This repository has been archived by the owner on Sep 24, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 124
/
data_loader.py
121 lines (99 loc) · 3.66 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
from utils import plot_images
import torch
from torchvision import datasets
from torchvision import transforms
from torch.utils.data.sampler import SubsetRandomSampler
def get_train_valid_loader(
data_dir,
batch_size,
random_seed,
valid_size=0.1,
shuffle=True,
show_sample=False,
num_workers=4,
pin_memory=False,
):
"""Train and validation data loaders.
If using CUDA, num_workers should be set to 1 and pin_memory to True.
Args:
data_dir: path directory to the dataset.
batch_size: how many samples per batch to load.
random_seed: fix seed for reproducibility.
valid_size: percentage split of the training set used for
the validation set. Should be a float in the range [0, 1].
In the paper, this number is set to 0.1.
shuffle: whether to shuffle the train/validation indices.
show_sample: plot 9x9 sample grid of the dataset.
num_workers: number of subprocesses to use when loading the dataset.
pin_memory: whether to copy tensors into CUDA pinned memory. Set it to
True if using GPU.
"""
error_msg = "[!] valid_size should be in the range [0, 1]."
assert (valid_size >= 0) and (valid_size <= 1), error_msg
# define transforms
normalize = transforms.Normalize((0.1307,), (0.3081,))
trans = transforms.Compose([transforms.ToTensor(), normalize])
# load dataset
dataset = datasets.MNIST(data_dir, train=True, download=True, transform=trans)
num_train = len(dataset)
indices = list(range(num_train))
split = int(np.floor(valid_size * num_train))
if shuffle:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
sampler=train_sampler,
num_workers=num_workers,
pin_memory=pin_memory,
)
valid_loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
sampler=valid_sampler,
num_workers=num_workers,
pin_memory=pin_memory,
)
# visualize some images
if show_sample:
sample_loader = torch.utils.data.DataLoader(
dataset,
batch_size=9,
shuffle=shuffle,
num_workers=num_workers,
pin_memory=pin_memory,
)
data_iter = iter(sample_loader)
images, labels = data_iter.next()
X = images.numpy()
X = np.transpose(X, [0, 2, 3, 1])
plot_images(X, labels)
return (train_loader, valid_loader)
def get_test_loader(data_dir, batch_size, num_workers=4, pin_memory=False):
"""Test datalaoder.
If using CUDA, num_workers should be set to 1 and pin_memory to True.
Args:
data_dir: path directory to the dataset.
batch_size: how many samples per batch to load.
num_workers: number of subprocesses to use when loading the dataset.
pin_memory: whether to copy tensors into CUDA pinned memory. Set it to
True if using GPU.
"""
# define transforms
normalize = transforms.Normalize((0.1307,), (0.3081,))
trans = transforms.Compose([transforms.ToTensor(), normalize])
# load dataset
dataset = datasets.MNIST(data_dir, train=False, download=True, transform=trans)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=pin_memory,
)
return data_loader