-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathecc-secp256k1.py
86 lines (64 loc) · 3.22 KB
/
ecc-secp256k1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#coding:utf-8
# Super simple Elliptic Curve Presentation. No imported libraries, wrappers, nothing.
# For educational purposes only. Remember to use Python 2.7.6 or lower.
# You'll need to make changes for Python 3.
# Below are the public specs for Bitcoin's curve - the secp256k1
Pcurve = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 -1 # Finite field, 有限域
# 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
N = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 # 群的阶
Acurve = 0; Bcurve = 7 # 椭圆曲线的参数式. y^2 = x^3 + Acurve * x + Bcurve
Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
# 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424
# 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
GPoint = (Gx, Gy) # 椭圆曲线生成点, Base point.
#(Gx**3+7) % Pcurve == (Gy**2) % Pcurve, GPoint在椭圆曲线上, x/y坐标符合椭圆曲线方程
h = 1 # Subgroup cofactor, 子群辅因子为1, 就不参与运算了
# Pcurve, N, GPoint, secp256k1的函数式, 都是严格规定的, 严禁修改!!!
#私钥
privKey = 0xA0DC65FFCA799873CBEA0AC274015B9526505DAAAED385155425F7337704883E # 取值小于群的阶,即 {0,N}
def inverse_mod(a, n=Pcurve): #Extended Euclidean Algorithm/'division' in elliptic curves
# 扩展欧几里得算法, https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
lm, hm = 1,0
low, high = a%n,n
while low > 1:
ratio = high/low
nm, new = hm-lm*ratio, high-low*ratio
lm, low, hm, high = nm, new, lm, low
return lm % n
def ECadd(a, b): # 椭圆曲线加法
LamAdd = ((b[1]-a[1]) * inverse_mod(b[0]-a[0],Pcurve) ) % Pcurve
x = (LamAdd*LamAdd-a[0]-b[0]) % Pcurve
y = (LamAdd*(a[0]-x)-a[1]) % Pcurve
return (x,y)
def ECdouble(a): # 椭圆曲线倍乘
Lam = ((3*a[0]*a[0]+Acurve) * inverse_mod((2*a[1]) ,Pcurve) ) % Pcurve
x = (Lam*Lam-2*a[0]) % Pcurve
y = (Lam*(a[0]-x)-a[1]) % Pcurve
return (x,y)
def EccMultiply(GenPoint, ScalarHex): # Double & Add. Not true multiplication
if ScalarHex == 0 or ScalarHex >= N: raise Exception("Invalid Scalar/Private Key")
ScalarBin = str(bin(ScalarHex))[2:]
Q=GenPoint
for i in range (1, len(ScalarBin)): # EC乘法转为标量乘法进行计算, 能减少运算量
Q=ECdouble(Q);
if ScalarBin[i] == "1":
Q=ECadd(Q,GenPoint); # print "ADD", Q[0]; print
return (Q)
print; print "******* 生成公钥 *********";
print
PublicKey = EccMultiply(GPoint, privKey)
print "私钥:";
print privKey; print
print "未压缩公钥 (不是地址):";
print PublicKey; print
print "未压缩公钥 (十六进制):";
print "04" + "%064x" % PublicKey[0] + "%064x" % PublicKey[1];
print;
print "官方公钥 - 压缩的:";
if PublicKey[1] % 2 == 1: # If the Y value for the Public Key is odd.
print "03"+str(hex(PublicKey[0])[2:-1]).zfill(64)
else: # Or else, if the Y value is even.
print "02"+str(hex(PublicKey[0])[2:-1]).zfill(64)
# https://www.youtube.com/watch?v=iB3HcPgm_FI
# https://github.com/wobine/blackboard101/blob/master/EllipticCurvesPart4-PrivateKeyToPublicKey.py