forked from xythobuz/avrSerial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserial.c
410 lines (351 loc) · 11.3 KB
/
serial.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/*
* serial.c
*
* Copyright (c) 2012, 2013, Thomas Buck <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdint.h>
#include "serial.h"
#include "serial_device.h"
/** \addtogroup uart UART Library
* UART Library enabling you to control all available
* UART Modules. With XON/XOFF Flow Control and buffered
* Receiving and Transmitting.
* @{
*/
/** \file serial.c
* UART Library Implementation
*/
/** If you define this, a '\\r' (CR) will be put in front of a '\\n' (LF) when sending a byte.
* Binary Communication will then be impossible!
*/
// #define SERIALINJECTCR
#ifndef RX_BUFFER_SIZE
#define RX_BUFFER_SIZE 32 /**< RX Buffer Size in Bytes (Power of 2) */
#endif
#ifndef TX_BUFFER_SIZE
#define TX_BUFFER_SIZE 16 /**< TX Buffer Size in Bytes (Power of 2) */
#endif
/** Defining this enables incoming XON XOFF (sends XOFF if rx buff is full) */
#define FLOWCONTROL
#define FLOWMARK 5 /**< Space remaining to trigger xoff/xon */
#define XON 0x11 /**< XON Value */
#define XOFF 0x13 /**< XOFF Value */
#if (RX_BUFFER_SIZE < 2) || (TX_BUFFER_SIZE < 2)
#error SERIAL BUFFER TOO SMALL!
#endif
#ifdef FLOWCONTROL
#if (RX_BUFFER_SIZE < 8) || (TX_BUFFER_SIZE < 8)
#error SERIAL BUFFER TOO SMALL!
#endif
#endif
#if ((RX_BUFFER_SIZE + TX_BUFFER_SIZE) * UART_COUNT) >= (RAMEND - 0x60)
#error SERIAL BUFFER TOO LARGE!
#endif
// serialRegisters
#define SERIALDATA 0
#define SERIALB 1
#define SERIALC 2
#define SERIALA 3
#define SERIALUBRRH 4
#define SERIALUBRRL 5
// serialBits
#define SERIALUCSZ0 0
#define SERIALUCSZ1 1
#define SERIALRXCIE 2
#define SERIALRXEN 3
#define SERIALTXEN 4
#define SERIALUDRIE 5
#define SERIALUDRE 6
uint8_t volatile rxBuffer[UART_COUNT][RX_BUFFER_SIZE];
uint8_t volatile txBuffer[UART_COUNT][TX_BUFFER_SIZE];
uint16_t volatile rxRead[UART_COUNT];
uint16_t volatile rxWrite[UART_COUNT];
uint16_t volatile txRead[UART_COUNT];
uint16_t volatile txWrite[UART_COUNT];
uint8_t volatile shouldStartTransmission[UART_COUNT];
#ifdef FLOWCONTROL
uint8_t volatile sendThisNext[UART_COUNT];
uint8_t volatile flow[UART_COUNT];
uint8_t volatile rxBufferElements[UART_COUNT];
#endif
uint8_t serialAvailable(void) {
return UART_COUNT;
}
void serialInit(uint8_t uart, uint16_t baud) {
if (uart >= UART_COUNT)
return;
// Initialize state variables
rxRead[uart] = 0;
rxWrite[uart] = 0;
txRead[uart] = 0;
txWrite[uart] = 0;
shouldStartTransmission[uart] = 1;
#ifdef FLOWCONTROL
sendThisNext[uart] = 0;
flow[uart] = 1;
rxBufferElements[uart] = 0;
#endif
// Default Configuration: 8N1
*serialRegisters[uart][SERIALC] = (1 << serialBits[uart][SERIALUCSZ0]) | (1 << serialBits[uart][SERIALUCSZ1]);
// Set baudrate
#if SERIALBAUDBIT == 8
*serialRegisters[uart][SERIALUBRRH] = (baud >> 8);
*serialRegisters[uart][SERIALUBRRL] = baud;
#else
*serialBaudRegisters[uart] = baud;
#endif
*serialRegisters[uart][SERIALB] = (1 << serialBits[uart][SERIALRXCIE]); // Enable Interrupts
*serialRegisters[uart][SERIALB] |= (1 << serialBits[uart][SERIALRXEN]) | (1 << serialBits[uart][SERIALTXEN]); // Enable Receiver/Transmitter
}
void serialClose(uint8_t uart) {
if (uart >= UART_COUNT)
return;
uint8_t sreg = SREG;
sei();
while (!serialTxBufferEmpty(uart));
while (*serialRegisters[uart][SERIALB] & (1 << serialBits[uart][SERIALUDRIE])); // Wait while Transmit Interrupt is on
cli();
*serialRegisters[uart][SERIALB] = 0;
*serialRegisters[uart][SERIALC] = 0;
SREG = sreg;
}
#ifdef FLOWCONTROL
void setFlow(uint8_t uart, uint8_t on) {
if (uart >= UART_COUNT)
return;
if (flow[uart] != on) {
if (on == 1) {
// Send XON
while (sendThisNext[uart] != 0);
sendThisNext[uart] = XON;
flow[uart] = 1;
if (shouldStartTransmission[uart]) {
shouldStartTransmission[uart] = 0;
*serialRegisters[uart][SERIALB] |= (1 << serialBits[uart][SERIALUDRIE]);
*serialRegisters[uart][SERIALA] |= (1 << serialBits[uart][SERIALUDRE]); // Trigger Interrupt
}
} else {
// Send XOFF
sendThisNext[uart] = XOFF;
flow[uart] = 0;
if (shouldStartTransmission[uart]) {
shouldStartTransmission[uart] = 0;
*serialRegisters[uart][SERIALB] |= (1 << serialBits[uart][SERIALUDRIE]);
*serialRegisters[uart][SERIALA] |= (1 << serialBits[uart][SERIALUDRE]); // Trigger Interrupt
}
}
// Wait till it's transmitted
while (*serialRegisters[uart][SERIALB] & (1 << serialBits[uart][SERIALUDRIE]));
}
}
#endif
// ---------------------
// | Reception |
// ---------------------
uint8_t serialHasChar(uint8_t uart) {
if (uart >= UART_COUNT)
return 0;
if (rxRead[uart] != rxWrite[uart]) { // True if char available
return 1;
} else {
return 0;
}
}
uint8_t serialGetBlocking(uint8_t uart) {
if (uart >= UART_COUNT)
return 0;
while(!serialHasChar(uart));
return serialGet(uart);
}
uint8_t serialGet(uint8_t uart) {
if (uart >= UART_COUNT)
return 0;
uint8_t c;
#ifdef FLOWCONTROL
rxBufferElements[uart]--;
if ((flow[uart] == 0) && (rxBufferElements[uart] <= FLOWMARK)) {
while (sendThisNext[uart] != 0);
sendThisNext[uart] = XON;
flow[uart] = 1;
if (shouldStartTransmission[uart]) {
shouldStartTransmission[uart] = 0;
*serialRegisters[uart][SERIALB] |= (1 << serialBits[uart][SERIALUDRIE]); // Enable Interrupt
*serialRegisters[uart][SERIALA] |= (1 << serialBits[uart][SERIALUDRE]); // Trigger Interrupt
}
}
#endif
if (rxRead[uart] != rxWrite[uart]) {
c = rxBuffer[uart][rxRead[uart]];
rxBuffer[uart][rxRead[uart]] = 0;
if (rxRead[uart] < (RX_BUFFER_SIZE - 1)) {
rxRead[uart]++;
} else {
rxRead[uart] = 0;
}
return c;
} else {
return 0;
}
}
uint8_t serialRxBufferFull(uint8_t uart) {
if (uart >= UART_COUNT)
return 0;
return (((rxWrite[uart] + 1) == rxRead[uart]) || ((rxRead[uart] == 0) && ((rxWrite[uart] + 1) == RX_BUFFER_SIZE)));
}
uint8_t serialRxBufferEmpty(uint8_t uart) {
if (uart >= UART_COUNT)
return 0;
if (rxRead[uart] != rxWrite[uart]) {
return 0;
} else {
return 1;
}
}
// ----------------------
// | Transmission |
// ----------------------
void serialWrite(uint8_t uart, uint8_t data) {
if (uart >= UART_COUNT)
return;
#ifdef SERIALINJECTCR
if (data == '\n') {
serialWrite(uart, '\r');
}
#endif
while (serialTxBufferFull(uart));
txBuffer[uart][txWrite[uart]] = data;
if (txWrite[uart] < (TX_BUFFER_SIZE - 1)) {
txWrite[uart]++;
} else {
txWrite[uart] = 0;
}
if (shouldStartTransmission[uart]) {
shouldStartTransmission[uart] = 0;
*serialRegisters[uart][SERIALB] |= (1 << serialBits[uart][SERIALUDRIE]); // Enable Interrupt
*serialRegisters[uart][SERIALA] |= (1 << serialBits[uart][SERIALUDRE]); // Trigger Interrupt
}
}
void serialWriteString(uint8_t uart, const char *data) {
if (uart >= UART_COUNT)
return;
if (data == 0) {
serialWriteString(uart, "NULL");
} else {
while (*data != '\0') {
serialWrite(uart, *data++);
}
}
}
uint8_t serialTxBufferFull(uint8_t uart) {
if (uart >= UART_COUNT)
return 0;
return (((txWrite[uart] + 1) == txRead[uart]) || ((txRead[uart] == 0) && ((txWrite[uart] + 1) == TX_BUFFER_SIZE)));
}
uint8_t serialTxBufferEmpty(uint8_t uart) {
if (uart >= UART_COUNT)
return 0;
if (txRead[uart] != txWrite[uart]) {
return 0;
} else {
return 1;
}
}
void serialReceiveInterrupt(uint8_t uart) {
rxBuffer[uart][rxWrite[uart]] = *serialRegisters[uart][SERIALDATA];
if (rxWrite[uart] < (RX_BUFFER_SIZE - 1)) {
rxWrite[uart]++;
} else {
rxWrite[uart] = 0;
}
#ifdef FLOWCONTROL
rxBufferElements[uart]++;
if ((flow[uart] == 1) && (rxBufferElements[uart] >= (RX_BUFFER_SIZE - FLOWMARK))) {
sendThisNext[uart] = XOFF;
flow[uart] = 0;
if (shouldStartTransmission[uart]) {
shouldStartTransmission[uart] = 0;
*serialRegisters[uart][SERIALB] |= (1 << serialBits[uart][SERIALUDRIE]); // Enable Interrupt
*serialRegisters[uart][SERIALA] |= (1 << serialBits[uart][SERIALUDRE]); // Trigger Interrupt
}
}
#endif
}
void serialTransmitInterrupt(uint8_t uart) {
#ifdef FLOWCONTROL
if (sendThisNext[uart]) {
*serialRegisters[uart][SERIALDATA] = sendThisNext[uart];
sendThisNext[uart] = 0;
} else {
#endif
if (txRead[uart] != txWrite[uart]) {
*serialRegisters[uart][SERIALDATA] = txBuffer[uart][txRead[uart]];
if (txRead[uart] < (TX_BUFFER_SIZE -1)) {
txRead[uart]++;
} else {
txRead[uart] = 0;
}
} else {
shouldStartTransmission[uart] = 1;
*serialRegisters[uart][SERIALB] &= ~(1 << serialBits[uart][SERIALUDRIE]); // Disable Interrupt
}
#ifdef FLOWCONTROL
}
#endif
}
ISR(SERIALRECIEVEINTERRUPT) { // Receive complete
serialReceiveInterrupt(0);
}
ISR(SERIALTRANSMITINTERRUPT) { // Data register empty
serialTransmitInterrupt(0);
}
#if UART_COUNT > 1
ISR(SERIALRECIEVEINTERRUPT1) { // Receive complete
serialReceiveInterrupt(1);
}
ISR(SERIALTRANSMITINTERRUPT1) { // Data register empty
serialTransmitInterrupt(1);
}
#endif
#if UART_COUNT > 2
ISR(SERIALRECIEVEINTERRUPT2) { // Receive complete
serialReceiveInterrupt(2);
}
ISR(SERIALTRANSMITINTERRUPT2) { // Data register empty
serialTransmitInterrupt(2);
}
#endif
#if UART_COUNT > 3
ISR(SERIALRECIEVEINTERRUPT3) { // Receive complete
serialReceiveInterrupt(3);
}
ISR(SERIALTRANSMITINTERRUPT3) { // Data register empty
serialTransmitInterrupt(3);
}
#endif
/** @} */