-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCreating_Seurat_object.R
595 lines (466 loc) · 24.5 KB
/
Creating_Seurat_object.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
library(Seurat)
library(tidyverse)
library(patchwork)
library(DropletUtils)
library(glmGamPoi)
library(sctransform)
library(harmony)
library(SeuratDisk)
memory.limit(10000000000)
## Sample 1
ctrl_1 <- Read10X_h5("6460_KA_1/KA_1_output.h5")
ctrl_1 <- CreateSeuratObject(counts = ctrl_1, min.cells = 3, min.features = 100)
ctrl_1[["percent.mt"]] <- PercentageFeatureSet(ctrl_1, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_1$nFeature_RNA)
IQR(ctrl_1$nFeature_RNA)
1.5 * 869.5
1304.25 + 1342.75
quantile(ctrl_1$nCount_RNA)
IQR(ctrl_1$nCount_RNA)
1.5 * 1516
2274 + 2095
# Pre-processing of the Seurat object
ctrl_1 <- subset(ctrl_1, subset = nFeature_RNA > 100 & nFeature_RNA < 2647 & nCount_RNA < 4369 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_1@assays$RNA@counts, path = "ctrl_1.output")
# Integrate scrublet results back into SeuratObject
ctrl_1_scrublet <- read_tsv("scrublet_results/ctrl_1_scrublet_calls.tsv", col_names = FALSE)
ctrl_1_scrublet <- dplyr::rename(ctrl_1_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
merged_metadata <- [email protected]
merged_metadata <- rownames_to_column(merged_metadata, var = "cell_ID")
merged_metadata <- left_join(merged_metadata, ctrl_1_scrublet, by = "cell_ID")
merged_metadata <- column_to_rownames(merged_metadata, var = "cell_ID")
[email protected] <- merged_metadata
# Souporcell
View([email protected])
ctrl_1_souporcell <- read_tsv("KA_1_souporcell_clusters.tsv")
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_1_merged_metadata <- [email protected]
ctrl_1_merged_metadata <- left_join(ctrl_1_merged_metadata, ctrl_1_souporcell, by = "barcode")
ctrl_1_merged_metadata <- column_to_rownames(ctrl_1_merged_metadata, var = "barcode")
[email protected] <- ctrl_1_merged_metadata
ctrl_1 <- subset(ctrl_1, subset = doublet == "FALSE")
[email protected]$cells <- "RV_control"
[email protected]$sample_ID <- "6460_KA_1"
## Sample 2
ctrl_2 <- Read10X_h5("6460_KA_2/KA_2_output.h5")
ctrl_2 <- CreateSeuratObject(counts = ctrl_2, min.cells = 3, min.features = 100)
ctrl_2[["percent.mt"]] <- PercentageFeatureSet(ctrl_2, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_2$nFeature_RNA)
IQR(ctrl_2$nFeature_RNA)
1.5 * 681
1021.5 + 1098
quantile(ctrl_2$nCount_RNA)
IQR(ctrl_2$nCount_RNA)
1.5 * 1049.75
1574.625 + 1551.75
# Pre-processing of the Seurat object
ctrl_2 <- subset(ctrl_2, subset = nFeature_RNA > 100 & nFeature_RNA < 2120 & nCount_RNA < 3127 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_2@assays$RNA@counts, path = "ctrl_2.output")
# Integrate scrublet results back into SeuratObject
ctrl_2_scrublet <- read_tsv("scrublet_results/ctrl_2_scrublet_calls.tsv", col_names = FALSE)
ctrl_2_scrublet <- dplyr::rename(ctrl_2_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
ctrl_2_merged_metadata <- [email protected]
ctrl_2_merged_metadata <- rownames_to_column(ctrl_2_merged_metadata, var = "cell_ID")
ctrl_2_merged_metadata <- left_join(ctrl_2_merged_metadata, ctrl_2_scrublet, by = "cell_ID")
ctrl_2_merged_metadata <- column_to_rownames(ctrl_2_merged_metadata, var = "cell_ID")
[email protected] <- ctrl_2_merged_metadata
# Souporcell
ctrl_2_souporcell <- read_tsv("KA_2_souporcell_clusters.tsv")
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_2_merged_metadata <- [email protected]
ctrl_2_merged_metadata <- left_join(ctrl_2_merged_metadata, ctrl_2_souporcell, by = "barcode")
ctrl_2_merged_metadata <- column_to_rownames(ctrl_2_merged_metadata, var = "barcode")
[email protected] <- ctrl_2_merged_metadata
ctrl_2 <- subset(ctrl_2, subset = doublet == "FALSE")
[email protected]$cells <- "RV_control"
[email protected]$sample_ID <- "6460_KA_2"
## Sample 3
ctrl_3 <- Read10X_h5("6460_KA_3/KA_3_output.h5")
ctrl_3 <- CreateSeuratObject(counts = ctrl_3, min.cells = 3, min.features = 100)
ctrl_3[["percent.mt"]] <- PercentageFeatureSet(ctrl_3, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_3$nFeature_RNA)
IQR(ctrl_3$nFeature_RNA)
1.5 * 342
513 + 610
quantile(ctrl_3$nCount_RNA)
IQR(ctrl_3$nCount_RNA)
1.5 * 513.25
769.875 + 835.25
# Pre-processing of the Seurat object
ctrl_3 <- subset(ctrl_3, subset = nFeature_RNA > 100 & nFeature_RNA < 1123 & nCount_RNA < 1606 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_3@assays$RNA@counts, path = "ctrl_3.output")
# Integrate scrublet results back into SeuratObject
ctrl_3_scrublet <- read_tsv("scrublet_results/ctrl_3_scrublet_calls.tsv", col_names = FALSE)
ctrl_3_scrublet <- dplyr::rename(ctrl_3_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
ctrl_3_merged_metadata <- [email protected]
ctrl_3_merged_metadata <- rownames_to_column(ctrl_3_merged_metadata, var = "cell_ID")
ctrl_3_merged_metadata <- left_join(ctrl_3_merged_metadata, ctrl_3_scrublet, by = "cell_ID")
ctrl_3_merged_metadata <- column_to_rownames(ctrl_3_merged_metadata, var = "cell_ID")
[email protected] <- ctrl_3_merged_metadata
# Souporcell
ctrl_3_souporcell <- read_tsv("KA_3_souporcell_clusters.tsv")
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_3_merged_metadata <- [email protected]
ctrl_3_merged_metadata <- left_join(ctrl_3_merged_metadata, ctrl_3_souporcell, by = "barcode")
ctrl_3_merged_metadata <- column_to_rownames(ctrl_3_merged_metadata, var = "barcode")
[email protected] <- ctrl_3_merged_metadata
ctrl_3 <- subset(ctrl_3, subset = doublet == "FALSE")
[email protected]$cells <- "RV_CAV"
[email protected]$sample_ID <- "6460_KA_3"
## Sample 4
ctrl_4 <- Read10X_h5("6460_KA_4/KA_4_output.h5")
ctrl_4 <- CreateSeuratObject(counts = ctrl_4, min.cells = 3, min.features = 100)
ctrl_4[["percent.mt"]] <- PercentageFeatureSet(ctrl_4, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_4$nFeature_RNA)
IQR(ctrl_4$nFeature_RNA)
1.5 * 1163
1744.5 + 1674
quantile(ctrl_4$nCount_RNA)
IQR(ctrl_4$nCount_RNA)
1.5 * 2504
3756 + 3163
# Pre-processing of the Seurat object
ctrl_4 <- subset(ctrl_4, subset = nFeature_RNA > 100 & nFeature_RNA < 3419 & nCount_RNA < 6919 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_4@assays$RNA@counts, path = "ctrl_4.output")
# Integrate scrublet results back into SeuratObject
ctrl_4_scrublet <- read_tsv("scrublet_results/ctrl_4_scrublet_calls.tsv", col_names = FALSE)
ctrl_4_scrublet <- dplyr::rename(ctrl_4_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
ctrl_4_merged_metadata <- [email protected]
ctrl_4_merged_metadata <- rownames_to_column(ctrl_4_merged_metadata, var = "cell_ID")
ctrl_4_merged_metadata <- left_join(ctrl_4_merged_metadata, ctrl_4_scrublet, by = "cell_ID")
ctrl_4_merged_metadata <- column_to_rownames(ctrl_4_merged_metadata, var = "cell_ID")
[email protected] <- ctrl_4_merged_metadata
# Souporcell
ctrl_4_souporcell <- read_tsv("KA_4_souporcell_clusters.tsv")
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_4_merged_metadata <- [email protected]
ctrl_4_merged_metadata <- left_join(ctrl_4_merged_metadata, ctrl_4_souporcell, by = "barcode")
ctrl_4_merged_metadata <- column_to_rownames(ctrl_4_merged_metadata, var = "barcode")
[email protected] <- ctrl_4_merged_metadata
ctrl_4 <- subset(ctrl_4, subset = doublet == "FALSE")
[email protected]$cells <- "LV_CAV"
[email protected]$sample_ID <- "6460_KA_4"
## Sample 5
ctrl_5 <- Read10X_h5("6460_KA_5/KA_5_output.h5")
ctrl_5 <- CreateSeuratObject(counts = ctrl_5, min.cells = 3, min.features = 100)
ctrl_5[["percent.mt"]] <- PercentageFeatureSet(ctrl_5, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_5$nFeature_RNA)
IQR(ctrl_5$nFeature_RNA)
1.5 * 634
951 + 951
quantile(ctrl_5$nCount_RNA)
IQR(ctrl_5$nCount_RNA)
1.5 * 1029
1543.5 + 1402
# Pre-processing of the Seurat object
ctrl_5 <- subset(ctrl_5, subset = nFeature_RNA > 100 & nFeature_RNA < 1902 & nCount_RNA < 2946 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_5@assays$RNA@counts, path = "ctrl_5.output")
# Integrate scrublet results back into SeuratObject
ctrl_5_scrublet <- read_tsv("scrublet_results/ctrl_5_scrublet_calls.tsv", col_names = FALSE)
ctrl_5_scrublet <- dplyr::rename(ctrl_5_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
ctrl_5_merged_metadata <- [email protected]
ctrl_5_merged_metadata <- rownames_to_column(ctrl_5_merged_metadata, var = "cell_ID")
ctrl_5_merged_metadata <- left_join(ctrl_5_merged_metadata, ctrl_5_scrublet, by = "cell_ID")
ctrl_5_merged_metadata <- column_to_rownames(ctrl_5_merged_metadata, var = "cell_ID")
[email protected] <- ctrl_5_merged_metadata
# Souporcell
ctrl_5_souporcell <- read_tsv("KA_5_souporcell_clusters.tsv")
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_5_merged_metadata <- [email protected]
ctrl_5_merged_metadata <- left_join(ctrl_5_merged_metadata, ctrl_5_souporcell, by = "barcode")
ctrl_5_merged_metadata <- column_to_rownames(ctrl_5_merged_metadata, var = "barcode")
[email protected] <- ctrl_5_merged_metadata
ctrl_5 <- subset(ctrl_5, subset = doublet == "FALSE")
[email protected]$cells <- "RV_control"
[email protected]$sample_ID <- "6460_KA_5"
## Sample 6
ctrl_6 <- Read10X_h5("6460_KA_6/KA_6_output.h5")
ctrl_6 <- CreateSeuratObject(counts = ctrl_6, min.cells = 3, min.features = 100)
ctrl_6[["percent.mt"]] <- PercentageFeatureSet(ctrl_6, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_6$nFeature_RNA)
IQR(ctrl_6$nFeature_RNA)
1.5 * 618
927 + 863
quantile(ctrl_6$nCount_RNA)
IQR(ctrl_6$nCount_RNA)
1.5 * 935
1402.5 + 1216
# Pre-processing of the Seurat object
ctrl_6 <- subset(ctrl_6, subset = nFeature_RNA > 100 & nFeature_RNA < 1790 & nCount_RNA < 2619 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_6@assays$RNA@counts, path = "ctrl_6.output")
# Integrate scrublet results back into SeuratObject
ctrl_6_scrublet <- read_tsv("scrublet_results/ctrl_6_scrublet_calls.tsv", col_names = FALSE)
ctrl_6_scrublet <- dplyr::rename(ctrl_6_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
ctrl_6_merged_metadata <- [email protected]
ctrl_6_merged_metadata <- rownames_to_column(ctrl_6_merged_metadata, var = "cell_ID")
ctrl_6_merged_metadata <- left_join(ctrl_6_merged_metadata, ctrl_6_scrublet, by = "cell_ID")
ctrl_6_merged_metadata <- column_to_rownames(ctrl_6_merged_metadata, var = "cell_ID")
[email protected] <- ctrl_6_merged_metadata
# Souporcell
ctrl_6_souporcell <- read_tsv("KA_6_souporcell_clusters.tsv")
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_6_merged_metadata <- [email protected]
ctrl_6_merged_metadata <- left_join(ctrl_6_merged_metadata, ctrl_6_souporcell, by = "barcode")
ctrl_6_merged_metadata <- column_to_rownames(ctrl_6_merged_metadata, var = "barcode")
[email protected] <- ctrl_6_merged_metadata
ctrl_6 <- subset(ctrl_6, subset = doublet == "FALSE")
[email protected]$cells <- "RV_CAV"
[email protected]$sample_ID <- "6460_KA_6"
## Sample 7
ctrl_7 <- Read10X_h5("6460_KA_7/KA_7_output.h5")
ctrl_7 <- CreateSeuratObject(counts = ctrl_7, min.cells = 3, min.features = 100)
ctrl_7[["percent.mt"]] <- PercentageFeatureSet(ctrl_7, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_7$nFeature_RNA)
IQR(ctrl_7$nFeature_RNA)
1.5 * 587
880.5 + 942
quantile(ctrl_7$nCount_RNA)
IQR(ctrl_7$nCount_RNA)
1.5 * 945
1417.5 + 1376
# Pre-processing of the Seurat object
ctrl_7 <- subset(ctrl_7, subset = nFeature_RNA > 100 & nFeature_RNA < 1823 & nCount_RNA < 2794 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_7@assays$RNA@counts, path = "ctrl_7.output")
# Integrate scrublet results back into SeuratObject
ctrl_7_scrublet <- read_tsv("scrublet_results/ctrl_7_scrublet_calls.tsv", col_names = FALSE)
ctrl_7_scrublet <- dplyr::rename(ctrl_7_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
ctrl_7_merged_metadata <- [email protected]
ctrl_7_merged_metadata <- rownames_to_column(ctrl_7_merged_metadata, var = "cell_ID")
ctrl_7_merged_metadata <- left_join(ctrl_7_merged_metadata, ctrl_7_scrublet, by = "cell_ID")
ctrl_7_merged_metadata <- column_to_rownames(ctrl_7_merged_metadata, var = "cell_ID")
[email protected] <- ctrl_7_merged_metadata
# Souporcell
ctrl_7_souporcell <- read_tsv("KA_7_souporcell_clusters.tsv")
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_7_merged_metadata <- [email protected]
ctrl_7_merged_metadata <- left_join(ctrl_7_merged_metadata, ctrl_7_souporcell, by = "barcode")
ctrl_7_merged_metadata <- column_to_rownames(ctrl_7_merged_metadata, var = "barcode")
[email protected] <- ctrl_7_merged_metadata
ctrl_7 <- subset(ctrl_7, subset = doublet == "FALSE")
[email protected]$cells <- "RV_CAV"
[email protected]$sample_ID <- "6460_KA_7"
## Sample 8
ctrl_8 <- Read10X_h5("6460_KA_8/KA_8_output.h5")
ctrl_8 <- CreateSeuratObject(counts = ctrl_8, min.cells = 3, min.features = 100)
ctrl_8[["percent.mt"]] <- PercentageFeatureSet(ctrl_8, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_8$nFeature_RNA)
IQR(ctrl_8$nFeature_RNA)
1.5 * 1553
2329.5 + 2575
quantile(ctrl_8$nCount_RNA)
IQR(ctrl_8$nCount_RNA)
1.5 * 4476.5
6714.75 + 6062.25
# Pre-processing of the Seurat object
ctrl_8 <- subset(ctrl_8, subset = nFeature_RNA > 100 & nFeature_RNA < 4905 & nCount_RNA < 12777 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_8@assays$RNA@counts, path = "ctrl_8.output")
# Integrate scrublet results back into SeuratObject
ctrl_8_scrublet <- read_tsv("scrublet_results/ctrl_8_scrublet_calls.tsv", col_names = FALSE)
ctrl_8_scrublet <- dplyr::rename(ctrl_8_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
ctrl_8_merged_metadata <- [email protected]
ctrl_8_merged_metadata <- rownames_to_column(ctrl_8_merged_metadata, var = "cell_ID")
ctrl_8_merged_metadata <- left_join(ctrl_8_merged_metadata, ctrl_8_scrublet, by = "cell_ID")
ctrl_8_merged_metadata <- column_to_rownames(ctrl_8_merged_metadata, var = "cell_ID")
[email protected] <- ctrl_8_merged_metadata
# Souporcell
ctrl_8_souporcell <- read_tsv("KA_8_souporcell_clusters.tsv")
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_8_merged_metadata <- [email protected]
ctrl_8_merged_metadata <- left_join(ctrl_8_merged_metadata, ctrl_8_souporcell, by = "barcode")
ctrl_8_merged_metadata <- column_to_rownames(ctrl_8_merged_metadata, var = "barcode")
[email protected] <- ctrl_8_merged_metadata
ctrl_8 <- subset(ctrl_8, subset = doublet == "FALSE")
[email protected]$cells <- "LV_CAV"
[email protected]$sample_ID <- "6460_KA_8"
## Sample 9
ctrl_9 <- Read10X_h5("6460_KA_9/KA_9_output.h5")
ctrl_9 <- CreateSeuratObject(counts = ctrl_9, min.cells = 3, min.features = 100)
ctrl_9[["percent.mt"]] <- PercentageFeatureSet(ctrl_9, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_9$nFeature_RNA)
IQR(ctrl_9$nFeature_RNA)
1.5 * 589
883.5 + 996
quantile(ctrl_9$nCount_RNA)
IQR(ctrl_9$nCount_RNA)
1.5 * 932
1398 + 1434
# Pre-processing of the Seurat object
ctrl_9 <- subset(ctrl_9, subset = nFeature_RNA > 100 & nFeature_RNA < 1880 & nCount_RNA < 2832 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_9@assays$RNA@counts, path = "ctrl_9.output")
# Integrate scrublet results back into SeuratObject
ctrl_9_scrublet <- read_tsv("scrublet_results/ctrl_9_scrublet_calls.tsv", col_names = FALSE)
ctrl_9_scrublet <- dplyr::rename(ctrl_9_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
ctrl_9_merged_metadata <- [email protected]
ctrl_9_merged_metadata <- rownames_to_column(ctrl_9_merged_metadata, var = "cell_ID")
ctrl_9_merged_metadata <- left_join(ctrl_9_merged_metadata, ctrl_9_scrublet, by = "cell_ID")
ctrl_9_merged_metadata <- column_to_rownames(ctrl_9_merged_metadata, var = "cell_ID")
[email protected] <- ctrl_9_merged_metadata
# Souporcell
ctrl_9_souporcell <- read_tsv("KA_9_souporcell_clusters.tsv")
ctrl_9_souporcell <- dplyr::rename(ctrl_9_souporcell, barcode = cell_ID)
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_9_merged_metadata <- [email protected]
ctrl_9_merged_metadata <- left_join(ctrl_9_merged_metadata, ctrl_9_souporcell, by = "barcode")
ctrl_9_merged_metadata <- column_to_rownames(ctrl_9_merged_metadata, var = "barcode")
[email protected] <- ctrl_9_merged_metadata
ctrl_9 <- subset(ctrl_9, subset = doublet == "FALSE")
[email protected]$cells <- "RV_CAV"
[email protected]$sample_ID <- "6460_KA_9"
## Sample 10
ctrl_10 <- Read10X_h5("6460_KA_10/KA_10_output.h5")
ctrl_10 <- CreateSeuratObject(counts = ctrl_10, min.cells = 3, min.features = 100)
ctrl_10[["percent.mt"]] <- PercentageFeatureSet(ctrl_10, pattern = "^MT-")
# Subset features for [3rd quartile + 1.5(IQR)] the nCounts and nFeatures
quantile(ctrl_10$nFeature_RNA)
IQR(ctrl_10$nFeature_RNA)
1.5 * 1157.25
1735.875 + 1592.25
quantile(ctrl_10$nCount_RNA)
IQR(ctrl_10$nCount_RNA)
1.5 * 2297
3445.5 + 2853
# Pre-processing of the Seurat object
ctrl_10 <- subset(ctrl_10, subset = nFeature_RNA > 100 & nFeature_RNA < 3329 & nCount_RNA < 6299 & percent.mt < 5)
# Write outputs for scrublet analysis
write10xCounts(ctrl_10@assays$RNA@counts, path = "ctrl_10.output")
# Integrate scrublet results back into SeuratObject
ctrl_10_scrublet <- read_tsv("scrublet_results/ctrl_10_scrublet_calls.tsv", col_names = FALSE)
ctrl_10_scrublet <- dplyr::rename(ctrl_10_scrublet, cell_ID = X1, doublet_score = X2, doublet = X3)
ctrl_10_merged_metadata <- [email protected]
ctrl_10_merged_metadata <- rownames_to_column(ctrl_10_merged_metadata, var = "cell_ID")
ctrl_10_merged_metadata <- left_join(ctrl_10_merged_metadata, ctrl_10_scrublet, by = "cell_ID")
ctrl_10_merged_metadata <- column_to_rownames(ctrl_10_merged_metadata, var = "cell_ID")
[email protected] <- ctrl_10_merged_metadata
# Souporcell
ctrl_10_souporcell <- read_tsv("KA_10_souporcell_clusters.tsv")
[email protected] <- rownames_to_column([email protected], var = "barcode")
ctrl_10_merged_metadata <- [email protected]
ctrl_10_merged_metadata <- left_join(ctrl_10_merged_metadata, ctrl_10_souporcell, by = "barcode")
ctrl_10_merged_metadata <- column_to_rownames(ctrl_10_merged_metadata, var = "barcode")
[email protected] <- ctrl_10_merged_metadata
ctrl_10 <- subset(ctrl_10, subset = doublet == "FALSE")
[email protected]$cells <- "LV_CAV"
[email protected]$sample_ID <- "6460_KA_10"
#------------------------------------------------------------------------------
# Create the merged file with all samples
merged.sets <- merge(ctrl_1, y = c(ctrl_2, ctrl_3, ctrl_4, ctrl_5, ctrl_6, ctrl_7, ctrl_8, ctrl_9, ctrl_10), add.cell.ids = c("RV_control", "RV_control", "RV_CAV", "LV_CAV", "RV_control", "RV_CAV", "RV_CAV", "LV_CAV", "RV_CAV", "LV_CAV"), project = "CAV_project")
features <- SplitObject(merged.sets, split.by = "sample_ID")
features <- lapply(X = features,
FUN = SCTransform,
method = "glmGamPoi",
vars.to.regress = "percent.mt",
return.only.var.genes = FALSE)
var.features <- SelectIntegrationFeatures(object.list = features, nfeatures = 3000)
merged.sets.sct <- merge(x = features[[1]], y = features[2:length(features)], merge.data=TRUE)
VariableFeatures(merged.sets.sct) <- var.features
# Continuing Seurat processing
merged.sets.sct <- RunPCA(merged.sets.sct, verbose = TRUE)
# Batch effect correction using Harmony
merged.sets.sct <- RunHarmony(merged.sets.sct, assay.use="SCT", group.by.vars = "cells")
# Continuing Seurat processing
merged.sets.sct <- RunUMAP(merged.sets.sct, reduction = "harmony", dims = 1:30)
merged.sets.sct <- FindNeighbors(merged.sets.sct, reduction = "harmony", dims = 1:30) %>% FindClusters(resolution = 0.4)
# Visualization of clusters
DimPlot(merged.sets.sct, group.by = "seurat_clusters", label = TRUE)
# View by sample label
DimPlot(merged.sets.sct, split.by = "cells", label = TRUE, ncol = 3)
# View by sample ID
DimPlot(merged.sets.sct, split.by = "sample_ID", label = TRUE, ncol = 5)
# Identification of cell types
# Cardiomyocytes
FeaturePlot(merged.sets.sct, features = c("TTN", "MLIP", "SORBS2", "FHL2"))
# Leukocytes
FeaturePlot(merged.sets.sct, features = c("PTPRC"))
# Macrophages
FeaturePlot(merged.sets.sct, features = c("CD163", "MRC1", "RBP1", "F13A1"))
# Mast cells
FeaturePlot(merged.sets.sct, features = c("MS4A2", "HPGDS", "HDC"))
# Lymphocyte
FeaturePlot(merged.sets.sct, features = c("SKAP1", "CD53", "PARP8", "PTPRC"))
# B cells
FeaturePlot(merged.sets.sct, features = c("MS4A1"))
# T cells
FeaturePlot(merged.sets.sct, features = c("CD4", "CD8A"))
# NK cells
FeaturePlot(merged.sets.sct, features = c("NCAM1", "CD160", "GNLY", "NKG7"))
# Fibroblasts
FeaturePlot(merged.sets.sct, features = c("DCN", "NEGR1", "ABCA6", "LAMA2"))
# Pericyte
FeaturePlot(merged.sets.sct, features = c("PDGFRB", "RGS5", "MCAM", "ACTA2"))
# Smooth muscle
FeaturePlot(merged.sets.sct, features = c("MYH11", "TAGLN", "ACTA2"))
# Neuronal
FeaturePlot(merged.sets.sct, features = c("NRXN1", "NCAM2"))
# Adipocytes
FeaturePlot(merged.sets.sct, features = c("ADIPOQ"))
# Endothelial cells
FeaturePlot(merged.sets.sct, features = c("VWF", "PECAM1", "LDB2", "ANO2"))
# Endocardial
FeaturePlot(merged.sets.sct, features = c("VWF", "PECAM1", "BMX", "NPR3"))
# Plasma cells
FeaturePlot(merged.sets.sct, features = c("SDC1", "IGKC"))
# Initial cluster labeling
updated.cluster.ids <- c("endothelial cells", "cardiomyocytes", "monocytes",
"CD8 T cells", "fibroblasts", "pericytes", "CD4 T cells",
"cardiomyocytes", "Tregs", "cardiomyocytes",
"NK cells", "endothelial cells", "B cells", "endocardial cells",
"VSMCs", "cardiomyocytes", "CD4 T cells", "endothelial cells",
"endothelial cells", "neuronal", "plasma cells", "dendritic cells", "cardiomyocytes", "mast cells", "endothelial cells")
names(updated.cluster.ids) <- levels(merged.sets.sct)
merged.sets.sct <- RenameIdents(merged.sets.sct, updated.cluster.ids)
DimPlot(merged.sets.sct, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend() + ggtitle("Annotated Clusters - Feb 27, 2022")
# Addressing monocyte/macrophage population using scGate data
library(scGate)
# Identifying the macrophage subpopulation
# Immune cells
immune <- subset(merged.sets.sct, idents = c("plasma cell", "NK cell", "macrophage", "mast cell", "B cell", "leukocyte"))
DimPlot(immune, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend() + ggtitle("Subset of Immune Cells")
[email protected]$cell_type <- Idents(immune)
DefaultAssay(immune) <- "RNA"
# scGate analysis for macrophages
macrophage_scGate_model <- gating_model(name = "macrophage", signature = c("CD163+", "MRC1+"))
immune <- scGate(data = immune, model = macrophage_scGate_model, assay = DefaultAssay(immune))
DimPlot(immune, group.by = "is.pure")
table(immune$is.pure)
macro_scGate <- subset(immune, subset = is.pure == "Pure")
# Pulling the macrophage cluster data into Seurat object
macro <- macro_scGate
Idents(macro) <- "macrophage"
macro_meta <- [email protected]
macro_meta$clusters <- "macrophage"
macro_meta <- dplyr::select(macro_meta, c(-is.pure, -is.pure.level1, -macrophage_UCell))
[email protected]$clusters <- Idents(merged.sets.sct)
merged_meta.data <- [email protected]
merged_meta.data <- rownames_to_column(merged_meta.data, var = "barcode")
macro_meta <- rownames_to_column(macro_meta, var = "barcode")
macro_meta <- dplyr::select(macro_meta, barcode, clusters)
test <- merged_meta.data %>%
mutate(coalesce(macro_meta$clusters[match(merged_meta.data$barcode, macro_meta$barcode)], merged_meta.data$clusters))
class(test$`coalesce(...)`)
class(test$clusters)
as.factor(test$`coalesce(...)`)
test$clusters <- test$`coalesce(...)`
test <- select(test, barcode:clusters)
test <- column_to_rownames(test, var = "barcode")
[email protected] <- test
Idents(merged.sets.sct) <- [email protected]$clusters
# Visualizing final clustered Seurat object including macrophages
DimPlot(merged.sets.sct, reduction = "umap", label = TRUE)