-
Notifications
You must be signed in to change notification settings - Fork 133
/
Copy pathrnn_test.py
83 lines (70 loc) · 3.19 KB
/
rnn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os, sys
import argparse
import cPickle
import numpy as np
import tensorflow as tf
import util
import nottingham_util
from model import Model, NottinghamModel, NottinghamSeparate
from rnn import DefaultConfig
if __name__ == '__main__':
np.random.seed()
parser = argparse.ArgumentParser(description='Script to test a models performance against the test set')
parser.add_argument('--config_file', type=str, required=True)
parser.add_argument('--num_samples', type=int, default=1)
parser.add_argument('--seperate', action='store_true', default=False)
parser.add_argument('--choice', type=str, default='melody',
choices = ['melody', 'harmony'])
args = parser.parse_args()
with open(args.config_file, 'r') as f:
config = cPickle.load(f)
if config.dataset == 'softmax':
config.time_batch_len = 1
config.max_time_batches = -1
with open(nottingham_util.PICKLE_LOC, 'r') as f:
pickle = cPickle.load(f)
if args.seperate:
model_class = NottinghamSeparate
test_data = util.batch_data(pickle['test'], time_batch_len = 1,
max_time_batches = -1, softmax = True)
r = nottingham_util.NOTTINGHAM_MELODY_RANGE
if args.choice == 'melody':
print "Using only melody"
new_data = []
for batch_data, batch_targets in test_data:
new_data.append(([tb[:, :, :r] for tb in batch_data],
[tb[:, :, 0] for tb in batch_targets]))
test_data = new_data
else:
print "Using only harmony"
new_data = []
for batch_data, batch_targets in test_data:
new_data.append(([tb[:, :, r:] for tb in batch_data],
[tb[:, :, 1] for tb in batch_targets]))
test_data = new_data
else:
model_class = NottinghamModel
# use time batch len of 1 so that every target is covered
test_data = util.batch_data(pickle['test'], time_batch_len = 1,
max_time_batches = -1, softmax = True)
else:
raise Exception("Other datasets not yet implemented")
print config
with tf.Graph().as_default(), tf.Session() as session:
with tf.variable_scope("model", reuse=None):
test_model = model_class(config, training=False)
saver = tf.train.Saver(tf.all_variables())
model_path = os.path.join(os.path.dirname(args.config_file),
config.model_name)
saver.restore(session, model_path)
test_loss, test_probs = util.run_epoch(session, test_model, test_data,
training=False, testing=True)
print 'Testing Loss: {}'.format(test_loss)
if config.dataset == 'softmax':
if args.seperate:
nottingham_util.seperate_accuracy(test_probs, test_data, num_samples=args.num_samples)
else:
nottingham_util.accuracy(test_probs, test_data, num_samples=args.num_samples)
else:
util.accuracy(test_probs, test_data, num_samples=50)
sys.exit(1)