-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlogic_puzzles.py
358 lines (339 loc) · 14.5 KB
/
logic_puzzles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import itertools
import numpy as np
import pdb
import random
import together
from openai import OpenAI
from tqdm import tqdm
import requests
import os
# TODO: Set these to your API keys
# together_api_key = ...
# open_ai_api_key = ...
client = OpenAI(api_key=open_ai_api_key)
num_seats = 3
full_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
assert num_seats < len(full_alphabet)
model_name = "meta-llama/Llama-2-70b-chat-hf"
# model_name = "meta-llama/Llama-3-8b-chat-hf"
# model_name = "meta-llama/Llama-3-70b-chat-hf"
# model_name = "mistralai/Mixtral-8x22B-Instruct-v0.1"
# model_name = 'Qwen/Qwen1.5-72B-Chat'
# model_name = 'Qwen/Qwen1.5-110B-Chat'
# model_name = 'gpt-3.5-turbo'
# model_name = 'gpt-4'
class SeatingDFA:
def __init__(self):
self.people = full_alphabet[:num_seats]
self.initial_state = list(itertools.permutations(self.people))
#
def get_all_possible_statements(self):
statements = []
for arrangement in self.initial_state:
for i, person in enumerate(arrangement):
statements.append(f"{person} is in seat {i+1}")
for i in range(len(arrangement)):
for j in range(len(arrangement)):
distance = abs(j - i)
if distance != 0:
statements.append(f"{arrangement[i]} is {distance} away from {arrangement[j]}")
statements = list(set(statements))
return statements
#
def get_all_possible_length_k_statements(self, k):
all_statements = self.get_all_possible_statements()
all_suffixes = list(itertools.product(all_statements, repeat=k))
return all_suffixes
#
def simulate_moves(self, state, moves):
for move in moves:
state = self.apply_move(state, move)
if not state:
return None
return state
#
def apply_move(self, state, move):
new_state = []
for arrangement in state:
if self.is_valid_move(arrangement, move):
new_state.append(arrangement)
# Treat as set
new_state = set(new_state)
return new_state
#
def is_valid_move(self, arrangement, move):
if ' is in seat ' in move:
person, seat = move.split(' is in seat ')
seat = int(seat) - 1
return arrangement[seat] == person
elif ' is ' in move and ' away from ' in move:
person1, rest = move.split(' is ')
distance, person2 = rest.split(' away from ')
distance = int(distance)
idx1 = arrangement.index(person1)
idx2 = arrangement.index(person2)
return abs(idx1 - idx2) == distance
return False
#
def is_valid_sequence(self, state, sequence):
for statement in sequence:
if not any(self.is_valid_move(arrangement, statement) for arrangement in state):
return False
state = self.apply_move(state, statement)
return True
#
def get_valid_statements(self, state):
valid_statements = []
for arrangement in state:
for i, person in enumerate(arrangement):
valid_statements.append(f"{person} is in seat {i+1}")
for i in range(len(arrangement)):
for j in range(len(arrangement)):
distance = abs(j - i)
if distance != 0:
valid_statements.append(f"{arrangement[i]} is {distance} away from {arrangement[j]}")
# Get unique valid statements
valid_statements = list(set(valid_statements))
return valid_statements
#
def is_valid_sequence(self, state, sequence):
for statement in sequence:
if not any(self.is_valid_move(arrangement, statement) for arrangement in state):
return False
state = self.apply_move(state, statement)
return True
#
def get_all_valid_length_k_suffixes(self, state, k):
valid_statements = self.get_valid_statements(state)
all_suffixes = list(itertools.product(valid_statements, repeat=k))
valid_suffixes = [suffix for suffix in all_suffixes if self.is_valid_sequence(state, suffix)]
return valid_suffixes
#
def does_statement_reduce_state_space(self, state, statement):
new_state = self.apply_move(state, statement)
return len(new_state) < len(state)
#
def simulate_random_moves_from_start(self, k):
state = self.initial_state
moves = []
for _ in range(k):
valid_statements = self.get_valid_statements(state)
if not valid_statements:
break
move = random.choice(valid_statements)
moves.append(move)
state = self.apply_move(state, move)
return moves, state
#
#
def simulate_random_moves_until_one_state(self):
state = self.initial_state
moves = []
while True:
valid_statements = self.get_valid_statements(state)
if not valid_statements:
break
move = random.choice(valid_statements)
moves.append(move)
state = self.apply_move(state, move)
if len(state) == 1:
break
assert len(list(state)) == 1
return moves, state
#
def sample_prefix_leading_to_state(self, current_state):
valid_statements = self.get_valid_statements(current_state)
non_reducing_statements = [statement for statement in valid_statements if not self.does_statement_reduce_state_space(current_state, statement)]
sampled_statements = []
sampled_statement = np.random.choice(non_reducing_statements)
sampled_statements.append(sampled_statement)
while self.simulate_moves(self.initial_state, sampled_statements) != current_state:
sampled_statement = np.random.choice(non_reducing_statements)
sampled_statements.append(sampled_statement)
return sampled_statements
#
def sample_two_prefixes_leading_to_same_state(self, prefix_len):
moves, current_state = self.simulate_random_moves_from_start(prefix_len)
prefix1 = self.sample_prefix_leading_to_state(current_state)
prefix2 = self.sample_prefix_leading_to_state(current_state)
while prefix1 == prefix2:
moves, current_state = self.simulate_random_moves_from_start(prefix_len)
prefix1 = self.sample_prefix_leading_to_state(current_state)
prefix2 = self.sample_prefix_leading_to_state(current_state)
return prefix1, prefix2, current_state
#
def sample_two_prefixes_leading_to_different_states(self, prefix_len):
moves, current_state1 = self.simulate_random_moves_from_start(prefix_len)
prefix1 = self.sample_prefix_leading_to_state(current_state1)
moves, current_state2 = self.simulate_random_moves_from_start(prefix_len)
prefix2 = self.sample_prefix_leading_to_state(current_state2)
while current_state1 == current_state2:
moves, current_state1 = self.simulate_random_moves_from_start(prefix_len)
prefix1 = self.sample_prefix_leading_to_state(current_state1)
moves, current_state2 = self.simulate_random_moves_from_start(prefix_len)
prefix2 = self.sample_prefix_leading_to_state(current_state2)
return prefix1, prefix2, current_state1, current_state2
def get_normal_evaluation_prompt(moves, query):
prompt = f"There are {num_seats} individuals named {', '.join(full_alphabet[:num_seats-1])}, and {full_alphabet[num_seats-1]}, and there are {num_seats} seats, positioned {1}-{num_seats}. We have the following statements:\n"
for i, move in enumerate(moves):
prompt += f"{i+1}. {move}\n"
prompt += f"Based on this information, where is {query} seated? You can use chain-of-thought reasoning, but make sure your response ends with 'ANSWER: ' followed by a single number between 1 and {num_seats}."
return prompt
def get_single_query_prompt(moves, suffix):
prompt = f"There are {num_seats} individuals named {', '.join(full_alphabet[:num_seats-1])}, and {full_alphabet[num_seats-1]}, and there are {num_seats} seats, positioned {1}-{num_seats}. We have the following statements:\n"
for i, move in enumerate(moves):
prompt += f"{i+1}. {move}\n"
prompt += f"\nBased on this information, consider the proposed continuation:\n"
for i, move in enumerate(suffix):
prompt += f"{i+1}. {move}\n"
prompt += "\nIs this a valid continuation? You can use chain-of-thought reasoning, but make sure your response ends with 'ANSWER: ' followed by one of the following statements without quotes: 'yes', 'no'."
return prompt
def get_myhill_nerode_list(state1, state2, k):
dfa = SeatingDFA()
valid_suffixes1 = dfa.get_all_valid_length_k_suffixes(state1, k=k)
valid_suffixes2 = dfa.get_all_valid_length_k_suffixes(state2, k=k)
true_set_difference = set(valid_suffixes1).difference(set(valid_suffixes2))
true_set_difference = list(true_set_difference)
myhill_nerode_set = set()
for example in true_set_difference:
for i in range(1, len(example) + 1):
if not dfa.is_valid_sequence(state2, example[:i]):
myhill_nerode_set.add(example[:i])
break
myhill_nerode_list = list(myhill_nerode_set)
return myhill_nerode_list
def query_model(model_name, prompt, max_tokens=20):
while True:
try:
if 'gpt' in model_name:
output = client.chat.completions.create(
model=model_name,
temperature=0.0,
max_tokens=max_tokens,
messages=[
{"role": "user", "content": prompt}
]
)
full_output = output.choices[0].message.content.strip()
else:
endpoint = 'https://api.together.xyz/v1/chat/completions'
res = requests.post(endpoint, json={
"model":model_name,
"max_tokens":max_tokens,
"temperature": 0.0,
"top_p": 0.7,
"top_k": 50,
"repetition_penalty": 1,
"stop": [
"<|eot_id|>"
],
"messages": [
{
"content": prompt,
"role": "user"
}
]
}, headers={
"Authorization": f"Bearer {together_api_key}",
})
full_output = res.json()['choices'][0]['message']['content'].strip()
break
except:
pass
return full_output
### REGULAR EVALUATION
dfa = SeatingDFA()
total_nodes = 0
valid_nodes = 0
bar = tqdm(range(60))
for _ in bar:
moves, state = dfa.simulate_random_moves_until_one_state()
state = list(state)[0]
query = np.random.choice(state)
prompt = get_normal_evaluation_prompt(moves, query)
correct_answer = int([i+1 for i, person in enumerate(state) if person == query][0])
full_output = query_model(model_name, prompt, max_tokens=500)
try:
clean_output = int(full_output.split("ANSWER: ")[-1].strip())
total_nodes += 1
if clean_output == correct_answer:
valid_nodes += 1
std = ((valid_nodes/total_nodes) * (1 - valid_nodes/total_nodes)) / np.sqrt(total_nodes)
bar.set_description(f"Accuracy: {valid_nodes/total_nodes:.3f} ({std:.3f})")
except:
pass
## COMPRESSION TEST
# Give transformer prefix1, prefix2, see what the difference is
dfa = SeatingDFA()
num_trials = 100
k = 1
num_samples = 5
accepted_responses = ['yes', 'no']
all_length_k_statements = dfa.get_all_possible_length_k_statements(k)
denominator = 0
numerator = 0
bar1 = tqdm(range(num_trials))
for _ in bar1:
prefix_len = np.random.choice(np.arange(1, 3))
prefix1, prefix2, state = dfa.sample_two_prefixes_leading_to_same_state(prefix_len=prefix_len)
all_valid_length_k_statements = dfa.get_all_valid_length_k_suffixes(state, k)
any_invalid = False
any_real_response = False
for _ in range(num_samples):
# randomly sample a suffix from either the valid set or the invalid set
if np.random.rand() < 0.5:
suffix = all_length_k_statements[np.random.choice(len(all_length_k_statements))]
else:
suffix = all_valid_length_k_statements[np.random.choice(len(all_valid_length_k_statements))]
prompt1 = get_single_query_prompt(prefix1, suffix)
prompt2 = get_single_query_prompt(prefix2, suffix)
full_output1 = query_model(model_name, prompt1, max_tokens=1000)
clean_output1 = full_output1.split("ANSWER: ")[-1].strip().replace("\n", "").replace(".", "")
full_output2 = query_model(model_name, prompt2, max_tokens=1000)
clean_output2 = full_output2.split("ANSWER: ")[-1].strip().replace("\n", "").replace(".", "")
if clean_output1 in accepted_responses and clean_output2 in accepted_responses:
any_real_response = True
if clean_output1 != clean_output2:
any_invalid = True
break
if any_real_response:
denominator += 1
if not any_invalid:
numerator += 1
if denominator > 0:
p = numerator / denominator
std = np.sqrt(p * (1-p)) / np.sqrt(denominator)
bar1.set_description(f"Success rate: {numerator/denominator:.3f} ({std:.3f})")
## Distinction test
dfa = SeatingDFA()
k = 1
accepted_responses = ['yes', 'no']
num_trials = 100
num_samples = 5
recalls = []
bar1 = tqdm(range(num_trials))
for _ in bar1:
prefix_len = np.random.choice(np.arange(1, 3))
prefix1, prefix2, state1, state2 = dfa.sample_two_prefixes_leading_to_different_states(prefix_len=prefix_len)
myhill_nerode_list = get_myhill_nerode_list(state1, state2, k=k)
if len(myhill_nerode_list) > 0:
suffixes_to_sample = np.random.choice(len(myhill_nerode_list), size=min(num_samples, len(myhill_nerode_list)), replace=False)
bar2 = tqdm(range(len(suffixes_to_sample)))
num_examples_for_state = 0
num_correct_for_state = 0
for i in bar2:
nerode_suffix = myhill_nerode_list[suffixes_to_sample[i]]
prompt1 = get_single_query_prompt(prefix1, nerode_suffix)
prompt2 = get_single_query_prompt(prefix2, nerode_suffix)
full_output1 = query_model(model_name, prompt1, max_tokens=1000)
clean_output1 = full_output1.split("ANSWER: ")[-1].strip().replace("\n", "").replace(".", "")
full_output2 = query_model(model_name, prompt2, max_tokens=1000)
clean_output2 = full_output2.split("ANSWER: ")[-1].strip().replace("\n", "").replace(".", "")
if clean_output1 in accepted_responses and clean_output2 in accepted_responses:
num_examples_for_state += 1
if clean_output1 == 'yes' and clean_output2 == 'no':
num_correct_for_state += 1
if num_examples_for_state > 0:
recall = num_correct_for_state / num_examples_for_state
bar1.set_description(f"Average recall: {np.mean(recalls):.3f} ({np.std(recalls) / np.sqrt(len(recalls)):.3f})")
recalls.append(recall)