-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFastapi.py
37 lines (30 loc) · 1.26 KB
/
Fastapi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import csv
import json
import random
import numpy as np
from scipy.special import softmax
from transformers import AutoModelForSequenceClassification, AutoTokenizer
loaded_model = AutoModelForSequenceClassification.from_pretrained('C:/Users/Yash/PycharmProjects/Inheritance_ML')
loaded_tokenizer = AutoTokenizer.from_pretrained('C:/Users/Yash/PycharmProjects/Inheritance_ML')
app = FastAPI()
class InputText(BaseModel):
headline: str
# Read headlines from the CSV file
csv_file_path = 'C:/Users/Yash/PycharmProjects/Inheritance_ML/news.csv' # Replace with your CSV file path
headlines = []
fluctuations = []
with open(csv_file_path, 'r', encoding='utf-8') as file:
reader = csv.DictReader(file)
for row in reader:
headlines.append(row['News']) # Assuming 'News' is the column with news headlines
fluctuations.append(row['Fluctuation'])
@app.get("/")
def predict_sentiment():
# Select a random headline from the dataset
i = random.randint(0, len(headlines) - 1)
random_headline = headlines[i]
intensity = fluctuations[i]
# Return JSON response
return {"headline": random_headline, "sentiment_intensity": intensity}