-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpredict_data.py
43 lines (39 loc) · 1.47 KB
/
predict_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from skimage import io
import os
from keras.models import load_model
def predict_img(model_path,img_data):
model = load_model(model_path)
pred = model.predict(img_data,batch_size = 50)
outdict = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','0','1','2','3','4','5','6','7','8','9']
f = open('mappings.txt','w')
for i in range(pred.shape[0]):
c0 = outdict[np.argmax(pred[i][:36])]
c1 = outdict[np.argmax(pred[i][36:36*2])]
c2 = outdict[np.argmax(pred[i][36*2:36*3])]
c3 = outdict[np.argmax(pred[i][36*3:36*4])]
c4 = outdict[np.argmax(pred[i][36*4:])]
c = c0+c1+c2+c3+c4
n = np.str("{:0>4d}".format(i))
f.write(n+','+c+'\r')
f.close()
def read_data_img(img_path):
img_file = os.listdir(img_path)
img_data = []
for img in img_file:
path = os.path.join(img_path,img)
image = io.imread(path,0)
img_data.append(image)
img_data = np.array(img_data)
img_data = img_data.reshape(img_data.shape[0], 60, 200, 1)
img_data = img_data.astype('float32')
img_data /= 255
return img_data
def main():
path = os.getcwd()
model_path = os.path.join(path,'my_model_data_2.h5')
img_path = os.path.join(path,'train_change')
img_data = read_data_img(img_path)
predict_img(model_path,img_data)
if __name__ == '__main__':
main()