-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmini_source_agent_worldmodel.py
390 lines (301 loc) · 14.1 KB
/
mini_source_agent_worldmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import random
import tensorflow as tf
from pysc2.agents import base_agent
from pysc2.lib import actions as sc2_actions
from lib import utils as U
from lib import config as C
from lib import transform_pos as T
from lib import option as M
from lib import environment
from lib import my_sc2_env as sc2_env
from lib.replay_buffer import Buffer
from mini_agent import ProtossAction
from rnn.rnn import hps_sample, MDNRNN, rnn_init_state, rnn_next_state, rnn_output, rnn_output_size
ACTION_SPACE = 10
# controls whether we concatenate (z, c, h), etc for features used for car.
MODE_ZCH = 0
MODE_ZC = 1
MODE_Z = 2
MODE_Z_HIDDEN = 3 # extra hidden later
MODE_ZH = 4
EXP_MODE = MODE_ZH
def get_one_hot(targets, nb_classes):
res = np.eye(nb_classes)[np.array(targets).reshape(-1)]
return res.reshape(list(targets.shape)+[nb_classes])
class MiniSourceAgent(base_agent.BaseAgent):
"""Agent for source game of starcraft."""
def __init__(self, index=0, rl_training=False, restore_model=False, global_buffer=None, net=None, strategy_agent=None, greedy_action=False,
extract_save_dir=None, load_model=True, ntype='worldmodel'):
super(MiniSourceAgent, self).__init__()
self.net = net
self.index = index
self.global_buffer = global_buffer
self.restore_model = restore_model
# model in brain
self.strategy_agent = strategy_agent
self.strategy_act = None
# count num
self.step = 0
self.strategy_wait_secs = 2
self.strategy_flag = False
self.policy_wait_secs = 2
self.policy_flag = True
self.env = None
self.obs = None
# buffer
self.local_buffer = Buffer()
self.num_players = 2
self.on_select = None
self._result = None
self._gases = None
self.is_end = False
self.greedy_action = greedy_action
self.rl_training = rl_training
self.extract_save_dir = extract_save_dir
self.rnn_state = rnn_init_state(self.net.rnn)
def reset(self):
super(MiniSourceAgent, self).reset()
self.step = 0
self.obs = None
self._result = None
self._gases = None
self.is_end = False
self.strategy_flag = False
self.policy_flag = True
self.local_buffer.reset()
if self.strategy_agent is not None:
self.strategy_agent.reset()
self.rnn_state = rnn_init_state(self.net.rnn)
def set_env(self, env):
self.env = env
def init_network(self):
self.net.initialize()
if self.restore_model:
self.net.restore_policy()
def reset_old_network(self):
self.net.reset_old_network()
def save_model(self):
self.net.save_policy()
def update_network(self, result_list):
self.net.Update_policy(self.global_buffer)
self.net.Update_result(result_list)
def update_summary(self, counter):
return self.net.Update_summary(counter)
def mini_step(self, action):
if action == ProtossAction.Build_probe.value:
M.mineral_worker(self)
elif action == ProtossAction.Build_zealot.value:
M.train_army(self, C._TRAIN_ZEALOT)
elif action == ProtossAction.Build_Stalker.value:
M.train_army(self, C._TRAIN_STALKER)
elif action == ProtossAction.Build_pylon.value:
no_unit_index = U.get_unit_mask_screen(self.obs, size=2)
pos = U.get_pos(no_unit_index)
M.build_by_idle_worker(self, C._BUILD_PYLON_S, pos)
elif action == ProtossAction.Build_gateway.value:
power_index = U.get_power_mask_screen(self.obs, size=5)
pos = U.get_pos(power_index)
M.build_by_idle_worker(self, C._BUILD_GATEWAY_S, pos)
elif action == ProtossAction.Build_Assimilator.value:
if self._gases is not None:
#U.find_gas_pos(self.obs, 1)
gas_1 = self._gases[0]
gas_2 = self._gases[1]
if gas_1 is not None and not U.is_assimilator_on_gas(self.obs, gas_1):
gas_1_pos = T.world_to_screen_pos(self.env.game_info, gas_1.pos, self.obs)
M.build_by_idle_worker(self, C._BUILD_ASSIMILATOR_S, gas_1_pos)
elif gas_2 is not None and not U.is_assimilator_on_gas(self.obs, gas_2):
gas_2_pos = T.world_to_screen_pos(self.env.game_info, gas_2.pos, self.obs)
M.build_by_idle_worker(self, C._BUILD_ASSIMILATOR_S, gas_2_pos)
elif action == ProtossAction.Build_CyberneticsCore.value:
power_index = U.get_power_mask_screen(self.obs, size=3)
pos = U.get_pos(power_index)
M.build_by_idle_worker(self, C._BUILD_CYBER_S, pos)
elif action == ProtossAction.Attack.value:
M.attack_step(self)
elif action == ProtossAction.Retreat.value:
M.retreat_step(self)
elif action == ProtossAction.Do_nothing.value:
self.safe_action(C._NO_OP, 0, [])
def get_the_input(self):
high_input, tech_cost, pop_num = U.get_input(self.obs)
controller_input = np.concatenate([high_input, tech_cost, pop_num], axis=0)
return controller_input
def mapping_source_to_mini_by_rule(self, source_state):
simple_input = np.zeros([20])
simple_input[0] = 0 # self.time_seconds
simple_input[1] = source_state[28] # self.mineral_worker_nums
simple_input[2] = source_state[30] + source_state[32] # self.gas_worker_nums
simple_input[3] = source_state[2] # self.mineral
simple_input[4] = source_state[3] # self.gas
simple_input[5] = source_state[6] # self.food_cup
simple_input[6] = source_state[7] # self.food_used
simple_input[7] = source_state[10] # self.army_nums
simple_input[8] = source_state[16] # self.gateway_num
simple_input[9] = source_state[14] # self.pylon_num
simple_input[10] = source_state[15] # self.Assimilator_num
simple_input[11] = source_state[17] # self.CyberneticsCore_num
simple_input[12] = source_state[12] # self.zealot_num
simple_input[13] = source_state[13] # self.Stalker_num
simple_input[14] = source_state[11] # self.probe_num
simple_input[15] = source_state[4] + source_state[2] # self.collected_mineral
simple_input[16] = source_state[4] # self.spent_mineral
simple_input[17] = source_state[5] + source_state[3] # self.collected_gas
simple_input[18] = source_state[5] # self.spent_gas
simple_input[19] = 1 # self.Nexus_num
return simple_input
def train(self, verbose=False):
self.play_train_worldmodel(verbose=verbose)
def sample(self, verbose=False, use_image=False):
is_attack = False
state_last = None
random_generated_int = random.randint(0, 2**31-1)
filename = self.extract_save_dir+"/"+str(random_generated_int)+".npz"
recording_obs = []
recording_img = []
recording_action = []
np.random.seed(random_generated_int)
tf.set_random_seed(random_generated_int)
self.safe_action(C._NO_OP, 0, [])
self.safe_action(C._MOVE_CAMERA, 0, [C.base_camera_pos])
self._gases = U.find_initial_gases(self.obs)
while True:
self.safe_action(C._MOVE_CAMERA, 0, [C.base_camera_pos])
if self.policy_flag and (not self.is_end):
state_now = self.mapping_source_to_mini_by_rule(self.get_the_input())
recording_obs.append(state_now)
if use_image:
recording_img.append(U.get_simple_map_data(self.obs))
action, v_preds = self.net.policy.get_action(state_now, verbose=False)
recording_action.append(action)
self.mini_step(action)
if state_last is not None:
if False:
print('state_last:', state_last, ', action_last:', action_last, ', state_now:', state_now)
v_preds_next = self.net.policy.get_values(state_now)
v_preds_next = self.get_values(v_preds_next)
reward = 0
self.local_buffer.append(state_last, action_last, state_now, reward, v_preds, v_preds_next)
state_last = state_now
action_last = action
self.policy_flag = False
if self.is_end:
if True:
recording_obs = np.array(recording_obs, dtype=np.uint8)
recording_action = np.array(recording_action, dtype=np.uint8)
if not use_image:
np.savez_compressed(filename, obs=recording_obs, action=recording_action)
else:
recording_img = np.array(recording_img, dtype=np.float16)
np.savez_compressed(filename, obs=recording_obs, img=recording_img, action=recording_action)
break
def encode_obs(self, obs):
# convert raw obs to z, mu, logvar
result = np.copy(obs)
result = result.reshape(1, 64, 64, 12)
mu, logvar = self.net.vae.encode_mu_logvar(result)
mu = mu[0]
logvar = logvar[0]
s = logvar.shape
z = mu + np.exp(logvar/2.0) * np.random.randn(*s)
return z, mu, logvar
def get_action(self, feature):
h = rnn_output(self.rnn_state, feature, EXP_MODE)
action, v_preds = self.net.policy.get_action(h, verbose=False)
action_one_hot = get_one_hot(np.array(action), ACTION_SPACE)
self.rnn_state = rnn_next_state(self.net.rnn, feature, action_one_hot, self.rnn_state)
return h, action, v_preds
def play_train_worldmodel(self, verbose=False, use_image=False):
is_attack = False
state_last = None
self.safe_action(C._NO_OP, 0, [])
self.safe_action(C._MOVE_CAMERA, 0, [C.base_camera_pos])
self._gases = U.find_initial_gases(self.obs)
while True:
self.safe_action(C._MOVE_CAMERA, 0, [C.base_camera_pos])
if self.policy_flag and (not self.is_end):
non_image_feature = self.mapping_source_to_mini_by_rule(self.get_the_input())
#print('non_image_feature.shape:', non_image_feature.shape)
#print('non_image_feature:', non_image_feature)
image_feature = U.get_simple_map_data(self.obs)
#print('image_feature.shape:', image_feature.shape)
#print('image_feature:', image_feature)
latent_image_feature, mu, logvar = self.encode_obs(image_feature)
#print('latent_image_feature.shape:', latent_image_feature.shape)
#print('latent_image_feature:', latent_image_feature)
feature = np.concatenate([non_image_feature, latent_image_feature], axis=-1)
#print('feature.shape:', feature.shape)
#print('feature:', feature)
#state_now = feature
state_now, action, v_preds = self.get_action(feature)
#print('action:', action)
self.mini_step(action)
if state_last is not None:
if False:
print('state_last:', state_last, ', action_last:', action_last, ', state_now:', state_now)
v_preds_next = self.net.policy.get_values(state_now)
v_preds_next = self.get_values(v_preds_next)
reward = 0
self.local_buffer.append(state_last, action_last, state_now, reward, v_preds, v_preds_next)
state_last = state_now
action_last = action
self.policy_flag = False
if self.is_end:
if self.rl_training:
self.local_buffer.rewards[-1] += 1 * self.result['reward'] # self.result['win']
print(self.local_buffer.rewards) if verbose else None
self.global_buffer.add(self.local_buffer)
print("add %d buffer!" % (len(self.local_buffer.rewards))) if verbose else None
break
def set_flag(self):
if self.step % C.time_wait(self.strategy_wait_secs) == 1:
self.strategy_flag = True
if self.step % C.time_wait(self.policy_wait_secs) == 1:
self.policy_flag = True
def safe_action(self, action, unit_type, args):
if M.check_params(self, action, unit_type, args, 1):
obs = self.env.step([sc2_actions.FunctionCall(action, args)])[0]
self.obs = obs
self.step += 1
self.update_result()
self.set_flag()
def select(self, action, unit_type, args):
# safe select
if M.check_params(self, action, unit_type, args, 0):
self.obs = self.env.step([sc2_actions.FunctionCall(action, args)])[0]
self.on_select = unit_type
self.update_result()
self.step += 1
self.set_flag()
@property
def result(self):
return self._result
def update_result(self):
if self.obs is None:
return
if self.obs.last() or self.env.state == environment.StepType.LAST:
self.is_end = True
outcome = 0
o = self.obs.raw_observation
player_id = o.observation.player_common.player_id
for r in o.player_result:
if r.player_id == player_id:
outcome = sc2_env._possible_results.get(r.result, 0)
frames = o.observation.game_loop
result = {}
result['outcome'] = outcome
result['reward'] = self.obs.reward
result['frames'] = frames
self._result = result
print('play end, total return', self.obs.reward)
self.step = 0
def get_values(self, values):
# check if the game is end
if self.is_end and self.result['reward'] != 0:
return 0
else:
return values