This repository has been archived by the owner on Mar 5, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgp.jl
52 lines (40 loc) · 1.72 KB
/
gp.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
module gp
export gpr, CovG, CovL, CovGsin, CovLsin, CovDot, CovDotWeight
CovG = ( (x1, x2, sig::Float64) -> exp(- sumabs2(x1-x2)/(2.0*sig^2)))
CovGsin = ( (x1, x2, sig::Float64) -> exp(- 2.0*sumabs2(sin((x1-x2)/2.0))/sig^2))
CovGsin1 = ( (x1, x2, sig::Float64) -> exp(- 2.0*sumabs2(sin((x1[1]-x2[1])/2.0))/(4.0*sig)^2)*exp(- sumabs2(x1[2:end]-x2[2:end])/(2.0*sig^2)))
CovL = ( (x1, x2, sig::Float64) -> exp(- sumabs(x1-x2)/sig))
CovLsin = ( (x1, x2, sig::Float64) -> exp(- sumabs(sin((x1-x2)/2.0))/sig))
CovDot = ( (x1, x2, sig::Float64) -> (x1 ⋅ x2)^sig)
CovDotWeight = ( (x1, x2, sig::Float64) -> (sum(x1.*x2.*(2.0.^(-[1:length(x1)]/sig))))^4.0 )
#
# 1D special case
#
function gpr(x::Array{Float64,1}, y::Array{Float64,1}, xp::Array{Float64,1}, Cov, noise::Float64, len::Float64)
gpr(reshape(x, 1, length(x)), y, reshape(xp, 1, length(xp)), Cov, noise, len)
end
#
# data is a matrix : (Ndescriptors,Ndata)
#
function gpr(x::Array{Float64,2}, y::Array{Float64,1}, xp::Array{Float64,2}, Cov, noise::Float64, len::Float64)
Ndata = size(x,2); # number of training data points
K=zeros(Ndata,Ndata); # kernel
# build kernel matrix
for i=1:Ndata
for j=1:Ndata
K[i,j] = Cov(x[:,i], x[:,j], len)/(sqrt(Cov(x[:,i],x[:,i],len))*sqrt(Cov(x[:,j], x[:,j], len)))+noise^2*(i==j)
end
end
a = inv(K)*y # invert kernel matrix and compute coefficients
Np = size(xp,2) # number of prediction points
yp = zeros(Np) # predicted values
k = zeros(Ndata) # covariance of new points
for i=1:Np
for j=1:Ndata
k[j] = Cov(xp[:,i], x[:,j], len)/(sqrt(Cov(xp[:,i],xp[:,i],len))*sqrt(Cov(x[:,j], x[:,j], len)))
end
yp[i] = k⋅a
end
return yp
end
end