forked from burnpiro/farm-animal-tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_interval_score.py
67 lines (56 loc) · 1.87 KB
/
calculate_interval_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import json
import codecs
from pathlib import Path
import numpy as np
from data.names import names
# experiments/tracking/MobileNetV2/AvgEmbeddingTracker/11_nursery_high_activity_day-cropped.mp4_2021-01-24_13-26-02/scores.json
results_total = np.empty((17,3), dtype="U5")
results_interval = np.empty((17,3), dtype="U5")
# print(results)
i = 0
for path in Path('experiments/tracking').rglob('15_nur*/scores.json'):
print(path)
scores = json.load(
codecs.open(path)
)
# continue
mapped_scores = []
full_values = []
for class_id, class_score in scores.items():
mean_err = np.mean(class_score["intervals"]["parts"])
print(class_id)
print(names[int(class_id)-1], mean_err)
mapped_scores.append((names[int(class_id)-1], mean_err))
full_values.append((names[int(class_id)-1], class_score["total"]["avg_err"]))
scores[class_id]["intervals"]["avg_err"] = mean_err
print()
sorted_by = sorted(mapped_scores, key=lambda tup: tup[0])
j = 0
avg_total = 0.0
for class_id, class_score in sorted_by:
results_total[j][i] = "{:.2f}".format(class_score)
avg_total += class_score
j += 1
# print(class_id, "{:.2f}".format(class_score))
results_total[16][i] = "{:.2f}".format(avg_total/16)
print()
sorted_by = sorted(full_values, key=lambda tup: tup[0])
j = 0
avg_total = 0.0
for class_id, class_score in sorted_by:
results_interval[j][i] = "{:.2f}".format(class_score)
avg_total += class_score
j += 1
print(class_id, "{:.2f}".format(class_score))
results_interval[16][i] = "{:.2f}".format(avg_total/16)
json.dump(
scores,
codecs.open(path, "w", encoding="utf-8"),
indent=2,
sort_keys=False,
separators=(",", ":"),
)
i += 1
print(results_total)
print(results_interval)