forked from etmc/tmLQCD
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclenshaw_coef.c
278 lines (201 loc) · 6.21 KB
/
clenshaw_coef.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/***********************************************************************
* Copyright (C) 2002,2003,2004,2005,2006,2007,2008 Carsten Urbach
*
* This file is part of tmLQCD.
*
* tmLQCD is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* tmLQCD is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with tmLQCD. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "phmc.h"
#include "clenshaw_coef.h"
#define Pi 3.141592653589793
extern long double c[3000];
extern double a, b;
long double D[300];
void clenscoef(int M){
long long int j, jmax, k, N2, N, ij, i, imax;
long double s[500][500];
long double l[500][500];
long double sgn;
long double sum;
long double snew, sold, lnew, lold;
long double jj;
long long int j2;
long double A, B, A2, B2;
FILE *coeroot;
char *filename_stub7 = "Cheby_coeff_for_roots_";
char *filename7;
char buf7[100];
FILE *factors;
char *filename_stub9 = "Pre-factors_";
char *filename9;
char buf9[100];
filename7=buf7;
sprintf(filename7,"%s%d.dat", filename_stub7,M);
filename9=buf9;
sprintf(filename9,"%s%d.dat", filename_stub9,M);
coeroot = fopen(filename7,"w");
fprintf(coeroot,"### Chebishev coeff. in ascending order (pow. coef.) \n");
/* fprintf(coeroot,"### power j coeff. \n"); */
fclose(coeroot);
N = (long long int)(M - 1);
N2 = (long long int)(N/2);
A = (long double)(2./(long double)(b-a));
B = (long double)((b+a)/(long double)(b-a));
A2 = (long double)(2*A);
B2 = (long double)(2*B);
/* Initialisation */
for(k=0; k<M; k++){
for(j=0; j<M; j++){
s[k][j] = 0.0;
l[k][j] = 0.0;
}
D[k] = 0.0;
}
factors = fopen(filename9,"w");
fprintf(factors," Val. of s[k][j] and l[k][j] \n");
fprintf(factors," At k = 1 \n");
fclose(factors);
factors = fopen(filename9,"a");
/* Coefficient sequences */
/* First the k = 1 case */
for(j=1; j<M; j++){
jj = (long double)(j);
s[1][j] = (long double)(2*jj - 1);
l[1][j] = (long double)(jj);
/* printf(" At j = %d s = %d \n", j, s[1][j]); */
fprintf(factors," %20.18lle %20.18lle \n", s[1][j], l[1][j]);
}
/* then the remaining k cases */
for(k=2; k<M; k++){
fprintf(factors," At k = %d \n", k);
sold = 0.0;
lold = 0.0;
for(j=1; j<M; j++){
snew = (long double)(sold + s[k-1][j]);
sold = (long double)(snew);
s[k][j] = (long double)(snew);
lnew = (long double)(lold + l[k-1][j]);
lold = (long double)(lnew);
l[k][j] = (long double)(lnew);
fprintf(factors," %20.18lle %20.18lle \n", s[k][j], l[k][j]);
}
}
fclose(factors);
for(j=N2; j>=1; j--){
sgn = -1.0;
j2=2*j;
ij = (long long int)((j+1)/2) - (long long int)(j/2);
/*
printf(" ij=%lld \n", ij);
printf(" j=%lld j2=%lld \n", j, j2);
*/
if(ij == 0) sgn = -sgn;
/*
printf(" sgn=%llf \n", sgn);
printf(" C=%llf \n", c[j2]);
*/
D[0]+= (long double)(c[j2]*sgn);
/*
printf(" D=%llf \n", D[0]);
*/
}
D[0] = (long double)(D[0] + 0.5*c[0]);
/*
printf(" Pre final D=%llf \n", D[0]);
*/
/*
printf(" D0 = %llf \n", D[0]);
*/
/* Evaluate first the coefficient of x^0 */
for(i=1; i<M; i++){
sgn = -1.0;
ij = (long long int)(i/2) - (long long int)((i-1)/2);
if(ij == 0) sgn = -sgn;
sum = 0.0;
jmax = N2 -(long long int)((i-1)/2);
/*
printf(" ij=%lld jmax=%lld \n", ij, jmax);
*/
for(j=1; j<=jmax; j++){
j2 = 2*j + i - 2;
sgn = -sgn;
sum += (long double)(c[j2]*sgn*s[i][j]);
/*
printf(" j=%lld j2=%lld \n", j, j2);
printf(" sgn=%llf \n", sgn);
printf(" C=%llf \n", c[j2]);
printf(" Sum=%llf \n", sum);
*/
}
sum = (long double)(sum*B);
if (i > 1) sum = (long double)(sum*powl(B2,(i-1)));
D[0] = (long double)(sum + D[0]);
/*
printf("At i=%lld Sum=%llf D=%llf D=%20.18lle\n", i, sum, D[0], D[0]);
*/
}
/* Evaluate the Block of coefficients [1, N-1] */
for(k=1; k<N; k++){ /* LOOP over degrees */
/* for(k=1; k<2; k++){ */
imax = N - k + 1;
/* printf(" \n Degree %d Max loop imax=%d \n", k, imax); */
/* for i > 1 LOOP over inner loop */
for(i=1; i<=imax; i++){
sgn = 1.0;
ij = (long long int)(i/2) - (long long int)((i-1)/2);
if(ij == 0) sgn = -sgn;
sum = 0.0;
jmax = (long long int)((N-k+3-i)/2);
/* printf(" \n At i=%d ij=%d jmax=%d \n", i, ij, jmax); */
for(j=1; j<=jmax; j++){
j2 = k + 2*j + i - 3;
sgn = -sgn;
/*
printf("At k=%d i=%d jmax=%d j=%d j2=%d \n", k, i, jmax, j, j2);
*/
sum += (long double)(c[j2]*sgn*s[k+i-1][j]);
/*
printf("s=%d sgn=%llf sum=%llf \n", s[k+i-1][j], sgn, sum);
*/
}
/* printf(" At k=%d and i=%d Value is %d \n", k, i, l[k][i]); */
/* D[k] += sum * l[k][i]; */
/* printf(" At degree %d The value is %12.10e \n", k,D[k]); */
sum = (long double)(sum*l[k][i]*powl(B2,(i-1)));
D[k] = (long double)((sum + D[k]));
/*
printf(" At k=%d i=%d, l=%d sum=%llf D=%llf \n", k,i,l[k][i], sum, D[k]);
*/
}
D[k] = (long double)(D[k]*powl(A2,k)/2);
}
/* And finally the highest degree coefficient k=N */
D[N] = (long double)(powl(A2,(N-1))*A*c[N]);
/* If normalisation is required */
/*
for(k=0; k<M; k++){
D[k] = (long double)(D[k]/D[N]);
}
*/
/* Write all the Clenshaw coefficients in a file */
for(k=0; k<M; k++){
coeroot = fopen(filename7,"a");
fprintf(coeroot," %lld %20.18lle \n", k,D[k]);
fclose(coeroot);
}
}
#undef PI