-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathmain.py
98 lines (91 loc) · 3.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!/usr/bin/env python
# coding: utf-8
import sys
import torch
import argparse
import numpy as np
from utils.load_yaml import HpsYaml
# For reproducibility, comment these may speed up training
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Arguments
parser = argparse.ArgumentParser(description=
'Training PPG2Mel VC model.')
parser.add_argument('--config', type=str,
help='Path to experiment config, e.g., config/vc.yaml')
parser.add_argument('--name', default=None, type=str, help='Name for logging.')
parser.add_argument('--logdir', default='log/', type=str,
help='Logging path.', required=False)
parser.add_argument('--ckpdir', default='ckpt/', type=str,
help='Checkpoint path.', required=False)
parser.add_argument('--outdir', default='result/', type=str,
help='Decode output path.', required=False)
parser.add_argument('--load', default=None, type=str,
help='Load pre-trained model (for training only)', required=False)
parser.add_argument('--warm_start', action='store_true',
help='Load model weights only, ignore specified layers.')
parser.add_argument('--seed', default=0, type=int,
help='Random seed for reproducable results.', required=False)
parser.add_argument('--njobs', default=8, type=int,
help='Number of threads for dataloader/decoding.', required=False)
parser.add_argument('--cpu', action='store_true', help='Disable GPU training.')
parser.add_argument('--no-pin', action='store_true',
help='Disable pin-memory for dataloader')
parser.add_argument('--test', action='store_true', help='Test the model.')
parser.add_argument('--no-msg', action='store_true', help='Hide all messages.')
parser.add_argument('--finetune', action='store_true', help='Finetune model')
parser.add_argument('--oneshotvc', action='store_true', help='Oneshot VC model')
parser.add_argument('--bilstm', action='store_true', help='BiLSTM VC model')
parser.add_argument('--lsa', action='store_true', help='Use location-sensitive attention (LSA)')
###
paras = parser.parse_args()
setattr(paras, 'gpu', not paras.cpu)
setattr(paras, 'pin_memory', not paras.no_pin)
setattr(paras, 'verbose', not paras.no_msg)
# Make the config dict dot visitable
config = HpsYaml(paras.config) # yaml.load(open(paras.config, 'r'), Loader=yaml.FullLoader)
np.random.seed(paras.seed)
torch.manual_seed(paras.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(paras.seed)
# For debug use
# torch.autograd.set_detect_anomaly(True)
# Hack to preserve GPU ram just in case OOM later on server
# if paras.gpu and paras.reserve_gpu > 0:
# buff = torch.randn(int(paras.reserve_gpu*1e9//4)).cuda()
# del buff
if paras.oneshotvc:
print(">>> OneShot VC training ...")
if paras.bilstm:
from bin.train_ppg2mel_oneshotvc import Solver
else:
from bin.train_linglf02mel_seq2seq_oneshotvc import Solver
mode = "train"
solver = Solver(config, paras, mode)
solver.load_data()
solver.set_model()
solver.exec()
print(">>> Oneshot VC train finished!")
sys.exit(0)
elif paras.lsa:
print(">>> Use location sensitive attention based seq2seq model")
from bin.train_linglf02mel_seq2seq_lsa import Solver
mode = "train"
solver = Solver(config, paras, mode)
solver.load_data()
solver.set_model()
solver.exec()
print(">>> VC train finished!")
sys.exit(0)
else:
if paras.finetune:
from bin.finetune_linglf02mel_seq2seq_encAddlf0 import Solver
else:
from bin.train_linglf02mel_seq2seq_encAddlf0 import Solver
mode = 'train'
solver = Solver(config, paras, mode)
solver.load_data()
solver.set_model()
solver.exec()
print(">>> VC train finished!")
sys.exit(0)