-
Notifications
You must be signed in to change notification settings - Fork 17
/
run_pretrained_openfold.py
231 lines (197 loc) · 7.85 KB
/
run_pretrained_openfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from datetime import date
import logging
import numpy as np
import os
# A hack to get OpenMM and PyTorch to peacefully coexist
os.environ["OPENMM_DEFAULT_PLATFORM"] = "OpenCL"
import pickle
import random
import sys
import time
import torch
from openfold.config import model_config
from openfold.data import templates, feature_pipeline, data_pipeline
from openfold.model.model import AlphaFold
from openfold.model.torchscript import script_preset_
from openfold.np import residue_constants, protein
import openfold.np.relax.relax as relax
from openfold.utils.import_weights import (
import_jax_weights_,
)
from openfold.utils.tensor_utils import (
tensor_tree_map,
)
from scripts.utils import add_data_args
def main(args):
config = model_config(args.model_name)
model = AlphaFold(config)
model = model.eval()
import_jax_weights_(model, args.param_path, version=args.model_name)
#script_preset_(model)
model = model.to(args.model_device)
template_featurizer = templates.TemplateHitFeaturizer(
mmcif_dir=args.template_mmcif_dir,
max_template_date=args.max_template_date,
max_hits=config.data.predict.max_templates,
kalign_binary_path=args.kalign_binary_path,
release_dates_path=args.release_dates_path,
obsolete_pdbs_path=args.obsolete_pdbs_path
)
use_small_bfd=(args.bfd_database_path is None)
data_processor = data_pipeline.DataPipeline(
template_featurizer=template_featurizer,
)
output_dir_base = args.output_dir
random_seed = args.data_random_seed
if random_seed is None:
random_seed = random.randrange(sys.maxsize)
feature_processor = feature_pipeline.FeaturePipeline(config.data)
if not os.path.exists(output_dir_base):
os.makedirs(output_dir_base)
if(args.use_precomputed_alignments is None):
alignment_dir = os.path.join(output_dir_base, "alignments")
else:
alignment_dir = args.use_precomputed_alignments
# Gather input sequences
with open(args.fasta_path, "r") as fp:
lines = [l.strip() for l in fp.readlines()]
tags, seqs = lines[::2], lines[1::2]
tags = [l[1:] for l in tags]
for tag, seq in zip(tags, seqs):
fasta_path = os.path.join(args.output_dir, "tmp.fasta")
with open(fasta_path, "w") as fp:
fp.write(f">{tag}\n{seq}")
logging.info("Generating features...")
local_alignment_dir = os.path.join(alignment_dir, tag)
if(args.use_precomputed_alignments is None):
if not os.path.exists(local_alignment_dir):
os.makedirs(local_alignment_dir)
alignment_runner = data_pipeline.AlignmentRunner(
jackhmmer_binary_path=args.jackhmmer_binary_path,
hhblits_binary_path=args.hhblits_binary_path,
hhsearch_binary_path=args.hhsearch_binary_path,
uniref90_database_path=args.uniref90_database_path,
mgnify_database_path=args.mgnify_database_path,
bfd_database_path=args.bfd_database_path,
uniclust30_database_path=args.uniclust30_database_path,
pdb70_database_path=args.pdb70_database_path,
use_small_bfd=use_small_bfd,
no_cpus=args.cpus,
)
alignment_runner.run(
fasta_path, local_alignment_dir
)
feature_dict = data_processor.process_fasta(
fasta_path=fasta_path, alignment_dir=local_alignment_dir
)
# Remove temporary FASTA file
os.remove(fasta_path)
processed_feature_dict = feature_processor.process_features(
feature_dict, mode='predict',
)
logging.info("Executing model...")
batch = processed_feature_dict
with torch.no_grad():
batch = {
k:torch.as_tensor(v, device=args.model_device)
for k,v in batch.items()
}
t = time.perf_counter()
out = model(batch)
logging.info(f"Inference time: {time.perf_counter() - t}")
# Toss out the recycling dimensions --- we don't need them anymore
batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
plddt = out["plddt"]
mean_plddt = np.mean(plddt)
plddt_b_factors = np.repeat(
plddt[..., None], residue_constants.atom_type_num, axis=-1
)
unrelaxed_protein = protein.from_prediction(
features=batch,
result=out,
b_factors=plddt_b_factors
)
amber_relaxer = relax.AmberRelaxation(
**config.relax
)
# Relax the prediction.
t = time.perf_counter()
relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
logging.info(f"Relaxation time: {time.perf_counter() - t}")
# Save the relaxed PDB.
relaxed_output_path = os.path.join(
args.output_dir, f'{tag}_{args.model_name}.pdb'
)
with open(relaxed_output_path, 'w') as f:
f.write(relaxed_pdb_str)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"fasta_path", type=str,
)
add_data_args(parser)
parser.add_argument(
"--use_precomputed_alignments", type=str, default=None,
help="""Path to alignment directory. If provided, alignment computation
is skipped and database path arguments are ignored."""
)
parser.add_argument(
"--output_dir", type=str, default=os.getcwd(),
help="""Name of the directory in which to output the prediction""",
required=True
)
parser.add_argument(
"--model_device", type=str, default="cpu",
help="""Name of the device on which to run the model. Any valid torch
device name is accepted (e.g. "cpu", "cuda:0")"""
)
parser.add_argument(
"--model_name", type=str, default="model_1",
help="""Name of a model config. Choose one of model_{1-5} or
model_{1-5}_ptm, as defined on the AlphaFold GitHub."""
)
parser.add_argument(
"--param_path", type=str, default=None,
help="""Path to model parameters. If None, parameters are selected
automatically according to the model name from
openfold/resources/params"""
)
parser.add_argument(
"--cpus", type=int, default=4,
help="""Number of CPUs with which to run alignment tools"""
)
parser.add_argument(
'--preset', type=str, default='full_dbs',
choices=('reduced_dbs', 'full_dbs')
)
parser.add_argument(
'--data_random_seed', type=str, default=None
)
args = parser.parse_args()
if(args.param_path is None):
args.param_path = os.path.join(
"openfold", "resources", "params",
"params_" + args.model_name + ".npz"
)
if(args.model_device == "cpu" and torch.cuda.is_available()):
logging.warning(
"""The model is being run on CPU. Consider specifying
--model_device for better performance"""
)
main(args)