9d7PNoWAkhgAAAhPh4OYmWWb2Uwze1XSIklDJM10zg13zlXuw3byJP1L0tedc2X78LyrzGy+mc0vLS3t6NP2j1ERAwAA4etQEDOzB+Uncr1e0qOS+jvnLnPOzdmXnUXHk/1L0iPOuceii4vNrF/08X6SSoKe65x70Dk31Tk3taioaF92u/9cJDH7AQAAH0sdPWvyy5LWy1/a6GxJZ1tA1cg59+lYGzD/hIckLXXO/bzVQ09Iminp7ujtvzvYpvBQEQMAAAnQ0SD2Jx34gKnjJH1e0iIzez+67Fb5APZ3M/uSfNi76AD3c9AwQgwAAISpo5c4+sKB7sg5N1exJ60/9UC3fzBREAMAAImwv2dNdnFNF/1ObisAAEDXRhALYFzjCAAAJABBLIgRxAAAQPgIYgFahogRxAAAQHgIYkGMMWIAACB8BLEgnDUJAAASgCAWh6MkBgAAQkQQC2CUxAAAQAIQxOKhIAYAAEJEEAtgKVTEAABA+AhicUWS3QAAANCFEcQCMEYMAAAkAkEsDscYMQAAECKCWICm+VyN0foAACBEBLFAPokRwwAAQJgIYoG4xBEAAAgfQSyAa+qbJIkBAIAQEcQCtOQwghgAAAgPQSwQ01cAAIDwEcQCEMMAAEAiEMTiomsSAACEhyAWwIy3BQAAhI/EEQ+D9QEAQIgIYgHMGCUGAADCRxCLg3oYAAAIE0EsAPOIAQCARCCIAQAAJAlBLICJSxwBAIDwEcSCMFgfAAAkAEEsAGPEAABAIhDEArho1yQxDAAAhIkgBgAAkCQEsbioiQEAgPAQxAIwsz4AAEgEglgcxmB9AAAQIoJYAEvhbQEAAOEjccThqIgBAIAQEcQCtMysDwAAEB6CGAAAQJIQxAK0nDRJ1yQAAAgPQSwI01cAAIAEIIgFaB4jxmB9AAAQIoJYICpiAAAgfASxAM09k1TEAABAiAhiQaJJjBgGAADCRBALQMckAABIBIJYXNTEAABAeAhiQZi+AgAAJABBLB4G6wMAgBARxAKY8bYAAIDwkTgAAACShCAWgGtNAgCARCCIAQAAJAlBLEBLQYyKGAAACA9BLIaIYwoLAAAQLoJYAGu52GRS2wEAALo2glgMrvkfAACAcBDEAtApCQAAEoEgFhclMQAAEB6CWAAzyVEXAwAAISOIxcP0FQAAIEQEsQAmoyIGAABCRxCLwzFGDAAAhIggFsQYpg8AAMJHEIuHNAYAAEJEEAtgLRebTGYzAABAF0cQi4HB+gAAIGwEsQDWfEtFDAAAhIcgFpMxjRgAAAgVQSyARQeJ0TkJAADCRBCLwYl5xAAAQLgIYgGohAEAgEQgiMXDIDEAABAiglgAM6avAAAA4SOIxUVFDAAAhIcgFsBkVMQAAEDoCGIxOIkxYgAAIFQEsQBNY8SYWR8AAISJIBaD75okiAEAgPAQxGKgaxIAAISNIBYDFTEAABA2gliA5jFiVMQAAECICGIxUBEDAABhI4gFaDpfkrMmAQBAmAhiMTgZg/UBAECoCGIBWq41SRADAADhIYjFwPQVAAAgbAkLYmb2BzMrMbPFrZb1MLPnzWxl9LZ7otoTj0X/ZYwYAAAIUyIrYrMkndVu2c2S5jjnRkmaE73fKXDRbwAAELaEBTHn3KuSdrRbfK6kh6PfPyzpvES1Jx6zploYFTEAABCeZI8R6+Oc2yJJ0dvesVY0s6vMbL6ZzS8tLQ29YRGlMEYMAACEKtlBrMOccw8656Y656YWFRWFuq+m8yXNRULdDwAA+HhLdhArNrN+khS9LUlye5oxfQUAAAhbsoPYE5JmRr+fKenfSWxLM+YRAwAAiZDI6SselfSmpDFmttHMviTpbkmnm9lKSadH73caRg4DAAAhSkvUjpxzl8R46NREtaGjzEzOUREDAADhSnbXZKfF9BUAACBsBLEYnEzG9BUAACBEBLEYnNE1CQAAwkUQi4ExYgAAIGwEsRjomgQAAGEjiMXAYH0AABA2glgMzkxGEAMAACEiiMXgZFz0GwAAhIogFotr/gcAACAUBLEYuNYkAAAIG0EsBmfGtSYBAECoCGIxcNYkAAAIG0EsJromAQBAuAhiMUSUwoSuAAAgVASxGJzEPGIAACBUBLEYOGsSAACEjSAWE0EMAACEiyAWg5MYIwYAAEJFEIuBrkkAABA2glgMRDAAABA2glhMXPQbAACEiyAWk0kukuxGAACALowgFoMzxogBAIBwEcRicEqhaxIAAISKIBYXQQwAAISHIBaLMVgfAACEiyAWE0EMAACEiyAWAxO6AgCAsBHEYqFrEgAAhIwgFgvTVwAAgJARxGKiIgYAAMJFEIuJihgAAAgXQSwGZyZHRQwAAISIIBaTybjWJAAACBFBLIaGlHSlufpkNwMAAHRhBLEYai1bma462c0AAABdGEEshtqUbGVGapLdDAAA0IURxGKosyxlOoIYAAAID0EshrqUaBDjzEkAABASglgMdSlZSlVEaqxLdlMAAEAXRRCLoS4lO/pNZXIbAgAAuiyCWAwuLRrE6quS2xAAANBlEcRiycjzt1TEAABASAhiMaRk5vpvCGIAACAkBLEYUjOjFTG6JgEAQEgIYjFYTqEkqb5yZ5JbAgAAuiqCWAyW00uSVF9WkuSWAACAroogFkNaXjSIlZcmuSUAAKCrIojFkJWTp0qXqcaK7cluCgAA6KIIYjHkZqZqp/LlKrcluykAAKCLIojFkJuZph0uX1a9I9lNAQAAXRRBLIbcjDTtdPlKIYgBAICQEMRiyMtM0w7lK62W6SsAAEA4CGIx5GamaqfLV0YtFTEAABAOglgMuZlpKnbdldFYKdWUJbs5AACgCyKIxZCZlqLN1tvf2bU+uY0BAABdEkEsBjPTrox+/s6udcltDAAA6JIIYnGUZQ/w3+xYndyGAACALokgFk92D21PLZI2LUh2SwAAQBdEEIujIDtdH6aNk9a/JTmX7OYAAIAuhiAWR0FWut7TGKl8s7RzTbKbAwAAuhiCWBwF2Wl6vvEIf+eBI6SPXkpugwAAQJdCEIujICtdy2u6yx15pV/w5/OkWTOkXRuS2i4AANA1EMTi6JmXobqGiMpP+6k05Hi/cO1r0i8mSEv/I9VVJbeBAADgkJaW7AZ0Zr3zsyRJJeV1KrjyKalss/Tzsf7Bv13ub6d+UTr8c1JDtTT85OQ0FAAAHJIIYnH0zs+UJJWU12hk7zypoL90+25p9ybpr5dIWxZK8//gvySp2xDp2Ot9OEtJTWLLAQDAoYAgFkdRNIiVlte2faBwgHT1q1LVDun9v/h5xpY85mfgf/ob/kuSUtKknJ5S38OlC/8gZeRJKfQGAwAAjyAWR+8C3zW5ZXdN8Ao5PaRjr/Pfn/MLKdIo/elcaesHflmkQaoollY9L909SErPlcac7QNayRLpxG9JY8+RzKTqnf7xtIzwXxgAAOgUCGJxFGanq19hlpZuKdv7ylmF/varr/nbihLpjQekNa/6LkxJqq+UFv+z5Tl//3zbbaTn+nVGnyUd9RVpzctSdnfpyCul8q2+EpeeK6WmSbUVPsBl5B7w6wQAAMlBENuLiQMKtXDDLjnnZGYdf2Jeb+mMH7Xcr97pK2Gly6V1b0jPf2/P59RX+tsVz/qvJnPuiL+vAUdKvcdKfSb4rtBhJ0q15dLaudKu9dKW96X186TzH5QOmyF9NEcadrIPdO1V75QspSVYdia7NkjdBiW7FQAAHDQEsb04cXSRZn9YrJdXlOqUMb33f0PZ3f3twKn+67ivtTzWdPmkpf+RIvX+ZIC6CslFpFfv2fu2Ny3o2PUwm870bNJzpA9dR17p91t0mPSXi/1jx1wjTfuKv7xTQT+//d7jpCHHSuXFUmWpfx1bF0sNNVKvUX4MXEZOy/bXvOqn+Bhz1p5t+ehFqb5GOuyTe2+3JC1/Vnr0s9Kl/5BGn9Gx5xwsDbVSY72UmZfY/QIAujxzh+A1FKdOnermz5+fkH1V1TXo1Htf0ZbdNRrSM0e/uexIje2Xv2/VsYPFOV+xyiqUdqz24ai2XOozXlrxnLT4X9Lu6GSzRYf58LDjo8S3s73jb5QW/cO3bfTZ0hGXtYTCz/1Fqq+WihdLn7jNv77cnr6Sl5opffBXadSZ0gu3Syue8WHwmjf9cyONPqyueVXqN1lKz2rpqi3bIm1fJQ07IXa76ir9OL69Vf8eOlPaME+6bUfss2ErSnwVFACAdsxsgXNuauBjBLG927K7Whf+5k1t2lUtSepTkKlHvny0RvbOT1gb9ptzPtR0H+LvV+2QNr/ng1rVdql8i5SWKVWU+iDXf7JUOFDaudbf37E68W1OzZAa6+KvM2CqtCngZ6DnSP+6qnf6+4OPlSZe4F/zkV/0oWvuz6XFj/m53yTppuVSfl8/7i4tS1o5W3rzV9LkS6Vx50p3DQhoY6bUWCuNPN2HsxXPSsd93QeyHsN9tXDeb6RP3uMDaPehUn5/ad3r0pDj/AkcxYulHiOk/kdI6Tm+atq6u7hqhz8hpKFWstS2jznnxwgGqa+RUtOZQgUAOgmC2EGyYN1OPfzGWj2xcLNSU0ynje2tK48bpsE9ctS/W3bC25M0TT8zzvkLomd395W53N5+eo7dm6SFj/ru1e7DfOWpfLNUs1s65lrp/UekzAIfAuc/tOf2m05aSKSOhL9E6DG8bfg9bIYPhpkF0vRrpNwi//hbv5X6TfJVuMPO8dXA4iVSTZk071dSn4nS4Rf5amFmgT9bt6HGB7r6KqnvRGnwMS37aWyQ/vUlHz4HT5cy8/0ZvxUl0kt3StOvlQYd4yuI6dmxQ+D+qq/x1c2mrm3n/AeBIcf5rnEAOIQRxA6ihsaIXllRqtdWbtMTCzdrR2XLH++7z5+oUX3y9ejb6/Wj8yYoK73jFYl7Zy/XyWN668gh3cNo9qGhfZWnqRIUaZBcY0u3Y3mxJCfl9fHzt/U/QsrrK218x49TS8+W1rwiDT1e2rZCmv9HX+mrLffPaajxXZyly33laOdaKSVd2vi2tHOdDzuRBl9RqqvwAfL830tDj5M2vy/VlkkyacEsadtyf3JERYlUuc1PPzLkeB+MNr3rt71rXYLfyANUdJivEK5+OfY6A6f596vJhAt9iNz4jpTby4fEV34qFQzwJ6nsXCP1Gu3XWTvXV2iHn+LD+NYPpMrtUtlG6eI/+WP59yt8eJekix6Wxn7ad8XXVfgzjydcIL37J2na1f7Ypma2tGX7KqnbYH8M6qr88W6o9cde8j9jkUZfqVz/pjT+M757vHKblFfUMp6ztZKl0qoXpOnXtf0Zdc5vK1Lvf+4kKRLx99My99wOgI8lglhIymrqdd1f3tOrK0r3eOyu8yfqkmmD9fSiLXri/c36zeVTmseVOef0UWmln61fUn1jRKO+84wkae3dn9rndmzYUaXCnHQVZKUfwKuBJP9HNKxJd1v/rpn5+875/VWUSlXb/NUbdq71YSQ1Xdrwlj+hoqLEB4fBx/jQ4iI+cAyZ7q/sUL7VV4+2LvLTnyz8i6+QffqXPhytnSuVLg1uV2ahVLs7ftt7jfGh81CS3UOq3rHvz+s3yXclp+f4ym5ukT85pUnv8VLNLqlsU9vnnfp9Pwxg20pp3Vyp5yjpuBt8d/fwk6RfH+ND/YV/9Me/eIkPsDvX+m7ngdP8B4heo/2Z1Sue9cdy7n3S4Z+Vpl7p25Hfz3dZt1dT5iu76Vl7PtbU7Z6a5quPT3/Df9g4/LN+LOnWD/xY06axlqkZLR98qnb41+QapUFH+5+92nL/QWT6dXvOfRiJ+HWautK3rfLBu2q7D8N7q6Y659vEnIroQghiIWtojOihuWv0t/kbtLo0dpfa0jvOUnZGqv65YKO+8Y+FuvTowbrzvAnaVlGno+58QZK0+sefVKNzSk/teBgYevNTGl6UqxdvOvlAX8oha0dlnbplpyslJQknURzqnPPdx01nhdZW+PDX6gzYjTurVLp9m47oGfFd0NtW+EpXerYfd7dxvg8vG9/2f2yrd/mqVH2VDwA9hkkfveSrRFve92Hj9fv9H/TJl/kK0qZ3/TYa66S1r/sxfNU7pfHnS2tf8yFk4sVS3wnSmtd8Na14cezX1Vm6m8NQONi/N3m9/Qk5o87w72+k3lcHCwf4ILppvh+HuOMjH+5HfMIHvP0JqPGMPE0qWearxbXReReLxvrjueKZlvXy+/tu8ZXP+fakpLYE2hGn+uPcdMzSc3yX+Pw/+teVku4D2uEX+7DYWO9/JrJ7SEVjfIjN6yuNPNV/gNm6yP8MVG7zH2IGTfP77znCV23n/1H6xPekyhJf1czv6yuu1Tt9hXTHav/8oSf4n/Oa3f7Dz+Dp/rrD6173Z5H3Pdyvm5nvq8n1lX54Rma+r66a+d+Bqh3+eL35K2n7Sunsn/r2l23270lqpv/9ycz3712kwX8YW/RP394Rp/i2lRf712vmhxRYiv8wV1/j35dIo//9y+nhf//Sc/wHsSHH+scOVsCNRHwbYgXr9oG8s9i51v9cJhhBLIFq6hu1aNNu/eippVq4Ydde1z9jXB99+YThuvi3/kzA848YoMfe29RcGauqa1BFbUPzBcgrahvU2Oj0/NJi/f611Xr6aydo+K1PS5JumzFOlx0zWJlpvku0uKxGfQrafjqORJzKaxtUmJ2uSMRpw84qbauoa+4S/eeCjTpySHcN69W5JoptjDjNXrJVZ47vu0fYKimv0bQ75+i/ThutG04bFVobahsaJan5/f04WLBuh2Z/WKwHX10t5/avYptQjfX+j016lv9DoOj/bymp/o9raobvqszI9X/EUlL9hMu5Rf4PcdMf4dxe0o41Pii6RunDJ6Sjr/Jz2W14y3dt9xgu7d7ot1W+xX+lpPlgW7LEb1Pm/9im50hv/9aHjUmf812iO9f5Of2aDD3B/1HuNaplHsG+E32gyOvjA4Vr3Ic3w1pef5Cx5/h5BxfM8tW7jBz/XvSZ4ANufj8/NKBs4953lZbdcvJLmyak7mObsV/Sc3zoai2vr1Sxde/PLYiGdjMfHNe8Ik28yP8eLHvSrzPtah9Cq3dKm99teW63wT7cbpjn71uK/6DmGluqyMNPlvpP8SeBvf9Iy5ya/Sb5s+m7DfE/cxm5vr0jT5fe+Z0Pvg11/ufqsBl+zGqf8T7srnvDV6Wrdvpqfn2NHyIy9hw/POWJ6/3Y0qlf9EMaDpshvfRjP9/me3/2leqx50q71/v3buTpoV9+kCCWJJW1DVq3vUpVdQ268H/ePKBtnTCqlz5zxADd+PeFbZY/cMkR+tqj7zXf//ZZhykvM1WVdY26+5ll+t6Mcbp02mCZSVnpqbrr6aX67aurNf+7p+mup5fpX+/6/2QXfv8MpaWYxn//OUnSdz45Vj9/foV+ffmUNvOnlZTVKCczTXmZsT/lvLisWLkZaTp6eM+4r+nZxVskme++XbhZ939uskrLa/XlE4a3WW97Ra1u+Ov7mrtqm35+8SSdP2WgJDVPsrt4027N+O+5GtuvQM/cEGe6igN0xB2z1RBxWnT7maHt40AVl9Xo6B/P0X2fnaTPHDHwgLc39Oan2tzv9EEsju/932L9ed66wNcQiThtr6xTQXaaHpq7Rl86flibwL2jsk4ri8vb/Ewv3rRbA7tnq1tOxysMNfWNSjFTRtoB/KdfX+P/kDWdFVu13QdH/0L8bdMflbpK/4cm0uBDUUO1r8xk5AZ3b7bX9PehqerRUOerNE1d6u3XdS7adRmtimXkta3A1FZIcr66ZeaDbPkWPyl1SppvW3qWb2v5Ft/dWl/ZckJQXh/pg7/58Z9FY321paHWh+Ocnv517lzn188q9NtY9A/f7VvQzwfd/L5t21y8xFfhdq71QwPqq/22+k+WNrztT3aJNPjHM/P9eMeMXB9ea3b5ClVKqq/E7d7o3/OKYv+BoGq7/2rdjd1nQktYT0n31T7JB9/Kbf6+pfj3sfWwgaYztdOy/f6yClu2O+wkH6Cwf2b8wnf9h4gg1knUN0ZUXd+o0vJaPbNoi8xMsz8s7lDl7GBrqry1NrpPnlYUV+yx7h+/cJTWba/UBUcO1MTbZ2t0nzw9e8OJSkkxffnhd/T6qu2ad8upKsxJ15ylxfrSw/7YfPPMMbp46iD1yM3Q8q3lqq5vVMQ5PfzGWq3fUaUPNgaPS/rLl4/Wok27deVxw5SRlqKL/+dNvb12R/M2rzl5hJYXl+usX7ym//3S0SrITtOnf/m6+hdmaWivXN11/kR9VFqh7PQ0TR8ROwwu3LBLA7pnq1dey6Dqd9bu0LbyWp09seVMvfc37FJxWY2u/rOfNPf2c8bprAn91LewbbVx6+4aHXPXHP33JUfonEn9A/e5u6peuZmpSovT9fzVPy/QyWOKdMLoIg1odTauc0419RG98dE2rdtepS8eP2yP585duU2XP/SWpg/vqUevOqZNVXTd9kqV1zRowoC9XzWhaV9jb3u2zfI1d33yoM+h55zTrqp6vbZqmyYNLFT/btm66+llmnnsEA3p6Suzzy3Zqqv/vEBfOHaobv/0+ObnlZTXqldeplJTWsZf/vrlj3Tm+L4a2TtPxWU1mvHfc3Xj6aN1y2OLJEkLbztDc1dt0/Gjeik/M011jRE9+Opq/fz5FfrqSSP0P698pG+fdZj+38kjmtv4qQde05LNZfrs1EE6c0IfTR7UXVN++LzG9MnXc/91oiRfrc5ITVHEORWX1ah/t+w9hhiM/u4zGt4rV89+/cQ93odnF2/VgG7Zmjiw5fjMWVqsovxMHT6w28F7wxPsb++s18vLS/Wby4+UJJWW12plcbmOHdkroe1YWVyuguz0PXoJ9odzTrc+vljnTxmgo4Z2INC289QHW/STZ5fpxZtOav6/YMvualXXNWp4UeyJo1cWlys3M63NWfqPv7dRx43s5XtNtn/kK7Wtf0drdksZraZaaqjxQa9pLGFjvQ++Zj5w1ldFuzCz/PeW4gNsQ60qcwfqkflbdOUpE5Revc0Hx6xCP4a12yC/7bpKfz8z31eFVz7nT2ByEb/P8mIfqlPT/IeEmjL/WF2Fv5+S6sN+6Qo/jGHwMf7DR2Wpb2NmvlQ4yHe3V+/ywXb7qpYq7oApUlY33y1fW6EdKtD6Ra9p7PRPKnPbEj+uceGj0tsP+mmQRp0unXCT32eICGKHgMaI066qOmWkpSg73Ve0/rlgo2Yc3k/bKmr1wocl+vf7m9QzL0PvrPVzZPUrzIp9QfIuIDXF9ODnj2wOdrFMGtStTZg9YVQvvbZymyTpoZlTNb5/obrlpCs9NUWVdQ36+zsbNPPYoc0nSPzy0iOUn5WuHz+1VMuLyyVJN54+Wl87dZQWbtilc3/1euB+m0LJ66u26alFW7S7ql5PLdqicf0K1K8wS5dMG6ylW8r013c26MVvnCSTafR3n9El0wbrv04bpV55mUpJMe2urldVXYMk6d/vb9bdzyxr3sfvrpiqtFTTT55ZpoaI06qSlqC84kdnKyMtRXc/s0yj++SpIeK0cWe1HpizUseO6KmrTxqhmX94W3+88iidMqZ3c3Vr4ffPUGF2ul5ZUSqT1DMvQ9//9xKde8QApZjUMzdDW3fX6Pb/fLjHaz5tbG/98tIpe5wRvLu6Xks27VZ+VrqeW7JVZ4zvo6//9X2t3lapb501Rs8s2qpJgwo1c/pQjerTdv69377yke6Kvua+BVm66/yJunLWO82Pf+0TI/XAi6ua76+9+1Nav71KJ97zkiT/oWLx5t0qr2nQ7Z8er6v/vECF2em66/yJ+mDjbv3PKx8pN8P/TknS8SN7ae4q//Nx4uiiNifbnDm+j55bUizJV4UvPHKgCrLTNSLa/R/kv04brfteWNG8vffW71R5jT+e733vdHXP9RWhSMQ1DyO49pQRmjK4u15dUaobThutFJMm3/G8JOneiybpU4f300elFfrUA3MlSUt+cKZ+9dIqHT6wUGeM66vKuobmqvS67VVasG6n/jxvnUb3ydPd5x+ulBTTA3NW6ufPr2h+LUcN66Gy6nodP7KXNuysag65klRd16gdVXVtgn9NfaP+d946XTF9aGAFb+POKvUvzG4eKrC7ql6lFTUa2TtflbUNykxLUYpZ82te9sOzlJZiOuv+17SqpEKr7jxbaakpcs7p7/M36BOH9VFRfqZKymo07cdz9PAXp+mk0UXN+9tdXa/fv7Za50zqr49KKtQzL1Pj+xdo9odb9cLSEt02Y5x65mZo7qpten3VNtU3Ol17ykgV5Wdqd1W9Jt0xW+mpppV3flKNEaeGSKS56llT36jahohWFpdrajRY/fTZZZo0qJvOHN+3zeu+/tH39J+F/oxeM2nNXZ+KHodKvbKiVFdMH9rm/auua9T1p7YMmXhpeYmu+tN81Te65p+FG08f0/wz1vR73d7q0gp94l5f9Wqq6t751If63Wtrmt/f1r+Xdz+zTCkmzTi8vzLTU7Srql59CjL1zX98oPH9C/T100erpr5Rq0oqVFnboEE9cjSqd54q6xpVXlOvvMw0ZaalKiMtpbn34Z7nlulXL7VMEt6nIFPThvXUD88dr20VdeqRm6HP/Pp1ffdT47R8a5mckwZ0z9aUwd31UWmF7p29Qr++bIqG9sqVc07vb9glM9PkQd30+9dW6z8LN+sPXzhK2yvrtHRLmY4c0l0DumXrz/PW6a3VO/SVE4erd37mXqeLemPVNv321dX6wafH67Lfv6VNu6o1pGeOfnbRJD3/YbG+fPwwbdpVLTPT2H75CRluQhDrwuoaIoo4p8y0FNU2RPTC0mJlpKZoV3W9yqrrtXlXjV5bWap126vUpzBTkYiUlmpat71lPMGUwd307vpdyXsRh7CMtBTVNUT2ut6o3nlaWdK22nje5P765lmH6bi7Xwylbb3yMrStwg98Ht4rV6u3Hdy52SYMKNCa0koVZKfv0weCIwZ3U0Zqikb2ztMjb63f5/12z0nXzqr6fX7eoezoYT301pq2A+zTU635j3l73/3UWP3oqRhnyUb99yVHqEduhpZtLdcvnl+h8toG3XvRJD2zeItmHjtUn3+oZXqSH39mosb0zVdFbYP+Pn+DMlJT9Hi0ov7dT43VPxds1LKt/kPMOZP66z8LN7cJtU2mDumu+ev8B8mbzz5M/1m4WUs2lzU//uT1x2vGf89t85zpw3vq9zOn6tbHF+nf72+O+5qCHDW0e/OHV0n67NRB+te7G9UQ8e9dTkaqqupaxrH95IKJOmtCP036wWxJ0rEjeuqNj7brmpNH6Ncv7/1KJedPGaBjhvfUXU8vbfNzev/nJusvb63f4zgGmTigUN88c4yG9crVfc+v2KP3omduhrLSU5snGW8y68qj9FFppVaXVuzX71aQ3IxUNUScajvw/1w8Y/sVaOkWf6wLs9O1u7rlvWl/f28mDSzUZccM0ajeeXprzQ69vLxE81b797X1B/GOmv1fJ2p0uw+IBxtBDPvFOSfnpFdWlOqwfvnasrtGE/oXasvuav31nQ0a3CNH3bLTNXVoD72zdod+/9pqTRjgP7G//tE2FZfV6L31u5Sbmapbzh6rtdsrdcd/PlT3nAztqq5TTX3wL/aYPvlau71yj1/8T0/qrycW7vt/xAfD8KLcuGfEAgAOTY98+WgdF3JXOUEMndamXdUa0C27ufTdXiTitHpbhUYU5cnMtKuqTrUNEZXXNKgoL1MF2WlaWVKhUb3zVNcY0faKOqWYqW9hlpxzWr+jSoN75KikvFbO+VL6mm2VSk9NUb/CLP3k2WWaPKi70lJNZ47vK+ecLvv9W9pZVa9TxhRpQPdspZrpvCMGNJf9S8trtXxruYryM1VV16DFm3arvLZBkYjTW2t26LWV23TcyJ7aXlGna08ZqVsfW6TyWt9V1fTp+qIj/UD6fyzwJ0sM6JatTbuqlZWeonH9CrRkc5kuP2aI3lqzXYs3+U+Rw3vl6oRRvTTz2KHaVlGnjTurtLKkQtvKa5u3k5ORql9dNkWF2el6d91OPbdkq6rrG1VSVqvDB3bTgG5Zen/DLo3qk6/ZS7aqLNqF9vljhmj51nIt3VqmQd1zlJ2RqokDCjXrjbXKyUjVqD75zd2/TZW24UW5GtQ9R6+sKNX4/gXqkZuhTxzWW4f1LdC3/rVQ04b2VEaaqbYhoqlDeuie55bphFFF2l1dr5LyWp0+ro827KhS/25Z+tVLH6lXXqb6Fmaqb0G2tlXU6v3o/oYX5ap7Toa6ZadrzrISSdIV04foS8cP0+ZdNdqwo0rPLN6it9bs0GePGqT/On20nl28VT95Zpl65mUoOz1V1fWNumL6UF0wZaCeXrRFN/2j5aSXS48erLdWb9elRw/R2m2Vmj6ip6555F2dNra3ThvbRzuq6pRqpvU7qnTE4O4qys/Uzf/6oLkK+OPPTNSnJ/fXub+cq7KaBv3+iqka179AG3ZU6Y4nP9TLy0ubu0ZH9c7T0zecoH8u2Ng8Zk2SHv7iND2zaIuuPWWk+nfL1pLNu3XtX97Vhh3VOm1sb0Wc9PnpQ3T7E0t01oS++u0rqzWgW7aOHNJda7dX6tTD+uj1Vdt0x3nj9eArq/XYe5uUn5WmwT1ylJbqq7aDumdr9odtK1Qd0fQz21HDi3I1oihPz+/HvoJ0z0lXXUOkuWtZkkYU5erqk0bo+/9eojF985t/VlqbOKBQizb5caitu6Ob2phi1tzVn5ZiOnF0kV6M/nztzZCeOVq3vUqXHzNYpx7WR995fJGOGNxdTy3a0ma9pukC2zt8YKFWlVTosqMH69G3N6gi+v9Dk2456RpZlNdcPZR8t/2Xjh+me55brrrGjlen9la1L8hKU1lNQ3OvSnvXf2KkXl5e2vxetve9GeP0wyf3HMbQXs/cDP3jq9P1u9dW69G3/TWRW1fJYo1R3h8Du2fry8cP00vLS5WXmaapQ7trRXGFvnT8UN39zHK9sLRY503ur5vOGKOi/Mx9mnx9fxHEgENcrKDaZHe1H9OReoDzqEUiLuZcbHUNEa0sKdf4/oUdfs6BtGP1tkqNKMpt87q37K5Wn/ysA97fc0u2akyffA09gGlaquoatHlX9V6vObu7ql4F2WlqiDiZ1OZEjZLymugHhOAB5NsratU9JyPw9e7tZyJI0//3G3ZUKy8rTflZaTJJKWbaVlGrHVV1qqxtUL/CbL2wtFgrisv1o/MmqqExomVby1VZ26BuORkaXpSr9NQUbauoVV5mmsykP7+5TjMO76++hVlqjDjtrKpTr7xMNUacnv+wWFOHdo+OScxUJOJ07/PLlZORpkjENY+hKimvUUZqipZtLVdmWor6FWY3nxTzwofF6tcta4+fP0naVVWnhohrc+KNc07zVu/Q0cN6NL9/zy3ZqpNGFykrPVWRiFNdYyTwj3DT+9T+/W1ojGjjzmoN6pGjiug0QO2fV1bdoLRUU250DF9ZTb2WbCrTpEGFuu/5FTpzfN/mcWh7O1Z/eXu9Zkzsr8KctvuprG1QVnpqm9/3SMTp3ws36ewJ/ZRipjdXb9eRQ7q3OcN9w44qbdldo11VdTp2ZC+lp1rM8VG7q+v1rwUbNfPYoZLU/Hp//9pq9SnI0jHDeyo7I1V5mWnatKta6amm3vlZikScIs7pmcVbddaEvmqMONXWR5SflbbX39v6xog+3FymSYO6SZLeW79TmWmpGtorR7X1EW2rqFXfwizlRycv311dr6VbynTM8J5yzunN1dt1xKDuys7ofFMMEcQAAACSJF4QC3cGsw4ys7PMbLmZrTKzm5PdHgAAgERIehAzs1RJv5J0tqRxki4xs3HJbRUAAED4kh7EJE2TtMo5t9o5Vyfpr5LOTXKbAAAAQtcZgtgASRta3d8YXdaGmV1lZvPNbH5paWn7hwEAAA45nSGIBZ1GsccZBM65B51zU51zU4uKigKeAgAAcGjpDEFso6RBre4PlJScWTsBAAASqDMEsXckjTKzYWaWIelzkp5IcpsAAABCl7b3VcLlnGsws+skPScpVdIfnHNLktwsAACA0CU9iEmSc+5pSU8nux0AAACJ1Bm6JgEAAD6WCGIAAABJQhADAABIEoIYAABAkhDEAAAAkoQgBgAAkCQEMQAAgCQhiAEAACQJQQwAACBJzDmX7DbsMzMrlbQu5N30krQt5H0geTi+XRfHtmvj+HZtXfX4DnHOFQU9cEgGsUQws/nOuanJbgfCwfHtuji2XRvHt2v7OB5fuiYBAACShCAGAACQJASx2B5MdgMQKo5v18Wx7do4vl3bx+74MkYMAAAgSaiIAQAAJAlBLICZnWVmy81slZndnOz2YN+Z2VozW2Rm75vZ/OiyHmb2vJmtjN52b7X+LdHjvdzMzkxeyxHEzP5gZiVmtrjVsn0+nmZ2ZPTnYpWZPWBmlujXgrZiHNvbzWxT9Pf3fTP7ZKvHOLaHEDMbZGYvmdlSM1tiZjdEl/P7G0UQa8fMUiX9StLZksZJusTMxiW3VdhPpzjnJrc6FfpmSXOcc6MkzYneV/T4fk7SeElnSfp19OcAnccs+WPT2v4cz99IukrSqOhX+20i8WYp+DjcF/39neyce1ri2B6iGiTd5JwbK+kYSddGjyO/v1EEsT1Nk7TKObfaOVcn6a+Szk1ym3BwnCvp4ej3D0s6r9Xyvzrnap1zayStkv85QCfhnHtV0o52i/fpeJpZP0kFzrk3nR8c+6dWz0GSxDi2sXBsDzHOuS3OuXej35dLWippgPj9bUYQ29MASRta3d8YXYZDi5M028wWmNlV0WV9nHNbJP+fg6Te0eUc80PTvh7PAdHv2y9H53SdmX0Q7bps6rbi2B7CzGyopCMkvSV+f5sRxPYU1OfMqaWHnuOcc1Pku5ivNbMT46zLMe9aYh1PjvOh4zeSRkiaLGmLpHujyzm2hygzy5P0L0lfd86VxVs1YFmXPsYEsT1tlDSo1f2BkjYnqS3YT865zdHbEkmPy3c1FkfL24relkRX55gfmvb1eG6Mft9+OToZ51yxc67ROReR9Du1DBXg2B6CzCxdPoQ94px7LLqY398ogtie3pE0ysyGmVmG/KDBJ5LcJuwDM8s1s/ym7yWdIWmx/HGcGV1tpqR/R79/QtLnzCzTzIbJDwJ9O7Gtxn7Yp+MZ7f4oN7NjomdbXdHqOehEmv5AR31G/vdX4tgecqLH4yFJS51zP2/1EL+/UWnJbkBn45xrMLPrJD0nKVXSH5xzS5LcLOybPpIej57ZnCbpL865Z83sHUl/N7MvSVov6SJJcs4tMbO/S/pQ/gyfa51zjclpOoKY2aOSTpbUy8w2Svq+pLu178fz/8mfpZct6ZnoF5IoxrE92cwmy3c9rZV0tcSxPUQdJ+nzkhaZ2fvRZbeK399mzKwPAACQJHRNAgAAJAlBDAAAIEkIYgAAAElCEAMAAEgSghgAAECSEMQAdGpmNsvMnkx2O1ozs3PNbKWZNZjZrGS3JxYzO9nMnJn1SnZbAAQjiAGIKRqCnJl9t93yj/sf+N/LzxQ+RNINSW4LgEMYQQzA3tRI+paZFSW7IQdT9LIr+/O8bpJ6SXrOObfJObf7oDYMwMcKQQzA3rwkP7v592KtEFQhM7Oh0WVT261ztpktMLNqM3vNzAaa2UlmttDMKszsSTPrGbCP75pZcXSdP5pZdqvHzMy+ZWYfRbe7yMwuD2jLJWb2oplVKzpbe8B+upvZw2a2M7qtF8xsfNNrkLQzuuqL0W2eHGM7GWb2EzPbaGaVZvaOmZ0Z8J7NMLP3zawm+r4c2W4750dfT62ZbTCz70Qv8dJ6Pz82s3XRdVab2dfaNWeSmb1lZlVmNt/MpgS1GUDiEcQA7E1E0s2SvmpmIw7C9n4g6euSjpbUXdLfJN0m6Sr5S92Ml3R7u+ecJGmSpFMlXSB//dCftHr8R5K+JOlaSeMk3SXpt2b2qXbbuUvSr6Pr/F+M9s2Ktu1c+YtNV0l6Nhr83oi2T9F29IsuC/LHaLsvlTRR0sOS/mNmk9qt9zNJ35Y0VdJqSU+ZWY4kRUPZPyQ9Ft3GzZJukXRdq+c/LH/dvRsljY2+D7sCXvfNkqZI2i7pkdZhDkASOef44osvvgK/5EPJk9HvX5L01+j3J8tfB7BX0P3osqHRZVPbrXNmq3Wuiy6b0mrZ7ZIWt2vDLkl5rZZdLqlWUm70q1rSCe3a/gtJT7dry017eb2jouud2GpZoaTdkr4cvd8rus7JcbYzQj7ADm63/P8k/brd+3FZq8fzoq+1aV+PSHqx3TZul7SxXXvPitGOoPf8uOiygcn++eKLL74cF/0G0GHfkjTPzH52gNv5oNX3xdHbRe2W9W7/HOdcRav7b0rKkA88mZKy5KtWrS+emy7fpdra/L20bax8gHqzaYFzbreZLZKvonXUFEkm6cN2hadMSS+2W7f1vira7WuspKfarT9X0vfNrEDSEdH2vrSX9rR+zzdHb3tL2riX5wEIGUEMQIc4594xs3/Jdwn+sN3Dkeht69QRazB8fevNRrfdftm+DJtoWvccSevj7EuSKveyrXjddS7OY0FtcpKOCmhD9T5sx+Ls1yl+e1vb4z0XQ1OAToFfRAD74lZJJ0g6q93y0uhtv1bLJh/E/U40s9xW94+RVCfpI0kfyndTDnHOrWr3tW4f9/Oh/P+L05sWRCtPE6OPddR78iGpb0CbNrVb95hW+8qVNEHS0lbtOb7d+sfLd02WS3o32t5T9qFtADoRKmIAOsw5t8rMHtSec2etkrRB0u1mdrP8mKzv6uBJk/QHM7tDUn9Jd0v6nXOuUpKi3aU/iw5Af1V+rNUxkiLOuQc7uhPn3Eoz+7f8QP+r5Mdr3SmpTNJf9mE7K8zsEUmzzOwm+cDUQ37M1mrn3GOtVv+umZXKdxneJh8wm/Z1r6R3zOz26LKjJN0kH4ib2vt3Sb83sxui+xkoaahz7s8dbS+A5KEiBmBf3SGpofWCaNfi5yQNl7RQ/szIWw/iPl+RtER+LNTj8uOsvtXq8e/JD2L/RnS95+XPalyzH/u6UtLbkp6I3ubID4bfly7Fpu38UdJPJS2T9KSkEyW1r9LdLB+43pUffD+jKWA6596VdFH0tSyWD6B3S/plq+dfIR/SHojuZ5b8CQYADgHm3L4MewAAHAzR+cdeklTknNuW3NYASBYqYgAAAElCEAMAAEgSuiYBAACShIoYAABAkhDEAAAAkoQgBgAAkCQEMQAAgCQhiAEAACQJQQwAACBJ/j9GYLvy93WHeQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGQCAYAAABVreKBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfqUlEQVR4nO3de7RkZX3m8e8jjSKoXBQQhdhG0UBQZOwY71FBg2JEjSYajXifGTUSjaOtJlFXJqZjNNGsGBNEhUS8ohkY24DIRSVRsLkYxNZBsRWEQGtEwAsC/uaPvQ+WRZ3Tp07Xqer39PezVq3qeve79/7VPt39nHdfU1VIkqQ23WbWBUiSpKUzyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5NIEJTkrSQ21PSpJJXnjjMpaUJLn9vU9d6h9U5JNs6lq296Ws9420iCDXCtCkjVJ3pfk0iQ/TnJtkouS/FWSu09wPcf1QbJ6UstcqfrtdNas61iKUb9ESNuqVbMuQNoaSQKsA14N3AScBnwUuC3wUOBVwEuSHFVVJ86ozHOBA4Dvzmj9S3XojNf/HGDnGdcwn1lvG+kWBrla9yd0Ib4JeGJVXTw4MclvA+8HPpTksVV15rQLrKofAV+d9nq3VlV9Y8br//Ys17+QWW8baZC71tWsfvf2nwA3Ak8aDnGAqvoY8ApgB+BdSW4zMP8b+92/jxq17H7acQNtBRzVf/xmP722dKx0oeO6SfZI8hdJNvaHBH6Q5PQkjxvR95Zj2UkO73f//mCxu4CT3DvJR5N8P8kPk/x7kiMW6H+r48BJbpvk5UnO75fzo77fSUkOG6yzn+U3BrbTLdtgcPsmuU+SDye5OsnP5n4eW9q9neQhST7db4PrkpyaZM2IfvMeDhn+2czVBfxG/3mw9rMW2jZ9++2SrE3yH/22uTbJ55L8zoi+g9tgdZIPJflukp8k2ZDkifN9d2mQI3K17Hl0f4c/UlUXLdDvWLrAvy/df9BLHZW/CXgycDDwDuCavv2a0d0XluQewFnAauBzwCnALsATgVOS/PeqeveIWZ8GHA78K/AP/fxbWtf+wOeBO/fzXQjcG/g//efFOg54JvBl4J+AHwN3Ax7e1/TpftlvAt4AfKufZ85ZQ8u7F3AO8P+AE4DbA9cuoo5fB17br++d/Xd5KvDIJI+rqs+N8Z0GXdPX/lzgHv2f52xaaMYktwVOpfs79tW+rp3pfl4fTvKAqnrdiFnvQXf45VLgn4E9gN8FTkpy2Cz2IqkxVeXLV5Mv4HSggBctou8Jfd8/Hmh7Y9/2qBH9V/fTjhtqP65vXz3Pes7q/ln9Qtuj+nneOKLvz4BnDLXvRheGPwb2Hmh/br+cnwGHj7mtPtXPe/RQ+5F9ewHPHZq2Cdg08HnXft0bgB1GrOPOQ58LOGueelYPrPfNS9iWBbxsnu9yCXCbxfzMtvCzqVF1jdo2fdtr+2V9Elg10L5X37+Ah86zDd4wtKzfnFvWcv4b8rUyXu5aV8v26d8vW0TfuT53W6ZaxpLkYLqR28eq6kOD06rqGrrR7E7Ab4+Y/aSqOmWMde0LPBb4JvB3Q+s6CfjMIhdVQIAb6AL9FydWfW+xNQ24il8c9S7W14G/H1r/3He5N/CIJSxzaz2fbhu9sqpuGqjrauDP+o8vHDHft4D/PdhQVacC3wYetDylaiVx17palv59MceIx+k7DQ/p33cddewc2LN/P2DEtHPHXNch/fvZVXXziOln0R8TXkhVXZvk/wK/BVyY5GN0hwTOqe6EvqX4UlXdsIT5PldVt/plgp9/l0NY/C8oWy3JHel+gfhOVY06sfGM/v2QEdMunOfnchk//3sizcsgV8uuBH4F+KVF9N13YJ5twZ3798f2r/ncYUTbf465rl3796vmmT7O8n4XeA3we/x8JP2TJCcCr6qq+dYxn3G/y5wtfZdd55m+XObWN9/fr7n23UZMu2aeeW7CE5K1CP4lUcvO7t8PW6hTkh3ojoUC/NvApLkR3ahfaHfbmsIW4Qf9+9FVlQVezxsx77h7FebWtfc80++62AVV1Y+r6o1VdR+6X6CeTfdzeDawlOv0l7qHZEvf5QcDbdP4Oc+tb75tuc9QP2liDHK17DjgZuApSX51gX7Ppzs2/jV+cXfr9/v3/UbMc6vLmHpzu0B3WHyZI32hf5/GsdwL+veH97/UDHvUUhZaVZdV1Ql0J2Zd0i//zgNdfsbWb6f5PHzwUsIBj+rfLxhoW/LPeZ7tdStVdR3wDeDu/RUCwx7dv5+/mOVJ4zDI1ayquhR4M7AjcHKSA4f7JHky3aViNwMvGTquOnes+XlJVg3Msx/wp/Osdu6ErsXszl+o9g10x5efmuT5o/okuV+SvbZmPf26Lqe74909gZcNreNIFnF8vO+7Z5JfHzFpF+COdLuCfzrQ/j1Gh+ck7A+8ZKi+ue/ydbptO2fu5/yiof73A46eZ/lL+Tm/l+5cjL8a/AUgyV3oLn+c6yNNlMfI1bo30gXJK4EvJTkVuJgu3B9Kd73xj4FnVtUZgzNW1TlJPgs8Ejg3yRl0u2x/i+564FEhdDrwv4B398eFrweuqaq/G9F3S36P7iSo9yR5Od311NfQHc+/P3AQ3clOVy9h2cNeSncd+dv7m818ie7krKcAcyewbcndgS8k2Ug3srwMuBPdde93Bf62H5nOOR14Rn+C3Hl0Qf/ZqvrsBL7PKcDbkjx+4Ls8FfgJ8IKhX9hOottj8Mz+DP5z6AL6yH7arW7W0tf+dODjST5J93foW1X1zwvU9Fbg8f1yv9TPt3O/nL2At1TV2QvMLy3NrK9/8+VrEi+6y3SOp7vE6sd0Aftluv9c911gvt2Ad9OF5Q39PC9mnuvI+3leCWzs+xe/eK31WSzyOvJ+2h2B19EF3fV97d8E1vd17DLQ97mMuN57jG10b7rj2NcAP6QL9iPmWy63vo58N7o9FWcA3+m//5X9d34mkKH59wI+QHdi2s2D22Ch7bvYbUn3S86n6W4gcx3dtfK/Ns+y9gM+DPxXv42/SBf8I382dIcE3kx3k5YbGbomfnjbDLTv1P88v9yv5zq6cwieOaLvgttg1Pf35WvUK1XbytU4kiRpXB4jlySpYQa5JEkNM8glSWqYQS5JUsMMckmSGtbkdeR3uctdavXq1bMuQ5KkqTjvvPO+W1V7jprWZJCvXr2aDRs2zLoMSZKmIsm35pvmrnVJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYU0+/WzSVq9dv1Xzb1p3xIQqkSRpPI7IJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1bKpBnuQVSS5O8uUkH0yyU5I9kpyW5JL+ffdp1iRJUsumFuRJ7g68HFhTVQcBOwDPANYCp1fV/sDp/WdJkrQI0961vgq4fZJVwM7AFcCRwPH99OOBJ0+5JkmSmjW1IK+q7wBvBb4NXAn8oKo+BexdVVf2fa4E9ppWTZIktW6au9Z3pxt93xO4G7BLkmePMf+Lk2xIsmHz5s3LVaYkSU2Z5q71w4BvVtXmqroR+DjwUOCqJPsA9O9Xj5q5qo6pqjVVtWbPPfecWtGSJG3Lphnk3wYenGTnJAEOBTYCJwNH9X2OAk6aYk2SJDVt1bRWVFXnJDkROB+4CbgAOAa4A/CRJC+gC/unT6smSZJaN7UgB6iqNwBvGGq+gW50LkmSxuSd3SRJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWFTfR75SrV67fqtXsamdUdMoBJJ0vbGEbkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMJ9+JmDrn+Dm09skaTYckUuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJapiXn20jvPxLkrQUjsglSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktSwVbMuQJOxeu36WZcgSZoBR+SSJDXMIJckqWFTDfIkuyU5MclXk2xM8pAkeyQ5Lckl/fvu06xJkqSWTXtE/g7glKr6FeBgYCOwFji9qvYHTu8/S5KkRZhakCe5E/BI4D0AVfXTqroGOBI4vu92PPDkadUkSVLrpjki/2VgM/C+JBckOTbJLsDeVXUlQP++1xRrkiSpadMM8lXAfwPeVVWHAD9kjN3oSV6cZEOSDZs3b16uGiVJaso0g/xy4PKqOqf/fCJdsF+VZB+A/v3qUTNX1TFVtaaq1uy5555TKViSpG3d1IK8qv4TuCzJffumQ4GvACcDR/VtRwEnTasmSZJaN+07u/0BcEKS2wKXAs+j+2XiI0leAHwbePqUa5IkqVlTDfKquhBYM2LSodOsQ5KklcI7u0mS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJathYQZ7kwiQv81GjkiRtG8Ydka8HXg1ckeSDSbz+W5KkGRoryKvq9cA9gKcCOwDrk2xK8qdJfmk5CpQkSfMb+xh5df61qn4HuBvwj8DrgEuTnJrk8EkXKUmSRlvyyW5JHgyso3sU6RXAm4BvACcmeftEqpMkSQsa617rSfYCnkP3sJN70T257GlVddpAnxP79j+cXJmSJGmUcR+acjnwdeA9wPFV9d0RfTYAX9zawiRJ0paNG+SHVtXnFupQVdcCj156SZIkabHGPUb+X0nuP9yY5P5JDpxQTZIkaZHGDfJjgINGtB/YT5MkSVM0bpDfHzh3RPsXgfttfTmSJGkc4wb5zcCuI9p3B7L15UiSpHGMG+SfAV6fZIe5hiSrgNcDn51kYZIkacvGPWv91cDZwNeTnN23PRy4A/DISRYmSZK2bNx7rX+N7jj5B4A9gDsDJwAHV9XGyZcnSZIWMu6InKq6km5XuiRJmrGxgzzJzsADgL0YGtFX1ccnU5YkSVqMce+1fhjwQbpd6sOK7tGmkiRpSsY9a/0dwHpg36q6zdDLEJckacrG3bW+GnhSVV2xDLVIkqQxjTsi/zfgvstRiCRJGt+4I/J/AN6a5G7ARcCNgxOr6vxJFSZJkrZs3CA/sX8f9YAUT3aTJGnKxg3yey5LFZIkaUnGCvKq+tZyFSJJksY37sluJHl8kk8k+UqS/fq2FyY5dPLlSZKkhYwV5EmeBXwEuIRuN/uO/aQd6B6oIkmSpmjcEfmrgRdV1SuAmwbav0B321ZJkjRF4wb5/sDnR7RfD9xp68uRJEnjGDfIrwDuM6L9kcA3tr4cSZI0jnGD/Bjgb5M8rP+8X5KjgLcA75poZZIkaYvGvfzsLUl2BU4DdgLOBG4A3lpV71yG+iRJ0gLGfh55Vb0+yZ8DB9KN6L9SVddPvDJJkrRFYwc5QFX9CNgw4VokSdKYxgryJCcvNL2qnrR15UiSpHGMOyL/3tDnHYGDgf2Aj0+kIkmStGjjnuz2vFHtSd4GXDeRiiRJ0qKNfa/1efwj8JIJLUuSJC3SpIL8vhNajiRJGsO4J7v97XATsA/weOC9kypKkiQtzrgnu91v6PPPgM3AKzDIJUmaunFPdnv0chUiSZLGN6lj5JIkaQbGPUZ+JlCL6VtVj1lSRZIkadHGPUa+EXgW8J/AOX3bg4C7Ah8Abp5caWrJ6rXrt3oZm9YdMYFKJGn7Mm6Q3wAcDxxdVbeMzJO8HUhVHT3B2iRJ0haMe4z8OcDfDYZ47++B359MSZIkabHGDfJw60vQmKdNkiQts3F3rb8XODbJ/sAX+rYHA68G3jfJwiRJ0paNG+SvBq4Gjgbe3LddCawD3jbBuiRJ0iKMe0OYnwFvAd6S5E5927XLUZgkSdqyJd0QJskauvur39x/3iXJuKN7SZK0lca9IczewMnAr9HdGGZ/4FLgr4Gf0O1ylyRJUzLuiPxv6G4Gc2fgRwPtHwUeN6miJEnS4owb5IcCr6+q7w+1fwP4pcUsIMkOSS5I8on+8x5JTktySf+++5g1SZK03Ro3yG8P/HRE+550u9YX42i6W73OWQucXlX7A6f3nyVJ0iKMG+SfBZ478LmS7AC8hi6EF5RkX+AI4NiB5iPpbvtK//7kMWuSJGm7tZTryD+T5NeA29FdO/6rwK7AwxYx/9v7ZdxxoG3vqroSoKquTLLXmDVJkrTdGmtEXlVfobsd678DnwJ2ojvR7ZCq+sZC8yZ5InB1VZ23lEKTvDjJhiQbNm/evJRFSJK04ix6RJ5kR+Bs4DlV9YYlrOthwJOSPIHuF4A7JXk/cFWSffrR+D50d467lao6BjgGYM2aNYt6JrokSSvdokfkVXUjcE+668fHVlWvrap9q2o18AzgjKp6Nt116Uf13Y4CTlrK8iVJ2h6Ne7Lb8cCLJlzDOuCxSS4BHtt/liRJizDuyW67AM9K8ljgPOCHgxOr6uWLWUhVnQWc1f/5e3TXp0uSpDEtKsiT3B+4GDgAOL9v/uWhbh63liRpyhY7Ir8A2KeqHg2QZD3wwrnLxiRJ0mws9hh5hj4/gu4ub5IkaYaW9BhTbh3skiRpBhYb5MWtj4F7TFySpBlb7DHyAO9PckP/eSfg3UkGH2VKVT1pksVJkqSFLTbIjx/6/P5JFyJJksa3qCCvquctdyGSJGl8Sz3ZTZIkbQMMckmSGmaQS5LUMINckqSGjfvQFGnZrF67fqvm37TuiAlVIkntcEQuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhXn4m9bz8TVKLHJFLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMO/sphVja+/MJkktckQuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsNWzboAaaVYvXb9rEtg07ojZl2CpClzRC5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhk0tyJPsl+TMJBuTXJzk6L59jySnJbmkf999WjVJktS6aY7IbwL+qKoOAB4MvDTJgcBa4PSq2h84vf8sSZIWYWpBXlVXVtX5/Z+vAzYCdweOBI7vux0PPHlaNUmS1LqZHCNPsho4BDgH2LuqroQu7IG9ZlGTJEktmnqQJ7kD8DHgD6vq2jHme3GSDUk2bN68efkKlCSpIVMN8iQ70oX4CVX18b75qiT79NP3Aa4eNW9VHVNVa6pqzZ577jmdgiVJ2sZN86z1AO8BNlbVXw9MOhk4qv/zUcBJ06pJkqTWrZriuh4G/D5wUZIL+7bXAeuAjyR5AfBt4OlTrEmSpKZNLcir6mwg80w+dFp1SJK0knhnN0mSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJatjUnkcuadu3eu36rZp/07ojJlSJpMVyRC5JUsMMckmSGmaQS5LUMI+RS5oYj7FL0+eIXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSw7z8TFpBtvbyL0ntcUQuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSw7yzm6QVZWvvbrdp3RETqkSaDkfkkiQ1zCCXJKlhBrkkSQ3zGLmkbYZPb5PG54hckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYatmXQBAksOBdwA7AMdW1boZlyRpO7V67fqZrn/TuiO2ehlb+x0mUUPrWtqGMx+RJ9kBeCfweOBA4JlJDpxtVZIktWHmQQ48CPh6VV1aVT8FPgQcOeOaJElqwrYQ5HcHLhv4fHnfJkmStmBbOEaeEW11q07Ji4EX9x+vT/K1CdZwF+C7E1yeOm7X5eF2XR7bxHbNX866gonXsE1s12lbhp/jPeabsC0E+eXAfgOf9wWuGO5UVccAxyxHAUk2VNWa5Vj29sztujzcrsvD7bo83K7Lb1vYtf5FYP8k90xyW+AZwMkzrkmSpCbMfEReVTcleRlwKt3lZ++tqotnXJYkSU2YeZADVNUngU/OsIRl2WUvt+sycbsuD7fr8nC7LrNU3eq8MkmS1Iht4Ri5JElaou06yJMcnuRrSb6eZO2s61kpkrw3ydVJvjzrWlaSJPslOTPJxiQXJzl61jWtBEl2SnJuki/12/VNs65pJUmyQ5ILknxi1rWsVNttkHtr2GV1HHD4rItYgW4C/qiqDgAeDLzUv7MTcQPwmKo6GHgAcHiSB8+2pBXlaGDjrItYybbbIMdbwy6bqvos8F+zrmOlqaorq+r8/s/X0f3n6F0Qt1J1ru8/7ti/PHloApLsCxwBHDvrWlay7TnIvTWsmpVkNXAIcM6MS1kR+t2/FwJXA6dVldt1Mt4OvBr42YzrWNG25yBf1K1hpW1NkjsAHwP+sKqunXU9K0FV3VxVD6C7s+SDkhw045Kal+SJwNVVdd6sa1nptucgX9StYaVtSZId6UL8hKr6+KzrWWmq6hrgLDzHYxIeBjwpySa6Q5ePSfL+2Za0Mm3PQe6tYdWUJAHeA2ysqr+edT0rRZI9k+zW//n2wGHAV2da1ApQVa+tqn2rajXd/69nVNWzZ1zWirTdBnlV3QTM3Rp2I/ARbw07GUk+CHweuG+Sy5O8YNY1rRAPA36fbmRzYf96wqyLWgH2Ac5M8h90v+CfVlVeKqVmeGc3SZIatt2OyCVJWgkMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIpRUgyXHb4vOek+ye5Kok95rgMk9M8spJLU9qnUEuNSLJIUkqyb/NupYxvA74ZFV9Y64hyRlJThjslORFSX6U5PX9rWgX8ibgj5Psugz1Ss0xyKV2vAj4MPDAJAfMupgtSbIz8EK6+8MPOgQ4r+9zuyTHAuuAp1TVn9cWbjdZVRcBlwLet1vCIJea0D/M4/eAdwLrgQXvX98H5Nv73do/SfKFJA8f6rNLkn9Kcn3f77VJPpHkuAmV/QS651Dfsgeh38W+G3Bekv2AzwEPBNZU1aljLPtk4JkTqlNqmkEuteFpwDXA2cD7gef0jzSdz1uA3wWeTzcCvgg4Jck+A33eBvwG8BTgMcDBwCMmWPMjgPOGRtgPBArYAzif7iljD62qb4657HPpnht++4lUKjXMIJfa8ELgA30orgdWAU8a1THJLsD/BF5TVeuraiPwP4CrgJf2fe5AF/KvqarT+if/vYBuBD24rJOTfD/JiUPtT0jytSSXJHnJPDXfA7hyqO2B/To+CvxlVT2nqn48tOyjk3ynf7rbl5K8L8ldhpZzBbAjcLd51i1tNwxyaRuX5N7AI4ETAKrqp8CJdOE+yr3oQu6WXdpVdTPdo2UPHOpz7kCfHwJfHlrW3wDPGapnFfAOuud2Hwy8bGikP+f2wE+G2h4InAlcRnesf9SJbQcBr6qqBwAPAL4FvHuoz1z4OyLXds8gl7Z9LwS+1I+a57wfeFx/nHnYXDiOOmmsFtHn552rzgSuG2p+EPCVqrqsqn4E/AvwxBGzfxfYfajtEOBTwG8BRwBvHDHf/YCL+/UX8BfAbyYZ/P9qj/5980L1S9sDg1zahvWj36PognvQ54DLgeeNmO3rwE+BW05uS7ID8BDgKwN9bqQL5bk+O9ONhrfkbnQj6jmXA3cf0e8Cfr4HgCT3pAvg86rqy3Qn770+ybMG+gS4D/C1geXcSHcoYXD0fRBwRVVdtYh6pRXNIJe2bUcAdwUuSnLQ3Av4VeAzwPOHRqpzu8jfBazrj2Uf0H/eG/j7vs/1wHuBv0xyaJIDgWPp/k9YcJTOz0fzv7DaEW2nAgckuXP/+YH9+/l9DZ8A1gLvGTijfjVwVVXdMLCc/YDv9t9rziOAU7ZQp7RdWDXrAiQtaO4ys4VC67ARba/p399Hd7nXBcDhVTV48tmrgF3oLuW6nu54+N7c+rj2sO/QheucfYFNw52q6qIk5wLPoLts7oHApVV1zUCft/a/RPxLkgfTjeAvHlrUC+jOCQAgyU50Z9r/5hbqlLYL2cK9FyRtJ5Lcju7Esr+qqrcNtD8KeFlVPa3/vIrusrFH0x0HPw84rKquGLHMw+lOjDuwP+FuSzW8DrhdVb2h383+VLpj5A+vqqv7Pi8Fjqyqx23F15VWDEfk0nYqySHAAXRnrt+RbhR/R7q7x831+TTdmem7JLkceHpVfT7JK4DT6XbFv2NUiANU1SlJ3kk3av/WIso6CHhEkifS7cI/H3jMXIj3bgT+YKwvK61gjsil7VQf5O8G7gvcBFxId9nXebOsS9J4DHJJkhrmWeuSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhv1/mlbbz3XWQl0AAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -10520,90 +6616,130 @@ } ], "source": [ - "fig = plt.figure(figsize=(10, 8))\n", - "plt.plot([test_losses[1:][i] for i in range(len(test_losses[1:]))])\n", - "plt.plot([train_losses[1:][i] for i in range(len(train_losses[1:]))])\n", - "plt.title('Loss', size=title_size)\n", - "plt.xlabel('Number of epoch', size=font_size)\n", - "plt.ylabel('MSE', size=font_size)\n", - "plt.legend(['Test', 'Training'], prop={'size': font_size})\n", + "fig = plt.figure(figsize=(8, 6))\n", + "plt.title('Outlier distribution', size=title_size)\n", + "plt.hist(np.abs((model(train_x)[0]-train_y).detach().numpy()), 25)\n", + "plt.xlabel('$\\Delta\\log_{10}(K_D)$', size=font_size)\n", + "plt.ylabel('Frequency', size=font_size)\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 31, "id": "27006e6f", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { - "ename": "NameError", - "evalue": "name 'model' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m model(train_x[\u001b[38;5;241m80\u001b[39m:\u001b[38;5;241m320\u001b[39m])[\u001b[38;5;241m0\u001b[39m]\n", - "\u001b[0;31mNameError\u001b[0m: name 'model' is not defined" - ] + "data": { + "text/plain": [ + "tensor([[-7.8488],\n", + " [-8.8119],\n", + " [-6.8079],\n", + " [-8.4229],\n", + " [-7.6609],\n", + " [-8.6647],\n", + " [-7.5039],\n", + " [-7.3520],\n", + " [-7.5180],\n", + " [-8.0300],\n", + " [-8.9547],\n", + " [-7.4532],\n", + " [-8.0866],\n", + " [-7.6879],\n", + " [-8.0589],\n", + " [-6.1069],\n", + " [-7.9266],\n", + " [-6.8946],\n", + " [-8.6947],\n", + " [-8.1570],\n", + " [-7.4921],\n", + " [-6.7924],\n", + " [-7.9947],\n", + " [-8.2423],\n", + " [-8.1894],\n", + " [-7.9848],\n", + " [-8.8121],\n", + " [-8.3136],\n", + " [-7.2671],\n", + " [-7.5069],\n", + " [-8.0406],\n", + " [-8.3701],\n", + " [-7.9674],\n", + " [-8.3605],\n", + " [-7.7745],\n", + " [-9.2119],\n", + " [-7.6806],\n", + " [-7.9661],\n", + " [-7.1673],\n", + " [-6.9482]], grad_fn=)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "model(train_x[80:320])[0]" + "model(train_x[80:120])[0]" ] }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 32, "id": "4264d33e", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { "text/plain": [ - "tensor([[ -9.0000],\n", - " [ -7.4559],\n", - " [ -7.4559],\n", - " [ -8.6383],\n", + "tensor([[ -8.7852],\n", + " [ -9.3768],\n", + " [ -6.0809],\n", + " [ -9.8539],\n", + " [ -7.0269],\n", + " [-10.1904],\n", + " [ -5.6737],\n", " [ -8.3979],\n", - " [ -5.0232],\n", - " [ -7.4685],\n", - " [ -5.2218],\n", - " [ -7.2840],\n", - " [-10.0000],\n", - " [ -6.9208],\n", - " [ -6.6778],\n", - " [ -7.9208],\n", - " [ -7.9208],\n", - " [ -8.7645],\n", - " [-11.3372],\n", - " [ -3.6990],\n", - " [ -5.3979],\n", - " [ -7.2757],\n", - " [-10.3010],\n", - " [ -7.6990],\n", - " [ -9.3468],\n", + " [ -7.2396],\n", + " [ -8.2291],\n", + " [ -9.6990],\n", + " [ -8.0044],\n", " [ -7.9586],\n", - " [ -7.6990],\n", - " [ -8.4202],\n", + " [ -7.5086],\n", + " [ -7.7959],\n", + " [ -6.9101],\n", + " [ -6.8210],\n", + " [ -7.7799],\n", " [ -8.7447],\n", + " [-10.3799],\n", + " [ -6.7773],\n", + " [ -6.1500],\n", + " [ -7.8416],\n", + " [ -9.7447],\n", + " [ -8.2076],\n", + " [ -8.1141],\n", + " [ -9.3468],\n", + " [ -9.3665],\n", + " [ -7.7212],\n", + " [ -6.8962],\n", + " [ -8.0223],\n", + " [ -9.0269],\n", + " [ -8.2518],\n", + " [ -9.9586],\n", + " [ -8.7423],\n", + " [-10.5229],\n", + " [ -7.6576],\n", + " [ -7.6383],\n", " [ -5.3979],\n", - " [ -7.6990],\n", - " [ -6.5200],\n", - " [ -7.7696],\n", - " [ -7.8861],\n", - " [ -8.3010],\n", - " [ -9.2218],\n", - " [ -8.3010],\n", - " [ -8.5686],\n", - " [ -8.2048],\n", - " [ -8.0000],\n", - " [ -9.2218],\n", - " [ -7.1135],\n", - " [ -6.2218]])" + " [ -6.6021]])" ] }, - "execution_count": 85, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -10612,23 +6748,31 @@ "train_y[80:120]" ] }, + { + "cell_type": "markdown", + "id": "7fa7fb7c", + "metadata": {}, + "source": [ + "# Training" + ] + }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 42, "id": "5f8707ae", "metadata": {}, "outputs": [], "source": [ "##### Uncomment the following lines to save a checkpoint\n", "\n", - "path = '../checkpoints/model_' + regions + '_epochs_' + str(len(train_losses)) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt'\n", + "path = '../checkpoints/model_epochs_' + str(len(train_losses)) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt'\n", "save_checkpoint(path, model, optimiser, train_losses, test_losses)\n", - "np.save('../checkpoints/learnt_filter_'+regions+'_epochs_'+str(len(train_losses))+'_modes_'+str(modes)+'_pool_'+str(pooling_size)+'_filters_'+str(n_filters)+'_size_'+str(filter_size)+'.npy', learnt_filter)" + "np.save('../checkpoints/learnt_filter_epochs_'+str(len(train_losses))+'_modes_'+str(modes)+'_pool_'+str(pooling_size)+'_filters_'+str(n_filters)+'_size_'+str(filter_size)+'.npy', learnt_filter)" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 21, "id": "dc802940", "metadata": {}, "outputs": [ @@ -10636,6 +6780,19 @@ "name": "stdout", "output_type": "stream", "text": [ + "\u001b[31mPlease check your arguments if you have upgraded adabelief-pytorch from version 0.0.5.\n", + "\u001b[31mModifications to default arguments:\n", + "\u001b[31m eps weight_decouple rectify\n", + "----------------------- ----- ----------------- ---------\n", + "adabelief-pytorch=0.0.5 1e-08 False False\n", + ">=0.1.0 (Current 0.2.0) 1e-16 True True\n", + "\u001b[34mSGD better than Adam (e.g. CNN for Image Classification) Adam better than SGD (e.g. Transformer, GAN)\n", + "---------------------------------------------------------- ----------------------------------------------\n", + "Recommended eps = 1e-8 Recommended eps = 1e-16\n", + "\u001b[34mFor a complete table of recommended hyperparameters, see\n", + "\u001b[34mhttps://github.com/juntang-zhuang/Adabelief-Optimizer\n", + "\u001b[32mYou can disable the log message by setting \"print_change_log = False\", though it is recommended to keep as a reminder.\n", + "\u001b[0m\n", "Weight decoupling enabled in AdaBelief\n", "Rectification enabled in AdaBelief\n" ] @@ -10646,22 +6803,171 @@ "\n", "from antipasti.utils.torch_utils import load_checkpoint\n", "#\n", - "nf_chckpt = 2\n", - "pool_chckpt = 1\n", + "nf_chckpt = 4\n", + "pool_chckpt = 2\n", "k_chckpt = 4\n", - "ep_chckpt = 1306\n", + "ep_chckpt = 221\n", + "modes_chckpt = 'all'\n", + "input_shape = 292\n", "\n", - "path = '../checkpoints/model_' + regions + '_epochs_' + str(ep_chckpt) + '_modes_' + str(modes) + '_pool_' + str(pool_chckpt) + '_filters_' + str(nf_chckpt) + '_size_' + str(k_chckpt) + '.pt'\n", + "path = '../checkpoints/contact_maps/seed_398/model_epochs_' + str(ep_chckpt) + '_modes_' + str(modes_chckpt) + '_pool_' + str(pool_chckpt) + '_filters_' + str(nf_chckpt) + '_size_' + str(k_chckpt) + '.pt'\n", "model,optimiser,_,train_losses, test_losses = load_checkpoint(path, input_shape)" ] }, + { + "cell_type": "markdown", + "id": "31110205", + "metadata": {}, + "source": [ + "## Hyperparametric search" + ] + }, { "cell_type": "code", - "execution_count": null, - "id": "f098814a", + "execution_count": 193, + "id": "84c865ef", "metadata": {}, "outputs": [], - "source": [] + "source": [ + "n_max_epochs = 23\n", + "max_corr = 0.87\n", + "batch_size = 32\n", + "\n", + "def objective(trial):\n", + " kf = KFold(n_splits=10, shuffle=True, random_state=42)\n", + " scores = []\n", + " \n", + " n_filters = trial.suggest_categorical('n_filters', [2, 4, 8])\n", + " filter_size = trial.suggest_int('filter_size', 3, 5)\n", + " pooling_size = trial.suggest_int('pooling_size', 1, 3)\n", + " learning_rate = trial.suggest_categorical('learning_rate', [5e-5, 1e-5, 4e-5, 1e-5])\n", + " print('Filters:')\n", + " print(n_filters)\n", + " print('with size:')\n", + " print(filter_size)\n", + " print('Pooling size:')\n", + " print(pooling_size)\n", + " print('Learning rate:')\n", + " print(learning_rate)\n", + " fold = 0\n", + " \n", + " for train_index, val_index in kf.split(train_x):\n", + " fold += 1\n", + " train_loss = [100]\n", + " val_loss = [100]\n", + " train_x_fold, val_x_fold = train_x[train_index], train_x[val_index]\n", + " train_y_fold, val_y_fold = train_y[train_index], train_y[val_index].reshape(val_x_fold.shape[0], 1, 1) \n", + "\n", + " while val_loss[-1] > 5 or (val_loss[-1] > 2 and n_filters == 4 and filter_size == 4):\n", + " model = ANTIPASTI(n_filters=n_filters, filter_size=filter_size, pooling_size=pooling_size, input_shape=input_shape, l1_lambda=0.002)\n", + " criterion = MSELoss() \n", + " optimiser = AdaBelief(model.parameters(), lr=learning_rate, weight_decay=False, eps=1e-8, print_change_log=False) \n", + " train_loss, val_loss, _, _, _ = training_routine(model, criterion, optimiser, train_x_fold, val_x_fold, train_y_fold, val_y_fold, n_max_epochs=n_max_epochs, max_corr=max_corr, batch_size=batch_size, verbose=False)\n", + "\n", + " print('Fold number')\n", + " print(fold) \n", + " \n", + " for i in range(20):\n", + " previous_val_loss = np.mean(val_loss)\n", + " if np.mean(val_loss) <= 1.2*np.mean(train_loss) and np.mean(val_loss) < 1.2*previous_val_loss and math.isnan(val_loss[-1]) == False:\n", + " train_loss, val_loss, _, _, _ = training_routine(model, criterion, optimiser, train_x_fold, val_x_fold, train_y_fold, val_y_fold, n_max_epochs=n_max_epochs, max_corr=max_corr, batch_size=batch_size, verbose=False)\n", + " print(np.mean(val_loss))\n", + " print(np.mean(train_loss))\n", + "\n", + " scores.append(np.mean(val_loss))\n", + " print(f'Score for fold {fold}')\n", + " print(scores)\n", + " \n", + " return np.mean(np.array(scores))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "id": "581af68a", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m[I 2023-11-04 18:43:25,969]\u001b[0m A new study created in memory with name: no-name-ada222f8-f214-4ff1-ad7b-660a773fef3c\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Filters:\n", + "8\n", + "with size:\n", + "4\n", + "Pooling size:\n", + "1\n", + "Learning rate:\n", + "1e-05\n", + "Weight decoupling enabled in AdaBelief\n", + "Rectification enabled in AdaBelief\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[33m[W 2023-11-04 18:43:26,790]\u001b[0m Trial 0 failed with parameters: {'n_filters': 8, 'filter_size': 4, 'pooling_size': 1, 'learning_rate': 1e-05} because of the following error: KeyboardInterrupt().\u001b[0m\n", + "Traceback (most recent call last):\n", + " File \"/Users/kevinmicha/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/optuna/study/_optimize.py\", line 200, in _run_trial\n", + " value_or_values = func(trial)\n", + " ^^^^^^^^^^^\n", + " File \"/var/folders/4j/fmrt0mln14zcmrb74g6z93bh0000gn/T/ipykernel_40484/3691434214.py\", line 38, in objective\n", + " train_loss, val_loss, _, _, _ = training_routine(model, criterion, optimiser, train_x_fold, val_x_fold, train_y_fold, val_y_fold, n_max_epochs=n_max_epochs, max_corr=max_corr, batch_size=batch_size, verbose=False)\n", + " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", + " File \"/Users/kevinmicha/Documents/PhD/ANTIPASTI/antipasti/utils/torch_utils.py\", line 227, in training_routine\n", + " train_losses, test_losses, inter_filter, y_test, output_test = training_step(model, criterion, optimiser, train_x, test_x, train_y, test_y, train_losses, test_losses, epoch, batch_size, verbose)\n", + " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", + " File \"/Users/kevinmicha/Documents/PhD/ANTIPASTI/antipasti/utils/torch_utils.py\", line 150, in training_step\n", + " loss_train.backward()\n", + " File \"/Users/kevinmicha/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/torch/_tensor.py\", line 487, in backward\n", + " torch.autograd.backward(\n", + " File \"/Users/kevinmicha/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/torch/autograd/__init__.py\", line 200, in backward\n", + " Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass\n", + "KeyboardInterrupt\n", + "\u001b[33m[W 2023-11-04 18:43:26,793]\u001b[0m Trial 0 failed with value None.\u001b[0m\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[195], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m study \u001b[38;5;241m=\u001b[39m optuna\u001b[38;5;241m.\u001b[39mcreate_study(direction\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mminimize\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 2\u001b[0m study\u001b[38;5;241m.\u001b[39moptimize(objective, n_trials\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m100\u001b[39m)\n\u001b[1;32m 3\u001b[0m trial \u001b[38;5;241m=\u001b[39m study\u001b[38;5;241m.\u001b[39mbest_trial\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBest Score: \u001b[39m\u001b[38;5;124m\"\u001b[39m, trial\u001b[38;5;241m.\u001b[39mvalue)\n", + "File \u001b[0;32m~/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/optuna/study/study.py:425\u001b[0m, in \u001b[0;36mStudy.optimize\u001b[0;34m(self, func, n_trials, timeout, n_jobs, catch, callbacks, gc_after_trial, show_progress_bar)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21moptimize\u001b[39m(\n\u001b[1;32m 322\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 323\u001b[0m func: ObjectiveFuncType,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 330\u001b[0m show_progress_bar: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 331\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 332\u001b[0m \u001b[38;5;124;03m\"\"\"Optimize an objective function.\u001b[39;00m\n\u001b[1;32m 333\u001b[0m \n\u001b[1;32m 334\u001b[0m \u001b[38;5;124;03m Optimization is done by choosing a suitable set of hyperparameter values from a given\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 422\u001b[0m \u001b[38;5;124;03m If nested invocation of this method occurs.\u001b[39;00m\n\u001b[1;32m 423\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 425\u001b[0m _optimize(\n\u001b[1;32m 426\u001b[0m study\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 427\u001b[0m func\u001b[38;5;241m=\u001b[39mfunc,\n\u001b[1;32m 428\u001b[0m n_trials\u001b[38;5;241m=\u001b[39mn_trials,\n\u001b[1;32m 429\u001b[0m timeout\u001b[38;5;241m=\u001b[39mtimeout,\n\u001b[1;32m 430\u001b[0m n_jobs\u001b[38;5;241m=\u001b[39mn_jobs,\n\u001b[1;32m 431\u001b[0m catch\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mtuple\u001b[39m(catch) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(catch, Iterable) \u001b[38;5;28;01melse\u001b[39;00m (catch,),\n\u001b[1;32m 432\u001b[0m callbacks\u001b[38;5;241m=\u001b[39mcallbacks,\n\u001b[1;32m 433\u001b[0m gc_after_trial\u001b[38;5;241m=\u001b[39mgc_after_trial,\n\u001b[1;32m 434\u001b[0m show_progress_bar\u001b[38;5;241m=\u001b[39mshow_progress_bar,\n\u001b[1;32m 435\u001b[0m )\n", + "File \u001b[0;32m~/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/optuna/study/_optimize.py:66\u001b[0m, in \u001b[0;36m_optimize\u001b[0;34m(study, func, n_trials, timeout, n_jobs, catch, callbacks, gc_after_trial, show_progress_bar)\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 65\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m n_jobs \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[0;32m---> 66\u001b[0m _optimize_sequential(\n\u001b[1;32m 67\u001b[0m study,\n\u001b[1;32m 68\u001b[0m func,\n\u001b[1;32m 69\u001b[0m n_trials,\n\u001b[1;32m 70\u001b[0m timeout,\n\u001b[1;32m 71\u001b[0m catch,\n\u001b[1;32m 72\u001b[0m callbacks,\n\u001b[1;32m 73\u001b[0m gc_after_trial,\n\u001b[1;32m 74\u001b[0m reseed_sampler_rng\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 75\u001b[0m time_start\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 76\u001b[0m progress_bar\u001b[38;5;241m=\u001b[39mprogress_bar,\n\u001b[1;32m 77\u001b[0m )\n\u001b[1;32m 78\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 79\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m n_jobs \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m:\n", + "File \u001b[0;32m~/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/optuna/study/_optimize.py:163\u001b[0m, in \u001b[0;36m_optimize_sequential\u001b[0;34m(study, func, n_trials, timeout, catch, callbacks, gc_after_trial, reseed_sampler_rng, time_start, progress_bar)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[1;32m 162\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 163\u001b[0m frozen_trial \u001b[38;5;241m=\u001b[39m _run_trial(study, func, catch)\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 165\u001b[0m \u001b[38;5;66;03m# The following line mitigates memory problems that can be occurred in some\u001b[39;00m\n\u001b[1;32m 166\u001b[0m \u001b[38;5;66;03m# environments (e.g., services that use computing containers such as GitHub Actions).\u001b[39;00m\n\u001b[1;32m 167\u001b[0m \u001b[38;5;66;03m# Please refer to the following PR for further details:\u001b[39;00m\n\u001b[1;32m 168\u001b[0m \u001b[38;5;66;03m# https://github.com/optuna/optuna/pull/325.\u001b[39;00m\n\u001b[1;32m 169\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m gc_after_trial:\n", + "File \u001b[0;32m~/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/optuna/study/_optimize.py:251\u001b[0m, in \u001b[0;36m_run_trial\u001b[0;34m(study, func, catch)\u001b[0m\n\u001b[1;32m 244\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28;01mFalse\u001b[39;00m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mShould not reach.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 246\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 247\u001b[0m frozen_trial\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;241m==\u001b[39m TrialState\u001b[38;5;241m.\u001b[39mFAIL\n\u001b[1;32m 248\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m func_err \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 249\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(func_err, catch)\n\u001b[1;32m 250\u001b[0m ):\n\u001b[0;32m--> 251\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m func_err\n\u001b[1;32m 252\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m frozen_trial\n", + "File \u001b[0;32m~/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/optuna/study/_optimize.py:200\u001b[0m, in \u001b[0;36m_run_trial\u001b[0;34m(study, func, catch)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m get_heartbeat_thread(trial\u001b[38;5;241m.\u001b[39m_trial_id, study\u001b[38;5;241m.\u001b[39m_storage):\n\u001b[1;32m 199\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 200\u001b[0m value_or_values \u001b[38;5;241m=\u001b[39m func(trial)\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m exceptions\u001b[38;5;241m.\u001b[39mTrialPruned \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 202\u001b[0m \u001b[38;5;66;03m# TODO(mamu): Handle multi-objective cases.\u001b[39;00m\n\u001b[1;32m 203\u001b[0m state \u001b[38;5;241m=\u001b[39m TrialState\u001b[38;5;241m.\u001b[39mPRUNED\n", + "Cell \u001b[0;32mIn[193], line 38\u001b[0m, in \u001b[0;36mobjective\u001b[0;34m(trial)\u001b[0m\n\u001b[1;32m 36\u001b[0m criterion \u001b[38;5;241m=\u001b[39m MSELoss() \n\u001b[1;32m 37\u001b[0m optimiser \u001b[38;5;241m=\u001b[39m AdaBelief(model\u001b[38;5;241m.\u001b[39mparameters(), lr\u001b[38;5;241m=\u001b[39mlearning_rate, weight_decay\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, eps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1e-8\u001b[39m, print_change_log\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m) \n\u001b[0;32m---> 38\u001b[0m train_loss, val_loss, _, _, _ \u001b[38;5;241m=\u001b[39m training_routine(model, criterion, optimiser, train_x_fold, val_x_fold, train_y_fold, val_y_fold, n_max_epochs\u001b[38;5;241m=\u001b[39mn_max_epochs, max_corr\u001b[38;5;241m=\u001b[39mmax_corr, batch_size\u001b[38;5;241m=\u001b[39mbatch_size, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 40\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFold number\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28mprint\u001b[39m(fold) \n", + "File \u001b[0;32m~/Documents/PhD/ANTIPASTI/antipasti/utils/torch_utils.py:227\u001b[0m, in \u001b[0;36mtraining_routine\u001b[0;34m(model, criterion, optimiser, train_x, test_x, train_y, test_y, n_max_epochs, max_corr, batch_size, verbose)\u001b[0m\n\u001b[1;32m 224\u001b[0m test_losses \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 226\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m epoch \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(n_max_epochs):\n\u001b[0;32m--> 227\u001b[0m train_losses, test_losses, inter_filter, y_test, output_test \u001b[38;5;241m=\u001b[39m training_step(model, criterion, optimiser, train_x, test_x, train_y, test_y, train_losses, test_losses, epoch, batch_size, verbose)\n\u001b[1;32m 229\u001b[0m \u001b[38;5;66;03m# Computing and printing the correlation coefficient\u001b[39;00m\n\u001b[1;32m 230\u001b[0m corr \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mcorrcoef(np\u001b[38;5;241m.\u001b[39marray(output_test)\u001b[38;5;241m.\u001b[39mT, y_test[:,\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mdetach()\u001b[38;5;241m.\u001b[39mnumpy()\u001b[38;5;241m.\u001b[39mT)[\u001b[38;5;241m1\u001b[39m,\u001b[38;5;241m0\u001b[39m]\n", + "File \u001b[0;32m~/Documents/PhD/ANTIPASTI/antipasti/utils/torch_utils.py:150\u001b[0m, in \u001b[0;36mtraining_step\u001b[0;34m(model, criterion, optimiser, train_x, test_x, train_y, test_y, train_losses, test_losses, epoch, batch_size, verbose)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m verbose:\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28mprint\u001b[39m(l1_loss)\n\u001b[0;32m--> 150\u001b[0m loss_train\u001b[38;5;241m.\u001b[39mbackward()\n\u001b[1;32m 151\u001b[0m optimiser\u001b[38;5;241m.\u001b[39mstep()\n\u001b[1;32m 152\u001b[0m \u001b[38;5;66;03m# Adding batch contribution to training loss\u001b[39;00m\n", + "File \u001b[0;32m~/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/torch/_tensor.py:487\u001b[0m, in \u001b[0;36mTensor.backward\u001b[0;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[1;32m 477\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 478\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[1;32m 479\u001b[0m Tensor\u001b[38;5;241m.\u001b[39mbackward,\n\u001b[1;32m 480\u001b[0m (\u001b[38;5;28mself\u001b[39m,),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 485\u001b[0m inputs\u001b[38;5;241m=\u001b[39minputs,\n\u001b[1;32m 486\u001b[0m )\n\u001b[0;32m--> 487\u001b[0m torch\u001b[38;5;241m.\u001b[39mautograd\u001b[38;5;241m.\u001b[39mbackward(\n\u001b[1;32m 488\u001b[0m \u001b[38;5;28mself\u001b[39m, gradient, retain_graph, create_graph, inputs\u001b[38;5;241m=\u001b[39minputs\n\u001b[1;32m 489\u001b[0m )\n", + "File \u001b[0;32m~/opt/anaconda3/envs/nma-cnn-env/lib/python3.11/site-packages/torch/autograd/__init__.py:200\u001b[0m, in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[1;32m 195\u001b[0m retain_graph \u001b[38;5;241m=\u001b[39m create_graph\n\u001b[1;32m 197\u001b[0m \u001b[38;5;66;03m# The reason we repeat same the comment below is that\u001b[39;00m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[0;32m--> 200\u001b[0m Variable\u001b[38;5;241m.\u001b[39m_execution_engine\u001b[38;5;241m.\u001b[39mrun_backward( \u001b[38;5;66;03m# Calls into the C++ engine to run the backward pass\u001b[39;00m\n\u001b[1;32m 201\u001b[0m tensors, grad_tensors_, retain_graph, create_graph, inputs,\n\u001b[1;32m 202\u001b[0m allow_unreachable\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, accumulate_grad\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "study = optuna.create_study(direction='minimize')\n", + "study.optimize(objective, n_trials=100)\n", + "trial = study.best_trial\n", + "print(\"Best Score: \", trial.value)\n", + "print(\"Best Params: \")\n", + "for key, value in trial.params.items():\n", + " print(\" {}: {}\".format(key, value))" + ] } ], "metadata": { diff --git a/scripts/evaluation.py b/scripts/evaluation.py index 1ff8af70..a98e4cf5 100644 --- a/scripts/evaluation.py +++ b/scripts/evaluation.py @@ -16,8 +16,6 @@ default=1, help='Size of the max pooling operation saved in the checkpoint.') parser.add_argument('--modes', dest='modes', type=int, default=30, help='Normal modes into consideration when training.') -parser.add_argument('--regions', dest='regions', type=str, - default='paired_hl', help='Choose between paired_hl (heavy chain, light chain and their interactions) and heavy (heavy chain only).') parser.add_argument('--n_max_epochs', dest='n_max_epochs', type=int, default=120, help='Number of times the whole dataset went through the model when training.') arguments = parser.parse_args() @@ -41,7 +39,7 @@ def main(args): input_shape = preprocessed_data.test_x.shape[-1] # Loading an ANTIPASTI checkpoint - path = CHECKPOINTS_DIR + 'model_' + regions + '_epochs_' + str(n_max_epochs) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt' + path = CHECKPOINTS_DIR + 'model_epochs_' + str(n_max_epochs) + '_modes_' + str(modes) + '_pool_' + str(pooling_size) + '_filters_' + str(n_filters) + '_size_' + str(filter_size) + '.pt' model = load_checkpoint(path, input_shape)[0] model.eval() diff --git a/scripts/pdb_to_dccm.r b/scripts/pdb_to_dccm.r index 5fa5d1ba..dd3e9050 100644 --- a/scripts/pdb_to_dccm.r +++ b/scripts/pdb_to_dccm.r @@ -17,7 +17,7 @@ if(str_equal(args[3], "all")){ } else{ nmodes <- as.integer(args[3]) } -print(nmodes) + pdb <- read.pdb(args[1]) modes <- suppressMessages(suppressWarnings(quiet(nma(pdb)))) cm <- suppressMessages(suppressWarnings(quiet(dccm(modes, nmodes=nmodes)))) diff --git a/setup.py b/setup.py index be1bfb2a..e2f50e9f 100644 --- a/setup.py +++ b/setup.py @@ -20,6 +20,6 @@ def run_tests(self): author_email='k.michalewicz22@imperial.ac.uk', description='Deep Learning model that predicts the binding affinity of antibodies from their sequence and three-dimensional structure.', packages=['antipasti', 'antipasti.model', 'antipasti.preprocessing', 'antipasti.utils'], - install_requires=['adabelief-pytorch', 'beautifulsoup4', 'matplotlib', 'numpy', 'opencv-python', 'pandas', 'requests', 'scikit-learn', 'scipy', 'torch', 'torchmetrics', 'umap-learn'], + install_requires=['adabelief-pytorch', 'beautifulsoup4', 'biopython', 'matplotlib', 'numpy', 'opencv-python', 'optuna', 'pandas', 'requests', 'scikit-learn', 'scipy', 'torch', 'torchmetrics', 'umap-learn'], cmdclass={'test': PyTest} )