-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathiopublic.py
381 lines (343 loc) · 14.9 KB
/
iopublic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# if you want a specific arbor load location after a custom cmake build
# from https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
# import sys
# import importlib
# ARBOR_LOCATION = '/usr/local/lib/python3.8/dist-packages/arbor/__init__.py'
# spec = importlib.util.spec_from_file_location('arbor', ARBOR_LOCATION)
# module = importlib.util.module_from_spec(spec)
# sys.modules[spec.name] = module
# spec.loader.exec_module(module)
import os
import math
import json
import collections
import numpy as np
import arbor
ARBOR_BUILD_CATALOGUE = 'arbor-build-catalogue'
SMOL_MODEL_DIR = 'smol_model'
def compile_smol_model():
'''Builds the Inferior Olive mechanisms in the smol_model directory
If we don't need to rebuild because the mod file have not changed we
do not recompile. An arbor catalogue for the smol model is returned.
'''
dir = SMOL_MODEL_DIR
if hasattr(arbor, 'smol_catalogue'):
# if you are using a local copy
return arbor.smol_catalogue()
import glob
import subprocess
expected_fn = f'./{dir}-catalogue.so'
if os.path.exists(expected_fn):
needs_recompile = False
for src in glob.glob(f'{dir}/*.mod'):
if os.path.getmtime(src) > os.path.getmtime(expected_fn):
print(src, 'is newer than compiled library')
needs_recompile = True
if not needs_recompile:
return arbor.load_catalogue(expected_fn)
res = subprocess.getoutput(f'{ARBOR_BUILD_CATALOGUE} -g cuda {dir} {dir}')
path = res.split()[-1]
print(res)
assert path[0] == '/' and path.endswith('.so')
return arbor.load_catalogue(path)
def load_spacefilling_network(filename):
'''Loads the network morphology json/gz given by the filename
The file is just a regular json file but we wrap it in a SimpleNamespace
we can use dot notation (obj.attr) to access attributes instead of obj['attr'].
'''
import json
import gzip
from types import SimpleNamespace
if filename.endswith('.gz'):
with gzip.open(filename, 'rt') as f:
network = json.load(f, object_hook=lambda d:SimpleNamespace(**d))
else:
with open(filename) as f:
network = json.load(f, object_hook=lambda d:SimpleNamespace(**d))
return network
class TunedIOModel(arbor.recipe):
def __init__(self, network_json, tuning, spikes=(), noise=(('sigma', 0),)):
'''Arbor recipe for a fully tuned and self-contained IO model
network_json: result of load_spacefilling_network(<filename>)
tuning: result of json.load'ing a tuning file (containing gmax scalings)
spikes: dict or list of tuples containing (timestep_ms,weight_uS) pairs
noise: dict or list of tuples that define the noise component (needs ou_noise mech)
'''
arbor.recipe.__init__(self)
self.neurons = network_json.neurons
self.soma = []
for neuron in self.neurons:
self.soma.append((neuron.x, neuron.y, neuron.z))
self.soma = np.array(self.soma)
# idmap: scaffold id to gid map
self.idmap = {neuron.old_id:new_id for new_id, neuron in enumerate(self.neurons)}
self.props = arbor.neuron_cable_properties()
smol_cat = compile_smol_model()
self.props.catalogue.extend(smol_cat, '')
self.tuning = tuning
self.ggap = tuning['ggap']
if isinstance(spikes, dict):
self.spikes = list(spikes.items())
else:
self.spikes = list(spikes)
self.noise = dict(noise)
# nmlcc renames gmax to conductance:
self.gmax_key = 'gmax' if 'gmax' in smol_cat['cal'].parameters else 'conductance'
def cell_kind(self, gid): return arbor.cell_kind.cable
def connections_on(self, gid): return []
def num_targets(self, gid): return 0
def num_sources(self, gid): return 0
def event_generators(self, gid): return []
def probes(self, gid):
return [
# just vsoma
arbor.cable_probe_membrane_voltage('"root"'),
# next 3 are needed for lfpykit
arbor.cable_probe_membrane_voltage_cell(),
arbor.cable_probe_total_current_cell(),
arbor.cable_probe_stimulus_current_cell(),
]
def global_properties(self, kind): return self.props
def num_cells(self):
return len(self.neurons)
def cell_morphology(self, gid):
neuron = self.neurons[gid]
mod = self.tuning['mods'][gid]
gjs = self.gap_junctions_on(gid, just_ids=True)
cell = make_space_filling_neuron(neuron, gmax_key=self.gmax_key, mod=dict(mod), gjs=gjs, noise=self.noise, ret='tree')
return cell
def cell_description(self, gid):
neuron = self.neurons[gid]
mod = self.tuning['mods'][gid]
gjs = self.gap_junctions_on(gid, just_ids=True)
cell = make_space_filling_neuron(neuron, gmax_key=self.gmax_key, mod=dict(mod), gjs=gjs, noise=self.noise)
return cell
def num_gap_junction_sites(self, gid):
return len(self.neurons[gid].traces)
def gap_junctions_on(self, gid, just_ids=False):
conns = []
for trace in self.neurons[gid].traces:
local = f'gj{trace.local_from}'
peer = self.idmap[trace.global_to], f'gj{trace.local_to}'
assert self.idmap[trace.global_from] == gid
if just_ids:
conn = local, peer
else:
conn = arbor.gap_junction_connection(local=local, peer=peer, weight=self.ggap)
conns.append(conn)
return conns
def event_generators(self, gid):
if not self.spikes: return []
#
neuron = self.neurons[gid]
mod = self.tuning['mods'][gid]
gjs = self.gap_junctions_on(gid, just_ids=True)
gaba = make_space_filling_neuron(neuron, gmax_key=self.gmax_key, mod=dict(mod), gjs=gjs, noise=self.noise, ret='gaba')
ampa_syn = 'ampa_soma'
#
events = []
for at, weight in self.spikes:
if not isinstance(at, (tuple, list)):
at = [at]
if isinstance(weight, (tuple, list)) and len(weight) == 6:
# used
x, y, z, r, weight, type = weight
nx, ny, nz = self.soma[gid]
r2 = ((x-nx)**2 + (y-ny)**2 + (z-nz)**2)
if r2 > 4*r**2:
continue
w0 = np.exp(-r2/r**2)
if type == 'gaba':
for syn in gaba:
ev = arbor.event_generator(syn, w0 * weight, arbor.explicit_schedule(at))
events.append(ev)
elif type == 'ampa':
ev = arbor.event_generator(ampa_syn, w0 * weight, arbor.explicit_schedule(at))
events.append(ev)
else:
print('UNKNOWN TARGET SYNAPSE', type)
continue
elif isinstance(weight, (tuple, list)) and len(weight) == 2:
weight, type = weight
if type == 'gaba':
for syn in gaba:
ev = arbor.event_generator(syn, weight, arbor.explicit_schedule(at))
events.append(ev)
elif type == 'ampa':
ev = arbor.event_generator(ampa_syn, weight, arbor.explicit_schedule(at))
events.append(ev)
else:
print('UNKNOWN TARGET SYNAPSE', type)
continue
else:
for syn in gaba:
ev = arbor.event_generator(syn, weight, arbor.explicit_schedule(at))
events.append(ev)
continue
print('ERROR! IGNORING SPIKE!', at, weight)
return events
def mkdecor(mod=(), gmax_key='gmax'): # mod is read only
'''
mod keys can be things like
scal_cal = 1.0 # scale gmax
scal_ks = 0.5
override_cal = calpid/global=1 # different mechanism and/or global
cal.stopAfter = 10 # mech param
'''
SOMA = 'soma_group'
DEND = 'dendrite_group'
AXON = 'axon_group'
mod = dict(mod)
decor = arbor.decor()
def mech(group, name, value, alt_name=False):
gmax = mod.pop(name, value)*mod.pop(f'scal_{alt_name or name}', 1)
mechname = mod.pop(f'overide_{alt_name or name}', name)
params = {gmax_key: gmax}
prefix = f'{alt_name or name}.'
extra_params = set(k for k in mod if k.startswith(prefix))
for k in extra_params:
param_name = k.replace(prefix, '')
param_value = mod.pop(k)
params[param_name] = param_value
decor.paint(f'"{group}"', arbor.density(mechname, params))
mech(SOMA, 'na_s', 0.040)
mech(SOMA, 'kdr', 0.030)
mech(SOMA, 'k', 0.015 * 1.2, 'ks')
mech(SOMA, 'cal', 0.030 * 1.2)
mech(DEND, 'cah', 0.010 * 1.7 / 2)
mech(DEND, 'kca', 0.200 * 0.7 * 1.5)
mech(DEND, 'h', 0.025 * 1.7)
mech(DEND, 'cacc', 0.007)
mech(AXON, 'na_a', 0.250)
mech(AXON, 'k', 0.200)
#decor.paint('"all"', arbor.mechanism('ca_conc'))
decor.paint('"dendrite_group"', arbor.density('ca_conc'))
decor.paint('"all"', arbor.density('leak', {gmax_key: mod.pop('scal_leak', 1)*mod.pop('leak', 1.3e-05)} ))
decor.set_property(cm=0.01) # F/m2
Vm = mod.pop('Vm', -65)
Vdend = mod.pop('Vdend', Vm)
decor.set_property(Vm=Vm) # mV
decor.paint(f'"{DEND}"', Vm=Vdend)
decor.paint(f'"{SOMA}"', rL=100) # Ohm cm
decor.paint(f'"{DEND}"', rL=100) # Ohm cm
decor.paint(f'"{AXON}"', rL=100) # Ohm cm
if mod:
raise Exception(f'leftover config {mod}')
return decor
def make_space_filling_neuron(neuron, gmax_key, mod=(), gjs=(), noise=(), ret='cell'):
'''Build a single IO cell given a neuron morphology and mechanism params
'''
mod = dict(mod)
tree = arbor.segment_tree()
'''
def cable(*, length, radius, parent, tag):
if isinstance(radius, (float, int)):
radius = [radius, radius]
return tree.append(
parent,
arbor.mpoint(x=0, y=0, z=0, radius=radius[0]),
arbor.mpoint(x=length, y=0, z=0, radius=radius[1]),
tag=tag)
'''
def cable3d(*, a, b, radius, parent, tag):
if isinstance(radius, (float, int)):
radius = [radius, radius]
return tree.append(
parent,
arbor.mpoint(x=a[0], y=a[1], z=a[2], radius=radius[0]),
arbor.mpoint(x=b[0], y=b[1], z=b[2], radius=radius[1]),
tag=tag)
# s = cable(length=12, radius=6, parent=arbor.mnpos, tag=1)
# a = cable(length=20, radius=[2.5, 1.5], parent=s, tag=2)
# sample random normal for soma and axon orientation
# not for simulation but for lfp calculation
# shouldnt matter too much, just as long we don't introduce a bias
# by always orienting it in one way
normal = np.random.randn(3)
normal /= np.linalg.norm(normal, axis=0)
soma_pos = np.array([neuron.x, neuron.y, neuron.z])
half_soma_end = 6 * normal
axon_end = 20 * normal
s = cable3d(a=soma_pos-half_soma_end, b=soma_pos+half_soma_end, radius=6, parent=arbor.mnpos, tag=1)
a = cable3d(a=soma_pos-half_soma_end, b=soma_pos-half_soma_end-axon_end, radius=[2.5, 1.5], parent=s, tag=2)
segments = list(sorted(neuron.tree, key=lambda seg:seg.seg_id))
seg_to_cable = {0: s}
cables = []
labels = arbor.label_dict()
for i, seg in enumerate(segments):
if i == 0:
continue # soma
prev_seg = segments[seg.parent]
prev_cable_id = seg_to_cable[seg.parent]
# length = math.sqrt((prev_seg.x-seg.x)**2 + (prev_seg.y-seg.y)**2 + (prev_seg.z-seg.z)**2)
#cable_id = cable(length=length, radius=1, parent=prev_cable_id, tag=3)
a = np.array([prev_seg.x, prev_seg.y, prev_seg.z])
b = np.array([seg.x, seg.y, seg.z])
cable_id = cable3d(a=a, b=b, radius=1, parent=prev_cable_id, tag=3)
cables.append(cable_id)
seg_to_cable[i] = cable_id
for gj in seg.gj:
labels[f'gj{gj}'] = f'(on-components 1.0 (segment {cable_id}))'
labels['soma_group'] = '(tag 1)'
labels['axon_group'] = '(tag 2)'
labels['dendrite_group'] = '(tag 3)'
labels['dendrite_distal'] = '(tag 4)'
labels['all'] = '(all)'
labels['synapse_site'] = '(location 0 0.5)'
labels['root'] = '(root)'
gj_mech = mod.pop('gj', 'cx36')
decor = mkdecor(mod, gmax_key=gmax_key)
if noise != {'sigma': 0}:
args = ','.join(f'{k}={v}' for k, v in noise.items())
decor.paint('"soma_group"', arbor.density(f'ou_noise/{args}'))
for local, peer in gjs:
decor.place(f'"{local}"', arbor.junction(gj_mech), local)
# no gaba at soma
# gaba = ['gabaroot']
# decor.place('"root"', arbor.synapse('expsyn', dict(tau=5, e=-80)), 'gabaroot')
# O'Donnell v.Rossum 2011 J. Neurosci 5ns/1mum3
decor.place(f'"root"', arbor.synapse('exp2syn', dict(tau1=0.18, tau2=1.8, e=0)), f'ampa_soma') # Cian McDonnel et al 2012
gaba = []
for i, cable in enumerate(cables):
# fast gaba
decor.place(f'(on-components 0.5 (segment {cable}))',
arbor.synapse('exp2syn', dict(tau1=3, tau2=10, e=-75)), f'gaba{i}') # -70 from Devor and Yarom, 2002 // -75 from Loyola et al (2021?) with 625m opto in CN
gaba.append(f'gaba{i}')
policy = arbor.cv_policy_max_extent(10) | arbor.cv_policy_single('"soma_group"')
decor.discretization(policy)
if ret == 'tree':
return tree
elif ret == 'gaba':
return gaba
elif ret == 'cell':
return arbor.cable_cell(tree, labels, decor)
else:
assert False
def get_network_for_tuning(selected):
fn_tuned = f'tuned_networks/{selected}'
tuning = json.load(open(fn_tuned))
fn_network = f'{tuning["network"]}.gz'
network = load_spacefilling_network(fn_network)
return network
def build_recipe(selected, spikes=()):
#selected = '2021-12-08-shadow_averages_0.01_0.8_d1666304-c6fc-4346-a55d-a99b3aad55be'
fn_tuned = f'tuned_networks/{selected}'
tuning = json.load(open(fn_tuned))
for mod in tuning['mods']:
cal = mod.pop('scal_cal', None) # oops misnamed this one
if cal is not None:
mod['cal'] = cal
fn_network = f'{tuning["network"]}.gz'
network = load_spacefilling_network(fn_network)
recipe = TunedIOModel(network, tuning, spikes=spikes)
return recipe
def simulate_tuned_network(selected, tfinal=10000, dt=0.025, gpu_id=0, spikes=()):
recipe = build_recipe(selected, spikes=spikes)
context = arbor.context(threads=8, gpu_id=gpu_id)
domains = arbor.partition_load_balance(recipe, context)
sim = arbor.simulation(recipe, domains, context)
handles = [sim.sample((gid, 0), arbor.regular_schedule(1)) for gid in range(recipe.num_cells())]
sim.run(tfinal=tfinal, dt=dt)
traces = [sim.samples(handle)[0][0].T for handle in handles]
vsall = np.array([vs for t, vs in traces])
return traces[0][0], vsall