-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmodel.py
231 lines (181 loc) · 8.53 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import nltk
import IPython as I
import json
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Variable
import torch
from nltk import word_tokenize
import sent2vec
import operator
np.random.seed(5005)
def get_linear(shape):
std = 1. / np.sqrt(shape[1])
return np.random.uniform(-std, std, shape)
def cosine_similarity(x1, x2=None, eps=1e-8):
x2 = x1 if x2 is None else x2
w1 = x1.norm(p=2, dim=1, keepdim=True)
w2 = w1 if x2 is x1 else x2.norm(p=2, dim=1, keepdim=True)
return torch.mm(x1, x2.t()) / (w1 * w2.t()).clamp(min=eps)
def sim(x, y):
sims = (cosine_similarity(x, y) + 1.0)/2.0
return sims
class Identity(nn.Module):
def forward(self, x):
return x
class Projection(nn.Module):
def __init__(self, n_units):
super().__init__()
self.dropout = nn.Dropout(0.2)
self.proj = nn.Linear(n_units, n_units)
def forward(self, x):
x = self.proj(x)
x = F.relu(x)
return self.dropout(x)
class Sent2Vec(nn.Module):
def __init__(self, env, config):
super().__init__()
self.entity_vocab = None
self.config = config
self.symbol_vocab = None
self.predicate_vocab = None
self.env = env
self.sent2vec = sent2vec.Sent2vecModel()
self.sent2vec.load_model(config['embeddings'])
self.train_symbol = config['train_symbol']
self.train_predicate = config['train_predicate']
self.train_entity = config['train_entity']
self.symbol_embedding = None
self.predicate_embedding = None
self.entity_embedding = None
self.proj_sym = Projection(config['pred_dim'])
self.proj_ent = Projection(config['ent_dim'])
self.proj_pred = Projection(config['pred_dim'])
self.lambda_ = 1.0
self.init_embeddings()
def get_embedding(self, symbol):
if symbol.startswith('s'):
symbol = symbol[1:]
if self.train_symbol and symbol in self.symbol_vocab:
return self.proj_sym(self.symbol_embedding[self.symbol_vocab[symbol]])
else:
return self.proj_sym(torch.tensor(self.sent2vec.embed_sentence(symbol))[0])
elif symbol.startswith('p'):
symbol = symbol[1:]
if self.train_predicate and symbol in self.predicate_vocab:
return self.proj_pred(self.predicate_embedding[self.predicate_vocab[symbol]])
else:
return self.proj_pred(torch.tensor(self.sent2vec.embed_sentence(symbol))[0])
elif symbol.startswith('e'):
symbol = symbol[1:]
if self.train_entity and symbol in self.entity_vocab:
return self.proj_ent(self.entity_embedding[self.entity_vocab[symbol]])
else:
return self.proj_ent(torch.tensor(self.sent2vec.embed_sentence(symbol))[0])
else:
print(symbol)
raise ValueError
def recompute_score_with_grads(self, unifications, entity_aggregation=operator.mul, predicate_aggregation=operator.mul):
entity_score = 1.0
predicate_score = 1.0
for unification in unifications:
s1, s2 = unification.split('<>')
symbol_type = (s1[0], s2[0])
v1 = self.get_embedding(s1).unsqueeze(0)
v2 = self.get_embedding(s2).unsqueeze(0)
s = sim(v1, v2)
if symbol_type == ('s', 's'):
s = self.lambda_ * s + (1-self.lambda_)
if s1.startswith('e'):
entity_score = entity_aggregation(entity_score, s)
else:
predicate_score = predicate_aggregation(predicate_score, s)
return entity_score * predicate_score
def init_embeddings(self):
self.predicate_vocab = {}
self.symbol_vocab = {}
self.entity_vocab = {}
if self.train_predicate:
for predicate in self.env.predicate_vocab:
self.predicate_vocab[predicate] = len(self.predicate_vocab)
if self.predicate_embedding is None:
self.predicate_embedding = self.sent2vec.embed_sentences([predicate.replace('_', ' ')])
else:
self.predicate_embedding = np.concatenate((self.predicate_embedding, self.sent2vec.embed_sentences([predicate.replace('_', ' ')])))
self.predicate_embedding = nn.Parameter(torch.Tensor(self.predicate_embedding))
if self.train_symbol:
for symbol in self.env.symbol_vocab:
self.symbol_vocab[symbol] = len(self.symbol_vocab)
if self.config["semantic_query_init"]:
symbol_embedding = self.sent2vec.embed_sentences([" ".join(symbol.split('_'))])
else:
symbol_embedding = get_linear((1, self.config["pred_dim"]))
if self.symbol_embedding is None:
self.symbol_embedding = symbol_embedding
else:
self.symbol_embedding = np.concatenate((self.symbol_embedding, symbol_embedding))
self.symbol_embedding = nn.Parameter(torch.Tensor(self.symbol_embedding))
if self.train_entity:
for entity in self.env.entity_vocab:
self.entity_vocab[entity] = len(self.entity_vocab)
entity_embedding = self.sent2vec.embed_sentences([entity])
if entity_embedding.sum() == 0:
entity_embedding = get_linear((1, self.config["ent_dim"]))
if self.entity_embedding is None:
self.entity_embedding = entity_embedding
else:
self.entity_embedding = np.concatenate((self.entity_embedding, entity_embedding))
self.entity_embedding = nn.Parameter(torch.Tensor(self.entity_embedding))
def get_sims(self, obs):
with torch.no_grad():
if self.train_predicate:
predicate_indices = torch.LongTensor([self.predicate_vocab[p] for p in obs['predicates']])
predicate_embeddings = self.predicate_embedding[predicate_indices]
else:
predicate_embeddings = torch.tensor(self.sent2vec.embed_sentences(obs['predicates']))
if self.train_symbol:
symbols = np.array(obs['symbols'])
symbol_indices = torch.LongTensor([self.symbol_vocab.get(s, -1) for s in obs['symbols']])
no_emb_mask = symbol_indices == -1
symbol_embeddings = self.symbol_embedding[symbol_indices]
symbol_embeddings[no_emb_mask] = torch.tensor(self.sent2vec.embed_sentences(symbols))[no_emb_mask]
else:
symbol_embeddings = torch.tensor(self.sent2vec.embed_sentences(obs['symbols']))
if self.train_entity:
entity_indices = torch.LongTensor([self.entity_vocab.get(s, -1) for s in obs['entities']])
entity_embeddings = self.entity_embedding[entity_indices]
no_emb_mask = entity_indices == -1
entity_embeddings[no_emb_mask] = torch.tensor(self.sent2vec.embed_sentences(obs['entities']))[no_emb_mask]
else:
entity_embeddings = torch.tensor(self.sent2vec.embed_sentences(obs['entities']))
symbol_embeddings = self.proj_sym(symbol_embeddings)
entity_embeddings = self.proj_ent(entity_embeddings)
predicate_embeddings = self.proj_pred(predicate_embeddings)
sym_pred = sim(symbol_embeddings, predicate_embeddings)
ent_ent = sim(entity_embeddings, entity_embeddings)
sym_sym = self.lambda_ * sim(symbol_embeddings, symbol_embeddings) + (1 - self.lambda_)
return {
'symbol_predicate_similarity': sym_pred.numpy(),
'entity_similarity': ent_ent.numpy(),
'symbol_similarity': sym_sym.numpy()
}
def forward(self, obs):
pass
def save(self, fname):
meta = {}
meta['symbols'] = self.symbol_vocab
meta['entities'] = self.entity_vocab
meta['predicates'] = self.predicate_vocab
meta['config'] = self.config
with open(fname + '.json', 'w') as f:
json.dump(meta, f)
torch.save(self.state_dict(), fname + '.pto')
def load(self, fname):
with open(fname + '.json') as f:
meta = json.load(f)
self.symbol_vocab = meta['symbols']
self.entity_vocab = meta['entities']
self.predicate_vocab = meta['predicates']
self.load_state_dict(torch.load(fname + '.pto'))