-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeit_main.py
138 lines (105 loc) · 4.64 KB
/
deit_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import gc
import torch
import pandas as pd
import torch.optim as optim
from configs.deit_config import config
from utils.data_related import get_dataloader, get_subset
from transforms.deit_transform import DeiTProcessor
from dataset.dataset import CustomDataset
from models.deit_model import DeitCustomModel
from losses.cross_entropy_loss import CrossEntropyLoss
from trainers.deit_trainer import DeiTTranier
from utils.inference import inference_deit, load_model, ensemble_predict
from utils.TimeDecorator import TimeDecorator
from sklearn.model_selection import StratifiedKFold
@TimeDecorator()
def cv_main():
data_info = pd.read_csv(config.train_data_info_file_path)
train_transform = DeiTProcessor(config.transform_name)
val_transform = DeiTProcessor(config.transform_name)
train_dataset = CustomDataset(config.train_data_dir_path,
data_info,
train_transform,
is_inference = False)
val_dataset = CustomDataset(config.train_data_dir_path,
data_info,
val_transform,
is_inference=False)
skf = StratifiedKFold(n_splits=config.n_splits, shuffle=config.cv_shuffle)
for fold, (train_idx, val_idx) in enumerate(skf.split(train_dataset, train_dataset.targets)):
print(f"Fold {fold+1}/{config.n_splits}")
train_subset_dataset = get_subset(train_dataset, train_idx)
val_subset_dataset = get_subset(val_dataset, val_idx)
train_loader = get_dataloader(train_subset_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.train_shuffle)
val_loader = get_dataloader(val_subset_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.val_shuffle)
model = DeitCustomModel(config.model_name,
num_labels=config.num_classes)
model.to(config.device)
optimizer = optim.Adam(
model.parameters(),
lr=config.lr
)
scheduler_step_size = len(train_loader) * config.epochs_per_lr_decay
scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=scheduler_step_size,
gamma=config.scheduler_gamma
)
loss_fn = CrossEntropyLoss()
trainer = DeiTTranier(
model=model,
device=config.device,
train_loader=train_loader,
val_loader=val_loader,
optimizer=optimizer,
scheduler=scheduler,
loss_fn=loss_fn,
epochs=config.epochs,
result_path=config.save_result_path
)
trainer.train(fold=fold + 1)
print(f"Finished Fold {fold + 1}")
# fold 끝난 후 메모리 정리
del model, optimizer, scheduler, trainer
torch.cuda.empty_cache()
gc.collect()
@TimeDecorator()
def cv_test():
test_info = pd.read_csv(config.test_data_info_file_path)
test_transform = DeiTProcessor(config.transform_name)
test_dataset = CustomDataset(config.test_data_dir_path,
test_info,
test_transform,
is_inference=True)
test_loader = get_dataloader(test_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.test_shuffle,
drop_last=False)
models = []
for model_path in os.listdir(config.save_result_path):
model = DeitCustomModel(config.model_name,
num_labels=config.num_classes)
model.load_state_dict(
load_model(config.save_result_path, model_path)
)
models.append(model)
predictions = ensemble_predict(models,
test_loader,
config.device,
config.num_classes,
inference_deit)
test_info['target'] = predictions
test_info = test_info.reset_index().rename(columns={"index": "ID"})
test_info.to_csv(config.output_name, index=False)
if __name__ == "__main__":
cv_main()
cv_test()