This repository has been archived by the owner on May 8, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmodel_DCGAN.py
338 lines (270 loc) · 14.2 KB
/
model_DCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# AUTHOR: KRISH KABRA
# Acknowledge must be given to:
# https://www.tensorflow.org/tutorials/generative/dcgan
# https://github.com/eriklindernoren/Keras-GAN/blob/master/dcgan/dcgan.py
# generator and discriminator designed for CWT inputs
# X = (N_trials, freq_bins=50, time_bins=200, N_eegs = 1)
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.losses import binary_crossentropy, categorical_crossentropy
from tensorflow.keras import backend as K
from tqdm import tqdm_notebook
from IPython.display import clear_output
import time
class DCGAN():
def __init__(self,gen_optimizer, disc_optimizer, noise_dim=100,dropout=0):
# setup config variables eg. noise_dim, hyperparams, verbose, plotting etc.
self.noise_dim = noise_dim
self.dropout = dropout
self.eeg_img_shape = (50,200,1)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
# Ensure discriminator is trainable
self.discriminator.compile(loss='binary_crossentropy',
optimizer= disc_optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise as input and generates eeg img
self.combined = self.build_GAN()
self.combined.compile(loss='binary_crossentropy',
optimizer=gen_optimizer)
# history variables
self.loss_history, self.acc_history, self.grads_history = {}, {}, {}
def build_generator(self):
model = Sequential()
model.add(layers.Dense(4*11*512, use_bias=False, input_shape=(self.noise_dim,)))
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Reshape((4, 11, 512)))
assert model.output_shape == (None, 4, 11, 512) # Note: None is the batch size
model.add(layers.Conv2DTranspose(256, (5, 4), strides=(2, 2), padding='valid', use_bias=False))
assert model.output_shape == (None, 11, 24, 256)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(128, (5, 4), strides=(2, 2), padding='valid', use_bias=False))
assert model.output_shape == (None, 25, 50, 128)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 50, 100, 64)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(1, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 50, 200, 1)
noise = layers.Input(shape=(self.noise_dim,))
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
model = Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=self.eeg_img_shape))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
# model.add(layers.Dropout(self.dropout))
assert model.output_shape == (None,25,100,64)
model.add(layers.Conv2D(128, (5, 5), strides=(1, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
# model.add(layers.Dropout(self.dropout))
assert model.output_shape == (None,25,50,128)
# output decision for image -- 1=fake, 0=real
model.add(layers.Flatten())
model.add(layers.Dropout(self.dropout))
model.add(layers.Dense(1,activation='sigmoid'))
assert model.output_shape == (None,1)
img = layers.Input(shape=self.eeg_img_shape)
validity = model(img)
return Model(img, validity)
def build_GAN(self):
# Generator takes noise and outputs generated eeg img
z = layers.Input(shape=(self.noise_dim,))
generated_eeg = self.generator(z)
# For the combined model we will only train the generator
discriminator = self.discriminator
discriminator.trainable = False
# The discriminator takes generated eeg img as input and determines validity
validity = discriminator(generated_eeg)
return Model(z,validity)
# generate fake data!
def generate_fake_data(self,N=100):
noise = np.random.normal(0, 1, (N, self.noise_dim))
gen_imgs = self.generator.predict(noise)
return gen_imgs, noise
# training loop
def train(self, train_dataset, epochs=25, batch_size=128,discriminator_iters=1,label_smoothing=0,plot=False):
'''
Training loop
INPUTS:
train_dataset - EEG training dataset as numpy array with shape=(trials,eeg,freq_bins,time_bins)
Assumed dataset has already been normalized!
epochs -
batch_size -
plot -
'''
# init loss history params
loss_history, acc_history, grads_history = self.loss_history, self.acc_history, self.grads_history
gen_grads_history, disc_grads_history, real_grads_history, fake_grads_history = [], [], [], []
gen_loss_history, disc_loss_history, real_loss_history, fake_loss_history = [], [], [], []
gen_acc_history, disc_acc_history, real_acc_history, fake_acc_history = [], [], [], []
# init training dataset that can be shuffled
X_train = train_dataset.astype('float32')
for epoch in range(epochs):
start = time.time()
# shuffle training dataset
np.random.shuffle(X_train)
# batch useful variables
num_batches = int(np.ceil(X_train.shape[0] / float(batch_size)))
# grad, loss and acc parameters
grads_real_l2_norm, grads_fake_l2_norm, grads_disc_l2_norm, grads_gen_l2_norm = 0,0,0,0
d_loss, d_loss_real, d_loss_fake, g_loss = 0,0,0,0
d_acc, d_acc_real, d_acc_fake, g_acc = 0,0,0,0
for batch in tqdm_notebook(range(num_batches)):
# final batch
if batch==num_batches-1:
imgs = X_train[batch*batch_size:]
else:
imgs = X_train[batch*batch_size:(batch+1)*batch_size]
# ---------------------
# Train Discriminator
# ---------------------
assert discriminator_iters > 0, 'Number of discriminator must be positive integer'
for _ in range(discriminator_iters):
# Generate batch of fake eeg data for discriminator to train on
gen_imgs, noise = self.generate_fake_data(N=imgs.shape[0])
# label smoothing
fake = np.zeros((imgs.shape[0],1)) + 0.5 * label_smoothing
valid = np.ones((imgs.shape[0],1)) * (1.0 - label_smoothing) + 0.5 * label_smoothing
# Train the discriminator (real classified as ones and generated as zeros)
d_loss_real_batch, d_acc_real_batch = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake_batch, d_acc_fake_batch = self.discriminator.train_on_batch(gen_imgs, fake)
# get discriminator gradients at input w/ real and fake imgs
inp_real = tf.Variable(imgs,dtype='float32')
with tf.GradientTape() as tape:
pred_real = self.discriminator(inp_real)
grads_real = tape.gradient(pred_real, inp_real).numpy()
inp_fake = tf.Variable(gen_imgs,dtype='float32')
with tf.GradientTape() as tape:
pred_fake = self.discriminator(inp_fake)
grads_fake = tape.gradient(pred_fake, inp_fake).numpy()
# update grad, loss and acc tracking
grads_real_l2_norm += np.sqrt(np.sum(np.square(grads_real)))/(float(num_batches)*discriminator_iters)
grads_fake_l2_norm += np.sqrt(np.sum(np.square(grads_fake)))/(float(num_batches)*discriminator_iters)
grads_disc_l2_norm += 0.5 * (grads_fake_l2_norm + grads_real_l2_norm)/(float(num_batches)*discriminator_iters)
d_loss_real += d_loss_real_batch/(float(num_batches)*discriminator_iters)
d_acc_real += d_acc_real_batch/(float(num_batches)*discriminator_iters)
d_loss_fake += d_loss_fake_batch/(float(num_batches)*discriminator_iters)
d_acc_fake += d_acc_fake_batch/(float(num_batches)*discriminator_iters)
d_loss_batch = 0.5 * (d_loss_real_batch + d_loss_fake_batch)
d_acc_batch = 0.5 * (d_acc_real_batch + d_acc_fake_batch)
d_loss += d_loss_batch/(float(num_batches)*discriminator_iters)
d_acc += d_acc_batch/(float(num_batches)*discriminator_iters)
# ---------------------
# Train Generator
# ---------------------
# Generate 2*batch of fake eeg data for generator to train on
gen_imgs, noise = self.generate_fake_data(N=2*imgs.shape[0])
valid = np.ones((2*imgs.shape[0],1))
# Train the generator (wants discriminator to mistake images as real)
g_loss_batch = self.combined.train_on_batch(noise, valid)
# Manually calculate accuracy to avoid dropout layer
g_acc_batch = np.average(np.round(self.combined.predict(noise)))
# get generator gradients at input
inp_noise = tf.Variable(np.random.normal(0, 1, (imgs.shape[0], self.noise_dim)),dtype='float32')
with tf.GradientTape() as tape:
pred = self.combined(inp_noise)
grads = tape.gradient(pred, inp_noise).numpy()
# update grad, loss and acc tracking
grads_gen_l2_norm += np.sqrt(np.sum(np.square(grads)))/float(num_batches)
g_loss += g_loss_batch/float(num_batches)
g_acc += g_acc_batch/float(num_batches)
# ---------------------
# Debugging
# ---------------------
# print('Combined GAN batch acc: {}%'.format(100*np.average(np.round(self.combined.predict(noise)))))
# print('Disc grads: real= {}, fake={}, avg= {}'.format(grads_real_l2_norm,grads_fake_l2_norm,grads_disc_l2_norm))
# print('Gen grads: {}'.format(grads_gen_l2_norm))
# Save the grad, loss and accuracy histories
gen_grads_history.append(grads_gen_l2_norm)
disc_grads_history.append(grads_disc_l2_norm)
real_grads_history.append(grads_real_l2_norm)
fake_grads_history.append(grads_fake_l2_norm)
gen_loss_history.append(g_loss)
disc_loss_history.append(d_loss)
real_loss_history.append(d_loss_real)
fake_loss_history.append(d_loss_fake)
gen_acc_history.append(g_acc)
disc_acc_history.append(d_acc)
real_acc_history.append(d_acc_real)
fake_acc_history.append(d_acc_fake)
# Plot the progress
print ('Epoch #: {}/{}, time taken: {} secs \n'.format(epoch+1,epochs,time.time()-start))
print('Disc: loss= {}, acc w/ dropout= {}%, grads= {} \n'.format(d_loss,100*d_acc,grads_disc_l2_norm))
print('Disc Fake: loss= {}, acc w/ dropout= {}%, grads= {} \n'.format(d_loss_fake,100*d_acc_fake,grads_fake_l2_norm))
print('Disc Real: loss= {}, acc w/ dropout= {}%, grads= {} \n'.format(d_loss_real,100*d_acc_real,grads_real_l2_norm))
print('Gen: loss= {}, acc w/o dropout= {}%, grads= {} \n'.format(g_loss,100*g_acc,grads_gen_l2_norm))
if plot:
# fake image example
generated_image,_ = self.generate_fake_data(N=1)
# real image example
trial_ind, eeg = 0, 0
real_image = np.expand_dims(train_dataset[trial_ind], axis=0)
# visualize fake and real data examples
plt.figure()
plt.subplot(121)
plt.imshow(generated_image[0, :, :, eeg], aspect='auto')
plt.colorbar()
plt.title('Fake decision, eeg {}:\n {}'.format(eeg, self.discriminator.predict(generated_image)))
plt.subplot(122)
plt.imshow(real_image[0,:,:,eeg], aspect='auto')
plt.title('Real decision, trial {}, eeg {}:\n {}'.format(trial_ind, eeg, self.discriminator.predict(real_image)))
plt.colorbar()
plt.subplots_adjust(hspace=0.5)
plt.show()
# plot discriminator classification
fake_predictions = self.discriminator.predict(self.generate_fake_data(N=train_dataset.shape[0]))
real_predictions = self.discriminator.predict(train_dataset)
plt.figure()
plt.plot(real_predictions,'bo')
plt.plot(fake_predictions,'ro')
plt.legend(['Real', 'Fake'])
plt.show()
# Generate after the final epoch
clear_output(wait=True)
# plot loss history
plt.figure()
plt.plot(gen_loss_history, 'r')
plt.plot(disc_loss_history, 'b')
plt.plot(real_loss_history, 'g')
plt.plot(fake_loss_history, 'k')
plt.title('Loss history')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend(['Generator', 'Discriminator', 'Real', 'Fake'])
# plot accuracy history
plt.figure()
plt.plot(100*gen_acc_history, 'r')
plt.plot(100*disc_acc_history, 'b')
plt.plot(100*real_acc_history, 'g')
plt.plot(100*fake_acc_history, 'k')
plt.title('Accuracy history')
plt.xlabel('Epochs')
plt.ylabel('Accuracy (%)')
plt.legend(['Generator', 'Discriminator', 'Real', 'Fake'])
# plot grads history
plt.figure()
plt.plot(gen_grads_history, 'r')
plt.plot(disc_grads_history, 'b')
plt.plot(real_grads_history, 'g')
plt.plot(fake_grads_history, 'k')
plt.title('L2-norm of Gradients at input history')
plt.xlabel('Epochs')
plt.ylabel('L2-norm of Gradients')
plt.legend(['Generator', 'Discriminator', 'Real', 'Fake'])
grads_history['Gen'], grads_history['Disc'] = gen_grads_history, disc_grads_history
grads_history['Real'], grads_history['Fake'] = real_grads_history, fake_grads_history
loss_history['Gen'], loss_history['Disc'] = gen_loss_history, disc_loss_history
loss_history['Real'], loss_history['Fake'] = real_loss_history, fake_loss_history
acc_history['Gen'], acc_history['Disc'] = gen_acc_history, disc_acc_history
acc_history['Real'], acc_history['Fake'] = real_acc_history, fake_acc_history
self.loss_history, self.acc_history = loss_history, acc_history
return loss_history, acc_history, grads_history