-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy patheval.py
420 lines (399 loc) · 15.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os, argparse
import torch
torch.set_num_threads(4)
import numpy as np
import csv
from engine.config import default
from engine.datasets.utils import TensorDataset, TextTensorDataset
from engine.optimizer.default import HYPER_DICT
from features import get_image_features_path, get_text_features_path
from train import get_hyperparams_str, get_save_dir, get_valid_batch_sizes
EVAL_DIR = "./results/" # Default save to ./results/ directory
DATASETS = [
"imagenet",
"caltech101",
"dtd",
"eurosat",
"fgvc_aircraft",
"food101",
"oxford_flowers",
"oxford_pets",
"stanford_cars",
"sun397",
"ucf101",
]
SEEDS = [
1,
2,
3,
]
SHOTS = [
1,
2,
4,
8,
16
]
def take_average(all_seed_dict,
ALL_EVAL_TYPES=["head"],
):
header = ['hyperparameter', 'iter_mean', 'iter_std', 'eval_type', 'val_acc_mean', 'val_acc_std', 'test_acc_mean', 'test_acc_std']
columns = []
ALL_SEEDS = list(all_seed_dict.keys())
result_dict = {}
avg_dict = {}
std_dict = {}
for eval_type in ALL_EVAL_TYPES:
result_dict[eval_type] = {
'val_acc': [],
'test_acc': [],
'iter': [],
'hyperparameter': [],
}
avg_dict[eval_type] = {}
std_dict[eval_type] = {}
for seed in ALL_SEEDS:
best_hyper = None
for hyper in all_seed_dict[seed]:
if best_hyper is None or all_seed_dict[seed][hyper]['val_acc'] > all_seed_dict[seed][best_hyper]['val_acc']:
best_hyper = hyper
result_dict[eval_type]['val_acc'].append(all_seed_dict[seed][best_hyper]['val_acc'])
result_dict[eval_type]['test_acc'].append(all_seed_dict[seed][best_hyper]['test_accs'][eval_type])
result_dict[eval_type]['iter'].append(all_seed_dict[seed][best_hyper]['iter'])
result_dict[eval_type]['hyperparameter'].append(best_hyper)
avg_dict[eval_type]['val_acc'] = np.mean(result_dict[eval_type]['val_acc'])
avg_dict[eval_type]['test_acc'] = np.mean(result_dict[eval_type]['test_acc'])
avg_dict[eval_type]['iter'] = np.mean(result_dict[eval_type]['iter'])
std_dict[eval_type]['val_acc'] = np.std(result_dict[eval_type]['val_acc'])
std_dict[eval_type]['test_acc'] = np.std(result_dict[eval_type]['test_acc'])
std_dict[eval_type]['iter'] = np.std(result_dict[eval_type]['iter'])
columns.append([str(result_dict[eval_type]['hyperparameter']),
avg_dict[eval_type]['iter'], std_dict[eval_type]['iter'],
eval_type,
avg_dict[eval_type]['val_acc'], std_dict[eval_type]['val_acc'],
avg_dict[eval_type]['test_acc'], std_dict[eval_type]['test_acc']])
return header, columns
def get_eval_dir(shots,
clip_encoder,
image_layer_idx,
text_layer_idx,
text_augmentation,
image_augmentation,
image_views,
modality,
classifier_init,
hyperparams_str,
logit,
wise_ft,
eval_dir=EVAL_DIR):
return os.path.join(
eval_dir,
f"shots_{shots}",
f"{clip_encoder}_im{image_layer_idx}_tx{text_layer_idx}",
f"imaug_{image_augmentation}_imview{image_views}_txaug_{text_augmentation}",
f"modality_{modality}_init_{classifier_init}_logit_{logit}_wise_ft_{wise_ft}_hyper_{hyperparams_str}",
)
def save_csv(header,
columns,
result_path,
dataset,
shots,
clip_encoder,
image_layer_idx,
text_layer_idx,
text_augmentation,
image_augmentation,
image_views,
modality,
classifier_init,
hyperparams,
logit):
all_headers = ['dataset', 'shots', 'clip_encoder', 'image_layer', 'text_layer', 'text_aug', 'image_aug', 'image_views','modality', 'init', 'logit', 'hyper'] + header
all_columns = [[dataset, shots, clip_encoder, image_layer_idx, text_layer_idx, text_augmentation, image_augmentation, image_views, modality, classifier_init, logit, hyperparams] + column for column in columns]
save_all_csv(all_headers, all_columns, result_path)
return all_headers, all_columns
def save_all_csv(all_headers, all_columns, result_path):
result_dir = os.path.dirname(result_path)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
with open(result_path, 'w+') as f:
writer = csv.writer(f)
writer.writerow(all_headers)
writer.writerows(all_columns)
def main(args):
NAME = "_".join((
"all",
args.clip_encoder,
args.mode,
args.text_augmentation,
args.image_augmentation,
str(args.image_views),
args.modality,
args.classifier_init,
f"wiseft_{args.wise_ft}"
))
args.text_layer_idx = 0
if args.mode == 'linear':
args.classifier_head = 'linear'
args.image_layer_idx = 0
args.hyperparams = 'linear'
args.logit = 4.60517
elif args.mode == 'adapter':
args.classifier_head = 'adapter'
args.image_layer_idx = 0
args.hyperparams = 'adapter'
args.logit = 4.60517
elif args.mode == 'partial':
args.classifier_head = 'linear'
args.image_layer_idx = 1
args.hyperparams = 'partial'
args.logit = 4.0
else:
raise ValueError(f"Invalid mode: {args.mode}")
all_columns = []
all_headers = None
for shots_idx, shots in enumerate(SHOTS):
args.train_shot = shots
print(f"Shots: {shots} | {shots_idx + 1}/{len(SHOTS)}")
eval_dir = get_eval_dir(
shots,
args.clip_encoder,
args.image_layer_idx,
args.text_layer_idx,
args.text_augmentation,
args.image_augmentation,
args.image_views,
args.modality,
args.classifier_init,
args.hyperparams,
args.logit,
args.wise_ft,
eval_dir=EVAL_DIR
)
all_dataset_dict = {}
for dataset_idx, dataset in enumerate(DATASETS):
print(f"Dataset: {dataset} | {dataset_idx + 1}/{len(DATASETS)}")
args.dataset = dataset
all_seed_finished = True
all_seed_dict = {}
for seed in SEEDS:
args.seed = seed
text_features_path = get_text_features_path(
dataset,
args.feature_dir,
args.clip_encoder,
args.text_layer_idx,
args.text_augmentation
)
text_features = torch.load(text_features_path)
text_dataset = TextTensorDataset(
text_features['features'], text_features['labels'], text_features['eot_indices'])
ccrop_features_path = get_image_features_path(
args.dataset,
args.train_shot,
args.seed,
args.feature_dir,
args.clip_encoder,
args.image_layer_idx,
"none",
)
ccrop_features = torch.load(ccrop_features_path)
if args.image_augmentation == "none":
train_features = ccrop_features['train']['features']
train_labels = ccrop_features['train']['labels']
else:
# Add extra views
image_features_path = get_image_features_path(
args.dataset,
args.train_shot,
args.seed,
args.feature_dir,
args.clip_encoder,
args.image_layer_idx,
args.image_augmentation,
image_views=args.image_views,
)
image_features = torch.load(image_features_path)
train_features = torch.cat([ccrop_features['train']['features'], image_features['train']['features']], dim=0)
train_labels = torch.cat([ccrop_features['train']['labels'], image_features['train']['labels']], dim=0)
image_train_dataset = TensorDataset(
train_features,
train_labels
)
save_dir = get_save_dir(args)
hyperparams = HYPER_DICT[args.hyperparams]
VALID_BATCH_SIZES = get_valid_batch_sizes(
hyperparams, text_dataset, image_train_dataset, modality=args.modality)
def get_experiment_count(hyperparams):
count = 1
count *= len(hyperparams['lr'])
count *= len(hyperparams['weight_decay'])
count *= len(VALID_BATCH_SIZES)
count *= len(hyperparams['max_iter'])
return count
experiment_count = get_experiment_count(hyperparams)
cur_count = 0
all_hyper_finished = True
all_hyper_dict = {}
# sweep through hyperparameters
for lr in hyperparams['lr']:
for wd in hyperparams['weight_decay']:
for batch_size in VALID_BATCH_SIZES:
for iters in hyperparams['max_iter']:
cur_count += 1
hyperparams_str = get_hyperparams_str(
hyperparams['optim'], lr, wd, batch_size, iters)
# all_hyper_dict[hyperparams_str] = {}
# check if experiment has been done
checkpoint_dir = os.path.join(save_dir, hyperparams_str)
test_result_path = os.path.join(checkpoint_dir, "test_result.pth")
if not os.path.exists(checkpoint_dir):
import pdb; pdb.set_trace()
continue
else:
try:
test_result_dict = torch.load(test_result_path)
except:
import pdb; pdb.set_trace()
print(test_result_dict)
print(f"Finished testing {hyperparams_str} {cur_count}/{experiment_count}")
all_hyper_dict[hyperparams_str] = test_result_dict
if not all_hyper_finished:
print(f"Seed {seed} not finished!")
# break
else:
all_seed_dict[seed] = all_hyper_dict
if all_seed_finished:
print(f"Dataset {dataset} finished! Taking average...")
if args.wise_ft:
eval_types = ['head_wiseft_0.5']
else:
eval_types = ['head']
all_dataset_dict[dataset] = take_average(all_seed_dict, ALL_EVAL_TYPES=eval_types)
this_headers, this_columns = save_csv(all_dataset_dict[dataset][0], all_dataset_dict[dataset][1],
os.path.join(eval_dir, dataset, "all_results.csv"),
dataset,
shots,
args.clip_encoder,
args.image_layer_idx,
args.text_layer_idx,
args.text_augmentation,
args.image_augmentation,
args.image_views,
args.modality,
args.classifier_init,
args.hyperparams,
args.logit
)
if all_headers == None:
all_headers = this_headers
all_columns = all_columns + this_columns
else:
print(f"Dataset {dataset} not finished!")
# break
# from datetime import datetime
# now = datetime.now()
# dt_string = now.strftime("%m-%d-%Y-%H:%M")
csv_path = os.path.join(EVAL_DIR, f"{NAME}.csv")
print(f"Saving to {csv_path}")
# import pdb; pdb.set_trace()
save_all_csv(all_headers, all_columns, csv_path)
print("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--clip-encoder",
type=str,
default="RN50",
choices=["ViT-B/16", "RN50"],
help="image encoder of clip",
)
parser.add_argument(
"--mode",
type=str,
default="linear",
choices=[
"linear",
"partial",
"adapter",
],
help="finetuning mode",
)
parser.add_argument(
"--text-augmentation",
type=str,
default='hand_crafted',
choices=['hand_crafted', # tip_adapter selected
'classname', # plain class name
'vanilla', # a photo of a {cls}.
'template_mining' # examples of best zero-shot templates for few-shot val set
],
help="specify the text augmentation to use.",
)
parser.add_argument(
"--image-augmentation",
type=str,
default='none',
choices=['none', # only a single center crop
'flip', # add random flip view
'randomcrop', # add random crop view
],
help="specify the image augmentation to use.",
)
parser.add_argument(
"--image-views",
type=int,
default=1,
help="if image-augmentation is not None, then specify the number of extra views.",
)
parser.add_argument(
"--modality",
type=str,
default="cross_modal",
choices=["cross_modal", # half batch image, half batch text
"uni_modal", # whole batch image
],
help="whether or not to perform cross-modal training (ie. half batch is image, half batch is text)",
)
parser.add_argument(
"--classifier_init",
type=str,
default="zeroshot",
choices=["zeroshot", # text-based initialization
"random", # random initialization
],
help="classifier head initialization",
)
parser.add_argument(
"--wise_ft",
type=bool,
default=False,
help="wise_ft with 0.5 ratio",
)
parser.add_argument(
"--data_dir",
type=str,
default=default.DATA_DIR,
help="where the dataset is saved",
)
parser.add_argument(
"--indices_dir",
type=str,
default=default.FEW_SHOT_DIR,
help="where the (few-shot) indices is saved",
)
parser.add_argument(
"--feature_dir",
type=str,
default=default.FEATURE_DIR,
help="where to save pre-extracted features",
)
parser.add_argument(
"--result_dir",
type=str,
default=default.RESULT_DIR,
help="where to save experiment results",
)
args = parser.parse_args()
with torch.no_grad():
main(args)