-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
75 lines (59 loc) · 3.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import argparse
import myutils
import torch
from torch import optim, nn
import torch.nn.functional as F
from torchvision import datasets, transforms, models
from PIL import Image
import model_builder
parser = argparse.ArgumentParser()
parser.add_argument('data_dir', type=str, default='flowers', help='data root')
parser.add_argument('--save_dir', type=str, default='checkpoint.pth', help='save the trained model to a checkpoint')
parser.add_argument('--arch', type=str, default='vgg13', help='CNN architecture')
parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate')
parser.add_argument('--hidden_units', type=int, default=1024, help='hidden units')
parser.add_argument('--epochs', type=int, default=5, help='num of epochs')
parser.add_argument('--gpu', type=str, default='gpu', help='use GPU for training')
in_arg = parser.parse_args()
def train(trainloader, validloader, model, optimizer, criterion, device, epochs, print_every=10):
to_device = torch.device('cuda' if torch.cuda.is_available() and device=='gpu' else 'cpu')
steps = 0
running_loss = 0
for epoch in range(epochs):
for inputs, labels in trainloader:
steps += 1
inputs, labels = inputs.to(to_device), labels.to(to_device)
optimizer.zero_grad()
logps = model.forward(inputs)
loss = criterion(logps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if steps % print_every == 0:
valid_loss = 0
accuracy = 0
model.eval()
with torch.no_grad():
for inputs, labels in validloader:
inputs, labels = inputs.to(to_device), labels.to(to_device)
logps = model.forward(inputs)
batch_loss = criterion(logps, labels)
valid_loss += batch_loss.item()
ps = torch.exp(logps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor)).item()
print("Epoch: {}/{}".format(epoch+1, epochs))
print("Training loss: {:.3f}.. Validation loss: {:.3f}.. Validation accuracy: {:.3f}".format(running_loss/print_every, valid_loss/len(validloader), accuracy/len(validloader)))
running_loss = 0
model.train()
def main():
trainloader, validloader, testloader, train_data = myutils.load_data(in_arg.data_dir)
model, optimizer = model_builder.create_model(arch=in_arg.arch, hidden_units=in_arg.hidden_units, learnrate=in_arg.learning_rate, device=in_arg.gpu)
criterion = nn.NLLLoss()
train(trainloader, validloader, model, optimizer, criterion, in_arg.gpu, in_arg.epochs)
model.class_to_idx = train_data.class_to_idx
myutils.save_checkpoint(model, optimizer, path=in_arg.save_dir, arch=in_arg.arch, hidden_units=in_arg.hidden_units, epochs=in_arg.epochs)
print("====Training completed.====")
if __name__ == '__main__':
main()