diff --git a/renaissance/README.md b/renaissance/README.md index dc9f53f9..59c23504 100644 --- a/renaissance/README.md +++ b/renaissance/README.md @@ -1,4 +1,4 @@ -This directory contains the scripts required to run and get the results of the Renaissance Benchmark taking Prometheus metrics. + # About The Benchmark The Renaissance Benchmark Suite aggregates common modern JVM workloads, including, but not limited to, Big Data, machine-learning, and functional programming. The suite is intended to be used to optimize just-in-time compilers, interpreters, GCs, and for tools such as profilers, debuggers, or static analyzers, and even different hardware. It is intended to be an open-source, collaborative project, in which the community can propose and improve benchmark workloads. @@ -6,15 +6,8 @@ More information about this benchmark can be found on [Renaissance](https://gith # Prerequisites To generate the results from the Renaissance Benchmark,we need to: - -Firstly,install a kubernetes cluster(here minikube),which can be done from [Minikube](https://minikube.sigs.k8s.io/docs/start/) or for a more convinient process can be installed from the Kruize Autotune repo. [Autotune Installation](https://github.com/kruize/autotune/blob/master/docs/autotune_install.md). - --Secondly,we need to install prometheus on minikube.This can be done through the Autotune repo itself(refer the installation process) [Autotune Installation](https://github.com/kruize/autotune/blob/master/docs/autotune_install.md). + - Install minikube(kubernetes cluster),which can be done from [Minikube](https://minikube.sigs.k8s.io/docs/start/) and then install prometheus on the minikube cluster. This can be done by following the steps in the [Autotune Installation](https://github.com/kruize/autotune/blob/master/docs/autotune_install.md). - -Then, we need to clone the scripts required for running the renaissance benchmark which can be done from [Benchmarks](https://github.com/Prakalp23/benchmarks/tree/renaissance) repository.This contains a number of performance scripts that we have built for the Renaissance benchmark to collect the data from the Prometheus metrics and parse the results. - Then,clone this repo for a reference to results and for getting the Python scripts to determine the accuracy of various ML algorithms on the dataset collected - - `git clone https://github.com/Prakalp23/autotune-results.git` - You,also need to install a driver of your choice for running renaissance onto your local system Download a driver (docker or podman) @@ -27,11 +20,11 @@ To generate the results from the Renaissance Benchmark,we need to: To run the benchmark on kubernetes cluster to collect performance metrics - ./renaissance-run.sh --clustertype=CLUSTER_TYPE -s BENCHMARK_SERVER -e RESULTS_DIR_PATH [-w WARMUPS] [-m MEASURES] [-i TOTAL_INST] [--iter=TOTAL_ITR] [-r= set redeploy to true] [-n NAMESPACE] [-g RENAISSANCE_IMAGE] [--cpureq=CPU_REQ] [--memreq=MEM_REQ] [--cpulim=CPU_LIM] [--memlim=MEM_LIM] [-b BENCHMARKS] [-R REPETITIONS] [-d DURATION] " + ./scripts/perf/renaissance-run.sh --clustertype=CLUSTER_TYPE -s BENCHMARK_SERVER -e RESULTS_DIR_PATH [-w WARMUPS] [-m MEASURES] [-i TOTAL_INST] [--iter=TOTAL_ITR] [-r= set redeploy to true] [-n NAMESPACE] [-g RENAISSANCE_IMAGE] [--cpureq=CPU_REQ] [--memreq=MEM_REQ] [--cpulim=CPU_LIM] [--memlim=MEM_LIM] [-b BENCHMARKS] [-R REPETITIONS] [-d DURATION] " - **CLUSTER_TYPE**: Type of cluster. Supports openshift , minikube. - **BENCHMARK_SERVER**: Name of the cluster you are using -- **RESULTS_DIR**: Directory to store results +- **RESULTS_DIR_PATH**: Directory to store results - **DURATION**: Duration of each warmup and measurement run. - **WARMUPS**: No.of warmup runs. - **MEASURES**: No.of measurement runs. @@ -41,18 +34,16 @@ To generate the results from the Renaissance Benchmark,we need to: - **CPU_LIM**: CPU limit - **MEM_LIM**: Memory limit - **RENAISSANCE_IMAGE**:prakalp23/renaissance1041:latest +- **BENCHMARKS**:Choice of a microbenchmark from Renaissance [Microbenchmarks](https://github.com/renaissance-benchmarks/renaissance) Example:./renaissance-run.sh --clustertype=minikube -s localhost -e ./results -w 1 -m 1 -i 1 --iter=1 -r -n default --cpureq=1.5 --memreq=3152M --cpulim=1.5 --memlim=3152M -b "page-rank" -g prakalp23/renaissance1041:latest -d 60 # The Experiment Results - The experiment results,the generated csv file,and the scripts to test the accuracy of various ML Algorithms on the given dataset can be found on the Autotune-results page + The experiment results using the above scripts generates a csv file which contains the resource usage information for the Renaissance Benchmark can be found here [Renaissance Results](https://github.com/Prakalp23/autotune-results/tree/renaissance/Renaissance) - # Issues - To run the Renaissance benchmark,you need to have it installed locally on your system,and have use the -g command everytime you trigger a run using - `./renaissance-run.sh --clustertype=minikube -s localhost -e ./results -w 1 -m 1 -i 1 --iter=1 -r -n default --cpureq=1.5 --memreq=3152M --cpulim=1.5 --memlim=3152M -b "page-rank" -g prakalp23/renaissance1041:latest -d 60` ## Scripts Details