-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathecc-secp256k1.rb
92 lines (68 loc) · 2.73 KB
/
ecc-secp256k1.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Bitcoin's curve - the secp256k1
Pcurve = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 -1 # Finite field, 有限域
# 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
N = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 # 群的阶
Acurve = 0; Bcurve = 7 # 椭圆曲线的参数式. y^2 = x^3 + Acurve * x + Bcurve
Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
GPoint = [Gx, Gy] # 椭圆曲线生成点, Base point.
#(Gx**3+7) % Pcurve == (Gy**2) % Pcurve, GPoint在椭圆曲线上, x/y坐标符合椭圆曲线方程
h = 1 # Subgroup cofactor, 子群辅因子为1, 就不参与运算了
# Pcurve, N, GPoint, secp256k1的函数式, 都是严格规定的, 严禁修改!!!
#私钥
privKey = 0xccea9c5a20e2b78c2e0fbdd8ae2d2b67e6b1894ccb7a55fc1de08bd53994ea64 # 取值小于群的阶,即 {0,N}
def inverse_mod(a, n=Pcurve) #Extended Euclidean Algorithm/'division' in elliptic curves
# 扩展欧几里得算法, https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
lm, hm = 1,0
low, high = a%n, n
while low > 1
ratio = high/low
nm, new = hm-lm * ratio, high-low * ratio
lm, low, hm, high = nm, new, lm, low
end
return lm % n
end
def ECadd(a, b) # 椭圆曲线加法
lamAdd = ((b[1] - a[1]) * inverse_mod(b[0] - a[0], Pcurve) ) % Pcurve
x = (lamAdd * lamAdd - a[0] - b[0]) % Pcurve
y = (lamAdd * (a[0]-x) - a[1]) % Pcurve
return [x,y]
end
def ECdouble(a) # 椭圆曲线倍乘
lam = ((3 * a[0] * a[0] + Acurve) * inverse_mod( (2*a[1]), Pcurve)) % Pcurve
x = (lam * lam - 2*a[0]) % Pcurve
y = (lam * (a[0] - x) - a[1]) % Pcurve
return [x,y]
end
def EccMultiply(genPoint, scalarHex) # Double & Add. Not true multiplication
if scalarHex == 0 || scalarHex >= N
raise Exception, "Invalid Scalar/Private Key"
end
scalarBin = scalarHex.to_s(2)
q = genPoint
endflag = scalarBin.size - 1
(1..endflag).each do |i|
q = ECdouble(q)
if scalarBin[i] == "1"
q = ECadd(q, genPoint)
end
end
return q
end
puts; puts "******* 生成公钥 *********";
puts
PublicKey = EccMultiply(GPoint, privKey)
puts "私钥:";
puts privKey; puts
puts "未压缩公钥:";
puts PublicKey; puts
puts "未压缩公钥 (十六进制):";
puts "04" + PublicKey[0].to_s(16).rjust(64, "0") + PublicKey[1].to_s(16).rjust(64, "0")
puts;
puts "官方公钥 - 压缩的:";
if PublicKey[1] % 2 == 1 # If the Y value for the Public Key is odd.
puts "03" + PublicKey[0].to_s(16).rjust(64, "0")
else # Or else, if the Y value is even.
puts "02" + PublicKey[0].to_s(16).rjust(64, "0")
end
# "233".to_s.rjust(5, "0") # => 00233