forked from VICO-UoE/DatasetCondensation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
238 lines (183 loc) · 13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import time
import copy
import argparse
import numpy as np
import torch
import torch.nn as nn
from torchvision.utils import save_image
from utils import get_loops, get_dataset, get_network, get_eval_pool, evaluate_synset, get_daparam, match_loss, get_time, TensorDataset, epoch, DiffAugment, ParamDiffAug
def main():
parser = argparse.ArgumentParser(description='Parameter Processing')
parser.add_argument('--method', type=str, default='DC', help='DC/DSA')
parser.add_argument('--dataset', type=str, default='CIFAR10', help='dataset')
parser.add_argument('--model', type=str, default='ConvNet', help='model')
parser.add_argument('--ipc', type=int, default=1, help='image(s) per class')
parser.add_argument('--eval_mode', type=str, default='S', help='eval_mode') # S: the same to training model, M: multi architectures, W: net width, D: net depth, A: activation function, P: pooling layer, N: normalization layer,
parser.add_argument('--num_exp', type=int, default=5, help='the number of experiments')
parser.add_argument('--num_eval', type=int, default=20, help='the number of evaluating randomly initialized models')
parser.add_argument('--epoch_eval_train', type=int, default=300, help='epochs to train a model with synthetic data')
parser.add_argument('--Iteration', type=int, default=1000, help='training iterations')
parser.add_argument('--lr_img', type=float, default=0.1, help='learning rate for updating synthetic images')
parser.add_argument('--lr_net', type=float, default=0.01, help='learning rate for updating network parameters')
parser.add_argument('--batch_real', type=int, default=256, help='batch size for real data')
parser.add_argument('--batch_train', type=int, default=256, help='batch size for training networks')
parser.add_argument('--init', type=str, default='noise', help='noise/real: initialize synthetic images from random noise or randomly sampled real images.')
parser.add_argument('--dsa_strategy', type=str, default='None', help='differentiable Siamese augmentation strategy')
parser.add_argument('--data_path', type=str, default='data', help='dataset path')
parser.add_argument('--save_path', type=str, default='result', help='path to save results')
parser.add_argument('--dis_metric', type=str, default='ours', help='distance metric')
args = parser.parse_args()
args.outer_loop, args.inner_loop = get_loops(args.ipc)
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
args.dsa_param = ParamDiffAug()
args.dsa = True if args.method == 'DSA' else False
if not os.path.exists(args.data_path):
os.mkdir(args.data_path)
if not os.path.exists(args.save_path):
os.mkdir(args.save_path)
eval_it_pool = np.arange(0, args.Iteration+1, 500).tolist() if args.eval_mode == 'S' or args.eval_mode == 'SS' else [args.Iteration] # The list of iterations when we evaluate models and record results.
print('eval_it_pool: ', eval_it_pool)
channel, im_size, num_classes, class_names, mean, std, dst_train, dst_test, testloader = get_dataset(args.dataset, args.data_path)
model_eval_pool = get_eval_pool(args.eval_mode, args.model, args.model)
accs_all_exps = dict() # record performances of all experiments
for key in model_eval_pool:
accs_all_exps[key] = []
data_save = []
for exp in range(args.num_exp):
print('\n================== Exp %d ==================\n '%exp)
print('Hyper-parameters: \n', args.__dict__)
print('Evaluation model pool: ', model_eval_pool)
''' organize the real dataset '''
images_all = []
labels_all = []
indices_class = [[] for c in range(num_classes)]
images_all = [torch.unsqueeze(dst_train[i][0], dim=0) for i in range(len(dst_train))]
labels_all = [dst_train[i][1] for i in range(len(dst_train))]
for i, lab in enumerate(labels_all):
indices_class[lab].append(i)
images_all = torch.cat(images_all, dim=0).to(args.device)
labels_all = torch.tensor(labels_all, dtype=torch.long, device=args.device)
for c in range(num_classes):
print('class c = %d: %d real images'%(c, len(indices_class[c])))
def get_images(c, n): # get random n images from class c
idx_shuffle = np.random.permutation(indices_class[c])[:n]
return images_all[idx_shuffle]
for ch in range(channel):
print('real images channel %d, mean = %.4f, std = %.4f'%(ch, torch.mean(images_all[:, ch]), torch.std(images_all[:, ch])))
''' initialize the synthetic data '''
image_syn = torch.randn(size=(num_classes*args.ipc, channel, im_size[0], im_size[1]), dtype=torch.float, requires_grad=True, device=args.device)
label_syn = torch.tensor([np.ones(args.ipc)*i for i in range(num_classes)], dtype=torch.long, requires_grad=False, device=args.device).view(-1) # [0,0,0, 1,1,1, ..., 9,9,9]
if args.init == 'real':
print('initialize synthetic data from random real images')
for c in range(num_classes):
image_syn.data[c*args.ipc:(c+1)*args.ipc] = get_images(c, args.ipc).detach().data
else:
print('initialize synthetic data from random noise')
''' training '''
optimizer_img = torch.optim.SGD([image_syn, ], lr=args.lr_img, momentum=0.5) # optimizer_img for synthetic data
optimizer_img.zero_grad()
criterion = nn.CrossEntropyLoss().to(args.device)
print('%s training begins'%get_time())
for it in range(args.Iteration+1):
''' Evaluate synthetic data '''
if it in eval_it_pool:
for model_eval in model_eval_pool:
print('-------------------------\nEvaluation\nmodel_train = %s, model_eval = %s, iteration = %d'%(args.model, model_eval, it))
if args.dsa:
args.epoch_eval_train = 1000
args.dc_aug_param = None
print('DSA augmentation strategy: \n', args.dsa_strategy)
print('DSA augmentation parameters: \n', args.dsa_param.__dict__)
else:
args.dc_aug_param = get_daparam(args.dataset, args.model, model_eval, args.ipc) # This augmentation parameter set is only for DC method. It will be muted when args.dsa is True.
print('DC augmentation parameters: \n', args.dc_aug_param)
if args.dsa or args.dc_aug_param['strategy'] != 'none':
args.epoch_eval_train = 1000 # Training with data augmentation needs more epochs.
else:
args.epoch_eval_train = 300
accs = []
for it_eval in range(args.num_eval):
net_eval = get_network(model_eval, channel, num_classes, im_size).to(args.device) # get a random model
image_syn_eval, label_syn_eval = copy.deepcopy(image_syn.detach()), copy.deepcopy(label_syn.detach()) # avoid any unaware modification
_, acc_train, acc_test = evaluate_synset(it_eval, net_eval, image_syn_eval, label_syn_eval, testloader, args)
accs.append(acc_test)
print('Evaluate %d random %s, mean = %.4f std = %.4f\n-------------------------'%(len(accs), model_eval, np.mean(accs), np.std(accs)))
if it == args.Iteration: # record the final results
accs_all_exps[model_eval] += accs
''' visualize and save '''
save_name = os.path.join(args.save_path, 'vis_%s_%s_%s_%dipc_exp%d_iter%d.png'%(args.method, args.dataset, args.model, args.ipc, exp, it))
image_syn_vis = copy.deepcopy(image_syn.detach().cpu())
for ch in range(channel):
image_syn_vis[:, ch] = image_syn_vis[:, ch] * std[ch] + mean[ch]
image_syn_vis[image_syn_vis<0] = 0.0
image_syn_vis[image_syn_vis>1] = 1.0
save_image(image_syn_vis, save_name, nrow=args.ipc) # Trying normalize = True/False may get better visual effects.
''' Train synthetic data '''
net = get_network(args.model, channel, num_classes, im_size).to(args.device) # get a random model
net.train()
net_parameters = list(net.parameters())
optimizer_net = torch.optim.SGD(net.parameters(), lr=args.lr_net) # optimizer_img for synthetic data
optimizer_net.zero_grad()
loss_avg = 0
args.dc_aug_param = None # Mute the DC augmentation when learning synthetic data (in inner-loop epoch function) in oder to be consistent with DC paper.
for ol in range(args.outer_loop):
''' freeze the running mu and sigma for BatchNorm layers '''
# Synthetic data batch, e.g. only 1 image/batch, is too small to obtain stable mu and sigma.
# So, we calculate and freeze mu and sigma for BatchNorm layer with real data batch ahead.
# This would make the training with BatchNorm layers easier.
BN_flag = False
BNSizePC = 16 # for batch normalization
for module in net.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
BN_flag = True
if BN_flag:
img_real = torch.cat([get_images(c, BNSizePC) for c in range(num_classes)], dim=0)
net.train() # for updating the mu, sigma of BatchNorm
output_real = net(img_real) # get running mu, sigma
for module in net.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
module.eval() # fix mu and sigma of every BatchNorm layer
''' update synthetic data '''
loss = torch.tensor(0.0).to(args.device)
for c in range(num_classes):
img_real = get_images(c, args.batch_real)
lab_real = torch.ones((img_real.shape[0],), device=args.device, dtype=torch.long) * c
img_syn = image_syn[c*args.ipc:(c+1)*args.ipc].reshape((args.ipc, channel, im_size[0], im_size[1]))
lab_syn = torch.ones((args.ipc,), device=args.device, dtype=torch.long) * c
if args.dsa:
seed = int(time.time() * 1000) % 100000
img_real = DiffAugment(img_real, args.dsa_strategy, seed=seed, param=args.dsa_param)
img_syn = DiffAugment(img_syn, args.dsa_strategy, seed=seed, param=args.dsa_param)
output_real = net(img_real)
loss_real = criterion(output_real, lab_real)
gw_real = torch.autograd.grad(loss_real, net_parameters)
gw_real = list((_.detach().clone() for _ in gw_real))
output_syn = net(img_syn)
loss_syn = criterion(output_syn, lab_syn)
gw_syn = torch.autograd.grad(loss_syn, net_parameters, create_graph=True)
loss += match_loss(gw_syn, gw_real, args)
optimizer_img.zero_grad()
loss.backward()
optimizer_img.step()
loss_avg += loss.item()
if ol == args.outer_loop - 1:
break
''' update network '''
image_syn_train, label_syn_train = copy.deepcopy(image_syn.detach()), copy.deepcopy(label_syn.detach()) # avoid any unaware modification
dst_syn_train = TensorDataset(image_syn_train, label_syn_train)
trainloader = torch.utils.data.DataLoader(dst_syn_train, batch_size=args.batch_train, shuffle=True, num_workers=0)
for il in range(args.inner_loop):
epoch('train', trainloader, net, optimizer_net, criterion, args, aug = True if args.dsa else False)
loss_avg /= (num_classes*args.outer_loop)
if it%10 == 0:
print('%s iter = %04d, loss = %.4f' % (get_time(), it, loss_avg))
if it == args.Iteration: # only record the final results
data_save.append([copy.deepcopy(image_syn.detach().cpu()), copy.deepcopy(label_syn.detach().cpu())])
torch.save({'data': data_save, 'accs_all_exps': accs_all_exps, }, os.path.join(args.save_path, 'res_%s_%s_%s_%dipc.pt'%(args.method, args.dataset, args.model, args.ipc)))
print('\n==================== Final Results ====================\n')
for key in model_eval_pool:
accs = accs_all_exps[key]
print('Run %d experiments, train on %s, evaluate %d random %s, mean = %.2f%% std = %.2f%%'%(args.num_exp, args.model, len(accs), key, np.mean(accs)*100, np.std(accs)*100))
if __name__ == '__main__':
main()