forked from eliteservice1002/mlmodels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME_index_doc.txt
executable file
·12267 lines (9016 loc) · 472 KB
/
README_index_doc.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
mlmodels\benchmark.py
----------------methods----------------
---------------functions---------------
benchmark_run( bench_pars=None, args=None, config_mode="test", )
cli_load_arguments( config_file=None, )
config_model_list( folder=None, )
get_all_json_path(json_path, )
main( )
metric_eval( actual=None, pred=None, metric_name="mean_absolute_error", )
preprocess_timeseries_m5( data_path=None, dataset_name=None, pred_length=10, item_id=None, )
mlmodels\data.py
----------------methods----------------
---------------functions---------------
download_data(data_pars, )
get_dataset(data_pars, )
import_data( )
import_data_dask( **kw)
import_data_fromfile( **kw)
import_data_tch( name="", mode="train", node_id=0, data_folder_root="", )
mlmodels\dataloader.py
----------------methods----------------
AbstractDataLoader.__init__(self, input_pars, loader, preprocessor, output, )
AbstractDataLoader._image_directory_load(self, directory, generator, )
AbstractDataLoader._interpret_input_pars(self, input_pars, )
AbstractDataLoader._interpret_output(self, output, )
AbstractDataLoader._interpret_processor(self, preprocessor, data, )
AbstractDataLoader._load_data(self, loader, )
AbstractDataLoader._preprocessor(self, data, pars, )
AbstractDataLoader.preprocess_new_data(self, data, )
EncoderMissingEncoderError.__init__(self, encoder_pars, )
EncoderMissingIndexError.__init__(self, encoder_pars, )
GluonTSDataLoader.__init__(self, *args, **kwargs)
InvalidDataLoaderFunctionError.__init__(self, loader, )
InvalidDataPreprocessorError.__init__(self, preprocessor, )
InvalidDataPreprocessorParameterError.__init__(self, parameter, )
InvalidEncoderError.__init__(self, preprocessor, )
InvalidEncoderParameterError.__init__(self, parameter, )
KerasDataLoader.__init__(self, *args, **kwargs)
MissingDataPreprocessorError.__init__(self, )
MissingLocationKeyError.__init__(self, )
NonCallableDataPreprocessorError.__init__(self, preprocessor, )
NonCallableEncoderError.__init__(self, preprocessor, )
NonIntegerBatchSizeError.__init__(self, )
NonfileURLError.__init__(self, )
NumpyGeneratorError.__init__(self, )
OutputShapeError.__init__(self, specified, actual, )
PreprocssingOutputDict.__getitem__(self, key, )
PreprocssingOutputDict.__init__(self, *args, **kwargs)
PreprocssingOutputDict.__repr__(self, )
PreprocssingOutputDict.__setitem__(self, key, value, )
PreprocssingOutputDict.__str__(self, )
PreprocssingOutputDict.values(self, )
PyTorchDataLoader.__init__(self, *args, **kwargs)
TensorflowDataLoader.__init__(self, *args, **kwargs)
UndeterminableDataLoaderError.__init__(self, )
UndeterminableLocationTypeError.__init__(self, )
UnknownLocationTypeError.__init__(self, location_type, )
---------------functions---------------
load_function(f, )
mlmodels\distri_torch.py
----------------methods----------------
---------------functions---------------
load_arguments( )
metric_average(val, name, )
test( )
train(epoch, )
mlmodels\metrics.py
----------------methods----------------
---------------functions---------------
log( n=0, m=1, *s)
metrics_eval( metric_list=["mean_squared_error"], ytrue=None, ypred=None, ypred_proba=None, )
test( )
mlmodels\models.py
----------------methods----------------
---------------functions---------------
cli_load_arguments( config_file=None, )
config_generate_json(modelname, to_path="ztest/new_model/", )
config_get_pars(config_file, config_mode="test", )
config_init( to_path=".", )
config_model_list( folder=None, )
fit(module, model, sess=None, data_pars=None, compute_pars=None, out_pars=None, **kwarg)
fit_metrics(module, model, sess=None, data_pars=None, compute_pars=None, out_pars=None, **kwarg)
get_params(module, params_pars, **kwarg)
load(module, load_pars, **kwarg)
main( )
metrics(module, model, sess=None, data_pars=None, compute_pars=None, out_pars=None, **kwarg)
model_create(module, model_pars=None, data_pars=None, compute_pars=None, **kwarg)
module_env_build( model_uri="", verbose=0, do_env_build=0, )
module_load( model_uri="", verbose=0, env_build=0, )
module_load_full( model_uri="", model_pars=None, data_pars=None, compute_pars=None, choice=None, **kwarg)
os_folder_copy(src, dst, )
predict(module, model, sess=None, data_pars=None, compute_pars=None, out_pars=None, **kwarg)
save(module, model, session, save_pars, **kwarg)
test(modelname, )
test_all( folder=None, )
test_api( model_uri="model_xxxx/yyyy.py", param_pars=None, )
test_global(modelname, )
test_module( model_uri="model_xxxx/yyyy.py", param_pars=None, )
mlmodels\optim.py
----------------methods----------------
---------------functions---------------
cli_load_arguments( config_file=None, )
main( )
optim( model_uri="model_tf.1_lstm.py", hypermodel_pars={}, model_pars={}, data_pars={}, compute_pars={}, out_pars={}, )
optim_optuna( model_uri="model_tf.1_lstm.py", hypermodel_pars={"engine_pars": {}, )
post_process_best(model, module, model_uri, model_pars_update, data_pars, compute_pars, out_pars, )
test_all( )
test_fast( ntrials=2, )
test_json( path_json="", config_mode="test", )
mlmodels\parse.py
----------------methods----------------
---------------functions---------------
cli_load_arguments( config_file=None, )
extract_args(txt, outfile, )
mlmodels\pipeline.py
----------------methods----------------
Pipe.__init__(self, pipe_list, in_pars, out_pars, compute_pars=None, **kw)
Pipe.get_checkpoint(self, )
Pipe.get_fitted_pipe_list(self, key="", )
Pipe.get_model_path(self, )
Pipe.run(self, )
---------------functions---------------
drop_cols(df, cols=None, **kw)
generate_data(df, num_data=0, means=[], cov=[[1, 0], )
get_params( choice="", data_path="dataset/", config_mode="test", **kw)
load_model(path, )
log( n=0, m=1, *s)
os_package_root_path(filepath, sublevel=0, path_add="", )
pd_concat(df1, df2, colid1, )
pd_na_values(df, cols=None, default=0.0, **kw)
pipe_checkpoint(df, **kw)
pipe_load(df, **in_pars)
pipe_merge(in_pars, out_pars, compute_pars=None, **kw)
pipe_run_inference(pipe_list, in_pars, out_pars, compute_pars=None, checkpoint=True, **kw)
pipe_split(in_pars, out_pars, compute_pars, **kw)
save_model(model, path, )
test( data_path="/dataset/", pars_choice="colnum", )
mlmodels\util.py
----------------methods----------------
Model_empty.__init__(self, model_pars=None, data_pars=None, compute_pars=None, )
to_namespace.__init__(self, adict, )
to_namespace.get(self, key, )
---------------functions---------------
config_load_root( )
config_path_dataset( )
config_path_pretrained( )
config_set(ddict2, )
env_build(model_uri, env_pars, )
env_conda_build( env_pars=None, )
env_pip_check( env_pars=None, )
env_pip_requirement( env_pars=None, )
get_model_uri(file, )
get_recursive_files(folderPath, ext='/*model*/*.py', )
get_recursive_files2(folderPath, ext, )
get_recursive_files3(folderPath, ext, )
load(load_pars, )
load_config(args, config_file, config_mode, verbose=0, )
load_gluonts( load_pars=None, )
load_keras(load_pars, custom_pars=None, )
load_pkl(load_pars, )
load_tch(load_pars, )
load_tch_checkpoint(model, optimiser, load_pars, )
load_tf( load_pars="", )
log( n=0, m=1, *s)
metrics_eval( metric_list=["mean_squared_error"], ytrue=None, ypred=None, ypred_proba=None, )
model_get_list( folder=None, block_list=[], )
os_file_current_path( )
os_folder_copy(src, dst, )
os_get_file( folder=None, block_list=[], pattern=r'*.py', )
os_package_root_path( filepath="", sublevel=0, path_add="", )
os_path_split(path, )
params_json_load(path, config_mode="test", )
path_norm( path="", )
path_norm_dict(ddict, )
save( model=None, session=None, save_pars=None, )
save_gluonts( model=None, session=None, save_pars=None, )
save_keras( model=None, session=None, save_pars=None, )
save_pkl( model=None, session=None, save_pars=None, )
save_tch( model=None, optimizer=None, save_pars=None, )
save_tch_checkpoint(model, optimiser, save_pars, )
save_tf( model=None, sess=None, save_pars=None, )
test_module( model_uri="model_tf/1_lstm.py", data_path="dataset/", pars_choice="json", reset=True, )
tf_deprecation( )
val(x, xdefault, )
mlmodels\util_log.py
----------------methods----------------
to_name.__init__(self, adict, )
---------------functions---------------
create_appid(filename, )
create_logfilename(filename, )
create_uniqueid( )
load_arguments( config_file=None, arg_list=None, )
logger_handler_console( formatter=None, )
logger_handler_file( isrotate=False, rotate_time="midnight", formatter=None, log_file_used=None, )
logger_setup( logger_name=None, log_file=None, formatter=FORMATTER_1, isrotate=False, isconsole_output=True, logging_level=logging.DEBUG, )
logger_setup2( name=__name__, level=None, )
printlog( s="", s1="", s2="", s3="", s4="", s5="", s6="", s7="", s8="", s9="", s10="", app_id="", logfile=None, iswritelog=True, )
writelog( m="", f=None, )
mlmodels\ztest.py
----------------methods----------------
---------------functions---------------
cli_load_arguments( config_file=None, )
main( )
os_file_current_path( )
test_all( arg=None, )
test_all( arg=None, )
test_custom( )
test_import(arg, )
test_json(arg, )
test_jupyter( arg=None, config_mode="test_all", )
test_list(mlist, )
test_model_structure( )
mlmodels\ztest_structure.py
----------------methods----------------
---------------functions---------------
code_check( sign_list=None, model_list=None, )
find_in_list(x, llist, )
get_recursive_files(folderPath, ext='/*model*/*.py', )
log( n=0, m=1, *s)
main( )
model_get_list( folder=None, block_list=[], )
os_file_current_path( )
os_package_root_path(filepath, sublevel=0, path_add="", )
mlmodels\__init__.py
----------------methods----------------
---------------functions---------------
mlmodels\config\json\model_tch\raw\vae_pretraining_encoder\text_beta.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\__init__.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\dev\ml_mosaic.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\dev\mytest.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\raw\abstractive-summarization\pointer_generator_helper.py
----------------methods----------------
PointerGeneratorAttentionWrapper.__init__(self, cell, attention_mechanism, attention_layer_size=None, alignment_history=False, cell_input_fn=None, output_attention=True, initial_cell_state=None, name=None, coverage=False, )
PointerGeneratorAttentionWrapper.call(self, inputs, state, )
PointerGeneratorAttentionWrapper.zero_state(self, batch_size, dtype, )
PointerGeneratorBahdanauAttention.__call__(self, query, state, )
PointerGeneratorBahdanauAttention.__init__(self, num_units, memory, memory_sequence_length=None, normalize=False, probability_fn=None, score_mask_value=float('-inf'), name='PointerGeneratorBahdanauAttention', coverage=False, )
PointerGeneratorDecoder.__init__(self, source_extend_tokens, source_oov_words, coverage, cell, helper, initial_state, output_layer=None, )
PointerGeneratorDecoder.output_dtype(self, )
PointerGeneratorDecoder.output_size(self, )
PointerGeneratorDecoder.step(self, time, inputs, state, name=None, )
PointerGeneratorGreedyEmbeddingHelper.__init__(self, embedding, start_tokens, end_token, )
PointerGeneratorGreedyEmbeddingHelper.next_inputs(self, time, outputs, state, sample_ids, name=None, )
PointerGeneratorGreedyEmbeddingHelper.sample(self, time, outputs, state, name=None, )
---------------functions---------------
_pg_bahdanau_score(processed_query, keys, coverage, coverage_vector, )
mlmodels\model_dev\raw\chatbot\35.byte-net.py
----------------methods----------------
ByteNet.__init__(self, from_vocab_size, to_vocab_size, channels, encoder_dilations, decoder_dilations, encoder_filter_width, decoder_filter_width, learning_rate=0.001, beta1=0.5, )
---------------functions---------------
build_dataset(words, n_words, atleast=1, )
bytenet_residual_block(input_, dilation, layer_no, residual_channels, filter_width, causal=True, )
clean_text(text, )
conv1d(input_, output_channels, dilation=1, filter_width=1, causal=False, )
layer_normalization(x, epsilon=1e-8, )
pad_sentence_batch(sentence_batch, pad_int, maxlen, )
str_idx(corpus, dic, )
mlmodels\model_dev\raw\chatbot\37.capsule-lstm-seq2seq-greedy.py
----------------methods----------------
Chatbot.__init__(self, size_layer, num_layers, embedded_size, seq_len, maxlen, from_dict_size, to_dict_size, learning_rate, batch_size, kernels=[2, 4, 4], strides=[3,2,1], epsilon=1e-8, )
---------------functions---------------
build_dataset(words, n_words, atleast=1, )
clean_text(text, )
conv_layer(X, num_output, num_vector, kernel=None, stride=None, )
fully_conn_layer(X, num_output, dimension_out, )
pad_sentence_batch(sentence_batch, pad_int, )
pad_sentence_batch_static(sentence_batch, pad_int, )
routing(X, b_IJ, seq_len, dimension_out, routing_times=2, )
squash(X, epsilon=1e-9, )
str_idx(corpus, dic, )
mlmodels\model_dev\raw\chatbot\38.capsule-lstm-seq2seq-luong-beam.py
----------------methods----------------
Chatbot.__init__(self, size_layer, num_layers, embedded_size, seq_len, maxlen, from_dict_size, to_dict_size, learning_rate, batch_size, kernels=[2, 4, 4], strides=[3,2,1], epsilon=1e-8, force_teaching_ratio=0.5, beam_width=5, )
---------------functions---------------
build_dataset(words, n_words, atleast=1, )
clean_text(text, )
conv_layer(X, num_output, num_vector, kernel=None, stride=None, )
fully_conn_layer(X, num_output, dimension_out, )
pad_sentence_batch(sentence_batch, pad_int, )
pad_sentence_batch_static(sentence_batch, pad_int, )
routing(X, b_IJ, seq_len, dimension_out, routing_times=2, )
squash(X, epsilon=1e-9, )
str_idx(corpus, dic, )
mlmodels\model_dev\raw\chatbot\access.py
----------------methods----------------
MemoryAccess._linear(first_dim, second_dim, name, activation=None, )
---------------functions---------------
_erase_and_write(memory, address, reset_weights, values, )
mlmodels\model_dev\raw\chatbot\addressing.py
----------------methods----------------
---------------functions---------------
_vector_norms(m, )
weighted_softmax(activations, strengths, strengths_op, )
mlmodels\model_dev\raw\chatbot\dnc.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\raw\chatbot\gpt_2.py
----------------methods----------------
---------------functions---------------
attention_mask(nd, ns, )
attn(x, scope, n_state, )
block(x, scope, )
conv1d(x, scope, nf, )
expand_tile(value, size, )
gelu(x, )
merge_states(x, )
mlp(x, scope, n_state, )
model(hparams, X, past=None, scope='model', reuse=False, )
norm(x, scope, )
past_shape( )
positions_for(tokens, past_length, )
shape_list(x, )
softmax(x, axis=-1, )
split_states(x, n, )
mlmodels\model_dev\raw\chatbot\util.py
----------------methods----------------
---------------functions---------------
batch_gather(values, indices, )
batch_invert_permutation(permutations, )
one_hot(length, index, )
mlmodels\model_dev\raw\extractive-summarization\modeling.py
----------------methods----------------
---------------functions---------------
assert_rank(tensor, expected_rank, name=None, )
attention_layer(from_tensor, to_tensor, attention_mask=None, num_attention_heads=1, size_per_head=512, query_act=None, key_act=None, value_act=None, attention_probs_dropout_prob=0.0, initializer_range=0.02, do_return_2d_tensor=False, batch_size=None, from_seq_length=None, to_seq_length=None, )
create_attention_mask_from_input_mask(from_tensor, to_mask, )
create_initializer( initializer_range=0.02, )
dropout(input_tensor, dropout_prob, )
embedding_lookup(input_ids, vocab_size, embedding_size=128, initializer_range=0.02, word_embedding_name="word_embeddings", use_one_hot_embeddings=False, )
embedding_postprocessor(input_tensor, use_token_type=False, token_type_ids=None, token_type_vocab_size=16, token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=0.02, max_position_embeddings=512, dropout_prob=0.1, )
gelu(x, )
get_activation(activation_string, )
get_assignment_map_from_checkpoint(tvars, init_checkpoint, )
get_shape_list(tensor, expected_rank=None, name=None, )
layer_norm(input_tensor, name=None, )
layer_norm_and_dropout(input_tensor, dropout_prob, name=None, )
reshape_from_matrix(output_tensor, orig_shape_list, )
reshape_to_matrix(input_tensor, )
transformer_model(input_tensor, attention_mask=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, intermediate_act_fn=gelu, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, do_return_all_layers=False, )
mlmodels\model_dev\raw\neural-machine-translation\access.py
----------------methods----------------
MemoryAccess._linear(first_dim, second_dim, name, activation=None, )
---------------functions---------------
_erase_and_write(memory, address, reset_weights, values, )
mlmodels\model_dev\raw\neural-machine-translation\addressing.py
----------------methods----------------
---------------functions---------------
_vector_norms(m, )
weighted_softmax(activations, strengths, strengths_op, )
mlmodels\model_dev\raw\neural-machine-translation\dnc.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\raw\neural-machine-translation\gpt_2.py
----------------methods----------------
---------------functions---------------
attention_mask(nd, ns, )
attn(x, scope, n_state, )
block(x, scope, )
conv1d(x, scope, nf, )
expand_tile(value, size, )
gelu(x, )
merge_states(x, )
mlp(x, scope, n_state, )
model(hparams, X, past=None, scope='model', reuse=False, )
norm(x, scope, )
past_shape( )
positions_for(tokens, past_length, )
shape_list(x, )
softmax(x, axis=-1, )
split_states(x, n, )
mlmodels\model_dev\raw\neural-machine-translation\util.py
----------------methods----------------
---------------functions---------------
batch_gather(values, indices, )
batch_invert_permutation(permutations, )
one_hot(length, index, )
mlmodels\model_dev\raw\question-answer\attention_gru.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\raw\stemming\access.py
----------------methods----------------
MemoryAccess._linear(first_dim, second_dim, name, activation=None, )
---------------functions---------------
_erase_and_write(memory, address, reset_weights, values, )
mlmodels\model_dev\raw\stemming\addressing.py
----------------methods----------------
---------------functions---------------
_vector_norms(m, )
weighted_softmax(activations, strengths, strengths_op, )
mlmodels\model_dev\raw\stemming\dnc.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\raw\stemming\util.py
----------------methods----------------
---------------functions---------------
batch_gather(values, indices, )
batch_invert_permutation(permutations, )
one_hot(length, index, )
mlmodels\model_dev\raw\text-augmentation\6.vae-varitional-bahdanau\attention_wrapper.py
----------------methods----------------
AttentionMechanism._maybe_mask(m, seq_len_mask, )
AttentionWrapper.__init__(self, cell, attention_mechanism, temperature=1.0, use_hmean=True, attention_layer_size=None, alignment_history=False, cell_input_fn=None, output_attention=True, initial_cell_state=None, name=None, )
AttentionWrapper._batch_size_checks(self, batch_size, error_message, )
AttentionWrapper._item_or_tuple(self, seq, )
AttentionWrapper.call(self, inputs, state, )
AttentionWrapper.output_size(self, )
AttentionWrapper.state_size(self, )
AttentionWrapper.zero_state(self, batch_size, dtype, )
AttentionWrapperState.clone(self, **kwargs)
BahdanauAttention.__call__(self, query, previous_alignments, )
BahdanauAttention.__init__(self, num_units, memory, memory_sequence_length=None, normalize=False, probability_fn=None, score_mask_value=None, dtype=None, name="BahdanauAttention", )
BahdanauMonotonicAttention.__call__(self, query, previous_alignments, )
BahdanauMonotonicAttention.__init__(self, num_units, memory, memory_sequence_length=None, normalize=False, score_mask_value=None, sigmoid_noise=0., sigmoid_noise_seed=None, score_bias_init=0., mode="parallel", dtype=None, name="BahdanauMonotonicAttention", )
LuongAttention.__call__(self, query, previous_alignments, )
LuongAttention.__init__(self, num_units, memory, memory_sequence_length=None, scale=False, probability_fn=None, score_mask_value=None, dtype=None, name="LuongAttention", )
LuongMonotonicAttention.__call__(self, query, previous_alignments, )
LuongMonotonicAttention.__init__(self, num_units, memory, memory_sequence_length=None, scale=False, score_mask_value=None, sigmoid_noise=0., sigmoid_noise_seed=None, score_bias_init=0., mode="parallel", dtype=None, name="LuongMonotonicAttention", )
_BaseAttentionMechanism.__init__(self, query_layer, memory, probability_fn, memory_sequence_length=None, memory_layer=None, check_inner_dims_defined=True, score_mask_value=None, name=None, )
_BaseAttentionMechanism.alignments_size(self, )
_BaseAttentionMechanism.batch_size(self, )
_BaseAttentionMechanism.initial_alignments(self, batch_size, dtype, )
_BaseAttentionMechanism.keys(self, )
_BaseAttentionMechanism.memory_layer(self, )
_BaseAttentionMechanism.query_layer(self, )
_BaseAttentionMechanism.values(self, )
_BaseMonotonicAttentionMechanism.initial_alignments(self, batch_size, dtype, )
---------------functions---------------
_bahdanau_score(processed_query, keys, normalize, )
_compute_attention(attention_mechanism, cell_output, previous_alignments, attention_layer, temperature, use_hmean, )
_luong_score(query, keys, scale, )
_maybe_mask_score(score, memory_sequence_length, score_mask_value, )
_monotonic_probability_fn(score, previous_alignments, sigmoid_noise, mode, seed=None, )
_prepare_memory(memory, memory_sequence_length, check_inner_dims_defined, )
hardmax(logits, name=None, )
monotonic_attention(p_choose_i, previous_attention, mode, )
safe_cumprod(x, *args, **kwargs)
mlmodels\model_dev\raw\text-augmentation\6.vae-varitional-bahdanau\basic_decoder.py
----------------methods----------------
BasicDecoder.__init__(self, cell, helper, initial_state, latent_vector, output_layer=None, )
BasicDecoder._rnn_output_size(self, )
BasicDecoder.batch_size(self, )
BasicDecoder.initialize(self, name=None, )
BasicDecoder.output_dtype(self, )
BasicDecoder.output_size(self, )
BasicDecoder.step(self, time, inputs, state, name=None, )
---------------functions---------------
mlmodels\model_dev\raw\text-augmentation\6.vae-varitional-bahdanau\decoder.py
----------------methods----------------
Decoder._create(s, d, )
Decoder._t(s, )
Decoder.batch_size(self, )
Decoder.finalize(self, outputs, final_state, sequence_lengths, )
Decoder.initialize(self, name=None, )
Decoder.output_dtype(self, )
Decoder.output_size(self, )
Decoder.step(self, time, inputs, state, name=None, )
Decoder.tracks_own_finished(self, )
---------------functions---------------
_create_zero_outputs(size, dtype, batch_size, )
dynamic_decode(decoder, output_time_major=False, impute_finished=False, maximum_iterations=None, parallel_iterations=32, swap_memory=False, scope=None, )
mlmodels\model_dev\raw\text-classification\63.deep-pyramid-cnn.py
----------------methods----------------
Model.__init__(self, maxlen, dimension_output, vocab_size, embedding_size, kernel_size, num_filters, learning_rate, )
---------------functions---------------
mlmodels\model_dev\raw\text-classification\bert_model.py
----------------methods----------------
BertConfig.__init__(self, vocab_size, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu', hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02, )
BertConfig.from_dict(cls, json_object, )
BertConfig.from_json_file(cls, json_file, )
BertConfig.to_dict(self, )
BertConfig.to_json_string(self, )
BertModel.__init__(self, config, is_training, input_ids, input_mask=None, token_type_ids=None, use_one_hot_embeddings=True, scope=None, )
BertModel.get_all_encoder_layers(self, )
BertModel.get_embedding_output(self, )
BertModel.get_embedding_table(self, )
BertModel.get_pooled_output(self, )
BertModel.get_sequence_output(self, )
BertModel.transpose_for_scores(input_tensor, batch_size, num_attention_heads, seq_length, width, )
---------------functions---------------
assert_rank(tensor, expected_rank, name=None, )
attention_layer(from_tensor, to_tensor, attention_mask=None, num_attention_heads=1, size_per_head=512, query_act=None, key_act=None, value_act=None, attention_probs_dropout_prob=0.0, initializer_range=0.02, do_return_2d_tensor=False, batch_size=None, from_seq_length=None, to_seq_length=None, )
create_attention_mask_from_input_mask(from_tensor, to_mask, )
create_initializer( initializer_range=0.02, )
dropout(input_tensor, dropout_prob, )
embedding_lookup(input_ids, vocab_size, embedding_size=128, initializer_range=0.02, word_embedding_name='word_embeddings', use_one_hot_embeddings=False, )
embedding_postprocessor(input_tensor, use_token_type=False, token_type_ids=None, token_type_vocab_size=16, token_type_embedding_name='token_type_embeddings', use_position_embeddings=True, position_embedding_name='position_embeddings', initializer_range=0.02, max_position_embeddings=512, dropout_prob=0.1, )
gelu(input_tensor, )
get_activation(activation_string, )
get_assignment_map_from_checkpoint(tvars, init_checkpoint, )
get_shape_list(tensor, expected_rank=None, name=None, )
layer_norm(input_tensor, name=None, )
layer_norm_and_dropout(input_tensor, dropout_prob, name=None, )
reshape_from_matrix(output_tensor, orig_shape_list, )
reshape_to_matrix(input_tensor, )
transformer_model(input_tensor, attention_mask=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, intermediate_act_fn=gelu, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, do_return_all_layers=False, )
mlmodels\model_dev\raw\text-classification\dynamic_memory_network.py
----------------methods----------------
DynamicMemoryNetwork.__init__(self, num_classes, learning_rate, decay_steps, decay_rate, sequence_length, story_length, vocab_size, embed_size, hidden_size, num_pass=2, use_gated_gru=True, decode_with_sequences=False, initializer=tf.random_normal_initializer(stddev = 0.1), clip_gradients=5.0, l2_lambda=0.0001, )
DynamicMemoryNetwork.answer_module(self, )
DynamicMemoryNetwork.attention_mechanism_parallel(self, c_full, m, q, i, )
DynamicMemoryNetwork.episodic_memory_module(self, )
DynamicMemoryNetwork.gated_gru(self, c_current, h_previous, g_current, )
DynamicMemoryNetwork.gru_cell(self, Xt, h_t_minus_1, variable_scope, )
DynamicMemoryNetwork.inference(self, )
DynamicMemoryNetwork.input_module(self, )
DynamicMemoryNetwork.instantiate_weights(self, )
DynamicMemoryNetwork.loss(self, l2_lambda=0.0001, )
DynamicMemoryNetwork.question_module(self, )
DynamicMemoryNetwork.train(self, )
DynamicMemoryNetwork.x1Wx2_parallel(self, x1, x2, scope, )
---------------functions---------------
mlmodels\model_dev\raw\text-classification\entity_network.py
----------------methods----------------
EntityNetwork.__init__(self, num_classes, learning_rate, decay_steps, decay_rate, sequence_length, story_length, vocab_size, embed_size, hidden_size, block_size=20, initializer=tf.random_normal_initializer(stddev = 0.1), clip_gradients=5.0, use_bi_lstm=False, )
EntityNetwork.activation(self, features, scope=None, )
EntityNetwork.cell(self, s_t, h_all, w_all, i, )
EntityNetwork.embedding_with_mask(self, )
EntityNetwork.inference(self, )
EntityNetwork.input_encoder_bi_lstm(self, )
EntityNetwork.input_encoder_bow(self, )
EntityNetwork.instantiate_weights(self, )
EntityNetwork.loss(self, l2_lambda=0.0001, )
EntityNetwork.output_module(self, )
EntityNetwork.rnn_story(self, )
EntityNetwork.train(self, )
---------------functions---------------
mlmodels\model_dev\raw\text-classification\gpt_2.py
----------------methods----------------
---------------functions---------------
attention_mask(nd, ns, )
attn(x, scope, n_state, )
block(x, scope, )
conv1d(x, scope, nf, )
expand_tile(value, size, )
gelu(x, )
merge_states(x, )
mlp(x, scope, n_state, )
model(hparams, X, past=None, scope='model', reuse=False, )
norm(x, scope, )
past_shape( )
positions_for(tokens, past_length, )
shape_list(x, )
softmax(x, axis=-1, )
split_states(x, n, )
mlmodels\model_dev\raw\text-classification\modules.py
----------------methods----------------
---------------functions---------------
attention_decoder(inputs, memory, units=None, scope='attention_decoder', reuse=None, )
conv1d(inputs, filters=None, size=1, rate=1, padding='SAME', use_bias=False, activation_fn=None, scope='conv1d', reuse=None, )
conv1d_banks(inputs, K=16, is_training=True, scope='conv1d_banks', reuse=None, )
embed(inputs, vocab_size, dimension, scope='embedding', reuse=None, )
gru(inputs, units=None, bidirection=False, scope='gru', reuse=None, )
highwaynet(inputs, units=None, scope='highwaynet', reuse=None, )
normalize_bn(inputs, decay=0.99, is_training=True, activation_fn=None, scope='normalize_bn', )
normalize_in(inputs, activation_fn=None, scope='normalize_in', )
normalize_layer_norm(inputs, activation_fn=None, scope='normalize_layer_norm', )
prenet(inputs, is_training=True, scope='prenet', reuse=None, )
shift_by_one(inputs, )
mlmodels\model_dev\raw\text-classification\utils.py
----------------methods----------------
---------------functions---------------
build_dataset(words, n_words, )
clearstring(string, )
separate_dataset(trainset, ratio=0.5, )
str_idx(corpus, dic, maxlen, UNK=3, )
mlmodels\model_dev\raw\text-classification\xl.py
----------------methods----------------
---------------functions---------------
_cache_mem(curr_out, prev_mem, mem_len=None, )
_create_mask(qlen, mlen, same_length=False, )
embedding_lookup(lookup_table, x, )
mask_adaptive_embedding_lookup(x, n_token, d_embed, d_proj, cutoffs, initializer, proj_initializer, div_val=1, proj_same_dim=True, scope='adaptive_embed', **kwargs)
mask_adaptive_logsoftmax(hidden, target, n_token, d_embed, d_proj, cutoffs, params, tie_projs, initializer=None, proj_initializer=None, div_val=1, scope='adaptive_softmax', proj_same_dim=True, return_mean=True, **kwargs)
mul_adaptive_embedding_lookup(x, n_token, d_embed, d_proj, cutoffs, initializer, proj_initializer, div_val=1, perms=None, proj_same_dim=True, scope='adaptive_embed', )
mul_adaptive_logsoftmax(hidden, target, n_token, d_embed, d_proj, cutoffs, params, tie_projs, initializer=None, proj_initializer=None, div_val=1, perms=None, proj_same_dim=True, scope='adaptive_softmax', **kwargs)
positional_embedding(pos_seq, inv_freq, bsz=None, )
positionwise_FF(inp, d_model, d_inner, kernel_initializer, scope='ff', )
rel_multihead_attn(w, r, r_w_bias, r_r_bias, attn_mask, mems, d_model, n_head, d_head, kernel_initializer, scope='rel_attn', )
rel_shift(x, )
transformer(dec_inp, mems, n_token, n_layer, d_model, d_embed, n_head, d_head, d_inner, initializer, proj_initializer=None, mem_len=None, cutoffs=[], div_val=1, tie_projs=[], same_length=False, clamp_len=-1, untie_r=False, proj_same_dim=True, scope='transformer', )
mlmodels\model_dev\raw\text-to-speech\caching.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\raw\text-to-speech\utils.py
----------------methods----------------
---------------functions---------------
get_cached(path, )
get_spectrogram(audio_file, )
get_wav(spectrogram, )
griffin_lim(spectrogram, )
invert_spectrogram(spectrogram, )
load_file(path, )
plot_alignment(alignment, e, )
spectrogram2wav(mag, )
text_normalize(text, )
mlmodels\model_dev\raw\text-to-speech\1.tacotron\caching.py
----------------methods----------------
---------------functions---------------
mlmodels\model_dev\raw\text-to-speech\1.tacotron\tacotron.py
----------------methods----------------
Tacotron.__init__(self, reuse=None, )
---------------functions---------------
bn(inputs, is_training=True, activation_fn=None, scope='bn', reuse=None, )
conv1d_banks(inputs, K=16, is_training=True, scope='conv1d_banks', )
guided_attention( g=0.2, )
highwaynet(inputs, num_units=None, scope='highwaynet', )
learning_rate_decay(init_lr, global_step, warmup_steps=4000.0, )
prenet(inputs, num_units=None, is_training=True, scope='prenet', )
mlmodels\model_dev\raw\text-to-speech\1.tacotron\utils.py
----------------methods----------------
---------------functions---------------
get_cached(path, )
get_spectrogram(audio_file, )
get_wav(spectrogram, )
griffin_lim(spectrogram, )
invert_spectrogram(spectrogram, )
load_file(path, )
plot_alignment(alignment, )
spectrogram2wav(mag, )
text_normalize(text, )
mlmodels\model_dev\raw\topic-model\modeling.py
----------------methods----------------
---------------functions---------------
_cache_mem(curr_out, prev_mem, mem_len, reuse_len=None, )
_create_mask(qlen, mlen, dtype=tf.float32, same_length=False, )
abs_attn_core(q_head, k_head, v_head, attn_mask, dropatt, is_training, scale, )
classification_loss(hidden, labels, n_class, initializer, scope, reuse=None, return_logits=False, )
embedding_lookup(x, n_token, d_embed, initializer, use_tpu=True, scope='embedding', reuse=None, dtype=tf.float32, )
gelu(x, )
head_projection(h, d_model, n_head, d_head, kernel_initializer, name, )
lm_loss(hidden, target, n_token, d_model, initializer, lookup_table=None, tie_weight=False, bi_data=True, use_tpu=False, )
multihead_attn(q, k, v, attn_mask, d_model, n_head, d_head, dropout, dropatt, is_training, kernel_initializer, residual=True, scope='abs_attn', reuse=None, )
positional_embedding(pos_seq, inv_freq, bsz=None, )
positionwise_ffn(inp, d_model, d_inner, dropout, kernel_initializer, activation_type='relu', scope='ff', is_training=True, reuse=None, )
post_attention(h, attn_vec, d_model, n_head, d_head, dropout, is_training, kernel_initializer, residual=True, )
regression_loss(hidden, labels, initializer, scope, reuse=None, return_logits=False, )
rel_attn_core(q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask, dropatt, is_training, scale, )
rel_multihead_attn(h, r, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed, attn_mask, mems, d_model, n_head, d_head, dropout, dropatt, is_training, kernel_initializer, scope='rel_attn', reuse=None, )
rel_shift(x, klen=-1, )
relative_positional_encoding(qlen, klen, d_model, clamp_len, attn_type, bi_data, bsz=None, dtype=None, )
summarize_sequence(summary_type, hidden, d_model, n_head, d_head, dropout, dropatt, input_mask, is_training, initializer, scope=None, reuse=None, use_proj=True, )
transformer_xl(inp_k, n_token, n_layer, d_model, n_head, d_head, d_inner, dropout, dropatt, attn_type, bi_data, initializer, is_training, mem_len=None, inp_q=None, mems=None, same_length=False, clamp_len=-1, untie_r=False, use_tpu=True, input_mask=None, perm_mask=None, seg_id=None, reuse_len=None, ff_activation='relu', target_mapping=None, use_bfloat16=False, scope='transformer', **kwargs)
two_stream_rel_attn(h, g, r, mems, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed, attn_mask_h, attn_mask_g, target_mapping, d_model, n_head, d_head, dropout, dropatt, is_training, kernel_initializer, scope='rel_attn', )
mlmodels\model_dev\raw\topic-model\utils.py
----------------methods----------------
---------------functions---------------
build_dataset(words, n_words, )
clearstring(string, )
separate_dataset(trainset, ratio=0.5, )
str_idx(corpus, dic, maxlen, UNK=3, )
mlmodels\model_dev\raw\topic-model\xlnet.py
----------------methods----------------
RunConfig.__init__(self, is_training, use_tpu, use_bfloat16, dropout, dropatt, init='normal', init_range=0.1, init_std=0.02, mem_len=None, reuse_len=None, bi_data=False, clamp_len=-1, same_length=False, )
XLNetConfig.__init__(self, FLAGS=None, json_path=None, )
XLNetConfig.init_from_flags(self, FLAGS, )
XLNetConfig.init_from_json(self, json_path, )
XLNetConfig.to_json(self, json_path, )
XLNetModel.__init__(self, xlnet_config, run_config, input_ids, seg_ids, input_mask, mems=None, perm_mask=None, target_mapping=None, inp_q=None, **kwargs)
XLNetModel.get_embedding_table(self, )
XLNetModel.get_initializer(self, )
XLNetModel.get_new_memory(self, )
XLNetModel.get_pooled_out(self, summary_type, use_summ_proj=True, )
XLNetModel.get_sequence_output(self, )
---------------functions---------------
_get_initializer(FLAGS, )
create_run_config(is_training, is_finetune, FLAGS, )
mlmodels\model_dev\raw\vectorizer\utils.py
----------------methods----------------
---------------functions---------------
build_dataset(words, n_words, )
clearstring(string, )
separate_dataset(trainset, ratio=0.5, )
str_idx(corpus, dic, maxlen, UNK=3, )
mlmodels\model_flow\__init__.py
----------------methods----------------
---------------functions---------------
mlmodels\model_flow\dev\mlflow_run.py
----------------methods----------------
---------------functions---------------
cli_load_arguments( )
log_scalar(name, value, step, )
mlflow_add(args, )
session_init(args, )
tfboard_add_weights(step, )
tfboard_writer_create( )
mlmodels\model_gluon\gluon_automl.py
----------------methods----------------
Model.__init__(self, model_pars=None, compute_pars=None, )
---------------functions---------------
_config_process(config, )
get_params( choice="", data_path="dataset/", config_mode="test", **kw)
path_setup( out_folder="", sublevel=0, data_path="dataset/", )
test( data_path="dataset/", pars_choice="json", )
mlmodels\model_gluon\gluon_deepar.py
----------------methods----------------
Model.__init__(self, model_pars=None, data_pars=None, compute_pars=None, **kwargs)
---------------functions---------------
get_params( choice="", data_path="dataset/timeseries/", config_mode="test", **kw)
test( data_path="dataset/", choice="", )
mlmodels\model_gluon\gluon_ffn.py
----------------methods----------------
Model.__init__(self, model_pars=None, data_pars=None, compute_pars=None, **kwargs)
---------------functions---------------
get_params( choice="", data_path="dataset/timeseries/", config_mode="test", **kw)
test( data_path="dataset/", choice="test01", )
mlmodels\model_gluon\gluon_prophet.py
----------------methods----------------
Model.__init__(self, model_pars=None, data_pars=None, compute_pars=None, )
---------------functions---------------
get_params( choice="", data_path="dataset/", config_mode="test", **kw)
test( data_path="dataset/", choice="", )
mlmodels\model_gluon\util.py
----------------methods----------------
Model_empty.__init__(self, model_pars=None, compute_pars=None, )
---------------functions---------------
_config_process(data_path, config_mode="test", )
fit(model, sess=None, data_pars=None, model_pars=None, compute_pars=None, out_pars=None, session=None, **kwargs)
get_dataset(data_pars, )
load(path, )
metrics(ypred, data_pars, compute_pars=None, out_pars=None, **kwargs)
plot_predict(item_metrics, out_pars=None, )
plot_prob_forecasts(ypred, out_pars=None, )
predict(model, sess=None, data_pars=None, compute_pars=None, out_pars=None, **kwargs)
save(model, path, )
mlmodels\model_gluon\util_autogluon.py
----------------methods----------------
Model_empty.__init__(self, model_pars=None, compute_pars=None, )
---------------functions---------------
_get_dataset_from_aws( **kw)
fit(model, data_pars=None, model_pars=None, compute_pars=None, out_pars=None, session=None, **kwargs)
get_dataset( **kw)
import_data_fromfile( **kw)
load(path, )
log( n=0, m=1, *s)
metrics(model, ypred, ytrue, data_pars, compute_pars=None, out_pars=None, **kwargs)
os_package_root_path(filepath, sublevel=0, path_add="", )
predict(model, data_pars, compute_pars=None, out_pars=None, **kwargs)
save(model, out_pars, )
mlmodels\model_gluon\__init__.py
----------------methods----------------
---------------functions---------------
mlmodels\model_keras\01_deepctr.py
----------------methods----------------
Model.__init__(self, model_pars=None, data_pars=None, compute_pars=None, **kwargs)
---------------functions---------------
_config_process(config, )
_preprocess_criteo(df, **kw)
_preprocess_movielens(df, **kw)
config_load(data_path, file_default, config_mode, )
fit(model, session=None, compute_pars=None, data_pars=None, out_pars=None, **kwargs)
get_dataset( data_pars=None, **kw)
get_params( choice="", data_path="dataset/", config_mode="test", **kw)
metrics(ypred, ytrue=None, session=None, compute_pars=None, data_pars=None, out_pars=None, **kwargs)
path_setup( out_folder="", sublevel=0, data_path="dataset/", )
predict(model, session=None, compute_pars=None, data_pars=None, out_pars=None, **kwargs)
reset_model( )
test( data_path="dataset/", pars_choice=0, )
mlmodels\model_keras\02_cnn.py
----------------methods----------------
Model.__init__(self, model_pars=None, compute_pars=None, data_pars=None, )
---------------functions---------------
fit(model, data_pars=None, model_pars=None, compute_pars=None, out_pars=None, session=None, **kwargs)
get_dataset(data_pars, **kw)
get_params( choice=0, data_path="dataset/", **kw)
load( load_pars={}, )
log( n=0, m=1, *s)
metrics(ypred, model, session=None, model_pars=None, data_pars=None, compute_pars=None, out_pars=None, **kwargs)
os_package_root_path(filepath, sublevel=0, path_add="", )
predict(model, session=None, data_pars=None, compute_pars=None, out_pars=None, **kwargs)
save( model=None, session=None, save_pars={}, )
test( data_path="dataset/", )
test2( data_path="dataset/", out_path="keras/keras.png", reset=True, )
mlmodels\model_keras\armdn.py
----------------methods----------------
Model.__init__(self, model_pars=None, data_pars=None, compute_pars=None, )
---------------functions---------------
fit( model=None, data_pars={}, compute_pars={}, out_pars={}, **kw)
fit_metrics(model, data_pars=None, compute_pars=None, out_pars=None, model_pars=None, **kw)
get_dataset(data_params, )
get_params( param_pars={}, **kw)
load( load_pars={}, **kw)
metrics_plot(metrics_params, )
predict( model=None, model_pars=None, sess=None, data_pars=None, compute_pars=None, out_pars=None, **kwargs)
reset_model( )