-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_main.py
138 lines (107 loc) · 4.72 KB
/
resnet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import gc
import torch
import pandas as pd
import torch.optim as optim
from configs.resnet_config import config
from utils.data_related import get_subset, get_dataloader
from transforms.albumentations_transform import AlbumentationsTransform
from dataset.dataset import CustomDataset
from models.base_timm_model import TimmModel
from losses.cross_entropy_loss import CrossEntropyLoss
from trainers.resnet_trainer import ResTrainer
from utils.inference import inference, load_model, extrat_probs, save_probs
from utils.TimeDecorator import TimeDecorator
from sklearn.model_selection import StratifiedKFold
@TimeDecorator()
def cv_main():
data_info = pd.read_csv(config.train_data_info_file_path)
train_transform = AlbumentationsTransform(is_train=True)
val_transform = AlbumentationsTransform(is_train=False)
train_dataset = CustomDataset(config.train_data_dir_path,
data_info,
train_transform,
is_inference = False)
val_dataset = CustomDataset(config.train_data_dir_path,
data_info,
val_transform,
is_inference=False)
skf = StratifiedKFold(n_splits=config.n_splits, shuffle=config.cv_shuffle)
for fold, (train_idx, val_idx) in enumerate(skf.split(train_dataset, train_dataset.targets)):
print(f"Fold {fold+1}/{config.n_splits}")
train_subset_dataset = get_subset(train_dataset, train_idx)
val_subset_dataset = get_subset(val_dataset, val_idx)
train_loader = get_dataloader(train_subset_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.train_shuffle)
val_loader = get_dataloader(val_subset_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.val_shuffle)
model = TimmModel(config.model_name,
num_classes=config.num_classes,
pretrained=True)
model.to(config.device)
optimizer = optim.Adam(
model.parameters(),
lr=config.lr
)
scheduler_step_size = len(train_loader) * config.epochs_per_lr_decay
scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=scheduler_step_size,
gamma=config.scheduler_gamma
)
loss_fn = CrossEntropyLoss()
trainer = ResTrainer(
model=model,
device=config.device,
train_loader=train_loader,
val_loader=val_loader,
optimizer=optimizer,
scheduler=scheduler,
loss_fn=loss_fn,
epochs=config.epochs,
result_path=config.save_result_path
)
trainer.train(fold=fold + 1)
print(f"Finished Fold {fold + 1}")
# fold 끝난 후 메모리 정리
del model, optimizer, scheduler, trainer
torch.cuda.empty_cache()
gc.collect()
@TimeDecorator()
def cv_test():
test_info = pd.read_csv(config.test_data_info_file_path)
test_transform = AlbumentationsTransform(is_train=False)
test_dataset = CustomDataset(config.test_data_dir_path,
test_info,
test_transform,
is_inference=True)
test_loader = get_dataloader(test_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.test_shuffle,
drop_last=False)
models = []
for model_path in os.listdir(config.save_result_path):
model = TimmModel(config.model_name,
num_classes=config.num_classes,
pretrained=False)
model.load_state_dict(
load_model(config.save_result_path, model_path)
)
models.append(model)
predictions = extrat_probs(models,
test_loader,
config.device,
config.num_classes,
inference)
test_info = save_probs(test_info, predictions)
# test_info = test_info.reset_index().rename(columns={"index": "ID"})
test_info.to_csv(config.output_name, index=False)
if __name__ == "__main__":
cv_main()
cv_test()