Skip to content

Latest commit

 

History

History
58 lines (45 loc) · 1.45 KB

run.md

File metadata and controls

58 lines (45 loc) · 1.45 KB

生成模型

# 1 修改修改environment.sh文件下TensorRT, CUDA, cudnn路径
主要是TensorRT的路径 , cuda和cudnn一般都安装在/usr/local,基本不用修改

# 2 选择模型和精度  模型resnet18/resnet18int8/resnet18int8head 精度fp16/int8 
# 修改environment.sh下的DEBUG_MODEL和DEBUG_PRECISION变量的值
# export DEBUG_MODEL=resnet18   
# export DEBUG_PRECISION=fp16

# 3 生成模型 在该工程下执行
./tool/build_trt_engine.sh
  • 执行完build_trt_engine.sh脚本时,耗时比较久, 跟显卡算力有关。选择resnet18模型生成目录结构如下:
...
├──model
    ├──resnet18
        ├── build
            ├── fastbev_post_trt_decode.json
            ├── fastbev_post_trt_decode.log
            ├── fastbev_post_trt_decode.plan
            ├── fastbev_pre_trt.json
            ├── fastbev_pre_trt.log
            └── fastbev_pre_trt.plan
...
/usr/bin/ld: 找不到 -lspconv
/usr/bin/ld: 找不到 -lnvinfer
cmakelists.txt中添加link_directories( ${TensorRT_Lib}) 
# libnvinfer.so

/usr/bin/ld: 找不到 -lcublasLt
cmakelists.txt中添加link_directories( ${CUDA_Lib})
# libcublasLt.so

# 报错3  编译2次就好
Error generating
/root/share/bevfusion_ws/src/FastBEV-ROS-TensorRT/build/CMakeFiles/fastbev.dir/third_party/cuOSD/src/./fastbev_generated_cuosd_kernel.cu.o

可视化

python tool/draw.py