-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmodel.py
613 lines (483 loc) · 25.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
from __future__ import division
import math
import os
import re
import time
from glob import glob
import numpy as np
import tensorflow as tf
import tensorflow.contrib as tc
from ops import (batch_norm, concat, conv2d, conv_cond_concat, conv_out_size_same, deconv2d, linear, lrelu)
from utils import (get_image, image_manifold_size, imread, load_mnist, save_images)
class UnifiedDCGAN(object):
# Three model types to choose from.
GAN = "GAN"
WGAN = "WGAN"
WGAN_GP = "WGAN_GP"
def __init__(self, sess, model_type,
input_height=108, input_width=108, crop=True,
batch_size=64, sample_num=64,
output_height=64, output_width=64,
y_dim=None, z_dim=100, gf_dim=64, df_dim=64,
gfc_dim=1024, dfc_dim=1024,
d_clip_limit=0.01, d_iter=5, gp_lambda=10.,
l1_regularizer_scale=None,
dataset_name='default', input_fname_pattern='*.png',
checkpoint_dir=None, sample_dir=None):
"""
Construct a model object.
Args:
sess (tf.Session object)
model_type (str)
input_height (int)
input_width (int)
crop (bool): If True, crop the images in the center if the output size is smaller;
otherwise, resize.
batch_size (int): The size of batch. Should be specified before training.
sample_num (int): Num. images in one sample.
output_height (int)
output_width (int)
y_dim (int): Dimension of dim for y. [None]
z_dim (int): Dimension of dim for Z. [100]
gf_dim (int): Dimension of generator filters in first conv layer. [64]
df_dim (int): Dimension of discriminator filters in first conv layer. [64]
gfc_dim (int): Dimension of generator units for for fully connected layer. [1024]
dfc_dim (int): Dimension of discriminator units for fully connected layer. [1024]
d_clip_limit (float): When training "WGAN" model, the discriminator's variables are
clamped to the range of [-d_clip_limit, d_clip_limit] after every gradient update.
d_iter (int): Num. batches used for training D model in one iteration
gp_lambda (float): The penalty parameter for "WGAN_GP" model.
l1_regularizer_scale (float): If provided, add l1 regularizer on all trainable variables.
dataset_name (str): Other than 'mnist', other images should be from ./data/{dataset_name}
folder.
input_fname_pattern (str): Regex for matching the image file names.
checkpoint_dir (str): Folder name to save the model checkpoints.
sample_dir (str): Folder name to save the sample images.
"""
if model_type not in (self.GAN, self.WGAN, self.WGAN_GP):
raise ValueError("Unknown model_type: '%s'.", model_type)
self.model_type = model_type
self.sess = sess
self.crop = crop
self.batch_size = batch_size
self.sample_num = sample_num
self.input_height = input_height
self.input_width = input_width
self.output_height = output_height
self.output_width = output_width
self.y_dim = y_dim
self.z_dim = z_dim
self.gf_dim = gf_dim
self.df_dim = df_dim
self.gfc_dim = gfc_dim
self.dfc_dim = dfc_dim
self.d_clip_limit = math.fabs(d_clip_limit)
self.d_iter = d_iter
self.l1_regularizer_scale = l1_regularizer_scale
self.gp_lambda = gp_lambda
self.dataset_name = dataset_name
self.input_fname_pattern = input_fname_pattern
self.checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
self.sample_dir = os.path.join(sample_dir, self.model_dir)
if not os.path.exists(self.sample_dir):
os.mkdir(self.sample_dir)
self.load_dataset()
self.build_model()
def load_dataset(self):
"""
Load data and check the channel number `c_dim`.
"""
if self.dataset_name == 'mnist':
self.data_X, self.data_y = load_mnist(self.y_dim)
self.c_dim = self.data_X[0].shape[-1]
else:
self.data = glob(os.path.join("./data", self.dataset_name, self.input_fname_pattern))
imreadImg = imread(self.data[0])
if len(imreadImg.shape) >= 3:
# check if image is a non-grayscale image by checking channel number
self.c_dim = imread(self.data[0]).shape[-1]
else:
self.c_dim = 1
self.grayscale = (self.c_dim == 1)
def build_model(self):
if self.y_dim:
self.y = tf.placeholder(tf.float32, [self.batch_size, self.y_dim], name='y')
else:
self.y = None
if self.crop:
image_dims = [self.output_height, self.output_width, self.c_dim]
else:
image_dims = [self.input_height, self.input_width, self.c_dim]
self.inputs = tf.placeholder(
tf.float32, [self.batch_size] + image_dims, name='real_images')
inputs = self.inputs
##############################
# Define batch normalization layers for constructing D and G networks.
# Batch normalization : deals with poor initialization helps gradient flow
self.d_bn1 = batch_norm(name='d_bn1')
self.d_bn2 = batch_norm(name='d_bn2')
if not self.y_dim:
self.d_bn3 = batch_norm(name='d_bn3')
self.g_bn0 = batch_norm(name='g_bn0')
self.g_bn1 = batch_norm(name='g_bn1')
self.g_bn2 = batch_norm(name='g_bn2')
if not self.y_dim:
self.g_bn3 = batch_norm(name='g_bn3')
##############################
# Define the model structure
self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
self.z_sum = tf.summary.histogram("z", self.z)
self.G = self.generator(self.z, self.y)
self.sampler = self.sampler(self.z, self.y)
self.D, self.D_logits = self.discriminator(inputs, self.y, reuse=False)
self.D_, self.D_logits_ = self.discriminator(self.G, self.y, reuse=True)
self.d_sum = tf.summary.histogram("d", self.D)
self.d__sum = tf.summary.histogram("d_", self.D_)
self.G_sum = tf.summary.image("G", self.G, max_outputs=4)
self.inputs_sum = tf.summary.image("inputs", self.inputs, max_outputs=4)
##############################
# Define loss function
if self.model_type == self.GAN:
# Define the loss function for Vanilla GAN.
self.d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.D_logits, labels=tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.D_logits_, labels=tf.zeros_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake
self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.D_logits_, labels=tf.ones_like(self.D_)))
else:
# Define the loss function for Wasserstein GAN.
self.d_loss_real = tf.reduce_mean(self.D_logits)
self.d_loss_fake = tf.reduce_mean(self.D_logits_)
self.d_loss = tf.reduce_mean(self.D_logits_) - tf.reduce_mean(self.D_logits)
self.g_loss = - tf.reduce_mean(self.D_logits_)
if self.model_type == self.WGAN_GP:
# Wasserstein GAN with gradient penalty
epsilon = tf.random_uniform([self.batch_size, 1, 1, 1], 0.0, 1.0)
interpolated = epsilon * inputs + (1 - epsilon) * self.G
_, self.D_logits_intp_ = self.discriminator(interpolated, self.y, reuse=True)
# tf.gradients returns a list of sum(dy/dx) for each x in xs.
gradients = tf.gradients(self.D_logits_intp_, [interpolated, ], name="D_logits_intp")[0]
grad_l2 = tf.sqrt(tf.reduce_sum(tf.square(gradients), axis=[1, 2, 3]))
grad_penalty = tf.reduce_mean(tf.square(grad_l2 - 1.0))
self.gp_loss_sum = tf.summary.scalar("grad_penalty", grad_penalty)
self.grad_norm_sum = tf.summary.scalar("grad_norm", tf.nn.l2_loss(gradients))
# Add gradient penalty to the discriminator's loss function.
self.d_loss += self.gp_lambda * grad_penalty
# Add regularizer if needed.
if self.l1_regularizer_scale is not None:
self.reg = tc.layers.apply_regularization(
tc.layers.l1_regularizer(self.l1_regularizer_scale),
weights_list=[var for var in tf.global_variables() if 'weights' in var.name]
)
self.reg_summ = tf.summary.histogram("l1_regularizer", self.reg)
self.g_loss = self.g_loss + self.reg
self.d_loss = self.d_loss + self.reg
# Add various tf summary variables.
self.d_loss_real_sum = tf.summary.scalar("d_loss_real", self.d_loss_real)
self.d_loss_fake_sum = tf.summary.scalar("d_loss_fake", self.d_loss_fake)
self.g_loss_sum = tf.summary.scalar("g_loss", self.g_loss)
self.d_loss_sum = tf.summary.scalar("d_loss", self.d_loss)
t_vars = tf.trainable_variables()
self.d_vars = [var for var in t_vars if 'd_' in var.name]
self.g_vars = [var for var in t_vars if 'g_' in var.name]
self.saver = tf.train.Saver()
def get_next_batch_one_epoch(self, num_batches, config):
"""Yields next mini-batch within one epoch.
"""
for idx in xrange(0, num_batches):
batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]).astype(np.float32)
if config.dataset == 'mnist':
batch_images = self.data_X[idx * config.batch_size:(idx + 1) * config.batch_size]
batch_labels = self.data_y[idx * config.batch_size:(idx + 1) * config.batch_size]
d_train_feed_dict = {self.inputs: batch_images, self.z: batch_z, self.y: batch_labels}
g_train_feed_dict = {self.z: batch_z, self.y: batch_labels}
else:
batch_files = self.data[idx * config.batch_size:(idx + 1) * config.batch_size]
batch = [get_image(
batch_file,
input_height=self.input_height,
input_width=self.input_width,
resize_height=self.output_height,
resize_width=self.output_width,
crop=self.crop,
grayscale=self.grayscale) for batch_file in batch_files]
if self.grayscale:
batch_images = np.array(batch).astype(np.float32)[:, :, :, None]
else:
batch_images = np.array(batch).astype(np.float32)
d_train_feed_dict = {self.inputs: batch_images, self.z: batch_z}
g_train_feed_dict = {self.z: batch_z}
yield idx, d_train_feed_dict, g_train_feed_dict
def inf_get_next_batch(self, config):
"""Loop through batches for infinite epoches.
"""
if config.dataset == 'mnist':
num_batches = min(len(self.data_X), config.train_size) // config.batch_size
else:
self.data = glob(os.path.join("./data", config.dataset, self.input_fname_pattern))
num_batches = min(len(self.data), config.train_size) // config.batch_size
epoch = 0
while True:
epoch += 1
for (step, d_train_feed_dict, g_train_feed_dict) in \
self.get_next_batch_one_epoch(num_batches, config):
yield epoch, step, d_train_feed_dict, g_train_feed_dict
def get_sample_data(self, config):
"""Set up the inputs and labels of sample images.
Samples are created periodically during training.
"""
if config.dataset == 'mnist':
sample_inputs = self.data_X[0:self.sample_num]
sample_labels = self.data_y[0:self.sample_num]
else:
sample_files = self.data[0:self.sample_num]
sample = [
get_image(sample_file,
input_height=self.input_height,
input_width=self.input_width,
resize_height=self.output_height,
resize_width=self.output_width,
crop=self.crop,
grayscale=self.grayscale) for sample_file in sample_files]
if self.grayscale:
sample_inputs = np.array(sample).astype(np.float32)[:, :, :, None]
else:
sample_inputs = np.array(sample).astype(np.float32)
sample_z = np.random.uniform(-1, 1, size=(self.sample_num, self.z_dim))
sample_feed_dict = {
self.z: sample_z,
self.inputs: sample_inputs,
}
if config.dataset == 'mnist':
sample_feed_dict.update({self.y: sample_labels})
return sample_feed_dict
def train(self, config):
"""Train the model!
"""
d_clip = None
##############################
# Define the optimizers
if self.model_type == self.GAN:
d_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.d_loss, var_list=self.d_vars)
g_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.g_loss, var_list=self.g_vars)
elif self.model_type == self.WGAN:
# Wasserstein GAN
d_optim = tf.train.RMSPropOptimizer(config.learning_rate) \
.minimize(self.d_loss, var_list=self.d_vars)
g_optim = tf.train.RMSPropOptimizer(config.learning_rate) \
.minimize(self.g_loss, var_list=self.g_vars)
# After every gradient update on the discriminator model, clamp its weights to a
# small fixed range, [-d_clip_limit, d_clip_limit].
d_clip = tf.group(*[v.assign(tf.clip_by_value(
v, -self.d_clip_limit, self.d_clip_limit)) for v in self.d_vars])
elif self.model_type == self.WGAN_GP:
d_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1, beta2=config.beta2) \
.minimize(self.d_loss, var_list=self.d_vars)
g_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1, beta2=config.beta2) \
.minimize(self.g_loss, var_list=self.g_vars)
tf.global_variables_initializer().run()
# Merge summary
g_sum_list = [self.z_sum, self.d__sum, self.G_sum, self.g_loss_sum, self.d_loss_fake_sum]
d_sum_list = [self.z_sum, self.d_sum, self.inputs_sum, self.d_loss_sum, self.d_loss_real_sum]
if self.model_type in (self.WGAN, self.WGAN_GP) and self.l1_regularizer_scale is not None:
g_sum_list += [self.reg_summ]
d_sum_list += [self.reg_summ]
if self.model_type == self.WGAN_GP:
d_sum_list += [self.gp_loss_sum, self.grad_norm_sum]
self.g_sum = tf.summary.merge(g_sum_list)
self.d_sum = tf.summary.merge(d_sum_list)
self.writer = tf.summary.FileWriter(os.path.join("./logs", self.model_dir), self.sess.graph)
# Set up the sample images
sample_feed_dict = self.get_sample_data(config)
# Create a sample image every `sample_every_step` steps.
sample_every_step = int(config.max_iter // 20)
start_time = time.time()
could_load, checkpoint_counter = self.load()
counter = 1 # Count how many batches we have processed.
d_counter = 0 # Count number of batches used for training D
g_counter = 0 # Count number of batches used for training G
if could_load:
counter = checkpoint_counter
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
##############################
# Start training!
inf_data_gen = self.inf_get_next_batch(config)
for iter_count in xrange(config.max_iter):
if self.model_type == self.GAN:
_d_iters = 1
else:
# For WGAN or WGAN_GP model, we are allowed to train the D network to be very good at
# the beginning as a warm start. Because theoretically Wasserstain distance does not
# suffer the vanishing gradient dilemma that vanila GAN is facing.
_d_iters = 100 if iter_count < 25 or np.mod(iter_count, 500) == 0 else self.d_iter
# Update D network
counter += _d_iters
d_counter += _d_iters
for _ in range(_d_iters):
epoch, step, d_train_feed_dict, g_train_feed_dict = inf_data_gen.next()
self.sess.run(d_optim, feed_dict=d_train_feed_dict)
if d_clip is not None:
self.sess.run(d_clip)
summary_str = self.sess.run(self.d_sum, feed_dict=d_train_feed_dict)
self.writer.add_summary(summary_str, iter_count)
# Update G network
g_counter += 1
_, summary_str = self.sess.run([g_optim, self.g_sum], feed_dict=g_train_feed_dict)
self.writer.add_summary(summary_str, iter_count)
d_err = self.d_loss.eval(d_train_feed_dict)
g_err = self.g_loss.eval(g_train_feed_dict)
if np.mod(iter_count, 100) == 0:
print("Iter: %d Epoch: %d [%d/%d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" % (
iter_count, epoch, d_counter, g_counter, time.time() - start_time, d_err, g_err))
if np.mod(iter_count, sample_every_step) == 1:
samples, d_loss, g_loss = self.sess.run(
[self.sampler, self.d_loss, self.g_loss],
feed_dict=sample_feed_dict
)
image_path = os.path.join(self.sample_dir, "train_{:02d}_{:04d}.png".format(epoch, step))
save_images(samples, image_manifold_size(samples.shape[0]), image_path)
print("[Sample] d_loss: %.8f, g_loss: %.8f" % (d_loss, g_loss))
# Save the model.
self.save(counter)
def discriminator(self, image, y=None, reuse=False):
"""Defines the D network structure.
"""
with tf.variable_scope("discriminator") as scope:
if reuse:
scope.reuse_variables()
if not self.y_dim:
h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim * 2, name='d_h1_conv')))
h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim * 4, name='d_h2_conv')))
h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim * 8, name='d_h3_conv')))
h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, 'd_h4_lin')
return tf.nn.sigmoid(h4), h4
else:
yb = tf.reshape(y, [self.batch_size, 1, 1, self.y_dim])
x = conv_cond_concat(image, yb)
h0 = lrelu(conv2d(x, self.c_dim + self.y_dim, name='d_h0_conv'))
h0 = conv_cond_concat(h0, yb)
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim + self.y_dim, name='d_h1_conv')))
h1 = tf.reshape(h1, [self.batch_size, -1])
h1 = concat([h1, y], 1)
h2 = lrelu(self.d_bn2(linear(h1, self.dfc_dim, 'd_h2_lin')))
h2 = concat([h2, y], 1)
h3 = linear(h2, 1, 'd_h3_lin')
return tf.nn.sigmoid(h3), h3
def generator(self, z, y=None):
"""Defines the G network structure.
"""
with tf.variable_scope("generator") as scope:
if not self.y_dim:
s_h, s_w = self.output_height, self.output_width
s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)
# project `z` and reshape
self.z_, self.h0_w, self.h0_b = linear(
z, self.gf_dim * 8 * s_h16 * s_w16, 'g_h0_lin', with_w=True)
self.h0 = tf.reshape(
self.z_, [-1, s_h16, s_w16, self.gf_dim * 8])
h0 = tf.nn.relu(self.g_bn0(self.h0))
self.h1, self.h1_w, self.h1_b = deconv2d(
h0, [self.batch_size, s_h8, s_w8, self.gf_dim * 4], name='g_h1', with_w=True)
h1 = tf.nn.relu(self.g_bn1(self.h1))
h2, self.h2_w, self.h2_b = deconv2d(
h1, [self.batch_size, s_h4, s_w4, self.gf_dim * 2], name='g_h2', with_w=True)
h2 = tf.nn.relu(self.g_bn2(h2))
h3, self.h3_w, self.h3_b = deconv2d(
h2, [self.batch_size, s_h2, s_w2, self.gf_dim * 1], name='g_h3', with_w=True)
h3 = tf.nn.relu(self.g_bn3(h3))
h4, self.h4_w, self.h4_b = deconv2d(
h3, [self.batch_size, s_h, s_w, self.c_dim], name='g_h4', with_w=True)
return tf.nn.tanh(h4)
else:
s_h, s_w = self.output_height, self.output_width
s_h2, s_h4 = int(s_h / 2), int(s_h / 4)
s_w2, s_w4 = int(s_w / 2), int(s_w / 4)
# yb = tf.expand_dims(tf.expand_dims(y, 1),2)
yb = tf.reshape(y, [self.batch_size, 1, 1, self.y_dim])
z = concat([z, y], 1)
h0 = tf.nn.relu(
self.g_bn0(linear(z, self.gfc_dim, 'g_h0_lin')))
h0 = concat([h0, y], 1)
h1 = tf.nn.relu(self.g_bn1(
linear(h0, self.gf_dim * 2 * s_h4 * s_w4, 'g_h1_lin')))
h1 = tf.reshape(h1, [self.batch_size, s_h4, s_w4, self.gf_dim * 2])
h1 = conv_cond_concat(h1, yb)
h2 = tf.nn.relu(self.g_bn2(deconv2d(h1,
[self.batch_size, s_h2, s_w2, self.gf_dim * 2], name='g_h2')))
h2 = conv_cond_concat(h2, yb)
return tf.nn.sigmoid(
deconv2d(h2, [self.batch_size, s_h, s_w, self.c_dim], name='g_h3'))
def sampler(self, z, y=None):
"""TODO: merge this with self.generator()?
"""
with tf.variable_scope("generator") as scope:
scope.reuse_variables()
if not self.y_dim:
s_h, s_w = self.output_height, self.output_width
s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)
# project `z` and reshape
h0 = tf.reshape(
linear(z, self.gf_dim * 8 * s_h16 * s_w16, 'g_h0_lin'),
[-1, s_h16, s_w16, self.gf_dim * 8])
h0 = tf.nn.relu(self.g_bn0(h0, train=False))
h1 = deconv2d(h0, [self.batch_size, s_h8, s_w8, self.gf_dim * 4], name='g_h1')
h1 = tf.nn.relu(self.g_bn1(h1, train=False))
h2 = deconv2d(h1, [self.batch_size, s_h4, s_w4, self.gf_dim * 2], name='g_h2')
h2 = tf.nn.relu(self.g_bn2(h2, train=False))
h3 = deconv2d(h2, [self.batch_size, s_h2, s_w2, self.gf_dim * 1], name='g_h3')
h3 = tf.nn.relu(self.g_bn3(h3, train=False))
h4 = deconv2d(h3, [self.batch_size, s_h, s_w, self.c_dim], name='g_h4')
return tf.nn.tanh(h4)
else:
s_h, s_w = self.output_height, self.output_width
s_h2, s_h4 = int(s_h / 2), int(s_h / 4)
s_w2, s_w4 = int(s_w / 2), int(s_w / 4)
# yb = tf.reshape(y, [-1, 1, 1, self.y_dim])
yb = tf.reshape(y, [self.batch_size, 1, 1, self.y_dim])
z = concat([z, y], 1)
h0 = tf.nn.relu(self.g_bn0(linear(z, self.gfc_dim, 'g_h0_lin'), train=False))
h0 = concat([h0, y], 1)
h1 = tf.nn.relu(self.g_bn1(
linear(h0, self.gf_dim * 2 * s_h4 * s_w4, 'g_h1_lin'), train=False))
h1 = tf.reshape(h1, [self.batch_size, s_h4, s_w4, self.gf_dim * 2])
h1 = conv_cond_concat(h1, yb)
h2 = tf.nn.relu(self.g_bn2(
deconv2d(h1, [self.batch_size, s_h2, s_w2, self.gf_dim * 2], name='g_h2'), train=False))
h2 = conv_cond_concat(h2, yb)
return tf.nn.sigmoid(deconv2d(h2, [self.batch_size, s_h, s_w, self.c_dim], name='g_h3'))
@property
def model_dir(self):
return "{}_{}_{}_{}_{}".format(
self.model_type, self.dataset_name, self.batch_size,
self.output_height, self.output_width)
def save(self, step):
model_name = self.model_type + ".model"
model_path = os.path.join(self.checkpoint_dir, model_name)
self.saver.save(self.sess, model_path, global_step=step)
def load(self):
print(" [*] Reading checkpoints...")
ckpt = tf.train.get_checkpoint_state(self.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(self.checkpoint_dir, ckpt_name))
counter = int(next(re.finditer("(\d+)(?!.*\d)", ckpt_name)).group(0))
print(" [*] Success to read {}".format(ckpt_name))
return True, counter
else:
print(" [*] Failed to find a checkpoint")
return False, 0