forked from pytorch/benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
609 lines (557 loc) · 20.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
"""
A lightweight runner that just sets up a model and runs one of its functions in a particular configuration.
Intended for debugging/exploration/profiling use cases, where the test/measurement harness is overhead.
DANGER: make sure to `python install.py` first or otherwise make sure the benchmark you are going to run
has been installed. This script intentionally does not automate or enforce setup steps.
Wall time provided for sanity but is not a sane benchmark measurement.
"""
import argparse
import time
from functools import partial
import numpy as np
import torch
import torch.profiler as profiler
from torchbenchmark import (
load_canary_model_by_name,
load_model_by_name,
ModelNotFoundError,
)
from torchbenchmark.util.experiment.instantiator import (
load_model,
TorchBenchModelConfig,
)
from torchbenchmark.util.experiment.metrics import get_model_flops, get_peak_memory
if not hasattr(torch.version, "git_version"):
from pytorch.benchmark.fb.run_utils import trace_handler, usage_report_logger
else:
usage_report_logger = lambda: None
WARMUP_ROUNDS = 3
SUPPORT_DEVICE_LIST = ["cpu", "cuda", "xpu"]
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
SUPPORT_DEVICE_LIST.append("mps")
SUPPORT_PROFILE_LIST = [
"record_shapes",
"profile_memory",
"with_stack",
"with_flops",
"with_modules",
]
def run_one_step_with_cudastreams(func, streamcount):
print("Running Utilization Scaling Using Cuda Streams")
streamlist = []
for i in range(1, streamcount + 1, 1):
# create additional streams and prime with load
while len(streamlist) < i:
s = torch.cuda.Stream()
streamlist.append(s)
for s in streamlist:
with torch.cuda.stream(s):
func()
torch.cuda.synchronize() # Wait for the events to be recorded!
# now run benchmark using streams
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for s in streamlist:
with torch.cuda.stream(s):
func()
end_event.record()
torch.cuda.synchronize()
print(f"Cuda StreamCount:{len(streamlist)}")
print(
"{:<20} {:>20}".format(
"GPU Time:", "%.3f milliseconds" % start_event.elapsed_time(end_event)
),
sep="",
)
def printResultSummaryTime(
result_summary,
model,
metrics_needed=[],
flops_model_analyzer=None,
model_flops=None,
cpu_peak_mem=None,
mem_device_id=None,
gpu_peak_mem=None,
):
assert model is not None, "model can not be None."
if args.device == "cuda":
gpu_time = np.median(list(map(lambda x: x[0], result_summary)))
cpu_walltime = np.median(list(map(lambda x: x[1], result_summary)))
print(
"{:<20} {:>20}".format(
"GPU Time per batch:",
"%.3f milliseconds" % (gpu_time / model.num_batch),
sep="",
)
)
else:
cpu_walltime = np.median(list(map(lambda x: x[0], result_summary)))
print(
"{:<20} {:>20}".format(
"CPU Wall Time per batch:",
"%.3f milliseconds" % (cpu_walltime / model.num_batch),
sep="",
)
)
print(
"{:<20} {:>20}".format(
"CPU Wall Time:",
"%.3f milliseconds" % (cpu_walltime),
sep="",
)
)
# if model_flops is not None, output the TFLOPs per sec
if "flops" in metrics_needed:
if flops_model_analyzer.metrics_backend_mapping["flops"] == "dcgm":
tflops_device_id, tflops = flops_model_analyzer.calculate_flops()
else:
flops = model.get_flops()
tflops = flops / (cpu_walltime / 1.0e3) / 1.0e12
print(
"{:<20} {:>20}".format(
"GPU FLOPS:", "%.4f TFLOPs per second" % tflops, sep=""
)
)
if "ttfb" in metrics_needed:
print(
"{:<20} {:>20}".format(
"Time to first batch:", "%.4f ms" % model.ttfb, sep=""
)
)
if model_flops is not None:
tflops = model_flops / (cpu_walltime / 1.0e3) / 1.0e12
print(
"{:<20} {:>20}".format(
"Model Flops:", "%.4f TFLOPs per second" % tflops, sep=""
)
)
if gpu_peak_mem is not None:
print(
"{:<20} {:>20}".format(
"GPU %d Peak Memory:" % mem_device_id, "%.4f GB" % gpu_peak_mem, sep=""
)
)
if cpu_peak_mem is not None:
print(
"{:<20} {:>20}".format("CPU Peak Memory:", "%.4f GB" % cpu_peak_mem, sep="")
)
def run_one_step(
func,
model,
nwarmup=WARMUP_ROUNDS,
num_iter=10,
export_metrics_file=None,
stress=0,
metrics_needed=[],
metrics_gpu_backend=None,
):
# Warm-up `nwarmup` rounds
for _i in range(nwarmup):
# import pdb;pdb.set_trace()
func()
result_summary = []
flops_model_analyzer = None
if "flops" in metrics_needed:
from torchbenchmark._components.model_analyzer.TorchBenchAnalyzer import (
ModelAnalyzer,
)
flops_model_analyzer = ModelAnalyzer(
export_metrics_file, ["flops"], metrics_gpu_backend
)
flops_model_analyzer.start_monitor()
if stress:
cur_time = time.time_ns()
start_time = cur_time
target_time = stress * 1e9 + start_time
num_iter = -1
last_time = start_time
_i = 0
last_it = 0
first_print_out = True
while (not stress and _i < num_iter) or (stress and cur_time < target_time):
if args.device == "cuda":
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
# Collect time_ns() instead of time() which does not provide better precision than 1
# second according to https://docs.python.org/3/library/time.html#time.time.
t0 = time.time_ns()
start_event.record()
func()
end_event.record()
torch.cuda.synchronize()
t1 = time.time_ns()
result_summary.append(
(start_event.elapsed_time(end_event), (t1 - t0) / 1_000_000)
)
elif args.device == "mps":
t0 = time.time_ns()
func()
t1 = time.time_ns()
wall_latency = t1 - t0
# TODO: modify this to add GPU time as well
result_summary.append([(t1 - t0) / 1_000_000])
else:
t0 = time.time_ns()
func()
t1 = time.time_ns()
result_summary.append([(t1 - t0) / 1_000_000])
if stress:
cur_time = time.time_ns()
# print out the status every 10s.
if (cur_time - last_time) >= 10 * 1e9:
if first_print_out:
print(
"|{:^20}|{:^20}|{:^20}|".format(
"Iterations", "Time/Iteration(ms)", "Rest Time(s)"
)
)
first_print_out = False
est = (target_time - cur_time) / 1e9
time_per_it = (cur_time - last_time) / (_i - last_it) / 1e6
print(
"|{:^20}|{:^20}|{:^20}|".format(
"%d" % _i, "%.2f" % time_per_it, "%d" % int(est)
)
)
last_time = cur_time
last_it = _i
_i += 1
if flops_model_analyzer is not None:
flops_model_analyzer.stop_monitor()
flops_model_analyzer.aggregate()
cpu_peak_mem = None
gpu_peak_mem = None
mem_device_id = None
model_flops = None
if "cpu_peak_mem" in metrics_needed or "gpu_peak_mem" in metrics_needed:
cpu_peak_mem, mem_device_id, gpu_peak_mem = get_peak_memory(
func,
model.device,
export_metrics_file=export_metrics_file,
metrics_needed=metrics_needed,
metrics_gpu_backend=metrics_gpu_backend,
)
if "model_flops" in metrics_needed:
model_flops = get_model_flops(model)
# printResultSummaryTime(
# result_summary,
# model,
# metrics_needed,
# flops_model_analyzer,
# model_flops,
# cpu_peak_mem,
# mem_device_id,
# gpu_peak_mem,
# )
def profile_one_step(func, model, nwarmup=WARMUP_ROUNDS):
activity_groups = []
result_summary = []
device_to_activity = {
"cuda": profiler.ProfilerActivity.CUDA,
"cpu": profiler.ProfilerActivity.CPU,
}
if args.profile_devices:
activity_groups = [
device_to_activity[device]
for device in args.profile_devices
if (device in device_to_activity)
]
else:
if args.device == "cuda":
activity_groups = [
profiler.ProfilerActivity.CUDA,
profiler.ProfilerActivity.CPU,
]
elif args.device == "cpu":
activity_groups = [profiler.ProfilerActivity.CPU]
profile_opts = {}
for opt in SUPPORT_PROFILE_LIST:
profile_opts[opt] = False if args.no_profile_detailed else True
# options can be overriden by disable-profile-options
if (
args.disable_profile_options is not None
and opt in args.disable_profile_options
):
profile_opts[opt] = False
if args.profile_eg:
import os
from datetime import datetime
from torch.profiler import ExecutionTraceObserver
start_time = datetime.now()
timestamp = int(datetime.timestamp(start_time))
eg_file = f"{args.model}_{timestamp}_eg.json"
eg = ExecutionTraceObserver()
if not os.path.exists(args.profile_eg_folder):
os.makedirs(args.profile_eg_folder)
eg.register_callback(f"{args.profile_eg_folder}/{eg_file}")
nwarmup = 0
eg.start()
with profiler.profile(
schedule=profiler.schedule(wait=0, warmup=nwarmup, active=1, repeat=1),
activities=activity_groups,
record_shapes=profile_opts["record_shapes"],
profile_memory=profile_opts["profile_memory"],
with_stack=profile_opts["with_stack"],
with_flops=profile_opts["with_flops"],
with_modules=profile_opts["with_modules"],
on_trace_ready=(
partial(trace_handler, f"torchbench_{args.model}")
if (
not hasattr(torch.version, "git_version")
and args.profile_export_chrome_trace
)
else profiler.tensorboard_trace_handler(args.profile_folder)
),
) as prof:
if args.device == "cuda":
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
for i in range(nwarmup + 1):
t0 = time.time_ns()
start_event.record()
func()
torch.cuda.synchronize() # Need to sync here to match run_one_step()'s timed run.
end_event.record()
t1 = time.time_ns()
if i >= nwarmup:
result_summary.append(
(start_event.elapsed_time(end_event), (t1 - t0) / 1_000_000)
)
prof.step()
else:
for i in range(nwarmup + 1):
t0 = time.time_ns()
func()
t1 = time.time_ns()
if i >= nwarmup:
result_summary.append([(t1 - t0) / 1_000_000])
prof.step()
if args.profile_eg and eg:
eg.stop()
eg.unregister_callback()
print(f"Save Exeution Trace to : {args.profile_eg_folder}/{eg_file}")
print(
prof.key_averages(group_by_input_shape=True).table(
sort_by="cpu_time_total", row_limit=30
)
)
print(f"Saved TensorBoard Profiler traces to {args.profile_folder}.")
# printResultSummaryTime(result_summary, model=m)
def _validate_devices(devices: str):
devices_list = devices.split(",")
valid_devices = SUPPORT_DEVICE_LIST
for d in devices_list:
if d not in valid_devices:
raise ValueError(
f"Invalid device {d} passed into --profile-devices. Expected devices: {valid_devices}."
)
return devices_list
def _validate_profile_options(profile_options: str):
profile_options_list = profile_options.split(",")
for opt in profile_options_list:
if opt not in SUPPORT_PROFILE_LIST:
raise ValueError(
f"Invalid profile option {opt} passed into --profile-options. Expected options: {SUPPORT_PROFILE_LIST}."
)
return profile_options_list
def main() -> None:
global m, args
parser = argparse.ArgumentParser(__doc__)
parser.add_argument(
"model",
help="Full or partial name of a model to run. If partial, picks the first match.",
)
parser.add_argument(
"-d",
"--device",
choices=SUPPORT_DEVICE_LIST,
default="cpu",
help="Which device to use.",
)
parser.add_argument(
"-t",
"--test",
choices=["eval", "train"],
default="eval",
help="Which test to run.",
)
parser.add_argument(
"--profile", action="store_true", help="Run the profiler around the function"
)
parser.add_argument(
"--disable-profile-options",
type=_validate_profile_options,
help=f"Select which profile options to disable. Valid options: {SUPPORT_PROFILE_LIST}.",
)
parser.add_argument("--amp", action="store_true", help="enable torch.autocast()")
parser.add_argument(
"--profile-folder",
default="./logs",
help="Save profiling model traces to this directory.",
)
parser.add_argument(
"--no-profile-detailed",
action="store_true",
help=f"Only profile GPU kernels, excluding {SUPPORT_PROFILE_LIST}. "
"To only disable some profile options, use --disable-profile-options instead.",
)
parser.add_argument(
"--profile-export-chrome-trace",
action="store_true",
help="Export Chrome tracing files. (internal only)",
)
parser.add_argument(
"--profile-devices",
type=_validate_devices,
help="Profile comma separated list of activities such as cpu,cuda.",
)
parser.add_argument(
"--profile-eg", action="store_true", help="Collect execution trace by PARAM"
)
parser.add_argument(
"--profile-eg-folder",
default="./eg_logs",
help="Save execution traces to this directory.",
)
parser.add_argument(
"--cudastreams",
action="store_true",
help="Utilization test using increasing number of cuda streams.",
)
parser.add_argument("--bs", type=int, help="Specify batch size to the test.")
parser.add_argument(
"--export-metrics",
action="store_true",
help="Export all specified metrics records to a csv file. The default csv file name is [model_name]_all_metrics.csv.",
)
parser.add_argument(
"--stress",
type=float,
default=0,
help="Specify execution time (seconds) to stress devices.",
)
parser.add_argument(
"--metrics",
type=str,
default="cpu_peak_mem,gpu_peak_mem,ttfb",
help="Specify metrics [cpu_peak_mem,gpu_peak_mem,ttfb,flops,model_flops]to be collected. "
"You can also set `none` to disable all metrics. The metrics are separated by comma such as cpu_peak_mem,gpu_peak_mem.",
)
parser.add_argument(
"--metrics-gpu-backend",
choices=["dcgm", "default"],
default="default",
help="""
Specify the backend [dcgm, default] to collect metrics.
In default mode, the latency(execution time) is collected by time.time_ns() and it is always enabled.
Optionally, - you can specify cpu peak memory usage by --metrics cpu_peak_mem, and it is collected by psutil.Process().
- you can specify gpu peak memory usage by --metrics gpu_peak_mem, and it is collected by nvml library.
- you can specify flops by --metrics flops, and it is collected by fvcore.
In dcgm mode, the latency(execution time) is collected by time.time_ns() and it is always enabled.
Optionally,
- you can specify cpu peak memory usage by --metrics cpu_peak_mem, and it is collected by psutil.Process().
- you can specify cpu and gpu peak memory usage by --metrics cpu_peak_mem,gpu_peak_mem, and they are collected by dcgm library.""",
)
args, extra_args = parser.parse_known_args()
if args.cudastreams and not args.device == "cuda":
print("cuda device required to use --cudastreams option!")
exit(-1)
# Log the tool usage
usage_report_logger()
config = TorchBenchModelConfig(
name=args.model,
test=args.test,
device=args.device,
batch_size=args.bs,
extra_args=extra_args,
)
m = load_model(config)
if m.dynamo:
mode = f"dynamo {m.opt_args.torchdynamo}"
elif m.opt_args.backend:
mode = f"{m.opt_args.backend}"
else:
mode = "eager"
print(
f"Running {args.test} method from {m.name} on {args.device} in {mode} mode with input batch size {m.batch_size} and precision {m.dargs.precision}."
)
if "--accuracy" in extra_args:
print("{:<20} {:>20}".format("Accuracy: ", str(m.accuracy)), sep="")
exit(0)
test = m.invoke
if args.amp:
test = torch.autocast(m.device, dtype=torch.bfloat16)(test)
metrics_needed = (
[_ for _ in args.metrics.split(",") if _.strip()] if args.metrics else []
)
if "none" in metrics_needed:
metrics_needed = []
# only enabled gpu_peak_mem for cuda device
if args.device != "cuda" and "gpu_peak_mem" in metrics_needed:
metrics_needed.remove("gpu_peak_mem")
metrics_needed = list(set(metrics_needed))
metrics_gpu_backend = args.metrics_gpu_backend
if metrics_needed:
if metrics_gpu_backend == "dcgm":
from torchbenchmark._components.model_analyzer.TorchBenchAnalyzer import (
check_dcgm,
)
check_dcgm()
elif "gpu_peak_mem" in metrics_needed:
from torchbenchmark._components.model_analyzer.TorchBenchAnalyzer import (
check_nvml,
)
check_nvml()
if "gpu_peak_mem" in metrics_needed or (
"flops" in metrics_needed and metrics_gpu_backend == "dcgm"
):
assert (
args.device == "cuda"
), "gpu_peak_mem and flops:dcgm are only available for cuda device."
if "flops" in metrics_needed and metrics_gpu_backend == "default":
assert hasattr(
m, "get_flops"
), f"The model {args.model} does not support calculating flops."
m.get_flops()
if args.export_metrics:
if not args.metrics:
print("You have to specifiy at least one metrics to export.")
exit(-1)
export_metrics_file = "%s_all_metrics.csv" % args.model
else:
export_metrics_file = None
if args.profile:
profile_one_step(test, model=m)
elif args.cudastreams:
run_one_step_with_cudastreams(test, 10)
else:
run_one_step(
test,
model=m,
export_metrics_file=export_metrics_file,
stress=args.stress,
metrics_needed=metrics_needed,
metrics_gpu_backend=args.metrics_gpu_backend,
)
# Print dynamo compilation metrics, if there are any.
try:
if m.pt2_compilation_time:
print(
"{:<20} {:>18}".format(
"PT2 Compilation time: ", "%.3f seconds" % m.pt2_compilation_time
),
sep="",
)
if m.pt2_graph_breaks:
print(
"{:<20} {:>18}".format(
"PT2 Graph Breaks: ", "%.3f" % m.pt2_graph_breaks
),
sep="",
)
except:
pass
if __name__ == "__main__":
main() # pragma: no cover