-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
60 lines (51 loc) · 2.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import argparse
import torch
import torch.nn as nn
from model import MIL_EFF
from engine import engine
parser = argparse.ArgumentParser(
description='MIL_EFF Training Script')
parser.add_argument('--cuda', default=True, type=bool,
help='Use CUDA to train model')
parser.add_argument('--epoch', default=None, type=int,
help='Epoch for training')
parser.add_argument('--batch_size', default=2, type=int,
help='Batch size for training')
parser.add_argument('--bag_size', default=49, type=int,
help='Bag size for training')
parser.add_argument('--num_data', default=None, type=int,
help='Total number of image data for training')
parser.add_argument('--resume', default=None, type=str,
help='Checkpoint state_dict file to resume training from. If this is "interrupt"'\
', the model will resume training from the interrupt file.')
parser.add_argument('--train_path', default=None, type=str,
help='Path of train dataset')
parser.add_argument('--test_path', default=None, type=str,
help='Path of test dataset')
args = parser.parse_args()
def main():
device = 'cuda' if torch.cuda.is_available() and args.cuda else 'cpu'
model = MIL_EFF()
model.to(device)
criterion = nn.CrossEntropyLoss(label_smoothing=0.11)
optimizer = torch.optim.AdamW(model.parameters(), lr=6e-5, weight_decay=1e-5)
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=0.33, total_iters=10)
main_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=args.epoch-10, T_mult=2)
lr_scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[10])
scaler = torch.cuda.amp.GradScaler()
start_iter = 0
'''Load pretrained model if args.resume exists'''
if args.resume:
checkpoint = torch.load(args.resume, map_location=device)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
optimizer.param_groups[0]['capturable'] = True
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
start_iter = checkpoint['epoch']
scaler.load_state_dict(checkpoint['scaler'])
del checkpoint
torch.cuda.empty_cache()
engine(model, device, criterion, optimizer, lr_scheduler, scaler, args.num_data, args.epoch - start_iter,
args.batch_size, args.bag_size, args.train_path, args.test_path)
if __name__ == '__main__':
main()