-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognizer.py
90 lines (76 loc) · 2.73 KB
/
recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
'''
HAND WRITTEN DIGIT RECOGNITION
Code contributed by LETHAKULA MANISH REDDY
'''
# Import the modules
import cv2
import joblib
from skimage.feature import hog
import numpy as np
from pil import ImageTk, Image, ImageDraw
import pil
from tkinter import *
width = 200
height = 200
center = height//2
white = (255, 255, 255)
green = (0,128,0)
def save():
filename = "image.png"
image1.save(filename)
def paint(event):
x1, y1 = (event.x - 1), (event.y - 1)
x2, y2 = (event.x + 1), (event.y + 1)
cv.create_oval(x1, y1, x2, y2, fill="black",width=5)
draw.line([x1, y1, x2, y2],fill="black",width=5)
def clear():
cv.delete('all')
draw.rectangle([0,200, 200, 0],fill="white")
root = Tk()
root.title('HAND WRITTEN DIGIT RECOGNITION')
cv = Canvas(root, width=width, height=height, bg='white')
cv.pack()
image1 = pil.Image.new("RGB", (width, height), white)
draw = ImageDraw.Draw(image1)
cv.pack(expand=YES, fill=BOTH)
cv.bind("<B1-Motion>", paint)
button=Button(text="save",command=save)
button.pack()
# Load the classifier
clf = joblib.load("classifier.pkl")
def predict():
# Read the input image
im = cv2.imread("image.png")
# Convert to grayscale and apply Gaussian filtering
im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im_gray = cv2.GaussianBlur(im_gray, (5, 5), 0)
# Threshold the image
ret, im_th = cv2.threshold(im_gray, 90, 255, cv2.THRESH_BINARY_INV)
# Find contours in the image
ctrs, hier = cv2.findContours(im_th.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Get rectangles contains each contour
rects = [cv2.boundingRect(ctr) for ctr in ctrs]
# For each rectangular region, calculate HOG features and predict
# the digit using Linear SVM.
for rect in rects:
# Draw the rectangles
cv2.rectangle(im, (rect[0], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (51, 204, 51), 3)
# Make the rectangular region around the digit
leng = int(rect[3] * 1.6)
pt1 = int(rect[1] + rect[3] // 2 - leng // 2)
pt2 = int(rect[0] + rect[2] // 2 - leng // 2)
roi = im_th[pt1:pt1+leng, pt2:pt2+leng]
# Resize the image
roi = cv2.resize(roi, (28, 28), interpolation=cv2.INTER_AREA)
roi = cv2.dilate(roi, (3, 3))
# Calculate the HOG features
roi_hog_fd = hog(roi, orientations=9, pixels_per_cell=(14, 14), cells_per_block=(1, 1))
nbr = clf.predict(np.array([roi_hog_fd], 'float64'))
cv2.putText(im, str(int(nbr[0])), (rect[0], rect[1]),cv2.FONT_HERSHEY_DUPLEX, 2, (255, 51, 0), 3)
cv2.imshow("output", im)
cv2.waitKey()
button2=Button(text="predict",command=predict)
button2.pack()
button=Button(text="clear",command=clear)
button.pack()
root.mainloop()