-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfaceDector.py
65 lines (58 loc) · 1.93 KB
/
faceDector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import cv2, time, os
from PIL import Image
# 人脸识别
def gface(image):
# 模式参数
dir_path = "E:\\OpenCv\\opencv-3.3.0\\data\\haarcascades" # openCV路径
filename = "haarcascade_frontalface_default.xml" # 识别模式文件
model_path = dir_path + "\\" + filename
# 创建classifier
clf = cv2.CascadeClassifier(model_path)
# 设定灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 识别面部
faces = clf.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE
)
# 画方框
result = []
for (x, y, w, h) in faces:
# 保存识别的人脸
result.append((x, y, x + w, y + h))
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
return image, result
# 打开摄像头进行人脸检测
def faceCapture(name):
cap = cv2.VideoCapture(0) # 从摄像头中取得视频
# 获取视频播放界面长宽
# width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) + 0.5)
# height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) + 0.5)
# # 定义编码器 创建 VideoWriter 对象
while (cap.isOpened()):
# 读取帧摄像头
ret, frame = cap.read()
k=cv2.waitKey(1)&0xFF
if ret == True:
# 输出当前帧
faceCapture, result = gface(frame)
cv2.imshow('My Camera', faceCapture)
if result:
if k == ord('s'):
for x1, y1, x2, y2 in result:
face = frame[y1:y2, x1:x2]
print(name)
# cv2.imwrite(dir + name + '.jpg', face)
cv2.imencode('.jpg', face)[1].tofile( name + '.jpg')
break
elif k == ord('q'):
break
else:
break
# 释放资源
cap.release()
cv2.destroyAllWindows()