From d604f8361f3f906631849a747865d12e34a068c8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Violeta=20Hern=C3=A1ndez?= Date: Thu, 17 Oct 2024 17:53:41 -0600 Subject: [PATCH] fix --- Mathlib/SetTheory/Ordinal/Notation.lean | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/Mathlib/SetTheory/Ordinal/Notation.lean b/Mathlib/SetTheory/Ordinal/Notation.lean index 8c18d9bd96ba9..763b84e2e1ac3 100644 --- a/Mathlib/SetTheory/Ordinal/Notation.lean +++ b/Mathlib/SetTheory/Ordinal/Notation.lean @@ -41,7 +41,7 @@ compile_inductive% ONote namespace ONote -/-- Notation for 0. -/ +/-- Notation for 0 -/ instance : Zero ONote := ⟨zero⟩ @@ -52,11 +52,11 @@ theorem zero_def : zero = 0 := instance : Inhabited ONote := ⟨0⟩ -/-- Notation for 1. -/ +/-- Notation for 1 -/ instance : One ONote := ⟨oadd 0 1 0⟩ -/-- Notation for ω. -/ +/-- Notation for `ω` -/ def omega : ONote := oadd 1 1 0 @@ -71,14 +71,14 @@ private def toString_aux (e : ONote) (n : ℕ) (s : String) : String := if e = 0 then toString n else (if e = 1 then "ω" else "ω^(" ++ s ++ ")") ++ if n = 1 then "" else "*" ++ toString n -/-- Print an ordinal notation. -/ +/-- Print an ordinal notation -/ def toString : ONote → String | zero => "0" | oadd e n 0 => toString_aux e n (toString e) | oadd e n a => toString_aux e n (toString e) ++ " + " ++ toString a open Lean in -/-- Print an ordinal notation. -/ +/-- Print an ordinal notation -/ def repr' (prec : ℕ) : ONote → Format | zero => "0" | oadd e n a => @@ -867,8 +867,8 @@ theorem repr_opow_aux₂ {a0 a'} [N0 : NF a0] [Na' : NF a'] (m : ℕ) (d : ω · have αd : ω ∣ α' := dvd_add (dvd_mul_of_dvd_left (by simpa using opow_dvd_opow ω (one_le_iff_ne_zero.2 e0)) _) d rw [mul_add (ω0 ^ (k : Ordinal)), add_assoc, ← mul_assoc, ← opow_succ, - add_mul_limit _ (isLimit_iff_omega_dvd.2 ⟨ne_of_gt α0, αd⟩), mul_assoc, - @mul_omega0_dvd n (natCast_pos.2 n.pos) (nat_lt_omega _) _ αd] + add_mul_limit _ (isLimit_iff_omega0_dvd.2 ⟨ne_of_gt α0, αd⟩), mul_assoc, + @mul_omega0_dvd n (natCast_pos.2 n.pos) (nat_lt_omega0 _) _ αd] apply add_absorp · refine principal_add_omega0_opow _ ?_ Rl rw [opow_mul, opow_succ, Ordinal.mul_lt_mul_iff_left ω00] @@ -1027,7 +1027,7 @@ theorem fundamentalSequence_has_prop (o) : FundamentalSequenceProp o (fundamenta ⟨isLimit_mul this isLimit_omega0, fun i => ⟨this, ?_, fun H => @NF.oadd_zero _ _ (iha.2 H.fst)⟩, exists_lt_mul_omega0'⟩ rw [← mul_succ, ← Ordinal.natCast_succ, Ordinal.mul_lt_mul_iff_left this] - apply nat_lt_omega + apply nat_lt_omega0 · have := opow_pos (repr a') omega_pos refine ⟨isLimit_add _ (isLimit_mul this isLimit_omega0), fun i => ⟨this, ?_, ?_⟩,