-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathlane_utils.py
480 lines (373 loc) · 18.6 KB
/
lane_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import cv2
import numpy as np
from scipy import stats
def cal_undistort(img, objpoints, imgpoints):
# Image Calibration
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
dst = cv2.undistort(img, mtx, dist, None, mtx)
return dst, dist, mtx
def get_img_obj_points(img, nx, ny):
imgpoints = []
objpoints = []
objp = np.zeros((nx * ny, 3), np.float32)
objp[:, :2] = np.mgrid[0:nx, 0:ny].T.reshape(-1, 2)
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None)
# if corners are found
if ret == True:
imgpoints.append(corners)
# Draw and display the corners
objpoints.append(objp)
return imgpoints, objpoints
def abs_sobel_thresh(img, orient='x', thresh_min=0, thresh_max=255):
# Apply the following steps to img
# 1) Convert to grayscale
# 2) Take the derivative in x or y given orient = 'x' or 'y'
# 3) Take the absolute value of the derivative or gradient
# 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
# 5) Create a mask of 1's where the scaled gradient magnitude
# is > thresh_min and < thresh_max
# 6) Return this mask as your binary_output image
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0)
abs_sobelx = np.absolute(sobelx)
scaled_sobel = np.uint8(255 * abs_sobelx / np.max(abs_sobelx))
binary_output = np.zeros_like(scaled_sobel)
binary_output[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1
return binary_output
def mag_thresh(img, sobel_kernel=9, mag_thresh=(30, 100)):
# Apply the following steps to img
# 1) Convert to grayscale
# 2) Take the gradient in x and y separately
# 3) Calculate the magnitude
# 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8
# 5) Create a binary mask where mag thresholds are met
# 6) Return this mask as your binary_output image
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
magnitude = np.sqrt(np.square(sobelx) + np.square(sobely))
scaled_sobel = np.uint8(255 * magnitude / np.max(magnitude))
binary_output = np.zeros_like(scaled_sobel)
binary_output[(scaled_sobel >= mag_thresh[0]) & (scaled_sobel <= mag_thresh[1])] = 1
return binary_output
def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi / 2)):
# Apply the following steps to img
# 1) Convert to grayscale
# 2) Take the gradient in x and y separately
# 3) Take the absolute value of the x and y gradients
# 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient
# 5) Create a binary mask where direction thresholds are met
# 6) Return this mask as your binary_output image
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
abs_sobelx = np.abs(sobelx)
abs_sobely = np.abs(sobely)
gradient_direction = np.arctan2(abs_sobely, abs_sobelx)
binary_output = np.zeros_like(gradient_direction)
binary_output[(gradient_direction >= thresh[0]) & (gradient_direction <= thresh[1])] = 1
return binary_output
def sobel_filter(image, ksize=3):
hls = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
s_channel = hls[:, :, 0]
gradx = abs_sobel_thresh(s_channel, 'x', 10, 200)
grady = abs_sobel_thresh(s_channel, 'y', 10, 200)
combined = np.zeros_like(grady)
combined_condition = ((gradx == 1) & (grady == 1))
return combined_condition
def hls_filter(image):
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
s_channel = hls[:, :, 2]
l_channel = hls[:, :, 1]
# Threshold color channel
s_thresh_min = 120
s_thresh_max = 255
s_binary = np.zeros_like(s_channel)
s_binary_condition = (s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)
return s_binary_condition
def hsv_filter(image):
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
s_channel = hls[:, :, 2]
# Threshold color channel
s_thresh_min = 160
s_thresh_max = 255
s_binary_condition = (s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)
return s_binary_condition
def yuv_filter(image):
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
s_channel = hls[:, :, 0]
# Threshold color channel
s_thresh_min = 170
s_thresh_max = 255
s_binary_condition = (s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)
return s_binary_condition
def rgb_filter(image):
# Extract RG colors for better yellow line isolation
color_threshold = 170
R = image[:, :, 0]
G = image[:, :, 1]
color_combined = np.zeros_like(R)
r_g_condition = (R > color_threshold) & (G > color_threshold)
return r_g_condition
def filter_image(image, is_blind=False):
sobel_condition = sobel_filter(image)
hls_condition = hls_filter(image)
rgb_condition = rgb_filter(image)
hsv_condition = hsv_filter(image)
yuv_condition = yuv_filter(image)
height, width = image.shape[0], image.shape[1]
# apply the region of interest mask
combined_binary = np.zeros((height, width), dtype=np.uint8)
if not is_blind:
combined_binary[((rgb_condition | hsv_condition | yuv_condition) & (hls_condition | sobel_condition))] = 1
else :
combined_binary[sobel_condition] = 1
mask = np.zeros_like(combined_binary)
region_of_intersect = np.array([[0, height], [width / 2, int(0.5 * height)], [width, height]], dtype=np.int32)
cv2.fillPoly(mask, [region_of_intersect], 1)
thresholded = cv2.bitwise_and(combined_binary, mask)
return thresholded
def get_curvature_radius(fit, ploty):
x = fit[0] * ploty ** 2 + fit[1] * ploty + fit[2]
y_eval = np.max(ploty)
curverad = ((1 + (2 * fit[0] * y_eval + fit[1]) ** 2) ** 1.5) / np.absolute(2 * fit[0])
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30 / 720 # meters per pixel in y dimension
xm_per_pix = 3.7 / 700 # meters per pixel in x dimension
# Obtain converted polynomials
fit_cr = np.polyfit(ploty * ym_per_pix, x * xm_per_pix, 2)
# Calculate converted curvature radius
curverad = ((1 + (2 * fit_cr[0] * y_eval * ym_per_pix + fit_cr[1]) ** 2) ** 1.5) / np.absolute(2 * fit_cr[0])
# Now our radius of curvature is in meters
return curverad
def get_offset_from_center(left_x, right_x, height=720, width=1280):
lane_center = (right_x[height-1] + left_x[height-1]) / 2
xm_per_pix = 3.7 / 700 # meters per pixel in x dimension
img_center_offset = abs(width / 2 - lane_center)
offset_metters = xm_per_pix * img_center_offset
return offset_metters
def get_source_points():
return [[205,720], [1100, 720], [690, 450], [590, 450]]
def get_destination_points(width, height, fac=0.3):
fac = 0.3
p1 = [fac * width, height]
p2 = [width - fac * width, height]
p3 = [width - fac * width, 0]
p4 = [fac * width, 0]
destination_points = [p1,p2,p3,p4]
return destination_points
def perspective_transform(image):
height, width = image.shape[0], image.shape[1]
img_size = (width,height)
source_points = get_source_points()
destination_points = get_destination_points(width, height)
src = np.float32(source_points)
dst = np.float32(destination_points)
M = cv2.getPerspectiveTransform(src, dst)
warped = cv2.warpPerspective(image, M, img_size, flags=cv2.INTER_LINEAR)
return warped
def perspective_transform_with_filled_area(original_image, filtered_image):
warped = perspective_transform(filtered_image)
source_points = np.array(get_source_points())
filled = cv2.polylines(original_image.copy(), [source_points], True, (0, 255, 0), thickness=2)
return warped, filled
def get_lane_rectangles(warped, left_fit=None, right_fit=None, is_blind = False):
histogram = np.sum(warped[warped.shape[0] // 2:, :], axis=0)
histogram[600:750] = 0
stat_left = None
stat_right = None
# Create an output image to draw on and visualize the result
out_img = np.dstack((warped, warped, warped)) * 255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0] // 2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
t=0
# Choose the number of sliding windows
nwindows = 20
# Set height of windows
window_height = np.int(warped.shape[0] // nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
margin_left = 100
margin_right = 100
min_margin = 40
max_margin = 100
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = warped.shape[0] - (window + 1) * window_height
win_y_high = warped.shape[0] - window * window_height
win_xleft_low = leftx_current - margin_left
win_xleft_high = leftx_current + margin_left
win_xright_low = rightx_current - margin_right
win_xright_high = rightx_current + margin_right
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
margin_left = max(min(margin_left+margin_left*0.10,700/(len(good_left_inds)+1)),margin_left-margin_left*0.10)
margin_right = max(min(margin_right+margin_right*0.10,700/(len(good_right_inds)+1)),margin_right-margin_right*0.10)
margin_left = int(min(max(min_margin, margin_left), max_margin))
margin_right = int(min(max(min_margin, margin_right), max_margin))
# Draw the windows on the visualization image
cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high),
(0, 255, 0), 2)
cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high),
(0, 255, 0), 2)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
try :
left_fit = np.polyfit(lefty, leftx, 2)
except Exception as ex:
pass
try :
right_fit = np.polyfit(righty, rightx, 2)
except Exception as ex:
pass
ploty = np.linspace(0, warped.shape[0] - 1, warped.shape[0])
left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]
out_img[lefty, leftx] = [255, 0, 0]
out_img[righty, rightx] = [0, 0, 255]
return ploty, left_fitx, right_fitx, left_fit, right_fit, out_img
def get_next_frame_lines(warped, left_fit, right_fit, is_blind=False):
# Assume you now have a new warped binary image
# from the next frame of video (also called "binary_warped")
# It's now much easier to find line pixels!
nonzero = warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 20
blind_threshold = 3800
retrive_from_blind_threshold = 30000
is_left_blind = is_blind
is_right_blind = is_blind
left_lane_inds = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy +
left_fit[2] - margin)) & (nonzerox < (left_fit[0] * (nonzeroy ** 2) +
left_fit[1] * nonzeroy + left_fit[
2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy +
right_fit[2] - margin)) & (nonzerox < (right_fit[0] * (nonzeroy ** 2) +
right_fit[1] * nonzeroy + right_fit[
2] + margin)))
num_left_indices = len(left_lane_inds)
num_right_indices = len(right_lane_inds)
if ((num_left_indices>blind_threshold and not is_blind) or (is_blind and num_left_indices>retrive_from_blind_threshold)):
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
is_left_blind = False
try:
left_fit = np.polyfit(lefty, leftx, 2)
except Exception as ex:
is_left_blind = True
else:
is_left_blind = True
if ((num_right_indices>blind_threshold and not is_blind) or (is_blind and num_right_indices>retrive_from_blind_threshold)):
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
is_right_blind = False
try:
right_fit = np.polyfit(righty, rightx, 2)
except Exception as ex:
is_right_blind = True
else :
is_right_blind = True
is_blind_current = is_right_blind or is_left_blind
is_blind = is_blind_current
# Generate x and y values for plotting
ploty = np.linspace(0, warped.shape[0] - 1, warped.shape[0])
left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]
# Create an image to draw on and an image to show the selection window
out_img = np.dstack((warped, warped, warped)) * 255
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx - margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx + margin,
ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx - margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx + margin,
ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Draw the lane onto the warped blank image
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0, 255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0, 255, 0))
result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)
return result, ploty, left_fitx, right_fitx, left_fit, right_fit, is_blind
def inverse_perspective_transform(original_image, warped, left_fitx, right_fitx, ploty):
height, width = original_image.shape[0], original_image.shape[1]
# Create an image to draw the lines on
warp_zero = np.zeros_like(warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
src = np.float32(get_source_points())
dst = np.float32(get_destination_points(width, height))
M_inverse = cv2.getPerspectiveTransform(dst, src)
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, M_inverse, (original_image.shape[1], original_image.shape[0]))
# Combine the result with the original image
return newwarp
def add_diagnostic_image(base_image, debug_image, position):
width_offset = base_image.shape[1] // 3
height_offset = base_image.shape[0] // 3
y_offset = (position // 3) * height_offset
x_offset = (position % 3) * (width_offset)
res = cv2.resize(debug_image, None, fx=1 / 3.25, fy=1 / 3.25, interpolation=cv2.INTER_CUBIC)
if len(res.shape) == 2:
base_image[y_offset:y_offset + res.shape[0], x_offset:x_offset + res.shape[1], 0] = res * 255
base_image[y_offset:y_offset + res.shape[0], x_offset:x_offset + res.shape[1], 1] = res * 255
base_image[y_offset:y_offset + res.shape[0], x_offset:x_offset + res.shape[1], 2] = res * 255
else:
base_image[y_offset:y_offset + res.shape[0], x_offset:x_offset + res.shape[1]] = res
return base_image
def add_diagnostic_text(image, text, position, offset=150):
width_offset = image.shape[1] // 3
height_offset = image.shape[0] // 3
y_position = (position // 3) * height_offset + offset
x_position = (position % 3) * (width_offset)
cv2.putText(image, text, (x_position, y_position), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), thickness=2)
return image