-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
202 lines (170 loc) · 6.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import torch
from models.unet.standard import UNet
from models.unet.auxiliary import AuxiliaryUNet, TimeEmbeddingAuxiliaryUNet
from data import get_data_loader
from diffusion.gaussian import GaussianDiffusion
from diffusion.auxiliary import InfoMaxDiffusion
from diffusion.learned import LearnedGaussianDiffusion
from models.modules.encoders import ConvGaussianEncoder
from data.fashion_mnist import FashionMNISTConfig
from trainer.gaussian import Trainer
from misc.eval.sample import sample, viz_latents
# ----------------------------------------------------------------------------
def make_parser():
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(title='Commands')
# train
train_parser = subparsers.add_parser('train')
train_parser.set_defaults(func=train)
train_parser.add_argument('--model', default='gaussian',
choices=['gaussian', 'infomax', 'learned'],
help='type of ddpm model to run')
train_parser.add_argument('--dataset', default='fashion-mnist',
choices=['fashion-mnist', 'mnist'], help='training dataset')
train_parser.add_argument('--checkpoint', default=None,
help='path to training checkpoint')
train_parser.add_argument('-e', '--epochs', type=int, default=None,
help='number of epochs to train')
train_parser.add_argument('--batch-size', type=int, default=None,
help='training batch size')
train_parser.add_argument('--learning-rate', type=float, default=None,
help='learning rate')
train_parser.add_argument('--optimizer', default='adam', choices=['adam'],
help='optimization algorithm')
train_parser.add_argument('--folder', default='.',
help='folder where logs will be stored')
# eval
eval_parser = subparsers.add_parser('eval')
eval_parser.set_defaults(func=eval)
eval_parser.add_argument('--model', default='gaussian',
choices=['gaussian', 'infomax', 'learned'],
help='type of ddpm model to run')
eval_parser.add_argument('--dataset', default='fashion-mnist',
choices=['fashion-mnist', 'mnist'], help='training dataset')
eval_parser.add_argument('--checkpoint', required=True,
help='path to training checkpoint')
eval_parser.add_argument('--deterministic', action='store_true',
default=False, help='run in deterministic mode')
eval_parser.add_argument('--sample', type=int, default=None,
help='how many samples to draw')
eval_parser.add_argument('--interpolate', type=int, default=None,
help='how many samples to interpolate')
eval_parser.add_argument('--latents', type=int, default=None,
help='how many points to visualize in latent space')
eval_parser.add_argument('--folder', default='.',
help='folder where output will be stored')
eval_parser.add_argument('--name', default='test-run',
help='name of the files that will be saved')
return parser
# ----------------------------------------------------------------------------
def train(args):
device = "cuda" if torch.cuda.is_available() else "cpu"
config = get_config(args)
model = get_model(config, device)
if args.checkpoint:
model.load(args.checkpoint)
config.epochs = args.epochs or config.epochs
config.batch_size = args.batch_size or config.batch_size
config.learning_rate = args.learning_rate or config.learning_rate
config.optimizer = args.optimizer or config.optimizer
trainer = Trainer(
model,
lr=config.learning_rate,
optimizer=config.optimizer,
folder=args.folder,
from_checkpoint=args.checkpoint
)
data_loader = get_data_loader(config.name, config.batch_size)
trainer.fit(data_loader, config.epochs)
def eval(args):
device = "cuda" if torch.cuda.is_available() else "cpu"
config = get_config(args)
model = get_model(config, device)
model.load(args.checkpoint, eval=True)
data_loader = get_data_loader(
config.name, 16, train=False, labels=True
)
if args.sample:
path = f'{args.folder}/{args.name}-samples.png'
sample(model, args.sample, path, args.deterministic)
if args.latents:
path = f'{args.folder}/{args.name}-latents.png'
viz_latents(model, data_loader, args.latents, path)
# ----------------------------------------------------------------------------
def get_config(args):
if args.dataset == 'fashion-mnist':
return FashionMNISTConfig
else:
raise ValueError()
def get_model(config, device):
if args.model == 'gaussian':
model = create_gaussian(config, device)
elif args.model == 'infomax':
model = create_infomax(config, device)
elif args.model == 'learned':
model = create_learned(config, device)
else:
raise ValueError(args.model)
return model
def create_gaussian(config, device):
img_shape = [config.img_channels, config.img_dim, config.img_dim]
model = UNet(
channels=config.unet_channels,
chan_mults=config.unet_mults,
img_shape=img_shape,
)
model.to(device)
return GaussianDiffusion(
model=model,
img_shape=img_shape,
timesteps=config.timesteps,
device=device,
)
def create_infomax(config, device):
img_shape = [config.img_channels, config.img_dim, config.img_dim]
a_shape = [config.a_dim, 1, 1]
a_encoder = ConvGaussianEncoder(
img_shape=img_shape,
a_shape=a_shape,
).to(device)
# model = AuxiliaryUNet(
model = TimeEmbeddingAuxiliaryUNet(
channels=config.unet_channels,
chan_mults=config.unet_mults,
img_shape=img_shape,
a_shape=a_shape,
).to(device)
return InfoMaxDiffusion(
noise_model=model,
a_encoder_model=a_encoder,
timesteps=config.timesteps,
img_shape=img_shape,
a_shape=a_shape,
device=device,
)
def create_learned(config, device):
img_shape = [config.img_channels, config.img_dim, config.img_dim]
z_shape = img_shape.copy()
z_encoder = ConvGaussianEncoder(
img_shape=img_shape,
a_shape=z_shape,
).to(device)
model = UNet(
channels=config.unet_channels,
chan_mults=config.unet_mults,
img_shape=img_shape,
)
model.to(device)
return LearnedGaussianDiffusion(
noise_model=model,
z_encoder_model=z_encoder,
img_shape=img_shape,
timesteps=config.timesteps,
device=device,
)
# ----------------------------------------------------------------------------
if __name__ == '__main__':
parser = make_parser()
args = parser.parse_args()
args.func(args)