forked from jiaxiZeng/Temporally-Consistent-Stereo-Matching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_stereo.py
411 lines (354 loc) · 17.6 KB
/
evaluate_stereo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from __future__ import print_function, division
import sys
sys.path.append('core')
import os
import wandb
import argparse
import time
import skimage
import logging
import numpy as np
import torch
from tqdm import tqdm
from core.tc_stereo import TCStereo, autocast
import core.stereo_datasets as datasets
from core.utils.utils import InputPadder
from core.utils.frame_utils import readDispTartanAir, read_gen
import cv2
import pykitti
from core.utils.visualization import pseudoColorMap
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
@torch.no_grad()
def submit_kitti(args, model, iters=32, mixed_prec=False):
""" Peform submission using the KITTI-2015 (seq test) split """
model.eval()
aug_params = {}
submission = True
imageset = 'kitti_seq/kitti2015_testings'
P = 'P_rect_02'
val_dataset = datasets.KITTI(aug_params,
is_test=True,
mode='temporal',
image_set=imageset,
index_by_scene=True,
num_frames=11 if submission else 21)
torch.backends.cudnn.benchmark = True
params = dict()
flow_q = None
fmap1 = None
previous_T = None
net_list = None
baseline = torch.tensor(0.54).float().cuda(args.device)[None]
out_list, epe_list, elapsed_list = [], [], []
def load(args, image1, image2, T):
# load image & disparity
image1 = read_gen(image1)
image2 = read_gen(image2)
image1 = np.array(image1)
image2 = np.array(image2)
image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
image2 = torch.from_numpy(image2).permute(2, 0, 1).float()
T = torch.from_numpy(T).float()
T = T[None].cuda(args.device)
image1 = image1[None].cuda(args.device)
image2 = image2[None].cuda(args.device)
return image1, image2, T
for val_id in tqdm(range(len(val_dataset))):
image1_list, image2_list, scene_path, pose_list = val_dataset[val_id]
Pr2 = pykitti.utils.read_calib_file(os.path.join(scene_path, scene_path.split('/')[-1] + '.txt'))[P]
K = np.array([[Pr2[0], 0, Pr2[2]],
[0, Pr2[5], Pr2[6]],
[0, 0, 1]])
K_raw = torch.from_numpy(K).float().cuda(args.device)[None]
for frame_ind, (image1, image2, T) in tqdm(enumerate(zip(image1_list, image2_list, pose_list))):
image1, image2, T = load(args, image1, image2, T)
padder = InputPadder(image1.shape, divis_by=32)
imgs, K = padder.pad(image1, image2, K=K_raw)
image1, image2 = imgs
params.update({'K': K,
'T': T,
'previous_T': previous_T,
'last_disp': flow_q,
'last_net_list': net_list,
'fmap1': fmap1,
'baseline': baseline})
with autocast(enabled=mixed_prec):
start = time.time()
testing_output = model(image1, image2, iters=iters, test_mode=True, params=params if (flow_q is not None) and args.temporal else None)
end = time.time()
if val_id > 50 and frame_ind > 6:
elapsed_list.append(end - start)
disp_pr = -testing_output['flow']
flow_q = testing_output['flow_q']
net_list = testing_output['net_list']
fmap1 = testing_output['fmap1']
previous_T = T
disp_pr, K = padder.unpad(disp_pr, K) # 1,1,h,w
# save
if submission:
if frame_ind == 10:
disp_pr = disp_pr.squeeze(0).detach().cpu().numpy() # 1,h,w
submit_dir = os.path.join('./kitti_15_seq_out', 'disp_0')
os.makedirs(submit_dir, exist_ok=True)
skimage.io.imsave(os.path.join(submit_dir, scene_path.split('/')[-1] + '_10.png'), (disp_pr * 256).astype('uint16'))
else: # output as rgb video visualization
disp_pr = disp_pr[0, 0].detach().cpu().numpy() # 1,h,w
disp_pr = pseudoColorMap(disp_pr, vmin=0, vmax=96, kitti_style=True)
if frame_ind == 0:
video_dir = os.path.join('./kitti_15_seq_out', 'video')
os.makedirs(video_dir, exist_ok=True)
video_path = os.path.join(video_dir, scene_path.split('/')[-1] + '.avi')
video = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'MJPG'), 2, (disp_pr.shape[1], disp_pr.shape[0])) # 2fps
video.write(disp_pr)
if not submission:
video.release()
avg_runtime = np.mean(elapsed_list)
print(f"Submission KITTI: {format(1 / (avg_runtime + 1e-5), '.2f')}-FPS ({format(avg_runtime, '.3f')}s)")
return {'kitti-fps': 1 / (avg_runtime + 1e-5)}
@torch.no_grad()
def validate_tartanair(args, model, iters=32, mixed_prec=False):
""" Peform validation using the KITTI-2015 (train) split """
model.eval()
aug_params = {}
# test set
keyword_list = []
scene_list = ['abandonedfactory', 'amusement', 'carwelding', 'endofworld', 'gascola', 'hospital', 'office', 'office2',
'oldtown', 'soulcity'] # ablation study
part_list = ['P002', 'P007', 'P003', 'P006', 'P001', 'P042', 'P006', 'P004', 'P006', 'P008']
for i, (s, p) in enumerate(zip(scene_list, part_list)):
keyword_list.append(os.path.join(s, 'Easy', p))
keyword_list.append(os.path.join(s, 'Hard', p))
val_dataset = datasets.TartanAir(aug_params, root='datasets', scene_list=scene_list, test_keywords=keyword_list,
is_test=True, mode='temporal', load_flow=False)
# camera parameters
K = np.array([[320.0, 0, 320.0],
[0, 320.0, 240.0],
[0, 0, 1]])
K_raw = torch.from_numpy(K).float().cuda(args.device)[None]
baseline = torch.tensor(0.25).float().cuda(args.device)[None]
# Evaluate Metrics list
out_list, out3_list, epe_list = [], [], []
# load function
def load(args, image1, image2, disp_gt, T):
# load image & disparity
image1 = read_gen(image1)
image2 = read_gen(image2)
image1 = np.array(image1)
image2 = np.array(image2)
disp_gt = readDispTartanAir(disp_gt)
disp_gt = torch.from_numpy(np.array(disp_gt).astype(np.float32))[:1]
image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
image2 = torch.from_numpy(image2).permute(2, 0, 1).float()
T = torch.from_numpy(T).float()
T = T[None].cuda(args.device)
image1 = image1[None].cuda(args.device)
image2 = image2[None].cuda(args.device)
disp_gt = disp_gt[None].cuda(args.device) # 1,1,h,w
return image1, image2, disp_gt, T
# Testing
for val_id in tqdm(range(len(val_dataset))):
image1_list, image2_list, flow_gt_list, pose_list = val_dataset[val_id]
# temporal parameters
params = dict()
flow_q = None
fmap1 = None
previous_T = None
net_list = None
for (image1, image2, disp_gt, T) in tqdm(zip(image1_list, image2_list, flow_gt_list, pose_list)):
# load
image1, image2, disp_gt, T = load(args, image1, image2, disp_gt, T)
padder = InputPadder(image1.shape, divis_by=32)
imgs, K = padder.pad(image1, image2, K=K_raw)
image1, image2 = imgs
params.update({'K': K,
'T': T,
'previous_T': previous_T,
'last_disp': flow_q,
'last_net_list': net_list,
'fmap1': fmap1,
'baseline': baseline})
with autocast(enabled=mixed_prec):
testing_output = model(image1, image2, iters=iters, test_mode=True, params=params if (flow_q is not None) and args.temporal else None)
disp_pr = -testing_output['flow']
flow_q = testing_output['flow_q']
net_list = testing_output['net_list']
fmap1 = testing_output['fmap1']
previous_T = T
disp_pr, K = padder.unpad(disp_pr, K=K)
# epe evaluation
assert disp_pr.shape == disp_gt.shape, (disp_pr.shape, disp_gt.shape)
epe = torch.sum((disp_pr.squeeze(0) - disp_gt.squeeze(0)) ** 2, dim=0).sqrt()
epe = epe.flatten()
val = (disp_gt.squeeze(0).abs().flatten() < 192)
if (val == False).all():
continue
out = (epe > 1.0).float()[val].mean().cpu().item()
out3 = (epe > 3.0).float()[val].mean().cpu().item()
mask_rate = val.float().mean().cpu().item()
epe_list.append(epe[val].mean().cpu().item())
out_list.append(np.array([out * mask_rate, mask_rate]))
out3_list.append(np.array([out3 * mask_rate, mask_rate]))
epe_list = np.array(epe_list)
out_list = np.stack(out_list, axis=0)
out3_list = np.stack(out3_list, axis=0)
epe = np.mean(epe_list)
d1 = 100 * np.mean(out_list[:, 0]) / np.mean(out_list[:, 1])
d3 = 100 * np.mean(out3_list[:, 0]) / np.mean(out3_list[:, 1])
print("Validation TartanAir: EPE %f, D1 %f, D3 %f" % (epe, d1, d3))
return {'TartanAir-epe': epe, 'TartanAir-d1': d1, 'TartanAir-d3': d3}
@torch.no_grad()
def validate_things(model, iters=32, mixed_prec=False):
""" Peform validation using the FlyingThings3D (TEST) split """
model.eval()
val_dataset = datasets.SceneFlowDatasets(dstype='frames_finalpass', things_test=True)
out_list, epe_list = [], []
for val_id in tqdm(range(len(val_dataset))):
_, image1, image2, flow_gt, valid_gt = val_dataset[val_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
padder = InputPadder(image1.shape, divis_by=32)
image1, image2 = padder.pad(image1, image2)
with autocast(enabled=mixed_prec):
_, flow_pr = model(image1, image2, iters=iters, test_mode=True)
flow_pr = padder.unpad(flow_pr).cpu().squeeze(0)
assert flow_pr.shape == flow_gt.shape, (flow_pr.shape, flow_gt.shape)
epe = torch.sum((flow_pr - flow_gt) ** 2, dim=0).sqrt()
epe = epe.flatten()
val = (valid_gt.flatten() >= 0.5) & (flow_gt.abs().flatten() < 192)
out = (epe > 1.0)
epe_list.append(epe[val].mean().item())
out_list.append(out[val].cpu().numpy())
epe_list = np.array(epe_list)
out_list = np.concatenate(out_list)
epe = np.mean(epe_list)
d1 = 100 * np.mean(out_list)
print("Validation FlyingThings: %f, %f" % (epe, d1))
return {'things-epe': epe, 'things-d1': d1}
@torch.no_grad()
def validate_temporal_things(args, model, iters=32, mixed_prec=False):
""" Peform validation using the FlyingThings3D (TEST) split """
model.eval()
val_dataset = datasets.SceneFlowDatasets(dstype='frames_cleanpass', things_test=True, mode='temporal')
def load(args, image1, image2, disp_gt, T):
# load image & disparity
image1 = read_gen(image1)
image2 = read_gen(image2)
image1 = np.array(image1)
image2 = np.array(image2)
disp_gt = read_gen(disp_gt)
disp_gt = torch.from_numpy(np.array(disp_gt).astype(np.float32))
image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
image2 = torch.from_numpy(image2).permute(2, 0, 1).float()
T = torch.from_numpy(T).float()
T = T[None].cuda(args.device)
image1 = image1[None].cuda(args.device)
image2 = image2[None].cuda(args.device)
disp_gt = disp_gt[None].cuda(args.device) # 1,1,h,w
return image1, image2, disp_gt, T
out_list, out3_list, epe_list = [], [], []
K = np.array([[1050., 0., 479.5],
[0., 1050., 269.5],
[0.0, 0.0, 1.0]])
K_raw = torch.from_numpy(K).float().cuda(args.device)[None]
baseline = torch.tensor(1.).float().cuda(args.device)[None]
for val_id in tqdm(range(len(val_dataset))):
image1_list, image2_list, flow_gt_list, pose_list = val_dataset[val_id]
params = dict()
flow_q = None
fmap1 = None
previous_T = None
net_list = None
for j, (image1, image2, disp_gt, T) in tqdm(enumerate(zip(image1_list, image2_list, flow_gt_list, pose_list))):
image1, image2, disp_gt, T = load(args, image1, image2, disp_gt, T)
padder = InputPadder(image1.shape, divis_by=32)
imgs, K = padder.pad(image1, image2, K=K_raw)
image1, image2 = imgs
params.update({'K': K,
'T': T,
'previous_T': previous_T,
'last_disp': flow_q,
'last_net_list': net_list,
'fmap1': fmap1,
'baseline': baseline})
with autocast(enabled=mixed_prec):
testing_output = model(image1, image2, iters=iters, test_mode=True, params=params if (flow_q is not None) and args.temporal else None)
disp_pr = -testing_output['flow']
flow_q = testing_output['flow_q']
net_list = testing_output['net_list']
fmap1 = testing_output['fmap1']
previous_T = T
disp_pr, K = padder.unpad(disp_pr, K=K)
val = (disp_gt.squeeze(0).abs().flatten() < 192)
if (val == False).all():
continue
epe = torch.sum((disp_pr.squeeze(0) - disp_gt.squeeze(0)) ** 2, dim=0).sqrt()
epe = epe.flatten()
out = (epe > 1.0).float()[val].mean().cpu().item()
out3 = (epe > 3.0).float()[val].mean().cpu().item()
mask_rate = val.float().mean().cpu().item()
epe_list.append(epe[val].mean().cpu().item())
out_list.append(np.array([out * mask_rate, mask_rate]))
out3_list.append(np.array([out3 * mask_rate, mask_rate]))
epe_list = np.array(epe_list)
out_list = np.stack(out_list, axis=0)
out3_list = np.stack(out3_list, axis=0)
epe = np.mean(epe_list)
d1 = 100 * np.mean(out_list[:, 0]) / np.mean(out_list[:, 1])
d3 = 100 * np.mean(out3_list[:, 0]) / np.mean(out3_list[:, 1])
print("Validation FlyingThings: EPE %f, D1 %f, D3 %f" % (epe, d1, d3))
return {'things-epe': epe, 'things-d1': d1, 'things-d3': d3}
if __name__ == '__main__':
import os
import psutil
pid = os.getpid()
process = psutil.Process(pid)
process.nice(0)
parser = argparse.ArgumentParser()
parser.add_argument('--restore_ckpt', help="restore checkpoint", default=None)
parser.add_argument('--dataset', help="dataset for evaluation", required=True,
choices=["kitti", "things", "TartanAir"])
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
parser.add_argument('--valid_iters', type=int, default=32, help='number of flow-field updates during forward pass')
parser.add_argument('--uncertainty_threshold', default=0.5, type=float, help='the threshold of uncertainty')
parser.add_argument('--visualize', action='store_true', help='visualize the results')
parser.add_argument('--device', default=0, type=int, help='the device id')
# Architecure choices
parser.add_argument('--hidden_dims', nargs='+', type=int, default=[128] * 3, help="hidden state and context dimensions")
parser.add_argument('--shared_backbone', action='store_true', help="use a single backbone for the context and feature encoders")
parser.add_argument('--corr_levels', type=int, default=4, help="number of levels in the correlation pyramid")
parser.add_argument('--corr_radius', type=int, default=4, help="width of the correlation pyramid")
parser.add_argument('--n_downsample', type=int, default=2, help="resolution of the disparity field (1/2^K)")
parser.add_argument('--context_norm', type=str, default="batch", choices=['group', 'batch', 'instance', 'none'], help="normalization of context encoder")
parser.add_argument('--slow_fast_gru', action='store_true', help="iterate the low-res GRUs more frequently")
parser.add_argument('--n_gru_layers', type=int, default=3, help="number of hidden GRU levels")
parser.add_argument('--temporal', action='store_true', help="temporal mode") # TODO: MODEL temporal mode
args = parser.parse_args()
# if args.visualize:
wandb.init(
job_type="test",
project="vis",
entity="zengjiaxi"
)
# add the args to wandb
wandb.config.update(args)
model = TCStereo(args)
if args.restore_ckpt is not None:
assert args.restore_ckpt.endswith(".pth")
logging.info("Loading checkpoint...")
checkpoint = torch.load(args.restore_ckpt)
model.load_state_dict(checkpoint['model'], strict=True)
logging.info(f"Done loading checkpoint")
model = torch.nn.DataParallel(model, device_ids=[args.device])
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s')
model.cuda(args.device)
model.eval()
print(f"The model has {format(count_parameters(model) / 1e6, '.2f')}M learnable parameters.")
use_mixed_precision = False
if args.dataset == 'kitti':
submit_kitti(args, model, iters=args.valid_iters, mixed_prec=use_mixed_precision)
elif args.dataset == 'things':
validate_temporal_things(args, model, iters=args.valid_iters, mixed_prec=use_mixed_precision)
elif args.dataset == 'TartanAir':
validate_tartanair(args, model, iters=args.valid_iters, mixed_prec=use_mixed_precision)