-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrainer_full_body_manip_diffusion.py
991 lines (747 loc) · 44.7 KB
/
trainer_full_body_manip_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
import argparse
import os
import numpy as np
import yaml
import random
import json
import trimesh
from tqdm import tqdm
from pathlib import Path
import wandb
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import DataLoader, TensorDataset
from torch.cuda.amp import autocast, GradScaler
from torch.utils import data
import torch.nn.functional as F
import pytorch3d.transforms as transforms
from ema_pytorch import EMA
from multiprocessing import cpu_count
from human_body_prior.body_model.body_model import BodyModel
from manip.data.hand_foot_dataset import HandFootManipDataset, quat_ik_torch, quat_fk_torch
from manip.model.transformer_fullbody_cond_diffusion_model import CondGaussianDiffusion, cosine_beta_schedule
from manip.vis.blender_vis_mesh_motion import run_blender_rendering_and_save2video, save_verts_faces_to_mesh_file_w_object
from evaluation_metrics import compute_metrics
from evaluation_metrics import compute_collision
from matplotlib import pyplot as plt
def run_smplx_model(root_trans, aa_rot_rep, betas, gender, bm_dict, return_joints24=False):
# root_trans: BS X T X 3
# aa_rot_rep: BS X T X 22 X 3
# betas: BS X 16
# gender: BS
bs, num_steps, num_joints, _ = aa_rot_rep.shape
if num_joints != 52:
padding_zeros_hand = torch.zeros(bs, num_steps, 30, 3).to(aa_rot_rep.device) # BS X T X 30 X 3
aa_rot_rep = torch.cat((aa_rot_rep, padding_zeros_hand), dim=2) # BS X T X 52 X 3
aa_rot_rep = aa_rot_rep.reshape(bs*num_steps, -1, 3) # (BS*T) X n_joints X 3
betas = betas[:, None, :].repeat(1, num_steps, 1).reshape(bs*num_steps, -1) # (BS*T) X 16
gender = np.asarray(gender)[:, np.newaxis].repeat(num_steps, axis=1)
gender = gender.reshape(-1).tolist() # (BS*T)
smpl_trans = root_trans.reshape(-1, 3) # (BS*T) X 3
smpl_betas = betas # (BS*T) X 16
smpl_root_orient = aa_rot_rep[:, 0, :] # (BS*T) X 3
smpl_pose_body = aa_rot_rep[:, 1:22, :].reshape(-1, 63) # (BS*T) X 63
smpl_pose_hand = aa_rot_rep[:, 22:, :].reshape(-1, 90) # (BS*T) X 90
B = smpl_trans.shape[0] # (BS*T)
smpl_vals = [smpl_trans, smpl_root_orient, smpl_betas, smpl_pose_body, smpl_pose_hand]
# batch may be a mix of genders, so need to carefully use the corresponding SMPL body model
gender_names = ['male', 'female']
pred_joints = []
pred_verts = []
prev_nbidx = 0
cat_idx_map = np.ones((B), dtype=int)*-1
for gender_name in gender_names:
gender_idx = np.array(gender) == gender_name
nbidx = np.sum(gender_idx)
cat_idx_map[gender_idx] = np.arange(prev_nbidx, prev_nbidx + nbidx, dtype=int)
prev_nbidx += nbidx
gender_smpl_vals = [val[gender_idx] for val in smpl_vals]
if nbidx == 0:
# skip if no frames for this gender
continue
# reconstruct SMPL
cur_pred_trans, cur_pred_orient, cur_betas, cur_pred_pose, cur_pred_pose_hand = gender_smpl_vals
bm = bm_dict[gender_name]
pred_body = bm(pose_body=cur_pred_pose, pose_hand=cur_pred_pose_hand, \
betas=cur_betas, root_orient=cur_pred_orient, trans=cur_pred_trans)
pred_joints.append(pred_body.Jtr)
pred_verts.append(pred_body.v)
# cat all genders and reorder to original batch ordering
if return_joints24:
x_pred_smpl_joints_all = torch.cat(pred_joints, axis=0) # () X 52 X 3
lmiddle_index= 28
rmiddle_index = 43
x_pred_smpl_joints = torch.cat((x_pred_smpl_joints_all[:, :22, :], \
x_pred_smpl_joints_all[:, lmiddle_index:lmiddle_index+1, :], \
x_pred_smpl_joints_all[:, rmiddle_index:rmiddle_index+1, :]), dim=1)
else:
x_pred_smpl_joints = torch.cat(pred_joints, axis=0)[:, :num_joints, :]
x_pred_smpl_joints = x_pred_smpl_joints[cat_idx_map] # (BS*T) X 22 X 3
x_pred_smpl_verts = torch.cat(pred_verts, axis=0)
x_pred_smpl_verts = x_pred_smpl_verts[cat_idx_map] # (BS*T) X 6890 X 3
x_pred_smpl_joints = x_pred_smpl_joints.reshape(bs, num_steps, -1, 3) # BS X T X 22 X 3/BS X T X 24 X 3
x_pred_smpl_verts = x_pred_smpl_verts.reshape(bs, num_steps, -1, 3) # BS X T X 6890 X 3
mesh_faces = pred_body.f
return x_pred_smpl_joints, x_pred_smpl_verts, mesh_faces
def cycle(dl):
while True:
for data in dl:
yield data
class Trainer(object):
def __init__(
self,
opt,
diffusion_model,
*,
ema_decay=0.995,
train_batch_size=32,
train_lr=1e-4,
train_num_steps=10000000,
gradient_accumulate_every=2,
amp=False,
step_start_ema=2000,
ema_update_every=10,
save_and_sample_every=40000,
results_folder='./results',
use_wandb=True
):
super().__init__()
self.use_wandb = use_wandb
if self.use_wandb:
# Loggers
wandb.init(config=opt, project=opt.wandb_pj_name, entity=opt.entity, \
name=opt.exp_name, dir=opt.save_dir)
self.model = diffusion_model
self.ema = EMA(diffusion_model, beta=ema_decay, update_every=ema_update_every)
self.step_start_ema = step_start_ema
self.save_and_sample_every = save_and_sample_every
self.batch_size = train_batch_size
self.gradient_accumulate_every = gradient_accumulate_every
self.train_num_steps = train_num_steps
self.optimizer = Adam(diffusion_model.parameters(), lr=train_lr)
self.step = 0
self.amp = amp
self.scaler = GradScaler(enabled=amp)
self.results_folder = results_folder
self.vis_folder = results_folder.replace("weights", "vis_res")
self.opt = opt
self.data_root_folder = self.opt.data_root_folder
self.window = opt.window
self.use_object_split = self.opt.use_object_split
self.prep_dataloader(window_size=opt.window)
self.bm_dict = self.ds.bm_dict
self.test_on_train = self.opt.test_sample_res_on_train
self.add_hand_processing = self.opt.add_hand_processing
self.for_quant_eval = self.opt.for_quant_eval
def prep_dataloader(self, window_size):
# Define dataset
train_dataset = HandFootManipDataset(train=True, data_root_folder=self.data_root_folder, \
window=window_size, use_object_splits=self.use_object_split)
val_dataset = HandFootManipDataset(train=False, data_root_folder=self.data_root_folder, \
window=window_size, use_object_splits=self.use_object_split)
self.ds = train_dataset
self.val_ds = val_dataset
self.dl = cycle(data.DataLoader(self.ds, batch_size=self.batch_size, \
shuffle=True, pin_memory=True, num_workers=4))
self.val_dl = cycle(data.DataLoader(self.val_ds, batch_size=self.batch_size, \
shuffle=False, pin_memory=True, num_workers=4))
def save(self, milestone):
data = {
'step': self.step,
'model': self.model.state_dict(),
'ema': self.ema.state_dict(),
'scaler': self.scaler.state_dict()
}
torch.save(data, os.path.join(self.results_folder, 'model-'+str(milestone)+'.pt'))
def load(self, milestone, pretrained_path=None):
if pretrained_path is None:
data = torch.load(os.path.join(self.results_folder, 'model-'+str(milestone)+'.pt'))
else:
data = torch.load(pretrained_path)
self.step = data['step']
self.model.load_state_dict(data['model'], strict=False)
self.ema.load_state_dict(data['ema'], strict=False)
self.scaler.load_state_dict(data['scaler'])
def prep_temporal_condition_mask(self, data, t_idx=0):
# Missing regions are ones, the condition regions are zeros.
mask = torch.ones_like(data).to(data.device) # BS X T X D
mask[:, t_idx, :] = torch.zeros(data.shape[0], data.shape[2]).to(data.device) # BS X D
return mask
def prep_joint_condition_mask(self, data, joint_idx, pos_only):
# data: BS X T X D
# head_idx = 15
# hand_idx = 20, 21
# Condition part is zeros, while missing part is ones.
mask = torch.ones_like(data).to(data.device)
cond_pos_dim_idx = joint_idx * 3
cond_rot_dim_idx = 24 * 3 + joint_idx * 6
mask[:, :, cond_pos_dim_idx:cond_pos_dim_idx+3] = torch.zeros(data.shape[0], data.shape[1], 3).to(data.device)
if not pos_only:
mask[:, :, cond_rot_dim_idx:cond_rot_dim_idx+6] = torch.zeros(data.shape[0], data.shape[1], 6).to(data.device)
return mask
def train(self):
init_step = self.step
for idx in range(init_step, self.train_num_steps):
self.optimizer.zero_grad()
nan_exists = False # If met nan in loss or gradient, need to skip to next data.
for i in range(self.gradient_accumulate_every):
data_dict = next(self.dl)
data = data_dict['motion'].cuda()
cond_mask = None
left_joint_mask = self.prep_joint_condition_mask(data, joint_idx=22, pos_only=True)
right_joint_mask = self.prep_joint_condition_mask(data, joint_idx=23, pos_only=True)
if cond_mask is not None:
cond_mask = cond_mask * left_joint_mask * right_joint_mask
else:
cond_mask = left_joint_mask * right_joint_mask
# Generate padding mask
actual_seq_len = data_dict['seq_len'] + 1 # BS, + 1 since we need additional timestep for noise level
tmp_mask = torch.arange(self.window+1).expand(data.shape[0], \
self.window+1) < actual_seq_len[:, None].repeat(1, self.window+1)
# BS X max_timesteps
padding_mask = tmp_mask[:, None, :].to(data.device)
with autocast(enabled = self.amp):
loss_diffusion = self.model(data, cond_mask, padding_mask)
loss = loss_diffusion
if torch.isnan(loss).item():
print('WARNING: NaN loss. Skipping to next data...')
nan_exists = True
torch.cuda.empty_cache()
continue
self.scaler.scale(loss / self.gradient_accumulate_every).backward()
# check gradients
parameters = [p for p in self.model.parameters() if p.grad is not None]
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), 2.0).to(data.device) for p in parameters]), 2.0)
if torch.isnan(total_norm):
print('WARNING: NaN gradients. Skipping to next data...')
nan_exists = True
torch.cuda.empty_cache()
continue
if self.use_wandb:
log_dict = {
"Train/Loss/Total Loss": loss.item(),
"Train/Loss/Diffusion Loss": loss_diffusion.item(),
}
wandb.log(log_dict)
if idx % 50 == 0 and i == 0:
print("Step: {0}".format(idx))
print("Loss: %.4f" % (loss.item()))
if nan_exists:
continue
self.scaler.step(self.optimizer)
self.scaler.update()
self.ema.update()
if self.step != 0 and self.step % 10 == 0:
self.ema.ema_model.eval()
with torch.no_grad():
val_data_dict = next(self.val_dl)
val_data = val_data_dict['motion'].cuda()
cond_mask = None
left_joint_mask = self.prep_joint_condition_mask(val_data, joint_idx=22, pos_only=True)
right_joint_mask = self.prep_joint_condition_mask(val_data, joint_idx=23, pos_only=True)
if cond_mask is not None:
cond_mask = cond_mask * left_joint_mask * right_joint_mask
else:
cond_mask = left_joint_mask * right_joint_mask
# Generate padding mask
actual_seq_len = val_data_dict['seq_len'] + 1 # BS, + 1 since we need additional timestep for noise level
tmp_mask = torch.arange(self.window+1).expand(val_data.shape[0], \
self.window+1) < actual_seq_len[:, None].repeat(1, self.window+1)
# BS X max_timesteps
padding_mask = tmp_mask[:, None, :].to(val_data.device)
# Get validation loss
val_loss_diffusion = self.model(val_data, cond_mask, padding_mask)
val_loss = val_loss_diffusion
if self.use_wandb:
val_log_dict = {
"Validation/Loss/Total Loss": val_loss.item(),
"Validation/Loss/Diffusion Loss": val_loss_diffusion.item(),
}
wandb.log(val_log_dict)
milestone = self.step // self.save_and_sample_every
bs_for_vis = 1
if self.step % self.save_and_sample_every == 0:
self.save(milestone)
all_res_list = self.ema.ema_model.sample(val_data, cond_mask, padding_mask)
all_res_list = all_res_list[:bs_for_vis]
# Visualization
for_vis_gt_data = val_data[:bs_for_vis]
self.gen_vis_res(for_vis_gt_data, val_data_dict, self.step, vis_gt=True)
self.gen_vis_res(all_res_list, val_data_dict, self.step)
self.step += 1
print('training complete')
if self.use_wandb:
wandb.run.finish()
def cond_sample_res(self):
weights = os.listdir(self.results_folder)
weights_paths = [os.path.join(self.results_folder, weight) for weight in weights]
weight_path = max(weights_paths, key=os.path.getctime)
print(f"Loaded weight: {weight_path}")
milestone = weight_path.split("/")[-1].split("-")[-1].replace(".pt", "")
self.load(milestone)
self.ema.ema_model.eval()
global_hand_jpe_list = []
global_lhand_jpe_list = []
global_rhand_jpe_list = []
mpvpe_list = []
mpjpe_list = []
rot_dist_list = []
root_trans_err_list = []
collision_percent_list = []
collision_depth_list = []
gt_collision_percent_list = []
gt_collision_depth_list = []
foot_sliding_jnts_list = []
gt_foot_sliding_jnts_list = []
contact_precision_list = []
contact_recall_list = []
contact_acc_list = []
contact_f1_score_list = []
contact_dist_list = []
gt_contact_dist_list = []
if self.test_on_train:
test_loader = torch.utils.data.DataLoader(
self.ds, batch_size=8, shuffle=False,
num_workers=0, pin_memory=True, drop_last=False)
else:
test_loader = torch.utils.data.DataLoader(
self.val_ds, batch_size=8, shuffle=False,
num_workers=0, pin_memory=True, drop_last=False)
if self.for_quant_eval:
num_samples_per_seq = 20
else:
num_samples_per_seq = 1
with torch.no_grad():
for s_idx, val_data_dict in enumerate(test_loader):
val_data = val_data_dict['motion'].cuda()
cond_mask = None
left_joint_mask = self.prep_joint_condition_mask(val_data, joint_idx=22, pos_only=True)
right_joint_mask = self.prep_joint_condition_mask(val_data, joint_idx=23, pos_only=True)
if cond_mask is not None:
cond_mask = cond_mask * left_joint_mask * right_joint_mask
else:
cond_mask = left_joint_mask * right_joint_mask
# Generate padding mask
actual_seq_len = val_data_dict['seq_len'] + 1 # BS, + 1 since we need additional timestep for noise level
tmp_mask = torch.arange(self.window+1).expand(val_data.shape[0], \
self.window+1) < actual_seq_len[:, None].repeat(1, self.window+1)
# BS X max_timesteps
padding_mask = tmp_mask[:, None, :].to(val_data.device)
hand_jpe_per_seq = []
lhand_jpe_per_seq = []
rhand_jpe_per_seq = []
mpvpe_per_seq = []
mpjpe_per_seq = []
rot_dist_per_seq = []
trans_err_per_seq = []
gt_foot_sliding_jnts_per_seq = []
foot_sliding_jnts_per_seq = []
gt_contact_dist_per_seq = []
contact_dist_per_seq = []
contact_precision_per_seq = []
contact_recall_per_seq = []
contact_acc_per_seq = []
contact_f1_score_per_seq = []
sampled_all_res_per_seq = []
for sample_idx in range(num_samples_per_seq):
all_res_list = self.ema.ema_model.sample(val_data, \
cond_mask=cond_mask, padding_mask=padding_mask) # BS X T X D
sampled_all_res_per_seq.append(all_res_list)
vis_tag = str(milestone)+"_sidx_"+str(s_idx)+"_sample_cnt_"+str(sample_idx)
if self.test_on_train:
vis_tag = vis_tag + "_on_train"
num_seq = all_res_list.shape[0]
for seq_idx in range(num_seq):
curr_vis_tag = vis_tag + "_seq_idx_in_bs_"+str(seq_idx)
pred_human_trans_list, pred_human_rot_list, pred_human_jnts_list, pred_human_verts_list, human_faces_list, \
obj_verts_list, obj_faces_list, actual_len_list = \
self.gen_vis_res(all_res_list[seq_idx:seq_idx+1], val_data_dict, \
milestone, vis_tag=curr_vis_tag, for_quant_eval=self.for_quant_eval, selected_seq_idx=seq_idx)
gt_human_trans_list, gt_human_rot_list, gt_human_jnts_list, gt_human_verts_list, human_faces_list, \
obj_verts_list, obj_faces_list, actual_len_list = \
self.gen_vis_res(val_data_dict['motion'].cuda()[seq_idx:seq_idx+1], val_data_dict, \
milestone, vis_gt=True, vis_tag=curr_vis_tag, for_quant_eval=self.for_quant_eval, selected_seq_idx=seq_idx)
lhand_jpe, rhand_jpe, hand_jpe, mpvpe, mpjpe, rot_dist, trans_err, \
gt_contact_dist, contact_dist, \
gt_foot_sliding_jnts, foot_sliding_jnts, contact_precision, contact_recall, \
contact_acc, contact_f1_score = \
compute_metrics(gt_human_verts_list, pred_human_verts_list, gt_human_jnts_list, pred_human_jnts_list, human_faces_list, \
gt_human_trans_list, pred_human_trans_list, gt_human_rot_list, pred_human_rot_list, \
obj_verts_list, obj_faces_list, actual_len_list, use_joints24=True)
hand_jpe_per_seq.append(hand_jpe)
lhand_jpe_per_seq.append(lhand_jpe)
rhand_jpe_per_seq.append(rhand_jpe)
mpvpe_per_seq.append(mpvpe)
mpjpe_per_seq.append(mpjpe)
rot_dist_per_seq.append(rot_dist)
trans_err_per_seq.append(trans_err)
gt_foot_sliding_jnts_per_seq.append(gt_foot_sliding_jnts)
foot_sliding_jnts_per_seq.append(foot_sliding_jnts)
contact_precision_per_seq.append(contact_precision)
contact_recall_per_seq.append(contact_recall)
contact_acc_per_seq.append(contact_acc)
contact_f1_score_per_seq.append(contact_f1_score)
gt_contact_dist_per_seq.append(gt_contact_dist)
contact_dist_per_seq.append(contact_dist)
if self.for_quant_eval:
hand_jpe_per_seq = np.asarray(hand_jpe_per_seq).reshape(num_samples_per_seq, num_seq)
lhand_jpe_per_seq = np.asarray(lhand_jpe_per_seq).reshape(num_samples_per_seq, num_seq)
rhand_jpe_per_seq = np.asarray(rhand_jpe_per_seq).reshape(num_samples_per_seq, num_seq)
mpvpe_per_seq = np.asarray(mpvpe_per_seq).reshape(num_samples_per_seq, num_seq)
mpjpe_per_seq = np.asarray(mpjpe_per_seq).reshape(num_samples_per_seq, num_seq)
rot_dist_per_seq = np.asarray(rot_dist_per_seq).reshape(num_samples_per_seq, num_seq)
trans_err_per_seq = np.asarray(trans_err_per_seq).reshape(num_samples_per_seq, num_seq)
gt_foot_sliding_jnts_per_seq = np.asarray(gt_foot_sliding_jnts_per_seq).reshape(num_samples_per_seq, num_seq)
foot_sliding_jnts_per_seq = np.asarray(foot_sliding_jnts_per_seq).reshape(num_samples_per_seq, num_seq)
contact_precision_per_seq = np.asarray(contact_precision_per_seq).reshape(num_samples_per_seq, num_seq)
contact_recall_per_seq = np.asarray(contact_recall_per_seq).reshape(num_samples_per_seq, num_seq)
contact_acc_per_seq = np.asarray(contact_acc_per_seq).reshape(num_samples_per_seq, num_seq)
contact_f1_score_per_seq = np.asarray(contact_f1_score_per_seq).reshape(num_samples_per_seq, num_seq)
gt_contact_dist_per_seq = np.asarray(gt_contact_dist_per_seq).reshape(num_samples_per_seq, num_seq)
contact_dist_per_seq = np.asarray(contact_dist_per_seq).reshape(num_samples_per_seq, num_seq)
best_sample_idx = mpjpe_per_seq.argmin(axis=0) # sample_num
hand_jpe = hand_jpe_per_seq[best_sample_idx, list(range(num_seq))] # BS
lhand_jpe = lhand_jpe_per_seq[best_sample_idx, list(range(num_seq))]
rhand_jpe = rhand_jpe_per_seq[best_sample_idx, list(range(num_seq))]
mpvpe = mpvpe_per_seq[best_sample_idx, list(range(num_seq))]
mpjpe = mpjpe_per_seq[best_sample_idx, list(range(num_seq))]
rot_dist = rot_dist_per_seq[best_sample_idx, list(range(num_seq))]
trans_err = trans_err_per_seq[best_sample_idx, list(range(num_seq))]
gt_foot_sliding_jnts = gt_foot_sliding_jnts_per_seq[best_sample_idx, list(range(num_seq))]
foot_sliding_jnts = foot_sliding_jnts_per_seq[best_sample_idx, list(range(num_seq))]
contact_precision_seq = contact_precision_per_seq[best_sample_idx, list(range(num_seq))]
contact_recall_seq = contact_recall_per_seq[best_sample_idx, list(range(num_seq))]
contact_acc_seq = contact_acc_per_seq[best_sample_idx, list(range(num_seq))]
contact_f1_score_seq = contact_f1_score_per_seq[best_sample_idx, list(range(num_seq))]
gt_contact_dist_seq = gt_contact_dist_per_seq[best_sample_idx, list(range(num_seq))]
contact_dist_seq = contact_dist_per_seq[best_sample_idx, list(range(num_seq))]
sampled_all_res_per_seq = torch.stack(sampled_all_res_per_seq) # K X BS X T X D
best_sampled_all_res = sampled_all_res_per_seq[best_sample_idx, list(range(num_seq))] # BS X T X D
num_seq = best_sampled_all_res.shape[0]
for seq_idx in range(num_seq):
pred_human_trans_list, pred_human_rot_list, pred_human_jnts_list, pred_human_verts_list, human_faces_list, \
obj_verts_list, obj_faces_list, actual_len_list = \
self.gen_vis_res(best_sampled_all_res[seq_idx:seq_idx+1], val_data_dict, \
milestone, vis_tag=vis_tag, for_quant_eval=True, selected_seq_idx=seq_idx)
gt_human_trans_list, gt_human_rot_list, gt_human_jnts_list, gt_human_verts_list, human_faces_list, \
obj_verts_list, obj_faces_list, actual_len_list = \
self.gen_vis_res(val_data_dict['motion'].cuda()[seq_idx:seq_idx+1], val_data_dict, \
milestone, vis_gt=True, vis_tag=vis_tag, for_quant_eval=True, selected_seq_idx=seq_idx)
obj_scale = val_data_dict['obj_scale'][seq_idx]
obj_trans = val_data_dict['obj_trans'][seq_idx]
obj_rot_mat = val_data_dict['obj_rot_mat'][seq_idx]
actual_len = val_data_dict['seq_len'][seq_idx]
object_name = val_data_dict['obj_name'][seq_idx]
pred_collision_percent, pred_collision_depth = compute_collision(pred_human_verts_list.cpu(), \
human_faces_list, obj_verts_list.cpu(), obj_faces_list, object_name, \
obj_scale, obj_rot_mat, obj_trans, actual_len)
gt_collision_percent, gt_collision_depth = compute_collision(gt_human_verts_list.cpu(), \
human_faces_list, obj_verts_list.cpu(), obj_faces_list, object_name, \
obj_scale, obj_rot_mat, obj_trans, actual_len)
collision_percent_list.append(pred_collision_percent)
collision_depth_list.append(pred_collision_depth)
gt_collision_percent_list.append(gt_collision_percent)
gt_collision_depth_list.append(gt_collision_depth)
# Get the min error
for tmp_seq_idx in range(num_seq):
global_hand_jpe_list.append(hand_jpe[tmp_seq_idx])
global_lhand_jpe_list.append(lhand_jpe[tmp_seq_idx])
global_rhand_jpe_list.append(rhand_jpe[tmp_seq_idx])
mpvpe_list.append(mpvpe[tmp_seq_idx])
mpjpe_list.append(mpjpe[tmp_seq_idx])
rot_dist_list.append(rot_dist[tmp_seq_idx])
root_trans_err_list.append(trans_err[tmp_seq_idx])
gt_foot_sliding_jnts_list.append(gt_foot_sliding_jnts[tmp_seq_idx])
foot_sliding_jnts_list.append(foot_sliding_jnts[tmp_seq_idx])
contact_precision_list.append(contact_precision_seq[tmp_seq_idx])
contact_recall_list.append(contact_recall_seq[tmp_seq_idx])
contact_acc_list.append(contact_acc_seq[tmp_seq_idx])
contact_f1_score_list.append(contact_f1_score_seq[tmp_seq_idx])
gt_contact_dist_list.append(gt_contact_dist_seq[tmp_seq_idx])
contact_dist_list.append(contact_dist_seq[tmp_seq_idx])
if self.for_quant_eval:
mean_hand_jpe = np.asarray(global_hand_jpe_list).mean()
mean_lhand_jpe = np.asarray(global_lhand_jpe_list).mean()
mean_rhand_jpe = np.asarray(global_rhand_jpe_list).mean()
mean_mpvpe = np.asarray(mpvpe_list).mean()
mean_mpjpe = np.asarray(mpjpe_list).mean()
mean_rot_dist = np.asarray(rot_dist_list).mean()
mean_root_trans_err = np.asarray(root_trans_err_list).mean()
mean_collision_percent = np.asarray(collision_percent_list).mean()
mean_collision_depth = np.asarray(collision_depth_list).mean()
gt_mean_collision_percent = np.asarray(gt_collision_percent_list).mean()
gt_mean_collision_depth = np.asarray(gt_collision_depth_list).mean()
mean_gt_fsliding_jnts = np.asarray(gt_foot_sliding_jnts_list).mean()
mean_fsliding_jnts = np.asarray(foot_sliding_jnts_list).mean()
mean_contact_precision = np.asarray(contact_precision_list).mean()
mean_contact_recall = np.asarray(contact_recall_list).mean()
mean_contact_acc = np.asarray(contact_acc_list).mean()
mean_contact_f1_score = np.asarray(contact_f1_score_list).mean()
mean_gt_contact_dist = np.asarray(gt_contact_dist_list).mean()
mean_contact_dist = np.asarray(contact_dist_list).mean()
print("*****************************************Quantitative Evaluation*****************************************")
print("The number of sequences: {0}".format(len(mpjpe_list)))
print("Left Hand JPE: {0}, Right Hand JPE: {1}, Two Hands JPE: {2}".format(mean_lhand_jpe, mean_rhand_jpe, mean_hand_jpe))
print("MPJPE: {0}, MPVPE: {1}, Root Trans: {2}, Global Rot Err: {3}".format(mean_mpjpe, mean_mpvpe, mean_root_trans_err, mean_rot_dist))
print("Foot sliding jnts: {0}, GT Foot sliding jnts: {1}".format(mean_fsliding_jnts, mean_gt_fsliding_jnts))
print("Collision percent: {0}, Collision depth: {1}".format(mean_collision_percent, mean_collision_depth))
print("GT Collision percent: {0}, GT Collision depth: {1}".format(gt_mean_collision_percent, gt_mean_collision_depth))
print("Contact precision: {0}, Contact recall: {1}".format(mean_contact_precision, mean_contact_recall))
print("Contact Acc: {0}, COntact F1 score: {1}".format(mean_contact_acc, mean_contact_f1_score))
print("Contact dist: {0}, GT Contact dist: {1}".format(mean_contact_dist, mean_gt_contact_dist))
def gen_vis_res(self, all_res_list, data_dict, step, vis_gt=False, vis_tag=None, \
for_quant_eval=False, selected_seq_idx=None):
# all_res_list: N X T X D
num_seq = all_res_list.shape[0]
num_joints = 24
normalized_global_jpos = all_res_list[:, :, :num_joints*3].reshape(num_seq, -1, num_joints, 3)
global_jpos = self.ds.de_normalize_jpos_min_max(normalized_global_jpos.reshape(-1, num_joints, 3))
global_jpos = global_jpos.reshape(num_seq, -1, num_joints, 3) # N X T X 22 X 3
global_root_jpos = global_jpos[:, :, 0, :].clone() # N X T X 3
global_rot_6d = all_res_list[:, :, -22*6:].reshape(num_seq, -1, 22, 6)
global_rot_mat = transforms.rotation_6d_to_matrix(global_rot_6d) # N X T X 22 X 3 X 3
trans2joint = data_dict['trans2joint'].to(all_res_list.device) # N X 3
seq_len = data_dict['seq_len'].detach().cpu().numpy() # BS
# Used for quantitative evaluation.
human_trans_list = []
human_rot_list = []
human_jnts_list = []
human_verts_list = []
human_faces_list = []
obj_verts_list = []
obj_faces_list = []
actual_len_list = []
for idx in range(num_seq):
curr_global_rot_mat = global_rot_mat[idx] # T X 22 X 3 X 3
curr_local_rot_mat = quat_ik_torch(curr_global_rot_mat) # T X 22 X 3 X 3
curr_local_rot_aa_rep = transforms.matrix_to_axis_angle(curr_local_rot_mat) # T X 22 X 3
curr_global_root_jpos = global_root_jpos[idx] # T X 3
if selected_seq_idx is None:
curr_trans2joint = trans2joint[idx:idx+1].clone()
else:
curr_trans2joint = trans2joint[selected_seq_idx:selected_seq_idx+1].clone()
root_trans = curr_global_root_jpos + curr_trans2joint # T X 3
# Generate global joint position
bs = 1
if selected_seq_idx is None:
betas = data_dict['betas'][idx]
gender = data_dict['gender'][idx]
curr_obj_rot_mat = data_dict['obj_rot_mat'][idx]
curr_obj_trans = data_dict['obj_trans'][idx]
curr_obj_scale = data_dict['obj_scale'][idx]
curr_seq_name = data_dict['seq_name'][idx]
object_name = curr_seq_name.split("_")[1]
else:
betas = data_dict['betas'][selected_seq_idx]
gender = data_dict['gender'][selected_seq_idx]
curr_obj_rot_mat = data_dict['obj_rot_mat'][selected_seq_idx]
curr_obj_trans = data_dict['obj_trans'][selected_seq_idx]
curr_obj_scale = data_dict['obj_scale'][selected_seq_idx]
curr_seq_name = data_dict['seq_name'][selected_seq_idx]
object_name = curr_seq_name.split("_")[1]
# Get human verts
mesh_jnts, mesh_verts, mesh_faces = \
run_smplx_model(root_trans[None].cuda(), curr_local_rot_aa_rep[None].cuda(), \
betas.cuda(), [gender], self.ds.bm_dict, return_joints24=True)
# Get object verts
if object_name in ["mop", "vacuum"]:
if selected_seq_idx is None:
curr_obj_bottom_rot_mat = data_dict['obj_bottom_rot_mat'][idx]
curr_obj_bottom_trans = data_dict['obj_bottom_trans'][idx]
curr_obj_bottom_scale = data_dict['obj_bottom_scale'][idx]
else:
curr_obj_bottom_rot_mat = data_dict['obj_bottom_rot_mat'][selected_seq_idx]
curr_obj_bottom_trans = data_dict['obj_bottom_trans'][selected_seq_idx]
curr_obj_bottom_scale = data_dict['obj_bottom_scale'][selected_seq_idx]
obj_mesh_verts, obj_mesh_faces = self.ds.load_object_geometry(object_name, \
curr_obj_scale.detach().cpu().numpy(), curr_obj_trans.detach().cpu().numpy(), \
curr_obj_rot_mat.detach().cpu().numpy(), \
curr_obj_bottom_scale.detach().cpu().numpy(), \
curr_obj_bottom_trans.detach().cpu().numpy(), \
curr_obj_bottom_rot_mat.detach().cpu().numpy(), \
)
else:
obj_mesh_verts, obj_mesh_faces = self.ds.load_object_geometry(object_name, \
curr_obj_scale.detach().cpu().numpy(), curr_obj_trans.detach().cpu().numpy(), \
curr_obj_rot_mat.detach().cpu().numpy())
human_trans_list.append(root_trans)
human_jnts_list.append(mesh_jnts)
human_verts_list.append(mesh_verts)
human_faces_list.append(mesh_faces)
human_rot_list.append(curr_global_rot_mat)
obj_verts_list.append(obj_mesh_verts)
obj_faces_list.append(obj_mesh_faces)
if selected_seq_idx is None:
actual_len_list.append(seq_len[idx])
else:
actual_len_list.append(seq_len[selected_seq_idx])
if vis_tag is None:
dest_mesh_vis_folder = os.path.join(self.vis_folder, "blender_mesh_vis", str(step))
else:
dest_mesh_vis_folder = os.path.join(self.vis_folder, vis_tag, str(step))
if not self.for_quant_eval:
if not os.path.exists(dest_mesh_vis_folder):
os.makedirs(dest_mesh_vis_folder)
if vis_gt:
mesh_save_folder = os.path.join(dest_mesh_vis_folder, \
"objs_step_"+str(step)+"_bs_idx_"+str(idx)+"_gt")
out_rendered_img_folder = os.path.join(dest_mesh_vis_folder, \
"imgs_step_"+str(step)+"_bs_idx_"+str(idx)+"_gt")
out_vid_file_path = os.path.join(dest_mesh_vis_folder, \
"vid_step_"+str(step)+"_bs_idx_"+str(idx)+"_gt.mp4")
else:
mesh_save_folder = os.path.join(dest_mesh_vis_folder, \
"objs_step_"+str(step)+"_bs_idx_"+str(idx))
out_rendered_img_folder = os.path.join(dest_mesh_vis_folder, \
"imgs_step_"+str(step)+"_bs_idx_"+str(idx))
out_vid_file_path = os.path.join(dest_mesh_vis_folder, \
"vid_step_"+str(step)+"_bs_idx_"+str(idx)+".mp4")
if selected_seq_idx is None:
actual_len = seq_len[idx]
else:
actual_len = seq_len[selected_seq_idx]
if not vis_gt:
save_verts_faces_to_mesh_file_w_object(mesh_verts.detach().cpu().numpy()[0][:actual_len], mesh_faces.detach().cpu().numpy(), \
obj_mesh_verts.detach().cpu().numpy()[:actual_len], obj_mesh_faces, mesh_save_folder)
run_blender_rendering_and_save2video(mesh_save_folder, out_rendered_img_folder, out_vid_file_path, vis_object=True)
human_trans_list = torch.stack(human_trans_list)[0] # T X 3
human_rot_list = torch.stack(human_rot_list)[0] # T X 22 X 3 X 3
human_jnts_list = torch.stack(human_jnts_list)[0, 0] # T X 22 X 3
human_verts_list = torch.stack(human_verts_list)[0, 0] # T X Nv X 3
human_faces_list = torch.stack(human_faces_list)[0].detach().cpu().numpy() # Nf X 3
obj_verts_list = torch.stack(obj_verts_list)[0] # T X Nv' X 3
obj_faces_list = np.asarray(obj_faces_list)[0] # Nf X 3
actual_len_list = np.asarray(actual_len_list)[0] # scalar value
return human_trans_list, human_rot_list, human_jnts_list, human_verts_list, human_faces_list,\
obj_verts_list, obj_faces_list, actual_len_list
def convert_hand_foot_jpos_to_data_input(self, hand_foot_jpos, val_data_dict):
# hand_foot_jpos: BS X T X 2 X 3
num_joints = hand_foot_jpos.shape[2]
bs, num_steps, _, _ = hand_foot_jpos.shape
data_input = torch.zeros(bs, num_steps, 24*3+22*6).to(hand_foot_jpos.device)
lhand_idx = 22
rhand_idx = 23
lfoot_idx = 10
rfoot_idx = 11
data_input[:, :, lhand_idx*3:lhand_idx*3+3] = hand_foot_jpos[:, :, 0, :]
data_input[:, :, rhand_idx*3:rhand_idx*3+3] = hand_foot_jpos[:, :, 1, :]
if num_joints > 2:
data_input[:, :, lfoot_idx*3:lfoot_idx*3+3] = hand_foot_jpos[:, :, 2, :]
data_input[:, :, rfoot_idx*3:rfoot_idx*3+3] = hand_foot_jpos[:, :, 3, :]
return data_input
def gen_fullbody_from_predicted_hand_foot(self, hand_foot_jpos, val_data_dict):
# hand_foot_jpos: BS X T X 2 X 3
bs = hand_foot_jpos.shape[0]
num_steps = hand_foot_jpos.shape[1]
hand_foot_jpos = hand_foot_jpos.reshape(bs, num_steps, -1, 3)
with torch.no_grad():
val_data = self.convert_hand_foot_jpos_to_data_input(hand_foot_jpos, val_data_dict)
cond_mask = None
left_joint_mask = self.prep_joint_condition_mask(val_data, joint_idx=22, pos_only=True)
right_joint_mask = self.prep_joint_condition_mask(val_data, joint_idx=23, pos_only=True)
if cond_mask is not None:
cond_mask = cond_mask * left_joint_mask * right_joint_mask
else:
cond_mask = left_joint_mask * right_joint_mask
# Generate padding mask
actual_seq_len = val_data_dict['seq_len'] + 1 # BS, + 1 since we need additional timestep for noise level
tmp_mask = torch.arange(self.window+1).expand(val_data.shape[0], \
self.window+1) < actual_seq_len[:, None].repeat(1, self.window+1)
# BS X max_timesteps
padding_mask = tmp_mask[:, None, :].to(val_data.device)
all_res_list = self.ema.ema_model.sample(val_data, \
cond_mask=cond_mask, padding_mask=padding_mask)
return all_res_list
def run_train(opt, device):
# Prepare Directories
save_dir = Path(opt.save_dir)
wdir = save_dir / 'weights'
wdir.mkdir(parents=True, exist_ok=True)
# Save run settings
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.safe_dump(vars(opt), f, sort_keys=True)
# Define model
repr_dim = 24 * 3 + 22 * 6
loss_type = "l1"
diffusion_model = CondGaussianDiffusion(opt, d_feats=repr_dim, d_model=opt.d_model, \
n_dec_layers=opt.n_dec_layers, n_head=opt.n_head, d_k=opt.d_k, d_v=opt.d_v, \
max_timesteps=opt.window+1, out_dim=repr_dim, timesteps=1000, \
objective="pred_x0", loss_type=loss_type, \
batch_size=opt.batch_size)
diffusion_model.to(device)
trainer = Trainer(
opt,
diffusion_model,
train_batch_size=opt.batch_size, # 32
train_lr=opt.learning_rate, # 1e-4
train_num_steps=400000, # 700000, total training steps
gradient_accumulate_every=2, # gradient accumulation steps
ema_decay=0.995, # exponential moving average decay
amp=True, # turn on mixed precision
results_folder=str(wdir),
)
trainer.train()
torch.cuda.empty_cache()
def run_sample(opt, device):
# Prepare Directories
save_dir = Path(opt.save_dir)
wdir = save_dir / 'weights'
# Define model
repr_dim = 24 * 3 + 22 * 6
loss_type = "l1"
diffusion_model = CondGaussianDiffusion(opt, d_feats=repr_dim, d_model=opt.d_model, \
n_dec_layers=opt.n_dec_layers, n_head=opt.n_head, d_k=opt.d_k, d_v=opt.d_v, \
max_timesteps=opt.window+1, out_dim=repr_dim, timesteps=1000, \
objective="pred_x0", loss_type=loss_type, \
batch_size=opt.batch_size)
diffusion_model.to(device)
trainer = Trainer(
opt,
diffusion_model,
train_batch_size=opt.batch_size, # 32
train_lr=opt.learning_rate, # 1e-4
train_num_steps=400000, # total training steps
gradient_accumulate_every=2, # gradient accumulation steps
ema_decay=0.995, # exponential moving average decay
amp=True, # turn on mixed precision
results_folder=str(wdir),
use_wandb=False
)
trainer.cond_sample_res()
torch.cuda.empty_cache()
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--project', default='runs/train', help='project/name')
parser.add_argument('--wandb_pj_name', type=str, default='', help='project name')
parser.add_argument('--entity', default='wandb_account_name', help='W&B entity')
parser.add_argument('--exp_name', default='', help='save to project/name')
parser.add_argument('--device', default='0', help='cuda device')
parser.add_argument('--window', type=int, default=120, help='horizon')
parser.add_argument('--batch_size', type=int, default=32, help='batch size')
parser.add_argument('--learning_rate', type=float, default=2e-4, help='generator_learning_rate')
parser.add_argument('--fullbody_checkpoint', type=str, default="", help='checkpoint')
parser.add_argument('--n_dec_layers', type=int, default=4, help='the number of decoder layers')
parser.add_argument('--n_head', type=int, default=4, help='the number of heads in self-attention')
parser.add_argument('--d_k', type=int, default=256, help='the dimension of keys in transformer')
parser.add_argument('--d_v', type=int, default=256, help='the dimension of values in transformer')
parser.add_argument('--d_model', type=int, default=512, help='the dimension of intermediate representation in transformer')
# For testing sampled results
parser.add_argument("--test_sample_res", action="store_true")
# For testing sampled results on training dataset
parser.add_argument("--test_sample_res_on_train", action="store_true")
parser.add_argument("--add_hand_processing", action="store_true")
parser.add_argument("--for_quant_eval", action="store_true")
parser.add_argument("--use_object_split", action="store_true")
parser.add_argument('--data_root_folder', default='data', help='root folder for dataset')
opt = parser.parse_args()
return opt
if __name__ == "__main__":
opt = parse_opt()
opt.save_dir = os.path.join(opt.project, opt.exp_name)
opt.exp_name = opt.save_dir.split('/')[-1]
device = torch.device(f"cuda:{opt.device}" if torch.cuda.is_available() else "cpu")
if opt.test_sample_res:
run_sample(opt, device)
else:
run_train(opt, device)