-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyj_convnext_main.py
184 lines (145 loc) · 6.49 KB
/
yj_convnext_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import pandas as pd
import torch.optim as optim
import torch
import gc
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from configs.yj_cv_config import config
from utils.data_related import data_split, get_dataloader
from transforms.yj_cv_transform import AlbumentationsTransform
from transforms.sketch_transform_develop import SketchTransform
from dataset.dataset import CustomDataset
from models.yj_convnext_model import Convnext_Model
from losses.cross_entropy_loss import CrossEntropyLoss
from trainers.yj_cv_trainer import Trainer
from utils.inference import inference, load_model, inference_convnext, ensemble_predict
from losses.LabelSmoothingCrossEntropy import LabelSmoothingCrossEntropy
from utils.TimeDecorator import TimeDecorator
from sklearn.model_selection import StratifiedKFold
from utils.data_related import data_split, get_dataloader, get_subset
# @TimeDecorator()
# def main():
# train_info = pd.read_csv(config.train_data_info_file_path)
# train_transform = AlbumentationsTransform(is_train=True)
# train_dataset = CustomDataset(config.train_data_dir_path,
# train_info,
# train_transform)
# model = Convnext_Model(model_name = "convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320", num_classes = 500, pretrained = True)
# model.to(config.device)
# optimizer = optim.Adam(
# model.parameters(),
# lr=config.lr
# )
# loss_fn = CrossEntropyLoss()
# trainer = Trainer(
# model=model,
# device=config.device,
# train_dataset=train_dataset, # 전체 학습 데이터셋
# val_dataset=train_dataset, # 검증용으로도 동일한 전체 학습 데이터셋 사용
# optimizer=optimizer,
# scheduler=1,
# loss_fn=loss_fn,
# epochs=7,
# result_path=config.save_result_path,
# n_splits=5, # K-Fold의 K 값, 예를 들어 5로 설정
# num_workers=config.num_workers
# )
# trainer.train_with_cv()
@TimeDecorator()
def cv_main():
train_info = pd.read_csv(config.train_data_info_file_path)
train_transform = AlbumentationsTransform(is_train=True)
train_dataset = CustomDataset(config.train_data_dir_path,
train_info,
train_transform,
is_inference = False)
skf = StratifiedKFold(n_splits=config.n_splits, shuffle=True, random_state=42)
for fold, (train_idx, val_idx) in enumerate(skf.split(train_dataset, train_dataset.targets)):
print(f"Fold {fold+1}/{config.n_splits}")
print(len(train_idx))
print(len(val_idx))
train_subset = get_subset(train_dataset, train_idx)
val_subset = get_subset(train_dataset, val_idx)
train_loader = get_dataloader(train_subset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.train_shuffle
)
val_loader = get_dataloader(val_subset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=config.val_shuffle
)
model = Convnext_Model(model_name = 'convnext_xxlarge.clip_laion2b_soup_ft_in1k', num_classes = 500, pretrained = True)
model.to(config.device)
optimizer = optim.Adam(
model.parameters(),
lr=config.lr,
weight_decay=1e-4
)
# scheduler_step_size = len(train_loader) * config.epochs_per_lr_decay
# scheduler = optim.lr_scheduler.StepLR(
# optimizer,
# step_size=scheduler_step_size,
# gamma=config.scheduler_gamma
# )
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min', # validation loss가 최소가 될 때 작동, default='min'
factor=0.1, # 학습률을 절반으로 감소
patience=2, # 1 epoch 동안 개선이 없으면 학습률 감소
verbose=True # 학습률 변경 시 로그 출력
)
loss_fn = CrossEntropyLoss()
trainer = Trainer(
model=model,
device=config.device,
train_loader=train_loader,
val_loader=val_loader,
optimizer=optimizer,
scheduler=scheduler,
loss_fn=loss_fn,
epochs=config.epochs,
result_path=config.save_result_path,
num_workers=config.num_workers
)
trainer.train(fold=fold + 1)
print(f"Finished Fold {fold + 1}")
# fold 끝난 후 메모리 정리
del model, optimizer, scheduler, trainer
torch.cuda.empty_cache()
gc.collect()
@TimeDecorator()
def cv_test():
test_info = pd.read_csv(config.test_data_info_file_path)
test_transform = AlbumentationsTransform(is_train=False)
test_dataset = CustomDataset(config.test_data_dir_path,
test_info,
test_transform,
is_inference=True)
test_loader = get_dataloader(test_dataset,
batch_size=config.batch_size,
shuffle=config.test_shuffle,
drop_last=False,
num_workers=config.num_workers
)
models = []
for model_path in os.listdir(config.save_result_path):
model = Convnext_Model(model_name = 'convnext_xxlarge.clip_laion2b_soup_ft_in1k', num_classes = 500, pretrained = True)
model.load_state_dict(
load_model(config.save_result_path, model_path)
)
models.append(model)
predictions = ensemble_predict(models,
test_loader,
config.device,
config.num_classes,
inference_convnext
)
test_info['target'] = predictions
test_info = test_info.reset_index().rename(columns={"index": "ID"})
test_info.to_csv("output.csv", index=False)
if __name__ == "__main__":
#main()
cv_main()
cv_test()