forked from alumae/kiirkirjutaja
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasr.py
59 lines (51 loc) · 1.91 KB
/
asr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from vosk import Model, KaldiRecognizer, SetLogLevel
import sys
import os
import sys
import torch
import torchaudio
import json
from queue import Queue
import threading
class TurnDecoder():
def __init__(self, model, chunk_generator):
self.model = model
self.rec = KaldiRecognizer(model, 16000)
self.chunk_generator = chunk_generator
self.send_chunk_length = 16000 # how big are the chunks that we send to Kaldi
self.result_queue = Queue(10)
thread = threading.Thread(target=self.run)
thread.daemon = True
thread.start()
def decode_results(self):
while True:
result = self.result_queue.get()
if result is not None:
yield result
else:
return
def run(self):
buffer = torch.tensor([])
for chunk in self.chunk_generator:
buffer = torch.cat([buffer, chunk])
if len(buffer) >= self.send_chunk_length:
bytes = (buffer * torch.iinfo(torch.int16).max).short().numpy().tobytes()
if self.rec.AcceptWaveform(bytes):
res = self.rec.Result()
jres = json.loads(res)
jres["final"] = True
self.result_queue.put(jres)
else:
res = self.rec.PartialResult()
jres = json.loads(res)
jres["final"] = False
self.result_queue.put(jres)
buffer = torch.tensor([])
if len(buffer) > 0:
bytes = (buffer * torch.iinfo(torch.int16).max).short().numpy().tobytes()
self.rec.AcceptWaveform(bytes)
res = self.rec.FinalResult()
jres = json.loads(res)
jres["final"] = True
self.result_queue.put(jres)
self.result_queue.put(None)