-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
1231 lines (876 loc) · 28.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<title>Runtime Polymorphism: Back to the Basics</title>
<meta name="author" content="Louis Dionne">
<link rel="stylesheet" href="reveal/css/reveal.css">
<link rel="stylesheet" href="reveal/css/theme/black.css">
<link rel="stylesheet" href="custom.css">
<!-- Theme used for syntax highlighting of code -->
<link rel="stylesheet" href="highlight-styles/vs2015.css">
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? 'reveal/css/print/pdf.css' : 'reveal/css/print/paper.css';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
</head>
<body>
<div class="reveal">
<div class="slides">
<section data-markdown=""
data-separator="^====+$"
data-separator-vertical="^----+$"
data-notes="^Note:">
<script type="text/template">
## Runtime Polymorphism:<br>Back to the Basics
#### Louis Dionne, ACCU 2018
====
- These slides are available at: https://ldionne.com/accu-2018-runtime-polymorphism
- Their source code is available at: https://github.com/ldionne/accu-2018-runtime-polymorphism
====
<!-- .slide: class="slide-hidden" -->
### Font test
```c++
class ThisIsAClass {
};
int main() {
// this is a comment
std::vector<Foobar> foobar;
foobar.push_back(Foo{...});
foobar.push_back(Bar{...});
foobar.push_back(Baz{...});
for (auto& x : foobar) {
x.do_something();
}
}
```
==============================================================================
### What is runtime polymorphism <br> and when do you need it?
----
### Consider the following
```c++
struct Car {
void accelerate();
};
struct Truck {
void accelerate();
};
struct Plane {
void accelerate();
};
```
----
### Returning related types from a function
```c++
??? getVehicle(std::istream& user) {
std::string choice;
user >> choice;
if (choice == "car") return Car{...};
else if (choice == "truck") return Truck{...};
else if (choice == "plane") return Plane{...};
else die();
}
```
----
### Storing related types in a container
```c++
int main() {
// Should store anything that has an accelerate() method
std::vector<???> vehicles;
vehicles.push_back(Car{...});
vehicles.push_back(Truck{...});
vehicles.push_back(Plane{...});
for (auto& vehicle : vehicles) {
vehicle.accelerate();
}
}
```
----
### `variant` sometimes does the trick
- But it only works for closed set of types
- Using visitation is sometimes (often?) not convenient
----
### Bottom line:
#### Manipulating an open set of related types with different representations
====================
### C++ has a solution for that!
----
### Inheritance
<pre><code data-sample="code/inheritance.cpp#Vehicle"></code></pre>
----
### Under the hood
![Implementation of inheritance](img/inheritance.png)
====================
### Aside
#### Inheritance has many problems
----
### Bakes in reference semantics
```c++
void foo(Vehicle* vehicle) {
Vehicle* copy = vehicle;
...
copy->accelerate();
...
}
```
----
### Heap allocations
```c++
std::unique_ptr<Vehicle> getVehicle(std::istream& user) {
std::string choice;
user >> choice;
if (choice == "car") return std::make_unique<Car>(...);
else if (choice == "truck") return std::make_unique<Truck>(...);
else if (choice == "plane") return std::make_unique<Plane>(...);
else die();
}
```
Note:
We don't really have a choice but to use pointers and allocate on the heap if
we want to put them in contiguous storage (vector, array, etc...), because the
objects have different sizes.
----
### Bakes in nullable semantics
```c++
std::unique_ptr<Vehicle> vehicle = getVehicle(std::cin);
// can vehicle be null?
```
----
### Ownership hell
```c++
Vehicle* getVehicle(std::istream& user);
std::unique_ptr<Vehicle> getVehicle(std::istream& user);
std::shared_ptr<Vehicle> getVehicle(std::istream& user);
```
----
### Doesn't play well with algorithms
```c++
std::vector<std::unique_ptr<Vehicle>> vehicles;
vehicles.push_back(std::make_unique<Car>(...));
vehicles.push_back(std::make_unique<Truck>(...));
vehicles.push_back(std::make_unique<Plane>(...));
std::sort(vehicles.begin(), vehicles.end()); // NOT what you wanted!
```
----
### Intrusive
```c++
namespace lib {
struct Motorcycle { void accelerate(); };
}
void foo(Vehicle& vehicle) {
...
vehicle.accelerate();
...
}
Motorcycle bike;
foo(bike); // can't work!
```
----
### Listen to Sean Parent, not me
https://youtu.be/QGcVXgEVMJg
====================
### I just wanted this!
```c++
interface Vehicle { void accelerate(); };
namespace lib {
struct Motorcycle { void accelerate(); };
}
struct Car { void accelerate(); };
struct Truck { void accelerate(); };
int main() {
std::vector<Vehicle> vehicles;
vehicles.push_back(Car{...});
vehicles.push_back(Truck{...});
vehicles.push_back(lib::Motorcycle{...});
for (auto& vehicle : vehicles) {
vehicle.accelerate();
}
}
```
----
### How might that work?
----
### With inheritance
![Implementation of inheritance](img/inheritance.png)
----
### Goal:
#### Independent storage and method dispatch
- Storage _policy_
- VTable _policy_
Note:
State motivation for the talk, i.e. we're going to play around with different
ways of implementing the `interface` keyword shown above.
====================
### Remote storage
![Naive type erasure with a fat pointer](img/remote_storage.png)
----
### How that's implemented
<pre><code data-sample='code/remote_storage.cpp#Vehicle'></code></pre>
Note:
Quickly show a preview of the vtable, and then come back to explain.
----
### The vtable
<pre><code data-sample='code/vtable.hpp#vtable'></code></pre>
----
### With Dyno
<pre><code data-sample='code/remote_storage.dyno.cpp#Vehicle'></code></pre>
Note:
Explain that this is a compile-time string, and it's as efficient as a
member access in a struct (the vtable).
----
### Dyno's vtable
<pre><code data-sample='code/vtable.dyno.hpp#IVehicle'></code></pre>
----
### Strengths and weaknesses
<ul>
<li class="strength">Simple model, similar to classic inheritance</li>
<li class="weakness">Always requires an allocation</li>
</ul>
====================
### The _small buffer optimization_ (SBO)
![Type erasure with SBO](img/sbo_storage.png)
----
### How that's implemented
<pre><code data-sample='code/sbo_storage.cpp#Vehicle'></code></pre>
Note:
Make sure to explain placement new.
----
### Alternative implementation 1
![Type erasure with SBO, alternative implementation 1](img/sbo_storage-alternative1.png)
Note:
We can actually inline the bool into the vtable's function definitions, since
they always know whether the thing is going to be in the buffer or on the heap.
----
### Alternative implementation 2
(seems to be the fastest)
![Type erasure with SBO, alternative implementation 2](img/sbo_storage-alternative2.png)
----
### With Dyno
<pre><code data-sample='code/sbo_storage.dyno.cpp#Vehicle'></code></pre>
----
### Strengths and weaknesses
<ul>
<li class="strength">Does not always require allocating</li>
<li class="weakness">Takes up more space</li>
<li class="weakness">Copy/move/swap is more complicated</li>
<li class="weakness">Dispatching may be more costly</li>
</ul>
Note:
We need to handle cases where the two types are not the same in swap.
====================
### Always-local storage
![Type erasure with local storage](img/local_storage.png)
----
### Doesn't fit? Doesn't compile!
----
### How that's implemented
<pre><code data-sample='code/local_storage.cpp#Vehicle'></code></pre>
Note:
Mention that we're not checking for the alignment here.
----
### With Dyno
<pre><code data-sample='code/local_storage.dyno.cpp#Vehicle'></code></pre>
----
### Strengths and weaknesses
<ul>
<li class="strength">No allocation – ever</li>
<li class="strength">Simple dispatching</li>
<li class="weakness">Takes up more space</li>
</ul>
====================
### A quick benchmark
Creating many 16 bytes objects
<canvas data-chart="bar">
<!--
{
"data": {
"labels": ["inheritance",
"remote storage",
"SBO storage (4 bytes)",
"SBO storage (8 bytes)",
"SBO storage (16 bytes)",
"local storage (16 bytes)"],
"datasets": [{
"data": [55, 54, 54, 56, 3, 2],
"label": "Time (ns)",
"backgroundColor": "rgba(20, 220, 220, 1)"
}]
}
}
-->
</canvas>
Note:
- In some cases, similar benefits could be achieved by using a pool allocator
- However, if you shuffle the data with a pool allocator, the data and the pointer
to the data become in a different order. Traversing and dereferencing elements
in a shuffled sequence may become cache unfriendly. With the local buffer and
SBO approaches, the data and the handle stay together so this problem does not
arise.
----
<!-- .slide: class="slide-hidden" -->
Creating many 4 bytes objects
<canvas data-chart="bar">
<!--
{
"data": {
"labels": ["inheritance",
"remote storage",
"SBO storage (4 bytes)",
"SBO storage (8 bytes)",
"SBO storage (16 bytes)",
"local storage (16 bytes)"],
"datasets": [{
"data": [56, 55, 3, 3, 3, 3],
"label": "Time (ns)",
"backgroundColor": "rgba(20, 220, 220, 1)"
}]
}
}
-->
</canvas>
----
<!-- .slide: class="slide-hidden" -->
Accessing many 4 bytes objects<br>
(10 x 3 method calls, SBO with bool)
<canvas data-chart="bar">
<!--
{
"data": {
"labels": ["inheritance",
"remote storage",
"SBO storage (4 bytes)",
"SBO storage (8 bytes)",
"SBO storage (16 bytes)",
"local storage (16 bytes)"],
"datasets": [{
"data": [49, 45, 59, 58, 58, 46],
"label": "Time (ns)",
"backgroundColor": "rgba(20, 220, 220, 1)"
}]
}
}
-->
</canvas>
----
<!-- .slide: class="slide-hidden" -->
Accessing many objects<br>
(half 8 bytes, half 16 bytes, SBO with bool)
<canvas data-chart="bar">
<!--
{
"data": {
"labels": ["inheritance",
"remote storage",
"SBO storage (4 bytes)",
"SBO storage (8 bytes)",
"SBO storage (16 bytes)",
"local storage (16 bytes)"],
"datasets": [{
"data": [46, 47, 56, 56, 58, 46],
"label": "Time (ns)",
"backgroundColor": "rgba(20, 220, 220, 1)"
}]
}
}
-->
</canvas>
----
<!-- .slide: class="slide-hidden" -->
Accessing many 4 bytes objects
<br>(10 x 3 method calls, SBO with pointer)
<canvas data-chart="bar">
<!--
{
"data": {
"labels": ["inheritance",
"remote storage",
"SBO storage (4 bytes)",
"SBO storage (8 bytes)",
"SBO storage (16 bytes)",
"local storage (16 bytes)"],
"datasets": [{
"data": [49, 46, 46, 45, 45, 46],
"label": "Time (ns)",
"backgroundColor": "rgba(20, 220, 220, 1)"
}]
}
}
-->
</canvas>
----
<!-- .slide: class="slide-hidden" -->
Accessing many objects<br>
(half 8 bytes, half 16 bytes, SBO with pointer)
<canvas data-chart="bar">
<!--
{
"data": {
"labels": ["inheritance",
"remote storage",
"SBO storage (4 bytes)",
"SBO storage (8 bytes)",
"SBO storage (16 bytes)",
"local storage (16 bytes)"],
"datasets": [{
"data": [49, 45, 53, 50, 45, 46],
"label": "Time (ns)",
"backgroundColor": "rgba(20, 220, 220, 1)"
}]
}
}
-->
</canvas>
----
### Guidelines
- Use local storage whenever you can afford it
- Otherwise, use SBO with the largest reasonable size
- Use purely-remote storage only when
+ Object sizes are so scattered SBO wouldn't help
====================
### Non-owning storage
(reference semantics, not value semantics)
![Type erasure with non-owning storage](img/non_owning_storage.png)
----
### Basically a polymorphic view
```c++
void process(VehicleRef vehicle) {
...
vehicle.accelerate();
...
}
int main() {
Truck truck{...};
process(truck); // No copy!
}
```
----
### How that's implemented
<pre><code data-sample='code/non_owning_storage.cpp#VehicleRef'></code></pre>
----
### With Dyno
<pre><code data-sample='code/non_owning_storage.dyno.cpp#VehicleRef'></code></pre>
====================
### Shared remote storage
![Type erasure with shared remote storage](img/shared_storage.png)
Note:
One use case is copy-on-write, where you share everything and make a copy
whenever you call a non-const function on it. Allows optimal sharing and
thread safety with minimal headache.
----
### How that's implemented
<pre><code data-sample='code/shared_remote_storage.cpp#Vehicle'></code></pre>
----
### With Dyno
<pre><code data-sample='code/shared_remote_storage.dyno.cpp#Vehicle'></code></pre>
----
### Becomes interesting when mixed with copy on write
----
<pre><code data-sample='code/shared_remote_storage.dyno.cow.cpp#Vehicle'></code></pre>
----
<!-- .slide: class="slide-hidden" -->
### Concrete example
#### (stolen from Sean Parent)
```c++
int main() {
history_t h;
current(h).emplace_back(0);
current(h).emplace_back(std::string("Hello!"));
draw(current(h), std::cout);
commit(h);
current(h).emplace_back(current(h));
current(h).emplace_back(my_class_t());
draw(current(h), std::cout);
undo(h);
draw(current(h), std::cout);
}
```
----
<!-- .slide: class="slide-hidden" -->
```c++
using document_t = std::vector<Drawable>;
void draw(document_t const& x, std::ostream& out) {
// ...
}
using history_t = std::vector<document_t>;
void commit(history_t& x) {
x.push_back(x.back());
}
void undo(history_t& x) {
x.pop_back();
}
document_t& current(history_t& x) {
return x.back();
}
```
----
### Strengths and weaknesses
<ul>
<li class="strength">Allows sharing potentially expensive state</li>
<li class="strength">Interacts nicely with concurrency</li>
<li class="weakness">Allocates</li>
<li class="weakness">Uses reference counts</li>
</ul>
====================
### Now, let me show you why you care
----
### Have you heard of the following?
- [`std::function`](http://en.cppreference.com/w/cpp/utility/functional/function)
- [`inplace_function`](https://groups.google.com/a/isocpp.org/d/msg/std-proposals/vven2Om7Ha8/C7qQ_XwVCwAJ)
- [`function_view`](https://vittorioromeo.info/index/blog/passing_functions_to_functions.html)
----
### Consider this
<pre><code data-sample='code/functions.cpp#basic_function'></code></pre>
----
### Here's all of them:
<pre><code data-sample='code/functions.cpp#function'></code></pre>
<pre><code data-sample='code/functions.cpp#inplace_function'></code></pre>
<pre><code data-sample='code/functions.cpp#function_view'></code></pre>
<pre><code data-sample='code/functions.cpp#shared_function'></code></pre>
==============================================================================
### We've talked about storage
### What about vtables?
----
### Normally, it is remote
![Traditional fully remote vtable](img/remote_vtable.png)
----
### Turns out we have some choices
====================
### Inlining the vtable in the object
<img src="img/local_vtable.png" style="width:600px; height:auto;">
----
### How that's implemented
<pre><code data-sample='code/local_vtable.cpp#Vehicle'></code></pre>
----
### With Dyno
<pre><code data-sample='code/local_vtable.dyno.cpp#Vehicle'></code></pre>
----
### Usually a pessimization
(I did measure)
- If vtable in the cache, indirection does not matter
- Vtable in the object is more likely to be cold
====================
### Partial vtable inlining
![Partially inlined vtable](img/joined_vtable.png)
----
<!-- .slide: class="slide-hidden" -->
### The Vtable — remote part
<pre><code data-sample='code/joined_vtable.cpp#vtable'></code></pre>
----
<!-- .slide: class="slide-hidden" -->
### The Vtable — local part
<pre><code data-sample='code/joined_vtable.cpp#joined_vtable'></code></pre>
----
<!-- .slide: class="slide-hidden" -->
### The polymorphic wrapper
<pre><code data-sample='code/joined_vtable.cpp#Vehicle'></code></pre>
----
### With Dyno
<pre><code data-sample='code/joined_vtable.dyno.cpp#Vehicle'></code></pre>
----
### Again, not really an optimization
====================
### Fun observation about vtables
----
<iframe id="godbolt" class="stretch" src="https://gcc.godbolt.org/e#z:OYLghAFBqd5QCxAYwPYBMCmBRdBLAF1QCcAaPECAKxAEZSAbAQwDtRkBSAJgCFufSAZ1QBXYskwgA5IILERyAgGoAagBUmAIwaYlHAOx8ADAEElSgG6o86JRABUAM1oBKCFZv2XHAMzGzlta2Do5cbh7oXr7%2B5hF2Tj7hQVF%2BHKaxQfGOACxJnt6ppgYAItFpJuUEmAC2AA7MVXo%2BAMIEAJ61mCxM1bpqvtjlmAAeVcQsqhraumgsspYEWjplRasmsvKKSsQ1qFUA%2BqxteoblGTZKzhAuJzyWtXL7ALQDV4KYDI77BXclZ4EXULXW73R4vHzYIHvT7faInUrpAG2Rw%2BYEGO4WB7EZ6vVHQr4/eH/OI5NGGUHY8GQ7IQfGwvxExHqJYzVBzAj2JSzeaYx4rAIRTl0/l/QoVUwbBTKPAsBCYYiEVgSQ4sY7o4l4YgEERMBhIy60NE%2BYpKIz82Ka7W6/VAm6%2BE1msUWrU6vUk1F242m82WS2um00z0OkX6Upi8qSrYMVDIXUqtWnREkw128kWAjafYAOjeHwJcL%2BScytpB6czOa4tLz9N%2BoeJxY9pYzDGzKKrMMJhYFxcDTfLpLpnbrTKmOi5bJ5zf2PsFSmF4br4dMJIgO2qe0w8e4ADYlExUzE9zmUz6mBXrqecx7L6SfuUu%2BUVzK5QrFixlUcd3uD/8z1c74if6VgBAR/teTpHreIYIuKJgrtGsYtp%2BXC7vuty/seF4QUBWGHmBuEYVBC4wVILiMNIACsUikCw0hGNRqDSM0/D8HOojiLo3A%2BLQ1EEHRpFkQA1iAFG0FmACc25GPoAAc2TcT4%2BhcBRFHkVI2TUbRUj0aQjFSNRgggEYpB8dppGkHAsBIGgdR4DoZAUBANm1HZ8ooMwbBScZjh2WMhkQJo/GkJoMpMMQbTSDxpA2b0LAEAA8iwDARWZpBYNUrDADoQX4Dsih4BYmCGalIyYMgIhVJF1EylUDBVSZCrVPVIgsFgPksJg6BVWRHnsCxvCMHgmiGZAZGoA8eATtITzxT4ShPLI6D2pwvD8LQGlCOxEh0D1lGaUFenDDJ25PNu2Rcr1SjblmRg3XYuCECQehcNxpBKM0qC2fZz3cTczGrbwvH8S4QkgNkMk3T44lcLQFHbsdXD6NkolqRtWk6XpBlGSZwO7VIXD7almM42ZIOkIVxCCJNtHZEAA%3D%3D"></iframe>
Note:
- First load is vtable load
- Second load is passing `this` as the first function argument
- Strictly speaking, the compiler would have the right not to reload the vtable pointer because we're not using `std::launder`
----
#### With `-fstrict-vtable-pointers`
<iframe id="godbolt" class="stretch" src="https://gcc.godbolt.org/e#z:OYLghAFBqd5QCxAYwPYBMCmBRdBLAF1QCcAaPECAKxAEZSAbAQwDtRkBSAJgCFufSAZ1QBXYskwgA5IILERyAgGoAagBUmAIwaYlHAOx8ADAEElSgG6o86JRABUAM1oBKCFZv2XHAMzGzlta2Do5cbh7oXr7%2B5hF2Tj7hQVF%2BHKaxQfGOACxJnt6ppgYAItFpJuUEmAC2AA7MVXo%2BAMIEAJ61mCxM1bpqvtjlmAAeVcQsqhraumgsspYEWjplRasmsvKKSsQ1qFUA%2BqxteoblGTZKzhAuJzyWtXL7ALQDV4KYDI77BXclZ4EXULXW73R4vHzYIHvT7faInUrpAG2Rw%2BYEGO4WB7EZ6vVHQr4/eH/OI5NGGUHY8GQ7IQfGwvxExHqJYzVBzAj2JSzeaYx4rAIRTl0/l/QoVUwbBTKPAsBCYYiEVgSQ4sY7o4l4YgEERMBhIy60NE%2BYpKIz82Ka7W6/VAm6%2BE1msUWrU6vUk1F242m82WS2um00z0OkX6Upi8qSrYMVDIXUqtWnREkw128kWAjafYAOjeHwJcL%2BScytpB6czOa4tLz9N%2BoeJxY9pYzDGzKKrMMJhYFxcDTfLpLpnbrTKmOi5bJ5zf2PsFSmF4br4dMJIgO2qe0w8e4ADYlExUzE9zmUz6mBXrqecx7L6SfuUu%2BUVzK5QrFixlUcd3uD/8z1c74if6VgBAR/teTpHreIYIuKJgrtGsYtp%2BXC7vuty/seF4QUBWGHmBuEYVBC4wVILiMNIACsUikCw0hGNRqDSM0/D8HOojiLo3A%2BLQ1EEHRpFkQA1iAFG0FmACc25GPoAAc2TcT4%2BhcBRFHkVI2TUbRUj0aQjFSNRgggEYpB8dppGkHAsBIGgdR4DoZAUBANm1HZ8ooMwbBScZjh2WMhkQJo/GkJoMpMMQbTSDxpA2b0LAEAA8iwDARWZpBYNUrDADoQX4Dsih4BYmCGalIyYMgIhVJF1EylUDBVSZCrVPVIgsFgPksJg6BVWRHnsCxvCMHgmiGZAZGoA8eATtITzxT4ShPLI6D2pwvD8LQ2TzY4Gx4IoTzpiyTy1NYcXyoIBnsRIdA9ZRmlBXpwwyduTzbhtyC9Uo25ZkYX12LghAkHoXDcaQSjNKgtn2YD3E3Mxq28Lx/EuEJIDZDJX0%2BOJXC0BR26PVw%2BjZKJakaTRd3SAZRkmYj11SFwt2pXpCNmUjpCFcQgiTbR2RAA%3D%3D%3D"></iframe>
Note:
- Now there's only one load for the inheritance-based one (because the vptr can't change since we're not using `std::launder`)
- The handrolled remote vtable loads the pointer twice; nothing would prevent the code from changing the vptr during the call, since there's nothing special about the vtable.
====================
### Another story about inlining
```c++
template <typename AnyIterator, typename It>
__attribute__((noinline)) AnyIterator make(It it) {
return AnyIterator{std::move(it)};
}
template <typename AnyIterator>
void benchmark_any_iterator(benchmark::State& state) {
std::vector<int> input{...};
std::vector<int> output{...};
while (state.KeepRunning()) {
auto first = make<AnyIterator>(input.begin());
auto last = make<AnyIterator>(input.end());
auto result = make<AnyIterator>(output.begin());
for (; !(first == last); ++first, ++result) {
*result = *first;
}
}
}
```
----
<canvas data-chart="bar">
<!--
{
"data": {
"labels": ["static dispatch", "inheritance", "dyno's remote vtable"],
"datasets": [{
"data": [14, 1126, 1089],
"label": "Time (ns)",
"backgroundColor": "rgba(20, 220, 220, 1)"
}]
}
}
-->
</canvas>
----
### Now, just a small tweak
```c++
template <typename AnyIterator, typename It>
// __attribute__((noinline))
AnyIterator make(It it) {
return AnyIterator{std::move(it)};
}
```
----
<canvas data-chart="bar">
<!--
{
"data": {
"labels": ["static dispatch", "inheritance", "dyno's remote vtable"],
"datasets": [{
"data": [11, 1070, 11],
"label": "Time (ns)",
"backgroundColor": "rgba(20, 220, 220, 1)"
}]
}
}
-->
</canvas>
----
### What happened?
<div align="left">Inheritance:</div>
![Implementation of inheritance](img/inheritance.png)
<div align="left">Dyno's remote vtable:</div>
![Dyno's remote vtable](img/remote_vtable.png)
----
### What's the lesson?
- Reducing pointer hops can lead to unexpected inlining
- When that happens, giant optimizations become possible
----
### Guidelines
- By default, all methods are in the remote vtable
- Consider inlining some methods if you see a difference
- Watch out for places where you're a few hops away from devirtualization
==============================================================================
### Main problem with this talk:
### It's a giant pain to implement
----
### Can we do something about it?
----
### Perhaps with reflection?
```c++
struct Vehicle {
void accelerate();
};
struct any_vehicle { /* see later */ };
int main() {
std::vector<any_vehicle> vehicles;
vehicles.push_back(Car{...});
vehicles.push_back(Truck{...});
vehicles.push_back(lib::Motorcycle{...});
for (auto& vehicle : vehicles) {
vehicle.accelerate();
}
}
```
----
### Figure out the vtable layout
```c++
constexpr std::meta::type vtable_layout(std::meta::type interface) {
auto vtable = reflexpr(struct { });
for (auto method : interface.methods()) {