-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths4.py
143 lines (120 loc) · 2.92 KB
/
s4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn.functional as F
from einops import rearrange
# ---------------------------
# General SSM utils.
# ---------------------------
def random_ssm(N):
A = torch.randn(N, N)
B = torch.randn(N, N)
C = torch.randn(N, N)
return A, B, C
def discretize(A, B, C, seq_len):
"""
Args:
A: [N,N]
B: [N,N]
C: [N,N]
seq_len: int
Returns:
dA: [N,N]
dB: [N,N]
C: [N,N]
"""
N = A.size(0)
I = torch.eye(N).to(A)
step = 1.0 / seq_len
dB = (I - 0.5 * step * A).inverse() # [N,N]
dA = dB @ (I + 0.5 * step * A) # [N,N]
dB = (dB * step) @ B # [N,N]
return dA, dB, C
# -----------------------
# Conv-style SSM
# -----------------------
def ssm_conv_kernel(dA, dB, dC, L):
"""
Args:
dA: [N,N]
dB: [N,N]
dC: [N,N]
L: int
Returns:
[N,N,L]
"""
kernel = [dC @ torch.matrix_power(dA, l) @ dB for l in reversed(range(L))]
kernel = torch.stack(kernel, dim=-1)
return kernel
def naive_conv(u, kernel):
"""
Args:
u: [B,L,N]
kernel: [L,N,N]
Returns:
[B,L,N]
"""
seq_len = u.size(1)
u = F.pad(u, (0, 0, seq_len-1, 0))
u = rearrange(u, "B L N -> B N L")
y = F.conv1d(u, kernel)
y = rearrange(y, "B N L -> B L N")
return y
def ssm_conv(A, B, C, u):
"""
Args:
A: [N,N]
B: [N,N]
C: [N,N]
u: [B,L,N]
Returns:
[B,L,N]
"""
seq_len = u.size(1)
dA, dB, C = discretize(A, B, C, seq_len)
K = ssm_conv_kernel(dA, dB, C, seq_len)
ys = naive_conv(u, K)
return ys
# -----------------------
# RNN-style SSM
# -----------------------
def ssm_scan(A, B, C, u):
"""
Args:
A: [N,N]
B: [N,N]
C: [N,N]
u: [B,L,N]
Returns:
[B,L,N]
"""
bs, seq_len, d_state = u.shape
dA, dB, C = discretize(A, B, C, seq_len)
x = torch.zeros((bs, d_state), device=u.device)
ys = []
for i in range(seq_len):
dA_x = torch.einsum("nd,bd->bn", [dA, x]) # [B,N]
dB_u = torch.einsum("nd,bd->bn", [dB, u[:, i]]) # [B,N]
x = dA_x + dB_u # [B,N]
y = torch.einsum("nd,bd->bn", [C, x]) # [B,N]
ys.append(y)
ys = torch.stack(ys, dim=1) # [B,L,N]
return ys
# -----------------------
# Hippo
# -----------------------
def make_hippo(d_state):
P = torch.sqrt(1 + 2 * torch.arange(d_state)) # [N,]
A = P[:, None] * P[None, :] # [N,N]
A = torch.tril(A) - torch.diag(torch.arange(d_state)) # [N,N]
return -A
if __name__ == "__main__":
N = 5
A, B, C = random_ssm(5)
dA, dB, C = discretize(A, B, C, seq_len=10)
u = torch.randn(2, 3, N)
# y = ssm_scan(A, B, C, u)
# print(y)
# y = ssm_conv(A, B, C, u)
# print(y)
A = make_hippo(N)
dA, dB, C = discretize(A, B, C, seq_len=10)
print(dA)