# 1 修改修改environment.sh文件下TensorRT, CUDA, cudnn路径
主要是TensorRT的路径 , cuda和cudnn一般都安装在/usr/local,基本不用修改
# 2 选择模型和精度 模型resnet18/resnet18int8/resnet18int8head 精度fp16/int8
# 修改environment.sh下的DEBUG_MODEL和DEBUG_PRECISION变量的值
# export DEBUG_MODEL=resnet18
# export DEBUG_PRECISION=fp16
# 3 生成模型 在该工程下执行
./tool/build_trt_engine.sh
- 执行完
build_trt_engine.sh
脚本时,耗时比较久, 跟显卡算力有关。选择resnet18
模型生成目录结构如下:
...
├──model
├──resnet18
├── build
├── fastbev_post_trt_decode.json
├── fastbev_post_trt_decode.log
├── fastbev_post_trt_decode.plan
├── fastbev_pre_trt.json
├── fastbev_pre_trt.log
└── fastbev_pre_trt.plan
...
/usr/bin/ld: 找不到 -lspconv
/usr/bin/ld: 找不到 -lnvinfer
cmakelists.txt中添加:
link_directories( ${TensorRT_Lib})
# libnvinfer.so
/usr/bin/ld: 找不到 -lcublasLt
cmakelists.txt中添加:
link_directories( ${CUDA_Lib})
# libcublasLt.so
# 报错3 编译2次就好
Error generating
/root/share/bevfusion_ws/src/FastBEV-ROS-TensorRT/build/CMakeFiles/fastbev.dir/third_party/cuOSD/src/./fastbev_generated_cuosd_kernel.cu.o