-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathtest_P.py
132 lines (107 loc) · 4.51 KB
/
test_P.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from modelnet import ModelNet
from dgl.data.utils import download, get_download_dir
import torch.backends.cudnn as cudnn
from functools import partial
import tqdm
import urllib
import os
import argparse
import yaml
from model import Model, Model_dense, Model_dense2
from utils import CrossEntropyLabelSmooth
parser = argparse.ArgumentParser()
parser.add_argument('--dataset-path', type=str, default='../modelnet40-sampled-2048.h5')
parser.add_argument('--load-model-path', type=str, default='')
parser.add_argument('--name', type=str, default='basic')
parser.add_argument('--num-epochs', type=int, default=100)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--lr', type=float, default=0.02)
parser.add_argument('--use_dense', action='store_true', help='use dense' )
parser.add_argument('--adam', action='store_true', help='use dense' )
parser.add_argument('--train_all', action='store_true', help='use dense' )
parser.add_argument('--labelsmooth', action='store_true', help='use dense' )
parser.add_argument('--warm_epoch', default=5, type=int, help='stride')
parser.add_argument('--cluster', default='xyzrgb', type=str, help='stride')
args = parser.parse_args()
num_workers = args.num_workers
batch_size = args.batch_size
data_filename = 'modelnet40-sampled-2048.h5'
local_path = args.dataset_path or os.path.join(get_download_dir(), data_filename)
if not os.path.exists(local_path):
download('https://data.dgl.ai/dataset/modelnet40-sampled-2048.h5', local_path)
cudnn.enabled = True
cudnn.benchmark = True
CustomDataLoader = partial(
DataLoader,
num_workers=num_workers,
batch_size=batch_size,
shuffle=True,
drop_last=True)
def evaluate(model, test_loader, dev):
model.eval()
total_correct = 0
count = 0
mean_class = 0
class_correct = torch.zeros(40).cuda()
class_label = torch.zeros(40).cuda()
with torch.no_grad():
with tqdm.tqdm(test_loader, ascii=True) as tq:
for data, label in tq: # 1024,3
num_examples = label.shape[0]
data, label = data.to(dev), label.to(dev).squeeze().long()
logits = model(data, data)
#scale
logits += model(1.1*data, 1.1*data)
logits += model(0.9*data, 0.9*data)
_, preds = logits.max(1)
correct = (preds == label).sum().item()
total_correct += correct
count += num_examples
for i in range(label.shape[0]):
class_label[label[i]] +=1
if preds[i] == label[i]:
class_correct[label[i]] +=1
for i in range(40):
mean_class += class_correct[i]/class_label[i]
tq.set_postfix({
'MeanClass': '%.4f' % (mean_class / 40),
'AvgAcc': '%.4f' % (total_correct / count)})
return mean_class / 40, total_correct / count
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#model = Model(20, [64, 64, 128, 256], [512, 512, 256], 40)
model = Model_dense(20, [64,128,256,512], [512], output_classes=40, init_points = 768, input_dims=3, dropout_prob=0.7, cluster=args.cluster)
model = model.to(dev)
model = nn.DataParallel(model)
if args.load_model_path:
model.load_state_dict(torch.load(args.load_model_path, map_location=dev))
opt = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-4)
if args.adam:
opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=5e-4)
scheduler = optim.lr_scheduler.CosineAnnealingLR(opt, args.num_epochs, eta_min=0.01*args.lr)
modelnet = ModelNet(local_path, 1024)
train_loader = CustomDataLoader(modelnet.train())
if args.train_all:
train_loader = CustomDataLoader(modelnet.train_all())
valid_loader = CustomDataLoader(modelnet.valid())
test_loader = CustomDataLoader(modelnet.test())
dataset_sizes = {}
dataset_sizes['train'] = modelnet.n_train
dataset_sizes['val'] = modelnet.n_valid
best_valid_acc = 0
best_test_acc = 0
save_model_path = './snapshot/' + args.name + '/model_last.pth'
try:
model.load_state_dict(torch.load(save_model_path))
except:
model = torch.nn.DataParallel(model).cuda()
model.load_state_dict(torch.load(save_model_path))
model.cuda()
print(model)
mtest_acc, test_acc = evaluate(model, test_loader, dev)
print(mtest_acc, test_acc)