-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
225 lines (168 loc) · 6.54 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python3
import argparse
import os
import sys
import numpy as np
import torch
import torchvision
import dlib
import cv2
from PIL import Image
points = {
"jaw_points" : list(range(0, 17)),
"r_braw_points" : list(range(17, 22)),
"l_braw_points" : list(range(22, 27)),
"nose_points" : list(range(27, 36)),
"r_eye_points" : list(range(36, 42)),
"l_eye_points" : list(range(42, 48)),
"mouth_points" : list(range(48, 61)),
"lips_points" : list(range(61, 68)),
}
class FaceMask():
def __init__(self, model_detection, model_landmarks, device='cpu', TH1=0.4, TH2=0.6):
self.model_detection = model_detection
self.model_landmarks = model_landmarks
self.transforms = torchvision.transforms.PILToTensor()
self.device = device
self.TH1 = TH1
self.TH2 = TH2
def find_area_of_intersection(self, face, mask):
x_max, y_max = min(mask[2], face[2]), min(mask[3], face[3])
x_min, y_min = max(mask[0], face[0]), max(mask[1], face[1])
if x_max < x_min or y_max < y_min:
return 0
return (x_max - x_min) * (y_max - y_min)
def get_detection(self, picture):
predictions = self.model_detection(picture.unsqueeze(0))
faces = []
masks = []
for box, label, score in zip(predictions[0]["boxes"].tolist(),
predictions[0]["labels"].tolist(),
predictions[0]["scores"].tolist()):
if label == 2 and score >= self.TH2:
faces.append(box)
if label == 1 and score >= self.TH1:
masks.append(box)
return (faces, masks)
def draw_something(self, boxes, labels, n, picture):
draw_pic_with_rect(picture, boxes, labels, n)
def face_mask_corr(self, faces, masks):
face_mask = []
for face in faces:
max_area = 0
best_mask = None
for mask in masks:
if self.find_area_of_intersection(face, mask) > max_area:
max_area = self.find_area_of_intersection(face, mask)
best_mask = mask
face_mask.append(best_mask)
return face_mask
def find_landmarks(self, path, faces, masks):
face_lands = []
img = cv2.imread(path)
gray = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2GRAY)
face_lands = []
for face in faces:
x1 = int(face[0])
y1 = int(face[1])
x2 = int(face[2])
y2 = int(face[3])
box = dlib.rectangle(x1, y1, x2, y2)
landmarks = self.model_landmarks(image=gray, box=box)
# cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(0, 255, 0), thickness=1)
el = {}
el['lips_points'] = []
el['nose_points'] = []
for n in points['lips_points']:
x = landmarks.part(n).x
y = landmarks.part(n).y
el['lips_points'].append((x, y))
for n in points['nose_points']:
x = landmarks.part(n).x
y = landmarks.part(n).y
el['nose_points'].append((x, y))
# cv2.circle(img=img, center=(x, y), radius=1, color=(0, 255, 0), thickness=1)
face_lands.append(el)
return face_lands
# for mask in masks:
# x1 = int(mask[0])
# y1 = int(mask[1])
# x2 = int(mask[2])
# y2 = int(mask[3])
# cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(255, 0, 0), thickness=1, )
# cv2_imshow(img)
def faces_walker(self, path, faces, face_mask, face_lands, path_to_save):
img = cv2.imread(path)
font = cv2.FONT_HERSHEY_SIMPLEX
for face, face_m, land in zip(faces, face_mask, face_lands):
x1 = int(face[0])
y1 = int(face[1])
x2 = int(face[2])
y2 = int(face[3])
cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(0, 0, 139), thickness=2)
if face_m is None:
cv2.putText(img, 'No mask!!!', (x1, y1), font, 0.7, color=(0, 69, 255), thickness=2)
continue
mx1 = int(face_m[0])
my1 = int(face_m[1])
mx2 = int(face_m[2])
my2 = int(face_m[3])
cv2.rectangle(img=img, pt1=(mx1, my1), pt2=(mx2, my2), color=(255, 0, 0), thickness=2)
out_of_lips = 0
for point in land['lips_points']:
x = point[0]
y = point[1]
if y > max(my1, my2) or y < min(my1, my2):
out_of_lips += 1
if (out_of_lips > 2):
cv2.putText(img, 'Out of mouth', (x1, y1), font, 0.7, color=(0, 255, 0),
thickness=2)
continue
out_of_nose = 0
for point in land['nose_points']:
x = point[0]
y = point[1]
if y > max(my1, my2) or y < min(my1, my2):
out_of_nose += 1
if (out_of_nose > 2):
cv2.putText(img, 'Out of nose', (x1, y1), font, 0.7, color=(0, 69, 255),
thickness=2)
continue
cv2.putText(img, 'OK!!!', (x1, y1), font, 0.7, color=(50, 205, 155),
thickness=2)
cv2.imwrite(path_to_save, img)
def __call__(self, path, path_to_save):
picture_pil = Image.open(path)
picture_torch = self.transforms(picture_pil).to(dtype=torch.float32)[:3, :, :]
faces, masks = self.get_detection(picture_torch)
face_mask = self.face_mask_corr(faces, masks)
face_lands = self.find_landmarks(path, faces, masks)
self.faces_walker(path, faces, face_mask, face_lands, path_to_save)
def parse():
parser = argparse.ArgumentParser()
parser.add_argument("-img", dest="image_path",required=True)
parser.add_argument(
"-md", dest="model_detection_path",
type=str, required=False, default="../model_detection.pt")
parser.add_argument(
"-ml", dest="model_landmarks_path",
required=False, default="../model_landmarks.pt")
parser.add_argument("-out", dest="out_image_path",
required=False, default="out.jpg")
return parser.parse_args()
def main():
# set up the parameters
args = parse()
current_path = os.getcwd()
image_path = os.path.join(current_path, args.image_path)
model_detection_path = os.path.join(current_path, args.model_detection_path)
model_landmarks_path = os.path.join(current_path, args.model_landmarks_path)
out_image_path = os.path.join(current_path, args.out_image_path)
model_detection = torchvision.models.detection.fasterrcnn_resnet50_fpn()
model_detection.load_state_dict(torch.load(model_detection_path, map_location=torch.device('cpu')))
model_detection.eval()
model_landmarks = dlib.shape_predictor(model_landmarks_path)
find_mask = FaceMask(model_detection, model_landmarks)
find_mask(image_path, out_image_path)
if __name__=="__main__":
main()