-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathViT_CV_main.py
228 lines (173 loc) · 7.32 KB
/
ViT_CV_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import gc
import torch
import pandas as pd
import torch.optim as optim
from configs.base_config import config
from utils.data_related import data_split, get_dataloader, get_subset
from dataset.dataset import CustomDataset
from models.ViT import ViTModel
from transforms.ViT_transform import ViTAutoImageTransform
from losses.Focal_loss import FocalLoss
from trainers.ViT_trainer import ViTTrainer
from utils.inference import inference_vit, load_model, ensemble_predict
from utils.TimeDecorator import TimeDecorator
from sklearn.model_selection import StratifiedKFold
@TimeDecorator
def main():
train_info = pd.read_csv(config.train_data_info_file_path)
train_df, val_df = data_split(train_info, config.test_size, train_info['target'])
train_transform = ViTAutoImageTransform()
val_transform = ViTAutoImageTransform()
train_dataset = CustomDataset(config.train_data_dir_path,
train_df,
train_transform)
val_dataset = CustomDataset(config.train_data_dir_path,
val_df,
val_transform)
train_loader = get_dataloader(train_dataset,
batch_size=config.batch_size,
num_workers = config.num_workers,
shuffle=config.train_shuffle,
)
val_loader = get_dataloader(val_dataset,
batch_size=config.batch_size,
num_workers = config.num_workers,
shuffle=config.val_shuffle,
)
model = ViTModel('google/vit-base-patch16-224', config.num_classes)
model.to(config.device)
optimizer = optim.Adam(
model.parameters(),
lr=config.lr
)
scheduler_step_size = len(train_loader) * config.epochs_per_lr_decay
scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=scheduler_step_size,
gamma=config.scheduler_gamma
)
loss_fn = FocalLoss()
trainer = ViTTrainer(
model=model,
device=config.device,
train_loader=train_loader,
val_loader=val_loader,
optimizer=optimizer,
scheduler=scheduler,
loss_fn=loss_fn,
epochs=config.epochs,
result_path=config.save_result_path
)
trainer.train()
def cv_main():
data_info = pd.read_csv(config.train_data_info_file_path)
total_transform = ViTAutoImageTransform()
total_dataset = CustomDataset(config.train_data_dir_path,
data_info,
total_transform,
is_inference = False)
skf = StratifiedKFold(n_splits=config.n_splits, shuffle=config.cv_shuffle)
for fold, (train_idx, val_idx) in enumerate(skf.split(total_dataset, total_dataset.targets)):
print(f"Fold {fold+1}/{config.n_splits}")
train_dataset = get_subset(total_dataset, train_idx)
val_dataset = get_subset(total_dataset, val_idx)
train_loader = get_dataloader(train_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.train_shuffle,
)
val_loader = get_dataloader(val_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.val_shuffle,
)
model = ViTModel('google/vit-base-patch16-224', config.num_classes)
model.to(config.device)
optimizer = optim.Adam(
model.parameters(),
lr=config.lr
)
scheduler_step_size = len(train_loader) * config.epochs_per_lr_decay
scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=scheduler_step_size,
gamma=config.scheduler_gamma
)
loss_fn = FocalLoss()
trainer = ViTTrainer(
model=model,
device=config.device,
train_loader=train_loader,
val_loader=val_loader,
optimizer=optimizer,
scheduler=scheduler,
loss_fn=loss_fn,
epochs=config.epochs,
result_path=config.save_result_path,
)
trainer.train(fold=fold + 1)
print(f"Finished Fold {fold + 1}")
# fold 끝난 후 메모리 정리
del model, optimizer, scheduler, trainer
torch.cuda.empty_cache()
gc.collect()
def cv_test():
test_info = pd.read_csv(config.test_data_info_file_path)
test_transform = ViTAutoImageTransform()
test_dataset = CustomDataset(config.test_data_dir_path,
test_info,
test_transform,
is_inference=True)
test_loader = get_dataloader(test_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.test_shuffle,
drop_last=False,
)
models = []
for model_path in os.listdir(config.save_result_path):
print("model path : ", model_path)
model = ViTModel('google/vit-base-patch16-224', config.num_classes)
model.load_state_dict(
load_model(config.save_result_path, model_path)
)
models.append(model)
predictions = ensemble_predict(models,
test_loader,
config.device,
config.num_classes,
inference_vit,
)
test_info['target'] = predictions
test_info = test_info.reset_index().rename(columns={"index": "ID"})
test_info.to_csv(config.output_name, index=False)
def test():
test_info = pd.read_csv(config.test_data_info_file_path)
test_transform = ViTAutoImageTransform()
test_dataset = CustomDataset(config.test_data_dir_path,
test_info,
test_transform,
is_inference=True)
test_loader = get_dataloader(test_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.test_shuffle,
drop_last=False,
)
model = ViTModel('google/vit-base-patch16-224', config.num_classes)
model.load_state_dict(
load_model(config.save_result_path, "best_model.pt")
)
predictions = inference_vit(model,
config.device,
test_loader
)
test_info['target'] = predictions
test_info = test_info.reset_index().rename(columns={"index": "ID"})
test_info.to_csv(config.output_name, index=False)
if __name__ == "__main__":
# main()
# cv_main()
# test()
cv_test()