-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Xanadu: Mitigating cascading cold starts in serverless function chain deployments #7
Comments
Xanadu 介绍Xanadu 是一个可以部署于数个云提供商之间的工具 Xanadu 可以基于资源的投机性(speculative)和及时性供应(just-in-time provisioning)而对 Serverless 级联冷启动问题进行针对性优化 Xanadu 能以极低的开销为代价,将 Serverless 级联调用的冷启动开销几近常数级地消除。在 Xanadu 的测试中,它比 Knative 快近 18 倍,比 Openwhisk 快近 10 倍 |
概述前言Serverless 很潮流,但是有冷启动的问题。冷启动可能会占用函数执行生命周期的 50% 以上 这一点在链式调用中更是被级联放大,因为服务商为了供应和资源管理的目的,将 function 视为自主的实体 (autonomous entities),严重加剧了链式调用中的延迟。 延迟的来源有编排开销、环境准备、库下载、容器启动时间、处理启动时间。链式调用还受网络传参、隔离性的要求等影响。 四个观察
核心手段在函数链式调用执行路径上,基于概率模型,推测性的部署资源 (就在资源需要之前,推进函数链的执行) 它使用投机的侵略性参数来控制主动部署的程度,这是根据函数调用链特性和部署开销来动态调整的 优化效果将链式调用的线性增长延迟 overhead 控制在了常量级 |
实现细节核心概念函数链式调用分类:
调查
衡量指标
实现核心
|
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
Got it, thanks for your work, it looks very clear to me. |
https://dl.acm.org/doi/abs/10.1145/3423211.3425690
The text was updated successfully, but these errors were encountered: