-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_test.go
200 lines (157 loc) · 5.27 KB
/
convert_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
package hashdag_test
import (
"fmt"
"math/rand"
"sort"
"testing"
"time"
"github.com/laser/hash-dag-go/vanilla"
rdag "github.com/laser/random-dag-generator-go"
mapset "github.com/deckarep/golang-set/v2"
"github.com/stretchr/testify/require"
)
var rng = rand.New(rand.NewSource(time.Now().UnixNano()))
func TestConvert(t *testing.T) {
t.Run("empty DAG", func(t *testing.T) {
input := vanilla.Graph{
Nodes: []vanilla.Node{},
Edges: []vanilla.Edge{},
}
expectedNodeIds := mapset.NewSet[string]()
expectedEdges := mapset.NewSet[string]()
runConvertTest(t, input, expectedNodeIds, expectedEdges)
})
t.Run("one-node DAG", func(t *testing.T) {
input := vanilla.Graph{
Nodes: []vanilla.Node{
{Id: "41c", Data: []byte("a")},
},
Edges: []vanilla.Edge{},
}
expectedNodeIds := mapset.NewSet("a")
expectedEdges := mapset.NewSet[string]()
runConvertTest(t, input, expectedNodeIds, expectedEdges)
})
t.Run("two-node DAG, one root", func(t *testing.T) {
input := vanilla.Graph{
Nodes: []vanilla.Node{{Id: "41c", Data: []byte("a")}, {Id: "ff3", Data: []byte("b")}},
Edges: []vanilla.Edge{{SourceNodeId: "41c", TargetNodeId: "ff3"}},
}
expectedNodeIds := mapset.NewSet("a", "b-(a)")
expectedEdges := mapset.NewSet("a->b-(a)")
runConvertTest(t, input, expectedNodeIds, expectedEdges)
})
t.Run("three-node DAG, two roots, one terminal node", func(t *testing.T) {
input := vanilla.Graph{
Nodes: []vanilla.Node{
{Id: "41c", Data: []byte("a")},
{Id: "ff3", Data: []byte("b")},
{Id: "999", Data: []byte("c")},
},
Edges: []vanilla.Edge{
{SourceNodeId: "41c", TargetNodeId: "ff3"},
{SourceNodeId: "999", TargetNodeId: "ff3"},
},
}
expectedNodeIds := mapset.NewSet("a", "c", "b-(a,c)")
expectedEdges := mapset.NewSet("a->b-(a,c)", "c->b-(a,c)")
runConvertTest(t, input, expectedNodeIds, expectedEdges)
})
t.Run("four-node DAG, two roots, one terminal node", func(t *testing.T) {
input := vanilla.Graph{
Nodes: []vanilla.Node{
{Id: "41c", Data: []byte("a")},
{Id: "ff3", Data: []byte("b")},
{Id: "999", Data: []byte("c")},
{Id: "ddd", Data: []byte("d")},
},
Edges: []vanilla.Edge{
{SourceNodeId: "41c", TargetNodeId: "ff3"},
{SourceNodeId: "41c", TargetNodeId: "999"},
{SourceNodeId: "ff3", TargetNodeId: "999"},
{SourceNodeId: "ddd", TargetNodeId: "999"},
},
}
expectedNodeIds := mapset.NewSet("a", "b-(a)", "c-(a,b-(a),d)", "d")
expectedEdges := mapset.NewSet("a->b-(a)", "a->c-(a,b-(a),d)", "b-(a)->c-(a,b-(a),d)", "d->c-(a,b-(a),d)")
runConvertTest(t, input, expectedNodeIds, expectedEdges)
})
t.Run("parent Hash-sorting is lexicographical", func(t *testing.T) {
input := vanilla.Graph{
Nodes: []vanilla.Node{
{Id: "41c", Data: []byte("a")},
{Id: "ff3", Data: []byte("b")},
{Id: "999", Data: []byte("c")}},
Edges: []vanilla.Edge{
{SourceNodeId: "999", TargetNodeId: "ff3"},
{SourceNodeId: "41c", TargetNodeId: "ff3"},
},
}
expectedNodeIds := mapset.NewSet("a", "c", "b-(a,c)")
expectedEdges := mapset.NewSet("a->b-(a,c)", "c->b-(a,c)")
runConvertTest(t, input, expectedNodeIds, expectedEdges)
})
t.Run("output DAG always has the same number of edges as input DAG", func(t *testing.T) {
for i := 0; i < 100; i++ {
input := randomDAG()
actual := hashdag.From(input)
require.Equal(t, len(input.Edges), len(actual.Edges))
}
})
t.Run("output DAG always has same quantity of nodes as input DAG", func(t *testing.T) {
for i := 0; i < 100; i++ {
input := randomDAG()
actual := hashdag.From(input)
require.Equal(t, len(input.Nodes), len(actual.Nodes))
}
})
t.Run("output DAG has at least N edges where N is greater or equal to the number of nodes in the DAG, minus one", func(t *testing.T) {
for i := 0; i < 100; i++ {
input := randomDAG()
actual := hashdag.From(input)
require.True(t, len(actual.Edges) >= len(actual.Nodes)-1)
}
})
}
func runConvertTest(t *testing.T, input vanilla.Graph, expectedNodeIds mapset.Set[string], expectedEdges mapset.Set[string]) {
actual := hashdag.From(input, hashdag.WithHasher(hashdag.NaiveHasher, hashdag.NaiveCombiner))
actualNodeIds := mapset.NewSet[string]()
for _, node := range actual.Nodes {
actualNodeIds.Add(string(node.Id))
}
actualEdges := mapset.NewSet[string]()
for _, edge := range actual.Edges {
actualEdges.Add(fmt.Sprintf("%s->%s", edge.SourceNodeId, edge.TargetNodeId))
}
w := expectedNodeIds.ToSlice()
x := actualNodeIds.ToSlice()
y := expectedEdges.ToSlice()
z := actualEdges.ToSlice()
for _, v := range [][]string{w, x, y, z} {
sort.Strings(v)
}
require.Equal(t, w, x, "nodes did not match")
require.Equal(t, y, z, "edges did not match")
}
func randomDAG() (out vanilla.Graph) {
graph := rdag.Random(
rdag.WithNodeQty(1+rand.Intn(20)),
rdag.WithMaxOutdegree(1+rand.Intn(4)),
rdag.WithEdgeFactor(1.0-rand.Float64()))
for _, node := range graph.Nodes {
// create a 32-byte buffer of random stuff
buf := make([]byte, 32)
rng.Read(buf)
out.Nodes = append(out.Nodes, vanilla.Node{
Id: vanilla.NodeId(node.Id),
Data: buf,
})
}
for _, edge := range graph.Edges {
out.Edges = append(out.Edges, vanilla.Edge{
SourceNodeId: vanilla.NodeId(edge.SourceNodeId),
TargetNodeId: vanilla.NodeId(edge.TargetNodeId),
})
}
return
}